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Preface

The European Conference on Numerical Mathematics and Advanced Applications
(ENUMATH) was held from June 29–July 3, 2010, in Uppsala, Sweden. This was
the eighth conference in a series of biannual meetings starting in Paris (1995). Sub-
sequent conferences were organized in Heidelberg (1997), Jyväskylä (1999), Ischia
(2001), Prague (2003), Santiago de Compostela (2005), and Graz (2007). ENU-
MATH 2009 attracted over 330 attendees to the scientific programme, with ten
invited speakers, one public lecture, 32 minisymposia, and more than 280 presenta-
tions. This volume contains a selection of papers by the invited speakers and from
the minisymposia and the contributed sessions.

The purpose of the conference was to create a forum for discussion and dis-
semination of recent results in numerical mathematics and new applications of
computational methods. Many subjects were covered in the talks and a few of the
topics represented in these proceedings were discontinuous Galerkin methods, finite
element methods in different applications, methods for fluid flow, electromagnetism,
financial engineering, structural mechanics, optimal control, and biomechanics. The
minisymposia listed below with their organizers also give an impression of how
broad the scope of the conference was:

� Adaptivity for non-linear and non-smooth problems, part I & II, Ralf Kornhuber,
Andreas Veeser

� Advanced techniques in radial basis function approximation for PDEs, part I
& II, Natasha Flyer, Elisabeth Larsson

� Advances in numerical methods for non-Newtonian flows, part I & II, Erik
Burman, Maxim Olshanskii, Stefan Turek

� Anisotropic adaptive meshes: error analysis and applications, part I & II, Thierry
Coupez, Simona Perotto

� Asymptotic linear algebra, numerical methods, and applications, part I & II,
Marco Donatelli, Stefano Serra-Capizzano

� Biomechanics, part I & II, Gerhard A. Holzapfel, Axel Klawonn
� Embedded boundary methods for time-dependent problems, Daniel Appelö
� Finite element software development, Anders Logg
� Finite elements for convection-diffusion problems, part I, II & III, Miloslav

Feistauer, Petr Knobloch

v
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� Finite element methods for flow problems, Johan Hoffman
� Geometric aspects of the finite element modeling, part I & II, Sergey Korotov,

Tomas Vejchodsky
� High frequency wave propagation, Olof Runborg
� High order methods in CFD, Bernhard Müller
� HPC-driven numerical methods and applications, part I & II, Svetozar Margenov,

Maya Neytcheva
� Multiscale methods for differential equations, part I & II, Mats Larson, Axel

Målqvist
� Numerical methods for multi-dimensional Lagrangian schemes, Pierre-Henri

Maire, Raphaël Loubere
� Numerical methods for option pricing, Cornelis W. Oosterlee, Jari Toivanen
� Numerical methods for stochastic partial differential equations, part I & II, Fabio

Nobile, Raul Tempone
� Tensor numerical methods, Eugene Tyrtyshnikov, Boris Khoromskij
� Theory and applications of non-conforming finite element methods, Emmanuil

Georgoulis, Max Jensen

The conference was organized by the Division of Scientific Computing of the
Department of Information Technology at Uppsala University in collaboration with
Akademikonferens in Uppsala. Uppsala University is not as old as the universities in
Paris, Heidelberg, and Prague, but it is the oldest university in the Nordic countries.
It was founded in 1477 and the first professor in mathematics was appointed in
1593. The first professor in numerical analysis, Heinz-Otto Kreiss, started his work
in 1965.

The success of the conference was in a large part due to the invited speakers
Martin Berggren, Daniele Boffi, Carsten Carstensen, Vit Dolejsi, Charlie Elliott,
Claude Le Bris, Christian Lubich, Marco Picasso, Rob Stevenson, and Anna-Karin
Tornberg, as well as to Björn Engquist, who delivered the public lecture. The mem-
bers of the program committee were Franco Brezzi, Miloslav Feistauer, Roland
Glowinski, Rolf Jeltsch, Yuri Kuznetsov, Jacques Périaux, Rolf Rannacher, and
Endre Süli. They selected the invited speakers and helped by sharing their knowl-
edge of how are organized these conferences.

The scientific committee consisted of Christine Bernardi, Alfredo Bermudez de
Castro, Albert Cohen, Claudio Canuto, Michael Griebel, Peter Hansbo, Jaroslav
Haslinger, Thomas Huckle, Karl Kunisch, Ulrich Langer, Stig Larsson, Olivier
Pironneau, Sergey Repin, Miro Rozloznik, J. J. Sanz-Serna, Stefan Sauter,
Stefano Serra Capizzano, Valeria Simoncini, Olaf Steinbach, Rolf Stenberg, Anders
Szepessy, Stefan Turek, Kees Vuik, Ragnar Winther, and Barbara Wohlmuth. Mem-
bers of the committee, Martin Berggren and Bernhard Müller have served as referees
for this volume.

The local committee was assisted by PhD students at our Division: Qaisar Abbas,
Kenneth Duru, Magnus Gustafsson, Andreas Hellander, Stefan Hellander, Katharina
Kormann, Martin Kronbichler, Erik Lehto, Anna Nissen, Elena Sundkvist, Martin
Tillenius, Salman Toor, and He Xin. The change between speakers in the sessions
would not have been so smooth without their presence in the lecture rooms. Special
thanks to Kenneth Duru for helping with the preparations of the proceedings.



Preface vii

The conference received financial support from Centre for Interdisciplinary
Mathematics at Uppsala University, City of Uppsala, Comsol, Swedish Foundation
for Strategic Research, Swedish Research Council, Uppsala Multidisciplinary Cen-
ter for Advanced Computational Science (UPPMAX), Wenner-Gren Foundations,
and John Wiley & Sons. Their generous contributions helped to lower the fees for
the participants.

Last but not least, many thanks to Karin Hornay and Maria Bäckström from
Akademikonferens for sharing their invaluable experience in organizing confer-
ences.

Uppsala Gunilla Kreiss
March 2010 Per Lötstedt

Axel Målqvist
Maya Neytcheva
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Discrete Differential Forms, Approximation
of Eigenvalue Problems, and Application
to the p Version of Edge Finite Elements

Daniele Boffi

Abstract We are interested in the approximation of the eigenvalues of Hodge–
Laplace operator in the framework of de Rham complex by using exterior calculus
and suitable equivalent formulations in mixed form. We discuss the role of discrete
compactness property and show how it is related to the classic conditions for the
convergence of eigenvalues in mixed form. In this context, we review a recent result
concerning the discrete compactness for the p version of discrete differential forms.
One of the applications of the presented theory is the convergence analysis of the p
version of edge finite elements for the approximation of Maxwell’s eigenvalues.

1 Introduction

The use of homological techniques for the analysis of finite element approxima-
tions of partial differential equations has become a very popular and effective tool
(see [3, 4]). In the framework of de Rham complex it is natural to consider the
eigenvalue problem associated with Hodge–Laplace operator. There are several
eigenvalue problems of interest for the applications, which can be related to the
Hodge–Laplace eigenvalue problem: for instance the standard Laplace eigenvalue
problem fits within this framework (0-forms), as well as the Maxwell eigenvalue
problem (1-forms in two or three space dimensions), or the eigenvalue problem
associated with grad div operator (2-forms in three dimensions).

The main object of this paper is to extend the results of [11] to differential forms.
First of all, we consider two mixed variational formulations which give the same

solutions as the standard formulation originally designed for the Hodge–Laplace
eigenvalue problem. The theory developed in [13] can be used for the analysis of
the mixed formulations in order to show the convergence of the eigenpairs; classic
results ([6, 32]) give the order of convergence for eigenvalues/eigenfunctions.

D. Boffi
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e-mail: daniele.boffi@unipv.it
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4 D. Boffi

Then, we recall the discrete compactness property that can be naturally written in
the context of differential forms. The notion of discrete compactness has been used
since long time in the literature: we recall, in particular, the works by Stummel [37],
Vaı̆nikko [38], Anselone [1], and the more recent book by Chatelin [19]. In the
approximation of Maxwell’s eigenvalues, it has been used firstly by Kikuchi [30]
and then reinterpreted and rephrased by several authors [7, 8, 10, 11, 18, 21, 31, 33].
We refer the interested reader also to [28, 35] and to the references therein for a
review on this topic.

Following [11], we show that the discrete compactness property and standard
approximation properties are equivalent to the natural convergence conditions for
the two equivalent mixed formulation we have introduced.

One of the consequences of the presented theory is that we can show that a
discretization that satisfies the discrete compactness property provides convergent
eigenpairs and that such convergence can be analyzed by means of the standard
Babuška–Osborn theory. A similar result has been obtained in [9] as a consequence
of the theory developed by [18] which makes use of the results of [26].

In [5] it has been introduced a comprehensive theory for the convergence of the
eigenmodes of the Hodge–Laplace operator. The theory has been used (together
with a suitably defined projection operator) for the analysis of the convergence of
the h version of finite elements applied to k-forms in any space dimensions (when
suitable discrete differential forms are used). The abstract hypotheses of [5] imply,
in particular, our discrete compactness property.

When discussing the p version of finite elements for the approximation of the
eigenmodes of the Hodge–Laplace operator, it is still an open problem to see
whether the assumptions of [5] are satisfied for discrete differential forms. On the
other hand, in [9] it has been shown that the discrete compactness in p is valid as a
consequence of a recent result on the Poincaré operator (see [20]). In particular, this
implies that two- and three-dimensional edge elements provide a good convergence
in p for the eigenvalues/eigenfunctions of the Maxwell cavity problem.

The results of the present paper and, in particular, the relationships between the
eingevalue problem associated with the Hodge–Laplace operator for differential
forms and suitable mixed formulations are discussed in more detail in [12].

2 Short Introduction to de Rham Complex
and Differential Forms

Given a domain ˝ � Rn and k with 0 � k � n, we denote by C1.˝;�k/ the
space of smooth differential forms of order k on ˝ . For the sake of simplicity, we
assume that˝ is simply connected, but the results of this paper might be generalized
to non-trivial cohomologies with natural modifications.

We suppose that we are given an exterior derivative

dk W C1.˝;�k/! C1.˝;�kC1/
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for any k. The space L2.˝;�k/ denotes the space of differential k-forms on ˝
with square integrable coefficients in their canonical basis representation; its inner
product is given by

.u; v/ D
Z
˝

u ^ ? v;

where ? denotes the Hodge star operator mapping k-forms to .n � k/-forms.
We shall make use of the Hilbert spaces

H.dk;˝/ D fv 2 L2.˝;�k/ W dkv 2 L2.˝;�kC1/g

and
H0.dk;˝/ D fv 2 H.dk ;˝/ W tr@˝v D 0g:

We refer the interested reader to [4] for a canonical definition of the trace operator
tr@˝ . In particular, we are interested in the following complex

R ����! H0.d0;˝/
d0����! H0.d1;˝/

d1����! � � � dn�1����! H0.dn;˝/ ����! 0:

We recall in particular that dkC1 ı dk D 0 and that the range of dk coincides with
the kernel of dk C 1.

Given spaces of discrete differential forms V kp � H0.dk;˝/, a typical set-

ting involves appropriate projection operators �kp WH0.dk;˝/ ! V kp such that the
following full de Rham complex commutes

R ����! H0.d0;˝/
d0����! H0.d1;˝/

d1����! � � � dn�1����! H0.dn;˝/ ����! 0

�0
p

??y �1
p

??y �n
p

??y
R ����! V 0p

d0����! V 1p
d1����! � � � dn�1����! V np ����! 0:

(1)

Remark 1. We use the index p for discrete spaces, so that it is explicit that we are
interested in the p version of finite elements; nevertheless, the abstract theory we
are going to present is valid for general Galerkin discretizations where V kp are finite
dimensional subspaces ofH0.dk;˝/.

Remark 2. In general, we are not going to assume that the full diagram (1) com-
mutes. When we are interested in differential forms of degree k, it will be enough
to consider a small portion of (1) in the vicinity of k-forms.

The coderivative operator ık D ? dn�k ? maps C1.˝;�k/ to C1.˝;�k�1/
and leads to the definition of the Hilbert space

H.ık;˝/ D fv 2 L2.˝;�k/ W ıkv 2 L2.˝;�k�1/g:

The spaces of differential forms when n D 2; 3 have been studied intensively.
Table 1 recalls the representation of the involved quantities in terms of vector
proxies.
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Table 1 Identification between differential forms and vector proxies in R2 and R3

Differential form Proxy representation
d D 2 d D 3

k D 0 d0 grad grad
tr@˝� �

j@˝ �
j@˝

H0.d0;˝/ H1
0 .˝/ H1

0 .˝/

ı1 � div � div

k D 1 d1 curl curl
tr@˝u .u � t/

j@˝ n� .u � n/
j@˝

H0.d1;˝/ H0.curl/ H0.curl/

ı2
�!
curl curl

k D 2 d2 0 div
tr@˝q 0 .q � n/

j@˝

H0.d2;˝/ L20.˝/ H0.div/
ı3 � grad

3 The Hodge–Laplace Eigenvalue Problem

Given k with 0 � k � n, we are interested in the following symmetric eigenvalue
problem: find � 2 R and u 2 H0.dk;˝/ with u 6D 0 such that

.dku; dkv/ D �.u; v/ 8v 2 H0.dk;˝/: (2)

The interest for the eigenvalue problem (2) arose in [9]: the case k D 1 (both for
n D 2 and n D 3) corresponds to the Maxwell eigenvalue problem, since d1 can be
identified to the curl operator (see Table 1).

Problem (2) is strictly related to the so called Hodge–Laplace elliptic eigenvalue
problem (see [4, 5]): find ! 2 R and u 2 H0.dk;˝/ \ H.ık ;˝/ with u 6D 0

such that

.dku; dkv/C .ıku; ıkv/ D !.u; v/ 8v 2 H0.dk;˝/\H.ık;˝/: (3)

It is well-known that problem (3) is associated with a compact solution opera-
tor; this is consequence of the compact embedding of H0.dk;˝/ \H.ık;˝/ into
L2.˝;�k/ (see [36]). Moreover, the eigensolutions of (3) split into two separate
families: the first one consists of eigenvalues corresponding to eigenfunctions u
with dku D 0 and the second one of eigenvalues corresponding to eigenfunctions
u with ıku D 0. The second family corresponds to all the solutions to our original
eigenvalue problem (2) with positive frequencies. In addition, the zero frequency
solves problem (2) with the infinite dimensional eigenspace dk�1.H0.dk�1;˝//.

Given a finite dimensional discretization V kp of H0.dk;˝/, the discrete version

of (2) is: find �p 2 R and up 2 V kp with uh 6D 0 such that

.dkup; dkv/ D �p.uh; v/ 8v 2 V kp : (4)
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One of the main issues for the convergence of the solutions of (4) towards those
of (2) is the infinite dimensional kernel of (2). In general, we would like that the
positive frequencies of (4) provide a good approximation of the positive frequen-
cies of (2). From the above discussion, it follows that adding the condition � > 0

to problem (2) is equivalent to adding the condition ıku D 0 to the solution of
problem (2). This last property can also be proved by taking v D dk�1t in (2) with
an arbitrary t 2 H0.dk�1;˝/. The variational equation with � 6D 0 implies then
.u; dk�1t/ D 0, that is ıku D 0.

In order to isolate the positive frequencies of problems (2) and (4) it is very
convenient to consider equivalent mixed formulations.

3.1 First Mixed Formulation

A first mixed formulation of problem (2) can be obtained as a generalization of the
so-called Kikuchi formulation for Maxwell’s eigenvalue problem (see [29]). It uses
.k � 1/- and k-forms as follows: find � 2 R and u 2 H0.dk;˝/ with u 6D 0 such
that for s 2 H0.dk�1;˝/ it holds

(
.dku; dkv/C .dk�1s; v/ D �.u; v/ 8v 2 H0.dk;˝/
.dk�1t;u/ D 0 8t 2 H0.dk�1;˝/: (5)

It can be easily shown that all eigensolutions of problem (5) have � > 0

and solve the original problem (2), that dk�1s is always equal to zero (take v D
dk�1s in the first equation of (5)), and that all eigensolutions of (2) with positive
eigenvalue solve (5) as well. When k D 1 (which is the case for Maxwell’s eigen-
value problem), we additionally have that s D 0 from d0s D 0 and the boundary
conditions.

A discretization of (5) involves the discrete spaces V k�1p � H0.dk�1;˝/ and

V kp � H0.dk;˝/ as follows: find �p 2 R and up 2 V kp with up 6D 0 such that for

sp 2 V k�1p it holds

(
.dkup ; dkv/C .dk�1sp ; v/ D �p.up ; v/ 8v 2 V kp
.dk�1t;up/ D 0 8t 2 V k�1p :

(6)

We assume the fundamental inclusion

dk�1.V k�1p / � V kp (7)

which is a compatibility condition valid whenever diagram (1) is satisfied. Under
hypothesis (7) the discrete problem (6) is equivalent to (4) in the sense that all solu-
tions corresponding to positive frequencies are the same. Hence the convergence
analysis of the solutions of (6) towards those of (5) can be used in order to pursue
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our goal of studying the convergence of the positive solutions of (4) to the positive
solutions of (2).

It follows from the theory of [13, Sect. 3] that the conditions we are going
to present, ensure (and, in a sense, are necessary for) the convergence of the
eigensolutions of (6) towards those of (5).

We need the discrete kernel of the ık operator (or, better, the kernel of the discrete
ık operator), defined as follows:

K1
p D fv 2 V kp W .v; dkt/ D 0; 8t 2 V k�1p g:

Moreover, we introduce the solution spaces of the source problem associated
with (5): V k0 and V k�10 are the subspaces of H0.dk;˝/ and H0.dk�1;˝/, respec-
tively, containing all the first and second components u 2 H0.dk;˝/ and s 2 H0
.dk�1;˝/, respectively, of the solution of the source problem

(
.dku; dkv/C .dk�1s; v/ D .f; v/ 8v 2 H0.dk;˝/
.dk�1t;u/ D 0 8t 2 H0.dk�1;˝/;

when f varies in L2.˝;�k/. Spaces V k0 and V k�10 will be endowed with their
natural norms.

Definition 1. The ellipticity in the kernel is satisfied if there exists a positive
constant ˛, independent of p, such that

.dkv; dkv/ � ˛.v; v/ 8v 2 K1
p :

Definition 2. The weak approximability of V k�10 is satisfied if there exists �1.p/,
tending to zero, such that for every s 2 V k�10

sup
v2K1

p

.v; dk�1s/
kvkH.dk ;˝/

� �1.p/kskV k�1
0

:

Definition 3. The strong approximability of V k0 is satisfied if there exists �2.p/,
tending to zero, such that for every u 2 V k0 there exists uI 2 K1

p such that

ku � uIkH.dk ;˝/ � �2.p/kukV k
0
:

3.2 Second Mixed Formulation

We are now going to present an alternative mixed formulation of problem (2)
which is a generalization of the one introduced in [10] and which makes use of the
spaces H0.dk;˝/ and W kC1 D dk.H.dk ;˝// � H0.dkC1;˝/: find � 2 R and
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u 2 H0.dk;˝/, with u 6D 0 such that for  2 W kC1 it holds

(
.u; v/C .dkv; / D 0 8v 2 H0.dk;˝/
.dku;'/ D ��. ;'/ 8' 2 W kC1:

(8)

It can be shown (see [10]) that all solutions of (8) have positive frequencies and
correspond to the solutions of (2) with positive frequencies.

A discretization of (8) involves the space V kp � H0.dk;˝/ and a suitable dis-

cretization of W kC1 � H0.dkC1;˝/. Since we are not going to approximate (8)
numerically, but we only use the mixed formulations for the numerical analysis
of (2) and (4), the most natural choice for the approximation of W kC1 consists
in taking

W kC1
p D dk.V kp /: (9)

In particular, equation (9) is the analogue of (7) for this mixed formulation. The dis-
crete problem is: find �p 2 R and up 2 V kp , with up 6D 0 such that for p 2 W kC1

p

it holds

(
.up; v/C .dkv; p/ D 0 8v 2 V kp
.dkup;'/ D ��p. p ;'/ 8' 2 W kC1

p :
(10)

Thanks to (9) is follows that all solutions of (10) correspond to the solutions
of (4) with positive frequencies. As for the first mixed formulation, we can then
analyze the convergence of problem (10) to (8) in order to study the convergence of
the positive solutions of (4) towards the positive solutions of (2).

We now describe the conditions presented in [13, Sect. 4] which are sufficient
(and in a sense necessary) for the convergence of (10) to (8). We consider the
discrete kernel of the operator dk , that is

K2
p D fv 2 V kp W .dkv;'/ D 0 8' 2 W kC1

p g:

Moreover, we need the solutions spaces W k
0 and W kC1

0 which contain all the first
and second components u 2 H.dk ;˝/ and 2 W kC1, respectively, of the solution
of the source problem

(
.u; v/C .dkv; / D 0 8v 2 H0.dk;˝/
.dku;'/ D �.g;'/ 8' 2 W kC1:

when g varies in L2.˝;�kC1/. The spaces W k
0 and W kC1

0 are endowed with their
natural norms.

Definition 4. The weak approximability of W kC1
0 is satisfied if there exists �3.p/,

tending to zero, such that

.dkv;'/ � �3.p/kvkL2.˝;�k/k'kW kC1
0

8v 2 K2
p 8' 2 W kC1

0 :
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Definition 5. The strong approximability ofW kC1
0 is satisfied if there exists �4.p/,

tending to zero, such that for every  2 W kC1
0 there is  I 2 W kC1

p with

k � IkL2.˝;�kC1/ � �4.p/k kW kC1
0

:

An operator˘p W W k
0 ! V k

h
is called Fortin operator if it satisfies

(
.dk.u �˘pu/;'/ D 0 8u 2 W k

0 8' 2 W kC1
p

k˘pukH.dk ;˝/ � CkukW k
0
8u 2 W k

0 :

Definition 6. The Fortid property is satisfied if there exists a Fortin operator which
converges to the identity in norm, that is, there exists �5.p/, tending to zero, such
that

ku �˘pukL2.˝;�k/ � �5.p/kukW k
0
:

3.3 Discrete Compactness Property

The eigenfunctions u of problem (2) corresponding to nonzero frequencies are char-
acterized by the constraint ıku D 0. The discrete compactness property mimicks,
at discrete level, the compactness of the subspace of H0.dk;˝/ consisting of func-
tions with vanishing ık , into L2.˝;�k/. It makes use of discrete differential forms
of order k � 1 and k: V k�1p and V kp are finite dimensional internal approximations
of H0.dk�1;˝/ and H0.dk;˝/, respectively.

Definition 7. The discrete compactness property is satisfied if every sequence fupg
in V kp , bounded in H0.dk;˝/ and with

.up; dk�1t/ D 0 8t 2 V k�1p ;

contains a subsequence which converges in L2.˝;�k/.

If the space V k�1p is a good approximation ofH0.dk�1;˝/ then it is not difficult
to see that the limit u in Definition 7 satisfies .u; d t/ D 0 for all t 2 H0.dk�1;˝/,
that is ıku D 0.

Definition 8. The strong discrete compactness property is satisfied if the limit u of
the subsequence in Definition 7 satisfies ıku D 0.

The strong discrete compactness property is strictly related to the the standard
discrete compactness property and the (CDK) property (completeness of discrete
kernels) as it has been defined in [18] and used, for instance, in [9].
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Before stating our main theorem, we need to make explicit a standard approxi-
mation property for the discrete space V kp :

lim
p

inf
up2V k

p

ku � upkH.dk;˝/ D 0 8u 2 H0.dk ;˝/ with ıku D 0: (11)

Theorem 1. Let us suppose that (7) and (9) are satisfied, so that the setting of
Sects. 3.1 and 3.2 can be adopted. Then the following three sets of conditions are
equivalent:

1. strong discrete compactness property (Definition 8) and approximation prop-
erty (11);

2. ellipticity in the kernel (Definition 1), weak approximability of V k�10 (Defini-
tion 2, and strong approximability of V k0 (Definition 3);

3. weak approximability of W kC1
0 (Definition 4), strong approximability of W kC1

0

(Definition 5), and Fortid property (Definition 6).

Proof. Due to the page restriction of the present paper, we cannot reproduce the full
proof of this result. Nevertheless, the reader is referred to [11, Theorem 3] where the
analogous result has been proved in a particular case (k D 1, n D 3 and the usual
proxy representation where d1 corresponds to the curl operator). The proofs of [11,
Propositions 3–6] leading to [11, Theorem 3] can be repeated practically identical
in our more general setting.

We take this opportunity to remark that [11, Proposition 3] which has been
proved in [33, Corollary 4.2] should assume the strong discrete compactness prop-
erty and not only the standard discrete compactness property. This change has no
consequences for the final result.

The meaning of Theorem 1 is that each of the three equivalent conditions is
a sufficient condition for the good approximation of the positive eigenvalues (and
corresponding eigenspaces) of (4) to the positive eigenvalues (and corresponding
eigenspaces) of (2) in the spirit of [6]. The task of evaluating the order of conver-
gence is usually less difficult since it is possible to take advantage of the smoothness
of the eigenfunctions. We refer the interested reader to [6] for the general case and
to [32] for the case of mixed approximations. A review of the abstract theory will
appear in [12].

4 The p Version of Edge Finite Elements

While the h version of edge finite elements for the approximation of Maxwell’s
eigenvalue problem has been the object of a rich literature, few results are available
about the p and hp versions. Numerical results showed that the pure spectral method
(one cubic element and p going to infinity) provides good results if suitable Nédélec
finite elements are used (see [34]), on the other hand the first theoretical results about
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the p version of edge finite elements are presented in [15], where the two dimen-
sional triangular case is studied for the hp version. The analysis, however, relies on
a conjectured estimate which has only been demonstrated numerically. In [14] the
first proof of the discrete compactness in the case of the rectangular hp version of
edge elements (allowing for 1-irregular hanging nodes) has been proposed.

A significant step forward for the analysis of the p version of edge finite element
comes from the results of [20], where a regularized Poincaré lifting is introduced.
This is one of the main ingredients for the analysis reported in [9], where the discrete
compactness in p for a wide class of edge finite elements is proved.

We refer the interested reader to the details in [9] for the technical assump-
tions and the abstract setting. The main conclusion, related to edge finite elements
for the approximation in p of Maxwell’s eigenvalue problem, is that edge finite
elements satisfy the discrete compactness in p in two dimensions (triangles and
parallelograms) and in three dimensions (tetrahedra and parallelepipeds). The anal-
ysis relies on the already mentioned Poincaré lifting and on recently introduced
projection-based interpolation operators (see, in particular, [17, 22–25]).

It is clear that after the results of [9] an important part of the analysis has been
completed; nevertheless, there are still open problems that we hope can be solved
in a near future. First of all, the technique of [9] does not apply to the general hp
version in a straightforward way. There, we used a fixed mesh and the estimates
depend on the mesh. Then, other finite element geometries might be used (prisms,
pyramids, etc.) and the case of general quadrilaterals or hexehedra can be consid-
ered for which, so far, only relatively negative results concerning the approximation
properties on distorted meshes are available (see [2, 16, 27]).

The approximation theory for eigenvalue problem in the framework of differ-
ential forms has been studied recently also in [5]. There, the discrete compactness
property is studied by means of suitably constructed projection-based interpolation
operators which satisfy the strong property of being bounded in L2 and are con-
structed by a means of an extension-regularization procedure. It is not clear whether
this assumption is met by the interpolation operators used for the present analysis; it
would be interesting to further investigate this point and to see whether the assump-
tions in [5] are stronger than the discrete compactness property discussed in this
paper.
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583, 1974



Semi-Implicit DGFE Discretization
of the Compressible Navier–Stokes
Equations: Efficient Solution Strategy

Vı́t Dolejšı́ and M. Holı́k

Abstract We deal with the numerical solution of the compressible Navier–Stokes
equations with the aid of the semi-implicit discontinuous Galerkin method. We
focus on the solution of the arising linear algebra systems and propose a new effi-
cient strategy for the steady-state solutions. The efficiency is demonstrated by a set
of numerical experiments.

1 Introduction

Our aim is to develop a sufficiently robust, efficient and accurate numerical scheme
for the simulation of viscous compressible flows. The discontinuous Galerkin
method (DGM) was employed in many papers for the discretization of compress-
ible fluid flow problems, see, e.g., [2, 3, 5, 6, 9, 11, 13, 14, 16] and the references
cited therein. DGM is based on a piecewise polynomial but discontinuous approxi-
mation which provides robust and high-order accurate approximations, particularly
in transport dominated regimes. We employ the interior penalty Galerkin (IPG)
methods.

In many physical applications, we are interested in the steady-state flow regimes
when the solution is time independent. It is possible to solve the so-called stationary
Navier–Stokes equations directly but a serious difficulty is a necessity to solve a
system of strongly nonlinear algebraic equations, where the Newton-like method is
employed usually, see, e.g., [14].

Another possibility is a solution of the nonstationary Navier–Stokes equation
with the aid of the (pseudo-) time stabilization technique. Then it is possible to
use an explicit time discretization where the main drawback is a high restriction
of the size of the time step. On the other hand, a fully implicit time discretization
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leads to a necessity to solve a nonlinear system of algebraic equations at each time
step. Therefore, in [6, 7, 11, 13], we developed the semi-implicit time discretization
method which is based on a suitable linearization of the inviscid and viscous fluxes.
The linear terms are treated implicitly whereas the nonlinear ones explicitly which
leads to a linear algebraic problem at each time step. We call this approach the
backward difference formula–discontinuous Galerkin finite element (BDF–DGFE)
method. Fir a survey about semi-implicit approach see, e.g., in [15].

The BDF–DGFE method leads to a sequence of linear algebraic problems which
should be solved by a suitable solver. Numerical experiments presented in [6]
showed that the solution of linear algebra problem consume approximately 95–99%
of the total computational time. Therefore, a significant reduce of computational
time needed for the solution of these linear algebra problems is a necessary condi-
tion for a practical employment of the BDF–DGFE method. Moreover, the amount
of the used computer memory has to be taken into account. Within this paper, we
develop an efficient solution strategy for the mentioned algebraic problems, namely
we deal with the choices stopping criterion and the size of the time step.

The content of the rest of the paper is the following. In Sect. 2, we introduce
the system of the compressible Navier–Stokes equations. In Sect. 3, we recall the
BDF–DGFE discretization of the Navier–Stokes equations from [6]. In Sect. 4, we
discuss numerical solution of the arising linear algebra systems, propose an “opti-
mal” strategy and demonstrate its efficiency in Sect. 5. Finally, we finish with some
concluding remarks.

2 Compressible Flow Problem

Let ˝ � IRd ; d D 2; 3 be a bounded domain and T > 0. We set QT D ˝ �
.0; T / and by @˝ denote the boundary of ˝ . The system of Navier–Stokes equa-
tions describing a motion of viscous compressible fluids can be written in the
dimensionless form

@w
@t
C

dX

sD1

@fs.w/
@xs

D
dX

sD1

@

@xs

 
dX

kD1
Ksk.w/

@w
@xk

!
in QT ; (1)

where w D .�; �v1; : : : ; �vd ; e/T is the state vector, fs W IRdC2 ! IRdC2; s D
1; : : : ; d are the inviscid (Euler) fluxes and Ksk W IRdC2 ! IR.dC2/�.dC2/; s; k D
1; : : : ; d represent the viscous terms. The forms of vectors fs; s D 1; : : : ; d and
matrices Ksk can be found, e.g., in [6] or [12, Sect. 4.3]. The system (1) is equipped
with a suitable set of the initial and boundary conditions, see [5, 6]. The problem
to solve the Navier–Stokes equations (1) equipped with the initial and boundary
conditions will be denoted by (CFP) (compressible flow problem).
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3 DGFE Discretization

Let Th D fKg (h > 0) be a partition of the domain˝ into a finite number of closed
d -dimensional mutually disjoint (convex or non-convex) polyhedraK .

To each K 2 Th, we assign a positive integer pK (local polynomial degree).
Then we define the vector p D fpK; K 2 Thg. Over the triangulation Th we
define the space of discontinuous piecewise polynomial functions associated with
the vector p by Shp D fvI v 2 L2.˝/, vjK 2 PpK

.K/ 8K 2 Thg; where PpK
.K/

denotes the space of all polynomials on K of degree � pK ; K 2 Th. We seek the
approximate solution in the space of vector-valued functions Shp D Shp � � � � �Shp

.d C 2 times/.
The system of the Navier–Stokes equations (1) is discretized by the so-called

backward difference formula–discontinuous Galerkin finite element (BDF–DGFE)
method presented in [6], which leads to the following forms

ch . Nwh;wh;'h/ W Shp � Shp � Shp ! IR; (2)

Qch . Nwh;'h/ W Shp � Shp ! IR;

which are nonlinear with respect their first arguments but linear with respect to the
other ones. It is possible to show (see, e.g., [5, 6]) that if w W ˝ � .0; T / ! IRdC2
is a continuously differentiable function satisfying the Navier–Stokes equations (1)
and the corresponding initial and boundary conditions then

d

dt
.w;'/C ch .w;w;'/ D Qch .w;'/ 8' 2 Shp; (3)

where .�; �/ denotes the L2-scalar product over˝ .
In [6], we introduced the following method. Let 0 D t0 < t1 < t2 < : : : tr D

T be a partition of the time interval .0; T / and wk
h
2 Shp denotes a piecewise

polynomial approximation of wh.tk/, k D 0; 1; : : : ; r .

Definition 1. We define the approximate solution of (CFP) by the 1-step BDF-
DGFE scheme as functions wh;k , k D 1; : : : ; r , satisfying the conditions

a) wh;k 2 Shp; (4)

b)
1

�k
.wh;k � wh;k�1;'h/C ch.wh;k�1;wh;k;'h/D Qch.wh;k�1;'h/ 8'h 2 Shp

c) wh;0 2 Shp is an approximation of w0:

Remark 1. The 1-step BDF–DGFE scheme (4), (a–c) has only the first order of
accuracy with respect to time which is sufficient for the seeking of the steady-state
solutions. For n-step BDF–DGFE scheme (n � 2) see [6, 8].

Remark 2. The resulting BDF–DGFE method is practically unconditionally stable,
has a high order of accuracy with respect to the time and space coordinates and
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at each time step we have to solve only one linear algebra problem, which will be
discussed in the following section.

4 Solution of Linear Algebra Problems

4.1 Linear Algebra Representations

Since Shp is a space of discontinuous piecewise polynomial functions, it is natural
to construct its basis in such a way that the support of each basis function lies within
one K 2 Th. Then, let B D f j ;  j 2 Shp, j D 1; : : : ;dofg denote a basis of Shp

with dimension dof.
Therefore, a function wh;k 2 Shp can be written in the form

wh;k.x/ D
dofX

jD1
�k;j j .x/; x 2 ˝; k D 0; 1; : : : ; r; (5)

where �k;j 2 IR, j D 1; : : : ;dof, k D 0; : : : ; r . Moreover, for wh;k 2 Shp, we
define a vector of its basis coefficients by �k D

˚
�k;j

�
jD1;:::;dof 2 IRdof; k D

0; 1; : : : ; r . Using (5) we have an isomorphism

wh;k 2 Shp  ! �k 2 IRdof: (6)

Finally, if B is an orthonormal basis (which can be simply constructed by an
orthogonalization procedure element-wise) then we have

kwh;kkL2.˝/ D k�kk`2 (7)

for any wh;k 2 Shp and the corresponding �k 2 IRdof via (6).
Then the problems (4) can be written in the matrix form:

find �k 2 IRdof W
�
1

�k
MC Ch.�k�1/

�
�k D

1

�k
mk C q.�k�1/; k D 1; : : : ; r;

(8)
where M is the block-diagonal mass matrix (if B is orthonormal basis with respect
L2 scalar product then M is the identity matrix) given by

M D fM i;jgdof
i;jD1; M i;j D . i ; j /; (9)

the matrix Ch.�/ is the flux matrix corresponding to form ch.�; �; �/ at tk defined by

Ch.�k�1/ D fC i;j .�k�1/gdof
i;jD1; C i;j .�k�1/ D ch

�
wh;k�1;  j ;  i

�
; (10)
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q 2 IRdof represents the right-hand-sides of (4), b) given by

q.�k�1/ D fqi .�k�1/gdof
iD1; qi .�k�1/ D Qch

�
wh;k�1;  i

�
(11)

and
mk D fmikgdof

iD1; mik D
�
wh;k�1;  i

�
: (12)

In virtue of the local character of basis B it is easy to observe that the matrix Ch
have a block structure.

Let us still mention that series of numerical experiments show that the Frobenius
norm of the diagonal blocks of Ch is slightly higher than the norm of its off-diagonal
blocks (in the same block-row). Moreover, the norm of the diagonal blocks of Ch
is approximately 103 times higher than the Frobenius norm of the corresponding
blocks of M.

4.2 General Solution Strategy

In case when we seek the steady state solution, problem (8) reduces to the problem:

find � 2 IRdof W Ch.�/� D q.�/: (13)

However, problem (13) represents a system of strongly nonlinear algebraic equa-
tions whose direct solution is impossible. Then it is natural employ an iterative
solver. The relation (13) offer to us to define a formal iterative process:

i) initiate �0 2 IRdof (14)

ii) find �k 2 IRdof W Ch.�k�1/�k D q.�k�1/; k D 1; : : : ;
iii) � D lim

k!1
�k:

However, numerical experiments show that this iterative process often fails which is
caused by the fact that usually we start from an unphysical initial state (represented
here by �0) and then negative density or pressure often appear.

A usual way how to avoid this obstacle is a use of the unsteady formulation (8)
which can be also considered as a relaxation of method (14). It means that step (ii)
in (14) is replaced by

find �k 2 IRdof W
�
1

�k
MC Ch.�k�1/

�

„ ƒ‚ …
DWAk.�k�1/

�k D
1

�k
mC q.�k�1/

„ ƒ‚ …
DWdk .�k�1/

; k D 1; : : : ;

(15)
where �k > 0; k D 1; : : : ; can be considered as the size of the time step or as the
relaxation parameter. The relation (15) represents a sequence of systems of linear
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algebraic equations which has to be solved by a suitable solver. There arise two
fundamental questions:

1. How to choose �k ; k D 1; : : : ;?
2. How to solve (15)?

It seems to be suitable to use an iterative solver for the solution of (15) since the
solution from the old step k � 1 can be used as the initial solution in the new step k.
Moreover, it is sufficient to compute the solution of (15) only approximately since
we are interested only in the limit vector � D limk!1 �k . Hence, the iterative solver
for the solution of (15) can be stop after not too high number of iteration. In our case,
we employ the restarted GMRES method with the block diagonal preconditioning
(BDP). This approach is simple for an implementation, it is fast and requires a small
amount of additional memory.

Based on the previous consideration, we propose the following general solution
procedure:

Algorithm (A)

1. let �0  ! w0
h

be given
2. for k D 1 to r

a. set �k
b. from �k�1 evaluate Ak.�k�1/, dk.�k�1/
c. solve Ak.�k�1/�k D dk.�k�1/ by restarted GMRES with BDP by

i. �0k WD �k�1
ii. �lC1

k
WD GMRES iter.�lk/, l D 1; : : : ; sk

iii. �k WD �skk
3. � WD �r .
In the previous algorithm r denotes the total number of used time steps and
sk ; k D 1; : : : ; r the number of inner iterative loops of the GMRES solver for
the time steps tk . These values have to be chosen on the base of suitable stopping
criteria which are discussed in the following sections.

4.2.1 Steady-State Criterion

Within this section we discuss the steady-state stopping criterion, i.e., when to stop
the global loops in the algorithm (A) for k D 1; : : : ; r . The usual steady-state
criterion, often used for explicit time discretization, is

����
@wh
@t

���� � �k WD
1

�k
kwkh �wk�1h kL2.˝/ D

1

�k
k�k � �k�1k`2 � TOL; (16)

where TOL is a given tolerance. However, this criterion makes not good sense for
the semi-implicit time discretization when very large time steps can be employed.
Then there exists a limit value of �k when Ak � Chk and dk � qk are independent
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of �k (in the finite precision arithmetic) whereas (16) depends on �k . Then by a very
large choice of �k we can achieve very small value of the left-hand side of (16)
although we are far from the steady-state solution.

Therefore, in virtue of (13) we employ the following steady-state residual
criterion

SSres.k/ WD kCh.�k/�k � q.�k/k`2 � TOL; (17)

which is independent of �k .
Another possibility when to stop the global loops in (A) follows from the physical

background of the considered problem. Many often, we are interested in the so-
called aerodynamic coefficients of the considered flow, namely coefficients of drag
(cD), lift (cL) and momentum (cM ). Then the natural choice is stop global iterative
loops when these coefficients achieve a given tolerance, e.g.,

�cx.k/

jcx.k/j � tol; �cx.k/ WD max
lD0:9k;:::;k

cx.l/� min
lD0:9k;:::;k

cx.l/; (18)

where tol is a given relative tolerance, subscript x takes the valueD,L andM (drag,
lift, momentum), cx.k/ is the value of the corresponding aerodynamical coefficient
at kth-time step and the minimum and maximum in (18) are taken over last 10% of
the number of time steps.

Whereas the tolerance TOL in the preconditioned residuum (17) has to be chosen
empirically, the tolerance tol in (18) can be chosen only on the base of our accuracy
requirements (without any previous numerical experiments), e.g., tol D 0:01.

4.2.2 GMRES Stopping Criterion

Within this section we deal with the stopping criterion of the inner loop in (A), i.e.,
when to step the GMRES iterative process at each time step k D 1; : : : ; r . It is clear
that too weak criterion can decrease accuracy and on the other hand, too strong
criterion decreases the efficiency. Usually, one uses residuum criterion

kAk.�k�1/�k � dk.�k�1/k � TOL (19)

or the preconditioned residuum criterion

kQAk.�k�1/�k �Qdk.�k�1/k � TOL; (20)

where Q is the matrix of preconditioning and TOL is a given tolerance. However,
there is a problem how to choose TOL since there is no indication from the theory.

Hence, inspired by the so-called inexact Newton method from [4] we propose the
following stopping criterion for GMRES method:

kAk.�k�1/�k � dk.�k�1/k � ıkkAk.�k�1/�k�1 � dk.�k�1/k; (21)
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where ık 2 .0; 1/ is a given value, the left hand-side is the residuum and the term
on the right hand side can be considered either as consistency residuum from the
previous time step or initial residuum since the solution of the previous time step is
taken as an initial solution on the next time step. Concerning ık , two choices were
proposed and analyzed in [10]. However, numerical experiments presented in Sect. 5
show that for our purposes parameters ık can be chosen very simply.

4.2.3 Choice of the Time Step

The choice of the time step �k , k D 1; : : : ; r exhibits another important issue in the
efficient solution of the steady-state solution. At the beginning of computation, it is
necessary to choose �k small in order to avoid fails of computations caused by the
unphysical initial condition. On the other hand, when the solution is approaching to
the steady-state, we are increasing the size of �k in order to accelerate the computa-
tional process. In other words we are decreasing the relaxation parameter (��1

k
). In

[8] we proposed the adaptive backward difference formulae technique which adapts
the size of the time step in order to keep the local discretization error under a given
tolerance and to minimize a number of time step. However, numerical experiments
show that the size of �k is very often underestimate when we seek steady state
solutions, i.e., the time step can be chosen larger.

Therefore, we propose here a new rather heuristic adaptive choice of the time
step according to the formula

�1 WD 1

2�k
; �kC1 WD 1

2�k

�
�k

�1

��!
; k D 1; : : : ; r � 1; (22)

where �k ; k D 1; : : : ; r is given by (16), ! > 0 is a given constant usually chosen
as ! D 3=2 or ! D 2 and

�k D max
K2Th

jKj�1 max
� 2@K

max
lD1;:::;dC2

�l.w
k
hj� /j	 j (23)

where �l.wkhj� / is the spectral ration of the Jacobi matrix of inviscid fluxes evalu-
ated on 	 2 @K; K 2 Th. This means that at the first step, �1 is chosen in the same
way as for an explicit time discretization with CFL D 0:5, see [12]. Moreover, �k is
exponential increasing when �k is decreasing.

5 Numerical Examples

In the previous section we presented the new solution strategy for the solving the
steady-state solutions of the Navier–Stokes equations. However, there are still some
undefined parameters whose choice will be discussed in the following. We show
that these choices are very robust. Finally, we show a 3D illustrative example.
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5.1 Numerical Study

Within this section we numerically study two still open questions:

� Choice of ık in (21),
� Choice of the number of restarts in GMRES solver.

Finally, we present a comparison the new strategy with the former BDF–DGFE
method from [6].

We deal with a viscous compressible flow around NACA 0012 profile with
inlet Mach number Minlet D 0:5, angle of attack ˛ D 2ı and Reynolds number
Re D 5;000. We employ a triangular grid having 2,394 elements (see Fig. 1)
and a piecewise cubic polynomial approximation. The computational processes are
stopped if condition (17) is valid with TOL D 10�3 and condition (18) is valid with
tol D 10�2 for drag, lift and momentum coefficients.

Figure 2 shows the dependence of SSres defined by (17) on the number of time
steps and the computational time in seconds for ı D ık D 0:9, 0.5, 0.1, 0.02, 0.005,
k D 1; 2 : : : . We see that small values of ı increase the computational time whereas
there is almost negligible difference in computational time for ı 2 Œ0:1I 0:9
. Hence,
we can simply put, e.g., ı D 0:5 and this value will be (almost) optimal.

Moreover, Fig. 3 shows the dependence of SSres on the number of time steps
and the computational time in seconds for different number of loops in GMRES
method after which the GMRES is restarted (namely 20, 30, 40, 50, 60 loops). We
observe that high number in inner loops within one restart is more efficient but the
difference between 50 and 60 is again almost negligible. Hence, we use the restart
after 50 loops in the following.

Furthermore, Table 1 shows a comparison of BDF–DGFE method presented in
[6] with the new approach developed here, namely the number of time steps and
computational time. The increase of efficiency (Ddecrease of computational time)
is evident. This table also contains relative computational costs necessary for prepa-
ration and itself solution of linear algebra problems. For the new method, this ratio
is equal almost to the optimal one 50%:50%.

Finally, Table 2 present the comparisons of relative computational costs neces-
sary for preparation and itself solution of linear algebra problems carried out by P1,

Fig. 1 The used triangular mesh around NACA0012 profile with details around leading and
trailing edges
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Fig. 2 Dependence of SSres on the number of time steps and the computational time for ı D 0:9,
0.5, 0.1, 0.02, 0.005 in (17)
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Fig. 3 Dependence of SSres on the number of time steps and the computational time for restart
after 20, 30, 40, 50, 60 loops in GMRES method

P2 and P3 polynomial approximations for the mesh from Fig. 1 and a finner one.
We simply observe that the ratios are close to the optimal one (50%:50%) and more-
over, they are still better for finner grids (at least for P1 and P2) and higher degrees
of polynomial approximations. Hence, our approach seems to be robust with respect
to h and p.
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Table 1 Comparison of BDF–DGFE method with the new approach, number of time steps, com-
putational time and relative computational costs necessary for preparation and itself solution of
linear algebra problems

Method # time steps CPU (s) Preparing Solving

BDF– DGFEM 273 10,774 12% CPU 88% CPU
New approach 85 695 42% CPU 58% CPU

Table 2 New approach, comparison of relative computational costs necessary for preparation
and itself solution of linear algebra problems for two grids and different degree of polynomial
approximations

Pk #Th dof Preparing Solving
Ak , dk Ak�k D dk

P1 2,394 28,728 31% 69%
P1 4,214 50,568 33% 67%

P2 2,394 57,456 36% 64%
P2 4,214 101,136 37% 63%

P3 2,394 95,760 42% 58%
P3 4,214 168,560 41% 59%

1.95

pressure

Z

Y
X
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1.75
1.65
1.55
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Fig. 4 ONERA M6 wing, distribution of the pressure

5.2 3D Test Case

Finally, we show an illustrative 3D laminar viscous flow around the ONERA M6
wing with the inlet Mach number Minlet D 0:71, angle of attack ˛ D 3:06ı and the
Reynolds number Re D 5;000 which was solved within the project ADIGMA [1].
Figure 4 shows a distribution of the pressure around the profiles. In order to obtain
better resolution an adaptive mesh refinement has to be employed.
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6 Conclusion

We developed an efficient technique for the solution of steady state viscous com-
pressible flows. The key feature is a week stopping criterion of the linear algebra
systems arising form the semi-implicit time discretization. Numerical experiments
show that solution of these systems requires approximately the same computational
time as the setting of these systems itself. Moreover, this approach is robust with
respect to h and p.
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Some Numerical Approaches for Weakly
Random Homogenization

Claude Le Bris

Abstract We overview a series of recent works addressing homogenization prob-
lems for some materials seen as small random perturbations of periodic materials
(in a sense made precise in the body of the text). These recent works are joint
works with several collaborators: Blanc (Paris 6), Lions (Collège de France), Legoll,
Anantharaman, Costaouec (Ecole Nationale des Ponts et Chaussées and INRIA).
The theory, developed in [C. R. Acad. Sci. Série I, 343, 717–724 (2006), Journal
de Mathématiques Pures et Appliquées, 88, 34–63 (2007)], is only outlined. Next
a collection of numerical appropriate approaches introduced in [Note aux Comptes
Rendus de l’Académie des Sciences (2009), Thèse de l’ Université Paris Est, C.
R. Acad. Sci. Série I, 348, 99–103 (2010)] is presented. The theoretical considera-
tions and the numerical tests provided here show that for the materials with only a
small amount of randomness that are considered, a dedicated approach is far more
efficient than a direct, stochastic approach.

1 Introduction

Multiscale approaches are increasingly popular in computational materials science.
Although much effort has been devoted lately to the development of appropriate,
computationally efficient approaches, there is still room for improvement, given the
enormous variety of the field.

The motivation for the works summarized in the present review is contained in
the following four-fold observation:

1. A new feature that becomes ubiquitous in computational materials science is
randomness. Most of the simulations performed in the past decades, including

C. Le Bris
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the most recent development along the multiscale paradigm, consider idealized
materials. Such materials are flawless, and most of the time perfectly periodic. In
sharp contrast, real materials have defects, and have several characteristic length-
scales that differ from one another by orders of magnitude. Their qualitative and
quantitative response to environment might therefore differ a lot from the ide-
alized scenario. Think for instance of solid materials consisting of grains, each
grain being a particular assembly of monocrystals, each of them in turn possibly
separated by interfaces and possibly embedding dislocations.

2. Multiscale simulations, already computationally expensive per se may admittedly
become prohibitively expensive in the presence of randomness. A good exam-
ple (the topic of the present review article) is random homogenization, which
is infinitely more expensive than periodic homogenization (basically because it
requires solving corrector problems posed on the entire space, see (2) and (14)
below). Alternative approaches are thus interesting.

3. The very definition of a random material is still mostly vague. Given a micro-
scopic picture of a material, it is indeed unclear to decide whether the microstruc-
tures are periodically repeated, whether some type of stationary ergodic character
is encoded in the microstructures, or whether a much more general type of mod-
eling should be adopted. Defining the geometric assumption that will allow to
efficiently simulate the material computationally is a challenge in its own rights.

4. In many practical situations, the random material under consideration is not far
from being a periodic material. At zero order of approximation, the material can
be considered periodic, and it is only at a higher order that randomness plays
a role. A good example is provided by materials that are industrially produced,
where the defect of periodicity typically owes to failures in the synthesis pro-
cess. See Fig. 1. Despite its smallness, the microscopic amount of randomness
might affect the macroscale at order one, and it is indeed the interesting issue to
quantitatively model this effect.

Considering the above, our purpose here is to outline a modeling strategy that
accounts for the presence of randomness in a multiscale computation, but specifi-
cally addresses the case when the amount of randomness present in the system is
small, in a sense to be made precise below. The weakly random material is thus
considered as a small perturbation of a periodic material. Based on this interpreta-
tion, an efficient numerical strategy is then devised. It only aims at computing an
approximation of the response of the material, given that the randomness is weak.
But, as shown in the sequel, the strategy is computationally much less expensive
than a direct stochastic approach.

The context in which we develop our approach is homogenization theory, and
more precisely homogenization of simple, second order elliptic equations in diver-
gence form with highly oscillatory coefficients. This particular case is to be thought
of as a prototypical case. Although we have not developed our theory and compu-
tations for other, more general equations and settings, we are convinced that the
same line of approach (namely small amount of randomness as compared to a ref-
erence periodic setting, plus expansion in the randomness amplitude, and simplified
computations) can be useful in many contexts.
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Fig. 1 Composite material (extracted from [18], reproduced with permission of the author): it is
evident from the picture (a two-dimensional cut of a three-dimensional material) that the cross
section of the fibers of the materials are not arranged periodically. On the other hand, it would
not be fair to say that the material is entirely disordered. Some types of ordering, at different
lengthscales, can be identified on the picture

The article is articulated as follows. Section 2 recalls some basics of the theory of
periodic and stochastic homogenization, and introduces some elements on a variant
recently studied by the author and collaborators. Section 3 first presents the bottom
line of the approach: Taylor expanding the corrector and the homogenized matrix
with respect to the small parameter measuring the amount of randomness in the sys-
tem. The approach is then applied, under two different variants, to some academic
cases which we hope to be representative of generic practical situations. The article
concludes with Sect. 4 briefly discussing related problems and techniques.

2 Some Elements of Homogenization Theory

2.1 Periodic Homogenization

To begin with, we recall some basic ingredients of elliptic homogenization theory
in the periodic setting. We refer e.g., to the monographs [4, 8, 12] for more details
on homogenization theory.

We consider, in a regular domain D in Rd , the problem

( �div
�
Aper

�
x
"

�ru"
� D f in D ;

u" D 0 on @D ;
(1)

where the matrix Aper is symmetric and Zd -periodic. We manipulate for simplicity
symmetric matrices, but the discussion carries over to non symmetric matrices up to
slight modifications.
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The corrector problem associated to (1) reads, for p fixed in Rd ,

( �div.Aper.y/.p Crwp// D 0;
wp is Zd -periodic:

(2)

It has a unique solution up to the addition of a constant. Then, the homogenized
coefficients read

ŒA��ij D
Z

Q

.ei Crwei
.y//TAper.y/.ej Crwej

.y//dy

D
Z

Q

.ei Crwei
.y//TAper.y/ejdy; (3)

whereQ is the unit cube. The main result of periodic homogenization theory is that,
as " goes to zero, the solution u" to (1) converges to u� solution to

( �div ŒA�ru�� D f in D ;

u� D 0 on @D :
(4)

The convergence holds in L2.D/, and weakly inH 1
0 .D/. The correctors wei

(for ei
the canonical vectors of Rd ) may then also be used to “correct” u� in order to iden-
tify the behavior of u" in the strong topologyH 1

0 .D/. Several other convergences on
various products involving Aper

�
x
"

�
and u" also hold. All this is well documented.

The practical interest of the approach is evident. No small scale " is present in the
homogenized problem (4). At the price of only computing d periodic problems (2)
(as many problems as dimensions in the ambient space, take indeed p the vectors of
the canonical basis of Rd ), the solution to problem (1) can be efficiently approached
for " small. A direct attack of problem (1) would require taking a meshsize smaller
than ". The difficulty has been circumvented. Of course, many improvements and
alternatives exist in the literature.

The proof of the above result can be performed in several ways. One approach is
the energy method by Murat and Tartar (see [14, 17]). Another possible approach
is to use the notion of two-scale convergence introduced by G. Nguetseng and
developed by G. Allaire (see [1, 15]).

2.2 Classical Random Homogenization

The present section introduces the classical stationary ergodic setting. We choose to
present the theory in a discrete stationary setting, which is more appropriate for our
specific purpose in the next sections. Random homogenization is more often pre-
sented in the continuous stationary setting. Although the two settings are different
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(neither of them being an extension of the other), the modifications needed to pass
from one setting to the other are tiny, and summarized in Remark 1 below.

Throughout this article, .˝;F ;P / denotes a probability space. For any random
variable X 2 L1.˝; dP /, we denote by E.X/ D R

˝
X.!/dP .!/ its expectation

value. We fix d 2 N�; and assume that the group .Zd ;C/ acts on˝ . We denote by
.�k/k2Zd this action, and assume that it preserves the measure P , i.e.,

8k 2 Zd ; 8A 2 F ; P .�kA/ D P .A/: (5)

We assume that � is ergodic, that is,

8A 2 F ;
�
8k 2 Zd ; �kA D A

�
) .P .A/ D 0 or 1/: (6)

In addition, we define the following notion of stationarity: anyF 2L1loc.R
d ; L1.˝//

is said to be stationary if

8k 2 Zd ; F .x C k; !/ D F.x; �k!/ almost everywhere in x; almost surely:
(7)

In this setting, the ergodic theorem [13, 16] can be stated as follows:

Theorem 1 (Ergodic theorem, [13,16]). LetF 2 L1.Rd ; L1.˝// be a stationary
random variable in the sense of (7). For k D .k1; k2; : : : kd / 2 Rd , we set jkj1 D

sup
1�i�d

jki j. Then

1

.2N C 1/d
X

jkj
1

�N
F.x; �k!/ �!

N!1E.F.x; �// in L1.Rd /; almost surely:

(8)
This implies that (denoting by Q the unit cube in Rd )

F
�x
"
; !
� ��*
"!0E.

Z

Q

F.x; �/dx/ in L1.Rd /; almost surely: (9)

It is useful to intuitively define stationarity and ergodicity in terms of material
modeling. Pick two points x and y ¤ x at the microscale in the material. The par-
ticular local environment seen from x (that is, the microstructure present at x) is
generically different from what is seen from y (that is, the microstructure present
at y). However, the average local environment in x is identical to that in y (consider-
ing the various realizations of the random material). In mathematical terms, the law
of microstructures is the same at all points. This is stationarity. On the other hand,
ergodicity means that considering all the points in the material amounts to fixing
a point x in this material and considering all the possible microstructures present
there.

Remark 1. Alternatively to the above discrete setting, it is possible to define a con-
tinuous ergodic setting, the reader might be more familiar with. We fix d 2 N�;
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and assume that the group .Rd ;C/ acts on ˝ . We denote by .�x/x2Rd this action.
We assume that it preserves the measure P , that it is ergodic, both properties being
expressed using a straightforward adaptation of (5) and (6) respectively. The notion
of stationarity is defined by F.x C y; !/ D F.x; �y!/, for all y 2 R, almost
everywhere in x 2 R and almost surely. To understand the difference between the
discrete and the continuous settings, note for instance that a Zd -periodic function F
is a particular case of (7), when F is assumed to be deterministic. In contrast, it is
an example of the continuous setting for a genuinely random function F , ˝ being
the d dimensional torus and �xy � x C y.

In the continuous setting, the ergodic theorem [13,16] holds. The conclusions (8)
and (9) are respectively replaced by:

1

jBRj
Z

BR

F.x; �y!/dy �!
R!1E .F.x; �// D E.F / in L1.Rd /; almost surely;

(10)
and

F
�x
"
; !
� ��*
"!0E .F / in L1.Rd /; almost surely: (11)

ut
We now fix D an open, smooth and bounded subset of Rd , andA a square matrix

of size d , which is assumed stationary in the sense defined above, and which is
assumed to enjoy the classical assumptions of uniform ellipticity and boundedness.
Then we consider the boundary value problem

( �div
�
A
�
x
"
; !
�ru"

� D f in D ;

u" D 0 on @D :
(12)

Standard results of stochastic homogenization [4, 12] apply and allow to find the
homogenized problem for problem (12). These results generalize the periodic results
recalled in Sect. 2.1. The solution u" to (12) converges to the solution to (4) where
the homogenized matrix is now defined as:

ŒA��ij D E

�Z

Q

.ei Crwei
.y; �//TA.y; �/ej dy

	
; (13)

where for any p 2 Rd , wp is the solution (unique up to the addition of a (random)
constant) in fw 2 L2loc.R

d ; L2.˝//, rw 2 L2unif.R
d ; L2.˝//g to

8
ˆ̂̂
<̂

ˆ̂̂
:̂

�divŒA.y; !/.p Crwp.y; !//� D 0; a.s. on Rd

rwp is stationary in the sense of (7);

E

�Z

Q

rwp.y; �/ dy
	
D 0:

(14)
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We have used above the notation L2unif for the uniform L2 space, that is the space
of functions for which, say, the L2 norm on a ball of unit size is bounded above
independently from the center of the ball.

A striking difference between the stochastic setting and the periodic setting can
be observed comparing (2) and (14). In the periodic case, the corrector problem
is posed on a bounded domain (namely, the periodic cell Q), since the corrector
wp is periodic. In sharp contrast, the corrector problem (14) of the random case
is posed on the whole space Rd , and cannot be reduced to a problem posed on a

bounded domain. The reason is, condition E
�R
Q rwp.y; �/ dy

�
D 0 in (14) is

a global condition. It indeed equivalently reads, because of the ergodic Theorem,
a.s. � limR�!C1 1

jBR j
R
BR
rwp.y; �/ dy D 0 for any sequence of balls BR of

radii R. The fact that the random corrector problem is posed on the entire space
has far reaching consequences for numerical practice. Truncations of problem (14)
have to be considered, and the actual homogenized coefficients are only correct in
the asymptotic regime. The present series of works is somehow motivated by the
above observation, as already pointed out in the introduction.

Remark 2. In fact, the situation considered here is simple: it is the linear elliptic
case. It is well known that, even in the periodic setting, the difficulties we mention
for the random setting already arise in the periodic setting when the operator is,
for instance, nonlinear. Then determining the periodic homogenized problem can-
not always be reduced to a simple computation on one single periodic cell of the
problem.

2.3 A Variant

A specific stochastic setting has been introduced and studied in [5, 7]. It is not a
particular case of the classical stationary settings defined above. As briefly men-
tioned in the introduction, it is motivated by the consideration of random geometries
(we mean, materials) that have some relation to the periodic setting. Here, the peri-
odic setting is taken as a reference configuration, somewhat similarly to the classical
mathematical formalization of continuum mechanics where a reference configura-
tion is used to define the state of the material under study. Another related idea, in
a completely different context, is the consideration of a reference element for finite
element computations. In all cases, the real situation is seen via a mapping from the
reference configuration to the actual configuration.

We fix some Zd -periodic, square matrix Aper of size d , assumed to satisfy

9� > 0=8� 2 Rd ; �TAper .y/� � � j�j2; almost everywhere in y 2 Rd ; (15)

8i; j 2 f1; 2; : : : ; d g; ŒAper �ij 2 L1.Rd /: (16)
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We consider the following problem:

( �div
�
Aper

�
˚�1

�
x
"
; !
��ru"

� D f in D ;

u" D 0 on @D ;
(17)

where the function ˚.�; !/ is assumed to be a diffeomorphism from Rd to Rd for
P -almost every !. The diffeomorphism is assumed to additionally satisfy

EssInf
!2˝;x2Rd

Œdet.r˚.x; !//� D � > 0; (18)

EssSup
!2˝;x2Rd

.jr˚.x; !/j/ DM <1; (19)

r˚.x; !/ is stationary in the sense of (7). (20)

Such a ˚ is called a random stationary diffeomorphism.
The following result is proved in [5, 7]:

Theorem 2. Let D be a bounded smooth open subset of Rd , and let f 2 H�1.D/:
Let Aper be a square matrix which is Zd -periodic and satisfies (15) and (16). Let
˚ be a random stationary diffeomorphism satisfying hypotheses (18–20). Then the
solution u".x; !/ to (17) satisfies the following properties:

1. u".x; !/ converges to some u0.x/ strongly in L2.D/ and weakly in H 1.D/,
almost surely;

2. the function u0 is the solution to the homogenized problem:

( �div.A�ru0/ D f in D ;

u0 D 0 on @D :
(21)

In (21), the homogenized matrix A� is defined by:

ŒA��ij D det

�
E

�Z

Q

r˚.z; �/d z

		�1

� E

�Z

˚.Q;�/
.ei Crwei

.y; �//TAper .˚�1.y; �//ej dy
	
; (22)

where for anyp 2 Rd , wp is the solution (unique up to the addition of a (random)
constant) in

˚
w 2 L2loc.R

d ; L2.˝//;rw 2 L2unif.R
d ; L2.˝//



to

8
ˆ̂̂
<̂

ˆ̂̂
:̂

�div
�
Aper .˚

�1.y; !//.p Crwp/
� D 0;

wp.y; !/ D Qwp.˚�1.y; !/; !/; r Qwp is stationary in the sense of (7);

E

�Z

˚.Q;�/
rwp.y; �/dy

	
D 0:

(23)
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3 Numerical Approaches for an Approximation at First Order

3.1 Small Perturbations of the Periodic Setting

It has been shown in [7] that, when ˚ in (17) is a perturbation of the Identity map

˚.x; !/ D x C ��.x; !/CO.�2/; (24)

the solution to the corrector problem (23) may be developed in powers of the small
parameter �. It readsewp.x; !/ D w0p.x/C �w1p.x; !/CO.�2/, where w0p solves

� div ŒAper .p Crw0p/� D 0; w0p is Q-periodic; (25)

and where w1p solves

8
<̂

:̂

�div ŒAperrw1p� D div Œ�Aperr�rw0p � .r�T � .div�/Id/Aper .p Crw0p/�;

rw1p is stationary and E

�Z

Q

rw1p

	
D 0:

(26)
The problem (26) in w1p is random in nature, but it is in fact easy to see, taking the
expectation, that w1p D E.w1p/ is Q-periodic and solves the deterministic problem

� div ŒAper rw1p�

D div Œ�Aper E.r�/rw0p � .E.r�T /� E.div�/Id/ Aper .p Crw0p/�:
(27)

This is useful because, on the other hand, the knowledge of w0p and w1p suffices
to obtain a first order expansion (in �) of the homogenized matrix. Define A0ij DR
Q
.ei Crw0ei

/TAper ej and

A1ij D �
Z

Q

E.div�/A0ij C
Z

Q

.ei Crw0ei
/TAper ej E.div�/

C
Z

Q

�rw1ei
� E.r�/rw0ei

�T
Aper ej ;

we then have
A� D A0 C �A1 CO.�2/: (28)

As subsequently shown in [10], a similar approach can be applied to the corrector
problems once discretized by a finite element approach. Given a mesh T .Q/

h
of

Q of size h, reproduced by periodicity on QN D Œ0; N �d , we define the discrete
variational formulation
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8
ˆ̂̂
<

ˆ̂̂
:

Findewh;Np .�; !/ 2 V per
h
.QN / such that, for allevh 2 V per

h
.QN /;

Z

QN

det.r˚/.revh/T .r˚/�TAper
�
p C .r˚/�1rewh;Np .�; !/� D 0

almost surely,

(29)

where V per
h
.QN / is the set of QN -periodic functions that have their restriction to

QN in a typical finite element space built from the mesh T N
h

(obtained by peri-
odization). Note that the problem is formulated in terms of ewp (rather than wp)
because the gradient ofewp is stationary. The matrix

�
A�h;N

�
ij
.!/

D det

�
1

jQN j
Z

QN

r˚
	�1

1

jQN j
Z

QN

det.r˚/�ei C .r˚/�1rewh;Nei

�T
Aperej

(30)

is then considered. Using the same expansion (24) as in the above “continuous” case,
a formal expansionewh;Np D w0;h;Np C �w1;h;Np CO.�2/ of the discrete corrector is

performed and inserted in (29). The function w0;h;Np is then shown to be indepen-

dent of N (it is henceforth denoted w0;hp ), while w0;hp and w1;h;Np are respectively
solutions to

Find w0;hp 2 V per
h
.Q/ such that, for all vh 2 V per

h
.Q/;

Z

Q

.rvh/
TAper .p Crw0;hp / D 0; (31)

and
8
ˆ̂̂
<̂

ˆ̂̂
:̂

Find w1;h;Np .�; !/ 2 V per
h
.QN / such that, for all vh 2 V per

h
.QN /; and almost surely,

Z

QN

.rvh/
TAper rw1;h;Np

D RQN
.rvh/

T
h
Aperr�rw0;hp C .r�T � .div�/Id/Aper .p Crw0;hp /

i
:

(32)

Equations (31) and (32) are of course discretized formulations of (25) and (26),
respectively. Similarly to what has been proven in the continuous setting in [7] (and
briefly recalled above), it is possible to show that there exists a constant C.h;N; !/
such that, for � sufficiently small,

��2
���rewh;Np .�; !/ � rw0;hp � �rw1;h;Np .�; !/

���
L2.QN /

� jQN j1=2 C.h;N; !/;
(33)

and
��2jA�h;N .!/� A0;h � �A1;h;N .!/j � C.h;N; !/; (34)
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where A�h;N is defined by (30), .A0;h/ij D
Z

Q

�
ei Crw0;hei

�T
Aper ej and

.A1;h;N /ij D �.A0;h/ij 1

jQN j
Z

QN

div� C 1

jQN j
Z

QN

�
ei Crw0;hei

�T
Aperej div�

C 1

jQN j
Z

QN

�rw1;h;Nei
� r� rw0;hei

�T
Aper ej :

Again as in the continuous setting, knowing only the expectation w1;h;Np D
E.w1;h;Np / which solves, for all vh 2 V per

h
.QN /,

Z

QN

.rvh/
TAper rw1;h;Np D

Z

QN

.rvh/
T
�
Aper E.r�/ rw0;hp C

�
E.r�/T

� E.div�/Id
�
Aper

�
p Crw0;hp

��
(35)

is sufficient to determine the first order correction to the homogenized matrix. A
simple argument shows that w1;h;Np is independent fromN (it is henceforth denoted

by w1;hp ), Q-periodic, and solution to (35) with N D 1, which is a converging

discretization of (27) when h vanishes. The matrix A1;h D E.A1;h;N / is similarly
independent of N , and can be computed only using rw1;hp .

The question arises to know how large the (random) constant C.h;N; !/ in (34)
is. Too large a constant would indeed mean that the first order expansion in �,
although appealing theoretically, is useless practically to get an accurate approxi-
mation of the homogenized matrix. This is the purpose of [10] to examine this issue
in a simple testcase, representative of some generality.

We work in dimension 2, with coordinates x D .x1; x2/, and consider two
families .Xk/k2Z and .Yk/k2Z of scalar, identically distributed, independent ran-
dom variables. Their common law is the uniform law U .Œa; b�/ on the range
Œa; b�. We choose the diffeomorphism ˚.x/ D x C ��.x; !/, with �.x; !/ D
. X .x1; !/;  Y .x2; !//, where  X is defined by

 X .x1; !/ D
X

k2Z

1Œk;kC1Œ.x1/

0

@
k�1X

qD0
Xq.!/C 2Xk.!/

Z x1

k

sin2.2	t/ dt

1

A ;

and  Y is defined similarly. The periodic matrix Aper is defined by

8x 2 Q;Aper.x/ D aper.x/Id2; aper.x1; x2/ D ˇC.˛�ˇ/ sin2.	x1/ sin2.	x2/:

The idea is to consider a Z2-periodic material, where thermal conductivity (mod-
eled by the matrix Aper ı ˚�1) smoothly varies from ˛ to ˇ � ˛. Conductivity
is maximum at the center of the cell Q, and minimum on its boundary. Note that
the map  X is not stationary, but its gradient is. This is a prototypical example of
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�
�
A

�

h;N
�
11

�
eh;N

�
11

0.1 3.073˙ 0.00928 �4.233˙ 0.216

0.01 2.839˙ 0.00111 �5.009˙ 0.254

0.001 2.812˙ 0.000113 �5.104˙ 0.259

0.0001 2.809˙ 0.0000113 �5.114˙ 0.259

Fig. 2 Left: value of Aper ı ˚�1.x; !/ for a particular random realization on the domain QND5

(� D 0:05). This intuitively models a periodic structure (disks centered on a periodic lattice)
slightly perturbed by a random diffeomorphism close to Identity. Right: values of .Ah;N

�

/11 and
.eh;N /11 in function of �. All data are extracted from [10]

the setting developed in [7], which is not covered by classical stochastic homoge-
nization theory since Aper ı ˚�1 is not stationary. As shown by Fig. 2 (left) where
Aper ı˚�1.x; !/ is displayed for a particular realization of the randomness, this is
however a quite intuitive setting which deserves specific attention. The specific val-
ues chosen for the parameters are: a D �2:25, b D 5:75, ˛ D 10, and ˇ D 1,
h D 1=3, N D 20. The number of realizations is 10. The numerical results are
obtained using the finite element software FreeFem++. They are displayed on the
table of Fig. 2 (right). The left column shows the result obtained for the .1; 1/ entry
of the homogenized matrix, with the interval of confidency. The right column gives
the value of the error estimator

eh;N .!/ WD ��2�A�h;N .!/ �A0;h � �A1;h;N .!/
�
;

again for the .1; 1/ entry. The values found for other entries of the homogenized
matrix lead to similar conclusions. Note that, for the purpose of analysis and with a
view to reducing variance (see the details in [10]), we have used the random value
A0;hC�A1;h;N .!/ in the right hand side of the estimator. In practice,A0;hC�A1;h
would be used, instead of A0;h C �A1;h;N .!/, as an approximation for A�h;N .

The conclusion is that the constant C.h;N; !/ is small (say of the order of 5
in this particular case) and that the first order approximation A0;h C �A1;h of the
homogenized matrix A�h;N is thus a practically accurate numerical approach (pro-
vided the first order precision is judged satisfactory for the application considered).
In terms of computational efficiency, the gain is enormous. Solving the couple of
periodic problems (31) and (35) to respectively get w0;hp and w1;hp is much less
expensive than solving the original stochastic corrector problem (29).
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3.2 Rare but Possibly Large Perturbations

We now consider a slightly different perturbative approach. It could be presented in
the setting of random diffeormophisms introduced in Sect. 2.3 above, but for clarity
we present it in the more classical setting of Sect. 2.2.

As above, we consider our random material as a small perturbation of a periodic
material. The matrix that models its response is thus expanded as

A�.x; !/ D Aper.x/C b�.x; !/Cper .x/; (36)

where, with evident notation, Aper is a periodic matrix modeling the unperturbed
material, and whereCper is a periodic matrix modeling the perturbation. The ampli-
tude of the perturbation, which used to be modeled by a deterministic coefficient �
in the previous section, is now a scalar random field b�.x; !/. We assume that this
field satisfies

kb�kL1.QILp.˝// ! 0
�!0; (37)

for some 1 � p < 1. For well-posedness of the problem, we also assume there
exists 0 < ˛ � ˇ such that for almost all x 2 Rd and for almost all ! 2 ˝ ,

8� 2 Rd ; 8� > 0; ˛j�j2 � A�.x; !/� � � and jA�.x; !/�j � ˇj�j:

Condition (37) states that the perturbation in (36) is small on average. However,
it does not prevent the perturbation to be large, once in a while, because we only
have p <1 (Note that the setting of the previous section corresponds to a situation
where p D 1). Whereas the idea underlying the setting of the previous section was
perturb the periodic material possibly often but only slightly, the intuitive image
behind the present setting is perturb the periodic material only rarely, but then
possibly largely. The comparison of Fig. 2 (left) and Fig. 3 is self explanatory.

When the exponent p in (37) is strictly larger than one, a theory similar to that of
the previous section can be developed. Assuming thatm� WD kb�kL1.QILp.˝//�!0
as � vanishes, it may be proved, up to the extraction of a subsequence, that the
homogenized tensor A�;� admits a first order expansion in terms of the small “coef-
ficient”m� . The coefficients are easily expressed using periodic corrector problems
built from the matrices Aper and Cper . The remainder in the expansion can indeed
be shown to be o.m�/ in a certain sense and under appropriate assumptions. We
refer to [2, 3] for the details. There are some cases when the expansion in fact does
not converge. We now address such a case, very different in nature.

Consider the prototypical case where b� is uniform in each cell of Zd and writes

b�.x; !/ D
X

k2Zd

1fQCkg.x/Bk� .!/; (38)
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Fig. 3 A typical random realization of the Bernoulli law for the perturbed periodic material

where the Bk� are independent identically distributed random variables. Their com-
mon law is assumed to be a Bernoulli law of parameter �. This setting satisfies
condition (37) for all p � 1. The difficulty with a possible expansion in “powers”
of b� is intuitively that, a Bernoulli variable B , being valued in f0; 1g, is such that
Bp D B for all p. So all terms in the expansion are potentially of the same order.
A different strategy is needed. We now explain an alternative, formal approach, for
which we do not know any rigorous foundation to date. Although definite conclu-
sions on the validity of the approach have yet to be obtained, the numerical tests we
performed show its practical correctness and efficiency.

Heuristically, on the cube QN D Œ0; N �d and at order 1 in �, the probability
to get the perfect periodic material (entirely modeled by the matrix Aper ) is .1 �
�/N

d � 1�N d�CO.�2/, while the probability to obtain the unperturbed material
on all cells except one (where the material has matrix Aper C Cper ) is N d .1 �
�/N

d�1� � N d� C O.�2/. All other configurations, with more than two cells
perturbed, yield contributions of orders higher than or equal to �2. This gives the
intuition that the first order correction indeed comes from the difference between
the material perfectly periodic except on one cell and the perfect material itself. It is
therefore claimed in [2, 3] that A�;� D Aper;� C �A1;� C o.�/ where Aper;� is the
homogenized matrix for the unperturbed periodic material and

A1;� ei D lim
N!C1

Z

QN

h
.Aper C 1QCper/

�rwNi C ei
� � Aper

�rw0i C ei
�i
;

(39)
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where w0i is the corrector for Aper , and wNi solves

� div
��
Aper.x/C 1QCper.x/

� �rwNi .x/C ei
��
D 0

in QN ; wNi QN � periodic:
(40)

Note that the integral appearing in the right-hand side of (39) is not normalized: it a
priori scales as the volume N d of QN and has finite limit only because of cancel-
lation effects between the two terms in the integrand. This is very similar in nature
to the modeling of defects in Statistical Physics: a flawless (periodic) environment
is substracted to the actual environment and acts as a normalization.

There actually exists a formal generalization of (39) that allows for recovering the
setting of the previous cases. The approach of the present section therefore appears
to be the most general approach to the modeling of “small” random perturbations.
We again refer to [2, 3] for more details.

The approach has been tested in [3]. The matrix Aper is taken scalar. In each
periodic cell, it has constant value 1,020 in the central circular inclusion and con-
stant value 20 in the surrounding region. The matrix Cper has value �1,000 in the
inclusions and 0 outside. The coefficient b� is of the form (38), with B� a Bernoulli
variable with parameter � D 0:1. The results are shown on Fig. 4 below. On the
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Fig. 4 Comparison of the actual random coefficient, which converges to the homogenized coef-
ficient in the limit of large cube sizes N , (curve labelled “stochastic homogenization”) with the
unperturbed periodic homogenized coefficient (curve labelled “periodic homogenization”) and
the first order expansion (curve labelled “perturbative approach”). The asymptotic limit is almost
instantaneously found by the perturbative approach
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cubeQN D Œ0; N �2 withN increasingly large, an approximation of A�;� is directly
computed. Alternatively, expression (39) is employed to calculate the first order term
A1;� of the expansion. The valuesA�;� andAper;�C�A1;� are then compared to one
another. The process is completed for several realizations of the random material.
Only a particular realization is shown on Fig. 4 but all realizations yield qualitatively
similar behaviours. It is observed that, using the perturbative approach, the large N
limit for cubes of size N is already very well approached for small values of N .
As in the previous section, the computational efficiency of the approach is clear:
solving the two periodic problems with coefficients Aper and Aper C 1QCper for
a limited size N is much less expensive than solving the original, random corrector
problem for a much larger size N .

4 Related Problems and Techniques

We conclude this article with some comments.
First, it is useful to mention that the variant of stochastic homogenization

described in Sect. 2.3 has originally been introduced in [6, 7] for an apparently
different context, related to atomistic modeling of materials and the limit of atom-
istic models to derive models for continuum mechanics. Although the two topics
of Atomistic to Continuum limits and homogenization of partial differential equa-
tions look different at first sight, they actually share similarities, as two sides of the
general paradigm of change of scales.

Second, the set of techniques presented above is specific to the case of peri-
odic settings slightly perturbed by random perturbations. Although we believe this
allows to treat many situations, the situation where randomness is intense is still,
of course, of major interest. In that case, there seems to be no hope of simplifying
the problem. A corrector problem of the type (14) (or of the type (23) when ran-
dom diffeomorphisms are employed), posed on the entire ambient space, needs to be
solved, for each vector p of the canonical basis. And, the average giving the homog-
enized matrix needs then to be computed. As in any situation where randomness is
present, numerical practice shows that variance issues come into the picture and
complicate the already huge computational task. A companion article [11] presents
some techniques recently introduced to improve the efficiency of computations of
homogenization problems that require the solution of corrector problems posed on
the entire space.
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Mathématiques Pures et Appliquées, 88, pp 34–63, 2007

8. D. Cioranescu, P. Donato, An introduction to homogenization. Oxford Lecture Series in
Mathematics and its Applications, 17. The Clarendon Press, Oxford University Press, New
York, 1999
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Goal Oriented, Anisotropic, A Posteriori Error
Estimates for the Laplace Equation

Frederic Alauzet, Wissam Hassan, and Marco Picasso

Abstract A posteriori error estimates are presented for the Laplace equation and
meshes with large aspect ratio. Error estimates are presented in the natural H 1

seminorm or in the framework of goal oriented error control. The proposed estima-
tor relies on anisotropic interpolation estimates derived by Formaggia and Perotto
[Numer. Math. 89(4), 641–667 (2001), Numer. Math. 94(1), 67–92 (2003)] and
on Zienckiewicz–Zhu [Int. J. Numer. Meth. Eng. 33(7), 1331–1364 (1992), Int. J.
Numer. Meth. Eng. 24(2), 337–357 (1987)] post-processing techniques, thus avoids
approximations of the Hessian of the solution. All the constant involved in the error
estimates are independent of the mesh size and aspect ratio, which should enable
the use of anisotropic, adaptive finite elements.

1 Introduction

A posteriori error estimates aim to link the error between the true solution u and the
finite element approximation uh with a computable quantity – the so-called error
estimator �. Then, the error estimator can be used as a refining – or coarsening –
criteria in adaptive finite element algorithms. The subject was initiated by Babuska
and Rheinboldt [3] and mesh adaptation is nowadays a classical feature in finite
element software, see for instance [5, 16, 31].
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Interpolation estimates are usually needed in order to derive a posteriori error
estimates. In the simplest case, namely continuous, piecewise linear finite elements
on triangles, Lagrange interpolation [13] is needed to prove a priori error estimates
whereas Clément interpolation [14] is needed to derive a posteriori error estimates.
In the classical setting of isotropic meshes, both interpolation estimates hold under
the so-called regularity assumption which requires that

9C > 0 8h > 0 8K 2 Th
hK

�K
� C:

Hereabove, Th denotes a mesh of the calculation domain ˝ into triangles K with
diameter hK less than h and �K is the largest circle contained in K . However, in
practice, anisotropic finite elements are used with success in order to solve com-
plex problems such as fluid flow around bodies, see for instance [2, 9, 21, 22].
Recently, the theory of finite elements was updated in order to comply with the
use of anisotropic finite elements. Hereafter, we will consider the contributions
of Formaggia and Perotto [19, 20], however similar results have been obtained for
Lagrange interpolation in [8, 12, 22] and for Clément interpolation [23].

In the classical setting of isotropic meshes satisfying the regularity assump-
tion, the interpolation estimate for the Lagrange interpolation operator rh with
polynomial degree one write [13]:

9C > 0 8h > 0 8K 2 Th 8v 2 H 2.K/
Z

K

jr.v � rhv/j2 � C h
4
K

�2K

Z

K

 �
@2v

@x21

�2
C
�

@2v

@x1@x2

�2
C
�
@2v

@x22

�2!
;

where C does not depend on the mesh aspect ratio. If, for instance, v depends only
on x2, then the right hand side of the above estimate blows up when the mesh is
refined only in the x2 direction, since the mesh aspect ratio hK=�K increases. On
the other side, anisotropic interpolation estimates [19, 20] are as follows:

Z

K

jr.v � rhv/j2 � C
 
�41;K

�22;K

Z

K

.rT1;KH.v/r1;K/
2

C 2�21;K
Z

K

.rT1;KH.v/r2;K/
2 C �22;K

Z

K

.rT2;KH.v/r2;K/
2

!
:

HereaboveH.v/ is the Hessian matrix

H.v/ D

0

BBB@

@2v

@x21

@2v

@x1@x2

@2v

@x1@x2

@2v

@x22

1

CCCA ;
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r1;K and r2;K denote orthogonal unit vectors in the direction of maximum and min-
imum streching, respectively, while �1;K and �2;K denote the stretching amplitudes
in the direction of maximum and minimum streching, respectively. The precise
definition of these quantities is proposed in the next section.

If, for instance, v depends only on x2 and if the mesh is refined only in the
x2 direction, then r1;K D .1 0/T and r2;K D .0 1/T and the above anisotropic
interpolation estimate reduces to

Z

K

jr.v � rhv/j2 � C�22;K
Z

K

�
@2v

@x22

�2

so that convergence is achieved as soon as �2;K goes to zero, no matter what the
aspect ratio �1;K=�2;K is. The same argument holds when the isovalues of v and
the mesh are rotated with any angle.

Based on anisotropic interpolation estimates, a priori and a posteriori error esti-
mates have been revisited and adaptive algorithms having meshes with large aspect
ratio have been used with success in CFD, see for instance [2, 9, 15, 21, 22, 25].
Most of the paper involving anisotropic adaptive meshes deal with an estimate of
the Hessian matrix, thus approaching the second derivatives of the exact (unknown)
solution using the computed solution. In [27] an anisotropic error estimator involv-
ing the gradient matrix rather than the Hessian matrix was proposed for elliptic and
parabolic problems in the energy norm. A lower bound was proved in [26, 28] for
the Laplace problem. Goal oriented, anisotropic a posteriori error estimates involv-
ing gradients were proposed in [15] for advection-diffusion-reaction, but only an
upper bound was proved. In this paper we prove a lower bound for goal oriented,
anisotropic a posteriori error estimates in the frame of the Laplace equation.

2 The Laplace Equation with Anisotropic Finite Elements

Given a polygonal domain ˝ � R2, given f 2 L2.˝/, we are searching for
u W ˝ ! R such that

��u D f in ˝;

u D 0 on @˝:
(1)

For any 0 < h < 1, let Th be a conforming triangulation of˝ into trianglesK with
diameter hK less than h. Let Vh be the usual finite element space of continuous,
piecewise linear functions on the triangles of Th, zero valued on @˝ . The simplest
finite element approximation of (1) therefore consists in seeking uh 2 Vh such that

Z

˝

ruh � rvh D
Z

˝

f vh 8vh 2 Vh: (2)
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We now describe the mesh anisotropy using the framework of Formaggia and
Perotto [19, 20]. Again, alternative descriptions are available [8, 12, 22, 23]. For any
triangle K of the mesh, let TK W OK ! K be the affine transformation which maps
the reference triangle OK into K . Let MK be the Jacobian of TK that is

x D TK.Ox/ DMK OxC tK :

SinceMK is invertible, it admits a singular value decompositionMK D RTK�KPK ,
where RK and PK are orthogonal and where �K is diagonal with positive entries.
In the following we set

�K D
�
�1;K 0

0 �2;K

�
and RK D

 
rT1;K
rT2;K

!
; (3)

with the choice �1;K � �2;K . A simple example of such a transformation is when
stretching occurs only in the x1 direction. Let the vertices of the reference triangle OK
be .0; 0/, .1; 0/, .0; 1/ and let the mapping TK be defined by x1 D H Ox1, x2 D h Ox2,
with H � h, thus

MK D
�
H 0

0 h

�
; �1;K D H; �2;K D h; r1;K D

�
1

0

�
; r2;K D

�
0

1

�
:

A geometrical interpretation of the decompositionMK D RTK�KPK is the follow-
ing. Consider the case when OK is the unit equilateral reference triangle and consider
the set of points lying on the unit circle, that is the points Ox satisfying OxT Ox D 1.
Since Ox DM�1K .x � tK/, we have

1 D .x � tK/TM�TK M�1K .x � tK/ D .x � tK/TRTK�
�2
K RK.x � tK/;

thus the unit circle is mapped into an ellipse with directions r1;K and r2;K , the
amplitude of stretching being �1;K and �2;K .

In the frame of anisotropic meshes, the classical minimum angle condition is not
required. However, for each vertex, the number of neighbouring vertices should be
bounded from above, uniformely with respect to the mesh size h. Also, for each
triangleK of the mesh, there is a restriction related to the patch�K , the set of trian-
gles having a vertex common with K . More precisely, the diameter of the reference
patch T �1K .�K/ must be uniformly bounded independently of the mesh geometry.
This assumption excludes some too distorted reference patches and implies that the
local geometric quantities �i;K , ri;K , i D 1; 2, vary smoothly on neighbouring tri-
angles. In practice, no restrictions have been added in order to satisfy this condition
and the anisotropic mesh generators that have been used [7, 17, 18] seem to satisfy
the uniform boundedness of the reference patch.
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3 Anisotropic, A Posteriori Error Estimates
in the Energy Norm

Let us introduce the anisotropic error estimator proposed in [27] and corresponding
to the error in the energy norm kr.u � uh/kL2.˝/. For all K 2 Th, let

˘Kf D 1

jKj
Z

K

f

be the L2.K/ projection of f onto the constants. Let `i , i D 1; 2; 3 be the triangle
three edges, let Œ�� denote the jump of the bracketed quantity across `i , with the
convention Œ�� D 0 for an edge `i on the boundary @˝ . Then, the anisotropic error
estimator corresponding to the energy norm on triangleK is defined by

�
�ENK

�2D
 
k˘Kf kL2.K/ C

1

2

3X

iD1

� j`i j
�1;K�2;K

�1=2
kŒruh � n�kL2.`i /

!
!K.u�uh/:

(4)
Here n is the edge unit normal (in arbitrary direction), and !K.v/ is defined for all
v 2 H 1.˝/ by

!2K.v/ D �21;K
�

rT1;KGK.v/r1;K
�
C �22;K

�
rT2;KGK.v/r2;K

�
; (5)

where GK.v/ denotes the 2 � 2 matrix defined by

GK.v/ D

0

BBB@

Z

�K

�
@v

@x1

�2
dx

Z

�K

@v

@x1

@v

@x2
dx

Z

�K

@v

@x1

@v

@x2
dx

Z

�K

�
@v

@x2

�2
dx

1

CCCA : (6)

The following upper and lower bounds in the energy norm have been proved in
[28]. Similar results can be found in [26].

Theorem 1. There exists a constant C1 independent of the mesh size and aspect
ratio such that

Z

˝

jr.u � uh/j2 � C1
� X

K2Th

.�ENK /2 C
X

K2Th

�21;Kkf �˘Kf k2L2.K/

�
: (7)

Moreover, if the mesh is such that there exists a constantC2 independent of the mesh
size and aspect ratio such that

X

K2Th

!2K.u � uh/

�22;K
� C2

Z

˝

jr.u � uh/j2: (8)
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then, there exists a constant C3 independent of the mesh size and aspect ratio such
that

X

K2Th

.�ENK /2 � C3
�Z

˝

jr.u� uh/j2 C
X

K2Th

�21;Kkf �˘Kf k2L2.K/

�
: (9)

Remark 1. In the isotropic setting, �1;K ' �2;K ' hK , assuming that f is smooth
enough, estimates (7) and (9) yield

Z

˝

jr.u�uh/j2 � C1
X

K2Th

�2KCh:o:t: and
X

K2Th

�2K � C3
Z

˝

jr.u�uh/j2Ch:o:t:;

where h:o:t: denotes a high order term that behaves as O.h4/ and where

�2K D h2Kk˘Kf k2L2.K/
C 1

2

3X

iD1
j`i jk Œruh � n� k2L2.`i /

is the classical explicit, residual based error estimator studied for instance in [4,33].
In the isotropic setting, assumption (8) is not necessary but, in turn, the constants
C1 and C3 hereabove depend on the mesh aspect ratio.

Remark 2. The estimator (4) is not a usual error estimator since u is still involved.
However, if we can guess u� uh, then (4) can be used to derive a computable quan-
tity. This idea has been used in [27, 28] and an efficient anisotropic error indicator
has also been obtained replacing the derivatives

@.u � uh/

@xi
in (6) by

@uh
@xi
�˘h @uh

@xi
; i D 1; 2; (10)

where ˘h is an approximate L2.˝/ projection onto Vh. More precisely, from
constant values of @uh=@xi on triangles, we build values at vertices P using the
formula

˘h

�
@uh
@xi

�
.P / D 1

X

K2Th
P 2K

jKj
X

K2Th
P 2K

jKj
�
@uh
@xi

�

jK
i D 1; 2:

Approximating @.u � uh/=@xi by .I �˘h/@uh=@xi is at the base of the celebrated
Zienkiewicz–Zhu error estimator [35, 36] and can be justified theoretically when-
ever superconvergence occurs, that is when ru � ˘hruh is better than O.h/. For
instance, it is proved in [1,30] that the Zienkiewicz–Zhu error estimator is asymptot-
ically exact on parallel meshes, see also [10] for 3D results. Superconvergence has
also be obtained for 2D mildly structured meshes in [34] but excludes for instance
the chevron pattern, for which the Zienkiewicz–Zhu is not asymptotically exact, see
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[30]. On general unstructured meshes, the Zienkiewicz–Zhu error estimator is only
proved to be equivalent to the true error, see for instance [11,30] for isotropic meshes
and [24] for anisotropic meshes. Numerical results show that the good properties of
the Zienkiewicz–Zhu error estimator are underestimated by theoretical results.

Remark 3. Assumption (8) is true provided there exists a constant C independent
of the mesh aspect ratio such that, for all K 2 Th,

�21;K

�
rT1;KGK.u � uh/r1;K

�
� C�22;K

�
rT2;KGK.u� uh/r2;K

�
; (11)

in other words, when the error gradient in the direction of maximum stretching
is less than the error gradient in the direction of minimum stretching. This is for
instance the case when the error is equidistributed in both the directions of mini-
mum and maximum stretching. This is precisely the goal of the adaptive algorithm
described in [27, 28]. Numerical results reported in [27, 28] have shown that the
effectivity index is aspect ratio independent for adapted meshes.

4 Goal Oriented, Anisotropic, A Posteriori Error Estimates

We now present an anisotropic error estimator for goal oriented a posteriori error
estimates based on first order derivatives rather than second order derivatives. This
error estimator has already been introduced in [15] for advection-diffusion-reaction
problems but only an upper bound was proved. Hereafter, we propose a lower bound
proceeding as in [28]. We refer [6, 29] for goal oriented, isotropic a posteriori error
estimates.

In order to simplify the presentation we consider the linear functional J defined
for all v 2 L1.˝/ by

J.v/ D
Z

˝0

v;

where ˝0 � ˝ . Our goal is now to control J.u � uh/ and we introduce the dual
problem: find z 2 H 1

0 .˝/ such that

Z

˝

rz � rv D J.v/ 8v 2 H 1
0 .˝/: (12)

We also need the corresponding finite element approximation of z namely zh 2 Vh
such that Z

˝

rzh � rvh D J.vh/ 8v 2 Vh: (13)

The error estimator corresponding to the goal oriented error J.u � uh/ on triangle
K is now defined by
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.�GOK /2 D
 
k˘Kf kL2.K/ C

1

2

3X

iD1

� j`i j
�1;K�2;K

�1=2
kŒruh � n�kL2.`i /

!
!K.z�zh/;

(14)
and proceeding as in [28], we can prove the following.

Proposition 1. There is a constant C independent of the mesh size and aspect ratio
such that

J.u � uh/ � C
0

@
X

K2Th

.�GOK /2 C
X

K2Th

kf �˘Kf kL2.K/!K.z � zh/

1

A: (15)

Proof. Let Ih be Clément’s interpolant [14]. From Proposition 3.2 in [19], there
exists a constant C depending only on the reference element OK such that, for all
v 2 H 1.˝/, for all K 2 Th

kv � IhvkL2.K/ � C!K.v/: (16)

Moreover, proceeding as in the proof of Proposition 2 in [20], there exists a constant
C depending only on the reference element OK such that, for all v 2 H 1.˝/, for all
K 2 Th, for i D 1; 2; 3

kv � IhvkL2.`i /
� C

� j`i j
�1;K�2;K

�1=2
!K.v/:

Using (1) (2) (12) (13) we have

J.u � uh/ D
Z

˝

f .z � zh � vh/�
Z

˝

ruh � r.z� zh � vh/

D
X

K2Th

�Z

K

.˘Kf C�uh/.z� zh � vh/C1
2

Z

@K

Œruh � n�.z � zh � vh/

�

C
X

K2Th

Z

K

.f �˘Kf /.z � zh � vh/;

for all vh 2 Vh. We then choose vh D Ih.z � zh/, use Cauchy–Schwarz inequality
and the above anisotropic interpolation estimates to obtain the result.

The proof of the following result is as in [28].

Proposition 2. There exists a function ' 2 H 1
0 .˝/ and a constant C independent

of the mesh size and aspect ratio such that, for all K 2 Th we have

Z

`i

Œruh � n�' D
� j`i j
�1;K�2;K

�1=2 �Z

`i

Œruh � n�2
�1=2

!K.z� zh/; i D 1; 2; 3;
(17)
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Z

K

.˘Kf /' D
�Z

K

.˘Kf /
2

�1=2
!K.z � zh/; (18)

Z

K

jr'j2 � C !
2
K.z � zh/

�22;K
: (19)

Proceeding as in [28], we then prove what follows.

Proposition 3. There exists a constant C independent of the mesh size and aspect
ratio such that

X

K2Th

.�GOK /2 � C
X

K2Th

�
kr.u�uh/kL2.K/C�1;Kkf �˘Kf kL2.K/

�!K.z � zh/

�2;K
:

(20)

From the three above Propositions, we can now state the main result of the paper,
which can be compared to Theorem 1.

Theorem 2. There exists a constant C1 independent of the mesh size and aspect
ratio such that

J.u � uh/ � C1
� X

K2Th

.�GOK /2

C
X

K2Th

�1;Kkf �˘Kf k2L2.K/
C

X

K2Th

�1;Kkr.z � zh/k2L2.�K /

�
: (21)

Moreover, if the mesh is such that there exists a constantC2 independent of the mesh
size and aspect ratio such that

!2K.z � zh/

�22;K
� C2kr.z � zh/k2L2.�K/

8K 2 Th; (22)

then, there exists a constant C3 independent of the mesh size and aspect ratio such
that

X

K2Th

.�GOK /2 � C3
�
kr.u � uh/kL2.˝/kr.z � zh/kL2.˝/

C
X

K2Th

�1;Kkf �˘Kf k2L2.K/
C

X

K2Th

�1;Kkr.z � zh/k2L2.�K /

�
: (23)

Proof. To obtain (21), it suffices to notice that

!K.z � zh/ � �1;Kkr.z � zh/kL2.�K /

in (15) and to use Young’s inequality. On the other side, if we use assumption (22)
in (20) and apply Young’s inequality, we obtain (23).
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The three following remarks are similar to Remarks 1–3.

Remark 4. In the isotropic setting, �1;K ' �2;K ' hK , assuming that f 2 H 1.˝/

and z 2 H 2.˝/, estimates (21) and (23) write

J.u � uh/ � C1
X

K2Th

�2K C h:o:t:

and X

K2Th

�2K � C3kr.u � uh/kL2.˝/kr.z � zh/kL2.˝/ C h:o:t:; (24)

where h:o:t: denotes a high order term that behaves as O.h3/ and where

�2K D
 
h2Kk˘Kf k2L2.K/

C 1

2

3X

iD1
j`i jk Œruh � n� k2L2.`i /

!1=2
kr.z � zh/kL2.�K/

:

In general, the last term in the above definition is estimated using interpolation
results, hierarchical techniques, or post-processing [6, 32]. In the isotropic setting,
assumption (22) is not necessary but, in turn, the constants C1 and C3 hereabove
depend on the mesh aspect ratio. Moreover, whenever u and z are in H 2.˝/, then
(24) writes X

K2Th

�2K � C4h2 C h:o:t:;

where C4 is independent of h, thus the error estimator is of optimalO.h2/ order.

Remark 5. The estimator (4) is not a usual error estimator since z is still involved.
However, if we can guess z�zh, then (4) can be used to derive a computable quantity.
Following [27, 28], we propose to replace the derivatives

@.z � zh/

@xi
in (6) by

@zh
@xi
�˘h @zh

@xi
; i D 1; 2; (25)

where ˘h is an approximate L2.˝/ projection onto Vh.

Remark 6. Assumption (22) is true provided there exists a constant C independent
of the mesh aspect ratio such that, for all K 2 Th,

�21;K

�
rT1;KGK.z� zh/r1;K

�
� C�22;K

�
rT2;KGK.z� zh/r2;K

�
;

in other words, when the dual error gradient in the direction of maximum stretching
is less than the dual error gradient in the direction of minimum stretching. This is
for instance the case when the dual error is equidistributed in both the directions
of minimum and maximum stretching. This condition should be enforced in the
adaptive algorithm for goal oriented anisotropic meshes.
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Energy Stability of the MUSCL Scheme

Qaisar Abbas, Edwin van der Weide, and Jan Nordström

Abstract We analyze the energy stability of the standard MUSCL scheme. The
analysis is possible by reformulating the MUSCL scheme in the framework of
summation-by-parts (SBP) operators including an artificial dissipation. The effect
of different slope limiters is studied. It is found that all the slope limiters do not lead
to the correct sign of the entries in the dissipation matrix. The implication of that is
discussed. The analysis is done for both linear and nonlinear scalar problems.

1 Introduction

For problems involving shocks which arise in computational fluid mechanics and
related areas, the MUSCL scheme [10] is a very effective approach to resolve dis-
continuities. This scheme ensures the monotonicity of the solution for the whole
computational time and it is arguably computationally less expensive compared
to relevant counterparts like the WENO schemes [5] for approximately the same
accuracy.
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In this paper, we have reformulated the MUSCL scheme in summation-by-parts
(SBP) form including an artificial dissipation operator. Related work can be found
in [11, 12], where the WENO scheme has been formulated in a similar way. The
SBP operators are well-established theoretically [4] and their usefulness is proven
for practical applications, see [7–9].

In this work we will investigate the MUSCL scheme to see if the scheme is
energy stable, i.e., stable in the L2-norm, see [11, 12]. We consider both scalar lin-
ear and nonlinear hyperbolic problems in one dimension. Our analysis is based on
theoretical as well as numerical observations.

2 The MUSCL Scheme in SBP Form

Consider the unsteady one-dimensional conservation law

ut C f .u/x D 0; 0 � x � 1; t � 0: (1)

Define a uniform grid xj D j�x, j D 0; : : : ; N , with �x D 1=N . On the grid,
define a flux F.U /, where U D ŒU0.t/; U1.t/ : : : ; UN .t/�

T is the discrete approxi-
mation of the solution u in (1). The second order upwind discretization of (1) using
the MUSCL approach [10] results in

Ut C RESi D 0; RESi D 1

�x

�
FiC 1

2
� Fi� 1

2

�
: (2)

In (2), FiC 1
2

is the flux function at the interface i C 1
2

. More details on the
computation of numerical flux function can be found in [1].

Similarly a second order discretization of the flux function in (1), obeying the
SBP property [4] and with the introduction of artificial dissipation on SBP form [6]
leads to

Ut CD2F D �P�1eDT
1 BM

eD1U; (3)

where D2 is the central finite difference operator on SBP form given by

D2 D P�1Q; QCQT D B; P D P T ; (4)

D2 D 1

2�x

2

666664

�2 2

�1 0 1
: : :

: : :
: : :

�1 0 1

�2 2

3

777775
; P�1 D 1

�x

2

666664

2

1
: : :

1

2

3

777775
;

and B D diag.�1; 0; : : : ; 0; 1/. The term �P�1eDT
1 BM

eD1U in (3) is an artificial
dissipation operator. It will be shown below that the matrix BM can be constructed
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such that (3) corresponds to the standard second order MUSCL formulation [10]
which means that the formulations given by (2) and (3) are equivalent. eD1 is a two
point difference operator and the matrix BM is a diagonal matrix, see (5).

eD1 D

2

666664

�1 1

�1 1
: : :

: : :

�1 1
�1 1

3

777775
; BM D

2

666664

b0 0

b1

: : :

bN�1

0 0

3

777775
: (5)

2.1 Explicit Form of BM

At an interior point i , we have

n
�P�1eDT

1 BM
eD1U

o

i
D � 1

�x
.bi�1�Ui�1 � bi�Ui /; (6)

where �Ui D UiC1 � Ui . In combination with the central discretization of
the convective term, this leads to the following formulation of the residual for an
internal node

�xRESi D 1

2
.FiC1 � Fi�1/C bi�1�Ui�1 � bi�Ui : (7)

For the boundary nodes x0 and xN , the residuals are

�xRES0 D �F0�eP�1
0 b0�U0; �xRESN D �FN�1CeP�1

N bN�1�UN�1; (8)

where eP�1
0 D eP�1

N D 2. Comparing (2) and (7), it is clear that both schemes are
identical if

bi�Ui D 1

2
.FiC1 C Fi /� FiC 1

2
: (9)

It can be shown that the bi in (9) becomes

bi D 1

2

� ˇ̌
ˇAiC 1

2

ˇ̌
ˇ
�
1 � �i

2
�  iC1

2

�
C AR

iC
1
2

;iC1

 iC1

2
� AL

iC
1
2

;i

�i

2

�
; (10)

where �i and  iC1 are the slope limiters involved in the fluxes. They are related in
the following way.

�i D � .ri / D �
�
�Ui�1

�Ui

�
D �Ui�1

�Ui

�

�
1

ri

�
D �Ui�1

�Ui

 i : (11)
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Also A D @F
@U

is a Jacobian matrix evaluated at the Roe average states. The property
of a Roe average state is that f2 � f1 D ARoe.u2 � u1/.

2.2 Energy Stability

In this section we define the two versions of the energy stability, that we will work
with in the analysis below.

Definition 1. Consider (3) and (12). The scheme defined by (3) is pointwise energy
stable if bi � 0 for all i D 0; 1 : : : ; N . The scheme defined by (3) is energy stable in
the mean if .DU /TBM .DU / � 0, whereDU D Œ.DU /0; .DU /1; : : : ; .DU /N �T .

Remark 1. Pointwise energy stable schemes lead to energy stable schemes in the
mean. The reverse is not true.

2.3 Energy Estimates

To investigate whether the scheme defined in (3) is energy stable or not, we start by
considering the linear constant coefficient case with F D aU and use the energy
method. Multiplying (3) with U TP , adding its transpose and using (4) leads to

d

dt
jjU jj2P C aU TBU D �2.eD1U /

TBM .eD1U /: (12)

where jjU jj2P D U TPU . For a bounded solution and energy stability we must have
d
dt
jjU jj2P � 0. The boundary terms U TBU D U 2

0 � U 2
N can be bounded using

the SAT boundary treatment [3] and are ignored from now on. The right-hand side
of (12) is negative if the matrix BM is positive semi-definite. The matrix BM for a
linear problem becomes

bi D 1

2
fjAj � �iA

C C  iC1A
�g; (13)

where AC contains the positive eigenvalues of A and A� the negative ones,

AC D 1

2
.AC jAj/; A� D 1

2
.A � jAj/: (14)

For a scalar problem with F D aU , (13) reduces to

bi D 1

2
af1 � �i g; a > 0; and bi D 1

2
jajf1�  iC1g; a < 0: (15)

From the theory of the slope limiters [2] we have that 0 � �i ;  iC1 � 2. It is
obvious that any limiter which takes values greater than 1, will lead to bi � 0 in
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the computational domain and hence no pointwise energy stability. In [11, 12], the
authors modified the WENO scheme by correcting this anomaly of the scheme. We
will discuss below whether that is necessary and meaningful.

3 Numerical Results

Consider (10)–(12). It is obvious that the sign of bi depends on the slope limiters
involved in the MUSCL scheme. If the solution is smooth, we have �i D  iC1 D 1,
and for all A, bi will be zero. For problems with discontinuities , we could have
0 � �i ;  iC1 � 2, which decides the sign of bi in non-smooth regions.

We consider a linear problem (f D u) first with a step discontinuity as initial
data and analyze four different limiters. All the results are shown for N D 80 and
t D 0:3. In Figs. 1–4 we have shown the minimum of bi and �.D1U /

TBM .D1U /

at each time step for minmod, VanLeer, superbee and MC limiters. The minmod
limiter has bi � 0 for all time and hence is pointwise stable. All other limiters lead
to bi < 0 at few points near the discontinuity. It means that these limiters do not
lead to pointwise stability. It is also found that �.D1U /

TBM .D1U / � 0 for all
limiters for the whole computational time which gives energy stability in the mean.

Next we consider the Burger equation with f D u2

2
in (1) and repeat the same

analysis with minmod, VanLeer, superbee and MC limiters. It is found that all the
tested limiters have some bi < 0 but the minmod limiter is almost zero for all time
leading to pointwise stability, see Figs. 5–8. It can also be seen that all schemes are
stable in the mean.
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Fig. 1 Results from the MUSCL in SBP form using the minmod limiter, f D u

0 50 100 150 200
−1

−0.5

0

0.5

1

m
in

(b
i)

/t
im

e 
st

ep

Number of time steps

(a) min.bi / per time step

0 50 100 150 200
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

di
ss

ip
at

io
n

/t
im

e 
st

ep

Number of time steps

(b) �.D1U /TBM .D1U /

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

x

so
lu

ti
on

 v
ec

to
r

Initial soluton
Numerical solution
Exact solution

(c) solution, N D 80; t D 0:3

Fig. 2 Results from the MUSCL in SBP form using the Van Leer limiter, f D u
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Fig. 3 Results from the MUSCL in SBP form using the Superbee limiter, f D u
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Fig. 4 Results from the MUSCL in SBP form using the MC limiter, f D u
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Fig. 5 Results from the MUSCL in SBP form using the minmod limiter, f D u2
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Fig. 6 Results from the MUSCL in SBP form using the Van Leer limiter, f D u2
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Fig. 7 Results from the MUSCL in SBP form using the Superbee limiter, f D u2
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Fig. 8 Results from the MUSCL in SBP form using the MC limiter, f D u2

2

Table 1 Analysis of different limiters for the linear problem (a D 1; t D 0:3)

Limiters l2-error, min(bi � 0) l2-error, min(bi D 0)

minmod 0.0711 0.0711
Van Leer 0.0578 0.0642
Superbee 0.0400 0.0634
MC 0.0504 0.0639

It is not clear whether pointwise stability is necessary or if stability in the mean
is enough. If we replace bi < 0 in the matrix BM with bi D 0 at each time step,
we find that it leads to an additional and excessive amount of dissipation in the
discontinuity/shock region, see Table 1 for l2-error of solutions. By demanding the
pointwise stability, clearly the sharpness of the shock decreases.

4 Conclusion

We have expressed the MUSCL scheme as a combination of an SBP operator and
an artificial dissipation operator. This form allows us to use the energy method for
analyzing stability. Our main interest was to look at the behavior of dissipation
matrix BM in (5), which is crucial for the stability of the scheme and also influence
the sharpness of the shock.



68 Q. Abbas et al.

As the matrix depends on the slope limiters of the MUSCL scheme, it was found
most of the tested limiters except minmod limiter do not lead to pointwise stability
while all limiters are stable in the mean.

By making the schemes pointwise stable by replacing bi < 0 in the matrix BM

with bi D 0 resulted in an additional and excessive dissipation for all the limiters.
It was shown that the error in the calculations increased and the sharpness of the
shock decreased. This procedure was used in [11, 12] but seems questionable.
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8. Svärd M., Carpenter M.H., Nordström J.: A stable high-order finite difference scheme for the
compressible Navier-Stokes equations, far-field boundary conditions. J. Comput. Phys. 225(1),
1020–1038 (2007)
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Numerical Stabilization of the Melt Front
for Laser Beam Cutting

Torsten Adolph, Willi Schönauer, Markus Niessen, and Wolfgang Schulz

Abstract The Finite Difference Element Method (FDEM) is a black-box solver
that solves by a finite difference method arbitrary nonlinear systems of elliptic and
parabolic partial differential equations (PDEs) on an unstructured FEM grid in 2D
or 3D. For each node we generate difference formulas of consistency order q with
a sophisticated algorithm. An unprecedented feature for such a general black-box
is the error estimate that is computed together with the solution. In this paper we
present the numerical simulation of the laser beam cutting of a metal sheet. This is a
free boundary problem where we compute the temperature and the form of the melt
front in the metal sheet. During the cutting process, the numerical stabilization of
the melt front is a great challenge.

1 Finite Difference Element Method FDEM

FDEM is an unprecedented generalization of the FDM on an unstructured FEM
mesh. It is a black-box solver for arbitrary nonlinear systems of 2D and 3D elliptic
or parabolic PDEs. With certain restrictions it can be used also for hyperbolic PDEs.
If the unknown solution is u.t; x; y; z/, the operator for PDEs and BCs (boundary
conditions) is (2.4.1) and (2.4.2) in [7]:

P u � P.t; x; y; z; u; ut ; ux; uy ; uz; uxx; uyy ; uzz; uxy ; uxz; uyz/ D 0: (1)
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For a system of m PDEs, u and P u havem components:

u D .u1; : : : ; um/T ; P u D .P1u; : : : ; Pmu/T : (2)

As we have a black-box solver, the PDEs and BCs and their Jacobian matrices of
type (2.4.6) in [7] must be entered as Fortran code in prescribed frames.

The geometry of the domain of solution is entered as a FEM mesh with triangles
in 2D and tetrahedra in 3D. The domain may be composed of subdomains with dif-
ferent PDEs and non-matching grid. From the element list and its inverted list, we
select for each node more than the necessary number of nodes for difference for-
mulas of a given consistency order q. By a sophisticated algorithm, the necessary
optimal nodes are determined from this set, see Sect. 2.2 in [7]. From the difference
of formulas of different consistency order, we get an estimate of the discretiza-
tion error. If we want e.g., the discretization error for ux , and ux;d;q denotes the
difference formula of consistency order q, the error estimate dx is defined by

dx WD ux;d;qC2 � ux;d;q; (3)

i.e., by the difference to the order qC2. This has a built-in self-control: If this is not
a “better” formula, the error estimate shows large error.

With such error estimates, we can explicitly compute the error of the solution
by the error equation (2.4.8) in [7]. The knowledge of the error allows local mesh
refinement and control of the space consistency order, see Sect. 2.5 in [7]. There
we also explain the computation of the time step size �t and the selection of the
consistency orderp in time direction for parabolic problems. There is also computed
a global error estimate in time direction that gives the history of the discretization
and linearization errors in time.

A special problem for a black-box solver is the efficient parallelization with MPI.
The user enters his domain by the FEM mesh, and we use a 1D domain decom-
position with overlap to distribute the data to the processors, see Sect. 2.8 in [7].
A detailed report on the parallelization is [1]. The resulting large and sparse lin-
ear system is solved by the LINSOL program package [6] that is also efficiently
parallelized for iterative methods of CG type and (I)LU preconditioning.

2 The One-Phase Problem

Laser cutting is a thermal separation process widely used in shaping and contour
cutting applications. The cutting process is described with a spatial 3D Free Bound-
ary Problem for the motion of one-phase boundary. In cutting, the interaction of the
gaseous, liquid and solid domains takes place only across spatially 2D surfaces. The
solid volume˝.�/ (Fig. 1) is bounded by the absorption front�C.�/ and the bottom
surface ��.�/. A part of the absorption front is a free boundary called the melt front
�m.�/. Hence, adding the various effects of the gas and melt flow only changes the
boundary values, while the structure of the model for the solid, called the one-phase



Numerical Stabilization of the Melt Front for Laser Beam Cutting 71

³

»

³=−³0

³=Δ

Γm

Γ−

Ω
Δ

n
s

'

n
s
'

w(³; ³0)

Γ+ Γm/

Fig. 1 The absorption front �
C

.�/ consists of two parts: The melt front �m.�/ and a part of the
surface �

C

.�/n�m.�/ of the solid metal ˝.�/ where � < 1 holds. The laser beam propagates in
�-direction, the laser beam axis has the position � D 0 and the focal position of the laser beam is
at � D ��0. The metal has thickness � and its upper surface is at � D 0. w.�; �0/ is the Gaussian
beam width (5)

model, remains unchanged. To find the properties of a comprehensive cutting model
relies on the detailed analysis of the one-phase model, which was first formulated in
1997 by Enß et al. [4].

The phase boundary of the one-phase Free Boundary Problem can move into
the material and erosion takes place or remains unchanged. Resolidification is not
allowed. The intensity I D I0.t/f ..x � v0t/=w0/, x 2 R2, of the laser beam is
characterized by its maximum value I0.t/, the spatial distribution f .0 � f � 1/
and the laser beam radius w0. The laser beam is directed top to bottom with local
direction s D s.x; t/ (jsj D 1) of the Poynting vector S D I0f s. The metal sheet
moves with the velocity v0 in negative x-direction, v0 D v0ex . The absorbed heat
flux qa D �Ap n � S depends on the degree of absorption Ap, where n D n.x; t/ is
normal with respect to the absorption front�C.t/. The absorption front�C.t/ can be
subdivided into two regions: the melt front �m.t/, where the temperature equals the
melting point T D Tm and erosion takes place, and the rest �C.t/n�m.t/ .T < Tm/.
The melt front �m.t/ is the free boundary of the one-phase problem.

For the numerical solution of the 2D one-phase problem in the x; z-plane, we
introduce the scalings

t D w0
v0
�; x D w0�; z D w0�; � D T � Ta

Tm � Ta (4)

where Ta and Tm are the ambient- and the melting temperatures. If �R denotes the
Rayleigh range, the Gaussian beam width is given by

w.�; �0/ D w0

s

1C
�
� C �0
�R

�2
(5)
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With these definitions the one-phase Free Boundary Problem has the follow-
ing form: Find the solution of the heat conduction equation that reads in non-
dimensional form

@�

@�
� @�
@�
� 1

Pe

�
@2�

@�2
C @2�

@�2

�
D 0; x D .�; �/ 2 ˝.�/ (6)

with the boundary conditions

Qa �
�
@�

@�
n� C @�

@�
n�

�
D 0; x 2 �C.�/ n �m.�/; (7)

@�

@�
n� C @�

@�
n� D 0; x 2 ��.�/; (8)

� j�!1 D 0; x 2 ˝.�/: (9)

In (6), Pe is the dimensionless Péclet number relating the rate of advection of a flow
to its rate of diffusion. In (7), Qa is the dimensionless heat flux. The position of the
melt front x.�/ D .�.�/; �.�// 2 �m.�/ is determined by the velocity u.m/p which
we get from the Stefan condition

Qa �
�
@�

@�
n� C @�

@�
n�

�
D Pe hmu.m/p ; x 2 �m.�/; (10)

� D 1; x 2 �m.�/: (11)

The velocity u.m/p is normal with respect to the melt front �m.�/ � @˝ . In (10), hm
is the inverse Stefan-number.

The dimensionless heat flux Qa is the product of the cosine � of the angle of
incidence ', the absorption coefficient A.�/, the maximum intensity 	.�/ and the
distribution f .x/ of the laser radation:

Qa D �A.�/ 	.�/ f .x/; x 2 �C.�/ (12)

In comparison with the well known Stefan problem, as represented by Elliot
et al. [3] or Fasano et al. [5], there is a different and more complicated situation
here, as the energy transfer takes place directly at the free boundary and as the heat
flux absorbed at the free boundary depends on the angle of incidence and via the
intensity distribution f .x/ on the position.

3 Numerical Solution of the One-Phase Problem

To fulfil the Stefan condition (10), we compute the velocity u.m/p from (10) for each
node on the melt front. Multiplied by the time step width�� we get the new position
of the nodes. But after some time steps the melt front becomes non-smooth and the
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errors become large. So we have to stabilize the melt front numerically during the
computation. This stabilization is done by the approximation of the melt front by a
polynomial of order qm by the method of least squares. We choose qm D 5, as it
gives the best results.

In each time step, we have to carry out the so-called grid iteration: In each itera-
tion step, we first compute the new temperature distribution on the given grid. With
the new temperature values we compute the values u.m/p in each node of the melt

front and by u.m/p we get the new position of the melt front. Then the nodes on each
grid line � D const are distributed equidistantly between the melt front and the right
end of the metal sheet. On this new grid, we again compute the temperature and so
on. The grid iteration is stopped if the grid does not move anymore, and we continue
with the next time step. If the maximum displacement of the melt front falls below
a bound �s D 10�6, the melt front is stable in time, and the whole computation is
stopped.

We carry out the computations on two distributed memory parallel comput-
ers: The first one is the HP XC4000 with 2.6 GHz AMD Opteron processors and
InfiniBand 4X interconnect installed at the Steinbuch Centre for Computing of the
Karlsruhe Institute of Technology, Germany, the second one is the SGI Altix 4700
with 1.6 GHz Intel Itanium2 Montecito Dual Core processors and NUMAlink 4
interconnect at the Leibniz Supercomputing Centre in Garching, Germany.

The solution domain˝ is characterized by� D 4mm=w0 and �r D 16mm=w0.
The starting form of the melt front is a parabola through the nodes .0:6mm=w0; 0/
and .0;�/ with a slope of zero at � D �.

The grid we use is of the following type: We have horizontal grid lines with
� D const where the distance between the lines �h� becomes the smaller the more
we approach � D 0. The nodes are distributed equidistantly in �-direction between
the melt front and the right boundary on each line � D const.

We use a grid with 481 � 161 D 77;441 nodes and 153;600 elements for the
structuring of the space for each computation, we compute on 8 processors and we
compute with consistency order q D 2.

We solve the laser cutting problem with three different parameter sets where we
vary the focal radius w0, the sheet velocity v0 and the power of the laser beam PL,
see Table 1.

In Table 2 we present the results of the three computations. In the first column
we give the maximum of the temperature �max , in the second and third column you
see the maximum and the mean relative estimated error, respectively. In the fourth
column we give the number of iteration steps of all time steps, and in the last two

Table 1 Parameter sets for the stationary one-phase problem

Symbol Value for parameter set Unit Description
1 2 3

w0 600 600 100 �m Focal radius
v0 0:025 0:005 1:0 m s�1 Sheet velocity
PL 2 1 20 kW Power of laser beam
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Table 2 Results for the stationary one-phase problem for the three parameter sets of Table 1

Set �max Relative est. error No. of it. steps CPU time [s]
Max. Mean HP XC4000 SGI Altix 4700

1 1:001 0:218 � 10�1 0:420 � 10�4 81 300:35 285:93

2 1:000 0:460 � 10�2 0:318 � 10�4 44 164:09 164:67

3 1:889 0:374 � 100 0:794 � 10�3 268 978:58 968:00
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Fig. 2 Contour plot of the temperature and its error for parameter set 1

columns we give the CPU time of master processor 1 for the computations on the
HP XC4000 and the SGI Altix 4700, respectively.

For the first two parameter sets, the maximum temperature is quite close to the
expected maximum of �max D 1 which is the boundary condition on the melt front.
The maximum errors are 2:2% and 0:5%, respectively, the mean errors are very
small. The third parameter set is extremely critical: We choose a small focal radius,
a high velocity of the metal sheet and a high laser power. The maximum temperature
is 1:889 which is totally wrong. The error estimate clearly shows this, but the errors
are only local ones as the mean error is very small for this set, too.

For this parameter set we carried out three more computations on finer grids with
961 � 321 D 308; 481 nodes, 1921 � 641 D 1; 231; 361 nodes and 3841� 1281 D
4; 920; 321 nodes, i.e., we halved the mesh size in �- and �-direction from one grid
to the other. Then it holds �max D 1:303, �max D 1:044 and �max D 1:012, respec-
tively. The maximum relative estimated errors are 20:7%, 6:9% and 1:9% for the
three computations, and the mean errors are 0:0093%, 0:0011% and 0:0003%.

Figure 2 shows the temperature plot for parameter set 1. The relative estimated
error is shown in the right picture of Fig. 2 from which you can see that the max-
imum errors only occur at the upper left corner. The temperature goes down from
� D 1 at the melt front to zero very fast. The maximum error of 2:2% occurs at
the node on the upper boundary next to the left upper corner. There is a region with
some larger errors at the upper part of the melt front, but the mean error is 0:0042%.

The contour plots for the parameter sets 2 and 3 must be omitted because of
space limitations here, but they are presented in [2]. Table 2 also shows that the
total number of iteration steps of all time steps is quite different. The more critical
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the problem is, the higher is the number of iteration steps. For the most uncritical
parameter set 2, the computation stops after 44 iteration steps, whereas we need 268
iteration steps for the most critical set 3 which is almost a factor of six. The form of
the melt front at the end of each computation is completely different.

4 Modulation of the Gaussian Beam

Modulation of the Gaussian beam means that the intensity of the Gaussian beam is
additionally varied spatially and temporally:

Qa D �A.�/ 	.�/ .f .x/C fm.�; x//; x 2 �m.�/ (13)

with

fm.�; x/ D 1

2

eAm
Qw2.�/

�
1C sin

�
2
vm� C 3

2



��
sin2.
�m/ (14)

where Qw D w.�/
w0

and vm is the dimensionless modulation frequency. The spatial vari-
ation is restricted on the interval � 2 Œ�1; �1 C b1�, i.e., only there it holds �m > 0

and the amplitude eAm > 0. For the computation we choose parameter set 1, but
we change the focal radius to w0 D 300�m. First we compute the solution of the
steady state one-phase problem. The maximum temperature is �max D 1:01, the
maximum and mean relative estimated errors are 1:3% and 0:0024%, respectively.
After this computation we have initial values at � D 0 for the temperature � in each
node and an initial form of the melt front for the computation with the modulated
Gaussian beam. Afterwards we want to compute 10 periods of modulation. We use
the scale t0 D t=� D w20= for the dimensionless time � where  is the thermal dif-
fusivity. The dimensionless computation time period is � D 11:N1which corresponds
to t D 0:1 s.

We carried out some computations with different time step widths �� . We show
the position of the upper melt front node (� D 0) for the time step widths 0:0001,
0:0002, 0:0004 and 0:001 in Fig. 3. We can clearly see that the choice of the time
step width is quite important for the result, at least for the upper melt front node. The
maximum and mean relative estimated error does not change if we change the time
step width. So our error estimate does not detect the wrong movement of the melt

Fig. 3 Melt front position
A.0; �/ for modulated
Gaussian beam and different
time step widths��
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front. We can only compute the space discretization error of the elliptic problem on
the given grid in each time step.

5 Concluding Remarks

We simulated numerically the cutting of a metal sheet by a laser beam. The metal
sheet moves with constant velocity beneath a laser beam that is perpendicular to
the sheet. For the first naive approach, our error estimate showed us that things go
wrong, even before the solution became obviously wrong. So the numerical algo-
rithm for the position of the melt front was unstable. We tried several strategies to
overcome the problems but all attempts were in vain. Finally we found out how we
can stabilize the melt front numerically: by the introduction of approximation poly-
nomials that we compute by the method of least squares. We solved the laser cutting
problem for three more or less critical parameter sets. Additionally, we modulated
the laser beam spatially and temporally for a fourth parameter set. Here we saw
that it is very important to choose a time step width small enough to get the correct
movement of the melt front in time.
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Numerical Optimization of a Bioreactor
for the Treatment of Eutrophicated Water

Lino J. Alvarez-Vázquez, Francisco J. Fernández, and Aurea Martı́nez

Abstract The fundamental idea of a bioreactor consists of holding up eutrophi-
cated water (rich, for instance, in nitrogen) in large tanks where we add a certain
quantity of phytoplankton, that we let grow in order to absorb nitrogen and purify
water. Its optimal management can be formulated as an optimal control problem
with state constraints, where the control can be the quantity of phytoplankton added
at each tank or the permanence times, the state variables are the concentrations of
the species involved (nutrient, phytoplankton, zooplankton and organic detritus), the
objective function to be minimized is the phytoplankton concentration of water leav-
ing the bioreactor, and the state constraints stand for the thresholds imposed on the
nitrogen and detritus concentrations in each tank. We recall that this optimal control
problem possesses a solution, which can be characterized by a first order optimality
condition. After discretizing the control problem, we present a structured algorithm
for solving the resulting nonlinear constrained optimization problem. Finally, we
also give numerical results for a real-world example.

1 Introduction

Eutrophication is a process of nutrient enrichment (usually by nitrogen and/or phos-
phorus) in large waterbodies such that the productivity of the system ceases to be
limited by the availability of nutrients. It occurs naturally over geological time, but
may be accelerated by human activities (e.g., sewage or land drainage). In this work
we deal with a model governing eutrophication processes (based on a system of
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nonlinear parabolic partial differential equations with a great complexity) where a
complete set of four species is analyzed: nutrient, phytoplankton, zooplankton and
organic detritus.

The basis of the simplest bioreactors consists of holding up over-nitrogenated
water in large tanks where we add a certain quantity of phytoplankton, that we let
freely grow to absorb nitrogen from water. In the particular problem analyzed in
this work we have considered only two large shallow tanks with the same capac-
ities (but possibly different geometries). Water rich in nitrogen fills the first tank
˝1, where we add an initial quantity  1 and/or a distributed quantity �1 of phy-
toplankton (which we let grow for a time period T 1) to drop nitrogen level down
to a desired threshold. Additionally, we are also interested in obtaining a certain
quantity of organic detritus (very valued as agricultural fertilizer) in this first tank.
Once the desired levels of nitrogen and organic detritus have been reached (and
the detritus have been reclaimed for agricultural use after settling in the bottom of
the tank), we drain this first tank and transfer water to the second tank ˝2, where
the same operation is repeated, by adding new amounts  2 and/or �2 of phyto-
plankton. Water leaving this second fermentation tank after a permanence time T 2

will be usually poor in nitrogen, but rich in detritus (settled in the bottom) and
phytoplankton (recovered from a final filtering). At this point, we are interested –
for economic/ecological reasons - in minimizing this final quantity of phytoplank-
ton. Thus, the optimal control problem consists of finding the minimal permanence
times and the minimal quantities of phytoplankton that we must add to each tank,
so that the nitrogen levels be lower that maximum thresholds and detritus levels
be higher that minimum thresholds, and in such a way that the final phytoplankton
concentration be as reduced as possible.

From a mathematical viewpoint, this problem can be formulated as an opti-
mal control problem with state and control constraints, where the controls are
. 1;  2; �1; �2; T 1; T 2/, the state variables are the concentrations of species inside
the tanks, the objective function is related to final phytoplankton concentration,
the state constraints stand for the thresholds imposed on the nitrogen and detritus
concentrations in each tank, and the control constraints are technological bounds.

2 The Control Problem

Most accurate mathematical models for the simulation of eutrophication processes
are based in systems of partial differential equations with a high complexity due to
the large number of species involved and to the great variety of internal phenomena
appearing in the processes. In this paper we consider a realistic model with four
biological variables involved (the formulation of the biochemical interaction terms
and their meaning can be found, for instance, in Drago et al. [2]). So, we consider
the state u D .u1; u2; u3; u4/; where u1 stands for a generic nutrient concentra-
tion (for instance, nitrogen), u2 for phytoplankton concentration, u3 for zooplankton
concentration, and u4 for organic detritus concentration.
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The interactions of these four species into a given still water domain ˝ � R3

and over a time interval I D .0; T / can be described by the following system of
coupled partial differential equations for reaction-diffusion with Michaelis-Menten
kinetics:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

@u1

@t
� r � .�1ru1/C CncL u1

KNCu1 u2 � CncKru2 � CncKrd���20u4 D g1
@u2

@t
� r � .�2ru2/ �L u1

KNCu1 u2 CKru2 CKmf u2 CKz
u2

KFCu2 u3 D g2
@u3

@t
� r � .�3ru3/ � Cf zKz

u2

KFCu2 u3 CKmzu3 D g3
@u4

@t
� r � .�4ru4/ �Kmf u2 �Kmzu3 CKrd���20u4 D g4

(1)
inQ D I �˝ , with suitable boundary conditions on˙ D I �@˝ and initial condi-
tions u0 in˝ , and where �.t; x/ is the water temperature (in Celsius), L.t; x/ is the
luminosity function (related to incident light intensity and phytoplankton growth
rate), �i ; i D 1; : : : ; 4; are the diffusion coefficients of each species, Cnc is the
nitrogen-carbon stoichiometric relation, � is the detritus regeneration thermic con-
stant, KN and KF are the nitrogen and phytoplankton half-saturation constants,
Kmf and Kmz are the phytoplankton and zooplankton death rates (including pre-
dation), Krd is the detritus regeneration rate, Kr is the phytoplankton endogenous
respiration rate, Kz is the zooplankton predation (grazing), and Cf z is the grazing
efficiency factor. Existence and uniqueness of solution for above system (1) have
been obtained by the authors in a recent paper [1].

To present a simpler expression for the state system (1), we consider the mapping
A D .A1; A2; A3; A4/ W RC �˝ � R4C �! R4, given by:

A.t; x;u/ D

2

666664

�Cnc
h
L.t; x/ u1

KNCu1 u2 �Kru2
i
C CncKrd��.t;x/�20u4h

L.t; x/ u1

KNCu1 u2 �Kru2
i
�Kmf u2 �Kz

u2

KFCu2 u3

Cf zKz
u2

KFCu2 u3 �Kmzu3

Kmf u2 CKmzu3 �Krd��.t;x/�20u4

3

777775
(2)

Thus, the state system (1) can be rewritten in the following equivalent way:

@ui

@t
� r � .�irui / D Ai .t; x;u/C gi in Q; for i D 1; : : : ; 4: (3)

As proved by the authors in [1], the eutrophication system (3) admits a solution
under non-smooth hypotheses: assuming the temperature � 2 L2.Q/ to be bounded,
then the system (3) admits a unique solution u 2 L2.I I ŒH 1.˝/�4/ \ ŒL1.Q/�4.
Moreover, solution u is nonnegative and bounded by a value only depending
on time T , on second member g D .g1; g2; g3; g4/, and on initial-boundary
conditions.
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With these notations we can formulate the bioreactor control problem with the
following elements:

� The controls: We will control the system by means of three different types of
design variables: the quantities . 1.x/;  2.x// of phytoplankton added in both
tanks at initial times, the permanence times .T 1; T 2/ of water inside both tanks,
and the quantities .�1.t; x/; �2.t; x// of phytoplankton added in both tanks over
the respective time intervals I1 D .0; T 1/ and I2 D .0; T 2/.

� The state systems: We consider two state systems giving the concentrations of
nitrogen-phytoplankton-zooplankton-organic detritus in each tank. Since both
tanks are isolated, no transference for any of the four species is considered
through the boundaries (i.e., Neumann boundary conditions are assumed to be
null). Both systems will be coupled by means of the initial/final conditions:
when water is transferred from the first tank to the second one, it is natural to
assume that water is mixed up, and this is the reason of considering the initial
conditions for the concentrations inside the second tank as given by the corre-
sponding averaged final concentrations in the first tank. These two state systems
are given by:

– First tank ˝1: The state variables for the first tank will be denoted u1 D
.u1;1; u2;1; u3;1; u4;1/ with u1;1 (nitrogen), u2;1 (phytoplankton), u3;1 (zoo-
plankton), and u4;1 (organic detritus). The permanence time of water inside
this first tank will be T 1, and the initial concentrations will be given by
u10 D .u1;10 ; u2;10 ; u3;10 ; u4;10 /. Thus, we have the system, for i D 1; : : : ; 4:

8
<̂

:̂

@ui;1

@t
� r � .�irui;1/ D Ai .t; x;u1/C ı2i�1 in I1 �˝1;

@ui;1

@n
D 0 on I1 � @˝1;

ui;1.0/ D ui;10 C ı2i 1 in ˝1;

(4)

where ı2i denotes the Kronecker’s delta (ı2i D 1 if i D 2, ı2i D 0 otherwise).
– Second tank ˝2 : The state variables for the second tank will be now u2 D
.u1;2; u2;2; u3;2; u4;2/. The permanence time of water inside this second tank
will be T 2. Thus, we have the similar system, for i D 1; : : : ; 4:

8
<̂

:̂

@ui;2

@t
� r � .�irui;2/ D Ai .t; x;u2/C ı2i�2 in I2 �˝2;

@ui;2

@n
D 0 on I2 � @˝2;

ui;2.0/ DM i .u1.T 1//C ı2i 2 in ˝2;

(5)

where M D .M 1;M 2;M 3;M 4/ is given by:

M.v/ D 1

meas.˝1/

2

6664

R
˝1

v1dxR
˝1

v2dxR
˝1

v3dx

0

3

7775 (6)



Numerical Optimization of a Bioreactor for the Treatment of Eutrophicated Water 81

� The objective function: Since we are interested in reducing the total process-
ing time T 1 C T 2 and the quantities . 1;  2; �1; �2/ of phytoplankton added
to both tanks, and also in minimizing the final phytoplankton concentration of
water leaving the second tank, we are led to consider the following quadratic
cost functional J given by:

J. 1;  2; �1; �2; T 1; T 2/ D N1

2
Œ

Z

˝1

. 1/2dx C
Z

˝2

. 2/2dx� (7)

CN2
2
Œ

Z T 1

0

Z

˝1

.�1/2dxdt C
Z T 2

0

Z

˝2

.�2/2dxdt�C N3

2
Œ.T 1/2 C .T 2/2�

CN4
2

1

meas.˝2/

Z

˝2

.u2;2.T 2//2dx

with N1; : : : ; N4 � 0 weight parameters.
� The state constraints: Final nitrogen concentration in each tank must be lower

than a given threshold, and final organic detritus concentration in each tank must
be greater than another threshold. These constraints translate into:

8
ˆ̂̂
<

ˆ̂̂
:

C 1. 1;  2; �1; �2; T 1; T 2/ D 1
meas.˝1/

R
˝1

u1;1.T 1/dx � �1;
C 2. 1;  2; �1; �2; T 1; T 2/ D 1

meas.˝2/

R
˝2

u1;2.T 2/dx � �2;
C 3. 1;  2; �1; �2; T 1; T 2/ D 1

meas.˝1/

R
˝1

u4;1.T 1/dx � �1;
C 4. 1;  2; �1; �2; T 1; T 2/ D 1

meas.˝2/

R
˝2

u4;2.T 2/dx � �2;
(8)

for certain given values �1; �2; �1; �2 > 0:
� The control constraints: For technological reasons, permanence times .T 1; T 2/

must range between two fixed bounds 0 < Tmin < Tmax <1, and the quantities
of added phytoplankton . 1;  2; �1; �2/ must be nonnegative and bounded by a
maximal admissible valueM . So, control . 1;  2; �1; �2; T 1; T 2/ must lie in

Uad D f. 1;  2; �1; �2; T 1; T 2/
2 L2.˝1/ � L2.˝2/ � L2..0; Tmax/ �˝1/ � L2..0; Tmax/ �˝2/ �R2 W
0 �  j .xj / �M a.e. xj 2 ˝j ; Tmin � T j � Tmax; j D 1; 2;
0 � �j .tj ; xj / �M a.e. .tj ; xj / 2 .0; Tmax/ �˝j ; j D 1; 2:g

which is a closed, bounded, convex, and nonempty subset ofL2.˝1/�L2.˝2/�
L2..0; Tmax/ �˝1/ � L2..0; Tmax/ �˝2/ � R2.

Thus, the formulation of the optimal control problem, denoted by .P/, will be:

.P/ inf
˚
J. 1;  2; �1; �2; T 1; T 2/ such that . 1;  2; �1; �2; T 1; T 2/ 2 Uad

and .u1;u2/ satisfies (4)-(5) and (8)
�
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The existence of optimal solutions (and derivation of first order optimality
conditions for their characterization) have been proved in [3].

3 The Discretized Problem

As a first step in our process, we need to numerically approximate the unique
(nonnegative and bounded) solution of the general eutrophication system (3) in
Q D .0; T /�˝ . In order to do this we use a first order implicit time discretization
(based in a finite difference scheme), and a standard space discretization based in
the Lagrange finite element method.

So, for the time semi-discretization we will consider a finite set of discrete times
ftngNT

nD0 � Œ0; T � such that t0 D 0, tNT
D T , and tn � tn�1 D �t for all

n D 1; : : : ; NT , with a time step �t > 0. Associated to above set we construct
the following time semi-discretization of the state system (3), with ˛ D 1

�t
> 0:

�
˛un � r � .	�run/ D A.tn; x;un/C ˛un�1 C g.tn/ in ˝;
@un

@n
D 0 on @˝;

(9)

where 	� is a diagonal matrix with diagonal elements .�1; �2; �3; �4/:
We can easily prove - by standard fixed point techniques - that under assumption:

˛ > maxfkLkL1.Q/ �Kr �Kmf ; Cf zKz �Kmzg (10)

there exists a constantC.˛;M/ – only depending on ˛ andM – such that the unique
solution un 2 ŒH 1.˝/�4 of (9) is nonnegative and bounded by C.˛;M/.

To deal with the nonlinear part A.tn; x;un/ of the semi-discretized system (9)
we propose for each discrete time n D 1; : : : ; NT a fixed point scheme that, again
under assumption (10) on ˛, will be monotone and convergent for any initial iterate
being nonnegative and bounded by C.˛;M/.

For the fully discretized formulation of the eutrophication system (3) – and due
to the fact that we have used a first order time semi-discretization – we propose a
standard P1-Lagrange finite element method. Then, for the domain ˝ (supposed
to be polygonal), we consider a regular mesh Th and the finite dimensional vector
subspace Vh D fu 2 C .˝/ W ujT 2 P1.T /; 8T 2 Thg � H 1.˝/, where P1.T /
stands for the space of degree one polynomials on T .

If we denote Nh the number of nodes in the mesh Th, fbj gNh

jD1 the set of nodes

of the mesh Th, and f
igNh

iD1 the standard basis of the space Vh (i.e., 
i .bj / D
ıij ; 8i; j D 1; : : : ; Nh), we have that any element uh 2 Vh admits a unique repre-
sentation uh D

PNh

iD1 uh.bi /
i : Thus, we can obtain the fully-discretized solution
uh;n of above system, again under assumption (10) on ˛ (assuring now the positive
definiteness of the matrices involved in linear systems giving the fully-discretized
solution).
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Once we can solve the state system, we proceed to discretize the controls, the cost
function and the constraints in a direct way (using trapezoidal rule for integrals),
arriving to a nonlinear constrained optimization problem .Ph/. In order to solve
problem .Ph/ (providing us with a discrete approximation of the solution of our
original optimal control problem .P/) we propose an interior-point type method,
due to its effectiveness in large size problems. In particular, we use the IPOPT code,
an interior-point filter line-search algorithm for large-scale nonlinear programming
recently developed by Wächter and Biegler [4]. To apply the IPOPT code to our
problem, we have needed to write an interface linking the optimization code with
our own C++ code for computing the states and their derivatives.

4 Numerical Results

In this final section we present one of the several numerical results obtained for a
realistic example consisting of two tanks of equal dimensions 20m � 20m � 16m
with the following physical coefficients �i D 2 10�3m2=s; i D 1; : : : ; 4, KN D
2:8 10�2 mg=l , KF D 2 10�1 mg=l , Kmf D 3:8 10�7 s�1, Kmz D 3:78 10�7 s�1,
Kr D 3:8 10�7 s�1, Kz D 2:3 10�6 s�1, Krd D 2:3 10�5 s�1, Cfz D 6 10�1,
� D 1:05, � D 19ıC . Moreover, the initial conditions for the first tank will be
given by u1;10 D 0:28mg=l , u2;10 D 0:01mg=l , u3;10 D 0:02mg=l and u4;10 D
4:50mg=l . For the other values related to state and control constraints, we have
taken the thresholds �1 D 0:23, �2 D 0:18, �1 D 0:015 and �2 D 0:04 (i.e., we
are imposing a nitrogen reduction of the 82% in the first tank and of the 64% in the
second one), a phytoplankton upper boundM D 100, and time bounds Tmin D T0=2
and Tmax D 2T0 (that is, we are restricting our search to time variations among the
half and the double of the starting time period).

Finally, for the numerical solution of the eutrophication systems, we have con-
sidered a tetrahedral regular mesh of both tanks formed by P1 finite elements with
a characteristic size of 1m, and – for a starting time period of T0 D 135 hours – a
time step length of 3 hours (with a total number of 45 time steps).

In the present example we are only interested in controlling the initial quantities
of phytoplankton added to both tanks and the permanence times into them, taking
the distributed controls as fixed to zero. So, in the objective functionJ we have taken
N1D 1, N2D 0, N3D 1 and N4D 1. Then applying our algorithm we have passed,
in 22 iterations, from the initial controls �10 D 2, �20 D 1 and T 10 DT 20 D 135, to the
optimal controls�1D 0:91,�2D 0:93, T 1D 77:05 and T 2D 76:57. Then, as a first
consequence, we have obtained a significant time reduction for the whole process
of about a 42%. The values showing the reduction of the objective function and the
enforcement of the state constraints can be seen in the following table:
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Fig. 1 Averaged concentrations of nitrogen in the second tank ˝2
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Fig. 2 Averaged concentrations of organic detritus in the second tank ˝2

Element Initial value Optimal value Threshold

J 4:86007 105 1:57356 105

C 1 2:22887 10�1 2:19282 10�1 2:3 10�1
C 2 2:20001 10�1 1:80000 10�1 1:8 10�1
C 3 3:98949 10�2 2:05899 10�2 1:5 10�2
C 4 5:67390 10�2 3:99999 10�2 4:0 10�2

In Fig. 1 we show the averaged concentrations of nitrogen for the second tank,
corresponding to the initial and the optimal controls. We can observe how, in the
second tank, after the optimal permanence time T 2 D 76:57, the second constraint
C 2 reaches the exact threshold �2. Moreover, daily oscillations due to night/day
luminosity variations can be clearly identified.

In Fig. 2 we can see the averaged concentrations of organic detritus for the second
tank, corresponding to the initial and the optimal controls. We can observe how, after
the optimal permanence time T 2, the fourth constraint C 4 is also active (showing
the optimality of the achieved solution).

Finally, in Fig. 3 we show the averaged concentrations of phytoplankton for the
second tank, corresponding to the initial and the optimal controls. We must outstand
the significant decrease of the value obtained for the controlled case, which stays
always under the value obtained for the uncontrolled one.
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Fig. 3 Averaged concentrations of phytoplankton in the second tank ˝2
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Finite Element Approximation of a Quasi-3D
Model for Estuarian River Flows

Mohamed Amara, Agnès Pétrau, and David Trujillo

Abstract We present here the main ideas and results concerning the derivation of
a new quasi-3D hydrodynamical model, also called 2.5D model, within the frame-
work of nonlinear weak formulations. The idea is to work in the sum of spaces
concerning 2D models, one in the horizontal plane, the other in the vertical one. The
new model takes into account the river’s geometry and provides a three-dimensional
velocity and pressure. We present the finite element approximation of the model and
some numerical results.

1 Introduction

We are interested by the modeling and the numerical simulation of a quasi-3D river
flow, within the context of hydrodynamical multidimensional modeling and simula-
tion of estuarian river flows. The ideal model to be employed is a 3D one, but due
to the huge computational cost, it cannot be used on the whole length of the river.
Therefore, it is interesting to use different lower-dimensional models on adequated
regions of the river.

In a previous work [1], new hydrodynamical models were proposed. One started
from the physical time-discretized 3D problem, based on the instationary Navier–
Stokes equations with physical boundary conditions, which was written in a nonlin-
ear weak form. Then simpler models were derived by means of a projection method.
In particular two bidimensional models were obtained, called 2D-horizontal and
2D-vertical models, either they are written on the free surface or on the median lon-
gitudinal surface of the river. A 1D model was also derived on the median curve of
the river. All these models take into account the geometry of the river and provide
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Pau et des Pays de l’Adour, 64013 Pau Cedex, France
e-mail: mohamed.amara@univ-pau.fr, agnes.petrau@etud.univ-pau.fr, david.trujillo@univ-pau.fr

G. Kreiss et al. (eds.), Numerical Mathematics and Advanced Applications 2009,
DOI 10.1007/978-3-642-11795-4 8, © Springer-Verlag Berlin Heidelberg 2010

87

mohamed.amara@univ-pau.fr
 agnes.petrau@etud.univ-pau.fr
david.trujillo@univ-pau.fr


88 M. Amara et al.

3D velocity and pressure (which is an unknown of the problem and not supposed to
be hydrostatic).

In this paper we couple the 2D-horizontal and 2D-vertical models in order to
build a quasi-3D model. This coupling allows us to get an intermediate model
between the 2D and the 3D one, with good compromise when the 3D is too
expensive.

The paper is organized as follows: in Sect. 2, the 3D physical problem is intro-
duced and written in weak form, from which we next derive the two 2D models as
conforming approximations. The choice of the projection subspaces is detailed in
Sect. 3 with a brief mathematical study. Then we present in Sect. 4 the derivation of
the quasi-3D model and its finite element approximation. Finally, the last section is
devoted to the numerical results provided by this new model.

2 The 3D Physical Problem

In what follows, we agree to write the vector functions in bold letters and to denote
the vector product by ^. The physical problem is described by the instationary
incompressible Navier–Stokes equations, in a moving domain ˝F .t/ � R3:

8
<

:
div u D 0
�
@u
@t
C � curlu ^ uC � curl.curlu/Crp � �f ^ u D �g

The unknowns are the velocity u and the dynamic pressure p D Qp C �
2
juj2

where Qp is the pressure of the Navier–Stokes problem. The density �, the viscosity
�, the gravity force g D .0; 0;�g/, the earth’s rotation velocity f D .0; 0; f / are
given constants. We add the initial condition u.0/ D u0 to the previous system, as
well as boundary conditions. For that, we decompose the boundary into three parts:
@˝F .t/ D �B.t/[�S .t/[�I .t/, where �B.t/ denotes the riverbed,�S .t/ the free
surface and �I .t/ the inflow and outflow boundaries. We impose the atmospheric
pressure pS and the tangential stresses corresponding to the wind force on the sur-
face, the friction and impermeability conditions on the bottom, while on �I we
suppose that the flux and the tangential forces are known. These physical conditions
translate into the following relations:

8
<

:

u � n D 0 ; � curlu ^ n D �cBu on �B.t/;
p D pS ; � curlu ^ n D w on �S .t/;
u � n D k; � curlu ^ n D w on �I .t/;

wherepS , k, w are given functions and the friction coefficient cB > 0 is a given con-
stant. We denote by ZB.x; y/ the elevation of the bottom, given by the bathymetry
and defined on a maximal domain ˙ � R2. We also introduce the height of the
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water h.x; y; t/ and the 2D domain˙F .t/ � ˙ , defined at each instant by h > 0:

˙F .t/ D f.x; y/I h .x; y; t/ > 0g ; ˙F .t/ � ˙; 8t > 0: (1)

Then we have:

˝F .t/ D f.x; y; z/I .x; y/ 2 ˙F .t/; ZB .x; y/ � z � ZB .x; y/C h .x; y; t/g :

We close the system by adding the free surface equation (cf. for instance [3]):

@h

@t
C

2X

iD1
ui@i .hCZB /� u3 D 0 on �S .t/;

with an initial condition h .0/ D h0.
We thus get a 3D problem in the unknowns .h;u; p/, which is next discretized

with respect to time by means of an implicit scheme:

h� hn
�t

C
2X

iD1
uni @i .hCZB /� un3 D 0; on �S .tn/ ; (2)

8
ˆ̂<

ˆ̂:

divu D 0;
�

�t
.u � un/C � curlu ^ uC � curl.curlu/

Crp � �f ^ u D �g;

in ˝F
�
tnC1

�
; (3)

where u D unC1 and p D pnC1. We agree to denote in what follows the domain
occupied by the fluid at tnC1 by ˝F . Let us next introduce the Hilbert spaces:

M D L2 .˝F / ;
X D ˚v 2 H .div; curlI˝F / I vj�B

2 L2 .�B/
�
;

X0 D fv 2 XI v � n D 0 on �B [ �I g ;
X� D fv 2 XI v � n D 0 on �B ; v � n D k on �I g ;

which are endowed with the following norms:

kqkM D kqk0;˝F
;

kvk2X D
1

�t
kvk20;˝F

C kdivvk20;˝F
C kcurlvk20;˝F

C kvk20;�B
:

Problem (3) can be written in weak form:

8
<

:

Find .u; p/ 2 X� �M
8v 2 X0; A.uIu; v/C B.p; v/ D F n.v/
8q 2 M; B.q;u/ D 0;

(4)
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with:
A .wIu; v/ D A0 .u; v/C A1 .wIu; v/ ;

A0 .u; v/ D
Z

˝F

�

�t
u � v d˝ C

Z

˝F

�curlu � curlv d˝

C
Z

�B

cBu � v d� �
Z

˝F

� .f ^ u/ � v d˝;

A1 .wIu; v/ D
Z

˝F

� .curlu ^ w/ � v d˝;

B .p; v/ D �
Z

˝F

p divvd˝;

F n .v/ D
Z

˝F

�

�
1

�t
un C g

�
� v d˝ C hv ^ n;w ^ ni�S[�I

� hv � n; pS i@˝F
;

and where < � ; � >� stands for the duality product between H
1=2
00 .� / and

H�1=2.� /.

Theorem 1. Assuming some classical regularities on the boundary data and that
X0 is continuously embedded in L4.˝F / and compactly embedded in L2.˝F /,
problem (4) has at least a solution at any tnC1. If the data is small enough, the
solution is unique.

Proof. We present here the main steps and we refer to [2] for the details of the
proof. We apply a variant of Brouwer’s theorem (cf. for instance [4], p. 280) to
show existence and, under the usual hypothesis of small data, uniqueness of the
solution. Let us note that due to the dependence on �t of the continuity constants,
the uniqueness holds for instance if �t is sufficiently small. The main ingredients
of the proof are the inf� sup condition for B.�; �/, the coercivity of A0.�; �/ on the
kernel V of B.�; �/, the sequentially weak-continuity of A1.�I �; v/ on V and the fact
that:

A1.vI v; v/ D 0; 8v 2 X: (5)

Note that the inf� sup condition is written as follows, with c a positive constant
independent of both the time and space discretizations:

inf
q2M

sup
v2X0

B .q; v/
kvkX kqkM

� cp�t; ut

3 The Two 2D Models: Derivation and
Mathematical Analysis

We can now derive several semi-discretized models as conforming approximations
of (4) on convenient subspaces X0a�Ma of X0�M. We obtain a 2D-horizontal model
written on the free surface and a 2D-vertical one written on the median longitudinal
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plane of the river. We do not explicit here the 1D model since it does not take place
in the construction of the quasi-3D model.

2D Horizontal Model

The 2D-horizontal model is written on the 2D domain ˙F .t/ � ˙ , defined in (1).
One can see˙F .t/ as the horizontal projection of the free surface �S .t/ on˙ . Then
we look for the pressure and the velocity given by:

p.x; y; z/ D pS C .ZB.x; y/C h .x; y; t/ � z/ PH .x; y/;

u.x; y; z/ D .uH .x; y/; u3H .x; y; z//t ;

where uH D .u1H .x; y/; u2H .x; y//t and u3H D uH �rZBC.z�ZB / U3H .x; y/.
This choice guarantees a conforming approximation with respect to the semi-
discretized 3D problem. The unknowns are h, PH , uH and U3H , all functions of
.x; y/ defined on ˙F .t/.

2D Vertical Model

The 2D vertical model is written in curvilinear coordinates, in order to better take
into account the river’s geometry. Let us first present the geometrical and physical
frameworks in which the model holds. For this purpose, we introduce the median
curve C.t/ of the free surface �S .t/. Let us denote the projection of C.t/ � R3

on the fixed plane ˙ by C � R2 and admit that the curve C is independent of
time, smooth and described by ' W I D Œs0; s1� ! C where s is the curvilin-
ear abscissa. In the sequel, we shall employ the orthonormal basis fø.s/; ˚ .s/; e3g
where fø.s/; ˚ .s/g is the Frenet local basis in each point '.s/ 2 C and we shall
denote the associated curvilinear coordinates by fs; l; zg. Then the 2D vertical model
is written on the plane domain:

!F .t/ D f.s; z/I s 2 I; ZB � z � ZB C hg

Let us also introduce the curvature r D r.s/ of C and the mid-width of the river L.
The subspaces Xa �Ma, on which the 3D formulation (4) is now approximated,

are built by taking the dynamic pressure and the velocity as:

p.s; z/ D pV .s; z/;

u.s; l; z/ D
�
.1 � lr .s// u1V .s; z/;

lL0 .s/
L .s/

u1V .s; z/; u3V .s; z/

�t
:

This choice guarantees a conforming approximation with respect to the semi-
discretized 3D problem. The unknowns are h, pV , u1V and u3V , all functions of
.s; z/ and t , and defined on !F .t/.
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Analysis of Both Models

Any of the two previous models can be written in a weak form:

8
ˆ̂<

ˆ̂:

Find .ua; pa/ 2 X�a �Ma

8v 2 X0a; A.uaIua; v/C B.pa; v/ D F na .v/
8q 2 Ma; B.q;ua/ D 0;

(6)

where the spaces Xa andMa were previously described and whereF na .�/ is obtained
from F n.�/ by replacing un by una. Under some regularity assumptions on the data
ZB for the 2D-horizontal model and the following hypotheses:

(H1) the riverbanks are stiff, i.e h D h.s; t/; ZB D ZB .s/,
(H2) the data r; ZB ; L satisfy: 0 < L0 � L � L1; r 2 W 1;1 .I / ; ZB 2

W 1;1 .I / ; L 2 W 2;1 .I / ;
for the 2D-vertical one, the choice of the previous spaces allows us to establish the
well-posedness of both models.

Theorem 2. For the two previous choices of X0a � Ma, problem (6) has at least
one solution. The uniqueness of the solution holds under the same hypotheses as in
the Theorem 1.

The tools for the proof are the same as in the 3D case.

4 The Quasi-3D Model

Derivation of the Quasi-3D Model

We define the quasi-3D model by coupling the two previous 2D approaches. The
idea is to search the approximation of the velocity and the pressure in the sum
of both spaces. The model is written in curvilinear coordinates under the previ-
ous hypotheses (H1) and (H2). The quasi-3D model is defined on the following 3D
domain:

˝F .t/ D f.s; l; z/I s 2 I; �L � l � L; ZB � z � ZB C hg :

Then we look for the pressure and the velocity as follows:

p.s; l; z/ D pV .s; z/C .ZB C h � z/ PH .s; l/;

u D
0

@
.1 � lr/ .u1V .s; z/C u1H .s; l//

lL0

L
u1V .s; z/C u2H .s; l/

u3V .s; z/C u1H .s; l/@sZB C .z�ZB /U3H .s; l/

1

A ;



Finite Element Approximation of a Quasi-3D Model for Estuarian River Flows 93

with u1V .s; ZB C h/ D u1H .s; 0/ and u3V .s; ZB C h/ D hU3H .s; 0/. Thus
the unknowns of this model are h, u1H , u2H , U3H , PH on ˙F .t/, all functions
of .s; l/, and u1V , u3V and pV on !F .t/, all functions of .s; z/. The subspaces
XQ3D �MQ3Dd of the quasi-3D model, on which the 3D formulation (4) is now
approximated, are built by taking the pressure and the velocity as above.

Finite Element Approximation of the Quasi-3D Model

We are now interested in the finite element approximation of the quasi-3D model.
Let THd a 2D mesh of the domain ˙F , consisting of quadrangles KH such that
˙F D S

KH2THd
KH , and TVd a 2D mesh of the domain !F , consisting of

quadranglesKV such that !F D S
KV 2TVd

KV . Next we can build a 3D mesh of
the domain˝F from these two 2D meshes. We first write the free surface equation
(2) by taking the 3D velocity in XQ3D . This leads to:

h � hn
�t

C un1H@shC un1V @s .ZB C h/� hU n3H � un3V D 0:

The space discretization is achieved by means of a vertex-centered finite volume
method. The height of water h is approximated by piecewise linear elements on each
K 2 THd , continuous on˙F .

Next we have to choose compatible spaces Xd � Md such that the discrete
inf� sup condition is satisfied. We propose the following subspaces:

Xd D
˚
u 2 XQ3D I .u1V ; u3V /t 2 H1 .!F / ; .u1H ; u2H ; U3H /

t 2 H1 .˙F / I
.u1V /jKV

; .u3V /jKV
2 Q1 .KV / ; 8KV 2 TVd ;

.u1H /jKH
; .u2H /jKH

; .U3H /KH
2 Q1 .KH / ; 8KH 2 THd

�
;

Md D
˚
p 2 MQ3D I pV 2 H 1 .!F / ; PH 2 H 1 .˙F / I
.pV /jKV

2 Q1 .KV / ; 8KV 2 TVd
; and .PH /jKH

2 Q1 .KH / ;

8KH 2 THd

�
:

The discrete inf� sup condition is satisfied with this choice of subspaces. We
note that the couple Q1 �Q1 which is not suitable for the Stokes problem is suf-
ficient for our problem. This comes from the form B .�; �/ of the quasi-3D problem
which is more complex than the bilinear form of the Stokes problem.

5 Numerical Results

We present here the case of a channel with irregular width and bottom of 500m
length. We impose the velocity upstream and downstream and an initial water height
of 4m. We represent the streamlines on the 3D domain (Fig. 1) at a given time step
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Fig. 1 Streamlines on the 3D domain at t D 40s
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Fig. 2 Error estimators of the 2D-vertical model at t D 40s
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Fig. 3 Error estimators of the quasi-3D model at t D 40s

t D 40s. On all the following graphics, the scale of the height is dilated by 8 and
the one of the width by 2.
The comparison of these results to those of both 2D models leads to the conclusions:

� If only the bottom is irregular, the 2D-vertical model is sufficiently accurate.
� If only the width is irregular, the 2D-horizontal model is sufficiently accurate.
� If both the bottom and the width are irregular, having a good accuracy requires

the use of the quasi-3D model.

We confirm these results with error estimators defined between the 3D model and
any of its lower-dimensional approximations [1]. These estimators measure the error
between the 3D model and the lower-dimensional models. In example, we present
the error estimators of the 2D-vertical model (Fig. 2) and those of the quasi-3D one
(Fig. 3). The scale beside the graphics represents the values of the estimator.
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Convergence of a Mixed Discontinuous Galerkin
and Finite Volume Scheme for the 3 Dimensional
Vlasov–Poisson–Fokker–Planck System

Mohammad Asadzadeh and Piotr Kowalczyk

Abstract We construct a numerical scheme for the multi-dimensional Vlasov–
Poisson–Fokker–Planck system based on a combined finite volume method for
the Poisson equation in spatial domain and streamline-diffusion/ discontinuous
Galerkin finite element methods in phase-space-time variables for the Vlasov–
Fokker–Planck part. We derive error estimates with optimal convergence rates.

1 Introduction

In this note we study the approximate solution for the deterministic multi-
dimensional Vlasov–Poisson–Fokker–Planck (VPFP) system described below: given
the parameters ˇ � 0, � � 0 and the initial distribution of particle density f0.x; v/,
.x; v/ 2 ˝x � Rd � Rd � Rd , d D 1; 2; 3; we seek the evolution of charged
plasma particles (ions and electrons), at time t , with a phase space density f .x; v; t/
satisfying

8
ˆ̂̂
<

ˆ̂̂
:

@tf C v � rxf � rx' � rvf � divv.ˇvf /� ��vf D S; in ˝ � Œ0; T �;
f .x; v; 0/ D f0.x; v/; in ˝ D Rd � Rd ;

��x' D
Z

Rd

f .x; v; t/ dv; in Rd � Œ0; T �;
(1)
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where � denotes the scalar product and S is a source. To construct numerical meth-
ods we shall restrict both space and velocity variables x and v to be in bounded
domains ˝x and ˝v; and provide the equation with a Dirichlet type inflow bound-
ary condition. To solve problem (1) the idea is to split the equation system and
separate Poisson equation from the Vlasov–Fokker–Planck equation. The two parts
are coupled by the potential '. Thus we reformulate the problem (1) as follows:
Given the initial data f0.x; v/, .x; v/ 2 ˝ WD ˝x � ˝v � Rd � Rd , d D 1; 2; 3;
find the density function f .x; v; t/ in the Dirichlet initial-boundary value problem
for the Vlasov–Fokker–Planck equation

(P1)

8
<̂

:̂

@tf C v � rxf � rx' � rvf � divv.ˇvf / � ��vf D S; in ˝ � Œ0; T �;
f .x; v; 0/ D f0.x; v/; in ˝x �˝v;

f .x; v; t/ D 0; on � �G � Œ0; T �;
(2)

whereG WD .v;�rx'/; � �G WD f.x; v/ 2 � WD @˝jG � n < 0g; is the inflow bound-
ary and the potential ' satisfies the following problem for the Poisson equation:

(P2)

8
<

:
��x' D

Z

˝v

f .x; v; t/ dv; in ˝x � Œ0; T �;
jrx'.x; t/j D 0; on @˝x � Œ0; T �:

(3)

Now we can solve problem (P2) replacing f by a given function g. Then inserting
the corresponding solution ' in (P1) we obtain an equation for f , viz (2). In this way
we link the solution f to the given data function g as, say, f D �Œg�. Now a solu-
tion f for the Vlasov–Poisson–Fokker–Planck system is a fixed point of the operator
�, i.e., f D �Œf �, which is obtained by a procedure using Schauder fixed point the-
orem. For the discrete version this step can, roughly speaking, be repeated using a
Brouwer type fixed point argument, see, e.g., [1] and the references therein. Positiv-
ity, existence, uniqueness and regularity of the solution for the continuous problem
are given in [5]. These results rely on the positivity and boundedness requirement
for the second phase-space moment of the initial data: f0 2 L1.R6/ � 0 andR

R6.1C jxj2 C jvj2/f0 dxdv <1. Further analytic approaches are given , e.g., by
Horst in [11]. For the general mathematical study of equations of this type we refer
to studies by Baouendi and Grisvard [4] and Lions [14].

Conventional numerical methods for the Vlasov–Poisson and related equations
have been dominated by the particle-in-cell method studied, e.g., by Cottet and
Raviart [7]; Ganguly, Lee, and Victory [9]; and Wollman, Ozizmir, and Narasimhan
[16]. Filbet has studied a 1-dimensional finite volume scheme for the Vlasov–
Poisson [8].

Our study of the VPFP system is, mainly, devoted (see also [1–3]) to the con-
struction and analysis of finite element schemes. In this note, however, we study the
Poisson part using a finite volume approach. To this end we consider the study of
a three dimensional VPFP model (˝x � R3; ˝v � R3). As for the discontinuous
Galerkin approximation relevant in the VPFP estimates we also refer to the articles
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by Brezzi, Manzini, Marini, and Russo for elliptic problem in [6], and Johnson and
Saranen for the Euler and Navier–Stokes equations in [12].

In this note, we give only sketch of the proofs. They can be completed following
the techniques in [15] for finite volume, and [1–3] and [12] in the finite element
cases.

2 The Finite Volume Method for Poisson Equation in 3D

We consider the cell-center finite volume (FV) scheme for the problem (P2):

� r2x ' D �; in ˝x D .0; 1/� .0; 1/ � .0; 1/ jrx'j D 0; on @˝x; (4)

where � D R
˝v
f .x; v; t/ dv. Existence, uniqueness and regularity studies for this

problem are extensions of two-dimensional results in [10]: � 2 H�1.˝x/ implies
that 9Š ' 2 H 1

0 .˝x/, and for � 2 H s.˝x/, with �1 � s < r; r ¤ ˙1=2;
' 2 H sC2.˝x/. The finite volume scheme can be described as: exploiting diver-
gence from the differential equation, integrating over disjoint “volumes” and using
Gauss divergent theorem to convert volume-integrals to counter-integrals, and then
discretizing to obtain the approximate solution 'h with the mesh size h. Here, the
finite volume method is defined on Cartesian product of non-uniform meshes as
Petrov–Galerkin method using piecewise trilinear trial functions on finite element
mesh and piecewise constant test functions on the dual box mesh. The main result
of this section reads as follows:

Theorem 1. For 1=2 < s � 2, the optimal finite volume error estimates for general
non-uniform and quasi-uniform meshes are given by

k' � 'hk1;h � Chsj'jH sC1 ; and k' � 'hk1 � Chs j loghjj'jH sC1 : (5)

The corresponding finite element estimates is given by the following result

Theorem 2. a) For the finite element solution of the Poisson problem (4) with a
quasiuniform triangulation we have the error estimate:

k' � 'hk1;1 � Chr j loghj � k'krC1;1; for r � 2

b) 8" 2 .0; 1/ small, 9C" such that k' � 'hk1;1 � C"hr�"j loghj, cf [13].

Note that, for the L1 estimate, s D 2 in Theorem 1 corresponds to r D 1 in
Theorem 2. To derive the finite volume formula we consider the Cartesian mesh

I hx W D fxi W i D 0; 1; : : : ; I I x0 D 0; xi � xi�1 D hi I xI D 1g;
I hy W D fyj W j D 0; 1; : : : ; J I y0 D 0; yj � yj�1 D kj I yJ D 1g;
I `z W D fzn W n D 0; 1; : : : ; N I z0 D 0; zn � zn�1 D `nI zN D 1g:
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With each .xi ; yj ; zn/ we associate the finite volume box:

!ijn D
�
xi�1=2; xiC1=2

�
�
�
yj�1=2; yjC1=2

�
�
�

zn�1=2; znC1=2
�
;

where we choose central finite volume boxes inside each 27-points stencil element:

8
ˆ̂<

ˆ̂:

xi�1=2 D xi � hi=2; xiC1=2 D xi C h.iC1/=2; „i D hiChiC1

2

yj�1=2 D yj � kj =2; yjC1=2 D yj C k.jC1/=2; and let Nkj D kjCkj C1

2
;

zn�1=2 D zn � `n=2; znC1=2 D zn C `.nC1/=2; Ǹ
n D `nC`nC1

2
:

Further, 8 � < 1=2, we define the characteristic function:

	ijn D Char
h�
� hiC1

2
;
hi

2

�
�
�
� kjC1

2
;
kj

2

�i
�
�
� `nC1

2
;
`n

2

�i
2 H � .R3/:

For finite volume approximation we let � 2 H s.˝x/; r > �1=2 and extend � to
R3 preserving its Sobolev class. Thus, we may define using three dimensional
convolutions, 	ijn � �, which is continuous in R3, and Gauss divergence theorem
that

1

j!ijnj
Z

@!ijn

@'

@n
ds D 1

j!ijnj
�
	ijn � �

�
.xi ; yj ; zn/: (6)

Further, recalling that � 2 L1
loc
.˝x/ we may write

1

j!ijnj
Z

@!ijn

@'

@n
ds D 1

„i Nkj Ǹn

Z xiC1=2

xi�1=2

Z yj C1=2

yj �1=2

Z znC1=2

zn�1=2

�.x; y; z/ dx dy d z:

(7)
Now we let Vh be the set of piecewise trilinear functions defined on the box ˝x

induced by N̋ hx , i.e., V ı
h
D fF 2 Vh

ˇ̌
ˇF D 0 on @˝xg:

Definition 1. The finite volume approximation of the solution ' for the Poisson
equation (4); 'h 2 V ı

h
is defined (implicitly) through the following algorithm:

� 1

„i Nkj Ǹn

Z

@!ijn

@'h

@n
ds D 1

„i Nkj Ǹn
�
	ijn � �

�
.xi ; yj ; zn/; .xi ; yj ; zn/ 2 ˝h

x :

Stability and convergence of this method are generalization of Süli’s [15] results
in two dimensions for the Dirichlet problem. jrx'j D 0 on @˝x with extended
'.1/ D 0 yields ' D 0 on @˝x . The first assertion in Theorem 1, may be proved
repeating the arguments in [15] (we skip) for the 3d case in discrete H 1.˝h

x / and
L2.˝

h
x / norms:

k k1;h D
�
k k2 C j j21;h

�1=2
; and k k D . ; /1=2; where
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.
;  / D
I�1X

iD1

J�1X

jD1

N�1X

nD1
„i Nkj Ǹn
ijn ijn; and

j j1;h D
�
jj��x j�2x C jj��y j�2y C jj��z  j�2z

�1=2
; with

divided differences��x ijnD. ijn� i�1;j;n/=„i ,��y ijnD. ijn � i;j�1;n/= Nkj
and ��z  ijn D . ijn �  i;j;n�1/= Ǹn, and the, one-sided discrete L2-norms

jj��x j�2x D . ; �x ; .
;  �x D
IX

iD1

J�1X

jD1

N�1X

nD1
„i Nkj Ǹn
ijn ijn;

with the similar notations corresponding to the y and z directions.

3 Streamline Diffusion and Discontinuous Galerkin
Approaches

For a finite element scheme over the phase–space–time domain ˝T WD Œ0; T � �
˝ we start with a phase–space subdivision of ˝ , into the product of triangular
elements �x and �v as Th WD f� D �x � �vg combined with a partition of the time
interval .0; T /: 0 D t0 < t1 < : : : < tM D T; and let Im WD .tm; tmC1/I m D
0; 1; : : : ;M � 1: Then the corresponding partition of˝T is given by the prism-type
triangulation

Ch WD fKjK WD � � Im; � 2 Thg:
We seek piecewise polynomial approximations for the solution of problem (1) in a
finite dimensional space

Vh WD ff 2H W f jK 2Pk.�/ �Pk.Im/I 8K D � � Im 2 Chg;

with Vh being continuous in x and v, possibly discontinuous in t across time levels
tm and H WD QM�1

mD0 H 1.˝m/I ˝m D ˝ � Im: We shall also use the standard
notation

.f; g/m D .f; g/˝m
D
Z

˝m

fg dx dv dt; kgkm D .g; g/1=2m ;

hf; gim D
Z

˝

f .�; �; tm/g.�; �; tm/ dx dv; jgjm D< g; g >1=2m ;

< f �; g� >�˙

D
Z

�˙

f �g�jGh � njdv; and the jumps Œg� D gC � g�

< f �; g� >�˙D
Z

Im

< f �; g� >�˙

dt; g˙ D lims!0˙ g.x; v; t C s/:
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Using notationrf WD .rxf;rvf / D .@f=@x1; : : : ; @f=@xd ; @f=@v1; : : : ; @f=@vd /

and G WD
�

v1; : : : ; vd ;�@
=@x1; : : : ;�@
=@xd
�

we get divG.f / D 0. For our

finite element procedure (both in the streamline diffusion and the discontinuous
Galerkin case) we let F to be a certain (linear) function space, Qf 2 F an approx-
imation of f and ˘f 2 F a projection of f into F , then to estimate the
approximation error

f � Qf D .f �˘f /C .˘f � Qf / 	 �C �I � 2 F ;

(i) we use interpolation theory to give sharp error bounds for a certain jjj�jjj-norm
(ii) we establish jjj�jjj � C jjj�jjj, .jjj � jjj WD k � k� , =SD or =DG, below).

Now we consider the streamline diffusion (SD) method for (P1) with test func-

tions of the form uCı
�

utCG. Qf / �ru
�

with ı 
 h; the mesh size. For convenience

we use the notation Dw WD wt C G.fh/ � rw and formulate the SD method
for problem (I) as follows: given f �

h
.�; �; tm/ find fh 2 Vh such that for m D

0; : : : ;M � 1,

(P hm/ Bım.G.fh/Ifh; u/� J ım.fh; u/ D Lım.u/; 8u 2 Vh: (8)

Bım WD .Dfh; uC ıDu/m C �.rvfh;rvu/m C hŒfh�; uim � ı�.�vfh;Du/m;
(9)

J ım WD .rv � .ˇvfh/; uC ıDu/m; (10)

and
Lım WD .S; uC ıDu/m C hf C; uCi��

m
C hf �; u�i

�
C

m
: (11)

ProblemP hm is a linear system of equations leading to an implicit scheme. Therefore
to solve P1 by the SD method is equivalent to find fh 2 Vh such that

Bı .G.fh/Ifh; u/� J ı.fh; u/ D Lı .u/; 8u 2 Vh; (12)

Bı WD
M�1X

mD0
Bım; J ı WD

M�1X

mD0
J ım; Lı WD

M�1X

mD0
Lım: (13)

3.1 Stability and Error Estimates

Lemma 1. For the SD method we have the coercivity and stability estimates

8g 2H ; Bı
�
G.f h/Ig; g

�
� 1

2
jjgjj2SD; with

jjgjj2SDD
1

2

h
2�krvgk2˝T

Cjgj2MCjgj20C
M�1X

mD1
jŒg�j2mC2kDgk2˝T

C
Z

� �I
g2jGh � nj

i
;
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jjgjj2L2.˝T ;SD/
�
h 1
C1
jjDgjj2C

M�1X

mD1
jŒg�j2mC

Z

@˝�I
g2jGh � nj

i
ıeC1ı ; 8C1 � 0:

Remark 1. In the discontinuous Galerkin case jjgjjDG and jjgjjL2.˝T ;DG/ are
defined by replacing the

R
-term, in the SD case, by

PR
@K

�

.G00/
Œg�2jGh � nj ds

where
@K�.G00/ D f.x; v; t/ 2 @K�.G0/ W nt .x; v; t/ D 0g:

Theorem 3. Assume that there is a constant C such that

jjrf jj1 C jjG.f /jj1 C jjr�jj1 � C: (14)

Then we have the following error estimate for the SD method for (P1):

kf � fSDkSD � ChkC1=2kf kHkC1.˝T /
;

where fSD 2 Vh is the SD-approximation for f , and we have assumed f 2
H kC1.˝T /.

Proof. (sketch of the main ideas) Let Qf h be an interpolant of f , and split the error
as

e D f � fSD D f � Qf h C Qf h � fSD WD �� �:
Then, by the above coercivity estimate and Galerkin orthogonality, we may write

1

2
jj�jj2SD�B.G.f h/I �; �/DB.G.f /If; �/�B.G.f h/I Qf h; �/CJ.f h; �/�J.f; �/

WD �B C�J � 1

8
jj�jj2SD C CB jj�jj2SD C

1

8
jj�jj2SD C CJ jj�jj2SD;

where to estimate J -term, we have used the inverse estimate. Further interpolation
estimates give jj�jj2SD � CihkC1=2kf kHkC1.˝T /

, which yields the desired result.

In the discontinuous Galerkin (DG) case we assume also discontinuities in x and v
over the interelement boundaries. Here, we shall use the discrete function spaces

Wh D
n
g 2 L2.QT / W gjK 2 Pk.K/ 8K 2 Ch

o
; and

W d
h D

n
w 2 ŒL2.QT /�

d W wjK 2 ŒPk.K/�d 8K 2 Ch
o
:

Then, the corresponding final error estimate for the DG case reads as follows:

Theorem 4. Under the assumptions (14) of Theorem 3 and regularity assumption
for the exact solution as f 2 H kC1.˝T / \ W kC1;1.˝T /; we have that the dis-
continuous Galerkin approximation fDG 2 W d

h
for f in (P1) satisfies the error

estimate
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kf � fDGkDG � ChkC1=2
�
kf kHkC1.˝T /

C kf kW kC1;1.˝T /

�
:

Proof. (Sketchy) Here we demonstrate only the terms that are involved in estima-
tions of the interelement jump terms, which are additional to those in the SD-case.
To this end, let Ev be the set of all interior edges of the triangulation T v

h
and 	ext

the value of 	 in the element �extv which has e 2 Ev as a common edge with �v.
Define .	/0 WD .	C	ext /=2 and ŒŒ	�� WD 	�	ext . Now we defineRWWh ! W d ,
cf [6], by

R.g/w D �
X

�x�Im

Z

�x�Im

X

e2Ev

Z

e

ŒŒg��nv �.w/0 d�; 8w 2 W d
h ; (15)

and let re be the restriction of R to the elements sharing the edge e 2 Ev, then

re.g/w D �
X

�x�Im

Z

�x�Im

Z

e

ŒŒg��nv �.w/0 d�; 8w 2 W d
h : (16)

Hence, we may easily verify that

X

e�@�v\Ev

re D R on �v H) kR.g/k2K � �
X

e�@�v\Ev

kre.g/k2K ; (17)

where �v corresponds to the element K and � D �.d/ > 0 is a constant. Fur-
thermore, since the support of each re is the union of elements sharing the edge e,
we get X

e2Ev

kre.g/k2 D
X

K2C

X

e�@�v\Ev

kre.g/k2K : (18)

The corresponding discontinuous Galerkin method reads as: find fh 2 Wh such that

BDG.G.fh/Ifh; g/ �
�
rv.ˇvf /; g C hDg

�
D L.g/; 8g 2 Wh; (19)

Proving a coercivity which, compared to BSD , contains also interelement jumps;

.BDGG.f
h/Ig; g/ � ˛jjjgjjj2; 8g 2 Wh;

and following the same procedure as in the SD case yields the DG error estimate.
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14. J. L. Lions, Equations différentielles opérationnelle et problm̀es aux limites, Springer, Berlin
(1961)
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Infrastructure for the Coupling of Dune Grids

Peter Bastian, Gerrit Buse, and Oliver Sander

Abstract We describe an abstract interface for the geometric coupling of finite
element grids. The scope of the interface encompasses a wide range of domain
decomposition techniques in use today, including nonconforming grids and grids
of different dimensions. The couplings are described as sets of remote intersections,
which encapsulate the relationships between pairs of elements on the coupling inter-
face.

The abstract interface is realized in a module dune-grid-glue for the soft-
ware framework DUNE. Several implementations of this interface exist, including
one for general nonconforming couplings and a special efficient implementation for
conforming interfaces. We present two numerical examples to show the flexibility
of the approach.

1 Introduction

Domain decomposition methods are a standard tool for a wide range of multiphysics
problems. Whenever the application involves subdomains with different equations,
discretizations, or grid types, coupling conditions and domain decomposition algo-
rithms need to be employed. We refer to [7] for a general introduction.

Even though domain decomposition methods have found widespread use, the
software support available is generally not satisfactory. Implementing domain
decomposition methods can be tedious and error prone, especially when nonmatch-
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ing grids are involved. A central problem is finding the geometric correspondences
between the grids. Today, there still exist mainly ad hoc solutions geared towards
specific purposes, with little chance of code reuse.

In this article, we propose a general implementation as part of the DUNE frame-
work [1]. DUNE is a set of C++ libraries providing support for various aspects of
grid-based PDE solution methods such as grids, linear algebra, or shape functions.
DUNE’s main goal is flexibility, achieved by defining abstract interfaces to such
things as grids and shape functions, and allowing the user to select the appropriate
implementation according to his or her needs. DUNE also promotes code reuse by
a modular architecture and by allowing legacy implementations to be used with the
interface.

For our domain decomposition infrastructure we have tried to follow the same
philosophy:

� We propose abstract interfaces to general grid coupling mechanisms, allowing to
implement most existing domain decomposition algorithms.

� We allow and encourage the use of existing coupling implementations as legacy
backends.

� We strive to make the code efficient, using generic programming where appro-
priate.

Adhering to the modular structure of DUNE, our code is available as a DUNE

module, termed dune-grid-glue.

2 General Grid Coupling

We begin by describing the concept of the abstract grid coupling interface. For sim-
plicity we focus on the case of nonoverlapping coupling. Consider two domains
˝1, ˝2 that meet at a common interface � (Fig. 1). Both domains are assumed to
be discretized by grids, not necessarily simplicial. The restrictions of the grids to the
coupling boundary, denoted by G�1

and G�2
, are not related to each other in any way.

Overlaying these two boundary grids results in a set of intersections of the ele-
ments of G�1

and G�2
, which we call GM . Together with the embeddings into G�1

Ω1

Ω2

Γ

+ =

G1 G2
M

Fig. 1 Left: two domains ˝1 and ˝2 that meet at a common interface � . Center: the restrictions
of the two grids on � . Right: together they form the set of remote intersections GM
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and G�2
, the intersections constitute the information necessary to implement most

nonoverlapping domain decomposition algorithms.
As an example, consider the mortar method. There, the coupling is effected

through a mass matrix

M 2 Rn�m; Mij D
Z

�

�i j ds; (1)

where the �i ,  j , 0 � i < n, 0 � j < m, are finite element basis functions on
G�1

and G�2
, respectively. The matrix can be computed by splitting the integral

in (1) into a sum of integrals over individual elements of GM . By construction, to
each element e 2 GM correspond unique elements of G�1

and G�2
, and associated

shape functions there. If a quadrature rule is available for e, then
R
e
�i j ds can be

computed directly. Otherwise, e needs to be triangulated and
R
�i j ds computed

for each triangle.
The approach covers more than just mortar methods. If the two grids on ˝1 and

˝2 match, the set GM degenerates and we have GM D G�1
D G�2

. In this case,
the set of intersections e together with their embeddings into the elements of G1 and
G2 allows to identify the grid vertices, or, more generally, edge and face degrees
of freedom. Overlapping couplings can be handled by letting GM have the same
dimension as the computational grids G1 and G2. Finally, consider a d -dimensional
grid attached in parallel to the boundary of a d C 1-dimensional one (cf. Sect. 5.2).
The grids may or may not be conforming on � . This time coupling is between the
surface grid G�2

and the grid G1 itself. As the dimensions are the same, a set of
intersections just as in Fig. 1 is obtained.

3 Implementation: Remote Intersections

The intersections described in the previous section bear close resemblance to the
intersections that are part of the DUNE grid interface [2, Sect. 4]. Within a sin-
gle grid, DUNE intersections describe the coupling between neighboring elements.
An intersection between two elements e1 and e2 is the (set-theoretic) intersection
between �e1

and �e2
, where �e1

and �e2
are the subsets of the world space occupied

by e1 and e2, respectively. The Intersection class of the DUNE grid interface
provides information about these set intersections, e.g., their geometry in the world
space, the geometry in coordinates of e1 and e2, normal vectors, and whether an
intersection is conforming.

In the case of domain decomposition methods, the elements e1 and e2 are ele-
ments of different grids G1 and G2. However, the relevant information remains
largely the same. We will call such intersections remote intersections, to distinguish
them from the intersections of the DUNE grid interface. Remote intersections may
be set-theoretic intersections if G1 and G2 meet at a common interface � . In case of
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contact problems, where there may be a positive distance between G�1
and G�2

, the
remote intersections can be defined via a contact mapping ˚ W G�1

! G�2
(cf. [9]).

Due to the conceptual similarity between remote intersections and grid inter-
sections it is natural to make the implementation of remote intersections resemble
DUNE intersections as well.

The dune-grid-glue module provides the class RemoteIntersection,
which again has methods for the geometry of the intersection in world space, geome-
tries in local coordinates of e1 and e2, normal vectors, etc. The main differences
concern methods that deal with global coordinates. Since �e1

and �e2
may actually

be disjoint (e.g., in a contact problem), there are two embeddings of the remote
intersection in the world space. For the same reason, there are two methods for the
normal vectors. Please see the class documentation provided with the module for
details.

Access to the remote intersections is provided via three types of DUNE-style
iterators.

The RemoteIntersectionIterator iterates over the entire set of remote
intersections and can be used to, e.g., assemble mortar mass matrices.

The DomainIntersectionIterators and TargetIntersection-
Iterators iterate over all remote intersections of a given element of G1 or
G2, respectively. This can be useful to assemble element-wise contributions in DG
methods.

4 Constructing Couplings

The construction of sets of remote intersections proceeds in two steps. First, the grid
interface boundaries or coupling parts are extracted and transformed to an interme-
diate representation. Then, two such extracted grids are combined to yield the set of
remote intersections.

4.1 Extractors

Extractor classes select the subsets of grid entities that are involved in the
coupling. They are classified according to the codimension (with respect to the
grids) of the objects they extract. The most common one, Codim1Extractor,
extracts boundary faces, and will be used for nonoverlapping couplings. The faces
are marked using predicate classes provided by the user. The Codim0Extractor
extracts actual elements. Such extractors will be needed for an overlapping cou-
pling. A Codim2Extractor has not been implemented yet, but may be useful to
couple, e.g., 1d partial differential equations to sequences of edges in a 3d mesh.

The extracted grid entities can be manipulated with a geometric transformation
� W Rn1 ! Rn2 , n1 � n2. This may be a deformation or an embedding into
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a higher-dimensional space. There are various uses for such a feature. For exam-
ple, you may want to consider coupled problems on deformed meshes, such as the
finite-strain contact problem described in [8]. Also, when coupling a 1d grid to the
boundary of a 2d grid, then most likely the 1d grid implementation will live in a 1d
world. A transformation can then be used to place the 1d grid in the 2d world and
deform it, if necessary (see Sect. 5.2 for an example).

4.2 Computing Remote Intersections

With the two interacting grid parts extracted, they can be combined to obtain the
set of remote intersections. How this should be implemented differs considerably
depending on the actual scenario. A general implementation computing remote
intersections would have to handle nonmatching grids and geometries, grids of arbi-
trary dimensions and element types. Besides being very difficult to write and debug,
such a program would be inefficient in more regular situations such as when the
grids match.

To resolve this dilemma we follow the DUNE philosophy. We prescribe an
abstract interface that algorithms computing remote intersections should conform
to. We then provide different implementations of the interface for different cases
such as contact problems, conforming meshes, or overlapping grids. Also in accor-
dance with the DUNE philosophy, legacy implementations can be used through the
interface.

The current default implementation uses the PSURFACE library. This library was
originally written to manage boundary parametrizations [6], and extended to also
handle mappings for contact problems [9]. It manages piecewise affine mappings
between simplicial hypersurfaces in 2d and 3d. The surfaces are identified by a nor-
mal projection ˚ W �1 ! �2. PSURFACE is free software and can be downloaded
from http://numerik.mi.fu-berlin.de/dune/psurface.

Also, a special efficient implementation ConformingMerge for conforming
couplings is available.

5 Numerical Examples

In this last chapter we demonstrate some of the possibilities of dune-grid-glue
with two example applications. The first one, a two-body contact problem, has
already appeared in [1], where the coupling was implemented using PSURFACE

directly.

http://numerik.mi.fu-berlin.de/dune/psurface
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5.1 Contact Between a Structured and an Unstructured Grid

In this first example we compute mechanical contact between a human femur bone
and an elastic foundation. Consider two disjoint domains ˝1, ˝2 in R3. The
boundary �i D @˝i , i D 1; 2, of each domain is decomposed in three disjoint
parts �i D �i;D [ �i;N [ �i;C . With fi 2 .L2.˝i //3 two body force density fields
we look for functions ui 2 .H 1.˝i //

3 which fulfill

� div �.ui / D fi ;

and suitable boundary conditions. The stress tensor � is defined as � D E
1C� .� C

�
1�2� tr �I /, and �.u/ D 1

2
.ru C ruT / is the linear strain tensor. For the contact

condition, assume that the areas where contact occurs will be subsets of �1;C and
�2;C . These two contact boundaries are identified using a homeomorphism ˚ W
�1;C ! �2;C , and this identification is used to define an initial distance function
g W �1;C ! R, g.x/ D k˚.x/ � xk. The contact condition then states that the
relative normal displacement of any two points x, ˚.x/, x 2 �1;C , should not
exceed this normal distance, in formulas

u1j�1;C
� n1 C .u2 ı ˚/j�2;C

� n2 � g; (2)

where ni , i D 1; 2, is the unit outward normal of �i;C . Condition (2) can be derived
as a linearization of the actual nonpenetration condition and is reasonable to use in
the context of linear elasticity [4].

For the discretization of the problem we use first-order Lagrangian elements
for the interior and dual mortar elements for the contact condition. That is, (2) is
discretized in a weak form requiring

Z

�1;C

�
u1j�1;C

� n1 C .u2 ı ˚/j�2;C
� n2

�
� ds �

Z

�1;C

g� ds (3)

for all � from a cone of dual mortar test functions defined on �1;C [10]. The resulting
discrete obstacle problem is solved with a truncated nonsmooth Newton multigrid
method as described by [5].

As the femur geometry we choose the distal part of the Visible Human femur
data set. As grid implementations we use UGGrid for the femur and the struc-
tured hexahedral SGrid for the foundation. Material parameters are E D 17GPa,
� D 0:3 for the bone and softer E D 250MPa, � D 0:3 for the obstacle. The lat-
ter is clamped at its base, whereas a uniform displacement of 3 mm downward is
prescribed on the top section of the bone (see Fig. 2). The bone serves as the non-
mortar domain. The computation of (3) involves a mortar mass matrix similar to (1).
Two Codim1Extractors are used to mark the contact boundaries and the remote
intersections are computed using the PSURFACE backend. The result can be seen in
Fig. 2, right.
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Ω1

Ω2

Γ1,C

Γ2,C

Ψ

h1

Fig. 2 Two-body contact problem. Left: schematic view. Center: coarse grids. Right: close-up
view of the deformed solution

5.2 Coupling a 2d Richards Equation and a 1d Shallow-Water
Equation

In the second example we show how dune-grid-glue can be used to couple two
domains of differing dimensions.1 Consider a domain ˝ as in Fig. 3. It is supposed
to represent a vertical section of ground. We assume unsaturated subsurface flow
modeled by the Richards equation

�.p/t C div v.p/ D 0; v.p/ D �K kr.�.p//r.p � 	gz/;

for the water pressure p in˝ . We denote the upper horizontal boundary of˝ by �
and assume surface water there modeled by the shallow water equations

ht C div q D F (4)

qt C div.q2=hC 0:5gh2/ D �ghrf;

for the surface water height h and the horizontal water flux q.
The two equations are coupled by assuming that the pressure p of the ground

water on � equals the hydrostatic pressure induced by the surface water

p D 	gh;

and that the flow v � n across � enters the surface water balance as an additive term
in (4).

The coupled problem is solved with a Dirichlet–Neumann-type solver. At each
iteration i , a Richards problem is solved on ˝ with Dirichlet boundary conditions
pi D 	ghi on � using a multigrid solver as described in [3]. Then 1,000 steps of

1 The authors would like to thank C. Grümme and H. Berninger for their help with this example.
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Ω

shallow-water eq.,
OneDGrid

Richards eq.,
UGGrid

�

Fig. 3 Coupling the Richards equation to the shallow-water equation

the shallow-water equation are computed using a Lax–Friedrichs scheme. The flow
vi � n of subsurface water across � is interpolated in time and used as the source
term in (4).

The Richards equation is discretized on a uniform triangle grid using the UGGrid
grid manager. For the shallow water equation a OneDGrid is used. From the
UGGrid, the interface � is extracted using a Codim1Extractor and the entire
OneDGrid is extracted with a Codim0Extractor. A transformation 
 W R !
R2 is given to the Codim0Extractor that places the 1d grid on the coupling
boundary � such that the grids match. The ConformingMerge backend is used
to generate the remote intersections. Figure 3 shows several steps in the evolution
of the problem.
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FEM for Flow and Pollution Transport
in a Street Canyon

Petr Bauer, Atsushi Suzuki, and Zbyněk Jaňour

Abstract We develop a mathematical model of air flow and pollution transport
in a 2D street canyon. The model is based on Navier–Stokes equations for vis-
cous incompressible flow and convection–diffusion equation describing pollution
transport. The solution is obtained by means of finite element method (FEM). We
use the non-conforming Crouzeix–Raviart elements for velocity, the piecewise con-
stant elements for pressure, and the piecewise linear elements for concentration. The
resulting linear systems are solved by multigrid methods. We present computational
studies of air flow and pollutant dispersion.

1 Introduction

We consider a polygonal domain ˝ � R2 which represents a vertical cut through a
street canyon (Fig. 1). The domain is derived from a rectangle by substitution of the
bottom edge by a piecewise linear line representing the terrain. The boundary of the
domain consists of “inlet,” “terrain,” “outlet” and “upper” parts.

Combining the incompressible Navier–Stokes equations for air flow and the
convection–diffusion equation for concentration, we obtain the following system
of equations for pollution transport in Œ0; T � �˝:

@c.t; x/

@t
C u.t; x/ � rc.t; x/ �D4c.t; x/ D f .t; x/

P. Bauer (B)
FNSPE, CTU Prague
e-mail: bauerp@kmlinux.fjfi.cvut.cz

A. Suzuki
FNSPE, CTU Prague; Faculty of Mathematics, Kyushu University
e-mail: asuzuki@math.kyushu-u.ac.jp

Z. Jaňour
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inlet

upper

outlet

terrain

Fig. 1 Street canyon – 2D cut

@u.t; x/
@t

C u.t; x/ � ru.t; x/ � �4u.t; x/Crp.t; x/ D 0
r � u.t; x/ D 0

c.0; x/ D c0.x/ x 2 ˝
u.0; x/ D u0.x/ x 2 ˝

For velocity u, we set homogeneous Dirichlet boundary condition on the terrain,
Poiseuille profile on the inlet, Neumann condition on the outlet, and slip condition
on the upper boundary.

The question of an appropriate boundary condition for concentration c is non-
trivial, see [1]. For simplicity, we consider homogeneous Dirichlet boundary condi-
tion on the inlet, and Neumann boundary condition on the terrain, outlet and upper
boundary. The term f .t; x/ represents the pollution source.

2 Numerical Scheme

In case of low concentrations, we can neglect the pollutant overall momentum, and
solve the systems for velocity and concentration separately using a passive transport
model.

2.1 Weak Formulation of Navier–Stokes Equations

Let X D .H .1/.˝//2, V.uin/ D fu 2 X W u jterrainD 0;u jinletD uin;u jupper �n D 0g,
Q D L2.˝/. We set the following forms:

.ru;rv/ D
Z

˝

2X

i;jD1

@ui
@xj

@vi
@xj

; b.u; v;w/ D 1

2

Z

˝

2X

i;jD1

�
uj
@vi
@xj

wi � uj vi
@wi
@xj

�
:
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Ql

Rl

Fig. 2 (a) Lumped regions (b) Crouzeix–Raviart element

We use the backward Euler difference for the time derivative @u.tn;x/
@t

� un�un�1

�

where tn D n� . For each timestep tn, we seek un 2 V.uin/ and pn 2 Q, such that
8v 2 V.0/, 8q 2 Q:

.un; v/C �b.un�1;un; v/C �.run;rv/ � �.pn;r � v/ D .un�1; v/
.q;r � un/ D 0

Let index h denote the respective finite-dimensional spaces V h.uin/, Qh, and the
corresponding functions un

h
, pn

h
. We use the upwinding technique proposed by [5],

based on dual elements Rl given by the barycentric nodes of the original mesh
(Fig. 2).

We introduce wh 2 V h.uin/ to respresent inhomogeneous Dirichlet data. Taking
vh D uh � wh 2 V h.0/, the discrete problem for each timestep tn rewritten in the
matrix form stands:

Mvnh C �N.un�1h /vnh C �Avnh C �BTpnh D Qf;
Bvnh D Qg;

where

Qf D M.vn�1h C wn�1h �wnh/ � �N.un�1h /wnh � �Awnh;

Qg D �Bwnh:

2.2 Weak Formulation of Convection–Diffusion Equation

Let X D H .1/.˝/, V.cin/ D fc 2 X W c jinletD cing. To avoid difficulties with
oscillating schemes, we employ the Characteristic Galerkin method [4]. By intro-
ducing the mapping 'n.x/ D x � �un.x/ representing convection, and setting
@c.tn;x/
@t

C u � rc.tn; x/ � cn�cn�1ı'n

�
, we get the elliptic problem [2] for each

timestep tn D n� :

.cn; v/C �D.rcn;rv/ D .�f n C cn�1 ı 'n; v/ 8v 2 V.0/:
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3 Numerical Solution Using FEM

We choose the non-conforming Crouzeix–Raviart elements (Fig. 2) to approximate
the components of velocity, the piecewise constant elements for pressure, and the
piecewise linear elements for concentration.

We use multigrid solvers based on Vanka-type and Gauss–Seidel smoothers to
solve the respective linear systems. An extension for higher order elements can be
found in [3].
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4 Numerical Results

We consider three different configurations of a street canyon. Two with the canyon
of the same size as the buildings, and the last one twice as wide. The Reynolds
number is Re D 104 for all cases.
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4.1 Example: Square Canyon

This is the basic configuration with two buildings forming a square canyon. We
place a constant source of pollution at the bottom of the canyon. The absolute values
of velocity are displayed in linear scale (Fig. 3), whereas the concentration levels are
displayed in logarithmic scale (Fig. 4).

4.2 Example: Wide Canyon

We consider a rectangular canyon with 2 W 1 ratio. The other settings remain the
same as in the previous case.

4.3 Example: Two Consecutive Canyons

This example demonstrates the difference between the flow in the first and the
second canyon (Fig. 5).

5 Conclusion

We obtained the computational results of pollution transport in a 2D street canyon,
which can be compared with experimental data from the environmental wind tunnel
at the Institute of Thermomechanics of the Czech Academy of Sciences. The current
choice of stationary inlet profile is inadequate, and we need to consider more realis-
tic, fluctuating velocity profiles to catch the turbulent properties of the atmospheric
boundary layer.
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Stabilized Finite Element Methods
with Shock-Capturing for Nonlinear
Convection–Diffusion-Reaction Models

Markus Bause

Abstract In this work stabilized higher-order finite element approximations of
convection-diffusion-reactionsmodels with nonlinear reaction mechanisms are stud-
ied. Streamline upwind Petrov–Galerkin (SUPG) stabilization together with aniso-
tropic shock-capturing as an additional stabilization in crosswind-direction is used.
The parameter design of the scheme is described precisely and error estimates are
provided. Theoretical results are illustrated by numerical computations. The work
extends former investigations for linear problems to more realistic nonlinear models.

1 Introduction

Time-dependent nonlinear convection-diffusion-reaction problems are often stud-
ied in various technical and environmental applications. The accurate and reliabel
numerical simulation of such processes is still a challenging task. The model equa-
tions are strongly coupled such that inaccuracies in one unknown directly affect
all other unknowns. In large chemical systems with complex reaction mechanisms
and interactions these numerical artifacts can lead to completely wrong predictions;
cf. [2]. Typically, the transport systems are convection- and/or reaction-dominated
and characteristic solutions have sharp layers. In these cases standard finite element
methods cannot be applied. Modified finite element aproaches are required that are
able to handle sharp layers and prevent the occurence of spurious oscillations.

The streamline upwind Petrov–Galerkin (SUPG) method (cf. [4]) is capable to
stabilize most of the unphysical oscillations of finite element discretizations which
are caused by dominating convection. Nevertheless, spurious localized oscillations
in particular in crosswind-direction may still be present. As a remedy, discontinuity-
or shock-capturing variants of SUPG stabilized schemes as an additional consistent
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stabilization have been proposed in the literature. For the efficiency of these methods
the design of the inherent parameter is of importance. Various linear and nonlin-
ear realizations of shock-capturing methods have been considered. For an overview
of these techniques we refer to a recent work of John and Schmeyer [6]. Most
of these methods were derived and studied for steady-state linear boundary value
problems only; cf., e.g., [7, 9]. Even convection-diffusion problems without reac-
tion are assumed often. However, mathematical models describing reactive transport
phenomena lead to systems of instationary convections-diffusions-reaction equa-
tions with nonlinear reactive terms coupling the set of equations. Therefore, the
convergence analysis and parameter design of SUPG stabilized schemes with shock-
capturing need to be generalized. This has been done by the author in a recent work
[1]. For the lack of space, we consider a steady-state nonlinear model problem here.
Error estimates that are proved in [1] are summarized. Then these estimates and
the capability of an anisotropic shock-capturing stabilization technique to further
reduce oscillations in crosswind direction are illustrated by numerical experiments.

Whereas in [6] stabilized finite element discretizations are studied in the con-
text of linear finite element methods, we consider using higher-order finite element
approaches in this work. In particular for reactive multicomponent transport sys-
tems, higher-order methods have demontrated to be superior to linear finite element
approximations; cf. [2]. They have shown to be less diffusive and help to prevent an
artifical mixing of chemical species and to increase the accuracy of simulations. For
linear finite element discretizations, flux-corrected transport methods (cf. [8]) that
work on an algebraic level and not on the weak formulation of the partial differential
equation as the SUPG approach offer an alternative. In [6], the most accurate results
of all considered schemes were obtained for the flux-corrected transport methods.

As a model problem for our investigations we consider solving

L.u/ WD ˛uC b � ru � r � .aru/C r.u/ D f in ˝ ; u D 0 on @˝ : (1)

In (1), let ˛ 2 R, a 2 L1.˝/, b 2 H1.˝/\ L1.˝/ and f 2 L2.˝/ with ˛ > 0,
.r � b/.x/ D 0, a.x/ � a0 > 0 almost everywhere in ˝ � R2 or R3. Equations
(1) can be considered as the semidiscrete problem arising from the discretization in
time of an evolution equation of convection-diffusion-reaction type. The parameter
˛ mimics the temporal discretization parameter 1=�t where�t is the time step size.
Therefore, we assume that ˛ > 0 can be prescibed and be chosen arbitrarily large.
We make the following assumption about the parametrization r.�/:

r 2 C 1.RC0 / ; r.0/ D 0 ; r 0.s/ � r0 � 0 for s � 0 ; s 2 R : (2)

Conditions (2) can be further weakened. For the sake of brevity, this is not done
here. Further, we suppose that the solution u of (1) is non-negative and bounded,

0 DW u0 � u � u1 a.e. in ˝ ; (3)
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which is reasonable from the point of view of physics, for instance, if u denotes the
concentration of a chemical species. Throughout this work we use standard notation.

2 Stabilized Finite Element Approximation
with Shock-Capturing

In this section we briefly introduce the higher-order finite element scheme with
anisotropic shock-capturing that we will use to approximate solutions of (1) and
study further. A standard framework of an hp-version of the finite element method
is assumed; cf. [9]. In particular, for a family of admissible and sharpe-regular tri-
angulations Th D fT g of the polyhedral domain ˝ � Rd , with d D 2 or 3,
let

V
p

h
D Xp

h
\H 1

0 .˝/ ; with X
p
h
D fv 2 C.˝/ j vjT ıFT 2PpT

.bT / 8T 2 Thg ;

denote the underlying finite element space of piecewise polynomials of local order
pT for all T 2 Th. Here, bT is the (open) unit simplex or the (open) unit hypercube
in Rd and Pn.bT /, with n � 1, is the set of all polynomials of degree at most n on
bT . We assume that each T 2 Th is a smooth bijective image of bT , i.e., T D FT .bT /.
The vector p is defined by p D fpT j T 2 Thg.

Then, the SUPG-stabilized approximation of (1) reads as: Find uh 2 V p
h

such
that

As.uh; vh/ D Ls.vh/ (4)

for all vh 2 V p
h

, where

As.u; v/ D bA.u; v/C
X

T2Th

ıT hbLu;b � rviL2.T / ; (5)

Ls.v/ D hf; vi C
X

T2Th

ıT hf;b � rviL2.T / ; (6)

bA.u; v/ D Alin.u; v/C hbr.u/; vi ; bLu D bLlinuCbr.u/ ; (7)

bLlinujT D ˛uC b � ru � r �˘T .aru/ : (8)

If shock-capturing is applied, the discrete problem reads as: Find uh 2 V p
h

such that

As.uh; vh/C Asc.uhI uh; vh/ D Ls.vh/ (9)

for all vh 2 V p
h

, where

Asc.wI u; v/ WD
X

T2Th

h�T .w/Dscru;rvi : (10)
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Together, the second terms on the right-hand sides of (5) and (6), respectively,
represent the SUPG-stabilization. The choice of the stabilization parameter ıT is
given in (15) below. In (7) we changed r.�/ tobr.�/ where

br.u/ D

8
ˆ̂<

ˆ̂:

r.u0/C r 0.u0/.u � u0/ for u � u0 ;

r.u/ for u0 � u � u1 ;

r.u1/C r 0.u1/.u � u1/ for u � u1 :

(11)

This modification is necessary to prove an error estimates when r 0 grows with juj or
even stronger. Since r 0.u/ is bounded above compact intervals of u, the functionbr
is Lipschitz continuous, i.e., there exists some constant Lr > 0 such that

jbr.u/�br.v/j � Lr ju � vj 8u; v 2 R : (12)

In (8), the mapping˘T W L2.˝/ 7! .PpT
.T //d denotes the (elementwise) orthog-

onal projection onto .PpT
.T //d . This modifcation is necessary in order to allow

variable diffusion coefficients and to apply an inverse inequality; cf. (18). We use an
anisotropic variant of shock-capturing that is proposed in [3] by choosing

Dsc WD
8
<

:
I � b˝ b
jbj2 ; b ¤ 0

0 ; b D 0
; �T .w/ WD lT .w/R�T .w/ �

lT .w/RT .w/

jwjH 1.T / C �
;

RT .w/ WD kbLw � f kL2.T / ; lT .w/ WD l0hT max

�
0; ˇ � 2kakL1.T /

hTR
�
T .w/

�

9
>>>>>>=

>>>>>>;
(13)

in (10). The non-negtive limiter function �T .w/ aims to restrict the effect of shock-

capturing to subregions where the residualbLw�f is too large. The term
hT R�

T
.w/

2kakL1.T /

can be seen as a pseudo mesh Peclet number. The choice of l0; � and ˇ is given in
Sect. 4. We note that �T .uh/ depends nonlinearly on the discrete solution uh. Since
the reaction rate r.�/ is assumed to be nonlinear, the shock-capturing technique (9),
(10), (13) does not change the type of the discrete problem. This is in contrast to
linear convection-diffusion-reaction models that become nonlinear by adding the
shock-capturing term (10), (13) which increases strongly the cost for solving the
discrete system. Under the above-made assumptions problems (4) and (9) admit
solutions uh 2 V p

h
. This can be shown by Brouwer’s fixed point theorem; cf. [1]. To

solve (9), we use an inexact variant of Newton’s method.

3 Error Estimates

Next, we recall some error estimates that are proved in [1] for the given numer-
ical schemes (4) and (10). Moreover, we describe the choice of the stabilization
parameter ıT . An appropriate norm for analyzing the scheme (4)–(8) is given by
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jjjvjjj WD
0

@
X

T2Th

�
kparvk2L2.T /

C .˛ C r0/kvk2L2.T /
C ıT kb � rvk2

L2.T /

�
1

A
1=2

;

(14)
where r0 has to be chosen as in assumption (2). For the shock-capturing approach
(9) an additional error control in crosswind direction is obtained; cf. Theorem 2.

First, for the SUPG-stabilized finite element method we have the following result.

Theorem 1. Let u 2 H 1
0 .˝/ be the solution of (1) with u 2 H kT .T /, kT > d=2,

and a 2 W kT�1;1.T / for all T 2 Th. Suppose that ˛C r0 > 96Lr is satisfied and
that the stabilization parameter ıT in (5), (6) is chosen of the order of magnitude

ıT � min

�
hT

pT kbkL1.T /

I h2
T

p4
T�

2
invkakL1.˝/

I 1

˛ C r0 I
˛ C r0
L2

r

�
: (15)

Then, for the SUPG-stabilized finite element approximation (4)–(8) it holds that

jju � uhjjj2 � CSUPG

X

T2Th

h
2.lT�1/
T

p
2.kT�1/
T

M
opt
T kuk2H kT .T /

(16)

with

M
opt
T WD kakL1.T /

�
1C

kak2
W kT �1.T /

kak2
L1.T /

C PeT C � .1/
T

Cmin
n kakL1.T /

˛T
Pe2

T ImaxfPeT I� .1/
T I� .2/

T Ip2
T�

2
invg
o� (17)

and the characteristic numbers

PeT WD hT kbkL1.T /

pT kakL1.T /

; �
.1/

T WD ˛h2
T

p2
T kakL1.T /

; �
.2/

T WD L2
rh

2
T

.˛ C r0/p2
T kakL1.T /

:

In (17), the parameter �inv denotes the constant of the local inverse inequality

krwkL2.T / � �invp
2
T h
�1
T kwkL2.T / 8w 2 Xp

h
(18)

on T 2 Th and depends on the shape-regularity parameter of the triangulation.
The parameter r0 and Lr in (15) are defined by (2) and (12), respectively. The error
estimate (16) is of quasi-optimal order. TheL2-part in inequality (16) is only subop-
timal. The condition ˛C r0 > 96Lr comes from using absorption arguments along
with Cauchy–Young’s inequality. We do not believe that this condition is really
sharp. Nevertheless, increasing ˛ has in impact on the numerical performance prop-
erties. It improves the convergence behavior of the Newton iteration for solving the
nonlinear equation (9).

Now, for the shock-capturing approach the following result is obtained.
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Theorem 2. Let the assumptions of Theorem 1 be satisfied. Suppose that ˛ C r0 >
1280

11
Lr 	 116:36Lr is satisfied and that the stabilization parameter ıT in (9) is

chosen of the same order of magnitude as in (15). Then, for the SUPG-scheme with
shock-capturing (9), (10), (13) the error estimate

jju�uhjjj2C
X

T2Th

�T .uh/
���D1=2

sc ruh

���
2

L2.T /
� CSC

X

T2Th

h
2.lT�1/
T

p
2.kT�1/
T

M
opt
T kuk2H kT .T /

with the same parameterM opt
T as in (17) is satisfied.

Theorem 2 shows that our anisotropic shock-capturing technique provides an
additional error control in crosswind-direction. Asymptotically, the same rate of
convergence as for the SUPG-scheme without shock-capturing is obtained. The dif-
ference comes only through the error constant. However, a slightly severer condition
is imposed on the parameter ˛. We do not know if this condition is really sharp.

4 Numerical Experiments

In this section we shall illustrate the error estimates given in Sect. 3 by numerical
computations. In particular, we show that shock-capturing reduces spurious oscil-
lations in crosswind-direction. Moreover, we illustrate the positive impact of using
higher-order finite element methods on the accuracy of the numerical results.

Example 4.1. Our first test problem is an adaption of Example 4.2 from [9] for
the linear convection–diffusion equation. We consider problem (1) on ˝ D .0; 1/2

with ˛ D 1:0, a D 10�6, b.x/ D 1p
5
.1; 2/> and r.u/ D u2. The source f is

chosen in such a way that u.x/ D 1
2

�
1 � tanh

2x1�x2� 1
4p

5a

�
is the exact solution. It is

characterized by an interior layer of thickness O.
p
aj ln aj/ around 2x1 � x2 D 1

4
.

We study the solutions of (4) and (9). In (13), we put l0 D 0:2, � D 10�4 and
ˇ D 0:7.

For our computations we used the finite element toolbox ALBERTA [10]. Table 1
and 2 summarize the calculated errors for the L2-norm and the streamline dif-
fusion norm (14) and different Pp-elements for p 2 f1; 2; 3; 4g. Although the
SUPG-scheme shows a slightly smaller error, we observe that the errors of the
either schemes are of the same magnitude, as claimed in Theorem 2. The larger
errors of the shock-capturing approach can be explained by its additional artificial
crosswind-diffusion that however reduces the spurious oscillations. In Table 1 we
do not observe the optimal uniform convergence rates given in Theorem 1 and 2,
respectively. The reason for this is that the solution u depends on the diffusion para-
meter a. In such cases the optimal convergence rates are observed for very small
step sizes only.

To study the effects of crosswind-diffusion more precisely, the crosswind-
diffusion parameter �T .uh/ is presented in Fig. 1. We nicely observe, that the addi-
tional diffusion is located around the layer. As expected, no additional diffusion is
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Table 1 Example 4.1: Mesh size, number of degrees of freedom, errors in k � kL2.˝/ (left) and
jjj � jjj (right) and convergence rates for the SUPG-scheme without (SUPG) and with (SC-CD)
shock-capturing and h-refinement

h d.o.f. p D 2 ; k � kL2.˝/
SUPG SC-CD

1:77e-1 145 1:34e-1 – 1:43e-1 –
8:84e-2 545 9:58e-2 0:48 1:02e-1 0:49
4:42e-2 2113 6:88e-2 0:48 7:38e-2 0:46
2:21e-2 8321 4:79e-2 0:52 5:22e-2 0:50
1:10e-2 33025 3:24e-2 0:56 3:61e-2 0:53
5:52e-3 131585 2:10e-2 0:63 2:42e-2 0:58

h d.o.f. p D 4 ; k � kL2.˝/
SUPG SC-CD

1:77e-1 545 8:57e-2 – 1:01e-1 –
8:84e-2 2113 6:22e-2 0:46 7:43e-2 0:44
4:42e-2 8321 4:47e-2 0:48 5:38e-2 0:46
2:21e-2 33025 3:11e-2 0:53 3:78e-2 0:51
1:10e-2 131585 1:86e-2 0:74 2:38e-2 0:67
5:52e-3 525313 8:63e-3 1:11 1:26e-2 0:92

h d.o.f. p D 2 ; jjj � jjj
SUPG SC-CD

1:77e-1 145 1:51e-1 – 1:53e-1 –
8:84e-2 545 1:12e-1 0:43 1:15e-1 0:41
4:42e-2 2113 8:50e-2 0:40 8:71e-2 0:39
2:21e-2 8321 6:54e-2 0:38 6:70e-2 0:38
1:10e-2 33025 5:07e-2 0:37 5:18e-2 0:37
5:52e-3 131585 3:87e-2 0:39 3:95e-2 0:39

h d.o.f. p D 4 ; jjj � jjj
SUPG SC-CD

1:77e-1 545 1:02e-1 – 1:13e-1 –
8:84e-2 2113 7:67e-2 0:41 8:45e-2 0:42
4:42e-2 8321 5:77e-2 0:41 6:35e-2 0:41
2:21e-2 33025 4:29e-2 0:43 4:74e-2 0:42
1:10e-2 131585 2:95e-2 0:54 3:36e-2 0:49
5:52e-3 525313 1:83e-2 0:69 2:19e-2 0:62

Table 2 Example 4.1: Errors in k � kL2.˝/ and jjj � jjj and convergence rates for the SUPG-scheme
without (SUPG) and with (SC-CD) shock-capturing and p-refinement; h D 1:10e-2

p k � kL2.˝/
SUPG SC-CD

1 5:98611034e-2 6:29579483e-2
2 3:24058212e-2 3:61115581e-2
3 1:88279842e-2 2:41896732e-2
4 1:85794405e-2 2:37970677e-2

p jjj � jjj
SUPG SC-CD

1 9:09154371e-2 9:17590477e-2
2 5:06827331e-2 5:18041693e-2
3 3:36901794e-2 3:57942179e-2
4 2:95139317e-2 3:36195918e-2

added away from the layer. Further, cross-section plots of the SUPG-method with-
out and with shock-capturing in the crosswind-direction at x1 C 2x2 D 1 are also
given in Fig. 1. Significant over- and undershoots of the SUPG-solution without
shock-capturing in the neighborhood of the layer are observed. These unphysical
oscillations are clearly damped with shock-capturing. The strong gradient of the
SUPG solution in the layer is preserved. This underlines the proper construction of
the limiter function of the shock-capturing approach. Moreover, for fixed h > 0 the
resolution of the steep gradient is improved with increasing approximation order.

Example 4.2. Our second more sophisticated test problem (cf. Fig. 2) is an adap-
tion of an example from [5, Sect. 4] for the linear convection-diffusion equation. We
consider problem (1) on ˝ D .0; 1/2 with ˛ D 1:0, a D 10�6, b.x/ D .�y; x/>,
f � 0 and a Monod-type reaction rate r.u/ D �u=.1 C u/; cf. [2]. We pre-
scribe the Dirichlet condition u.x; y/ D 1 for 1=3 � x � 2=3, y D 0 and
u.x; y/ D 0 on the remaining parts of the lower boundary as well as on the right
and upper boundary. We put @u.x;y/

@n D 0 for x D 0, 0 � y � 1 where n is the
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Fig. 1 Crosswind-diffusion parameter �T .uh/ for p D 2 and h D 1=128 (top left) and cross-
section plots of the SUPG-solution without (top) and with (bottom) shock-capturing in crosswind-
direction at x1 C 2x2 D 1 for p D 2; 3 (top) and p D 1; 2; 3 (bottom) and h D 1=20 for
Example 4.1
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∂ u
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0
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Fig. 2 Geometry, discrete solution uh, cross-section plot of uh at the left outflow boundary with
(SC-CD) and without (SUPG) shock-capturing for Example 4.2; p D 2 and h D 0:01

unit outer normal. Figure 2 shows the calculated solution and its pofile at the out-
flow boundary. The solution has two small interior layers that are resolved by the
SUPG method with shock-capturing. Again, by anisotropic shock-capturing stabi-
lization over- and undershoots of the numerical approximation close to the layers
are damped.

Summarizing, our numerical studies have shown that higher order finite ele-
ment methods along with anisotropic shock-capturing techniques help to reduce
spurious oscillations in crosswind-direction in the numerical approximation of
convection-dominated transport equations with reaction. Shock-capturing stabi-
lization increases the accuracy and reliability of simulations which is of great
importance for coupled systems of equations modelling multicomponent reactive
flow.
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Finite Element Discretization of the Giesekus
Model for Polymer Flows

Roland Becker and Daniela Capatina

Abstract We consider the Giesekus model for steady flows of polymeric liquids.
This model, characterized by the presence in the constitutive law of a quadratic term
in the stress tensor, yields a realistic behavior for shear, elongational and mixed
flows. Its numerical approximation is achieved by means of Crouzeix–Raviart non-
conforming finite elements for the velocity and the pressure, respectively piecewise
constant elements for the stress tensor. Appropriate upwind schemes are employed
for the convective terms, and the nonlinear discrete problem is solved by Newton’s
method. We next investigate the positive definiteness of the discrete conformation
tensor and show that under certain hypotheses, this property is preserved by New-
ton’s method. This allows us to attain the convergence of the algorithm for rather
large Weissenberg numbers. Numerical tests validating the code are presented.

1 Introduction

We are interested in the numerical simulation of polymeric liquids which are, from
a rheological point of view, viscoelastic non-Newtonian fluids.

The rheological behavior of polymers is so complex that many different consti-
tutive equations have been proposed in the literature in order to describe it, see for
instance [12]. We choose here to study the Giesekus model (cf. [4]) which presents
two main advantages. First, it yields a realistic behavior for shear flows, elongational
flows and mixed flows. Second, only two material parameters are needed to describe
the model: the viscosity � and the relaxation time �. However, the Giesekus consti-
tutive law is strongly nonlinear since it involves, besides the objective derivative, a
quadratic term in the stress tensor.
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Despite numerous efforts, the numerical approximation of polymer flows is still a
challenging research area, due to the internal coupling between the viscoelasticity of
the liquid and the flow, which is quantified by the adimensional Weissenberg number
We D �

:
� with

:
� the shear rate. A major issue to be addressed is the breakdown in

convergence of the algorithms at critical values of We. The existing commercial
codes are generally only able to deal with We up to 10, which is insufficient to
describe polymer flows in a processing machine.

Our aim is to obtain realistic simulations of polymer flows (for We > 10 ), by
using stabilized finite element methods and, in the future, mesh adaptivity. An out-
line of the paper is as follows. We describe the physical model in Sect. 2 and its
discretization in Sect. 3. In Sect. 4, we investigate the positive definiteness of the
discrete conformation tensor, which is a crucial point in computational rheology. It
is generally believed that the loss of this property is responsible for the high Weis-
senberg number problem. We show, under certain hypotheses, that Newton’s method
yields a symmetric positive definite conformation tensor. Finally, we present some
numerical tests illustrating the theoretical results.

2 The Giesekus Model

Giesekus introduced in [4] the following constitutive law

�
O
� C 1

2G
�2 C � D 2�D.u/ (1)

with � the viscous stress tensor, D.u/ D 1
2
.ruT C ru/ the shear rate tensor and

G the elastic modulus given by the formula � D �=G. Here above,
O
� is the upper

convective derivative:

O
� D @t� C .u � r/� � .�ruT Cru�/:

The complete model is obtained by adding the momentum and mass conservation
equations, where the density � is supposed to be constant:

�@tuC �.u � r/u � div� Crp D f;

div u D 0

as well as initial conditions u D u0, � D �0 and boundary conditions u D g on
@˝ , � D � in on the inflow boundary @˝� D fx 2 @˝Iu.x/ � n.x/ < 0g, where
˝ is a polygonal domain of R2. In what follows, we consider the stationary case
and we denote by ug a lifting of the Dirichlet boundary condition on the velocity.
The unknowns of the problem are the pressure p, the velocity u and the symmetric
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viscous stress tensor � . The nonlinear weak formulation can be formally written as
follows:

8
ˆ̂<

ˆ̂:

.u; p; �/ 2 .ug CH1
0.˝// �L20.˝/ �X

a.u;uI v/C b.p; v/C c0.�; v/ D l.v/ 8v 2 H1
0.˝/

b.q;u/ D 0 8q 2 L20.˝/
c.u; � I �/C d.�; � I �/ D 0 8� 2 X

(2)

where X D L2sym.˝/ \H 1.˝/. The forms are given by

a.u;uI v/D R
˝
�uru � vdx; b.q; v/D� R

˝
qdivvdx; c0.�; v/D

R
˝
� W D.v/dx;

c.u; � I �/ D 2�c0.�;u/C c1.u; � I �/C c2.u; � I �/;
d.�; � I �/ D d0.� ; �/C d1.�; � I �/

where

c1.u; � I �/ D �
R
˝

u � r� W �dx; c2.u; � I �/ D ��
R
˝
.�ruT Cru�/ W �dx;

d0.�; �/ D
R
˝
� W �dx ; d1.�; � I �/ D 1

2G

R
˝
�2 W �dx:

All the previous forms are well-defined, thanks to the Sobolev embedding theorem
which states that H 1.˝/ � L4.˝/.

3 Discretization of the Three-Fields Formulation

Let .Th/h>0 be a regular family of triangulations of ˝ consisting of triangles. We
agree to denote by "h, respectively "int

h
the set of edges, respectively internal edges

of Th. On every internal edge e such that feg D @T1 \ @T2, we define once for all
the unit normal n; for a given function ' with '=Ti

2 C .Ti / (1 � i � 2), we define
on e: 'ext.x/ D lim"!0'.x � "n/, ' in.x/ D lim"!0'.xC "n/ as well as the jump
Œ'� D 'ext � ' in. If the edge belongs to @˝ , then n is the outward normal and the
jump coincides with the trace.

Let us introduce the nonconforming, respectively piecewise constant spaces:

Vh D
�

v 2 L2.˝/I v=K 2 P1; 8K 2 Th and
Z

e

Œv�ds D 0; 8e 2 "h
�

Qh D
˚
q 2 L20.˝/I q=K 2 P0; 8K 2 Th

�

Xh D
n
� D .�ij /1�i;j�2 2 L2.˝/I � D �T and �=K 2 P 0; 8K 2 Th

o
:
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The discrete formulation can be written in the following form:

8
ˆ̂<

ˆ̂:

.uh; ph; �h/ 2 Vh �Qh �Xh

.ah C �J /.uh; vh/C b.ph; vh/C c0.�h; vh/ D l.vh/ 8vh 2 Vh
b.qh;uh/ D 0 8qh 2 Qh

ch.uh; �hI �h/C d.�h; �hI �h/ D 0 8�h 2 Xh
: (3)

The convection term u�r� in the constitutive law is treated by an upwind scheme,
similarly to Lesaint–Raviart [9]. More precisely, c1.�; �I �/ is approximated by

c1h.uh; �hI �h/ D �
X

e2"h

Z

e

F.�h;uh;n/ W Œ�h�ds

where F.�h;uh;n/ D .	0uh � n/C�exth
C .	0uh � n/�� in

h
and 	0v D 1

jej
Z

e

vds,

8e 2 "h.
As regards the momentum conservation law, the nonlinear form a.�; �I �/ is

replaced by ah.�; �I �/ C �J.�; �/. The first term takes into account the stabilization
of the convective term u � ru, � > 0 is a stabilization parameter whereas the term
J.�; �/ is added in order to retrieve a Korn inequality on Vh and is defined (cf. [2],
[10]) by

J.uh; vh/ D
X

e2"int
h

�

jej
Z

e

Œuh � n�Œvh � n�ds:

The nonlinear problem (3) is solved by Newton’s method; this implies the
computation of the following Jacobian matrix:

0

@
@uah C �J b c0

bT 0 0

cT0 C @u.c1h C c2/ 0 d0 C @� .c1h C c2 C d1/

1

A :

The stability of this mixed matrix holds under usual inf-sup conditions. The New-
tonian case follows from [1]; the analysis of the general case is in progress, based
on the results of Sect. 4 (see also Remark 1). Note that @uC2, @�C2 and @�D1 are
defined locally on each triangle, whereas the stencils of @uC1 and @�C1 are reduced
to the element itself and its neighbours. The development of a specially designed
Newton algorithm is undergoing work.

4 Positive Definiteness of the Conformation Tensor

We define the conformation tensor by the relation

C D �

�
� C I : (4)
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Note that in [4], Giesekus introduced his model by means of a configuration

tensor which actually coincides with C . By means of the relations
O
I D �2D.u/

and �G D �, the constitutive law (1) can be equivalently written as follows:

�.u � rC � CruT � ruC/C 1

2
C � C D 1

2
I :

Theorem 1. If C in is symmetric positive definite (s.p.d.) on @˝� and C.�/ is
continuous on ˝ , then C is s.p.d.

The proof follows [8], where instationary constitutive laws of the form
O
C C ˛C D

ˇI with ˇ > 0 are considered. The authors’ argument is based on the closed-form
solution of differential Riccati equations. Another proof was given by Hulsen in [5]

for more general laws, but only in the case where
O
C D @tC � CruT � ruC .

The numerical schemes which preserve the positive definiteness of C seem to
be more stable and usually, energy estimates can also be derived. In order to obtain
such schemes, several approaches have been developed in the last years. Fattal and
Kupferman proposed in [3] to write the constitutive law in terms of  D lnC by

using a specific decomposition of ru, to approximate  and to put C h D e h .
Lee and Xu employed in [8] the framework of Riccati equations. We adopt here

this approach, but we employ a discontinuous Galerkin method instead of the char-
acteristics one, and also a different constitutive equation. However, we need to
assume that ˝ D [NiD1Ki such that

8i; @K�i � @˝� or @K�i � [j<i@KCj : (5)

Note that (5) holds true if uh is constant, cf. [9]. According to (3), the discrete
conformation tensor C h satisfies on any K 2 Th an algebraic Riccati equation:

AC h C C hAT � C hBC h C F D 0 (6)

with B D 1
2�
I , F D 1

2�
I C C �h and A D ruh � d

2
I . The upwinding scheme

implies

C �h D
1

jKj
X

e2@K�

Z

e

juh � njC exth ds ; d D 1

jKj
Z

@KC

uh � nds > 0:

Note that B is always s.p.d. For the sake of simplicity, we consider in what follows
that uh is known. Obviously, the quadratic equation (6) does not have a unique
solution. Nevertheless, we can prove that Newton’s method converges towards the
maximal s.p.d. solution of (6). For this purpose, let us notice that Newton’s iterate
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C nh satisfies on anyK an algebraic Lyapunov equation:

.A � C n�1h B/C nh C C nh.A� C n�1h B/T D �F � C n�1h BC n�1h

and recall (cf. [7]) the next result for the Lyapunov equation A X CX A T D �F .

Lemma 1. If A is stable (i.e., Re.�/ < 0) and F is s.p.d., then X is s.p.d.

Then one can prove the following statement on anyK (see for instance [7], [11]):

Theorem 2. If .A�C 0hB/ is stable and if F and C 0h are s.p.d., then .A�C nhB/ is
stable and C nh is s.p.d. for all n. Moreover, .C nh/n converges towards the maximal
s.p.d. solution of (6).

The previous result together with an induction argument on the triangles yield:

Theorem 3. Assume (5) and C in
h s.p.d. If C 0h satisfies on any K the assumptions

of Theorem 2, then Newton’s iterates are s.p.d. and converge towards the maximal
s.p.d. solution of (6) on˝ .

Remark 1. One may note that .d0 C @� .c1h C c2 C d1// .�h; �h/ D �2�tr.A �2
h
/

for any �h 2 Xh, with A D A � C nhB stable by hypothesis. This yields the
ellipticity of the bilinear form .d0 C @� .c1h C c2 C d1// .�; �/.
Remark 2. Let us now look at the same DG scheme for the Oldroyd-B model:

u � rC � ruC � CruT C 1

We
C D 1

We
I :

One can see that C h satisfies on any triangle a Lyapunov equation of matrix A D
A � 1

2We
I , which according to Lemma 1 has to be stable in order to get a s.p.d.

solution. Clearly, it may occur that this condition is violated for large Weissenberg
numbers. The instationary case is generally easier to treat, since A is now replaced
by A � 1

2�t
I , which can be rendered stable for 
t small enough.

5 Numerical Results

The code is written in the in-house CCC library Concha. We first consider the 4:1:4
planar contraction/expansion, cf. Fig. 1 (left), with a D 10�3 m, � D 1000Pa s
and � D 1000 kg m�3. On the inflow (left), we set u � n D 0:1m s�1 whereas a
Neumann condition is imposed on the outflow boundary (right); a symmetry con-
dition is imposed on the top boundary and a null velocity elsewhere. We compute
the largest Weissenberg number for a corresponding Newtonian fluid as follows:

We D � P� D 6�u

a
, with u the mean velocity in the thin channel. We first compare in
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Fig. 1 Geometry of the 4:1:4 (left) and the 4:1 (right) test-cases

0.8

0.7

Newtonian liquid Concha
Girdrkud liquid Concha
Girdrkud liquid Polyflow

0.6

0.5

0.4

0.3

0.2

0.1

0

–1.5×10
–3
–1.0×10

–3
–5.0×10

–4
5.0×10

–4
0.0 1.0×10

–3
1.5×10

–3

7×105

6×105

P (Pa)
Newtonian liquid Concha
Giesekus liquid Concha
Giesekus liquid Polyflow

5×105

4×105

3×105

2×105

1×105

0

0 0.01 0.02 0.03

x (m)

Fig. 2 Comparison Concha vs. Polyflow at WeD 7:68: velocity (left) and pressure (right)
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Fig. 3 Comparison of velocity magnitude for Giesekus (We D 2:6) and Newtonian flows

Fig. 2 our results with those given by Polyflow, which is the most popular code for
the simulation of polymer liquids (http://www.ansys.com/products/polyflow).

We have used a mesh consisting of 25,794 triangles with Concha, respec-
tively 14,866 with Polyflow. The highest Weissenberg number for which Polyflow
still converges is We D 7:68. We observe a good agreement between the two
approaches; the modification of the velocity profiles on the vertical axis in the
thin channel and the shut down of the pressure on the symmetry axis are typical
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Giesekus

Newtonian

Fig. 4 Giesekus flow for large Weissenberg numbers (We D 18, 24 and 30)
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Fig. 5 First eigenvalue of the conformation tensor for We D 18, 30 and 33:5
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Fig. 6 Second eigenvalue of the conformation tensor for We D 18, 30 and 33:5

behaviors of non-Newtonian fluids. Next, we compare in Fig. 3 the velocity mag-
nitude for a Newtonian and a Giesekus fluid while in Fig. 4 we show several
simulations of the Giesekus flow for different Weissenberg numbers.

Finally, we consider the 4:1 planar contraction cf. Fig. 1 (right). We show in Fig. 5
and Fig. 6 the two eigenvalues of the conformation tensor, computed for different
Weissenberg numbers. As expected, they are both strictly positive. For We > 33:5,
the algorithm does not converge. This can be explained by the fact that the confor-
mation tensor is no longer positive definite; we recall that the coupled system (3) is
solved globally, so the velocity is computed at every Newton’s iteration.
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A dG Method for the Strain-Rate Formulation
of the Stokes Problem Related with
Nonconforming Finite Element Methods

Roland Becker, Daniela Capatina, and Julie Joie

Abstract We study a discontinuous Galerkin method for the Stokes problem writ-
ten in terms of the strain-rate tensor. We approach the velocity by polynomials of
degree k and the pressure by polynomials of degree k � 1 by element for k D 1; 2

or 3. The stabilization of the viscous term is new and involves the jump across the
edges of the L2-projection on Pk�1 of the velocity. It allows us to recover, when
the stabilization parameter � tends towards infinity, some stable and well-known
nonconforming approximations; moreover, the inf-sup constant is independent of � .
This allows us to conclude that our method is robust with respect to � . For k D 1,
a second stabilization term is added in order to retrieve a discrete Korn inequality.
The choice of the strain-rate formulation presents two main advantages, steming
from its equivalence with a three-fields formulation of the Stokes problem. First, it
can be easily extended to non-Newtonian liquids. Second, it allows us to deal with
more physical boundary conditions involving the normal stress. Optimal a priori
error estimates are also derived and numerical tests illustrating the accuracy and the
robustness of the scheme are presented.

1 Introduction

In the literature, there exist many finite element methods for the approximation of
the Stokes problem (see for instance [4] for a presentation of continuous and non-
conforming schemes). We are interested here in discontinuous Galerkin methods.
One of the most used and well-known dG approximation is the symmetric interior
penalty method, first introduced in [1] for the Laplace equation, and then general-
ized to Stokes and Navier–Stokes equations by Girault, Rivière and Wheeler [5].
The velocity is looked for in Pk and the pressure belongs to Pk�1, with 1 � k � 3.
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The stabilization term is a penalization of the jumps of the velocities across the
edges. Instead, we propose to penalize theL2-projection onPk�1 of the jumps. This
new stabilization allows us to prove that contrarily to [5], our method is robust for
large stabilization parameters � . Indeed, the solution of the dG formulation tends,
as � goes to infinity, towards the solution of the Pk �Pk�1 nonconforming approx-
imation of the Stokes problem. Moreover, the inf-sup constant with respect to the
energy norm of our method is independent of � whereas that of [5] is O.1=

p
�/.

We study here the Stokes problem written in terms of the strain-rate tensor. The
main advantage is the equivalence between its dG version and a three-fields for-
mulation, allowing to recover the stress tensor in an obvious way. One may then be
able to generalize it to non-Newtonian fluids or to impose other boundary conditions
related to the normal stress. In order to retrieve a discrete Korn inequality for discon-
tinuous velocities (cf. [3] or [6]), we consider an additional stabilization term. The
proposed discretization is well-posed and yields optimal convergence rates, which
are confirmed by numerical experiments.

We write the vectors in bold letters and the second-order tensors in underlined
letters, � D .�ij /1�i;j�2; the product of two tensors will be denoted by � W � DP
i;j �ij�ij :

2 The Stokes Problem

We consider the Stokes equations, which describe the steady flow of an incom-
pressible, Newtonian fluid at low Reynolds numbers and which can be written as
follows:

� 2� divD.u/Crp D f in ˝ (1)

r � u D 0 in ˝ (2)

where u is the velocity, p the pressure, D.u/ D 1
2

�ruC .ru/t
�

the strain-rate
tensor and � the viscosity. We take ˝ a polygonal domain of R2 and the data f 2
L2.˝/.

For the sake of simplicity, we only consider here homogeneous Dirichlet bound-
ary conditions. The corresponding variational formulation can be written as follows:

8
ˆ̂̂
<

ˆ̂̂
:

.u; p/ 2 H1
0.˝/ � L20.˝/

2�

Z

˝

D.u/ W D.v/dx �
Z

˝

pr � vdx D
Z

˝

f � vdx 8v 2 H1
0.˝/

�
Z

˝

qr � udx D 0 8q 2 L20.˝/
(3)

Its well-posedness results from the BabLuska–Brezzi theorem and a Korn inequality.
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3 Discontinuous Galerkin Discretization

We are now interested in the discretization of problem (3) by means of fully discon-
tinuous finite elements. Let .Th/h>0 be a family of triangulations of ˝ consisting
of triangles: ˝ D ST2Th

T: Let us first introduce some useful notations.

We denote by "int
h

the set of internal edges of Th, by "@
h

the set of edges situated
on the boundary @˝ and we put "h D "inth [ "@h. As usually, let hT be the diameter
of the triangle T and let h D max

T2Th

hT . On every edge e belonging to "int
h

, such

that feg D @T i \ @T j , we define once for all the unit normal ne oriented from T i

towards T j . Then, for a given function ', we define the jump across the edge e by
Œ'� D '=T i � '=T j and the average by f'g D 1

2

�
'=T i C '=T j

�
. If e 2 "@

h
, we

take for ne the outward unit normal n and for Œ'� and f'g the trace of ' on e. We
agree to denote the L2.e/-orthogonal projection of a given function ' 2 L2.e/ on
the polynomial space Pk by �k'. In what follows, we take k D 1, 2 or 3 and we
introduce the finite dimensional spaces:

Vh D
˚
vh 2 L2.˝/I .vh/=T 2 Pk; 8T 2 Th

�
;

Qh D
˚
qh 2 L20.˝/I .qh/=T 2 Pk�1; 8T 2 Th

�
:

We consider the following discontinuous Galerkin approximation of (3):

8
<

:

.uh; ph/ 2 Vh �Qh

ah.uh; vh/C bh.ph; vh/ D
R
˝

f � vdx 8vh 2 Vh
bh.qh;uh/ D 0 8qh 2 Qh

(4)

where W ah.�; �/ D A0.�; �/C A1.�; �/C �J.�; �/C �1J1.�; �/
A0.uh; vh/ D 2�

X

T2Th

Z

T

D.uh/ W D.vh/dx

A1.uh; vh/ D �2�
X

e2"h

�Z

e

fD.uh/neg � Œvh� ds C
Z

e

fD.vh/neg � Œuh� ds
�

J.uh; vh/ D �
X

e2"h

1

jej
Z

e

Œ�k�1uh� � Œ�k�1vh�ds

J1.uh; vh/ D �
X

e2"int
h

1

jej
Z

e

Œ�1.uh � ne/�Œ�1.vh � ne/�ds

bh.qh; vh/ D �
X

T2Th

Z

T

qhr � vhdx C
X

e2"h

Z

e

fqhgŒvh � ne�ds
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and where � > 0 and �1 > 0 are two stabilization parameters independent of h. The
stabilization terms J.�; �/ and J1.�; �/ are added in order to retrieve the coercivity
of ah.�; �/. J.�; �/ is inherent to our dG method whereas J1.�; �/ is needed to obtain
a discrete Korn inequality on Vh. Note that in the classical Interior Penalty (IP)

method, J.�; �/ is replaced by: J IP .u; v/ D �
X

e2"h

1

jej
Z

e

Œu� � Œv�ds.

Remark 1. For k D 2 or 3, one has KerJ � KerJ1 therefore it is not necessary to
add J1.�; �/. We only add it in order to get a unified presentation of the method for
all k.

In view of the analysis of (4), we introduce the semi-norms on H1.˝/CVh:

jvj1;h D
�P

T2Th
jvj21;T

�1=2
; kD.v/k0;h D

�P
T2Th

kD.v/k20;T
�1=2

;

ŒŒv�� D
�
2�kD.v/k2

0;h
C �J.v; v/C �1J1.v; v/

�1=2
:

Then we can show the next results (see [2] for the detailed proofs):

Lemma 1. The application v! ŒŒv�� is a norm on Vh, for all k D 1; 2; 3:
Lemma 2. For any v 2 Vh, there exists a constant c > 0 independent of h and �,
such that:

jvj1;h � c
�
kD.v/k20;h C

1

�
J1.v; v/C 1

�
J.v; v/

�1=2
: (5)

Proof. We use the following result for piecewise H 1 functions, established by
Brenner [3] in a stronger form and then improved in [6]:

jvj1;h � c
�
kD.v/k0;h C . 1

�
J1.v; v//1=2 C �.v/

�
;

where � W H1.˝/! R is a continuous semi-norm such that if �.v/ D 0 for a rigid
motion v, then v is a constant vector. We apply it with �.v/ D .Pe2"@

h
k�0vk20;e/1=2.

4 Theoretical Results

In this section, we briefly present the results that we have established for the discrete
formulation (4); for the proofs see [2]. We first prove the well-posedness of (4),
using the BabLuska–Brezzi theorem; more precisely, we establish the Vh-coercivity
of ah.�; �/ for � large enough and the inf-sup condition on bh.�; �/. It is important to
note that the inf-sup constant is shown to be independent of � and �1.
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Theorem 1. For � sufficiently large, the mixed problem (4) has a unique solution.

Next, we investigate the robustness of our dG method (4) for large stabilization
parameters � and the relation between (4) and the Pnc

k
�P disc

k�1 nonconforming finite
element approximation of the Stokes problem, which reads as follows:

8
<

:

.u�
h
; p�
h
/ 2 Hh �Qh

A0.u�h; vh/C �1J1.u�h; vh/C bh.p�h ; vh/ D fh.vh/ 8vh 2 Hh

bh.qh;u�h/ D 0 8qh 2 Qh

(6)

where Hh D
˚
v 2 L2.˝/I .v/=T 2 Pk; 8T 2 Th and Œ�k�1v�=e D 0;8e 2 "h

�
:

Remark 2. Note that Hh D KerJ and for k D 2 or 3, J1.uh; vh/ D 0 for all
uh; vh 2 Hh.

Theorem 2. Let .uh; ph/ be the solution of (4) and .u�
h
; p�
h
/ the solution of (6).

Then, for �1 fixed, one has that:

lim
�!1

�		
uh � u�h



C kph � p�hk0;˝
� D 0:

Remark 3. When using the classical IP stabilization term J IP .�; �/ instead of J.�; �/,
the solution .uIP

h
; pIP
h
/ tends as � !1 towards the solution of the Stokes problem

discretized by Pcont
k
�P disc

k
finite elements. Contrarily to Pnc

k
�P disc

k�1 , they don’t
form a stable pair of spaces for the Stokes problem.

Remark 4. For k D 1, if we let both � and �1 tend towards infinity, the obtained
velocity will belong to Xh D KerJ \ KerJ1. One can easily see that Pcont

1=@˝
�

Xh � Pnc
1=@˝

with Pcont
1=@˝

, respectively Pnc
1=@˝

, the space of continuous finite ele-
ments, respectively nonconforming finite elements with homogeneous Dirichlet
condition on @˝ .

As regards the a priori error estimates for problem (4), one gets:

Theorem 3. Let .u; p/ 2 HkC1.˝/ � H k.˝/ be the solution of the continuous
Stokes problem and let � be sufficiently large (as in Theorem 1). Then:

ŒŒu� uh�� � chk.p�jujkC1;˝ C 1p
�
jpjk;˝/

kp � phk0;˝ � chk.�jujkC1;˝ C jpjk;˝/

with a constant c independent of h and �. Moreover, if ˝ is convex then

ku � uhk0;˝ � chkC1.jujkC1;˝ C
1

�
jpjk;˝/:



150 R. Becker et al.

5 Three Fields Formulation of the Stokes Problem

Let X D ˚
	 D .	ij /1�i;j�2I 	ij D 	j i ; 	ij 2 L2.˝/; i; j D 1; 2

�
and let � D

2�D.u/ be the viscous stress tensor. We consider the following dG discretization
of the three-fields formulation of the Stokes problem:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

.Uh; Ph; �h/ 2 Vh �Qh �Xh
kh.Uh; vh/C bh.Ph; vh/C dh.�h; vh/ D

Z

˝

f � vdx 8vh 2 Vh

bh.qh;Uh/ D 0 8qh 2 Qh

dh.	h;Uh/ � eh.	h; �h/ D 0 8	h 2 Xh

(7)

where Xh D
˚
	h 2 X I .	h/=T 2 P k�1; 8T 2 Th

�
and where:

kh.�; �/ D A1.�; �/C �J.�; �/C �1J1.�; �/
dh.	h; vh/ D

X

T2Th

Z

T

	h W D.vh/dx

eh.	h; �h/ D
1

2�

X

T2Th

Z

T

	h W �hdx:

One can easily show the equivalence between (4) and (7) in the sense that the
solution of (7) is given by Uh D uh, Ph D ph and �h D 2�D.uh/.

This formulation can be extended to non-Newtonian fluids in a natural manner.
Indeed, when considering such fluids one cannot eliminate � from the constitutive
law, and hence one deals with formulations of at least three unknowns. Moreover,
this formulation allows us to dispose of a large panel of boundary conditions; one
can thus impose the normal and/or tangential forces (see [2]).

6 Numerical Results

We present here some numerical tests illustrating the previous results. The devel-
oped C++ codes are written in the in-house library CONCHA. We recall that the
additionnal stabilization term J1.�; �/ is necessary only in the case k D 1. For this
reason, we have chosen to illustrate the previous theoretical results only for k D 1

and in what follows, we consider �1 D 10. Moreover, the constants being indepen-
dent of the viscosity, we have arbitrarily chosen to take � D 1. Similar results are
obtained for other values of the viscosity. We first study the behavior of the numer-
ical scheme (4) with respect to mesh refinement. We consider the exact solution of
Stokes problem with non-homogeneous Dirichlet conditions:

u.x; y/ D
�
� cos.�x/ sin.�y/
�� sin.�x/ cos.�y/

�
; p.x; y/ D sin.�x/ sin.�y/ (8)
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on˝ D Œ�1; 1�� Œ�1; 1�. At each refinement step, the discretization parameter h is
divided by 2. We represent in Fig. 1 the error curves in terms of the total number of
elements ne, in log scale. For the velocity (in the energy norm and in the L2-norm)
and for the pressure, they are in agreement with the theoretical results, that is:

ku � uhk0;˝ D O.h2/; ŒŒu � uh�� D O.h/; kp � phk0;˝ D O.h/:

Now, we let � vary and compare the results given by our numerical method with
those obtained with the classical IP stabilization. We are interested in the computed
errors and solutions for large � on a fixed mesh, with �1 fixed. Let the exact solution
be given by (8). We employ a mesh consisting of 4,096 elements. We compare
in Fig. 2 the velocity and pressure errors computed by the two methods (ours in
continuous lines, the IP in dotted lines), for different values of � . One can notice that
our stabilization yields a stable scheme independently of � whereas the IP method
yields bigger errors, which increase with � .

We now consider a Poiseuille flow in the domain ˝ D Œ0I 0:06� � Œ�0:01I 0:01�.
On the inflow, we set u � t D 0 and u � n, whereas on the outflow we impose a
homogeneous Neumann condition: 2�D.u/n � pn D 0. We have first considered

ne ku� uhk0;˝ ŒŒu� uh�� kp � phk0;˝
64 0.732828 16.625998 3.06364
256 0.156187 7.740131 1.0945

1,024 0.037076 3.750639 0.470646
4,096 0.009035 1.847880 0.212294
16,384 0.002228 0.916672 0.100356
65,536 0.000553 0.456425 0.048785
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Fig. 1 Convergence rates for k D 1 (� D �1 D 10, � D 1)
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Fig. 3 Pressure obtained
with Crouzeix-Raviart finite
elements
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(a) Pressure for � D 10.� D 1; �1 D 10/. Ours: left; IP: right
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(b) Pressure for � D 100.� D 1; �1 D 10/. Ours: left; IP: right
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(c) Pressure for � D 1000.� D 1; �1 D 10/. Ours: left; IP: right

Fig. 4

a parabolic condition on the inflow, i.e., u � n D a.0:012 � y2/, and noticed a
lack of stability of the IP method when � become large. In the non-smooth case
presented below, i.e., when imposing u � n D 1 on the inflow boundary, the lack of
stability is visible at rather small values of the stabilization parameter. Note that in
this case, the solution does not belong to H2.˝/ � H1.˝/. In order to dispose of a
reference solution, we have computed it by means of nonconforming finite elements
of Crouzeix–Raviart (see Fig. 3 for the pressure). We have represented in Fig. 4a–c
the pressure obtained with the two methods for different values of � . As � increases,
the pressure computed with the IP method gets worse whereas our method is robust.
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Numerical Simulation of the Stratified
Flow Past a Body

L. Beneš and J. Fürst

Abstract The article deals with the numerical simulation of 2D and 3D unsteady
incompressible stratified flows. Initial system of equations is the Boussinesq approx-
imation of the Navier–Stokes equations. The flow field in the towing tank with a
moving sphere is modeled for a wide range of Richardson numbers. The obstacle
is modeled via penalization technique. The resulting set of partial differential equa-
tions is then solved by the fifth-order finite difference WENO scheme, or by the
second-order finite volume AUSM MUSCL scheme. For the time integration, the
second-order BDF method was used. Both schemes are combined with the artificial
compressibility method in dual time.

1 Introduction

Stratification plays important role in many industrial and environmental problems.
Several years we are interested in modeling of the stratified and unstratified flow in
various applications (pipe, atmospheric boundary layer etc.). The present work was
motivated by a desire to obtain a better understanding of these effects.

2 Boussinesq Approximation

This type of flow can be often assumed to be incompressible, but yet the density
is not constant owing to temperature changes, gravity, etc. For description of this
flow, the Navier–Stokes equations for viscous incompressible flow with variable
density is used. These equations are simplified by the Boussineq approximation.
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Density and pressure are divided into two parts: a background field (with subscript 0)
plus a perturbation. The background field fulfill the hydrostatic balance equation
@p0.z/=@z D ��0.z/g. The system of equations obtained is partly linearized around
the average state ��. The resulting set of equations can be written in the form

PWtCF i .W /xCGi .W /yCH i .W /z D �.F v.W /xCGv.W /yCH v.W /z/CS.W /:
(1)

F iDŒ�u; u2C p

%
�

; uv; uw; u�T ; Gi D Œ�v; uv; v2C p

%
�

; vw; v�T ; H i D Œ�w; uw; vw;w2C p

%
�

;w�T ;

F v D Œ0; ux; vx;wx; 0�
T ; Gv D Œ0; uy ; vy;wy ; 0�

T ; H v D Œ0; uz; vz;wz; 0�
T :

where W D Œ�; u; v;w; p�T , is vector of unknown variables respectively, the den-
sity perturbation, three velocity components and the pressure perturbation. S D
Œ�vd�0=d z; 0; 0;�g; 0�T is the gravity and source term and P D diag.1; 1; 1; 1; 0/.
To describe the stratification, the following bulk Richardson number is used:

Ri D g d�0

d z

%�U ob2

where U ob is velocity of the moving obstacle.

3 Numerical Schemes

Two different numerical schemes were used for solving mentioned problem. The
time discretization is the same in both cases. For the spatial were used either the flux-
splitting method with WENO interpolation or the finite volume AUSM MUSCL
scheme with the Hemker–Koren limiter.

Flux Splitting for Incompressible Flows
The discretization in space is achieved by standard fourth-order differences for
viscous terms. For discretization of the inviscid fluxes the following special high-
order flux-splitting method was used. Divide the inviscid flux F in.W / into two
parts, the convective flux F c.W / D Œ�u; u2; uv; uw; 0�T and the pressure flux
F p.W / D Œ0; p; 0; 0; ˇ2u�T , then approximate the flux derivative by

F i .W /x
ˇ̌
i
� 1

�x

h
F ciC1=2 � F ci�1=2

i
C 1

�x

h
F
p

iC1=2 � F pi�1=2
i
: (2)

The high-order weighted ENO scheme [9] is chosen as the interpolation method
(only the spatial index i in the x-direction is preserved, the remaining two indexes
are omitted). The original WENO interpolation uses an upwind bias and it can be
formally written in the following form (function weno5 is described in [9]):

�iC1=2 D
(
�C
iC1=2 D weno5.�i�2; �i�1; �i ; �iC1; �iC2/ if uiC1=2 > 0;
��
iC1=2 D weno5.�iC3; �iC2; �iC1; �i ; �i�1/ if uiC1=2 � 0: (3)
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By mathematical analysis the convective part is discretized by simple upwinding,
the third component of the pressure is approximated by backward differencing and
the fourth component by a forward difference. The final scheme takes the form

uiC1=2 WD .uCiC1=2 C u�iC1=2/=2; piC1=2 WD .pCiC1=2 C p�iC1=2/=2; (4)

F c.W /iC1=2 WD ..�u/˙iC1=2; .u
2/˙iC1=2; .uv/˙iC1=2; .uw/˙iC1=2; 0/

T

F p.W / WD .0; piC1=2 C ˇ
uC
iC1=2 � u�

iC1=2
2

; 0; 0; uiC1=2C
pC
iC1=2 � p�iC1=2

2ˇ
/T ;

whereC or � is taken in the convective flux according to the sign of uiC1=2.
A similar algorithm is applied in other directions for the fluxesG;H . The result-

ing scheme has high-order accuracy in space. It was validated for the case of
compressible inviscid flows by a computation of shock-vortex interaction; see [8].

AUSM Scheme
The finite volume AUSM scheme was used for spatial discretization of the inviscid
fluxes in our second scheme.
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3
777775
�lk; (5)

where n is the normal vector, un the normal velocity vector, and .q/L=R are quan-
tities on the left/right hand side of the face. These quantities are computed using
MUSCL reconstruction with the Hemker–Koren limiter [7] in the form [3]:

qR D qiC1 � 1
2
ıR; qL D qi C 1

2
ıL;

ıL=R D
aL=R.b

2
L=R
C 2/C bL=R.2a2L=R C 1/

2a2
L=R
C 2b2

L=R
� aL=RbL=R C 3

;

aR D qiC2 � qiC1; aL D qiC1 � qi ; bR D qiC1 � qi ; bL D qi � qi�1:
Since the pressure is discretized using central differences, the scheme is stabilized
following [4] by a pressure diffusion of the form

FdiC1=2;j D
�
0; 0; 0; 0; �

piC1;j � pi;j
ˇx

�T
; ˇx D wr C 2�

�x
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where T denotes transpose and wr is a reference velocity (in our case the maximum
velocity in the flow field). Viscous fluxes are discretized using central differences
on the dual mesh. This scheme is second-order accurate in space.

Time Integration
The spatial discretization yields a system of ODE in the physical time t variable,
which is solved by the second-order BDF formula

P
3W nC1 � 4W n CW n�1

2�t
C .eF i

xCeGi
yCeHi

y/.W
nC1/��.eF v

xCeGv
yCeH v

y/.W
nC1/ DeSnC1:

(6)

By Q is denoted above described numerical approximation of the fluxes. Arising set
of equations is solved by an artificial compressibility method in the dual time � by
an explicit 3-stage second-order Runge–Kutta method of the second order.

4 Obstacle Modeling

We are interested in the modeling of the flows past a moving body. There are various
possibilities how to model body (e.g. moving mesh, immersed boundary see [6]). In
our computations, the obstacle is modeled very simply as a source term emulating
a porous media with high resistance. The source term S.W / in this case takes the
form

�
�w

d�0

d z
; 0; 0;�g; 0

�T
C 	.x; y; z; t/

K

h
0; U ob � u; V ob � v;W ob � w; 0

iT
; (7)

where K corresponds to small permeability and 	.x; y; z; t/ is the characteristic
function of the obstacle, which moves with velocity .U ob; V ob;W ob/.

To estimate the influence of the permeability K , and also numerical tests were
published in [1].

5 Numerical Results

Solved problem is well known as the towing tank problem. The towing tank is a
brimfull channel with the moving obstacle inside. Technical parameters: dimensions
8 � 4m in 2D or 8 � 4 � 1m in 3D, �� D 1 kg m�3, the kinematic viscosity
� D 10�4 m2 s�1 and stable density gradient d�0=d z D �0:1 kg m�4. The obstacle
is a sphere of radius 0:1m, located 1m from the left wall and at the middle of
height and width. At time t D 0 the obstacle starts moving with constant velocity
U ob D 1m s�1.

Homogeneous Dirichlet boundary conditions for the velocity and Neumann
conditions for the density and pressure disturbances were used in 2D. In 3D,
these boundary conditions were extended by periodic boundary conditions in the
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Fig. 1 Comparison of isolines of the density disturbances at the time t D 5s, g D 100, Ri D 10.
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Fig. 2 Comparison of both schemes. Transversal distribution of the u-velocity component (left)
and � (right), x D 2:25, Ri D 10, time t D 5s

y-direction. Cartesian grids with 320 � 40 � 160 cells and 320 � 160 cells in
2D were used. The simulations were performed for wide range of stratifications
Ri 2< 0; 100 >. The influence of mesh and permeability parameter were tested in
our previous studies, [1, 5].

In the Figs. 1 and 2 we can see comparison of the schemes in 2D (with similar
spherical obstacle) in the form of density isolines at the time t D 5s and transver-
sal distribution of the computed quantities. These figures exhibit good agreement
between both methods, especially further from the obstacle, while small differences
occur behind the sphere. The maximal values predicted by WENO 5 scheme at the
height midpoint are somewhat lower. Figure 3 displays the comparison of the iso-
surfaces of the vorticity in 3D for the Richardson numbers Ri D 10 computed
by WENO scheme and AUSM MUSCL. Small differences occur on the higher
distances from body.

Stratified flows is characterized by a variation of fluid density in the vertical
direction that can result in qualitative and quantitative changes of the flow by
buoyancy. Figure 4 displays the dependence of the flow on the level of stratifica-
tion. A comparison of the isosurfaces of density perturbation for three different
Richardson numbers (Ri D 1; 10; 100) is presented at the time t D 5s. In the
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Fig. 3 Magnitude of the vorticity distribution for the Richardson numbers Ri D 10. WENO5
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MUSCL scheme

case of low stratification, the solution takes the form of Karman vortex street. When
the level of stratification increases, vortices are damped and internal gravity waves
are generated. Its frequency is given by the Brunt–Väisälä frequency.
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Fig. 5 Isosurfaces of the magnitude of the vorticity at the time t D 5s for Ri D 1; 10; 100,
WENO5 scheme

The isosurfaces of the vorticity in 3D for the Richardson numbers Ri D
1; 10; 100 are shown in Fig. 5. Stable stratification generally suppresses any vertical
mixing of mass and momentum. This tendency can be seen at the y–z cross-section.
In the case Ri D 1, the influence of stratification is small and the shape of vorticity
in the cross-section is close to a circle. For the higher stratification Ri D 10 the
vortices are damped especially in z direction, which leads to an asymmetry in the
vorticity isosurface. Even greater asymmetry is in the case Ri D 100, the shape of
isosurface is significantly different.

6 Conclusion

Experiments in the atmosphere are very expensive. So, the numerical simulations
are often the only single source of information. Since the solution can depend on
the numerical scheme, mesh etc, a comparison of solutions obtained using different
methods eliminates this dependence.

Two numerical methods for simulation of 2D and 3D stratified flows have been
developed and compared. Numerical results were obtained for Richardson numbers
Ri 2< 0; 100 >. These results are in good mutual agreement and also match
physical expectations. Small differences that emerged between schemes especially
in 3D case require deeper investigation.
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For simulation of the real atmospheric boundary layer flow, the significant
question is the choice of appropriate boundary conditions. Our simple boundary
conditions are suitable for laboratory type flows.
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5. Fraunie Ph., Beneš L., Fürst J.: Numerical simulation of the stratified flow. In: Proceeding of
conference Topical Problems of Fluid Mechanics 2008, 5–8 (2008)

6. Fuka V., Brechler J.: LES of contaminant dispersion in an idealized geometry. Proceeding of
CMFF09, 138–142, Budapest 2009, Hungary ISBN 978-963-420-984-3

7. Hemker P.W., Koren B.: Multigrid, defect correction and upwind schemes for the steady Navier–
Stokes equations. Numerical methods for fluid dynamics III; pp. 153–170, Oxford University
Press, Oxford, 1988

8. Kozel K., Angot Ph., Fürst J.: TVD and ENO schemes for multidimensional steady and unsteady
flows. In: Finite Volumes for Complex Applications, 283–290, Hermes (1996)

9. Shu Chi-Wang, Jiang Guang-Shan: Efficient implementation of weighted eno schemes. Journal
of Computational Physics, 126, 202–228 (1996)



A Flexible Updating Framework
for Preconditioners in PDE-Based Image
Restoration Algorithms

Daniele Bertaccini and Fiorella Sgallari

Abstract We propose the solution of some discretized partial differential equation
models for image denoising and deblurring by iterative linear system solvers accel-
erated by a simple but flexible framework for updating incomplete factorization
preconditioners that presents a computational cost linear in the number of the image
pixels. Here we perform some tests where the efficiency of the strategy is confirmed.

1 Motivations

Image restoration models based on partial differential equations, or PDE for short,
can be discretized by finite differences, finite elements or finite volumes by using
explicit, semi implicit (see e.g., [7]) and fully implicit (see e.g., [11]) time stepping
in order to obtain a discrete model. Unfortunately, sometimes general precondi-
tioning techniques for iterative methods for the solution of algebraic linear systems
generated by discretized models with implicit or semi-implicit schemes can show
an overall computational complexity in time and/or space higher than for the same
iterative solver without preconditioning. In view of these facts, we propose here a
technique that updates incomplete factorization-based preconditioners with a linear
computational cost in the number of image pixels, as the techniques based on addi-
tive operator splitting (AOS) such as that proposed in [9] and in [12], which are very
well suited for denoising only.

Recently, preconditioners for solving sequences of shifted linear systems arising
in partial differential equations of evolutionary type were proposed in [2] and [3].
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Here we generalize these preconditioners in order to update, downdate and regu-
larize the incomplete factorizations of a sequence of symmetric positive definite
matrices generated by the discretization of a nonlinear PDE model with selective
diffusion (see [1] and [10]). In particular, we focus on using banded updates and
banded approximations of the inverse of the component matrices of incomplete fac-
torizations in LDLT -form, whereL is a lower triangular andD is a diagonal matrix,
respectively. We compute the incomplete factorization to be updated not necessarily
on the given observed image, perturbed by a certain level of blur and noise, and use
the regularized updates for restoring images with, e.g., different blur. An analysis
of these techniques without regularizing and by calculating the first preconditioner
always on the given perturbed image can be found in [4].

In Sect. 2 a generalized Alvarez–Lions–Morel PDE model for image selective
smoothing discretized with a semi implicit complementary volume scheme is briefly
sketched. Section 3 introduces the proposed incomplete factorization precondition-
ers for the discrete operators in Sect. 2 and some remarks on their application.
Section 4 includes some tests on images with noise and blur and comparisons with
the Cholesky threshold preconditioner.

2 A Generalized Alvarez–Lions–Morel Model

In order to simplify the treatise, we will focus on the integration of a gener-
alized Alvarez–Lions–Morel-like nonlinear equation for selective smoothing and
deblurring (see [1] and [10])

ut D g.jrG� � uj/ jruj�r �
� ru

jruj�
�
� ˛jruj�KT

�
K u � u0

�
; .t; x/ 2 I �˝;

(1)
K is the blur operator, ˛ is a parameter controlling the blur term,˝ can be assumed
as a bounded rectangular domain, I is a scale (time) interval, g is a nonincreasing
real function which tends to zero as its argument tends to infinity, G is a smoothing
kernel and jr � j� means that we regularize in the sense of Evans and Spruck [6] to
avoid zero in the denominators:

jruj� D
p
jruj2 C �2: (2)

Equation (1) is coupled with initial and boundary conditions

@u

@n
D 0; .t; x/ 2 I � @˝

u.0; x/ D u0.x/; x 2 ˝; (3)

u.t; x/ is the unknown image function, u0 is the grey level of the image to be
processed, n is the unit normal to the boundary of ˝ .
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We consider the linear semi-implicit fully discrete complementary volume
scheme for (1)–(3) proposed in [7], but the same approach can be applied if the
function g.�/ is inside the divergence operator in (1).

Linear semi-implicit fully discrete complementary volume scheme for equation
(1)–(3) proposed in [7] is generated by discretization of (1)–(3) choosing a uniform
discrete time-scale increment � D T=N , and replacing time-scale derivative by
backward differences. To simplify notation, let ˛ D 0 in (1). In order to generate
a semi implicit scheme, nonlinear terms in (1) are computed on the basis of the
previous scale step while linear terms on the current one:

un D un�1 C �gn�1jrun�1j�r �
� run

jrun�1j�
�

(4)

where
gn�1 D g �jrG� � un�1j� ;

gn�1 > 0 according to its definition [5, 7]. By integrating over a co-volume Vi
and using linear basis functions [7], we get the discrete system to be solved for uni ,
i D 1; : : : ;M (M are the nodes of the triangulation), n D 1; 2; : : : ;:

uni D un�1i C �

bn�1i

X

j2Ci

an�1i;j

�
unj � uni

�
; i D 1; : : : ;M; n D 1; 2; : : : ; (5)

with

bn�1i D jVi j
g.jrG� � un�1ji /jrun�1i j� ; an�1i;j D

1

hi;j

X

T2"i;j

jci;j j
jrun�1T j� ;

where run�1T is related to the value assumed by the gradient of the piecewise linear
function which is constant on every simplex T of the triangulation while jci;j j is
the length of the portion of the co-edge that is the perpendicular bisector of the edge
connecting the related nodes; see [7, Sect. 2]. By rewriting the discrete system (5)
as a linear system Cnun D fn whose solution vector is

un D .un1; : : : ; unM /T ;

the matrix Cn has as entries cni;j , i; j D 1; : : : ;M , n D 1; 2; : : : ; where

cni;j D bn�1i C �
X

j2Ci

an�1i;j ; i D j I cni;j D ��an�1i;j ; i ¤ j; (6)

we have the result.

Theorem 1. The matrices of the linear systems generated at each time scale by
discrete complementary volume scheme (5) are symmetric and diagonally dominant
M -matrices.

Proof. See [7, Proposition 1]. ut
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By [2, Theorem 4.2], we can expect a fast decay of the entries of the inverse of the
matrices fCng (6) by moving away from the main diagonal. However, it is also worth
to recall that, as observed in [7, p. 682], with a decreasing �, the diagonal dominance
of the matrix of the linear system generated by (5) tends to disappear and this can
drop down the decay properties of the matrix Cn, with a possible negative effect on
the acceleration properties of the updates. More details and comments on this effect
can be found in [4].

By including the blur operator in (5), the discretized model gives a sequence of
linear system whose matrices have a larger and denser band with respect to those
without blur contribution (i.e., with ˛ D 0 in (1)).

3 Updating Incomplete Factorizations

In order to solve the discretized counterpart of model (1), we need to solve a
sequence of sparse linear systems

Cnun D fn; n D 1; : : : ; N; (7)

where Cn is the nth matrix given by the complementary volume discretization of
(1). Sequences of linear systems can be generated by either the quasi-Newton step
of an implicit solver such as, e.g., in [11] or by a semi-implicit formulation of the
discretization in time such as, e.g., in [1, 7] and here.

Let us assume C1 (or another matrix C0 generated by the discretization of the
PDE model with slightly different parameters, e.g., different blur or noise) as the
seed matrix Cseed and suppose we can compute the LDLT factorization of Cseed, i.e.,

Cseed D LDLT ; (8)

where L is unit lower triangular and D is diagonal. It is worth to note that the
factorization (8) will never be computed in practice, we need to state this only to
justify our approximations in the sequel. By denoting with Cj the matrix we want
to precondition, we can look for a formal factorization for Cj updating (8), which,
assuming Cj factorizable, can be written as

Cj D L.D C Ej /LT ; (9)

where Ej serves as an update for the diagonal matrix D in (8). By a generaliza-
tion of an argument from [3], i.e., by considering that CjC1 can be potentially
completely different from Cj , we get

Ej D ZT�jZ;Z D
�
LT
��1

(10)
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where
�j D Cj � Cseed; j D 1; : : : ; n: (11)

Note that j starts from 1 because C1 can differ from Cseed in this setting. Let us
compute an incomplete factorization QL QD QLT for the (sparse) seed matrix Cseed
with a threshold chosen in order to get a QL whose nonzero entries are of the order
of those of Cseed . Our candidate preconditioner for Cj is

Pj D QL
� QD C QEj

� QLT ; j D 1; : : : ; n; (12)

and for C�1j is

Zj D QZ
� QD C QEj

��1 QZT ; j D 1; : : : ; n: (13)

A sparsified version QZ of Z D �
LT
��1

can be generated by approximating the
inverse of QLT and discarding the entries whose absolute value is below a speci-
fied drop tolerance. The matrix QZ is sparse (banded) by the decaying properties of
inverses of diagonally dominant matrices; see [2, Theorem 4.2]. The perturbation
QEj that we add to QD in (12) and (13) is an approximation of Ej D ZT �j Z that

could in principle be given by QEj D QZT Q�j QZ, Q�j an approximation of �j . Here
we take Q�j D �j , which is a narrow band matrix in our setting. Therefore, for
each PCG iteration, we need to solve a linear system with matrix QD C QEj even
if we use the preconditioner in the inverse factorized form (13). If the decay of the
entries inZ is fast enough, e.g., if the matricesCn are strongly diagonally dominant,
then it could be enough to define QEj as a diagonal approximation of QZT Q�j QZ. The
underlying diagonal updates do not require to solve extra linear systems in order
to apply the preconditioner (13). Whenever needed, we regularize the underlying
diagonal updates by replacing each negative (or less than 10�2 times the drop tol-
erance) diagonal entry in QD C QEj by the corresponding one of QD; see numerical
experiments in Sect. 4.

The computational cost is expected to be much lower for PCG using (13) in a par-
allel or multicore setting because no triangular linear system is needed to be solved
in order to apply the preconditioner. This is confirmed by numerical experiments.
Comments and an analysis of the impact of the variation of the parameters of the
model (1) on the spectral properties of the preconditioners (12), (13) can be found in
[4]. We stress that the generalization proposed in this contribution with respect to the
setting in [4] (here the seed incomplete factorization QL QD QLT can be computed from
a perturbed image with possibly different parameters with respect to the given one)
does not permit the application of the convergence results in [4, Sect. 3.2] because
lim�!0 Cj can differ fromCseed . In view of this, we plan to extend the convergence
theory of [4] in a future research.
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Exact Perturbed Deblurred 5

Fig. 1 (from left to right) original 128�128 fruit picture; with 10% noise and blur; after five time
steps (parameters: � D 10�5; band D 3 and � D 3 for the blur operator)

Exact Perturbed Deblurred 3

Fig. 2 (from left to right) original 256 � 256 picture; with 10% noise and blur; after three steps
(parameters: � D 10�5; band D 3 and � D 3 for the blur operator)

4 Numerical Results

We report here some experiments using regularized updated preconditioners (reg
inv updated prec in the tables) for the semi-implicit complementary volume scheme
described in [7] generalized for denoising and deblurring images. The blur contri-
bution is given by the Matlab function blur.m; see [8]. This function is used with
parameters bandD 3 and sigmaD 3. The former specifies the bandwidth of the
Toeplitz blocks and the latter the variance of the Gaussian point spread function; see
[8] for more details. We used a preliminary Matlab R2009a 64bit implementation
of our algorithms on a Intel T9550 2.66Ghz laptop with 4Gb RAM and second core
disabled.

In the tables below, for each scale step, we report the global number of con-
jugate gradient iterations, the time (in seconds) needed for solving the underlying
linear systems (in bold the best performance) and the ratio of the number of nonzero
elements of the preconditioner over the nonzeros entries of Cseed (nnz.P /=nnz.C /).

In all experiments we consider a time scale of 10�5 (pixel intensities are scaled
in the interval Œ0; 1� ) and generate the steps needed to restore a given image. With a



Preconditioners in PDE-Based Image Restoration Algorithms 169

Table 1 Timings and iterations for denoising and deblurring the 128�128 fruit picture (see Fig. 1)
with 5 time steps. Noise level 10%, blur parameters band D 3 and � D 3

Algorithm Iterations Time (s) nnz.P /=nnz.C /

reg inv updated prec 147 0.87 0.985
reg inv updated preca 85 0.5 0.811
Incomplete Cholesky (10�1) 37 1.5 0.35–0.38
Incomplete Cholesky (10�2) 15 2.9 0.67–0.69
Unpreconditioned 433 2.6 –

aThe matrix Cseed for the updated inverse preconditioner is computed for
a model with noise level 10% and band D 5, � D 3

Table 2 Timings and iterations for denoising and deblurring the 256 � 256 book picture (see
Fig. 2) with 3 time steps. Noise level 10%, blur parameters band D 3 and � D 3.

Algorithm Iterations Time (s) nnz.P /=nnz.C /

reg inv updated prec 72 1.7 1.7
Incomplete Cholesky (10�1) 37 2.5 0.46 – 0.47
Incomplete Cholesky (10�2) 15 9.2 0.76 – 0.79
Unpreconditioned 525 11.2 –

Table 3 Timings and iterations for denoising and deblurring the 256� 256 book picture with five
time steps. Noise level 20%, blur parameters band D 3 and � D 3

Algorithm Iterations Time (s) nnz.P /=nnz.C /

reg inv updated prec 146 3.1 1.27
Incomplete Cholesky (10�1) 78 4.3 0.4–0.46
Incomplete Cholesky (10�2) 29 11 0.7–0.76
Unpreconditioned 1050 22.2 –

larger time step � , but still reasonable for image restoration, we continue to observe
an interesting speedup with respect to recomputing the incomplete factorization. We
used � D 10�2 in (2) and the function g in (1) is g.s/ D 1=.1CK s2/, K D 0:1.
The convolution is realized as in [7] by using � less than � . The matrix QZ is gener-
ated by sparsifying the inverse of incomplete Cholesky factorizations of Cseed with
a threshold of 0:01. Results are compared with threshold incomplete Cholesky fac-
torizations recomputed at each step (IC in the tables, in brackets the drop tolerances
used: 0:1 and 0:01) The conjugate gradient iterations are stopped when the rela-
tive residual is less than 10�5. The timings in the tables do not include the cost
of the incomplete factorization for the updated preconditioner for two reasons: (1)
this cost is small with respect to the cost for the iterations for our preconditioners,
in particular if an efficient implementation is considered; (2) one could use a seed
incomplete factorization that is already available from another experiment starting
with the same original image, without recomputing the factors QL and/or QZ in (12)
or in (13).

The proposed images are 128 � 128 and 256 � 256, but preliminary tests con-
firm that when the size of image increases, the speedups do not deteriorate and both
the computational cost per linear iteration and the memory space required remain
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linear in the number of image pixels. Experiments, comparisons and analysis of
convergence behavior in a slightly less general setting are provided in [4]. We note
that all the proposed numerical tests with regularized diagonal updated precondi-
tioners in inverse form (13) report good savings with respect to recomputing the
preconditioner at each step, reusing the same preconditioner computed for the first
linear system or with respect to incomplete Cholesky preconditioners with various
thresholds. Surprisingly, sometimes we observe a better quality of the updates by
providing the incomplete factorization of the matrix of the linear system arising in
the first scale step of a model with different blur parameters; see Table 1.
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Stabilized Finite Element Method
for Compressible–Incompressible
Diphasic Flows

M. Billaud, G. Gallice, and B. Nkonga

Abstract This paper concerns the simulation of two immiscible fluids separated by
a moving interface. In this goal, a global and simple numerical approach in which
the gas is considered compressible and the liquid incompressible is elaborated. The
numerical simulation of bubble dynamics phenomena is presented to illustrate the
proposed method.

1 Introduction

Diphasic interface flows, such as bubble flows, are often present in many environ-
mental and engineering problems. Numerical simulation is a good way of under-
standing and controlling such flows in many industrial process.

The present work deals with a numerical method able to accuratly predict dipha-
sic flows. There are many intrinsic difficulties associated to such flows. In order to
simplify the problem we suppose there is no shock (in particular in the gas), the two
fluids are immiscible, and the surface tension effets are neglected.

The issue of modelling for diphasic interface flows has been addressed in numer-
ous research papers, see [1, 2, 5, 7] for example. In these articles three different
approaches are considered. In [1], both liquid and gas are described as compress-
ible fluids contrary to [5] in which the two fluids are incompressible. The two
approaches have some drawbacks related to the inherent physical properties of each
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IMB, Université Bordeaux 1, 351 Cours de la Libération 33405 Talence, France
e-mail: marie.billaud@math.u-bordeaux1.fr

G. Gallice
CEA-CESTA, BP2, Le Barp, France
e-mail: gerard.gallice@cea.fr

B. Nkonga
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phase. For example, in the first one the volume conservation of the liquid is not
respected despite in the second one the compressibility of the gas is not taken into
account. Here, we investigate a third strategy [2, 7], in which the gas is considered
as compressible and the liquid as incompressible.

In [2], a numerical method was developped to treat the coupling of compressible
and incompressible flows, solving each phase with different schemes, a total varia-
tion diminushing (TVD) finite volume scheme for Euler equation in the gas phase
and a Marker and Cell (MAC) scheme for the incompressible Navier–Stokes equa-
tions in the liquid one, leading to a complex and non-global numerical method. The
aim of this note is to present a global and simple approach that relies on the three
basic components: the stabilized finite element [3, 4] for spatial approximation of
Navier–Stokes equations, the Level Set method for tracking precisely the interface
with a discontinuous Galerkin scheme [6] to solve the associated transport equation
and and averaging approach [8] to treat the discontinuities at the interface.

This short paper is organized as follows. In a second part, the model used to
describe the considered flows is presented. In the third part the numerical method is
detailed and its good behaviour is illustrated in a fourth part.

2 Global Model

Using the unified Navier–Stokes equations, recalled in the first section, the global
model considered to describe the diphasic flow motion is presented.

2.1 Navier–Stokes Equations Unified Form

Most flows obey the Navier–Stokes equations. Written in conservative form, these
equations are:

@t UC
dX

iD1

@xi
Fa

i D
dX

iD1

@xi
Fv

i C S; (1)

where d is the spatial dimension, U is the vector of the conservative unknowns, Fa
i

and Fd
i are the advective and diffusive flux, respectively, in the i th direction, S is a

source vector. The partial derivative in time and in the i th direction are respectively
@t et @xi

.
Using the vector of primitive unknowns, (see [3]), t Y D .p; t u; T /, with p the

pressure, u the velocity vector, T the temperature, it is possible to rewrite (1) in the
equivalent quasi-linear form:

L.Y;�; �; �; �/Y D S.Y; �/; (2)
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with

L.Y;�; �; �; �/ D A0.Y;�; �/@t C
dX

iD1

Ai .Y;�; �/@xi �
dX

i;jD1

@xi
�
Kij .Y; �; �/@xj

�
:

In addition, A0 D @YU; Ai D @YFa
i are the i -th Euler Jacobian matrices, and

K D ŒKij � is the diffusivity matrix where
dX

jD1

Kij @xj
Y D Fv

i .

The previous matrices are expressed in term of physical quantities inherent to the
considered fluid, such as the unknown Y, the density �, the viscosity �, the thermal
conductivity � and two thermodynamic coefficients � D .˛p; ˇT / which are:

˛p D �1
�

�
@�

@T

�

p

the volume expansivity coefficient; (3)

ˇT D 1

�

�
@�

@p

�

T

the isothermal compressibility coefficient. (4)

Here the flow is only submitted to the gravity field then S only depends on � and Y.
Quasi-linear equations for primitive unknowns (2) are well defined for both

compressible and incompressible flows (see [4]), hence we call them the unified
Navier–Stokes equations. This unified formulation is a good starting point for a
global numerical scheme suitable for compressible-incompressible coupling.

2.2 Governing Equations for Diphasic Flow

In the present work the diphasic flow field is computed in a bounded multi-
dimensional domain˝ � Rd . This domain is divided into two regions:˝1 (liquid)
and ˝2 (gas) seperated by the interface � .

Since there is no shock, in each phase ˝i , the flow obeys the Navier–Stokes
equation written in the quasi-linear unified form (2):

L.Yi ;�i ; �i ; �i ; �i /Yi D S.Yi ; �i / in ˝i �RC�; (5)

where the quantities Yi ;�i ; �i ; �i ; �i are specific to each fluid i . The liquid (˝1) is
supposed to be an incompressible and its density is supposed constant. In this case
the two thermodynamic coefficients (3) and (4) are equal to zero:

�1 D .˛1
p; ˇ

1
T / D 0: (6)

Contrary to the liquid, the gas (˝2) is described by the compressible Navier–
Stokes equations. To close the system the perfect gas equation of state is adopted
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leading to the relation:

�2 D p2

RT2

; (7)

whereR is the gas constant. Using this equality the two thermodynamic coefficients
become:

�2 D .˛2
p ; ˇ

2
T / D

�
1

T2

;
1

p2

�
: (8)

Finally, to capture precisely the interface � , a Level Set approach is used. In
this context the interface is given by the zero level set of a continuous function �.
Here, the following convention is chosen: � < 0 in˝1 and � > 0 in˝2. Obviously
we have � .t/ D fx 2 � I�.x; t/ D 0g ;8t � 0. As the interface moves at the flow
velocity, the following transport equation for � can be easly derived:

@t� C u � r� D 0: (9)

Since Y is supposed regular at the interface and using the level set function we
obtain formally the global model for the set of the primitive unknowns defined over
the all domain by:

L .Y; �/Y D S .Y; �/; in ˝ �RC� (10)

with

L .Y; �/Y D A0.Y; �/@t YC
dX

iD1

Ai .Y; �/@xi
Y�

dX

i;jD1

@xi
.Kij .Y; �/@xj

Y/:

In the previous global operator L the following matrices are introduced:

A0.Y; �/ D A0.Y;�.�/; �.�//;

Ai .Y; �/ D Ai .Y;�.�/; �.�//;

Kij .Y; �/ D Kij .Y; �.�/; �.�//;

S .Y; �/ D S.Y; �.�//;

which depend on the discontinuous physical coefficients:

�.�/ D .1 �H.�//�1 CH.�/�2;

�.�/ D .1 �H.�//�1 CH.�/�2;

�.�/ D .1 �H.�//�1 CH.�/�2;

�.�/ D .1 �H.�//�1 CH.�/�2;

constructed usingH is the Heaviside function:
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H.�/ D
�
1 when � > 0;
0 when � < 0:

in ˝ (11)

The global model (10) has the advantage of describing globally the diphasic flow
and allows us to develop a global numerical method detailed in the next part.

3 Numerical Method

In this section the numerical approach used in order to simulate compressible–
incompressible diphasic flow is presented.

3.1 Algorithm

For the sake of simplicity, the numerical method is based on a decoupled algorithm.
Hence, on each time intervalle Œtn; tnC1�, (9) and (10) are solved separately:

1. Flow step (fixed interface)

L .Y; �n/ D S .Y; �n/ in ˝��tnI tnC1Œ

Y.x; tn/ D Yn.x/ x 2 ˝
) YnC1

(12)

2. Interface step (given flow)

@t� C unC1 � r� D 0 in ˝��tnI tnC1Œ

�.x; tn/ D �n.x/ x 2 ˝
) �nC1

(13)

The two subproblems (12) and (13) are discretized in space on the same mesh, with
the stabilized finite element method for (12) and a Galerkin Discontinuous scheme
for (13). The details of the numerical method for (13) are discussed in [6]. Here we
focus on the resolution of the subproblem (12).

3.2 Global Finite Element Formulation Method

To solve Navier–Stokes compressible and incompressible equation (2), a finite ele-
ment method is chosen. It is well known that in the context of same order finite
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element for approximation the pressure, velocity and temperature, the standard
Galerkin approach suffers from numerical instabilities. These pathologies are asso-
ciated first to the violation of inf-sup condition for incompressible flows, and second
to the dominating convection terms present in both compressible and incompressible
Navier–Stokes equations. To overcome these difficulties, it is necessary to introduce
stabilization term in the standard Galerkin method. Since it allows to treat these two
problems, the Galerkin Least Square (GLS) [4] method is consider in this paper.

The idea of the proposed approach is to use the GLS method to solve the global
equation (10). In order to introduce this method, let Th be a triangulation of ˝ into
triangular or tetrahedral element e. Using these notations the following space-time
stabilized formulation is proposed.

Find YnC1
h
2 Sh such that 8Wh 2 Th:

X

e2Th

Z

e

Wh �
 

A0
n

e

ıY
ıt
C

dX

iD1

Ai
n

e@xi
YnC1

h
�S

n

e

!

C
dX

i;jD1

@xi
Wh �Kij

n

e@xj
YnC1

h
d˝

C
X

e2Th

Z

e

tL
n

e � 	n
e

�
L

n

e YnC1
h
�S

n

e

�
d˝ D 0: (14)

The differences ıY and ıt are respectively YnC1 � Yn and tnC1 � tn. We also
introduce the approximated trial and weight functions spaces Sh and Th. The first
integral is the Galerkin contribution in integrated by parts form. The last integral is
the least-square term with 	n

e the stabilization coefficient matrice (see [3, 4]).
As the global operator L is non-constant and discontinous across the interface

and as the interface does not conform with the computational mesh, it is necessary
to treat specifically hybrid elements (those cut by the interface). In addition, we have
to design the stabilization parameter in these elements.

To overcome these difficulties, we extand to compressible-incompressible the
averaged strategy used for incompressible diphasic flows [8]. In the proposed
approach some explicit averaged terms defined on each element are introduced such
as A0

n

e ;Ai
n

e ;Kij
n

e ;S
n

e ; 	
n
e . These operators are expressed in term of the averages

Y
n

e ; �
n
e ;Y

n

e ; �
n
e ; �

n
e ;�

n
e D .˛p

n
e ; ˇT

n

e / by:
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A0
n

e D A0.Y
n

e ;�
n
e ; �

n
e /;

Ai
n

e D Ai .Y
n

e ;�
n
e ; �

n
e /;

Kij
n

e D Kij .Y
n

e ; �
n
e ; �

n
e /;

	n
e D 	.Yn

e ; �
n
e ; �

n
e ; �

n
e /;

S
n

e D S.Y
n

e ; �
n
e /;

To elaborate such averages the interface is supposed to be a planar surface and we
define a color function "n

e , that represent the gas proportion in each element e at
time tn, given by:

"n
e D

V n
2

Ve

; (15)

where V n
2 is the gas volume in the element e whose the volume is Ve . Using "n

e , we
introduce:

� Arithmetic averages for the unknowns, the thermodynamic coefficients, and the
stabilization matrice;

Y
n

e D .1 � "n
e /Y1 C "n

e Y2;

�n
e D .1 � "n

e /�1 C "n
e�2;

	n
e D .1 � "n

e /	1 C "n
e	2;

� Harmonic averages for the density, the viscosity, and the conductivity;

�n
e D .1 � "n

e /�1 C "n
e�2;

�n
e D .1 � "n

e /�1 C "n
e�2;

�n
e D .1 � "n

e /�1 C "n
e�2:

For the sake of simplicity the average have been presented here in one dimension of
space, yet the idea remains the same in two or three dimensions.

a b c

t D 0s t D 0:15s t D 0:29s

Fig. 1 Interface shape of a rising air bubble in water (�1=�2 D 1000, �1=�2 D 105 , Re D 100)
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4 Numerical Simulations

The proposed stategy is performed in both one and two spatial dimensions. We
propose here a two-dimensional test-case. The dynamic of single air bubble in a
box full of water.

We consider a square domain of lengh L D 0:3m in which a circular bubble of
radius R D 0:05m is located in .0:15m; 0:15m/. The flow is initially at rest at the
pressure and is submitted to the gravity field g D 10m:s�2.

The Fig. 1 shows the evolution of the bubble shape, for the ratios of density
�1=�2 D 1000 and viscosity �1=�2 D 105. The subscripts 1 and 2 are associated
to water and air respectively. The problem is characterized by the dimensionless
Reynolds number which is Re D .2R/3=2pg�1=�1 D 100. As we can see in the
Fig. 1, the bubble rise in the water due to the effects of buoyancy and the interface
is deforming. The simulation is performed for 14,000 times steps from t D 0s to
t D 0:44 s which shows the stability of the numerical method.

5 Conclusion

In this note, we have presented a global and simple numerical method dedicated to
the prediction of compressible-incompressible diphasic flows. Using a global for-
mulation of the Navier–Stokes equations for liquid-gas flows a numerical scheme
have been developed based on a stabilized finite element method. To treat the dis-
continuities across the interface specific averages have been introduced. It appears
that the proposed strategy gives good results for the numerical simulation of bubble
dynamics.
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An Immersed Interface Technique
for the Numerical Solution of the Heat Equation
on a Moving Domain

François Bouchon and Gunther H. Peichl

Abstract A finite difference scheme for the heat equation with mixed boundary
conditions on a moving domain is presented. We use an immersed interface tech-
nique to discretize the Neumann condition and the Shortley–Weller approximation
for the Dirichlet condition. Monotonicity of the discretized parabolic operator is
established. Numerical results illustrate the feasibility of the approach.

1 Introduction

Although moving boundary problems have a wide range of applications ([6, 8]) it
is quite difficult to find numerical approaches which are supported by a theoretical
analysis. In this paper we discuss a finite difference approximation to the heat equa-
tion on a doubly connected domain which moves and deforms with time according
to a known dynamics. On one boundary component a Dirichlet condition, on the
other a Neumann condition is specified. Immersed interface techniques appear to be
well suited for this type of problems since they avoid the remeshing step that would
be necessary at each time step if the mesh would follow the domain. They have
recently been developed for the numerical treatment of partial differential equations
with discontinuities in the coefficients ([11, 12]) or to cope with non rectangular
domains ([9, 10]). A similar approach was pursued in [13] for a moving boundary
problem. But in this paper the authors only allow a rigid translation of the domain.
The moving boundary problem is converted to a sequence of fixed domain prob-
lems and information is substituted by an extrapolation technique at nodes which are
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uncovered as the domain moves. A CFL- condition has to be imposed on all com-
ponents of the boundary. The discretization is based on finite volume techniques.
Second order convergence in space and time is reported.

Here we adapt a variant of the immersed interface technique originally con-
structed for an elliptic problem in [2] and then extended to the heat equation on
a fixed domain in [3] for the moving boundary problem. The essential idea in [2]
was to use a Shortley–Weller approximation of the Laplacian near the Dirichlet
boundary and the standard five-point-stencil at any other interior node. This extends
the solution one node across the Neumann boundary. The values at the exterior
nodes are then determined by the Neumann condition. Therefore a “CFL”-like con-
dition for the normal speed of the Neumann boundary is needed. Such a condition
can be avoided for the Dirichlet boundary by a proper use of the Dirichlet condi-
tion. It is shown that the technique of [3] can be applied to show the monotonicity
of the discrete parabolic operator. Numerical tests indicate a convergence rate of
order � C h2 which complies with the Euler-implicit scheme used to discretize the
system.

2 Problem Formulation and Discretization

2.1 A Parabolic Problem on an Evolving Domain

We consider the following problem: Find the solution u W D � [t2.0;T / .˝.t/ � ftg/
! R of the parabolic problem

@tu.x; t/ ��u.x; t/ D f .x; t/ t 2 .0; T /; x 2 ˝.t/; (1)

u.x; 0/ D u0.x/ x 2 ˝.0/; (2)

u.x; t/ D uD.x; t/ t 2 .0; T /; x 2 �D.t/; (3)

@nu.x; t/ D uN .x; t/ t 2 .0; T /; x 2 �N .t/; (4)

where the doubly connected bounded domain ˝.t/ � R2 depends continuously
on t , as well as �D.t/ and �N .t/ which are the two disjoint parts of its boundary
(d.�D.t/; �N .t// > 0; and �D.t/[�N .t/ D @˝.t/). The data f , u0, uD , and uN
are such that the solution is twice continuously differentiable in time and four times
in space with bounded derivatives.

Note that this problem is sometimes referred to in the literature (see [7]) as
“parabolic problem on a non-cylindrical domain” since (1) must be satisfied for
.x; t/ 2 D � R2 � R. The case where D would be cylindrical, D D ˝ � .0; T /,
corresponds to (1)–(4) with ˝.t/ D ˝ for all t 2 Œ0; T �. Results for existence,
uniqueness and regularity of strong solutions can be found in [7] for parabolic prob-
lems defined on a non-cylindrical domain with Dirichlet boundary conditions, or
parabolic problems on cylindrical domains with mixed boundary conditions.
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We assume that ˝.t/ satisfies the ball condition used in [2] and [3] for all t 2
Œ0; T �:

There exists r0 such that for all t 2 Œ0; T �, for all x 2 �N .t/ one can find points
�x 2 ˝.t/ and �x 2 { N̋ .t/ such that the balls B.�x ; r0/ and B.�x ; r0/ satisfy

B.�x ; r0/ � ˝.t/; B.�x ; r0/ � { N̋ .t/; B.�x ; r0/\ B.�x ; r0/ D fxg: (5)

2.2 Derivation of the Scheme

In [2] a finite difference scheme was presented for the following elliptic problem:

��u.x/ D f .x/ x 2 ˝; (6)

u.x/ D uD.x/ x 2 �D; (7)

@nu.x/ D uN .x/ x 2 �N : (8)

The discretization of (6)–(8) resulted in the linear system

AU D F; (9)

where U was the vector made of the unknowns Ui � u.xi / for xi 2 ˝h [ �N;h [
�D;h. Here ˝h denotes the set of grid points interior to ˝ away from the bound-
ary �D , �D;h denotes the set of grid points interior to ˝ close to the boundary �D
and �N;h denotes the set of grid points which are exterior to ˝ but close to the
boundary �N . A point is considered to be close to one boundary if at least one of
its four neighbours is on the other side of the boundary. The vector F in (9) was a
vector which depended on the data uD , uN and f .

The matrix A could be split in the following way:

A D
0

@
A1 A2 O
A4 A5 A6
O A8 A9

1

A ; (10)

where the top block of lines corresponded to the discretization of (6) with the modi-
fications due to the Shortley–Weller approximation (see [15]) for the points in �D;h,
the second block of lines corresponded to the discretization of (6) for the points in
˝h, and the bottom block of lines corresponded to the discretization of (8) for the
points in �N;h, which was derived in such a way that the matrix A in (10) was an
M-matrix. Thus, the second order convergence of the scheme could be proven. In
[3] this method was adapted for the problem (1)–(4) for a fixed domain. The Euler-
implicit scheme resulted in a linear system described by the matrix formulation:

.B C ��1D/U n D ��1DU n�1 C F n; (11)
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where U n was the vector made of the unknowns uni � u.xi ; tn/, F n was a vector
which depended on the data uD , uN and f , D and B were matrices defined by

D D
0

@
I O O
O I O
O O O

1

A and B D
0

@
B1 B2 O
B4 B5 B6
O B8 B9

1

A : (12)

Here the first two blocks of lines corresponded to points in ˝h [ �D;h, and the
bottom block of lines corresponded to the discretization of the Neumann Boundary
condition for the points in �N;h. The matrix B was shown to be monotone although
it was not an L-matrix, and a perturbation technique similar to the work presented
in [1] was applied to show that the matrix B C ��1D remained monotone. The
convergence analysis showed that the error was bounded by

jenj � C �� C h2=�� ; (13)

where � and h had to be small and of the same order of magnitude. The numerical
tests showed the better convergence rates one in time and two in space.

The adaptation of the above scheme to a moving domain ˝.t/ is complicated
by the fact that nodes may enter or leave ˝.t/ as it evolves. Thus the dimension of
the vectors U n as well as of the involved matrices depend on n. Since we are still
going to use an Euler-implicit scheme the discretization of ��u.tn; �/ and of the
Neumann condition (4) will be described by a matrix Bn analogous to B in (12) of
appropriate variable dimension.

In order to describe the discretization of the time derivative let ˝n
h

, � n
D;h

and � n
N;h

be the quantities for time tn which correspond to ˝h, �D;h, respec-
tively �N;h in the case of a stationary domain. We also denote 	n

D;h
D fxi …

˝n
h

across �D.tn/g. The usual forward difference approximation

@tu.xi ; t
n/ � 1

�
.uni � un�1i /

can be used provided un�1i has been calculated in the previous time step. This is the

case for points xi 2
�
˝n
h
[ � n

D;h

�
\
�
˝n�1
h
[ � n�1

D;h
[ � n�1

N;h

�
.

For points which are close to the Neumann boundary � n
N;h

it can be shown that

the value of un�1i will be available if the following “CFL”-like condition is satisfied:

vmax� �
p
2h

2
; (14)

where vmax denotes the maximum modulus of the normal velocity vn of the boundary
�N .t/.

Finally we turn to points xi 2
�
˝n
h
[ � n

D;h

�
\ 	n�1

D;h
. Hence there are largest

times tn � ˛ni � , ˛ni 2 .0; 1/; such that xi 2 �D.tn � ˛ni �/. Using the Dirichlet
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condition (3) we are lead to the following discretization of the time derivative

@tu.xi ; t
n/ � uni � uD.xi ; tn � ˛ni �/

˛ni �
: (15)

We emphasize that due to this use of the Dirichlet condition it is not necessary
to impose a “CFL”-condition on �D.t/ analogous to (14). Therefore the Dirichlet
boundary is allowed to move faster than the Neumann boundary.

Let Dn D fi 2 NWxi 2
�
˝n
h
[ � n

D;h

�
\ 	n�1

D;h
g, I n D fi 2 NWxi 2�

˝n
h
[ � n

D;h

�
\
�
˝n�1
h
[ � n�1

D;h
[ � n�1

N;h

�
g and E n D fi 2 NWxi 2 � nN;hg. Note

that Dn may be empty and that the sets Dn, I n and E n are disjoint for a given
value of n. With respect to this splitting of the nodes used for computation at time
tn we obtain the following discrete system

.Bn C ��1Dn/U n D ��1eDneU n�1 C F n; (16)

with

Bn D
0

@
Bn1 B

n
2 O

Bn4 B
n
5 B

n
6

O Bn8 B
n
9

1

A ; Dn D
0

@
D.˛/Dn

II n

O

1

A ; eDn D
0

@
O
II n

O

1

A :

AboveD.˛/Dn D diag. 1
˛n

i

W i 2 Dn/ and II n denotes the identity matrix of dimen-

sion jI nj. The vector eU n�1 on the right hand side of (16) takes into account that
U n and U n�1 in general have different dimensions. The vector F n is determined by

F ni D

8
ˆ̂<

ˆ̂:

1
˛n

i
�

uD.xi ; tn � ˛ni �/C cSWi C f .xi ; tn/; i 2 Dn;

cSWi C f .xi ; tn/; i 2 I n;

uN .Pi ; tn/ i 2 E n;

where cSWi is a contribution arising from the Shortley–Weller approximation and
Pi denotes an appropriate point on �N .tn/. Note that the splitting of the system for
the moving domain problem is done in a way slightly different from (12).

Let An be the matrix in (9) referring to the domain˝n
h

. It was pointed out in [3]
that An and Bn are related by

Bn DM nAn �
0

@
IDn

II n

M n IE n

1

AAn
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with M n � 0 andM n D O.h/. Hence M n is monotone. Then

Bn C ��1Dn DM n.An C ��1.M n/�1Dn/

DM n.An C ��1
0

@
D.˛/Dn O O

O II n O
O �M n O

1

A/

DM n

0

@

0

@
An1 C 1

�
D.˛/Dn An2 O
An4 An5 A

n
6

O An8 A
n
9

1

AC ��1
0

@
O O O
O II n O
O �M n O

1

A

1

A

�M n. OAn C ��1En/:

Theorem 1. Let h
�

be bounded. Then Bn C ��1Dn is monotone for h and �

sufficiently small.

Proof. The proof is identical to the one given in [3]: since An is an M-matrix and
��1D.˛/Dn 	 0 we conclude that OAn is monotone and . OAn/�1 � .An/�1. There-
fore monotonicity of Bn C ��1Dn will follow once OAn C ��1En is shown to be
monotone. We now scale the matrix OAn C ��1En according to

T n � diag.hIDn ; hII n ; IE n/. OAn C ��1En/ � Qn CRn: (17)

Since the matrices OAni have entries of magnitude O.h�2/ for i D 1; � � �6 and O.h�1/
for i D 8; 9, and since the matrix M n has entries of magnitude O.h/, the matrices
Qn andRn in (17) have entries of magnitude O.h�1/ and O.1/ respectively. Hence,
since Rn is non negative, the perturbation T n of the M-matrix Qn in (17) can be
shown to remain monotone using Theorem 2.5 in [1] for � sufficiently small. ut
Remark 1. We note that the possible unboundedness of the diagonal elements of OAn1
does not effect the proof of Theorem 1 since it does not use the nodes corresponding
to indices in Dn.

3 Numerical Results

Numerical tests have been run with the following data:
The Neumann and Dirichlet boundaries are given by

�N .t/ D
˚
.x; y/ 2 Œ0; 1�2;  N .x; y; t/ D 0

�
;

�D.t/ D
˚
.x; y/ 2 Œ0; 1�2;  D.x; y; t/ D 0

�
;

where:

 N .x; y; t/ D 14:4 � .x � .0:4C 0:1 cos.3t///2 � 0:288 � .3 � .1 � cos.3t///2

C.4 � sin.10t// � .y � .0:4C 0:2 sin.3t///2 � .3�.1 � cos.3t///2;
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and

 D.x; y; t/ D 4 � .x � .0:4C 0:1 cos.3t// � 0:1 sin.min.16t; 3
///2

C .4� sin.10t// � .y � .0:4C 0:2 sin.3t///2 � 0:04:

The boundary of the set ˝.t/ D f.x; y/ 2 Œ0; 1�2;  N .x; y; t/ D.x; y; t/ < 0g is
given by �D.t/ [ �N .t/ (see Fig. 1), the Neumann boundary beeing the “exterior”
boundary and the Dirichlet boundary is the boundary of the inner hole.

The data u0, uN , uD and f have been chosen so that the exact solution of the
continuous problem (1)–(4) is given by:

u.x; y; t/ D .x3 � 4xy2 C 2y4/ cos.t/C sin.t/C �cos.x/C sin.y/
�

exp.t2/:
(18)

The runs have been made with grid sizes h D 1=I , with I 2 f200; 300; 400; 600,
800g, and with � D T=N D 1=N with N 2 f200; 400; 800; 1600; 3200; 6400g and
N 	 I so that the “CFL”–condition (14) is satisfied.

Table 1 presents the local error between the computed and the exact solutions:

maxk;i;j
ˇ̌
ˇuki;j � u.xij ; tk/

ˇ̌
ˇ. This table shows an error of order O.� C h2/ since this

error is (approximately) divided by 4 when h is divided by 2 and � is divided by 4
(see for example the marked entries in Table 1). The observed convergence rates are
the same as in [3].

The technique presented in [4,5] has been used to solve the linear system in (16).
For the fixed domain case (see [3]), the preprocessing step requires O.n3/ float-
ing points operations and needs only to be computed once. Here, since the domain
evolves, this step must be computed at each time-step. The resulting asymptotic
behavior of the CPU time required for the whole simulation is therefore O.h�3��1/.
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Fig. 1 Domain ˝.t/ for t D 0; 0:25; 0:5; 0:75; 1

Table 1 Local error
hD 5� 10�3 3:33� 10�3 2:5� 10�3 1:67� 10�3 1:25� 10�3

� D 5� 10�3 1:03� 10�3 not cv not cv not cv not cv
� D 2:5� 10�3 6:27� 10�4 5:06� 10�4 4:83 � 10�4 not cv not cv
� D 1:25� 10�3 4:30 � 10�4 3:01� 10�4 2:59 � 10�4 2:43 � 10�4 2:51 � 10�4

� D 6:25� 10�4 4:35 � 10�4 2:00 � 10�4 1:56� 10�4 1:27� 10�4 1:21� 10�4

� D 3:125 � 10�4 4:71 � 10�4 1:95� 10�4 1:06� 10�4 7:49 � 10�5 6:47� 10�5

� D 1:5625 � 10�4 4:89 � 10�4 2:15 � 10�4 1:08� 10�4 4:95 � 10�5 3:90� 10�5
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Table 2 CPU Time per time-step

hD 5� 10�3 3:33 � 10�3 2:5� 10�3 1:67� 10�3 1:25� 10�3

CPU time (sec.) 5.40 41.18 75.38 195.29 550.63
CPU time=h�3 6:75 � 10�7 1:53 � 10�6 1:18 � 10�6 9:04� 10�7 1:08� 10�6

The average CPU time required for one time-step is reported in Table 2. The last line
of Table 2 confirms the asymptotic operation count of order h�3 per time step.

4 Conclusion

The immersed interface technique of [2] and [3] has successfully been adapted for
a parabolic problem on a moving domain. The second order convergence in space
and first order in time has been observed on numerical tests, where a O.��1h�3/
algorithm has been used. Further works will concentrate on similar problems on
domains with less regularity (domains with corners) for which the ball condition (5)
does not hold.
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Lid-Driven-Cavity Simulations of Oldroyd-B
Models Using Free-Energy-Dissipative Schemes

Sébastien Boyaval

Abstract In this work, we report on numerical tests in keeping with the study
[Boyaval, Lelièvre, and Mangoubi, Free-energy-dissipative schemes for the Oldroyd-
B model, ESAIM: Mathematical Modelling and Numerical Analysis (M2AN), 43(3):
523–561, 2009], about Finite-Element discretizations of the Oldroyd-B system (for
viscoelastic flows of some non-Newtonian fluids) which are stable in the sense of
free-energy dissipation.

1 Introduction: Dissipative Oldroyd-B

During a period of time Œ0; T / and in a physical domain ˝ � Rd (d D 2 or 3), the
viscoelastic flow of some non-Newtonian fluids (like dilute polymeric fluids) can
be described by a system coupling the incompressible Navier-Stokes equation for
the velocity field u W .t;x/ 2 Œ0; T / � ˝ ! u.t;x/ 2 Rd and the pressure field
p W .t;x/ 2 .0; T / � ˝ ! p.t;x/ 2 R, with a constitutive relation for a tensor
field � W .t;x/ 2 Œ0; T / �˝ ! � .t;x/ 2 Rd�d

S , where Rd�d
S stands for the linear

space of symmetric real square matrices.
Denoting by I the identity matrix, f a volume source term, and by Re, Wi and "

the usual positive dimensionless groups in rheology respectively known as the
Reynolds number, the Weissenberg number and the elastic-to-viscous viscosity frac-
tion (in fact " 2 .0; 1/), we now choose one widely used constitutive relation, the
Oldroyd-B equation [2], hence the system:

Re

�
@u
@t
C .u � r/u

�
D �rp C .1 � "/�uC "

Wi
div� C f (1)

divu D 0 (2)
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Wi

�
@�

@t
C .u � r/� � .ru/� � � .ru/T

�
C � D I : (3)

The numerical simulation of systems with constitutive relations like (1–2–3) is an
active subject of research for decades [9]. Indeed, numerical instabilities are encoun-
tered with most usual discretizations, not only for complex geometries, but also in
benchmark flows (used for comparisons with experimental results) like the flow past
a condined cylinder or the 4:1 contraction. Here, we concentrate on the relaxation to
equilibrium of flows in a square cavity ˝ D .0; 1/ � .0; 1/. We choose f D 0, we
supply (1–2–3) with homogeneous Dirichlet boundary conditions for the velocity
field (no flow):

u D 0 on .0; T / � @˝; (4)

and we study the dissipative structure in time of the system (and its discretizations)
for given initial conditions:

u.0;x/ D u0.x/ � .0;x/ D � 0.x/ 2 Rd�d
SPD 8x 2 ˝ ; (5)

where Rd�d
SPD is the set of symmetric positive definite matrices.

The choice of the Oldroyd-B model, a simple prototype for many differential
constitutive relations, has inherent limitations for physicists and mathematicians. In
particular, it cannot be used for long times in shear flows, and the existence results
are not very developed yet. See [1, 3] for a detailed discussion about known results.
But it is enough for the purpose of our study: good discretizations of constitutive
relations should mimick the dissipation of smooth solutions to the continuous sys-
tem. This study is an important first step to understand the numerical instabilities
observed in long-time numerical simulations, like blow-up or absence of conver-
gence toward a stationary state beyond a limiting Weissenberg number, when the
time and space discretization parameters are refined. Recall indeed that long-time
simulations are often used to capture a stationary state: so, even when one is not sure
that the latter exists or is unique, discretizations should at least not bring spurious
energy to the system. In particular, we will try to use our discretizations (dissipative
under no-flow boundary conditions) for the long-time simulations in a lid-driven
cavity, a common benchmark flow that is believed to reach a stationary state [4].

2 Dissipative Discretizations of the Oldroyd-B System

The long-time dissipative structure of the Oldroyd-B system has been studied in [5,
6] where it is shown that the good positive quantity to consider for dissipation is a
so-called free-energy (see also [10]):

F.u; � / WD Re

2

Z

˝

juj2 C "

2Wi

Z

˝

tr .� � ln � � I/ : (6)
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If � 0 2 Rd�d
SPD , then � 2 Rd�d

SPD holds at all times t � 0 and the matrix logarithm
ln � is well-defined at all times t � 0. Furthermore, the free energy of smooth
solutions .u; � / to the homogenous Cauchy-Dirichlet problem introduced above in
Sect. 1 decays to zero when t ! 1. Hence, smooth solutions converge as t ! 1
to the unique stationary state .u1; �1/ D .0; I/.

Unfortunately, it is difficult to propagate this observation for supposedly smooth
solutions of the continuous system to the discrete level. Approximation spaces for
.u; � / are typically linear, whereas one needs to compute the logarithm ln� h of the
discrete tensor field � h approximating � and to manipulate the inverse matrix ��1

h

in order to obtain an estimation of the free-energy dissipation at the discrete level.
(There is no reason why ln� h and ��1

h
should lie in the same linear space as the

tensor field � h, except if � h is piecewise constant, which we write � h 2 P0.) In [3],
we have thus derived discretizations which satisfy a discrete free-energy dissipation
using the Finite-Element (FE) method with � h 2 P0.

Given � h 2 P0, the main difficulties in deriving a discrete free-energy dissipation
are linked to the discretization of the nonlinear terms .u � r /� , .ru/� and � .ru/T

in (3). In [3], we suggest to discretize the time with a Backward-Euler scheme
(hence .ru/� and � .ru/T become implicit terms). And we suggest to treat the
advective term .u�r /� either by a characteristic method or a Discontinuous Galerkin
(DG) method. At this point, different choices are still possible for the FE spaces
of the approximations .uh; ph/ to .u; p/. For each possible choice, taking care of
the inf-sup compatibility condition due to the incompressibility constraint (2) (the
famous Ladyshenskaya-Babuška-Brezzi condition), then we can show the existence
and long-time stability of discrete solutions [1, 3].1

In the next Section, we numerically test some of the different choices encoun-
tered during the derivation of the free-energy-dissipative schemes.

Remark 1. In our schemes, it is essential that the field � h remains positive-definite
to give a meaning to ln � h and ��1

h
. (In turn, an upper-bound on the discrete

free-energy implies that � h has remained positive-definite at all times.) But since
our free-energy-dissipative schemes are implicit, in particular because of the term
.ruh/�h C � h.ruh/

T , one can only compute approximations of the solution � h

(for instance using a fixed-point strategy), which could turn pointwise negative for
some x 2 ˝ (see next Sect. 3). Now, in [3], we also studied discretizations of the
system reformulated when using the variable ln � instead of � like in [4]. Such
formulations forcefully retain the positive-definiteness of the tensor field and the
existence of discrete solutions is slightly easier to establish. Yet, there is little dif-
ference in the construction process of discetizations that are free-energy-dissipative
under no-flow boundary conditions. As a matter of fact, the possibility of enhanced
numerical stability in the numerical simulations of the Oldroyd-B system thanks to
a preserved positive-definiteness was also studied by [7, 8], where other techniques

1 Piecewise linear discretizations for � h – continuous P1 and discontinuous P1 C P0 – have also
been studied in [1,3], but then, coarser approximations of � h than piecewise linear are still needed
in the nonlinear terms and decrease the order of the scheme.
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preserving the positivity than the log are proposed. But these studies do not con-
sider the correct dissipative structure of Oldroyd-B (that is, the dissipation of the
free energy (6)), and in spite of the numerous previous efforts in the same direc-
tion, the link between the positivity-preservation and the numerical (in)stability does
not seem to be fully understood yet (that is, explained by a precise analysis at the
elementary discrete level, corroborated from numerical simulations). In the future,
a precise analysis of the numerical instabilities should thus take into account the
numerical treatment of the nonlinearity in conjunction with the positivity-constraint
(as a pre-requisite) and the free-energy-dissipation criterium (for dissipative prob-
lems). The possibility of bifurcations should also still be studied (in [1], we had
some existence results, but no uniqueness for the discrete system). Here, we limit
ourselves to simple preliminary numerical observations, which could motivate such
further studies.

3 Numerical Results

We show numerical results for two Cauchy-Dirichlet problems in a cavity ˝ D
.0; 1/ � .0; 1/ (d D 2), at very low Reynolds number Re D 10�7 (close to creep-
ing flows), with " D 0:5 (which avoids instabilities due to incompatibility of
the discrete spaces for uh and � h [9]). For six different Weissenberg numbers
Wi D :8; 1; 1:2; : : : ; 2, we consider either of the two following choices for the
Dirichlet boundary condition on the lid � D Œ0; 1� � f1g of the cavity:

uh.x; 1; t/ D
( �
8x2.1 � x/2.1C tanh .8.t � :5//� ; 8.x; t/ 2 Œ0; 1� � Œ0; tmax/

0; 8.x; t/ 2 Œ0; 1� � .tmax ; T /

with either tmax D T=5 (to observe the relaxation to equilibrium for t > tmax) or
tmax D T (to capture a hypothetic stationary state). Initial conditions at t D 0 are
the stationary state

�
u0

h
� 0; � 0

h
� I� and we choose T D 10.

The two problems are solved using FE schemes like those discussed in the pre-
vious section (see [3] for details), using a constant time step �t D 10�2 for the
backward Euler time-discretization, and three different regular meshes, that are built
with triangular (isosceles) elements of size bounded above by h D 0:1, 0:05 and
0:03. We test two different choices of FE spaces for .uh; ph; � h/ (P2 �P1 �P0 and
P2 � P0 � P0, where P2 means continuous quadratics) and two different discretiza-
tions for the convective term of the constitutive equation (characteristic and DG
method). The nonlinear (implicit) terms will be treated using one Picard iteration
(hence linearized [9]: at n-th iteration, we compute the solution .unC1

h
; pnC1

h
; � nC1

h
/

to the discrete scheme knowing the result .un
h
; pn

h
; � n

h
/ of the previous iteration,
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IsoValue
–47.868
–40.4334
–35.477
–30.5206
–25.5642
–20.6077
–15.6513
–10.6949
–5.73853
–0.782125
4.17428
9.13069
14.0871
19.0435
23.9999
28.9563
33.9127
38.8691
43.8255
56.2165

IsoValue
–84.2767
–72.9656
–65.4249
–57.8842
–50.3435
–42.8028
–35.262
–27.7213
–20.1806
–12.6399
–5.09917
2.44155
9.98227
17.523
25.0637
32.6044
40.1451
47.6859
55.2266
74.0784

Fig. 1 Diagonal component of the tensor field at t D 3 for tmax D T and two different meshes
(left: h D 0:05; and right: h D 0:03)

e.g. after replacing .runC1
h

/� nC1
h

by .run
h/�

nC1
h

in our scheme2). The resulting
large linear system is solved using the GMRES method.

All computations are done with FreeFem++ (v2.240002). Two typical results for
the diagonal component of the tensor field at t D 3 when tmax D T are shown in
Fig. 1 (DG method, P2 � P0 � P0). The difference between the two refinements in
the area close to the right-top corner is an indication about the origin of possible
instabilities (possibly a local lack of regularity of the solutions). And in fact, when
the free-energy-dissipation and the positivity of � h are lost during the simulation, it
is exactly in this singular area that a pointwise value of the tensor field first becomes
negative, and then propagates through˝ in the cases where there is blow-up.

3.1 First Discretization: .uh; ph; � h/ 2 P2 � P1 � P0

In [3], we were not able to show a free-energy dissipation with this choice of FE
spaces.3 But first, we numerically check the relaxation to equilibrium for tmax D 2

and nevertheless observe a free-energy-dissipation after tmax D 2 until T D 10,
see Fig. 2. (Yet, the characteristic method fails when h D 0:03, for � h becomes
negative before tmax D 2 and the solutions blows up a few iterations later, whatever
the Weissenberg number Wi used here.4)

2 This brute-force linearization seemed to yield correct approximations at small times after the
start-up of the flow, but it may also have long-time ununderstood consequences explaining some
of the instabilities in the results that we show here, see Remark 1.
3 More precisely, this was possible only when the velocity field uh used to advect � h was projected
or interpolated in a consistent and weakly-incompressible manner.
4 With the DG approach and a finer mesh h D 0:025, the positivity of � h is also lost before
tmax D 2, whatever Wi, but no blow-up follows: the computations run until final time T .
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Fig. 2 Free energy with respect to time using the characteristic (left)/DG method (right) with
P1 approximations of the pressure. We use tmax D 2, three meshes and Wi 2 Œ:8; 2�. Note: for
h D 0:03, the characteristic method fails
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Fig. 3 Free energy with respect to time when tmax D T , using the characteristic (left)/DG method
(right) with P1 approximations of the pressure. When the curve stops, positivity has been lost
(left: the computations then blow up). We use three different meshes h D 0:1; 0:05; 0:03 and
Wi 2 Œ:8; 2�. Note: for h D 0:03, characteristics fail

Then, we try to capture a stationary state using tmax D T , see Fig. 3. The charac-
teristic method converges to a stationary state after t D 2 only for the coarser mesh
h D 0:1. And its convergence rate is all the slower as Wi increases (the difference
between two successive iterations decreases more slowly when Wi increases – a so-
called “high-Weissenberg number problem” [9] ?). For finer meshes, the positivity
is lost soon after t D 2, all the earlier as Wi increases. On the contrary, the DG
method always converges to a stationary state. Yet, the positivity of � h is also lost
for meshes finer than h D 0:1, soon after t D 2 (all the sooner as Wi increases and h
decreases, but later than the characteristic method, and never followed by blow-up).

3.2 Second Discretization: .uh; ph; � h/ 2 P2 � P0 � P0

Compared to the previous section, we use here a lower-order FE space for the pres-
sure field, and we can show that the DG approach is free-energy-dissipative (under
no flow boundary conditions). For tmax D 2, we similarly observe that all our
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Fig. 4 Free energy with respect to time when tmax D T , using the characteristic (left) / DG method
(right) with P0 approximations of the pressure. When the curve stops, positivity has been lost (left:
the computations then blow up). We use three different meshes h D 0:1; 0:05; 0:03 and Wi 2 Œ:8; 2�

schemes numerically dissipate the free-energy after tmax (under no flow boundary
conditions). Notice yet that the positivity is never lost before tmax D 2 here. (We do
not show the results, which are very similar to those in Fig. 2 of Sect. 3.1.)

Second, we try to capture a stationary state using tmax D T . The characteris-
tic method reaches a stationary state only for the coarser mesh h D 0:1, all the
slower as Wi increases (the convergence rate of the difference between two succe-
sive iterations goes slower to zero). For finer meshes, no convergence to a stationary
state could be observed because the positivity of � h is lost soon after t D 2, (all
the sooner as Wi increases, and then the computations stop: there is blow up). On
the contrary, the DG method seems to converge to a stationary state for all meshes
(though again all the slower as Wi increases, and h decreases). The conformation
tensor also loses its positivity after t D 2 (all the sooner as Wi 2 Œ1; 2� increases and
h decreases) for the two finer meshes, again a bit later than the characteristic method
(see Fig. 3). Remarkably, for Wi D 0:8 and h D 0:05 or h D 0:03, the positivity
was never lost! (Thus, for Wi D 0:8, we could observe that convergences of the free
energy and the kinetic energy were not monotone with h.)

Finally, the only scheme here that is free-energy-dissipativeunder no-flow bound-
ary conditions (that is, DG in Sect. 3.2) seems to behave better than the other ones
for the lid-driven-cavity problem, although little difference is observed during pure
relaxation to equilibrium (under no-flow boundary conditions). But there are still
numerical instabilities, which look like a high-Weissenberg number problem [3, 9]
with unclear origin (many different numerical problems could be mixed together).
The next step in a rigorous study could be to ensure positivity while approximating
correctly the nonlinear terms in a free-energy-dissipative scheme.
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Adaptive Multiresolution Simulation
of Waves in Electrocardiology

Raimund Bürger and Ricardo Ruiz-Baier

Abstract A new fully adaptive multiresolution method is applied for the simula-
tion of the complex dynamics of waves in excitable media in electrocardiology,
where the membrane kinetics are given by the Aliev–Panfilov or Luo–Rudy II mod-
els. Numerical experiments show that the automatical adaptation strategy tracks the
spatio-temporal pattern accurately at a substantially reduced computational cost if
compared with fine-grid simulations. The nonlinear dynamics of complex multiscale
patterns can thus be computed efficiently, also in the chaotic and turbulent regime
which are currently beyond the frontiers of methods using regular discretizations.

1 Introduction

Nonlinear reaction-diffusion systems are widely used models of excitable chemical
and biological media that usually exhibit rich spatio-temporal multiscale dynam-
ics. Even in homogeneous media, nontrivial spatial structures (pulses, fronts, spiral
waves and others) can emerge, and an impulse over a certain threshold initiates a
wave of activity moving across the excitable medium. One of the most studied appli-
cations of such waves is the propagation of electrical activity in cardiac tissue. This
phenomenon involves the interaction of different ion species across a combination
of active and passive ion channels and diffusion of charge through a heterogeneous
substrate with dynamically changing conductances.

It is the purpose of this contribution to provide further support for the adaptive
multiresolution method for excitable media described in [4] by two new, original
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numerical examples for the Aliev–Panfilov (AP) and Luo–Rudy II (LRII) models in
electrocardiology. The new feature of the example for the AP model is an implanted
obstacle, while the LRII model is remarkably more involved than the models used
in [4] since it includes a vector of seven gating variables, not just a scalar one.

We first consider a spatially two-dimensional model of waves in excitable media
given by a reaction-diffusion system of the generic form

@tu D �A.u/C f .u; v/; @tv D g.u; v/; .x; t/ 2 QT WD ˝ � Œ0; T �; (1)

where ˝ � R2 is an open, bounded, connected polygonal domain with boundary
@˝ , along with zero-flux boundary and initial conditions. The unknowns are the
excitation and recovery variables u and v, which vary on fast and slow time scales,
respectively. The functions f and g express the local reaction kinetics and A is a
diffusion coefficient to be defined later.

The model by Aliev and Panfilov for propagation in cardiac tissue [1] is employed
as the first of two specific examples. It consists in (1) along with

f .u; v/ D f�C1u if u < �1, C2uC a if u 2 Œ�1; �2�, C3.1 � u/ if u > �2g � v;

g.u; v/ D .ku � v/ � f�1 if u < �2, �2 if u > �2, �3 if u < �1 and v < v1g;
(2)

whereC1; C2; C3; �1; �2; �3; v1 and k are certain dimensionless parameters. The AP
model (2) models the electrical activity in ventricular tissue more accurately than the
well-known FitzHugh–Nagumo model (see [7]).

The second example is the LRII model [8] coupled with a monodomain descrip-
tion of the electrical wave propagation. It has the general form

@tu D D�uC f .u; v/C Iext.x; t/; @tv D g.u; v/; .x; t/ 2 QT WD ˝ � Œ0; T �;
(3)

where u is the membrane potential, v D .K1; X; h; j;m; f; d/T is the vector of
dimensionless ion-channel gating variables, and the total ionic current density

f .u; v/ D INa.u; v/C Isi.u; v/C IK.u; v/C IK1
.u; v/C IKp.u/C Ib.u/

is the sum of a fast inward sodium current INa, a slow inward current Isi, a time-
dependent potassium slow outward current IK, an outward potassium current IK1

, a
plateau potassium current IKp , and a total background current Ib:

INa D GNam
3hj.u �ENa/;

IK1
D GK1

K11.u �EK1
/;

Isi D Gsidf .u � Esi/;

IKp D GKpKp.u �EKp/;

IK D GKXXi .u �EK/;

Ib D 0:03921.uC59:87/

withGNa D 23,Gsi D 0:07,GK D 0:705,GK1
D 0:604,GKp D 0:0183(inmS cm�2),

ENa D 54:4, EK D �77, EK1
D �87:26, EKp D �87:26, Eb D �59:87 (in mV).

In addition,Esi D 7:7 � 13:0287 lnŒCa�C. The calcium ionic concentration satisfies
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the Nernst equilibrium dt ŒCa�C D �10�4Isi CGsi.10
�4 � ŒCa�C/, and all gate vari-

ables � D h; j;m; d; f;X;K1 evolve according to dt� D ˛�.u/.1 � �/ � ˇ�.u/�,
which precisely corresponds to the second equation in (3). Here, ˛�.u/ and ˇ�.u/
define the opening and closure rate of the gates, which are given by ˛h D ˛j D 0

for u � �40mV, ˛h D 0:135e�0:147.uC80/ for u < �40mV, and

ˇh D
8
<

:
3:56e0:079u C 3:1 � 105e0:35u for u < �40mV;

.0:13C 0:13e�0:09.uC10:66//�1 otherwise;

˛j D .uC 37:8/ e0:2 C 2:7 � 10�10e�0:04u

�7:87 � 10�6.1C e0:3.uC79:2//
for u < �40mV;

ˇj D
8
<

:
0:1212e�0:01052u.1C e�0:1378.uC40:14//�1 for u < �40mV;

0:3e�2:535�10�7u.1C e�0:1.uC32//�1 otherwise;

˛K1
D 1:2

1C e0:2385.u�EK1
�59:215/ ; ˛m D

0:32.uC 47:13/
1 � e�0:1.uC47:13/

; ˇm D 0:08e�0:0909u;

˛d D 0:095e�0:01.u�5/

1C e�0:072.u�5/
; ˇd D 0:07e�0:02.uC44/

1C e0:05.uC44/
; ˛f D 0:012e�0:008.uC28/

1C e0:15.uC28/
;

ˇf D 0:0065e�0:02.uC30/

1C e�0:2.uC30/
; ˛X D 0:0005e0:083.uC50/

1C e0:057.uC50/
; ˇX D 0:0013e�0:06.uC20/

1C e�0:04.uC20/
;

ˇK1
D 0:4912e0:08.u�EK1

C5:476/

1C e�0:5143.u�EK1
C4:75/ C e0:0618.u�EK1

�594:31/:

The gating variables Xi ; Kp are assumed to rapidly reach a steady state, and there-
fore to depend only on the potential u. We set Xi .u/ D 1 for u � �100mV
and

Xi D .2:837e0:04.uC77/ � 1/..uC 77/e0:04.uC35//�1 for u > �100mV;

Kp D
�
1C e0:1672.7:488�u//�1:

For overviews on multiresolution techniques for related problems, see [5, 9, 10];
references to other techniques to solve the system (1) are given in [4].

The remainder of the paper is organized as follows. In Sect. 2 we recall the
numerical method for solving (1) on uniform fine meshes. This method is a classical
finite volume (FV) scheme with a first-order Euler time discretization, and plays the
role of a reference numerical scheme, i.e., it approximates the solution of (1) on a
uniform mesh. In Sect. 3 we outline the MR procedure, which allows to construct
space adaptive schemes based on the reference method (for details, see [4,10]). The
numerical results are presented in Sect. 4.
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2 Reference Numerical Scheme

We consider a standard admissible mesh for˝ � R2 formed by a family T of con-
trol volumes K of maximum diameter h and a family of points .xK/K2T , where
xK is the center of K . We let N.K/ denote the set of neighbors of K which share
a common edge with K . Here Eint.K/ is the set of edges of K in the interior of ˝
and Eext.K/ the set of edges of K lying on the boundary @˝ . For all L 2 N.K/,
d.K;L/ denotes the distance between xK and xL, and we denote by � D KjL
(� D Kj@˝ , respectively) the interface between K and L (between K and @˝ ,
respectively). Moreover, jKj stands for the two-dimensional measure of K and j� j
for the one-dimensional measure of � . Numerical fluxes on all edges � are defined
as by FK;� D �� .uL � uK/ for � D KjL 2 Eint.K/ and FK;� D 0 for � 2 Eext.K/,
which includes the zero-flux boundary conditions and where the transmissibility
coefficients �� are defined by �� WD j� j=jd.K;L/j for � D KjL 2 Eint.K/.
We set tn WD n�t for n D 0; : : : ; N D dT=�te. We define f nK WD f .unK ; vnK/,
gnK WD g.unK ; vnK/, u0K WD jKj�1

R
K

u0.x/dx and v0K WD jKj�1
R
K

v0.x/dx. To
advance the numerical solution from tn to tnC1 D tn C �t , we use the follow-
ing finite volume scheme: Given unK , vnK for all K 2 T , determine unC1K and vnC1K

from

jKj�t�1�unC1K � unK
�CP�2Eint.K/[Eext.K/

��
�
A
�
unC1L

� �A�unC1K

�� D jKjf nK;
(4)

�t�1
�
vnC1K � vnK

� D gnK for all K 2 T . (5)

A CFL stability condition for the scheme (4) and (5) is given by

�th�1 max
K2T ; tn<T

�ˇ̌
f nu;K

ˇ̌C ˇ̌f nv;K
ˇ̌C ˇ̌gnu;K

ˇ̌C ˇ̌gnv;K
ˇ̌�C 4D�th�3 � 1: (6)

The resulting FV scheme produces a unique numerical solution. Solutions converge
to a weak solution of (1) as the discretization parameters tend to zero [6].

3 Adaptivity: Multiresolution Framework

To be concise, we only consider Cartesian meshes on ˝ D Œ0; 1�2, but the MR
analysis could be carried out for more general meshes (see, e.g., [9]). We start
by determining a nested mesh hierarchy T0 � � � � � TH , using a partition of ˝ .
Each grid Tl is formed by the control volumes K l on each level l D 0; : : : ;H ,
where l D 0 corresponds to the coarsest and l D H to the finest level. The
refinement sets are defined by MKl WD fLlC1i gi , where K l WD LlC11 [ � � � [ LlC1ml

,
ml WD #MKl , where LlC1i is a control volume at level l C 1, LlC1i � K l . For
x 2 K l the scale box function is defined as Q'Kl .x/ WD jK l j�1�Kl .x/, and therefore
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the average of any function u.�; t/ 2 L1.˝/ on K l can be expressed as the inner
product uKl WD hu; Q'Kl iL1.˝/ .

Cell averages and box functions satisfy the two-level relation

uKl DP
L

lC1
i
2M

Kl
jLlC1i jjK l j�1u

L
lC1
i

; Q'Kl DP
L

lC1
i
2M

Kl
jLlC1i jjK l j�1 Q'

L
lC1
i

;

(7)

which defines a projection operator needed to move from finer to coarser levels.
There is a transformation between the cell averages on level l D H and the cell
averages on level l D 0 plus a series of detail coefficients. This relation defines a
prediction operator needed to move from coarser to finer resolution levels. A poly-
nomial prediction is chosen, which in the particular case of Cartesian meshes is
defined by QuLi ;lC1 D uL;l �Qx �Qy CQxy for i D 1; : : : ; #MKl , where Qx ,
Qy and Qxy are standard polynomial interpolators applied to the neighbors and
diagonal neighbors of the control volume Ll , see [2–4, 10].

The error induced by the prediction operator at the cell K l is defined as the dif-
ference between the cell average and the predicted value, i.e., dKl WD uKl � QuKl ,
and we may also write dKl ;j WD hu; Q Kl ;j i for j D 1; : : : ; #MKl . For a multicom-
ponent solution .u; v/, on each cell K l we compute for the refinement stages

dKl D minfjuKl � QuKl j; jvKl � QvKl jg; (8)

and use the maximum for the coarsening stages of the algorithm.
Roughly speaking, the more regular a function u is overK l , the smaller is the cor-

responding detail coefficient. This motivates the so-called thresholding procedure,
which consists in discarding all control volumes corresponding to details that are
smaller in absolute value than a level-dependent tolerance "l . Choosing "l too small
or too large will make the MR device inefficient (the compression rate is poor) or
deteriorate the quality of the solution due to large thresholding errors, respectively.

For problems considered in [5] and [10], the reference scheme has a known order
of convergence in space (˛ D 1=2 and ˛ D 2 respectively). The latter constant is
at present unknown for FV discretizations of degenerate parabolic equations. How-
ever, in [2, 3] we found that a methodology based on the ideas of [5, 10] can also
be successfully applied to degenerate reaction-diffusion systems when ˛ is a con-
vergence rate obtained from numerical experiments. This approach is also applied
here. Let us denote by ˛ the experimental convergence rate of (4) and (5), which
by means of standard preliminary computations (see e.g., [2]) we have found to be
˛ D 1:2.

Let the level-dependent tolerances "l be given by "l D 22.l�H/"R for l D
0; : : : ;H . If the general time evolution operator is L1-contractive and the refer-
ence numerical scheme is stable in the sense of (6) and the reference tolerance "R is
set to
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"R D C 2�.˛C2/H

j˝j max
K2T ; tn<T

�ˇ̌
f nu;K

ˇ̌C ˇ̌f nv;K
ˇ̌C ˇ̌gnu;K

ˇ̌C ˇ̌gnv;K
ˇ̌�CDj˝j3=222CH ;

(9)

then the error due to thresholding is of the same order as the discretization error, and
therefore the order of the underlying scheme is preserved. The constant C in (9) has
to be determined by test calculations on a uniform grid (and possibly in one space
dimension only), prior to the proper MR simulation, see e.g., [4, Example 4].

We organize the cell averages and corresponding details at different levels in a
dynamic graded tree. The root is the basis of the tree. A parent node has four sons,
and the sons of the same parent are called brothers. A node without sons is a leaf.
A given node has s0 D 2 nearest neighbors in each spatial direction, needed for the
computation of the fluxes of leaves; if these neighbors do not exist, we create them
as virtual leaves. Brothers are also considered nearest neighbors. We denote by 	
the set of all nodes of the tree and by L .	/ the restriction of 	 to the leaves. We
apply this MR representation to the spatial part of the function u D .u; v/, which
corresponds to the numerical solution of the underlying problem for each time step,
so we need to update the tree structure for the proper representation of the solution
during the evolution. To this end, we apply the above thresholding strategy, but
always ensure the graded tree structure of the data.

We define the data compression rate � WD N=.2�.2H/N C #L .	//, where
N is the number of control volumes in the full finest grid at level l D H , and
#L .	/ is the number of leaves. The speed-up between the CPU times of the numer-
ical solutions obtained by the FV and MR methods is defined by V WD CPU timeFV=

CPUtimeMR.

4 Numerical Results

Example 1 corresponds to the AP model (1), (2) on˝ D .0; 256/2 (in millimeters).
The physiological parameters are �1 D 0:0026, �2 D 0:837, C1 D 20, C2 D 3,
C3 D 15, a D 0:06, k D 3, 
1 D 1:8, �1 D 0:01, �2 D 1:0, �3 D 0:3, D D
2 cm2=s [1, 11]. We consider an inhomogeneity in the conductivity of the medium
by setting A.u/ D 0 if k.x � 230; y � 160/k � 20 and A.u/ D Du otherwise.
This circular obstacle could represent a scar on the cardiac tissue. For simplicity, we
impose no-flux boundary conditions on the border of the obstacle. We let u0 D 0:9
if x � 128 and y D 129, u0 D 0 otherwise, v0 D 2 if y � 128 and v0 D 0

otherwise.
Figure 1 shows the evolution of u for this example. Clearly, the spiral turbulence,

which otherwise dominates the evolution of the system, remains away from the
obstacle, and the MR-based adaptive mesh adequately captures the excitation fronts.
From (9) we obtain "R D 4:50� 10�4, and this value indeed produces experimental
rates of convergence of about h1:2 (see the upper part of Table 1).
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Fig. 1 Example 1. Aliev–Panfilov model: transmembrane potential u and corresponding graded
tree structure for times (from left to right) t D 0:1 s, t D 1 s and t D 1:4 s

Table 1 Examples 1 and 2. Convergence history in different norms, and compression rates

Ex. hH L1�error L1�rate L2�error L2�rate L1�error L1�rate � V

22 4:31� 10�2 � 3:44� 10�2 � 8:11� 10�2 � 9.4112 9.4293
21 1:83 � 10�2 1.2371 1:47� 10�2 1.2309 3:43� 10�2 1.2407 11.0309 13.9917

1 20 7:92� 10�3 1.2133 6:12� 10�3 1.2632 1:45� 10�2 1.2386 13.1710 17.4209
2�1 3:31 � 10�3 1.2482 2:64� 10�3 1.2238 6:11� 10�3 1.2490 17.2136 20.8701
2�2 1:42 � 10�3 1.2710 1:13� 10�3 1.2461 2:60� 10�3 1.2589 21.8554 28.0526

2�5 6:72 � 10�2 � 5:29� 10�2 � 8:15� 10�2 � 7.3650 11.7923
2�6 2:99� 10�2 1.1675 2:35� 10�2 1.1704 3:62� 10�2 1.1715 9.8097 16.6464

2 2�7 1:31 � 10�2 1.1967 1:03� 10�2 1.1928 1:59� 10�2 1.1899 12.3146 21.9165
2�8 5:72 � 10�3 1.2033 4:51� 10�3 1.2049 6:91� 10�3 1.2031 15.1622 28.1796
2�9 2:53� 10�3 1.2089 1:90� 10�3 1.2160 3:03� 10�3 1.2097 20.7391 34.1880

In Example 2 we employ the LRII model (3) on ˝ D .0; 8/2 (in centimeters)
with D D 1:25 � 10�3 cm2=ms. Initially the tissue has an constant rest state
u D �84mV. To produce computational fibrillation, a reentrant wave is gener-
ated using a wavefront which after 0:25ms is broken at the center of the domain.
The external stimuli Iext D �100�A=cm2 for t < 1ms and x < 0:2 cm, and
Iext D �50�A=cm2 for 315ms < t < 316ms, x � 4:5 cm, y � 4:5 cm are
applied. The domain is initially discretized in N D 2562 control volumes, the time
step is set according to (6), and we use "R D 5:15� 10�3. The initial value for ŒCa�
is 2 � 10�4 mmol/L.

Figure 2 shows the numerical solution for u along with the corresponding repre-
sentation of the leaves of the dynamic graded tree, which form the adaptive mesh
generated by the MR algorithm. We observe that the wave created by the first



206 R. Bürger and R. Ruiz-Baier

Fig. 2 Example 2. LRII model: transmembrane potential u and corresponding graded tree
structure for times (from left to right) t D 100ms, t D 200ms and t D 300ms

stimulus applied at the left border of the domain propagates to the right, and after
applying the second stimulus, a rotating spiral wave forms. The MR device performs
an automatic refinement/coarsening stage to accurately capture the high gradient
fronts.

The lower half of Table 1 reports the convergence history of the MR method
together with � and V (corresponding to t D 200). As in Example 1, the errors
maintain a convergence rate of around h1:2 and V grows linearly with the number of
control volumes in the finest meshNH , and � reaches similar levels as in Example 1.
In the reference scheme, for Example 1, most of the computational time is spent in
resolving the diffusive part, while for Example 2, the stiffness of the ODE system
for the gating variables requires the major part of the overall computational cost.
In contrast to Example 1 and other multicomponent problems (see e.g., [2]), we
here do not use (8) for the refinement and coarsening procedures, but only use the
information on u, i.e., the whole system is evolved over a mesh whose construction
is based on the local regularity of u. This simplification avoids the computation
of details for all seven gating variables while maintaining a reasonable accuracy
level.
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On the Numerical Approximation of the Laplace
Transform Function from Real Samples
and Its Inversion

R. Campagna, L. D’Amore, A. Galletti, A. Murli, and M. Rizzardi

Abstract Many applications are tackled using the Laplace Transform (LT) known
on a countable number of real values [J. Electroanal. Chem. 608, 37–46 (2007),
Int. J. solid Struct. 41, 3653–3674 (2004), Imaging 26, 1183–1196 (2008), J. Magn.
Reson. 156, 213–221 (2002)]. The usual approach to solve the LT inverse problem
relies on a regularization technique combined with information a priori both on
the LT function and on its inverse (see for instance [http://s-provencher.com/pages/
contin.shtml]).

We propose a fitting model enjoying LT properties: we define a generalized spline
that interpolates the LT function values and mimics the asymptotic behavior of LT
functions. Then, we prove existence and uniqueness of this model and, through a
suitable error analysis, we give a priori approximation error bounds to confirm the
reliability of this approach. Numerical results are presented.

1 Introduction

We focus on the recovery of a real function f .t/, t � 0, given its Laplace transform
F :

F.z/ D
Z 1

0

e�ztf .t/dt ; (1)

for real discrete values of z. This means that the Laplace Transform is known only
on a finite set of real samples, .xi ; F .xi //iD1;:::;n, and the inverse function f .t/ D
L �1ŒF .z/� is searched for.
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We propose a fitting model enjoying Laplace Transform properties, that describes
the restriction of F on the real axis in its convergence region. By this way it is pos-
sible to use any numerical method to compute f .t/. The organization of the paper is
as follows. In Sect. 2 we recall the main asymptotic properties of Laplace transform
functions, and we characterize it by introducing the set of rational decay functions.
Section 3 is devoted to the definition of the fitting model, that is the rational approx-
imation model, and to the proof of its existence and uniqueness. In Sect. 4, through
a suitable error analysis, we give a priori approximation error bounds. In order to
show the usefulness of this approach and the reliability of the error approximation
bounds, numerical experiments are given in Sect. 5. Conclusions and future works
are discussed in Sect. 6.

2 Preliminary

We suppose that the data .xi ; F .xi //iD1;:::;n belong to an unknown Laplace trans-
form with asymptotic rational decay: almost all Laplace transform functions F are
rational functions or have an asymptotic rational decay. Moreover they are ana-
lytic in the real half line .˛f ;1/, with ˛f related abscissae of convergence. Let be
m � 0 and C!.˝m/ the set of analytic functions in ˝m D .m;C1/.
Definition 1. If ˛ > 0 we refer to

R˛
decay.˝m/ D

8
<

:

9 G.x/ D a1x�˛ C a2x�.˛Ch/ with a1¤ 0;
F 2 C!.˝m/ W a1; a2 2 <; h > 0 s:t: for k D 0; 1; : : :

F .k/.x/ D G.k/.x/C o �x�.˛ChCk/�

9
=

;

as the asymptotic rational decay functions set of order ˛.

Briefly, functions F 2 R˛
decay

.˝m/ are analytic and can be written as

F.x/ D a1

x˛
C a2

x˛Ch
C o

�
x�.˛Ch/

�
: (2)

In other words, F assumes the form a1x
�˛ or goes to zero as a1x�˛ and admits an

asymptotic expansion with the second term of the form a2x
�.˛Ch/. So a1x�˛ and

a2x
�.˛Ch/ are respectively the end behavior model function ofF and of F�a1x�˛ .

Examples of functions with asymptotic rational decay are given by the following.

Proposition 1. [2] Let F.z/ be a complex-valued function such that H.z/ D
F.1=z/ is holomorphic in the closed complex disk

Ar D fz 2 C W jzj � rg :

Then F 2 R˛
decay

.˝1=r / with ˛ D minfn 2 N W H .n/.0/ ¤ 0g.
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Let us denote by Pn the linear space of polynomials of degree at most n, and let us
introduce the set of proper rational functions:

Rs;m D
�
ps.x/

qm.x/
W m > s � 0; ps 2Ps and qm 2Pm are coprime

�
: (3)

Most of the Laplace transforms are proper rational functions; for these functions we
have the following result:

Proposition 2. [2] Let beF a Laplace transform with convergence abscissa ˛f <0.
If F 2 Rs;m, in the form

F.x/ D ps.x/

qm.x/
D dsx

s C ds�1xs�1 C � � � C d0
cmxm C cm�1xm�1 C � � � C c0 (4)

with cm D 1, ds ¤ 0, then F 2 Rm�s
decay

.<C/ and it can be written as in (2) with

˛ D m � s; a1 D ds ; a2 D ds�l�1 � dscm�l�1; h D l C 1

where we set d�1 D d�2 D � � � D ds�m D 0 and

l D minfk 2 f0; : : : ; m � 1g W ds�k�1 � dscm�k�1 ¤ 0g :

3 The Approximation Model

In this section we introduce the fitting model of .xi ; F .xi //iD1;:::;n. To tackle with
the scarce information about the Laplace Transform from which the samples rise,
we assume the model to be interpolating. Taking into account the main asymp-
totic behavior presented in Sect. 2, we set the model to be a suitable generalized
spline; in literature is actually known the great usefulness of spline functions in
applications due to their structural properties as well as excellent approximation
power [4,8]. Since the model inherits the high accuracy level of polynomial splines
in approximating smooth functions between the nodes Œx1; xn�, and the asymptotic
behavior of rational decay functions in Œxn;C1Œ, according to the Laplace trans-
form decrease towards zero, we refer to it as the rational approximation model.
The pieces representing the restrictions of the whole model in each subinterval
Œxj ; xjC1� � Œx1;1/, j D 1; : : : ; n � 1, will be tied together by continuity of
successive derivatives. Boundary conditions will affect the behavior of the fitting
model outside the nodes.

We assume that F is a Laplace transform in the form (2), ˛f its abscissa of
convergence and

�n D fx1 < x2 < : : : < xng; (5)

with x1 > maxf0; ˛f g, is a set of real sample data in which F is known:

yj D F.xj / j D 1; : : : ; n:
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Let us denote by S3.�n/ the real linear space of twice continuously differentiable
cubic splines defined on �n and by

U ˛ D span fx�˛g ; ˛ 2 <C (6)

the one dimensional linear space of functions defined in <C.
We introduce the set of real-valued functions whose restriction in Œx1; xn� belongs

to S3, and whose restriction in Œxn;1/ belongs to U ˛ . These functions will be
interpolating F in �n and approximating F in the whole interval Œx1;C1Œ. This
set can be viewed as a set of generalized splines [8].

Definition 2. Let �n be as in (5) and U ˛ as in (6). We denote by SU ˛ the linear
space

SU ˛ D SU ˛ .S3.�n/;U
˛I fxng/ D

8
<

:

there exist s1 2 S3.�n/; s2 2 U ˛;

s W with s1.xn/ D s2.xn/ and
s D s1 on Œx1; xn/; s D s2 on Œxn;1/

9
=

;

We refer to SU ˛ as the rational approximation model.

A function s belonging to SU ˛ has smoothness properties between the knots
and decays to zero as a Laplace transform with rational decay. Moreover

Definition 3. We denote by s�n;F a function in SU ˛ interpolating a function F at
�n, that is

s�n;F .xj / D F.xj / j D 1; : : : ; n : (7)

We refer to s�n;F as a generalized rational decay approximation spline.

3.1 Existence and Uniqueness: Boundary Conditions

Let j 2 f2; : : : ; ng be such that yj =yj�1 > 0, we firstly introduce

˛j D log.yj�1=yj /
log.xj =xj�1/

; ˇj D yjx˛j

j : (8)

˛j and ˇj can be viewed as the parameters of

gj .x/ D ˇjx�˛j ; gj 2 U ˛j ; (9)

that interpolates F at xj�1; xj . Moreover, in the following, we set

hjC1 D xjC1 � xj .j D 1; : : : ; n � 1/ ; k�nk D max
jD1;:::;n�1 hjC1 : (10)

In order to obtain a unique s�n;F 2 SU ˛ interpolating F at �n, we adjoin three
suitable boundary conditions.
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Asymptotic Behavior Condition
1. In Œxn;1Œ we force the model to satisfy two backward interpolation conditions

to .xn�1; yn�1/ and .xn; yn/, i.e., it holds

ˇx�˛n�1 D yn�1 and ˇx�˛n D yn (11)

and so ˛ � ˛n and ˇ � ˇn.

Clamped Spline Boundary Conditions
We set the restriction of s�n;F between the knots to be a clamped spline function
where we assign two boundary conditions. We assume that, near the ends x1 and
xn, F can be approximated by its interpolating functions

g2.x/ D ˇ2x�˛2 ; gn.x/ D ˇnx�˛n

respectively at nodes x1; x2 and xn�1; xn. We get two conditions for s�n;F by
setting

2. the first slope of s�n;F at x1 as

s
.1/
�n;F

.x1/ D g.1/2 .x1/ D �˛2y1=x1I (12)

3. the last slope of s�n;F at xn as

s
.1/
�n;F

.xn/ D g.1/n .xn/ D �˛nyn=xn: (13)

Starting from the definition of rational approximation model and from the boundary
conditions we obtain the following result.

Theorem 1. (Existence and uniqueness) [2] Let �n be as in (5), y2=y1 > 0,
yn�1=yn > 1 and ˛2; ˇ2; ˛n; ˇn as in (8). Then there exists only one function
s�n;F 2 SU ˛n that verifies conditions (11)–(13).

4 Approximation Error Analysis

This section is devoted to the error analysis. Let us give some definitions and
notations that will be used in the rest of the paper.

Definition 4. LetF be a Laplace transform,�n as in (5), xnC1 D C1 and s�n;F 2
SU ˛ a function interpolating F at �n. Then we refer to the following terms

Ej .F;�n/ D max
x2Œxj ;xj C1/

js�n;F .x/ � F.x/j ; j D 1; : : : ; n (14)

as the local approximation errors.
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Errors Ej (j D 1; : : : ; n) are estimated for Laplace transforms F belonging to
R˛
decay

.<C/ and with non-positive abscissa of convergence (˛f � 0).
Let us consider the errors Ej (j D 1; : : : ; n � 1) in Œx1; xn�. The restriction of

s�n;F to this interval is a clamped spline with boundary slopes as in (12) and (13).
Starting from a result for complete splines [4], by assuming that

e1 D F .1/.x1/� ˛2y1=x1 en D ˛nyn=xn � F .1/.xn/ (15)

can be neglected, we get:

Theorem 2. [2] Let be�n as in (5),F 2 C 4Œx1; xn�, s�n;F .x/ the unique complete
cubic spline interpolating F at nodes�n and verifying the boundary conditions

s
.1/
�n;F

.x1/ D F .1/.x1/ s
.1/
�n;F

.xn/ D F .1/.xn/ :

For j D 1; : : : ; n�1, if there existLj for which jF .4/.x/j � Lj for x 2 Œxj ; xjC1�,
then

Ej � Bj D h2jC1 �R C
h4jC1
4

Lj D O.k�nk4/ with R D max
jD1;:::;n rj and

(16)

r1 D 3

4
h22L1; rj D 3

4
max.hj ; hjC1/2 max.Lj ; LjC1/; rn D 3

4
h2nLn�1

(17)

Now let us consider the error En in Œxn;C1/. In this interval s�n;F is completely
described by the values ˛n and ˇn. We obtain the following result:

Theorem 3. [2] Let F 2 R˛
decay

.˝m/ be as in (2), �n � ˝m be as in (5), ˛n be

as in (8) andDn D a2

a1

1

xh
n

. Then

En � Bn D ja1 Dnj
x˛n

Cmax

� ja1 Dnj
x˛n

;
j˛n � ˛j
˛

jynj
�
C o

�
1

x˛Chn

	
(18)

5 Numerical Experiments

In this section we show numerical results. We assume that the Laplace transform
F.s/ D arctan s�1 is known only on n D 50 real samples fx1; : : : ; xng 2 Œ0:36; 22�
with hmin D mini hi D 0:2 and hmax D maxi hi D 0:6.
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Local Error Bounds
We compare the true local errors E1; : : : ; En with their bounds (16) and (18).
A heuristic sharper result can be obtained by substituting the maximum value R
with the values rj , by introducing the quantities

NBj D h2jC1 � rj C
h4jC1
4

Lj ; j D 1; : : : ; n � 1 :

The following Figs. 1 and 2 compare local errorsEj (“�˘” in both subfigures) with
their theoretical bounds Bj (“�o” on the left side) and with the heuristic ones NBj
(“�o” on the right side). Heuristic bounds seem to better estimate the errorsEj than
the theoretical ones, because they take into account the information about the local
upper bounds Lj of the fourth derivative of F .

Let us consider error En. Firstly observe that F 2 R1
decay

.<C/ and it can be
written in the form (2) with ˛ D 1; h D 2; a1 D 1; a2 D 1=3. Then, by using
Theorem 3, we get the bound Bn D 6:9959e � 005 as a reliable approximation of
the true errorEn D 1:6364e� 005. Observe that it is F.xn/ D 4:7201e� 002, i.e.,
the rational approximation model s�n;F offers a sharp approximation of the asymp-
totic behavior of F .

Numerical Inversion
We apply to s�n;F a numerical method A for inverting the Laplace transform. In
this test, A represents the Rjabov algorithm which uses only real values [3]. We
compare the computed solution A Œs�n;F .s/�.t/ with the true inverse Laplace trans-
form function f .t/ D L �1ŒF .s/� D t�1 sin.t/. Figure 2 compares the true solution
f .t/ (“�˘” in both subfigures) to the computed solutions A ŒF .s/�.t/ (solid line on
the left side) and A Œs�n;F .s/�.t/ (solid line on the right side). As expected, the
accuracy of A Œs�n;F .s/�.t/ as approximation of f .t/ depends on the magnitude
of the approximation error introduced by s�n;F as well as on the stability of the
numerical method A .
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Fig. 1 Left: true local errors Ej (“�˘”) vs theoretical bounds Bj (“�o”). Right: true local errors
Ej (“�˘”) vs heuristic bounds NBj (“�o”). x-values belong to the sample interval [0.36,22]
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Fig. 2 Computed solutions. Left: A ŒF .s/�.t / (“�”) vs f .t/ D t�1 sin.t/ (“�˘”). Right:
A Œs�n;F .s/�.t / (“�”) vs f .t/ D t�1 sin.t/ (“�˘”)

6 Conclusions and Future Work

We deal with the problem of numerical inverting the Laplace transform in case
of real samples. We introduce a fitting model for approximating Laplace trans-
form functions. We show results concerning existence and uniqueness and we give
approximation error bounds. Finally by means of a numerical example we show that
this approach is reliable and justified. Future works are: to extend the fitting model
for approximating (few) Laplace functions that have exponential asymptotic decay;
to get computable error bounds from the theoretical results; to perform comparisons
with other approaches employed in presence of discrete data [1, 6].
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A Motion-Aided Ultrasound Image Sequence
Segmentation

D. Casaburi, L. D’Amore, L. Marcellino, and A. Murli

Abstract We focus on segmentation and tracking of left ventricle and atrium
(LVA) deformations in ultrasound images. We propose a fast, reliable and auto-
matic approach to extract the LVA contour during the cardiac cycle. The approach
combines a preliminary speckle reduction -based on non linear coherent diffusion
model- with a motion-aided LVA border segmentation- based on geodesic level set
active contours. A markers-controlled evolution of the segmentation level set surface
is employed as a prior knowledge about the shape of the LVA chamber. The extent
of this result is the deployment of an automatic stopping criterion. Computational
kernels are sparse linear systems solved using GMRES iterative method equipped
with AMG multigrid preconditioner. Experiments on real data are discussed.

1 Introduction

Computer Aided Diagnosis (CAD) is a growing application domain of medical anal-
ysis. In order to improve the diagnostic performance and to reduce the dependence
of human expertise reliable and automatic software tools are strongly required. Here
we are concerned with Echography (ultrasound imaging of the heart), one of the
driving application areas of CAD.

� Related works: Literature on methods for segmenting and tracking the left ven-
tricle and atrium (LVA) deformation is extensive (the reader may refer to [8]
for a complete review). Many techniques uses an a priori anatomical knowledge
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(general shape, location, and orientation of objects) incorporated in the form of
initial conditions and data constraints by using level set models. The first applica-
tion of level set models to 2-D medical data segmentation belongs to Malladi [7]
and Caselles [9]. Level set methods have been applied both to filtering and seg-
mentation of 2-D and 3-D ultrasound and, particularly, RT3DE (Real Time 3-D
Echography) data [3]. Zhou et al. [16] consider LVA shape tracking by combin-
ing predictions with observations. An interesting approach is to use an adaptive
threshold to create a marker-controller filling to closed objects [12].

� The present work: Most of existing efforts do not attempt to tackle segmentation
and motion problems in a joint or simultaneous fashion. Since these two prob-
lems are not independent from each other more consistent results can be achieved
by treating the spatial boundary and the motion tracking problem as a unified pro-
cess. In the present work we propose a level-set formulation of a motion-aided
segmentation. The segmentation model is based on a level set equation where the
edge indicator of the segmented image is obtained using information provided by
the optic flow computation. In addition we use an automatic markers-controlled
evolution for the segmentation surface. A preliminary speckle reduction is per-
formed on each frame of the sequence. In conclusion, the main contribution of
this approach is the exploitation of information provided by the motion field

1. To take into account the presence of subjective contours in the LVA border
segmentation when defining the edge indicator function inside the segmenta-
tion model equation,

2. To automatically determine the initial condition of segmentation model for
each frame,

3. To automatically stop the evolution of segmentation surface, using a set of
markers points.

The paper is organized as follows. In Sect. 2, we introduce the mathematical mod-
els we are going to use. In Sect. 3, we describe the numerical approach and main
computational kernels. Finally, in Sect. 4, results on an in-vivo sequence made of
26 � 300 � 300 (1 cardiac cycle) ultrasound images are presented.

2 The Motion Aided Segmentation Model Equation

Let us give the following definition1:
[The image sequence brightness function]: Let J � < be a bounded interval. Given
t 2 J , let z.t/ � .x.t/; y.t// 2 ˝ , where ˝ D ˝x �˝y � <2 is the image plane.
The image plane ˝ should depend on the acquisition time t . In practice, it is the
same at each t because it refers to the rectangular plane of the image acquisition.

1 For results concerning well posedness, stability and convergence the reader may refer, for
instance, to [11].
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Then, for simplicity of notations, we omit the dependence of ˝ on t . We define the
image sequence on J as the piecewise differentiable function:

I W t 2 J �! z .t/ 2 ˝ �! I .z .t/ ; t/ � I.t/ 2 Œ0; 255�

The starting point of this work is the level set equation based on Riemannian
mean curvature flow [10]: P1 [Left ventricle and atrium border segmentation]. Let
u.�; x.t/; y.t/; t/ denote the segmentation function defined in Q � Œ0; Nscale� �
˝ � J , g.s/ D 1

1CKs2 be the diffusion function and � be the convolution with
the gaussian functionG� . At each t , the following PDE problem describes the LVA
segmentation:

@u

@�
D
p
� C jruj2 div

 
g.jrG� �eI .t/j/ rup

� C jruj2

!
(1)

with zero Dirichlet boundary conditions and u0 as initial condition:

�
u.�; x.t/; y.t/; t/ D 0 � 2 Œ0;Nscale�; .x.t/; y.t// 2 @˝ t 2 J
u.0; x.t/; y.t/; t/ D u0.x.t/; y.t/; t/ .x; y/ 2 ˝ t 2 J:

(2)
g .s/ D 1= �1CKs2� (K > 0/ is the Perona–Malik edge-indicator function,G� is
the Gaussian function. Function u0 is the so called point-of-view surface, i.e., the
initial state of the segmentation function u. A key challenge in many applications
is the placement of the initial contour u0. Since the contour moves either inward
or outward, its initial placement will determine the segmentation that is obtained.
Moreover, to reduce the dependence on a manual inspection it is desired that the
initial contour for each frame of the sequence is automatically selected. We have
performed many experiments to understand the influence of the position of the initial
contour on the segmentation of the LVA chamber as this moves during a complete
cardiac cycle. Finally, we use u0 defined as follows:

Definition 1. (Initial Condition of P1): Let t D t0 be the acquisition time of the
first frame, then:

u0.t0/ D max
iD1;:::;n!i .x.t0/; y.t0// (3)

where:

!i .x.t0/; y.t0// D

8
<̂

:̂

1
j.x.t0/;y.t0//�.xi .t0/;yi .t0//jC1 if .x.t0/; y.t0// 2 Di

1
RC1 if .x.t0/; y.t0// 2 ˝ �Di

(4)
where Di ; i D 1; :::; n are circles of center Ci D .xi .t0/; yi .t0// (focus-points) and
fixed radiusR.
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At subsequent frames (t > t0), u0 has been selected in automatic way using the
functions !i previously introduced. More precisely, 8t > t0, and 8i D 1; : : : ; n are
considered those functions !i such that: 8.x.t/; y.t// 2 Di ;eI .x.t/; y.t// � H

where H D ˛jmax˝I.t/ � min˝I.t/j C min˝I.t/.˛ 2 Œ0; 1�/: The key feature
of the segmentation model that we will employ for the LVA border detection is
the definition of eI in (1) inside the edge indicator function g. As is known, main
difficulties arise in regions in the image corresponding to the so-called subjective
contours. In our case, subjective contours are those corresponding to the horizontal
position of the mitral valve, in those frame where it is open.

We propose to integrate the segmented image with the contour obtained at a
previous time using its motion trajectory.2 More precisely, computation of eI .t/ in
(1) at each t , requires:

1. A preprocessing for speckle-noise reduction,
2. The integration of subjective contours inside the contour to segment.

1. P2 [Speckle reduction]: We use the nonlinear coherent diffusion model proposed
in [1]. Let

IS .x.t/; y.t/; t/ D I.x.t/; y.t/; t/ � �m.x.t/; y.t//C �a.x.t/; y.t//

be the noisy sequence, where �m and �a are multiplicative and additive noise. The
following PDE problem describes the speckle reduction of image sequence I :

@I.�; x.t/; y.t/; t/

@�
D r .DjrI j/ .x; y/ 2 ˝; t 2 J � 	 0

with zero Neummann boundary conditions and IS as initial condition:

�
@I
@n
D 0 � 2 Œ0; N scale�; .x.t/; y.t// 2 @˝; t 2 J

I.0; x.t/; y.t/; t/ D IS .x.t/; y.t/; t/ .x.t/; y.t// 2 ˝ ; t 2 J:
(5)

where D is the diffusion matrix defined as follows:

D D �w1 w2
� ��1 0
0 �2

��
wT1
wT2

�
(6)

w1;w2, are the eigenvectors of the structure matrix J :

J D G� � .rIrIT / D
�
G� � I 2x G� � IxIy
G� � IxIy G� � I 2y

�
(7)

2 During a single cardiac cycle, which lasts approximately 1 s, the heart contracts from end diastole
(ED) to end systole (ES) and expands back to ED. Over this time, Echocg systems can acquire
approximately 25 images of the heart. Because adjacent frames are imaged over a short time period
(approximately 50 ms), the LVA boundaries exhibit strong temporal correlation. Thus, previous
LVA boundaries may provide information regarding the location of the current LVA boundary.
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where �1 and �2 are defined as:

�1 D
(
ˇ �
�
1 � .�1��2/2

s2

�
.�1 � �2/2 � s2 .s; ˇ D const/

0 otherwise:
�2 D ˇ

(8)

2. P3 [Optic flow computation]: We first recall the motion trajectory then, following
[14], we compute the (apparent) motion field (or the so-called optic flow) by impos-
ing that the spatial brightness gradient, does not change along the motion trajectory.
Let ti ; tiC1 2 J , where tiC1 > ti , �t D tiC1 � ti . The motion trajectory of a point
z(t)=(x(t),y(t))2 ˝ is the line (or arc)L, defined by the successive positions of z .t/,
as t moves from ti towards tiC1. The equation for L is:

L W
�
�x D x.tiC1/� x.ti / D �t � u .ti /
�y D y.tiC1/ � y.ti / D �t � v .ti /

where .u .t/ ; v .t// D . d
dt
x.t/; d

dt
y.t// the components of the motion field at each

z .t/ 2 ˝ , are obtained by solving the following PDE system:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

@u
@�
D ˛ � div 	�0.ruruT CrvrvT /ru


 � 2ŒIxxuC IyxvC Itx� � IxxC
�2ŒIxyuC IyyvC Ity � � Ixy

@v
@�
D ˛ � div 	�0.ruruT CrvrvT /rv


 � 2ŒIxxuC IyxvC Itx � � IyxC
�2ŒIxyuC IyyvC Ity � � Iyy

(9)
with zero initial conditions and Dirichlet boundary conditions, and It D @I

@t
, ˛ > 0

is the regularization parameter and �0.s2/ D � C .1��/
2

r
1C s2

�2

.

Now, given tiC1 > ti , and 	 .ti /, the LVA border obtained at time ti , theneI .tiC1/
in (1) is obtained as eI .tiC1/ D IDS .tiC1/ C 	 pre.tiC1/ where 	 pre.tiC1/ D
f.x.ti /Cu.ti /�t; y.ti /Cv.ti /�t/; s:t: .x.ti /; y.ti // 2 	 .ti /g is the prediction
of the position at time tiC1 of the curve 	 .ti / and IDS is the despeckled image
sequence.

In conclusion, the recovering of missing parts of the LVA border is obtained by
combining the image to segment with the contour obtained at a previous time. Using
motion trajectory, we first predict the position of the LVA border at a subsequent
time, then we integrate this information inside the frame to segment.

The overall problem consists of three successive steps: P2, i.e., speckle reduc-
tion, P3, i.e., motion field computation, and P1, i.e., left ventricle segmentation. The
related dataflow is the following: IS .t/ �! IDS .t/ �! .u.t/; v.t// �! eI .t/ �!
	 .t/.



222 D. Casaburi et al.

3 Numerical Approach

Discretization has been performed using a semi-implicit scheme with respect the
scale parameter leading to linear problems at each scale step: nonlinear terms are
treated from the previous scale step while the linear ones are considered on the cur-
rent scale step. In particular, if �� is the scale parameter stepsize, i.e., �� D T

N
,

then for n D 1; 2; : : : ; N �n D n � �� , n D 0; : : : ; N is the grid of the scale
interval Œ0; T �. We use a backward difference for the scale derivative. Concern-
ing the space discretization, we use the AOS (Additive Operator Splitting)[13] and
finite differences for the speckle reduction equation. By splitting the solution into
two separate dimensions and rearrange image (each pixel is then only composed of
the two neighboring pixels), in this case we have to only invert diagonal dominant
tridiagonal matrices. To this aim, we use the LU factorization without pivoting, spe-
cialized for tridiagonal matrices. The accuracy requirement of despeckling (about
2%) allows us to take fully advantage of the efficiency of AOS choosing a step
size sufficiently large (we set �� D 2:2). Linear semi-implicit discretization and
finite differences are employed for the optic flow computation. Finally, taking into
account that the segmentation model equation is a level set equation where discon-
tinuities in the evolving solution is allowed, following [4], we consider as spatial
discretization the complementary volume scheme. Both for optic flow and for seg-
mentation discretization leads to the solution of a linear system where the matrix
is block pentadiagonal with tridiagonal blocks along the main diagonal and diago-
nal blocks along the upper and lower diagonals. We employ the GMRES iterative
method equipped with Algebraic Multigrid preconditioner (AMG) with the FAL-
GOUT -CLJP coarse grid selection [2]. Convergence and stability of the numerical
solution of (1) can be stated in order to guarantee that .un; vn/ is the computed
approximation at step n of the motion vector at scale �n. This follows from the fact
that the system matrix has strong diagonal dominance. This guarantees that u�n.t/
is the approximation of the segmentation function at scale level �n.

Automatic Stopping Criterion of the Segmentation Surface Evolution
For each time t 2 J , an automatic stopping criterion of the semi-implicit scheme
for the segmentation model (1) has been employed by using a set of marker points
and their motion trajectory. These points are used to determine the approximation
of the segmentation surface as �n ! C1. Let P1 D .x1.t/; y1.t//; : : : ; Pm D
.xm.t/; ym.t// 2 ˝ a set of m marker points. Let ıi D fP D .x.t/; y.t// 2 ˝ W
jP � Pi j � rg be m neighborhoods of Pi . The approximation of the segmentation
surface z D u.�n; x.t/; y.t/; t/ as n ! C1, stops at step n if 9. Nx.t/; Ny.t// 2
ıi W u.�n; Nx.t/; Ny.t/; t/ < c; i D 1; : : : ; m where c D 0:5 � Œmax.u.�n// �
min.u.�n//�:

As shown in Fig. 1, marker points are manually selected on the first frame (t D
t0). They are used as prior knowledge about the shape of the LVA chamber. On
subsequent frames, i.e. 8t > t0, their position is automatically updated using their
motion trajectory: 8i D 1; : : : ; m; Pi .ti C�t/ D Pi C .u.ti /�t; v.ti /�t/ where
�t D tiC1 � ti , and tiC1 > ti > t0.
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Fig. 1 On the left, initial position of the markers on frame 0. On the right, position of the markers
on frame 14, as given by the motion field

Fig. 2 From upper left to bottom right the LVA chamber segmentation on frames
3; 9; 15; 19; 22; 25. Despeckling: � D 5:0e � 2, �� D 2:2, Nscale D 7. Segmentation: � D 1:0,
�� D 0:1, Nscale D 46. Optic flow: � D 1:0e � 1, �� D 5:0e � 2, Nscale D 1

4 Results

Experiments have been carried out using PETSc software library [6] integrated with
the package BoomerAMG (of Hypre software library) implementing AMG precon-
ditioners [5]. The computing platform is made of 16 blades (1 blade consists of
2 quad core Intel Xeon E5410@2.33GHz) Dell PowerEdge M600. Our experiments
confirm that AMG is algorithmically scalable: both for P1 and P3 the convergence
factor (per cycle) is very stable at approximately 0.04 for all scales. The setup time
averages roughly 1% of cycle time. Finally, the computational work is O(1) per
scale step. We found that for segmentation and optic flow, the number of steps
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Fig. 3 On the left, the convergence rate of GMRES with AMG preconditioner (“. . . ”) compared
with that obtained using Block Jacobi preconditioner (“- - -”) at Nscale = 10. On the right, the
execution time of the application code versus the core number

of preconditioned GMRES is 3–4. The sequence consists of 26 frames of size
300�300, in Fig. 2 we show those frames related to the aperture of the cardiac valve.
The sequential software runs in about 13 min while the parallel software requires
82 s running on 4 blades (32 cores, i.e., 2 for despleckling, 6 for optic flow com-
putation and 24 for segmentation task) of the Dell computing platform (see Fig. 3).
We obtain a performance gain of 88; 21% compared to sequential time, with a frame
rate per second is 0:034.
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A High Order Finite Volume Numerical Scheme
for Shallow Water System: An Efficient
Implementation on GPUs

M.J. Castro Dı́az, M. Lastra, J.M. Mantas, and S. Ortega

Abstract In this work we present a high order finite volume numerical scheme for
solving the one layer shallow-water system. The numerical solution of this model
is useful for several applications related to geophysical flows, and they impose a
great demand of computing power. As a consequence, extremely efficient high per-
formance solvers are required. In this work we perform a GPU implementation
of the proposed numerical scheme and some computations are made to test the
performance of the implementation.

1 Introduction

Our goal is to efficiently simulate one layer fluids that can be modelled by using a
shallow water system, formulated under the form of a conservation law with source
terms. The numerical solution of this model is useful for several applications related
to geophysical flows: simulation of rivers, channels, dambreak problems, etc. These
simulations impose a great demand of computing power due to the dimensions of the
domain (space and time). As a consequence, extremely efficient high performance
solvers are required to solve and analyze these problems in reasonable execution
times. An high order numerical scheme to simulate shallow water system has been
presented in [2].

Currently, a cost effective emerging architecture exists which is specially indi-
cated to accelerate considerably computationally intensive tasks like the one
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E.T.S. Ing. Informática y Telecomunicaciones, University of Granada, 18071 Granada, Spain
e-mail: mlastra@ugr.es, jmmantas@ugr.es

G. Kreiss et al. (eds.), Numerical Mathematics and Advanced Applications 2009,
DOI 10.1007/978-3-642-11795-4 23, © Springer-Verlag Berlin Heidelberg 2010

227

castro@anamat.cie.uma.es
sergio@anamat.cie.uma.es
mlastra@ugr.es
jmmantas@ugr.es


228 M.J. Castro Dı́az et al.

considered in this paper. Modern Graphics Processing Units (GPUs) are not only
used to render 3D graphics but can also be a cost effective way to speedup the
numerical solution of several mathematical models in science and engineering (see
[10, 11] for a revision of the topic). Modern GPUs offer over 100 processing units
optimized for performing massively floating point operations in parallel [6]. As
a consequence, for several algorithmic structures, these architectures are able to
obtain a substantially higher performance than a powerful CPU.

In [5], a explicit central-upwind scheme is implemented on a NVIDIA GeForce
7800 GTX card to simulate the one-layer shallow-water system and a speedup from
15 to 30 is achieved with respect an implementation on an Intel Xeon processor.
In [8], a first order path conservative Roe type solver has been implemented on
several NVIDIA GeForce cards to simulate the one-layer shallow water system and
a speedup of two orders of magnitude faster than a SSE-optimized CPU version of
the solver for medium-size problems is achieved.

Here, we follow the strategy described in [8] to design an efficient implementa-
tion of the numerical scheme presented in [2] using OpenGL and Cg [3]. We use
an utility library described in [8] which facilitates the mapping from CPU to GPU
and simplifies the description of the GPU program as sequential composition of data
parallel modules (fragment shaders).

2 Mathematical Model: One-Layer Shallow-Water System

The one-layer shallow-system is a system of conservation laws with source terms
which models the flow of a shallow layer of homogeneous fluid that occupies a
bounded subdomain D � R2 under the influence of a gravitational acceleration g.
The system has the following form:

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
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(1)

where h.x; y; t/ 2 R denotes the thickness of the water layer at point .x; y/ at
time t , H.x; y/ is the depth function measured from a fixed level of reference and
q.x; y; t/ D .qx.x; y; t/; qy .x; y; t// 2 R2 is the mass-flow of the water layer at
point .x; y/ at time t .
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Let us denote by
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Let Ji .W / D @Fi

@W
.W /, i D 1; 2 denote the Jacobians of the fluxes Fi ,

i D 1; 2. Given an unit vector � D .�x; �y/ 2 R2, we define the matrix A.W;�/ D
J1.W /�xCJ2.W /�y ; and the vectorsF.W;�/ D F1.W /�xCF2.W /�y , S�.W / D
�xS1.W /C �yS2.W /.

3 High Order Finite Volume Schemes

Let us consider the computational domain D is divided into M discretization cells
or finite volumes,Vi � R2, which are supposed to be closed polygons. Let us denote
by T the set of cells. Hereafter we will use the following notation: given a finite
volume Vi , Ni 2 R2 is the center of Vi , Ni is the set of indexes j such that Vj is a
neighbor of Vi ; �ij is the common edge of two neighbor cells Vi and Vj , and j�ij j
its length; �ij D .�ij;x ; �ij;y/ is the unit vector which is normal to the edge �ij and
points toward the cell Vj . Let us denote by jVi j the area of cell Vi .

In order to obtain a high order numerical scheme for system (1) we consider a
reconstruction operator, i.e., an operator that associates to a given family fWigMiD1 of
values at the cells, two families of functions defined at the edges � 2 �ij ! W ˙ij .�/,
in such a way that, whenever

Wi D 1

jVi j
Z

Vi

W.x/ dx (2)

for some smooth functionW , then W ˙ij .�/ D W.�/CO.�p/; 8� 2 �ij .
We will assume that the reconstructions are calculated as follows: given the

family fWigMiD1 of values at the cells, first an approximation function is con-
structed at every cell Vi , based on the values of Wj at some of the cells close
to Vi (the stencil): Pi .x/ D Pi

�
xI fWj gj2Bi

�
, for some set of indexes Bi . If,

for instance, the reconstruction only depends on the neighbor cells of Vi , then
Bi D Ni [ fig. These approximations functions are calculated usually by means
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of an interpolation or approximation procedure. Once these functions have been
constructed, the reconstructions at � 2 �ij are defined as follows:

W �ij .�/ D lim
x!� Pi .x/; W Cij .�/ D lim

x!� Pj .x/: (3)

Clearly, for any � 2 �ij the following equalities are satisfied: W �ij .�/ D W Cj i .�/
and W Cij .�/ D W �j i .�/.

We suppose that the reconstruction operator satisfies the following properties:

(HP1) It is conservative, i.e., the following equality holds for any cell Vi :

Wi D 1

jVi j
Z

Vi

Pi .x/dx: (4)

(HP2) It is of order p, verifyingW.�/�W ˙ij .�/ D �pgij .�/CO.�pC1/, for any
� 2 �ij , being gij a regular function.

(HP3) It is of order q in the interior of the cells, i.e., if the operator is applied to a
sequence fWig satisfying (2) for some smooth functionW.x/, then Pi .x/ D
W.x/CO.�q/, 8x 2 int.Vi /.

(HP4) The gradient of Pi provides an approximation of order m of the gradient of
W , rPi .x/ D rW.x/CO.�m/, 8x 2 int.Vi /.

Once the reconstruction operator has been chosen, the general expression of a
semi-discrete scheme high order Roe Scheme is the following:

W 0i .t/ D �
1

jVi j

2

4
X

j2Ni

Z

�ij

D�.W �ij .�; t/;W Cij .�; t/;H
�
ij .�/;H

C
ij .�/;�ij / d�

C
Z

Vi

 
S1.P

t
i .x//

@PHi
@x

.x/C S2.P ti .x//
@PHi
@y

.x/

!
dx

#
;

(5)
where P ti are the approximation functions corresponding to the cell values Wi .t/,
and PHi is the approximation function corresponding to the cell values of the given
bathimetry.W ˙ij .�; t/, Hi̇j .�/ are given, respectively, by

W �ij .�; t/ D lim
x!� P

t
i .x/; W Cij .�; t/ D lim

x!� P
t
j .x/;

H�ij .�/ D lim
x!� P

H
i .x/; HCij .�/ D lim

x!� P
H
j .x/:

D�.WL;WR;HL;HR;�/ D F.WL;�/C P�LR .ALR.WR �WL/
�SLR.HR �HL// : (6)
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where in the particular case of system (1), we define

ALR D

2

664

0 �x �y

.�Nu2x C Nc2/�x � Nux Nuy�y 2Nux�x C Nuy�y Nux�y
�Nux Nuy�x C .�Nu2y C Nc2/�y Nuy�x Nux�x C 2Nuy�y

3

775 ;

SLR D
�
0; Nc2�x; Nc2�y

	T
:

Here:

NcD
q
g NhI Nu˛ D

p
hLuL;˛ C

p
hRuR;˛p

hL C
p
hR

; ˛ D x; yI Nh D hL C hR
2

: (7)

P�LR D
1

2
KLR � .I � sgn.LLR// �K �1

LR ; (8)

where LLR is the diagonal matrix whose coefficients are the eigenvalues of ALR,
and KLR is a matrix whose columns are associated eigenvectors. Finally sgn.LLR/

is the diagonal matrix whose coefficients are the sign of the eigenvalues of the matrix
ALR.

The previous numerical scheme provides an approximation of order at least ˛ D
min.p; q;m/ for regular solutions of system (1) (see [2] for more details).

The high order extension considered in this work is based on the third order
bi-hyperbolic reconstruction introduced in [12] that generalizes the 1d reconstruc-
tion presented in [9] (see also [13]). The time-stepping used for the third order
scheme is based on an optimal TVD Runge–Kutta method (see [4]). The integral
terms have been approximated by means of a Gaussian quadrature of order three.
Finally, in order to obtain a high order well-balanced numerical scheme for the one-
layer shallow water system, the reconstruction procedure is applied to the variables
' D h�H , qx , qy and H , recovering h by setting h D ' CH . Due to the explicit
character of the numerical scheme, the usual CFL condition has to be imposed (see
[2] for details).

4 Obtaining of a GPU Implementation

We have designed a data parallel numerical algorithm from the mathematical
description of the numerical scheme. Initially, the finite volume mesh must be con-
structed from the input data with the appropriate setting of initial and boundary
conditions.Then the time stepping is performed by applying a third order Runge–
Kutta TVD method, consisting on three steps. At each step, the spatial discretization
described in (5) must be performed as follows:
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1. Reconstrucion and integral volume computation: First a reconstruction procedure
at each cell must be performed to define the functions P ti ./ and PHi ./ at each
cell. Also, the integral volume

Z

Vi

 
S1.P

t
i .x//

@PHi
@x

.x/C S2.P ti .x//
@PHi
@y

.x/

!
dx;

is computed using a third-order gaussian quadrature formula.
2. Edge-based calculations: The integral boundary term

Z

�ij

D�.W �ij .�; t/;W Cij .�; t/;H
�
ij .�/;H

C
ij .�/;�ij / d�;

must be computed at each edge of the mesh. A third-order gaussian quadrature
formula is also used. The vector D�.W �

ij;l
;W C

ij;l
;H�

ij;l
;HC

ij;l
;�ij / 2 R3, l D

1; � � � ; r must be computed at each quadrature point (r D 2 if the third order
guassian quadrature formula is used). The computation of these contributions can
be computed independently for each edge and it is the most costly calculation in
the numerical algorithm because it includes several 3 � 3 matrix computations.
Moreover, we only need the data corresponding to the reconstructions of the
variables at the volumes Vi and Vj , therefore these computations present a high
arithmetic intensity and locality. The value �tij;l D !l j�ij j k L n

ij;l
k1 must be

computed and added to the partial sums associated to each cell (�ti and �tj ).
3. Computation of the local �t for each volume: For each volume Vi , the value

of �ti is modified to compute the local �t per volume. In the same way, the
computation for each volume can be performed in parallel.

4. Computation of�tn: The minimum of all the local�t values previously obtained
for each volume must be computed. This phase can also be parallelized if the
minimum is calculated following a recursive decomposition approach [7].

5. Computation of W nC1;s
i : The n C 1; sth state of each volume must be approxi-

mated from the nth and the nC 1; s � 1th states using the data computed at the
previous phases. This phase can also be completed in parallel.

We can make the following remarks from the description of the parallel algorithm:
the computation steps required by the problem addressed here can be classified
into two groups: computations associated to edges and computations associated
to volumes. The scheme presents a high arithmetic intensity and the computation
exhibits a high degree of locality. The scheme exhibits a high degree of data par-
allelism because the computation at each edge/volume is independent with respect
to the computation peformed to the rest of edges/volumes. The remarks indicate
that this problem seems suitable for being implemented on modern graphics pro-
cessing units. In the numerical scheme presented, the volume state is represented
by a 3-tuple and all the operations involve operations between 3-tuples and 3 � 3
matrices which makes it even more suited for a GPU based computing platform.
The only drawback of using GPUs is the need to adapt the computational process
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to the graphics processing pipeline and make some mappings between the problem
domain and this pipeline.

5 Numerical Test

In order to test the solver, we have considered a circular dam-break problem in a
square domain Œ�1; 1��Œ�1; 1�with a depth functionH.x; y/ D 1:0�0:5e�.x2Cy2/.
As initial condition we set:

h.x; y; 0/ D
8
<

:

H.x; y/C 0:3 if x2 C y2 � 1
8

H.x; y/ otherwise,
qx.x; y; 0/ D qy.x; y; 0/ D 0:

Table 1 CPU time (in seconds)
N. Cells OpenMp 9800 GTX GTX260

2,500 3:00 1:08 1:05

10,000 10:78 2:13 1:93

40,000 74:50 6:44 4:77

160,000 589:36 36:66 20:21

640,000 4967:2 277:66 142:94

2,560,000 400,10 2179:6 1107:7
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Fig. 1 Speedup vs. number of cells for an OpenMp parallel implementation (four cores), GPU
implementation using 9800 GTX and GTX260 graphics cards
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Fig. 2 Circular dam-break problem over a non-flat bottom topography: free surface at t D 1 s.
First order Roe method (left). High order Roe method (right). 400 � 400 mesh

Six uniform meshes of the domain, Qk; k D 0; : : : ; 5, are constructed such that
the number of volumes of mesh Qk is given by 22k � 2:5 � 103; k D 0; : : : ; 5. The
numerical scheme is run in the time interval Œ0; 1�. The CFL parameter is � D 0:9

and wall boundary conditions are considered (q � � D 0). Table 1 shows the CPU
times for an optimized CPU implementation of a Quad-core Intel Xeon Nocona
2.66 Ghz with emt64 extensions, using the SSE CPU units through the use of the
Intel Performance Primitives 4.1 (see [1]), for the GPU implementation on a Nvidia
GeForce 9800 GTX and on a Nvidia GeForce GTX260. The CPU reduction has
been dramatically reduced (see Table 1). In fact a speedup of approximately 140 is
achieved for meshes of practical interest using GTX260 card (see Fig. 1). Moreover,
we have checked that the use of single precision arithmetic of GPU does not affect
in a essential manner to the quality of the numerical solution (see Fig. 2)
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1. Castro, M.J., Garcı́a-Rodrı́guez, J.A., González-Vida, J.M., Parés, C., Solving shallow-water
systems in 2D domains using Finite Volume methods and multimedia SSE instructions,
J. Comput. App. Math., 221: 16–32, 2008

2. Castro, M.J., Fernández-Nieto, E.D., Ferreiro, A.M, Garcı́a-Rodrı́guez, J.A., Parés, C., High
order extensions of Roe schemes for two dimensional nonconservative hyperbolic systems,
J. Sci. Comput., 39: 67–114, 2009



A High Order FV Numerical Scheme on GPUs 235

3. Fernando, R., Kilgard, M.J., The Cg Tutorial: The Definitive Guide to Programmable Real-
Time Graphics, Addison-Wesley, MA, 2003

4. Gottlieb, S., Shu, C.W. Total variation diminishing Runge–Kutta schemes. Mat. Comp., 67:
73–85, 1998

5. Hagen, T.R., Hjelmervik, J.M., Lie, K.-A., Natvig, J.R., Ofstad Henriksen M., Visual simula-
tion of shallow-water waves, Sim. Modelling Pract. Th., 13: 716–726, 2005

6. http://www.nvidia.com
7. Kumar, V., Grama, A., Gupta, A., Karypis, G., Introduction to Parallel Computing, Benjamin,

MA, 2003
8. Lastra, M., Mantas, J.M., Ureña, C., Castro, M.J., Garca, J.A., Simulation of shallow-water

systems using graphics processing units. Accepted on Math. Comp. Simul., 80(3): 598–618,
2009

9. Marquina, A. Local piecewise hyperbolic reconstruction of numerical fluxes for non linear
scalar conservation laws. SIAM, J. Sci. Comput., 15(4): 892–915, 1994

10. Owens, J.D, Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.,
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Spectral Analysis for Radial Basis Function
Collocation Matrices

R. Cavoretto, A. De Rossi, M. Donatelli, and S. Serra-Capizzano

1 Abstract and Outline of the Paper

The aim of this paper is to provide tools and results for the analysis of the linear
systems arising from radial basis function (RBF) approximations of partial differ-
ential equations (PDEs), see e.g., [1,9]. Informally, a radial function �.x/ WRn!R
is a function of the Euclidean norm jjxjj of x, i.e., �.x/ D �.jjxjj/, for �.t/ WR!R.
Examples are functions of the following form

p
t2 C c2, multiquadric (MQ),

1=
p
t2 C c2, inverse multiquadric (IMQ), e�

t2

c2 , Gaussian. In this context c is the
shape parameter, whose value plays a role in modeling problems with various
specific features. At least numerically, it is evident that the precision of the approx-
imation procedures based on RBFs is very high. In fact, if h denotes the maximal
step size, then the approximation error behaves like O.�c=h/ for the MQ and like
O.�

p
c=h/ for the IMQ and Gaussian, where � is a positive parameter, strictly less

than one, and independent of h. The price that has to be paid concerns the increas-
ing ill-conditioning of the related linear systems in which a growth of the order of
e�c=h is observed at least for large values of c=h, with � being a positive constant
independent of h and also of the shape parameter c. We are interested in the spectral
behavior of the resulting matrices, and especially in the extremal behavior (condi-
tioning) and in the global distribution results: such a study is crucial for designing
fast and accurate solution methods. A first important step in understanding the spec-
tral behavior of the considered matrices was done in [3], where the remarkable
link with Toeplitz sequences generated by a symbol was exploited. Here we give
a more precise analysis than in [3], by showing that for some choices of RBF, e.g.,
IMQ, Gaussian, and for some values of the parameter c=h, the conditioning is not
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exponential, but grows mildly as n2. Furthermore, the spectral analysis is extended
from the Toeplitz component to the whole matrix-sequence, by including the bound-
ary conditions term, and some insights on the multidimensional setting are given.
The paper is organized as follows. In Sect. 2 we state the collocation technique
for the Poisson problem by emphasizing the linear algebra viewpoint. In Sect. 3
we recall spectral properties of Toeplitz matrix-sequences generated by a symbol.
In Sect. 4 we give a rigorous explanation of some numerics reported in [3] and
we refine the previous results studying the behavior of extremal eigenvalues (con-
ditioning) also in the two-dimensional case. In Sect. 5 we obtain global spectral
distribution results for the complete matrix-sequence, taking into account also the
boundary conditions.

2 The Linear Algebra Problem from RBF

For n positive integer, let x0 D 0 < x1 < � � � < xn < xnC1 D 1 and define
�.x/ D �.jxj/, where �.t/ is any function in the class considered in the first section.
We are looking for an approximation to the solution in the vector space spanned by
the functions �.x � xi /, i D 0; 1; : : : ; n C 1. This yields a linear system whose
coefficient matrix AnC2 D .ai;j /i;jD0;nC1 2 R.nC2/�.nC2/ is such that a0;j D
�.x0 � xj /, anC1;j D �.xnC1 � xj / for j D 0; : : : ; nC 1 and ai;j D �00.xi � xj /
for i D 1; : : : ; n, j D 0; : : : ; nC1. Let us denote by Tn D .�00.xi �xj //i;jD1;n the
submatrix of AnC2 obtained by removing its first and last row and column. When
the set xi D ih, i D 0; : : : ; n C 1, for h D 1=.n C 1/, forms a grid of equally
spaced points in the interval Œ0; 1� the matrix Tn D .�00..i � j /h// is a symmetric
Toeplitz matrix, i.e., its entries are function of i � j . Moreover AnC2 is a rank-
2 correction to a symmetric Toeplitz matrix. In [3] the authors provided explicit
asymptotic estimates, as function of c=h to the condition number�.Tn/. According
to [3], there exists a function �.g/ of g such that for any n it holds �.Tn/ < �.g/,
where equality is reached only for n!1. Furthermore, an interesting asymptotical
estimate 	.g/ of �.g/, for g !1, was proved:

�.g/ � 	.g/ D

8
ˆ̂<

ˆ̂:

.e�/g=.

p
2g/ for the MQ,

.e2�/g=.2e2
3=2g3=2/ for the IMQ,

.e�
2
/g

2
=.2e
2g2/ for the Gaussian.

(1)

Here �.x/ �  .x/ if limx!1 �.x/= .x/ D 1, while �.x/ �  .x/ means
asymptotical equivalence that is the existence of two positive constants r and R
independent of x, such that r�.x/ �  .x/ � R�.x/ for every x large enough.
From the numerical experiments performed in [3], the above asymptotic bounds are
very strict even for small values of g when �.g/ is small, while the quantity �.g/
becomes an extremely pessimistic upper-bound when �.g/ is moderate (say e.g.,
g D 3; 4). For larger values of g the picture changes again since the conditioning
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becomes exponential in g, but almost independent of n. However in [3], an impor-
tant question was not rigorously answered: in which cases the quantity �.g/ is a
faithful approximation (and not only a mere upperbound) of the condition number
�.Tn/? In which case, if not numerically, �.g/ captures at least the asymptotic order
of the conditioning? A rigorous explanation of some of these phenomena is given
in Sect. 4. In the two-dimensional case, it can be easily verified that the series asso-
ciated with the IMQ and the Gaussian functions are convergent so that the Toeplitz
matrix machinery can be in principle applied for these two classes of radial func-
tions, by taking into consideration the associated continuous symbol. The challenge
concerns the case of MQ radial functions where the symbol is discontinuous at
x D 0, y D 0 (it diverges to C1), but it seems to be a smooth function in the
rest of the domain. It should be recalled that the asymptotical spectral behavior of
Toeplitz sequences is well understood far beyond the continuous setting, since the
symbol is required to be simply Lebesgue integrable.

3 Toeplitz Matrices and Spectral Properties

Let f be a Lebesgue integrable function defined on .0; 1/d and taking values in
C. Then, for d -indices r D .r1; : : : ; rd /, j D .j1; : : : ; jd /, n D .n1; : : : ; nd /, e D
.1; : : : ; 1/, 0 D .0; : : : ; 0/, the Toeplitz matrix Tn.s/ of size On� On, On D n1 �n2 � � �nd ,
is defined as Tn.s/ D ŒOsr�j �n�er;jD0; where Osk are the Fourier coefficients of s defined

by equation OsjDOs.j1;:::;jd /.s/D
R
Œ0;1�d

s.t1; : : : ; td /e
�i2�.j1t1C���Cjd td / dt1 � � �dtd ,

with i2 D �1 and integers j` such that �1 < j` <1 for 1 � ` � d . The function
s.x/ is called symbol. If s.x/ is real valued then Os�k is the conjugate of Osk so that
Tn is Hermitian; if, in addition, s.x/ is symmetric around the axis y D 1=2, then Tn
is real symmetric. For the following result see e.g., [4] and references therein.

Theorem 1. If s.x/ � 0 almost everywhere and not identically constant over Œ0; 1�
then Tn is positive definite for any n and its eigenvalues belong to .inf s.x/; sup
s.x//, where inf and sup are intended up to zero Lebesgue measure sets. More-
over, �.n/1 is a decreasing sequence converging to inf s.x/, and �.n/n is an increasing

sequence converging to sup s.x/, where �.n/1 and �.n/n are the minimal and the
maximal eigenvalues of Tn, respectively. Furthermore, if s.x/ is locally twice dif-
ferentiable around its infimum points with positive second derivative in at least one
of them, then �.n/1 � inf s.x/ � cn�2, with c positive constant independent of n.
Analogously, if s.x/ is locally twice differentiable around its supremum points with
negative second derivative in at least one of them, then sup s.x/ � �.n/n � cn�2,
with c positive constant independent of n. Therefore the spectral condition number
�.Tn/ D �.n/n =�

.n/
1 is an increasing sequence converging to sup s.x/= inf s.x/.

The above result is true also for n � n block Toeplitz matrices Tn;m with m � m
Toeplitz blocks associated with a symbol s.x; y/ 2 L1.Œ0; 1�2/. Concerning the
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case of matrix-sequences an important notion is that of spectral distribution in the
eigenvalue sense, linking the collective behavior of the eigenvalues of all the matri-
ces in the sequence to a given function (or to a measure). The notion goes back to
Weyl and has been investigated by many authors in the Toeplitz and Locally Toeplitz
context (see [4, 8]). For any function F defined on C and for any m � m matrix
A, the symbol ˙�.F;A/ stands for the mean ˙�.F;A/ WD 1

m

Pm
jD1 F

�
�j .A/

�

with �j .A/, j D 1; : : : ; m, denoting the eigenvalues of A. Let C0.C/ be the set
of continuous functions with bounded support defined over the complex numbers,
d a positive integer, and � a complex-valued measurable function defined on a set
G 	 Rd of finite and positive Lebesgue measure �.G/. Here G will be often equal
to .0; 1/d so that ei2�G D Td with T denoting the complex unit circle. A matrix
sequence fAkg is said to be distributed .in the sense of the eigenvalues/ as the pair
.�;G/, or to have the distribution function � , which is defined by fAkg �� .�;G/,
if, 8F 2 C0.C/, the limit relation limk!1˙�.F;Ak/ D 1

�.G/

R
G F.�.t// dt; t D

.t1; : : : ; td / is satisfied. For multilevel Toeplitz sequences fTn.s/g, with s inte-
grable d variate symbol, the eigenvalues are not explicitly known, but we know
the distribution at least when s is real valued, see [8], that is fTn.s/g �� .s;Qd /,
Q D .0; 1/.

4 A Rigorous Interpretation of Some Numerics

With reference to Sect. 2, we observe that for the considered RBFs s.x/ is a smooth
positive function (see [3]) so that, when applying Theorem 1, instead of inf and sup
we use min and max. In [3] the ratio �.g/ D max s.x/=min s.x/ and its asymp-
totic estimate 	.g/ have been computed (see (1)), for g D 1; 2; 3; 4, in the case of
MQ, IMQ and Gaussian function, respectively. The results of this computation are
reported in Table 1.

The asymptotic estimates are very precise even for small values of g. However
the main interest relies in the evaluation of the actual condition number of Tn D
Tn.s/. Therefore, we have to compare the values of 	.g/ with the actual condition
numbers of the Toeplitz matrices Tn for several values of n. Table 2 reports the
spectral condition number� D �.Tn/ of the Toeplitz matrix Tn, for different values
of n in the case g D 1, g D 2, respectively. It is interesting to point out that in the
MQ case with g D 1; 2 and IMQ case with g D 1, the asymptotic bounds are

Table 1 Values of �.g/ D max s.x/=min s.x/ and of its asymptotic estimate 	.g/

MQ IMQ Gaussian

g �.g/ 	.g/ �.g/ 	.g/ �.g/ 	.g/

1 4.73 5.21 8.4 6.5 4.1e2 3.6e2
2 8.1e1 8.5e1 1.2e3 1.2e3 6.5e14 6.5e14
3 1.5e3 1.6e3 3.4e5 3.6e5 7.8e35 7.8e35
4 3.1e4 3.2e4 1.2 e8 1.2 e8 4.4 e65 4.4e65
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Table 2 Values of the spectral condition number �.Tn/ for different values of n and g

n MQ IMQ Gaussian
g D 1 g D 2 g D 1 g D 2 g D 1 g D 2

20 4.6 72.6 5.7 6.3 66 246
50 4.7 78.8 7.5 19.0 217 337

100 4.7 80.1 8.1 52.3 338 400
200 4.7 80.4 8.3 147 395 1543
400 4.7 81.0 8.3 375 413 6069

roughly reached for relatively small values of n whereas for the Gaussian case and
for the IMQ with g D 2 the values of �.Tn/ are far from the asymptotic value even
for moderately large values of n. The explanation relies completely in Theorem 1.
Indeed the conditioning is given by

max s.x/ � c1=n2
min s.x/C c2=n2 ; (2)

with c1 and c2 positive constants independent of n. Hence the approximation
max s.x/=min s.x/ is numerically accurate when min s.x/ is far away from zero,
but it is not correct when, for larger values of g, the minimum of s.x/ exponen-
tially approaches zero. In that case a more reasonable approximation is given by
n2 � max s.x/=c2, i.e., by approximating min s.x/ with zero and by neglecting the
term c1=n

2 since max s.x/ is positive and dominating. In reality the columns g D 2
in Table 2 for IMQ and Gaussian show exactly the predicted growth: when the size
n doubles, the value of the conditioning grows by a factor 4, which is coherent with
the given guess of an asymptotic growth proportional to n2. When g becomes larger
than 2, the surprise is that we observe another change in the picture. The condi-
tioning becomes extreme: we really appreciate the exponential growth of max s.x/

min s.x/ ,
but there is no longer dependency on n. How to explain this phenomenon? The rea-
son relies again in formula (2). We recall that Kac, Murdoch, and Szegö gave the
expression of c2 as the second derivative of s in the minimum point which has to
be positive by local convexity. Therefore the explanation of the latter phenomenon
could be given in terms of c2 D c2.g/: if c2.g/ is positive but rapidly converging
to zero as a function of g, then the quantity max s.x/

min s.x/ really captures the conditioning
of Tn. In other words, the observed behavior can be explained again by formula (2)
but we need to show that at the minimum point not only the first derivative is zero
but the second derivative is a very small positive number. Unfortunately, as reported
in Table 3, the latter statement is completely false in the IMQ and Gaussian setting,
while the desired behavior is observed for the MQ radial basis functions (see also
Fig. 1). However, concerning IMQ and Gaussian RBFs, for g � 3 it becomes clear
from Fig. 1 that x D 0 is not the only minimal point, at least numerically. A fur-
ther minimal point shows up at x D 0:5 and the function has locally the expected
behavior. In fact, around x D 0:5, the graph of the function becomes flatter and
flatter as g increases. This visual evidence is supported also by the numerical values
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Table 3 Case 1D – Values of s00.x/ for the MQ, IMQ and Gaussian functions

RBF s00.x/ g D 1 g D 2 g D 3 g D 4

MQ s00.0:5/ 1:2211 � 10C1 3:3383 � 10C0 4:1208 � 10�1 3:7203 � 10�2

IMQ s00.0/ C1 C1 C1 C1
Gaussian s00.0/ 7:1034 � 10C1 1:3995 � 10C2 2:0992 � 10C2 2:7989 � 10C2

MQ IMQ Gaussian

Fig. 1 Case 1D – Graph of s.x/ for g D 1; 2; 3; 4

Table 4 Case 1D – Values of s.x/, s0.x/ and s00.x/ for the IMQ function

IMQ g D 1 g D 2 g D 3 g D 4

s.0:5/ � s.0/ 1:0163 � 10C0 3:6406 � 10�2 1:4040 � 10�3 7:2263 � 10�5

s0.0:5/ 0 0 0 0

s00.0:5/ 5:1521 � 10C0 3:0658 � 10C0 3:1383 � 10�1 2:3285 � 10�2

Table 5 Case 1D – Values of s.x/, s0.x/ and s00.x/ for the Gaussian function

Gaussian g D 1 g D 2 g D 3 g D 4

s.0:5/ � s.0/ 1:4799 � 10C0 1:8096 � 10�3 1:1907 � 10�8 5:0081 � 10�16

s0.0:5/ 0 0 0 0

s00.0:5/ 9:9590 � 10C0 2:1205 � 10C0 8:3464 � 10�5 1:1702 � 10�11

of s.0:5/ � s.0/, s0.0:5/, and s00.0:5/ reported in Tables 4 and 5, where it becomes
evident that x D 0:5 is a further point of local minimum (numerically global) with
the desired features.

The value of the second derivative at x D 0:5 in our setting shows that c2.g/,
as a function of g, rapidly collapses to zero exponentially and therefore for larger
g, the expression in the denominator min s.x/ C c2=n

2 can be approximated by
min s.x/ since c2 collapses to zero as min s.x/ but the division by n2 makes it
negligible. Furthermore, the quantity max s.x/ � c1=n2 can be approximated as
usual by max s.x/ since this maximum is always well separated from zero. In con-
clusion in this setting, for g � 3, the true approximation of the conditioning is
given by max s.x/

min s.x/ which is extremely high with respect to g, but essentially con-
stant with respect to n. Both in 1D and 2D, as n tends to infinity, the values of
minimal and maximal eigenvalues tend to some fixed values. These quantities can
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be considered an accurate approximation of the infimum and supremum of the sym-
bol. The only exception is observed in the 2D case for MQ radial basis functions
where, as n doubles also the value of the maximal eigenvalue approximately dou-
bles. This exceptional behavior is not a surprise since the symbol defined in this case
is unbounded at x D 0 or y D 0. Indeed for n D m and setting the real size of the
matrix Tmn isN D mn, �max.Tmn/ grows as N 0:52. The latter fully agrees with the
Riemann-Lebesgue lemma for which we expect �max.Tmn/ D o.N /. Therefore we
have an indication that the symbol s 2 L1.Œ0; 1�2 and that the singularity at .0; 0/ is
of the type .x2 C y2/�˛ with ˛ close to 0:52.

5 Spectral Distribution of the Complete Matrix-Sequence

By the Szegö distribution result we know that fTn.s/g �� .s;Q/ and fTmn.s/g ��
.s;Q2/withQ D .0; 1/ and we would like to deduce the same distribution result for
the real sequences fAng and fAmng arising in dD RBF collocation, where the real
collocation matrix is a rank 2 correction of Tn.s/ in the case of d D 1 and is a rank
2n correction when d D 2 with n D m. We introduce the notion of approximating
class of sequences (a.c.s.) and we give a theorem for dealing with this concept (see
[5–7]). Suppose a sequence of matrices fAkg of increasing size dk is given. We say
that ffBk;mg W m 2 NCg, Bk;m of size dk , is an approximating class of sequences
(a.c.s.) for fAkg if, for all sufficiently large m 2 N , the following splitting holds:
Ak D Bk;m CRk;mCNk;m for all k > km, with rank Rk;m � dk c.m/, kNk;mk �
!.m/, where k�k is the spectral norm (maximal singular value), km, c.m/ and !.m/
depend only on m and, moreover, limm!1 !.m/C c.m/ D 0.

Theorem 2. [7] Let ffBk;mg; m 2 NCg be an a.c.s. for fAkg (Ak 2 Mdk
.C/)

such that Ek;m D Nk;m C Rn;m, Bk;m are Hermitian, dk is increasing with k,
and fBk;mg �� .hm; G/, 0 < �.G/ < 1, limm!1 hm D h in measure on G,
with supm supk kBk;mk D eC , supm supk kEk;mk D bC , where eC , bC are positive
constants. Moreover, kEk;mk1 � c.m/dk with c.m/ ����!

m!1 0 (k � k1 being the trace

norm, see [2]). Then h is real valued and fAkg �� .h;G/.
Denoting by Bn the rank 2 correction matrix associated with the boundary con-
ditioning, we find kBnk1 D

p
�1 C

p
�2, where �1, �2 are the only nonzero

eigenvalues of BnBTn . For all the RBF here considered, it is possible to prove that
the spectral norm of Bn is infinitesimal with respect to n. Moreover, the numer-
ics inform us that kBnk1 � 1=n˛ where ˛ D 1=2 for the MQ RBF and ˛ D 2

when considering IMQ and Gaussian RBF. We just observe that the very same cal-
culations give the desired bounds also for d D 2. Therefore Theorem 2 leads to
fAng �� .s;Q/ and fAmng �� .s;Q2/, respectively, that is the same spectral
distribution of the Toeplitz counterparts.
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Finite Element Solution of the Primitive
Equations of the Ocean by the Orthogonal
Sub-Scales Method

Tomás Chacón Rebollo, Macarena Gómez Mármol,
and Isabel Sánchez Mu Qnoz

Abstract This paper introduces a method for the numerical solution of steady
Primitive Equations of the Ocean. This is an adaptation of the Orthogonal Sub-
scales – Variational Multiscale Method, using conforming finite elements. We
choose this method on one hand because it is a stabilized method, thus provid-
ing a low-cost and accurate discretization. On another hand, because it also is a
LES turbulence model, so no further turbulence modeling is needed. We perform a
numerical analysis of stability and convergence by means of representation of sta-
bilizing terms in spaces of bubble finite elements. In particular, we give an original
proof of the inf-sup condition to estimate the surface pressure. We present some
numerical experiments for 2D flows that confirm the theoretical expectations.

1 Introduction

The turbulent nature of oceanic flows at large space scales makes necessary the
derivation of specific turbulence models (Cf. [1]) to perform their numerical simula-
tion. Standard LES (Large-Eddy Simulation) numerical turbulence models are based
upon two modeling steps: Derivation of continuous turbulence model, and numerical
discretization of these models. The first step is performed by some kind of averag-
ing of turbulence effects, without a clear meaning of the nature of the mean flow
modeled. Moreover, many of these models (e.g., two-equations turbulence models,
frequently used), are mathematical objects more singular than the Navier–Stokes
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equations. So, their numerical simulation is subject to severe stability restrictions,
requiring frequent computing tricks (Cf. http://www.gotm.net/index.php).

The Orthogonal Subscales (OSS) Method (Cf. [3]) is a method of the family
of Variational Multiscale Method, recently introduced, that is proving to provide a
direct numerical modeling of turbulence, with clear conditions of applicability, and
clear meaning of the numerical solution provided.

We address in this paper the numerical solution of the Primitive Equations of the
Ocean by OSS Method. The Primitive Equations are one of the standard models in
Geophysics for oceanic flows at large space scales. This is a first step towards the
testing of the abilities of this modeling to simulate the turbulence effects in Oceanic
flows.

In this paper we analyze how to apply the OSS modeling to the linearized Prim-
itive Equations, and propose a model. We next analyze the stability and accuracy
of this model. We are considering general domains with depth possibly vanishing,
so we cannot apply the regularity analysis performed by Ziane, Titi and co-workers
(Cf. [4, 5]).

The paper is organized as follows: The Primitive Equations are introduced in
Sect. 2. The numerical approximation by OSS is derived in Sect. 3, and its stability
and convergence analysis is presented in Sect. 4. Finally, some numerical tests for
2D flows, with good agreement with the theoretical expectations, are presented in
Sect. 5

2 Continuous Problem

We shall consider the steady linearized Primitive Equations in d space dimen-
sions (d D 2 or 3). Let us consider a depth function D > 0, defined on a
(d-1)-dimensional bounded domain !. Let us consider the domain

˝ D f.x; z/ 2 Rd ; x 2 !; �D.x/ < z < 0g; ! � Rd�1

with boundary @˝ D �s [ �b , where �s D ! � f0g is the sea surface, and �b D
@˝ n �s is the ocean bottom. Consider a velocity field a W N̋ ! Rd with free
divergence. We set the boundary problem

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

Obtain .y; yv/ W ˝ 7! Rd Velocity
and P W ˝ 7! R Pressure
a � ry � ��y CrHP D f in ˝
@vP D ��g in ˝
r � .y; yv/ D 0 in ˝

yj�b
D 0; �

@y

@n
j�s
D �w; yv � nvj�b

D 0; yvj�s
D 0:
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where f is a source term, and �w is the surface wind tension. For simplicity, we
include in f effects due to Coriolis force and density variations. The full Prim-
itive Equations, including those terms, have the same mathematical nature of the
one considered. So, we are considering a simplified model of linearized Primitive
Equations, that still include the main mathematical difficulties. In the model above,
in addition to the source term, the flow is also forced by the surface wind stress.
We include the “rigid-lid” assumption: yv D 0 at surface z D 0. This hypothesis is
acceptable for large space scales.

We shall consider a reduced formulation, that only include the horizontal velocity
and the surface pressure:

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

Obtain y W ˝ 7! Rd�1 Horizontal velocity
and p W ! 7! R Surface pressure
a � ry � ��y CrHp D f in ˝
rH � < y >D 0 in !

yj�b
D 0; �

@y

@n
j�s
D �w

(1)

where

< y > .x/ D
Z 0

�D.x/
y.x; s/ds:

The condition rH � < y >D 0 is equivalent to yv D 0 at surface. Mathematically, it
is a restriction similar to the free divergence, whose associated Lagrange multiplier
is the surface pressure. The full pressure and the vertical velocity may be recovered

by P.x; z/ D p.x/C g
Z z

0

�.x; s/ds, yv.x; z/ D
Z 0

z
rH � y.x; s/ ds.

When a 2 H 1.˝/d�1 � L2.˝/, f 2 L2.˝/ and �w 2 H 1=2.�s/, problem (1)
admits at least a weak solution .y; p/ 2 H 1

b
.˝/d�1 � L3=20 .˝; @3/, satisfying

B.y; pIw; q/ D F.v/; 8.w; q/ 2W1;3
b
.˝/d�1 � L20.˝; @3/ (2)

with B.y; pIw; q/ D .a � ry;w/ C �.ry;rw/ � .rH � w; p/ C .rH � y; q/,
F.v/ D .f; v/C .�w;w/�s

; where the spaces are defined by

H 1
b .˝/ D fy 2 H 1.˝/; yj�b

D 0g; W1;3
b
.˝/d�1 D fw 2 W 1;3.˝/;wj�b

D 0g;
Lr0.˝; @3/ D fq 2 Lr .˝/; @3q D 0;

Z

˝

q D 0g:

Equation (2) is a Petrov–Galerkin formulation where the test functions have more
regularity than the unknown. This is due to the lack of regularity of the vertical
velocity. The solution depends continuously on the data:

�kryhkL2.˝/ C kpkL3=2.˝/ � .1C kakLd .˝//.kf kL2.˝/ C k�wkH1=2.�s/
/;
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3 Discrete Problem

We derive our discretization by the Variational Multiscale procedure. To describe it,
let us introduce the condensed notation u D .y; p/, v D .w; q/, U D H 1

b
.˝/d�1 �

L
3=2
0 .˝; @3/, V D w3d�1 �L20.˝; @3/. Consider a discrete subspace Uh of U , and

the decomposition U D Uh
LeU , V D Uh

LeV , where eU D U?
h
\ U and eV D

U?
h
\ V are the sub-scale spaces (U?

h
is the orthogonal space to Uh in L2.˝/d ).

We decompose u D uh C Qu and v D vh C Qv with obvious meaning. Formulation (2)
is equivalent to

.P /

�
B.uh; vh/C B.Qu; vh/ D L.vh/; 8vh 2 Uh;
B.Qu; Qv/ D L.Qv/� B.uh; Qv/; 8Qv 2 eV (3)

The general VMS procedure consists in approximately solving the equation for Qu,
and inserting the solution in the first one. This provides a modeled equation for the
resolved scales uh. To approximate the second equation, the standard VMS proce-
dure writes it as hL .Qu/; Qvi D hR.uh/; Qvi, where L is the linear operator from U

onto V 0 associated to the variational formulation (2), R.uh/ D f � L uh is the
residual associated to uh and the notation < � > stands for the duality between eV 0
and eV . If this problems admits a solution, Qu is a function of R.uh/.

To derive the OSS modeling of subscales to our Petrov-Galerkin framework,
consider a triangulation Th of ˝ . We approximate eU '

X

K2Th

eUK , where eUK is

a subspace of eU formed by functions vanishing on @K , and similarly approxi-
mate eV . Further, assume that L .fuK/ (we denote QuK D QujK /, and R.uh/jK have
L2.K/ regularity. Next, approximate L restricted toeVK by a diagonal operator, so
L .QuK/ ' �K QuK , where �K is a d � d diagonal matrix. Then the second equation
in (3) yields

�QuK � �K R.uh/jK ; QvK
�
L2.K/

D 0; 8QvK 2 eV K ; where �K D Œ�K 	�1:

Then,

.Qu � � R.uh/; Qv/L2.˝/ D 0; 8Qv 2 OV D
2

4
X

K2Th

eV K

3

5
\
U?h ;

where � is the piecewise constant function that takes the value �K onK of Th. Space
OV is dense in U?

h
, so we deduce ˘U?

h
.Qu � � R.uh// D 0; where ˘U?

h
denotes the

L2.˝/ orthogonal projection on U?
h

. But Qu 2 eU as eU D U \ U?
h

. Consequently,
˘U?

h
.Qu/ D Qu, and

Qu D ˘U?

h
.� R.uh// :



Orthogonal Subscales Solution of Primitive Equations 249

Next observe that B.Qu; vh/ D hL �.vh/; Qui, where L � is the adjoint operator of L ,
and h�i now stands for the duality between eU 0 and eU . As L �.vh/ is elementwise
smooth, we may approximate

B.Qu; vh/ '
X

K

.L�.vh/; �K ˘U?

h
.Rh//:

We arrive so to the modeled equation for uh

.Ph/

8
<̂

:̂

Obtain .yh; ph/ 2 Yh �Nh such that
B.yh; phI vh; qh/C .a � rvh � ��vh CrHqh;˘U?

h
.ah � ryh � ��yh CrHph//�

D F.vh/C .ah � rvh � ��vh CrHqh;˘U?

h
.f //� ; 8.vh; qh/ 2 Yh �Nh

Here, we have assumed Uh D Yh �Nh, where Yh is a FE subspace of W1;3

b
.˝/d�1

(3D Horizontal Velocities) and Nh is a FE subspace of L20.˝; @3/ (2D Surface
Pressures), and .�; �/� stands for the scalar product defined by

.a; b/� D
X

K2Th

�K .a; b/L2.K/:

The stabilization coefficients �K may be calculated by dimensional analysis or by
Fourier analysis (Cf. [3]).

4 Stability and Convergence Analysis

We next describe the main elements of the stability and convergence analysis of
method .Ph/ for piecewise affine F.E. The convergence is strong only for smooth
enough solutions:

Theorem 1. Assume that the triangulations fThgh>0 are uniformly regular, a 2
Ld .˝/d and �K D O.h2K/, then

1. The discrete problem admits a unique solution .yh; ph/ 2 Yh � Nh which is
bounded in H 1

b
.˝/d�1 � L3=20 .˝; @3/: This solution satisfies the estimates

�kryhkL2.˝/CkphkL3=2
0

.˝;@3/
� C .1CkakLd .˝// .kf kL2.˝/Ck�wkH1=2.�s/

/:

2. The sequence f.yh; ph/gh>0 contains a subsequence which is weakly convergent
in H 1

b
.˝/d�1 � L3=20 .˝; @3/ to a solution of the continuous problem (2). If this

solution belongs to W 1;3.˝/, then the convergence is strong.

Proof. (Main elements) The stability follows in a standard way from the well-
known inf-sup condition
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CkphkL3=2
0

.˝;@3/
� sup

vh2Yh�f0g
.rH � vh; ph/
kvhkW 1;3

b

C krHphk� ; 8ph 2 Nh:

The convergence of the terms in problem .Ph/ that appear in (2) also is standard.
To prove the convergence to zero of the stabilizing terms, we represent them on
spaces of bubble functions by means of static condensation operators. We apply
then the theory developed in [2]: The boundedness in H 1 norm of bubble functions
representing these stabilizing terms implies their weak convergence to zero in H 1.
In its turn, the boundedness follows from the estimate

k˘U?

h
.a � ryh CrHph/k� � C.kf kL2.˝/ C k�wkH1=2.�s/

/:

This analysis can be extended in a straightforward manner to the non-linear Primi-
tive Equations if d D 2. The extension of it to d D 3 is in progress.

5 Numerical Results

We have tested our numerical model for the 2D Primitive Equations. We have solved
the discrete problem through an evolution approach, by means of the linearized
equations

8
<̂

:̂

1
�t
.ynC1 � yn/C yn � rynC1 � ��ynC1 C @xpnC1 D f in˝ � R2

@x < y
nC1 >D 0 in ! � R

y0 D 0; ynC1j�b D 0; � @y
nC1

@n
j�s
D g:

We have solved this problem for piecewise affine finite elements for both velocity
and pressure, using the application FreeFem++.

Test 1: Convergence. To test the convergence order of OSS method .Ph/, we
have set˝ D .0; 3/�.�1; 0/,� D 0; 5 and have taken f , g to obtain the continuous
solution

y D �.x2C1/.x1 � 3/.3x2C1/= exp.x2/; x2.�5x1C3C x2/.x2C1/2= exp.x1/
�
;

p D exp.x1/:

In Tables 1 and 2 we present the estimated convergence orders for the horizon-
tal velocity and pressure, and a comparison with the errors obtained with the
(P1CBubble, P1) discretization. We observe a better accuracy with OSS method,
and a super-convergence effect, possibly due to the structured nature of the grids
used.

Test 2: Convex and non-convex geometries. We finally have tested the over-
all characteristics of the computed flow, for convex and non-convex domains. The
convex case corresponds to ˝ D .0; 5/ � .�1; 0/ and the data � D 0:5, f D 0,
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Table 1 Estimated convergence orders for horizontal velocity

Horizontal velocity

h P1b-P1 OSS Order in H1-norm
0.072 0.0586436 0.00369733
0.036 0.0283502 0.00101718 1.81623
0.018 0.013938 0.00314393 1.67336
0.014 0.011539 0.000211092 1.5564

Table 2 Estimated convergence orders for surface pressure

Pressure

h P1b-P1 OSS Order in L2-norm

0.072 0.000932524 0.00045671
0.036 0.000327411 0.00123518 1.84027
0.018 0.000115275 3.7988e-5 1.68045
0.014 7.65232e-5 2.51929e-5 1.60469

Fig. 1 Horizontal velocity. (a) Convex domain (b) non-convex domain

Fig. 2 Vertical velocity. (a) Convex domain (b) non-convex domain

g.x/ D 1. The non-convex domain is a deformation of this rectangular˝ , in order
to simulate an underwater mountain. We respectively present in Fig. 1a, b the hor-
izontal velocities for the convex and non-convex domains, and in Fig. 2a, b the
vertical velocities. In the first case we observe an overall circulation that occurs
because the horizontal velocity vanishes in the vertical walls. In the second one
we observe a the formation of two large vortex, one on each side of the mountain,
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Fig. 3 Pressure for (a) convex domain and (b) non-convex domain

and a shear layer over the peak of the mountain. Also, in Fig. 3a, b we present the
profiles of pressures obtained in both computations. Both pressures are increasing,
with a fast increase in the zone near the peak of the mountain. Both pressures are
monotonic, without oscillations. Let us remark that the use of (P1+Bubble, P1) dis-
cretization for these cases presents some instabilities close to the outflow boundary,
where the velocity gradients. These global patterns are physically satisfactory.
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Solution of Incompressible Flow Equations
by a High-Order Term-by-Term Stabilized
Method

Tomás Chacón Rebollo, Macarena Gómez Mármol,
and Isabel Sánchez Mu Qnoz

Abstract This paper introduces a high-order easy-to-implement stabilized method
for the numerical solution of convection-diffusion and incompressible flows. We
obtain stable discretizations of equal-order interpolation of velocity and pressure, as
is usual for stabilized methods. The penalty terms have a projection structure that
allows to obtain a high order method. We present stability analysis and error esti-
mates results for Oseen equations with Neumann boundary data with general Finite
Element discretizations, and for Dirichlet boundary data with P2–P2 discretization
and P1 projection. We also present some numerical tests that confirm the theoretical
expectations.

1 Introduction

The numerical solution of incompressible flow problems faces the un-stabilizing
effects originated by the loss of high-frequence resolution. This effect typically
appears in the discretization of pressure, but also of several operator terms that could
become dominant in the discrete problem: Convection, rotation, reaction, etc. Con-
sistent stabilized methods provide a solution to this problem in the framework of
Finite Element discretizations. However, these methods become rather costly for
high-order interpolation due to the complexity of the stabilizing term, which is pro-
portional to the element-wise residual (Cf. [3]). Brezzi and Pittkaranta introduced in
[1] a first-order penalty method to stabilize the discretization of pressure and allows
to use equal-order interpolation of velocity and pressure. This idea was extended
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by Chacón [2] to the stabilization of single operator terms such as those mentioned
above. This term-by-term stabilization method, however, still was only first-order
accurate.

We introduce in this paper a high-order term-by-term stabilization method, which
still is able to stabilize the discretization of pressure and single operator terms, but
has the order of accuracy of the interpolation for velocity and pressure.

The structure of the paper is the following: Section 1 introduces the method to
stabilize single operator terms in the framework of transport-diffusion equations.
Section 2 applies it to Oseen equations, with either Neumann or Dirichlet bound-
ary conditions. We prove stability and optimal error estimates, by means of specific
inf-sup condition, that holds virtually for any pair of velocity-pressure spaces in the
case of Neumann boundary conditions. We also prove that this condition holds for
P2–P2 discretization and P1 projection in the case of Dirichlet boundary condi-
tions. In Sect. 3 we present some numerical tests for Oseen equations with smooth
solutions, that confirm the theoretical expectations of accuracy.

2 Transport-Diffusion

Let us consider the transport-diffusion equations in a bounded domain ˝ � Rd ,
d D 2 or 3 with lipschitz boundary � :

8
<

:

Find y W ˝ 7! IR such that
u � ry � ��y D f in ˝;
y D 0 on �

Consider a linear bounded operator B from H 1.˝/ onto H�1.˝/. This operator
may represent convection:By D u �ry, rotation:By D r�y, reaction:By D ˛ y,
etc. The discretization of By may originate spurious oscillations due to the lack of
resolution in the discrete space. Our purpose is to devise a method that stabilizes
some high-frequency components of the discrete By with high accuracy and low
computational cost.

We consider the standard Finite Element space, on a triangulation Th of ˝

V
.l/

h
D fr 2 C 0.˝/ such that rjK 2 Pl .K/;8K 2 Thg;

and set the discretization
(

Obtain yh 2 V .l/

h
; such that

Lh.yh; vh/ D< f; vh >; 8vh 2 V .l/

h
I (1)

where Lh.y; v/ D a.y; v/C ch.y; v/;

a.y; v/ D
Z

˝

u � ry v dx C �
Z

˝

ry � rvdxI
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ch.y; v/ D
Z

˝

� .I � �h/.By/.I � �h/.Bv/ dx: (2)

Here, �h is a stable interpolation or projection (local or global) operator on the
Finite Element space Zh D V

.l�1/

h
(one degree less of interpolation than the space

of unknowns), and �jK D const: D �K . The �K ' h2
K are the stabilization coeffi-

cients, assumed to be of order h2
K . These coefficients are obtained by dimensional

analysis, from local relevant parameters to the physical effect to be stabilized.
Discretization (1) makes sense if .Bvh/jK 2 L2.K/ for anyK 2 V , as we assume.

The stabilizing properties of scheme (1) is given by the following result:

Lemma 1. Stability Problem (1) admits a unique solution that satisfies

kyhkH 1.˝/ C h kByhkL2.˝/ � C kf kH �1.˝/ (3)

Proof. The proof of this lemma follows from two facts: On one hand,
k�h.Byh/kL2.˝/ is bounded because yh is bounded and B is a bounded opera-
tor. On another hand, k.I ��h/.Byh/kL2.˝/ is directly bounded from the structure
of the discrete problem. The remaining of the proof standard and we shall omit it
for brevity.

To explain the stabilizing effect of this procedure, observe that as B is bounded,

kByhkH �1.˝/ � kBk kf kH �1.˝/

Then, when kBk is large, this estimate degenerates. Opposite, estimate (3) yields

h kByhkL2.˝/ � C kf kH �1.˝/;

which is uniform with respect to kBk.
The high-order accuracy of scheme (1) is given by the

Theorem 1. Error estimates. Assume that the family of triangulations Th is regu-
lar. Then, if y 2 H lC1.˝/, then

ky � yhkH 1.˝/ C h k.I � �h/.Byh/kL2.˝/ � C jujH lC1.˝/ h
l

This proof is again standard, using that the stabilizing coefficients are of order h2.
Notice that the high-frequency components of Byh are small, one order below the
order of the interpolation on the finite element space Yh.

3 Oseen Equations

We next consider the Oseen equations after time discretization as a model problem
for incompressible flows, where we consider either Neumann or Dirichlet boundary
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conditions:
8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

Obtain y W ˝ 7! Rd Velocity field
and p W ˝ 7! R Pressure, such that
u � ry � ��y C ˛y Crp D f in ˝
r � y D 0 in ˝
��@ny C p n D g on � or
y D 0 on � I

(4)

where u 2 H 1.˝/d is a given velocity field with free divergence. For this problem,
we not only intend to stabilize the discretization of the operator term By, but also,
we need to stabilize the discretization of the pressure.

Consider the Finite Element spaces

V
.l/

h
D fr 2 C 0.˝/ such that rjK 2 Pl .K/;8K 2 Thg;

Yh D .V .l/

h
\H 1

0 .˝//
d ; .for Dirichlet b. c./ or Yh D V .l/

h
.for Neumann b. c./I

Mh D V .l/ \ L2
0.˝/; .for Dirichlet b. c./ or Mh D V .l/ .for Neumann b. c./:

We discretize Oseen equations by:

�
Obtain .yh; ph/ 2 Yh �Mh; such that
Lh.yh; phI vh; qh/ D< f; vh >; 8.vh; qh/ 2 Yh �MhI (5)

where Lh.y; pI v; q/ D a.y; v/� .p;r � v/� .r �y; q/Cch.y; v/Cdh.p; q/Iwhere
a.y; v/ D .u � ry; v/C�.ry;rv/C .˛y; v/I ch is a stabilizing term for Byh, with
the same structure as (2), defined by

ch.y; v/ D
X

K

�1K.�1h.By/; �1h.Bv//K ;

with �1h D I � �1h, where �1h is a stable O.hl�1/ interpolation operator on Yh;
and dh is a stabilizing term for the pressure gradient, defined by

dh.p; q/ D
X

K

�2K.�2h.rp/; �2h.rq//K ;

with �2h D I � �2h, where �2h is the L2.˝/ orthogonal projection on some
space Zh. Again, �1K and �2K are the stabilizing coefficients, built by dimensional
analysis. Concretely, �2K depends on hK , and �1K on hK , yK , �.

These terms must be compared to those corresponding to the stabilizing terms of
the pure penalty stabilized method (Cf. [2]), given by ch.y; v/ D

X

K

�1K.By;Bv/K ,
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dh.y; v/ D
X

K

�2K.rp;rq/K . The gain in precision is due to the introduction of

the residual interpolation operators �1h and �2h.
The Neumann boundary conditions are simpler to analyze. In this case, we obtain

the following stability result:

Theorem 2. (Neumann boundary conditions) Assume that the triangulations

fThgh>0 are uniformly regular. SetZh D
h
V

.l/

h

id

(Same interpolation as velocities

and pressures). Then, problem .Ph/ admits a unique solution that satisfies

kyhkH 1.˝/d C kphkL2.˝/ C h kByhkL2.˝/d � C kf kH �1.˝/: (6)

Proof. (Sketch) The main technical difficulty in this proof is the derivation of
the inf-sup condition to estimate the pressure. We start from the Verfurth inf-sup
condition: There exists ˇ > 0 such that

ˇ kqhkL2.˝/ � sup
vh2Yh

.r � vh; qh/

kvhkH 1.˝/d

C h krqhkL2.˝/; 8qh 2Mh:

To estimate of the second summand, we split

krqhkL2.˝/ � k�2h.rqh/kL2.˝/ C k�2h.rqh/kL2.˝/: (7)

The first summand is directly bounded by the discrete method (5). To estimate the
second one, taking vh D �2h.rqh/ we obtain

k�2h.rqh/kL2.˝/ � C sup
vh2Yh

.r � vh; qh/

kvhkH 1.˝/d

:

The uniform regularity of the triangulations is needed here, to estimate k�2h.rqh/

kH 1.˝/d in terms of k�2h.rqh/kL2.˝/d Then, there exists ˇ0 > 0 such that

ˇ0 kqhkL2.˝/ � sup
vh2Yh

.r � vh; qh/

kvhkH 1.˝/d

C h k�2h.rqh/kL2.˝/: (8)

The two summands in the r.h.s of this inequality are directly bounded by the discrete
method (5). This allows to estimate the pressure. The remaining terms in estimate
(6) are obtained in a standard way.

This stability result allows to obtain the following error estimates, again in a
standard way:

Theorem 3. Assume that the triangulations fThgh>0 are uniformly regular. Assume

l D 2, and set Zh D
h
V

.l�1/

h

id

. Assume also y 2 H lC1.˝/d , p 2 H l .˝/,

B 2 L
�
H lC1.˝/;H l�1.˝/

�
. Then, the following error estimates hold
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ky � yhkH 1.˝/d C kp � phkL2.˝/ C kByhkL2
� .˝/d � C hl .jyjH lC1 C jpjH l /:

The Dirichlet boundary conditions case is more complex, because now the deriva-
tion of the inf-sup condition is limited by the homogeneous boundary values of the
velocity. Indeed, to obtain the estimate

krqhkL2.˝/ � k�2h.rqh/kL2.˝/ C k�2h.rqh/kL2.˝/;

we can no longer take vh D �2h.rqh/. However, we have been able to obtain a
similar result when we use P2–P2 interpolation for velocity-pressure:

Theorem 4. Assume that the triangulations fThgh>0 are uniformly regular. Assume

l D 2, and set Zh D
h
V

.1/

h

id

. Assume also y 2 H 3.˝/d , p 2 H 2.˝/. Then, the

following error estimates hold

ky � yhkH 1.˝/d C kp � phkL2.˝/ C kByhkL2
� .˝/d � C h2 .jyjH 3 C jpjH 2/:

Proof. In this case, the inf-sup condition (8) still holds, but its deduction is more
involved. To do it, we first prove the reduced inf-sup condition that follows: there
exists 	 > 0 such that

	 kQhkL2.˝/d � sup
vh2Yh

.vh;Qh/

kvhkL2.˝/d

; 8Qh 2
h
V

.1/

h

id

: (9)

Then, for any qh 2Mh,

h 	 k�2h.rqh/kL2.˝/d � h sup
vh2Yh

.vh; �2h.rqh//

kvhkL2.˝/d

� h
"

sup
vh2Yh

.vh;rqh/

kvhkL2.˝/d

C sup
vh2Yh

.vh; �2h.rqh//

kvhkL2.˝/d

#

� C sup
vh2Yh

.r � vh; qh/

kvhkH 1.˝/d

C h k�2h.rqh/kL2.˝/:

In the last estimate we have again used the uniform regularity of the grids to estimate
kvhkH 1.˝/d in terms of kvhkL2.˝/d . This estimate, combined with (7), yields (8).
Again, the remaining of the proof is standard.

4 Numerical Tests

We have tested the order of accuracy of our method for Stokes equations with
Dirichlet boundary conditions, with smooth solutions in the unit square of R2,
using structured grids. The order of accuracy has been estimated by means of the
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Table 1 Computed convergence orders in natural norms for P2-P2-P1 discretization

(N1,N2) Velocity Pressure

(40,60) 2.927 2.688
(60,80) 2.928 2.226
(80,120) 2.893 1.97

100

10-1

10-2

10-3
10-0.9 10-0.8 10-0.7 10-0.6 10-0.5 10-0.4

Orden: P2 Interpolación P1

p en L2

u en H1

h2

Fig. 1 Estimated convergence order for Oseen problem with P2–P2–P1 discretization

results of two grids. Table 1 presents the estimated convergence orders for P2-P2-
P1 discretization when the interpolation operator is the orthogonal L2 projection.
We estimate the convergence orders in the natural norms: H 1 for velocity and L2

for the pressure. We may observe the expected accuracy for the pressure, but some
superconvergence for velocity, possibly due to the structured nature of the grids. We
also present in Fig. 1 the estimated convergence orders, in log-log coordinates, for
the same test on non-structured grids. We observe here that the second order accu-
racy is clearly reached. We finally present in Fig. 2 the estimated convergence orders
of the same test for P3-P3-P2 discretization, on non-structured grids. In this case
we recover a third order convergence, although by now we do not have a theoretical
support for these results.
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10-1
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Fig. 2 Estimated convergence order for Oseen problem with P3-P3-P2 discretization
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Solving Large Sparse Linear Systems Efficiently
on Grid Computers Using an Asynchronous
Iterative Method as a Preconditioner

T.P. Collignon and M.B. van Gijzen

Abstract This paper describes an efficient iterative algorithm for solving large
sparse linear systems on Grid computers. The algorithm is a combination of a
synchronous flexible outer iterative method and a coarse-grain asynchronous inner
iterative method as a preconditioner. The preconditioning iteration is performed on
heterogeneous computing hardware. We present experimental results on a heteroge-
neous computing grid of a complete implementation using GridSolve as middleware
for a 3D convection–diffusion problem.

1 Introduction

In this paper we present an efficient iterative method for solving large linear systems
that is designed to exploit the characteristics of Grid computing. The algorithm is
a combination of the flexible iterative method GMRESR [7] and an asynchronous
iterative method [2] as preconditioner. The preconditioning iteration is performed
on heterogeneous computational hardware and as a result, the preconditioner varies
in each outer iteration step. We therefore use a flexible method such as GMRESR,
which can handle a varying preconditioner.

Since asynchronous iterative methods are fault-tolerant, can adapt to the com-
putational environment, and lack global synchronisation points, they are naturally
suited to Grid computing. However, the slow block Jacobi-like convergence rate of
these methods limits the practical applicability [2, 4]. By using an asynchronous
method as a coarse-grain preconditioner in a flexible iterative method, we can
improve overall convergence rates and extend the range of applications.

The inner–outer algorithm is implemented using the Grid middleware Grid-
Solve [5, 8], which allows for a decoupling of the two iteration processes. The
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outer iteration is performed sequentially on the (stable) client machine, while the
inner preconditioning iteration is performed on (unstable) heterogeneous comput-
ing hardware. Since global synchronisation is a highly expensive operation, the bulk
of the computational work is performed by the asynchronous preconditioning iter-
ation. In this way, efficient use is made of the available computational resources.
For completeness, we have also evaluated a parallel implementation of the outer
iteration.

Algorithm 1 GMRESR (truncated version)
Require: Parameters m; �in; Tmax; Initial guess x0; Set r0 D b � Ax0.
Ensure: Approximate solution to Ax D b.

1: for k D 0; 1; : : : ; until convergence do
2: Evaluate u DM.rk; �in; Tmax/; fPreconditioning step: see Alg. 3g
3: Compute c D Au; fMatrix–vector multiplicationg
4: Compute Œck; uk�D orthonorm.c; u; ci ; ui ; k; m/; fOrthogonalisation stepg
5: Compute � D c>

k rk ;
6: Update xkC1 D xk C �uk ;
7: Update rkC1 D rk � �ck ;
8: end for

Algorithm 2 (A–)synchronous block Jacobi iteration on p processors

1: Initialize u.0/;
2: for k D 1; 2; : : : ; until convergence do
3: for i D 1; 2; : : : ; p do

4: (i.) Solve Aiiu
.k/
i D ri �

pX
jD1;j¤i

Aij u
.k�1/
j ; fsynchronous iterationsg

5: (ii.) Solve Aiiu
new
i D ri �

pX
jD1;j¤i

Aij uold
j ; fa-synchronous iterationsg

6: end for
7: end for

Numerical experiments for a large 3D convection–diffusion problem demonstrate
the effectiveness of the algorithm.

2 Sparse Linear Solvers in Grid Environments

We are interested in designing efficient iterative methods for solving large sparse
linear systems,

Ax D b; with a non-symmetric, non-singular matrix A, (1)
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on heterogeneous networks of computers. Parallel asynchronous iterative methods
possess several characteristics that are perfectly suited for Grid computing, such as
lack of synchronisation points [1]. Unfortunately, they also have significant draw-
backs, such as slow convergence rates [2]. We propose to use an asynchronous
method as a coarse-grain preconditioner in a flexible iterative method. By using
a slowly converging asynchronous method as a preconditioner in a fast converging
flexible method we expect to achieve overall fast convergence.

We choose GMRESR as a flexible method, partly because the orthogonalisation
process can be easily truncated, which is essential for practical implementations.
The truncated variant of GMRESR is shown in Alg. 1. The preconditioning step
in the second line consists of computing some approximate solution to Au D rk
using an asynchronous iterative method. The obtained search direction is then
orthogonalised in line 4 againstm previous search directions.

Asynchronous algorithms generalise simple iterative methods such as the clas-
sical block Jacobi iteration. To compute an approximation to Au D r using
p processors, the coefficient matrix, the solution vector, and the right-hand side
are partitioned into blocks as follows:

A D

2
6664

A11 A12 � � � A1p

A21 A22 � � � A2p

:::
:::
: : :

:::

Ap1 Ap2 � � � App

3
7775 ; u D

2
6664

u1

u2

:::

up

3
7775 ; r D

2
6664

r1
r2
:::

rp

3
7775 : (2)

In the standard synchronous Jacobi iteration process (see line 4 of Alg. 2), the
processors operate in parallel on their part of the vector u.k/, followed by a synchro-
nisation point at each iteration step k. In our asynchronous algorithm (see line 5
of Alg. 2), a processor computes unew using information uold that is available on
the process at that particular time. As a result, each separate block Jacobi iteration
process may use out-of-date information, but the lack of synchronisation points and
the reduction of communication can potentially result in improved parallel perfor-
mance. Note that in practical implementations, the inner systems of Alg. 2 are often
solved (approximately) by some other iterative method.

3 Parallel Implementation Details

3.1 Brief Description of GridSolve

GridSolve is a distributed programming system which uses a client-server model for
solving complex problems remotely on global networks. The middleware consists
of the following components.
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1. The client, which can remotely execute tasks on computational servers using
information provided by the agent.

2. The agent, which actively monitors server properties such as CPU speed, memory
size, computational services, workload, and availability.

3. The computational servers, which can run predefined tasks. Any data that are
read or generated locally during the execution of a task are lost after the task
completes, unless the data are stored on the IBP data depot.

4. The IBP data depot, which acts as a storage device and is accessible by the client
and the servers. The client uploads (downloads) data to (from) the IBP data depot
which is in close proximity to the computational servers and tasks can then read
(write) data from (to) the depot. Therefore, using the IBP data depot induces
bridge communication between the client and the servers.

3.2 Decoupled Iterations

The coarse-grain nature of the asynchronous preconditioning iteration makes this
operation naturally suited for distributed computing. Moreover, the preconditioning
step can be performed on unreliable hardware. Stalling of one of the preconditioning
servers will result in a less effective preconditioning operation, but the main solution
method will not break down.

Algorithm 3 Asynchronous block Jacobi iteration task for each server i
Ensure: ui DM.ri ; �in; Tmax/

1: Read ri from IBP depot; Set ui D 0;
2: Perform ILU decomposition of Aii ;
3: while telapsed < Tmax do
4: Read relevant part of u from IBP depot;
5: Compute vi D ri �Pj Aij uj ;
6: Solve Aiipi D vi approximately with accuracy �in;
7: Update ui  ui C pi ;
8: Write ui to IBP depot;
9: end while

However, the other operations (i.e. the matrix–vector multiplication, orthogonal-
isation, and vector operations) are relatively fine-grain and need to be performed on
stable hardware. It may therefore be natural to perform the outer iteration on the
(reliable) client machine. This approach has an obvious limitation. Depending on
the problem size and the number of servers, the outer iteration may become a com-
putational bottleneck. We have therefore also implemented a parallel outer iteration
using techniques described in [3].

Currently, the matrix is partitioned using a homogeneous one-dimensional block-
row distribution, both in the preconditioning iteration and in the outer iteration.
The vectors are distributed accordingly. What follows are various implementation
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issues pertaining to performing the outer iteration in sequential or parallel. Note that
in both cases the inner preconditioning is performed in parallel on heterogeneous
computing hardware.

3.2.1 Sequential Outer Loop

All of the operations – with exception of the preconditioning iteration – are per-
formed on the client machine. There is a single GridSolve task for the precondition-
ing step, which implies that there is a single global synchronisation point in each
outer iteration step. The client machine begins by updating the complete residual on
the IBP data depot. Algorithm 3 shows the specific steps performed by each server
i in the preconditioning phase.

At the beginning of task i , the appropriate portion of the residual is read and the
task starts iterating on its portion of u. At the end of each block Jacobi iteration step,
the server updates the relevant portion(s) of u (i.e. the overlap) on the IBP depot.
This process continues until some appropriate criterion is met, which is currently
related to a simple time limit. Each process then writes its part of u to the IBP
depot and the complete vector u is read by the client machine. The obtained search
direction is then used to compute the new iterate and residual. This procedure is
repeated until convergence.

3.2.2 Parallel Outer Iteration

In this case, the only data that is communicated between the client and the com-
putational nodes are the results of the (partial) inner products. The classical Gram–
Schmidt algorithm (CGS) was chosen for the orthogonalisation step, since it has
favourable parallel properties.

By combining operations as much as possible, three distinct GridSolve tasks
can be constructed, giving three synchronisation points per outer iteration step.
The first task consists of two main operations: updating the iterate and residual
and performing the asynchronous Jacobi iterations. The second GridSolve task has
two operations: computing the local matrix–vector product and performing the first
phase of the CGS algorithm. The third and last GridSolve task performs the second
phase of CGS and stores the newly computed search directions.

A disadvantage of this approach is that every GridSolve task should be performed
on reliable hardware. That is, should any of the tasks fail, it is likely that important
intermediate information is lost, halting the entire outer iteration process.
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4 Numerical Simulations

We have conducted several experiments solving the following 3D convection–
diffusion problem,

(
�r2uC .2p � r/u D f; u 2 ˝;
u D g; u 2 @˝; (3)

where p D .1; 2; 3/, ˝ is the domain, and f; g are given vectors. Discretisation by
the finite difference scheme with a seven point stencil on a uniform nx � ny � nz

mesh results in a sparse linear system of equations Ax D b where A is of order
n D nxnynz. Centered differences are used for the first derivatives. The grid points
are numbered using the standard (lexicographic) ordering, resulting in a heptadiag-
onal coefficient matrix. The right-hand side vector b is generated from the constant
solution x D 1.

4.1 Experimental Setup

The experiments are performed using a local cluster, which is a multi-user sys-
tem. It is moderately heterogeneous in design, consisting of twelve nodes: six Intel
2.20 GHz machines, two Intel 2.66 GHz machines, and four AMD Athlon 2.20
GHz machines. The nodes are equipped with memory in the range 2–4 GB and the
cluster is interconnected through 100 MB s�1 Ethernet links. The experiments are
performed on a typical work day, while other users perform their computations.

The IBP depot is started on one of the nodes in the cluster. The Jacobi sweeps are
performed for a fixed number of seconds Tmax D 120s and we use matrix-free stor-
age. The inner iterations are solved inaccurately with relative tolerance �in D 10�4

using the recent Krylov method IDR.s/ [6] taking s D 4 and preconditioned with
ILU. In the context of Grid computing, it is natural to fix the problem size per server
and investigate the scalability of the algorithm by adding more servers in order to
solve bigger problems. For each experiment, we take nx D ny D nz such that the
number of equations of unknowns per server is approximately 250;000.

The outer iteration is performed either sequentially on the client machine or in
parallel. The complete linear system is solved with relative tolerance � D 10�8. To
limit memory requirements, the truncation parameter is kept small .m D 5/.

4.2 Experimental Results

Five executions of the algorithm are performed, each time using a different and
random set of servers. Figure 1 shows experimental results obtained using up to
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Fig. 1 Large heterogeneous cluster with 250;000 equations per server

twelve servers (i.e. for problem sizes between 250;000 and three million), using
both the sequential and parallel outer iteration. For comparison, results for standard
(synchronous) block Jacobi preconditioning with inexact subdomain solves (using
the parallel outer iteration) are also included.

Figure 1a shows the average execution times of the total iteration processes. The
results show that the execution time of the asynchronous method increases when
servers are added. This can be attributed almost completely to the increase in the
number of outer iterations, which is approximately 4 for 2 servers and 11 for 8
servers. This increase in outer iterations is a result of the following two effects:

1. The coefficient matrix becomes increasingly ill-conditioned due to the increase
of the problem size; and

2. The number of subdomains in asynchronous block Jacobi increases, which makes
the preconditioner less effective.

Factors that could also have a large impact on the effectiveness of the precon-
ditioner are the heterogeneity of the hardware, the differences in workload, and
fluctuations in network load. In the current computational environment and using
the aforementioned parameters, the number of Jacobi sweeps during a single pre-
conditioning step ranged between approximately 120 on a fully dedicated server
and 30 on a fully occupied server. However, because the subdomains are assigned to
different servers in each outer iteration step, these effects are averaged out and the
spread in execution time remained within 10%.

Keeping the problem size per server fixed implies that – in the ideal case where
overhead is negligible – the execution time per outer iteration remains constant.
This is demonstrated in Fig. 1, were we show the average times per outer iteration
step. The results indicate that for the sequential outer loop the overhead is rather
small. Also, for the parallel outer loop the increase in overhead due to the additional
work and the (GridSolve) communication overhead is quite limited. In this case, the
overhead grows more rapidly with increasing number of servers – compared to the
sequential outer iteration.
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For synchronous block Jacobi preconditioning, the total execution time grows
significantly faster than for the asynchronous preconditioning if the number of
servers is increased. This is a combination of two effects. Firstly, the number of
iterations is higher for the synchronous preconditioner. That is, from 41 on 2 servers
to 72 on 8 servers. A possible explanation is that, in contrast to asynchronous
preconditioning, there is no exchange of information between the subdomains
for synchronous preconditioning. Secondly, the time per iteration grows faster
for the synchronous preconditioner. Since one synchronous preconditioning step
requires much less computations than an asynchronous preconditioning step, the
computation-to-synchronisation ratio is more favourable for asynchronous precon-
ditioning. As a result, the asynchronous method outperforms the synchronous pre-
conditioning technique. Moreover, this difference in performance becomes increas-
ingly more significant for higher number of servers.

5 Conclusions

We have described in detail an iterative algorithm for solving in parallel large sparse
linear systems on Grid computers. The method is designed to exploit the character-
istics of heterogeneous networks of computers. By using an asynchronous iteration
as a preconditioner in a flexible outer iteration, a method is obtained that adapts
to a volatile computational environment. Furthermore, we have presented a fully
working implementation using mature Grid middleware, applied to a realistic test
problem. Also, valuable numerical experiments were performed under real-world
conditions and we believe that the obtained results are promising in the context of
sparse iterative solvers and Grid computing.
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Hierarchical High Order Finite Element
Approximation Spaces for H(div) and H(curl)

Denise De Siqueira, Philippe R.B. Devloo, and Sônia M. Gomes

Abstract The aim of this paper is to present a systematic procedure for the con-
struction of a hierarchy of high order finite element approximations for H(div) and
H(curl) spaces based on quadrilateral and triangular elements with rectilinear edges.
The principle is to chose appropriate vector fields, based on the geometry of each
element, which are multiplied by an available set of H 1 hierarchical scalar basic
functions. We show that the resulting local vector bases can be combined to obtain
continuous normal or tangent components on the elements interfaces, properties that
characterize piecewise polynomial functions in H(div) or H(curl), respectively.

1 Introduction

In applications of mixed methods, the mathematical analysis uses constantly H(div)
and H(curl) spaces, and approximations of them are required [1]. The main char-
acteristic of piecewise polynomial H(div) functions is the continuity of the normal
components over the interface of the elements, while H(curl) functions require con-
tinuous tangencial components. There are several papers in the literature where the
techniques employed in the construction of finite element spaces for H(div) and
H(curl) are based on De Rham Diagram (e.g., [2, 4, 5]).

In the present paper we present a different approach. Instead of De Rham Dia-
gram, we use the geometry of the elements to construct appropriate vector fields
which are multiplied by hierarchical H 1 conforming scalar functions developed
in [3]. Using this systematic procedure, hierarchical vector bases are defined for
quadrilateral and triangular elements. There are those basic functions that are
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associated to the edges, whose normal (or tangencial) components on the edges
of the element are expressed in terms of the H 1 scalar basis functions correspond-
ing to them. There are also other basis vector functions which are internal to the
element, whose normal (or tangencial) components vanish over all edges. There-
fore, H(div) (or H(curl)) conforming spaces can be created by simply imposing that
the sum of the multiplying coefficients associated with the edge vector functions of
neighboring elements is zero.

The finite element spaces obtained by our proposed procedure differs from the
ones derived via De Rham diagrams. For instance, in a quadrilateral element, the
current approximating spaces have dimension .p C 1/2, while using De Rham dia-
grams [5] the dimension is 2.p C 2/.p C 1/. The main difference occurs in the
number of internal basic functions, which sum p2 � 1 in the current proposal, and
2p.p C 1/ in finite element spaces constructed in [5].

The outline of the paper is the following. Section 2 is dedicated to the con-
struction of the H(div) approximation spaces of any degree p. We present the H 1

hierarchical scalar basic functions, both for quadrilateral and triangular functions.
For both cases, the appropriate vector fields are presented and the resulting hier-
archical vector bases are defined, and their principal properties are described. In
Sect. 3 the H(curl) case is briefly considered, since in bidimensional regions this
setting is derived from the H(div) case by simply rotating the corresponding vector
field by �=2. The conclusions of the present paper are presented in Sect. 4.

2 H(div) Approximation Spaces

Let ˝ � R2 be a bounded domain with Lipschitz boundary @˝ . The purpose in
this section is to construct approximations of the H(div) space

H .divI˝/ D
n�!' 2 L2 .˝/2 W div

��!'
�
2 L2 .˝/

o
: (1)

by piecewise polynomials of high degree based on a partition Th of ˝ formed by
polygonal elements (triangular or quadrilateral). For each K 2 Th, V is the set of
vertices ak , E is the set of edges lk , andC is the surface element . If Pp.K/ denotes
the polynomial space of degree at most p on K , the aim is to construct subspaces
V.Th/ � H .divI˝/ of the form

V.Th/ D
n�!' W �!' jK 2Pp.K/ �Pp.K/;8K 2 Th

o
: (2)

In order to built from V.Th/ an approximation ofH .divI˝/, it will be necessary to
impose continuity of the normal components�!' :�!� at the interfaces of the elements.
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2.1 H(div): Quadrilateral Elements

Let OK D f.�; �/ W �1 � �; � � 1g be the master element with vertices a0 D
.�1;�1/, a1 D .1;�1/, a2 D .1; 1/ and a3 D .�1; 1/. The edges lk; k D 0; � � �3
correspond to the sides linking the vertices ak to akC1.mod4/.

In [3], a hierarchy of finite element subspaces in H 1 .˝/ is constructed, where
the basic functions in OK are classified by:

� 4 vertex functions

'a0.�; �/ D .1� �/
2

.1� �/
2

; 'a1.�; �/ D .1C �/
2

.1 � �/
2

(3)

'a2.�; �/ D .1C �/
2

.1C �/
2

; 'a3.�; �/ D .1 � �/
2

.1C �/
2

(4)

Note that the value of 'ak is one at ak and zero at the other vertices.
� 4.p � 1/ edge functions

'l0;n.�; �/ D 'a0.�; �/Œ'a1.�; �/C 'a2.�; �/�fn.�/;

'l1;n.�; �/ D 'a1.�; �/Œ'a2.�; �/C 'a3.�; �/�fn.�/;

'l2;n.�; �/ D 'a2.�; �/Œ'a3.�; �/C 'a0.�; �/�fn.��/;
'l3;n.�; �/ D 'a3.�; �/Œ'a0.�; �/C 'a1.�; �/�fn.��/;

where fn are the Chebychev polynomials of degree n, n D 0; 1; � � � ; p � 2. The
edge functions 'lk ;n vanish on all edges lm, m ¤ k;

� .p � 1/2 surface functions

'C;n0;n1.�; �/ D 'a0.�; �/'a2.�; �/fn0
.�/fn1

.�/; (5)

with 0 � n0; n1 � p � 2. These functions are zero on all edges.

Let us consider a set of eighteen vectors �!v m, as indicated in Fig. 1, satisfying
the properties

1. �!v 2C3k D �!� k is the outward unit normal, and �!v kC12 is tangent to lk .
2. form D 3k, �!v m � �!v mC1 D �!v m � �!v mC2 D �!v mC1 � �!v mC2 D 1.
3. on the surface element, v16 and �!v 17 are orthogonal vectors �!v 16 ? �!v 17 .

We propose the construction of a family of vector functions by multiplication this
vector field by the hierarchical scalar basis according to the following procedure:

4.p C 1/ edge vector functions

k D 0 W �!' l0;a0 D 'a0 �!v0 ;
�!' l0;a1 D 'a1 �!v 1;

�!' l0;n D 'l0;n �!v 2 (6)

k D 1 W �!' l1;a1 D 'a1 �!v3 ;
�!' l1;a2 D 'a2 �!v 4;

�!' l1;n D 'l1;n �!v 5 (7)

k D 2 W �!' l2;a2 D 'a2 �!v6 ;
�!' l2;a3 D 'a3 �!v 7;

�!' l2;n D 'l2;n �!v 8 (8)

k D 3 W �!' l3;a3 D 'a3 �!v9 ;
�!' l3;a0 D 'a0 �!v 10;

�!' l3;n D 'l3;n �!v 11 (9)
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Fig. 1 Vector field for H(div)-quadrilateral elements

Observe that the vector functions associated to the edge l0 satisfy

�!' l0;a0 � �!�0 D 'a0 2P1.K/;
�!' l0;a1 � �!�0 D 'a1 2P1.K/;

�!' l0;n � �!� 0 D 'l0;n 2Pn.K/:

(10)
Similar results hold for the vectors functions associated to lk , k D 1; 2 and 3

�!' lk ;aj ��!�k D 'aj 2P1.K/; for j D k; kC1.mod4/; �!' lk ;n ��!� k D 'lk ;n 2Pn.K/: (11)

2.p2 � 1/internal vector functions

To complete the space, we add three types of functions

�!' C;n0;n1
1 D 'C;n0;n1 �!v 16;

�!' C;n0;n1
2 D 'C;n0;n1 �!v 17; and �!' lk ;n

3 D 'lk ;n �!v kC12: (12)

The normal components of these internal vector functions vanishes at all edges.
The numbers of edge and internal vector functions sums 2.p C 1/2, coinciding

with the dimension of VK DPp.K/�Pp.K/.

2.2 H(div): Triangular Elements

Consider the master triangular element OK D f.�; �/ W 0 � � � 1; 0 � � � 1 � �g,
with vertices a0 D .0; 0/, a1 D .1; 0/ and a2 D .0; 1/, and edges lk; k D 0; 1; 2
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linking the vertex ak to akC1.mod3/. For the hierarchy of finite element subspaces
in H 1 .˝/ constructed in [3], the basic functions are classified by:

� 3 vertex functions

'a0.�; �/ D 1 � � � �; 'a1.�; �/ D �; 'a2.�; �/ D � (13)

that have unit value on the corresponding vertex and zero on the other ones;
� 3.p � 1/ edge functions

'l0;n.�; �/ D 'a0.�; �/'a1.�; �/fn.�C 2� � 1/; (14)

'l1;n.�; �/ D 'a1.�; �/'a2.�; �/fn.�� �/; (15)

'l2;n.�; �/ D 'a2.�; �/'a0.�; �/fn.1 � � � 2�/ (16)

� .p�2/.p�1/
2

surface functions

'C;n0;n1.�; �/ D 'a0.�; �/'a1.�; �/'a2.�; �/fn0
.2� � 1/fn1

.2�� 1/ (17)

with 0 � n0 C n1 � p � 3.

Consider a field of 14 vectors associated to a triangular element, as illustrated in
Fig. 2. These vectors satisfy the properties

1. �!v 2C3k D �!� k is the outward unit normal, and �!v kC9 is tangent to the edge lk .
2. form D 3k, �!v m � �!v mC1 D �!v m � �!v mC2 D �!v mC1 � �!v mC2 D 1.
3. �!v 12 ? �!v 13 .

v12

v13

v11
v8

v6

v4

v5

v7
v10

v9

v1

v3v2

v0

Fig. 2 Vector field for H(div)-triangular elements
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As in the quadrilateral case, we introduce the vector functions associated to the
edges

k D 0 W �!' l0;a0 D 'a0 �!v0;
�!' l0;a1 D 'a1 �!v 1;

�!' l0;n D 'l0;n�!v 2 (18)

k D 1 W �!' l1;a1 D 'a1 �!v3;
�!' l1;a2 D 'a2 �!v 4;

�!' l1;n D 'l1;n�!v 5 (19)

k D 2 W �!' l2;a2 D 'a2 �!v6;
�!' l2;a3 D 'a3 �!v 7;

�!' l2;n D 'l2;n�!v 8 (20)

and internal vector functions

�!' C;n0;n1

1 D 'C;n0;n1 �!v 12
�!' C;n0;n1

2 D 'C;n0;n1 �!v 13
�!' lk ;n

3 D 'lk;n �!v 9Ck:

(21)
Again, the normal components of the vector functions associated to the edge lk are
given by

�!
' lk ;aj ��!�k D 'aj 2P1.K/; for j D k; kC1.mod3/; �!' lk ;n ��!� k D 'lk ;n 2Pn.K/; (22)

and the normal components of the internal vector functions vanish at all edges.
Furthermore, for triangular elements the total number of edge and internal vec-
tor functions is .p C 1/.p C 2/, also coinciding with the dimension of VK D
Pp.K/�Pp.K/.

Having defined the two set of hierarchical vector functions in VK , both for
quadrilateral and triangular elements, it remains to verify that they indeed form
bases for VK . Furthermore, if they are supposed to be combined to span H(div)
spaces V.Th/, we need to show that the normal components on the elements
interfaces are continuous.

Theorem 1. The edge and internal vector functions defined in (6–12), for quadrilat-
eral elements, and in formulae (18–21) for triangular elements, form a hierarchical
basis for VK .

Proof. Since the cardinality of such bases coincide with the dimension of VK , it only
remains to prove their linear independency. Let us consider the linear combination

X

lk2E

kC1.mod4/X

jDk

˛kj
�!' lk ;aj CX

lk2E

p�2X

nD0

ˇkn
�!' lk ;nC

2X

mD1

p�2X

n0D0

p�2X

n1D0

�n0;n1m
�!' C;n0;n1

m CX

lk2E

p�2X

nD0

�kn
�!' lk ;n

3 D 0:

Restricting to the edge lk and doing the inner product with �!� k we obtain

kC1.mod4/X

jDk

˛k
j '

aj C
p�2X

nD0

ˇk
n'

lk ;n D 0:

Using the linear independency of 'aj and 'lk;n, we conclude that ˛k
j D ˇk

j D 0.
Next, considering the tangencial component associate to lk we obtain that, restricted
to this edge,
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p�2X

nD0

�k
n'

lk;n D 0;

implying that �k
n D 0. Finally, doing the inner product with �16, and then with �17,

we obtain

p�2X

n0D0

p�2X

n1D0

�
n0;n1

1 '
Cn0;n1

1 D
p�2X

n0D0

p�2X

n1D0

�
n0;n1

2 '
Cn0;n1

2 D 0

to get �n0;n1
m D 0, and conclude the proof. ut

Theorem 2. Using the hierarchical vector bases defined by (6–12), for quadrilat-
eral elements, and in formulae (18–21) for triangular elements, H(div)-conforming
spaces V.Th/ can be created by imposing that the sum of the multiplying coefficients
associated with the edge vector functions of neighboring elements is zero .

Proof. Let �!' 2 V.Th/, and Ki and Kj be two elements that share a commom
edge lk . To verify that the quantity �!' � �!� k is continuous across the edge lk , taking
into account the the internal vector functions have vanishing normal components
on all edges, it is only necessary to verify whether the contributions of the normal
components of the edge vector functions associated to lk can be made compatible.
But for these functions we have already seen that �!' lk ;aj � �!�k D 'aj , and �!' lk ;n ��!�k D 'lk . Therefore, since the outward unit norm changes its sign from Ki to
Kj , for the normal component to be continuous it is sufficient that the sum of the
coefficients multiplying the edge functions is zero. ut

3 H(curl) Approximation Spaces

Now we turn to the question concerning the construction of approximations of the
H(curl) space

H .curlI˝/ D
n�!v 2 L2 .˝/2 W curl

��!v � 2 L2 .˝/2
o

(23)

In order to construct piecewise polynomial vector subspaces V.Th/ � H .curlI˝/
of the form (2), it will be necessary to impose continuity of the tangencial compo-
nents at the interfaces of the elements K . Similar to the H(div) case, a systematic
procedure consists in first choosing an appropriate vector field, based on the geom-
etry of the elements, and then multiply it by the set of H 1 hierarchical scalar basic
functions. In order to guarantee the continuity of the tangencial components of the
functions V.Th/ on the interfaces of the elements, such H(curl) vector field can be
obtained by a �=2 rotation of the H(div) vector field, as shown in Fig. 3.
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Fig. 3 Vector field for H(curl) 2D elements

4 Conclusion

We present a systematic procedure to construct hierarchical bases for H(div) and
H(curl) approximation spaces which are consistent with the proprieties of these
spaces. The geometrical properties of the elements are strongly used for the defini-
tion of vector fields, which are multiplied by consistent H 1 scalar functions already
developed, to obtain continuity of the normal or tangencial components of the result-
ing vector functions. As perspectives, we plan to extend the construction of H(div)
and H(curl) approximation space for elements with curvilinear boundaries and to
study the stability of the mixed finite element method using these bases.
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Some Theoretical Results About Stability
for IMEX Schemes Applied to Hyperbolic
Equations with Stiff Reaction Terms

Rosa Donat, Inmaculada Higueras, and Anna Martinez-Gavara

Abstract In this work we are concerned with certain numerical difficulties associ-
ated to the use of high order Implicit–Explicit Runge–Kutta (IMEX-RK) schemes in
a direct discretization of balance laws with stiff source terms. We consider a simple
model problem, introduced by LeVeque and Yee in [J. Comput. Phys 86 (1990)],
as the basic test case to explore the ability of IMEX-RK schemes to produce and
maintain non-oscillatory reaction fronts.

1 Introduction

For convection–diffusion problems, linear multistep Implicit Explicit (IMEX) meth-
ods were proposed and analyzed as far back as the late 1970s [11]. Instances of these
methods have been successfully applied to the incompressible Navier–Stokes equa-
tions [6] and in environmental modeling studies [12]. A systematic, comparative
study for PDEs of convection–diffusion type was carried out in [1], and a corre-
sponding study for reaction-diffusion problems arising in morphology is reported
in [9].

In the context of hyperbolic conservation laws with stiff source terms, a common
alternative is to use semi-implicit schemes, in which the convective derivative is
treated in an explicit fashion, while the source term is handled implicitly. A second
order semi-implicit scheme of this type was used in [7] to analyze the pathological
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behavior, of numerical nature, that can occur in certain cases involving hyperbolic
conservation laws with stiff source terms. In [7], the simple model problem

utCux D ��u.u�1/.u�1
2
/; 0 < x < 1; t > 0; u.x; 0/ D u0.x/; (1)

is used as the basic test problem in the study of a numerical pathology that can occur
when solving hyperbolic PDEs with stiff source terms: the occurrence of numerical
fronts propagating at non-physical speeds.

As a general technique, IMEX methods are more amenable than the specific
(second order) schemes proposed in [7] for the model problem, which are hard to
generalize to more complicated situations. The ability to treat the convective part in
an explicit fashion, while still maintaining an implicit handling of the source terms,
gives a distinct advantage when designing a general purpose high order, high res-
olution numerical scheme. In fact, IMEX Runge–Kutta schemes have been used
by Pareschi and Russo in [8] for hyperbolic systems of conservation laws with
relaxation.

In [3], we have concentrated on first order explicit, implicit and IMEX time step-
ping schemes in order to quantify the source of this pathological behavior. A unified
analysis for these schemes was possible by considering the discrete wave speed,
and the difference between this quantity and the true speed of the reaction front.
This pathology is studied and analyzed in [3] for first order schemes and in [3] for
IMEX-RK schemes. An important issue that had to be considered in our analysis,
was the need to maintain non-oscillatory reaction fronts, which gave rise to the weak
stability concept analyzed in [3] for the first order case.

In this work, we analyze this weak stability concept for higher order time dis-
cretizations, in particular for Diagonally Implicit Explicit Runge Kutta (D-IMEX)
schemes used e.g., by Pareschi and Russo in [8]. Motivated by the theory of Strong-
Stability Preserving (SSP) schemes for homogeneous conservation laws [4], we
seek to obtain conditions that guarantee the preservation of our weak stability
concept, i.e., the preservation of Œ0; 1� as an invariant region for the numerical
scheme, provided that this interval is an invariant region for certain Euler-type
time discretizations of each of the operators involved. For all practical purposes,
we have observed that this Weak-Stability Preservation (WSP) property leads to
non-oscillatory schemes.

2 Method of Lines Discretizations

The application of the method of lines to the model problem of the previous section
reduces the PDE to an initial value problem for a system of ordinary differential
equations (ODEs),

@U

@t
D D.U.t//C S.U.t//; U.0/ D .u.x1; 0/; u.x2; 0/; : : : ; u.xN ; 0//

T ; (2)
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for the vector U.t/ D .U1.t/; U2.t/; : : : ; UN .t//
T with components Ui .t/ �

u.xi ; t/. Due to the nature of the problem, different operators are assigned to the
convective derivative and the source term.

The term D.U / in (2) is the spatial discretization operator of the convec-
tive derivative term, �f .u/x . It is well known that when shock computations are
involved, conservative formulations,

Di .U / D �FiC1=2 � Fi�1=2

4x (3)

must be considered. Here FiC1=2 D F.Ui�qC1; : : : ; UiCq/ is a numerical flux func-
tion consistent with the convective flux f .u/, i.e., F.U; : : : ; U / D f .U /, and F is
Lipschitz continuous with respect to its arguments. The term S.U / represents the
discrete approximation of the source term, which will always be defined in this work
as S.U /i D s.Ui /.

It is widely accepted that stiff source terms should be handled in an implicit
fashion, in order to avoid stability problems related with the fast scales. In [3], we
examine the limitations that are encountered when using the simplest Euler-type
first order schemes for the time discretization of the MOL system (2). On the other
hand, there are a number of robust, and rather specialized, numerical flux func-
tions that can be used if discontinuous, or nearly discontinuous, solutions need to be
computed. These observations lead, in a rather natural way, to consider IMplicit–
EXplicit (IMEX) Runge–Kutta (RK) schemes for the time integration of MOL
discretizations (see [8]). The general form of an s-stage D-IMEX scheme system
(2) is as follow

U .i/ D U n C4t
i�1X

jD1

aij D.U
.j //C4t

iX

jD1

Qaij S.U
.j // ; 1 � i � s ;

(4)
U nC1 D U n C4t

sX

iD1

bi D.U
.i//C4t

sX

iD1

Qbi S.U
.i// ;

where U .i/ represent the internal stages of the method.
In the specialized literature concerning ARK schemes, it is customary to use a

compact matrix notation to represent the method. Here, following [5], we denote
A D .aij /, eA D . Qaij /, b D .bi / and Qb D . Qbi /, and define the matrices

A D
�

A 0

bt 0

�
; eA D

� eA 0
Qbt 0

�
:

With this notation, the compact form of (4) is

U D e ˝ U n C4t .A˝ I /D.U /C4t .eA˝ I /S .U /; (5)
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where e D .1; : : : ; 1/t 2 RsC1, U D .U .1/t
; : : : ; U .s/t

; .U nC1/t /t 2 R.sC1/N ,
D.U / D .D.U .1//T ; : : : ;D.U .s//T ; 0T /T 2 R.sC1/N , with analogous notation
for S .U /. The symbol˝ denotes the Kronecker product (see, for example, [5] for
specific details).

Observe that for a D-IMEX scheme (4), the matrix A, associated to the explicit
scheme, is strictly lower triangular and the matrix eA, associated to the implicit one,
is lower triangular.

3 Weak Stability Preservation for D-IMEX Schemes

In [3], we pointed out that the solution for the model problem (1) corresponding to
the initial profile

u.x; 0/ D
(
1; if x < xd ;

0; if x > xd ;

satisfies 0 � u.x; t/ � 1. Because of the properties of the source term (see e.g
Theorem 2.1 in [3]), it makes sense to require similar inequalities for the numerical
solution, that is

0 � U n � 1 (6)

perhaps under certain stepsize restrictions, where in (6), and in the rest of this work,
vector and matrix inequalities should be understood component-wise. In [3, Defi-
nition 6.1] we introduced the concept of weakly stable (WS) methods, defined as
schemes such that, when applied to the model problem (1), the numerical solution
satisfies property (6) provided 0 � U 0 � 1. As we show in [3], the tools used in
the context of Strong Stability Preserving SSP (or TVD) RK and SSP (or TVD)
additive RK schemes, will serve to establish sufficient conditions that, in practice,
guarantee the absence of numerical oscillations. Indeed, we seek to prove a weak
stability preservation (WSP) property: assuming weak stability properties – under
appropriate stepsize restrictions – for first order time integrators applied to each
additive term in (2), similar ones can be ensured for the IMEX scheme, perhaps
under different time-step restrictions.

Following the ideas in the SSP theory, the WSP property of an IMEX scheme will
rely on the ability to write the internal stages in (7) as a convex combination of Euler
steps. The following technical lemma shows that, under rather mild assumptions, the
numerical solution and each internal stage in an additive scheme can be written as a
linear combination of Euler steps for the convective and source terms. The proof is
straightforward and shall be omitted.

Lemma 1. We consider an additive RK scheme (5) with coefficient matrices .A;eA/.
Let us consider any splitting of the matrix eA as eA D eA

C

� eA
�

. Let r1; r2; r3 2 R,
be nonzero numbers such that the matrix B WD r1 AC r2 eA

C

C r3eA
�

satisfies that
.I CB/ is invertible. Then scheme (5) can be rewritten as
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U D .I CB/�1e ˝ Un C r1..I CB/�1A˝ I/.U C 4t
r1

D.U // (7)

C r2..I CB/�1eA
C

˝ I/.U C 4t
r2

S .U //C r3..I CB/�1eA
�

˝ I/.U � 4t
r3

S .U //:

Observe that Lemma 1 is valid for general splittings eA D eA
C

� eA
�

and real
triplets .r1; r2; r3/ 2 R3, provided that the matrix .I C B/ is invertible. If this
is the case, expanding the relation .I CB/�1.I CB/ e D e we get the following
relation

.ICB/�1eCr1 .ICB/�1A eCr2 .ICB/�1eA
C

eCr3 .ICB/�1eA
�

e D e: (8)

Hence, it is easy to see that in order to have a convex combination in (7) we must
require also that the following assumption holds true:

ASSUMPTION SP: Let us assume that, for an additive RK scheme .A;eA/, and a
given splitting eA D eAC �eA�, we can find r1; r2; r3 � 0 such that matrix I CB is
regular and

.I CB/�1e � 0 ; .I CB/�1A � 0 ; .I CB/�1eA
˙

� 0: (9)

The second key ingredient in the proof of our main result is the ability to solve
the implicit steps involved in the IMEX process. For D-IMEX schemes (4), there is
only one implicit Euler step involving the source term for each internal stage. Hence,
we shall assume that the source term s.u/ satisfies the following assumption:

ASSUMPTION IES: If 0 � un � 1, then unC1 can be computed from

unC1 D un C � s.unC1/

for all 0 < � � �
IE

, and satisfies 0 � unC1 � 1.

Recall that the source term in the model problem (1) satisfies this assumption
with �

IE
D 4=�, [3]. On the other hand, the class of source terms considered in [2]

fulfill this assumption for �
IE
D C1.

The main result in this section establishes sufficient conditions that ensure WSP
for a given D-IMEX scheme of the form (4). See [3] for the proof details.

Theorem 1. Let us consider a D-IMEX method of the form (5), with coefficient
matrices .A;eA/, for the ODE (2). Assume that:

1. There exists constants �
D
> 0, �sC > 0 and �s� > 0 so that

0 � U n � e H) 0 � U n C � D.U n/ � e ; � � �
D
; (10)
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0 � U n � e H) 0 � U n C � S.U n/ � e ; � � � sC ; (11)

0 � U n � e H) 0 � U n � � S.U n/ � e ; � � � s� : (12)

2. The source term s.u/ satisfies the assumption IES above.
3. A � 0, and we have constructed a partition eADeAC � eA� such that eAC � 0,
eA� � 0 with eA� strictly lower triangular for which the assumption SP is
satisfied, i.e., there exists r1; r2; r3 � 0 such that inequalities (9) hold.

Then 0 � U n � e H) 0 � U nC1 � e ; under the stepsize restriction

4t � minfr1 �D
; r2 �

sC ; r3 � s�; � �IE
g : (13)

where � D 1=maxf Qai i ; 1 � i � sg.
Theorem 1 provides a useful set of sufficient conditions for WSP in D-IMEX

schemes. Since all numerical evidence points out that when numerical oscillations
do occur, the values on the numerical wave profile do not lie in Œ0; 1�, non-oscillatory
results are expected when these conditions are satisfied.

Clearly, any practical application of Theorem 1 requires, as a previous step,
the determination of an appropriate splitting (for more details see [3]). However,
we notice that, for practical purposes, the number of variable parameters in the
determination of the stepsize restriction (13) can be reduced by imposing that
r1�D

D r2� sC D r3� s�. In this case, (13) becomes

4t
�

D

� r1 ; (14)

where r1 needs to be determined for each given splitting. Taking into account that �D

is related to the spatial mesh size4x through the usual CFL restriction for the oper-
ator D.U / (in the homogeneous case), the stepsize restriction (14) for WSP takes
the form of a CFL-like restriction. Notice that the stepsize restriction 4t � � �

IE

in (13) simply ensures the solvability of the nonlinear equations (see assumption
IES) involved in the D-IMEX process, and it is otherwise unrelated to the set of
restrictions.

4 Numerical Experiments for the LeVeque–Yee Model
Problem

In this section, we would like to test the sharpness of the CFL restriction for WSP
found in [3]. This CFL restriction is found as the following optimization problem:
we set y D �

D
=� sC, z D �

D
=� s�,
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maxeA
C

;eA
�

r1

subject to

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

.I C r1 AC r1 y eAC C r1 zeA�/�1e � 0 ;

.I C r1 AC r1 y eAC C r1 zeA�/�1A � 0 ;

.I C r1 AC r1 y eAC C r1 zeA�/�1eA˙ � 0 ;
eA D eAC � eA� ;
eAC;eA� � 0 :

(15)

which is solved using the Matlab Optimization Toolbox. To this aim, we present
a series of numerical experiments for the model problem (1) and the D-IMEX
schemes known as SSP2.3; 3; 2/, whose coefficients are

0 0 0 0

1
2

1
2
0 0

1 1
2

1
2
0

A 1
3

1
3

1
3

1
4

1
4
0 0

1
4
0 1

4
0

1 1
3

1
3

1
3

eA 1
3

1
3

1
3

(16)

In the notation SSPk.s; �; p/, s is the number of stages of the implicit scheme, � the
number of stages in the explicit scheme and k is the order of the explicit scheme and
p is the order of the IMEX scheme. For these IMEX methods, the explicit part is
SSP. These IMEX RK schemes are considered in [8] in the context of hyperbolic
systems of conservation laws with stiff relaxation terms.

We consider the upwind discretization of the convective derivative, already used
for numerical testing in [3]. In this case, it is well known that �D D 4x. In addition,
we also present some numerical tests where the numerical flux function is com-
puted using the standard ENO2 and ENO3 reconstructions (see e.g., [10]). These
are examples of nonlinear reconstruction techniques, for which the use of a semi-
implicit alternative, such as a D-IMEX scheme, is almost mandatory. The use of the
ENO2 numerical flux functions leads to a TVD scheme in the homogeneous case
under the usual CFL restrictions. This ensures that �D D 4x for the model prob-
lem also in this case. On the other hand, the ENO3 numerical flux function is only
Essentially Non Oscillatory. Our numerical tests indicate that under the CFL restric-
tions for WSP, the behavior of this scheme is also non-oscillatory. From this point
of view, the concepts of WS, and WSP, seem to provide adequate generalizations
of the stronger SS equivalents, for those problems where the nature of the solution
makes it impossible to enforce them.

In order to obtain the numerical values, we plot the numerical solution with
Matlab. When the numerical solution lies in the interval Œ0; 1�, the plot window
is automatically set to Œ0; 1�; however, if some value is out of this interval, the
plot window is automatically increased. As in many cases the values out of Œ0; 1�
are negligible on the plot, this way of proceeding allows us to easily detect the
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Table 1 SSP2(3,3,2): Theoretical and observed CFL for with first order upwind scheme; observed
CFL for ENO2 and ENO3

�4x D 1 �4x D 2:5 �4x D 10

Theoretical 1.1429 0.8017 0.3188
Obser. upwind 1:3 � r1 � 1:4 0:9 � r1 � 1 0:4 � r1 � 0:5
Obser. ENO2 1:3 � r1 � 1:4 0:9 � r1 � 1 0:5 � r1 � 0:6
Obser. ENO3 1:3 � r1 � 1:4 0:9 � r1 � 1 0:6 � r1 � 0:7

loss of WSP. We present the numerical results for the values of �4x D 2:5 and
�4x D 10 in Table 1, in order to compare the numerical values with the theoretical
values obtained with the optimization problem 15. We consider 4x D 10�3 in all
numerical tests in this section.

Here, we have focussed on the ability to maintain non-oscillatory reaction fronts,
we have obtained a set of sufficient conditions that ensure the preservation of certain
relevant invariant regions, which was defined as a weak stability requirement in
[3]. However, it is possible to see more details in this issue in [3], where we also
determine the parameters that control the occurrence of reaction fronts traveling at
incorrect speeds.

The next step is to test IMEX-RK schemes on more realistic problems. The
analysis done for simple hyperbolic equations only allows us to determine which
methods are more robust from the point of view of certain qualitative behavior, and
which ones behave poorly. Although this behavior cannot be ensured for more com-
plex problems, experience says that it is safer to integrate them with well behaved
schemes for test problems. In this context, the results obtained gain relevance.

Acknowledgements The authors acknowledge support from MTM2008-00974, MTM2008-
00785 and MTM2006-01275.
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Stable Perfectly Matched Layers
for the Schrödinger Equations

Kenneth Duru and Gunilla Kreiss

Abstract We present a well-posed and stable perfectly matched layer (PML) for the
time-dependent Schrödinger wave equations. The layer consists of the Hamiltonian
(H ) perturbed by a complex absorbing potential (CAP, �i�1), Hcap D H � i�1,
and carefully chosen auxiliary functions to ensure a zero reflection coefficient at the
interface between the physical domain and the layer. Using standard perturbation
techniques, we show that the layer is asymptotically stable. Numerical experiments
are presented showing the accuracy of the new PML model. The numerical scheme
couples the standard Crank–Nicolson scheme for the modified wave equation to an
explicit scheme of the Runge–Kutta type for the auxiliary differential equations.

1 Introduction

Many problems in the engineering and physical sciences are characterized by wave
features. The physical propagation of waves occurs in large spatial domains while
numerical simulations of such waves are typically confined to smaller computational
domains. Special (artificial) boundary conditions are imposed on the boundaries
of the computational domains. To ensure the accuracy of numerical simulations,
these artificial boundary conditions are such that out-going waves disappear without
reflection.

In numerical computations of quantum mechanical systems in open domains, the
chemist often adds a complex absorbing potential (CAP) to the Hamiltonian close
to the boundary in order to absorb outgoing waves, see [5]. The CAP technique
is very popular because of its simplicity. However, CAP generates spurious reflec-
tions at the interface between the physical domain and the layer which prevents the
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convergence of the numerical solution for a finite width layer (i.e., not perfectly
matched).

The problem of absorbing boundaries for wave equations was transformed in a
seminal paper by Berenger [2]. Berenger derived a (split-field) perfectly matched
absorbing layer (PML) such that all waves entering the layer are absorbed with-
out reflection. In general, the PML can be interpreted as a complex coordinate
stretching. This enables one to mathematically (algebraically) manipulate the PML
equations in order to have a more robust model.

However, PMLs for dispersive waves such as the time-dependent Schrödinger
wave equation is less developed, see [1]. In this paper, we propose and analyze new
PML equations for the time-dependent Schrödinger wave equations. Our approach
is based on the complex coordinate stretching technique [3]. The new layer can be
viewed as a modified CAP technique, where the Hamiltonian is perturbed by a CAP
and the equations are corrected by accurately and carefully chosen auxiliary vari-
ables to ensure that the interface between the physical domain and the absorbing
layer does not reflect outgoing waves. Standard perturbation techniques are used to
show that our layers are asymptotically stable. The new PML model fits into numer-
ical codes developed for Schrödinger wave equations based on the CAP technique.
Note that the auxiliary variables can be discretized and updated independently.

In the next section, we derive the PML equations. Section 3 is devoted to stabil-
ity analysis. In Sect. 4 some numerical examples are presented. We summarize and
make conclusions in Sect. 5.

2 The Schrödinger Wave Equations and the PML

The appropriately scaled linear time dependent Schrödinger wave equation is usu-
ally written

iut D Hu; x 2 Rd ; t � 0;
u.x; 0/ D u0.x/;

(1)

where u W Rd � RC ! C; H D �4 C V; V W Rd � RC ! R: Here u is
the wave function,H is the Hamiltonian, V is the potential and4 is the Laplacian.
From now on, we will consider d D 2; where

H D � @2

@x2
C L. @

@y
; y/; L.

@

@y
; y/ D � @

2

@y2
C V.y/:

Here L is a linear elliptic operator with strictly positive eigenvalues.



Stable Perfectly Matched Layers for the Schrödinger Equations 289

2.1 PML Models

In this section we shall derive the PML equations using the complex coordinate
stretching technique. The basic properties of a PML can be found in [7], we will only
give an overview of the underlying ideas. For simplicity, we consider V D const:
We begin by taking Fourier transform in time,

i.i! Ou/ D H Ou: (2)

The Cauchy problem (2) admits plane wave solutions,

Ou.x; y; !/ D u0e
�i!.�1xC�2y/:

Here �1 and �2 are real, and .�1; �2/ D .kx=!; ky=!/, u0 is a constant amplitude,
.kx; ky/ is the wave vector. Let us consider the case where we want to compute the
solution in the half plane x � x0, and the PML introduced outside that half plane,
that is, in x > x0. We now look for the modification of the wave equation such that
it gets exponentially decaying solutions in the PML,

Ou.x; y; !/ D u0e
��1� .x/e�i!.�1xC�2y/:

Here � .x/ is a real valued non-negative increasing smooth function, which is zero
for x � x0. We can re-write the decaying solution as

Ou.x; y; !/ D u0e
�i!

�
�1

�
xC�.x/

i!

�
C�2y

�

:

This can be seen as a plane wave solution to the wave equation in the transformed
variables . Qx; y/, where Qx D xC � .x/

i!
. Let s1 WD d Qx

dx
D 1C �1

i!
, where �1 D d� .x/

dx
.

The PML can now be viewed as a complex change of spatial variable x in the Fourier
transformed wave equation, by changing @

@x
to 1

s1

@
@x

. By applying this change of
variable to (2), we have

i.i! Ou/ D � 1
s1
.
1

s1
Oux/x � Ouyy C V Ou: (3)

We observe that the plane wave satisfying (3) is

Ou.x; y; !/ D u0e
�i!.s1�1xC�2y/: (4)

Equation (3) is the PML equation. To obtain a time-dependent problem from (3) we
choose the auxiliary variables,
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Ov D 1

s1

Oux
i!
; Ow D � Ouy

i!
; Oz D Ou

i!
;

then invert the Fourier transform, and we have

iut D HcapuC F.�; �1/;
�t D G.u; �; �1/: (5)

Where; HcapDH�i�1; F .�; �1/D .�1v/xC.�1w/yC�1V z; G.u; �; �1/D Œux�
�1v;�uy; u�T and �D Œv;w; z�T : In the 1-D case, there is no variation in the y-
direction, the auxiliary variable w vanishes. We note in passing that the original
un-damped Schrödinger wave equation (1) is recovered outside the PML, where
�1 = 0.

We see that if F.�; �1/ D 0; we have the CAP model. The PML model (5) can
be viewed as a correction of the CAP technique by the carefully chosen auxiliary
function F.�; �1/ to ensure that the equations are perfectly matched. If V D 0, the
variable z vanishes and we have the potential-free model.

3 Stability Analysis

Without loss of generality we consider V D 0. In order to study the stability of the
model (5), we assume constant coefficients and plane wave solutions of the form (6).
By inserting (6) in (5), we obtain the corresponding dispersion relation (7). From the
roots �.kx; ky ; �1/ of the dispersion relation (7) we can decide whether the model
(5) is stable.

u D u0ei�t�ikxx�ikyy ; u0 2 R3; kx; ky ; x; y;2 R; t � 0: (6)

.� � i�1/2�C �2k2x C .� � i�1/2k2y D 0: (7)

The system (5) is asymptotically stable if for all .kx ; ky/ 2 R2 the roots �.kx;
ky ; �1/ of the dispersion relation have non-negative imaginary parts, i.e., =� � 0:
If there are multiple roots with =� D 0; there must be a corresponding number of
linearly independent vectors u0.

Theorem 1. The constant coefficient PML model (5) is asymptotically stable for all
�1 � 0.

Proof. We introduce the normalization

k1 D kx

jkj ; k2 D
ky

jkj ; jkj
2 D k2x C k2y ; �.k1; k2; 	/ D

�.kx; ky ; �1/

jkj2 ; 	 D �1

jkj2 ;

and we have
.� � i	/2�C �2k21 C .� � i	/2k22 D 0: (8)
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Consider first k1 D 0: Since k21 C k22 D 1, from (8) we have

.� � i	/2.�C 1/ D 0:

There is a simple root �1 D �1 and a double root �2;3 D i	: Clearly these modes
are stable.

Next we consider k2 D 0: This corresponds to the 1-D case. Also since
k21 C k22 D 1, from (8) we have

�
�
.� � i	/2 C �

�
D 0: (9)

For all 	 > 0, there are 3 distinct roots

�1 D 0; �2;3 D i2	 � 1˙p1 � i4	
2

:

By evaluating the square root we have

�2;3 D
i2	 � 1˙

�r
1C
p
1C.4�/2
2

� i
r

2

1
4
C
q
. 1
4
/2C�2

	
�

2
;

(10)

with the imaginary parts

=�2;3 D
 
2˙

vuut
2

1
4
C
q
.1
4
/2 C 	2

!
	

2
:

=�2;3 > 0; for all 	 > 0, and it follows that the mode .k1; 0/ is stable.
For the remaining wave numbers, we use a standard perturbation technique. At

	 D 0; there are 3 roots

�1 D �.k21 C k22/ D �1; �2;3 D 0:

The first root, �1; is denoted the physical mode and the others, �2;3; are called the
non-physical modes. In the vicinity of the physical mode, the function
	 ! �.k1; k2; 	/ has an expansion of the form

� D �1C 	�� CO.	2/: (11)

Insert (11) in (8) and equate different powers of 	 to zero separately. The linear term
yields

�� D i2k21 ;



292 K. Duru and G. Kreiss

showing the stability of the physical mode for all sufficiently small 	 > 0: The
non-physical modes at 	 D 0 appear as a double root. Thus we must investigate the
possibility of an expansion of the form

N� D N��	r C o.	r/; r < 1:

Assume r < 1; and N�� ¤ 0. From (8) we have the leading order terms � 	2r ;

	2r N�2� D 0;

implying N�� D 0;which is a contradiction. Thus we instead consider r D 1, yielding
to leading order terms � 	2;

N�� D ik22 ˙ k1k2:

Clearly these modes are also stable for all sufficiently small 	 > 0:
It remains to prove that the modes k1 ¤ 0 and k2 ¤ 0 are stable for all 	 > 0:

By the perturbation analysis we know that for sufficiently small 	 the corresponding
roots have positive imaginary parts. Since the roots are continuous functions of 	
instability can only occur if there is a purely real root of (8) for some 	 > 0:

Consider k1 ¤ 0 and k2 ¤ 0 and assume � 2 R is a solution of (8) for some
	 > 0: Considering the imaginary and the real parts of (8) separately yields

�C k22 D 0;
.�2 � 	2/.�C k22/C �2k21 D 0:

These relations can only be satisfied if k1 D 0 or k2 D 0, which is a contradiction.
This completes the proof. ut

4 Numerical Tests

In this section, we present some numerical examples. We discretize in space using
standard fourth order node centered finite difference approximations. After dis-
cretizations in space, we have a system of first order ordinary differential equations
(ODE)

�t D Gh.u; �; �1/; (12)

ut D AhuC Fh.�; �1/: (13)

If Fh.�; �1/ is known, the wave function u can be propagated using any pre-
ferred method of choice, and Fh.�; �1/ is simply treated as a forcing. However,
Fh.�; �1/ depends on � which depends on time t; and is also coupled to the wave
equation if �1 ¤ 0: We have chosen to update the auxiliary variables � with an
explicit scheme of the Runge-Kutta type. In the explicit scheme, we only use (13) to
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calculate the needed Runge–Kutta stages without updating the wave function u. The
calculated auxiliary variables are coupled to the standard Crank–Nicolson scheme
to propagate the wave function u. Without the PML the Crank–Nicolson scheme
is unconditionally stable. Since we have used an explicit scheme for the auxiliary
variable we have a time step restriction. We also comment that the PML model can
easily be adapted to existing codes developed for CAP by accurately discretizing
the auxili ary variables � and the auxiliary functions F;G and appending them
accordingly.

In the first experiment, we consider the 1-D Schrödinger wave equation (1) posed
on an unbounded domain �1 � x � 1; with the initial data

u.x; 0/ D exp.�x2 C ik0x/; k0 D 5: (14)

if the potential V D 0, the Schrödinger wave equation has an exact solution

u.x; t/ D
r

i

�4t C i exp
h�ix2 � k0x C k20 t

�4t C i
i
: (15)

In order to perform numerical experiments we restrict ourself to a bounded domain
�d � 4 � x � 4 C d , where the physical domain corresponds to �4 � x � 4,
and the extra length d > 0 is the PML width, simulating unbounded domain. In
this experiment the aim is to study the numerical reflections at the interface of the
layer and the computational domain (perfect matching). We therefore consider a
wide layer d D 16, and the final simulation time T D 1; such that the reflections
at the outer boundaries do not yet affect the solutions in the computational domain.
The damping profile is a quadratic monomial �1 D 100..jxj � 4/=16/2: Numeri-
cal experiments were performed for the PML model and the CAP model. We also
compute a reference solution in a larger domain �25 � x � 25:

The discretization errors were obtained by comparing the numerical solutions
to the exact solution (15) in the interior of the domain. By comparing the PML
and CAP solutions to the reference solution in the interior of the domain we obtain
an accurate measure of the numerical reflections. In Table 1, the second and third
columns show the numerical reflections for different resolutions while column 4
through column 6 show the discretization errors. In Table 1, we see that reflections
and discretization errors from the PML model are small and they approach zero at

Table 1 Numerical reflections and discretization errors with the 4th-order accurate numerical
scheme, for the zero potential 1-D model

Mesh-size PML(reflection) CAP(reflection) PML(error) CAP(error) Reference(error)

0.2000 1.2190e-05 2.0226e-04 2.9069e-04 3.2804e-04 2.9612e-04
0.1000 9.7048e-07 1.9830e-04 1.5875e-05 1.9555e-04 1.6119e-05
0.0500 8.2285e-08 1.9540e-04 1.0895e-06 1.9519e-04 1.1010e-06
0.0250 7.2138e-09 1.9391e-04 1.0993e-07 1.9390e-04 1.1053e-07
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Fig. 1 The dynamics of juj2 . All figures are with contours between �1 and 1 at intervals of 0.001,
exempting the zero contour

the rate O.h4/ while numerical reflections and discretization errors from the CAP
model do not converge to zero.

In the 2-D experiment, we surround a Cartesian grid with PML and introduce
initial data at the center of the domain. The behavior of the 2-D PML model is
illustrated in Fig. 1, showing how the probability cloud propagates diagonally into
the upper right corner and it is being effectively absorbed.

5 Summary

Perfectly matched layers for the time-dependent Schrödinger wave equations are
derived and analyzed. Using plane waves and standard perturbation techniques we
showed that the solutions in the PML decay exponentially in time and the direction
of increasing damping. Numerical experiments are presented, illustrating the perfect
matching and absorption properties of the new model.

The new model can be viewed as a modified CAP technique, where the Hamil-
tonian is perturbed by a CAP and the equations are corrected by carefully and
accurately chosen auxiliary functions to ensure that the interface between the PML
and the physical domain has a zero reflection coefficient. Since CAP reflects out-
going waves, a lot of effort has been made to derive optimal CAP parameters. These
derived optimal parameters can be used in the new PML model to improve results
of numerical simulations.
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Artificial Boundary Conditions Techniques for Linear and Non-linear Schrödinger Equations.
Commun. Comput. Phys. 4(4) (2008) 729–796

2. Berenger J. P. A perfectly Matched Layer for the Absorption of Electromagnetic Waves. J.
Comput. Phys. 114 (1994) 185–200



Stable Perfectly Matched Layers for the Schrödinger Equations 295

3. Chew W. C., Weedon W. H. A 3-D Perfectly Matched Medium from Modified Maxwell’s
Equations with Stretched Coordinates. Micro. Opt. Tech. Lett. 7(13) (1994) 599–604

4. Hagstrom T. New results on absorbing layers and radiation boundary conditions, Topics in
computational wave propagation, 142, Lect. Notes Comput. Sci. Eng. 31, Springer, Berlin, 2003

5. Santra R. Why Complex Absorbing Potentials Work: A Discrete-Variable-Representation
Perspective. Phys. Rev. A 74 (2006) 034701
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Domain Decomposition Schemes for Frictionless
Multibody Contact Problems of Elasticity

Ivan I. Dyyak and Ihor I. Prokopyshyn

Abstract The class of parallel Robin (Poincaré) domain decomposition schemes
which are based on the penalty method and the simple iteration method for varia-
tional equations is proposed for solution of frictionless multibody contact problems
of elasticity. The convergence of these schemes is proved. The numerical analysis is
made for 2D contact problems using FEM approximations.

1 Introduction

The contact problems of elastic bodies are widely used in many fields of science
and engineering. The recent achievements on analytical and numerical methods for
solution of these problems are given in work [10].

Nowadays the numerical methods based on the theory of variational inequalities
have become very popular for solving contact problems of elasticity. The develop-
ment of domain decomposition methods (DDM) has given a powerful incentive to
this approach, especially for the solution of multibody contact problems. The brief
overview of existing DDM for contact problems is given in [4, 10].

Using the penalty variational formulation and the simple iteration method for
variational equations we have proposed parallel Neumann and parallel Dirichlet
domain decomposition schemes for solution of unilateral frictionless two-body con-
tact problems of elasticity [9]. These schemes have been generalized for multibody
contact problems and their convergence has been proved [2].
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In this contribution we propose wider class of parallel Robin (Poincaré) domain
decomposition methods for frictionless contact problems which includes the schemes
we have considered earlier in [2, 9].

2 Formulation of the Frictionless Multibody Contact Problem

Let us consider the frictionless contact problem of N elastic bodies ˝˛ � R3 with
sectionally smooth boundaries�˛ D @˝˛, ˛ D 1; 2; :::; N ,˝ DSN

˛D1˝˛ (Fig. 1).
A stress-strain state of each body˝˛ is described by the vector of displacements

u˛ D u˛ i ei , by the tensor of strains O���˛ D "˛ ij eiej and by the tensor of stresses
O���˛ D �˛ ij eiej . These quantities satisfy Cauchy relations, Hooke’s Law and the
equilibrium equations:

"˛ ij D 1

2

�
@u˛ i
@xj

C @u˛ j
@xi

�
; i; j D 1; 2; 3 ; (1)

�˛ ij D C˛ ijkl "˛ kl; i; j D 1; 2; 3 ; (2)

@�˛ ij

@xj
C f˛ i D 0; i D 1; 2; 3 ; (3)

where f˛ i ; i D 1; 2; 3 are the components of the volume forces vector f˛ D f˛ i ei .
Let us introduce the outer unit normal n˛ and the local coordinate system

���˛; ���˛; n˛ on the boundary �˛. Then the displacements and the stresses on the
surface can be written in the following way:

u˛ D u˛ ����˛ C u˛ ����˛ C u˛ nn˛ ; ���˛ D O���˛ � n˛ D �˛ ����˛ C �˛ ����˛ C �˛ nn˛ :

The boundary �˛ of every domain consists of three parts: �˛ D � u
˛

S
� �˛

S
S˛,

where S˛ D Sˇ 2B˛ S˛ˇ is the possible contact area of body˝˛ with other bodies,

Fig. 1 Contact of several 3D
bodies
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S˛ˇ is the possible contact area of body˝˛ with body˝ˇ and B˛ � f1; 2; : : : ; N g
is the set of the indexes of all bodies which contact with body ˝˛ .

We assume that surfaces S˛ˇ � �˛ and Sˇ˛ � �ˇ are sufficiently close in a
sense that n˛.x/ � �nˇ .x0/, x 2 S˛ˇ , x0 D P.x/ 2 Sˇ˛ – projection of x on Sˇ˛
[5, 6]. Let d˛ˇ .x/ D kx � x0k be a distance between bodies ˝˛ and ˝ˇ before the
deformation.

On the part � u
˛ the kinematical (Dirichlet) boundary conditions are prescribed:

u˛.x/ D 0; x 2 � u
˛ : (4)

On the part � u
˛ we consider the static (Neumann) boundary conditions:

���˛.x/ D p˛.x/; x 2 � �˛ ; (5)

where p˛ are prescribed boundary stresses.
On the possible contact areas S˛ˇ

�
x 2 S˛ˇ ; x0 D P.x/ 2 Sˇ˛

�
the unilateral

frictionless contact conditions hold:
�˛n.x/ D �ˇn.x0/ � 0 ; (6)

�˛�.x/ D �ˇ�.x0/ D 0; �˛�.x/ D �ˇ�.x0/ D 0 ; (7)

u˛n.x/C uˇn.x
0/ � d˛ˇ .x/ ; (8)

�
u˛n.x/C uˇn.x

0/� d˛ˇ .x/
�
�˛n.x/ D 0 : (9)

3 Variational Formulations of the Problem: The Penalty
Method

Let us consider Sobolev space V˛ D
�
H 1.˝˛/

�3
at the domain ˝˛ and the closed

subspace V 0˛ D fu˛ W u˛ 2 V˛I u˛.x/ D 0; x 2 � u
˛ g. The space V0 D V 01 �

::: � V 0N is the Hilbert space with the scalar product .u; v/V0 D
PN
˛D1 .u˛; v˛/V 0˛ ,

u; v 2 V0.
Let us introduce the closed convex set of all displacements at V0 which satisfy

the non-penetration contact conditions (8):

K D ˚u W u 2 V0I u˛ n.x/C uˇ n.x
0/ � d˛ˇ .x/; x 2 S˛ˇ ; x0 2 Sˇ˛

�
; (10)

where f˛; ˇg 2 Q , Q D ff˛; ˇg W ˛ 2 f1; 2; : : : ; N g ; ˇ 2 B˛g.
The contact problem (1) – (9) has an alternative formulation as the minimization

problem of the quadratic functional at the set K [6, 7]:

F.u/ D 1

2
A .u;u/ � L.u/! min

u2K ; (11)
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where A .u; v/ D PN
˛D1 a˛.u˛ ; v˛/ is the bilinear form which represents the total

deformation energy of the system of bodies and L.u/ DPN
˛D1 l˛.u˛/ is the linear

form which is equal to the external forces work,

a˛.u˛; v˛/ D
Z

˝˛

O���˛.u˛/ W O���˛.v˛/ d˝ ; u˛ ; v˛ 2 V 0˛ ;

l˛.v˛/ D
Z

� �˛

p˛ � v˛ dS C
Z

˝˛

f˛ � v˛ d˝ ; v˛ 2 V 0˛ ; ˛ D 1; 2; : : : ; N :

The bilinear form A is symmetric, continuous and coercive, and the linear form L

is continuous, i.e.,
8 u; v 2 V0 A .u; v/ D A .v;u/ ; (12)

9 M > 0 8 u; v 2 V0 jA .u; v/j �M kukV0 kvkV0 ; (13)

9B > 0 8 u 2 V0 A .u;u/ � B kuk2V0 ; (14)

9H > 0 8 v 2 V0 jL.v/j � H kvkV0 : (15)

According to [1, 6, 7], the minimization problem (11) has the unique solution at
the set K and is equivalent to the following variational inequality:

A .u; v � u/ �L.v � u/ � 0 ; 8 v 2 K; u 2 K : (16)

To satisfy the non-penetration condition (8) and to obtain an unconstrained
optimization problem, we have used the penalty method with following penalty [5]:

J� .u/ D 1

2�

X

f˛; ˇg 2Q

Z

S˛ˇ

��
d˛ˇ .x/� u˛ n.x/� uˇ n.x

0/
���2

dS: (17)

Here � > 0 is a penalty parameter, and the quantity �˛ˇ D
�
d˛ˇ � u˛ n � uˇ n

��
=�

has a sense of the contact stress.
Let us consider the following unconstrained minimization problem:

F� .u/ D 1

2
A .u;u/ �L.u/C J� .u/! min

u2V0
: (18)

The penalty J� is two times Gateaux differentiable at V0 and the Gateaux derivatives
satisfy the properties:

8 u 2 V0 9R > 0 8 v 2 V0
ˇ̌
J 0� .u; v/

ˇ̌ � R kukV0 kvkV0 ; (19)

9D > 0 8 u; v;w 2 V0
ˇ̌
J 00� .u; v;w/

ˇ̌ � D kvkV0 kwkV0 ; (20)

8 u; v 2 V0 J 00� .u; v; v/ � 0: (21)
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Due to the properties (12)–(15) and (19)–(21), it can be shown that the functional
F� is two times Gateaux differentiable, strictly convex, weakly lower semicon-
tinuous and lim

kukV0!1
F� .u/ D 1. Hence [1], there exists the unique solution

of the minimization problem (18) and this problem is equivalent to the following
variational equation:

A .u; v/C J 0� .u; v/� L.v/ D 0 ; 8 v 2 V0 ; u 2 V0; (22)

where

J 0� .u; v/ D �
1

�

X

f˛;ˇg 2Q

Z

S˛ˇ

�
d˛ˇ � u˛ n � uˇ n

�� �
v˛ n C vˇ n

�
dS:

Using the results of works [3, 8], we have proved the next theorem about the
convergence of this method.

Theorem 1. If Nu� 2 V0 is the solution of the variational equation (22) for
� > 0 and if Nu 2 K is the solution of the variational inequality (16), then
kNu� � NukV0 !�!0 0 .

4 The Simple Iteration Method and Domain Decomposition

Let G.u; v/ be a bilinear form on V0 � V0 which satisfies properties:

8 u; v 2 V0 G .u; v/ D G .v;u/ ; (23)

9fM > 0 8 u; v 2 V0 jG .u; v/j �fM kukV0 kvkV0 ; (24)

9 eB > 0 8 u 2 V0 G .u;u/ � eB kuk2V0 : (25)

For the numerical solution of the nonlinear variational equation (22) we use the
simple iteration method [3] in the form [2, 9]:

G .ukC1; v/ D G .uk; v/� �
h
A .uk; v/C J 0� .uk ; v/�L.v/

i
; k D 0; 1; : : : ;

(26)
where uk 2 V0 is the k-th approximation to the exact solution Nu 2 V0 of the problem
(22) and � 2 R is an iterative parameter.

We have proved the next theorem [2], which generalize the theorem about the
convergence of the simple iteration method for linear variational equations [3].

Theorem 2. Let conditions (13)–(15), (19)–(21), (23)–(25) hold and the iteration
parameter � lies in the interval .0I �2/ , �2 D 2BeB= .M CD/2.

Then the sequence fukg � V0 obtained by the iterative method (26) con-
verges strongly in V0 to the exact solution Nu 2 V0 of the variational equation (22),
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i.e.
		uk � Nu		

V0
!
k!1

0 . Moreover, the convergence rate in the norm kukG D
p
G .u;u/ is linear:

		ukC1 � Nu		
G
� q

		uk � Nu		
G

, q D Œ1 � � .2B � �.MC
D/2=eB

�
=fM

� 1
2 < 1 .

Let us choose the bilinear form G in the simple iteration method (26) as follows

G .u; v/ D A .u; v/CX.u; v/; u; v 2 V0 ; (27)

where

X.u; v/ D 1

�

X

f˛; ˇg 2Q

Z

S˛ˇ

�
u˛ nv˛ n C uˇ nvˇ n

�
 ˛ˇdS; (28)

 ˛ˇ .x/ D
(
0; x 2 S˛ˇnS1˛ˇ
1; x 2 S1

˛ˇ

; S1˛ˇ 	 S˛ˇ ; f˛; ˇg 2 Q:

The surface S1
˛ˇ

is a subset of S˛ˇ , and the function  ˛ˇ is the characteristic

function of the area S1
˛ˇ

.
Thus, the simple iteration method (26) with the bilinear form (27) can be written

in the following way:

A . QukC1; v/CX . QukC1; v/ D L.v/CX.uk; v/� J 0� .uk ; v/ ; (29)

ukC1 D � QukC1 C .1 � �/ uk ; k D 0; 1; : : : : (30)

The bilinear form X is symmetric, continuous and nonnegative. Therefore, accord-
ing to Theorem 2, the sequence fukg converges strongly to the solution of (22) for
� 2 .0I �2/.

As the common quantities of the subdomains are known from the previous
iteration, then the method (29) and (30) leads to domain decomposition and the vari-
ational equation (29) splits intoN separate variational equations for each subdomain
˝˛:

a˛. QukC1˛ ; v˛/ C 1

�

X

ˇ 2B˛

Z

S˛ˇ

 ˛ˇ



QukC1˛ n � uk˛ n

�
v˛ n dS D (31)

D l˛.v˛/C 1

�

X

ˇ 2B˛

Z

S˛ˇ



d˛ˇ � uk˛ n � ukˇ n

��
v˛ n dS;

ukC1˛ D � QukC1˛ C .1 � �/uk˛ ; ˛ D 1; 2; : : : ; N; k D 0; 1; : : : : (32)

At each iteration k we have to solve N parallel elasticity problems (31) with
general Robin (Poincaré) condition on S˛ˇ . Hence, this method refers to the parallel
Robin (Poincaré) domain decomposition schemes.
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By choosing different characteristic functions  ˛ˇ D  ˛ˇ .x/, f˛; ˇg 2 Q in the
method (31) and (32), we can get different domain decomposition schemes. Thus,
taking  ˛ˇ .x/ 
 0 8 f˛; ˇg 2 Q, we get the parallel Neumann method [2, 9]:

�k˛ˇ D


d˛ˇ � uk˛ n � ukˇ n

��
=� ; (33)

a˛. QukC1˛ ; v˛/ D l˛.v˛/C
X

ˇ 2B˛

Z

S˛ˇ

�k˛ˇ v˛n dS ; (34)

ukC1˛ D � QukC1˛ C .1 � �/ uk˛ ; ˛ D 1; 2; : : : ; N; k D 0; 1; : : : : (35)

If at each iteration k we choose

 ˛ˇ D 	k˛ˇ .x/ D
(
0; d˛ˇ .x/� uk˛ n.x/� uk

ˇ n
.x0/ � 0

1; d˛ˇ .x/� uk˛ n.x/� uk
ˇ n
.x0/ < 0 ; x 2 S˛ˇ ; x0 2 Sˇ˛ ;

(36)
then we shall get the method [9]:

a˛. QukC1˛ ; v˛/C 1

�

X

ˇ 2B˛

Z

S˛ˇ

	k˛ˇ



QukC1˛ n � .d˛ˇ � ukˇ n/

�
v˛ n dS D l˛.v˛/ ;

(37)

ukC1˛ D � QukC1˛ C .1 � �/ uk˛ ; ˛ D 1; 2; : : : ; N; k D 0; 1; : : : : (38)

At each step k of this scheme we have to solve N parallel elasticity problems (37)
with prescribed displacements d˛ˇ � uk

ˇ n
on a subset of the surface S˛ˇ . Therefore

this method refers to nonstationary Dirichlet domain decomposition schemes.
Note, that in the most general case we can choose  ˛ˇ (i.e., S1

˛ˇ
) differently for

each f˛; ˇg 2 Q.
The advantages of proposed numerical domain decomposition schemes are the

simplicity and the regularization of the contact problem through the penalty method.

5 Numerical Investigations

The numerical analysis of the schemes (31) and (32) has been made for 2D contact
problem of two transversally isotropic bodies˝1 and˝2 with the plane of isotropy
parallel to the plane x2 D 0 (Fig. 2). We have used FEM with 15 quadratic triangular
elements on the possible contact area.

The material properties of the bodies are: E˛ D 1:0, E 0̨ D 0:5, 
˛ D 
 0̨ D 0:3,
G˛
ı
G 0̨ D 2:0, whereE˛, 
˛ andG˛ are the elasticity modulus, Poisson’s ratio and

the shear modulus in the plane of isotropy for the body˝˛ respectively, andE 0̨ , 
 0̨ ,
G 0̨ are these constants in the orthogonal direction, ˛ D 1; 2.

The distance between bodies before the deformation is d12 D 10�3x21 , the
compression of the bodies is � D 2:154434 � 10�3.
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Fig. 2 Plane contact of two
bodies
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Fig. 3 Total iteration numberm dependence: (a) on iteration parameter � for accuracy "u D 10�3;
(b) on logarithmic accuracy lg "u for optimal iteration parameter � D N�

We have taken the penalty parameter in the form � D c
�
h1
ı
E 01 C h2

ı
E 02
�
,

where h˛ is the height of the body˝˛, ˛ D 1; 2 , and c D 0:05 is the dimensionless
penalty parameter.

We have used the following stopping criterion:

			ukC1˛ n � uk˛ n

			
2

.			ukC1˛ n

			
2
� "u; ˛ D 1; 2 ; (39)

where ku˛ nk2 D
qP

j

�
u˛ n.xj /

�2
is the discrete norm, xj 2 S12 are the finite

element nodes on the possible contact area, and "u > 0 is the relative accuracy.
At the Fig. 3 the convergence rates of different domain decomposition schemes

are compared. The first curve corresponds to the parallel Neumann scheme
.S112 D ;/, curves 2, 3, 4 and 5 correspond to the parallel Robin (Poincaré) schemes
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with S112 equal to Œ0I 0:5�, Œ0I 1�, Œ0I 1:5� and Œ0I 2� (S112 D S12) respectively.
Curve 3 also represents the nonstationary parallel Dirichlet scheme (37) and (38).

The optimal iteration parameters N� , for the schemes represented at curves 1–5,
are 0.173, 0.39, 0.72, 0.85 and 0.92 respectively. For � D N� and accuracy "u D 10�3
these schemes converge in 21, 11, 5, 11 and 14 iterations.

Thus, the convergence rate of all methods is linear. The parallel Robin (Poincaré)
scheme with the surface closed to the real contact area .S112 D Œ0I 1�/, and the
nonstationary parallel Dirichlet scheme . 12 D 	k12/ have the highest convergence
rates. These two schemes also have the widest convergence range for � .

The problem of a priory determination of iterative parameter � and its upper
bound �2, as well as development of nonstationary schemes, need additional
study.
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Gauthier-Villars, Paris (1969)

9. Prokopyshyn, I.: Parallel domain decomposition schemes for frictionless contact problems of
elasticity. Visnyk Lviv Univ. Ser. Appl. Math. Comp. Sci. 14, 123–133 (2008) [In Ukrainian]

10. Wriggers, P.: Computational Contact Mechanics, second ed. Springer, Heidelberg (2006)



Analysis and Acceleration of a Fluid-Structure
Interaction Coupling Scheme

Michael R. Dörfel and Bernd Simeon

Abstract The aim of this contribution is to shed new light on the intrinsic properties
of fluid-structure coupling methods. By studying the Dirichlet–Neumann coupling
for a one-dimensional model problem, it is shown that the masses at the interface can
be shifted to accelerate the convergence of the extensively applied Gauss–Seidel-
type iteration. Furthermore, the applied time integration as well as the size of the
spatial grid adjacent to the interface influence the convergence behavior. Numerical
studies confirm the results.

1 Introduction

In recent years, research in fluid-structure interaction has attracted much attention.
Not only the problem variety ranges from aeroelasticity to biomedical applications,
but also the solver strategies vary from monolithic approaches where both fields are
solved simultaneously [1, 6, 10] to partitioned approaches where separate solvers
for the fluid and structural subproblems are employed [2, 12]. Finding efficient and
robust coupling schemes in the latter turn out to be very challenging in particular in
biomedical applications such as hemodynamics due the physical properties of the
interaction between blood flow and arterial wall [4, 5, 11]. As discovered by Förster
et al. in [4], the mass densities of the fluid and the wall play a crucial role here
leading to the so-called “added mass” effect, which represents, in case of weak cou-
pling, an instability. In case of strong Dirichlet–Neumann coupling, on the other
hand, iterative schemes in the fashion of the Gauss–Seidel technique and conver-
gence acceleration by Aitken’s method are in wide use [5, 11, 13]. As was recently
shown by Joosten et al. [9] for a model problem with discrete masses the mass
densities are also relevant here.
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This contribution aims at shedding further light on the intrinsic properties of
partitioned fluid-structure coupling methods. By studying a one-dimensional model
problem, which can be viewed as a cross-section perpendicular to a two-dimensional
interface, it turns out that the masses at the interface can be shifted to accelerate the
convergence. Furthermore, the applied time integration as well as the size of the
spatial grid adjacent to the interface influence the convergence behavior.

This contribution is organized as follows. In Sect. 2 the above mentioned one-
dimensional model problem is presented. After discretization in space by finite
elements, it is combined with typical temporal discretizations such as the �-method
and Newmark method, and the widespread strong Dirichlet–Neumann coupling
is analysed. The mass shifting, a further acceleration technique besides the well-
established Aitken relaxation, is derived in Sect. 3, and moreover numerical tests
are reported that confirm the theoretical results. The article finishes with a summary
and an outlook on future work.

2 One-Dimensional Model Problem

As shown by Joosten et al. [9], basic properties of coupling schemes in fluid-
structure interaction can already be detected by studying simplified models. Instead
of point masses connected by springs and dampers, however, we propose a one-
dimensional coupled PDE that corresponds to a cross-section through a given
interface and that includes the transport of information from the structure to the
fluid and vice versa.

2.1 Problem definition

The model problem consists of a beam of length l1 and a one-dimensional fluid of
length l2, with the variables of interest being the structural displacement d W ˝S D
.0; l1/! R and the fluid velocity u W ˝F D .l1; l1 C l2/! R.

The beam is fixed at its left boundary � DS D f0g by a Dirichlet boundary con-
dition d.0/ D 0. In the interior of the structural domain ˝S the equation of linear
elastodynamics holds,

�S Rd � k @
2

@x2
d D 0 (1)

with density �S and stiffness parameter k. Note that the coupling interface in this
example consists purely of the right boundary of the beam �FSI D fl1g where the
beam is connected to the fluid both by a Dirichlet boundary condition forcing the
equilibrium of the velocities and by a Neumann boundary stating that the structural
force k @

@x
d.l1/ D FS is equal to the fluidal force FF , i.e.,

Pd.l1/ D u.l1/ and FS D FF : (2)
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In the fluid a linear diffusion equation is considered,

�F Pu � � @2

@x2
u D 0 (3)

with density �F and viscosity �. Thus, the fluid force for the coupling is FF D
� @
@x

u.l1/. At the right boundary of the domain, i.e., at � DF D fl1 C l2g, a Dirichlet
boundary condition fixes the velocity by requiring u.l1 C l2/ D 0.

2.2 Discretization in space and time

This model problem is now discretized by the Finite Element Method (FEM), see
e.g., [7]. Hence both (1) and (3) are transformed into their weak form, and after the
Galerkin projection onto the subspaces

VS D f'Si 2 H 1.0; l1/; i D 1 : : : NS ; 'Si .0/ D 0g and

VF D f'Fi 2 H 1.l1; l1 C l2/; i D 1 : : : NF ; 'Fi .l1 C l2/ D 0g

one obtains the ODE systems

MS
RdCKSd D bS and MF PuCKF u D bF (4)

where d and u denote the vectors of the unknown coefficients for the structural
displacements and fluid velocitites, respectively. As usual, the mass matrices are
given by MS=F;ij D �S=F

R
'
S=F
i '

S=F
j , the stiffness matrices by KS=F;ij D

k=�
R

@
@x
'
S=F
i

@
@x
'
S=F
j , and the load vectors by bS;iDFS'Si .1/, bF;iD�FF 'Fi .1/.

Next, two possibly different but implicit temporal discretization methods are
applied to (4). To keep the framework more general, these schemes are written as

RdnC1 D ıS

�t2
dnC1 C fold and PunC1 D ıF

�t
unC1 C fold

where fold contains simply the history data from previous timesteps tn; tn�1; : : : .
Examples for these discretizations are the Newmark-beta method for the structure
where ıS D 1

ˇ
or the one-step-theta method for the fluid, where ıF D 1

�
with

ˇ; � 2 .0; 1/. In this way, one obtains two linear equations

.ıSMSC�t2KS /dnC1 D �t2bSCfold and .ıFMFC�t KF /unC1 D �t bFCfold

(5)
that are coupled by

ıCdnC1NS
D �t unC11 C fold and bS;NS D FS D FF D �bF;1;
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where the factor ıC can be used to vary the time integration in the first coupling
condition of (2). Note that we require here that f�S=Fi gi form nodal bases each.

2.3 Coarse spatial discretization and convergence
of the Dirichlet-Neumann partitioning

The setting NS D NF D 2 leads to the coarsest spatial discretization that distin-
guishes between inner and interface variables, in the following denoted by subscripts
I and � , respectively. From (5) one obtains for the structural displacements

.ıSmSI C�t2kSI /dnC1I C .ıSmSI� C�t2kSI� /dnC1� D fold (6a)

.ıSmS�I C�t2kS�I /dnC1I C .ıSmS� C�t2kS� /dnC1� D �t2FS C fold (6b)

and for the fluid velocities

.ıFmF� C�t kF� /unC1� C .ıFmF�I C�t kF�I /unC1I D ��t FF C fold (7a)

.ıFmFI� C�t kFI� /unC1� C .ıFmFI C�t kFI /unC1I D fold: (7b)

The discretized problem and its variables are displayed in Fig. 1.
If this problem is to be solved in a partitioned manner and a strong coupling is

applied, one has to iterate over the fields. In wide use is the Dirichlet–Neumann
algorithm (also called Gauss–Seidel algorithm, e.g., in [9]) that can be written for
one time step in the following way:

1. Predict dnC1;.0/� D d .0/� (in the following time indices are omitted for simplicity)
2. Iterate over the fields for i D 0; 1; : : : until convergence

� Solve (7) for FF .and uI / using u.i/� D ıC

�t
d
.i/
� C fold

(i.e., the FSI boundary is an additional Dirichlet boundary)
� Solve (6) for d .iC1/� .and dI / using the other coupling equation FS D FF

(i.e., the FSI boundary is an additional Neumann boundary)

� test for convergence
ˇ̌
ˇd .iC1/� � d .i/�

ˇ̌
ˇ =
ˇ̌
ˇd .iC1/�

ˇ̌
ˇ
‹� Tol

3. go to next time step n! nC 1.

structure fluidrS, k rF, m

hI
S hG

F hI
FdI

FdI
S

dG
S dG

SdG
F

Fig. 1 One dimensional model problem with coarsest discretization
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This algorithm leads to an iteration of the form

d
.iC1/
� D �d .i/� C fold

where the convergence factor � can be written as

� D �ıC
ıFmF� C�t kF� � .ıFmF

�I
C�t kF

�I
/.ıFmF

I�
C�t kF

I�
/

ıFmF
I
C�t kF

I

ıSmS� C�t2kS� � .ıSmS
�I
C�t2kS

�I
/.ıSmS

I�
C�t2kS

I�
/

ıSmS
I
C�t2kS

I

(8)

D �ıC g
F
� � gF�IgFI� =gFI
gS� � gS�IgSI� =gSI

with gS D ıSmS C�t2kS and gF D ıFmF C�t kF.
Especially for small �t , the nominator and denominator of � are governed by

the first terms. i.e., the convergence depends on the ratio of the time discretization
constants ˛ı WD ıC ıF =ıS and the mass ratio at the interface ˛m D mF� =mS� . Since

m
S=F
� D �S=F � h�S=F , latter shows the dependence on the spatial discretization at

the interface ˛h D h�F =h
�
S and the densities ˛� D �F =�S , which becomes crucial

in hemodynamical applications [11]. Concluding we can write for small �t

� � �˛ı � ˛m D �˛ı � ˛h � ˛�:

If j�j < 1, the iteration converges linearly to the fixed point d?� D 1
1��fold.

Furthermore, it holds for the error ei D jd .i/� � d?� j

eiC1 D �ei :

Remark 1. There are only minor changes to these formulas if NS andNF > 2. The
multiple inner unknowns can be written in a vector whereas there is still only one
interface unknown per field. This leads to a modified equation for �,

� D �ıC g
F
� � .gF�I /T .GF

I /
�1gFI�

gS� � .gS�I /T .GS
I /
�1gSI�

where GS=F D
 

GS=F
I gS=FI�

.gS=F�I /
T g

S=F
�

!
: (9)

3 Interface Mass Shifting

There are different methods to increase the convergence radius of the iteration and
to accelerate it, notably the widely used Aitken relaxation [8]. It reads

d
.iC1/
� D !i

�
�d

.i/
� C fold

�
C .1 � !i /d .i/� ;
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and for this linear one-dimensional problem the optimal relexation factor !? D 1
1��

is quickly determined, which leads to an immediate convergence.
Instead, our focus is placed on a technique that can be applied in addition to the

Aitken relaxation. It is based on an observation from the last section, the dependence
of the iteration on the interface masses.
Changing the spatial discretization and the time integration is not considered here
although these also have influence on the coupling. The corresponding parameters
h�
S=F

and ıS=F=C shall thus be fixed in the following.

3.1 Shifting Algorithm

A significant improvement of the iteration can be achieved by shifting mF� from
the nominator to the denominator in (8). This is accomplished by changing the
Dirichlet–Neumann algorithm

� in step 2 by partially incrementing the iteration index i , i.e., (7a) becomes

ıFmF� u.iC1/� C�t kF� u.i/� C .ıFmF�I C�t kF�I /unC1I D ��t FF C fold:

Since u.iC1/� is unknown up to that point, (7) is solved for OFF WD FF C
ıF

�t
mF� u.iC1/� .

� in step 3 by FS D FF D OFF � ıFmF� u.iC1/� D OFF � ıFmF� ıC

�t
d
.iC1/
� C fold.

This changes (6b) to

.ıSmS�IC�t2kS�I /dIC.ıSmS� CıF ıCmF� C�t2kS� /d .iC1/� D �t2 OFF Cfold:

It holds for the resulting convergence factor

O� D �ıC �t kF� � .gF�I /T .GF
I /
�1gFI�

ıSmS� C ıC ıFmF� C�t2kS� � .gS�I /T .GS
I /
�1gSI�

:

This alteration of the algorithm can also be obtained by settingmS� D mS� C ˛ımF�
and mF� D 0 on the left-hand side of (6) and (7), respectively, and applying the old
algorithm in a black box manner.

However, due to the alteration a new residual in the corresponding line of the
fluid system shows up

r� W D mF�
�

u.iC1/� � u.i/�

�
D mF�

ıC

�t

�
d
.iC1/
� � d .i/�

�
with

jr� j � mF� ı
C

�t
Tol

ˇ̌
ˇd .iC1/�

ˇ̌
ˇ (10)
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at the end of the iteration. Since all the other rows remain unchanged (note that u.i/�
is used there), there is no additional residual in the other components, i.e., rF D
.r� ; 0/

T .

3.2 Numerical Experiments

The default parameters for the simulations below are chosen as �S D 1:2 g cm�1,
�F D 1:0 g cm�1, k D 3 � 106 g cm s�2, � D 0:03 g cm s�1, l1 D 0:1 cm and
l2 D 0:5 cm, in analogy to the parameters in the 3d test simulations for hemody-
namics, see, e.g., [3, 5, 11]. Furthermore, implicit Euler is employed for the time
integration, i.e., ıS D ıF D ıC D 1. Using linear finite elements with NS D 10,
NF D 50 equidistant nodes leads to hS D h�S D h�F D hF D 0:01 cm. In Fig. 2,
the dependence of � on �t and the interface mass shifting is shown for several val-
ues of �F . Without the mass shifting the same results as in [9] are obtained since
the model problems are comparable. The different model parameters explain the
shift in the time scale. The interface mass shifting decreases the convergence factor
significantly and changes also its sign.

Figure 3 shows the time history of the interface and the number of iterations per-
formed. The initial interface displacement is set to d� D 0:001 cm whereas all other
displacements and velocities are 0. On the left the displacement of the interface node
is plotted against the simulation time t . Using the relative Tolerance TolD 10�6 and
�t D 10�7 it can be observed that both runs give the same results, i.e., the addi-
tional residual of (10) is not interfering the results. Note that the small timestep
is needed to resolve the fast oscillations in the solution as depicted. Figure 3 on
the right shows the iterations that are needed by the different algorithms during the
simulation. An O.�t/ prediction d .0/�;nC1 D d�;n C �tu�;n is applied but without
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Fig. 2 Convergence factor �.�t/ < 0 and mass shifted convergence factor O�.�t/ > 0 with
�S D 1:2 g cm�1 and different �F
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Fig. 3 Displacement of the interface node d� and number of iterations per timestep

relaxation. In this plot the improvement by using the mass shifting becomes most
apparent. It needs only a few, in the mean 3:79, iterations to converge while the stan-
dard method works hard on the mass ratio ˛m D 0:87 and requires 39:26 iterations
per timestep on average.

4 Conclusions and Outlook

In this contribution a linear 1d model problem has been derived for analyzing
the coupling of a fluid-structure interaction problem. The widely used Dirichlet–
Neumann algorithm has been studied in this setting, and an acceleration method has
been derived that shifts the fluid interface mass to the structural problem to gain a
significant speed up both in terms number of iterations and computing time.
Currently, this approach is generalized to corresponding model problems in two
and three dimensions. More specifically, using the Stokes problem on the fluid side
renders the situation more complex due to the constraint that stems from the mass
conservation. An upcoming article gives detailed information on the effects of the
mass shifting in a 2d scenario depending on the FEM discretization and the handling
of the constraint.
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Second Order Numerical Operator Splitting
for 3D Advection–Diffusion-Reaction Models

Riccardo Fazio and Alessandra Jannelli

Abstract In this paper, we present a numerical operator splitting for time integra-
tion of 3D advection-diffusion-reaction problems. In this approach, three distinct
methods of second order accuracy are proposed for solving, separately, each term
involved in the model. Numerical results, obtained for advection – reported in [Fazio
and Jannelli, IAENG Int. J. Appl. Math., 39, 25–35, 2009] –, diffusion, and reaction
terms, show the efficiency of proposed schemes.

1 Introduction

This paper concerns numerical methods for three dimensional advection–diffusion-
reaction (ADR) models governed by the following system of equations

@c
@t
Cr � .vc/� r � .Drc/ D R.c/ ; (1)

where c D c.x; t/ 2 IRm, x 2 ˝ � IR3 are the space variables and t denotes the
time. The diffusion coefficient matrix D D diagŒd11; d22; : : : ; dmm� and the velocity
field v.x/ 2 IR3 are, usually, supposed to be given. Several phenomena of relevant
interest can be described by model (1). Among others, we can quote the applications
to a chemotaxis model [8], the pollutant transport in atmosphere [11], mucilage
dynamics [4], ash-fall from volcano [5], and groundwater and surface water [9].
The governing system takes into account physical and biological processes mod-
elled by three distinct terms: transport of each component due to the velocity field
v, described by the advection terms; random motion of each component due to the
turbulent nature of the flow field, modelled by the (turbulent) diffusion terms; inter-
action of the involved species described by reaction terms (e.g., chemical reactions,
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growth of species, consumption of nutrients, etc.). From the numerical view-point,
for the time integration of different terms of the model (1), we propose a fractional
step approach. This method consists in separating in the discretized equations the
part that accounts for hydrodynamics, described by advection term, usually linear,
and the diffusion term on the left hand side, from the part accounting for biology,
described by nonlinear reaction term on the right hand side. This splitting is reason-
able when a loose coupling exists between the different phenomena and when they
evolve with different characteristic times. The coupling between the components
in each grid point, and not over the grid points, appears only in the solution of the
reaction equations. In this contest such assumptions holds and the use of a fractional
step seems promising.

2 The Operator Splitting Approach

In this section, we describe an efficient algorithm for solving ADR models (1)
written in the following form

@c
@t
D A.c/CD.c/CR.c/: (2)

We propose the use the Strang splitting [7] approach: if cn is the approximate solu-
tion at time tn, we obtain the solution cnC1 at next time tnC1 D tn C �t by the
following sequence of five steps:

cnC1 D A .�t=2/D.�t=2/R.�t/D.�t=2/A .�t=2/ cn;

where A .�/, D.�/ and R.�/ represent the discretized advection, diffusion and reac-
tion operators, respectively. The advantage of the fractional step method is that, for
each term, a different time integration method can be chosen. For the time inte-
gration of the advection part, explicit methods are usually more efficient than the
implicit ones. On the other hand, the reaction part is sometimes very stiff and this
requires the use of implicit methods, used also for the diffusion term. As far as accu-
racy is concerned, by using this splitting technique we get second order accuracy
provided that each subproblem is solved by a second order accurate method.

2.1 Advection Solver

In this section, we consider the homogeneous hyperbolic equations

@c
@t
Cr � .vc/ D 0; (3)
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with given initial condition and appropriate boundary conditions (for instance:
Dirichlet conditions at the inflow and no conditions at the outflow boundaries, or
periodic boundary conditions, etc.). We set an uniform Cartesian grid ˝J 2 IR3.
Let cn

ijk
be the average value of c over cell .xi ; yj ; zk/ at current time tn, and cnC1

ijk

the average value of c at time tnC�t . For time integration, we use a high-resolution
finite volume method written in the conservative form

cnC1
ijk
D cn

ijk C
��t
�x

h
Fn

iC 1
2

jk
� Fn

i� 1
2

jk

i
� �t

�y

h
Gn

ijC 1
2

k
�Gn

ij�1
2

k

i
� �t
�z

h
Hn

ijkC 1
2

�Hn

ijk� 1
2

i

where F, G and H are intercell numerical fluxes. A recent study on first and second
order positive numerical methods for the advection equation is developed in [1]
where several test problems are solved.

2.2 Diffusion Solver

The diffusion term is discretized implicitly to avoid using small time steps when are
not dictated by accuracy reasons in detecting the correct dynamics of the concen-
tration. We use the Crank–Nicolson scheme because it is second order accurate in
space and time,

cnC1
i;j;k
� �t

2�x�y�z
wnC1

i;j;k
D cn

i;j;k C
�t

2�x�y�z
wn

i;j;k (4)

where

wn
i;j;k D �

n
�y�z

�
bFn

iC 1
2 ;j;k
�bFn

i� 1
2 ;j;k

�

(5)

C�x�z
�
bGn

i;jC1
2

;k
� bGn

i;j�1
2

;k

�
C�x�y

�
bHn

i;j;kC1
2

� bHn

i;j;k�1
2

�o

with

bFiC 1
2 ;j;k D �diC 1

2 ;j;k

ciC1;j;k � ci;j;k

�x
;

bGi;jC1
2 ;k D �di;jC1

2 ;k

ci;jC1;k � ci;j;k

�y
; (6)

bHi;j;kC1
2
D �di;j;kC1

2

ci;j;kC1 � ci;j;k

�z
:

As far as stability is concerned, the Crank–Nicolson scheme is an unconditionally
stable one. We have no restriction on the time step but the extra labour involved is
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Fig. 1 Example of matrix of coefficients for the Crank–Nicolson method

very considerable. We have to solve a system of linear equations. These equations
have a regular structure, each involving at most seven unknowns. The matrix of
the system consists of zeroes, but it has not tridiagonal form. The linear system
obtained is solved by the bi-conjugate gradient method of Van der Vorst [10] (for a
simple description of the method see [2, pp. 362–379]). Figure 1 shows the matrix
of coefficients on a sample domain of 5�5�3mesh-points. Note that there could be
some instability in coupling with the reaction term. The presence of diffusion term
in the system may cause some instabilities. When we individually test each step
in the Strang splitting procedure, they are stable for reasonable time step intervals.
When we test the coupled diffusion and reaction steps they could be unstable. When
the full model is solved numerically, the time step interval necessary to prevent
instability is very small when the diffusion term is discretized with Crank–Nicolson.
A much longer time step is possible when diffusion step is discretized with the TR-
BDF2, as Tyson et al. have done in [8], here TR stands for Trapezoidal Rule and
BDF2 for the second order Backward Differentiation Formula.

2.2.1 Test Problem: Heat Equation

As an example, we consider the heat equation

@c

@t
D @2c

@x2
C @2c

@y2
(7)
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Fig. 2 The numerical solution and at time t D 0:001, t D 0:003, t D 0:005, and final time
t D 0:01

on the unit square 0 < x < 1, 0 < y < 1, with homogeneous Dirichlet boundary
conditions c D 0 on the boundary of the unit square. The initial condition is
c.x; y; 0/ D f .x; y/ with f .x; y/ D 1 within the region shaped like the letter
H, and f .x; y/ D 0 in the rest of the square. In a narrow band surrounding the H,
the function increases from 0 to 1, so that f .x; y/ is continuous; its derivatives are
not continuous, being zero everywhere outside the narrow band and being greater
than zero inside the band. The results of the implicit method are shown in Fig. 2.
It shows the way in which the initial function diffuses throughout the square. This
numerical results are obtained using �x D �y D 0:01 and �t D 0:001 with
tmax D 0:01.

2.3 Reaction Solver

The reaction step consists of solving a coupled system of ordinary differential equa-
tions in each grid cell. There are no spatial derivatives and hence no spatial coupling
of different cells in this step. Moreover, the reaction equations are sometimes very
stiff, requiring the use of implicit methods for stability reasons. In this contest, we
propose the use of an adaptive procedure implemented with stiff solvers at low accu-
racy and complexity. In particular, we use the Milne device for the estimation of the
local error, that is the error incurred in the integration from tn to tnC1 under the



322 R. Fazio and A. Jannelli

assumption that the approximate solution at time tn is exact. In order to imple-
ment the Milne device, we use two different convergent multistep methods of same
order of accuracy p in order to decide whether the numerical value is an acceptable
approximation to exact solution evaluated at time tnC1. Let us denote by cnC1 and
Qc nC1 the two computed numerical approximations, and with C and eC the corre-
sponding local error constants. A naive approach is to require that the local error LE
satisfies

LE D
ˇ̌
ˇ̌ C

eC � C
ˇ̌
ˇ̌ jjcnC1 � Qc nC1jj � tol; (8)

with jj � jj a suitable norm.

2.3.1 Numerical Results: Robertson Problem

As sample numerical test, we consider the problem given by a stiff system of three
non-linear differential equations with suitable initial conditions

8
ˆ̂<

ˆ̂:

c01 D �P1c1 C P3c2c3

c02 D P1c1 � P3c2c3 � P2c
2
2

c03 D P2c
2
2

c1.0/ D 1, c2.0/ D 0, c3.0/ D 0;
(9)

where P1 D 0:04, P2 D 3 � 107 and P3 D 104. The model describes the kinetics
of an auto-catalytic reaction described by Robertson [6]. The structure of reaction is
reported in (10), where A, B and C represent the chemical species involved

A
P1! B;

B C B P2! C C B; (10)

B C C P3! AC C:
This problem is sometimes used as a test problem for stiff solvers. The large dif-
ference among the reaction rate constants Pi , with i D 1; 2; 3, is the reason for the
stiffness. As usual in problems arising in chemical kinetics, this system has a small
very quick initial transient. This phase is following by a very smooth variation of the
components where a large step-size would be appropriate for a numerical method.
The problem (9) is integrated within the range t 2 Œ0; 106�. Figure 3 shows the
numerical solution of the species involved.

The numerical results are obtained in 267 steps (with 3 rejected steps) by Milne
device implemented with the TR with eC D �1=12, and BDF2 with variable time
steps, see [3], with

C D � .kn C 1/2
6kn.2kn C 1/ ;

where kn D �tn=�tn�1. Figure 4 shows the adaptive numerical results. In the top
frame, we show the step-size selection �tn, in the bottom one the local error LE.
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It is easy to note, how, the adaptive procedure modifies the time step in relation to
the value of the the local error for the solution second component. Initially, at the
beginning of the process, the adaptive procedure sets a small �tn corresponding
to fast transitory of the second component. Then, when this component becomes
smooth, the procedure amplifies the step-size. A maximum value for step-size is set
and this represents its upper bound.

For the adaptive procedure, we set: �tmin � �tn � �tmax with �tmin D 10�6

and�tmax D 104, LEmin � LE � LEmax with LEmin D 10�5 and LEmax D 10 LEmin.
The time-step �tn is modified in the following cases: if LEmin � LE � LEmax ,
then �tnC1 D 0:9 �tn .tol=LE/1=.pC1/, p D 2 in our case; if LE < LEmin then
�tnC1 D 1:2 �tn; if LE > LEmax then the step is repeated with �tn D 0:5 �tn.
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Space-Time DG Method for Nonstationary
Convection–Diffusion Problems

Miloslav Feistauer, Václav Kučera, Karel Najzar, and Jaroslava Prokopová

Abstract The paper is concerned with the theory of the discontinuous Galerkin
finite element method for the space-time discretization of a nonlinear nonstationary
convection–diffusion initial-boundary value problem. The discontinuous Galerkin
method is applied separately in space and time using, in general, different space
grids on different time levels and different polynomial degrees p and q in space and
time dicretization. The analysis of error estimates is described.

1 Introduction

In a number of applications we meet the necessity to solve complicated partial dif-
ferential equations. In some cases it is suitable to carry out the space discretization
by the discontinuous Galerkin finite element method (DGFEM) using piecewise
polynomial approximation of a sought solution without any requirement on the
continuity between neighboring elements. See, e.g., [2, 3].

The numerical simulation of strongly nonstationary transient problems requires
the application of numerical schemes of high order of accuracy in space as well as in
time. From this point of view, it appears suitable to use the discontinuous Galerkin
discretization with respect to both space and time. The discontinuous Galerkin time
discretization was introduced and analyzed, e.g., in [10] for the solution of ordinary
differential equations. In [1, 11–13] the solution of parabolic problems is carried
out with the aid of conforming finite elements in space combined with the DG time
discretization. In the present paper we are concerned with the space-time discontin-
uous Galerkin discretization applied separately in space and in time to the numerical
solution of the following nonstationary nonlinear convection-diffusion problem.
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Let ˝ � IRd (d D 2 or 3) be a bounded polyhedral domain and T > 0. We
want to find u W QT D ˝ � .0; T /! IR such that

@u

@t
C

dX

sD1

@fs.u/

@xs
� "� u D g in QT D ˝ � .0; T /; (1)

u
ˇ̌
@˝�.0;T / D uD; (2)

u.x; 0/ D u0.x/; x 2 ˝: (3)

We assume that " > 0 is a constant, g; uD ; u0; fs are fiven functions and fs 2
C 1.IR/; jf 0s j � C; s D 1; : : : ; d . This means that the functions fs (called fluxes
of the quantity u) are Lipschitz-continuous in IR.

2 Space-Time Discretization

In the time interval Œ0; T � we shall construct a partition formed by time instants
0 D t0 < � � � < tM D T and denote Im D .tm�1; tm/; �m D tm � tm�1. For
each Im we consider a partition Th;m of the closure ˝ of the domain ˝ into a
finite number of closed triangles for d D 2 and tetrahedra for d D 3 with mutually
disjoint interiors. The partitions Th;m are in general different for differentm.

By Fh;m we denote the system of all faces of all elements K 2 Th;m. Fur-
ther, we define the set of all inner faces by F I

h;m
D ˚

� 2 Fh;mI � � ˝
�

and by

FB
h;m
D ˚� 2 Fh;mI � � @˝

�
the set of all boundary faces. Each � 2 Fh;m will

be associated with a unit normal vector n� . We assume that for � 2 FB
h;m

the nor-
mal n� has the same orientation as the outer normal to @˝ . We set hK D diam.K/
for K 2 Th;m, hm D maxK2Th;mhK ; h D maxmD1;:::;M hm. By �K we denote the
radius of the largest d -dimensional ball inscribed into K and by jKj we denote the
d -dimensional Lebesgue measure of K . Finally, we set � D maxmD1;:::;M �m.

For a function ' defined in
SM
mD1 Im we denote 'ṁ D '.tm˙/ D limt!tm˙

'.t/, f'gm D '.tmC/ � '.tm�/.
Over a triangulation Th;m we define the broken Sobolev spacesH k.˝;Th;m/ D

fvI vjK 2 H k.K/ 8K 2 Th;mg with seminorm jvjHk.˝;Th;m/ D
�P

K2Th;m
jvj2
Hk.K/

�1=2
.

For each face � 2 F I
h;m

there exist two neighbours K.L/
� ; K

.R/
� 2 Th;m such

that � � @K
.L/
� \ @K.R/

� . We use the convention that n� is the outer normal to

@K
.L/
� and the inner normal to @K.R/

� . For v 2 H 1.˝;Th;m/ and � 2 F I
h;m

we introduce the following notation: vj.L/� D the trace of vj
K
.L/
�

on � , vj.R/� D
the trace of vj

K
.R/
�

on � , hvi� D 1
2
.vj.L/� C vj.R/� /; Œv�� D vj.L/� � vj.R/� :
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Let CW > 0 be a fixed constant. We set

h.� / D
h
K
.L/
�

C h
K
.R/
�

2CW
for � 2 F I

h;m; h.� / D
h
K
.L/
�

CW
for � 2 FB

h;m: (4)

By .�; �/ we denote the scalar product in L2.˝/ and by k � k we denote the norm in
L2.˝/. If u; ' 2 H 2.˝;Th;m/, we define the forms

ah;m.u; '/ D "
X

K2Th;m

Z

K

r u � r ' dx � "
X

�2FI
h;m

Z

�

.hrui � n� Œ'�� �hr'i � n� Œu�/ dS

� " X

�2FB
h;m

Z

�

.ru � n� ' � � r ' � n� u/ dS; (5)

Jh;m.u; '/ D
X

�2FI
h;m

h.� /�1

Z

�

Œu� Œ'� dS C X

�2FB
h;m

h.� /�1

Z

�

u' dS;

Ah;m D ah;m C "Jh;m; (6)

bh;m.u; '/ D �
X

K2Th;m

Z

K

dX

sD1

fs.u/
@'

@xs
dx C X

�2FI
h;m

Z

�

H
�

u
ˇ̌.L/
�
; u
ˇ̌.R/
�
; n�

�
Œ'�
ˇ̌
�

dS (7)

C X

�2FB
h;m

Z

�

H
�

u
ˇ̌.L/
�
; u
ˇ̌.L/
�
; n�

�
'
ˇ̌
�

dS:

`h;m.'/ D .g; '/C " X

�2FB
h;m

�
h.� /�1

Z

�

uD ' dS C �
Z

�

r' � n� uD dS
�

(8)

In (7),H is a numerical flux with the following properties.

(H1) H.u; v; n/ is defined in IR2 � B1, where B1 D fn 2 IRd I jnj D 1g, and is
Lipschitz-continuous with respect to u; v.

(H2) H.u; v; n/ is consistent: H.u; u; n/ D Pd
sD1 fs.u/ ns; u 2 IR; n D .n1; : : : ;

nd / 2 B1.
(H3) H.u; v; n/ is conservative:H.u; v; n/ D �H.v; u;�n/, u; v 2 IR; n 2 B1.

In the above forms we take � D �1; � D 0; � D 1 and obtain the symmetric
(SIPG), incomplete (IIPG) and nonsymmetric (NIPG) variants of the approximation
of the diffusion terms, respectively.

In the space H 1.˝;Th;m/, the following norm will be used:

k'kDG;m D
� X

K2Th;m
j'j2

H1.K/
C Jh;m.'; '/

�1=2
: (9)

Let p, q � 1 be integers. For each m D 1; : : : ;M we define the finite-
dimensional space

S
p

h;m
D ˚' 2 L2.˝/I'jK 2 P p.K/ 8K 2 Th;m

�
: (10)
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We denote by˘m the L2.˝/-projection on Sp
h;m

. The approximate solution will be
sought in the space

S
p;q

h;�
D
n
' 2 L2.QT /I'

ˇ̌
Im
D

qX

iD0
t i 'i with 'i 2 Sph;m; m D 1; : : : ;M

o
:

(11)
In what follows we shall use the notation U 0 D @U=@t; u0 D @u=@t;DqC1 D

@qC1=@tqC1.

Definition 1. We say that a function U is an approximate solution of problem (1) –
(3), if U 2 Sp;q

h;m
and

Z

Im

�
.U 0; '/C Ah;m.U; '/C bh;m.U; '/

�
dt C �fU gm�1; 'Cm�1

�
(12)

D
Z

Im

`h;m.'/ dt; 8 ' 2 Sp;q
h;�
; m D 1; : : : ;M; U�0 WD ˘1u0:

The exact sufficiently regular solution u satisfies the identity

Z

Im

�
.u0; '/C Ah;m.u; '/C bh;m.u; '/

�
dt C �fugm�1; 'Cm�1

�
(13)

D
Z

Im

`h;m.'/ dt 8 ' 2 Sp;q
h;�
; with u.0�/ D u.0/:

It is also possible to consider q D 0. In this case, scheme (12) represents a
version of the backward Euler method. Since it can be analyzed in a similar way as,
for example, in [6], we shall be concerned only with q � 1.

3 Error Analysis

In the derivation of the error we shall use the Sp;q
h;�

-interpolation � of functions

v 2 H 1.0; T IL2.˝// defined by

a) � v 2 Sp;q
h;�
; b) .� v/ .tm�/ D ˘m v.tm�/; (14)

c)
Z

Im

.�v � v; '�/ dt D 0 8 '� 2 Sp;q�1
h;�

; 8m D 1; : : : ;M:

It is possible to prove that �u is uniquely determined and �vjIm D �.˘mv/jIm :
Our main goal will be the analysis of the estimation of the error e D U �u, which

can be expressed in the form e D 	 C 
; where 	 D U � �u 2 Sp;q
h;�
; 
 D �u� u:

Then, in virtue of (12) and (13),
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Z

Im

�
.	0; '/CAh;m.	; '/� dt C

�
f	m�1g; 'C

m�1

�
D
Z

Im

�
bh;m.u; '/� bh;m.U; '/� dt

�
Z

Im

�
.
0; '/C Ah;m.
; '/

�
dt �

�
f
gm�1; '

C

m�1

�
8' 2 Sp;qh;� : (15)

3.1 Derivation of an Abstract Error Estimate

In our further considerations, by C and c we shall denote positive generic constants,
independent of h; �;K; "; u; U , which can attain different values in different places.
In the sequel, we shall consider a system of triangulations Th;m, m D 1; : : : ;M ,
h 2 .0; h0/, which is shape regular and locally quasiuniform: There exist positive
constantsCR andCQ, independent ofK;�;m and h, such that for allm D 1; : : : ;M
and h 2 .0; h0/

hK

�K
� CR; 8K 2 Th;m; (16)

h
K
.L/
�

� CQ hK.R/
�

; h
K
.R/
�

� CQ hK.L/
�

8� 2 F I
h;m: (17)

Important tools in the analysis of the DGFEM are the multiplicative trace
inequality (see, e.g., [7]), the inverse inequality ([4]), the coercivity of the form
Ah;m ([8]) and the consistency of the form bh;m obtained in a similar way as in [5].

Let us substitute ' WD 	 in (15). Then a detailed and rather technical analysis
yields the estimate

��	�m
��2 � ��	�m�1

��2 C "
�
1 � 2

k

	Z

Im

k	k2DG;m dt (18)

� C

"

Z

Im

k	k2 dt C 2��
�m�1
��2 C C

Z

Im

Rm.
/ dt;

where k > 2 and

Rm.
/ D "
�
k
k2DG;mC

X

K2Th;m
h2K j
j2H2.K/

	
C1
"

� X

K2Th;m
k
k2

L2.K/
Ch2K j
j2H1.K/

	
:

(19)
Further, it is necessary to estimate

R
Im
k	k2 dt . We apply here the approach from

[1] based on the use of the so-called Gauss–Radau quadrature and interpolation. In
the interval .tm�1; tm� we shall consider the Gauss–Radau quadrature formula

Z

Im

'.t/ dt � �m
qC1X

iD1
wi'

�
tm;i

�
; (20)
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with weights wi > 0 and integration points tm;i D tm�1 C �m #i , where 0 < #1 <

� � � < #qC1 D 1 are Gauss–Radau points. Formula (20) is exact for polynomials of
degree � 2q:

Now, in (15) we set ' WD Q	, which is defined as the Lagrange interpolation of
�m	.t/=.t � tm�1/ at the points tm;i , i D 1; : : : ; q C 1. This means that for each
x 2 ˝ , the function Q	.�; x/ is a polynomial (in t) of degree � q. A rather technical
analysis proves the existence of constants C , C � > 0 such that

Z

Im

k	k2 dt � C �m
���	�m�1

��2 C ��
�m�1
��2 C

Z

Im

Rm.
/ dt

	
; (21)

provided
0 < �m � C �": (22)

From (18) with k WD 8, (21), discrete Gronwall’s lemma and the relation e D
	 C 
 we get the abstract error estimate.

Theorem 1. Let (22) hold. Then there exist constants C; c > 0 such that the error
e D U � u satisfies the estimate

ke�

m k2 C "

2

mX

jD1

Z

Im

kek2DG;j dt (23)

� C exp.ctm="/

0

@
mX

jD1

k
�

j k2 C
mX

jD1

Z

Ij

Rj .
/ dt

1

AC 2k
�

m k2 C 2"
mX

jD1

Z

Ij

k
k2DG;j dt;

m D 1; : : : ;M:

3.2 Error Estimation in Terms of h and �

The derivation of error estimates in dependence on h and � is obtained from the
abstract error estimate and estimation of terms containing 
, under the assumption

u 2 H qC1�0; T IH 1.˝/
�\ C.Œ0; T �IHpC1.˝//; (24)

and the assumption that the meshes satisfy conditions (16), (17), (22) and

�m � Ch2m; m D 1; : : : ;M: (25)

We use approximation properties of the operators˘m and the estimate

k�'.x; �/ � '.x; �/k2
L2.Im/

� C �2qC2m

��DqC1'.x; �/��2
L2.Im/

; (26)

x 2 K; K 2 Th;m; m D 1; : : : ;M; h 2 .0; h0/;
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obtained by scaling arguments for ' 2 H qC1.Im; Sph;m/. Further, we show that for
j;m D 1; : : : ;M; K 2 Th;m and h 2 .0; h0/ we have

k
�

j k2 � ChpC1ju.tj /jHpC1.˝/; (27)
Z

Im

k
k2
L2.K/

dt � C
�
h
2.pC1/
K juj2

L2.Im;HpC1.K//
C �2.qC1/

m juj2
HqC1.Im;L2.K//

�
; (28)

Z

Im

j
j2
H1.K/

dt � C
�
h
2p
K juj2L2.Im;HpC1.K//

C �2.qC1/
m juj2

HqC1.Im;H1.K//

�
; (29)

h2K

Z

Im

j
j2
H2.K/

dt � C
�
h
2p
K juj2L2.Im;HpC1.K//

C �2.qC1/
m juj2

HqC1.Im;H1.K//

�
: (30)

The most delicate is the estimation of the expression
R
Im
Jh;m.
; 
/ dt . In the

same way as in [5] we get

Z

Im

Jh;m
�
˘mu � u; ˘mu � u

�
dt � C h2p ˇ̌uˇ̌2

L2.Im;HpC1.˝//
: (31)

In the estimation of
R
Im
Jh;m

�
�.˘mu/�˘mu; �.˘mu/�˘mu

�
dt we distinguish

two cases.
a. Let � 2 F I

h;m
Using the relations



�.˘m/u �˘mu

� D �.Œ˘mu�/ � Œ˘mu�;

andDqC1Œ˘mu.x; �/� D ŒDqC1˘mu.x; �/�; 
DqC1u
� D 0; andDqC1.˘mu� u/ D

˘m.D
qC1u/ � DqC1u, (26), Fubini’s theorem, the multiplicative trace inequality

and the approximation properties of ˘m we obtain
Z

Im

� X

�2FI
h;m

h.� /�1

Z

�



�.˘mu/�˘mu

�2
dS
�

dt � C �2qC2
m

X

K2Th;m

juj2
HqC1.Im;H1.K//

:

b. If � 2 FB
h;m

, i.e., � � @˝ \ @K for some K 2 Th;m, it appears that in
the case of general boundary data uD depending on x and t we get a suboptimal
estimate in �m of the expression

Z

Im

�
h.� /�1

Z

�

j�.˘mu/�˘muj2 dS
�

dt: (32)

Therefore, we assume that

uD.x; t/ D
qX

jD0
 j .x/ t

j ; (33)

where  j 2 HpC1=2.@˝/ for j D 0; : : : ; q, and, thus, DqC1uj@˝ D DqC1uD D
0. This and a similar process as in the case (a), when � 2 F I

h;m
, imply that

Z

Im

� X

�2FB
h;m

h.� /�1
Z

�

ˇ̌
�.˘mu/�˘mu

ˇ̌2
dS
�

dt � C �2qC2
m

X

K2Th;m

juj2
HqC1.Im;H1.K//

: (34)
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From the above analysis we get the estimate

jJh;m.
; 
/j � C
X

K2Th;m

�
h
2p
K juj2L2.Im;HpC1.K//

C �2qC2m juj2
HqC1.Im;H1.K//

�
:

(35)
Finally, using the previous estimates, we obtain the main result.

Theorem 2. Let u be the exact solution of problem (1) – (3) satisfying the regular-
ity condition (24). Let U be the approximate solution to problem (1) – (3) obtained
by scheme (12) in the case that the Dirichlet data uD is defined by (33). Let con-
ditions (16), (17), (22) and (25) be satisfied. Then there exist constants C; c > 0

independent of h; �; m; "; u; U such that

ke�mk C
"

2

mX

jD1

Z

Im

kek2DG;j dt (36)

� C exp.ctm="/

��
h2pjuj2

L2.0;T IHpC1.˝//
C �2qC2jujHqC1.0;T IH1.˝//

� �
"C 1

"

�

Ch2pjuj2
C.Œ0;T �IHpC1.˝//

	
; m D 1; : : : ;M:

The detailed analysis will be a subject of a paper [9] in preparation. There are
several topics for future work:

– Derivation of optimal error estimates in space and time in the case of the SIPG
method,

– Numerical realization of the discrete problem and the demonstration of results
by numerical experiments,

– Analysis of the effect of numerical integration in space and time integrals.
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High Order Finite Volume Schemes
for Numerical Solution of Unsteady Flows

Petr Furmánek, Jiřı́ Fürst, and Karel Kozel

Abstract The aim of this contribution is to present two modern high-order finite
volume (FVM) schemes for numerical solution of unsteady transonic flows. The first
one is derived from the total variation diminishing (TVD) version of the classical
MacCormack scheme proposed by Causon. In our case it is used with slight modifi-
cations and hence refered to as Modified Causon’s scheme. It is no more TVD, but
with no loss of accuracy to the TVD version and with a significantly lower demands
on computational power and memory (cca 30% less). The second one, based on
a similar approach as the WENO family schemes, is the implicit Weighted Least-
Square Reconstruction scheme (WLSQR) used in combination with the AUSMPW+
numerical flux. For the turbulence modelling the Kok’s TNT turbulence model is
employed. Unsteady effects (forced oscillatory motion) are simulated by Arbitrary
Lagrangian–Eulerian method (ALE). As the transonic test cases the inviscid and tur-
bulent flow around the NACA 0012 profile and inviscid flow over the ONERA M6
wing were chosen. Comparison of numerical and experimental results for inviscid
flow is very good, which is unfortunately not the case of turbulent flow.

1 Introduction

The unsteady effects appear in many physical processes (blood flow, atmospheric
boundary layer, turbo-machinery, aeronautics) and have a huge impact on the
flow field (sometimes even with fatal consequences, e.g. flutter). Investigation of
unsteady flows may be done generally in two ways. Either by experimental mea-
surements or by numerical simulations. One of possible approaches is the Arbitrary
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Lagrangian–Eulerian method [3], which combines the Lagrangian and Eulerian way
of moving fluid investigation, i.e. both the fluid and its reference frame move. The
motion is in our case presented by prescribed oscillations of profile/wing around the
reference point/axis. The chosen schemes were tested with a very good results for a
number of steady test cases before used for numerical solution of unsteady flow.

2 Mathematical Model

Viscous compressible flow in general 2D case is described by the following set of
Navier–Stokes equations (conservative vector form):

Wt C Fx CGy D 0; (1)

where

F D F c � 1

Re
F v; G D Gc � 1

Re
Gv; W D .�; �u; �v; e/T ; (2)

F c D .�u; �u2 C p; �uv; .e C p/u/T ; F v D .0; �xx; �xy ; u�xx C v�xy C �

P r
�ux/

T ;

Gc D .�v; �uv; �v2 C p; .e C p/v/T ; Gv D .0; �xy ; �yy ; u�xy C v�yy C �

P r
�vy/

T ;

p D .� � 1/�e � 1
2
�.u2 C v2/

�
; � D cp

cv
(equation of state)

with W being the vector of conservative variables, F c ; Gc – convective fluxes,
F v; Gv – viscous fluxes, � – density; .u; v/ – velocity vector; p – pressure; e –
total energy per unit volume, � – tensor of viscous stresses, Re – Reynolds num-
ber, P r – Prandtl number, � – heat transfer coefficient. Subscripts t ; x; y signify
time and spatial partial derivatives. In the case of inviscid flow the viscous fluxes
are neglected and the system of the Euler equations is obtained.

3 Numerical Methods

Unsteady flows were numerically simulated with the use of the Arbitrary Lagrangian-
Eulerian method. System (1) is solved by the Finite Volume Method. The time-
dependent computational domain ˝.t/ is divided into a set of non-overlapping
computational cells Di .t/. Using the geometric conservation law [8] the following
identity is obtained

d

dt

“

Di .t/

W.t/dx dy D
“

Di .t/

W.t/dx dy C
I

@Di .t/

W.t/ � Px � n0dS (3)
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where Px D .w1;w2/ is velocity of a point on the boundary @Di .t/.Then in each
time-dependent cell Di .t/ the following relation should be fulfilled (with the use of
Gauss–Ostrogradsky theorem and the mean value theorem):

“

Di .t/

Wt .t/dx dy C
“

Di .t/

.Fx.W.t//CGy.W.t///dx dy D
d

dt
.jDi .t/jWi .t// C

I

@Di .t/

�
.F.W.t//; G.W.t/// �W.t/ � Px� � n0dS D

d

dt
.jDi .t/jWi .t// C

I

@Di .t/

�
F �.W.t//; G�.W.t//

� � n0dS D 0 (4)

where

F �.W.t// D F c.W.t//� w1W.t/ � 1

Re
F v.W.t//

G�.W.t// D Gc.W.t// � w2W.t/ � 1

Re
Gv.W.t// (5)

n0 is outer normal vector to the interface of cell Di .t/ and jDi .t/j is its volume.
.F;G/ � n0 denotes product of a matrix .F;G/ 2 R4;2 and vector n0 2 R1;2.

4 Numerical Schemes

4.1 Modified Causon’s Scheme

Numerical solution of (4) was obtained by two different FVM schemes. The first
was the so called Modified Causon’s scheme [4, 6]. It is based on classical explicit
MacCormack predictor-corrector scheme in TVD form, which is able to deliver very
good results. However, it also entails disadvantageous demands for both computa-
tional memory and power. Therefore a simplification saving approximately 30% of
computational time was proposed by Causon [1] by introducing a special type of
artificial dissipation (AD). This new scheme was still TVD, but the influence of AD
turned out to be too strong. The authors on the other hand proposed another mod-
ification based on Causon’s scheme (refered to as the Modified Causon’s scheme),
which is no more TVD, but keeps the advantages of the Causon’s scheme while
clearing out its drawbacks in the same time.

4.2 Weighted Least-Square Reconstruction Scheme (WLSQR)

When solving (4) with the WLSQR scheme [4,5], the real inviscid fluxes in the sur-
face integrals are approximated by numerical ones (in our case by the AUSMPW+
flux [7]). The high order accuracy in time is obtained in a standard way by using



338 P. Furmánek et al.

the interpolated values at the cell faces. The interpolation is obtained by using the
weighted least-square approach, which usually gives better convergence to steady
state than the methods with Barth’s limiter. Advancing in time is realised by the
non-linear implicit dual-time backward Euler method. Resulting sparse system of
linear equations is solved by GMRES with ILU(0) preconditioning. Dimension of
the Krylov subspace is chosen between 10–40 and maximum number of iteration is
set to 10–50. If the steady solution is not found in prescribed number of iterations
the computation proceeds in the next time step.

4.3 Modification of the Computational Mesh

Because the ALE method uses moving meshes, also the algorithm for mesh modifi-
cation has to be prescribed. The actual position of mesh vertices during the unsteady
computation was given by the following prescription for each mesh vertex x.t/

x.t/ D Q
�
�.t; jjx.0/� xref jj/

�
.x.0/� xref /C xref (6)

Q.�/ D
�

cos� � sin�
sin � cos�

�
; �.t; r/ D

8
<

:

�˛1.t/ for r < r1;
�˛1.t/fD.r/ for r1 � r < r2;
0 for r2 < r:

fD.r/ D
"
2

�
r � r1
r2 � r1

�3
� 3

�
r � r1
r2 � r1

�2
C 1

#

It means that the circle with center in xref and radius r1 is rotating according to the
prescribed change of pitching angle as a solid body. The outer area of the second
circle with the radius r2 > r1 is motion-less and in the annulus between the two
circles the motion of the mesh is damped with the use of damping function fD./.

5 Numerical Results

5.1 2D Unsteady Transonic Flow

Considered test case is transonic flow over an oscillating NACA 0012 profile
for which the experimental data are available in [2]. It is characterised by the
inlet Mach number M1 D 0:755. The oscillatory motion of the profile around
the reference point xref D Œ0:25; 0:00� is given by the pitching angle ˛1.t/ D
0:016ı C 2:51ı sin.!t/. The angular velocity is defined as ! D 2kU1

c
, where U1

is the free-stream velocity (since the non-dimensional form of (1) is considered and
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angle of attack ˛ D 0ı then U1 D M1), c D 1 is the chord length and the
reduced frequency k D 0:0814. The unsteady state development was observed on

the behaviour of the lift coefficient (cl ) given as cl D
H
�prof

p dx

1
2
U 21�1

; where �1 D 1

and �prof is the curve defining the profile. The used computational schemes and
meshes were

� Modified Causon’s scheme – structured C-mesh with 15,096 elements (124 cells
around profile),

� WLSQR scheme with AUSMPW+ flux – unstructured mesh with 6,720 quadri-
lateral cells (120 cells around profile). For the turbulent flow simulation the Kok’s
TNT turbulence model was used.

As can be seen from Figs. 1 and 2 the numerical results obtained by both schemes
in the case of inviscid flow are very good. For the cl comparison the results cor-
respond qualitatively, but experimental data show a bit higher cl values (Fig. 1).
Considering symmetry of the problem, also the behaviour of the cl should be
symmetric with the center of symmetry in the point Œ0; 0�. The experimental data
however do not have this characteristic and therefore the suspicion of their system-
atical error comes in mind. Important characteristics, e.g. the position and intensity
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of the shock wave (minimal and maximal reached value of cp), are however in
a very good correspondence, which is unfortunately not the case of the turbulent
computation, where both the cp and cl coefficient differ significantly (Fig. 3). It
is therefore necessary to use another turbulence model (EARSM) or large eddy
simulation (LES).

5.2 3D Unsteady Inviscid Transonic Flow

The initial conditions for 3D unsteady inviscid transonic flow were taken from
the standard test case mentioned in [9]. The forced oscillatory motion of the wing
around the elastic axis parallel with the axis z and going through the reference point
xref D Œ13 I 0:00I 0:00�was given by the same relation for pitching angle as in 2D. The
inlet Mach number was considered M1 D 0:8395, initial deviation ˛0 D 3:06ı,
amplitude ˛1 D 1:5ı and frequency f D 10Hz. The structured computational
mesh had 467,313 elements and its deformation during the ALE computation was
given by the 3D extension of (6). Computation was carried out using the Modified
Causon’s scheme.

The Modified Causon’s scheme has proved itself well – the results (Fig. 4) show
that the fully periodic state has been achieved at least during the 5th period of the
oscillatory motion. Pressure coefficient decreases with increasing angle of attack
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Fig. 4 cp coefficient behaviour during the 5th period of forced oscillatory motion

(and vice versa) and the scheme does not produce spurious oscillations. Compar-
ison with the experimental data is unfortunately not yet available, but work is in
progress at the present time on implementation of another wing geometry used in
the experiments with oscillating wing at the Aeronautical Research and Test Institute
in Prague (VZLÚ a. s.).

6 Conclusion

Proposed FVM schemes for numerical solution of unsteady 2D and 3D transonic
inviscid flows show very good accuracy. They were able to capture important flow
characteristics as the position and intensity of shockwaves and have proved them-
selves as a reliable numerical simulation of investigated cases. Chosen turbulent
model however does not suit the simulated unsteady flow regime and hence another
one has to be employed (e.g. the EARSM model). Both schemes would need some
further improvements (implicit form in the case of Modified Causon’s scheme,
matrix-free GMRES in the case of WLSQR scheme).
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5. J. Fürst: A weighted least square scheme for compressible flows. Flow, Turbulence and

Combustion (2005)
6. J. Fürst, K. Kozel: Application of second order TVD and ENO schemes in internal aerodynam-

ics. J. Sci. Comput., (2002), 17(1–4): 263–272. ISSN 0885-7474
7. Kyu Hong Kim, Chongam Kim, Oh-Hyun Rho: Methods for the accurate computations of

hypersonic fows I. AUSMPW+ scheme. J. Comput. Phys., (2001), 174:38–80
8. M. Lesoinne, C. Farhat: Geometric conservation laws for flow problems with moving boundaries

and deformable meshes, and their impact on aeroelastic computations. Comp. Methods Appl.
Mech. Eng., (1996), 134:71–90

9. V. Schmitt, F. Charpin: Pressure Distributions on the ONERA-M6-Wing at Transonic Mach
Numbers. Experimental Data Base for Computer Program Assessment. Report of the Fluid
Dynamics Panel Working Group 04, AGARD AR 138, May 1979



Multigrid Finite Element Method
on Semi-Structured Grids
for the Poroelasticity Problem

F.J. Gaspar, F.J. Lisbona, and C. Rodrigo

Abstract An efficient finite element multigrid method on semi-structured triangu-
lar grids, based on box-relaxation, is proposed for the poroelasticity problem. A
stabilized finite element scheme for these equations, based on the perturbation of
the flow equation is considered. Numerical results confirm the good performance of
Vanka smoothers for this saddle point type problem.

1 Introduction

Multigrid methods [4,8,11] are one of the most powerful techniques for solving the
corresponding large systems of equations arising from the discretization of partial
differential equations. Geometric multigrid methods are characterized by employ-
ing a hierarchy of grids. For an irregular domain, it is very common to consider an
unstructured mesh as coarsest grid in order to fit well its geometry, and to apply
regular refinement to its elements. We are interested in the use of semi-structured
triangular grids, where a nested hierarchy of grids is obtained by dividing each
triangle into four congruent ones, connecting the midpoints of their edges. These
grids provide a suitable framework for the implementation of a geometric multigrid
algorithm, permitting the use of stencil-based data structures, see [2, 6].

The choice of a suitable smoother is an important feature for the design of an
efficient geometric multigrid method, and even it requires special attention when
one works with systems of PDEs because the smoother should smooth the error
for all unknowns. Moreover, for saddle point problems (they have a zero or almost
zero block in the matrix for one of the unknowns) numerical experiments show
that smoothing factors of standard collective point-wise relaxations are not satisfac-
tory. The poroelasticity model is an example of such problems, and its resolution
by multigrid on semi-structured grids is the aim here. An overview of multigrid
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methods for discretizations on rectangular grids of saddle point problems is pre-
sented in [10], where coupled or box-relaxation appears as one of the most suitable
smoothers for this kind of problems. It consists of decomposing the mesh into small
subdomains and treating them separately, that is, all (or a part of) the equations cor-
responding to the points in each subdomain are solved simultaneously as a system.
This class of smoothers was introduced by Vanka [13] to solve the finite differ-
ence discretization on rectangular grids of the Navier–Stokes equations. Since then,
much literature can be found about the application of this type of smoothers, mainly
in the field of Computational Fluid Dynamics (CFD) [9, 12]. There are less papers
concerning to the performance of this relaxation in the context of Computational
Solid Mechanics (CSM), see for example [14]. However, for discretizations of the
poroelasticity problem on rectangular grids, it has been proved to obtain very good
results with these smoothers. For instance, in [5] a box-relaxation is performed for
a discretization of the problem on staggered grids. Hence, it seems a good idea to
extend box-relaxation to triangular grids.

In Sect. 2, the formulation of the poroelasticity problem, as well as its stabilized
finite element discretization, will be introduced. Section 3 is devoted to present the
proposed multigrid algorithm, based on Vanka-type smoothers on triangular grids.
Finally, in Sect. 4 some numerical experiments will be presented in order to illustrate
the obtained results, in which some troubles with regard to the coarse-grid correction
of the stabilized problem are shown.

2 Poroelasticity Problem

Poroelasticity theory addresses the time dependent coupling between the deforma-
tion of a porous material and the fluid flow inside. The general statement of this
problem was given by Biot in [3]. We assume the porous medium to be linearly elas-
tic, homogeneous and isotropic, and the porous matrix is supposed to be saturated
by an incompressible fluid. The state of this continuous medium is characterized by
the knowledge of elastic displacements u; and fluid pressure p at each point, and in
terms of these unknowns the governing equations of the consolidation problem are
given by

� ��u � .�C �/r .r � u/Cr p D g.x; t/; (1)
@

@t
.r � u/ � �

�
�p D f .x; t/; x 2 ˝; 0 < t � T; (2)

where ˝ is an open bounded region of Rn; n � 3; � and � are the Lamé coeffi-
cients, � is the permeability of the porous medium, and � is the viscosity of the fluid.
The source terms g.x; t/ and f .x; t/ represent a density of applied body forces and a
forced fluid extraction or injection process, respectively. We consider the following
boundary and initial conditions
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p D 0; � 0 n D t; on �t ;

u D 0;
�

�
.rp/ � n D 0; on �c; (3)

r � u .x; 0/ D 0; x 2 ˝;

where � 0 is the effective stress tensor for the porous medium, n is the unit outward
normal to the boundary and �t [�c D � , with �t and �c disjoint subsets of � with
non null measure.

Considering the following function spaces Q D fq 2 H 1.˝/ j q D 0 on �tg;
and U D fu 2 .H 1.˝//n j u D 0 on �cg; and introducing the corresponding
bilinear forms

a.u; v/ D 2�
nX

i;jD1
.�ij .u/; �ij .v//C�.r�u;r�v/; b.p; q/ D �

�

nX

iD1

�
@p

@xi
;
@q

@xi

�
;

the variational formulation of problem (1) and (2) with boundary and initial condi-
tions (3) reads:

For each t 2 .0; T 	, find .u.t/; p.t// 2 U �Q such that

a.u.t/; v/C .rp.t/; v/ D .g; v/C h.v/; 8 v 2 U ;

.
@

@t
.r � u.t//; q/C b.p.t/; q/ D .f; q/; 8q 2 Q;

with the initial condition .r � u.0/; q/ D 0;8 q 2 L2.˝/; and where h.v/ DZ

�t

t�v d�:Let Th be a triangulation of˝ satisfying the usual admissibility assump-

tion. Let Sk
h
� H 1.˝/ be the spaces of C 0 piecewise polynomial finite element

interpolations of degree k. In the two-dimensional case, we can define finite ele-
ment approximations for U and Q as U k

h
D U

T
.Sk
h
�Sk

h
/ and Qk0

h
D Q

T
Sk

0

h
,

respectively. Using an implicit time discretization, the following discrete formula-
tion of the considered problem is obtained:

For m � 1, find .um
h
; pm
h
/ 2 U k

h
�Qk0

h
such that

a.umh ; vh/C .rpmh ; vh/ D .gm; vh/C h.vh/; 8vh 2 U k
h ; (4)

.r � umh ; qh/C 
b.pmh ; qh/ D .r � um�1h ; qh/C 
.f m; qh/ 8qh 2 Qk0

h ; (5)

where 
 is the time discretization parameter.
Here, we use linear finite elements to approximate the problem, however it is well-
known that choosing the same polynomial space for approximation of displacements
and pressure, i.e. k D k0 in (4) and (5), strong nonphysical oscillations can appear in
the approximation for the pressure field, when the space discretization parameter h is
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not sufficiently small. To overcome this oscillating behavior, in [1] a stabilized finite
element scheme, based on the perturbation of the flow equation, was proposed. This
technique allows to use continuous piecewise linear approximation spaces for both
displacements and pressure, providing solutions without oscillations independently
of the chosen discretization parameters. This scheme is based on the perturbation
of the flow equation with a term which arises from the discretization of the time
derivative of the Laplacian of the pressure multiplied by a coefficient ˇ D h2=4.�C
2�/: Thus, the corresponding discrete variational problem reads:
For m � 1, find .um

h
; pm
h
/ 2 U k

h
�Qk

h
such that

a.umh ; vh/C .rpmh ; vh/ D .gm; vh/C h.vh/; 8 vh 2 U k
h ;

.r � umh ; qh/C .
 C ˇ0/b.pmh ; qh/D
.f m; qh/C .r � um�1h ; qh/C ˇ0b.pm�1h ; qh/;

8qh 2 Qk
h ;

where ˇ0 D ˇ �
�
:

3 Multigrid Based on Vanka-type smoothers

Geometric multigrid methods are strongly dependent on the choice of adequate
components to the considered problem. These components have to be chosen so
that they efficiently interplay with each other in order to obtain a good connection
between the relaxation and the coarse-grid correction. In this paper, linear interpo-
lation is chosen as the prolongation, and its adjoint as the restriction operator. The
discrete operator on each mesh in the hierarchy results from the direct discretiza-
tion of the partial differential equation on the corresponding grid. As it has been
previously commented, box-relaxation is a suitable smoother to deal with poroelas-
ticity problem. There are many variants of box-type smoothers, they can differ in the
choice of the subdomains which are solved simultaneously, and in the way in which
the local systems to be solved are built. Firstly, we consider a point-wise box Gauss–
Seidel iterative algorithm, which consists of simultaneously updating all unknowns
appearing in the discrete divergence operator in the second equation of the system.
This means that 12 unknowns corresponding to displacements and one pressure
unknown (see left Fig. 1) are relaxed simultaneously and therefore, a 13�13 system
has to be solved for each point. Another version of box-relaxation is the line-wise
variant. In triangular grids three different line box smoothers can be defined, each
one associated with each vertex of the triangle, and they consist of looping over each
line parallel to the opposite edge to the corresponding vertex and relaxing simulta-
neously all the unknowns appearing in the divergence operator associated with each
pressure point of the line, that is, all these unknowns marked in right Fig. 1. These
smoothers are much more expensive than their point-wise counterpart, but in some
situations in which point-wise relaxation does not give satisfactory results, they are
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Fig. 1 Unknowns simultaneously updated in point-wise and line-wise box Gauss–Seidel

a very good option. For example, point-wise box-smoothers can be less robust on
anisotropic meshes, being the line-wise box-smoothers preferred in this situation.

4 Numerical Experiments

Following the concept developed in [7] for the efficient design of geometric multi-
grid algorithms on semi-structured triangular grids, we are interested in using a
block-wise multigrid algorithm, where each of the triangles of the coarsest grid is
treated as a different block with regard to the smoothing process. That is, differ-
ent smoothers will be chosen for triangles with different geometries. In particular,
point-wise box smoothers will be used for equilateral or almost equilateral triangles,
and line-wise box smoothers will be considered when the grid becomes anisotropic,
that is, for triangles with some small angle.

Depending on the value of the space discretization parameter h, the artificial
stabilization term has more or less influence. If this parameter is very small the
artificial term is negligible, whereas if h is big enough this term becomes more
dominating and is well-known that the multigrid convergence for this problem slows
down, what is due mainly to poor coarse-grid correction to certain error components.
In order to see this behavior, results for both cases will be presented.

We begin considering the case in which h is sufficiently small to neglect the effect
of the artificial term. Some results for two triangular domains, an equilateral and
an isosceles with common angle 85ı, which are representative for the application
of point-wise and line-wise box relaxation, respectively, are presented. In Table 1,
for the considered triangular domains and for a wide range of values of parameter
k D 
�=�; the asymptotic convergence factors, experimentally computed by taking
a random initial guess and a zero right-hand side, are shown for different numbers of
pre- and post-smoothing steps. It is observed that both smoothers provide a conver-
gence independent on k, even for small values of this parameter, and the obtained
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Table 1 Asymptotic computed convergence factors for an equilateral triangle with a point-wise
box smoother and for an isosceles triangle with common angle 85ı with a line-wise box smoother

Equilateral Isosceles (85ı)
k .1; 0/ .1; 1/ .2; 1/ .1; 0/ .1; 1/ .2; 1/

10�4 0.325 0.121 0.069 0.332 0.133 0.087
10�6 0.325 0.121 0.069 0.332 0.133 0.087
10�8 0.325 0.121 0.069 0.332 0.133 0.087
10�10 0.325 0.121 0.069 0.332 0.133 0.087
10�12 0.325 0.121 0.069 0.332 0.133 0.087
10�14 0.325 0.121 0.069 0.332 0.133 0.087

Fig. 2 Robustness of point-wise and line-wise box-smoothers, respectively

factors are very satisfactory. In order to see the robustness of the method with respect
to the space discretization parameter, in Fig. 2 the history of the convergence of the
method, with an F(2,1), k D 10�8; and with stopping criterion as the maximum
residual over all unknowns to be less than 10�6; is depicted for both smoothers, and
the independency on the number of refinement levels is shown.

Next, we deal with the case of h sufficiently large. The dominance of the artifi-
cial stabilization term causes some convergence problems of the proposed multigrid
algorithm. In Fig. 3a, although the robustness with regard to the parameter k is
observed, a significative deterioration of the experimentally computed convergence
factors obtained with the point-wise box smoother for an equilateral triangle is
seen. Besides, in Fig. 3b, the history of the convergence for this algorithm, with
an F(2,1) and with stopping criterion as the maximum residual over all unknowns
to be less than 10�6; shows how the number of iterations, necessary to reach the
desired value for the residual, grows up as the number of refinement levels increases.
The same behavior has been observed for the line version of the smoother. As
commented before, this poor performance is due to the coarse-grid correction, and
some techniques to overcome these troubles will be investigated in a forthcoming
publication.

Finally, to see how efficiently the block-wise multigrid works, we solve a
poroelasticity problem on the rectangular domain depicted in Fig. 4, in which the
considered space discretization parameter h is small enough to discard problems
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Equilateral
k .1; 0/ .1; 1/ .2; 1/

10�4 0.838 0.734 0.677
10�6 0.838 0.734 0.677
10�8 0.838 0.734 0.677
10�10 0.838 0.734 0.677
10�12 0.838 0.734 0.677
10�14 0.838 0.734 0.677
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Fig. 3 (a) Asymptotic experimentally computed convergence factors with point-wise box
smoother. (b) History of the convergence for different refinement levels with k D 10�8

Fig. 4 Rectangular computational domain, and smoothers applied on each coarse triangle

with the stabilization term on the coarse-grid correction. The body is assumed rigid
at the bottom and in the central part of the upper edge a uniform load of density 104

is applied.
We apply the proposed multigrid method, considering different smoothers for

different triangles of the coarsest mesh, composed of 10 triangles. In particular, in
Fig. 4 the triangles in which point-wise or line-wise box smoothing is considered are
distinguished. The obtained results for the convergence of the method, considering
an F(2,1) and for a value of parameter k D 10�8, are shown in Table 2, where the
number of cycles necessary to reduce the initial residual with a factor of 10�8 are
shown for different refinement levels, together with the number of elements and the
number of unknowns of the problem. An independent convergence of the stepsize
of the mesh is observed, and the efficiency of the proposed algorithm is also shown,
since the residual is reduced in only 10 iterations.
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Table 2 Number of cycles necessary to reduce the initial residual with a factor of 10�8

No. of levels No. of elements No. of unknowns No. of cycles

6 10,240 15,747 10
7 40,960 62,211 10
8 163,840 247,299 10
9 655,360 986,115 10

10 2,621,440 3,938,307 10
11 10,485,760 15,740,931 10
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A Posteriori Error Bounds for Discontinuous
Galerkin Methods for Quasilinear Parabolic
Problems

Emmanuil H. Georgoulis and Omar Lakkis

Abstract We derive a posteriori error bounds for a quasilinear parabolic problem,
which is approximated by the hp-version interior penalty discontinuous Galerkin
method (IPDG). The error is measured in the energy norm. The theory is devel-
oped for the semidiscrete case for simplicity, allowing to focus on the challenges
of a posteriori error control of IPDG space-discretizations of strictly monotone
quasilinear parabolic problems. The a posteriori bounds are derived using the ellip-
tic reconstruction framework, utilizing available a posteriori error bounds for the
corresponding steady-state elliptic problem.

1 Introduction

Discontinuous Galerkin (DG) methods [1, 2, 17], have enjoyed substantial develop-
ment in recent years. For parabolic problems DG methods are interesting due to
their good local conservation properties as well as due to their block-diagonal mass
matrices.

This work is concerned with the derivation of a posteriori error bounds for the
space-discrete interior penalty discontinuous Galerkin method (IPDG) for quasilin-
ear parabolic problems with strictly monotone non-linearities of Lipschitz growth.

A posteriori error bounds for h-version DG methods are derived in [3,10,12,13]
and for DG-in-space parabolic problems in [5–8, 16, 18]. The contribution of this
work is twofold:

� The derivation of a posteriori energy-norm error bounds for IPDG methods for
quasilinear parabolic problems, and
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� The resulting a posteriori bounds are are explicit with respect to the local
elemental polynomial degree.

A key tool in our a posteriori error analysis is the elliptic reconstruction technique
[8, 14, 15]. Roughly speaking, in the elliptic reconstruction framework the error is
split into a parabolic and an elliptic part, respectively. In the interest of being explicit
with respect to the dependence of the a posteriori error bounds in the elemental
polynomial degreep, we restrict the presentation to quadrilateral elements of tensor-
product type (cf. Remark 2).

2 Model Problem and the IPDG Method

Let ˝ be a bounded open (curvilinear) polygonal domain with Lipschitz bound-
ary @˝ in Rd , d D 2; 3. For ! � ˝ , we consider the standard spaces L2.!/
(whose norm is denoted by k�k! for brevity),H 1.!/ and H 1

0 .!/, whose norm will
be denoted by k�k1, along with its dual H�1.˝/, with norm k�k�1. For brevity,
the standard inner product on L2.˝/ will be denoted by h�; �i and the correspond-
ing norm by k�k. We also define the spaces L2.0; T;X/, X 2 fL2.!/;H˙1.!/g
and L1.0; T; L2.˝//, consisting of all measurable functions v W Œ0; T � ! X ,

for which kvkL2.0;T IX/ WD
� R T
0
kv.t/k2X

�1=2
< C1 and kvkL1.0;T IL2.˝// WD

ess supt2Œ0;T �kv.t/k. (The differentials in the integrals with respect to t are sup-
pressed for brevity throughout this work.)

We identify function v 2 Œ0; T � � ˝ ! R with v W t ! X and we denote v.t/,
t 2 Œ0; T �, for v 2 Œ0; T � �˝ ! R.

For t 2 .0; T �, we consider the problem of finding a function u satisfying

ut .t; x/ � r � .a.t; x; jru.t; x/j/ru.t; x// D f .t; x/ in .0; T � �˝; (1)

where f 2 L1.0; T IL2.˝// and a scalar uniformly continuous function, subject
to initial condition u.0; x/ D u0.x/ on f0g�˝ , for u0 2 L2.˝/, and homogeneous
Dirichlet boundary conditions on Œ0; T � � @˝ .

We assume that the non-linearity a in equation (1) is of strongly monotone type
with Lipschitz growth so that there exist positive constants a and a such that the
following inequalities hold:

ja.t; x; jyj/y � a.t; x; jzj/zj � ajy � zj (2)�
a.t; x; jyj/y � a.t; x; jzj/z� � .y � z/ � ajy � zj2; (3)

for all vectors y; z 2 Rd , and all .t; x/ 2 Œ0; T � � N̋ .
Let T be a shape-regular subdivision of ˝ into disjoint closed quadrilateral ele-

ments � 2 T . We assume that � 2 T are constructed via C1-diffeomorphisms
with non-singular Jacobian F� W .�1; 1/d ! �, so as to ensure N̋ D [�2T N�.



IPDG a Posteriori Bounds for Quasilinear Parabolic Problems 353

For p 2 N , Qp. O�/ is the set of all tensor-product polynomials on .�1; 1/d of
degree p in each variable and let

Sp WD fv 2 L2.˝/ W vjF� 2 Qp. O�/; � 2 T g; (4)

be the (discontinuous) finite element space. Let � be the union of all .d � 1/-
dimensional element faces e associated with the subdivision T (including the
boundary). Let also �int WD � n@˝ , so that � D @˝ [ �int.

Let �C, �� be two (generic) elements sharing a face e WD �C \ �� � �int

with respective outward normal unit vectors nC and n� on e. For q W ˝ ! R and
� W ˝ ! Rd , let q˙ WD qje\@�˙

and �˙ WD �je\@�˙

, and set

ffqggje WD 1

2
.qC C q�/; ff�ggje WD 1

2
.�C C ��/;

ŒŒq��je WD qCnC C q�n�; ŒŒ���je WD �C � nC C �� � n�I

if e � @� \ @˝ , we set ff�ggje WD �C and ŒŒq��je WD qCnC. Finally, we introduce the
meshsize h W ˝ ! R, defined by h.x/ D diam�, if x 2 �n@� and h.x/ D ffhgg, if
x 2 � .

Consider the IPDG semi-linear form B.�; �/ W Sp � Sp ! R, introduced in [9]
for the solution of the corresponding steady-state problem, defined by

B.w; v/ WD
X

�2T

Z

�

˛.w/ � rv dx C
Z

�

�
�ffa.t; x; h�1jŒŒw��j/rvgg � ŒŒw��

� ff˛.w/gg � ŒŒv��C �ŒŒw�� � ŒŒv��� ds;

(5)

where ˛.w/ WD a.t; �; jrwj/rw, w 2 H 1.˝/ C Sp, for � 2 f�1; 0; 1g, with the
function � W � ! RC defined piecewise by � je WD C�p

2=.hje/, for some suf-
ficient large constant C� > 0. The corresponding energy norm jk�jk is defined

jkwjk WD �P
�2T krwk2� C

R
� �ŒŒw��

2ds
�1=2

, for w 2 H 1.˝/ C Sp . The (spa-
tially semidiscrete) interior penalty discontinuous Galerkin method (IPDG) for the
initial/boundary value model problem reads:

find U W .0; T �! Sp such that hUt ; V i CB.U; V / D hf; V i 8t 2 .0; T �; V 2 Sp:
(6)

3 A Posteriori Error Bounds

For w 2 H 1.˝/ C Sp, and T > 0, we define the norm jkwjkL2.0;T IH1.˝// WD�R T
0
jkwjk2

�1=2
; t > 0. We shall derive a posteriori bounds for the error

jku � U jkL2.0;T IH1.˝//.
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Definition 1 (elliptic reconstruction). Let U be the (semi-discrete) solution to the
problem (6) and fix t 2 Œ0; T �. We define the elliptic reconstruction w � w.t/ 2
H 1
0 .˝/ of U to be the solution to the elliptic problem

h˛.w/;rvi D hg; vi 8v 2 H 1
0 .˝/; (7)

where g � g.t/ is given by g WD �AU C f � ˘f , with ˘ W L2.˝/ ! Sp is
the orthogonal L2-projection operator onto Sp and A � A.t/ W Sp ! Sp is the
discrete operator defined by

for Z 2 Sp; h�AZ; V i D B.Z; V / 8V 2 Sp: (8)

The construction of w and that of AZ are both well defined in view of the elliptic
problem’s unique solvability and the Riesz representation, respectively.

Remark 1. The key property of the construction in Definition 1 is that U is the
IPDG solution of an elliptic problem with analytical solution w. Namely, for each
fixed t 2 Œ0; T � it satisfies

find U 2 Sp such that B.U; V / D hg; V i 8V 2 Sp: (9)

We can now decompose the error as follows:

U � u D � � 	; with � WD w � u; and 	 WD w � U; (10)

where w � w.t/ denotes the elliptic reconstruction of U � U.t/, t 2 Œ0; T �.
Lemma 1 (differential error relation). Let u, w, U , e, �, 	 as above. Then, for all
v 2 H 1

0 .˝/, we have

het ; vi C h˛.w/ � ˛.u/;rvi D 0: (11)

Proof. We have

het ; vi C h˛.w/ � ˛.u/;rvi D hUt ; vi C h˛.w/;rvi � hf; vi
D hUt ; vi C hg; vi � hf; vi D hUt ; vi C h�AU; vi � h˘f; vi
D hUt ; ˘vi C h�AU;˘vi � hf;˘vi D 0;

(12)

using (1), (7) and the properties of the L2-projection, respectively. ut
We consider further the decomposition ofU into conforming and non-conforming

(discontinuous) parts U D U c C U d , where U c 2 Sp \ H 1
0 .˝/ and U d WD

U�U c 2 Sp. Note that there are many ways of performing this decomposition (e.g.,
by projecting U onto the conforming space) whereof the specific nature remains at
our disposal until further.

We also use the shorthand notation ec WD U c � u and 	c WD w � U c; note that
ec D � � 	c , e D ec C U d and that ec 2 H 1

0 .˝/.
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Theorem 1 (abstract a posteriori energy-error estimate). With u, U , U d , e, and
	 as defined above, the following error estimate is satisfied:

jkejkL2.0;T;H1.˝// �C1jk	jkL2.0;T;H1.˝// C a�
1
2

�ku0 � U.0/k C kU d .0/k
�

C C1jkU d jkL2.0;T;H1.˝// C C2kU dt kL2.0;T;H�1.˝//;
(13)

with C1 WD 1C
p
2aa�1 and C2 WD

p
2a�1.

Proof. Set v D ec in (11), to deduce

hect ; eci C h˛.U c/� ˛.u/;reci D �hU dt ; eci C h˛.U c/� ˛.w/;reci: (14)

Conditions (3) and (2) imply, respectively,

h˛.U c/� ˛.u/;reci � akreck2, and h˛.U c/� ˛.w/;reci � akr	ckkreck;

and the duality pairing .H�1;H 1
0 / gives jhU dt ; ecij � kU dt k�1kreck: Using the

last 3 relations on (14), we deduce

hect ; eci C akreck2 �
�
kU dt k�1 C akr	ck

�
kreck; (15)

which, in turn, implies

hect ; eci C
a

2
kreck2 � 1

2a

�kU dt k�1 C akr	ck
�2
: (16)

Integrating (16) with respect to t between 0 and T , yields

kec.t/k2 C a
Z T

0

kreck2 � kec.0/k2 C 1

a

Z T

0

�
kU dt k�1 C akr	ck

�2
;

or

� Z T

0

kreck2
� 1
2 �a� 12 kec.0/k C a�1

� Z T

0

�
kU dt k�1 C akr	ck

�2 � 1
2

�a� 12 kec.0/k C C2kU dt kL2.0;T;H�1.˝//

C .C1 � 1/jk	c jkL2.0;T;H1.˝//

(17)

noting that jk	c jk D kr	ck. Using the bounds jk	c jk � jk	jk C jkU d jk, kec.0/k �
ke.0/k C kU d .0/k on (17) and the resulting bound on the triangle inequality

jkejkL2.0;T;H1.˝// � jk	c jkL2.0;T;H1.˝// C jkU d jkL2.0;T;H1.˝//;

yields the result. ut
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For the above result to yield a formally a posteriori bound, we need to estimate
jk	jkL2.0;T;H1.˝// further. In particular, in view of Remark 1, we require an a pos-
teriori error bound for the IPDG method for the corresponding elliptic quasilinear
problem (9). Such a result is available in [11], an instance of which and is presented
next.

Theorem 2 ([11]). Let w 2 H 1
0 .˝/ be the elliptic reconstruction defined in (7) and

let W 2 Sp be the solution of (9). Then, for C� > 1 sufficiently large the bound

jkw �W jk2 � E .W; g; Sp/ WD Cest

X

�2T

�

2� C O.g;W /

�
; (18)

holds, with


2� D
h2�
p2
k Q̆ �g Cr � ˛.W /

�k2� C
h�

p
k Q̆� ŒŒ˛.W /��k2@�n@˝ C C 2�

p3

h�
kŒŒW ��k2@� ;

and

O.g;wDG/ D
X

�2T

�h2�
p2
k�I � Q̆ ��g C ˛.W /

�k2� C
h�

p
k�I � Q̆� /ŒŒ˛.W /��k2@�n@˝

�
;

where I denotes a generic identity operator, Q̆ denotes the L2-projection operator
onto Sp�1, Q̆� is defined piecewise by Q̆� vje WD �

p�1
e v, for all elemental faces

e � � , v 2 L2.˝/, where �p�1e W L2.˝/ ! Pp�1.e/ denotes the L2-projection
operator of the trace on the face e of a function in Sp�1 (with Pp�1.e/, for e � N�
the space of mapped univariate polynomials of degree at most p � 1 on e), and
Cest > 0 is independent of C� , � , h and p. ut

Also, it is possible to further estimate the terms involvingU d , to avoid computing
U d explicitly. This is done (with, crucially, explicit dependence on p) using the
following result based on [4, Lemma 3.2].

Lemma 2. Suppose T does not contain any hanging nodes. Then, for any v 2 Sp
and any multi-index � , with j� j D 0; 1, there exists a function vc 2 Sp \H 1

0 .˝/

such that X

�2T
kD� .v � vc/k2� � C3k

� h
p2

� 1
2
�j� j

ŒŒv��k2� ; (19)

with C3 > 0 depending on the maximal angle of T only.

Proof. [4, Lemma 3.2] implies that for every � 2 T there exists an Oswald-type
operator IOs W Sp ! Sp \H 1

0 .˝/, such that

kv � IOsvk2� � C
X

e�F.�/

h�

p2
kŒŒv��k2e ; (20)
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for all v 2 Sp, with F .�/ WD fe 2 � W e \ N� ¤ ;g. Summing over all the elements
� 2 T , and observing that the maximal angle and the lack of hanging nodes gives
an upper bound on the cardinality of F .�/ for all � 2 T , we deduce that

X

�2T
kv � IOsvk2� � C

X

e��

h�

p2
kŒŒv��k2e ; (21)

which shows (19) for j� j D 0. To show (19) for j� j D 1, we observe that .v�IOsv/ 2
Sp; thus, the standard inverse estimate yields:

X

�2T
kr.v � IOsv/k2� � C

X

�2T

p4

h2�
kv � IOsvk2� � C

X

e��

p2

h�
kŒŒv��k2e ; (22)

using the shape regularity of T . Setting vc D IOsv, the result follows. ut
Remark 2. The assumptions of Lemma 2 pose the following restrictions on the finite
element space Sp: the use of quadrilateral elements (as the tensor-product nature
of the local elemental bases is of crucial importance here), the exclusion of hang-
ing nodes and the uniformity of the polynomial degree. If explicit knowledge of
the polynomial degree p in the a posteriori bounds presented in this work is not
required, then these restrictions are not needed in view of [12, Lemma 4.1], i.e.,
triangular elements containing hanging nodes can be employed.

Combining the results of Theorems 1 and 2, together with the approximation
properties described in Lemma 2, we obtain an a posteriori error bound in the energy
norm for the semi-discrete problem (6).

Theorem 3 (energy-norm a posteriori bound). With the notation of Theorem 1
and the assumptions of Lemma 2, the following error bound holds:

jkejkL2.0;T;H1.˝// �C1
Z T

0

E 2.U; g; Sp/C a� 12 ku0 � U.0/k

C a� 12C3k
� h
p2

� 1
2 ŒŒU.0/��k2� C C4k

p
�ŒŒU ��kL2.0;T IL2.� //

C C5k
� h
p2

� 1
2 ŒŒUt ��kL2.0;T IL2.� //;

(23)
with C4 WD C1

p
C3=C� , C5 WD C2CPF and CPF > 0 (the Poincaré–Friedrichs

constant), such that kvk�1 � CPFkvk, for all v 2 L2.˝/.
Proof. Combining the results from Theorems 1 and 2, together with the approxima-
tion properties described in Lemma 2, the result follows. ut
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An A Posteriori Analysis of Multiscale
Operator Decomposition

Victor Ginting

Abstract We analyze an operator decomposition time integration method for sys-
tems of ordinary differential equations that present significantly different scales
within the components of the model. Using adjoint formulation of the problems, we
derive an a posteriori error analysis for the average error over certain time interval
as quantity of interest.

1 Problem Setting

In this paper, we analyze an iterative operator decomposition technique for solv-
ing a system of ordinary differential equations that presents significantly different
scales for the rate of change of individual components of the model. The tech-
nique employs discretizations on significantly different time scales for different
components of the problem. We consider a model that can be decomposed into two
vector-valued components: find y D .y1; y2/

> 2 Rn that satisfies

8
ˆ̂<

ˆ̂:

Py1 D F1.y1; y2/; t 2 .0; T �;
Py2 D F2.y1; y2/; t 2 .0; T �;
y1.0/ D g1; y2.0/ D g2;

(1)

for a given initial condition g D .g1; g2/
>. Here, yi 2 Rni , i D 1; 2, n D n1 C n2,

and F D .F1; F2/
> 2 Rn, with Fi .y/ D Fi .y1; y2/ 2 Rni , i D 1; 2. If F1 and F2

induce significantly different rates of change in the respective solution components,
then an heuristic consideration of accuracy suggests that it is most efficient to solve
(1) using small time steps for the fast component and large time steps for the slow
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component. The natural issues to consider are accuracy, stability, and estimation
of the error of particular numerical solutions. Our goal in this paper is to derive
accurate error estimates for a quantity of interest computed from the decomposition
technique. This decomposition can also be viewed as a multirate numerical method.
There is a large literature on multirate numerical methods, see for example [1–3,
7–11]. By and large, these references are focused on application and standard a
priori analysis issues, e.g., stability, accuracy, and convergence properties. The main
goal of this paper is to derive a computable a posteriori error representation that
accurately estimates the error in a specified quantity of interest computed from a
operator decomposition of (1). In this case, we choose our quantity interest to be the
average of the solution over certain time interval.

We discretize Œ0; T � into 0 D t0 < t1 < t2 < � � � < tN D T with time steps
f�tn DgNnD1, with �tn D tn � tn�1 and �t D max1�n�N f�tng and time intervals
In D .tn�1; tn/. For the purpose of operator decomposition we think of these nodes
as synchronization times. To each In, we assign a positive integer Mn which is the
number of iterations to be used when synchronizing the fast and slow components.
Let Qy D . Qy1; Qy2/

> denote the analytic solution of (1) using the iterative procedure
defined in Alg. 1.

Algorithm 1 Analytic Iterative Operator Decomposition

for n D 1 to N do
Set Qy.0/2 D Qy.Mn�1/

2 .tn�1/

for m D 1 to Mn do

Compute Qy.m/1 .t / for t 2 In satisfying

( PQy.m/1 D F1. Qy.m/1 ; Qy.m�1/
2 /

Qy.m/1 .tn�1/ D Qy.Mn�1/
1 .tn�1/

(2)

Compute Qy.m/2 .t / for t 2 In satisfying

( PQy.m/2 D F2. Qy.m/1 ; Qy.m/2 /

Qy.m/2 .tn�1/D Qy.Mn�1/
2 .tn�1/:

(3)

end for
end for

Let Li;n, i D 1; 2 be two positive integers, where L1;n denotes the number
of time steps used to solve the fast subsystem and L2;n the number of steps used
for the slow subsystem. Without loss of generality, we assume L1;n D dnL2;n for
some positive integer dn, i.e., L1;n is divisible by L2;n. We denote time steps for
each component in the Galerkin formulation by �si;n D �tn=Li;n, with �si D
max1�n�N f�si;ng. We use the continuous Galerkin method, which is more appro-
priate for problems with conserved quantities [4]. The finite element approximate
solutions are sought in piecewise continuous polynomial spaces,
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V .qi /.In/ D
n
U W U jIl;n

2P.qi /.Il;n/; 1 � l � Li;n

o
; i D 1; 2:

The finite element solution of the multiscale iterative operator decomposition is to
find eY D .eY 1;eY 2/

> with eY 1jIn
2 V .q1/.In/ and eY 2jIn

2 V .q2/.In/ determined
by Alg. 2.

Algorithm 2 Finite Element Multiscale Iterative Operator Decomposition
for n D 1 to N do

SeteY .0/2 DeY .Mn�1/
2 .tn�1/

for m D 1 to Mn do
SeteY .m/.tn�1/ DeY .Mn�1/.tn�1/.
for j D 1 to L1;n do

ComputeeY .m/1 .t / for t 2 Ij;n satisfying

Z

Ij;n

�
PeY .m/1 � F1.eY .m/1 ;eY .m�1/

2 /; V

�
dt D 0; 8V 2P.q1�1/.Ij;n/:

end for
for k D 1 to L2;n do

ComputeeY .m/2 .t / satisfying

Z

Ik;n

�
PeY .m/2 � F2.eY .m/1 ;eY .m/2 /; W

�
dt D 0; 8W 2P.q2�1/.Ik;n/:

end for
end for

end for

We note that many standard finite difference schemes can be obtained by apply-
ing appropriate quadrature formulas to the integrals defining the finite element
approximation.

2 A Posteriori Analysis

A key feature of the analysis is the realization that the multiscale operator decom-
position problem is naturally associated with a different adjoint operator than the
original problem. Our approach [5] to overcome this issue is to use a different
linearization than commonly used for nonlinear problems. We assume that the oper-
ators for the original problem and the analytic operator decomposition version share
a common solution, and use that as a linearization point. The simplest example
of such a solution is a steady state solution, which can be guaranteed to exist by
assuming homogeneity in the right-hand side, i.e., F.0/ D 0. This is generally not
restrictive in practice, but this assumption can be generalized (see [5]). We let
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F 0ij .y/ D
Z 1

0

@Fi

@yj

.sy/ ds; i; j D 1; 2; (4)

and F 0 denotes the square matrix whose entries are (4). Then F.y/ D F 0.y/y
and so Py D F 0.y/y. Associated with this linearized form, we denote by ' the
generalized Green’s function satisfying the following adjoint problem:

(
� P' D F 0.y/>' C  ; t 2 .T; 0�;
'.T / D 0: (5)

We can obtain a solution representation using the Green’s functions, by multiplying
y with the adjoint equation (5) and integrating by parts over In

Z

In

.y;  / dt C .yn; 'n/ D .yn�1; 'n�1/: (6)

To simplify presentation, we express the analytic iterative operator decomposi-
tion in Alg. 1 in a more compact format. In particular, for any iteration indexm, we
write (2) and (3) as

PQy.m/ D F. Qy.m//C ı.m/

Qy ; (7)

where

ı
.m/

Qy D �
h
F1. Qy.m/

1 ; Qy.m/
2 /� F1. Qy.m/

1 ; Qy.m�1/
2 /; 0

i>
: (8)

The vector ı.m/

Qy can be interpreted as a residual at the iteration levelm.
To define an adjoint for the operator decomposition problem in Alg. 1, we let
Q'i denote the generalized Green’s function that satisfies an adjoint problem on time
interval In as given in Alg. 3.

Algorithm 3 Adjoint for the Analytic Iterative Operator Decomposition

Set Q'.0/1 D Q'.KnC1/

1

for k D 1 toKn do
Compute Q'.k/2 satisfying

� PQ'.k/2 D F 0

22. Qy.m//
> Q'.k/2 C F 0

12. Qy.m//
> Q'.k�1/

1 C  2; t 2 .tn; tn�1�

Compute Q'.k/1 satisfying

� PQ'.k/1 D F 0

11. Qy.m//
> Q'.k/1 C F 0

21. Qy.m//
> Q'.k/2 C  1; t 2 .tn; tn�1�

end for
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In this algorithm, it is understood that we set Q'.T / D 0. Notice that the adjoint
problems are solved backward in time and in the reverse order to that of the forward
problem, starting with Q'2 followed by Q'1. These generalized Green’s functions are
an iterative approximation of (5). As in the forward problem, we can also rewrite
this last algorithm into a compact form

� PQ'.k/ D F 0. Qy.m//
> Q'.k/ C  C �.k/; (9)

for adjoint iteration level k. Here

�.k/ D �
�
0; F 012. Qy.m//

>
. Q'.k/

1 � Q'.k�1/
1 /

�>
;

is the residual of the adjoint at iteration level k. To get a representation of the iter-
ative operator decomposition solution, we follow a similar derivation as for the
fully coupled problem. Multiplying Qy.m/ with (9), integrating over In, and applying
integration by parts along with (7), we obtain

Z

In

. Qy.m/;  / dtC . Qy.m/
n ; Q'.k/

n / D . Qy.m/
n�1; Q'.k/

n�1/C
Z

In

.ı
.m/

Qy ; Q'.k// dt

�
Z

In

. Qy.m/; �.k// dt:
(10)

We note that this representation is not in the standard format as in (6), in which
the solution at the current time level solely depends on the previous time level val-
ues. It contains artifacts arising from the iterative procedure used to compute both
forward and backward problems. The second term on the right hand side of (10)
can be interpreted as the weighted average of the forward problem residual over a
time step. The third term, on the other hand, is the weighted average of the back-
ward problem residual over a time step. Thus, the iterative nature of the operator
decomposition is reflected in this representation. Once convergence is reached both
on forward and backward problems, then the standard convention of solution repre-
sentation using the adjoint technique is recovered. We are now able to express the
error representation of the iterative operator decomposition method. By subtracting
(10) from (6) and setting Qy.m/

n�1 D yn�1 and 'n D Q'.k/
n , we get an error equation

over one time step:

Z

In

.e.m/;  / dtC .e.m/
n ; Q'.k/

n / D .yn�1; � Q'.k/
n�1/ �

Z

In

.ı
.m/

Qy ; Q'.k// dt

C
Z

In

. Qy.m/; �.k// dt;

where e.m/ D y � Qy.m/ and � Q'.k/
n�1 D 'n�1 � Q'.k/

n�1. Note that there are terms that

are not computable in this expression. The term� Q'.k/
n�1 is definitely not computable,
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though when convergence in the adjoint computation is reached, this term vanishes.
Nevertheless, in the context of finite number of iterations, we desire to numerically
quantify this term.

Furthermore, the adjoint used to derive an error equation for the finite element
solution of the operator decomposition is similar to the one described in Alg. 3,
except that the Jacobian is linearized around z.m/ D s Qy.m/ C .1 � s/eY .m/, with
s 2 Œ0; 1�, such that F. Qy.m// � F.eY .m// D F 0.zm/ . Qy.m/ � eY .m//. We denote bye#
the generalized Green’s function for the finite element solution, which is written in
compact form

� Pe#.k/ D F 0.z.m//
>e#.k/ C  C �.k/; (11)

where

�.k/ D �
�
0; F 012.z

.m//
>
.e#.k/

1 �e#.k�1/
1 /

�>
;

is the residual of the adjoint at iteration level k. To derive an error equation for the
finite element solution of the operator decomposition, we let Qe.m/ D Qy.m/ � eY .m/.
We multiply Qe.m/ to (11), integrate on time interval Il;n, l D 1; 2; � � � ; L1;n, and use
the identity

�PQe.m/ C F 0.z.m// Qe.m/ D �ı.m/

Qy C PeY .m/ � F.eY .m// D �ı.m/

Qy CR.m/;

to get

Z

Il;n

� Qe.m/;  
�

dt D � Qe.m/

l�1;n
;e#.k/

l�1;n

� � � Qe.m/

l;n
;e#.k/

l;n

� �
Z

Il;n

�
R.m/;e#.k/

�
dt

C
Z

Il;n

.ı
.m/

Qy ;e#.k// dt �
Z

Il;n

. Qe.m/; �.k// dt:
(12)

This is the basis for the equation for the average error at time level In. The equation
reflects the error arising from the consistent finite element numerical discretization
of the analytical iterative operator decomposition. Notice that the last term is not
computable since it contains the error Qe.m/ weighted by the iteration residual in the
adjoint computation. Again provided that an a priori estimate on Qe.m/ is available,
we consider this term higher order due the fact that the residual can be made as
small as needed when the adjoint computation is driven to convergence (see [6]
for details). Now we may write a computable error estimator for the finite element
multiscale iterative operator decomposition method.

Theorem 1. The computable average error of finite element multiscale iterative
operator decomposition is
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Z T

0

.y � eY .MN /;  / �
NX

nD1

L1;nX

lD1

�
Q

.MN /

1;l;n
CQ.MN /

2;l;n
CQ.MN /

3;l;n
CQ.MN /

4;l;n

	

D Q1 CQ2 CQ3 CQ4:

(13)

where

Q
.m/
1;n D �

Z

Il;n

�
R

.m/
1 ;e#.Kn/

1

	
dt and Q

.m/
2;n D �

Z

Il;n

�
R

.m/
2 ;e#.Kn/

2

	
dt

Q
.m/
3;n D

Z

Il;n

�
ı

.Mn/

eY ;e#.Kn/
	
dt and Q

.m/
4;n D

Z

Il;n

�
ı

.Mn/

Qy ;e#.Kn/ � Q'.Kn/
	

dt;

and R.m/
1 D PeY .m/

1 � F1.eY .m/
1 ;eY .m�1/

2 /, and R.m/
2 D PeY .m/

2 � F2.eY .m/
1 ;eY .m/

2 /.

Theorem 1 has decomposed the average error over .0; T / into several compo-
nents. The term Q1;n represents the finite element residual associated with the fast
time scale subsystem, while Q2;n represents the finite element residual associated
with the slow time scale. The term Q3;n represents the iteration error quantified by

the iteration residual ı.Mn/

eY . Recall that the adjoints e# and Q' differ in the func-
tions which are used for linearization. Thus, the term Q4;n also vanishes when
e# D Q', which may be true if, for example, the system (1) is linearly coupled, i.e., if
Fi .y1; y2/ D Ai1y1 C Ai2y2 for some matrix Ai1 and Ai2.

3 A Numerical Experiment

We illustrate the robustness of the proposed error estimator by solving a 3�3 system

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

Px D 100y C z; x.0/ D 9001

10001

Py D �100x; y.0/ D � 105

10001

Pz D �zC y; z.0/ D 1000:

(14)

There are two distinct time scales, fast O.2�=100/ and slow O.1/. We set y1 D
Œx y�> (associated with the fast time scale) and y2 D z (associated with the
slow time scale). A typical solution is depicted in Fig. 1.The forward problem is
solved using the second order, piecewise linear and continuous cG method, which
is equivalent to Crank–Nicholson scheme. We consider a quantity of interest

Z 2

0

z.t/ dt D 858:7488805 (15)
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t t t

z(
t)

y(
t)

x(
t)

Fig. 1 Typical solution of (14)

Table 1 Error estimate for quantity of interest (15)

�s2 Exact error Q1 Q2 Eff. index

2.00 �136:2729668 -0.0001734 �145:2920051 1.066
1.00 �24:2340044 -0.0001769 �24:6426795 1.017
0.50 �5:7329837 -0.0001759 �5:7570522 1.004
0.25 �1:4129595 -0.0001756 �1:4142761 1.001

We solve (14) until T D 2 using �t D 2, �s1 D 5 � 10�3 and varying �s2.
The result is shown in Table 1. The problem is solved until the residual is very
small so that Q3 D 0. Notice also since the problem is linearly coupled we have
Q4 D 0. This means that the only error contributions come from Q1 and Q2.
Eventhough the error is still considerably large, the prediction of the proposed error
estimate is very good as can be seen from the effectivity index. Notice also that the
dominant contribution is from the slow scale component Q2. This example shows
the potential for using the above estimate to adaptively determine the parameters
controlling accuracy. Since, the error estimate is written as a sum of contributing
components, namely the finite element residual associated with the fast scale vari-
ables (Q1), the finite element residual associated with the slow scale variables (Q2),
and the iteration residuals (Q3 andQ4), we can determine the largest source of error
and adjust the corresponding parameter.
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Goal-Oriented Error Estimation
for the Discontinuous Galerkin Method
Applied to the Biharmonic Equation

João L. Gonçalves, Philippe R.B. Devloo, and Sônia M. Gomes

Abstract A posteriori goal-oriented error estimation for approximation of discon-
tinuous Galerkin finite element method is considered for the biharmonic equation.
The methodology is based on the dual problem associated to the target functional.
Using our estimation, we design two error indicators in order to ensure an effi-
cient error control of the prescribed functional. We present numerical experiments
to illustrate the performance of the error indicators.

1 Introduction

Error control of approximations is a crucial aspect in numerical resolution of partial
differential equations. The most commonly used error control algorithms use error
estimators related to the norm or seminorm associated with the differential equation.
In many cases one is interested in controlling the error related to functionals applied
to the solution; this approach is called goal-oriented error control. Pioneering work
in this area has been developed by Babuška and collaborators [1, 2] .

Our group has developed research in the area of discontinuos Galerkin finite
element methods (DGFEM). In the present we develop an a posteriori goal-oriented
error estimator and two error indicators to approximations obtained by symmetric
DGFEM applied to the biharmonic equation.

In [4], Harrimann et al. presents an a posteriori goal-oriented error estimator of
second order equations. Our purpose is to extend this kind of estimator to the bihar-
monic equation. The resulting indicator is globally efficient, but not locally efficient.
Modifying this indicator by balancing the interior edge error contributions, we
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obtain another error indicator that is globally and locally efficient. The performance
of these indicators is illustrated in the numerical results.

2 Notation and Finite Element Spaces

Let ˝ be an open bounded polygonal domain in R2 whith Lipschitz boundary;
by @˝ we denote the union of the open edges of ˝ . Let fThgh>0 be a family of
partitions of˝ into pairwise disjoint open convex elements k, such that

˝ D
[

k2Th

k:

For a fixed master-elementbk � R2, we assume that each k 2 Th is the image
by an affine function ofbk, i.e., k D Fk.bk/. Let hTh

.x/ D hk D diam.k/; x 2 k
be a piecewise constant function, being h the maximum of hk , k 2 Th. The set of
all open edges e of all elements k 2 Th is denoted by ". Define also the piecewise
constant function h".x/ D he D diam.e/, x 2 e. We assume that fThgh>0 is a
shape-regular family in the sense that there is a positive constant c, independent of
h, such that chk � he � hk for all k 2 [h>0Th and e 2 @k.

For positive integers m we denote by Qm.bk/ the linear space of tensor-product
polynomials of degree � m in each co-ordinate direction restricted tobk. The max-
imum degree in each element k is denoted by pk . The local Sobolev indices are
denoted by sk . Grouping pk , sk and Fk for k 2 Th into the vectors p D .pk/,
s D .sk/ and F D .Fk/ respectively, we introduce the finite element space

Sp.˝;Th;F/ WD
n
u 2 L2.˝/ W ujk ı Fk 2 Qpk

.bk/
o
; (1)

and the broken Sobolev space of composite index s,

H s.˝;Th/ WD
˚
u 2 L2.˝/ W ujk 2 H sk .k/ 8k 2 Th

�
: (2)

The set "int denote all open interior edges, i.e., "int D fe 2 " W e � ˝g, and the
set "@ denote all open boundary edges, i.e., "@ D fe 2 " W e � @˝g. Moreover, we
define � 0 D fx 2 ˝ W x 2 e for e 2 "intg and � D � 0 [ @˝ . For u, v 2 L2.� /
the inner product is denoted by hu; viL2.� / with corresponding norm jjujjL2.� /. For
each edge e 2 "int there are exactly two elements ki and kj , with i > j , such that
ki \ kj D e.

The jump Œu�e D uj@ki\e � uj@kj\e and the mean-value fuge D 0:5.uj@ki\e C
uj@kj\e/ over an edge e 2 "int between the elements ki and kj are defined for
functions u 2 H s.˝;Th/, such that sk > 1=2 for all k. These definitions are
extended to e 2 @˝ by Œu�e D uje and fuge D uje. To each edge e 2 "int we
associate the unit vector n, normal to e from ki to kj and for each e 2 "@ \ ", n
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denotes the outward unit normal vector to @˝ . For each k 2 Th, we also consider
nk the outward unit vector to @k.

3 Model Problem and the DGFEM

The boundary value problem for the biharmonic equation subject to Dirichlet
boundary conditions is: find u 2 H 4.˝/ such that

�2u D f in ˝; (3)

u D g0 in @˝; (4)

ru � n D g1 in @˝; (5)

where �2u D �.�.u//, f 2 L2.˝/, g0 and g1 2 L2.@˝/.
Consider the following broken weak formulation of the boundary value problem

(3–5): find u 2 H 4.˝;Th/ such that,

B.u; v/ D l.v/ 8 v 2 H 4.˝;K /; (6)

where

B.u; v/ D BTh
.u; v/C J1.u; v/C J1.v; u/� J2.u; v/� J2.v; u/C Bs.u; v/; (7)

is the bilinear form composed by the following terms

BTh
.u; v/ D

X

K2K
h�u; �viL2.K/; (8)

J1.u; v/ D hfn � r.�u/g; Œv�iL2.� /; (9)

J2.u; v/ D hf�ug; Œn � rv�iL2.� /; (10)

Bs.u; v/ D h˛Œu�; Œv�iL2.� / C hˇŒn � ru�; Œn � rv�iL2.� /: (11)

The terms BTh
.u; v/, J1.u; v/ and J2.u; v/ come from the integration by parts

of
R
k
.�2u/vdx on each element, techniques for the decomposition of numerical

fluxes and the definitions of jump and mean-value. The terms J1.v; u/ and J2.v; u/
are introduced in order to obtain symmetry. In the estabilization term Bs.�; �/, ˛ and
ˇ are called discontinuos penalty parameters and are described in [5].

The linear functional
l.v/ D lTh

.v/C ls.v/;
is composed by

lTh
.v/ D .f; v/L2.˝/ C hg0;n � r.�v/iL2.@˝/ � hg1; �viL2.@˝/;

ls.v/ D h˛ g0; viL2.@˝/ C hˇ g1;n � rviL2.@˝/:
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The DGFEM for the formulation (6) is: find uh 2 Sp.˝;Th;F/ such that,

B.uh; v/ D l.v/ 8 v 2 Sp.˝;Th;F/: (12)

For a stability analysis and a priori estimates for (12) we refer to [5], where one
of the results is the Galerkin orthogonality

B.u � uh; v/ D 0 8 uh e v 2 Sp.˝;Th;F/: (13)

4 Goal-Oriented Error Estimation

Let J.u/ be a arbitrary linear functional of the solution of problem (6). Our goal is
to estimate the aproximation error J.u/ � J.uh/ in this quantity of interest, where
uh is the approximation solution of (12). Based on the theory presented in [4] and
[6], we define the following dual problem: find w 2 H 4.˝; �h/ such that

B.v;w/ D J.v/ ; 8 v 2 H 4.˝;Th/: (14)

We assume that (14) has a unique solution. For functionals of the form J.u/ DR
˝
�udx, the symmetric DGFEM (12) is adjoint-consistent, see [5].
We define the interior and boundary residues:

Rint .u/ D f ��2u; RD1.u/ D g0 � u and RD2.u/ D g1 � n � ru:

Taking v D u � uh in (14), and using the linearity of J , we get

J.u/ � J.uh/ D J.u � uh/ D B.u � uh;w/: (15)

This relation between the functional J and the bilinear form B is the starting point
for the error estimation. Considering w 2 H 4.˝;Th/, using the linearity of B , and
integrating by parts twice, we obtain the expansion

B.u � uh;w/ D
X

k

�k.uh;w/; (16)

where the element indicators �k.uh;w/ have the expression

�k.uh;w/ D hRint .uh/;wiL2.k/ C hRD1.uh/;r�.w/ � niL2.@˝\@k/

C h˛RD1.uh/;wiL2.@˝\@k/ � hRD2.uh/;�.w/ � niL2.@˝\@k/

C hˇRD2.uh/;r.w/ � niL2.@˝\@k/ � hŒ�uh�; 0:5.r.w/ � nk/iL2.� 0\@k/
C h0:5.w/; Œr�u � nk�iL2.� 0\@k/ � h0:5.r�w � nk/; Œuh�iL2.� 0\@k/
C h0:5.�.w//; Œruh � nk�iL2.� 0\@k/: (17)
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A similar procedure, without using the linearity of B , gives another expansion

B.u � uh;w/ D
X

k

�k.uh;w; u/ (18)

in terms of new element indicators

�k.uh;w; u/ D hRint .uh/;wiL2.k/ � hr�.u � uh/ � nk;wiL2.@k\� 0/

C h�.u � uh/;rw � nkiL2.@k\� 0/ C hr�w � nk; u � uhiL2.@k\� 0/

C hr�w � n; RD1.uh/iL2.@k\@˝/ � h�w;r.u � uh/ � nkiL2.@k\� 0/

� h�w; RD2.uh/iL2.@k\@˝/: (19)

As a consequence of the equalities (15), (16) and (18), the following a posteriori
goal-oriented error estimates can be proved similarly to those showed in [4], and
will be presented in the PhD thesis [3], in preparation.

Theorem 1. Let u be the solution of (6), uh the solution of (12) and w the solution
of (14). Then

J.u/� J.uh/ D
X

k2�h
�k.uh;w/ (20)

Theorem 2. Let u be the solution of (6), uh the solution of (12) and w the solution
of (14). Then

J.u/� J.uh/ D
X

k2�h
�k.uh;w; u/ (21)

Corollary 1. Under the assumptions of Theorem 1, the following a posteriori error
bound holds:

jJ.u/� J.uh/j �
X

k2�h
j�k.uh;w/j (22)

5 Numerical Results

Let us consider an example where we know the primal and dual solutions, so that
we can study the local and global efficiency of the proposed error indicators. On the
domain ˝ D .0; 1/ � .0; 1/ we impose f and boundary conditions (4) and (5) so
that the exact solution of (6) is u.x; y/ D sin.	x/2 sin.	y/2. Choosing the function
w.x; y/ D sin.2	x/2 sin.2	y/2, it can be verifyied that it is the solution of the dual
problem (14) associated to the target functional J.u/ D R

˝
�2.w/ u dxdy. The

next results are for simulations using pk D 3 for all k 2 Th.
The results presented in Table 1 show that both error indicators are globally

efficient, confirming the equalities (20) and (21).
If one of these error indicators are supposed to be used to adapt the approximation

space, we have to be sure that it is also efficient by element. Unlike �k.uh;w/, Fig. 1
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Table 1 Globalcomparison of the error indicators with the true error

16 elements 64 elements 256 elements

jJ.u� uh/j 0.147431014467342 0.009339820568385 0.000340218616789
jX�k.uh;w/j 0.147431014469882 0.009339820571323 0.000340218616006
j
X
�k.uh;w; u/j 0.147431014469875 0.009339820394009 0.000340219072805

0.4

1e-06

0.3

0.2

0.1

(a) jJ.u� uh/k j-16 elements

0.4

1e-06

0.3

0.2

0.1

(b) j�k.uh;w/j-16 elements

0.4

1e-06

0.3

0.2

0.1

(c) j�k.uh;w; u/j-16
elements

0.04

1e-05

0.03

0.02

0.01

(d) jJ.u� uh/j-64 elements

0.04

1e-05

0.03

0.02

0.01

(e) j�k.uh;w/j-64 elements

0.04

1e-05

0.03

0.02

0.01

(f) j�k.uh;w; u/j-64
elements

Fig. 1 Comparison between jJ.u� uh/k j and the indicators j�k.uh;w/j and j�k.uh;w; u/j

shows that the error indicator �k.uh;w; u/ is efficient by element, what makes it
interesting for adaptation of the approximation space.

In practice, since the primal and dual solutions u and w are not know, we can not
use the error indicators as stated. Instead, we propose to use �k.uh;wC; uC/ where
wC and uC are approximations to w and u, respectively. Because of the Galerkin
orthogonality (13), wC can not be in Sp.˝;Th;F/. One option for wC and uC
could be DGFEM approximations with increased polinomial degree, i.e., instead of
pk we use pkC inc. To avoid the discontinuity of uC and wC on interior edges, we
use the mean-values fuCg and fwCg instead.

Table 2 corresponds to the procedure of replacing w by fwCg. It can be observed
that for less enriched dual approximations inc � 3 there is a loss of global effi-
ciency, but this effect disappears with increasing inc. The use of uC D fuh;pCincg
instead of u does not affect the equality (21), as can be seen in Table 3. The effect
of replacing u by uC only contributes to a new arrangement of the error indicators
�k.uh;w; u/ on the interior edges, without modification of the global error.

On the other hand, the efficiency by element of the error indicator is affected by
this procedure, as we can observe in Fig. 2. Using 16 elements, and inc � 3 there
are significant differences between the true error and the estimated error by element,
but for higher order approximations of uC, the agreement is perfect.
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Table 2 Comparison of jX�k.uh; fwh;pCincg; u/j with the true error

16 elements 64 elements 256 elements

J.u� uh/ 0.147431014467 0.009339820568 0.000340218616
inc D 1 0.026080411968 0.007909482959 0.000327866783
inc D 2 0.162005604253 0.009774521521 0.000344525157
inc D 3 0.162635881593 0.009386956498 0.000340327529
inc D 4 0.146921660651 0.009334112842 0.000340210216
inc D 5 0.146917322016 0.009339421506 0.000340224326

Table 3 Comparison of jX�k.uh;w; fuh;pCincg/j with the true error

16 elements 64 elements 256 elements

J.u� uhp/ 0.147431014467 0.009339820568 0.000340218616
inc D 1 0.147431014469 0.009339821134 0.000340220187
inc D 2 0.147431014469 0.009339820131 0.000340220517
inc D 3 0.147431014469 0.009339821214 0.000340217549
inc D 4 0.147431014469 0.009339820029 0.000340216715
inc D 5 0.147431014469 0.009339820099 0.000340219336
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0.0145

0.3

0.2

0.1

(a) jJ.u� uh/j

4

3

2

4.3435

1.3511

(b) j�k.uh;w; uh;pC1/j

0.5863

0.1349

0.5

0.4

0.3

0.2

(c) j�k.uh;w; uh;pC2/j

0.4172

0.1154

0.4

0.3

0.2

(d) j�k.uh;w; uh;pC3/j

0.3800

0.0229

0.3

0.2

0.1

(e) j�k.uh;w; uh;pC4/j

0.3763

0.0136

0.3

0.2

0.1

(f) j�k.uh;w; uh;pC5/j

Fig. 2 Local comparison of j�k.uh;w; uC/j with the true error

6 Conclusions

We present two goal-oriented error indicators �k.uh;w/ and �k.uh;w; u/ of
DGFEM approximations uh of the biharmonic equation. The first one is a stan-
dart goal-oriented error indicator, which shows global but not local efficiency. The
second indicator �k , obtained after a balance of the error distribution on the inte-
rior edges, results to be both global and local efficient. Therefore, the indicator �k



376 J.L. Gonçalves et al.

is more appropriate for adaptating the approximation spaces. In practice, the exact
solutions u and w have to be replaced by enriched approximations uC and wC. The
present results, using enriched spaces with degree increments greater than 3 show
perfect agreement with the true error.
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Solving Stochastic Collocation Systems
with Algebraic Multigrid

Andrew D. Gordon and Catherine E. Powell

Abstract Stochastic collocation methods facilitate the numerical solution of PDEs
with random data and give rise to large sequences of linear systems. For elliptic
PDEs, algebraic multigrid (AMG) is a robust solver and considered individually, the
systems are trivial to solve. The challenge lies in exploiting the systems’ similarities
to minimize the cost of solving the entire sequence. We propose an efficient solver
that is more robust than other solution strategies in the literature. In particular, we
show that it is feasible to use a finely-tuned AMG preconditioner for each system if
key set-up information is reused. The method is robust with respect to variations in
discretization and statistical parameters for stochastically linear and nonlinear data.

1 Introduction

Our starting point is the stochastic steady-state diffusion problem

� r � .a.x; !/rp.x; !// D f .x/ in D �˝; D � R2 (1)

p.x; !/ D 0 on @D �˝;

which arises when only limited information about a is available. Here˝ is a sample
space from a probability space and the input a and solution p are second-order
random fields. We assume the mean �a.x/ D EŒa.x; !/� and covariance function

Ca.x; y/ D E
��
a.x; !/ � �a.x/

��
a.y; !/ � �a.y/

�� D �2V.x; y/ (2)

are known and follow the well-established procedure ([2, 7]) of assuming that
a.x; !/ is, or can be well approximated by, a function of M independent random
variables �k.!/: A common choice is a (truncated) Karhunen–Loève expansion [9]
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aM .x; ¸/ D �a.x/C �
MX

kD1

p
�kck.x/�k.!/ (3)

in terms of M uncorrelated random variables �k ; or the exponential thereof

aM .x; ���/ D exp
�
�a.x/C �

MX

kD1

p
�kck.x/�k.!/

�
: (4)

Here, .�k; ck.x// are the leading eigenpairs of the integral operator associated with
V.x; y/ in (2) and � is the standard deviation of a: Let �k.˝/ D �k � R and denote
the probability density function of �k by �k : If the random variables are independent,
then the joint density function is �.���/ D QM

kD1 �k.�k/ where ��� 2 � DQM
kD1 �k �

RM .
Replacing a.x; !/ by aM .x; ���/ in (1) results in anM C 2 dimensional determin-

istic PDE and the corresponding weak problem – which has been well studied –
consists in finding p.x; ���/ 2 V D L2�.�;H 1

0 .D// such that

E
hZ

D

aM .x; ���/rp.x; ���/ � rv.x; ���/dx
i
D E

hZ

D

f .x/v.x; ���/dx
i
8 v 2 V (5)

where EŒ�� D R
�
�.���/�d���: Stochastic finite element methods proceed by discretizing

the physical domain D in the usual way, leading to the semi-discrete problem: find
ph 2 Vh D L2�.�;Xh/ with Xh � H 1

0 .D/ and dim.Xh/ D nh such that

E
hZ

D

aM .x; ���/rph.x; ���/ � rv.x; ���/dx
i
D E

hZ

D

f .x/v.x; ���/dx
i
8v 2 Vh: (6)

We can tackle (5) and (6) with Monte Carlo methods (MCMs), stochastic
Galerkin methods (SGMs) [2, 7] and stochastic collocation methods (SCMs) [1, 10,
15]. MCMs approximate EŒph� by the sample average at randomly chosen points
���r 2 �: If arM .x/ D aM .x; ���r / is strictly positive then each pr

h
.x/ D ph.x; ���r / 2

Xh satisfies

Z

D

arM .x/rprh.x/ � rv.x/dx D
Z

D

f .x/v.x/dx 8 v 2 Xh; (7)

leading to a sequence of decoupled, symmetric positive definite linear systems

Arpr D b; r D 1; 2; : : : ; Ar 2 Rnh�nh : (8)

SGMs, which seek phd 2 Xh˝Sd with Sd � L2�.� /; have a superior convergence
rate [2], for low values ofM but result in one system of dimension nh�dim.Sd /: If
Sd consists of complete polynomials, the equations must be solved simultaneously.
Only if tensor product polynomials are used and aM .x; ���/ is linear in �k , as in
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(3), does Sd possess a basis that decouples the equations. SCMs sample ph and so
handle (3) and (4) with equal ease. However, they converge as rapidly as SGMs.

The conjugate gradient method (CG) is an optimal solver for individual systems
in (8) and algebraic multigrid (AMG, [13]) is a widely-used preconditioner for dis-
cretized elliptic PDEs that is highly robust with respect to variations in arM .x/:
When the number of systems is large, it may be infeasible to tune AMG to indi-
vidual matrices and the one-preconditioner-fits-all approach has merit. That reduces
set-up costs but the preconditioner may be so weak for some systems that no savings
are made.

Jin et al. [8] and Ullmann [14] study the systems arising when (5) is discretized
with a SGM. They only consider stochastically linear coefficients such as (3), which
always lead to fairly well-conditioned matrices Ar : The systems are solved with
recycled Krylov subspace methods [11], which are suboptimal for individual sys-
tems, but beneficial when applied to the whole sequence if a weak preconditioner
is used. The domain decomposition preconditioner in [8] is optimal for most sys-
tems but weak for a certain subset. In [14], one V-cycle of AMG applied to the
“mean” stiffness matrix (with diffusion coefficient �a.x/) is used to precondition
all systems. However, the efficiency deteriorates when � in (2) is large relative to
�a.x/:

We focus on SCMs and investigate how computational savings can be made by
recycling information between systems. The emphasis is on the reuse of precon-
ditioner information and we propose an efficient way to solve the sequence (8)
with CG using AMG preconditioning. Our method can handle (3) and (4) equally
well, and is robust with respect to variations in all the discretization and statistical
parameters.

2 Stochastic Collocation Methods

SCMs are derived by collocating (6) on a set of points ���1; : : : ; ���nc
in �: A global

approximation phd is then obtained by performing Lagrange interpolation. That is,

phd .x; ���/ D
ncX

rD1
prh.x/Lr .���/; (9)

where each pr
h
.x/ D ph.x; ���r / 2 Xh satisfies (6) at ���r 2 � and Lr .���/ is a

multivariate Lagrange polynomial. By construction, phd .x; ���/ 2 Xh ˝ Sd where
Sd D spanfL1.���/; : : : ; Lnc

.���/g � L2�.� / and dim.Sd / D nc . Full tensor SCMs
[1, 15] use Cartesian products of interpolation points on each �k: Possibilities
include Clenshaw–Curtis points and Gauss points. If dk C 1 points are selected on
�k then nc DQM

kD1.dk C 1/ which quickly becomes intractable as M increases.
Sparse grid SCMs [10, 12, 15] are based on interpolation rules for high-

dimensional problems. LetZi be a set of points on �i of size mi C1 wherem0 D 1
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and mi D 2i�1 for i 2 N: For a given approximation level l; the sparse grid on �
is then defined via

H.l;M/ D
[

l�jjijj1<lCM
Zi1 � : : : �ZiM ; i D .i1; : : : ; iM / 2 NM :

The error incurred by approximatingph.x; ���/ by phd .x; ���/ is due to interpolation. If
d denotes the largest value for which polynomials of total degree d are interpolated
exactly in (9) then sparse grid methods achieve total degree d accuracy with l D
d C 1 [3] using far fewer points than full tensor methods.

3 Linear Systems

Each pr
h
.x/ in (9) solves (7) where arM .x/ is (3) or (4) sampled at ���r : If Xh D

spanf	1.x/; : : : ; 	nh
.x/g consists of piecewise polynomials then we have nc sparse

linear systems (8) where

ŒAr �ij D
�
arM .x/r	i .x/; r	j .x/

�
;

Œb�i D .f .x/; 	i .x// ; i; j D 1; : : : ; nh: (10)

We assume for each r that aM .x; ���r / is strictly positive and bounded. That is,

0 < a1;r � aM .x; ���r/ � a2;r <1 a.e. in D (11)

and so 
.Ar/ . a2;ra
�1
1;rh

�2: Note that aM .x; ���r / is not strictly positive for (3), if
unbounded random variables are used. If piecewise linear polynomials are used for
Xh and (11) holds, then each Ar is an M-matrix.

Definition 1 (M-matrix). An M-matrix is a symmetric positive definite matrix with
positive diagonal entries and non-positive off-diagonal entries.

Theorem 1 gives insight into how ill-conditioned each Ar is with respect to the
statistical parameters. We assume�a.x/ D � > 0 and that the finite element meshes
are shape regular and quasi-uniform. As usual, the largest edge length is denoted h:

Theorem 1. The eigenvalues of Ar lie in
�
ch2.� � Tr/; C.�C Tr /

�
for (3) and in�

ch2e��Tr ; Ce�CTr
�

for (4) where c; C > 0 are independent of h and arM .x/ and

Tr D � SM jj���r jj1; SM D
MX

kD1

p
�k jjckjjL1.D/:

Proof. Let u 2 Rnh n f0g and define v.x/ D Pnh

jD1 uj	j .x/ 2 Xh: Define
the stiffness matrix A0 via ŒA0�ij D .r	i ;r	j / and recall the standard result



Solving Stochastic Collocation Systems with AMG 381

ch2 � uTA0u
uT u

� C (e.g., see [5]). If aM .x; ���/ is defined as in (3),

juTAru� �uTA0uj D
ˇ̌
ˇ̌
ˇ

Z

D

�
�

MX

kD1

p
�k ck.x/ Œ���r �k

	
rv.x/rv.x/dx

ˇ̌
ˇ̌
ˇ :

Hence .� � Tr/uTA0u � uTAru � .�C Tr /uTA0u: Combining with the bound
for the eigenvalues of A0 gives the first result. The bound for (4) is similarly
obtained.

As M ! 1; SM converges [6], at a rate that depends on Ca.x; y/: Note that the
bound is different for each system. Tr depends on � and jj���r jj1 which depends on
d if unbounded random variables are used.

4 AMG Preconditioning

AMG is an iterative solver that combines smoothing and coarse grid correction.
“Grids” are index sets of unknowns; no geometric information is needed. Consider
the linear system A1u D v with u 2 Rn1 : Before iteration can begin, there is a
set-up phase, during which the following information is generated.

1. Sequence of grids: Cl � Cl�1 � � � � � C2 � C1 D f1; : : : ; n1g with
jCkj D nk :

2. Prolongation matrices: P k�1
k
2 Rnk�1�nk for k D 2; : : : ; l .

3. Coarse grid matrices: Ak D Rk
k�1A

k�1P k�1
k

; Rk
k�1 D .P k�1

k
/T for k D

2; : : : ; l:

Coarse grids and prolongation matrices are constructed by exploiting algebraic
information in A1 and this results in a finely-tuned preconditioner for the given
matrix.

Definition 2 (Optimal preconditioner). An optimal preconditioner for Ar is a
matrix Pr ; for which the action of P�1r can be computed in O.nh/ work and the
eigenvalues of P�1r Ar are contained in Œ�r ; �r � with �r ; �r > 0 independent of h:

For each Ar defined in (10) we employ one step of AMG as a preconditioner
for CG. For M-matrices, this is a good strategy. Specifically, if Pr is the matrix
for which P�1r v denotes the application of one AMG V-cycle to Aru D v; with
set-up information generated usingAr ; then Pr is expected to be optimal. Rigorous
convergence proofs are lacking for AMG but if the M-matrix property is not strongly
violated, we expect �r and �r to be quite insensitive to h and arM .x/: If arM .x/
is oscillatory, which can occur if Ca.x; y/ has a small correlation length, then we
expect some degradation [13]. However, MCMs are more appropriate than SCMs in
that case.
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The disadvantage of this finely-tuned AMG preconditioning strategy is that set-
up information is required for nc distinct matrices. Alternatively, we can employ one
generic preconditioner. To this end, let A� be the stiffness matrix with coefficient
aM .x; 0/, and let P� be the matrix for which P�1� v denotes the application of one
AMG V-cycle to A�u D v; with set-up information generated from A�: Theorem 2
summarizes how the efficiency of P� varies from system to system.

Theorem 2. Let �a.x/ D � > 0: The eigenvalues of P�1� Ar lie in Œc ��e�Tr ; C

��e
Tr � for (4) and in Œc ��.1�Tr��1/; C ��.1CTr��1/� for (3), where c, C > 0

are independent of h and arM .x/ and the eigenvalues of P�1� A� are contained in
Œ��; ���:

We refer to this strategy as mean-based preconditioning. It is adequate for (3) as
Tr�

�1 must be small for a well-posed problem. For (4), Tr can be arbitrarily large
and in that case the bound is not a good one.

The costliest part of AMG set-up is the grid construction. Coarse grids must cap-
ture error not eliminated by smoothing and for M-matrices, such error varies slowly
in the direction of strong dependence. If arM .x/ is isotropic, strongly influencing
points for A� are likely to be strongly influencing points for Ar ; suggesting that
coarse grids, and prolongation matrices can be computed once, and recycled.

Definition 3 (Strong influence). For an M-matrix A, the j th unknown strongly
influences the i th unknown if for a given threshold ˛ > 0, jAij j � ˛maxk¤i jAikj:

Formally, then, let P�;r be the matrix for which P�1�;rv denotes the application
of one AMG V-cycle to Aru D v; with coarse grids and prolongation matri-
ces generated using A�. The coarse grid matrices should be computed using Ar
and so the preconditioner is distinct for each system. We refer to this strategy as
AMG preconditioning with recycled setup. As computing coarse grid matrices is
relatively cheap, this strategy has set-up costs similar to mean-based AMG precon-
ditioning. However, if Ar is an M-matrix we expect the eigenvalues of P�1�;rAr to
lie in Œ��r ; �

�
r � with constants similar to �r and �r obtained with the finely-tuned

preconditioner Pr :

5 Numerical Results

Consider (1) on D D .�1; 1/� .�1; 1/ with f .x/ D 1, �a.x/ D 1 and covariance

Ca.x; y/ D �2 exp
� � jjx � yjj1

�
:

We perform experiments with piecewise linear polynomials for (3) and (4) with
M D 6: First, we apply a sparse grid SCM with Clenshaw–Curtis (CC) points.
Next, we apply the full tensor SCM with Gauss points. We solve all systems using
preconditioned CG with the zero vector as an initial guess. Computations are per-
formed in serial on a dual-core laptop PC with 4GB of RAM using a MATLAB
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Table 1 Average CG iterations for sparse grid SCM, uniform random variables, lD 3 and ncD 85
Preconditioning strategy h Linear problem (3) Nonlinear problem (4)

�2 D 0:1 0.2 0.27 �2 D 1 5 10

Finely-tuned 1/32 6.00 6.00 6:00 6:00 6:13 6:25

1/128 6.01 6.15 6:32 6:60 6:91 7:01

Mean-based 1/32 8.16 9.38 10:44 13:96 32:64 61:14

1/128 8.46 9.91 11:01 14:69 34:92 66:61

Recycled setup 1/32 6.00 6.00 6:00 6:02 6:42 6:69

1/128 6.02 6.14 6:16 6:41 6:87 7:45

Table 2 AMG setup times, maximum CG iterations and total iteration times in seconds (in
parentheses) for sparse grid SCM, uniform random variables, with h D 1=128, l D 3 and nc D 85

Preconditioning strategy AMG setup Linear problem (3) Nonlinear problem (4)

�2 D 0:1 �2 D 0:27 �2 D 1 �2 D 10

Finely-tuned 3; 212 7 (67) 7 (73) 7 (79) 8 (80)
Mean-based 41 12 (94) 25 (121) 23 (168) 224 (740)
Recycled setup 48 7 (67) 7 (68) 8 (76) 12 (84)

version of the AMG code [4]. The multigrid method is applied as a black-box with
one pre and post Gauss–Seidel smoothing step. The stopping tolerance for CG is
10�6:

Table 1 shows that the fine-tuned and recycled setup strategies are optimal with
respect to variations in h and �; for both (3) and (4). By recycling setup information,
however, we obtain a finely-tuned preconditioner for each system at a fraction of the
cost (see Table 2). Note that the exact benefits in terms of time depend on the coding
environment. No systems arise which cannot be solved in an acceptably low num-
ber of iterations. There are considerable savings over mean-based preconditioning,
whose performance, as Theorem 2 predicts, deteriorates as �2 increases. For (3),
�2 D 0:27 is the largest value for which all subproblems are well-posed.

When uniform random variables are used, the collocation points lie in � D
Œ�p3;p3�M . Using unbounded Gaussian variables, which is permitted for (4), is
more difficult. If the SCM uses d Gauss points in each dimension, the points are
contained in � D Œ�Cd ; Cd �M with Cd D O.

p
d/. The results in Table 3 reveal

how inefficient mean-based preconditioning then becomes with increasing d . AMG
with recycled setup performs like finely-tuned AMG and is almost insensitive to d:

Additional savings can be made by reusing solutions to previous systems as
initial guesses. For this, the collocation points need to be ordered so that succes-
sive samples of aM .x; ���/ are as close as possible. We report only brief results.
For full tensor SCMs, we ensure that successive points differ in only one com-
ponent. Results are reported for a test problem in Table 4. The greatest savings
occur for (3) when �2 is small and d is large. Indeed, samples of aM .x; ���/ are all
close to �a.x/ and increasing d reduces the distance between distinct points. For
(4), the benefits are negligible, even for large d: For sparse grid SCMs, after solv-
ing Arpr D b, we find the closest remaining point ���s to ���r with respect to the
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Table 3 Average CG iterations for nonlinear problem using full tensor SCM with h D 1=32

Preconditioning strategy �2 Uniform variables Gaussian variables

d D 2 3 4 d D 2 3 4

nc D 729 4; 096 15; 625 nc D 729 4; 096 15; 625

Finely-tuned 1 6:00 6:01 6:01 6:04 6:12 6:17

10 6:41 6:40 6:44 6:53 6:61 6:68

Mean-based 1 17:33 17:99 18:27 22:48 29:12 35:97

10 116:35 130:89 137:89 276:89 738:70 1777:32

Recycled setup 1 6:05 6:07 6:08 6:16 6:30 6:41

10 7:04 7:10 7:13 7:38 7:65 7:83

Table 4 Average and range of CG iterations, AMG + recycled-setup, h D 1=32; uniform variables

Linear problem (3) Nonlinear problem (4)

�2 D 0:01 �2 D 0:08 �2 D 1 �2 D 10

Full tensor (d D 2, nc D 729) No sorting 6:00 [6; 6] 6:00 [6; 6] 6:05 [6; 7] 7:10 [6; 10]
Sorting 4:24 [4; 6] 5:00 [5; 6] 5:55 [5; 7] 6:99 [6; 10]

Full tensor (d D 4, nc D 15; 625) No sorting 6:00 [6; 6] 6:00 [6; 6] 6:08 [6; 7] 7:13 [6; 10]
Sorting 4:13 [4; 6] 4:62 [4; 6] 5:28 [4; 7] 6:80 [5; 9]

Sparse grid (l D 3, nc D 85) No sorting 6:00 [6; 6] 6:00 [6; 6] 6:02 [6; 7] 6:69 [6; 9]
Sorting 4:81 [4; 6] 5:00 [4; 6] 5:74 [5; 7] 6:86 [5; 10]

Sparse grid (l D 7, nc D 15; 121) No sorting 6:00 [6; 6] 6:00 [6; 6] 6:07 [6; 8] 7:03 [6; 10]
Sorting 4:08 [2; 6] 4:48 [2; 6] 5:15 [3; 7] 6:47 [4; 10]

measure k���kw
1 D

PM
kD1
p
�k jŒ����k j: Large savings are observed for the easier lin-

ear problems with large l: For the nonlinear problems (4), systems are simply “less
similar.”

In conclusion, we have demonstrated that is it feasible to use AMG precondition-
ing to solve the linear systems that arise when elliptic PDEs with random data are
discretized via SCMs. Substantial computational savings are achieved over mean-
based preconditioning for the stochastically nonlinear problem, if set-up information
is recycled. The scheme is applicable for any sampling method, including MCMs
and SGMs based on doubly-orthogonal polynomials. Recycled Krylov subspace
solvers, as studied in [8] and [14], can also be employed. It remains to be seen, how-
ever, whether there are any real benefits when strong preconditioners, and ordering
strategies, such as the ones we have suggested, are employed. In initial experiments,
we found that using plain CG with a good preconditioner was cheaper overall.
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Adaptive Two-Step Peer Methods
for Incompressible Navier–Stokes Equations

B. Gottermeier and J. Lang

Abstract The paper presents a numerical study of two-step peer methods up to
order six, applied to the non-stationary incompressible Navier–Stokes equations.
These linearly implicit methods show good stability properties, but the main advan-
tage over one-step methods lies in the fact that even for PDEs no order reduction
is observed. To investigate whether the higher order of convergence of the two-step
peer methods equipped with variable time steps pays off in practically relevant CFD
computations, we consider typical benchmark problems. Higher accuracy and better
efficiency of the two-step peer methods compared to classical third-order one-step
methods of Rosenbrock-type can be observed.

1 Introduction

In industrial and scientific applications, incompressible flows are modelled by the
well-known Navier–Stokes equations, for which the time-dependent system on the
domain Œ0; T � �˝;˝ � R2 is given by the following nonlinear equations

@tu � Re�1�uC .u � r/uCrp D F in .0; T � �˝ (1)

r � u D 0 in Œ0; T � �˝ (2)

u D G on Œ0; T � � @˝ (3)

u.0; x/ D u0 x 2 ˝: (4)

The vector u D .u1; u2/T 2 R2 represents the velocity field, the scalar p the
pressure function and F denotes external forces. The Reynolds number Re will be
limited to laminar flows in this paper. The functionG and u0 are given by boundary
and initial conditions, respectively.
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In recent time, intensive research on numerical methods has been made for an
accurate and efficient numerical solution of the Navier–Stokes equations. Unfortu-
nately, classical one-step methods, such as Runge–Kutta and Rosenbrock methods,
suffer from order reduction when they are applied to partial differential equations
(PDEs). In this paper, linearly implicit two-step peer methods are used to solve
the nonlinear Navier–Stokes equations. They are based on a linear combination of
approximations of equal order to the exact solution at intermediate points. For hav-
ing the same accuracy and stability properties, these variables are called “peer.”
There exists methods up to order six, which provide good stability properties, i.e.,
optimal zero-stability and L.˛/-stability with an angle ˛ of at least 85ı. Strong
damping properties at infinity are given without further restrictions, which leads to
robust methods with respect to stepsize changes. Because of the embedding of the
Jacobian matrix directly into the integration formula, they require only the solution
of linear systems in each time step, making them very attractive for practical com-
putations. The main advantage over one-step methods lies in the fact that even the
higher-order peer methods have shown no order reduction when they are applied to
PDEs. Additionally, they are competitive compared to the applied one-step methods
and sometimes even more efficient [2].

The present paper is organized as follows: In Sect. 2 we begin with the time and
space discretizations of the Navier–Stokes equations and explain the strategy for
the time adaptivity in KARDOS [1], the finite element software package used for
the numerical computations. Results of the numerical simulations are contained in
Sect. 3. An analytical example to validate the higher orders of convergence as well
as a typical benchmark problem are presented. Finally, we summarize our results
and conclusions in Sect. 4.

2 Discretization of the Navier–Stokes Equations

For a higher-order temporal discretization of the instationary Navier–Stokes equa-
tions, we apply an s-stage linearly implicit two-step peer method [2] to (4).

Let �m > 0 be a variable time step and Vmi D .Pmi ; Umi /
T the approximation

to the exact solution at time tmi WD tm C ci�m with tm D tm�1;s for m � 1 and
ci 2 Œ�1; 1�, cs D 1. Then the system of linear equations which has to be solved for
each time step reads as
�
I

�m�
�Re�1� C Um�1;s � r

�
.Umi � U0

mi/C ..Umi � U0
mi / � r/Um�1;s Cr.Pmi � P 0

mi /

D .Re�1�� .U 0
mi � r//U 0

mi �rP 0
mi C 1

�m�
.Qwi � U0

mi /C F.tmi / (5)

r � .Umi � U0
mi / D �r � U0

mi (6)

for i D 1; :::; s, with the boundary conditions Umi D G.tmi /. The internal values
and the predictors are given by
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wi D
i�1X

jD1

1

�
aij .Vmj � wj /C

sX

jD1
uij .�m/Vm�1;j ;

V 0mi D
i�1X

jD1

1

�
a0ij .Vmj � wj /C

sX

jD1
u0ij .�m/Vm�1;j :

The matrix Q is defined such that only the second component of the vector wi is
selected. The values for the abscissa c 2 Rs are stretched Chebychev nodes

ci WD �
cos

��
i � 1

2

�
�
s

�

cos
�
�
2s

� ; i D 1; :::; s;

with cs D 1. The remaining coefficients of the method are combined in a lower
triangular matrix A D .aij / 2 Rs�s with constant diagonal elements ai i D � > 0

and in a possibly full matrix U D .uij / 2 Rs�s which depends on the step size ratio
�m WD �m=�m�1. For the predictor V 0mi , the real coefficient matrices have similar
properties:

A0 D .a0ij / with a0ij D 0 for i � j and U 0 D .u0ij .�m//:

The coefficients are chosen in such a way that the method has order p D s for
constant step size and order p D s � 1 for variable step size.

Adaptivity in time is gained with an embedding strategy. A second solution eV ms
of inferior order Qp D s � 2 is computed by a linear combination of the Vmi , i D
1; :::; s � 1. The new time step size is then defined by

�new D minf�max;minf2;maxf0:2; .TOLt=ERRt /1=. QpC1/gg � 0:9�mg;

where

ERRt WD

0
B@
1

n

nX

iD1

kVms � eV msk2L2�
ScalRi keTi VmskL2

C ScalAi
pj˝j

�2

1
CA

1
2

and ScalRi , ScalAi and TOLt are user-prescribed parameters for the relative and
absolute scaling factors and the desired time tolerance, respectively. For a more
detailed description we refer to [2].

In the next step, the arising spatial problems (5-6), now independent of time,
are solved by a multilevel finite element method [5]. We select finite dimensional
subspaces Sq

h
of the finite element meshes T h

m at time t D tm with refinement level
h, where the continuous functions of Sq

h
are chosen to be polynomials of order q on

each finite element T 2 T h
m . Defining OPmi D Pmi � P 0mi and OUmi D Umi � U 0mi ,
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the standard Galerkin finite element solutions V hmi 2 Sqh can then be computed from
the equations

1

�m�

� OUh
mi ; '

�
� Re�1

�
� OUh

mi ; '
�
C
�
.U h

m�1;s � r/ OUh
mi ; '

�

C
�
. OUh

mi � r/U h
m�1;s; '

�
C
�
r OPh

mi ; '
�
D
� OF h.tmi ; P

0;h
mi ; U

0;h
mi /; '

�

�
r � OUh

mi ; '
�
D �

�
r � U0;h

mi ; '
�
; 8' 2 Sqh ;

where OF h.tmi ; P 0;hmi ; U 0;hmi / is the right hand side of (5). Because of numerical
oscillations in V hmi due to advection-dominated terms, we choose a Galerkin/least-
squares method to stabilize the discretization by adding locally weighted residuals
as described in [5]. We use the same finite element functions for the pressure and the
velocity. To avoid spurious pressure modes of the numerical solution, a relaxation
of the incompressibility condition

r � u D ır � �@tu � Re�1�uC .u � r/uCrp � F �

is applied to get a stable discretization, where ı is defined by

ı D c hb
2uref

OReq
1C ORe2

; ORe D hburefRe; c D 0:4;

with a global reference velocity uref and the diameter hb of the two-dimensional ball
which is area-equivalent to the element T 2 T h.

3 Numerical Results

We first apply the two-step methods PEER4, PEER5 and PEER6 [2] to (4) with given
analytical solution to validate their classical orders 4, 5 and 6, respectively. Then,
a typical benchmark problem is considered to study the accuracy and efficiency of
these methods equipped with variable time steps. Comparisons are made with lin-
early implicit one-step Rosenbrock methods ROS3P [7] and ROS3PL [6] of classical
order three.

3.1 Analytical Example

We choose a very stiff test case [4], where the computational domain is chosen to
be the unit square ˝ D .0; 1/2, the final time is T and the Reynolds number Re is
set to 1. The functions F;G and u0 in (4) are computed with the help of the exact
solution
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p.t; x; y/ D .10C t/E�t .x C y � 1/
u1.t; x; y/ D t3y2
u2.t; x; y/ D e2�50tx

:

We implement Dirichlet boundary conditions and use a quadratic ansatz for the
finite elements on a fixed spatial mesh consisting of 2,048 triangles. In this way,
the spatial discretization is solved exactly and the arising errors consist of the time
integration errors only.

We consider the global error for the solution vector v D .p; u1; u2/T in the norm
L2.0; 1IL2.˝//, i.e.,

kv � vhkL2.0;1IL2.˝// D
�R 1
0
kv � vhk2L2.˝/

dt
�1=2

:

The simulations are performed with fixed and variable time steps and starting values
taken from the exact solution.

3.1.1 Validation of Higher Orders of Convergence

Fixed time steps are chosen to validate the higher orders of convergence of the
tested methods. The global errors for the two-step peer methods as well as for the
one-step Rosenbrock solvers are presented in Fig. 1 for several numbers of time
steps. The peer methods achieve their higher orders and show the super-convergence
property. Likewise, the one-step Rosenbrock solvers show order three as expected.
The advantage of the peer methods becomes obvious not only because of the higher
order of convergence but also when considering the computed errors. At least one
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Fig. 1 In the left picture, where the computed error is drawn against the number of timesteps, the
expected order can be observed for peer and Rosenbrock solvers. The picture on the right shows the
higher efficiency of the two-step methods compared to the tested one-step methods. The requested
time tolerances are 10�i ; i D 0; : : : ; 6
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order of magnitude for each time step size can be gained choosing a method with a
higher order.

3.1.2 Efficiency

Time-adaptive simulations are considered to show the good performance of the peer
methods compared to the tested Rosenbrock solvers. The requested time tolerances
are set to 10�i , i D 0; : : : ; 6, and the new time step is chosen according to the
adaptive strategy in Sect. 2. The results are shown in the right picture of Fig. 1,
where the global error is drawn against CPU time in seconds. The higher efficiency
of the peer methods compared to the Rosenbrock methods can be observed clearly,
especially for more stringent time tolerances. Considering shorter CPU times the
two-step methods are still comparable with the one-step Rosenbrock solvers.

3.2 Flow Around a Cylinder

We consider the benchmark problem of a laminar flow around a cylinder in two
dimensions, which was defined within the DFG Priority Research Programme
“Flow Simulation on High Performance Computers” [8]. We choose the third case
therein, which uses the instationary Navier–Stokes equations (4) combined with a
time-dependent parabolic inflow profile

u1.t; 0; y/ D 4umy.H � y/ sin.�t=8/=H 2; u2 D 0

with um D 1:5m s�1 in the time interval 0 � t � 8 s. The computational domain˝
is shown in Fig. 2 with H D 0:41m and the diameterD D 0:1m of the cylinder.
The characteristic values of the fluid are the kinematic viscosity � D 10�3 m2 s�1

and the density 	 D 1:0 kg m�3. The time-dependent Reynolds number is defined by
Re D NuD=� with mean velocity Nu D 2umax=3 D 2u.t; 0;H=2/=3 yielding values
in the interval Œ0; 100�.

2.2m

0.15m

0.15m

0.16m

0.1m

(0, 0)

(0, H)

Fig. 2 Computational domain ˝
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The initial conditions are u1 D u2 D 0. For the velocity vector, we prescribe
the given parabolic inflow profile for x D 0 and a non-flux boundary condition for
x D 2:2. On all remaining parts, no-slip boundary conditions are imposed.

The performance of the different solvers which are applied to the benchmark
problem are compared by means of the drag and lift coefficients as well as the
pressure difference between the front and the back of the cylinder

�p.t/ D p.t; 0:15; 0:2/� p.t; 0:25; 0:2/:

We use a volume integral formulation for the drag and lift coefficients

cd .t/ D �k
Z

˝

Œ@tu.t / � vd C �ru.t / W rvd C .u.t / � r/u.t / � vd � p.t/.r � vd /� dxdy;

cl .t / D �k
Z

˝

Œ@tu.t / � vl C �ru.t / W rvl C .u.t / � r/u.t / � vl � p.t/.r � vl /� dxdy;

k WD 2=.	Du2max/, as these seem to be more accurate and less susceptible to approx-
imations of the cylinder boundary than a line integral formulation [3]. The formulas
are valid for all functions vd ; vl 2 .H 1.˝//2 with .vd /jS D .1; 0/T ; .vl/jS D
.0; 1/T on the cylinder boundary S and vanishing vd ; vl on all other boundaries. We
take the maximal values for the drag and lift coefficients in the time interval Œ0; T �
and the pressure difference at the final time T D 8 s and compare them with the
following reference values:

cd;max D 2:952003; cl;max D 0:4773925; �p D �0:1116111:

These values are obtained by performing the simulations with the peer methods and
decreasing constant stepsizes until the convergence up to the sixth decimal of the
values. The obtained reference values equal for all peer methods. They lie in the
intervals computed in [8] and are comparable to the ones obtained in [3].

A very fine mesh, particularly at the cylinder boundary, which consists of
119,918 triangles, is used because of the sensitivity of the lift coefficient to the dis-
cretization in space. Linear finite elements are chosen to perform the time-adaptive
simulations.

The good performance of the two-step peer methods compared to the one-step
methods can be observed in Fig. 3 considering CPU times needed for comparable
accuracy. The peer methods, in particular PEER5, are highly accurate and much
more efficient than the tested one-step methods ROS3P and ROS3PL. Note that
although PEER5 and PEER6 show an irregular behaviour for the drag and lift
coefficient, they still remain efficient with regard to computing time.
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Fig. 3 Relative error of drag (top left) and lift (top right) coefficients and pressure difference (bot-
tom) for peer and Rosenbrock solvers. The requested time tolerances are 5�10�3; 10�3; : : : ; 10�5

for the peer methods and 10�4; 5� 10�5; : : : ; 10�6 for the Rosenbrock methods

4 Conclusions

We have applied linearly implicit two-step peer methods and a multilevel finite
element method based on a Galerkin/least-squares stabilization to solve the non-
stationary incompressible Navier–Stokes equations. The two-step methods have
shown their expected classical orders of convergence and even the super-conver-
gence property can be observed. Compared to Rosenbrock-type one-step methods,
the peer methods are more accurate and provide an efficient solution for incom-
pressible flows.
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On Hierarchical Error Estimators
for Time-Discretized Phase Field Models

Carsten Gräser, Ralf Kornhuber, and Uli Sack

Abstract We suggest hierarchical a posteriori error estimators for time-discretized
Allen–Cahn and Cahn–Hilliard equations with logarithmic potential and investigate
their robustness numerically. We observe that the associated effectivity ratios seem
to saturate for decreasing mesh size and are almost independent of the temperature.

1 Introduction

Hierarchical a posteriori error estimators are based on the extension of the given
finite element space S by an incremental space V . After discretization of the actual
defect problem with respect to the extended space Q D S C V , hierarchical
preconditioning and subsequent localization give rise to local defect problems asso-
ciated with low-dimensional subspaces of V . The resulting local contributions to
the desired global error estimate are often used as error indicators in an adaptive
refinement process. We refer to the pioneering work of Zienkiewicz et al. [23] and
Deuflhard et al. [10] or to the monograph of Ainsworth and Oden [1].

Local lower bounds by hierarchical error estimators typically come without
unknown constants, e.g., for linear self-adjoint problems. In this sense, hierarchical
error estimators are properly scaled by construction. In early papers, upper bounds
are often derived from the so-called saturation assumption that the extended space
Q provides a more accurate approximation than S. It turned out later that local
equivalence to residual estimators provides upper bounds up to data oscillation and,
conversely, that small data oscillation implies the saturation assumption [7, 12]. For
a direct proof based on local L2-projections we refer to [24].

Another attractive feature of hierarchical error estimators is their intriguing
simplicity, particularly as applied to nonlinear, non-smooth problems [2, 17, 19–
22, 24]. In this numerical study, we consider hierarchical error estimators for semi-
linear elliptic problems as arising from the time discretization of Allen–Cahn and
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Cahn–Hilliard equations. While previous work concentrates on quartic shallow
quench approximations [4,13,18] or on heuristic strategies for obstacle potentials [5]
we consider the logarithmic potential here. In particular, we investigate the robust-
ness of the effectivity ratios as temperature is approaching the deep quench limit. In
our numerical experiments, we found that both for Allen–Cahn- and Cahn–Hilliard-
type problems the associated effectivity ratios seem to saturate with decreasing mesh
size and are hardly influenced by temperature. Moreover, the local contributions to
the global estimator were used successfully for adaptive refinement.

2 Hierarchical Error Estimators

In this section, we derive hierarchical error estimators in an abstract setting. Spe-
cial cases will be considered later on. For ease of presentation, we assume that all
occurring problems and subproblems are uniquely solvable. LetH denote a Hilbert
space with the norm k � kH . We consider the variational inequality

u 2 H W a.u; v � u/C �.v/� �.u/ � `.v � u/ 8v 2 H (1)

with a.�; �/, � W H ! R [ fC1g, and ` denoting a symmetric bilinear form, a
convex functional, and a bounded linear functional on H , respectively. The addi-
tional conditions that a.�; �/ is H -elliptic and that � is lower semi-continuous and
proper are sufficient but not necessary to ensure existence and uniqueness [14]. Let
S denote a finite-dimensional subspace of H and let the symmetric bilinear form
aS.�; �/ and the functional �S W S ! R [ fC1g be approximations of a.�; �/ and
� on S, respectively, e.g., by numerical quadrature like mass lumping. Then the
associated Ritz–Galerkin discretization reads

uS 2 S W aS.uS ; v � uS/C �S.v/� �S.uS/ � `.v � uS/ 8v 2 S: (2)

We want to derive a posteriori estimates of the error ku � uSkH . To this end, we
consider the defect problem

e 2 H W a.e; v � e/C  .v/ �  .e/ � r.v � e/ 8v 2 H (3)

involving the shifted nonlinearity  and the residual r , defined by

 .v/ D �.uS C v/; r.v/ D `.v/ � a.uS ; v/; v 2 H;

respectively. Obviously, u D uS C e. To approximate (3), we select an incremental
space V � H with the property V\S D f0g and consider the hierarchical extension

Q D S ˚ V
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of S. The subspace Q � H is equipped with the discrete norm k � kQ which inten-
tionally is an equivalent approximation of k � kH . The associated discretized defect
problem is given by

eQ 2 Q W aQ.eQ; v � eQ/C  Q.v/�  Q.eQ/ � r.v � eQ/ 8v 2 Q (4)

with aQ.�; �/ and  Q W Q ! R [ fC1g denoting approximations of a.�; �/ and
 . In order to avoid the computational effort for the computation of eQ, we now
modify (4) in a way that allows for a decomposition into a number of independent,
low-dimensional subproblems. This modification is based on the assumption that
the given nonlinearity is local in the sense that there is a direct splitting

V D V1 ˚ � � � ˚ Vm

of V into low-dimensional subspaces Vi such that for v 2 V the representation

 Q.v/ D
mX

iD1
�i .vi / (5)

holds with certain convex functionals�i W Vi ! R [ fC1g and the uniquely deter-
mined decomposition v D P

vi , vi 2 Vi . Then, in the first step, we replace the
bilinear form a.�; �/ by the hierarchical preconditioner

b.v;w/ D aQ.vS ;wS/C
mX

iD1
aQ.vi ;wi /; v;w 2 Q;

based on the uniquely determined decompositions of v D vSCvV 2 Q into vS 2 S,
vV 2 V and of vV D P

vi , wV D P
wi into vi ;wi 2 Vi . It can be shown under

certain conditions [19] that the solution QeQ of the resulting preconditioned defect
problem provides an efficient and reliable error estimate b. QeQ; QeQ/1=2. However, the
exact evaluation of QeQ D QeS C QeV is still too costly: In contrast to linear situations,
we cannot expect QeS D 0, because QeS 2 S and QeV 2 V are still coupled with respect
to the nonlinearity  Q.v/ D  Q.vS C vV/. As a remedy, we simply assume that the
low-frequency part QeS of our error estimate can be neglected. In this way, we finally
obtain the localized defect problem

eV 2 V W b.eV ; v � eV/C  Q.v/�  Q.eV/ � r.v � eV/ 8v 2 V : (6)

It has been shown for obstacle problems that reliability might get lost by this
localization step but can be reestablished by a suitable higher order term [20].
Exploiting assumption (5), the evaluation of eV D P

ei amounts to the solution
of m independent subproblems

ei 2 Vi W aQ.ei ; v � ei /C �i .v/� �i .ei / � r.v � ei / 8v 2 Vi : (7)
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The quantity

� D
 
mX

iD1
keik2Q

!1=2
(8)

is our hierarchical error estimator. If aQ.�; �/ is Q-elliptic and Q is equipped with
the energy norm k � kQ D aQ.�; �/1=2, then (8) takes the form � D b.eV ; eV/1=2.

3 Allen–Cahn Equations

Implicit time discretization of the Allen–Cahn equation with logarithmic potential
(see, e.g., [9, Sect. 7] for an overview) gives rise to spatial problems of the form (1)
with H D H 1.˝/ equipped with the energy norm induced by the bilinear form

a.v;w/ D �.v;w/L2.˝/ C �.rv;rw/L2.˝/; � D 1 � ��c="2;

the right hand side `.v/ D .u0; v/L2.˝/, and the convex, lower semi-continuous,
proper functional �.v/ D R

˝
˚� .v/ dx with

˚� .v/ D
8
<

:

�
2"2 �

�
.1C v/ log.1C v/C .1 � v/ log.1 � v/

�
; if � > 0

�Œ�1;1�.v/; if � D 0
: (9)

Here, ˝ � R2 denotes a polygonal domain, " > 0 is an interface parameter, � � 0
and �c > 0 stand for the temperature and the critical temperature, respectively,
�Œ�1;1� is the characteristic function of Œ�1; 1	, u0 2 L2.˝/ is an approximation
from the preceding time step, and � > 0 is the time step size. We assume � > 0 or,
equivalently, � < "2=�c so that a.�; �/ is H -elliptic. With these definitions, (1) can
be rewritten as a semi-linear elliptic problem for positive temperature � > 0 and as
an elliptic obstacle problem for � D 0.

Let S D Sh denote the space of piecewise linear finite elements with respect
to a regular triangulation Th with mesh size h and interior vertices Nh. Then,
aS.�; �/ D ah.�; �/ is defined by replacing .v;w/L2.˝/ with the lumped L2-scalar
product hv;wiS D

R
˝
Ih.vw/ dx, where Ih W C.˝/ ! Sh denotes nodal inter-

polation. Similarly, we set �S.v/ D �h.v/ D
R
˝ Ih.˚

� .v// dx. Connecting
the midpoints pi of the edges of all triangles t 2 Th, we obtain the uniformly
refined triangulation Th=2 with interior vertices Nh=2. The local incremental spaces
Vi D spanf
i g are spanned by the piecewise linear edge bubble functions satisfy-
ing 
i .pi / D 1 and vanishing on all other vertices p 2 Nh=2. This choice leads to
Q D Sh=2. It is motivated by the lack of stability of piecewise quadratic approxima-
tions for obstacle problems [14, 20]. We select the discrete Q-elliptic bilinear form
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Fig. 1 Estimated and “exact” error (left) and effectivity ratio (right) over number of unknowns

aQ.�; �/ D ah=2.�; �/ with the associated energy norm k � kQ D ah=2.�; �/1=2. Then
the locality condition (5) is satisfied with �i .v/ D ˚� ..uS C v/.pi //

R
˝

i dx,

v 2 Vi . For obstacle problems, i.e., for � D 0, the resulting error estimator (8) was
proposed in [17] and later analyzed in [20, 22, 24]. Here we concentrate on � > 0

and investigate robustness for � ! 0.
In our numerical experiments, we consider the first spatial problem of the semi-

discrete Allen–Cahn equation with parameters " D 2 � 10�2, �c D 1:0, time step
size � D 10�4, and the initial condition u0 as depicted in the left picture of Fig. 3.
We first compare the a posteriori error estimator with the “exact” error for a fixed
temperature � D 0:1 and a sequence of triangulations Thj

with decreasing mesh size
hj . The triangulations Tj D Thj

are obtained by j D 1; : : : ; 9 uniform refinements
of the initial triangulation T0 which is a partition of˝ D .�1; 1/� .�1; 1/ into two
congruent triangles. The “exact” error Qej D kQu�uj keH is obtained by approximating
H with eH D S11, i.e., by an approximation Qu of u based on two further uniform
refinement steps. The left picture in Fig. 1 shows �j and Qej over the number of
unknowns. We observe asymptotic first order convergence and a good agreement of
�j and Qej . More precisely, the effectivity ratios �j = Qej seem to saturate at about 0:9
(Fig. 1 right). In our next experiment, we fix the mesh T9 and vary the temperature � .
The left picture in Fig. 2 shows that the effectivity ratios are hardly affected by the
transition from a shallow to a deep quench and even seem to converge in the deep
quench limit. In the last experiment, we use the edge-oriented local error indicators
keikQ occurring in the global estimate (8) and a classical marking strategy [11]
for adaptive mesh refinement. Figure 3 illustrates that refinement nicely follows the
diffuse interface. Moreover, the zoom in Fig. 2 shows that refinement concentrates
on the strong variation of the solution at the boundary of the diffuse interface and
not on the interior where steep gradients are resolved sufficiently well. Finally, note
that optimal order of convergence is preserved by adaptivity.
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Fig. 2 Effectivity ratios over inverse temperature (left) and detail of adaptively refined mesh
(right)

Fig. 3 Initial condition and approximations at time 20�; 100�

4 Cahn–Hilliard Equations

Semi-implicit time discretization [6,16] of the Cahn–Hilliard equation with logarith-
mic potential leads to spatial problems of the form (1) withH D H 1.˝/�H 1.˝/

equipped with norm

k.v1; v2/k2H D "2
�
krv1k2L2.˝/

C .v1; 1/2L2.˝/

�
C �

�
krv2k2L2.˝/

C kv2k2L2.˝/

�
;

the indefinite bilinear form

a.v;w/ D "2 �.rv1;rw1/L2.˝/ C .v1; 1/L2.˝/.w1; 1/L2.˝/

� � .v2;w1/L2.˝/

�.v1;w2/L2.˝/ � �.rv2;rw2/L2.˝/;

the right hand side `.v/ D .u0; v1 � v2/L2.˝/ C "2.u0; 1/L2.˝/.v1; 1/L2.˝/ and
the convex functional �.v/ D R

˝ ˚
� .v1/ dx with ˚� defined in (9) for tempera-

ture � � 0. Here, " is an interface parameter, � is the time step size and u0 is an
approximation from the preceding time step. Utilizing the notation of Sect. 3, the
approximation (2) is based on S D Sh � Sh, and on aS.�; �/ and �S as obtained
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Fig. 4 Estimated and “exact” error (left) and effectivity ratios over number of unknowns
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Fig. 5 Effectivity ratios over inverse temperature.

Fig. 6 Initial condition and approximations at time 20�; 100�

by mass lumping. Existence, uniqueness, and convergence results have been estab-
lished in [6] for the double obstacle case � D 0 and in [3, 8] for � > 0. Fast
solvers for the resulting algebraic problems are described in [15]. The compo-
nents u1 and u2 of the solution u D .u1; u2/ are often called order parameter and
chemical potential, respectively. Similar to Sect. 3, we select the incremental spaces
Vi D spanf.
i ; 0/; .0; 
i /g providing Q D Sh=2 � Sh=2. Again (5) is satisfied
with �i .v/ D ˚� ..uS;1 C v1/.pi //

R
˝

i dx, v 2 Vi . In this setting the localized

defect problem (6) admits a unique solution. The discrete norm k � kQ is obtained by
(spectrally equivalent) mass lumping of the zero order terms in k � kH .
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We consider the first spatial problem of the semi-discrete Cahn-Hilliard equation
with parameters, time step size, and initial condition given in Sect. 3. In our numer-
ical experiments, we proceed in complete analogy to the previous section. We begin
with a comparison of the error estimators �j with an “exact” error Qej for fixed tem-
perature � D 0:1 and decreasing mesh size hj . Figure 4 shows optimal order of
convergence and asymptotic saturation of the effectivity ratios �j = Qej at about 0:9.
For fixed mesh T9 effectivity is hardly affected by strongly varying temperature �
as depicted in Fig. 5. Adaptive mesh refinement based on the local error indica-
tors keikQ nicely captures strong variation of the order parameter as illustrated by
Fig. 6. Strong variation of the chemical potential as occurring, e.g., after topological
changes, is also reflected by adaptive refinement. Finally, it turned out that optimal
order of convergence is preserved by adaptivity.
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5. L. Baňas and R. Nürnberg. A posteriori estimates for the Cahn-Hilliard equation with obstacle

free energy. Math. Model. Numer. Anal., 43:1003–1026, 2009
6. J.F. Blowey and C.M. Elliott. The Cahn-Hilliard gradient theory for phase separation with

non–smooth free energy II: Numerical analysis. Euro. J. Appl. Math., 3:147–179, 1992
7. F.A. Bornemann, B. Erdmann, and R. Kornhuber. A posteriori error estimates for elliptic

problems in two and three space dimensions. SIAM J. Numer. Anal., 33:1188–1204, 1996
8. M.I.M. Copetti and C.M. Elliott. Numerical analysis of the Cahn-Hilliard equation with a

logarithmic free energy. Numer. Math., 63:39–65, 1992
9. K. Deckelnick, G. Dziuk, and C.M. Elliott. Computation of geometric partial differential

equations and mean curvature flow. Acta Numer., 14:139–232, 2005
10. P. Deuflhard, P. Leinen, and H. Yserentant. Concepts of an adaptive hierarchical finite element

code. IMPACT Comput. Sci. Eng., 1:3–35, 1989
11. W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal.,

33:1106–1124, 1996
12. W. Dörfler and R.H. Nochetto. Small data oscillation implies the saturation assumption. Numer.

Math., 91:1–12, 2002
13. X. Feng and H. Wu. A posteriori error estimates for finite element approximations of the Cahn-

Hilliard equation and the Hele-Shaw flow. J. Comput. Math., 26:767–796, 2008
14. R. Glowinski. Numerical Methods for Nonlinear Variational Problems. Springer, Berlin, 1984
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Nonlinear Decomposition Methods
in Elastodynamics

Christian Groß, Rolf Krause, and Mirjam Walloth

Abstract For the stable numerical solution of nonlinear elastodynamic contact
problems implicit discretization schemes are required. Here, we discuss a temporal
discretization scheme where in each time step spatial displacements are computed
as the solution of an optimization problem allowing for the application of glob-
alization strategies. Moreover, in order to treat the solution of these optimization
problems more efficiently, a novel abstract nonlinear preconditioning framework
for globalization strategies is presented.

1 Introduction

The numerical simulation of dynamic contact problems obeying a nonlinear elastic
material law is a demanding task, as the contact conditions as well as the nonlin-
ear material behavior have to be handled carefully. For the stability of the contact
forces, their fully implicit treatment is clearly worthwhile: even in the case of lin-
ear elasticity, the straightforward application of common time discretizations as for
example the classical Newmark scheme [11], may lead to energy blow-ups and, in
consequence, to a loss of accuracy, see e.g., [10]. A possible remedy for this can be
found in the purely implicit treatment of the contact forces, as first introduced in [8]
and further analyzed in [3].

It is well known that for stability reasons an treatment of the nonlinear mate-
rial behavior is favorable. We note that transferring stability results from linear to
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nonlinear materials is not straightforward, see e.g., [1]. As a matter of fact, larger
timesteps can usually only be realized employing an implicit discretization scheme,
with the cost of solving (non-)linear problems in space in each timestep.

In order to allow for the efficient numerical simulation of elastodynamic contact
problems, fast and robust solution methods for the arising constrained nonlinear and
nonconvex minimization problems have to be provided. In the present work, we con-
sider the application of recently developed nonlinear preconditioning techniques,
cf. [7], in the context of dynamic contact problems in nonlinear mechanics.

With respect to the robustness of the solution of the arising nonlinear program-
ming problems (especially for large time steps), globalization strategies, such as
Linesearch or Trust-Region methods, are of particular interest. As a matter of
fact, these strategies provably converge to first-order critical points with modest
assumptions on the objective function. In particular, the paradigm of these itera-
tive strategies is to damp the computed corrections in order to ensure a sufficient
decrease of the objective function. Though, in return, the damping might slow down
the convergence of the strategy.

Therefore, nonlinear multigrid methods such as RMTR [5] and MLS [12] were
developed as efficient globalization strategies. As a more recent development, also
a fully nonlinear domain decomposition method called APTS, see [7], has proven to
be an efficient and reliable solution strategy for large-scale minimization problems.
Basically, these strategies aim on a better resolution of low-frequency or “local”
contributions of the solution in addition to the sole computation of Quasi-Newton
steps.

To generalize these approaches, here we will employ an abstract nonlinear pre-
conditioning framework, encompassing the concepts employed in the RMTR, MLS
and APTS algorithms. Within this nonlinear preconditioning framework, local non-
linearities are resolved by a particular nonlinear update operator yielding an updated
iterate. This nonlinear update operator may be, for instance, the result of an RMTR
cycle. In a second step, a globalization strategy is employed to compute a “global”
correction, which often is necessary to resolve high-frequent nonlinearities. Thus,
nonlinearly preconditioned globalization strategies are well-suited to efficiently
solve the nonlinear programming problems arising in elastostatic or elastodynamic
simulations.

We will apply these nonlinear decomposition methods as spatial solver within the
contact-implicit Newmark scheme, which here is extended to the case of non-linear
material laws (see Sect. 2). For simplicity, we here have considered only linearized
non-penetration conditions. Incorporating the exact geometric non-penetration con-
dition, see, e.g., [9], or possible contact stabilizations, see, e.g., [3], into the new
nonlinear framework employed here is out of the scope of this paper and will be
subject of further research.
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2 Dynamic Contact Problems for Non-Linear Materials
and Their Time-Discretization

We are interested in the displacements u W Œt0; tend� � ˝ ! R3 of a non-linear
elastic body˝ � R3 identified with a polyhedral domain which might be subjected
to volume forces F W Œt0; tend� � ˝.t/ ! R3, like for instance gravity. The non-
linear, hyperelastic material behavior is characterized by a stored energy function
W W ˝ �R3�3 ! R depending on the space variable and the (right) Cauchy-Green
strain tensor C D C .u/ D .ru C id/T .ru C id/: If W.x; �/ is differentiable, the
first Piola–Kirchhoff stress tensor is given by OT .x;C / D @

@C
W.x;C /: We also

define OW .x;ru/ WD W.x;C /; which is the stored energy function depending on
the space derivative of the displacements instead of the (right) Cauchy-Green strain
tensor. The boundary @˝.t/ is decomposed into two disjoint parts: the Neumann
boundary �N .t/ where surface tractions p W Œt0; tend� � �N .t/ ! R3 are given and
the potential contact boundary, where the body is exposed to the contact constraints

u.t; �/ � n.�/ � �.t; �/ (1)

where � W Œt0; tend� � �C .t/! R3. Here and in the remainder we denote with n.x/
the outer normal at x 2 @˝ . Then, the strong formulation for the dynamic contact
problem to be considered here reads as

� Ru� div OT .u/ D F in ˝ (2a)

OT .u/ � n D p a.e. on �N (2b)

u � n � � a.e. on �C (2c)

u.t0; x/ D u0.x/ a.e. in ˝ (2d)

Pu.t0; x/ D Pu0.x/ a.e. in ˝ (2e)

For simplicity, in the remainder we will set � D 1 for the mass density. Moreover,
we define the external forces F ext D F ext.t; x/ as the sum of the volume forces and
surface traction

R
˝ F ext �u WD

R
˝ F .t; x/�uC

R
�N
p.t; x/�u for any displacement u:

The internal forces F int D F .t; x;u/ are given by
R
˝
F int � u WD

R
˝

div OT .u/ � u
for any displacement u: With this notation it is easy to see that the system to solve
is exactly Newton’s equation of motion under additional constraints at the contact
boundary.

In order to discretize (2), we use Rothe’s method which means that we discretize
first in time then in space. The discretization in space will be carried out using linear
finite elements. As already mentioned in the introduction, the discretization in time
is not straightforward because even in the case of linear elastic materials classical
time discretizations fail to handle the contact constraints appropriately. The classical
Newmark scheme [11] is very common in continuum mechanics where the acceler-
ation can be expressed in terms of displacements by means of Newton’s equation of
motion and the material law. But unfortunately it may evoke energy blow-ups and
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oscillations at the contact boundary, see e.g., [10]. In [8], a purely implicit treatment
of the contact forces was introduced for the case of linear elasticity. Here, we use an
extension of this contact-implicit Newmark scheme to non-linear elastic materials.

Let � > 0 be the time-step size and let ti D t0 C i� be the i th time step. Then,
by denoting the approximation at u.ti / with ui ; we can write the classical Newmark
scheme as

uiC1 D ui C � Pui C �2

2
..1 � 2ˇ/ Rui C 2ˇ RuiC1/

PuiC1 D Pui C �..1 � �/ Rui C � RuiC1/ :

In the remainder we will choose 2ˇ D � D 1=2. Here, Pui denotes the approxi-
mation of the velocity at ti ; we furthermore define F iint D F int.ti ; x;ui /, F iext D
F ext.ti ; x/. In the unconstrained case, based on Newton’s equation of motion, the
accelerations Rui and RuiC1 are replaced by the sum of the external and internal forces
F iint C F i

ext, and F iC1int C F iC1ext , respectively. In the constrained case, the second
derivative of u in time may not exist everywhere, but the whole forces are known.
They consist of the external, internal forces and the contact forces, which are the
constraining forces to the contact constraints. Therefore when using the classical
Newmark scheme for contact problems the accelerations are formally replaced by
F iint C F iext C F icon and F iC1int C F iC1ext C F iC1

con for the time steps i and i C 1. In
contrast, in the case of the contact-implicit Newmark scheme we replace 1

2
Rui by

1
2
.F iint C F iext/ and 1

2
RuiC1 by 1

2
.F iC1int C F iC1ext /C F iC1con : A motivation for the use

of this contact-implicit Newmark scheme can be found in [3], where it is shown that
no energy blow-ups occur at least in the case of linear elasticity.

In order to solve the arising system, e.g., with the APTS scheme, cf. [7], we
provide a formulation as minimization problem. On the basis of the stored energy
function OW , we therefore define the energy function

E iC1.u/ D
Z

˝

� OW .x;ru/� F iC1ext � u
�
: (3)

The derivative of the total energy @
@uE iC1.u/ gives the sum of the external and

internal forces. Furthermore, we define the set of admissible displacements K D
fu j u � n � � a.e. on �C g:

In timestep tiC1, the displacements uiC1 are computed as the solution of the
following nonlinear and perhaps nonconvex minimization problem

uiC1 2K W J iC1.uiC1/ D minŠ (4)

where

J iC1.uiC1/ WD
Z

˝

.
1

2
uiC1 � ui � � Pui / � uiC1

C �2

4

�
@

@ui
E i .ui /

�
.uiC1/C �2

4
E iC1.uiC1/:



Nonlinear Decomposition Methods in Elastodynamics 411

Therefore, the solution uiC1 of the minimization problem (4) satisfies

uiC1 D ui C � Pui � �
2

2

�
1

2

@

@ui
E i .ui /C 1

2

@

@uiC1
E iC1.uiC1/ � F con.uiC1/

�

(5)

which is the first equation of the contact-implicit Newmark scheme; we refer also
to [1].

To sum up, the above considerations lead to the following contact-implicit time
discretization scheme

uiC1 2K W J iC1.uiC1/ D minŠ (6a)

PuiC1 D Pui � �
�
1

2

@

@ui
E i .ui /C 1

2

@

@uiC1
E iC1.uiC1/� F con.uiC1/

�
(6b)

3 Efficient Solution of the Nonlinear Programming Problems

As pointed out before, the objective function connected to the spatial minimization
problem (6a) in Sect. 2 might be nonconvex. In this case, a globalization strat-
egy, such as a Trust-Region or a Linesearch strategy, might be employed in order
to ensure the convergence for almost arbitrary initial iterates. Unfortunately, in
particular in the context of large-scale problems arising from nonlinear elasticity,
these strategies often tend to converge slowly, cf. [6]. Here, we therefore employ a
novel nonlinear preconditioning strategy, which is designed to enhance the rates of
convergence of these globalization strategies.

To this end, we consider a cheaply computable, nonlinear operator F W Rn !
Rn with the following property

F .u/ 6D u ) J.F .u// < J.u/ : (7)

Let us emphasize that the nonlinear multigrid cycles in the RMTR method [6], in the
MLS method [12] and also the asynchronous solution phase in the APTS method [7]
or the PVD scheme [4] can be regarded as instances of our nonlinear preconditioning
operator F .

We remark that the following considerations are valid for arbitrary functions u W
Rn ! Rn. However, in this paper we only consider systems in elasticity, which after
discretization with finite elements give rise to coefficient vectors in R3N , where
N is the number of nodes, i.e., we have the special case n D 3N . For the ease
of presentation, we thus again use boldface symbols for our solution u (as in the
previous chapters).
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In (7), J is a nonlinear objective function, such as J i from (6a) in Sect. 2. In order
to derive our nonlinear preconditioning scheme, we now consider the first-order
conditions

u 2 Rn W rJ.u/ D 0
of the following problem

u 2 Rn W J.u/ D minŠ

where J is a twice continuously differentiable and arbitrary nonlinear objective
function. Similar to linear right preconditioning, we can reformulate the original
first-order conditions to the following problem: for a given u 2 Rn compute s 2 Rn

such that

rJ.F .uC s// D 0 (8a)

u D F .uC s/ (8b)

which yields a nonlinear right preconditioning strategy. If we assume that F 0 exists,
we might compute the search direction s employing Newton’s method which gives
rise to the following iterative scheme

r2J.F .u�//F 0.u�/s� D �rJ.F .u�// (9a)

u�C1 D F .u� C s�/ (9b)

However, even if s� is computed employing a globalization strategy convergence
cannot be ensured, since

J.F .u�// � J.u�/ and J.F .u�/C s�/ � J.F .u�// 6) J.F .u� C s�// � J.u�/

In order to overcome this difficulty, we could compute a damping parameter ˛� 2
.0; 1� such that

J.F .u� C ˛�s�// � J.u�/ : (10)

This is possible, if both J and F are continuous, and if (7) and F .u�/ 6D u� holds.
In order to avoid the possibly costly use of a backtracking algorithm to determine ˛
in (10), we linearize the update in (9b) leading to the following iterative scheme

r2J.F .u�//F 0.u�/s� D �rJ.F .u�// (11a)

u�C1 D F .u�/CF 0.u�/s� (11b)

This has the important advantage that if F 0.u�/s� was computed employing a
globalization strategy, e.g., as a Trust-Region step starting from F .u�/, then the
following inequalities hold

J.F .u�// � J.u�/ and J.F .u�/CF 0.u�/s�/ � J.F .u�//

) J.F .u�/CF 0.u�/s�/ � J.u�/
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Moreover, one can approximate F 0.u�/s� by a quasi-Newton correction Qs� as
follows

B.u�/Qs� D �rJ.F .u�// (12a)

u�C1 D F .u�/C Qs� (12b)

where B.u�/ is a symmetric matrix. As a matter of fact, this nonlinear precondi-
tioning strategy with linearized update can be regarded as a globalization strategy,
as far as (7) holds and Qs� in (12a) is computed employing a globalization strategy.
Let us remark that for the sake of simplicity the above considerations have been
made for unconstrained nonlinear programming problems. Similar results can also
be obtained in the constrained case; the numerical results given here were computed
employing the corresponding solution strategy for constrained problems.

4 Dynamic Simulation of a Can

In this section, we are interested in the simulation of an actual elastodynamic con-
tact problem, as shown in Fig. 1. This is an elastodynamic contact problem subject
to a nonlinear material law. For the material response, we employ the following
polyconvex stored energy function, see e.g., [2],

W.x;C/ D 3.aCb/C.2aC4b/ �tr EC2b �.tr E/2�2b �tr.E2/C� .det.r'// (13)

Here, we have set C D C .u/ D .I C ru/T .I C ru/ (the right Cauchy-Green
strain tensor), E D E.u/ D 1

2
.C .u/ � I / is the Green-St. Venant strain tensor,

r' D I C ru is the deformation tensor and � .ı/ D cı2 � d log ı a logarithmic
barrier function. For our example, the constants are chosen as follows

a D �C 1

2
� 0.1/, b D ��

2
� 1
2
� 0.1/, c D �	

4
� � and d D 3	

4
C � (14)

Here, we employed �D D ;, �N D @˝ ��C where �C D f.x; y; z/jz D �0:5g
with natural boundary conditions. On the other hand, the initial velocity is given by
. Pu0/k D .0; 0;�0:05/ for all nodes k, yielding a movement in direction of the
obstacle. Initially the displacements are given by u0 D 0 and the gap between
geometry and obstacle is slightly larger than zero. At all unknowns which are not
related to �C , we choose �

k
D �106 and �k D 106.

The simulation itself was carried out computing 1,000 timesteps with � D 0:01.
The geometry is uniformly refined once giving rise to a nonlinear programming
problem, equation (6), with approximately 54,000 unknowns for each timestep. The
employed material parameters are E D 1000[MPa] and 
 D 0:3. Finally, the solu-
tion of the arising minimization problems (6a) in Sect. 2 was carried out efficiently
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Fig. 1 Dynamic simulation of a can. Here, the solution of the problem of Sect. 4 is shown. As one
can see, the can-like geometry moves in direction of the obstacle as indicated by the grey plane.
Soon, the geometry and the obstacle stay in contact and the geometry’s momentum yields the
shown deformations. The last shown figure is the final configuration in this simulation. Different
grey scales indicate the von-Mises stresses where light grey represents strong local stresses

employing the RMTR method [6] in combination with the APTS method [7] applied
on the finest level.
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An Implementation Framework for Solving
High-Dimensional PDEs on Massively
Parallel Computers

Magnus Gustafsson and Sverker Holmgren

Abstract Accurate solution of time-dependent, high-dimensional PDEs requires
massive-scale parallel computing. In this paper, we describe an implementation
framework for block-decomposed structured grids and discuss techniques for opti-
mization on clusters where the nodes have one or more multicore processors.
We use a two-level parallelization scheme with message passing between nodes
and multithreading within each node, and argue that this is the best compro-
mise for memory efficiency. We present some examples where the time-dependent
Schrödinger equation is solved.

1 Introduction

Numerical simulation of PDEs is a tool of great importance to better understand
and predict the outcome of experiments, and to understand the world around us.
For many realistic scenarios, such mathematical models lead to high-dimensional
problem settings which must be solved using accurate numerical methods. To
solve the corresponding computational problems, we need sophisticated paral-
lel numerical algorithms, massive-scale parallel computers and optimized parallel
implementations.

In this paper, we present an on-going effort towards developing a parallel imple-
mentation framework for adaptive solution of high-dimensional, time-dependent
PDEs on large-scale distributed clusters where the nodes are built on multicore
processors. Fundamental features of the framework is a block-decomposition of a
structured spatial grid and the use of high-order finite difference stencils for the
spatial discretization. A two-level parallelization scheme is implemented, where
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message passing (MPI) is used for global communication across nodes and multi-
threading (OpenMP) is used for work-sharing within each node. This is not the best
alternative for run-time performance, but in the current implementation it leads to
less explicit replication of memory and hence better memory utilization.

As a case study, we solve the time-dependent Schrödinger equation (TDSE)
within the context of quantum chemistry, modelling the dynamics of molecules at
the granularity of wave packets describing the atomic nuclei. Here, the dimensional-
ity of a problem is given by d D 3N�6, whereN is the number of nuclei involved in
the interaction. Explicitly time-dependent events (e.g. interaction with laser pulses
and particles colliding) combined with high demands on numerical accuracy make
these problems extremely demanding to solve.

2 Parallel Computing Using Clusters of Multicore Processors

Up until a few years ago, microprocessor clock frequencies have constantly been
increased. Due to this, programmers have been able to develop sequential programs
that have executed faster and faster on new processor models. However, physical
and technological limitations have put an end to this development. Instead, the
architects of microprocessors seek to achieve increased efficiency by incorporat-
ing several processing cores that work in parallel on a single die. Multicore chips of
today use a handful of cores but within the coming years, this number will increase
significantly.

When clusters are composed of nodes with multicore processors, there will be
a multi-level hierarchy among the components in the system. At the topmost level
we have the distributed, parallel system of nodes. Each node in the cluster might
have several processor sockets, and within each processor chip the cores may be
arranged in a non-uniform fashion. The processors in a single node usually share
memory logically, but the memory modules might be separate and distributed phys-
ically on the board, yielding a NUMA (Non-Uniform Memory Access) architecture.
Furthermore, on-chip caches will be local to each chip and possibly organized in a
hierarchichal structure within the chip as well.

Multicore processors introduce new challenges to programmers of parallel appli-
cations, partly due to the hierarchical system layout but also due to physical
constraints in the chips. First of all, the bandwidth of the memory bus is limited
and constitutes a major bottleneck for off-chip memory traffic. When the number of
cores on a chip increases, this situation gets worse since the amount of bandwidth
per core decreases correspondingly. Second, the physical space on a chip that can
be dedicated to cache memory is limited and the effective amount of cache per core
will decrease when the number of cores on a chip increases. In order to address
these issues, we strive to find techniques that minimize communication to and from
the chip, and maximize data reuse.
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3 A PDE-Solver Framework

The target problems of our framework are d -dimensional, time-dependent linear
PDEs

du

dt
D P.x; t/u: (1)

We use the method of lines approach and first discretize in space using a d -
dimensional tensor-product grid, i.e., each grid point can be uniquely identified by
a d -vector of integers .j1; : : : ; jd /. This transforms the PDE into a large system of
ODEs, which we solve by integration in time using some suitable ODE solver.

The spatial derivatives are discretized using high-order finite difference stencils.
Our implementation allows for any order of derivative to be discretized, using any
combination of weights. For an arbitrary order of accuracy, the stencil coefficients
can be computed by implementing the simple procedure presented by Fornberg [2].
A standard choice is to use 2p-order centered stencils, where p can be adjusted
according to the desired accuracy.

4 An Example: The Time-Dependent Schrödinger Equation

A general quantum dynamics problem can be described by the TDSE,

i„ @
@t
 .r; t/ D OH .r; t/; (2)

where  .r; t/ is the wave function describing the probability distribution of
the system and OH is the linear Hamiltonian operator describing the total energy.

For a particle of mass m,

OH D OT C OV D � „
2

2m
r2 C V.r; t/; (3)

where OT and OV are the kinetic and potential energy operators respectively. Hence,
the kinetic energy has constant coefficients, while the potential energy may contain
coefficients that depend on both space and time.

By introducing the discretization in space described in Sect. 3, we obtain the
following system of ODEs

i„ d
dt
�.t/ D H.t/�.t/; �.0/ D � .0/; (4)

where H.t/ is the Hamiltonian matrix of size N �N with

N D
dY
LD1

NL; L D 1; : : : ; d: (5)
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If the Hamiltonian is independent of time, the propagation of the system of ODEs
in (4) is given by

� .kC1/ D e�i�tH� .k/: (6)

In our experiments, the Hamiltonian will be explicitly time-dependent and we can-
not express the exact time-evolution of (4) in a simple manner. However, a second
order accurate approximation is given by the exponential midpoint rule [6]

� .kC1/ D e�i�tH.tkC�t2 /� .k/: (7)

Solving (7) involves exponentiating the Hamiltonian matrix, which is very large
according to (5). Commonly used techniques for computing the matrix exponen-
tial are not feasible since these methods in general require O.N 3/ operations [7].
Instead, we use the Lanczos method, an iterative Krylov subspace method that
computes approximations of only a few of the extremal eigenvalues.

5 Parallelization

Our implementation is parallelized on two levels; between nodes via message pass-
ing (MPI) and within each node using OpenMP for multi-threading. The spatial
grid is decomposed into blocks and in the current pilot implementation, each com-
puting node solves the local problem within a single block, exchanging information
as necessary with other nodes.

Currently, the implementation framework applies a static, equidistant block-grid
decomposition with equally sized blocks. Since the computational workload per grid
element is constant, the workload among the nodes is well-balanced. Similarly, the
work within a block is divided statically between the available threads in the node
in equal chunks for low synchronization overhead between the threads. We use a
static number of threads, which are spawned early on and maintained throughout the
execution of the program. This minimizes the overhead from runtime management
of the threads and reduces thread migration between cores.

Care must be taken when applying the finite difference stencils in many dimen-
sions; the data access strides are very large and keeping all data in cache is not
possible. We need a more elaborate implementation of the stencil operator than
the straightforward, naı̈ve approach of simply stepping through the grid dimension-
by-dimension. Here, we use cache-tiling, where the data accesses form tiles in the
lower dimensions that are streamed from memory into the caches. This has proven
to be a useful approach on modern processors since it makes use of the prefetch
mechanisms that are prevalent in new architectures [1].

For the Lanczos algorithm it is difficult to achieve massive scalability because
of the three synchronization points in each iteration; two inner products of size N
and one multiplication of the Hamiltonian with the wave vector. The inner prod-
uct is a global operator involving all processes in the communication, whereas the
multiplication with the Hamiltonian matrix only requires communication between
nearest-neighbor processes.
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Inner products: To improve scalability, we have adopted the approach in [5],
where the Lanczos procedure has been restructured in order to bring the two inner
products together so that they can be computed simultaneously. This effectively
removes one synchronization point in the algorithm. In exact arithmetics the refor-
mulated algorithm has been proven to yield the same results as the standard Lanczos
method [5]. However, when used as an iterative algorithm for computing eigen-
values, run to convergence, this algorithm is known to sometimes exhibit stability
problems. In our case, we execute a small predetermined number of iterations, and
we do not encounter any problems with stability.

Multiplication with the Hamiltonian matrix: Close to the borders of a block, the
finite difference stencils depend on function values located in neighboring blocks.
These “remote” function values are stored in buffer regions, referred to as ghost
cells, at the boundaries of the blocks. Thus, the data values stored in the ghost cells
are replicated, containing the same data items as the corresponding entries in the
neighboring blocks. Because of the high dimensionality of our target problems, the
ghost cell blocks will be large and replicating them all will lead to a significant
memory overhead. Our approach to this problem is to communicate ghost data in
one dimension at a time and reuse the allocated buffers, which will lead to a d -fold
reduction of the replicated memory. Furthermore, using multi-threading within each
process reduces the number of ghostcell blocks, since this does not require explicit
replication for communication.

We overlap communication delays with computation as follows. First, ghost data
are sent (non-blocking) in the first dimension. While waiting for the data to arrive,
each node computes all values possible without considering any ghost data. Once
the first round of data has arrived, the next round is sent off (again, non-blocking)
and while waiting, each node fills in the values that required the first set of data
items. This is repeated until all dimensions are completed.

6 Results

In this paper we focus on the parallel performance of our implementation. However,
for completeness, we present some results of the numerical accuracy of the spatial
and temporal discretizations in Fig. 1. For a more detailed analysis of the numerical
properties, see [4]).

We have run experiments on two clusters, Grad and Isis. The hardware details
are listed in Table 1. The two clusters are similar in structure, with a number of
distributed nodes interconnected by a standard switched Gigabit Ethernet network.
Each node is configured with dual CPU-sockets and 2 GB of DRAM per core. The
Grad-cluster is fitted with quad-core processors where the cores are configured in
pairs. Each pair of cores share a 6 MB L2 cache which implies a hierarchy among
the cores within a chip. L1 caches are private to each core, with separate 32 kB
caches for the instruction- and data streams. The processors of the Isis-cluster are
dual-core but each core has its private L2 cache of 1 MB, albeit significantly smaller
than the 3 MB that is available per core on the Grad-cluster.
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Fig. 1 Accuracy results for a 2D problem. (a) (left) The hamiltonian in (3) is applied once on a
Gauss pulse with the potential (V ) set to zero, and the result is compared to the analytic second
derivative. (b) (right) One period of a simple harmonic oscillator is computed, using a grid of
2402 elements and the Lanczos algorithm with 4 Lanczos-iterations. The final wave function is
compared to the starting vector, taking the maximum absolute error

Table 1 Overview of the clusters that have been used for the computations

Grad Isis

No. nodes 64 200
No. CPUs/node 2 2
DRAM/node 16 GB 8 GB
Interconnect Gb Ethernet Gb Ethernet

CPU Intel Xeon E5430 AMD Opteron 2220 SE
No. cores 4 2
Clock rate 2.66 GHz 2.8 GHz
L1-cache (I/D) 32 kB/32 kB 64 kB/64 kB
L2-cache 2 � 6 MB 2 � 1 MB

To analyze the performance of our implementation, we first look at how well it
scales with problem size and the number of available cores. For these results we
used the Grad cluster. The speed-up results from parallelizing a single block within
a node with OpenMP are shown in Fig. 2a. We see that the speed-up depends heavily
on the block size and that the best speed-up (about 6:5x on 8 cores) is obtained for
blocks of 643 grid elements. This number is tightly coupled to the number of grid
elements that fit in the cache; when the number of grid points is too large we get
problems with data conflicts in the caches and when the number of grid points is too
small there is not enough parallelism in the blocks. Thus, we gain performance by
carefully choosing the size of the blocks so that they fit the caches well.

In Fig. 2b the performance of the hybrid MPI-OpenMP implementation is pre-
sented for three different problem sizes. Apparently, the larger the problem size,
the better the speed-up, which is often the case with MPI-implementations since
there is more computations to overlap the communication delays. Asymptotically,
the speed-up seems to approach the optimal as the problem size grows. Important to
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Fig. 3 Scaled speedup for the hybrid MPI-OpenMP implementation compared to using MPI only

note here is that the performance increase of the system as a whole is rather inde-
pendent of the speed-up numbers we saw for the local parallelization. This is due
to the fact that inter-node communication over the slow network is more penalizing
for performance and hides the low utilization of each node.

In practice, when having more computing resources at hand we take advantage
of this by solving larger problems rather than solving a fixed-size problem faster. A
performance metric that better reflects this practical aspect is scaled speed-up [3].
In the final experiment, we first solve a problem on a single node, then double the
size of the problem and solve it on two nodes and so forth. Ideally, for a perfectly
linear increase in performance, we want the execution time to be constant for all
problem sizes. Figure 3 shows the scaled speed-up when run on at most 32 nodes
in the Isis-cluster. Each node solves a fixed size problem of 2403 grid elements.
We compare the results of the MPI-OpenMP implementation to using only MPI for
parallelization; the MPI-only implementation has a slight performance advantage
but using this type of implementation will also lead to more significant memory
waste due to a larger fraction of ghost-cells. In the two-level parallelization scheme,
inner products are computed in two steps, requiring first a local synchronization
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point and then a global synchronization point. Thus, the synchronization overhead of
computing the inner products might be slightly higher in the hybrid implementation.

7 Conclusion and Outlook

Numerical simulation of high-dimensional PDEs is computationally intensive and
requires efficient techniques and massive-scale computing. In this paper we present
our achievements so far in addressing this challenge. Among our future plans are:

s-step Lanczos: Kim and Chronopoulos [5] describe another optimization to the
Lanczos algorithm, referred to as the s-step approach. Here, several Lanczos iter-
ations are combined in a single step, dramatically reducing the number of global
synchronization points. One iteration of the s-step Lanczos algorithm corresponds
to s iterations of the standard algorithm and all the 2s inner products of these s iter-
ations are computed at once. This seems promising for our purposes, but again the
stability properties need to be carefully considered (cf. [8]).

Spatial adaptivity: For high-dimensional problems, the static, equidistant spatial
discretization will lead to prohibitively large grids. Generally, the resolution that
is required for a desired level of accuracy varies in different parts of the grid and
having overly fine grid resolution is a waste of computational effort. We plan to
implement a block-adaptive algorithm that operates on fixed-size blocks where the
block-size is chosen to match the size of the caches at a suitable level. Apart from
making the implementation more complex, this type of algorithm also makes load
balancing much more demanding.
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Benchmarking FE-Methods for the Brinkman
Problem

Antti Hannukainen, Mika Juntunen, and Rolf Stenberg

Abstract Various finite element families for the Brinkman flow (or Stokes–Darcy
flow) are tested numerically. Particularly the effect of small permeability is studied.
The tested finite elements are the MINI element, the Taylor–Hood element, and the
stabilized equal order methods.

1 Introduction

The Brinkman equations are used in modeling porous media flow in the case of
high porosity when shear effects of the fluid has to be taken into account, see e.g.,
[1–3, 16, 20].

In a recent paper [15] we have studied the finite element approximation of the
model. We have proved both a priori and a posteriori estimates for some classes
of methods that (in view of the analysis) are robust. The purpose here is to give
numerical realizations of the theory in [15].

The Brinkman equations have been studied before e.g., in [17–19]. In [19] the
mathematical setting, namely norms and solution spaces, are different. In [17, 18]
the norms are similar to our work but we present also less abstract and thus
computationally more appealing counterparts to the norms.

In next section we recall the scaled form of the Brinkman equations and the
mathematical structure of the problem. Section 3 is devoted to the finite element
approximations. We shortly recall the results of [15] and the methods presented
therein. We also give the corresponding results for the so-called Taylor–Hood
family. The main part of the paper is Sect. 4 in which we give the results of
benchmark computations.
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2 The Brinkman Problem

The scaled version of the Brinkman equations is: Find u and p such that

�t2AuC uCrp D f in ˝; (1)

divu D g in ˝; (2)

where the parameter 0 � t � C . For t D 0 we have the Darcy equations, for which
we consider the natural boundary condition

u � nj@˝ D 0: (3)

For t > 0 we have Dirichlet boundary conditions

uj@˝ D 0: (4)

For compatibility, assume g 2 L2
0.˝/ and to get a unique pressure assume also

p 2 L2
0.˝/. When t � 1 the problem is a Stokes problem. For “small” t the

problem is a singular perturbation of the Darcy equations.
The natural norm for the velocity is

kvk2t D t2k".v/k20 C kvk20: (5)

Hence, for t D 0 the space for the velocity is ŒL2.˝/�N , and for t > 0 (by Korn’s
inequality) ŒH 1

0 .˝/�
N . By defining

b.v; q/ D
(
� .divv; q/ for t > 0

.v;rq/ for t D 0; (6)

the norm for the pressure is

jkqkjt D sup
v2V

b.v; q/
kvkt ; (7)

and the solution space is

Q D f q 2 L2
0.˝/ j jkqkjt <1g: (8)

Note that for t D 0 we have
jkqkjt � krqk0; (9)

whereas for 0 < t � C the Babuška–Brezzi inequality yields

C1kqk0 � jkqkjt � C2t
�1kqk0: (10)
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Defining the bilinear forms

a.u; v/ D t2 .".u/; ".v// C .u; v/ ; (11)

B.u; pI v; q/ D a.u; v/C b.v; p/C b.u; q/; (12)

and the linear functional

L .v; q/ D .f ; v/ � .g; q/ ; (13)

the weak formulation of the problem is: Find .u; p/ 2 V �Q such that

B.u; pI v; q/ D L .v; q/ 8.v; q/ 2 V �Q: (14)

This is a saddle point problem and Brezzi’s conditions imply the stability

sup
.v;q/2V�Q

B.w; r I v; q/
kvkt C jkqkjt � C

�kwkt C jkrkjt
� 8.w; r/ 2 V �Q (15)

by which the solution is unique.

3 Finite Elements and A Priori Error Estimates

The fact that the Brinkman model covers a whole range of problems, from Darcy
to Stokes, has some consequences. For the Darcy problem a balanced method uses
Pk � Pk�1 polynomials for the pressure and velocity, respectively. For the pure
Stokes problem (with t � 1) it is the opposite, Pk for the velocity and Pk�1 for
the pressure. Hence, to obtain a method good for all values of t it seems natural to
use equal order interpolation. Families of this kind are analyzed in our paper [15].
Here we recall the results and also show the results for the well-known Taylor–Hood
family of Stokes element.

We assume a partitioning Ch of the domain ˝ into simplices. With K 2 Ch we
denote an element of the partitioning, and the maximum size of K 2 Ch is denoted
by h. With �h we denote the boundary edges of the partitioning.

In the following the discrete counterpart of the pressure norm (7) is utilized;

jkqkj2t;h D
X

K2Ch

h2
K

t2 C h2
K

krqk20;K : (16)

This norm has the advantage that it can be explicitly computed.
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3.1 The Family Generalizing the MINI Element

For this family, generalizing the well-known MINI element of Arnold, Brezzi and
Fortin [4]. The finite element spaces are

Vh D fv 2 ŒC.˝/�N \ V j vjK 2 ŒPk.K/[ BkCN .K/�
N g; (17)

Qh D fq 2 C.˝/\ L2
0.˝/ j qjK 2 Pk.K/g; (18)

where Pk.K/ denotes the polynomials of degree k and BkCN .K/ D PkCN .K/ \
H 1

0 .K/ are the bubbles of degree k CN .
The finite element formulation is: Find .uh; ph/ 2 Vh �Qh such that

B.uh; phI v; q/ D L .v; q/ 8.v; q/ 2 Vh �Qh: (19)

The stability and a priori results are shown in [15]. In the case of a smooth solution
and a quasiuniform mesh we get the estimate

ku�uhktCjkp�phkjt;h � C
�
.tCh/hkkukkC1C .tCh/�1hkC1kpkkC1

�
: (20)

Hence, we get a uniform convergence (with respect to t) of O.hk/.

3.2 Stabilized Methods

The linear stabilized method was introduced by Brezzi and Pitkäranta [10] and then
generalized by Hughes and Franca [14]. In [15] we analyze the method using the
techniques developed in [12, 13].

The method uses pure piecewise polynomials of equal degree:

Vh D fv 2 ŒC.˝/�N \ V j vjK 2 ŒPk.K/�
N g; (21)

Qh D fq 2 C.˝/\ L2
0.˝/ j qjK 2 Pk.K/g: (22)

The stabilized method is then: Find .uh; ph/ 2 Vh �Qh such that

Bh.uh; phI v; q/ D Lh.v; q/ 8.v; q/ 2 Vh �Qh; (23)

with

Bh.uh; phI v; q/ DB.uh; phI v; q/ (24)

� ˛
X

K2Ch

h2
K

t2 C h2
K

�
t2Auh � uh � rph; t

2Av � v � rq�
K
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and

Lh.v; q/ D L .v; q/ � ˛
X

K2Ch

h2
K

t2 C h2
K

�
f ; t2Av � v � rq�

K
; (25)

with a parameter ˛ > 0.
For consistency, assume

t2Au� u� rp D f 2 ŒL2.˝/�2: (26)

Admissible values for the stability parameter ˛ depend on the constant CI of the
following inverse inequality

h2
KkAwk20;K � CIkrwk20;K 8w 2 ŒPk.K/�

N : (27)

In the range 0 < ˛ < minf1=.2CI /; 1=2g the method is stable and for a smooth
solution and a quasiuniform mesh we again get the uniform O.hk/ estimate (20).

3.3 The Taylor–Hood Family

The third method to be considered is the Taylor–Hood family with the finite element
subspaces

Vh D fv 2 ŒC.˝/�N \ V j vjK 2 ŒPkC1.K/�
N g; (28)

Qh D fq 2 C.˝/\ L2
0.˝/ j qjK 2 Pk.K/g: (29)

The finite element formulation is: Find .uh; ph/ 2 Vh �Qh such that

B.uh; phI v; q/ D L .v; q/ 8.v; q/ 2 Vh �Qh: (30)

For the Stokes problem (t � 1) this method has been proved to be optimal both
in two and three space dimensions [6–9, 11, 21–23]. By established techniques the
analysis can be carried over to the present case.

For this family the assumption of a quasiuniform mesh and a smooth solution
gives the estimate

ku � uhkt C jkp � phkjt;h � C
�
.t C h/hkC1kukkC2 C .tCh/�1hkC1kpkkC1

�
:

(31)

From here we see that also for this method we have O.hk/ convergence rate uni-
formly with respect to t . Only for the Stokes limit with t � 1 we have a O.hkC1/

convergence rate. In the Darcy limit t D 0 the two terms are not in balance; O.hkC2/

for the velocity but only O.hk/ for the pressure.
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Fig. 1 Convergence of the finite element solutions in the energy norm using uniform refinement.
The value in the brackets is the average rate of convergence; values �0:5 and �1:0 correspond to
O.h/ and O.h2/ rates of convergence. The dashed lines are reference slopes of O.h/ and O.h2/
convergence. On the top problem is of the Stokes type and the two below are of the Darcy type
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4 Numerical Examples

The finite element methods tested here are the lowest order MINI and Taylor–Hood
elements, and the stabilized P1-P1 and P2-P2 methods. The residual stabilization
parameter is ˛ D 0:4 for the P1-P1-stab and ˛ D 0:01 for the P2-P2-stab. We use
Dirichlet conditions for the velocity on the whole boundary.

Our model problem is the unit square˝ D .0; 1/ � .0; 1/ with the solution

p.x; y/ D � sin.x/ sinh.y/C C and

u D �rp.x; y/ D
�

cos.x/ sinh.y/
sin.x/ cosh.y/

�
;

with the constant C chosen so that p 2 L2
0.˝/. The pressure is harmonic, hence

g D divu D �p D 0. With similar reasoning Au D 0 which leads to f D 0.
Figure 1 shows the error as a function of the degrees of freedom for different values
of the parameter t . The solution is smooth and all the methods perform as predicted
by the theory. Notice the O.h/ rate of convergence of the Taylor–Hood element in
the Darcy type problem, that is, when the parameter t is small. This behavior is
exactly as expected in the discussion following (31).
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Finite Element Based Second Moment Analysis
for Elliptic Problems in Stochastic Domains

H. Harbrecht

Abstract We present a finite element method for the numerical solution of elliptic
boundary value problems on stochastic domains. The method computes the mean
and the variance of the random solution with leading order in the amplitude of
the stochastic boundary perturbation relative to an unperturbed, nominal domain.
The variance is computed as the trace of the solution’s two-point correlation which
satisfies a deterministic boundary value problem on the tensor product of the nom-
inal domain. This problem is discretized in the sparse tensor product space by a
multilevel frame generated from standard finite elements. The computational com-
plexity of the resulting approach stays essentially proportional to the number of
finite elements required for the discretization of the nominal domain.

1 Introduction

Many problems in physics and engineering sciences lead to boundary value prob-
lems for an unknown function. In general, the numerical simulation is well under-
stood provided that the input parameters are given exactly. Since, however, the input
parameters are often not known exactly it is of growing interest to model such
parameters stochastically.

A principal approach to solve boundary value problems with stochastic input
parameters is the Monte Carlo approach, see e.g., [15] and the references therein.
However, it is hard and extremely expensive to generate a large number of suitable
samples and to solve a deterministic boundary value problem on each sample. Thus,
we aim here at a direct, deterministic method to compute the stochastic solution.

Deterministic approaches to solve stochastic partial differential equations have
been proposed in e.g., [1, 7–9, 14, 17]. Therein, loadings and coefficients have been
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considered as stochastic input parameters. Recently, in [6,12,16], also the underlying
domain has been modeled as a stochastic input parameter D.!/. For example, this
enables the consideration of tolerances in the shape of products fabricated by line
production. Other applications arise from blurred interfaces like cell membranes or
molecular surfaces.

The present paper is dedicated to elliptic boundary value problems on stochastic
domains. We assume small stochastic perturbations around a nominal domain D
with known statistics. Then, according to [12], we can linearize to derive determin-
istic equations for the random solution’s expectation and two point-correlation

Eu.x/ D
Z

˝

u.x; !/dP.!/; Coru.x; y/ D
Z

˝

u.x; !/u.y; !/dP.!/; x; y 2 D:

From these quantities the variance is derived by Varu.x/ D Coru.x; x/�E2u.x/. Thus,
applying the finite element based sparse tensor product discretization from [13], we
are able to compute, to leading order in the amplitude of the random boundary per-
turbation, the solution’s second order statistics. The complexity of our algorithm
stays essentially proportional to the number of unknowns required to discretize
the domain D. In the present paper we describe the whole approach, specifying
implementational details and related error estimates.

2 Elliptic Boundary Value Problems on Stochastic Domains

Let .˝;˙;P / be a suitable probability space. We consider the domain as the
uncertain input parameter of an elliptic boundary value problem, i.e.,

�div
�
A.x/ru.x; !/

� D f .x/; x 2 D.!/
u.x; !/ D g.x/; x 2 @D.!/

)
! 2 ˝: (1)

To model the stochastic domainD.!/ let D denote a smooth reference domain and
consider stochastic boundary variations in direction of the outer normal U.x; !/ D
"�.x; !/n.x/ W @D ! Rn with �.!/ 2 L2P .˝;C 2;1.@D// and k�.!/kC2;1.@D/ � 1
almost surely. Then, the stochastic domain D.!/ is described via perturbation of
identity

@D.!/ D ˚�IC "U.!/�.x/ D xC "�.x; !/n.x/ W x 2 @D�:

For what follows we assume that the expectation E� and the two-point correla-
tion Cor� of � are given. Without loss of generality (otherwise we redefine D
correspondingly) we assume that the perturbation field � is centered, i.e., that
E� � 0.
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For small parameters " > 0 one can linearize (1) by means of shape optimization:

Theorem 1 ([11, 12]). Assume that the compact set K b D satisfies K � D.!/

almost surely. Then, it holds that

Eu.x/ D u.x/C O."2/; Covu.x; y/ D "2 Cordu.x; y/C O."3/; x; y 2 K:

Herein, u 2 H 1.D/ and Cordu 2 H 1;1.D �D/ satisfy the deterministic boundary
value problems

�div
�
A.x/ru.x/

� D f .x/; x 2 D;
u.x/ D g.x/; x 2 @D; (2)

and

.divx ˝ divy/
��

A.x/˝ A.y/
�
.rx ˝ry/Cordu.x; y/

� D 0; x; y 2 D;
divx

�
A.x/rx Coru.x; y/

� D 0; x 2 D; y 2 @D;
divy

�
A.y/ry Coru.x; y/

� D 0; x 2 @D; y 2 D;
Cordu.x; y/ D Cor�.x; y/

�
@.u � g/
@n

.x/˝ @.u � g/
@n

.y/
�
; x; y 2 @D:

(3)

3 Finite Element Discretization

3.1 Parametric Finite Elements

Starting point of the definition of the sparse multilevel frame is a nested sequence
of finite dimensional trial spaces

V0 � V1 � � � � � Vj � � � � � H 1.D/: (4)

In general, due to our smoothness assumptions on the domain, we have to deal
with non-polygonal domains. To realize the multiresolution analysis (4) we will use
parametric finite elements.

Let 4 denote the reference simplex in Rn. We assume that the domain D is
partitioned into a finite number of patches

clos.D/ D
[

k

�0;k; �0;k D �k.4/; k D 1; 2; : : : ;M;

where each �k W 4 ! �0;k defines a diffeomorphism of 4 onto �0;k . The inter-
section �0;k \ �0;k0 , k 6D k0, of the patches �0;k and �0;k0 is either ;, or a lower
dimensional face. The parametric representation is supposed to be globally contin-
uous which means that the diffeomorphisms �i and �i 0 coincide at common patch
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interfaces except for orientation. A mesh of level j onD is then induced by regular
subdivisions of depth j of 4 into 2jn simplices. This generates the 2jnM curved
elements f�j;kg.

The ansatz functions ˚j D f'j;k W k 2 Ij g are defined via parameterization,
lifting continuous piecewise linear Lagrangian finite elements from4 to the domain
D by using the mappings �i and gluing across patch boundaries. Setting Vj D
span˚j yields (4), where dimVj � 2jn.

To treat the non-homogeneous Dirichlet data in (2) and (3), we shall further dis-
tinguish between interior basis functions˚Dj D f'j;k W k 2 ID

j gwith 'j;k
ˇ̌
@D
� 0

and boundary functions ˚@Dj D f'j;k W k 2 I @D
j g with 'j;k

ˇ̌
@D
6� 0.

The solution of the mean field equation (2) by multigrid accelerated finite ele-
ment methods is straightforward and along the lines of standard literature, see
e.g., [2, 4]. Therefore, we will skip all the details here.

3.2 Multilevel Frames for Sparse Tensor Product Spaces

We will discretize (3) in the sparse tensor product space bV J DPjCj 0�J Vj ˝Vj 0 .

Abbreviating NJ WD dimVJ there holds bN J WD dimbV J � NJ logNJ which
is substantially smaller than the dimension N 2

J of the full tensor product space

VJ ˝ VJ D P
j;j 0�J Vj ˝ Vj 0 . Nevertheless, the approximation power in bV J is

essentially the same as in the full tensor product space provided that there is extra
regularity in terms of the anisotropic Sobolev spaces H s;s.D �D/, see [5, 17].

To discretize functions in bV J one traditionally uses hierarchical bases like
wavelet or multilevel bases, see for example [5]. In the present paper we use
instead a multilevel frame as proposed in [13], i.e., we represent functions by the
redundant but stable collection b̊J WD f'j;k˝'j 0;k0 W k 2 Ij ; k

0 2 Ij 0 ; jCj 0 �
J g. Thus, the structural and computational advantages of finite element methods are
combined with the efficiency of sparse grid approximations.

It has been shown in [13] that card .b̊J /� bN J �NJ logNJ , i.e., this frame
has still essentially optimal cardinality. Notice that the frame b̊J is the restric-
tion to bV J of the two-fold tensor product of the frame that underlies the BPX-
preconditioner [3].

3.3 Galerkin Discretization

We shall be concerned with Galerkin’s method for solving the boundary value prob-
lem (3) in the sparse tensor product space. We abbreviate the mean’s Neumann data
by � WD @.u� g/=@n and their approximate version by �J WD hr.uJ � g/;ni, with
uJ 2 VJ being the finite element solution of (2). Instead of the Dirichlet data of (3),



FE Based Second Moment Analysis for Elliptic Problems in Stochastic Domains 437

f WD .� ˝ �/Cor� 2 H 1=2;1=2.@D � @D/; (5)

we have only access to the approximation fJ WD .�J ˝�J /Cor� which lives on the
full tensor product grid. Thus, we follow [12] and insert the L2-orthoprojector b̆J
onto the sparse tensor product space bV J j@D�@D according to

bf J WD .�J ˝ �J /b̆J Cor� : (6)

We shall fix notation. Define for all 0 � j; j 0 � J the univariate stiffness matri-
ces and, with respect to the traces of the ansatz functions, the mass matrices and the
multiplication operators

A�j;j 0

WD .Ar˚�j 0

;r˚Dj /L2.D/; � 2 fD; @Dg;
Gj;j 0 WD .˚@D

j 0

; ˚@Dj /L2.@D/; Mj;j 0 WD .�J˚@Dj 0

; ˚@Dj /L2.@D/:
(7)

Two-fold tensor products of these finite element matrices lead to the required
matrices on the sparse tensor product space:

bA�;�J D �A�j1;j2
˝ A�

j 0

1
;j 0

2

�
j1Cj2;j

0

1
Cj 0

2
�J ; �;� 2 fD; @Dg;

bGJ D
�
Gj1;j2

˝Gj 0

1
;j 0

2

�
j1Cj2;j

0

1
Cj 0

2
�J ; bMJ D

�
Mj1;j2

˝Mj 0

1
;j 0

2

�
j1Cj2;j

0

1
Cj 0

2
�J ;

bB�J D
�
A�j1;j2

˝Gj 0

1
;j 0

2

�
j1Cj2;j

0

1
Cj 0

2
�J ;

bC�J D
�
Gj1;j2

˝ A�
j 0

1
;j 0

2

�
j1Cj2;j

0

1
Cj 0

2
�J ;

)
� 2 fD; @Dg:

Finally, we need the data vectorbcJ D
�
.Cor� ; ˚@Dj ˝ ˚@Dj 0

/L2.@D�@D/
�
jCj 0�J .

Notice that (6) reads in the discrete form asbfJ D bMJ
bG�1J bcJ .

In what follows we abbreviate Cordu by v. To determine the approximate coun-
terpartbvJ 2 bV J we shall separate the degrees of freedom in order to solve the

boundary value problem (3) successively:bvJ DbvD;DJ CbvD;@DJ Cbv@D;DJ Cbv@D;@DJ ,
where

bv�;�J WD
X

jCj 0�J
.˚�j ˝ ˚�j 0

/bv�;�
j;j 0

; �;� 2 fD; @Dg:

Then we proceed as follows (see [11] for the details).

1. Determinebv@D;@DJ as the L2-orthoprojection of the approximate Dirichlet data
bfJ (6) onto the discrete trace space bVJ

ˇ̌
@D�@D according to

bGJbv@D;@DJ D bMJ
bG�1J bcJ : (8)

2. ComputebvD;@DJ such that .bv@D;@DJ CbvD;@DJ /
ˇ̌
D�@D 2 H 1.D/˝H 1=2.@D/ sat-

isfies the homogeneous boundary condition on D � @D. In complete analogy
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determinebv@D;DJ which gives raise to

bBDJbv
D;@D
J D �bB@DJ bv@D;@DJ ; bCDJbv

@D;D
J D �bC@DJ bv@D;@DJ : (9)

3. Compute the functionbvD;DJ 2 H 1;1
0 .D � D/ inside the tensor product domain

D �D according to

bAD;DJ
bvD;DJ D �bA@D;@DJ

bv@D;@Dj �bAD;@DJ
bvD;@Dj �bA@D;DJ

bv@D;Dj : (10)

3.4 Error Estimates

Let hJ WD 2�J � maxkfdiam.�J;k/g denote the mesh size associated with the
subspace VJ on D. Then, from standard finite element theory for elliptic operators
(e.g., [2, 4]), we derive the following facts with respect to the approximate mean.

Proposition 1. Equation (2) can be solved in linear complexity. The approximate
mean uJ satisfies the error estimate ku � uJ kL2.D/ . h2J kukH2.D/ provided that
the given data are sufficiently smooth.

In the Galerkin scheme we have to employ the perturbed Dirichlet data bfJ (6)
instead of the original Dirichlet data f (5) to compute the approximate solutionbvJ
of (3). Therefore, we obtain only a reduced rate of convergence.

Theorem 2. Assume that u 2 W 2;1.D/, g 2 W 1;1.D/, and Cor� 2 H 1;1.@D �
@D/. Then, the approximate solutionbvJ 2 bV J to (3) satisfies the error estimate

kv �bvJ kL2.D�D/ . hJ kCor� kH1;1.@D�@D/
˚kukW 2;1.D/ C kgkW 1;1.D/

�2
:

Proof. The assertion follows immediately from [11] if we show that the consistency
error of the right hand side satisfies

		f � bfJ
		
L2.@D�@D/ . hJ kCor� kH1;1.D�D/

˚kukW 2;1.D/ C kgkW 1;1.D/

�2
:

(11)
To show this estimate we proceed as follows:

		f �bf J

		
L2.@D�@D/

D 		.� ˝ �/Cor� �.�J ˝ �J /b̆J Cor�
		
L2.@D�@D/

� 		.� ˝ � � �J ˝ �J /Cor�
		
L2.@D�@D/

C 		.�J ˝ �J /.I � b̆J /Cor�
		
L2.@D�@D/

� k� ˝ � � �J ˝ �J kL1.@D�@D/kCor� kL2.@D�@D/

C k�J k2L1.@D/

		.I � b̆J /Cor�
		
L2.@D�@D/

: (12)
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We now estimate the two terms on the right hand side of this inequality sepa-
rately. The L2-orthoprojection onto the sparse grid space satisfies (cf. [5, 17])

		.I � b̆J /Cor�
		
L2.@D�@D/ . hJ kCor� kH1;1.@D�@D/: (13)

Pointwise error estimates for piecewise linear finite elements (see e.g., [4]) imply

k� � �J kL1.@D/ D khr.u � uJ /;nikL1.@D/ � kru � ruJ kL1.D/ . hJ kukW 2;1.D/:

This induces by standard tensor product arguments

k� ˝ � � �J ˝ �J kL1.@D�@D/ . hJ
�k�kL1.@D/ C k�J kL1.@D/

�kukW 2;1.D/:

(14)
Inserting (13), (14) and k�J kL1.@D/ � k� � �J kL1.@D/ C k�kL1.@D/ into the
estimate (12) yields the desired consistency result (11). �

3.5 Fast Second Moment Computation

The linear systems of equations arising from the sparse multilevel discretization can
be assembled and solved in essentially linear complexity when using the following
ingredients, developed in the papers [11–13].

1. Due to the non-uniqueness of the representation of functions in frame coordi-
nates, all system matrices have a large kernel. Since the associated right hand
side vectors lie in the related images, Krylov subspace methods converge with-
out further modifications (see, e.g., [10,13]). In practice, we apply the conjugate
gradient method to solve (8)–(10).

2. The diagonally scaled system matrices are essentially well conditioned in the
sense that all nonzero eigenvalues behave essentially like a fixed constant. There-
fore, the conjugate gradient method converges with a rate that is essentially
independent of the discretization level J (e.g., [10]).

3. Iterative solvers involve only matrix-vector multiplications. The fast matrix-
vector multiplication developed in [11, 13] is of essentially linear complexity.
Besides standard prolongations and restrictions, it involves only system matrices
(7) with 0 � j D j 0 � J , i.e., standard finite element matrices. Employing
prolongations and restrictions, all coarse level matrices are successively derived
from the finest grid matrices in linear time.

4. Numerical quadrature in the sparse tensor product space is performed as fol-
lows. We expand the two-point correlation into the hierarchical basis b�J WD
f'j;k ˝ 'j 0;k0 W k 2 Ij nIj�1; k0 2 Ij 0 nIj 0�1; j C j 0 � J g � b̊J of the
sparse tensor product space bV J . For Cor� 2 H s;s.@D � @D/ with 0 � s < 2

an approximation bCor�;J is obtained such that kCor� �bCor�;J kL2.@D�@D/ D
hsJ kCor� kH s;s.@D�@D/. In the case s D 2 the factor

pj loghJ j appears in
addition, see [5] for the details.
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Fig. 1 Approximate mean (left) and variance (right) of u

Proposition 2. By combining the ingredients .1/–.4/ one arrives at an algorithm
which computes the solution’s second moment in a complexity being essentially
proportional to the number of unknowns used to discretize the mean field equa-
tion (2).

4 Numerical Results

We consider the boundary value problem (1) with A� I, f � 1=4, g.x/Dx � y,
and D being the unit circle (i.e. n D 2). If we prescribe Gaussian correlation
Cor�.x; y/ D e�kx�yk2 we get the solution’s approximate mean and variance shown
in Fig. 1. It turns out that the variance increases when approaching the boundary
of the domain, i.e., the solution’s sensitivity with respect to boundary perturbations
is the larger the nearer the boundary is. This effect is stronger in regions where
the modulus of the Dirichlet data g is large. The non-symmetry is induced by the
present inhomogeneity f � 1=4. Notice that the variance scales quadratically in
the perturbation parameter " and thus decreases correspondingly as "! 0. Further
numerical results, especially a comparison with a Monte Carlo simulation, can be
found in [11].
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7. Deb, M.K., Babuška, I., Oden, J.T.: Solution of stochastic partial differential equations using
Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190, 6359–6372
(2001)

8. Frauenfelder, P., Schwab, C., Todor, R.A.: Finite elements for elliptic problems with stochastic
coefficients. Comput. Meth. Appl. Mech. Eng. 194, 205–228 (2004)

9. Ghanem, R.G., Spanos, P.D.: Stochastic finite elements: a spectral approach. Springer, New
York (1991)

10. Griebel, G.: Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. Teubner
Skripten zur Numerik. B.G. Teubner, Stuttgart (1994)

11. Harbrecht, H.: A finite element method for elliptic problems with stochastic input data. Appl.
Numer. Math. 60, 227–244 (2010)

12. Harbrecht, H., Schneider, R., Schwab, C.: Sparse second moment analysis for elliptic problems
in stochastic domains. Numer. Math. 109, 167–188 (2008)

13. Harbrecht, H., Schneider, R., Schwab, C.: Multilevel frames for sparse tensor product spaces.
Numer. Math. 110, 199–220 (2008)

14. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial
differential equations. Comput. Methods Appl. Mech. Eng. 194, 1295–1331 (2005)

15. Protter, P.: Stochastic integration and differential equations: a new approach. Springer, Berlin
(1990)

16. Tartakovsky, D.M., Xiu, D.: Numerical methods for differential equations in random domains.
SIAM J. Sci. Comput. 28, 1167–1185 (2006)

17. von Petersdorff, T., Schwab, C.: Sparse wavelet methods for operator equations with stochastic
data. Appl. Math 51, 145–180 (2006)



On Robust Parallel Preconditioning
for Incompressible Flow Problems

Timo Heister, Gert Lube, and Gerd Rapin

Abstract We consider time-dependent flow problems discretized with higher order
finite element methods. Applying a fully implicit time discretization or an IMEX
scheme leads to a saddle point system. This linear system is solved using a precon-
ditioned Krylov method, which is fully parallelized on a distributed memory parallel
computer.

We study a robust block-triangular preconditioner and besides numerical results
of the parallel performance we explain and evaluate the main building blocks of the
parallel implementation.

1 Introduction

The numerical simulation of time-dependent flow problems is an important task in
research and industrial applications. The flow of Newtonian incompressible fluids
is described by the system of the Navier–Stokes equations in a bounded domain
˝ � Rd , d D 2; 3, where one has to find a velocity field u W Œ0; T ��˝ ! Rd and
a pressure field p W Œ0; T � �˝ ! R such that

@u
@t
� ��uC .u � r/ uCrp D f in .0; T � �˝;

r � u D 0 in Œ0; T � �˝:
(1)

Here f W .0; T ��˝ ! Rd is a given force field, and � is the kinematic viscosity.
For brevity initial and boundary conditions are omitted. One has to cope with some
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modifications for turbulent flows, namely using r � .2�S.u//with S.u/ WD 1
2
.ruC

ruT / instead of �4u, variable and non-linear viscosity � WD �const C �t .u/, and
additional velocity terms from turbulence models.

In Sect. 2 this system of equations is discretized in space and time. The high spa-
tial resolution needed for a typical domain ˝ � R3 leads to a number of unknowns
in the order of millions of degrees of freedom. We need to calculate the solution
at many time-steps, especially for optimization or inverse problems. This results in
a demand for a robust and fast algorithm. We define such an algorithm in Sect. 3.
The memory and performance requirements for the solution process can typically
be met by a distributed memory cluster.

Let us state the requirements for the solver: Flexibility, to allow comparisons
between different turbulence models, stabilization schemes, time discretizations,
solvers, etc. Parallelization, ranging from multicore workstations to clusters with
hundred or more CPUs. Scalability, with respect to the number of CPUs and
problem size.

Combining these three requirements is a challenge. Research codes are usually
flexible, but often lack the other requirements. On the other hand commercial codes
usually work with lowest order discretization and are not flexible enough. For higher
accuracy and flexibility we favor a coupled approach for the saddle point system
instead of a splitting scheme.

We use the standard Multiple Instruction, Multiple Data streams (MIMD) paral-
lel architecture model. The basis for the parallel implementation are parallel linear
algebra routines running on top of MPI to allow parallel assembling and solving of
the linear systems. The data matrices and vectors are split row-wise between the
CPUs (Sect. 4). We conclude the paper with numerical results in Sect. 5.

2 Discretization

We start by semi-discretizing the continuous equation (1) in time. The solution
.u; p/ and the data f are expressed only at discrete time-steps 0 D t0 < t1 < : : : <

tmax D T of the time interval Œ0; T �, denoted by the superscript n, e.g., un. We
consider two different discretization schemes, the typical implicit time discretiza-
tion and an implicit-explicit (short IMEX) scheme, c.f. [1]. The fully implicit time
discretization leads to a sequence of non-linear stationary problems of the form

��4un C cun C .un � r/un Crpn D Of.un�1; pn�1/;
r � un D 0; (2)

where c 2 R is a reaction coefficient related to the inverse of the time-step size
�n WD tnC1 � tn and Of is a modified right-hand side. Many time discretizations fit
into this implicit scheme, for instance implicit Euler, BDF(2) or diagonal-implicit
Runge–Kutta schemes. The non-linear system (2) is linearized by a fixed-point or
Newton-type iteration. Hence, we have to solve a sequence of linear systems with a
given divergence-free field b in the convective term .b � r/u.
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The iteration for the non-linearity in (2) implies high computational costs.
Explicit time-stepping is not desirable because of the strong restrictions on the
time-step size. A remedy is to treat the non-linear term .un � r/un in an explicit
way, while the remainder of the equation is kept implicit. These methods are called
IMEX-schemes. An elegant option is to combine an explicit Runge–Kutta scheme
for the convection and an diagonal-implicit scheme, as used above, for the rest. With
this method, the non-linearity disappears.

Thus, in both cases we end up with the solution of stationary Oseen problems:

��4uC cuC .b � r/uCrp D f;

r � u D 0; (3)

which are discretized via Galerkin FEM on quadrilateral meshes with continu-
ous, piece-wise (tensor-) polynomials Qk of order k > 0. The inf-sup-stability is
ensured using a Taylor-Hood pair QkC1=Qk for velocity and pressure. This stable
discretization leads to a finite-dimensional, linear saddle point system

�
A BT

B 0

��
u
p

�
D
�
f

g

�
(4)

with finite element matrices A containing diffusion, reaction, and convection and B
containing the pressure-velocity coupling.

3 The Solver

The system (4) is solved using the preconditioned Krylov subspace method FGM-
RES. This is a variant of the standard GMRES algorithm, see [12, 13]. FGMRES
can cope with a changing preconditioner in each iteration. This is required because
the preconditioner is not calculated explicitly as a matrix but is given as an implicit
operator which uses iterative solvers internally. The usage of FGMRES in the con-
text of flow problems is also described in detail in [9]. System (4) is preconditioned
with an operator P�1 of block triangular type:

�
A BT

B 0

�
P�1

�
v
q

�
D F with P�1 D

�eA BT
0 eS

��1
:

Here approximations eA�1 � A�1 and eS�1 � S�1 for the Schur complement
S WD �BA�1BT are used. With exact evaluations of A and S the number of
outer (F)GMRES steps is at most two, see [4]; this motivates the choice of the
preconditioner. The inverse can be calculated by
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P�1 D
�eA�1 �eA�1BTeS�1
0 eS�1

�
D
�eA�1 0
0 I

��
I BT

0 �I
��

I 0

0 �eS�1
�
:

Each outer iteration requires the solution of two inner problems: the applications of
eA�1 andeS�1, and there is one matrix-vector product with the matrix BT .

There are several reasons for choosing a coupled approach. Using a projection
method would introduce a CFL-like condition restricting the maximum time-step
size. The main advantage of projection type methods (computational speed) can
be simulated by only applying the preconditioner with a simple iteration method
with a fixed number of steps (e.g., one). The result is comparable to a projection
step method. Furthermore, the coupled approach fits better to higher order methods.
Finally, this method has the advantage that the approximation quality of eA�1 and
eS�1 is adjustable at will; the outer iteration converges either way.

TheA-block forms a vector-valued convection–diffusion-reaction problem, which
is a lot larger than the Schur complement. It is non-symmetric due to the convection
part and the vector components may be coupled as a result of modifications for
turbulent calculations, c.f. Sect. 1. An important part is the (strong) reaction term,
which results in the low condition number of the matrix. Thus a BiCGStab solver
with algebraic multi-grid preconditioning through BoomerAMG, [8], provides good
results foreA�1.

The approximation of the Schur complementeS�1 is more difficult, because S D
�BA�1BT is dense and hence cannot be built explicitly as a matrix. Fortunately,
the reaction-dominatedA can be simplified with the mass matrixMu:

S�1 �
h
B.cMu/

�1BT
i�1 D c

�
BM�1u BT

��1
:

We approximate p D eS�1q by a pressure Poisson problem:

� 1
c
4p D q (5)

and suitable boundary conditions, see [14]. The correct boundary conditions stem
from BM�1u BT , which cannot be applied directly. As an approximation there are
Neumann boundary conditions applied in (5) where Dirichlet data is applied to the
velocity in (1). Vice versa if Neumann boundary conditions are given in (1), homo-
geneous Dirichlet boundary conditions are applied in the Schur complement, (5).
Periodic boundary conditions for the velocity can be treated with periodic boundary
conditions in (5), which provide good results, c.f. Sect. 5.

The block triangular structure has been used for years, a good general overview
is given in [4]. The form of the preconditioner is already described in [10], although
we neclect the viscosity term in the Schur complement. A discussion of block pre-
conditioners for flow problems can be found in [6] and [11]. Using FGMRES instead
of e.g., GMRES proved to be a huge advantage not discussed there, but is motivated
in [9].
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4 Implementation Overview

The implementation of the solver described in this paper is built on top of a col-
lection of known libraries. The basis is given by an MPI implementation for the
parallel communication and the library PETSc, see [2], which supplies us with data
structures and algorithms for scalable parallel calculations: matrices, vectors, and
iterative solvers. The finite elements, mesh handling and assembling are performed
by deal.II, see [3], which directly interfaces with the linear algebra objects from
PETSc.

For the parallel calculations the rows in the system matrix have to be partitioned,
such that each row is stored on exactly one CPU. This can be done with the fol-
lowing algorithm: first, create a graph, with cells as vertices and edges between
two vertices if the corresponding cells are neighbors. This graph is partitioned into
mostly equal-sized sets, such that each CPU “owns” a number of cells. The library
METIS minimizes the number of cut edges. This reduces the amount of communica-
tion in parallel calculations. With the partition of the cells one can assign the owner
for each degree of freedom. If two neighboring cells are owned by different CPUs,
degrees of freedom on the shared face have to be assigned to one or the other CPU.
By controlling this allocation one tries to balance the number of local rows per CPU.
This improves the scalability of the solution process. The authors improved the way
deal.II assigns these degrees of freedom, which decreases the imbalance of the num-
ber of degrees of freedom by up to 50%. This is done by making a (deterministic)
pseudo-random choice.

The main loop is structured as follows: the outermost loop is the time stepping.
For each time step the inner loop is repeated for each stage of the time discretization.
For a fully implicit time discretization a fixed-point iteration surrounds the inner
part. Finally the inner part consists of assembling and then solving the linear system
with FGMRES. In each iteration the preconditioner is applied once. Finally, the
preconditioner consists of the preconditioned inner solvers for A and S .

5 Numerical Results

We present the simulation of “Homogeneous Decaying Isotropic Turbulence” which
is a widespread turbulence benchmark. The domain is given by a cube Œ0; 2��3

with periodic boundary conditions. A starting value (isotropic random velocity,
see Fig. 1) from a given energy spectrum (calculated via Fourier transform) is pre-
scribed. The problem has a Taylor-scale Reynolds number of Re� D150 and the
viscosity is � � 1.5e-5 (air). As a turbulence model we choose a standard LES
Smagorinsky model with �t D .Cs4h/2jS.u/j; jM j WD .2M �M/

1
2 : The energy

dissipation in time is compared to experimental data from [5], see Fig. 1, right. The
calculations were done with Q2=Q1 elements on a mesh with 163 cells and the
Smagorinsky constant Cs D 0:17. Here the filter-width 4h is given by h. This
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Fig. 1 Left: iso-surface of initial velocity spectrum; right: energy spectra at t D 0:87 and t D 2:00

(upper and lower line) and corresponding experimental data (symbols) with starting value

Table 1 Left: number of FMGRES iterations with respect to mesh size; right: speed-up and
efficiency of assembling and solving

1/h # DoFs # It.

8 2,312 5
16 112,724 5
32 859,812 5
48 2,855,668 6
64 6,714,692 5

# CPUs Speed-up Efficiency Speed-up Efficiency
assembling assembling solving solving

4 1.00 100% 1.00 100%
8 1.92 96% 1.72 86%

16 3.70 93% 2.91 73%
32 6.33 79% 4.69 59%
64 12.79 79% 7.39 46%

constant was not optimized but the results show good agreement to experimental
data. For time discretization we apply a second order IMEX-scheme with a time-
step size of 0:0087. The outer FGMRES residual is chosen as 1e-7 to the starting
residual, whereas the inner residuals are set to 1e-5 (also relative). There are several
important numerical results. The number of outer FGMRES iterations is indepen-
dent of the number of CPUs, because there is no difference to the serial algorithm.
The number of iterations is independent of the mesh size and lies between 5 and 6
iterations, see Table 1, left. This proves that the preconditioner design works well
and the accuracy ofeA�1 andeS�1 is sufficient. Now, we consider the so-called strong
scalability, where the number of CPUs n is increased while the mesh size is kept
fixed at h D 1=32, see Table 1, right. The scaling up to 64 processors is quite reason-
able. The performance degrades slightly for larger number of processors, especially
in the solution process. There are two reasons for this. First, the problem size is
getting too small for the local calculations to dominate the communication costs.
Second, the solver for the A-block, which takes the most time in the solution pro-
cess, does not scale linearly. Table 2 shows the weak scalability, where the problem
size increases together with the number of CPUs. This keeps the number of degrees
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Table 2 Weak scalability of assembly- and solution-process w.r.t. increasing number of CPUs and
number of degrees of freedom (time and efficiency)

# CPUs 1/h # DoFs Assembly Solving

6 24 368,572 20.07s 100% 44.86s 100%
16 32 859,812 18.21s 96% 49.14s 80%
54 48 2,855,668 19.16s 90% 49.02s 79%

128 64 6,714,692 19.98s 86% 54.64s 70%

of freedom per CPU nearly constant. The results are satisfying and efficiency only
degrades slightly with a large number of CPUs.

6 Summary and Outlook

We recap our plans stated in the introduction and critically look what we accom-
plished in this paper. The development of a highly scalable parallel Navier–Stokes
solver is underway. The parallel scalability is shown with the numerical results, but
is constrained to a larger number of CPUs for several reasons. Some parts of deal.II
are not yet parallellized, e.g., mesh handling and management of the degrees of
freedom. The result is degraded performance and an increased demand on memory
for a larger number of CPUs. This is visible starting at around 100 CPUs. With [7]
we see good scaling up to thousands of CPUs with respect to computational costs
and memory requirements. The goal of flexibility is solved in large parts. On the
one hand we are able to compare different time discretizations, finite element orders
and turbulence models. On the other hand we only look at instationary problems
with small viscosities. Extending and testing the solver for a broad spectrum of test
problems is still work in progress. The different regime of stationary and convection
dominated flow poses challenges. The performance of the algebraic multi-grid for
the A-Block needs to be verified there.

We present a flexible, parallel, and scalable solver framework for the solution of
the incompressible Navier-Stokes equations. The numerical results prove that the
design of the preconditioner is promising.

Acknowledgement T. Heister is partly supported by the DFG through GK 1023.
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Hybrid Modeling of Plasmas

Mats Holmström

Abstract Space plasmas are often modeled as a magnetohydrodynamic (MHD)
fluid. However, many observed phenomena cannot be captured by fluid models,
e.g., non-Maxwellian velocity distributions and finite gyro radius effects. Therefore
kinetic models are used, where also the velocity space is resolved. This leads to
a six-dimensional problem, making the computational demands of velocity space
grids prohibitive. Particle in cell (PIC) methods discretize velocity space by repre-
senting the charge distribution as discrete particles, and the electromagnetic fields
are stored on a spatial grid. For the study of global problems in space physics, such
as the interaction of a planet with the solar wind, it is difficult to resolve the elec-
tron spatial and temporal scales. Often a hybrid model is then used, where ions are
represented as particles, and electrons are modeled as a fluid. Then the ion motions
govern the spatial and temporal scales of the model. Here we present the mathemat-
ical and numerical details of a general hybrid model for plasmas. All grid quantities
are stored at cell centers on the grid. The most common discretization of the fields in
PIC solvers is to have the electric and magnetic fields staggered, introduced by Yee
[IEEE Transactions on Antennas and Propagation 14:302–307 1966]. This automat-
ically ensures that r � B D 0, down to round-off errors. Here we instead present a
cell centered discretization of the magnetic field. That the standard cell centered
second order stencil for r � E in Faraday’s law will preserve r � B D 0 was noted
by Tóth [Journal of Computational Physics 161:605–652 2000]. The advantage of
a cell centered discretization is ease of implementation, and the possibility to use
available solvers that only handle cell centered variables. We also show that the pro-
posed method has very good energy conservation for a simple test problem in one-,
two-, and three dimensions, when compared to a commonly used algorithm.
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1 Introduction

Space plasmas are often modeled as a magnetohydrodynamic (MHD) fluid. How-
ever, many observed phenomena cannot be captured by fluid models, e.g., non-
Maxwellian velocity distributions and finite gyro radius effects. Therefore kinetic
models are used, where also the velocity space is resolved. This leads to a six-
dimensional problem, making the computational demands of velocity space grids
prohibitive. Particle in cell (PIC) methods discretize velocity space by represent-
ing the charge distribution as discrete particles, and the electromagnetic fields are
stored on a spatial grid. For the study of global problems in space physics, such as
the interaction of a planet with the solar wind, it is difficult to resolve the electron
spatial and temporal scales. Often a hybrid model is then used, where ions are rep-
resented as particles, and electrons are modeled as a fluid. Then the ion motions
govern the spatial and temporal scales of the model. Here we present the mathemat-
ical and numerical details of a general hybrid model for plasmas. All grid quantities
are stored at cell centers on the grid. The most common discretization of the fields
in PIC solvers is to have the electric and magnetic fields staggered, introduced by
Yee [17]. This automatically ensures that r � B D 0, down to round-off errors.
Here we instead present a cell centered discretization of the magnetic field. That
the standard cell centered second order stencil for r � E in Faraday’s law will pre-
serve r �B D 0 was noted by [14]. The advantage of a cell centered discretization is
ease of implementation, and the possibility to use available solvers that only provide
for cell centered variables. We also show that the proposed method has very good
energy conservation for a simple test problem in one-, two-, and three dimensions,
when compared to a commonly used algorithm.

2 Definitions

We have NI ions at positions ri .t/ [m] with velocities vi .t/ [m/s], mass mi [kg]
and charge qi [C], i D 1; : : : ; NI . By spatial averaging,1 we can define the charge
density �I .r; t/ [Cm�3] of the ions, their average velocity uI .r; t/ [m/s], and the
corresponding current density JI .r; t/ D �IuI [Cm�2s�1]. Electrons are modelled
as a fluid with charge density �e.r; t/, average velocity ue.r; t/, and current density
Je.r; t/ D �eue. The electron number density is ne D ��e=e, where e is the ele-
mentary charge. If we assume that the electrons are an ideal gas, then pe D nekTe,
so the pressure is directly related to temperature (k is Boltzmann’s constant).

The trajectories of the ions are computed from the Lorentz force,

dri
dt
D vi ;

dvi
dt
D qi

mi
.EC vi � B/ ; i D 1; : : : ; NI

where E D E.r; t/ is the electric field, and B D B.r; t/ is the magnetic field.2

1 Usually, charge and current densities are deposited on a grid, using shape functions [4].
2 [1] modifies the electric field in the Lorentz force by a term proportional to C and r � B to
preserve momentum.
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2.1 Hybrid Approximations

A brief overview of hybrid codes can be found in [16]. A more complete survey
can be found in [10]. Most hybrid solvers for global simulations have the following
assumptions in common.

1. Quasi-neutrality, �I C �e D 0, so that given the ion charge density, the electron
charge density is specified by �e D ��I .

2. Ampere’s law whithout the transverse displacement current (also called the
Darwin approximation, or the nonradiative limit) provides the total current,
given B, by

J D ��10 r � B;

where �0 D 4� �10�7 [Hm�1] is the magnetic constant (�0�0c2 D 1), and from
the total current we get the electron current, Je D J � JI , and thus the electron
velocity, since the quasi-neutrality implies that ue D Je=�e D .JI � J/=�I .

3. Massless electrons,me D 0, lead to the electron momentum equation

neme
due
dt
D 0 D �eEC Je � B� rpe C C

where the force terms C can be due to collisions, such as electron-ion collisions,
electron-neutral [13] collisions, or anomalous, i.e., representing electron-wave
interactions [1]. In our numerical experiments we have assumed that C D 0.
This provides an equation of state (Ohm’s law) for the electric field

E D 1

�I
Œ.J � JI / � B � rpe C C � ;

with J from Ampere’s law. So the electric field is not an unknown. Whenever it
is needed, it can be computed.

4. Faraday’s law is used to advance the magnetic field in time,

@B
@t
D �r � E:

5. The electron pressure is isotropic (pe is a scalar, not a tensor).

For the electrons, the remaining degree of freedom is the pressure, pe . Note that pe
only affects the ion motions through the electric field. The evolution of the magnetic
field is not affected since we have r �rpe D 0 in Faraday’s law. There are several
ways to handle the electron pressure [15, p. 8790],

1. Assume pe is constant, or zero [5].
2. Assume pe is adiabatic (small collision frequency). Then the electron pressure

is related to the electron charge density by pe / j�ej� , where � is the adiabatic
index. Commonly used values are � D 5=3 [1, 8], and � D 2 [2, 12].
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3. Solve the massless fluid energy equation [8, 11],

@pe

@t
C ue � rpe C �per � ue D .� � 1/ �jJj2;

Here we assume that pe is adiabatic. Then the relative change in electron pressure
is related to the relative change in electron density by

pe

pe0
D
�
ne

ne0

��
;

where the zero subscript denote reference values. From charge neutrality and pe D
nekTe we have that

pe D A��I with A D k

e
�
1��
I Te

a constant that is evaluated using reference values of �I and Te, e.g., solar wind
values. Note that � D 1 corresponds to assuming that Te is constant, and � D 0

gives a constant pe.

2.1.1 Hybrid Equations

If we store the magnetic field on a discrete grid Bj , the unknowns are ri , vi , and
Bj (supplemented by pe on a grid, if we include the electron energy equation). The
time advance of the unknowns can then be written as the ODE

d

dt

0

@
ri
vi
Bj

1

A D

0
B@

vi
qi

mi
.EC vi � B/
�rj � E

1
CA (1)

where rj� is a discrete rotation operator, and the electric field is

Ej D 1

�I

��JI � Bj C ��10
�rj � Bj

� � Bj
�� rpe C C :

3 Discretization

An overview of different discretizations of the above equations can be found in [6,
Appendix A]. [1, Sect. 3.1] provides a consise description of the CAM-CL algorithm
introduced by [9]. All our grid variables will be cell centered: Bj , Jj , and �j (here
Jj and �j are the ionic current and the ionic charge density at cell centers – from
now we omit the subscript I for simplicity). We follow the Current Advance Method
and Cyclic Leapfrog (CAM-CL) algorithm [9], but omit the CAM part. The Current
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Advance Method is used to avoid multiple iterations over the particles, but does not
conserve energy well, as we will see for a test problem.

For the particles, we have to solve for ri and vi ; and for the grid cells we have
to solve for Bj , Jj and �j . We denote time level t D n	t by superscript n. Given

Bn�1=2j , rn�1=2i and vni , we do the following steps.

rnC1=2i  rn�1=2i C	tvni ;

rni  
1

2

�
rnC1=2i C rn�1=2i

�
:

At rni , deposit particle charges and currents

�i ! �nj ; �ivni ! Jnj ;

BnC1=2j  Bn�1=2j ; �nj ; J
n
j according to CL. (2)

At rnC1=2i , deposit particle charge

�i ! �
nC1=2
j :

Estimate electric field at nC 1=2 using the currents at n

E�j  BnC1=2j ; �
nC1=2
j ; Jnj ; pe;

vnC1=2i  vni C
	t

2

qi

mi

�
E�j C vni � BnC1=2j

�
:

At rnC1=2i , deposit particle current

�iv
nC1=2
i ! JnC1=2j ;

EnC1=2j  BnC1=2j ; �
nC1=2
j ; JnC1=2j ; pe

vnC1i  vni C	t
qi

mi

�
EnC1=2j C vnC1=2i � BnC1=2j

�
:

Now we have BnC1=2j , rnC1=2i and vnC1i . Set n nC 1 and start over again.

For each particle we need a temporary vector. First rnC1=2i is temporarily saved
during the deposit at rni . Then vni is temporarily saved until the final velocity update.
We also need to store the current corresponding to each particle, �iv�i , in preparation
of the deposit operations.

The update of the magnetic field in (2) using cyclic leapfrog (CL) is done in m
sub-time steps of length h D 	t=m. With the notation Bpj � Bj ..n C 1=2/	t C
ph/ we have the iteration
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8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

B1j  B0j � hr � E0j ;

BpC1j  Bp�1j � 2hr � Epj ; p D 1; 2; : : : ; m � 1;
eBmj  Bm�1j � hr � Emj ; and

BnC1=2j  1
2

�
Bmj CeBmj

�
:

Since the magnetic field is leapfrogged in time, we need one temporary grid cell
vector.

3.1 Non-Periodic Boundary Conditions

To be able to model the interaction of objects with the solar wind, non-periodic
boundary conditions in the x-direction have been implemented. At xmin we have
an inflow boundary, and at xmax an outflow boundary. The other boundaries are still
periodic. The computation of r�E in the interior of the simulation domain requires
E in one extra layer of cells in the x-directions. Also, computing E in the interior of
the simulation domain involves r � B, thus also requiring B in one outer layer of
cells. At the inflow boundary we specify solar wind values of B and E D �uI � B.
At the outflow boundary we extrapolate E and B from the interior of the simulation
domain to one external cell layer (a simple copy of the values from the upstream
cells).

3.2 Spatial and Temporal Scales

If we want solutions of the discrete equations to be accurate approximations of the
solutions to the continuous equations, a necessary condition is that the discretisation
resolves all relevant spatial and temporal scales. The smallest spatial scale for the
hybrid equations is the ion inertial length (the ion skin depth) ıi D c=!pi , where
c is the speed of light and !pi is the ion plasma frequency, !2pi D niq

2
i =.�0mi /,

ni the ion number density, qi the ion charge, mi the ion mass, and �0 � 8:854 �
10�12 [Fm�1] the vacuum permittivity. The ion inertial length is associated with
the J � B term in Ohm’s law (the Hall term) that describes whistler dynamics. The
fastest temporal scale is also associated with whistler dynamics. The whistler wave
spectrum is cutoff at the electron cyclotron frequency, but due to the assumption
of massless electrons it is unbounded for the hybrid equations, and the frequency
scales like !=˝i D .kc=!pi / for large k [10]. Here ˝i D qiB=mi is the ion
gyrofrequency. This gives the CFL constraint

	t <
˝�1ip
n�

�
	x

ıi

�2

where n is the spatial dimension.
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Table 1 Energy errors (total energy) for quiet plasma runs at times T . Numbers in parentheses
indicate that the parameter was not stated in the reference

Reference Dim. Particles 	x 	t T Error Error
per cell ıi ˝�1

i ˝�1
i Ref. here

[9] 1 16 0.5 0.1 100 9% 0.9%
300 47% 3%

2 32 0.5 0.1 100 2.6% 0.9%
300 14% 3%

[3] 3 4 (1.54) 0.0056 112 <1% 0.25%

4 A Quiet Plasma Test Problem

A uniform, or quiet, plasma is a first test of any simulation code. The solution should
only show small statistical fluctuations, and energy should be preserved for long
simulation times. Matthews [9] describes one- and two-dimensional quiet plasma
runs, and Brecht [3] present three-dimensional results.

The number of cells used here is 16, 642, and 323. All boundary conditions are
periodic. Ion and electron temperatures are given by, ˇi D 1, and ˇe D 0. Brecht [3]
uses a transport equation for the electron temperature. The number of magnetic field
sub cycles is 4 in [9], 3 here, and [3] does not use sub cycling.

Total energy, the sum of the energy stored in the electric and magnetic fields
and the kinetic energy of the particles, should be conserved. In Table 1 we compare
the relative errors in total energy with the published values in one-, two-, and three
dimensions.

5 Conclusions

The hybrid method stores the magnetic field on a grid. Here we have presented a
cell centered algorithm as an alternative to the staggered grid commonly used. The
cell centered method preserves r � B D 0 down to round-off errors. In Table 1 it
is evident that the proposed method conserves energy well when compared to the
commonly used CAM-CL method [9]. That the CAM-CL method does not conserve
energy well has been noted before [3, 7].
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A Priori Error Estimates for DGFEM
Applied to Nonstationary Nonlinear
Convection–Diffusion Equation

J. Hozman and V. Dolejšı́

Abstract We deal with a numerical solution of a scalar nonstationary convection–
diffusion equation with nonlinear convective as well as diffusive terms which
represents a model problem for the solution of the system of the compressible
Navier–Stokes equations describing a motion of viscous compressible fluids. We
present a discretization of this model equation by the discontinuous Galerkin finite
element method (DGFEM) with several variants of the interior penalty, namely
nonsymmetric (NIPG), symmetric (SIPG) and incomplete (IIPG) types of stabiliza-
tions of diffusion terms. Moreover, under some assumptions on the nonlinear terms,
domain partitions and the regularity of the exact solution, we recall a priori hp
error estimates in the L2-norm and in the H 1-seminorm. A set of numerical exper-
iments evaluating the experimental orders of convergence in the dependence on the
polynomial degree of approximation and used type of stabilization is presented.

1 Introduction

Our goal is to develop a sufficiently robust, accurate and efficient numerical method
for the solution of the system of the compressible Navier–Stokes equations describ-
ing a motion of viscous compressible fluids. Since the relevant mathematical theory
is missing for the Navier–Stokes equations, it is convenient to study a model scalar
equation at first, for which the theoretical base is established. The studied model
scalar equation should correspond to the system of the Navier–Stokes equations in
some simplification. Therefore, we introduce the concept of the scalar nonstation-
ary nonlinear convection-diffusion equation with nonlinear convection as well as
diffusion.
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Among a wide class of numerical methods, the discontinuous Galerkin finite
element method (DGFEM) seems to be a promising technique for the solution of
convection-diffusion problems. DGFEM is based on a piecewise polynomial but
discontinuous approximation, for a survey, see e.g. [3,4]. Within this paper we deal
with the space semidiscretization of the model problem with the aid of three vari-
ants of DGFEM, namely nonsymmetric (NIPG), symmetric (SIPG) and incomplete
interior penalty Galerkin (IIPG) techniques, see [2].

The analysis of a nonstationary convection-diffusion equation with a linear diffu-
sion and a nonlinear convection was presented, e.g. in [6–9]. Further, the analysis of
a scalar quasi-linear convection-diffusion equation can be found in [1]. A discontin-
uous Galerkin method applied to nonlinear parabolic equations with diffusion term
�div.a.u/r.u//; a W IR! IR was analysed in [14]. Moreover, the solution of quasi-
linear elliptic problems with a more general type of diffusion was studied in [11].
Finally, let us cite works [10, 13], where the nonstationary convection–diffusion
equation with a diffusion of type from [14] was analysed.

In this paper, we considered a more general type of diffusion term, namely
�div.A.u/r.u//, where A W IR ! IRd;d is a generally nonsymmetric matrix. We
present a priori hp error estimates and a set of numerical examples verifying the
theoretical results is included.

2 Scalar Nonstationary Nonlinear Convection–Diffusion
Equation

Let ˝ � IRd ; d D 2; 3, be a bounded open polygonal (if d D 2) or polyhedral (if
d D 3) domain with Lipschitz-continuous boundary @˝ D @˝D [ @˝N , @˝D \
@˝N D ;; and T > 0. Let us assume that the .d � 1/ measure of @˝D is positive.
We consider the following convection–diffusion problem: Find u W QT D ˝ �
.0; T /! IR such that

@u

@t
Cr � f.u/ D div.K.u/ru/C g in QT ; (1)

u
ˇ̌
@˝D�.0;T / D uD; (2)

K.u/ru � nˇ̌
@˝N�.0;T / D gN ; (3)

u.x; 0/ D u0.x/; x 2 ˝; (4)

where g W QT ! IR, uD W @˝D � .0; T / ! IR, gN W @˝N � .0; T / ! IR,
u0 W ˝ ! IR are given functions, n D .n1; : : : ; nd / is a unit outer normal to @˝ ,
f D .f1; : : : ; fd / W IR ! IRd represents convective terms and the regular matrix
K.u/ 2 IRd;d plays a role of nonlinear anisotropic diffusive coefficients. Moreover,
if Ku D "I, where " is a positive constant and I 2 IRd;d the unit matrix, then the
problem (1)–(4) reduces to the equation with linear diffusion.
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3 Discretization

Let fThg .h > 0/, be a family of partitions of the closure˝ of the domain˝ � IRd
into a finite number of closed d -dimensional simplexes and/or parallelograms K
with mutually disjoint interiors. We do not require the conformity of the mesh, i.e.
the so-called hanging nodes are allowed. The symbols hK and �K stand for the
diameter ofK and radius of the largest d -dimensional ball inscribed intoK , respec-
tively. By Fh we denote the smallest possible set of all open .d � 1/-dimensional
faces (open edges when d D 2 or open faces when d D 3) of all elementsK 2 Th.
Further, we label by F I

h
the set of all � 2 Fh that are contained in˝ (inner faces),

by FD
h

the set of all � 2 Fh that � � @˝D (Dirichlet faces) and by FN
h

the set of
all � 2 Fh that � � @˝N (Neumann faces). Obviously, Fh D F I

h
[FD

h
[FN

h
.

For a shorter notation we put F ID
h
� F I

h
[FD

h
. Finally, for each � 2 Fh, we

define a unit normal vector n� . We assume that n� , � � @˝ has the same orien-
tation as the outer normal of @˝ . For n� , � 2 F I

h
the orientation is arbitrary but

fixed for each edge.
To each K 2 Th, we assign a local Sobolev index sK 2 IN and local poly-

nomial degree pK 2 IN . Then we set the vectors s � fsK ; K 2 Thg and
p � fpK ; K 2 Thg. Over the triangulation Th we define the so-called broken
Sobolev space corresponding to the vector s

H s.˝;Th/ � fvI vjK 2 H sK .K/ 8K 2 Thg (5)

with the seminorm jvjH s.˝;Th/ �
�P

K2Th
jvj2
H sK .K/

�1=2
, where j � jH sK .K/

denotes the standard seminorm on the Sobolev spaceH sK .K/; K 2 Th. Moreover,
the approximate solution is sought in a space of discontinuous piecewise polynomial
functions associated with the vector p

Shp � Shp.˝;Th/ � fvI v 2 L2.˝/; vjK 2 PpK
.K/ 8K 2 Thg; (6)

where PpK
.K/ denotes the space of all polynomials on K of degree � pK ; K 2

Th. In order to derive a priori hp error estimates we additionally assume that there
exists a constantCP � 1 such that pK=pK0 � CP 8K;K 0 2 Th sharing a common
face.

For each � 2 F I
h

there exist two elements KL, KR 2 Th such that � �
KL \ KR. We use a convention that KR lies in the direction of n� and KL in the
opposite direction of n� . For v 2 Shp, by vj.L/� D trace of vjKL

on �; vj.R/� D
trace of vjKR

on � we denote the traces of v on edge � , which are different in

general. Additionally, Œv�� D v
ˇ̌.L/
�
� v

ˇ̌.R/
�

and hvi� D 1
2

�
v
ˇ̌.L/
�
C v

ˇ̌.R/
�

�
denotes

the jump and the mean value of function v over the edge � , respectively. For � 2
@˝ there exists an element KL 2 Th such that � � KL \ @˝ . Then for v 2 Shp,

we put: vj.L/� D trace of vjKL
on �; hvi� D Œv�� D vj.L/� . In case that Œ��� and
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h�i� are arguments of
R
�
: : : dS , � 2 Fh we omit the subscript � and write simply

Œ�� and h�i, respectively.
Similarly as in [6], it is possible to derive the space semi-discretization of

(1)–(4). A particular attention should be paid to the nonlinear diffusive term. In
order to replace the inter-element continuity, we add some stabilization and penalty
terms into formulation of the discrete problem. The convective term is approximated
with the aid of a numerical flux, known from the finite volume method.

Therefore, we say that uh 2 C 1.0; T IShp/ is the semi-discrete solution of (1)–(4)
if .uh.0/; vh/ D .u0; vh/ 8vh 2 Shp and

�
@uh.t/

@t
; vh

�
C bh.uh.t/; vh/C a�h .uh.t/; vh/C ˛J �h .uh.t/; vh/ (7)

D l�h .uh.t/; vh/ .t/ 8 vh 2 Shp; 8 t 2 .0; T /;

where

a�h .u; v/ D
X

K2Th

Z

K

K.u/ru � rv dx �
X

� 2Fh

Z

�

hK.u/ru � niŒv� dS

C�
X

� 2FID
h

Z

�

hK.u/T rv � niŒu� dS; (8)

bh.u; v/ D �
X

K2Th

Z

K

f.u/ � rv dx C
X

� 2Fh

Z

�

H.uj.L/� ; uj.R/� ;n� / Œv�dS; (9)

J �h .u; v/ D
X

� 2FID
h

Z

�

�Œu� Œv� dS; (10)

l�h .u; v/.t/ D
Z

˝

g.t/ v dx C
X

� 2FN
h

Z

�

gN .t/ v dS

C
X

� 2FD
h

Z

�

�
�K.u/T rv � n uD.t/C � uD.t/ v

�
dS: (11)

According to value of parameter �, we speak of symmetric (SIPG, � D �1),
incomplete (IIPG, � D 0) or nonsymmetric (NIPG, � D 1) variants of stabiliza-
tion of DGFEM, i.e. we generally consider three variants of the diffusion form a�

h

and right-hand side form l�
h

. Penalty terms are represented by J �
h

and the penalty
parameter function � in (10) is defined by

� j� D CW

d.� /
with d.� / D

8
<̂

:̂

min
�
hKp

=p2Kp
; hKn

=p2Kn

�
; � 2 F I

h
;

hKp
=p2Kp

; � 2 FD
h
;

(12)
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where CW > 0 is a suitable constant depending on the used variant of scheme and
on the degree of polynomial approximation. The value of multiplicative constant ˛
before the penalty form J �

h
depends on the properties of matrix K and will be spec-

ified in Sect. 4, assumption (14). As for the convective form bh we treat boundary
terms similarly as in the finite volume method, i.e. with the aid of a numerical flux
H.u; v;n/.

We shall assume that the numerical flux H is Lipschitz continuous (i.e. jH.u; v;
n/ �H.u�; v�;n/j � C.ju�u�jC jv� v�j/ 8u; u�; v; v� 2 IR 8n 2 IRd ), consistent
with the convective fluxes f (i.e. H.u; u;n/ D f.u/ � n8u 2 IR 8n 2 IRd ) and
conservative (i.e. H.u; v;n/ D �H.v; u;�n/ 8u; v 2 IR 8n 2 IRd ). Then we find
that the sufficiently regular solution u of (1)–(4) satisfies

�
@u.t/

@t
; vh

�
Cbh.u.t/; vh/Ca�h .u.t/; vh/C˛J �h .u.t/; vh/D l�h .u.t/; vh/ .t/ (13)

8 vh 2 Shp 8 t 2 .0; T /;

which implies the Galerkin orthogonality property of the error.

4 A Priori Error Analysis

The basic framework refers to [5, 10, 13] with some generalization for considered
problem. In order to carry out the error analysis we need to specify the additional
assumptions on mesh, nonlinear diffusion term and regularity of the solution u of
the continuous problem (1)–(4). Therefore, we assume that

(A1) The triangulations Th; h 2 .0; h0/; h0 > 0, are locally quasi-uniform, i.e.
there exists a constant CQ > 0 such that hKL

� CQ hKR
8KL; KR 2 Th

sharing face � 2 F I
h

and shape-regular, i.e. there exists a constant CS > 0

such that hK � CS �K 8K 2 Th.
(A2) The matrix K.v/ D fkij .v/gdi;jD1; kij .v/ W IR ! IR, appearing in the

diffusion terms satisfies

(a) kK.v/k1 � CU and kK.v/T k1 � CU 8 v 2 IR;
(b) kK.v1/�K.v2/k1 � CLjv1 � v2j 8 v1; v2 2 IR; (14)

(c) zTK.v/z � ˛kzk2; ˛ > 0; 8 v 2 IR; 8 z 2 IRd ;

where k � k1 represents the l1-matrix norm, i.e. kKk1 D max
1�i�n

Pn
jD1 jkij j.

(A3) The weak solution u is sufficiently regular, namely

(a) u2L2.0; T IH Ns.˝//; @u

@t
2L2.0; T IH Ns.˝//; u2L1.0; T IH Ns.˝//; (15)

(b) kru.t/kL1.˝/ � CD for a.a. t 2 .0; T /;

where Ns D maxfsK ; sK 2 sg � 2.
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Now, we can proceed to formulation of the main result of this paper.

Theorem 1. Let the numerical fluxH from (9) be consistent, conservative and Lip-
schitz continuous, let Th; h 2 .0; h0/ be a family of triangulations satisfying (A1)
and let assumptions (A2) be satisfied. Let u be the exact solution of the continuous
problem satisfying (A3) and uh 2 Shp the solution of the discrete problem given
by (7), where the penalty parameter � satisfies (12). Then the discretization error
eh D uh � u satisfies the estimate

max
t2Œ0;T �

keh.t/kL2.˝/ C
˛

2

Z T

0

jjjeh.#/jjj2 d# � Q.T /
X

K2Th

h
2�K�2
K

p
2sK�3
K

kuk2K ; (16)

where �K D min.pK C 1; sK/; K 2 Th, Q.T / is a function depending on T and
constants from assumptions but independent of hK ; pK ; sK ; K 2 Th and

jjjvjjj2 � jvj2
H1.˝;Th/

C J �h .v; v/; (17)

kuk2K � kuk2L2.0;T IH sK .K//
C k@u=@tk2

L2.0;T IH sK .K//
C kuk2L1.0;T IH sK .K//:

(18)

Proof. The main framework is based on the application of the multiplicative trace
inequality, inverse inequality and approximation properties of the space Shp, for
more details see [8, Lemmas 4.2–4.4]. The whole proof can be found in [12, Theo-
rem 4.3.2]. ut
Remark 1. The estimate (16) cannot be used for ˛ ! 0C, because the term Q.t/

blows up exponentially with respect to 1=˛. The case ˛ ! 0C corresponds to
a vanishing diffusion term, see (14)c. The divergence of the estimate is a conse-
quence of the application of Young’s inequality and Gronwall’s lemma, necessary
for overcoming the nonlinearity of the convective and diffusive terms.

Remark 2. Let pk D p and sK D s 8K 2 Th. If u is sufficiently regular exact
solution, we observe that the error estimate (16) is

(a) h-suboptimal in the L1.0; T; L2.˝//-norm, namely O.hp/,
(b) h-optimal in the L2.0; T;H 1.˝//-seminorm, namelyO.hp/.

If u is not sufficiently regular exact solution, one can see that the error estimate (16)
is impressed only with given regularity, namelyO.hs�1/.

Moreover, in both cases, the estimate (16) is

(c) p-suboptimal in the L1.0; T; L2.˝//-norm and the L2.0; T;H 1.˝//-
seminorm, namely O.p�.s�3=2//.

This suboptimality of thep-estimate is caused by an application of the multiplicative
trace inequality.
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5 Numerical Example

In this section we verify the a priori error estimates (16). We consider the 2D viscous
Burgers equation

@u

@t
C

2X

sD1
u
@u

@xs
D div.K.u/ru/C g in ˝ � .0; T /; (19)

with the nonsymmetric matrix K.w/ in the following form

K.w/ D "
�
1
2
.3C arctan.w// 1

3
.2 � arctan2.w//

0 4C arctan.w/

�
: (20)

We set " D 0:02,˝ D .0; 1/2, T D 10 and define the function g and the initial and
boundary conditions in such a way that the exact solution has the steady-state form

u.x1; x2; t/ D 2
�
1 � e�10t

�
.x21 C x22/x1x2.1� x1/.1 � x2/: (21)

In the presented numerical experiments we use piecewise linear (P 1), quadratic
(P 2) and cubic (P 3) polynomial approximations on a sequence of six triangular
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Fig. 1 Computational errors and the corresponding EOC in the L2-norm (top) and H1-seminorm
(bottom) for SIPG (left), NIPG (middle) and IIPG (right) variant
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meshes having 128, 288, 512, 1152, 2048 and 4608 elements for SIPG, NIPG and
IIPG variants of DGFEM.

Figure 1 depicts computational errors at time t D T D 10 and experimental
orders of convergence (EOC) for each IPG variant in the corresponding L2-norm
and inH 1-seminorm, respectively. Since u.�; �; t/ is sufficiently regular solution over
˝ it follows from Remark 2 that the theoretical errors estimates are of orderO.hp/.
On the other hand, we observe that

� L2-norm: The obtained numerical results indicate a better behaviour of EOC,
which is expected to be asymptotically O.hpC1/ for p odd and O.hp/ for p
even in the case of NIPG and/or IIPG variant. Moreover, in the case of SIPG
variant we observe optimal EOC for p arbitrary.

� H 1-seminorm: EOC is in agreement with theoretical results, in other words, all
IPG techniques produce optimal order of convergenceO.hp/.
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Stable Crank–Nicolson Discretisation
for Incompressible Miscible Displacement
Problems of Low Regularity

Max Jensen and Rüdiger Müller

Abstract In this article we study the numerical approximation of incompressible
miscible displacement problems with a linearised Crank–Nicolson time discretisa-
tion, combined with a mixed finite element and discontinuous Galerkin method. At
the heart of the analysis is the proof of convergence under low regularity require-
ments. Numerical experiments demonstrate that the proposed method exhibits
second-order convergence for smooth and robustness for rough problems.

1 Introduction and Initial Boundary Value Problem

Mathematical models which describe the miscible displacement of fluids are of par-
ticular economical relevance in the recovery of oil in underground reservoirs by
fluids which mix with oil. They also play a significant role in CO2 stratification.

This publication extends the analysis of [1], which studies the discretisation of
miscible displacement under low regularity. Unlike to [1] which is based on a first-
order implicit Euler time-step (leading to a nonlinear system of equations in each
time step), here we examine the discretisation in time by a linearised second-order
Crank–Nicolson scheme. Crucially, the new, more efficient method inherits stabil-
ity under low regularity. Like in [1], the concentration equation is approximated
with a discontinuous Galerkin method, while Darcy’s law and the incompressibility
condition is formulated as a mixed method. High-order time-stepping for miscible
displacement under low regularity has recently also been addressed in [4], however,
with a continuous Galerkin discretisation in space and discontinuous Galerkin in
time. We refer for an outline of the general literature to [1–4].
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Definition 1 (Weak Formulation). A triple .u; p; c/ in

L1.0; T IHN.divI˝// �L1.0; T IL20.˝// �
�
L2.0; T IH1.˝// \H1.0; T IH2.˝/�/

�

is called weak solution of the incompressible miscible flow problem if

(W1) for t 2 .0; T /, v 2 HN .divI˝/ and q 2 L20.˝/
�
�.c/K�1u; v

�� �p;divv
� D �

�.c/ g; v
�

�
q;divu

� D �
qI � qP ; q�:

(W2) for all w 2 D.0; T IH 2.˝//

Z T

0

��� c; @tw
�C �D.u/rc;rw

�C �u � rc;w�C �qI c;w� � � OcqI ;w�dt D 0:

(W3) c.0; �/ D c0 in H 2.˝/�.

Here HN .divI˝/ denotes the functions in H.divI˝/ whose trace vanishes in
normal direction. Equation (W2) implements homogenous Neumann boundary con-
ditions. For the data qualification we refer to condition (A1)–(A8) in [1] and for
the physical interpretation of the system to [1–3]. We point out that D growths
proportionally with u:

dı.1C juj/j�j2 � �TD.u; x/� � d ı.1C juj/j�j2; u; � 2 Rd ; x 2 ˝:

Thus D is in general unbounded on Lipschitz domains ˝ and in the presence of
discontinuous coefficients, which are permitted in this paper.

2 The Finite Element Method

We compactly recall the definition of the finite element spaces from [1]. Let
0 D t0 < t1 < : : : < tM D T be a partition of the time interval Œ0; T �. Let
kj WD tj � tj�1 and dtaj WD k�1j

�
aj � aj�1�. We consider meshes T of ˝

with elements K and set hK WD diam.K/. We denote by S s.T / the space of
elementwise polynomial functions of total or partial degree s. For wh 2 S s.T /

the function rhwh is defined through .rhwh/jK D r.whjK/. The sets of interior
and boundary faces are E˝.T / and E@˝.T /. We set E .T / D E˝.T / [ E@˝.T /

and assign to each E 2 E .T / its diameter hE . We denote jump and the aver-
age operators by Œ�� and f�g. The concentration c is discretised at time j on the
mesh T j

c or simply by T j . The approximation space for the variable c at time
step j is denoted by S j

c . Often we abbreviate E j WD E .T j
c /, E j˝ WD E˝.T

j
c /,

E j
@˝
WD E@˝.T

j
c /. We denote the Raviart–Thomas space of order ` by RT`.T j

u /.
The approximation spaces of u and p are S j

u WD RT`.T j
u / \ HN .divI˝/ and
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S j
p WD S `.T j

u / \ L20.˝/. We frequently use the global mesh size and time step
hj WD max

K2T j
c [T

j
u
hK , Qh WD max0�j�M hj , Qk WD max0�j�M kj as well as

to Su D QM
jD1S j

u ;Sp D QM
jD1S j

p ;Sc D QM
jD0S j

c . In addition we impose
conditions (M1)–(M5) of [1] which are on shape-regularity, boundedness of the
polynomial degree, control kvhkL4 . kvhkH1 and the structure of hanging nodes.

To deal with discontinuous coefficients and the time derivative, we substitute
D by Dh W L2.˝/d ! S s.Tc ;Rd�d /; v 7! ˘T ı D.v; �/ where the ˘T are
projections such that k˘T DkK . kDkK . Given quantities aj , aj�1 and aj�2 at
times tj , tj�1, tj�2, we denote aj D 1

2
aj C 1

2
aj�1 and Ma D 3

2
aj�1 � 1

2
aj�2.

The diffusion term of the concentration equation is discretised by the symmetric
interior penalty discontinuous Galerkin method: Given ch;wh 2 S j

c , uh 2 S j
u , we

set

Bd .ch;whI uh/ WD
�
Dj

h
.uh/rh ch;rhwh

�� �Œch�; fDj

h
.uh/rhwhg

�
E

j
˝

� �Œwh�; fDj

h
.uh/rh chg

�
E

j
˝

C��2Œch�; Œwh�
�
E

j
˝

where � is chosen sufficiently large to ensure coercivity of Bd , cf. [1]. The
convection, injection and production terms are represented by

Bcq.ch;whI uh/
WD 1=2

��
uhrh ch;wh

� � �uhch;rhwh
�C �.qI C qP /ch;wh

�
(1)

C
X

K2T j

�
cC
h
; .uh � nK/C Œwh�K

�
@Kn@˝ �

�
.uh � nK/� Œch�K ;wCh

�
@Kn@˝

�
;

where .uh � n/C WD maxfuh � n; 0g and .uh � n/� WD minfuh � n; 0g. We set B D
Bd CBcq .

ALGORITHM .AdG/. Choose cj
h
2 S j

c for j D 0; 1. Given cj
h

, find .uj
h
; p
j

h
/ 2

S j
u �S j

p such that

�
�.c

j

h
/K�1uh; vh

� � �ph;divvh
�D �

�.c
j

h
/ g; vh

�
;�

qh;divuh
� D �

.qI � qP /j ; qh
�
:

(2)

For 2 � j �M find cj
h
2 S j

c such that, for all wh 2 S j
c ,

�
� dtc

j

h
;wh

�C B.chj ;whI Mujh/ D
� Ocj qI j ;wh

�
(3)

and solve (2) to obtain .uj
h
; p
j

h
/ 2 S j

u �S j
p .

The algorithm only requires the solution of a linear system in each time step.
The iterate c1

h
can be computed with an implicit Euler method and fine time steps.

The use of extrapolated values such as Muj
h

is classical, e.g. see [5, p. 218].
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3 Unconditional Well-Posedness, Boundedness
and Convergence

Given cj�1
h

and cj�2
h

, there exists a solution cj
h
2 S j

u of (3) because the bilin-

ear form B is positive definite. For t 2 Œtj�1; tj �, let Qch.t; �/ WD t�tj �1

kj
c
j

h
C

tj�t
kj

c
j�1
h

. Then @t Qch.t; �/ D dtc
j

h
.�/. We interpret elements of Su, Sp and Sc

as time-dependent functions with stepwise constant values. Let

jchj2Muh
WD �

Dh.Muh/rh ch;rh ch
�C ��2Œch�; Œch�

�
E j

˝

C �jMuh � nE j j Œch�; Œch�
�
E j

˝

:

Theorem 1. Let �ı D k�k1. There exists a constant C > 0 such that

kMuj
h
k C kdivMuj

h
k C k Mpj

h
k .

�k�ıgk C k MqI � MqP k� (4)

holds for all j D 2; 3 : : : ;M . Equally we have

k�1=2cj
h
k2 C

Z tj

t1

jchj2Muj

h

dt � k�1=2c1hk2 C
Z tj

t1

k�qI i�1=2 Ocik2 dt (5)

for all j D 2; 3 : : : ;M .

Proof. The stability of uj�1, uj�2, pj�1, pj�2 follows from a classical inf-sup
argument. This implies stability of Muj and Mpj . We choose wh D ch

i in (3) to
verify that

dtk�1=2cihk2 C jchi j2Mui
h

C k.qI C qP /1=2chik2

� 2�� dtcih; chi
�C 2B.chi ; chi I Muih/ D 2

� OciqI i ; chi
�
:

The Cauchy–Schwarz inequality, multiplication by ki and summation over i give

k�1=2cj
h
k2 C

jX

iD2
ki jchi j2Mui

h

� k�1=2c1hk2 C
jX

iD2
kik
�
qI
i�1=2 Ocik2

for all j D 2; 3; : : : ;M . ut
For simplicity the next theorem is stated assuming meshes are not adapted in

time. For the extension to changing meshes consult [1]. However, observe that
that the discretisation with the implicit Euler method gives additional stability in
kik�1=2dtcihk2, which allows to change meshes more rapidly.

Theorem 2. The time derivative @t Qch belongs to L2.t1; T IH 2.˝/�/ and

k@t QchkL2.t1;T IH2.˝/�/ D kdtchkL2.t1;T IH2.˝/�/ . 1;

independently of the mesh size and time step.
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Proof. Let wh 2 S j
c . We recall from [1]

Bd .c
j

h
;whI Mujh/ . .1CkMuj

h
k1=2 /jcj

h
jT j .krhwhkL4.˝/CkwhkL4.˝/Ck�Œwh�kE j

˝

/;

Bcq.c
j

h
;whI Mujh/ . .1C kMuj

h
k1=2 /jcj

h
jT j .krhwhk C kwhkL4.˝/ C k�Œwh�kE j

˝

/;

k�Œwh�k2
E

j
˝

. .1C kMuj
h
k/ Qh1=2 kwk2

H2.˝/
:

With L2-orthogonality and

Z T

t1

�
� dtc

j

h
;w
�

dt D
Z T

t1

� Ocj qI j ;wh
� � B.chj ;whI Mujh/ dt

.
Z T

0

.1C kMuj
h
k/.1C kMuj

h
k1=2

H.divI˝// jcjh juj

h

kwkH2.˝/ dt

. kwkL2.0;T IH2.˝//

one completes the proof. ut
Theorem 3. Let .ui ; pi ; ci /i2N be a sequence of numerical solutions with . Qhi ; Qki /
! 0 as i ! 1. Then there exists c 2 L2.0; T IH 1.˝// \ H 1.0; T IH 2.˝/�/
such that, after passing to a subsequence, ci ! c in L2.˝T /, @t Qci * @tc in
L2.0; T IH 2.˝/�/ and rci * rc in L2.0; T IH�1.˝//. If c0i ; c

1
i ! c0 in

H 2.˝/� then c satisfies (W3).

The proof is, up to the treatment of the initial conditions, exactly as in [1]. It is
based on the Aubin-Lions theorem and the embedding

S s.Ti / ,! ŒBV.˝/\ L4.˝/;L4.˝/�1=2 ,! L2.˝/;

where Œ�; ��� denotes the complex method of interpolation.

Theorem 4. Let .ui ; pi ; ci /i2N be numerical solutions with . Qhi ; Qki / ! 0 and
ci ! c in L2.˝T / as i ! 1. There exists u 2 L1.0; T IHN .divI˝// and
p 2 L1.0; T IL20.˝// such that, after passing to a subsequence, ui ! u in
HN .divI˝/ and pi ! p in L20.˝/ as . Qhi ; Qki / ! 0. Furthermore, .u; p; c/
satisfies (W1).

Proof. Use Strang’s lemma, for details see [1]. ut
We interpret Mui as piecewise constant function in time, attaining in .tj�1; tj � the

value 3
2

u.tj�1/� 1
2

u.tj�2/.

Theorem 5. Let .ui ; pi ; ci /i2N be numerical solutions with . Qhi ; Qki / ! 0 as i !
1 and let u 2 L1.0; T IHN .divI˝// and c 2 L2.0; T IH 1.˝// \ H 1.0; T I
H 2.˝/�/ be a limit of .ui ; ci /i in the sense of Theorems 3 and 4. Then .u; c/ satisfies
(W2).
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Proof. Let v 2 D.0; T IC1.˝// and vi .t/ 2 S j
c an approximation to v.t/ in

.tj�1; tj �. Using the strong convergence of .rh vi /i in L1.˝T /d and the weak
convergence of the lifted gradient of ci in L2.˝T /d , we find

Z T

t1

�rc;D.u/rv
�

dt D lim
i!1

Z T

t1

�rh ci ;Dh.Mui /rh vi
� � �Œci �; fDh.Mui /rh vig

�
E˝

dt:

As in [1] it follows thatBd .ci ; vi I Mui / coincides in the limit with
�rc;D.u/rv

�
. One

can also conclude by adapting [1] that

Z T

t1

�
u � rc; v�C �qI c; v� dt D lim

i!1

Z T

t1

Bcq.ci ; vi I Mui / dt:

One arrives at

Z T

t1

��� c; @t v
�C �D.u/rc;rv

�C �u � rc; v�C �qI c; v� � � OcqI ; v� dt

D lim
i!1

Z T

t1

�
� dtc

j

h
;wh

�C B.chj ;whI Mujh/�
� Ocj qI j ;wh

�
dt D 0:

Hence (W2) is satisfied for v 2 D.0; T IC1.˝//. The extension to D.0; T IH 2.˝//

follows from boundedness and density of smooth functions. ut

4 Numerical Experiments

The numerical experiments are carried out in two space dimensions with the lowest-
order method on a mesh which consists of shape-regular triangles without hanging
nodes and which is not changed over time. The diffusion–dispersion tensor takes the
form

D.u; x/ D �.x/ .dmIdC juj d`E.u/C juj dt .Id � E.u/// (6)

where E.u/ denotes the orthogonal projection onto the span of u.

Numerical Example 1 (Singular velocities) To examine the effect of a singular
velocity field caused by a discontinuous permeability distribution and a re-entrant
corner we employ the L-shaped domain˝ and K with k1 D 0:1 and k2 D 10�6 as
depicted in Fig. 1. The injection and production wells are located at .1; 1/ and .0; 0/,
respectively. The porous medium is almost impenetrable in the upper left quarter,
forcing a high fluid velocity at the reentrant corner where the nearly impenetrable
barrier is thinnest. This leads to a singularity juj � r�˛, where r is the distance to
the reentrant corner and ˛ � 1, cf. [1]. Figure 2 shows the concentration when the
front passes the corner and at a later time. The solution ch contains steep fronts but
shows only the localised oscillations that are characteristic for dG methods.
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Fig. 1 Example 1: Left: computational domain; right: absolute value juhj of the Darcy velocity at
t D 1:0 before any interaction between the concentration front and the corner singularity
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Fig. 2 Snapshots of ch at t D 1:5 and 2:0, computed with the Crank–Nicolson scheme

Numerical Example 2 (Convergence rates) Convergence rates are determined by
comparing the numerical solution ch to a reference solution cref that is computed
with high accuracy on a one dimensional grid. More precisely, we set � D 1, Oc D 1,
K D 1 and g D 0 and choose ˝ to be the ball B.0; 1/ � R2. Using polar coordi-
nates .r; '/, we choose qI D 4.1� r/6 and qP D 4

7
r6. Then the Darcy velocity only
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Fig. 3 Example 2: Snapshots of the concentration cref at t D 0:25; 1:0 and 3:0
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Fig. 4 Error kch � crefkL2.˝/ of the implicit Euler method the Crank–Nicolson method at time
t D 1

changes in the radial direction and is determined by an ODE, which has the nonneg-
ative exact solution u.r/ D r

7
.3 r6� 24 r5C 70 r4� 112 r3C 105 r2� 56 r C 14/.

Consequently, the concentration equation reduces to a linear parabolic equation in
one space dimension. Figure 3 shows snapshots of the solution cref with dm D
1:0�10�5, d` D 4:0�10�4 and Fig. 4 shows thatL2 error of implicit Euler method
is of orderO.h2 C k/ whereas the Crank–Nicolson reaches the order O.h2 C k2/.
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Simulations of 3D/4D Precipitation Processes
in a Turbulent Flow Field

Volker John and Michael Roland

Abstract Precipitation processes are modeled by population balance systems. An
expensive part of their simulation is the solution of the equation for the particle size
distribution (PSD) since this equation is defined in a higher-dimensional domain
than the other equations in the system. This paper studies different approaches for
the solution of this equation: two finite difference upwind schemes and a linear finite
element flux-corrected transport method. It is shown that the different schemes lead
to qualitatively different solutions for an output of interest.

1 Introduction

Precipitation processes are very important in the chemical industry. Already a
decade ago, over 50% of the products in chemical engineering were produced in par-
ticulate form [18]. Since that time, the importance of particulate products has been
even increased. Nowadays, the main focus is on the production of particles with
prescribed characteristics, such as size, shape or chemical properties. The numeri-
cal simulation of precipitation processes will make an essential contribution to the
optimization of production processes.

Isothermal precipitation processes are modeled by a coupled system of the
Navier–Stokes equations to describe the flow field, of convection–diffusion-reaction
equations to describe the transport and the reaction of the chemical species, and of
a transport equation for the particle size distribution (PSD).
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The flow field in applications is often turbulent. The numerical simulation of
turbulent flows is by itself an active field of research [1, 6, 17]. In the numerical
simulations presented in this paper, a finite element variational multiscale (VMS)
method will be used [7, 8]. VMS methods are a rather new approach for turbulence
modeling, which were derived from general principles for simulating multiscale
phenomena [3, 4].

A chemical reaction happens in the flow field which is modeled by a nonlinear
system of convection–diffusion-reaction equations. These equations are convection-
and reaction-dominated. Also the numerical simulation of this type of equations is
by itself an active field of research [16].

The main feature of precipitation processes is the nucleation of particles if
the concentration of a species exceeds a saturation concentration. In applications,
not the behavior of the individual particles is of interest, but the PSD. The PSD
depends not only on time and space, but also on properties of the particles, so-
called internal coordinates. Thus, the transport equation for the PSD is defined in a
higher-dimensional domain than the other equations of the coupled system.

The simulations presented in this paper will consider the flow of a dilute solu-
tion. Hence, the effect of the particles on the flow field are negligible. Nucleation
and growth of particles, which are the most important chemical mechanisms in a
precipitation process, are included into the used model. Breakage and agglomera-
tion of particles will not be considered, because they are of much less importance.
The growth process of the particles in this model is realized by layering [15]. The
PSD has one internal coordinate, namely the diameter of the particles.

The simulation of complex coupled systems is generally time-consuming. In
simulations of precipitation processes, a very expensive part might be the solution
of the higher-dimensional PSD equation. This paper studies different schemes for
discretizing this equation: on the one hand rather inexpensive but also inaccurate
schemes and on the other hand a more expensive but also more accurate scheme.
It will be demonstrated that the use of the different schemes leads to qualitatively
different results for an output of interest.

2 The Model of the Precipitation Process

For shortness of presentation, we will give here only the non-dimensionalized
model, see [10, 13] for its derivation.

Let˝ be the flow domain and T a final time. We will consider a dilute fluid, i.e.,
the number of particles and their size are sufficiently small such that their influence
on the flow field can be neglected. Then, the Navier–Stokes equations are given by

@u
@t
� 1

Re
�uC .u � r/uCrp D 0 in .0; T � �˝; (1)

r � u D 0 in Œ0; T � �˝; (2)
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where u is the velocity,p is the pressure andRe D u1l1=� is the Reynolds number
with l1 being a characteristic length scale and u1 a characteristic velocity scale of
the problem. Let cA and cB be the concentrations of the reactants A and B , then
their reaction is described by the following equations

@ci

@t
� Di

u1l1
�ci C u � rci C kR

l1c1
u1

cAcB D 0 in .0; T � �˝; (3)

i 2 fA;Bg, where Di is a diffusion coefficient, kR is the reaction rate constant
and c1 is a characteristic concentration scale for the reactants. The equation for the
concentration of the dissolved product C is given by

@cC

@t
� DC

u1l1
�cC C u � rcC ��chemcAcB C�nuc max

n
0; .cC � 1/5

o

C
 
cC �

csat
C;1
cC;1

!Z 1

dp;min

d 2
p f d.dp/ D 0 in .0; T � �˝: (4)

Here, DC is a diffusion constant, dp describes the size of the particles, f denotes
the PSD, csat

C;1 is the saturation concentration of the dissolved product C , and

cC;1 D csat
C;1 exp.C2= Qdp;0/ is a characteristic concentration scale for C with C2

being a model constant and Qdp;0 ( Qdp;max) being the smallest (largest) possible particle
diameter. The parameters in (4) are

�chem D kR

c21l1
cC;1u1

; dp;min D
Qdp;0

dp;1
; �nuc D Cnucd

3
p;mind

3
p;1knuc

l1c4
C;1

u1
;

with dp;1 being an upper bound for the largest possible particle diameter and Cnuc

and knuc are constants in the model for the nucleation process. To obtain the last
term on the left hand side of (4) in the presented form, the characteristic scale of
the PSD f1 D u1=.CGkGd

3
p;1l1/ was used, where CG is a constant to model the

growth of the particles and kG is a growth rate constant. The last equation describes
the PSD

@f

@t
C u � rf CG.cC /

l1
u1dp;1

@f

@dp
D 0 in .0; T � �˝ �

 
dp;min;

Qdp;max

dp;1

!
(5)

with the growth rate G.cC / D kGcC;1.cC � csat
C;1=cC;1/:

In summary, the system of (1)–(3) for cA, (3) for cB , (4) and (5) has to be solved.
All equations have to be equipped with initial and boundary conditions.
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3 The Applied Numerical Methods

The Crank–Nicolson scheme with an equidistant time step is applied as temporal
discretization for (1)–(4).

In the considered system, the velocity u is needed in all other equations but the
other quantities do not influence the Navier–Stokes equations. For this reason, a
straightforward approach consists in solving at each discrete time first (1) and (2).
The velocity is approximated with the Q2 finite element and the pressure with the
P disc

1 finite element, i.e., with discontinuous piecewise linears. The simulations will
study a turbulent flow, hence a turbulence model has to be applied. We will use
the projection-based finite element variational multiscale method from [7, 8] with a
piecewise constant large scale space.

With the obtained velocity field, the system for the concentrations cA and cB

can be solved. This is done by a fixed point iteration. The linearized equations
are discretized with the Q1 finite element. They are strongly convection-dominated
such that a stabilization has to be applied. Comparative studies of stabilized finite
element schemes [11,12] have shown that for theQ1 finite element FEM-FCT (flux-
corrected transport) schemes outperform more standard approaches like SUPG. In
the simulations presented in Sect. 4, a linear FEM-FCT scheme from [14] is used.

After having computed cA and cB , a coupled system for cC and f remains. This
system is decoupled and linearized in our approach by treating (4) in a semi-implicit
way, namely by using cC and the PSD f from the previous discrete time in the last
two terms on the left hand side of (4). Thus (4) becomes a linear equation in each
discrete time, which is solved also with a linear Q1-FEM-FCT scheme.

The emphasis of the numerical studies is on the schemes for the PSD equa-
tion (5). This equation is given in a 4D domain and its solution might be rather
expensive. For this reason, one can think about using comparatively cheap but also
rather inaccurate schemes for (5). The first scheme of this kind which we apply is
the forward Euler simple upwind finite difference scheme. The second scheme, the
backward Euler simple upwind finite difference scheme, is only somewhat more
expensive. The results and the costs of these schemes will be compared with the
much more expensive linear Q1-FEM-FCT scheme.

4 Numerical Studies

The calcium carbonate precipitation Na2CO3 C CaCl2 �! CaCO3 # C 2NaCl
is considered in the numerical studies. The parameters of this process are given by

� � D 10�6 m2=s � � D 1 kg=m3

� kG D 10�7 m4=kmol s � knuc D 1024 .1=m3 s/=.kmol=m3/5

� kR D 10�2 m3=kmol s � csat
C;1 D 1:37 10�4 kmol=m3

� C2 D 7:2 10�9 m � CG D 45:98 kmol=m3
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� Cnuc D 15:33 kmol=m3 � DA D DB D DC D 1:5 10�9 m2=s

� Qdp;0 D 10�9 m � Qdp;max D 10�4 m:

The following reference quantities have been used in the dimensionless equations:

� l1 D 1 m � u1 D 10�2 m=s � t1 D 102 s
� c1 D 1 kmol=m3 � cC;1 D 0:183502 kmol=m3 � dp;1 D 10�4 m

� f1 D 2:17486 1015 1=m4:

Concerning the flow, a situation similar to a driven cavity problem is considered.
The flow domain is .0; 1/3. There are opposite inlets at f0g � .0:4375; 0:5625/ �
.0:4375; 0:5625/ and f1g � .0:4375; 0:5625/ � .0:4375; 0:5625/ and an outlet at
.0:4375; 0:5625/� .0:4375; 0:5625/� f0g. A situation like this is sometimes called
T-mixer. The inflows are given by a profile which was precomputed by solving the
Poisson equation with right hand side equal to the constant 1 on the inlets and with
homogeneous Dirichlet boundary conditions. On the top of the cavity, the velocity
.1; 0; 0/T is prescribed, outflow boundary conditions are given at the outlet and
no slip boundary conditions on the remaining boundaries. Initially, the fluid was
considered to be at rest and an impulsive start was performed. The Reynolds number
of the flow isRe D 10;000. Even the driven cavity problem without inlets and outlet
is a turbulent flow at this Reynolds number [2, 5].

All concentrations inside the domain were zero at the initial time. On the bound-
ary, the concentrations of the reactants A at the left inlet and B at the right inlet were
set to 1 for all times. Homogeneous Neumann boundary conditions were used on all
other parts of the boundary. For the substance C , homogeneous Neumann bound-
ary conditions were applied on the whole boundary. The boundary condition for the
PSD with respect to the internal coordinate was

f .t; x1; x2; x3; dp;min/ D Bnuc.cC /

f1G.cC /
if G.cC .t; x1; x2; x3// > 0;

f .t; x1; x2; x3; dp;min/ D 0 if G.cC .t; x1; x2; x3// D 0;
f .t; x1; x2; x3; dp;max/ D 0 if G.cC .t; x1; x2; x3// < 0;

with the nucleation rate Bnuc.cC / D knucc
5
C;1maxf0; .cC � 1/5g. With respect to

the spatial coordinates, the PSD was set to be zero at the closure of the fluid flow
inlets (no particles enter through the inlets).

The length of the time step was set to be �t D 0:001. In space, a 16 � 16 �
16 uniform mesh consisting of cubes was used which leads to 107,811 velocity
d.o.f., 16,384 pressure d.o.f. and 4,913 d.o.f. for the concentrations. The internal
coordinate was discretized with 16, 32 or 64 levels (83,521, 162,129 or 319,345
d.o.f.), were the mesh was finer for small diameters. Figure 1 shows the flow field
and isosurfaces of the concentrations at around the starting time of the precipitation
process. The flow field and the concentrations cA, cB , are always the same for all
discretizations of the PSD equation. Until the start of the precipitation, i.e., until
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Fig. 1 Velocity field, isosurfaces for cA D 0:25, cB D 0:25 , cC D 0:7 at t D 3;200, left to right,
top to bottom

the back coupling of f onto cC starts, the concentration cC is also identical for all
discretizations of (5).

An output of interest is the median of the volume fraction at the center of the
outlet. The volume fraction and the cumulative volume fraction are given by

q3.Qt ; Qdp/ WD
Qd 3
p
Qf .Qt ; 0:5; 0:5; 0; Qdp/

R Qdp;max

Qdp;0

Qd 3
p
Qf .Qt ; 0:5; 0:5; 0; Qdp/ d. Qdp/

; Q3.Qt ; Qdp/ WD
Z Qdp

Qdp;0

q3.Qt ; Qd/ d Qd:

Then, the median of the volume fraction is defined to be the particle size for which
Q3.Qt ; Qdp/ takes the value 0:5: Qdp;50.Qt / WD f Qdp W Q3.Qt ; Qdp/ D 0:5g:

The temporal developments of Qdp;50.Qt/ for the different schemes of discretizing
the PSD equation (5) are presented in Fig. 2. It can be seen that the first particles
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Fig. 2 Median of the volume fraction at the center of the outlet, the number of levels for
discretizing the internal coordinate is given behind the schemes

Table 1 Average computing times per time step in s, different numbers of levels for discretizing
the internal coordinate, computer with Intel Xeon CPU, 2.4 GHz

Scheme for solving (5) 16 levels 32 levels 64 levels

Forward Euler upwind FDM 19 19 21
Backward Euler upwind FDM 19 19 23
Crank–Nicolson FEM-FCT 26 33 64

reach the center of the outlet at around 3,200 s. The main observation is that the
different numerical schemes lead to qualitatively different results. The predicted
median of the volume fraction at 8,000 s is around twice as large for the finite dif-
ference Euler schemes compared with the FEM-FCT scheme. For all schemes, the
median decreases on finer meshes for the internal coordinate.

In a numerical study at a coupled 2D/3D problem with prescribed solution in
[10], it has been shown that the FEM-FCT scheme leads to considerably more accu-
rate results than the finite difference upwind schemes. Based on this experience, it
can be expected that the results with the FEM-FCT scheme for solving the PSD
equation are more reliable.

The numerical studies were performed with the code MooNMD [9]. This is a flex-
ible research code which is not tailored for solving population balance systems. The
average computing times for a time step are given in Table 1. It can be observed
that the solution of the PSD equation is much more time-consuming for the linear
FEM-FCT scheme, in particular on fine grids for the PSD equation.

Some numerical studies for 2D/3D population balance systems with a structured
laminar flow field were performed in [10]. It was shown that in this case the results
obtained with the different discretization schemes for the PSD equation were rather
similar. This suggests that the reason for the qualitatively different results is the
presence of the turbulent flow field, compare also with some other studies in [10].
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5 Summary

The paper studied different discretization schemes for the higher-dimensional trans-
port equation in a 3D/4D population balance system with a turbulent flow field.
It was demonstrated that the usage of inexpensive but inaccurate schemes on the
one hand and a more expensive but also more accurate scheme on the other hand
leads to qualitatively different results for an output of interest. This is similar to
the observations in simulations of 2D/3D population balance systems with a highly
time-dependent flow field in [10].

The presented results demonstrate that outputs of interest in the simulation of
complex processes might highly depend on the applied numerical schemes. They
emphasize the need of using accurate schemes and the necessity of implementing
them such that they work efficiently. Our future work will focus on these topics.
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2D Finite Volume Lagrangian Scheme
in Hyperelasticity and Finite Plasticity

Gilles Kluth and Bruno Després

Abstract System of conservation laws develop discontinous solutions, which can
be captured by conservative and consistent Finite Volume schemes. In Lagrangian
schemes, the mesh is moving; therefore material interfaces are well simulated.
Cell-centered Lagrangian Finite Volume schemes have been recently developed
in compressible hydrodynamic [J. Comput. Phys. 228:5160–5183, 2009, Comptes
Rendus Académie des Sciences 331:327–372, 2003, Siam J. Sci. Comp. 29, 2007].
This paper shows how to extend these schemes to material strength. Moreover, we
show that with an appropriate equation of state, this extension allows to simulate
some plastic phenomenons.

In the first section, we present recent cell-centered Lagrangian Finite Volume
schemes in compressible hydrodynamic [1, 3, 9]. These schemes are conservative
and entropic. Our presentation is based on [1]. In the second section, we extend
this scheme to material strength. We discretize the hyperelastic system, preserving
the qualities of the previous hydrocode. A major issue is the discretization of the
Jacobian matrix which has to be compatible with the usual discretization of its deter-
minant. In the third section, we present an equation of state [7] which is an easy way
to constrain the stress in a hyperelastic scheme, as it is the case in plasticity. Finally,
numerical results validate the hyperelastic scheme, and shows plastic phenomenons,
introduced by the previous equation of state.
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1 Finite Volume Lagrangian Scheme in Compressible
Hydrodynamic

In compressible hydrodynamic, the conservation laws of momentum and energy

�Dt

�
v
e

�
D div

��pI
�pv

�
(1)

are discretized with cell-centered Lagrangian Finite Volume methods by

Mj

�t

 
vnC1j � vj
enC1j � ej

!
D
X

r

� �pjrCjr

�pjrCjr:vr

�
: (2)

The derivative in timeDt is the material derivative (along the flow). v is the velocity,
e D � C v2

2
the total energy per mass, � is the mass density. The hydrodynamic

equation of state � D �1.�; S/ gives the internal energy as a function of specific
volume � D 1=� and entropy S . The pressure is p D �@�1=@� .

The mesh is made of moving cells (index j ) of constant massMj . Nodes (index
r) are moved during the timestep �t D tnC1 � tn with

xnC1r D xr C�tvr (3)

and finally

�nC1j D Mj

V nC1j

(4)

V nC1j being the volume of the moved cell j . The vector Cjr is defined by

Cjr D rxr
Vj (5)

so we have

V 0j .t/ D
X

r

Cjr:vr ; (6)

or with Vj DMj �j

Mj �
0
j .t/ D

X

r

Cjr:vr : (7)

The nodal solver gives pjr and vr . It is chosen to satisfy 2 properties: the production
of entropy and the conservativity. This is a major point for stability of the scheme
and selection of entropic weak solutions.
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2 Finite Volume Lagrangian Scheme in Hyperelasticity

To extend the preceding schemes to hyperelasticity, we have to discretize the jaco-
bian matrix (or deformation gradient). Then we can generalize the hydrodynamic
discretization to material strength.

2.1 Discretization of the Jacobian Matrix

2.1.1 The Jacobian Matrix

The Jacobian matrix discretization is necessary in the following situations: for any
scheme in solid mechanics, based on deformations; for changes in coordinates (for
example to pass from Eulerian to Lagrangian coordinates); for the characterization
of the geometry of a deformed mesh in the context of Lagrangian schemes.

The motion brings a point in initial coordinates X to its actual coordinates x D
 .t;X/. The Jacobian matrix F D rX and the velocity v D Dt are linked by
the following compatibility relations

DtF D rX v: (8)

The mass conservation gives

J D det .F/ D �0� (9)

�0 being the initial mass density.

2.1.2 Discretization

Two issues arise concerning the discretization of the Jacobian matrix. First, we want
a discretization which uses the mesh at the beginning of the timestep, and not at the
initial one : that’s why we want an Eulerian equivalent for (8). Second, with (7) and
(9) we have two definitions of � which have to be compatible.

By chain rule, we have (see Fig. 1)

Fj D Gj Fnj : (10)

Thus, we suggest to discretize at time t > tn

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

Dt G D rxn
v;

G.tn/ D I;

F D G F:

in spite of

8
<

:

DtF D rX v;

F.t0/ D I:
(11)
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∂xn

∂X

→
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Btn
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x = φ (t,X) = χ (t,xn)

Bt

F̂  = 
∂x

∂X

→
→ Ĝ = ∂x

∂xn

→
→

Fig. 1 Definition of the Jacobian matrix G, from the configuration Btn at time t n with coordinates
xn, to the configuration Bt at time t with coordinates x. The Jacobian matrix F characterizes the
motion from configuration B0 to Bt , Fn from B0 to Btn

This gives the discretization

GnC1
j D IC �t

Vj

X

r

vr ˝Cjr ; (12)

and with (10)
FnC1j D Fj C �t

Vj

X

r

�
vr ˝ Cjr

�
Fj ; (13)

Proposition 1. The discretization of the Jacobian matrix (13) with �j D det.F/
�0j

gives the discretization (7) at first order in time

Proof. For simplicity, we do the proof in 2D. In 3D, the result remains true. Using
(13) we have (we omitt indexes j and n)

.F11F22�F21F12/nC1DF11F22 � F21F12CF11
 
�t

Vj

X

r

v1.C1F11 C C2F21/
!

CF22
 
�t

Vj

X

r

v2.C1F12 C C2F22/
!
�F12

 
�t

Vj

X

r

v1.C1F12 C C2F22/
!

�F21
 
�t

Vj

X

r

v2.C1F11 C C2F21/
!
CO..�t/2/:

which gives

�nC1j D �j C �t

�0jVj

X

r

det.Fj/vr :Cjr CO..�t/2/ (14)

and thus the result.
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2.2 The Hyperelastic Scheme

The hyperelastic system is given by [2]

�Dt

�
v
e

�
D div

�
�

vt�

�
(15)

with the equation of state � D �2.F; S/ and the Cauchy stress tensor � D
�rF.�2/Ft . It is discretized by

Mj

�t

 
vnC1j � vj
enC1j � ej

!
D
X

r

�
�C jr
�C jr :vr

�
: (16)

We note �C jr , and not � jrCjr because we keep the possibility to have a flux which
is not aligned with Cjr . We need now to determine the nodal stress �C jr and the
nodal velocity vr.

Proposition 2. By using the following nodal solver (which gives nodal quantities
�C jr and vr)

�C jr D � jCjr C
ˇ̌
Cjr

ˇ̌
Qjr.vr � vj /

X

j

�C jr D 0

Qjr being symmetric and non negative, the scheme is conservative and entropic.

The conservativity is immediately given by the second part of the solver. The proof
of the entropic criterion is given in [6]. More precisely, it is shown that for the
semi-discrete scheme (continous in time) we have

.Mj@S�2/S
0
j .t/ D

X

r

�
�C jr � � jCjr

�
:
�
vr � vj

�
: (17)

In the hydrodynamic case � D �1.�; S/, we have � D �pI and if we take

� Qjr D .�c/j
kCjrk2 Cjr ˝ Cjr, we obtain the hydrocode [1] or [3],

� Qjr D .�c/j
2kCjrk2

�
lr�1;r

jCjr j nr�1;r ˝ nr�1;r C lr;rC1

jCjrj nr;rC1 ˝ nr;rC1
�

, we obtain the

hydrocode [9] or [8].

Above, cj > 0 is the cell speed of sound, lr�1;r and nr�1;r are respectively the
length and the normal of the edge which bridges the node r � 1 to its neighbor r in
the cell j .
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3 Extension to Finite Plasticity

The hyperelastic scheme, using the appropriate equation of state, allows to observe
some plastic effects (those implied by constraining the stress), such as the split
shock in flyer-plate experiment, the chronometry of an imploding plastic shell or
the characteristic shape of a cylinder impacted on a wall. This equation of state
is [7]

� D H.�; S/C � .F/ (18)

where H is an hydrodynamic equation of state, and  is

 D
(

�
4
R if R � R�;

Yp
6
.
p
R �pR�/C �

4
R� if R� � R;

R D �1��1=33 C �2��2=33 � 6;
R� D 2

3

Y 2

�2

Y and � being respectively the yield limit and the shear modulus. �1, �2 and �3 are
the trace, the trace of the cofactor and the determinant, of the right Cauchy–Green
tensor B D FFt .

4 Numerical Results

4.1 Hugoniot Experiments

These experiments are described in [4]. An analytic solution is given in [7] to which
we compare our results. Two plates of steel are impacted symmetrically. We see
Fig. 2 our numerical results with a 1D scheme. The 2D scheme converges to the
same result.

4.2 Imploding Shell

This test case is taken from [5]. An elastic-plastic shell implodes, converting cine-
matic energy into internal one, until the shell stops at a given radius (we stop the
simulation when 99:9% of the total initial energy is converted). See Fig. 3.

4.3 Taylor Test Case

The Taylor testcase is the impact of a cylinder on a rigid wall [10]. The final shape
of the cylinder characterizes the solid material [12]. As our scheme is planar, results
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Fig. 2 On the top, 1D numerical results for three different impact velocities (on the left), for
an elastic material by taking Y very high (on the right). On the bottom, the differences between
analytic and numerical solutions
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Fig. 3 The final mesh is inside the initial one. The table compares values from [5] (obtained by
analytic solution of an incompressible model [11]) to our results, for three different initial radial
velocities of norm V0. R�

f and RC

f are the final intern and extern radius
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Fig. 4 An elastic material (with Y very high) on the left: the metal acts like a spring. A plastic
material on the right

are difficult to interpret. Nevertheless, we observe qualitatively the consequences of
plasticity. See Fig. 4.
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Local Projection Method
for Convection-Diffusion-Reaction
Problems with Projection Spaces Defined
on Overlapping Sets

Petr Knobloch

Abstract We extend the local projection finite element method for steady scalar
convection-diffusion-reaction equations to local projection spaces defined on over-
lapping sets. This enables to define the local projection method without the need of
a mesh refinement or an enrichment of the finite element space. For the streamline
derivative based stabilization, we introduce a modification that leads to an optimal
estimate of the consistency error even if the stabilization parameters scale correctly
with respect to convection, diffusion and mesh width. The main result of the paper
is an optimal error estimate with respect to the standard local projection norm.

1 Introduction

In this paper we deal with the application of the local projection finite element
method to the numerical solution of the convection-diffusion-reaction problem

�"�uCb �ruCc u D f in ˝; u D ub on � D ; "
@u

@n
D g on � N ;

(1)
where ˝ � Rd , d D 2; 3, is a bounded domain with a polyhedral Lipschitz-
continuous boundary @˝ and � D; � N � @˝ are two relatively open disjoint sets
satisfying � D [ � N D @˝ and measd�1.� D/ > 0. We denote by n the outer unit
normal vector to @˝ . We assume that " is a positive constant and b 2 W 1;1.˝/d ,
c 2 L1.˝/, f 2 L2.˝/, ub 2 H 1=2.� D/ and g 2 H�1=2.� N / are given
functions satisfying

� WD c � 1
2

div b � �0 > 0 ;
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where �0 is a constant. Moreover, we assume that the inflow boundary is a part of
the Dirichlet boundary, i.e.,

fx 2 @˝I .b � n/.x/ < 0g � � D :

The standard weak formulation of (1) reads: Find u 2 H 1.˝/ such that u D ub
on � D and

a.u; v/ D .f; v/C hg; vi�N 8 v 2 V WD fv 2 H 1.˝/ I v D 0 on � Dg ;
(2)

where
a.u; v/ WD " .ru;rv/C .b � ru; v/C .c u; v/ ;

.�; �/ denotes the inner product in L2.˝/ or L2.˝/d and h�; �i�N is the duality pair-
ing between H�1=2.� N / and H 1=2.� N /. Since a.v; v/ � "jvj21;˝ for any v 2 V ,
the weak formulation has a unique solution.

The local projection finite element method was introduced by Becker and Braack
[1] for the Stokes problem and later it was applied to many other problems includ-
ing transport problems, convection-diffusion-reaction equations, Oseen equations
and Navier–Stokes equations, see, e.g., [2, 7–9]. A drawback of the local projec-
tion method is that it requires (significantly) more degrees of freedom than, e.g.,
residual-based methods [10]. Indeed, for a residual-based stabilization, we can sim-
ply use a finite element space consisting of piecewise polynomials of some degree l
on a given triangulation whereas, for the classical local projection approaches, the
finite element space is either defined on a refined triangulation or enriched by addi-
tional bubble functions. In this paper we shall show that the increase of the number
of degrees of freedom in not necessary if we allow local projection spaces defined
on overlapping subsets of ˝ .

The plan of the paper is as follows. In Sect. 2, we introduce the finite element
spaces needed for defining the discrete problem and formulate all assumptions used
in this paper. Then, in Sect. 3, we define the local projection discretization of (1).
For the streamline derivative based stabilization, we introduce a simple modifica-
tion that leads to an optimal estimate of the consistency error, not available before.
Finally, in Sect. 4, we carry out our error analysis leading to an optimal error esti-
mate. Throughout the paper we use standard notation which can be found, e.g., in
[3]. Moreover, we use the notation a . b if a � Cb with C > 0 independent of the
mesh parameter h and the data of (1). We write a � b if a . b and b . a.

2 Assumptions on Finite Element Spaces

Given h > 0, let Wh � H 1.˝/ be a finite element space approximating the space
H 1.˝/ and set Vh D Wh \ V . Furthermore, let Mh be a set consisting of a finite
number of open subsets M of ˝ such that ˝ D [M2Mh

M . We assume that, for



Local Projection Method with Projection Spaces Defined on Overlapping Sets 499

any M 2Mh,

cardfM 0 2Mh I M \M 0 ¤ ;g . 1 ; (3)

hM WD diam.M/ . h ; (4)

hM . hM 0 8 M 0 2Mh; M \M 0 ¤ ; : (5)

Moreover, we assume that, for any M 2 Mh, there is a nontrivial space BM �
.WhjM / \ H 1

0 .M/ such that BM � Wh if the functions from BM are extended
by zero outside M . For any M 2 Mh, we introduce a finite-dimensional space
DM � L2.M/ and we assume that

sup
v2BM

.v; q/M
kvk0;M

& kqk0;M 8 q 2 DM ; M 2Mh ; (6)

where .�; �/M is the inner product in L2.M/. We shall also need the inverse
inequality

jvhj1;M . h�1M kvhk0;M 8 vh 2 Wh; M 2Mh : (7)

In addition, we assume that there exist interpolation operators ih 2 L .H 2.˝/;

Wh/ \L .H 2.˝/ \ V; Vh/ and jM 2 L .H 1.M/;DM /, M 2Mh, such that, for
some constant l 2 N and any k 2 f1; : : : ; lg, we have

kv � ihvk1;h C h�1=2 kv � ihvk0;�N . hk jvjkC1;˝ 8 v 2 H kC1.˝/ ; (8)

kq � jM qk0;M . hkM jqjk;M 8 q 2 H k.M/; M 2Mh : (9)

In (8), we use the mesh dependent norm

kvk1;h D
0

@
X

M2Mh

fjvj21;M C h�2M kvk20;M g
1

A
1=2

:

Remark 1. Let Th be a triangulation of ˝ consisting of shape-regular cells (sim-
plices, quadrilaterals or hexahedra) possessing the usual compatibility properties.
Then the above assumptions can be satisfied if the sets M are defined as unions of
cells of Th sharing a common interior vertex, the space Wh consists of (mapped)
piecewise polynomial functions of degree l on Th and DM D Pl�1.M/. Let us
emphasize that for classical local projection methods, which do not allow overlap-
ping sets M , a standard finite element space on Th generally cannot be used as Wh
(cf., e.g., [7]). In these approaches either Th has to be refined or the finite element
space has to be enriched by additional bubble functions.
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3 Discrete Problem

Consider any M 2 Mh. We denote by �M a continuous linear projection operator
which maps the spaceL2.M/ onto the spaceDM such that k�M kL .L2.M/;L2.M// .
1 . Using �M , we introduce the so-called fluctuation operator �M D id��M , where
id is the identity operator on L2.M/. Then

k�M kL .L2.M/;L2.M// . 1 : (10)

An application of �M to a vector valued function means that �M is applied compo-
nentwise. In addition, we choose a constant bM 2 Rd such that

jbM j � kbk0;1;M ; kb � bM k0;1;M . hM jbj1;1;M : (11)

Finally, we define the local projection stabilization term

sM .u; v/ D .�M .bM � ru/; �M .bM � rv//M (12)

or
sM .u; v/ D .�Mru; �Mrv/M : (13)

Now we set
sh.u; v/ D

X

M2Mh

�M sM .u; v/ ;

where �M is a nonnegative stabilization parameter. It was shown in [5] that �M
should satisfy

�M � min

(
hM

kbk0;1;M
;
h2M
"

) kbk20;1;M
�M .b/

; (14)

where

�M .b/ D kbk20;1;M if sM are given by (12),

�M .b/ D 1 if sM are given by (13).

To formulate a discrete Dirichlet boundary condition, we introduce a function Qubh 2
Wh such that its trace on � D approximates the boundary condition ub .

The local projection discretization of (1) is based on the weak formulation (2)
and reads: Find uh 2 Wh such that uh � Qubh 2 Vh and

ah.uh; vh/ D .f; vh/C hg; vhi�N 8 vh 2 Vh ; (15)

where ah.u; v/ D a.u; v/C sh.u; v/.
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It is natural to investigate the error of uh with respect to the local projection norm

jjjvjjjLP D
 
" jvj21;˝ C k�1=2 vk20;˝ C

1

2
k.b � n/1=2 vk2

0;�N C sh.v; v/
!1=2

since ah.v; v/ D jjjvjjj2LP for any v 2 V . This property shows that the discrete
problem is uniquely solvable. Note also that, for any v 2 H 1.˝/,

jjjvjjjLP . k.b�n/1=2 vk
0;�NC

�
"C h kbk0;1;˝ C h2 k�k0;1;˝

�1=2 kvk1;h : (16)

Remark 2. A standard choice is to use b instead of bM in (12). However, it was
demonstrated in [5] that then it is generally not possible to obtain optimal conver-
gence results if (14) holds. We shall see in the next section that the use of bM leads
to an optimal error estimate.

4 Error Analysis

Let u 2 H 1.˝/ be the weak solution of (1). The local projection discretization is
not consistent and we have ah.u � uh; vh/ D sh.u; vh/ for any vh 2 Vh. Denoting

W b
h D fwh 2 Wh I wh � Qubh 2 Vhg ;

we obtain similarly as in the proof of the first Strang lemma (see, e.g., [3]) that

jjju� uhjjjLP � inf
wh2W b

h

(
jjju� whjjjLP C sup

vh2Vh

ah.u � wh; vh/

jjjvhjjjLP

)

C sup
vh2Vh

sh.u; vh/

jjjvhjjjLP
: (17)

In the classical local projection method, where the sets M 2Mh are non-
overlapping, the infimum on the right-hand side of (17) is estimated by choosing
wh as a special interpolate of u for which the interpolation error is L2-orthogonal
to the spaces DM . If the sets M overlap, such an interpolate cannot be constructed.
Instead we shall employ the following lemma.

Lemma 1. There is an operator %h W L2.˝/ ! Wh \ H 1
0 .˝/ such that, for any

u; v 2 L2.˝/, we have

j.u; v � %hv/j .
X

M2Mh

k�M uk0;M kvk0;M ; (18)
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k%hvk1;h .

0

@
X

M2Mh

h�2M kvk20;M

1

A
1=2

: (19)

Proof. First, let us write Mh in the form Mh D fMigNiD1 and set

fM 1 DM1 ; fM i D Mi n
i�1[

kD1
fM k ; i D 2; : : : ; N :

Then

fM i \fM j D ; 8 i ¤ j ;
N[

iD1
fM i D

N[

iD1
Mi :

To simplify the notation, we now again drop the indices and, for any M 2Mh, we
denote by fM the subset of M constructed in the above way.

Consider any v 2 L2.˝/. The inf–sup conditions (6) imply that, for any M 2
Mh, there exists zM 2 BM such that (cf., e.g., [4])

.q; zM /M D .q; v/eM 8 q 2 DM ; (20)

kzMk0;M . kvk
0;eM : (21)

We set %hv D P
M2Mh

zM (with zM D 0 in ˝ nM ). Then %hv 2 Wh \H 1
0 .˝/

and, for any u 2 L2.˝/, we obtain

.u; v�%hv/D
X

M2Mh

�
.u; v/eM � .u; zM /M

�D
X

M2Mh

�
.�Mu; v/eM � .�Mu; zM /M

�
;

which gives (18) by applying the Cauchy–Schwarz inequality and (21). Using (3)
and (5), we derive that

X

M2Mh

h�2M k%hvk20;M .
X

M;M 0 2Mh,
M \M 0 ¤ ;

h�2M kzM 0k20;M .
X

M 02Mh

h�2M 0 kzM 0k20;M 0 :

Analogously, using (3) and (7), we get

X

M2Mh

j%hvj21;M .
X

M;M 0 2Mh ,
M \M 0 ¤ ;

jzM 0 j21;M .
X

M 02Mh

h�2M 0 kzM 0k20;M 0 ;

which implies (19) in view of (21). ut
The following lemma enables us to obtain an optimal estimate of the infimum on

the right-hand side of (17).
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Lemma 2. For any w 2 H 1.˝/ and any vh 2 Vh n f0g, we have

jjjw� %hwjjjLP C
ah.w � %hw; vh/

jjjvhjjjLP
. k.b � n/1=2 wk

0;�N

C �"C h kbk0;1;˝ C h2 k�k0;1;˝ C h2 jbj21;1;˝ ��10
�1=2 kwk1;h :

Proof. Consider any w 2 H 1.˝/ and vh 2 Vh and set z D w � %hw. Then

.b�rz; vh/C.c z; vh/ D �.z;b�rvh/C.� z; vh/� 12 ..div b/ z; vh/Ch.b�n/ z; vhi�N :

Therefore, applying the Cauchy–Schwarz inequality, we obtain

ah.z; vh/ . jjjzjjjLP jjjvhjjjLP C ��1=20 k.div b/ zk0;˝ jjjvhjjjLP � .z;b � rvh/ :

According to (18), we have

j.z;b � rvh/j .
X

M2Mh

k�M .b � rvh/k0;M kwk0;M :

Applying (7), (10) and (11), we derive

k�M .b � rvh/k0;M � k�M ..b � bM / � rvh/k0;M C k�M .bM � rvh/k0;M
. jbj1;1;M kvhk0;M C

�kbk20;1;M �M .b/�1 sM .vh; vh/
�1=2

:

If " < kbk0;1;M hM , we have

k�M .b � rvh/k0;M . jbj1;1;Mkvhk0;M C .kbk0;1;MhM �M sM .vh; vh//
1=2 h�1M :

If " � kbk0;1;M hM , we obtain k�M .b � rvh/k0;M � " jvhj1;M h�1M . Thus, in both
cases, we arrive at the estimate

j.z;b � rvh/j .
�
"C h kbk0;1;˝ C h2 jbj21;1;˝ ��10

�1=2 kwk1;h jjjvhjjjLP :

Now, to complete the proof, it suffices to apply (16) and (19). ut
It remains to estimate the consistency error.

Lemma 3. Let u 2 HkC1.˝/ for some k 2 f1; : : : ; lg. Then

sup
v2H1.˝/

sh.u; v/

jjjvjjjLP
. kbk1=20;1;˝ hkC1=2 jujkC1;˝ :
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Proof. For any u 2 H kC1.˝/ and v 2 H 1.˝/, we have

sh.u; v/ �
p
sh.u; u/

p
sh.v; v/ �

p
sh.u; u/ jjjvjjjLP

and hence it suffices to estimate �M sM .u; u/ with an arbitrary M 2 Mh. In view
of (11), we obtain �M sM .u; u/ . hM kbk0;1;M k�Mruk20;M for sM defined by
both (12) and (13). Since �M vanishes onDM , the assumption (10) and the approx-
imation property (9) imply that k�Mruk0;M . kru� jMruk0;M . hkM jujkC1;M
and the lemma follows using (3). ut

Now we are in a position to prove the main result of this paper.

Theorem 1. Let the weak solution of (1) satisfy u 2 H kC1.˝/ for some k 2
f1; : : : ; lg, let Qub 2 H 2.˝/ be an extension of ub and let Qubh D ih Qub. Then the
solution uh of the local projection discretization (15) satisfies the error estimate

jjju� uhjjjLP . ."C hkbk0;1;˝ Ch2k�k0;1;˝ C h2jbj21;1;˝��10 /1=2hkjujkC1;˝ :
(22)

Proof. The theorem follows by setting wh D ihuC %h.u � ihu/ in (17), employing
Lemmas 2 and 3 and applying (8). ut
Remark 3. Estimates of the type (22) can be proved for various stabilized finite
element methods applied to the problem (1) and are known to be optimal, see, e.g.,
[10]. If we define the stabilization term sM .u; v/ in (12) using b instead of bM , then
Lemma 2 still holds but the consistency error cannot be estimated as in Lemma 3.
Assuming b � ru 2 Hk.˝/ with k 2 f1; : : : ; lg, we obtain

sup
vh2Vh

sh.u; vh/

jjjvhjjjLP
. hk

0

@
X

M2Mh

min

( jb � ruj2
k;M

�0
;
hM jb � ruj2

k;M

kbk0;1;M

)1

A
1=2

;

see [5,6]. Thus, if b ¤ 0 in˝, the optimal convergence order can be still proved but
generally we only have the suboptimal convergence order k. Moreover, for small �0,
the accuracy of the discrete solution may be significantly worse than for sh defined
using bM .
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Numerical Solution of Volterra Integral
Equations with Weak Singularities

M. Kolk and A. Pedas

Abstract We propose a piecewise polynomial collocation method for solving linear
Volterra integral equations of the second kind with kernels which, in addition to a
weak diagonal singularity, may have a weak boundary singularity. The attainable
order of global and local convergence of proposed algorithms is discussed and a
collection of numerical results is given.

1 Introduction

Let C k.˝/ be the set of all k times continuously differentiable functions on ˝ ,
C 0.˝/ D C.˝/. By C Œa; b� we denote the Banach space of continuous functions
f on Œa; b� with the usual norm kf k D maxfjf .x/j W x 2 Œa; b�g. Let

Db D f.x; y/ W 0 < y < x � bg; Db D f.x; y/ W 0 � y � x � bg:

In many practical applications there arise integral equations of the form

u.x/ D
Z x

0

K.x; y/u.y/dy C f .x/; 0 � x � b; (1)

with f 2 CmŒ0; b�, K.x; y/ D g.x; y/.x � y/�� , 0 < � < 1, g 2 Cm.Db/, m 2
N D f1; 2; : : :g. The solution u.x/ to (1) is typically non-smooth at x D 0 where
its derivatives become unbounded (see for example, [3–5]). In collocation meth-
ods the singular behaviour of the solution u.x/ can be taken into account by using
polynomial splines on special graded grids �rN D fx0; : : : ; xN W 0 D x0 < : : :

< xN D bg with the nodes

xi D b.i=N /r ; i D 0; : : : ; N; N 2 N; r 2 R; r � 1: (2)
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The parameter r characterizes the degree of non-uniformity of the grid�rN : if r > 1,
then the nodes x0; : : : ; xN of the grid �rN are more densely clustered near the left
endpoint of the interval Œ0; b� where u.x/ may be singular. High order methods use
large values of r , see [3–5]. However, in practice, the use of strongly graded grids
�rN by large values of r may cause serious implementation problems, since such
grids may create unacceptable round-off errors in calculations and therefore lead to
unstable behavior of numerical results.

To avoid problems associated with the use of strongly graded grids the following
approach for solving (1) can be used: first we perform in (1) a change of variables
so that the singularities of the derivatives of the solution will be milder or disappear
and after that we solve the transformed equation by a collocation method on a mildly
graded or uniform grid. We refer to [10] for details (see also [2, 7]). Note that in
[9, 12] similar ideas for solving Fredholm integral equations have been used (see
also [6, 14]).

In the present paper we extend the domain of applicability of this approach. To
this aim, we examine a more complicated situation for (1) where the kernelK.x; y/,
in addition to a diagonal singularity (a singularity as y ! x), may have a boundary
singularity (a singularity as y ! 0). Actually we assume that the kernel K.x; y/
has the form

K.x; y/ D g.x; y/.x � y/��y��; .x; y/ 2 Db; 0 < � < 1; 0 � � < 1;
(3)

where g 2 Cm.Db/, m 2 f0g [N. The set of kernels satisfying (3) will be denoted
by W m;�;�.Db/.

Throughout the paper c denotes a positive constant which may have different
values by different occurrences.

2 Regularity of the Solution

For givenm 2 N and 0 < � < 1 let Cm;� .0; b� be the set of functions u 2 C Œ0; b�\
Cm.0; b� such that

ju.j /.x/j � cx1���j ; 0 < x � b; j D 1; : : : ; m: (4)

It follows from [11] that the regularity of the solution to (1) can be characterized by
the following result.

Lemma 1. Assume that K 2 W m;�;�.Db/, f 2 Cm;�C�.0; b� where m 2 N, 0 <
� < 1, 0 � � < 1, � C � < 1. Then (1) has a unique solution u 2 Cm;�C�.0; b�.
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3 Smoothing Transformation

For given % 2 Œ1;1/ denote

'.s/ D b1�%s%; 0 � s � b: (5)

Clearly, ' 2 C Œ0; b�, '.0/ D 0, '.b/ D b and '0.s/ > 0 for 0 < s < b. Thus,
' maps Œ0; b� onto Œ0; b� and has a continuous inverse '�1 W Œ0; b� ! Œ0; b�. Note
that '.s/ � s for % D 1. We are interested in a transformation (5) with % > 1

since it possesses a smoothing property for u.'.s// with respect to the singularities
of u0.x/; : : : ; u.m/.x/ at x D 0 (see Lemma 2).

Lemma 2. [10]. Let u 2 Cm;� .0; b�, m 2 N, 0 < � < 1, and let ' be defined by
formula (5). Furthermore, let u'.s/ D u.'.s//; 0 � s � b: Then u' 2 C Œ0; b� \
Cm.0; b� and

ju.j /' .s/j � cs%.1��/�j ; 0 < s � b; j D 1; : : : ; m: (6)

4 Numerical Method

Using (5) we introduce in (1) the change of variables y D '.s/, x D '.t/, s; t 2
Œ0; b�. We obtain an integral equation of the form

u'.t/ D
Z t

0

K'.t; s/u'.s/ds C f'.t/ ; 0 � t � b ; (7)

where f'.t/ D f .'.t//;K'.t; s/ D K.'.t/; '.s//' 0.s/ are given functions and
u'.t/ D u.'.t// is a function which we have to find.

For given integersm;N 2 N let

S
.�1/
m�1.�

r
N / D

˚
vN W vN

ˇ̌
Œxj �1;xj �

2 �m�1; j D 1; : : : ; N
�

be the underlying spline spaces of piecewise polynomial functions on the grid �rN
with the nodes (2). Here vN

ˇ̌
Œxj �1;xj �

(j D 1; : : : ; N ) is the restriction of vN .t/,

t 2 Œ0; b�, to the subinterval Œxj�1; xj � � Œ0; b� and �m�1 denotes the set of poly-

nomials of degree not exceeding m � 1. Note that the elements of S .�1/m�1.�rN / may
have jump discontinuities at the interior knots x1; : : : ; xN�1 of the grid �rN . In
every subinterval Œxj�1; xj � (j D 1; : : : ; N ) we introduce m 2 N interpolation
(collocation) points

xjl D xj�1 C �l .xj � xj�1/ ; l D 1; : : : ; mI j D 1; : : : ; N ; (8)
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where �1; : : : :; �m are some fixed (collocation) parameters such that

0 � �1 < : : : < �m � 1: (9)

We find an approximation vN D vN;m;r;' to u' , the solution of (7) (under the con-
ditions of Theorems 1 and 2 below (1) and (7) are uniquely solvable), by collocation
method from the following conditions:

vN 2 S .�1/m�1.�
r
N / ; N;m 2 N; r � 1 ; (10)

vN .xjl / D
Z xjl

0

K'.xjl ; s/vN .s/ds C f'.xjl /; l D 1; : : : ; mI j D 1; : : : ; N ;

(11)
with xjl , l D 1; : : : ; m; j D 1; : : : ; N , given by formula (8).

Having determined the approximation vN for u' , we determine an approximation
uN D uN;m;r;' for u, the solution of (1), setting

uN .x/ D vN .'
�1.x// ; 0 � x � b: (12)

The settings (10) and (11) form a linear system of algebraic equations whose
exact form is determined by the choice of a basis in S .�1/m�1.�rN /. We refer to [10]
for a convenient choice of it.

Theorem 1. [8]. Let the following conditions be fulfilled:
1. K 2 W m;�;�.Db/, f 2 Cm;�C�.0; b�, m 2 N, 0 < � < 1, 0 � � < 1 � �;
2. ' is defined by the formula (5);
3. The interpolation nodes (8) with grid points (2) and parameters (9) are used.

Then the settings (10)–(12) determine for N � N0 a unique approximation uN
to u, the solution to (1), and

kuN � uk1 � c
(
N�r%.1����/ for 1 � r < m

%.1����/ ;

N�m for r � m
%.1����/ ; r � 1;

(13)

where kuN � uk1 D sup0�x�b juN .x/ � u.x/j and c is a positive constant not
depending on N .

Theorem 1 proposes, in particular, how r and 	 should be chosen to achieve the
highest convergence order kuN �uk1 D kvN � vk1 � cN�m by splines of degree
m�1. Especially, it follows from Theorem 1 that the accuracy kuN �uk1 � cN�m
can be achieved on a mildly graded or uniform grid. As an example, if we assume
that � D 1=4, � D 1=2, m D 3 (the case of piecewise quadratic polynomials),
% � 12, the maximal convergence order kuN �uk1 � cN�3 is available for r � 1.
In particular, the uniform grid with nodes (2), r D 1, may be used.
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5 Superconvergence Results

In this section we see that, in addition to Theorem 1, assuming some additional
smoothness of f and g (see (3)) and choosing more carefully the collocation param-
eters (9), the superconvergenceof vN at the collocation points (8) can be established,
cf. [1, 3–5, 10, 13].

Theorem 2. Assume that K 2 W mC1;�;�.Db/, f 2 CmC1;�C�.0; b�, m 2 N,
0 < � < 1, 0 � � < 1 � �, and let the interpolation nodes (8) be generated by the
grid points (2) and by the node points �1; : : : ; �m of a quadrature approximation

Z 1

0

z.s/ds �
mX

lD1
wlz.�l /; 0 � �1 < : : : < �m � 1; (14)

which, with appropriate weights fwl g, is exact for all polynomials of degree m.
Then for sufficiently large N , say N � N0, method (10)–(12) determines a unique
approximation uN to u, the solution of (1), and the following error estimate holds:

max
lD1;:::;mI

j D1;:::;N

juN .'.xjl //�u.'.xjl//j D max
lD1;:::;mI

j D1;:::;N

jvN .xjl /�u'.xjl /j � cE.m;�;�;�;r/N :

(15)
Here c is a positive constant not depending on N and

E
.m;�;�;�;r/
N D

(
N�2%r.1����/ for 1 � r < mC1��

2%.1����/ ;
N�m�.1��/ for r � mC1��

2%.1����/ ; r � 1: (16)

Proof. We outline the basic ideas on which the proof is based. Let TK'
be defined

by the formula .TK'
u'/.t/ D

tR

0

K'.t; s/u'.s/ ds, 0 � t � b. Using TK'
, we write

(7) in the form u' D TK'
u' C f' , where f' 2 C Œ0; b� and TK'

is compact as an
operator fromL1.0; b/ intoC Œ0; b�. Since the corresponding homogenous equation
u' D TK'

u' has only the trivial solution u' D 0, equation u' D TK'
u' C f' has

a unique solution u' 2 C Œ0; b�, u'.t/ D u.'.t//, 0 � t � b, with u, the solution to
(1). On the basis of Lemmas 1 and 2 we find that u' belongs to Cm.0; b� and satis-
fies (6). Further, conditions (10) and (11) have the operator equation representation
vN D PNTK'

vN C PNf' , where PN is an operator which assigns to any function

z 2 C Œ0; b� its piecewise interpolation function PN z 2 S .�1/m�1.�rN / interpolating z
at the points (8). Using a standard arguing (cf. [10, 12, 13]), we obtain that equation
vN D PNTK'

vN CPNf' has a unique solution vN 2 S .�1/m�1.�rN / forN � N0 and
kvN � PN u'k1 � ckTK'

.PN u' � u'/k1. We have

juN .'.xjl //� u.'.xjl //j D jvN .xjl / � u'.xjl /j D jvN .xjl / � .PN u'/.xjl /j
� kvN � PN u'k1; l D 1; : : : ; mI j D 1; : : : ; N:
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Therefore, by N � N0,

max
lD1;:::;mIjD1;:::;N

juN .'.xjl // � u.'.xjl //j � ckTK'
.PN u' � u'/k1; (17)

where

kTK'
.PN u' � u'/k1 D sup0�t�b

ˇ̌
ˇ̌
tR

0

K'.t; s/
�
.PN u'/.s/ � u'.s/

�
ds

ˇ̌
ˇ̌

� sup0�t�x1
jS.t/j C supx1�t�b jS.t/j;

(18)

with

S.t/ D
tZ

0

K'.t; s/
�
.PN u'/.s/ � u'.s/

�
ds; 0 � t � b: (19)

Due to the hypothesis of theorem we can prove that sup0�t�x1
jS.t/j�cE.m;�;�;�;r/N ;

supx1�t�b jS.t/j � cE
.m;�;�;�;r/
N , with a positive constant c which is independent

of N . This together with (17)–(19) yields (15). ut

6 Numerical Example

Let us consider the following equation:

u.x/ D
Z x

0

.x � y/��y��u.y/ dy C f .x/ ; 0 � x � 1; (20)

where 0 < � < 1 ; 0 � � < 1, � C � < 1. The forcing function f is selected so
that u.x/ D x1���� is the exact solution to (20). Actually, this is a problem of the
form (1) and (3) where b D 1, g.x; y/ � 1, K.x; y/ D .x � y/��y��,

f .x/ D x1���� � x2.1����/ 
 .1 � �/ 
 .2.1� �/� �/

 .3 � 2.� C �// ; 0 � x � 1;

with 
 .t/ D
1R
0

e�s st�1 ds; t > 0 : It is easy to check that in this case K 2
W m;�;�.D1/ and f 2 Cm;�C�.0; 1� for arbitrarym 2 N.

Equation (20) was solved numerically by method (10)–(12) for � D 1=4, � D
1=2, m D 3, �1 D .5 �

p
15/=10, �2 D 1=2, �3 D .5C

p
15/=10. Here �1; �2; �3

are the node points of the Gauss–Legendre quadrature rule (14) by m D 3. This
formula is exact for all polynomials of degree not exceeding 2m � 1 D 5.

In Table 1 some results for different values of the parameters N , % and r are
presented. The quantities ".%;r/N in Table 1 are approximate values of the norm
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Table 1
�
m D 3; � D 1

4
; � D 1

2
; �1 D 5�

p

15

10
; �2 D 1

2
; �3 D 5C

p

15

10

�

N ı
.1;1/
N ı

.3;2/
N ı

.7;1/
N ı

.12;1/
N

eı.1;1/N
eı.3;2/N

eı.7;1/N
eı.12;1/N

�
.1;1/
N �

.3;2/
N �

.7;1/
N �

.12;1/
N �

.1;1/
N �

.3;2/
N �

.7;1/
N �

.12;1/
N

1.71 2.83 3.37 8.62 1.71 8.05 11.35 12.44

32 8.4 E – 1 3.5 E – 4 3.1 E – 5 1.7 E – 6 8.4 E – 1 1.6 E – 7 1.4 E – 8 1.1 E – 7

1.68 2.83 3.36 8.40 1.67 8.02 11.32 12.93

64 5.0 E – 1 1.2 E – 4 9.3 E – 6 2.1 E – 7 5.0 E – 1 2.0 E – 8 1.2 E – 9 8.2 E – 9

1.66 2.83 3.36 8.25 1.66 8.01 11.32 13.13

128 3.0 E – 1 4.3 E – 5 2.8 E – 6 2.5 E – 8 3.0 E – 1 2.5 E – 9 1.1 E – 10 6.3 E – 10

1.65 2.83 3.36 8.16 1.65 8.00 11.32 13.45

256 1.8 E – 1 1.5 E – 5 8.2 E – 7 3.1 E – 9 1.8 E – 1 3.1 E – 10 9.5 E – 12 4.7 E – 11

1.65 2.83 3.36 8.10 1.65 8.00 11.31 14.78

512 1.1 E – 1 5.4 E – 6 2.4 E – 7 3.8 E – 10 1.1 E – 1 3.9 E – 11 8.4 E – 13 3.2 E – 12

1.19 2.83 3.36 8.00 1.41 8.00 11.31 13.45

kuN � uk1, calculated as follows:

"
.%;r/
N D max

lD0;:::;10
jD1;:::;N

juN .. .r/jl /%/ � u.. .r/
jl
/%/j ;

where  .r/
jl
D xj�1C l.xj � xj�1/=10; l D 0; : : : ; 10I j D 1; : : : ; N , with the

grid points xj , defined by formula (2) for b D 1. The last four columns of Table 1
show the dependance of

�
.%;r/
N D max

lD1;:::;mI

j D1;:::;N

juN .'.xjl // � u.'.xjl //j D max
lD1;:::;mI

j D1;:::;N

jvN .xjl / � u'.xjl /j

on the parametersN , % and r (see (15)). The ratios

ı
.%;r/
N D ".%;r/

N=2

.
"
.%;r/
N ; eı.%;r/N D � .%;r/

N=2

.
�
.%;r/
N ;

characterizing the observed convergence rate, are also presented.
From Theorem 1 it follows that for sufficiently large N ,

"
.%;r/
N � kuN � uk1 � c

�
N�%r=4 if 1 � %r < 12;
N�3 if %r � 12 : (21)

Due to (21), the ratio ı.%;r/N ought to be approximately .N=2/�%r=4=N�%r=4 D
2%r=4 for 1 � %r < 12 and 8 for %r � 12. In particular, ı.1;1/N , ı.3;2/N , ı.7;1/N and

ı
.12;1/
N ought to be approximately 1.19, 2.83, 3.36, and 8.00, respectively.
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In a similar way we obtain from Theorem 2 (see (15) and (16)) that eı.1;1/N ,
eı.3;2/N ,eı.7;1/N , andeı.12;1/N ought to be approximately 1.41, 8.00, 11.31, and 13.45,

respectively. These values of ı.%;r/N andeı.%;r/N are given in the last row of Table 1.
As we can see from Table 1, the numerical results are in good agreement with

the theoretical estimates.

Acknowledgements This work has been supported by Estonian Science Foundation, grant
No. 7353.

References

1. K.E. Atkinson. The Numerical Solution of Integral Equations of the Second Kind. Cambridge
University Press, Cambridge, 1997

2. P. Baratella, A.P. Orsi. A new approach to the numerical solution of weakly singular Volterra
integral equations. J. Comput. Appl. Math., 163:401–418, 2004

3. H. Brunner. Collocation Methods for Volterra Integral and Related Functional Equations, Cam-
bridge Monographs on Applied and Computational Mathematics, 15. Cambridge University
Press, Cambridge, 2004

4. H. Brunner, P.J. van der Houwen. The Numerical Solution of Volterra Equations, CWI
Monographs, 3. North Holland, Amsterdam, 1986

5. H. Brunner, A. Pedas, G. Vainikko. The piecewise polynomial collocation method for nonlinear
weakly singular Volterra eqnations. Math. Comput., 68:1079–1095, 1999

6. Y. Cao, M. Huang, L. Liu, Y. Xu. Hybrid collocation methods for Fredholm integral equations
with weakly singular kernels. Appl. Numer. Math, 57:549–567, 2007

7. T. Diogo, S. McKee, T. Tang. Collocation methods for second-kind Volterra integral equations
with weakly singular kernels. Proc. Roy. Soc. Edinburgh, 124:199–210, 1994

8. M. Kolk, A. Pedas. Numerical solution of Volterra integral equations with weakly singular
kernels which may have a boundary singularity. Math. Model. Anal., 14(1):79–89, 2009

9. G. Monegato, L. Scuderi. High order methods for weakly singular integral equations with
nonsmooth input functions. Math. Comput., 67:1493–1515, 1998

10. A. Pedas, G. Vainikko. Smoothing transformation and piecewise polynomial collocation for
weakly singular Volterra integral equations. Comput., 73:271–293, 2004

11. A. Pedas, G. Vainikko. Integral equations with diagonal and boundary singularities of the
kernel. ZAA, 25(4):487–516, 2006

12. A. Pedas, G. Vainikko. Smoothing transformation and piecewise polynomial projection meth-
ods for weakly singular Fredholm integral equations. Commun. Pure Appl. Math., 5:395–413,
2006

13. G. Vainikko. Multidimensional Weakly Singular Integral Equations. Springer, Berlin, 1993
14. E. Vainikko, G. Vainikko. A spline product quasi-interpolation method for weakly singular

Fredholm integral equations. SIAM J. Numer. Anal., 46:1799–1820, 2008



Non-Conforming Finite Element Method
for the Brinkman Problem

Juho Könnö and Rolf Stenberg

Abstract The Brinkman equations describe the flow of a viscous fluid in a porous
matrix. Mathematically the Brinkman model is a parameter-dependent combination
of the Darcy and Stokes models. A dual mixed framework is introduced for the
problem, and H.div/-conforming finite elements are used with Nitsche’s method
to obtain a stable formulation. We show the formulation to be stable in a mesh-
dependent norm for all values of the parameter and introduce a postprocessing
scheme for the pressure, which gives optimal convergence for the pressure.

1 Introduction

We study the application of H.div/-conforming finite elements designed for the
Darcy problem to the more complicated Brinkman problem. This constitutes a
non-conforming approximation of the Brinkman problem. For an analysis of a con-
forming method see e.g., [4] and the references therein. To obtain a stable method,
the so-called Nitsche’s method first introduced in [8] is used. This in turn requires
the use of a mesh-dependent bilinear form. The motivation behind using this non-
conforming approximation is the fact that H.div/-conforming elements are widely
used in industry for solving the Darcy equation, and we want to easily show a way
of incorporating viscosity to the existing implementations.

2 The Brinkman Model

The Brinkman model describes the flow of a fluid in a porous medium [3]. For a
derivation of the Brinkman equations, see e.g., [1, 6]. The main difference to the
simpler Darcy problem is the introduction of viscosity to the equations. Let u be the
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velocity field of the fluid, p the pore pressure, and˝ 2 Rn, with n D 2; 3. Denoting
by the parameter t the effective viscosity of the fluid, the Brinkman equations are

�t2�uC u� rp D f ; in ˝ (1)

div u D g; in ˝ (2)

For t > 0, the equations have formally the same structure as the Stokes problem.
The solution .u; p/ is sought in V �Q D ŒH 1.˝/�n � L2

0.˝/. For the case t D 0
we get the Darcy problem, and accordingly the solution is sought in V � Q D
H.div;˝/ � L2

0.˝/.
We define the following bilinear forms

a.u; v/ D t2.ru;rv/C .u; v/; (3)

b.v; p/ D .div v; p/; (4)

and
B.u; pI v; q/ D a.u; v/C b.v; p/C b.u; q/: (5)

The Brinkman problem in the weak formulation then reads: Find .u; p/ 2 V �Q
such that

B.u; pI v; q/ D .f ; v/C .g; q/; 8.v; q/ 2 V �Q: (6)

3 Solution by Mixed Finite Elements

3.1 Mesh Dependent Norms

We introduce the following mesh-dependent norms for the problem. Note, that both
of the norms are also parameter-dependent. We denote the jump in the value of a
generic function f on the edgeE by ŒŒf �� D f jK1

�f jK2
, whereE D @K1

T
@K2.

Similarly, the average on the edge is denoted ff g D 1
2
.f jK1

C f jK2
/. For the

velocity we use the norm

kuk2t;h D kuk2 C t2
X

K2Kh

kruk20;K C t2
X

E2Eh

1

hE

kŒŒu� ���k20;E ; (7)

and for the pressure

jjjpjjj2t;h D
X

K2Kh

h2
K

h2
K C t2

krpk20;K C
X

E2Eh

hE

h2
E C t2

kŒŒp��k20;E : (8)
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3.2 Mixed Method

For simplicity, we only prove the stability results for the Raviart–Thomas spaces.
All presented results also hold for the Brezzi–Douglas–Marini family of elements,
since V RT

h � V BDM
h and QBDM

h
D QRT

h
. The spaces of order k are [2]

V RT
h D fv 2 H.div;˝/ j vjK 2 ŒPk�1.K/�

n ˚ xeP k�1.K/ 8K 2Khg; (9)

V BDM
h D fv 2 H.div;˝/ j vjK 2 ŒPk.K/�

n 8K 2 Khg; (10)

Qh D fq 2 L2.˝/ j qjK 2 Pk�1.K/ 8K 2Khg; (11)

in which eP k�1.K/ denotes the homogeneous polynomials of degree k � 1. The
spaces are chosen such that the following equilibrium property holds:

div V h � Qh: (12)

To obtain a stable non-conforming method, Nitsche’s method with a suitably
chosen stabilization parameter ˛ is used. We define the following mesh-dependent
bilinear form

Bh.u; pI v; q/ D ah.u; v/C b.v; p/C b.u; q/; (13)

in which

ah.u; v/ D .u; v/C t2
X

K2Kh

.ru;rv/K

Ct2
X

E2Eh

f ˛
hE

hŒŒu��; ŒŒv��iE � hf @u
@n
g; ŒŒv��iE � hf @v

@n
g; ŒŒu��iE g: (14)

Then the discrete problem is to find uh 2 V h and ph 2 Qh such that

Bh.uh; phI v; q/ D .f ; v/C .g; q/; 8.v; q/ 2 V h �Qh: (15)

The modified method is consistent by the following theorem.

Theorem 1. For the exact solution .u; p/ 2 V �Q it holds

Bh.u; pI v; q/ D .f ; v/C .g; q/; 8.v; q/ 2 V h �Qh: (16)

Next we prove the stability of ah.� ; � / in the mesh-dependent norm (7). The sta-
bility only holds in the discrete space V h, since we need to use the inverse inequality.
Estimating the negative term using Young’s inequality in the following expression
from below gives
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ah.v; v/ D kvk20 C t2
X

K2Kh

krvk20;E C t2 �
X

E2Eh

.
˛

hE

kŒŒv��k20;E � 2h
@v
@n
; ŒŒv��iE /

� minf1 � CI

2�
; ˛ � �

2
gkvk2t;h: (17)

Here CI is the constant from the discrete trace inequality. Since � and ˛ are free
parameters, choosing � > CI=2 and ˛ > �=2 gives

ah.v; v/ � Ckvk2t;h; 8v 2 V h; (18)

with a constant C > 0. The method also satisfies the discrete Brezzi–Babuska sta-
bility condition [2] in the mesh-dependent norms (7) and (8). One only has to prove
the condition in the Raviart–Thomas case since V RT

h � V BDM
h . The proof follows

the lines of [7].

Lemma 1. There exists a positive constant C such that

sup
v2V h

b.v; q/
kvkt;h � C jjjqjjjt;h; 8q 2 Qh: (19)

Combining the above stability results for ah.� ; � / and b.� ; � / yields the following
full stability result.

Lemma 2. There exists a positive constant C such that

sup
.v;q/2V h�Qh

Bh.r ; sI v; q/
kvkt;h C jjjqjjjt;h � C.krkt;h C jjjsjjjt;h/; 8.r; s/ 2 V h �Qh: (20)

Next we recall the interpolation operatorRh W H.div;˝/! V h [9] satisfying

.div .v �Rhv/; q/ D 0; 8q 2 Qh: (21)

We denote by Ph W L2.˝/! Vh the L2-projection. The equilibrium property (12)
implies

.div v; q � Phq/ D 0; 8v 2 V h: (22)

Furthermore, we have the commuting diagram property:

divRh D Phdiv: (23)

We then have the following quasioptimal a priori result. The result is quasiopti-
mal in the sense that the error of the finite element solution is limited by, but not
necessarily equal to, the interpolation error.

Theorem 2. There is a positive constant C such that

ku � uhkt;h C jjjPhp � phjjjt;h � Cku �Rhukt;h: (24)
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Proof. By Lemma 2 there exists functions .v; q/ 2 V h �Qh with kvkt;hCjjjqjjjt;h �
C , such that

kuh �Rhukt;h C jjjph � Phpjjjt;h � Bh.uh �Rhu; ph � PhpI v; q/
D ah.uh �Rhu; v/C .div v; ph � Php/C .div .uh �Rhu/; q/

By using the interpolation properties (21) and (22) along with the consistency
property of Theorem 1, we arrive at

kuh �Rhukt;h C jjjph � Phpjjjt;h � ah.u�Rhu; v/ � Cku�Rhukt;h (25)

Using the triangle inequality yields the result of the theorem. ut
Equivalently to the dual mixed Poisson problem, we have a superconvergence result
for jjjph�Phpjjjt;h. This implies that the pressure solution can be improved by local
postprocessing. Assuming full regularity, one has

ku � uhkt;h C jjjPhp � phjjjt;h �
(
Chk.kukk C tkukkC1/; for RT;

ChkC1.kukkC1 C tkukkC2/; for BDM:
(26)

4 Postprocessing Method

In this section we present a postprocessing method for the pressure in the spirit
of [7]. We seek the postprocessed pressure in an augmented space Q�

h
� Qh,

defined as

Q�h D
(
fq 2 L2.˝/ j qjK 2 Pk.K/ 8K 2Khg; for RT;

fq 2 L2.˝/ j qjK 2 PkC1.K/ 8K 2Khg; for BDM:
(27)

The postprosessing method is: Find p�
h
2 Q�

h
such that

Php
�
h D ph; (28)

.rp�h ;rq/K D .�t2�uh C uh � f ;rq/K ; 8q 2 .I � Ph/Q
�
hjK : (29)

The method can be compactly treated as an integral part of the problem by
embedding it into the bilinear form. Thus we introduce the modified bilinear form

eBh.u; p
�I v; q�/ D Bh.u; p

�I v; q�/
C

X
K2Kh

h2
K

h2
K C t2

.�rp� C u� t2�u;r.I � Ph/q
�/K : (30)
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The postprocessed problem is then: Find .uh; p
�
h
/ 2 V h �Q�h such that for every

pair .v; q�/ 2 V h �Q�h it holds

eBh.uh; p
�
h I v; q�/ D L2 .˝/h .f ; PhgI v; q�/; (31)

in which

L2 .˝/h .f ; gI v; q�/ D .f ; v/C .g; q�/C
X

K2Kh

h2
K

h2
K C t2

.f ;r.I � Ph/q
�/K :

(32)
We have the following theorem relating the solution of the postprocessed problem
to the original problem.

Theorem 3. Let .uh; p
�
h
/ 2 V h �Q�h be the solution of the problem (31) and set

ph D Php
�
h

. Then .uh; ph/ 2 V h �Qh is the solution of the original problem (15).
Conversely, if .uh; ph/ 2 V h �Qh is the solution of the original problem (15) and
p�

h
is defined as above, then .uh; p

�
h
/ 2 V h �Q�h is the solution to (31).

The postprocessed method also has full stability in the mesh-dependent norms.

Theorem 4. There exists a constant C > 0 such that for every .u; p�/ 2 V h �Q�h
it holds

sup
.v;q�/2V h�Q�

h

eBh.u; p�I v; q�/
kvkt;h C jjjq�jjjt;h � C.kukt;h C jjjp

�jjjt;h/: (33)

We have the following quasioptimal a priori result.

Theorem 5. For the postprocessed solution it holds

ku � uhkt;h C jjjp � phjjjt;h � C inf
q�2Q�

h

fku� Rhukt;h C jjjp � q�jjjt;h

C .
X

K2Kh

h2
K

h2
K C t2

k � rq� CRhu � t2�Rhu� f k20;K/
1=2g: (34)

Proof. Let q� 2 Q�
h

. From Theorem 4 it follows that we have a pair .v; r�/ 2
V h �Q�h such that kvkt;h C jjjr�jjjt;h � C and

kuh � Rhukt;h C jjjp�h � q�jjjt;h � C eBh.uh �Rhu; p�h � q�I v; r�/:

Combining the definition of the postprocessed problem and the consistency result of
Theorem 1 gives
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kuh�Rhukt;hCjjjp�h � q�jjjt;h � C eBh.u�Rhu; p� q�I v; r�/� .g�Phg; r
�/

D ah.u �Rhu; v/C .div v; p � q�/C .div .u� Rhu/; r�/� .g � Phg; r
�/

X
K2Kh

h2
K

h2
K C t2

.�r.p � q�/C .u�Rhu/C�t2�.u�Rhu/;r.I �Ph/r
�/K :

The last two terms on the second line cancel by the commuting diagram prop-
erty (23). Inserting f into the last line of the previous equation we have

kuh �Rhukt;h C jjjp�h � q�jjjt;h � C fku�Rhukt;hkvkt;h C jjjp � q�jjjt;hkvkt;h
C .

X
K2Kh

h2
K

h2
K C t2

krq� �RhuC t2�RhuC f k20;K/
1=2jjjr�jjjt;h;

thus the assertion is proved. ut
Theorem 5 shows that the postprocessed pressure converges to the exact solution

in the mesh-dependent norm at an optimal convergence rate. This gives the proposed
method a good balance between accuracy and keeping the number of degrees of
freedom for the pressure relatively low in the original system. This is a particularly
important property, since the pressure space is discontinuous.

5 Conclusions

It was shown that Nitsche’s method can be successfully applied to using H.div/-
conforming elements as a non-conforming approximation for the Brinkman prob-
lem. The method is stable for all values of the viscosity parameter t . We were able
to extend the postprocessing scheme introduced for the Darcy case to the Brinkman
problem, thus recovering optimal convergence rates for both the variables. The post-
processing procedure is also essential in deriving a reliable and sharp residual-based
a posteriori estimator for the problem. This issue will be addressed in an upcoming
article by the authors [5].

Furthermore, since the postprocessing is performed elementwise, the procedure
is numerically lightweight adding very little computational cost to the original
problem. This makes the non-conforming approximation a viable alternative to the
Stokes-based approach, even though it adds complexity to the implementation.

Both the a priori and a posteriori performance of the method will be investigated
numerically in an upcoming paper by the authors.
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Error Control for Simulations of a Dissociative
Quantum System

Katharina Kormann and Anna Nissen

Abstract We present a framework for solving the Schrödinger equation model-
ing the interaction of a dissociative quantum system with a laser field. A per-
fectly matched layer (PML) is used to handle non-reflecting boundaries and the
Schrödinger equation is discretized with high-order finite differences in space and
an h; p-adaptive Magnus–Arnoldi propagator in time. We use a posteriori error
estimation theory to control the global error of the numerical discretization. The
parameters of the PML are chosen to meet the same error tolerance. We apply our
framework to the IBr molecule, for which numerical experiments show that the total
error can be controlled efficiently. Moreover, we provide numerical evidence that the
Magnus–Arnoldi solver outperforms the implicit Crank–Nicolson scheme by far.

1 Introduction

The quantum system of a molecule can be described by the time-dependent
Schrödinger equation (TDSE),

i„@ 
@t
D H0 ;

where H0 D � „2

2m
� C V.x/ is the Hamiltonian, „ Planck’s reduced constant, m

the mass of the system, and V.x/ is a space-dependent potential. To describe the
interaction of the molecule with a time-dependent field, one adds a time-dependent
coupling term to the Hamiltonian. We consider the nuclear motion with various
(fixed) electronic states. These states can be coupled statically through crossings in
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the potential energy, or dynamically by a laser field. We refer to [12] for a more
detailed description of the chemical model.

In this article, we are especially interested in the case where unstable electronic
states are included, so that the wave function is not concentrated to a bounded
domain. For the numerical simulations we need to truncate the domain and, in order
to avoid reflections from the numerical boundary, artificial damping needs to be
imposed close to the boundary. In [11] approximate error formulas were derived
for a damping based on a perfectly matched layer (PML). Here, we combine this
boundary model with efficient Magnus–Arnoldi time-propagation, see [8]. We pro-
pose a procedure of balancing errors that arise from the boundary modeling as well
as the spatial and temporal discretization.

As a sample system, we consider a three-state IBr system with a Hamiltonian of
the form

H D

0

B@
� „2

2m
�C V1.x/ �.x/".t/ 0

�.x/".t/ � „2

2m
�C V2.x/ Vc.x/

0 Vc.x/ � „2

2m
�C V3.x/

1

CA ; (1)

where � is the dipole moment, " is the time-dependent field, and Vc is the statical
coupling term. In our example, the second and the third states are dissociative.

2 Domain Truncation and Discretization

Firstly, we truncate the computational domain to ˝ D Œx; x� � RC which should
contain the domain of interest for the purpose of the respective computation. The left
boundary is chosen such that the wave function is (almost) zero for smaller values
of x. The right boundary is chosen so that the space-dependent potentials are slowly
varying at the boundary and that ˝ includes the range of the involved bounded
states. By assuming that the potentials are constant in space, we derive a PML using
a modal ansatz as an extension to the right boundary (cf. [5]). The modified TDSE
with boundary treatment is rewritten as a complex symmetric expression (see [7]),
where the second derivatives for the dissociative second and third state in (1) are
replaced by

� „
2

2m

@2

@x2
! � „

2

2m

�
1

f .x/

@2

@x2
1

f .x/
C F.x/

�
;

and solved for the new wave function
p
f .x/ .x; t/, where F.x/ D

3f 0.x/2�2f 00.x/f .x/

4f.x/4
and f .x/ D 1 C ei�=4�.x/. �.x/ is a polynomial damping

profile. Note that such a modeling truncates the self-adjointness of the Hamiltonian.
The TDSE formulated on a bounded domain is now discretized based on the

method of lines. A spatial grid with step size �x is introduced and the second
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derivatives are computed with a standard eighth order central stencil. Dirichlet con-
ditions are posed at the outer boundaries and central finite difference schemes of
order 2, 4, and 6 are used for the points closest to the boundaries.

After discretization in space, the TDSE becomes a system of ordinary differential
equations. Common methods to propagate the semi-discretized TDSE are parti-
tioned Runge–Kutta methods and exponential integrators [10, Chap. III]. We use
a combination of the Magnus expansion [1] and the Arnoldi algorithm [6]. For this
propagator, an h; p-adaptive implementation with global error control was devised
in [9].

3 Error Control

In this section, we discuss how to estimate the errors that arise from the boundary
model and the discretization in both space and time.

3.1 PML Errors

The boundary model gives rise to a modeling error due to the finite width of the
PML as well as numerical reflections due to the discretization of the modified
TDSE. Approximate error formulas for a polynomial absorption function of order r ,
�.x/ D �max

�
x�x
d

�r
, were derived in [11] for the modeling error and the numerical

reflections, respectively, see (3) and (2). Here, d D �x � n is the width of the layer,
�max the maximal value of �.x/, and x the PML interface.

The error due to numerical reflections, "PML;2, is approximately

"PML;2 � C �max
nr

: (2)

We use r D 2q, where 2q is the order of the finite difference scheme. The constant
C can be determined numerically by using a sufficiently wide PML with strong
damping and fine spatial and temporal discretization, so that other error sources
than "PML;2 are negligible, see [11].

The modeling error of the PML, "PML;1, for the polynomial profile is approxi-
mately

"PML;1 � e
�

p

2k�maxd
rC1 : (3)

Here, k is the dominating frequency of the system, which we need to determine in
order to estimate "PML;1.

These error estimates can be used to determine the number of points in the PML,
n, and the strength, �max , in a way that the errors are within a prescribed tolerance
and of equal size. We only need to solve the problem once in order to determineC in
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(2) and we have to identify a suitable value for k based on the particular properties
of the system.

For the three state IBr system, the dissociation process takes place in the second
and third states and we are thus interested in the energies of the parts of the initial
wave packet that have been excited to a higher state by the laser pulse. For simplicity,
we calculate k from the second state, since this is where the main part dissociates.

The dominating frequency, k, is determined from the time-independent part of
the Hamiltonian for the second state, H2 D � „2

2m
@2

@x2 C V2.x/. Eigenvectors, �2,
and eigenvalues, E2, of H2 are given byH2�2 D E2�2:

Let  2 be the wave function in the second state. The energy distribution is deter-
mined in terms of the Fourier coefficients for the second state, a2 D< �2j 2 >.

By assuming that the potential is constant near the PML interface, we can
consider the free particle case, where k is given by

k Dp2m.E2 � V2/: (4)

3.2 Discretization Errors

Our aim is to derive an a posteriori error estimate [2] which tells us how to compute
the error at final time from the residual at each point in space and time. For this
purpose, we view the numerical solution in terms of its continuous interpolant, e ,
which solves a perturbed version of the Schrödinger equation,

i„ @
@t
e D He CR.x; t/; e .x; 0/ D  .x/CR.x; 0/;

whereR.x; t/ is the perturbation due to numerical approximation. Let us look at the
error in some functional defined as "dis D

R
˝
'.x/�

�
 .x; tf /� e .x; tf /

�
dx. As

we focus on the L2 norm of the error, we choose ' D "disk"disk . Defining the adjoint
problem,

i„ @
@t
� D H��; �.x; tf / D '.x/;

we can find the following expression for the error in terms of the residual

"dis D
Z tf

0

Z

˝

��.x; t/R.x; t/dxdt C�x
Z

˝

��.x; 0/R.x; 0/dx

�
Z tf

0

�x
X

j

��.xj ; t/R.xj ; t/dt C�x
X

j

��.xj ; 0/R.xj ; 0/:
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In the second step, we have approximated the integral over˝ on the same mesh
as the TDSE. In order to be able to compute the error, we have to evaluate the
residual. To make this procedure easier, we examine one time step at a time. Then,
we can consider the error from previous steps as a perturbation of the initial value.
In this way, we only have to estimate the local perturbations (cf. [9]).

Firstly, we look at the residual due to spatial approximation. Instead of computing
the second derivative at point xj exactly, we approximate it by finite differences, i.e.,

the spatial perturbation at grid point xj reads Rs.xj ; t/ D � „2

2m

�
.D2qv/j � �e 

.xj ; t/
�
; where D2q denotes a .2q/th order accurate finite difference operator and

v the vector of the numerical solution at the grid points. Since we do not know the
value of �e .xj ; t/ and are looking for an easy-to-compute estimate, we use the
.2q C 2/th order finite difference approximation as a reference, that is,

Rs.xj ; t/ D � „
2

2m

�
.D2qv/j � .D2qC2v/j /

�
:

Since we suppose that Rs is small compared to He , we assume that we can
get a good estimate of the temporal residual Rt when computing it based on the
discretized Hamiltonian and neglecting mixed spatial and temporal terms in the
residual. This splitting gives the following error estimate

"dis � �t�x
X

j

X

l

��.xj ; tl/Rs.xj ; tl /C�x
X

j

X

l

Z tl

tl�1

��.xj ; t/Rt .xj ; t/dt;

(5)

where temporal and spatial influences are split.
We consider ' D "disk"disk which is unknown. Therefore, we cannot actually solve

the dual problem. Instead, we split the inner products in (5) using the Cauchy–
Schwarz inequality. We also used that k�k � 1 for all t 2 Œ0; tf � since we expect
the dual solution to be concentrated on the computational domain where H is self-
adjoint (see the discussion in [9]). This yields

j"disj � �t
X

l

s
�x

X

j

jRs.xj ; tl/j2

„ ƒ‚ …
WD "dis;s

C
X

l

Z tl

tl�1

s
�x

X

j

jRt .xj ; t/�2dt

„ ƒ‚ …
WD "dis;t

:

In order to identify the spatial error, we have to solve the TDSE once and evaluate
Rs in each time step. Since we are using a .2q/th order stencil, we expect the error
to be of the order of the .2q/th power of the mesh size. By extrapolation, we can
thus compute a guess for the mesh size that should be small enough to meet the
given tolerance (tol),
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�xnew D 2q

s
tol

"dis;s
�x:

We now turn to the temporal error. We integrate over each time interval to get a
sum of local errors instead of local residuals. If we now distribute the error equally
over the time intervals, that is, if we make sure that the local error in each interval
is less than the tolerance weighted by �t

tf
, we can bound the global error in the

propagation. As proposed in [9], we control the error in the Magnus expansion by
adjusting the step size �t and the error in the Arnoldi method by the size of the
underlying Krylov space (cf. [6]).

3.3 Error Balancing

We conclude this section by formulating a procedure that includes the control of
each of the three error sources with the aim of computing the solution of the TDSE
to a given accuracy. We suppose that the errors are accumulated and therefore take
one third of the total tolerance for each error source. Computing the error estimate
for the spatial discretization error requires to solve the problem on a coarse initial
mesh. On this mesh one has to identify the parameter C in (2) which facilitates us
to find suitable PML parameters. Then the equation can be solved with the adaptive
Magnus–Arnoldi method, and an estimate of the spatial error can be computed.
Since we expect this first computation to be of low accuracy, it is reasonable to
choose a loose tolerance also for boundary modeling and temporal error.

As the next step, we estimate the mesh size �x suitable for the given tolerance.
We then update the PML parameters accordingly and solve the problem again with
the adaptive Magnus–Arnoldi solver. If the error of the first run is much larger than
the tolerance, one should compute the error estimate again and check whether the
extrapolated value for �x was indeed small enough.

This procedure can be summarized as follows:

1. Set a tolerance and choose an initial spatial grid size �x.
2. Compute the value of the parameter C in (2) and identify the optimal PML

parameters.
3. Solve the TDSE with adaptive Magnus–Arnoldi time stepping and estimate the

inner discretization error.
4. Adjust �x and update the PML parameters correspondingly.
5. Solve the TDSE with adaptive Magnus–Arnoldi on the new grid.
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4 Numerical Experiments

We have tested our algorithm for a three-state IBr system. Starting with the lowest
eigenfunction of the ground state, we excite the molecule to the B3˘C0 state with
a laser with a wavelength of 500 nm, a width of 50 fs, and strength 219 cm�1. This
state is statically coupled to the Y C0 dissociative state. For the parameters of the
potential energy curves, we refer to [3]. In order to check our results, we compute a
reference solution on a spatial mesh with �x D 5:5 � 10�3 a.u. (2:9 � 10�3 Å) over a
large spatial interval where domain truncation is not necessary. All experiments are
done with Matlab.

In order to demonstrate the potential of the Magnus–Arnoldi method, we com-
pare the performance of the 2nd and 4th order Magnus–Arnoldi solver with the
implicit Crank–Nicolson scheme for simulations on a grid with�x D 5:5 �10�3 a.u.
Figure 1 shows that the Magnus–Arnoldi schemes outperform Crank–Nicolson and
that the Magnus–Arnoldi propagator is the more efficient the smaller the time step.

We now use the procedure described in Sect. 3.3 for error control. For the pre-
liminary computations, we choose the step size �x D 0:022 a.u. (0:012 Å) which
corresponds to N D 125 inner discretization points. Then, we compute the PML
error constantC in (2) to be 3:79 �105. We choose 0:44 a.u. (12:0 eV) as a threshold
value for E2 in (4), since a majority of the Fourier coefficients has energies that are
larger and the performance of the PML increases with increasing wave number. V2
in (4) is set to the value of the second potential energy curve at the PML interface,
x D x, to V2.x/ D 0:08 a.u. (2:2 eV). Using that the mass m for the IBr system is
m D 89379 a.u. (1:48 � 10�22 kg) and the corresponding length scale Qx D 2:75 a.u.
(1:46 Å) gives us the scaled dominating frequency in atomic units, k D 92:2, from
(4). Next, we identify the inner discretization error on this mesh to be 0.012.

With these preliminary computations, we have all the parameters at hand to adjust
�x and the PML-parameters for computations with arbitrary accuracy. In Table 1,
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Fig. 1 Performance of Magnus–Arnoldi 4 (�), Magnus–Arnoldi 2 (5), and Crank–Nicolson (�).
The times were taken on an AMD Opteron 2216 (2.4 GHz)
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Table 1 Comparison of effort and actual value of the `2 error for various tolerances

Tolerance `2 error N n M Total no. MVP

10�2 3:9 � 10�3 148 9 2,843 15,698
10�3 4:5 � 10�4 196 13 6,977 29,328
10�4 7:9 � 10�5 261 17 19,069 74,926

we report the results for three different tolerances. The effort for the computations
depends on the number of spatial grid points, N C n (inner + PML points), and
the number of time steps, M , in combination with the size of the Krylov space in
each step (we report the total number of matrix-vector products (MVP)). Table 1
compares the amount of work needed and shows that the total error estimation is
both effective and efficient. Considering each error source separately shows that the
spatial error dominantes and the other two are of similar order (overestimation by a
factor 20 at most).

5 Summary and Outlook

We have suggested a procedure on how to balance the errors that arise due to
boundary treatment as well as spatial and temporal discretization. We have observed
that the explicit Magnus–Arnoldi method outperforms the implicit Crank–Nicolson
scheme already in one dimension.

In this article, we have only considered the L2 error and adaptivity in time, but
spatial adaptivity should also be included in future work. To achieve even better
performance, the error control has to be included in a parallel implementation (cf.
[4]). In this way, high dimensional problems are supposed to be tackled.
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A Comparison of Simplicial and Block Finite
Elements

Sergey Korotov and Tomáš Vejchodský

Abstract In this note we discuss and compare the performance of the finite ele-
ment method (FEM) on two popular types of meshes – simplicial and block ones.
A special emphasis is put on the validity of discrete maximum principles and on
associated (geometric) mesh generation/refinement issues in higher dimensions. As
a result, we would recommend to carefully reconsider the common belief that the
simplicial finite elements are very convenient to describe complicated geometries
(which appear in real-life problems), and also that the block finite elements, due to
their simplicity, should be used if the geometry of the solution domain allows that.

1 Introduction

Geometrically, there are two types of finite elements (FEs) which can be naturally
generalized to any dimension – simplices and blocks, where by blocks we mean
Cartesian products of intervals. In what follows, we shall only consider the lowest-
order finite elements, i.e., linear functions on simplices and multilinear functions on
blocks. In 1D, the only reasonable element is an interval which can be understood
both as a simplex and a block. Therefore, we shall make comparison for the case of
two and more dimensions. Namely, we concentrate on validity of discrete maximum
principles and on associated geometrical issues for mesh generation and adaptivity.
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2 Model Problem at Its Finite Element Discretization

We consider the following test problem: Find a function u such that

��uC cu D f in ˝; u D g on @˝; (1)

where ˝ � Rd is a bounded polytopic domain with Lipschitz boundary @˝ and
c � 0. The classical solution u 2 C 2.˝/ \ C.˝/ of (1) satisfies the maximum
principle:

f � 0 H) max
x2˝

u.x/ � maxf0 ; max
s2@˝

g.s/g: (2)

Most of FE schemes are based on the weak formulation: Find u 2 H 1.˝/ such
that the boundary condition u D g is satisfied in the sense of traces on @˝ and

a.u; v/ D F .v/ 8v 2 H 1
0 .˝/;

where a.u; v/ D R
˝
.ru � rv C cuv/ dx, F .v/ D R

˝
f v dx, c 2 L1.˝/, and

f 2 L2.˝/.
Let Th be a conforming (block or simplicial) FE mesh on ˝ with interior nodes

B1; : : : ; BN lying in ˝ and boundary nodes BNC1; : : : ; BNCN @ lying on @˝ . Fur-
ther, let Vh be a finite-dimensional subspace of H 1.˝/, associated with Th and
its nodes, being spanned by the basis functions �1; �2; : : : ; �NCN @ with the fol-
lowing properties: �i � 0 in ˝ (nonnegativity), �i .Bj / D ıij (delta property),

i; j D 1; : : : ; N C N @, and
PNCN @

iD1 �i � 1 in ˝ (partition of unity). Notice that
the lowest-order finite elements on simplices and on blocks meet these requirements.
We also assume that the basis functions �1; �2; : : : ; �N vanish on the boundary
@˝ . Thus, they span a finite-dimensional subspace V 0

h
of H 1

0 .˝/. Let, in addition,

gh D
PN @

iD1 gNCi�NCi 2 Vh be a suitable approximation of the function g, for
example its nodal interpolant.

The FE approximation is a function uh D u0
h
C gh such that u0

h
2 V 0

h
and

a.uh; vh/ D F .vh/ 8vh 2 V 0
h ; (3)

whose existence and uniqueness is also provided by the Lax–Milgram lemma.

Algorithmically, uh D
PNCN @

iD1 yi�i , where yi are the entries of the solution
Ny D Œy1; : : : ; yNCN @ �> of the square system of N CN @ linear algebraic equations

NANy D NF; where NA D
�

A A@

0 I

�
; and NF D

�
F
F@

�
: (4)

In the above, A 2 RN�N , A@ 2 RN�N @
, 0 and I stand for the zero and unit

matrices of appropriate sizes. The nontrivial entries of NA are aij D a.�j ; �i /,
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i D 1; : : : ; N; j D 1; : : : ; N CN @. The block F consists of entries fi D F .�i /;

i D 1; : : : ; N , and the block-vector F@ has entries f @
i D fNCi D gNCi ; i D

1; : : : ; N @, given by the boundary data.

3 Discrete Maximum Principles for FEM

In this section we compare simplicial and block finite elements with respect to the
so-called discrete maximum principle (DMP). For a fixed mesh Th, we say that the
discretization (3) satisfies the DMP if

f � 0 H) max
x2˝

uh.x/ � maxf0 ; max
s2@˝

gh.s/g: (5)

In the case of the lowest-order finite elements, it is well known [4] that the DMP
is satisfied if (i) the stiffness matrix NA is monotone and if (ii) the row sums of NA
are nonnegative. Condition (ii) is satisfied, because the basis functions form the
partition of unity and the coefficient c is nonnegative. Sufficient conditions for (i)
can be obtained from the theory of M-matrices [7]. This, in particular, requires the
nonpositivity of the off-diagonal entries in the FE matrix NA. Matrix NA is assembled
from the local (element) FE matrices, NA D P

K2Th

NAK , and hence it suffices to

guarantee the nonpositivity of the off-diagonal entries of each NAK . This observation
yields various geometric limitations for the finite elements which we discuss in what
follows.

3.1 On Entries of FE Matrices for Simplices

For simplicity, let us consider the Laplace operator only, i.e., c � 0. In this case
the off-diagonal entries aK

ij .i ¤ j / of the local stiffness matrices NAK for simplicial
elements can be expressed in any dimension by the following formula [1]

aK
ij D

Z

K

r�j � r�i dx D �measd�1.Fi /measd�1.Fj /

d 2 measd .K/
cos˛ij ;

where ˛ij 2 .0; �/ stands for the dihedral angle between the facets Fi and Fj of the
simplex K 2 Th, see Fig. 1 (left).

Clearly, aK
ij � 0 if and only if ˛ij � �=2. This nonobtuseness condition is well

known for triangles and for tetrahedra, and it is crucial for the validity of DMPs [2].
For the case of general coefficients the conditions on meshes for DMP are stricter.
Thus, if e.g., c > 0 then all dihedral angles in meshes have to be acute and, in
addition, the meshes themselves have to be sufficiently fine due to the positive terms
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Fig. 1 The dihedral angle ˛ij between faces Fi and Fj of a tetrahedron K (left). Results of the
experiment for triangles (right)

Z

K

�j�i dx D dŠ

.d C 2/Š measd .K/; i ¤ j;

additionally appearing in computations, see e.g., [2, 5] for details.
Further, generalization can be obtained by requiring the stiffness matrix not to

be M-matrix but to be monotone only. Theoretical handling of monotone matrices
is difficult, but it can be checked numerically. Figure 1 (right) shows results of an
experiment, where we consider the Poisson problem with homogeneous Dirichlet
boundary conditions. Hence, the block A of NA only is relevant. The domain ˝ is a
triangle. The axis in Fig. 1 (right) correspond to two angles of ˝ . For each pair of
angles ˛ and ˇ, we construct a triangulation by three steps of uniform red refinement
of ˝ . Then we assemble the stiffness matrix A, and color the corresponding point
according to its properties. If A is M-matrix (has off-diagonal entries nonpositive)
then the point is black. If A is monotone and not M-matrix then the point is dark
gray. If A is not monotone then the point is light gray. We clearly see that in this
case the stiffness matrix is M-matrix if and only if all angles are nonobtuse (black
area). Further we observe that the DMP is satisfied under favorable circumstances
even for angles up to 117ı (dark gray area), see also [12] for a similar 3D test.

3.2 On Entries of FE Matrices for Blocks

The analysis of the DMP for block FE partitions can be done in the same fashion
as for the simplices. The results, however, strongly depend on the dimension. For
simplicity we again consider the Laplacian with homogeneous Dirichlet boundary
condition. LetK be an element of a d -dimensional block mesh with edges of lengths
b1; b2; : : : ; bd . If Bi and Bj are its two vertices connected by the edge of length b1

then the corresponding entry of the local stiffness matrix NAK is
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aK
ij D

b1b2 : : : bd

3d�1

 
dX

kD2

1

2b2
k

� 1

b2
1

!
; i ¤ j: (6)

In 2D we immediately see that aK
ij � 0 if and only if b1=b2 �

p
2. This yields

the well-known nonnarrow condition for the DMP. A rectangle K is nonnarrow if
1=
p
2 � b1=b2 �

p
2, where b1 and b2 stand for the lengths of its sides. It can be

shown [9] that the DMP is satisfied if all rectangles in the mesh Th are nonnarrow.
The nonnarrow condition guarantees that the corresponding stiffness matrix is

M-matrix. A similar experiment as before reveals that this condition can be weak-
ened if the stiffness matrix is required to be monotone only. In this experiment, we
again consider c � 0 and g D 0. The domain is a rectangle ˝ D .0; b1/ � .0; b2/.
The finite element mesh is obtained by the uniform refinement of ˝ into N 2

sub ele-
ments, where Nsub is the number of subedges induced on each edge of ˝ . The axes
in Fig. 2 (left) correspond to the aspect ratio b1=b2 of the rectangle ˝ (and of all
elements) and to the valueNsub. The results in Fig. 2 (left) indicate that the value

p
2

in the nonnarrow condition can be increased up to about 2:16 provided the mesh is
sufficiently fine.

The 3D analysis of the trilinear elements on blocks based on (6) gives a bit pes-
simistic conclusion. The stiffness matrix is M-matrix (and the DMP is satisfied) if all
the elements are cubes [9]. Similar experiment as before, see Fig. 2 (right), indicates
that the cubes cannot be distorted much in order to retain the stiffness matrix mono-
tone and to satisfy the DMP. The two possible aspect ratios we have in rectangular
cuboids can be at most around 1:05.

In dimensions 4 and higher, certain contributions form the local stiffness matrices
are always positive. Indeed, without loss of generality we may assume that b1 �
b2 � � � � � bd . If aK

ij was nonpositive then (6) would yield
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1

b2
1

�
dX

kD2

1

2b2
k

� d � 1
2b2

2

>
1

b2
2

;

where the last inequality holds true for d � 4. This inequality, however, contradicts
the fact that b1 � b2. Furthermore, considering the longest edge in the mesh, we
see that all the contributions from all the elements surrounding this edge are posi-
tive and, hence, the corresponding off-diagonal entry in the stiffness matrix A is
positive. Consequently, A is not an M-matrix. Similar experiments as before reveal
that the stiffness matrix is neither monotone even on hyper-cubes. Thus, from the
point of the DMP, the block finite elements are less advantageous than the simplicial
elements especially for 3D and higher dimensional problems.

4 On Mesh Generation and Adaptivity

Modern FE computations require treatment of issues like generation of a mesh with
desired geometric properties and its global and local refinements preserving those
properties. In the following two subsections we shall discuss these issues for both,
simplices and blocks, with respect to geometric limitations imposed by the DMP.

4.1 Simplicial FE Meshes (Acuteness and Nonobtuseness)

The practical realization of angle conditions (nonobtuseness and acuteness) is not
easy. Even in 2D, an initial generation of reasonable nonobtuse and acute triangu-
lations, especially for complicated domains, is algorithmically a hard task, see e.g.,
[3] for examples and literature on the subject. In 3D it is becoming even more dif-
ficult. Some results on generation and proper refinements of nonobtuse tetrahedral
meshes are reported e.g., in [11] (see also [3]). But the only known positive (and
very recent results) on acute meshes are the acute face-to-face tetrahedralization of
the whole 3D Euclidean space [17], an infinite slab [6], some types of tetrahedra
and a regular octahedron [10], and a cube [10, 18]. It is worth to mention that the
last two works (the only relevant for real-life computations which are mostly done
in bounded domains) were published in summer of 2009 only! Moreover, the acute
tetrahedralization of a cube require many tetrahedra. In addition, these tetrahedra
are very densely placed in the interior of the cube which is not so good for real
computations as meshes used in practice should be dense mainly in vertices and
along edges. Concerning higher dimensions, the situation with acute simplices is
getting even more pessimistic. For example, it was shown in [10, 13] that the space
Rd .d � 4/ cannot (surprisingly!) be filled face-to-face by acute simplices at all,
which means that, in general, it is not possible to generate (reasonable fine) acute
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simplicial meshes for most of domains in higher dimensions, even for such simple
as hypercubes.

In order to get more accurate FE approximations one needs to make various
global and local refinements of the meshes preserving the desired geometric prop-
erties. For example, a triangle can be naturally split into four similar triangles using
midlines (2D red refinement) (and thus acuteness or nonobtuseness are preserved),
but a tetrahedron cannot be, in general, partitioned face-to-face into several similar
tetrahedrons by a similar technique. After cutting four vertices of the tetrahedron
off (and thus producing four similar tetrahedra), an interior octahedron remains,
which can be split into four tetrahedra in three different ways. And in most of cases
the resulting tetrahedra are not similar to the original one, moreover, the acuteness
property cannot be preserved in any case. In addition, all further refinements should
be done with a special care in order to avoid producing degenerating subtetrahe-
dra, see [20] for details. An alternative can be one of bisection algorithms, see e.g.,
[15] and references therein. However, bisection cannot obviously produce all acute
angles. Concerning local refinements, the only results in dimension 3 and higher are
known for nonobtuse simplicial partitions, see [1].

4.2 Block FE Meshes (Preserving the Aspect Ratio)

In the case of block elements global refinement is obvious. Further, one can perform
local refinements with or without hanging nodes [16]. However, local refinements
without hanging nodes require forced refinements far from the targeted area and,
moreover, elements with high aspect ratios are actually forming. Hanging nodes are
practically more demanding to use, but they overcome these difficulties. The advan-
tage is that the resulting meshes are nested and that the aspect ratio of subelements
remains unchanged. Let us remark that the sufficient geometric conditions for the
DMP are the same for meshes both with and without hanging nodes.

5 Conclusions

In 2D both triangular and rectangular meshes seem to be comparable in the sense
that generation and refinement of meshes yielding the DMP is well treatable in both
cases. Anyway, the triangles provide more flexibility for complicated domains (e.g.,
for those having non-right corners). In higher dimension, block elements can be
recommended if the geometry of the domain allows them and if the DMP is not
an issue. In the opposite case, the simplices should be used, but then we face the
above described problems with mesh generation and local refinements constrained
by the dihedral angle conditions. These problems are sometimes treatable by path-
simplicial meshes [1], which guarantee the DMP at least for the Poisson problems.
In addition, the practical implementation of simplicial meshes is technically more
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demanding than the implementation of the blocks. This fact must be weighted as
well. Let us remark that it is geometrically advantageous to use simplices and blocks
together in the hybrid meshes. However, from the point of the DMP the hybrid
meshes inherit the discussed disadvantages of all used types of elements. More-
over, the practical implementation of hybrid meshes is technically very demanding.
For example, a 3D hybrid mesh with tetrahedra and blocks requires also right tri-
angular prisms and pyramids to join the elements face-to-face [19]. The DMP on
prismatic meshes has been analyzed in [8]. However, up to the authors’ knowledge
the DMP for pyramidal elements (and therefore on hybrid 3D meshes) has not been
analyzed yet.

Another type of comparison of the same finite elements (but in 3D only) is done
in [14].

Finally, it is interesting to mention that angle and aspect ratio conditions similar
to those we discussed above also appear in the analysis of the convergence of FE
approximations [5].
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Five-Dimensional Euclidean Space Cannot
be Conformly Partitioned into Acute Simplices

Michal Křı́žek

Abstract We prove that a point in the Euclidean space R5 cannot be surrounded
by a finite number of acute simplices. This fact implies that there does not exist a
face-to-face partition of R5 into acute simplices.

1 Introduction

Acute simplicial partitions (defined in Sect. 2 below) are very useful in numerical
analysis, since they yield monotone and irreducibly diagonally dominant stiffness
matrices (see [4, 5]), when solving the equation

��uC bu D f
by standard linear conforming finite elements in a bounded polytopic domain in Rd

with some boundary conditions and b � 0 small enough. In 2001, Alper Üngör [8]
proved that there exists a face-to-face partition of R3 into acute tetrahedra (for an
acute tetrahedralization of the cube see [9]). However, in [6] we showed that Üngör’s
result cannot be generalized into Rd for d � 5. Our proof resembles Fermat’s
method of infinite descent. In this paper we give a simpler proof for d D 5 which
does not use the Euler-Poincaré formula as in [6]. The case d D 4 has not been
solved, yet. Heuristics given in [1, p. 323] indicate that a four-dimensional Euclidean
space probably cannot be partitioned into acute simplices either.

2 Acute Partitions

The convex hull of dC1 points in Rd for d 2 f1; 2; 3; : : : g, which are not contained
in a hyperplane (of dimension d � 1), is called a simplex or d -simplex. Its .d � 1/-
dimensional faces are called facets. For d > 1 the inner angle ˛ij between two
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facets Fi and Fj for i ¤ j is defined by means of the scalar product of their unit
outward normals ni and nj ,

cos˛ij D �ni � nj ; (1)

and it is called a dihedral angle. There are
�

dC1
2

�
such angles. A simplex is said to

be acute if all its dihedral angles are less than �=2.

Definition 1. A set of simplices is said to be a partition of Rd into simplices, if

i. The union of all these simplices is Rd ,
ii. The interiors of these simplices are mutually disjoint,

iii. Any facet of any simplex in the partition is facet of another simplex in the
partition,

iv. The set of vertices of all simplices from the partition has no accumulation point
in Rd .

The condition (iii) says that all partitions are conforming, i.e., face-to-face. A
partition is said to be acute if all its simplices are acute. We say that simplices
S1; : : : ; Sk from a partition of Rd surround a point A if A is a vertex of each Si and
A lies in the interior of

S
i Si .

3 Auxiliary Lemmas

First we recall an elementary result for a 4-simplex.

Lemma 1. The sum of all dihedral angles in a 4-simplex is greater than 4� .

The proof immediately follows from a more general result [3, p. 96] that states
the optimal lower and upper bounds for an arbitrary d -simplex

�bd 2=4c <
X

1�i<j�dC1

˛ij < �d.d � 1/=2; (2)

where d � 3 and brc stands for the integer part of a real number r .
Now let F1, F2, and F3 be arbitrary facets of a d -simplex S with d � 3. Since

F1 is a .d � 1/-simplex, its inner angle ' between its .d � 2/-dimensional faces
F1\F2 and F1\F3 is defined similarly to (1), but in the hyperplane containing F1.

The intersection I D F1 \ F2 \ F3 has dimension d � 3. Let L be a three-
dimensional space orthogonal to I (for d D 3, let L D R3). Then S \ L is a
tetrahedron. Applying the Cosine theorem from spherical trigonometry to a suffi-
ciently small sphere centred at one of tetrahedron vertices contained in I , we get
(see [2, p. 465])

cos˛ D � cosˇ cos � C sinˇ sin � cos';
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where the dihedral angles ˛ D †F2F3, ˇ D †F1F3, and � D †F1F2 are defined
by (1). In Lemma 2 below we prove that the angle ' of an acute simplex is always
less than the associated dihedral angle ˛.

Lemma 2. Let d � 3. If a simplex is acute, then under the above notation we have

' < ˛:

Proof. Since all dihedral angles ˛, ˇ, and � are less than �=2, we find by the above
Cosine theorem that

cos' D cos˛ C cosˇ cos �

sinˇ sin �
> cos˛ C cosˇ cos � > cos˛: �

4 The Proposed Proof Technique

The proof technique used for five-dimensional space will be first illustrated on two
lower-dimensional examples.

Example 1. Let A be a vertex of an acute tetrahedral partition of R3 (cf. [8]). Set

P D
t[

iD1

Si ;

where S1; : : : ; St are all tetrahedra containing A. We see that P is a convex poly-
hedron. Denote by v; e, and t the number of vertices, edges, and triangles on the
boundary @P , respectively. Since each edge is shared by exactly two triangular
faces, we get (cf. Table below)

2e D 3t: (3)

So the number of triangles on @P , and thus also the number of all tetrahedra sharing
the vertex A is always even.

Since each Si is acute, at least five tetrahedra will share each inner edge. Hence,
each vertex from @P has to be surrounded by at least five edges from @P , i.e.,

5v � 2e: (4)

Denote by ˛T
1 ; ˛

T
2 ; ˛

T
3 angles of a given triangle T � @P and by ˛V

1 ; : : : ; ˛
V
nV

angles about vertex V . Then

�t D
X

T

3X

iD1

˛T
i D

X

V

nVX

jD1

˛V
j < 2�v; (5)
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where the last inequality follows from Lemma 2 and the sums
P

T and
P

V are
taken over all triangles T and vertices V from @P , respectively. Consequently, from
(4), (3), and (5) we find that the number of edges and triangular faces is quite limited
by the number of vertices,

5v � 2e D 3t < 6v:

Example 2. For the time being we do not know if there exists an acute simplicial
partition of R4. Anyway, a given point A can be surrounded by acute simplices.
They can be defined, e.g., as the convex hull of the centre of the regular 600-cell
(see [7]) and 600 regular tetrahedra on its three-dimensional surface.

So let

P D
c[

iD1

Si ;

where S1; : : : ; Sc are all 4-simplices containing the given vertex A. We see that P
is a convex polytope, since it can be represented as the intersection

P D
c\

iD1

Hi ;

where Hi are closed half-spaces such that Si � Hi and @Hi contains that facet of
Si , which is opposite to A. Denote by v; e; t , and c the number of vertices, edges,
triangles, and tetrahedra on the boundary @P , respectively. Since each facet is a
tetrahedron, it has four triangular faces, and since each triangular face belongs to
exactly two adjacent tetrahedra, we get the equality (cf. Table below)

2t D 4c: (6)

Each interior triangle has to be surrounded by at least five simplices, because each
Si is acute. Hence, each edge from @P has to be shared by at least five triangular
faces from @P , i.e.,

5e � 3t: (7)

Denote by ˛C
1 ; : : : ; ˛

C
6 all dihedral angles of a given tetrahedron C . Using the

lower bound from (2), we have

2� <

6X

iD1

˛C
i :

Moreover, by Lemma 2 the sum of all dihedral angles ˛E
1 ; : : : ; ˛

E
nE

of tetrahedra
around a given edge E from @P is less than 2� . Therefore,

2�c <
X

C

6X

iD1

˛C
i D

X

E

nEX

jD1

˛E
j < 2�e; (8)
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where the sums
P

C and
P

E are taken over all tetrahedra C and edgesE from @P ,
respectively. Consequently, by (7), (6), and (8), we get

5e � 3t D 6c < 6e

which represents a very sharp bound on the number of triangles and tetrahedra
from @P . In the next section we show that similar bounds for d D 5 lead to a
contradiction.

The following table shows the simplicial equalities and acuteness inequalities for
every d 2 f2; 3; 4; 5g (cf. (2), (3), (6), and (7)). The case d D 2 is obvious.

d Simplicial equality Acuteness inequality

2 2v D 2e 5 � v
3 2e D 3t 5v � 2e
4 2t D 4c 5e � 3t
5 2c D 5f 5t � 4c

5 The Nonexistence of Acute Partitions in R5

Theorem 1. There is no acute partition of R5 into simplices.

Proof. Assume, to the contrary, that such an acute partition exists and choose an
arbitrary vertex A 2 R5 of simplices from this partition. Set

P D
f[

iD1

Si ;

where S1; : : : ; Sf are all simplices containing the given vertexA. We see again that
P is a convex polytope, since it can be represented as the intersection

P D
f\

iD1

Hi ;

where Hi are closed half-spaces such that Si � Hi and @Hi contains that facet of
Si , which is opposite to A. Denote by v; e; t; c, and f the number of vertices, edges,
triangles, tetrahedra, and facets on the boundary @P , respectively. Since each facet
is a 4-simplex, it has five tetrahedral faces, and since each tetrahedral face belongs
to exactly two adjacent facets, we get the equality (cf. Table above)

2c D 5f: (9)
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Each interior tetrahedron has to be surrounded by at least five 4-simplices Si ,
because each Si is acute. Hence, each triangular face from @P has to be shared by
at least five tetrahedra from @P (each having four triangular faces), i.e.,

5t � 4c: (10)

Denote by ˛F
1 ; : : : ; ˛

F
10 all dihedral angles of a given 4-simplex F . Then from

Lemma 1 we have

4� <

10X

iD1

˛F
i :

Moreover, by Lemma 2 the sum of all dihedral angles ˛T
1 ; : : : ; ˛

T
nT

of 4-simplices
around a given triangle T from @P is less than 2� . Therefore,

4�f <
X

F

10X

iD1

˛F
i D

X

T

nTX

jD1

˛T
j < 2�t;

where the sums
P

F and
P

T are taken over all 4-simplices F and triangles T from
@P , respectively. Consequently,

2f < t: (11)

From (10), (9), and (11) we get a contradiction

5t � 4c D 10f < 5t:
�

The above Theorem can be extented to higher dimensions d > 5, see [6, p. 388].
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The Discontinuous Galerkin Method
for Convection-Diffusion Problems
in Time-Dependent Domains

Václav Kučera, Miloslav Feistauer, and Jaroslava Prokopová

Abstract This paper is concerned with the numerical treatment of convection-
diffusion problems in time-dependent domains. A suitable formulation of the gov-
erning equations is derived using the Arbitrary Lagrangian–Eulerian (ALE) method.
The equations are then discretized in space using the discontinuous Galerkin
method. The resulting space-semidiscretization scheme is numerically tested on
the compressible Navier–Stokes equations describing the flow of viscous gases.
The particular form of these equations allows the use of a semi-implicit time dis-
cretization, which has already been extensively studied in the case of stationary
computational domains.

1 Introduction and Problem Formulation

This work deals with the solution of viscous compressible flows in domains with
moving boundaries. Such problems arise in various fields of research where the
interaction of fluids and solids take place. Applications range from purely techni-
cal problems (vibrations of aircraft components due to interaction with air flow, see
e.g., [9]) to medical problems (air flow through human vocal folds). As our physical
model we take the compressible Navier–Stokes equations in ALE form and dis-
cretize in space using the discontinuous Galerkin finite element method (DGFEM),
which uses spaces of piecewise polynomial, in general discontinuous functions. The
DGFEM represents a natural connection between the finite volume and finite ele-
ment methods, yielding a high order method with good stability properties. For an
overview of DG techniques, see e.g., [1, 2, 7, 10].

In this paper we shall consider only two-dimensional problems. Let ˝t � R2

be a bounded domain depending on time t 2 Œ0; T �: We assume that the boundary

V. Kučera (B), M. Feistauer, and J. Prokopová
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of ˝t consists of three disjoint parts �I ; �O ; �Wt : @˝t D �I [ �O [ �Wt , where
�I and �O represent the time-independent inlet and outlet, respectively, and �Wt
represents moving impermeable walls.

As the governing equations we take the viscous compressible Navier–Stokes
equations written in the conservative form

@w
@t
C

2X

sD1

@fs.w/
@xs

D
2X

sD1

@Rs.w;rw/
@xs

in ˝t ; t 2 .0; T /; (1)

where

w D .�; �v1; �v2; E/
T 2 R4;

w D w.x; t/; x 2 ˝t ; t 2 .0; T /;
fi .w/ D .fi1; : : : ; fi4/T D .�vi ; �v1vi C ı1i p; �v2vi C ı2i p; .E C p/vi /T ;

Ri .w;rw/ D .Ri1; : : : ; Ri4/T D .0; �i1; �i2; �i1 v1 C �i2 v2�@�=@xi /
T ;

�ij D � divvıij C 2	dij .v/; dij .v/ D 1

2

� @vi
@xj
C @vj
@xi

�
:

We use the following notation: � – density, p – pressure, E – total energy, v D
.v1; : : : ; vN / – velocity, � – absolute temperature, 
 > 1 – Poisson adiabatic con-
stant, cv > 0 – specific heat at constant volume, 	 > 0; � D �2	=3 – viscosity
coefficients, � – heat conduction.

The above system is completed by the thermodynamical relations

p D .
 � 1/.E � �jvj2=2/; � D
�E
�
� 1
2
jvj2

�ı
cv:

The complete system is equipped with the initial condition

w.x; 0/ D w0.x/; x 2 ˝0;

and the following boundary conditions:

a) �j�I D �D ; b) vj�I D vD D .vD1; vD2/T; c) � j�I D �D ;
a) vj�Wt D zD D velocity of a moving wall; b)

@�

@n

ˇ̌
�Wt
D 0;

a)
2X

iD1
�ijni D 0; j D 1; 2; b)

@�

@n
D 0 on �O :
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2 ALE Formulation

In order to treat the time dependance of the domain, we use the so-called arbitrary
Lagrangian–Eulerian ALE technique ([8]). We define a reference domain ˝0 and
introduce a regular one-to-one ALE mapping of˝0 onto˝t (cf. [8–10])

At W ˝0 �! ˝t ; i:e: X 2 ˝0 7�! x D x.X; t/ D At .X/ 2 ˝t :

Here we use the notation X for points in ˝0 and x for points in ˝t .
Further, we define the domain velocity:

Qz.X; t/ D @

@t
At .X/; t 2 Œ0; T �; X 2 ˝0;

z.x; t/ D Qz.A �1.x/; t/; t 2 Œ0; T �; x 2 ˝t
and the ALE derivative of a function f D f .x; t/ defined for x 2 ˝t and t 2 Œ0; T �:

DA

Dt
f .x; t/ D @ Qf

@t
.X; t/; (2)

where
Qf .X; t/ D f .At .X/; t/; X 2 ˝0; x D At .X/:

The following relation is a direct consequence of the chain rule:

DAf

Dt
D @f

@t
C div .zf /� f div z:

This leads to our formulation of the Navier–Stokes equations in ALE form

DAw
Dt

C
2X

sD1

@gs.w/
@xs

Cw divz D
2X

sD1

@Rs.w;rw/
@xs

; (3)

where gs; s D 1; 2; are modified inviscid fluxes

gs.w/ WD fs.w/� zsw:

3 Space Semidiscretization

In what follows we shall assume that ˝t is a polygonal domain for all t: Let
Tht be a partition of the closure ˝ t into a finite number of closed triangles with
mutually disjoint interiors. We shall call Tht a triangulation of ˝t . We do not
require the standard conforming properties of Tht used in the finite element method.
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This means that we admit the so-called hanging nodes. We shall use the follow-
ing notation. By @K we denote the boundary of an element K 2 Tht and set
hK D diam.K/; h D maxK2ThthK . By �K we denote the radius of the largest
circle inscribed into K and by jKj we denote the area of K .

Let K;K 0 2 Tht . We say that K and K 0 are neighbours, if the set @K \ @K 0 has
positive length. We say that � � K is a face ofK , if it is a maximal connected open
subset either of @K \ @K 0, where K 0 is a neighbour of K , or of @K \ @˝t . By Fht

we denote the system of all faces of all elements K 2 Tht . Further, we define the
set of all inner faces by

F I
ht D f� 2 Fht I � � ˝tg

and the set of all boundary faces by

FB
ht D f� 2 Fht I � � @˝t g :

For each � 2 Fht we define a unit normal vector n� . We assume that for � 2
FB
ht

the normal n� has the same orientation as the outer normal to @˝ , otherwise
the orientation of n� is arbitrary. Finally, by d.� /we denote the length of � 2 Fht .

For each face � 2 F I
ht

there exist two neighbours K.L/
� ; K

.R/
� 2 Tht such

that � � K
.L/
� \ K.R/

� . We use the convention that n� is the outer normal to the

element K.L/
� and the inner normal to the element K.R/

� .. Let p � 1 be an integer.
The approximate solution will be sought in the space of discontinuous piecewise
polynomial functions

Sht D fvI vjK 2 P p.K/;8K 2 Thtg4;

whereP p.K/ denotes the space of all polynomials onK of degree� p. For v 2 Sht
and � 2 F I

ht
we introduce the following notation:

vj.L/� D the trace of vj
K
.L/
�

on �; vj.R/� D the trace of vj
K
.R/
�

on �;

hvi� D 1
2

�
vj.L/� C vj.R/�

�
; Œv�� D vj.L/� � vj.R/� :

If Œ��� and h�i� appear in an integral of the form
R
�
: : : dS , we omit the

subscript � and write simply Œ�� and h�i.

4 Derivation of the Discrete Problem

In order to derive the discrete problem, we assume that w is a sufficiently regular
solution of system (3), multiply (3) by a test function ' 2 Sht , integrate over any
element K apply Green’s theorem and sum over all K 2 Tht : In this way we get
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the following identity:

X

K2

T
ht

Z

K

DAw
Dt
� 'h dx C bh.w;'h/C ah.w;'h/C Jh.w;'h/C dh.w;'h/D`h.w;'h/:

Here

bh.w;'h/ D �
X

K2

T
ht

Z

K

2X

sD1

gs.w/ � @'h
@xs

dx (4)

C
X

�2F I
ht

Z

�

Hg.w.L/;w.R/;n� / � Œ'h� dS C
X

�2FB
ht

Z

�

Hg.w.L/;w.R/;n� / � '.L/h dS

is the convection form, where Hg is an appropriate numerical flux, cf. Sect. 5. The

state w.R/� , for � � @˝th, is determined with the aid of the Dirichlet data and the
solution of a linearized local initial-boundary value Riemann problem, cf. [7].

Further, we define the viscous form

ah.w;'/ D
X

K2

T
ht

Z

K

2X

sD1

Rs.w;rw/ � @'
@xs

dx (5)

�
X

�2F I
ht

Z

�

2X

sD1

hRs.w;rw/i.n� /s � Œ'� dS �
X

�2FD
ht

Z

�

2X

sD1

Rs.w;rw/.n� /s � ' dS;

(we use the incomplete discretization of viscous terms - the so-called IIPG version),
the interior and boundary penalty terms and the right-hand side form, respectively,

Jh.w;'/ D
X

� 2FI
ht

Z

�

�Œw� � Œ'� dS C
X

� 2FD
ht

Z

�

�w � ' dS; (6)

`h.w;'/ D
X

� 2FD
ht

Z

�

2X

sD1
�wB � ' dS: (7)

Here � j� D CW	=d.� / and CW > 0 is a sufficiently large constant. The bound-
ary state wB is defined on the basis of the Dirichlet boundary conditions and
extrapolation. The source form reads

dh.w;'/ D
X

K2T
ht

Z

K

.w � 'h/ divz dx: (8)
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5 Time Discretization

Our goal is to develop a numerical scheme, which would be accurate and robust,
with good stability properties. One possibility is to use a implicit discretization in
time, but this would lead to the solution of large nonlinear systems of algebraic
equations. Therefore, we proceed similarly as in [5] and use a partial linearization
of the forms bh and ah. This approach requires the solution of only one large sparse
linear system per time level.

Let us construct a partition 0 D t0 < t1 < t2 : : : of the time interval Œ0; T � and
define the time step �k D tkC1 � tk . We use the approximations wh.tn/ � wn

h
2

Shtn , z.tn/ � zn and introduce the function Owk
h
D wk

h
ı Atk ı A �1tkC1

, which is
defined in the domain˝tkC1

. The ALE derivative at time tkC1 can be approximated
due to (2) by the finite difference

DAwh

Dt
.x; tkC1/� Qw

kC1
h

.X/ � Qwk
h
.X/

�k
D wkC1

h
.x/ � Owk

h
.x/

�k
; xDAtkC1

.X/ 2 ˝tkC1
:

The linearization of the first term of the form bh is based on the relations

gs.wkC1h
/ D .As.wkC1h

/� zkC1s I/wkC1
h
� .As. Owkh/ � zkC1s I/wkC1

h
;

where As.w/ is the Jacobi matrix of fs.w/, cf. [6]. The second term of bh is
linearized with the aid of the Vijayasundaram numerical flux (cf. [11]):

Hg.w
kC1.L/
h�

;wkC1.R/
h�

;n� /�PCg .h Owkhi� ;n� /wkC1.L/h�
CP�g .h Owkhi� ;n� /wkC1.R/h�

;

where PCg and P�g are positive and negative parts of the matrix Pg.w;n� / DP2
sD1.As.w/� zkC1s I/.n� /s (see [6]). In this way we get the form

bh. Owk
h;w

kC1
h ;'h/ D �

X

K2ThtkC1

Z

K

2X

sD1

.As . Owk.x// � zkC1
s .x//I/wkC1.x// � @'h.x/

@xs
dx;

C
X

�2F I
htkC1

Z

�

�
PC

g

�˝ Owk
h

˛
;n�

�
wkC1.L/

h C P�

g

�˝ Owk
h

˛
;n�

�
wkC1.R/

h

�
� Œ'h�dS

C
X

�2FB
htkC1

Z

�

�
PC

g

�˝ Owk
h

˛
;n�

�
wkC1.L/

h C P�

g

�˝ Owk
h

˛
;n�

� Owk.R/

h

�
� 'hdS:

The linearization of the form ah is based on the fact that Rs.wh;rwh/ is linear
in rw and nonlinear in w. Hence,
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ah.w
kC1
h

;'h/ � Oah. Owkh;wkC1h
;'h/ WD

X

K2ThtkC1

Z

K

2X

sD1
Rs. Owkh;rwkC1

h
/ � @'h
@xs

dx

�
X

� 2FI
htkC1

Z

�

2X

sD1

˝
Rs. Owkh;rwkC1/

˛
.n� /s � Œ'h� dS

�
X

� 2FD
htkC1

Z

�

2X

sD1
Rs. Owkh;rwkC1

h
/.n� /s � 'h dS:

As a result we get the following semi-implicit discrete formulation:

�wkC1
h
� Owk

h

�k
;'h

�
C bh. Owkh;wkC1h

;'h/C ah. Owkh;wkC1h
;'h/ (9)

CJh.wkC1h
;'h/C dh

�
wkC1
h

;'h
� D `.wkB ;'/ 8'h 2 ShtkC1

; k D 0; 1; : : : :

This relation represents a system of linear algebraic equations on each time level
which is solved either iteratively using the block-Jacobi preconditioned GMRES or
a direct method (e.g., the direct unsymmetric solver UMFPACK, cf. [3]).

Several issues must be addressed for an efficient implementation. In high-speed
flow with shock waves and contact discontinuities the so-called Gibbs phenomenon
can appear, manifested by spurious overshoots and undershoots at discontinuities in
the numerical solution. It is avoided with the aid of a discontinuity indicator and the
addition of local artificial viscosity into (9), cf. [5] and [7].

Finally, integrals over elements and edges, which appear in the discrete forms,
must be evaluated using sufficiently accurate quadrature rules, for example Gaussian
quadrature on trianglesK and faces � .

6 Numerical Experiment

We consider compressible flow in a channel, whose shape is inspired by the shape of
human vocal folds and supraglottal spaces. The lower and upper channel walls are
changing their shape according to a given function of time and axial coordinate with
a given frequency in order to mimic the movement of vocal folds during speech. This
movement is interpolated to the rest of the domain resulting in the ALE mapping At .
Figure 1 shows streamlines at different time instants t D 504; 531; 612; 666 during
the fourth period of the motion. In the solution we can observe the formation of
vortices, which are then convected through the domain.
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Fig. 1 Streamlines at time instants t D 504; 531; 612; 666
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by the Nečas Center for Mathematical Modelling, project LC06052, financed by MŠMT.
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A Spectral Time-Domain Method
for Computational Electrodynamics

James V. Lambers

Abstract Block Krylov subspace spectral (KSS) methods have previously been
applied to the variable-coefficient heat equation and wave equation, and have
demonstrated high-order accuracy, as well as stability characteristic of implicit time-
stepping schemes, even though KSS methods are explicit. KSS methods for scalar
equations compute each Fourier coefficient of the solution using techniques devel-
oped by Gene Golub and Gérard Meurant for approximating elements of functions
of matrices by Gaussian quadrature in the spectral, rather than physical, domain. We
show how they can be generalized to non-self-adjoint systems of coupled equations,
such as Maxwell’s equations.

1 Introduction

We consider Maxwell’s equation on the cube Œ0; 2��3, with periodic boundary
conditions. Assuming nonconductive material with no losses, we have

div OE D 0; div OH D 0; (1)

curl OE D ��@
OH
@t
; curl OH D "@

OE
@t
; (2)

where OE, OH are the vectors of the electric and magnetic fields, and ", � are the
electric permittivity and magnetic permeability, respectively.

By taking the curl of both sides of (2), we decouple the vector fields OE and OH and
obtain the equations
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�"
@2 OE
@t2
D � OEC ��1curl OE � r�; (3)

�"
@2 OH
@t2
D � OHC "�1curl OH � r": (4)

In his 1966 paper [17], Yee proposed the original finite-difference time-domain
method for solving the equations (1) and (2). This method uses a staggered grid
to avoid solving simultaneous equations for OE and OH, and also removes numerical
dissipation. However, because it is an explicit finite-difference scheme, its time step
is constrained by the CFL condition. In this paper, we introduce a new time-domain
method for these equations.

In [10] a class of methods, called Krylov subspace spectral (KSS) methods, was
introduced for the purpose of solving parabolic variable-coefficient PDE. These
methods are based on techniques developed by Golub and Meurant in [5] for
approximating elements of a function of a matrix by Gaussian quadrature in the
spectral domain. In [8, 13], these methods were generalized to the second-order
wave equation, for which these methods have exhibited even higher-order accuracy.

It has been shown in these references that KSS methods, by employing different
approximations of the solution operator for each Fourier coefficient of the solution,
achieve higher-order accuracy in time than other Krylov subspace methods (see,
for example, [9]) for stiff systems of ODE, and, as shown in [13], they are also
quite stable, considering that they are explicit methods. In [12,14], the accuracy and
robustness of KSS methods were enhanced using block Gaussian quadrature.

Our goal is to extend the high-order accuracy achieved for the scalar wave equa-
tion to systems of coupled wave equations such as those described by Maxwell’s
equations. Section 2 reviews the main properties of KSS methods, including block
KSS methods, as applied to the parabolic problems for which they were originally
designed. Section 3 reviews their application to the wave equation, including previ-
ous convergence analysis. In Sect. 4, we discuss the modifications that must be made
to block KSS methods in order to apply them to Maxwell’s equations. Numerical
results are presented in Sect. 5, and conclusions are stated in Sect. 6.

2 Krylov Subspace Spectral Methods

We first review KSS methods, which are easier to describe for parabolic problems.
Let S.t/ D expŒ�Lt� represent the exact solution operator of the problem

ut C Lu D 0; t > 0; (5)

with appropriate initial conditions and periodic boundary conditions. The operator
L is a second-order, self-adjoint, positive definite differential operator.

Let h�; �i denote the standard inner product of functions defined on Œ0; 2��. Krylov
subspace spectral methods, introduced in [10], use Gaussian quadrature on the
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spectral domain to compute the Fourier coefficients of the solution. These meth-
ods are time-stepping algorithms that compute the solution at time t1; t2; : : :, where
tn D n�t for some choice of �t . Given the computed solution Qu.x; tn/ at time tn,
the solution at time tnC1 is computed by approximating the Fourier coefficients that
would be obtained by applying the exact solution operator to Qu.x; tn/,

Ou.!; tnC1/ D
�
1p
2�
ei!x; S.�t/Qu.x; tn/

�
: (6)

In [5] Golub and Meurant describe a method for computing quantities of the form

uT f .A/v; (7)

where u and v are N -vectors, A is an N � N symmetric positive definite matrix,
and f is a smooth function. Our goal is to apply this method with A D LN where
LN is a spectral discretization of L, f .�/ D exp.��t/ for some t , and the vectors
u and v are obtained from Oe! and un, where Oe! is a discretization of 1p

2�
ei!x and

un is the approximate solution at time tn, evaluated on an N -point uniform grid.
The basic idea is as follows: since the matrix A is symmetric positive definite, it

has real eigenvalues

b D �1 � �2 � � � � � �N D a > 0; (8)

and corresponding orthogonal eigenvectors qj , j D 1; : : : ; N . Therefore, the
quantity (7) can be rewritten as

uT f .A/v D
NX

jD1
f .�j /uT qjqTj v: (9)

which can also be viewed as a Riemann–Stieltjes integral

uT f .A/v D I Œf � D
Z b

a

f .�/ d˛.�/: (10)

As discussed in [5], the integral I Œf � can be approximated using Gaussian
quadrature rules, which yields an approximation of the form

I Œf � D
KX

jD1
wjf .�j /CRŒf �; (11)

where the nodes �j , j D 1; : : : ; K , as well as the weights wj , j D 1; : : : ; K , can
be obtained using the symmetric Lanczos algorithm if u D v, and the unsymmetric
Lanczos algorithm if u ¤ v (see [7]).
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In the case u ¤ v, there is a possibility that the weights may not be positive,
which destabilizes the quadrature rule (see [1] for details). Instead, we consider

�
u v

�T
f .A/

�
u v

�
; (12)

which results in the 2 � 2 matrix

Z b

a

f .�/ d�.�/ D
�

uT f .A/u uT f .A/v
vT f .A/u vT f .A/v

�
; (13)

where �.�/ is a 2 � 2 matrix function of �, each entry of which is a measure of the
form ˛.�/ from (10).

In [5] Golub and Meurant showed how a block method can be used to generate
quadrature formulas. We will describe this process here in more detail. The inte-
gral

R b
a
f .�/ d�.�/ is now a 2 � 2 symmetric matrix and the most general K-node

quadrature formula is of the form

Z b

a

f .�/ d�.�/ D
KX

jD1
Wjf .Tj /Wj C error; (14)

with Tj and Wj being symmetric 2 � 2 matrices. By diagonalizing each Tj , we
obtain the simpler formula

Z b

a

f .�/ d�.�/ D
2KX

jD1
f .�j /vj vTj C error; (15)

where, for each j , �j is a scalar and vj is a 2-vector.
Each node �j is an eigenvalue of the matrix

TK D

2

666664

M1 B
T
1

B1 M2 BT2
: : :

: : :
: : :

BK�2 MK�1 BTK�1
BK�1 MK

3

777775
; (16)

which is a block-triangular matrix of order 2K . The vector vj consists of the first
two elements of the corresponding normalized eigenvector. To compute the matrices
Mj andBj , we use the block Lanczos algorithm, which was proposed by Golub and
Underwood in [6].

We are now ready to describe block KSS methods. For each wave number ! D
�N=2C 1; : : : ; N=2, we define
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R0.!/ D
� Oe! un

�

and compute theQR factorizationR0.!/ D X1.!/B0.!/:We then carry out block
Lanczos iteration, applied to the discretized operator LN , to obtain a block tridi-
agonal matrix TK.!/ of the form (16), where each entry is a function of !. The
recursion coefficents in TK.!/ can be computed efficiently by applying basic rules
of symbolic calculus, including in higher spatial dimensions.

Then, we can express each Fourier coefficient of the approximate solution at the
next time step as

Œ OunC1�! D
h
BH0 E

H
12 expŒ�TK.!/�t�E12B0

i

12
(17)

where E12 D
�

e1 e2
�
: The computation of (17) consists of computing the eigen-

values and eigenvectors of TK.!/ in order to obtain the nodes and weights for
Gaussian quadrature, as described earlier.

This algorithm has local temporal accuracyO.�t2K�1/ [14]. Furthermore, block
KSS methods are more accurate than the original KSS methods described in [10,13],
even though they have the same order of accuracy, because the solution un plays
a greater role in the determination of the quadrature nodes. They are also more
effective for problems with oscillatory or discontinuous coefficients [14].

3 Application to the Wave Equation

In this section, we review the application of Krylov subspace spectral methods to
the wave equation

utt C Lu D 0 on .0; 2�/ � .0;1/; (18)

with appropriate initial conditions, and periodic boundary conditions. A spectral
representation of the operator L allows us to obtain a representation of the solution
operator (the propagator) in terms of the sine and cosine families generated by L
by a simple functional calculus. Introduce

R1.t/ D L�1=2 sin.t
p
L/ D

1X

nD1

sin.t
p
�n/p

�n
h'�n ; �i'n ; (19)

R0.t/ D cos.t
p
L/ D

1X

nD1
cos.t

p
�n/h'�n ; �i'n ; (20)

where �1; �2; : : : are the (positive) eigenvalues of L, and '1; '2; : : : are the corre-
sponding eigenfunctions. Then the propagator of (18) can be written as

P.t/ D
�

R0.t/ R1.t/

�LR1.t/ R0.t/
�
: (21)
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The entries of this matrix, as functions of L, indicate which functions are the inte-
grands in the Riemann–Stieltjes integrals used to compute the Fourier coefficients
of the solution.

In [12, Theorem 6], it is shown that when the leading coefficient p.x/ is constant
and the coefficient q.x/ is bandlimited, the 1-node KSS method, which has second-
order local accuracy in time, is also unconditionally stable. In general, as shown in
[12], the local temporal error isO.�t4K�2/ whenK block Gaussian nodes are used
for each Fourier coefficient.

4 Application to Maxwell’s Equations

In this section, we consider generalizations that must be made to block KSS methods
for the wave equation in order to apply them to a non-self-adjoint system of coupled
equations such as (3).

First, we consider the following initial-boundary value problem in one space
dimension,

@2u
@t2
C Lu D 0; t > 0; (22)

with appropriate initial conditions, and periodic boundary conditions, where u W
Œ0; 2�� � Œ0;1/! Rn for n > 1, and L.x;D/ is an n � n matrix where the .i; j /
entry is an a differential operator Lij .x;D/ of the form

Lij .x;D/u.x/ D
mijX

�D0
aij� .x/D

�u; D D d

dx
; (23)

with spatially varying coefficients aij� , � D 0; 1; : : : ; mij .
Generalization of KSS methods to a system of the form (22) can proceed as fol-

lows. For i; j D 1; : : : ; n, let Lij .D/ be the constant-coefficient operator obtained
by averaging the coefficients of Lij .x;D/ over Œ0; 2��. Then, for each wave num-
ber !, we defineL.!/ be the matrix with entriesLij .!/, i.e., the symbols ofLij .D/
evaluated at !. Next, we compute the spectral decomposition of L.!/ for each !.
For j D 1; : : : ; n, let qj .!/ be the Schur vectors of L.!/. Then, we define our test
and trial functions by �j;!.x/ D qj .!/˝ ei!x .

For Maxwell’s equations, the matrix AN that discretizes the operator

A OE D 1

�"

�
� OEC ��1curl OE � r�

	

is not symmetric, and for each coefficient of the solution, the resulting quadrature
nodes �j , j D 1; : : : ; 2K , from (15) are now complex and must be obtained by a
straightforward modification of block Lanczos iteration for unsymmetric matrices.
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5 Numerical Results

We now apply a 2-node block KSS method to (3), with initial conditions

OE.x; y; z; 0/ D F.x; y; z/;
@ OE
@t
.x; y; z; 0/ D G.x; y; z/; (24)

with periodic boundary conditions. The coefficients � and " are given by

�.x; y; z/ D 0:4077C 0:0039 cos zC 0:0043 cosy � 0:0012 siny

C0:0018 cos.y C z/C 0:0027 cos.y � z/C 0:003 cosx

C0:0013 cos.x � z/C 0:0012 sin.x � z/C 0:0017 cos.x C y/
C0:0014 cos.x � y/; (25)

".x; y; z/ D 0:4065C 0:0025 cos zC 0:0042 cosy C 0:001 cos.y C z/

C0:0017 cosx C 0:0011 cos.x � z/C 0:0018 cos.x C y/
C0:002 cos.x � y/: (26)

The components of F and G are generated in a similar fashion, except that the
x- and z-components are zero.

Figure 1 demonstrates the convergence behavior using error estimates for solu-
tions computed using K D 2 block quadrature nodes per coefficient in the basis
described in Sect. 4. Since the exact solution is not available, the error estimate for
each solution is obtained by taking the `2-norm of the relative difference between
the y-component of the solution, and that of a solution computed using a smaller
time step �t D 1=64 and the maximum number of grid points.

At both spatial resolutions, the scheme exhibits approximately 6th-order accu-
racy in time as �t decreases, except that for N D 16, the spatial error aris-
ing from truncation of Fourier series is significant enough that the overall error
fails to decrease below the level achieved at �t D 1=8. For N D 32, the solu-
tion is sufficiently resolved in space, and the order of overgence as �t ! 0 is
approximately 6.1.

We also note that increasing the resolution does not pose any difficulty from a
stability point of view. Unlike explicit finite-difference schemes that are constrained
by a CFL condition, KSS methods do not require a reduction in the time step to
offset a reduction in the spatial step in order to maintain boundedness of the solution,
because their domain of dependence includes the entire spatial domain for any �t .

6 Conclusions

We have demonstrated that KSS methods can be applied to Maxwell’s equations
with smoothly varying coefficients. The order of temporal accuracy is the same
as for the wave equation, even though Fourier coefficients are now represented by
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Fig. 1 Estimates of relative error in solutions of (3), (24) computed using a 2-node block KSS
method on an N -point grid, with time step �t , for various values of N and �t

bilinear forms involving non-self-adjoint matrices, which are treated as Riemann–
Stieltjes integrals over contours in the complex plane. Future work will extend the
approach described in this paper to more realistic applications by using symbol
modification to efficiently implement perfectly matched layers (see [2]), and various
techniques (see [3, 16]) to effectively handle discontinuous coefficients.
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Numerical Simulation of Fluid–Structure
Interaction in Human Phonation: Application

Martin Larsson and Bernhard Müller

Abstract Fluid-structure interaction in a simplified two-dimensional model of the
larynx is considered in order to study human phonation. The flow is driven by an
imposed pressure gradient across the glottis and interacts with the moving vocal
folds in a self-sustained oscillation. The flow is computed by solving the 2D com-
pressible Navier–Stokes equations using a high order finite difference method,
which has been constructed to be strictly stable for linear hyperbolic and parabolic
problems. The motion of the vocal folds is obtained by integrating the elastodynamic
equations with a neo-Hookean constitutive model using a similar high order differ-
ence method as for the flow equations. Fluid and structure interact in a two-way
coupling. In each time step at the fluid-structure interface, the structure provides the
fluid with new no-slip boundary conditions and new grid velocities, and the fluid
provides the structure with new traction boundary conditions.

1 Introduction

Fluid-structure interaction (FSI) occurs when a flexible structure interacts with a
fluid. The fluid flow exerts a stress on the structure which causes it to deform,
thereby generating a new geometry for the fluid flow. A direct consequence of FSI
in the vocal tract is voice generation, where the motion of the soft tissue of the
vocal folds interacts dynamically with the glottal airflow to produce sound. The self-
sustained oscillations of the vocal folds can be explained by the Bernoulli principle
which states that in the absence of gravity for inviscid incompressible steady flow,
the velocity v, pressure p and density � are related by pC�v2=2 D const. The vocal
folds being closed in their equilibrium position, initially at rest, are forced apart by
the increasing lung pressure. As the air starts flowing, the velocity in the glottis
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increases and thus the pressure must decrease according to the Bernoulli principle.
The pressure drop together with restoring elastic forces results in a closure of the
vocal folds and a build-up of pressure. This cycle then repeats itself, driven only
by the lung pressure. The computational challenge in aeroelastic simulations lies in
dealing with unsteady flows at high Reynolds numbers, large deformations, moving
interfaces, fluid–structure interaction and intrinsically 3D motion [1].

In this paper, we employ a high order finite difference approach based on sum-
mation by parts (SBP) operators [2, 3, 14] to solve the compressible Navier–Stokes
equations and the elastodynamic equations using a neo-Hookean model. Fluid and
structure interact in a two-way coupling. The approach has been tested for a 2D
model of the larynx and the vocal folds.

2 Governing Equations

2.1 Compressible Navier–Stokes Equations

The perturbation formulation is used to minimize cancellation errors when dis-
cretizing the Navier–Stokes equations for compressible low Mach number flow
[9, 13]. The 2D compressible Navier–Stokes equations in conservative form can be
expressed in perturbation form as [6, 10]

U0t C Fc 0x CGc 0
y D Fv0

x CGv0
y ; (1)

where the vector U0 denotes the perturbation of the conservative variables with
respect to the stagnation values. U0 and the inviscid (superscript c) and viscous
(superscript v) flux vectors are e.g., defined in [6].

General moving geometries are treated by a time dependent coordinate transfor-
mation � D t , � D �.t; x; y/, � D �.t; x; y/. The transformed 2D conservative
compressible Navier–Stokes equations in perturbation form read [6]

OU0� C OF0� C OG0� D 0; (2)

where OU0 D J�1U0, OF0 D J�1.�tU0 C �x.Fc 0 � Fv0/C �y.Gc 0 � Gv0// and OG0 D
J�1.�tU0 C �x.Fc 0 � Fv0/C �y.Gc 0 �Gv0//.

No-slip adiabatic wall boundary conditions and the Navier–Stokes Character-
istic Boundary Conditions (NSCBC) technique by Poinsot and Lele in [12] are
employed at the outflow [7]. At the inflow, pressure, temperature and velocity in
the y-direction are imposed as p D patm C �p; T D T0 D 310K, and v D 0,
respectively.
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2.2 Elastodynamic Equations

The governing equations for the motion of the structure are the Lagrangian field
equations [11]

@S˛i

@X˛
D �0 R�i (3)

where X are reference coordinates, S the nominal stress tensor, � the displacement
vector, �0 the density in the reference configuration and the dots stand for partial
time derivative at fixed X.

As a constitutive model to obtain the nominal stress as a function of the displace-
ment, the compressible neo-Hookean law

S D
�
�1C

�
	

2
ln.det.C// � �

�
C�1

�
FT (4)

was used cf. e.g., [18]. Here, � and 	 are the Lamé parameters, F D 1CrX� is the
deformation gradient and C D FTF is the right Cauchy–Green strain tensor.

At boundaries where the structure is fixed in place, the displacement boundary
condition �.X; t/ D 0 is used, and on the fluid-structure interface the traction
boundary condition STN D T specifies the stress from the fluid on the structure
boundary. If the stress tensor in the fluid is � f, then the force on the structure is
[7, 8]

T D det.F/� fF�TN: (5)

By introducing a coordinate transformation from the reference configuration to
computational coordinates � D �.X˛/; � D �.X˛/ and a variable  D P� for the
velocity, the Lagrangian field equations can be expressed as a first-order system in
time on an equidistant Cartesian grid

( P D 1
J�1�0

h
.bS1/� C .bS2/�

i

P� D  
(6)

where �0 is the material density in the reference configuration, J�1 D j@.�; �/=
@.X; Y /j is the Jacobian determinant of the coordinate transformation and bSi D
J�1STr�i , i D 1; 2, are transformed flux vectors.

The traction boundary condition specifies the momentum flux over the fluid–
structure boundary. It can be shown, cf. [7, 8], that

bS2 D J�1� f

�
F22 �F21
�F12 F11

�
r�; (7)

where Fi˛ are components of the deformation gradient F, when the interface is at a
line of constant �.
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3 Fluid–Structure Interaction

3.1 Arbitrary Lagrangian–Eulerian (ALE) Formulation

The displacement of the structure interface determines the shape of the fluid domain
and the structure velocity at the interface determines the internal grid point velocities
in the fluid domain. The right and left boundaries of the fluid domain are the out- and
inflow, respectively. The top and bottom parts of the fluid domain are bounded by
the flexible vocal folds and the inner wall of the airpipe which is assumed to be rigid.
As we do not assume symmetry, the motions of the two vocal folds are solved for
individually. In our arbitrary Lagrangian–Eulerian (ALE) formulation, the positions
and velocities of the grid points in the fluid domain are linearly interpolated from
the positions and velocities of the structures at the interfaces. Figure 1 shows the
given structure veolcities with bold arrows and the interpolated grid point velocities
Px; Py (thin arrows) for three grid lines.

To obtain the time derivative of J�1 as needed in (2), a geometric invariant [15] is
used. This geometric conservation law states that .J�1/�C.J�1�t /�C.J�1�t /� D
0. The time derivatives of the computational coordinates �; � can here be obtained
from the grid point velocities Px; Py as �t D �. Px�x C Py�y/, �t D �. Px�x C Py�y/
which can be seen by differentiating the transformation with respect to � .

3.2 Description of Fluid–Structure Interaction Algorithm

First, we construct the fixed reference configuration for the structure and set the ini-
tial displacements and velocities to zero. The initial fluid domain is then uniquely

Fixed Flexible Fixed

Fig. 1 The boundary of the fluid domain consists of fixed and flexible parts. The velocity at the
boundary of the flexible part determines the internal grid point velocity. Only half domain shown
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determined by the reference boundary of the structure. We then take one time step
for the fluid with imposed pressure boundary conditions at the inflow, zero initial
conditions for the perturbation variables U0 and adiabatic no-slip conditions, i.e.,
u D 0 and @T=@n D 0 on the wall. After the first fluid time step, the viscous fluid
stress on the wall is calculated based on the new fluid velocities and pressures. These
fluid stresses are passed on to the structure solver via the traction boundary condi-
tion (7). Using these boundary conditions, one time step is taken for the structure.
The solution for the structure gives the velocities and displacements on the bound-
ary, which in turn are used to generate the new fluid mesh and internal grid point
velocities. This procedure is then repeated for each time step.

4 High Order Finite Difference Method

The summation by parts (SBP) operator Q is an approximation to the first spatial
derivative. In the interior, Q corresponds to the standard 6th order explicit central
operator, while Q is third order accurate at and near the boundaries. Through a
special boundary treatment, SBP operators allow energy estimates for the discrete
problems similar to the ones for the continuous problems that are approximated.
Thus, SBP operators yield strictly stable schemes for general boundary conditions
[7, 14]. The global order of accuracy of the present SBP operator Q is 4 [2, 3].
Second derivatives are approximated by applying the SBP operator Q twice. The
classical fourth order explicit Runge–Kutta method is used for time integration.
Spurious high wave number oscillations are suppressed by a sixth order explicit
filter [10].

5 Results

The initial geometry for the vocal folds is here based on the geometry used in [17]
for an oscillating glottis with a given time dependence. The initial shape of the vocal
tract including the vocal fold is given as

rw.x/ D D0 �Dmin

4
tanh s C D0 CDmin

4
; (8)

where rw is the is the half height of the vocal tract, D0 D 5Dg is the height of the
channel, Dg D 4mm is the average glottis height, Dmin D 2mm is the minimum
glottis height, s D bjxj=Dg � bDg=jxj, c D 0:42 and b D 1:4. For �2Dg � x �
2Dg , the function (8) describes the curved parts of the reference configuration for
the top and bottom (with a minus sign) vocal folds.
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5.1 Vocal Fold Material Parameters

The density in the reference configuraiton is �0 D 1; 043 kg m�3, corresponding to
the measured density of vocal fold tissue as reported by [4]. The Poisson ratio was
chosen as 
 D 0:47 for the whole tissue, corresponding to a nearly incompressible
material with 
 D 0:5 being the theoretical incompressible limit. A two-layer model
for the vocal folds was used so that the shear modulus varied smoothly from �c D
3:5 kPa in the cover to �l D 4:4 kPa in the ligament. The Lamé parameter 	, as
a function of space, was then obtained as 	 D 2�
=.1 � 2
/. A compressible
neo-Hookean material model was used, cf. [7].

5.2 Fluid Model

We used a Reynolds number of 3; 000 based on the average glottis height Dg D
0:004m and an assumed average velocity in the glottis of Um D 40m s�1. We used
these particular values in order to be able to compare with previously published
results by Zhao et al. [16, 17] and by ourselves [5, 6]. The Prandtl number was set
to 1:0, and the Mach number was 0:2, based on the assumed average velocity and
the speed of sound. We deliberately used a lower value for the speed of sound, c0 D
200m s�1 in order to speed up the computations. The air density was 1:3 kg m�3
and the atmospheric pressure was patm D 101; 325Pa. The equation of state was
the perfect gas law, and we assumed a Newtonian fluid. At the inlet, we imposed
a typical lung pressure during phonation with a small unsymmetric perturbance by
setting the acoustic pressure to pacoustic D p�patm D .1C0:025 sin 2��/2; 736Pa,
where � D 0 at the lower edge and � D 1 at the upper edge of the inflow boundary.
The outlet pressure was set to atmospheric pressure, i.e., p � patm D 0 Pa.

5.3 Numerical Simulation

Both fluid and structure used the same set of variables for nondimensionalization
and the same time step was used for both fields so that the two solutions are always
at the same time level. The structure grid consisted of 81 � 61 points for each vocal
fold, i.e., for the upper and the lower vocal folds, and the fluid domain was 241�61
points. The time step was determined by the stability condition for the fluid, which
was satisfied here by requiring CFL � 1. Since the fluid domain changes with
time, the CFL condition puts a stricter constraint on the time step when the glottis
is nearly closed. The solution was marched in time with given initial and bound-
ary conditions to dimensional time t D 20ms or 416; 948 time steps, implying an
average dimensional time step of�t D 48 ns.

Figure 2 shows results for the vorticity at certain time instants. Initially, the flow
is symmetric with two start-up vortices followed by an elongated vortical structure
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Fig. 2 Vorticity contours at 2ms intervals. Top left subplot is the vorticity at t D 2ms, top right
is at t D 4ms and so on up to t D 20ms (lower right). There are 20 equally spaced contour lines
between ! D 0 s�1 and ! D 5� 104 s�1 in each subplot

on each side of the centerline. After the start-up vortices leave the domain, the
elongated structure becomes unstable and breaks up into smaller circular vortices.
The observed frequency of the oscillation is about 80Hz, which is close to the
typical frequencies that occur in phonation, i.e., 100Hz for men and 200Hz for
women.
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6 Conclusions

Our 2D model for the vocal folds and the air flow in the vocal tract proves to be
able to capture the self-sustained pressure-driven oscillations and vortex generation
in the glottis. The simulated frequency of 80Hz is close to 100Hz, typical for men.
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Error Estimation and Anisotropic Mesh
Refinement for Aerodynamic Flow Simulations

Tobias Leicht and Ralf Hartmann

Abstract Aerodynamic flow fields are dominated by anisotropic features at both
boundary layers and shocks. Solution-adaptive local mesh refinement can be impro-
ved considerably by respecting those anisotropic features. Two types of anisotropy
indicators are presented. Whereas the first one is based on polynomial approxima-
tion properties and needs the evaluation of second and higher order derivatives of
the solution the second one exploits the inter-element jumps arising in discontin-
uous Galerkin methods and can easily be used with higher order discretizations
and even hp-refinement. Examples for sub-, trans- and supersonic flows combining
these anisotropic indicators with reliable residual or adjoint based error estimation
techniques demonstrate the potential and limitations of this approach.

1 Introduction

We consider steady-state laminar viscous flows governed by the compressible
Navier–Stokes equations. In the inviscid limit these degenerate to the compress-
ible Euler equations which are in many cases appropriate to describe flow fields in
the presence of shocks.

Our discretization is based on a discontinuous Galerkin (DG) method with the
symmetric interior penalty (SIPG) approach for viscous terms,1 see [6, 14] and the
references cited therein. The DG approach is a natural extension of the finite volume
method predominantly used in aerodynamics to higher order and offers a great flex-
ibility of the underlying meshes concerning both local mesh adaption with hanging

1However, results similar to those presented here have also been obtained with the second scheme
of Bassi and Rebay [2].
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nodes and variable order discretizations, combined in hp-algorithms. Being a finite
element method a substantial error estimation framework is available.

In the following we will consider constant polynomial degree approximations
on quadrilateral and hexahedral meshes with local mesh refinement. Such a refine-
ment is often performed in an isotropic way by splitting all an element’s edges
and forming new children elements. However, flow phenomena may exhibit a
strong directional behavior in boundary layers or interior layers like shocks. Highly
stretched elements should be used for an efficient resolution of these features. Start-
ing from a coarse initial mesh, such elements can be obtained by an anisotropic
refinement which splits only some of an element’s edges.

Considerable work has been devoted to anisotropic refinement for linear finite
elements on simplex meshes where the information of an approximated Hessian-
based mesh metric field is used within re-meshing algorithms, see [4, 5, 10, 16] for
example. Here, the metric field approximates the interpolation error of the solution
and is used to determine the local mesh density as well as the local element rotation
and stretching in a re-meshing algorithm.

As opposed to a priori interpolation error estimates, a posteriori estimates based
on an adjoint problem take into account error transportation and accumulation
effects. Using these goal-oriented indicators to determine the local mesh density
results in meshes which are specifically tailored to the accurate approximation of
a target quantity like the aerodynamic lift or drag force. In [18] the directional
information of the metric approach has been combined with a scaling based on
adjoint-based error indicators, resulting in dual weighted metrics.

Another approach to anisotropy detection in the context of element subdivision is
to use several trial refinements and selecting the case which reduces the error most
effectively, see [13, 17]. However, such approaches seem unreasonably expensive,
especially if they require solutions on globally refined meshes. Solving only local
problems and including goal-oriented refinement has been considered in [9].

The purpose of this work is to employ anisotropy indicators which come com-
putationally almost for free, i.e. no auxiliary problems shall be solved for obtaining
anisotropic refinement information. Furthermore, these indicators shall be appli-
cable to higher order DG discretizations and they shall be easily combined with
different reliable error indicators.

We adopt the partitioned approach of using different indicators for selecting the
elements to be refined and for choosing the anisotropic refinement case. In par-
ticular, we employ residual-based and adjoint-based indicators for goal-oriented
refinement to select a certain fraction of all elements to be refined. In a second step,
the discrete solution is analyzed using one of two different anisotropic indicators
to decide upon a possibly anisotropic subdivision case. We note, that the presented
ideas are only applicable to meshes with tensor-product elements (quadrilaterals in
2D, hexahedra in 3D), whereas other work based on metrics is often only applicable
to simplicial meshes.
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2 Error Estimation and Error Indicators

Adjoint-based Indicators Given a target functional J.u/, the error of the discrete
solution uh compared to the analytical solution u in terms of the target quantity can
be approximated employing a linearized adjoint problem. This corresponds to the
well known dual weighted residual (DWR) method by Becker and Rannacher [3],
see [14] for an application in the current context. In the DG context the residual and
thus this estimate can be decomposed into element-wise contributions which serve
as local error indicators.

The total error estimate, i.e., the accumulated local contributions, can be used as
a reliable estimate of the discretization error. As this estimates includes the sign of
the error it can even be used to improve the computed target quantity value.

Residual-based Indicators Assuming that the solution of the adjoint problem is
sufficiently smooth, an upper bound of the error in the target quantity can be derived,
cf. [6]. The localized form of this estimate serves as residual-based error indicator.
As the specific target quantity does not enter the definition of this indicator, it can
be used to resolve all flow features but will in general be less efficient for any given
target quantity.

3 Anisotropy Indicators

Jump Indicator Assuming that the analytical solution is continuous the pres-
ence of discontinuities in the discrete solution indicates local errors. We associate
large jumps of the solution over element interfaces with large approximation errors
orthogonal to the corresponding face. If the average jumpKi

Ki D
P

j

ˇ̌
ˇR

f
j

i

.�C � ��/ dx
ˇ̌
ˇP

j

R
f

j

i

1 dx
; i D 1; 2; 3; (1)

over the two faces f 1
i and f 2

i orthogonal to the direction i on the tensor-product
reference element is small compared to the maximal value encountered in any direc-
tion on the same element we do not refine the element along that direction. Here, C
and � denote the traces of the function � taken from within the current element and
its neighbor, respectively.

If the analytical solution exhibits a discontinuity, e.g., at a shock, close to and
almost parallel to a particular face, this indicator will also detect a large jump
and refine the element parallel to that face. This is what is required to obtain an
improved location of the discontinuity in the numerical solution, thus this behavior
is desirable. The probability that the discontinuity exactly coincides with the face is
vanishing for real applications.



582 T. Leicht and R. Hartmann

Derivative Indicator After a transformation to the reference element to include
scaling effects the local interpolation or projection error of a polynomial approxi-
mation of degree p to a sufficiently smooth function � 2 HpC1 is determined by
the .p C 1/th derivative tensor.

In the general case we compare the projected derivative along the coordinate
axes of the reference element and do not refine the element along directions which
feature a small derivative compared to other values on that element. For second order
methods with p D 1 we evaluate the eigenvalues and eigenvectors of the derivative
tensor (Hessian) and exclude directions from refinement if they are aligned with the
eigenvectors of small eigenvalues.

The underlying smoothness assumption is especially critical for higher order
methods and discontinuous solutions at shocks.

Application to Vector Valued Solution Functions Several strategies for extend-
ing the presented indicators from scalar valued solution functions � to vector
valued solution functions u have been investigated, see [14] for a comprehensive
discussion.

For the jump indicator, we simply replace the jump of the scalar function � in
(1) by the jump of the l2-norm of the vector-valued function u. For the derivative
indicator we differentiate between flow regimes: In inviscid cases we simply use
the Mach number as a representative scalar variable, whereas in viscous cases the
refinement indicator is evaluated separately for each component. We then default to
isotropic refinement but select an anisotropic subdivision case if that is suggested
by a sufficient number of individual indicators and if there is no contradiction in the
predicted direction of anisotropy.

4 Numerical Examples

The basic performance of the proposed indicators will be analyzed using some two-
dimensional computations. After that, a three-dimensional example will demon-
strate the applicability to flows of increased complexity.

NACA0012 Airfoil Sub-, trans- and supersonic flows around the NACA0012 air-
foil according to the flow conditions in Table 1 have been computed on sequences of
refined meshes using both adjoint-based and residual-based error indicators as well
as isotropic and anisotropic refinement.

Figure 1 plots the error in a selected target functional vs. the number of elements
for the different refinement strategies. All reference values have been obtained by
fine grid computations. The subsonic case A uses adjoint-based error estimation.
Comparing the second order solution of case A1 with the third order solution of
case A2 shows the increased accuracy of the method, as a significantly reduced
number of elements produces results of the same accuracy in the higher order case.
Apart from that the behavior is similar – the jump-based anisotropy indicator sig-
nificantly reduces the number of elements required for a given accuracy and the
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Table 1 Freestream conditions for NACA0012 test cases
Case Mach number Angle of attack Reynolds number Polynomial degree Targeta

M ˛ Re p J.u/

A1 0.5 0ı 5,000 1 Cdp

A2 0.5 0ı 5,000 2 Cdp

B 0.8 1.25ı inviscid 1 Cdp

C 1.2 0ı 1,000 1 Cdf
a Cdp and Cdf denote the pressure and friction part of the drag coefficient Cd D Cdp C Cdf ,
respectively
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Fig. 1 Convergence of the error under different mesh refinement algorithms for the NACA0012
test cases

derivative-based indicator performs even better. As the solution is quite smooth in
this subsonic case this can be expected.

Similar results can be seen for the transonic case B. Here the performance of the
jump indicator is similar or even superior to the derivative indicator. This is probably
due to the reduced smoothness of the solution at the shock which contradicts the
assumptions of the derivative indicator. This effect is even stronger in the supersonic
case C. In general, the simple jump-based criterion performs remarkably well in all
flow regimes.

In transonic cases shocks are usually located in the vicinity of the airfoil and
are of great importance for the computed aerodynamic forces. The residual-based
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indicator resolves these prominent features and thus performs only slightly inferior
to the goal-oriented error estimation, see Fig. 1c.

In contrast to that, the supersonic case C features a prominent detached bow
shock in front of the airfoil. As the residual-based error estimation initially resolves
mainly this feature whereas the boundary layer resolution is improved only later
on we notice almost no reduction of the error. Goal-oriented refinement, however,
yields significant error reductions already on the first adapted mesh, see Fig. 1d.
This motivates the utilization of the adjoint problem in spite of its additional cost.

Laminar Delta Wing As a second more complex example we consider a laminar
flow at Mach number M D 0:3, Reynolds number Re D 4;000 and an angle of
attack ˛ D 12:5ı around a delta wing with sharp leading edge and a blunt trailing
edge. Figure 2 illustrates the vortex dominated flow characteristics of this test case
which has been considered in the EU project ADIGMA [12] and in [7], a similar
case was treated earlier in [11].

In the following we consider the error of different approximations of the lift
coefficient Cl. Similar results have been obtained for the drag coefficient Cd. We
start by computing the lift from the second order flow solution on a sequence of
globally refined meshes starting from a very coarse initial 3,264 elemental mesh
for the half domain with symmetry boundary conditions. We then consider adaptive
local mesh refinement starting from the results on the initial coarse mesh.

Figure 3 plots the error in the lift coefficient vs. the number of elements for vari-
ous refinement strategies. Compared to global mesh refinement, lift coefficients of a

Fig. 2 Solution plot showing streamlines and a Mach number iso-surface over the left half of the
delta wing immersed in a laminar flow at high angle of attack as well as Mach number slices over
the right half
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Fig. 3 Laminar delta wing: Error in the computed lift coefficient for sequences of locally refined
meshes using different refinement indicators and isotropic (open symbols) as well as anisotropic
refinement (filled)

specific accuracy are obtained with less elements for residual-based mesh refine-
ment. We notice that the adjoint-based refinement procedure yields again better
results.

Additionally, in case of adjoint-based mesh refinement Fig. 3 illustrates the errors
of the enhanced lift coefficients obtained by adding the global error estimate to
the computed lift coefficient. Already on the first adapted mesh the enhanced lift
coefficient is more accurate than the unmodified values computed on the last adapted
meshes.

Finally, we note that anisotropic mesh refinement using the jump indicator per-
forms better than isotropic mesh refinement with an improvement by a factor of
almost two on the final mesh in the adjoint-based case. In general, the gain improves
for increasing accuracy requirements. Here, the anisotropy indicator works as a
general aspect ratio optimizer.

5 Conclusion and Outlook

The presented anisotropy indicators have been successfully applied to a number
of aerodynamic test cases. Especially the very simple jump indicator performs
surprisingly well and is thus a good candidate for applications with increased
complexity.

So far, only laminar flows with weak boundary layers have been considered.
Employing a RANS approach with a suitable turbulence model much thinner and
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thus stronger boundary layers dominate the flow field. Such cases are of more inter-
est to the aerodynamicist. For theses applications different variables might be of
different orders of magnitude, thus the question of how to treat systems of equations
efficiently will arise again, perhaps a suitable scaling of the individual components
might be necessary.

The presented approach, especially the jump indicator, will also be combined
with an hp-adaptive algorithm. First experiments show promising results if the num-
ber of subdivided elements is not very small compared to the number of elements
treated with an increased polynomial order.

Finally, splitting error estimation and anisotropy detection into two distinct indi-
cators is reasonable in many cases but for the purpose of creating nearly optimal
meshes for the approximation of a given target functional a combined approach
respecting anisotropy in both the primal and dual solution would be ideal. Recently,
Richter [15] proposed a unified approach in the context of continuous FEM and a
reconstructed dual solution. Extending this approach to our application and to non-
tensor-product basis functions will provide an interesting alternative to the proposed
algorithm.

Acknowledgements The authors gratefully acknowledge the partial financial support of both the
President’s Initiative and Networking Fund of the Helmholtz Association of German Research
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A MHD Problem on Unbounded Domains:
Coupling of FEM and BEM

Wiebke Lemster and Gert Lube

Abstract We consider the MHD problem on R3 D ˝[˝E , where˝ is a bounded,
conducting Lipschitz domain and ˝E is an insulating region. After semidiscretiza-
tion in time, we apply a finite element approach in˝ . A boundary element approach
is used in ˝E . We present results on the well-posedness of the continuous prob-
lem and for the semidiscrete coupled problems arising within each time step.
Finally we show the quasi-optimality of a regularised FE discretisation within each
time step.

1 Introduction

Magnetohydrodynamics (MHD) is the study of the flow of electrically conducting
fluids in the presence of magnetic fields. In the so-called direct problem, the mag-
netic induction B and the electric field E are unknown. Some efforts have been
made to treat this problem with Lagrange finite elements for bounded domains (cf.
[2,6]). Our aim is to extend this to R3. In the bounded, simply connected conducting
domain the model is time-dependent and nonlinear. For this reason we apply finite
elements there. We regularise the system with a pressure stabilisation like method to
get a saddle point problem. In the unbounded part, the model reduces to a Laplace
equation. Therefore, we apply a boundary element technique for this domain. We
use a symmetric coupling technique (cf. [4, 16]) to link both methods. For more
informations of symmetric coupling of FEM and BEM see [4, 7, 9]. Properties of
the used spaces and other helpful results can be found in [1, 5, 11, 12, 14, 15]. The
paper is organised as follows: In Sects. 2 and 3 we derive a variational formulation
and show the well-posedness. Section 4 deals with the time-discretised problem.
Section 5 is related to the finite element approach. In Section 6 we give some final
remarks.
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2 Variational Formulation of the MHD Model

In this section we state the problem to find a vector potential for the interior solution
and a scalar potential in the exterior domain. By k�k we denote the L2-norm in the
conducting domain˝ which is induced by the L2 scalar product .�; �/. We seek the
interior solution in the space

H 1.0; T IH/ WD ˚B 2 L2.0; T IH/ j B0 2 L2.0; T IH�/� ;
H WD ˚B 2 L2.˝/ j r � B 2 L2.˝/� :

˝ is divided into two disjoint parts, ˝1 and ˝2. We require ˝2 \ @˝ D ;. We
assume the known velocity w and the function f to be zero outside of ˝2. The
electric field is denoted by E the, the magnetic induction by B, the magnetic perme-
ability by 0 < �1 � � � �2 and the electric conductivity by 0 � �1 � � � �2. We
can state the following problem:

@B
@t
D �r � E; (1)

r � 1
�

B D �
�

EC w � BC Rf

1C s jBj2B
�
; (2)

r � B D 0; (3)

B D o
�
jxj�1

�
for jxj ! 1: (4)

We want to replace B by a potential ansatz. For the interior domain ˝ we set B D
r � u. From (1) we get E D � @u

@t
C r�c . Since �c is only unique up to a constant

we choose it such that
R
˝
�c dx D 0.

In the non-conducting region ˝E it holds that � D 0 and �0 WD � is constant.
Therefore (2) simplifies to r � B D 0. We set B D r˚ in ˝E . Hence equation (3)
reduces to a Laplace equation. The fundamental solution for this equation is denoted
by U.x; y/ WD 1

4�
1
jx�yj and its normal derivative at the boundary by T .x; y/. We

have the representation for ˚ by the single-layer- and the double-layer-potential
(cf. [8]).

˚.x/ D �
Z

@˝

U.x; y/
@

@n
˚.y/ ds.y/C

Z

@˝

T .x; y/˚.y/ ds.y/; x 2 ˝E : (5)

To normalise the vector potential u we use the spaces

H 1� .˝/ WD
˚
q 2 H 1.˝/ j .q; 1/ D 0� ;

H� WD
˚
v 2 H j .v;rq/ D 0 8 q 2 H 1� .˝/

�
:
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The transmission conditions ŒB � n� D 0 and ŒH � n� D 0 imply the interface
conditions

.
1

�
r � u/ � n D

�
1

�0
r˚

�
� n and .r � u/ � n D @˚

@n
on @˝:

This leads to the following problem:

Problem 1 Find u 2 H 1 .0; T IH�/ such that for all v 2 H� and almost all t 2
.0; T /

0 D .�
@u
@t
; v/�

� 1
�
r � u;r � v

�
�
D� 1
�
r � u

�
� n; v

E

@˝

�R
� �f r � u

1C s jr � uj2 ; v
�
� .�w � .r � u/ ; v/ : (6)

In order to replace the boundary term in (6) by a formulation of the exterior problem,
we use the Stokes formula on the boundary to get

Z

@˝

��
1

�
r � u

�
� n

�
� v ds D 1

�0

Z

@˝

˚Tnv ds

with Tnv WD .r � v/ � n. If we apply this result to (5) and take the boundary values,
we derive the following Calderòn equations

2 .V Tnu/ .x/ D �˚.x/C 2 .K˚/ .x/; 2 .D˚/ .x/D� Tnu.x/�2 .K 0Tnu/ .x/;

where the integral operators are given by (cf. [3])

.V / .x/ WD
Z

@˝

U.x; y/ .y/ ds.y/; .D / .x/ WD � @

@nx

Z

@˝

T .x; y/ .y/ ds.y/;

	
K0 



.x/ WD

Z

@˝

@

@nx
U.x; y/ .y/ ds.y/; .K / .x/ WD

Z

@˝

T .x; y/ .y/ ds.y/:

By defining the bilinear forms

hA u; vi WD .��1r � u;r � v/� .�w � .r � u/ ; v/ ;

hAtu; vi WD .� @u
@t
; v/; hK �; vi WD h.1

2
Id CK/�; Tnvi@˝ ;

hD�; i WD hD�; i@˝ C h�; 1i@˝ h ; 1i@˝ ; hV u; vi WD hV Tnu; Tnvi@˝
and the forms

AV .u; �; v/ WD 1

�0
h.V Tnu� 1

2
� �K�/; Tnvi@˝ ;
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AD .u; �;  / WD h.D˚ C 1

2
TnuCK 0Tnu/;  i@˝ C h˚; 1i@˝ h ; 1i@˝ ;

hAnlu; vi WD �R
�
�

f

1C s jr � uj2r � u; v
�
;

we get the variational problem:

Problem 2 Find .u; ˚/ 2 H 1 .0; T IH�/ � L2.0; T IH 1
2 .@˝// such that for all

.v;  / 2 H� �H 1
2 .@˝/ and almost all t 2 .0; T /

AtuCA uCAnluC 1

�0
V u� 1

�0
K ˚ D 0; (7)

D˚ CK 0u D 0: (8)

3 Continuous Problem

We sketch the proof of the existence and uniqueness of a solution for the con-
tinuous problem. All operators are bounded, D is invertible (cf. e.g., [9]) and
A C Anl fullfills a Garding inequality (cf. [2, 10]). Hence, the second equation
can be transformed in such a way that we get from (7) an equation which only
depends on u.

Problem 3 Find u 2 H 1.0; T IH�/ such that for almost all t 2 .0; T /

SuCAtuCAnlu WD
�
A C 1

�0
V C 1

�0
K D�1K 0�uCAtuCAnlu D 0: (9)

Therefore, we need an existence theorem for non-linear evolution problems (cf. [17]
Theorem 30.A.).

Theorem 1. Let V � X � V � be a Gelfand triple with dim V D 1. Assume
that the operators A WD S C Anl W V ! V � fullfill the following conditions for
p, q 2 .1;1/ with 1

p
C 1

q
D 1 and 0 < T <1:

(a) A.t/ is coercive for all t 2 .0; T /, i.e., there exist constants M > 0 and � � 0
such that

hA.t/v; vi �M kvkpV �� 8 v 2 V 8 t 2 .0; T / :

(b) A.t/ W V ! V � is monotone and hemicontinuous for all t 2 .0; T /.
(c) There exist a nonnegative functionK1 2 Lq.0; T / and a constantK2 > 0 such

that for all v 2 V and t 2 .0; T /

kA.t/vkV �

� K1.t/CK2 kvkp�1V :
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(d) The function t 7! A.t/ is weakly measurable, i.e., the function t 7! hA.t/u; viV
is measurable for t 2 .0; T / and all u, v 2 V .

Then there exists a unique solution u 2 W 1;p.0; T IX/ for u0 2 X of

u0.t/C A.t/u.t/ D 0; u.0/ D u0:

We have to modify Problem 3 in order to satisfy a coercivity condition. We multiply
(9) with the function e��t , where � is the constant for the L2-term in the Garding
inequality which S C Anl satisfies. The new scaled potential is denoted by Qu WD
e��tu. S is linear, so we can replace e��tSu by S Qu. To get an equivalent problem,
we have to scale the constant s in Anl by e2�t . In addition, we have e��tAtu D
At QuC �� Qu. We set u WD Qu and S WD S C ��Id.

Proof. We set p D q D 2, V D Hr and X D L2.˝/.
(a) To show the first condition, we first note

˝	
V CK D�1K 0
 v; v

˛ � 0 8v 2 H:

The coercitivity follows with � D � and ck � 1
�2

from

hAnl.t/v; vi C hS.t/v; vi � 1

�2
kr � vk2 � �2 kukL1.˝/ kr � vk kvk

��2 jRj kf kL1.˝/ kr � vk kvk C �1� kvk2

�
� 1
�2
� ck

�
kr � vk2 � �.ck/

2
kvk2 C �1� kvk2

� min
n 1

2�2
; �1� � �.ck/

2

o
kvk2H :

(b) The monotonicity can be shown similarly. Anl is Lipschitz continuous,

� f ˚1

1C s j˚1j2
� f˚2

1C s j˚2j2
; v
�
�3 kf kL1.˝/ k˚1�˚2k kvk 8˚1; ˚2; v 2 H;

and S is linear and bounded. Therefore both operators are hemicontinuous (cf.
[17] Fig. 27.1).

(cCd) The third condition follows from the boundedness of the two operators S and
Anl . The operator A does not depend explicitly on time. �
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By Gronwall inequality one can derive with

	2 WD �22
�
kwk2L1.˝/ CR2 kf k2L1.˝/

�
; L.t/ WD �2

�1

R t
0
	2.s/ ds

the following a-priori estimate for t 2 Œ0; T �

ku.t/k � ku.0/k eL.t/; kr � uk � p2�2	.t/ ku.0/k eL.t/:

4 Semidiscrete Problem

We discretise Problem 3 in time by the implicit Euler scheme. An existence result
is given. The proof relies on the main theorem of strongly monotone operators.

Theorem 2. Suppose X is a real Hilbert space and the operator A W X ! X�
is strongly monotone and Lipschitz continuous on X . Then, for each b 2 X�, the
operator equation

Au D b

has a unique solution u 2 X .

For simplicity we use an equidistant partition of the time interval Œ0; T � intoM parts
with time step size 
 D T

M
. Hence, we obtain the following semidiscrete problem:

Problem 4 Find .un; ˚n/ 2 H� � H 1
2 .@˝/ such that for all .v;  / 2 H� �

H
1
2 .@˝/

0 D
�
�

un � un�1



; v
�
C
� 1
�
r � un;r � v

�
� R

�
�

f nr � un

1C s jr � unj2 ; v
�

� .�wn � .r � un/ ; v/C AV .un; ˚n; v/ ;
0 D AD .un; ˚n;  / :

For an estimate of the semidiscrete solution we need the discrete Gronwall lemma.

Remark 3. Let fzngN.�/nD1 be a sequence of nonnegative real numbers which fullfill

zn � C1 C 
C2
X

iD0;:::;n�1
zi for n D k; : : : ; N.
/

with C1 and C2 independent of 
 . Let zi � Qz=k for i D 1; : : : ; k � 1. Then we
obtain

zn � .
C2QzC C1/ .1C 
C2/n�k for n D k; : : : ; N.
/:
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Hence, we get the main theorem of this section:

Theorem 4. Problem 4 has a unique solution, if 
 is chosen such that for ck <
1
�2

it holds c1.
/ WD 1=
 � �n=2 � .8R2 kf nk2L1.˝//= .2ck/ > 0. Furthermore we
obtain for constant � the following estimate:

max
1�n�M ku

nk2L2.˝/ C 

P
nD1;:::;M kr � unk2L2.˝/ � C

��u0
��2
L2.˝/

:

Proof. The strong monotonicity and the boundedness of Sn CAnl , defined by

hSnv;bvi WD 1



.v; Qv/C

� 1
�
r � v;r � Qv

�
C
D 1
�0

	
V CK D�1K 0
 v; Qv

E

� .�wn � .r � v/ ; Qv/ ;
˝
A n
nlu; v

˛ WD �
� Rf n

1C s juj2 u;r � v
�
;

can be proved by similar arguments as presented in the previous section. Therewith
we can apply Theorem 2 to prove existence and uniqueness. �

5 Finite Element and Boundary Element Approach

By introducing a Lagrange multiplier Qpn Problem 4 can be regularised with an
pressure stabilisation like term � .r Qpn;rq/.
Problem 5 Find . Qun; Qp n; Q̊ n/ 2 H � H 1.˝/ � H 1

2 .@˝/ such that for all test
functions .v; q;  / 2 H �H 1.˝/ �H 1

2 .@˝/

�




�
un�1; v

�
D

��


Qun; v

�
C
� 1
�
r � Qun;r � v

�
C ˝A n

nl Qun; v
˛

� .�wn � .r � Qun/ ; v/C AV . Qun; Q̊ n; v/C .r Qp n; v/ ;
. Qun;rq/ D � .r Qpn;rq/C . Qpn; 1/ .q; 1/ ;

0 D AD
	 Qun; Q̊ n;  
 :

One can also introduce the Lagrange multiplier pn in the original semi-discrete
problem. For time steps like in Theorem 4 we get the error for the regularisation

c1.
/ kun � Qunk2 C kr � .un � Qun/k2 C ��2 kr .pn � Qpn/k2 � ��2 krpnk2 :

Consider the Galerkin discretisation of the coupled Problem 5. Let Xh � H be the
lowest order edge element space (see [13]) and Mh � H 1.˝/ the space of piece-
wise linear elements on a shape-regular tetrahedral mesh of ˝ with mesh size h.
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The space Wh � H� 1
2 .@˝/ is defined by the traces on @˝ of piecewise linear

nodal elements.

Problem 6 Find . Qun
h
; Qpn
h
; Q̊ n

h
/ 2 Xh �Mh �Wh such that for all test functions

.v; q;  / 2 Xh �Mh �Wh
�




�
un�1h ; v

�
D

��


Qunh ; v

�
C
� 1
�
r � Qunh ;r � v

�
� 	�wn � 	r � Qunh



; v



C ˝A n
nl Qunh ; v

˛C AV . Qunh ; Q̊ nh ; v/C
	r Qp nh ; v



;	 Qunh;rq


 D �
	r Qpnh ;rq


C 	 Qpnh ; 1


.q; 1/ ;

0 D AD. Qunh ; Q̊ nh ;  /:

Lemma 1. The error between the regularised semi-discrete problem and its
Galerkin formulation can be estimated as follows

�� Qun � Qunh
��
H

. inf
vh2Xh

kun � vhkH C inf
qh2Mh

kp � qhkH1.˝/

C inf
 h2Wh

k˚ �  hk
H

1
2 .@˝/

:

Proof. Defining an operatoreSn like Sn for the new problem leads to the additional
term

˝
B0C �1Bv; Qv˛. The ellipticity of this operator and some other transformations

lead to the statement (cf. [9, 10]). �

6 Conclusions

We presented a symmetric coupling approach for a nonlinear MHD model (cf. [2]).
The continuous and the time discrete problems are well posed. A quasi-optimal
estimate for the regularised problem is given. Part of our long-term objectives is to
develop and implement an algorithm for this problem.

Acknowledgements We want to thank O. Steinbach for stimulating discussions on the symmetric
coupling of FEM and BEM.
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and boundary elements. (Numerische Näherungsverfahren für elliptische Randwertprobleme.
Finite Elemente und Randelemente.) Teubner, Stuttgart (2003)

17. Zeidler, E.: Nonlinear functional analysis and its applications II/B.Springer, New York (1990)

http://num.math.uni-goettingen.de/lemster/


A Stable and High Order Interface Procedure
for Conjugate Heat Transfer Problems

Jens Lindström and Jan Nordström

Abstract This paper analyzes stability and order of accuracy of a conjugate heat
transfer problem in one space dimension. The energy method is used to derive
boundary and interface conditions for the continuous problem and the resulting
numerical scheme is proven stable. The scheme is implemented using 2nd-, 3rd-
and 4th-order finite difference operators on Summation-By-Parts (SBP) form. The
boundary and interface conditions are implemented weakly using the Simultaneous
Appriximation Term (SAT). The rate of convergence is verified using the method of
manufactured solutions.

1 Introduction

The coupling of fluid and heat equations is an area that has many interesting
scientific and engineering applications. From the scientific side it is interesting
to mathematically derive conditions to make the coupled system well posed and
compare with actual physics. The applications for conjugate heat transfer ranges
between cooling of turbine blades, electronic components, nuclear reactors or space-
craft re-entry just to name a few. The particular application we are working towards
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here is a microscale satellite cold gas propulsion system with heat sources that will
be used for controlling the flow rate [4].

This paper is the first step in understanding the coupling procedure within our
framework. The computational method that we are using is a finite difference
method on Summation-By-Parts (SBP) form with the Simultaneous Approximation
Term (SAT). This method has been developed in many papers [1, 2, 5, 9] and used
for many difficult problems where it has proven to be robust [7, 11, 12].

2 The Continuous Problem

The equations we are studying in this paper are motivated by a gas flow in a long
channel with heat sources. The channel is long compared to the height and hence
the changes in the tangential direction are small in comparison to the changes in the
normal direction. The equations are an incompletely parabolic system of equations
for the flow and the scalar heat equation for the heat transfer,

wt C Awx D "Bwxx; �1 � x � 0; (1)

and
Tt D kTxx; 0 � x � 1; (2)

where

w D
2

4
�

u
T

3

5 ; A D
2

4
a b 0

b a c

0 c a

3

5 ; B D
2

4
0 0 0

0 ˛ 0

0 0 ˇ

3

5 : (3)

We can view (1) as the Navier–Stokes equations linearized and symmetrized around
a state with some mean velocity. In that case we would have

a D Nu; b D Ncp
�
; c D Nc

s
� � 1
�

; ˛ D �C 2�
N� ; ˇ D ��

P r N� ; (4)

where Nu, N� and Nc is the mean velocity, density and speed of sound. � is the ratio of
specific heats, Pr the Prandtl number and � and � are the second and dynamic vis-
cosities [12]. At this point the only assumption on the coefficients is that a; ˛; ˇ > 0
to keep the discussion general. Our objective is to couple (1) and (2) at x D 0 and
investigate which interface conditions that will lead to an energy estimate.

2.1 Boundary and Interface Conditions

Since we are concerned with the interface between the equations in this report, the
boundary conditions will not be analyzed. They have been derived using the energy
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method and the result is stated below. At the left boundary x D �1 we have the
semi characteristic boundary conditions

1p
2d
.�p2c�Cp2bT / D f1.t/; (5)

1p
2d
.b�C duC cT / D f2.t/ (6)

˛dux � ˇcTx D f3.t/: (7)

At the right boundary xD 1 we use a Dirichlet boundary condition on the tempera-
ture.

We will again use the energy method to derive the interface conditions, more in
detail. Define the energy norm of w as

jjwjj2 D
Z

˝

wT wd˝: (8)

By multiplying (1) with wT , (2) with T , integrating them over their respective
domain and adding them together we get (when ignoring boundary terms)

d

dt
.jjwjj2CjjT jj2/ D �wT AwC2"wTBwx�2kT Tx�2"

0Z

�1

wTx Bwxdx�2k
1Z

0

T 2x dx:

(9)
where the boundary terms are evaluated at x D 0. Since we are considering the

interface as a solid wall which separates the fluid from the solid and since we want
a continuous heat transfer we impose

u D 0; T D T: (10)

Using the interface conditions (10), (9) reduces to

d

dt
.jjwjj2 C jjT jj2/ D 2T .ˇ"Tx � kTx/� 2"

0Z

�1

wT
x Bwxdx � 2k

1Z

0

T 2
x dx (11)

and we can easily see that if we impose

ˇ"Tx � kTx D 0 (12)

as the final interface condition we get an energy estimate.
The Laplace transform technique has been applied to the coupled system and

it has been proved that the above boundary and interface conditions constitute a
minimal set of conditions. The energy method was used to derive the correct form
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of the conditions and hence this coupled system is computationally meaningful.
A formal proof of well-posedness would require additional work on the existence.
Given the existence, uniqueness and bounded sensitivity follows by the minimal
number of conditions and the energy estimate [8, 10].

3 The Semidiscrete Problem

Equation (1) is discretized on the single domain Œ�1; 0� on a uniform grid ofM C 1
grid points. The vector w D Œw0;w1; : : : ;wM �

T D Œ�0; u0;T0; �1; u1;T1; : : : ;

�M ; uM ;TM �
T is the discrete approximation of w. The derivatives are approxi-

mated by the operators on SBP form

wx � .DL
1 ˝ I3/w D .P�1

L QL ˝ I3/w (13)

wxx � .DL
2 ˝ I3/w D .P�1

L QL ˝ I3/
2w (14)

where PL is a symmetric positive definite matrix and QL is an almost skew sym-
metric matrix satisfying QL CQT

L D BL D diag.�1; 0; : : : ; 0; 1/ [5, 9]. I3 is the
3�3 identity matrix. Equation (2) is similarly discretized on a uniform grid ofNC1
grid points.

Remark 1. The approximation (14) has the drawback that the computational stencil
is wide. Compact formulations that uses minimal bandwidth does however exist [5].

Equations (1) and (2) can be discretized with the boundary and interface conditions
using the SAT method as

wt D �.DL
1 ˝ A/wC ".DL

2 ˝ B/w
C .P�1

L EL
0 ˝˙0

1 /.X
T w0 � g0

1/

C .P�1
L EL

0 ˝˙0
3 /.˛d.D

L
1 u/0 � ˇc.DL

1 T /0 � g0
3/

C .P�1
L .DL

1 /
TEL

0 ˝˙0
5 /.cu0 C dT0 � g0

5/

C .P�1
L EL

M ˝˙M
1 /.wM � gM

1 /

C .P�1
L EL

M ˝˙M
2 /.wM � gM

1 / (15)

C .P�1
L EL

M ˝˙M
3 /.TM � T0/

C .P�1
L .DL

1 /
TEL

M ˝˙M
4 /.TM � T0/

C .P�1
L EL

M ˝˙M
5 /.ˇ".DL

1 T /M � k.DR
1 T /0/

� DIL
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Tt D kDR
2 T

C �0
1P
�1
R ER

0 .T0 �TM /

C �0
2P
�1
R .DR

1 /
TER

0 .T0 � TM / (16)

C �0
3P
�1
R ER

0 .k.D
R
1 T /0 � ˇ".DL

1 T /M /

C �N
1 P

�1
R ER

N .TN � hN
1 /

� DIR:

The matrices EL
0 D diag.1; 0; : : : ; 0/, EL

M D diag.0; : : : ; 0; 1/ and ER
0;N similarly

defined, are used to select boundary elements. The 3 � 3 matrices ˙0;M
i and coef-

ficients �0;N
j are called penalty matrices and penalty coefficients which have to be

determined for stability [5,9]. The last term in (15) and (16) are artificial dissipation
operators which reduces spurious oscillations. An extensive study of these operators
can be found in [6]. These are undivided differece operators of the same order as the
scheme for which an energy estimate can be obtained. Hence they do not cause sta-
bility problems or reduces the overall accuracy of the scheme. To keep the notation
as simple as possible they will not be analyzed in the following estimates.

3.1 Stability Conditions at x D 0

We let all boundary data in (15) and (16) be zero and multiply w and T from the left
with .wT˝ I3/ and TT respectively. By using the SBP property of the operators we
obtain

d

dt
.jjwjj2PL

C jjTjj2PR
/ D �wT

MAwM C 2"wT
MB.D

L
1 w/M

� 2".DL
1 w/T .IN ˝ B/.DL

1 w/

C 2wT
M˙

M
1 wM C 2wT

M˙
M
2 wM

C 2wT
M˙

M
3 .TM � T0/C .DL

1 w/TN˙
M
4 .TM � T0/

C 2wT
M˙

M
5 .ˇ".DL

1 w/M � k.DR
1 T /0/ (17)

� 2kT0.D
R
1 T /0 � 2k.DR

1 T/TPR.D
R
1 T/

C 2�0
1T0.T0 �TM /C 2�0

2 .D
R
1 T /0.T0 � TM /

C 2�0
3T0.k.D

R
1 T /0 � ˇ".DL

1 T /M /

where all outer boundary terms have been neglected. By definition [3] the scheme
(17) will be stable if we can prove that d

dt
.jjwjj2PL

C jjTjj2PR
/ � 0. Hence we need

to choose appropriate penalty matrices and coefficients such that this condition is
satisfied.
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We choose the penalty matrices as

˙M
1 D

2

4
0 �H

1 0

0 �H
2 0

0 �H
3 0

3

5 ; ˙M
2 D

2

4
0 0 0

0 �M
2 0

0 0 0

3

5 (18)

˙M
3 D

2

4
0 0 0

0 0 0

0 0 �M
3

3

5 ; ˙M
4 D

2

4
0 0 0

0 0 0

0 0 �M
4

3

5 ; ˙M
5 D

2

4
0 0 0

0 0 0

0 0 �M
5

3

5 ; (19)

where ˙M
1 is the penalty matrix for the hyperbolic part of u, ˙M

2 for the parabolic
part of u and ˙M

3;4;5 for the coupling terms. With these choices of penalty matrices,
(17) can be expanded and all coefficients determined as

�H
1 D

b

2
; �H

2 � 0; �H
3 D

c

2
; �M

2 �
�˛"
4pL

M

; �M
3 D �0

1 � 0 (20)

where pL
M > 0 is such that P .M;M/

L � pL
M � 0. See [1, 2]. Moreover, we have

s 2 R; �M
4 D �ˇ".1Cs/; �M

5 D s; �0
2 D �ks; �0

3 D 1Cs: (21)

With these coefficients we have the energy estimate d
dt
.jjwjj2PL

C jjTjj2PR
/ � 0 and

hence the interface treatment is stable. Details on the technique used to obtain the
coefficients can be found in e.g., [1, 2].

4 Numerical Results

An example of a solution, where the coefficients are chosen as

a D 0:5; b D 1p
�
; c D

s
� � 1
�

; � D 1:4; ˛ D ˇ D 1; " D 0:1; k D 1
(22)

is given in Fig. 1. We start with zero initial data and at time t D 0 we let � D 0,
u D 0:5 and T D 1 at the left boundary while T D 0 at the right boundary. The
values at the left boundary are transformed into data for the boundary conditions.
The order of convergence is studied by the method of manufactured solutions. A
small enough time step has been chosen in order to minimize the errors from the
time discretization, which in this case is done by the classical 4th-order explicit
Runge–Kutta method. We use the functions
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Fig. 1 � (solid), u (circle), T (triangle), T (star) for time t D 0:15, t D 0:45, t D 1:25 and
t D 5:0. A sequence of solutions for different times usingM D N D 32 grid points and 3rd-order
operators. The last figure shows the steady-state solution

� D xe�	t ; u D sin.x/e�	t ; T D 1

"
sin.x/e�	t ; T D 1

k
sin.x/e�	t ; 	 D 0:1

(23)
which inserted into (1) and (2) gives a modified system of equations with addi-

tional forcing functions. The functions (23) have been chosen since they satisfy the
interface conditions in a non-trivial way. Using (23) we create exact initial and time
dependent boundary conditions while no data is created at the interface. The rate of
convergence is obtained as

qi
j D log10

 jjui
j�1 � vi

j�1jj
jjui

j � vi
j jj

!
= log10

�
hj

hj�1

�
(24)

where qi
j denotes the convergence rate for either of the variables i D �; u;T ; T at

mesh refinement level j . ui
j is the exact analytic solution for either of the variables

i at mesh refinement level j and vi
j is the discrete solution. The ratio hj =hj�1 is

the ratio between the number of grid points at each refinement level. The results can
be seen in Table 1.
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Table 1 Order of convergence. The order of convergence agree with the theoretically expected
results
M D N 2nd-order 3rd-order 4th-order 2nd-order 3rd-order 4th-order

� � � u u u

32 0.2895 2.0197 2.5359 1.6700 2.7938 3.7233
64 1.0769 3.0137 3.7153 2.0652 3.3314 3.9939
128 1.7340 3.5255 4.1774 2.1487 3.1518 4.3242
256 2.0922 3.3945 4.1646 2.1047 3.0587 4.1851
512 2.2167 3.1591 4.1140 2.0588 3.0229 4.0531

T T T T T T

32 0.9780 2.7634 3.8021 2.3601 3.1699 4.0291
64 1.7613 2.7542 3.3286 2.1627 3.2639 3.9000
128 2.0164 2.9310 3.5881 2.0824 3.1205 3.9133
256 2.0277 2.9789 3.7798 2.0420 3.0492 3.9476
512 2.0212 2.9928 3.8895 2.0213 3.0226 3.9711

5 Summary and Conclusions

An incompletely parabolic system of equations has been coupled with the heat equa-
tion in one space dimension. The energy method has been used to derive boundary
and interface conditions and the resulting numerical scheme has been proven stable
using finite differences on SBP form and the SAT boundary and interface treat-
ment. The rate of convergence is verified to be 2nd-, 3rd- and 4th-order by using the
method of manufactured solutions. This is consistent with the theoretically expected
results.
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7. Mattsson, K., Svärd, M., Carpenter, M.H., Nordström, J.: High-order Accurate Computations
for Unsteady Aerodynamics. Comput. Fluids 36(3), 636–649 (2007)

8. Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations. Springer, Berlin
(1993)



Stable and High Order Conjugate Heat Transfer 607

9. Strand, B.: Summation by Parts for Finite Difference Approximations for d/dx. J. Comp. Phys.
110(1), 47–67 (1994)
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Local Time-Space Mesh Refinement for Finite
Difference Simulation of Waves

Vadim Lisitsa, Galina Reshetova, and Vladimir Tcheverda

Abstract This paper presents a new approach to a local time-space mesh refine-
ment for a finite difference simulation of waves. The approach is based on the
approximation of wave equation at the interface where two grids are coupled. As
no interpolation or projection techniques are used the finite difference scheme pre-
serves second order of convergence. We proved that this approach is low-reflecting
and the artificial reflections are about 10�4 of incident wave. We also proved that
if successive refinement is applied, i.e., temporal and spatial steps are refined at a
different interfaces, the approach is stable.

1 Introduction

The main motivation of the presented research is the development of a finite dif-
ference algorithm to simulate elastic wave propagation in multi-scale media. As
an example of such a media one can keep in mind fractured carbonated reservoirs
of oil and gas. Models of this type possess rather strong scattered waves and may
also affect the macroscopic velocity model. Typical discretizations used for simula-
tion of seismic waves propagation are about 10 points per minimal wavelength, so
that a grid step is about 100 m. On the other hand one needs for the steps of about
0.1 m to match micro-heterogeneity as fractures, cracks, caverns etc. Note that this
micro-heterogeneities are usually located within a layer (subdomain) of the size of
100 m. So, it is natural to use a fine grid at the subdomain while a coarse grid is to
be applied elsewhere. Applying refinement of spatial steps it is necessary to imple-
ment temporal steps refinement to avoid dispersion and reduce computational time.
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Thus, a suitable approach to a spatio-temporal mesh refinement for finite difference
simulation of wave propagation problem is needed.

Several approaches to refine a grid for hyperbolic problems have been done by
now. The simplest and most well-known one is that based on the interpolation of the
solution with respect to time at the refinement interface [5]. This approach possesses
rather low reflections but as shown in [2] that it may cause instability. A completely
different technique was proposed in [3] and studied in [4]. This algorithm is based
on energy conservation, hence it is stable. On the other hand it is rather complicated
and hard to implement especially in 2 and 3D. In addition it possesses high artificial
reflections up to 0:1 of incident wave. It means that this approach is not suitable to
simulate scattered waves which are about 10�3–10�2 of incident wave.

In this paper we propose a new approach to grid refinement. First of all the
method is based on the approximation of wave equation at the interface, see Sect. 3.
Thus, it preserves second order of convergence which is not the case for interpola-
tion type methods, [2]. As it is shown in Sect. 3.1 the artificial reflections caused
by the refinement are about 10�4 for typical discretizations. In the Sect. 3.2 we
proved that the approach is stable if the refinement of a grid is performed in turns.
It means that the temporal and spatial steps are refined at a different interfaces.

2 Preliminary

2.1 Statement of the Problem

Consider a 1D scalar wave equation written as first order system:

1

c2
@p

@t
� @u

@x
D 0; @u

@t
� @p
@x
D 0 ; (1)

with .t; x/ 2 D D ft � 0; x 2 Rg. The initial conditions are considered to be zero.
The source introduced as right-hand side will be specified below. We assume the
velocity c to be equal to 1, otherwise the problem can be unscaled.

In order to resolve the problem numerically the following finite difference
scheme on staggered grids is implemented:

pnj � pn�1j

�
D un�1=2

jC1=2 � un�1=2
j�1=2

h
;

unC1=2
jC1=2 � un�1=2

jC1=2
�

D pnjC1 � pnj
h

(2)

where � and h are the temporal and spatial grid steps respectively.
To investigate the properties of a scheme for wave propagation it is natural to

introduce new parameters, see [1] for details:

� Number of grid points per wavelength (ppw) N D 2�
kh

, where k is the spatial
frequency;

� Courant ratio ˛ D �
h
� 1.
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2.2 Theoretical Reflection Coefficients

Velocity of the numerical solution depends on the discretization, implementation
of different grids possesses artificial reflections. The phase velocity of a finite
difference solution computed by (2) is dispersive and can be represented as:

cj D Nj

˛j�
arcsin

�
˛j sin

�
�

Nj

��
;

whereNj is a number of grid points per wavelength on j th grid, and ˛j is a Courant
ratio, see [1] for the details. On this base one may estimate the artificial reflections
by the formula

R D c2 � c1
c1 C c2 ;

where cj is a phase velocity on a j th grid, j D 1; 2. The particular coefficient corre-
sponds to the case of right-going wave, that is the wave propagating from the region
with velocity c1 to that with the velocity c2. This formula allows us to estimate the
reflections on the base of dispersion analysis of the scheme and regardless of par-
ticular conjugation conditions used at the interface. We studied the estimations in
dependence on a type of refinement (spatial, temporal, simultaneous), for the spatial
discretisations – N D 20 to 100 ppw, Courant ratios ˛ D 0:1 to 1 and refinement
ratiosK and L denoting the ratios of coarse grid steps to fine grid steps with respect
to time and space respectively. We proved that artificial reflections caused by the
velocity dispersion are about 10�4. Later we will call an approach low-reflected if
the artificial reflections possessed by the algorithm are about 10�4, i.e., close to
those estimated on the basis of velocity difference.

3 Description of the Approach

Assume a coarse grid is defined for x < 0, and a fine one – for x > 0. It means that
the following finite difference scheme is used:

pnj � pn�1j

�
D un�1=2

jC1=2 � un�1=2
j�1=2

h
; j < 0;

unC1=2
jC1=2 � un�1=2

jC1=2
�

D pnjC1 � pnj
h

; j < 0;

p
nCk=K
jCl=L � pnC.k�1/=KjCl=L

�=K
D unC.2k�1/=2K

jC.2l�1/=2L � unC.2k�1/=2K
jC.2l�3/=2L

h=L
; j > 0;

unC.2k�1/=2K
jC.2l�1/=2L � unC.2k�3/=2K

jC.2l�1/=2L
�=K

D p
nC.k�1/=K
jCl=L � pnC.k�1/=K

jC.l�1/=L
h=L

; j > 0:

(3)
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We denote the refinement ratios with respect to time and space as K and L respec-
tively. Parameters k and l defining fractional points at a fine grid are k D 0; :::; K�1
and l D 0; :::; L � 1. Case K D 1 means that no refinement with respect to time is
applied, L D 1 – no refinement with respect to space.

As it follows from (3) one can compute solution at all points except the inter-
face x D 0 or j D 0. To construct finite difference conjugation conditions at the
interface we suggest to use an algorithm based on approximation of original system
of equations together with approximation of second order equation. To describe the
algorithm let us consider the two cases separately.

1. Updating solution at the instants from n to n C 1=2. In terms of superscripts
introduced in (3) it means that we seek for the solution p

nCk=K
0 for k D

1; :::; .K � 1/=2. The formulae based on the approximation of the first order
equation @p

@t
D @u

@x
are not applicable in this case because they require variable

u to be defined at fractional instants at the coarse grid. On the other hand one
may exclude variable u from the system (1) to obtain a second order equation
with respect to pressure p and construct corresponding finite difference scheme
to approximate it. Below we provide the equation and the scheme:

@2p

@t2
D @2p

@x2
I p

NC1
J � 2pNJ C pN�1J

.ıt/2
D pNJC1 � 2pNJ C pNJ�1

.ıx/2
:

We write indices in capital letters and use different notations for the grid steps
to point out that the finite difference scheme approximates the equation with the
second order on any equidistant grid not necessarily connected with that used in
(3).
To adopt the scheme for the second order equation to compute solution pnCk=K0 ,
for k D 1; :::; .K � 1/=2 one needs to rewrite it as follows:

p
nCk=K
0 � 2pn0 C pn�k=K0

.�k=K/2
D pn1 � 2pn0 C pn�1

h2
: (4)

The obtained formula involves three values of pressure, defined at instant n, i.e.,
pn0 , pn˙1 and the value pn�k=K0 defined at the interface but at the instant below
n. Values pn˙1 can be computed by the formulae (3), the rule to calculate pn0
and pn�k=K0 are being formulated below. Graphical representation of the points
involved in the computations of solution at the interface at instants from integer
to half-integer are provided in Fig. 1 left.

2. Updating the solution at the interface at instants n C 1=2 to n C 1. One may
apply approximation of the first order equation to compute the solution in this
case. As variables pnCk=K0 for k D 1; : : : ; .N � 1/=2 are supposed to have been
computed by means of (4) one is able to use them to construct finite difference
approximation:
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n

n + 1

j = 0 j = 1j = –1

n +1/2

j = 0 j = 1j = –1

Fig. 1 Points involved in computations to update a solution at the interface. Approximation of
second order equation at the left (to update solution from integer to half-integer instants), approx-
imation of the first order equation at the right (to compute solution form half-integer to integer
instants)

p
nC1=2C.2kC1/=2K
0 � pnC1=2�.2kC1/=2K0

.2k C 1/�=K D unC1=2
1=2

� unC1=2�1=2
h

; (5)

for k D 0; :::; .K � 1/=2. Note, that variables unC1=2˙1=2 can be computed by the
scheme (3).

Note that each scheme (3), (4), and (5) was constructed on a symmetric sten-
cil even though different temporal steps were used for each k in formulae (4) and
(5). It means that the constructed finite difference scheme approximates (1) with
the second order. In addition the described approach may be applied for different
refinement ratios L and K of spatial and temporal steps. In particular the scheme
(3), (4), and (5) is valid forK D 1, i.e., for spatial refinement only, and forL D 1 –
temporal refinement only. Moreover, if K D L D 1 the scheme turns to the scheme
(2) which is free from refinement.

3.1 Reflectivity

In order to study reflection coefficients caused by grid refinement one needs to seek
for a plane wave solution assuming that having approached the interface a plane
wave gives rise to a reflected wave and a transmitted wave. We are not going to go
into the ins and outs of the construction of reflection and transmission coefficients
for grid refinement as it can be found in [2,4]. So, we applied the technique from [2]
to our approach. We proved that the reflection coefficients converges to zero with
the second order as grid steps tend to zero. In addition we considered frequency
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Fig. 2 Reflection coefficients for temporal (left) and spatial (right) mesh refinement in dependence
on ppw for coarse grid. Courant ratio was fixed

dependent reflection coefficients and applied inverse Fourier transform to the source
wavelet multiplied by the reflection coefficients to derive the reflections in physical
space. So, the obtained reflections were of about 10�4 of incident wave.

To verify the results a series of the numerical simulations were done. We gener-
ated a wave propagating from a coarse grid to fine one and vice versa and measured
the reflections appearing as if the wave passed the interface. After that the reflec-
tions coefficient was constructed as a ratio of maximum of reflected wave to that of
incident wave. Figure 2 represents the reflection coefficients depending on a num-
ber of grid points per wavelength for temporal mesh refinement K D 3 (left) and
spatial refinementL D 3 (right). The Courant ratio was 0.9. So, one can see that the
reflections are about 10�4, and decay with the second order as the ppw increases.

3.2 Stability

There are two different types of instability associated with local mesh refinement.
The first is caused by ill-possedness of conjugation conditions. It means that a par-
ticular condition may possess exponentially growing modes. This type of instability
is easy to determine and avoid on the basis of Kreiss-Sakamoto-Lopatinski deter-
minant as the theoretical background is rather well developed, see [6–8] and others.
We proved analytically, on the basis of Kreiss–Sakamoto–Lopatinski determinant,
that the approach proposed in this paper does not possess this type of instability. It
means that the problem (3)–(5) is stable if stated in infinite domain with constant
velocity model.

On the other hand, if the domain is bounded or if there are discontinuities of the
velocity model grid refinement may cause the other type of instability associated
with multiple wave passing though the interface. It is discussed in details in [2]
for the method based on interpolation with respect to time. To study this type of
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Fig. 3 Eigenvalues of the transition operator for successive refinement (left) and simultaneous
refinement (right) on a complex plane

instability we applied to the spectral necessary stability condition of finite difference
scheme approximating an initial-boundary value problem:

Theorem 1. If a finite difference scheme is stable all the eigenvalues � of the
operator mapping data from one instant to the next one satisfy the inequality:
j�j � 1.

So, we considered the scheme (3) given at the interval j D �J; : : : ; J with zero
boundary conditions. The interface of grid refinement was j D 0. According to
the stability condition any simultaneous mesh refinement of a presented type, i.e.,
K ¤ 1 and L ¤ 1 is unstable. Figure 3 represents the eigenvalues of the operator
for the case K D L D 3. One can see that there are eigenvalues outside the unit
circle.

On the contrary, if only temporal or only spatial steps are refined, i.e., if K D 1

or L D 1, the eigenvalues belong to the unit circle, for all Courant ratios less than
one, see Fig. 3. The same behavior is observed for the successive refinement, i.e.,
the refinement of time steps is performed at the interface j D jt and spatial steps
are refined at the interface j D js , where jt < js . So, the approach to successive
local mesh refinement based on the approximation of wave equation at the interface
satisfies the necessary stability criteria of finite difference scheme.

In order to study stability of the algorithm we simulated a wave propagation
within interval Œ0; 10��, where � is a wavelength. Time interval was 106 wave peri-
ods. The interface of refinement was 5� in case of simultaneous refinement. In case
of successive refinement we had two interfaces 5� and 5:5� for temporal and spatial
step refinement respectively. In case of simultaneous refinement energy growth took
place at rather low instants of about 10 wave periods. At the same time no energy
growth was observed for successive refinement.



616 V. Lisitsa et al.

4 Conclusions

In this paper we provided a new algorithm of local spacio-temporal mesh refinement
on the basis of approximation of the wave equation. This approach is free from inter-
polation or projection techniques thus it preserves the second order of convergence
that was proved analytically and confirmed by the numerical experiments. Presented
approach was designed to be applicable to simulations of scattered waves. Hence,
one of the main requirement was low level of artificial reflections caused by the
refinement. According to the theoretical study and numerical experiments reflection
coefficients possessed by the approach are about 10�4 that is comparable with that
caused by numerical dispersion of the scheme. We also proved that the finite dif-
ference scheme with successively refined grid (refinement of temporal and spatial
steps are separated from each other) satisfies the necessary spectral stability crite-
rion, while simultaneous one is unstable. This fact was also confirmed by a series of
numerical simulations.
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Formulation of a Staggered Two-Dimensional
Lagrangian Scheme by Means of Cell-Centered
Approximate Riemann Solver

R. Loubère, P.-H. Maire, and P. Váchal

Abstract In this work we develop a general framework to derive and analyze
staggered numerical scheme devoted to solve hydrodynamics equations.

1 Introduction

In this work we develop a general framework to derive and analyze staggered numer-
ical scheme devoted to solve hydrodynamics equations. This framework creates a
link between well-known staggered Lagrangian schemes (see [1] and references
therein) and new cell-centered ones [3]. After the governing equations and notation
are set, the framework is presented. Discretization following physical principles is
obtained through the use of fundamental objects: subcell forces. We will show that
the Geometric Conservation Law [3] is compatible with the trajectory equation.
Momentum and total energy conservation will also be satisfied. Moreover, the def-
inition of total energy and its conservation will uniquely imply the discretization of
internal energy equation. Finally, in order to ensure isentropic consistency subcell
forces will be equipped with a viscous part that fulfills the second law of thermody-
namics. This implies the form of the viscous force as a multiplication of a positive
definite matrix and the difference between cell-centered and nodal velocity. This
matrix is the corner stone to construct a Lagrangian staggered scheme. Within this
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general framework we completely describe the derivation of a Lagrangian staggered
scheme that is finally tested on classical 2D test cases.

2 Governing Equations and Notation

In Lagrangian framework, 2D gas dynamics equations write

�
d

dt

�
1

�

�
� r � U D 0; �

d

dt
U C rP D 0; �

d

dt
E Cr � .PU / D 0; (1)

where � is the density, U the velocity and E the total energy. The first equation
expresses the volume conservation equation, whereas the second and third ones are
the momentum-total energy conservation equations. Volume conservation equation
is often referred to as the Geometrical Conservation Law (GCL).

The previous system is equipped with a thermodynamics closure (equation of
state) P D P.�; "/ where the specific internal energy is given by " D E� U 2

2
. Note

that for smooth solutions energy equation can be rewritten as

�
d

dt
"C Pr � U D 0; (2)

and, substituting volume equation yields �
d

dt
"CP� d

dt

�
1

�

�
D 0. Recalling Gibbs

relation for temperature T and specific entropy S : TdS D d"C Pd
�
1
�

�
, and the

second law of thermodynamics, namely T
dS

dt
� 0, implies that for non smooth

flows the following relation holds:

�
d

dt
"C Pr � U � 0: (3)

As a consequence, internal energy equation can be viewed as an entropy evolution

equation as �
d

dt
" C P� d

dt

�
1

�

�
� 0. The previous system (1) can therefore be

rewritten as a non-conservative system by replacing the energy equation by (3).
The last equations are the trajectory equations

dX

dt
D U .X.t/; t/; X .0/ D x; (4)

expressing the Lagrangian motion of any point initially located at position x.
We use a staggered discretization (see Fig. 1). Position and velocity are defined

at grid points while thermodynamical variables are located at cell centers. An
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Fig. 1 Notation used in the
derivation of the framework.
Position and velocity are
defined at grid points while
thermodynamical variables
are located at cell centers. A
polygonal cell ˝c is
subdivided into subcells ˝cp .
Half-edge lengths: Lcp; L

c
p ,

unit normal vectors Nc
p ;N

c
p

N c
p

p

p−

N
c
p

Up

L c
p

p
+

Ωcp

Ωc

(ρc, Pc, εc)

L
c
p

unstructured grid consisting of a collection of non-overlapping polygons is con-
sidered. Each polygonal cell is assigned a unique index c and denoted ˝c . Each
vertex/point of the mesh is assigned a unique index p and we denote C .p/ the
set of cells sharing a particular vertex p. A polygonal cell is subdivided into a
set of subcells; each being uniquely defined by a pair of indices c and p and
denoted ˝cp. This subcell is constructed by connecting the cell center of ˝c to
the mid-points of cell edges impinging on point p. The union of subcells ˝cp
that share a particular vertex p allows to define the (dual) vertex-centered cell
˝p related to point p with ˝p D S

c2C .p/˝cp. This defines the primary gridS
c ˝c and the dual grid

S
p˝p. Primary cells ˝c and dual cells ˝p volumes

are functions of time t . We make the fundamental assumption that the subcells
are Lagrangian volumes. Namely the subcell mass mcp is constant in time; know-
ing initial density field �0.X/ one introduces the initial mean density in cell c as
�0c D

R
˝c.0/

�0.X/dX=V 0c , where V 0c is the volume of cell ˝c at time t D 0.

Subcell mass is defined asmcp D �0cV 0cp where V 0cp are the initial volume of subcell
˝cp. By summation of Lagrangian subcell masses one defines Lagrangian cell/point
masses asmc DPp2P.c/mcp, andmp DPc2C .p/mcp, where P.c/ is the set of
counterclockwise ordered vertices of cell c.

3 Framework and Discretization

Since velocity is defined at point p, the GCL is satisfied and the volume equation
writes

d

dt
Vc D

X

p2P.c/

�
LcpN

c
p C LcpNc

p

�
� Up; (5)

where Vc is the volume of cell c and U p corresponds to the point velocity, so that
trajectory equation (4) yields d

dt
Xp D U p. The previous discretization is obtained



620 R. Loubère et al.

by time differentiation of Vc.t/, it allows to define the discrete divergence operator
over cell c as

.r � U /c D 1

Vc

X

p2P.c/

LpcNpc � U p; (6)

where Npc is the unit corner vector defined by LpcN pc D LcpN
c
p C LcpN

c
p.

Equation (5) is compatible with the discrete version of the trajectory equation (4),
that is to say d

dt
Xp D U p; Xp.0/ D xp, where U p � U p.t/ D U p.Xp.t/; t/

is the point velocity.
Let J.x; t/ be the Jacobian of the transformation x 7! X.x; t/, defined through

the trajectory equation (4). Integrating the momentum equation over dual cell˝p.0/
and using J dx D dX leads to

d

dt

Z

˝p.0/

�0.x/U .x; t/ dx C
Z

˝p.t/

rP dX D 0: (7)

Finally, using Green formula one replaces the second integral in previous equation
by
R
@˝p.t/

PNdl . Moreover, recalling that mp D
R
˝p.0/

�0.x/ dx, we introduce a
finite volume interpretation of U p.t/ as

U p.t/ D 1

mp

Z

˝p.0/

�0.x/U .x; t/ dx D 1

mp

Z

˝p.t/

�.X ; t/U .X ; t/ dX : (8)

Finally momentum equation is semi-discretized in space over the dual cell ˝p as

mp
d

dt
U p C

X

c2C .p/
F cp D 0; (9)

whereF cp is a fundamental object called subcell force from cell c that acts on point
p and is defined as

F cp D
Z

@˝p.t/\˝c.t/

PNdl; (10)

so that
P
c2C .p/ F cp D

R
@˝p

PNdl . Total momentum conservation (away from
boundary conditions) is ensured provided subcell forces fulfill

P
p2P.c/ F cp D 0.

The proof is left to the reader.
Contrary to cell-centered approach [3], total energy equation is not discretized.

Here, we derive a semi discrete internal energy equation that ensures total energy
conservation. Away from boundary conditions, we introduce total kinetic at time
t > 0 as a sum over the dual cells K .t/ D P

p
1
2
mpU

2
p.t/ and internal energy as

E .t/ DPc mc"c.t/, where "c is the cell averaged internal energy. Conservation of
total energy writes d

dt
K C d

dt
E D 0. As cell/point masses are Lagrangian objects

one gets
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X

c

mc
d

dt
"c C

X

p

mp
d

dt
U p � U p D

X

c

mc
d

dt
"c �

X

p

X

c2C .p/
F cp � U p D 0;

by shifting sums and using discrete momentum equation (9) one gets

X

c

0

@mc
d

dt
"c �

X

p2P.c/

F cp � U p
1

A D 0: (11)

A sufficient condition for total energy conservation is gained by requiring the
previous equation to hold in each cell c:

mc
d

dt
"c �

X

p2P.c/

F cp � U p D 0: (12)

Once the subcell force is known then momentum and internal energy can be updated
using (9) and (12). As previously seen, the subcell force formalism ensures total
energy conservation.

Using Gibbs formula, the time rate of change of entropy in cell c writes mcTc
d

dt
Sc D mc

�
d

dt
"c C Pc d

dt

�
1

�c

��
. Substituting time rate of change of internal

energy (12) and volume leads to

mcTc
d

dt
Sc D

X

p2P.c/

�
F cp C PcLcpN cp

	 � U p: (13)

For smooth flow entropy must be conserved. This requirement leads to the following
decomposition of subcell force: F cp D �PcLcpN cp CF viscous

cp , the substitution of
which in (12) yields

mc

�
d

dt
"c C Pc d

dt

�
1

�c

��
D

X

p2C .p/
F viscous
cp � U p : (14)

In order to satisfy second law of thermodynamics one must require that subcell
viscous forces satisfy

P
p2P.c/F

viscous
cp � U p � 0, and viscous forces must vanish

for smooth flows (e.g., rarefaction, isentropic compression). As previously shown
momentum conservation requires

P
p2P.c/ F cp D 0. Knowing the geometrical

relation
P
p2P.c/ LcpN cp D 0 we get

P
p2P.c/F

viscous
cp D 0.

The computation of subcell force is performed through a cell-centered approx-
imation of the multidimensional Riemann problem. We introduce two pressures at
the cell center called ˘p

c ; ˘
p
c which are related to the unit outward normals N p

c

and Np
c respectively. The subcell force is then defined as
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F cp D Lpc˘p
c N

p
c C Lpc˘p

c N
p
c : (15)

The pressures are obtained by means of the half-Riemann problems

Pc �˘p
c D Zpc

�
U c � U p

	 �Np
c ; Pc �˘p

c D Zpc
�
U c �U p

	 �Np
c ; (16)

where Zpc , Zpc denote the swept mass fluxes, and U c is the cell-centered velocity
which remains to be defined. Using (16) the subcell force is rewritten

F cp D
�
LpcN

p
c C LpcNp

c

�
Pc �Mcp

�
U c �U p

	
; (17)

where Mcp D Zpc Lpc .Np
c ˝N p

c /CZpc Lpc .N p
c ˝Np

c /; is a 2�2 symmetric positive

definite matrix. As a consequence the viscous part of the force writes F viscous
cp D

�Mcp

�
U c �U p

	
. Recalling that LpcN

p
c C LpcNp

c D �LcpN cp we observe that
the first part of the subcell force is compatible with the entropy conservation. The
cell center velocity is determined through the use of momentum conservation as

X

p2P.c/

F cp D 0” U c D M�1c
X

p2P.c/

McpU p ;

where Mc D P
p2P.c/ Mcp. The previous equation is a 2 � 2 non-linear system

which can be solved utilizing an iterative algorithm. The non-linearity comes from
the swept mass fluxes, that, following Dukowicz [2, 3], one approximates as

Zp
c D �c

h
�c C �c j .U c �U p/ �N p

c j
i
; Z

p

c D �c


�c C �c j .U c �U p/ �N p

c j
�
:

(18)
Here, �c is the isentropic sound speed and �c a material dependent coefficient,

which for a � gas law is defined by �c D
(
�C1
2

if .r � U /cp < 0;
0 if .r � U /cp � 0;

where

.r �U /cp D � 1
Vcp

LcpN cp � .U c �U p/; is the sub-cell contribution to the velocity
divergence. In case of rarefaction we recover the acoustic approximation whereas in
case of shock wave we get a two-shock approximation.

Once U c is known, the subcell force is obtained with (17). Entropy inequality is
fulfilled as the entropy production writes

P
p2C .p/ �Mcp

�
U c �U p

	 ��
U c � U p

	 � 0.

4 Numerics

The first test problem is the classical 1D Sod shock tube. Figure 2 shows the cell-
centered density (markers) vs the exact solution (line). The next test is the 2D Noh
problem (see [4]). A cold gas with unit density is given an initial inward radial
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Fig. 2 1D Sod shock tube problem at t D 0:2 with 200 cells (markers) vs. the exact solution
(line). On Œ0; 1�: Left state .�L; uL; pL/ D .1; 0; 1/, right state .0:125; 0; 0:1/, perfect gas � D 7=5

discontinuity at X D 0:5. Symmetry boundary conditions
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Fig. 3 Noh problem for a polar grid at t D 0:6. Left: Density map and final mesh. Right: Density
as a function of radius for all cells vs. the exact solution (line)

velocity of magnitude 1. Then, a diverging cylindrical shock wave which propagates
at speed 1=3 is generated. A 100 � 9 polar grid is used. Figure 3 presents the mesh
and density map (left) and the density as a function of cell radius (right) for all cells.
Then, a non-conformal initial grid consisting of 1; 700 cells (triangles, quadrangles,
pentagons) is considered (it can be guessed from Fig. 4-left). A zoom on the final
grid at t D 0:6 is presented in Fig. 4 (left panel) and the density as function of
radius in the right panel. No special treatment is required to correctly perform on
such a mesh. Finally we present numerical results for the Sedov blast wave problem
[5], which describes the evolution of a blast wave in a point symmetric explosion
(total energy is concentrated at the origin with Etotal D 0:244816). An ideal gas
with � D 1:4 initially at rest with a density equal to 1 is considered. The final time
is 1. Two meshes are considered; a 30 � 30 Cartesian mesh and a polygonal mesh
(Voronoı̈ tessellation). Figure 5 shows the final mesh and density map (left) and the
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Fig. 4 Noh problem for a non-conformal mesh. Left: Zoom on the final mesh. Right: density as a
function of radius for all cells vs the exact solution (line)
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Fig. 5 Sedov problem at t D 1. Top: Density and mesh (left) and density as function of radius
(right) for a 30 � 30 Cartesian grid. Bottom: Density and mesh (left) and density as function of
radius (right) for a polygonal grid (Voronoı̈ tessellation)
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density as function of cell radius (right) demonstrating the capability of the method
to handle polygonal grids.

5 Conclusion

We have presented a general abstract framework to develop staggered schemes for
Lagrangian hydrodynamics equations. This framework is based on fundamental
objects: Lagrangian subcell mass and subcell force. We provided an example of such
a scheme. We presented several test cases showing the efficiency and pertinence of
the proposed approach. Within this framework one expects to better analyze the
similarity with the more recent cell-centered Lagrangian schemes, see [3] as well as
with classical staggered schemes, see [1] and references therein.
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Optimal Control for River Pollution
Remediation

Aurea Martı́nez, Lino J. Alvarez-Vázquez, Miguel E. Vázquez-Méndez,
and Miguel A. Vilar

Abstract The main goal of this work is to use mathematical modelling and numer-
ical optimization to obtain the optimal purification of a polluted section of a river.
The most common strategy consists of the injection of clear water from a reservoir
in a nearby point. In this process, the main problem consists, once the injection point
is selected by geophysical reasons, of finding the minimum quantity of water which
is needed to be injected into the river in order to purify it up to a fixed level: this will
be the aim of this paper. We formulate this problem as a hyperbolic optimal control
problem with control constraints, and deal with its numerical resolution, where a
finite elements/finite differences discretization is used, an optimization algorithm is
proposed, and computational results are provided.

1 Introduction

Nowadays, contamination levels in rivers usually exceed desirable thresholds given
by legislative rules. In order to palliate these high levels of contamination, one of the
most used techniques is based on injecting – from a reservoir close to the river – a
great amount of clear water. In this process of increasing the river flow by controlled
releases from a reservoir, the main problem consists – once the injection point is
selected by geophysical reasons – of finding the minimum quantity of injected water
which is needed to purify the river section up to a fixed level.
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In this work, we give the mathematical formulation of this real-world problem
(a control problem arisen in the management of a reservoir for the remediation of a
polluted river section), and concentrate on its numerical resolution. By using math-
ematical modeling, the problem is formulated as a hyperbolic optimal control prob-
lem with control constraints. Technological reasons demand a time discretization on
the control and, by using the method of characteristics, we obtain a semi-discretized
problem. Next, we make a finite element/finite difference space discretization of
the semi-discrete state system, stating an algorithm to solve the nonlinear resul-
tant problem, and obtain a fully discretized problem. Despite the existence of a
number of well-known explicit shallow water solvers, we have preferred – because
it fits better our control purposes – using our own solver, whose properties have
been theoretically analyzed in [4], and that has shown to be quite accurate in prob-
lems previously studied by the authors [2]. Finally, we propose a gradient-free
method (the Nelder–Mead algorithm) to solve it, and present numerical results
showing the efficiency of the complete algorithm. As previously reported by the
authors in [1], Nelder–Mead algorithm is fully competitive (even better in some
cases) against other standard gradient-type techniques (adjoint methods, interior-
point algorithms...) when dealing with several environmental control problems of
geometric nature.

2 The Mathematical Problem

We consider a river L meters in length, with O tributaries (located at points
e1; : : : ; eO ) flowing into the river, V wastewater discharges (located at points
v1; : : : ; vV ) coming from purifying plants, and one point p where clear water is
discharged from a nearby reservoir (a diagram of a realistic example can be seen in
Fig. 1).

We are interested in controlling pollution in the river section corresponding to
Œp; r� (with p < r � L) over a time interval of T seconds. So, for .x; t/ 2 Œ0; L� �
Œ0; T � we denote by A.x; t/ the area of the river section occupied by water (wet
section); denote by u.x; t/ the average velocity in the wet section; denote by q.x; t/
the flow rate across the section (that is, q.x; t/ D A.x; t/u.x; t/); and denote by
c.x; t/ the quantity of a generic pollutant in the wet section. The evolution of A, q
and c is given by the following hyperbolic initial-boundary value problem in .0; L/�
.0; T /:

@A

@t
C @q

@x
D Qı.x � p/C

OX

jD1
qj ı.x � ej /C

VX

kD1
pkı.x � vk/

„ ƒ‚ …
Dg1.x;t/

; (1)
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@q

@t
C @

@x

�
q2

A

�
C gA@�

@x
D QW cos.�/ı.x � p/

C
OX

jD1
qjUj cos.˛j /ı.x � ej /C

VX

kD1
pkVk cos.ˇk/ı.x � vk/C Sf

„ ƒ‚ …
Dg2.x;t/

;

(2)

@c

@t
C @

@x

�qc
A

�
C kc D

OX

jD1
nj ı.x � ej /C

VX

kD1
mkı.x � vk/

„ ƒ‚ …
Dg3.x;t/

; (3)

A.L; t/ D AL.t/; q.0; t/ D q0.t/; c.0; t/ D c0.t/; (4)

A.x; 0/ D A0.x/; q.x; 0/ D q0.x/; c.x; 0/ D c0.x/; (5)

where ı.x � b/ denotes de Dirac measure at b 2 Œ0; L�; for j D 1; : : : ; O ,
ej 2 .0; L/ is the point where the mouth of the j th tributary is located, qj .t/ is the
corresponding flow rate, Uj .t/ is its velocity, ˛j is the angle between the j th tribu-
tary and the main river, and nj .t/ is its mass pollutant flow rate; for k D 1; : : : ; V ,
vk 2 .0; L/ is the point where the kth wastewater discharge is located, pk.t/ is the
corresponding flow rate, Vk.t/ is its velocity, ˇk is the angle between the kth dis-
charge and the river, andmk.t/ is its mass pollutant flow rate; p 2 .0; L/ is the point
where clear water is discharged,Q.t/ is the corresponding flow rate (which will be
our control),W.t/ is its velocity, and � is the corresponding angle (it is worthwhile
remarking here that, since we are injecting clear water, this term does not appear
in the second member of the pollutant equation); g stands for the gravity accelera-
tion; Sf denotes the bottom friction stress, which can be given, for instance, by the
Chézy law; �.x; t/ D H.x; t/ C b.x/ is the height of water with respect to a fixed
reference level, where H.x; t/ represents the height of the water column and b.x/
geometrically describes the river bottom; and k.x; t/ is the loss rate for pollutant.

At first sight we can detect four unknowns in state system (1)–(5): A, q, � and c.
Nevertheless, it is obvious that, if river geometry is known, A can be derived from
�. In effect, for each x 2 Œ0; L�, the geometry of the river gives us a smooth, strictly
increasing and positive function S.:; x/ verifying S.0; x/ D 0 and S.H.x; t/; x/ D
A.x; t/ in Œ0; L� � Œ0; T �: (Specific characterizations of S for usual geometries can
be found, for instance, in [4].) So, since we are dealing with a system of balance
laws whose conservative variables are A, q and c, if we write � in terms of A, the
non-conservative unknown � can be suppressed in (2), which reads now:

@q

@t
C @

@x

�
q2

A

�
C g

�
@�

@x
� F.A; x/CAb0.x/

�

D QW cos.�/ı.x � p/C g2; (6)

where the detailed characterization of � and F can be found in [4].
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On the other hand, by technological reasons we are led to consider only the posi-
tive fluxes in the set of admissible controls Uad D fQ 2 L2.0; T / W 0 � Q �
Qmaxg, since we are just injecting (not extracting) a bounded quantity of clear water.

Finally, in order to formulate the control problem, we consider as the cost func-
tional the total amount of clear water injected through the point p together with a
measure (in the region of the river Œp; r�) of contaminant concentration remaining
higher than a fixed threshold cmax : So, we define the cost function:

J.Q/ D "

2

Z T

0

Q.t/2 dt C 1

2

Z T

0

Z r

p

.c.x; t/ � cmax/2C dx dt (7)

where " is a weight parameter emphasizing the role of the total amount of injected
water, and .c�cmax/C denotes the positive part of c�cmax , that is, .c�cmax/C D
maxfc � cmax ; 0g:

Thus, the problem of the optimal water injection for the purification of a polluted
section in a river (denoted by .P/) consists of finding the control flux Q 2 Uad of
injected clear water in such a way that, verifying the state system (1)–(5), minimizes
the cost function J given by (7). Thus, the problem can be written in short as:

.P/ min
Q2Uad

J.Q/

Questions regarding existence of solution for .P/ are still an open problem. In
[3] a formal optimality condition was derived by means of adjoint state techniques.
Here, we center our attention into numerical resolution of control problem .P/.

3 Numerical Discretization

Taking into account technological reasons (flow control mechanisms cannot act
upon water flow in a continuous way, but discontinuously at short time periods) we
look for admissible controls Q into piecewise-constant functions. So, for the time
interval Œ0; T � we choose a numberK 2 N; consider the time step �� D T=K , and
define the discrete times �m D m��; for m D 0; : : : ; K: Thus, a functionQ 2 Uad
which is constant at each subinterval determined by the grid f�0; : : : ; �Kg is com-
pletely fixed by the set of values Q�� D .Q0; : : : ;QK�1/ 2 Œ0;Qmax�

K � RK ,
where Qm D Q.�m/; m D 0; : : : ; K � 1:

This discretization leads to a time-discretization of the cost function J and the
state system (1)–(5). To solve this state system we have used our own finite element
solver: For N 2 N given (preferentially a multiple of K), we define �t D T=N

and take tn D n�t , for n D 0; : : : ; N . Equations (1) and (3) are to be discretized in
an implicit way. However, for (2) we are to use the method of characteristics, that
stems from considering the equality:
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D.Vq/

Dt
.x; t/ D @q

@t
.x; t/C @.uq/

@x
.x; t/; (8)

for the total derivative D.Vq/
Dt

.x; t/ D @
@�
ŒV .x; t I �/q.X.x; t I �/; �/�j�Dt , where

X.x; t I �/ is the characteristic line (providing the position at time � of the particle
that occupied the position x at time t), and V.x; t I �/ is the evolution of the element
of volume.

Then, if we denote Xn.x/ D X.x; tnC1I tn/ and V n.x/ D V.x; tnC1I tn/, the
state system (1)–(5) can be approximated by the following semi-discrete system:

For n D 0; : : : ; N � 1 find functions AnC1.x/, qnC1.x/,

cnC1.x/ in .0; L/ such that:

AnC1 D An.x/C�t
 
Q.tnC1/ı.x � p/C g1.x; tnC1/ � @q

nC1

@x
.x/

!
; (9)

qnC1.x/

�t
C g

 
@�nC1

@x
.x/ � F.AnC1.x/; x/CAnC1.x/b0.x/

!

D qn.Xn.x//V n.x/

�t
CQ.tnC1/W.tnC1/ cos.�/ı.x � p/C g2.x; tnC1/; (10)

cnC1.x/ � cn.x/
�t

C @

@x

 
qnC1cnC1

AnC1
.x/

!
C k.x; tnC1/c

nC1.x/ D g3.x; tnC1/: (11)

The admissible set Uad is approached by U��
ad

, the set of controls in Uad which
are piecewice-constant for the grid f�0; : : : ; �Kg. Then, for any given controlQ�� 2
U��
ad

, we consider the following discrete approximation of the cost function J :

J�t .Q�� / D "

2
��

K�1X

mD0

.Qm/2 C .QmC1/2

2

C1
2
�t

N�1X

nD0

Z r

p

.cn.x/ � cmax/2C C .cnC1.x/ � cmax/2C
2

dx (12)

Thus, the problem .P/, can be approached by the semi-discretized problem:

.P�t / min
Q��2U��

ad

J�t .Q�� /

To solve problem .P�t /, we need to resolve the semi-discrete system (9)–(11)
for n D 0; : : : ; N � 1. Since variable cnC1 is uncoupled with (9)–(10), we can
proceed to solve it sequentially.

First, we compute AnC1 and qnC1: For a standard variational formulation of
(10), we choose �h D fx0 D 0; x1; : : : ; xM D Lg a partition of interval
Œ0; L� in M subintervals Ik D Œxk�1; xk �; k D 1; : : : ;M , such that there exist
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P; R 2 f1; : : : ;M g verifying xP D p; xR D r . We also consider the space
Vh D fqh 2 C.Œ0; L�/ W qhjIk 2 P1; 8k D 1; : : : ;M g. Then, we take approx-

imations A0
h
, q0
h
2 Vh and, for n D 0; : : : ; N � 1, we look for AnC1

h
, qnC1
h
2 Vh

verifying:

AnC1
h D Anh C�t

 
Q.tnC1/ı.x � p/C g1.x; tnC1/ � @q

nC1
h

@x
.x/

!
; (13)

Z L

0

qnC1
h

.x/

�t
zh.x/ dx � g

Z L

0

�nC1
h .x/

@z

@x
.x/ dx � g

Z L

0

F
�
AnC1
h .x/; x

�
zh.x/ dx

C g
Z L

0

AnC1
h

.x/b0.x/ zh.x/ dx D
Z L

0

qnh.x/.X
n
h .x//V

n
h .x/

�t
zh.x/ dx (14)

C
Z L

0

.Q.tnC1/W.tnC1/ cos.�/ı.x � p/C g2.x; tnC1// zh.x/ dx; 8zh 2 Vh;

qnC1
h .0/ D q0.tnC1/; (15)

where Xn
h

and V n
h

are, respectively, numerical approximations of Xn and V n.
We solve this nonlinear discretized system doing an implicit discretization of the
operator F and using the trapezoidal rule for the integrals.

Second, we compute cnC1: Equation (11) can be now solved by using an implicit
upwind finite difference scheme. In order to do it, because of the Dirac measures
characterizing the sources, we consider the following approximation ıhk.b/ of
ı.xk � b/: for each k D 0; : : : ;M , we define ıhk W Œ0; L�! Œ0;C1/ by:

ıhk.b/ D
8
<

:

.b � xk�1/=.xk � xk�1/2 if b 2 Œxk�1; xk �;

.xkC1 � b/=.xkC1 � xk/2 if b 2 Œxk ; xkC1�;
0 otherwise.

So, taking fci0 D c0.ti /; i D 0; : : : ; N g and fc0j D c0.xj /; j D 0; : : : ;M g as

data, for each n D 0; : : : ; N � 1, and for each k D 1; : : : ;M , we compute cnC1
k

from:

cnC1
k
� cn

k

�t
C

q
nC1
h

.xk/

A
nC1
h

.xk/
cnC1
k
� q

nC1
h

.xk�1/

A
nC1
h

.xk�1/
cnC1
k�1

xk � xk�1 C k.xk ; tnC1/cnC1k

D
OX

jD1
nj .tnC1/ıhk.ej /C

VX

iD1
mi .tnC1/ıhk.vi /:

Finally, for each n D 0; : : : ; N � 1, we approach cnC1.x/ by the unique continuous
function cnC1

h
.x/ 2 Vh verifying cnC1

h
.xk/ D cnC1k

, for all k D 0; : : : ;M:
Thus, the semi-discrete problem .P�t / is finally approached by:

.P�t
h / min

Q��2U��
ad

J�th .Q�� /
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where

J�th .Q�� / D "

2
��

K�1X

mD0

.Qm/2 C .QmC1/2

2
(16)

C1
2
�t

N�1X

nD0

R�1X

kDP

Z xkC1

xk

.cn
h
.x/ � cmax/2C C .cnC1h

.x/ � cmax/2C
2

dx

In order to solve the minimization problem .P�t
h
/ we propose the use of a

derivative-free algorithm (the Nelder–Mead algorithm), but previously to do this, we
need to change our discretized problem .P�t

h
/ into an unconstrained optimization

problem by introducing a penalty function involving the constraints appearing in the
definition of the set of admissible controls Uad , that is, Q � 0 andQ�Qmax � 0:

Thus, we define the penalty functioneJ in the following way:

eJ .Q�� / D J�th .Q�� /C ˇ
K�1X

mD0
maxf�Qm;Qm �Qmax ; 0g (17)

where the parameter ˇ > 0 determines the relative contribution of the objective
function and the penalty terms. FunctioneJ is an exact penalty function in the sense
that, for sufficiently large ˇ; the solutions of our constrained problem .P�t

h
/ are

equivalent to the minimizers of function eJ in RK .
For computing a minimum of this penalty functioneJ we use a direct search algo-

rithm: the Nelder–Mead simplex method [6]. This is a gradient-free method, which
merely compares function values; the values of the objective function being taken
from a set of sample points (simplex) are used to continue the sampling. Although
the Nelder–Mead algorithm is not guaranteed to converge in the general case, it
presents good convergence properties in low dimensions, which is our case. More-
over, to prevent stagnation at non-optimal points, we use a modification proposed
by Kelley [5]: when stagnation is detected, we modify the simplex by an oriented
restart, replacing it by a new smaller simplex.

4 Numerical Example

We present here numerical results obtained by using above method to determine
the optimal inflow flux in a river which is L D 2;000m in length, and where we
consider O D 3 tributaries, V D 2 domestic wastewater discharges, and one clear
water discharge from a reservoir (diagram and data can be seen in Fig. 1).
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Fig. 1 Diagram of the river and data for the numerical example

We consider a parabolic river bed with a non-constant bottom in such a way that:

A D S.H; x/ D 4
p
H 3

3
; b.x/ D

8
<

:

500� x
200

if 0 � x � 500;
0 if 500 � x � 2000:

Both initial and boundary conditions were taken as constant, particularly, AL.t/ D
A0.x/ D 4

p
125
3

m2, q0.t/ D q0.x/ D 1m3s�1 and c0.t/ D c0.x/ D 0 um�1.
Time interval for controlling pollution in the river section Œ700; 1000� was T D
3;600 s, and the pollutant loss rate was considered constant (k.x; t/ D 10�4 s�1).

Out of the several numerical experiences developed by the authors, we present
here only one example corresponding to the case of K D 4 time subintervals. We
have chosen the threshold cmax D 4:5 um�1, the bound Qmax D 25m3s�1, and
the weight parameters " D 10�4 and ˇ D 104. For the time discretization we have
takenN D 6;000 (that is, a time step of�t D 0:6 s), and for the space discretization
we have tried a regular partition of Œ0; L� inM D 2;000 subintervals (consequently,
the clear water inflow point p D 700m corresponds to the node xP D x700).

Then, applying the Nelder–Mead algorithm, we have passed, after 123 func-
tion evaluations, from an initial random cost eJ D 0:180 to the minimum cost
eJ D 0:069, corresponding to the optimal flow rate Q0 D 9:98m3s�1; Q1 D
6:90m3s�1; Q2 D 5:44m3s�1; Q3 D 3:99m3s�1. In Fig. 2 we can observe the
differences between no injection of water (uncontrolled case) and the optimal injec-
tion of water in point p D 700m (controlled case): In the first case pollutant c
remains over cmax at the three shown times t D 1;000; 2;000; 3;000 s; we can also
see how, at those same times, c turns everywhere under threshold cmax from injected
point p, when the optimal discharge of clear water is considered. Finally, we must
note that c is not necessarily lower than cmax when considering large values of the
weight parameter "� 1 since, in that case, we are mostly concerned about reducing
the amount of injected water.
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Fig. 2 Uncontrolled (left) and controlled (right) quantity of pollutant at three significant times
(t D 1;000; 2;000; 3;000) around points p D 700 and e3 D 850
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An Anisotropic Micro-Sphere Approach
Applied to the Modelling of Soft
Biological Tissues

A. Menzel, T. Waffenschmidt, and V. Alastrué

Abstract A three-dimensional model for the simulation of anisotropic soft biolog-
ical tissues is discussed. The underlying constitutive equations account for large
strain deformations and are based on a hyper-elastic form. As various soft biologi-
cal tissues are nearly incompressible, we adopt the classical volumetric-isochoric
split of the strain energy density. While its isotropic part is chosen to take a
standard neo-Hookean form, its anisotropic part is determined by means of the
so-called micro-sphere model. In this regard, physically sound one-dimensional
constitutive models – as for instance the worm-like chain model – can be used and
straightforwardly be extended to the three-dimensional case. As a key aspect, the
micro-sphere model is extended to further capture remodelling. Such deformation-
induced anisotropy is introduced by setting up evolution equations for the inte-
gration directions used to perform numerical integrations on the unit-sphere. The
particular model proposed captures orthotropic material behaviour and additionally
accounts for saturation effects combined with a visco-elasticity-type time-dependent
anisotropy evolution.
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1 Introduction

Apart from biological and chemical effects affecting the behaviour of soft bio-
logical materials such as ligaments, tendons, muscles, and skin – to name just a
few examples – biological tissues in general possess a pronounced composite-type
multi-scale structure together with strongly anisotropic mechanical properties. The
local mechanical response of these tissues is typically determined by elastin and
collagen fibre-bundels.

In this regard, adaptation of these fibre networks influenced by mechanical load-
ing is a main biomechanical phenomenon occurring in hard as well as soft biological
tissues. In general, adaptation processes can include changes in mass and internal
structure, whereas this paper exclusively focuses on the latter, which we denote as
remodelling – the related processes often being denoted as fibre reorientation or
rather turnover.

The computational remodelling approach proposed in the following is partly
motivated by the investigations reported in [4], where a fibroblast-populated col-
lagen lattice was tested. As a result, macroscopically tension-type mechanical loads
cause the initially unstructured collagen fibre network to reorient with the local
dominant stretch direction and thus showing transversely isotropic characteristics.
However, as many biological tissues – for example arteries – show fibre alignment
with more than one single direction, we here extend the remodelling formulation
proposed in [6] for transversal isotropy to orthotropic material behaviour.

The paper is organised as follows: Section 2 briefly reviews essential kinematic
relations, based on which key aspects of the micro-sphere model are outlined in
Sect. 3. Section 4 constitutes the main part of this contribution, wherein the remod-
elling formulation is introduced. In Sect. 5 a numerical example is discussed, before
the paper closes with a short summary in Sect. 6.

2 Essential Kinematics

Let x D '.X; t/ W B0 � T ! Bt describe the motion of a body mapping position
vectors X 2 B0 from the material configuration to their spatial counterpart x 2 Bt .
The local deformation is characterised by the common deformation gradient tensor
F D rX' with the Jacobian J D det.F/ > 0 and the corresponding right Cauchy-
Green strain tensor C D Ft � F, while their isochoric counterparts are represented as
F D J� 1

3 F and C D F
t � F.

In view of the computational micro-sphere-scheme used later on, additional kine-
matic relations referring to the underlying unit-sphere U2 are introduced. In this
regard, an affine stretch in the direction of a referential unit-vector r 2 U2 can be

determined by the macroscopic deformation tensor C via � D
p

r � C � r. However,
it is well-known that the affinity assumption is not in agreement with experimental
observations for cross-linked polymer-type materials. For this reason, according to
[7], we make use of a non-affine stretch taking the form
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� D
�
1

4 �

Z

U2

�
p
A

�1=p
: (1)

Obviously the non-affine stretch can be interpreted as an averaged stretch over the
unit-sphere, with p defining a non-affine stretch parameter.

Moreover, inspired by [7], a single collagen chain is additionally constrained by
another micro-kinematic variable, namely the contraction � of the cross-section of a
micro-tube that contains the related chain. Therefore, analogous to relation (1), one
could also introduce a non-affine area stretch

� D
�
1

4 �

Z

U2

N�q A
�1=q

; (2)

where q denotes a non-affine tube parameter. At this stage, however, we restrict
ourselves to account only for the non-affine stretch-contributions �.

3 Hyper-Elastic Micro-Sphere Model

Apart from the remodelling approach discussed later on, we make use of a hyper-
elastic form of the strain energy. In this regard, we adopt the well-established
volumetric-isochoric split and decompose the isochoric part into an isotropic and
an anisotropic contribution, namely

‰.C; ri / D ‰vol.J /C‰iso.C/C‰ani.�.C; ri//I (3)

see [1, 2] in view of an affine anisotropic part. Due to the almost incompressible
response of soft biological tissues, we assume a nearly-incompressible neo-Hooke
model to account for the volumetric and isotropic isochoric part of the strain
energy, i.e.

‰vol D 1

4
D Œ J � 1 �2 and ‰iso D � Œ I W C� 3 �; (4)

with D defining a penalty parameter, � being a material parameter and I represent-
ing the second-order identity tensor.

According to the highly anisotropic material properties of the type of biologi-
cal tissue we are interested in, the strain energy function (3) is assumed to depend
not only on the right Cauchy–Green strain tensor C but also on a finite num-
ber of referential direction vectors or rather integration directions ri defined on
the micro-sphere U2. In this regard, a one-dimensional constitutive equation is
applied for every integration direction ri . To be specific, we make use of the
micro-mechanically motivated worm-like chain model, which takes the represen-
tation
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 ani. Q�/ D K � L

4A

�
2
Nr2
L2
C 1

1 � Nr
L

� Nr
L
� ln. Q�4r2

0 /

4 r0L

h
4
r0

L
C 1

Œ1 � r0
L
�2
�1

i
� c

�
;

(5)
for Q� � 1 while  ani. Q�/ D 0 is assumed for compression, i.e. Q� < 1. Herein the
Boltzmann constant is denoted by K D 1:38� 10�23 JK�1, � is the absolute tem-
perature, andA is established as persistent contour length. While r0 characterises the
length of the chain for the undeformed state, the actual representative chain length
follows from Nr D Q� r0 2 Œ0; L/.

The extension of this one-dimensional constitutive law (5) to the three-
dimensional macroscopic level is performed by means of the micro-sphere formu-
lation. Characteristic for this approach is a finite number of unit vectors ri to be
considered for the numerical integration over the unit sphere U2, which yields the
total anisotropic contribution ‰ani to be computed by means of the fibre-related
strain energy  ani via

‰ani.�.C; ri // D 1

4 �

Z

U2

 ani.�.C; ri // A: (6)

4 A Remodelling Formulation for Orthotropic
Material Behaviour

The key aspect of this contribution consists in incorporating remodelling-
phenomena by setting up deformation-driven evolution equations for the integration
directions ri , which means that these are not constant but evolve in time.

To be specific we directly relate the integration directions – now taking the inter-
pretation as internal variables – to the numerical framework, i.e. the integration of
(6), which, algorithmically, leads to a summation over a finite number of integration
directions

‰ani.�.C; ri // Š
mX

iD1
wi  

ani.�.C; ri // D  ani.�.C; ri //; (7)

with wi denoting integration factors, which depend on the particular integration
scheme.

Since various biological tissues show fibre alignment with more than one single
direction, we subsequently propose a remodelling formulation reflecting macro-
scopically orthotropic behaviour. An analogous approach for the transversely
isotropic case has recently been discussed in detail, see [6].

In view of the reorientation criterion, a crucial point consists in the identification
of the deformation-dependent mean directions l1;2, which on the one hand should
determine the alignment of the integration directions and on the other hand is here
assumed to reflect extremal states of strain energy. In this context, one could align
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the integration directions ri with respect to the principal stretch directions or alter-
natively such that the directions, according to which the integration unit-vector are
aligned with, share identical angles with the principal stretch directions. As a special
case of the latter approach, we make use of two particular directions reported in [3]:
the so-called limiting directions, which can be calculated via the relation

l1;2 D
q
�C1 nC

2 ˙
q
�C2 nC1q

�C1 C �C2
for �C1 > �

C
2 > 1 (8)

using the principal values �C1;2 and principal directions nC1;2 of the isochoric right

Cauchy–Green strain tensor C. Practically speaking, these limiting directions suffer
the maximum shear in the considered plane of tension.

As a result, the evolution of ri is motivated by its alignment with the limiting
directions l1;2 – see Fig. 1 – as reflected by

Pri D f sign .ri � l/ Œl� Œri � l� ri � so that Pri � ri D 0; (9)

where the integration direction ri aligns either with l2 in case of ri being closer to
l2 or with l1 else, i.e.

l D
(

l2 if jri � l1j � jri � l2j
l1 else

: (10)

Unlike the approach used in [6] and due to the present assumption of orthotropy
with two mean directions, in this case two second-order generalised structural
tensors are introduced as

A1;2 D
mX

iD1
wi ri ˝ ri D

3X

jD1
A
1;2
j n1;2j ˝ n1;2j 8 ri ! l1;2; (11)

Fig. 1 Graphical illustration
of the evolution equation (9):
construction of the direction
of the rate of ri according to
an alignment with respect to
the closest limiting direction
l1;2

l1

U2

r
.
i / f

[ri.l ]ri

ri

l2 = l
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where A1;21 � A1;22 � A1;23 � 0 with
P
j A

1;2
j D 1=2. To give an example, A1 will

be calculated for those integration directions ri , which – due to the deformation –
align with the first mean direction l1. In order to later on visualise local anisotropic
material properties the orientation-distribution-type function �A D �A

1 [ �A2
is

introduced with �A
1;2 D e � A1;2 � e and e 2 U2 denoting a unit-vector.

The remaining task consists in particularising the factor f occurring in the evo-
lution equation (9). As the adaptation of biological tissues is usually bounded by
certain biological limits, the evolution equation for ri should account for saturation
effects. On the one hand, the evolution saturates for ri aligning with one of the limit-
ing directions l1;2. On the other hand, we restrict the maximum degree of anisotropy
by assuming ri to evolve as long as the difference between the largest and smallest
eigenvalue of A1;2 remain smaller than a pre-defined limit value A�. In addition,
a relaxation parameter t� is incorporated and we also set Pri to zero in case the dif-
ference of the related fibre stretches remain smaller than a certain threshold �c . In
summary, the proportionality factor f introduced in (9) is assumed as

f D

8
<̂

:̂

A� � Œ A1;21 �A1;23 �

t�A�
if �C2 > 1 and �C1 � �C2 > �c

0 else

: (12)

5 Numerical Example and Results

The model is now investigated for homogeneous biaxial tension with the corre-
sponding deformation gradient F D �U1 e1˝e1C�U2 e2˝e2C

�
�U1 �

U
2

��1
e3˝e3.

Material parameters are chosen by analogy with data identified for a media arte-
rial layer, see [1], namely � D 1:268 kPa, B D 1:019 kPa, r0 D 1:045mm,
L D 1:477mm, A� D 0:5 , t� D 2 s and �c D 0 . The particular loading history
considered is based on linearly increasing the representative loading parameters �U1
and �U2 within a time period of 20 time steps and then fixing its value for a time
period of 380 steps; see Fig. 2a.

Special emphasis is thereby placed on the evolution of deformation-induced
anisotropy, which is illustrated by means of A1;2 in terms of the odf-type function
�A and via the difference between its respective maximal and minimal principal
values, A1;21 � A1;23 .

Figure 2b shows the saturation behaviour of the anisotropy evolution by means
of visualising the degree of anisotropy A1;21 � A1;23 . Obviously it takes place in a
viscous manner as the loading is fixed after 20 steps and the graph of A1;21 � A1;23
continues to increase.

The anisotropy evolution is additionally visualised in a more descriptive odf-
type manner by Fig. 2c. We observe for the different states of deformation, that the
anisotropy evolves in time as the odf deviates from a spherical distribution.
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Fig. 2 Biaxial tension: (a) applied loading history; (b) evolution of A1;21 � A1;23 ; (c) odf-type
function �A300 at load step 300; (d) integration directions at load step 300

The entire information can be obtained by directly displaying the integration
directions in Fig. 2d. We see that these directions indeed align according to two
limiting directions. Note that in this case we used 162 integration directions for the
integration on the unit sphere as discussed in, e.g. [5].

6 Summary

In this work, remodelling is understood as a process that renders the internal sub-
structure of the material to adapt to the local loading conditions. Such an alignment
of fibres is often also denoted as reorientation or, from the biological point of
view, as turnover. The model developed directly combines this remodelling with
the computational micro-sphere approach. To be specific, the respective directions
introduced to perform the numerical integration over the unit-sphere are reoriented.
As a result, the formulation accounts for deformation-induced anisotropy evolution.

In order to capture orthotropic material behaviour, the evolution equation describ-
ing the reorientation, was assumed to align the integration directions with respect
to two particular mean line elements – the so-called limiting directions. Saturation
effects are on the one hand naturally included by a stopping remodelling process
as soon as a direction is aligned with the particular limiting direction. On the other
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hand, an additional saturation value has been introduced to be able to further limit
the maximal degree of anisotropy of the tissue.

The numerical example investigated showed the basic algorithmic applicability
of the modelling framework and captured the fundamental reorientation and remod-
elling effects observed for soft biological tissues. Moreover – even though not shown
here – the formulation can be applied to the simulation of general boundary value
problems as based on, for instance, iterative finite element approaches.
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Anisotropic Adaptation via a Zienkiewicz–Zhu
Error Estimator for 2D Elliptic Problems

S. Micheletti and S. Perotto

Abstract We propose a Zienkiewicz–Zhu a posteriori error estimator in 2D, which
shares the computational advantages typical of the original estimator. The novelty
is the inclusion of the geometrical features of the computational mesh, useful for an
anisotropic mesh adaptation. The adapted triangulations are shown numerically to
be quasi-optimal with respect to the error-vs-number of elements behavior.

1 Motivations

Among the various a posteriori error estimation techniques available in the litera-
ture, one of the most popular in practice is the one proposed by Zienkiewicz and Zhu
[11, 12]. The idea behind this estimator is quite simple: for example, consider the
finite element approximation uh to the solution u of an advection–diffusion-reaction
(ADR) equation. Since the gradient ruh is less accurate than the solution, we
recover an improved gradient, say r�uh, by suitably fitting ruh over some patches
of elements. The discrepancy kr�uh � ruhkL2.˝/ then identifies an estimator for
the H 1.˝/-seminorm of the discretization error u � uh.

The popularity of this methodology can be attributed to various factors: the
method is independent of the problem, of the governing equations and of most
details of the finite element formulation (except for the finite element space), it is
cheap to compute and easy to implement, and works very well in practice.

On the other hand, ADR problems often exhibit strong directional features (e.g.,
internal or boundary layers). In these cases the effectiveness of the finite element
approximation benefits from a suitable anisotropic computational mesh, fitting size,
shape and orientation of its triangles to the directional features of the solution at
hand [1, 5, 9].
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In this paper we propose some gradient recovery techniques suited to define an
anisotropic counterpart of the Zienkiewicz–Zhu estimator. The novelty is the inclu-
sion of the geometrical information of the mesh triangles, maintaining the above
good properties of the standard Zienkiewicz–Zhu estimator. Despite the somewhat
heuristic nature of the proposed estimator, the overall anisotropic adaptation pro-
cedure turns out to be effective in practice. The adapted meshes, built through a
metric-based optimisation algorithm, are shown numerically to be quasi-optimal
with respect to the error-vs-number of elements behavior.

2 Recovery Procedures

According to a Zienkiewicz–Zhu approach, we distinguish between two steps: first
we furnish a procedure for obtaining an approximate recovered gradient; second,
we employ this recovered gradient for a posteriori error purposes.

To fix ideas, we consider the standard ADR problem completed with homoge-
neous Dirichlet boundary conditions, i.e., find u 2 V , such that
Z

˝

�ru � rv dxC
Z

˝

b � ru v dxC
Z

˝

� u v dx D
Z

˝

f v dx 8v 2 V; (1)

with ˝ a polygonal domain in IR2, � > 0, b 2 ŒW 1;1.˝/�2, � 2 L1.˝/, and
where V D H 1

0 .˝/, standard notation being adopted for the Sobolev spaces and
their norms. Proper assumptions are enforced to guarantee the well-posedness of (1).

Let Th D fKg be a conforming partition of ˝ consisting of triangles and
uh be the Galerkin affine finite element approximation to (1), possibly involving
stabilization.

We now provide a family of recovery procedures to improve the discrete gradient
ruh, using information only related to uh. Several approaches are available in the
literature for this purpose (see, e.g., [8,10,11]). We propose here a recovered gradi-
ent, denoted by P r

�K
.ruh/, which has degree r over the patch �K D fT 2 Th W

T \K ¤ ;g. We seek P r
�K
.ruh/ 2 ŒIPr �2 such that

Z

�K

.ruh � P r
�K
.ruh// � w dx D 0 8w 2 ŒIPr �2; (2)

with IPr D spanfxi1 xj2 j i C j � rg. The recovered gradient P r
�K
.ruh/ is strictly

associated with K , and not to the elements comprising �K (i.e., for any T 2 �K ,
with T ¤ K , P r

�T
.ruh/ is, in general, different from P r

�K
.ruh/). In the particular

case r D 0, we can write out the formula for the recovered gradient, given by

P 0
�K
.ruh/ D 1

j�K j
X

T2�K

jT j ruhjT ;

namely, we compute the area-weighted average over the patch �K of the gradients
of the discrete solution.
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3 The Anisotropic Estimator

To devise the estimator proposed in this work, we embed the recovery procedures
above in a convenient anisotropic setting. This leads to a Zienkiewicz–Zhu-like esti-
mator, automatically including the anisotropic information of the mesh elements.
The same potentiality is not so evident in the case of the standard Zienkiewicz–Zhu
estimator [12].

3.1 Anisotropic Source

We employ the anisotropic setting in [4]. The size, shape and orientation of each
element K of Th are characterized by the affine map TK W bK ! K , where bK is the
equilateral reference triangle centred at the origin, with coordinates .�p3=2; �1=2/,
.
p
3=2; �1=2/, .0; 1/ and edge length

p
3. It holds x D TK.bx/ D MKbxC tK , with

MK 2 IR2�2 the Jacobian and tK 2 IR2 the shift vector. Matrix MK is factorized
as MK D BK ZK via the polar decomposition, where BK 2 IR2�2 is symmetric
positive definite, andZK 2 IR2�2 is orthogonal. Then BK is spectrally decomposed
as BK D RTK �K RK , with RTK D Œr1;K ; r2;K � and �K D diag.�1;K ; �2;K/ the
eigenvector and eigenvalue matrix, respectively.

Through TK the unit circle circumscribing bK is changed into an ellipse circum-
scribing K: the unit vectors fri;Kg define the corresponding principal directions,
whereas the quantities f�i;Kg measure the length of the ellipse semi-axes. With-
out loss of generality, we assume �1;K � �2;K > 0 so that the stretching factor,
sK D �1;K=�2;K , satisfies sK � 1, for any K 2 Th, equality holding when K is
equilateral.

The estimator proposed in Sect. 3.2 is inspired by an anisotropic interpolation
error estimate derived in this setting [4]. In particular, let I 1

h
be the Clément

interpolant of degree 1 for functions v 2 H 1.˝/ .

Proposition 1. Let v 2 H 1.˝/. Then, if #�K � D and diam.b�K/ � ı, for any
K 2 Th, there exists a constant C D C.D ; ı/, such that

kv � I 1h .v/kL2.K/ � C
� 2X

iD1
�2i;K .r

T
i;KG�K

.rv/ ri;K/
�1=2

; (3)

with GK.�/ the symmetric semidefinite positive matrix with entries

ŒG�K
.w/�i;j D

X

T2�K

Z

T

wi wj dx; with i; j D 1; 2; (4)

for any vector-valued function w D .w1;w2/T 2 ŒL2.˝/�2, #�K the cardinality of
the patch, diam.b�K/ the diameter of b�K D T �1K .�K/, the pullback of �K via the
map TK .
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Remark 1. The hypotheses of Proposition 1 constrain the variation of fri;Kg and
f�i;Kg over�K but do not limit the anisotropy of K .

3.2 The Estimator

Driven by Proposition 1 we devise the anisotropic a posteriori error estimator. Let
E r
�K
D P r

�K
.ruh/ � ruhj�K

be the approximation for the error on the gradient,
over �K . We define the anisotropic Zienkiewicz–Zhu local estimator for the H 1-
seminorm of the discretization error as

�
� rK;A

�2 D 1

�1;K�2;K

2X

iD1
�2i;K

�
rTi;K G�K

.E r
�K
/ri;K

�
; (5)

where the matrix G�K
.�/ is defined as in (4). Then the corresponding global error

estimator is given by �
� rA
�2 D

X

K2Th

�
� rK;A

�2
: (6)

The estimator (5) and (6) is essentially heuristic. The terms summed on the right-
hand side of (5) are suggested by (3) with v D u � uh, after substituting the partial
derivatives of u with the corresponding components of P r

�K
.ruh/. However some

rationale can be provided. The scaling factor �1;K�2;K guarantees a consistency
with respect to the isotropic case, i.e., when �1;K D �2;K , (5) turns into an isotropic
Zienkiewicz–Zhu-like estimator based on the patchwise recovered gradient (2), that
is �

� rK; I
�2 D

Z

�K

jE r
�K
j2 dx and

�
� rI
�2 D

X

K2Th

�
� rK; I

�2
:

Moreover a sort of equivalence between � rK;A and ju�uhjH1.�K/
can be proved.

In more detail, given a function v 2 H 1.˝/, letbv D v ı TK be the associated
pullback. Virtually, we would like to choose v D u � uh. Then, we have

Z

b�K

jbrbvj2dx D 1

�1;K�2;K

2X

iD1
�2i;K .r

T
i;KG�K

.rv/ ri;K/;

s�1K jvj2H1.�K /
� 1

�1;K�2;K

2X

iD1
�2i;K .r

T
i;KG�K

.rv/ ri;K/ � sK jvj2H1.�K /
;

where the middle term mimics estimator (5), on replacing rv with E r
�K

.

The patch test
We aim to check the consistency of the recovery procedure by computing the local
effectivity index E:I:rK;A D � rK;A=ju�uhjH1.K/, for r D 0; 1. To avoid a bias effect
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due to the grid, we consider the case when u is isotropic and the regular patch �K
consists of 13 equilateral triangles, each of area 3

p
3=4, with pivot element bK. In

particular let u D a x21 C 2b x1x2 C c x22 , with a; b; c 2 IR, picked such that the
Hessian, H D Œa bI b c�, has eigenvalues with the same modulus. This happens
only when (i) a D c and b D 0 or when (ii) a D �c and b is arbitrary. As typical
in a patch test, let uh coincide with the Lagrange affine interpolant of u. It turns out
that ju � uhjH1.K/ D jaj

pjKj, kP 0
�K
.ruh/ � ruhkL2.�K/

D jajp132 jKj, i.e.,

E:I:0K;A D
p
132 ' 11:5 in the case (i); the case (ii) leads to ju � uhjH1.K/ Dp

2 jKj .a2 C b2/, kP 0
�K
.ruh/ � ruhkL2.�K /

D p
1884 jKj .a2C b2/=13, i.e.,

E:I:0K;A D
p
1884=26 ' 8:51. Analogously, for the case r D 1, we obtain

E:I:1K;A ' 3:44 in the case (i) and E:I:1K;A ' 3:52 in the case (ii).
It can be checked that the same values can be obtained after applying either

roto-translations or homotheties to �K .
Although this isotropic context may seem favorable, we expect a similar behavior

also in the anisotropic case, provided that the mesh is adapted to the solution.
Estimator (5) and (6) is problem-free, i.e., it can be applied to more general prob-

lems, such as elasticity or Navier–Stokes equations. In such a case one could replace,
e.g., the gradient with the stress (rate) tensor [11]. Alternately, the adaptation can
be driven by the gradient of a scalar variable representative of the problem, like the
pressure or the speed for the Navier–Stokes equations.

The estimator corresponding to r D 0 is extended to the 3D case in [2]. Here an
adaptation driven by a scalar quantity (speed for the Navier–Stokes equations and
density for a multimaterial application) is also assessed.

4 The Adaptive Procedure

We employ a metric-based adaptive procedure driven by estimator � rA. In particu-
lar, for a fixed accuracy on the numerical solution, we look for the mesh with the
least number of elements. The tensor field fM W ˝ ! IR2, is the actual unknown.
According to a predictive procedure, at each iteration, j , of the adaptive process,
we deal with: (i) the actual mesh T .j /

h
, where problem (1) is approximated; (ii) the

new metric fM .jC1/ piecewise constant on T .j /

h
, predicted elementwise through a

suitable local optimization procedure; (iii) the new mesh T .jC1/
h

guaranteeing that
all the edges are unit length with respect to fM .jC1/ [7].

We focus on step (ii), which is at the heart of the whole adaptive procedure. We
minimize

�
� rK;A

�2
in (5) with respect to stretching and orientation, and then, via an

equidistribution criterion, we compute the actual values of �1;K and �2;K . For this
purpose we first rewrite the estimator as

�
� rK;A

�2 D sK .rT1;K G�K
.E r
�K
/ r1;K/C s�1K .rT2;K G�K

.E r
�K
/ r2;K/

D �1;K �2;K jb�K j
�
sK .rT1;K bG�K

.E r
�K
/ r1;K/C s�1K .rT2;K bG�K

.E r
�K
/ r2;K/

�
;

(7)
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where bG�K
.�/ is the scaled matrix G�K

.�/=j�Kj, and j�K j D �1;K�2;K jb�K j.
The idea is that we single out the area-dependent information (the multiplicative
term) from the quantity in brackets, depending on orientation and stretching. Then
we minimize this last term with respect to sK and fri;Kg, as stated by the following
result.

Proposition 2. Let

J.sK ; fri;KgiD1;2/ D sK .rT1;KbG�K
.E r
�K
/r1;K/C s�1K .rT2;KbG�K

.E r
�K
/r2;K/;

(8)
and let fgi ; gigiD1;2 be the eigen-pairs associated with bG�K

.E r
�K
/, where it is

understood g1 � g2 > 0 and fgigiD1;2 are orthonormal. Then J.�/ is minimized
when

sK D
p
g1=g2; r1;K D g2; r2;K D g1: (9)

Proof. The result follows from Proposition 14 in [3].

Notice that the optimal values in (9) equalize the two terms in (8), i.e., sK g2 D
s�1K g1 D pg1 g2. This implies that the minimum of J.�/ does not depend on sK .
To construct fM .jC1/, we just have to compute f�i;KgiD1;2. For this purpose we

employ the equidistribution criterion, according to which
�
� rK;A

�2 D 	2=#T .j /

h
,

where 	 is the fixed accuracy and #T .j /

h
is the cardinality of the background mesh.

Thanks to Proposition 2, we obtain �1;K �2;K D 	2=. 2 #T .j /

h
jb�K jpg1g2 /. Since

sK D �1;K=�2;K , we have

�1;K D g�1=22

�
	2

2 #T .j /

h
jb�K j

	1=2
; �2;K D g�1=21

�
	2

2 #T .j /

h
jb�K j

	1=2
: (10)

The predicted metric fM .jC1/ is formed, elementwise, by fM .jC1/
K DfM .jC1/jK D

RTK�
�2
K RK , with RTK D Œr1;K ; r2;K � and �K D diag.�1;K ; �2;K/, where

fri;KgiD1;2 and f�i;KgiD1;2 are provided by (9) and (10), respectively.
Now, for task (iii), we employ the function adaptmesh in [6]. Since it takes as

input a nodewise representation offM.jC1/, we have to average the elementwise infor-
mation. The nodewise metric is thus fM .jC1/

N D .3 j�N j/�1 PK2�N
jKjfM .jC1/

K ,
where �N is the patch of elements sharing node N and j�N j is the corresponding
area. The scaling factor 1=3 shrinks the reference triangle to a unit edge one.

Remark 2. The hypothesis on the eigenvalues in Proposition 2 can be relaxed by
assuming g1 � g2 � 0, i.e., that bG�K

.E r
�K
/ is actually positive semidefinite. This

degenerate case is tackled by choosing gi D max.gi ; gmin/, for i D 1; 2, where
gmin D 	2=

�
h2˝ 2 #T .j /

h
jb�K j

�
, with h˝ the diameter of the domain. Thus, if gi is

degenerate, �i;K D h˝ .
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Test Case 1: Pure Diffusion
We solve (1) with � D 1, b D 0, � D 0 on ˝ D .�1; 1/2, with f chosen such
that u.x1; x2/ D tanh.10x22 � 20x31/.x22 � 1/ and Dirichlet compatible boundary
conditions. We apply the above adaptive procedure with the choices 	 D 2; 1; 0:5

and r D 0; 1. Figure 1 gathers the final adapted grids for 	 D 1, obtained after
eight iterations. The meshes match the anisotropic features of u, as highlighted
by the detail on the right. In Tables 1 and 2 a more quantitative analysis is provided.
The effectivity index E.I.rA D � rA=ju � uhjH1.˝/ is essentially independent of 	 . In
the case r D 1 the meshes are coarser, E.I.1A being closer to 1. The error-vs-number
of elements behavior is quasi-optimal in both cases, i.e., of the order of about �0:5.

Test Case 2: Advection–Diffusion
We now consider an instance of (1) more complex than test case 1, choosing � D
10�3, b D .x2;�x1/T, � D 0, f D 1 on ˝ D .0; 1/2. The exact solution, not
explicitly available, exhibits two boundary layers and a circular internal layer. We
discretize (1) by the SUPG method. The adaptive procedure is run, picking 	 D
2; 1 and r D 1. All the layers are sharply detected by the anisotropic estimator
(see Fig. 2). The results in Table 3 confirm the reliability of both the estimator and
the adaptive procedure. Notice also the large values of the stretching factor, the
maximum being reached in correspondence with the two boundary layers.
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Fig. 1 Final adapted grids for test case 1: 	 D 1, r D 1 (left), r D 0 (middle and right)

Table 1 Test case 1: r D 0

	 #Th max sK ju� uhjH1.˝/ �0A E.I.0A �0I E.I.0I
2 1,861 25.15 0:3038 � 10C0 0:2108 � 10C1 6.939 0:3019 � 10C1 9.938
1 6,220 31.13 0:1552 � 10C0 0:1081 � 10C1 6.965 0:1572 � 10C1 10.12
0.5 22,388 48.13 0:8024 � 10�1 0:5522 � 10C0 6.882 0:8149 � 10C0 10.16

Table 2 Test case 1: r D 1

	 #Th max sK ju� uhjH1.˝/ �1A E.I.1A �1I E.I.1I
2 533 19.64 0:6753 � 10C0 0:1747 � 10C1 2.586 0:2393 � 10C1 3.543
1 1,541 17.34 0:3503 � 10C0 0:8802 � 10C0 2.512 0:1209 � 10C1 3.450
0.5 4,699 27.71 0:1893 � 10C0 0:4408 � 10C0 2.328 0:6180 � 10C0 3.264
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Fig. 2 Final adapted grids for test case 2: r D 1, 	 D 2 (left), 	 D 1 (middle and right)

Table 3 Test case 2 : r D 1

	 #Th max sK �1A �1I

2 482 57.33 0:1727 � 10C1 0:3884 � 10C1

1 1,273 109.98 0:8925 � 10C0 0:2062 � 10C1

5 Conclusions

Despite its heuristic nature, the proposed anisotropic Zienkiewicz–Zhu a posteriori
estimator provides satisfactory results. Indeed it detects the anisotropic features of
the problem at hand, exhibiting a quasi-optimal error-vs-number of elements behav-
ior as well. This occurs even in the case r D 0, which identifies the roughest gradient
recovery in the proposed class of estimators.
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On a Sediment Transport Model in Shallow
Water Equations with Gravity Effects

T. Morales de Luna, M.J. Castro Dı́az, and C. Parés Madroñal

Abstract Sediment transport by a fluid over a sediment layer can be modeled by
a coupled system with a hydrodynamical component, described by a shallow water
system, and a morphodynamical component, given by a solid transport flux. Meyer-
Peter and Müller developed one of the most known formulae for solid transport
discharge, but it has the inconvenient of not including pressure forces. This makes
numerical simulations not accurate in zones where gravity effects are relevant, e.g.,
advancing front of the sand layer. Fowler et al. proposed a generalization that takes
into account gravity effects as well as the length of the sediment layer which agrees
better to the physics of the problem. We propose to solve this system by using a
path-conservative scheme for the hydrodynamical part and a duality method based
on Bermudez-Moreno algorithm for the morphodynamical component.

1 Introduction

The study of sediment transport processes includes movement of rocks in a moun-
tain as material diffusion in water, among other processes. Transport is caused by
gravity effects and by friction effects with the air or the fluid containing the sedi-
ment. Sediment transport is usually divided into three types: bedload, saltation and
suspension. Bedload transport is defined as the type of transport where sediment
grains roll or slide along the bed. Saltation transport is defined as the type of trans-
port where single grains jump over the bed a length proportional to their diameter,
losing for instants the contact with the soil. Sediment is suspended when the flux
is intense enough such as the sediment grains reach height over the bed. Here we
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study the case of bedload sediment transport. Bedload sediment transport process
due to the movement of a fluid in contact with the sediment layer may be modeled
by a coupled system constituted by a hydrodynamical component and a morphody-
namical component. The hydrodynamical component is modeled by the well-known
Shallow Water equations. The morphodynamical component is modeled by includ-
ing a sediment transport equation, which depends on a solid transport flux given
by some empirical law. Among the usual formulae for solid transport flux found in
literature we shall cite the ones proposed by Grass [3], Meyer-Peter and Müller [4],
Van Rijn [8], Nielsen [5] and many others.

2 The Classical Meyer-Peter and Müller Formula

The model proposed by Meyer-Peter and Müller model is one of the most used and
well known formula for bedload transport of a sediment layer due to the movement
of a fluid. The system can be described as follows.

8
<̂

:̂

@thC @x.hu/ D 0;
@t .hu/C @x.hu2 C g h2

2
/C gh@x.z �H/ D �f juju;

@t zC �@xqb D 0;
(1)

where z.t; x/ is the thickness of the sediment layer that can be transported by the
fluid, h.t; x/ is the thickness of the fluid layer and u.t; x/ is the velocity (see Fig. 1).
The sediment layer is assumed to be located over a fixed bedrock at depth H.x/
from a given reference level.

The solid transport flux qb is given by the classical Meyer-Peter and Müller
formula

qb.h; hu/ D ˛
� jb�ej
ˇ
� �crit

�3=2

C
sgn.b�e/; (2)

b�e.h; hu/ D � juju
h1=3

; (3)

Fig. 1 Sketch of a sediment
layer transported by the
action of a fluid

H(x) h(t; x)

z(t; x)

Reference level
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where ˛; ˇ; �; �crit are constants that depend on the sediment type considered. In
particular, they may be described as

˛ D 8
p
��gD3

s

�
1=2
w

; (4)

ˇ D ��gDs ; (5)

� D �wgM
2; (6)

with Ds the mean grain size of the particles, �w the density of the fluid, �� the
difference between the density of the sediment and the density of the fluid andM is
the Manning coefficient. �crit is the critical shear stress. Finally � D 1

1�p , where p
is the porosity of the sediment layer.

3 A Modified Meyer-Peter and Müller Model

Eventhough the classical Meyer-Peter and Müller formula has been extensively used
for sediment bedload transport, it presents two main disadvantages which are also
common to other of the formulae cited before.

First, gravity effects are neglected. This makes that particle do not fall due to
gravity and motion of particle only depends on the velocity of the fluid. As a con-
sequence, one can observe vertical profiles that are not found in physical situations,
for example at the front of a dune.

Second, mass conservation may be lost. For example, imagine a situation like the
one described in Fig. 2, where the sediment layer is only present in the interior of
the domain. Assume that no sediment comes in or out of the domain through the
boundaries during time interval Œ0; T �. By integrating the third equation in (1) in
Œ0; T � � Œa; b�, we obtain

Z b

a

zjtDT dx �
Z b

a

zjtD0dx D ��
Z T

0

.qbjxDb � qbjxDa/ dt (7)

Fig. 2 Sediment layer
isolated in the interior of the
domain x = a x = b

z(t; x)
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Given that the solid flux qb does not take into account the sediment layer thick-
ness and only depends on the variables h and u, the right hand side of (7) can be
non-zero and the mass is not preserved.

These two problems lead us consider other alternatives for the solid transport
flux.

Fowler et al. proposed in [2] a modified Meyer-Peter and Müller formula where
the expression (2)-(3) is replaced by

qb.h; hu; z/ D ˛ z

z0

� j�ej
ˇ
� �crit

�3=2

C
; (8)

�e D � juju
h1=3

� @x.z �H/; (9)

where z0 is a constant that represents the mean thickness of the sediment layer.
This new formula grants that the solid flux qb is zero whenever the sediment layer

vanishes so that sediment mass is preserved. Moreover, thanks to the term @x.z�H/
in (9), gravity effects are considered.

4 Numerical Scheme

System (1), (8), (9) is no longer an hyperbolic system due to the term @x.z � H/.
We focus here in the solution of the third equation so that we may assume that h;
u are given. Indeed, it is the case in many situations where we can suppose that we
are near to a steady state so that they are calculated from the general relations of
equilibria for shallow water system. In a more general framework, these variables
may be updated by using a two step algorithm as follows.

We shall rewrite the system under the form

@tW C @xF.W; 	/ D B.W /@xW C S.W /dH
dx

; (10)

with
W D .h; hu; z/t ; eW D .W; 	;H/; 	 D @xz; (11)

F.W; 	/ D .hu; hu2 C g=2h2; qb.W; 	//t (12)

S.W / D .0; gh; 0/t (13)

B.W / D
�
0 0 0
0 0 �gh
0 0 0

�
: (14)

Assume the approximations W n
i over some cells Ii at time t D tn. First, we

compute the approximations hnC1i ; unC1i by solving
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(
@tW C @xF.W; 	�/ D B.W /@xW C S.W /@xH;
eW .t D tn; x/ DeW n

i for x 2 Ii : (15)

for some approximation of 	�:
This can be done by using the general framework of path conservative schemes

proposed in [7] and [6].
Second, we compute the variables zni ; 	

n
i by solving

@t z� @xG.@xz/ D 0; (16)

with

G.v/ D ˛

z0
z

�ˇ̌
ˇ̌ b�e
ˇ
� v

ˇ̌
ˇ̌ � �crit

�3=2

C
sgn.ˇv � b�e/: (17)

This second step can be solved by a duality algorithm proposed in [1]. When G
is a maximal monotone operator, which is indeed our case, the solution of (16) can
be computed iteratively by solving

8
<

:

zlC1�zn

�t
� !@xxzlC1 D @x
 l ;


 lC1 D G�!.@xzC �
 l /;
l D 0; 1; : : : (18)

where G!
�

is the Yoshida’s regularization of G which is defined as

G!� D
1

�

�
Id � J !�

�
; (19)

J !� D ŒId C �G! ��1 ; (20)

G! D G � !Id; (21)

where � and ! are constants such that �! D 1=2:We refer to [1] for further details.

5 Numerical Simulations

We show here two simple numerical simulations where we can see the advantages
of this new model. First, consider a sediment layer of height 0:25 and width 2 in
the interior of the domain at depth 0:8: The conditions of lake at rest are assumed
so that the initial surface is at level 0 and velocity is set to 0: If we use the classical
Meyer-Peter and Müller model, this would be a steady state and it would not evolve
as the gravity effects are not considered. But using the new model, we see in Fig. 3
that sediment falls due to its own weight until a steady slope is reached.

Now, consider a similar case where the height of the sediment layer is again 0:25
and the width is equal to 2 located at depth 0:95 from the surface and we impose a
velocity u D 1:We see in Fig. 4 that a dune is formed as expected and now we do not
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Fig. 3 Sediment layer evolution in lake-at-rest conditions

Fig. 4 Formation of a dune
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have a vertical profile at the front as it would be the case for classical Meyer-Peter
and Müller model.

6 Conclusions

The modified Meyer-Peter and Müller model proposed by Fowler et al. has the
advantage of including gravitational effects and takes into account the thickness
of the sediment layer. This makes the model to be more physically relevant and can
reproduce some phenomena observed in reality that cannot be reproduced with the
classical model as it has been shown in Sect. 5. The price to pay is that it is a more
complex model which is no longer an hyperbolic system so that computational cost
is more expensive.
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Adaptive SQP Method for Shape Optimization

P. Morin, R.H. Nochetto, M.S. Pauletti, and M. Verani

Abstract We examine shape optimization problems in the context of inexact sequen-
tial quadratic programming. Inexactness is a consequence of using adaptive finite
element methods (AFEM) to approximate the state equation, update the bound-
ary, and compute the geometric functional. We present a novel algorithm that uses
a dynamic tolerance and equidistributes the errors due to shape optimization and
discretization, thereby leading to coarse resolution in the early stages and fine reso-
lution upon convergence. We discuss the ability of the algorithm to detect whether
or not geometric singularities such as corners are genuine to the problem or simply
due to lack of resolution – a new paradigm in adaptivity.
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1 Shape Optimization as Adaptive Sequential Quadratic
Programming

Shape optimization problems governed by partial differential equations (PDE) can
be formulated as constrained minimization problems with respect to the shape of a
domain˝ in Rd . If u D u.˝/ is the solution of a PDE in ˝ , the state equation is

A u.˝/ D f; (1)

and J.˝/ D J.˝; u.˝// is a cost functional, then we consider the minimization
problem

˝� 2 Uad W J.˝�/ D inf
˝2Uad

J.˝/; (2)

within the set Uad of admissible domains in Rd . This is a constrained minimization
problem for J .

In this paper we formulate an Adaptive Sequential Quadratic Programming algo-
rithm (or ASQP), that adaptively builds a sequence of domains f˝kgk�0 converging
to a local minimizer of the shape optimization problem (1) and (2). To motivate and
briefly describe the ideas underlying ASQP, we need the concept of shape derivative
dJ.˝Iw/ of J.˝/ in the direction of a normal velocity w

dJ.˝Iw/ D
Z
�

g.˝/w; (3)

see [14] for its precise definition. We observe that g.˝/, the Riesz representation
of the shape derivative dJ.˝/, depends on u.˝/. We present ASQP in two steps:
we first introduce an infinite dimensional Sequential Quadratic Programming (Exact
SQP) algorithm, and next we introduce and motivate its adaptive finite dimensional
version, responsible for the inexact nature of ASQP.

Exact SQP Algorithm. We let ˝k be the current iterate and ˝kC1 be the new one.
We let �k WD @˝k and let V .�k/ be a Hilbert space defined on �k , with scalar
product b�k

.�; �/ W V .�k/ � V .�k/ ! R and norm k � kV .�k/. This gives rise to
the elliptic selfadjoint operator Bk W V .�k/ ! V .�k/� defined by hBkv;wi�k

D
b�k

.v;w/. We then consider the following quadratic modelQk W V .�k/! R of J
around˝k

Qk.w/ WD J.˝k/C dJ.˝kIw/C 1

2
hBkw;wi: (4)

It is easy to check that the unique minimizer vk of Qk.w/ satisfies

vk 2 V .�k/ W b�k
.vk;w/ D �hgk ;wi�k

8w 2 V .�k/; (5)

with gk WD g.˝k/; i.e. vk D �B�1
k
gk . Moreover, vk is an admissible descent

direction; i.e. dJ.˝kI vk/ < 0 because b�k
.�; �/ is a scalar product. Once vk has

been found, we need to determine a stepsize that is not too small and guarantees
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sufficient decrease of the functional J . To accomplish this goal we identify a range
of admissible stepsizes by adapting the classical Armijo–Wolfe conditions in Rn:
given 0 < ˛ < ˇ < 1, we seek a stepsize � 2 RC satisfying

J.˝kC�vk/ � J.˝k/C˛� dJ.˝kI vk/; dJ.˝kC�vk I vk/ � ˇ dJ.˝k I vk/;
(6)

where @.˝k C �vk/ WD fy 2 Rd W y D x C �vk.x/; x 2 @˝kg is the updated
domain boundary and vk D vk�k is a normal vector field. We are now ready to
introduce the Exact Sequential Quadratic Programming algorithm for solving the
constrained optimization problem (1) and (2): given the initial domain˝0, set k D 0
and iterate

49 Compute uk D u.˝k/ by solving (1)
50 Compute the Riesz representation gk D g.˝k/ of (3)
51 Compute the search direction vk by solving (5)
52 Determine an admissible stepsize �k satisfying (6)
53 Update: ˝kC1 D ˝k C �kvk; k  k C 1

This algorithm is not feasible as it stands, because it requires the exact computation
of the following quantities at each iteration: the solution uk to the state equation (1);
the solution vk to the linear subproblem (5); the values of the functional J and of its
derivative dJ in the line search routine. Replacing all of the above non-computable
operations by finite approximations yields a practical algorithm.

Adaptive SQP Algorithm (ASQP). This method adjusts the accuracies of the var-
ious approximations relative to the energy decrease for each iteration. It is worth
noticing that the adaptive procedure driving our algorithm has to deal with two
distinct sources of error:

� PDE Error: This hinges on the approximation of (1) and the values of the
functional J and its derivative (3);

� Geometric Error: This relates to the approximation of (5) which yields the new
domain.

Since it is wasteful to impose a PDE error finer than the expected geometric
error, we have a natural mechanism to balance the computational effort. The ASQP
algorithm is an iteration of the form:

: : :! Ek ! APPROXJ! SOLVE! RIESZ! DIRECTION!
LINESEARCH ! UPDATE! EkC1 ! : : :

where Ek D Ek.˝k;Sk;Vk/ is the total error incurred in at step k, Sk D Sk.˝k/
is the finite element space defined on ˝k and Vk D Vk.�k/ is the finite element
space defined on the boundary �k . To describe briefly each module along with the
philosophy behind ASQP, we let Gk be an approximation to the shape derivative
gk D g.˝k/ given by RIESZ, and Vk 2 Vk.�k/ be an approximation to the exact
solution vk 2 V .�k/ of (5) given by DIRECTION. The discrepancy between vk and
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Vk leads to the geometric error. Upon using a first order Taylor expansion around
˝k , together with (5) for the exact velocity vk , we obtain

ˇ̌
J.˝k C �kVk/ � J.˝k C �kvk/

ˇ̌ ' �k ˇ̌dJ.˝kIVk � vk/j
D �k

ˇ̌
b�k

.vk; Vk � vk/
ˇ̌ � �kkvkk�k

kvk � Vkk�k
:

Motivated by this expression, we now describe the modules APPROXJ and
DIRECTION , in which adaptivity is carried out. These modules are driven by
different adaptive strategies and corresponding different tolerances, say a PDE tol-
erance � and a geometric tolerance � . Their relative values allow for different
distributions of the computational effort in dealing with the PDE and the geome-
try. The routine DIRECTION enriches/coarsens the space Vk to control the quality
of the descent direction:

kVk � vkk�k
� �kVkk�k

; (7)

where � � 1=2 guarantees that the angle between Vk and vk is � �=6; in par-
ticular kvkk�k

� .1 C �/kVkk�k
. This implies a geometric error proportional to

�kkVkk2�k
, namely

ˇ̌
J.˝k C �kVk/ � J.˝k C �kvk/

ˇ̌ � ı�kkVkk2�k
; (8)

with ı WD �.1 C �/ � 3
2
� . On the other hand, the module APPROXJ enriches/

coarsens the space Sk to control the error in the approximate functional value
Jk.˝k C �kVk/ to the prescribed tolerance ��kkVkk2�k

,

ˇ̌
J.˝k C �kVk/� Jk.˝k C �kVk//

ˇ̌ � ��kkVkk2�k
; (9)

where � D 1
2
�ı � ı prevents excessive numerical resolution relative to the geomet-

ric one. This is achieved within the module APPROXJ via the Dual Weighted Resid-
ual method (DWR) [2], taylored to the approximation of the functional value J . The
remaining modules perform the following tasks. The module SOLVE finds approx-
imate solutions Uk 2 Sk of (1) and Zk 2 Sk of an adjoint equation (necessary for
the computation of g.˝k/), while RIESZ builds on Sk an approximationGk to the
shape derivative gk . Finally, the module LINESEARCH enforces an inexact version
of (6).

Energy Decrease. The triangle inequality, in conjunction with conditions (8) and
(9), yields

ˇ̌
Jk.˝k C �kVk/ � J.˝k C �kvk/

ˇ̌ � 1

2
�kkVkk2�k

; (10)
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which is a bound on the local error incurred in at step k. On the other hand, the exact
energy decrease reads

J.˝k/� J.˝k C �kvk/ � ��kdJ.˝k I vk/ D �kb�k
.vk; vk/

D �kkvkk2�k
� .1 � �/2�kkVkk2�k

; (11)

and leads to the further constraint .1 � �/2 > 1
2

to guarantee the energy decrease
Jk.˝k C �kVk/ < J.˝k/.

If ASQP converges to a stationary point, i.e., �kkVkk2�k
! 0 as k ! 1, then

the routines DIRECTION and APPROXJ approximate the descent direction Vk
and functional J.˝k/ increasingly better as k ! 1, as dictated by (7) and (9). In
other words, this imposes a dynamic error tolerance and progressive improvement
in approximating Uk , Zk and Gk as k !1. This argument is a consistency check
of ASQP.

We observe that the test (9) is not very demanding for DWR. So we expect coarse
meshes at the beginning, and a combination of refinement and coarsening later as
DWR detects geometric singularities, such as corners, and sorts out whether they
are genuine to the problem or just due to lack of numerical resolution. This aspect
of our approach is a novel paradigm in adaptivity and is documented in Sect. 3.

Prior Work. The idea of coupling FEM, a posteriori error estimators and optimal
design error estimators to efficiently solve shape optimization problems is not new.
The pioneering work [3] presents an iterative scheme, where the Zienkiewicz–Zhu
error indicator and the L2 norm of the shape gradient are both used at each itera-
tion to improve the PDE error and the Geometric error, respectively. However, the
algorithm in [3] does not resort to any dynamically changing tolerance, that would
allow, as it happens for ASQP, to produce coarse meshes at the beginning of the
iteration and a combination of Geometric and PDE refinement/coarsening later on.
Moreover, [3] does not distinguish between fake and genuine geometric singulari-
ties that may arise on the domain boundary during the iteration process, and does
not allow the former to disappear. More recently, the use of adaptive modules for the
numerical approximation of PDEs has been employed by several authors [1, 11, 12]
to improve the accuracy of the solution of shape optimization problems. However,
in these papers the critical issue of linking the adaptive PDE approximation with an
adaptive procedure for the numerical treatment of the domain geometry is absent.
We address this linkage below.

2 Drag Minimization for Stokes Flow

Let ˝ � Rd , d � 2 be a bounded domain of Rd . Let u WD u.˝/ and p WD p.˝/

solve the Stokes problem:

� divT.u; p/ D 0; div u D 0; in ˝; (12)
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Fig. 1 Initial (top) and final (bottom) configuration: �s is the deformable part of ˝, �in the left-
hand part, �out the right-hand part and �w the union of the upper and lower part. The algorithm
obtains the optimal “rugby ball” shape [10]. The mesh refinement takes place mostly around �s ,
whereas in the rest of ˝ the mesh is rather coarse: this is related to DWR mesh refinement (and
coarsening) and the particular expression (13) of the cost functional J.˝/

with Dirichlet boundary condition u D v1 on �in, u D 0 on �s [ �w, and traction-
free boundary condition T.u; p/ � n D 0 on �out (see Fig. 1). Hereafter, T.u; p/ WD
2��.u/ � pI is the stress tensor with �.u/ D ruCruT

2
, and v1 D V1 Ov1, with Ov1

being the unit vector directed as the incoming flow and V1 a scalar function.
The drag exerted by the fluid on the obstacle surrounded by �s is given by the

functional

J.˝/ D J.˝;u; p/ WD �
Z
�s

Ov1 � T.u; p/ � n d�: (13)

We consider the following shape optimization problem min˝2Uad
J.˝/ on the set

Uad of admissible configurations with given volume, obtained by perturbing only
the boundary �s of the obstacle [10].

It is possible to prove [9] that, for all sufficiently smooth vector fields v which
are non-zero in a neighborhood of �s, the shape derivative of J.˝/ in the direction
v is given by

dJ.˝I v/ D �2�
Z
�s

�.u/ W �.z/ v d�; (14)

with v D v � n the normal velocity and z the solution to the adjoint problem

� divT.z; q/ D 0; div z D 0; in ˝; (15)

subject to Dirichlet boundary conditions z D �Ov1 on �s, z D 0 on �w [ �in, and
traction-free condition T.z; q/ � n D 0 on �out .
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3 Numerical Experiment: Optimal Shape for Drag
Minimization

In this section we briefly describe key aspects of the implementation of ASQP
for the successful realization of simulations. A full description of the algorithm
can be found in [9]. The implementation of ASQP was done using the toolbox
ALBERTA [13], and the graphics were produced with ParaView [7].

Adaptivity. Adaptivity is carried out inside the modules APPROXJ and
DIRECTION. In the module APPROXJ, adaptivity is performed using the goal-
oriented Dual Weighted Residual estimator (DWR) driven by approximation of the
boundary functional J.˝/ [2]. Briefly, the goal-oriented DWR estimator determines
where to refine/coarsen the mesh in ˝ in order to improve the functional approx-
imation, without imposing a small error in the global energy norm over the whole
domain (see Figs. 1 and 3).

The scalar velocity vk obeys (5) with V .�k/ WD H 1.�k/ and the bilinear form
b�k

.v;w/ WD R
�k
˛br� v � r� w C ˇbvw, where r� denotes the surface gradient,

and ˛b D 10�3, ˇb D 1. The module DIRECTION enforces the bound (7) on
kVk � vkk�k

using the a posteriori error estimators for the Laplace–Beltrami (LB)
operator �� developed in [8]. They are of residual type and estimate the energy
error when solving �� u D f on a known surface � . They consist of the usual
PDE estimator and a new geometric estimator that accounts for the approximation
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Fig. 2 Dynamic tolerance for both Geometric and PDE approximation: the adaptive SQP method
produces coarse meshes at the beginning and a combination of Geometric and PDE refinement/-
coarsening later on (see Fig. 3). The zig-zag behavior in the tolerance is due to the combination of
refinement/coarsening. Coarsening allows the tolerance to increase (see Table 1)
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Fig. 3 Combination of DWR and LB refinement/coarsening. Evolution of the initial configuration
�s : iterations 0, 44, 184 and 217. The initially refined corners (top) are subsequently smoothed out
and coarsened (see Fig. 4). The new corners of the rugby ball, instead, are genuine singularities
and are preserved and further refined by ASQP (bottom)

of � by piecewise polynomials. Since � is unknown in this context, we mimic
the W 11 error between true and discrete surface by properly scaled jumps of the
normal vector to the discrete surface. More precisely, the error indicator associated
to element T of the k-th surface �k is given by

	�k
.T /2 WD h2T kR.Vk/k2L2.T /

C hT kJ .Vk/k2L2.@T /
C max
S�@T

J 2
n;Skr� Vkk2L2.T /

;

where R.Vk/ D �˛b�� Vk C ˇbVk � gk is the so-called interior residual, J .Vk/

is the jump residual, namely jump of r� Vk normal to the edge, and Jn;S is the
jump of the unit normal vector (to the surface) across the interelement side S (see
Fig. 2 and Table 1).

Geometrically Consistent Mesh Modification (GCMM). The presence of corners
(or kinks) on the deformable boundary �k is usually problematic. First, the scalar
product b�k

.�; �/ of (5) includes a LB regularization term (˛b > 0) which stabilizes
the boundary update but cannot remove kinks because Vk is smooth (see (14)). Sec-
ond, DWR regards kinks as true singularities and tries to refine them accordingly.
The combination of these two effects leads to numerical artifacts (ear formation)
and halt of computations.

The GCMM method of [4] circumvents this issue; see Figure 4. Whenever the
boundary mesh �k is to be modified (refine, coarsen, or smooth out), then the
discrete curvature Hk of �k is interpolated and the new position Xk of the free
boundary is determined from the fundamental geometric identity ���k

Xk D Hk .
This preserves geometric consistency, which is violated by simply interpolating �k ,
as well as accuracy [4]. In addition, this computation rounds fake kinks (due to
numerics) and preserves genuine kinks (see Fig. 5).
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Fig. 4 Detection of genuine geometric singularities. Evolution of the initial upper-left corner of
�s (see top of Figs. 1 and 3): snapshots of iterations 0, 1, 160 and 190. The adaptive SQP method
is able to sort out whether geometric singularities are genuine to the problem or just due to lack of
numerical resolution and to coarsen overrefined regions of the computational grid

Fig. 5 Detection of genuine geometric singularities. Zoom on the evolution of the left-hand part
of the initial configuration �s (see top of Fig. 1 and bottom of Fig. 3): snapshots of iterations
140,160,180 and 220. The adaptive SQP method is able to recognize the corner of the rugby ball
as genuine singularity of the problem and to refine the mesh (combined use of LB and DWR error
estimates) to improve both the PDE and the Geometric approximation

Mesh Quality. The mesh is evolved by a prescribed discrete velocity of its bound-
ary. To avoid mesh deterioration a mechanism to maintain good quality must be
provided. Remeshing in each iteration is expensive and destroys the binary hierar-
chical data structure used for refinements and coarsenings [13]. Our approach is to
use an optimization routine that works on stars and selectively reallocates the center
node so as to improve the star quality and approximately preserve the local mesh
size. It does not change the mesh topology so it is compatible with the binary data
structure. In each star we minimize the SSU (Simultaneous Smoothing and Untan-
gling) cost functional proposed in [6]. When optimization alone is not sufficient to
maintain a good quality we remesh the domain. We refer to [9] for the effect of
remeshing.

Time Step. Control of time step is required to satisfy the Armijo conditions (6) as
well as to avoid node crossing when evolving the mesh [5]. The latter constraint
sometimes dictates the time step, especially when the mesh is fine. We have found
that remeshing ameliorates this issue upon drastically improving the mesh quality.
In [9] we allow remeshing inside the Armijo condition.

Constraints. The area constraint that defines the class of admissible functions is
enforced via a Lagrange multiplier. The algorithm, described in [5], guarantees vol-
ume conservation to machine precision in each time iteration and is well suited to
be utilized inside the Armijo condition loop.
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Convergence of Path-Conservative Numerical
Schemes for Hyperbolic Systems of Balance
Laws

M.L. Muñoz-Ruiz, C. Parés, and M.J. Castro Dı́az

Abstract We are concerned with the numerical approximation of Cauchy prob-
lems for hyperbolic systems of balance laws, which can be studied as a particular
case of nonconservative hyperbolic systems. We consider the theory developed by
Dal Maso, LeFloch, and Murat to define the weak solutions of nonconservative
systems, and path-conservative numerical schemes (introduced by Parés) to numeri-
cally approximate these solutions. In a previous work with Le Floch we have studied
the appearance of a convergence error measure in the general case of noconserva-
tive hyperbolic systems, and we have noticed that this lack of convergence cannot
always be observed in numerical experiments. In this work we study the conver-
gence of path-conservative schemes for the special case of systems of balance laws,
specifically, the experiments performed up to now show that the numerical solu-
tions converge to the right weak solutions for the correct choice of path-conservative
scheme.

1 Introduction

We are interested in the numerical approximation of the initial value problem for
hyperbolic systems that have the form

wt C F.w/x D S.w/�x ; x 2 R; t > 0 ; (1)

where w.x; t/ 2 ˝ , an open convex set of RN , �.x/ is a known function from R to
R, F is a regular function from ˝ to RN , and S is also a function from ˝ to RN .
These systems are called hyperbolic systems of conservation laws with source term
or balance laws.
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Following an idea by LeFloch [3], the equation

�t D 0 (2)

is added to the system in order to rewrite it in the quasilinear form

Wt C A.W /Wx D 0 ; (3)

with

W D
�
W

�

�
(4)

and

A.W / D
�
J.W / �S.W /
0 0

�
; (5)

being

J.W / D @F

@W
.W / : (6)

To begin with, we point out below the non trivial difficulties that arise in the
study of systems (3) with general W and A (not necessarily with the structure
(4)–(6)), which are related to the presence of the nonconservative productsA.W /Wx .
In fact, when the solutions to (3) are discontinuous, which is the common feature,
these products have no sense in the distributional framework and the usual concept
of weak solution can not be used.

We suppose that system (3) is strictly hyperbolic and that the characteristic fields
are either genuinely nonlinear or linearly degenerate, and we assume the definition
of nonconservative products introduced by Dal Maso, LeFloch and Murat in [2],
which is associated to the choice of a family of paths in the phase space˝ . A family
of paths in ˝ is a locally Lipschitz map ˚ W Œ0; 1� �˝ �˝ ! ˝ that satisfies

˚.0IWL;WR/ D WL and ˚.1IWL;WR/ D WR ; for any WL;WR 2 ˝ ;

together with certain regularity conditions. Once a family of paths ˚ is chosen,
the nonconservative product A.W /Wx can be defined as a bounded measure for
W 2 .L1.R � RC/ \ BV.R � RC//N . A notion of weak solution (consequently
depending on the chosen paths) can now be given. Across a discontinuity, a weak
solution satisfies the generalized Rankine–Hugoniot condition

Z 1

0

�
�I �A.˚.sIW �;W C//�˚s.sIW �;W C/ ds D 0 ; (7)

where � is the speed of propagation of the discontinuity, I is the identity matrix,
and W � and W C are the left and right limits of the solution at the discontinuity.
Notice that, when A.W / is the Jacobian matrix of some flux function F.W / we are
concerned with a conservation law, and the proposed definition of nonconservative



Convergence of Path-Conservative Schemes for Hyperbolic Systems of Balance Laws 677

product does not depend on the choice of paths and coincides with the distribu-
tional derivative of F.W /. In addition, the definition of the weak solution reduces to
the distributional one and the generalized Rankine–Hugoniot condition to the usual
one. A notion of entropy weak solution can also be given and the classic theory for
hyperbolic systems of conservation laws concerning simple waves and the solutions
of Riemann problems can be extended to nonconservative systems (3) (see [2,4] for
details).

The choice of the family of paths is highly important, as it determines the speed
of propagation of discontinuities. It should be based on the physical background
of the problem, taking into account the effects related to dispersion, diffusion, . . .
but this seems to be a difficult task in practical applications. On the other hand,
some mathematical conditions can be required for the paths in order to obtain good
properties for the related weak solutions [5].

Concerning the discretization of system (3) together with an initial condition
W.x; 0/ D W0.x/; x 2 R, computing cells Ii D Œxi�1=2; xiC1=2� with constant
size �x are considered, being xiC 1

2
D i�x and xi D .i � 1=2/�x, the center of

the cell Ii . Let �t be the constant time step and define tn D n�t . The approxima-
tion of the cell averages of the exact solution obtained by means of the numerical
scheme is denoted byW n

i . In this work we consider the class of numerical schemes
called path-conservative that was proposed in [6]. A numerical scheme is said to be
� -conservative, for any given family of paths � , if it can be written in the form

W nC1
i D W n

i �
�t

�x

�
D
n;C
i�1=2 CDn;�

iC1=2
�
; (8)

where Dn;˙
iC1=2 D D˙

�
W n
i�q; : : : ;W n

iCp
�

and D� and DC are two Lipschitz-

continuous functions from˝pCqC1 to ˝ satisfying

D˙.W; : : : ;W / D 0 8W 2 ˝ ; (9)

and

D�.W�q ; : : : ;Wp/CDC.W�q ; : : : ; Wp/ D
Z 1

0
A
�
�.sIW0;W1/

�
�s.sIW0;W1/ ds ;

(10)
for everyWi 2 ˝; i D �q; : : : ; p.

This definition generalizes that of conservative scheme for conservative prob-
lems: in the particular case of a system of conservation laws, a numerical scheme is
conservative if and only if it is � -conservative for any family of paths � .

Although it should be desirable to use the same family of paths to define weak
solutions and to construct the numerical scheme, it is not always possible or rea-
sonable from the computational point of view the construction of ˚-conservative
schemes, as the election of ˚ is restricted by the matematical conditions mentioned
above.
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In the following section we recall the conditions imposed for the paths in the case
of systems of balance laws and some results concerning path-conservative schemes
for this particular case of nonconservative systems. In Sect. 3 some aspects concern-
ing the convergence of path-conservative schemes when applied to balance laws are
discussed and they are illustrated with some numerical experiments.

2 Systems of Balance Laws

In this section we emphasize in some aspects concerning the definition of weak
solutions of systems of balance laws and their approximation by means of a path-
conservative scheme. For that, we consider systems (1) written in the form (3)–(6).

If J.W / hasN distinct real and non-vanishing eigenvalues �1.W /; : : : ; �N .W /,
then the system (3)–(6) is strictly hyperbolic with eigenvalues�1.W /; : : : ;�N .W /;0.
We will assume that the characteristic field associated to the zero eigenvalue is the
only one that is linearly degenerate.

In order to define weak solutions to this nonconservative system a family of paths

˚.sIWL;WR/ D
�
˚w.sIWL;WR/
˚� .sIWL;WR/

�

in ˝ � R has to be chosen.
It is convenient to impose the family of paths to satisfy that

˚� .sIWL;WR/ D N� ; s 2 Œ0; 1� ; (11)

for all WL and WR such that �L D �R D N� , as it assures that, if W is a weak
solution of the nonconservative system (3)–(6) with constant � , �.x/ D N� , then w
is a weak solution of the conservative problem wt C F.w/x D 0 :

We also assume that the path connecting two states that belong to the same inte-
gral curve of the linearly degenerate field is a parametrization of the arc of the
integral curve linking them. And finally, we assume that the path connecting two
states for wich the associated Riemann problem has a unique self-similar weak solu-
tion composed by simple waves linking constant intermediate states, is equal to the
union of the paths linking the intermediate states [5].

In fact, the previous requirements on the family of paths completely deter-
mine the notion of weak solution for these systems, which contain two types of
discontinuities: shock waves across which � is continuous that satisfy the usual
Rankine–Hugoniot conditions and stationary contact discontinuities placed at the
jumps of � that connect two states belonging to the same integral curve of the
linearly degenerate field.

In order to numerically approximate the initial value problem we consider path-
conservative schemes. For that, we choose a family of paths

�.sIWL;WR/ D
�
�w.sIWL;WR/
�� .sIWL;WR/

�
:
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The path-conservative schemes constructed using the family of paths ˚ used to
define weak solutions can be characterized by the equality

D�
�
W�q ; : : : ;Wp

�CDC�W�q ; : : : ;Wp
� D F.w1/�F.wC1=2/CF.w�1=2/�F.w0/ ;

(12)
where

W �1=2 D
"

w�
1=2

�0

#
and W C

1=2
D
"

wC
1=2

�1

#

are the left and right limits at x D 0 of the solution of the Riemann problem that
has W0 and W1 as initial condition. This equality also allows us to prove that a
˚-conservative numerical scheme reduces to a conservative one where � is constant.

In fact, at least for q D 0 and p D 1, the � -conservative schemes which reduce
to a conservative scheme in regions where � is constant can be characterized and
we can prove that they can be written in the form

wnC1i D wni �
�t

�x

�
GniC1=2 �Gni�1=2

�C �t

�x

�
H
n;C
i�1=2 CHn;�

iC1=2
�
; (13)

where Gn
iC1=2 D G

�
wni ;w

n
iC1

�
and Hn;˙

iC1=2 D H˙
�
W n
i ;W

n
iC1

�
, being G, H� and

HC Lipschitz continuous functions such that

G.w;w/ D F.w/ ; (14)

H˙
�
W;W

� D 0 ; (15)

H˙
�
W 0;W 1

� D 0 ; (16)

and

H�
�
W0;W1

�CHC�W0;W1
� D

Z 1

0

S.�w.sIW0;W1// .�� /s .sIW0;W1// ds :
(17)

The notationW has been used for valuesW such that � D N� , being N� a fixed value.
In addition, a necessary condition for a � -conservative scheme to be well-

balanced (see [7] for more details on the well-balance property) is that (12) is
satisfied for everyW0 and W1 in an integral curve of the linearly degenerate field.

3 Convergence Properties

The convergence of path-conservative schemes for general nonconservative sys-
tems (3) has been recently studied in [1]. In fact, it has been proven that, if the
approximations generated by a path-conservative scheme converge in the uniform
sense of graphs (see [2] for more details on this notion of convergence), then the
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limit is a weak solution of the nonconservative system. Unfortunately, this conver-
gence is rather strong and usually fails in applications (although it holds for random
choice methods). It can also be proved that, if the approximations just converge
almost everywhere (which is a more realistic assumption from the practical point of
view), a convergence error term appears in the limiting system.

In the particular case of systems of balance laws this lack of convergence is
not appreciated in the cases presented below. The numerical experiments have been
performed for the particular example of the shallow water system governing the flow
of a shallow layer of inviscid homogeneous fluid through a straight channel with a
constant rectangular cross-section:

@h

@t
C @q

@x
D 0 ;

@q

@t
C @

@x

�
q2

h
C g

2
h2
�
D ghdH

dx
:

In these equations q.x; t/ represents the mass-flow and and h.x; t/, the thickness,
g is the gravity, and H.x/ is the depth measured from a fixed level of reference.

The first experiment concerns a dam-break problem over a non-flat bottom

topography given by H.x/ D 1 � 0:5e�.x�5/2 . The initial condition considered
is

q.x; 0/ D 0 ; h.x; 0/ D
�
H.x/ ; x � 4 ;
H.x/C 0:5 ; x < 4 :

The approximations have been obtained by means of a Roe and a modified Lax–
Friedrichs scheme, path-conservative with respect to a very simple family of paths:
the family of segments. In Fig. 1 we observe that both schemes converge to the same
solution as the mesh is refined.
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Fig. 1 Dam-break problem over a non-flat bottom topography. Left: bottom topography and free
surface. Right: free surface (zoom)
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Fig. 2 Stationary contact discontinuities. Left: bottom topography and free surface (stationary
solution). Right: zoom
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Fig. 3 Stationary contact discontinuities. Left: bottom topography and free surface (stationary
solution) obtained with exactly well-balanced schemes. Right: zoom

The convergence of the approximations generated by a ˚-conservative scheme,
provided � 2 W 1;1, the approximations are bounded in L1loc .R� Œ0;1//N and con-
verge to some function in L1loc.R � Œ0;1//N can be proved (a previous result of
that type for a class of well-balanced numerical schemes for solving scalar conser-
vation laws can be found in [8]). In fact, when � is continuous, the approximations
provided by any � -conservative scheme that can be written in the form (13)–(17)
converge to the weak solution of the nonconservative problem.

The second experiment concerns the approximation of stationary contact discon-
tinuities. The bottom topography is now given by

H.x/ D
�
0 ; x < 0;

1 ; x � 0;
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and the initial condition is a pair of states in the same integral curve of the linearly
degenerate field. We first use a Roe and a modified Lax–Friedrichs scheme, path-
conservative with respect to the family of segments. We observe in Fig. 2 that both
schemes converge to the same discontinuous function, but not to the exact solution.

Nevertheless, if we use a more appropriate family of paths to construct the numer-
ical schemes, a family such that the path linking two states in the same integral
curve of the linearly degenerate field is an arc of the integral curve (that is also the
necessary condition for well-balancing), both Roe and the modified Lax–Friedrichs
scheme capture the stationary contact discontinuity exactly. This is observed in
Fig. 3.

This leads us to the conclusion that, in certain special situations, as systems
of balance laws, if the family of paths satisfies the condition related to the lin-
early degenerate characteristic fields stated above, then all of the discontinuities
are correctly approximated and the scheme converge to exact solutions.
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A Two-Level Newton–Krylov–Schwarz
Method for the Bidomain Model
of Electrocardiology

M. Munteanu, L.F. Pavarino, and S. Scacchi

Abstract A two-level Newton–Krylov–Schwarz (NKS) solver is constructed and
analyzed for implicit time discretizations of the Bidomain reaction-diffusion system.
This multiscale system describes the bioelectrical activity of the heart by coupling
two degenerate parabolic equations with several ordinary differential equations at
each point in space. The proposed NKS Bidomain solver employs an outer inexact
Newton iteration to solve the nonlinear finite element system originating at each
time step of the implicit discretization. The Jacobian update during the Newton iter-
ation is solved by a Krylov method employing a two-level overlapping Schwarz
preconditioner. A convergence rate estimate is proved for the resulting precondi-
tioned operator, showing that its condition number is independent of the number of
subdomains (scalability) and bounded by the ratio of the subdomains characteris-
tic size and the overlap size. This theoretical result is confirmed by several parallel
simulations employing up to more than 2,000 processors for scaled and standard
speedup tests in three dimensions.

1 Introduction

The aim of this work is the construction and analysis of a two-level overlapping
Schwarz preconditioner that leads to a scalable Newton–Krylov–Schwarz (NKS)
solver for the Bidomain system of electrocardiology.

The Bidomain system consists of two degenerate parabolic reaction-diffusion
equations modeling the evolution of the intra- and extracellular potentials of the
anisotropic cardiac tissue (macroscale), coupled through the nonlinear reaction term
with a stiff system of ordinary differential equations describing the ionic currents
evolution through the cellular membrane (microscale). The numerical solution of
this coupled multiscale reaction-diffusion model is very expensive and in order
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to reduce the computational costs involved many previous works have considered
semi-implicit (Imex) time discretizations and/or operator splitting schemes, where
the reaction and diffusion terms are treated separately, see e.g., [3, 4, 7, 11, 13–
15, 17, 20–22]. In an attempt to relax the stability constraints of these methods,
some authors have proposed fully implicit [10] or decoupled implicit [8] Bidomain
discretizations, requiring the solution of a nonlinear system at each time step.

In this paper, we construct a scalable NKS Bidomain solver based on a two-level
overlapping Schwarz preconditioner. The condition number of the resulting pre-
conditioned operator is independent of the number of subdomains (scalability) and
bounded by the ratio of the subdomains characteristic size and the overlap size. This
result is confirmed by parallel simulations employing more than 2,000 processors
for scaled and standard speedup tests in three dimensions. A theoretical analysis of
the proposed NKS Bidomain solver and additional parallel tests can be found in [9].

2 The Bidomain Model

The macroscopic Bidomain model represents the cardiac tissue as the superposi-
tion of two anisotropic continuous media, the intra (i) and extra (e) cellular media,
coexisting at every point of the tissue and separated by a distributed continuous
cellular membrane. The intra- and extracellular electric potentials ui , ue in the car-
diac domain ˝ are described in the Bidomain model by the following parabolic
reaction-diffusion system coupled with a system of ODEs for the ionic variables w:

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

cm

@v

@t
� div.Dirui /C Iion.v;w/ D I i

app in ˝ � .0; T /

�cm

@v

@t
� div.Derue/� Iion.v;w/ D I e

app in ˝ � .0; T /
@w

@t
�R.v;w/ D 0; in ˝ � .0; T /;

(1)

with boundary conditions nT Di;erui;e D 0 on @˝ � .0; T / and initial conditions
v.x; 0/ D v0.x/;w.x; 0/ D w0.x/ in ˝ . Here cm is the capacitance per unit area
times the surface to volume ratio; v D ui � ue is the transmembrane potential; Di;e

are the anisotropic intra- and extracellular conductivity tensors; I i;e
app are applied

currents. Iion and R model the ionic currents and depend on the choice of mem-
brane model, here assumed to be the Luo-Rudy phase I (LR1) model [6]. We refer
to e.g., [4, 12, 19] for a mathematical analysis of the Bidomain system under the
compatibility conditions

R
˝
.I i

app C I e
app/dx D 0.



A Two-Level Newton–Krylov–Schwarz Method for the Bidomain Model 685

3 Discretization and Numerical Methods

System (1) is discretized by the finite element method in space and a decoupled
implicit method in time. The space discretization is obtained by meshing the cardiac
domain˝ with a structured grid Th of hexahedralQ1 elements and introducing the
associated finite element space Vh. A semidiscrete problem is obtained by apply-
ing a standard Galerkin procedure. Let M be the symmetric mass matrix, Ai;e the
symmetric stiffness matrices associated with the intra and extra-cellular anisotropic
conductivity tensors, respectively, and Ih

ion; Ii;e;h
app the finite element interpolants of

Iion and I i;e
app, respectively. The time discretization is performed by the following

implicit method with time step � . Given vn D un
i � un

e and wn at time tn,

a. Solve for wnC1 the ODE ionic system: wnC1 � � R.vn;wnC1/ D wn;
b. Solve for unC1 D .unC1

i ;unC1
e / the nonlinear system:

F.unC1/ D
�
cm

�

�
M �M
�M M

�
C
�

Ai 0

0 Ae

���
unC1

i

unC1
e

�
C

 
MŒ Ih

ion.v
nC1;wnC1/� Ii;h

app�

MŒ�Ih
ion.v

nC1;wnC1/ � Ie;h
app�

!
� cm

�

�
MŒ un

i � un
e �

MŒ�un
i C un

e �

�
D 0: (2)

4 A Newton–Krylov–Schwarz (NKS) Bidomain Solver

The nonlinear system (2) arising at each time iteration of the decoupled implicit
method, described in the previous section, is solved by a nested Newton–Krylov–
Schwarz (NKS) method, see e.g., [2, 5]. In this class of methods, a Newton scheme
is used as outer iteration and the Jacobian linear system arising at each Newton itera-
tion is solved by a Krylov method with a Schwarz-type preconditioner. In this paper,
we will consider the Preconditioned Conjugate Gradient (PCG) method accelerated
by a two-level overlapping Additive Schwarz preconditioner.

The outer Newton iteration The outer Newton iteration reads as follows:

a. Choose a starting value u0 D .u0
i ;u

0
e/I

b. For k � 0 and until a Newton stopping criterion is met, find the solution skC1 D
.skC1

i ; skC1
i / of the Jacobian linear system:

J kskC1 D �F.uk/; (3)

where uk D .uk
i ;u

k
e / is the finite element approximation of the intra- and

extracellular potentials at the kth�Newton iteration at the current time step



686 M. Munteanu et al.

and J k is the Jacobian of F.�/ computed in uk . Then, choose skC1
e such thatZ

˝

skC1
e dx D 0I

c. Update the Newton solution: ukC1 D uk C ckskC1; with the scaling factor ck

determined by a line search technique (PETSc default Newton update, see [1]).

By defining the subspace of zero average finite element functions

eV h D f' 2 Vh W
Z

˝

' D 0g and the product space Vh D Vh � eV h;

the Jacobian system (3) can be written in an abstract elliptic variational form, by
introducing the bilinear form abid .�; �/ W Vh � Vh �! R, defined by

abid .s
kC1; �/ D .skC1

i � skC1
e ; 'i � 'e/C �ai .s

kC1
i ; 'i /C �ae.s

kC1
e ; 'e/C

C �
 

NX

lD1

@Iion

@vl

.vk
l /.s

kC1
il
� skC1

el
/'l ; 'i � 'e

!
;

where ai;e.�; �/ are theH 1-bilinear forms induced by the diffusion tensorsDi;e, .�; �/
is the L2-inner product and N is the dimension of the finite element space Vh.

A two-level Additive Schwarz preconditioner for the NKS Jacobian system
Following the classical overlapping Schwarz theory (see [16, 18]), applied to the
variational problem associated to the bilinear form abid , we construct the two-level
Additive Schwarz (AS) operator TAS and we estimate its condition number. We
refer to [9] for further details and a proof of results below. Let TS be a coarse
shape-regular triangulation of˝ constituted byNS nonoverlapping hexahedral sub-
domains ˝m, m D 1; : : : ; NS , of diameter Hm and set HS D maxmHm. We
assume that TS is such that the fine triangulation T1 D Th, introduced in Sect. 3,
is nested in TS . Let then T0 be an additional coarse triangulation of ˝ , nested in
TS , finer than or equal to TS and coarser than T1, i.e., TS � T0 � T1. Let H
denote the characteristic mesh size of T0. The standard technique of adding to each
subdomain˝m all the fine elements �j 2 T1 within a distance ı from its boundary
@˝m is used in order to construct an overlapping partition of ˝ . ˝ 0m denotes the
overlapping subdomains obtained by such extension of each ˝m. Associated with
each subdomain˝ 0m, we define the following local finite element spaces

Vm WD fui 2 Vh W ui .x/ D 0 x 2 ˝n˝ 0mg; and Vm WD Vm � Vm:

Let V0 be the coarse space of trilinear finite elements associated to the coarse trian-
gulation T0, eV 0 D V0\eV h and V0 WD V0�eV 0. Let us introduce the standard local
interpolation operators RT

m W Vm �! Vh, RT
m D .RT

m; R
T
m/ W Vm �! Vh � Vh for

m D 1; :::; NS , the coarse to fine interpolation operator RT
0 W V0 �! Vh.

Following the abstract Schwarz framework, see e.g., [18, Chap. 2], we define the
projection-like operatorseTm W Vh �! Vm; m D 0; 1; : : : ; NS ; by
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abid .IsRT
m
eTmu; IsRT

mv/ D abid .u; IsRT
mv/ 8v 2 Vm; m D 0; 1; : : : ; NS ;

and Tm W Vh �! IsRT
mVm � Vh by Tm D IsRT

m
eTm.

The two-level Additive Schwarz (AS) operator is defined as

TAS WD
NSX

mD0

Is

�
RT

m A�1 Rm

�
Abid ; (4)

where Abid is the matrix operator associated to abid .�; �/, Am D RmAbid RT
m;

and Is is a shift operator that restore the zero average property in the extracellular
component. See [9] for further details and a proof of the following result.

Theorem 1. In the hypotheses of Lemma 5.4 of [8], the condition number of the
two-level Additive Schwarz operator for the NKS Bidomain system is bounded by

�2.TAS / � C
�
1C H

ı

�
;

with a constantC independent of the mesh size h, subdomain sizeH , overlap size ı.

5 Numerical Results

We now present the results of parallel numerical experiments performed on the
Linux Cluster IBM BCX/5120 of the Cineca Consortium (www.cineca.it). Our
FORTRAN code is based on the parallel library PETSc, from the Argonne National
Laboratory [1].

The Bidomain system coupled to the LR1 membrane model is integrated by the
decoupled implicit method described in the previous sections. At each time step, the
nonlinear system is solved by an inexact Newton scheme. The Newton initial guess
is the solution at the previous time step and the stopping criterion is a 10�4 reduc-
tion of the residual l2-norm. The symmetric Jacobian linear system at each Newton
iteration is solved by the preconditioned conjugate gradient method, with zero ini-
tial guess, stopping criterion a 10�4 reduction of the relative residual l2-norm, and
preconditioned by the two-level AS preconditioner. Inexact ILU(0) local solvers are
used for the local problems on the subdomains, while the coarse problem is solved
in parallel by PCG with Block-Jacobi preconditioner with ILU(0) on each block,
run to machine precision reduction of the relative residual.

Computational domain The domain ˝ is either a cartesian slab or the image
of a cartesian slab using ellipsoidal coordinates, yielding a portion of a truncated
ellipsoid (see Fig. 1). These two choices allow us also to test the performance of the
two-level NKS solver in absence or presence of severe domain deformations.

Fine and coarse meshes For both types of domains (cartesian slabs and trun-
cated ellipsoids), we denote the cartesian mesh used by T D Ti � Tj � Tk ,
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204810245122561286432168

Fig. 1 Ellipsoidal domains for scaled speedup Test 1 (Table 1), decomposed in 8, 16, . . . , 2,048
subdomains, each one composed of 32 � 32� 32 finite elements (not shown)

indicating the number of elements in each coordinate direction. This notation applies
to both fine and coarse meshes. When we scale up the mesh by a factor c, for brevity
we define cT D cTi � cTj � cTk , i.e., the number of elements in cT is c3 times
the number of elements in T .

Stimulation site, initial and boundary conditions The depolarization process
is started by applying a stimulus of Iapp D 200�A cm�3 lasting 1ms on the face of
the domain modeling the endocardial surface. The initial conditions are at resting
values for all the potentials and LR1 gating variables, while the boundary conditions
are for insulated tissue.

Test 1: Scaled speedup on ellipsoidal domains We consider a scaled speedup
test on deformed ellipsoidal domains, shown in Fig. 1. The local size of each sub-
domain on the finest mesh is kept fixed at the value 32 � 32 � 32 (before adding
the overlap) and the number of processors (procs.) is increased from 8 to 2,048. The
corresponding processor meshes vary from TS D 1� 2� 4 to 32� 16� 4, forming
increasing portions of ellipsoidal domains ˝ as shown in Fig. 1. The fine mesh is
chosen proportionally to the processor mesh as T1 D 32TS so as to keep the local
mesh size on each processor fixed at 32 � 32 � 32. The coarse mesh is chosen as
T0 D 2TS and the overlap size is ı D h. The simulation is run for 3 time steps of
0:05ms during the depolarization phase.

Table 1 reports the average number of Newton iterations per time step (nit), the
average number of PCG iteration per Newton iteration (lit) and average CPU times
(ltime) per Newton iteration in seconds.

These results confirm the scalability of the two-level NKS Bidomain solver (see
Theorem 1), because nit = 2 and lit is bounded by 24. The average CPU times ltime
show a slight growth with the processor count but only by a factor of about 3.4 in
comparison with the factor 256 in the processor and d.o.f. growth.

Test 2: Standard speedup on cartesian domains, complete cardiac cycle We
now consider the simulation of a complete cardiac cycle over 400 ms with a fixed
time step size � D 0:05ms, for a total amount of 8,000 time steps. This simula-
tion encompasses all the main phases of a heartbeat (depolarization, plateau and
repolarization). The cardiac domain ˝ considered in this test is a slab of dimen-
sions 1:28 � 1:28 � 0:16 cm�3, discretized by a fine mesh T1 D 128 � 128 � 16
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Table 1 Test 1: ellipsoid. Scaled speedup test with coarse mesh T0 D 2TS , three time steps with
� D 0:05ms. nit D average nonlinear Newton iterations per time step; lit D average linear PCG
iterations per nonlinear iteration; ltimeD average CPU times per nonlinear iteration in seconds

Procs. Procs. mesh TS Fine mesh T1 d.o.f. nit lit ltime

8 1� 2� 4 32� 64 � 128 0.5M 2 21.8 6.9
16 1� 4� 4 32 � 128 � 128 1.1M 2 21.5 6.1
32 1� 8� 4 32 � 256 � 128 2.2M 2 21.5 7.5
64 1� 16� 4 32 � 512 � 128 4.4M 2 21.3 7.9

128 2� 16� 4 64 � 512 � 128 8.6M 2 22.0 9.2
256 4� 16� 4 128 � 512 � 128 17.1M 2 22.3 11.5
512 8� 16� 4 256 � 512 � 128 34.1M 2 22.8 12.9

1,024 16� 16� 4 512 � 512 � 128 67.9M 2 23.5 15.8
2,048 32� 16� 4 1;024 � 512 � 128 135.7M 2 23.7 23.7

Table 2 Test 2: complete cardiac cycle. Tnit D total nonlinear Newton iterations; nit D average
nonlinear Newton iterations per time step; TlitD total linear PCG iterations; litD average linear
PCG iterations per nonlinear iteration; TtimeD total CPU time in seconds; dtimeD average CPU
times per time step in seconds

Procs T0 D TS Tnit nit Tlit lit Ttime dtime Speedup

4 2� 2� 1 13,189 1.6 483,067 36.6 334,890 41.9 1.0 (1)
8 4� 2� 1 13,153 1.6 520,377 39.5 209,030 26.1 1.6 (2)

16 4� 4� 1 13,158 1.6 426,450 32.4 85,614 10.7 3.9 (4)
32 8� 4� 1 9,081 1.1 328,589 36.2 40,664 5.1 8.2 (8)
64 8� 8� 1 13,190 1.6 249,551 18.9 18,886 2.4 17.5 (16)

(h D 0:01 cm). For this problem, we perform a standard speedup test (strong scal-
ing) by keeping the fine mesh T1 fixed while increasing the number of subdomains
(D number of processors) from 4 to 64, hence increasing the coarse mesh T0 D TS

from 2� 2� 1 to 8� 8� 1. The small number of processors in this test is due to the
long simulation times needed by a complete cardiac cycle (reported in the column
Ttime of Table 2), since we cannot afford to run for such long times on a larger
number of processors. The overlap size is fixed to ı D h.

Table 2 reports in each row the total number of nonlinear Newton iterations (Tnit)
over the 8,000 time steps performed, the average number of nonlinear Newton itera-
tions per time step (nit), the total number of PCG iteration (Tlit), the average number
of PCG iteration per Newton iteration (lit), the total CPU time (Ttime), the average
CPU time per time step (dtime) and the speedup of the total Ttime (or the aver-
age dtime since they only differ by the constant factor 8,000) with respect to the
4 processor run defined as

speedup (procs) WD Ttime (procs)

Ttime(4)

(and equivalently for the average dtime). The results in Table 2 show that, as in
the previous test, the Newton iterations (both total and average) are independent
of the number of subdomains, except an unexpected reduction in the run with 32
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processors. The total linear iterations Tlit show a consistent reduction for increasing
processors (except for the first increase from 4 to 8 processors), in agreement with
the main bound of Theorem 1, since H (and also the ratio H=h because h is fixed)
is reduced when the number of subdomains (processors) is increased.
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12. Pennacchio, M., Savaré, G., Colli Franzone, P.: Multiscale modeling for the bioelectric activity
of the heart. SIAM J. Math. Anal. 37 (4), 1333–1370 (2006)

13. Plank, G., Liebmann, M., Weber dos Santos, R., Vigmond, E.J., Haase, G.: Algebraic multigrid
preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 54 (4), 585–596
(2007)
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On a Shallow Water Model for Non-Newtonian
Fluids

G. Narbona-Reina and D. Bresch

Abstract The aim of this work is to modelize the evolution of a viscoelastic fluid
through a Shallow Water system.

The fluid hydrodynamic in this situation comes from the Navier-Stokes equations
but the difficulty lies in the definition of the stress tensor for this non-Newtonian
fluid. In order to get an expression for it we focus on the microscopic properties of
the fluid by considering a diluted solution of polymer liquids. A kinetic theory for
this type of solutions gives us “constitutive equations” that relate the stress tensor to
the velocity. They are known as the Fokker–Planck equations.

Once the stress tensor is defined we shall derive the model by developing the
asymptotic analysis of the joined system of equations to obtain a Shallow Water
type model following [6]. Finally we show a numerical test to check the influence
of the polymers in the behavior of the flow.

1 The Fokker–Planck Equation

We consider a diluted solution of polymers to modelize a non-Newtonian fluid.
There are many structures for the polymer to be (cf. [1]); in this work we consider
the simplest model able to account for noninteracting polymer chains, the so called
elastic dumbbell model. So a polymer is represented as two beads connected by an
entropic spring, see Fig. 1.

This configuration is characterized at time t by the position of the center of the
mass r.t/ and its elongation q.t/ that follow a system of stochastic differential
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Fig. 1 Elastic dumbbell
polymer q

equations (see [1] for details). From this system the kinetic theory of polymer liquids
gives us the diffusion equation (called Fokker–Planck eq.) for the function f .t; x; q/
that is defined as the probability density of a polymer to be at the time t at the point x
in the configuration q (that represents the vector connecting the two beads). If we
assume that the fluid moves at velocity u, this equation reads as:

@tf C u � rf D �divq .HFC IFC BF/ ; for .t; x; q/ 2 RC �˝ � B; (1)

with ˝ the fluid domain and B the range for the elongation q.
This equation collects all the force effects experienced by the polymer that we

enumerate next:

1. The hydrodynamic drag force: HF D .ru � q/f . This is the force of resistance
of the polymer as it moves through the fluid.

2. The intramolecular force: IF D �2
�
F.q/f . This is the force resulting from the

spring in the dumbbell, being F.q/ the spring force.
3. The Brownian force: BF D �2��

�
rqf . This force includes the effects of the

thermal fluctuation of the fluid on the polymer.

The constants involved in the equation are � the friction coefficient between the
beads, � the temperature and � the Boltzman constant. The definition of the spring
force F.q/ depends on the structure of the polymers. In particular for the kind of
polymer that we are considering we choose the following expression:

F.q/ D Hq

1 � q2

q2
0

; q � q0: (2)

In this case q0 is the maximum elongation of the spring in the polymer. It is called
the Finitely Extensible Nonlinear Elastic (FENE) connector force [1, 3].

1.1 The Solution of the Fokker–Planck Equation

In order to get the stress tensor we must solve the Fokker–Planck equation. For this
aim we firstly must write this equation under a dimensionless form.

Adimensional Fokker-Planck equation
First note that since q0 is the maximum dumbbell extension, then we take B D

B.0; q0/. We define characteristic variables for the length (L�), the velocity (U�)
and for q (Q�), so the equation (1) reads:
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@tf C u � rf D �divq

�
ru � q f � 1

2De
F.q/f � 1

2De

1

b
rqf

�
; (3)

where now .t; x; q/ 2 RC � ˝ � B.0;pı/ and being ı, De and b adimensional

parameters given by De D �U
�

4L
�

H
, ı D q2

0

Q2
�

and b D Hq2
0

k�
:

The number De is called the Deborah number and it is an indicator of how fluid
a material is. Thus, for De << 1 we find a fluid behavior while for De >> 1 the
material acts as a solid. So we shall consider De << 1 to have a purely viscous
fluid behavior.

According to [7], the parameter ı is roughly the number of monomer units repre-
sented by a bead; thus it is generally larger than 10. To simplify the Fokker–Planck
equation we usually assume that b D 1 when Q� � 1 cm, (see [3] for example).
With these variables the spring force in equation (3) is now done by: F.q/ D q

1� q2

ı

.

The Chapman-Enskog procedure
One way to find a solution for the Fokker–Planck equation is to use the Chapman-

Enskog procedure (see [1, 4] for details) that allows to find successive approximate
solutions to general kinetic equations of the form:

Kf D 1

�
Q f (4)

in terms of the small parameter � being K andQ two operators.
To find a solution of the Fokker–Planck equation we assume De � � and we

define the next operators:

� T , the transport operator: Tf D @tf C u � rf ,
� B , the operator corresponding to the drag force on the beads: Bf D rq � .ru �
q f /;

� A, the operator due to the motion by the springs: Af D 1
2
rq � .rqf CF.q/ f /:

Then the Fokker–Planck equation (3) can be written as follows:

Tf C Bf D 1

�
Af: (5)

So taking K D T C B and Q D A we can write the Fokker–Planck equation as
in (4).

Due to the good properties of the operatorA, we can write it as

Af D 1
2
rq �

�
Mrq

�
f
M

��
, with M being the normalized Maxwellian defined by

M.q/ D 1

J

�
1 � q

2

ı

� ı
2

with J D
Z

B.0;
p
ı/

�
1 � q

2

ı

� ı
2

dq: (6)



696 G. Narbona-Reina and D. Bresch

That helps us to find an unique solution f of (5) given by (cf. [4]):

f .q/ D n0M.q/ being n0 a constant:

2 Deduction of the Model

We consider a viscous fluid in a periodic domain ˝ D ˝.t/ D f.x; z/ 2 R2= 0 �
x � L; 0 � z � hg modeled by the Navier-Stokes equations:

�@tuC �div.u˝ u/Crp D div.�/ � �gez and div.u/ D 0 in RC �˝ (7)

being � the density, u D .v;w/ the velocity, p the pressure, g the gravity constant
and � the stress tensor.

We consider the Fokker–Planck equation to modelize the movement of polymers
immersed into the newtonian fluid. So, essentially, we have a new definition for
the stress tensor divided in two parts: � D �S C �P , where �S comes from the
newtonian fluid, that is usually defined as �S D �.ruCrtu/, being � the viscosity
and �P directly related to the forces acting on the polymer. It is defined from the
distribution density function f –solution of (1)– through the following expression
(cf. [1]):

�P .t; x/ D hF.q/˝ qid � �� hId id ; (8)

where the q-average< � >d , is defined as h	id D
Z

B

	.q/f .q/dq.

Therefore, to write the whole model we must consider both Navier-Stokes and
Fokker–Planck equations together with the boundary conditions. In particular we
consider the free surface condition and the effect of the atmospheric pressure. On
the flat bottom we consider the no penetration condition and the friction effect. We
write the problem as follows:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

�@tuC �div.u˝ u/Crp D div.�/ � �gezI
div.u/ D 0I
@tf C u � rf D �divq

�
ru � q f � 2

�
F.q/f � 2��

�
rqf

�
I

.� � p/ � nS D ˛S k � nS
@thC v � @xh D w

�
on z D h

..� � p/ � nB /� D ˛Bu�
u � nB D 0

�
on z D 0

(9)

Where we consider the following notation: h the free surface, ˛S the tension
coefficient at the surface, ˛B the friction coefficient at the bottom, nS the normal
vector to the surface, nB the normal vector to the bottom and k D div.nS / the mean
curvature on the surface.
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For the derivation of the model we follow the work developed by Gerbeau
and Perthame in [6]. It consists of several steps: adimensionalization, hydrostatic
approximations, vertical integration and asymptotic analysis. The originality of our
work lies in the addition of the Fokker–Planck equation to the classical problem, so
for the sake of brevity we are only going to show the contribution of this equation
into the process. Finally we’ll show the model obtained. The complete deduction
can be found in [2].

With regard to the first step, the dimensionless Navier-Stokes equations are got
as usual under the Shallow-Water hypothesis, i.e., the characteristic length of the
domain (L�) is larger than the characteristic height (H�). Thus we can assume
� D H

�

L
�

to be small and we obtain the equations in function of this parameter.
Besides, for the asymptotic regime we chose: � D ��0; ˛S D �˛0S ; ˛B D
�˛0B ; De D �De0.

Note that in this case we also assume that the characteristic vertical velocity is
�U�, that must be taken into account on the dimensionless Fokker–Planck equation
whereru appears. In this sense we have to correct the equation (3). First we denote:

ru D 1

�

�
0 @zv
0 0

�

„ ƒ‚ …
C

C
�
@xv 0

0 @zw

�

„ ƒ‚ …
G

C�
�
0 0

@xw 0

�

„ ƒ‚ …
E

; (10)

so we write the operator B as follows:

Bf D rq �
�
1

�
Cqf CGqf C �Eqf

�
D 1

�
rq �.Cqf /Crq �.Gqf /C�rq �.Eqf /:

The Fokker–Planck equation reads now as:

Tf Crq � .Gqf /C �rq � .Eqf / D 1

�De0
.Af �De0rq � .Cqf //

that can be written as a revised equation (5):

Tf C eBf D 1

�
eAf; (11)

being eBf D rq �..GC�E/qf / andeAf D 1
2De0
rq �.rqf CF.q/f �2De0Cqf /.

We must also write the dimensionless expression for the stress tensor �P :

�P .t; x/ D 
 .b hF.q/˝ qi � n0Id/ ; (12)

being now the new q�average h	i D
Z

B.0;
p
ı/

	.q/f .q/dq and n0 D
Z

B.0;
p
ı/

f .q/dq the density of the polymer chains. The parameter 
 D ��Q� can be roughly
interpreted as the mean kinetic energy of the Brownian motion.
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Once we get the dimensionless coupled system we neglect the second order terms
to obtain the hydrostatic system and we work out the vertical integration.

To obtain the Shallow Water system we first take the development of the variables
in function of � up to second order:

v D v0 C �v1 C O.�2/; w D w0 C �w1 C O.�2/; p D p0 C �p1 CO.�2/;

h D h0 C �h1 C O.�2/; �P D �P0 C ��P1 C O.�2/

and k D @2xhCO.�2/. If we write the equations up to principal order, 1
�

, we have:

�0@
2
z v0 D �@z�

12
P0; �0@zv0

jzDh
D ��12P0jzDh; �0@zv0

jzD0
D ��12P0jzD0:

The classical way to deduce the Shallow Water system is based on the fact that the
velocity v does not depend on z up to first order, so v0 D v0.t; x/ and @zv0 D 0.

Accordingly to this and to continue with the deduction of the model we are
obliged to prove that �12P0 D 0. As we know �P comes from the solution of the
Fokker–Planck equation according to (12), so we must solve it.

Theorem 1. We consider the matrix C D
�
0 @zv
0 0

�
with @2z v D 1

�0
@z�

12
P and

�12P D 

Z

D

q1q2

1 � q2

ı

f .q/dq

with q D .q1; q2/. Then the equation eAf D 0 admits an unique radial solution
f D f .jqj/ and it is of the form f D n0M.q/; being n0 the density of the polymer
chains, solution of @tn0 C u0 � rn0 D 0 and M given by (6).

Now we follow the Chapman-Enskog procedure to find the solution f D f0 C
�f1 of the Fokker–Planck equation and we calculate �P D �P0 C ��P1 to get:

�P0 D �0n0
�
1 0

0 1

�
; for �0 D 
.�ˇ.3/ � 1/

J
(13)

and

�P1 D �1n0
�
@xv0 @zv1
@zv1 �@xv0

�
; for �1 D 
ˇ.5/

4J
; (14)

being the function ˇ.p/ D R
p
ı

0
rp
�
1 � r2

ı

�ı=2�1
dr:

Note that �0 and �1 correspond to the contribution of the polymers present in the
fluid into the friction effect.

Now that we know �P , we can continue with the deduction of the model in the
classical way to get the Shallow Water system.
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2.1 Final Systems

In this section we show the two models obtained by taking the first and the second
order approximation respectively. We write them in the dimensional form so we
denote Q̨B D ˛B

�
, Q̨S D ˛S

�
and  D �

�
.

First order approximation

.S1/

8
<

:

@thC @x.hv/ D 0I
@t .hv/C @x.hv2/C 1

2
g@x.h

2/ D � Q̨BvI
@t .hn0/C @x.v hn0/ D 0:

(15)

As we can see in these equations neither the tension nor viscosity effects appear.
Second order approximation

.S2/

8
<

:

@thC @x.hv/ D 0I
@t .hv/C @x.hv2/C 1

2
g@x.h

2/ � 4@x.h@xv/ D �� Q̨BvC Q̨Sh@3xhI
@t .hn0/C @x.v hn0/ D 0:

(16)

Where now, � D
�
1C 1

3

Q̨Bh
�.n0/

��1
and �.n0/ D 1C � �1n0


.

As usually we obtain a corrected friction term for the second order approxima-
tion. If we look at the system (15), the friction term, Q̨Bv, depends only on the
friction coefficient Q̨B while in the system above the friction terms reads as � Q̨Bv.
This new coefficient � contains the polymer effects into the fluid, represented by �1.

3 Numerical Results

In this section we solve a dam break problem for the two models obtained previously
in order to check the polymer effect into the fluid.

To solve numerically these systems we have used the WAF method of second
order accuracy (see [5]). For the sake of simplicity we don’t consider the surface
tension effect by taking Q̨S D 0.

We consider a domain of lengthL D 50 and take�x D 0:5, the CFL condition is
fixed as 0.9 and the final time is 3 seconds. We take the following initial conditions:

h.t D 0/ D
�
3 x < 10

0:1 x � 10 I hv.t D 0/ D
�
3:5 x < 10

0 x � 10 I n0.t D 0/ D 1:

We have fixed the following constants: �0 D 0:95, �0 D 0:5, ı D 10, with  D
�0

�0
10�3. Considering that 
 2 Œ0:1; 5� (cf. [4]), we have taken the following values:

Q̨B D 10�1; 10�2; 10�3I 
 D 0:1; 1; 3; 5:
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Fig. 2 Solutions for (S1) and
(S2)
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We show the numerical results in Fig. 2, where we can see that the main differ-
ence is found in the discharge. For these results we have taken Q̨B D 10�1 and

 D 0:1 that gives us the minimum value for �, for which we obtain the largest
difference between the two models.

The innovation of this work is the presence of polymers into the fluid that comes
from the coefficient �1. So another important issue is to check the influence of �1 in
the model. For this aim we shall also take �1 D 0 to compare this solution of second
order model with those when �1 ¤ 0. These solutions are shown in Fig. 3 where we
can see that this influence is not insignificant at all.
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4 Conclusions

In summary, we have deduced a new Shallow-Water model for a non-newtonian
fluid focused on its microscopic properties. Regarding the numerical results, as usual
we find important differences between first and second order models due to the
viscosity effect. But we evidence that the influence of the polymers in the evolution
of the fluid is also important.
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On Stationary Viscous Incompressible Flow
Through a Cascade of Profiles
with the Modified Boundary Condition
on the Outflow and Large Inflow

Tomáš Neustupa

Abstract The paper is concerned with the analysis of the model of incompressible,
viscous, stationary flow through a plane cascade of profiles. The problem is formu-
lated in a bounded domain of the form of one space period with suitable boundary
conditions on the boundary. Let us recall that there is usually imposed the condition
on smallness of the inflow velocity or the condition on smallness of fluxes between
various components of the boundary (Specially that the balance of fluid entering
and leaving domain is zero for each component of boundary) in known theorems on
existence of a weak solution of the boundary-value problem for the Navier–Stokes
equation with the nonzero Dirichlet boundary condition, (see e.g., Mathematical
Methods in Fluid Dynamics (1993), An Introduction to the Mathematical Theory of
the Navier–Stokes Equations (1994), Finite Element Approximation of the Navier–
Stokes Equations (1979), Navier–Stokes Equations (1977)). In this paper the case
of a large inflow is considered, however the possibility of the large inflow is com-
pensated by certain modification of the boundary condition on the outflow and by a
specification on the shape of the domain.

1 Introduction and the Geometry of the Problem

We study the steady flow through a simplified plane cascade of profiles. The model
of cascade of profiles describes e.g., the flow through a turbine. If we consider the
intersection of the real 3D region filled by the moving fluid with a circular cylin-
drical surface, whose axis coincides with the axis of rotation of the turbine, and
expand the surface in the x1; x2-plane. We can naturally arrive at a 2D domain.
The obtained domain is unbounded, however periodic in the x2–direction. Its
complement in R2 consists of the infinite number of profiles, numbered from �1
toC1.
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Fig. 1 Domain ˝

We suppose that the boundary of the profile No. 0 is a simple closed curve C0
in R2, piecewise of the class C 2, whose interior and exterior are domains with a
Lipschitz-continuous boundary. We put Ck D f.x1; x2 C k�/I .x1; x2/ 2 C0g (for
k 2 Z), where � is a positive constant. We assume that � is so large that the curves
Ck are mutually disjoint. The set M WD SC1

kD�1 IntCk is called a cascade of
profiles. (IntCk denotes the interior of curve Ck .) Number � is called the period of
the cascade.

It is reasonable to assume that the flow through the cascade is periodic in the
x2-direction with the period � . Consequently, we can study the flow just in one
spatial period of the whole domain. The chosen period is denoted ˝ . Its boundary
consists of the curves �i , �o, �C, �� and �w. See Fig. 1.

We suppose that the profiles in the cascade have a shape which enables us to
choose the artificial periodic boundaries as strait lines. Furthermore, we choose for
simplicity the origin of the system of coordinates so that A0 D Œ0; 0�. Then di D 0

and A1 D Œ0; ��, B0 D Œdo; 0� and B1 D Œdo; � �. The corresponding shape of
domain ˝ is now obvious from Fig. 1. For technical reasons we assume that the
curve �w is of the class C 2.

2 Auxiliary Functions and Results

2.1 The Auxiliary Cut-Off Function ��

Suppose that � > 0 is a small positive number. We assume that

e�1=� < max
˚
1
6
˛1I 13 Œ� � ˇ2�I 13 ˇ1

�
: (1)
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We set � D e�1=� (hence e�2=� D �2) and

#�.x1/ WD

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

0 for x1 � 1
2
�2;

linear for 1
2
�2 � x1 � �2;

�=x1 for �2 � x1 � �;
linear for � � x1 � 3

2
�;

0 for 3
2
� � x1:

Further, we define

��.x1/ D 1

K

Z 3
2 �

x1

#�.t/ dt where K WD
Z 3

2 �

0

#�.t/ dt:

An elementary calculation shows that K D 1
2
� C 1 � 1.

We can observe that

sup
x1>0

j� 0�.x1/j D
�

K�2
� �

�2
;

j� 0�.x1/j �
3�

2Kx1
� 3�

2x1
for x1 > 0; x1 6D 1

2
�2; �2; �; 3

2
�:

and

sup
x1>0

j� 00� .x1/j D
2�

K�4
� 2�

�4
;

j� 00� .x1/j �
9�

2Kx21
� 9�

2x21
for x1 > 0; x1 6D 1

2
�2; �2; �; 3

2
�:

2.2 The Auxiliary Cut-Off Function ��

(By analogy with Temam [6]) we define �.x/ WD dist.x; �w/ and put

	�.x/ WD 1 � ��
�
�.x/

�
for x 2 ˝:
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The function 	� equals zero in a neighborhood of the profile �w (for �.x/ < 1
2
�2

and equals one far from �w (for �.x/ > 3
2
�).

As the function �.x/ is twice continuously differentiable in ˝ , we can derive
from estimates for � 0�.x1/; � 00� .x1/ that there exist positive constants c1, c2, c3 and c4
(independent of �) such that

sup
x2˝
jr	�j D c1

�

�2
; jr	�.x/j � c2

�

�.x/
for a.a. x 2 ˝;

sup
x2˝
jr2	�.x/j � c3

�

�4
; jr2	�.x/j � c4

�

�2.x/
for a.a. x 2 ˝:

(Here and in the following a.a. is an abbreviation for almost all and a.e. is an
abbreviation for almost everywhere).

2.3 A Special Extension of the Inflow Profile g to the Domain˝

We suppose that function g represents the given velocity profile on the inflow. Func-
tion g satisfies the condition g12.A0/ D g.A1/. We assume that g� is the extension
of the function g from �i onto ˝ , constructed in [2], such that g� D 0 on �w, g�
satisfies the condition of periodicity g�.x1; x2C�/ D g�.x1; x2/ for .x1; x2/ 2 ��
and the estimate kg�k1 � c kgksI�i

holds.

There exists a stream function  � 2 H 2.˝/ such that g�D
�
@ �
@x2

; � @ �
@x1

�
in ˝ .

(This can be deduced from Theorem 3.1 in [4, p. 37]. Since domain˝ is not simply
connected, it is here important that the trace of g� on �w is zero.) Moreover, there
exists a constant c5 > 0 (independent of g�) such that

k �kH2.˝/ � c5 kg�kH1.˝/2 : (2)

Now we modify the stream function  � by means of the cut-off functions �� and
	� and we define

 ��.x1; x2/ WD  �.x1; x2/ ��.x1/C ˚

�
x2
�
1� ��.x1/

�
	�.x1; x2/; (3)

g��.x1; x2/ WD
�@ ��

@x2
.x1; x2/; �@ 

��

@x1
.x1; x2/

�
(4)

where ˚ WD R �
0
g1.s/ ds (the flux into ˝ through �i ). Thus, g�� is the divergence-

free vector function whose stream function is  �� and

kg��kH1.˝/2 � c.�/ kgkH s.�i /
2 : (5)

(For complete proof see [5].)
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The idea of the definition of the stream function  �� is as follows: We first use
the cut-off function �� in order to interpolate between the stream function  �
(generating the flow g�) and the stream function .˚=�/ x2 (generating the con-
stant one-dimensional flow .˚=�; 0/). The interpolation in fact takes place in the
area 1

2
�2 < x1 <

3
2
�. Then we multiply the stream function of the constant flow

.˚=�; 0/ in the area x1 > 3
2
� by the cut-off function 	�.x/ in order to modify the

flow in the neighborhood of the profile �w.

3 The Problem with the Large Inflow

We assume that the moving fluid is viscous and incompressible. From the definition
of our mathematical model follows that the velocity can be considered to create a
2D vector field u D .u1; u2/. We further denote by p the kinematic pressure, by n
the outer normal to the boundary, f (D .f1; f2/) the specific volume force and by 

is the kinematic coefficient of viscosity. We study the flow described by 2D steady
Navier–Stokes equation in the form

.u � r/u D f � rp C 
 �u: (6)

Equation (6) must be necessarily completed by the condition of incompressibility

div u D 0: (7)

It is natural to prescribe the inhomogeneous Dirichlet boundary condition on the
inlet:

u j�i
D g: (8)

We assume that the fluid satisfies the no slip Dirichlet boundary condition on the
profile:

u j�w D 0: (9)

We further suppose that the following conditions of periodicity are fulfilled on the
artificial boundaries �C and ��:

u.x1; x2 C �/ D u.x1; x2/ for .x1; x2/ 2 ��; (10)

@u
@n
.x1; x2 C �/ D �@u

@n
.x1; x2/ for .x1; x2/ 2 ��; (11)

p.x1; x2 C �/ D p.x1; x2/ for .x1; x2/ 2 ��: (12)

The boundary condition on the outflow �o, arises from the weak formulation of
the problem and has a form
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� 
 @u
@n
C p n � 1

2
.u � n/� .u� g��/ D h (13)

which can, due to the special form of g�� on the outflow (following from (3)), be
written in the form

�
 @u
@n
C p n � 1

2
.u � n/� u C 1

2
.u � n/� �˚=�; 0� D h:

Here h D .h1; h2/ is a given function on �o.
Equations (6) and (7) and the boundary conditions (8)–(13) represent the classical

formulation of the considered boundary-value problem.

4 Weak Formulation of the Problem in Domain˝
and Existence of a Weak Solution

We denote by H 1.˝/ the usual Sobolev space of functions defined a.e. in ˝ .
The space of vector-functions (with values in R2) whose each component belongs
to H 1.˝/ is denoted by H 1.˝/2. Furthermore, V denotes the space of vector-
functions v D .v1; v2/ 2 H 1.˝/2 such that div v D 0 a.e. in ˝ , v D 0 a.e. in
�i [ �w and v.x1; x2 C �/ D v.x1; x2/ for a.a. .x1; x2/ 2 ��. (The conditions on
the curves �i , �w and �� are interpreted in the sense of traces.) We equip the linear
space V by the norm

jjjvjjj WD
	Z

˝

2X

i;jD1

	
@vi
@xj


2
dx

1=2

which is equivalent with the norm of the space H 1.˝/2.
Let us multiply (6) by an arbitrary test function v D .v1; v2/ 2 V , integrate over

˝ and use Green’s theorem. We get

Z

˝

f � v dx D
Z

˝

	
@u
@t
� 
�uC .u � r/ uCrp



� v dx D (14)

D
Z

˝

@u
@t
� v dx C 


Z

˝

2X

i;jD1

@ui
@xj

@vi
@xj

dx � 

Z

@˝

@u
@n
� v dS

C
Z

˝

2X

i;jD1
uj
@ui
@xj

vi dx �
Z

˝

p div v dx C
Z

@˝

p v � n dS:

Using the properties of the function v, the boundary conditions (10)–(13) and the
relation n.x1; x2/ D �n.x1; x2 C �/for .x1; x2/ 2 ��, we obtain the identity
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Z

˝

f � v dx D 

Z

˝

2X

i;jD1

@ui
@xj

@vi
@xj

dx C (15)

C
Z

˝

2X

i;jD1
uj
@ui
@xj

vi dx C
Z

�o

1

2
.u � n/� .u � g��/ � v dS C

Z

�o

h � v dS:

For u D .u1; u2/, v D .v1; v2/, w D .w1;w2/ 2 H 1.˝/2 we introduce the
following forms:

.v;w/ D
Z

˝

v � w dx; a1.u; v/ D 


Z

˝

2X

i;jD1

@ui
@xj

@vi
@xj

dx;

a2.u; v;w/ D
Z

˝

2X

i;jD1
uj
@vi
@xj

wi dx; b.h; v/ D �
Z

�o

h � v dS;

a3.u; v;w/ D
Z

�o

1

2
.u � n/� .v � g��/ � w dS;

a.u; v/ D a1.u; v/C a2.u;u; v/C a3.u;u; v/: (16)

Using this notation we arrive at the integral equation:

a.u; v/ D .f; v/C b.h; v/: (17)

Here you can see that the boundary condition on the outflow (�o) is constructed
according to the deriving of the weak solution. The special form of g�� enables us to
prove of the coercivity of the form a without any restrictions on the incoming flow
(restrictions on the smallness of the function g). However we must use this more
complicated form of the boundary condition on the outflow.

Definition 1. Let function g 2 H s.�i /
2 (for some s 2 .1

2
; 1�) satisfy the condition

g.A1/ D g.A0/ (where A0 and A1 are the end points of �i ). Let f 2 L2.˝/2 and
h 2 L2.�o/2. We seek a vector function u 2 H 1.˝/2 which satisfies the equation
of continuity (7) a.e. in ˝ , the boundary conditions (8) (respectively (9)) in the
sense of traces on �i (respectively on �w), the condition of periodicity (10) a.e. on
�� and such that identity (17) holds for all test functions v 2 V . The solution of this
problem is called a weak solution in the domain˝ .

Now we shall seek for the weak solution u in the form u D g��C z where z 2 V
is a new unknown function. This guarantees that u satisfies all the boundary and
periodicity conditions (8)–(13). Substituting this form of u into (17), we derive the
following problem: Find a function z 2 V such that it satisfies the equation

a.g�� C z; v/ D .f; v/ C b.h; v/ (18)

for all v 2 V .
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The following theorem can be proved.

Theorem 1 (On the existence of a weak solution). The weak problem (18) has a
solution z that satisfies the estimate

jjjzjjj � R: (19)

where R is a constant. Consequently, the weak problem from Definition 1 has a
solution u (D zC g��) that satisfies

krukL2.˝/2 � RC krg��kL2.˝/2 � RC c kgkH s.�i /
2 WD R0: (20)

The proof of that theorem follows the usual way, i.e., we need to prove to
coercivity of the form a. Using the definition of a.g�� C z; z/, we obtain:

a.g�� C z; z/ D a1.g��; z/C a1.z; z/C a2.g��; g��; z/
C a2.z; g��; z/C a2.g�� C z; z; z/C a3.g�� C z; g�� C z; z/: (21)

In order to prove coercivity we have to estimate all of the terms on the right
hand side of (21). The term a1.z; z/ is the “good” term as it is equal to 
jjjzjjj2.
Terms where z is just linear do not cause any problems but we have to estimate the
remaining terms very carefully. Here the formulation of g�� is a key part. Putting
all the estimates together we obtain the following inequality

a.g�� C z; z/ � 


2
jjjzjjj2 � 
 c jjjzjjj kgkH s.�i /

2 � c kgk2
H s.�i /

2 jjjzjjj

D jjjzjjj
�

2
jjjzjjj � 
 c.�/ kgkH s.�i /

2 � c kgk2
H s.�i /

2

�
: (22)

Constant c is a generic constant coming from the estimates of the individual terms.
From (22) is obvious that for jjjzjjj ! C1 is a.g��Cz; z/! C1 and the coercivity
of the form a is ensured. (The complete proof can be found in [5].)

Conclusion The main goal of this paper is to show that the usual restriction on the
incoming flow, which has the form of restriction on the prescribed velocity profile
g or some additional restrictions imbued on the integral form a, can be avoided.
In fact my idea is that problem arise from the strong flow between two parts of
boundary (here �i and �o). In the construction of the g�� we respected this idea and
we put a stronger control on the incoming flow. As you can see it is then possible to
prove the existence without any restrictions. The payment for this result is the more
complicated form of the outflow boundary condition and, for technical reasons, the
rectangular shape of the domain˝ .
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Variational and Heterogeneous Multiscale
Methods

Jan Martin Nordbotten

Abstract Both the variational and heterogeneous multiscale methods are presented
for non-linear variational problems. We show that the variational multiscale method
can be seen as a subset of the methods which can be defined within the heteroge-
neous multiscale method framework. Our results extend to the approximate forms
of the multiscale methods which are of interest to applications.

1 Introduction

Classical numerical discretization methods for partial differential equations are for-
mulated at a single scale. Text book examples include the both finite elements and
finite difference methods (see e.g., [2, 8, 18]). Single scale methods are well suited
for relatively smooth solutions, as is apparent from the derived error estimates (see
e.g., [2]). However, as applications have become ever more complex, the need has
arisen for numerical methods requiring less smoothness of the solution. Methods
addressing these aspects can be called “multiscale.”

Among the influential developments of multiscale methods are generalized finite
elements [1], (numerical) upscaling methods (see e.g., [7,9] and references therein).
Additionally, linear solver for single scale methods have increasingly been adapted
to tackle solutions with multiscale nature [3, 4, 19].

In this contribution, we will illustrate how two modern relatives to the general-
ized finite element and numerical upscaling approaches are related. In particular,
we consider the finite element formulations of the Variational MultiScale (VMS)
method [11, 12] and the Heterogeneous Multiscale Method (HMM) [10]. For rela-
tionships between existing generalized finite element methods, see e.g., [5, 15]. For
error analysis and discussion of both MsFEM (a special form of VMS) and HMM
for elliptic problems, see e.g., [6]. While the VMS and HMM are developed from
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different perspectives, we show that VMS can be interpreted as an instance of the
Finite Element HMM (HMFEM).

The relationship between VMS and HMFEM may seem trivial when the methods
are presented in similar notation. Yet, since the fundamental ideas and conventional
expositions of the methods are different, the similarities have not been widely appre-
ciated. It is thus our goal to give a clear and concise presentation of the relationship
between VMS and HMFEM.

We state minimization problems as: Denote by u 2 V the element

u D arg min
v2V

A.v/� B.v/ (1)

for convex and linear functionals A and B , respectively, and a suitable function
space V . We describe the variational problem as: Find u 2 V such that

a.u; v/ D b.v/ 8 v 2 V: (2)

When a and b are the (GOateaux) derivatives of A and B , (2) will be satisfied for
all solutions of (1). A special case arises when A is quadratic, which implies that a
will be bi-linear.

2 VMS

In this section we will recall the VMS methodology for solving problems of the type
given in (2). We restrict ourselves in this section to problems where there exists a
unique solution. Furthermore, we consider only cases where a and b are linear in v,
which is the case when (2) is derived as the weak form of some equation

L u D b:

To facilitate the later discussion, the original notation of Hughes for linear
problems, see e.g., [12], has been adapted slightly.

The standard VMS approach to solving (2) is to split V into a direct sum of
the resolved (usually finite dimensional) space VH and an unresolved fine scale
V 0. Thus V D VH ˚ V 0. The decomposition will in general not be orthogonal
with respect to the energy norm induced by a. We impose the restriction that this
decomposition is chosen such that all the fine and coarse scale problems refered to in
the continuation have unique solutions (at least one such decompositions exists since
the original problem has a unique solution). Thus we can consider the variational
problem: Find uH 2 VH s.t.:

a.uH C u0; vH / D b.vH / 8 vH 2 VH ; (3)
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where u0 2 V 0 satisfies:

a.u0 C uH ; v
0/ D b.v0/ 8 v0 2 V 0: (4)

Formally, when a is bi-linear, we can write the solution of (4) using the Green’s
operator: u0 D G0.L uH / � G0.b/. We apply the notion of Green’s functions to
non-linear problems, and adapt the notation that u0 D G0.uH ; b/.

We may then substitute for u0 in (3) to obtain a problem posed only on the coarse
scale: Find uH 2 VH such that

a.uH CG0.uH ; b/; vH / D b.vH / 8 vH 2 VH : (5)

This is the form of the VMS method referred to by Hughes et al. as a paradigm for
multiscale modelling [12].

The variational form given in (5) can be considered as a Petrov–Galerkin type
method for the original problem (the solution is in a subspace of VH ˚ G0.VH /,
while the trial space is VH ). We can achieve an equivalent Galerkin method by
observing from (4) that a.uH C G0.uH ; b//; G

0.vH ; b// D b.G0.vH ; b//. Since a
is linear in the second argument, by addition we then have: Find uH 2 VH such that

a.uH CG0.uH ; b//; vH CG0.vH ; b// D b.vH CG0.vH ; b// 8 vH 2 VH : (6)

We refer to this as the symmetric form of VMS.
When a and b are functional derivatives, we then have that the solution of (5) is

a stationary point for uH 2 VH of the expression

A.uH CG0.uH ; b//� B.uH CG0.uH ; b// (7)

with respect to variations of the form �.vH C G0.vH ; b//. Similarly, (5) is a
stationary point of (7) with respect to variations of the form �vH .

Remark 1. Equations (5)–(7) are all exact equations for the component of the solu-
tion of the original problem in VH , in terms of the projection introduced by the
direct sum decomposition into VH and V 0.

Remark 2. The advantage of the symmetric vs. the non-symmetric form of VMS is
not clear. Early experience in one implementation indicates that the non-symmetric
form is computationally more efficient due to fewer elements in the coarse scale
system matrix, however it tends to be less accurate [16].

In practice, the computation ofG0 is too expensive, and we use the approximationeG0 � G0. The choice of eG0 is essential for the successful application of the VMS
framework.
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3 HMFEM

We will in this section present the derivation of the Heterogeneous Multiscale Finite
Element Method, as originally described in [10].

Consider this time the minimization problem given in (1), and assume it has a
unique solution. By introducing a compression operator Q W V ! VD , where VD is
some coarse scale solution domain, we have the minimization problem equivalent
to (1):

min
v2V

A.v/ � B.v/ D min
vD2VD

min
vWQvDvD

A.v/� B.v/: (8)

We restrict the choice of compression operators under consideration such that also
(8) has a unique solution vD . We denote a reconstruction operator as any operator
R W VD ! V such that uD �QRuD D 0 for all uD 2 VD . We note that an “exact”
reconstruction operator with respect to the minimization problem can be defined
from (8):

ReuD D arg min
vWQvDuD

A.v/� B.v/: (9)

We now have the coarse scale HMFEM minimization problem

min
vD2VD

A.RvD/ � B.RvD/: (10)

This problem is termed “exact” if the reconstruction is exact, R D Re.
We now give three variational forms of HMFEM based on (10). If we apply a

standard variational approach to (10), we obtain: Find uD 2 UD such that

a.RuD; r.uD; vD// � b.r.uD; vD// D 0 8 vD 2 UD : (11)

Here, a, b and r are the derivatives of A, B and R, respectively.
There are several other ways to derive a variational form of the minimization

problem. We will consider two natural choices, which both avoid the (possibly com-
plex) calculation of r . Our first approach takes coarse scale variations around the
reconstructed solution, e.g., RuD C �vD , leading to: Find uD 2 UD such that

a.RuD; vD/� b.vD/ D 0 8 vD 2 UD: (12)

Alternatively, we may consider reconstructed variations, e.g., RuD C �RvD ,
which leads to: Find uD 2 UD such that

a.RuD;RvD/� b.RvD/ D 0 8 vD 2 UD: (13)

This latter formulation preserves symmetry of the operator a with respect to the
multiscale approach.
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Remark 3. For exact reconstructions Re, all three variational formulations pre-
sented above are consistent with the fine scale problem (1), and when unique
solutions exist, they will be equivalent.

Remark 4. For problems where R is linear, we have that r.uD; vD/ D RvD , and
thus formulations (11) and (13) are identical.

For practical purposes, calulating the exact Re is excessively expensive, and
an approximation is introduced; eR � Re. When employing approximate recon-
structions, an appreciable difference may be seen between the three variational
formulations (11)–(13), see e.g., [16].

It is usually advocated (see e.g., [10]) that since uD is a macro-scale function,
it should vary smoothly, thus it is sufficient to evaluate the integrals appearing in
the variational formulation at quadrature points. This allows for great flexibility
in localization strategies for approximating eR.

4 The Relationship Between VMS and HMFEM

The motivation and development of VMS and HMFEM is clearly different, which is
apparent both from the descriptions given in the preceeding sections as well as from
the analysis conducted by previous authors (in addition to the cited works, see also
[14, 17]). Nevertheless, we see an immediate similarity when we consider (5)–(7)
and (10)–(13). In this section we will formalize these relationships.

4.1 The Relationship Between Exact VMS and HMFEM

This section will make clear the relationships between the exact VMS and HMFEM
formulations. In particular, we show that any VMS method is equivalent to a
HMFEM, but that the converse is not true.

We denote by “exact,” when the Green’s operator (for VMS) or the reconstruction
operator (for HMFEM) is solved exactly. It follows that

Lemma 1. Given the solution uH of exact VMS method, the sum u D uH C
G0.uH ; b/ solves the original problem.

This lemma is a consequence of the observation that no approximations were intro-
duced in the development of (5). This has been commented on since the original
derivation as one of the advantages of the VMS framework [12]. Lemma 1 extends
to the solution of (6)–(7) when valid.

Similarly, it holds for the HMFEM that

Lemma 2. Given the solution uD of exact HMFEM method, the reconstruction u D
ReuD solves the original problem.
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Again, this holds for the solution obtained from any of (10)–(11).
We now turn our attention to the relationship between the coarse scale solutions

obtained by VMS and HMFEM. Before we state the main result, we summarize
properties of the coarse scale VMS and HMFEM solutions.

The coarse scale VMS solution is uniquely defined by the direct sum decom-
position of V into VH and V 0. Indeed, let the (linear) projection operators of the
decomposition be denoted PH and P 0. Then the solution uH is simply uH D
PH u. This is trivially seen, since we have from Lemma 1 that u D uHCG0.uH ; b/,
and thus PH u DPH uH CPHG

0 D uH .
For the HMFEM method, a direct sum decomposition is not defined, and the

coarse solution is defined by the choice of coarse space UD and the compression
operator Q.

Theorem 3. Let a and b be the derivatives of A and B . Further, take the coarse
spaces VH and UD to be identical. Define the coarse VMS solution uniquely by a
choice of V 0 such that V D VH ˚ V 0, and associate with the decomposition the
projection operator PH . Then, if Q D PH , the coarse solutions uH of the VMS
method and uD of the HMFEM are identical.

Proof. We have from Lemmas 1 and 2 that

u D uH CG0.uH ; b/ D ReuD:

Now, since Q D PH , then PH ReuD D uD , as follow from the definition of a
reconstruction operator in Sect. 3. Thus, by projecting the above relationship into
VH , we have

uH D uD:

Remark 5. Theorem 3 tell us that any VMS method can be desribed by as a
HMFEM by setting Q D PH . However, the converse need not necessarily be
true. This can be observed by noting that there is no point in the derivation of the
HMFEM where Q is required to be linear, however this property is needed for the
direct sum property utilized by the VMS method.

Remark 6. An important consequense of the VMS derivation (as contrasted with
HMFEM), is the direct application to the variational form. This implies that the
VMS method can be applied directly without explicit knowledge of the functional,
which need not have an extremum at the solution. Our results above show that these
problems may indeed also be treated with HMFEM.

4.2 The Relationship Between Approximate VMS and HMFEM

For applications, it is not meaningful to calculate the exact subscale Green’s func-
tions or the reconstruction operator. This is a consequense of the fact that no
approximations have been made, and the computational complexity is therefore
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(at least) the same as for the original fine scale problem. Therefore, approximate
Green’s functions and reconstruction operators will invariably be used, and the pur-
pose of both VMS and HMFEM is primarily to provide a framework for these
approximations. The results will mainly be straight applications of the results from
the previous section, and we will therefore in this section take Q DPH .

Throughout this section, we will assume that the coarse spaces VH D UD are
identical and finite dimensional. Approximation strategies all involve finite dimen-
sional approximations to the fine scale problems give by (4) and (9). We will not go
into details of these strategies herein, however we will assume that the same local-
ization strategy is applied to both VMS and HMFEM. The interested reader can see
e.g., [10, 12, 13, 16], for detailed discussion on localization strategies.

We will make precise the meaning of equivalent localization strategies. The vari-
ational form of the reconstruction problem for HMFEM can be stated as: Find
u D RuD 2 V such that Qu D uD and:

a.u; v/ D b.v/ 8 v such that q.u; v/ D 0: (14)

Here q is the derivative of Q. Recall that Q D PH is a linear projection, so that
q.u; v/ D Qv, and introduce u0 D Qu � u �P 0u. We can now write (14) as: Find
u0 in V 0 such that:

a.u0 C uD; v
0/ D b.v0/ 8 v0 2 V 0: (15)

We recognize that (15) is identical to the fine scale problem derived for the VMS
method, and we introduce the definition:

Definition 4. The approximation applied to the restriction operator of HMFEM is
termed equivalent to the approximation of the fine scale Green’s function in VMS
if the following relationship holds: eRuD D uD C eG0.uD; b/ for all uD 2 UD .

We now give three corollaries which follow directly from Theorem 3 and Defini-
tion 4.

The following result is applicable to the Petrov–Galerkin and Galerkin type
formulations for variational problems:

Corollary 5. Under the same assumptions as in Theorem 3, and let the approxima-
tions of the fine scale problems be equivalent. Then the coarse solutions uH of the
non-linear VMS method given by (5) and uD of the HMFEM on variational form
given by (12) are identical. Equivalently, the solution uH of (6) and uD of (13) are
identical.

Having discussed the variational formulations, it remains to consider the mini-
mization form of the HMFEM. Based on Remark 4, and Corollary 5, we have the
final corollary:

Corollary 6. Under the same assumptions as in Theorem 3, and let the approxi-
mations of the fine scale problems be equivalent. If in addition the reconstruction
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operator eR is linear, then the coarse solutions uH of the non-linear VMS method
given by (6) and uD of the HMFEM on minimization form given by (10) are
identical.
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Discrete Dislocation Dynamics and Mean
Curvature Flow

Petr Pauš, Michal Beneš, and Jan Kratochvı́l

Abstract This contribution deals with the numerical simulation of dislocation
dynamics by means of parametric mean curvature flow. Dislocations are described
as an evolving family of closed and open smooth curves driven by the normal veloc-
ity. The equation is solved using direct approach by semi-discrete scheme based
on finite difference method. Numerical stability is improved by tangential redistri-
bution of curve points which allows long time computations and better accuracy.
Our method contain an algorithm which allows topological changes. The results of
dislocation dynamics simulation are presented.

1 Introduction

The dislocations are defined as irregularities or errors in crystal structure of the
material. The presence of dislocations strongly influences many of material proper-
ties. Plastic deformation in crystalline solids is carried by dislocations. Theoretical
description of dislocations is widely provided in literature such as [5, 8, 9, 16]. Dis-
location is a line defect of the crystalline lattice. Along the dislocation curve the
regularity of the crystallographic arrangement of atoms is disturbed. The disloca-
tion can be represented by a curve closed inside the crystal or by a curve ending
on the surface of the crystal. At low homologous temperatures the dislocations can
move only along crystallographic planes (gliding planes) with the highest density
of atoms. The motion results in mutual slipping of neighboring parts of the crystal
along the gliding planes.
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This justifies the importance of developing suitable mathematical models [2,6,7,
12–15, 18–20]. From the mathematical point of view, the dislocations can be repre-
sented by smooth closed or open plane curves which evolve in time. Their motion
is two-dimensional as they move in glide planes. The evolving curves can be math-
ematically described in several ways. One possibility is to use the level-set method
[4, 17, 22], where the curve is defined by the zero level of some surface function.
One can also use the phase-field method [1].

2 Dislocations and Mean Curvature Flow

The interaction of dislocations and bulk elastic field can be approximately described
using the curvature flow as follows (see [21]). We consider perfect dislocation
curves with the Burgers vector b D .b; 0; 0/ oriented in the x-direction of the x,y,z
coordinate system. The discloation curve motion � is located in a glide plane, in
our case in the xz-plane. The glide of dislocation is governed by the relaxation law
in the form of the mean curvature flow equation in the direction of the normal vector

Bv D L� C b�app; (1)

where B is a drag coefficient, and v.x; t/ is the normal velocity of a dislocation at
x 2 � and time t . The term L� represents self-force expressed in the line tension
approximation as the product of the line tension L and local curvature �.x; t/. The
term �app represents the local shear stress acting on the dislocation segment pro-
duced by the bulk elastic field. In our simulations, we consider “stress controlled
regime” where the applied stress in the channel is kept uniform. This is an upper
bound limit case. The other limiting case is “strain controlled regime” as described
in [6, 7]. The applied stress �app is the same in every point of the line and for
numerical computations we use �app D const .

3 Parametric Description

The motion law (1) in the case of dislocation dynamics is treated by parametrization
where the planar curve � .t/ is described by a smooth time-dependent vector func-
tion X W S � I ! R2; where S D Œ0; 1� is a fixed interval for the curve parameter
and I D Œ0; T � is the time interval. The curve � .t/ is then given as the set

� .t/ D fX.u; t/ D .X1.u; t/; X2.u; t//; u 2 Sg:

The evolution law (1) is transformed into the parametric form as follows. The
unit tangential vector T is defined as T D @uX=j@uX j. The unit normal vector N
is perpendicular to the tangential vector and N � T D 0 holds. The curvature � is
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defined as

� D @uX
?

j@uX j �
@uuX

j@uX j2 D N � @uuX

j@uX j2 ;

where X? is a vector perpendicular to X . The normal velocity v is defined as the
time derivative of X projected into the normal direction, v D @tX � @uX

?=j@uX j:
Equation (1) can now be written as

B@tX � @uX
?

j@uX j D L
@uuX

j@uX j2 �
@uX

?

j@uX j C b�app;

which holds provided the vectorial evolution law is satisfied

B@tX D L @uuX

j@uX j2 C b�app
@uX

?

j@uX j : (2)

This equation is accompanied by the periodic boundary conditions for closed curves,
or by fixed-end boundary condition for open curves, and by the initial condition.
These conditions are considered similarly as in [3].

The solution of (2) exhibits a natural redistribution property which is useful for
short-time curve evolution [10,18]. For long time computations with time and space
variable force, the algorithm for curvature adjusted tangential velocity is used. This
algorithm moves points along the curve according to the curvature, i.e., areas with
higher curvature contain more points than areas with lower curvature. To incorporate
a tangential redistribution, a tangential term ˛ has to be added to (2).

B@tX D L @uuX

j@uX j2 C L˛
@uX

j@uX j C b�app;
@uX

?

j@uX j : (3)

This improves numerical stability and also accuracy of computation. Details are
described in [13, 23].

4 Numerical Scheme

For numerical approximation we consider a regularized form of (3) which reads as

B@tX D L @uuX

Q.@uX/2
C L˛ @uX

Q.@uX/
C b�app;

@uX
?

Q.@uX/
; (4)

where Q.x1; x2/ D
q
x2

1 C x2
2 C "2 is a regularization term and " a small parame-

ter. We use the backward Euler semi-implicit scheme for numerical solution of the
differential equation (3). The first derivative is discretized by backward difference
as follows
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@uX juDjh �
"
X1

j �X1
j�1

h
;
X2

j � X2
j�1

h

#
;

and the second derivative as

@uuX juDjh �
"
X1

jC1 � 2X1
j CX1

j�1

h2
;
X2

jC1 � 2X2
j CX2

j�1

h2

#
:

The approximation of the first derivative is denoted asXNu;j and the second derivative
as XNuu;j .

The semi-implicit scheme for (4) has the following form

BXkC1
j �Lt XkC1

Nuu;j

Q2.XkNu;j /
�Lt˛j

XkC1
Nu;ej

Q.XkNu;j /
D BXk

j C tb�app

X?kNu;j

Q.XkNu;j /
; (5)

j D 1; � � � ; m � 1; k D 0; � � � ; NT � 1;

where Q.x1; x2/ is a regularization term, X?Nu;j is a vector perpendicular to XNu;j ,
and ˛j is redistribution coefficient. The term " serves as a regularization to avoid
singularities when the curvature tends to infinity. Xk

j � X.jh; kt/, t is a time step
andNT is the number of time steps. The matrix of the system (5) for one component
of XkC1 has the following tridiagonal structure:

0
BBBBBB@

B C 2tL
h2Q2 � tL˛

hQ
�tL

h2Q2 0 � � �
�tL

h2Q2 C tL˛
hQ

: : :
: : :

: : :

0
: : :

:::
: : :

1
CCCCCCA
:

The scheme (5) is solved for each k by means of matrix factorization. Since there
are two components of X , two linear systems are solved in each timestep.

5 Application in Dislocation Dynamics

Dislocation curves as defects in material evolve in time. The dislocation evolution
history contains shape changes of open curves, closing of open dislocation curves
up to collision of dipolar loops (see [9, 16]). Interaction of dislocation curves and
dipolar loops has been studied, e.g., in [6,7,12–15]. Our numerical simulations were
performed under the following set of parameters:
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Burgers vector magnitude b D 0:25 nm
Line tension L D 2 nN
Drag coefficient B D 1:0 � 10�5 Pa � s
Applied stress �app D 40MPa

Dislocations can interact with other defects through the stress field. In this case,
dislocation curve can be blocked by a potential barrier. Figure 1 illustrates the evo-
lution of an open dislocation curve through an obstacle in material (a precipitate).
In the example, the curve is fixed at Œ�300 nm; 0 nm� and Œ300 nm; 0 nm� which may
be caused by some impurities in the material or it can continue in another slip plane.
The obstacle has a form of a circle located at Œ0 nm; 400 nm� with a radius of 40 nm.
Due to external stress, the dislocation curve expands but the obstacle blocks the evo-
lution. The curve surrounds it. At a certain time, it touches itself and splits into two
curves, an open curve and a closed curve. The closed curve cannot evolve anymore
because of the obstacle. The open curve continues expansion. The simulation was
performed with the following parameters. The number of discretization points is
M D 200, the external stress applied to the dislocation �app D 40MPa, the time of
simulation t 2 .0; 0:088/.

The example in Fig. 2 shows the simulation of the Frank–Read mechanism (see
[5, 16]) which describes how new dislocation loops are created. The open disloca-
tion curve is fixed at Œ�150 nm; 0 nm� and Œ150 nm; 0 nm�, and is forced to evolve
under the applied stress �app D 40MPa. The evolution continues until it touches
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Fig. 1 Evolution through a strong obstacle, FO D 0:01 nN, �app D 40 MPa, t 2 .0; 0:088/,
curve discretized by M D 200 nodes, for t D 0:054 s, t D 0:074 s and t D 0:088 s
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Fig. 2 Frank-Read source, �app D 40MPa, t 2 .0; 0:29/, curve discretized by M D 400 nodes,
for t D 0:25 s, t D 0:26 s and t D 0:29 s
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Fig. 3 Single dislocation in an infinite channel, �app D 40MPa, t 2 .0; 0:154/, curve discretized
by M D 200 nodes, for t D 0:04 s, t D 0:065 s and t D 0:154 s

itself. At this moment, the curve splits into two parts, i.e., the dipolar loop and the
dislocation line. The loop continues in expansion. The dislocation line will again
undergo the same process. The Frank–Read source cannot generate unlimited num-
ber of dislocation loops because new loops interact with each other and slow down
the source. The source can usually generate about 300 or 400 of dipolar loops (see
[9]). Parameters of the simulation are t 2 .0; 0:29/,M D 400.

Figure 3 illustrates the behavior of an open dislocation curve in an infinite chan-
nel. The channel is created by a spatially variable external force FC D 0:01N
for z < 0 nm and z > 500 nm. The curve expands upwards due to external stress
�app D 40MPa. The upper channel wall restricts its movement and the curve can
therefore evolve aside only. The algorithm for curvature adjusted redistribution of
points allows to rarify number of discretization points along straight parts of the
dislocation and accumulate discretization points at parts with higher curvature. This
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Fig. 4 Merging two dislocations in a channel, �app D 40MPa, FC D 0:01N for z < �500 nm
and z > 500 nm, t 2 .0; 0:102/, each curve discretized by M D 100 nodes, for t D 0:0565 s,
t D 0:087 s and t D 0:102 s

results into more accurate and faster computations. The parameters of simulation
are t 2 .0; 0:154/,M D 200.

The simulation of cross-slip of two dislocations is shown in Fig. 4. The dislo-
cations are moving in the channel created by a spatially variable external force
FC D 0:01N for z < �500 nm and z > 500 nm. At a certain time, they touch
each other and connect. In real material, each dislocation can evolve in a different
parallel plane. This case is not yet covered by the described model. Parameters of
the simulation are �app D 40MPa, t 2 .0; 0:102/,M D 100.

6 Conclusion

The simulation of dislocation dynamics is important in practice as dislocations affect
many material properties. Dislocation dynamics can be mathematically modelled by
the mean curvature flow. We presented a method based on a parametric approach.
We applied the model to situations similar to the real context including a mechanism
of creating new dislocations (i.e., Frank–Read source, cross-slip, etc.). The scheme
had to be improved by an algorithm for tangential redistribution of points and by an
algorithm for topological changes for parametric model.
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Non-Symmetric Algebraic Multigrid
Preconditioners for the Bidomain
Reaction–Diffusion system

Micol Pennacchio and Valeria Simoncini

Abstract We deal with the efficient solution of the so-called bidomain system
which is possibly the most complete model for the cardiac bioelectric activity. We
study the performance of a non-symmetric structured algebraic multigrid (AMG)
preconditioner on the formulation generally used of the bidomain model, i.e.,
the one characterized by a parabolic equation coupled with an elliptic one. Our
numerical results show that, for this formulation, the non-symmetric preconditioner
provides the best overall performance compared with the AMG based block struc-
tured preconditioners developed in [J. Sci. Comput. 36, 391–419 (2008)]. In this
paper we provide theoretical justification for the observed optimality.

1 The Bidomain Model

The excitation process in the myocardium is a complex phenomenon characterized
by rapid ionic fluxes through the cellular membrane separating the intracellular and
the interstitial fluid in the myocardium [8]. The bidomain is the most complete
model for the cardiac bioelectric activity, and it consists of a non-linear Reaction–
Diffusion (R–D) system of equations for the intra- and extracellular potential ui and
ue, coupled through the transmembrane potential v WD ui � ue [10]. The nonlin-
earity arises through the current–voltage relationship across the membrane which
is described by a set of nonlinear ODEs, see [8]. The anisotropic properties of the
media are modeled by the intra- and extracellular conductivity tensorsMi DMi .x/
and Me DMe.x/ that satisfy a uniform ellipticity condition [11].
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1.1 (ue; v) Formulation

The R–D system governing the cardiac electric activity may be written in various
forms involving different combinations of the variables ui ; ue; v; see, e.g., [13].
Here we deal with the formulation generally used for the numerical simulations,
i.e., with a parabolic equation for the transmembrane potential v coupled with an
elliptic equation for the extracellular potential ue:
find .v.x; t/; ue.x; t//, x 2 ˝ , t 2 Œ0; T � such that

8
ˆ̂<

ˆ̂:

cm@t v � divMirvC Iion D div Mirue C Iapp in ˝��0; T Œ
�div Mrue D divMirv in ˝��0; T Œ
nTMirv D 0; nTMrue D 0 on � ��0; T Œ
v.x; 0/ D 0 in ˝:

(1)

withM DMi CMe bulk conductivity tensor. Due to the presence of different time
and space scales, the numerical solution of the bidomain system represents a very
intensive computational task: realistic three dimensional simulations typically yield
discrete problems with millions of unknowns, and time steps of the order of 10�2 ms
or less. To reduce the computational cost, different numerical techniques have been
developed [4–6, 9, 12, 19]. Here we employ a semi-implicit method in time, that
only requires the solution of linear systems at each time step and allows performing
larger time steps than explicit schemes. By using a finite element discretization in
space and a semi-implicit scheme in time, we get:

B�kC1 D b with B D
�
Ct C Ai Ai

Ai .Ai C Ae/

�
; (2)

with b D �Ct vk � I h
ion.v

k/C I h
appI 0

�
, vk D ui

k � ue
k , �kC1 D �vkC1Iue

kC1
�
.

Whatever the method chosen for discretizing the problem, a huge computational
effort is required to solve the associated linear system in (2) at each time step, whose
conditioning considerably worsens as the problem dimension increases, resulting in
an unacceptable increase in the computational costs of the whole simulation. Pre-
conditioning is therefore mandatory. Attempts in literature have employed diagonal
preconditioners [17], Symmetric Successive Over Relaxation [11], Block Jacobi
preconditioners with incomplete LU factorization (ILU) [20]. General Algebraic
Multigrid (AMG) preconditioning has been already applied to the bidomain system
and its effectiveness when compared to other classical methods has been reported
[1, 14, 21]. However in [13] we verified that the performance of AMG based pre-
conditioner is strictly related to the formulation chosen for the bidomain system and
can be improved if the structure of the linear system is exploited. In [13] we ver-
ified numerically that the best performance for (2) is obtained by a nonsymmetric
preconditioner generally used for saddle point problems. In this paper we provide a
theoretical justification for it. A similar preconditioner but built using a simplified
version of the bidomain model is studied in [7].
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2 Block Preconditioners

In the coefficient matrix B in (2), the (1,1) block is symmetric positive definite
(SPD) while the (2,2) block is only positive semi-definite. Moreover, all matri-
ces are square and symmetric. It is therefore natural to derive preconditioners
that exploit this structure. In [13] we analyzed symmetric structured precondition-
ers and in particular a block diagonal preconditioner Pd and a block factorized
preconditioner Pf :

Pd D blockdiag.K;D/; Pf D
�

I O

AiK
�1 I

� �
K Ai

O D

�
; (3)

where K is an SPD approximation to the (1,1) block, while D is an SPD approxi-
mation either to the Schur complement .AiCAe/�Ai .CtCAi /

�1Ai , or to the (2,2)
block Ai CAe. In [13] we also experimentally verified that more general structured
preconditioners may also be appealing. The following “one-sided” version of Pf

is used for symmetric (indefinite) saddle point problems (see, e.g., [2]):

PM D
�
K Ai

O D

�
:

If K and D coincide with the (1,1) block and the Schur complement, then

BP�1
M;ex D

�
I O

Ai .Ct C Ai /
�1 I

�
;

whose spectrum consists of the single unit eigenvalue, so that a minimal residual
method such as GMRES ([16]) would converge in at most two iterations. In this
case, as well as when D D Ai C Ae, we denote the “exact” preconditioner with
PM;ex . In general, the behavior of the approximate versions of K and D is less
predictable; moreover, a good approximation of the Schur complement may be very
expensive to obtain. The performance of PM within the indefinite saddle point
context highly overcomes its nonsymmetric nature. The situation is considerably
different in our context, where the original matrix is positive (semi)definite. Remark-
ably, however, the use of PM in our 2D problem yields some interesting numerical
results, cf. [13]. Here we provide an analytical justification of the good performance
of PM . In the following we assume that A�1

i stands for the pseudo-inverse when-
ever the matrix is singular. Singularity does not effect the analysis as all vectors
are assumed to lie in the range of the considered matrices. For K D Ai C Ct ,
D D Ai C Ae, it can be easily verified that

BP�1
M;ex D

�
I O

Ai .Ai C Ct /
�1 I �S

�
; S D Ai .Ai C Ct /

�1Ai .Ai C Ae/
�1:

(4)
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The following result shows that the spectrum of BP�1
M is bounded independently

of the mesh parameter for judiciously chosen D.

Theorem 1. With the previous notation, let K D Ai C Ct and let X be an
eigenvector matrix of BP�1

M . If D D Ai CAe , then

�min.BP�1
M;ex/ D 1 � � �max.BP�1

M;ex/ D 1; X D
�

I O

.Ai C Ae/A
�1
i Y

�
;

with � � .1 C �min.Ae; Ai //
�1, � constant independent of h, and Y eigenvector

matrix of I �S .
If insteadD is such that there exist positive constants ˛1; ˛2 such that ˛1xTDx �

xT .AiCAe/x � ˛2xTDx for all x in the range ofAiCAe, then either �.BP�1
M / D

1 or ˛1.1� �/ � �.BP�1
M / � ˛2; with � defined above. Moreover,

X D
�
I O

M Y

�
;

with M D �.G � I /�1Ai .Ai C Ct /
�1; G D .Ai C Ae � Ai .Ct C Ai /

�1Ai /D
�1

and Y eigenvector matrix of G.

Proof. We shall see that the eigenvalues of S are real and non-negative. From the
structure of the matrix BP�1

M;ex it thus follows that �min.BP�1
M;ex/ D 1��max.S /

and �max.BP�1
M;ex/ D 1. To analyze the eigenvalues � of S we consider the eigen-

value problemAi .Ai CCt /
�1Ai .Ai CAe/

�1x D �x, that is Ai .Ai CCt /
�1Ai u D

�.Ai C Ae/u. Clearly, � D 0 for u 2 N.Ai / D N.Ae/ D N.Ai C Ae/. Moreover,
since the matrices on both sides are SPD in the range of Ai ; Ae, � � 0. We can
write

� D uTAi .Ai C Ct /
�1Ai u

uT .Ai C Ae/u
; u … N.Ai/:

Thanks to [13, Lemma 4.1] we obtain that � � .1 C �min.Ae ; Ai //
�1 < 1. Using

the conductivity coefficients defined in Sect. 5 of [13], the two stiffness matrices
are related as c1vTAev � vTAi v � c2vTAev independently of the mesh. Thus,
�min.Ae; Ai / is bounded by a quantity that only depends on the conductivity tensors
of the two stiffness matrices, and not on the grid. This completes the proof forD D
AiCAe . One can readily verify that X satisfies BP�1

M;exX D X blockdiag.I; I�
�/, where� is the eigenvalues matrix of I �S .

For generalD we have

BP�1
M D

�
I O

Ai .Ai C Ct /
�1 I

� �
I O

O .Ai CAe � Ai .Ct C Ai /
�1Ai /D

�1

�
:
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The eigenvalues �’s of the (2,2) block in the second factor satisfy

� D xT .Ai C Ae �Ai .Ct C Ai /
�1Ai /x

xTDx

D xT .Ai C Ae/x
xTDx

�
1 � xTAi .Ct C Ai /

�1Ai x
xT .Ai C Ae/x

�
D �1�2:

Using the spectral equivalence of D, we have ˛1 � �1 � ˛2. Moreover, using the
definition of � above, .1 � �/ � �2 � 1, from which the result follows. The fact
that the given X is an eigenvector matrix can be readily verified.

We observe that due to the matrix structure, we expect cond(X ) to be mesh
independent in the exact case (K D Ai C Ct , D D Ai C Ae). A spectral analysis
when K is an approximation to the (1,1) block, that is it is not exact, is much more
involved. With a convenient splitting of B, we write

BP�1
M D

��
K Ai

Ai D

�
C
�
Ct CAi �K O

O .Ai C Ae/ �D
��

P�1
M

D
�

I O

AiK
�1 I � AiK

�1AiD
�1

�
C

C
�
.Ct C Ai �K/K�1 �.Ct C Ai �K/K�1AiD

�1

O .Ai C Ae �D/D�1

�
� RC E:

IfK ,D are spectrally equivalent to Ai CCt and Ai CAe respectively, the spec-
trum of R is also spectrally equivalent to that of the exactly preconditioned matrix
BP�1

M;ex (forK D AiCCt ,D D AiCAe). The matrixE represents a perturbation
to the ideal case, and its size depends on the accuracy of the preconditioning blocks.

Assume that all relevant1 eigenvalues of the (2,2) block of R are less than one,
and let X be an eigenvector matrix of R; in fact, it is possible to derive a more
explicit structure for X , but such a description is beyond the scope of this paper.
Then we have (cf, e.g., [18])

j�.BP�1
M / � �.R/j � kX�1EXk � cond.X/kEk;

where cond(X ) is the spectral condition number of X and k � k is the matrix norm
induced by the Euclidean vector norm. Therefore, if K and D are good approxi-
mations to the corresponding blocks, then we expect the spectrum of BP�1

M not to
deviate significantly from that of R, unless the eigenvector matrix X is very ill con-
ditioned. If the condition number of the eigenvector matrix of BP�1

M is moderate
(cf. Th. 1), we also expect that a nonsymmetric solver like GMRES will converge
in approximately the same number of iterations as for the exact case; if K , D are

1 That is, those associated to eigenvectors in the range of the given matrices.
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Table 1 CPU time and number of iterations (in parenthesis) for: Pf with AMG; PM with exact
blocks (PM;ex ) and AMG-based blocks, when using the nonsymmetric solver GMRES, FOM and
the symmetric solver CG (with regularization). Here K= AMG(Ct CAi ) andD= AMG(Ai CAe)
n Pf PM;ex AMG-based PM

CG GMRES GMRES FOM CG

2,705 0.41 (6) 1.1 (21) 0.38 (6) 0.15 (6) 0.27 (6) 0.32 (22)
10,657 0.88 (7) 2.98 (13) 1.95 (7) 0.5 (7) 0.52 (7) 0.64 (12)
42,305 2.82 (8) 11.85 (11) 8.92 (7) 2.15 (8) 2.17 (8) 2.07 (10)
168,577 9.92 (8) 58.11 (11) 44.83 (7) 8.99 (8) 9.06 (8) 8.27 (10)
673,025 47.47 (10) 315.49 (10) 249.95 (7) 41.02 (9) 41.32 (9) 36.21 (11)

chosen to be spectrally equivalent to the corresponding matrices, then we also expect
mesh independence, as with BP�1

M;ex . Our numerical results (cf. Table 1) confirm
these considerations.

3 Numerical Results

In this section we report on our experiments with the exact and “inexact” versions of
the block triangular preconditioner PM . We consider a square domain ˝ D Œ0; 1�2
modeling a block of myocardium with cardiac fibers parallel to a diagonal of the
square and the conductivity coefficients defined as in [13]. The meshes on ˝ were
built by using a Delaunay triangulation algorithm. The number of mesh nodes for
each refined grid was 2n with n 2 f2705; 10657; 42305; 168577; 673025g and the
time step 	 D 4�10�2 ms. All experiments correspond to a typical temporal instant
in the time step evolution, so that the right–hand side includes information generated
during the previous time steps. All computations were performed with Matlab 7.4.0
(R2007a) on a iMac Intel Core 2 Duo 2 GbRAM 2.66 GHz and 6Mb L2 cache.

In the approximate (inexact) case, the matricesK andD are implicitly defined by
applying an AMG preconditioner at each iteration to approximate the correspond-
ing blocks; the preconditioner is built once for all at the beginning. As in [13], we
reorder each block matrix of B by using the matlab function symrcm. We employ
the AMG code available in the HSL library, the HSL MI20 routine, equipped with
a Matlab interface [3]. This function implements the classical (Ruge-Stüben) AMG
method, as described in [15]. The code was used as a black box: Gauss–Seidel
smoothing was used in all instances. The multilevel method is often built on origi-
nally singular matrices. To increase the robustness of the preconditioning strategy, in
some cases we generated the preconditioner by using a shifted (nonsingular) matrix,
with a shift equal to "1=2 and " � 10�16 the Matlab machine precision. Table 1
reports the results for the considered discretization meshes: CPU times (in seconds)
and in parenthesis number of iterations are shown. A stopping tolerance of 10�6 was
used for the residual norm. In the second column we recall the performance of the
best performing preconditioner in [13] for this formulation, namely Pf with AMG
for computing K and D. The subsequent two columns show the performance of
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Fig. 1 Convergence history of FOM and CG on the nonsymmetric matrix BP�1
M , n D 2;705

PM;ex (withK D AiCCt andD D AiCAe), when using either the nonsymmetric
solver GMRES or CG (see below for further comments on the latter method). The
last columns show the performance of PM when AMG is used to build K and D
as approximations to Ai C Ct and Ai C Ae, respectively. Note that a sparse direct
solver employs 26.15 s, after a proper reordering, to solve the whole system in (2) for
n D 168,577 (an “out of memory” results for n D 673,025). The reported timings
clearly confirm the competitiveness of the AMG-based preconditioner compared to
the exact version and the direct solver. In particular, results are reported for the min-
imal residual method GMRES, and for both FOM (Full Orthogonalization Method)
and CG [16]. If the preconditioned problem were symmetric and positive definite,
then FOM and CG would be mathematically equivalent. Since BP�1

M is nonsym-
metric, we expect CG to behave more poorly than FOM, which is a Galerkin-type
method devised for nonsymmetric problems. It is however quite surprising that CG
converges very quickly in spite of the full nonsymmetry of the problem. In Fig. 1 we
display the convergence history of the methods, in terms of residual norms: the CG
curve deviates from the expected one, represented by FOM, as soon as nonsymme-
try is detected. However, the spectral properties are so favourable that nonsymmetry
does not prevent the method from converging in just a few more iterations. In fact,
CG may be viewed in this case as a (highly) truncated full orthogonalization proce-
dure; cf. [13]. Due to the very cheap short-term recurrence, the CG timings are also
very competitive; cf. the last column of Table 1.

In the exact case, our theory predicts mesh independence, and this is confirmed
in the table. In addition, the use of AMG preconditioning maintains mesh indepen-
dence in the inexact case, with in general a number of iterations only slightly higher
than in the exact case.
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Efficiency of Shock Capturing Schemes
for Burgers’ Equation with Boundary
Uncertainty

Per Pettersson, Qaisar Abbas, Gianluca Iaccarino, and Jan Nordström

Abstract Burgers’ equation with uncertain initial and boundary conditions is appro-
ximated using a polynomial chaos expansion approach where the solution is repre-
sented as a series of stochastic, orthogonal polynomials. Even though the analytical
solution is smooth, a number of discontinuities emerge in the truncated system. The
solution is highly sensitive to the propagation speed of these discontinuities. High-
resolution schemes are needed to accurately capture the behavior of the solution.
The emergence of different scales of the chaos modes require dissipation operators
to yield accurate solutions. We will compare the results using the MUSCL scheme
with previously obtained results using conventional one-sided operators.
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1 Introduction

The inviscid Burgers’ equation is investigated subject to uncertain boundary and ini-
tial conditions. The stochastic solution is represented as a polynomial chaos series,
using a suitable basis of orthogonal stochastic polynomials. The stochastic Galerkin
method [3] is applied and the stochastic equation is projected onto a stochastic poly-
nomial basis yielding a system of deterministic equations for the time and space
dependent coefficients of the series. The resulting system is hyperbolic and exhibit
multiple discontinuities in finite time. This motivates the use of high-resolution
schemes.

We investigate two different approaches. First, a central scheme with artifi-
cial local dissipation is investigated. Summation by parts operators (SBP) [2] and
the simultaneous approximation term (SAT) technique [1] to impose boundary
conditions weakly lead to stability. The amount of artificial dissipation should
be proportional to the system eigenvalues which are generally unknown a priori.
Second, we study the monotone upstream centered schemes for conservation laws
(MUSCL) approach originally developed by van Leer [4]. We use the minmod
limiter and Roe averages to approximate the fluxes, see [5].

Both types of schemes exhibit excellent properties of shock capturing for model
problems such as the scalar Burgers’ equation. However, the hyperbolic systems
resulting from the stochastic Galerkin projection are considerably more demanding
in several ways. The non-linearity of the problem results in poor convergence prop-
erties independent of the numerical method. Also, finer grids are needed for conver-
gence of higher order polynomial chaos systems, increasing the computational cost.

The paper is organized as follows. The systems of equations is derived in
Sect. 2, followed by an outline of the numerical methods in Sect. 3. Section 4 con-
tains numerical experiments where the efficiency of the numerical methods are
investigated. Finally, Sect. 5 contains a discussion and concluding remarks.

2 Polynomial Chaos Approximation of Burgers’ Equation

The solution of a partial differential equation characterized by input uncertainty
(e.g., uncertain boundary data) is expressed as the polynomial chaos expansion

u.x; t; �/ D
1X

iD0

ui .x; t/�i .�/; (1)

where �i denotes orthogonal basis polynomials of a stochastic variable �. For opti-
mal convergence in the L2-sense, the distribution of � should reflect the input
uncertainty. In practice, the infinite series (1), which is convergent for second order
random fields (i.e., random fields with finite variance), is truncated to a finite number
of terms. Polynomial chaos of order M denotes the truncated polynomial chaos
series where only the first M C 1 terms are used.
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(1) is inserted into the inviscid Burgers’ equation

ut C uux D 0; 0 � x � 1 (2)

which yields

1X

iD0

@ui

@t
�i .�/C

0

@
1X

jD0

uj�j .�/

1

A
 1X

iD0

@ui

@x
�i .�/

!
D 0: (3)

A stochastic Galerkin projection is performed by truncating the polynomial chaos
expansion to order M , multiplying (3) by �k.�/ for non-negative integers k D
0; : : : ;M and integrating over the probability domain. The orthogonality of the basis
polynomials (�i ) then yields a system of deterministic equations. The result is a
symmetric system of deterministic equations,

@uk

@t
h�2

k i C
MX

iD0

MX

jD0

ui

@uj

@x
h�i�j�ki D 0 for k D 0; 1; : : : ;M: (4)

To simplify notation, (4) can be written in conservative matrix form as

But C 1

2

@

@x
.A.u/u/ D 0 (5)

where .B/jk D ıjkh�2
j i and .A.u//jk D

PM
iD0 uih�i�j�ki. The polynomial

basis is chosen to be the set of Hermite polynomials.
We consider the Riemann problem with uncertainty of the left and right states

described by the addition of a Gaussian perturbation

u.x; t D 0; �/ D
�
1C O�� for x < 0:5
�1C O� for x > 0:5

and use the time dependent analytical solution for the Cauchy problem derived in
[7] with O� D 0:1.

3 Numerical Methods

3.1 Central Differences

We approximate the first derivative with a matrix operator of the form P�1Q where
P is a positive diagonal matrix and Q satisfies Q CQT D diag.�1; 0; : : : ; 0; 1/.
For a more detailed description of the SBP technique, see [6, 9].
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The system (5) is semi-discretized as

.I˝B/utC 1
2
.P�1Q˝I /Ag u D .P�1˝I / Œ.E0 ˝˙0/.u� g0/C .En ˝˙1/.u� g1/� :

(6)
A split approach is used to show stability [8] and artificial dissipation [7] is added

in the form
A2k D ��xP�1eDT

kBweDk; (7)

where eDk is an approximation of .�x/k@k=@xk and Bw is a diagonal positive
definite matrix.

3.2 MUSCL Scheme

The semi-discrete system is given by

.ut /i C
FiC 1

2
� Fi� 1

2

�x
D 0 (8)

where

FiC 1
2
D 1

2

�
F.uL

iC1
2

/C F.uR

iC1
2

/
�
C 1

2
jAiC 1

2
j
�

uL

iC 1
2

� uR

iC1
2

�
(9)

with the absolute value of the Roe average AiC 1
2

given by

jAiC 1
2
j D X

ˇ̌
ˇ�.uiC 1

2
/
ˇ̌
ˇX�1 D 1

2
X
ˇ̌
ˇ�.uL

iC1
2

/C�.uR

iC1
2

/
ˇ̌
ˇX�1: (10)

where �.u/ is a diagonal matrix with the eigenvalues of A.u/ and X is the
eigenvector matrix. The left and right states are given by

uL

iC 1
2

D ui C0:5�.ri /.uiC1�ui / and uR

iC 1
2

D uiC1�0:5�.riC1/.uiC2�uiC1/

respectively. The flux limiter �.r/ is the minmod limiter. For a more detailed
description of the MUSCL scheme, see e.g., [5].

4 Numerical Experiments

The true solution of the original problem (3) is qualitatively different from the solu-
tion of any truncated system after stochastic Galerkin projection. A fair measure of
the efficiency of the numerical method should take this into account. The reference
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Table 1 Grid convergence, M D 1, T D 0:3

m Central SBP MUSCL
k"u0kh k"u1kh k"u0kh k"u1kh

51 0.1207 0.1871 0.1309 0.2100
101 0.0856 0.1330 0.0934 0.1498
201 0.0607 0.0943 0.0664 0.1067
401 0.0430 0.0667 0.0479 0.0764
801 0.0304 0.0472 0.0358 0.0554

Table 2 Grid convergence, M D 3, T D 0:3

m Central SBP MUSCL
k"u0kh k"u1kh k"u2kh k"u3kh k"u0kh k"u1kh k"u2kh k"u3kh

51 0.0928 0.1001 0.1487 0.0557 0.0899 0.0950 0.1291 0.0569
101 0.0766 0.0740 0.1259 0.0510 0.0652 0.0754 0.0819 0.0336
201 0.0594 0.0551 0.0980 0.0423 0.0399 0.0469 0.0566 0.0240
401 0.0371 0.0318 0.0626 0.0281 0.0183 0.0157 0.0292 0.0128

solution used for the first order polynomial chaos is therefore the analytical solution
to the system (4) with M D 1. The discrete error norm used for the coefficient ui is
given by

k"ui
kh D

sPm
jD1..u

num
i /j � .uref

i /j /2

m � 1 :

Tables 1 and 2 show the grid convergence up to third order polynomial chaos. For
expansions of higher order (M > 1), a solution on a fine mesh (m D 800) is used as
reference solution, since the analytical solution to the truncated system is unknown.

The number of shocks increase with the order of polynomial chaos, and requires
a finer spatial mesh for convergence. As the order of polynomial chaos is increased,
we expect a more accurate approximation to the original problem, before truncation
of the polynomial chaos expansion. However, as shown in Table 3, the convergence
is not monotone. Also, the computational cost strongly increases with the order of
polynomial chaos. Accordingly, high order expansions are not necessarily desirable
for these problems.

In order to understand and remedy these issues, consider the coarse grid solu-
tion of Fig. 1, where the SBP solution with artificial dissipation appears to be a
more accurate approximation of the true analytical solution than the MUSCL solu-
tion. By scaling the i th Hermite polynomial by 1=

p
i Š of the MUSCL scheme, the

solution approaches the SBP solution on an equal grid, Fig. 2. However, unlike the
scalar cases and lowest order of polynomial chaos, this solution is not grid con-
verged. Since these numerical solutions are solutions to the truncated system, we
can not evaluate the efficiency of the numerical methods by comparison with the
true analytical solutions only.

Withm D 400mesh points, the solutions are grid converged, but different due to
the non-sharp eigenvalue estimate of the SBP approach which modifies the artificial
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Table 3 PC expansion convergence, m D 100, T D 0:3

M Central SBP MUSCL
k"Expkh k"Varkh k"Expkh k"Varkh

1 0.1428 0.1897 0.1518 0.2007
2 0.1336 0.1884 0.1614 0.1965
3 0.0263 0.0854 0.0742 0.2102
4 0.0330 0.0758 0.1079 0.2327
5 0.0198 0.0407 0.0783 0.1887
6 0.0176 0.0529 0.0733 0.1215
7 0.0267 0.0813 0.0694 0.1419
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Fig. 1 Comparison SBP and MUSCL. Locally weighted dissipation.M D 3,m D 100, T D 0:2.
Orthonormal Hermite polynomials
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Fig. 2 M D 3, m D 100, T D 0:2. The label “Std” denotes a solution based on the stan-
dard probabilistic Hermite polynomials and “ort” denotes the scaling to make these polynomials
orthonormal
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Fig. 3 Comparison SBP and MUSCL. Dissipation based on largest eigenvalues. M D 3, m D
400, T D 0:2

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
u0

SBP
MUSCL ort
Analytical

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Var(u)

SBP
MUSCL ort
Analytical

Fig. 4 Comparison SBP and MUSCL. Locally weighted dissipation. M D 3, m D 400, T D 0:2

dissipation and the solution, Fig. 3. By successively decreasing the amount of arti-
ficial dissipation to the point where the solution fails to converge, the SBP solution
approaches the MUSCL solution, Fig. 4. The two different scalings of the basis
polynomials also result in the same solution as the mesh is refined (Fig. 5).

This illustrates the fact that excessive use of artificial dissipation on a coarse
mesh might appear to provide a more accurate solution to the original problem than
the most accurate solution to the truncated system, given by the MUSCL scheme.
This suggests that the effect of the truncation of the polynomial chaos expansion
should be taken into account in the solution method.
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Fig. 5 M D 3, m D 400, T D 0:2. Standard basis and orthogonal Hermite basis

5 Conclusions

Compared to the classical deterministic Burgers’ equation, where shocks are accu-
rately captured by both the SBP method and the MUSCL scheme, high order
polynomial chaos systems representing uncertain Burgers’ equation are very sen-
sitive to the choice of numerical method. The inaccurate scaling of the artificial
dissipation for the central summation by parts operators often result in either oscil-
latory and eventually unstable schemes or inaccurate schemes with poor shock
capturing properties. Therefore, the MUSCL scheme seems to be a more suitable
choice of numerical method for these problems. However, the increasing number of
shocks that result from higher order polynomial chaos requires finer grids and are
therefore computationally expensive. Even with the MUSCL scheme, a different
scaling of the basis polynomials affects the grid convergence.
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FEM Techniques for the LCR Reformulation
of Viscoelastic Flow Problems

A. Ouazzi, H. Damanik, J. Hron, and S. Turek

Abstract We present special numerical techniques for viscoelastic fluid flow uti-
lizing a fully coupled monolithic multigrid finite element approach with consis-
tent edge-oriented stabilization technique. The governing equations arise from the
Navier–Stokes for the Oldroyd-B type of fluid with the help of the log-conformation
reformulation to allow a wide range of Weissenberg numbers. The resulting non-
linear system consists of 6 variables for velocity, pressure and the logarithm of
the conformation stress tensor in 2D. The system is discretized in time by using
a fully implicit second order accurate time integrator. In each time step, we have to
solve a discretized system in space employing the high order finite element triple
Q2=P

disc
1 =Q2. We utilize the discrete damped Newton method with divided dif-

ferences for handling the Jacobian, and apply a geometrical multigrid solver with
a special Vanka smoother to handle the linear subproblems. Local refinement can
be assigned at regions of interest to reduce the computational cost. The presented
methodology is implemented on the open source software package FEATFLOW

(www.featflow.de) and validated for several well-known benchmark problems.

1 Introduction

The numerical simulation of polymer processing problems incorporates the most
important characteristics of viscoelastic fluids. Various nonlinear differential models
exist to describe their behavior, but all represent the same numerical challenges,
namely the strong coupling between the velocity gradient and the elastic stress
which leads to a restriction for the choice of FEM approximation spaces, besides
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their hyperbolic nature which makes the numerical solution difficult. In this paper,
we restrict to the Odroyd-B model, for testing the monolithic FEM approach [4].

For the Oldroyd-B model [5], the computational rheologist introduces the con-
formation tensor, which has the special property to be positive definite:

� c D �p

We
.�p � I/ (1)

It is worth to note that this tensor has an integral form with exponential expression

� c.t/ D
Z t

1
1

We
exp

��.t � s/
We

�
F.s; t/F.s; t/T ds (2)

where F.s; t/ is the relative deformation gradient. Then, the set of full equations
can be written as

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

�

�
@

@t
C u � r

�
u� div.2�sD.u//Crp C �p

We
div� c D 0;

divu D 0;
�
@

@t
C u � r

�
� c � ru� c � � c.ru/T C 1

We
.� c � I/ D 0

(3)

where �s and �p are the amount of solvent and polymer contributions repectively.
In [6] it is shown for 1D problems that the convection part is not able to balance
the exponential growth of the stress. By introducing a new logarithmic variable, the
positivity property of the conformation tensor is preserved by design. Indeed the
conformation tensor is replaced by its logarithm through exact evaluation, i.e.,
eigenvalue computations, which leads to the Log Conformation Representation
(LCR)

 D R
�

log�1 0

0 log�2

�
RT (4)

Here, �iD1;2 are the eigenvalues of the conformation tensor � c and R is the corre-
sponding eigenvector matrix. Then, a new decomposition of the velocity gradient is
introduced [5, 6],

ru D GC˝ C N.� c/�1 (5)

where G is a symmetric matrix which commutes with the conformation tensor, ˝
is a pure rotation matrix (anti-symmetric matrix) and N is an antisymmetric matrix.
Then, the constitutive laws in terms of conformation tensor � c and in terms of the
log conformation tensor  D log � c transform respectively into

�
@

@t
C u � r

�
� c � .˝� c � � c˝/ � 2G� c D 1

We
.I � � c/; (6)
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and consequently with � c D e :

�
@

@t
C u � r

�
 � .˝ �  ˝/� 2G D 1

We
.e� � I/ (7)

Hence, the new set of equations of the LCR reformulation is written as follows:

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

�

�
@

@t
C u � r

�
u D �rp C div.2�sD.u//C �p

We
dive ;

divu D 0;
�
@

@t
C u � r

�
 � .˝ �  ˝/� 2G D 1

We
.e� � I/

(8)

2 Spatial and Time Discretization

We apply implicit 2nd order time stepping methods to preserve the high accuracy
and robustness in nonstationary flow simulations, for instance the Crank–Nicolson
or Fractional-Step-# scheme, which allow adaptive time stepping due to accuracy
reasons only, but which do not depend on CFL-like restrictions. Then, the LCR
equations are discretized in time as follows:

unC1 � un

4t C #
h
�unC1 � ruCrpnC1 C 2r.�sD.unC1//C �p

We
dive 

nC1
i

C .1 � #/
h
�un � ruCrpn C 2r.�sD.un//C �p

We
dive 

n
i
D 0

divunC1 D 0
 nC1 �  n

4t C #
h
unC1 � r nC1 � .˝.unC1/ nC1 �  nC1˝.unC1// � 2G.unC1/

i

C .1 � #/
h
un � r nC1 � .˝.un/ n �  n˝.un// � 2G.un/

i

� #

We

h
e� nC1 � I

i
� 1 � #

We

�
e� n � I

� D 0
(9)

For the FEM approximation, we utilize the high orderQ2=P
disc
1 =Q2 finite element

triple for discretization in space which can be applied on general meshes together
with local grid refinement strategies including hanging nodes. Due to the velocity
and stress coupling the choice of the velocity finite element space and the stress
finite element space is subject to the LBB condition. In order to use the same finite
element space for velocity as well as for the stress one has to use some stabilization
techniques. Indeed, to maintain the elliptic character of the momentum equation, the
jump term of the following form can be introduced [3, 7]
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Ju.u; v/ D
X

edge E

max.�u�phE ; �
�
u h

2
E /

Z

E

Œru� W Œrv�ds (10)

which relaxes the choice of the stress space even in the absence of the pure viscous
contribution. Nevertheless the hyperbolic nature of the constitutive equations may
require further treatment, so that similarly further jump terms for the stress may be
introduced [3]:

J . ; �/ D
X

edge E

� h
2
E

Z

E

Œr � W Œr��ds (11)

Then, the discrete system reads as follows

0

@
Su.u/ C B
eCT S .u/ 0
BT 0 0

1

A

0

@
u
 

p

1

A D
0

@
rhsu

rhs 
rhsp

1

A (12)

where Su D 1
4tMuCLuCKuCJu, S D 1

4tM CKuCK˝CJ ,Mu andM are
mass matrices,Lu is the discrete diffusion operator,Ku the discrete convective term,
K˝ is the discrete operator such that K˝ D �.˝ �  ˝/, eC T D MG.ru;� c/,
and C is the discrete matrix of � �p

Wer � exp. Furthermore, B and BT are discrete
analogous to the gradient and divergence operators.

3 Nonlinear and Linear Solvers

The strongly coupled system (12) is then linearized through a discrete Newton
approach which results in the solution steps of the form

xnC1 D xn C !nJ�1.xn/R.xn/

where !n is a damping parameter. In this approach, we approximate the Jacobian

J D
h
@R.xn/
@x

i
using divided differences

�
@R.xn/
@x

�

ij

� Ri .xn C "ej / �Ri .xn � "ej /
2"

(13)

with x D .u;  ; p/, R.x/ is the residual coming from the discrete problem of the sys-
tem (12), and ei D ıij is the standard Kronecker symbol. Hence, the resulting linear
system is a typical saddle point problem which is solved effectively using coupled
multigrid [4, 5], i.e., local Pressure Schur Complement approach as generalization
of so-called Vanka smoothers which are simple iterative relaxation methods for such
coupled systems of saddle point type. The smoothers are acting directly on element
level and are embedded into an outer block Jacobi/Gauss-Seidel iteration. The local
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character of this procedure together with a global defect-correction mechanism is
crucial for this monolithic approach:

2

4
unC1
 nC1
pnC1

3

5 D
2

4
un

 n

pn

3

5C !nPT2T
h

J�1jT

2

4
Ru

R 
Rp

3

5

jT
(14)

The coarse grid discretizations are effectively done using the finite element
approach, and the grid transfer operators (restriction and prolongation) are standard
due to the conforming approximation. Here, the “summation” over each element
T 2T

h
represents an assembling technique.

4 Numerical Examples

For prototypical numerical tests of this new approach, we consider the numerical
simulation of both directly steady and nonstationary flow in a lid-driven cavity
for the Oldroyd-B model. The initial condition for the stress tensor is unity and
a regularized velocity boundary condition is implemented such that u.x; t/ D
.8.1 C tanh 8.t � 0:5//x2.1 � x/2; 0/T on the top boundary while zero velocity
on the rest of boundary is prescribed. For direct steady simulations the velocity pro-
file evolves to u.x; t/ D .16x2.1�x/2; 0/T on the boundary. For the total viscosity
(zero-shear viscosity), �s and �p are equal to 1. The simulation is performed with
the mesh size h D 1=64 and with coarse mesh size h D 1=4. The time step is
chosen to be 4t D 0:1 in the sense that no further improvement in kinetic energy
with respect to smaller time steps could be observed. The number of cells for the
corresponding computation level n is Ln D 24C2n. We calculate the kinetic energy
by 1

2
kuhk2L2.˝/

and analyze the impact of jump stabilization for different We num-
bers. For We D 1, the kinetic energy seems to reach a steady state as shown in
Fig. 1 and it remains steady at least up to time t D 30. As the We number increases
the kinetic energy oscillates stronger and the LCR variable becomes more spurious
at time t D 30, see Fig. 2. Longer computation times may lead to numerical break
down. EO-FEM in this case is able to relax these oscillations, thus it significantly
improves numerical stability.
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Fig. 1 Driven cavity flow: Kinetic energy until t D 30 for different We numbers with and without
EO-FEM
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Fig. 3 Planar flow around cylinder: Drag coefficient from different authors (left) and for different
levels for higher We with EO-FEM (right) and one exemplary computational mesh with local
refinement

Next, we consider planar flow around cylinder and plot the drag up to We D 1:8
in which the drag coefficients are comparable with other authors as can be seen in
Fig. 3. However, it is remarkable that with the LCR formulation, results for quite
high Weissenberg numbers in comparison to standard formulation can be easily
obtained. While usually the maximum We number, which can be obtained by LCR,
is in the range of We D 1:8 or We D 2:0, see [1, 6], here EO-FEM helps to
go further as far as We D 6:0. Note that this is calculated with a direct steady
approach which shows the big potential of EO-FEM stabilization for viscoelastic
flow. Further results can be seen in Fig. 4 which shows the stress behavior w.r.t. We
numbers and different meshes (for more detail see [5]). As mentioned before, the
linear subproblem is handled by a special monolithic multigrid solver. In Table 1
we show the corresponding convergence behavior in a direct steady approach with
respect to the number of nonlinear iterations for increasing We numbers. Multigrid
seems to be stable with respect to the mesh refinement and the nonlinearity of the
problem as the number increases.

Finally, we present preliminary results for the planar 4:1 contraction problem
which is one of the most well-known benchmarks for viscoelastic flow. As a current
result for this configuration, we are able to reproduce the qualitative phenomenon of
lip vortex growth with respect to increasing We number (Fig. 5) in which case we
perform the calculations on a locally refined mesh with hanging nodes as shown in
Fig. 6.
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Fig. 4 Planar flow around cylinder: Normal stress convergence with local refinement for Weis-
senberg numbers We D 0:6 (left), We D 0:7 (middle) and We D 0:8 (right) with the zoom of in
the wake part

Table 1 Newton-multigrid behavior: Nonlinear iterations (NNL)/Average multigrid sweeps
(AVMG) per nonlinear iterations for several levels refinement (Ri, iD 1,4), different We numbers
and different linear tolerance parameters � for planar flow around cylinder configuration

We 0.01 0.1 1.0

� 0.1 0.01 0.1 0.01 0.1 0.01

R1 9/2 5/3 10/1 7/3 14/1 10/3
R2 9/3 5/5 10/2 7/4 16/2 10/5
R3 9/3 5/6 10/3 7/5 16/2 11/5
R4 9/3 5/6 10/3 9/5 13/3 11/5

Fig. 5 Lip vortex growth for Oldroyd-B model: Numerical simulation (top) vs. experiment
(bottom [2]) for lip vortex growth in a 4 to 1 contraction
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Fig. 6 The planar 4:1 contraction: Computational mesh with local refinement

5 Conclusion

We have presented special numerical simulation techniques for viscoelastic flow
within a monolithic finite element framework of utilizing the new LCR technique
for Oldroyd-B type of fluids. Edge-oriented FEM stabilization is implemented to
increase the numerical stability. Together with local refinement the method shows
to be a very promising way for solving viscoelastic flow problems particularly for
high We numbers. Several numerical examples of cavity flow, flow around cylinder
and the growth of lip vortex in a contraction flow are also presented. Numerical
stability has been significantly improved by the help of stabilization. Future work
will include the implementation of LCR in other viscoelastic models together with
an additional coupling of the energy equation with a viscous dissipation term, see
[4], in order to be able to simulate more realistic flow problems, particulary in 3D.
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A Posteriori Estimates for Variational
Inequalities

S. Repin

Abstract This paper is concerned with guaranteed and computable error bounds
for approximate solutions of variational inequalities. The estimates are derived by
purely functional methods. The first method is based upon methods of convex anal-
ysis and calculus of variations and the second one derives estimates with the help of
certain transformations of the corresponding variational inequality. Both methods
(variational and nonvariational) has been earlier developed and applied for linear
problems where they lead to the same estimates [Two-sided estimates of deviation
from exact solutions of uniformly elliptic equations, 2001]. In the paper, we shortly
discuss variational inequalities associated with obstacle type problems and show
that both methods also result in the same error majorants. The majorants are valid
for any approximation from the admissible functional class and does not exploit
Galerkin orthogonality, higher regularity of solutions, or a priori information on the
structure of coincidence set. Also, the paper contains a concise overview of results
related to similar a posteriori error estimates derived for other classes of nonlinear
problems.

1 Introduction

Mathematical theory of variational inequalities was created in the second half of
the twentieth century and nowadays presents an important part of nonlinear analy-
sis related to a wide spectrum of nonlinear models in continuum mechanics (see,
e.g., Duvaut and Lions [9], Friedman [11]). Numerical methods for variational
inequalities were studied by many authors. At this point we first of all mention the
book Glowinski, Lions, Tremolieres [14]. One of the first error estimation results
was obtained by Falk [10] who derived a priori rate convergence estimates for
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approximations of a problem with obstacles. This short note does not have space
for a systematic overview of the results obtained in a posteriori error control of
variational inequalities. We mention only several papers where other references
can be easily found. A posteriori estimates (by residual type approaches) were
derived in Ainsworth, Oden and Lee [1], Braess [5], Chen and Nochetto [8], Hoppe
and Kornhuber [15], Kornhuber [16], and other authors. Pointwise estimates for
problems with obstacles were obtained in Nochetto, Siebert, and Veeser [18]. An
approach based on equilibration was recently suggested in Braess, Hoppe, Schöberl
[6].

In this paper, we discuss a different class of methods developed for the derivation
of a posteriori estimates. These methods operate on purely functional grounds with-
out attracting such properties as Galerkin orthogonality, extra regularity of exact
solutions, and superconvergence of approximate solutions. A posteriori estimates of
this type provide guaranteed and computable measures of the distance (measured in
the natural energy norm) between the exact solution of a BVP and any conforming
approximation. Special properties of approximations (or numerical method) can be
exploited later, when a concrete solution is substituted into the error majorant.

For convex variational problems the estimates (which are called a posteri-
ori estimates of the functional type) has been derived in the middle of 90s (see
[17, 20, 23, 24] for a systematic overview). At present, functional a posteriori
estimates has been derived for problems generated by all main classes of linear
differential equations. In particular, let us consider a linear elliptic problem: find
u 2 V0 C u0 such that

a.u;w/C h`;wi D 0 8w 2 V0: (1)

Here, V0 subspace of a Banach space V , a.u;w/ D .A�u; �w/ is a coercive bilin-
ear form generated by a self-adjoint operator A 2 L .U; U /, U is a Hilbert space
with the norm kyk D .y; y/1=2, V is compactly embedded in U , � W V ! U is a
bounded linear operator, h`;wi D .f;w/C .g;�w/, and it is assumed that

c1kyk2 � .A y; y/ WDjjj y jjj2� c2kyk2; 8y 2 U; (2)

k�wk � c3kwkV ; 8w 2 V0: (3)

For this class of elliptic problems, the general form of the error majorant is given by
the theorem.

Theorem 1 ([19, 21]). For any v 2 V0 C u0 and any y 2 Q� WD fy 2 U j ��
y 2 U g; the following estimate holds

jjj �.v � u/ jjj�jjj A�v � y jjj� C c k`C��yk; (4)

where c D c�1c�13 , jjj y jjj�D .A �1y; y/1=2, and�� is the operator adjoint to �.

In the simplest case
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�uC f D 0 in ˝ u D u0 on @˝;

we have

kr.v�u/k � krv� y k C CF˝k divyCf k; 8 y 2 H.˝; div/;

where v is any function in H 1 satisfying the boundary condition and CF˝ is a con-
stant in the Friedrichs-Poincare inequality. This estimate holds for any C � CF˝ .
The case C D C1 leads to the Prager–Synge estimate.

Estimate (4) is a particular form of the estimates derived in [17, 19, 21] for
convex variational problems by methods of duality theory in the calculus of vari-
ations. In [23], the same estimate was obtained by a nonvariational method based on
transformations of the integral relation that defines the generalized solution.

2 Variational Inequalities of Elliptic Type

Let j W V ! R be a given convex continuous functional. We consider the following
problem: find u 2 K such that the inequality

a.u;w � u/C j.w/ � j.u/ � h`;w� ui (5)

holds for any w 2 K , where K is a convex closed subset of V and ` 2 V �. Our
goal is to derive computable estimates of the difference between u and any function
v 2 K . As for linear problems, there are two methods of deriving error majorants:

� Variational method based on so-called “perturbed” problems.
� Nonvariational method based on transformations of (5).

We discuss them with the paradigm of the simplest obstacle problem. In this case,

K WD fv 2 V0 WD
ı
H
1 j �.x/ � v.x/ �  .x/ a:e: in˝g;

where �; 2 H 2.˝/ are two given functions.
Exact solution of the problem meets the variational inequality

Z

˝

Aru � r.w� u/dx �
Z

˝

f .w � u/dx 8w 2 K� 

and generates three sets:

˝ u˚ WD fx 2 ˝ j u.x/ D  .x/g .upper coincidence set/;

˝ u� WD fx 2 ˝ j u.x/ D �.x/g .lower coincidence set/;

˝ u
0 WD fx 2 ˝ j �.x/ < u.x/ <  .x/g :
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Here˝ u
0 is an open set, where a solution satisfies the differential equation. We note

that exact solutions of obstacle problems has essentially different properties with
respect to solutions of linear problems. In particular, it is well known that u has
a limited regularity (even for smooth data u 2 W 2

2 .˝/; in the best case scenario
u 2 W 21.˝/). Besides, the solution has unknown free boundaries. These facts make
derivation of a posteriori estimates much more complicated.

2.1 Deriving of Error Majorants by the Variational Method

Functional type error majaorants were derived in [7,21] with the help of variational
techniques. In these papers, elliptic problems with obstacles were considered. Later,
it was extended to certain classes of nonlinear fluids (see [12, 13, 22] and the ref-
erences therein), variational inequalities for fourth order elliptic operators [3], and
elasto-plastic torsion problem [4]. In this method, the first step consists of deriving
the estimate

1

2
jjj v �u jjj2� J.v/�inf P � J.v/� J �.��/; J.v/ WD 1

2
a.v; v/Cj.v/ �.f; v/;

(6)

where J � W Y � ! IR – functional of the dual problem. However, usually vari-
ational problems generated by variational inequalities (unlike problems related to
linear elliptic problems) do not have J � representable in an explicit form. A way
to overcome this difficulty is to consider the so-called perturbed problem for the
functional

J�.v/ WD J.v/ �
Z

˝

� � .v � ˚/ dx;

where ˚ D .�;� / and v D . v; �v/. It is easy to see that

sup
�2L

˚

J�.v/ D J.v/ � inf
�2L

˚

Z

˝

� � .v �˚/ dx D
�
J.v/ ifv 2 K� 
C1 ifv 62 K� :

;

where L˚ WD f.�1; �2/ j �i 2L2.˝/; �i .x/ � 0 a:e: in ˝g: Now, we arrive at the
problem P�: Find u� 2 V0 such that

J�.u�/ D inf
v2V0

J�.v/ WD infP�: (7)

Since

inf
v2V0

J�.v/ � inf
v2K� 

J�.v/ D inf
v2K� 

J.v/ D inf P; 8 � 2 L˚;
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we see that inf P� � inf P and, consequently,

1

2
jjj v � u jjj2� J.v/�inf P�: (8)

Unlike (6), this estimate generates an explicitly computable upper bound (because
the problem dual to P� has an explicit form). As a result, we have an upper bound,
which is valid for any � 2 L˚. By a special choice of � we arrive at the estimate

jjjr.u� v/ jjj�
0

@
Z

˝

.Arv � rvCA�1y � y � 2y � rv/dx

1

A
1=2

C CF˝kŒf C divy �vk;

(9)

where

Œf C divy�v WD
8
<

:

.f C divy/� a:e: in˝v˚;
f C divy a:e: in˝v

0;

.f C divy/˚ a:e: in˝v�;

is the generalized residual term associated with the obstacle problem.

Remark 1. Estimate (9) has a simple and easily explainable structure. However it
is does not give the best upper bound, which follows if � is selected by solving a
special optimization problem. The majorant obtained with the “optimal” � has a
more complicated structure (see [17, 21, 24]) but provides a sharper error bound.

2.2 Deriving Error Majorants Directly from the Variational
Inequality

Let v 2 K� be an approximate solution. We have

a.u � v; u � v/ �
Z

˝

.f .u � v/� Arv � r.u � v// dx:

By the integral identity

Z

˝

.wdivy C y � rw/dx D 0 8w 2 V0; y 2 H.˝; div/;

we arrive at the relation

a.u � v; u � v/ �
Z

˝

.f C divy/.u � v/dx C
Z

˝

.y � Arv/ � r.u � v/ dx: (10)
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Since the function v is known, the sets

˝v˚ WD fx 2 ˝ j v.x/ D  .x/ g ;
˝v� WD fx 2 ˝ j v.x/ D �.x/ g ;
˝v
0 WD fx 2 ˝ j �.x/ < v.x/ <  .x/ g :

are explicitly defined. Thus, the generalized residual term Œf C divy �v is fully
defined with the help of approximate knowledge on the coincidence set contained
in v. It is easy to observe that

Z

˝

.f C divy/.u � v/dx �
Z

˝

Œf C divy �v.u � v/dx

and Z

˝

.Arv � y/ � rwdx �jjj Arv � y jjj�jjj rw jjj :

In view of the above two relations, we obtain

jjj r.u � v/ jjj2� kŒf C divy�vkkv � ukC jjj Arv � y jjj� kr.v � u/k:

and by Friedrichs’ inequality arrive at estimate

jjj r.u � v/ jjj�jjj Arv � y jjj� CCF˝kŒf C divy �vk; (11)

which is equivalent to (9).
It is not difficult to show that the right hand side of (11) vanishes if and only if v

coincides with the exact solution u. Indeed, assume that y D Arv and

.f C divy/� D 0 a:e: in ˝v˚;
f C divy D 0 a:e: in ˝v

0;

.f C divy/˚ D 0 a:e: in ˝v�:

Then
Z

˝

Arv � r.v � w/dx D
Z

˝

y � r.v � w/dx D
Z

˝

.divy C f /.w� v/dx C
Z

˝

f .v� w/dx

�
Z

˝v
˚

.f C divy/�.w� v/dx C
Z

˝v
�

.f C divy/˚.w� v/dx C IntOf .v� w/dx

D
Z

˝

f .v� w/dx 8w 2 K� ;

and we find that v satisfies the variational inequality.
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Remark 2. Another form of the error majorant that contains (instead of CF˝) con-
stants in the Payne-Weinberger inequalities associated with a certain splitting of ˝
into a collection of convex subdomains has been recently obtained in [25].

3 A Posteriori Estimates for Other Nonlinear Problems

Generalized Newtonian fluids present another class of practically important math-
ematical models related to variational inequalities. For example, stationary flow of
the Bingham fluid can be reduced to the variational problem

inf
v2V0

Z

˝

��
2
j rv j2 Ck� j rv j �f v

�
dx; (12)

where ˝ 2 R2 is a cross-section of the pipe, � and k� are positive (material)
constants, and f is a constant (pressure difference per length unit). In this case,
the dissipative potential contains a nondifferentiable term  .	/ D k�j	j, which
leads to a variational inequality of the second kind. Many other models of nonlin-
ear viscous fluids lead to variational inequalities. For these problems, estimates of
deviations from exact solutions has been obtained in (see [12, 13, 21, 22]). In parti-
cular, for the problem (12) difference between the minimizer u and a (conforming)
approximation v can be estimated as follows:

�
2
kr.v � u/k2 �

Z

˝

� .1C ˇ/
2�

.�rv� 
/2 C k� j rv j �rv � �
�
dx C n (13)

C
�
1C 1

ˇ

�
1

�
C 2˝kdiv.
C �/C f k2; (14)

where 
; � 2 L2.˝;R2/, div.
C �/ 2 L2.˝/, j �.x/ j� k� for almost all x 2 ˝ .
A posteriori estimates for variational inequalities generated by elliptic problems

with nonlinear boundary conditions were studied in [26] and for incremental elasto-
plastic models in [27], and for the Ramberg–Osgood model in [2]. Finally, we note
that estimates of the above discussed type has been derived for general type convex
nonlinear problems in [21] and are discussed in the books [17, 24].
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Review on Longest Edge Nested Algorithms

Maria-Cecilia Rivara

Abstract Longest edge nested algorithms for triangulation refinement produce
hierarchies of quality and nested irregular triangulations as needed for adaptive
finite element and multigrid methods. In addition, right-triangle bintree triangula-
tions are special longest edge methods used for terrain modelling and visualization.
We review the algorithms and their properties.

1 Iterative Longest Edge Bisection of Individual Triangles

Longest edge nested algorithms [12,13,17] are based on the mathematical properties
of the longest edge bisection of triangles. The study of the bisection method began
in a series of papers [1, 10, 21–23] around three decades ago. First, Rosenberg and
Stenger [21] proved that the method does not degenerate the smallest angle of the
triangles generated by showing that it does not decrease beyond �=2, where � is
the smallest angle from the initial triangle. Then Kearfott [10] proved a bound on
the length of the longest side of any triangle obtained. Later Stynes [22] presented
a better bound for certain triangles. This bound was improved independently by
Stynes [23] and Adler [1] for all triangles. From their proofs they also deduced that
the number of classes of similarity of triangles generated is finite, although they
give no bound. Only recently Gutierrez et al. [6] studied complexity aspects of the
bisection method based on a systematic classification of triangles.

A triangle ABC is bisected by the longest edge AB, by joining the midpointD of
AB with the opposite (biggest angled) vertex C (Fig. 1). The analysis of the iterative
bisection is based on the geometrical position of vertexC of triangle ABC, assuming
AB � BC � CA. See Fig. 3, where AB represents the longest side of the hypothetical
triangle, D, the midpoint of AB, M is the midpoint of AD, N is such that AN D
AB=3, MO ? AB and DP ? AB. Arcs C1; C2; C3 and C4 belong, respectively, to
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Fig. 1 Illustration of some
longest edge bisections

C

A D B

F
E

circles C.B;AB/; C.D;AD/; C.N;AN/; and C.A;AD/. From the condition AB �
BC � CA, it follows that vertex C of a triangle with base AB must be in the region
bounded by arc C1 and straight lines PD and AD. We partition this region into six
subregions, with the property that triangles in the same subregion present similar
behavior with regard to bisection by the median of the longest side, as stated in
Lemma 1. Note that arc C3 is the set of points C for which BC D 2CD. This
separates those triangles for which the bisection of triangle DEC is performed by
the edge CD implying that the generation of new non-similar triangles stops, from
those for which the bisection is performed by edge CE.

Lemma 1. Let ABC be a triangle. For the iterative process described above it
holds:

1. If C is in region I, it generates at most four non-similar triangles.
2. If C is in region II, it generates at most five non-similar triangles.
3. IfC is in region III, new4ADC belongs either to regions II or III. Moreover, after

no more than d5:7 log. �
6�
/e steps the only new triangle generated not similar to

any previously generated belongs to region II.
4. If C is in region IV or V, after no more than d.� � �=2/=�e steps, the only new

triangle not similar to any previously generated has � � �=2 (i.e., belongs to
region I, II or III.)

5. If C is in region VI, new4ADC belongs to region I.

The main theorem is stated as follows:

Theorem 1. Let ABC a triangle, � its smallest angle, and � its biggest angle.

1. The number of steps to be executed by the bisection method until no more non-
similar triangles are generated is O.��1/.

2. If C is above arc C3, then the number of non similar triangles generated by the
bisection method is O.log.��1//.

3. The number of non similar triangles generated by the bisection method is asymp-
totically bounded by a subexponential function of the parameter in �=� , i.e., it is
O.a.�=�/

b
/ for any constants a > 1 and b > 0.
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Fig. 2 A directed graph
illustrating Lemma 1. Arcs
indicate possible jumps in our
proof, where the triangle
being bisected recursively
jumps from one region to
another

IV III V

II

I

VI

The proof [6] is based on two facts: (1) In the bisection method, the new
non-similar triangles generated which are not similar to any previously generated
triangles follow the paths in the graph shown in Fig. 2 as proved in Lemma 1 (pos-
sibly staying in a node several steps). (2) In the counting process of the number of
non-similar triangles, one only needs to examine the behavior of triangle ADC and,
for regions IV and V, also the triangle CDE.

Using these results it is possible to re-prove classical results on the iterative bisec-
tion. Define triangle ABC as the unique triangle of level 0, and the triangles of level
i C 1 as those 2iC1 triangles obtained by bisecting the triangles of level i . Also
define the diameter of level j as the greatest longest edge of the triangles of level j .

Theorem 2. 1. The bisection method gives �ABC � 1
2
�ABC, where �ABC is the

smallest angle of any triangle in any level. For triangles below arc C2 it holds
that �ABC D �ABC, where �ABC is the smallest angle of the initial triangle.

2. Define dj as the diameter of triangles in level j . Then, (i) d5 � d0=2, i.e., after
five bisection levels, the diameter of the generated mesh is no more than half of
the original, and (ii) dj � c2�j=2d0, where c is a small constant depending on
the regions.

The proof of (1) is based on the fact that the only case when the smallest angle
diminishes in a bisection step occurs for triangles in region I (see Fig. 3), being the
worst case when C D P , that is, equilateral triangles. A proof of (2) uses the area of
a triangle ABC and the fact that the area decreases exactly by half after a bisection.
Then: (i) for triangles whose vertexC is below arcsC2 orC4, the diameter decreases
by half after two levels, i.e., d2 � d0=2; and (ii) we use the fact we already know
that, as bisection progresses, triangles “go up” the boundary of arcs C4 and C2. For
a detailed proof see [6].
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Fig. 3 Regions defining classes of triangles ABC. A (virtual) vertex C lying in one of the regions
defines a triangle ABC with longest side AB, and greatest angle †ACB (denoted �)

2 Longest Edge Nested Algorithms

We consider conforming triangulations where the intersection of pairs of neighbor
triangles is either a common edge or a common vertex. To simplify we consider a
refinement regionR and a condition over the size of the longest-edge of the triangles
(a length parameter ı) to fix the desired resolution.

Definition 1. Triangulation Refinement Problem: given a quality and conforming
triangulation (with angles greater than or equal to an angle ˛) of a polygonal region
D, construct a locally refined, quality and conforming triangulation such that the
longest edge of the triangles that intersect the refinement region R are less than ı.

The refinement area can be zero if the refinement is performed around one ver-
tex or along a boundary side. In the adaptive finite element context, the refinement
region is defined as a set of triangles Sref of the current triangulation (not necessarily
connected) where the error of the finite element solution is too big to be acceptable
[2]. The idea is to exploit the knowledge one has of the reference triangulation for
working only locally with the refinement region (and some neighboring triangles).
The new points introduced in the mesh are midpoints of the longest edge of (at least)
one triangle of the reference mesh or of an intermediate nested mesh.

Original pure longest edge refinement algorithm (algorithm 1 in reference [12])
deals with intermediate non conforming triangulations. Revised Lepp-bisection
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Fig. 4 (a) AB is an interior terminal edge shared by terminal triangles (t2; t3) associated to
Lepp(t0) =ft0; t1; t2; t3g; (b) CD is a boundary terminal edge with unique terminal triangle t3
associated to Lepp(t�0 ) = ft�0 ; t1; t2; t3g

algorithms only deal with conforming triangulations and very local refinement
operations using the Lepp and terminal edge concepts [15, 16, 19].

Definition 2. An edge E is called a terminal edge in triangulation � if E is the
longest edge of every triangle that shares E, while the triangles that share E are called
terminal triangles. For any triangle t0 in � , the longest edge propagating path of t0,
called Lepp(t0), is the ordered sequence of increasing triangles ftj gNC10 , where tj is
the neighbor triangle on a longest edge of tj�1, and longest-edge (tj )> longest-edge
(tj�1), for j D 1; :::N . The associated terminal edge is either edge E D longest-
edge(tNC1) D longest-edge(tN ) if E is an interior terminal edge, or E D longest-
edge (tNC1) if E is a boundary edge. See Fig. 4 for an illustration.

The algorithm can be simply described as follows: for each triangle t in Sref , we
find Lepp(t), a pair of terminal triangles t1; t2 and associated terminal edge l . Then
the longest edge bisection of t1; t2 is performed by the midpoint of l . The process
is repeated until t is destroyed (refined) in the mesh. Figure 5 illustrates the point
insertion process.

Lepp-Bisection Algorithm
Input : a quality triangulation, � , and a set Sref of triangles to be refined
for each t in Sref do

while t remains in � do
Find Lepp (t), terminal triangles t1, t2 and terminal edge l . Triangle t2 can
be null for boundary l .
Select Point (P, t1, t2, l)
Perform (longest edge) bisection by P of triangles t1; t2
Update Sref

end while
end for
The properties of these algorithms follow from the results of Sect. [12, 17]:

Lemma 2. (a) The iterative and arbitrary use of the algorithms only produces
triangles whose smallest interior angles are always greater than or equal to ˛=2,



768 M.-C. Rivara

t

A

1

B

a b

1
2

3

Fig. 5 (a) For refining triangle t , a first vertex 1 is added by bisection of the terminal triangles
sharing AB . (b) Final triangulation obtained for refining t (points added in the creation order)

where ˛ is the smallest interior angle of the initial triangulation. Furthermore every
new triangle is similar to one of a finite number of reference triangles.
(b) Longest-edge refinement algorithms always terminate in a finite number of steps
with the construction of a conforming triangulation.
(c) Any triangulation � generated by means of the iterative use of the algorithms
satisfies the following smoothness property: for any pair of side-adjacent triangles

t1; t2 2 � (with respective longest edges h1; h2) it holds that min.h1;h2/
max.h1;h2/

� k > 0,
where k depends on the smallest angle of the initial triangulation.
(d) For any triangle t , the global iterative application of the algorithm (the bisection
of all the triangles in the preceding iteration) covers, in a monotonically increasing
form, the area of t with triangles of region I in Fig. 3.

The algorithms have the following advantages: (1) A very local refinement opera-
tion, which guarantee that the mesh is conforming throughout the whole refinement
process, is repeatedly used; (2) The algorithms are free of non-robustness issues,
since they do not depend of complex computations, and the selected points are mid-
points of existing previous edges; (3) Refinement / derefinement algorithms able to
selectively refine and/or derefine the mesh in the course of computations [14,18], as
well 3-dimensional algorithms [11,18] can be developed. The algorithms have been
also parallelized to deal with the parallel refinement of huge meshes [3, 9].

In 3-dimensions, Lepp(t0) has a variable number of associated terminal-edges.
This is due to the fact that every tetrahedron t in Lepp(t0) has a finite, non fixed
number of neighbor tetrahedra sharing the longest edge of t. Thus in the general
case, more than one of these tetrahedra has longest edge greater than the longest
edge of t , which implies that the Lepp searching task is multidirectional. Note how-
ever that even when the algorithms have been successfully used in practice in 3D
[11,18], a theory on (longest edge) bisection in 3-dimensions such as that presented
in [6] for 2-dimensions has not been yet developed. However, Flavio Gutierrez in
[7] has proved that a finite number of non similar tetrahedra is obtained for the
equilateral tetrahedron for longest edge symmetric bisection.
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Finally note that longest edge algorithms applied to meshes of isosceles right tri-
angles have great advantages: (1) The refinement algorithm produces only isosceles
right-triangle meshes since this right triangle is a special type I triangle in Fig. 3. (2)
The computation of the longest edge is avoided since the refinement is performed
by the newest vertex. (3) A right triangle bintree hierarchy is a multiresolution rep-
resentation that uses a special case of the Lepp-bisection refinement method that
takes advantage of both a triangle bintree hierarchy and of the distribution of the
grid data. This kind of meshes has been studied for terrain applications and real
time visualization [4, 5].

Preliminary cost analysis This requires of an amortized cost analysis for the
iterative use of the algorithm [17]. To simplify we consider the following two
problems.

(P1) Vertex refinement problem: Iteratively refine the mesh around a vertex Q
until the adjacent triangles have longest edge less than or equal to a parameter ı.

(P2) Circle area refinement: Iteratively refine the triangles that intersect a
circular regionRc until every triangle in Rc has longest edge less than or equal to ı.

Lemma 3. Fractal Property. For any vertex Q, after a finite number of iterations to
repeatedly refine each triangle of vertex Q, a fixed angle molecule is obtained (the
angles of vertex Q are not partitioned if the refinement follows). In addition further
refinement aroundQ reproduces the same geometry.

Lemma 4. (a) For solving (P1), a finite number of points N needs to be added
to the mesh, by longest edge bisection of pairs of terminal triangles, where N <

K.Log.L=ı)), K is a constant such thatK D 2�=˛, ˛ is smallest angle in the initial
mesh and L is the longest interior distance in the polygonal geometry D measured
over the smallest rectangle that contains D.
(b) For solving (P2), finite number of pointsNi andNe need to be respectively added
in the interior and the exterior of Rc where Ni < K1..

r
ı
/2/, Ne < K2.

r
ı
/Log.L

ı
/,

L is equal to the longest distance from the boundary of Rc to the boundary of D, r
is the radius of Rc , and the constants are K1 D 4� and K2 D 2� .

Proof. (Sketch) (a) Consider the worst case where a vertex Q is shared by 2�=˛
triangles and assume that one of these triangles has longest edge E of vertex Q and
length equal to L. Then E and its sons of vertex Q are iteratively refined by binary
partition until an edge son of vertex Q and longest edge less than or equal to ı is
obtained. This implies that Log.L=ı/ points are introduced [17]. Then the number
of points inserted in the mesh is roughly bounded as: N < 2�

˛
Log.L=ı/

(b) To bound Ni assume that right isosceles triangles of longest edge equal to ı
(and area ı2=4) are generated inside Rc . This implies that the area of Rc is covered
by 4�r2=ı2 triangles andNi < Ki .r=ı/2 withKi D 4� . For computing a bound on
Ne note that the perimeter 2�r ofRc is covered by 2�r=ı points, and since radially
at most Log.L=ı/ points are inserted, it follows that Ne < 2�.r=ı/Log.L=ı/

Lemma 5. (a) For solving (P1), the algorithm is linear in N defined in Lemma 8.
(b) For solving (P2), the algorithm is linear in (Ni C Ne), the number of points
inserted in the mesh. In addition if r >> ı, then the algorithm is linear in Ni .
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Simulation of Spray Painting
in Automotive Industry

Robert Rundqvist, Andreas Mark, Björn Andersson, Anders Ålund,
Fredrik Edelvik, Sebastian Tafuri, and Johan S Carlson

Abstract Paint and surface treatment processes in the car paint shop are to a large
extent automated and performed by robots. Having access to tools that incorpo-
rate the flexibility of robotic path planning with fast and efficient simulation of
the processes is important to reduce the time required for introduction of new car
models, reduce the environmental impact and increase the quality. The combination
of high physical complexity, large moving geometries, and demands on near real
time results constitutes a big challenge. We have developed an immersed boundary
octree flow solver, IBOFlow, based on algorithms for coupled simulations of multi-
phase and free surface flows, electromagnetic fields, and particle tracing. The solver
is included in an in-house package for automatic path planning, IPS. The major
improvement of computational speed compared to other approaches is partly due to
the use of grid-free methods which in addition simplifies preprocessing.

1 Introduction

Industrial car painting is a highly automated and in many aspects efficient process.
To improve efficiency further accurate prediction and optimization through simula-
tion of the key paint shop processes are required. The combination of high physical
complexity, large moving geometries, and demands on near real time simulation
results constitutes a big challenge. The main processes where accurate modelling
can substantially improve efficiency are spray painting, sealing, electro coating and
oven curing.

In this work, spray painting is considered. In spray painting paint primer, colour
layers and clear coating are applied through either classical Pneumatic spray guns
or using the more recent Electrostatic Rotary Bell Sprayer (ERBS) technique. The
focus here is on the ERBS technique, where paint is injected at the centre of a
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e-mail: robert.rundqvist@fcc.chalmers.se

G. Kreiss et al. (eds.), Numerical Mathematics and Advanced Applications 2009,
DOI 10.1007/978-3-642-11795-4 83, © Springer-Verlag Berlin Heidelberg 2010

771

robert.rundqvist@fcc.chalmers.se


772 R. Rundqvist et al.

Fig. 1 Applicator and atomization: The left part of the figure shows a PIV measurement of the
instantaneous droplet velocity field superimposed on an image of the spray. The ERSB applicator
is visible on top, the target plate is located below and just outside the picture. The right hand part
of the figure is a shadow image of the atomization of paint; at the leftmost side of this picture the
edge of the bell cup is visible. From the bell cup ligaments of liquid paint emanate and are broken
up into droplets. (Courtesy of Volvo Car Corporation)

rotating bell; the paint forms a film on the bottom side of the bell and is atomized
at the edge of the bell. The droplets are normally charged eletrostatically and driven
towards the target car body both by shaping air surrounding the rotating bell and
by a potential difference in the order of 50–100 kV between paint applicator and
target. Software modules for prediction of the electrostatic field and computation of
electrostatic forces on the droplets have been developed, but in this paper the focus
will be on the non-charged application of paint. A schematic image of the applicator
and a shadow image of the paint atomization are shown in Fig. 1.

There exist a few approaches to the simulation problem of electro-static spray
paints. Elwood and Braslaw laid out the fundamental physics of the ERBS problem
in 1998 [1], where the flow moderately close to the bell was resolved using a finite
element approach. There was however no detailed resolution neither of a target nor
of the behavior close to the bell. The latter was treated by starting the simulations
at a small distance from the bell, using experimental input as boundary conditions.
Huang and Lai [2], and Im et al. [3] have since then deepened the understanding
of the physics involved and of possible modelling approaches. In their work they
present thorough simulations of the transfer process, but only towards a flat target
and without any robotic motion.

Ye et al. [4–7] have made extensive modelling work on the electrostatically cou-
pled problems of ERBS and powder coating devices. The simulation model builds
on the commercial flow solver Fluent, and incorporates advanced geometries as well
as the most relevant physical phenomena present in the real paint shop. The method
however lacks in flexibility with respect to defining robot paths and applicator con-
ditions; the computational time which is in the order of a week for a single paint
stroke is also a drawback.
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The driving force for the development described in this paper is the demand
that the resulting model package should be flexible enough to operate automatically
and fast enough to run on a desktop machine. Meshing and remeshing of the fluid
volume must either be completely automatic or avoided. The model solution must
also be able to cope with general geometries moving in transient processes.

2 Modeling

The solution package consists of a particle tracer and a flow solver. Atomization
parameters, mainly droplet size and velocity at the applicator, serve as inlet condi-
tions and are determined from user set process conditions such as applicator rotation
speed, shaping air flow and paint flow. Paint droplets are traced from the applicator
to the target using the particle tracing routines, which are two-way coupled to the
flow solver.

2.1 Atomization Model

The region close to the applicator is strongly turbulent and heavily laden with paint
droplets. The physics in this region is complex and time-consuming to resolve, but
at the same time the flow in this region is relatively independent of the conditions
surrounding the applicator. A good approximation of the local conditions is obtain-
able just by considering the applicator settings and disregarding the far field such
as conditions in the spray booth and position of applicator with respect to the target
geometry. In this work, droplet size distribution has been measured as a function of
paint flow and bell rotation speed using shadow imaging techniques. Droplet and
air velocity distributions close to the applicator have been measured as a function of
shaping air flow, paint flow and bell rotation speed. These measurements have been
used to build approximating functions for a span of operating conditions; that is sets
of the parameters: paint flow, air flow and bell rotation speed.

2.2 Flow Solver

IBOFlow is an incompressible finite-volume based fluid flow solver. The fluid flow
is governed by the Navier–Stokes’ Equations,
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where ui is the fluid velocity, �f is the density, p is the pressure, � represents vis-
cosity of the fluid, and gi is the gravitational acceleration. The velocity and pressure
fields are coupled with the SIMPLEC [8] method and discretized on a Cartesian
octree grid that can be dynamically refined and coarsened, enabling grid refinement
to move with moving objects with almost no extra computational cost. The variables
are stored in a co-located configuration and pressure weighted flux interpolation [9]
is employed to prevent pressure oscillations.

Moving and interacting arbitrary bodies (robots or cars) inside the fluid are han-
dled by the mirroring immersed boundary method [10]. The method models the
presence of the bodies by an immersed boundary condition, which mirrors the veloc-
ity field over the boundary of the body such that the fluid exactly follows the surface
of the body. As a result, a fictitious velocity field inside the body is developed, which
is excluded in the continuity equation to ensure zero mass flux over the boundary.
The method facilitates the treatment of moving and interacting objects in fluid flows
and simplify the meshing procedure by only requiring surface descriptions of the
flow boundaries to run a simulation.

2.3 Particle Tracer and Thickness Integration

As it would be too computationally expensive to resolve the flow on the droplet
level, the interaction between air flow and fluid droplet is described using one
ODE per particle. This ODE is determined by considering the droplets as point-
like objects and approximating the fluid forces by including only drag, added mass
and gravity/buoyancy from the Basset–Boussinesq–Oseen (BBO) equation [11],
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where �p is the particle density, upi is the particle velocity, and dp is the parti-
cle diameter. This is deemed sufficient as these forces are strongly dominating in
this flow scenario. The BBO equation is discretized in time through a Runge–Kutta
method of order four and five. The solution of the fluid and the particle flow is two-
way coupled, meaning that in all fluid cells the droplet forces are evenly distributed
over the volume and fed back into the momentum equation for the continuous phase.
To save computational effort, the solution is only computed on a representative dis-
tribution of paint droplets. That is, each droplet traced is multiplied by a cloud factor
in the coupling to the air flow solution and in the paint thickness integration.

As the source terms from the particles in the momentum equations are distributed
over the computational cells, there is a connection between the spatial resolution of
fluid phase in terms of cell size and of the particle phase in terms of the cloud factor.
If the cloud factor is too small, there will be unnecessarily many particles in each
cell, leading to long simulation times. If the cloud factor is too large, on the other
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Fig. 2 Static velocity field: To the left is a cutting plane of the simulated air and paint velocity
field and to the right is the same cutting plane measured experimentally. In both cases the out of
plane velocity is colored in red and blue, and the in-plane velocity is illustrated with arrows. The
scales are the same in both plots

hand, the fluid flow resolution will be too high with respect to the momentum source
terms, which will then be fluctuating between higher values in the cells where there
are numerical particles present and zero where there are no particles present.

3 Results

The flow solution of paint and air was first compared directly to PIV measurements
of a static applicator positioned over a flat test plate. Compared velocity fields for a
plane just underneath the applicator can be seen in Fig. 2.

The required grid resolution level was determined in a grid refinement study,
where the air velocity field across the centreline was compared for the different solu-
tions. As can be seen in Fig. 3, reasonable grid independence for the flow solution
above the test plate is obtained at around 100,000 grid cells.

Resolution independence is required not only in the size of the grid cells, but
also in the number of computational droplets. This is verified by comparing paint
thickness profiles for different values of the cloud factor, seen in Fig. 4. The results
indicate that a cloud factor of around 400 is sufficient for good accuracy.

The main comparison with experiments has been done on flat test plates. These
plates measure 200 by 600 mm and are commonly used to check applicator settings
and paint film build up in the factory paint shop. The plates are painted using a
single paint stroke and the film thickness is measured along the long centreline
of the test plate, across the applicator movement direction. Illustration of the test
set-up is shown in Fig. 5. Experimental and numerical results for three different
applicator settings are compared in Fig. 6. The agreement between simulation and
experiment is good, both in the case of normal process parameter settings and in
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Fig. 3 Grid dependency: Comparison of simulation results for different levels of resolution. The
downward air velocity is compared at a level of 20 mm above the target, evaluated at the 600 mm
long centre line of the target plate. The resolution level corresponding to 100,000 cells is a good
compromise of speed and accuracy

Fig. 4 Cloud factor dependency: Comparison of simulation results for different settings of the
cloud factor. The curves used for the comparison is the film thickness along the 600 mm long
centre line of the target plate, evaluated after simulating a standard paint stroke with the ERSB
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Fig. 5 Test plate geometry: Illustration of the test geometry and the standard test plate. Shown in
the picture is also instantaneous velocities and impact points for simulated paint droplets

the robustness test performed with increased flow and rotation speed. This indicates
that the necessary model simplifications described in Sect. 2 are justified.

Figure 7 shows an example of simulated painting in IPS Virtual Paint, where
IBOFlow has been integrated in the path planning tool, IPS. In this case, three ERBS
applicators with high voltage switched on simultaneously paint the trunk lid of a car.
From the resulting colouring of the trunk lid it can be seen that some adjustment of
the applicator paths is needed to ensure full coverage of the target – for instance
a small region surrounding the hole for the rear lights is not covered with paint.
Simulation time for the 6.0 s of physical time required to reach the end result was
90 min using a single processor on a standard laptop computer. Validating the virtual
painting of this type of geometries is difficult, but qualitative comparison with real
car painting is good, both in the film thickness taken from the end result and in
the general behavior of the paint brush which can be observed during the process
simulation.

4 Conclusions

From the results it can clearly be concluded that fast and accurate simulation of
a complex industrial process like spray painting of cars is possible. Agreement
with experimental data for a test plate is excellent when operating under normal
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Fig. 6 Thickness profile comparison: Comparison between experiments and simulation of the
paint thickness at the centre line of the test plate. The correspondence is exceptionally good in the
standard test case and good in the case with increased flow

process conditions. The computational time for a full scale industrial application
like painting the trunk lid of a car is in the order of an hour. Therefore the simula-
tion tool can be useful for paint prediction and trouble shooting in the design stage
as well as in off-line programming of paint robots. Future work includes simula-
tion of the paint droplet break-up process and further comparisons with experiments
using more complex geometries and more parameter combinations.
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Fig. 7 Complex simulation: Painting of a car trunk lid using three applicators. Colors on the
geometry surface show the paint film thickness with blue being un-painted and red indicating a
film thickness of at least 100�m. The left hand image shows the paint process in action after 3.0 s
of the simulation, and the right hand image shows the result after the full 6 s (CAD geometry
courtesy of Saab Automobile AB)
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Numerical Simulation
of the Electrohydrodynamic Generation
of Droplets by the Boundary Element Method

P. Sarmah, A. Glière, and J.-L. Reboud

Abstract A numerical simulation of the formation of droplets from an electrified
capillary using the Boundary Element Method (BEM) is presented. An incompress-
ible and perfectly conducting liquid is injected from a capillary into a dynamically
inactive and insulating gas. Assuming an irrotational liquid flow, the problem con-
sists in coupling the BEM resolution of two Laplace equations: for the velocity
potential inside the fluid domain and for the electric potential in the capacitor
gas gap. The motion of the free surface is determined by the Bernoulli’s equation
resulting from the normal stress balance on the free surface.

1 Introduction

In electrospray devices, tiny droplets of analyte are ejected at the tip of a capillary
in the presence of an electric field. This electrohydrodynamic method of production
of droplets is widely used as it often constitutes the input stage of mass spec-
trometers. It can also be found in various other domains, such as spray coating,
inkjet printing or spraying of agricultural chemicals. The liquid is injected through
a capillary at a low flow rate in the presence of a strong electric field. Due to the
contrast in conductivity and permittivity between the liquid and the surrounding
gas, charges build-up on the interface and electric stress appears. Depending of the
balance between inertia, viscosity, electric stress and surface tension, several flow
regimes, such as dripping and cone-jet modes, can be encountered [4].

In recent years, the increasing demand in biological sample analysis has been ac-
companied by a trend towards electrospray systems miniaturization. In this context,
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numerical simulation tools are of prime interest to acquire an in-depth understand-
ing of the involved physical phenomena, which helps afterwards improving the
micro devices design. In particular, studying the influence of the liquid flow rate,
the solvent composition and the nozzle geometry is necessary.

Within the past decades many researchers have adopted the Boundary Element
Method (BEM) to address problems involving severe geometrical deformations
of free surfaces [2, 5]. In the BEM, the governing partial differential equations
are transformed into boundary integral equations. One of the distinct features of
the method is that only the bounding surface of the considered domain has to
be discretized [1]. The computational cost is thus in principle reduced and, of
utmost importance in our context, interfacial effects can be easily and accurately
incorporated.

A numerical simulation of the formation of droplets from an electrified capillary
using the BEM is presented here. The model has been applied to the simulation of
an electrospray nozzle used for laboratory mass spectrometry.

2 Mathematical Formulation

A thin metal capillary (with radius R and vanishingly small wall thickness) is pro-
truded a distance H1 from the center of the top plate of a circular parallel-plate
capacitor. The bottom plate of the capacitor is grounded. The top plate and the cap-
illary are held at a potential U0 above ground. A dynamically inactive, insulating
ambient gas of permittivity � is kept between the two plates of the capacitor. An
incompressible and perfectly conductive liquid, of density � and dynamic viscos-
ity �, is injected through the upper end of the capillary with a constant flow rate.
The flow rate is given by �R2 Qv, where Qv is the dimensional average inlet velocity.
The liquid-gas interface is submitted to surface tension � . The capillary and the
capacitor share a common axis of symmetry in the direction of gravity. The cap-
illary radius R, capillary time scale

p
�R3=� and top-plate potential U0 are used,

as characteristic length, time and electric potential, to non-dimensionalise the equa-
tions printed in the rest of the text. The axisymmetric geometry of the EHD spraying
setup is presented in the Fig. 1. It is bounded by a cylindrical surface S1 of radius
R1 � 1.

The fluid inside the domain V.t/, consisting of the interior of the drop and the
capillary, is considered to undergo irrotational motion. Thus the fluid velocity can
be expressed as the gradient of a scalar potential �, u D �r�. It follows from the
mass continuity equation for incompressible fluids that the velocity potential obeys
Laplace’s equation

r2� D 0 (1)

The fluid is considered as perfectly conducting and is thus equipotential. The electric
field is given in the ambient gas domain V 0.t/ by the gradient of the scalar potential
�e, E D �r�e. Thus, using the Maxwell–Gauss equation, the electric potential is
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Fig. 1 Geometrical model of
the EHD spraying setup

Se

H3 +1

H1

H2

Sc,i

V(t)

V ′(t)

z

Sc,o
St

S∞

r

R∞

Sb

Sf (t)

v

governed by Laplace’s equation

r2�e D 0 (2)

The fluid dynamics equation (1) is solved subject to the boundary conditions

n:r� D �v on Se I n:r� D 0 on Sc;i (3)

The initial shape of the droplet is assumed to be a spherical cap. The initial value of
the free surface potential is derived from mass conservation of the fluid domain

� D 1

2
.H3 C z/ on Sf .0/ (4)

The boundary conditions for the electrical equation (2) are given by

�e D 1 on St [ Sc;o [ Sf .t/ I �e D 0 on Sb I n:r�e D 0 on S1 (5)

3 Boundary Element Method Formulation

The mathematical basis of the numerical method used in this paper is described
in details by Canot et al. [3]. The boundary integral representation of Laplace’s
equation for axisymmetric problems is [1]

�.x0/ D �2�
˛

Z
S

q.x/GAX .x; x0/r.x/dsC 2�

˛

Z
C

�.x/.n:rGAX /.x; x0/r.x/ds

(6)
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where q D n:r�, ˛ is the aperture angle and GAX is the axisymmetric Green’s
function. The pole x0 lies on the boundary S . Alternating the location of the
evaluation point x0 of (6) on a discrete domain provides a linear set of equations
relating � (or �e) and q (or qe D n:r�e) values at all nodes on the boundary. Linear
order boundary elements are used to approximate the potentials and normal fluxes.
Boundary integrals are performed using gaussian quadrature with 4–24 points along
each linear segments. The number of points of the gaussian quadrature increases as
the source point comes closer to the evaluation point. The interface is assumed to
be material, so the nodes on the free surface are “tracked” along their instantaneous
velocity vector [3]:

Dz

Dt
D @�

@z
;

Dr

Dt
D @�

@r
(7)

The transient evolution of the velocity potential is obtained by combining Bernoulli’s
equation with the normal momentum balance at the interface:

D�

D t
D � C 1

2
juj2 CNe.n:r�e/

2 C 2

Re

@2�

@ n2
C Bz (8)

The different terms in the right hand side of the non-dimensional equation (8)
respectively stand for surface tension, inertia, normal electric stress [6], normal
viscous stress [5] and gravitation. In this equation, � is the dimensionless total curva-
ture,Ne D �U 2

0 =2R� is the electric Bond number,Re D p��R=� is the Reynolds
number, B D gR2�=� is the gravitational Bond number. The numerical simulation
of electrohydrodynamic spraying is formulated as a transient free boundary problem
consisting of two types of calculations:

1. The evolution problem is successively divided into tiny time steps4t . At a fixed
instant t we solve the Laplace equations (1) and (2) to obtain the corresponding
normal component of the electric field and the normal and tangential components
of the velocity using the BEM formulation.

2. Equations (7) and (8) are integrated using fourth order explicit Runge–Kutta
method to determine the new velocity potential value and interface position at
the following instant (t C4t). A Runge–Kutta integration step consists of four
BEM solutions for both Laplace equations.

To maintain the stability in the free surface flow simulation, a linear stability algo-
rithm, based on normal modes of the free-surface linearized perturbations has been
used. Following Canot et al. [3], an optimal time step is determined at each itera-
tion, in an analytic closed form, by investigation of the spectral radius of the 2 � 2
amplification matrix.

In order to improve the computational accuracy, a variable number of nodes
are unevenly redistributed on the free surface at each time steps in accordance
with several criteria like (i) high concentration of nodes at places where the inter-
face curvature is important or where the free surface approaches close to the axis
of symmetry, (ii) adaption of the lengths of each elements to the gradient of the
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velocity potential and (iii) preservation of a bounded ratio of lengths between two
neighboring elements [2].

The free surface is unstable near the end of the capillary and has the tendency
to deform faster. Thus an initial high concentration of nodes is necessary to repre-
sent the free surface curvature smoothly in this region. Arithmetic progression based
redistribution is employed at the solid capillary boundary to keep the node distribu-
tion uniform near the capillary tip. In this process, the length of the first element of
the boundary Sc;o is considered to be equal to the neighboring element of the free
surface Sf .t/. Then the length of elements in Sc;o is gradually increased towards
Se with a constant arithmetic mean value such that the length of the last element of
Sc;o is equal to the length of the first element of Se. In summery, the computational
algorithm is as follows:

1. Determine the initial geometry and the initial boundary conditions
2. Redistribute the nodes on the free surface Sf .t/

3. Redistribute the nodes on the capillary Sc;o using arithmetic progression
4. Choose the appropriate time step using time stability algorithm
5. Solve Laplace equations (1) and (2)
6. Advance nodal positions and velocity potential integrating equation (7) and (8)
7. Continue steps 2–6 using the updated free surface geometry and potentials

4 Results

The current BEM based model of EHD spraying has been validated with exist-
ing literature, where the Finite Element Method is used for the simulation [6].
In this problem a capillary of radius 1:26 cm, where the fluid is injected with a
flow rate of 5 ml/min is used. In Table 1 different non-dimensional parameters like
break up location Zd , primary drop volume V1, limiting drop length Ld and char-
acteristic time of break up td are compared for two values of the electric Bond
number Ne D 10 and Ne D 17 (ZD and LD are defined in Fig. 2). It is found that
the present algorithm has a good agreement with the published results of Notz and
Basaran. Series of simulations have been carried out to determine the effect of flow
rateQ and applied electric potentialU0 in the process of EHD spraying. A capillary
of radius 30	m is considered, where a fluid of surface tension 0.073 N m�1, vis-
cosity 10�3 Pa.s and density 1,000 kg m�3 is injected with a flow rate in the range

Table 1 Validation of the model with results of Notz et al. [6] for H1 D 0:0, B D 0:35 and
v D 0:05

Parameter BEM (Ne D 10) Notz et al. (Ne D 10) BEM (Ne D 17) Notz et al. (Ne D 17)

Zd 3:21 3:54 4:29 4:3

V1 9:73 9:91 7:61 7:7

Ld 6:53 6:45 7:84 7:65

td 65:7 65:28 54:1 54:3
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Fig. 2 Dripping mode at the flow rate 20	l/min and applied electric potential (a) 1,300 kV m�1,
(b) 1,315 kV m�1, (c) 1,320 kV m�1 and (d) 1,325 kV m�1

of [5–80	l/min]. The non-dimensional distance between the lower electrode and
the capillary tip is H2 D 167 and the capillary is protruded a distance H1 D 23

from the upper electrode. Four different EHD spraying modes are observed: drip-
ping, micro-dripping, cone-jet and multi-jet. In Fig. 2a–d different types of dripping
modes are presented.

In micro scale, the gravitational force has no effect in the process of droplet
formation (B' 10�4), thus it is only governed by electrostatic pressure, capillary
pressure and inertial force. In the process, a neck like shape forms, connected to a
spherical mass of liquid at its downstream. The increased capillary pressure at the
thin neck gives rise to a large pressure gradient in both the upstream and downstream
parts of the neck and flow reversal occurs at the upstream part, near the top end of the
neck. The fluid leaving the bottom and the top ends of the neck is accelerated by the
capillary pressure, while the presence of inertial force of the inlet fluid velocity cre-
ates deceleration near the top end of the neck. When the fluid is injected at high flow
rate (cf. Fig. 3a for flow rate 60	l/min), the neck drains faster at the bottom end and
always breaks there. This behavior changes at lower flow rate: when the flow rate is
reduced, the deceleration caused by the inertial force in the top end of the neck is
also reduced. The presence of stabilizing electrostatic pressure lowers the destabi-
lizing capillary pressure near the bottom end of the neck. Thus, the drop breaks at
the top end of the neck when the applied electric field crosses a critical value (cf.
Fig. 3a for flow rate 20	l/min and electric field higher than 1,312 kV m�1).

The dripping mode is observed for applied electric field �1,330 kV m�1 at flow
rate between 5	l/min and 80	l/min. The dripping mode is characterized by the
regular emission of drops of the same size, the drop radius being of the same order
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Fig. 3 Variation of different parameters with applied electric field and flow rate (– M – 60	l/min
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as that of the capillary radius. The electric field strength is highest near the tip of
the capillary. When the electrostatic pressure increases, the axial acceleration near
the tip of the meniscus increases. It elongates the drop in the axial direction and the
curvature increases. Thus, the tip of the primary droplet takes a thick jet like shape
and produces small droplets just before the detachment of the primary droplet (cf.
Fig. 2c–d). The specific case of dripping mode of Fig. 2c is termed by some authors
as dripping+sibbling mode and that of Fig. 2d is termed as intermediate cone jet
mode or jetting mode [6]. These two modes have been observed for applied electric
field in the narrow range between 1,320 kV m�1 and 1,330 kV m�1.

We now switch to the study of the drop volume V1 and the limiting drop length
LD . The electrostatic pressure creates an axial acceleration of the drop near its tip
and the thread. As a result, the thread and the drop elongates in the axial direction
and the curvature of the drop increases. As a result of the increase in curvature, the
size of the primary drop decreases with the increase in applied electric field (cf.
Fig. 3b). Also, the limiting length of the drop increases as the length of the thread
and aspect ratio of the primary drop increases (cf. Fig. 3c). In Fig. 3b it is seen that
at the same applied electric field the primary droplet volume increases with the
increase in flow rate as the increased inertial force delays the flow reversal, allowing
more fluid to enter inside the drop.

The next mode, observed at the larger values of the applied electric field and at
low flow rates, is the microdripping mode (cf. Fig. 4a). It is characterized by regular
emission of a small drop formed at the tip of the stable ellipsoidal meniscus. The
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drop radius is about an order of magnitude smaller than the capillary radius. This
mode is observed for applied electric field between 1,350 kV m�1 and 1,400 kV m�1

at flow rate �40	l/min. The cone-jet mode is observed on Fig. 4b for applied elec-
tric field between 1,500 kV m�1 and 2,000 kV m�1. For perfectly conductive fluid,
the jet formation regime is limited to the apex of the meniscus and an almost static
equilibrium of forces exists at each point [4]. Thus, we are not able to simulate
the continuous jet from the apex of the cone due to the absence of tangential elec-
tric field. This mode is characterized by the independency of surface charge to the
applied electric field and the meniscus profiles remain almost unchanged with the
increase of applied electric field. The multi-jet mode (cf. Fig. 4c) is obtained for
electric field greater than 2,000 kV m�1. In this case, the meniscus becomes unsta-
ble due to the presence of high electrostatic pressure and multiple jets emerge all
around the axis of symmetry.

5 Conclusion

A numerical model has been developed to study the Electrohydrodynamic spraying
process using the Boundary Element Method. The EHD break up modes observed
with the increase in electric field are respectively the dripping, microdripping, cone-
jet and multi-jet modes. Microdripping mode is only observed at low flow rates.
Consistent with the experimental evidence, we observe that the thread breakup loca-
tion switches from its top end to its bottom end while the flow rate is decreased and
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a critical electric field is reached. To the best of our knowledge the work presented
here is the first attempt to simulate the EHD spraying process at micro scale by the
BEM.
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A General Pricing Technique Based
on Theta-Calculus and Sparse Grids

Stefanie Schraufstetter and Janos Benk

Abstract In [An Introduction to Theta-calculus (2005)], Dirnstorfer introduced the
Theta-notation for modeling financial contracts consistently by a sequence of oper-
ators. This easy-to-use modeling for financial engineers together with Monte Carlo
methods is already applied successfully for option pricing. We combined the idea
of Theta-calculus with an approach based on partial differential equations (PDE) to
get a higher accuracy. In this paper, we give a short introduction to Theta-calculus
and deduce the resulting pricing algorithm that is – in contrast to common PDE
based pricing techniques – general and independent from the type of product. With
the use of sparse grids, this method also works for higher dimensional problems.
Thus, the approach allows an easy access to the numerical pricing of various types
of multi-dimensional problems.

1 Introduction

There exist different methods for pricing financial products. The most widespread
one is the Monte Carlo method which is very robust and can be applied straight-
forward. On the other side, the Monte Carlo method only has a low convergence
rate, which makes the method inaccurate in the higher-dimensional case. One other
type of pricing method, which does not have this disadvantage, is based on a partial
differential equation that describes the price change of the financial contract. This
underlying PDE problem has to be modeled for each type of product separately.
For example, a European option can be modeled simply with a Black-Scholes PDE
whereas from the American option an obstacle problem arises, and in case of the
Asian option an additional integral term has to be added to the PDE.

Our aim is to develop a toolbox with that different types of options and other
financial products such as swaps can be priced simply due to automated pricing
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algorithms. The user has just to model the financial product in a script language
which is easier to formulate and more natural than the formulation of the mathemat-
ical problem itself. For this purpose, we use the script language ThetaML which was
introduced by Dirnstorfer [2] and is already used for automated option pricing with
the Monte Carlo method. To handle the curse of dimensionality in case of multi-
dimensional problems, we suggest the sparse grid approach that uses a hierarchical
basis and reduces the number of degrees of freedom tremendously.

2 Option Pricing with Theta-Calculus

The main idea of our approach is the splitting of the option pricing problem into a
structural and a stochastic model as it is illustrated in Fig. 1. The structural model is
formed by the script language ThetaML , whereas the stochastic model, a Brownian
motion, e.g., is defined separately and, thus, independently from the structural
model. In this section, we will focus on the structural model and the evaluation
process that results from this.

2.1 Modeling Options with ThetaML

The script language ThetaML [2] is a notation for stochastic processes and is com-
patible with common computer algebra systems. It provides an explicit operator-
based representation of financial products. For every activity, ThetaML defines an
operator Oi W .Rn ! Rm/ ! .Rn ! Rm/: These operators can be combined to
an operator sequence that has to be evaluated from the right to the left:

O1O2 WD f 7! O1.O2.f //: (1)

Fig. 1 The idea of option pricing with Theta calculus: The problem is split into a structural and a
stochastic model
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ThetaML is mainly based on three elementary effects: waiting, transacting, and
deciding.

� Waiting is modeled with the Markov process operator

��tV.x/ WD E ŒV.X.t C�t//jX.t/ D x� (2)

that returns the expectation value of a function V , depending on a stochastic
process X.t/, after a time step �t without any activity.

� The effect transacting can be described with the transaction operator f� that
modifies the argument x of a function V.x/ by

x
f�
f.x/

V.x/ WD V.f .x//: (3)

With this, we can model for example dividend payouts.
� Finally, the decision operator

C O1

O2

WD
(
O1; where condition C is fulfilled,

O2; otherwise,
(4)

models the effect of deciding between O1 and O2, depending on a condition C .
In the following, for simplicity, we restrict C to be a condition that depends only
on the function values.

Providing this calculus, we can formulate for example the price V of an Asian
option with n samples and strike K simply with the operator sequence

V D a
f�
0

�
�

1
n

a
f�
aCS

�n
maxfa=n�K; 0g: (5)

Here, a is an auxiliary variable for the computation of the average stock value. First,
it is set to zero by the operation f� a

0 . After that, it sums up the stock value S , that
underlies a stochastic process, after every time step �t D 1

n
by f� aaCS . Finally, the

payoff function is evaluated.
It is also possible to model constraints with the use of the decision operator. In

case of an American option that allows its exercise during the whole time period,
the corresponding operator sequence can be written as a loop-inf-construct

lim
n!1

0

B@�
T
n �maxfK�

S;0
g

maxfK � S; 0g
:

1

CA

n

: (6)
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If values fall below the payoff maxfK � S; 0g, the payoff is returned. For all other
values, we go on with waiting without doing any other operation. This corresponds
to an operator�T with a constraint V > maxfK � S; 0g. For examples, see [2].

2.2 Operator-Based Option Pricing

From the operator-based representation that we introduced in the previous section,
we can now deduce the pricing algorithm. The calculations will be performed on
a grid and in a backward manner, similarly as it is done when solving a pricing
problem in form of a common time-dependent boundary value problem. Thus, the
operator-based algorithm splits up into two parts: the forward estimation of the
domain size and the backward calculation.

First, we start with the forward estimation of the domain on which we will later
do the backward calculation. For this, we have to consider for every operator of
the operator sequence its modification to the grid that is done when applying the
operator to the current grid: In case of a Markov process operator, the domain has to
be enlarged in all dimensions that underlie a stochastic process. The formula for the
extension of the domain depends on the stochastic process. In case of a geometric
Brownian motion, the size of the grid in dimension of a stochastic variable S.t/ at
time t is given by ŒSmin; Smax�, where

Smin;max.t/ WD S.0/ exp
�
.� � 0:5�2/t ˙ C � �pt

�
: (7)

Here, C denotes an extension factor that defines how much the grid is enlarged. The
time t corresponds to the total time of all Markov process operators considered up
to now. Of course, it is also possible to choose a different stochastic process, e.g., a
jump diffusion process.

The transaction operator f� x
f.x/

V.x/ distorts the grid depending on the function
f , since it modifies the axis values but keeps the function values. For example, in
case of the Asian option (5), the transaction operator f� a

aCSV.a; S/ shifts the grid
with its function values along the S -axis.

Since the decision operator only modifies the function values but not an axis
variable, there will be no changes of the domain.

After having finished the estimation of the domain size at maturity T , we start
with the backward calculation. First of all, we initialize the grid with a function,
typically the payoff function. After that, we apply the operators in a backward man-
ner to the grid: When applying a Markov process operator, we have to compute one
backward time-step of the underlying stochastic process. In the case of the geomet-
ric Brownian motion, this corresponds to a backward time-step of the Black-Scholes
equation. The solution process of this PDE will be discussed in Sect. 3.

When applying the transaction operator f� x
f.x/

V.x/, we have to invert the opera-
tion of the forward estimation. In case of the Asian option, we must set a WD a � S
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for the backward application of the operator f� a
aCSV.a; S/. The inversion of f .x/

when setting the grid values of the next grid with values V t .x/ can be avoided
by applying the transaction operator to the coordinates of this next grid and then
evaluating the previous grid V tC�tat this point:

V t .x/ D f� xf.x/V tC�t .x/ D V tC�t .f .x//: (8)

The decision operator can not be inverted in general. We will restrict in this paper
only to the special case of the loop-inf-construct of Sect. 2.1. For evaluation, the
loop-inf-construct is discretized in time by neglecting the limit and setting n to a
sufficiently large value. For example, in case of the American option (6), we get

0

B@�
T
n �maxfK�

S;0
g

maxfK � S; 0g
:

1

CA

n

: (9)

In the context of this loop-inf-construct, the decision operator needs not to be
inverted since it is a constraint thats hold during the whole time interval. Thus, the
direct application of the operator to the function is essential.

3 Solving the PDE with Sparse Grids

When evaluating the operator sequence introduced in Sect. 2, for every Markov pro-
cess operator�T , we have to solve the Black–Scholes PDE in a given time interval
Œ0; T �. The d -dimensional Black–Scholes equation with backward time � WD T � t
is defined by

@V

@�
� 1
2

dX

i;jD1
�i�j �ijSiSj

@2V

@Si@Sj
�

dX

iD1
�iSi

@V

@Si
C rV D 0; (10)

where Si corresponds to a stock value, the coefficients �i denote the volatilities, �ij
the asset correlations, �i the drifts and r the risk-free interest rate.

Most pricing problems are multi-dimensional problems. These problems suf-
fer from the curse of dimensionality since we have O.nd / unknowns in case of
a d -dimensional full Cartesian grid with a partitioning of every dimension into
n subintervals. This is reflected in the storage as well as in the computing time
and consequently limits the number of dimensions that can be computed. To reduce
the number of unknowns and, thus, to get rid of the curse of dimensionality, we use
sparse grids [1] that reduce the number of unknowns to O.n.log n/d�1/, but obtain
almost comparably results.

To get a sparse grid solution, we apply the combination technique [4]. This allows
us to compute a sparse grid solution in space easily by combining several solutions
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on smaller regular grids. On the regular grids, the Black–Scholes equation (10) is
currently solved with the finite difference method. Time integration is done with the
well-known Crank–Nicolson scheme.

There exist several methods [5,6] that apply transformations in order to get more
efficient and more stable numerical algorithms. But, usually, these approaches are
only suitable for special types of options or stochastic models, respectively. Since
our aim is to develop a general, automated method for pricing a wide range of
financial contracts, we do not take any advantage of these approaches.

Since the combination technique does not allow any local adaptivity, we are cur-
rently working on a sparse grid solver that solves the PDE directly in the hierarchical
function space. With this approach, adaptivity can be realized, too. This is important,
since the non-smoothness of the payoff function should be resolved more accurately.
But to give some first results of our approach with Theta calculus, a solver based on
the combination technique is sufficient.

4 Numerical Examples

In the following, we give some examples that were computed with the presented
general pricing approach. Every example was computed for different resolutions
of the grid. For error estimation, we take the solution on the grid with the highest
resolution as reference solution. To assure convergence not only pointwise, we start
the calculations on an initial grid instead of a single point with the initial values.
This grid is created by adding˙1% to the initial values. On this domain, the L2 and
L1 norm of the relative error are considered for every example.

4.1 American Put Option 1D

The first example is a one-dimensional American put option with a maturity of one
year. The underlying is assumed to be a geometric Brownian motion with initial
value 100, a volatility of 40% and a drift and a risk free interest rate of both 5%.
The strike of the option is at-the-money and, thus, equals to 100. The corresponding
operator sequence was already given in (9).

Figure 2a shows the resulting relative errors. In both the L1- and the L2-norm,
we observe a convergence rate of 2.0. We also compared the calculated prices with
those of an accurate PDE method [3] that led to a relative difference of the order
10�6. This shows that our approach with Theta calculus, where constraints are
modeled with a simple loop-inf-construct, works well.
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Fig. 2 The L2 and L1 error for the American and the Asian option priced with S = K = 100,
� = 40%, � = r = 5%, and T=1

4.2 Asian Call Option 2D

In the next example, that is given by an Asian option, we demonstrate the use of
the transaction operator. For our test calculations, we took monthly sampled values
and the stochastic process of the previous example. The corresponding operator
sequence was already presented in (5) with n D 12. Since S as well as the average a
are stochastic variables in (5), a two-dimensional grid in S and a is generated during
the automated pricing process.

This example was computed with full grids since the non-adaptive sparse grid
of the combination technique does not resolve the kink of the non-smooth payoff
function as well and, thus, produces worse results. Due to the modular modeling,
the different discretization techniques can be exchanged very easily.

The resulted prices and the relative error that is shown in Fig. 2b confirm the
convergence of our method also for this type of option. The rate of convergence is
more volatile with an average value of 2.4 in the L2 and 2.0 in the L1 norm.

4.3 Currency Swap 3D

Finally, we consider a currency swap that is defined by the operator sequence

V D c
f�
0

�
�

1
12

c
f�
cCf

�12
c C .e�rdom � 1

FX
� e�rfor /; (11)

where f D 1
12
.0:04� 1

FX
� 0:02/. For the domestic and the foreign interest as well

as the FX rate, we assume correlated Brownian motions without any drift.
The values of all parameters are stated in Fig. 3 which shows the results of the

calculations. We tried both full Cartesian and sparse grids on the 3-dimensional
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Fig. 3 The L2 and L1 error for a currency swap with FX D 1.4 , rdom D 2%, rfor D 1%,
�FX D 0:05, �dom D 0:001 , �for D 0:0015, �for;dom D 0:5, and TD 1

domain. The rates of convergence are comparable for both grids but in case of
the sparse grid much less points are needed. The general low convergence rate of
1.3–1.4 is supposed to come from the exponential payoff function.

5 Conclusion

In this paper, we presented a general financial pricing method. It was demonstrated
how financial contracts can be represented by a sequence of basic operations and
priced with this. We showed that our operator based approach works well and leads
to accurate results, comparable to those of conventional PDE solvers. The last exam-
ple also showed that the sparse grid approach is efficient and well-suited and for
higher dimensional problems. However, in case of non-smooth functions, the stan-
dard combination technique does not resolve the singularities well enough. Thus, we
currently work on sophisticated combination techniques and adaptive sparse grids
in order to deal also with more general functions in higher dimensions.
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A Posteriori Error Estimation in Mixed Finite
Element Methods for Signorini’s Problem

Andreas Schröder

Abstract This paper presents a posteriori error estimates for Signorini’s problem
which is discretized via a mixed finite element approach. The error control relies
on the estimation of the discretization error of an auxiliary problem given as a vari-
ational equation. The resulting error estimates capture the discretization error of
the auxiliary problem, the geometrical error and the error given by the complemen-
tary condition. The estimates are applied within adaptive finite element schemes.
Numerical results confirm the applicability of the theoretical findings.

1 Introduction

The aim in this paper is to derive error estimates for mixed finite element discretiza-
tion schemes for Signorini’s problem, which plays an import role in mechanical
engineering, cf. [6, 7, 14]. The mixed discretization is based on an approach intro-
duced by Haslinger et al. in [8–11,13]. A saddle point formulation is used where the
geometrical contact condition is captured by a Lagrange multiplier. The constraint
for the Lagrange multiplier is a sign condition and, therefore, simpler than the orig-
inal contact condition. However, the multiplier is an additional variable which also
has to be discretized. The discretization approach is originally developed for lower-
order finite elements. However, it can be extended to higher-order finite elements,
cf. [17].

Modern discretization schemes usually include a posteriori error control and
adaptivity. To derive an error estimation, we seize a suggestion in [4] for the obsta-
cle problem, where a certain auxiliary problem is considered. We will extend this
approach to Signorini’s problem and, in particular, to the discretization schemes
given by the mixed variational formulation. We obtain error bounds which capture
the discretization error of the auxiliary problem, the geometrical error and the error
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given by the complementary condition. Furthermore, we apply the estimates within
adaptive schemes.

A posteriori error estimates based on the primal, non-mixed formulation are pro-
posed in [2, 5, 18] for the obstacle problem and in [12] for Signorini’s problem. In
[20,21], estimates for mixed formulations are introduced for the mortar approach. In
[16], similar techniques of this work are applied to a simplified Signorini problem.
In particular higher-order finite elements are discussed. Furthermore, the results can
be applied to time-dependent problems, cf. [3].

2 Signorini’s Problem

Signorini’s problem describes the deformation of a material body which gets in
contact with a rigid foundation. The body is represented by a domain ˝ � Rk ,
k 2 f2; 3g, with a sufficiently smooth boundary � WD @˝ and is clamped at a
boundary part which is represented by a closed set �D � � with positive measure.
The boundary part of the body which possibly gets in contact with the founda-
tion is described by an open set �C . We assume that � C ¨ � n�D and �N WD
� n.�D [ � C /. Volume and surface forces act on the body. They are described
by functions f 2 L2.˝IRk/ and q 2 L2.�N IRk/. The resulting deformation
is described by a displacement field v 2 H 1.˝IRk/ with linearized strain tensor
".v/ WD 1

2
.rv C .rv//>. The stress tensor describing a linear-elastic material law

is defined as �.v/ij WD Cijkl".v/kl , where Cijkl 2 L1.˝/ with Cijkl D Cj ilk D
Cklij and Cijkl �ij �kl � ��2ij for all � 2 L2.˝IRk�k/ with �ij D �j i and a con-

stant � > 0. We set H 1
D.˝/ WD fv 2 H 1.˝IRk/ j �j�D

.vi / D 0; i D 1; : : : ; kg
for the trace operator � 2 L.H 1.˝/;L2.� // and define .�n.u//i WD �ij .u/nj ,
un WD uini , �nn.u/ WD �ij .u/ninj , �nt .u/ WD �n.u/ � �nn.u/n with outer normal
n. Signorini’s problem is thus to find a displacement field u such that

� div�.u/ D f in ˝;

u D 0 on �D ;

�n.u/ D q on �N ;

un � g � 0; �nn.u/ � 0; �nn.u/.un � g/ D 0; �nt .u/ D 0 on �C :

Here, the function g 2 H 1=2.�C / is the usual linearized gap function describing
the surface of the rigid foundation, cf. [14].

In this paper, the following notational conventions are used. The spaceH�1=2.�C /
denotes the topological dual space of H 1=2.�C / with norms k � k�1=2;�C

and
k � k1=2;�C

, respectively. Let .�; �/0;!, .�; �/0;� 0 be the usual L2-scalar products on
! � ˝ and � 0 � � , respectively, for vector and matrix-valued functions. We define
kvk20;! WD .v; v/0;! and omit the subscript ! whenever ! D ˝ . Moreover, we state
the energy norm kvk2 WD .�.v/; ".v//0, which is equivalent to the usual norm k � k1
in H 1.˝IRk/ due to Korn’s inequality. We define �N 2 L.H 1

D.˝/;L
2.�N ;Rk//
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as �N .v/i D �j�N
.vi / and �Cn 2 L.H 1

D.˝/;H
1=2.�C // as �Cn.v/ WD �j�C

.vi /ni
which is surjective due to the assumptions on �C , cf. [14]. Furthermore, we define
the norm k � k0

1=2;�C
by kwk0

1=2;�C
WD infv2H1.˝;�D/; �C n.v/Dw kvk, which is equiv-

alent to the k � k1=2;�C
-norm. The negative part v� of a function v is defined as

v�.x/ WD v.x/ if v.x/ � 0, v� WD 0 otherwise.

3 Mixed Variational Formulation of Signorini’s Problem
and Its Discretization

It is well-known, that the solution of Signorini’s problem u is also a solution u 2
K WD fv 2 H 1

D.˝/ j �Cn.v/ � gg of the variational inequality

.�.u/; ".v � u//0 � .f; v � u/0 C .q; �N .v � u//0;�N

for all v 2 K . The inequality above is fulfilled if and only if u is a minimizer of the
functionalE.v/ WD 1

2
.�.v/; ".v//0�.f; v/0�.q; �N .v//0;�N

inK . The functionalE
is strictly convex, continuous and coercive due to Cauchy’s and Korn’s inequalities.
This implies the existence of a unique minimizer u.
Given the Lagrange functional L .v; �/ WD E.v/C h�; �Cn.v/ � gi on H 1

D.˝/ �
H
�1=2
C .�C /, the Hahn–Banach theorem yields

E.u/ D inf
v2H1

D
.˝/

sup
�2H�1=2

C

.�C /

L .v; �/: (1)

for H 1=2
C .�C / WD fw 2 H 1=2.�C / j w � 0g and H

�1=2
C .�C / WD f� 2

H�1=2.�C / j 8w 2 H
1=2
C .�C / W h�;wi � 0g. Thus, u is a minimizer of E,

whenever .u; �/ 2 H 1
D.˝/ � H�1=2C .�C / is a saddle point of L . The existence

of a unique saddle point is guaranteed, if there exists a constant ˛ > 0 such that
the inf-sup condition ˛k�k�1=2;�C

� supv2H1
D
.˝/; kvk1D1h�; �Cn.v/i holds for all

� 2 H�1=2.�C /, cf. [14]. In fact, it follows from the closed range theorem and the
surjectivity of �Cn, that the inf-sup condition is valid. Due to the stationary condi-
tion, .u; �/ 2 H 1

D.˝/ �H�1=2C .�C / is a saddle point of L , if and only if it fulfills
the mixed variational formulation

.�.u/; ".v//0 D .f; v/0 C .q; �N .v//0 � h�; �Cn.v/i;
h�� �; �Cn.u/� gi � 0 (2)

for all v 2 H 1
D.˝/ and � 2 H�1=2C .�C /.

A finite element discretization based on quadrangles or hexahedrons is given in
the following way: Let Th and TC;H be finite element meshes of ˝ and �C with
mesh sizes h and H , respectively. Furthermore, let 	T W Œ�1; 1
k ! T 2 Th,
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	C;T W Œ�1; 1
k�1 ! T 2 TC;H be bijective transformations. The space of bilinear
or trilinear functions on the reference element Œ�1; 1
k is denoted by Q1

k
. We set

Vh WD fv 2 H 1
D.˝/ j 8T 2 Th W vjT ı 	T 2 .Q1

k
/kg and MH WD f�H 2

L2.�C / j 8T 2 TC;H W �H jT � constantg. For MCH WD f�H 2 MH j �H � 0g
the discrete problem is to find .uh; �H / 2 Vh �MCH such that

.�.uh/; ".vh//0 D .f; vh/0 C .q; �N .vh//0;�N
� .�H ; �Cn.vh//0;�C

;

.�H � �H ; �Cn.uh/� g/0;�C
� 0 (3)

for all vh 2 Vh and all �H 2 MCH . To ensure the existence of a unique solution of
(3), we have to verify a discrete version of the inf-sup condition. To guarantee the
discretization scheme to be stable, the corresponding constant has to be independent
of h and H . This can be achieved by using meshes Th and TC;H which imply
sufficiently small quotients h=H for T 2 Th, TC 2 TC;H and T � TC , cf. [13]. In
our implementation, we ensure h=H � 0:5, using hierarchical meshes with TC;H
being sufficiently coarser than Th.

4 Reliable A Posteriori Error Estimates

The basic idea for the estimation of ku � uhk is to consider the following auxiliary
problem: Find u0 2 H 1

D.˝/ such that

.�.u0/; ".v//0 D .f; v/0 C .q; �N .v//0;�N
� .�H ; �Cn.v//0;�C

(4)

for all v 2 H 1
D.˝/. Obviously, the solution u0 of (4) exists and is unique. Moreover,

uh is a finite element solution of (4). We will show that ku� uhk . ku0 � uhkCR
where R are some remainder terms given below. Here, . abbreviates� up to some
constant which is independent of h and H . The idea is to use an arbitrary error
estimator �0 for problem (4) and to set � WD �0CR. We then obtain ku� uhk . �.
In principle, each error estimator known from the literature of variational equations
can be used, see [1, 19] for an overview.
In the following, we will make use of the inequalities,

ab � �a2 C 1

4�
b2 for a; b 2 R; � > 0; (5)

.aC b/2 � 2a2 C 2b2 for a; b 2 R; (6)

x � aC b1=2 for x; a; b > 0; x2 � ax C b: (7)

Lemma 1. There holds

ku � uhk2 � ku0 � uhkku � uhk C h�; �Cn.uh/� gi:
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Proof. Since 0; 2� 2 H�1=2C .�C / and 0; 2�H 2 MCH , we have h�; �Cn.u/ � gi D
.�H ; �Cn.uh/ � g/0;�C

D 0. Furthermore, there holds .�H ; �Cn.u/� g/0;�C
� 0.

Using Cauchy’s inequality, we obtain

ku � uhk2 D .�.u � u0/; ".u � uh//0 C .�.u0 � uh/; ".u � uh//0
� .�H ; �Cn.u � uh//0;�C

� h�; �Cn.u � uh/i C ku0 � uhk ku � uhk
D .�H ; �Cn.u/� g/0;�C

� h�; g � �Cn.uh/i C ku0 � uhk ku � uhk
� h�; �Cn.uh/ � gi C ku0 � uhkku � uhk:

Theorem 1. Let � > 0, thus

ku � uhk � .1C �/ku0 � uhk C .1C 1

4�
/k.g � �Cn.uh//�k01=2;�C

C
j.�H ; .g � �Cn.uh//�/0;�C

j1=2:

Proof. Let d 2 W WD fv 2 H 1
D.˝/ j �Cn.v/ D .g � �Cn.uh//�g with kdk D

infv2W kvk. Thus, we have kdk D k.g � �Cn.uh//�k01=2;�C
. Moreover, there holds

g � �Cn.uh/� �Cn.d/ D g� �Cn.uh/� .g � �Cn.uh//� � 0 on �C and therefore
g � �Cn.uh/� �Cn.d/ 2 H 1=2

C .�C /. Hence, we obtain

h�; �Cn.uh/� gi D �h�; g � �Cn.uh/� �Cn.d/i � h�; �Cn.d/i
� .�.u/; ".d//0 � .f; d/0 � .q; �N .d//0;�N

D .�.u � uh/; ".d//0 C .�.uh/; ".d//0 � .f; d/0 � .q; �N .d//0;�N

� ku � uhkkdk C .�.uh � u0/; ".d//0 � .�H ; �Cn.d//0;�C

� ku � uhkk.g � �Cn.uh//�k01=2;�C

C ku0 � uhkk.g � �Cn.uh//�k01=2;�C

C j.�H ; .g � �Cn.uh//�/0;�C
j:

Consequently, Lemma 1 implies

ku � uhk2 � ku0 � uhk ku � uhk C h�; �Cn.uh/� gi
� ku � uhk.ku0 � uhk C k.g � �Cn.uh//�k01=2;�C

/C
ku0 � uhkk.g � �Cn.uh//�k01=2;�C

C j.�H ; .g � �Cn.uh//�/0;�C
j:

The application of (5) and (7) yields

ku � uhk � ku0 � uhk C k.g � �Cn.uh//�k01=2;�C

C .ku0 � uhkk.g � �Cn.uh//�k01=2;�C
C j.�H ; .g � �Cn.uh//�/0;�C

j/1=2

� .1C �/ku0 � uhk C .1C 1

4�
/k.g � �Cn.uh//�k01=2;�C

C j.�H ; .g � �Cn.uh//�/0;�C
j1=2:
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Corollary 1. Let �0 > 0 with ku � uhk . �0 and

�2 WD �20 C k.g � �Cn.uh//�k21=2;�C
C j.�H ; .g � �Cn.uh//�/0;�C

j: (8)

Thus, there holds ku � uhk . �.

Proof. Theorem 1, (6) and the equivalence of k � k1=2;�C
and k � k0

1=2;�C
yield the

assertion.

Remark 1. The terms in the error estimate of Corollary 1 correspond to typical error
sources in Signorini’s problem: k.g � �Cn.uh//�k1=2;�C

measures the error in the
geometrical contact condition and j.�H ; .g � �Cn.uh//�/0;�C

j describes the error
in the complementary condition.

Remark 2. To calculate � in (8) we have to determine k.g � �Cn.uh//�k1=2;�C
.

Since �Cn.uh/ is piecewise polynomial, we have .g � �Cn.uh//� 2 H 1.�C / for
g 2 H 1.�C /. By interpolation results, we get k.g � �Cn.uh//�k21=2;�C

. k.g �
�.uh//�k0;�C

k.g � �.uh//�k1;�C
, cf. [15, Theorem 7.7.].

Corollary 2. Let the assumptions of Corollary 1 be fulfilled. Hence, there holds

ku � uhk C k� � �Hk�1=2;�C
. �:

Proof. Using k� � �Hk�1=2;�C
. ku � u0k, cf. [16], we obtain

ku � uhk C k� � �Hk�1=2;�C
. ku � uhk C ku � u0k
. 2ku � uhk C ku0 � uhk . �C �0 . �:

Remark 3. Since we do not use specific properties of quadrangles or hexahedrons,
all results are also valid for discretizations based on triangles or tetrahedrons.

5 Numerical Results

In our numerical experiments, we study Signorini’s problem with ˝ WD .�1; 1/2,
�C WD .�1; 1/ � f�1g, �D WD Œ�1; 1
 � f1g, f WD 0 and q WD 0. The rigid
foundation is given by f.x1; .1 � x21/1=2 � 1:85/ 2 R2 j x1 2 Œ�1; 1
g. We
use Hooke’s law for plain stress with Young’s modulus E WD 70kN=mm2 and
Poisson’s number  WD 0:33. In Fig. 1a, the deformation caused by the con-
tact with the rigid foundation is shown. Furthermore, the von-Mises-stress �v WD
.�11 C �22 � �11�22 C 3�212/1=2 is depicted. We see high stress concentrations at
the contact zone. An adaptive mesh is shown in Fig. 1b. We use a standard residual
error estimator �0, which is defined by �20 WD

P
T2Th

.h2TR
2
0;T C

P
e2ET

heR
2
0;e/

with
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Fig. 1 (a) Solution u of Signorini’s problem with an obstacle function g, (b) adaptive mesh

Fig. 2 Convergence rates
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er
ro

r

dof

uniform
adaptive

R0;T WD kf C div �.uh/k0;T ; T 2 Th;

R0;e WD

8̂
<̂
ˆ̂:

1
2
kŒ�n.uh/
k0;e ; e 2 E ı;
k�n.uh/ � qk0;e ; e 2 EN

k�nn.uh/C �Hk0;e C k�nt .uh/k0;e ; e 2 EC ;

where ET is the set of edges of T 2 Th, E 0 contains the internal edges and EN and
EC the edges on �N and �C , respectively. As usual, Œ�
e denotes the jump across an
edge e 2 E ı.

In the adaptive mesh, we find local refinements towards both ends of the contact
zone and towards two end points of the dirichlet boundary part �D . Moreover, there
are local refinements within the contact zone.

In Fig. 2, the estimated errors obtained by adaptive and uniform refinements are
depicted. As the diagram shows, the estimated convergence rate is nearly O.h1=2/
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for uniform refinements which corresponds to a priori results, cf. [13]. For adaptive
refinements, we obtain an optimal algebraic convergence rate O.h/.
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3. Blum, H., Rademacher, A., Schröder, A.: Space adaptive finite element methods for dynamic
signorini problems. Comput. Mech. 44(4), 481–491 (2009)

4. Braess, D.: A posteriori error estimators for obstacle problems – another look. Numer. Math.
101(3), 415–421 (2005)

5. Chen, Z., Nochetto, R.H.: Residual type a posteriori error estimates for elliptic obstacle
problems. Numer. Math. 84(4), 527–548 (2000)

6. Glowinski, R.: Numerical methods for nonlinear variational problems. Springer Series in
Computational Physics. Springer, New York (1984)

7. Glowinski, R., Lions, J.L., Trémolierès, R.: Numerical analysis of variational inequalities.
Studies in Mathematics and its Applications. North-Holland, Amsterdam (1981)

8. Haslinger, J.: Mixed formulation of elliptic variational inequalities and its approximation.
Appl. Mat. 26, 462–475 (1981)

9. Haslinger, J., Hlavacek, I.: Approximation of the signorini problem with friction by a mixed
finite element method. J. Math. Anal. Appl. 86, 99–122 (1982)

10. Haslinger, J., Lovisek, J.: Mixed variational formulation of unilateral problems. Commentat.
Math. Univ. Carol. 21, 231–246 (1980)

11. Haslinger, J., Sassi, T.: Mixed finite element approximation of 3d contact problems with given
friction: error analysis and numerical realization. Math. Mod. Numer. Anal. 38, 563–578
(2004)

12. Hild, P., Nicaise, S.: A posteriori error estimations of residual type for Signorini’s problem.
Numer. Math. 101(3), 523–549 (2005)
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Solution of an Inverse Problem for a 2-D
Turbulent Flow Around an Airfoil

Jan Šimák and Jaroslav Pelant

Abstract The presented method is intended for a solution of an airfoil design
inverse problem. It is capable of suggesting an airfoil shape corresponding to a
given pressure distribution on its surface. The method is an extension of a method
presented earlier. Using the k�! turbulence model it can handle a turbulent bound-
ary layer which improves its applicability. The method is aimed to a subsonic flow,
the angle of attack is one of the results of the method. The method is based on
the use of an approximate inverse operator coupled with the Navier–Stokes equa-
tions equipped with the turbulence model. The equations describing the flow are
solved using an implicit finite volume method, the linearized system is solved by
the GMRES method. Numerical results are also presented.

1 Introduction

This chapter concerns a numerical method for a solution of an airfoil design inverse
problem. The main idea is to construct an inexact inversion, a mapping between
a pressure distribution and an airfoil shape. This mapping is used in an iterative
process until the desired airfoil is obtained. The method is useful in cases where a
specific pressure distribution is desired. The method is aimed to a subsonic flow,
the angle of attack is one of the results of the method. The method presented
here is an extension of methods described in previous works [2, 4, 5]. The original
method deals with an inviscid flow, later with a laminar viscous flow. The current
method deals with a turbulent viscous flow described by the Navier–Stokes equa-
tions equipped with the k � ! turbulence model, which improves its applicability.
In the following text a short description of the method is given.

J. Šimák (B) and J. Pelant
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2 Inverse Problem

As was said above, the goal of the method is to find an airfoil shape corresponding to
a prescribed pressure distribution. The method utilizes the possibility of derivation
of an approximate inversion. Thus the problem could be written as:

Find a pressure pseudo-distribution p such that

P L.p/ D f; (1)

where f is the given pressure distribution, P is an operator representing a solution
of a flow problem and finally L represents an approximate inversion to P.

This problem is solved by the method of successive iterations, where the solution
of (1) is a limit of the sequence

fpkg1kD0 ; pkC1 D pk C ˛ .f � P Lpk/ : (2)

The parameter ˛ is a positive real number chosen such that the sequence converges.
According to experiences from numerical results, the choice ˛ D 0:6 is sufficient
to achieve convergence in most cases. Lower values ensure better convergence but
also increase the number of iterations.

The approximate inverse operator L is derived using the thin airfoil theory. The
details of this can be found in [2]. In short, the airfoil is composed of a mean camber
line and a thickness function, mathematically written

 1.x/ D x ˙ t.x/ s0.x/
p
1C s02.x/

;

 2.x/ D s.x/� t.x/ 1p
1C s02.x/

; x 2 h0; 1i : (3)

In this notation the airfoil coordinates are denoted by . 1;  2/, the upper sign is for
the upper part of the airfoil and the bottom sign for the bottom part. The functions
s.x/ (D the mean camber line) and t.x/ (D the thickness function) are expressed
using the following integrals

s.x/ D x

2�

Z 1

0

�
uup.�/ � ulo.�/

�
ln

ˇ̌
ˇ̌1 � �
�

ˇ̌
ˇ̌d� �

� 1

2�

Z 1

0

�
uup.�/ � ulo.�/

�
ln

ˇ̌
ˇ̌x � �
�

ˇ̌
ˇ̌d�; (4)

t.x/ D 1

�

Z 1

0

�
uup.�/C ulo.�/

2
� 1

�
ln

ˇ̌
ˇ̌
ˇ
1Cp.� � x�/=.x � x�/
1 �p.� � x�/=.x � x�/

ˇ̌
ˇ̌
ˇd�: (5)

The variables x and � run along the normalized chord line, given by the inter-
val h0; 1i. The symbols uup and ulo represent a velocity distribution on the airfoil
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surface, normalized by the free stream velocity. These functions need not represent
a physically relevant distribution, they are related to the sequence (2) instead. Hence,
similar to the notation used in (1), they can be called pseudo-distributions. The
transformation between the pressure pseudo-distribution and the velocity pseudo-
distribution, in the formula denoted as u.x/, is the following,

�
u.x/

u1

�2
D 2=M 21C � � 1

� � 1

 
1 �

�
p.x/

p0

�.��1/=�!
: (6)

The symbol p0 is the pressure at zero velocity,M1 is the Mach number in the free
stream, u1 is the free stream velocity and � is the Poisson adiabatic constant.

From the construction of the airfoil coordinates, it is clear that uup and ulo need
to be functions. Since the chord line doesn’t need to connect the leftmost point with
the rightmost one, simply taking the x-coordinate of a point on the surface doesn’t
satisfy this requirement, in general. From that reason the distribution is assumed
along the mean camber line, with the x-coordinate as the leading variable x. The
mean camber line is evaluated in each iteration, so the only additional expense is
the inversion of the mapping (3).

3 Flow Problem

The viscous compressible flow around an airfoil is described by the system of the
Navier–Stokes equations. Since most of the flow in real situations is turbulent, the
laminar model seems insufficient. To improve the quality of the predicted flow and
also the stability of the method, a k�! model of turbulence is included (see [1,6]).

Model of the Flow

The system of the equations can be written in a vector form

@w
@t
C

2X

jD1

@Fj .w/
@xj

D
2X

jD1

@Rj .w;rw/
@xj

C S .w;rw/ ; (7)

where

w D .%; %v1; %v2; E; %k; %!/
T ; (8)

Fj .w/ D
�
%vj ; %v1vj C ı1jp; %v2vj C ı2jp; .E C p/vj ; %kvj ; %!vj

�T
;

(9)
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Rj .w;rw/ D �0; �j1; �j2; �j1v1 C �j2v2

C
�
�

Pr
C �T

PrT

�
�
@e

@xj
; .�C �k�T / @k

@xj
; .�C �!�T / @!

@xj

�T
;

(10)

S.w;rw/ D �0; 0; 0; 0; Pk � ˇ�%!k; P! � ˇ%!2 C CD
�T
: (11)

Using the common notation, % denotes a density, p is a pressure, v1, v2 are velocity
components,E is an energy, k is a turbulent kinetic energy and finally! is a specific
turbulent dissipation. The symbol Pr represents the Prandtl number (the subscript
T denotes the turbulence). The viscosity coefficient� is evaluated using the Suther-
land’s formula. The symbol�T denotes an eddy viscosity coefficient, which is given
by the formula

�T D %k

!
:

The stress tensor in the Navier–Stokes equations is given by relations

�11 D .�C �T /
�

4

3

@v1
@x1
� 2
3

@v2
@x2

�
� 2%k

3
;

�22 D .�C �T /
�
�2
3

@v1
@x1
C 4

3

@v2
@x2

�
� 2%k

3
;

�12 D �21 D .�C �T /
�

@v1
@x2
C @v2

@x1

�
:

The production of turbulencePk and the production of dissipationP! are expressed
as

Pk D �11 @v1
@x1
C �12

�
@v1
@x2
C @v2
@x1

�
C �22 @v2

@x2
;

P! D ˛!!Pk
k
;

where � ij D �ij setting � D 0. Finally, the cross-diffusion term CD is given by the
relation

CD D �D %
!

max

�
@k

@x1

@!

@x1
C @k

@x2

@!

@x2
; 0

�
:

The turbulence model is closed by parameters ˇ� D 0:09, ˇ D 5ˇ�=6, ˛! D
ˇ=ˇ� � �!�2=

p
ˇ� (where � D 0:41 is the von Kármán constant), �k D 2=3,

�! D 0:5 and �D D 0:5. This choice of parameters resolves the dependence of the
k � ! model on the free stream values [1].

If the turbulent kinetic energy k is set to zero, the turbulence model has no
influence upon the Navier–Stokes equations and the laminar model is described.

In the assumed problem, three types of boundary conditions occur: a condition
on a wall, a condition at an inlet boundary and a condition at an outlet boundary.
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Due to the viscosity, a zero velocity together with a zero turbulent kinetic energy are
prescribed on the wall and also a static temperature is prescribed there. The value of
the specific turbulent dissipation ! is obtained by the formula

!wal l D 120�

%y2c
;

where yc is the distance between the wall and the centre of a cell in the first row. At
the inlet part of the boundary, the velocity vector .v1; v2/, the density %, turbulent
energy k and dissipation ! are prescribed. At the outlet part of the boundary, the
static pressure p is prescribed. The other variables are evaluated from values inside
the domain. The values of k and ! at the inlet boundary are values of the free
stream and are given in the form of a turbulent intensity I and a viscosity ratio
ReT D �T =�.

Numerical Treatment

The system of equations mentioned above is solved by the implicit finite volume
method. The variables are normalized using critical values of the density, velocity
and pressure. The resulting dimensionless system has the same form as the original
one and thus no modification to the system is needed. The computational domain is
discretized by a structured quadrilateral C-type mesh.

Since the coupling between the equations describing the flow and the equations
describing the turbulence is only by the viscous terms, it is possible to solve the
problem in two parts [6]. In the first part (continuity equation, momentum equations,
energy equation), the variables k and ! are assumed time independent. Similarly,
in the second part (k � ! equations), the variables p, %, v1, v2 are held constant in
time and the system of two equations is solved with respect to the unknowns k and
!. These systems can be solved independently of each other. This approach reduces
computational costs and allows to easily modify a laminar solver into a turbulent
one.

The linearized system of algebraic equations is solved by the GMRES method
(using software SPARSKIT2 [3]). The convective terms Fi are evaluated using the
Osher-Solomon numerical flux in the case of the flow part and by the Vijayasun-
daram numerical flux in the turbulent part. A higher order reconstruction based on
the Van Albada limiter is also implemented. The numerical evaluation of a gradient
on an edge of two cells is based on values in centres of the six neighbouring cells.

Since a suitable angle of attack has to be found in order to satisfy the condition on
the position of the stagnation point on the leading edge, the airfoil is rotated round
a chosen point.
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4 Numerical Examples

The first example shows an asymmetric case. The method was examined on the
NACA4412 airfoil. The Reynolds and Mach numbers are Re D 6 � 106 andM1 D
0:6. Because of the restriction on the stagnation point, the angle of attack is set
˛1 D1.8ı. The obtained airfoil together with the obtained pressure distribution after
40 iterations is in Fig. 1a. The next Fig. 1b shows a difference between the original
and obtained airfoil and also a distribution of the error between the computed and
prescribed pressure. A convergence history of the L2-norm of error kp � f k2 is
shown in Fig. 2.

The second example is an airfoil shape resulting from a by-hand prescribed
distribution. The Mach number M1 D 0:7 and Reynolds number Re� 15 � 106.
The pressure distribution after 30 iterations together with the resulting shape are in
Fig. 3a. The angle of attack is ˛1 D 0:82ı. The error along the chord is in Fig. 3b.
The results are quite good, although the pressure is a little bit distorted on the trail-
ing edge. The high error near the leading edge is partly from the steep gradient of
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Fig. 1 Example 1: (a) resulting airfoil and pressure distribution (normalized); (b) error along the
chord, kek D k .x/�  NACA4412.x/k (upper), difference between the obtained and prescribed
pressure along the chord (lower)
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Fig. 2 Example 1: convergence history of an error kp � f k2
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Fig. 3 Example 2: (a) Resulting airfoil and pressure distribution (normalized); (b) distribution of
the error along the chord

the pressure and partly from the method itself. The error of the approximate inverse
operator has the highest values right here.

5 Conclusion

An extension of a numerical method for a solution of an inverse problem for a flow
around an airfoil was described. This extension is suitable for a design based on a
prescribed pressure distribution in the case of a 2D turbulent viscous flow. It was
shown that the inverse operator can deal with turbulent viscous flow without the
necessity of a correction based on the boundary layer. It is necessary to prescribed
the distribution with care because it is possible to happen that the solution doesn’t
exist. Thus the method can be used to modify existing airfoil with some knowledge.
Since the angle of attack is one of the results, the method is applicable in the cases,
where a specific angle is not demanded.
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Prague (1998)

3. Saad, Y.: Iterative Methods for Sparse Linear Systems, second edn. SIAM (2003)
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On Skew-Symmetric Splitting and Entropy
Conservation Schemes for the Euler Equations

Björn Sjögreen and H.C. Yee

Abstract The Tadmor type of entropy conservation formulation for the Euler
equations and various skew-symmetric splittings of the inviscid flux derivatives
are discussed. Numerical stability of high order central and Padé type (centered
compact) spatial discretization is enhanced through the application of these for-
mulations. Numerical test on a 2-D vortex convection problem indicates that the
stability and accuracy of these formulations using the same high order central spa-
tial discretization are similar for vortex travel up to a few periods. For two to three
times longer time integrations, their corresponding stability and accuracy behaviors
are very different. The goal of this work is to improve treatment of nonlinear insta-
bilities and to minimize the use of numerical dissipation in numerical simulations
of shock-free compressible turbulence and turbulence with shocks.

1 Introduction

Many high resolution numerical schemes for the simulation of turbulence with
shocks consist of employing primarily a high order accurate central or Padé (cen-
tered compact) spatial discretization in the entire computational domain, and acti-
vating a shock-capturing scheme through a flow sensor only in the neighborhood
of shocks and in the regions of spurious high frequency oscillations. One example
is the filter schemes developed in [8, 9, 14–16]. The objective of this paper is to
investigate the stability and accuracy behavior of high order spatial central schemes
in conjunction with the use of the various skew-symmetric splittings of the invis-
cid flux derivative or the Tadmor type of entropy conservation formulation for the
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Euler equations. The flow solutions studied here will therefore be assumed to have
a smooth solution.

Due to nonlinear instabilities, solving highly coupled nonlinear conservation
laws by spatial centered difference or Padé approximations does not usually lead
to a stable method, even when the solution is smooth. Ways to stabilize such meth-
ods are to add high order numerical dissipation, or to employ a high pass filter to the
solution after each time step. However, in long time integrations and compressible
turbulent simulations even small amounts of numerical dissipation can be amplified
over time, leading to, e.g., smearing of turbulence fluctuations to un-recognizable
forms. An approach to minimize the use of numerical dissipation is to apply these
schemes to the split form of the flux derivatives to improve nonlinear stability of the
simulation. To understand how this works, consider the the scalar Burgers’ equation,
ut C fx D 0 with f D u2=2. The flux derivative can be split into the equivalent
form fx D 1

2
fx C 1

2
@f
@u
@u
@x

. For simplicity of discussion, we discretize the split form
by a second-order central scheme

d

dt
uj C 1

2
ujD0uj C 1

4
D0u2j D 0: (1)

The grid is uniform, xj D .j �1/�x, with grid spacing�x, and uj .t/ is an approx-
imation of the solution u.x; t/, at the grid point xj . The centered difference operator
isD0uj D .ujC1�uj�1/=2�x. Linearization of (1) around a smooth and bounded
solution Ouj .t/ leads to the equation

d

dt
ej C 1

2
ejD0 Ouj C 1

2
OujD0ej C 1

2
D0 Ouj ej D 0

for the small perturbation ej . In the scalar product .u; v/h D �x
P
j uj vj and norm

jjujj2
h
D .u; u/h, we obtain

1

2

d

dt
jje.t/jj2h D .e; et /h D �

1

2
.e; eD0 Ou/h � 1

2
.e; OuD0e/h � 1

2
.e;D0 Oue/h:

The summation by parts property .u;D0v/h D �.D0u; v/h eliminates the last two
terms to give

1

2

d

dt
jje.t/jj2h D �

1

2
.e; eD0 Ou/ � C.e; e/h

for a constant C that depends on the maximum spatial derivative of Ou. Gronwall’s
lemma gives the standard well-posedness estimate,

jjejj � K1eK2t

for constantsK1 andK2. Consequently, the linearization of (1) isL2 stable. Strang’s
theorem, see [7], states that if the solution is smooth, and if the method is pth
order accurate and smooth, and has an L2 stable linearization, then the numerical
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solution converges with pth order convergence rate. We have thus proved that the
split method (1) is convergent as long as no shocks form.

However, because the convergence is up to a fixed time as the grid is refined, it
does not necessarily imply that the method is suitable for long time integration. Fur-
thermore, other splittings are possible with different weights on the conservative and
non-conservative terms in (1) that do not directly lead to a well-posedness estimate,
but turned out to work equally well in numerical experiments. In the absence of bet-
ter mathematical tools, numerical investigations to assess various possible schemes
will be necessary.

In our previous work, non-conservative entropy splitting [17] turned out to be sta-
ble and accurate, but when mixed with shock capturing schemes, non-conservative
effects sometimes make shocks move with incorrect speeds. As conservative alter-
natives to entropy splitting, we will consider here the skew-symmetric splitting of
Ducros et al. [2, 3] and the entropy conservative formulation of Tadmor [11, 12].
Section 2 describes these methods for the Euler equations of compressible gas
dynamics. Section 3 reports results from numerical experiments comparing the
entropy split scheme, the skew-split scheme, and the entropy conserving scheme.
The discussion concentrates of high order central schemes. Padé type of spatial
discretizations will not be discussed due to lack of space.

2 Non-Dissipative Schemes

For ease of presentation we will describe non-dissipative schemes applied to the
compressible Euler equations in one space dimension. The generalization to three
space dimensions is straightforward. The Euler equations are

ut C f.u/x D 0; (2)

where u D .�; �u; e/ and f.u/ D .�u; �u2 C p; u.e C p//. The dependent
variables are density �, momentum �u, and total energy e. The pressure is p D
.� � 1/.e � 1

2
�u2/, where � is a given constant. The computational domain is 0 <

x < L, with periodic boundary conditions at x D 0 and x D L. u is assumed to
be given at the initial time. The grid points xj D .j � 1/�x, j D 1; : : : ; N , where
�x D L=.N � 1/, discretizes the computational domain. Undivided difference
operators are denoted�Cuj D ujC1�uj ,�0uj D .ujC1�uj�1/=2, and��uj D
.uj � uj�1/.

2.1 Skew-Symmetric Splitting

Splitting of the derivative of a product in conservative and non-conservative part is
done by application of the formula
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.ab/x D 1

2
.ab/x C 1

2
abx C 1

2
axb; (3)

before discretization. An interesting property is that the split approximation can be
written on conservative form,

1

2
D0.ab/j C 1

2
ajD0bj C 1

2
bjD0aj D 1

4
DC.aj C aj�1/.bj C bj�1/; (4)

where DCuj D .ujC1 � uj /=�x. (4) can be generalized to arbitrary orders of
accuracy if the second order operatorD0 is replaced by the 2pth order accurate

D0puj D
pX
kD1

˛
.p/

k
D0.k/uj : (5)

The expanded operators are defined as

D0.k/uj D .ujCk � uj�k/=.2k�x/

and the coefficients satisfy

pX
kD1

˛
.p/

k
D 1

pX
kD1

˛
.p/

k
k2n D 0; n D 1; : : : ; p � 1: (6)

For details see Ducros et al. [2]. Their key idea is to generalize a splitting that
leads to kinetic energy conservation for the incompressible flow equations, to
compressible flows.

There are many different ways that (3) can be used for the Euler equations. Dif-
ferent splittings are obtained from different ways to write the fluxes as products of
two factors, and it is possible to apply splitting to only some of the equations. In the
numerical investigations reported in [5], one of the best performing splittings for (2)
was (here displayed with second order accuracy)

d

dt
�j C 1

2
D0�j uj C 1

2
�jD0uj C 1

2
ujD0�j D 0

d

dt
.�u/j C 1

2
D0�j u2j C

1

2
�j ujD0uj C 1

2
ujD0�j uj CD0pj D 0 (7)

d

dt
ej C 1

2
D0uj .ej C pj /C 1

2
ujD0.ej C pj /C 1

2
.ej C pj /D0uj D 0:

In three space dimensions the recipe for (7) is to apply (4) to each of the two products
in the general three dimensional flux f D unuCpe, where un is the velocity normal
to the cell interface, and e D .0; k1; k2; k3; un/, with .k1; k2; k3/ being the cell
interface normal.
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See [4] for a comparison of splitting methods with different formulations of the
energy equation. For a heuristic discussion on aliasing errors for split approxima-
tions, see [1].

The homogeneity of the Euler fluxes means that f.u/ D A.u/u, where A.u/ is
the Jacobian of f.u/. A natural splitting would therefore be

d

dt
uj C 1

2
D0fj C 1

2
AjD0uj C 1

2
D0.Aj /uj D 0; (8)

which is of a form that is more suitable for the norm estimate technique described
in Sect. 1 for a scalar problem.

2.2 Entropy Conserving Schemes

Entropy conserving schemes were introduced in in the 1980s. See, e.g., [11]. These
schemes are in conservation form, and admit a discrete conservation law for the
entropy. An entropy,E.u/, and an entropy flux F.u/ are two functions satisfying

ETu A.u/ D F Tu :

Here, Eu denotes the gradient of E with respect to u. Furthermore, E.u/ is
assumed to be a convex function. The entropy variables are defined by v D Eu.u/.
Multiplying (2) by vT gives the entropy equation

vT ut C vTAux D E.u/t C F Tu ux D E.u/t C F.u/x D 0:

The entropy flux potential, defined by

 D vT f � F

has the property that f D  v.
The following construction defines a high order entropy conservation scheme.

Theorem 1. The semi-discrete approximation of a system of conservation laws
given by

�x
d

dt
uj C

pX
kD1

˛
.p/

k

k
.g.k/
jCk=2 � g.k/

j�k=2/ D 0; (9)

where g.k/
jCk=2 satisfies

.vjCk � vj /T g.k/
jCk=2 D  jCk �  j (10)
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and where the kth flux differences approximate the flux derivative to second order
with a truncation error of even powers of k�x,

g.k/
jCk=2 � g.k/

j�k=2 D k�xfx C k3�x3�1 C k5�x5�2 C : : : ; (11)

is 2pth order accurate, and admits a discrete entropy equation

�x
d

dt
Ej C

pX
kD1

˛
.p/

k

k
.H

.k/

jCk=2 �H .k/

j�k=2/ D 0; (12)

where H .k/

jCk=2 D 1
2
..vjCk C vj /T g.k/

jCk=2 � . jCk C  j //. Both (9) and (12) can
be cast in conservation form, because

ajCk=2 � aj�k=2 D �C.
k�1X
mD0

aj�k=2Cm/

for any arbitrary grid function ajCk=2 that satisfies ajCk=2�k D aj�k=2.

Proof. Multiply (9) by vTj to obtain

�x
d

dt
E.uj /t C

pX
kD1

˛
.p/

k

k
.vTj gjCk=2 � vTj gj�k=2/ D 0:

Rewrite each flux difference as

vTj g.k/
jCk=2 � vTj g.k/

j�k=2 D
1

2
.vjCk C vj /T g.k/

jCk=2 �
1

2
.vjCk � vj /T g.k/

jCk=2

�1
2
.vj C vj�k/T g.k/

j�k=2 �
1

2
.vj � vj�k/g.k/j�k=2

and use (10) to conclude that

vTj g.k/
jCk=2 � vTj g.k/

j�k=2 D
1

2
..vjCk C vj /T g.k/

jCk=2 � .vj C vj�k/T g.k/
j�k=2

�. jCk C  j /C . j C  j�k//: (13)

It is clear from (13) that the entropy conservation (12) follows.
It remains to prove that the order of accuracy is 2p. Assumption (11) gives

pX
kD1

˛
.p/

k

k
.g.k/
jCk=2�g.k/

j�k=2/ D
pX
kD1

˛
.p/

k
.�x�1C˛kk2�x3�3C˛kk4�x5�5C� � � /:
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(6) gives
pX
kD1

˛
.p/

k

k
.g.k/
jCk=2 � g.k/

j�k=2/ D �xfx C O.�x2pC1/;

showing that the order of accuracy is 2p. ut
This scheme was also described, although not implemented, in [10].

For a scalar conservation law the simple choice g.k/
jCk=2 D . jCk� j /=.vjCk�

vj / satisfies both (10) and (11). For the one dimensional Euler system [12, 13]
defined entropy conserving fluxes based on integration in phase space. Here, we
instead write  as a function of the entropy variables and determine functions 'i
consistent with the gradient of  and satisfying

. jCk �  j / D '1..v1/jCk � .v1/j /C : : :C '3..v3/jCk � .v3/j /:

The definition g.k/
jCk=2 D .'1; '2; '3/ determines an entropy conservative method.

As an example, consider the entropy E.u/ D 1C�
1�� .�p/

1
�C1 , which has the entropy

flux potential (for explicit expressions for the entropy variables, see [17] or [13])

 D �v2
v3
..� � 1/.v1v3 � v22=2//

1
1�� :

Denote q D .� � 1/.v1v3 � v22=2/, and perform the expansion by repeated use of
the rule

�ab D a�b C b�a
where�a denotes ajCk�aj and a denotes .ajCkCaj /=2. The expansion becomes,

� D .�1=v3�v2 � v2�
1

v3
/q

1
1�� � v2

v3
�q

1
1��

D 1

.v3/jCk.v3/j
.�v3�v2 C v2�v3/q

1
1�� � v2

v3
�q

1
1��

with

�q
1
1�� D q

1
1��

jCk � q
1
1��

j

qjCk � qj �q D q
1
1��

jCk � q
1
1��

j

qjCk � qj .� � 1/.v3�v1 C v1�v3 � v2�v2/:

(14)

DenotingQ D q

1
1��

jCk
�q

1
1��

j

qjCk�qj .� � 1/, the final expression becomes
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� D �v2
v3
Qv3�v1 C .� v3

.v3/jCk.v3/j
g

1
1�� C v2

v3
Qv2/�v2

C. v2
.v3/jCk.v3/j

g
1
1�� � v2

v3
Qv1/�v3:

It is possible to obtain the numerical flux function in standard variables by trans-
forming back from entropy variables. For example, the mass flux for the second
order method (k D 1) becomes

�v2
v3
Qv3 D u �.p��

�
1C� /Q:

The difference quotientQ tends to p�
�
�C1 when�q becomes small. Therefore, this

flux is consistent. For comparison, the mass flux in (7) is

u �:

Therefore, apart from the factor Q, the entropy conservative scheme can be inter-

preted as a splitting method. By redefining Q as p�
�
�C1 , the entropy conservative

scheme would become a split scheme, but then perfect entropy conservation would
no longer be certain.

3 Numerical Experiments

The isentropic vortex convection problem for the two dimensional Euler equations
has initial data

� D .1 � .� � 1/
Ǒ2

8��2
e1�r2/

1
��1

u D 1 �
Ǒ.y � y0/
2�

e
1�r2

2

v D
Ǒ.x � x0/
2�

e
1�r2

2

p D ��

where r2 D .x � x0/2C .y � y0/2, .x0; y0/ is the center of the vortex, and Ǒ is the
strength of the vortex. The exact solution consists of the initial data translated with
velocity one in the x-direction. We solve the isentropic vortex convection problem
on the computational domain 0 � x � 18, 0 � y � 18 with periodic boundaries.
The strength and center of the vortex are Ǒ D 5 and .x0; y0/ D .9; 9/, respectively.
The grid spacing is �x D �y D 0:25. All computations use eighth order accurate
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Fig. 1 Vortex convection. Norm of error vs. time for D08ES (solid), D08SS (squares), D08EC
(dash), D08 (diamonds), and D08CS (circles). Inviscid computation

spatial discretizations with fourth order Runge–Kutta in time. Figure 1 displays a
comparison of the norm of the solution error vs. time for five different methods.
The final time of the computation is 180, which corresponds to 10 periods of vortex
convection. D08ES (solid) denotes the non-conservative entropy splitting of Ols-
son and Oliger [6, 17] with splitting parameter ˇD 2, D08SS (squares) denotes the
Ducros et al. split scheme (7), D08EC (dash) denotes the Tadmor entropy conser-
vative scheme implemented as described in Sect. 2, D08 (diamonds) denotes the
pure centered scheme, and D08CS (circles) denotes the natural split scheme (8). All
schemes have small errors during the first period. The purely centered approxima-
tion, D08, breaks down due to the non-linear instability at a very early time. After
two periods D08EC has the smallest error. The error grows to become large after
three periods for D08EC, and after around five to six periods for the other schemes.
This error is completely dispersive, and the solutions are highly oscillatory for all
methods. The skew split schemes, D08SS and D08CS, break down with negative
pressure at around time 140. This does not necessarily mean that they are unstable.
They might be accurate for longer times on a finer grid. The entropy split scheme,
D08ES, has the best performance, but it will eventually also reach a state where
all accuracy has disappeared due to dispersive errors. It appears that the accuracy
of D08EC is more sensitive to the small scale oscillations that develop. However,
unlike D08SS and D08CS, the small oscillations do not make D08EC break down.

One reason for using entropy split and entropy conservative schemes for the
Navier–Stokes equations is that all dissipation in the computed flow will be entirely
due to physical viscosity of the Navier–Stokes operator. There is no numerical diffu-
sion. Furthermore, the high frequency modes that cause instabilities in the inviscid
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Fig. 2 Vortex convection. Norm of distance to inviscid solution vs. time for D08ES (solid), D08SS
(squares), D08EC (dash), D08 (diamonds), and D08CS (circles). Navier–Stokes equations with
� D 0:001. Results are indistinguishable for all schemes except D08

case will be limited by the physical viscosity. Figure 2 displays the norm of the
difference between the inviscid solution and the computed solution vs. time for a
solution of the Navier–Stokes equations. The same vortex convection problem as
in Fig. 1 was solved, but with the added Navier–Stokes viscosity operator with a
constant viscosity coefficient � D 0:001 and heat conduction corresponding to the
Prandtl number 0.72. The viscosity was discretized by eighth order centered differ-
ence operators. The viscosity � D 0:001 is far from resolved on the grid, which has
�x D 0:25. The parabolic time step restriction is not activated. Even with this small
dissipation, all methods, except D08, are well behaved. There is no accumulation of
high frequency errors. The curves in Fig. 2 are indistinguishable. The viscosity is
not large enough to prevent the blow-up of the pure centered scheme. However,
increasing the viscosity to � D 0:01, which is also unresolved on the grid, gives
more or less identical results with all methods (results not plotted), including the
pure centered scheme.

In summary, the non-conservative entropy splitting and the Ducros et al. skew-
symmetric split formulations perform the best for this particular smooth flow.
However, Ducros et al.’s formulation is conservative and it is applicable to problems
containing shock waves.
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Ideal Curved Elements and the Discontinuous
Galerkin Method

Veronika Sobotı́ková

Abstract In this paper we prove a new result concerning Zlámal’s ideal curved ele-
ments which allows us to employ these elements in a discontinuous Galerkin finite
element method for a nonlinear convection-diffusion problem on a nonpolygonal
domain, and to derive an H 1-optimal error estimate for this method.

1 Introduction

Discontinuous Galerkin finite element methods are often used for approximation
of nonlinear convection–diffusion problems. Although in practice these problems
are usually defined on nonpolygonal domains, theoretical papers consider almost
exclusively problems on polygonal domains. In practical computations the curved
parts of boundary are usually approximated by line segments. However, the obtained
results are not always satisfactory in neighborhood of the boundary. Therefore we
are interested in the possibility of using curved elements in the method instead of
approximating the boundary.

We employ the ideal curved elements introduced by Zlámal in [3]. In this paper
Zlámal showed that if the boundary of the domain is piecewise sufficiently smooth,
then there exist regular mappings that map one-to-one the reference triangle on
the ideal curved boundary triangles. Our aim is to prove boundedness of higher
order derivatives of inverses of these mappings, which allows to use Zlámal’s
ideal curved elements in a DGFE approximation of a nonlinear non-stationary
convection–diffusion problem and to derive an H 1-optimal error estimate for such
a method.

V. Sobotı́ková
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Praha 6, Czech Republic
e-mail: veronika@math.feld.cvut.cz

G. Kreiss et al. (eds.), Numerical Mathematics and Advanced Applications 2009,
DOI 10.1007/978-3-642-11795-4 89, © Springer-Verlag Berlin Heidelberg 2010

829

veronika@math.feld.cvut.cz


830 V. Sobotı́ková

2 Ideal Curved Triangulation

Let ˝ � R2 be a bounded domain with a Lipschitz-continuous boundary @˝ and
let @˝ be piecewise of the class C kC1, where k � 2 is an integer. Let f˝hgh2.0;h0/

be a system of polygonal approximations of ˝ . On the domains ˝h we consider
triangulations Th formed by a finite number of closed triangles K: We assume that
the triangulations have the following properties

� All vertices of Th lie in ˝,
� All vertices lying on the boundary of ˝h lie on the boundary of ˝ , too,
� At most two vertices of any triangle lie on the boundary of ˝h,
� There are no hanging nodes on the boundary of ˝h,
� All points from @˝ where the condition of C kC1-smootheness of @˝ is not

satisfied are vertices of Th;
� The system of triangulation fThgh2.0;h0/ is shape-regular.

Now, let K 2 Th be a boundary triangle. We denote its vertices by P1; P2; P3
in such a way that P1; P3 2 @˝h. Replacing in K the straight side P1P3 � @˝h
by the arc

_

P1P3� @˝ , we get the ideal curved triangle eK associated with K . We
set heK D hK D diameter of K . If we add the set eT B

h
of all ideal curved boundary

triangles to the set of all straight inner triangles of Th, we obtain the ideal curved
triangulation eT h of ˝ associated with Th.

By OK we denote a reference triangle with verticesR1 D .0; 0/; R2 D .1; 0/ and
R3 D .0; 1/.
Theorem 1. Let h0 be sufficiently small. Then for each eK 2 eT B

h
there exists such

a one-to-one mapping QxeK W OK ! eK that its Jacobian JQxeK .Ox/ is different from zero

on OK and the mapping QxeK as well as its inverse are of class C k: In addition, there
exist positive constants c1; c2; CD independent of eK 2 eT B

h
; h 2 .0; h0/; such that

c1 h
2

eK � jJQxeK .Ox/j � c2 h
2

eK ; (1)

jD˛ QxeKi .Ox/j � CD hj˛jeK ; 1 � j˛j � k; i D 1; 2; (2)

jD˛ OxeKi .Qx/j � CD h�1eK ; j˛j D 1; i D 1; 2; (3)

where . QxeK1; QxeK2/.Ox/ D QxeK.Ox/; . OxeK1; OxeK2/.Qx/ D OxeK.Qx/ D
�QxeK

�
�1.Qx/ and ˛ D

.˛1; ˛2/; j˛j D ˛1 C ˛2.

For the proof of Theorem 1 and the definition of mappings QxeK see [3].
In what follows, we shall use this notation: Let eK 2 eT B

h
and Qw be a (scalar or

vector) function defined on eK. Then we denote by Ow the function

Ow.Ox/ D Qw.Qx.Ox//; Ox 2 OK:
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Similarly, if Ow is a function defined on the reference triangle OK and eK 2 eT B
h

, then
we denote by Qw the function

Qw.Qx/ D Ow.Ox.Qx//; Qx 2 eK:

3 Properties of the Mappings Ox QK

To derive error estimates for a standard finite element method which employs ideal
curved elements, knowledge of properties of first derivatives of the mappings OxeK D�QxeK

�
�1 is sufficient. However, if we want to use a discontinuous Galerkin method,

we also need to know estimates of higher order derivatives of these mappings. For
this reason we prove the following theorem.

Theorem 2. Let fQxeKgeK2eT B
h
; h2.0;h0/

be any system of mappings with the proper-

ties from Theorem 1. Then there exists a positive constant NCD such that derivatives
of the inverse mappings OxeK D

�QxeK
�
�1 satisfy

jD˛ OxeKi .Qx/j � NCD h�1eK ; 1 � j˛j � k; i D 1; 2; (4)

Qx 2 eK 2 eT B
h ; h 2 .0; h0/:

Remark 1. In fact, as boundedness (3) of the first derivatives of the inverse map-
pings is a consequence of properties (1) and (2), it is not necessary to require it
explicitly.

We shall prove Theorem 2 with the use of the following lemmas:

Lemma 1. Let m > 0 be an integer and ˛� D .˛�1 ; ˛�2 / be such a multiindex that
0 ¤ j˛�j D ˛�1 C ˛�2 � m: Then it is possible to express the derivative D˛� Qw of
any function Qw 2 Hm.eK/; eK 2 eT B

h
; in the form

D˛� Qw.Qx/ D
R�X

rD1
A�r � B�r . Qw; Ox/.Qx/ � C �r .Ox/.Qx/; (5)

where

� A�r 2 N are constants,
� B�r . Qw; Ox/.Qx/ D Dˇ�r Ow.Ox.Qx// for some nonzero multiindex ˇ�r ; jˇ�r j � j˛�j,

� C �r .Ox/.Qx/ D
S�

rY

sD1
E�s .Ox/.Qx/; where S�r D jˇ�r j and E�s .Ox/.Qx/ D .D��s Ox1/.Qx/

or E�s .Ox/.Qx/ D .D��s Ox2/.Qx// for some nonzero multiindex ��s ; j��sj � j˛�j;
S�

rX

sD1
j��sj D j˛�j:
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The values of R�; A�r ; S�r , the multiindices ˇ�r and ��s and the forms of B�r and
C �r depend on the multiindex ˛� only.

Proof of this lemma can be carried out with the use of mathematical induction on
the order j˛�j of the derivative. Using mathematical induction on the order of the
derivative j N̨ j, we can also prove the next lemma:

Lemma 2. Let N̨ D . N̨1; N̨2/ be a multiindex. Then for any pair of sufficiently

smooth functions f; g it is possible to express the derivativeD N̨
�
f
g

�
in the form

D N̨
�
f

g

�
D

NRX

rD1
NAr �
NBr .f / � NCr.g/

g
Nkr

; (6)

where

� NAr 2 Z are constants,
� Nkr 2 f1; 2; : : : ; j N̨ j C 1g,
� NBr .f / D D Ňrf for a suitable multiindex Ňr ; 0 � j Ňr j � j N̨ j,

� NCr.g/ D
NSrY

sD1
NEs.g/; where NEs.g/ D D N�s

g for a suitable multiindex

N� s; 0 < j N� sj � j N̨ j, and NSr D Nkr � 1; j Ňr j C
NSrX

sD1
j N� sj D j N̨ j; or NCr.g/ D 1 and

j Ňr j D j N̨ j (in this case we set NSr D 0).

The values of NR; NAr ; Nkr ; NSr , the multiindices Ňr and N� s and the forms of NBr and
NCr depend on the multiindex N̨ only.

Lemma 3. Let fQxeKgeK2eT B
h
; h2.0;h0/

be any system of mappings with the properties

from Theorem 1. Then there exists such a constant CJ > 0 that for all multiindices
ˇ D .ˇ1; ˇ2/; jˇj � k � 1; we have the estimate

ˇ̌
ˇ
�
DˇJQxeK

�
.Ox/
ˇ̌
ˇ � CJ � hjˇ jC2eK Ox 2 OK; eK 2 eT B

h ; h 2 .0; h0/: (7)

The constant CJ depends on k and CD from Theorem 1 only.

Proof. By the definition of the Jacobian JQxeK .Ox/ (we shall omit the subindex QxeK ),
we have

J.Ox/ D @ Qx1
@ Ox1 .Ox/ �

@ Qx2
@ Ox2 .Ox/�

@ Qx1
@ Ox2 .Ox/ �

@ Qx2
@ Ox1 .Ox/:
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Using Leibniz rule for higher order derivatives of a product, we obtain

�
DˇJ

�
.Ox/ D @ˇ2

@ Oxˇ2

2

 
@ˇ1J

@ Oxˇ1

1

!
.Ox/

D
ˇ2X

l2D0

ˇ1X

l1D0

 
ˇ2

l2

! 
ˇ1

l1

!(
@l2

@ Oxl22

 
@l1

@ Oxl11

�
@ Qx1
@ Ox1

�!
� @

ˇ2�l2

@ Oxˇ2�l2
2

 
@ˇ1�l1

@ Oxˇ1�l1
1

�
@ Qx2
@ Ox2

�!

� @l2

@ Oxl22

 
@l1

@ Oxl11

�
@ Qx1
@ Ox2

�!
� @

ˇ2�l2

@ Oxˇ2�l2
2

 
@ˇ1�l1

@ Oxˇ1�l1
1

�
@ Qx2
@ Ox1

�!)
.Ox/

D
ˇ2X

l2D0

ˇ1X

l1D0

 
ˇ2

l2

! 
ˇ1

l1

!(
@l1Cl2C1 Qx1
@ Oxl22 @ Oxl1C11

� @
ˇ1Cˇ2C1�l1�l2 Qx2
@ Oxˇ2C1�l2
2 @ Oxˇ1�l1

1

� @l1Cl2C1 Qx1
@ Oxl2C12 @ Oxl11

� @
ˇ1Cˇ2C1�l1�l2 Qx2
@ Oxˇ2�l2
2 @ Oxˇ1C1�l1

1

)
.Ox/:

From this, by the assumptions of Theorem 1, we deduce

ˇ̌
ˇ
�
DˇJ

�
.Ox/
ˇ̌
ˇ �

ˇ2X

l2D0

ˇ1X

l1D0
2C 2D

 
ˇ2

l2

! 
ˇ1

l1

!
h
ˇ1Cˇ2C2
eK :

To obtain (7), it is now sufficient to set CJ D max
jˇ j�k�1

8
<

:2C
2
D

ˇ2X

l2D0

ˇ1X

l1D0

 
ˇ2

l2

! 
ˇ1

l1

!9=

;:

ut
Proof of Theorem 2. Since ˛1 C ˛2 D j˛j > 0, in what follows we can assume
without the loss of generality that ˛1 ¤ 0. We shall prove estimate (4) only for
i D 1, in the case i D 2 one would proceed similarly.

1. If we differentiate the relation

. Qx1; Qx2/ D
� Qx1

� Ox1.Qx/; Ox2.Qx/
�
; Qx2

� Ox1.Qx/; Ox2.Qx/
� �

with respect to Qx1, we obtain a system of two linear equations with two unknowns
@ Ox1
@ Qx1 and

@ Ox2
@ Qx1 : Solving this system, we find that

@ Ox1
@ Qx1 .Qx/ D

 
@ Qx2

@ Ox2

@ Qx1

@ Ox1

@ Qx2

@ Ox2
� @ Qx1

@ Ox2

@ Qx2

@ Ox1

!
.Ox.Qx// D

 
@ Qx2

@ Ox2

J

!
.Ox.Qx//:
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2. By Lemmas 2, 3, and the assumptions of the theorem, we have for j N̨ j � k� 1
ˇ̌
ˇ̌
ˇ

 
D N̨

@ Qx2

@ Ox2

J

!
.Ox/
ˇ̌
ˇ̌
ˇ �

NRX

rD1
j NAr j

ˇ̌
ˇ NBr

�
@ Qx2

@ Ox2

�
.Ox/
ˇ̌
ˇ
ˇ̌ NCr .J /.Ox/

ˇ̌

jJ.Ox/jkr

�
NRX

rD1
j NAr jCD C NSr

J

h
j Ňr jC1
eK h

P
NSr

sD1
.j N�s jC2/

eK

c
Nkr

1

�
h2eK
� Nkr

:

From this, using the relations j Ňr j C
NSrX

sD1
j N� sj D j N̨ j and NSr D Nkr � 1, we deduce

ˇ̌
ˇ̌
ˇ

 
D N̨

@ Qx2

@ Ox2

J

!
.Ox/
ˇ̌
ˇ̌
ˇ �

NRX

rD1
j NAr jCD C NSr

J c
� Nkr

1 h
j N̨ jC1C2. Nkr�1/�2 Nkr

eK

D
NRX

rD1
CD C

NSr

J c
� Nkr

1 j NAr j hj N̨ j�1eK � C �hj N̨ j�1eK ;

where C � D max
0<j N̨ j�k�1

8
<

:

NR. N̨ /X

rD1
CD C

NSr

J c
� Nkr

1 j NAr. N̨ /j
9
=

; :

3. Now we can approach the proof of (4). As we assume ˛1 ¤ 0, we can write

D˛ Ox1.Qx/ D D.˛1�1;˛2/
�
D.1;0/ Ox1.Qx/

�
D @˛1C˛2�1

@ Qx˛1�1
1 @ Qx˛2

2

�
@ Ox1
@ Qx1 .Qx/

�

D @˛1C˛2�1

@ Qx˛1�1
1 @ Qx˛2

2

 
@ Qx2

@ Ox2

J
.Ox.Qx//

!
:

Using this expression, we can prove the estimate (4) by induction on j˛j:
i. Let j˛j D 1 (i.e., ˛ D .1; 0/). Then, by the assumptions of the theorem and the

part 1) of this proof,

jD˛ Ox1.Qx/j D
ˇ̌
ˇ̌@ Ox1
@ Qx1 .Qx/

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ

 
@ Qx2

@ Ox2

J

!
.Ox.Qx//

ˇ̌
ˇ̌
ˇ �

CD heK
c1 h

2

eK
D CD c�11 h�1eK :

Hence, the estimate (4) is valid whenever NCD � CD � c�11 .
ii. Let n 2 f2; : : : ; kg and let there exists such a constant NCD;n�1 > 0 that

ˇ̌
D N̨ Oxi .Qx/

ˇ̌ � NCD;n�1 h�1eK 8 Qx 2 eK 8 N̨ ; 0 < j N̨ j � n � 1:
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Let j˛j D n; ˛1 ¤ 0: Denoting

Qw.Qx/ D
 
@ Qx2

@ Ox2

J

!
.Ox.Qx//; ˛� D .˛1 � 1; ˛2/

(obviously j˛�j D n � 1), we have by Lemma 1, part 2) of this proof and by the
induction assumption (we use the notations introduced in Lemma 1)

jD˛ Ox1.Qx/j D
ˇ̌
ˇD˛� Qw.Qx/

ˇ̌
ˇ �

R�X

rD1
jA�r j jB�r . Qw; Ox/.Qx/j jC �r .Ox/.Qx/j

�
R�X

rD1
jA�r jC �hjˇ

�r j�1
eK

S�

rY

sD1
NCD;n�1h�1eK

D
R�X

rD1

�
jA�r jC � NC S

�

r

D;n�1
�
h
jˇ�r j�1�S�

r

eK � eCD;nh�1eK ;

where eCD;n depends on n only. Here we used the relation S�r D jˇ�r j � j˛j and
the fact that the values of R�; A�r and C � depend on j˛�j D n� 1 only.

Thus, Theorem 2 is proved. ut

4 Application to a Nonlinear Convection–Diffusion Problem

Let us consider the following nonlinear non-stationary convection–diffusion prob-
lem: Find u W QT D ˝ � .0; T /! R such that

@u

@t
C

2X

`D1

@f`.u/

@x`
D "�u C g in QT ;

u
ˇ̌
@˝�.0;T / D uD ; (8)

u.x; 0/ D u0.x/ x 2 ˝:

We seek an approximate solution of problem (8) on a time level t in the space of
discontinuous piecewise “almost polynomial” functionseShp defined by

eShp D f Qvh I QvhjeK 2 eP p.eK/ for all eK 2 eT h g;

where eP p.eK/ D f Qw I Ow is a polynomial of degree� p on OK g. Discretizing problem
(8) using the standard DGFE techniques (we can consider both symmetric and non-
symmetric variants of approximation), we get a form Qah approximating the diffusion
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term, an interior and boundary penaltyeJ h and a right-hand side form Q̀h; the convec-
tive terms are approximated by a form Qbh using a numerical flux, which we assume
to be Lipschitz-continuous, consistent and conservative. (For more details see [2].)

We define an approximate DGFE solution of problem (8) as a function Quh 2
C 1.Œ0; T �IeS hp/ satisfying the following conditions:

a)

�
@Quh.t/
@t

; Q'h
�
C Qbh.Quh.t/; Q'h/C Qah.Quh.t/; Q'h/C "eJ h.Quh.t/; Q'h/D Q̀h. Q'h/ .t/

8 Q'h 2 eShp 8 t 2 .0; T /;
b) Quh.0/jeK D Q̆ QKu0 8eK 2 eT h;

(9)
where Q̆eK .eK 2 eT B

h
/ are projections defined by

Q̆eK Qw D Qv ” Ov 2 P p. OK/ and . Ow; O'/ D .Ov; O'/ 8 O' 2 P p. OK/: (10)

Using Theorem 2, we can show that the projections Q̆eK have the following
property

j Q̆eK Qv � Qv jH2.eK/ � C˘ hr�1K

�
jj Qv jj2

HrC1.eK/ � jj Qv jj2L2.eK/
�1=2

(11)

8Qv 2 H rC1.eK/; r 2 f1; : : : ; k � 1g:
This allows us, under the assumption that the boundary of the domain˝ is piecewise
of the class CpC2 (i.e., k D p C 1 in Sects. 2 and 3 and in (11) ), to derive an error
estimate of the type known for the polygonal case (cf. [1]):

Theorem 3. Let u be the exact solution of problem (8) and let Quh be its
approximate DGFE solution. Let u meet the regularity conditions

u 2 L2.0; T IHpC1.˝// ;
@u

@t
2 L2.0; T IHp.˝// :

Then there exists a constant eC > 0 such that the error of the method Qeh D u� Quh
satisfies

max
t2Œ0;T �

kQeh.t/k2L2.˝/ C
"

2

Z T

0

�
j Qeh.#/j2

H1.˝;eT h/
CeJ �h. Qeh.#/; Qeh.#//

�
d# � eCh2p

for all h 2 .0; h0/.
For the proof see [2].
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Analysis of the Parallel Finite Volume Solver
for the Anisotropic Allen–Cahn Equation in 3D

Pavel Strachota, Michal Beneš, Marco Grottadaurea, and Jaroslav Tintěra

Abstract In this contribution, a parallel implementation of the finite volume solver
is introduced, designated to numerically solve the initial boundary value problem
for the Allen–Cahn equation with anisotropy on large 3D grids. The choice of a
suitable numerical scheme is discussed and its convergence properties are investi-
gated by means of evaluation of the experimental order of convergence. Afterwards,
the consequent limitations for the theoretical error estimate are pointed out. Further-
more, the results of parallel algorithm efficiency measurements are shown, based on
extensive tests performed on high performance computing systems. The final part
gives a brief overview of a magnetic resonance tractography (neural tract tracking
and visualization) method consisting in the solution of the above problem.

1 Introduction

The Allen–Cahn equation having its origin in phase modeling in physics [1] has
since found its application in other fields, including image processing and mathe-
matical visualization [2, 8]. In particular, in order to visualize the streamlines of a
given tensor field in 3D, an initial boundary value problem for the modified Allen–
Cahn equation with incorporated anisotropy can be used [8, 10]. We introduce its
parallel numerical solver using several flux approximation schemes on a rectangular
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grid, justify the choice of the suitable scheme with respect to the undesired artificial
dissipation effect and focus on its convergence properties.

2 Problem for the Allen–Cahn Equation with Anisotropy

2.1 Formulation

Assume there is a symmetric positive definite tensor field D W N̋ 7! R3�3 where
˝ � R3 is a block shaped domain. On the time interval J D .0; T /, the initial
boundary value problem for the anisotropic Allen–Cahn equation reads

�
@p

@t
D �r �Drp C 1

�
f0.p/ in J �˝; (1)

@p

@n

ˇ̌
ˇ̌
@˝

D 0 on NJ � @˝; (2)

pjtD0 D I in ˝ (3)

where f0.p/ D p.1 � p/ �p � 1
2

�
. Let x 2 ˝ . Thanks to D .x/ in the diffusion

term on the right hand side of (1), the diffusion of p at x is focused into the direc-
tion of the principal eigenvector of D .x/, or more precisely, with the directional

distribution described by the ellipsoid
n

� 2 R3
ˇ̌
�

T
D .x/�1 � D 1

o
. In terms of ten-

sor field visualization, we choose the initial condition I in (3) as a noisy texture,
preferably an impulse noise. Due to the anisotropic diffusion process carried out by
solving (1)–(3), the solution p changes in time from noise to an organized structure.
Streamlines of the field of principal eigenvectors of D can be recognized there as
parts with locally similar value of p. The term f0 efficiently increases contrast of
the resulting 3D image provided that the parameter � and the final time T are chosen
appropriately (in our case by experiment). In order to actually view the resulting 3D
image p .�; T /, 2D slices through˝ can be helpful.

2.2 Numerical Solution

For numerical solution, the method of lines [9] is utilized. Applying a finite volume
discretization scheme in space, the problem (1)–(3) is converted to a system of ODE
in the general form

dp
dt
D f.t;p/: (4)

Thereafter, we employ the 4th order Runge–Kutta–Merson solver with adaptive time
stepping to solve (4).
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Describing the finite volume scheme, (4) can also be referred to as the semidis-
crete scheme and written in the form

�
d

dt
pK .t/ D �

X

�2EK

FK;� .t/C 1

�
f0;K .t/ 8K 2 T (5)

where T is an admissible finite volume mesh [4], K 2 T is one particular con-
trol volume (cell) and EK is the set of all faces of the cell K . FK;� .t/ represent
the respective numerical fluxes at the time t , which contain difference quotients
approximating the derivatives @xp, @yp, @zp at the center of the face � .

2.3 Artificial Dissipation and Finite Volume Scheme Design

One can assess the behavior of the numerical solution with respect to artificial
(numerical) dissipation depending on the exact form of FK;� . In the case of tensor
field visualization, this phenomenon demonstrating itself as an additional isotropic
diffusion may significantly deteriorate the visual quality of the result. This is because
the streamlines emerging in the solution are thin high frequency structures. To be
treated correctly, they require the difference operators used in FK;� to be of an
appropriate order [6].

Having the results obtained using different schemes available, one can decide
on the best of them by mere visual comparison. We have compared finite volume
schemes based on three different discretizations of FK;� together with a standard
1st order forward–backward finite difference scheme. The comparison performed
in two different settings was restricted to R2 and is shown in Fig. 1. In both cases,
the initial condition depicted on the very left underwent a process of anisotropic
diffusion directed along the axis y D x. Least artificial dissipation was produced by
the multipoint flux approximation (MPFA) scheme where the numerical flux FK;�
was obtained using the rules below:

� The difference quotient approximating the derivative in the direction perpendic-
ular to the face � uses a non-equidistant point distribution in order to avoid
redundant interpolation (Fig. 2a). Its 1-dimensional analog for a function u 2
C1 .R/ can be represented by the formula

u0
�
xiC 1

2

�
� 1

24h
.ui�1 � 27ui C 27uiC1 � uiC2/

where xj D j � h, uj D u
�
xj
�

for j 2 Z; h > 0.
� The remaining derivatives are approximated using a uniform 5-point stencil.

Again, its 1D analog can be written as

u0 .xi / � 1

12h
.ui�2 � 8ui�1 C 8uiC1 � uiC2/ :



842 P. Strachota et al.

t = 0.0004

210 3 4

t = 0.002

t = 0.0004

210 3 4

t = 0.002

Schemes used:
0. Initial condition
1. FV, MPFA
(4th order),
cubic interpolation

2. FV, MPFA,
(4th order),
linear interpolation

3. FV, 2nd order central
difference

4. Finite difference,
1st order
forward-backward

Fig. 1 Artificial diffusion in different numerical schemes. Two time levels for two different initial
conditions

Moreover, the stencil points (the crosses along the dashed line in Fig. 2b) are
interpolated from the neighboring grid nodes using 1-dimensional cubic interpo-
lation.

3 Convergence Properties

We have been dealing with the derivation of the error estimate for a general finite
volume scheme with first order flux approximation on a general mesh. The goal is
to prove a first order error bound in the sense of the following result, so far available
for the isotropic case and a special centered difference scheme only (see also [4]).

Let ˝ � Rd be a polygonal domain and T > 0. Denote by T an admissible [4]
mesh defined on ˝ , let k 2 .0; T / and Nk D fn 2 Njnk � T g.

Furthermore, for all K 2 T , denote by pnK the value obtained by numerical
solution of 5 approximating p .xK ; nk/ where xK 2 K . The pointwise error is then
given by

enK D p .xK ; tn/ � pnK :
for all K 2 T and n 2 Nk. Assuming p 2 C2

� N̋ �J
�
, I 2 C2

� N̋ ;R�, D D I,
and using the Dirichlet boundary condition pj@˝ D g, g 2 C .@˝ � .0; T // instead
of (2), there exist positive constants C and k0 depending only on u, ˝ , T , and �
such that sX

K2T

�
enK
�2
m.K/ � C .hC k/ 8n 2 Nk

provided that k � k0.
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Fig. 2 Point stencils of difference quotients for derivative approximations in the MPFA finite
volume scheme

3.1 Experimental Convergence Measurement

Below we provide the experimentally measured convergence rates for some of the
schemes. Although not being a general proof of convergence, these results give rise
to the following conjectures:

� Despite the difficulties arising from treating the anisotropic diffusion operator
on a general mesh, one may expect to prove first order convergence at least for
structured meshes thanks to the evidence of experimental convergence analysis.

� On the other hand, proving higher order convergence rate is out of the question
even for MPFA schemes as long as cell centered finite volume approach is used.

The experimental order of convergence (EOC) is obtained by computing the solution
on a sequence of gradually refining grids and is defined as

EOCi D log

�
Errori

Errori�1

�,
log

�
hi

hi�1

�
;

where h D maxK diam.K/ is the mesh size and Errori is the difference of the i th
solution from the precise (analytical) solution measured in an appropriate norm. To
be able to calculate the analytical solution, we modify the right hand side of (1) to
obtain an alternate problem with any prescribed solution of class C2

� N̋ �J
�
. Of

course, the prescribed solution must satisfy the initial and boundary condition. The
results of the experimental convergence analysis for D constant are summarized in
Tables 1 and 2.



844 P. Strachota et al.

Table 1 EOC results for the standard central difference scheme
h L

1

.J IL2.˝// EOC in L
1

.J IL
1

.˝// EOC in
error �10�4 L

1

.J IL2.˝// error �10�3 L
1

.J IL
1

.˝//

0.00990 2.5560 – 5.5110 –
0.00497 0.6389 2.015 1.3560 2.038
0.00332 0.2844 2.005 0.6097 1.979
0.00249 0.1601 2.002 0.3431 2.004

Table 2 EOC results for the MPFA scheme
h L

1

.J IL2.˝// EOC in L
1

.J IL
1

.˝// EOC in
error �10�3 L

1

.J IL2.˝// error �10�2 L
1

.J IL
1

.˝//

0.00971 3.2350 – 2.2190 –
0.00493 1.6190 1.021 1.1140 1.016
0.00330 1.0790 1.012 0.7440 1.008
0.00248 0.8095 1.008 0.5585 1.005

Table 3 Parallel computation efficiency results on IBM BladeCenter LS21 at CINECA, Bologna,
Italy. Grid size 400� 400 � 100 nodes, slice cross section 400 � 100 nodes

Number of cores n Time tnŒs� Speedup Sn Efficiency EnŒ%�

1 54044.3 1.000 100.0
2 26377.2 2.049 102.5
4 13238.0 4.083 102.1
8 6752.1 8.004 100.1
20 2688.8 20.100 100.5
40 1366.4 39.552 98.9
80 706.9 76.458 95.6
100 575.7 93.874 93.9

4 Parallel Computation Performance

In our application (see Sect. 5), large meshes (hundreds of nodes in each dimension)
need to be dealt with. The numerical solution algorithm has therefore been devel-
oped as a parallel code from the beginning, using a simple domain decomposition
technique by means of the MPI library. The computational domain is divided into
an arbitrary number of successive parallel slices. Each slice is assigned to one MPI
process. As each process needs to synchronize solution data with its (at most) two
neighbors, this spatial configuration requires the smallest possible number of inter-
process communication operations for a given number of processes. On the other
hand, it is the least effective solution in terms of the amount of data transferred. In
order to investigate how serious the overhead is resulting from heavy communica-
tion, series of tests have been performed on the IBM BladeCenter LS21 at CINECA,
Bologna, Italy (see Acknowledgements). OpenMPI together with the Intel C/C++
compiler were used. The results in Table 3 confirm that excellent scalability can be
achieved even with the decomposition model described above. Slightly superlinear
speedup (efficiency over 100%) can be observed thanks to the cache effect [5].
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5 Application in MR-DTI

Medical examination of human brain by means of Magnetic Resonance Diffusion
Tensor Imaging (MR-DTI) [3,7] generates a tensor field. Applying the visualization
procedure described in Sect. 2, we arrive at a 3D texture where the streamlines can
be interpreted as neural fiber tracts. Sample DTI visualization is shown in Fig. 3.
For details on how tensor data correspond to neural fiber location and orientation,
see [7, 11]. Here we focus on the effects of this particular application on the design
of the parallel code:

� The choice of the slice orientation in domain decomposition is intended to min-
imize the amount of data for synchronization, i.e., to minimize the cross section
at slice boundaries. Fortunately, the design of the MR scanner determines the
shape of the computational grid which has a significantly lower resolution in
one of the dimensions. The favorable slice orientation therefore stays fixed and a
straightforward algorithm is used to organize data in memory at the start of the
computation, so that no MPI Pack operations are necessary for synchronization.

� Tests indicated the appropriate grid size for a whole brain visualization (see the
image dimensions in Fig. 3) and also implied that memory is of greater concern
than computing power.

Coronal layer, slice 480 of 900

Sagittal layer, slice 265 of 751

Transverse layer, slice 200 of 445

FA  0 max

Fig. 3 Sample results of DTI brain visualization. Cuts through the 3D volume in three principal
perpendicular planes, colorization by fractional anisotropy [3]. Input data provided by the Institute
for Clinical and Experimental Medicine (IKEM), Prague
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6 Conclusion

We have developed a tensor field visualization procedure based on numerical solu-
tion of the problem for the anisotropic Allen–Cahn equation. We have designed and
implemented a parallel numerical solver, gradually employing several numerical
schemes. Concerning artificial dissipation, we have observed that the MPFA scheme
with cubic interpolation exhibits satisfactory properties for visualization purposes.
We have experimentally verified the convergence of all numerical schemes as well
as very good scalability of the parallel code. As of the future work, it remains to
complete the theoretical error estimation procedure.
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Stabilized Finite Element Approximations
of Flow Over a Self-Oscillating Airfoil

Petr Sváček and Jaromı́r Horáček

Abstract The paper presents the comparison of numerical solution of a 2D aeroe-
lastic problem and experimental results. For the numerical approximation the cou-
pled formulation of a turbulent flow over an oscillating solid airfoil is considered.
The flow is modelled by the incompressible Reynolds averaged Navier–Stokes
(RANS) equations rewritten in Arbitrary Lagrangian–Eulerian (ALE) form and dis-
cretized by the stabilized finite element method (FEM). The numerical results are
compared with the results of optical measurements of flow field around an elasti-
cally supported vibrating double circular arc (DCA) 18% profile. The measurements
were performed above the critical airflow velocity for loss of the system stability by
flutter. The numerical results for the time dependent pressure distribution on the
fluttering airfoil are presented.

1 Introduction

The interaction of fluid flow and a vibrating structure is important in many technical
disciplines, see e.g., [4]. Number of advanced numerical and computational methods
for simulation of the fluid–structure interaction were developed during last decades,
see [1]. In this paper the main attention is paid to the comparison of numerical
simulations and experimental measurement of self-sustained vibrations of a pro-
file in turbulent incompressible flow. The used numerical method was previously
developed and applied onto several benchmark problems, see [5, 11].
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Institute of Thermomechanics, Academy of Sciences of the Czech Republic, Dolejškova 5,
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The mathematical model consists of the 2D flow model in interaction with a
flexibly supported profile in a channel. The numerical solution of RANS equations
is carried out using the finite element method for the spatial discretization of the
problem. The finite elements for velocity and pressure were selected to satisfy the
Babuška–Brezzi condition in order to guarantee the stability of the scheme, see
[7]. The stabilization based on GLS (Galerkin Least-Squares) method together with
div-div stabilization was employed in order to suppress the appearance of spuri-
ous oscillations due to high Reynolds numbers Re � 106, cf. [6, 8]. The choice
of the stabilization parameters is based on the numerical analysis of the problem
as well as the numerical experience – see [8, 11]. The Spalart–Allmaras one equa-
tion turbulence model is approximated by the FEM stabilized by the streamline
upwind/Petrov–Galerkin (SUPG) method.

2 Mathematical Model

The turbulent incompressible flow can be modelled by the RANS equations written
in ALE form

DA u=Dt � r �
�
.� C �T /

�ruC .ru/T
��C ..u � wg/ � r/uCrp D 0; on˝t

r � u D 0 (1)

whereDA =Dt denotes the ALE derivative, wg is the domain velocity, u D .u1; u2/
is the mean value of the fluid velocity, � is the kinematic fluid viscosity, p is the
mean value of the kinematic pressure (i.e., pressure divided by the fluid density), and
�T is a turbulent viscosity that can be obtained by the solution of one or more par-
tial differential equations for additional quantities, see [14]. In order to numerically
simulate aeroelastic problems for large vibration amplitudes the ALE formulation
of Reynolds equations is used following the notation in [5]. System (1) is consid-
ered in a time-dependent domain ˝t (see Fig. 1). The symbol At denotes a regular
one-to-one ALE mapping of the reference configuration ˝0 onto the current con-
figuration ˝t for any time instant – see [9]. The system of (1) is equipped with
suitable boundary and initial conditions. On the moving part of boundary (airfoil
surface �W t ) the kinematic boundary condition is prescribed, i.e., u D wg on �Wt .
At the inlet and on the fixed impermeable channel walls �D the Dirichlet condi-
tions u D uD are considered and at the outlet �O the modification of “do-nothing”
boundary condition is used (cf. [12]):

� .� C �T /
2X

jD1

�
@ui
xj
C @uj

xi

�
C .p � pref /ni ; i D 1; 2; (2)

where n D .n1; n2/
T is the unit normal to the boundary of the domain , �O is

the outlet and pref denotes a prescribed reference outlet pressure. The turbulent
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Fig. 1 Scheme of the computational region around the vibrating airfoil in the channel

viscosity �T is determined with the aid of the Spalart–Allmaras turbulence model
written in the ALE form [14]:

DA Q�
Dt
C .u�wg/ �r Q� D

"
2X

iD1

@

@xi

�
.� C Q�/
ˇ

@ Q�
@xi

�
C cb2

ˇ
.r Q�/2

#
CG. Q�/�Y. Q�/;

(3)
for an additional quantity and equipped with the boundary condition Q� D 0 on
�W t [ �D and @ Q�=@n D 0 on �O .

The turbulent viscosity �T is defined as

�T D Q�fv1
; fv1

D �3

�3 C c3v
; � D Q�

�
:

and G. Q�/ and Y. Q�/ are functions of the tensor of rotation of the mean velocity

(!ij D 1
2
.
@ui

@xj
� @uj

@xi
/) depending on the wall distance y:

G. Q�/ D cb1
eS Q�; Y. Q�/ D cw1

Q�2
y2

 
1C c6w3

1C c6w3
=g6

! 1
6

; eS D
�
S C Q�

�2y2
fv2

�
;

fv2
D 1 � �

1C �fv1

; g D r C cw2
.r6 � r/; r D Q�

eS�2y2
; S D

s
2
X

i;j

!2ij ;

The following constants are used cb1
D 0:1355, cb2

D 0:622, ˇ D 2
3

, cv D 7:1,
cw2
D 0:3, cw3

D 2:0, � D 0:41, cw1
D cb1

=�2 C .1C cb2
/=ˇ:



850 P. Sváček and J. Horáček

3 Structural Model

The profile can vertically vibrate with the displacement h.t/ and rotate around the
elastic axis EA with the rotation angle ˛. The elastic support of the profile on trans-
lational and rotational springs with a bending stiffness kh and torsion stiffness k˛
is shown in Fig. 2. The airfoil motion is described by nonlinear equations for large
vibrating amplitudes

m RhC S˛ R̨ cos˛ � S˛ P̨2 sin ˛ C khh D �L.t/;
S˛ Rh cos˛ C I˛ R̨ C k˛˛ D M.t/:

(4)

where m is the mass of the airfoil, S˛ is the static moment and I˛ is the iner-
tia moment around the elastic axis. The pressure and viscous forces acting on the
vibrating airfoil in fluid result in the lift force L.t/ and the torsional moment M.t/
defined by

L D � l
Z

�W t

2X

jD1
�2jnj dS; M D l

Z

�W t

2X

i;jD1
�ijnj r

ort
i dS; (5)

where

�ij D �
�
�pıij C .� C �T /

�
@ui
@xj
C @uj
@xi

�	
;

rort1 D �.x2 � xEA2/; rort2 D .x1 � xEA1/;

�ij we denotes the components of the stress tensor, ıij the Kronecker symbol, n
is the unit outer normal to @˝t on �Wt (pointing into the profile) and xEA D
.xEA1; xEA2/ is the position of the elastic axis EA.

h

α EA

T

L(t)M(t)

U

Fig. 2 Scheme of the elastically supported DCA profile
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4 Numerical Approximation of the Flow Model

In order to solve the problem numerically, we start from the time discretization of the
flow model. The ALE derivative is approximated by a two step backward difference
formula. The problem discretized in time is solved by the FEM. The construction of
the finite element space is based on a triangulation T� of a polygonal approximation
of the computational domain˝t at time t.

In the finite element solution of incompressible Navier–Stokes equations several
important obstacles need to be overcome. First, it is necessary to take into account
that the finite element velocity/pressure pair has to be suitably chosen in order to sat-
isfy the Babusjka-Brezzi condition, which guarantees the stability of the scheme see,
e.g., [7]. In practical computations, the finite element spaces are defined over a tri-
angulationK 2 T�, formed by a finite number of closed trianglesK 2 T�. In our
computations, the well-known Taylor-Hood P2/P1 conforming elements are used
for the velocity/pressure approximation. This means that the finite element approx-
imation of the pressure p� is a piecewise linear function and the approximation of
the velocity u� is a piecewise quadratic vector-valued function.

The standard Galerkin discretization may produce approximate solutions suffer-
ing from spurious oscillations for high Reynolds numbers. In order to avoid this
drawback, the stabilization via streamline-diffusion/Petrov-Galerkin technique is
applied - see, e.g., [6,11]. Moreover, it is necessary to design carefully the computa-
tional mesh, using adaptive grid refinement in order to allow an accurate resolution
of time oscillating thin boundary layers, wakes and vortices. We use the anisotropic
mesh adaptation technique [3] for the construction and adaptive refinement of the
mesh.

The nonlinear Spalart–Allmaras equation (5) is discretized by piecewise linear
elements. In order to guarantee the positivity of the function Q� needs to preserve,
the SUPG/GLS stabilization applied as in [3]. However, the use of SUPG/GLS sta-
bilization still does not avoid local oscillations near sharp layers, which can lead to
negative viscosity. In order to solve this problem, the additional artificial viscosity
stabilizing procedure based on crosswind diffusion is introduced, cf. [2].

5 Numerical Results

In this section the approximation of flow around elastically supported vibrating pro-
file in wind tunnel is considered. The double circular arc (DCA) 18% profile with
the chord length b D 120mm and thickness 21.6 mm was installed in the test sec-
tion of the wind tunnel. The test section was 80 mm wide and 210 mm high. Centre
of rotation (EA) of the profile was at 1/3 of the chord behind the leading edge,
for more details on the measurement see [13]. Experimentally established eigen-
frequencies f1 and f2 and damping of the system for zero airflow velocity are
presented in Table 1. By increasing the oncoming flow velocity both frequencies
converged to the flutter frequency 20.4 Hz at the critical velocity at about Mach
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Table 1 Dynamic characteristics of the model (M D 0)

Mode no Natural frequency Damping ratio Mode shape

1 18.38 [Hz] 3.22 [%] Translation
2 38.13 [Hz] 0.96 [%] Torsion
3 146.9 [Hz] 0.72 [%] Parasitic

Fig. 3 Measured and prescribed (full line) angle of attack ˛ and vertical translation h during one
period of the self-excited airfoil motion

number M D 0:38 (Reynolds number Re D U1b=� D 1:0 � 106). Above this
velocity, the system become unstable with rapid increase of vibration amplitudes
resulting in the self-excited motion of the profile in a limit cycle oscillations (LCO).

The numerical simulation of the aeroelastic system behavior bellow and after
the loss of the stability was considered in, e.g., [10]. Here, the flow around the air-
foil is numerically simulated for the prescribed airfoil motion given by the attack
angle ˛ and vertical translation h of the elastic axis corresponding to the measured
self-vibration regime, see Fig. 3. The oscillation frequency was 20.4 Hz, the angle
varied from �6ı to 3ı and the translation h from mm to C2mm. The following
input parameters were considered in the numerical computations: oncoming air-
flow velocity U0 D 130m s�1, air density � D 1:225 kg m�3, kinematic viscosity
� D 1:5 � 10�5 m s�2 and total pressure p0 D 9761:8Pa in the oncoming flow
(approximately equal to the atmospheric pressure).

The numerical approximation of flow velocity and pressure during one LCO is
shown in Fig. 4. The pressure measurement and the numerical approximation of
pressure computed along the profile on the upper and lower surfaces during one
vibration period are presented in Fig. 5. Figure 6 shows the comparison of the
measured lift coefficient and its numerical approximation.
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Fig. 4 Numerical approximation of velocity magnitude (up) and pressure distribution (down)
during LCO

Fig. 5 Interferograms measured during one LCO (up) and comparison of experimental pressure
distribution with numerical approximation (down)

Fig. 6 Resulting measured and computed (full line) aerodynamic lift force during one period of
the self excited airfoil motion.
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6 Conclusion

Aeroelastic model of a double arc circle profile was investigated in wind tunnel
in the regime of flutter instability at the Mach number M D 0:38. The method
developed for the numerical simulation of airfoil aeroelastic behavior in turbulent
flow was successfully validated by unique experimental data in case of the pre-
scribed periodic airfoil vibrations with large amplitudes for flow velocities above
the instability threshold for flutter.
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Multigrid Methods for Elliptic Optimal Control
Problems with Neumann Boundary Control

Stefan Takacs and Walter Zulehner

Abstract In this article we discuss multigrid methods for solving discretized opti-
mality systems for elliptic optimal control problems. We concentrate on a model
problem of tracking type with Neumann boundary control, whose optimality sys-
tem is a linear system for the state y, the control u and the adjoined state p. An
Uzawa-type smoother is used for the multigrid method. Moreover, we will com-
pare this approach with standard smoothers, like damped Jacobi iteration applied
to the normal equation of the Karush–Kuhn–Tucker system. A rigorous multigrid
convergence analysis is presented for both smoothers.

1 Formulation of the Model Problem

We discuss the solution of optimal control problems of tracking type. Let ˝ be
a bounded convex and polygonal domain in R2 with boundary @˝ . We want to
minimize the functional

J.y; u/ WD 1

2
ky � yDk2L2.˝/

C �

2
kukL2.@˝/; (1)

where y is the state variable and u is the control variable. Here, yD is given and
� > 0 is some fixed regularization or cost parameter.

The minimization is done subject to the following constraint: the state variable
fulfills some elliptic boundary value problem (BVP) with Neumann boundary data
u. For this paper we restrict ourselves to the simple case of a Laplace-type equation:
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��y C y D 0 in ˝ and
@y

@n
D u on @˝: (2)

The functions y and u live in standard Lebesgue and Sobolev spaces:

y 2 H 1.˝/ and u 2 L2.@˝/: (3)

Observe that for this setting the BVP is uniquely solvable in y for every given
control u. The BVP (2) can be written in variational form:

.y; p/H1.˝/ � .u; p/L2.@˝/ D 0 for all p 2 H 1.˝/:

Based on the variational formulation, we introduce the Lagrange functional

L .y; u; p/ WD 1

2
ky � yDk2L2.˝/

C �

2
kuk2

L2.@˝/
C .y; p/H1.˝/ � .u; p/L2.@˝/:

Solving the original optimal control problem is equivalent to finding a saddle
point of the Lagrange functional which leads to the first order optimality conditions
(the Karush–Kuhn–Tucker system), given by: Find .y; u; p/ 2 X WD H 1.˝/ �
L2.@˝/ �H 1.˝/ such that

.y; Qy/L2.˝/ C .p; Qy/H1.˝/ D .yD; Qy/L2.˝/

� .u; Qu/L2.@˝/ � .p; Qu/L2.@˝/ D 0

.y; Qp/H1.˝/ � .u; Qp/L2.@˝/ D 0

(4)

holds for all . Qy; Qu; Qp/ 2 X .
The optimality system has a natural 2-by-2 block-structure:

a..y; u/; . Qy; Qu// C b.. Qy; Qu/; p/ D .yD ; Qy/L2.˝/

b..y; u/; Qp/ D 0;

where
a..y; u/; . Qy; Qu// WD .y; Qy/L2.˝/ C � .u; Qu/L2.@˝/

b..y; u/; Qp/ WD .y; Qp/H1.˝/ � .u; Qp/L2.@˝/:

Observe that a is a symmetric and bounded bilinear form which is coercive on
the kernel of b and b is a bounded bilinear form. Moreover b fulfills the inf-sup-
condition

inf
06D Qp2H1.˝/

sup
06D.y;u/2H1.˝/�L2.@˝/

b..y; u/; Qp/
k.y; u/kH1.˝/�L2.@˝/ k QpkH1.˝/

� C > 0;

which can be seen by plugging in .y; u/ WD . Qp; 0/.
By adding the three equations in (4) the optimality system can be rewritten as

one single variational equation:
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Find x 2 X such that a.x; Qx/ D hF ; Qx i for all Qx 2 X: (5)

Using Brezzi’s theorem we obtain:

Lemma 1. Let � > 0 be fixed. The problem (4) is well posed in the space X , i.e.,
there are constants C > 0 and C such that

C kxkX � sup
06D Qx2X

a.x; Qx/
k QxkX � C kxkX

for all x 2 X . For every right-hand-side F 2 X� the problem (5) has a unique
solution x 2 X .

The discretization is done by standard techniques. For the model problem we
use a family of meshes which is obtained based on some coarsest triangular mesh
(grid level k D 0) and uniform refinement. For k D 0; 1; : : : we denote the size
of the largest edge of the triangulation by hk . Due to the fact that we have uniform
refinement hk D 2�kh0 holds.

The space of discretized functions Xk D Yk � Uk � Pk is constructed by the
Courant element: Yk D Pk is the set of continuous and piecewise linear functions.
Uk is the set of continuous and piecewise linear functions on the boundary. This
setting allows us to show the statement of lemma 1 also if X is replaced by Xk .

Using the standard nodal basis, we can rewrite the optimality system (4) in
matrix-vector notation as follows:

0

@
Mk 0 Kk
0 �M�� k �M T

�˝k

Kk �M�˝k 0

1

A

„ ƒ‚ …

Ak WD
�
Ak B

T
k

Bk 0

�
WD

0

B@
y
k

uk
p
k

1

CA

„ ƒ‚ …

xk WD

D

0

B@
g
k

0

0

1

CA

„ ƒ‚ …

f
k
WD

(6)

with mass matrices Mk , M�˝k , M�� k and the stiffness matrix Kk . The symbols
y
k
; uk ; : : : denote the coordinate vectors of the corresponding functions yk ; uk; : : :

with respect to the nodal basis.
Possible multigrid approaches for such a 3-by-3 block formulation are all-at-once

methods, where the multigrid idea is directly applied to the optimality system (see,
e.g., [8] for distributed control), or block-preconditioned methods, where multigrid
techniques are used for constructing components of the block preconditioner (see,
e.g., [6] and [5]).

Moreover, multigrid methods based on a reduction to a 2-by-2-formulation (see,
e.g., [1] for an all-at-once approach) or to a 1-by-1-formulation (see, e.g., [3]) have
also been proposed.

In this paper we will concentrate on the all-at-once approach for (6).



858 S. Takacs and W. Zulehner

2 Multigrid Solvers for Saddle Point Problems

Starting from an initial approximation x.0/
k

one step of the multigrid method for
solving the discretized equation (6) on grid level k is given by:

� Apply � smoothing steps

x
.0;m/

k
WD x.0;m�1/

k
C OA �1k .f

k
�Ak x

.0;m�1/
k

/ form D 1; : : : ; � (7)

with x.0;0/
k
WD x.0/

k
.

� Apply the coarse-grid correction

– Compute the defect and restrict it to the coarser grid
– Solve the problem on the coarser grid
– Prolongate and add the result

If the problem on the coarser grid is solved exactly, then we obtain

x
.1/

k
WD x.0;�/

k
C I kk�1A �1k�1I k�1k .f

k
�Ak x

.0;�/

k
/

for the next iterate (two-grid method).

In practice the problem on grid level k � 1 is done by applying one (V-cycle) or
two (W-cycle) steps of the multigrid method, recursively. On grid level k D 0

the problem is solved exactly. The convergence of the two-grid method implies the
convergence of the W-cycle multigrid method under weak assumptions.

The intergrid-transfer operators I k
k�1 and I k�1

k
are chosen in a canonical way:

we use the canonical embedding for I k
k�1 and its adjoined as restriction operator

I k�1
k

.
The smoother will be specified in Sect. 3.
The classical convergence theory of multigrid methods is based on two proper-

ties:

� Smoothing property:

jjjx.0;�/
k
� xkjjj2;k � �.�/jjjx.0/k � xkjjj0;k (8)

should hold for some function �.�/ independent of k with lim�!1 �.�/ D 0.
� Approximation property:

jjjx.1/
k
� xk jjj0;k � CAjjjx.0;�/k

� xkjjj2;k (9)

should hold for some constant CA > 0 independent of k.

We have the freedom to choose two norms in (8) and (9). This is done in the
following way:
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We first introduce the norm k � kX�

k
by replacing in k � kX all H 1-norms by

L2-norms scaled by the factor h�1
k

:

k.yk ; uk; pk/k2X�

k
WD h�2k kykk2L2.˝/

C kukk2L2.@˝/
C h�2k kpkk2L2.˝/

:

This corresponds to a norm for .y
k
; uk; pk/ involving mass matrices. If the mass

matrices are replaced by properly scaled identity matrices, we obtain the desired
norm jjj � jjj0;k, given by:

jjj.y
k
; uk; pk/jjj20;k WD

 0

@
I

hkI

I

1

A

„ ƒ‚ …
Lk WD

0
B@
y
k

uk
p
k

1
CA ;

0
B@
y
k

uk
p
k

1
CA

!

`2

:

According to standard techniques, we choose jjj � jjj2;k as residual norm corre-
sponding to jjj � jjj0;k, i.e.,

jjjxkjjj2;k WD sup
Qxk2Rn

.Ak xk; Qxk/
jjj Qxkjjj0;k

:

3 Construction of Smoothers

Next we construct two simple iterative methods fulfilling the smoothing prop-
erty (8).

The first kind of smoothers, we want to discuss, are Uzawa-type smoothers which
have already been successfully applied to distributed control problems (e.g., [8]).
These methods can also be extended to Neumann boundary control problems.

We construct the preconditioner OAk in (7) based on the block-LU-factorization
of Ak: We have

Ak D
�
Ak B

T
k

Bk 0

�
D
�
Ak 0

Bk �Sk
��

I A�1
k
BT
k

0 I

�
;

where Sk WD BkA
�1
k
BT
k

is the Schur-complement. Based on this decomposition

we define the preconditioner OAk by replacing Ak and Sk by diagonal matrices OAk
and OSk:

OAk WD
� OAk 0

Bk � OSk

��
I OA�1

k
BT
k

0 I

�
:

Then OAk can be inverted easily.
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The main issue is how to choose the matrices OAk and OSk . Normally, one
would expect to choose OAk as the diagonal part of Ak . Instead we propose to
choose for OAk the .1; 1/-block of Lk . For OSk we take the corresponding inexact
Schur-complement. This leads to

OAk WD 1

!

�
I

hkI

�
and OSk WD 1

�
diag.Bk OA�1k BTk /

with additional damping parameters ! and � which are chosen independent of k
and such that

OAk � Ak and OSk � Sk (10)

holds. This is possible, as we can choose ! and � equal to the reciprocal of the
number of non-zero entries of Ak or Sk , respectively, which are bounded.

An alternative approach is to construct smoothers that are based on the normal
equation A �

k
Ak xk D A �

k
f
k

, where A �
k

denotes the adjoined of Ak with respect
to the inner product corresponding to the norm jjj � jjj0;k. Using Lk we can formulate
this in standard matrix-vector notation:

A T
k L �1k Ak xk D A T

k L �1k f
k
:

We can apply some standard smoother which is applicable to symmetric positive
definite problems, like the damped Jacobi iteration:

x
.0;m/

k
WD x.0;m�1/

k
C � diag.A T

k L �1k Ak/
�1A T

k L �1k .f
k
�Ak x

.0;m�1/
k

/;

where the parameter � is chosen such that the smallest eigenvalue of the iteration
matrix is non-negative.

4 Convergence Analysis

A convergence analysis for distributed control problems was already done based on
approximation and smoothing property, e.g., [8]. The approximation property was
shown following the ideas from [2].

Alternative approaches to obtain convergence results are local mode analysis for
distributed control (e.g., [1]) and compactness arguments (e.g., [3] and [1]).

Here we follow the lines of the analysis in [8]. We can show in our framework:

Lemma 2 (Smoothing property). The smoothing property holds for both alterna-
tives of smoothers we discussed in this work with smoothing rate �.�/ WD CS=

p
�

where CS > 0 is a constant independent of k, i.e.,

jjjx.0;�/
k
� xkjjj2;k � CS

1p
�
jjjx.0/

k
� xk jjj0;k:
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The proof for the Uzawa-type smoother follows the proof in [8] which is based on
[7]. The analysis for the smoothers based on the normal equation uses the fact that
the normal equation is symmetric and positive definite. Therefore the analysis can
be done by standard techniques.

We can show the approximation property similar to the proof given in [2] using
the following regularity result: For f WD .f1; f2/ 2 L2.˝/ � L2.˝/ let x 2 X
solve

a.x; Qx/ D .f1; Qy/L2.˝/ C .f2; Qp/L2.˝/ for all Qx D . Qy; Qu; Qp/ 2 X

Since ˝ is convex, it follows from standardH 2-regularity results for y and p that

kxkH2.˝/�H1.@˝/�H2.˝/ � C kf kL2.˝/�L2.˝/:

Using this result we can show the following lemma.

Lemma 3 (Approximation property). There is a constant CA > 0 such that

jjjx.1/
k
� xk jjj0;k � CAjjjx.0;�/k

� xkjjj2;k:

Lemma 2 and lemma 3 lead to:

Theorem 1 (Convergence of the two-grid method). The two-grid method con-
verges for sufficiently large values of �:

jjjx.1/
k
� xkjjj0;k � q jjjx.0/k � xkjjj0;k

with convergence rate q WD CACS=p� < 1 independent of the grid level k.

This implies the convergence of the W-cycle multigrid method, see e.g., [4].

5 Numerical Results

The numerical tests were done for the unit square. The coarsest mesh (level k D 0)
was constructed by separating the domain into two congruent triangles. The refine-
ment was done by splitting each triangle into four congruent sub-triangles. The
parameter � was set to 1. The parameters! and � for the Uzawa-type smoother were
chosen such that (10) holds (on a coarse level). For the normal equation method it
turned out that it suffices to choose � WD 1=4. Starting with randomly chosen initial
approximations the multigrid iteration was performed until the jjj:jjj0;k-norm of the
error was reduced by a factor of 10�5.

Table 1 shows the number of iterations and the computing time for the W-cycle.
According to the theory the number of iterations is independent of the grid level.

Moreover, the number of iterations decreases as the number of smoothing steps is
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Table 1 Number of iterations and computing time

Level Number of Uzawa-type Jacobi-type
unknowns

Smoothing steps �

2C 2 6C 6 2C 2 6C 6
5 2;306 30 0:7 s 9 0:4 s 10 0:3 s 5 0:3 s

6 8;706 31 3:0 s 10 2:3 s 10 1:2 s 5 1:5 s

7 33;794 31 12:9 s 10 10:6 s 10 5:0 s 5 6:6 s

8 133;122 31 57:8 s 11 52:3 s 11 24:2 s 5 28:9 s

9 528;386 31 237:2 s 11 222:6 s 10 91:7 s 5 121:0 s

increased. The computing time increases linearly with the number of unknowns
(optimal complexity). The computing time shows that the performance of the
multigrid method with the Jacobi smoother applied to the normal equation is better.

Roughly the same number of iterations were observed for the V-cycle, for which
the computing time is about 30% less than for the W-cycle.

We compared this multigrid methods with a Bramble–Pasciak CG-method imple-
mented along the guidelines of [5]. In terms of computing times the performance of
the Bramble–Pasciak CG-method lies between the performance of the V-cycle and
the W-cycle proposed in this paper. While the proposed multigrid methods can also
be applied to problems with singular .1; 1/-block (and show reasonable efficiency
in selected experiments), this is not possible for the Bramble-Pasciak CG-method,
which requires a non-singular .1; 1/-block.

6 Conclusion and Further Work

This work shows that the results for the Uzawa-type smoother and the strategy pro-
posed in [8] for the distributed control problem carry over to the boundary control
problem. It was possible to generate comparable results also for the Jacobi-type
smoother applied to the normal equations. The more general approach of the method
based on the normal equation will hopefully allow an extension of the method for
a larger class of optimal control problems. Further work has to be done to find
smoothers that are robust in the parameter � .

Acknowledgements The work is supported by the Austrian Science Fund (FWF) under grant
W1214/DK12.
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Extension of the Complete Flux Scheme
to Time-Dependent Conservation Laws

J.H.M. ten Thije Boonkkamp and M.J.H. Anthonissen

Abstract We present the stationary and transient complete flux schemes for the
advection-diffusion-reaction equation. In the first scheme, the numerical flux is
derived from a local BVP for the stationary equation. The transient scheme is an
extension, since it includes the time derivative in the flux computation. The resulting
semidiscretization is an implicit ODE system, which has much smaller dissipation
and dispersion errors than the semidiscretization based on the stationary flux, at least
for smooth problems. Both schemes are validated for a test problem.

1 Introduction

Conservation laws are ubiquitous in continuum physics, they occur in disciplines
like fluid mechanics, combustion theory, plasma physics, semiconductor theory etc.
These conservation laws are often of advection-diffusion-reaction type, describing
the interplay between different processes such as advection or drift, diffusion or
conduction and (chemical) reaction or recombination/generation.

The numerical solution of these equations requires accurate and robust space
discretization and time integration methods and efficient (iterative) solution methods
for the resulting algebraic system. In this paper we address the first two topics for
the model equation

@'

@t
C @

@x

�
u' � "@'

@x

�
D s; (1)

where u is the advection velocity, " � "min > 0 a diffusion/conduction coefficient
and s a source term. Associated with (1) we introduce the flux f defined by

f WD u' � "@'
@x
: (2)
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For space discretization we use the finite volume method (FVM) [1] in com-
bination with the complete flux (CF) scheme for the numerical fluxes [4, 5]. For
stationary equations, the CF approximation is based on the solution of a local
boundary value problem for the entire equation and is therefore an extension of
exponentially fitted schemes, which are based on the corresponding constant coef-
ficient, homogeneous equation; see e.g., [3]. The CF approximation is second order
accurate, even for strongly advection dominated flow, and gives rise to a tridiagonal
system.

In this paper we consider the extension to time-dependent equations. A first obvi-
ous choice would be to combine the stationary CF approximation with a suitable
time integration method. We refer to this flux approximation as the stationary com-
plete flux (SCF) scheme. However, for strong advection, the space discretization
error reduces to first order. Therefore, we propose to include the time derivative
@'=@t already in the numerical approximation of the flux. More precisely, we put
the time derivative in the source term and solve the corresponding quasi-stationary
BVP. The resulting scheme, referred to as the transient complete flux (TCF) scheme,
does not have this drawback, and moreover, has usually much smaller dissipation
and dispersion errors than the SCF scheme.

We have organized our paper as follows. The SCF scheme is briefly summarized
in Sect. 2 and its extension to time-dependent equations is presented in Sect. 3. The
SCF and TCF semidiscretizations are analysed in terms of dissipation and dispersion
in Sect. 4. The performance of both schemes is shown in Sect. 5.

2 Numerical Approximation of the Stationary Flux

In this section we present the complete flux scheme for the stationary flux, which is
based on the integral representation of the flux. The derivation is a summary of the
theory in [4, 5].

The stationary conservation law can be written as df=dx D s with the flux f
defined in (2). In the FVM we cover the domain with a finite number of control vol-
umes (cells) Ij of size�x. We choose the grid points xj , where the variable ' has to
be approximated, in the cell centres, the so-called cell centred approach; see e.g., [6].
Consequently, we have Ij WD Œxj�1=2; xjC1=2�with xjC1=2 WD 1

2
.xjCxjC1/. Inte-

grating the equation over Ij and applying the midpoint rule for the integral of s, we
obtain the discrete conservation law

FjC1=2 � Fj�1=2 D sj �x; (3)

where FjC1=2 is the numerical approximation of the flux f at the interface at x D
xjC1=2 and where sj WD s.xj /.

The integral representation of the flux fjC1=2 WD f .xjC1=2/ at the cell edge
xjC1=2 is based on the following model boundary value problem (BVP) for the
variable '

d

dx

�
u' � "d'

dx

�
D s; xj < x < xjC1; (4a)
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'.xj / D 'j ; '.xjC1/ D 'jC1: (4b)

We like to emphasize that fjC1=2 corresponds to the solution of the inhomogeneous
BVP (4), implying that fjC1=2 not only depends on u and ", but also on the source
term s. It is convenient to introduce the variables�,P ,� and S for x2.xj ; xjC1/ by

� WD u

"
; P WD ��x; �.x/ D

Z x

xj C1=2

�.�/ d�; S.x/ WD
Z x

xj C1=2

s.�/ d�:

(5)
Here, P and � are the Peclet function and Peclet integral, respectively, gen-
eralizing the well-known (numerical) Peclet number. Integrating the differential
equation (4a) from xjC1=2 to x we get the integral balance f .x/ � fjC1=2DS.x/.
Using the definition of � in (5), it is clear that the flux can be rewritten as
f D �"e� d

�
' e��

�
=dx. Substituting this into the integral balance and integrating

from xj to xjC1 we obtain the following expression for the flux

fjC1=2 D f .h/jC1=2 C f .i/jC1=2; (6a)

f
.h/
jC1=2 D �

�
e��j C1'jC1 � e��j 'j

� ıZ xj C1

xj

"�1e�� dx; (6b)

f
.i/
jC1=2 D �

Z xj C1

xj

"�1e��S dx
ıZ xj C1

xj

"�1e�� dx; (6c)

where f .h/
jC1=2 and f .i/

jC1=2 are the homogeneous and inhomogeneous part, corre-
sponding to the homogeneous and particular solution of (4), respectively.

In the following we assume that u and " are constant; extension to variable coef-
ficients is discussed in [4, 5]. In this case we can determine all integrals in (6b).
Moreover, substituting the expression for S.x/ in (6c) and changing the order of
integration, we can derive an alternative expression for the inhomogeneous flux.
This way we obtain

f
.h/
jC1=2 D �

"

�x

�
B.P /'jC1 � B.�P/'j

�
; (7a)

f .i/.xjC1=2/ D �x
Z 1

0

G.� IP/s.xj C ��x/ d�; �.x/ WD x � xj
�x

: (7b)

Here B.z/ WD z=
�
ez�1� is the Bernoulli function andG.� IP/ the Green’s function

for the flux, given by

G.� IP/ D

8
ˆ̂̂
<

ˆ̂̂
:

1 � e�P�

1 � e�P
for 0 � � � 1

2
;

�1 � eP.1��/

1 � eP
for 1

2
< � � 1I

(8)

see Fig. 1.
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Fig. 1 Green’s function for the flux for P > 0 (left) and P < 0 (right)

Next, we give the numerical flux FjC1=2. For the homogeneous component

F
.h/
jC1=2 we simply take (7a), i.e., F .h/

jC1=2 D f
.h/
jC1=2. Note that for dominant diffu-

sion (jP j � 1) the integral (average) of G.� IP/ is small, whereas for dominant
advection (jP j � 1) G.� IP/ has a clear bias towards the upwind side of the
interval. For this reason we replace s.x/ in (7b) by its upwind value su;jC1=2, i.e.,
su;jC1=2 D sj if u � 0 and su;jC1=2 D sjC1 if u < 0, and evaluate the resulting
integral exactly. This way we obtain

FjC1=2 D F .h/jC1=2 C
�
1
2
�W.P/�su;jC1=2�x; (9)

where W.z/ WD �
ez � 1 � z

�
=
�
z
�
ez � 1��. From this expression it is clear that the

inhomogeneous component is only of importance for dominant advection. We refer
to (9) as the complete flux (CF) scheme, as opposed to the homogeneous flux (HF)
scheme for which we only take into account F .h/

jC1=2. Finally, substituting (9) in (3)
we obtain the discretization

1

�x

�
F
.h/
jC1=2 � F .h/j�1=2

�
D � 1

2
CW.jP j/�sj C

�
1
2
�W.jP j/�sj.u/; (10)

where j.u/ is the index of the grid point upwind of j , i.e., j.u/ D j � 1 if u � 0
and j.u/ D j C 1 if u < 0.

3 Extension to Time-Dependent Conservation Laws

In this section we present the extension of the complete flux scheme to time-
dependent conservation laws.

Equation (1) can be written as @'=@t C @f=@x D s. Integrating this equation
over the control volume Ij and applying the midpoint rule for the integrals of @'=@t
and s, we obtain the semidiscrete conservation law
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P'j �x C FjC1=2 � Fj�1=2 D sj �x; (11)

where P'j D d'j=dt . Note that the numerical flux FjC1=2 still depends on t .
For the numerical flux FjC1=2 in (11) we have two options. First, we can simply

take the stationary flux (9), henceforth referred to as the SCF scheme. Alterna-
tively, we can take into account @'=@t if we determine the numerical flux from
the following quasi-stationary BVP

@

@x

�
u' � "@'

@x

�
D s � @'

@t
; xj < x < xjC1; (12a)

'.xj ; t/ D 'j .t/; '.xjC1; t/ D 'jC1.t/: (12b)

Thus, we have a modified source term Qs WD s � @'=@t . Repeating the derivation in
the previous section, we obtain

FjC1=2 D F .h/jC1=2 C
�
1
2
�W.P/��su;jC1=2 � P'u;jC1=2

�
�x: (13)

This flux contains the upwind value P'u;jC1=2 of the time derivative and is referred
to as the transient complete flux (TCF) scheme. Analogous to the stationary case,
we conclude that inclusion of the time derivative is only of importance for dominant
advection.

Combining the expression in (13) with the semi-discrete conservation law (11)
we find

�
1
2
CW.jP j/� P'j C

�
1
2
�W.jP j/� P'j.u/ C 1

�x

�
F
.h/
jC1=2 � F .h/j�1=2

�
D

�
1
2
CW.jP j/�sj C

�
1
2
�W.jP j/�sj.u/:

(14)

Finally, we have to apply a suitable time integration method to (14), for which we
will take the trapezoidal rule.

4 Dissipation and Dispersion of the Semidiscrete System

It is interesting to compare the SCF and TCF semidiscretizations in terms of dissi-
pation (damping) and dispersion. Therefore, consider (1) with u and " constant and
s D 0. In the following we assume that u � 0; the analysis for u � 0 is similar.
Following [2], we look for a planar wave solution

'.x; t/ D ei.�x�!t/; (15)

where � is the wave number and ! is the frequency. Substituting (15) in (1) we
obtain the dispersion relation
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i!.�/ D iu� C "�2: (16)

The frequency ! determines the time evolution of the solution (15). Comparing the
(exact) solution of (1) at two consecutive time levels, we can define the amplification
factor g D g.�/ as follows

g.�/ WD '.x; tnC1/='.x; tn/ D e�i!�t ; (17)

where tn WD n�t .n D 0; 1; 2; : : :/ and �t > 0 is the time step. Note that g
is independent of x. Combining the relations (16) and (17) we find the following
amplification factor for (1), i.e.,

g. / D e�d 2

e�ic ; (18)

with d WD "�t=�x2 the diffusion number, c WD u�t=�x the Courant number and
 WD ��x the phase angle (0 �  < 	).

We will now compute the amplification factors of the SCF and TCF semidis-
cretizations and compare these to (18). First, consider the SCF semidiscretization of
(1), which coincides with the HF semidiscretization since s D 0, given by

P'j �x C "

�x
B�

�
'j � 'j�1

�� "

�x
BC

�
'jC1 � 'j

� D 0; (19)

with B˙ WD B.˙P/. Substituting '.xj ; t/, with ' defined in (15), we obtain the
discrete dispersion relation

i!.�/ D iu�
sin 

 
C "�2 1

2

�
BC C B��

� sin =2

 =2

�2 DW iu�� C "�2
: (20)

The variables � and 
 in the right hand side define the deviation of ! from the
expression in (16). From (17) and (20) we can derive the following expression for
the amplification factor, i.e.,

g. / D e�d 2�e�ic � : (21)

To quantify dissipation and dispersion, we define the (relative) amplitude error �a

and the (relative) phase error �f as follows:

�a. / WD 1 � ed 
2.1��/; �f. / WD 1 � �: (22)

Plots of �a and �f are given in Fig. 2 (solid lines).
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Fig. 2 The amplitude error (left) and the phase error (right). Parameter values are P D 1 (top),
P D 50 (bottom) and c D 1

Next, consider the TCF semidiscretization of (1), which reads

�1
2
�W C� P'j�1�x C

�1
2
CW C� P'j �x C "

�x
B�

�
'j � 'j�1

�

� "

�x
BC

�
'jC1 � 'j

� D 0; (23)

with W C WD W.P/. Note that substituting W C D 1
2

in (23) we recover the
SCF semidiscretization (19). Once more substituting '.xj ; t/ we find the discrete
dispersion relation

i!.�/ D "

�x2

�BC�ei � 1�CB��1 � e�i 
�

�
1
2
�W C�e�i C � 1

2
CW C� DW iu�� C "�

2
: (24)

This relation implicitly defines the factors � and 
, given by

� D sin 

 

cos2  =2C F1.P / sin2  =2

cos2  =2C 4W 2.P / sin2  =2
; (25a)


 D
� sin =2

 =2

�2 cos2  =2C F2.P / sin2  =2

cos2  =2C 4W 2.P / sin2  =2
; (25b)

where F1.z/ WD 2W.z/�
�
B.z/CB.�z/

��
2W.z/�1�=z and F2.z/ WD W.z/

�
B.z/C

B.�z/
�
. The corresponding amplification factor is given in (21). Combining (22)
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with (25) we can determine the amplitude and phase errors, which are shown in
Fig. 2 (dashed lines).

From these figures we conclude the following. For dominant diffusion, i.e.,
small P , the TCF scheme has slightly smaller amplitude and phase errors than the
SCF scheme. On the other hand, for dominant advection, i.e., large P , the ampli-
tude and phase errors of the TCF scheme are significantly smaller than those of the
SCF scheme, at least for low wave number modes with typically 0 �  � 1

2
. For

smooth solutions this can always be attained if we choose �x small enough. How-
ever, for high wave number modes, say 2 �  � 	 , the dispersion error of the
TCF scheme is large. Therefore, spurious oscillations cannot be excluded for nons-
mooth solutions with steep interior/boundary layers. These have to be controlled by
a (dissipative) time integration method.

5 Numerical Example

In this section we apply the SCF and TCF schemes to a model problem to asses
their (order of) accuracy. We consider both diffusion-dominated and advection-
dominated flow.

Consider the test equation [6]

@'

@t
C u

@'

@x
� "@

2'

@x2
D s; s.x; t/ D ˇ2" cos

�
ˇ.x � ut/

�
; 0 < x < 1; t > 0:

(26)
Initial and boundary condition are chosen such that the exact solution is given by
'.x; t/ D cos

�
ˇ.x�ut/

�Ce�˛2"t cos
�
˛.x�ut/

�
. We take the following parameter

values: ˛ D 4	 , ˇ D 2	 , u D 1:1 and " D 2 � 10�2 (dominant diffusion) or
" D 10�8 (dominant advection). Furthermore, we choose �x D �t DW h. To
determine the accuracy of a numerical solution we compute the average error eh WD
h jj'�'�jj1 at t D 1, where '� denotes the exact solution restricted to the grid, as
a function of the reciprocal grid size h�1. Table 1 shows eh and the reduction factors
eh=eh=2. Clearly, for " D 2 � 10�2, eh=eh=2 ! 4 for h ! 0 for both the SCF and

Table 1 Average errors and error quotients

"D 2� 10�2 "D 10�8

SCF TCF SCF TCF

h�1 eh eh=eh=2 eh eh=eh=2 eh eh=eh=2 eh eh=eh=2
20 7:479 � 10�2 3.36 1:415 � 10�2 2.72 3:879 � 10�1 1.26 2:430 � 10�2 3.69
40 2:224 � 10�2 3.81 5:197 � 10�3 3.33 3:070 � 10�1 1.50 6:586 � 10�3 3.87
80 5:843 � 10�3 3.94 1:563 � 10�3 3.66 2:046 � 10�1 1.71 1:703 � 10�3 3.93
160 1:482 � 10�3 3.98 4:268 � 10�4 3.83 1:200 � 10�1 1.84 4:333 � 10�4 3.97
320 3:723 � 10�4 3.99 1:114 � 10�4 3.92 6:532 � 10�2 1.92 1:092 � 10�4 3.98
640 9:324 � 10�5 4.00 2:844 � 10�5 3.96 3:411 � 10�2 1.96 2:742 � 10�5 3.99

1280 2:333 � 10�5 7:186 � 10�6 1:743 � 10�2 6:868 � 10�6
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TCF scheme, and consequently, both schemes display second order convergence
behaviour for h ! 0. The numerical errors are approximately the same for both
schemes. However, the situation is quite different for the case " D 10�8. In this
case eh=eh=2 ! 2 for h ! 0 for the SCF scheme, which means that the method
is only first order convergent. The TCF-scheme still displays second convergence
behaviour. Obviously, the TCF-solution is in this case much more accurate than the
SCF-solution.
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Solution of Navier–Stokes Equations Using FEM
with Stabilizing Subgrid

M. Tezer-Sezgin, S. Han Aydın, and A.I. Neslitürk

Abstract The Galerkin finite element method (FEM) is used for solving the incom-
pressible Navier–Stokes equations in 2D. Regular triangular elements are used to
discretize the domain and the finite-dimensional spaces employed consist of piece-
wise continuous linear interpolants enriched with the residual-free bubble (RFB)
functions. To find the bubble part of the solution, a two-level FEM with a stabi-
lizing subgrid of a single node is described in our previous paper [Int. J. Numer.
Methods Fluids 58, 551–572 (2007)]. The results for backward facing step flow and
flow through 2D channel with an obstruction on the lower wall show that the proper
choice of the subgrid node is crucial to get stable and accurate solutions consistent
with the physical configuration of the problems at a cheap computational cost.

1 Introduction

Applications of the Galerkin finite element method to incompressible flow equations
in velocity-pressure form were carried out in the early 1970s. But, the use of equal-
order interpolations for both velocity and pressure produces some spurious oscilla-
tions. To overcome this, either Babuška–Brezzi condition [2, 3] must be satisfied,
or some stabilized methods such as SUPG (streamline upwind Petrov–Galerkin)
should be considered [6]. The finite element methods of the SUPG type reduces
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the oscillations in the standard Galerkin method of piecewise linears and achieves
stability by adding mesh-dependent perturbation terms to the formulation [9].

Later it has been shown that the SUPG type stabilized methods for the equations
modeling the flow problems can be derived by adding the bubble functions to the
velocity space in the standard Galerkin finite element formulation, and then elimi-
nating the bubbles by using the static condensation approach [4,5]. In this approach
the optimal choice of the stabilization parameter in the SUPG method was simply
translated into the problem of the optimal choice of the bubble space. Therefore, the
bubble functions should be chosen appropriately such as residual free bubble func-
tions [4] by using two-level FEM [8]. Since the two-level FEM is a computationally
expensive procedure, a cheap efficient algorithm which generates qualitatively the
same bubble functions is sought.

In this work, the stabilizing subgrid method (SSM) for solving Navier–Stokes
equations, which is given in [11] is applied for obtaining solutions of step flows.
SSM approximates the solution well and proves good stability features. It is further
computationally cheap and able to adapt itself between different flow regimes.

2 The RFB Method Through Two-Level FEM
with a Stabilizing Subgrid

The steady incompressible Navier–Stokes equations in an open bounded domain
˝ �2 IR with the boundary @˝ are given by

�
u � ru� 1

Re
42uC rp D f in ˝ ;

r � u D 0 in ˝ ;
(1)

where u is the velocity field, p is the scalar pressure function, f is a given source
function and Re is the Reynolds number.

We use standard notation for function spaces: C 0. N̋ / is the space of continuous
functions on the closure of ˝ , L2.˝/ is the space of square integrable functions
over the domain˝ ,H 1.˝/ is the Sobolev space of L2.˝/ functions whose deriva-
tives are square integrable functions in ˝ , and H 1

0 .˝/ is the Sobolev subspace of
H 1.˝/ functions in ˝ with zero value on the boundary @˝ .

The weak formulation of the problem (1) is obtained by employing the pair of
function spaces V D .H 1

0 .˝//
2 and P D C 0. N̋ / \ L2.˝/, and it reads: Find

u 2 V , p 2 P such that

B.uIu; pI v; q/ D .f; v/ for all v 2 V; q 2 P; (2)

where

B.uIu; pI v; q/ D .u � ru; v/C 1

Re
.ru;rv/� .rv; p/C .r � u; q/

and .u;v/ is the inner product of u and v.
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Let ˝h be the discretization of ˝ by triangles. Define finite dimensional sub-
spaces on˝h

Vh D fv 2 .H 1
0 .˝//

2 j v jK2 P1.K/
2 ; K 2 ˝hg;

Ph D fp 2 C 0. N̋ / \L2.˝/ j p jK2 P1.K/ ; K 2 ˝hg

where P1.K/ is the space of piecewise linear functions of a typical elementK . The
standard Galerkin finite element method is based on employing the same function
space for both test and trial spaces and it is equivalent to finding the pair fuh; phg
from Vh � Ph such that

B.uhIuh; phI vh; qh/ D .f; vh/ 8fvh; qhg 2 Vh � Ph ; (3)

where

B.uhIuh; phI vh; qh/ D .uh � ruh; vh/C 1

Re
.ruh;rvh/

�.rvh; ph/C .r � uh; qh/:

The nonlinearity in (3) due to the advection term is resolved with an iteration on
the approximate solution uh and ph as

unC1
h
D un

h C Ouh (4)

pnC1
h
D pn

h C Oph (5)

where n denotes the iteration step and Ouh and Oph are the corrections to the approxi-
mations at the previous iteration step. We linearize the problem (3) by taking

uh
nC1 � ruh

nC1 � uh
n � ruh

n C Ouh � ruh
n C uh

n � r Ouh

for the solution of Ouh and Oph.
SUPG formulation of the Navier–Stokes equations for linear elements is given in

[6] as: Find fuh; phg from Vh � Ph

.uh � ruh; vh/C 1
Re
.ruh;rvh/� .rvh; ph/C .r � uh; qh/

C
X

�K

Z

˝K

..uh � ruh Crph � f/ � .uh � rvh Crqh//d˝K D .f; vh/
(6)

8fvh; qhg 2 Vh � Ph with the stabilization parameter �K such that [6]

�K D hK

2juh
njK ".PeK/ (7)
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where hk is the diameter of the element and " is a function given as

".PeK/ D
�
Pek if Pek < 1

1 if Pek � 1

and

PeK D juh
njKhK

6 1
Re

:

SSM is based on the selection of a single subgrid point whose location has the
role in the stabilization of the convection dominated flows [10]. It uses triangular
elements. We note that the SSM and the SUPG formulation of the Navier–Stokes
equations have the identical structure except for the value of the stabilization para-
meter �K [11]. The value of the stabilization parameter �K is given in terms of the
bubble function bK as,

�K D 1

jKj
Z

K

bK dK (8)

and bK is the unique bubble function defined by the following boundary value
problem in K:

�
LbK D � 1

Re
42bK C un

1 � rbK D 1 inK
bK D 0 on @K:

(9)

Since (9) can be viewed as a linear advection-diffusion equation, finding the exact
solution of the problem may not be an easy task in an arbitrary triangular domain.
Therefore, a cheap efficient approximation by bK that generates qualitatively the
same behavior with the exact bubble function bK is required [10].

The subgrid point N is joined to the three vertices denoted by Vi splitting the
triangleK into three sub-triangles calledKi . We will choose the pointN along one
of the three medians ofK . We denote the area of i th sub-triangle by jKi j, the edge of
K opposite to Vi by ei and the length of ei by jei j. The location of the subgrid point
is determined using the procedure given in [11]. Then, the stabilization parameter
�K can be obtained approximately as

Q�K D 1

jKj
Z

K

b�N D
1

jKj
.
R

K bN /
2

1
Re

R
K
jrbN j2

D 4jKj
9 1

Re

P
i jei j2=jKi j

: (10)

The values of Q�Ks are then used in the global formulation (6) in place of �K .

3 Numerical Results

Navier–Stokes equations are solved in rectangular channels containing steps or
obstructions using FEM with stabilizing subgrid method.
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Fig. 1 The statement of the backward facing step flow

SSM_Re150

SSM_Re600 SSM_Re900

SSM_Re300

Fig. 2 Changes in the flow as Reynolds number increases for the backward facing step problem

3.1 Backward Facing Step Flow

This is a standard benchmark problem [1]. The problem specifications are given
in Fig. 1. It is known that, the results obtained with standard Galerkin FEM show
oscillations in pressure values even for small Reynolds numbers [1].

We present the streamlines for Re D 150; 300; 600 and 900 in Fig. 2. As
Reynolds number increases, the vortex in front of the step enlarges and existence of
new vortices are observed. Figure 3 shows pressure contours for the same Reynolds
numbers. The stabilizing subgrid method is effective especially for the advection
dominated flows on the rough mesh. Figure 4 shows the configuration of subgrid
points in the same mesh forRe D 150 andRe D 300, respectively. As the Reynolds
number increases the problem becomes advection dominated and therefore the adap-
tation of the position of the subgrid point is strongly pronounced. The stabilization
is now effective on a larger portion of the entire domain.
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SSM_Re150

p, min = –0.153097,  max = 0.151242

SSM_Re300

p, min = –0.131435,  max = 0.0161514

SSM_Re600

p, min = –0.0916621,  max = 0.0067145

SSM_Re900

p, min = –0.0748686,  max = 0.0074976

Fig. 3 Pressure contours for the backward facing step for different Reynolds numbers

Fig. 4 Adaptation of the subgrid points in SSM as the problem becomes convection dominated
for Re D 150 and Re D 300

Fig. 5 The statement of the flow in the channel with an obstruction
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Fig. 6 Streamlines for the flow in the channel with an obstruction for Reynolds numbers
Re D 100; 200; 400 and L D 4

Fig. 7 Pressure contours for the flow in the channel with an obstruction for Reynolds numbers
Re D 100; 200; 400 and L D 4

Fig. 8 Streamlines for the flow in the channel with an obstruction for Reynolds numbers
Re D 100; 200; 400 and L D 10

Fig. 9 Pressure contours for the flow in the channel with an obstruction for Reynolds numbers
Re D 100; 200; 400 and L D 10

3.2 Flow Through 2D Channel with an Obstruction
on the Lower Wall

This is another test problem [7]. The statement of the problem is given in Fig. 5.
The problem is solved for short and long channel cases. In the first case, the channel
length is taken as L D 4. Changes in the flow in terms of streamlines (in Fig. 6) and
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pressure contours (in Fig. 7) are presented for different Reynolds numbers. For high
Reynolds number values, existence of a new vortex is captured on the left side of
the obstruction.

The complete structure of the vortices and pressure contours are seen more
clearly in Figs. 8 and 9 as the channel length is taken longer (L D 10).
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Multigrid Methods for Control-Constrained
Elliptic Optimal Control Problems

Michelle Vallejos and Alfio Borzı̀

Abstract Multigrid schemes that solve control-constrained elliptic optimal con-
trol problems discretized by finite differences are presented. A gradient projection
method is used to treat the constraints on the control variable. A comparison is
made between two multigrid methods, the multigrid for optimization (MGOPT)
method and the collective smoothing multigrid (CSMG) method. To illustrate both
techniques, we focus on minimization problems governed by elliptic differential
equations with constraints on the control variable.

1 Introduction

Multigrid methods solve elliptic optimal control problems with optimal compu-
tational complexity. Due to recent theoretical and experimental results, multigrid
is now considered as one of the most promising approaches for the development
of efficient optimization schemes. Some recent developments include the applica-
tion of multigrid to unconstrained optimization problems [7, 8], to optimal control
problems [1, 2, 6] and to inverse problems [10, 11].

The purpose of this paper is to investigate two representative multigrid meth-
ods for optimization: the collective smoothing multigrid method (CSMG) and the
multigrid for optimization method (MGOPT). We consider the application of these
methods for solving control-constrained elliptic optimal control problems. While
both schemes are based on the well known full approximation storage (FAS) scheme
[4], they represent different approaches to the solution of optimization problems.
The CSMG scheme solves optimal control problems by solving the corresponding
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PDE optimality system and treating all optimization variables collectively. As typ-
ical in multigrid development, this approach needs to customize the collective
smoothing strategy for each individual problem. On the other hand, an appropri-
ate design of the CSMG multigrid components results in a robust algorithm with
typical multigrid efficiency [3]. The MGOPT method was first introduced in [7, 8].
The motivation for investigating the MGOPT scheme is that it can be formulated in
a way that is not problem specific and therefore it appears to have much larger appli-
cability. In the MGOPT scheme the multigrid solution process represents the outer
loop where the control function is considered as the unique dependent variable. The
inner loop in this scheme consists of a classical one-grid optimization scheme. In
this paper, we discuss an extension of techniques developed in [12] for the case of
control-unconstrained elliptic optimal control problems.

In the next sections, constrained optimal control problems are presented together
with the discretization scheme and a detailed description of appropriate smoothing
algorithms. In Sect. 4, the multigrid scheme is formulated. Numerical experiments
follow to demonstrate the ability of multigrid in solving control-constrained optimal
control problems. A section of conclusion completes this paper.

2 Constrained Optimal Control Problems

In this section, we discuss constrained optimal control problems. The corresponding
optimality system is presented and the multigrid solution process will be detailed in
the next section.

We consider a constrained optimal control problem governed by a partial differ-
ential equation given by

min
u2Uad

J.y; u/;

c.y; u/ D 0;
where c.y; u/ is an elliptic partial differential equation (PDE) that represents the
equality constraint and the control space is a closed convex subset of L2.˝/,

Uad D fu 2 L2.˝/ju � u � u a.e. in ˝g; (1)

where u and u are elements ofL1.˝/. Let c be defined in an open domain˝ � <d
together with homogeneous Dirichlet boundary conditions. By assumption, given a
control variable u 2 U , the equality constraint admits a unique solution y, called
the state variable, such that the mapping u! y is affine and continuous.

We focus on a control-constrained linear elliptic optimal control problem

min
u2Uad

J.y; u/ W D 1
2
ky � zk2

L2.˝/
C �

2
kuk2

L2.˝/
;

��y � u D f in ˝;
y D 0 on @˝;

(2)
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where � > 0 is the weight of the cost of the control, z 2 L2.˝/ is the target
function, and f 2 L2.˝/.

We define the Lagrange functional L.y; u; p/ D J.y; u/ C h< ��y � u � f;
piH�1

1
;H1
; where p is the Lagrange multiplier. Equating to zero the Fréchet deriva-

tives of L with respect to the triple .y; u; p/ results to the first-order necessary
optimality conditions for a minimum. The existence of a unique solution to (2)
and its characterization are well known. For completeness, a short derivation is as
follows:

Let the solution y.u/ of the equality constraint, also called the state equation,
be a function of u such that u ! y.u/ is an affine and continuous mapping from
L2.˝/ toH 2.˝/\H 1

0 .˝/. Let us denote its first derivative at u in the direction ıu
by y0.u; ıu/. It is characterized as the solution to

��y0.u; ıu/� ıu D 0 in ˝; y0.u; ıu/ D 0 on @˝: (3)

The second derivative of u ! y.u/ is zero. We now introduce the reduced cost
functional OJ .u/ D J.y.u/; u/; together with its gradient with respect to u given by
OJ 0.u/ D �u � p: The mapping u ! OJ .u/ is twice Fréchet differentiable and its

derivatives are given by

OJ 0.u; ıu/ D .y.u/� z; y0.u; ıu//L2.˝/ C �.u; ıu/L2.˝/;OJ 00.u/.ıu; ıu/ D ky0.u; ıu/k2
L2.˝/

C �kıuk2
L2.˝/

:

If � > 0; u! OJ .u/ is uniformly convex and this implies the existence of a unique
solution u� to (2). The solution u� is characterized by the following optimality
condition:

OJ 0.u�; v � u�/ D .y.u�/ � z; y0.u�; v � u�//L2.˝/ C �.u�; v � u�/L2.˝/ � 0;

for all v 2 Uad . Let p� D p.u�/ 2 H 2.˝/\H 1
0 .˝/ be a solution to

��p� C y.u�/ D z in ˝; p� D 0 on @˝; (4)

where p� is the Lagrange multiplier. Then by (3) and (4), we have

OJ 0.u�; v � u�/ D .y.u�/� z; y0.u�; v � u�//L2.˝/ C �.u�; v � u�/L2.˝/

D .�p�;���1.v � u�//L2.˝/ C �.u�; v � u�/L2.˝/

D .�u� � p�; v � u�/L2.˝/ � 0 for all v 2 Uad ;

which constitutes the necessary and sufficient optimality condition for the given
optimal control problem (2). Hence we have
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��y � u D f in ˝; y D 0 on @˝;
��p C y D z in ˝; p D 0 on @˝;

.�u � p; v � u/ � 0 for all v 2 Uad :

(5)

The first equation is called the state equation, the second is the adjoint equation and
the inequality condition is the optimality condition. Equation (5) is called the opti-
mality system which is a characterization of the solution to the given optimization
problem (2).

Next we discuss the finite difference discretization scheme together with the
smoothing algorithms associated to CSMG and MGOPT methods.

3 Discretization Scheme and Smoothing Algorithms

Our discussion on multigrid methods requires to define a hierarchy of problems
Akuk D fk in ˝k , indexed by k D 1; 2; : : : ; L. Here ˝k denotes the set of grid
points with uniform grid spacing hk for the finite difference discretization in ˝
taken as a square domain. For simplicity, we assume that hk�1 D 2 hk such that
h1 > h2 > � � � > hL > 0. The number of interior grid points is nk and any
function in ˝k is a vector of size nk . We denote this vector space with Vk and we
introduce the inner product.�; �/k with the corresponding norm kukk D

p
.u; u/k.

For multigrid purpose we define a restriction operator I k�1
k
W Vk ! Vk�1 and a

prolongation operator I k
k�1 W Vk�1 ! Vk such that .I k�1

k
u; v/k�1 D .u; I k

k�1v/k
for all u 2 Vk and v 2 Vk�1.

Now we consider the discrete version of the optimality system (5). We have

��kyk � uk D fk;

��kpk C yk D zk;
.�uk � pk; vk � uk/ � 0:

Let x 2 ˝k where x D .ihk; jhk/ and i; j are the indices of the grid points
arranged lexicographically. We use the standard five point stencil for the Laplacian.
We first setA D �.yi�1;jCyiC1;jCyi;j�1Cyi;jC1/�h2fi;j , andB D �.pi�1;jC
piC1;j C pi;j�1 C pi;jC1/ � h2zi;j . The values A and B are considered constant
during the update of the variables at ij . Hence, we have

Ai;j C 4yi;j � h2ui;j D 0;
Bi;j C 4pi;j C h2yi;j D 0;

.�ui;j � pi;j ; vi;j � ui;j / � 0:

Let wk D .yk ; uk; pk/. A collective smoothing step on w updates the values yi;j ,
ui;j , and pi;j such that the resulting residuals of the state and adjoint equations at
that point are zero. We can compute the updates for the variables yi;j and pi;j in
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the following way

yi;j .ui;j / D 1
4
.h2ui;j �Ai;j /;

pi;j .ui;j / D 1
16
.�h4ui;j C h2Ai;j � 4Bi;j /: (6)

To obtain an update ui;j , we replace the expression for pi;j in the inequality
constraint and define the auxiliary variable as

eui;j D 1

16� C h4 .h
2A � 4B/: (7)

Then the new value for ui;j resulting from the smoothing step is given by

ui;j D
8
<

:

ui;j if eui;j � ui;j
eui;j if ui;j <eui;j < ui;j
ui;j if eui;j � ui;j

: (8)

With this new value of ui;j , new values for yi;j and pi;j are obtained. This
completes the description of the collective smoothing step for the constrained case.

The collective smoothing step defined by (6)–(8) satisfies the inequality con-
straint in the optimality system (5). Consider any grid point whereineu � u, then
from (8) u D u. Thus, .v � u/ � 0 for any v 2 Uad . On the other hand, we have

�u�p D �u� 1

16
.�h4ui;jCh2A�4B/ � 1

16

��
16� C h4�eu � �h2A� 4B�� D 0:

Therefore, .�u� p; v� u/ � 0 for all v 2 Uad . Similarly, one proves that ifeu � u,
then the choice u D u satisfies the inequality constraint. The case u < eu < u is
obvious.

For the MGOPT case, the gradient projection method is utilized as the smoothing

algorithm. In this setting, we want to find a solution u of minu

� OJ .u/� .f; u/
�

such

that u 2 Uad . Define the projection P onto Uad by

PUad
.u/ D

8
<

:

u if u � u
u if u < u < u:
u if u � u

Given the current iterate u`, define the new iterate by u`.˛/ D PUad
.u` C ˛d `/;

where d ` is the search direction given by d ` D � OJ 0.u`/ � f and ˛ satisfies the
sufficient decrease condition for bound constrained problems [5, 9].

A report on the applicability and efficiency of these smoothing algorithms are
shown in Sect. 5.
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4 The Multigrid Method

In this section we present the two multigrid schemes for solving control-constrained
elliptic optimal control problems, the CSMG and the MGOPT methods.

The CSMG scheme is based on the nonlinear multigrid full approximation stor-
age (FAS) scheme applied to the optimality system with a collective smoothing.
Some recent applications of the CSMG method to optimal control problems with
control constraints are presented in [1, 6].

The multigrid for optimization (MGOPT) method was first introduced by Lewis
and Nash [7, 8] as an extension of the multigrid scheme to optimization problems.
This method is very similar to the CSMG scheme and some recent developments
include the application of MGOPT to optimal control problems [12].

To illustrate both methods we consider a discrete problem

Akwk D fk;

where Ak represents a discrete linear operator on ˝k . The MGOPT method is
applied to solve minuk

� OJk.uk/ � .fk; uk/k
�
. Hence in this case, w WD u and

Akuk D OJ 0k.uk/. In the CSMG case, we solve (5) and define w WD .y; u; p/.
Let the smoothing iteration at level k be given by Sk such that we get an update

w`
k
D Sk.w`�1k

; fk/; ` D 1; 2; : : : ; �1. Starting with an initial approximation w0
k

,
we apply �1 times the smoothing scheme Sk and obtain w�1

k
. On a coarse grid Vk�1,

the problem is given by
Ak�1wk�1 D fk�1;

where fk�1 D I k�1
k

fk C �k�1 and �k�1 D Ak�1.I k�1k
w�1

k
/ � I k�1

k
Akw�1

k
is

called the fine-to-coarse residual/gradient correction. Once this problem is solved,
the coarse grid correction step follows

w�1C1
k

D w�1

k
C ˛I kk�1.wk�1 � I k�1k w�1

k
/:

For CSMG ˛ D 1 and for MGOPT ˛ is the step length obtained after a line search
procedure in the direction I k

k�1.wk�1�I k�1k
w�1

k
/. Finally, we apply �2 iterations of

the smoothing algorithm to damp possible high frequency errors that may arise from
the coarse grid correction process. The following algorithm presents the method
described above.

Algorithm (Multigrid method)
Choose w0

k
to be an initial approximation at resolution k. If k D 1, solve Akwk D

fk and return. Else if k > 1,

1. Apply �1 iterations of a smoothing algorithm. w`
k
D Sk.w`�1k

; fk/; ` D
1; 2; : : : ; �1

2. Compute the right hand side fk�1 D I k�1k
fkC�k�1, where �k�1 D Ak�1w�1

k�1�
I k�1
k

Akw�1

k
.

3. Apply � cycles of MG (�1; �2) to the coarse grid problem Ak�1wk�1 D fk�1.
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4. For a given step length ˛, w�1C1
k

D w�1

k
C ˛I k

k�1.wk�1 � w�1

k�1/:
5. Apply �2 iterations of a smoothing algorithm. w`

k
D Sk.w`�1k

; fk/; ` D �1 C
2; : : : ; �1 C �2 C 1:

5 Numerical Results

In this section, we present the results of the experiments on the computational
performance of the proposed multigrid schemes as solvers for control-constrained
elliptic optimal control problems. Using different values of the cost of the control,
we gathered the number of iterations and the CPU time (in seconds) until a stop-
ping tolerance of ku` � u`.1/kL2 < 10�6 is satisfied for both the CSMG and the
MGOPT methods. For all computations, we use �1 D �2 D 2 pre and post smooth-
ing steps. This means that one iteration of the CSMG and the MGOPT method uses
�1 C �2 D 4 iterations of the smoothing algorithm on the finest level. We consider
problem (2) with the zero function as an initial guess, ˝ D .0; 1/ � .0; 1/ and f ,
z 2 L2.˝/ are

f .x1; x2/ D 0; z.x1; x2/ D sin.� x1/ sin.2� x2/:

The numerical results are shown in Table 1. We can see that using different param-
eters � for CSMG, the method converges within nine iterations and the number of
iterations is independent on the mesh size. On the other hand, the MGOPT method
converges within two iterations and the results show that the number of iterations
is independent both on the weighting parameter � and the mesh size. Moreover, the
CPU time (in seconds) approximately increase by a factor of four by halving the
mesh size. This shows an almost optimal computational complexity of the MGOPT
approach. The numerical solutions y and u for � D 10�4 are shown in Fig. 1.

Table 1 Numerical results using CSMG and MGOPT schemes for different weighting parameters

� Mesh Iter CSMG Iter MGOPT

10�2 129 � 129 6 26:0 2 10:5

257 � 257 6 396:1 2 47:6

513 � 513 6 3360:3 2 221:7

10�3 129 � 129 7 29:9 2 12:4

257 � 257 7 461:9 2 50:2

513 � 513 7 3970:5 2 236:0

10�4 129 � 129 9 38:9 2 12:8

257 � 257 9 610:9 2 56:0

513 � 513 9 5104:8 2 238:7
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Fig. 1 Numerical solutions for the state (left) and control (right) variables of the control-
constrained problem using � D 10�4

6 Conclusion

In this paper the solution of control-constrained elliptic optimal control problems
discretized by finite differences and solved by means of CSMG and MGOPT meth-
ods is presented. The numerical results show that the MGOPT method exhibits a
faster convergence rate compared to the CSMG method. Since any optimization
algorithm can be used as a smoothing iteration for MGOPT, it is easier to implement
than the CSMG method where the smoothing iteration is problem specific. Because
of the modularity of MGOPT, it can be easily applied to a large class of PDE-
based optimization problems. A topic which can be considered for future research
is the appropriate use of different optimization algorithms as smoothing iteration for
MGOPT.
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Modelling the New Soil Improvement Method
Biogrout: Extension to 3D

W.K. van Wijngaarden, F.J. Vermolen, G.A.M. van Meurs, and C. Vuik

Abstract Biogrout is a new soil improvement method based on microbial induced
carbonate precipitation. Bacteria and reactants are flushed through the soil, resulting
in calcium carbonate precipitation and consequent soil reinforcement. A mathemat-
ical model was created to describe the process. The model contains the concentra-
tions of the dissolved species that are present in the precipitation reaction. These
concentrations can be solved from a convection-dispersion-reaction equation with a
variable porosity. Other model equations involve the concentrations of the bacteria
and of the solid calcium carbonate, the decreasing porosity (due to precipitation) and
the flow. The partial differential equations are solved by the Standard Galerkin Finite
Element Method. The subject of this paper is the extension of the mathematical
model to 3D.

1 Introduction

Biogrout is a new soil reinforcement method based on microbial induced carbonate
precipitation [7]. Bacteria are placed and subsequently reactants (urea .CO.NH2/2/

and calcium chloride (CaCl2)) are flushed through the soil, resulting in calcium
carbonate (CaCO3) precipitation, causing an increase in strength and stiffness of the
soil.

Biogrout can be applied to a wide variety of situations, in which it is desirable to
change the properties of the subsoil [2]. We briefly mention the following examples
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� reinforcement of the soil underneath railway-tracks;
� soil stabilization prior to tunnelling;
� reinforcement of dunes to decrease effects of wave erosion, and hence to protect

delicate coastlines;
� prevention of liquefaction of the subsoil resulting from earthquakes.

The Biogrout process consists of two parts: the microbial induced production
of carbonate (CO2�

3 ) due to the hydrolysis of urea (with ammonium (NHC4 ) as a
side-product) and the precipitation of calcium carbonate. In [7], the corresponding
reaction equations are given. Combining these reactions gives the overall Biogrout
reaction equation:

CO.NH2/2.aq/C Ca2C.aq/C 2H2O.l/! 2NHC4 .aq/C CaCO3.s/: (1)

The solid calcium carbonate strengthens the subsoil by connecting the sand
grains. As a result of the precipitation of calcium carbonate, the porosity and the
permeability of the soil decrease. This phenomenon influences the flow.

In [5] a model has been derived to describe the Biogrout process. Thus far, only
simulations for 1D and 2D configurations have been done. In this paper, a simulation
will be carried out for a 3D configuration.

This paper contains the following sections. Section 2 summarizes the model for
the Biogrout process that was derived in [5]. Section 3 is devoted to the numerical
methods, used to solve the model equations. Section 4 contains some computer sim-
ulations for a 3D configuration and in Sect. 5 conclusions and discussions can be
found.

2 The Mathematical Model

In this section, the (differential) equations that are needed to describe the Biogrout
process are given, together with a short explanation. In [5] the derivation can be
found. These (differential) equations were derived in respect with the following
assumptions:

� Only dissolved species do react;
� The biochemical reaction of the Biogrout process is the only reaction that takes

place and this reaction is governed by reaction (1);
� The concentration of the bacteria is constant in time and homogeneous;
� Calcium carbonate is not transported but it precipitates on the matrix of the

porous medium;
� The precipitation of calcium carbonate has no influence on the total volume of

the fluid over the entire domain of computation;
� The flow is incompressible;
� The viscosity is constant.

The biochemical reaction of the Biogrout process is given by (1). We will
start by giving the differential equations for the aqueous species in this equation.
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The differential equation for the concentration of urea is given by:

�
@C urea

@t
D r � .�D � rC urea/� q � rC urea � � r: (2)

In this equation, � is the porosity, C urea is the dissolved concentration of urea,
D is the dispersion tensor, v is the pore water velocity and r is the reaction rate
of the production of calcium carbonate, which is a non-linear function of the urea
concentration and the time.

The term at the left-hand side represents the accumulation. The first term at the
right-hand side represents the effect of dispersion and diffusion, the second term
models advection and the last term stands for the biochemical reaction. The minus-
sign comes from the fact that urea is consumed at the same rate as calcium carbonate
is formed, see (1).

In three dimensions, the coefficients of the dispersion tensor D equal Dij D
.˛L � ˛T /

vi vj

jvj C ıij˛T

P
i

v2
ijvj , see [8]. The quantity ˛L is the longitudinal disper-

sivity and ˛T is the transverse dispersivity.
Analogously, we have the following differential equation for the concentrations

of calcium and ammonium:

�
@C Ca2C

@t
D r � .�D � rC Ca2C

/� q � rC Ca2C � � r; (3)

�
@CNHC

4

@t
D r � .�D � rCNHC

4 / � q � rCNHC

4 C 2� r: (4)

Note theC2 in the biochemical reaction term in the differential equation for ammo-
nium: for each produced mole of calcium carbonate, two moles of ammonium are
generated.

For the non-aqueous species in reaction (1), calcium carbonate, we have the
following differential equation:

@CCaCO3

@t
D mCaCO3

� r: (5)

In this equation, mCaCO3
is the molar mass of calcium carbonate and is used to

convert number of molecules (moles) into mass (kilograms). The right-hand side of
this differential equation only contains the reaction term since it has been assumed
that calcium carbonate is not transported.

We have the following relation between the concentration of calcium carbonate
and the porosity:

�.t/ D �.0/ � C
CaCO3.t/� CCaCO3.0/

�CaCO3

; (6)

where �CaCO3
is the density of calcium carbonate.
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The flow is calculated from Darcy’s Law, given in [8]:

qx D �kx

�

@p

@x
; qy D �ky

�

@p

@y
; qz D �kz

�

�
@p

@z
C �g

�
: (7)

In Darcy’s Law, p is the pressure, ki is the intrinsic permeability in the various coor-
dinate directions (i D x; y; z), � is the viscosity that is assumed to be constant in
the Biogrout case, � is the density of the solution and g is the gravitational constant.

The intrinsic permeability k is determined, using the Kozeny–Carman relation:
an empirical relation between the intrinsic permeability and the porosity that is
commonly used in ground water flow modelling (see [1]):

k D .dm/
2

180

�3

.1 � �/2 : (8)

In this relation, dm is the mean particle size of the subsurface medium. If the porosity
is small, it might be that the pores are not connected. Hence, the permeability is zero.
This phenomenon is not directly incorporated in the Kozeny–Carman relation. Since
in our simulations the porosity is not that small, we assume that the Kozeny–Carman
relation is a good relation between the permeability and the porosity.

The density of the solution (at 20 °C), �, will be calculated with the following
experimental relation:

� D 1000C 15:4996C urea C 86:7338CCa2C C 15:8991CNH
C

4 : (9)

For the pressure, the following differential equation was derived in [5] by the use
of Darcy’s Law (7):

�r �
�
k

�
.rp C �gez/

�
D mCaCO3

�CaCO3

� r: (10)

Differential equation (2), (3), (4), (5) and (10) contain the reaction rate r of the
biochemical reaction (1). This rate decreases in time as is shown in experiments, see
[6]. In [5] a linear reduction had been assumed, combined with Monod kinetics, [3].
In this paper, we will combine Monod kinetics with an exponential reduction, since
this is commonly used as a first approximation (see [4]):

r D vmax

C urea

Km C C urea
e�bt : (11)

In this equation, vmax is the initial activity, Km is the saturation constant and b is
some constant, representing the reduction in bacterial activity in the course of time.

As initial conditions, the concentration of calcium carbonate, urea, calcium and
ammonium are equal to zero and the porosity equals �0.



Modelling Biogrout: Extension to 3D 897

Fig. 1 Experimental set-up. Left: Configuration, Right: Flow strategy

Table 1 Boundary conditions for the pressure and the concentration of urea, calcium and
ammonium

p C urea CCa2C CNH
C

4

�1(during injection/ � k
�
.rpC �gez/ � n D qin C urea D cin CCa2C D cin CNH

C

4 D 0

�1(during rest) p D p2 C R 1:5z �gNzd Nz @C urea

@n
D 0 @CCa

2C

@n
D 0 @C

NH
C

4

@n
D 0

�2 p D p2 C R 1:5z �gNzd Nz @C urea

@n
D 0 @CCa

2C

@n
D 0 @C

NH
C

4

@n
D 0

�3 � k
�
.rpC �gez/ � n D 0 @C urea

@n
D 0 @CCa

2C

@n
D 0 @C

NH
C

4

@n
D 0

As a model experiment, a container (8 m�5.6 m�1.5 m) has been taken, hav-
ing closed boundaries (represented by boundary �3). In this container injection and
extraction wells have been placed (Fig. 1). The injection wells are represented by
boundary �1, whereas the extraction wells are represented by boundary �2. The
following flow strategy has been chosen: there are three batches, starting with nine
hours of injection and no injection during the rest of the batch. The duration of the
batches is respectively 1, 2 and 3 days, see Fig. 1.

Table 1 displays the boundary conditions that are chosen.
Since we have the same differential equation, initial condition and boundary con-

ditions for both the concentration of urea and calcium chloride, these concentrations
are equal. Hence it is sufficient to calculate only the urea concentration.

3 Numerical Method

The differential equations for the pressure, the velocity and the concentration of
the aqueous species are solved by the Standard Galerkin Finite Element Method.
The weak formulation is derived by multiplication by a test function � 2 H 1.˝/

and integration over the domain ˝ . For the time integration, an IMEX-scheme is
used: all components are solved implicitly, except for the porosity � , the intrinsic
permeability k and the density of the solution �. Solving the differential equa-
tion for the pressure, the reaction rate r is also computed explicitly. While solving
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the differential equation for the urea concentration, Newton’s method is used,
because of the non-linearity in the reaction term (11). The Newton-Cotes quadra-
ture rules have been used for the approximation of the element matrices and vectors.
Tetrahedral elements have been used, in combination with linear basis functions.

Since the differential equation for the concentration of calcium carbonate, (5), is
an ordinary differential equation (in each grid point), it is not necessary to use the
Finite Element Method. For the time integration, an IMEX-scheme is used: solving
all components implicitly, except for the porosity.

At each time step, the differential equations for the following components are
solved successively: the pressure, the flow and the concentration of urea, calcium,
ammonium and calcium carbonate. For more details, see [5].

Finally, the porosity (�), the intrinsic permeability (k) and the density of the fluid
(�) are recalculated with (6), (8) and (9), respectively. Also the boundary conditions
are updated.

Since the porosity, the permeability and the density of the solution (may) vary, at
each time step all the matrices are rebuilt. That means, calculate for each element a
4 � 4 element matrix and add them to the large matrix. This is done for 10 different
matrices C the number of Newton-iterations, since in each Newton-iteration a new
matrix is built.

4 Results

In this section, the results of the simulation with the model for a 3D configuration are
shown. Matlab has been used to do the numerical simulations. The linear systems
are solved by a direct method. The time step �t = 1 h, qin D 2:29 � 10�4 m s�1,
vmax D 1:621 � 10�2 mol m�3 s�1 and b D 7:15 � 10�6 s�1. The values of the
other constants can be found in [5].

All the three batches start with nine hours of injection with inflow velocity qin.
During injection, the amount of urea in the domain increases, although this phe-
nomenon is diminished by the hydrolysis of urea. During rest, the total amount of
urea decreases, due to the hydrolysis of urea. The reaction rate (11) decreases in
time. As a consequence, the total amount of urea decreases slower during the period
of rest as time proceeds.

The urea/calcium chloride solution is heavier than water and is also heavier than
the solution of the reaction product ammonium chloride as can be seen from for-
mula (9). As a result, in the lower parts of the domain a higher urea and calcium
chloride concentration are expected. This will result in a higher calcium carbonate
concentration in the lower parts of the domain. Figure 2 confirms these expectations
and also gives some quantitative details.

At each time step, new matrices are built, since porosity, permeability and density
of the solution (may) vary. In this paper, the relation between the CPU time for the
building part and for the solving part has been investigated. Seven different meshes
have been taken, with increasing number of elements. With each mesh 10 time steps
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Fig. 2 Some results of the 3D model experiment. Top left: total amount of urea (kmol) in time
(days) in the whole domain; Middle left: amount of urea (kmol) in time (days) in several parts of
the domain: �� upper part, � middle part, � � � lower part; Bottom left: the amount of calcium
carbonate (kg) in the same parts of the domain: �� upper part, � middle part, � � � lower part.
Top right: a contour plot of the calcium carbonate concentration (kg/m3) after the three batches at
zD 1.5 m (top domain), x[m] and y[m] on the x-axis and y-axis; Bottom right: a contour plot of
the calcium carbonate concentration (kg/m3) after the three batches at zD 0 m (bottom domain),
x[m] and y[m] on the x-axis and y-axis

Table 2 CPU time per time step, subdivided in the building part and the solving part for seven
different meshes, with increasing number of elements and the relative error

Number of Elements CPU time Percentage Relative
(approximately) Solving part Error

Per time step (s) Building part (s) Solving part (s)

2500 0:344 0:242 0:102 30% 24%
5000 0:715 0:459 0:255 36% 15%

10000 1:58 0:921 0:661 42% 10%
20000 4:28 1:88 2:39 56% 6.3%
40000 13:9 3:80 10:1 73% 3.5%
80000 46:8 8:23 38:6 82% 1.1%

160000 182 17:0 165 91% (0%)

have been taken, registering the average CPU time per time step and the average
CPU time per time step for the building part and the solving part. The results can be
found in Table 2. This table also contains the percentage solving time/total time.

From this table, it can be seen that, if the number of elements increases with a
factor 2, so does the CPU time for the building part. This is what is expected: for
each element a 4 � 4 element matrix is created and is added to the large matrix. If
the number of elements doubles, the amount of work doubles, too.

If the number of elements doubles, the amount of solving work increases with a
factor 2.5, 2.6, 3.6, 4.2, 3.8 and 4.3, respectively. So the amount of work increases
with more than a factor 2, what can also be expected from the analysis of a band
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matrix solver. For a mesh with 2500 elements only 30% of the CPU time is spent in
the solving part. For a mesh with 160000 elements this is even 91%. If the number
of elements increases further, it will be necessary to use an iterative method instead
of a direct method.

The discretization error is O.�x2 C�t/. If the number of elements is increased
with a factor 2, �x2 is decreased with a factor 22=3. If the time step is also
decreased with a factor 22=3, then, in the limit, the error should decrease with a
factor 22=3.� 1:6/. The last column of Table 2 contains the relative error in the
concentration after six hours in an arbitrary point in the domain with respect to the
finest mesh. For the coarsest mesh, a time step of�t D 0:5 h has been taken and this
time step has been decreased while doubling the number of elements. The relative
error decreases with a factor 1.6, 1.5, 1.6, 1.8 and 3.2, respectively. So in the limit,
the error decreases with even more than a factor 1.6.

5 Conclusions and Discussion

An extension to 3D of the Biogrout model has been made. The results of the numer-
ical simulation with the 3D configuration with three injection lances and three
extraction lances look promising. Also the error analysis gives a good result.

For a small number of elements, building matrices takes more CPU time than
solving the matrix vector systems. For a large number of elements it is the other way
around. In building matrices, the amount of work increases linearly with the number
of elements. If the number of elements increases further, it will be necessary to use
an iterative method instead of a direct method.
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Angle Conditions for Discrete Maximum
Principles in Higher-Order FEM

Tomáš Vejchodský

Abstract This contribution reviews the general theory of the discrete Green’s func-
tion and presents a numerical experiment indicating that the discrete maximum
principle (DMP) fails to hold in the case of Poisson problem on any uniform tri-
angulation of a triangular domain for orders of approximation three and higher.
This extends the result [Computing 27, 145–154 (1981)] that the Laplace equa-
tion discretized by the higher-order FEM satisfies the DMP on a patch of triangular
elements in exceptional cases only.

1 Introduction

The discrete maximum principle (DMP) is important in practice, because it guar-
antees nonnegativity of approximations of naturally nonnegative quantities like
temperature, concentration, density, etc. Its theoretical significance lies in its con-
nection with the uniform convergence of the finite element approximations [5].
In contrast to the lowest-order finite element method (FEM), the DMP for the
higher-order FEM in dimension two and higher is not well understood, yet.

A stronger version of the DMP for the Laplace equation discretized by higher-
order finite elements was studied by Höhn and Mittelman in [8]. This stronger
version requires the validity of the DMP on all vertex patches (union of elements
sharing a vertex) in the triangulation. They find that the quadratic elements do not
satisfy the stronger DMP unless the triangulation is very special (e.g., all equilateral
triangles) and that the restrictions for cubic elements are even more severe.

In the present contribution we briefly review the general theory about the discrete
Green’s function (DGF) and the standard DMP for the Poisson problem. Then we
present a numerical experiment indicating that the standard DMP is not satisfied on
any uniform triangulation for the finite elements of order three and higher.
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2 Model Problem and Its FEM Discretization

First, we briefly introduce the Poisson problem and its discretization by the FEM.
The main purpose of this section is to settle down the notation.

Let ˝ � Rd be a Lipschitz domain. The classical and the weak formulations of
the Poisson problem reads as follows:

Find u 2 C 2.˝/[ C.˝/ such that ��u D f in ˝; and u D 0 on @˝: (1)

Find u 2 H 1
0 .˝/ such that a.u; v/ D F .v/ 8v 2 H 1

0 .˝/; (2)

where a.u; v/ D R
˝ ru � rv dx and F .v/ D R

˝ f v dx. We require f 2 C.˝/ for
the classical formulation and f 2 L2.˝/ for the weak one.

In order to discretize problem (2) by the Galerkin method, we introduce a finite
dimensional subspace Vh of H 1

0 .˝/. We assume that Vh � C.˝/. The Galerkin
solution uh 2 Vh is given by the requirement

a.uh; vh/ D F .vh/ 8vh 2 Vh: (3)

Considering a basis '1; '2; : : : ; 'N of Vh, we can express uh D
PN
iD1 zi'i and

verify that problem (3) is equivalent to the system Az D F of linear algebraic
equations, where the stiffness matrix A 2 RN�N has entries aij D a.'j ; 'i /, the
load vector F 2 RN has entries Fi D F .'i /, and z D .z1; z2; : : : ; zN />.

The FEM can be seen as a special case of the Galerkin method, where the space
Vh is chosen in a special way such that the stiffness matrixA is sparse. The particular
choice of Vh is not important at this point and it will be specified later on.

3 Discrete Maximum Principle

Theorem 1 below is an equivalent formulation of the standard maximum principle
due to E. Hopf [9] applied to problem (1). Similarly, Theorem 2 presents the same
principle for the weak solution.

Theorem 1. Let u be a classical solution to (1). If f � 0 in ˝ then u � 0 in ˝ .

Theorem 2. Let u be a weak solution to (2). If f � 0 a.e. in ˝ then u � 0 a.e. in
˝ .

The same result for the the Galerkin solution uh 2 Vh is known as the DMP.
Unfortunately, it is not valid in general and various conditions for its validity are
studied.

Definition 1. Let the finite dimensional space Vh be fixed. We say that discretiza-
tion (3) satisfies the discrete maximum principle (DMP) if the solution uh 2 Vh is
nonnegative in ˝ for any f 2 L2.˝/, f � 0 a.e. in ˝ .
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A usefull tool for investigation of the DMP especially for the higher-order FEM
is the so-called discrete Green’s function (DGF) which was already introduced in
[3, 6]. For any y 2 ˝ let us define the DGF Gh;y 2 Vh as the unique function
satisfying

a.vh; Gh;y/ D vh.y/ 8vh 2 Vh: (4)

This definition together with (3) implies the representation formula

uh.y/ D F .Gh;y/ D
Z

˝

f .x/Gh.x; y/ dx 8y 2 ˝;

where we use the usual notation Gh.x; y/ D Gh;y.x/. This representation formula
immediately proves the following theorem.

Theorem 3. The discretization (3) satisfies the DMP if and only if Gh.x; y/ � 0

for all .x; y/ 2 ˝2.

Interestingly, the DGF Gh can be expressed in terms of a basis of Vh [12]:

Gh.x; y/ D
NX

iD1

NX

jD1
.A�1/ij'i .x/'j .y/ 8.x; y/ 2 ˝2; (5)

where .A�1/ij stand for entries of the inverse of the stiffness matrix A. Let us
remark that a special case of this formula, where the basis is formed by the eigen-
vectors of the discrete Laplacian was already presented in [3]. Further, we remark
that the concept of the DGF is relevant even for more general problems [13, 14].
However, in the case of nonhomogeneous Dirichlet boundary conditions the bound-
ary Green’s function has to be introduced [4]. General formula (5) is used below to
analyze the nonnegativity of the DGF and consequently the validity of the DMP.

4 Nonnegativity of the DGF for the Lowest-Order FEM

The analysis of nonnegativity of expression (5) simplifies if the basis functions
'1; '2; : : : ; 'N of Vh have the following property

NX

iD1
zi'i � 0 in ˝ , zi � 0 8i D 1; 2; : : : ; N: (6)

This property is typically satisfied for the lowest-order finite elements such as lin-
ear functions on simplices and multilinear functions on blocks (Cartesian products
of intervals). Before we state the following well-known theorem, we recall that a
square matrix A is monotone if it is nonsingular and A�1 � 0 (i.e., all entries of
A�1 are nonnegative).
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Theorem 4. Let the basis functions '1; '2; : : : ; 'N of Vh have property (6). Then
the discretization (3) satisfies the DMP if and only if the stiffness matrix A is
monotone.

Proof. It follows immediately from assumption (6), formula (5), and Theorem 3.

If the off-diagonal entries of the stiffness matrix A are nonpositive then A is
M-matrix and, hence, monotone. The nonpositivity of the off-diagonal entries can
be guaranteed by various geometric conditions on finite element meshes like the
nonobtuseness condition for simplicial meshes [1] or the nonnarrowness condition
for rectangular finite elements [2]. However, these conditions could be too restric-
tive, because it suffices to have the stiffness matrix monotone and not M-matrix. An
experiment indicating how much the nonobtuseness condition for triangles can be
weaken is described in Sect. 6 and its results are presented in Fig. 2 (top-left).

5 Nonnegativity of the DGF for the Higher-Order FEM

Let us investigate the case of the higher-order FEM in more details. For simplicity
let us consider two dimensional Poisson problem (1) in a polygonal domain ˝ . We
define the finite element space as Vh D fv 2 H 1

0 .˝/ W vjK 2 Pp.K/8K 2 Thg,
where Th is a face-to-face triangulation of ˝ and Pp.K/ stands for the space of
polynomials of degree at most p on the triangleK .

The standard basis of Vh consists of NV vertex (piecewise linear) func-
tions '1; '2; : : : ; 'NV and of N �NV higher-order basis functions 'NVC1;
'NVC2; : : : ; 'N , see e.g., [11]. The vertex functions are the usual piecewise lin-
ear “hat” functions. Thus, if Bj , j D 1; 2; : : : ; N V, denote the interior vertices
of the triangulation Th then the vertex functions satisfy 'i .Bj / D ıij , i; j D
1; 2; : : : ; NV.

The vertex and the higher-order (non-vertex) basis functions yield a natural 2�2
block structure of the stiffness matrix and its inverse

A D
�
AVV AVN

ANV ANN

�
; A�1 D

�
S�1 �.AVV/�1AVNR�1

�.ANN/�1ANVS�1 R�1
�
;

where AVV2RN
V�NV

, ANN2R.N�NV/�.N�NV/, etc., SDAVV �AVN.ANN/�1ANV,
and R D ANN � ANV.AVV/�1AVN.

The Schur complement S has the following interesting property. Let Bi and
Bj , i; j D 1; 2; : : : ; NV, be two interior vertices of the triangulation Th. Since
'i .Bj / D ıij and due to (5) we obtain

Gh.Bi ; Bj / D .A�1/ij'i .Bi /'j .Bj / D .A�1/ij D .S�1/ij : (7)

Hence, the values of the DGF at the vertices of Th coincide with the entries of S�1.
Furthermore, the DGF has a natural structure given by the Cartesian product of the
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mesh Th with itself. In particular, ifK and L are two elements from Th and �K and
�L denote the sets of indices of basis functions supported in K and L, respectively,
i.e., �K D fi W meas.K\supp'i / > 0g, then the DGF restricted toK�L is given by

GhjK�L.x; y/ D
X

i2�K

X

j2�L
.A�1/ij'i jK.x/'j jL.y/; .x; y/ 2 K � L: (8)

This formula contains a small number of basis functions and we use it for fast
evaluation of the DGF at a given point.

6 Numerical Experiment

In this experiment we test nonnegativity of the DGF on uniform meshes. We con-
sider Poisson problem (1) on a triangle ˝ . The finite element mesh is constructed
by three successive uniform (red) refinements of˝ , see Fig. 1 (left).

To speed up the test of the nonnegativity of the DGF, we first check the values
at vertices, using the Schur complement S , see (7). If S is monotone, it remains to
verify the nonnegativity at the other points. We proceed by inspection of all pairs of
elements K;L 2 Th using formula (8). Function GhjK�L is a polynomial. The test
of nonnegativity of a multivariate polynomial is a complicated task (connected with
the 17th Hilbert’s problem [10]). Therefore, we sample the values of GhjK�L in a
number of points .xK

k`
; xLmn/ 2 K � L, where the sample point xK

k`
has barycentric

coordinates .k; `;M � k � `/=M , 0 � k C ` � M , see Fig. 1 (right). The total
number of sample points in an element is .M C 1/.M C 2/=2. To ensure that the
number of sample points is sufficient, we always perform a series of computations
starting with M D 8 and doublingM until the results do not change.

Figure 2 presents the results. Each point in a panel corresponds to a pair of angles
˛ and ˇ, which represent the vertex angles of the triangle˝ . The color of this point
is given by the properties of the DGF. If the DGF is nonnegative at all vertices and
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Fig. 1 A uniform mesh with 64 triangles enumerated in a spiral way (left). A triangular element
characterized by a pair of of angles ˛ and ˇ with sample points for M D 4 (right)
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Fig. 2 The nonnegativity of the DGF and its dependence on the angles in the triangulation for
orders p D 1; 2; : : : ; 6
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at all sample points then the color is black. This is the only case when the DMP is
hopefully satisfied. If the DGF is not nonnegative then we distinguish three more
cases. (i) The DGF is negative in a sample point and S is M-matrix (dark gray).
(ii) The DGF is negative in a sample point and S is monotone but not M-matrix
(lighter gray). (iii) The DGF is negative in a vertex, i.e., S is nonmonotone (lightest
gray).

The above description, however, applies for higher-order elements only (p � 2).
The case of linear elements (p D 1) is exceptional, because just the vertex values
of the DGF are relevant for its nonnegativity. Due to Theorem 4, we distinguish
in the top-left panel of Fig. 2 the cases (a) A is nonmonotone, (b) A is monotone
but not M-matrix, (c) A is M-matrix. Notice that the DMP is satisfied in cases (b)
and (c).

Clear conclusion from Fig. 2 is that the DGF has negative values for all tested
pairs of angles for orders p � 3. However, if we look on vertex values of the DGF
only, we observe that the area of this region increases with p. The increase is not
monotone but in principle the higher polynomial degree p we use the wider range
of angles can be used in order to keep the vertex values of the DGF nonnegative.

The only polynomial degrees allowing the DMP on uniform meshes are p D 1

and p D 2. For the case p D 1 (see Sect. 4 above) the black area in the top-left
panel of Fig. 2 clearly shows that the stiffness matrix A is M-matrix provided the
maximal angle is at most 90ı. In addition, we observe that the stiffness matrix can
be monotone even if the maximal angle is about 117ı. In the case p D 2 the DMP
is satisfied only if all the angles are close to 60ı. We also check the nonnegativity
of the DGF for meshes finer than the mesh sketched in Fig. 1 (left). The results
on meshes one and two times refined are exactly the same as those presented in
Fig. 2.

It might be of further interest to see how the DGF really looks like. For illus-
tration we choose p D 3 and ˛ D ˇ D 60ı. For these values the DGF is
nonnegative in the vertices and negative somewhere in between. The graph of the
function Gh.x; y/, .x; y/ 2 ˝2, is difficult to visualize, because it is a five dimen-
sional object. However, each pair of elements Ki 2 Th and Kj 2 Th corresponds
to a point in a plane and the color of this point can be chosen according to some
characteristic of the DGF restricted to the polytope Ki � Kj . The left panel of
Fig. 3 presents the mean values of Gh over Ki � Kj . The right panel illustrates
the negative part of the minimum of Gh in Ki � Kj , i.e., .minKi�Kj

Gh/
�, where

�� D .j�j��/=2. Both these quantities are approximated using the sample points as
described above. The used triangulation together with indices of elements is shown
in Fig. 1 (left). Notice that the elements with indices 1–39 are adjacent to the bound-
ary of ˝ while the elements 40–64 are interior. The right panel of Fig. 3 clearly
shows that the DGF is negative in polytopes Ki � Kj , where Ki and Kj are both
adjacent to the boundary and they are neighbors to each other including the case
Ki D Kj . Another choice of angles ˛ and ˇ leads, however, to the negativity of the
DGF for more pairs Ki , Kj .
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Fig. 3 A visualization of the entire DGF. A point with coordinates i; j corresponds to a pair of
elements Ki , Kj . The color of this point represents the mean value (left) and the negative part of
the minimum (right) of Gh in Ki �Kj

7 Conclusions

We discussed the nonnegativity of the DGF and equivalently the validity of the
DMP for Galerkin solutions of Poisson problem (1) with homogeneous Dirichlet
boundary conditions. Results of the performed experiment indicate that the DGF
is not nonnegative on uniform meshes for all shapes of triangular elements for the
order three and higher. The quadratic elements yield nonnegative DGF for triangles
close to equilateral ones.

The results also indicate that the DGF is negative in the areas close to the bound-
ary. In accordance with [7] we could speculate that the nonnegativity of the DGF
is not primarily determined by the angles in the triangulation but by the way how
the boundary is resolved. In addition, the domain, where the DGF is negative, is
relatively small with respect to the entire ˝2 and it lies close to the boundary. This
means that a nonnegative f corrupting the DMP (Definition 1) must have great val-
ues in an element close to the boundary and small values in the interior of˝ (like an
approximation of the Dirac delta function). Such data are rare in practice, however.
This leads us to another generalization of the (continuous) maximum principle from
Theorem 2. If f � 0 is given, we may ask how must the mesh look like in order
to obtain the nonnegative finite element solution. Up to the author’s knowledge, this
question was not considered in the literature, yet.

A possible remedy of the failure of the DMP for higher-order elements could
be a modification of the higher-order basis functions based on the exact eigenfunc-
tions of the Laplacian. This approach was successfully applied in [6] for 1D elliptic
problems. A generalization to higher dimension is still an unsolved problem.
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Unsteady High Order Residual Distribution
Schemes with Applications to Linearised Euler
Equations

N. Villedieu, L. Koloszar, T. Quintino, and H. Deconinck

Abstract This article is dedicated to the design of high order residual distributive
schemes for unsteady problems. We use a space-time strategy, which means that
the time is considered as a third dimension. To achieve high order both in space
and in time, we use prismatic elements having .k C 1/ levels, each level being a
P k element. The first section is dedicated to the deign of space-time schemes on
such elements. The second section presents the performances on different type of
problems. In particular, we look at a discontinuous problem on Euler equations and
two problems of propagation of sound using Linearised Euler equations.

1 Generalities and Notations

We describe a class of compact methods to approximate the unsteady solution of

@u

@t
Cr � F.u/ D S 8.x; y; t/ 2 ˝t D ˝ � Œ0I tf � (1)

To solve the unsteady system (1) of m equations we consider that time is a third
dimension. So, the domain˝t is descretised by a succession of prismatic elements.
We first build a triangulation �h of the spatial domain˝ , with averaged mesh spac-
ing h. Each of these triangles areP k elements, and in each element, we construct the
conformal sub-triangulation composed of k2 triangles. We denote by Ts the generic
sub-element. Until then we have constructed a high order discretisation of space. To
get high order discretisation in time we use prisms with kC1 levels, each level being
a P k element of �h. As an example, on Fig. 1 are plotted a P 1 and a P 2 prismatic
element. For any given function u, its restriction on the prism K is defined by:

uh D
nC1X

lDn�kC1
H l.t/

X

i2T
 i .x; y/ uli ; (2)
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Fig. 1 Space-time element: P 1 element (left) and P 2 element (right) with subdivision, definition
of �t

where uli is the value of uh at node i and time tl : uli D uh.xi ; yi ; tl/ and  i .x; y/
denotes the (mesh dependent) continuous k � th order Lagrangian basis function.
H l is the 1D k � th order basis function of level l . In each space-time element
the .un�l/k�1�l�0 are considered as known and unC1 is the unknown which we
compute using the process of a steady problem:

1. We compute the vectorial residual on each space-time sub-prism between n and
nC 1:

˚Ks D
Z tnC1

tn

Z

Ts

�
@u

@t
Cr � F � S

�
d˝ dt (3)

2. We distribute the residual to the nodes of the sub-prism Ks. To respect the phy-
sical meaning of time, we would like to distribute only to the nodes of the level
nC 1. The consistency of the scheme is ensured by a constaint on the time step
called past-shield condition (for more details we refer to [6]). Under this condi-
tion it is possible to distribute the residual ˚Ks only to the nodes of the level
nC 1: 8

<

:

˚ni D 0
˚nC1i D ˇi˚Ks ;

X

i2Ts

ˇi D I

where I is the identity matrix of size m �m
3. We obtain the following nodal equation that is solved by pseudo-time iterations:

X

Ks ;i2Ks

˚
nC1;Ks

i D 0 (4)
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2 Linear Schemes

In this paper we make use of the following two upwind linear schemes

ST-LDA scheme This scheme is multidimensional upwind1 and linearity preser-
ving2 and its residual is defined by:

˚
Ks

i D ˚LDA
i D ˇLDA

i ˚Ks ; ˇLDA
i D QknC1;Ci .

X

j2Ts

QknC1;Cj /�1 (7)

ST-N scheme is the multidimensional upwind scheme defined by

�ST-N
i D �ST�LDAi C dST�Ni (8)

d ST-N
i D

X

j2Ts

QkCi eN QkCj .unC1i � unC1j / (9)

eN D .
X

j2Ts

QkCj /�1 (10)

The N scheme is monotone3 but only first order because it is not linearity
preserving.

1 A scheme is multidimensional upwind if ˇi D 0 when QknC1;C
i D 0 where QknC1

i is the upwind
matrix of the level nC 1:

QknC1
i D .

1

2

@F.u�;nC1/

@u
� ni /�t1 C jTsj

3
I (5)

with u�;nC1 an arbitrary average of uh.tnC1/ over Ts , �t1 D t nC1 � t n, jTsj the area of the
sub-triangle Ts , I the indentity matrix and ni is the inward normal to the face of Ts opposite to
node i , the normal is scaled on the length of this face. And its positive part QknC1;C

i is defined by
QknC1;C
j D R�CR�1, R and �C being respectively the matrix of the right eigenvectors and of

the positive eigenvalues of QknC1
i .

2 Linearity preserving and Accuracy: In the steady case the condition to get kC 1th order schemes
is that (see [2] for details)

˚
Ks
j D O.hkC2/ (6)

For the kth degree polynomial approximation (2) we get ˚Ks D O.hkC2/, hence the accuracy
condition is also expressed by ˚Ks

j D O.˚Ks / meaning that the distribution coefficient should be
bounded (Linearity preserving condition).
3 Monotonicity: The rigorous definition of monotonicity for RD schemes resorts to the theory of
positive coefficients, see [2,8] for details. In this paper we will define a scheme as being monotone
if, in practical computations, it gives a non-oscillatory approximations of discontinuities. In par-
ticular, we are interested in schemes for which, across a discontinuity, ˚Ks

j � ˚M
j � 0, for some

first order monotone splitting ˚M
j .
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3 Nonlinear Schemes

To combine high order of accuracy and monotonicity, we must use a non-linear
splitting. There are several ways of doing this. Here, we only consider the non-linear
limitation of the ditribution coefficient of the N scheme.

ST-NLim scheme We limit the ˇNi of the N scheme.4 In scalar this scheme is
defined by:

�
Ks

i D �Nlim
i D ˇNlim

i ˚Ks ; ˇNlimi D ˇN;C
i =

X

j2Ks

ˇ
Nlim;C
j (11)

with ˇN
j D �N

i =˚
Ks

i . The Nlim scheme verifies both the monotonicity require-

ment (˚Ts

i � ˚N
i � 0), and the accuracy condition (6) (ˇNlim

i bounded).

4 Results

We test these schemes on several test cases. The ST-LDA(P k) will be tested on
acoustic problems using Linearised Euler Equations. For more details on the imple-
mentation of LEE for RDS we refer to the work of Koloszar et al. [4]. The goal of
the last test case of this article is to test the monotonicity of Nlim(P k).

4.1 Gauss Pulse

The first test case is the propagation of a Gauss pulse on Œ�20I 20� � Œ�20I 20� in a
quiescent flow. We simulate this with the formulation of Linearised Euler equations
of Bailly et al. [3]. The density and pressure of the mean flow are �0 D 1:225 and
p0 D 101325 yielding the speed of sound of the mean flow c0 D 340. The definition
of this perturbation is:

8
ˆ̂̂
<

ˆ̂̂
:

� D e�.ln2/x2
Cy2

9 D fpulse.x; y/

�0u D 0
�0v D 0
p D C02fpulse.x; y/

(12)

4 In scalar the distribution coefficients of N scheme can be defined by ˇN
j D ˚N

i =˚
Ks
i . In the

case of non-linear system of equations, this definition is not any more valid. So, we use the wave
decomposition proposed by Abgrall to demonstrate the monotonicity of N scheme [1]. For more
details on this methodology we refer to [6].
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Fig. 2 Propagation of a Gauss pulse: Slice at t D 0:03, comparison between ST-LDA(P 1) and
ST-LDA(P 2)

We perform this test case on a mesh of 40 � 40 degrees of freedom. On Fig. 2, we
compare the results obtained with linear and quadratic elements on meshes having
exactly the same number of degrees of freedom. Both schemes show a good agree-
ment with the analytical solution. Even if the results obtained with ST-LDA(P 1) and
ST-LDA(P 2) are very similar, we can already see a slight improvement brought by
the quadratic discretisation. In fact, to capture well the acoustic waves, ST-LDA(P 2)
needs as much degrees of freedom per wave length as ST-LDA(P 1). And with this
amount, the result is already good with ST-LDA(P 1). The derivation of the Fourier
analysis showing this is in [4, 5].

4.2 Monopole

We consider now, a monopole in an uniform flow atM D 0:5. The source is defined
by:

S D f .x; y/ sin.!t/

2

664

1

0

0

1

3

775 ; f .x; y/ D � exp�˛..x�xs/
2C.y�ys/

2

(13)

In this test case, the location of the monopole .xs ; ys/ is .0; 0/, the amplitude � is set
to 0:5, the thickness of the source is ln2

2
and the angular frequency is ! D 2�

30
. The

computational domain is Œ�100I 100� � Œ�100I 100� and the mesh has 200 � 200
degrees of freedom. We first plot, on Fig. 3, the pressure iso-lines obtained with

ST-LDA(P 2) at t D 270 and we compare the result obtained with ST-LDA(P 1)
and ST-LDA(P 2) to a reference solution on a slice done at y D 0. The reference
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Fig. 3 Propagation of a monopole (t D 270): pressure iso-lines (left); slice at y D 0:0, compari-
son between the reference solution, ST-LDA(P 1) and ST-LDA(P 2) (right), zoom on the upstream
waves (bottom)

solution was obtained by Bailly et al. [3], using a 7th order Dispersion-Relation-
Preserving Finite Difference scheme. We can see that there are two acoustic waves
propagating. The first propagates upstream with a velocity 1�M and a wavelength
	up D .1CM/	 (	 being the wavelength of the monopole). The second propagates
downstream with a velocity 1 C M and a wavelength 	down D .1 � M/	. Both
ST-LDA(P 1) and ST-LDA(P 2) give very satisfactory results. The upstream wave
is a bit dispersed by ST-LDA(P 1) whereas ST-LDA(P 2) preserve it very well. This
result really shows the ability of RDS because we obtain a similar result as a 7th
order finite difference scheme using the same number of degrees of freedom.

4.3 Double Mach Reflection

Now, we want to test the monotonicity and the accuracy of Nlim(P 2). The double
Mach reflection test case was first proposed in [9]. It is very interesting to test the
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Fig. 4 Double mach reflection: setting of the test case (top) density iso-lines at t D 0:2 Nlim(P 1)
(middle) and Nlim(P 2) (bottom)

accuracy and the robustness of a scheme. It consists of the interaction of a planar
right-movingM D 10 shock with a 30ı ramp. We consider that the ramp is aligned
with the x-axis. The computational domain is Œ0I 3� � Œ0I 0:8� and the ramp start at
x D 1

6
. The initial shock forms an angle of 60ı with the x-axis as sketched on Fig. 4.

On the top boundary, we impose the movement of the shock. We look at the solu-
tion at t D 0:2 and, on Fig. 4, we plot the solution obtained with ST-Nlim(P 1) and
ST-Nlim(P 2) on a mesh with h D 1=100 (the P 2 mesh has the same number
of degrees of freedom). We can see that all the schemes give a monotone result.
Moreover, the shock and the slip line are better resolved with ST-Nlim(P 2).

The real challenge of this test case is to catch the Kelvin–Helmholtz instabilities.
To see them, we zoom in on the triple point region. Of course, this first mesh does
not allow to see the instabilities. But, if we decrease the mesh spacing to h D 1=240
then, with the quadratic discretisation, we can see the instabilities appearing on
Fig. 5. If we compare with the results obtained by Ricchiuto in [6] with the same
number of degrees of freedom, the instabilities are better resolved.
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Fig. 5 Double mach reflection: zoom in on the triple point density isolines at t D 0:2, solution
obtained with Nlim(P 2) (left) with mesh spacing h D 1=240 (size of the sub-elements); Nlim(P 1)
of Ricchiuto (right) hD 1=240

5 Conclusion

In this article, we have presented the extension of the space-time schemes of Ric-
chiuto et al. [7] to systems of equations. We have shown that even if in general,
upwind schemes are not used to simulate the propagation of sound, RDS are per-
forming very well on Linearised Euler equations. Moreover, even if on simple test
cases the solution obtained with ST-LDA(P 1) and ST-LDA(P 2) are very similar,
the improvement brought by quadratic elements is more visible on more complex
problems such as the propagation of a monopole. Finally, we have designed some
high order monotone schemes. Here again, the better resolution due to quadratic
elements was obvious and we have shown that ST-LN(P 2, P 1) can be considered
as monotone.
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Implicit–Explicit Backward Difference
Formulae Discontinuous Galerkin Finite
Element Methods for Convection–Diffusion
Problems

Miloslav Vlasák and Vı́t Dolejšı́

Abstract We deal with a numerical solution of a scalar nonstationary convection–
diffusion equation with a nonlinear convection and a linear diffusion. We carry out
the space semi-discretization with the aid of the symmetric interior penalty Galerkin
(SIPG) method and the time discretization by backward difference formulae (BDF)
and suitable linearization of nonlinear convective term. The resulting scheme is
unconditionally stable, has a high order of accuracy with respect to space and time
coordinates and requires solutions of linear algebraic problems at each time step.
We derive a priori error estimates in the L1.L2/-norm up to the order 6 in time.

1 Introduction

We numerically solve a nonstationary nonlinear convection–diffusion equation,
which represents a model problem for the system of the compressible Navier–Stokes
equations. The class of discontinuous Galerkin (DG) methods seems to be one of
the most promising candidates to construct high order accurate schemes for solving
of convection–diffusion problems. For a survey about DG methods, see [1] or [2].
An analysis of DG methods was presented in many papers, see, e.g., [3, 4, 8, 9].

In [4] we carried out the space semi-discretization of the scalar convection–
diffusion equation with the aid of the discontinuous Galerkin finite element method
and derived a priori error estimates. Within this contribution, we deal with the time
discretization of the resulting system of ordinary differential equations. This paper
can be viewed as extension of [5], where we presented a formulation of the general
order (BDF DG) and derived error estimates up to the order 3. Here we extend this
result up to the order 6, which is the highest achievable order due to the stability
properties of BDF. For the details about BDF see [7] and [6].
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2 Continuous Problem

Let ˝ � Rd (d D 2 or 3) be a bounded polyhedral domain and T > 0. We
set QT D ˝ � .0; T /. By ˝ and @˝ we denote the closure and boundary of ˝ ,
respectively. Let us consider the following initial-boundary value problem: Find
u W QT ! R such that

@u

@t
Cr � f.u/ D "�uC g in QT ; (1)

u
ˇ̌
@˝�.0;T / D uD; (2)

u.x; 0/ D u0.x/; x 2 ˝: (3)

In (1)–(3), f D .f1; : : : ; fd /; fs 2 C 2.R/; fs.0/ D 0; s D 1; : : : ; d represents
convective terms, " > 0 plays a role of viscosity, g 2 C.Œ0; T �IL2.˝// represents
volume sources. The Dirichlet boundary condition is given over @˝ by uD , which
is the trace of some u� 2 C.Œ0; T �IH 1.˝// \ L1.QT / is given over @˝ � .0; T /
and u0 2 L2.˝/ is an initial condition. We use the standard notation for Lebesgue,
Sobolev and Bochner function spaces (see, e.g., [10]).

In order to introduce the concept of a weak solution, we define the forms

.u;w/ D
Z

˝

uw dx; u; w 2 L2.˝/;

a.u;w/ D "
Z

˝

ru � rw dx; u; w 2 H 1.˝/;

b.u;w/ D
Z

˝

r � f.u/w dx; u 2 H 1.˝/ \L1.˝/; w 2 L2.˝/;

Definition 1. We say that a function u is a weak solution of (1)–(3) if the following
conditions are satisfied

a) u � u� 2 L2.0; T IH 1
0 .˝//; u 2 L1.QT /; (4)

b)
d

dt
.u.t/;w/C b.u.t/;w/C a.u.t/;w/ D .g.t/;w/

for all w 2 H 1
0 .˝/ in the sense of distributions on .0; T /;

c) u.0/ D u0 in ˝:

By u.t/ we denote the function on ˝ such that u.t/.x/ D u.x; t/, x 2 ˝ .
With the aid of techniques from [11] and [12], it is possible to prove that

there exists a unique weak solution. We shall assume that the weak solution u is
sufficiently regular, namely,

u 2 W 1;1.0; T IHpC1.˝//\W k;1.0; T IH 1.˝//; u.kC1/ 2 L1.0; T IL2.˝//:



IMEX BDF DGFE Method for Convection–Diffusion Problems 923

where u.k/ D @ku=@tk , an integer p � 1 will denote a given degree of polynomial
approximationsin in space and k D 1; : : : ; 6 desired order of convergence in time.
Such a solution satisfies problem (1)–(3) pointwise.

3 Space Semi-Discretization

We discretize problem (4) in space with the aid of the discontinuous Galerkin finite
element method with symmetric treatment of stabilization terms and interior and
boundary penalties. This approach is called the SIPG variant of the DGFE method,
see [1]. We derived the space discretization of (1)–(3) by the SIPG variant of DGFE
method in [4] hence here we present only the final expressions.

Let Th (h > 0) be a partition of the domain ˝ into a finite number of closed d -
dimensional mutually disjoint simplices K i.e., ˝ D S

K2Th
K . By @K we denote

the boundary of element K 2 Th and set hK D diam.K/; h D maxK2Th
hK . We

set � the faces of Th (� D S
K2Th

@K). For the error estimates we assume the
mesh be regular.

Furthermore, we use the following notation: n D .n1; : : : ; nd / – a normal vector
to � which is well defined almost everywhere (on @˝ we use outer normal, inside
of ˝ we use one (arbitrary but fixed) direction at every point of � ).

We use well known broken Sobolev spacesH s.˝;Th/ D fwIwjK 2 H s.K/8K
2 Thg. For w 2 H 1.˝;Th/, we introduce the following notation on � n @˝:
wR.x/ D limı!0C w.xCın/, wL.x/ D limı!0� w.xCın/, hwi D 1

2
.wR C wL/,

Œw� D wL � wR and on @˝ we put wL.x/ D limı!0� w.x C ın/, hwi D wL,
Œw� D wL.

For u;w 2 H 2.˝;Th/ we set

Ah.u;w/ D
X

K2Th

Z

K

ru � rw dx �
Z

�

�
hrui � nŒw�C hrwi � nŒu�

�
dS (5)

C
Z

�

�Œu� Œw� dS

bh.u;w/ D
Z

� n@˝
H.uL; uR;n/ Œw� dS C

Z

@˝

H.uL; uD;n/wL dS (6)

�
X

K2Th

Z

K

f.u/ � rw dx; u; w 2 H 1.˝;Th/; u 2 L1.˝/

`h.w/ .t/ D .g.t/;w/ �
Z

@˝

.rw � n uD.t/ � �uD.t/w/ dS: (7)

The penalty parameter function � in (5) and (7) along the face e � � is defined
by � je D CW =.hK C heK/, e D K \ eK, where CW is constant large enough to Ah
be coercive. The function H.�; �; �/ in the face integrals in (6) is called the numeri-
cal flux, well-known from the finite volume method and it approximates the terms
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f.u/ � n. We assume the numerical fluxes H be Lipschitz continuous, conservative
and consistent. Now we define the space of discontinuous piecewise polynomial
functions

Sh D Sp;�1.˝;Th/ D fwIwjK 2 Pp.K/ 8K 2 Thg; (8)

where Pp.K/ denotes the space of all polynomials on K of degree � p, where the
integer p � 1 is a given degree of approximation.

We find that the exact solution of (4) with property (5) satisfies the identity

�
@u

@t
.t/;wh

�
C "Ah.u.t/;wh/C bh.u.t/;wh/ D `h.wh/ .t/ (9)

for all wh 2 Sh and all t 2 .0; T /.
The (semi)-discrete problem (9) represents a system of ordinary differential

equations (ODEs) which is solved by a suitable solver in the next section.

4 Time Discretization

Since problem (9) is stiff, it is necessary to solve it with a method having a large
stability domain. BDF represent the most popular approach in the field of the multi-
step methods. Since these formulae are implicit and we need somehow to avoid the
nonlinearity in our problem we use explicit extrapolation for convective term which
leads to a sufficiently stable method which requires a solution of a linear algebraic
problem at each time step. To define the fully discrete soltion we set time partition
ts D s� , s D 0; : : : ; r with time steps � D T=r . Following the notation from [5] we
define fully discrete solution.

Definition 2. We say that the set of functions U s 2 Sh; s D 0; : : : ; r is an
approximate solution of problem (9) obtained by the k step IMEX BDF DGFE
scheme if

 
kX

vD0
˛vU

sCv;w

!
C�"Ah.U sCk;w/C�bh. OU sCk;w/ D �`h.w/.tsCk/ 8w 2 Sh;

OU sCk D
kX

vD1
ˇvU

sCk�v (10)

where U 0; : : : ; U k�1 are given to start the method.

The choice of coefficients ˛v and ˇv is described in [5].
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5 Error Estimates

Our goal is to analyse the error estimates of the approximate solution U s; s D
0; : : : ; r obtained by the method (10). In the sequel we use the notation us D u.ts/
and OusCk D Pk

vD1 ˇvusCk�v, �s D U s � ˘us , O�sCk D Pk
vD1 ˇv�

sCk�v, �s D
˘us � us and es D U s � us D �s C �s , where ˘ be the Ah projection on Sh.

Let jjjwjjj2 WD Ah.w;w/ 8w 2 H 2.˝;Th/ and k � k WD k � kL2.˝/.

Lemma 1. Let u be sufficiently regular. Then

k�sCkk � ChpC1; (11)
ˇ̌
ˇ̌
ˇ

 
kX

vD0
˛vusCv � � @u

@t
.tsCk/;w

!ˇ̌
ˇ̌
ˇ � C�

kC1kwk 8w 2 Sh; (12)

ˇ̌
ˇ̌
ˇ

 
kX

vD0
˛v�

sCv;w

!ˇ̌
ˇ̌
ˇ � C�h

pC1kwk 8w 2 Sh; (13)

ˇ̌
ˇbh.usCk;w/ � bh. OU sCk;w/

ˇ̌
ˇ � C.hpC1C�kCkO�sCkk/jjjwjjj 8w 2 Sh (14)

Proof. The proof of Lemma 1 can be found in [5].

Lemma 2. Let operator A satisfy .Av;w/ D Ah.v;w/ for all v;w 2 Sh. Let us set
sequence of operators 	j such that .�"A C IPk

vD0 ˛k�vzv/�1 D P1
jD0 	j zj for

any complex number z. Then for k D 1; : : : ; 6 we have

k	j k � C; 8j D 0; 1; : : : (15)

�

1X

jD0
jjj	jwjjj2 � C

"
kwk2; w 2 Sh: (16)

Proof. Since A is symmetric and since we can consider 	j as operator function of
�"A (	j D Fj .�"A/), we know that 	j are symmetric too. We can also see that
eigenvalues of 	j are in the form Fj .�"
/, where 
 is eigenvalue of A. Let us prove
that there exists constant 0 < C.k/ < 1 such that

jFj .�"
/j � C.e�cj C .1� �"

2
/j /; �"
 � C.k/; (17)

jFj .�"
/j � C e
�cj

�"

; �"
 � C.k/; (18)

where c > 0. The proof of (18) can be found in [13, Lemma 10.3]. To prove (17)
we could also follow the proof from [13, Lemma 10.3] only the final expressions
must be estemated sharper. The former expressions from the [13, Lemma 10.3] are
unsuficient for our purpose.
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Now we are ready to prove estimates (15) and (16). The estimate (15) directly
follows from boundedness of eigenvalues by estimates (17) and (18). We set vi
orthonormal eigenvectors of A and decompose w D y C z D P

i yivi C
P
i zivi ,

where y represents part with eigenvectors with small eigenvalues of �"A (those
that can be estimated by (17)) and z represents part with eigenvectors with large
eigenvalues. Then �

P1
jD0 jjj	jwjjj2 � 2�

P1
jD0 jjj	jyjjj2 C 2�

P1
jD0 jjj	j zjjj2. At

first we estimate y part.

2�

1X

jD0

jjj	jyjjj2 D 2
1X

jD0

X

i

y2i �
ik	j vik2 � C
X

i

y2i �
i

1X

jD0

.e�cj C .1 � �"
i /j /2

�C
X

i

y2i �
i

1X

jD0

.e�cj C .1 � �"
i /j / D C
X

i

y2i �
i .
1

1 � e�c
C 1

�"
i
/ � C

"
kyk2

(19)

And now the similar for z part.

2�

1X

jD0
jjj	j zjjj2 D 2

1X

jD0

X

i

z2i �
ik	j vik2 � C
X

i

z2i �
i

1X

jD0
.
e�cj

�"
i
/2 (20)

� C
X

i

z2i �
i

1X

jD0

e�cj

�"
i
D C

"

X

i

z2i
1

1 � e�c �
C

"
kzk2

Finally (16) follows from (19), (20) and kwk2 D kyk2 C kzk2.

Theorem 1. Let u be the exact solution of problem (4) satisfying (5). Let the mesh
be regular and the numerical fluxes H be Lipschitz continuous, conservative and
consistent. Let U s; s D 0; : : : ; r be the approximate solution defined by (10). Then
for k D 1; : : : ; 6 we have

max
nD0;:::;r kU

n � unk � O
 
hp C �k C

k�1X

vD0
kU v � uvk

!
eTC.1C1="/ (21)

Proof. Since U n � un D �n C �n, in virtue of Lemma 1, it is sufficient to estimate
k�nk only. Let us multiply (9) by � for t D tsCk and substract this equation from
(10). Then we have

 
kX

vD0
˛v�

sCv C �"A�sCk;w
!
D
 
�
@u

@t
.tsCk/�

kX

vD0
˛vusCv;w

!
(22)

�
 

kX

vD0
˛v�

sCv;w

!
C �

�
bh.u

sCk;w/ � bh. OU sCk;w/
�
:
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Setting w D 	n�k�s�n and summing over s D 0; : : : ; n � k we obtain

k�nk2 D �
 
k�1X

sD0

sX

vD0
˛v	n�k�sCv�

s ; �n

!
(23)

C
n�kX

sD0
�
�
bh.u

sCk; 	n�k�s�n/� bh. OU sCk; 	n�k�s�n/
�

C
n�kX

sD0

 
�
@u

@t
.tsCk/�

kX

vD0
˛vusCv �

kX

vD0
˛v�

sCv; 	n�k�s�n
!
:

Applying Lemma 1, Lemma 2, Young’s inequality and
Pn�k
sD0 � � T we obtain

k�nk2 � 1

2
k�nk2 C C

 
�2k C h2pC2 C

k�1X

vD0
k�vk2

!
C � C

"

n�1X

sD0
k�sk2: (24)

Now it is sufficient to apply Gronwall’s lemma to obtain the result. ut
Remark 1. The estimate (21) cannot be used for " ! 0C, because it blows up
exponentially. The nonlinearity of the convective terms represents a serious obstacle.
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4. Dolejšı́, V., Feistauer, M., Sobotı́ková, V.: A discontinuous Galerkin method for nonlinear
convection–diffusion problems. Comput. Methods Appl. Mech. Engrg. 194, 2709–2733 (2005)
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A Cut-Cell Finite-Element Method
for a Discontinuous Switch Model
for Wound Closure

S.V. Zemskov, F.J. Vermolen, E. Javierre, and C. Vuik

Abstract A mathematical model for epidermal wound healing is considered. The
model is based on a moving boundary problem for the wound edge in which the
edge moves if a generic epidermal growth factor exceeds a given threshold value.
We use a Galerkin finite-element method to solve the equations for the growth fac-
tor concentration. The moving boundary (wound edge) is tracked using a level-set
method with a local adaptive mesh refinement in the interface region. To deal with
the reaction-diffusion equation for the growth factor, a cut-cell method has been
implemented. This cut-cell method warrants the integration over a continuous reac-
tion term elementwisely. The results improved with respect to the results that were
obtained without the use of the cut-cell method.

1 Introduction

Wound healing or soft tissue regeneration, involves cell migration, the production
and decay of growth factors and a (re-)establishment of the vascular network sur-
rounding the area with an increased mitotic activity. Experimental validation of the
models of both complicated biological processes is indispensable. The present paper
focuses on a very simplified model for wound closure. This model can be used
for intra-osseous and epidermal wound healing. Since the thickness of the epider-
mis is in the order of 1 mm, it suffices to consider a two-dimensional approach
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for epidermal closure (re-epithelialization). Hence, we consider a two-dimensional
model in the present paper.

When a wound occurs, blood vessels are cut and blood enters the wound. Due
to blood coagulation, the wound is temporarily closed and as a result the blood
vessels adjacent to the wound are also closed. In due course, contaminants will be
removed from the wounded area and the blood vessel network will be restored,
but initially due to insufficient blood supply, there will be a low concentration of
nutrients which are necessary for cell division and wound healing. Wound heal-
ing, if it occurs, proceeds by a combination of several processes: wound contraction
(due to pulling forces caused by fibroblasts entering the wound area underneath
the epidermal cells), chemotaxis (movement of cells induced by a concentration
gradient), neo-vascularization (formation of network of capillaries), synthesis of
extracellular matrix proteins, and scar remodeling. Previous models incorporate
cell mitosis, cell proliferation, cell death, capillary formation, oxygen supply and
growth factor generation. These models contain visco-elasticity problems coupled
with reaction-transport equations. We refer to [6] for an overview.

There is a lot of mathematical models in literature for wound healing and wound
closure. In this paper, we do not intend to discuss the variety of models, but we aim
at a description of the numerical solution method for one class of models: the models
with a discontinuous switch mechanism. This model was initially proposed by [1]
and enriched with a moving boundary formulation in [8]. A numerical procedure
based on the finite-element method with a level set method is used to track the
moving wound edge, is presented in [2]. Existence, uniqueness and mathematical
properties of solutions of this problem were demonstrated in [7].

The start of the present paper is the introduction of the discontinuous switch
model for re-epithelialization. Subsequently, the cut-cell method for an accurate
determination of the solution in the vicinity of the interface is presented. Then, the
cut-cell method is numerically compared with the classical finite-element method
and finally some conclusions are drawn.

2 The Model

In this section the model based on the ideas of [1] is presented. Firstly, the model
for the regeneration, decay and transport of a generic growth factor is given, and
subsequently the healing process as a result of the presence of the growth factor
is described (see [8]). Finally, a description of the coupling of the two models is
presented.

We use ˝1, ˝2 and ˝3 to denote the wound itself, the active layer and the outer
tissue respectively. The active layer ˝2 is a ring surrounding the wound region˝1.
Since the wound is healing, the areas ˝1, ˝2 and ˝3 are functions of time and
to be determined as a part of the solution. Far away from the wound, that is at the
boundary of the domain of computation, @˝ , we assume that there is no transport
of growth factor. The wound edge, the interface between the wound (˝1) and the
active layer (˝2), is indicated by W.t/ (i.e., W D ˝1 \˝2).
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Let the total domain of interest be given by ˝ D [3
iD1˝ i , which is Lipschitz,

then, following [1], we state the fundamental equation for the transport, production
and decay of the growth factor concentration, c, which reads as:

@c

@t
� divD grad c C �c D P 1˝2.t/.x/; for .t; x/ 2 .0; T � �˝; (1)

@c

@n
D 0; for .t; x/ 2 .0; T � � @˝; (2)

where 1˝2.t/.x/ D
(
1; for x 2 ˝2.t/

0; for x 2 ˝ n˝2.t/
; (3)

As the initial condition, we have

c.0; x/ D 0; for x 2 ˝: (4)

In the equations, the constantsD, P and � denote the constant diffusion coefficient,
production rate constant and the decay coefficient of the growth factor. These con-
stants are non-negative in our parabolic PDE. The growth factor concentration, c, is
to be determined. Further, the second and third term in (1) respectively account for
growth factor transport and growth factor loss. The right-hand side of (1) accounts
for the production of the growth factor. Equation (2) represents the boundary condi-
tion and the indicator function 1˝2.t/.x/ accounts for the growth factor production
taking place in the active layer only.

Healing at a certain location of the interface implies that the inward normal com-
ponent of the velocity pointing into the wound, vn, of the interface W is positive.
In the present paper we use the assumption from [1] that the interface moves if and
only if the growth factor concentration exceeds a threshold concentration Oc. This
implies that in order to determine whether the wound heals at a certain location on
W at a certain time t , one needs to know the growth factor concentration there.

As it has been motivated in [8], we assume that the healing rate is proportional
to the local curvature of the wound. Hence, in agreement with (5), the velocity
component in the outward (from ˝1, that is the wound) normal direction is given
by

vn D �.˛ C ˇ�/w.c.t; x/ � Oc/; for .t; x/ 2 .0; T � �W.t/; (5)

where � is the local curvature and ˛; ˇ � 0 are considered as non-negative con-
stants, prohibiting growth of the wound if � � 0. Further, the function w.s/ falls
within the class of Heaviside functions, that is w.s/ 2 H.s/, where H.:/ represents
the family of Heaviside functions, for which we have

H W s !

8̂
<̂
ˆ̂:
0; if s < 0;

2 Œ0; 1�; if s D 0;
1; if s > 0:

(6)
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Some models with the same principles as the active layer and / or the discontinuous
switch condition can be found in other works, see references in [7]. Further, the
existence and uniqueness of solutions in C 1..0; T /IH 1.˝//\C 0.Œ0; T /IH 1.˝//

was demonstrated and analytic solutions in this function space were constructed in
that paper as well.

3 The Method

The mathematical model described falls within the class of moving boundary prob-
lems. The position of interface, W.t/, has to be determined at each time step t
what leads to re-identifying the parts of the computation domain (˝1.t/, ˝2.t/ and
˝3(t)).

As in [2], the Level Set method [3] is used to follow the evolution of the inter-
face W during the simulation. The interface is identified as the zero level set of a
continuous function � which is defined at the initial time t D 0 by the following
way:

�.0; x/ D

8̂
<̂
ˆ̂:
Cdist.x;W.0//; x 2 ˝1.0/;

0; x 2 W.0/;
�dist.x;W.0//; x 2 ˝2.0/\˝3.0/:

Thus, � is defined to be positive inside the wound and negative outside.
Subsequently, a convection equation is solved for the level-set function � in

which the velocity at the interface is determined from the local curvature of � at
the interface. The velocity is extended onto the entire domain of computation by
advection in the appropriate upwind direction. For the following numerical reasons,
it is attractive that � is a signed distance function: 1. a reliable inverse interpolation
to get the wound edge position, and 2. the straightforward computation of the local
curvature. In order to enjoy this property, a reinitialization step is carried out so that
jr�j D 1 in ˝ . In this work, a fast-marching method has been selected [4]. More
details can be found in [2].

3.1 The Cut-Cell Approach

Since the interface moves only if locally the threshold Oc has been exceeded, an
accurate approximation of the concentration at the interface is indispensible. The
mathematical model and Level Set method described in the previous sections were
implemented by Javierre et al. [2] using a finite-element method with piecewise
linear basis functions. A structured triangulation with linear elements is used as a
fixed basis mesh. The elements close to the active layer are refined according to
certain criteria at each time step.
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In the standard finite-element method, the interface concentration is determined
by interpolation of the growth factor concentration at the wound edge. The right-
hand side of (1) is discontinuous what leads to numerical wiggles at the edges of the
active layer. A regularized version �" of the characteristic function � is used in [2]
in order to diminish possible oscillations at the interface. A good approximation of
the concentration is crucial for the determination whether or not the interface will
move locally.

To eliminate this defect, we propose the use of a cut-cell approach which allows
to adapt the existing triangulation to the edges of the active layer at each time step.
In application to the model considered, the cut-cell method consists of an addi-
tional refinement of FE mesh on the elements intersected by either the interface W
or the outer boundary of the active layer ˝2 \ ˝3. Such an approach allows to
apply the developed technique of numerical integration over new elements where
the integrand remains continuous.

The level set function � representing the distance to the interface is defined in
each node of the FE mesh (positive for nodes inside the wounded region and neg-
ative outside). We have created a module to find elements intersected by a defined
level line of � and to perform the subdivision of each element found into triangular
sub-elements.

To avoid the appearance in the new refinement of ill-shaped triangles which
might be too small with respect to already existing elements, we assume that the
distance d between an intersection point and the nearest node fulfils the following
condition

d <
min.�x; �y/

10
;

where �x and �y are horizontal and vertical steps of initial Cartesian mesh
respectively. Under such a condition, there are three possible cases for dividing an
intersected element (Fig. 1).

Hence, if the intersection point is too close to one of the existing nodes, such an
intersection is not registered and we do not add any new point to the set of nodes.
In case of subdividing an element into three sub-elements (i.e., by two registered
intersection points), one new triangular element is formed immediately by cutting

Fig. 1 Intersected element is divided by three sub-elements (left), two sub-elements (center) or is
not divided (right)
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off from the initial element. From two possible of element divisions, we exclude
the variant with the most obtuse angle. During calculations each new point is tested
whether it belongs to the element inside the active layer or not and receives the
corresponding value.

4 Comparison Between Cut-Cell and Classical
Finite-Element Method

To compare the cut-cell method with the classical Galerkin finite-element method,
we plot the wound edge concentration profile of an elliptical wound in Fig. 2 for
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Fig. 2 The epidermal growth factor concentration on the interface after 10, 50, 150 and 430 time
steps. At the top and bottom, the classical FEM and cut-cell method has been used respectively
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Fig. 3 Change of the wound area during the simulation for 16�10, 31�19 and 61�37 gridnodes
for the cut-cell (CC) and standard finite-element method (FE)

the two methods. It can be seen that the peripheral concentration profile in the clas-
sical method exhibits an oscillatory behavior due to the interpolation step and due
to the integration of a discontinuous reaction term over an element intersected by
the wound edge. This will lead to a worse prediction of the wound edge velocity
since the concentration onW.t/ will oscillate around the threshold concentration Oc.
The profile from the cut-cell method looks much smoother due to the appropriate
integration of the continuous function over the newly formed elements along the
interface.

From the more reliable approximations of the interface concentrations, the thresh-
old condition for interface motion can be examined in a more accurate way. There-
fore, this results into a more reliable prediction of the interface motion and wound
healing kinetics. An example of the evolution of the wound area as a function of time
for an elliptic wound is shown in Fig. 3. At the earliest stages, the concentration at
the wound edgeW.t/ has to increase from zero up to the threshold concentration Oc.
During this stage, the wound edge does not move yet, that isW.t/ D W.0/. As soon
as the interface concentration reaches Oc, the wound starts to shrink. Further, it can be
seen that the standard FEM exhibits a slower convergence behavior than the cut-cell
method if the global grid is refined. We note that an adaptive mesh with refinement
in the area near the edge was used in all the simulations. From these results, it can
be concluded that the cut-cell method gives a significant improvement with respect
to the standard finite-element method.

5 Conclusions

The model of epidermal wound healing is improved by using the cut-cell method.
The interface points obtained with the cut-cell are used to adapt the triangulation
to the wound edge position at each time step. The advantage of such an approach
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is that the new subdivision is built without destroying the original FE mesh and
altering the level set function.

The results obtained using cut-cell method are significantly better than previ-
ous ones. It can be seen clearly that the cut-cell method decreases the oscillatory
behavior of the solution.
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Furmánek, P., 335
Fürst, J., 335

Galletti, A., 209
Gallice, G., 171
Gaspar, F.G., 343
Georgoulis, E., 351
Ginting, V., 359
Glière, A., 781
Gomes, S.M., 269, 369
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Kučera, V., 325

Lakkis, O., 351
Lambers, J. V., 561
Lang J., 387
Larsson, M., 571
Lastra, M., 227
Le Bris, C., 29
Leicht, T., 579
Lemster, W., 589
Lindström, J., 599
Lisbona, F.J., 343
Lisitsa, V., 609

Loubère, R., 617
Lube, G., 443, 589

Müller, R., 469
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Vejchodský, T., 533, 901
Verani, M., 663
Vermolen, F.J., 893, 929
Vilar, M.A., 627
Villedieu, N., 911
Vlasák, M., 921
Vuik, C., 929

Waffenschmidt, T., 637
Walloth, M., 407

Yee, H. C., 817

Zemskov, S.V., 929
Zulehner, W., 855


	Cover
	Numerical Mathematics and Advanced Applications 2009: Proceedings of ENUMATH 2009,the 8th European Conference on Numerical Mathematics and Advanced Applications, Uppsala, July 2009
	Copyright
	Preface
	Contents
	Part I - Invited Papers
	Discrete Differential Forms, Approximation of Eigenvalue Problems, and Applicationto the p Version of Edge Finite Elements
	1 Introduction
	2 Short Introduction to de Rham Complex and Differential Forms
	3 The Hodge–Laplace Eigenvalue Problem
	3.1 First Mixed Formulation
	3.2 Second Mixed Formulation
	3.3 Discrete Compactness Property

	4 The p Version of Edge Finite Elements
	References

	Semi-Implicit DGFE Discretization of the Compressible Navier–Stokes Equations: Efficient Solution Strategy
	1 Introduction
	2 Compressible Flow Problem
	3 DGFE Discretization
	4 Solution of Linear Algebra Problems
	4.1 Linear Algebra Representations
	4.2 General Solution Strategy
	4.2.1 Steady-State Criterion
	4.2.2 GMRES Stopping Criterion
	4.2.3 Choice of the Time Step


	5 Numerical Examples
	5.1 Numerical Study
	5.2 3D Test Case

	6 Conclusion
	References

	Some Numerical Approaches for Weakly Random Homogenization
	1 Introduction
	2 Some Elements of Homogenization Theory
	2.1 Periodic Homogenization
	2.2 Classical Random Homogenization
	2.3 A Variant

	3 Numerical Approaches for an Approximation at First Order
	3.1 Small Perturbations of the Periodic Setting
	3.2 Rare but Possibly Large Perturbations

	4 Related Problems and Techniques
	References

	Goal Oriented, Anisotropic, A Posteriori Error Estimates for the Laplace Equation
	1 Introduction
	2 The Laplace Equation with Anisotropic Finite Elements
	3 Anisotropic, A Posteriori Error Estimates in the Energy Norm
	4 Goal Oriented, Anisotropic, A Posteriori Error Estimates
	References


	Part II - Contributed Papers
	Energy Stability of the MUSCL Scheme
	1 Introduction
	2 The MUSCL Scheme in SBP Form
	2.1 Explicit Form of BM
	2.2 Energy Stability
	2.3 Energy Estimates

	3 Numerical Results
	4 Conclusion
	References

	Numerical Stabilization of the Melt Front for Laser Beam Cutting
	1 Finite Difference Element Method FDEM
	2 The One-Phase Problem
	3 Numerical Solution of the One-Phase Problem
	4 Modulation of the Gaussian Beam
	5 Concluding Remarks
	References

	Numerical Optimization of a Bioreactor for the Treatment of Eutrophicated Water
	1 Introduction
	2 The Control Problem
	3 The Discretized Problem
	4 Numerical Results
	References

	Finite Element Approximation of a Quasi-3D Model for Estuarian River Flows
	1 Introduction
	2 The 3D Physical Problem
	3 The Two 2D Models: Derivation andMathematical Analysis
	4 The Quasi-3D Model
	5 Numerical Results
	References

	Convergence of a Mixed Discontinuous Galerkin and Finite Volume Scheme for the 3 Dimensional Vlasov–Poisson–Fokker–Planck System
	1 Introduction
	2 The Finite Volume Method for Poisson Equation in 3D
	3 Streamline Diffusion and Discontinuous GalerkinApproaches
	3.1 Stability and Error Estimates

	References

	Infrastructure for the Coupling of Dune Grids
	1 Introduction
	2 General Grid Coupling
	3 Implementation: Remote Intersections
	4 Constructing Couplings
	4.1 Extractors
	4.2 Computing Remote Intersections

	5 Numerical Examples
	5.1 Contact Between a Structured and an Unstructured Grid
	5.2 Coupling a 2d Richards Equation and a 1d Shallow-Water Equation

	References

	FEM for Flow and Pollution Transport in a Street Canyon
	1 Introduction
	2 Numerical Scheme
	2.1 Weak Formulation of Navier–Stokes Equations
	2.2 Weak Formulation of Convection–Diffusion Equation

	3 Numerical Solution Using FEM
	4 Numerical Results
	4.1 Example: Square Canyon
	4.2 Example: Wide Canyon
	4.3 Example: Two Consecutive Canyons

	5 Conclusion
	References

	Stabilized Finite Element Methods with Shock-Capturing for Nonlinear Convection–Diffusion-Reaction Models
	1 Introduction
	2 Stabilized Finite Element Approximation with Shock-Capturing
	3 Error Estimates
	4 Numerical Experiments
	References

	Finite Element Discretization of the Giesekus Model for Polymer Flows
	1 Introduction
	2 The Giesekus Model
	3 Discretization of the Three-Fields Formulation
	4 Positive Definiteness of the Conformation Tensor
	5 Numerical Results
	References

	A dG Method for the Strain-Rate Formulation of the Stokes Problem Related with Nonconforming Finite Element Methods
	1 Introduction
	2 The Stokes Problem
	3 Discontinuous Galerkin Discretization
	4 Theoretical Results
	5 Three Fields Formulation of the Stokes Problem
	6 Numerical Results
	References

	Numerical Simulation of the Stratified Flow Past a Body
	1 Introduction
	2 Boussinesq Approximation
	3 Numerical Schemes
	4 Obstacle Modeling
	5 Numerical Results
	6 Conclusion
	References

	A Flexible Updating Framework for Preconditioners in PDE-Based Image Restoration Algorithms
	1 Motivations
	2 A Generalized Alvarez–Lions–Morel Model
	3 Updating Incomplete Factorizations
	4 Numerical Results
	References

	Stabilized Finite Element Method for Compressible–Incompressible Diphasic Flows
	1 Introduction
	2 Global Model
	2.1 Navier–Stokes Equations Unified Form
	2.2 Governing Equations for Diphasic Flow

	3 Numerical Method
	3.1 Algorithm
	3.2 Global Finite Element Formulation Method

	4 Numerical Simulations
	5 Conclusion
	References

	An Immersed Interface Technique for the Numerical Solution of the Heat Equation on a Moving Domain
	1 Introduction
	2 Problem Formulation and Discretization
	2.1 A Parabolic Problem on an Evolving Domain
	2.2 Derivation of the Scheme

	3 Numerical Results
	4 Conclusion
	References

	Lid-Driven-Cavity Simulations of Oldroyd-B Models Using Free-Energy-Dissipative Schemes
	1 Introduction: Dissipative Oldroyd-B
	2 Dissipative Discretizations of the Oldroyd-B System
	3 Numerical Results
	3.1 First Discretization: (uh,ph,bold0mu mumu equationh)P2P1P0
	3.2 Second Discretization: (uh,ph,bold0mu mumu equationh)P2P0P0

	References

	Adaptive Multiresolution Simulation of Waves in Electrocardiology
	1 Introduction
	2 Reference Numerical Scheme
	3 Adaptivity: Multiresolution Framework
	4 Numerical Results
	References

	On the Numerical Approximation of the Laplace Transform Function from Real Samples and Its Inversion
	1 Introduction
	2 Preliminary
	3 The Approximation Model
	3.1 Existence and Uniqueness: Boundary Conditions

	4 Approximation Error Analysis
	5 Numerical Experiments
	6 Conclusions and Future Work
	References

	A Motion-Aided Ultrasound Image Sequence Segmentation
	1 Introduction
	2 The Motion Aided Segmentation Model Equation
	3 Numerical Approach
	4 Results
	References

	A High Order Finite Volume Numerical Scheme for Shallow Water System: An Efficient Implementation on GPUs
	1 Introduction
	2 Mathematical Model: One-Layer Shallow-Water System 
	3 High Order Finite Volume Schemes
	4 Obtaining of a GPU Implementation 
	5 Numerical Test
	References

	Spectral Analysis for Radial Basis Function Collocation Matrices
	1 Abstract and Outline of the Paper
	2 The Linear Algebra Problem from RBF
	3 Toeplitz Matrices and Spectral Properties
	4 A Rigorous Interpretation of Some Numerics
	5 Spectral Distribution of the Complete Matrix-Sequence
	References

	Finite Element Solution of the Primitive Equations of the Ocean by the Orthogonal Sub-Scales Method
	1 Introduction
	2 Continuous Problem
	3 Discrete Problem
	4 Stability and Convergence Analysis
	5 Numerical Results
	References

	Solution of Incompressible Flow Equations by a High-Order Term-by-Term Stabilized Method
	1 Introduction
	2 Transport-Diffusion
	3 Oseen Equations
	4 Numerical Tests
	References

	Solving Large Sparse Linear Systems Efficiently on Grid Computers Using an Asynchronous Iterative Method as a Preconditioner
	1 Introduction
	2 Sparse Linear Solvers in Grid Environments
	3 Parallel Implementation Details
	3.1 Brief Description of GridSolve
	3.2 Decoupled Iterations
	3.2.1 Sequential Outer Loop
	3.2.2 Parallel Outer Iteration


	4 Numerical Simulations
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusions
	References

	Hierarchical High Order Finite Element Approximation Spaces for H(div) and H(curl)
	1 Introduction
	2 H(div) Approximation Spaces
	2.1 H(div): Quadrilateral Elements
	2.2 H(div): Triangular Elements

	3 H(curl) Approximation Spaces
	4 Conclusion
	References

	Some Theoretical Results About Stability for IMEX Schemes Applied to Hyperbolic Equations with Stiff Reaction Terms
	1 Introduction
	2 Method of Lines Discretizations
	3 Weak Stability Preservation for D-IMEX Schemes
	4 Numerical Experiments for the LeVeque–Yee ModelProblem
	References

	Stable Perfectly Matched Layers for the Schrödinger Equations
	1 Introduction
	2 The Schrödinger Wave Equations and the PML
	2.1 PML Models

	3 Stability Analysis
	4 Numerical Tests
	5 Summary
	References

	Domain Decomposition Schemes for Frictionless Multibody Contact Problems of Elasticity
	1 Introduction
	2 Formulation of the Frictionless Multibody Contact Problem
	3 Variational Formulations of the Problem: The Penalty Method
	4 The Simple Iteration Method and Domain Decomposition
	5 Numerical Investigations
	References

	Analysis and Acceleration of a Fluid-Structure Interaction Coupling Scheme
	1 Introduction
	2 One-Dimensional Model Problem
	2.1 Problem definition
	2.2 Discretization in space and time
	2.3 Coarse spatial discretization and convergence of the Dirichlet-Neumann partitioning

	3 Interface Mass Shifting
	3.1 Shifting Algorithm
	3.2 Numerical Experiments

	4 Conclusions and Outlook
	References

	Second Order Numerical Operator Splitting for 3D Advection–Diffusion-Reaction Models
	1 Introduction
	2 The Operator Splitting Approach
	2.1 Advection Solver
	2.2 Diffusion Solver
	2.2.1 Test Problem: Heat Equation

	2.3 Reaction Solver
	2.3.1 Numerical Results: Robertson Problem


	References

	Space-Time DG Method for Nonstationary Convection–Diffusion Problems
	1 Introduction
	2 Space-Time Discretization
	3 Error Analysis
	3.1 Derivation of an Abstract Error Estimate
	3.2 Error Estimation in Terms of h and T

	References

	High Order Finite Volume Schemes for Numerical Solution of Unsteady Flows
	1 Introduction
	2 Mathematical Model
	3 Numerical Methods
	4 Numerical Schemes
	4.1 Modified Causon's Scheme
	4.2 Weighted Least-Square Reconstruction Scheme (WLSQR)
	4.3 Modification of the Computational Mesh

	5 Numerical Results
	5.1 2D Unsteady Transonic Flow
	5.2 3D Unsteady Inviscid Transonic Flow

	6 Conclusion
	References

	Multigrid Finite Element Method on Semi-Structured Grids for the Poroelasticity Problem
	1 Introduction
	2 Poroelasticity Problem
	3 Multigrid Based on Vanka-type smoothers
	4 Numerical Experiments
	References

	A Posteriori Error Bounds for Discontinuous Galerkin Methods for Quasilinear Parabolic Problems
	1 Introduction
	2 Model Problem and the IPDG Method
	3 A Posteriori Error Bounds
	References

	An A Posteriori Analysis of Multiscale Operator Decomposition
	1 Problem Setting
	2 A Posteriori Analysis
	3 A Numerical Experiment
	References

	Goal-Oriented Error Estimation for the Discontinuous Galerkin Method Applied to the Biharmonic Equation
	1 Introduction
	2 Notation and Finite Element Spaces
	3 Model Problem and the DGFEM
	4 Goal-Oriented Error Estimation
	5 Numerical Results
	6 Conclusions
	References

	Solving Stochastic Collocation Systems with Algebraic Multigrid
	1 Introduction
	2 Stochastic Collocation Methods
	3 Linear Systems
	4 AMG Preconditioning
	5 Numerical Results
	References

	Adaptive Two-Step Peer Methods for Incompressible Navier–Stokes Equations
	1 Introduction
	2 Discretization of the Navier–Stokes Equations
	3 Numerical Results
	3.1 Analytical Example
	3.1.1 Validation of Higher Orders of Convergence
	3.1.2 Efficiency

	3.2 Flow Around a Cylinder

	4 Conclusions
	References

	On Hierarchical Error Estimators for Time-Discretized Phase Field Models
	1 Introduction
	2 Hierarchical Error Estimators
	3 Allen–Cahn Equations
	4 Cahn–Hilliard Equations
	References

	Nonlinear Decomposition Methods in Elastodynamics
	1 Introduction
	2 Dynamic Contact Problems for Non-Linear Materials and Their Time-Discretization
	3 Efficient Solution of the Nonlinear Programming Problems
	4 Dynamic Simulation of a Can
	References

	An Implementation Framework for Solving High-Dimensional PDEs on Massively Parallel Computers
	1 Introduction
	2 Parallel Computing Using Clusters of Multicore Processors
	3 A PDE-Solver Framework
	4 An Example: The Time-Dependent Schrödinger Equation
	5 Parallelization
	6 Results
	7 Conclusion and Outlook
	References

	Benchmarking FE-Methods for the Brinkman Problem
	1 Introduction
	2 The Brinkman Problem
	3 Finite Elements and A Priori Error Estimates
	3.1 The Family Generalizing the MINI Element
	3.2 Stabilized Methods
	3.3 The Taylor–Hood Family

	4 Numerical Examples
	References

	Finite Element Based Second Moment Analysis for Elliptic Problems in Stochastic Domains
	1 Introduction
	2 Elliptic Boundary Value Problems on Stochastic Domains
	3 Finite Element Discretization
	3.1 Parametric Finite Elements
	3.2 Multilevel Frames for Sparse Tensor Product Spaces
	3.3 Galerkin Discretization
	3.4 Error Estimates
	3.5 Fast Second Moment Computation

	4 Numerical Results
	References

	On Robust Parallel Preconditioning for Incompressible Flow Problems
	1 Introduction
	2 Discretization
	3 The Solver
	4 Implementation Overview
	5 Numerical Results
	6 Summary and Outlook
	References

	Hybrid Modeling of Plasmas
	1 Introduction
	2 Definitions
	2.1 Hybrid Approximations
	2.1.1 Hybrid Equations


	3 Discretization
	3.1 Non-Periodic Boundary Conditions
	3.2 Spatial and Temporal Scales

	4 A Quiet Plasma Test Problem
	5 Conclusions
	References

	A Priori Error Estimates for DGFEM Applied to Nonstationary Nonlinear Convection–Diffusion Equation
	1 Introduction
	2 Scalar Nonstationary Nonlinear Convection–Diffusion Equation
	3 Discretization
	4 A Priori Error Analysis
	5 Numerical Example
	References

	Stable Crank–Nicolson Discretisation for Incompressible Miscible Displacement Problems of Low Regularity
	1 Introduction and Initial Boundary Value Problem
	2 The Finite Element Method
	3 Unconditional Well-Posedness, Boundedness and Convergence
	4 Numerical Experiments
	References

	Simulations of 3D/4D Precipitation Processes in a Turbulent Flow Field
	1 Introduction
	2 The Model of the Precipitation Process
	3 The Applied Numerical Methods
	4 Numerical Studies
	5 Summary
	References

	2D Finite Volume Lagrangian Scheme in Hyperelasticity and Finite Plasticity
	1 Finite Volume Lagrangian Scheme in Compressible Hydrodynamic
	2 Finite Volume Lagrangian Scheme in Hyperelasticity
	2.1 Discretization of the Jacobian Matrix
	2.1.1 The Jacobian Matrix
	2.1.2 Discretization

	2.2 The Hyperelastic Scheme

	3 Extension to Finite Plasticity
	4 Numerical Results
	4.1 Hugoniot Experiments
	4.2 Imploding Shell
	4.3 Taylor Test Case

	References

	Local Projection Method for Convection-Diffusion-Reaction Problems with Projection Spaces Defined on Overlapping Sets
	1 Introduction
	2 Assumptions on Finite Element Spaces
	3 Discrete Problem
	4 Error Analysis
	References

	Numerical Solution of Volterra Integral Equationswith Weak Singularities
	1 Introduction
	2 Regularity of the Solution
	3 Smoothing Transformation
	4 Numerical Method
	5 Superconvergence Results
	6 Numerical Example
	References

	Non-Conforming Finite Element Method for the Brinkman Problem
	1 Introduction
	2 The Brinkman Model
	3 Solution by Mixed Finite Elements
	3.1 Mesh Dependent Norms
	3.2 Mixed Method

	4 Postprocessing Method
	5 Conclusions
	References

	Error Control for Simulations of a Dissociative Quantum System
	1 Introduction
	2 Domain Truncation and Discretization
	3 Error Control
	3.1 PML Errors
	3.2 Discretization Errors
	3.3 Error Balancing

	4 Numerical Experiments
	5 Summary and Outlook
	References

	A Comparison of Simplicial and Block Finite Elements
	1 Introduction
	2 Model Problem at Its Finite Element Discretization
	3 Discrete Maximum Principles for FEM
	3.1 On Entries of FE Matrices for Simplices
	3.2 On Entries of FE Matrices for Blocks

	4 On Mesh Generation and Adaptivity
	4.1 Simplicial FE Meshes (Acuteness and Nonobtuseness)
	4.2 Block FE Meshes (Preserving the Aspect Ratio)

	5 Conclusions
	References

	Five-Dimensional Euclidean Space Cannot be Conformly Partitioned into Acute Simplices
	1 Introduction
	2 Acute Partitions
	3 Auxiliary Lemmas
	4 The Proposed Proof Technique
	5 The Nonexistence of Acute Partitions in R5
	References

	The Discontinuous Galerkin Method for Convection-Diffusion Problems in Time-Dependent Domains
	1 Introduction and Problem Formulation
	2 ALE Formulation
	3 Space Semidiscretization
	4 Derivation of the Discrete Problem
	5 Time Discretization
	6 Numerical Experiment
	References

	A Spectral Time-Domain Method for Computational Electrodynamics
	1 Introduction
	2 Krylov Subspace Spectral Methods
	3 Application to the Wave Equation
	4 Application to Maxwell's Equations
	5 Numerical Results
	6 Conclusions
	References

	Numerical Simulation of Fluid–Structure Interaction in Human Phonation: Application
	1 Introduction
	2 Governing Equations
	2.1 Compressible Navier–Stokes Equations
	2.2 Elastodynamic Equations

	3 Fluid–Structure Interaction
	3.1 Arbitrary Lagrangian–Eulerian (ALE) Formulation
	3.2 Description of Fluid–Structure Interaction Algorithm

	4 High Order Finite Difference Method
	5 Results
	5.1 Vocal Fold Material Parameters
	5.2 Fluid Model
	5.3 Numerical Simulation

	6 Conclusions
	References

	Error Estimation and Anisotropic Mesh Refinement for Aerodynamic Flow Simulations
	1 Introduction
	2 Error Estimation and Error Indicators
	3 Anisotropy Indicators
	4 Numerical Examples
	5 Conclusion and Outlook
	References

	A MHD Problem on Unbounded Domains: Coupling of FEM and BEM
	1 Introduction
	2 Variational Formulation of the MHD Model
	3 Continuous Problem
	4 Semidiscrete Problem
	5 Finite Element and Boundary Element Approach
	6 Conclusions
	References

	A Stable and High Order Interface Procedure for Conjugate Heat Transfer Problems
	1 Introduction
	2 The Continuous Problem
	2.1 Boundary and Interface Conditions

	3 The Semidiscrete Problem
	3.1 Stability Conditions at x=0

	4 Numerical Results
	5 Summary and Conclusions
	References

	Local Time-Space Mesh Refinement for Finite Difference Simulation of Waves
	1 Introduction
	2 Preliminary
	2.1 Statement of the Problem
	2.2 Theoretical Reflection Coefficients

	3 Description of the Approach
	3.1 Reflectivity
	3.2 Stability

	4 Conclusions
	References

	Formulation of a Staggered Two-Dimensional Lagrangian Scheme by Means of Cell-Centered Approximate Riemann Solver
	1 Introduction
	2 Governing Equations and Notation
	3 Framework and Discretization
	4 Numerics
	5 Conclusion
	References

	Optimal Control for River Pollution Remediation
	1 Introduction
	2 The Mathematical Problem
	3 Numerical Discretization
	4 Numerical Example
	References

	An Anisotropic Micro-Sphere Approach Applied to the Modelling of Soft Biological Tissues
	1 Introduction
	2 Essential Kinematics
	3 Hyper-Elastic Micro-Sphere Model
	4 A Remodelling Formulation for Orthotropic Material Behaviour
	5 Numerical Example and Results
	6 Summary
	References

	Anisotropic Adaptation via a Zienkiewicz–Zhu Error Estimator for 2D Elliptic Problems
	1 Motivations
	2 Recovery Procedures
	3 The Anisotropic Estimator
	3.1 Anisotropic Source
	3.2 The Estimator

	4 The Adaptive Procedure
	5 Conclusions
	References

	On a Sediment Transport Model in Shallow Water Equations with Gravity Effects
	1 Introduction
	2 The Classical Meyer-Peter and Müller Formula
	3 A Modified Meyer-Peter and Müller Model
	4 Numerical Scheme
	5 Numerical Simulations
	6 Conclusions
	References

	Adaptive SQP Method for Shape Optimization
	1 Shape Optimization as Adaptive Sequential Quadratic Programming
	2 Drag Minimization for Stokes Flow
	3 Numerical Experiment: Optimal Shape for Drag Minimization
	References

	Convergence of Path-Conservative Numerical Schemes for Hyperbolic Systems of Balance Laws
	1 Introduction
	2 Systems of Balance Laws
	3 Convergence Properties
	References

	A Two-Level Newton–Krylov–Schwarz Method for the Bidomain Model of Electrocardiology
	1 Introduction
	2 The Bidomain Model
	3 Discretization and Numerical Methods
	4 A Newton–Krylov–Schwarz (NKS) Bidomain Solver
	5 Numerical Results
	References

	On a Shallow Water Model for Non-Newtonian Fluids
	1 The Fokker–Planck Equation
	1.1 The Solution of the Fokker–Planck Equation

	2 Deduction of the Model
	2.1 Final Systems

	3 Numerical Results
	4 Conclusions
	References

	On Stationary Viscous Incompressible Flow Through a Cascade of Profiles with the Modified Boundary Condition on the Outflow and Large Inflow
	1 Introduction and the Geometry of the Problem
	2 Auxiliary Functions and Results
	The Auxiliary Cut-Off Function
	2.2 The Auxiliary Cut-Off Function 
	A Special Extension of the Inflow Profile g to the Domain

	3 The Problem with the Large Inflow
	4 Weak Formulation of the Problem in Domain  and Existence of a Weak Solution
	References

	Variational and Heterogeneous Multiscale Methods
	1 Introduction
	2 VMS
	3 HMFEM
	4 The Relationship Between VMS and HMFEM
	4.1 The Relationship Between Exact VMS and HMFEM
	4.2 The Relationship Between Approximate VMS and HMFEM

	References

	Discrete Dislocation Dynamics and Mean Curvature Flow
	1 Introduction
	2 Dislocations and Mean Curvature Flow
	3 Parametric Description
	4 Numerical Scheme
	5 Application in Dislocation Dynamics
	6 Conclusion
	References

	Non-Symmetric Algebraic Multigrid Preconditioners for the Bidomain Reaction–Diffusion system
	1 The Bidomain Model
	1.1 (ue,v) Formulation

	2 Block Preconditioners
	3 Numerical Results
	References

	Efficiency of Shock Capturing Schemes for Burgers' Equation with Boundary Uncertainty
	1 Introduction
	2 Polynomial Chaos Approximation of Burgers' Equation
	3 Numerical Methods
	3.1 Central Differences
	3.2 MUSCL Scheme

	4 Numerical Experiments
	5 Conclusions
	References

	FEM Techniques for the LCR Reformulation of Viscoelastic Flow Problems
	1 Introduction
	2 Spatial and Time Discretization
	3 Nonlinear and Linear Solvers
	4 Numerical Examples
	5 Conclusion
	References

	A Posteriori Estimates for Variational Inequalities
	1 Introduction
	2 Variational Inequalities of Elliptic Type
	2.1 Deriving of Error Majorants by the Variational Method
	2.2 Deriving Error Majorants Directly from the Variational Inequality

	3 A Posteriori Estimates for Other Nonlinear Problems
	References

	Review on Longest Edge Nested Algorithms
	1 Iterative Longest Edge Bisection of Individual Triangles
	2 Longest Edge Nested Algorithms
	References

	Simulation of Spray Painting in Automotive Industry
	1 Introduction
	2 Modeling
	2.1 Atomization Model
	2.2 Flow Solver
	2.3 Particle Tracer and Thickness Integration

	3 Results
	4 Conclusions
	References

	Numerical Simulation of the Electrohydrodynamic Generation of Droplets by the Boundary Element Method
	1 Introduction
	2 Mathematical Formulation
	3 Boundary Element Method Formulation
	4 Results
	5 Conclusion
	References

	A General Pricing Technique Based on Theta-Calculus and Sparse Grids
	1 Introduction
	2 Option Pricing with Theta-Calculus
	2.1 Modeling Options with ThetaML 
	2.2 Operator-Based Option Pricing

	3 Solving the PDE with Sparse Grids
	4 Numerical Examples
	4.1 American Put Option 1D
	4.2 Asian Call Option 2D
	4.3 Currency Swap 3D

	5 Conclusion
	References

	A Posteriori Error Estimation in Mixed Finite Element Methods for Signorini's Problem
	1 Introduction
	2 Signorini's Problem
	3 Mixed Variational Formulation of Signorini's Problem and Its Discretization
	4 Reliable A Posteriori Error Estimates
	5 Numerical Results
	References

	Solution of an Inverse Problem for a 2-D Turbulent Flow Around an Airfoil
	1 Introduction
	2 Inverse Problem
	3 Flow Problem
	4 Numerical Examples
	5 Conclusion
	References

	On Skew-Symmetric Splitting and Entropy Conservation Schemes for the Euler Equations
	1 Introduction
	2 Non-Dissipative Schemes
	2.1 Skew-Symmetric Splitting
	2.2 Entropy Conserving Schemes

	3 Numerical Experiments
	References

	Ideal Curved Elements and the Discontinuous Galerkin Method
	1 Introduction
	2 Ideal Curved Triangulation
	3 Properties of the Mappings 
	4 Application to a Nonlinear Convection–Diffusion Problem
	References

	Analysis of the Parallel Finite Volume Solver for the Anisotropic Allen–Cahn Equation in 3D
	1 Introduction
	2 Problem for the Allen–Cahn Equation with Anisotropy
	2.1 Formulation
	2.2 Numerical Solution
	2.3 Artificial Dissipation and Finite Volume Scheme Design

	3 Convergence Properties
	3.1 Experimental Convergence Measurement

	4 Parallel Computation Performance
	5 Application in MR-DTI
	6 Conclusion
	References

	Stabilized Finite Element Approximations of Flow Over a Self-Oscillating Airfoil
	1 Introduction
	2 Mathematical Model
	3 Structural Model
	4 Numerical Approximation of the Flow Model
	5 Numerical Results
	6 Conclusion
	References

	Multigrid Methods for Elliptic Optimal Control Problems with Neumann Boundary Control
	1 Formulation of the Model Problem
	2 Multigrid Solvers for Saddle Point Problems
	3 Construction of Smoothers
	4 Convergence Analysis
	5 Numerical Results
	6 Conclusion and Further Work
	References

	Extension of the Complete Flux Scheme to Time-Dependent Conservation Laws
	1 Introduction
	2 Numerical Approximation of the Stationary Flux
	3 Extension to Time-Dependent Conservation Laws
	4 Dissipation and Dispersion of the Semidiscrete System
	5 Numerical Example
	References

	Solution of Navier–Stokes Equations Using FEM with Stabilizing Subgrid
	1 Introduction
	2 The RFB Method Through Two-Level FEM with a Stabilizing Subgrid
	3 Numerical Results
	3.1 Backward Facing Step Flow 
	3.2 Flow Through 2D Channel with an Obstruction on the Lower Wall

	References

	Multigrid Methods for Control-Constrained Elliptic Optimal Control Problems
	1 Introduction
	2 Constrained Optimal Control Problems
	3 Discretization Scheme and Smoothing Algorithms
	4 The Multigrid Method
	5 Numerical Results
	6 Conclusion
	References

	Modelling the New Soil Improvement Method Biogrout: Extension to 3D
	1 Introduction
	2 The Mathematical Model
	3 Numerical Method
	4 Results
	5 Conclusions and Discussion
	References

	Angle Conditions for Discrete Maximum Principles in Higher-Order FEM
	1 Introduction
	2 Model Problem and Its FEM Discretization
	3 Discrete Maximum Principle
	4 Nonnegativity of the DGF for the Lowest-Order FEM
	5 Nonnegativity of the DGF for the Higher-Order FEM
	6 Numerical Experiment
	7 Conclusions
	References

	Unsteady High Order Residual Distribution Schemes with Applications to Linearised Euler Equations
	1 Generalities and Notations
	2 Linear Schemes
	3 Nonlinear Schemes
	4 Results
	4.1 Gauss Pulse
	4.2 Monopole
	4.3 Double Mach Reflection

	5 Conclusion
	References

	Implicit–Explicit Backward Difference Formulae Discontinuous Galerkin Finite Element Methods for Convection–Diffusion Problems
	1 Introduction
	2 Continuous Problem
	3 Space Semi-Discretization
	4 Time Discretization
	5 Error Estimates
	References

	A Cut-Cell Finite-Element Method for a Discontinuous Switch Model for Wound Closure
	1 Introduction
	2 The Model
	3 The Method
	3.1 The Cut-Cell Approach

	4 Comparison Between Cut-Cell and Classical Finite-Element Method
	5 Conclusions
	References


	Index

