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Preface

This book is a collection of methods that provide an approximate result for
certain engineering computations. The difference from the analytical result
(if such exists at all) occurs due to the formulation chosen to execute a com-
putation. As such, it must be distinguished from numerical errors occurring
due to the computational round-off error of the finite precision of computers.

There is a perennial quest by mathematicians and engineers to find approx-
imate results in two classes of problems. In one class, the input data may
only be given by a discrete set of points to describe the continuous geometry
of a physical phenomenon; however, a continuous function fitting the data is
sought. It is also possible in this class that the input data is given by functions
that need to be approximated by another function or some discrete quantities
of the functions (such as derivative at certain point) are required. In the other
class, usually a continuous problem is posed and an approximate solution at
a discrete set of points is desired, for practical reasons such as computational
cost.

Accordingly, the book is divided into two parts: data approximation tech-
niques and approximate solutions. The first part starts with the classical
interpolation methods, followed by spline interpolations and least square ap-
proximations. It also covers various approximations of functions as well as
their numerical differentiation and integration. The second part ranges from
the solution of algebraic equations, linear and nonlinear systems, through
eigenvalue problems to initial and boundary value problems. Both parts em-
phasize the logical thread and common principles of the approximation tech-
niques.

The book is intended to be an everyday tool as a reference book for prac-
ticing engineers, researchers and graduate engineering students. It is hoped
that the readers can solve a particular approximation problem arising in their
practice by directly focusing on a chapter or section describing the appropri-
ate techniques.

Louis Komzsik
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Part I

Data approximations

1





1

Classical interpolation methods

The first approximation technique discussed here, and one of the earliest of
such, is interpolation. The word was coined by Wallis in 1656 [8] and there
were already earlier attempts at similar techniques. An interpolation method,
nowadays called Newton’s interpolation, appeared in Newton’s classical book
in 1687 [4], and is the subject of the first section.

Lagrange, the author of the topic of the second section, gave acknowledg-
ment to Newton when publishing his method in 1794 [3]. Hermite [1] gener-
alized the interpolation problem in 1878 to also consider the derivatives of the
approximated function. Finally, approximation of functions of two variables
was first considered by Picard in 1891 [5].

These methods, as their dates indicate, are rather old and fundamental.
While they originated earlier, they were later supported by Weierstrass’ ap-
proximation theorem [9] dated from 1855. The theorem states that for a
function f(x) that is continuous in the interval [a, b] there exists a polynomial
p(x) such that

|f(x) − p(x)| < ε

for a ≤ x ≤ b, where ε is an arbitrary small value. There are several ways to
finds such polynomials, the most important being the Lagrange, Newton and
Hermite methods discussed in this chapter.

An important aspect of these techniques is that the function f(x) is sam-
pled at a certain number of points. These points (xi, f(xi)), i = 0, . . . n, are
chosen to find the approximating polynomial. This approach also occurs natu-
rally, when the f(x) function is not known explicitly, and only a set of discrete
points are given; hence these methods belong to the data approximation class.

Their practical use as a tool for interpolating a given set of points is some-
what less important than their application as a building component of more
advanced techniques, as will be shown in later chapters.

3



4 Chapter 1

1.1 Newton interpolation

Newton’s method approximates a function f(x) given by a set of n points

(xk, f(xk)), k = 0, 1, 2, . . . n,

with a polynomial of the form

pN (x) = a0 +a1(x−x0)+a2(x−x0)(x−x1)+ . . .+an(x−x0) · · · (x−xn−1).

The ak coefficients of Newton’s approximation may be computed from the
condition of the polynomial going through all given points. Hence

f(x0) = a0,

and

f(x1) = f(x0) + a1(x1 − x0)

from which

a1 =
f(x1) − f(x0)

x1 − x0

follows. Let us introduce the so-called divided difference notation. The first
order divided differences are of the form

f [xk, xk+1] =
f(xk+1) − f(xk)

xk+1 − xk
.

In this notation

a1 = f [x0, x1].

The notation for second order differences is

f [xk, xk+1, xk+2] =
f [xk+1, xk+2] − f [xk, xk+1]

xk+2 − xk
.

Generalizing the notation to the ith differences gives the Newton interpolation
polynomial as

pN (x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x − x0)(x − x1) + . . . ,

with f [x0] = f(x0). Introducing ω0 = 1 and the polynomial

ωk = (x− x0)(x− x1) · · · (x− xk−1)
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yields the most compact (and easy to memorize) form of Newton’s interpola-
tion polynomial:

pN(x) =

n
∑

k=0

f [x0, . . . , xk]ωk.

The error of the approximation of this method is

f(x) − pN(x) = f [x0, x1, . . . , xn, x]ωn

where

f [x0, x1, . . . , xn, x] =
f (n+1)(ξ)

(n+ 1)!

for some x0 ≤ ξ ≤ xn.

1.1.1 Equidistant Newton interpolation

Naturally, the case of equidistant abscissa values is of practical importance
for engineers and may be exploited here. In this case an arbitrary x value
may be defined as

x = x0 + sh,

where s is a real number and h is a step size, also real. Then the given abscissa
values are computed as

xk = x0 + kh,

where k is an integer counter. With this Newton’s interpolation polynomial
becomes

pN (x) = pN(x0 + sh) = f [x0] + f [x0, x1]sh+ f [x0, x1, x2]s(s− 1)h2 + . . . ,

which after some algebraic manipulations results in

pN (x) = f [x0] +
n

∑

k=1

(

s
k

)

k!hkf [x0, . . . , xk].

The latter is called Newton’s forward divided difference formula because the
starting point was the leftmost point of the given set and we propagated to
the right. Therefore this formula has more accurate approximation in the
neighborhood of the leftmost point.

Since the points are equidistant, the divided differences may be simplified
by simple differences as follows:

f [x0, x1] =
f(x1) − f(x0)

x1 − x0
=

1

h
∆f(x0),
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f [x0, x1, x2] =
∆f(x1) − ∆f(x0)

h
=

1

2h2
∆2f(x0),

and so on for more equidistant points. With this notation, we obtain the
class of Newton’s forward difference formula (note the omission of the word
divided) as follows:

pN (x) = f(x0) +

n
∑

k=1

(

s
k

)

∆kf(x0).

It is also possible to start from the rightmost point and propagate back-
wards. Newton’s backward divided difference formula may be written as

pB
N (x) = f [xn]+f [xn, xn−1](x−xn)+f [xn, xn−1, xn−2](x−xn)(x−xn−1)+. . . .

The equidistant case for the backward divided difference formula follows the
derivation above:

pB
N (x) = f [xn] + f [xn, xn−1]sh+ f [xn, xn−1, xn−2]s(s+ 1)h2 + . . . .

Introducing now the backward differences of

∇f(xi) = f(xi−1) − f(xi),

Newton’s backward difference formula is written as

pB
N (x) = f(x0) +

n
∑

k=1

(−1)k

(

−s
k

)

∇kf(xn).

The above formulae are advantageous in the neighborhood of the rightmost
point of the given set.

Finally, when the best accuracy is required in the middle of the approxima-
tion interval, a so-called centered difference formula, also known as Stirling’s
formula, may be used. In the centered difference approach we denote the
point closest to the point of interpolation x as x0 and employ the following
indexing scheme:

x ≈ x0 < x1 < x2 < . . . < xm,

and
x−m < x−m+1 < . . . < x−2 < x−1 < x ≈ x0.

This implies the presence of an odd number n = 2m+ 1 points. In case there
are an even number of points given, the left-hand sequence ends in index
−m+ 1. Focusing on the equidistant case, with five given points, the formula
is

pC
N (x) = f [x0] +

1

2
s · h(f [x−1, x0] + f [x0, x1]) + s2h2f [x−1, x0, x1]
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+
1

2
s(s2 − 1)h3(f [x−2, x−1, x0, x1] + f [x−1, x0, x1, x2]).

If n = 4 the same formula may be used without the first half of the last term,
as the numbering strategy for four points indicates:

x−1, x0, x1, x2.

The formula may be extended for a higher number of points: for a given m
value the last two generic terms are

s2(s2 − 1)(s2 − 4) · · · (s2 − (m− 1)2)h2mf [x−m, . . . , xm]

+
1

2
s(s2 − 1) · · · (s2 −m2)h2m+1(f [x−m−1, . . . , xm] + f [x−m, . . . , xm+1a]).

If n is even then the first part of the last term is again omitted.

There are also other families of interpolation strategies based on divided
differences, such as the Gauss, Bessel and Everett formulae. These are well
detailed and even tabulated in some references, for example [2].

1.1.2 Computational example

The following computational example demonstrates some of the important
fundamental aspects and the actual computational mechanism. Let us con-
sider the following set of points:

(x, y) = (4, 1); (6, 3); (8, 8); (10, 20).

The set contains 4 points that will result in a 3rd order interpolation polyno-
mial.

We use Newton’s divided difference formula for the problem. The first order
divided differences are

f [x0, x1] =
3 − 1

6 − 4
= 1,

f [x1, x2] =
8 − 3

8 − 6
= 5/2,

and

f [x2, x3] =
20− 8

10− 8
= 6.

Based on these the second order differences are

f [x0, x1, x2] =
5/2− 1

8 − 4
= 3/8,
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and

f [x1, x2, x3] =
6 − 5/2

10− 6
= 7/8.

Finally, the third order divided difference is

f [x0, x1, x2, x3] =
7/8− 3/8

10 − 4
= 1/12.

The Newton interpolation polynomial is written as

pN (x) = 1 + 1(x− 4) +
3

8
(x− 4)(x− 6) +

1

12
(x− 4)(x− 6)(x− 8),

which simplifies to

pN(x) =
1

24
(2x3 − 27x2 + 142x− 240).

Figure 1.1 shows how smooth the Newton interpolation polynomial is for these
points. One can see that Newton’s method satisfies the approximation con-
dition of going through all the input points and, partially due to the smooth
input data, provides a nice approximating polynomial.

Let us now consider approximating the unknown function value at various
mid-segment locations of x = 5, 7, 9 and use the most appropriate equidistant
divided difference formula with h = 2, but only to the second order differences.
To facilitate these computations, we gather the divided differences into Table
1.1.

TABLE 1.1

Example of divided differences

i xi f(xi) f [xi, xi+1] f [xi, xi+1, xi+2, ] f [xi, xi+1, xi+2, xi+3] iC

0 4 1 - - - -1
1 6 3 1 - - 0
2 8 8 5/2 3/8 - 1
3 10 20 6 7/8 1/12 2

The forward divided difference formula with s = 1
2 yields

pN (5) = f(5) = 1 + 1
1

2
2 +

3

8

1

2
(
1

2
− 1)22 =

13

8
= 1.625.

Note that the forward difference formula uses the top term of each column of
Table 1.1.

The backward divided difference formula with s = − 1
2 yields

pB
N(9) = f(9) = 20 + 6

−1

2
2 +

7

8

−1

2
(
−1

2
+ 1)22 = 13 + 1/8 = 13.125.
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FIGURE 1.1 Newton interpolation polynomial

Note that the backward difference formula uses the bottom term of each col-
umn of Table 1.1.

The centered divided difference formula with s = 1
2 yields

pC
N (7) = f(7) = 3 +

1

2
· 1

2
2(1 +

5

2
) +

1

4
22 3

8
= 5 + 1/8 = 5.125.

Note that the centered difference formula uses an intermediate term of each
column of Table 1.1 and the indexing is according to the rightmost column.
Also, in the application of the centered difference formula we considered the
fact that an even number of points (4) were given.

The results of these computations, shown in Figure 1.1 as “diff points”, are
separated from the solution curve somewhat, as not all the available divided
differences were used. The corresponding curve locations at x = 5, 7, 9 are
1.875, 4.875 and 12.875 and the differences are proportional to the omitted
third order divided difference term.
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1.2 Lagrange interpolation

The Lagrange method of interpolation finds an interpolating polynomial with
specifically constructed Lagrange base polynomials. They have the following
characteristic:

Lk(xi) =

{

0, k 6= i,
1, k = i.

With these the Lagrange interpolation polynomial is formed as

pL(x) =
n

∑

k=0

f(xk)Lk(x).

The base polynomials are constructed in the form of rational expressions

Lk =

n
∏

i=0,i6=k

x− xi

xk − xi
.

In an expanded form these are

Lk(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x − xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

It follows from above that the Lagrange interpolation polynomial satisfies the

pL(xk) = f(xk)

condition, i.e., it matches the given set of points and interpolates between.
The error of interpolation between the function f(x) (if such was given) and
the Lagrange polynomial is measured as

f(x) − pL(x) =
f (n+1)(ξ)

(n+ 1)!

n
∏

i=0

(x− xi),

where a ≤ ξ ≤ b is a location of the (n + 1)th derivative. The proof of this
formula is beyond the computational and reference focus of this book. Theo-
retical numerical analysis texts such as [10] present this proof.

1.2.1 Equidistant Lagrange interpolation

The general Lagrange technique is cumbersome, especially considering that
one needs to recompute the Lk base polynomial when adding additional data
points. The process is easier when an equidistant set of points is given or
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sampled. Let us describe such a set by

xk − xk−1 = h,

or

xk = x0 + kh.

Let us further assume that

x = x0 + sh,

where s is now not necessarily an integer, i.e., it is not a counter like k. Sub-
stituting these into the Lagrange base polynomials yields

Lk(x) =
sh(s− 1)h · · · (s− (k − 1))h(s− (k + 1))h · · · (s− n)h

kh(k − 1)h · · ·h(−h)(−2h) · · · (−(n− k)h)
.

Collecting simplifies this to

Lk(x) =
hns(s− 1) · · · (s− (k − 1))(s− (k + 1)) · · · (s− n)

hnk(k − 1) · · · 2 · 1 · (−1) · (−2) · · · (k − n)
.

or

Lk(x) =

n
∏

i=0,i6=k

s− i

k − i
= `k(s).

The latter expression is independent of the h equidistant step size. It is de-
pendent on the s value specifying the location of x and it is commonly referred
to by the specialized `k(s) notation. As such, it may be tabulated [7] and it
was used in this form before modern computers came along.

1.2.2 Computational example

Let us now approximate the set of points:

(x, y) = (4, 1); (6, 3); (8, 8); (10, 20)

with Lagrange’s method. The base polynomials are

L0(x) =
(x − 6)(x− 8)(x− 10)

(4 − 6)(4 − 8)(4 − 10)
= − 1

48
(x3 − 24x2 + 188x− 480),

L1(x) =
(x− 4)(x− 8)(x− 10)

(6 − 4)(6 − 8)(6 − 10)
=

1

16
(x3 − 22x2 + 152x− 320),

L2(x) =
(x − 4)(x− 6)(x− 10)

(8 − 4)(8 − 6)(8 − 10)
= − 1

16
(x3 − 20x2 + 124x− 240),
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and

L3(x) =
(x − 4)(x− 6)(x− 8)

(10 − 4)(10− 6)(10 − 8)
=

1

48
(x3 − 18x2 + 104x− 192).

Figure 1.2 shows the Lagrange base polynomials for these points along with
the zero and unit value locations. Note that each takes up a value of unity
at the point corresponding to its index and zero at all other input point loca-
tions.
The Lagrange interpolation polynomial approximating the given set of points

is

pL(x) =

3
∑

k=0

f(xk)Lk(x) = 1 · L0(x) + 3 · L1(x) + 8 · L2(x) + 20 · L3(x)

=
1

24
(2x3 − 27x2 + 142x− 240).

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3  4  5  6  7  8  9  10  11

L0(x)
L1(x)
L2(x)
L3(x)

’zero_points’
’unit_points’

FIGURE 1.2 Lagrange base polynomials
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This is identical to the result obtained by Newton’s method; hence Figure 1.1
shows the Lagrange interpolation polynomial for these points as well. The
value of the interpolation polynomial at an interior point, say, x = 5 is

pL(5) =
1

24
(2 · 125− 27 · 25 + 142 · 5 − 240) =

45

24
=

15

8
.

Incidentally the example point set is equidistant with h = 2. Let us now see
how the simplified formulation works. The value of s = 1/2 corresponds to
the x = 5 location according to the above definition. Then

`k(1/2) =

n
∏

i=0,i6=k

1/2− i

k − i
.

Specifically

`0 =
(1/2− 1)(1/2− 2)(1/2− 3)

(0 − 1)(0 − 2)(0 − 3)
=

15

48
,

`1 =
(1/2− 0)(1/2− 2)(1/2− 3)

(1 − 0)(1 − 2)(1 − 3)
=

15

16
,

`2 =
(1/2− 0)(1/2− 1)(1/2− 3)

(2 − 0)(2 − 1)(2 − 3)
= − 5

16
,

and

`3 =
(1/2− 0)(1/2− 1)(1/2− 2)

(3 − 0)(3 − 1)(3 − 2)
=

3

48
.

The approximated value is

pL(s = 1/2) = 1 · 15

48
+ 3 · 15

16
− 8 · 5

16
+ 20 · 3

48
=

45

24
=

15

8
.

This is the same value as calculated from the generic formulation, as expected.
Both of the methods may be efficiently computed by hand; however, they are
more instrumental in their upcoming applications in later chapters.

1.2.3 Parametric Lagrange interpolation

Parametric curves are also commonplace in engineering practice, hence a para-
metric rendering of Lagrange’s method is also useful. Let us consider a set of
points

Qi = (xi, yi), i = 0, 1, 2, 3

for this computation. We can use a parametric Lagrange polynomial approx-
imation with these four points and Li Lagrange base polynomials as
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pL(x(t), y(t)) =

3
∑

i=0

QiLi(t).

If we assume that the Qi points belong to parameter values t = 0, 1/3, 2/3, 1,
then the following Lagrange base polynomials are used:

L0(t) =
(t− 1/3)(t− 2/3)(t− 1)

(−1/3)(−2/3)(−1)
= 1 − 11

2
t+ 9t2 − 9

2
t3,

L1(t) =
t(t− 2/3)(t− 1)

(1/3)(−1/3)(−2/3)
= 9t− 45

2
t2 +

27

2
t3,

L2(t) =
t(t− 1/3)(t− 1)

(2/3)(1/3)(−1/3)
= −9

2
t+ 18t2 − 27

2
t3,

and

L3(t) =
t(t− 1/3)(t− 2/3)

(1)(2/3)(1/3)
= t− 9

2
t2 +

9

2
t3.

This may be written in a matrix form as

pL(t) =
[

x(t) y(t)
]

= TMLQ,

where the ML matrix is

ML =









1 0 0 0
−11/2 9 −9/2 1

9 −45/2 18 −9/2
−9/2 27/2 −27/2 9/2









,

Q =









x0 y0
x1 y1
x2 y2
x3 y3









,

and
T =

[

1 t t2 t3
]

.

The final result of the parametric Lagrange approximation is

pL(t) = Lx(t)i+ Ly(t)j.

Applying that to the points used in the computational example section, the
parametric result is

Lx(t) = 4 + 6t,

and
Ly(t) = 1 + 5.5t− 4.5t2 + 18t3.

This agrees with the explicit solution obtained earlier and can be seen in Fig-
ure 1.3.
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FIGURE 1.3 Results of parametric Lagrange example

1.3 Hermite interpolation

Hermite interpolation generalizes the problem by also considering the deriva-
tives of the function to be approximated. We focus on the most practical case
of including the first derivative in the approximation [6]. Then the conditions
of

f(xk) = pH(xk)

and

f ′(xk) = p′H(xk)

are needed to be satisfied for all points k = 0, . . . n. Such a polynomial may
be constructed by specifically formulated Hermite base polynomials Hk.
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pH(x) =

n
∑

k=0

f(xk)Hk(x) +

n
∑

k=0

f ′(xk)Hk(x).

As there are 2n+2 conditions to satisfy, the order of the Hermite interpolation
polynomial will be 2n+ 1. There are several ways to create the Hermite base
polynomials. A formulation from the Lagrange base polynomials is shown
here.

Hk(x) = (1 − 2(x− xk)L′
k(xk))L2

k(x).

Hk(x) = (x− xk)L2
k(x).

In the above formulae the first derivative and the square of the Lagrange base
functions are used. Based on the definition of the Lagrange base functions,
the Hermite base functions satisfy specific relations. When i 6= k then

Hk(xi) = 0,

and
Hk(xi) = 0.

When i = k then

Hk(xk) = (1 − 2(xk − xk)L′
k(xk))L2

k(xk) = (1 + 0)1 = 1,

and
Hk = (xk − xk)L2

k(xk) = 0 · 12 = 0.

From these it follows that

pH(xk) =
n

∑

i=0,i6=k

f(xi) · 0 + f(xk) · 1 +
n

∑

k=0

f ′(xk) · 0 = f(xk),

which is the proof of satisfying the first condition. In order to prove the
satisfaction of the derivative condition, the derivative of the Hermite base
functions is needed.

H ′
k(xi) = −2L′

k(xk) · L2
k(xi) + (1 − 2(xi − xk)L′

k(xk))2Lk(xi)L
′
k(xi).

This expression is zero for both i = k and i 6= k for different algebraic reasons.
The derivative of the H base polynomial is

H
′
k(xi) = L2

k(xi) + (xi − xk) · 2Lk(xi)L
′
k(xi).

This is zero when i 6= k but one when i = k. Utilizing all the above, we can
write

p′H(xk) =

n
∑

k=0

f(xk) · 0 +

n
∑

i=0,i6=k

f ′(xi) · 0 + f ′(xk) · 1 = f ′(xk).
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That concludes the proof of matching the conditions required.

The analytic procedure developed via the Lagrange polynomials is rather
cumbersome. To overcome this, in [6] it is proposed to express the Hermite
approximating polynomial in terms of the divided differences introduced in
Section 1.1. In this form we write the Hermite approximating polynomial in
the form of

pH(x) = h0+h1(x−x0)+h2(x−x0)
2+h3(x−x0)

2(x−x1)+h4(x−x0)
2(x−x1)

2

+ . . .+ h2n+1(x− x0)
2(x− x1)

2 · · · (x− x2
n−1)(x− xn).

The coefficients are discussed in the following computational example. This
formulation is used in computer implementations, as the coefficients may be
recursively computed. Finally, the error of the Hermite approximation is

f(x) − pH(x) =
(x− x0)

2 · · · (x− xn)2

(2n+ 2)!
f (2n+2)(ξ),

which has obvious similarities to the earlier error forms of both Newton and
Lagrange.

1.3.1 Computational example

We consider the following simple example for demonstrating Hermite approx-
imation. The three example points are actually obtained by sampling the
sin(x) curve from 0 to π. The points and the derivatives are shown in Table
1.2.

TABLE 1.2

Hermite approximation
example data

i xi f(xi) f ′(xi)

0 0 0 1
1 π/2 1 0
2 π 0 −1

For three points the divided differences based formulation is

pH(x) = h0 + h1(x − x0) + h2(x− x0)
2 + h3(x− x0)

2(x− x1)

+ h4(x− x0)
2(x− x1)

2 + h5(x− x0)
2(x − x1)

2(x− x2).
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The computation of the coefficients is facilitated by Table 1.3. Note the sim-
plified notation for

f [zi,k] = f [zi, zi+1, . . . , zi+k],

the alternating use of the divided difference and the first derivative in the
f [zi, 1] column as well as the special setup of the starting columns.

TABLE 1.3

Hermite approximation computation

i zi f(zi) f [zi,1] f [zi,2] f [zi,3] f [zi,4]

0 0 0
1 0 0 f ′(x0) = 1
2 π/2 1 2/π 4/π2 − 2/π
3 π/2 1 f ′(x1) = 0 −4/π2 −16/π3 + 4/π2

4 π 0 -2/π −4/π2 0 16/π4 − 4/π3

5 π 0 f ′(x2) = −1 4/π2 − 2/π 16/π2 − 4/π2 16/π4 − 4/π3

The top term from each column, starting from the third, gives the Hermite
polynomial coefficients. With these, the Hermite approximation polynomial is

pH(x) = f(x0) + f ′(x0)(x − x0) + f [z0,2](x − x0)
2 + f [z0,3](x− x0)

2(x− x1)

+f [z0,4](x− x0)
2(x− x1)

2 + f [z0,5](x− x0)
2(x− x1)

2(x− x2).

We will utilize the fact that the term

f [zi,5] = 0,

since the last two terms of the rightmost columns of Table 1.3 are identical.
Numerically computing the coefficients and substituting yields

pH(x) = 0 + 1(x− 0) − 0.23133(x− 0)2 − 0.11076(x− 0)2(x− π/2)

+ 0.035258(x− 0)2(x− π/2)2 + 0(x− 0)2(x− π/2)2(x− π).

We may collect the results in a quartic polynomial

pH(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4.

Figure 1.4 shows the approximation overlaid onto the sin(x) function, from
which the input data was sampled. One can observe an excellent matching
of the points of the function inside the approximation interval, including the
correct matching of the derivatives at the given points. Outside of the ap-
proximation interval the two curves separate, of course.



Classical interpolation methods 19

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1  0  1  2  3  4

p_H(x)
sin(x)
y0(x)

FIGURE 1.4 Hermite approximation example

1.4 Interpolation of functions of two variables with poly-

nomials

Another natural extension of the interpolation problem is to approximate a
function of two variables. This problem is much more generic and depending
on the distribution of the given data set, it may not always be possible to
solve it. We consider the problem given by

f(xi, yk), i = 0, 1, . . . ,m; k = 0, 1, . . . , n.

This specifies a grid of m + 1 by n + 1 points in the x − y plane and the
corresponding function values. This is a very specific arrangement, as shown
in Table 1.4 and it assures that the problem may be solved.

We are looking for a polynomial solution of the form
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TABLE 1.4

Arrangement of
interpolation

y|x x0 x1 . xm

y0 (f00) f10 . fm,0

y1 (f01) f11 . fm,1

. . . .
yn (f0n) f1n . fm,n

p(x, y) =

m
∑

i=0

n
∑

k=0

aikx
iyk,

which satisfies

p(xi, yk) = f(xi, yk)

for all given points. This specifies a system of (m+ 1)(n+ 1) equations and
unknowns, and may be solved by any technique. It is, however, more efficient
to solve this problem by a generalization of the Lagrange interpolation, which
for this case may be formulated as

p(x, y) =

m
∑

i=0

n
∑

k=0

f(xi, yk)Li(x)Lk(y).

The proof of satisfying the interpolation conditions follows from the satisfac-
tion of the x and y directional Lagrange base functions. The error of the
approximation is

f(x, y) − p(x, y) =
ωm(x)

(m+ 1)!
[
∂m+1f

∂xm+1
]x=ξ1

+
ωn(y)

(n+ 1)!
[
∂n+1f

∂yn+1
]y=ζ1

− ωm(x)

(m+ 1)!

ωn(y)

(n+ 1)!
[
∂m+1+n+1f

∂xm+1∂yn+1
]x=ξ2,y=ζ2

.

Here the (ξ1, ζ1) and the (ξ2, ζ2) points are in the two-dimensional interval
containing the interpolation points.
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Approximation with splines

In the methods described in the last chapter the order of the approximation
polynomials was at least the same as the number of points. This is rather
problematic when a large number of points are given, as the polynomials will
have a large number of unnecessary undulations. In this chapter another class
of approximations is introduced where the order of the approximation is kept
to a small order, however large the number of points is. In order to overcome
this conflict a sequence of such polynomials is used and the technique is called
spline approximation.

Spline is the name of the flexible rulers used in the not too distant past in
the design of ships by naval architects, I also used them in the early 1970s as
a junior engineer. They were made out of special tropical woods and were
several meters in length. On the parquette floor of the draft rooms (some-
times called loft rooms) the low-scale drawings of the level curves of the ship
were laid out with the help of the splines. The splines were held in place at
certain points by supporting them with lead weights, otherwise the wood’s
natural flexibility defined the shape of the curves. Ship designers called the
lead weights dolphins, a naming convention probably derived from the natural
environment of their design objects.

This process has now been replaced by CAD systems. However, the math-
ematical tools used by such systems have their origin in the above mechanical
tools. The mechanical model is used in deriving the formulae for the first type
introduced here, the natural splines. Historically these are much more recent
than the classical approximation tools, although one of the earliest references
to natural splines [11] is about 60 years old.

The natural splines provided the foundation to surface approximations, as
proposed by Coons [4] in the 1960s. The renaissance of the technology was
dominated by the Bezier splines [3] and the B-splines [5], starting from the
1970s. These still constitute the foundation of most current computer-aided
geometric modeling softwares.

23
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2.1 Natural cubic splines

The natural cubic spline formulation presented here is inspired by the differ-
ential equation of the elastic bar, but other derivations are also known [1].
The bending of an elastic bar (the spline ruler) is described by

d2y(x)

dx2
=
M(x)

IE
,

where I is the cross-section moment of inertia and E is the Young’s modulus
of flexibility. As the bending moment is a continuous function of x, the solu-
tion curve y(x) has 2nd order continuity.

The problem of approximation is still posed in the form of a set of given
points

(xi, yi); i = 0, 1, . . . , n

with the assumption of xi < xi+1. The approximation function is going to be
a piecewise function defined as

g(x) =























g1(x), x0 ≤ x ≤ x1,
.

gi(x), xi−1 ≤ x ≤ xi,
.

gn(x), xn−1 ≤ x ≤ xn.

We now seek such segments of this piecewise approximation function that are
thrice differentiable to satisfy the second order continuity between them. Such
may be cubic segments of the form

gi(x) = aix
3 + bix

2 + cix+ di

for i values from 1 to n. The following three conditions must be satisfied for
i = 1, 2, . . . , n−1. First, the approximation functions must go through all the
given points:

gi(xi) = gi+1(xi) = yi.

Secondly, the tangents of the two polynomial segments from both sides of a
point must be the same:

g′i(xi) = g′i+1(xi).

Finally, the second derivative (indicative of the curvature) of the functions at
the connecting points must be equal:

g′′i (xi) = g′′i+1(xi) = ri.
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For the sake of simplicity we will assume that

r0 = rn = 0,

which implies zero curvature at the end points. This is not necessary, but it
simplifies the discussion. This is called the natural end condition.

Since gi(x) is thrice differentiable, g′′i (x) is at least linear. The linear ap-
proximation of the curvature between two points may be written in the form

g′′i (x) = ri−1
xi − x

hi
+ ri

x− xi−1

hi
,

where
hi = xi − xi−1 > 0.

Twice integrating and substituting the first and the third conditions yields

gi(x) = ri−1
(xi − x)3

6hi
+ ri

(x− xi−1)
3

6hi
+
yi − yi−1

hi
x− ri − ri−1

6
hix

+
xiyi−1 − xi−1yi

hi
− xiri−1 − xi−1ri

6
hi

for i = 1, 2, . . . , n. Note that the ri curvatures are still not known. Differen-
tiating this we get

g′i(x) =
−ri−1(xi − x)2 + ri(x− xi−1)

2

2hi
+
yi − yi−1

hi
− ri − ri−1

6
hi.

Applying the second condition related to the first derivative, we finally obtain

hiri−1 + 2(hi + hi+1)ri + hi+1ri+1 = 6(
yi+1 − yi

hi+1
− yi − yi−1

hi
)

for i = 1, 2, . . . , n− 1. This is detailed as the following system of equations:









2(h1 + h2) h2

h2 2(h2 + h3) h3

. . .
hn−1 2(hn−1 + hn)

















r1
r2
.

rn−1









= 6









(y2 − y1)/h2 − (y1 − y0)/h1

(y3 − y2)/h3 − (y2 − y1)/h2

.
(yn − yn−1)/hn − (yn−1 − yn−2)/hn−1









,

or in matrix form
HR = 6Y.

The H matrix is positive definite, so the system may always be solved. Sub-
stituting the now obtained ri into the original gi(x) equation and executing a
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fair amount of algebra produces the coefficients of the natural spline.

ai =
ri − ri−1

6hi
,

bi =
xiri−1 − xi−1ri

2hi
,

ci =
rix

2
i−1 − ri−1x

2
i

2hi
+
yi − yi−1

hi
− ri − ri−1

6
hi,

and

di =
xiyi−1 − xi−1yi

hi
− xiri−1 − xi−1ri

6
hi +

ri−1x
3
i − rix

3
i−1

6hi
.

2.1.1 Equidistant natural spline approximation

The equidistant case, always interesting to the engineer, also facilitates a sig-
nificant simplification of the process. If hi = h for any i = 1, . . . , n then the
equation simplifies to









4 1
1 4 1
. . .

1 4

















r1
r2
.

rn−1









=
6

h2









y2 − 2y1 + y0
y3 − 2y2 + y1

.
yn − 2yn−1 + yn−2









.

It is also possible to deviate from the natural end conditions and enforce ei-
ther the tangents g′(x0), g

′(xn) or the curvatures g′′(x0), g
′′(xn) of the spline.

The appropriate modifications are left to the reader.

On a final note, the desirable “smooth” behavior of the natural splines is
of proven quality. Holladay’s theorems states the following:

From the family of functions G(x) that are at least twice differentiable in
the interval [x0, xn] and satisfy the G′′(x0) = G′′(xn) = 0 boundary condi-
tions, the following functional,

∫ xn

x0

[G′′(x)]2dx,

is minimal if G(x) = g(x), where g(x) is the natural spline. The natural
splines minimize the curvature of the approximating curve, a very desirable
characteristic.

While the natural spline formulation was derived in terms of the approx-
imation of planar curves, they are also possible to formulate in parametric
form. That enables the technique to approximate space curves. The issue will
be explored further in Section 2.4.1 in connection with the Coons patch.
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2.1.2 Computational example

Let us again consider the points of

(x, y) = (4, 1); (6, 3); (8, 8); (10, 20),

but now to be approximated with a natural spline. Since the points are
equidistant, the computational complexity will still be bearable by hand.
Clearly

hi = h = 2

and the system of equations to solve for the ri is

[

4 1
1 4

] [

r1
r2

]

=
6

4

[

3
7

]

.

The solution of r1 = 1/2 and r2 = 5/2 along with the boundary conditions
r0 = 0 and r3 = 0 will enable us to find the polynomial coefficients for the
three segments, shown in Table 2.1.

TABLE 2.1

Coefficients of a natural spline example

Segment a b c d

1 0.041667 −0.5 2.8333 −5.0
2 0.16667 −2.75 16.333 −32.0
3 −0.20833 6.25 −55.67 160.0

The segments of the natural spline curve, denoted by s1, s2, s3, are shown
in Figure 2.1 demonstrating the curvature continuous connectivity between
the neighboring spline segments. The first segment curve (s1) turns away
after the second control point and similarly, the second segment curve (s2)
is below the curve prior to that point. Similar behavior can be observed
with the third spline segment (s3); it is significantly above the spline between
the first and the second points. The “points” are the input points in the figure.

This enables a comparison at the location x = 5 with the Lagrange inter-
polation. Here

g(5) = g1(5) = a15
3 + b15

2 + c15 + d1 = 15/8,

which is identical to the value of 45/24 obtained from both the Lagrange and
Newton approximations.

Executing the example clearly demonstrates a computational shortcoming
of the natural spline techniques: if one given point changes, the whole system
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FIGURE 2.1 Natural spline interpolation polynomial

of equations needs to be resolved. In general the natural spline is a “global”
spline, there is no way to locally change it without recomputing it.

2.2 Bezier splines

In order to obtain some local control over a spline, Bezier [3] proposed a
different approach. Given a set of points, the requirement of going through
all points is released. The spline is required to go through the end points and
some points in between. Some points, however, are only used to shape the
curve.

Another difference from the last section is that we are going to develop the
technique in parameter space. This also produces planar curves if needed,
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but generalizes to spatial curves easily. We are seeking the approximation
polynomials in the parametric form

r(t) = x(t)i+ y(t)j + z(t)k.

In the presentation here the points will still be approximated by a set of in-
dependent parametric cubic spline segments of the form

x(t) = ax + bxt+ cxt
2 + dxt

3,

y(t) = ay + byt+ cyt
2 + dyt

3,

and
z(t) = az + bzt+ czt

2 + dzt
3.

For simplicity of discussion, these will be commonly described as

S(t) = a+ bt+ ct2 + dt3,

where t ranges from 0.0 to 1.0.
First we focus on a single segment of the Bezier spline defined by four

(control) points P0, P1, P2, P3, defining the Bezier polygon. We use the two
intermediate points P1, P2, to define the starting and ending tangent lines of
the curve. The distance of these middle points from the corner points will also
influence the curve’s shape. These four points define a Bezier [3] polygon as
shown in Figure 2.2.

As Figure 2.2 shows, the spline curve f(x) is going through the corner points
(P0, P3) but not the middle points (P1, P2). The Bezier spline segment is
formed from four points as

SB(t) =

3
∑

i=0

PiJ3,i(t).

Here

J3,i(t) =

(

3
i

)

ti(1 − t)3−i

are the Bernstein basis polynomials. Incidentally, Bernstein originally pro-
posed such polynomials in his article [2] early in the last century while con-
structing a proof for Weierstrass’ approximation theorem.

The role of the Bernstein polynomials here is “blending” the given point
set into a continuous function, hence they are sometimes called the blending
functions. Figure 2.3 shows the four Bernstein polynomials (J3,i denoted by
Ji) and their shape helps in understanding the blending principle.
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FIGURE 2.2 Bezier polygon and spline

Using the boundary conditions of the Bezier curve (SB(0), SB(1), S′
B(0), S′

B(1))
the matrix form of the Bezier spline segment may be written as

SB(t) = TMP.

Here the matrix P contains the Bezier vertices

P =









P0

P1

P2

P3









,

and the matrix M the interpolation coefficients

M =









1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1









.
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FIGURE 2.3 Bernstein base polynomials

T is a parametric row vector:

T =
[

1 t t2 t3
]

.

Furthermore, introducing

SB(t) = TA,

where

A =









a
b
c
d









,

it follows that

A = MP.

In detail,
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







ax ay az

bx by bz
cx cy cz
dx dy dz









=









1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

















x0 y0 z0
x1 y1 z1
x2 y2 z2
x3 y3 z3









.

We will use this formula for the computation of the Bezier spline coefficients.

2.2.1 Rational Bezier splines

A very important generalization of this form is to introduce weight functions.
The result is the rational parametric Bezier spline segment of the form

SB(t) =

∑3
i=0 wiPiJ3,i(t)

∑3
i=0 wiJ3,i(t)

,

or in matrix notation,

SB(t) =
TMP

TMW
.

Here the vector

P =









w0P0

w1P1

w2P2

w3P3









contains the weighted point coordinates and

W =









w0

w1

w2

w3









is the array of weights. The weights have the effect of moving the curve closer
to the control points, P1, P2, as shown in Figure 2.4.

The location of a specified point on the curve, Ps in Figure 2.4, defining
three values, in essence any three of the four weights. The remaining weight
is defined by specifying the parameter value t∗ to which the specified point
should belong on the spline. Most commonly t∗ = 1

2 is chosen for such a point.

The three-dimensional approximation polynomial is described by

rB(t) =
TMX

TMW
i+

TMY

TMW
j +

TMZ

TMW
k.
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FIGURE 2.4 The effect of weights on the shape of a Bezier spline

Here

X =









w0x0

w1x1

w2x2

w3x3









, Y =









w0y0
w1y1
w2y2
w3y3









, Z =









w0z0
w1z1
w2z2
w3z3









,

where xi, yi, zi are the coordinates of the ith Bezier point.

An additional advantage of using rational Bezier splines [7] is to be able to
exactly represent conic sections and quadratic surfaces. These are common
components of industrial models, for manufacturing as well as esthetic reasons.

In practical engineering problems there are likely to be many points and,
therefore, a multitude of spline segments is required. The most important
question arising in this regard is the continuity between segments as shown
in Figure 2.5.
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FIGURE 2.5 Continuity of Bezier spline segments

Since the Bezier splines are always tangential to the first and last segments
of the control polygon, clearly a first order continuity may exist only if the
Pi−1, Pi, Pi+1 points are collinear.

The presence of weights further specifies this continuity. Let us compute

∂SB

∂t
(t = 0) = 3

w1

w0
(P1 − P0)

and
∂SB

∂t
(t = 1) = 3

w2

w3
(P3 − P2),

where (Pi − Pj) is a vector pointing from Pj to Pi. Focusing on the adjoin-
ing segments of spline f(x) in Figure 2.5, the first order continuity condition is

wi−1

wi−0
(Pi − Pi−1) =

wi+1

wi+0
(Pi+1 − Pi).
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There is a rather subtle but important distinction here. There is a geometric
continuity component that means that the tangents of the neighboring spline
segments are collinear. Then there is an algebraic component resulting in the
fact that the magnitude of the tangent vectors is also the same. The notation
wi+0, wi−0 manifests the fact that the weights assigned to a control point in
the neighboring segments do not have to be the same. If they are, a simplified
first order continuity condition exists:

wi−1

wi+1
=

(Pi+1 − Pi)

(Pi − Pi−1)
.

Enforcing such a continuity enhances the quality of the approximation. Fur-
thermore, second order continuity is also possible. By definition,

∂2SB

∂t2
(t = 0) = (6

w1

w0
+ 6

w2

w0
− 18

w2
1

w2
0

)(P1 − P0) + 6
w2

w0
(P2 − P1)

and

∂2SB

∂t2
(t = 1) = (6

w1

w3
+ 6

w2

w3
− 18

w2
2

w2
3

)(P2 − P3) + 6
w1

w3
(P1 − P2).

Generalization to the boundary of neighboring segments, assuming that the
weights assigned to the common point between the segments is the same,
yields the second order continuity condition as

wi−2(Pi−2 − Pi) − 3
w2

i−1

wi
(Pi−1 − Pi) = wi+2(Pi+2 − Pi) − 3

w2
i+1

wi
(Pi+1 − Pi).

This is a rather strict condition requiring that the two control points prior and
after the common point (five points in all) are coplanar with some additional
constraints on the weight relations.

2.2.2 Computational example

We consider the point set (0, 0), (1, 1), (2, 1), (3, 0). The matrix form intro-
duced above produces

A = M









0 0
1 1
2 1
3 0









=









0 0
3 3
0 −3
0 0









.

With these coefficients the Bezier spline for the given set of points is

SB(t) = 3ti+ (3t− 3t2)j.
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Let us now consider giving weights to the intermediate control points. The
weight set of

W2 =









1
2
2
1









will produce

P =









0 0
2 2
4 2
3 0









.

The resulting coefficients are

A2 = MP =









0 0
6 6
0 −6
−3 0









.

The rational Bezier polynomial for this case is now written as

SB(t) =
6t− 3t3

1 + 3t− 3t2
i+

6t− 6t2

1 + 3t− 3t2
j

The results are organized into Table 2.2. The a, b, c, d coefficients are of the
polynomial and the x,y subscripts indicate the spatial coordinates. The w

subscript denotes the coefficients of the weight polynomial in the denomina-
tor.

TABLE 2.2

Coefficients of a Bezier spline example

weights ax, ay bx, by cx, cy dx, dy aw bw cw dw

1 0,0 3,3 0,−3 0,0 1 0 0 0
2 0,0 6,6 0,−6 −3,0 1 3 −3 0
3 0,0 9,9 0,−9 −6,0 1 6 −6 0

The weights are the intermediate point weights, and the corner point weights
are kept at unity. The first row contains the integral Bezier spline coefficients,
the second row has intermediate weights of 2 and the third row increases the
intermediate weights to three. Figure 2.6 shows the resulting spline curves.
Notice the tendency of the curve to move closer to the middle control points
as the weights increase.
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FIGURE 2.6 Cubic Bezier spline example

Throughout this chapter, the discussion was focused on producing piecewise
cubic polynomials. The case of other than cubic approximations is briefly re-
viewed here. For example, using m+1 points, an mth order Bezier polynomial
may be written as

SB(t) =

m
∑

i=0

PiJm,i(t).

Here

Jm,i(t) =

(

m
i

)

ti(1 − t)m−i

The most practical application of this is the case of m = 2, which results
in quadratic Bezier polynomials which, when used with weights, are an exact
technique to produce conic sections. All the continuity discussions and weight
considerations apply for these cases as well. Higher than cubic polynomials
are not often used with the Bezier approach, but frequently used in the fol-
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lowing B-spline approximations.

2.3 Approximation with B-splines

Let us first focus again on the cubic approximation defined by four points. A
B-spline segment is defined similarly to the Bezier spline, apart from the fact
that the basis functions are different. In fact, the common belief is that the
B-spline name is due to the “B” in the basis function

Sb(t) =

3
∑

i=0

PiBi,3(t) = TMbP.

To distinguish from the Bezier splines, the B-splines are noted with a lower
case b subscript in the following. In specific detail,

Sb(t) = 1/6(1−t)3P0+1/6(3t3−6t2+4)P1+1/6(−3t3+3t2+3t+1)P2+1/6t3P3.

The basis functions of the B-splines sum up to unity:

3
∑

i=0

Bi,3(t) = 1.

This can be seen visually in Figure 2.7, which shows the cubic B-spline basis
functions (Bi,3 denoted by Bi) for four points.

Introducing matrix notation again,

Sb(t) = TMbP,

where the Mb matrix of interpolating coefficients representing the blending
functions is now

Mb = 1/6









1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1









,

and the vector of the participating points

P =









P0

P1

P2

P3









,



Approximation with splines 39

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6  0.8  1

B0(x)
B1(x)
B2(x)
B3(x)

FIGURE 2.7 Cubic B-spline basis functions

as well as the vector T of parameters is the same as in the Bezier approach.
The range of parameters is still from 0 to 1. This restriction will be released
in the nonuniform formulation in the next section.

2.3.1 Computational example

Using the same point set (0, 0), (1, 1), (2, 1), (3, 0) as earlier produces

A2 = Mb









0 0
1 1
2 1
3 0









=









1 5/6
1 1/2
0 −1/2
0 0









.

Note that this is only the middle section of the B-spline approximation of the
four-noded polygon. This section of the B-spline is described by

Sb, 1(t) = (t+ 1)i+ (−1/2t2 + 1/2t+ 5/6)j.
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This fact emphasizes the excellent local control of the B-splines. The four
points contributed only to one section of the spline. Conversely, in order to
change a section of a spline, only four points need to be modified.

The complete spline is plotted in Figure 2.8, where the ith section is marked
by xbi(t), ybi(t). Here “section” is used in contrast with segment. The latter
is the complete spline defined by the four points and in turn multiple spline
segments constitute a spline curve (when many points are given).

In order to find the first and third sections of the spline, another specific
B-spline characteristic may be utilized, the duplication of control points. Du-
plicating the first control point gives rise to

A1 = Mb









0 0
0 0
1 1
2 1









=









1/6 1/6
1/2 1/2
1/2 1/2
−1/6 −1/3









.
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FIGURE 2.8 Cubic B-spline example
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The duplication of the last control point results in

A3 = Mb









1 1
2 1
3 0
3 0









=









2 5/6
1 −1/2
0 −1/2

−1/6 1/3









.

Finally, forcing the spline through the beginning and the end points, an-
other duplication of the end points is required:

A0 = Mb









0 0
0 0
0 0
1 1









=









0 0
0 0
0 0

1/6 1/6









,

and

A4 = Mb









2 1
3 0
3 0
3 0









=









17/6 1/6
1/2 −1/2
−1/2 1/2
1/6 −1/6









.

The complete spline segment spanning the four-point polygon consists of five
sections. Note that in each of the sections, the parameter t ranged from 0 to
1, hence this is properly called a uniform B-spline.

2.3.2 Nonuniform B-splines

The nonuniform B-splines enable a different parameter distribution as well as
basis function set for each curve section. This is based on a generic interpre-
tation and computation of the basis functions.

Bi,k(t), i = 0, 1, . . . , n; k = 0, 1, . . . ,m.

Note the distinction between the number of points used (n) and the order of
the polynomial produced (m). In essence this enables the creation of various
order spline segments from the same number of points.

The nonuniform B-spline basis functions are described recursively in terms
of lower order functions. They are initialized as

Bi,0(t) =

{

1, ti ≤ t < ti+1,
0, t < ti, t ≥ ti+1.

The higher order terms (k = 1, 2, . . .m) are recursively formulated as

Bi,k(t) =
t− ti

ti+k − ti
Bi,k−1(t) +

ti+1+k − t

ti+1+k − ti+1
Bi+1,k−1(t).
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For example, the basis functions for a cubic (m = 3) nonuniform B-spline are

Bi,0(t) =

{

1, ti ≤ t < ti+1,
0, t < ti, t ≥ ti+1.

Then

Bi,1(t) =
t− ti

ti+1 − ti
Bi,0(t) +

ti+2 − t

ti+2 − ti+1
Bi+1,0(t),

Bi,2(t) =
t− ti

ti+2 − ti
Bi,1(t) +

ti+3 − t

ti+3 − ti+1
Bi+1,1(t),

and

Bi,3(t) =
t− ti

ti+3 − ti
Bi,2(t) +

ti+4 − t

ti+4 − ti+1
Bi+1,2(t).

This is repeated for i = 0, 1 . . . , n. For example given four points (n = 3), the
parameter values range from ti = t0 to ti+4 = t7. This accounts for eight pa-
rameter values, 2 for the intermediate points and two times 3 for the repeated
segment boundaries.

In order to evaluate the recursive expressions of the basis functions when
identical points are present, a special convention is needed. Specifically, when
the denominator is zero then the result of the expression is also considered to
be zero.

These basis functions depend on the nonuniform parametric intervals [ti, ti+1].
The ti values are the parameter values defining the range of the parameters
for the curve. They are presented in the knot vector. For example a vector of

K =
[

0 1 2 3
]

defines the parameter range from 0 to 3 for the curve. The knot values of the
end points need to be repeated as shown in the example to cover the whole
span and in order to use the recursion formula. For the above parameter
distribution, the cubic recursive formula requires the end point knot values to
be in triplicate as

K =
[

0 0 0 1 2 3 3 3
]

.

This is appropriately increased for even higher orders. This mechanism en-
ables the multiple use of interior control points with duplicating values in the
knot vector. A duplicate interior knot value will represent a multiple vertex
with zero length in between. It is clearly a tool to locally control the curve,
without changing the control point set. With an appropriate level of multi-
plication, the curve can be pulled as close to the point as desired.
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2.3.3 Nonuniform rational B-splines

The B-spline technology can further be extended by adding weights. This
process is the same as described in connection with the Bezier splines and not
detailed further here.

The general form of a nonuniform rational B-spline, commonly called NURB,
is

S(t) =

∑n
i=0 wiPiBi,k(t)

∑n
i=0 wiBi,k(t)

.

It is clearly an elaborate computation, best executed on computers and the im-
plementation requires some programming skills. It is not easily demonstrated
by a computational example. One practical implementation technique to deal
with the rational nature and the weights is to use homogeneous coordinates,

Q(t) = [X(t), Y (t), Z(t),W (t)].

One can then calculate the NURBS in homogeneous coordinates,

S(t) =
n

∑

i=0

QiBi,k(t).

After this, the NURB needs to be mapped back to the original 3-space. For
more details of computational algorithms, see [6] and [12].

These curves have become the industry workhorse for the past few decades.
Some attractive reasons are their high flexibility, locally controllable nature
and nonuniform parameterization. Most importantly, however, they are in-
variant under rotation, scaling, translation and perspective transformation.
This last characteristic makes NURBs the darling of the computer graphics
industry [10].

2.4 Surface spline approximation

All three methods, the natural splines, the Bezier and the B-splines may be
generalized to surfaces if we approximate functions of two variables in pa-
rameter space. Surfaces are generated from natural splines mostly via Coons’
method [4]. The Bezier method (also applicable to B splines) is probably the
most widely used in the industry. Finally, tridiagonal surface patches are of
practical importance, for example, in finite element discretization, the topic
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of Chapter 12.

2.4.1 Coons surfaces

Let us first generalize the natural spline into a parametric form. Instead of
the y = f(x) form of the earlier section, we can write a natural spline in terms
of a parameter t as

x = x(t) = axt
3 + bxt

2 + cxt+ dx,

and similarly

y = y(t) = ayt
3 + byt

2 + cyt+ dy,

where 0 ≤ t ≤ 1. With this approach a general natural spline in three dimen-
sions may also be written:

rN (t) = x(t)i+ y(t)j + z(t)k,

where

z(t) = azt
3 + bzt

2 + czt+ dz.

In the following we omit the N subscript, denoting the natural spline, for clar-
ity’s sake. Coons’ method creates a surface patch bounded by four natural
spline segments arranged in a parametric coordinate system defined by axes
u, v. The u parametric axis is represented by

r(u, 0),

and the v parametric axis by

r(0, v).

The other two sides of the patch are

r(u, 1)

and

r(1, v).

These are denoted by “r u0, r 0v” and “r u1, r 1v” in Figure 2.9, respectively.
Here 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. The two pairs define the sides of a rectangular
surface patch. Coons’ recommendation in [4] is to interpolate the surface
with two blending functions. They are to blend the surface between these
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FIGURE 2.9 Coons surface patch definition

boundaries and are of the generic form

b0(t) = b0,3t
3 + b0,2t

2 + b0,1t+ b0,0,

and

b1(t) = b1,3t
3 + b1,2t

2 + b1,1t+ b1,0.

Note that the coefficients have not yet been defined, but Coons required that
the blending functions satisfy the following criteria:

b0(0) = 1, b0(1) = 0,

and conversely,

b1(0) = 0, b1(1) = 1.

It is also required that

b0(t) + b1(t) = 1,
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for 0 ≤ t ≤ 1. The interpolated surface is then of the form

r(u, v) =
[

b0(u) b1(u)
]

[

r(0, v)
r(1, v)

]

+
[

b0(v) b1(v)
]

[

r(u, 0)
r(u, 1)

]

−
[

b0(u) b1(u)
]

[

r(0, 0) r(0, 1)
r(1, 0) r(1, 1)

][

b0(v)
b1(v)

]

.

This approach suffices when there is only one cubic spline surface patch. In
practice, however, most of the time multiple segment spline curves describe
the boundaries and therefore multiple spline patches or composite surfaces
are needed. In order to afford appropriate continuity between the adjacent
surface patches, derivatives at the boundaries also need to be defined.

In order to also interpolate the derivatives across the neighboring surface
patch boundaries, two more blending functions are defined. They are

d0(t) = d0,3t
3 + d0,2t

2 + d0,1t+ d0,0,

and

d1(t) = d1,3t
3 + d1,2t

2 + b1,1t+ d1,0.

Coons’ criteria for the derivative blending functions are

d0(0) = d0(1) = d1(0) = d1(1) = 0,

but

ḋ0(0) = ḋ1(1) = 1

and

ḋ0(1) = ḋ1(0) = 0.

With these and the derivatives

ru(u, v) =
∂r(u, v)

∂u
,

rv(u, v) =
∂r(u, v)

∂v
,

and

ruv(u, v) =
∂2r(u, v)

∂u∂v
,

the first order (tangent) continuous Coons patch is of the form

r(u, v) =
[

b0(u) b1(u) d0(u) d1(u)
]









r(0, v)
r(1, v)
ru(0, v)
ru(1, v)








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+
[

b0(v) b1(v) d0(v) d1(v)
]









r(u, 0)
r(u, 1)
rv(u, 0)
rv(u, 1)









−
[

b0(u) b1(u) d0(u) d1(u)
]









r(0, 0) r(0, 1) rv(0, 0) rv(0, 1)
r(1, 0) r(1, 1) rv(1, 0) rv(1, 1)
ru(0, 0) ru(0, 1) ru,v(0, 0) ru,v(0, 1)
ru(1, 0) ru(1, 1) ru,v(1, 0) ru,v(1, 1)

















b0(v)
b1(v)
d0(v)
d1(v)









.

It is important to point out that the 4 by 4 matrix above contains 4 distinct
types of quantities. The upper left terms are the corner points coordinates
and they are of course given. The lower left and upper right four terms are the
derivatives at the corner points with respect to either parametric coordinate
and as such may also be computed from the given boundary curves.

On the other hand, the lower right-hand corner contains terms that are
not computable from the boundary curves. They would be obtained from the
surface function that is not available. These terms, called the corner twist
terms, are hence approximated by the engineer. Often these terms are zeroed
out, resulting in a flat corner area of the surface patch.

The remaining issue is to find an appropriate set of blending functions. A
commonly used set is based on the Hermite interpolation introduced in the
last chapter where the points and the derivatives were common between seg-
ments. For a parametric curve of

p(t) = a0 + a1t+ a2t
2 + a3t

3,

the end points of the curve are

p(0) = a0

and

p(1) = a0 + a1 + a2 + a3.

The derivatives at the end points are

ṗ(0) = a1

and

ṗ(1) = a1 + 2a2 + 3a3.

Now we can reformulate this parametric curve in terms of the end points and
the tangents at the end points as

p(t) = p(0)(1−3t2 +2t3)+p(1)(3t2−2t3)+ ṗ(0)(t−2t2 + t3)+ ṗ(1)(−t2 + t3).
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This form defines the blending functions, often called Hermite basis functions
as

b0 = 1 − 3t2 + 2t3,

b1 = 3t2 − 2t3.

The blending functions for the derivatives are

d0 = t− 2t2 + t3

and
d1 = −t2 + t3.

It is easy to verify that these satisfy the required criteria stated above. One
can write the spline in terms of these functions as

p(t) = b0p(0) + b1p(1) + d0ṗ(0) + d1ṗ(1).

To adhere to the formulation used in the Bezier approach, this is also com-
monly written in terms of a matrix as

p(t) =
[

1 t t2 t3
]









1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1

















p(0)
p(1)
ṗ(0)
ṗ(1)









= TMHPH ,

where the subscript H stands for Hermite and is distinguished from the con-
ceptually similar, but contentwise different, components of the Bezier form.

Finally, when a set of n+ 1 parametric curves in the u direction and a set
of m + 1 in the v direction are given, they define m · n surface patches. The
composite Coons spline surface for the simpler, zero order continuous case is
written as

r(u, v) =

n
∑

i=0

bi(u)r(i, v) +

m
∑

j=0

(bj(v)r(u, j)−

−
n

∑

i=0

m
∑

j=0

bi(u)bj(v)r(i, j).

2.4.2 Computational example

Consider the example surface patch shown in Figure 2.10. The corner points
are shown in Table 2.3 along with the corresponding local parameter assign-
ments.
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FIGURE 2.10 Coons surface patch example

TABLE 2.3

Coons surface patch
example

i xi yi zi u v

1 0 1 0 0 0
2 1 1 0 1 0
3 0 0 1 0 1
4 1 0 1 1 1

Let us assume that the boundary spline curves are as follows. The u direc-
tion boundaries are

r(u, 0) = ui+ 1 · j + 0 · k,
and

r(u, 1) = ui+ 0 · j + 1 · k.
The v direction boundaries are
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r(0, v) = 0 · i+ (1 − v2) · j + vk,

and

r(1, v) = 1 · i+ (1 − v2) · j + vk,

We will use the simpler, zero order continuous Coons patch and write the
blending functions and the boundary curves into the formulation directly as

r(u, v) =
[

(2u3 − 3u2 + 1) (−2u3 + 3u2)
]

[

0 · i+ (1 − v2) · j + vk
1 · i+ (1 − v2) · j + vk

]

+
[

(2v3 − 3v2 + 1) (−2v3 + 3v2)
]

[

ui+ 1 · j + 0 · k
ui+ 0 · j + 1 · k

]

−
[

(2u3 − 3u2 + 1) (−2u3 + 3u2)
]

[

(0, 1, 0) (0, 0, 1)
(1, 1, 0) (1, 0, 1)

] [

2v3 − 3v2 + 1
−2v3 + 3v2

]

.

The analytic expansion of the patch is laborious, but possible. In practical
surface spline approximations, the expression is evaluated at certain locations.
For example let us find the geometric coordinates of the surface patch point
corresponding to the parametric location of

(u, v) = (1/2, 1/2).

For the y coordinate,

y(u, v) =
[

(2 · 1/8− 3 · 1/4 + 1) (−2 · 1/8 + 3 · 1/4)
]

[

1 − 1/4
1 − 1/4

]

+
[

(2 · 1/8− 3 · 1/4 + 1) (−2 · 1/8 + 3 · 1/4)
]

[

1
0

]

−
[

(2 · 1/8− 3 · 1/4 + 1) (−2 · 1/8 + 3 · 1/4)
]

[

1 0
1 0

][

2 · 1/8− 3 · 1/4 + 1
−2 · 1/8 + 3 · 1/4)

]

= 3/4.

Similarly for the x coordinate,

x(u, v) =
[

1/2 1/2
]

[

0
1

]

+
[

1/2 1/2
]

[

1/2
1/2

]

−
[

1/2 1/2
]

[

0 0
1 1

][

1/2
1/2

]

= 1/2.

Finally, for the z coordinate,

z(u, v) =
[

1/2 1/2
]

[

1/2
1/2

]

+
[

1/2 1/2
]

[

0
1

]

−
[

1/2 1/2
]

[

0 1
0 1

][

1/2
1/2

]

= 1/2.

The point sought on the surface is at

r(u, v) = r(1/2, 1/2) =
1

2
i+

3

4
j +

1

2
k.
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FIGURE 2.11 Bezier surface patch weight definition

2.4.3 Bezier surfaces

In the surface approximation case, the approximating polynomial is defined
by a set of points given in a rectangular array in parametric space. Such
a case of control points and weights is shown in Figure 2.11. The rational
parametric Bezier surface (patch) is described as

SB(u, v) =

∑3
i=0

∑3
j=0 wijJ3,i(u)J3,j(v)Pij

∑3
i=0

∑3
j=0 wijJ3,i(u)J3,j(v)

or in matrix form

SB(u, v) =
UMP i,jM

TV

UMWi,jMTV
.
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The computational components are

P i,j =









w00P00 w01P01 w02P02 w03P03

w10P10 w11P11 w12P12 w13P13

w20P20 w21P21 w22P22 w23P23

w30P30 w31P31 w32P32 w33P33









,

U is the parametric row vector of

U =
[

1 u u2 u3
]

,

and for the other parameter

V =









1
v
v2

v3









.

The weights now form a matrix of

Wij =









w00 w01 w02 w03

w10 w11 w12 w13

w20 w21 w22 w23

w30 w31 w32 w33









.

The approximating polynomial surface is described by

r(u, v) =
UMXijM

TV

UMWijMTV
i+

UMY ijM
TV

UMWijMTV
j +

UMZijM
TV

UMWijMTV
k.

Here Xij , Y ij , Zij , are the weighted point coordinates. Again, in practical
circumstances a multitude of these patches is used to completely cover the
data given. The earlier continuity discussion generalizes for surface patches.
We consider the boundary between two patches as shown in Figure 2.12. The
partial derivative in u direction at the boundary between two patches, repre-
sented by the slant arrow in the figure, may be written as

∂S(u, v)

∂u
(i− 0, j) = 3

wi−1,j

wi,j
(Pi−1,j − Pi,j)

and
∂S(u, v)

∂u
(i+ 0, j) = 3

wi+1,j

wi,j
(Pi+1,j − Pi,j).

The first order continuity condition is assured by

S1
u =

∂S(u, v)

∂u
(i− 0, j) =

∂S(u, v)

∂u
(i+ 0, j).
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From this it follows that

wi+1,j

wi−1,j
=
Pi−1,j − Pi,j

Pi+1,j − Pi,j
.

Similarly

wi+1,j+1

wi−1,j+1
=
Pi−1,j+1 − Pi,j+1

Pi+1,j+1 − Pi,j+1
.

As long as the above two conditions are satisfied, the first order continuity
condition is satisfied along the u direction across the segment between the Pi,j

and Pi,j+1 points. A similar treatment is applied to the v parametric direction.

The second order continuity is based on the mixed second order partial
derivatives of

∂2S(u, v)

∂u∂v
(i− 0, j − 0)
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= 9(
wi−1,j−1

wi,j
(Pi−1,j−1 − Pi,j) +

wi−1,j−1wi,j−1

w2
i,j

(2Pi,j − Pi−1,j − Pi,j−1))

and
∂2S(u, v)

∂u∂v
(i+ 0, j + 0)

= 9(
wi+1,j+1

wi,j
(Pi+1,j+1 − Pi,j) +

wi+1,jwi,j+1

w2
i,j

(2Pi,j − Pi+1,j − Pi,j+1)).

Equivalencing these derivatives, as well as similar expressions with respect to
the v parametric direction results in the second order continuity condition.
This condition is almost overbearingly strict, requiring nine control points
to be coplanar. Therefore, it is seldom enforced in engineering analysis. It
mainly contributes to the esthetic appearance of the surface created, and as
such it is preferred by shape designers.

The Bezier objects are popular in the industry due to the following reasons:

1. All Bezier curves and surface patches are contained inside the convex
hull of their control points,
2. The number of intersection points between a Bezier curve and an infinite
plane is the same as the number of intersections between the plane and the
control polygon,
3. All derivatives and products of Bezier functions are easily computed Bezier
functions.

These properties are exploited in industrial geometric modeling computations.
In industrial applications [9] spline curves are used to specify the faces of com-
plex geometric models. This technique is called the boundary representation
method, and it is widely used in various industries. A good overview of sur-
face approximation methods is presented in [8].

2.4.4 Triangular surface patches

Both of the surface interpolation methods discussed above required the orga-
nization of input data in topologically rectangular arrangements. In real life
geometries this may not always be possible, resulting in the need for a trian-
gular surface element. This is especially important in finite element meshing
technologies, where the most common mesh shape achieved by automated
techniques is a triangle.

The triangular surface patch may be constructed with the help of areal or
barycentric coordinates. Let us consider a triangle with vertices P1, P2 and
P3. The areal coordinates of a point P inside the triangle are written as
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ai =
Ai

A
, i = 1, 2, 3,

where A is the area of the triangle and Ai is the triangular area defined by P
and (Pj , j 6= i). For example the a1 areal coordinate is the area of the triangle
defined by P, P2, P3, or in other words, opposite of P1. Note that for all points
on the edge opposite to corner Pi, the value of ai is zero. It is clearly true that

3
∑

i=1

ai = 1,

and any point inside the triangle may be written in terms of the areal coor-
dinates as

P =

3
∑

i=1

aiPi.

 0
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 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

"control_points"

FIGURE 2.13 Triangular patch construction
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Hence the areal coordinates are truly the coordinates of P with respect to the
corner points. We now introduce a vector of the areal coordinates

a = (a1, a2, a3),

and a vector of indices

i = (i1, i2, i3).

Here the i1, i2, i3 indices are running on the edges of the triangle opposite to
vertices P1, P2, P3, respectively. With these, a method of generating triangu-

TABLE 2.4

Triangular patch data

i1 i2 i3 Point

3 0 0 P1 = Q300

0 3 0 P2 = Q030

0 0 3 P3 = Q003

2 1 0 Q210

1 2 0 Q120

2 0 1 Q201

0 2 1 Q021

1 0 2 Q102

0 1 2 Q012

1 1 1 Q111

lar surface splines for the case

z = f(x, y) = f(a)

may be devised. We generalize the cubic Bernstein basis polynomials for this
case as

Bi(a) =
3!

i1!i2!i3!
ai1
1 a

i2
2 a

i3
3 .

The evaluation of this expression follows the convention of 0! = 1. Let the
surface heights be given at the three vertices. Let the control point heights
also be given at two intermediate points on each edge and at one point inside
the triangle.

The control points of a triangular patch are shown in Figure 2.13 and their
index arrangement is shown in Table 2.4. The given heights at the points are
denoted by

z(i) = f(Qi1i2i3).
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Based on this the triangular surface is constructed as

z(a) =
∑

i1+i2+i3≤3

z(i)Bi(a).

With the precomputed factorial expressions as coefficients

ci =
3!

i1!i2!i3!
,

the surface is interpolated as

z(a) =
∑

i1+i2+i3≤3

z(i)cia
i1
1 a

i2
2 a

i3
3 .

The computation process may be executed in the tabulated form of Table

TABLE 2.5

Triangular patch computation

i1 i2 i3 ci z(i) ai1
1 ai2

2 ai3
3

3 0 0 1 z300 a3
1 1 1

0 3 0 1 z030 1 a3
2 1

0 0 3 1 z003 1 1 a3
3

2 1 0 3 z210 a2
1 a2 1

1 2 0 3 z120 a1 a2
2 1

2 0 1 3 z201 a2
1 1 a3

0 2 1 3 z021 1 a2
2 a3

1 0 2 3 z102 a1 1 a2
3

0 1 2 3 z012 1 a2 a2
3

1 1 1 6 z111 a1 a2 a3

2.5. The precomputed values greatly simplify the process, especially when
there is a multitude of triangles.

2.4.5 Computational example

We generate the triangular patch shown in Figure 2.14, with the input data
defined in Table 2.6. In the figure “side” marks the control polygon, that
partially coincides with the coordinate axes.

The computation for the surface point at (x, y) = (1/3, 1/3) above the cen-
tral control point is summarized in Table 2.7.
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TABLE 2.6

Triangular patch example
data

i1 i2 i3 x y z(i)

3 0 0 0 0 0
0 3 0 1 0 1
0 0 3 0 1 1
2 1 0 1/3 0 0
1 2 0 2/3 0 1/3
2 0 1 0 1/3 0
1 0 2 0 2/3 1/3
0 1 2 1/3 2/3 1
0 2 1 2/3 1/3 1
1 1 1 1/3 1/3 0

The areal coordinates for this point due to symmetry are

"side"
g(x,y)
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 1

X-axis  0
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 1

Y-axis
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 1

Z-axis

FIGURE 2.14 Triangular patch example surface
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TABLE 2.7

Triangular patch example computation

i1 i2 i3 ci z(i) ai1
1 ai2

2 ai3
3

0 3 0 1 1 1 1/27 1
0 0 3 1 1 1 1 1/27
1 2 0 3 1/3 1/3 1/9 1
1 0 2 3 1/3 1/3 1 1/9
0 1 2 3 1 1 1/3 1/9
0 2 1 3 1 1 1/9 1/3

a1 = a2 = a3 =
1

3
,

since the area of the triangle is 1/2. Note that only the rows producing
nonzero results are shown in Table 2.7.

From the tabulated components the surface height at the desired location is

z(1/3, 1/3) = 2
1

27
+ 3

1

3
(
1

3

1

9
+

1

3

1

9
) + 2 · 3(

1

3

1

9
+

1

9

1

3
) =

10

27
.

The method demonstrated here generalizes to other than the f(x, y) case
shown above. There are also other ways to construct triangular patches. For
example, one can use the rectangular representation and let two vertices coa-
lesce creating a degenerate rectangular patch. There are even more complex
surface approximation shapes, like the n-sided surface patches described in
[8].
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3

Least squares approximation

This chapter concentrates on yet another approach to approximating a set of
points. We first forced the approximation curve to go through all the points
via the classical interpolation techniques. Then we somewhat relaxed this for
the Bezier splines by only going through certain points with the spline ap-
proximations. Here, we are not going to go through the points at all, at least
not intentionally.

Another noteworthy fact is, that while we had a measure of the error of the
approximation in interpolation, we did not in the case of the splines. In the
class of the least square methods, we go even further and try to minimize the
error of the approximation.

The technique dates back to the 19th century. Legendre may have invented
the concept in 1806 [4] and Gram has used the insight in [3] in 1883; however,
earlier attempts were also made in similar contexts. The technique nowadays
is widely described in most numerical analysis, approximation theory [2] and
even calculus texts.

3.1 The least squares principle

We consider again a set of points

(xi, yi); i = 1, . . . , n.

The least squares principle calls for an approximation function that produces
the smallest sum of the square of the differences between the ordinates of the
function and the given point set. Algebraically this error is

ELS =
n

∑

i=1

[yi − LS(xi)]
2,

where LS is the approximation function. The least squares principle requires
this error to be minimal.

61
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To obtain the minimum, the type of the approximating function must be
chosen a priori. For a certain class of functions then, the equations defining
the algebraic minimum will provide the computational strategy.

The most commonly used least squares approximation functions for a set of
points are linear, polynomial and exponential functions. Their specific formu-
lations will be detailed in the next sections. The more advanced and seldom
published techniques of nonlinear, trigonometric and directional least squares
methods will also be discussed. It is also notable that the principle may be
applied in approximating functions. That is the topic of the next chapter.

3.2 Linear least squares approximation

The simplest and most widely used least squares approximation strategy is
linear. In this case the approximation fits a straight line through the set of
points, a line that minimizes the squared error.

Let us describe the linear approximation function as

LS(x) = ax+ b

The least squares error for such an approximating function is

ELS =

n
∑

i=1

(yi − (axi + b))2,

where the a, b coefficients of the approximating function are yet unknown.
This error function is then a function of two variables and to minimize this,
the first order partial derivatives must be zero.

∂ELS

∂a
= 0

and
∂ELS

∂b
= 0.

This would specifically give rise to

∂

∂b

n
∑

i=1

[yi − (axi + b)]2 = −2

n
∑

i=1

(yi − axi − b) = 0
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and
∂

∂a

n
∑

i=1

[yi − (axi + b)]2 = −2

n
∑

i=1

(yi − axi − b)(−xi) = 0.

Evaluating the sums termwise results in a system of two equations in the
two unknowns. These equations are called the normal equations:

bn+ a

n
∑

i=1

xi =

n
∑

i=1

yi

and

b

n
∑

i=1

xi + a

n
∑

i=1

x2
i =

n
∑

i=1

xiyi.

The analytic solution of this system yields

b =
(
∑n

i=1 x
2
i )

∑n
i=1 yi − (

∑n
i=1 xiyi)

∑n
i=1 xi

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)2

,

and

a =
n

∑n
i=1 xiyi − (

∑n
i=1 xi)

∑n
i=1 yi

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)2

.

The computation is rather straightforward, even with a large number of points.
The application of such an approximation is very frequent when one tries to
establish some trend in a large collection of data. Such collections occur, for
example, when some engineering tests are executed and measured data is col-
lected.

3.3 Polynomial least squares approximation

It is often very desirable to fit a polynomial to a set of points. In this case
an a priori specification of the polynomial order is required. We consider an
mth order polynomial of the form

LSm(x) = amx
m + am−1x

m−1 + . . .+ a1x+ a0.

Clearly, when m = 1 we have the case of the linear least squares approxima-
tion discussed in the last section. Following the footsteps of the linear process,
the error is

ELSm
=

n
∑

i=1

(yi − LSm(xi))
2.
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Executing the square gives

ELSm
=

n
∑

i=1

y2
i − 2

n
∑

i=1

LSm(xi)yi +

n
∑

i=1

(LSm(xi))
2.

The extension of the sums is more complicated as we have m+1 terms. Some
algebra yields

ELSm
=

n
∑

i=1

y2
i − 2

m
∑

j=0

aj

n
∑

i=1

xj
iyi +

m
∑

j=0

m
∑

k=0

(ajak

n
∑

i=1

xj+k
i ).

In this case we have m+ 1 partial derivatives of the form

∂ELSm

∂aj
= −2

n
∑

i=1

xj
i yi + 2

m
∑

k=0

ak

n
∑

i=1

xj+k
i .

Equating with zero and reordering produces the normal equations

m
∑

k=0

ak

n
∑

i=1

xj+k
i =

n
∑

i=1

xj
iyi; j = 0, 1, . . . ,m.

The above represents a system of equations of m+ 1 unknowns.

a0

n
∑

i=1

1 + a1

n
∑

i=1

xi + . . .+ am

n
∑

i=1

xm
i =

n
∑

i=1

yi,

a0

n
∑

i=1

xi + a1

n
∑

i=1

x2
i + . . .+ am

n
∑

i=1

xm+1
i =

n
∑

i=1

xiyi,

and so on until the last equation of

a0

n
∑

i=1

xm
i + a1

n
∑

i=1

xm+1
i + . . .+ am

n
∑

i=1

x2m
i =

n
∑

i=1

xm
i yi.

In matrix form this may be written as









n
∑

xi . . .
∑

xm
i

∑

xi

∑

x2
i . . .

∑

xm+1
i

. . . . . . . . . . . .
∑

xm
i

∑

xm+1
i . . .

∑

x2m
i

















a0

a1

. . .
am









=









∑

yi
∑

xiyi

. . .
∑

xm
i yi









,

or
Aa = b.

Here the limits of summation were omitted to increase the readability. As
the matrix is a Vandermonde matrix, this system of equations always has a
unique solution when the xi are all distinct.
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The computations may be better organized by introducing the matrix

B =









1 x1 . . . x
m
1

1 x2 . . . x
m
2

. . . . . . . . . . . .
1 xn . . . xm

n









.

Then we compute

A = BTB,

and

b = BT y

where

y =









y1
y2
. . .
yn









.

The solution is then

a = A−1b.

3.4 Computational example

To demonstrate the computational process of the least squares technique, the
point set of

(x, y) = (4, 1); (6, 3); (8, 8); (10, 20)

is used again. We will compute a linear and a quadratic least square approx-
imation. The computation is facilitated by Table 3.1, from which the linear
least squares approximation coefficients are found to be

a = 3.1,

and

b = −13.7.

This yields a linear approximation of

LS(x) = ax+ b = 3.1x− 13.7.
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TABLE 3.1

Computation of least squares approximation

xi yi xiyi x2
i x3

i x4
i x2

i yi

4 1 4 16 64 256 16
6 3 18 36 216 1296 108
8 8 64 64 512 4096 512
10 20 200 100 1000 10000 2000
∑

xi

∑

yi

∑

xiyi

∑

x2
i

∑

x3
i

∑

x4
i

∑

x2
i yi

28 32 286 216 1792 15648 2636

The approximation coefficients for the quadratic solution are based on the
system

4a0 + 28a1 + 216a2 = 32

28a0 + 216a1 + 1792a2 = 286

216a0 + 1792a1 + 15648a2 = 2636,

resulting in

a2 = 0.625, a1 = −5.65, a0 = 13.8.

This yields

LS2(x) = 0.625x2 − 5.65x+ 13.8.

The first and second order approximations are shown in Figure 3.1 along
with the points. Note the significant difference in quality of the linear and
the quadratic approximations. The computed least squares errors are

ELS =

n
∑

i=1

(yi − LS(xi))
2 = 25.8,

and

ELS2
=

n
∑

i=1

(yi − LS2(xi))
2 = 0.8,

where the numerical superiority of the second order is very clear.
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3.5 Exponential and logarithmic least squares approxi-

mations

Often a set of test data represents an analytic phenomenon of exponential or
logarithmic behavior, as occur for example in the engineering area of mate-
rial sciences. In the first case it is desirable to compute an exponential least
squares approximation as

LSe(x) = aebx.

Here again, the a, b are the unknowns. The least squares principle dictates

ELSe
=

n
∑

i=1

(yi − aebxi)2

-5
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FIGURE 3.1 Least squares approximation example



68 Chapter 3

to be minimum. The partial derivatives of this case are

∂ELSe

∂a
= 2

n
∑

i=1

(yi − aebxi)(−ebxi),

and
∂ELSe

∂b
= 2

n
∑

i=1

(yi − aebxi)(−axie
bxi).

Unfortunately, the resulting system of equations in unknowns a, b cannot be
solved analytically. A well-known way to cope with this difficulty is to con-
sider the logarithm of the approximation function:

ln(LSe(x)) = ln(a) + bx.

This is clearly a linear least squares problem in ln(a) and b and may be solved
easily. It is important to note, however, that the solution obtained this way is
not the least squares approximation of the exponential problem. It is a linear
approximation of the (xi, ln(yi)) set of points. This solution may not be the
best approximation of the (xi, yi) data set.

It is better to solve such a problem by solving the resulting system of
nonlinear equations with some approximate methods. Such methods will be
presented in Chapter 9.

Assuming now a logarithmic target function of

LSl(x) = a+ b · ln(x),

the now familiar strategy yields the coefficients as

a =

∑n
i=1 yi − b

∑n
i=1 ln(xi)

n

and

b =
n

∑n
i=1(yiln(xi)) − (

∑n
i=1 yi)

∑n
i=1 ln(xi)

n
∑n

i=1 ln
2(xi) − (

∑n
i=1 ln(xi))2

.

3.6 Nonlinear least squares approximation

The technique is very powerful when applied to nonlinear functions [1]. We
assume a nonlinear function of the form

y = f(x, p1, p2, . . . , pm),
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where pi, i = 1, 2, . . . ,m < n are parameters. We assume n data points given
as

y1 = f(x1, p1, p2, . . . , pm),

y2 = f(x2, p1, p2, . . . , pm),

and so on, until

yn = f(xn, p1, p2, . . . , pm).

We seek the values of the yet unknown parameters of the function to minimize

zi = yi − f(xi, p1, p2, . . . , pm)

for each i = 1, 2, . . . , n. The rate of change of the distance is

dzi =

m
∑

j=1

∂f

∂pj
(xi)dpj

for each i = 1, 2, . . . , n. Then in matrix form

dz = Adp,

where

A =











∂f
∂p1

(x1)
∂f
∂p2

(x1) . . .
∂f

∂pm
(x1)

∂f
∂p1

(x2)
∂f
∂p2

(x2) . . .
∂f

∂pm
(x2)

. . . . . . . . . . . .
∂f
∂p1

(xn) ∂f
∂p2

(xn) . . . ∂f
∂pm

(xn)











,

dz =









dz1
dz2
. . .
dzn









.

and

dp =









dp1

dp2

. . .
dpm









.

To produce a square system, we premultiply by AT and obtain

AT dz = ATAdp.

Introduce an initial set of parameters

p0 =









p0
1

p0
2

. . .
p0

n









,
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and compute for each i = 1, 2, . . . , n:

∆z0
i = yi − f(xi, p

0
1, p

0
2, . . . , p

0
m).

These terms would be gathered into the array

∆z0 =









∆z0
1

∆z0
2

. . .
∆z0

n









.

Then by using these differences instead of the differentials, the ensuing itera-
tion process consisting of steps

∆pk = (ATA)−1AT ∆zk−1,

and

pk
j = pk−1

j + ∆pk(j)

will provide a better approximation for the parameters. Finally,

∆zk
i = yi − f(xi, p

k
1 , p

k
2 , . . . , p

k
n)

is the basis for the next iteration, if necessary, as well as a measure of conver-
gence. The steps are executed until desirable accuracy measured by

||∆zk|| ≤ ε

is achieved, with a small ε.

The key to this technique is the easy computability of the partial derivatives
of the function with respect to the parameters. A practical application for
this technique to approximate statistical data to some distribution function
having variable parameters. For example, approximating measured data with
a Gaussian distribution function of yet unknown mean value and standard
deviation is an application for this technique.

3.6.1 Computational example

Another class of approximation functions well suited for this approach is the
trigonometric class. We consider for this example the target function of

f(x) = p1sin(p2x),

with two unknown parameters, one for amplitude and another one for period.
The input data of three points (just enough for the two parameters to make
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it a least squares solution) is

(x, y) = (0, 0), (1/2, 5/4), (1, 0).

The selection is admittedly very simple to enable easy computation while
demonstrating the method. We will assume an initial parameter distribution
of

p1 = 1, p2 = π,

or

p0 =

[

1
π

]

.

The initial parameter assumption is quite reasonable as it defines the basic
sine function. The derivatives are

∂f

∂p1
= sin(p2x),

and
∂f

∂p2
= p1 · xcos(p2x).

The A matrix is built as

A =





sin(0 · p2) 0 · p1cos(0 · p2)
sin(p2

2 ) p1

2 cos(p2/2)
sin(1 · p2) p1cos(1 · p2)



 =





0 0
1 0
0 −1



 .

The starting vector for the iteration process is

∆z0 =





0 − 1 · sin(0 · π)
5/4− 1 · sin(π/2)

0− 1 · sin(π)



 =





0
1/4
0



 .

Since for our specific example,

ATA =

[

1 0
0 1

]

= (ATA)−1,

the first parameter adjustment is

∆p1 =

[

0 1 0
0 0 −1

]

∆z0 =

[

1/4
0

]

.

With this, the adjusted parameter vector becomes

p1 = p0 + ∆p1 =

[

5/4
π

]

.
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The corresponding solution adjustment is

∆z1 =





0
0
0



 .

This clearly indicates that we have reached the analytic solution of

f(x) =
5

4
sin(πx).

Varying the starting value for the second parameter will of course produce
more iterations and less comfortable algebra, but work nevertheless.

3.7 Trigonometric least squares approximation

Periodic functions constitute a very important class in engineering work. The
idea of least squares approximation of periodic data arises quite naturally. Let
us consider a set of points with periodic tendencies and confined to the interval

−π = x0 ≤ x1 ≤ . . . ≤ xi ≤ . . . ≤ x2n = π.

This specific interval restriction may always be overcome by a simple coordi-
nate transformation. Assuming the point set is given in the interval from 0
to t, the

xi = π
xi − t

2
t
2

transformation will suffice. The matching ordinate values then are

f(xi) = f(
t

2π
xi +

t

2
).

An equidistant point distribution, while making the computations simpler, is
not a requirement for the technique developed below.

We are seeking a periodic or trigonometric least squares approximation of
the data in the form of

LSp(x) =
a0

2
+

m
∑

k=1

(akcos(kx) + bksin(kx)).

We will set bm = 0 and use the form

LSp(x) =
a0

2
+ amcos(mx) +

m−1
∑

k=1

(akcos(kx) + bksin(kx)).
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Since we need to find 2m coefficients, the number of points 2n + 1 must be
greater; otherwise the problem cannot be solved.

This formulation, which will be discussed at length in the next chapter in
connection with approximating functions, is also called the discrete Fourier
approximation. Here we apply it to discrete data in a least squares approx-
imation sense. Because the 2nth point is located at x2n = π, for which
sin(x2n) = 0, we are considering only 2n − 1 points in defining the least
squares error and that is why we set bm to zero.

ELSp
=

2n−1
∑

i=0

(yi − LSp(xi))
2.

The equations defining the approximation coefficients are derived again from
the stationary values of the first partial derivatives of the error function:

∂ELSp

∂ak
= 0

and
∂ELSp

∂bk
= 0.

For the coefficients in the sum, k = 1, 2 . . .m− 1, these equations read

2

2n−1
∑

i=0

(yi − LSp(xi))(−cos(kxi)) = 0,

and

2

2n−1
∑

i=0

(yi − LSp(xi))(−sin(kxi)) = 0.

The derivatives with respect to the first and the last a coefficients are similar,
but simpler.

2n−1
∑

i=0

(yi − LSp(xi)) = 0,

and

2

2n−1
∑

i=0

(yi − LSp(xi))(−cos(mxi)) = 0.

After substituting, reordering and a considerable amount of algebraic work
the resulting approximation formulae are

bk =
1

2n

2n−1
∑

i=0

yisin(kxi); k = 1, 2, . . .m− 1,
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and

ak =
1

2n

2n−1
∑

i=0

yicos(kxi); k = 0, 1, 2, . . .m.

Note, that the latter formula now includes the two specific a coefficients.

3.7.1 Computational example

Let us consider the set of points given in the first 3 columns of Table 3.2,
clearly demonstrating periodic tendencies.

TABLE 3.2

Periodic least squares
example

i xi yi LSp(xi)

0 −π 1 1
1 −π/2 −1 −1
2 0 1 1
3 π/2 −1 −1
4 π 1 1

Let us seek a trigonometric approximation of order m = 2 for this set of
2n+1 = 5 points. Using the above formulae for the first a coefficient produces

a0 =
1

4

3
∑

i=0

yicos(0xi) =
1

4

3
∑

i=0

yi =
1

4
(1 − 1 + 1 − 1) = 0.

The second a coefficient computes as

a1 =
1

4

3
∑

i=0

yicos(xi)

=
1

4
(cos(x0) − cos(x1) + cos(x2) − cos(x3)) = 0.

Similarly for the third m = 2:

a2 =
1

4

3
∑

i=0

yicos(2xi)

=
1

4
(cos(2x0) − cos(2x1) + cos(2x2) − cos(2x3)) = 1.
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Finally the single b coefficient in this case also becomes zero as

b1 =
1

4

3
∑

i=0

yisin(xi)

=
1

4
(sin(x0) − sin(x1) + sin(x2) − sin(x3)) = 0.

The least squares approximation of the given data set is obtained in the form
as

LSp(x) = cos(2x).

The approximation values at the input locations, shown in the last column of
Table 3.2, exactly match the input data. This is is not a surprising result as
the input data was produced by sampling the cos(2x) function at the specific
discrete points.

3.8 Directional least squares approximation

The least squares concept introduced in and discussed throughout this chapter
is based on the vertical distances between the given points and the approxi-
mating curve. It is of engineering interest on occasion to define the distance
measurement of the approximation in a certain direction. An often used case
of directional least squares methods is the case of perpendicular directions [5].

In this case, the distance between the line and the given point is measured
perpendicularly to the line. This is of course the smallest distance from the
point to the line. The distance is specifically

di =
|yi − (a+ bxi)|√

1 + b2
.

The least squares error function becomes

ELSp =
n

∑

i=1

(yi − (a+ bxi))
2

1 + b2
.

The now very familiar conditions for the minimum are

∂ELSp

∂a
=

2

1 + b2

n
∑

i=1

((a+ bxi) − yi) = 0
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and

∂ELSp

∂b
=

2

1 + b2

n
∑

i=1

((a+ bxi) − yi)xi −
2b

(1 + b2)2

n
∑

i=1

((a+ bxi) − yi)
2 = 0.

The latter equation reduces to

(1 + b2)

n
∑

i=1

((a+ bxi) − yi)xi − b

n
∑

i=1

((a+ bxi) − yi)
2 = 0,

which is unfortunately very convoluted. With some very laborious algebraic
work [5] it actually reduces to a quadratic with respect to b.

b2 +

∑

y2
i − ∑

x2
i + (

∑

xi)
2/n− (

∑

yi)
2/n

(
∑

xi

∑

yi)/n− ∑

xiyi
b − 1 = 0.

Here the limits of summation were again omitted to increase the readability.
The former equation is linear with respect to a, so it is somewhat simpler to
compute. The process is conceptually very easy, but algebraically cumber-
some to extend to other than the perpendicular direction.

3.9 Weighted least squares approximation

Finally we briefly review another extension of the least squares principle, in
which the input data is weighted. It is quite conceivable that the data gather-
ing process has some level of uncertainty associated with it. This uncertainty
may be related to the actual measurements; for example, it is possible that the
larger the measured value, the bigger the measurement error is. This could
be the case with some engineering measuring devices.

The issue may be addressed by assigning weights to the input data, account-
ing for the uncertainty of the measuring or gathering process. The resulting
weighted linear least squares principle is to minimize

EwLS =

n
∑

i=1

wi[yi − LS(xi)]
2.

The development of the solution following Section 3.1 is straightforward and
not detailed here. The values of the weights are sometimes chosen on a sta-
tistical basis; the standard variation σi, for example, is often used as a weight.
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4

Approximation of functions

The underlying problem description of the prior three chapters was a set of
points, even if they were obtained by sampling a function. In the following
three chapters, the problem foundation will always be a function.

Legendre already had made his mark in this area by the end of the 18th
century [8], and a class of polynomials bearing his name will be discussed in
this chapter. The subject was also studied extensively by Chebyshev [3] in
the middle of the 19th century. Trigonometric approximations attributed to
Fourier are also quite old [4]. Rational approximation was pioneered by Padé
at the end of the 19th century.

4.1 Least squares approximation of functions

To measure the approximation quality, the least squares principle introduced
in the last chapter for a discrete set of points may be applied here also. We
consider now a continuous function f(x) given in the interval [a ≤ x ≤ b]. We
are looking for an approximation function g(x) that minimizes the following
integral:

∫ b

a

(f(x) − g(x))2dx = min.

The expression may be generalized to include a weight function ρ(x) such that

∫ b

a

ρ(x)(f(x) − g(x))2dx = min.

Such an approximating function may be conveniently constructed by a linear
combination of functions

g(x) =

n
∑

k=0

ckgk(x).

79
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The linear dependency of the gk component functions, sometimes called basis
functions, is manifested in their Gramian matrix of scalar products:

G =









(g0, g0) (g0, g1) . (g0, gn)
(g1, g0) (g1, g1) . (g1, gn)

. . . .
(gn, g0) (gn, g1) . (gn, gn)









.

Here the scalar products are defined as

(gi, gj) =

∫ b

a

gi(x)gj(x)dx.

The system of basis functions is linearly independent if

det(G) 6= 0.

Without loss of generality, let us restrict the interval of approximation to
[−1 ≤ x ≤ 1]. This may always be achieved easily by a linear transformation
of

t =
a+ b

2
+
b− a

2
.

Let us also assume, for now, unit weights

ρ(x) = 1.

Furthermore, let us require that the linearly independent system of functions
is orthogonal. For this it is required that

(gi, gj) =

∫ b

a

gi(x)gj(x)dx =

{

0, i 6= j,
||gk||2, i = j.

Then the Gramian matrix is diagonal:

G =









||g0||2 0 0 0
0 ||g1||2 0 0
. . . .
0 0 0 ||gn||2









.

The approximation function of

g(x) =

n
∑

k=0

ckgk(x)

with such a set of basis functions results in the system of equations,

||gk||2ck = (f, gk); k = 0, 1, . . . , n,
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which may be solved for the unknown coefficients as

ck =
(f, gk)

||gk||2
; k = 0, 1, . . . , n.

This is even simpler if the basis functions are not just orthogonal, but or-
thonormal:

(gi, gj) =

∫ b

a

gi(x)gj(x)dx =

{

0, i 6= j,
1, i = j.

Then the coefficients are simply

ck = (f, gk); k = 0, 1, . . . , n.

Such a set of basis functions may be constructed from the class of power func-
tions. Precisely, the selection of

gk(x) = xk; k = 0, 1, . . . , n

with different weight functions gives rise to various classes of orthogonal poly-
nomial approximations that are detailed in the following sections.

4.2 Approximation with Legendre polynomials

We are focusing on the interval [−1 ≤ x ≤ 1] and the use of the power basis
functions with

ρ(x) = 1

results in the Legendre polynomial approximation. The members of the Leg-
endre polynomials may be obtained in several ways. One way is to execute
a Gram-Schmidt orthogonalization procedure [5] on the given class of basis
polynomials above. The procedure will be detailed next.

4.2.1 Gram-Schmidt orthogonalization

The procedure is well known by engineers in a linear algebraic sense. How-
ever, here we use it in connection with a more generic scalar product. The
algorithm of the procedure for our case is as follows. For

gk(x) = xk; k = 0, 1, . . . , n,
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compute

Gk = gk −
k−1
∑

j=0

(gk, Gj)

(Gj , Gj)
Gj .

Here

(gk, Gj) =

∫ +1

−1

gk(x)Gj(x)dx

and

(Gj , Gj) = ||Gj(x)||2.

The execution of this algorithm starts as

G0 = g0 = 1,

and

||G0||2 =

∫ +1

−1

1 · 1dx = 2.

-1

-0.5

 0

 0.5
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 1.5

-1 -0.5  0  0.5  1

Le0(x)
Le1(x)
Le2(x)
Le3(x)

FIGURE 4.1 Legendre polynomials
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The next term is computed as

G1 = x− (x, 1)

2
1 = x− 0 = x,

||G1||2 =

∫ +1

−1

x · xdx = 2/3.

Finally the third term is

G2 = x2 − (x2, 1)

2
1 − (x2, x)

2/3
x = x2 − 1/3 · 1 − 0 · x = x2 − 1

3
.

The Legendre polynomials (noted by Lek(x)) are obtained from these orthog-
onal polynomials via a specific normalization as

Lek(1) = αkGk(1) = 1.

Clearly,

Le0(x) = G0(x), Le1(x) = G1(x).

On the other hand,

α2G2(1) = 1

yields

α2 =
3

2
,

and

Le2(x) =
3

2
G2(x) =

3

2
(x2 − 1

3
) =

1

2
(3x2 − 1).

The three members obtained so far enable us to construct a recurrence for-
mula for higher order members. One can see that

2Le2(x) − 3xLe1(x) + 1Le0(x) = 0.

It may be proven by induction that

kLek(x) − (2k − 1)xLek−1(x) + (k − 1)Lek−2(x) = 0.

The next term from the equation is

Le3(x) =
1

2
(5x3 − 3x),

and so on. These first four Legendre polynomials are shown in Figure 4.1. It
is visibly apparent and possible to prove that

Lek(x) = (−1)kLek(−x),
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i.e., they are symmetric with respect to the y axis when k is even and about
the origin when odd. The final goal of this section is the approximation of

f(x) =

n
∑

k=0

ckLek(x),

for which the coefficients are still outstanding. Since the Legendre polynomi-
als are only orthogonal, not orthonormal, the scalar products of

(Lek(x), Lek(x)) = ||Lek(x)||2

are needed. These may be computed easily as

||Le0||2 = 2; ||Le1||2 =
2

3
; ||Le2||2 =

2

5
.

A pattern may again be recognized:

||Lek||2 =
2

2k + 1
,

which may be verified by

||Le3||2 =
2

7
=

2

2 · 3 + 1
.

Hence, the approximation coefficients are

ck =
2k + 1

2
(f(x), Lek(x)); k = 0, 1, . . . , n.

4.2.2 Computational example

To provide a working knowledge of the Legendre approximation process, we
conclude this section with a simple computational example of a Legendre
polynomial approximation of f(x) = x3. There is, of course, no practical
justification to approximate this function with Legendre polynomials, apart
from the exercise’s educational purpose.

Let us first compute the scalar products needed for the approximation co-
efficients:

(f(x), Le0(x)) = (x3, 1) = 0,

(f(x), Le1(x)) = (x3, x) =
2

5
,

(f(x), Le2(x)) = (x3,
1

2
(3x2 − 1)) = 0,

and

(f(x), Le3(x)) = (x3,
1

2
(5x3 − 3x)) =

4

35
.
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The two meaningful coefficients are

c1 = 3/2 · 2/5 =
3

5
,

and

c3 = 7/2 · 4/35 =
2

5
.

The approximation via Legendre polynomials is

f(x) = c1Le1(x) + c3Le3(x) =
3

5
x+

2

5

1

2
(5x3 − 3x) = x3.

This is, of course, the ultimate least squares fit for the given function, as the
approximation function analytically agrees with the function to be approxi-
mated.

The Legendre polynomials have several other very interesting characteris-
tics, for example, they may be derived as a solution of a specific differential
equation. They, specifically their zeroes, will also have a prominent role in
Chapter 6 in the Gaussian numerical quadrature process.

4.3 Chebyshev approximation

Similarly to the Legendre approximation, the Chebyshev approximation is
based on the linearly independent set of

gk(x) = xk

power functions. Chebyshev, however, defines the scalar product in terms of
the weight function

ρ(x) =
1√

1 − x2

as

(gi, gj) =

∫ b

a

ρ(x)gi(x)gj(x)dx.

One may produce the Chebyshev polynomials by executing the Gram-Schmidt
procedure. This technique, due to the weight function, is rather tedious. An
alternative way to produce them is by the following definition of the kth
Chebyshev polynomial

Tk(x) = cos(k arccos(x)); k = 0, 1, . . . , n.
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With the substitution of

x = cos(θ),

the definition is

Tk(x) = cos(kθ).

Well-known simple trigonometric identities of

cos((k + 1)θ) = cos(θ)cos(kθ) − sin(θ)sin(kθ),

and

cos((k − 1)θ) = cos(θ)cos(kθ) + sin(θ)sin(kθ),

may be combined as

cos((k + 1)θ) = 2cos(θ)cos(kθ) − cos((k − 1)θ).

Substitution yields a three-member recurrence formula for the Chebyshev
polynomials.

Tk+1(x) = 2xTk(x) − Tk−1(x).

Starting again with
T0(x) = 1

and
T1(x) = x,

one proceeds as

T2(x) = 2x2 − 1

and

T3(x) = 4x3 − 3x.

The first four Chebyshev polynomials are shown in Figure 4.2. The Cheby-
shev polynomials also exhibit interesting characteristics. They are also spe-
cially normalized as

Tk(1) = 1

and
Tk(−1) = (−1)k.

Furthermore, they satisfy

|Tk(x)| ≤ 1;−1 ≤ x ≤ 1
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and their symmetry characteristics are similar to those of the Legendre poly-
nomials

Tk(−x) = (−)kTk(x).

The Chebyshev polynomials may also be used to approximate functions sim-
ilarly to the Legendre polynomials. One can compute coefficients ak to obtain

g(x) =
n

∑

k=0

akTk(x).

The most practical usage of the Tk polynomials is, however, in a different
form, as discussed in the next section.
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FIGURE 4.2 Chebyshev polynomials
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4.3.1 Collapsing a power series

The trigonometric definition of the Chebyshev polynomials enables spectacu-
lar possibilities. For example, using the identity

xk = cosk(θ) = (
eiθ + e−iθ

2
)k

and the binomial theorem, and using the definition of the first two Chebyshev
polynomials

1 = T0(x),

x = T1(x),

and by appropriately grouping like terms, we obtain

x2 =
1

4
(ei2θ + 2 + e−i2θ) =

1

2
T0(x) +

1

2
T2(x).

Similarly,

x3 =
3

4
T1(x) +

1

4
T3(x),

and so forth.

The idea of collapsing a power series was first proposed by Lanczos [7].
The original and very powerful idea is as follows. Let us consider a function
for which a power series approximation, for example, a Taylor polynomial,
exists.

g(x) =

n
∑

k=0

ckx
k.

Substitute xk powers in terms of the Chebyshev polynomials from above and
reorder to produce

g(x) =

n
∑

k=0

bkTk(x).

The concept of collapsing means dropping the highest order term from the
Chebyshev-based polynomial. The new series will still result in better accu-
racy than the power series.
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4.3.2 Computational example

Let us consider

f(x) = sin(x)

in the interval [−1 ≤ x ≤ 1]. If we approximate f(x) by the first 3 terms of
the power series expansion

sin(x) =

∞
∑

k=0

(−1)k x2k+1

(2k + 1)!
,

we obtain the fifth order approximate function of

g(x) = x− 1

6
x3 +

1

120
x5.
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FIGURE 4.3 Chebyshev example
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This has an approximation error of

|f(x) − g(x)| < 1

7!
=

1

5040
.

We employ the binomial theorem again to obtain the x5 power series member
in terms of the Chebyshev polynomials.

x5 =
1

32
(ei5θ + 5ei3θ + 10eiθ + 10e−iθ + 5e−i3θ + e−i5θ).

Substitution yields

x5 =
5

8
T1(x) +

5

16
T3(x) +

1

16
T5(x).

We replace the power series terms as

g(x) = T1(x) −
1

6
(
3

4
T1(x) +

1

4
T3(x)) +

1

120

1

16
(10T1(x) + 5T3(x) + T5(x)).

Reordering results in

g(x) =
169

192
T1(x) −

5

128
T3(x) +

1

1920
T5(x).

We drop the last term (we have never computed yet in this book anyway) and
obtain

g(x) =
169

192
T1(x) −

5

128
T3(x) = 0.9974x− 0.1562x3.

Figure 4.3 shows the original sin(x) function, the cubic power series P (x)
and the Chebyshev-based approximation, noted on the figure as T (x). In the
interval of approximation, the Chebyshev approximation is indistinguishable
from the sin(x) curve. The power series expansion has a noticeably larger
error. The error of the Chebyshev polynomial approximation is less than 1

1920 ,
which is about a third of the error of the original power series approximation.

4.4 Fourier approximation

The trigonometric foundation of the Chebyshev polynomials hints toward an-
other approximation approach for functions that are periodic in nature. Let
us assume that f(x) is periodic with period 2π and integrable in the interval
[−π, π] along with its square. The Fourier, or trigonometric, approximation



Approximation of functions 91

seeks the following approximation function:

g(x) = a0 +
n

∑

k=1

(akcos(kx) + bksin(kx)),

such that

||f(x) − g(x)||2 = min.

This form of approximation implies that the basis function set consists of

g0(x) = 1, g1(x) = cos(x), g2(x) = sin(x), . . . ,

and in general,

gj(x) =

{

cos(kx), j = 2k − 1,
sin(kx), j = 2k.

In order to verify that these basis functions are orthogonal, we need to evalu-
ate some integrals for various products of these functions. First the product
of two differently indexed (i 6= j) even and odd functions is considered.

∫ π

−π

sin(ix)cos(jx)dx =
1

2

∫ π

−π

sin((i+ j)x) + sin((i− j)x)dx = 0.

The substitution of the integrand of the left-hand side is obtained by adding
the well-known trigonometric identities of the sin of the sum and difference of
two angles. All such integrals are zero since the sin function is an odd func-
tion and the interval of integration is symmetric with respect to the origin.
Similar considerations can be used to prove that

∫ π

−π

cos(ix)cos(jx)dx = 0,

and
∫ π

−π

sin(ix)sin(jx)dx = 0.

Let us now focus on products with identical indices. For an even term

∫ π

−π

sin(jx) · sin(jx)dx =

∫ π

−π

(
1

2
− 1

2
cos(2jx))dx = π,

and for an odd term

∫ π

−π

cos(jx) · cos(jx)dx =

∫ π

−π

(
1

2
+

1

2
cos(2jx))dx = π.

Thus it follows that the set is orthogonal with respect to the integral

(gi, gj) =

∫ π

−π

gi(x)gj(x)dx =

{

0, i 6= j,
π, i = j.
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Finally we create a basis function set (Gj) from which the the unknown coef-
ficients are easily computed. Since

||g0||2 =

∫ π

−π

1 · 1dx = 2π,

the first term of the new set is

G0(x) =
1

2π
.

Then

||g1||2 =

∫ π

−π

cos(x) · cos(x)dx = π,

results in

G1(x) =
1

π
cos(x).

Similarly

||g2||2 =

∫ π

−π

sin(x) · sin(x)dx = π,

yields

G2(x) =
1

π
sin(x).

In general for any j > 0,

||gj ||2 = π,

and

Gj(x) =

{

1
π cos(kx), j = 2k − 1,

1
π sin(kx), j = 2k.

Then the coefficients may be computed as

cj = (f,Gj), j = 0, 1, . . . , 2n.

The specific first constant is computed as

a0 =

∫ π

−π

f(x)
1

2π
dx,

resulting in

a0 =
1

2π

∫ π

−π

f(x)dx.
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The odd indexed terms become

ak =
1

π

∫ π

−π

f(x)cos(kx)dx,

and the even indexed terms are

bk =
1

π

∫ π

−π

f(x)sin(kx)dx.

The computation of these coefficients is somewhat tedious as depending on
the type of the function f(x) the integrals may not always be available in
closed form.

4.4.1 Computational example

One cannot find a simpler example to demonstrate this process than the ap-
proximation of the power function y = x2 in the interval [−π, π]. We seek a
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FIGURE 4.4 Fourier example
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2nd order Fourier approximation.

The first coefficient is the product of the integral

a0 =
1

2π

∫ π

−π

x2dx =
1

3
π2.

The generic a coefficients are

a1 =
1

π

∫ π

−π

x2cos(x)dx = −4,

and

a2 =
1

π

∫ π

−π

x2cos(2x)dx = 1.

The lone b coefficient is

b1 =
1

π

∫ π

−π

x2sin(x)dx = 0.

Hence the approximation result is

g(x) =
π2

3
− 4cos(x) + cos(2x).

The original function f(x) and the approximation g(x) are shown in Figure
4.4.

4.4.2 Complex Fourier approximation

It is also possible and sometimes advantageous to describe the approximation
in complex form as

g(x) =

n
∑

k=−n

cke
ikx,

where the complex coefficient is

ck =
1

2π

∫ π

−π

f(x)e−ikxdx.

Here i =
√
−1, the imaginary unit, and note the specific index sequencing.

The expansion of the approximation is of the form

g(x) = c0 + c1e
ix + c−1e

−ix + . . .+ cne
inx + c−ne

−inx.
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The complex coefficients are also based on certain orthogonality conditions.
Specifically for k, l = 0, 1, . . . , n, it is easy to see that

∫ π

−π

eikxe−ikxdx = 2π,

while
∫ π

−π

eikxeilxdx = 0, l 6= −k.

Multiplying both sides of the approximation function by e−ikx and integrating
over the interval of [−π, π], due to the above orthogonality conditions, there
is only one term left standing:

∫ π

−π

f(x)e−ikxdx =

∫ π

−π

cke
ikxe−ikxdx = 2πck.

This is the equation for the complex coefficients ck. Note that all the complex
coefficients come from a single common formula.

The relationship with the real coefficients may be established by using one
of Euler’s formulae:

e−ikx = cos(kx) − i sin(kx).

Multiplying by f(x) and integrating yields

∫ π

−π

f(x)e−ikxdx =

∫ π

−π

f(x)cos(kx)dx − i

∫ π

−π

f(x)sin(kx)dx.

Substituting the coefficients we get

2πck = πak − iπbk,

or

ck =
ak

2
− i

bk
2
.

Conversely, since

cos(kx) =
eikx + e−ikx

2
,

and

sin(kx) =
eikx − e−ikx

2i
,

similar multiplication and integration results in

ak = ck + c−k,



96 Chapter 4

and

bk =
ck − c−k

i
.

Note that the function resulting from the complex Fourier approximation may
still be real, even with the complex coefficients and terms.

The complex Fourier approximation technique provides the basis for a clever
computational arrangement known as the Fast Fourier Transform (FFT) [2].
This method has gained wide acceptance in engineering applications and is
widely used in software packages.

4.5 Padé approximation

The final technique discussed in this chapter is again of a different class.
Namely, the approximation function is a rational polynomial. This approxi-
mation is executed in the neighborhood of a fixed point. For convenience let
us use zero as this point. Then the Padé approximation will be a generaliza-
tion of the MacLaurin polynomial. Choosing a nonzero fixed point results in
a generalization of the Taylor polynomial.

g(x) =
p(x)

q(x)
=
a0 + a1x+ a2x

2 + . . .+ anx
n

b0 + b1x+ b2x2 + . . .+ bmxm
.

In order to have a nonzero denominator, the condition of

b0 6= 0

is needed. We will enforce this with

b0 = 1.

We need to find coefficients ak and bk such that the derivatives of the func-
tion are approximated as

f (k)(0) = g(k)(0), k = 0, 1, . . . ,m+ n.

When m = 0, the Padé approximation is simply the MacLaurin series. The
error of the approximation is

f(x) − g(x) = f(x) − p(x)

q(x)
=
f(x)q(x) − p(x)

q(x)
.
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Let us replace the function f(x) to be approximated with its MacLaurin series,

f(x) =

∞
∑

i=0

cix
i.

Substituting this and the approximating rational function into the error for-
mula gives

f(x) − g(x) =

∑∞
i=0 cix

i
∑m

i=0 bix
i −

∑n
i=0 aix

i

q(x)
.

Expanding the sums, the numerator is of the form

(c0+c1x+c2x
2+. . .)(1+b1x+b2x

2+. . .+bmx
m)−(a0+a1x+a2x

2+. . .+anx
n).

Note that we took advantage of the enforced b0 value. Multiplying and re-
ordering produces the coefficient of the xk term as

k
∑

i=0

(cibk−i) − ak.

We select the coefficients such that this expression is zero for k ≤ m + n.
This assures that f(x) − g(x) has a zero of multiplicity m + n + 1 at x = 0.
More on this will be discussed in Chapter 7, on the subject of solution of al-
gebraic equations. This results in a set ofm+n+1 linear equations of the form

k
∑

i=0

cibk−i − ak = 0, k = 0, 1, . . . ,m+ n.

This is a homogeneous system of linear equations in m + n + 1 unknowns
ak, k = 0, 1, . . . , n and bk, k = 1, . . . ,m. This process definitely warrants an
enlightening example.

4.5.1 Computational example

We consider the approximation of

f(x) = ex.

The MacLaurin series expansion is

ex = 1 + x+
1

2
x2 +

1

6
x3 + . . . .

Let us aim for a Padé approximation with n = 2 and m = 1, i.e., a quadratic
numerator and a linear denominator polynomial.
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Following the above theory, the expansion of the numerator is

(1 + x+
1

2
x2 +

1

6
x3 + . . .)(1 + b1x) − (a0 + a1x+ a2x

2).

Since m+n = 2+1 = 3, we need four equations. Executing the multiplication
results in

1 − a0 + (1 + b1 − a1)x+ (
1

2
+ b1 − a2)x

2 + (
1

6
+

1

2
b1)x

3.

Collecting out the coefficients for the increasing power terms gives the system
of equations as follows:

1 − a0 = 0,

1 + b1 − a1 = 0,

1

2
+ b1 − a2 = 0,
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FIGURE 4.5 Padé approximation example
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and
1

6
+

1

2
b1 = 0.

The first equation gives

a0 = 1,

the last

b1 = −1

3
.

The two intermediate equations produce

a1 =
2

3
,

and

a2 =
1

6
.

The Padé approximation of ex is therefore of the form

g(x) =
1 + 2

3x+ 1
6x

2

1 − 1
3x

.

Figure 4.5 shows the ex function, its MacLaurin polynomial as McL(x) and
Padé approximations g(x) in the [0.75, 1] interval to be able to visualize the
advantage of the Pade approximation. One can verify that

g′(0) = g′′(0) = g(3)(0) = 0,

in agreement with the derivatives of ex as it was intended. In general, the
Padé approximation is superior to the MacLaurin. For example, at x = 1 the
value of the MacLaurin polynomial is 2.67, while the Padé approximation’s is
2.75, the latter clearly closer to e = 2.7183.

The Padé approximations have a very wide area of applications and the
theory is very extensive and deep. Brezinski [1] is the preeminent contempo-
rary researcher of this technique, with dozens of publications.

The topic of the approximation of functions is of course very far from being
exhausted. The orthogonal polynomial technique with a weight function of
ρ(x) = e−x yields the Laguerre polynomials, and with ρ(x) = e−x2

produces
the Hermite polynomials. The details of these are found in advanced approx-
imation texts such as [6] or [10], but as these techniques are not widely used
in engineering practice, they are not discussed here further.
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5

Numerical differentiation

As in the last chapter, the input datum of our consideration is still a func-
tion. Here, however, we will extract a single quantity related to the function,
namely its derivative. The topic of calculating the derivative of a function
approximately (numerical differentiation) has been the focus of interest of
mathematicians for many centuries. As will be seen, most of the methods are
some kind of an extension of polynomial approximations, such as Lagrange’s
or Taylor’s.

5.1 Finite difference formulae

Based on the teaching of calculus, the definition of the derivative of a contin-
uous function f(x) at the point x = x0 is

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)

h
.

For a small, finite h value the approximation of

f ′(x0) ≈
f(x0 + h) − f(x0)

h

is commonly applied; that is, of course, approximating the slope of the tangent
of the function (the derivative) with the slope of a chord in the neighborhood
of the point of interest. In other words, the differential is approximated by a
finite difference, hence the name of this class of methods.

This is a conceptually very simple method; but, we would like to also have
an error estimate. To do so, we utilize the Lagrange polynomial approxima-
tion of Chapter 1. Introduce a point

x1 = x0 + h

and generate a first order Lagrange polynomial through the two points. Based
on the discussion in Chapter 1, one can write

101
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f(x) =
1

∑

k=0

f(xk)Lk(x) +
(x− x0)(x− x1)

2!
f ′′(ξ),

where the last term is the error formula of the Lagrange approximation and

x0 < ξ < x1.

Substituting the Lagrange base polynomials tailored for our case

f(x) = f(x0)
x− x1

x0 − x1
+ f(x1)

x− x0

x1 − x0
+

(x− x0)(x − x1)

2
f ′′(ξ).

Furthermore,

f(x) = f(x0)
x− x0 − h

−h + f(x0 + h)
x− x0

h
+

(x− x0)(x − x0 − h)

2
f ′′(ξ).

Analytically differentiating and substituting yields

f ′(x0) =
f(x0 + h) − f(x0)

h
− h

2
f ′′(ξ).

It is important to point out that, despite the definite negative sign of the error
term, the correction will be in the appropriate direction. That is assured by
the fact that the second derivative is part of the error term. If the second
derivative is negative, the curve is convex from downward, and the chord-
based slope is an underestimate. The error term is positive in this case and
vice versa. Unfortunately, the error term cannot be computed precisely, as it
is taken at an unknown location.

5.1.1 Three-point finite difference formulae

The Lagrange polynomial based approach, besides producing a valuable error
term, permits a useful generalization. Let us consider n + 1 points, one of
which is the point of interest,

xk, k = 0, 1, . . . , n.

Following the process introduced above,

f(x) =

n
∑

k=0

f(xk)Lk(x) +
(x − x0) · · · (x− xn)

(n+ 1)!
fn+1(ξ),

where

x0 < ξ < xn.



Numerical differentiation 103

Differentiating again and substituting the point of interest, say, xj , we obtain
a general n+ 1 point difference formula.

f ′(xj) =

n
∑

k=0

f(xk)L′
k(xj) +

n
∏

k=0,k 6=j

(xj − xk)
f (n+1)(ξ)

(n+ 1)!
.

Depending on the choice of the point of interest we obtain the above forward
finite difference formula when xj = x0, a backward finite difference formula
when xj = xn, and a centered finite difference formula otherwise.

In engineering practice, the 3-point centered finite difference formula is
widely used and will be discussed here. For this case, the first Lagrange base
polynomial and its derivative are

L0(x) =
(x− x1)(x − x2)

(x0 − x1)(x0 − x2)
,

and

L′
0(x) =

2x− x1 − x2

(x0 − x1)(x0 − x2)
.

Similarly the second and third Lagrange basis polynomials first derivatives are

L′
1(x) =

2x− x0 − x2

(x1 − x0)(x1 − x2)
,

and

L′
2(x) =

2x− x0 − x1

(x2 − x0)(x2 − x1)
.

With the above terms, the generic 3-point approximate derivative formula is

f ′(xj) = f(x0)
2xj − x1 − x2

(x0 − x1)(x0 − x2)
+ f(x1)

2xj − x0 − x2

(x1 − x0)(x1 − x2)

+f(x2)
2xj − x0 − x1

(x2 − x0)(x2 − x1)
+

2
∏

k=0,k 6=j

(xj − xk)
f (3)(ξ)

6
.

In engineering practice the points sampled or measured are quite often equidis-
tant. We have already taken advantage of this on prior occasions and will also
do so here. We specify

xj − xj−1 = h.

Assuming that xj = x0 and

x1 = x0 − h,

and
x2 = x0 + h
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produces

f ′(xj) = f ′(x0) = f(x0)
2x0 − (x0 − h) − (x0 + h)

h(−h)

+ f(x0 − h)
2x0 − x0 − (x0 + h)

−h(−2h)
+ f(x0 + h)

2x0 − x0 − (x0 − h)

h(2h)

+
−h2

6
f (3)(ξ).

Sorting results in the 3-point, equidistant centered difference formula:

f ′(x0) =
f(x0 + h) − f(x0 − h)

2h
− h2

6
f (3)(ξ).

Here

x0 − h < ξ < x0 + h.

Note that this 3-point centered difference formula has an error of order h2 as
opposed to the earlier order h. At the boundary of the interval of interest (or
the continuity of the function), one may desire to again set xj = x0, but with

x1 = x0 + h,

and
x2 = x0 + 2h.

Then the formula becomes a 3-point forward difference formula of

f ′(x0) =
−3f(x0) + 4f(x0 + h) − f(x0 + 2h)

2h
+
h2

3
f (3)(ξ).

Here
x0 < ξ < x0 + 2h.

An interesting application of the latter formula is to approximate end slopes
for splines. Changing h to −h results in a 3-point backward difference formula.
Note that the error of these formulae is still O(h2), due to their centered dif-
ference foundation, as opposed to the original forward or backward difference
formula’s error of O(h).

From the error terms introduced so far it seems like reducing the size of h
is advantageous. One must exercise caution in this regard, however, as the
smaller the h gets the closer the terms in the numerator get. As subtraction
of very close numbers in finite precision arithmetic is numerically dangerous,
clearly reducing h to a very small value holds its own pitfall.

This avenue is not explored here further; the remarks are meant to point
out the inherently unstable nature of numerical differentiation. This is the
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area where the distinction mentioned in the introduction about formula error
and numerical computation error is relevant. Modern numerical analysis texts
such as [4] deal with the detailed analysis of the latter class of errors.

5.1.2 Computational example

Let us consider finding the derivative of f(x) = sin(x) using the points of

x0 = 0.5, x1 = 0.6, x2 = 0.7.

This is a computational example where the use of a calculator or a computer
program is required to evaluate the function at the desired points. The ap-
propriate function values are

f(x0) = sin(0.5) = 0.4794,

f(x1) = sin(0.6) = 0.5646,

f(x2) = sin(0.7) = 0.6442.

The calculation at the center point is simply the application of the 3-point
centered difference formula as

f ′(x1) = f ′(0.6) =
sin(0.7)− sin(0.5)

0.2
= 0.8239.

The error term for this case is bounded by

0.12

6
cos(ξ) ≤ 0.12

6
cos(x0) = 0.0014.

Here we have chosen x0 = ξ to maximize the absolute value of the error term
in the interval. This fits well with the theoretical value of

sin′(x)|x=0.6 = cos(0.6) = 0.8253.

Figure 5.1 shows the function and its numerical derivative-based tangent
line as “t1(x)”. In order to compute the derivative at the left end point, the
3-point forward difference formula is used:

f ′(x0) = f ′(0.5) =
−3sin(0.5) + 4sin(0.6)− sin(0.7)

0.2
= 0.8804.

The error term is

| − 0.12

3
cos(ξ)| ≤ | − 0.12

3
cos(x0)| = | − 0.0028|.

The exact value is

sin′(0.5) = cos(0.5) = 0.8776.
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Finally, the right end point derivative may be computed from the 3-point
backward difference formula by replacing h with −h as

f ′(x2) = f ′(0.7) =
sin(0.5) − 4sin(0.6) + 3sin(0.7)

0.2
= 0.7676,

which also compares well with the exact value of

sin′(0.7) = cos(0.7) = 0.7648.

5.2 Higher order derivatives

Until now we have focused on the first derivative only. We can also compute
higher order derivatives by utilizing a sequence of forward differences. With
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FIGURE 5.1 Numerical differentiation example
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∆f(x0) = f(x0 + h) − f(x0),

the forward difference based first derivative derived in Section 5.1 is

f ′(x0) =
1

h
∆f(x0).

Introducing the second order forward difference

∆2f(x0) = ∆f(x0 + h) − ∆f(x0) = f(x0 + 2h) − 2f(x0 + h) + f(x0),

the approximate second derivative is written as

f ′′(x0) =
∆2f(x0)

h2
.

The obvious path of generalization is by introducing

∆kf(x0) = ∆k−1f(x0 + h) − ∆k−1f(x0).

Then any higher order derivative is obtained by

f(k)(x0) =
∆kf(x0)

hk
.

Executing the differences recursively, for k = 3 we obtain

f ′′′(x0) =
∆kf(x0)

hk
=
f(x0 + 3h) − 3f(x0 + 2h) + 3f(x0 + h) − f(x0)

h3
.

We observe that the coefficients are the binomial coefficients, hence

∆kf(x0) =

k
∑

i=0

(−1)k

(

k
i

)

f(x0 + (k − i)h).

For example the 4th order forward difference is

∆4f(x0) = (−1)0
(

4
0

)

f(x0 + 4h) + (−1)1
(

4
1

)

f(x0 + 3h)

+ (−1)2
(

4
2

)

f(x0 + 2h) + (−1)3
(

4
3

)

f(x0 + 1h) + (−1)4
(

4
4

)

f(x0 + 0h).

Hence the approximate fourth derivative is computed as

f (4)(x0) =
1

h4
(f(x0 + 4h)− 4f(x0 + 3h) + 6f(x0 + 2h)− 4f(x0 + h) + f(x0)).

This offers a more expedient way of generating higher order approximate
derivative formulae than the recursive computation from the lower order dif-
ferences. Note, however, that all these formulae have O(h) error, which may
not be adequate. The following section will introduce two techniques to im-
prove the accuracy.
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5.3 Richardson’s extrapolation

The technique of this section aims to improve the accuracy of the low order
approximation formulae. The underlying concept [3] is to extrapolate in such
a way as to eliminate some of the error as shown below. Let us consider the
Taylor series expansion:

f(x0 + h) = f(x0) + f ′(x0)h+
1

2
f ′′(x0)h

2 +
1

6
f (3)(x0)h

3

+
1

24
f (4)(x0)h

4 +
1

120
f (5)(ξr)h

5.

Similarly toward the left-hand side of the point of interest:

f(x0 − h) = f(x0) − f ′(x0)h+
1

2
f ′′(x0)h

2 − 1

6
f (3)(x0)h

3

+
1

24
f (4)(x0)h

4 − 1

120
f (5)(ξl)h

5.

In the above:

x0 < ξr < x0 + h,

and

x0 − h < ξl < x0.

Subtracting the two equations and expressing the first derivative yields

f ′(x0) =
f(x0 + h) − f(x0 − h)

2h
− h2

6
f (3)(x0) −

h4

120
f (5)(ξ).

Here now ξ is

x0 − h < ξ < x0 + h,

and may be found based on the intermediate value theorem. The first part
of this formula is the same as the earlier derived 3-point centered difference
formula; however, we now have two error terms. The first one is possible to
compute precisely as it is taken at the point of interest and therefore may be
used as an actual correction term. The second term is still an approximation
term taken at an unknown location x0 − h < ξ < x0 + h.

We will now write this in terms of a different step size of h/2 and with the
correction term,

f ′(x0) =
f(x0 + h/2)− f(x0 − h/2)

h
− h2

24
f (3)(x0) −

h4

1920
f (5)(ξ2).
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Here

x0 − h/2 < ξ2 < x0 + h/2.

Introducing the notation

R1(h) =
f(x0 + h) − f(x0 − h)

2h
,

and

R1(h/2) =
f(x0 + h/2)− f(x0 − h/2)

h
,

we write

f ′(x0) = R1(h) −
h2

6
f (3)(x0) −

h4

120
f (5)(ξ),

and

f ′(x0) = R1(h/2) − h2

24
f (3)(x0) −

h4

1920
f (5)(ξ2).

Multiplying the last equation by 4 and subtracting the previous equation re-
sults in

3f ′(x0) = 4R1(h/2) −R1(h) +
h4

480
k,

where
k = 4f (5)(ξ) + f (5)(ξ2).

The obvious observation and the salient feature of the technique is that the
computable error term of O(h2) has been eliminated. Reordering yields the
formula of

f ′(x0) = R1(h/2) +
R1(h/2) −R1(h)

3
+O(h4),

with an improved formula error.

To summarize the concept, Richardson’s extrapolation improved the accu-
racy of a certain approximation formula by evaluating it at two different step
sizes. Appropriately combining the results produces a much smaller formula
error. Note that the concept is independent of the formula used and it may
also be applied to other formulae.

Let us introduce the notation

R2(h) = R1(h/2) +
R1(h/2) −R1(h)

3
.

Hence the approximate derivative is

f ′(x0) = R2(h) +O(h4).
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Then the Richardson extrapolation may be generalized as follows.

Rj(h) = Rj−1(h/2) +
Rj−1(h/2) −Rj−1(h)

4j−1 − 1
, j = 2, 3, . . . .

TABLE 5.1

Richardson extrapolation scheme

Step j = 1 j = 2 j = 3 j = 4

h R1(h)
h/2 R1(h/2) R2(h)
h/4 R1(h/4) R2(h/2) R3(h)
h/8 R1(h/8) R2(h/4) R3(h/2) R4(h)
Error: O(h2) O(h4) O(h6) O(h8)

If a first order formula has an error term of O(h2), then the jth order for-
mula will have an error term of O(h2j). To use the higher order Richardson
terms, more and more subdivision of the step size is required. Table 5.1 shows
the tabulation of the process.

5.3.1 Computational example

Let us consider the example of f(x) = ln(x) and find the derivative at the
point x0 = 1. As it is well known analytically, the derivative has a unit value
at that point. We will use the centered 3-point formula with Richardson
extrapolation and use an initial step size of h = 0.4.

The centered 3-point formula is computed as

f ′(x0) =
ln(1.4) − ln(0.6)

2 · 0.4 = 1.0591223.

TABLE 5.2

Richardson extrapolation example

h R1(h) R2(h) R3(h)

0.4 1.0591223
0.2 1.0136628 0.9985096
0.1 1.0033535 0.9999170 1.0000109
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The error is clearly of O(h2). The Richardson’s extrapolation process for
j = 2, 3 is executed in Table 5.2 and clearly demonstrates the method’s accu-
racy advantages.

5.4 Multipoint finite difference formulae

Going from the 2-point forward difference formula to the 3-point formula
showed an order of magnitude improvement in error. It seems like the higher
the number of points the better the approximation is. The clever scheme for
general multipoint techniques developed in [1] and discussed in this section
exploits this tendency.

We will assume an equidistant sampling of the function with step size h:

xi = x0 + ih, i =, 0, 1, . . . , 2m− 1.

We seek the approximate first derivative of f(x) in the form of

f ′(xi) =

m
∑

k=−m

ckf(xi+k).

Note the centered difference flavor of the formulation; the point of interest is
an internal xi point and m points to both sides of it are used. Let us further
approximate the function values with their Taylor series as

f(xi+k) = f(xi)+khf ′(xi)+
k2h2

2!
f ′′(xi)+

k3h3

3!
f (3)(xi)+

k4h4

4!
f (4)(xi)+ . . . .

Substituting the latter into the approximate derivative form and ordering
terms results in

f ′(xi) = f(xi)

m
∑

k=−m

ck + hf ′(xi)

m
∑

k=−m

kck +
h2

2!
f ′′(xi)

m
∑

k=−m

k2ck+

+
h3

3!
f (3)(xi)

m
∑

k=−m

k3ck +
h4

4!
f (4)(xi)

m
∑

k=−m

k4ck + . . . .

Comparing the two sides yields the following 2m+ 1 equations:

m
∑

k=−m

ck = 0,
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m
∑

k=−m

kck =
1

h
,

m
∑

k=−m

k2ck = 0,

and so on until
m

∑

k=−m

k2mck = 0.

This nonhomogeneous system of equations uniquely defines the ck coefficients
of the approximation. Let us consider the case of m = 2 and the matrix form

Ac = b,

which is detailed as













1 1 1 1 1
−2 −1 0 1 2
4 1 0 1 4
−8 −1 0 1 8
16 1 0 1 16

























c1
c2
c3
c4

c2m+1













=













0
1
h
0
0
0













.

The system matrix is of Vandermonde type and thus always invertible. The
solution for the specific case yields

c =





























1
12h

−8
12h

0

8
12h

−1
12h





























.

Since 2m+ 1 = 5 this is a 5-point formula:

f ′(xi) =
f(xi−2) − 8f(xi−1) + 8f(xi+1) − f(xi+2)

12h
.

Note that the middle coefficient became zero; hence the formula appears to
use only 4 points.

The error of the multipoint formulae is proportional to

k2m+lh2m+l

(2m+ l)!
f (2m+l)(ξ),



Numerical differentiation 113

where 2m + l is the first nonzero omitted term of the Taylor series, most of
the time l = 1. The actual error of a certain formula is

O(
h2m+l

hp
),

where p is the power of the denominator term of the formula. The error for
the above 5-point form is

O(
h2·2+1

h
),

specifically it is O(h4). A similar computation for m = 3 would result in the
following 7-point formula of

f ′(xi) =
f(xi−3) + 9f(xi−2) − 45f(xi−1) + 45f(xi+1) − 9f(xi+2) + f(xi+3)

60h
,

with an error term of O(h6). The middle term is missing again as before.

The procedure simply generalizes to higher order derivatives; the only dif-
ference is that the b vector has its nonzero term in the location corresponding
to the order of the derivative. For the nth derivative it would move into the
n location and become

n!

hn
.

The following multipoint higher order derivatives were obtained by this pro-
cess and are useful in engineering practice:

A 5-point second derivative,

f ′′(xi) =
−f(xi−2) + 16f(xi−1) − 30f(xi) + 16f(xi+1) − f(xi+2)

12h2
.

A 7-point third derivative,

f (3)(xi) =
f(xi−3) − 8f(xi−2) + 13f(xi−1) − 13f(xi+1) + 8f(xi+2) − f(xi+3)

8h3
.

A 7-point fourth derivative,

f (3)(xi) =
−f(xi−3) + 12f(xi−2) − 39f(xi−1) + 56f(xi)

6h4

+
−39f(xi+1) + 12f(xi+2) − f(xi+3)

6h4
.

The above three methods all have an error of O(h4). Note the occasional
appearance of the middle term (the point of interest) as well as the different
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sign patterns. There is a wealth of multipoint formulae presented in hand-
books such as [2].

It is easy to see that using m = 1 in this derivation scheme for the first
derivative yields

f ′(xi) =
−f(xi−1) + f(xi+1)

2h
,

which is the same as the centered difference formulae already obtained by
means of the Lagrange basis functions in Section 5.1.1. Similarly for the higher
order derivatives, this process results in the same formulae as the Lagrange-
based formulae; however, the Lagrange method is difficult with a large number
of points.

Furthermore, the forward and backward difference formulae may also be
derived from this multipoint technique. For example, the 5-point forward dif-
ference first derivative formula may be obtained by the simple restructuring
of the linear system as













1 1 1 1 1
0 1 2 3 4
0 1 4 9 16
0 1 8 27 64
0 1 16 81 256

























c1
c2
c3
c4

c2m+1













=













0
1
h
0
0
0













.

The solution of this system is

c =





























−25
12h

48
12h

−36
12h

16
12h

−3
12h





























.

Notice the reappearance of the 5th term. The 5-point forward difference for-
mula is now

f ′(xi) =
−25f(xi) + 48f(xi+1) − 36f(xi+2) + 16f(xi+3) − 3f(xi+4)

12h
.

Again substituting h = −h results in the corresponding 5-point backward dif-
ference formula of

f ′(xi) =
25f(xi) − 48f(xi−1) + 36f(xi−2) − 16f(xi−3) + 3f(xi−4)

12h
.
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Finally, it is noteworthy that the multipoint techniques are the basis of the
finite difference method for the solution of initial value problems discussed in
Chapter 11.
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6

Numerical integration

The techniques of this chapter are also rather old; the beginning of the 18th
century brought the renaissance of this topic, starting with Newton [9]. His
work was generalized by Cotes [4], resulting in the class of Newton-Cotes
formulae, the subject of the first section of this chapter. Simpson [11], who is
credited with giving the trigonometric functions their names, is the source of
one of the most widely used formulae discussed below. Stirling [12] is worthy
of mention here for suggesting the idea of composite methods. Gauss took up
the topic about a century later, and as in many occasions, standing on the
shoulders of giants, he added a significant contribution [5].

The input considered in this chapter is still a function. The subject of the
approximation is the definite integral of the function in a given interval. As
the geometric meaning (in the case of a function of one variable) is the area
under the curve, these computations are often called numerical quadrature.
The reason for such a calculation may be that the integral is not easy, or even
possible, to integrate analytically. There are also other reasons in engineering
applications, specifically those arising in finite element analysis.

6.1 The Newton-Cotes class

The Newton-Cotes class of quadrature methods is based on the equidistant
subdivision of the interval of integration into n subintervals spanned by n+1
points. Hence n is the order of the formula. The first formula we discuss
is used very often in engineering applications as it is very easy to compute.
It is commonly called the trapezoid formula and it is the n = 1 case of the
Newton-Cotes formulae.

The approximate computation of

I =

∫ b

a

f(x)dx

117
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may be achieved following similar concepts as earlier. For example, the func-
tion may be replaced by its Lagrange polynomial, since the polynomials are
always integrable. Let us replace the function with its first order Lagrange
polynomial and the associated error term:

f(x) = f(x0)L0(x) + f(x1)L1(x) +
1

2
f ′′(ξ)(x − x0)(x− x1).

6.1.1 The trapezoid rule

Assigning first

a = x0, b = x1,

expanding the Lagrange basis polynomials and substituting into the integral
we obtain

I =

∫ x1

x0

(f(x0)
x− x1

x0 − x1
+ f(x1)

x− x0

x1 − x0
)dx +

∫ x1

x0

1

2
f ′′(ξ)(x − x0)(x− x1)dx.

Integration results in

I = [
(x− x1)

2

2(x0 − x1)
f(x0)+

(x− x0)
2

2(x1 − x0)
f(x1)]

x1

x0
+
f ′′(ξ)

2
[
x3

3
−x1 + x0

2
x2+x0x1x]

x1

x0
.

Executing the posed algebraic operations and introducing

h = x1 − x0

yields

I =
h

2
(f(x0) + f(x1)) −

h3

12
f ′′(ξ).

This is a familiar formula, known as the trapezoid rule. It is easy to see that
the first term is the area of the trapezoid bounded by

x = x0, x = x1, y = 0

and the chord going through the points

(x0, f(x0)), (x1, f(x1)).

The area under the curve f(x) is approximated by the area of the trapezoid
inscribed into the function.
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6.1.2 Simpson’s rule

Let us now focus on the n = 2 case. This means we will use 3 points and we
assign the boundary points of the integral as

a = x0

and

b = xn = x2.

The intermediate point for this case will be

x1 = x0 + h

with

h =
b− a

n
=
b− a

2
.

Notice the use of the original integral boundaries. The use of the Lagrange
basis polynomials for three points yields

I =

∫ x1

x0

[f(x0)L0(x) + f(x1)L1(x) + f(x2)L2(x)]dx.

Detailing the Lagrange basis polynomials the integral becomes

I =

∫ x1

x0

[f(x0)
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ f(x1)

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)

+ f(x2)
(x− x0)(x − x1)

(x2 − x0)(x2 − x1)
]dx+

∫ x1

x0

f (3)(ξ)
(x − x0)(x− x1)(x− x2)

6
]dx.

Integration, substitution and some algebra yield Simpson’s rule,

∫ b

a

f(x)dx =
h

3
[f(x0) + 4f(x1) + f(x2)] + e.

Here e is the error of the formula, which we will temporarily leave as is. One
can observe that the formula is accurate for 3rd degree polynomials:

∫ b

a

x3dx =
b− a

6
(a3 + 4(

a+ b

2
)3 + b3) =

b4 − a4

4
.

This is clearly equivalent to the result of Simpson’s rule,

∫ b

a

f(x)dx =
b− a

6
(f(a) + 4f(

a+ b

2
) + f(b)),

when

f(x) = x3.



120 Chapter 6

The error

e =

∫ x1

x0

f (3)(ξ)
(x − x0)(x − x1)(x − x2)

6
dx

is difficult to compute directly due to the sign changes in the integration in-
terval. Instead, we will derive the error term from the just learned fact that
Simpson’s rule is exact for up to third order polynomials. Simpson’s rule may
be written in the form of 3 unknown coefficients:

∫ b

a

f(x)dx = c0f(x0) + c1f(x1) + c2f(x2).

Specifically for f(x) = x, x2, x3 the exact integrals with h = (b− a)/2 are

∫ b

a

xdx = 2hx0 + 2h2,

∫ b

a

x2dx = 2hx2
0 + 4h2x0 +

8h3

3
,

and
∫ b

a

x3dx = 2hx3
0 + 6h2x2

0 + 8h3x0 + 4h4.

These are respectively equivalent to

c0x0 + c1(x0 + h) + c2(x0 + 2h),

c0x
2
0 + c1(x0 + h)2 + c2(x0 + 2h)2,

and
c0x

3
0 + c1(x0 + h)3 + c2(x0 + 2h)3.

The resulting system of equation has the solution of

c0 = c2 =
h

3

and

c1 =
4h

3
.

Now we execute the same procedure again for a 4th order polynomial, for
which the formula has an error. The exact integral is

∫ b=x2

a=x0

x4dx =
1

5
(x5

2 − x5
0).

The approximate integral via Simpson’s rule is

h

3
(x4

0 + 4x4
1 + x4

2).
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Their difference is

− h5

90
24,

where
24 = (x4)(4) = f (4)(ξ).

Hence the error term of Simpson’s rule is

e = −h
5

90
f (4)(ξ).

The above result generalizes as follows: the nth order Newton-Cotes for-
mulae with even n are accurate to a polynomial of order n + 1, while the
odd formulae are accurate only to the same order. The trapezoid rule is odd
(n = 1), and exact only for a linear polynomial, while the one order higher
(n = 2) Simpson’s rule is even, and exact for a cubic polynomial.

The generic error terms following [6] are

en=even =
hn+3f (n+2)(ξ)

(n+ 2)!

∫ n

0

m2(m− 1) · · · (m− n)dm

and

en=odd =
hn+2f (n+1)(ξ)

(n+ 1)!

∫ n

0

m2(m− 1) · · · (m− n)dm.

Based on the above, the following Newton’s rule, despite being n = 3, is
exact also only to cubic polynomials.

Let us consider the generic odd error term of

en=3 =
h5f (4)(ξ)

24

∫ 3

0

m2(m− 1)(m− 2)(m− 3)dm.

Executing the integration yields

en=3 =
h5f (4)(ξ)

24

−9

10
= −3h5f (4)(ξ)

80
.

Creating the computational part as in earlier cases results in

∫ b

a

f(x)dx =
3h

8
(f(x0) + 3f(x1) + 3f(x2) + f(x3)) + e.

Finally the n = 3 Newton-Cotes class formula, also known for its notable
constant as Newton’s 3/8 rule, is as follows:

∫ b

a

f(x)dx =
3h

8
(f(x0) + 3f(x1) + 3f(x2) + f(x3)) −

3h5

80
f4(ξ)).
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In all of these formulae the ξ location is inside the interval of the integral
a < ξ < b. Some numerical texts also list formulae for the n = 4 case; how-
ever, they are not often used in engineering practice.

6.1.3 Computational example

Let us consider the integral

I =

∫ b

a

f(x)dx =

∫ 1

1/2

x4dx

for our computational example, since it was instrumental in obtaining the
error term for Simpson’s rule. We first, however, apply the trapezoid rule.

It =
1 − 1/2

2
((1/2)4 + 14) =

17

64
= 0.2656.

 0
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FIGURE 6.1 Numerical integration example
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The error term is computed as

et =
(1/2)3

12
f ′′(ξ) =

1

8 · 12
12ξ2 ≤ 1

8
= 0.125.

Note that the value of ξ = 1 used to give the maximum. Naturally, the exact
result is

I = [
x5

5
]11/2 =

31

160
= 0.19375.

We clearly have an overestimation of the area, since the function is concave
from below in the interval of integration. The area between the function f(x)
and the trapezoid line t(x) as shown in Figure 6.1 is rather significant.

Now we compute Simpson’s rule. The approximate integral is

IS =
1 − 1/2

2 · 3 ((1/2)4 + 4(3/4)4 + 14) =
1

12

169

64
= 0.19401.

This is very clearly much closer to the exact value. The error term for Simp-
son’s rule is

eS =
(1/4)5

90
f (4)(ξ) =

24

90 · 1024
= 0.00026.

Simpson’s rule is indeed much superior. It is also shown in Figure 6.1 by the
very small difference between the function f(x) and the curve noted by S(x)
in the figure that represents Simpson’s rule.

6.1.4 Open Newton-Cotes formulae

The above forms may all be categorized as closed Newton-Cotes formulae, as
the points on the integral boundaries were included (x0 = a, xn = b), i.e.,
the interval of integration was closed. Sometimes the function values at the
boundaries are not computable, rendering the above formulae useless. For
these cases the open Newton-Cotes formulae are used.

To derive the open Newton-Cotes formulae, the following boundary assign-
ment is used:

x0 = a+ h

and

xn = b− h.

Here

h =
b− a

n+ 2
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is visibly different from the closed formula. The difference is to accommodate
the additional inner points required due to the excluded integral boundary
points. Following the principle used above, but for a generic n, the open for-
mulae approximation is based on

I =

∫ xn+h

x0−h

n
∑

k=0

f(xk)Lk(x)dx.

This may also be written as

I =

n
∑

k=0

f(xk)

∫ xn+h

x0−h

Lk(x)dx.

Error terms are computed similarly to the closed formulae, based on the error
term of the Lagrange polynomials. The execution of the appropriate integra-
tion yields the various open formulae.

The n = 0 case is also valid, since we are using n + 2 points. This case
produces the so-called midpoint formula.

∫ b

a

f(x)dx = 2hf(x0) +
h3

3
f ′′(ξ),

where the location of the midpoint is

x0 = a+ h

and the step size is

h =
b− a

2
.

The reason for the naming convention is obvious. Similarly, the n = 1 open
formula is of the form

∫ b

a

f(x)dx =
3h

2
(f(x0) + f(x1)) +

3h3

4
f ′′(ξ),

and the locations of the points are

x0 = a+
b− a

3

and

x1 = a+ 2
b− a

3
= b− b− a

3
.

The error formula is related to the same derivative of the function as in the
n = 0 case, since the latter is considered an “even” case in this regard. Simi-
larly the open formula for n = 2 is
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∫ b

a

f(x)dx =
4h

3
(2f(x0) − f(x1) + 2f(x2)) +

14h5

45
f (4)(ξ).

6.2 Advanced Newton-Cotes methods

Further generalizations of the Newton-Cotes formulae are possible as shown
in this section. These address the issues of very wide integration intervals and
possible improvement in the accuracy.

6.2.1 Composite methods

The interval of the integration until now was considered to be narrow enough
that a few points were adequate to produce acceptable results. For very wide
ranges the composite methods are recommended. The idea dates back to Stir-
ling [12], also in the early 18th century.

Let us now assume that the function to be integrated in a wider range is
sampled at n+ 1 points, with n being even

a = x0 < x1 < . . . < xn−1 < xn = b.

The points are equidistant, such that

xk = a+ kh,

with
h = (b− a)/n.

We apply Simpson’s rule to every 3 consecutive points as

∫ x2

x0

f(x)dx =
h

3
(f(x0) + 4f(x1) + f(x2)) + e,

∫ x4

x2

f(x)dx =
h

3
(f(x2) + 4f(x3) + f(x4)) + e,

and so on until
∫ xn

xn−2

f(x)dx =
h

3
(f(xn−2) + 4f(xn−1) + f(xn)) + e.

The complete interval’s integral is simply a sum of the intermediate segment’s
integrals as
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∫ b

a

f(x)dx =

n/2
∑

k=1

∫ x2k

x2k−2

f(x)dx.

Substituting Simpson’s rule for each intermediate segment’s integral results in

∫ b

a

f(x)dx =

n/2
∑

k=1

(
h

3
(f(x2k−2) + 4f(x2k−1) + f(x2k)) + e).

Carrying the summation inside we obtain the composite Simpson’s rule of

∫ b

a

f(x)dx =
h

3
(f(a) + 2

n/2−1
∑

k=1

f(x2k) + 4

n/2
∑

k=1

f(x2k−1) + f(b)) +

n/2
∑

k=1

e.

Some attention to the composite error term is needed. Since

e = −h
5

90
f (4)(ξ)

for each integration segment, the total error is

eC = −h
5

90

n/2
∑

k=1

f (4)(ξk).

It can be proven by the intermediate value theorem that there is a value such
that

a < ξ < b,

for which

nf (4)(ξ) = 2

n/2
∑

k=1

f (4)(ξk).

With this the error of the composite Simpson’s rule is

eCS = − h5

180
nf (4)(ξ) = − (b− a)5

180n4
f (4)(ξ).

The same method of derivation produces the composite Newton’s 3/8 rule:

∫ b

a

f(x)dx =
3h

8
(f(a)+3

n/3
∑

k=1

(f(x3k−2)+f(x3k−1))+2

n/3−1
∑

k=1

f(x3k)+f(b))+eCN .

The error is obtained using an argument similar to that of the composite
Simpson’s rule:

eCN = −3h5

240
nf (4)(ξ) = − (b− a)5

80n4
f (4)(ξ).
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Furthermore, the concept carries over to the open formulae as well. The com-
posite midpoint formula may be written as

∫ b

a

f(x)dx = 2h

n/2
∑

k=0

f(x2k) +
(b− a)3

6(n+ 2)2
f ′′(ξ),

where

h =
b− a

n+ 2
.

The composite trapezoid formula, quite similarly, is

∫ b

a

f(x)dx =
h

2
(f(a) + 2

n−1
∑

k=1

f(xk) + f(b)) − (b− a)3

12n2
f ′′(ξ).

This formula is the foundation of the method of the following section.

6.2.2 Romberg’s method

Romberg’s method [10] is in essence a recursive use of the composite trape-
zoid formula with a repeated bisectioning of the integration segments. Let us
first consider the simple (one segment) trapezoid formula:

∫ b

a

f(x)dx =
h1

2
(f(a) + f(b)) = I1.

We ignore the error terms for now. Here

h1 = b− a.

Now apply an n = 2 segment (i.e. n+1 = 3 point) composite trapezoid rule as

∫ b

a

f(x)dx =
h2

2
(f(a)+2

n−1
∑

k=1

f(xk)+f(b)) =
h2

2
(f(a)+2

1
∑

k=1

f(x1)+f(b)) = I2.

Note that now

h2 =
b− a

2
=
h1

2
,

and

x1 = a+ h2 = a+
b− a

2
=
a+ b

2
.

One can see that

I2 =
1

2
(I1 + h1f(a+ h2)).
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Further refinement for example to n = 3 segments yields

I3 =
1

2
(I2 + h2(f(a+ h3) + f(a+ 3h3))),

where now

h3 =
h2

2
.

This process itself may continue for any k value as

Ik =
1

2
(Ik−1 + hk−1

2k−2

∑

j=1

(f(a+ (2j − 1)hk))).

Finally the approximate integral is

∫ b

a

f(x)dx = Ik + eR.

The error term was computed originally in [1] and quoted in some advanced
numerical tests as

eR =

∞
∑

j=1

cjh
2j
k ,

where cj are constants. Clearly, this formula is not really useful in engineering
practice. Suffice it to say that several steps of the Romberg refinement are
adequate for most practical engineering problems.

We can also observe that the sequence of Romberg integrals is amenable to
a Richardson’s extrapolation. We can assign

I1 = R1(h),

I2 = R1(h/2),

and

I3 = R1(h/4).

The Richardson extrapolation of

R2(h) = R1(h/2) +
R1(h/2) −R1(h)

3

clearly applies. It is common in engineering practice to execute only a few
steps of Romberg’s method followed by a Richardson extrapolation to obtain
better accuracy results quicker.
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6.2.3 Computational example

We demonstrate Romberg’s method with the following integral:

∫ π

0

sin(x)dx = 2.

This example, like some of the earlier ones, is analytically solvable; however,
it was chosen to demonstrate the approximate computation and provide a
useful template for the engineer. The simple trapezoid formula is of course

I1 =
π

2
(sin(0) + sin(π)) = 0.

Following the formula above,

I2 =
1

2
(I1 + πsin(π/2)) =

π

2
,

and

I3 =
1

2
(I2 +

π

2
(sin(π/4) + sin(

3π

4
))) =

π

4
(1 +

√
2).

It is clear that the function sampling values may be well organized in a tabular
form, as shown in Table 6.1.

TABLE 6.1

Romberg’s method

xj k = 1 k = 2 k = 3 k = 4

0 sin(0)
π/8 sin(π

8 )
π/4 sin(π

4 )
3π/8 sin( 3π

8 )
π/2 sin(π

2 )
5π/8 sin( 5π

8 )
3π/4 sin( 3π

4 )
7π/8 sin( 7π

8 )
π sin(π)

Ik 0 1.5708 1.8961 1.9742

The bottom row of Table 6.1 shows the steadily, albeit slowly, increasing
accuracy of the approximate integral. We will accelerate the approximation
by applying Richardson’s extrapolation, as shown in Table 6.2.
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TABLE 6.2

Romberg’s method example

h R1(h) R2(h) R3(h) R4(h)

π 0
π/2 1.5708 2.0944
π/4 1.8961 2.0045 1.9986
π/8 1.9742 2.0093 1.9999 2.0000

The improvement of the extrapolation is spectacular, actually reaching ac-
curate results within the 4-decimal digit accuracy used. This was achieved
without the further need to evaluate the function at other locations.

There are other possible extensions to the Newton-Cotes formulae. One is
the class of adaptive quadrature methods. These methods relax the restriction
of equidistant intervals. While they are theoretically interesting, the difficul-
ties of the resulting formulae outweigh the advantages gained. The adaptive
methods do increase the accuracy, but they do not widen the order of polyno-
mials for which the methods are accurate. The following section describes a
class of methods that significantly increases the range of the polynomials for
which the method is accurate, a more important feat in engineering applica-
tions.

6.3 Gaussian quadrature

The generic closed Newton-Cotes formula using n points is exact for a poly-
nomial of order n or n+1. Gauss has investigated the possibility of improving
on this by relaxing the restriction of equidistant point selection. The term
quadrature comes from area measurement and it was used by Gauss himself.
It is also useful to distinguish from the volume integration techniques that are
called cubature along the same historical lines.

Specifically, let us seek an approximate integration,

∫ b

a

f(x)dx =
n

∑

i=1

cif(xi),

that is exact for a polynomial of up to degree 2n − 1. This condition is de-
scribed by the equations:
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n
∑

i=1

ci =

∫ b

a

1dx = b− a,

n
∑

i=1

cixi =

∫ b

a

xdx =
b2 − a2

2
,

n
∑

i=1

cix
2
i =

∫ b

a

x2dx =
b3 − a3

3
,

and so on until

n
∑

i=1

cix
2n−1
i =

∫ b

a

x2n−1dx =
b2n − a2n

2n
.

In all we have 2n equations and 2n unknowns; n of both the ci and xi values.
The system may be solved for any given a, b; however, a set of precomputed
and tabulated solutions exists with a = −1, b = 1. The engineer may be able
to convert any a, b interval into the precomputed interval by the coordinate
transformation

x =
a+ b

2
+
b− a

2
t = g(t).

Then the given integral is transformed as

∫ b

a

f(x)dx =

∫ +1

−1

f(g(t))g′(t)dt,

where

g′(t) =
b− a

2
.

Hence

∫ b

a

f(x)dx =
b− a

2

∫ +1

−1

f(
a+ b

2
+
b− a

2
t)dt.

Finally,

∫ b

a

f(x)dx =
b− a

2

n
∑

i=1

cif(
a+ b

2
+
b− a

2
ti).

Now let us turn our attention to the actual values of ci, ti. The ci are called
the Gaussian weights and the ti are the so-called Gauss points. Without the
rather convoluted proof we state that the Gauss points are the zeroes of the
nth order Legendre polynomial, introduced in Section 4.2. The trivial case of
n = 1 produces

Le1(t) = t = 0,
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or

t11 = 0.

For n = 2 the ti are computed from the second Legendre polynomial as

Le2(t) = 3t2 − 1 = 0,

resulting in

t21 = − 1√
3

and

t22 =
1√
3
.

Finally for n = 3, the third Legendre polynomial zeroes

Le3(t) =
1

2
(5t3 − 3t) = 0

are at

t31, t
3
3 = ±

√

3

5

and

t32 = 0.

The superscript introduced here, also used in the computation of the ci in
the following, is to distinguish between the ci values for different number of
integration points. The Gauss weights are computed from

cni =

∫ +1

−1

Ln
i (t)dt,

where the Ln
i Lagrange polynomial is using the just computed zeroes of the

nth Legendre polynomials as basis points. The Legendre polynomials have
their zeroes in the [−1, 1] interval and they are located symmetrically with
respect to the origin; these characteristics contribute to their unique role here.

The n = 1 case is trivial:

c11 = 2.

For n = 2, the two point integration weights are

c21 =

∫ +1

−1

L2
1(t)dt =

∫ +1

−1

t− t2
t1 − t2

dt =

∫ +1

−1

t− 1√
3

−1√
3
− 1√

3

dt = 1,
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and likewise,

c22 = 1.

Finally for n = 3, the weights of the integration are

c31 =

∫ +1

−1

L3
1(t)dt =

∫ +1

−1

(t− t2)(t− t3)

(t1 − t2)(t1 − t3)
dt =

∫ +1

−1

t(t−
√

3
5 )

−
√

3
5 (−

√

3
5 −

√

3
5 )

=
5

9
,

c32 =

∫ +1

−1

L3
2(t)dt =

8

9
.

and from symmetry

c33 = c31.

Higher order formulae may also be produced and are used in engineering prac-
tice. The Gauss points and weights up to n = 6 with 6-decimal digit accuracy
are collected in Table 6.3.

More digits and other quadrature formulae may be found in [7]. The error
of the Gaussian quadrature is

EG =
f (2n)(ξ)

(2n)!

∫ b

a

n
∏

i=1

(x− xi)
2dx,

which is not an easily computable formula [8].

6.3.1 Computational example

The technique is first validated with a simple example:

∫ +1

−1

x3dx = 0.

To compute the above integral exactly, the n = 2 point formula may be used:

2
∑

i=1

c2i f(ti) = c21(t
2
1)

3 + c22(t
2
2)

3 = 1 · (−1√
3
)3 + 1 · ( 1√

3
)3 = 0,

which verifies the desirable characteristic of the method. Let us also compute
approximately

∫ 1

0

x2e−xdx.
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TABLE 6.3

Gauss points and weights

n i ti ci

1 1 0 2

2 1 −0.577350 1
2 2 0.577350 1

3 1 −0.774597 0.555556
3 2 0 0.888889
3 3 0.774597 0.555556

4 1 −0.861136 0.347855
4 2 −0.339981 0.652146
4 3 0.339981 0.652146
4 4 0.861136 0.347855

5 1 −0.906180 0.236927
5 2 −0.538469 0.478629
5 3 0 0.568889
5 4 0.538469 0.478629
5 5 0.906180 0.236927

6 1 −0.932470 0.171325
6 2 −0.661209 0.360762
6 3 −0.238619 0.467914
6 3 0.238619 0.467914
6 2 0.661209 0.360762
6 1 0.932470 0.171325

Here the integral boundaries need to be converted. Since a = 0 and b = 1, then

g(t) =
1

2
+

1

2
t,

and

dx =
1

2
dt.

The transformed integral becomes

1

2

∫ +1

−1

(
1 + t

2
)2e−( 1+t

2
)dt.

We will now use the n = 3 formula as

1

2
(
5

9
(
1 −

√

3
5

2
)2e−(

1−

√
3
5

2
) +

8

9
(
1 + 0

2
)2e−

1
2 +

5

9
(
1 +

√

3
5

2
)2e−(

1+

√
3
5

2
)).
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Evaluating this with 4 decimal digits gives 0.1606. The integral is rather dif-
ficult to evaluate analytically, resulting in

[e−x(−x2 − 2x− 2)]10 = 2 − 5

e
= 0.1606,

demonstrating the excellence of the method.

6.4 Integration of functions of multiple variables

We will now view the case of multiple integrals. Mainly we focus on functions
of two variables; however, much of the discussion carries over to more than
two variables. The goal is to approximately compute the

V =

∫ b

a

∫ d(x)

c(x)

f(x, y)dy dx

integral. As this is, in essence, the volume between the function and the xy
plane, bounded by the planes x = a and x = b and the surfaces y = c(x) and
y = d(x), the procedure is sometimes called cubature.

Using Simpson’s rule in the inner integral first, we obtain

V =

∫ b

a

h(x)

3
(f(x, c(x)) + 4f(x, c(x) + h(x)) + f(x, d(x))dx,

where

h(x) =
d(x) − c(x)

2
.

Note that h(x) is different from the constant h. Executing Simpson’s rule
again for the remaining integral yields

V =
h

3
(
h(a)

3
(f(a, c(a)) + 4f(a, c(a) + h(a)) + f(a, d(a)))

+ 4
h(a+ h)

3
(f(a+h, c(a+h))+4f(a+h, c(a+h)+h(a+h))+f(a+h, d(a+h)))

+
h(b)

3
(f(b, c(b)) + 4f(b, c(b) + h(b)) + f(b, d(b))) +E,

where now the constant h is defined as

h =
b− a

3
.
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The error term is similarly generalized and the composite Newton-Cotes for-
mulae may be extended for multiple integrals as well.

6.4.1 Gaussian cubature

For functions of two variables, the Gaussian quadrature is extended rather
simply into the Gaussian cubature of the form

∫ +1

−1

∫ +1

−1

f(x, y)dydx =

n
∑

i=1

n
∑

j=1

cni c
n
j f(tni , t

n
j ),

where the weights and the points are the same as before. For a quick example,
the unit height column above the [−1 ≤ x ≤ 1,−1 ≤ y ≤ 1] interval

V =

∫ +1

−1

∫ +1

−1

1 dy dx

is computed with n = 2 as

V =

2
∑

i=1

2
∑

j=1

cni c
n
j = c21(c

2
1 + c22) + c22(c

2
1 + c22) = 1(1 + 1) + 1(1 + 1) = 4.

Since the function was a constant, the Gaussian locations were not used. This
is, of course, the same as the analytic result.

On a final note, the Gauss integral of a function of three variables is

∫ +1

−1

∫ +1

−1

∫ +1

−1

f(x, y, z) dz dy dx =

n
∑

i=1

n
∑

j=1

n
∑

k=1

cni c
n
j c

n
kf(tni , t

n
j , t

n
k ).

This formulation is of major importance in the finite element analysis tech-
niques introduced in Chapter 12. For different integration boundaries, the
same considerations apply as in the single-variable integral case.

6.5 Chebyshev quadrature

We briefly review the case Chebyshev [3] investigated more than a century
ago. His focus was to develop quadrature formulae with constant coefficients
for a given number of points n, such that
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∫ b

a

p(x)f(x)dx = cn

n
∑

k=1

f(xk)

where p(x) is a weight function continuous in [a, b]. Assuming that the for-
mula is at least exact for a constant function, we can establish the constant
coefficient as

cn =
1

n

∫ b

a

p(x)dx.

Specifically focusing on p(x) = 1, a = −1, b = 1 we get

∫ 1

−1

f(x)dx =
2

n

n
∑

k=1

f(xk).

The basis point locations are found as the roots of the following functions:

G1(x) = x,

G2(x) =
1

3
(3x2 − 1),

G3(x) =
1

2
(2x3 − x),

and so on. The locations of the Chebyshev quadrature points up to n = 6 are
shown in Table 6.4.

Bernstein in [2] proved that the Chebyshev quadrature formulae exist for
n = 1, . . . , 7, 9 and, that there is no such formula for n = 8, 10 or above. There
exist more difficult Chebyshev formulae with different weight functions.

6.6 Numerical integration of periodic functions

For a brief closing section of the discussion on numerical integration, let us
consider periodic functions. We seek a special quadrature formula for n points
such that

∫ 2π

0

f(x)dx =

n
∑

k=1

ckf(xk).
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TABLE 6.4

Chebyshev points and
weights

n i ti cn

1 1 0 2

2 1 −0.577350 1
2 2 0.577350 1

3 1 −0.707107 0.666667
3 2 0 0.666667
3 3 0.707107 0.666667

4 1 −0.794654 0.5
4 2 −0.187592 0.5
4 3 0.187592 0.5
4 4 0.794654 0.5

5 1 −0.832497 0.4
5 2 −0.374541 0.4
5 3 0 0.4
5 4 0.374541 0.4
5 5 0.832497 0.4

6 1 −0.866247 0.333334
6 2 −0.422519 0.333334
6 1 −0.266635 0.333334
6 1 0.266635 0.333334
6 2 0.422519 0.333334
6 1 0.866247 0.333334

We consider the following mth order trigonometric function:

f(x) = a0 +

m
∑

k=1

(akcos(kx) + bksin(kx)).

The choice of

xk = (k − 1)
2π

n

and

ck =
2π

n
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assures an exact integral of up to m = n− 1 as

∫ 2π

0

f(x)dx =
2π

n

n
∑

k=1

f((k − 1)
2π

n
).

This may be proven by applying trigonometric identities and evaluating the
integral recursively. The formula generalizes for any period T , as

∫ T

0

f(x)dx =
T

n

n
∑

k=1

f((k − 1)
T

n
).

The formula is exact for up to m = n − 1 order periodic functions of period
T :

f(x) = a0 +

n−1
∑

k=1

(akcos(
2π

T
kx) + bksin(

2π

T
kx)).

It is easy to recognize the relationship with a Fourier approximation of func-
tions, a topic of Section 4.4, in the above formulae.

References
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7

Nonlinear equations in one variable

The topic of Part II, solution approximations, is just as familiar to engineers
as the topic of Part I, interpolation. It is also an area of long history; the
interest in solving algebraic equations dates back to the ancient geometers.
Closed-form solutions for algebraic equations of higher order were actively
sought throughout the Middle Ages, culminating in Cardano’s formulae for
cubic and quartic equations.

The earliest techniques for generic, nonalgebraic equations are from Raph-
son [6], still in the 17th century. The understanding of the limits of analytical
solution of higher order algebraic equations came with Ruffini in 1799 [7] and
with the formal proof of Abel in 1826 [1]. Hence the interest focused on the
approximate solution of higher order algebraic equations, resulting in a wealth
of theoretical results related to existence and intervals of solutions [2], [8].

This chapter, true to its focus on engineering computations, describes the
concepts and methods most practical in this regard. More details may be
found in numerical analysis texts such as [5].

7.1 General equations

We first focus on the case of

f(x) = 0,

where f(x) is general, but neither linear, nor necessarily a polynomial func-
tion.

7.1.1 The method of bisection

The simplest method of finding approximate roots of a general equation is the
method of bisection. Assume that we have narrowed down an interval [a, b]
such that it contains only one real root. In this case,

143
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sign(f(a)) 6= sign(f(b))

applies. The method starts as

p1 = a+
b− a

2
.

If

sign(f(p1) = sign(f(b)),

then choose

b1 = p1, a1 = a;

otherwise select

a1 = p1, b1 = b.

The method continues by generating the following sequence:

pi = ai−1 +
bi−1 − ai−1

2

and checking the
sign(f(pi) = sign(f(bi−1))

relationship to set either

bi = pi, ai = ai−1,

or

ai = pi, bi = bi−1.

The process stops when the

|pi − pi−1|
|pi|

quantity that is the relative error of the approximation is sufficiently small.
Then

f(pi) = 0 +E,

where E is the error of the method after i number of steps have been executed.
For these types of methods, the error can always be made smaller by execut-
ing more steps. It is also possible that the method finds an exact solution in
a finite number of steps, a welcome event indeed. View the first steps of the
bisection process:

b1 − a1 =
b− a

2
,
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b2 − a2 =
b1 − a1

2
=
b− a

4
.

Hence

bi − ai =
b− a

2i
.

Assuming that the exact root is r,

|pi − r| ≤ bi − ai

2
=
b− a

2i
.

This indicates that having a tight starting interval is imperative for the suc-
cess of this method. Another interesting issue is the rate of convergence to
the approximate solution, written as

pi = r + O(
1

2i
).

This method, while conceptually very simple, and frequently used in quick
approximate computations by engineers, is not very efficient.

7.1.2 The secant method

The starting environment in this case is again

sign(f(a)) 6= sign(f(b)).

The geometric concept of this technique’s approximation is to connect the
two points at the end of the interval with a secant line and choose the next
point of iteration to be the intersection of the secant line with the x-axis. The
process is shown in Figure 7.1, where s(x) denotes the secant lines and f(x)
is the functions whose zero is sought.

The equation of the secant line for i = 0, 1, 2, . . . is

y − f(xi
a) =

f(xi
b) − f(xi

a)

xi
b − xi

a

(x− xi
a),

where

x0
a = a, x0

b = b.

The sequence of approximate roots is

qi = xi
a − f(xi

a)
xi

b − xi
a

f(xi
b) − f(xi

a)
.

As in the bisection method, we judiciously replace one of the boundary points
with the newly found point. If

sign(f(qi)) = sign(f(xi
b)),
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then

xi+1
b = qi, x

i+1
a = xi

a;

otherwise

xi+1
a = qi, x

i+1
b = xi

b.

The sequence of qi values approximates the root

qi ≈ r,

when

|qi − qi−1|
|qi|

is small enough. Since the function values are readily available at each itera-
tion step, the alternative stopping criterion of
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FIGURE 7.1 Concept of secant method
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|f(qi)| < ε

may also be used, where ε is a small number established by the engineer’s
desire for accuracy. This method, like the bisection method, converges uncon-
ditionally as long as the initial condition of the interval containing one root
is satisfied.

7.1.3 Fixed point iteration

There is yet another extension of these types of methods, the method of fixed
point iteration. This method relies on the possible decoupling of a term from
the equation as

f(x) = g(x) − x.

Based on that decoupling, the original

f(x) = 0

problem is replaced by

g(x) = x.

Assuming a reasonable estimate x0 for the root, a simple iterative process is
executed by

x1 = g(x0),

x2 = g(x1),

and
xk = g(xk−1).

We assume that the exact root is r and the approximate root is in a small δ
neighborhood of the exact root

|x0 − r| < δ.

We introduce

|g′(x)| ≤ q.

Then

|x1 − r| = |g(x0) − g(r)| = |g′(ξ1)||x0 − r| ≤ qδ.

The next step produces

|x2 − r| = |g(x1) − g(r)| = |g′(ξ2)||x1 − r| ≤ q2δ,
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and so on until

|xi − r| ≤ qiδ.

This implies that

limi→∞|xi − r| = 0,

if

|g′(x)| ≤ q < 1.

This is the convergence criterion for this sequence. It may preclude this
method’s use in some cases, even if the required decoupling is attainable.

7.1.4 Computational example

To demonstrate the above three basic methods, we consider the problem of
finding approximate solution to the

f(x) = x2 − 1

2
= 0

equation in the interval of [0, 1]. The problem, of course, may be solved with
well known analytic tools (the exact root is

√
2/2), but its simplicity is in-

tended to enlighten the procedures. We will execute two steps of each of the
three methods introduced in this section.

The bisection method starts from

a0 = 0, b0 = 1, f(a0) = −1

2
, f(b0) =

1

2
,

and proceeds with first finding the bisection value of p1 = 1
2 at which point

the function is valued at − 1
4 . Hence this is negative, the selection is

a1 =
1

2
, b1 = 1.

The second bisection step yields p2 = 3
4 and the function value of 1

16 . We will
accept that as an approximate root. The difference between the analytical
and approximate solution is 0.04.

The secant method starting also from the same interval

x0
a = 0, x0

b = 1,

finds the first secant intersection at q0 = 1
2 , which is still the same as in the

bisection method. The second secant step produces q1 = 2
3 , at which point
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the function is f(q1) = − 1
18 . The difference between the analytical and ap-

proximate solution is also about 0.04, similar to that of the bisection method.

In order to use the fixed point method a small amount of heuristics is re-
quired. Since there is no clearly visible way to decouple an x term from
the example function, the trick of adding or subtracting x on both sides of
f(x) = 0 is commonly applied. In this example, the subtraction produces

x = x− x2 +
1

2
= g(x)

and

g′(x) = 1 − 2x,

which is less than one inside the interval of interest, as desired, albeit not on
the boundary. Therefore we start from the interior point

x0 =
1

2

and produce

x1 =
1

2
− 1

4
+

1

2
=

3

4
.

At this point the function value is already 1
16 . Executing the second step of

the fixed point iteration results in an approximate root of

x2 =
3

4
− 9

16
+

1

2
=

11

16

and a function value of

f(x2) = − 7

256
.

The difference between the analytical and approximate solution is about 0.02,
which is twice as good as the secant or the bisection method. This is a good
result, even if we consider the fact that we have started from an internal point
of the interval and some heuristics were required.

7.2 Newton’s method

Newton’s is a method with a faster rate of convergence. In order to be ap-
plied, however, this method requires the function to be twice differentiable.
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To start, a location satisfying the following condition is needed:

sign(f(x0)) = sign(f ′(x0)),

where

a ≤ x0, r ≤ b,

and r is the exact root. The geometric concept is again rather simple; we
use the zero of the tangent line from that starting point to provide the next
iteration. In Figure 7.2 the tangent lines are denoted by t(x) along with the
associated vertical line segment used to find the next point on the function
f(x). The process algebraically starts as

x1 = x0 −
f(x0)

f ′(x0)

and continues by repeating the step
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FIGURE 7.2 Concept of Newton’s method
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xi = xi−1 −
f(xi−1)

f ′(xi−1)
.

It may be proven that the sequence of

x0, x1, x2, . . . , xi

is monotonic and converges to the exact root

limi→∞xi = r.

Substituting the formula

limi→∞(xi−1 −
f(xi−1)

f ′(xi−1)
) = r − f(r)

f ′(r)
.

The above limit is r if f(r) = 0. The rate of convergence of Newton’s method,
as promised at the beginning of this chapter, is very good. Consider the Tay-
lor polynomial of the function in the neighborhood of the last iterate, but
ignore the truncation error term

f(x) = f(xi−1) + (x− xi−1)f
′(xi−1) +

1

2
(x− xi−1)

2f ′′(xi−1).

Substituting x = r, for which f(r) = 0 yields

0 = f(xi−1) + (r − xi−1)f
′(xi−1) +

1

2
(r − xi−1)

2f ′′(xi−1).

By reordering we obtain

r − (xi−1 −
f(xi−1)

f ′(xi−1)
) = −1

2
(r − xi−1)

2 f
′′(xi−1)

f ′(xi−1)
.

Substituting xi yields a formula for the rate of convergence of the method

r − xi

(r − xi−1)2
= −1

2

f ′′(xi−1)

f ′(xi−1)
,

where the right-hand side is a constant, say, c. Hence

|r − xi| = c(r − xi−1)
2.

The distance of the ith iterate from the root is proportional to the square of
the distance of the previous iterate. Hence the rate of convergence of New-
ton’s method is quadratic, a significant fact indeed. On the other hand, the
method is clearly ineffective in a neighborhood of points where the derivative
is nearly horizontal.
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Newton’s method applied to the simple example

f(x) = x2 − 1

2
= 0

proceeds as follows. Starting from

x0 = 1

the first iterations produces

x1 = 1 − 1/2

2
=

3

4
.

The second step is

x2 = 3/4− 1/16

3/2
=

17

24
.

The function value at this point is 1/576 which prompts us to accept this as
an approximate root. The difference between the analytical and approximate
solution is 0.001. The superiority of the method over the classical methods of
the last section is well demonstrated by having an excellent result only after
two steps.

The method has a simplified version, called the Newton-Raphson [6] method,
which removes the need for repeated evaluation of the derivative. The form
is simply

xi = xi−1 −
f(xi−1)

f ′(x0)
,

meaning the derivative at the starting point is used repeatedly. The price of
the easement is a reduction in convergence rate.

A modification in the other direction, using the second derivative, has been
proposed by Householder [3] in the form of

xi = xi−1 −
f(xi−1)

f ′(xi−1)
(1 +

f(xi−1)f
′′(xi−1)

2(f ′(xi−1))2
).

Finally an extension of Newton’s method for the case of complex roots was
developed by Laguerre [4], but it is not detailed here.

Despite the seemingly stricter starting conditions, Newton’s method is prob-
ably the most widely and successfully used by engineers. It can also be ex-
tended to the solution of systems of nonlinear equations, to be discussed in
the next chapter.
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7.3 Solution of algebraic equations

The problem at hand is to find approximate solutions of

f(x) =

n
∑

i=0

aix
i = 0,

where the ai coefficients of the polynomial of order n are real. Some of the
methods discussed here will also apply for the case of complex coefficients.
From the teaching of calculus it is well known that between consecutive ze-
roes of this equation the derivative function f ′(x) also has at least one root. It
follows that if the function has m roots in an interval [a, b], then the derivative
has at least m− 1 zeroes in the same interval.

7.3.1 Sturm sequence

The Euclidean algorithm for two polynomials of f(x) and g(x) is started as

f(x) = g(x)q0(x) + r1(x),

g(x) = r1(x)q1(x) + r2(x).

Then

r1(x) = r2(x)q2(x) + r3(x),

and so on, until

rm−2(x) = rm−1(x)qm−1(x) + rm,

rm−1(x) = rm(x)qm(x).

The process stops when rm becomes a constant. If rm = 0, then rm−1(x) is
the greatest common divisor of the two polynomials. If rm 6= 0, then the two
polynomials do not have a common divisor.

We apply this algorithm for the function and its derivative as follows:

f(x) = f ′(x)q0(x) − r1(x),

f ′(x) = r1(x)q1(x) − r2(x).

Then

r1(x) = r2(x)q2(x) + r3(x),
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and so on, until

rm−2(x) = rm−1(x)qm−1(x) − rm,

rm−1(x) = rm(x)qm(x).

The negative sign in the sequence indicates that we take the residuals with
the opposite sign. The sequence

f, f ′, r1, r2, . . . , rm

is a so-called Sturm sequence. Assuming that f(x) has simple roots only, the
last residual will be different from zero. Sturm’s theorem [8] states that the
number of zeroes of f(x) in the interval [a, b] is equal to the number

V (a) − V (b),

where V (a) is the number of sign changes in the sequence above for x = a
and V (b) is the same for x = b. This is correct in the case of multiple roots
as well, as long as they are counted as one, i.e., the number of different roots
are found by the above theorem.

Finally, the theorem may be extended into the case of complex functions
and complex domains. These could be of interest in investigating the stability
of mechanical systems. For a stable system all roots must have a negative
real part. Without immersing ourselves into more details, let the following
theorem be stated: a complex function with real coefficients

f(z) =
n

∑

i=0

aiz
i, an > 0,

has only roots in the left-hand complex half plane if all the coefficients are
positive. There are many other theorems concentrating on conditions for the
roots being in a complex circle that are not detailed here. In the remainder
of this chapter we will focus on the real case unless otherwise stated.

7.3.2 Horner’s scheme of evaluating polynomials

Before we can use any of the earlier methods to find an approximation of a
root in one of the intervals established by Sturm’s theorem, we must focus on
minimizing the drudgery of evaluating a polynomial.

A polynomial with a nonzero leading coefficient of an,

f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0,
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may be reordered as

f(x) = ((. . . (anx+ an−1)x + an−2)x+ . . .)x+ a1)x+ a0.

In order to evaluate the function at x0, we recursively proceed from the inside
out:

bn = an,

bn−1 = bnx0 + an−1,

bn−i = bn−i+1x0 + an−i,

and so on until
b0 = b1x0 + a0 = f(x0).

The process is conveniently executed in tabulated form as shown in the next
section in connection with a computational example.

There is an extension of Horner’s scheme to find the complex conjugate
pairs of algebraic equations. The method is called Bairstow’s technique and
it is not detailed here but can be found for example in [4].

7.3.3 Computational example

To demonstrate the use of the Sturm sequence in practice, we consider the
5th order polynomial

f(x) = x5 − x4 − 3x3 + 2x+ 5.

The derivative is

f ′(x) = 5x4 − 4x3 − 9x2 + 2.

In each step a multiplier may be found to avoid dealing with uncomfortable
fractions; this leads to the emergence of an interesting pattern that could be
further exploited in the case of very high order polynomials. For example the
next member of the Sturm sequence is

r1(x) =
1

52
(34x3 + 9x2 − 40x− 127).

Continuing the sequence using the same concept in each step results in

r2(x) =
52

342
(79x2 − 574x+ 827),

r3(x) =
342

52792
(−7906 + 15, 156).
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Finally in the last step we do not need to compute beyond the fact that the
member is a negative constant:

r4 = −c.

The execution of the evaluation of the Sturm sequence is facilitated by Table
7.1, which allows several observations.

TABLE 7.1

Sturm sequence example

x f(x) f ′(x) r2(x) r3(x) r4(x) r5(x) V (x)

−∞ − + − + + − 4
−2 − + − + + − 4
−1 + + − + + − 3
0 + + − + + − 3
1 + − − + + − 3
2 + + + − − − 1
+∞ + + + + − − 1

Since

V (1) − V (2) = 2,

there are 2 roots between x = 1 and x = 2. On the other hand,

V (−2) − V (−1) = 1,

implies a single root in this subinterval. Furthermore, since

V (−∞) − V (+∞) = 3,

the polynomial has only 3 real roots.

We evaluate the function at x0 = −1 using Horner’s scheme in Table 7.2.
The second and last rows are the original and the modified coefficients re-
spectively, and the middle row contains the intermediate bi+1 · x0 terms for
i = 4, 3, 2, 1, 0 except that the very first term is zero by definition.

The process results in f(−1) = 4, which may be verified by directly substi-
tuting into the original polynomial.
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TABLE 7.2

Horner’s scheme example

i 5 4 3 2 1 0

ai 1 −1 −3 0 2 5
x0 = −1 0 −1 2 1 −1 −1

bi 1 −2 −1 1 1 4

7.4 Aitken’s acceleration

The concept of improving the approximation has already emerged in Richard-
son’s extrapolation as well as in Romberg’s method. Here the technique of
accelerating the convergence of a given method is considered.

Let us consider a sequence of iterative values

p0, p1, p2, . . . , pi

that converges to the exact root r. The rate of convergence is measured by
the ratio of

r − pi+1

r − pi
.

Let us assume that we are far enough into the iterative sequence that the
condition

r − pi+1

r − pi
≈ r − pi+2

r − pi+1

also holds. From this it follows that

(r − pi+1)
2 ≈ (r − pi+2)(r − pi).

Executing the posted operations and solving results in

r ≈ pi+2pi − p2
i+1

pi+2 − 2pi+1 + pi
.

Some inventive algebra by adding and subtracting terms yields

r ≈ pi −
(pi+1 − pi)

2

pi+2 − 2pi+1 + pi
.

This proposes Aitken’s acceleration, which states that the sequence

pi = pi −
(pi+1 − pi)

2

pi+2 − 2pi+1 + pi
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converges faster than the original sequence.

To facilitate an easy computation of the new sequence, we can again apply
forward differences to the members of the sequence, as follows:

∆pi = pi+1 − pi.

This is conceptually similar to, but slightly different from, the forward divided
differences introduced earlier. The second order forward difference is

∆2pi = ∆(∆pi+1 − ∆pi) = ∆2pi+1 − ∆2pi

= (pi+2 − pi+1) − (pi+1 − pi) = pi+2 − 2pi+1 + pi.

With these simplifications the accelerated series can be written as

pi = pi −
(∆pi)

2

∆2pi
,

which facilitates an orderly computation.

7.4.1 Computational example

Let us consider the sequence

pi =
1

i
,

obtained by an iteration scheme shown in the second column of Table 7.3.
The sequence is converging to r = 0 in a rather slow manner. The third and
fourth columns are demonstrating the computation of the forward differences.

TABLE 7.3

Aitken’s acceleration
example

i pi ∆pi ∆2pi pi

1 1/1 −1/2 1/3 1/4
2 1/2 −1/6 1/12 1/6
3 1/3 −1/12 1/30 1/8
4 1/4 −1/20
5 1/5
6 1/6
7 1/7
8 1/8
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The accelerated sequence of pi, shown in the last column, clearly demon-
strates the advantage of Aitken’s method. The first Aitken’s term computed
is the same as the 4th term of the original sequence, the second is the same
as the 6th, and the third term of the accelerated sequence is the same as the
8th term of the original sequence. This conceptually simple and easily com-
putable method is very powerful.
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8

Systems of nonlinear equations

We now turn our attention to a system of nonlinear equations. The topic’s
history is again related to Newton; several aspects of it were researched by
him, although not formally published. In fact most solutions were based on
his work until various flavors of a more efficient approach were proposed by
the quartet of Broyden [1], Fletcher [2], Goldfarb [3] and Shanno [5] in 1970.

Our general problem is posed in terms of a vector valued function,

f(x) = 0,

where the underlining indicates a vector of Rn,

x =









x1

x2

. . .
xn









,

and

f(x) =









f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

. . .
fn(x1, x2, . . . , xn)









.

8.1 The generalized fixed point method

The first approach we take to solve the problem of systems of nonlinear equa-
tions is by a generalization of the fixed point method introduced in the last
chapter. The definition of a fixed point in this sense is that the vector p is a
fixed point of the vector valued function g ∈ Rn if

g(p) = p.

The conditions of the existence of a fixed point are stated next. Define an
n-dimensional domain D as

ak ≤ xk ≤ bk; k = 1, 2, . . . , n.

161
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If the function g meets the condition of

g(x) ∈ D;x ∈ D,

then the function has a fixed point in D. Let us assume that the nonlinear
function is obtained by the partitioning of our nonlinear system as

f(x) = g(x) − x =









g1(x1, x2, . . . , xn)
g2(x1, x2, . . . , xn)

. . .
gn(x1, x2, . . . , xn)









−









x1

x2

. . .
xn









.

Furthermore, we also assume that the partial derivatives are all continuous
and the matrix of derivatives

G(x) =











∂g1(x)
∂x1

∂g1(x)
∂x2

. . . ∂g1(x)
∂xn

∂g2(x)
∂x1

∂g2(x)
∂x2

. . . ∂g2(x)
∂xn

. . . . . . . . . . . .
∂gn(x)

∂x1

∂gn(x)
∂x2

. . . ∂gn(x)
∂xn











has det(G) 6= 0 if x ∈ D. Finally, assume that for all k = 1, 2, . . . , n and
j = 1, 2, . . . , n the partial derivatives are bounded,

|∂gk(x)

∂xj
| ≤ K < 1,

Under these conditions the generalized fixed point iteration scheme of

xi = g(xi−1); i = 1, 2, . . .

is guaranteed to converge to the fixed point. The rate of convergence is

||xi − p|| ≤ Ki

1 −K
||xi − x0||,

where the vector norms are measured by the maximum absolute value term.
The improvement obtained in the ith step of the iteration is

||xi − p|| ≤ K

1 −K
||xi − xi−1||.

Hence the stopping criterion of the iteration is when the right-hand quantity
dips below an acceptable threshold.

||xi − xi−1|| < ε.

An improvement to the generalized fixed point method is via the Seidel con-
cept also used in the Gauss-Seidel method discussed in the next chapter. The
concept utilizes the already computed components of the next iterate during
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the iteration as follows:

x1,i+1 = g
1
(x1,i, x2,i, . . . , xn,i),

x2,i+1 = g
2
(x1,i+1, x2,i, . . . , xn,i),

and so on, until

xn,i+1 = g
n
(x1,i+1, x2,i+1, . . . , xn−1,i+1, xn,i).

The generalized fixed point method is useful for problems in which the com-
ponent functions are polynomials in multiple variables. Other classes of prob-
lems amenable to the generalized fixed point method are those with compo-
nent functions containing mixed polynomial and trigonometric expressions. In
these cases there are some guarantees for continuity and boundedness, which
are conditions of the method’s convergence.

8.2 The method of steepest descent

While the methods of the latter part of this chapter are the most widely used in
engineering practice, the method of steepest descent is important to discuss as
it points to a direction that will be used many times in the following chapters.

The problem of the solution of a system of nonlinear equations may be re-
cast in the form of a minimization problem. The solution of the problem is
equivalent to finding the minimum of the function

g(x) =

n
∑

i=1

(fi(x))
2.

If the global minimum of this function is positive, then the original nonlinear
system does not have a solution. If the global minimum is zero, then the point
of minimum is the solution of the nonlinear system.

Consider the starting solution of x0 and the gradient at this point defined by

∇g(x0) =











∂g(x)
∂x1

∂g(x)
∂x2

. . .
∂g(x)
∂xn











x=x
0

.
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The function’s descent is steepest (hence the name) in the direction opposite
to the gradient. We normalize the gradient vector to unit length

n(x0) =
∇g(x0)

||∇g(x0)||
.

Hence an improved solution may be found along the direction,

x(t) = x0 − t · n(x0),

where the t parameter is yet unknown. We next find the minimum of the g(x)
function in that direction:

g(x0 − t · n(x0)) = min,

which is at the location where the derivative with respect to the parameter
vanishes, i.e.,

d

dt
g(x0 − t · n(x0)) = 0.

We denote the smallest positive solution as t0 and find the next iterative so-
lution at

x1 = x0 − t0 · n(x0).

The process may be continued as

xi = xi−1 − ti · n(xi),

resulting in an ever decreasing series of function values

g(xi) < g(xi−1) < . . . < g(x1) < g(x0.

In general,

limi→∞g(xi) = 0.

If this limit exists, but it is not zero, the method converges to a local minimum
of the g function and the original problem has no solution.

There is the issue of the efficient calculation of the t parameter value. The
theoretical minimum of the ti value is rather expensive to compute. Instead
we interpolate the

h(t) = g(x0 − t · n(x0))

function at three suitable distinct locations, say, t = a, b, c. We evaluate the
function to be minimized at these locations as

h(a), h(b), h(c).
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Then we construct a quadratic polynomial through these points with New-
ton’s forward divided difference formula to approximate h(t),

h(t) = h(a) + f [a, b](t− a) + f [a, b, c](t− a)(t− b),

which we solve for the pseudo-optimal t value. For more details in solving for
a pseudo-optimal t value the reader may consult [6].

8.2.1 Computational example

We use the nonhomogeneous nonlinear system of

x2
1 + x2 − 3 = 0,

and

x1 + x2
2 − 5 = 0,

g(x,y)
g(1,2)

’solution’

 0
 0.2

 0.4
 0.6

 0.8
 1  2

 2.2

 2.4

 2.6

 2.8

 3

 0

 5

 10

 15

 20

 25

 30

FIGURE 8.1 Steepest descent example
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with the exact solution of

x =

[

x1

x2

]

=

[

1
2

]

.

For this example,

g(x) = (x2
1 + x2 − 3)2 + (x1 + x2

2 − 5)2.

The function is shown in Figure 8.1 along with the plane of the solution, de-
noted by “g(1,2)”. The “solution” is the (1, 2) point. The gradient is

∇g(x) =

[

2(x2
1 + x2 − 3)2x1 + 2(x1 + x2

2 − 5)
2(x2

1 + x2 − 3) + 2(x1 + x2
2 − 5)2x2

]

.

We will now use the starting location of

x0 =

[

1
3

]

,

at which the gradient is

∇g(x0) =

[

14
62

]

.

The normalized vector is

n(x0) =

[

0.2203
0.9754

]

.

The function to obtain the optimum t value is

h(t) = g(tn(x0)) = g

([

1 − t · 0.2203
3 − t · 0.9754

])

.

For the sake of this simple demonstration we will use as optimal value

t = 1,

and find the next approximate solution in

x1 =

[

0.7797
2.0246

]

.

It is important to point out that despite the fact that the x1 coordinate
of the initial vector was already correct, the gradient shift has moved the
next iterate away, due to the curvature of the function. Several more steps
of “shooting over” the desired location will occur before the process settles
down to the solution. Additional steps are shown in Table 8.1.
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TABLE 8.1

Steepest descent example convergence

x0 x1 x2 x3 x4 x5

1 0.7797 1.2354 1.1844 1.1214 1.0340
3 2.0246 2.3718 2.3144 2.2351 2.1255

8.3 The generalization of Newton’s method

We assume that every function fi is twice differentiable, at least in the neigh-
borhood of the anticipated solution. The Jacobian matrix is formulated as

F (x) =











∂f1

∂x1

∂f1

∂x2
. . . ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
. . . ∂f2

∂xn

. . .
∂fn

∂x1

∂fn

∂x2
. . . ∂fn

∂xn











.

Using this in place of the derivative (hence it is called the tangent matrix),
we generalize the “scalar” Newton method for this case as follows:

f(x0) + F (x0)(x1 − x0) = 0.

The solution of the inhomogeneous system of linear equations,

F (x0)(x0 − x1) = f(x0),

yields the new iterate. Hence, the Newton iteration scheme for the nonlinear
system of equations is

F (xi)(xi − xi+1) = f(xi).

It is also possible to compute the inverse of the Jacobian matrix and iterate as

xi+1 = xi − F−1(xi)f(xi).

We need to press the issue again that the method is operational only if the
inverse of the Jacobian matrix exists. The fact that one must evaluate this
inverse at each iteration step renders this simple generalized Newton’s method
for nonlinear systems unattractive. The remedy for this is in the next section.

8.3.1 Computational example

We revisit the example from the last section and execute a step of Newton’s
method. The Jacobian matrix for this system is
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F (x) =

[

2x1 1
1 2x2

]

.

The inverse of the Jacobian is

F−1(x) =
1

4x1x2 − 1

[

2x2 −1
−1 2x1

]

.

Now we are ready to proceed with the iteration. We start with a zero starting
vector.

x0 =

[

0
0

]

.

Based on the example in the past section, we compute

f(x0) = f(0) =

[

−3
−5

]

,

and

F−1(x0) = F−1(0) =

[

0 1
1 0

]

.

With the above we may compute the next iterative solution as

x1 = x0 − F−1(x0)f(x0) =

[

0
0

]

−
[

0 1
1 0

] [

−3
−5

]

=

[

5
3

]

.

Further steps of the process are summarized in Table 8.2.

TABLE 8.2

Nonlinear Newton’s method

x0 x1 x2 x3 x4 x5

0 5 2.6102 1.5225 1.0966 1.0047
0 3 1.8983 1.8965 1.9790 1.9989

The successive iterates are approaching, albeit not monotonically, the ana-
lytic solution of

x =

[

1
2

]

.

An accuracy, acceptable by engineering standards, of better than 1%, is ob-
tained in step 5.
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8.4 Quasi-Newton method

As mentioned before, the burden of recomputing the inverse of the Jacobian
at each iteration step is significant, especially when there are a large number
of equations involved. To alleviate this, a way of computing the inverse of a
certain step based on the inverse of an earlier step is needed.

In order to do so, we replace the Jacobian matrix in the nonlinear Newton
iteration with a matrix Mi. The iteration step with this matrix is then

xi+1 = xi −M−1
i f(xi).

The process starts with

M0 = F (x0),

and proceeds for i = 1, 2, . . . as

Mi = Mi−1 + sT
i

ti −Mi−1si

||si||2
.

Here,

si = xi − xi−1,

and

ti = f(xi) − f(xi−1).

The definition of the Mi matrix above, in essence, approximates the tangent
matrix with a “secant” matrix. The special construction of the matrix enables
us to find an efficient way to compute the inverse of Mi.

The method, often called the BFGS method, based on the initials of the
four main contributors, Broyden [1], Fletcher [2], Goldfarb [3] and Shanno
[5], is based on the Sherman-Morrison formula of linear algebra. The formula
is valid for a nonsingular matrix Mi−1, for which the inverseM−1

i−1 is available.
We update this matrix by a rank one matrix defined by vectors u, v as

Mi = Mi−1 + uvT .

The inverse of the updated matrix may be computed from the inverse of the
original matrix as

M−1
i = M−1

i−1 −
M−1

i−1uv
TM−1

i−1

1 + vTM−1
i−1u

,



170 Chapter 8

assuming that

vTM−1
i−1u 6= −1.

Exploiting the construction of the matrix, we assign

u =
ti −Mi−1si

||si||2

and
v = si.

We apply these as updates to theMi−1 matrix and after a considerable amount
of algebraic work, one obtains

M−1
i = M−1

i−1 +
(si −M−1

i−1ti)s
T
i M

−1
i−1

sT
i M

−1
i−1ti

.

This formula is the more efficient in the computational aspect but less speedy
in convergence than Newton’s method.

8.4.1 Computational example

To illustrate this method we reuse the example of the past section.

x2
1 + x2 − 3 = 0,

and
x1 + x2

2 − 5 = 0.

We started with

x0 =

[

0
0

]

.

and computed the inverse of the Jacobian matrix at the starting solution as

F−1(x0) = F−1(0) =

[

0 1
1 0

]

.

With this the next iterative solution is

x1 =

[

5
3

]

.

Now we are ready to proceed with the quasi-Newton method. We compute
the two auxiliary vectors.

s1 = x1 − x0 =

[

5
3

]

.
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t1 = f(x1) − f(x0) =

[

25
9

]

−
[

−3
−5

]

=

[

28
14

]

.

We now compute the components of M−1
1 .

M−1
0 = F−1(x0) =

[

0 1
1 0

]

,

s1 −M−1
0 t1 =

[

−9
−25

]

,

sT
1M

−1
0 =

[

3 5
]

,

sT
1 M

−1
0 t1 =

[

154
]

.

With these, finally,

M−1
1 = M−1

0 +
(s1 −M−1

0 t1)s
T
1M

−1
0

sT
1 M

−1
0 t1

=

[

−0.1753 0, 7078
0.5130 −0.8117

]

.

The next iterate is obtained as

x2 = x1 −M−1
1 f(x1) =

[

3.013
−2.520

]

.

This example was meant to demonstrate the process, rather than the numer-
ical nuances. It is hard to visualize how this last step approaches the exact
solution; but these methods sometimes first take the process farther from the
solution before zooming in on it.

Note that while the example functions used in this chapter are nonlinear
polynomials, the techniques introduced are also applicable to mixed functions
of trigonometric, exponential and other types, as long as the derivatives, re-
quired by the calculation of the Jacobian matrix, are computable.

8.5 Nonlinear static analysis application

A very important application example of these techniques is in the area of
nonlinear structural analysis. In most real-life environments, structural de-
formations are nonlinear. It is possible that the structure undergoes a large
deformation, not linearly related to the increase in the applied load. It is also
possible that the structural material is nonlinearly elastic, or even plastic. For
more on the engineering aspects of these phenomena, see [4].
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In both cases, the problem is presented as

K(u)u = f,

where the matrix K(u) representing the structure’s stiffness characteristics,
is called the stiffness matrix and u is the deformation of the structure. Note
that the stiffness matrix is dependent on the deformation. The right-hand
side contains a vector representing the loads applied to the structure.

The size of the matrix is related to the finite element discretization of the
structure. It can have millions of rows and columns in today’s engineering
practice, hence efficient solution techniques are a necessity. Both the general-
ized Newton method and the quasi-Newton method are applicable and used
in the industry to solve these problems.

True to the nonlinear nature of the problem, there is a load imbalance be-
tween the external load f and the internally absorbed load

∆fi = f −K(ui)ui.

The iteration

ui+1 = ui +K−1
i ∆fi,

proceeds until the load imbalance ∆fi disappears, which is when the structure
has reached an equilibrium.

In practical applications, a rank two update version of the BFGS process is
executed. Two regular Newton iterations are executed and a BFGS update
based on the two steps is formulated. We introduce the notation of

γ = ∆fi−1 − ∆fi,

which are the force imbalances at the two steps, and

δ = ui − ui−1.

The approximate updated stiffness matrix based on the last two points and
the just introduced quantities is computed as

Ki+1 = Ki +
γγT

γT δ
− Kiδδ

TKi

δTKiδ
.

This is a rank two update of a matrix. The related BFGS update [4] is

K−1
i+1 = K−1

i + (1 +
γTK−1

i γ

γT δ
)
δδT

δT γ
− δγTK−1

i +K−1
i γδT

γT δ
.
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This is usually reformulated for computational purposes. Nevertheless, it di-
rectly produces the inverse for the next approximate stiffness from the last
inverse and from information in the last two steps, hence it is a secant-type
approximation.
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Iterative solution of linear systems

This topic has also been the subject of historical interest for many centuries.
Gauss had already researched the topic by the early 1800s (published posthu-
mously in 1903 [1]) and some of the methods bear his name in recognition of
his laying the foundation. Jacobi [6] also published in the area over 150 years
ago, and Seidel’s and Krylov’s [9] contributions are rather old, too. Simi-
larly, Ritz laid the foundation for some of this chapter’s topics in [10], albeit
not formally describing the technique now called the Ritz-Galerkin procedure.

The most significant result came in the middle of the last century: the
method of conjugate gradients by Hestenes and Stiefel [3]. The method and
its variants have found their way into many aspects of engineering applica-
tions and are still the subject of active research.

9.1 Iterative solution of linear systems

The problem of solving the system of linear equations,

a11x1 + a12x2 + . . .+ a1nxn = b1,

a21x1 + a22x2 + . . .+ a2nxn = b2,

. . .

an1x1 + an2x2 + . . .+ annxn = bn,

is discussed by taking advantage of the convenience of matrix notation. The
problem is then

Ax = b,

with
b 6= 0,

and
det(A) 6= 0.

175
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The iterative solution of this system may be found by a splitting of the matrix
into two additive components as

A = B − C,

with the assumption of

det(B) 6= 0.

Furthermore, we desire that B−1 be easy to compute. The system of equa-
tions may be reordered in terms of these components as

Bx = Cx+ b.

This enables a conceptually very simple iteration scheme.

x = B−1Cx+B−1b.

Computing the matrix

M = B−1C,

and a vector of

c = B−1b,

one obtains the iterative sequence of

xi+1 = Mxi + c.

The process may be started with x0 = 0. Furthermore, let us denote the exact
solution with x and let the error of the iteration steps be represented by

e1 = x1 − x = M(x0 − x) = Me0,

e2 = x2 − x = M(x1 − x) = M2e0,

and

ei+1 = xi+1 − x = M(xi − x) = M i+1e0.

The sequence of approximations will converge to the exact solution as long as

limi→∞M
i = (0),

which is satisfied if

||M || = ||B−1C|| ≤ 1.

The above is a necessary condition for the convergence of an iterative solution
of a system based on a particular splitting.
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9.2 Splitting methods

There are several well-known classical strategies for the splitting of the system
matrix.

9.2.1 Jacobi method

One of the simplest techniques, well known to engineers, is the Jacobi method
[6]. The B matrix is simply defined as

B = diag(A(j, j)), j = 1, 2, . . . , n,

a diagonal matrix. The iteration scheme of

xi+1 = B−1Cxi +B−1b

becomes the following termwise formula for every j = 1, 2, . . . , n.

xi+1(j) =
1

A(j, j)
(b(j) −

j−1
∑

k=1

A(j, k)xi(k) −
n

∑

k=j+1

A(j, k)xi(k)).

The convergence condition is

||B−1C|| = max1≤j≤n

∑

k 6=j

|A(j, k)

A(j, j)
| < 1.

It follows that

∑

k 6=j

|A(j, k)| < |A(j, j)|; j = 1, . . . , n

is required, which means the matrix A must be diagonally dominant for the
Jacobi method to converge.

9.2.2 Gauss-Seidel method

An improvement is proposed by Seidel and presented in the Gauss-Seidel
method by using the just computed new iterative values on the right-hand
side [12].

xi+1(j) =
1

A(j, j)
(b(j) −

j−1
∑

k=1

A(j, k)xi+1(k) −
n

∑

k=j+1

A(j, k)xi(k)).
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The method may be written in matrix form as

xi+1 = (D + L)−1(b− Uxi).

Here,

A = L+D + U,

where L,D and U are the strictly lower triangular, diagonal and strictly upper
triangular parts of the A matrix, respectively. This is the basis for a compu-
tationally more useful form. Expand as

xi+1 = (D + L)−1b− (D + L)−1Uxi.

Adding and subtracting

(D + L)−1(D + L)xi,

and substituting

ri = b−Axi = b− (L+D + U)xi

one gets

xi+1 = xi + (D + L)−1ri.

We seemingly lost the U partition of the matrix, but it is still hidden in the
residual ri. Starting from an initial estimated solution of x0 and computing
the last two equations for i = 1, 2 . . . result in an approximate solution. The
convergence condition is the same as that of the Jacobi method; however, the
rate of convergence is usually about twice as fast.

9.2.3 Successive overrelaxation method

The Gauss-Seidel method may be extended by applying a relaxation factor,
resulting in the SOR, successive overrelaxation technique [15]. The Gauss-
Seidel matrix form, introduced above, is extended with the relaxation factor
ω as

xi+1 = (D + ωL)−1(−ωU + (1 − ω)D)xi + ω(D + ωL)−1b.

One can see that the value of

ω = 1

results in the Gauss-Seidel method. Values higher than one technically result
in overrelaxation and those lower than one, in underrelaxation. However, in
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common practice today, overrelaxation is defined by any value other than one.

This method, depending on the selection of the relaxation factor, may be
an order of magnitude faster than the Gauss-Seidel method. In fact, for a
given matrix, an optimal relaxation value may be theoretically computed as

ωoptimum =
2

1 +
√

1 − ρ2
,

where ρ is the spectral radius of the matrix. As computing the spectral radius
exactly is a more expensive proposition than solving the system of equations
directly, this optimum is mostly of theoretical interest. For special matrices
where the spectral radius may be approximated, this formula is used.

It is proven in [7] that the limits of the relaxation value are

0 < ω < 2.

Convergence will not occur outside of that region. On the other hand, if the
matrix is symmetric and positive definite, the method is guaranteed to con-
verge for any relaxation value between these limits. The actual value of the
relaxation parameter heavily influences the rate of convergence.

9.2.4 Computational formulation of splitting methods

Finally, any particular splitting technique, placing a focus on the error of it-
eration in each step, may be rearranged into a computationally convenient
form. In order to do so the

A = B − C

splitting equation is used in the

C = B −A

form. Similarly the iterative scheme of

Bxi+1 = Cxi + b

is rewritten as

Bxi+1 = (B −A)xi + b = Bxi + b−Axi.

We introduce the residual vector

ri = b−Axi,
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and a difference vector

∆xi = xi+1 − xi.

The convenient computational form of

B∆xi = ri,

is the basis of an iteration scheme in terms of the residual vector as follows.
At step i, first compute the residual

ri = b−Axi,

then the adjustment of the solution

∆xi = B−1ri,

followed by the new iterate as

xi+1 = xi + ∆xi.

The convergence condition is still based on

||B−1C|| = ||B−1(B −A)|| = ||I −B−1A|| < 1.

The residual of the above process is readily usable for a stopping criterion.

9.3 Ritz-Galerkin method

The most useful iterative techniques for solution of linear systems in engineer-
ing practice today are various conjugate gradient methods. These methods
are based on the Ritz-Galerkin principle that proposes to select such iterative
solution vectors xi for which the residual is orthogonal to a Krylov subspace
generated by A and the initial residual r0.

This Krylov subspace K i is defined by the sequence of vectors generated as

k1, k2, . . . , ki,

where

ki = Ai−1r0.

These vectors do not describe the subspace well because they are not orthog-
onal. Let us assume for now that we have a set of orthonormal basis vectors
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spanning the same Krylov subspace in

Vi =
[

v1 v2 . . . vi

]

.

The Ritz-Galerkin principle in terms of this yet unknown orthonormal span-
ning set of the Krylov subspace is described as

V T
i ri = 0,

or

V T
i (b−Axi) = 0.

To generate these vectors we start from

x0 = 0,

which results in

r0 = b.

We compute the first v vector by normalizing as

v1 =
r0

||r0||
.

The Ritz-Galerkin condition may be expanded and written as

V T
i b = V T

i Axi.

By the orthogonality of the V basis and the definition of the v1 vector

V T
i b = ||r0||e1.

Selecting xi from the Krylov subspace as

xi = Viyi

we obtain

V T
i AViyi

= ||r0||e1.
The form on the left-hand side is, in essence, a projection of the A matrix
into the Krylov subspace spanned by V . In the case of a symmetric A matrix
this projection produces a tridiagonal matrix

V T
i AVi = Ti.

The process of systematically generating the vectors of V is the Lanczos
method, whose virtues will be extolled at length in the next chapter. The
solution for the next iterate will be generously accelerated by the tridiagonal
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matrix form, specifically,

Tiyi
= ||r0||e1.

Clearly the solution for the new iterate is

y
i
= T−1

i ||r0||e1,
and

xi = Viyi
.

The inverse of the tridiagonal matrix is not formally evaluated and in fact the
execution of this step leads to the conjugate gradient method.

9.4 Conjugate gradient method

The exploitation of the tridiagonal form in the case of positive definite matri-
ces yields the method of conjugate gradients [3]. Positive definiteness implies
that the tridiagonal matrix may be factored without pivoting into

Ti = LiUi.

Here the factor matrices are a lower bidiagonal matrix of

Li =









d1

l1 d2

. . . . . .
li−1 di









,

and a unit upper bidiagonal matrix of

Ui =









1 u1

. . . . . .
1 ui−1

1









.

We use this factorization in order to produce the inverse

y
i
= U−1

i L−1
i (||r0||e1).

The following clever algorithm, invented by Hestenes and Stiefel [3], avoids
the explicit computations of the terms of the tridiagonal matrix, as well as its
factorization. Instead the following process is executed. Initialize as

x0 = 0, r0 = b, p
0

= r0,
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where p
0

is a starting search direction vector. The process iterates through
the following five steps for i = 1, 2, 3, . . . until convergence.

1. Compute the length of the step

αi =
rT

i−1ri−1

pT
i−1

Ap
i−1

.

2. Compute the next approximate solution

xi = xi−1 + αipi−1
.

3. Compute the residual of the new approximate solution

ri = ri−1 − αiApi−1
.

4. Compute the relative improvement of this step

βi =
rT

i ri

rT
i−1ri−1

.

5. Compute the new search direction

p
i
= ri + βipi−1

.

The process may be stopped when the norm of the residual computed in
step 3,

||ri||,

is less than a certain threshold.

The coefficients generated during the conjugate gradient steps are related
to the tridiagonal matrix, which was not built explicitly. The coefficients are

Ti =















. .

. − βi−1

αi−1
.

. 1
αi

+ βi−1

αi−1
.

. − 1
αi

.

. .















.

One can proceed now and actually compute the eigenvalues of the matrix of
the system, but that topic and more efficient methods of doing it will be ad-
dressed in the next chapter.
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9.4.1 Computational example

We will execute the conjugate gradient process for the system

Ax =





20 1 0
1 20 −1
0 −1 20









x1

x2

x3



 =





21
20
19





until we obtain a residual norm of less than 0.1.

Initialization:

r0 =





21
20
19



 = p
0
.

Step i = 1:

1. Compute the length of the step

α1 =
rT
0 r0

pT
0
Ap

0

=





21
20
19





T 



21
20
19









21
20
19





T

A





21
20
19





= 0.049834.

2. Compute the next approximate solution

x1 = x0 + α1p0
=





0
0
0



 + 0.049834





21
20
19



 =





1.04652
0.99668
0.94685



 .

3. Compute the residual of the new approximation

r1 = r0 − α1Ap0
=





21
20
19



 − α1A





21
20
19



 =





−0.92703
0.03333
1.05970



 .

4. Compute the relative improvement of this step

β1 =
rT
1 r1
rT
0 r0

=





−0.92703
0.03333
1.05970





T 



−0.92703
0.03333
1.05970









21
20
19





T 



21
20
19





= 0.00165.
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5. Compute the new search direction

p
1

= r1 + β1p0
=





−0.92703
0.03333
1.05970



 + β1





21
20
19



 =





−0.89238
−0.00033
1.09110



 .

Step i = 2:

1. Compute the length of the step

α2 =
rT
1 r1

pT
1
Ap

1

= 0.049916.

2. Compute the next approximate solution

x2 = x1 + α2p1
=





1.00197
0.99667
1.00131



 .

3. The residual computation yields

r2 = r1 − α2Ap1
=





−0.03614
0.06600
−0.02954



 .

The residual norm is

||r2|| =
√

rT
2 r2 = 0.0808.

This satisfies our accuracy requirement for this example. The approximate
solution is appropriately close to the exact solution of

x =





1
1
1



 .

9.5 Preconditioning techniques

To accelerate the convergence of the iteration, a preconditioning step is often
applied. This entails premultiplying the system by the inverse of a positive
definite preconditioning matrix P .

P−1Ax = P−1b.
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The intention is, of course, to have the

A = P−1A

matrix produce better convergence. One way to apply the preconditioner is
in its factored form

P = LLT

and applied as

L−1AL−1,Ty = L−1b.

Then the original solution is recovered as

x = L−1,Ty.

The conjugate gradient method, however, allows for a more elegant solu-
tion. Let us define a P inner product as

(x, y)P = (x, Py).

While the P−1A matrix is not symmetric, even if A is symmetric, it is sym-
metric with respect to the P inner product.

(P−1Ax, y)P = (P−1Ax, Py) = (Ax, y) = (x,Ay) = (x, P−1Ay)P .

If we can use the conjugate gradient procedure in the P inner product, we
minimize

(ri, P
−1Ari)P = (ri, Ari).

The outcome of this is that the preconditioned conjugate gradient process will
still minimize the error of the original system, however, now in relation to a
Krylov subspace generated by P−1A. This makes the necessary modification
to the preconditioned conjugate gradient algorithm minimal. The process
needs the introduction of a step to apply the preconditioner to the residual
whenever it is computed as

Pti = ri.

In addition, the computation of the new search direction is executed in terms
of this temporary t vector.

p
i
= ti + βipi−1

.

The preconditioner P may also be factored in this context, facilitating a
speedy application via forward-backward substitution.
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9.5.1 Approximate inverse

As far as the actual content of the preconditioner is concerned, most successful
techniques are based on the preconditioner being an approximate inverse of
the A matrix. Such may be obtained by incomplete factorizations [8].

The concept is to execute a factorization based on the Gaussian elimination
[1]

A = LU,

but compute the fill-in terms only at certain positions. One simple way to
define this restriction is by enforcing that

L(i, j), U(i, j) = 0, if A(i, j) = 0.

This means retaining the sparsity pattern of the original matrix in the factors.
To compute these incomplete factors is much less expensive than the complete
factors. The computed incomplete factors L,U only approximate the matrix

L U ≈ A.

Hence if they are used as factors of the preconditioner

P = L U,

the preconditioner P−1 will represent an approximate inverse of the matrix.

There are other methods of restricting the computation of the fill-in terms
of the Gaussian elimination, for example, a band profile is often used. In this
case fill-ins are ignored outside the band:

L(i, j) = 0, if j > i+ b,

where b is a predefined band width. Then there are methods of suppress-
ing fill-ins based on their numerical value as opposed to location. In this
case it is of course necessary to compute the fill-in terms, losing some of the
computational efficiency advantage. Still, there is significant saving when the
incomplete factor is applied repeatedly in the iteration scheme, as it contains
less terms and is numerically more accurate. These methods are successful in
certain applications and less so in others.

The same approach may also be used in connection with Cholesky decom-
position.

A ≈ C C
T
,

and
P = C C

T
.
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The use of incomplete Cholesky preconditioners for symmetric problems in
connection with the preconditioned conjugate gradient method is wide-spread.

9.6 Biconjugate gradient method

So far we have focused on symmetric matrices. For the unsymmetric case a
generalization of the conjugate gradient method exists, known as the bicon-
jugate gradient method. Its underlying principle is still the Ritz-Galerkin,
sometimes called Petrov-Galerkin, approach of orthogonalizing the successive
residuals to the already gathered Krylov subspace. Due to the unsymmetric
nature of the A matrix there are two distinct Krylov bases Ui, Vi, to perform
the tridiagonal reduction.

UT
i AVi = Ti,

with
UT

i Vi = I.

The biorthogonal Lanczos method discussed in detail in the next chapter is
readily available to accomplish this operation and the tridiagonal matrix in
general is unsymmetric. The Ritz-Galerkin condition in this case becomes

UT
i AViy − UT

i b = 0.

The solution will again be based on

Tiyi
= ||r0||e1.

As in the symmetric conjugate gradient scheme, the computation of the actual
tridiagonal reduction is skipped and a biconjugate algorithm is applied. The
steps of this algorithm are as follows. Initialize as

x0 = 0, r0 = b, p
0

= r0, q0 = s0 = random,

where q
i
, si are counterparts of p

i
, ri to enforce the biorthogonality condi-

tion. The biconjugate gradient process iterates until convergence through
the same five steps as the symmetric conjugate gradients, but in steps 3 and
5, the orthogonal counterparts are also computed.

1. Compute the length of the step

αi =
sT

i−1ri−1

qT
i−1

Ap
i−1

.
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2. Compute the next approximate solution

xi = xi−1 + αipi−1
.

3. Compute the residual of the new approximation

ri = ri−1 − αiApi−1
,

si = ri−1 − αiA
T q

i−1
.

4. Compute the relative improvement of this step

βi =
sT

i ri

sT
i−1ri−1

.

5. Compute the new search direction and its counterpart

p
i
= ri + βipi−1

,

q
i
= si + βiqi−1

.

The process may be stopped when both residual norms,

||ri||, ||si||,

computed in step 3, are less than a certain threshold.

The biconjugate gradient method, due to the underlying biorthogonal Lanc-
zos reduction, suffers from the possibility of a breakdown. It is possible that
the

uT
i vi

inner product is zero, even though neither vector is zero. This scenario man-
ifests itself in the biconjugate gradient algorithm’s 4th step with

sT
i−1ri−1

becoming zero and resulting in a division by zero. There are remedies for
such occurrences; such as the look-ahead Lanczos [11], which overcomes the
difficulty by creating a block-step consisting of two single steps, hence intro-
ducing a “bulge” in the otherwise tridiagonal matrix.

Another way to deal with this problem is to restart the Krylov subspace
building process when the breakdown condition approaches. This technique
is widely used in the industrial implementations of the Lanczos method and
will be discussed in the next chapter.
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9.7 Least squares systems

So far we have focused on square systems of equations. There are cases, when
the number of rows of the system matrix is less than the number of columns,
the so-called underdetermined system. Then there are cases when the oppo-
site is true: there are more rows than columns, i.e., there are more equations
than unknowns. This class of overdetermined problems of

Ax = b,

in which the matrix A has n rows and m columns, and

n > m,

is the subject of this chapter. We will assume that the matrix has full column
(m) rank.

Such a system has no exact solution, so an approximate solution is sought.
It is rather intuitive to find an approximate solution using the earlier discussed
least squares principle. The principle applied to this problem is

||Ax− b|| = min,

where the use of the Euclidean norm asserts the square aspect of the least
squares, since the above is equivalent to

(Ax− b)T (Ax− b) = min.

From executing the operations and differentiating with respect to x, it follows
that the least squares minimal solution satisfies

AT (Ax− b) = 0.

This is the so-called normal equation:

ATAx = AT b.

Explicitly executing this operation is numerically disadvantageous and com-
putationally inefficient. A better way to solve this problem is by executing a
factorization of

A = QR,

where Q is an orthogonal n × m matrix, i.e., QTQ = I . The R matrix is
upper triangular of size m. The details of this factorization are addressed in
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the next section. Exploiting the characteristics of this factorization

QTA = R

and writing the overdetermined system as

QTAx = QT b,

yields

Rx = QT b.

Due to the upper triangular nature of the R matrix, the solution of this is a
convenient and easily executable backsubstitution.

9.7.1 QR factorization

The factorization of

A = QR

may be accomplished with the systematic orthogonalization of the columns of
the A matrix via the Gram-Schmidt orthogonalization scheme already men-
tioned. Here the dimensions of the matrices are: A and Q have n rows and
m columns and R is of size m rows by m columns, where only the upper
triangular matrix contains the nonzero terms [2].

Let us denote the columns of A with ak and the columns of Q as q
k
. Then

the factorization is represented by

ak =
k

∑

i=1

rikqi
, k = 1, 2, . . . ,m.

Here rik are the terms of the R matrix. As we have assumed that the A matrix
has the full rank of m, all the rkk terms are nonzero and we can rewrite

q
k

=
1

rkk
(ak −

k−1
∑

i=1

(qT
i
ak)q

i
),

which is the well-known Gram-Schmidt orthogonalization scheme. Introduc-
ing

rik = qT
i
ak

and

zk = rkkqk
.
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brings the computational form

zk = ak −
k−1
∑

i=1

rikqi

and

rkk =
√

zT
k zk.

The process starts with

r11 =
√

aT
1 a1

and proceeds to k = 2, . . . ,m.

The process may be also executed with the help of Householder reflections
[4]. That is the preferred method when the problem sizes are very large and
the matrix A is square. Note that a square matrix may still be a least squares
system if the column rank of the matrix is less than the number of columns.

9.7.2 Computational example

We consider the overdetermined system of

Ax = b,

with a rectangular matrix

A =





1 1
1 1
0 2





and right-hand side

b =





3
3
4



 .

From

ATA =

[

2 2
2 6

]

,

it is clear that the columns are not orthogonal. We first execute the QR fac-
torization of the matrix.
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Step k = 1:

r211 =





1
1
0





T 



1
1
0



 = 2,

from which

q
1

=
1

r11
a1 =





1√
2

1√
2

0



 .

Step k = 2:

r12 = qT
1
a2 =





1√
2

1√
2

0





T 



1
1
2



 =
√

2.

z2 = a2 −
√

2q
1

=





1
1
2



 −
√

2





1√
2

1√
2

0



 =





0
0
2



 .

Finally,

r222 =





0
0
2





T 



0
0
2



 = 4,

and

q
2

=





0
0
1



 .

This step is representative of all the following steps in the case of a problem
with more columns.

Assembling the results:

From the computed components:

Q =





1√
2

0
1√
2

0

0 1



 ,

and

R =

[√
2
√

2
0 2

]

.
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Verification step:

QTQ =





1√
2

0
1√
2

0

0 1





T 



1√
2

0
1√
2

0

0 1



 =

[

1 0
0 1

]

= I,

and

QR =





1√
2

0
1√
2

0

0 1





[√
2
√

2
0 2

]

=





1 1
1 1
0 2



 = A.

Now we turn to the solution of the least squares system.

Multiplication of the right-hand side with the QT matrix results in

QT b =





1√
2

0
1√
2

0

0 1





T 



3
3
4



 =

[

3
√

2
4

]

.

The backsubstitution of

Rx =

[√
2
√

2
0 2

] [

x1

x2

]

=

[

3
√

2
4

]

produces the least squares solution of the system:

x =

[

1
2

]

.

Careful observation shows that this is really an exact solution of the system
as the first two equations were identical, so the problem really was a square
system only. Nevertheless, it was a simple way to demonstrate the technology.

9.8 The minimum residual approach

There is another class of methods that minimizes the norm of the residual at
each iteration; hence they are called minimum norm residual methods. The
method gathers approximate solutions that minimize the

||Axi − b||
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norm at every step. In the generic nonsymmetric A matrix case, the Krylov
space for such a set of vectors vi projects

AVi = ViHi,

where H is an upper Hessenberg matrix [4] that has zeros in the lower trian-
gular part, apart from the very first subdiagonal. Introducing

xi = Viyi

the residual norm to be minimized is

||Axi − b|| = ||AViyi
− b|| = ||ViHiyi

− Vi(||r0||)e1||.

In the latter part of this equation we relied on the Ritz-Galerkin technique
introduced in Section 9.3. Since the Vi are orthonormal, the norm simplifies to

||Hiyi
− (||r0||)e1||.

This is now a least squares problem with an upper Hessenberg matrix, for
which the technique discussed in Section 9.7 may be efficiently applied. Ac-
cordingly, we factorize

Hi = QiRi.

Then,

||Hiyi
− (||r0||)e1|| = ||QiRiyi

− (||r0||)e1||.

Now exploiting the orthonormality of Qi we obtain

||Riyi
−QT

i (||r0||)e1||.

The norm is minimal when the quantity inside is zero; hence the minimum
residual solution is

yi = R−1
i QT

i ||r0||e1.

The inverse is easily executed by backward substitution, since Ri is upper
triangular. The next iterative solution is

xi = Viyi
.

A practical implementation of this class is the GMRES method [14]. While
it is a subject of significant academic interest, it is less frequently used in
industry.
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9.9 Algebraic multigrid method

The final technique described in this chapter has only about 25 years of his-
tory and it is still the subject of intense research. The technique of multigrid,
as the name implies, has some foundation in the finite difference technique to
be discussed in the last chapter. It is based on a two-level discretization of a
boundary value problem, one of a fine and another of a coarse grid.

The process starts by obtaining an initial approximate solution on the fine
discretization level: xf and proceeds with the following steps.

1. Compute the residual of the current approximate solution on the fine grid

rf = b−Afxf .

2. Transfer the residual to the coarse grid

rc = If
c rf .

3. Solve the coarse grid problem

Acyc
= rc.

4. Transfer the coarse grid solution to the fine grid

y
f

= Ic
fyc

.

5. Correct the fine grid solution

xf = xf + y
f
.

Several comments are in order. The fine to coarse translation is executed as

Ac = If
c Af I

c
f ,

and conversely, the coarse to fine translation is

Af = Ic
fAcI

f
c .

The Ic
f is the coarsening and the If

c the smoothening matrix. They are
sometimes called the restriction and prolongation matrices, respectively. The
process is repeated until, following step 1, the residual norm dips below an
acceptance threshold.

||rf || ≤ ε.
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The coarse grid problem posed in step 3 may also recursively be solved by
ever coarser application of the same algorithm, thus the name of multigrid as
opposed to bigrid.

Finally, for the case of a straightforward linear algebraic problem with a
matrix A where the underlying physical problem is not available, the alge-
braic variation of the multigrid method (AMG) is often used. The naming
convention refers to the fact that the coarse subset of the matrix is computed
based on algebraic concepts.

An unknown component is a good candidate for being in the coarse subset
if it is strongly coupled to another solution component. In that sense, if the
A(i, j) component of matrix A is large in comparison to the other offdiagonal
terms of the ith row, then x(j) is strongly coupled to x(i). Hence the jth row
will be retained in the coarse set if

|A(i, j)| > maxk 6=i|A(i, k)|
for i = 1, . . . , n. In other words, for each row i of the matrix we gather the
j column indices into the coarse set corresponding to the dominant terms in
absolute magnitude. This is rather heuristic and some improvements are pos-
sible by incorporating weights or using linear combinations between certain
components.

The coarsening and the smoothening transformation matrices contain ze-
roes and ones and some weights, hence their notation with I , and are related as

(Ic
f )T = If

c .

They have f rows and c columns and vice versa. For example, a coarsening
matrix with linear interpolation for a fine matrix of order 5 may be of the form

Ic
f = I3

5 =













c1 0 0
1 0 0
c3 c3 0
0 1 0
0 c5 c5













,

where the ci are interpolation coefficients. A smoothening matrix with some
weights wi may be written as

If
c = I7

3 =





w1 1 w3 0 0
0 0 w3 1 w5

0 0 0 0 w5



 .

For more on the topic, see [13].
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9.10 Linear static analysis application

The most frequent practical application of the approximate solution of linear
systems in engineering practice is the linear static analysis of a mechanical
system. The problem is of the form

KU = F,

where now the load is a matrix as the structures are usually analyzed under
a multitude of load conditions. Hence,

F =
[

f
1
f

2
. . . f

m

]

.

and consequently,

U =
[

u1 u2 . . . um

]

.

The number of load conditions m is in the hundreds and sometimes exceeds a
thousand. The size n of the stiffness matrix K is dependent upon the type of
the geometric model and the level of discretization, but more often than not
is in the millions.

Due to the finite element origin of these problems, it is a natural idea to
take advantage of information from the finite element basis.

P = f(ki, Nj), i = 1, . . . , nelements, j = 1, . . . , nnodes,

where ki are the individual element matrices and Nj are the shape functions.
Such preconditioners are called element based preconditioners [5].

While the iterative solutions may be executed simultaneously for multiple
load vectors, their cost effectiveness diminishes with very large numbers of
right-hand sides. Still, in the case of a very large n, solving the problem by
computing direct factorizations may just be impossible due to resource limi-
tations of the computer.

The most attractive case for the use of iterative solutions in linear static
analyses is when the finite element model is highly connected, resulting in
rather dense matrices. Such models are generated by automatic meshing
techniques applied to compact structures, like automobile engine components.
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Approximate solution of eigenvalue problems

The eigenvalue problem has a hundred-year-old historical foundation dating
from Rayleigh [10]. The most profound influence in the area, however, came
from Lanczos’ heralded paper [7] in 1950. Key ideas of his approach were
used in the conjugate gradient method of the last chapter. Anecdotal evidence
even suggests that Hestenes and Stiefel gained significant benefit from the
presence of Lanczos, who was their coworker at the National Bureau of Stan-
dards. The other important development in eigenvalue solutions, regarded as
another classical contribution, was the QR iteration of Francis [3].

10.1 Classical iterations

The first methods used to compute eigenvalues of matrices were introduced by
engineers. The very simplest and one of the oldest methods, currently known
as the power method, was originally called the Stodola iteration. It is simply
based on the observation that the eigenvector corresponding to the dominant
(i.e., the largest) eigenvalue of the matrix may be obtained by an iterative
sequence

xi, i = 1, 2, . . . .

The process starts with a unit vector x0 and proceeds as

y
i
= Axi−1, i = 1, 2, . . . .

The estimated eigenvalue is chosen to be the maximum element of the current
iterative vector

λi = maxn
k=1|yi

(k)|

and the eigenvector is scaled by this value as

xi =
y

i

λi
.

201
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Note this is not the ith eigenvalue, it is the ith iterate of the dominant eigen-
value λmax. We denote the largest eigenvalue by λmax and the second largest
by λmax−1. The process converges with a rate of

|λmax − λi| = O((
λmax−1

λmax
)i).

The above equation implies that if the dominant eigenvalue is well separated,
the process is acceptable. Note that the number of iterations i is bounded by
∞, meaning that more than n iterations may be needed to find the dominant
eigenvalue. The method in this case, of course, loses any practicality.

In engineering applications the smallest eigenvalue is of more practical in-
terest. This fact gave birth to another classical method, the inverse iteration,
a conceptually similar process. We can, however, avoid the inversion of the
matrix: instead of multiplying in each step, we solve

Ay
i
= xi−1, i = 1, 2, . . . .

This process will converge to the eigenvalue closest to the origin, with conver-
gence related to the ratio

|λi − λmin| = O((
λmin

λmin+1
)i).

Again, the separation of the smallest eigenvalue λmin from the second small-
est λmin+1 defines the rate of convergence.

Finally an extension of these classical methods is the so-called Rayleigh quo-
tient iteration. It is based on the late 19th century effort by Lord Rayleigh
[10], who approximated the first mode of a vibrating system by solving

(A− ρ(x1))x1 = e1.

The term ρ is now called the Rayleigh quotient. For a matrix A and vector
x, it is the scalar

ρ(x) =
xTAx

xTx
.

It is easy to deduce that if x is an eigenvector of A, then the Rayleigh quotient
is the corresponding eigenvalue

λ = ρ(x).

This observation leads to the approximation technique known as the Rayleigh
quotient iteration. The process starts as before and in each step of i = 1, 2, . . .
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we compute an approximate eigenvalue from the Rayleigh quotient

λi =
xT

i−1Axi−1

xT
i−1xi−1

.

Then we solve for an approximate eigenvector as

(A− λiI)yi
= xi−1.

We normalize the approximate eigenvector as

xi =
y

i

||y
i
|| ,

and the process continues. The process converges globally with a cubic rate
of convergence as shown in [8].

10.2 The Rayleigh-Ritz procedure

The linear symmetric eigenvalue problem of order n

Axj = λjxj

is our focus. Here j = 1, 2, . . . , n, although in practice the number of eigen-
values computed is usually much less. Let us assume that we have a matrix
Q with m orthonormal columns

QTQ = I.

The Rayleigh-Ritz procedure computes the matrix Rayleigh quotient of

Tm = QTAQ.

This matrix has m rows and columns and is tridiagonal if A is symmetric and
Q spans a Krylov subspace. The eigenvalues of this matrix are called the Ritz
values and are computed from the Ritz problem of

Tmuj = θjuj .

The approximate eigenvectors (also called Ritz vectors) of the original eigen-
value problem are recovered as

xj = Quj .
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This procedure, in essence, provides an approximate solution to the eigenvalue
problem by projecting the matrix into a subspace spanned by the columns of
Q. The residual error of the approximate eigenvector is computed as

rj = r(xj) = Axj − θjxj = AQuj − θjxj .

This error bounds the eigenvalue as

(θj − ||rj ||) ≤ λj ≤ (θj + ||rj ||).
The quality of the Rayleigh-Ritz procedure depends on the selection of the
subspace spanned by Q. The performance of the method depends on the
construction of the subspace. The aforementioned Krylov subspace is a good
selection; however, computing it efficiently is where the Lanczos method ex-
ceptionally shines.

10.3 The Lanczos method

The Lanczos method [7] is an excellent way of generating the Krylov sub-
space of A and projecting the eigenvalue problem accordingly. The problem
we consider is

Ax = λx

where A is real, symmetric and x are the eigenvectors of the original prob-
lem; the underlining is used to distinguish from the soon to be introduced x
Lanczos vectors which, for the sake of clarity, will not be underlined.

This method generates a set of n orthonormal vectors, the Lanczos vectors
Xn, such that

XT
nXn = I,

where I is the identity matrix of order n and

XT
nAXn = Tn.

Here we ignore the possibility of a numerical breakdown of this process. The
Tn order n tridiagonal matrix is of the form

Tn =













α1 β1

β1 α2 β2

. . .
βn−2 αn−1 βn−1

βn−1 αn













.
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The terms of the tridiagonal matrix will be computed as the coefficients of
the Lanczos recursion process.

By appropriate premultiplication we get

AXn = XnTn.

By equating columns in this equation, we get

Axk = βk−1xk−1 + αkxk + βkxk+1,

where k = 1, 2, ..n− 1 and xk are the kth columns of Xn. For any k < n the
following matrix form describes the recurrence.

AXk = XkTk + βkxk+1e
T
k ,

where ek is the kth unit vector containing one in row k and zeroes elsewhere.
Its presence is only needed to make the matrix addition operation compatible.

By reordering, we obtain the following famous Lanczos recurrence formula:

βkxk+1 = Axk − αkxk − βk−1xk−1,

The coefficients βk and αk are computed as follows. The successive Lanczos
vectors are orthogonal:

xT
k xj = 0; j = 1, 2, . . . , k − 1,

and they are also normalized as

||xk || = 1.

This is the source of the βk coefficients. Then we premultiply the earlier equa-
tion by xT

k .

xT
kAxk = βk−1x

T
k xk−1 + αkx

T
k xk + βkx

T
k xk+1.

Based on the orthonormality of the Lanczos vectors, this yields

αk = xT
kAxk ,

which is the second coefficient. Now, we need to find the eigenvalues and
eigenvectors of this tridiagonal matrix.

Tnuj = θjuj .

The j in the above equation is the index of the eigenvalue of the tridiagonal
matrix, j = 1, 2, . . . n.
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Since the eigenvalues of A are invariant under the transformation to tridiag-
onal form, the θ eigenvalues of the tridiagonal matrix Tn are the same as the
λ eigenvalues of the original matrix. The eigenvectors of the original problem
are calculated from the eigenvectors of the tridiagonal problem by the proce-
dure originally suggested by Lanczos:

xj = Xnuj ,

where Xn is the matrix containing the n Lanczos vectors, uj is the jth eigen-
vector of the tridiagonal matrix.

10.3.1 Truncated Lanczos process accuracy

The Lanczos iteration may also be stopped at step j resulting in a tridiagonal
matrix Tj . This is especially important when dealing with very large matrix
sizes commonly occurring in engineering practice. The method still enables
the computation of approximate eigenvalues and eigenvectors as follows.

The θ eigenvalues of the tridiagonal matrix Tj , the Ritz values, are approx-
imations of the λ eigenvalues of the original matrix. The eigenvectors of
the original problem are calculated from the approximate eigenvectors (Ritz
vectors) as above.

The approximated residual error in the original solution [8] is

||rj || = ||Axj − λxj || = ||AXiuj − λjXiuj || = ||(AXi − λjXi)uj ||,

where j = 1, 2, . . . i, and i is the number of Lanczos steps executed. It follows
that

||rj || = ||(AXi −XiTi)uj || = ||(βixi+1e
T
i )uj || = βi||eT

i ||||uj ||,

since the norm of the Lanczos vector xi+1 is unity. Taking advantage of the
structure of the unit vector we can simplify into the following scalar form:

||rj || = βi|uij |,

where uij is the ith (last) term in the uj eigenvector. The last equation gives
an approximation monitoring tool. When the error norm is less than the re-
quired tolerance ε then the jth approximate eigenpair may be accepted.

It is the beauty of this convergence criterion that only the eigenvector of
the tridiagonal problem has to be found, which is inexpensive compared to
finding the eigenvector of the original (size n) problem.
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10.4 The solution of the tridiagonal eigenvalue problem

The eigenvalues of the tridiagonal problem may be bounded and counted by
the Sturm sequence property, introduced in 7.3.1, and applied to our case as
follows. Define polynomials pj(x) such that

pj(x) = det(Tj − Ix),

where Tj is the jth principal minor of the tridiagonal matrix as

Tj =









t1,1 t1,2

t2,1 t2,2 t2,3

. . . .
tj,j−1 tj,j









.

Starting from p0(x) = 1, the recursion

pj(x) = (tj,j − x)pj−1(x) − t2j,j−1pj−2(x),

defines this sequence. The number of eigenvalues that are smaller than a cer-
tain value x = λs is the same as the number of sign changes in the sequence

p0(λs), p1(λs), p2(λs), . . . , pn(λs).

To find an approximate solution to the tridiagonal eigenvalue problem,
Francis’s QR iteration [3] may be used. The QR method is based on a
decomposition of the Tn matrix into the form

Tn = Q1R1.

R1 is an upper triangular matrix and Q1 contains orthogonal columns.

Q1,TQ1 = I.

Hence,

Q1,TTn = R1,

and postmultiplying yields

Q1,TTnQ
1 = R1Q1.

Repeated execution on the left-hand side produces the Rayleigh quotient (with
a unit denominator due to the orthogonality of Qi)

Qi,TQi−1,T . . . Q2,TQ1,TTnQ
1Q2 . . .Qi−1Qi = Λi,
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yielding the eigenvalues.

To accelerate the convergence, a shifted version of this process is executed.
One accepted and practical shift is chosen by using the last term of the tridi-
agonal matrix

ω = Tn(n, n).

Then the process is executed on the shifted matrix

Tn − ωI = Q1R1,

where ω is the shift. The shifted QR iteration proceeds as

T 1
n = R1Q1 + ωI.

The newly created matrix preserves the eigenvalue spectrum of the old one.
By repeatedly applying this procedure, T i

n converges to diagonal form, with
elements that are the approximate eigenvalues of the original matrix.

T i
n = Λi.

The number of iterations i is usually O(n). The computation of Francis’ QR
iteration takes advantage of the tridiagonal nature of Tn and preserves it in
the following iterates.

During the execution of the process, the subdiagonal terms are constantly
monitored, and in case any of them becomes sufficiently small, the problem
is decoupled into two parts. If one of the partitions is of size one or two, the
related eigenvalue problem is solved analytically. The example in the next
section will demonstrate this process.

For eigenvectors, an inverse power iteration procedure originally proposed
by Wilkinson [13] is commonly used. The eigenvectors corresponding to the
jth eigenvalue of the Tn tridiagonal matrix may be determined by the factor-
ization

Tn − θjI = LjUj ,

where Lj is unit lower triangular (the diagonal terms are one) and Uj is upper
triangular. The θj term is an approximation of the jth eigenvalue. Gaussian
elimination with partial pivoting is used, i.e., the pivotal row at each stage is
selected to be the equation with the largest coefficient of the variable being
eliminated. Since the original matrix is tridiagonal, at each stage there are
only two equations containing that variable. Approximate eigenvectors of the
jth eigenvalue θj will be calculated by a simple (since the Uj also has only 2



Eigenvalue problems 209

codiagonals) iterative procedure.

Uju
i+1
j = ui

j ,

where ui
j is random and i is the iteration counter. Practice shows that the

convergence of this procedure is so rapid that i only goes to 2 or 3.

This original method may also be extended to deal with special cases such
as repeated eigenvalues. There are also more recent approaches, such as de-
scribed in [2], that combine the two steps together; however, their industrial
value has not been fully established yet.

10.5 The biorthogonal Lanczos method

Lanczos himself originally described his method for unsymmetric matrices.
In this case a biorthogonal version of the method is executed with a pair of
Lanczos vectors at each iteration step.

βkxk+1 = Axk − αkxk − γk−1xk−1,

and

γky
T
k+1 = yT

k A− αky
T
k − βk−1y

T
k−1,

which results in an unsymmetric tridiagonal matrix built from the Lanczos
coefficients as follows:

Tn =













α1 γ1

β1 α2 γ2

. . .
βn−2 αn−1 γn−1

βn−1 αn













.

The coefficients βk and γk may be defined such that

βkγk = yT
k+1xk+1,

is satisfied, where

xk+1 = βkxk+1,

and

yT
k+1 = γky

T
k+1.
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Introducing the normalization parameter

δk = yT
k+1xk+1,

the coefficients are selected as

βk =
√

|δk|,

and

γk = βksign(δk).

The advantage of these choices is that the resulting tridiagonal matrix will
be symmetric, except for the sign. In exact arithmetic every pair of Lanczos
vectors satisfies

yT
k xk = 1,

and

yT
k xj = 0, yT

j xk = 0,

for any j < k. Based on this orthonormality condition, premultiplying results
in

αk = yT
k Axk,

which is, of course, the equation to produce the diagonal terms of the tridi-
agonal matrix.

10.5.1 Computational example

Let us find the eigenvalues and eigenvectors of the following order 3 unsym-
metric matrix.

A =





1/2 1/2 −1/2
0 0 −2

3/2 −1/2 9/2



 .

We use the starting vectors:

x1 =





1
0
−1



 ,

and

y1 =





1/2
−1/2
−1/2



 ,
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which satisfy

yT
1 x1 = 1.

Step k = 1:

We first compute the diagonal Lanczos coefficient as

α1 = yT
1 Ax1 = 1.

Since, in the k = 1 step, the coefficients with zero indices γ0, β0 are zero, the
Lanczos recurrence equation is

x2 = Ax1 − α1x1 =





1
2
−3



 −





1
0
−1



 =





0
2
−2



 .

Similarly for the left-hand side

y2 = AT y1 − α1y1 =





−1/2
1/2
−3/2



 −





1/2
−1/2
−1/2



 =





−1
1
−1



 .

The normalization parameter is calculated as

δ1 = yT
2 x2 = 4.

Since it is positive, its square root becomes the value of the offdiagonal coef-
ficients:

β1 =
√

δ1 = 2 = γ1.

In turn, the normalized Lanczos vectors for the next iteration are

x2 = x2/β1 =





0
1
−1



 ,

and

y2 = y2/γ1 =





−1/2
1/2
−1/2



 .

Step k = 2:

The execution of the next step for these new vectors starts again with com-
puting the diagonal coefficient.

α2 = yT
2 Ax2 = 3.
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The Lanczos recurrence step is now full for this case:

x3 = Ax2 − α2x2 − γ1x1 =





−1
−1
0



 .

Similarly for the left-hand recurrence,

y3 = AT y2 − α2y2 − γ1y1 =





−1/2
−1/2
−1/2



 .

Since

δ2 = 1,

then

β2 = γ2 = 1.

The normalized Lanczos vectors of the final iteration are

x3 =





−1
−1
0



 ,

and

y3 =





−1/2
−1/2
−1/2



 .

Step k = 3:

The last diagonal coefficient becomes

α3 = yT
3 Ax3 = 1,

and the iteration process stops as we have reached the full size of the matrix.
This would be the stage to check the accuracy of the approximate solution
in case a Rayleigh-Ritz approximation is executed and the Lanczos process
stopped here.

Verification step:

The resulting tridiagonal matrix is produced as indicated by the Lanczos
process.

T3 = Y TAX =





1/2 −1/2 −1/2
−1/2 1/2 −1/2
−1/2 −1/2 −1/2



A





1 0 −1
0 1 −1
−1 −1 0



 =





1 2 0
2 3 1
0 1 1



 .
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The Lanczos vectors also satisfy the Y TX = I orthogonality criterion as it
was part of the computation.

We obtain the eigenvalues by applying the QR iteration for

T =





1 2 0
2 3 1
0 1 1



 .

The shift is chosen as

ω = T (3, 3) = 1.

The QR factorization of the shifted matrix is

T − ωI =





0 2 0
2 2 1
0 1 0



 =





0 2/
√

5 −1/
√

5
−1 0 0

0 1/
√

5 2/
√

5









−2 −2 −1

0
√

5 0
0 0 0



 = Q1R1.

Backmultiplication and reshift results in

T 1 = R1Q1 + ωI =





3 −
√

5 0

−
√

5 1 0
0 0 1



 .

There is a decoupling into two parts. The size one part on the lower right
corner yields

det(1 − λ) = 0,

or
λ1 = 1.

The upper left corner, size two part, is solved as

det(

[

3 − λ −
√

5

−
√

5 1 − λ

]

) = 0.

The solutions are

λ2 = 2 +
√

6,

and

λ3 = 2 −
√

6.

Finally, we apply Wilkinson’s eigenvector generation. For λ1 we use an
approximate eigenvalue of θ = 0.99999, thus

T − θI =





0.00001 2 0
2 2.00001 1
0 1 0.00001



 .
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This matrix is factored with pivoted Gaussian elimination into

PLU =





0 1 0
1 0 0
0 0 1









1 0 0
0 1 0
0 1/2 1









2 2.00001 1
0 1.99999 0
0 0 0.00001



 .

Here the matrix P represents the pivoting executed during the elimination.
Starting with a unit vector associated with this eigenvalue

u0
1 =





0
0
1



 ,

a single solution step

Uu1
1 = u0

1

results in

u1
1 =





−4.0 ∗ 104

−2.0 ∗ 10−1

8.0 ∗ 104



 .

Normalizing with the first component results in the right eigenvector of the
tridiagonal problem as

u1 =





1
0
−2



 .

The corresponding eigenvector of the original problem is computed by

x1 = Xu1 =





3
2
−1



 .

The left eigenvector corresponding to the unit eigenvalue is obtained similarly.

y
1

= Y Tu1 =





3
1
1



 .

With these, both the

Ax1 = λ1x1

and
AT y

1
= λ1y1

are satisfied. The other two eigenvectors may be computed in the same fash-
ion.
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10.6 The Arnoldi method

There is another method applicable to unsymmetric systems, the Arnoldi
method [1]. It builds an orthonormal basis for the Krylov subspace K i(A, r0)
by computing

u = Avi

and orthonormalizing this vector with respect to all prior vi. The matrix form
of this scheme is

AVi−1 = ViHi,

where the reduced form achieved is an upper Hessenberg matrix of i rows and
i− 1 columns.

Hi =













h1,1 h1,2 . h1,i−1

h2,1 h2,2 . h2,i−1

0 h3,2 . h3,i−1

. . .
0 0 . hi,i−1













.

The orthogonalization is executed by the Gram-Schmidt method again, and
the terms of the matrix may be computed by the following algorithmic steps.

v1 = r0||r0||.

For i = 1, 2, . . .:

u = Avi.

For j = 1, 2, . . . , i:

hj,i = vT
j u,

u = u− hj,ivj .

End of loop on j.

hi+1,i = ||u||,

vi+1 = 1
hi+1,i

u.

End of loop on i.
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Based on the complexity of this algorithm and due to the topology of the
upper Hessenberg format, the Arnoldi method is inherently less efficient than
the tridiagonal Lanczos method. There have been attempts at improving the
technique to be competitive with the Lanczos method. Such is the implic-
itly restarted variant of the method [12]. Despite these efforts, the Lanczos
method remains the most widely used in the industry.

10.7 The block Lanczos method

In practical applications, matrices frequently have repeated eigenvalues. This
occurs, for example, when there is symmetry in the underlying geometry. The
single-vector Lanczos method in exact arithmetic can find only one eigenvec-
tor of a set of repeated eigenvalues. An approximate calculation of repeated
eigenvalues is possible with a block formulation [5], which executes the Lanc-
zos method with multiple vectors simultaneously.

The block Lanczos method to solve the above eigenvalue problem is formu-
lated as

Ri+1 = AQi −QiAi −Qi−1B
T
i i = 1, 2, . . . j,

where
Ai = QT

i AQi,

and
Ri+1 = Qi+1Bi+1.

Qi+1 is an n by b matrix with orthonormal columns (the Lanczos vectors) and
Bi+1 is a b by b upper triangular matrix, n being the problem size and b the
block size, obtained by the QR decomposition.

At this stage several steps (k) of orthogonalization are required to maintain
the process. The orthogonalization against all prior Lanczos vectors, com-
monly called full orthogonalization, is very expensive and its cost increases
as the frequency range of interest widens. One avenue to ease this burden is
by executing the orthogonalization only to a certain accuracy, called partial
orthogonalization in practice [11].

Another practically used improvement is the selective orthogonalization
concept [9], which executes orthogonalization against “selected” eigenvec-
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tors that are close enough or for other reasons have a large influence on local
convergence. The m vectors to be orthogonalized against are these selectively
chosen vectors in the following equation:

Qk
i+1 = Qk−1

i+1 − Σm
j=1xj(x

T
j Q

k−1
j ).

Ultimately the block process results in a block tridiagonal matrix of the form

Tj =









A1 B
T
2

B2 A2 B
T
3

. . .
Bj Aj









.

With appropriately chosen Givens transformations [4] this block tridiagonal
matrix is reduced into a scalar tridiagonal matrix TJ . The eigensolution of
the size J = jb, (J << n) eigenvalue problem of

TJu = λu,

may be found by the earlier discussed QR iteration algorithm.

To find the eigenvectors of the original problem a backtransformation of
the form

x = QJu

is required. The QJ matrix is a collection of the Lanczos vector blocks:

QJ =
[

Q1 Q2 . . Qj

]

.

10.7.1 Preconditioned block Lanczos method

In line with some of the concepts introduced in linear system solutions, a way
to accelerate this technology is by preconditioning the eigenvalue problem.
We need a preconditioning matrix P for which

PP T = I.

We apply it to the block Lanczos recurrence.

P TQi+1Bi+1 = P TAQi − P TQiAi − P TQi−1B
T
i .

Introduce a preconditioned Lanczos vector block

Qi = P TQi,

and a preconditioned matrix

A = P TAP.
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Inserting these yields

Qi+1Bi+1 = A Qi −QiAi −Qi−1B
T
i .

The preconditioned Lanczos recurrence is still correct for the eigenvalue prob-
lem since the orthonormality of the preconditioned Lanczos vectors is equiv-
alent to the orthonormality of the Lanczos vectors of the original problem as

Q
T

i Qi = QT
i PP

TQi = QT
i Qi = I.

The success of this technique lies in the selection of the P matrix. It is depen-
dent upon the geometric modeling technique applied (shell vs. solid models)
and other characteristics of the particular engineering problem.

10.8 Normal modes analysis application

The undamped, free vibration of mechanical systems in engineering results in
a generalized linear eigenvalue problem of the form:

Mv̈(t) +Kv(t) = 0,

where the K and M matrices are the stiffness and mass matrices, respectively.
The v is the displacement vector and v̈ is the acceleration. The motion is time
dependent and usually a complex Fourier transformation is executed to trans-
form it to the frequency domain by

u(ω) =

∫ ∞

0

v(t)e−iωtdt.

where ω is the frequency of the vibration. Assuming zero displacement at the
initial time and introducing

λ = ω2

results in a so-called generalized (two matrix) linear eigenvalue problem.

Kφ− λMφ = 0.

Since the engineer’s interest in these problems is at the lower end of the spec-
trum, it is advisable to execute a step of so-called spectral transformation [6].
The substitution of

µ =
1

λ− λs
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will change the problem into

(K − λsM)φ =
1

µ
Mφ.

This may be transformed into

µφ = (K − λsM)−1Mφ = Aφ,

which is a canonical form amenable to the Lanczos algorithm discussed ear-
lier. The matrix in this form is unsymmetric, despite the fact that the finite
element matrices are symmetric. The efficiency improvement of solving a
symmetric problem as opposed to an unsymmetric one is very clear from this
chapter. In the industry, therefore, the form

µMφ = M(K − λsM)−1Mφ

is used, which produces mass-orthogonal eigenvectors as

φTMφ = I.

This is a desirable characteristic in view of the additional dynamic computa-
tions often executed in engineering.
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11

Initial value problems

Initial value problems are an important subject of engineering. Many of these
problems arise from modeling various physical phenomena, but considerably
fewer of them may be solvable analytically. Hence the intense interest in
approximate solutions. Historical names such as Euler and Taylor, are asso-
ciated with the subject and their classical methods will be discussed in detail.

An excellent survey of the area is in [3]. The focus of this chapter will
be initial value problems of ordinary differential equations and systems of or-
dinary differential equations. Some of the methods are applicable to partial
differential equations as well.

It is important to point out that the approximate solution of initial value
problems will not be given in the form of an approximate function. Rather,
it will be given in terms of approximate solution values at discrete points.
This effectively reverses the approach of the first part of the book by seeking
a function approximating some discrete points.

11.1 Solution of initial value problems

An initial value problem (IVP) of a first order, ordinary differential equation
is posed as

dy

dt
= f(t, y); a ≤ t ≤ b,

with the initial condition of

y(a) = y0.

The analytic solution of the problem is

y(t),

221
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which may not be possible or feasible to compute analytically. The solution
to such a problem exists under certain conditions. The so-called Lipschitz
condition is defined with a constant L > 0 on a set D ∈ R2 as

|f(t, y1) − f(t, y2)| ≤ L|y1 − y2|,
where L is called the Lipschitz constant. If the function f(t, y) is continuous
on the domain

D = [a ≤ t ≤ b;−∞ < y <∞],

and satisfies the Lipschitz condition, then the initial value problem has a
unique solution.

The somewhat ambiguous definition of this condition may be improved as
follows. Let us define a domain D to be convex if, for any two points in the
domain, the line segment connecting the two points is also in the domain in
its entirety. If the function is defined and differentiable on a convex domain
and there exists a number L such that

|∂f
∂y

(t, y)| ≤ L,

for each point in the domain, the function satisfies the Lipschitz condition.
This is a more useful and easily verifiable condition, since it essentially verifies
that the partial derivative of the function f(t, y) with respect to y is bounded
in D.

There is an abundance of methods for the solution of initial value problems,
categorized as follows:

Solution methods for initial value problems

| |

Single-step methods Multistep methods

| | | |

Analytic Numeric Fixed step Variable step

| | | | Adams | | |

Euler Taylor Runge-Kutta Explicit Implicit Gragg Fehlberg

(2) (4) Bashworth Moulton

| |

Predictor-corrector

In addition to the above methods, the initial value problem for systems of
first order ordinary differential equations and for higher order equations will
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also be discussed.

11.2 Single-step methods

We first examine methods that execute one solution step at a time, hence
their name.

11.2.1 Euler’s method

Euler’s method is rarely used in engineering practice, but it is worth discussing
here as it defines some concepts of the approximate solution of initial value
problems rather intuitively. It is also rather old as its first components ap-
peared in 1738 [1]. The approximate solution is obtained at discrete abscissa
locations:

ti = a+ ih; i = 0, 1, 2, . . . ,m.

The “step size” here is defined as

h =
b− a

m
.

Assuming that the solution function is twice differentiable, we write the sec-
ond order Taylor polynomial in the neighborhood of ti as

y(t) = y(ti) + y′(ti)(t− ti) + y′′(ξi)
1

2
(t− ti)

2,

where
ξi ∈ (t, ti).

Taking the t = ti+1 location and substituting the step size yields

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ξi).

Based on this, Euler’s difference equation method to solve an initial value
problem of a first order, ordinary differential equation is started from

y0 = y(a),

and followed by the iteration steps

yi+1 = yi + hf(t, yi); i = 0, 1, . . . .
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The geometric concept of the Euler method, shown in Figure 11.1, is that at
every iteration step we approximate the solution curve with a line whose slope
is the same as the tangent of the function.

In Figure 11.1 the “epoints” are the exact solution points and “spoints”
denote the approximate solution points. The line segments demonstrate the
approximate linear solution segments of the Euler method for f(x).

We define the local approximation error as

ei+1(h) =
y(ti+1) − y(ti)

h
− f(ti, yi) =

h

2
y′′(ξi),

with

y′′(ξ) ≤M ; ti ≤ ξ ≤ ti+1,

ei+1(h) = O(h).
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FIGURE 11.1 Concept of Euler’s method
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Euler’s method is a stable, but not very accurate method, unless the step size
is extremely small.

11.2.2 Taylor methods

The Taylor methods use the same concept as the Euler method, but with
higher (2, 3, . . .) order Taylor polynomials. The general nth order Taylor se-
ries is of the form

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
f ′(ti, y(ti)) + . . .

hn

n!
f (n−1)(ti, y(ti))

+
hn+1

(n+ 1)!
f (n)(ξi, y(ξi)).

Note that f(ti, y(ti)) and its derivatives are used in place of the derivatives of
y(ti). We introduce

Tn(ti, yi) = f(ti, yi) +
h

2
f ′(ti, yi) + . . .+

hn−1

n!
f (n−1)(ti, yi).

Then the Taylor method may be written as

y(ti+1) = y(ti) + hTn(ti, yi); i = 0, 1, . . . .

The local approximation error of a step is

ei+1(h) =
y(ti+1) − y(ti)

h
− Tn(ti, yi) =

hn

(n+ 1)!
f (n)(ξi, y(ξi)),

or

ei+1(h) = O(hn).

Therefore, the nth order Taylor method is more accurate than the Euler
method. An iteration process for the second order Taylor method, for exam-
ple, is as follows. Initialize

w0 = y0,

and iterate

yi+1 = yi + hT2(ti, yi); i = 0, 1, . . .

or

yi+1 = yi + h(f(ti, yi) +
h

2
f ′(ti, yi)); i = 0, 1, . . . .

Let us now demonstrate these methods with a computational example.
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11.2.3 Computational example

We consider the first order differential equation of

dy

dt
= 1 +

y

t
,

with an initial condition of

y(1) = 2.

We are interested in the solution of y(3/2) and use a step size of 1/4. For this
example,

f(t, y) = 1 +
y

t
,

and

f ′(t, y) =
1

t
.

The second order Taylor formula customized for this example is

yi+1 = yi +
1

4
((1 +

yi

ti
) +

1

8

1

ti
).

Substituting the initial condition yields

y1 = 2 +
1

4
((1 +

2

1
) +

1

8

1

1
) =

89

32
,

and

y2 =
89

32
+

1

4
((1 +

89/32

5/4
) +

1

8

4

5
) =

578

160
= 3.6125.

The analytic solution of the differential equation is

y = t · ln(t) + 2t+ c,

with the initial condition forcing c = 0. The exact solution value at t = 3/2
is

y(3/2) = 3.60819.

Assuming, reasonably, that M, the upper bound for y′′(ξ), is unity, the local
approximation error at each step has an upper bound of

e1(1/4) ≤ h2

3!
=

1

96
= 0.0104.

The difference between the approximate and the exact result is

0.00431,
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TABLE 11.1

Taylor method example

i ti yi y(ti) yi − y(ti)

0 1 2 2
1 1.25 2.78125 2.77893 0.00232
2 1.50 3.61250 3.60819 0.00431
3 1.75 4.48542 4.47933 0.00609
4 2.00 5.39400 5.38629 0.00771

well within the expected range. Two more steps are executed and all are
summarized in Table 11.1, where the third column is the exact result.

Note that the error between the exact and the approximate result shown
in the last column of Table 11.1 is gradually increasing, in accordance with
the fact that each step produces a distinct approximation error and they are
being accumulated.

A disadvantage of the Taylor methods is the need to compute the derivatives
for the Taylor polynomial analytically, a feat that may not be accomplished
in practical engineering problems. The next class of methods is aimed to
overcome this limitation.

11.2.4 Runge-Kutta methods

The methods in this class [8] compute the derivatives only approximately,
hence they are preferred and more practical in engineering computations.
Just as in the Taylor methods, various order formulations are available. Note
that these methods are still of the single-step family.

For the sake of clarity, we first restrict our attention to the n = 2 case. The
Taylor method of order n = 2 was written as

yi+1 = yi + hT2(ti, yi); i = 0, 1, . . . ,

with

T2(t, y) = f(t, y) +
h

2
f ′(t, y).

Using the chain rule, the derivative on the right-hand side is

f ′(t, y) =
df

dt
(t, y) =

∂f

∂t
(t, y) +

∂f

∂y
(t, y)y′(t)

and
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T2(t, y) = f(t, y) +
h

2

∂f

∂t
(t, y) +

h

2

∂f

∂y
(t, y)f(t, y).

The fundamental idea of the Runge-Kutta method is to approximate the
derivatives needed in this expression. We assume an approximation of f(t, y)
with its two-dimensional, first order Taylor polynomial (not to be confused
with the Taylor method) as

f(t+ k1, y+ k2) = f(t, y)+ k1
∂f

∂t
(t, y)+ k2

∂f

∂y
(t, y)f(t, y)+R1(t+ k1, y+ k2).

Here the remainder term is

R1(t+ k1, y + k2) =
k2
1

2

∂2f

∂t2
(ξ, ζ) + k1k2

∂2f

∂t∂y
(ξ, ζ) +

k2
2

2

∂2f

∂y2
(ξ, ζ),

where
ξ ∈ (t, t+ k1); ζ ∈ (y, y + k2).

Matching terms between the last two equations we obtain

k1 =
h

2
,

and

k2 =
h

2
f(t, y).

Hence the approximation of T2(t, y) is

T2(t, y) = f(t+
h

2
, y +

h

2
f(t, y)),

and the Runge-Kutta method of order 2 is formed as

yi+1 = yi + hf(ti +
h

2
, yi +

h

2
f(ti, yi)); i = 0, 1, . . . .

The initialization steps of

k1 =
h

2
,

and

k2 =
h

2
f(ti, yi),

followed by an iteration step of

yi+1 = yi + hf(ti + k1, yi + k2); i = 0, 1, . . .

constitute the algorithm executing the method. Based on R1 and k1 = h/2
it can be seen that the method’s local error is still O(h2), which is very
good considering the work saved by not computing the analytic derivatives is
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tremendous and sometimes makes the difference between whether a problem
may be solved or not.

The also well-used 4th order Runge-Kutta method is based on the same
concept and formulated as

k1 = hf(ti, yi),

k2 = hf(ti +
h

2
, yi +

k1

2
),

k3 = hf(ti +
h

2
, yi +

k2

2
),

k4 = hf(ti+1, yi + k3),

and

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4).

This method has an O(h4) local approximation error.

11.2.5 Computational example

We revisit the first order differential equation of

dy

dt
= 1 +

y

t
,

with an initial condition of

y0 = y(t0) = y(1) = 2.

We are going to execute one iteration of the Runge-Kutta method with a step
size of 1/4. The method is executed in the following algorithmic steps:

k1 =
h

2
=

1

8
.

For i = 0,

k2 =
h

2
f(t0, y0) =

1

8
(1 +

y0
t0

) =
1

8
(1 +

2

1
) =

3

8

and

y1 = y0 + hf(t0 + k1, y0 + k2) = 2 +
1

4
(1 +

2 + 3/8

1 + 1/8
) = 2.77778.

This value is in very good agreement with the analytical solution of 2.77893
shown in Table 11.1. This is, indeed, a testament to the practical properties
of the Runge-Kutta method.
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11.3 Multistep methods

The multistep methods execute more than one step of the iterations at a
time. Depending on whether the step size is fixed or variable, we have two
main groups.

The fixed step size m-step multistep methods may be written in the generic
form of

yi+1 = am−1yi + am−2yi−1 + . . .+ a0yi+1−m

+ h(bmf(ti+1, yi+1) + bm−1f(ti, yi) + . . .+ b0f(ti+1−m, yi+1−m)).

Here we define

h =
tn − t0
n

.

Depending on the value of bm, i.e., whether we use the new iterate value, we
may have implicit (bm 6= 0) or explicit (bm = 0) methods. These methods are
also sometimes called closed and open, respectively.

Naturally, for an m-step method m initial conditions must be supplied, i.e.,

y0, y1, . . . , ym−1

must be given to start. These values may be obtained by any of the single-step
methods. The methods of this class are called Adams methods.

11.3.1 Explicit methods

For an explicit Adams method, consider our problem:

y′ = f(t, y)

and integrate formally

∫ ti+1

ti

y′(t)dt = y(t)|ti+1

ti
= y(ti+1) − y(ti) =

∫ ti+1

ti

f(t, y(t))dt.

Hence

y(ti+1) = y(ti) +

∫ ti+1

ti

f(t, y(t))dt.

Of course we cannot compute this integral, since the inner function y(t) is
unknown, so we approximate the integrand with Newton’s equidistant back-
ward difference formula of
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f(t, y(t)) =

m−1
∑

k=0

(−1)k

(

−s
k

)

∇kf(ti, y(ti)) +Rm.

Following the Chapter 1 discussion on Newton’s equidistant backward formu-
lae,

∇f(ti, y(ti)) = f(ti, y(ti)) − f(ti−1, y(ti−1)),

and

∇kf(ti, y(ti)) = ∇∇k−1f(ti, y(ti)); k = 1, 2, . . . .

The Rm error term of the approximation of the function is

Rm =
f (m)(ξi, y(ξi))

m!
(t− ti)(t− ti−1)(t− ti−2) . . . (t− ti−(m−1)).

Introducing

t = ti + s · h,

and

dt = h ds,

the integral becomes

∫ ti+1

ti

f(t, y(t))dt =

m−1
∑

k=0

h∇kf(ti, y(ti))Ik +

∫ ti+1

ti

Rmdt,

where

Ik = (−1)k

∫ 1

0

(

−s
k

)

ds.

These integrals may be easily evaluated for various k values. For our discus-
sion we need the integrals for k = 0, 1, 2, 3 and they are

I0 = 1, I1 =
1

2
, I2 =

5

12
, I3 =

3

8
.

Substituting these values we obtain

y(ti+1) = y(ti) + h(f(ti, y(ti)) +
1

2
∇f(ti, y(ti)) +

5

12
∇2f(ti, y(ti))

+
3

8
∇3f(ti, y(ti)) + . . .) +

∫ ti+1

ti

Rm(ti, y(ti))dt,

which is the basis of the Adams methods.
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Let us now focus on the error of this approximation. Using the substitu-
tions as above, the error term of the integration is

∫ ti+1

ti

Rmdt =
h(m+1)

m!

∫ 1

0

s(s+ 1) . . . (s+m− 1)f (m)(ξi, y(ξi))ds

=
h(m+1)

m!
f (m)(ζi, y(ζi))

∫ 1

0

s(s+ 1) . . . (s+m− 1)ds

=
h(m+1)

m!
f (m)(ζi, y(ζi))(−1)m

∫ 1

0

(

−s
m

)

ds.

Computing the above for m = 3 yields

y(ti+1) = y(ti) + h(f(ti, y(ti)) +
1

2
∇f(ti, y(ti)) +

5

12
∇2f(ti, y(ti)))

= y(ti) + h(f(ti, y(ti)) +
1

2
(f(ti, y(ti)) − f(ti−1, y(ti−1)))

+
5

12
(f(ti, y(ti)) − 2f(ti−1, y(ti−1)) + f(ti−2, y(ti−2))))

= y(ti) +
h

12
(23f(ti, y(ti)) − 16f(ti−1, y(ti−1)) + 5f(ti−2, y(ti−2))).

Based on the above, the Adams-Bashworth three-step explicit method is

yi+1 = yi +
h

12
(23f(ti, yi) − 16f(ti−1, yi−1) + 5f(ti−2, yi−2)),

for i = 2, 3, . . . with y2, y1 and y0 initial conditions. The specific error term is
computed as

h4f (3)(ζi, y(ζi))(−1)3
∫ 1

0

(

−s
3

)

ds =
3h4

8
f (3)(ξi, y(ξi)).

The local error is obtained after division by the step size

ei+1(h) =
3h3

8
y4(ξi).

Here

ξi, ζi ∈ (ti−2, ti+1).

The local error of the three-step Adams-Bashworth method is of O(h3).
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11.3.2 Implicit methods

In order to provide an implicit method along the same lines, another integra-
tion term of

∫ ti+1

ti

f(t, y(t))dt

needs to be included. This process will give rise to the Adams-Moulton [5]
methods, of which the three-step formula is listed here.

yi+1 = yi +
h

24
(9f(ti+1, yi+1) + 19f(ti, yi) − 5f(ti−1, yi−1) + f(ti−2, yi−2)),

for i = 2, 3, . . . with y2, y1 and y0 initial conditions. The local error is

ei+1(h) = −19h3

720
y(5)(ξi)).

This error term is smaller than the error term of the corresponding explicit
Adams-Bashworth formula, a fact compensating for the additional complexity
of the formula. The problem is that it is an implicit equation that has the
yi+1 term on both sides requiring a solution step, instead of a substitution
only.

11.3.3 Predictor-corrector technique

In order to overcome the difficulty of the solution step of the implicit methods,
methods to combine the explicit and implicit techniques gained ground. They
are called predictor-corrector methods.

The idea is to execute an explicit step to obtain an approximation for yi+1

denoted by yp
i+1, for prediction. Then an implicit solution step is executed

using this predicted value on the right-hand side to obtain a corrected ap-
proximation for yi+1.

Let us consider the explicit Adams-Bashworth two-step formula of

yp
i+1 = yi +

h

2
(3f(ti, yi) − f(ti−1, yi−1))

as a predictor step. The two-step implicit Adams-Moulton formula of

yi+1 = yi +
h

12
(5f(ti+1, y

p
i+1) + 8f(ti, yi) − f(ti−1, yi−1))

may be the accompanying corrector step.
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11.3.3.1 Computational example

To demonstrate the power of this technique, we again revisit the earlier ex-
ample of this chapter:

dy

dt
= 1 +

y

t
.

We will still use a step size of 1/4 and use the two-step predictor-corrector
method. The original initial condition was

y0 = y(t0) = y(1) = 2.

We will use the analytic solution as the required second initial condition for
simplicity.

y1 = y(t1) = y(1.25) = 2.77893.

The customized Adams-Bashworth two-step formula for this problem is

yi+1 = yi +
1

8
(3(1 +

yi

ti
) − (1 +

yi−1

ti−1
)) = yi +

1

4
+

3

8

yi

ti
− 1

8

yi−1

ti−1
.

The predicted value is

yp
2 = 3.61261.

The customized Adams-Moulton two-step formula is

yi+1 = yi +
5

48
(1 +

yp
i+1

ti+1
) +

8

48
(1 +

yi

ti
) − 1

48
(1 +

yi−1

ti−1
).

This yields

yi+1 = 3.60866,

which is an order of magnitude better than the predictor step. The errors of
some of the methods discussed in this chapter and applied to this problem are
shown in Table 11.2.

TABLE 11.2

Error of second order methods

Method y(t2) − y2

Taylor method 0.00431
Runge-Kutta 0.00736
Adams-Bashworth 0.00442
Predictor-corrector 0.00047
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The techniques discussed so far have all used a constant step size. Ad-
ditional advantage may be gained by employing a variable step size. Such
methods, furthermore, employ a variation of the earlier methods in certain
combinations.

11.3.4 Gragg’s method of extrapolation

As the name indicates, this method has some flavors of Richardson’s extrapo-
lation [4] in it. Gragg’s method employs several intermediate steps. Consider
the initial value problem posed as

y′ = f(t, y)

with an initial condition of

y(a) = y(t0) = y0

given and the solution value y(b) sought. In the first intermediate step Gragg’s
method executes a single step of Euler’s method with a half step size of

h0 =
b− a

2
as

y1/2 = y0 + h0f(t0, y0).

The subscript 1/2 indicates that this approximation is made for a half step
and the bar in this section indicates intermediate results. Then a step of the
2nd order Runge-Kutta method, also known as the midpoint method, is exe-
cuted as

y1 = y0 + hf(t0 + h0, y0 + h0f(t0, y0)) = y0 + 2h0f(t0 + h0, y1/2).

Here the right-hand side was obtained by substituting the “half” step size
Euler approximation since

h = 2h0 = b− a.

We compute the average of the two values as

y3/4 =
y1 + y1/2

2
.

We fit a line through the points

(b, y1)

and
(t3/4, y3/4),
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where

t3/4 = t0 +
3

4
h = t0 +

3

2
h0,

The equation of the line is

y − y3/4 = f(b, y1)(t− t3/4).

The slope used is the slope of the function at b. Substituting t = b we extrap-
olate to find an equation for the improved approximate solution.

y1 =
1

2
(y1/2 + y1 + h0f(b, y1)).

The solution of this equation provides the extrapolation. The scheme is shown
graphically in Figure 11.2 with E,M,G points denoting the y1/2, y1, y1 points,
obtained by the Euler, midpoint and Gragg’s steps, respectively.
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The algorithmic process is summarized below.

Compute step size:

h0 =
b− a

2
.

Euler step:

y1/2 = y0 + h0f(t0, y0).

Midpoint step:

y1 = y0 + 2h0f(t0 + h0, y1/2).

Extrapolation step:

y1 =
1

2
(y1/2 + y1 + h0f(b, y1)).

This process may be generalized into a multilevel extrapolation technique
based on systematically different subdivided step sizes. Such step size se-
quences may be obtained as

hj =
h

qj
; qj = 2j+1; j = 0, 1, . . . .

Hence

h0 =
h

q0
, h1 =

h

q1
, h2 =

h

q2
, . . . .

We introduce the notation y1,j , where the second subscript represents the step
size index, such that y1,0 is the above computed y1 with step size h0.

In the second level of the scheme with step size of

h1 =
h0

2
=
h

4
,

the y1,1 approximation is computed by executing two midpoint (Runge-Kutta)
steps following the Euler step.

Euler step:

y1/4 = y0 + h1f(t0, y0).

Midpoint step 1:

y1/2 = y0 + 2h1f(t0 + h1, y1/4).
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Midpoint step 2:

y3/4 = y1/4 + 2h1f(t0 + 2h1, y1/2).

Midpoint step 3:

y1 = y1/2 + 2h1f(t0 + 3h1, y3/4).

Extrapolation step:

y1,1 =
1

2
(y3/4 + y1 + h1f(b, y1)).

The seemingly increasing difficulty is rewarded handsomely in accuracy.
Since the local error of the Runge-Kutta 2nd order (the midpoint) steps is
O(h2), for the second level the error is

O(h2
1) = O(

h0

4

2

) = O(
h2

16
),

which is an order of magnitude better. Furthermore, the error may be reduced
as follows. For the first level,

y(b) = y(a+ h) = y1,0 + ε1h
2
0 + ε2h

4
0 + . . . ,

and for the second level,

y(b) = y(a+ h) = y1,1 + ε1h
2
1 + ε2h

4
1 + . . . .

Here the ε are the constant parts of the error terms. The two approximations
in common terms may be compared as

y(b) = y(a+ h) = y1,0 + ε1
h2

4
+ ε1

h4

16
+ . . . ,

and

y(b) = y(a+ h) = y1,1 + ε1
h2

16
+ ε1

h4

256
+ . . . .

Appropriate multiplication and subtraction (utilizing the technique intro-
duced by Romberg and discussed in Section 6.2.2) yields

y1 = y1,1 +
1

3
(y1,1 − y1,0),

which is a further improvement on the approximation.

Gragg’s method can be extended to further levels, but these may reach a
point of diminishing returns. Certainly three levels may still be useful.
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11.3.5 Computational example

The complexity of Gragg’s method definitely warrants an example, although
the technique is almost too laborious for hand computation. The technique,
of course, is a prime candidate for computer implementation.

The example of

y′ = 1 +
y

t

pervading this chapter is used again with the initial condition

y(a) = y(1) = 2,

seeking the solution of

y(b) = y(5/4).

The respective step sizes are

h =
1

4
;h0 =

1

8
;h1 =

1

16
.

The execution of two levels of Gragg’s extrapolation process follows.

First level with h0 = 1
8 :

Euler step:

y1/2 = 2 +
1

8
(1 +

2

1
) =

19

8
.

Midpoint step:

y1 = 2 + 2(
1

8
)(1 +

19/8

9/8
) =

25

9
.

Extrapolation step:

y1,0 =
1

2
(
19

8
+

25

9

1

8
(1 +

25/9

5/4
)) = 2.77778.

Second level with h1 = 1
16 :

Euler step:

y1/4 = 2 +
1

16
(1 +

2

1
) =

35

16
.
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Midpoint step 1:

y1/2 = 2 + 2(
1

16
)(1 +

35/16

17/16
) =

81

34
.

Midpoint step 2:

y3/4 =
35

16
+ 2(

1

16
)(1 +

81/34

9/8
) =

701

272
.

Midpoint step 3:

y1 =
81

34
+ 2(

1

16
)(1 +

701/272

19/16
) =

1795

646
.

Extrapolation step:

y1,1 =
1

2
(
701

272
+

1795

646
+

1

16
(1 +

1795/646

5/4
)) = 2.77864.

Finally the Romberg’s method style refinement is computed as

y1 = 2.77864 +
1

3
(2.77864− 2.77778) = 2.77892.

The increased accuracy of these steps is demonstrated in Table 11.3 in com-
parison with the exact solution of y(5/4) = 2.77893.

TABLE 11.3

Error of Gragg’s method

Step y(t1) − y1

First level 0.00115
Second level 0.00029
Refinement 0.00001

The refined final value only differs from the exact value in the last digit
with an error of O(10−5).

11.3.6 Fehlberg’s method of step size adjustment

Another way to improve on the approximation by varying the step size is the
method of Fehlberg [2]. It simultaneously executes two sequences of Taylor
methods, one with order m and another one with order m+ 1. The approxi-
mations are
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yi+1 = yi + hTm +O(hm+1),

and
yi+1 = yi + hTm+1 +O(hm+2).

Both of these are, of course, approximating the exact solution:

y(ti+1) ≈ yi+1 ≈ yi+1.

The local errors of the two approximations are

ei+1(h) =
y(ti+1) − yi+1

h
,

and

ei+1(h) =
y(ti+1) − yi+1

h
.

With some algebraic manipulations we can express one in terms of the other:

ei+1(h) =
(y(ti+1) − yi+1) + (yi+1 − yi+1)

h
= ei+1(h) +

yi+1 − yi+1

h
.

Assuming that the local truncation error of the higher order method is much
less, the approximate local error of the lower order method is computed as

ei+1(h) ≈
yi+1 − yi+1

h
.

Note the significant distinction here: this is not a bound for the local error,
but an approximation for it. This enables the Fehlberg method of step size
adjustment as follows. At any step of the approximation process, when the
estimated local error exceeds a certain value,

ei+1(h) ≥ ε,

the step size is adjusted (i.e., reduced) with a multiplier α,

h = αh.

The estimated local error with the adjusted step size is

ei+1(αh) = O(αh)m ≈ k(αh)m = αm(k · hm) = αmei+1(h).

Enforcing the adjusted error to be within the requirement

ei+1(αh) ≤ ε

and substituting the original step size error yields the value of adjustment,

α = (
εh

|yi+1 − yi+1|
)1/m.
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The process then continues with the new step size resulting in a variable
step size method. The method is used in practice in connection with higher
order Runge-Kutta methods. Often a 4th order method is executed in con-
nection with a 5th order to estimate the error and adjust appropriately. The
application is more practical in computer implementation and less for manual
computations.

On a final note for the variable step size methods, we mention that the
predictor-corrector technique is sometimes used in different steps in the pre-
dictor and the corrector phase, hence qualifying for being a variable step size
method. The combination of a three-step explicit Adams-Bashworth predic-
tor step with a two-step implicit Adams-Moulton correction is used often in
practical implementations.

11.3.7 Stability of multistep techniques

An approximation method is considered to be stable if small changes in the
initial conditions result in small changes in the approximations. The stability
of a multistep method is evaluated as follows.

Consider an m-step method of

yi+1 = am−1yi + am−2yi−1 + . . .+ a0yi−m+1.

The characteristic polynomial of such a method is

p(λ) = λm − am−1λ
m−1 − . . .− a1λ− a0 = 0.

If all the roots of the characteristic equation satisfy

|λi| ≤ 1; i = 1, 2, . . .m,

then the method is called stable. Furthermore, a method is called strongly
stable if only one root satisfies the equality.

11.4 Initial value problems of ordinary differential equa-

tions

We now consider the initial value problem of a system of n linear ordinary
differential equations (ODEs).

dy1
dt

= f1(t, y1, y2, . . . , yn),
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dy2
dt

= f2(t, y1, y2, . . . , yn),

and
dyn

dt
= fn(t, y1, y2, . . . , yn).

The system has n initial conditions:

y1(t0) = y1,0,

y2(t0) = y2,0,

and
yn(t0) = yn,0.

Naturally, we seek n solutions of

y1 = y1(t),

y2 = y2(t),

and
yn = yn(t).

The Lipschitz condition for a function of n variables is

|f(t, y1, y2, . . . , yn) − f(t, w1, w2, . . . , wn)| ≤ L

n
∑

k=1

|yk − wk|,

where the constant L is the Lipschitz constant. We define a convex domain

D = [(t, y1, y2, . . . , yn); a ≤ t ≤ b;−∞ < yk <∞, k = 1, 2, . . . , n].

If the first partial derivatives are continuous on the domain and satisfy

∂f(t, y1, y2, . . . , yn)

∂yi
≤ L,

then the function satisfies the Lipschitz condition and the system has a unique
solution.

The solution technique presented here is a generalization of the Runge-
Kutta method. While this may be based on any order of the method, we will
use the 2nd order method for simplicity of the introduction. Recalling Section
11.2.4 and considering the jth equation, we write a step as

yj,i+1 = yj,i + hfj(ti +
h

2
, yj,i +

h

2
f(ti, yj,i)),

for i = 0, 1, 2, . . . . Here the double subscript is interpreted as follows: the
second subscript is the iteration counter as before, the first subscript specifies
one of the n linear ODEs.
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In the case of a system of equations, j = 1, 2, . . . , n, the computation is
presented in the following algorithm.

For i = 0, 1, 2, . . .

For j = 1, 2, . . . , n compute all

kj,i =
h

2
fj(ti, y1,i, y2,i, . . . , yn,i).

For j = 1, 2, . . . , n compute all

lj,i = hfj(ti +
h

2
, y1,i + k1,i, y2,i + k2,i, . . . , yn,i + kn,i).

For j = 1, 2, . . . , n compute all

yj,i+1 = yj,i + lj,i.

End of loop on i.

The algorithm had an external loop over the iteration process and three
internal loops over the system of equations.

11.4.1 Computational example

We consider the very simple, but demonstrative, example of the system

dy1
dt

= f1(t, y1, y2) = y2,

and
dy2
dt

= f2(t, y1, y2) = −y1 + 2y2.

The initial conditions are

y1(0) = y1,0 = 1,

and
y2(0) = y2,0 = 2.

The solution at t = 1
2 is sought, i.e., h = 1

2 . One iteration step of the Runge-
Kutta process is executed below.

i = 0:
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j = 1:

k1,0 =
1

4
2 =

1

2
.

j = 2:

k2,0 =
1

4
(−1 + 2 · 2) =

3

4
.

j = 1:

l1,0 =
1

2
(2 +

3

4
) =

11

8
.

j = 2:

l2,0 =
1

2
(−(1 +

1

2
) + 2(2 +

3

4
)) = 2.

j = 1:

y1,1 = 1 +
11

8
=

19

8
= 2.375.

j = 2:

y2,1 = 2 + 2 = 4.

The system’s analytic solution is

y1(t) = et + tet,

and

y2(t) = 2et + tet,

yielding the above initial conditions at t = 0. The exact solution at t = 1
2 is

y1(
1

2
) =

√
e+

√
e

2
= 2.4731,

and

y2(
1

2
) = 2

√
e+

√
e

2
= 4.1218.

The results are moderately accurate because the step size chosen for easy
computation is rather large for the particular functions in the initial neigh-
borhood.
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11.5 Initial value problems of higher order ordinary dif-

ferential equations

Initial value problems (IVPs) of higher order differential equations (ODEs)
may also be solved with a similar approach. A general nth order ODE initial
value problem is posed as

dny(t)

dtn
= g(t) + a0y(t) + a1y

′(t) + a2y
′′(t) + . . . an−1y

(n−1)(t),

with initial conditions

y1(t0) = y0,0,

y′(t0) = y1,0,

y′′(t0) = y2,0,

and

y(n−1)(t0) = yn−1,0.

The solution of this problem is obtained by reformulating it as an initial value
problem of a system of linear ODEs. We develop the method while focusing
on the n = 2 case,

y′′(t) = g(t) + a0y(t) + a1y
′(t) = f(t, y, y′).

We assign new variables as follows:

w1(t) = y(t),

w2(t) = y′(t).

Since then

w′
1(t) = w2,

and

w′
2(t) = y′′(t),

the converted system of linear ODEs is

dw1(t)

dt
= y′(t) = w2,

and
dw2(t)

dt
= f(t, y, y′) = f(t, w1, w2).
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This system may be solved by the method in the last section and the approx-
imate solution is

yi = w1,i.

The solution scheme is quite useful in engineering applications, where 2nd
order differential equations occur frequently, but the solution functions are
not easy to obtain analytically.

11.5.1 Computational example

We consider the 2nd order differential equation:

y′′(t) − 2y′(t) + y = 0.

This is equivalent to

y′′(t) = 2y′(t) − y(t) = f(t, y, y′).

The conversion is based on

w1(t) = y(t),

and

w2(t) = y′(t).

The resulting converted system is

w′
1(t) = w2(t),

and

w′
2(t) = −w1(t) + 2w2(t),

which is the system solved in the last section. The analytic solution of

y(t) = et + tet

satisfies the 2nd order differential equation since

y′(t) = 2et + tet,

and

y′′(t) = 3et + tet,

resulting in

y′′ − 2y′ + y = 0.
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11.6 Transient response analysis application

A prominent application of initial value problems in engineering is the calcu-
lation of the response of a mechanical system to a time-dependent excitation.
The computation is called the transient response analysis of mechanical sys-
tems. The equilibrium of the system at a step t in time is

Mÿ(t) +Bẏ(t) +Ky(t) = F (t).

Here the K and M matrices are the stiffness and mass matrices, respectively.
The y is the displacement vector and ÿ is the acceleration. The B is the
damping matrix associated with the velocity ẏ. The F (t) is a time-dependent
load acting on various parts of the system.

It is natural to consider time as the parameter t in the techniques of this
chapter. This gives rise to a 2nd order problem with matrix coefficients that
may be transformed into a system, as shown in the last section.

The practical method often employed in the industry is the Newmark
method, which is a special two-step implicit method much along the lines
of those shown earlier in this chapter. Considering h = ∆t, the method is
based on

y(t+ ∆t) =
1

4
y(t+ 2∆t) +

1

2
y(t+ ∆t) +

1

4
y(t).

The initial condition is that there is no acceleration when t < 0. It is, however,
allowed that the system has a constant initial velocity defined by a nonzero
value of ẏ(0) and a starting displacement of y(0). In order to start the New-
mark process with an equilibrium at time t + ∆t = 0 the following initial
conditions are used. For the displacement,

y(−∆t) = y(0) − ẏ(0)∆t.

The starting load is computed as

F (−∆t) = Ky(0) +Bẏ(0).

More on the details of this method and its generalization may be found in [6].

Upon leaving this topic, it should be mentioned that initial value problems
are posed with partial differential equations as well. Some specific applica-
tions arise from modeling heat conduction and wave propagation.
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Boundary value problems

Boundary value problems (BVPs) arise when some conditions are imposed on
a differential equation at certain spatial points. This topic is an important
subject of interest to engineers, as many physical phenomena are described
by boundary value problems. Boundary value problems of various 2nd order
differential equations are used most often and will be the focus of this chapter.

The two dominant methods of solution for boundary value problems are
the finite difference and the finite element methods. Each of them may be ap-
plied to both ordinary or partial differential equations based boundary value
problems. In the case of multidimensional problems and irregular geometric
boundaries, the finite element method has a definite advantage. In this chap-
ter the finite difference method will be introduced in connection with ordinary
differential equations, and the finite element method, with partial differential
equations (PDEs) based boundary value problems.

A now classical reference on numerical solutions of boundary value prob-
lems is found in [2]. The finite difference method has its roots in the earlier
difference based approaches, and an overview is found in [4]. The seminal
paper anchoring the finite element method is Galerkin’s from 1915 [1]. The
main engineering reference for the finite element method is found in [6], and
additional analysis is found in [5].

12.1 Boundary value problems of ordinary differential

equations

As mentioned above, the most important problems are 2nd order differential
equations. For such, there are two conditions that may be imposed at certain
locations; hence they are commonly called two-point boundary value prob-
lems.

251
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12.1.1 Nonlinear boundary value problems

These problems in the general nonlinear case are of the form

y′′ = f(x, y, y′); a ≤ x ≤ b,

with boundary conditions

y(a) = α,

and

y(b) = β.

Let us assume that the function f and the partial derivatives ∂f
∂y and ∂f

∂y′

are continuous on the domain

D = [(x, y, y′) : a ≤ x ≤ b;−∞ < y <∞;−∞ < y′ <∞].

Then the boundary value problem has a unique solution if

|∂f
∂y

(x, y, y′)| > 0,

and

| ∂f
∂y′

(x, y, y′)| ≤ L,

for all (x, y, y′) ∈ D and a constant L.

12.1.2 Linear boundary value problems

The problem is simpler if the function f has a specific structure. The bound-
ary value problem of a second order ordinary differential equation is linear if
it may be brought to the form of

f(x, y, y′) = a(x)y′ + b(x)y + c(x).

The condition for a unique solution in this case simplifies to the following
requirement:

b(x) > 0;x ∈ [a, b]

and a(x), b(x) and c(x) must be continuous on the interval [a, b].
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12.2 The finite difference method for boundary value

problems of ordinary differential equations

We will develop the finite difference method in connection with linear prob-
lems, although much of the discussion applies to nonlinear problems as well.
The underlying principle, as the name indicates, is to employ some of the
difference schemes introduced earlier in Chapter 5.

We divide the interval of interest into n+ 1 finite segments as

xi = a+ ih; i = 0, 1, . . . , n+ 1,

where

h =
b− a

n+ 1
.

This subdivision is commonly called the mesh discretization, which is more
meaningful in the case of a two-dimensional domain, but we will use it never-
theless. The original differential equation at these mesh points is

y′′(xi) = a(xi)y
′(xi) + b(xi)y(xi) + c(xi),

and the boundary conditions are

y(a) = y0,

and

y(b) = yn+1.

Let us approximate the as yet unknown solution function by its Taylor poly-
nomial of degree 3 with the appropriate remainder term in the neighborhood
of the point xi.

y(x) = y(xi) + (x − xi)y
′(xi) +

(x− xi)
2

2
y′′(xi) +

(x− xi)
3

3!
y′′′(xi)

+
(x− xi)

4

4!
y(4)(ξ).

Here, as usual, ξ ∈ (x, xi). Evaluating this at xi+1 = xi + h yields

y(xi+1) = y(xi) + hy′(xi) +
h2

2
y′′(xi) +

h3

3!
y′′′(xi) +

h4

4!
y(4)(ξ).

Similarly for xi−1 = xi − h the equation is

y(xi−1) = y(xi) − hy′(xi) +
h2

2
y′′(xi) −

h3

3!
y′′′(xi) +

h4

4!
y(4)(ζ).



254 Chapter 12

Here, ζ ∈ (xi−1, xi). The emerging negative signs hint at the idea of adding
these equations, resulting in

y(xi+1) + y(xi−1) = 2y(xi) + h2y′′(xi) +
h4

4!
(y(4)(ξ) + y(4)(ζ)).

Introducing

y(4)(ξi) =
y(4)(ξ) + y(4)(ζ))

2
,

and solving for the 2nd derivative, we obtain a centered difference approxi-
mation

y′′(xi) =
1

h2
(y(xi+1) − 2y(xi) + y(xi−1)) −

h2

12
y(4)(ξi),

with ξi ∈ (xi−1, xi). Similar activity with a 2nd order Taylor polynomial
results in a centered difference approximation of the first derivative (already
introduced in Section 5.1.1) as

y′(xi) =
1

2h
(y(xi+1) − y(xi−1)) −

h2

6
y(3)(ζi),

with ζi ∈ (xi−1, xi). Finally we substitute these difference formulae into the
original differential equation.

1

h2
(y(xi+1) − 2y(xi) + y(xi−1)) = a(xi)

1

2h
(y(xi+1) − y(xi−1))+

+b(xi)y(xi) + c(xi) −
h2

6
(a(xi)y

(3)(ζi) −
1

2
y(4)(ξi)).

As before, we introduce the approximate solution values yi in place of y(xi)
to obtain an approximate solution with local error of O(h2).

1

h2
(yi+1 − 2yi + yi−1) = a(xi)

1

2h
(yi+1 − yi−1) + b(xi)yi + c(xi).

The finite difference method is obtained by reordering in increasing mesh in-
dex order as

(−1− h

2
a(xi))yi−1 + (2 + h2b(xi))yi + (−1 +

h

2
a(xi))yi+1 = −h2c(xi).

Of course we cannot lose sight of the fact that we are operating on a mesh of
i = 0, 1, . . . , n, hence the problem is a system of linear equations,

AY = B,
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where the first three columns of A are

A(1 : 3) =





2 + h2b(x1) −1 + h
2a(x1) 0

−1 − h
2a(x2) 2 + h2b(x2) −1 + h

2a(x2)
0 . .



 ,

and the last three columns are

A(n− 2 : n) =





. . 0
−1− h

2a(xn−1) 2 + h2b(xn−1) −1 + h
2a(xn−1)

0 −1 − h
2a(xn) 2 + h2b(xn)



 ,

The solution vector is of the form

Y =













y1
y2
.

yn−1

yn













,

and the right-hand side is

B =













−h2c(x1) + (1 + h
2a(x1))y0

−h2c(x2)
.

−h2c(xn−1)
−h2c(xn) + (1 − h

2a(xn))yn+1













.

Note that the y0, yn+1 values on the right-hand side are the boundary values,
and all the other terms are known. This is an inhomogeneous linear system
of equations, which has a unique solution if its determinant is not zero. For a
tridiagonal matrix the determinant is nonzero if

|A(i, i− 1)| + |A(i, i+ 1)| ≤ |A(i, i)|,

or the sum of the absolute values of the offdiagonal terms does not exceed the
absolute value of the diagonal. Considering the special content of this matrix,
this condition is met when

h

2
<

1

M
,

where

M = max|a(x)|;x ∈ [a, b].

There is a loosely framed message in this condition, which is that by reducing
the discretization size one can always produce a solution. It is, of course,
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assumed that the solution function has a continuous 4th derivative, a compo-
nent of the local error that assured the method’s O(h2) behavior.

The solution of this tridiagonal system may be obtained efficiently, despite
its asymmetry, which lessens the efficiency somewhat.

12.3 Boundary value problems of partial differential equa-

tions

For engineers the most important class of partial differential equations is that
of 2nd order partial differential equations (PDEs). Their generic form is

a(x, y)
∂2u

∂x2
+ 2b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
+

+d(x, y)
∂u

∂x
+ e(x, y)

∂u

∂y
+ f(x, y)u(x, y) + g(x, y) = 0.

They are commonly classified as hyperbolic when

b2 − a · c > 0,

parabolic, when

b2 − a · c = 0,

and elliptic, when

b2 − a · c < 0.

Note that since the coefficients are functions, the differential equations may
have different types in different domains. For example, the partial differential
equation

∂2u

∂x2
+ (1 − x2 − y2)

∂2u

∂y2
= 0

has a = 1, b = 0 and c(x, y) = 1 − x2 − y2, hence

b2 − a · c = x2 + y2 − 1.

This quantity is negative when the (x, y) point is inside the unit circle and
positive outside. Therefore, this differential equation is elliptic inside the unit
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circle and hyperbolic outside the circle. The unit circle represents the bound-
ary condition when solving either area.

A boundary value problem in connection with a partial differential equation
is posed as an equation of the above generic class, defined or interpreted on
a domain D and with some conditions prescribed on the whole or on a part
of the boundary B of the domain. If the boundary conditions are prescribed as

u(x, y) = h(x, y); (x, y) ∈ B,

they are called Dirichlet boundary conditions.

A partial differential equation of considerable interest to engineers is the
2nd order elliptic partial differential (Laplace’s) equation:

∆u(x, y) =
∂2u

∂x2
+
∂2u

∂y2
= 0.

This equation appears in the modeling of several physical phenomena, such
as the steady-state distribution of heat in a planar domain.

We will also consider its variant, Poisson’s equation, which is stated as

∆u(x, y) =
∂2u

∂x2
+
∂2u

∂y2
= −f(x, y).

The most commonly known physical phenomenon is the deformation of a pla-
nar, clamped membrane under a pressure load. Both of these equations are
used in the demonstration of the theory and in computational examples.

12.4 The finite difference method for boundary value

problems of partial differential equations

The finite difference method is also applicable to partial differential equa-
tions (PDEs). We will consider Laplace’s equation on the rectangular, two-
dimensional domain,

D = [(x, y) : ax ≤ x ≤ bx; ay ≤ y ≤ by].

The boundary conditions applied at the B perimeter of this domain,

u(x, y) = h(x, y); (x, y) ∈ B.
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As this equation is now a function of two spatial variables, we discretize in
both directions. There is no need to choose the same step sizes. We use

xi = ax + ih,

and
yi = ay + jk,

with

h =
bx − ax

n+ 1
,

and

k =
by − ay

m+ 1
.

The constant values of

x = xi; y = yj

are called grid lines and now they truly constitute a mesh. The Taylor series
expression in Section 12.2 is easy to extend along a certain horizontal mesh
line yj as

∂2u

∂x2
(xi, yj) =

1

h2
(u(xi+1, yj) − 2u(xi, yj) + u(xi−1, yj)) −

h2

12

∂4u

∂x4
(ξi, yj),

where ξi ∈ (xi−1, xi+1) as before. The extension along a vertical mesh line xi

is also straightforward:

∂2u

∂y2
(xi, yj) =

1

k2
(u(xi, yj+1) − 2u(xi, yj) + u(xi, yj−1)) −

k2

12

∂4u

∂y4
(xi, ζj),

with ζj ∈ (yi−1, yi+1). With these difference formulae, Laplace’s equation,
the current subject of our discussion, becomes

1

h2
(u(xi+1, yj)−2u(xi, yj)+u(xi−1, yj))+

1

k2
(u(xi, yj+1)−2u(xi, yj)+u(xi, yj−1))

=
h2

12

∂4u

∂x4
(ξi, yj) +

k2

12

∂4u

∂y4
(xi, ζj).

Here i = 1, 2, . . . , n and j = 1, 2, . . . ,m. The i = 0, n + 1 and j = 0,m + 1
index combinations represent the boundary conditions as

u(x0, yj) = h(x0, yj) = u0,j ,

and
u(xn+1, yj) = h(xn+1, yj) = un+1,j ,

for j = 0, 1, . . . ,m+ 1. Similarly for i = 0, 1, . . . , n+ 1,

u(xi, y0) = h(xi, y0) = ui,0,
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and
u(xi, ym+1) = h(xi, ym+1) = ui,m+1.

Finally introducing the approximate values ui,j , and reordering by increasing
indices, results in the finite difference method for this problem.

−ui−1,j + (2
h2

k2
+ 2)ui,j − ui+1,j −

h2

k2
(ui,j+1 + ui,j−1) = 0.

The equation shows a very distinct “cross” pattern: in each center grid loca-
tion of (i, j), its vertical (i, j + 1), (i, j − 1) and horizontal (i− 1, j), (i+ 1, j)
neighbors are used. For the specific case of a square region R and the same
step size in both directions the equation simplifies to

−ui−1,j + 4ui,j − ui+1,j − ui,j+1 − ui,j−1 = 0.

Remember, of course, that i = 1, 2, . . . , n and j = 1, 2, . . . ,m. For an or-
derly solution of the whole interior domain via a linear system, we introduce
a matrix A and a vector U . Their parts corresponding to the (i, j) equation are

A =





































. . . . . . . . . . .

. 4 −1 0 −1 0 0 0 0 0 .

. −1 4 −1 0 −1 0 0 0 0 .

. 0 −1 4 0 0 −1 0 0 0 .

. −1 0 0 4 −1 0 −1 0 0 .

. 0 −1 0 −1 4 −1 0 −1 0 .

. 0 0 −1 0 −1 4 0 0 −1 .

. 0 0 0 −1 0 0 4 −1 0 .

. 0 0 0 0 −1 0 −1 4 −1 .

. 0 0 0 0 0 −1 0 −1 4 .

. . . . . . . . . . .





































,

and

U =





































.
ui−1,j+1

ui,j+1

ui+1,j+1

ui−1,j

ui,j

ui+1,j

ui−1,j−1

ui,j−1

ui+1,j−1

.





































.

Note that here the diagonal neighbors of (i, j) are also included. The solution
comes from the linear system

AU = B.
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Note, however, that despite the fact that there was no right-hand side of
the differential equation, some of the terms in the B vector are not zero, they
represent the boundary conditions. For example in the ordering chosen above,

B(1) = u0,m+1,

B((m+ 1)(n+ 1)) = un+1,0,

and so on. Hence, the method is also applicable to the same differential
equation with a nonzero right-hand side (Poisson’s equation), which will be
discussed in more detail in the upcoming sections.

12.4.1 Computational example

The example we choose to demonstrate this technique is Laplace’s equation:

∆u(x, y) =
∂2u

∂x2
+
∂2u

∂y2
= 0,

on the domain of the unit square located in the first quadrant

D = [(x, y); 0 < x < 1; 0 < y < 1],

and
B = [x = 0; y = 0;x = 1; y = 1].

The boundary conditions are described as

u(0, y) = 0;u(x, 0) = 0,

and
u(x, 1) = x;u(1, y) = y.

Some observation shows that this corresponds to the analytic solution

u(x, y) = xy,

since
∂2u

∂x2
+
∂2u

∂y2
= 0 + 0 = 0.

The solution surface is shown in Figure 12.1.

We will use a uniform step size of

h = 1/2, k = 1/2,

resulting in n = 1 and m = 1 as well as in a 3 by 3 finite difference mesh with

x0 = 0, x1 = 1/2, x2 = 1,
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and
y0 = 0, y1 = 1/2, y2 = 1.

For this case i = 0, 1, 2 and j = 0, 1, 2, but the locations with i = 0, 2 and
j = 0, 2 belong to the boundary. Hence there is only one interior point of the
solution, resulting in one equation:

−u0,1 + 4u1,1 − u2,1 − u1,2 − u1,0 = 0.

Substituting the boundary values above, this equation becomes

−0 + 4u1,1 − 1/2− 1/2− 0 = 0,

from which the approximate solution is

u1,1 = 1/4.

The exact solution at this location (1/2, 1/2) is

u(1/2, 1/2) = 1/4,

u(x,y)

 0
 0.2

 0.4
 0.6

 0.8
 1  0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

FIGURE 12.1 Finite difference example solution
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which is the same. This is not a surprise, since the local error is proportional
to the fourth derivative of the function, which is zero.

Let us now consider a finer discretization for demonstration purposes. As-
sume n = 3,m = 3 or h = 1/4, k = 1/4. The finite difference mesh now
would become a 5 by 5 mesh and 9 interior points would be computed. The
assignments are shown in Table 12.1 that shows the yet unknown interior ap-
proximate solutions, and the surrounding constants are the boundary values.

TABLE 12.1

Finite difference example

xi 0 1/4 1/2 3/4 1

j—i 0 1 2 3 4

4 0 1/4 1/2 3/4 1
3 0 u1,3 u2,3 u3,3 3/4
2 0 u1,2 u2,2 u3,2 1/2
1 0 u1,1 u2,1 u3,1 1/4
0 0 0 0 0 0

This finer approximation results in a 9 by 9 equation system of

AU = B.

Here

A =





























4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4





























,
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and

U =





























u1,3

u2,3

u3,3

u1,2

u2,2

u3,2

u1,1

u2,1

u3,1





























.

The right-hand side is now constructed with the given boundary conditions as

B =





























u0,3 + u1,4

u2,4

u4,3 + u3,4

u0,2

0
u4,2

u0,1 + u1,0

u2,0

u3,0 + u4,1





























.

This topic was mentioned conceptually in the last section, but now we are in
the position to clarify it. Substituting the actual values yields

B =





























0 + 1/4
1/2

3/4 + 3/4
0
0

1/2
0 + 0

0
0 + 1/4





























=
1

16





























4
8
24
0
0
8
0
0
4





























.

The solution of this system is

U =





























3/16
3/8
9/16
1/8
1/4
3/8
1/16
1/8
3/16





























=
1

16





























3
6
9
2
4
6
1
2
3





























.
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This, of course, is also the exact solution, for the same reason the coarse, single
equation solution was. We now introduce a different and also very practical
approach to solve boundary value problems of partial differential equations,
the famed finite element method.

12.5 The finite element method

The boundary value problem we now attempt to solve approximately is Pois-
son’s equation:

−∂
2u

∂x2
− ∂2u

∂y2
= f(x, y),

where u(x, y) is the solution value at (x, y) and f(x, y) is the function acting
on the domain. The boundary conditions are given on the perimeter B of the
now general and not necessarily rectangular domain D. For the simplicity of
this discussion we will assume zero boundary conditions,

u(x, y) = 0; (x, y) ∈ B,

but that is not required.

We approach this approximation problem by using the method of weighted
residuals, which requires that the residual of the following integral form is zero.

∫ ∫

(−∂
2u

∂x2
− ∂2u

∂y2
)w(x, y)dx dy −

∫ ∫

f(x, y)w(x, y)dx dy = 0.

Here and in the following, the double integrals are taken over the two-dimensional
domain D of the boundary value problem and the integral boundary is omit-
ted for simplicity’s sake. The w(x, y) is a weighting function. Integrating the
first integral by parts and moving the second one to the right-hand side yields
the so-called weak form of the boundary value problem:

∫ ∫

(
∂u

∂x

∂w

∂x
+
∂u

∂y

∂w

∂y
)dx dy =

∫ ∫

f(x, y)w(x, y)dx dy.

Now we apply Galerkin’s method [1]. The idea is to approximate the solution
as

u(x, y) = u1N1 + u2N2 + ...+ unNn,

where the ui are the solution values at some discrete locations and

Ni, i = 1, . . . , n
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is the set of finite element shape functions to be discussed in detail later in
this chapter. The second, crucial part of Galerkin’s method is to use the same
shape functions as the weight functions:

w(x, y) = Ni(x, y).

The discrete locations are the node points of the finite element mesh. The
finite element mesh is different from the finite difference mesh. The finite
element mesh is based on a repeated application of triangles to cover the pla-
nar domain as shown in Figure 12.2. In practical applications, of course, the
domains are irregular and the triangles are general as well as different in size
and shape.

Other objects, like rectangles or trapezoidal shapes, may also be used. The
process is called meshing. The points inside the domain and on the boundary
are the node points. They define the finite element mesh.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

FIGURE 12.2 Finite element meshing
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There may be small gaps between the boundary and the sides of the trian-
gles adjacent to the boundary. This discrepancy contributes to the approxi-
mation error of the finite element method. It is an even bigger problem in the
finite difference method. At least in the case of the finite element method,
the gaps may be filled with progressively smaller elements, or those triangles
may be replaced with triangles having curved edges.

Substituting into the weak form of the problem we obtain Galerkin’s equa-
tions:

∫ ∫

((u1
∂N1

∂x
+ ...+ un

∂Nn

∂x
)
∂Ni

∂x
+ (u1

∂N1

∂y
+ ...+ un

∂Nn

∂y
)
∂Ni

∂y
)dxdy =

∫ ∫

f(x, y)Nidxdy

for i = 1, .., n. We introduce the notation for j = 1, 2, . . . , n,

Aij = Aji =

∫ ∫

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y
)dxdy

and

fi =

∫ ∫

f(x, y)Nidxdy.

Then the Galerkin equations may be written as a matrix equation:

Au = f,

where

u =













u1

.
ui

.
un













is the array of node point solutions and

f =













f1
.
fi

.
fn













is the array of node point loads. The A matrix is usually very sparse as many
Aij become zero.
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12.5.1 Finite element shape functions

To approximate the solution inside the domain of the boundary value prob-
lem, we use piecewise polynomials. For a triangular discretization of a two-
dimensional domain, bilinear interpolation functions of the form

u(x, y) = a+ bx+ cy

are commonly used. In order to find their coefficients, let us consider the tri-
angular region (element) of the x−y plane with corner nodes (x1, y1), (x2, y2)
and (x3, y3). For triangles, we seek shape functions satisfying

N1 +N2 +N3 = 1.

In specific, we also require that the nonzero shape function at a certain node
point reduce to zero at the other two nodes, respectively. The interpolations
are continuous across the neighboring elements. On an edge between two
triangles, the approximation is linear and the same when approached from
either element. Specifically, along the edge between nodes 1 and 2, the shape
function N3 is zero. The shape functions N1 and N2 along this edge are the
same when calculated from an element on either side of that edge.

The solution for all the nodes of a triangular element e can be expressed as

ue =





u1

u2

u3



 =





1 x1 y1
1 x2 y2
1 x3 y3









a
b
c



 .

This system of equations is solved for the unknown coefficients as





a
b
c



 =





N1,1 N1,2 N1,3

N2,1 N2,2 N2,3

N3,1 N3,2 N3,3









u1

u2

u3



 .

By substituting into the matrix form of the bilinear interpolation function

u(x, y) =
[

1 x y
]





a
b
c



 =
[

1 x y
]





N1,1 N1,2 N1,3

N2,1 N2,2 N2,3

N3,1 N3,2 N3,3









u1

u2

u3



 ,

we get

u(x, y) =
[

N1 N2 N3

]





u1

u2

u3



 .

Here the N1, N2, N3 are shape functions. Their values are

N1 = N1,1 +N2,1x+N3,1y,
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N2 = N1,2 +N2,2x+N3,2y,

and
N3 = N1,3 +N2,3x+N3,3y.

The shape functions, as their name indicates, clearly depend on the coordi-
nates of the corner nodes, hence the shape of the particular triangular element
of the domain. With these we are now able to approximate the relationship
between the solution value inside an element in terms of the solutions at the
corner node points,

u(x, y) = N1u1 +N2u2 +N3u3.

12.5.2 Finite element matrix generation and assembly

In order to compute the Ai,j terms of the matrix A we proceed element by el-
ement. We consider all the nodes bounding a particular element and compute
all the partial Ai,j terms produced by that particular element. Thus,

Ae =
∑

(i,j)∈e

Ai,j .

Finally, the A matrix is assembled as

A =

m
∑

e=1

Ae,

where the summation is based on the topological relation of elements. If our
element, for example, is the element described by nodes 1, 2 and 3, then the
terms in Ae contribute to the terms of the 1st, 2nd and 3rd columns and rows
of the global A matrix.

Let us assume that another element is adjacent to the edge between nodes
2 and 3, its other node being 4. Then by similar arguments, the second
element’s matrix terms (depending on that particular element’s shape) will
contribute to the 2nd, 3rd and 4th columns and rows of the global matrix.
This process is continued for all the elements contained in the finite element
discretization.

Then we compute the derivatives of the shape functions as follows:







∂u(x,y)
∂x

∂u(x,y)
∂y






=





∂N1

∂x
∂N2

∂x
∂N3

∂x

∂N1

∂y
∂N2

∂y
∂N3

∂y









u1

u2

u3



 =

[

B1,1 B1,2 B1,3

B2,1 B2,2 B3,3

]





u1

u2

u3



 = Bue.

With the above, the Ae matrix related to one finite element is

Ae =

∫ ∫

BTBdxdy.
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The resulting element matrix is of order 3 by 3 and contains all the appro-
priate shape function derivative combinations. The entries of Ae depend only
on the shape of the element.

In practical implementations of the finite element method, the element ma-
trices are generated as a transformation from a standard, parametrically de-
fined element. For these cases the shape functions and their derivatives may
be precomputed and appropriately transformed. The integrals posed above
are usually evaluated in the industry with Gaussian quadrature, a method
that was discussed in Section 6.3.

Quadrilateral planar elements are also available and used in practice. Fur-
thermore, for more complex physical phenomena, three-dimensional tetrahe-
dral and hexahedral elements are also used. The applicability and generality
of the method is without peer. The following computational example is cho-
sen to demonstrate the technique.

12.5.3 Computational example

We use Poisson’s equation:

−∂
2u

∂x2
− ∂2u

∂y2
= f(x, y),

on the domain of the unit square again,

D = [(x, y); 0 < x < 1; 0 < y < 1],

with zero valued boundary conditions and the right-hand side load of

f(x, y) = 2π2sin(πx)sin(πy).

The analytic solution may easily be deduced as

u(x, y) = sin(πx)sin(πy).

That will be used to evaluate the numerical solution we will pursue. The
problem and solution are shown in Figure 12.3. Since

∂u

∂x
= πcos(πx)sin(πy),

then

−∂
2u

∂x2
= π2sin(πx)sin(πx).
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The other partial derivative behaves similarly, therefore

−∂
2u

∂x2
− ∂2u

∂y2
= 2π2sin(πx)sin(πy) = f(x, y).

For the feasibility of hand calculation, we will use the simple 4-element fi-
nite element discretization shown in Figure 12.4 achieved by two single lines
(I1(x), I2(x)) connecting the opposite corners of the rectangular domain. We
introduced one finite element node on each of the corner points of the bound-
ary and one in the interior, albeit having more in the interior than on the
boundary is the norm in finite element meshing. The nodes are shown in
Table 12.2. The first row shows the node indices and the second and third
rows show the coordinates. These nodes define four triangular finite elements,
one bounded by nodes 1, 2 and 3, another one by nodes 2, 3 and 4, the next
one by nodes 3, 4, 5 and the last one by 1, 3, 5.

We can exploit the congruence of these four triangles by computing only

u(x,y)

 0
 0.2

 0.4
 0.6

 0.8
 1  0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

FIGURE 12.3 Poisson’s equation example solution
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TABLE 12.2

Finite element
example nodes

i 1 2 3 4 5

xi 0 1 1/2 1 0
yi 0 0 1/2 1 1

one element matrix and transforming it to derive the other three. We have
also alluded to the practical implementation concept of using a parametric
standard triangle. We will just use the steps laid out in the last section for
the first element for the demonstration.

Element 1.

Computation of element shape functions:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

l1(x)
l2(x)

FIGURE 12.4 Finite element example mesh
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N1 =





N1,1 N1,2 N1,3

N2,1 N2,2 N2,3

N3,1 N3,2 N3,3



 =





1 x1 y1
1 x2 y2
1 x3 y3





−1

=





1 0 0
1 1 0
1 1/2 1/2





−1

=





1 0 0
−1 1 0
−1 −1 2



 .

The shape functions are

N1 = 1 − x− y,

N2 = x− y,

and

N3 = 2y.

Computation of the shape function derivatives yields

[

B1,1 B1,2 B1,3

B2,1 B2,2 B3,3

]

=





∂N1

∂x
∂N2

∂x
∂N3

∂x

∂N1

∂y
∂N2

∂y
∂N3

∂y



 =

[

−1 1 0
−1 −1 2

]

.

and an element matrix integrand of

BTB =





2 0 −2
0 2 −2
−2 −2 4



 .

The integral needs to be in two parts:

A1 =

∫ 1/2

x=0

∫ x

y=0

BTBdydx +

∫ 1

x=1/2

∫ 1−x

y=0

BTBdydx.

Since BTB is constant for our case (not always true!), the integrals are simple.

∫ 1/2

x=0

∫ x

y=0

dydx =

∫ 1/2

x=0

xdx = [
x2

2
]
1/2
0 = 1/8.

Similarly,

∫ 1

x=1/2

∫ 1−x

y=0

dydx =

∫ 1

x=1/2

(1 − x)dx = [x− x2

2
]11/2 = 1/8.

Their sum is, of course, the area of the element: 1/4, as may be computed by
easier means. The element matrix for element 1 is then

A1 =
1

4





2 0 −2
0 2 −2
−2 −2 4



 .
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Similar computations, based on nodes 2, 3 and 4 produce the element ma-
trix for element 2 as

N2 =





0 2 −1
1 −2 1
−1 0 1



 ,

B2 =

[

1 −2 1
−1 0 1

]

,

A2 =
1

4





2 −2 0
−2 4 −2
0 −2 2



 .

The element matrix for element 3 defined by nodes 3, 4 and 5 is computed as

N3 =





2 −1 0
0 1 −1
−2 1 1



 ,

B3 =

[

0 1 −1
−2 1 1

]

,

A3 =
1

4





4 −2 −2
−2 2 0
−2 0 2



 .

Finally the element matrix for element 4 of nodes 1, 3, 5 is

N4 =





1 0 0
−1 2 −1
−1 0 1



 ,

B4 =

[

−1 2 −1
−1 0 1

]

,

A4 =
1

4





2 −2 0
−2 4 −2
0 −2 2



 .

Assembly of element matrices:

The individual element matrices are mapped to the global matrix that is of
size 5 by 5, reflecting the presence of the 5 nodes.

Ag
1 =













A1(1, 1) A1(1, 2) A1(1, 3) 0 0
A1(2, 1) A1(2, 2) A1(2, 3) 0 0
A1(3, 1) A1(3, 2) A1(3, 3) 0 0

0 0 0 0 0
0 0 0 0 0













.
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Similarly, considering the node locations defining the elements,

Ag
2 =













0 0 0 0 0
0 A2(1, 1) A2(1, 2) A2(1, 3) 0
0 A2(2, 1) A2(2, 2) A2(2, 3) 0
0 A2(3, 1) A2(3, 2) A2(3, 3) 0
0 0 0 0 0













,

and

Ag
3 =













0 0 0 0 0
0 0 0 0 0
0 0 A3(1, 1) A3(1, 2) A3(1, 3)
0 0 A3(2, 1) A3(2, 2) A3(2, 3)
0 0 A3(3, 1) A3(3, 2) A3(3, 3)













.

The final element is somewhat different as its columns are not adjacent in the
global matrix.

Ag
4 =













A4(1, 1) 0 A4(1, 2) 0 A4(1, 3)
0 0 0 0 0

A4(2, 1) 0 A4(2, 2) 0 A4(2, 3)
0 0 0 0 0

A4(3, 1) 0 A4(3, 2) 0 A4(3, 3)













.

The assembled finite element matrix is simply

A =

4
∑

1

Ag
i =

1

4













4 0 −4 0 0
0 4 −4 0 0
−4 −4 16 −4 −4
0 0 −4 4 0
0 0 −4 0 4













=













1 0 −1 0 0
0 1 −1 0 0
−1 −1 4 −1 −1
0 0 −1 1 0
0 0 −1 0 1













.

From the boundary conditions it follows that all but one of the solution
components are constrained.

u =













0
0

u(3)
0
0













.

Note that unlike the finite difference solution, the boundary is part of the
finite element solution and in this case it is of course zero, due to the im-
posed boundary conditions. The only free solution component (unburdened
by boundary constraint) is the solution at node 3 in the middle of the domain.
The rows and columns corresponding to the constraints of the yet singular A
matrix are removed, resulting in the final equation of

A(3, 3)u(3) = f(3).
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The right-hand side term is computed as

f(3) =

4
∑

e=1

f3
e ,

f3
e indicates the force contribution of an element to the third global node. This

step is rather complicated as all four elements of the model are connected to
the global node 3. We need to select the shape functions from each element
that are nonzero at global node 3.

The shape function related to global node 3 of element 1 is

N3 = 2y.

Similarly, the shape function related to global node 3 of element 2 is

N2 = 2 − 2x;

for element 3 it is

N1 = 2 − 2y,

and for the last element,

N2 = 2x.

For the very first element this computation proceeds as

f3
1 = 2π2(

∫ 1/2

x=0

sin(πx)2

∫ x

y=0

ysin(πy)dydx

+

∫ 1

x=1/2

sin(πx)2

∫ 1−x

y=0

ysin(πy)dydx)

As this element is symmetric, the two parts of this integral have the same
value; therefore, it is enough to compute one half. Hence

f3
1 /2 = 2π2 2

π2
(
1

4
− 1

8
) =

1

2
.

The result of the complete element integral is therefore

f3
1 = 1.

The symmetry considerations extend cyclically to the other elements, so as a
shortcut we will just apply the same value for the other contributions.

f(3) = 1 + 1 + 1 + 1 = 4.
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This would yield the final solution of

u(3) = 4/4 = 1,

which is also the analytic solution as we executed the integration steps of the
load computation exactly. The load computation is much easier when the
load function is not a distributed function as in our case, but a discrete (node
based) load.

Based on this nodal solution of u3 = 1 we can evaluate some locations inside
the elements based on

u(x, y) = N1(x, y)u1 +N2(x, y)u2 +N3(x, y)u3.

Inside the first element, with the use of its shape functions one uses

u(x, y) = (1 − x− y)u1 + (x − y)u2 + 2yu3.

For example the point (x, y) = (1/2, 1/4) is inside the first element and the
solution is computed as

u(1/2, 1/4) = 1/4 · 0 + 1/4 · 0 + 2
1

4
1 =

1

2
.

The exact solution of that point is

u(1/2, 1/4) = sin(
π

2
)sin(

π

4
) =

1√
2
.

The difference inside the element is now noticeable and due to the linear ap-
proximation within.

12.6 Finite element analysis of three-dimensional

continuum

This section aims to demonstrate the finite element modeling of a three-
dimensional continuum and to address some of its practical considerations,
such as the use of local coordinate systems for elements and the use of the
Gaussian quadrature for integration.
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12.6.1 Tetrahedral finite element

We introduce a tetrahedron element, such as the one shown in Figure 12.5,
located generally in global coordinates and represented also by a special lo-
cal, oblique, parametric coordinate system. This is the most common object
resulting from the discretization of a three-dimensional continuum.

The u,v and w are the parametric coordinate directions are shown by the
arrows in Figure 12.5. The u axis pointing from node 1 to 2, the v axis from
node 1 to 3 and the w axis from node 1 to 4. This is an arbitrary selection
and any other order may also be chosen as long as it is applied consistently.
All have a zero value at their initial point and unit value at their terminal
point.

The points inside the tetrahedron may be described in terms of this para-
metric system as

’1’
’2’
’3’
’4’

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

FIGURE 12.5 Tetrahedron element
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x = x1 + (x2 − x1)u+ (x3 − x1)v + (x4 − x1)w,

y = y1 + (y2 − y1)u+ (y3 − y1)v + (y4 − y1)w,

and

z = z1 + (z2 − z1)u+ (z3 − z1)v + (z4 − z1)w.

One can verify that (u, v, w) = (0, 0, 0) reduces to (x, y, z) = (x1, y1, z1). Sim-
ilarly, (u, v, w) = (1, 0, 0) reduces to (x, y, z) = (x2, y2, z2) and so on.

We will assume that every node point of the tetrahedron has an associated
solution quantity, say, p(x, y, z), throughout the three-dimensional continuum.
This could be, for example, the pressure of the fluid at all spatial locations
when modeling fluids.

Hence, there are four nodal solution components of the element as

pe =









p1

p2

p3

p4









.

The solution at any location inside one element is approximated with the help
of the shape functions as

p(x, y, z) = Npe.

Instead of the general procedure developed for computing the shape functions
of the triangular element, we can compute the shape functions in the local,
parametric coordinates very simply as

N1 = u, N2 = v, N3 = w,

and

N4 = 1 − u− v − w.

Such a selection of the Ni functions obviously satisfies

N1 +N2 +N3 +N4 = 1.

Then

p(x, y, z) =
[

N1 N2 N3 N4

]









p1

p2

p3

p4









,

or

p(x, y, z) = Npe.
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Here pi is the p(x, y, z) solution of the ith node of the tetrahedron. The above
equations will be used in the element matrix generation for the tetrahedron
element.

12.6.2 Finite element matrix in parametric coordinates

The tetrahedron element matrix is formulated as

Ae =

∫ ∫ ∫

BTB dxdydz,

where B is now of order 3 by 4, resulting in an element matrix of order 4 by
4. The integral can be transformed to parametric coordinates

Ae =

∫ ∫ ∫

BTB det[
∂(x, y, z)

∂(u, v, w)
]dudvdw,

where

∂(x, y, z)

∂(u, v, w)
=













∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w













=





x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1



 = J

is the Jacobian matrix, which is constant for the 4-noded tetrahedral elements.

To compute the element matrix, the shape function derivatives for the terms
of the B matrix still need to be computed. Clearly,













∂p
∂u

∂p
∂v

∂p
∂w













= J













∂p
∂x

∂p
∂y

∂p
∂z













.

Then












∂p
∂x

∂p
∂y

∂p
∂z













= J−1













∂p
∂u

∂p
∂v

∂p
∂w













The terms of J−1 may be computed as

J−1 =
adj(J)

det(J)
=





J11 J12 J13

J21 J22 J23

J31 J32 J33



 .
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The calculation of this inverse is commonly used in industrial finite element
analyses to diagnose ill-shaped elements, a common outcome of automated
meshing techniques. If, in a worst-case scenario, the inverse cannot be com-
puted, the particular element must be discarded and a new element created
by modifying neighboring elements appropriately.

Furthermore, since

p(x, y, z) =

4
∑

1

Nipi = up1 + vp2 + wp3 + (1 − u− v − w)p4,

it follows that













∂p
∂u

∂p
∂v

∂p
∂w













=





p1 − p4

p2 − p4

p3 − p4



 .

Substituting results in













∂p
∂x

∂p
∂y

∂p
∂z













= J−1





p1 − p4

p2 − p4

p3 − p4



 =





J11 J12 J13

J21 J22 J23

J31 J32 J33









p1 − p4

p2 − p4

p3 − p4



 .

Multiplication and reordering produce the terms of the B matrix as

B =





J11 J12 J13 b14
J21 J22 J23 b24
J31 J32 J33 b34



 ,

where

b14 = −(J11 + J12 + J13),

b24 = −(J21 + J22 + J23),

and
b34 = −(J31 + J32 + J33).

With this B matrix, we finally obtain













∂p
∂x

∂p
∂y

∂p
∂z













= Bpe = B









p1

p2

p3

p4









,
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as needed for the element matrix computation. The product BTB produces
a 4 × 4 element matrix. This element matrix will contribute to four columns
and rows of the assembled finite element matrix.

The element matrix is now computed as

Ae =

∫ 1

u=0

∫ 1−u

v=0

∫ 1−u−v

w=0

f(u, v, w)dwdvdu,

where

f(u, v, w) = BTBdet(J).

Gaussian integration requires the additional transformation of this integral
into

Ae =

∫ 1

r=−1

∫ 1

s=−1

∫ 1

t=−1

f(r, s, t)dtdsdr.

The Gaussian integration method applied to this triple integral is the Gaus-
sian cubature introduced in Section 6.4.1.

Ae = Σn
i=1ciΣ

n
j=1cjΣ

n
k=1ckf(ri, sj , tk).

In our case J and BTB are constant, hence the element matrix is simply

Ae =
1

6
BTB det(J).

More general finite elements require more work in executing this integration
[3].

12.6.3 Local to global coordinate transformation

The element matrix for the tetrahedron element has been developed in terms
of a local, oblique (u, v, w) coordinate system. Thus, before assembling any
element, the element matrix must be transformed to the global coordinate
system common to all the elements. The coordinates of a point in the two
systems are related as









x
y
z
1









= T









u
v
w
1









.



282 Chapter 12

The transformation is formed as

T =









ux vx wx x1

uy vy wy y1
uz vz wz z1
0 0 0 1









,

where

u = uxi+ uyj + uzk

is the unit vector defining the u local parametric coordinate axis and v and w
have similar respective roles. The point (x1, y1, z1) of course defines the local
system’s origin.

The same transformation is applicable to the nodal degrees of freedom of
any element. The global solution values are related to the local values by the
same transformation matrix.









pe,x

pe,y

pe,z

1









= T









pe,u

pe,v

pe,w

1









.

Hence, the element solutions in the two systems are related as

pg
e = Tpe.

The pg
e notation refers to the element solution in the global coordinate system.

Consider a solution component with the local element matrix and the local
solution values. The local solution is of the form

Aepe = fe.

Since the right-hand side is also given in local terms, it also needs to be trans-
formed to global coordinates as

fg
e = Tfe.

The solution pg
e is also represented in global coordinates, which is the subject

of interest to the engineer anyway. Introducing the global solution and right-
hand side components, the solution equation reads as

AeT
−1pg

e = T−1fg
e ,

Premultiplying by T results in

TAeT
−1pg

e = fg
e ,
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or
Ag

ep
g
e = fg

e ,

where

Ag
e = TAeT

−1

is the element matrix in global coordinates. This transformation follows the
element matrix generation and precedes the assembly process.

12.7 Fluid-structure interaction application

A characteristic application of boundary value problems is the fluid-structure
interaction. The wave equation, a hyperbolic partial differential equation, de-
scribes the motion of a compressible fluid as

1

B
p̈−∇(

1

ρ
∇p) = 0,

where p = p(x, y, z) is the pressure in the fluid, ρ is its density and B is the
bulk modulus

B = c2ρ0,

with c as the speed of sound and ρ0 being the density of the fluid with no
motion. The boundary condition imposed on the free surface of the fluid is

p(x, y, z) = 0,

meaning the pressure is ambient. The boundary condition on the fluid surface
adjacent to the structure is

∂p(x, y, z)

∂n
= −ρün.

Here n is the direction vector of the outward normal of the fluid boundary
and ün is the normal acceleration of the surrounding structure. The boundary
condition is rather special, as it is not fixed. The pressure gradient is propor-
tional to the acceleration of the surrounding (flexible) structural components.

Using the finite element method discussed in this chapter, the fluid pressure
field p(x, y, z) is discretized into a vector as

P =

n
∑

i=1

p(xi, yi, zi)Ni,
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where Ni are the shape functions. The boundary conditions of the fluid-
structure interface are manifested in the coupling matrix of

A(i, j) =

∫ ∫

NiNjdS,

where the surface integral is taken on the interface surface. The connection
between the forces acting on the structure as a result of the fluid pressure is
computed as

F = −ATP.

A very important application of this process is in the computation of interior
noise of automobiles or airplane fuselages. The air inside the cabins is mod-
eled as a fluid and the pressure represents the noise.
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Closing remarks

This book’s goal is to provide a working knowledge of the various approxi-
mation techniques of engineering practice. Therefore, many sections are il-
luminated by either a computational example or an algorithm to enhance
understanding and provide a template for the reader’s own application of the
technique. The more advanced techniques are also illustrated by describing
some of their industrial applications.

This book is designed to be self-contained. Nevertheless, each chapter also
contains a reference section at the end. Some of the references are historical
and mainly given to continue to record the original accomplishment. They
may also be the subject of some scholarly interest. The more recent and sur-
vey references are meant to be used by the reader interested in more details
about a certain method.

With a collection of examples, this book’s original focus as a reference book
may be extended. It could, for example, be used as a textbook in classes on
approximation techniques in an engineering or applied mathematics curricu-
lum.
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