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Preface

The iterative methods play an important role in solving linear equations that

arise in real-world applications. Numerous properties of the problem may affect

the efficiency of the solution. This book deals with algorithms for the solution of

linear systems of algebraic equations with large-scale sparse matrices, with a focus

on problems that are obtained after discretization of partial differential equations

using finite element methods.

The monograph provides a comprehensive presentation of the recent advances

in robust algebraic multilevel methods and algorithms including, e.g., the precon-

ditioned conjugate gradient method, the algebraic multilevel iteration (AMLI) pre-

conditioners, some relations to the classical algebraic multigrid (AMG) method

and its recent modifications.

The first five chapters can serve as a short introductory course on the theory

of AMLI methods and algorithms. The next part of the monograph is devoted to

more advanced topics, including related issues of AMG methods, AMLI methods

for discontinuous Galerkin systems, locking-free algorithms for coupled problems

etc., ending with important aspects of implementation and one challenging appli-

cation. This second part is addressed to some more experienced students and prac-

titioners and can be used to complete a more advanced course on robust AMLI

methods and their efficient application.

During the years, each of us cooperated with several coauthors on topics in-

cluded in this volume. They definitely influenced and enriched our understanding

of the field. Special thanks are due to them. Working on the monograph, we had

a lot of fruitful discussions with Ludmil Zikatanov. We highly appreciate his sug-

gestions and remarks. We thank also Petia Boyanova, and Ivan Georgiev for their

careful reading of parts of preliminary drafts of the book.

This volume is intended for mathematicians, engineers, natural scientists etc.

The monograph is partly based on, and initially stimulated by, the lecture course on

Robust Parallel Algebraic Multigrid and Multilevel Techniques given in the frame

of the Special Radon Semester on Computational Mechanics – Linz, October 3 –

December 16, 2005.

We gratefully acknowledge the support by the Austrian Academy of Sciences.

The work on this monograph has been also partially supported by the Bulgarian

Academy of Sciences as well as by Austrian Science Foundation FWF Project

P19170-N18, and the Bulgarian NSF Grants DO 02-147/08 and DO 02-338/08.

Johannes Kraus and Svetozar Margenov
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1 Introduction

1.1 Finite element method (FEM)

We will start the presentation with the formulation of a boundary value problem for

a second-order elliptic partial differential equation (PDE), which will serve then as

a model problem in a brief introduction to the finite element method (FEM).

1.1.1 The elliptic model problem

Let us consider the elliptic boundary value problem

�r � .a.x/ru.x// D f .x/ in �; (1.1a)

u D 0 on �D; (1.1b)

.a.x/ru.x// � n D 0 on �N ; (1.1c)

for an unknown scalar function u.x/ where � is a polygonal domain in two- or

three-dimensional space R
d , d D 2; 3, and f .x/ is a given squared Lebesgue

integrable function, i.e.,

f 2 L2.�/ ..D ¹v W v is defined on � and

Z

�

v2 dx <1º: (1.2)

The coefficient matrix a.x/ in (1.1) is assumed to be symmetric positive definite

(SPD) and uniformly bounded in �, i.e.,

c1kvk2 � vT a.x/ v � c2kvk2 8v 2 R
d ;8x 2 �; (1.3)

for some positive constants c1 and c2, and n is the outward unit vector normal to

the boundary � D @�. The disjoint parts of � D �D [ �N on which Dirich-

let and Neumann boundary conditions are imposed are denoted by �D and �N ,

respectively.

Let V denote a linear (vector) space. Then we shall use the following notation:

Definition 1.1. A mapping L W V ! R is called a linear form if L.�/ is linear,

i.e., for all v;w 2 V and ˛; ˇ 2 R

L.˛v C ˇw/ D ˛L.v/C ˇL.w/:
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Definition 1.2. If V is a linear space, then we say that A W V�V ! R is a bilinear

form if A.�; �/ is linear in each argument, i.e., for all u; v; w 2 V and ˛; ˇ 2 R

A.u; ˛v C ˇw/ D ˛A.u; v/C ˇA.u;w/;

A.˛uC ˇv;w/ D ˛A.u;w/C ˇA.v; w/:

A bilinear form A.�; �/ is said to be symmetric if A.v; w/ D A.w; v/ for all v;w 2
V. Furthermore, a symmetric bilinear form A.�; �/ on V � V is called a scalar

product on V if A.v; v/ > 0 for all v 2 V, v ¤ 0. The norm k � kA induced by the

scalar product A.�; �/ is defined by kvkA D .A.v; v//1=2.

Definition 1.3. A linear (vector) space V that is equipped with a scalar product

.�; �/V and the corresponding norm k � kV is called a Hilbert space if V is complete,

i.e., if every Cauchy sequence in V is convergent and its limit also belongs to V.

Starting point for the finite element solution of the basic problem (1.1) is the

following weak formulation: Given f 2 L2.�/ find u 2 V, satisfying

A.u; v/ D L.v/ 8v 2 V; (1.4a)

A.u; v/ ..D
Z

�

a.x/ru.x/ � rv.x/ dx; (1.4b)

L.v/ ..D
Z

�

f .x/ v.x/ dx; (1.4c)

V ..D H 1
D.�/ � ¹v 2 H 1.�/ W v D 0 on �Dº: (1.4d)

The spaces L2.�/ and

H 1.�/ ..D ¹v W v is defined on � and

Z

�

v2 Crv � rv dx <1º (1.5)

are Hilbert spaces equipped with the scalar products

.v; w/L2.�/ � .v; w/ ..D
Z

�

vw dx; (1.6)

.v; w/H 1.�/ ..D
Z

�

vw Crv � rw dx; (1.7)

and the induced norms

kvkL2.�/ D .v; v/1=2; (1.8)

and

kvkH 1.�/ D .v; v/1=2

H 1.�/
; (1.9)

respectively.
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The weak formulation (1.4) of (1.1) is obtained from multiplying (1.1a) by an

arbitrary test function v 2 V, integrating over �, and applying Green’s formula

(integration by parts). Any solution u of (1.4) is then called a weak solution of

(1.1). If u is a weak solution of (1.1) it is not immediately clear that u is also a

classical solution of (1.1) since the latter in general requires sufficient (stronger)

regularity assumptions. Closely related to this subject matter is the fact that usually

it is much easier to prove the existence (and uniqueness) of a (the) weak solution.

This kind of existence results follow from the Lax–Milgram theorem, which is a

variant of the Riesz’ representation theorem in Hilbert space theory, see, e.g., [47],

under the following assumptions1:

(A1) A.�; �/ is continuous on V � V, i.e.,

jA.v; w/j � c kvkVkwkV 8v;w 2 V; (1.10)

(A2) A.�; �/ is V-elliptic, i.e.,

A.v; v/ � c kvk2
V 8v 2 V; (1.11)

(A3) L.�/ is continuous on V, i.e.,

jL.v/j � c kvkV 8v 2 V: (1.12)

Note that choosing v D u in (1.4) and using (A2)–(A3) one obtains the relations

c kuk2
V � A.u; u/ D L.u/ � c kukV and thus the stability estimate

kukV � c

c
(1.13)

holds. Moreover, if we assume that u1 and u2 are two solutions of (1.4) we con-

clude that

A.u1 � u2; v/ D 0 8v 2 V; (1.14)

and the estimate (1.13) can be applied to the solution .u1�u2/ of (1.14) for c D 0,

i.e., ku1 � u2kV D 0, showing the uniqueness of the solution of (1.4).

Remark 1.4. It is not difficult to prove that the weak formulation (1.4) is equiv-

alent to the following abstract minimization problem, see, e.g., [68]: Find u 2 V

such that

F .u/ D min
v2V

F .v/; (1.15a)

F .v/ ..D 1

2
A.v; v/ �L.v/: (1.15b)

1In this book, if not mentioned otherwise, it will be assumed that the considered problem is

self-adjoint, which means that the bilinear form in (1.4) is symmetric.
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1.1.2 Conforming discretizations

The numerical solution of variational problems like (1.4) or (1.15) involves their

reformulation using proper finite-dimensional subspaces of the Hilbert spaces that

provide the abstract framework for a comprehensive analysis.2 The finite element

method (FEM) has become an established technique for choosing such subspaces.

This is due to its elegant mathematical description/formulation and due to the

fact that the FEM methodology is highly practicable for solving many important

(classes of) problems in engineering, medical, or life sciences.

Let us assume that � is a polygonal domain which is partitioned into finitely

many subdomains, called elements. The elements e (which we will sometimes

also denote by T ) of this partition (triangulation) Th, which is also called a finite-

element mesh, usually have a simple shape, e.g., triangles or quadrilaterals for two-

dimensional domains, tetrahedra or hexahedra for three-dimensional domains. In

the case when all elements e are congruent, the mesh is called regular. The quantity

h ..D maxe2Th
he is called the mesh size (or mesh parameter).

The (most commonly used) subspaces Vh in the FEM are composed of piece-

wise polynomial functions. Let C 0.�/ denote the space of continuous functions

defined on � and

C 1.�/ D ¹v 2 C 0.�/ W D˛v 2 C 0.�/; j˛j D 1º
the space of C 0.�/-functions whose first derivatives are continuous. Then, since

(we assume that)

Vh ..D ¹v W vje 2 Pr .e/ 8e 2 Thº;
Pr.e/ ..D ¹w W w is a polynomial of degree less or equal to r on eº 8e 2 Th;

the following continuity condition holds, see, e.g., [68]:

Vh � H 1.�/ if and only if Vh � C 0.�/:

The idea is now to replace the infinite-dimensional space V in (1.4) by Vh, i.e.,

to consider the problem: Find uh 2 Vh such that

Ah.uh; vh/ D Lh.vh/ 8vh 2 Vh; (1.16)

where in case of the scalar elliptic model problem Ah.�; �/ and Lh.�/ are defined

by

Ah.uh; vh/ � A.uh; vh/ ..D
Z

�

a.x/ruh.x/ � rvh.x/ dx; (1.17a)

Lh.vh/ � L.vh/ ..D
Z

�

f .x/ vh.x/ dx: (1.17b)

2In a more general context these are Sobolev spaces.
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Any FEM with piecewise polynomial functions that lie in the Sobolev space in

which the variational problem is posed, i.e., Vh � V, is called a conforming

method [35]. If the trial functions vh are taken from the same space Vh in which

the (approximate) solution uh is sought for, the FEM is called a standard Galerkin

method.

By subtracting (1.16) from (1.4a), thereby assuming that Vh � V, we find

A.u � uh; vh/ D 0 for all vh 2 Vh; (1.18)

which is often referred to as the Galerkin orthogonality. This means that the FEM

solution uh is the projection with respect to the scalar product hv;wiA ..D A.v; w/

(defined on V) of the exact solution u onto Vh. In other words, uh is the element

of Vh closest to u in V with respect to the norm induced by the scalar product

A.�; �/, i.e.,

ku � uhkA � ku � vhkA for all vh 2 Vh: (1.19)

Moreover, by using the V-ellipticity (A2) and the continuity (A1) of the bilinear

form A.�; �/, it immediately follows from (1.18) that

c ku � uhk2
V � A.u � uh; u � uh/

D A.u � uh; u � vh/CA.u � uh; vh � uh/

� c ku � uhkV ku � vhkV :

After dividing by ku � uhkV we arrive at the following result, known as Céa’s

lemma, which plays an important role in deriving error estimates for various (con-

forming) FE approximations:

Lemma 1.5. Let u 2 V be the solution of (1.4), uh 2 Vh the solution of (1.16),

where Vh � V and let the assumptions (A1)–(A3) be satisfied. Then

ku � uhkV �
c

c
inf

vh2Vh

ku � vhkV : (1.20)

1.1.3 Nonconforming discretizations

In certain real-life problems the condition that the finite element space is a sub-

space of the function space in which the variational problem is posed is too re-

strictive. In particular, this might be the case if the boundary conditions cannot be

satisfied exactly, or if the bilinear form A.�; �/ cannot be computed exactly on the

finite element space Vh. If the space Vh, being used to solve a V-elliptic problem,

is not contained in V the FEM is called a nonconforming method, i.e., a discretiza-

tion based on nonconforming elements. Then, in addition to the approximation



6 Chapter 1 Introduction

error there is a second source of error of the numerical solution, which is called

consistency error.

Violating the conformity condition Vh � V the V-norm in general is no longer

well-defined on Vh. A remedy for this shortcoming is to use mesh-dependent

norms in the convergence analysis. The following broken norm is such an example:

Given a partition Th of �, we define

kvkm;h ..D
sX

T 2Th

kvk2
m;T (1.21)

where k � km;T is the induced norm on the space Hm.T / and thus kvkm;h D
kvkm;� for all v in the Sobolev space Hm.�/.

Let us consider now the weak formulation (1.16) where elements vh of the FE

space Vh do not necessarily have to satisfy any continuity conditions. In case of

our elliptic model problem the bilinear form Ah.�; �/ can be defined by

Ah.uh; vh/ ..D
X

T 2Th

Z

T

a.T /ruh.x/ � rvh.x/ dx: (1.22)

Here a.T / is a piecewise constant, symmetric positive definite (SPD) matrix, de-

fined by the integral averaged values of a.x/ over each element T from the trian-

gulation Th, i.e.,

a.T / D 1

jT j
Z

T

a.x/ dx 8T 2 Th: (1.23)

In this way strong coefficient jumps across the boundaries between adjacent finite

elements from Th are allowed.

Remark 1.6. Note that the positive definiteness of a.T / is a consequence of a.x/

being SPD pointwise for all x 2 T : If wT a.x/w > 0 for all w ¤ 0 for all x 2 T
then wT a.T /w D 1

jT jw
T
�R

T a.x/ dx
�

w D 1
jT j
R

T wT a.x/w dx > 0.

We relax the continuity and ellipticity assumptions on the bilinear form Ah.�; �/,
which is assumed to be well-defined on both spaces V and Vh in the following

way:

(A4) Ah.�; �/ is continuous on .V C Vh/ � Vh, i.e.,

jAh.v; wh/j � c kvkhkwhkh 8v 2 V C Vh; 8wh 2 Vh; (1.24)

(A5) Ah.�; �/ is Vh-elliptic, i.e.,

Ah.vh; vh/ � c kvhk2
h 8vh 2 Vh: (1.25)
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Then the error of the numerical solution in the broken semi-norm

kvkh ..D
p

Ah.v; v/ 8v 2 V C Vh (1.26)

can be bounded in terms of the approximation error (first term in (1.27)) and the

consistency error (second term in (1.27)):

Lemma 1.7. Under the above hypotheses there exists a constant c independent of

h such that

ku � uhkh � c
�

inf
vh2Vh

ku � vhkh C sup
wh2Vh

jAh.u;wh/ �Lh.wh/j
kwhkh

�
: (1.27)

Proof. First we note that by the triangle inequality we have

ku � uhkh � ku � vhkh C kuh � vhkh: (1.28)

Moreover, from (A4) and (A5), using also (1.16), it follows that

c kuh � vhk2
h � Ah.uh � vh; uh � vh/

D Ah.u � vh; uh � vh/ �Ah.u; uh � vh/CLh.uh � vh/

� c ku � vhkh kuh � vhkh C jAh.u; uh � vh/ �Lh.uh � vh/j

and thus, substituting wh D uh � vh, the last term in (1.28) can be estimated by

kuh � vhkh �
1

c

�
c ku � vhkh C

jAh.u;wh/ �Lh.wh/j
kwhkh

�
: (1.29)

Together, (1.28) and (1.29) imply the estimate (1.27). �

Example. A simple nonconforming element for the discretization of second-order

elliptic boundary value problems is the Crouzeix–Raviart element, which is also

called nonconforming P1 element, see, e.g., [35]. The related FE space is defined

by

Vh �M1
� ..D ¹v 2 L2.�/ W vjT is linear for every T in Th; (1.30)

v is continuous at the midpoints of the edges (faces) of T º

where Th is a partition of a 2D (3D) polygonal (polyhedral) domain � into trian-

gles (tetrahedra) T .
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1.1.4 Structure and properties of the stiffness matrix

The numerical solution of boundary value problems like (1.1) by the finite element

method typically leads to the problem of solving large systems of linear algebraic

equations. The general procedure is to consider a basis of the finite element space

Vh, which we denote by ˆ D ¹�1; �2; : : : ; �N º. Then any function vh in Vh has

the unique representation

vh D
NX

iD1

vi�i

where the real numbers vi are the expansion coefficients of vh (with respect to the

basis ˆ). Representing the solution uh of (1.16) as uh D
PN

iD1 ui�i it can easily

be seen that (1.16) is equivalent to

NX

iD1

Ah.�i ; �j /ui D Lh.�j /; j D 1; 2; : : : ; N; (1.31)

which in matrix form reads as

Au D b: (1.32)

Here u D .ui / 2 R
N is the vector of unknowns, and the right-hand side vector

b D .bj / 2 R
N is defined by

bj D Lh.�j /; 1 � j � N: (1.33)

Since the basis functions �i 2 ˆ have a local support by construction only few

(typically O.1/) nonzero entries

aij D Ah.�i ; �j /; 1 � i; j � N; (1.34)

occur in each row of the stiffness matrix A D .aij / 2 R
N �N , which is then called

a sparse matrix. Another important observation is that for a V-elliptic bilinear

form Ah.�; �/, cf. (A2), we find

vTAv D
NX

i;j D1

viAh.�i ; �j /vj D Ah

� NX

iD1

vi�i ;

NX

j D1

vj�j

�

D Ah.vh; vh/ � c kvhk2
V > 0 8v ¤ 0I (1.35)

Moreover, the symmetry of Ah.�; �/ obviously implies the symmetry of A, which

together with (1.35) shows that A is SPD in the present context.
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If h ..D maxT 2Th
hT is the mesh size of the triangulation Th, and the mesh is

assumed to be quasi-uniform, i.e., for all T 2 Th the conditions

hT � ı1h; (1.36)

�T

hT
� ı2; (1.37)

are satisfied, then the spectral condition number of the stiffness matrix arising from

a second-order elliptic boundary value problem can be estimated by

�.A/ D �max.A/

�min.A/
D O.h�2/: (1.38)

This can easily be seen from the following estimates, see, e.g., [68]: There are

constants c1, c2, c3 only depending on ı1 and ı2 in (1.36) and (1.37) but not on h

such that for all vh D
PN

iD1 vi�i 2 Vh we have

c1 h
2kvk2 � kvhk2

L2.�/ � c2h
2kvk2; (1.39)

Ah.vh; vh/ � c3h
�2kvhk2

L2.�/: (1.40)

Remark 1.8. The inequality (1.40) is a so-called inverse estimate: In case of the

elliptic model problem this gives rise to bound the L2-norm of the gradient of vh

by the L2-norm of vh itself, which is possible for functions vh 2 Vh at the price

of a factor h�1 in the standard setting.3

Now, since for an arbitrary vector v 2 R
N , v ¤ 0, there exists a uniquely

determined function vh 2 Vh such that vTAv D Ah.vh; vh/, we deduce from

(1.39) and (1.40)

vTAv

kvk2
D Ah.vh; vh/

kvk2
� c3h

�2
kvhk2

L2.�/

kvk2
� c2c3; (1.41)

and, further using the V-ellipticity of Ah.�; �/

vTAv

kvk2
D Ah.vh; vh/

kvk2
� c kvhk2

V

kvk2
� c
kvhk2

L2.�/

kvk2
� c c1h

2: (1.42)

Thence, in view of (1.41) and (1.42), there exist constants c and C that are inde-

pendent of h such that

�max.A/ � C; �min.A/ � c h2;

which shows that �.A/ � C
c
h�2.

3For a proof of estimates like (1.39) and (1.40) we refer the reader to [47, 68].
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1.2 Ill-conditioned problems

In this section we summarize certain classes of boundary value problems that will

be subject to a more detailed elaboration later in this book. The reason for includ-

ing this short overview here is to touch also on some frequently met difficulties

regarding the solution of the arising systems of linear algebraic equation, i.e., to

discuss some computational issues that typically result in ill-conditioned problems.

1.2.1 Anisotropic problems

Let us comment first on the model boundary value problem for one simple scalar

second-order elliptic partial differential equation, i.e., problem (1.1) where the co-

efficient a.x/ is a d�d SPD matrix.

Then, depending on the specification of the matrix a.x/ any standard (con-

forming or nonconforming) finite element method can easily result in a highly

ill-conditioned problem even when using a quasi-uniform mesh. One such exam-

ple, where one typically meets an additional increase of the condition number of

the stiffness matrix A, is the case in which the matrix a.x/ is ill-conditioned. For

instance, if

a.x/ D
�

1 0

0 �

�
;

that is, considering the simplest anisotropic (orthotropic) problem, the condition

number of A in general will be of order ��1h�2, which for extremely strong

anisotropy, i.e., for � ! 0, results in highly ill-conditioned problems. This phe-

nomenon we call coefficient anisotropy.

Another similar effect is caused by elements with very large aspect ratio. In

case of such meshes that contain extremely stretched elements the aspect ratio

typically appears as a factor in the condition number as well. This phenomenon of

mesh anisotropy is therefore another source of an increase of the condition number,

which of course in general interferes with coefficient anisotropy if present. In

fact, for piecewise linear elements it is not difficult to show (see Section 3.1) that

coefficient anisotropy can be described in terms of mesh anisotropy and vice versa

such that it suffices to study either of these two phenomena.

1.2.2 Problems with highly varying coefficients

In the setting of the scalar elliptic problem (1.1) we will study another configu-

ration that badly affects the condition number of A. This difficulty is caused by

a rough coefficient a.x/, i.e., the case in which the entries of a.x/ are no longer

smooth functions over the whole domain but are of high variation. In particular,
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we will be concerned with discontinuous coefficients where the (largest) jump dis-

continuity typically is present as a factor in the condition number of the stiffness

matrix.

In the (so far) well established theory of robust multilevel methods a standard

assumption is that the coefficient variation can be resolved on the coarsest mesh

partition in the sense that the coefficient may have arbitrary large jumps (jump

discontinuities) between coarse elements but varies mildly on each element of the

coarse(st) mesh. Most of the robustness results that will be stated in this book cover

exactly this case. Beyond that we will also present some very recent developments

addressing problems with high-frequency-high-contrast coefficients. Robust mul-

tilevel methods for discontinuous Galerkin discretizations of elliptic problems of

this kind will be discussed in Chapter 8.

1.2.3 Elastic deformation of almost incompressible materials

Another class of ill-conditioned problems we will target at is related to the elastic

deformation of almost incompressible materials. Let � be a bounded open subset

of R
d , d D 2 or d D 3, which is associated with the reference configuration of an

elastic body. It is well known from linear elasticity theory (see, e.g., [35]) that the

governing equations describing the deformation of the body under the influence of

applied forces (taking into account only first order terms in the displacement u)

are given by

�div � D f in �; (1.43a)

u D 0 on �D; (1.43b)
dX

j D1

�ij nj D gi on �N ; 1 � i � d; (1.43c)

where � denotes the stress tensor, f the body force, u the displacement field,

n is the outwards pointing unit normal vector and g is a surface traction on the

part �N of the boundary � D �D [ �N . Moreover, �D denotes the part of

the boundary on which the displacement is given. Writing stress and strain in

vector form, i.e., � D .�11; �22; �12/
T , " D ."11; "22; "12/

T in the 2D model,

and � D .�11; �22; �33; �12; �13; �23/
T , " D ."11; "22; "33; "12; "13; "23/

T in the 3D

model, the stress-strain relation (for St. Venant–Kirchhoff materials) is given by

Hooke’s law, i.e.,

� D C � ";
where

C ..D E

.1C �/.1 � 2�/

2
4

1 � � � 0

� 1 � � 0

0 0 1 � 2�

3
5 ;



12 Chapter 1 Introduction

for two-dimensional problems, and

C ..D E

.1C �/.1 � 2�/

2
6666664

1 � � � � 0 0 0

� 1 � � � 0 0 0

� � 1 � � 0 0 0

0 0 0 1 � 2� 0 0

0 0 0 0 1 � 2� 0

0 0 0 0 0 1 � 2�

3
7777775

in three space dimensions. Here E denotes Young’s modulus of elasticity and � is

the Poisson ratio.

Introducing the Lamé coefficients

� D �E

.1C �/.1 � 2�/
; � D E

2.1C �/ ;

and the symmetric gradient r.s/u ..D " D ".u/,

"ij D 1

2

�
@ui

@xj
C @uj

@xi

�
;

equation (1.43a) yields the classical Lamé differential equation

�2� divr.s/u � � grad div u D f (1.44)

for the displacements ui , 1 � i � d .

When the Poisson ratio � tends to 1=2 the material becomes incompressible and

in the limiting case when � D 1
2

the boundary value problem is ill-posed. We will

pay special attention to the case when � is very close to the incompressible limit

and study the robustness of the presented multilevel methods with respect to the

Poisson ratio.

1.2.4 High-Reynolds-number flow

A second class of vector field problems that will be subject to our considerations in

Chapter 9 is related to the Dirichlet initial-boundary value problem for the Navier–

Stokes equations

@u

@t
C .u � r/u D �rp C 1

Re
r2uC f .x; t / 2 � � .0; T / (1.45a)

r � u D 0 .x; t / 2 � � .0; T / (1.45b)

u D 0 .x; t / 2 � � .0; T / (1.45c)

u D 0 .x; t / 2 � � ¹0º (1.45d)
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where � is a bounded and connected domain in R
d , and � D @�. The linearized

form of equation (1.45a)

@u

@t
� 1

Re
r2uC .w � r/uCrp D f

is called the Oseen equation. Here u denotes the (unknown) velocity field, w is an

(old) approximation of the velocity, p denotes the pressure, f some outer force,

and Re the dimensionless Reynolds number. We assume also that � is such that

the H 2-regularity property holds for the steady Stokes problem

� 1

Re
r2uCrp D f (1.46a)

r � u D 0 in � (1.46b)

u D 0 on �: (1.46c)

Employing a stable time discretization and a mixed finite element discretization

in space the Oseen problem (arising from fixed-point linearization of the Navier–

Stokes problem) results in a saddle-point problem of the form

�
A.wh/ BT

B �C
� �

uh

ph

�
D
�

fh

gh

�
:

Note that the condition number of the coupled matrix depends on a problem pa-

rameter, namely the Reynolds number. High Reynolds numbers result in very

ill-conditioned problems. As it will be shown in Chapter 9, this indefinite problem

can be decoupled into two SPD systems by means of certain projection schemes

and a proper choice of the underlying FE spaces. Then the robustness of the nu-

merical method is achieved by applying robust linear solvers to the decoupled SPD

systems.

1.3 Preliminaries on iterative methods

1.3.1 Stationary methods

Starting with an initial guess x.0/ for the exact solution, an iterative method for

solving (1.32), which we denote as

Ax D b; (1.47)

here, is defined by a sequence of functions . k/k�1 generating a sequence of ap-

proximations .x.k//k�1. That is,

x.k/ D  k.x.0/;x.1/; : : : ;x.k�1/IA;b/ for k � 1: (1.48)
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Definition 1.9 ([5, 116]). 4 If for some integer n > 0,  k is independent of k for

all k � n, then the iterative method (1.48) is said to be stationary. Otherwise it is

nonstationary. If for each k,  k is a linear function of x.0/;x.1/; : : : ;x.k�1/, then

the method is said to be linear. Otherwise it is nonlinear. A stationary method of

the form (1.48) is called of order s, s � n, if for k � n the approximation x.k/

depends on x.k�s/;x.k�sC1/; : : : ;x.k�1/ but not on x.l/ for l < k � s.

In case of a linear stationary iterative method of first order (1.48) can be repre-

sented as

x.k/ D Gx.k�1/ C d; k D 1; 2; 3; : : : ; (1.49)

with an iteration matrix G and a constant vector d.

Classical iterative methods are based on a splitting of A,

A D C � R; (1.50)

where the N�N matrix C, which is also called the preconditioner (or the splitting

matrix), is assumed to be nonsingular.

The basic iteration then is given by

x.k/ D x.k�1/ C C�1
�
b � Ax.k�1/

�
; k D 1; 2; 3; : : : ; (1.51)

or, equivalently,

Cx.k/ D Rx.k�1/ C b; k D 1; 2; 3; : : : : (1.52)

Remark 1.10. If A D LC DC U, where L is the strictly lower and U the strictly

upper triangular part of A, D D diag.A/ the diagonal part, and T D tridiag.A/ the

tridiagonal part of A, then some popular schemes can be represented by: C D I

(Richardson), C D D (Jacobi), C D D C L (Gauss–Seidel), C D T (line Jacobi)

or C D 1
!
.DC !L/; ! ¤ 0 (SOR).

Let e.k/ D x.k/ � x denote the error of the k-th vector iterate x.k/ and r.k/ D
b � Ax.k/ the k-th residual. Then we have

e.k/ D x.k/ � x

D x.k�1/ C C�1
�
b � Ax.k�1/

� � x � C�1 .b � Ax/

D �
I � C�1A

�
e.k�1/ D

�
I � C�1A

�k
e.0/ (1.53)

4In some books a method of order s (in our terminology) is referred to as a method of degree s,

see, e.g., [116].
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and

r.k/ D b � Ax.k/ D b � A
�
x.k�1/ C C�1

�
b � Ax.k�1/

��

D �
I � AC�1

�
r.k�1/ D

�
I � AC�1

�k
r.0/: (1.54)

We may guess from (1.53) and (1.54) that the convergence behavior of the itera-

tion (1.51) will depend on the approximation properties of the preconditioner, i.e.,

the better the matrices AC�1 and C�1A resemble the identity matrix I, the faster

the method will converge. The following necessary and sufficient condition for

convergence in terms of the spectral radius � is a classical result. A proof can be

found in reference [5].

Theorem 1.11 ([5]). The sequence of vectors .x.k//k�1 in (1.52) converges to the

solution of (1.47) for any x.0/ if and only if �.C�1R/ D �.I � C�1A/ < 1:

1.3.2 Polynomial acceleration

The basic iterative method (1.49) can be accelerated by generating a new sequence

of iterates .Qx.n//n�0, using proper linear combinations of the first .n C 1/ basic

iterates x.0/;x.1/; : : : ;x.n/, i.e.,

Qx.n/ D
nX

kD0

�n;kx.k/; n D 0; 1; 2; : : : : (1.55)

Then, if one imposes the condition

nX

kD0

�n;k D 1; n � 0 (1.56)

on the coefficients �n;k , the accelerated iteration is regular in the sense that Qx.n/ D
x for all n � 0 whenever the initial guess x.0/ equals the exact solution x of (1.47).

Denoting the error of Qx.n/ by Qe.n/ D Qx.n/ � x, we obtain from (1.53), (1.55)

and (1.56) the identity

Qe.n/ D
nX

kD0

�n;kx.k/ � x D
nX

kD0

�n;k

�
x.k/ � x

�

D
nX

kD0

�n;ke.k/ D
nX

kD0

�n;kGke.0/

D
nX

kD0

�n;kGk Qe.0/ D Qn.G/Qe.0/; (1.57)
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where Qn.G/ is the matrix polynomial associated with the algebraic polynomial

Qn.x/ D �n;0 C �n;1x C �n;2x
2 C : : :C �n;nx

n: (1.58)

Obviously, (1.56) is equivalent to

Qn.1/ D 1: (1.59)

Definition 1.12. We call any combined algorithm that produces a sequence of ap-

proximations .Qx.n//n�0 a Krylov subspace method or polynomial method if the

n-th error vector Qe.n/ can be written as in (1.57).

Sometimes this procedure is also referred to as a semi-iterative method with

respect to the basic iteration (1.49), see, e.g., [110].

It follows from (1.56)–(1.57) that the errors of the accelerated iterates (for which

from now on we skip again the tilde symbol for the sake of convenience), satisfy

e.n/ D Qn.G/e.0/ D Qn.I � C�1A/e.0/ D Pn.C
�1A/e.0/; (1.60)

where the associated algebraic polynomials Qn.x/ and Pn.x/ D Qn.1 � x/ have

the representation

Qn.x/ D
nY

kD1

.˛kx C 1 � ˛k/;

Pn.x/ D
nY

kD1

.1 � ˛kx/: (1.61)

Hence, the regularity condition (1.59) for Pn.x/, which is Pn.0/ D 1, is fulfilled.

In order to make the accelerated scheme practicable, we aim at minimizing the

(virtual) spectral radius of Pn.C
�1A/. In other words, we look for a polynomial

Pn.x/ of the form (1.61) that minimizes

max
�1�x��N

jPn.x/j: (1.62)

The classical solution to this problem is given in Theorem 1.13 (see, e.g., [5, 110,

116]).

Theorem 1.13. Let …1
n denote the set of polynomials of degree n that take the

value 1 at the origin. For 0 < a < b, the transformed Chebyshev polynomial
QPn.x/ of degree n � 0 associated with the interval Œa; b� is defined by

QPn.x/ D
Tn

�
2x�.bCa/

b�a

�

Tn

�
�.bCa/

b�a

� : (1.63)
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Herein Tn.z/ is the n-th Chebyshev polynomial of the first kind, which can be

obtained via the recursion (see, e.g., [1]):

T0.z/ D 1;

T1.z/ D z;

TnC1.z/ D 2zTn.z/ � Tn�1.z/; n D 1; 2; 3; : : : ; z 2 R: (1.64)

Under these assumptions, we have

max
a�x�b

ˇ̌
ˇ̌Tn

�
2x � .b C a/

b � a
�ˇ̌
ˇ̌ D 1; (1.65)

max
a�x�b

j QPn.x/j D min
Pn2…1

n

max
a�x�b

jPn.x/j; (1.66)

QPn.x/ D
nY

kD1

.1 � ˛kx/ for all x 2 Œa; b�; (1.67)

where ˛k D 2

.b � a/ cos �k C .b C a/
(1.68)

and �k D 2.k C 1/�

2n
:

Proof. Using the trigonometric identity

cos..k C 1/�/ D 2 cos� cos.k�/ � cos..k � 1/�/; �� � � � �;
we deduce

Tn.cos�/ D cos.n�/; �� � � � �:
Therefore,

max
a�x�b

ˇ̌
ˇ̌Tn

�
2x � .b C a/

b � a
�ˇ̌
ˇ̌

D max
�1�z�1

jTn.z/j D max
������

jTn.cos�/j D max
������

j cos.n�/j D 1:

In order to prove (1.66), we assume that there exists a polynomial Pn 2 …1
n that

satisfies

max
a�x�b

jPn.x/j < max
a�x�b

j QPn.x/j:

Consider now

Rn.x/ D Tn

�
2x � .b C a/

b � a
�
� Pn.x/Tn

��.b C a/
b � a

�
;
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which is a polynomial of degree n. Since

max
a�x�b

ˇ̌
ˇ̌Pn.x/Tn

��.b C a/
b � a

�ˇ̌
ˇ̌ < max

a�x�b
j QPn.x/j

ˇ̌
ˇ̌Tn

��.b C a/
b � a

�ˇ̌
ˇ̌ D 1

and

Tn

�
2xi � .b C a/

b � a
�
D .�1/i

for

xi D
.b � a/ cos

�
i�
n

�C .b C a/
2

; i D 0; 1; 2; : : : ; n;

Rn.x/ changes the sign in each interval .xi ; xiC1/. Thus, additionally to the root

x D 0, Rn.x/ has n roots, which is in contradiction to its degree n.

Finally, comparing the roots of
Qn

kD1.1�˛kx/ with those of QPn.x/, and taking

notice of QPn.0/ D 1, it follows that the two polynomials are identical if

1

˛k

D .b � a/�k C .b C a/
2

;

proving (1.67)–(1.68). �

In the next section we will discuss one particular Krylov subspace method,

namely the method of conjugate gradients (CG), and some of its modifications

related to the inclusion of preconditioning techniques.

1.4 Conjugate gradients (CG)

1.4.1 From steepest descent to conjugate gradients

As a starting point, we note that solving the linear system (1.47) and minimizing

the functional �, defined by

�.x/ D 1

2
xT Ax � xT b; (1.69)

are equivalent problems if the matrix A is symmetric and positive definite (SPD).

Under this assumption, �.x/ has the uniquely determined minimum � 1
2
bT A�1b,

attained when x D A�1b.

A simple iterative minimization procedure for the quadratic functional � is the

following one: Given the current approximation x.n�1/, we calculate

r.n�1/ D b � Ax.n�1/ D �r�.x.n�1// (1.70)
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in order to minimize �.x.n�1/ C ˛nr.n�1// with respect to ˛n. Following these

lines, we deduce

˛n D
hr.n�1/; r.n�1/i
hAr.n�1/; r.n�1/i

: (1.71)

The vector x.n�1/ is then actualized according to

x.n/ D x.n�1/ C ˛nr.n�1/; n D 1; 2; 3; : : : : (1.72)

Because r.n�1/ is the negative gradient of � at x.n�1/, the iteration (1.71)–(1.72)

is referred to as the method of steepest descent. From

ke.n/k2
A
D kr.n/k2

A�1 D kr.n�1/ � ˛nAr.n�1/k2
A�1

D hA�1r.n�1/ � ˛nr.n�1/; r.n�1/ � ˛nAr.n�1/i
D hA�1r.n�1/; r.n�1/i � 2˛nhr.n�1/; r.n�1/i C ˛2

nhr.n�1/;Ar.n�1/i

D hA�1r.n�1/; r.n�1/i �
hr.n�1/; r.n�1/i2
hr.n�1/;Ar.n�1/i

D kr.n�1/k2
A�1

 
1 � hr.n�1/; r.n�1/i2
hA�1r.n�1/; r.n�1/ihr.n�1/;Ar.n�1/i

!

� kr.n�1/k2
A�1

 
1 � 1

�N .A/
�1.A/

!
D ke.n�1/k2

A

�
1 � 1

�.A/

�
(1.73)

we conclude its global convergence.

The bound (1.73) can be improved by expanding the residuals into linear com-

binations of the eigenvectors ¹i W 1 � i � N º of A. Taking into account

hr.n�1/; r.n�1/i2
hA�1r.n�1/; r.n�1/ihr.n�1/;Ar.n�1/i

� min
c6D0

hPi ci i ;
P

i ci i i2
hA�1

P
i ci i ;

P
i ci i ih

P
i ci i ;A

P
i ci i i D min

Qc6D0

P
i Qci

P
i QciP

i
Qci

�i

P
i Qci�i

and using Lagrange’s method to calculate maxQc6D0

P
i

Qci

�i

P
i Qci�i ; subject to the

constraint
P

i Qci D 1, the following sharp bound can be established:

ke.n/k2
A
� ke.n�1/k2

A

�
1 � 4

2C �.A/C 1=�.A/

�
: (1.74)

Unfortunately, the steepest descent method makes slow progress, especially if

the gradients occurring in (1.72) have very similar directions. A way to overcome
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this difficulty is to demand the search directions to be mutually orthogonal with

respect to the (energy) inner product h�; �iA, that is,

hp.i/;p.j /iA D hp.i/;Ap.j /i D pT
.i/Ap.j / D 0 for i 6D j: (1.75)

The conjugate gradient algorithm, stated below, has this essential feature.

Algorithm 1.14 (Conjugate Gradients, see, e.g., [63]).

n D 0I r.0/ D b � Ax.0/I
while (termination criterion is false) do

n D nC 1

if .n D 1/ then

p.1/ D r.0/ (1.76)

else

ˇn D �
hr.n�1/;p.n�1/iA
hp.n�1/;p.n�1/iA

(1.77)

p.n/ D r.n�1/ C ˇnp.n�1/ (1.78)

end

˛n D
hr.n�1/; r.n�1/i
hp.n/;p.n/iA

(1.79)

x.n/ D x.n�1/ C ˛np.n/ (1.80)

r.n/ D b � Ax.n/ (1.81)

end

1.4.2 Convergence analysis of the CG method

Let us start the analysis of the CG method with proving the following fundamental

lemma characterizing the Krylov subspaces induced by Algorithm 1.14.

Lemma 1.15. After n iterations of the conjugate gradient method we have

span¹p.1/;p.2/; : : : ;p.n/º D span¹r.0/; r.1/; : : : ; r.n�1/º (1.82)

D span¹r.0/;Ar.0/; : : : ;A
n�1r.0/º

hr.i/; r.j /i D 0 for i 6D j; 0 � i; j � n � 1; (1.83)

hp.i/;p.j /iA D 0 for i 6D j; 1 � i; j � n: (1.84)

Proof. The proof is based on mathematical induction. Using the fact p.1/ D r.0/,

one can easily see that the lemma holds for n D 1 and n D 2. Suppose now, that

all three statements (1.82)–(1.84) are true for n D k, k � 2.
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In particular,

p.k/ 2 span¹r.0/;Ar.0/; : : : ;A
k�1r.0/º:

Writing r.k/ in the form

r.k/ D b � Ax.k/ D b � Ax.k�1/ � ˛kAp.k/ D r.k�1/ � ˛kAp.k/ (1.85)

yields

r.k/ 2 span¹r.0/;Ar.0/; : : : ;A
kr.0/º:

On the other hand, the induction hypothesis implies

Ak�1r.0/ 2 span¹p.1/;p.2/; : : : ;p.k/º;

which together with (1.85) gives

Akr.0/ 2 span¹r.0/; r.1/; : : : ; r.k/º:

Hence, span¹r.0/; r.1/; : : : ; r.k/º D span¹r.0/;Ar.0/; : : : ;A
kr.0/º. From (1.78) we

conclude in a similar way

span¹p.1/;p.2/; : : : ;p.kC1/º D span¹r.0/; r.1/; : : : ; r.k/º;

completing the induction step for (1.82).

Next we prove hr.k/; r.j /i D 0 for j < k. For j D k � 1 we find

hr.k/; r.k�1/i D hr.k�1/; r.k�1/i � ˛khp.k/; r.k�1/iA

D hr.k�1/; r.k�1/i
�

1 � hp.k/; r.k�1/iA
hp.k/;p.k/iA

�

D hr.k�1/; r.k�1/i
�

1 � hp.k/; r.k�1/iA
hp.k/; r.k�1/iA C ˇkhp.k/;p.k�1/iA

�

D 0;

and, similarly,

hr.k/; r.j /i D hr.k�1/; r.j /i �
hr.k�1/; r.k�1/i
hp.k/;p.k/iA

hp.k/; r.j /iA

D �hr.k�1/; r.k�1/i
hp.k/;p.k/iA

hp.k/;

j C1X

iD1

�ip.i/iA

D 0
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for j < k�1. Thus, (1.82) and (1.83) are established and we may use (1.83) in the

induction step for (1.84). Let us remind the induction assumption hp.i/;p.j /iA D 0

for i 6D j; 1 � i; j � k. Then

hp.kC1/;p.k/iA D hr.k/ C ˇkC1p.k/;p.k/iA
D hr.k/;p.k/iA � hr.k/;p.k/iA D 0:

Finally, since

hp.kC1/;p.j /iA D hr.k/;p.j /iA C ˇkC1hp.k/;p.j /iA
D hr.k/;Ap.j /i D

1

j̨

�hr.k/; r.j �1/i � hr.k/; r.j /i
� D 0

for 1 � j < k, the proof of the lemma is completed. �

An elementary computation shows that
@�.x.n//

@˛n
D 0 implies

˛n D
hr.n�1/;p.n/i
hp.n/;p.n/iA

D hr.n�1/; r.n�1/i
hp.n/;p.n/iA

(1.86)

so that ˛n defined by (1.79) minimizes � along the direction p.n/ passing through

x.n�1/.

The following Theorem 1.16 tells us that in exact arithmetic the CG methods

yields the exact solution of (1.47) after at most N iteration steps, where N is the

dimension of the linear system.

Theorem 1.16. Consider Algorithm 1.14 with the termination criterion r.n/ D 0.

Then, (in exact arithmetic) we have Ax.n/ D b for some n � N .

Proof. The theorem follows from Lemma 1.15, because there exist at most N

mutually orthogonal nonzero vectors r.n/, n � 0 . �

However, this result is only of theoretical interest when using the CG method as

an iterative solver for very large systems of equations. That is why we will now

study the convergence behavior of Algorithm 1.14.

First of all, the recurrence (1.80) can be represented as

x.n/ � x.0/ D
nX

iD1

˛ip.i/: (1.87)
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Next, we observe that

hr.j �1/;p.j /i D hx � x.j �1/;p.j /iA D hx � x.0/ �
j �1X

iD1

˛ip.i/;p.j /iA

D hx � x.0/;p.j /iA for 1 � j � n:
Therefore,

j̨ D
hr.j �1/;p.j /i
hp.j /;p.j /iA

D hx � x.0/;p.j /iA
hp.j /;p.j /iA

and thus

hx.n/ � x.0/;p.j /iA D j̨ hp.j /;p.j /iA D hx � x.0/;p.j /iA for 1 � j � n:
In other words, x.n/�x.0/ is the projection of the initial error with respect to h�; �iA
onto the space Wn spanned by the first n search directions p.1/;p.2/; : : : ;p.n/. On

account of this fact,

ke.n/kA
D kx � x.0/ C x.0/ � x.n/kA

(1.88)

� ke.0/ � qk
A
8q 2 Wn D span¹p.1/;p.2/; : : : ;p.n/º:

Remark 1.17. The linear vector spaces R
N and Wn � R

N are Hilbert spaces for

the inner product h�; �iA. This implies that for any x0 2 R
N there exists a uniquely

determined element q0 2 Wn providing the best approximation of x0 in the norm

induced by the inner product. The vector q0 is the projection of x0 onto Wn with

respect to this inner product.

Recalling Lemma 1.15 we notice that

Wn D span¹r.0/; : : : ;A
n�1r.0/º

D span¹A.x � x.0//; : : : ;A
n.x � x.0//º:

Remark 1.18. The spaces Wn are called the Krylov subspaces related to the CG

method.

Finally, from (1.88) and Theorem 1.13 we conclude the following error estimate.

Theorem 1.19. The error e.n/ D x.n/ � x of the n-th approximation vector x.n/

computed via the CG method (Algorithm 1.14) satisfies

ke.n/kA
D kx � x.n/kA

D min
Pn2…1

n

kPn.A/.x � x.0//kA

� min
Pn2…1

n

max
1�i�N

jPn.�i /jkx � x.0/kA

� �. QPn.A//ke.0/kA
D 2�n

1C �2n
ke.0/kA

(1.89)
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where QPn is the n-th shifted Chebyshev polynomial, associated with the interval

Œ�1.A/; �N .A/�, and � is defined by � D
p

�.A/�1p
�.A/C1

.

Proof. In view of (1.60) the bound (1.89) follows by calculating the virtual spectral

radius of the matrix polynomial (1.67)–(1.68), which is given by

�. QPn.A// D 1ˇ̌
ˇTn

�
�.�N C�1/

�N ��1

�ˇ̌
ˇ
D 2�n

1C �2n
; (1.90)

where

� D
p
� � 1p
� C 1

D
1 � 1p

�

1C 1p
�

� 1 � 2p
�

and � D �.A/: (1.91)

�

1.4.3 Preconditioned conjugate gradient (PCG) method

The preconditioned conjugate gradient (PCG) method has established itself as the

method of choice for iteratively solving large sparse symmetric positive definite

(SPD) systems of linear algebraic equations. It is obtained by applying Algo-

rithm 1.14 to the transformed system5

QAQx D Qb; (1.92)

where QA D C� 1
2 AC� 1

2 ; Qx D C
1
2 x and Qb D C� 1

2 b. The decomposition C D C
1
2 C

1
2

of the preconditioner is not needed explicitly in the algorithm6 (see, e.g., [63]), so

that it is possible to work with the matrix C itself.

Algorithm 1.20 works with the pseudoresiduals z.n/ D C�1r.n/ instead of r.n/,

thereby minimizing the quadratic functional

�.Qx/ D 1

2
QxT QAQx � QxT Qb; (1.93)

i.e., solving the system C� 1
2 Ax D C� 1

2 b, which is consistent with Ax D b. Thus,

the preconditioned CG method will converge towards the exact solution of (1.47)

as well.

5Under the assumption that C is symmetric and positive definite, the preconditioned system ma-

trix QA is SPD as well.
6Its steps can be rewritten avoiding an explicit reference to the matrix C

1
2 .
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Algorithm 1.20 (Preconditioned Conjugate Gradients, see, e.g., [25]).

n D 0I r.0/ D b � Ax.0/I
while (termination criterion is false) do

solve Cz.n/ D r.n/ (1.94)

n D nC 1

n�1 D hr.n�1/; z.n�1/i
if .n D 1/ then

p.1/ D z.0/ (1.95)

else

ˇn D n�1

n�2

(1.96)

p.n/ D z.n�1/ C ˇnp.n�1/ (1.97)

end

q.n/ D Ap.n/ (1.98)

˛n D n�1

hp.n/;q.n/i
(1.99)

x.n/ D x.n�1/ C ˛np.n/ (1.100)

r.n/ D r.n�1/ � ˛nq.n/ (1.101)

end

Remark 1.21. The Krylov subspaces involved in Algorithm 1.20 are generated by

the preconditioned matrix, that is,

W ?
n D span¹r.0/; .AC�1/r.0/; : : : ; .AC�1/n�1r.0/º: (1.102)

Similar arguments as in the derivation of Theorem 1.19 result in the same (vir-

tual) rate of convergence except that the bound (1.89) now involves the spectral

condition number of the preconditioned matrix, i.e., � D �.C�1A/.

Hence, the PCG method combines several favorable properties, which are sum-

marized below:

(a) It is optimal in the sense of minimizing in the n-th step the A-norm of the error

e.n/ D e.0/�q?, where q? denotes an arbitrary element of the related Krylov

space W ?
n , cf. (1.88).

(b) Its rate of convergence can be improved by appropriate preconditioning.

(c) The algorithm is free from any parameters to be estimated.

(d) The memory requirements for an implementation are low due to the short

(three-term) recurrences: only two sparse matrices (including the precon-
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ditioner C ) and five vectors have to be stored when implementing Algo-

rithm 1.20.

(e) The number of arithmetic operations per iteration is low: Algorithm 1.20 in-

volves one matrix-vector product, three vector updates (SAXPYs) and two

inner products (SDOTs) per iteration.

A more detailed convergence analysis of the PCG method that takes into account

the eigenvalue distribution of the preconditioned matrix sometimes yields sharper

estimates, for instance, in the case of isolated or clustered eigenvalues (see, e.g.,

[12, 13]). For a survey of iterative solution methods we refer the reader to [103].

1.4.4 Generalized conjugate gradient (GCG) method

In the following we will consider a generalization of the PCG method, known as

generalized conjugate gradient (GCG) algorithm that is well adapted for so-called

variable-step preconditioning, see e.g., [4, 18, 19, 96]. In this case the precondi-

tioner is no longer given by a linear mapping (an SPD matrix) but it can be defined

via an iterative process itself. We will come back to this method in the next chap-

ter in order to formulate and analyze a powerful combined algorithm known as

nonlinear algebraic multilevel iteration (nonlinear AMLI) method.

The main difference to the standard PCG method is that the option of a more

general preconditioner requires an explicit orthogonalization of the search direc-

tions p.n/. Let MŒ�� denote the preconditioner, i.e., a mapping from R
N to R

N ,

which can also be nonlinear. Hence, z.n/ D M�1Œr.n/� replaces the step (1.94)

in Algorithm 1.20. Then, assuming that A is SPD the n-th search direction is or-

thonormalized with respect to the A-inner product h�; A �i against the mn previous

directions, i.e.,

p.n/ D z.n�1/ �
n�1X

j Dn�mn

hz.n�1/;Ap.j /i
hp.j /;Ap.j /i

p.j / (1.103)

where ¹mnºnD1;2;::: is a sequence of truncation parameters. The untruncated ver-

sion corresponds tomn D n� 1 for all n, whereasmn D min.n� 1; mmax/ results

in a pure truncation. The advised truncation strategy we are using (if not men-

tioned otherwise) is to restart the (untruncated) algorithm at everymmax iterations,

which corresponds to the choice mn D mod.n � 1; mmax/.
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Algorithm 1.22 (Generalized Conjugate Gradients, see, e.g., [19, 96]).

n D 0I r.0/ D b � Ax.0/I
while (termination criterion is false) do

z.n/ DM�1Œr.n/� (1.104)

n D nC 1

p.n/ D z.n�1/

q.n/ D Ap.n/ (1.105)

for j D n �mn to n � 1 (1.106)

ˇ D hq.n/;p.j /i
j

p.n/ D p.n/ � ˇp.j /

q.n/ D q.n/ � ˇq.j /

end

n D hp.n/;q.n/i
˛n D

hr.n/;p.n/i
n

x.n/ D x.n�1/ C ˛np.n/

r.n/ D r.n�1/ � ˛nq.n/

end

Note that the matrix vector products required for (1.103) are hidden in the step

(1.105) and thus they do not appear explicitly in the loop (1.106), i.e., performing

the step (1.105) before entering (1.106) results in A-orthogonal search directions.

This particular construction is a natural choice because for a fixed linear mapping

M�1Œ�� D C�1, i.e., for an SPD preconditioner C , the above (untruncated) GCG

method reduces to the standard preconditioned CG algorithm. Moreover, if 0 �
mn � mn�1 C 1 for all n, it can be shown ([5, 18]) that

hp.k/; Ap.j /i D 0 8j; k such that n �mn � j < k < n;
hr.k/;p.j /i D 0 8j; k such that n �mn � j < k � n

and that the following optimality property holds:

kx � x.n/kA D min
p2span¹p.n�mn/;:::;p.n�1/º

kx � x.n�mn/ � pkA: (1.107)

However, it should be mentioned that it is possible to choose different inner

products (not only h�; A �i as described before) in the orthogonalization procedure,
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e.g., hA �; A �i or h�; �i, cf. [18]. This makes the GCG algorithm also applicable to

indefinite problems thus providing an alternative to the well-known Uzawa algo-

rithm [82].

Regarding the convergence of the GCG iteration a very general result can be

found in reference [4]. A more specific but improved bound on the local decrease

of the error in GCG-type iterations holds true when the nonlinear preconditioner

becomes close to a linear operator, see [96].7 Let us recall this result from refer-

ence [96] that will be used later in the analysis of the nonlinear algebraic multilevel

iteration method.

Theorem 1.23 ([96]). Let A, C be SPD matrices of sizeN�N andM�1Œ�� a map-

ping from R
N to R

N . Let d, x.0/ be vectors of R
N and let r.n/, x.n/ be the

sequences of iterates and residuals generated by applying the GCG (FCG) algo-

rithm with preconditioner MŒ�� to the linear system Ax D d. If for any n,

kM�1Œr.n/� � C�1r.n/kC

kC�1r.n/kC

� �n < 1

then

kx � x.nC1/kA

kx � x.n/kA

�
s

1 � 4�.1 � �n/2

.� C �2
n.� � 1/C .1 � �n/2/2

where � D �.C�1A/.

7where the studied variant of the GCG algorithm is referred to as Flexible Conjugate Gradients

(FCG).
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The material selected in this chapter follows the spirit of the AMLI methods as

presented originally in [16, 17]. At the same time, some needed generalizations are

made to support the cases of nonconforming FEM and/or discontinuous Galerkin

discretizations as well as the nonlinear AMLI.

2.1 Block-factorization: Schur complement

Consider now a general matrix A, which is assumed to be symmetric positive

definite and partitioned in a two-by-two block form

A D
�
A11 A12

A21 A22

�
: (2.1)

The following LU factorization holds true:

A D
�
A11

A21 S

� �
I1 A�1

11 A12

I2

�
; (2.2)

where S stands for the Schur complement, i.e., S D A22 � A21A
�1
11 A12: Various

preconditioning techniques are based on approximations of (2.2).

Lemma 2.1. Let A be a symmetric positive definite matrix, x D Œ x1
x2
� be a block-

vector corresponding to the two-by-two representation (2.1) of A , and x2 be fixed.

Then, the following extremal property of the Schur complement holds:

xT
2 Sx2 D min

x1

xTAx: (2.3)

Proof.

xTAx D ŒxT
1 xT

2 �

�
A11 A12

A21 A22

� �
x1

x2

�

D xT
1 A11x1 C xT

1 A12x2 C xT
2 A21x1 C xT

2 A22x2

C xT
2 A21A

�1
11 A12x2 � xT

2 A21A
�1
11 A12x2

D xT
2 Sx2 C

�
x1 C A�1

11 A12x2

�T
A11

�
x1 C A�1

11 A12x2

�
:
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Since A is symmetric positive definite, the same obviously holds for A11, and

therefore

xTAx � xT
2 Sx2: (2.4)

The equality in (2.4) is reached for

x1 D �A�1
11 A12xT

2

which completes the proof. �

Corollary 2.2. The Schur complement S of any symmetric and positive definite

matrix A is also symmetric and positive definite.

The above statement follows directly from the definition of S and the rela-

tion (2.3).

The following alternative forms of block two-by-two factorizations are also used

in some cases:

1. LDLT block-factorization:

A D
�

I1

A21A
�1
11 I2

� �
A11

S

� �
I1 A�1

11 A
T
21

I2

�
:

2. LLT block-factorization:

A D
�
L11

L21 L22

� �
L11 LT

21

L22;

�
;

where

L11 D A1=2
11 ;

L21 D A21A
�1=2
11 ;

L2
22 D A22 � A21A

�1
11 A12; i.e., L22 D S1=2:

The considered two-by-two block factorizations provide a general framework

for the construction of preconditioners. In this context, it is important to note

that the Schur complement of a given sparse matrix is not sparse in general. This

leads to the problem how to construct a proper sparse approximation of S . Some

advanced answers to this question are given in the present book.

The efficiency of the preconditioners based on block factorization strongly de-

pends on the coupling of the partitioning (2.1). It is characterized by the cor-

responding constant in the strengthened Cauchy–Bunyakowski–Schwarz (CBS)

inequality.
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2.2 Local estimates of the CBS constant

Let W D V1 � V2 be a splitting of the vector space, which is consistent with

the partitioning (2.1). We will use also the notations vi 2 Vi , i D 1; 2, and

W1 D ¹v D ŒvT
1 ; 0

T �T º, W2 D ¹v D Œ0T ; vT
2 �

T º.
The CBS constant measures the strength of the off-diagonal blocks of A12 D

AT
21 in relation to the diagonal blocks and can be defined as the minimal  satisfy-

ing the strengthened Cauchy–Bunyakowski–Schwarz inequality

jvT
1 A12v2j � 

®
vT

1 A11v1 vT
2 A22v2

¯1=2
: (2.5)

The following three lemmas (see, e.g., [5, 53]) form the theoretical background

of the CBS constant estimates.

Lemma 2.3. LetA be symmetric positive semidefinite,A11 be positive definite and

 be the smallest constant satisfying (2.5). Then:

(a)  � 1.

(b)  D 1 if there exists w D Œ v1
v2
� 2 ker.A/ for which v2 62 ker.A22/.

(c)  < 1 if for any w D Œ v1
v2
� 2 ker.A/ it holds that v2 2 ker.A22/.

(d) Under the assumption of (c),

 D sup
vi 2Vi nker.Aii /; iD1;2

v1
TA12v2

.v1
TA11v1 v2

TA22v2/
1=2
:

Proof. Let w D Œ v1
v2
� where v1; v2 ¤ 0. By assumption, the matrix A is symmetric

positive semidefinite, i.e.,

wTAw D vT
1 A11v1 C vT

2 A22v2 C 2v1
TA12v2 � 0: (2.6)

Let us denote by .v1; v2/ the CBS constant corresponding to the vectors v1; v2.

It is readily seen that .v1; v2/ D .˛v1; ˇv2/ for any ˛; ˇ ¤ 0. Consequently,

we can always assume that the vectors v1; v2 are properly scaled, which does not

change the value of  .

To prove (a), we consider first the case v2
TA22v2 ¤ 0. The pivot block A11 is

positive definite by assumption, that is v1
TA11v1 > 0, and we can scale v1 such

that v1
TA11v1 D v2

TA22v2. After substitution of this equality in (2.6) we get

jv1
TA12v2j � v1

TA11v1;

and therefore .v1; v2/ � 1.
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Let us continue with the alternative case v2
TA22v2 D 0, and let v1 D � Ov1. Then

� OvT
1 A11 Ov1 C 2 OvT

1 A12v2 � 0

for any � > 0, which obviously holds if and only if

OvT
1 A12v2 � 0:

If we assume that A12v2 ¤ 0, and if we choose Ov1 D �A12v2, we obtain the

contradiction

�kA12v2k > 0:

Therefore

v2
TA22v2 D 0; i.e., A12v2 D 0: (2.7)

In this case the CBS inequality is satisfied for any  which completes the proof of

statement (a).

Now, let us assume that Œ v1
v2
� 2 ker.A/; such that v2 62 ker.A22/. As in the proof

of (a), we scale v1 to get v1
TA11v1 D v2

TA22v2, substitute in (2.6) and obtain

�v1
TA12v2 D v1

TA11v1:

Therefore .v1; v2/ D 1 which is the statement of (b).

Let the condition from (c) be satisfied and let us consider the case Aw D 0

which leads to A22v2 D 0. Then A12v2 D 0 (see (2.7)) and therefore A11v1 D 0

(see (2.6) in the case of equality). Since A11 is symmetric positive definite, we

obtain v1 D 0. But this case is obviously not interesting for the analysis of the CBS

constant because (2.5) is satisfied for any  . In the case Aw ¤ 0, the inequality

(2.6) is strict, all arguments in the proof of (a) hold with strict inequalities, and the

result is  < 1 which completes the proof of (c). At the end, the statement (d)

follows directly from the definition of  . �

Lemma 2.4. Let A be a symmetric positive semidefinite matrix satisfying condi-

tion (c) from Lemma 2.3. Then

(a)

2 D sup
v22V2nker.A22/

v2
TA21A

�1
11 A12v2

v2
TA22v2

: (2.8)

(b) for any v2 2 V2 n ker.A22/

1 � 2 � v2
T Sv2

vT
2 A22v2

< 1; (2.9)

where the left-hand side inequality is sharp and the right-hand side inequality

is sharp if ker.A12/ ¤ ¹0º.
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Proof. Equality (d) from the previous lemma is applied to get

 D sup
vi 2Vi nker.Aii /; iD1;2

v1
TA12v2

¹v1
TA11v1 v2

TA22v2º1=2

D sup
v1¤0; v22V2nker.A22/

v1
TA

�1=2
11 A12v2

¹v1
T v1 v2

TA22v2º1=2
;

where the supremum is reached for v1 D A�1=2
11 A12v2 and therefore

 D
´

sup
v22V2nker.A22/

v2
TA21A

�1
11 A12v2

v2
TA22v2

µ1=2

;

which is exactly (a). The inequalities (b) follow directly from (a) and the definition

of the Schur complement S D A22 � A21A
�1
11 A12. �

Now, we are ready to show how the CBS constant can be estimated locally (see

also [83]). Let us assume that

A D
X

E2E

RT
EAERE ; v D

X

E2E

RT
E vE ; (2.10)

where AE are symmetric positive semidefinite local matrices, E is some index set,

and the summation is understood as assembling, i.e., the matrices RT
E represent

the natural inclusions. The global splitting naturally induces the two-by-two block

representation of the local matrix AE and the related vector vE , namely,

AE D
�
AE W11 AE W12

AE W21 AE W22

�
; vE D

�
vE W1
vE W2

�
: (2.11)

Lemma 2.5. Let the local matrices AE , E 2 E , satisfy the condition (c) from

Lemma 2.3. Let also VE Wi , i D 1; 2, be the natural restriction of Vi induced by the

local matrix AE . Then

 � max
E2E

E < 1 (2.12)

where E stands for the local CBS constant corresponding to AE , that is

2
E D sup

vEW22VEW2nker.AEW22/

vT
E W2AE W21A

�1
E W11

AE W12vE W2
vT

E W2AE W22vE W2
: (2.13)



34 Chapter 2 Algebraic multilevel iteration methods

Proof. It is important to note, that the assumption (c) from Lemma 2.3 ensures the

strong estimates E < 1. Then,

ˇ̌
vT

1 A12v2

ˇ̌ D
ˇ̌
ˇ̌
ˇ
X

E2E

vT
E W1AE W12vE W2

ˇ̌
ˇ̌
ˇ �

X

E2E

ˇ̌
vT

E W1AE W12vE W2
ˇ̌

�
X

E2E

E

q
vT

E W1AE W11vE W1
q

vT
E W2AE W22vE W2

� max
E2E

E

X

E2E

q
vT

E W1AE W11vE W1
q

vT
E W2AE W22vE W2

� max
E2E

E

sX

E2E

vT
E W1AE W11vE W1

sX

E2E

vT
E W2AE W22vE W2

D max
E2E

E

q
vT

1 A11v1

q
vT

2 A22v2

which completes the proof. �

2.3 Two-level preconditioning methods

2.3.1 Algebraic two-level methods

We consider now the additive (MA) and the multiplicative (MF ) two-level pre-

conditioners in a purely algebraic setting, starting with the following simplified

variants:

MA D
�
A11

A22

�
; (2.14)

MF D
�
A11

A21 A22

� �
I A�1

11 A12

I

�
: (2.15)

In other words, the additive preconditionerMA consists of the block-diagonal part

of the original matrix, while the multiplicative preconditioner MF is obtained by

substituting with A22 the Schur complement S in the exact factorization (2.2).

The relative condition number of the introduced preconditioners can be esti-

mated in terms of the CBS constant.

Theorem 2.6. Let w D Œ v1
v2
� be a block-vector which is consistent with the two-

by-two representation of A, see (2.1). Then

.1 � / �vT
1 A11v1 C vT

2 A22v2

� � wTAw

� .1C / �vT
1 A11v1 C vT

2 A22v2

�
; (2.16)
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and therefore

.1 � /wTMAw � wTAw � .1C /wTMAw : (2.17)

Proof. The definition of the CBS constant (2.5) is combined with the inequality

2ab � a2 C b2 to get the right hand side of (2.16):

wTAw D vT
1 A11v1 C vT

2 A22v2 C vT
2 A21v1 C vT

1 A12v2

� vT
1 A11v1 C vT

2 A22v2 C 2

q
vT

1 A11v1

q
vT

2 A22v2

� .1C / �vT
1 A11v1 C vT

2 A22v2

�
:

Similarly, the inequality �2ab � �a2 � b2 is used to finalize the proof, namely

wTAw D vT
1 A11v1 C vT

2 A22v2 C vT
2 A21v1 C vT

1 A12v2

� vT
1 A11v1 C vT

2 A22v2 � 2

q
vT

1 A11v1

q
vT

2 A22v2

� .1 � / �vT
1 A11v1 C vT

2 A22v2

�
: �

Theorem 2.7. The following estimates hold for the multiplicative two-level pre-

conditioner

.1 � 2/wTMF w � wTAw � wTMF w : (2.18)

Proof. The statement follows directly from (2.9) and the relations

A D
�

I

A21A
�1
11 I

� �
A11

S

� �
I A�1

11 A12

I

�

and

MF D
�

I

A21A
�1
11 I

� �
A11

A22

� �
I A�1

11 A12

I

�
:

Then, the following chain of relations proves the left hand side of (2.18)

wTAw D OwT

�
A11

S

�
Ow

D OvT
1 A11 Ov1 C OvT

2 S Ov2

� OvT
1 A11 Ov1 C .1 � 2/ OvT

2 A22 Ov2

� .1 � 2/ OwT

�
A11

A22

�
Ow

D .1 � 2/wTMF w ;
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where w D Œ v1
v2
� and Ow D

h
Ov1

Ov2

i
D
h

I A�1
11 A12

I

i
w . The right hand side of (2.18)

follows similarly, applying the right hand side of (2.9). �

Corollary 2.8. The results of the last two theorems, namely (2.17) and (2.18), are

summarized in the following relative condition number estimates of the considered

additive and multiplicative two-level preconditioners

�
�
M�1

A A
� � 1C 

1 �  ; (2.19)

�
�
M�1

F A
� � 1

1 � 2
: (2.20)

We end this section with a brief presentation of a more general setting of the

basic two-level preconditioners, which are defined under the assumptions

˛1A11 � C11 � ˇ1A11 (2.21)

and

˛2A22 � C22 � ˇ2A22 (2.22)

respectively

Q̨2A22 � C22 C A21C
�1
11 A12 � Q̌2A22; (2.23)

where we assume that the approximations C11 and C22 are scaled such that

ˇ2 � ˇ1 (2.24)

and

2 < ˛1 � 1 � ˇ1; (2.25)

2 � Q̨2 � 1 � Q̌2: (2.26)

The inequalities (2.21)–(2.23) are in a positive semidefinite sense where Ci i are

symmetric and positive definite matrices.

(a) The generalized additive preconditioner is introduced as

MA D
�
C11 0

0 C22

�
: (2.27)

Then, under the assumptions (2.21), (2.22) and (2.24), for ~A D ~.M�1
A A/,

we have

~A � ˇ1

˛1.1 � 2/

8
<
:

1

2

�
1C ˛1

˛2

�
C
s�

1

2

�
1 � ˛1

˛2

��2

C ˛1

˛2

2

9
=
;

�
8
<
:

1

2

�
1C ˇ2

ˇ1

�
C
s�

1

2

�
1 � ˇ2

ˇ1

��2

C ˇ2

ˇ1

2

9
=
; : (2.28)
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(b) The generalized multiplicative preconditioner (or of block Gauss–Seidel form)

is then defined by

MF D
�
C11 0

A21 C22

� �
I1 C�1

11 A12

0 I2

�
: (2.29)

Under the assumptions (2.21), (2.23), (2.25), and (2.26) the relative condition

number ~F D ~.M�1
F A/ satisfies the estimate

~F �
ˇ1 C Q̌2 � 22 C

q
.ˇ1 � Q̌2/2 C 4.1 � ˇ1/.1 � Q̌2/2

˛1 C Q̨2 � 22 C
p
.˛1 � Q̨2/2 C 4.1 � ˛1/.1 � Q̨2/2

: (2.30)

Detailed proofs of (2.28) and (2.30), and an analysis of other versions of con-

structing MA and MF are found, for instance, in [5] and [11].

2.3.2 Two-level preconditioners for FEM systems

The classical theory of the optimal order two-level preconditioners for FEM sys-

tems was first developed in [11, 24], see also [6]. The crucial question is how to

construct a two-by-two splitting of the stiffness matrix such that the related CBS

constant is far away from the upper limit of one.

The general framework requires to define two nested finite element spaces VH �
Vh, that correspond to two consecutive (regular) mesh refinements. The well-

studied case of conforming linear finite elements is the starting point in the theory

of two-level and multilevel methods. Let TH and Th be two successive mesh

refinements of the domain �, which correspond to VH and Vh. Let ¹�.k/
H ; k D

1; 2; : : : ; NH º and ¹�.k/

h
; k D 1; 2; : : : ; Nhº be the standard finite element nodal

basis functions. We split the meshpoints Nh from Th into two groups: the first

group contains the nodes NH from TH and the second one consists of the rest,

where the latter are the newly added node-points NhnH from ThnTH . Next we

define the so-called hierarchical basis functions

¹ Q�.k/

h
; k D 1; 2; : : : ; Nhº D ¹�.l/

H on TH º [ ¹�.m/

h
on ThnTH º: (2.31)

Let then QAh be the corresponding hierarchical stiffness matrix . Under the split-

ting (2.31) both matrices Ah and QAh admit in a natural way a two-by-two block

structure

Ah D
�
A11 A12

A21 A22

� ºNhnH

ºNH
(2.32)

and

QAh D
� QA11

QA12

QA21
QA22

�
D
�
A11

QA12

QA21 AH

� ºNhnH

ºNH
: (2.33)
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It is well known that for the considered linear conforming finite elements, the

transformation matrix which relates the nodal point vectors for the standard and

the hierarchical basis functions has the form Jh D
�

I J12

0 I

�
, i.e.,

v D
�
v1

v2

�
D Jh

� Qv1

Qv2

�
;

v1 D Qv1 C J12 Qv2

v2 D Qv2
:

Clearly, the hierarchical stiffness matrix QAh is more dense than Ah and therefore

its action on a vector is computationally more expensive. The transformation ma-

trix Jh, however, enables us in practical implementations to work with Ah, since
QAh D J T

h
AhJh. It is also important to note that the transformation of the nodal

basis matrix Ah to the hierarchical basis matrix QAh does not change the Schur

complement, i.e.,

S D A22 � A21A
�1
11 A12 D QA22 � QA21

QA�1
11
QA12 D QS: (2.34)

It is easy to check that in the case of conforming linear finite elements the hier-

archical two-level splitting (2.33) satisfies the conditions of Lemma 2.5. The index

set E consists of the standard macroelements E 2 Th, and AE are the macroele-

ment stiffness matrices. Then Lemma 2.4 implies the following simple rule to

compute the local CBS constant:

2
E D 1 � �1; (2.35)

where �1 is the minimal eigenvalue of the generalized eigenproblem

QSE vE W2 D �AevE W2; vE W2 ¤ c; (2.36)

cT D .c; c; : : : ; c/, c is a real constant. Here, the macroelement E 2 Th is a

(usually uniform) refinement of the current coarser grid element e 2 TH .

In the case of nonconforming finite elements, the local analysis follows the same

scheme, where the definition of a two-level hierarchical basis is a key problem (see,

e.g., [31, 60, 90]). The techniques in the recently studied cases of discontinuous

Galerkin (DG) methods (see [81, 83]) are more specific, see Chapter 8. The ex-

amples there well illustrate the potential for novel applications provided by the

generalized setting of Lemma 2.5. What is important to note is the leading general

principle of local analysis, which will be demonstrated in the next chapters for

various advanced nonconforming FE and DG discretizations.

2.4 Linear AMLI methods

In what follows we will denote byM .k/ a preconditioner for a finite element (stiff-

ness) matrix A.k/ corresponding to a k times refined mesh .0 � k � `/. We will
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also make use of the corresponding k-th level hierarchical matrix QA.k/, which is

related to A.k/ via a two-level hierarchical basis (HB) transformation J .k/, i.e.,

QA.k/ D .J .k//TA.k/J .k/: (2.37)

By A
.k/
ij and QA.k/

ij , 1 � i; j � 2, we denote the blocks of A.k/ and QA.k/ that

correspond to the fine-coarse partitioning of degrees of freedom (DOF) where the

DOF associated with the coarse mesh are numbered last.

The multilevel methods have evolved from two-level methods. The straightfor-

ward recursive extension leads to the class of HB methods for which the condition

number grows in general exponentially with the number of levels `. Therefore, in

order to obtain multilevel preconditioners (of both additive or multiplicative type)

with an optimal order condition number, i.e.,

~.M .`/�1
A.`// D O.1/;

and optimal computational complexity (linearly proportional to the number of de-

grees of freedomN` at the finest discretization level), HB preconditioners are com-

bined with various types of stabilization techniques.

One particular purely algebraic stabilization technique is the so-called Alge-

braic Multilevel Iteration (AMLI) method, where a specially constructed matrix

polynomial P�k
of degree �k is used at some or all of the levels k D k0C1; : : : ; `.

The AMLI methods have originally been introduced and studied in a multiplica-

tive form, see [16, 17]. The presentation of the next three sections follows refer-

ence [72].

The task is to build a preconditionerM .`/ for the coefficient matrixA.`/ ..D Ah,

cf. (2.33), at the level of the finest mesh.

Starting at level 0 (associated with the coarsest mesh) on which a complete LU

factorization of the matrix A.0/ is performed, we define

M .0/ ..D A.0/: (2.38)

Given the preconditionerM .k�1/ at level k � 1 the preconditionerM .k/ at level k

is defined by

M .k/�1
..D U .k/D.k/L.k/ (2.39)

where

U .k/ ..D
"
I �C .k/

11

�1 QA.k/
12

0 I

#
; L.k/ ..D

"
I 0

� QA.k/
21 C

.k/
11

�1
I

#
(2.40)

and

D.k/ ..D
"
C

.k/
11

�1
0

0 Z.k�1/�1

#
: (2.41)



40 Chapter 2 Algebraic multilevel iteration methods

Here we use the approximation

Z.k�1/�1
..D

�
I � P .k/.M .k�1/�1

A.k�1//
� �
A.k�1/

��1
(2.42)

to the Schur complement S D A.k�1/� QA.k/
21 C

.k/
11

�1 QA.k/
12 where A.k�1/ ..D AH D

QA.k/
22 is the coarse-level stiffness matrix (stiffness matrix at level k � 1), which can

be obtained from the two-level hierarchical basis representation (2.33) at level k,

and P .k/ is a polynomial of degree �k satisfying1

P .k/.0/ D 1: (2.43)

Then one finds that (2.42) is equivalent to

Z.k�1/�1 DM .k�1/�1
Q.k/.A.k�1/M .k�1/�1

/ (2.44)

where the polynomial Q.k/ is given by

Q.k/.t/ D 1 � P .k/.t/

t
: (2.45)

The preconditioning step (1.94) in the PCG method, see Algorithm 1.20, requires

the solution of a system M .`/v .`/ D d.`/ with the preconditioner M .`/ where the

right-hand side vector d.`/ is the actual residual of the linear system to solve. In

the present context the action of the inverse of the preconditioner is implemented

using a certain AMLI cycle. In order to describe different cycles formally, let

� D .�1; �2; : : : ; �l/
T be a vector whose k-th component �k defines the degree of

the stabilization polynomial at level k D 1; 2; : : : ; `. Using first-order stabilization

at all intermediate levels, i.e., �k D 1, P .k/.t/ D P1.t/ D 1 � p11t , corresponds

to the so-called V-cycle AMLI and pure second-order stabilization, i.e., �k D 2,

P .k/.t/ D P2.t/ D 1 � p21t � p22t
2, results in the W-cycle iteration, 1 � k < `.

A more detailed algorithmic presentation of general (linear and nonlinear) AMLI

preconditioning will be given in the last chapter of this book.

Let us now study the spectral condition number �.M .`/�1
A.`// whereM .`/ de-

notes the recursively defined linear AMLI preconditioner, cf. (2.38)–(2.42). The

presented results are in the spirit of [10, 16, 17] and have the same recursive struc-

ture, that is, an estimate at level k involves the same type of estimate at level k�1.

Since M .0/ D A.0/ implies

�min.M
.0/�1

A.0// D �max.M
.0/�1

A.0// D 1

1Further assumptions on P .k/ will follow later in this section.
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the bound2

�
.k�1/
0 � uTM .k�1/�1

u

uT .A.k�1//�1u
� �.k�1/

1 � � 8u ¤ 0 (2.46)

holds for k � 1 D 0 and �
.0/
0 D �.0/

1 D 1. Next, we consider the matrix

C .k/ D
"
C

.k/
11

QA.k/
12

QA.k/
21 A.k�1/ C QA.k/

21 .C
.k/
11 /

�1 QA.k/
12

#
(2.47)

corresponding to the multiplicative two-level preconditioner at level k. Its inverse

has the decomposition

C .k/�1 D L.k/TD
.k/
L.k/

where

D
.k/ D

"
C

.k/
11

�1
0

0 .A.k�1//�1

#

and the matrix L.k/ is given by (2.40).

The basic assumption in the analysis of the multilevel preconditioner is an ap-

proximation property of the form

1 � vTA.k/v

vTC .k/v
� #k � # 8v ¤ 0; k D 1; 2; : : : ; `; (2.48)

cf. (2.30). Moreover, let

Q.k/.t/ � 0 8t 2 I .k�1/
�

..D Œ�.k�1/
0 ; �

.k�1/
1 �; (2.49)

and

r
.k�1/
0

..D min
t2I

.k�1/
�

t Q.k/.t/; (2.50a)

r
.k�1/
1

..D max
t2I

.k�1/
�

t Q.k/.t/: (2.50b)

Then for any vector y2 ¤ 0 and x2 ..D .A.k�1//�1=2y2 we have

yT
2 M

.k�1/�1
Q.k/.A.k�1/M .k�1/�1

/y2

yT
2 .A

.k�1//�1y2

D xT
2 .A

.k�1//1=2M .k�1/�1
Q.k/.A.k�1/M .k�1/�1

/.A.k�1//1=2x2

xT
2 x2

D xT
2 XQ

.k/.X/x2

xT
2 x2

2or equivalently �
.k�1/
0 � �min.M

.k�1/�1
A.k�1// � �max.M

.k�1/�1
A.k�1// � �.k�1/

1
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where X D .A.k�1//1=2M .k�1/�1
.A.k�1//1=2. Hence we have the relation

r
.k�1/
0 yT

2 A
.k�1/�1

y2 � yT
2 Z

.k�1/�1
y2 � r.k�1/

1 yT
2 A

.k�1/�1
y2 8k (2.51)

for (2.44). Now, let v be a fixed nonzero vector, and y D .yT
1 ; y

T
2 /

T D L.k/v .

Then

vTM .k/�1
v

vTC .k/�1
v
D yTD.k/y

yTD
.k/

y
D yT

1 C
.k/
11

�1
y1 C yT

2 Z
.k�1/�1

y2

yT
1 C

.k/
11

�1
y1 C yT

2 A
.k�1/�1

y2

; (2.52)

and thus, by using (2.51), we arrive at

min¹1; r.k�1/
0 º � vTM .k/�1

v

vTC .k/�1
v
� max¹1; r.k�1/

1 º 8v ¤ 0: (2.53)

Together with (2.48) this gives

�
.k/
0

..D min¹1; r.k�1/
0 º � vTM .k/�1

v

vTA.k/�1
v

� #k max¹1; r.k�1/
1 º D.. �

.k/
1 8v ¤ 0: (2.54)

For �
.k�1/
0 � 1, by choosing Q.k/.t/ ..D Q.t/ such that

t Q.t/ � 1 8t 2 Œ1; �.k�1/
1 �

it follows that �
.k/
0 � 1 and hence 1 � �min.M

.k/�1
A.k// for k D 1; 2; : : : ; `. On

the other hand, � becomes a uniform upper bound for �max.M
.k/�1

A.k// if the

condition

�
.k/
1 D #k max

t2I
.k�1/
�

t Q.k/.t/ � � (2.55)

can be met for all k. In case of a second-degree stabilization polynomial P .k/,

which implies that Q is a linear function, cf. (2.45), the best choice of Q is given

by

Q.t/ D �C 1

�
� 1

�
t; (2.56)

which corresponds to

P .k/.t/ D P2.t/ ..D 1 �
�

1C 1

�

�
t C 1

�
t2: (2.57)
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Note that in this caseQ is the linear function with the smallest maximum of t Q.t/

subject to the condition that t Q.t/ � 1 for all t in Œ1; ��. The maximum is achieved

for t D .1C �/=2 in which case (2.55) reduces to

#k � # �
4�2

.�C 1/2
8k:

Then

� � # C 2
p
#

4 � # : (2.58)

For the V-cycle method, i.e., for P .k/ being a linear function and therefore Q

being constant, the condition t Q.t/ � 1 for t � 1 results in the optimal choice

Q.t/ D 1, which corresponds to

P .k/.t/ D P1.t/ ..D 1 � t: (2.59)

We summarize the results for the V- and W-cycle of linear AMLI in a theorem.

Theorem 2.9. Consider an SPD matrix A.`/ and the preconditioner M.`/ defined

by (2.38)–(2.42) and assume that the approximation property (2.48) holds. Then

the (linear) AMLI V-cycle preconditioner M
.`/
V , associated with the polynomial

(2.59), satisfies

�.M
.`/
V

�1
A.`// �

Ỳ

kD1

#k � #`: (2.60)

Moreover, if (2.48) holds for some # < 4, then the relative condition number of

the (linear) AMLI W-cycle preconditioner M
.`/
W , associated with the polynomial

(2.57), is bounded by

�.M
.`/
W

�1
A.`// � # C 2

p
#

4 � # D.. �.#/ (2.61)

Proof. It remains to prove (2.60). Using (2.54) under the hypothesis (2.46) the

bound follows immediately by induction. �

2.5 Nonlinear AMLI methods

As we observed in the analysis of the previous section, the W-cycle of linear AMLI

is quite sensitive to a proper choice of the polynomial that is used to define the

matrix Z.k�1/. In practice, this demands tight bounds for the spectrum of the

preconditioned matrix M .k�1/�1
A.k�1/, which are computationally expensive.
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That is why we will also present a parameter-free algorithm in this section. It

is based on inner GCG-type iterations resulting in variable-step preconditioners

that define nonlinear mappings in general. The considered algorithm is similar to

variable-step preconditioning methods as they were introduced in [19].

Typically, the nonlinear AMLI yields a preconditioner that is close to a linear

mapping, and this property can be exploited to derive a theoretical bound on its

rate of convergence.

Let us first define the nonlinear multilevel preconditioner M .k/Œ�� at level k,

1 � k � `, that is (in general) a nonlinear mapping from R
Nk to R

Nk :

M .k/�1
Œy� ..D U .k/D.k/ŒL.k/y� (2.62)

The matrices U .k/ and L.k/ are given by (2.40) and

D.k/Œz� D
"

C
.k/
11

�1
z1

Z.k�1/�1
Œz2�

#
: (2.63)

The (nonlinear) mapping Z.k�1/Œ�� is defined by

Z.0/Œ�� ..D A.0/

Z.k/Œ�� ..D M .k/Œ�� if � D 1 and k > 0

Z.k/Œ�� ..D M
.k/
� Œ�� if � > 1 and k > 0

(2.64)

where

M .k/
�

�1
Œd� ..D x.�/

and x.�/ is the �-th iterate obtained when applying the GCG algorithm, see Algo-

rithm 1.22, to the linear system A.k/x D d thereby using M .k/Œ�� as a precondi-

tioner and starting with the initial guess x.0/ D 0. In the setting of the nonlinear

AMLI preconditioner the vector � D .�1; �2; : : : ; �`/
T specifies how many in-

ner GCG iterations are performed at each of the levels k D 1; 2; : : : ; ` � 1, and

�` > 0 denotes the maximum number of orthogonal search directions at level `

(the fine-grid level). The additional GCG-type variable-step iterations on certain

levels (those levels k for which �k > 1) involve the use of again the same type

of variable-step preconditioner. We restrict our analysis here to the case in which

a fixed number � of inner GCG-type iterations is performed at every intermediate

level, that is, employing the vector

� D �W D Œ�; �; : : : ; �;mmax�
T (2.65)

where the algorithm is restarted at level ` at everymmax iterations, cf. Section 1.4.4.

We will refer to this choice as the (parameter-free) nonlinear �-fold W-cycle
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AMLI. Without any inner iterations (and without restart at level `) the considered

nonlinear AMLI reduces to the V-cycle of linear AMLI presented in the last sec-

tion where also the GCG method at level ` reduces to the standard PCG algorithm,

cf. Algorithm 1.20.

Let us now study the convergence properties of the nonlinear AMLI method.

That means, we want to derive bounds on the (local) decrease of the error in the

norm induced by the coefficient matrix A ..D A.`/. If x.i/ denotes the i -th iterate

generated by the nonlinear AMLI, we aim at deriving a bound of the form

kx � x.iC1/kA
kx � x.i/kA

� ı < 1: (2.66)

A very general result of this kind has first been proven in [4] and has been ap-

plied in [18] to indefinite problems. Based on this result a convergence theory

for variable-step multilevel preconditioning methods has been established in [19]

with a focus on hierarchical basis matrices. However, the assumptions in [19] re-

sult in quite pessimistic estimates for the convergence rate of the nonlinear AMLI

method. As it has been shown in [96] the bound on the local decrease of the error in

GCG-type iterations can be improved considerably if the nonlinear preconditioner

becomes close to a linear operator.

We will first formulate a useful corollary to Theorem 1.23, see [72].

Corollary 2.10. Consider the matrices A.k/ as well as the approximations C .k/

defined by (2.47) where A.`/ is assumed to be an SPD matrix. If � is some positive

integer, M .k/Œ�� is the preconditioner defined by (2.62)–(2.64), and

kC .k/M .k/�1
Œv � � vk

C .k/�1

kvk
C .k/�1

� �k < 1 8v ¤ 0 (2.67)

then

kA.k/M
.k/
�

�1
Œv � � vk.A.k//�1

kvk.A.k//�1

� ık.�/ 8v ¤ 0 (2.68)

where

ık.�/ D
�

1 � 4�.1 � �k/
2

.1C � � 2�k C ��2
k
/2

��=2

(2.69)

and � D �.C .k/�1
A.k//.

Proof. The assumptions on A.`/ imply that A.k/ and C .k/ are SPD. Let v be an

arbitrary nonzero vector of dimension Nk . Then x.�/ ..D M
.k/
�

�1
Œv � is the �-th

iterate of the GCG algorithm applied to the linear system A.k/x D v using the
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preconditioner M .k/Œ�� and starting with the initial guess x.0/ D 0. The corre-

sponding residual is given by r.�/ D v � A.k/x.�/. Taking into account (2.67),

Theorem 1.23 shows that

kA.k/M .k/
�

�1
Œv � � vk.A.k//�1 D kr.�/k.A.k//�1

D kx � x.�/kA.k/ � ık.1/kx � x.��1/kA.k/ � : : : � ık.�/kx � x.0/kA.k/

D ık.�/kr.0/k.A.k//�1 D ık.�/kvk.A.k//�1 :
�

The following lemma provides the key to the convergence analysis as presented

in [72]. It relates the accuracy of the approximation of A.k�1/ by the precondi-

tioner M
.k�1/
� Œ�� at level k � 1 to the accuracy of the approximation of C .k/ by

M .k/Œ��.

Lemma 2.11. Consider the same operators as in Corollary 2.10. If

kA.k�1/M
.k�1/
�

�1
Œu� � uk.A.k�1//�1

kuk.A.k�1//�1

� ık�1 8u ¤ 0

then

kC .k/M .k/�1
Œv � � vk

C .k/�1

kvk
C .k/�1

� ık�1 8v ¤ 0:

Proof. Let v be an arbitrary (but fixed) nonzero vector. First we observe that

kC .k/M .k/�1
Œv � � vk

C .k/�1

kvk
C .k/�1

D .C .k/M .k/�1
Œv � � v/T .M .k/�1

Œv � � C .k/�1
v/

vTC .k/�1
v

:

Let y D .yT
1 ; y

T
2 /

T D L.k/v , where the partitioning of y is according to the

splitting at level k. Then, since Z.k�1/�1
Œ�� DM .k�1/

�

�1
Œ�� we find

C .k/M .k/�1
Œv � � v D L.k/�1

"
0

A.k�1/M
.k�1/
�

�1
Œy2� � y2

#
;

M .k/�1
Œv � � C .k/�1

v D L.k/T

"
0

M
.k�1/
�

�1
Œy2� � .A.k�1//�1y2

#
;

and

C .k/�1
v D L.k/T

�
.C

.k/
11 /

�1y1

.A.k�1//�1y2

�
:
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Thus,

kC .k/M .k/�1
Œv � � vk

C .k/�1

kvk
C .k/�1

D .A.k�1/M
.k�1/
�

�1
Œy2� � y2/

T .M
.k�1/
�

�1
Œy2� � .A.k�1//�1y2/

yT
1 .C

.k/
11 /

�1y1 C yT
2 .A

.k�1//�1y2

� kA.k�1/M
.k�1/
�

�1
Œy2� � y2k.A.k�1//�1

ky2k.A.k�1//�1

:

�

The detailed algorithm of the nonlinear AMLI (including some implementation

issues) will be presented in the last chapter. The main convergence result is stated

now in the following theorem.

Theorem 2.12. Consider the linear system A.`/x D d.`/ where A.`/ is an SPD

HB stiffness matrix, and, let x.i/ be the sequence of iterates generated by the non-

linear AMLI algorithm. Further, assume that the approximation property (2.48)

holds. If � , the number of inner GCG iterations at every coarse level (except the

coarsest), is chosen such that

ı.�/ ..D
�

1 � 4#.1 � �/2
.1C # � 2� C #�2/2

��=2

� � (2.70)

for some positive � < 1 then

kx � x.iC1/kA.`/

kx � x.i/kA.`/

�
s

1 � 4#.1 � �/2
.1C # � 2� C #�2/2

D ı.1/ D.. ı < 1: (2.71)

Proof. From the definition of M .k/�1
Œ��, see (2.62)–(2.64), it follows that in the

first step of recursion we have M .1/�1
Œ�� D .C .1//�1 and thus (2.67) holds for

k D 1 and �1 D 0. Now, Corollary 2.10 shows that the inequality (2.68) is valid

for ı1.�/ given by (2.69) using �1 D 0 and � D # where # is the constant from

the approximation property (2.48). Next, Lemma 2.11 yields �2 � ı1.�/. By

induction we conclude

�k � ık�1.�/ �
�

1 � 4#.1 � �k�1/
2

.1C # � 2�k�1 C #�2
k�1

/2

��=2

(2.72)
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for any k � 2. Moreover, since the right-hand side of (2.72) approaches zero when

� increases, the sequence .�k/kD1;2;::: is uniformly bounded by some � < 1 if �

is sufficiently large. Assuming that �k�1 � � we find from (2.72) and (2.70) that

�k � ı.�/ � � for all k D 1; 2; : : : . Thus �` � � and the bound (2.71) follows

from Theorem 1.23. �

In particular, for � � 2 condition (2.70) is satisfied if

1 � � � 4#.1 � �/2
.1C # � 2� C #�2/2

;

that is, if

# � f .�/ D 1 � �2 C 2�3 C 2
p
� � 2�2 C 3�3 � 2�4

.1C �2/2
: (2.73)

Note that the condition number estimates for the two-level preconditioners (2.27)

and (2.29) directly enter the approximation property (2.48). In the simplest case

in which the multiplicative two-level preconditioner (2.47) is considered under the

assumption C
.k/
11 D A.k/

11 this results in a direct relation between the CBS constant

 and the constant # in (2.48), i.e., # D 1=.1 � 2/, cf. Corollary 2.8.

We end this section with a remark on the comparison of the convergence factor

of linear and nonlinear AMLI cycles.

Remark 2.13. The right-hand side of (2.73) has a unique maximum in the interval

.0; 1/, which is achieved for � D � � 0:187248. Using this value for � in (2.70)

shows that the sequence .�k/kD1;2;::: is uniformly bounded by � if � D 2 and

# � 1:597, or, � D 3 and # � 2:298, or, � D 4 and # � 3:017.

On the other hand, assuming for instance � D 3 and # D 2 we get � < 0:0587.

Then, the bound (2.71) on the (local) error reduction factor in Theorem 2.12 is

ı � 0:39. For comparison, computing the condition number estimate (2.61) from

Theorem 2.9 (using the same value of # , i.e., � � .#C2
p
#/=.4�#/ D 1Cp2/

the error reduction factor of the CG method preconditioned by the linear AMLI

W-cycle can be bounded by ı � ��1
�C1
� p2 � 1 � 0:41, cf. Theorem 1.19. It

should be noted, however, that the derived estimates, especially for the nonlinear

AMLI, are sometimes rather pessimistic, which can be seen from comparison with

the available numerical tests.

2.6 Optimality conditions

For the case when C
.k/
11 D A

.k/
11 at all levels k D 1; 2; : : : ; ` Theorem 2.9 shows

that for the W-cycle of linear AMLI, i.e., for � D 2, the relative condition number



Section 2.6 Optimality conditions 49

can be stabilized by a second-order polynomial if

p
# D 1p

1 � 2
< 2 D �; (2.74)

resulting in the bound (2.61). Thereby we assume that the approximation property

(2.48) for the respective multiplicative two-level preconditioner holds, which in

general allows also the usage of a proper approximation C
.k/
11 ¤ A

.k/
11 . In fact,

and this was shown in the original convergence analysis of linear AMLI meth-

ods [17], a stabilization of the condition number of the multiplicative multilevel

preconditioner3 can be achieved under the assumption

A
.k/
11 � C .k/

11 � .1C ı1/A
.k/
11 (2.75)

on the approximation of the pivot block A
.k/
11 if

1p
1 � 2

< �: (2.76)

Note that the spectral equivalence of A
.k/
11 and C

.k/
11 as formulated earlier in this

chapter, see equation (2.21), can always be transformed into (2.75) by a proper

scaling of C
.k/
11 . It is also interesting to note that a stabilization of the condition

number �, i.e., a uniform bound on � that is independent of the number of levels

`, is possible even for large(r) values of ı1 in (2.75). It turns out that the effect of

the constant in the spectral equivalence relation (2.75) enters almost linearly the

relative condition number of the multilevel preconditioner in this case.

Assume now that we have a fully stabilized multilevel method. This means

that our solution algorithm produces an approximation to the exact solution of the

linear system arising from FE discretization of a given (boundary value) problem,

thereby achieving a fixed prescribed reduction of the norm of the initial residual

within a uniformly bounded number of iterations. Hence, this upper bound on

the number of iterations does not depend on the meshsize h, i.e., the solutions

for a repeatedly refined mesh (in principle for any number of regular refinement

steps) are obtained at a constant number of iterations. Then the second condition

to be fulfilled for an optimal-order solution process is that the computational cost

of each single iteration is proportional to the total number of degrees of freedom

(DOF). Finally, the third condition that is desirable in many situations is that the

construction of the method, i.e., the setup of the preconditioner, is of optimal order

of computational complexity. This last issue will be discussed in Chapter 10.

3by a properly shifted and scaled Chebyshev polynomial P�
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The restriction on � for optimal order of computational complexity per itera-

tion is the following one. Consider a �-fold W-cycle of either linear or nonlinear

AMLI. Then every application of the recursively defined preconditioner at a given

level k with a given number Nk of DOF involves � applications of the precondi-

tioner at level k� 1 where the number Nk�1 of DOF is smaller by some factor say

%. Hence, the computational work w.k/ at level k can be estimated by

w.k/ � c Nk C � w.k�1/

for some constant c which depends on the (average) number of nonzero entries

(per row) of the involved sparse matrices, e.g., the number of nonzeros per row

of the incomplete triangular factors of the preconditioner C
.k/
11 if some incomplete

factorization is used at this point. The work w.`/ for one application of the pre-

conditioner at level ` (associated with the finest mesh) can therefore be estimated

by

w.`/ � c .N` C � N`�1 C : : :C �`N0/

D c N`

 
1C �

%
C
�
�

%

�2

C : : :C
�
�

%

�`
!
D c N`

1 � ��
%

�`C1

1 � �
%

:

Since the number of DOF at level k � 1 is (assumed to be) 1=% times the number

of DOF at level k, each visit of level k must induce less than % visits of level

k � 1 (at least in average). That means, if for example the coarsening ratio % D 4

then two but also three inner GCG iterations, or, alternatively, the employment of

second- but also third-degree matrix polynomials at every intermediate level, will

result in a computational complexity O.N / D O.N`/ of one (outer) iteration. The

condition for optimal-order single iterations is thus

� < %; (2.77)

which combined with (2.76) results in the (combined) optimality conditions

1p
1 � 2

< � < %: (2.78)

In what follows we will assume that the default meaning of AMLI is the multi-

plicative one.

Remark 2.14. The optimality conditions for the symmetric preconditioner of

block-diagonal (additive) form are given by
s

1C 
1 �  < � < %: (2.79)
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Stabilization techniques for additive multilevel iteration methods and nearly op-

timal order parameter-free block-diagonal preconditioners of AMLI-type are dis-

cussed in references [6, 15, 97].

2.7 Robustness of the AMLI methods

2.7.1 Local analysis of the model problem

Let us consider the model problem corresponding to the bilinear form

A.u; v/ D
Z

�

a.e/

�
@u

@x1

@v

@x1

C @u

@x2

@v

@x2

�
d� (2.80)

where linear finite elements are used for discretization. Let us assume also that:

a) the coarsest triangulation T0 of � consists of isosceles right triangles, the legs

of which are aligned with the coordinate axes; b) the coefficient a.x/ D a.e/ is

constant on the triangles e 2 T0.

Ee

1 2

3

4 5

6

12

3

Figure 2.1: Element and macroelement for mesh of right triangles

Under the above assumptions, the local CBS constant E is unique. The related

element and macroelement stiffness matrices, and the Schur complement, which

are needed for the local analysis, have the form

Ae D a.e/

2

2
4

2 �1 �1

�1 1 0

�1 0 1

3
5 ;

AE D
a.e/

2

2
6666664

4 �2 �2 0 0 0

�2 4 0 �1 0 �1

�2 0 4 �1 �1 0

0 �1 �1 2 0 0

0 0 �1 0 1 0

0 �1 0 0 0 1

3
7777775
;
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QSE D
a.e/

16

2
4

8 �4 �4

�4 5 �1

�4 �1 5

3
5 ;

where the node numbering is given in Figure 2.1. In this particular case, the 3 � 3

local eigenproblem (2.36) is reduced to the following 2� 2 characteristic equation

ˇ̌
ˇ̌ 5 � 8� �1

�1 5 � 8�

ˇ̌
ˇ̌ D 0 ;

where the trivial eigenvalue, corresponding to the constant eigenvector, is ex-

cluded. Therefore, 1 � 2
E D �1 D 1=2, that is 2

E D 1=2, which implies the

global estimate

2 � 1

2
: (2.81)

Now, the local approach will be applied to construct and analyze a simple ap-

proximation of the pivot block A11 D AhW11 corresponding to the uniform triangu-

lation Th, i.e.,

A11 D
X

E2Th

RT
EAE W11RE

where

AE W11 D
a.e/

2

2
4

2 �1 �1

�1 2 0

�1 0 2

3
5 :

We solve the local 3 � 3 eigenproblem

AE W11vE W1 D �DE W11vE W1 (2.82)

where DE W11 D 2I is the diagonal part of AE W11. The eigenvalues of (2.82) are as

follows

�1 D �1.AE W11/ D
a.e/

4
.2 �
p

2/; �3 D �3.AE W11/ D
a.e/

4
.2C

p
2/:

It is readily seen that

AE W11 � �3DE W11 �
�3

�1

AE W11: (2.83)

Now, let us introduce the diagonal matrix

C11 D
X

E2Th

a.e/

4
.2C

p
2/DE W11: (2.84)



Section 2.7 Robustness of the AMLI methods 53

The summation of the local estimates (2.83) in terms of (2.84) leads to the global

estimate

A11 � C11 � 2Cp2

2 �p2
A11: (2.85)

Remark 2.15. For the considered model problem, the locally derived estimates

(2.81) and (2.85) are uniform with respect to the size of the discrete problem (num-

ber of the mesh refinement levels), as well as to coefficient jumps on the coarsest

mesh.

2.7.2 Robust preconditioning strategy

The assumption (2.75) is obviously satisfied for the diagonal matrix (2.84) with

ı1 D 2.1C
p

2/ ;

see (2.85). Then, the next statement follows directly from (2.79), applying (2.81)

and (2.75).

Corollary 2.16. The AMLI preconditioner for the elliptic model problem (2.80)

has optimal order of computational complexity. The optimality conditions (2.79)

are satisfied for acceleration polynomials P� with a fixed degree � 2 ¹2; 3º. The

related computational complexity estimates are robust with respect to coefficient

jumps aligned with the coarsest triangulation T0.

The general strategy for constructing efficient AMLI preconditioners is based on

the assumption (2.75) and the optimality conditions (2.78) (or (2.79) when appli-

cable). The following two conditions are fundamental for the robustness of AMLI

algorithms:

� Proper uniform estimate of the CBS constant with respect to mesh and coeffi-

cient anisotropy, and/or other problem parameters.

� Optimal order preconditioning (approximation) of the pivot block A11 with re-

spect to mesh and coefficient anisotropy, and/or other problem parameters.

“Proper” estimate of the CBS constant means that  is far enough from one,

so that the optimality conditions (2.79) or (2.78) can be satisfied. This require-

ment obviously depends on the space dimension d 2 ¹2; 3º of the problem, which

directly reflects on %, the reduction factor of the number of degrees of freedom

(DOF). A number of such estimates are presented in the next chapters, addressing

different problems and different FE and DG discretizations. A key point in this

respect is to combine the robustness of the AMLI algorithm with the robustness

of the discretization which is governed by the problem under consideration. In
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the case of parameter-dependent problems, the goal is to get locking-free solution

methods for systems arising after application of locking-free discretizations.

As we know, there is a general approach for deriving uniform estimates of the

CBS constant, solving the related local eigenproblem (2.36). Contrary, the ques-

tion how to construct robust preconditioners for the pivot block A11 is more com-

plicated. Moreover, it is important to note that, unlike to the isotropic case, the

condition number � .A11/ deteriorates with the raise of anisotropy or/and when

the related parameter tends to the limit case.

The commonly known theory of the optimal order solution methods for FEM el-

liptic problems is restricted to the case of coefficient jumps which are aligned with

the coarse(st) geometric splitting, i.e. with T0. Such assumptions are usually made

in the case of multilevel, multigrid and domain decomposition methods. There are

many numerical tests confirming that the convergence of the related methods dete-

riorates if this condition is violated. At the same time, there are a lot of (multiscale

and multiphysics) models of strongly heterogeneous media where the coefficient

jumps can be resolved on the level of the finest mesh only. In the last part of

this book we will show some pioneering results for such problems demonstrating

robustness for classes of problems with extremely rough coefficients.

2.7.3 Hierarchical error estimators

The successive refinement of a finite element mesh provides a sequence of nested

grids and finite element spaces for which a proper hierarchical decomposition is

introduced. Here we briefly show how this sequence can be used for building not

only multilevel preconditioners but also error estimates, see e.g. [23, 30, 41] and

the references therein.

We will summarize some results from [30], with a restriction to the case of

conforming linear finite elements, using the notations from Section 2.3.2. Let

u 2 V be the exact solution, and let uH 2 VH , uh 2 Vh be the finite element

solutions of the elliptic boundary value problem (1.4) in VH and Vh, respectively.

We will assume also that the saturation condition is satisfied, i.e., there exists a

constant � < 1 such that

ku � uhkA � �ku � uHkA : (2.86)

Then the Galerkin orthogonality allows to show that

kwhkA � ku � uHkA �
1

1 � �2
kwhkA ; (2.87)

wherewh D uh�uH and k�kA stands for the energy norm induced by the bilinear

form A.�; �/, see [23]. Thus � D kwhkA can serve as an efficient and reliable error

estimator.
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A cheaper error estimator � can be computed via the hierarchical decomposition

Vh D VH ˚ VC
H ;

associated with the hierarchical two-level splitting of the nodal basis, see (2.31).

Let � D kwhkA, where

wh 2 VC
H W A.wh; vh/ D L.vh/ �A.uh; vh/ 8vh 2 VC

H : (2.88)

Then the following estimates hold:

kwhkA � ku � uHkA �
1

.1 � �2/.1 � 2/
kwhkA ; (2.89)

where  is the related CBS constant.

Algebraically,

�2 D hA11w1; w1i; (2.90)

where w D .wT
1 ;w

T
2 /

T is the hierarchical two-level basis vector of nodal un-

knowns, corresponding to wh, and

w1 W A11w1 D l1 � QA12w2; (2.91)

w2 W QA22w2 D l2 (2.92)

is the linear system arising from the FE discretization of (2.88).

The next lemma summarizes the construction of the hierarchical error estima-

tors.

Lemma 2.17. Let the saturation condition (2.86) be fulfilled, and let

w1 W A11w1 D l1 � QA12w2; (2.93)

w2 W QA22w2 D l2 ; (2.94)

where C11 is a preconditioner for A11 satisfying (2.75). Then the following hierar-

chical error estimate holds:

kw1kC11
� ku � uHkA �

1C ı1

.1 � �2/.1 � 2/
kw1kC11

: (2.95)

Proof. The inequalities follow directly from (2.89), the definition of w1 (see

(2.93)), and the inequality (2.75). �

Remark 2.18. The reliability of the hierarchical error estimator is controlled by

the parameters �,  and ı1 while the efficiency is ensured by the optimal order

computational complexity of the preconditioner C11. This means that if the con-

sidered AMLI algorithm is robust, and if the saturation condition is satisfied, then

the related hierarchical error estimator is robust.
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Corollary 2.19. Let us consider the model elliptic problem (2.80) with the locally

defined (and properly scaled) diagonal preconditioner C11 of the pivot block A11.

Then, the estimates (2.81) and (2.85) lead to the hierarchical error estimate

kw1kC11
� ku � uHkA �

2.3Cp2/

1 � �2
kw1kC11

; (2.96)

which is robust with respect to the coefficient jumps.



3 Robust AMLI algorithms:

Conforming linear finite elements

3.1 Some basic relations

A general important technique for finite element methods is to transform the aris-

ing integral over an arbitrary element to a standard reference element. We will use

here the transformation method for a planar domain and triangular finite elements.

First we will show that the analysis for an arbitrary triangle .e/ with coordinates

.xi ; yi /, i D 1; 2; 3 can be done on the reference triangle . Qe/; with coordinates

.0; 0/ .1; 0/ and .0; 1/. Transforming the finite element functions between these

triangles, the element bilinear form Ae.�; �/ becomes (see e.g. [6, 14]):

Ae.u; v/ D AQe. Qu; Qv/

D
Z

Qe

�
@ Qu
@ Qx ;

@ Qu
@ Qy
� �

.x2 � x1/ .y2 � y1/

.x3 � x1/ .y3 � y1/

��1 �
a11 a12

a21 a22

�

�
�
.x2 � x1/ .x3 � x1/

.y2 � y1/ .y3 � y1/

��1 �
@ Qv
@ Qx ;

@ Qv
@ Qy
�T ˇ̌
ˇ̌@.x; y/
@. Qx; Qy/

ˇ̌
ˇ̌ d Qe;

where 0 < Qx; Qy < 1, i.e., it takes the form

AQe. Qu; Qv/ D
Z

Qe

X

i;j

Qaij
@ Qu
@ Qxi

@ Qv
@ Qxj

d Qe; (3.1)

where the coefficients Qaij depend on both, the coordinates of the vertices of e (or,

more precisely, the angles of e) and the coefficients aij of the differential operator.

A similar form holds in case of 3D problems.

We conclude that it suffices for the analysis of uniform local bounds in the FEM

setting to consider the (macro)element stiffness matrices for the reference triangle

and arbitrary coefficients Œaij �, or alternatively, for the Laplace operator, i.e.,

Œaij � D
�

1 0

0 1

�
;

and an arbitrary triangle e.
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Following the standard FEM assembling procedure we can write the global stiff-

ness matrix A in the form

A D
X

e2Tk

Re
TAeRe; (3.2)

where Ae is the element stiffness matrix, Re stands for the restriction mapping of

the global vector of unknowns to the local vector corresponding to element e 2 Tk .

Consider now the Laplace operator and an arbitrary shaped linear triangular

finite element.

Lemma 3.1 ([7, 85]). The element stiffness matrix Ae for the Laplace operator

can be written in the form

Ae D 1

2

2
4
b C c �c �b
�c aC c �a
�b �a aC b

3
5 ; (3.3)

where a, b, and c equal the cotans of the angles in e 2 Th.

Proof. We derive the element stiffness matrix corresponding to the bilinear form

Ae.u; v/ D
Z

e

.uxvx C uyvy/de

for a given arbitrary non-degenerate triangle e as shown in Figure 3.1. Let us

introduce the notations h D jOAj, p D jOBj and q D jOC j.

��

��

��

x

y

θ 

θ 

h1

2

3

1

3

θ 2A

C

B

q

p

O

Figure 3.1: Derivation of the element stiffness matrix
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Let �1, �2, �3 be the angles of the triangle, and let a D cot �1, b D cot �2,

c D cot �3. Then the following relations are readily seen:

b D p

h
; c D q

h
;

a D cot.� � .�2 C �3// D �cot �2 cot �3 � 1

cot �2 C cot �3

D h2 � pq
h.p C q/ :

For the element basis functions and their derivatives we obtain:

�1 D �x
h
;

@�1

@x
D �1

h
;

@�1

@y
D 0;

�2 D qx C h.q � y/
h.p C q/ ;

@�2

@x
D q

h.p C q/ ;
@�2

@y
D � 1

p C q ;

�3 D px C h.p C y/
h.p C q/ ;

@�2

@x
D p

h.p C q/ ;
@�2

@y
D 1

p C q :

Taking into account that

jej D
Z
de D h.p C q/

2

we substitute the obtained constants for the derivatives of the element basis func-

tions in the formula

Ae.i; j / D A.�i ; �j /

which competes the proof. �

In the local analysis, without loss of generality we will assume that jaj � b � c.

This can be concluded from the following lemma.

Lemma 3.2 ([14]). Let �1; �2; �3 be the angles in an arbitrary triangle. Then with

a D cot �1, b D cot �2, c D cot �3 it holds:

(i) a D .1 � bc/=.b C c/.
(ii) If �1 � �2 � �3 then jaj � b � c.

(iii) aC b > 0.
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Proof. As was already mentioned in the proof of the previous lemma,

a D 1 � cot �2 cot �3

cot �2 C cot �3

;

which is part (i). To prove part (ii), note that if �1 � �
2

, then �1 � �2 � �3 shows

that 0 � a � b � c. If the triangle is obtuse, i.e., �1 >
�
2

, then �2C �3 <
�
2

and it

follows that a < 0 and

jaj D cot �2 cot �3 � 1

cot �2 C cot �3

D cot �2

cot �3 � 1= cot �2

cot �3 C cot �2

< cot �2 D b:

Finally,

aC b D sin.�1 C �2/

sin �1 sin �2

> 0: �

Remark 3.3. Let us consider an arbitrary symmetric and positive semidefinite

3 � 3 matrix Ce such that ker.Ce/ D span.1/, where 1 D .1; 1; 1/T . As will

be shown in the next chapter, subject to a scaling factor, Ce can be viewed as

an element stiffness matrix for some elliptic problem (coefficient matrix) and/or

properly set triangular finite element.

The next representation of the element stiffness matrix Ae simply follows from

Lemma 3.2:

Ae D c

2

2
4
ˇ C 1 �1 �ˇ
�1 ˛ C 1 �˛
�ˇ �˛ ˛ C ˇ

3
5 ; (3.4)

˛ D a=c, ˇ D b=c, and .˛; ˇ/ 2 D, where

D D
°
.˛; ˇ/ 2 R

2 W �1

2
< ˛ � 1;max¹� ˛

˛ C 1
; j˛jº � ˇ � 1

±
: (3.5)

The next purely algebraic inequality plays an important role in the following

considerations of robust AMLI algorithms for linear conforming and nonconform-

ing finite elements in the 2D case.

Lemma 3.4 ([14]). For all .˛; ˇ/ 2 D, there holds the inequality

˛ˇ C ˛ C ˇ C 1

.˛ C ˇ C 1/.˛ C ˇ C 2/
>

4

15
: (3.6)

Proof. The inequality is equivalent to

4˛2 C 4ˇ2 � 3.˛ C ˇ/ � 7˛ˇ < 7: (3.7)
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Figure 3.2: Domain of the parameters .˛; ˇ/

Let us introduce the auxiliary function  .˛; ˇ/ D 4˛2 C 4ˇ2 � 3.˛ C ˇ/ � 7˛ˇ

defined in D (see Figure 3.2). From

@ 

@˛
D 8˛ � 7ˇ � 3;

it follows that if  has an extremum in some interior point . Q̨ ; Q̌/ 2 D then Q̨ D
.7 Q̌ C 3/=8. Now we consider

 
�7ˇ C 3

8
; ˇ
�
D Q .ˇ/ D 1

16
.15ˇ2 � 90ˇ � 9/;

which is strictly decreasing if 0 � ˇ � 1. This means that  .˛; ˇ/ achieves

its extremum on the boundary of D. From the expression (3.6) it follows that

the extremal values must be taken either for ˛ < 0 and j˛jˇ maximum, or for

˛ D ˇ D 1. This simply leads to

 max D  
�
� 1

2
; 1
�
D 7;

which completes the proof. �

Remark 3.5. Let us consider the case of linear tetrahedral finite elements, and let

Ae be the element stiffness matrix corresponding to the Laplace operator. Then

the following 3D analog of formula (3.3) holds true (see, e.g., in [105]):
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Ae D 1

6

2
666666666664

X

1¤i<j

lij cot �ij �l34 cot �34 �l24 cot �24 �l23 cot �23

�l34 cot �34

X

2¤i<j ¤2

lij cot �ij �l14 cot �i4 �l13 cot �13

�l24 cot �24 l14 cot �14

X

3¤i<j ¤3

lij cot �ij �l12 cot �12

�l23 cot �23 l13 cot �13 �l12 cot �12

X

i<j ¤4

lij cot �ij

3
777777777775

;

where lij denotes the length of the edge connecting the vertices vi and vj of the

tetrahedron, and �ij stands for the dihedral angle at that edge.

3.2 Uniform estimates of the constant in the strengthened

CBS inequality

Consider two consecutive meshes Tk � TkC1. The following uniform refinement

procedure will be considered as a default setting. The current coarse triangle e 2
Tk is subdivided into four congruent triangles by joining the mid-edge nodes to

get the macroelement E 2 TkC1. The related macroelement stiffness matrix AE

(see (2.11)) consists of blocks which are 3�3 matrices and the local eigenproblem

(2.36) to compute E has a reduced dimension of 2 � 2.

In the so arising six node-points of the macroelement we can also use hierarchi-

cal basis functions, where we keep the linear basis functions in the vertex nodes

and add piecewise quadratic basis functions in the mid-edge nodes with support

on the whole triangle. The first (default assumption) refinement is referred to as

h-version while the second alternative approach is called p-version (p D 2) (see

Figure 3.3). Let us denote by bAE andbE the corresponding macroelement stiff-

ness matrix and CBS constant.

The following relation between E andbE holds.

Theorem 3.6 ([85]). Let us consider a piecewise Laplacian elliptic problem on

an arbitrary finite element triangular mesh Tk , and let each element from Tk be

uniformly refined into four congruent elements to get TkC1. Then

b2
E D

4

3
2

E ; (3.8)

wherebE ; E are the local CBS constants for the hierarchical piecewise quadratic

and the piecewise linear finite elements, respectively.
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Figure 3.3: Uniform refinement of the coarse linear triangle: p-version (left) and

h-version (right)

Proof. Let us consider the standard (linear FEM) hierarchical basis macroelement

stiffness matrices AE and the related quadratic FEM element stiffness matrix bAE

written in a two-by-two block form:

AE D
�
AE W11 AE W12

AE W21 AE W22

�
; bAE D

�bAE W11
bAE W12

bAE W21
bAE W22

�
:

For the h-version refinement, we can apply formula (3.3) to assemble the macro-

element stiffness matrix, and then use the simple hierarchical basis transformation.

The corresponding blocks are:

AE W11 D
2
4
aC b C c �c �b
�c aC b C c �a
�b �a aC b C c

3
5 ;

AE W22 D
1

2

2
4
b C c �c �b
�c aC c �c
�b �c aC b

3
5 ;

AE W12 D AE W21 D �AE W22:
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For the p-version refinement (p D 2), the (macro)element stiffness matrix can be

derived in a similar way as in (3.3). The block bAE W11 has the form

bAE W11 D
4

3

2
4
aC b C c �c �b
�c aC b C c �a
�b �a aC b C c

3
5 ;

i.e., bAE W11 D
4

3
AE W11. It follows by the construction of the hierarchical basis that

bAE W22 D AE W22;

and finally

bAE W12 D bAE W21 D �
4

3
bAE W22 D �

4

3
AE W22:

It simply follows from (2.35)–(2.36) that 2
E andb2

E are the corresponding largest

eigenvalues �max andb�max of the local eigenproblems:

AE W22A
�1
E W11AE W22vE W2 D �AE W22vE W2; vE W2 ¤ const; (3.9)

bAE W22
bA�1

E W11
bAE W22vE W2 Db�bAE W22vE W2; vE W2 ¤ const: (3.10)

Using the relations between the blocks of AE and bAE we get the following equiv-

alent representation of (3.9),

4

3
AE W22A

�1
E W11AE W22vE W2 Db�AE W22vE W2; vE W2 ¤ const

which completes the proof. �

Corollary 3.7. The local estimate

2
E <

3

4
(3.11)

holds uniformly with respect to the mesh anisotropy.

The next fundamental result follows directly from the local estimate (3.11), the

equivalence relation (3.1) and Lemma 2.5.

Theorem 3.8. Consider the problem (1.1) discretized by conforming linear finite

elements, where the coarsest grid T0 is aligned with the discontinuities of the co-

efficient a.e/, e 2 T0. Let us assume also that Tk � TkC1 are two consecutive
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meshes where each element from Tk is refined into four congruent elements to get

TkC1. Then, the estimate

2 <
3

4
(3.12)

of the CBS constant holds uniformly with respect to the coefficient jumps, mesh

or/and coefficient anisotropy, and the refinement level k.

Remark 3.9. Let us consider the local problem under the assumptions of Theo-

rem 3.6. In this setting the following explicit formula for the local CBS constant

can be derived (see [85]):

2
E D

3

8
C 1

4

r
d � 3

4
; (3.13)

where

d D
3X

iD1

cos2 �i :

It is easy to observe that the optimal case corresponds to the equilateral triangle

(d D 3=4) for which 2
E D 3=8. The worst case of 2

E D 3=4 is approached

when the maximal angle tends to the limit case of � . In a more general setting,

formula (3.13) could be used to get improved estimates of the global CBS constant

if the minimal angle of the triangulation is known, which will be discussed briefly

in Section 3.5, or if some other measure of the level of mesh and/or coefficient

anisotropy is available.

We present here some further achievements in the robust estimates of the CBS

constant. The estimate (3.12) is generalized in [8] to the case when each element

from the current coarser mesh is subdivided into m2, m � 2, congruent elements

using a uniform refinement (with a multiplicity ofm). Then, the following univer-

sal estimate holds:

2 <
m2 � 1

m2
; m D 2; 3; : : : : (3.14)

A similar result is obtained for the case of 3D linear finite elements. Let us

assume that the current element from the coarser mesh is uniformly divided into

m3 tetrahedra. Then, the uniform estimate for m D 2 reads as

2 <
9

10
;

which is extended to the universal estimate

2 <
.m2 � 1/.m2 C 2/

m2.m2 C 1/
; m D 2; 3; : : : ; (3.15)

see [8, 28] and the references therein.
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Figure 3.4: Uniform refinement of the current element intom2 congruent triangles:

left m D 3 and right m D 6

Another generalization of the AMLI theory concerns the Lamé system of linear

elasticity. Here, the coefficient anisotropy is introduced by the Poisson ratio. The

general scheme of analyzing the CBS constant is applied in the case of conforming

linear and bilinear finite elements. Let us note, that the obtained estimates for

linear elements are the same as for the scalar elliptic problems, being robust with

respect to the mesh anisotropy and the Poisson ratio, see e.g., [2, 20, 87, 88].

3.3 Additive preconditioning of the pivot block

When applicable, we will skip the superscripts of the pivot block and its approx-

imation. Here, we will write A11, C11, instead of A
.k/
11 , C

.k/
11 . The construc-

tion and the analysis of the preconditioners C11 are based on a macroelement-

by-macroelement assembling procedure.

Following (3.2), we write A11 in the form

A11 D
X

E2TkC1

RE
TAE W11RE : (3.16)

Now, we use the representation (3.3) of the element stiffness matrix to get

AE W11 D rT

2
4
aT C bT C cT �cT �bT

�cT aT C bT C cT �aT

�bT �aT aT C bT C cT

3
5 ;

where: a) the factor rT depends on the shape of T 2 T0 and on the related coeffi-

cient matrix a.e/ which is one and the same for all elements e 2 Tk \ T , and b)
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Figure 3.5: Four levels of uniform refinement of T 2 T0 and a current macro-

element E 2 T4

jaT j � bT � cT equal the cotans of the angles in some triangle QT associated with

T . Using the scaled representation (3.4) we get

AE W11 D rT cT

2
4
˛ C ˇ C 1 �1 �ˇ
�1 ˛ C ˇ C 1 �˛
�ˇ �˛ ˛ C ˇ C 1

3
5 ; (3.17)

where ˛ D aT =cT , ˇ D bT =cT , and .˛; ˇ/ 2 D as introduced in (3.5). Then, the

additive preconditioner of A11 is defined by

C11 D
X

E2TkC1

RE
TCE W11RE ; (3.18)

where

CE W11 D rT cT

2
4
˛ C ˇ C 1 �1 0

�1 ˛ C ˇ C 1 0

0 0 ˛ C ˇ C 1

3
5 : (3.19)

As one can see, the local matrix CE W11 is obtained by preserving only the strongest

off-diagonal entries of AE W11.

To estimate the relative condition number of the preconditioner (3.18) with re-

spect to A11 we consider the local generalized eigenproblem

AE W11vE D �ECE W11vE : (3.20)
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The characteristic equation for �E ; det.AE W11 � �ECE W11/ D 0 can be written in

the formˇ̌
ˇ̌
ˇ̌
.˛ C ˇ C 1/�E ��E �ˇ

��E .˛ C ˇ C 1/�E �˛
�ˇ �˛ .˛ C ˇ C 1/�E

ˇ̌
ˇ̌
ˇ̌ D 0; (3.21)

where �E D 1 � �E . For the solutions of (3.21) we get

�
.1/
E D 0; and

�
�

.2;3/
E

�2

D .˛ C ˇ C 1/.˛2 C ˇ2/C 2˛ˇ

.˛ C ˇ C 1/Œ.˛ C ˇ C 1/2 � 1�
;

or, after simplification,

�
�

.2;3/
E

�2

D ˛2 C ˇ2 C ˛ C ˇ
.˛ C ˇ C 1/.˛ C ˇ C 2/

D 1 � 2
˛ C ˇ C 1C ˛ˇ

.˛ C ˇ C 1/.˛ C ˇ C 2/
:

Hence, applying the inequality (3.6), it follows that .�
.2;3/
E /2 < 7=15, and thus the

local eigenvalue estimate

1 �
p

7=15 < �E < 1C
p

7=15 (3.22)

holds. Now we are ready to prove the next theorem.

Theorem 3.10 ([14, 15]). The additive preconditioner of A11 has a relative con-

dition number uniformly bounded by

�
�
C11

�1A11

�
<

1

4
.11C

p
105/ � 5:31: (3.23)

This condition number estimate holds independently of the shape, the size of each

element and of the coefficient matrix a.e/ of the FEM problem.

Proof. Applying (3.22) we get

vTA11v D
X

E2Th

vT
ERE

TA11WERE vE <
X

E2Th

�max
E vT

ERE
TC11WERE vE

<
�
1C

p
7=15

� X

E2Th

vT
ERE

TC11WERE vE

D �
1C

p
7=15

�
vTC11v

and, similarly,

vTA11v >
�
1 �

p
7=15

�
vTC11v :

Combining the last two inequalities completes the proof, i.e.,

�
�
C11

�1A11

�
<
�max

�
C11

�1A11

�

�min

�
C11

�1A11

� < 1Cp7=15

1 �p7=15
:

�
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This additive preconditioner was first introduced and analyzed in [15]. The

above new proof, based on the algebraic inequality from Lemma 3.4, has been

presented in [14]. As we will see later in this chapter, the inequality from Lemma

3.4 plays a key role in the analysis of various robust AMLI preconditioners for

conforming linear finite elements.

3.4 Multiplicative preconditioning of the pivot block

Let us partition the nodes corresponding to the block A11 into two groups where

the first one contains the centers of the parallelogram superelements Q (see Fig-

ure 3.6), which are weakly connected in the sense of the relations between the

coefficients jaT j � bT � cT . It is important to note that the parallelograms

Q � T 2 T0, i.e., it is not allowed to be composed of triangles of neighbor el-

ements from the coarsest triangulation T0. With respect to this partitioning A11

admits the following two-by-two block factorization

A11 D
�
D11 F11

F11
T E11

�
D
�
D11 0

F11
T S11

� �
I D11

�1F11

0 I

�
(3.24)

where S11 stands for the related Schur complement. We define now C11 as the

symmetric block Gauss–Seidel preconditioner of A11, i.e.,

C11 D
�
D11 0

F11
T E11

� �
I D11

�1F11

0 I

�
: (3.25)

Since D11 is a diagonal matrix it follows that the Schur complement S11 can be

Q a

a

b

bc

c

1

3

4

2

Figure 3.6: Multiplicative preconditioner: block partitioning of the nodes of the

superelement Q
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assembled from the corresponding superelement Schur complements

SQW11 D EQW11 � FQW11
TDQW11

�1FQW11:

(b)(a)

Figure 3.7: Connectivity pattern of T 2 T0: (a) additive preconditioner of A
.4/
T W11

i.e., the matrix block arising after four refinement steps; (b) multiplicative precon-

ditioner of A
.4/
T W11

Such a procedure is sometimes called static condensation. The obtained sparsity

structure is such that solving systems with E11 requires: first, local elimination

steps along lines of dominating anisotropy; and second, solving a sparse system

the order and structure of which are similar to that of A.0/ corresponding to T 2
T0. It will be shown in the last section of this chapter that the computational

cost to solve a system with the current matrix C11 is proportional to the size of

this matrix. The connectivity pattern of the block E11 related to a given triangle

T 2 T0 is illustrated in Figure 3.7 (b). The only difference between the decoupled

structure of the additive and the multiplicative preconditioners is in the boundary

layer which is parallel to the direction of dominating anisotropy in the coarsest

grid triangle T 2 T0.

A similar construction was first introduced in [91] for the particular case of

triangulations T0 consisting of right triangles with legs parallel to the coordinate

axes and a diagonal coefficient matrix a.e/. The general case is studied in [14]. As

for the additive algorithm, the local analysis is based on the algebraic inequality

from Lemma 3.4.
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Lemma 3.11. Consider the generalized eigenproblem

SQW11vQ D �QEQW11vQ: (3.26)

Then the minimal eigenvalue �min
Q is uniformly bounded by

�min
Q >

8

15
(3.27)

and the remaining eigenvalues are equal to 1.

Proof. The required superelement matrices read as follows:

AQW11 D
rT

cT

2
66664

2ı �˛ �ˇ �˛ �ˇ
�˛ ı �1 0 0

�ˇ �1 ı 0 0

�˛ 0 0 ı �1

�ˇ 0 0 �1 ı

3
77775
;

EQW11 D
rT

cT

2
664

ı �1 0 0

�1 ı 0 0

0 0 ı �1

0 0 �1 ı

3
775 ;

SQW11 D
rT

cT

2
664

ı � ˛2! �1 � ˛ˇ! �˛2! �˛ˇ!
�1 � ˛ˇ! ı � ˇ2! �˛ˇ! �ˇ2!

�˛2! �˛ˇ! ı � ˛2! �1 � ˛ˇ!
�˛ˇ! �ˇ2! �1 � ˛ˇ! ı � ˇ2!

3
775 ;

where ı D ˛ C ˇ C 1 and ! D 1
2ı

. Then, for the solution of the generalized

eigenproblem (3.26) we obtain

�
.1/
Q D 2

˛ˇ C ˛ C ˇ C 1

.˛ C ˇ C 1/.˛ C ˇ C 2/

and �
.2/
Q D �

.3/
Q D �

.4/
Q D 1. It is easy to see that �

.1/
Q is indeed the minimal

eigenvalue because the inequality �
.1/
Q < 1 is equivalent to the obviously satisfied

inequality ˛2 C ˇ2 C ˛ C ˇ > 0: Finally we have to show that �
.1/
Q > 8

15
which

follows immediately from (3.6). �

The main result of this section is given in the theorem below.
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Theorem 3.12 ([14]). The multiplicative preconditioner ofA11 has a relative con-

dition number uniformly bounded by

�
�
C11

�1A11

�
<

15

8
D 1:875: (3.28)

This result is proved in the same way as Theorem 3.10 applying the estimate

from Lemma 3.11. As one can observe, the new estimate considerably improves

the result (3.23) for the additive preconditioner.

3.5 Locally improved estimates of the AMLI parameters

Let us consider the isotropic elliptic problem associated with the bilinear form

A.u; v/ D
X

e2T1

Z

e

a.e/

�
@u

@x

@v

@x
C @u

@y

@v

@y

�
de:

We will study in this short section the case of pure mesh anisotropy where the

minimal angle of the initial triangulation T0 is bounded by a given parameter

�=3 � � > 0. Let us note that the minimal angle condition is explicitly set in

some of the mesh generators. We will show here how the general estimates of the

CBS constant  , and the condition number estimates of the additive (�A) and the

multiplicative (�M ) preconditioners for the pivot block A11, can be improved in

terms of � .

The locally improved estimate of the CBS constant follows directly from the

formula (3.13), i.e.,

2 � max
�1��2��3��

0
@3

8
C 1

4

vuut
3X

iD1

cos2 �i � 3

4

1
A : (3.29)

Let T be an arbitrary triangle from T0. For this element

�1 � �2 � �3 � �

which is equivalent to

jaj � b � c � t D cot �:

The related scaled parameters are .˛; ˇ/ 2 QD � D (see (3.5)), where

QD D
°
.˛; ˇ/ 2 R

2 W 1 � t2
2t2

< ˛ � 1;max
°
� 1 � ˛t2

2t2.˛ C 1/
; j˛j

±
� ˇ � 1

±
:
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What we need to get better estimates of �A and �M is to improve the inequality of

Lemma 3.4 which can be done, e.g., using

max
.˛;ˇ/2 QD

˛ˇ C ˛ C ˇ C 1

.˛ C ˇ C 1/.˛ C ˇ C 2/
D R.�/:

This approach is applied to get the improved estimates presented in Table 3.1.

Table 3.1: Locally improved estimates for the AMLI parameters, applying a mini-

mal angle condition

� 0 15ı 30ı 45ı

2 0.75 0.667 0.525 0.5

�A 5.212 5.071 4.442 3.732

�M 1.875 1.820 1.667 1.5

The limit case shown in the first column (� D 0ı) corresponds to arbitrary mesh

anisotropy. As is expected, all the parameters are improved with the raise of the

minimal angle � , tending to the optimal case of � D 60ı.

3.6 Optimal complexity solution algorithms for systems

with C11

The ability for efficient solution of systems with the introduced preconditioning

matrices C11 is determined by their connectivity pattern, assuming that rapid solu-

tion methods are used at this step of the algorithm.

3.6.1 A model problem

Let us begin with the model problem in � D .0; 1/ � .0; 1/ where the mesh is

rectangular and uniform and the bilinear functional is as follows:

a.u; v/ D
Z

�

a1

@u

@x1

@v

@x1

C a2

@u

@x2

@v

@x2

d�;

where the coefficients .a1; a2/ are piecewise constant in the subdomains �i , i 2
¹1; 2; 3; 4º varying the anisotropy ratio as follows: in �1 D .0; 1=2/ � .0; 1=2/

a1 > a2; in�2 D .1=2; 1/�.0; 1=2/ a1 < a2; in�3 D .1=2; 1/�.1=2; 1/ a1 > a2;

and in �4 D .0; 1=2/ � .1=2; 1/ a1 < a2. Figure 3.8 illustrates the connectivity

pattern ofC11 where the dense circles and bold lines show the remaining links after

the local modification in the additive algorithm, and after the static condensation

in the multiplicative variant.
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(a) (b)

Figure 3.8: Connectivity pattern of C11 for the model problem of varying ratio of

anisotropy in .0; 1/2: (a) additive preconditioner; (b) multiplicative preconditioner

What one can see for this example is that the solution of systems with the pre-

conditioning matrices C11 is either split into a number of decoupled tridiagonal

systems (additive algorithm) or after solving such tridiagonal blocks, the reduced

system is sparse and relatively small (multiplicative algorithm). Our final goal is

to generalize these observations.

3.6.2 Additive algorithm

Consider now a general irregular mesh, as shown in Figure 3.9. It is readily seen,

that in this case, the matrix C11 has a generalized tridiagonal structure (see [15]

and also [95]), that is, the solution of linear systems with C11 has a computational

cost which is proportional to the related problem size. In some more details, due

to the form of the corresponding element matrices C11WE , the related connectivity

pattern of the preconditioner C11 is such as shown in Figure 3.9. This means that

the coupled nodes form either a single point, a polyline or a polygon. Therefore,

there are no cross-points. Finally, we summarize the major result of this subsection

in the next statement.

Theorem 3.13. The additive preconditioner of A11 has an optimal computational

complexity with respect to both problem and discretization parameters.

3.6.3 Multiplicative algorithm

For this algorithm, the passing from the model problem to the general case, turns

out to be also almost trivial. For this purpose we will use the nested dissection

(ND) algorithm which is known as a fast rapid solution method for sparse linear

systems. If the graph representing the connectivity of the matrix is planar, i.e., it
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Figure 3.9: An example of the connectivity pattern for the additive preconditioner

for a mesh after one refinement step of T0, i.e., for T1

can be drawn in a plane such that no edges cross each other, then the computational

complexity of the ND method is

NND D O.n3=2/;

where n stands for the size of the problem (see [59]).

Now, let us denote by N the size of C11. At the first step of our solution algo-

rithm we eliminate the unknowns corresponding to the nodes from the interior of

the triangles from the coarsest mesh T0. This is performed by solving a number of

tridiagonal systems (see Figure 3.8) and therefore requires a number of arithmetic

operations which is proportional to N , i.e.,

N1 D O
�
N
�
:

The obtained reduced problem has a planar graph of connectivity (see Figure 3.10).

Its size is O.N
1=2
/, and therefore, the solution of the reduced problem by the ND

algorithm has a computational cost

N2 D O.N
3=4
/;

and the total complexity is

N D N1 CN2 D O
�
N
�
:

As for the additive algorithm we get the final theorem.
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Figure 3.10: Connectivity pattern of the reduced problem for the multiplicative al-

gorithm: aggregate of four elements from T0 with varying directions of dominating

anisotropy and three steps of refinement

Theorem 3.14. The multiplicative preconditioner of A11 has an optimal compu-

tational complexity with respect to both problem and discretization parameters.

We summarize here some of the benefits from using the aforementioned pre-

conditioning methods. The additive preconditioner has a block diagonal structure

which makes the implementation of the algorithm easier. Furthermore it has an

optimal computational complexity with respect to the size of the problem. The

multiplicative preconditioner results in a better condition number. However, its

optimal complexity heavily depends on the implementation of the nested dissec-

tion algorithm.

Remark 3.15. Consider the problem (1.1) discretized by conforming linear finite

elements, where the coarsest grid T0 is aligned with the discontinuities of the co-

efficient a.e/, e 2 T0. Let us assume also that the multiplicative preconditioner

C11 of the pivot block A11 is used. Then, the estimates (2.81) and (2.85) lead to

the efficient hierarchical error estimate

kw1kC11
� ku � uHkA �

5

2.1 � �2/
kw1kC11

; (3.30)

which is robust with respect to the mesh and coefficient anisotropy as well as to the

coefficient jumps. Let us note that the coefficient in (3.30) is significantly better

than the related coefficient in (2.96) which was derived in the case of a simplified

AMLI setting for the elliptic model problem (2.80).



4 Robust AMLI algorithms:

Nonconforming linear finite elements

For the nonconforming Crouzeix–Raviart finite element, where the nodal basis

functions are defined at the midpoints along the edges of the triangle rather than at

its vertices (cf. Figure 4.1), the natural vector spaces VH .E/ ..D span ¹�I; �II; �IIIº
and Vh.E/ ..D span ¹�iº9iD1

(cf. the macroelement in Figure 4.1(b)) are no longer

nested, i.e. VH .E/ ª Vh.E/. This makes the direct construction with V2.E/ ..D
VH .E/, as used for conforming elements, impossible. Consequently, the hierar-

chical basis functions have to be chosen in a way that for the resulting subspaces

V1.E/ and V2.E/, and hence, for the global finite element subspaces V1 and V2,

the direct sum condition

V D V1 ˚ V2 (4.1)

is satisfied again.

4.1 Crouzeix–Raviart finite elements

A simple computation shows that the standard nodal basis element stiffness matrix

for a nonconforming Crouzeix–Raviart (CR) linear finite element ACR
e coincides

with that of the corresponding conforming linear element up to a factor four, i.e.,

ACR
e D 2

2
664

b C c �c �b
�c aC c �a
�b �a aC b

3
775 ; (4.2)

cf. (3.3). The construction of the hierarchical stiffness matrix at macroelement

level starts with the assembly of four such matrices according to the numbering

of the nodal points as shown in Figure 4.1(b). It further utilizes a transformation,

which is based on a proper decomposition of the vector space V.E/ D Vh.E/,

which is associated with the fine-grid basis functions related to this macroelement

E. This will be addressed in the following.

We consider three different splittings, each of which makes use of half-diffe-

rence and half-sum basis functions in order to guarantee the condition

V.E/ ..D span ¹ˆE º D V1.E/ ˚ V2.E/: (4.3)
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(a) III

II

1 2

3
7 4

5

98

4
1 2

I3

θ1

3θ

θ2

(b)

6

Figure 4.1: Crouzeix–Raviart finite element. (a) Discretization. (b) Macro-

element.

Here ˆE ..D ¹�.i/º9iD1
denotes the set of the “midpoint” basis functions of the

four congruent elements in the macro-element E, as depicted in Figure 4.1(b).

The splitting of V.E/ can be defined in the general form

V1.E/ ..D span ¹�1; �2; �3; �
D
1 C �4 � �5; �

D
2 C �6 � �7; �

D
3 C �8 � �9º ;

V2.E/ ..D span ¹�C
1 C �4 C �5; �

C
2 C �6 C �7; �

C
3 C �8 C �9º ;

(4.4)

where �D
i

..D P
k dik�k and �C

i
..D P

k cik�k with i; k 2 ¹1; 2; 3º. The trans-

formation matrix corresponding to this general splitting is given by

JE D JE .CE ;DE / D
"
I DE CE

0 JE� JEC

#
.2 R

9�9/; (4.5)

where I denotes the 3 � 3 identity matrix, and CE and DE are 3 � 3 matrices

whose entries cij respectively dij will be specified later. The 3 � 6 matrices

JE�D
1

2

2
664

1 �1

1 �1

1 �1

3
775

T

; JECD
1

2

2
664

1 1

1 1

1 1

3
775

T

(4.6)

introduce the so-called half-difference and half-sum basis functions associated

with the sides of the macro-element triangle. The matrix JE transforms the vector

of the macro-element basis functions ˆE ..D .�.i//9iD1
to the hierarchical basis

vector
Q̂

E ..D . Q�.i//9iD1 D J T
E ˆE (4.7)

and the hierarchical stiffness matrix at macro-element level is obtained as

QAE D J T
EAEJE D

" QAE W11
QAE W12

QAT
E W12

QAE W22

# º 2 V1.E/

º 2 V2.E/
: (4.8)
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The related global stiffness matrix is obtained as QAh ..D P
E2TH

RT
E
QAERE .

Here, and in what follows, RT
E is the natural inclusion (canonical injection), i.e.,

RT
E transforms a macroelement vector to the corresponding global vector by ex-

tending it with zeros (outside the macroelement).

The transformation matrix J D J.CE ;DE W E 2 TH / such that Q̂ D J Tˆ is

then used for the transformation of the global matrix Ah to its hierarchical form
QAh D J TAhJ , and (by a proper permutation of rows and columns) the latter

admits the 3 � 3-block representation

QAh D

2
664

QA11
QA12

QA13

QAT
12
QA22

QA23

QAT
13
QAT
23
QA33

3
775

³
2 V1

º 2 V2

(4.9)

according to the interior, half-difference, and half-sum basis functions, which are

associated with the locally introduced splitting (4.4). The upper-left 2� 2 block is

thus related to the vector space V1, while the lower-right block QA33 relates to V2.

Note that due to the structure of JE , the relation QA11 D A11 still holds.

4.2 Two-level splittings: “First Reduce” and

“Differences and Aggregates”

The so-called First Reduce (FR) splitting [31, 77, 92] can be described as a com-

bination of a basis transformation involving the matrix

J˙ ..D
"
I 0 0

0 J� JC

#
; (4.10)

where the global matrices J� and JC correspond to the macroelement terms as

introduced in (4.6), and a reduction step. In the latter the degrees of freedom

corresponding to the so-called interior basis functions are eliminated. If

Ah ..D J T
˙AhJ˙ D

2
6664

A11 A12 A13

A
T

12 A22 A23

A
T

13 A
T

23 A33

3
7775

³
2 V1

º 2 V2

(4.11)

denotes the matrix after the transformation step, then the unknowns related to the

block A11 .D A11/ are first eliminated and the system with Ah is reduced to a

system with its Schur complement

B D
"
A22 A23

A
T

23 A33

#
�
2
4 A

T

12

A
T

13

3
5A�1

11

�
A12; A13

�
: (4.12)
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Note that the exact computation of B is cheap since A11 D A11 is block-diagonal

with blocks of size 3 � 3. We consider then the partitioning of the matrix B into a

2 � 2 block form

B D
"
B11 B12

BT
12 B22

#
; (4.13)

where B11 corresponds to the half-difference basis functions, while the block B22

is related to the subspace V2 and is thus associated with the coarse grid. This

partitioning of B is now used for the construction of two-level preconditioners. As

shown in the following remark, the FR splitting also fits into the framework of our

general splitting.

Remark 4.1 (FR splitting). The reduction step in the FR approach can (due to the

symmetry of Ah and the fact that A11 D A11) be written in multiplicative form

J T
B Ah JB D

"
A11 0

0 B

#
; JB D

2
64
I �A�1

11 A12 �A�1
11 A13

0 I 0

0 0 I

3
75; (4.14)

where JB denotes the matrix corresponding to the reduction step. Combining the

transformation (4.11) with this reduction step yields the FR transformation matrix

JFR ..D J˙ JB D
"
I �A�1

11 A12 �A�1
11 A13

0 J� JC

#
: (4.15)

Note that JFR, as defined in (4.15), exhibits the structure of the transformation ma-

trix of the general splitting (4.5), which is obtained when choosingD D �A�1
11 A12

and C D �A�1
11 A13. The FR hierarchical basis matrix thus has the form

QAh D J T
FRAh JFR D

"
A11 0

0 B

#
(4.16)

where B is given by (4.13). That means, in particular, we have QA33 D B22.

On the other hand, any splitting based on differences and aggregates can be

written in the product representation (4.15) with a properly defined matrix JB

(actually obtained by replacing the first row of JB in (4.14) by ŒI D C � and

using appropriate matrices C and D).

Since the constant in the strengthened CBS inequality does not depend on the

choice of the matrix D, cf. Section 4.3, we make use of this fact in the following

definition of the transformation related to the FR splitting, which is formulated in

the framework of differences and aggregates.
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Definition 4.2 (First Reduce (FR) splitting). The splitting based on differences

and aggregates incorporating the “first reduce” step (in short FR splitting), cf. [92]

and [31], is characterized by using DE D 0 and CE D �A�1
E W11

AE W13 in the gen-

eral transformation matrix (4.5). The matrices AE W11 D AE W11 and AE W13 are to be

taken according to (4.11).

Definition 4.3 (Differences and Aggregates (DA)). The basis transformation for

the standard splitting based on differences and aggregates (DA), cf. [31], fol-

lows from the general transformation (4.5) for the choice DE D 0 and CE D
1
2

diag.1; 1; 1/.

Definition 4.4 (Generalized DA (GDA)). A generalized splitting based on differ-

ences and aggregates (GDA), as considered in [90] and analyzed in [77], is re-

trieved by substituting in (4.5) the matrices DE D 0 and

CE D
1

2
I C �.1 � 3I / (4.17)

whereby the locally optimal choice of � 2 Œ0; 1
4
� depends on the minimum angle

condition used in the triangular mesh.1

4.3 Uniform estimates of the CBS constant in case of

non-nested spaces

Similar to the conforming finite element spaces the constant  in the CBS inequal-

ity, which measures the cosine of the abstract angle between the two subspaces V1

and V2, i.e.,

 D cos.V1;V2/;

is an important quality criterion for the splitting. In this section we will therefore

deal again with upper bounds for  but this time for discretizations using noncon-

forming Crouzeix–Raviart type finite elements.

Let us consider the hierarchical basis matrix QAh D J TAhJ , partitioned as in

(2.33), where J is defined according to (4.5). Then the CBS constant is given by

2 D max
v3¤c

�
1 � vT

3
QSv3

vT
3
QA33v3

�
D 1 � min

v3¤c

vT
3
QSv3

vT
3
QA33v3

(4.18)

where QS is the Schur complement obtained from QAh by eliminating the degrees of

freedom corresponding to basis functions in V1, i.e., by reducing the system to the

1Here 1 denotes the 3�3 matrix of all ones.
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lower-right block. Let S be the corresponding Schur complement obtained in the

same way from Ah. Then the following lemma provides the starting point for our

discussion.

Lemma 4.5. Under the above assumptions we have

QS D S

and thus QS is invariant with respect to the matrices C and D, which appear in the

transformation matrix J .

Proof. Follows from direct calculation. �

Lemma 4.6. The CBS constant  , given by (4.18), for the splitting (4.3) associ-

ated with the hierarchical basis transformation matrix that is induced by the local

transformation (4.5) is invariant to the matrix D.

Proof. Direct calculations are applied again. Following [77] we get the following

six blocks of the symmetric matrix QAh D J TAhJ (see (4.9)):

QA11 D A11

QA12 D A11D C A12J�22 C A13J�23

QA13 D A11C C A12JC23 C A13JC33

QA22 DDT .A11D C A12J�22 C A13J�23/C J T
�22A

T
12D C J T

�32A
T
13D

CJ T
�22A

T
22J�22 C J T

�32A
T
23J�22 C J T

�22A23J�32 C J T
�32A33J�32

QA23 DDT .A11C C A12JC23 C A13JC33/C J T
�22A

T
12C C J T

�32A
T
13C (4.19)

CJ T
�22A22JC23 C J T

�32A
T
23JC23 C J T

�22A23JC33 C J T
�32A33JC33

QA33 D C T .A11C C A12JC23 C A13JC33/C J T
C23A

T
12C C J T

C33A
T
13C

CJ T
C23A22JC23 C J T

C33A
T
23JC23 C J T

C23A23JC33 C J T
C33A33JC33 :

The notations J� ..D ŒJ�22; J�32�
T and JC ..D ŒJC23; JC33�

T are used to indicate

the position of the respective blocks in the transformation matrix J . From the last

equation in (4.19) we see that QA33 D QA33.C / depends on the matrix C but not on

D. By Lemma 4.5 we have QS D S , which does neither depend on C nor on D.

Hence, in view of (4.18) the assertion is proved true. �
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We end the discussion of the general splitting with an important observation

that is relevant in the context of the multilevel hierarchical splitting, i.e., for the

multilevel extension of the two-level preconditioners. There, for both variants,

the multiplicative and the additive AMLI method, the construction is such that the

matrix block QA.k/
33 for k D `; : : : ; 1 defines the coarse-level matrix A.k�1/. Then,

as is well known, the condition

ker
�
QA.k/
E W33

�
D ker .Ae/ D span .1/ 8k 2 ¹`; : : : ; 1º (4.20)

(1 stands for the vector of all ones) is necessary for any splitting to result in a local

CBS constant E that is strictly less than one.

The next lemma gives a general characterization of the sets AC D ACR of

local element stiffness matrices for Courant (C) linear conforming and Crouzeix–

Raviart (CR) linear nonconforming finite elements.

Lemma 4.7. Let us denote (see (4.2)) by

AC D ACR ..D ¹d Ae W .a; b; c/ D .cot �1; cot �2; cot �3/; d > 0º (4.21)

where

Ae D

2
664

b C c �c �b
�c aC c �a
b a aC b

3
775 :

Further let Ae be an arbitrary 3 � 3 symmetric and positive semidefinite matrix

such that ker
�
Ae

� D span .1/. Then Ae 2 AC D ACR.

Proof. By the assumption Ae is symmetric and has the property (4.20), i.e., the

row sums equal zero. Therefore

Ae D

2
664

b C c �c �b
�c aC c �a
b �a aC b

3
775 ; (4.22)

where (eventually after a proper permutation of rows and columns) a � b � c.

Further, since Ae is SPSD, we have ker.Ae/ D span .1/ if and only if both the

conditions

b > 0 and � b c

b C c < a (4.23)
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are satisfied. Note also that in this case, � b c

bCc
� a implies jaj � b, and therefore

jaj � b � c: (4.24)

The latter inequality from (4.23) equivalently can be written as

d
2 D a b C a c C b c > 0: (4.25)

We rewrite (4.25), i.e.,

a b C a c C b c D 1 (4.26)

where a ..D a=d , b ..D b=d and c ..D c=d . Now let cot �2 ..D b and cot �3 ..D c

where b > 0 and c > 0 implies �i 2 .0; �=2/; i D 1; 2. Then, cf. (4.26),

a D 1 � b c
b C c D

1 � cot �2 cot �3

cot �2 C cot �3

D cot.� � �2 � �3/ ..D cot �1;

which completes the proof. �

In order to ensure that the local estimates presented in the rest of this chapter can

repeatedly be applied on the coarser levels, it will be shown in the next lemma that

starting with a matrix (at some level `), which has been obtained from a global

assembly of nonconforming Crouzeix–Raviart (CR) linear finite elements ACR
e ,

as defined in (4.2), the matrices QA.k/
E W33

are of the same type on all levels k D
`; ` � 1; : : : ; 1.

Lemma 4.8. Let A
.k/
e 2 ACR be an element matrix at some level k where k D

`; : : : ; 1, and let A
.k�1/
e ..D QA.k/

E W33
be the element matrix retrieved from the lower

3�3 block of the macroelement matrix QA.k/
E , which satisfies (4.20). Then

A.k�1/
e 2 ACR;

i.e., it is a Crouzeix–Raviart element stiffness matrix.

Proof. First we note that by assumption ker.A
.k�1/
e / D span .1/. Moreover, since

QA.k/
E is symmetric and positive semidefinite (SPSD) and A

.k�1/
e is a principal sub-

matrix of QA.k/
E , it follows that A

.k�1/
e is SPSD as well. Then, the statement follows

directly from Lemma 4.7. �

In the following we shall provide a summary of the main results from refer-

ences [31, 32, 77] related to a local estimation of the CBS constant and the result-

ing AMLI methods.
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DA splitting:

Now, we are in a position to analyze the constant

 D cos.V1; V2/

for the DA splitting for which, cf. Definition 4.3,

V1.E/ ..D span ¹�1; �2; �3; �4 � �5; �6 � �7; �8 � �9º;

V2.E/ ..D span
°1

2
.�1 C �2 C �3/C �4 C �5;

1

2
.�1 C �2 C �3/C �6 C �7;

1

2
.�1 C �2 C �3/C �8 C �9

±
:

(4.27)

Again, this analysis is performed locally, by considering the corresponding prob-

lems on macroelements.2

Here we follow the procedure from [31, 32], which slightly differs from the one

which was used in the case of conforming FEs in the sense that the reference right

angle macroelement is considered first, see Figure 4.2.

12

3 8 9

5217

3

46

T

T

T

T

1

3

2

4

Figure 4.2: The reference coarse-grid triangle and the macroelement OE.

Let V1. OE/; V2. OE/ define the two-level DA splitting for the reference macro-

element OE, and let us denote by d .k/ D d .k/.u/ D ru jTk
, ı.k/ D ı.k/.v/ D

rv jTk
for u 2 V1. OE/; v 2 V2. OE/. Then the relations between the function val-

ues in some nodal points, namely u.P4/ D �u.P5/; u.P6/ D �u.P7/; u.P8/ D
�u.P9/ and v.P1/ D v.P4/ D v.P5/; v.P2/ D v.P6/ D v.P7/; v.P3/ D
v.P8/ D v.P9/; imply that

2Note that (4.20) holds true for all the splittings DA, GDA and FR.
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d .1/ C d .2/ C d .3/ C d .4/ D 0; (4.28)

ı.1/ D ı.2/ D ı.3/ D �ı.4/ D ı: (4.29)

Hence,

A OE .u; v/ D
4X

kD1

Z

Tk

aru � rvdx D
4X

kD1

4haı.k/; d .k/i

D 4haı; d .1/ C d .2/ C d .3/ � d .4/i (4.30)

D �24haı; d .4/i � 24kıkakd .4/ka

where4 D area.Tk/; hx; yi D xT y denotes the inner product in R
2, and kxka Dp

hax;xi.
Further,

kd .4/k2
a D kd .1/ C d .2/ C d .3/k2

a � 3

3X

kD1

kd .k/k2
a

leads to

A OE .u; u/ D
4X

kD1

kd .k/k2
a4 �

�
1C 1

3

�
4kd .4/k2

a (4.31)

and

A OE .v; v/ D 44kık2
a : (4.32)

Thus,

A OE .u; v/ � 2�

r
3

4�
A OE .u; u/

r
1

4�
A OE .v; v/

D
r

3

4

q
A OE .u; u/

q
A OE .v; v/ : (4.33)

In the case of an arbitrarily shaped macroelementE we can use the affine mapping

F W OE ! E which transforms the problem to the reference macroelement (for

more details see, e.g., [8]). This transformation changes the anisotropy of the

problem, cf. (3.1), but the estimate 2
DA;E � 3

4
will still hold since the bound

(4.33) for the reference macroelement does not depend on anisotropy.

The obtained result is summarized in the following theorem.
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Theorem 4.9. Let us consider the DA splitting. Then the corresponding strength-

ened CBS inequality constant  is uniformly bounded with respect to both, coeffi-

cient and mesh anisotropy,

2
DA �

3

4
: (4.34)

The latter estimate is independent of the discretization (mesh) parameter h and

possible coefficient jumps aligned with the finite element partitioning TH :

Let us consider the DA splitting with two particular test functions u 2 V1.bE/,
v 2 V2.bE/ determined by the values in the nodes Pi , i.e., u.Pi / D ui ; v.Pi / D
vi , i D 1; : : : ; 9, see Figure 4.2. Now let

u1 D 2=3; u2 D u3 D u6 D u9 D �1=3; u4 D u5 D 0; u7 D u8 D 1=3;

v1 D v4 D v5 D 1; v2 D v6 D v7 D 0; v3 D v8 D v9 D 0:

Using the above introduced notations we find

d .1/ D d .2/ D d .3/ D 1

3
.1; 1/T D �1

3
d .4/

and

ı.1/ D ı.2/ D ı.3/ D .1; 1/T D �ı.4/:

Thus

AbE .u; v/ D 2�had .4/; ı.4/i D 6�had .4/;d .4/i

AbE .u; u/ D
4

3
�had .4/; d .4/i

AbE .v; v/ D 4� haı.4/; ı.4/i D 36� had .4/;d .4/i

i.e.

AbE .u; v/ D
r

3

4

q
AbE .u; u/

q
AbE .v; v/: (4.35)

Remark 4.10. As (4.35) holds independently of the coefficient matrix a, the mac-

roelement CBS constant can be estimated by
p

3=4 for both, mesh and coefficient

anisotropy.

The following theorem is useful to extend the two-level constructions and esti-

mates to the multilevel case.
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Theorem 4.11. Let QA33 be the stiffness matrix corresponding to the space V2 in-

duced by the DA splitting (4.27), and let AH be the stiffness matrix corresponding

to the finite element space VH corresponding to the coarse discretization TH ,

equipped with the standard nodal finite element basis ˆH . Then

QA33 D 4AH : (4.36)

Proof. The result follows directly from QAE D J T
EAEJE where JE is given by

(4.5), and by choosing the local matrices DE ..D 0 and CE ..D 1
2

diag.1; 1; 1/,

which is in accordance to Definition 4.3. �

The DA algorithm allows for a direct recursive extension of the estimate (4.34)

to the multi-level case, which follows from Theorem 4.11. The same does not hold

automatically for the FR and GDA algorithms since the related blocks QA33 are only

associated with the coarse grid. The needed extra theoretical analysis for a robust

multilevel extension of the latter splittings is supported by Lemma 4.8.

GDA splitting:

This generalization of the standard DA splitting is based on the assumption of

a minimum angle condition, which is commonly used in commercial mesh gen-

erators, and on symmetry (or anisotropy) assumptions for the matrices CE (in

the transformation J ) which lead to a local dependence of a single parameter

� 2 Œ0; 1=4�, cf. [90].

The CBS constant, as defined in (4.18), clearly depends on CE . We now seek a

matrix CE that provides the minimal (local) E D E Wmin where

2
E Wmin

..D min
CE

Œ 2
E Wmin � D 1 �max

CE

"
min

vEW3¤c

vT
E W3SE vE W3

vT
E W3 QAE W33.CE /vE W3

#

D 1 � min
vEW3¤c

"
max
CE

vT
E W3SE vE W3

vT
E W3 QAE W33.CE /vE W3

#
; (4.37)

c D .c; c; c/T , subject to the constraint that CE is of the form (4.17) for which we

use the short notation CE 2 CGDA. The following theorem is published in [77].

Theorem 4.12. Consider a macro element matrix AE , assembled from four ele-

ment matrices of the form (4.2) corresponding to the four similar triangles ob-

tained by a regular refinement step, cf. Figure 4.1. Then the local CBS constant

E D GDA;E for the GDA splitting, cf. Definition 4.4, is minimal for

� D �opt D s � r
5s � 4r

(4.38)
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where s D a C b C c and r D
p
s2 � 3. The minimal local CBS constant then is

given by

2
GDA;E Wmin D

s .2s C r/
4 .1C s2/

: (4.39)

Proof. First we note that the Schur complement SE in (4.37) is invariant to the

matrix CE D CGDA (by Lemma 4.5). Further the local transformation matrix

related to the GDA splitting can be decomposed in the form

JGDA D JE˙

2
64
I 0 CGDA

0 I 0

0 0 I

3
75

with JE˙ as given in (4.10). This implies that the matrix QAE W33 D QAE W33.CGDA/

has the representation

QAE W33.CGDA/ D
�
C T

GDA I
�
"
AE W11 AE W13

A
T

E W13 AE W33

#�
CGDA

I

�
; (4.40)

with

AE W13 D AE W12JC23 C AE W13JC33 (4.41)

and
AE W33 D J T

C23AE W22JC23 C J T
C23AE W23JC33

CJ T
C33A

T
E W23

JC23 C J T
C33AE W33JC33;

(4.42)

cf. (4.19). Hence, we have the decomposition

QA33;E .CGDA/ D
h
C T

GDA C A
T

E W13A
�1
E W11

I

i

�
AE W11 0

0 SE

� �
CGDA C A�1

E W11
AE W13

I

� (4.43)

where SE D AE W33 � AT

E W13A
�1
E W11

AE W13. By using (4.17) in (4.43) one finds

QAE W33 D QAE W33.�/ D �2G11 C �.G12 CGT
12/CG22 (4.44)

where

G11 D .1 � 3I /TAE W11.1 � 3I /

G12 D
�1

2
AE W11 C AT

E W13

�
.1 � 3I / (4.45)

G22 D 1

4
AE W11 C

1

2
.AE W13 C AT

E W13/C AE W33:
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Then, solving the generalized eigenproblem

SE v D �E
QAE W33v ; v ¤ c;

(using a computer algebra software) the minimal eigenvalue that determines the

local estimate on the CBS constant is found to be

�E Wmin D �GDA;E Wmin D
1

4 Œw.�/C 2�rs�
; (4.46)

where w.�/ ..D 1�6�C12�2C�2s.s�r/ is positive. Moreover, one finds that the

optimal choice of the parameter � in the GDA splitting, which leads to the small-

est possible local CBS constant, equivalently determines the matrix CGDA.�opt/

that minimizes k QAE W33.�/k2. Using (4.44) and (4.45), and following standard ar-

guments, the formula (4.38) then is easily derived. Finally, inserting in (4.46) the

optimal value (4.38) for � and using 2
E Wmin

D .1 � �E Wmin/ one obtains (4.39). �

At the end of this section we want to collect (skipping the proofs) some re-

sults from reference [90] where it is shown that repeated application of the GDA

splitting yields a sequence of element matrices with an improving shape of the

associated triangles.

Lemma 4.13. Let B
.0/
e D A

.`/
e D ACR

e be defined by (4.2), and let .B
.n/
e /n�0

denote the sequence of properly normalized element matrices arising during the

coarsening process according to the GDA splitting. Then, under the assumption of

convergence and for � ¤ 0 we denote by Beq D limn!1B
.n/
e . The matrix Beq

corresponds to the Laplace operator where the limiting element e is an equilateral

triangle, i.e., a D b D c D 1=
p

3.

For � > 0, where the limiting case is given by the equilateral triangle, the

following convergence result has been shown.

Theorem 4.14. Let .B
.n/
e /n�0 be the sequence of normalized stiffness matrices as

in Lemma 4.13. Further, let � be bounded away from zero, i.e., � 2 Œ�min; 1=4�

with �min > 0. Then,

kB.nC1/
e � Beq

e kF � q kB.n/
e � Beq

e kF (4.47)

is satisfied for some positive q < 1, where k:kF denotes the Frobenius norm of the

given matrix.
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Remark 4.15. The convergence factor

q D c g.�/

c g.�/C p.�/
in (4.47) is bounded from above by

q.�/ ..D g.�/

g.�/C �2
;

where g.�/ D 1� 6�C 12�2 and p.�/ D �2 .aC bC c/. This upper bound q,

which is shown in Figure 4.3, attains its maximum at � D 0 with q.0/ D 1 and its

minimum at � D 1=3 with q.1=3/ D 3=4. For � 2 Œ�min; 1=4� with �min > 0, as

used in Theorem 4.14, one obtains q 2 Œ4=5; 1/. That means, the larger the value

of � the smaller (better) the convergence factor in (4.47).

0 0.05 0.1 0.15 0.2 0.25

0.8

0.85

0.9

0.95

1

Figure 4.3: Upper bound q of the convergence factor q against �

Remark 4.16. Note that if the minimal angle in the triangle tends to zero, then

the optimized value of the parameter �.a; b; c/ which governs the generalized

DA-splitting (GDA) also tends to zero, which renders the GDA to become closer

and closer to the standard DA-algorithm.

FR splitting:

The GDA splitting with the optimal choice of the parameter � as given by (4.38),

however, in general is still not the best splitting, which is obtained for the FR basis

transformation. The following theorem was originally published in [77].

Theorem 4.17. Let QAE W33.CE / be given according to (4.19). Then, the minimum

value for E , as defined in (4.37), is attained for CE Wopt D �A�1
E W11

AE W13 with

AE W13 D AE W12JC23 C AE W13JC33.
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Proof. According to Lemma 4.6 the constant  is invariant to the matrixD. With-

out loss of generality we can therefore set D ..D 0 in the transformation matrix J ,

which we can then write in the form

J D
�
I 0 C

0 J� JC

�
D J˙

2
64
I 0 C

0 I 0

0 0 I

3
75 ; (4.48)

where J˙ is defined by (4.10). In analogy to the proof of Theorem 4.12 (but now

for a general matrix C ) we decompose the matrix functional QAE W33.CE / in the

form

QAE W33.CE / D
h
C T

E C A
T

E W13A
�1
E W11

; I

i

�
AE W11 0

0 SE

� �
CE C A�1

E W11
AE W13

I

�
;

(4.49)

where SE D AE W33 � AT

E W13A
�1
E W11

AE W13 and the matrices AE W13 and AE W33 are

given by (4.41) and (4.42), respectively (cf. (4.40)–(4.43)). Since QAE W33 appears

in the denominator in (4.37) we aim at minimizing the spectral norm of QAE W33.CE /

with respect to the matrix CE using the representation (4.49). But it is readily seen

that the minimum is given by minCE
QAE W33.CE / D SE , which is obtained for

CE Wopt D �A�1
E W11

AE W13. This completes the proof. �

Remark 4.18. Note that the optimal choice CE Wopt, in Theorem 4.17, provides the

harmonic extension obtained via the FR approach. Equivalently, CE Wopt can be

shown to be the solution of the optimization problem

CE Wopt D min
CE

kI � S�1
E
QAE W33.CE /k2:

Remark 4.19. An explicit expression for the local CBS constant corresponding

to the FR splitting was derived in reference [31]. Using the substitutions s ..D
aC b C c and t ..D abc this formula reads

2
FR;E D

3

8
C 1

8

r
s � 9 t

s � t : (4.50)

As it can be seen from Figure 4.4 the estimates 2
GDA;E Wmin

as given by (4.39)

for the GDA splitting and 2
FR;E as given by (4.50) for the FR splitting coincide

for any isosceles triangle.
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Figure 4.4: Local estimates of 2
E for isosceles triangle depending on �3: FR

(solid), GDA (dashed), and DA (dot-dashed) splitting
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Figure 4.5: Local estimates of 2
E for right triangle depending on �3: FR (solid),

GDA (dashed), and DA (dot-dashed) splitting

For right triangles (4.50) yields 2
FR;E D 1=2 independently of the other angles

and the value of 2
GDA;E Wmin

approaches the value of the squared local CBS constant

for the DA splitting (which is always 3=4) when the minimal angle tends to zero,

cf. Figure 4.5.

Thus 2
GDA;E Wmin

for an arbitrary but fixed macroelementE is always in between

2
FR;E and 2

DA;E (and since those estimates are sharp) we arrive at the following

theorem, which characterizes the global CBS constants, cf. [77]:

Theorem 4.20. Consider the discrete problem derived from the weak formula-

tion (1.1) of the boundary value problem (1.4) using linear Crouzeix–Raviart finite

elements for discretization, and assume that the coefficient matrix a.e/ in (1.1) is

piecewise constant and SPD on the coarsest mesh partitioning. Then, comparing

the different decompositions of the finite element space according to the standard

DA splitting (cf. Definition 4.3), the GDA splitting (cf. Definition 4.4), using lo-

cally the optimal parameter � D �opt from (4.38), and the FR splitting (cf. Def-



94 Chapter 4 Robust AMLI algorithms: Nonconforming linear finite elements

inition 4.2), we have the following relations between their respective global CBS

constants:

2
FR � 2

GDA � 2
DA � 3=4: (4.51)

Proof. As shown by Lemma 4.5 the global Schur complement related to the two-

level splitting is invariant with respect to a change of basis using the transformation

J D J.C / D
"
I 0 C

0 J� JC

#
; C 2 .CDA [ CGDA [ CFR/

where the sets CDA, CGDA, CFR contain all the admissible matrices for the DA,

GDA, and FR splitting, respectively. In this setting, we consider the particular

local matrices CE as a solution of the related minimization problems. Then, by

construction we have

CDA � CGDA � CFR: (4.52)

Moreover, there is a triple of such sets containing the admissible matrices CE

for the respective local (macroelement level) transformation and one containing

the corresponding (induced) matrices C for the respective global transformation,

which, for convenience, we do not distinguish in the notations. Next we note that,

due to (4.52) and the optimization in the related nested parameter spaces, we have

the relations

maxC 2CFR

vT
ESE vE

vT
E
QA33;E .C /vE

� maxC 2CGDA

vT
ESE vE

vT
E
QA33;E .C /vE

� maxC 2CDA

vT
ESE vE

vT
E
QA33;E .C /vE

;

(4.53)

for all vE ¤ c, or, equivalently,

vT
E
QA33;E .CFR/vE � vT

E
QA33;E .CGDA/vE � vT

E
QA33;E .CDA/vE 8vE : (4.54)

Then, since

QA33.X/ D
X

E2TH

QA33;E .X/; X 2 ¹CFR; CGDA; CDAº;

it follows that the relations (4.54) also hold for the global QA33-blocks, i.e.,

vT QA33.CFR/v � vT QA33.CGDA/v � vT QA33.CDA/v 8v : (4.55)
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But this, due to the transformation invariance of the Schur complement already

implies that

vT Sv

vT QA33.CFR/v
� vT Sv

vT QA33.CGDA/v
� vT Sv

vT QA33.CDA/v
8v ¤ c: (4.56)

Since every of the three quotients of quadratic forms in (4.56) defines the CBS

constant related to the corresponding global splitting the inequalities in (4.51) are

proven true. �

4.4 Preconditioning of the pivot block

We continue the study of the introduced FR, DA and GDA splittings. The presen-

tation in this section includes results which are published in [32], see also [107].

Let us start with the FR splitting. After the exact local elimination of the block

A11 we get the Schur complement B . The problem of optimal order precondition-

ing of the pivot block in the two-level splitting is now related to the block B11

which is associated with the half-differences of the hierarchical basis. Let us note,

that the structure of B11, see (4.13), is the same as of the pivot block A11 in the

case of conforming elements.

The macroelement block BE W11 is found explicitly, namely,

BE W11 D
2p

q

2
664

3 q C 2ˇ0 q C 2 �q � 2ˇ2

q C 2 3 q C 2˛0 �q � 2˛2

�q � 2ˇ2 �q � 2˛2 3 q C 2 .˛2 C ˛ˇ C ˇ2/

3
775 ;

where ˛0 D 1C˛C ˛2, ˇ0 D 1CˇCˇ2, and p, q are given by q D ˛C˛ˇCˇ
and p D 3.˛ C ˛ˇ C ˇ/ C 3.˛2 C ˛ˇ C ˇ2/ C ˛ˇ.3˛ C 3ˇ C 1/. The above

expressions are rather more complicated than the related representation (3.17) of

AE W11. Nevertheless, the additive and multiplicative preconditioners discussed in

Sections 3.3–3.4 are directly applicable. Moreover, the condition number esti-

mates are shown to be completely the same as for the Courant conforming finite

elements and the following theorem holds.

Theorem 4.21. The following statements hold for any element size and shape and

any coefficient anisotropy:

(a) If C11 is the additive preconditioner to B11 then

�
�
C�1

11 B11

�
<

1

4
.11C

p
105/: (4.57)
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(b) If C11 is the multiplicative preconditioner to B11 then

�
�
C�1

11 B11

�
<

15

8
: (4.58)

(c) The cost of the application of the preconditioner in both cases is proportional

to the number of unknowns.

Proof. We follow here the proof from [32]. Let us start with item (a) of additive

preconditioning to B11. As for the conforming elements, the estimate (4.57) is

derived using the inequality from Lemma 3.4, where the local condition numbers

are derived in terms of .˛; ˇ/ 2 D. Consider the local (macroelement) generalized

eigenproblem BE W11v D �CE W11v and the corresponding characteristic equation

for �,

jBE W11 � �CE W11j D 0: (4.59)

The explicit form of the determinant of BE W11 � �CE W11 is found to be

ˇ̌
ˇ̌
ˇ̌
ˇ̌

s .1 � �/.q C 2/ �q � 2ˇ2

.1 � �/.q C 2/ s �q � 2˛2

�q � 2ˇ2 �q � 2˛2 s

ˇ̌
ˇ̌
ˇ̌
ˇ̌
;

where

s D .1 � �/.3 q C 2.1C ˇ C ˇ2//:

Straightforward computation shows that �i D 1 � �i ; i D 1; 2; 3 satisfy

�1 D 0; i.e.; �1 D 1

�2
2;3 D

.˛ C ˇ/.˛ C ˛ˇ C ˇ C 2.˛2 � ˛ˇ C ˇ2//

.˛ C ˇ C 2/Œ2.˛2 C ˛ˇ C ˇ2/C 3.˛ C ˛ˇ C ˇ/� :
(4.60)

We show below that

�2
2;3 �

7

15
; (4.61)

and thus

1 �
r

7

15
� �2;3 � 1C

r
7

15
: (4.62)

From (4.62) the claimed result (4.57) follows immediately.

To show (4.61), we first observe that the denominator in the expression for �2
2;3

in (4.60) is positive. The expanded form of inequality (4.61) becomes

F .˛; ˇ/ � 16˛3 C 16ˇ3 � 34˛2 � 34ˇ2 � 34˛2ˇ � 34˛ˇ2

�82˛ˇ � 42˛ � 42ˇ � 0: (4.63)
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We shall now prove that (4.63) holds for all .˛; ˇ/ 2 D, where

D D ¹.˛; ˇ/ 2 R
2 W �1

2
< ˛ � 1;max

°
� ˛

˛ C 1
; j˛jº � ˇ � 1

±
:

� Case 1: Let ˛ D 0. In this case

F .0; ˇ/ � 16ˇ2 � 34ˇ2 � 42ˇ D �18ˇ2 � 42ˇ � 0:

� Case 2: Let ˛ > 0. Then

16˛3 C 16ˇ3 � 34ˇ2 � 16ˇ2 C 16ˇ2 � 34ˇ2 � 0

and the remaining terms in F are negative, so F � 0.

� Case 3: Let � 1
2
< ˛ < 0. We use the fact that ˇ � 1, i.e., ˇ2 � ˇ and that

�˛ˇ � ˛ C ˇ. We have

F D 16˛3 C 16ˇ3 � 34˛2 � 34ˇ2 � 34˛ˇ.˛ C ˇ/ � 82˛ˇ � 42.˛ C ˇ/
� 16˛3 C 16ˇ3 � 14˛ˇ � 42.˛ C ˇ/
� 16.˛3 C ˇ3/C 14.˛ C ˇ/ � 42.˛ C ˇ/
D 16.˛ C ˇ/.˛2 � ˛ˇ C ˇ2/ � 28.˛ C ˇ/:

It remains to prove that

16.˛2 � ˛ˇ C ˇ2/ � 28

or

˛2 � ˛ˇ C ˇ2 � 7=4:

The latter is true, since

sup
˛;ˇ

.˛2 � ˛ˇ C ˇ2/ D sup
˛2.�1=2;0/

.˛2 � ˛ C 1/ D 7=4:

The expression F achieves its maximum value 0 for the pairs .˛; ˇ/ equal to .0; 0/

and .�1=2; 1/.

The estimate (b) for the multiplicative preconditioner to B11 is analyzed in a

similar way, using the notations introduced in the case of conforming finite ele-

ments. We again apply a local analysis and consider the generalized eigenvalue

problem

S11WQvQ D �QE11WQvQ: (4.64)
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In Lemma 3.11 it was shown that �
.2/
Q D �

.3/
Q D �

.4/
Q D 1. Moreover, the follow-

ing relation was also delivered there:

�
.1/
Q D 1 � .�.2;3//

2
: (4.65)

Here �.2;3/ D 1 � �.2;3/ are the eigenvalues introduced in the analysis of the

additive preconditioner to B11. We apply now (4.61) and get the estimate

�
.1/
Q >

8

15

from which (4.58) follows straightforwardly.

The structure and hence the computational complexity of the additive and mul-

tiplicative preconditioners for the matrix B11 is the same as of the related pre-

conditioners of the matrix A11 for the conforming finite elements. Therefore, the

optimality statement (c) follows directly from Theorem 3.13 and Theorem 3.14.

�

The presented results are easily converted to the cases of the DA and the GDA

splittings. The related pivot block to be considered has the form

� QA11
QA12

QAT
12
QA22

�
:

Here, the (locally performed) elimination of the block QA11 gives rise to a Schur

complement equal to
QA22 � QAT

12
QA�1
11
QA12 D B11

the preconditioning of which was already discussed. The latter relation follows

from direct computation, cf. [32, 107].

A detailed study of the effect of a minimum angle condition on the precondi-

tioning of the pivot block arising from two-level splittings of Crouzeix–Raviart

FE-spaces can be found in [107].

4.5 Numerical results

The presented numerical results (for further test problems see [77]) are selected to

(partly) illustrate the analysis from the previous sections. We consider the model

problem (1.1) on the unit square � D .0; 1/�.0; 1/ for the coefficient matrix

a.x/ D a.e/
�
" �ı
�ı 1

�
; (4.66)
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using Dirichlet boundary conditions. The discretization is by linear Crouzeix–

Raviart finite elements on a uniform mesh with mesh size h 2 ¹1=64; : : : ; 1=1024º
resulting in 8192, . . . , 2097152 elements and 12416, . . . , 3147776 nodes, respec-

tively (the latter being the size of the matrix of the linear system to solve).

The computational domain is split into four subdomains, i.e.,� D �1[: : :[�4

where �1 D Œ0; 1=2�2, �2 D Œ1=2; 1� � Œ0; 1=2�, �3 D Œ0; 1=2� � Œ1=2; 1�, �4 D
Œ1=2; 1�2.

Example 4.22. The (mixed derivative) parameter ı is varied from 0 to 1=4, which

is combined with a jump of two orders of magnitude in the coefficient a.e/, i.e.,

˛ D 10�2 and a ratio 1 W 10 of anisotropy, i.e., " D 10�1.

The experiments consist of solving the systems of linear algebraic equations,

arising from this example, thereby varying various parameters including the mesh

size h. Below we report the convergence results for the nonlinear algebraic mul-

tilevel iteration method (which has been discussed in Section 2.5), see also [18,

19, 72]. The reason for choosing the parameter-free (but nonlinear) variant of the

AMLI method is that we do not want to distort the comparison of the performance

of different splittings by employing (different) matrix polynomials whose coeffi-

cients (in particular) depend on the estimates of  . As it has been observed in the

context of various nonconforming finite elements, the nonlinear AMLI method,

i.e., the self-adapting variable-step preconditioner, usually performs at least as

good as the linear AMLI method [62, 77]. The stabilization of the convergence

is achieved by using two inner generalized conjugate gradient (GCG) iterations in

all cases. The outer iteration, which we initialize with a random start vector, is

stopped as soon as the residual vector satisfies the criteria

kr.nit/k=kr.0/k � 10�6;

where nit denotes the number of iterations that we report in the table below. The

coarsest-grid problem with mesh size h D 1=16 is always solved directly, i.e.,

for the sequences of discrete problems with decreasing mesh size a 3- to 7-level

method is performed. The nonlinear AMLI method is employed in its multiplica-

tive version, cf. [62, 72, 73, 77]. However, as we conclude from the estimates of

the CBS constant that have been presented in the previous section, all three split-

tings considered here allow for a construction of optimal-order additive methods

[6, 15], e.g., using third order stabilization polynomials.

In the following numerical experiments the nonlinear AMLI algorithm has been

performed with an inexact solve of the linear system with the pivot block B11 (as

obtained after the local elimination of the unknowns corresponding to the block
QA11) on all levels; its approximate inverse (acting on a vector) was implemented
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via an incomplete factorization based on a drop tolerance tol, which was chosen of

the same size as the parameter " (of anisotropy).3 This general approach provides

an alternative to the previously considered robust (but more complicated from im-

plementation point of view) additive and multiplicative preconditioners to the pivot

block B11.

In order to have a reasonable comparison of the efficiency of the DA, the GDA,

and the FR splitting from a practical point of view we report the CPU time for

the entire solution process, which includes the time for the construction of the

preconditioner. As to the state of our implementation the latter is in the range

of 20 to 30 per cent of the reported total CPU time. All experiments have been

performed on a Linux PC with 2:4 GHz and 4 GB of physical memory.

The presented experiments combine a jump in the coefficient with moderate

anisotropy and illustrate the effect of a mixed derivative term in the model problem.

The results are shown in Table 4.1. As predicted by the theory we observe that

each of the three splittings is robust with respect to jumps in the coefficients (if

they do not occur in the interior of any element of the coarsest mesh partition).

The reported CPU time demonstrates an (almost) optimal order of computational

complexity for all three splittings (the CPU time typically increases by a factor

less than five when the problem size increases by a factor four). At least with

the FR splitting, which yields the fastest solver, the largest problem (with more

than three million unknowns) still can be solved in approximately one minute on

a standard PC. Note also that though raising the number of iterations to a higher

(but constant) level, as compared to the GDA (or FR) splitting, the DA splitting

outperforms GDA in terms of computing time when ı D 0, which is caused by

a (slightly) larger number of matrix entries in the GDA (as well as in the FR)

transformation.

4.5.1 Concluding remarks

In this chapter we studied different hierarchical splittings of Crouzeix–Raviart fi-

nite element spaces based on the construction of so-called differences and aggre-

gates. We showed that among all possible splittings of this (general) type the FR

approach is the best in the sense that it results in the smallest CBS constant. The

presented numerical results confirm the analysis and also favor the FR hierarchical

basis from a CPU-time point of view.

3During the computation of the triangular incomplete factors of a matrix M the entries smaller

in magnitude than the local drop tolerance (given by the product of the drop tolerance tol and the

norm of the corresponding row i of M , i.e. tol � kMik) are dropped from the appropriate factor.
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Table 4.1: Nonlinear AMLI W-cycle: Number of iterations and CPU-time for

Example 4.22

1=h 64 128 256 512 1024

nit sec nit sec nit sec nit sec nit sec

ı D 0

DA 17 0.12 18 0.71 19 3.58 19 16.5 19 75.6

GDA 13 0.13 13 0.70 13 3.49 13 17.0 13 80.2

FR 10 0.10 10 0.51 10 2.57 10 12.5 10 59.0

ı D 1=8

DA 20 0.16 21 0.94 22 4.86 21 22.5 22 106

GDA 13 0.13 13 0.74 13 3.72 13 17.9 13 82.3

FR 12 0.11 12 0.63 12 3.17 11 14.3 11 66.2

ı D 1=4

DA 19 0.15 20 0.91 20 4.50 20 21.4 20 98.5

GDA 16 0.15 16 0.85 16 4.31 16 20.9 16 97.1

FR 14 0.12 14 0.69 14 3.47 14 17.0 14 78.7

Remark 4.23. The hierarchical error estimators introduced in Section 2.7.3 are

not directly applicable to the case of Crouzeix–Raviart finite elements. Some ideas

about the required additional analysis are briefly discussed in [30]. Due to the

result of Theorem 4.11, the DA hierarchical splitting has some advantages in this

context. Similar arguments hold true in a more general setting for the related

DA splittings which will be considered in the following sections for some other

nonconforming finite elements or discontinuous Galerkin discretizations.



5 Schur complement based multilevel

preconditioners

5.1 Hierarchical versus standard nodal-basis

Hierarchical basis matrices, in general, are less sparse than standard nodal basis

matrices, and, though they may be generated in the course of a mesh refinement

procedure in a quite natural way, one is faced with additional computational costs

when (re)constructing them from the nodal basis representation for the sake of an

efficient solution of the linear system only. On the other hand, as we conclude from

the previous sections, the theory of hierarchical basis block factorization methods,

including various stabilization techniques, is fairly matured whereas alternative

approaches, which avoid the hierarchical basis construction, have been far less fre-

quently studied. Their rigorous analysis is only established up to a certain extent.

For that reason, some numerical results are included in this chapter, which should

demonstrate the potential of the latter approach.

As a matter of fact, avoiding the hierarchical basis representation, we have to

meet certain supplementary requirements in order to develop robust two- and mul-

tilevel schemes. A general guideline is to achieve robustness, also with respect to

perturbations of the M-matrix property, which is a crucial factor in this case.

In the following we will briefly discuss a technique, originally proposed in [73],

which is based on a particular approximation of the Schur complement. Assuming

access to the individual (fine-grid) element stiffness matrices, any element agglom-

eration procedure, see, e.g., [69, 79], can be used in order to assemble macroele-

ment matrices that provide a basis for the computation of appropriate coarse-level

matrices, which makes the hierarchical basis representation (2.33) unnecessary

in the construction. However, building a bridge to the methods discussed in the

previous chapters of this book subserves the analysis. As an important example, a

(locally computable) condition number bound for the related sparse approximation

of the Schur complement will be presented in Section 5.4.

5.2 A general two-level preconditioner

We start the description of the nodal-basis approach with the consideration of a

general two-level preconditioner. Let the degrees of freedom (DOF) be partitioned

into two groups, usually denoted as fine and coarse DOF. We replace then the exact
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block factorization

A D
�
A11 A12

A21 A22

�
D
�

I

A21A
�1
11 I

�
�
�
A11 A12

S

�
(5.1)

with an approximate factorization (analogously to the representation (2.29))

B D
�

I

A21B
�1
11 I

�
�
�
B11 A12

Q

�
D
�
B11 A12

A21 QC A21B
�1
11 A12

�
: (5.2)

Herein, the matrix B11 is a preconditioner for the pivot block A11 and Q is an

approximation of the exact Schur complement S D A22 � A21A
�1
11 A12. Note that

a change to the hierarchical (two-level) basis would only affect the off-diagonal

blocks A12 and A21 in (5.1); the pivot block A11 as well as the Schur complement

S are the same for both bases [111]. However, as already mentioned, we don’t

want to use this stabilizing modification of the off-diagonal blocks here.

In the following, L̨ ; Ľ; L; Ǫ ; Ǒ; O denote positive constants satisfying

0 < L̨ ; Ľ; L � 1;

1 � Ǫ ; Ǒ; O <1:
It is known that the spectral condition number

�.B�1A/ D �max.B
�1A/

�min.B�1A/
; (5.3)

measuring the quality of the two-level preconditioner B defined via (5.2), depends

on the extremal eigenvalues of B�1
11 A11 and Q�1S , that is, it involves the bounds

L̨vT
1 A11v1 � vT

1 B11v1 � ǪvT
1 A11v1 8v1; (5.4)

and
ĽvT

2 Sv2 � vT
2 Qv2 � ǑvT

2 Sv2 8v2; (5.5)

respectively. However, and this has been shown in [94], avoiding the hierarchical

basis representation, a bound

LvTAv � vTBv � OvTAv 8v (5.6)

that is independent of the mesh size can only be obtained if B�1
11 acts nearly as an

exact inverse on all vectors A12v2 for which v2 is smooth on the coarse grid, i.e.,

a low energy mode of the Schur complement S . For instance, this requirement is

met if the condition

ǪvT
2 A21B

�1
11 A12v2 � .1 � �/vT

2 A22v2 C �vT
2 A21A

�1
11 A12v2 8v2 (5.7)
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is fulfilled for some � � 1. Note that the assumption (5.7) is loosened if we let �

be negative.

Now, inequalities (5.4) and (5.7) imply

vT
2 .A22 � S/v2 D vT

2 A21A
�1
11 A12v2

� ǪvT
2 A21B

�1
11 A12v2 � vT

2 .A22 � �S/v2 8v2
(5.8)

and (5.6) can be based on the bounds (5.4), (5.5) and (5.7). For details see [94]

where the analysis is carried out for the case ˛ D 1. We summarize the main result

(without this restriction) in the theorem below, cf. [73].

Theorem 5.1. Let A and B , as defined in (5.1) and (5.2), be symmetric nonnega-

tive definite matrices such that A11 and B11 are invertible. Moreover, assume that

(5.4) and (5.5) hold. If, in addition, condition (5.7) is satisfied for some � � 1,

then the bound (5.6) holds, i.e.,

�.B�1A/ � OL ; (5.9)

where L is the smallest root of

2 � . Ľ C Ǫ � �. Ǫ � L̨ //C L̨ Ľ (5.10)

and O is the largest root of

2 � . Ǒ C Ǫ � �. Ǫ � L̨ //C L̨ Ǒ: (5.11)

Proof. Scaling the matrixA with Ǫ , i.e., A ..D Ǫ A, the bounds (5.4) and (5.5) read

L̨
Ǫ v

T
1 A11v1 � vT

1 B11v1 � vT
1 A11v1 8v1 (5.12)

Ľ
Ǫ v

T
2 Sv2 � vT

2 Qv2 �
Ǒ
Ǫ v

T
2 Sv2 8v2 (5.13)

where S D Ǫ S D Ǫ .A22�A21A
�1
11 A12/ D A22�A21A

�1

11 A12 is the scaled Schur

complement. Moreover, (5.7) yields

vT
2 A21B

�1
11 A12v2 � .1 � �/vT

2 A22v2 C �vT
2 A21A

�1

11 A12v2 8v2: (5.14)

What follows is the proof of the left-hand side inequality of (5.6). In order to

show that

vT .B � L A/ v D vT .B � LǪ A/ v � 0 8v ; (5.15)
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which is equivalent to B � L A being SPSD, we look at the elaborated expression

for (5.15) which is given by

�
v1

v2

�T
2
4B11 � L

Ǫ A11

�
1 � L

Ǫ

�
A12�

1 � L
Ǫ

�
A21 QC A21B

�1
11 A12 � L

Ǫ A22

3
5
�

v1

v2

�
� 0: (5.16)

First we observe that (5.10) has two positive roots and that the identity

L D Ľ � L . Ǫ � L̨ / .1 � �/L̨ � L (5.17)

holds. In view of (5.12) we know that B11 � L
Ǫ A11 is SPD if L � L̨ , the latter

being true for the smallest root L of (5.10). Hence (5.16) holds if and only if the

Schur complement

SB� L A D QC A21B
�1
11 A12 � LǪ A22 �

�
1 � LǪ

�2

A21 .B11 � LǪ A11/
�1A12

is SPSD, i.e, if

vT
2 ¹Q�

L
Ǫ A22CA21

�
B�1

11 �
�

1 � LǪ
�2

.B11 � LǪ A11/
�1

�
A12ºv2 � 0: (5.18)

Combining (5.17) and (5.14) we find

. Ľ � L/ vT
2 A22v2 D L . Ǫ � L̨ / .1 � �/

L̨ � L vT
2 A22v2

� L . Ǫ � L̨ /
L̨ � L vT

2

h
A21 .B

�1
11 � � A

�1

11 / A12

i
v2: (5.19)

Now, using (5.12), (5.13) and (5.19) in (5.18) it follows that

vT
2 SB� L Av2 � vT

2

² Ľ � L
Ǫ A22 �

Ľ
Ǫ A21A

�1

11 A12

CA21

�
B�1

11 �
�

1 � LǪ
�2

.B11 � LǪ A11/
�1

�
A12

³
v2

� vT
2 A21

²�
1C L . Ǫ � L̨ /Ǫ . L̨ � L/

�
B�1

11 �
 Ľ
Ǫ C

� L . Ǫ � L̨ /
Ǫ . L̨ � L/

!
A

�1

11

�
�

1 � LǪ
�2

.B11 � LǪ A11/
�1

³
A12v2: (5.20)
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Next, due to the identities

1C L . Ǫ � L̨ /Ǫ . L̨ � L/ D
L̨ . Ǫ � L/
Ǫ . L̨ � L/

and
1

Ǫ
�
Ľ C � L . Ǫ � L̨ /

. L̨ � L/
�
D L . Ǫ � L/Ǫ . L̨ � L/ ;

the latter of which is obtained by using (5.17), the right-hand side of (5.20) can be

rewritten in the form

vT
2 A21

°
L̨ . Ǫ� L/
Ǫ . L̨� L/

B�1
11 � L. Ǫ� L/

Ǫ . L̨� L/
A

�1

11 �
�

1 � L
Ǫ

�2

.B11 � L
ǪA11/

�1
±
A12v2

D Ǫ� L
Ǫ . L̨� L/

vT
2 A21

°
L̨B�1

11 � LA
�1

11 � . Ǫ� L/. L̨� L/
Ǫ .B11 � L

ǪA11/
�1
±
A12v2

D Ǫ� L
Ǫ . L̨� L/

vT
2 Y

T
°
L̨I � LX�1 � . Ǫ� L/. L̨� L/

Ǫ .I � L
ǪX/

�1
±
Y v2 8v2 (5.21)

where X D B
�1=2
11 A11B

�1=2
11 and Y D B

�1=2
11 A12. Because of (5.12) all eigenval-

ues of the matrix X are greater or equal to 1 and less or equal to Ǫ= L̨ , i.e.,

�i .X/ D �i .B
�1=2
11 A11B

�1=2
11 / 2

h
1;
Ǫ
L̨
i
: (5.22)

But then, since L � L̨ it is easily seen that

f .�/ ..D L̨ � L ��1 � . Ǫ � L/. L̨ � L/Ǫ .1 � LǪ �/
�1

D .1 � LǪ �/
�1

�
. Ǫ � L�/ . L̨ � L��1/ � . Ǫ � L/ . L̨ � L/

Ǫ
�

D . Ǫ � L�/�1 L . Ǫ C L̨ � Ǫ��1 C L̨�/
D . Ǫ � L�/�1 L .1 � ��1/ . Ǫ � L̨�/ (5.23)

is nonnegative for all � 2 Œ1; Ǫ= L̨ � and thus (5.21) is always nonnegative, i.e.,

SB� L A is indeed an SPSD matrix.

The proof of the right-hand side inequality of (5.6) is similar and is left as an

exercise. �

For M-matrices condition (5.7) has been analyzed in [94]. It can be shown that

if B11 D B11;MILU, i.e., B11 results from a modified incomplete factorization of

A11 (where the modification vector is assumed to be .1; 1; : : : ; 1/T ), then (5.7) is

always satisfied for � D 0. Moreover, if A arises from a linear finite element dis-

cretization of a two-dimensional second order elliptic PDE (on a triangular mesh
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with no interior angle larger than �
2

) one can actually prove that (5.7) holds for

� D 1
2
. In general, this assumption can be checked (and a value for � can be deter-

mined) based on the following considerations (which also apply to SPD non-M-

matrices): First, we note that .A22� �S � ǪA21B
�1
11 A12/ is the Schur complement

of the matrix

M D
�

1
ǪB11 A12

A21 A22 � �S
�
:

Thus, since B11 is SPD, condition (5.7) holds if and only if M is symmetric posi-

tive semidefinite (SPSD). Further, if

vT
1 B11v1 � vT

1
QB11v1 8v1 (5.24)

and

vT
2 Sv2 � vT

2
QSv2 8v2 (5.25)

for any SPSD matrices QB11 and QS it is clear that (5.7) follows if the matrix

QM D
�

1
Ǫ
QB11 A12

A21 A22 � � QS
�

(5.26)

is SPSD. This motivates the study of the class of two-level preconditioners defined

via (5.2) where B11 satisfies a row-sum criterion. However, for the Schur com-

plement approximation Q we suggest its computation by assembling (exact) local

Schur complements (cf. Section 5.4).

5.3 Incomplete factorization based on exact local

factorization

As already mentioned in Section 5.2, a preconditioner B11 for the pivot block A11

in particular has to be accurate on a certain subspace (cf. (5.7) and (5.8)). We will

compare the efficiency of two types of preconditioners B11 D LU which satisfy

the row-sum criterion

A11e D B11e; e ..D .1; 1; : : : ; 1/T : (5.27)

The first preconditioner, denoted by B11;MILU, is obtained from classical MILU

factorization [5, 51] ofA11 where off-diagonal fill-in (forL and U ) is only allowed

in positions in which A11 is nonzero. It is well known that even for SPD matrices

incomplete factorization methods can suffer from breakdown since they may yield

zero (or negative) pivots when an exact factorization would give only positive piv-

ots [52]. However, in the present context the partitioning of the matrix A (cf. (5.1)

in Section 5.2) usually causes pivot blocks which prevent possible breakdowns.
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For the purpose of comparison, we construct a second preconditioner, now based

on local complete factorizations. Here we take advantage of the knowledge of the

individual element matrices. A straightforward approach is to regard the small-

sized macroelement matrices (resulting from assembling element matrices). For

that reason we transfer the global ordering of nodes (and DOF) to a local ordering,

i.e., we label the interior fine-grid nodes (DOF) first, followed by those on the

boundary of the considered macroelement, and label the coarse-grid nodes (DOF)

last, as exemplified in Figure 5.1.

26

8

7

3

5 9

1 4

Figure 5.1: Local node numbering within macroelement (quadrilateral elements)

With respect to this local ordering the macroelement matrices take a 2� 2 block

form

AE D
�
AE W11 AE W12

AE W21 AE W22

�
; (5.28)

where AE W11 and AE W22 are the blocks corresponding to fine and coarse-grid DOF,

respectively.

Let us assume that AE W11 is non-singular for all macroelements E. Then the

factorization

AE W11 D LEUE 8E (5.29)

is well defined where LE and UE can be scaled such that the diagonal of LE is

the identity, i.e., diag.LE / D I . Now, since

A11 D
X

E

RT
EAE W11RE ; (5.30)

where RE denotes a Boolean matrix representing the restriction to the macroele-

ment degrees of freedom, the sum of upper triangular matrices UE yields an ap-

proximate upper triangular factor of the global pivot block A11, i.e.,

U ..D
X

E

RT
EUERE : (5.31)

Consequently, a preconditioner B11 D B11;ILUE is defined in terms of

B11;ILUE ..D LU; U ..D
X

E

RT
EUERE ; L ..D U T diag.U /�1: (5.32)
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The following lemma provides a Cauchy–Schwarz inequality for matrices.

Lemma 5.2. For i D 1; 2; : : : ; N let Xi be real n�k and Yi be real n�m ma-

trices. Then, if the m�m matrix Z11 ..D PN
iD1 Y

T
i Yi is invertible the following

inequality holds:

NX

iD1

XT
i Xi �

NX

iD1

XT
i Yi

 
NX

iD1

Y T
i Yi

!�1
NX

iD1

Y T
i Xi � 0: (5.33)

Proof. We have

�
v1

v2

�T �
Y T

i Yi Y T
i Xi

XT
i Yi XT

i Xi

� �
v1

v2

�

D h.Yiv1 CXiv2/; .Yiv1 CXiv2/i

D kYiv1 CXiv2k2 � 0 8v D
�

v1

v2

�
8i:

Hence,

Z ..D
�P

i Y
T
i Yi

P
i Y

T
i XiP

i X
T
i Yi

P
i X

T
i Xi

�
� 0; (5.34)

and since Z11 D
PN

iD1 Y
T
i Yi is an SPD matrix (5.34) holds if and only if the

Schur complement

SZ ..D
NX

iD1

XT
i Xi �

NX

iD1

XT
i Yi

 
NX

iD1

Y T
i Yi

!�1
NX

iD1

Y T
i Xi

is SPSD. �

Remark 5.3. For k D m D n D 1 inequality (5.33) reduces to the classical

discrete Cauchy–Schwarz inequality

NX

iD1

x2
i

NX

iD1

y2
i �

 
NX

iD1

xiyi

!2

� 0:

Our aim is now to find constants Ǫ and L̨ for (5.4) that result in a proper upper

bound for the relative condition number of the preconditioner B11 to the pivot

block A11, i.e., �.B�1
11 A11/ � Ǫ= L̨ .

Note that AE W11 D U T
E diag.UE /

�1UE , and, RER
T
E D IE . Now, by choosing

Xi � XE ..D RT
E diag.UE /

�1=2UERE and Yi � YE ..D RT
E diag.UE /

1=2RE it

follows from Lemma 5.2 that

vT
1 B11v1 � vT

1 A11v1 8v1;
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i.e., the right-hand side inequality in (5.4) holds with Ǫ D 1:

A11 � B11 D
X

E

RT
EAE W11RE

�
X

E

RT
EU

T
ERE

 X

E

RT
E diag.UE /RE

!�1X

E

RT
EUERE

D
X

E

RT
EU

T
E diag.UE /

�1=2RER
T
E diag.UE /

�1=2UERE

�
X

E

RT
EU

T
E diag.UE /

�1=2RER
T
E diag.UE /

1=2RE

�
 X

E

RT
EU

T
E diag.UE /

1=2RER
T
E diag.UE /

1=2RE

!�1

�
X

E

RT
EU

T
E diag.UE /

1=2RER
T
E diag.UE /

�1=2RE

D
X

E

XT
EXE �

X

E

XT
EYE

 X

E

Y T
E YE

!�1X

E

Y T
E XE � 0:

To find a tight lower bound, i.e., a constant L̨ such that the left-hand side inequality

in (5.4) is as sharp as possible, is a more difficult task in general. The following

constructive approach delivers insight but also a computable estimate:

Let DU ..D diag.U / denote the diagonal matrix whose diagonal agrees with

that of U , i.e., .DU /i i D Ui i , and let the (local) macroelement matrix QBE W11 be

defined by

QBE W11 ..D U T
ERED

�1
U RT

EUE : (5.35)

Moreover, let

O� ..D �max. QB�1
E W11AE W11/ (5.36)

be the maximal eigenvalue of QB�1
E W11

AE W11. Finally, let n
f
E denote the number of

faces of any macroelement E. Now, if for any two adjacent macroelements E and

E 0, which share a face, the relation

.c � 1/

 
1

n
f
E

RT
EU

T
ERED

�1
U RT

EUERE C
1

n
f
E 0

RT
E 0U

T
E 0RE 0D�1

U RT
E 0UE 0RE 0

!

Cc �RT
EU

T
ERED

�1
U RT

E 0UE 0RE 0 CRT
E 0U

T
E 0RE 0D�1

U RT
EUERE

� � 0 (5.37)
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holds for some constant c � 1, then by choosing L̨ ..D 1=.c O�/ we arrive at the

desired estimate:

1

L̨ vT
1 B11v1 D c O� vT

1

 X

E

RT
EU

T
ERED

�1
U

X

E

RT
EUERE

!
v1

� O� vT
1

 X

E

RT
EU

T
ERED

�1
U RT

EUERE

!
v1

D O� vT
1

 X

E

RT
E
QBE W11RE

!
v1

� vT
1

 X

E

RT
EAE W11RE

!
v1 D vT

1 A11v1 8v1:

Note that the constant c in the (interface) condition (5.37) can easily be determined

by evaluating the corresponding (local) constant for all (different) configurations of

the macroelement interfaces and then taking the maximum value (for the global c).

In many cases, e.g., for the model problems considered at the end of this chapter,

the condition number of B�1
11 A11 can be estimated by

�.B�1
11 A11/ . O� D �max. QB�1

E W11AE W11/:

Typically �.B�1
11 A11/ also depends on certain problem parameters such as the ratio

of anisotropy or the Poisson ratio (in case of linear elasticity). A feasible step

towards improving the robustness of this ILU-type preconditioner based on exact

local factorization is the employment of proper row-sum criteria. If we want to

satisfy the row-sum criterion (5.27) the diagonal of U (as defined in (5.31)) needs

a recalculation. For any two N�N matrices C D .cij / and B11 D .bij /, the latter

being a product of the form B11 D U T diag.U /�1U , where U D .uij / is an upper

triangular matrix, the criterion Ce D B11e (see (5.27)), is equivalent to

ukk D
NX

j D1

ckj �
NX

j DkC1

ukj �
k�1X

iD1

uik

ui i

NX

j Di

uij 8k D 1; 2; : : : ; N: (5.38)

This a-posteriori modification of the diagonal of U can be done efficiently using

the algorithm below.
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Algorithm 5.4 (A-posteriori modification of the diagonal of U ).

for k D 1 to N

sC .k/ ..D
NX

j D1

ckj

sU .k/ ..D
NX

j DkC1

ukj

ukk ..D sC .k/ � sU .k/ �
k�1X

iD1

uiksU .i/

ui i

sU .k/ ..D sU .k/C ukk

end

Remark 5.5. Note that the number of operations required for the execution of

Algorithm 5.4 is of order O.nC C nU / where nC and nU denote the number of

nonzero entries of C respectively U .

Modifying the diagonal ofU according to the aforementioned algorithm yields a

preconditioner, henceforth denoted by B11;MILUE D LU , where L is again defined

by L ..D U T .diag.U //�1.

5.4 Local Schur complements

In this section we will define a particular approximation Q to the exact Schur

complement S D A22 � A21A
�1
11 A12, and analyze its relative condition number.

The proposed approximation technique is simple: From the macroelement ma-

trices (5.28) one computes the exact local Schur complements

SE D AE W22 � AE W21.AE W11/
�1AE W12 (5.39)

for all macroelements E, which then serve as element matrices on the next coarser

level. The procedure is repeated on all levels, i.e.,

A.k�1/
e

..D S .k/
E 8E (5.40)

at levels k D `; ` � 1; : : : ; 1. In other words, we assemble the small-sized local

Schur complement matrices to a global Schur complement approximation, i.e.,

Q.k/ ..D
X

E

R
.k/T
E S

.k/
E R

.k/
E : (5.41)
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In the following, whenever it is clear that we refer to some fixed level k, we drop

the index k, writing Q DPE R
T
ESERE , for instance.

Consider now the approximation property (5.5). In the remainder of this section,

we will derive a locally computable constant Ľ, and, we will show that (5.5) holds

with Ǒ D 1. First, we recall the following energy minimization property of the

Schur complement (see Lemma 2.1),

vT
2 Sv2 D min

v1

�
v1

v2

�T

A

�
v1

v2

�

D min
v1

�
v1

v2

�T
 X

E

RT
EAERE

!�
v1

v2

�

D min
v1

X

E

 �
v1

v2

�T

RT
EAERE

�
v1

v2

�!
8v2;

(5.42)

where vE denotes the restriction of an arbitrary vector v to any given macroele-

ment E, i.e., vE D RE v . Now, using (5.41) and (5.42) it is readily seen that (5.5)

holds with Ǒ D 1:

vT
2 Qv2 D vT

2

 X

E

RT
ESERE

!
v2

D
X

E

vT
E W2SE vE W2

D
X

E

 
min
vEW1

�
vE W1
vE W2

�T

AE

�
vE W1
vE W2

�!

D
X

E

 
min

v1

�
v1

v2

�T

RT
EAERE

�
v1

v2

�!

� min
v1

X

E

 �
v1

v2

�T

RT
EAERE

�
v1

v2

�!
D vT

2 Sv2 8v2:

(5.43)

Remark 5.6. Alternatively, by choosing Xi � XE ..D RT
EA

�1=2

E W11
AE W12RE and

Yi � YE ..D RT
EA

1=2

E W11
RE and using (5.33) it can also be seen that (5.5) holds

with Ǒ D 1.

Regarding the constant Ľ the following basic relation, cf. Lemma 2.4, is an

important observation: The (hierarchical basis) coarse-level matrix AH in (2.33)

and the Schur complement approximation Q in (5.41) satisfy the inequalities

.1 � 2/vT
2 AH v2 � vT

2 Qv2 � vT
2 AH v2 8v2; (5.44)



114 Chapter 5 Schur complement based multilevel preconditioners

which result from applying Lemma 2.4 at macroelement level (for every macroele-

ment) and using the fact that both matrices, AH and Q, are assembled from their

corresponding local counterparts. Here  ..D maxE E where E is the local

CBS constant for the splitting (2.31). Using then the right hand side inequality

of Lemma 2.4 (again with A22 D AH ) we deduce from (5.44) the lower bound
Ľ D 1 � 2. This simple derivation of a lower bound in terms of  was presented

in [9]. It shows that the approximation (5.41) is reasonable if the corresponding

hierarchical basis transformation defines a proper splitting. In particular, we con-

clude that the condition number bound

�.Q�1S/ � 1

1 � 2

holds for arbitrary coefficients in the differential operator (if they are piecewise

constant, cf. Theorem 3.8), and even for degenerated elements. We summarize the

facts in the following theorem.

Theorem 5.7. Let Q be the assembly of the local (macroelement matrix) Schur

complements SE , i.e., Q D P
E R

T
ESERE , and let S be the global (true) Schur

complement matrix in (2.34). Then

.1 � 2/vT
2 Sv2 � vT

2 Qv2 � vT
2 Sv2 8v2 (5.45)

where  ..D maxE E .

Finally, we want to emphasize that this method can also be applied to non-

selfadjoint problems. Efficient Schur complement based multilevel precondition-

ers for linear isostasy saddle point problems have been studied in [22].

5.5 Numerical results

In this section we will present some numerical results for the nonlinear algebraic

multilevel iteration algorithm, for details see [72, 73]. This is a slightly modified

version of the algorithm originally proposed in [19]. However, we will consider

this method employing the components defined in Sections 5.3–5.4.

The first test problem describes anisotropic diffusion. The domain � is the unit

square. The weak formulation is given by:

Problem 1.

A.u; v/ ..D
Z

�

.rv/T a.x/rudx D .f; v/ 8 v 2 H 1
0 .�/

a.x/ ..D
�
� 0

0 1

�
; 0 < � � 1: (5.46)
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In the second test problem, we impose a jump on the direction of strong dif-

fusion along the line x2 D 1=2, i.e., we modify Problem 1 by changing (5.46)

accordingly (cf. [15]):

Problem 2. Replace (5.46) in Problem 1 with

a.x/ ..D

8
ˆ̂̂
<
ˆ̂̂
:

�
� 0

0 1

�
if .x1; x2/ 2 .0; 1/ � .0; 1

2
/

�
1 0

0 �

�
if .x1; x2/ 2 .0; 1/ � .1

2
; 1/ :

The two-level preconditioner at level k is given by

B.k/ D
�

I .k/

A
.k/
21 .B

.k/
11 /

�1 I

�
�
�
B

.k/
11 A

.k/
12

Q.k/

�
; (5.47)

where the Schur complement approximation from Section 5.4 defines the coarse-

grid matrix, i.e.,

A.k�1/ ..D Q.k/; (5.48)

and the preconditioner B
.k/
11 D L.k/U .k/ is obtained from (modified) incomplete

factorization of A
.k/
11 (cf. Section 5.3).

In Tables 5.1 and 5.2 we list the number of outer generalized conjugate gra-

dient (GCG) iterations that suffice to reduce the l2-norm of the initial residual

(corresponding to a random initial guess) by a factor 106.1 We compare two it-

erative methods, (I) and (II), both based on nonlinear AMLI (cf. Section 2.5). In

the method (I) we use a global MILU factorization for preconditioning the A11

block at all levels, i.e., B11 D B11;MILU. In method (II) we use the preconditioner

B11;MILUE, defined via (5.32) and (5.38), instead. Starting with the first coarse

level, two inner GCG iterations are (recursively) performed on every other level,

which results in a cheap(er) W-cycle variant.

The numerical tests clearly indicate the potential of the considered precondition-

ing technique. We observe that even with a global MILU factorization (procedure

(I)) of the pivot block the corresponding multilevel iteration becomes an optimal-

order method if the ratio of anisotropy is not too large. However, for increasing

anisotropy the convergence of method (I) deteriorates whereas method (II) yields

the desired robustness. In particular, the results for Problem 2, where the parame-

ter � additionally introduces a discontinuity in the PDE coefficients (changing the

direction of dominating anisotropy), demonstrate the importance of an adequate

1An asterisk indicates that 250 outer iterations are not sufficient to reach the convergence crite-

rion.
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Table 5.1: Number of outer GCG iterations for Problem 1

1=h 8 16 32 64 128 256 512

� D 1:0 (I) 5 6 6 7 7 7 7

(II) 5 6 7 7 7 7 7

� D 0:5 (I) 5 7 7 8 8 8 8

(II) 5 7 8 8 8 8 8

� D 0:25 (I) 7 9 9 9 9 9 9

(II) 5 7 9 9 9 9 9

� D 0:1 (I) 10 16 18 18 18 18 18

(II) 5 8 10 10 11 11 11

� D 0:01 (I) 18 � � � � � �
(II) 5 7 9 10 11 11 11

Table 5.2: Number of outer GCG iterations for Problem 2

1=h 8 16 32 64 128 256 512

� D 0:5 (I) 6 7 7 8 8 8 8

(II) 5 7 8 8 8 8 8

� D 0:25 (I) 8 9 9 9 9 10 10

(II) 5 8 9 9 10 9 10

� D 0:1 (I) 12 19 20 21 21 21 21

(II) 6 8 10 11 11 11 11

� D 0:05 (I) 16 47 56 59 60 60 61

(II) 6 8 10 11 11 11 11

� D 0:01 (I) 16 � � � � � �
(II) 6 8 10 11 11 11 11

preconditioner B11 for the pivot block. In the above examples, this requirement

obviously can be met using exact local factorization, i.e., by employingB11;MILUE.

This leads to the conclusion that, though its analysis is not complete yet, the

Schur complement based algebraic multilevel preconditioning technique,presented

in this section, offers an attractive alternative to the hierarchical basis approach.



6 Algebraic multigrid (AMG)

Algebraic Multigrid (AMG) was first introduced in the early 80s [36, 39, 40] and

immediately attracted substantial interest [101, 102, 106]. Mainly, this is due to its

robustness and applicability to various types of problems [48].

A detailed description of the classical AMG method, which was originally pro-

posed in [39], can be found in [102]. The first AMG results for linear elasticity are

discussed in [102].

In the last couple of years various new variants of AMG came up, most of which

have been designed for special applications. Especially two classes of methods,

namely AMG using element interpolation (AMGe) [44, 67, 69] and AMG based

on smoothed aggregation [108, 109], considerably enhanced the range of applica-

bility of classical AMG [102]. Whereas smoothed aggregation methods (applied to

discretizations of elliptic problems) typically assume the knowledge of the near-

nullspace that has to be preserved by the interpolation, AMGe methods capture

this information implicitly by accessing the individual element stiffness matrices.

Recent works on adaptive smoothed aggregation [45] and adaptive algebraic multi-

grid [46] try to remove the need of any assumptions on algebraically smooth error

but, instead, use the method itself to determine near-nullspace components and

adjust the coarsening process accordingly. In the following we will briefly outline

the main idea of algebraic multigrid (AMG).

Let us consider the following problem: For a given b 2 R
n we seek the solution

x 2 R
n to the linear system (1.47) assuming that A is sparse, and symmetric and

positive definite.

Note that in general it is not necessary that A stems from discretization of a

(system of) partial differential equation(s) at all. However, if A stems from finite-

element discretization of a second-order elliptic operator it can be beneficial to

exploit this knowledge. For instance, the individual element (stiffness) matrices

can be used in order to derive a superior (element-based) interpolation.

Roughly speaking, algebraic multigrid is multigrid based on the matrix entries

only, although this is not quite correct for some of the more recent approaches, as

they exploit additional information, e.g., element matrices, nodal coordinates, the

knowledge of (near) null-space components, etc.

The characteristic features of AMG are (a) a fixed relaxation (smoother), (b)

an automatic coarse-grid selection, (c) “algebraic” grid-transfer operators, and

(d) “algebraic” coarsening (typically, the coarse-grid matrices are defined via the

Galerkin relation).

Some of the main advantages of AMG are that there is no rediscretization nec-
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essary, i.e., the coarsest grid of a sensible discretization can be very fine, the feasi-

bility to handle problems without geometric background, and the robustness (grey

box solver) of the method.

The essential components of an AMG method are:

� a set D of fine-grid degrees of freedom (DOF)

� a coarse grid, Dc ; typically a subset of D

� a prolongation operator P W Dc ! D

� a smoother; typically Gauß–Seidel or Jacobi

� a coarse matrix given by AH D P TAP

Building a good algebraic multigrid method requires adequate (problem-adapt-

ed) coarse-grid selection, proper (kernel-preserving) interpolation and efficient

smoothing that has to complement the coarse-grid correction.

In the following we will discuss the basic components of AMG in the framework

of two-grid methods; in (full) algebraic multigrid this construction is used recur-

sively. In particular, we will comment on the principle of coarse-grid correction,

its interplay with relaxation, discuss element-based interpolation, prove a simple

two-grid convergence result, and derive the error propagation relation based on

which we will point out the similarities to AMLI methods. Finally, we give a brief

overview on classical AMG and describe the basic idea of smoothed aggregation.

6.1 Two-grid and multigrid algorithms

6.1.1 Exact two-level method

Let us start the presentation with the exact solution of the 2�2 block system

A11x1 C A12x2 D b1; (6.1a)

A21x1 C A22x2 D b2; (6.1b)

which is given by
�

x1

x2

�
D
�
A�1

11

�
b1 � A12S

�1.b2 � A21A
�1
11 b1/

�

S�1.b2 � A21A
�1
11 b1/

�
(6.2)

where S D A22 � A21A
�1
11 A12 is the Schur complement. Now let

M�1 ..D
�
A�1

11 0

0 0

�
(6.3)

and

P ..D
��A�1

11 A12

I

�
: (6.4)
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Then the solution (6.2) of (6.1) can be obtained by executing the following algo-

rithm: Set x.0/ D 0 and then perform the steps (6.5a) to (6.6d):

e.1/ D M�1

�
b1

0

�
(6.5a)

x.1/ D x.0/ C e.1/ D
�
A�1

11 b1

0

�
(6.5b)

r.1/ D b � Ax.1/ D
�

0

b2 � A21A
�1
11 b1

�
(6.5c)

rc
.1/ D P T r.1/ D b2 � A21A

�1
11 b1 (6.6a)

ec
.2/ D S�1rc

.1/ D S�1.b2 � A21A
�1
11 b1/ (6.6b)

e.2/ D P ec
.2/ D

��A�1
11 A12S

�1b2 C A�1
11 A12S

�1A21A
�1
11 b1

S�1b2 � S�1A21A
�1
11 b1

�
(6.6c)

x.2/ D x.1/ C e.2/ D
�
A�1

11 .b1 � A12S
�1.b2 � A21A

�1
11 b1//

S�1.b2 � A21A
�1
11 b1/

�
(6.6d)

The above algorithm can be interpreted as a two-level method, which comprises

one smoothing step (6.5) and one correction step (6.6). By choosing the smoother

M�1 and the interpolation matrix P according to (6.3) and (6.4) we encounter an

exact (direct) solution method. However, since A�1
11 is a full matrix in general –

and thus far too expensive to compute – in practice one has to use sparse approx-

imations, that is, a sparse smoother and a sparse approximation of the harmonic

extension (the first component in (6.4)). In this way various inexact (iterative) two-

and multilevel methods can be constructed. We shall now give a more general for-

mulation of a two-grid and a multigrid algorithm and then comment in particular

on the construction of the main components of these algorithms.

6.1.2 From two-grid to multigrid

An algebraic two-grid method is defined by

1. relax �1 times on Ax D b

2. correct x xC P.P TAP/�1P T .b � Ax/

3. relax �2 times on Ax D b

An algebraic multigrid method recursively applies the above two-grid method to

solve the linear system arising in the coarse-grid correction step (2). Diverse cycles



120 Chapter 6 Algebraic multigrid (AMG)

differ in the sequence of recursion. Let A.0/ ..D A be the fine-grid matrix, b.0/ ..D
b the corresponding right hand side, and let the sequence of coarse-grid operators

be defined via the Galerkin relation

A.kC1/ ..D P .k/T
A.k/P .k/

where the interpolation at level k is denoted by P .k/. Let us further denote by

M .k/ the smoother at level k. Then the linear system (1.47) can be solved (approx-

imately) by application of the algorithm AMG(x.0/;b.0/) which has the following

recursive structure:

Algorithm 6.1. AMG(x.k/;b.k/)

r.k/ D b.k/ � A.k/x.k/

apply �1 pre-smoothing steps: x.k/  x.k/ CM .k/�1
r.k/ (6.7)

coarse-grid correction: (6.8)

set b.kC1/ D P .k/T
.b.k/ � A.k/x.k//

if k C 1 D `
solve A.kC1/x.kC1/ D b.kC1/ by a direct method

else

set x.kC1/ ..D 0 and solve by � applications of AMG.x.kC1/;b.kC1//

end

correct: x.k/  x.k/ C P .k/x.kC1/

r.k/ D b.k/ � A.k/x.k/

apply �2 post-smoothing steps: x.k/  x.k/ CM .k/�T
r.k/ (6.9)

Algorithm 6.1 performs a �-fold W-cycle with �1 pre- and �2 post-smoothing

steps. Note that in the formal description of AMG methods, the coarsest level is

usually given the level index `. This is convenient because applying the algorithm

to a linear system (e.g., arising from discretization of a PDE on an unstructured

mesh) one typically does not know in advance how many coarsening steps will be

required to reach a coarse(st)-grid problem of acceptable dimension.

6.2 Main components of algebraic multigrid

6.2.1 Coarse-grid correction

In what follows let AH ..D P TAP denote the coarse-grid matrix and F D I �
PA�1

H P TA the coarse-grid correction matrix. First we observe that F 2 D F and
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that range.P / D range.I � F /. Moreover, since

eTF TA.I � F / v D eTF TAP A�1
H P TA v

D eT Œ.I � AP A�1
H P T /AP A�1

H P TA� v

D eT ŒAP A�1
H P TA � AP A�1

H P TAP A�1
H P TA� v

D 0

we conclude that

hF e; .I � F /viA D 0 8e 8v :

Hence

min
d2range.P /

ke � dk2
A D min

d2range.I�F /
ke � dk2

A

D min
d2range.I�F /

kF eC .I � F /e � dk2
A

D min
d2range.I�F /

kF e � dk2
A

D min
d2range.I�F /

ŒkF ek2
A C kdk2

A�

D kF ek2
A:

This means that Galerkin-based coarse-grid correction minimizes the energy norm

of the error with respect to all variations in range.P /.

6.2.2 Smoothing

For the class of problems considered in this book, classical stationary iterative

methods, which are based on updating a current iterate at a node based on the

values of the iterate at neighboring nodes, reduce the highly oscillatory error com-

ponents fast, see Figure 6.1. That is why these methods are also referred to as

smoothers. Then the resulting smooth error can be represented accurately using

fewer degrees of freedom, i.e., on a coarse grid, see Figure 6.2.

The construction of a two- or multilevel method that takes advantage of this fact

crucially depends on a proper coarse-grid (discretization) matrix.

The error propagation matrix of a two-grid method with �1 pre- and �2 post-

smoothing steps is given by

.I �M�TA/
�2F .I � AM�1/

�1 :

Thus a two-grid method never diverges if kI �M�TAkA D kI � AM�1kA � 1.
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Figure 6.1: Random initial error (left) after 5 Gauß–Seidel iterations (right picture)
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Figure 6.2: Error after 10 Gauß–Seidel iterations (left) represented on coarse mesh

(right picture)

An efficient multigrid method requires relaxation and coarse-grid correction to

complement each other, i.e., error not reduced by one has to be reduced by the other

[44]. This necessitates that the range of interpolation should well approximate

those errors not efficiently reduced by relaxation such that they can be reduced on

coarser grids!

Standard relaxation schemes, like Richardson, (damped) Jacobi, or Gauß–Seidel

slowly reduce low energy error, i.e., error in the direction of eigenvectors corre-

sponding to small eigenvalues. This leads to the following heuristic:

H: Interpolation must be able to approximate eigenvectors with error

bound proportional to the size of the associated eigenvalues.
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6.2.3 Interpolation

In order to examine how well the above heuristic is satisfied for a given interpola-

tion P let us consider a convenient linear projection Q onto range.P /

Q W R
n ! R

n

Q D PR
for whichRP D I holds. Now, if e 2 range.P / it follows thatQe D e and hence

.I �Q/ can be used to measure the defect of interpolation. A simple measure for

interpolation quality thus is given by

�0.Q; e/ ..D h.I �Q/e; .I �Q/eihAe; ei : (6.10)

Element- and edge-based interpolation

The key idea of AMGe is to localize this type of measure based on the knowledge

of the individual element matrices Ae , i.e., one takes advantage of the fact that A

is given as a sum A D P
e2T R

T
e AeRe where T is a set of finite elements. Then

the neighborhood � of a fine-grid DOF (node) i to which interpolation is desired

can be defined as a (proper) set of elements (or edges) linked to this particular

node; The small-sized neighborhood matrix A�, which we also call an interpola-

tion molecule, is assembled from the corresponding element (or edge) matrices. It

admits the 2�2 block structure

A�.i/ D A� D
�
A�

ff
A�

fc

A�
cf

A�
cc

�
: (6.11)

Consider now the small-sized (local) interpolation matrix

PA� D P D
�
Pfc

Icc

�
(6.12)

associated with (6.11). The n
f

A��nc
A� submatrix Pfc produces interpolation in

the f-nodes; for the c-nodes P equals the identity. Under the assumption that A�

is SPSD the AMGe interpolation concept can be applied directly [44, 55]:

For any vector eT D .eT
f
; eT

c / ? ker.A�/ we denote by

df ..D ef � Pfcec (6.13)

the defect of (local) interpolation. With the objective of realizing the AMGe

heuristic we choose Pfc to be the argument that minimizes

max
e?ker.A�/

.ef � Pfcec/
T .ef � Pfcec/

eTA�e
: (6.14)
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Using the substitutions (6.13) and G ..D P T
fc
A�

ff
Pfc CP T

fc
A�

fc
CA�

cf
Pfc CA�

cc

we derive the following equivalence for (6.14):

max
df ;ec

dT
f

df

�
df C Pfcec

ec

�T � A�
ff

A�
fc

A�
cf

A�
cc

� �
df C Pfcec

ec

�

D max
df ;ec

dT
f

df

hA�
ff
.df CPfcec/;df CPfceciC2hA�

fc
ec ;df CPfceciChA�

ccec ; eci

D max
df ;ec

dT
f

df

�
df

ec

�T

B

�
df

ec

� (6.15)

where

B D
�

A�
ff

A�
ff
Pfc C A�

fc

P T
fc
A�

ff
C A�

cf
G

�
(6.16)

is SPSD. Hence,

min
Pfc

max
df ;ec

dT
f

df

�
df

ec

�T

B

�
df

ec

� D min
Pfc

max
df

dT
f

df

minec

�
df

ec

�T

B

�
df

ec

�

Dmin
Pfc

max
df

dT
f

df

dT
f

�
A�

ff
� .A�

ff
Pfc C A�

fc
/G�1.P T

fc
A�

ff
C A�

cf
/
�

df

: (6.17)

Assuming that A�
ff

and G both are SPD the denominator of (6.17) for an arbitrary

vector df is maximized and thus the minimum is attained for

Pfc ..D �.A�
ff /

�1A�
fc ; (6.18)

which results in 1=.�min.A
�
ff
//. This motivates to choose the interpolation coeffi-

cients for node i to equal the i 0-th row of (6.18). For a more general framework of

AMG (including convergence analysis) we refer to [55].

There is also a generalization of AMGe called element-free AMGe that avoids

the necessity of the individual element matrices by constructing neighborhood ma-

trices via special extension mappings [67].



Section 6.3 A simple convergence result 125

6.3 A simple convergence result

Consider a relaxation method of the form

x.kC1/ D x.k/ CM�1r.k/ (6.19)

with error propagation

e.kC1/ D .I �M�1A/e.k/; (6.20)

i.e., a smoother of the form I �M�1A. Moreover, let Q D PR be a projection

onto range.P / for which RP D I holds, e.g.,

Q ..D QA D P A�1
H P TA:

Then the measure

�1.Q; e/ ..D hM.M CM
T � A/�1MT .I �Q/e; .I �Q/ei

hAe; ei ; (6.21)

which involves the symmetrized smoother

M ..DM.M CMT � A/�1
MT (6.22)

takes into account the general smoothing process (6.19). It can be used to derive

a simple convergence result for a two-grid method (using only post-smoothing)

which will be given at the end of this section. First we prove the following lemma.

Lemma 6.2 (see [55]). Let Q be any projection onto range.P /. Assume that the

following approximation property is satisfied for some constant K:

�1.Q; e/ � K 8e 2 R
n n ¹0º: (6.23)

If e ¤ 0 is A-orthogonal to range.P /, then

k.M CMT � A/1=2M�1Aek2 � 1

K
hAe; ei: (6.24)

Proof. Since range.Q/ D range.P / and e is assumed to be A-orthogonal to

range.P / we have

hAe;Qvi D 0 8v 2 R
n: (6.25)
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Assume that (6.23) holds. From (6.25) and the Cauchy–Schwarz inequality, and

using also (6.21), it follows that

hAe; ei D hAe; .I �Q/ei
D h.M CMT � A/1=2M�1Ae; .M CMT � A/�1=2MT .I �Q/ei
� k.M CMT � A/1=2M�1Aekk.M CMT � A/�1=2MT .I �Q/ek
D k.M CMT � A/1=2M�1Aek�1.Q; e/

1=2hAe; ei1=2

� k.M CMT � A/1=2M�1AekK1=2hAe; ei1=2:

The result (6.24) now follows by dividing through by hAe; eiK1=2 and squaring

the result. �

Theorem 6.3 (see [55]). Assume that the approximation property (6.23) is satis-

fied for some constant K. Then K � 1 and

k.I �M�1A/.I �QA/ekA �
�

1 � 1

K

�1=2

kekA: (6.26)

Proof. We have the following identity

k.I �M�1A/ek2
A D hAe; ei � hAe;M�1Aei � hM�1Ae; Aei

ChAM�1Ae;M�1Aei
D hAe; ei � h.M CMT � A/M�1Ae;M�1Aei:

Replacing e with .I �QA/e and applying the result of Lemma 6.2 yields

k.I �M�1A/.I �QA/ek2
A �

�
1 � 1

K

�
k.I �QA/ek2

A

�
�

1 � 1

K

�
kek2

A:

To show that K � 1, note that the identity at the beginning of the proof implies

(since norms are non-negative)

k.M CMT � A/1=2M�1Aek2 � hAe; ei:

The result follows by restricting e ¤ 0 to be A-orthogonal to range.P / and apply-

ing Lemma 6.2. �
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6.4 Error propagation of AMG and AMLI methods

Let us study the error propagation

e.iC1/ D Ee.i/ (6.27)

of a general two-level method that can be stated as

x.iC1/ D x.i/ C B�1r.i/ (6.28)

with

B�1 ..DM�1 C �I �M�TA
�
PB�1

H;�P
T
�
I � AM�1

�
(6.29)

where P denotes the prolongation operator, M is defined in (6.22), i.e.,

M
�1 DM�1 CM�T �M�TAM�1; (6.30)

and

B�1
H;�

..D �I � p�.B
�1
H AH /

�
A�1

H (6.31)

is a polynomial approximation to the inverse of the Schur complement, which is

based on the coarse-grid matrix

AH ..D P TAP

and the preconditioner B�1
H at the coarse level. Note that the error propagation

operators E and EH corresponding to a fine- and a coarse-level update are given

by

E D I � B�1A (6.32)

and

EH D I � PB�1
H P TA; (6.33)

respectively. The following simple identity will be useful in deriving the error

propagation relation.

Lemma 6.4. Let qr be a polynomial of degree less or equal to r and AH D
P TAP denote the coarse-grid matrix. Then

Pqr .B
�1
H AH /B

�1
H P TA D qr.PB

�1
H P TA/PB�1

H P TA: (6.34)

Proof. It suffices to prove the identity (6.34) for the case qr .t/ D tk; k � r: For

k D 0 the result is trivial. For k D 1 we obtain

PB�1
H AHB

�1
H P TA D PB�1

H P TAPB�1
H P TA;



128 Chapter 6 Algebraic multigrid (AMG)

which is true since AH D P TAP . Finally, assuming that (6.34) holds true for

k D j � 1 we find

P
�
B�1

H AH

�j
B�1

H P TA D P
�
B�1

H AH

�j �1
B�1

H P TAPB�1
H P TA

D .PB�1
H P TA/

j �1
PB�1

H P TAPB�1
H P TA

D .PB�1
H P TA/

j
PB�1

H P TA:
�

The error transfer operator for the symmetrized smoother can be written in prod-

uct form, i.e.,

I �M�1
A D �I �M�TA

� �
I �M�1A

�

and thus, using (6.29) we find

I � B�1A D I �M�1
A � �I �M�TA

�
PB�1

H;�P
T
�
I � AM�1

�
A

D �
I �M�TA

� �
I �M�1A

�

� �
I �M�TA

�
PB�1

H;�P
TA

�
I �M�1A

�

D �
I �M�TA

� �
I � PB�1

H;�P
TA

� �
I �M�1A

�
: (6.35)

Moreover, if p�.t/ D 1 � q��1.t/ t we can rewrite (6.31) in the form

B�1
H;� D �

I � p�.B
�1
H AH /

�
A�1

H

D �
I � �I � q��1.B

�1
H AH /

�
B�1

H AH

�
A�1

H

D q��1.B
�1
H AH /B

�1
H : (6.36)

Then by substituting (6.36) in (6.35) and using Lemma 6.4 and finally (6.33) we

obtain the following representation of (6.32):

I � B�1A D �
I �M�TA

��
I � Pq��1.B

�1
H AH /B

�1
H P TA

��
I �M�1A

�

D �
I �M�TA

��
I � q��1.PB

�1
H P TA/PB�1

H P TA
��
I �M�1A

�

D �
I �M�TA

�
.I � q��1.I �EH /.I �EH //

�
I �M�1A

�

D �
I �M�TA

�
.p�.I �EH //

�
I �M�1A

�

D �
I �M�TA

� Qp�.EH /
�
I �M�1A

�
(6.37)

where

Qp�.t/ ..D p�.1 � t /: (6.38)
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We shall now point out the relation between AMG and (linear) AMLI methods.

Let us denote the AMLI preconditioner (at level k), as defined in (2.39), by QB , i.e.,

QB�1 D
�
I �C�1

11 A12

0 I

� �
C�1

11 0

0 Z�1

� �
I 0

�A21C
�1
11 I

�
(6.39)

where Z�1 is given by (2.42) and for ease of notation we skip the level index. The

off-diagonal blocks of the hierarchical two-level matrix, i.e., QA.k/
12 and QA.k/

21 , are

denoted by A12 and A21 accordingly. Then we can represent QB�1 as

QB�1 D
�
C�1

11 0

0 0

�
C
� �C�1

11 A12

I

�
Z�1

��A21C
�1
11 ; I

�

D
�
C�1

11 0

0 0

�

C
�
I � C�1

11 A11 �C�1
11 A12

0 I

� �
0

I

�
Z�1 Œ0; I �

�
I � A11C

�1
11 0

�A21C
�1
11 I

�

D M�1 C �I �M�TA
�
PZ�1P T

�
I � AM�1

�
(6.40)

where

M�1 DM�T D
�
C�1

11 0

0 0

�
(6.41)

and

P D
�

0

I

�
: (6.42)

We note that (6.40) differs from (6.29) in the first term only. Using the sym-

metrized smoother M according to (6.29) we get the slightly modified AMLI pre-

conditioner

B�1 D
�
I �C�1

11 A12

0 I

� �
2C�1

11 � C�1
11 A11C

�1
11 0

0 Z�1

� �
I 0

�A21C
�1
11 I

�
(6.43)

which satisfies the equations (6.29)–(6.30) and (2.42) whereM andP are specified

in (6.41) and (6.42), respectively, and the symmetrized smoother is given by

M
�1 D

�
2C�1

11 � C�1
11 A11C

�1
11 0

0 0

�
: (6.44)

Thus the error transfer operator of the AMLI method can be written as in (6.37),

i.e.,

E D I � B�1A D �I �M�TA
� Qp�.EH /

�
I �M�1A

�
: (6.45)
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We conclude that the (classical) AMLI method uses f-smoothing only. It is usually

implemented based on the preconditioner (6.40), however, the variant based on

(6.43), which uses the symmetrized smoother (6.44) is readily available, too. The

latter exactly fits the error propagation relation of the two-level AMG method if

one chooses P according to (6.42). Note that the (almost) trivial form of P in

(6.40) is related to the fact that the AMLI preconditioner QB�1 (or B�1) is defined

for the hierarchical two-level matrix QA D J TAJ , which already contains the

coarse-level matrix as a sub-matrix in the lower right block, i.e.,

AH D Œ0; I � QA
�

0

I

�
;

whereas in AMG the coarse-grid matrix usually is computed from the standard

(nodal basis) stiffness matrix A via the Galerkin relation

AH D P TAP;

using a nontrivial prolongation operator P . Thus the interpolation in AMLI is

hidden in the basis transformation.

Regarding the polynomial Qp�.t/, which determines the cycle of the multilevel

method we notice that the V-cycle AMG or AMLI method corresponds to the

choice

Qp1.t/ D p1.1 � t / ..D t;
which leads to

E D �I �M�TA
�
EH

�
I �M�1A

�
:

The standard AMG W-cycle is obtained for

Qp2.t/ D p2.1 � t / ..D t2; (6.46)

which leads to

E D �I �M�TA
�
E2

H

�
I �M�1A

�
:

Note that (6.46) can also be employed in the AMLI method if a proper scaling is

applied to the two-level preconditioner, i.e., if the approximation property (2.48)

holds with a lower bound ˛, 0 < ˛ < 1 and upper bound 1. Alternatively, if we

use the polynomial (2.57), i.e.,

Qp2.t/ D p2.1 � t / ..D 1 �
�

1C 1

�

�
.1 � t /C 1

�
.1 � t /2;

we get

E D �I �M�TA
�
EH

�
I � 1

�
.I �EH /

� �
I �M�1A

�
:

For a comprehensive matrix-based analysis of multilevel block factorization pre-

conditioners we refer the reader to [114].
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6.5 Classical AMG

6.5.1 Strong connections

Algebraically smooth error (with respect to M and A) satisfies

k.I �M�1A/ekA � kekA

and varies slowly in the direction of large (negative) connections. For (most of)

the common smoothers (e.g., Gauß–Seidel) these error components can be charac-

terized by

ai iei � �
X

j ¤i

aij ej :

For M-matrices this means: For each node i the error component ei is essentially

determined by those ej for which �aij is large. This motivates to introduce the

following notion of strong connections:

Definition 6.5. Node i is strongly connected to node j (strongly depends on j ) if

�aij � � max
k¤i
¹�aikº

for some 0 < � � 1 (e.g., � D 0:25).

6.5.2 Coarse-grid selection

There are different reasonable ways of selecting the coarse grid nodes in AMG.

Following [102] a good coarse grid Dc should satisfy two criteria:

C1: Dc should be a maximum independent set, which means that no strong

connections within Dc are allowed.

C2: Each node j being strongly connected to an f-node i is either contained

in Dc or it strongly depends on at least one c-node k that itself is

strongly connected to node i .

For instance, the coarse grid can be selected in a two-stage process: First, a

quick c-node choice attempts to enforce criterion (C1). Then, at a second stage, all

f-nodes resulting from the first stage are tested to ensure that criterion (C2) holds,

adding new c-nodes if necessary. A detailed description of the classical AMG

coarse-grid selection algorithm can be found in [102]. For coarse-grid selection

based on strong edges see also [74, 78].
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6.5.3 Interpolation

The prolongation P in classical AMG can be described in a very simple way.

If �.i/ denotes the minimal neighborhood of some fine DOF (node) i , then one

replaces the block A�
ff

in (6.11) with a modified version OA�
ff

, which is obtained

by

� adding to ai i all off-diagonal entries in the i -th row that are weakly connected

to i ,

� second, in all rows j for DOF strongly connected to i :

� set ajj  
P

k2Sc
i
ajk ,

� set off-diagonal entries to zero.

Finally, the i -th row of the interpolation matrix P is chosen according to the i -th

row of

�. OA�
ff /

�1A�
fc :

However, for the implementation it is preferable to compute the coefficients

of the interpolation matrix P in the course of the coarse-grid selection process.

A detailed description of this kind of combined algorithm can be found in refer-

ence [102].

6.6 Smoothed aggregation and adaptive AMG methods

AMG based on element interpolation (AMGe) [44, 69] has been a significant

progress in extending algebraic multigrid, which was originally designed having

M-matrices in mind, to non-M-matrices, arising from elasticity problems, for in-

stance. This is due to the fact that the knowledge of the element matrices carries

with it implicitly the correct assignment and treatment of “strong” and “weak”

connections.

Element-free AMGe [67] tries to accomplish the superior prolongation without

the knowledge of the element matrices. The method uses an extension mapping to

provide boundary values outside a neighborhood. In essence, this captures infor-

mation that could be obtained from individual finite element stiffness matrices if

they were available.

Algebraic multigrid based on smoothed aggregation [108, 109] is another ap-

proach to overcome the difficulties arising with non-M-matrices. The basic idea is

to start with a simple tentative prolongator, which for instance can be constructed

based on a set of node aggregates ¹Aiº forming a disjoint covering of the set of
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DOF, i.e.,
m[

iD1

Ai D ¹1; 2; : : : ; nº; Ai \Aj D ; for i ¤ j (6.47)

where each aggregate is associated with one coarse node. Now the tentative pro-

longator OP 2 R
n�nc can be defined as a discrete piecewise constant interpolation:

OPij D
²

1 if i 2 Aj

0 otherwise.
(6.48)

Note that the tentative prolongator has to be kernel preserving. This means that all

zero energy modes of the principal part of the differential operator (without any

boundary conditions applied) will be represented exactly by the coarse space. Let

the set of such functions be denoted by ¹ziºriD1
. In case of the scalar elliptic model

problem (1.1) we have r D 1 and z1 D const, i.e., z1 D 1. This implies that OP has

to have row sum one for all rows. In particular the interpolation weights for the

piecewise constant interpolation have to be one because there is only one nonzero

entry in each row of OP , cf. (6.47) and (6.48). For details on more general cases we

refer the reader to [108]. Then the key note is to eliminate high energy components

from the range of OP . This can be achieved by smoothing the prolongator, that is,

computing the final prolongator P according to

P ..D q.D�1A/ OP (6.49)

where D 2 R
n�n is a symmetric positive definite preconditioner for A, and q is a

polynomial that satisfies q.0/ D 1. The final prolongator P is used in the AMG

method then in the usual fashion, i.e., each of the prolongation operators P .k/ in

Algorithm 6.1 is computed in this way. In fact, it has been shown that the use of

energy minimal basis functions can even improve this approach [86, 115].

The integration of more general coarsening and smoothing processes is an im-

portant generalization of the AMG framework [55, 56, 118].

In bootstrap AMG (BAMG) methods, proposed in [38], the evolving AMG

solver is used to improve its interpolation component iteratively. The selection of

the coarse-grid variables can be based on a process called compatible relaxation,

which has been introduced in context with highly accurate algebraic coarsening

[37].

Adaptive algebraic multigrid methods, see, e.g. [46], try to remove the need

of any assumptions on algebraically smooth error but, instead, use the method it-

self to determine near-nullspace components and to adjust the coarsening process

accordingly. Adaptive smoothed aggregation [45] constructs the coarse basis func-

tions by minimizing the sum of their energies (cf. [115]) subject to the condition
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that the given kernel modes are in the corresponding coarse space, and subject to

restrictions on their supports.

The adaptive AMG methods break new ground in relating coarse-grid selection

and interpolation directly to the relaxation process. The concept of adaptive AMG

and bootstrap AMG provides additional robustness and speeds up the convergence,

however, on the other hand the setup of these methods is usually more expensive.

6.7 Utilizing AMG components in AMLI

Finally we want to comment on the possibility of using the components of any

AMG method in the construction of AMLI methods. Classical multigrid schemes

are often optimal with a simple V-cycle [64] whereas AMLI (as described in this

book) typically results in a nearly optimal order solution process in this case [112,

113, 117]. However, a smoothing procedure (similar to the ones used in classical

multigrid) may compensate for this disadvantage [93]. This means in particular

that the AMLI method can also be equipped with a global smoother instead of

using f-smoothing only.

Moreover, and this makes the AMLI methodology even more attractive, the con-

struction of a generalized hierarchical basis to be used for setting up an efficient

AMLI algorithm can also be done completely algebraically. For instance the re-

quired two-by-two block partitioning of the matrix can be achieved by applying

any independent-set ordering to the matrix graph. This yields a diagonal pivot

block A11, and consequently, one chooses C11 D A11 in the two-level precondi-

tioner. Then the problem reduces to find a sparse approximation to the Schur com-

plement, which is a difficult task in general. A major drawback of this approach

is that independent-set orderings in general produce a slow coarsening involving

many approximation levels. Additionally, when computing the Schur complement

approximation by neglecting in the usual Gaussian elimination process certain fill-

in terms based on a numerical drop tolerance typically causes a gradual loss of

sparsity for the approximate Schur complements on coarser levels, which also adds

to a slow coarsening. Alternatively, one can use repeated red-black colorings or

other graph-based algorithms that provide a moderate coarsening. In doing so,

the need for a preconditioner C11 ¤ A11 arises. The construction of C11 via a

(modified) incomplete LU factorization, or approximate inverse of A11 (satisfy-

ing certain row-sum criteria) has been discussed in a series of papers, see, e.g.,

[5, 72, 75, 94, 95]. More recently, it has been shown that a fast coarsening, as used

with classical AMG, can also result in robust AMLI-type preconditioners [97].

Assume that a sequence ¹P .`�j /ºj D0;1;2;:::;`�1 of prolongation matrices and

corresponding nested (or nonnested) sequence of coarse spaces has been con-

structed based on AMG techniques, e.g., classical, element-based, or smoothed
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aggregation AMG. The coarse-space V.k�1/ ..D ¹�.k�1/
i W 1 � i � n.k�1/º

relates to the fine-space V.k/ ..D ¹�.k/
i W 1 � i � n.k/º via

2
66664

�
.k�1/
1

�
.k�1/
2
:::

�
.k�1/

n.k�1/

3
77775
D P .k/T

2
66664

�
.k/
1

�
.k/
2
:::

�
.k/

n.k/

3
77775
:

Then one can define a hierarchical (two-level) basis transformation at each level k

by

J .k/ ..D
��

I

0

�
; P .k/

�

and use it in order to define the hierarchical matrices in the usual inductive way,

i.e.,

QA.k/ D
� � �
� A.k�1/

�
..D J .k/T

A.k/J .k/

where

A.k�1/ D P .k/T
A.k/P .k/

is the Galerkin coarse-grid matrix. In this setting practically every AMG method

fits in the AMLI framework.



7 Preconditioning of Rannacher–Turek

nonconforming FE systems

7.1 Rannacher–Turek nonconforming FE systems

7.1.1 The nonconforming FE problem

Let us consider the elliptic boundary value problem (1.1). As in the previous chap-

ters, we assume that the elements of the diffusion coefficient matrix a.x/ are piece-

wise smooth functions on �.

The weak formulation of the above problem reads as follows: given f 2 L2.�/

find u 2 V � H 1
D.�/ D ¹v 2 H 1.�/ W v D 0 on �Dº, satisfying

A.u; v/ D .f; v/ 8v 2 H 1
D.�/; (7.1)

where

A.u; v/ D
Z

�

a.x/ru.x/ � rv.x/dx:

We assume that the domain � is discretized by the partition Th which is obtained

by a proper refinement of a given coarser partition TH . For our theoretical analy-

sis we assume also that TH is aligned with the discontinuities of the elements of

a.x/ so that over each finite element E 2 TH the coefficients of a.x/ are smooth

functions.

Then the finite element formulation is: find uh 2 Vh, satisfying

Ah.uh; vh/ D .f; vh/ 8vh 2 Vh; (7.2)

where

Ah.uh; vh/ D
X

e2Th

Z

e

a.e/ruh � rvhdx:

Here a.e/ is a piecewise constant symmetric positive definite matrix, defined by

the integral averaged values of a.x/ over each element from the coarser partition

TH . We recall that in this way strong coefficient jumps across the boundaries

between adjacent finite elements from TH are allowed.

The resulting discrete problem to be solved is then a linear system of equations

Ahuh D fh; (7.3)
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with Ah and fh being the corresponding global stiffness matrix and global right-

hand side, and h being the discretization (meshsize) parameter of the underlying

partition Th of �.

The aim of this chapter is to present multilevel preconditioners of optimal com-

plexity for solving the system (7.3) for the case of nonconforming Rannacher–

Turek finite elements.

Nonconforming finite elements based on rotated multilinear shape functions

were introduced by Rannacher and Turek [99] as a class of simple elements for the

Stokes problem. More generally, recent activities in the development of efficient

solution methods for nonconforming finite element systems are inspired by their

attractive properties as a stable discretization tool for ill-conditioned problems. In

this chapter we mostly pay attention to the case of robustness with respect to strong

coefficient jumps. The presented AMLI methods of optimal computational com-

plexity have their own value. However, an important additional value of the robust

solvers for scalar elliptic problems is due to their applications in inner iteration

procedures of composite algorithms for complicated coupled models. In the next

chapter we will return to the topic of Rannacher–Turek finite elements consider-

ing some recent advances in the AMLI methods for discontinuous Galerkin FE

systems.

7.1.2 Rotated bilinear elements

The unit square Œ�1; 1�2 is used as a reference element Oe to define the isoparametric

rotated bilinear element e 2 Th. Further, let ‰e W Oe ! e be the corresponding

bilinear one-to-one transformation, and let the nodal basis functions be determined

by the relations ¹�iº4iD1
D ¹ O�i ı‰�1

e º4iD1
; ¹ O�iº 2 span¹1; x; y; x2 � y2º; where ı

means the superposition of functions O�i and  �1
e .

For the variant MP (mid point), ¹ O�iº4iD1
are found by the point-wise interpola-

tion condition

O�i .b
j
�/ D ıij ;

where b
j
� ; j D 1; 4 are the midpoints of the edges of the quadrilateral Oe. Then,

O�1.x; y/ D .1 � 2x C .x2 � y2//=4; O�2.x; y/ D .1C 2x C .x2 � y2//=4;

O�3.x; y/ D .1 � 2y � .x2 � y2//=4; O�4.x; y/ D .1C 2y � .x2 � y2//=4:

The variant MV (mean value) corresponds to integral mean-value interpolation

condition

j�j

Oe j�1

Z

�
j

Oe

O�id�
j

Oe D ıij ;
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where �
j

Oe are the sides of Oe. This leads to

O�1.x; y/ D .2 � 4x C 3.x2 � y2//=8; O�2.x; y/ D .2C 4x C 3.x2 � y2//=8;

O�3.x; y/ D .2 � 4y � 3.x2 � y2//=8; O�4.x; y/ D .2C 4y � 3.x2 � y2//=8:

Let us note, that some advantages of MV variant are observed when ill-conditioned

problems (including the case of strong mesh anisotropy) are discretized. As we

will see later, MV is also the natural variant in the discontinuous Galerkin setting.

Consider the model anisotropic problem with diagonal coefficient matrix

a.x/ D a.e/
�
" 0

0 1

�
: (7.4)

Then, in the case of a square mesh, the element stiffness matrices, corresponding

to the variants MP and MV are given by

A
.e/
MP D

a.e/

3

2
664

1C 4" �.2" � 1/ �.1C "/ �.1C "/
�.2" � 1/ 1C 4" �.1C "/ �.1C "/
�.1C "/ �.1C "/ 4C " �.2 � "/
�.1C "/ �.1C "/ �.2 � "/ 4C "

3
775 ;

and

A
.e/
MV D

a.e/

4

2
664

3C 7" 3 � " �3.1C "/ �3.1C "/
3 � " 3C 7" �3.1C "/ �3.1C "/
�3.1C "/ �3.1C "/ 7C 3" �.1 � 3"/

�3.1C "/ �3.1C "/ �.1 � 3"/ 7C 3"

3
775 ;

respectively, where the node numbering is as indicated by Figure 7.3(b).

7.1.3 Rotated trilinear elements

In the 3D case, the cube Œ�1; 1�3 is used as a reference element Oe to define the

isoparametric rotated trilinear element e 2 Th. Now let  e W Oe ! e be the trilinear

bijective mapping between the reference element Oe and e. The polynomial space

of shape functions O�i on the reference element Oe is defined by

OP ..D ¹ O�i W 1 � i � 6º D span¹1; x; y; z; x2 � y2; y2 � z2º;

and the shape functions �i on e are computed from O�i via the relations

¹�iº6iD1 D ¹ O�i ı  �1
e º6iD1:
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1 2

4

3

5

6

Figure 7.1: Node numbering and connectivity pattern of the reference element Oe

For the variant MP (mid point), ¹ O�iº6iD1
are found by the interpolation condition

O�i .b
j
�/ D ıij ;

where b
j
� ; j D 1; 6 are the centers of the faces of the cube Oe. Then,

O�1.x; y; z/ D .1 � 3x C 2x2 � y2 � z2/=6;

O�2.x; y; z/ D .1C 3x C 2x2 � y2 � z2/=6;

O�3.x; y; z/ D .1 � x2 � 3y C 2y2 � z2/=6;

O�4.x; y; z/ D .1 � x2 C 3y C 2y2 � z2/=6;

O�5.x; y; z/ D .1 � x2 � y2 � 3z C 2z2/=6;

O�6.x; y; z/ D .1 � x2 � y2 C 3z C 2z2/=6:

Alternatively, the variant MV (mean value) corresponds to the 3D integral mean-

value interpolation condition

j�j

Oe j�1

Z

�
j

Oe

O�id�
j

Oe D ıij ;

where �
j

Oe are the faces of the reference element Oe. This leads to

O�1.x; y; z/ D .2 � 6x C 6x2 � 3y2 � 3z2/=12;

O�2.x; y; z/ D .2C 6x C 6x2 � 3y2 � 3z2/=12;

O�3.x; y; z/ D .2 � 3x2 � 6y C 6y2 � 3z2/=12;

O�4.x; y; z/ D .2 � 3x2 C 6y C 6y2 � 3z2/=12;

O�5.x; y; z/ D .2 � 3x2 � 3y2 � 6z C 6z2/=12;

O�6.x; y; z/ D .2 � 3x2 � 3y2 C 6z C 6z2/=12:
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Let us consider the model isotropic problem with diagonal coefficient matrix

a.x/ D a.e/
2
4

1 0 0

0 1 0

0 0 1

3
5 : (7.5)

In what follows we will assume that all elements in the triangulation are cubes with

mesh size h. Then the element stiffness matrices, corresponding to the variants MP

and MV are given by

AMP
e D a.e/2h

9

2
6666664

17 �1 �4 �4 �4 �4

�1 17 �4 �4 �4 �4

�4 �4 17 �1 �4 �4

�4 �4 �1 17 �4 �4

�4 �4 �4 �4 17 �1

�4 �4 �4 �4 �1 17

3
7777775
;

AMV
e D a.e/2h

2
6666664

3 1 �1 �1 �1 �1

1 3 �1 �1 �1 �1

�1 �1 3 1 �1 �1

�1 �1 1 3 �1 �1

�1 �1 �1 �1 3 1

�1 �1 �1 �1 1 3

3
7777775
:

7.2 Hierarchical two-level splittings: 2D case

In this section we provide a summary of the main results from reference [62]. Let

us consider two consecutive discretizations TH and Th. Figure 7.2 illustrates a

macroelement obtained after one regular mesh-refinement step. We see that in this

case the vector spaces VH and Vh are not nested.

7.2.1 First reduce two-level splitting

To define the “first reduce” (FR) two-level splitting we apply the idea which was

used in Chapter 4 in the case of Crouzeix–Raviart nonconforming elements. Fol-

lowing the introduced notations, let 'E D ¹�i .x; y/º12
iD1

be the macroelement

vector of the nodal basis functions and AE be the macroelement stiffness matrix

corresponding to E 2 Th. The global stiffness matrix Ah is written as

Ah D
X

E2Th

RT
EAERE :
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Figure 7.2: Uniform refinement on a general mesh

Next, we introduce the following macroelement level transformation matrix

J T
E D

1

2

2
66666666666666666664

2

2

2

2

1 �1

1 �1

1 �1

1 �1

1 1

1 1

1 1

1 1

3
77777777777777777775

(7.6)

which defines locally a two-level hierarchical basis Q'E , namely, Q'E D J T
E 'E .

The hierarchical two-level macroelement stiffness matrix is then obtained as

QAE D J T
EAEJE ;

and the related global stiffness matrix reads as

QAh D
X

E2Th

QAE :

We split now the two-level stiffness matrix QAh into 2 � 2 block form

QAh D
2
4
QA11

QA12

QA21
QA22

3
5 ; (7.7)
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where QA11 corresponds to the interior nodal unknowns with respect to the macro-

elements E 2 Th. As in the case of Crouzeix–Raviart finite elements, the first step

of the FR algorithm is to eliminate these unknowns. For this purpose we factor
QAh, i.e.,

QAh D
2
4
QA11 0

QA21 B

3
5
2
4 I1

QA�1
11
QA12

0 I2

3
5 ; (7.8)

where B D QA22� QA21
QA�1
11
QA12 stands for the Schur complement of this elimination

step.

Next we consider a two-level splitting of the matrix B in the block form

B D
2
4 B11 B12

B21 B22

3
5 ; (7.9)

where the first block corresponds to the half-difference basis functions. We asso-

ciate the matrix B22 with the coarse grid. It is important to note that

ker.BE I22/ D ker.Ae/ D span¹.1; 1; 1; 1/T º
which allows us to apply a local analysis to estimate the CBS constant  corre-

sponding to the splitting defined by the block partition (7.9).

For our analysis we follow the earlier established procedure, namely:

Step 1: We observe that the first left block of QAh is a block-diagonal matrix. In

this case, the diagonal entries of QA11 are 4 � 4 blocks, related to the interior

points ¹1; 2; 3; 4º, cf. Figure 7.2, which are not connected to nodes in other

macroelements. Thus, the corresponding unknowns are eliminated exactly, i.e.,

this is done locally. Therefore, we first compute the local Schur complements

arising from static condensation of the interior degrees of freedom and obtain

the .8 � 8/ matrix BE . Next we split BE as

BE D
�
BE W11 BE W12

BE W21 BE W22

� º two-level half-difference basis functions

º two-level half-sum basis functions

written again in two-by-two block form with blocks of order .4 � 4/.

Step 2: We are now in a position to estimate the CBS constant corresponding to

the 2 � 2 splitting of B . As we know from the general theory, it suffices to

compute the minimal eigenvalue of the generalized eigenproblem (see (2.36))

SE vE D �.1/
E BE W22vE ; vE ¤ c;

where SE D BE W22 � BE W21B
�1
E W11

BE W12; and then

2 � max
E2Th

2
E D max

E2Th

.1 � �.1/
E /: (7.10)
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7.2.2 Two-level splitting by differences and aggregates

The “differences and aggregates” (DA) splitting is also first defined on a macro-

element level. If �1; : : : ; �12 are the standard nodal basis functions for the macro-

element, then we let

V .E/ D span ¹�1; : : : ; �12º D V1.E/˚ V2.E/ ;

V1 .E/ D span ¹�1; �2; �3; �4; �5 � �6; �9 � �10; �7 � �8; �11 � �12º

V2 .E/ D span
°
�5 C �6 C

4X

j D1

˛1j�j ; �9 C �10 C
4X

j D1

˛2j�j ;

�7 C �8 C
4X

j D1

˛3j�j ; �11 C �12 C
4X

j D1

˛4j�j

±
:

Using the related transformation matrix JE ,

J T
E D

1

2

2
66666666666666666664

2

2

2

2

1 �1

1 �1

1 �1

1 �1

˛11 ˛12 ˛13 ˛14 1 1

˛21 ˛22 ˛23 ˛24 1 1

˛31 ˛32 ˛33 ˛34 1 1

˛41 ˛42 ˛43 ˛44 1 1

3
77777777777777777775

; (7.11)

the vector of the macroelement basis functions 'E D ¹�iº12
iD1

is transformed to

the hierarchical basis Q'E D ¹ Q�iº12
iD1
D J T

E 'E . Accordingly, the macroelement

stiffness matrix is transformed into a hierarchical form

QAE D J T
EAEJE D

� QAE W11
QAE W12

QAE W21
QAE W22

� Q�i 2 V1.E/
Q�i 2 V2.E/

: (7.12)

Following the local definitions, for the whole finite element space Vh with the

standard nodal finite element basis ' D ¹�.i/

h
ºNh

iD1
, we similarly construct the new

hierarchical basis Q' D ¹ Q'.i/

h
ºNh

iD1
and the corresponding splitting

Vh D V1 ˚ V2 : (7.13)
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The transformation J such that Q' D J T ', can be used for transformation of the

stiffness matrix Ah to hierarchical form QAh D J TAhJ , which allows precondi-

tioning by the two-level preconditioners based on the splitting (7.13).

Now, we are interested to analyze (i.e., to derive a uniform estimate of) the

constant  D cos.V1; V2/ for the splitting (7.13). Again, as in the previous

similar cases, we would like to perform this analysis locally, by considering the

corresponding problems on macroelements. For this purpose we need to have

satisfied the condition

(i) ker. QAE W22/ D ker.Ae/,

which is equivalent to

4X

iD1

˛ij D 1 ; 8j 2 ¹1; 2; 3; 4º: (7.14)

There are obviously various DA splittings satisfying the condition (i). In particular,

the variant

Œ˛ij � D

2
664

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

3
775

could be considered as a direct interpretation of the DA algorithm for Crouzeix–

Raviart linear nonconforming finite elements in the present context. For further

details on aggregation-based preconditioners see the review paper [29].

When the two-level algorithm is recursively generalized to the multilevel case,

it is useful if

(ii) QAE W22 is proportional to Ae .

As was shown in Chapter 4, this property holds in a very general setting for the DA

splitting of the Crouzeix–Raviart finite element space, see [31]. Unfortunately, it

is rather complicated to find a parameter matrix Œ˛ij �, which satisfies the condition

(ii) in the general case of Rannacher–Turek bilinear finite elements.

7.2.3 Uniform estimates of the CBS constant for the 2D splittings

We consider here the isotropic model problem where all elements e 2 TH are

squares and the uniform refinement is as shown in Figure 7.3. Both splitting algo-

rithms, FR and DA, for both discretization variants, MP and MV, of rotated bilinear

finite elements, are considered.
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Figure 7.3: Uniform refinement on a square mesh

FR algorithm

Following (7.10) we compute the local CBS constants and derive the following

global estimates which are uniform with respect to the size of the discrete problem

and any possible jumps of the coefficients a.e/, e 2 TH .

Variant MP: For the local CBS constant of the FR splitting we have

�
.1/
E D

5

7
; 2

E D 1 � �.1/
E D

2

7
;

and therefore

2
MP �

2

7
: (7.15)

Variant MV: For the FR splitting we further have

�
.1/
E D

5

8
; 2

E D 1 � �.1/
E D

3

8
;

and therefore

2
MV �

3

8
: (7.16)

Let us remind once again, that the obtained estimates hold theoretically for the

two-level algorithm only. This is because the matrix B22 is only associated with

the coarse discretization and is not proportional to the related element stiffness

matrix Ae . However, as we will show in the next section, the CBS constants have

a very stable behavior in the FR multilevel setting as well. The latter has been

verified numerically, cf. Table 7.3 and Figure 7.4.
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DA algorithm

Due to the symmetry (isotropy) of the model problem, the lower-left block of the

transformation matrix J T
E can be simplified to the form

2
664

b c a a

c b a a

a a b c

a a c b

3
775 : (7.17)

The condition (i) (see (7.14)) is equivalent to

2aC b C c D 1:

Let us write the condition (ii) in the form

QAE W22 D pAe: (7.18)

Then (ii) is reduced to a system of two nonlinear equations for .b; c/ with a param-

eter p. It appears that the system for .b; c/ has solutions if p 2 Œp0;1/. In such a

case, we can optimize the parameter p, so that the CBS constant is minimal. The

obtained results are summarized below.

For the related analysis here, as well as in the 3D case (which will be presented

in the next section) symbolic computations with the computer algebra program

MATHEMATICA have been used [62].

Variant MP:

Lemma 7.1. There exists a DA two-level splitting satisfying the condition (ii), if

and only if,

p � 3

7
:

Then, the obtained solutions for .b; c/ are invariant with respect to the local CBS

constant

2
E D 1 � 1

4p
;

and for the related optimal splitting

2
MP �

5

12
: (7.19)
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Although the statements of Lemma 7.1 look very simple, the midterm deriva-

tions are rather technical, which is just illustrated by the following expressions of

one of the similarly looking solutions for .b; c/:

b D �24786 � 76160p C 2658
p
�.p/ � 7280p

p
�.p/C

p
�.p/3

70.�729C 2240p/

c D 6 �p�.p/
70

where

�.p/ D �1329C 3640p � 140

q
63 � 327p C 420p2:

Variant MV: The same approach has been applied to get the estimates below.

Lemma 7.2. There exists a DA two-level splitting satisfying the condition (ii), if

and only if,

p � 2

5
:

Then, the obtained solutions for .b; c/ are invariant with respect to the local CBS

constant

2
E D 1 � 1

4p
;

and for the related optimal splitting

2
MV �

3

8
: (7.20)

7.3 Hierarchical two-level splittings: 3D case

Similarly to the constructions and the analysis in the 2D case, we consider two

consecutive discretizations TH and Th. The finite element spaces VH and Vh are

not nested again, which is illustrated by Figure 7.4. Most of the results discussed

in this section are originally presented in [61].

7.3.1 First reduce two-level splitting

Generalizing the 2D approach established in the previous section we denote by

'E D ¹�i .x; y/º36
iD1

the macroelement vector of the nodal basis functions and
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Figure 7.4: One macroelement
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Figure 7.5: Node numbering in macroelement

by AE the macroelement stiffness matrix corresponding to E 2 Th. The global

stiffness matrix Ah is as usual written in the form

Ah D
X

E2Th

RT
EAERE :

Next, we introduce the 3D variant of (7.6). The related new macroelement level

transformation matrix J T
E is written in the form

J T
E D

1

4

2
4 4I

J T
E W22

3
5 ; (7.21)

where I is the 12 � 12 identity matrix and

J T
E W22 D

2
666666664

P

P

P

P

P

P

E1 E2 E3 E4 E5 E6

3
777777775

: (7.22)
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Each block Ei is a 6 � 4 zero matrix except for its i -th row which is composed of

all ones, and

P D
2
4
�1 1 �1 1

�1 �1 1 1

1 �1 �1 1

3
5 :

The matrix JE defines locally the two-level hierarchical basis Q'E . Then,

Q'E D J T
E 'E

and the hierarchical two-level macroelement stiffness matrix reads as

QAE D J T
EAEJE :

The related global two-level stiffness matrix is assembled by the macroelement

once, i.e.,
QAh D

X

E2Th

RT
E
QAERE :

We split again the two-level matrix QAh into 2 � 2 block form

QAh D
2
4
QA11

QA12

QA21
QA22

3
5 ; (7.23)

where QA11 corresponds to the interior nodal unknowns with respect to the macro-

elements E 2 Th. As we know, the first step of the FR algorithm is to eliminate

the first block of the unknowns. For this purpose we factor QAh, i.e.,

QAh D
2
4
QA11 0

QA21 B

3
5
2
4 I1

QA�1
11
QA12

0 I2

3
5 ; (7.24)

where B D QA22 � QA21
QA�1
11
QA12 is the Schur complement of this elimination step.

Next we apply the two-level splitting (7.9) of the matrix B . In the 3D case this

leads to the block presentation

B D
2
4 B11 B12

B21 B22

3
5 ; (7.25)

where the first block corresponds to the differences of three different couples of

basis functions from each macroelement face. The matrix B22 corresponds to the
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sum of basis functions from each macroelement face and thus is associated with

the coarse grid. Let us note again that

ker.BE I22/ D ker.Ae/ D span¹.1; 1; 1; 1; 1; 1/T º

which allows us to apply the standard local analysis to estimate the constant 

corresponding to the splitting defined by the block partition (7.25).

The analysis steps are completely the same as in the 2D case, namely:

Step 1: The upper-left block QA11 is a block-diagonal matrix. Its diagonal entries

are 12 � 12 blocks, related to the interior points ¹1; 2; : : : ; 12º, cf. Figure 7.4,

which are not connected to nodes in other macroelements. Thus, the corre-

sponding unknowns are locally eliminated, and we compute the macroelement

.24 � 24/ Schur complements BE , i.e.,

BE D
�
BE W11 BE W12

BE W21 BE W22

� º two-level “difference” basis functions

º two-level “aggregated” basis functions

written again in two-by-two block form.

Step 2: Now we have to estimate the CBS constant corresponding to the 2 � 2

splitting of B . As we know (see, e.g., the similar 2D case), it suffices to com-

pute the minimal eigenvalue of the 6 � 6 generalized eigenproblem

SE vE D �.1/
E BE W22vE ; vE ¤ c ..D .c; c; : : : ; c/T ; c 2 R;

where SE D BE W22 � BE W21B
�1
E W11

BE W12; and then

2 � max
E2Th

2
E D max

E2Th

.1 � �.1/
E /: (7.26)

7.3.2 Two-level splitting by differences and aggregates

The splitting is first described for one macroelement, further developing the con-

structions from the 2D case. If �1; : : : ; �36 are the standard nodal basis functions
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for the macroelement, then we define

V .E/ D span ¹�1; : : : ; �36º D V1.E/˚ V2.E/ ;

V1 .E/ D span
°
�1; : : : ; �12;

�14 C �16 � .�13 C �15/; �15 C �16 � .�13 C �14/;

�13 C �16 � .�14 C �15/; : : : ; �34 C �36 � .�33 C �35/;

�35 C �36 � .�33 C �34/; �33 C �36 � .�34 C �35/
±

V2 .E/ D span
°
�13 C �14 C �15 C �16 C

12X

j D1

ˇ1j�j ; : : : ;

�33 C �34 C �35 C �36 C
12X

j D1

ˇ6j�j

±
:

The related transformation matrix has the form

J T
E D

1

4

2
4 4I

J T
E W12

J T
E W22

3
5 ; (7.27)

where I is 12 � 12 identity matrix, J T
E W22

is the same as (7.22),

J T
E W12 D

�
0

B

�

and B D .ˇij /6�12: The vector of the macroelement basis functions 'E D
¹�iº36

iD1
is transformed to the DA hierarchical basis

Q'E D ¹ Q�iº36
iD1 D J T

E 'E ;

and the macroelement stiffness matrix into the hierarchical form

QAE D J T
EAEJE D

� QAE W11
QAE W12

QAE W21
QAE W22

� Q�i 2 V1.E/
Q�i 2 V2.E/

: (7.28)

For the whole finite element space Vh with the standard nodal finite element basis

' D ¹�.i/

h
ºNh

iD1
we similarly construct the new hierarchical basis (aggregating the

local ones) Q' D ¹ Q'.i/

h
ºNh

iD1
and the corresponding splitting

Vh D V1 ˚ V2: (7.29)

The transformation J such that Q' D J T ' provides also a transformation of the

stiffness matrix Ah into the hierarchical form, i.e., QAh D J TAhJ , which allows

preconditioning by the two-level preconditioners based on the DA splitting (7.29).
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Again, as in the previous sections, we would like to perform the analysis of

the CBS constant  D cos.V1; V2/ locally, i.e., by considering the correspond-

ing problems on macroelements. As we know, for this purpose we need to have

satisfied the condition

(i) ker. QAE W22/ D ker.Ae/,

which in this particular case is equivalent to

6X

iD1

ˇij D 1 ; 8j 2 ¹1; 2; : : : ; 12º: (7.30)

Similarly to the situation in the 2D case, there are obviously various DA splittings

satisfying the condition (i) in the 3D case.

As we know also from the previous section, it is convenient for the direct mul-

tilevel generalization of the two-level algorithm, if

(ii) QAE W22 is proportional to Ae .

7.3.3 Uniform estimates of the CBS constant for the 3D splittings

FR algorithm

We use (7.26) to compute the local CBS constant and thereafter to derive the fol-

lowing global estimates for the considered model problem. It is important to notice

that the bounds are uniform with respect to the size of the discrete problem and any

possible jumps of the coefficients which are aligned with the coarsest grid.

Variant MP: For the FR splitting in the 3D case we have

�
.1/
E D

13

21
; 2

E D 1 � �.1/
E D

8

21
;

and therefore

2
MP �

8

21
: (7.31)

Variant MV: For the FR splitting in the 3D case we further have

�
.1/
E D

1

2
; 2

E D 1 � �.1/
E D

1

2
;

and therefore

2
MV �

1

2
: (7.32)
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We observe that the 3D bound (7.31) for Variant MP is slightly worse than the

corresponding 2D result (7.15). For Variant MV the related FR estimates in 2D

and 3D are equal.

As in the 2D case, the above FR estimates hold for the two-level algorithm

only. The behavior of the CBS constants in the FR multilevel setting is studied

numerically and the obtained results will be presented and discussed in the next

section, cf. Table 7.4 and Figure 7.7.

DA algorithm

Now the isotropy of the model problem allows to simplify the non-zero part B of

the lower-left block J T
E W12

of the transformation matrix J T
E , which in the consid-

ered 3D case has the form

B D

2
6666664

a a a a b c b c b c b c

a a a a c b c b c b c b

b c b c a a a a b b c c

c b c b a a a a c c b b

b b c c b b c c a a a a

c c b b c c b b a a a a

3
7777775
: (7.33)

The condition (i) is equivalent to

aC b C c D 1:

We write again the condition (ii) in the form

QAE W22 D pAe; (7.34)

and reduce (ii) to a system of three nonlinear equations for .a; b; c/, with a pa-

rameter p. For the relatively less complicated 2D case, a similar approach was

presented in the previous section, see for some more details in [62]. As is shown

in [61], in the 3D case the system for .a; b; c/ have again solutions if p 2 Œp0;1/
for some p0 > 0. The limit value of p D p0 minimizes the CBS constant estimate.

The obtained results are summarized in the next two lemmas.

Variant MP:

Lemma 7.3. There exists a DA two-level splitting satisfying the condition (ii), if

and only if,

p � 3

14
:
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Then, the obtained solutions for .a; b; c/ are invariant with respect to the local

CBS constant

2
E D 1 � 1

8p
;

and for the related optimal splitting

2
MP �

5

12
: (7.35)

The midterm derivations to get the above estimate are rather technical, which is

illustrated by the presented expressions of the four different solutions for .a; b; c/:

�
94

273
� 2

21
�.p/ � 3 �.p/

26
p

2
;

10 � 26 �.p/

273
C 3
p

2 �.p/

52
;

5C 8 �.p/

42

�
;

�
94

273
C 2

21
�.p/C 3 �.p/

26
p

2
;

10C 26 �.p/

273
� 3
p

2 �.p/

52
;

5 � 8 �.p/

42

�
;

�
94

273
� 2

21
�.p/C 3 �.p/

26
p

2
;

10 � 26 �.p/

273
� 3
p

2 �.p/

52
;

5C 8 �.p/

42

�
;

�
94

273
C 2

21
�.p/ � 3 �.p/

26
p

2
;

10C 26 �.p/

273
C 3
p

2 �.p/

52
;

5 � 8 �.p/

42

�
;

where �.p/ D p�3C 14 p and �.p/ D p�21C 104 p .

Variant MV: The same approach is applied to get the estimates below.

Lemma 7.4. There exists a DA two-level splitting satisfying the condition (ii), if

and only if,

p � 1

4
:

Then, the obtained solutions for .a; b; c/ are invariant with respect to the local

CBS constant

2
E D 1 � 1

8p
;

and for the related optimal splitting

2
MV �

1

2
: (7.36)

What we observe here is that the CBS constants in the DA approach have a

reverse behavior if compared to the FR case. Here the 2D and 3D estimates for

Variant MP are equal, while the 3D bound (7.36) for Variant MV is slightly larger

than the bound (7.20) in 2D.
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7.4 Multilevel preconditioning

Let us remind briefly some basic facts from the multilevel preconditioning theory.

The AMLI methods are evolved from two-level methods. The straightforward re-

cursive extension leads to the class of hierarchical basis (HB) methods for which

the condition number grows in general exponentially with the number of levels

`. The AMLI preconditioners of both additive (MA D M
.`/

A ) or multiplicative

(MF DM .`/
F ) type are considered here. As we know (see Section 2.4), the purely

algebraic stabilization technique is based on a properly constructed matrix poly-

nomial P�k
of degree �k which is used at some (or all) of the levels k D 1; : : : ; `.

Let us denote by C
.k/
11 some properly scaled (see the assumption (2.75)) precon-

ditioner for the upper left block of the hierarchical stiffness matrix

QA.k/ D
"
QA.k/
11

QA.k/
12

QA.k/
21

QA.k/
22

#

at level k. Starting from the coarsest mesh (level 0) withM
.0/

A DM .0/
F D A.0/, the

related two-level preconditioner is applied recursively at all levels k D 1; 2; : : : ; `

of mesh refinement to get the AMLI algorithms. They can be written in the fol-

lowing form, which in the multiplicative case is equivalent to the linear multilevel

algorithm introduced in Section 2.4.

Additive AMLI:

M
.k/

A D
"
C

.k/
11 0

0 C
.k/
22

#
(7.37)

where the matrix C
.k/
22 is implicitly defined by the equation

C
.k/
22

�1 D
h
I � P�k

�
M

.k�1/
A

�1 QA.k�1/
�i
A.k�1/�1

: (7.38)

Multiplicative AMLI:

M
.k/
F D

"
C

.k/
11 0

QA.k/
21 C

.k/
22

#"
I C

.k/
11

�1 QA.k/
12

0 I

#
(7.39)

where C
.k/
22 is again defined by (7.38).

Then, as known from the theory [16, 17], a properly scaled and shifted Cheby-

shev polynomial P�k
of degree �k; can be used in order to stabilize the condition

number of the linear AMLI preconditioners. The main result from this analysis
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(see Section 2.6) is that the AMLI preconditioners have optimal computational

complexity, if �k D � ,

s
1C 
1 �  < � < %; for additive AMLI, (7.40)

and
1p

1 � 2
< � < %; for multiplicative AMLI, (7.41)

where % � nkC1

nk
is the reduction factor of the number of degrees of freedom.

Based on (7.40) and (7.41), the optimality conditions for the stabilization poly-

nomial degree � in the case of the DA splitting are summarized in the tables below,

including the related CBS constant estimates.

Table 7.1: DA splitting: 2D cases

MP MV

2 5/12 3/8

Additive AMLI � D 3 � D 3

Multiplicative AMLI � 2 ¹2; 3º � 2 ¹2; 3º

Table 7.2: DA splitting: 3D cases

MP MV

2 5/12 1/2

Additive AMLI � 2 ¹3; 4; : : : ; 7º � 2 ¹3; 4; : : : ; 7º
Multiplicative AMLI � 2 ¹2; 3; : : : ; 7º � 2 ¹2; 3; : : : ; 7º

Now, we turn back to the FR case. The multilevel behavior of the CBS constant

is studied numerically. This means, that at each current coarsening step, the role

of the element stiffness matrix is played by the related last obtained block BE W22.

The numerical results for the 2D and 3D cases are shown below in tabular and

graphical form.

The computed (local) estimates for 2 for the FR algorithm are always smaller

than the related ones for the DA algorithm. Strictly following (7.40) and (7.41), the

optimality conditions for the polynomial degree � in the case of the FR splitting

are the same as for the DA splitting, see the Tables 7.1 and 7.2.

One can also observe a nice one-side convergence to the value of � � 0:3170

in the 2D case and � � 0:39238 in the 3D case for both variants, MP and MV,

see Figure 7.4 and Figure 7.7. This in particular explains why in the presented
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numerical tests the additive AMLI in 2D is stabilized even with polynomial degree

� D 2.

Table 7.3: Multilevel behavior of 2 for FR algorithm: 2D case

variant ` ` � 1 ` � 2 ` � 3 ` � 4 ` � 5

MP 0.2857 0.3101 0.3156 0.3167 0.3169 0.3170

MV 0.3750 0.3261 0.3187 0.3173 0.3171 0.3170

0.3170

0.2875

0.3750

MV

MP

l−1 l−2 l−3 l−4l l−5

Figure 7.6: Multilevel behavior of 2 for FR algorithm: 2D case

Table 7.4: Multilevel behavior of 2 for FR algorithm: 3D case

variant ` ` � 1 ` � 2 ` � 3 ` � 4 ` � 5

MP 0.38095 0.39061 0.39211 0.39234 0.39237 0.39238

MV 0.5 0.4 0.39344 0.39253 0.39240 0.39238

The general conclusion of the considerations in this section is that the DA split-

ting provides better opportunities for a systematic theoretical analysis. However,

the counterpart approach FR could have serious advantages from a practical point

of view.
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MV

MP

0.39238

0.38095

0.5

l l−5l−4l−3l−2l−1

Figure 7.7: Multilevel behavior of 2 for FR algorithm: 3D case

7.5 Numerical tests

7.5.1 Additive and multiplicative AMLI preconditioners in 2D

Here we compare the convergence properties of the PCG method using either

the additive or the multiplicative AMLI preconditioners based on either DA or

FR splitting for MP and MV discretization. We solve the system of linear al-

gebraic (finite element) equations (7.3). The square domain � D Œ0; 1�2 is di-

vided into four subdomains, namely, � D �1 [ : : : [�4, where �1 D Œ0; 1=2�2,

�2 D Œ1=2; 1�� Œ0; 1=2�,�3 D Œ0; 1=2�� Œ1=2; 1�, and�4 D Œ1=2; 1�2. The piece-

wise constant diffusion coefficient is given by a.e/ D 1 on subdomains �1 and

�4, a.e/ D " on �2, and a.e/ D "�1 on �3. The first Table 7.5 summarizes the

number of PCG iterations that reduce the residual norm by factor of 106 when per-

forming a single V-cycle AMLI. In the second Table 7.6 we list the corresponding

results for the linear AMLI W-cycle, employing second-order stabilization poly-

nomials (see also the related notice in the next Section 7.5.2). The results for the

multiplicative variant are put in parentheses in each case. Though the number of it-

erations approximately doubles in most cases when switching from multiplicative

to additive preconditioning the CPU-time (in most situations) increases by about

10 to 50 per cent. This is due to the lower computational complexity per appli-

cation of the additive AMLI. This is illustrated in Figure 7.8, which depicts the

logarithm (log2) of the CPU-time in milliseconds measured on a 2 GHz Linux PC

for the case of the DA splitting and MV discretization. The (almost) linear pro-

file of the diagrams gives a clear idea about the good scalability of the developed

codes.

In full agreement with the theoretical analysis presented in this chapter, both

preconditioners, the additive as well as the multiplicative AMLI, are perfectly ro-
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bust with respect to jump discontinuities in the coefficient a.e/ as can be seen from

the almost identical results shown in the respective rows for " D 1 and " D 0:01

of Tables 7.5–7.6.

Table 7.5: AMLI V-cycle: Number of PCG iterations; 2D tests

1=h 32 64 128 256 512 1024

DA/MP " D 1 15 (8) 21 (10) 29 (13) 39 (16) 49 (19) 61 (22)

" D 0:01 15 (8) 22 (10) 29 (13) 39 (16) 50 (19) 63 (22)

FR/MP " D 1 11 (6) 15 (8) 19 (9) 24 (11) 28 (12) 34 (14)

" D 0:01 11 (6) 15 (8) 20 (9) 24 (11) 30 (12) 36 (14)

DA/MV " D 1 14 (8) 20 (10) 28 (13) 36 (16) 45 (18) 56 (21)

" D 0:01 14 (8) 20 (11) 28 (13) 37 (16) 47 (18) 59 (22)

FR/MV " D 1 12 (7) 16 (9) 21 (10) 26 (12) 31 (14) 37 (16)

" D 0:01 13 (7) 17 (9) 22 (10) 27 (12) 33 (14) 39 (16)

Table 7.6: Linear AMLI W-cycle: Number of PCG iterations; 2D tests

1=h 32 64 128 256 512 1024

DA/MP " D 1 15 (8) 16 (8) 17 (8) 18 (8) 18 (8) 18 (8)

" D 0:01 15 (8) 17 (8) 17 (8) 18 (8) 18 (8) 19 (8)

FR/MP " D 1 11 (6) 12 (6) 12 (6) 13 (6) 13 (6) 13 (6)

" D 0:01 11 (6) 12 (6) 13 (6) 13 (6) 13 (6) 13 (6)

DA/MV " D 1 14 (8) 15 (9) 16 (9) 16 (9) 16 (9) 16 (9)

" D 0:01 14 (8) 16 (10) 16 (9) 16 (9) 17 (9) 17 (9)

FR/MV " D 1 12 (7) 14 (7) 14 (7) 14 (7) 14 (7) 14 (7)

" D 0:01 13 (7) 14 (7) 15 (7) 15 (7) 15 (7) 15 (7)

7.5.2 Problems with jumping coefficients in 3D

Two kinds of numerical tests are presented and discussed in this section (following

[61]). The coefficient jumps are aligned with the coarsest mesh at the beginning –

the case which was theoretically analyzed in this chapter. After that we consider

the case of randomly distributed coefficients, that is, the situation in which the

jumps (due to the oscillatory coefficient) can only be resolved on the finest mesh.

This class of challenging problems is also referred to as high-frequency and high-

contrast problems. Such a terminology is in particular well fit to the case of (micro)

�-FEM analysis of structures, based on voxel computer tomography images.
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Figure 7.8: CPU-time for additive (dark) and multiplicative (light) preconditioning

(logarithmic scale)

Jump in coefficients aligned with coarse mesh

The computational domain is � D .0; 1/3. The mesh is uniform with mesh size

varied in the range h D 1=8 to h D 1=128 resulting in 512 to 2 097 157 finite

elements with 1 728 to 6 340 608 nodes, respectively. The matrix a.e/ in (7.3) is

defined by a.e/ ..D ˛.e/ �I , where the following jumps in the coefficient ˛ D ˛.e/
are considered:

˛.e/ D
8
<
:

1 in
.I1 � I1 � I1/ [ .I2 � I2 � I1/

[ .I2 � I1 � I2/ [ .I1 � I2 � I2/

" elsewhere

9
=
; ;

where I1 D .0; 0:5� and I2 D .0:5; 1/, and " D 10�3. The number of (outer)

iterations shown in Tables 7.7–7.9 reduce the residual norm by a factor of 108.

Table 7.7: AMLI V-cycle: Number of PCG iterations; 3D tests

MP h�1 8 16 32 64 128

DA " D 1 9 12 16 20 24

" D 10�3 9 12 16 20 25

FR " D 1 8 11 14 18 22

" D 10�3 8 11 14 18 22

MV h�1 8 16 32 64 128

DA " D 1 12 17 22 29 38

" D 10�3 12 17 22 30 39

FR " D 1 10 14 17 21 26

" D 10�3 10 14 17 21 26
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Table 7.7 presents results for the AMLI V-cycle preconditioner. Let us note,

that the observed logarithmic growth of the iteration count (with respect to the

problem size) is more well known for the case of 2D problems but is not covered

by the theory for 3D problems. The results in Table 7.8 refer to the linear AMLI

W-cycle preconditioner choosing a matrix stabilization polynomial Q1.t/ D .1 �
P2.t//=t D q0 C q1t: As for some other numerical tests included in this book, the

coefficients

q0 D 2p
1 � 2

; q1 D � 1

1 � 2
(7.42)

are used, cf. [17]. It is notable that this choice, although theoretically founded for

the situation of exact inversion of the pivot block A11 only, still yields satisfying

results in this case where an approximate inversion of A11, i.e., an incomplete

factorization based on a drop tolerance (ILU(tol)) is used. In the experiments

presented here, the drop tolerance is set to tol D 10�3.

In Table 7.9 we list the results for the (variable-step) nonlinear AMLI method

stabilized by two inner generalized conjugate gradient iterations at every interme-

diate level (and using a direct solve on the coarsest mesh with mesh size h�1 D 4,

as in the other tests).

Table 7.8: Linear AMLI W-cycle: Number of PCG iterations; 3D tests

MP h�1 8 16 32 64 128

DA " D 1 9 10 10 10 10

" D 10�3 9 10 10 10 10

FR " D 1 8 9 9 9 9

" D 10�3 8 9 9 9 9

MV h�1 8 16 32 64 128

DA " D 1 12 15 15 16 16

" D 10�3 12 15 16 16 16

FR " D 1 10 12 12 12 12

" D 10�3 10 12 12 12 12

As the theoretical estimates presented in this chapter predict, the AMLI pre-

conditioners are perfectly robust with respect to jump discontinuities of the coeffi-

cients a.e/ if they do not occur inside any element of the coarsest mesh partition.

The results slightly favor the FR approach, and, they illustrate well the optimal

convergence rate of the PCG solvers, when using a W-cycle AMLI as precondi-

tioner, for all considered cases and variants.

We also observe, that the nonlinear AMLI slightly outperforms the linear one,

which is better expressed in the MV case.
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Table 7.9: Nonlinear AMLI W-cycle: Number of (outer) GCG iterations; 3D tests

MP h�1 8 16 32 64 128

DA " D 1 9 9 9 9 9

" D 10�3 9 10 10 10 10

FR " D 1 8 9 9 9 9

" D 10�3 8 9 9 9 9

MV h�1 8 16 32 64 128

DA " D 1 12 12 12 12 12

" D 10�3 12 12 12 12 12

FR " D 1 10 11 11 11 11

" D 10�3 10 11 11 11 11

Random distribution of jump in coefficients

The remaining experiments deal with examples where the coefficient functions are

rough in the sense that their jumps are resolved on the finest mesh only. In these

tests we use the FR basis transformation in combination with the nonlinear AMLI

W-cycle method, i.e., two inner GCG iterations at all coarser levels. The number of

outer iterations that we report reduce the residual by a factor of 106. The coefficient

˛.e/ is constant elementwise only. For the considered case of “binary material”, it

is initialized randomly, taking either of the values 1 or ", where 1 occurs with some

fixed probability p. Finally, the last row of Table 7.10 shows the corresponding

results for a problem where the coefficient on each element is a random number

(uniformly distributed) in the interval .0; 1/, i.e., ˛.e/ 2 .0; 1/.
By comparing the results shown in Tables 7.9 and 7.10, we observe that in gen-

eral, this AMLI solver is not robust with respect to the considered jump disconti-

nuities of high frequency. However, for a fixed value of " its convergence rate is

still of optimal order no matter how large the jumps are. Here, it is important to

emphasize also the advantage of the nonlinear AMLI compared to polynomial sta-

bilization of the condition number, which is more difficult to achieve for problems

with coefficient jumps on the finest mesh.

The topic of robustness of the discretization and the related PCG/GCG solvers

for problems with coefficient jumps of high frequency and high contrast is cur-

rently of a strongly growing interest. We will come back to such problems and to

one challenging real-life application in Chapter 8 and Chapter 10.
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Table 7.10: Nonlinear AMLI W-cycle: Number of (outer) GCG iterations for prob-

lem with random coefficients: 3D tests

p D 1=2

FR-MV h�1 8 16 32 64 128

" D 10�1 9 9 9 9 9

" D 10�2 21 22 22 21 21

" D 10�3 42 59 58 56 54

p D 1=10

FR-MV h�1 8 16 32 64 128

" D 10�1 9 9 9 9 9

" D 10�2 17 22 22 22 22

" D 10�3 29 60 55 50 50

Random coefficient:

FR-MV h�1 8 16 32 64 128

˛.e/ 2 .0; 1/ 22 39 43 34 35



8 AMLI algorithms for discontinuous

Galerkin FE problems

8.1 Introduction to discontinuous Galerkin FEM

Consider a second order elliptic boundary value problem on a polygonal domain

� � R
d , d D 2; 3:

�r � .a.x/ru/ D f .x/ in �

u.x/ D 0 on �D

@Nu.x/ � aru � n D 0 on �N :

(8.1)

For the formulation below we shall need the existence of the traces of u and aru�n
on certain interfaces in �. Thus, the solution u is assumed to have the required

regularity. To simplify our exposition we assume that the set �D is not empty and

its R
d�1-dimensional measure is nonzero.

Let T be a partitioning of � into a finite number of open subdomains (finite

elements) K with boundaries @K. We assume that the partition is quasi uniform

and regular. For each finite element we denote by hK its size and further h D
maxK2T hK . Let e D KL \KR be the interface of two adjacent subdomains KL

andKR (see Figure 8.1). The set of all such interfaces is denoted by F0. Note that

these interfaces are inside �. Further, FD and FN will be the sets of faces/edges

of finite elements on the boundary �D and �N , respectively. Finally, F will be

the set of all faces/edges: F D F0 [ FD [ FN . Here we allow finite elements of

polygonal or polyhedral shape, with hanging nodes etc. The important assumption

is that if e is a side or a face of a finite element K 2 T then jej � hK for d D 2

and jej 12 � hK for d D 3. In other words we do not allow very small edges or

faces, i.e., strong mesh anisotropy is excluded.

On the partition T we define the finite element space

V ..D V.T / ..D ¹v 2 L2.�/ W vjK 2 Pr.K/; K 2 T º;

where Pr is the set of polynomials of degree r � 0. For each e D KL\KR 2 F0

we define the jump ŒŒv�� of any function v 2 V as the vector

ŒŒv��e ..D
´
vjKL

nL C vjKR
nR; e D KL \KR; i.e., e 2 F0;

vjKn; e D K \ �D; i.e., e 2 FD:
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n
n

KL
KR

R

L

Figure 8.1: Two adjacent subdomains (elements) KL and KR

Here nL and nR are the external unit vectors to KL and KR, respectively.

We shall also need the following notation for the average value of a vector func-

tion v 2 Vd on e D KL \KR, that is,

¹vºje ..D
´ 1

2
.vjKL

C vjKR
/ for e D KL \KR; i.e., e 2 F0;

vjK ; for e D K \ �D; i.e., e 2 F n F0

and the piecewise constant function hF defined on F as

hF D hF .x/ D
² jej for x 2 e 2 F ; d D 2;

jej 12 for x 2 e 2 F ; d D 3:

Further denote by

.arv;rv/h ..D
X

K2T

Z

K

aru rvdK;

˝
h�1

F ŒŒu��; ŒŒv��
˛
F0[FD

..D
X

e2F0[FD

Z

e

h�1
F ŒŒu�� � ŒŒv��ds:

Finally, we introduce the following norm on V:

jjjvjjj2h D .arv;rv/h C ˛
˝
h�1

F ŒŒv��; ŒŒv��
˛
F0[FD

: (8.2)

Let us consider the symmetric interior penalty discontinuous Galerkin (IP-DG)

finite element method (see, e.g. [3]): Find uh 2 V such that

Ah.uh; v/ D .f; v/; 8 v 2 V; (8.3)

where

Ah.uh; v/ � .aruh;rv/h C ˛
˝
h�1

F ŒŒuh��; ŒŒv��
˛
F0[FD

�h¹aruhº; ŒŒv��iF0[FD
�hŒŒuh��; ¹arvºiF0[FD

:
(8.4)
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It is well known that if ˛ is sufficiently large then the bilinear from (8.4) is coercive

and bounded on V equipped with the norm (8.2), (see, e.g. [3]).

Another symmetric discontinuous Galerkin scheme can be derived by using the

approach developed in [54]. In this case we get a bilinear from

Ah.uh; v/ � .aruh;rv/h C˛
˝
h�1

F ŒŒuh��; ŒŒv��
˛
F0[FD

� h¹aruhº; ŒŒv��iF0[FD
� hŒŒuh��; ¹arvºiF0[FD

� 1
4
˛�1 hhF ŒŒaruh � n��; ŒŒarv � n��iF0

;

(8.5)

which is also coercive for sufficiently large ˛. Note that the corresponding DG

scheme is slightly different from the IP-DG method (8.3)–(8.4). We summarize the

main results regarding the discontinuous Galerkin method (8.3) in the following

lemma:

Lemma 8.1. Assume that the finite element partition T is regular and locally

quasi uniform. Then the bilinear form Ah.�; �/ defined by (8.4) or (8.5) is coer-

cive and bounded in V equipped with the norm (8.2) for any sufficiently large

˛ > 0 and the discontinuous Galerkin method (8.3) has a unique solution.

In the next sections we present some recent results on robust AMLI precondi-

tioners for IP-DG finite element systems. It will be shown also, that in the consid-

ered cases, the methods are stabilized for relatively small values of the parameter

˛.

8.2 Element-based approach: bilinear DG systems

The essential components of the AMLI algorithm for DG systems can be con-

structed in different ways. We start our presentation with an element-based ap-

proach, see [81, 80], which will be described in the following for bilinear DG sys-

tems. The use of trilinear shape functions (in 3D) is discussed in detail in [80] and

also the extension of this approach to higher-order shape functions and/or noncon-

forming elements, e.g., based on rotated multilinear shape functions is possible.

Consider a general element K with all its faces internal. Let its neighboring

elements, which share a face with this element, be denoted by KC
1 , KC

2 , KC
3 , and

KC
4 . Here �C represents the neighboring element and digits 1; : : : ; 4 represent the

face number with which the neighboring element is attached. This arrangement is

depicted in Figure 8.2(a). The bilinear form for this element reads:
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1 2

3 4

5 6

7 8
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11 12
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15 16
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19 20
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(a) Standard arrangement

25 7

8

9

11 12

6 3 4

10

1

(b) Specific arrangement

Figure 8.2: Elemental DOF

AK.uh; v/ D
Z

K

aruh � rv dK C ˛h�1
F

X

e2@K

Z

e

ŒŒuh�� � ŒŒv��ds

�
X

e2@K

Z

e

.¹aruhº � ŒŒv��C ŒŒuh�� � ¹arvº/ ds: (8.6)

Using the definition of the trace operators ¹�º and ŒŒ��� and, as a standard procedure,

collecting the terms with the test function for the element K we get

VAK.uh; v/ D
Z

K

aruh � rv dK

C˛h�1
F

4X

iD1

Z

ei

vKnK �
�
uKnK C uK

C
i

n
K

C
i

�
ds

�1

2

4X

iD1

Z

ei

�
vKnK �

�
aruK C aruK

C
i

�

CarvK �
�
uKnK C uK

C
i

n
K

C
i

��
ds: (8.7)

The size of the resulting matrix is 4 � 20 since, as depicted in Figure 8.2(a), the

DOF of the elementK are connected with all the DOF of its neighboring elements

KC
i .

Since this arrangement is not well suited for setting up a local hierarchical basis

transformation, we use an alternative element-based assembling procedure. Here

we split the terms in the elemental bilinear form (8.6) in such a way that theruKC

terms are used only in the computation of the respective element KC, and thus,

only the ruK terms are associated with the element K.

Moreover, to avoid the singularity of the resulting stiffness matrix arising in this

arrangement, we need to consider all parts of the stabilization term in (8.6). Since
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this would double the contribution from the respective terms in the global stiffness

matrix we take them with the weight 1=2. The resulting elemental bilinear form is

then given by

AK.uh; v/ D
Z

K

aruh � rv dK (8.8)

�1

2

4X

iD1

Z

ei

��
vKnK C vK

C
i

n
K

C
i

�
� aruK

CarvK �
�
uKnK C uK

C
i

n
K

C
i

��
ds

C˛h
�1
F

2

4X

iD1

Z

ei

�
vKnK C vK

C
i

n
K

C
i

� �
uKnK C uK

C
i

n
K

C
i

�
ds:

In this approach, as depicted in Figure 8.2(b), the DOF of the element K are con-

nected with only those DOF of its neighboring elements KC
i which are at the

common face. The resulting matrix, which is of the size 12 � 12, is denoted by

AK .

Remark 8.2. It is important to note that this specific splitting of terms in the bi-

linear form is possible only for some of the DG methods proposed in literature,

e.g., the symmetric IP method [70], the method of Baumann and Oden [26], its

stabilized version NIPG [100], and the method of Babuška–Zlamal [21].

Now let N D 4NK denote the total number of DOF in the system. Using

the piecewise polynomial (bilinear) approximation in the weak form (8.3), with

elemental bilinear form (8.8), we get the following linear system of equations

Ax D b; (8.9)

where x 2 R
N , A 2 R

N �N with N 2
K blocks of size 4 � 4, and b 2 R

N , denote

the solution vector, the global stiffness matrix, and the right-hand side data vector,

respectively.

Let us next introduce the hierarchical basis transformation generating two levels

of a discrete DG system; the multilevel extension is obtained by a recursive appli-

cation of the two-level transformation to the coarse-level system. For that reason

we assume that we have given a hierarchy of partitions T` � T`�1 � : : : � T1 �
T0 of �, where the notation Tk D Th � TH D Tk�1 means that for any element

K of the fine(r) partition Th there is an element E of the coarse(r) mesh partition

TH such that K � E.
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Consider now the linear system (8.9) resulting from the IP-DG approxima-

tion of the basic problem (8.1). The partitioning of variables (and correspond-

ing equations) into a fine and a coarse (sub-) set, indicated by the subscripts

1 and 2, respectively, is induced by a regular mesh refinement at every level

.k�1/ D 0; 1; : : : ; `�1. This means that by halving the meshsize, i.e., h D H=2,

each element is subdivided into four elements of similar shape, herewith produc-

ing the mesh at levels k D 1; 2; : : : ; `. Hence, the linear system (8.9) can be

represented in the 2 � 2 block form as

�
A11 A12

A21 A22

� �
x1

x2

�
D
�

b1

b2

�
(8.10)

where A21 D AT
12. Now, if we make use of the two-level transformation matrix

J D
�
I P12

0 I

�
; (8.11)

the system to be solved in the (generalized) hierarchical basis reads

bAbx Dbb: (8.12)

The matrix bA and its submatrices bA11, bA12
bA21, bA22 are given by

bA D J TAJ D
�bA11

bA12

bA21
bA22

�
;

bA11 D A11; bA12 D A11P12 C A12; bA21 D P T
12A11 C A21;

bA22 D P T
12A11P12 C A21P12 C P T

12A12 C A22:

The vectorsbx andbb are transformed then from hierarchical basis to a nodal basis

via x D J bx and b D �J T
��1bb, and the following relations hold

x1 Dbx1 C P12bx2; x2 Dbx2; (8.13a)

b1 Dbb1; b2 Dbb2 � P T
12b1: (8.13b)

The general macroelement we are using to define the local interpolation PE is

depicted in Figure 8.3. It is important to note that the nonzero pattern and the

entries of PE have to be defined in such a way that the local interpolation (for

neighboring macroelements) is compatible, i.e., the stencil and the coefficients

have to agree for fine nodes shared by adjacent macroelements in their respective

local interpolation matrices PE .
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The local macroelement two-level transformation matrix JE is given by

JE D
�
I PE

0 I

�
; (8.14)

where the macroelement interpolation matrix PE is of size 20�12. For symmetry

(isotropy) reasons we consider transformations that can be characterized by the

matrix PE given below:

PE D

2
666666666666666666666666666666666664

p1 p2 p2 p3 0 0 0 0 0 0 0 0

p2 p1 p3 p2 0 0 0 0 0 0 0 0

p2 p3 p1 p2 0 0 0 0 0 0 0 0

p3 p2 p2 p1 0 0 0 0 0 0 0 0

q1 0 q2 0 q3 q4 0 0 0 0 0 0

q2 0 q1 0 q4 q3 0 0 0 0 0 0

0 q1 0 q2 0 0 q3 q4 0 0 0 0

0 q2 0 q1 0 0 q4 q3 0 0 0 0

q1 q2 0 0 0 0 0 0 q3 q4 0 0

q2 q1 0 0 0 0 0 0 q4 q3 0 0

0 0 q1 q2 0 0 0 0 0 0 q3 q4

0 0 q2 q1 0 0 0 0 0 0 q4 q3

q3 0 q4 0 q1 q2 0 0 0 0 0 0

q4 0 q3 0 q2 q1 0 0 0 0 0 0

0 q3 0 q4 0 0 q1 q2 0 0 0 0

0 q4 0 q3 0 0 q2 q1 0 0 0 0

q3 q4 0 0 0 0 0 0 q1 q2 0 0

q4 q3 0 0 0 0 0 0 q2 q1 0 0

0 0 q3 q4 0 0 0 0 0 0 q1 q2

0 0 q4 q3 0 0 0 0 0 0 q2 q1

3
777777777777777777777777777777777775

(8.15)

In particular, we study here two choices of PE which are based on simple aver-

aging:

1. J .1/ is induced by (8.14), PE is given by (8.15), and p1 D p2 D p3 D 1=4,

q1 D q2 D 1=2, q3 D q4 D 0.

2. J .2/ is induced by (8.14), PE is given by (8.15), and p1 D p2 D p3 D 1=4,

q1 D q2 D q3 D q4 D 1=4.

Of course, the second scheme needs a modification at the boundaries such that the
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sum of interpolation coefficients always equals one.1 The connections for a few

internal and face DOF are depicted in Figure 8.3, where continuous and dashed

lines denote the weight 1=4 and 1=2, respectively. A similar treatment applies to

other internal and face DOF.
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(a) Variant 1
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(b) Variant 2

Figure 8.3: The connectivity in the local interpolation for a macroelement

Let us next consider the macroelement stiffness matrix bAE obtained from as-

sembling the element matrices for all elements K contained in E in the (local)

hierarchical basis. Evidently, the global two-level stiffness matrix bA can be as-

sembled from the macroelement two-level stiffness matrices, i.e.,

bA D J TAJ D
X

E2TH

RT
E
bAERE D

X

E2TH

RT
EJ

T
EAEJERE :

Like the global matrix, the local matrices are also of the following 2�2 block form

bAE D
�bAE W11

bAE W12

bAE W21
bAE W22

�
D J T

E

�
AE W11 AE W12

AE W21 AE W22

�
JE ; (8.16)

where JE is defined by (8.14) and the local Schur complement is given by

SE D bAE W22 �bAE W21
bA�1

E W11
bAE W12 D AE W22 � AE W21A

�1
E W11AE W12: (8.17)

As we know from the general framework of two-level block factorization methods,

it suffices to compute the minimal eigenvalue �E Imin of the generalized eigenprob-

lem

SE vE W2 D �E
bAE W22vE W2; vE W2 ¤ c (8.18)

1For instance, a macroelement touching the boundary with its left face – when DOF 13, 14, 25,

26 are missing – has the correct local interpolation coefficients 1=2 for each of the couplings between

DOF 5 and 6 and the coarse DOF 21 and 23, which is the same as for the interpolation scheme 1, cf.

Figure 8.3.
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in order to conclude the following upper bound for the CBS constant  :

2 � max
E2TH

2
E D max

E2TH

.1 � �E Imin/: (8.19)

This relation then implies condition number estimates for the corresponding two-

level preconditioner. For a proof of the following theorem see [81].

Theorem 8.3. Consider the IP-DG formulation (8.4) of problem (8.1) based on

piecewise bilinear shape functions where the diffusion coefficient a.x/ D a is

assumed to be piecewise constant on the coarsest mesh partition T0. Then for

Variant 1 of the two-level basis transformation associated with the macroelement

matrix which is obtained from assembling four equal element matrices AK.˛/ the

CBS constant  has the following upper bound

 �  .1/
E �

r
3

4
C 1

8˛
8˛ � 9

8
: (8.20)

In order to derive an estimate which holds true for all levels of mesh refine-

ment and corresponding factorization steps, we need to repeat the calculation of

E , thereby replacing AK.˛/ withbAE W22 when assembling the new macroelement

matrix (at each subsequent level). In case of Variant 1 the element matrices at

successive levels fulfill the relation

bAE W22 D AK.2˛/: (8.21)

In other words, the coarse-grid matrix corresponds to the same kind of IP-DG

discrete problem (on a mesh with spacingH D 2h) but using double the value for

the stabilization parameter ˛. Even though this results in a smaller upper bound for


.1/
E , showing that inequality (8.20) is valid for all subsequent levels if it is valid for

the first one, an additional difficulty arises, which is related to the preconditioning

of the A11-block.

Lemma 8.4. For our model problem with piecewise constant coefficients, i.e., for

a D aE , where the coefficient aE > 0 can have arbitrary large jumps on the

macroelement interfaces, the condition number of A11 is of order O.˛/.

Proof. We note that the condition number of A11 can be estimated locally, i.e., if

0 < c � vT
E W1AE W11vE W1 � c˛ 8vE W18E; (8.22)

then the same relation holds also globally, which implies �.A11/ D O.˛/. The

proof of (8.22) is as follows. Assembling any macroelement matrix AE W11, where
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without loss of generality we may assume that aE D 1, from the element matrix

AK.˛/, we find that AE W11 has the representation

AE W11 D AE W11.˛/ D A0 C A˛ D A0 C ˛A1 (8.23)

with constant matrices A0 and A1 being indefinite and SPSD, respectively. More-

over, A ..D A0 C A1 is SPD. Hence, the minimal and maximal eigenvalues of the

matrices A and A˛ D ˛A1 satisfy

�min.A/ D c; �max.A/ D c;
�min.A˛/ D 0; �max.A˛/ D O.˛/;

for some constants c and c, 0 < c � c. But then, since

vT
E W1AE W11.˛/vE W1 D vT

E W1ŒAC .˛� 1/A1�vE W1 � vT
E W1ŒACA˛�vE W1 8vE W18E;

we have �min.AE W11.˛// � c for all ˛ � 1 and �max.AE W11.˛// � c˛ for all

˛ � 1. In particular, by choosing c D �max.A1/C �max.A/ and c D �min.A/ the

estimate (8.22) holds for all ˛ � 1. �

Thus, the block factorization in the hierarchical basis, when constructed using

the transformation Variant 1, with increasing level number, in general, makes the

solution of the sub-systems with A11 more and more difficult.

Remark 8.5. The bound (8.20) is slightly too weak in order to guarantee that the

condition number of the multiplicative preconditioner (with exact inversion of the

A11-block) can be stabilized using Chebyshev polynomials of degree two. Com-

bining the optimality conditions (2.78) with (8.20) we obtain ˛ > 9=10, which is

to be satisfied for a condition number that can be uniformly bounded in the num-

ber of levels if one uses optimal third-order polynomial stabilization. Note that,

however, the stability of the DG discretization scheme requires a larger ˛ anyway,

see [104].

Let us next focus on Variant 2. The following lemma (for a proof see [81]) pro-

vides some information on the element matrix A
.j /
K .˛/ after j regular coarsening

(unrefinement) steps, starting with the element matrix

A
.0/
K .˛/ D AK.˛/ (8.24)

at the fine-grid level `.
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Lemma 8.6. If we neglect boundary effects, the element matrix A
.j /
K .˛/ after j

coarsening steps, 1 � j < `, has the representation

A
.j /
K .˛/ D XK.˛/C jYK (8.25)

where YK is SPSD with three fourfold eigenvalues, given by 11=48, 1=16, and

0; and the matrix XK.˛/ is SPSD if and only if ˛ > 11=8. Further, XK.˛/ is

monotonically increasing in ˛ which means that XK.˛/ � XK.˛
0/ is SPSD, i.e.,

XK.˛/ �XK.˛
0/ � 0 if ˛ � ˛0 � 0.

In the local analysis of the multilevel procedure we want to estimate the abstract

angle between the coarse space and its complementary space in the decomposition

of the space at level .` � j /, j D 0; 1; : : : ; ` � 1; the corresponding element

matrices are given by A
.j /
K .˛/, and A

.j C1/
K .˛/, which can be associated with the

fine and coarse space at level .` � j /, respectively.

Unless otherwise specified the parameter ˛ is always assumed to be greater than

or equal to one. By construction (cf. (8.16), (8.24)–(8.25)) we have

bA.j /
E W22

.˛/ D A.j C1/
K .˛/; (8.26)

and thus (8.17) can be written as

S
.j /
E .˛/ D A.j C1/

K .˛/ �bA.j /
E W21

.˛/.bA.j /
E W11

.˛//�1bA.j /
E W12

.˛/: (8.27)

Furthermore, the solution of the local generalized eigenproblem (8.18) is equiva-

lent to finding

�E Imin ..D min
v¤c

vT S
.j /
E .˛/ v

vTA
.j C1/
K .˛/ v

D 1 �max
v¤c

vT ¹bA.j /
E W21

.˛/.bA.j /
E W11

.˛//�1bA.j /
E W12

.˛/º v

vTA
.j C1/
K .˛/ v

: (8.28)

Now, since it is sufficient to compute a lower bound � for (8.28) we consider the

inequality

.1 � �/A.j C1/
K .˛/ �R.j /

E .˛/ � 0 (8.29)

where

R
.j /
E .˛/ D bA.j /

E W21
.˛/.bA.j /

E W11
.˛//�1bA.j /

E W12
.˛/: (8.30)

Then (8.29) has to be fulfilled with a preferably large � > 0. In this regard we first

observe the monotonicity of R
.j /
E .˛/ and A

.j C1/
K .˛/.
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Lemma 8.7. For the transformation Variant 2, the matrix-valued function R
.j /
E W

˛ 7! R
.j /
E .˛/, defined by (8.30), is monotonically decreasing, which means that

R
.j /
E .˛0/ � R.j /

E .˛/ � 0 if 1 � ˛0 � ˛ < 1. Furthermore, for fixed ˛ � 1 the

function RE .˛/ W j 7! R
.j /
E .˛/ decreases in j , i.e., R

.j /
E .˛/ � R.j C1/

E .˛/ � 0 if

j 2 ¹1; 2; : : :º. By contrast, the matrix A
.j C1/
K .˛/ is monotonically increasing in

˛ and j .

Proof. From Lemma 8.6 we know that XK.˛/ is monotonically increasing and

since YK is SPSD (and does not depend on ˛) we conclude that A
.j /
K .˛/ is mono-

tonically increasing in both parameters, ˛ and j .

Then it can be easily checked that for ˛ � 1 the macroelement pivot matrix

bA.j /
E W11

.˛/ is SPD. Thus we have .bA.j /
E W11

.˛//�1 � 0 showing that R
.j /
E .˛/ � 0.

Moreover, since bA.j /
E W12

.˛/ D bAE W12 and bA.j /
E W21

.˛/ D bAT
E W12

are invariant with

respect to ˛ and j , it suffices to show that bA.j /
E W11

.˛/ is monotonically increasing

in both parameters. The latter, however, follows from the fact that bA.j /
E W11

.˛/ is a

special linear combination of three symmetric matrices A0
E W11

, AE W11 and AE W11,

i.e.,

bA.j /
E W11

.˛/ D A0
E W11 C jAE W11 C ˛AE W11

in which AE W11 and AE W11 are positive semidefinite. Note that neither AE W11 nor

AE W11 depend on ˛ or j ! �

The multilevel block factorization in the hierarchical basis, (implicitly) gener-

ated by recursive application of the two-level transformation Variant 2, yields a

recursive splitting of the related DG-FE spaces for which the following estimate

holds.

Theorem 8.8 (see [81]). Consider the elliptic problem (8.1) with constant coeffi-

cients discretized by the IP-DG method using bilinear elements on a uniform mesh

and assume that ˛ � ˛ � 1. Then the constant  in the CBS inequality for the

splitting at level ` � j , j 2 ¹0; 1; : : : ; ` � 1º, (associated with the .j C 1/-th

coarsening step) can be estimated locally according to (8.19). In particular, if

˛ � ˛ D 4 then the local estimate

2 � ŒE �
2 �

´
1 � � 9

14

�2 � 0:586735 for j D 0

1 � � 5
7

�2 � 0:489796 for j > 0
(8.31)

holds.
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Proof. The proof is based on the inequality (8.29). Let us first consider the case

j > 0. We note that the maximum � > 0 satisfying inequality (8.29) is given

by (8.28). Next, using the assumption ˛ � ˛ � 1 and taking into account the

monotonicity properties established by Lemma 8.7 we get

.1 � �/A.j C1/
K .˛/ �R.j /

E .˛/ � .1 � �/A.2/
K .˛/ �R.1/

E .˛/ 8� > 0;

and thus it follows that any � > 0 satisfying the inequality

.1 � �/A.2/
K .˛/ �R.1/

E .˛/ � 0

yields a lower bound for the desired minimum eigenvalue �E Imin, i.e.,

0 < � � �E Imin:

In particular, by choosing ˛ D 4 (and j D 1), and solving the corresponding

generalized local eigenvalue problem (8.18), this proves the estimate (8.31) for

j > 0.

In the case j D 0 the bound can be verified by using similar monotonicity

arguments (here only the monotonicity with respect to ˛ is required), and finally,

choosing again ˛ D ˛.D 4/. �

Remark 8.9. Comparing the bounds (8.31) and (8.20) it becomes obvious that

Variant 2 of the basis transformation is preferable for stabilization of the condition

number at low(er) costs. In this case both inequalities (2.78) can also be met

by employing second-order (instead of third-order) Chebyshev polynomials in the

(linear) AMLI cycle.

Remark 8.10. When the stabilization parameter ˛ tends to infinity both upper

bounds for  decrease, which shows that the corresponding angles improve. While

the limit for Variant 1 of the hierarchical basis is
p

3=4, the limiting value for

Variant 2 is given by
p

3=8, which equals the corresponding value for the finite

element spaces generated by conforming bilinear elements (cf. [98]), i.e.,

lim
˛!1

E .˛; j / D
p

3=8 8j D 0; 1; 2; : : : :

Note that the same limit is obtained for any fixed ˛ as the number of levels tends

to infinity, i.e.,

lim
j !1

E .˛; j / D
p

3=8 8˛ > 1;

which of course is not of practical relevance.
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A detailed analysis of the first transformation variant when applied to three-

dimensional anisotropic elliptic problems discretized by the IP-DG method (8.4)

based on trilinear shape functions has been presented in reference [80]. There

it has been shown that this approach yields a robust method as long as the main

directions of anisotropy are aligned with the coordinate axes, which is also the case

for standard Galerkin FEM based on conforming bilinear or trilinear elements.

8.3 Face-based approach: Rotated bilinear DG systems

The commonly known theory of optimal order solution methods for FEM elliptic

systems is restricted to the case of coefficient jumps which are aligned with the

coarse(st) mesh partitioning (triangulation). Such assumptions are usually made

in case of multilevel, multigrid and domain decomposition methods. There are

numerical tests confirming that the convergence of these methods deteriorates if

this condition is violated. However, at the same time, there are many (multiscale

and multiphysics) models for strongly heterogeneous media where the strong co-

efficient jumps can be resolved on the finest mesh only! The hierarchical bases

proposed in this section are especially designed for problems with highly vary-

ing coefficients. The robustness issue we are investigating here concerns jump

discontinuities of the PDE coefficient at arbitrary element interfaces (on the fine

mesh). A hierarchical basis that provides a robust splitting (in this situation) yields

a uniform upper bound (strictly less than one) of the CBS constant that measures

the cosine of the abstract angle between the coarse space and its complementary

space. Though our focus is on a particular family of rotated bilinear finite elements

in two space dimensions (2D) here (see [76]) the proposed rather general approach

is neither limited to this particular choice of elements nor to 2D problems.

In the setting of DG discretizations the construction of face-based transforma-

tion variants seems to be a natural choice. This originates in the observation that

the global stiffness matrix related to the bilinear form (8.4) can also be assembled

from small-sized local stiffness matrices associated with the individual element

faces e 2 F , i.e.,

A D
X

e2F

RT
e AeRe

where summation is understood in the sense of assembling matrices.

For an interior face e 2 F0 the matrix Ae is then associated with the local

bilinear form

Ae.uh; v/ �
1

2d
..aruh;rv/KC C .aruh;rv/K�/C ˛ ˝hE

�1 ŒŒuh��; ŒŒv��
˛
e

�h¹aruhº; ŒŒv��ie �hŒŒuh��; ¹arvºie :
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A simple computation shows that in the model case of a uniform mesh (composed

of square elements) the matrices corresponding to the single contributions of hori-

zontal and vertical (interior) faces have the representation

Ah
e D Ah

e;0 C ˛Ah
e;1; (8.32)

Av
e D Av

e;0 C ˛Av
e;1; (8.33)

where the matrix terms from the right-hand side of (8.32) can be written in the

form (see [76]):

Ah
e;0D

1

8

2
66666666664

5aC � 3aC 3aC aC 0 � 6aC 0 0

�3aC 5aC � aC � 3aC 0 2aC 0 0

3aC � aC � 15aC 3aC � 6a�10.aC C a�/ 2a� � 6a�

aC � 3aC 3aC 5aC 0 � 6aC 0 0

0 0 � 6a� 0 5a� 3a� � 3a� a�

�6aC 2aC 10.aC C a�/ � 6aC 3a� � 15a� � a� 3a�

0 0 2a� 0 � 3a� � a� 5a� � 3a�

0 0 � 6a� 0 a� 3a� � 3a� 5a�

3
77777777775

;

Ah
e;1 D

1

240

2
66666666664

23 �3 �3 �17 �23 3 3 17

�3 3 3 �3 3 �3 �3 3

�3 3 243 �3 3 �243 �3 3

�17 �3 �3 23 17 3 3 �23

�23 3 3 17 23 �3 �3 �17

3 �3 �243 3 �3 243 3 �3

3 �3 �3 3 �3 3 3 �3

17 3 3 �23 �17 �3 �3 23

3
77777777775

:

Here the isotropic (scalar) coefficient a D a.K/ is defined by a.K˙/ D a˙.

Moreover, assuming a uniform mesh the vertical face matrix Av
e is obtained from

Ah
e via the following permutation of rows and columns:

Av
e D ST

h;vA
h
eSh;v;

where

.Sh;v/i;j D
²

1 if j D si

0 else,
(8.34)

s D .2; 1; 4; 3; 6; 5; 8; 7/T

and the numbering of nodes belonging to horizontal and vertical faces is as shown

in Figure 8.4.
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Figure 8.4: Degrees of freedom of face matrices: Horizontal face (left) and vertical

face (right)

Remark 8.11. For the considered particular case of a uniform mesh of square

elements the analysis of the stabilization parameter shows that when aC D a� the

condition of Lemma 8.1 is satisfied for ˛ >
p

23329�127
8

� 3:22.

Next we define a general so-called superelement g 2 G, which is the union of all

the degrees of freedom (DOF) associated with the four faces (two horizontal and

two vertical faces) that share one vertex. The characteristic macro-superelement

G 2 M is then made up of four partly overlapping superelements as shown in

Figure 8.5.

Note that the construction of faces, superelements and macro-superelements is

such that the global stiffness matrix can be assembled alternatively, in either way,
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I II
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9 12 1 4

23

24 5 8 25 28
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13 16

34

35

3633

6
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2
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18

Figure 8.5: Macro-superelement G: four overlapping superelements
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of the respective local matrices, i.e.,

A D
X

e2F

RT
e AeRe D

X

g2G

RT
g AgRg D

X

G2M

RT
GAGRG :

Due to the overlap of superelements a proper scaling of the respective face con-

tributions is required when assembling superelement matrices. For an interior su-

perelement g (none of its elements touches the boundary) the correct scaling factor

is 1=2, i.e., Ag D
P

e�g
1
2
RT

e;gAeRe;g :

The basic construction follows now from the standard approach, as it is used

for conforming bilinear elements, if one associates nodes with elements. Hence,

in the present context, we consider superelements g (instead of elements) in order

to compose macro-superelements G (instead of macroelements). Superelements

produce overlapping (common) elements (instead of common nodes in the stan-

dard setting). Two “neighboring” macro-superelements have three elements in

common, see Figure 8.6 (instead of having three common nodes in the standard

situation of conforming bilinear elements). The coarse mesh hierarchy is such that

the DOF associated with every other element (in x- and every other element in

y-direction) belong to the coarse level. Since all DOF of a given element are ei-

ther “fine” or “coarse”, the number of coarse DOF is always a multiple of four (in

the scalar case). The number of elements that contain the coarse DOF is approx-

imately reduced by a factor 4 in each coarsening step (for large meshes) and thus

the ratio % ..D N .kC1/=N .k/ � 4 where N .kC1/ and N .k/ denote the number of

DOF at levels k C 1 and k, respectively, see Figure 8.6.

Figure 8.6: Overlap of macro-superelements and coarsening

The macro-superelement matrix associated withG is denoted byAG . It is trans-

formed into a hierarchical two-level basis via a local transformation

OAG D J T
GAGJG (8.35)
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where JG has the form

JG D
�
I PG

0 I

�
(8.36)

and PG denotes some proper local interpolation matrix of size 20�16. Note that

the local and global hierarchical bases, as presented here, do not involve so-called

differences and aggregates of nodal shape functions. As opposed to the latter con-

struction, which we studied in Chapters 4 and 7, we stay within the framework of

nested meshes here.

Let us now enter into the question how to compute a local interpolation oper-

ator PG such that the general transformation (8.36) provides a (local) minimum

energy extension from the local coarse to the local fine space subject to global

compatibility. We start with a so-called static condensation of the interior macro-

superelement DOF with local numbers 1; 2; 3; 4, see Figure 8.4. After this reduc-

tion step we arrive at a (in our case 32�32) local Schur complement

BG D AGW22 � AGW21A
�1
GW11AGW12:

Here AGW11 denotes the upper-left 4�4 submatrix corresponding to the interior

DOF of G that are eliminated. Since there is no overlap of the central element

(no common interior DOF) of different macro-superelements G, the exact elimi-

nation of interior unknowns in the global system can be done locally, i.e., for each

macro-superelement separately. For the transformation of the local matrices BG

associated with the reduced macro-superelements, we use a local harmonic inter-

polation of the remaining fine DOF subject to the compatibility constraint that the

fine DOF of a given element are allowed to interpolate only from the coarse DOF

of its attached elements. For this purpose we assemble an auxiliary matrix CG

from those face matrices that originally produce the coupling of the remaining fine

DOF (local numbers 5 to 20 in Figure 8.4) with the coarse DOF (local numbers 21

to 36). Accordingly the matrix CG is partitioned into 2�2 blocks of size 16�16,

i.e.,

CG D
�
CGW11 CGW12

CGW21 CGW22

�
:

A two-level splitting based on local energy minimization is then induced by the

transformation matrix J EM
G that is given as the product of two transformation steps,

namely the static condensation

J SC
G D

2
4
I P SC

G 0

0 I 0

0 0 I

3
5 ..D

2
4
I �A�1

GW11
AGW12 0

0 I 0

0 0 I

3
5 ; (8.37)
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and the harmonic interpolation

JHI
G D

2
4
I 0 0

0 I P HI
G

0 0 I

3
5 ..D

2
4
I 0 0

0 I �C�1
GW11

CGW12

0 0 I

3
5 ; (8.38)

that is,

J EM
G D J SC

G JHI
G D

2
4
I �A�1

GW11
AGW12 A�1

GW11
AGW12C

�1
GW11

CGW12

0 I �C�1
GW11

CGW12

0 0 I

3
5 : (8.39)

Note that the block �A�1
GW11

AGW12 in the position (1,2) of (8.39) has no effect on

the angle between the coarse and its complementary space. Hence, without loss

of generality, we replace this block with the matrix of all zeros. Then, the final

splitting based on local energy minimization is induced by a transformation of the

form (8.36), where the local interpolation operator is given by

PG D P EM
G

..D
�
P SC

G P HI
G

P HI
G

�
..D

�
A�1

GW11
AGW12C

�1
GW11

CGW12

�C�1
GW11

CGW12

�
: (8.40)

In practical computations the global two-level basis transformation that is in-

duced by the local transformation (8.36), where PG is given by (8.40), can easily

be implemented. However, the matrix (8.40) certainly depends on the size of the

stabilization parameter ˛ in (8.4) and also on the (scalar) coefficient a D a.T /,

which is assumed to be piecewise constant with (possible) jump discontinuities at

the interior element interfaces on the finest mesh, here. Let us therefore consider

a general macro-superelement with piecewise constant coefficients a1; a2; : : : ; a9,

where 0 < ai � 1. In the following we will define a parameter-free local two-level

transformation for which it is possible to conduct a rigorous analysis that will be

presented at the end of this section. However, we want to stress that this is mainly

for the purpose of gaining theoretical insight.

Let us start our considerations with the building blocks of the interpolation ma-

trix (8.40), which (for the considered model problem) have the following repre-

sentation:

P SC
G .˛I a1; a2; : : : ; a9/ ..D �A�1

GW11AGW12 D P SC
G;1 C

1

96˛
P SC

G;?.a1; a2; : : : ; a9/;
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where

P SC
G;1 D 1

96

2
664

7 � 1 3 � 5 1 � 1 � 1 81

�1 1 81 � 1 � 1 7 � 5 3

�1 1 9 � 1 � 1 � 5 7 3

�5 � 1 3 7 1 � 1 � 1 9

9 � 1 � 1 1 7 3 � 1 � 5

3 7 � 5 � 1 � 1 9 1 � 1

3 � 5 7 � 1 � 1 81 1 � 1

81 � 1 � 1 1 � 5 3 � 1 7

3
775 ; (8.41)

and the matrix P SC
G;? depends on the coefficients ai . This implies that

lim
˛!1

P SC
G .˛I a1; a2; : : : ; a9/ D P SC

G;1: (8.42)

Hence the interpolation matrix P SC
G will be close to P SC

G;1 for any (fixed) coeffi-

cient distribution if the stabilization parameter ˛ is chosen large enough, i.e., the

limit does not depend on any of the parameters ai , i D 1; : : : ; 9. Dealing with the

matrix P HI
G the expressions for the entries are more complicated as compared to

P SC
G , however, again the limit for ˛ !1 is a constant matrix, i.e.,

lim
˛!1

P HI
G .˛I a1; a2; : : : ; a9/ D P HI

G;1 (8.43)

where

P HI
G;1D

1

4

2
6666666666666666666666666664

0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0

�1 2 0 1 1 2 0 � 1 0 0 0 0 0 0 0 0

�1 0 2 1 1 0 2 � 1 0 0 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0

2 � 1 1 0 0 0 0 0 2 1 � 1 0 0 0 0 0

0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0

0 � 1 1 2 0 0 0 0 0 1 � 1 2 0 0 0 0

0 0 0 0 2 � 1 1 0 0 0 0 0 2 1 � 1 0

0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0

0 0 0 0 0 � 1 1 2 0 0 0 0 0 1 � 1 2

0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0

0 0 0 0 0 0 0 0 � 1 2 0 1 1 2 0 � 1

0 0 0 0 0 0 0 0 � 1 0 2 1 1 0 2 � 1

0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0

3
7777777777777777777777777775

: (8.44)
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This allows us to define a two-level basis transformation of the form (8.36) via the

local matrix

PG D P LW
G D P EM

G;1 ..D
�
P SC

G;1P
HI
G;1

P HI
G;1

�
(8.45)

where the building blocks P SC
G;1 and P HI

G;1 are given by (8.41) and (8.44), respec-

tively. In particular, these interpolation matrices are parameter-free and the final

two-level hierarchical basis representation of the global stiffness matrix (resulting

from the related transformation) is based on limiting interpolation weights. Since

the limit for ˛ ! 1 exists for all of the involved (matrix-valued) functions we

have the following lemma.

Lemma 8.12. The limit for ˛ ! 1 of the transformation based on local en-

ergy minimization (see (8.40)) is given by (8.36) where PG is chosen according to

(8.45), i.e.,

lim
˛!1

P EM
G .˛I a1; a2; : : : ; a9/ D P LW

G : (8.46)

The splitting obtained via the transformation (8.36) with specification (8.45)

will be further studied in the remainder of this section.

Our aim is to prove for the two-level transformation with limiting interpolation

weights, that the local CBS constant G is uniformly bounded by some constant

c < 1 for a general macro-superelement matrix OAG that stems from a problem

with piecewise constant coefficient a D a.T /. Note that a on the discrete level

without loss of generality can be represented by the coefficients a1; a2; : : : ; a9,

where 0 < ai � 1.

Again, the local analysis of the CBS constant follows the simple general rule to

compute G , see Lemma 2.4 and the relation (2.35) thereafter:

2
G D 1 � �1;

where �1 is the minimal eigenvalue of the generalized eigenproblem

SGvGW2 D � OAGW22vGW2; vGW2 ¤ c: (8.47)

Here OAGW22 denotes the lower-right block of the hierarchical macro-superelement

matrix (8.35) obtained via either of the local transformations J EM
G or J LW

G .

Let us first recall the following important property of the (local) Schur com-

plement SG in (8.47), which is related to energy minimizing interpolation (see

Lemma (2.1)), that is, we have

vT
GW2SGvGW2 D min

vGW1

�
vGW1
vGW2

�T �
AGW11 AGW12

AGW21 AGW22

� �
vGW1
vGW2

�
8vGW2 (8.48)
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where AG represents the fine-coarse partitioned macro-superelement matrix in the

standard (nodal) basis. In the following we are concerned with proving a lower

bound � for the minimal eigenvalue �1 of (8.47). We therefore rewrite

vT
GW2SGvGW2 � � vT

GW2 OAGW22vGW2 8vGW2

in the form

min
vGW1

�
vGW1
vGW2

�T �
AGW11 AGW12

AGW21 AGW22 � � OAGW22

� �
vGW1
vGW2

�
� 0 8vGW2: (8.49)

So let us denote by B the matrix in (8.49), i.e.,

B ..D
�
AGW11 AGW12

AGW21 AGW22 � � OAGW22

�
: (8.50)

If we are able to show thatB is symmetric positive semidefinite (SPSD) for a given

constant � > 0 then � provides a lower bound for �1. We are ready to prove the

main result of this section.

Theorem 8.13. Consider the general macro-superelement matrix OAG obtained

via (8.35) where the two-level transformation JG is based on interpolation with

limiting weights, see (8.45), and the matrix AG stems from local assembling of the

face matrices (8.32) and (8.33) with piecewise constant coefficient a.T / over the

macro-superelement, i.e., ai 2 .0; 1�, 1 � i � 9. If ˛ � ˛0 D 25 then

2
G �

3

4
: (8.51)

Proof. The particular construction of the interpolation (8.45) with constant inter-

polation weights implies that the matrix B defined in (8.50) takes the form

B D B.˛I�I a1; : : : ; a9/ D ˛ .B0 C �C0/C
9X

iD1

ai .Bi C �Ci / (8.52)

with constant matrices Bi and Ci for i D 0; : : : ; 9. The matrices B0 and C0 are to

be found SPSD and indefinite, respectively. Moreover, a direct computation shows

that B0 C �C0 is SPSD for any � � �0 D .821 � p27129/=1064 � 0:616815.

Hence B0 C �C0 is SPSD for � D 1=4. If for a fixed � � �0 and a fixed

stabilization parameter ˛ D ˛0 there holds B.˛0I�I a1; : : : ; a9/ � 0 then clearly

B.˛I�I a1; : : : ; a9/ is SPSD for all ˛ � ˛0 for the same value of �. Thence it

suffices to prove that B.˛0I�I a1; : : : ; a9/ � 0 for a given pair .˛0; �/ in order

to conclude that the inequality (8.49) holds for any ˛ � ˛0. Now, assuming that
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˛ D ˛0 and � D � are fixed, the matrix B according to (8.52) depends linearly on

the parameters ai 2 .0; 1�. Thus we have

min
vG¤0

 
min

ai 2.0;1�

vT
GB.˛0I�I a1; : : : ; a9/vG

vT
G vG

!

� min
vG¤0

 
min

ai 2¹0;1º

vT
GB.˛0I�I a1; : : : ; a9/vG

vT
G vG

!

D min
ai 2¹0;1º

 
min

vG¤0

vT
GB.˛0I�I a1; : : : ; a9/vG

vT
G vG

!

D min
ai 2¹0;1º

�min.B.˛0I�I a1; : : : ; a9//: (8.53)

Finally, the minimal eigenvalue of B.25I 1
4
I a1; : : : ; a9/ equals 0 for any choice of

ai 2 ¹0; 1º 8i D 1; : : : ; 9 which proves the bound (8.51). �

Remark 8.14. The bound (8.51) holds with strict inequality, too, because the pair

.˛0; �/ D .25; 1
4
C �/ can also be used in the above line of argument if � > 0

is sufficiently small. It should also be noted that even smaller upper bounds are

obtained for G when using larger values of ˛0.

8.4 Two-level method and AMLI preconditioning

of graph-Laplacians

Here we present a rather general approach to the solution of the IP-DG system

corresponding to (8.3). The composite iterative procedure is based on a first re-

duction step where the two-level iteration method is applied. For DG systems it

is introduced in an algebraic setting in [50] and is studied in the general algebraic

framework of [56]. Together with the DG space V it uses an auxiliary, in general

smaller, space Vo and proper restriction and prolongation operators. In [50] three

possibilities for Vo are considered. Here we take one of these, namely, Vo is the

space of piecewise constant functions over the partition T .

The two-level method reduces the problem to a system associated with the bilin-

ear form Ah.�; �/, defined by (8.4) or (8.5), on the space Vo. The form is simplified

to the jump part only, i.e. ˛
˝
h�1

F ŒŒu��; ŒŒv��
˛
F0[FD

. Then the related matrix A0, fur-

ther called graph-Laplacian is defined by uTA0v D ˝
h�1

F ŒŒu��; ŒŒv��
˛
F0[FD

: Here

u; v stand for the nodal vectors corresponding to the functions u; v 2 Vo. We can

associate the partition T with a planar graph. The finite elements are the vertices

and the interfaces of the finite elements are the edges of the graph. Then taking
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as degrees of freedom the values of the functions in Vo over each finite element,

we shall get a matrix that has an entry �1 at the s graph vertices connected to

a chosen graph vertex and an entry s at the vertex itself. For any partitions into

quadrilaterals, regardless of the shape, we get the standard 4-point stencil with

.4;�1;�1;�1;�1/, which probably is the reason for the name graph-Laplacian.

1

2

3

4

5

6

7

8

9

10

11

ΓD

Figure 8.7: Partition T and related graph-Laplacian

The following graph-Laplacian A0 corresponds to the mesh given in Figure 8.7:

A0 D

2
666666666666666664

1 �1

�1 3 �1 �1

�1 4 �1 �1

2 �1 �1

�1 �1 3 �1

�1 �1 3 �1

�1 3 �1 �1

�1 �1 4 �1 �1

�1 �1 4 �1

�1 2 �1

�1 �1 �1 4

3
777777777777777775

:

Remark 8.15. The graph-Laplacian is a symmetric M-matrix. However, this ma-

trix does not have any approximation property on an arbitrary grid. Therefore, the

multigrid theory that relies on such property cannot be used for designing robust

preconditioners in this case.

We will consider now hierarchical basis splittings (HB) for the algebraic system

involving the graph-Laplacian. To this end we follow the framework of HB two-
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level preconditioners and their multilevel (AMLI) extensions. The construction of

a hierarchical decomposition for the related discontinuous Galerkin FE spaces is

neither obvious nor unique. To fit the classical HB techniques, we search for a

decomposition of the fine grid degrees of freedom, such that one part is associated

with the degrees of freedom of the coarse grid problem. Let A.`/ ..D A0 be the

symmetric positive definite graph-Laplacian corresponding to the finest triangula-

tion from the sequence of nested partitionings T0 � T1 � : : : � T` of the domain

�. Further, introduce the graph-Laplacian associated with each triangulation level,

i.e., A.0/; A.1/; : : : ; A.`/.

Let us consider now two consecutive nested triangulations TH � Th and the re-

lated graph-LaplaciansAH andAh. We denote by �h the set of standard piecewise

constant basis functions on the finer level and by Q�h the set of properly defined hi-

erarchical basis functions. The hierarchical basis is determined by a nonsingular

transformation matrix J T
h

, i.e., Q�h D J T
h

�h. As we know from the previous

considerations, the hierarchical basis stiffness matrix QAh is expressed as follows,

QAh D J T
h AhJh: (8.54)

On each finer level the matrix QAh is partitioned into a two-by-two block form

QAh D
� QAhW11

QAhW12

QAhW21
QAhW22

�
; (8.55)

where the lower-right diagonal block has the size of AH . Regarding the splitting

(8.55) we will suppose that it is is locally constructed so that the transformation

matrix is sparse. Moreover, we will require the following relations to hold

QAhW22 D AH ; �
� QAhW11

� D O.1/: (8.56)

In what follows we will derive uniform estimates of the CBS constant based on the

properly constructed hierarchical basis and related decomposition of the graph-

Laplacian as a sum of local matrices associated with the set of edges E of the

coarser grid TH . In our presentation we summarize some of the results from [83].

Mesh of triangles

Let us assume that the coarsest mesh T0 consists of triangles only, and each refined

mesh is obtained by dividing the current triangle into four congruent triangles con-

necting the midpoints of its sides. Following the numbering from Figure 8.8, we
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2

34 1

5

6

78

T

T2

1

E

Figure 8.8: Macroelement of two adjacent triangles from TH

introduce the local matrix AE in the form

AE D

2
66666666666666666666664

1 �t Qt Qt
�t t

Qt 1 � Qt �1

Qt 1 � Qt �1

1 �t Qt Qt
�t t

�1 Qt 1 � Qt
�1 Qt 1 � Qt

3
77777777777777777777775

: (8.57)

This edge matrix is also associated with the macroelement T1[T2 of the two adja-

cent triangles from TH with a common side E. The role of the weight parameters

t 2 .0; 1/ and Qt D .t � 1/=2 is to correctly distribute the contributions of the links

between the interior nodes. For example, the couple (1,2) has a weight t here,

but will appear also with a weight of Qt in the local matrices associated with the

remaining two sides of the current triangle T1, so that the sum of weights equals

one.

The hierarchical basis is introduced locally with respect to the coarser partition-

ing TH . Let us consider the triangle T1 and the set of standard piecewise constant

basis functions �T1
D ¹�T1Wiº4iD1

. We introduce the related hierarchical basis
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Q�T1
D ¹ Q�T1Wiº4iD1

in the form

Q�T1W1 D �T1W1 C p�T1W2 C q�T1W3 C q�T1W4

Q�T1W2 D �T1W1 C q�T1W2 C p�T1W3 C q�T1W4

Q�T1W3 D �T1W1 C q�T1W2 C q�T1W3 C p�T1W4

Q�T1W4 D r .�T1W1 C �T1W2 C �T1W3 C �T1W4/

(8.58)

where p, q are parameters to be determined later, and r is a scaling factor of the

hierarchical basis function. Then the assembled transformation matrix J T
E is as

follows

J T
E D

2
66666666664

1 p q q

1 q p q

1 q q p

1 p q q

1 q p q

1 q q p

r r r r

r r r r

3
77777777775

; (8.59)

and

QAE D J T
EAEJE D

� QAE W11
QAE W12

QAE W21
QAE W22

�
:

Lemma 8.16. Consider the hierarchical basis (8.58) for nested meshes of trian-

gles. Then

QAhW22 D AH if and only if r D
p

2

2
:

Proof. The definition of the last two terms in the local hierarchical basis ensures

that QAE W22 has row-sums/column-sums equal to zero. Then, the equivalent state-

ment

QAE W22 D
�

1 �1

�1 1

�

simply follows from the equalities

QAE W22.1; 1/ D r2

4X

i;j D1

AE .i; j / D 2r2 ; QAE W22.2; 2/ D r2

8X

i;j D5

AE .i; j / D 2r2 :

�
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Now, we apply Lemma 2.4 and get 2
E D 1�� where � is the eigenvalue of the

eigenproblem

QSE v D � QAE W22v ; v ¤
�

1

1

�
;

and QS .k/
E D QAE W22 � QAE W21

QA�1
E W11

QAE W12.

Lemma 8.17. Consider the hierarchical splitting (8.57), (8.59) with parameters

p D 1, q D �0:5 and t D 0:5. Then the following estimate holds uniformly with

respect to the refinement level k,

2 � 2
E D 2

TT D
16

25
: (8.60)

Proof. The construction of the hierarchical basis and all related matrices are inde-

pendent of the particular edge E 2 E as well as of the current refinement level.

The later holds true due to Lemma 8.16. Then, the estimate of the local CBS con-

stant follows straightforwardly by simple computations with fixed numbers. Here,

TT indicates that the interface edge is always between two triangles. �

Mesh of quadrilaterals

We assume here, that the coarsest mesh T0 consists of quadrilaterals only, and each

next refinement is obtained by dividing the current element in four new quadrilat-

erals as illustrated in Figure 8.9 (a).

Q

Q

1

2

1 
2

3 4

5

6

7
8

(a)

E

Q
1 

2

3 4

5

6

7 8

T

(b)

E

Figure 8.9: (a) Macroelement of two adjacent quadrilaterals of the mesh TH ; (b)

macroelement of adjacent triangle and quadrilateral of TH
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Following the setting of the previous case and the node numbering from Figure

8.9, we introduce the new local matrix AE in the form

AE D

2
666666666666666666666664

1=2 �s Qs
�s 1=2 Qs
Qs 3=2 �s �1

Qs �s 3=2 �1

1=2 �s Qs
�s 1=2 Qs

�1 Qs 3=2 �s
�1 Qs �s 3=2

3
777777777777777777777775

: (8.61)

The weight parameters s 2 .0; 1/ and Qs D s � 1=2 are again responsible for the

correct distribution of the contributions of the links between the interior nodes of

each quadrilateral macroelements Qi , i D 1; 2, see Figure 8.9 (a).

The hierarchical basis is now introduced locally with respect to the quadrilater-

als from TH . If we consider the macroelement Q1, then the set of standard piece-

wise constant basis functions is �Q1
D ¹�Q1Wiº4iD1

, and the related hierarchical

basis Q�Q1
D ¹b�.k/

Q1Wiº4iD1
is introduced in the form

Q�Q1W1 D .�Q1W1 C �Q1W2/ � .�Q1W3 C �Q1W4

Q�Q1W2 D .�Q1W1 C �Q1W3/ � .�Q1W2 C �Q1W4/

Q�Q1W3 D .�Q1W1 C �Q1W4/ � .�Q1W2 C �Q1W3/

Q�Q1W4 D r .�Q1W1 C �Q1W2 C �Q1W3 C �Q1W4/

(8.62)

where r is again the corresponding scaling factor. Then the assembled transforma-

tion matrix J T
E reads as
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J T
E D

2
66666666664

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

r r r r

r r r r

3
77777777775

: (8.63)

We follow the local analysis scheme from the previous case (of a mesh of triangles)

and get the next two lemmas.

Lemma 8.18. Consider the hierarchical basis (8.62) for nested meshes of quadri-

laterals. Then QAhW22 D AH if and only if r D
p

2=2:

Lemma 8.19. The estimate

2 � 2
E D 2

QQ !
1

2
(8.64)

holds uniformly with respect to the refinement level k for the hierarchical splitting

(8.62) with positive weight parameter s ! 0C.

Proof. The straightforward computations lead to the following expression for the

Schur complement

SE D
1 � 2s

2.1 � s/
�

1 �1

�1 1

�

and therefore

2
QQ D 1 � � D 1 � 1 � 2s

2.1 � s/ D
1

2.1 � s/
which completes the proof. �

Here QQ indicates that the interface edge is always between two quadrilaterals.

Mesh of quadrilaterals and triangles

The general case of a coarsest mesh T0 consisting of quadrilaterals and triangles is

considered now. The refinement procedure is regular, and for the particular cases,

it is the same as was considered in the previous two cases. What remains to be

analyzed is the situation, where macroelements of different kind are adjacent as

shown in Figure 8.9 (b). Combining the constructions from the previous two cases
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and following the node numbering from Figure 8.9 (b), we get the local matrix AE

in the form

AE D

2
666666666666666666666664

1=2 �s Qs
�s 1=2 Qs
Qs 3=2 �s �1

Qs �s 3=2 �1

1 �t Qt Qt
�t t

�1 Qt 1 � Qt
�1 Qt 1 � Qt

3
777777777777777777777775

; (8.65)

with weight parameters s; t 2 .0; 1/, Qs D s � 1=2 and Qt D .t � 1/=2. Keeping the

already introduced local definitions of hierarchical bases, we write the combined

transformation matrix in the form

J T
E D

2
66666666664

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

1 p q q

1 q p q

1 q q p

r r r r

r r r r

3
77777777775

: (8.66)

Let us stress the attention on the fact, that all locally introduced parameters are

fixed for each particular triangle/quadrilateral macroelement from Th, indepen-

dently of what kind of neighbors it has. In this respect, it is important, that

r D
p

2=2 in both cases of triangles and quadrilaterals, see Lemma 8.16 and

Lemma 8.18.

Lemma 8.20. Consider the local matrix, corresponding to the case of an edge

between a quadrilateral and a triangle, indicated below by “QT”, and let r Dp
2=2, p D 1, q D �0:5, t D 0:5, and s ! 0C. Then

QAE W22 D
�

1 �1

�1 1

�
;
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and the relation

2
E D 2

QT !
25

43
; (8.67)

holds uniformly with respect to the refinement level k.

Proof. Following the scheme from Lemma 8.19 we get

SE D
18 � 36s

43 � 68s

�
1 �1

�1 1

�

and therefore

2
QT D 1 � � D 1 � 18 � 36s

43 � 68s
D 25 � 32s

43 � 68s
;

which completes the proof. �

The next two theorems summarize the results of Lemmas 8.17, 8.19, and 8.20.

Theorem 8.21. Consider the hierarchical splitting of the graph-Laplacian, corre-

sponding to the general case of nested meshes, where the coarsest one T0 consists

of quadrilaterals and triangles.

(a) Then QA.kC1/
22 D A.k/ if and only if r D

p
2=2I

(b) If p D 1, q D �0:5, t D 0:5, and 0 < s � 35
16
� 0:219; then

2 � max¹2
TT; 

2
QQ; 

2
QTº D

16

25
; for all k; 1 � k � `: (8.68)

Theorem 8.22. Let the parameters of the hierarchical splitting of the graph-

Laplacian satisfy conditions (a)–(b) of Theorem 8.21. Then the related AMLI al-

gorithm with acceleration polynomial of degree � 2 ¹2; 3º has optimal condition

number and optimal total computational complexity.

Proof. The statement follows directly from Theorem 8.21, taking into account that

% D 4 and

2 � 16

25
<

3

4
;

satisfying the optimality condition (2.78). �

Remark 8.23. We have assumed here, that the discontinuous Galerkin partition-

ing is obtained by a regular refinement of a given initial mesh, consisting of both

triangles and quadrilaterals. However, the introduced approach is more gener-

ally applicable to partitionings, including pentagons, etc. The scheme is further

suitable for constructing and analyzing AMLI preconditioners for discontinuous

Galerkin systems in 3D.
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This chapter is devoted to the solution of systems of PDEs. As a general scheme,

composite block iterative methods are used for the related coupled FE systems.

Such methods are usually based on efficient solvers for the decoupled scalar FE

elliptic problems. One such example is the Lamé system of linear elasticity where

displacement decomposition methods are successfully applied if the Poisson ra-

tio is far enough from the incompressibility limit. This means that the problem

is relatively weakly coupled. When the system of PDEs is strongly coupled, spe-

cialized robust preconditioners are required. Two well-known such problems are

considered in this chapter: a) The Lamé system of elasticity in the case of al-

most incompressible materials; and b) The initial-boundary value problem for the

Navier–Stokes equations including the case of large Reynolds numbers. The pre-

sented AMLI methods are mostly based on materials from [33, 71, 88] for the

elasticity problem, and from [27, 34] for the Navier–Stokes equations.

9.1 AMLI preconditioning of linear elasticity problems

9.1.1 Lamé system of elasticity

The target problem in this section is the following system of linear elasticity:

2P
j D1

@�ij

@xj
C fi D 0; x 2 �; i D 1; 2

u D 0; x 2 �D

2X

j D1

@�ij

@xj
nj D 0; x 2 �N ; i D 1; 2

where � is a polygonal domain in R
2 and @� D �D [ �N is the boundary of �.

The stresses �ij and the strains "ij are defined by the classical Hooke’s law, i.e.

�ij .u/ D �
 

2X

kD1

"kk.u/

!
ıij C 2�"ij .u/; "ij .u/ D 1

2

�
@ui

@xj
C @uj

@xi

�
:

We assume that the Lamé coefficients are piecewise constant in�. The unknowns

of the problem are the displacements uT D .u1; u2/. A generalization to non-

homogeneous boundary condition is straightforward.
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The Lamé coefficients are given by

� D �E

.1C �/.1 � 2�/
; � D E

2.1C �/ ;

where E stands for the elasticity modulus, and � 2 Œ0; 1
2
/ is the Poisson ratio. We

use the notion almost incompressible for the case � D 1
2
� ı (ı > 0 is a small

parameter). Note that the boundary value problem becomes ill-posed when � D 1
2

(the material is incompressible).

For f D .f1; f2/
T 2 .L2.�//

2, the weak formulation of the boundary value

problem reads:

Find u 2 .H 1
0 .�//

2 D ¹v 2 .H 1.�//2; v j@�D 0º such that

A.u; v/ D
Z

�

f T vdx 8v 2 .H 1
0 .�//

2: (9.1)

The bilinear form A.u; v/ is of the form

A.u; v/ D
Z

�

�div.u/div.v/C 2�

2X

i;j D1

"ij .u/"ij .v/dx

D
Z

�

hCd.u/;d.v/idx; (9.2)

where

C D

2
664

�C 2� 0 0 �

0 � � 0

0 � � 0

� 0 0 �C 2�

3
775 ; (9.3)

and

d.u/ D
�
@u1

@x1

;
@u1

@x2

;
@u2

@x1

;
@u2

@x2

�T

: (9.4)

In case of the pure displacement problem, that is @� D �D , the following modifi-

cation of the bilinear form holds true

A.u; v/ D
Z

�

hC sd.u/;d.u/idx D As.u; v/ (9.5)

where

C s D

2
664

�C 2� 0 0 �C �
0 � 0 0

0 0 � 0

�C � 0 0 �C 2�

3
775 : (9.6)
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Note that (9.5) holds due to homogeneous pure displacement boundary conditions

as for u; v 2 .H 1
0 .�//

2 we have

Z

�

@ui

@xj

@vj

@xi
dx D

Z

�

@ui

@xi

@vj

@xj
dx:

The matrix C s is positive definite. More details about the formulation of the elas-

ticity problem and some important properties can be found e.g. in [8, 42, 43].

As in the previous chapters, we assume that the domain � is discretized using

finite elements. The partitioning is denoted by T` and is supposed to be obtained by

` regular refinement steps of a given coarse triangulation T0. This section is mostly

focused to the robustness of the AMLI methods with respect to the Poisson ratio in

the case of almost incompressible materials. Let us note that the condition number

of the stiffness matrix deteriorates when � approaches the incompressibility limit.

More precisely, for any fixed mesh, the condition number can be estimated by

�.A/ D O
�
.1 � 2�/�1

�
.

9.1.2 On the robustness of AMLI for conforming FE elasticity

systems

The first known robustness results concerning AMLI preconditioning of almost

incompressible elasticity problems are for the case of linear triangular elements.

The hierarchical splitting from Chapter 3 is assumed. Similarly to the scalar case,

the CBS constant is bounded [2, 8, 87] by

2 <
3

4
:

This estimate is uniform with respect to the Poisson ratio � 2 Œ0; 1=2/ as well as to

the mesh anisotropy and coefficient jumps which are aligned with the interfaces of

the initial mesh T0. Then, if � 2 ¹2; 3º, the AMLI method has optimal convergence

rate. However, this is not enough to get a robust AMLI algorithm of optimal

complexity. The problem is that for any fixed mesh, the condition number of the

first pivot block also deteriorates with �, that is, �.A
.kC1/
11 / D O

�
.1 � 2�/�1

�
. Up

to now, we do not know how to efficiently precondition the related blocks A
.kC1/
11 .

Unfortunately, the additive and multiplicative preconditioners developed for the

scalar elliptic problems are not applicable here. The pivot block-matrices become

strongly anisotropic when � ! 1=2.

What makes the problem additionally more complicated is that the directions

of dominating anisotropy are different with respect to the different nodal displace-

ments in any given mesh point.
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Here we will demonstrate an alternative semi-coarsening approach [88]. Let us

assume that � is a rectangular polygon which is discretized by some initial split-

ting of rectangular elements T0. Bilinear conforming finite elements are used to

approximate the elasticity problem associated with the bilinear form (9.2) written

in the form

A.u; v/ D �A1.u; v/C 2�A2.u; v/: (9.7)

h2

h1
1

4

3

2

Figure 9.1: Rectangle bilinear element

Now, to get a sufficient accuracy of the numerical solution, a balanced semi-

coarsening procedure is used (see Figure 9.2) to construct the nested meshes T0 �
T1 � : : : � T`. Associated with ¹Tkº are the finite element stiffness matrices

A.0/; A.1/; : : : ; A.`/ which are computed using the standard nodal basis test func-

tions. The efficient solution of the system of equations corresponding to the finest

mesh T`, namely Au D b, A D A.`/, b D b.`/ and u D u.`/ is our goal. At

the end of this introductory part we present the element stiffness matrix Ae cor-

responding to the studied problem. The following formulas are used for a local

analysis of the constant  in the strengthened CBS inequality. Following (9.7) we

get

Ae D �A.1/
e C 2�A.2/

e (9.8)

where

A.1/
e D

1

12

2
66666666664

4� 2� �4� �2� 3 �3 3 �3

2� 4� �2� �4� 3 �3 3 �3

�4� �2� 4� 2� �3 3 �3 3

�2� �4� 2� 4� �3 3 �3 3

3 3 �3 �3 4=� �4=� 2=� �2=�

�3 �3 3 3 �4=� 4=� �2=� 2=�

3 3 �3 �3 2=� �2=� 4=� �4=�

�3 �3 3 3 �2=� 2=� �4=� 4=�

3
77777777775
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and

A
.2/
e D

1

12

2
66666666664

4� C 2=� 2� � 2=� �4� C 1=� �2� � 1=�

2� � 2=� 4� C 2=� �2� � 1=� �4� C 1=�

�4� C 1=� �2� � 1=� 4� C 2=� 2� � 2=�

�2� � 1=� �4� C 1=� 2� � 2=� 4� C 2=�

3=2 �3=2 3=2 �3=2

3=2 �3=2 3=2 �3=2

�3=2 3=2 �3=2 3=2

�3=2 3=2 �3=2 3=2

3=2 3=2 �3=2 �3=2

�3=2 �3=2 3=2 3=2

3=2 3=2 �3=2 �3=2

�3=2 �3=2 3=2 3=2

2� C 4=� � � 4=� �2� C 2=� �� � 2=�

� � 4=� 2� C 4=� �� � 2=� �2� C 2=�

�2� C 2=� �� � 2=� 2� C 4=� � � 4=�

�� � 2=� �2� C 2=� � � 4=� 2� C 4=�

3
77777777775

:

In the above matrices � stands for the ratio of mesh anisotropy, i.e., � D h2

h1
,

the ordering of the entries corresponds to the separate displacements vector of

the nodal parameters ¹u1
1; u

2
1; u

3
1; u

4
1; u

1
2; u

2
2; u

3
2; u

4
2º, and to the nodes of the ref-

erence element shown in Figure 9.1. We observe the following useful relations:

A
.2/
eW11 D A.1/

eW11C 1
2
A

.1/
eW22, A

.2/
eW22 D A.1/

eW22C 1
2
A

.1/
eW11, A

.2/
eW12 D A.1/

eW12C 1
2
A

.1/
eW21, where

the 2 � 2 block representation corresponds to the components ¹u1
1; u

2
1; u

3
1; u

4
1º and

¹u1
2; u

2
2; u

3
2; u

4
2º.

We will apply here the so called hybrid V-cycle AMLI where the degree �k of

the accelerating matrix polynomial is cyclicly varied. The related AMLI optimality

conditions are formulated in the next theorem.

Theorem 9.1 ([112]). The PCG iteration method defined by the AMLI precondi-

tioner is of optimal order if the following conditions hold:

(i) The properly scaled approximation C
.kC1/
11 is chosen such that

�.C
.kC1/�1

11 A
.kC1/
11 / D O.1/;

and the action of C
.kC1/�1

11 on a given vector v , requires O.NkC1 � Nk/

arithmetic operations.
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(ii) The degree �k of the accelerating polynomial p�k
satisfies the conditions:

�k D 1 if .k mod k0/ ¤ 0;

1q
1 �  .k0/2

< �k < %k0
if .k mod k0/ D 0:

Here Nk is the number of the nodal unknowns, corresponding to Tk; %k0
D

N.j C1/k0

Njk0

stands for the mesh refinement ratio of k0 consecutive mesh refinement

steps; and  .k0/ is the constant in the strengthened CBS inequality, corresponding

to the nested FE spaces V.j C1/k0
and Vjk0

.

The proof of the theorem can be found in [112], where the hybrid V-cycle AMLI

is introduced (k0 ¤ 1). The standard AMLI algorithm corresponds to the case

k0 D 1. In the general case, the hybrid V-cycle AMLI is a special case W-cycle

algorithm with linear parts of graph length k0.

For the local analysis of the CBS constant  .k0/ we consider the macro-element

stiffness matrix A
..j C1/k0//
E of a given current element E 2 Tjk0

, related to

T.j C1/k0
, i.e., to the discretization after k0 consecutive mesh refinement steps:

A
..j C1/k0/
E D

"
A

..j C1/k0/
E W11

A
..j C1/k0/
E W12

A
..j C1/k0/
E W21

A
..j C1/k0/
E W22

#
; (9.9)

where A
..j C1/k0/
E W11

is the block, corresponding to the nodes from T.j C1/k0
n Tjk0

.

Following the well established general procedure, the CBS constant is estimated

by

 .k0/ � max
E2T.j C1/k0

¹max
j
¹ .k0/

E Wj ºº: (9.10)

The local constant 
.k0/
E Wj can be computed as 

.k0/
E Wj D

p
�1, where �1 is the largest

eigenvalue in the generalized eigenvalue problem

S
..j C1/k0/
E v D .1 � �/A.jk0/

e v ; v 2 R
8 n ker.A.jk0/

e /; (9.11)

A
.jk0/
e is the standard nodal basis element stiffness matrix, and

S
..j C1/k0/
E D A..j C1/k0/

E W22
� A..j C1/k0/

E W21
A

..j C1/k0/�1

E W11
A

..j C1/k0/
E W12

is the Schur complement at level ..j C 1/k0/.

There are various problems (see, e.g., in the previous chapters), where the local

eigenvalue problem (9.11) can be solved (or analyzed) directly. As in the current

case the local problem is relatively larger, we will use in addition the following

lemmas.
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Lemma 9.2. Consider the matrix

B
..j C1/k0/
E D

"
A

..j C1/k0/
E W11

A
..j C1/k0/
E W12

A
..j C1/k0/
E W21

A
..j C1/k0/
E W22

�‚A.jk0/
e

#
: (9.12)

The CBS constant 
.k0/
E Wj corresponding to (9.11) satisfies the estimate


.k0/
E Wj �

p
1 �‚;

if and only if, B
..j C1/k0/
E is positive semidefinite.

Lemma 9.3. Applying (9.8), we write the matrix BE from Lemma 9.2 in the form

BE D �B.1/
E C 2�B

.2/
E ;

where the superscripts related to the refinement level are omitted. Then the matrix

BE is positive semidefinite for each � 2 Œ0; 1
2
/, if and only if, B

.1/
E and B

.2/
E are

positive semidefinite.

The proof of the lemmas follows from the definitions of the Schur complement

(for more details see [87]), and from the relations (9.2) and (9.8). These two lem-

mas allow us to estimate 
.k0/
E Wj directly, verifying that the corresponding matrices

B
.1/
E and B

.2/
E are positive semidefinite, instead of solving the more complicated

eigenvalue problem (9.11). Let us remind that such a technique was already used

in the proof of Theorem 8.13.

We consider now a variant of the hybrid V-cycle AMLI algorithm with k0 D
2, C

.kC1/
11 D A

.kC1/
11 and semi-coarsening mesh refinement as shown (for % D

2) in Figure 9.2. The mesh is refined at the even steps (k D 2; 4; 6; : : :) along

“x1” direction, and respectively, at the odd steps (k D 3; 5; 7; : : :) along “x2”

direction. One important property of this construction is that the blocksA
.kC1/
11 are

band matrices with a bandwidth 2.2%C 1/. We call this algorithm balanced semi-

coarsening AMLI, and will study the constant  .k0/ (corresponding to two coupled

refinement steps) trying to find �k satisfying the condition (ii) from Theorem 9.1.

The next theorem gives a solution of the problem in the case of an isotropic

mesh.

Theorem 9.4. Consider the balanced semi-coarsening AMLI with % D 2, and

square initial mesh T0. Then the constant in the strengthened CBS inequality is

bounded uniformly with respect to the Poisson ratio, and

�
 .k0/

�2 � 6

7
(9.13)
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h2

h11

4

3

2

–level .k/

1

4

3

2

b

5

b
6

b–level .k C 1/

b

b

–level .k C 2/.

1

5

2

3

6

4

7

9

8

Figure 9.2: Balanced semi-coarsening

Proof. Following Lemma 9.2 and Lemma 9.3, we prove that the matrices B
.1/
E and

B
.2/
E are positive semidefinite. Here BE corresponds to (9.12) with ‚ D 1

7
. Note,

that the initial mesh T0 is square, so that the local constant in the strengthened CBS

inequality is independent of the current element and of the refinement level, that

is, we will obtain the global estimate (9.13), by a local analysis with � D 1. We get

B
.1/
E and B

.2/
E explicitly, applying the FEM assembling procedure to the element

stiffness matrices A
.1/
e and A

.2/
e given by (9.8). Now we use a standard LDLT

factorization to prove the positive semi-definiteness of the above matrices. In such

a way we obtain by direct (parameter-free) computations the presentations

B
.1/
E D L.1/

E D
.1/
E L

.1/
E

T
; (9.14)

where L
.1/
E is a lower triangular matrix and D

.1/
E is the diagonal matrix

D
.1/
E D diag

�
4

3
;

4

3
;

1

3
;

7

12
; 0;

4

7
;

19

48
;

7

48
;

7

19
; 0;

1

112
;

1

112
; 0; 0; 0; 0; 0; 0

�
;

and

B
.2/
E D L.2/

E D
.2/
E L

.2/
E

T
; (9.15)

with

D
.2/
E D diag

�
14; 14;

49

8
; 7; 6; 7;

539

192
;

161

32
;

60

11
;

105

23
;

719

480
;

28303

23008
;

1704

1705
;

18530

17679
;

32

5
; 0; 0; 0

�
:

Since the entries ofD
.1/
E andD

.2/
E are non negative, the matrices B

.1/
E and B

.2/
E are

positive semi-definite, which completes the proof of the theorem. �

Combining the estimate (9.13) from Theorem 9.4 with the basic Theorem 9.1

we get the following result.
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Theorem 9.5. The hybrid V -cycle balanced semi-coarsening AMLI algorithm,

defined on a square initial mesh T0, and with parameters % D 2, k0 D 2 and

�2j D 3, is of optimal order, uniformly with respect to the Poisson ratio � 2
Œ0; 1=2/, and to coefficient jumps which are aligned with the initial mesh T0.

Proof. Let us recall that the blocks QA.kC1/
11 D A

.kC1/
11 are 2.2% C 1/-diagonal

matrices, so that the condition (i) from Theorem 9.1 is satisfied by the construction

of the semi-coarsening AMLI algorithm. We substitute now the current AMLI

parameters in the second optimality condition (ii) and get

p
7 < 3 < 4;

which completes the proof. �

The result from Theorem 9.5 is an optimal algorithm for PCG iterative solution

of FE elasticity systems. The total computational cost is proportional to the size of

the discrete problem, with a proportionality constant independent of the Poisson

ratio.

We present now a numerically performed analysis of the behavior of  .k0/, vary-

ing the modified Poisson ratio Q� D �=.1 � �/ 2 Œ0; 1/ and the aspect ratio �, for

the same balanced semi-coarsening AMLI setting, i.e. with % D 2.

Table 9.1: Numerically computed � D .1 � . .k0/
e /

2
/
�1

: balanced semi-coarsen-

ing AMLI, % D 2,
N2.j C1/

N2j
D 4

Q� � D 0:01 � D 0:1 � D 1 � D 10 � D 100

0:7 3:99882 3:88755 3:04878 3:88755 3:99883

0:8 3:99913 3:90420 3:82352 3:90420 3:99898

0:9 3:99970 3:97029 5:00000 3:97020 3:99964

0:99 4:40685 4:89500 6:73973 4:88123 4:01299

0:999 4:14115 6:47205 6:97309 6:48445 4:22446

The presented data show first that the estimate from Theorem 5.1 is asymptoti-

cally exact. We see also that:

� The statements of Theorem 9.4 and Theorem 9.5 remain valid in the case of a

rectangular initial mesh T0 with strongly varying mesh aspect ratio � D h2=h1.

� The hybrid V -cycle balanced semi-coarsening AMLI algorithm, defined on a

rectangular initial mesh T0, and with parameters % D 2, k0 D 2 and �2j D 2, is

of optimal order for moderate values of the modified Poisson ratio Q� 2 Œ0; 0:8/.
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The last modification of Theorem 9.5 (with �2j D 2) is important for the ef-

ficient application of the considered balanced semi-coarsening algorithm, as the

condition Q� 2 Œ0; 0:8/ is satisfied for many elastic materials of practical impor-

tance.

At the end of this part, let us note that the presented results concern only the

efficient solution of elasticity FE systems as they arise applying standard conform-

ing finite elements. The complete solution of the so-called locking phenomenon,

which normally occurs in the limit case of almost incompressible media, requires

the development of robust solution methods for locking-free discretization meth-

ods. One such AMLI method is presented at the end of this section.

9.1.3 Locking-free AMLI methods for Crouzeix–Raviart FE

discretization of the pure displacement elasticity problem

Let us consider the pure displacement problem (@� D �D), and let us assume

that Crouzeix–Raviart nonconforming finite elements are used for discretization

of the variational problem (9.1). The modified bilinear form As defined by (9.5)

is applied. Let us denote by uh 2 Vh the approximate solution corresponding to

the triangulation Th where Vh is the related Crouzeix–Raviart FE space. Then the

following error estimate holds.

Theorem 9.6 ([43]). There exists a constant C�;� (independent of h,�;�;� is the

smallest angle in the mesh), such that

ku � uhkh � C�;� h kf kŒL2.�/�2 ;

where k � kh WD
q

As
h
.�; �/.

This theorem means that the considered nonconforming linear FE approxima-

tion is locking-free, with the same rate of accuracy as for the linear conforming

finite elements. Let us note once again, that in the case of lower order conforming

finite elements, the locking phenomenon appears, that is, lim�!1=2 C�;� D1 for

any fixed mesh (for details see, e.g., [42, 43, 57]).

Our presentation here will use the structure (to some extend), the notations,

and some of the figures introduced in Section 4. Let us consider two consecutive

nested meshes TH and Th. As we already know, for Crouzeix–Raviart noncon-

forming linear elements, the FE spaces associated with two consecutive mesh re-

finements are not nested. To enable the use of the general multilevel scheme, we

will apply the differences and aggregates (DA) approach to construct a hierarchi-

cal two-level decomposition of the Crouzeix–Raviart pure displacement elasticity

systems. The algorithm is described on macroelement level, see Figure 4.1. Let
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�1; : : : ; �9 be the standard nodal nonconforming linear finite element basis func-

tions on the macroelement E. Then for the 2D elasticity problem we use the basis

functions �
.1/
i D .�i ; 0/

T and �
.2/
i D .0; �i /

T , i D 1; : : : ; 9. The vector of the

macroelement basis functions

'E D ¹ˆiº18
iD1 D

�
�

.1/
1 ; �

.2/
1 ; �

.1/
2 ; �

.2/
2 ; : : : ; �

.1/
9 ; �

.2/
9

�T

is transformed into a vector of new hierarchical basis functions Q'E D ¹ Q̂ iº18
iD1
:

Similarly to the scalar case, the transformation matrix J T
E D .Jij /

T is determined

by the splitting V .E/ D ¹ˆiº18
iD1
D QV1.E/˚ QV2.E/,

QV1 .E/ D span ¹ Q̂ iº12
iD1

D span ¹�.k/
1 ; �

.k/
2 ; �

.k/
3 ; �

.k/
4 � �.k/

5 ;

�
.k/
6 � �.k/

7 ; �
.k/
8 � �.k/

9 º2kD1
;

(9.16)

QV2 .E/ D span ¹ Q̂ iº18
iD13

D span ¹�.k/
1 C �.k/

4 C �.k/
5 ; �

.k/
2 C �.k/

6 C

�
.k/
7 ; �

.k/
3 C �.k/

8 C �.k/
9 º2kD1

:

(9.17)

Accordingly, the macroelement stiffness matrix As
E is transformed into a hierar-

chical form QAs
E D J T

EA
s
EJE ,

QAs
E D

� QAs
E W11

QAs
E W12QAs

E W21
QAs
E W22

� Q�i 2 QV1.E/
Q�i 2 QV2.E/

:

The corresponding global stiffness matrix

QAs
h D

X

E2TH

RT
E
QAs
ERE

is again decomposed into 2 � 2 blocks

QAs
h D

� QAs
hW11

QAs
hW12QAs

hW21
QAs
hW22

�
; (9.18)

which are induced by the decomposition on macroelement level. The block QAs
hW11

corresponds to the interior nodal unknowns with respect to the macro-elements

E 2 TH plus the differences of the nodal unknowns along the sides of E. The

block QAs
hW22

corresponds to certain aggregates of nodal unknowns. The introduced

decomposition is used to construct recursively the multilevel (AMLI) precondi-

tioners, and as we know, their condition number can be estimated based on the

corresponding CBS constant  .
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Theorem 9.7 ([33]). Consider the pure elasticity problem where the Lamé coef-

ficients are constant on the coarse triangles E 2 TH . Discretization by the

Crouzeix–Raviart FE and DA decomposition of the stiffness matrix are applied.

Then for any element size and shape, and for any Poisson ratio � 2 Œ0; 1
2
/, there

holds

2 � 3

4
:

Proof. As we know, the global constant  can be estimated by the maximum of

the local ones over the macroelements. As in the proof of Theorem 4.9, the local

bilinear forms are directly analyzed, instead of solving the related local eigenvalue

problems for �1 and then computing 2
E D 1 � �1. Let us first consider the case

of a right angled reference macroelement, see Figure 4.2.

Let QV1.bE/; QV2.bE/; be the two-level splitting for the reference macroelement
bE. For u 2 QV1.bE/ and vv 2 QV2.bE/ we denote by d .r/ ..D d.u/ jTr

and ı.r/ ..D
d.v/ jTr

, r D 1; : : : ; 4, according to the definition (9.4). Then it is easy to show

(cf. [31]) that

d .1/ C d .2/ C d .3/ C d .4/ D 0; (9.19)

ı.1/ D ı.2/ D ı.3/ D �ı.4/ D ı: (9.20)

Hence,

As

bE .u; v/ D
4X

rD1

Z

Tr

hC sd.u/; d.v/i dx D
4X

rD1

4hC sd .r/; ı.r/i

D 4hC sı; d .1/ C d .2/ C d .3/ � d .4/i (9.21)

D �24hC sı; d .4/i � 24kıkC skd .4/kC s

where4 ..D area.Tk/. Further,

kd .4/k2
C s D kd .1/ C d .2/ C d .3/k2

C s � 3

3X

kD1

kd .k/k2
C s

leads to

As

bE .u;u/ D
4X

kD1

kd .k/k2
C s4 �

�
1C 1

3

�
4kd .4/k2

C s (9.22)

and

As

bE .v; v/ D 44kık2
C s : (9.23)
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Thus,

As

bE .u; v/ �
r

3

4

q
As

bE .u;u/
q

As

bE .v; v/ : (9.24)

In the case of an arbitrary shaped macroelement E we can use the affine mapping

F W bE ! E for transformation of the problem to the reference macroelement,

for further details see, e.g., [8]. This transformation changes the coefficient matrix

C s , but the estimate E �
q

3
4

still holds since the result (9.24) for the reference

macroelement does not depend on the coefficient matrix C s . �

Remark 9.8. The presented uniform estimate of the CBS constant  is a general-

ization of the earlier estimate from [71], namely

 �
p

8Cp8

4
� 0:822;

which is derived in the case of a regular triangulation TH obtained by a diagonal

subdivision of a square mesh.

Similarly to the scalar elliptic case, the next theorem holds true.

Theorem 9.9 ([33]). Consider again the pure displacement elasticity problem

with constant Lamé coefficients on the triangles E 2 TH , discretization by the

Crouzeix–Raviart FE and the DA decomposition of the stiffness matrix. Let QAhW22

be the aggregated coarse grid stiffness matrix corresponding to the space QVhW2
from the DA splitting, and let As

H be the stiffness matrix, corresponding to the

coarser triangulation TH , equipped with the standard nodal finite element basis.

Then
QAs
hW22 D 4As

H : (9.25)

The proof follows almost directly from the definitions of the hierarchical ba-

sis functions Q̂ i with value equal to one in two nodes of one of the macroelement

sides and one opposite inner node and the corresponding coarse grid basis function

with value equal to one in one node on the same side. This result enables the direct

recursive multilevel extension of the two-level multiplicative preconditioner pre-

serving the same estimate of the CBS constant. In particular, the general scheme

of the multiplicative AMLI algorithm is straightforwardly applicable.

We consider now the construction of preconditioners QC s
hW11

for the coarse grid

complement blocks QAs
hW11

, see decomposition (9.18). We search for optimal pre-

conditioners in the sense that they are spectrally equivalent to the upper-left matrix

block independently on the mesh size, element shape and Poisson ratio. Moreover
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the cost of applying the preconditioner is aimed to be proportional to the number

of degrees of freedom. Similarly to Chapter 4, we apply constructions on macro-

element level and assemble the local contributions to obtain QC s
hW11

.

Let us consider the frequently used approach where we first impose a displace-

ment decomposition ordering, then use a block-diagonal approximation of QAs
hW11

,

and then precondition the diagonal blocks which are elliptic. Let us assume that

the multiplicative preconditioner from Chapter 4 is applied to the diagonal blocks

of QAs
hW11

. Then, for homogeneous isotropic materials, the following simplified es-

timate holds

�
�� QC s

hW11

��1 QAs
hW11

�
� 1 � �

1 � 2�

15

8
:

This construction is optimal with respect to mesh size and mesh anisotropy but is

applicable for moderate values of � 2 Œ0; 1
2
/ only. When the material is almost

incompressible, it is better to apply a macroelement-level static condensation of
QAs
hW11

first, which is equivalent to the elimination of all unknowns corresponding

to the interior nodes of the macroelements, see Figure 4.1.

Let us assume now that the triangulations TH is obtained by diagonal subdivi-

sion of a square mesh, and let the corresponding Schur complement be approx-

imated by its diagonal. Then the resulting preconditioner satisfies the following

estimate

�
�� QC s

hW11

��1 QAs
hW11

�
� aC cos.˛/

a � cos.ˇ/
D 8:301 : : : ;

where

a D 4685

2
p

5391385
; ˛ D 1

3
arccos

�
1162562569

1078277
p

5391385

�
; ˇ D �

3
� ˛:

It is a really good finding that the above estimate is uniform with respect to the

Poisson ratio � (for details see [71]).

The next numerical tests illustrate the robustness of the latter approach includ-

ing the behavior of the FEM error as well as the convergence rate of the AMLI

algorithm when the size of the discrete problem is varied and � 2 Œ0; 1=2/ tends to

the incompressible limit. We consider a test problem in the unit square� D .0; 1/2
with elasticity modulus E D 1. The right hand side corresponds to the exact so-

lution u.x; y/ D .sin.�x/ sin.�y/; y.y � 1/x.x � 1//T . The relative stopping

criterion for the PCG iterations with preconditioner C D CAMLI is

hC�1r.nit /; r.nit /i
hC�1r.0/; r.0/i

< "2;

where as usual r.i/ stands for the residual at the i -th iteration step.
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The relative FEM errors, given in Table 9.2, well illustrate the locking-free ap-

proximation. Here the number of refinement steps is ` D 4, N D 1472, and

" D 10�9.

Table 9.2: Relative error stability for � ! 1=2

� ku � uhkŒL2�2=kf kŒL2�2 � ku � uhkŒL2�2=kf kŒL2�2

0.4 0.3108249106503572 0.4999 0.3771889077038727

0.49 0.3695943747405575 0.49999 0.3772591195613628

0.499 0.3764879643773666 0.499999 0.3772661419401481

In Table 9.3, the number of iterations are presented as a measure of the robust-

ness of the multilevel preconditioner. The optimal order locking-free convergence

rate of the AMLI algorithm is well expressed. Here the degree of the stabilization

polynomial is set to � D 2 corresponding to the derived uniform estimate of the

CBS constant, and providing the total computational cost optimality of the related

PCG algorithm.

Table 9.3: Number of PCG iterations with AMLI preconditioning: " D 10�3,

� D 2

` N � D 0:3 � D 0:4 � D 0:49 � D 0:4999 � D 0:499999

4 1472 13 13 12 13 13

5 6016 12 12 12 13 13

6 24320 12 12 12 13 13

7 97792 11 11 11 13 13

8 196096 11 11 11 12 13

The success of the Crouzeix–Raviart and other nonconforming finite elements

can be explained in general by the fact that they produce algebraic systems that are

equivalent to the Schur complement system for the Lagrange multipliers arising

from the mixed finite element method for Raviart–Thomas elements.

One alternative approach for locking-free numerical solution of the elasticity

problem with general boundary conditions is based on discontinuous Galerkin ap-

proximations using Crouzeix–Raviart or Rannacher–Turek nonconforming finite

elements. The corresponding locking-free error analysis can be found in [65, 66].

The development of robust AMLI preconditioning algorithms for the related DG-

FE systems is still an open problem.
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9.2 Optimal order AMLI preconditioning of the

Navier–Stokes problem

9.2.1 Crouzeix–Raviart FE discretization of the velocity field

Let us consider the Dirichlet initial-boundary value problem for the Navier–Stokes

equations

@u

@t
C .u � r/u D �rp C 1

Re
r2uC f .x; t / 2 � � .0; T /

r � u D 0 .x; t / 2 � � .0; T /
u D 0 .x; t / 2 � � .0; T /
u D 0 .x; t / 2 � � ¹0º

(9.26)

where� is a bounded and connected domain in R
2, and � D @�. We assume also

that � is such that the H 2 -regularity property holds for the steady Stokes prob-

lem. As was several times noticed, a generalization to nonhomogeneous boundary

condition is straightforward.

The numerical solution of the incompressible Navier–Stokes equations has been

the focus of the computational fluid dynamics community for over five decades.

However, the question how to construct optimal schemes, in terms of computa-

tional cost and accuracy, is still not over. What is quite clear now is that the so-

lution via Uzawa iterations of the coupled velocity-pressure discrete systems that

result from the space and time discretization of the equations is quite expensive.

The most popular alternative way to build efficient approximations is known as

projection approach. It is based on a stable splitting of each time step.

Let us assume that � is a polygonal domain, and Th is a triangulation of �. In

this section we will use also the following notations: Vc and Vnc are respectively

the linear conforming (Courant) and linear nonconforming (Crouzeix–Raviart) FE

spaces satisfying homogeneous boundary conditions; Q is the space of piece-

wise constant pressures, i.e., Q D ¹q 2 L2.�/ W qje 2 P0;8e 2 Th;
R

� q D 0º;
.�; �/ and .�; �/e stand for the dot products in L2.�/ and L2.T /; and .�; �/h DP

e2Th
.�; �/e. Uniform discretization in time is used with a time step �t . The

superscript in the presented projection schemes indicates the number of the time

discretization level. For example, .un
h
; pn

h
/ are the numerically computed veloc-

ities and pressure for t D n�t . A model 2D problem in a polygonal domain �

covered by a uniform mesh of isosceles rectangle triangles is analyzed.

Now we will consider two projection schemes (Variant A and Variant B) which

are based on Crouzeix–Raviart FE approximation of the velocities and pice-wise

constant approximation of the pressure. The most significant advantage of these

approximations is that the divergence of the velocity field is zero inside each ele-

ment, i.e. the approximation is locally conservative. Note that this is not the case,
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e.g., for the alternatively applied, inf-sup stable approximation for the velocities,

using rotated bilinear (Rannacher–Turek) elements.

Variant A:

This scheme is based on a complete nonconforming discretization of the velocities,

and is inf-sup stable and locally conservative [49].

� Prediction step:

Find QunC1
h
2 .Vnc/2 such that for all vh 2 .Vnc/2

 
QunC1

h
� un

h

�t
; vh

!
C .. Qun

h � r/ Qun
h; vh/h

C 1

Re
.r QunC1

h
;rvh/h � .pn

h ;r � vh/h D 0 (9.27)

� Projection step:

Find unC1
h
2 .Vnc/2, pnC1

h
2 Q such that

�
unC1

h
� Qun

h
; vh

� D .pnC1
h
� pn

h
;r � vh/h; 8vh 2 .Vnc/2

.r � unC1
h

; qh/h D 0; 8qh 2 Q

(9.28)

Variant B:

Conforming FEs at the prediction step are used to reduce the computational com-

plexity. The accuracy of the velocities is of optimal order subject to the “cross-grid

mesh” condition [27].

� Prediction step:

Find QunC1
h
2 .Vc/2 such that for all vh 2 .Vc/2

 
QunC1

h
� un

h

�t
; vh

!
C .. Qun

h � r/ Qun
h; vh/

C 1

Re
.r QunC1

h
;rvh/ � .pn

h ;r � vh/ D 0 (9.29)

� Projection step:

Find unC1
h
2 .Vnc/2, pnC1

h
2 Q such that

�
unC1

h
� Qun

h
; vh

� D .pnC1
h
� pn

h
;r � vh/h; 8vh 2 .Vnc/2

.r � unC1
h

; qh/h D 0; 8qh 2 Q

(9.30)
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The advantage of Variant A is the inf-sup stability while Variant B is computa-

tionally cheaper due to the three times reduction of the unknowns at the prediction

step. In both variants, the projection scheme splits the nonlinear Navier–Stokes

system to some of the following linear elliptic problems.

� Variant A – Prediction step:

For a given f 2 L2.�/ find uh 2 Vnc , satisfying

.ruh;rvh/h C
1

�t
.uh; vh/ D .f ; vh/ 8vh 2 Vnc : (9.31)

� Variant B – Prediction step:

For a given f 2 L2.�/ find uh 2 Vc , satisfying

.ruh;rvh/C
1

�t
.uh; vh/ D .f ; vh/ 8vh 2 Vc : (9.32)

� Variants A, B – Projection step:

For a given f 2 .L2.�//
2 find .uh; ph/ 2 .Vnc;Q/, satisfying

.uh; vh/ � .ph;r � vh/h D .f ; vh/ 8vh 2 Vnc;

.r � uh; qh/h D 0 8qh 2 Q:
(9.33)

Optimal order robust AMLI preconditioners for problems (9.31) and (9.32) can

be constructed following directly the techniques presented in Chapter 3 and Chap-

ter 4. One could expect that the AMLI methods are not applicable to the saddle

point system which arises from the mixed FE problem (9.33). The last part of this

section is devoted to this question (including the positive answer) how this can be

done efficiently.

9.2.2 AMLI preconditioning of the mixed FE system:

weighted graph-Laplacian

The mixed FE problem to be solved at the projection step leads to the system

2
4
M B1

M B2

BT
1 BT

2

3
5wh D bh: (9.34)

It is important to note that in the 2D case the scalar mass matrix M of the

Crouzeix–Raviart FEs is diagonal. This follows directly from the fact, that the

quadrature formula on a triangle with nodes in the midpoints of the edges is exact

for second degree polynomials, see e.g. [89]. For the saddle point system (9.34)

we can either eliminate the pressure unknowns and end up with a system for uh
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that corresponds to a divergence-free basis or, since the mass matrix is diagonal,

we can eliminate the velocity unknowns and derive a system for the pressure with

a symmetric and positive semidefinite matrix BT
1 M

�1B1 C BT
2 M

�1B2. Here we

discuss the second approach and present an optimal order AMLI preconditioner

based on a properly constructed hierarchical splitting. Let us remind that the prob-

lem is definite due to the condition
R

� ph D 0.

The structure of the reduced (Schur complement) matrix is the same as of the

graph-Laplacians considered at the end of Chapter 8. It will be referred to as

weighted graph-Laplacian. In the case of a uniform rectangular mesh the weighted

graph-Laplacian corresponds to the T-shaped four point stencil shown in Figure

9.3.

−1

−1

−2

4

Figure 9.3: Schur complement four point stencil for the pressure

The following AMLI algorithm is a generalization of the approach used in Sec-

tion 8.4 where the graph-Laplacians appear in the multilevel preconditioning of

discontinuous Galerkin problems. The presentation here is based on results which

can be found in [34].

Let us consider two consecutive triangulations TH � Th and a decomposition

of the weighted graph-Laplacian

Ah D
X

E2E

RT
EAERE

as a sum of local matrices associated with the set of edges E of the triangles T 2
TH . We will analyze the model 2D problem with rectangular polygonal domain�

covered by a uniform mesh TH composed of square elements. Let the refined mesh

be obtained by dividing the current triangles into four congruent ones connecting

the midpoints of the sides. Following the numbering from Figure 9.4, we introduce

the local (macroelement) matrix AE D A
.H/
E , corresponding to a hypotenuse, in

the form
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Figure 9.4: Macroelement of two adjacent triangles from TH with a common hy-

potenuse

A
.H/
E D

2
666666666666666664

t C 1 �2t t�1
2

t�1
2

�2t 2t

t�1
2

5�t
2

�2

t�1
2

5�t
2

�2

t C 1 �2t t�1
2

t�1
2

�2t 2t

�2 t�1
2

5�t
2

�2 t�1
2

5�t
2

3
777777777777777775

: (9.35)

The corresponding local matrix AE D A
.C /
E in the case of a common cathetus is

as follows

A
.C /
E D

2
666666666666666664

3�t
2

t � 1 t�1
2
�t

t � 1 2 � t �1

t�1
2

3�t
2

�1

�t t

3�t
2

t � 1 �t t�1
2

�1 t � 1 2 � t
�t t

�1 t�1
2

3�t
2

3
777777777777777775

: (9.36)



216 Chapter 9 AMLI methods for coupled problems

Similarly to the construction from Section 8.4, the role of the weight parameter

t 2 .0; 1/ is to distribute properly the contributions of the links between the interior

nodes among the (macroelement) edge matrices of the current coarse triangles

Ti 2 TH , i 2 ¹1; 2º (see Figure 9.3).

We define now the (macroelement) local transformation matrix J T
E as

J T
E D

2
66666666664

1 p q q

1 q p q

1 q q p

1 p q q

1 q p q

1 q q p

r r r r

r r r r

3
77777777775

; (9.37)

where p, q are parameters to be determined later, and r is a scaling factor. Then

the hierarchical basis local matrices are obtained as follows

QAE D J T
EAEJE D

� QAE W11
QAE W12

QAE W21
QAE W22

�
: (9.38)

The second diagonal block QAE W22 is a 2 � 2 matrix corresponding to the aggre-

gated (coarse-grid) basis functions. The hierarchical basis global stiffness matrix

is assembled by the edge matrices QAE , i.e.,

QAh D
X

E2E

RT
E
QAERE ;

where the global two-by-two splitting

QAh D
� QAhW11

QAhW12

QAhW21
QAhW22

�
(9.39)

is naturally induced by the local representation (9.38).

Lemma 9.10. Consider the hierarchical basis defined by the local transformation

(9.37). Then

QAhW22 D AH if and only if r D
p

2

2
:

Proof. The definition of the last two terms in the local hierarchical basis ensures

that QAE W22 has row-sums/column-sums equal to zero. Then, the equivalence state-

ments

QAE W22 D QA.H/
E W22
D
�

2 �2

�2 2

�
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and

QAE W22 D QA.C /
E W22
D
�

1 �1

�1 1

�

simply follow from the equations

QAE W22.1; 1/ D r2

4X

i;j D1

AE .i; j /

and

QAE W22.2; 2/ D r2

8X

i;j D5

AE .i; j /:
�

Following the general theory (see Lemma 2.4) we estimate the related CBS

constant locally, namely

2 � 2
E D 1 � �;

where � is the eigenvalue (which is unique in this particular case) of the eigen-

problem

QSE v D � QAE W22v ; v ¤ c;

where QSE D QAE W22 � QAE W21. QAE W11/
�1 QAE W12.

For the considered model problem, two local problems are to be solved to com-

plete the local analysis. They correspond to the cases when E 2 E is either a

hypotenuse or a cathetus. Let us assume that r D
p

2
2

. Then due to Lemma 9.10,

the two-level estimates of the CBS constant are applicable in the multilevel setting,

i.e. they are uniform with respect to the level of uniform refinement.

Varying the parameters .p; q; t/ we get a family of hierarchical splittings. The

following two lemmas are derived via simple direct computations.

Lemma 9.11 ([34]). Let us consider the hierarchical splitting of the weighted

graph-Laplacian for the model 2D problem with parameters r D
p

2
2

, p D 1,

q D �0:5 and t D 0:5. Then the CBS constant is uniformly bounded by

2 � 0:73:

Let us remember that this parameter setting for .p; q; t/ was introduced in Sec-

tion 8.4 for the case of graph-Laplacians, see also [83]. The parameters in the

next lemma are obtained by a local optimization with respect to the CBS constant

estimate.
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Lemma 9.12 ([34]). Let us consider the hierarchical splitting of the weighted

graph-Laplacian for the model 2D problem with parameters r D
p

2
2

, p D 1,

q D �0:1 and t D 0:75. Then the related CBS constant is uniformly bounded by

2 � 0:58:

We consider now the sequence of ` nested uniform refinements of the initial

triangulation T0 � T1 � : : : � T`, and the related weighted graph-Laplacians

A.0/; A.1/; : : : ; A.`/. The above three lemmas lead to the following theorem.

Theorem 9.13. The AMLI algorithms for the weighted graph-Laplacian A D
A.`/, with hierarchical splittings defined by the parameter settings form Lemma

9.11 and Lemma 9.12, have optimal computational complexity if � 2 ¹2; 3º.

Remark 9.14. The development of robust AMLI preconditioners for the weighted

graph-Laplacians in the case of a general triangulation (mesh anisotropy) is still an

open problem.

Now let us summarize the results of the considerations in this section. Two

locally conservative (divergence-free) projection schemes (Variant A and Variant

B) for stable discretization of the initial-boundary value problem for the Navier–

Stokes equations are considered. They both have discretization accuracy of opti-

mal order [27]. As we showed, optimal order AMLI preconditioners can be suc-

cessfully applied to the decoupled scalar elliptic problems at the prediction step

as well as to the mixed FE problem at the projection step. As a result, the related

composite time-stepping solution methods have a total computational complexity

of optimal order.
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The final chapter of this book provides the basic algorithms for linear and nonlinear

algebraic multilevel iteration methods. We will also comment on some implemen-

tation aspects in each case. Finally, we will present an example for integrating

AMLI methods for the solution of one more complex problem.

10.1 Linear AMLI algorithm

In order to solve a system

M .k/v .k/ D d.k/; k D `; ` � 1; : : : ; 1;

for an unknown vector v .k/ where M .k/ denotes the linear AMLI preconditioner

(defined in (2.39)) at level k, i.e.,

M .k/ D
"
C

.k/
11 0

QA.k/
21 Z.k�1/

#"
I C

.k/
11

�1 QA.k/
12

0 I

#
(10.1)

and d.k/ is a given right-hand side vector we need the solution of a system

M .k�1/v .k�1/ D d.k�1/

with some right-hand side d.k�1/. Let

d.k/ D
"

d
.k/
1

d
.k/
2

#
; v .k/ D

"
v

.k/
1

v
.k/
2

#
;

and

u.k/ D
"

u
.k/
1

u
.k/
2

#
D
"
I C

.k/
11

�1 QA.k/
12

0 I

#"
v

.k/
1

v
.k/
2

#
;

then from (10.1) it follows that

u
.k/
1 D C

.k/
11

�1
d

.k/
1

Z.k�1/u
.k/
2 D d

.k/
2 � QA.k/

21 u
.k/
1 D.. w .k�1/: (10.2)

Using (2.44) we write (10.2) in the form

M .k�1/u
.k/
2 D Q.k/.A.k�1/M .k�1/�1

/w.k�1/ (10.3)
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where Q.k/.t/ D .1 � P .k/.t//=t D q.k/
0 C q.k/

1 t C : : :C q.k/
�k�1t

�k�1. Hence

d.k�1/ D Q.k/.A.k�1/M .k�1/�1
/w.k�1/;

v .k�1/ D u
.k/
2 :

Applying the linear AMLI method, in order to solve a linear system (at level

` associated with the finest mesh), in this book is understood as using the PCG

method (Algorithm 1.20) with the linear AMLI preconditioner (Algorithm 10.1)

implemented in step (1.94). The following algorithm computes the solution of

M .`/v .`/ D d.`/: (10.4)

Algorithm 10.1 (Linear AMLI, cf. [17]).

for k D 1 to ` set �k ..D 0

k ..D `
forward: �k ..D �k C 1

if �k D 1

d.k/ ..D .J .k//T d.k/ (10.5)

v
.k/
1

..D .C .k/
11 /

�1d
.k/
1

w .k�1/ ..D d
.k/
2 � QA.k/

21 v
.k/
1

d.k�1/ ..D q.k/
�k�1w .k�1/

else

d.k�1/ ..D A.k�1/v .k�1/ C q.k/
�k��k

d.k�1/ (10.6)

end

k ..D k � 1

if k > 0 goto forward

solve A.0/v .0/ D d.0/ for v .0/ (10.7)

backward: k ..D k C 1

v
.k/
2

..D v .k�1/

if �k < �k goto forward

v
.k/
1

..D v
.k/
1 � .C .k/

11 /
�1 QA.k/

12 v
.k/
2

v .k/ ..D J .k/v .k/ (10.8)

�k ..D 0

if k < ` goto backward
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Here the vector � D Œ�1; �2; : : : ; �`�
T defines the cycle, i.e., �k D 1 for 1 � k � `

corresponds to the V-cycle, and �k D 2 for 1 � k < `, �` D 1, corresponds to

the classical W-cycle. Higher-order stabilization or mixed cycles with varying

polynomial degree are possible and sometimes preferable from a computational

point of view.

The above algorithm is based on the multiplicative two-level preconditioner

(2.47). It uses the approximationsC
.k/
11

�1
forA

.k/
11

�1
, andZ.k�1/�1

for the inverse

of the Schur complement at level k, see (2.44). The action of the matrix polyno-

mial Q.k/.A.k�1/M .k�1/�1
/ in (2.44) on a vector is computed via Horner’s rule,

where the coefficients of Q.k/.t/ are given by q
.k/
�k��k

, 1 � �k � �k .

The classical V-cycle is obtained forQ.k/.t/ D Q.t/ ..D 1 for all k D 1; 2; : : : ;

`, cf. (2.59). The (linear) AMLI W-cycle, based on the shifted and scaled Cheby-

shev polynomial (2.57), is obtained for Q.k/.t/ D Q.t/ ..D .� C 1/=� � 1=�t

where we assume an approximation property of the form (2.48). In this case � is

an upper bound for the largest eigenvalue of the preconditioned matrix and all its

eigenvalues will be greater or equal to 1 by construction, i.e.,

�i .M
.`/�1

A.`// 2 Œ1; ��;

cf. Chapter 2.4. However, if in the approximation property (2.48) the lower bound

1 does not hold, i.e., we allow the smallest eigenvalue �min to be less than 1, the

interval with respect to which we want to minimize the maximum of t Q.t/ has to

be shifted accordingly in order to optimize the performance of the method. Note

that for instance by choosing Q.k/.t/ D Q.t/ ..D 2 � t , which corresponds to

P .k/.t/ D P2.t/ ..D .1 � t /2, the method will converge if the largest eigenvalue

is bounded by 2, i.e., �max � � D 2, which can always be achieved by using a

proper(ly scaled) approximation of the pivot block. In this case, in order to de-

rive uniform condition number estimates, the smallest eigenvalue �min has to be

bounded away from 0 uniformly; The derivation follows again similar arguments

as were presented in Chapter 2.4. The latter choice, however, has the advantage

that there are no estimates or bounds on the spectrum of the two-level precon-

ditioner or on the CBS constant involved in the construction of the stabilization

polynomial. Different (and other) choices of the stabilization polynomial have

been discussed in [16, 17].

The matrices QA.k/
12 and QA.k/

21 are the off-diagonal blocks of the two-level hier-

archical basis matrix QA.k/ at level k, and A.k�1/ is the matrix associated with

the coarse grid (with respect to the coarse-grid nodal basis). Note that for the

Schur complement based multilevel preconditioner proposed in Chapter 5 the ma-

trix A.k�1/ is assembled from the local Schur complements, cf. Section 5.4, and

no hierarchical basis transformation is involved but only a renumbering according
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to the fine-coarse partitioning of DOF is needed – the approximate Schur comple-

ment is associated with the coarse DOF then. In this case QA.k/
12 and QA.k/

21 are the

off-diagonal blocks of the reordered nodal basis stiffness matrix at level k, and the

forward and backward transformation (10.5) and (10.8) reduce to a permutation

and its inverse permutation, respectively.

However, if the AMLI algorithm is based on the recursive two-level transforma-

tion J .k/, which is the standard situation in this book, we have

A.k�1/ ..D QA.k/
22 : (10.9)

In the particular situation when J .k/ has the form

J .k/ ..D
�
I J

.k/
12

0 I

�
; (10.10)

which is the standard construction in the case of conforming linear finite elements

(cf. Chapter 3), we have

A.k�1/ D .J .k/
12 /

TA
.k/
11 J

.k/
12 C A.k/

21 J
.k/
12 C .J .k/

12 /
TA

.k/
12 C A.k/

22 ; (10.11)

and

QA.k/
12 D A.k/

11 J
.k/
12 C A.k/

12 ;
QA.k/
21 D .J .k/

12 /
TA

.k/
11 C A.k/

21 : (10.12)

If the coarse-level matrix A.k�1/ can be obtained via assembling one typically

avoids its computation based on (10.11) from the fine-level stiffness matrix. More-

over, since we need only the action of A.k�1/ on a vector in (10.6) the matrix-

vector product can also be computed without assembling A.k�1/. If (10.12) holds,

the actions of QA.k/
12 and QA.k/

21 on a vector can be implemented without explicit com-

putation of the HB matrices, even by using only the standard nodal basis stiffness

matrices on macro-element level.1 If we have an additive representation ofC
.k/
11

�1
,

based on local matrices, this provides us with the opportunity of implementing a

matrix-free AMLI algorithm, which is especially well suited for parallel computer

architectures. The solution of the system on the coarsest level (k D 0) in step

(10.7) is typically performed by using a direct method, e.g., by Gaussian elimina-

tion.

When using nonnested finite element spaces, e.g., for the nonconforming finite

element systems that we were discussing in Chapters 4 and 7, the transformation

J .k/ not necessarily has to be of the form (10.10). In such a situation the whole

1Note that the multiplication with the global transformation matrices J
.k/
12 and .J

.k/
12 /T can also

be performed locally.
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AMLI procedure can be based on the two-level hierarchical basis matrices QA.k/,

thereby explicitly constructing QA.k/
12 and QA.k/

21 , and defining A.k�1/ according to

(10.9), the latter being associated with the coarse grid again.

The additive variant of linear AMLI, which is based on the block-diagonal two-

level preconditioner (2.27) substituting C11 D C .k/
11 and C22 D Z.k�1/ is obtained

from Algorithm 10.1 by simply skipping all multiplications with QA.k/
12 and QA.k/

21 . It

therefore has a considerably smaller arithmetic cost of each outer iteration. In the

computations presented in this book the additive cycle was typically cheaper by a

factor close to two, which is due to the fact that each visit of any level k, either in

the forward elimination or in the backward substitution loop, involves one applica-

tion of C
.k/
11

�1
and one application of either QA.k/

12 or QA.k/
21 . These matrix operations

typically dominate the overall cost. If the cost of applyingC
.k/
11

�1
is comparable to

that of one multiplication with an off-diagonal block of the k-th level HB matrix,

skipping the latter will approximately halve the total number of arithmetic opera-

tions that accumulate in one outer iteration. At the same the condition number of

the additive preconditioner typically is less than four times bigger than the condi-

tion number of the corresponding multiplicative preconditioner, which in case of

the two-level methods with C
.k/
11 D A.k/

11 can be seen by comparing the respective

upper bounds, i.e.,

1C 
1 �  D .1C /

2 1

1 � 2
� 4

1

1 � 2
;

cf. (2.19) and (2.20). This means that the number of iterations required to achieve

a certain accuracy with the additive method typically is less than two times the

number of iterations performed by the multiplicative algorithm. Finally, this often

results in almost the same total solution time for both algorithms, as we observed

in Chapter 7.5, see e.g., Table 7.6 and Figure 7.8.

Moreover, the additive algorithm, i.e., the block-diagonal preconditioner, is

clearly favorable for parallel implementation on multiprocessor systems. That is

why it often is a true alternative for the multiplicative AMLI. The situation is sim-

ilar in case of nonlinear AMLI.

10.2 Nonlinear AMLI algorithm

As already pointed out in Chapter 2 the linear AMLI algorithm crucially depends

on a proper choice of the stabilization polynomial Q.t/, cf. (2.45), to be used in

the construction of the approximation of the inverse of the Schur complement, see

(2.44). By contrast, the following parameterfree nonlinear AMLI algorithm uses

inner iterations for the action of Z.k�1/�1
providing the coarse-grid correction.
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Algorithm 10.2 (Nonlinear AMLI, cf. [19, 73]).

for k D 1 to ` set �k ..D 0I x.k/ ..D 0

k ..D `I d.`/ ..D Qb D .J .`//T bI r.`/ ..D d.`/

while (termination criterion is false) do ¹ (10.13)

forward: �k ..D �k C 1

if .�k D 1 && k < `/

x.k/ ..D 0I r.k/ ..D d.k/

p
.k/

1.�k/
..D .C .k/

11 /
�1r

.k/
1

d.k�1/ ..D r
.k/
2 � QA.k/

21 p
.k/

1.�k/

k ..D k � 1

if k > 0

if .�k D 0/ d.k/ ..D .J .k//T d.k/

goto forward

solve A.0/x.0/ D d.0/ for x.0/ (10.14)

backward: �k D 0I k ..D k C 1I p
.k/

2.�k/
..D x.k�1/

p
.k/

1.�k/
..D p

.k/

1.�k/
� .C .k/

11 /
�1 QA.k/

12 p
.k/

2.�k/

if �k D 1

x.k/ ..D p
.k/

.�k/

else

q
.k/

.�k/
..D QA.k/p

.k/

.�k/
(10.15)

for j D 1 to �k � 1 (10.16)

ˇ D .q.k/

.�k/
;p

.k/

.j /
/=

.k/

.j /

p
.k/

.�k/
..D p

.k/

.�k/
� ˇp

.k/

.j /

q
.k/

.�k/
..D q

.k/

.�k/
� ˇq

.k/

.j /


.k/

.�k/
D .q.k/

.�k/
;p

.k/

.�k/
/I ˛ D .r.k/;p

.k/

.�k/
/=

.k/

.�k/

x.k/ ..D x.k/ C ˛p
.k/

.�k/
I r.k/ ..D r.k/ � ˛q

.k/

.�k/

if .�k < �k && k < `/ goto forward

if k < `

x.k/ ..D J .k/x.k/I goto backward

if .�` D �`/ �` D 0

º
x.`/ ..D J .`/x.`/
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Here we denoted by

C
.k/
11 : : : a preconditioner for A

.k/
11

d.k/ : : : the current right-hand side at level k

r.k/ D .r.k/T
1 ; r

.k/T
2 /T : : : the current residual at level k

�k : : : the number of recursive calls at level k

�k : : : a counter for the number of visits at level k

p
.k/

.j /
D .p.k/T

1.j /
;p

.k/T

2.j /
/T : : : the j -th search direction at level k; 1 � i � �k :

Note that Algorithm 10.2 is a multilevel extension of Algorithm 1.22 presented

in Chapter 1. Due to the nonlinearity of the preconditioner it requires the explicit

orthogonalization of the search directions at every level, cf. (10.16). Here, for

convenience we applied the two-level hierarchical basis transformation at level `

outside the loop (10.13) that implements the GCG iteration for the solution of
QA.`/ Qx.`/ D Qb then. The reverse transformation is applied after the termination

criterion for the outmost loop (10.13) is satisfied. The basis transformations at all

intermediate levels k D ` � 1; ` � 2; : : : ; 1 are performed inside the loop (10.13),

and only at level 0, which is associated with the coarsest mesh, a linear system in

standard nodal basis is solved, cf. (10.14). This explains why the matrix-vector

multiplication in step (10.15) in the present setting is performed with the two-level

HB matrix QA.k/ at levels k D 1; 2; : : : ; `. In the end, at level `, Algorithm 10.2 is

equivalent to Algorithm 1.22 if in the latter the nonlinear AMLI preconditioner is

used in step (1.104)2. We usually refer to Algorithm 10.2 as the nonlinear AMLI

method.

10.3 Case study: Integrating of new AMLI solvers

In this section we demonstrate how some different techniques which were intro-

duced and studied in previous chapters can be integrated and extended in the con-

struction of efficient AMLI solvers for new and more complex problems.

In the considered example, the locking-free discretization of almost incompress-

ible pure displacement 2D problems (see Section 9.1.3) is first extended to the 3D

case. It is shown in addition, that for certain problems, which are in particular re-

lated to applications in numerical upscaling, the Dirichlet conditions on the whole

boundary can be replaced by Dirichlet conditions for the normal displacements

only.

2and if the linear system at the fine-grid level ` is transformed into a two-level hierarchical basis.
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Then, a composite First Reduce (FR) AMLI preconditioner is constructed. The

FR splitting was first considered in Section 4.2. Here, two separate steps of this

kind are combined:

� The FR step with respect to the cubic macroelements, divided into 6 tetrahedral

elements (see Figure 10.1), starts with a local elimination (static condensation)

of the interior unknowns. Then an aggregation splitting is applied with respect

to each of the faces of the macroelements.

� The reduced matrix has the same structure as the stiffness matrix related to the

Rannacher–Turek FEs. This motivates to apply to it the FR algorithm intro-

duced and studied in Section 7.3.

The first set of the presented numerical tests illustrate both, the locking-free ap-

proximation and the locking-free PCG convergence of the AMLI algorithm, when

the Poisson ratio tends to the incompressibility limit.

The last numerical tests come from�-FEM (micro-FEM) analysis of bone struc-

tures. The studied voxel model contains solid and fluid phases. Both of them are

considered as linearly elastic bodies where the fluid phase is almost incompress-

ible. This is a real-life large-scale problem. The complex geometry (interfaces)

of the microstructure is taken from a highly resolution computer tomography (CT)

image. One important issue is that the related composite material has strong coef-

ficient jumps which are resolved at the finest level of the (voxel) discretization.

10.3.1 Crouzeix–Raviart FE discretization of 3D pure displacement

elasticity problems

The weak formulation of the 3D linear elasticity problem (homogeneous boundary

conditions are assumed) reads as follows:

For f D .f1; f2; f3/
T 2 .L2.�//

3, find u 2 .H 1
0 .�//

3 D ¹v 2 .H 1.�//3;

v j�D
D 0º such that

A.u; v/ D
Z

�

f T vdx 8v 2 .H 1
0 .�//

3: (10.17)

The bilinear form A.u; v/ is of the form

A.u; v/ D
Z

�

�div.u/div.v/C 2�

3X

i;j D1

"ij .u/"ij .v/dx D
Z

�

hCd.u/;d.v/idx;
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where

C D

2
6666666666664

�C 2� 0 0 0 � 0 0 0 �

0 � 0 � 0 0 0 0 0

0 0 � 0 0 0 � 0 0

0 � 0 � 0 0 0 0 0

� 0 0 0 �C 2� 0 0 0 �

0 0 0 0 0 � 0 � 0

0 0 � 0 0 0 � 0 0

0 0 0 0 0 � 0 � 0

� 0 0 0 � 0 0 0 �C 2�

3
7777777777775

; (10.18)

and

d.u/ D
�
@u1

@x1

;
@u1

@x2

;
@u1

@x3

;
@u2

@x1

;
@u2

@x2

;
@u2

@x3

;
@u3

@x1

;
@u3

@x2

;
@u3

@x3

�T

:

Similarly to the 2D case, cf. Section 9.1.3, in the case of pure displacement

problems, that is when @� D �D , the following (stabilized) modification of the

bilinear form holds true

A.u; v/ D
Z

�

hC sd.u/;d.v/idx D As.u; v/ (10.19)

where

C s D

2
6666666666664

�C 2� 0 0 0 �C � 0 0 0 �C �
0 � 0 0 0 0 0 0 0

0 0 � 0 0 0 0 0 0

0 0 0 � 0 0 0 0 0

�C � 0 0 0 �C 2� 0 0 0 �C �
0 0 0 0 0 � 0 0 0

0 0 0 0 0 0 � 0 0

0 0 0 0 0 0 0 � 0

�C � 0 0 0 �C � 0 0 0 �C 2�

3
7777777777775

: (10.20)

The equality (10.19) holds due to the pure displacement boundary conditions as

for u; v 2 .H 1
0 .�//

3 we have

Z

�

@ui

@xj

@vj

@xi
dx D

Z

�

@ui

@xi

@vj

@xj
dx: (10.21)

As in the 2D case, the matrix C s is positive definite. It is also important that the

rotations are again excluded from the kernel of the related (stabilized) Neumann

boundary conditions operator. As a direct result, the nonconforming Crouzeix–

Raviart FEs are straightforwardly applicable to the variational problem (10.19).
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Let us remind that locking-free error estimates for the 2D pure displacement

problem discretized by Crouzeix–Raviart FEs are presented, e.g., in [42, 43, 57].

The same scheme of analysis is applicable to the 3D case as well.

Let us consider the model linear elasticity problem in� D .0; 1/3 and Dirichlet

conditions on the whole boundary �D D @�. The right-hand side f of the Lamé

system of elasticity corresponds to the exact solution u where u1 D x3
1C sin.x2C

x3/, u2 D x3
2 C x2

3 � sin.x1 � x3/, u3 D x2
1 C x3

3 C sin.x1 � x2/. Let also uhWi ,

1 � i � 3, be the FEM numerical solution and let u, uh, and e be the vectors of

the nodal values (three values per node corresponding to the three displacements)

of the related functions, where e D u � uh is the error.

Table 10.1: Relative error stability for � ! 1=2

� 0.4 0.49 0.499 0.4999

max
i2¹1;2;3º

keikl1

kfikl1

1.66688E-7 5.26416E-8 5.63936E-8 5.67591E-8

In the numerical tests, the Poisson ratio � is varied, approaching the limit of one

half, while the elasticity modulus E corresponds to a certain almost incompress-

ible rubber material. The results in Table 10.1 are for discretization with mesh

parameter h D 1=32, i.e. the FEM problem has N D 875 520 degrees of freedom.

The presented relative errors well illustrate the expected locking-free approxima-

tion.

10.3.2 Composite FR algorithm

Let us assume that the domain � is covered by a tetrahedral mesh T1 based on

cubic (macro)elements, each of which is split into 6 tetrahedra. We also suppose

that the edges of the cubes are parallel to the coordinate axes. The sequence of

nested meshes T1 � T2 � : : : � T` D Th is obtained by uniform refinement of

the coarser macroelements into 8 finer cubes, and then splitting again each of them

into 6 similar tetrahedra.

Here we present a composite FR algorithm for AMLI preconditioning of the

stiffness matrix Ah, which corresponds to the FEM discretization of the modified

elasticity problem (10.19), using Crouzeix–Raviart elements defined on the finest

mesh T` D Th.

The algorithm is described on a macroelement level. The global stiffness matrix

Ah is written in the form

As
h D

X

E2Th

RT
EA

s
ERE ;
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where E 2 Th are the cubic macroelements. In what follows we use the number-

ing of nodes from Figure 10.1. For a better understanding of their location, the

coordinates with respect to the reference macroelement are given in Table 10.2.

Figure 10.1: Reference macroelement of 6 Crouzeix–Raviart elements

Table 10.2: Coordinates of the nodes of the reference macroelement

node .x1; x2; x3/ node .x1; x2; x3/ node .x1; x2; x3/

1 (1/3, 1/3, 1/3) 7 (0, 1/3, 1/3) 13 (1/3, 1, 1/3)

2 (2/3, 1/3, 1/3) 8 (0, 2/3, 2/3) 14 (2/3, 1, 2/3)

3 (1/3, 2/3, 1/3) 9 (1, 1/3, 1/3) 15 (1/3, 2/3, 0)

4 (2/3, 1/3, 2/3) 10 (1, 2/3, 2/3) 16 (2/3, 1/3, 0)

5 (1/3, 2/3, 2/3) 11 (1/3, 0, 1/3) 17 (1/3, 2/3, 1)

6 (2/3, 2/3, 2/3) 12 (2/3, 0, 2/3) 18 (2/3, 1/3, 1)

Let �1; : : : ; �18 be the standard (scalar) nonconforming linear finite element

nodal basis functions on the macroelement E. Then for the 3D elasticity problem

we use the basis functions �
.1/
i D .�i ; 0; 0/

T , �
.2/
i D .0; �i ; 0/

T , and �
.3/
i D

.0; 0; �i /
T , i D 1; : : : ; 18. The vector of the macroelement basis functions

'E D ¹ˆiº54
iD1 D

�
�

.1/
1 ; �

.2/
1 ; �

.3/
1 ; �

.1/
2 ; �

.2/
2 ; �

.3/
2 ; : : : ; �

.1/
18 ; �

.2/
18 ; �

.3/
18

�T

is transformed into a vector of new hierarchical basis functions Q'E D ¹ Q̂ iº54
iD1

,

where Q̂ D JEˆ. Following the FR procedure, we consider a transformation

matrix JE corresponding to the splitting V .E/ D ¹ˆiº54
iD1
D QV1.E/˚ QV2.E/˚

QV3.E/,
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QV1 .E/ D span ¹ Q̂ iº18
iD1

D span ¹�.k/
1 ; �

.k/
2 ; �

.k/
3 ; �

.k/
4 �

.k/
5 �

.k/
6 º3kD1

QV2 .E/ D span ¹ Q̂ iº36
iD19

D span ¹�.k/
8 � �.k/

7 ; �
.k/
10 � �.k/

9 ; �
.k/
12 � �.k/

11 ;

�
.k/
14 � �.k/

13 ; �
.k/
16 � �.k/

15 ; �
.k/
18 � �.k/

17 º3kD1

QV3 .E/ D span ¹ Q̂ iº54
iD37

D span ¹�.k/
8 C �.k/

7 ; �
.k/
10 C �.k/

9 ; �
.k/
12 C �.k/

11 ;

�
.k/
14 C �.k/

13 ; �
.k/
16 C �.k/

15 ; �
.k/
18 C �.k/

17 º3kD1
:

Accordingly, JE transforms the macroelement stiffness matrix As
E into the hierar-

chical form QAs
E D J T

EA
s
EJE ,

QAs
E D

2
4
QAs
E W11

QAs
E W12

QAs
E W13QAs

E W21
QAs
E W22

QAs
E W23QAs

E W31
QAs
E W32

QAs
E W33

3
5
Q�i 2 QV1.E/
Q�i 2 QV2.E/
Q�i 2 QV3.E/

:

The corresponding global stiffness matrix

QAs
h D

X

E2Th

RT
E
QAs
ERE

is again decomposed into 3 � 3 blocks

QAs
h D

2
4
QAs
hW11

QAs
hW12

QAs
hW13QAs

hW21
QAs
hW22

QAs
hW23QAs

hW31
QAs
hW32

QAs
hW33

3
5 ; (10.22)

which are induced by the decomposition on macroelement level. The block QAs
hW11

corresponds to the interior nodal unknowns with respect to the macroelements

E 2 Th. The matrices QAs
hW22

and QAs
hW33

correspond to certain differences and

aggregates of nodal unknowns (basis functions) related to the sides of E. As we

know, the first step of the FR algorithm is to eliminate locally (static condensation)

the first block of the unknowns. For this purpose we factor QAh, and get the Schur

complement QBs
h

in the form

QBs
h D

2
4
QBs
hW11

QBs
hW12

QBs
hW21

QBs
hW22

3
5 ; (10.23)
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where its first block corresponds to the differences of the (two) basis functions

corresponding to each macroelement face. The matrix QBs
hW22

corresponds to the

half-sum (average) of the (same) basis functions from each macroelement face,

and thus is associated with the coarse grid. Here, “coarse grid” means the grid of

cubic elements associated with Th. After applying a two-level method to (10.23)

the problem is reduced to a system with the coarse level matrix QBs
hW22

. This is the

end of the first step of our composite algorithm.

The next observation to note is that QBs
hW22

has the same structure as the related

Rannacher–Turek FE stiffness matrix. This allows us to apply the FR method from

Section 7.3 as a second step of the algorithm.

As we know, the convergence of the AMLI algorithm depends on, and is control-

lable by, the related CBS constants. The next figure shows the multilevel behavior

of the locally estimated CBS constant varying the Poisson ratio.

Figure 10.2: Numerically computed 2
E as a function of the refinement level k D

1; 2; : : : ; `

The first important observation is that E is uniformly bounded when the Pois-

son ratio tends to the incompressibility limit of � D 1=2.

We see also that in the multilevel setting, the local CBS constant at the first step

of the composite FR algorithm is considerably smaller. Then there is a steep (but

bounded by 0.52) increase of 2
E , corresponding to the first aggregation step of

the second stage (where the Rannacher–Turek FR construction is applied) of the

composite algorithm. The peak at the beginning (first two levels) is followed by a

monotonically decreasing part of the graphics of 2
E .k/, which tends to a certain

fixed value (close to 0.4), uniformly with respect to the Poisson ratio.

Based on the general theory stated in Section 2.6, the presented analysis of the

CBS constant leads to the following conclusions:
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� The multiplicative variant of the composite AMLI algorithm fulfills the op-

timality condition (2.78) for degrees of the stabilization matrix polynomial

2 � � < 8.

� For the additive AMLI, see (2.79), the optimality conditions hold strictly for

3 � � < 8. As we will see from the numerical tests in the next section, the

additive AMLI stabilizes even for � D 2.

10.3.3 Numerical tests: Towards �FEM analysis of bone structures

Two test problems are included in this section.

Problem 1. We consider the pure displacement linear elasticity problem with con-

stant coefficients E and � in the unit cube � D .0; 1/3. The robustness of the

composite AMLI algorithm is studied varying the mesh size h and for a Poisson

ratio � approaching 1=2.

Problem 2. Here we consider a composite material representing a bone micro-

structure. What we see in Figure 10.3 is the solid phase of a bone specimen at

a millimeter scale which is obtained by a computer tomography (CT) image at

a micron scale. The geometry of the solid phase is described in terms of voxels

the size of which corresponds to the resolution of the CT. Such problems are also

referred to as �FEM analysis of voxel structures.

Figure 10.3: CT image of a trabecular bone specimen

The bone specimen is a composite material of two phases, namely solid and

fluid. The related material properties are described in terms of the bulk moduli

ks D 14 GPa and kf D 2:3 GPa, and the Poisson ratios �s D 0:325 and �f �
0:5. In our tests we vary the Poisson ratio �f for the fluid phase, i.e., we consider

the cases �f 2 ¹0:4; 0:45; 0:49º. The related elasticity moduli are computed by the

relation k D E=.1 � 2�/.
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Dirichlet boundary conditions with respect to the normal displacements only

are imposed. This setting comes from the related numerical homogenization (nu-

merical upscaling) scheme if (at macro level) the homogenized properties of the

elastic material are isotropic. It is easy to check that the equality (10.21) holds

true for this kind of boundary conditions. However, for problems with jumping

coefficients, some additional smoothness conditions on the interfaces are needed

to get (10.21). Let us note that we apply the FEM discretization based on (10.19)

in the context of numerical homogenization only.

The presented results are for the second step of the composite algorithm, i.e.,

the solution of the linear systems with the coarse level matrix QBs
hW22

in (10.23) for

which we use different variants of the AMLI algorithm. Note that the first step of

the solution procedure results in an optimal order process if the two-level precon-

ditioner for (10.23) has a uniformly bounded condition number. We will comment

on this issue at the end of this section. If we implement Dirichlet boundary con-

ditions without elimination of variables, e.g., by equating the corresponding rows

and columns with the identity matrix, the dimension of the full system to be solved

is NT � NT where NT D 18n2.1 C 2n/ and n D 1=h. The number of interior

DOF on voxel level is NI D 18n3. Thus the size of the condensed matrix (10.23)

is NC � NC , NC D 18n2.1 C n/, and, finally, its lower-right block, to which

we apply the recursive multilevel method, yields a linear system of dimension

N D 9n2.1C n/.
In the tables below we list the number of outer iterations that are required to

reduce the A-norm of the initial error by a factor 106. The right-hand side vec-

tor is the vector of all zeros and the iteration is initialized with a random initial

guess. The approximate inverses of the pivot blocks we realize in all cases by

static condensation of the interior DOF on macro element level followed by an

incomplete factorization without any additional fill-in, i.e., ILU(0) applied to the

Schur complement, cf. Section 7.5.2.

The numerical results for Problem 1 are presented in Tables 10.3–10.5, those

for Problem 2 are collected in Tables 10.6 and 10.7.

We observe that if the material is homogeneous, as for Problem 1, our method

is completely robust with respect to the Poisson ratio �; The convergence even

becomes faster when � approaches 1=2. In case of the V-cycle method the number

of PCG iterations increases moderately according to the increase of the condi-

tion number of the preconditioner when adding levels of approximate factoriza-

tion. The W-cycle method in both cases, linear and nonlinear AMLI, stabilizes the

number of outer iterations and thus yields an optimal order solution process.

However, the situation is not that favorable for inhomogeneous materials as the

bone micro structure in Problem 2. There the jump of the PDE coefficients in-

troduced by the phase change produces an additional difficulty, which the imple-
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Table 10.3: Convergence results for AMLI V-cycle: Problem 1

# voxels � D 0:49 � D 0:4999 � D 0:499999

163 12 (18) 10 (14) 7 (11)

323 15 (24) 12 (19) 8 (14)

643 19 (31) 15 (25) 9 (17)

Table 10.4: Convergence results for linear AMLI W-cycle: Problem 1

# voxels � D 0:49 � D 0:4999 � D 0:499999

163 9 (14) 7 (11) 6 (9)

323 10 (15) 8 (13) 6 (10)

643 10 (16) 8 (14) 6 (10)

Table 10.5: Convergence results for nonlinear AMLI W-cycle: Problem 1

# voxels � D 0:49 � D 0:4999 � D 0:499999

163 8 (13) 7 (11) 5 (9)

323 8 (14) 7 (12) 5 (9)

643 8 (15) 7 (12) 5 (9)

Table 10.6: Convergence results for AMLI V-cycle: Problem 2

# voxels �f D 0:4 �f D 0:45 �f D 0:49

163 18 (28) 25 (37) 52 (71)

323 23 (37) 32 (46) 68 (92)

643 28 (45) 37 (57) 78 (109)

Table 10.7: Convergence results for nonlinear AMLI W-cycle: Problem 2

# voxels �f D 0:4 �f D 0:45 �f D 0:49

163 14 (22) 19 (30) 46 (68)

323 14 (23) 20 (32) 50 (72)

643 14 (23) 21 (32) 53 (72)



Section 10.3 Case study: Integrating of new AMLI solvers 235

mented method can only cope with satisfactorily in case of moderate jumps on the

finest mesh. However, this can be expected from the numerical experiments we

performed for the 3D scalar elliptic problems discretized by rotated trilinear ele-

ments with a similar method, cf. Chapter 7.5.2. Note that for �f D 0:49 we have

Es=Ef > 102 and �s=�f > 102, which means that both the modulus of elasticity

E and the Lamé constant � exhibit a jump of more than two orders of magnitude

on the interfaces of the solid and the fluid phase of the bone. We come to the con-

clusion that for problems with highly oscillatory coefficients on the finest mesh the

hierarchical splitting – in particular the fine-coarse partitioning and in the present

context also the aggregation of unknowns – has to be adapted. One possible direc-

tion to go has been described in the previous chapter, see Section 8.3, for the case

of DG discretizations.

Remark 10.3. For the case of homogeneous materials the first block QBs
hW11

of the

Schur complement (10.23) as well as the pivot blocks of the recursively computed

coarse-level matrices after static condensation of the interior unknowns are well-

conditioned with a condition number bound that is uniform with respect to the

Poisson ratio � 2 .0; 1=2/. This can be shown by a local analysis on (macro)

element level.

Remark 10.4. The presented composite algorithm can also be used to solve the

system of linear algebraic equations arising from mixed finite element discretiza-

tion of the Stokes problem efficiently. This is due to the fact that by applying the

augmented Lagrangian method to this indefinite problem the resulting reduced,

nearly singular problem is equivalent to the linear elasticity problem for (almost)

incompressible materials. For details see [58, 84].
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