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Preface of the First Edition

Following Keller [136] we call two problems inverse to each other if the formulation
of each of them requires full or partial knowledge of the other. By this definition, it
is obviously arbitrary which of the two problems we call the direct and which we
call the inverse problem. But usually, one of the problems has been studied earlier
and, perhaps, in more detail. This one is usually called the direct problem, whereas
the other is the inverse problem. However, there is often another more important
difference between these two problems. Hadamard (see [103]) introduced the con-
cept of a well-posed problem, originating from the philosophy that the mathematical
model of a physical problem has to have the properties of uniqueness, existence,
and stability of the solution. If one of the properties fails to hold, he called the prob-
lem ill-posed. It turns out that many interesting and important inverse problems in
science lead to ill-posed problems, whereas the corresponding direct problems are
well-posed. Often, existence and uniqueness can be forced by enlarging or reducing
the solution space (the space of “models”). For restoring stability, however, one has
to change the topology of the spaces, which is in many cases impossible because
of the presence of measurement errors. At first glance, it seems to be impossible
to compute the solution of a problem numerically if the solution of the problem
does not depend continuously on the data, that is, for the case of ill-posed problems.
Under additional a priori information about the solution, such as smoothness and
bounds on the derivatives, however, it is possible to restore stability and construct
efficient numerical algorithms.

We make no claim to cover all of the topics in the theory of inverse problems.
Indeed, with the rapid growth of this field and its relationship to many fields of nat-
ural and technical sciences, such a task would certainly be impossible for a single
author in a single volume. The aim of this book is twofold: first, we introduce the
reader to the basic notions and difficulties encountered with ill-posed problems. We
then study the basic properties of regularization methods for linear ill-posed prob-
lems. These methods can roughly be classified into two groups, namely, whether
the regularization parameter is chosen a priori or a posteriori. We study some of the
most important regularization schemes in detail.

The second aim of this book is to give a first insight into two special nonlinear
inverse problems that are of vital importance in many areas of the applied sciences.
In both inverse spectral theory and inverse scattering theory, one tries to determine
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vi Preface of the First Edition

a coefficient in a differential equation from measurements of either the eigenvalues
of the problem or the field “far away” from the scatterer. We hope that these two
examples clearly show that a successful treatment of nonlinear inverse problems
requires a solid knowledge of characteristic features of the corresponding direct
problem. The combination of classical analysis and modern areas of applied and
numerical analysis is, in the author’s opinion, one of the fascinating features of this
relatively new area of applied mathematics.

This book arose from a number of graduate courses, lectures, and survey talks
during my time at the universities of Göttingen and Erlangen/Nürnberg. It was my
intention to present a fairly elementary and complete introduction to the field of
inverse problems, accessible not only to mathematicians but also to physicists and
engineers. I tried to include as many proofs as possible as long as they required
knowledge only of classical differential and integral calculus. The notions of func-
tional analysis make it possible to treat different kinds of inverse problems in a
common language and extract its basic features. For the convenience of the reader,
I have collected the basic definitions and theorems from linear and nonlinear func-
tional analysis at the end of the book in an appendix. Results on nonlinear mappings,
in particular for the Fréchet derivative, are only needed in Chaps. 4 and 5.

The book is organized as follows. In Chap. 1, we begin with a list of pairs of
direct and inverse problems. Many of them are quite elementary and should be well
known. We formulate them from the point of view of inverse theory to demon-
strate that the study of particular inverse problems has a long history. Sections 1.3
and 1.4 introduce the notions of ill-posedness and the worst-case error. Although
ill-posedness of a problem (roughly speaking) implies that the solution cannot be
computed numerically — which is a very pessimistic point of view — the notion of
the worst-case error leads to the possibility that stability can be recovered if addi-
tional information is available. We illustrate these notions with several elementary
examples.

In Chap. 2, we study the general regularization theory for linear ill-posed equa-
tions in Hilbert spaces. The general concept in Sect. 2.1 is followed by the most
important special examples: Tikhonov regularization in Sect. 2.2, Landweber itera-
tion in Sect. 2.3, and spectral cutoff in Sect. 2.4. These regularization methods are
applied to a test example in Sect. 2.5. While in Sects. 2.1–2.5 the regularization pa-
rameter has been chosen a priori, that is before starting the actual computation,
Sects. 2.6–2.8 are devoted to regularization methods in which the regularization pa-
rameter is chosen implicitly by the stopping rule of the algorithm. In Sects. 2.6 and
2.7, we study Morozov’s discrepancy principle and, again, Landweber’s iteration
method. In contrast to these linear regularization schemes, we will investigate the
conjugate gradient method in Sect. 2.8. This algorithm can be interpreted as a non-
linear regularization method and is much more difficult to analyze.

Chapter 2 deals with ill-posed problems in infinite-dimensional spaces. However,
in practical situations, these problems are first discretized. The discretization of lin-
ear ill-posed problems leads to badly conditioned finite linear systems. This subject
is treated in Chap. 3. In Sect. 3.1, we recall basic facts about general projection meth-
ods. In Sect. 3.2, we study several Galerkin methods as special cases and apply the
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results to Symm’s integral equation in Sect. 3.3. This equation serves as a popular
model equation in many papers on the numerical treatment of integral equations
of the first kind with weakly singular kernels. We present a complete and elemen-
tary existence and uniqueness theory of this equation in Sobolev spaces and apply
the results about Galerkin methods to this equation. In Sect. 3.4, we study colloca-
tion methods. Here, we restrict ourselves to two examples: the moment collocation
and the collocation of Symm’s integral equation with trigonometric polynomials or
piecewise constant functions as basis functions. In Sect. 3.5, we compare the differ-
ent regularization techniques for a concrete numerical example of Symm’s integral
equation. Chapter 3 is completed by an investigation of the Backus–Gilbert method.
Although this method does not quite fit into the general regularization theory, it is
nevertheless widely used in the applied sciences to solve moment problems.

In Chap. 4, we study an inverse eigenvalue problem for a linear ordinary differ-
ential equation of second order. In Sects. 4.2 and 4.3, we develop a careful analysis
of the direct problem, which includes the asymptotic behavior of the eigenvalues
and eigenfunctions. Section 4.4 is devoted to the question of uniqueness of the in-
verse problem, that is, the problem of recovering the coefficient in the differential
equation from the knowledge of one or two spectra. In Sect. 4.5, we show that this
inverse problem is closely related to a parameter identification problem for parabolic
equations. Section 4.6 describes some numerical reconstruction techniques for the
inverse spectral problem.

In Chap. 5, we introduce the reader to the field of inverse scattering theory.
Inverse scattering problems occur in several areas of science and technology, such
as medical imaging, nondestructive testing of material, and geological prospecting.
In Sect. 5.2, we study the direct problem and prove uniqueness, existence, and con-
tinuous dependence on the data. In Sect. 5.3, we study the asymptotic form of the
scattered field as r → ∞ and introduce the far field pattern. The corresponding in-
verse scattering problem is to recover the index of refraction from a knowledge of
the far field pattern. We give a complete proof of uniqueness of this inverse problem
in Sect. 5.4. Finally, Sect. 5.5 is devoted to the study of some recent reconstruction
techniques for the inverse scattering problem.

Chapter 5 differs from previous ones in the unavoidable fact that we have to use
some results from scattering theory without giving proofs. We only formulate these
results, and for the proofs we refer to easily accessible standard literature.

There exists a tremendous amount of literature on several aspects of inverse
theory ranging from abstract regularization concepts to very concrete applications.
Instead of trying to give a complete list of all relevant contributions, I mention only
the monographs [17,93,98,123,151,156–158,165,179,180,197,239,240], the pro-
ceedings, [5,38,64,81,105,194,216,236], and survey articles [78,132,136,139,196]
and refer to the references therein.

This book would not have been possible without the direct or indirect contribu-
tions of numerous colleagues and students. But, first of all, I would like to thank my
father for his ability to stimulate my interest and love of mathematics over the years.
Also, I am deeply indebted to my friends and teachers, Professor Dr. Rainer Kress
and Professor David Colton, who introduced me to the field of scattering theory and
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influenced my mathematical life in an essential way. This book is dedicated to my
long friendship with them!

Particular thanks are given to Dr. Frank Hettlich, Dr. Stefan Ritter, and Dipl.-
Math. Markus Wartha for carefully reading the manuscript. Furthermore, I would
like to thank Professor William Rundell and Dr. Martin Hanke for their manuscripts
on inverse Sturm–Liouville problems and conjugate gradient methods, respectively,
on which parts of Chaps. 4 and 2 are based.

Karlsruhe Andreas Kirsch
April 1996
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The first edition of the book appeared 14 years ago. The area of inverse problems
is still a growing field of applied mathematics and an attempt at a second edition
after such a long time was a difficult task for me. The number of publications on the
subjects treated in this book has grown considerably and a new generation of math-
ematicians, physicists, and engineers has brought new concepts into the field. My
philosophy, however, has never been to present a comprehensive book on inverse
problems that covers all aspects. My purpose was (as I pointed out in the preface
of the first edition), and still is, to present a book that can serve as a basis for an
introductory (graduate) course in this field. The choice of material covered in this
book reflects my personal point of view: students should learn the basic facts for
linear ill-posed problems including some of the present classical concepts of reg-
ularization and also some important examples of more modern nonlinear inverse
problems.

Although there has been considerable progress made on regularization concepts
and convergence properties of iterative methods for abstract nonlinear inverse prob-
lems, I decided not to include these new developments in this monograph. One
reason is that these theoretical results on nonlinear inverse problems are still not
applicable to the inverse scattering problems that are my major field of interest. In-
stead, I refer the reader to the monographs [82, 133] where regularization methods
for nonlinear problems are intensively treated.

Also, in my opinion, every nonlinear inverse problem has its own character-
istic features that should be used for a successful solution. With respect to the
inverse scattering problem to determine the shape of the support of the contrast,
a whole class of methods has been developed during the last decade, sometimes
subsumed under the name Sampling Methods. Because they are very popular not
only in the field of inverse scattering theory but also in the field of electrical
impedance tomography (EIT) I decided to include the Factorization Method as
one of the prominent members in this monograph. The Factorization Method is
particularly simple for the problem of EIT and this field has attracted a lot of at-
tention during the past decade, therefore a chapter on EIT has been added to this
monograph as Chap. 5 and the chapter on inverse scattering theory now becomes
Chap. 6.

ix
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The main changes of this second edition compared to the first edition concern
only Chaps. 5 and 6 and Appendix A. As just mentioned, in Chap. 5 we introduce
the reader to the inverse problem of electrical impedance tomography. This area
has become increasingly important because of its applications in medicine and en-
gineering sciences. Also, the methods of EIT serve as tools and guidelines for the
investigation of other areas of tomography such that optical and photoacoustic to-
mography.

The forward model of EIT is usually set up in the weak sense, that is, in ap-
propriate Sobolev spaces. Although I expect that the reader is familiar with the
basic facts on Sobolev spaces such as the trace theorem and Friedrich’s inequal-
ity, a tutorial section on Sobolev spaces on the unit disk is added in Appendix A,
Sect. A.5. The approach using Fourier techniques is not very common but fits well
with the presentation of Sobolev spaces of fractional order on the boundary of the
unit disk in Sect. A.4 of Appendix A. In Chap. 5 on electrical impedance tomogra-
phy the Neumann–Dirichlet operator is introduced and its most important properties
such as monotonicity, continuity, and differentiability are shown. Uniqueness of the
inverse problem is proven for the linearized problem only because it was this ex-
ample for which Calderón presented his famous proof of uniqueness. (The fairly
recent uniqueness proof by Astala and Päivärinta in [10] is far too complicated to be
treated in this introductory work.) As mentioned above, the Factorization Method
was developed during the last decade. It is a completely new and mathematically
elegant approach to characterize the shape of the domain where the conductivity
differs from the background by the Neumann–Dirichlet operator. The Factorization
Method is an example of an approach that uses special features of the nonlinear in-
verse problem under consideration and has no analogy for traditional linear inverse
problems.

Major changes are also made in Chap. 6 on inverse scattering problems. A section
on the Factorization Method has been added (Sect. 6.5) because inverse scattering
problems are the type of problem for which it is perfectly applicable. The rigor-
ous mathematical treatment of the Factorization Method makes it necessary to work
with weak solutions of the scattering problem. Therefore, here we also have to use
(local) Sobolev spaces rather than spaces of continuously differentiable functions.
I took the opportunity to introduce the reader to a (in my opinion) very natural ap-
proach to prove existence of weak solutions by the Lippmann–Schwinger equation
in L2(D) (where D contains the support of the contrast n−1). The key is the fact that
the volume potential with any L2-density solves the corresponding inhomogeneous
Helmholtz equation in the weak sense (just as in the case of smooth densities) and
can easily be proved by using the classical result and a density argument. The notion
of weak solutions has the advantage of allowing arbitrary L∞-functions as indices of
refraction but makes it necessary to modify almost all of the arguments in this chap-
ter slightly. In Sect. 6.4 we dropped the motivating example for the uniqueness of
the inverse scattering problem (Lemma 6.8 in the first edition) because it has already
been presented for the uniqueness of the linearized inverse problem of impedance
tomography.
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Finally, I want to thank all the readers of the first edition of the monograph for
their extraordinarily positive response. I hope that with this second edition I added
some course material suitable for being presented in a graduate course on inverse
problems. In particular I have found that my students like the problem of impedance
tomography and, in particular, the Factorization Method and I hope that this is true
for others!

Karlsruhe Andreas Kirsch
March 2011
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Chapter 1
Introduction and Basic Concepts

1.1 Examples of Inverse Problems

In this section, we present some examples of pairs of problems that are inverse to
each other. We start with some simple examples that are normally not even recog-
nized as inverse problems. Most of them are taken from the survey article [136] and
the monograph [99].

Example 1.1. Find a polynomial p of degree n with given zeros x1, . . . ,xn. This
problem is inverse to the direct problem: Find the zeros x1, . . . ,xn of a given poly-
nomial p. In this example, the inverse problem is easier to solve. Its solution is
p(x) = c(x− x1) . . . (x− xn) with an arbitrary constant c.

Example 1.2. Find a polynomial p of degree n that assumes given values y1, . . . ,
yn ∈ R at given points x1, . . . ,xn ∈ R. This problem is inverse to the direct problem
of calculating the given polynomial at given x1, . . . ,xn. The inverse problem is the
Lagrange interpolation problem.

Example 1.3. Given a real symmetric n×n matrix A and n real numbers λ1, . . . ,λn,
find a diagonal matrix D such that A + D has the eigenvalues λ1, . . . ,λn. This prob-
lem is inverse to the direct problem of computing the eigenvalues of the given matrix
A + D.

Example 1.4. This inverse problem is used on intelligence tests: Given the first few
terms a1,a2, . . . ,ak of a sequence, find the law of formation of the sequence; that
is, find an for all n! Usually, only the next two or three terms are asked for to show
that the law of formation has been found. The corresponding direct problem is to
evaluate the sequence (an) given the law of formation. It is clear that such inverse
problems always have many solutions (from the mathematical point of view), and
for this reason their use on intelligence tests has been criticized.

Example 1.5 (Geological prospecting). In general, this is the problem of determin-
ing the location, shape, and/or some parameters (such as conductivity) of geological
anomalies in Earth’s interior from measurements at its surface. We consider a simple
one-dimensional example and describe the following inverse problem.

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,
Applied Mathematical Sciences 120, DOI 10.1007/978-1-4419-8474-6 1,
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Determine changes ρ = ρ(x), 0 ≤ x ≤ 1, of the mass density of an anomalous
region at depth h from measurements of the vertical component fv (x) of the change
of force at x. ρ(x′)Δx′ is the mass of a “volume element” at x′ and

√
(x− x′)2 + h2

is its distance from the instrument. The change of gravity is described by Newton’s
law of gravity f = γ m

r2 with gravitational constant γ . For the vertical component,
we have

Δ fv (x) = γ
ρ(x′)Δx′

(x− x′)2 + h2 cosθ = γ
hρ(x′)Δx′

[
(x− x′)2 + h2

]3/2
.

�

�

�
�

���

�

�

x

x
x

h
θ

0 1x′

This yields the following integral equation for the determination of ρ :

fv (x) = γ h

1∫

0

ρ(x′)
[
(x− x′)2 + h2

]3/2
dx′ for 0 ≤ x ≤ 1. (1.1)

We refer to [6, 93, 253] for further reading on this and related inverse problems in
geological prospecting.

Example 1.6 (Inverse scattering problem). Find the shape of a scattering object,
given the intensity (and phase) of sound or electromagnetic waves scattered by this
object. The corresponding direct problem is that of calculating the scattered wave
for a given object.

D
�ui

������us

					
us

More precisely, the direct problem can be described as follows. Let a bounded region
D ⊂ R

N (N = 2 or 3) be given with smooth boundary ∂ D (the scattering object) and
a plane incident wave ui(x) = eikθ̂ ·x, where k > 0 denotes the wave number and θ̂ is
a unit vector that describes the direction of the incident wave. The direct problem is
to find the total field u = ui +us as the sum of the incident field ui and the scattered
field us such that
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Δu +k2u = 0 in R
N \D, u = 0 on ∂ D, (1.2a)

∂us

∂ r
− ikus = O

(
r−(N+1)/2) for r = |x| → ∞ uniformly in

x
|x| . (1.2b)

For acoustic scattering problems, v(x,t) = u(x)e−iωt describes the pressure and
k = ω/c is the wave number with speed of sound c. For suitably polarized time
harmonic electromagnetic scattering problems, Maxwell’s equations reduce to the
two-dimensional Helmholtz equation Δu + k2u = 0 for the components of the elec-
tric (or magnetic) field u. The wave number k is given in terms of the dielectric
constant ε and permeability μ by k =

√εμ ω .
In both cases, the radiation condition (1.2b) yields the following asymptotic

behavior:

us(x) =
exp(ik |x|)
|x|(N−1)/2

u∞(x̂)+O
(
|x|−(N+1)/2) as |x| → ∞,

where x̂ = x/ |x|. The inverse problem is to determine the shape of D when the far
field pattern u∞(x̂) is measured for all x̂ on the unit sphere in R

N .
These and related inverse scattering problems have various applications in com-

puter tomography, seismic and electromagnetic exploration in geophysics, and
nondestructive testing of materials, for example. An inverse scattering problem of
this type is treated in detail in Chap. 6.

Standard literature on these direct and inverse scattering problems are the mono-
graphs [47, 49, 159] and the survey articles [44, 227].

Example 1.7 (Computer tomography). The most spectacular application of the
Radon transform is in medical imaging. For example, consider a fixed plane through
a human body. Let ρ(x,y) denote the change of density at the point (x,y), and let
L be any line in the plane. Suppose that we direct a thin beam of X–rays into the
body along L and measure how much the intensity is attenuated by going through
the body.

� x

�
y L

�
�

�
�

�
�

�
�

�
��


s

δ���

Let L be parametrized by (s,δ ), where s ∈ R and δ ∈ [0,π). The ray Ls,δ has the
coordinates

seiδ + iueiδ ∈ C, u ∈ R,
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where we have identified C with R
2. The attenuation of the intensity I is approxi-

mately described by dI = −γρI du with some constant γ . Integration along the ray
yields

ln I(u) = −γ
u∫

u0

ρ
(

seiδ + iueiδ
)

du

or, assuming that ρ is of compact support, the relative intensity loss is given by

ln I (∞) = −γ
∞∫

−∞

ρ
(

seiδ + iueiδ
)

du.

In principle, from the attenuation factors we can compute all line integrals

(Rρ)(s,δ ) :=
∞∫

−∞

ρ
(

seiδ + iueiδ
)

du, s ∈ R, δ ∈ [0,π). (1.3)

Rρ is called the Radon transform of ρ . The direct problem is to compute the Radon
transform Rρ when ρ is given. The inverse problem is to determine the density ρ
for a given Radon transform Rρ (that is, measurements of all line integrals).

The problem simplifies in the following special case, where we assume that ρ is
radially symmetric and we choose only vertical rays. Then ρ = ρ(r), r =

√
x2 + y2,

and the ray Lx passing through (x,0) can be parametrized by (x,u), u∈R. This leads
to (the factor 2 is due to symmetry)

V (x) := ln I(∞) = −2γ
∞∫

0

ρ
(√

x2 + u2
)

du.

Again, we assume that ρ is of compact support in {x : |x| ≤ R}. The change of
variables u =

√
r2 − x2 leads to

V (x) = −2γ
∞∫

x

r√
r2 − x2

ρ(r)dr = −2γ
R∫

x

r√
r2 − x2

ρ(r)dr. (1.4)

A further change of variables z = R2 − r2 and y = R2 − x2 transforms this equation
into the following Abel’s integral equation for the function z �→ ρ

(√
R2 − z

)
:

V
(√

R2 − y
)

= −γ
y∫

0

ρ
(√

R2 − z
)

√
y− z

dz, 0 ≤ y ≤ R. (1.5)
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The standard mathematical literature on the Radon transform and its applications
are the monographs [115, 117, 188]. We refer also to the survey articles [118, 166,
168, 174].

The following example is due to Abel himself.

Example 1.8 (Abel’s integral equation). Let a mass element move along a curve Γ
from a point p1 on level h > 0 to a point p0 on level h = 0. The only force acting on
this mass element is the gravitational force mg.

�

�

�

h

� x

�
y

p Γ: x = ψ(y)

p1

p0

The direct problem is to determine the time T in which the element moves from
p1 to p0 when the curve Γ is given. In the inverse problem, one measures the time
T = T (h) for several values of h and tries to determine the curve Γ. Let the curve be
parametrized by x = ψ(y). Let p have the coordinates (ψ(y),y).

By conservation of energy; that is,

E +U =
m
2

v2 + mgy = const = mgh,

we conclude for the velocity that

ds
dt

= v =
√

2g(h− y).

The total time T from p1 to p0 is

T = T (h) =
p1∫

p0

ds
v

=
h∫

0

√
1 + ψ ′(y)2

2g(h− y)
dy for h > 0.

Set φ(y) =
√

1 + ψ ′(y)2 and let f (h) := T (h)
√

2g be known (measured). Then we
have to determine the unknown function φ from Abel’s integral equation

h∫

0

φ(y)√
h− y

dy = f (h) for h > 0. (1.6)
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A similar — but more important — problem occurs in seismology. One studies the
problem to determine the velocity distribution c of Earth from measurements of the
travel times of seismic waves (see [28]).

For further examples of inverse problems leading to Abel’s integral equations, we
refer to the lecture notes by R. Gorenflo and S. Vessella [96], the monograph [180],
and the papers [162, 246].

Example 1.9 (Backwards heat equation). Consider the one-dimensional heat
equation

∂u(x,t)
∂ t

=
∂ 2u(x,t)

∂x2 (1.7a)

with boundary conditions

u(0,t) = u(π ,t) = 0, t ≥ 0, (1.7b)

and initial condition

u(x,0) = u0(x), 0 ≤ x ≤ π . (1.7c)

Separation of variables leads to the (formal) solution

u(x,t) =
∞

∑
n=1

ane−n2t sin(nx) with an =
2
π

π∫

0

u0(y)sin(ny)dy. (1.8)

The direct problem is to solve the classical initial boundary value problem: Given
the initial temperature distribution u0 and the final time T , determine u(·,T ). In the
inverse problem, one measures the final temperature distribution u(·,T ) and tries to
determine the temperature at earlier times t < T , for example, the initial temperature
u(·,0).

From solution formula (1.8), we see that we have to determine u0 := u(·,0) from
the following integral equation:

u(x,T ) =
2
π

π∫

0

k(x,y)u0(y)dy, 0 ≤ x ≤ π , (1.9)

where

k(x,y) :=
∞

∑
n=1

e−n2T sin(nx)sin(ny). (1.10)

We refer to the monographs [17,158,180] and papers [30,40,43,70,71,84,175,226]
for further reading on this subject.

Example 1.10 (Diffusion in inhomogeneous medium). The equation of diffusion in
an inhomogeneous medium (now in two dimensions) is described by the equation

∂ u(x,t)
∂ t

=
1
c

div
(
γ∇u(x,t)

)
, x ∈ D, t > 0, (1.11)
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where c is a constant and γ = γ(x) is a parameter describing the medium. In the
stationary case, this reduces to

div(γ∇u) = 0 in D. (1.12)

The direct problem is to solve the boundary value problem for this equation for given
boundary values u|∂ D and given function γ . In the inverse problem, one measures
u and the flux γ∂u/∂ν on the boundary ∂D and tries to determine the unknown
function γ in D. This is the problem of impedance tomography which we consider
in more detail in Chap. 5.

The problem of impedance tomography is an example of a parameter identifica-
tion problem for a partial differential equation. Among the extensive literature on
parameter identification problems, we only mention the classical papers [148, 205,
206], the monographs [15, 17, 180], and the survey article [182].

Example 1.11 (Sturm–Liouville eigenvalue problem). Let a string of length L and
mass density ρ = ρ(x) > 0, 0 ≤ x ≤ L, be fixed at the endpoints x = 0 and x = L.
Plucking the string produces tones due to vibrations. Let v(x,t), 0 ≤ x ≤ L, t > 0,
be the displacement at x and time t. It satisfies the wave equation

ρ(x)
∂ 2v(x,t)

∂ t2 =
∂ 2v(x,t)

∂x2 , 0 < x < L, t > 0, (1.13)

subject to boundary conditions v(0,t) = v(L,t) = 0 for t > 0.
A periodic displacement of the form

v(x,t) = w(x)
[
acosωt + bsinωt

]

with frequency ω > 0 is called a pure tone. This form of v solves the boundary
value problem (1.13) if and only if w and ω satisfy the Sturm–Liouville eigenvalue
problem

w′′(x)+ ω2ρ(x)w(x) = 0, 0 < x < L, w(0) = w(L) = 0. (1.14)

The direct problem is to compute the eigenfrequencies ω and the corresponding
eigenfunctions for known function ρ . In the inverse problem, one tries to determine
the mass density ρ from a number of measured frequencies ω .

We see in Chap. 4 that parameter estimation problems for parabolic and hy-
perbolic initial boundary value problems are closely related to inverse spectral
problems.

Example 1.12 (Inverse Stefan problem). The physicist Stefan (see [232]) modeled
the melting of arctic ice in the summer by a simple one-dimensional model. In par-
ticular, consider a homogeneous block of ice filling the region x ≥ � at time t = 0.
The ice starts to melt by heating the block at the left end. Thus, at time t > 0 the



8 1 Introduction and Basic Concepts

region between x = 0 and x = s(t) for some s(t) > 0 is filled with water and the
region x ≥ s(t) is filled with ice.

T

� x

�
t

water ice

�

x = s(t)

Let u(x,t) be the temperature at 0 < x < s(t) and time t. Then u satisfies the one-
dimensional heat equation

∂u(x,t)
∂ t

=
∂ 2u(x,t)

∂x2 in D := {(x,t) ∈ R
2 : 0 < x < s(t), t > 0} (1.15)

subject to boundary conditions ∂
∂ x u(0,t) = f (t) and u(s(t),t) = 0 for t ∈ [0,T ] and

initial condition u(x,0) = u0(x) for 0 ≤ x ≤ �.
Here, u0 describes the initial temperature and f (t) the heat flux at the left

boundary x = 0. The speed at which the interface between water and ice moves
is proportional to the heat flux. This is described by the following Stefan condition:

ds(t)
dt

= −∂u(s(t),t)
∂x

for t ∈ [0,T ]. (1.16)

The direct problem is to compute the curve s when the boundary data f and u0 are
given. In the inverse problem, one has given a desired curve s and tries to reconstruct
u and f (or u0).

We refer to the monographs [36, 180] and the classical papers [37, 85] for a
detailed introduction to Stefan problems.

In all of these examples, we can formulate the direct problem as the evaluation of an
operator K acting on a known “model” x in a model space X and the inverse problem
as the solution of the equation K(x) = y:

Direct problem: given x (and K), evaluate K(x).
Inverse problem: given y (and K), solve K(x) = y for x.

In order to formulate an inverse problem, the definition of the operator K, including
its domain and range, has to be given. The formulation as an operator equation
allows us to distinguish among finite, semifinite, and infinite-dimensional, linear
and nonlinear problems.
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In general, the evaluation of K(x) means solving a boundary value problem for a
differential equation or evaluating an integral.

For more general and “philosophical” aspects of inverse theory, we refer
to [7, 196].

1.2 Ill-Posed Problems

For all of the pairs of problems presented in the last section, there is a fundamental
difference between the direct and the inverse problems. In all cases, the inverse
problem is ill-posed or improperly-posed in the sense of Hadamard, while the direct
problem is well-posed. In his lectures published in [103], Hadamard claims that a
mathematical model for a physical problem (he was thinking in terms of a boundary
value problem for a partial differential equation) has to be properly-posed or well-
posed in the sense that it has the following three properties:

1. There exists a solution of the problem (existence).
2. There is at most one solution of the problem (uniqueness).
3. The solution depends continuously on the data (stability).

Mathematically, the existence of a solution can be enforced by enlarging the so-
lution space. The concept of distributional solutions of a differential equation is an
example. If a problem has more than one solution, then information about the model
is missing. In this case, additional properties, such as sign conditions, can be built
into the model. The requirement of stability is the most important one. If a problem
lacks the property of stability, then its solution is practically impossible to compute
because any measurement or numerical computation is polluted by unavoidable er-
rors: thus the data of a problem are always perturbed by noise! If the solution of a
problem does not depend continuously on the data, then in general the computed so-
lution has nothing to do with the true solution. Indeed, there is no way to overcome
this difficulty unless additional information about the solution is available. Here, we
remind the reader of the following statement (see Lanczos [154]):

A lack of information cannot be remedied by any mathematical trickery!

Mathematically, we formulate the notion of well-posedness in the following way.

Definition 1.13 (well-posedness). Let X and Y be normed spaces, K : X → Y a
(linear or nonlinear) mapping. The equation Kx = y is called properly-posed or well-
posed if the following holds:

1. Existence: For every y ∈ Y there is (at least one) x ∈ X such that Kx = y.
2. Uniqueness: For every y ∈ Y there is at most one x ∈ X with Kx = y.
3. Stability: The solution x depends continuously on y; that is, for every sequence

(xn) ⊂ X with Kxn → Kx (n → ∞), it follows that xn → x (n → ∞).

Equations for which (at least) one of these properties does not hold are called
improperly-posed or ill-posed.
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It is important to specify the full triple (X ,Y,K) and their norms. Existence and
uniqueness depend only on the algebraic nature of the spaces and the operator; that
is, whether the operator is onto or one-to-one. Stability, however, depends also on
the topologies of the spaces, i.e., whether the inverse operator K−1 : Y → X is con-
tinuous.

These requirements are not independent of each other. For example, due to the
open mapping theorem (see Theorem A.25 of Appendix A), the inverse operator
K−1 is automatically continuous if K is linear and continuous and X and Y are
Banach spaces.

As an example for an ill-posed problem, we study the classical example given by
Hadamard in his famous paper [103].

Example 1.14 (Cauchy’s problem for the Laplace equation). Find a solution u of
the Laplace equation

Δu(x,y) :=
∂ 2u(x,y)

∂ x2 +
∂ 2u(x,y)

∂ y2 = 0 in R× [0,∞) (1.17a)

that satisfies the “initial conditions”

u(x,0) = f (x),
∂
∂y

u(x,0) = g(x), x ∈ R, (1.17b)

where f and g are given functions. Obviously, the (unique) solution for f (x) = 0
and g(x) = 1

n sin(nx) is given by

u(x,y) =
1
n2 sin(nx)sinh(ny), x ∈ R, y ≥ 0.

Therefore, we have

sup
x∈R

{| f (x)|+ |g(x)|} =
1
n
−→ 0, n → ∞,

but

sup
x∈R

|u(x,y)| = 1
n2 sinh(ny) −→ ∞, n → ∞

for all y > 0. The error in the data tends to zero while the error in the solution u
tends to infinity! Therefore, the solution does not depend continuously on the data,
and the problem is improperly-posed.

Many inverse problems and some of the examples of the last section (for further
examples, we refer to [99]) lead to integral equations of the first kind with continu-
ous or weakly singular kernels. Such integral operators are compact with respect to
any reasonable topology. The following example will often serve as a model case in
these lectures.
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Example 1.15 (Differentiation). The direct problem is to find the antiderivative y
with y(0) = 0 of a given continuous function x on [0,1]; that is, compute

y(t) =
t∫

0

x(s)ds, t ∈ [0,1]. (1.18)

In the inverse problem, we are given a continuously differentiable function y on
[0,1] with y(0) = 0 and want to determine x = y′. This means we have to solve the
integral equation Kx = y, where K : C[0,1] →C[0,1] is defined by

(Kx)(t) :=
t∫

0

x(s)ds, t ∈ [0,1], for x ∈C[0,1]. (1.19)

Here we equip C[0,1] with the supremum norm ‖x‖∞ := max
0≤t≤1

|x(t)|. The solution

of Kx = y is just the derivative x = y′, provided y(0) = 0 and y is continuously
differentiable! If x is the exact solution of Kx = y, and if we perturb y in the norm
‖·‖∞, then the perturbed right-hand side ỹ doesn’t have to be differentiable, and
even if it is the solution of the perturbed problem is not necessarily close to the
exact solution. We can, for example, perturb y by δ sin(t/δ 2) for small δ . Then the
error of the data (with respect to ‖·‖∞) is δ and the error in the solution is 1/δ . The
problem

(
K,C[0,1],C[0,1]

)
is therefore ill-posed.

Now we choose a different space Y :=
{

y ∈C1[0,1] : y(0) = 0
}

for the right-
hand side and equip Y with the stronger norm ‖x‖C1 := max

0≤t≤1
|x′(t)|. If the right-hand

side is perturbed with respect to this norm ‖·‖C1 , then the problem
(
K,C[0,1],Y

)
is

well-posed because K : C[0,1] → Y is boundedly invertible. This example again
illustrates the fact that well-posedness depends on the topology.

In the numerical treatment of integral equations, a discretization error cannot
be avoided. For integral equations of the first kind, a “naive” discretization usually
leads to disastrous results as the following simple example shows (see also [243]).

Example 1.16. The integral equation

1∫

0

ets x(s)ds = y(t), 0 ≤ t ≤ 1, (1.20)

with y(t) = (exp(t + 1)−1)/(t + 1), is uniquely solvable by x(t) = exp(t). We ap-
proximate the integral by the trapezoidal rule

1∫

0

ets x(s)ds ≈ h

(
1
2

x(0)+
1
2

et x(1)+
n−1

∑
j=1

e jht x( jh)

)
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with h := 1/n. For t = ih, we obtain the linear system

h

(
1
2

x0 +
1
2

eih xn +
n−1

∑
j=1

e jih2
x j

)

= y(ih), i = 0, . . . ,n. (1.21)

Then xi should be an approximation to x(ih). The following table lists the error
between the exact solution x(t) and the approximate solution xi for t = 0, 0.25, 0.5,
0.75, and 1. Here, i is chosen such that ih = t.

t n = 4 n = 8 n = 16 n = 32

0 0.44 −3.08 1.08 −38.21
0.25 −0.67 −38.16 −25.17 50.91
0.5 0.95 −75.44 31.24 −116.45
0.75 −1.02 −22.15 20.03 103.45
1 1.09 −0.16 −4.23 −126.87

We see that the approximations have nothing to do with the true solution and
become even worse for finer discretization schemes.

In the previous two examples, the problem was to solve integral equations of the
first kind. Integral operators are compact operators in many natural topologies under
very weak conditions on the kernels. The next theorem implies that linear equations
of the form Kx = y with compact operators K are always ill-posed.

Theorem 1.17. Let X, Y be normed spaces and K : X → Y be a linear compact
operator with nullspace N (K) := {x ∈ X : Kx = 0}. Let the dimension of the factor
space X/N (K) be infinite. Then there exists a sequence (xn) ⊂ X such that Kxn →
0 but (xn) does not converge. We can even choose (xn) such that ‖xn‖ → ∞. In
particular, if K is one-to-one, the inverse K−1 : Y ⊃R(K) → X is unbounded. Here,
R(K) := {Kx ∈ Y : x ∈ X} denotes the range of K.

Proof. We set N = N (K) for abbreviation. The factor space X/N is a normed
space with norm ‖[x]‖ := inf

{
‖x + z‖ : z ∈N

}
since the nullspace is closed. The in-

duced operator K̃ : X/N → Y , defined by K̃([x]) := Kx, [x] ∈ X/N , is well-defined,
compact, and one-to-one. The inverse K̃−1 : Y ⊃ R(K) → X/N is unbounded
since otherwise the identity I = K̃−1K̃ : X/N → X/N would be compact as a
composition of a bounded and a compact operator. This would contradict the
assumption that the dimension of X/N is infinite. Because K̃−1 is unbounded,
there exists a sequence ([zn]) ⊂ X/N with Kzn → 0 and ‖[zn]‖ = 1. We choose
vn ∈ N such that ‖zn + vn‖ ≥ 1

2 and set xn := (zn + vn)/
√
‖Kzn‖. Then Kxn → 0

and ‖xn‖→ ∞. �
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1.3 The Worst-Case Error

We come back to Example 1.15 of the previous section: Determine x ∈C[0,1] such
that
∫ t

0 x(s)ds = y(t) for all t ∈ [0,1]. An obvious question is: How large could the
error be in the worst case if the error in the right side y is at most δ? The answer
is already given by Theorem 1.17: If the errors are measured in norms such that
the integral operator is compact, then the solution error could be arbitrarily large.
For the special Example 1.15, we have constructed explicit perturbations with this
property.

However, the situation is different if additional information is available. Before
we study the general case, we illustrate this observation for a model example.

Let y and ỹ be twice continuously differentiable and let a number E > 0 be avail-
able with

∥∥y′′
∥∥

∞ ≤ E and
∥∥ỹ′′
∥∥

∞ ≤ E. (1.22)

Set z := ỹ− y and assume that z′(0) = z(0) = 0 and z′(t) ≥ 0 for t ∈ [0,1]. Then we
estimate the error x̃− x in the solution of Example 1.15 by

∣
∣x̃(t)− x(t)

∣
∣2 = z′(t)2 =

t∫

0

d

ds

[
z′(s)2]ds = 2

t∫

0

z′(s)z′′(s)ds

≤ 4E

t∫

0

z′(s)ds = 4E z(t).

Therefore, under the above assumptions on z = ỹ−y we have shown that ‖x̃− x‖∞ ≤
2
√

E δ if ‖ỹ− y‖∞ ≤ δ and E is a bound as in (1.22). In this example, 2
√

E δ is a
bound on the worst-case error for an error δ in the data and the additional informa-
tion ‖x′‖∞ = ‖y′′‖∞ ≤ E on the solution.

We define the following quite generally.

Definition 1.18. Let K : X → Y be a linear bounded operator between Banach
spaces, X1 ⊂ X a subspace, and ‖·‖1 a “stronger” norm on X1; that is, there exists
c > 0 such that ‖x‖ ≤ c‖x‖1 for all x ∈ X1. Then we define

F
(
δ ,E,‖ · ‖1

)
:= sup{‖x‖ : x ∈ X1, ‖Kx‖ ≤ δ , ‖x‖1 ≤ E} , (1.23)

and call F
(
δ ,E,‖·‖1

)
the worst-case error for the error δ in the data and a priori

information ‖x‖1 ≤ E .

F
(
δ ,E,‖ ·‖1

)
depends on the operator K and the norms in X , Y , and X1. It is de-

sirable that this worst-case error not only converge to zero as δ tends to zero but that
it be of order δ . This is certainly true (even without a priori information) for bound-
edly invertible operators, as is readily seen from the inequality ‖x‖ ≤ ‖K−1‖ ‖Kx‖.
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For compact operators K, however, and norm ‖·‖1 = ‖·‖, this worst-case error
does not converge (see the following lemma), and one is forced to take a stronger
norm ‖·‖1.

Lemma 1.19. Let K : X → Y be linear and compact and assume that X/N (K) is
infinite-dimensional. Then for every E > 0 there exists c > 0 and δ0 > 0 such that
F
(
δ ,E,‖·‖

)
≥ c for all δ ∈ (0,δ0).

Proof. Assume that there exists a sequence δn → 0 such that F
(
δn,E,‖ · ‖

)
→ 0 as

n → ∞. Let K̃ : X/N (K)→ Y be again the induced operator in the factor space. We
show that K̃−1 is bounded: Let K̃

(
[xm]
)
= Kxm → 0. Then there exists a subsequence(

xmn

)
with ‖Kxmn‖ ≤ δn for all n. We set

zn :=

{
xmn , if ‖xmn‖ ≤ E,

E ‖xmn‖−1 xmn , if ‖xmn‖ > E.

Then ‖zn‖ ≤ E and ‖Kzn‖ ≤ δn for all n. Because the worst-case error tends to zero,
we also conclude that ‖zn‖ → 0. From this, we see that zn = xmn for sufficiently
large n; that is, xmn → 0 as n → ∞. This argument, applied to every subsequence
of the original sequence (xm), yields that xm tends to zero for m → ∞; that is, K̃−1

is bounded on the range R(K) of K. This, however, contradicts the assertion of
Theorem 1.17. �

In the following analysis, we make use of the singular value decomposition of the
operator K (see Appendix A, Definition A.52). Therefore, we assume from now on
that X and Y are Hilbert spaces. In many applications X and Y are Sobolev spaces;
that is, spaces of measurable functions such that their (generalized) derivatives are
square integrable. Sobolev spaces of functions of one variables can be characterized
as follows:

H p(a,b) :=

⎧
⎨

⎩
x ∈Cp−1[a,b] : x(p−1)(t) = α +

t∫

a

ψ ds, α ∈ R, ψ ∈ L2

⎫
⎬

⎭
(1.24)

for p ∈ N.

Example 1.20 (Differentiation). As an example, we study differentiation and set
X = Y = L2(0,1),

(Kx)(t) =
t∫

0

x(s)ds, t ∈ (0,1), x ∈ L2(0,1),

and

X1 := {x ∈ H1(0,1) : x(1) = 0}, (1.25a)

X2 := {x ∈ H2(0,1) : x(1) = 0, x′(0) = 0}. (1.25b)
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We define ‖x‖1 := ‖x′‖L2 and ‖x‖2 := ‖x′′‖L2 . Then the norms ‖·‖ j, j = 1,2, are
stronger than ‖·‖L2 (see Problem 1.2), and we can prove for every E > 0 and δ > 0:

F
(
δ ,E,‖·‖1

)
≤
√

δ E and F
(
δ ,E,‖·‖2

)
≤ δ 2/3E1/3. (1.26)

From this result, we observe that the possibility to reconstruct x is dependent on the
smoothness of the solution. We come back to this remark in a more general setting
(Theorem 1.21). We will also see that these estimates are asymptotically sharp; that
is, the exponent of δ cannot be increased.

Proof of (1.26). First, assume that x ∈ H1(0,1) with x(1) = 0. Partial integration,
which is easily seen to be allowed for H1-functions and the Cauchy–Schwarz in-
equality, yields

‖x‖2
L2 =

1∫

0

x(t)x(t)dt

= −
1∫

0

x′(t)

⎡

⎣
t∫

0

x(s)ds

⎤

⎦dt +

⎡

⎣x(t)
t∫

0

x(s)ds

⎤

⎦

t=1

t=0

= −
1∫

0

x′(t)(Kx)(t)dt ≤ ‖Kx‖L2

∥
∥x′
∥
∥

L2 . (1.27)

This yields the first estimate. Now let x ∈ H2(0,1) such that x(1) = 0 and x′(0) = 0.
Using partial integration again, we estimate

∥
∥x′
∥
∥2

L2 =
1∫

0

x′(t)x′(t)dt

= −
1∫

0

x(t)x′′(t)dt +
[
x(t)x′(t)

]t=1
t=0

= −
1∫

0

x(t)x′′(t)dt ≤ ‖x‖L2

∥∥x′′
∥∥

L2 .

Now we substitute this into the right-hand side of (1.27):

‖x‖2
L2 ≤ ‖Kx‖L2

∥
∥x′
∥
∥

L2 ≤ ‖Kx‖L2

√
‖x‖L2

√
‖x′′‖L2 .

From this, the second estimate of (1.26) follows. �
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It is possible to prove these estimates for more general situations, provided
smoothing properties of the operator K are known. The graph norms of suitable
powers of K∗K play the role of ‖·‖1. We refer to [165] for the derivation of the
general theory and prove only a partial result.

Theorem 1.21. Let X and Y be Hilbert spaces, K : X → Y linear, compact, and
one-to-one with dense range R(K). Let K∗ : Y → X be the adjoint operator.

(a) Set X1 := R(K∗) and ‖x‖1 :=
∥∥(K∗)−1

x
∥∥

Y for x ∈ X1. Then

F
(
δ ,E,‖·‖1

)
≤
√

δ E.

Furthermore, for every E > 0 there exists a sequence δn → 0 such that
F
(
δn,E,‖·‖1

)
=
√

δnE; that is, this estimate is asymptotically sharp.

(b) Set X2 := R(K∗K) and ‖x‖2 :=
∥∥(K∗K

)−1
x
∥∥

X for x ∈ X2. Then

F
(
δ ,E,‖ · ‖2

)
≤ δ 2/3E1/3,

and for every E > 0 there exists a sequence δn → 0 such that F
(
δn,E,‖ ·‖2

)
=

δ 2/3
n E1/3.

The norms ‖·‖1 and ‖·‖2 are well-defined because K∗ and K∗K are one-to-one.
In concrete examples, the assumptions x ∈ R(K∗) and x ∈ R(K∗K) are smooth-
ness assumptions on the exact solution x together with boundary conditions. In
the preceding example, where (Kx)(t) =

∫ t
0 x(s)ds, the spaces R(K∗) and R(K∗K)

coincide with the Sobolev spaces X1 and X2 defined in (1.25a) and (1.25b) (see
Problem 1.3).

Proof of Theorem 1.21. (a) Let x = K∗z ∈ X1 with ‖Kx‖Y ≤ δ and ‖x‖1 ≤ E; that
is, ‖z‖Y ≤ E . Then

‖x‖2
X = (K∗z,x)X = (z,Kx)Y ≤ ‖z‖Y ‖Kx‖Y ≤ E δ .

This proves the first estimate. Now let (μn,xn,yn) be a singular system for K (see
Appendix A, Theorem A.53). Set x̂n = E K∗yn = μnE xn and δn := μ2

n E → 0. Then
‖x̂n‖1 = E , ‖Kx̂n‖ = δn, and ‖x̂n‖ = μnE =

√
δn E . This proves part (a). Part (b) is

proven similarly. �

Next, we consider Example 1.9 again. We are given the parabolic initial boundary
value problem

∂ u(x,t)
∂ t

=
∂ 2u(x,t)

∂x2 , 0 < x < π , t > 0,

u(0,t) = u(π ,t) = 0, t > 0, u(x,0) = u0(x), 0 < x < π .
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In the inverse problem, we know the final temperature distribution u(x,T ),
0 ≤ x ≤ π , and we want to determine the temperature u(x,τ) at time τ ∈ (0,T ). As
additional information we also assume the knowledge of E > 0 with ‖u(·,0)‖L2 ≤E .

The solution of the initial boundary value problem is given by the series

u(x,t) =
2
π

∞

∑
n=1

e−n2t sin(nx)
π∫

0

u0(y)sin(ny)dy, 0 ≤ x ≤ π, t > 0.

We denote the unknown function by v := u(·,τ), set X = Y = L2(0,π), and

X1 :=

⎧
⎨

⎩
v ∈ L2(0,π) : v =

∞

∑
n=1

an e−n2τ sin(n·) with

an =
2
π

π∫

0

u0(y) sin(ny)dy for some u0 ∈ L2(0,π)

⎫
⎬

⎭

and ‖v‖1 := ‖u0‖L2 for v ∈ X1. In this case, the operator K : X → Y is an integral
operator with kernel

k(x,y) =
2
π

∞

∑
n=1

e−n2(T−τ) sin(nx)sin(ny), x,y ∈ [0,π ],

(see Example 1.9). Then we have for any τ ∈ (0,T ):

F(δ ,E,‖ · ‖1) ≤ E1−τ/T δ τ/T . (1.28)

This means that under the information ‖u(·,0)‖L2 ≤ E , the solution u(·,τ) can be
determined from the final temperature distribution u(·,T ), the determination being
better the closer τ is to T .

Proof of (1.28). Let v ∈ X1 and

an :=
2
π

π∫

0

u0(y) sin(ny)dy, n ∈ N,

be the Fourier coefficients of u0. From the definition of X1 and

(Kv)(x) =
∞

∑
n=1

e−n2T an sin(nx),
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we conclude that the Fourier coefficients of v are given by exp(−n2τ)an and those
of Kv by exp(−n2T )an. Therefore, we have to maximize

π
2

∞

∑
n=1

|an|2 e−2n2τ

subject to the constraints

π
2

∞

∑
n=1

|an|2 ≤ E2 and
π
2

∞

∑
n=1

|an|2 e−2n2T ≤ δ 2.

From the Hölder inequality, we have (for p,q > 1 with 1/p+1/q = 1 to be specified
in a moment):

π
2

∞

∑
n=1

|an|2 e−2n2τ =
π
2

∞

∑
n=1

|an|2/q
(
|an|2/p e−2n2τ

)

≤
(

π
2

∞

∑
n=1

|an|2
)1/q(

π
2

∞

∑
n=1

|an|2 e−2pn2τ

)1/p

.

We now choose p = T/τ. Then 1/p = τ/T and 1/q = 1− τ/T . This yields the
assertion. �

The next chapter is devoted to the construction of regularization schemes that are
asymptotically optimal in the sense that, under the information x ∈ X1, ‖x‖1 ≤ E ,
and
∥
∥ỹ− y

∥
∥≤ δ , an approximation x̃ and a constant c > 0 are constructed such that∥

∥x̃− x
∥
∥

∞ ≤ cF(δ ,E,‖·‖1).
As a first tutorial example, we consider the problem of numerical differentiation;

see Examples 1.15 and 1.20.

Example 1.22. We fix h ∈ (0,1/2) and define the one-sided difference quotient by

v(t) =

⎧
⎪⎨

⎪⎩

1
h

[
y(t + h)− y(t)

]
, 0 < t < 1/2,

1
h

[
y(t)− y(t −h)

]
, 1/2 < t < 1,

for any y ∈ L2(0,1). First, we estimate ‖v − y′‖L2 for smooth functions y; that is,
y ∈ H2(0,1). From Taylor’s formula (see Problem 1.4), we have

y(t ±h) = y(t)± y′(t)h +
t±h∫

t

(
t ±h− s

)
y′′(s)ds ;
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that is,

v(t)− y′(t) =
1
h

t+h∫

t

(t + h− s)y′′(s)ds

=
1
h

h∫

0

y′′(t + h− τ)τ dτ,

for t ∈ (0,1/2) and analogously for t ∈ (1/2,1). Hence, we estimate

h2

1/2∫

0

∣
∣v(t)− y′(t)

∣
∣2 dt

=
h∫

0

h∫

0

τ s

⎡

⎣
1/2∫

0

y′′(t + h− τ)y′′(t + h− s)dt

⎤

⎦dτ ds

≤
h∫

0

h∫

0

τ s

√√
√
√
√

1/2∫

0

|y′′(t + h− τ)|2 dt

√√
√
√
√

1/2∫

0

|y′′(t + h− s)|2 dt dτ ds

≤
∥
∥y′′
∥
∥2

L2

⎡

⎣
h∫

0

τ dτ

⎤

⎦

2

=
1
4

h4
∥
∥y′′
∥
∥2

L2 ,

and analogously for h2 ∫ 1
1/2 |v(t)− y′(t)|2 dt. Summing these estimates yields

∥
∥v − y′

∥
∥

L2 ≤
1√
2

E h,

where E is some bound on ‖y′′‖L2
.

Now we treat the situation with errors. Instead of y(t) and y(t ±h), we measure
ỹ(t) and ỹ(t ± h), respectively. We assume that ‖ỹ− y‖L2 ≤ δ . Instead of v(t) we
compute ṽ(t) = ±

[
ỹ(t ± h)− ỹ(t)

]
/h for t ∈ (0,1/2) or t ∈ (1/2,1) respectively.

Because

|ṽ(t)− v(t)| ≤ |ỹ(t ±h)− y(±h)|
h

+
|ỹ(t)− y(t)|

h
,
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we conclude that ‖ṽ − v‖L2 ≤ 2
√

2δ/h. Therefore, the total error due to the error
on the right-hand side and the discretization error is

∥
∥ṽ − y′

∥
∥

L2 ≤ ‖ṽ − v‖L2 +
∥
∥v − y′

∥
∥

L2 ≤
2
√

2δ
h

+
1√
2

E h. (1.29)

By this estimate, it is desirable to choose the discretization parameter h as the mini-
mum of the right-hand side of (1.29). Its minimum is obtained at h = 2

√
δ/E. This

results in the optimal error ‖ṽ − y′‖L2 ≤ 2
√

2E δ .
Summarizing, we note that the discretization parameter h should be of order√
δ/E if the derivative of a function is computed by the one-sided difference quo-

tient. With this choice, the method is optimal under the information ‖x′‖L2 ≤ E .

The two-sided difference quotient is optimal under the a priori information
‖x′′‖L2 ≤ E and results in an algorithm of order δ 2/3 (see Example 2.4 in the
following chapter).

We have carried out the preceding analysis with respect to the L2-norm rather
that the maximum norm, mainly because we present the general theory in Hilbert
spaces. For this example, however, estimates with respect to ‖·‖∞ are simpler to
derive (see the estimates preceding Definition 1.18 of the worst-case error).

The result of this example is of practical importance: For many algorithms using
numerical derivatives (for example, quasi-Newton methods in optimization), it is
recommended that you choose the discretization parameter ε to be the square root of
the floating-point precision of the computer because a one-sided difference quotient
is used.

1.4 Problems

1.1. Show that Eqs. (1.1) and (1.20) have at most one solution.
Hint: Extend ρ in (1.1) by zero into R and apply the Fourier transform.

1.2. Let the Sobolev spaces X1 and X2 be defined by (1.25a) and (1.25b), respec-
tively. Define the bilinear forms by

(x,y)1 :=
1∫

0

x′(t)y′(t)dt and (x,y)2 :=
1∫

0

x′′(t)y′′(t)dt

on X1 and X2, respectively. Prove that Xj are Hilbert spaces with respect to the inner
products (·, ·) j , j = 1,2, and that ‖x‖L2 ≤ ‖x‖ j for all x ∈ Xj, j = 1,2.

1.3. Let K : L2(0,1) → L2(0,1) be defined by (1.19). Show that the ranges R(K∗)
and R(K∗K) coincide with the spaces X1 and X2 defined by (1.25a) and (1.25b),
respectively.
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1.4. Prove the following version of Taylor’s formula by induction with respect to n
and partial integration:

Let y ∈ Hn+1(a,b) and t,t + h ∈ [a,b]. Then

y(t + h) =
n

∑
k=0

y(k)(t)
k!

hk + Rn(t;h),

where the error term is given by

Rn(t;h) =
1
n!

t+h∫

t

(t + h− s)n y(n+1)(s)ds.





Chapter 2
Regularization Theory for Equations
of the First Kind

We saw in the previous chapter that many inverse problems can be formulated as
operator equations of the form

Kx = y,

where K is a linear compact operator between Hilbert spaces X and Y over the
field K = R or C. We also saw that a successful reconstruction strategy requires
additional a priori information about the solution.

This chapter is devoted to a systematic study of regularization strategies for solv-
ing Kx = y. In particular, we wish to investigate under which conditions they are
optimal; that is, of the same asymptotic order as the worst-case error. In Sect. 2.1,
we introduce the general concept of regularization. In Sects. 2.2 and 2.3, we study
Tikhonov’s method and the Landweber iteration as two of the most important regu-
larization strategies. In these three sections, the regularization parameter α = α(δ )
is chosen a priori; that is, before we start to compute the regularized solution. We
see that the optimal regularization parameter α depends on bounds of the exact solu-
tion; they are not known in advance. Therefore, it is advantageous to study strategies
for the choice of α that depend on the numerical algorithm and are made during the
algorithm (a posteriori). Different a posteriori choices are studied in Sects. 2.5–2.7.

All of them are motivated by the idea that it is certainly sufficient to compute an
approximation xα,δ of the solution x such that the norm of the defect Kxα ,δ − yδ is
of the same order as the perturbation error δ of the right-hand side. The classical
strategy, due to Morozov [176], determines α by solving a nonlinear scalar equation.
To solve this equation, we still need a numerical algorithm such as the “regula falsi”
or the Newton method. In Sects. 2.6 and 2.7, we investigate two well-known iterative
algorithms for solving linear (or nonlinear) equations: Landweber’s method (see
[155]), which is the steepest descent method, and the conjugate gradient method.
The choices of α are made implicitly by stopping the algorithm as soon as the
defect

∥
∥Kxm − yδ

∥
∥ is less than τδ . Here, τ > 1 is a given parameter.

Landweber’s method and Morozov’s discrepancy principle are easy to investigate
theoretically because they can be formulated as linear regularization methods. The
study of the conjugate gradient method is more difficult because the choice of α
depends nonlinearly on the right-hand side y. Because the proofs in Sect. 2.7 are
very technical, we postpone them to an appendix.

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,
Applied Mathematical Sciences 120, DOI 10.1007/978-1-4419-8474-6 2,
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2.1 A General Regularization Theory

For simplicity, we assume throughout this chapter that the compact operator K is
one-to-one. This is not a serious restriction because we can always replace the do-
main X by the orthogonal complement of the kernel of K. We make the assumption
that there exists a solution x∈ X of the unperturbed equation Kx = y. In other words,
we assume that y ∈R(K). The injectivity of K implies that this solution is unique.

In practice, the right-hand side y ∈ Y is never known exactly but only up to an
error of, say, δ > 0. Therefore, we assume that we know δ > 0 and yδ ∈ Y with

∥∥
∥y− yδ

∥∥
∥≤ δ . (2.1)

It is our aim to “solve” the perturbed equation

Kxδ = yδ . (2.2)

In general, (2.2) is not solvable because we cannot assume that the measured data
yδ are in the range R(K) of K. Therefore, the best we can hope is to determine
an approximation xδ ∈ X to the exact solution x that is “not much worse” than the
worst-case error F(δ ,E,‖·‖1) of Definition 1.18.

An additional requirement is that the approximate solution xδ should depend con-
tinuously on the data yδ . In other words, it is our aim to construct a suitable bounded
approximation R : Y → X of the (unbounded) inverse operator K−1 : R(K) → X .

Definition 2.1. A regularization strategy is a family of linear and bounded
operators

Rα : Y −→ X , α > 0,

such that

lim
α→0

RαKx = x for all x ∈ X ;

that is, the operators RαK converge pointwise to the identity.

From this definition and the compactness of K, we conclude the following.

Theorem 2.2. Let Rα be a regularization strategy for a compact operator K : X →Y
where dimX = ∞. Then we have

(1) The operators Rα are not uniformly bounded; that is, there exists a sequence
(α j) with

∥
∥Rα j

∥
∥→ ∞ for j → ∞.

(2) The sequence (Rα Kx) does not converge uniformly on bounded subsets of X;
that is, there is no convergence RαK to the identity I in the operator norm.

Proof. (1) Assume, on the contrary, that there exists c > 0 such that ‖Rα‖ ≤ c for
all α > 0. From Rαy → K−1y (α → 0) for all y ∈ R(K) and ‖Rαy‖ ≤ c‖y‖ for
α > 0 we conclude that

∥∥K−1y
∥∥ ≤ c‖y‖ for every y ∈ R(K); that is, K−1 is

bounded. This implies that I = K−1K : X → X is compact, a contradiction to
dimX = ∞.
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(2) Assume that RαK → I in L(X ,X). From the compactness of RαK and
Theorem A.32, we conclude that I is also compact, which again would imply
that dimX < ∞. ��

The notion of a regularization strategy is based on unperturbed data; that is, the
regularizer Rαy converges to x for the exact right-hand side y = Kx.

Now let y ∈ R(K) be the exact right-hand side and yδ ∈ Y be the measured data
with

∥
∥y− yδ

∥
∥≤ δ . We define

xα ,δ := Rα yδ (2.3)

as an approximation of the solution x of Kx = y. Then the error splits into two parts
by the following obvious application of the triangle inequality:

∥
∥
∥xα ,δ − x

∥
∥
∥ ≤

∥
∥
∥Rα yδ −Rαy

∥
∥
∥+‖Rα y− x‖

≤ ‖Rα‖
∥∥
∥yδ − y

∥∥
∥+‖RαKx− x‖

and thus ∥
∥
∥xα ,δ − x

∥
∥
∥≤ δ ‖Rα‖+‖RαKx− x‖ . (2.4)

This is our fundamental estimate, which we use often in the following.
We observe that the error between the exact and computed solutions consists of

two parts: The first term on the right-hand side describes the error in the data multi-
plied by the “condition number” ‖Rα‖ of the regularized problem. By Theorem 2.2,
this term tends to infinity as α tends to zero. The second term denotes the approxi-
mation error

∥∥(Rα −K−1
)

y
∥∥ at the exact right-hand side y = Kx. By the definition

of a regularization strategy, this term tends to zero with α . Figure 2.1 illustrates the
situation.

We need a strategy to choose α = α(δ ) dependent on δ in order to keep the total
error as small as possible. This means that we would like to minimize

δ ‖Rα‖+‖Rα Kx− x‖ .

error

± ‖Rα‖

‖RαKx − x‖

Fig. 2.1 Behavior of the total error
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The procedure is the same in every concrete situation: One has to estimate the
quantities ‖Rα‖ and ‖Rα Kx− x‖ in terms of α and then minimize this upper bound
with respect to α . Before we carry out these steps for two model examples, we
introduce the following notation.

Definition 2.3. A regularization strategy α = α(δ ) is called admissible if α(δ )→ 0
and

sup
{∥∥
∥Rα(δ)y

δ − x
∥
∥
∥ : yδ ∈Y,

∥
∥
∥Kx− yδ

∥
∥
∥≤ δ

}
→ 0, δ → 0,

for every x ∈ X .

Example 2.4 (Numerical differentiation by two-sided difference quotient). It is our
aim to compute the derivative of a function by the two-sided difference quotient
(see Example 1.22 for the one-sided difference quotient). Here α = h is the step
size, and we define

(Rhy)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
h

[
4y

(
t +

h
2

)
− y(t + h)−3y(t)

]
, 0 < t <

h
2
,

1
h

[
y

(
t +

h
2

)
− y

(
t − h

2

)]
,

h
2

< t < 1− h
2
,

1
h

[
3y(t)+ y(t−h)−4y

(
t − h

2

)]
, 1− h

2
< t < 1,

for y ∈ L2(0,1). In order to prove that Rh defines a regularization strategy, it suffices
to show that RhK are uniformly bounded with respect to h in the operator norm of
L2(0,1) and that ‖RhKx− x‖L2 tends to zero for smooth x (see Theorem A.27 of
Appendix A). Later, we show convergence for x ∈ H2(0,1).

The fundamental theorem of calculus (or Taylor’s formula from Problem 1.4 for
n = 0) yields

(Rhy)(t) =
1
h

t+h/2∫

t−h/2

y′(s)ds =
1
h

h/2∫

−h/2

y′(s+ t)ds,
h
2

< t < 1− h
2
,

and thus

1−h/2∫

h/2

|(Rhy)(t)|2 dt =
1
h2

h/2∫

−h/2

h/2∫

−h/2

1−h/2∫

h/2

y′(s+ t)y′(τ + t)dt dτ ds.

The Cauchy–Schwarz inequality yields

1−h/2∫

h/2

|(Rhy)(t)|2 dt ≤
∥
∥y′

∥
∥2

L2 .
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From (Rhy)(t) = 4 [y(t + h/2)− y(t)]/h− [y(t + h)− y(t)]/h for 0 < t < h/2 and an
analogous representation for 1− h/2 < t < 1, similar estimates yield the existence
of c > 0 with

‖Rh y‖L2 ≤ c
∥
∥y′

∥
∥

L2

for all y ∈ H1(0,1). For y = Kx, x ∈ L2(0,1), the uniform boundedness of (RhK)
follows.

Now let x ∈ H2(0,1) and thus y = Kx ∈ H3(0,1). We apply Taylor’s formula
(see Problem 1.4) in the form (first again for h/2 < t < 1−h/2)

y(t ±h/2)− y(t)∓ h
2

y′(t)− h2

8
y′′(t) =

1
2

±h/2∫

0

s2 y′′′ (t ±h/2− s) ds.

Subtracting the formulas for + and − yields

(Rhy)(t)− y′(t) =
1

2h

h/2∫

0

s2 [
y′′′(t + h/2− s)+ y′′′(t −h/2 + s)

]
ds,

and thus by changing the orders of integration und using the Cauchy–Schwarz in-
equality

1−h/2∫

h/2

∣
∣(Rhy)(t)− y′(t)

∣
∣2 dt ≤ 1

h2

∥
∥y′′′

∥
∥2

L2

⎛

⎝
h/2∫

0

s2ds

⎞

⎠

2

=
1

242

∥
∥y′′′

∥
∥2

L2 h4.

Similar applications of Taylor’s formula in the intervals (0,h/2) and (1− h/2,1)
yield an estimate of the form

‖RhKx− x‖L2 =
∥
∥Rhy− y′

∥
∥

L2 ≤ c1 E h2

for all x ∈ H2(0,1) with ‖x′′‖L2 ≤ E . Together with the uniform boundedness of
RhK, this implies that RhKx → x for all x ∈ L2(0,1).

In order to apply the fundamental estimate (2.4), we must estimate the first term;
that is, the L2-norm of Rh. It is easily checked that there exists c2 > 0 with ‖Rhy‖L2 ≤
c2 ‖y‖L2 /h for all y ∈ L2(0,1). Estimate (2.4) yields

∥
∥
∥Rhyδ − x

∥
∥
∥

L2
≤ c2

δ
h

+ c1 E h2,
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where E is a bound on ‖x′′‖L2 = ‖y′′′‖L2 . Minimization with respect to h of the
expresssion on the right-hand side leads to

h(δ ) = c 3
√

δ/E and
∥
∥
∥Rh(δ)y

δ − x
∥
∥
∥≤ c̃E1/3 δ 2/3

for some c > 0 and c̃ = c2/c + c1c2.
We observe that this strategy is asymptotically optimal for the information

‖x′′‖L2 ≤E because it provides an approximation xδ that is asymptotically not worse
than the worst-case error (see Example 1.20).

The (one- or two-sided) difference quotient uses only local portions of the func-
tion y. An alternative approach is to first smooth the function y by mollification and
then to differentiate the mollified function.

Example 2.5 (Numerical differentiation by mollification). Again, we define the
operator (Kx)(t) =

∫ t
0 x(s)ds, t ∈ [0,1], but now as an operator from the (closed)

subspace

L2
0(0,1) :=

⎧
⎨

⎩
z ∈ L2(0,1) :

1∫

0

z(s)ds = 0

⎫
⎬

⎭

of L2(0,1) into L2(0,1).
We define the Gaussian kernel ψα by

ψα(t) =
1

α
√

π
exp

(
−t2/α2) , t ∈ R,

where α > 0 denotes a parameter. Then
∫ ∞
−∞ ψα(t)dt = 1, and the convolution

(ψα ∗ y)(t) :=
∞∫

−∞

ψα(t − s)y(s)ds =
∞∫

−∞

ψα(s)y(t − s)ds, t ∈ R,

exists and is an L2-function for every y∈ L2(R). Furthermore, by Young’s inequality
(see [41], p. 102), we have that

‖ψα ∗ y‖L2 ≤ ‖ψα‖L1 ‖y‖L2 = ‖y‖L2 for all y ∈ L2(R).

Therefore, the operators y �→ ψα ∗ y are uniformly bounded in L2(R) with respect
to α . We note that ψα ∗ y is infinitely often differentiable on R for every y ∈ L2(R).

We need the two convergence properties

‖ψα ∗ z− z‖L2(R) → 0 as α → 0 for every z ∈ L2(0,1) (2.5a)

and
‖ψα ∗ z− z‖L2(R) ≤

√
2α

∥
∥z′

∥
∥

L2(0,1) (2.5b)
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for every z ∈ H1(0,1) with z(0) = z(1) = 0. Here and in the following we identify
functions z ∈ L2(0,1) with functions z ∈ L2(R) where we think of them being ex-
tended by zero outside of [0,1].
Proof of (2.5a), (2.5b). It is sufficient to prove (2.5b) because the space{

z ∈ H1(0,1) : z(0) = z(1) = 0
}

is dense in L2(0,1), and the operators z �→ ψα ∗ z
are uniformly bounded from L2(0,1) into L2(R).

Let the Fourier transform be defined by

(Fz)(t) :=
1√
2π

∞∫

−∞

z(s)eist ds, t ∈ R,

for z ∈ S, where the Schwarz space S is defined by

S :=
{

z ∈C∞(R) : sup
t∈R

∣
∣
∣t pz(q)(t)

∣
∣
∣ < ∞ for all p,q ∈ N0

}
.

With this normalization, Plancherel’s theorem and the convolution theorem take the
form (see [41])

‖Fz‖L2(R) = ‖z‖L2(R) , F(u ∗ z)(t) =
√

2π (Fu)(t)(Fz)(t), t ∈ R,

for all z,u ∈ S. Because S is dense in L2(R), these formulas hold also for z ∈ L2(R).
Now we combine these properties and conclude that

‖ψα ∗ z− z‖L2(R) = ‖F (ψα ∗ z)−Fz‖L2(R) =
∥
∥∥
[√

2πF (ψα)−1
]
Fz

∥
∥∥

L2(R)

for every z ∈ L2(0,1). Partial integration yields that

F(z′)(t) =
1√
2π

1∫

0

z′(s)eist ds = − it√
2π

1∫

0

z(s)eist ds = (−it)(Fz)(t)

for all z ∈ H1(0,1) with z(0) = z(1) = 0. We define the function φα by

φα(t) :=
1
it

[
1−

√
2π F (ψα)

]
=

1
it

[
1− e−α2t2/4

]
, t ∈ R.

Then we conclude that

‖ψα ∗ z− z‖L2(R) =
∥∥φα F(z′)

∥∥
L2(R) ≤ ‖φα‖∞

∥∥F(z′)
∥∥

L2(R)

= ‖φα‖∞
∥
∥z′

∥
∥

L2(0,1) .
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From

|φα(t)| = α
2

1
(αt)/2

[
1− e−(αt/2)2

]

and the elementary estimate
[
1− exp(−τ2)

]
/τ ≤ 2

√
2 for all τ > 0, the desired

estimate (2.5b) follows.
After these preparations we define the regularization operators Rα : L2(0,1) →

L2
0(0,1) by

(Rα y)(t) :=
d
dt

(ψα ∗ y)(t)−
1∫

0

d
ds

(ψα ∗ y)(s)ds

=
(
ψ ′

α ∗ y
)
(t)−

1∫

0

(
ψ ′

α ∗ y
)
(s)ds

for t ∈ (0,1) and y ∈ L2(0,1). First, we note that Rα is well-defined; that is, maps
L2(0,1) into L2

0(0,1) and is bounded. To prove that Rα is a regularization strategy,
we proceed as in the previous example and show that

(i) ‖Rα y‖L2 ≤ 4
α
√

π ‖y‖L2 for all α > 0 and y ∈ L2(0,1),

(ii) ‖Rα Kx‖L2 ≤ 2 ‖x‖L2 for all α > 0 and x ∈ L2
0(0,1); that is, the operators Rα K

are uniformly bounded in L2
0(0,1), and

(iii) ‖Rα Kx− x‖L2 ≤ 2
√

2α ‖x′‖L2 for all α > 0 and x ∈ H1
0 (0,1), where we have

set

H1
0 (0,1) :=

⎧
⎨

⎩
x ∈ H1(0,1) : x(0) = x(1) = 0,

1∫

0

x(s)ds = 0

⎫
⎬

⎭
.

To prove part (i), we estimate with the Cauchy–Schwarz inequality

‖Rαy‖L2(0,1) ≤ 2
∥
∥ψ ′

α ∗ y
∥
∥

L2(0,1) ≤ 2
∥
∥ψ ′

α ∗ y
∥
∥

L2(R)

≤ 2
∥
∥ψ ′

α
∥
∥

L1(R) ‖y‖L2(0,1) ≤
4

α
√

π
‖y‖L2(0,1)

for all y ∈ L2(0,1) because

∥
∥ψ ′

α
∥
∥

L1(R) = −2

∞∫

0

ψ ′
α(s)ds = 2ψα(0) =

2
α
√

π
.

This proves part (i).
Now let y ∈ H1(0,1) with y(0) = y(1) = 0. Then, by partial integration,

(
ψ ′

α ∗ y
)
(t) =

1∫

0

ψ ′
α(t − s)y(s)ds =

1∫

0

ψα(t − s)y′(s)ds =
(
ψα ∗ y′

)
(t).
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Taking y = Kx, x ∈ L2
0(0,1) yields

(Rα Kx)(t) = (ψα ∗ x)(t)−
1∫

0

(ψα ∗ x)(s)ds.

Part (ii) now follows from Young’s inequality.
Finally, we write

(Rα Kx)(t)− x(t) = (ψα ∗ x)(t)− x(t)−
1∫

0

[(ψα ∗ x)(s)− x(s)] ds

because
∫ 1

0 x(s)ds = 0. Therefore, by (2.5b),

‖Rα Kx− x‖L2(0,1) ≤ 2 ‖ψα ∗ x− x‖L2(0,1) ≤ 2
√

2α
∥
∥x′

∥
∥

L2

for all x ∈ H1
0 (0,1). This proves part (iii).

Now we conclude that RαKx converges to x for any x ∈ L2
0(0,1) by (ii), (iii),

and the denseness of H1
0 (0,1) in L2

0(0,1). Therefore, Rα defines a regularization
strategy. From (i) and (iii) we rewrite the fundamental estimate (2.4) as

∥
∥
∥Rαyδ − x

∥
∥
∥

L2
≤ 4δ

α
√

π
+ 2

√
2α E

if x ∈ H1
0 (0,1) with ‖x′‖L2 ≤ E , y = Kx, and yδ ∈ L2(0,1) such that

∥
∥yδ − y

∥
∥

L2 ≤ δ .

The choice α = c
√

δ/E again leads to the optimal order O
(√

δ E
)
.

For further applications of the mollification method, we refer to the monograph
by Murio [180]. There exists an enormous number of publications on numerical
differentiation. We mention only the papers [3, 60, 65, 147] and, for more general
Volterra equations of the first kind, [24, 25, 66, 67, 161].

A convenient method to construct classes of admissible regularization strategies
is given by filtering singular systems. Let K : X → Y be a linear compact operator,
and let (μ j,x j,y j) be a singular system for K (see Appendix A, Definition A.52,
and Theorem A.53). As readily seen, the solution x of Kx = y is given by Picard’s
theorem (see Theorem A.54 of Appendix A) as

x =
∞

∑
j=1

1
μ j

(y,y j)x j (2.6)

provided the series converges; that is, y ∈ R(K). This result illustrates again the
influence of errors in y. We construct regularization strategies by damping the
factors 1/μ j.
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Theorem 2.6. Let K : X → Y be compact with singular system (μ j,x j,y j) and

q : (0,∞)× (0,‖K‖] −→ R

be a function with the following properties:

(1) |q(α,μ)| ≤ 1 for all α > 0 and 0 < μ ≤ ‖K‖.
(2) For every α > 0 there exists c(α) such that

|q(α,μ)| ≤ c(α)μ for all 0 < μ ≤ ‖K‖ .

(3a) lim
α→0

q(α,μ) = 1 for every 0 < μ ≤ ‖K‖.

Then the operator Rα : Y → X, α > 0, defined by

Rα y :=
∞

∑
j=1

q(α,μ j)
μ j

(y,y j)x j , y ∈ Y, (2.7)

is a regularization strategy with ‖Rα‖ ≤ c(α). A choice α = α(δ ) is admissable
if α(δ ) → 0 and δ c(α(δ )) → 0 as δ → 0. The function q is called a regularizing
filter for K.

Proof. The operators Rα are bounded because we have by assumption (2) that

‖Rαy‖2 =
∞

∑
j=1

[q(α,μ j)]
2 1

μ2
j

∣
∣(y,y j)

∣
∣2

≤ c(α)2
∞

∑
j=1

∣
∣(y,y j)

∣
∣2 ≤ c(α)2 ‖y‖2 ;

that is, ‖Rα‖ ≤ c(α). From

RαKx =
∞

∑
j=1

q(α,μ j)
μ j

(Kx,y j)x j, x =
∞

∑
j=1

(x,x j)x j ,

and (Kx,y j) = (x,K∗y j) = μ j(x,x j), we conclude that

‖RαKx− x‖2 =
∞

∑
j=1

[q(α,μ j)−1]2
∣
∣(x,x j)

∣
∣2 . (2.8)

Here K∗ denotes the adjoint of K (see Theorem A.23). This fundamental represen-
tation will be used quite often in the following. Now let x ∈ X be arbitrary but fixed.
For ε > 0 there exists N ∈ N such that

∞

∑
n=N+1

∣
∣(x,x j)

∣
∣2 <

ε2

8
.
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By (3a) there exists α0 > 0 such that

[q(α,μ j)−1]2 <
ε2

2‖x‖2 for all j = 1, . . . ,N and 0 < α ≤ α0.

With (1) we conclude that

‖RαKx− x‖2 =
N

∑
j=1

[q(α,μ j)−1]2
∣
∣(x,x j)

∣
∣2

+
∞

∑
n=N+1

[q(α,μ j)−1]2
∣
∣(x,x j)

∣
∣2

<
ε2

2‖x‖2

N

∑
j=1

∣
∣(x,x j)

∣
∣2 +

ε2

2
≤ ε2

for all 0 < α ≤ α0. Thus we have shown that

RαKx → x (α → 0) for every x ∈ X . �

In this theorem, we showed convergence of Rαy to the solution x. As Examples 2.4
and 2.5 indicate, we are particularly interested in optimal strategies; that is, those
that converge of the same order as the worst-case error. We see in the next theo-
rem that a proper replacement of assumption (3a) leads to such optimal strategies.
In parts (i) and (ii), we assume that the solution x is in the range of K∗ and K∗K,
respectively. In concrete examples, these conditions correspond to smoothness as-
sumptions and boundary conditions on the exact solution x (see Problem 1.3 for an
example).

Theorem 2.7. Let assumptions (1) and (2) of the previous theorem hold.

(i) Let (3a) be replaced by the stronger assumption:

(3b) There exists c1 > 0 with

|q(α,μ)−1| ≤ c1

√
α

μ
for all α > 0 and 0 < μ ≤ ‖K‖ .

If, furthermore, x ∈R(K∗), then

‖RαKx− x‖ ≤ c1
√

α ‖z‖ , (2.9a)

where x = K∗z.

(ii) Let (3a) be replaced by the stronger assumption:

(3c) There exists c2 > 0 with

|q(α,μ)−1| ≤ c2
α
μ2 for all α > 0 and 0 < μ ≤ ‖K‖ .
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If, furthermore, x ∈R(K∗K), then

‖RαKx− x‖ ≤ c2 α ‖z‖ , (2.9b)

where x = K∗Kz.

Proof. With x = K∗z and (x,x j) = μ j(z,y j), formula (2.8) takes the form

‖Rα Kx− x‖2 =
∞

∑
j=1

[q(α,μ j)−1]2 μ2
j

∣
∣(z,y j)

∣
∣2 ≤ c2

1 α ‖z‖2 .

The case (ii) is proven analogously. ��

There are many examples of functions q : (0,∞)× (0,‖K‖] → R that satisfy
assumptions (1), (2), and (3a-c) of the preceding theorems. We study two of the
following three filter functions in the next sections in more detail.

Theorem 2.8. The following three functions q satisfy the assumptions (1), (2), and
(3a–c) of Theorems 2.6 or 2.7, respectively:

(a) q(α,μ) = μ2/(α + μ2). This choice satisfies (2) with c(α) = 1/
(
2
√

α
)
.

Assumptions (3b) and (3c) hold with c1 = 1/2 and c2 = 1, respectively.

(b) q(α,μ) = 1−
(
1−a μ2

)1/α
for some 0 < a < 1/‖K‖2. In this case (2) holds

with c(α) =
√

a/α. (3b) and (3c) are satisfied with c1 = 1/
√

2a and c2 = 1/a,
respectively.

(c) Let q be defined by

q(α,μ) =
{

1, μ2 ≥ α,

0, μ2 < α.

In this case (2) holds with c(α) = 1/
√

α . (3b) and (3c) are satisfied with
c1 = c2 = 1.

Therefore, all of the functions q defined in (a), (b), and (c) are regularizing filters
that lead to optimal regularization strategies.

Proof. For all three cases, properties (1) and (3a) are obvious.

(a) Properties (2) and (3b) follow from the elementary estimate

μ
α + μ2 ≤ 1

2
√

α
for all α,μ > 0

because 1−q(α,μ) = α/
(
α + μ2

)
. Property (3c) is also obvious.

(b) Property (2) follows immediately from Bernoulli’s inequality:

1−
(
1−a μ2)1/α ≤ 1−

(
1− a μ2

α

)
=

a μ2

α
,

thus |q(α,μ)| ≤
√
|q(α,μ)| ≤

√
a/α μ .
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(3b) and (3c) follow from the elementary estimates

μ
(
1−aμ2)β ≤ 1

√
2aβ

and μ2 (1−aμ2)β ≤ 1
aβ

for all β > 0 and 0 ≤ μ ≤ 1/
√

a.
(c) For property (2) it is sufficient to consider the case μ2 ≥ α . In this case,

q(α,μ) = 1 ≤ μ/
√

α . For (3b) and (3c) we consider only the case μ2 < α.
Then μ (1−q(α,μ)) = μ ≤

√
α and μ2 (1−q(α,μ)) = μ2 ≤ α. ��

We will see later that the regularization methods for the first two choices of q
admit a characterization that avoids knowledge of the singular system. The choice
(c) of q is called the spectral cutoff. The spectral cutoff solution xα ,δ ∈ X is therefore
defined by

xα,δ = ∑
μ2

j ≥α

1
μ j

(yδ ,y j)x j .

We combine the fundamental estimate (2.4) with the previous theorem and show the
following result for the cutoff solution.

Theorem 2.9. Let yδ ∈ Y be such that
∥
∥yδ − y

∥
∥ ≤ δ , where y = Kx denotes the

exact right-hand side.

(a) Let K : X → Y be a compact and injective operator with singular system
(μ j,x j,y j). The operators

Rαy := ∑
μ2

j ≥α

1
μ j

(y,y j)x j, y ∈ Y, (2.10)

define a regularization strategy with ‖Rα‖ ≤ 1/
√

α . This strategy is admissible
if α(δ ) → 0 (δ → 0) and δ 2/α(δ ) → 0 (δ → 0).

(b) Let x = K∗z ∈R(K∗) with ‖z‖ ≤ E and c > 0. For the choice α(δ ) = cδ/E, we
have the estimate

∥∥
∥xα(δ ),δ − x

∥∥
∥≤

(
1√
c

+
√

c

)√
δ E. (2.11a)

(c) Let x = K∗Kz∈R(K∗K) with ‖z‖≤ E and c > 0. The choice α(δ ) = c(δ/E)2/3

leads to the estimate

∥
∥
∥xα(δ),δ − x

∥
∥
∥≤

(
1√
c

+ c

)
E1/3 δ 2/3. (2.11b)

Therefore, the spectral cutoff is optimal for the information
∥
∥(K∗)−1x

∥
∥≤ E or∥

∥(K∗K)−1x
∥
∥≤ E, respectively (if K∗ is one-to-one).
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Proof. Combining the fundamental estimate (2.4) with Theorems 2.7 and 2.8 yields
the error estimate ∥∥

∥xα ,δ − x
∥∥
∥≤ δ√

α
+
√

α ‖z‖

for part (b) and
∥
∥∥xα ,δ − x

∥
∥∥≤ δ√

α
+α ‖z‖

for part (c). The choices α(δ ) = cδ/E and α(δ ) = c(δ/E)2/3 lead to the esti-
mates (2.11a) and (2.11b), respectively. ��

The general regularization concept discussed in this section can be found in many
books on inverse theory [17, 98, 165]. It was not the aim of this section to study
the most general theory. This concept has been extended in several directions. For
example, in [74] (see also [78]) the notions of strong and weak convergence and
divergence are defined, and in [165] different notions of optimality of regularization
schemes are discussed.

The idea of using filters has a long history [97, 241] and is very convenient
for theoretical purposes. For given concrete integral operators, however, one often
wants to avoid the computation of a singular system. In the next sections, we
give equivalent characterizations for the first two examples without using singular
systems.

2.2 Tikhonov Regularization

A common method to deal with overdetermined finite linear systems of the form
Kx = y is to determine the best fit in the sense that one tries to minimize the defect
‖Kx− y‖ with respect to x ∈ X for some norm in Y . If X is infinite-dimensional and
K is compact, this minimization problem is also ill-posed by the following lemma.

Lemma 2.10. Let X and Y be Hilbert spaces, K : X → Y be linear and bounded,
and y ∈ Y. There exists x̂ ∈ X with ‖Kx̂− y‖ ≤ ‖Kx− y‖ for all x ∈ X if and only if
x̂∈ X solves the normal equation K∗Kx̂ = K∗y. Here, K∗ : Y →X denotes the adjoint
of K.

Proof. A simple application of the binomial theorem yields

‖Kx− y‖2 −‖Kx̂− y‖2 = 2Re (Kx̂− y,K(x− x̂))+‖K(x− x̂)‖2

= 2Re (K∗(Kx̂− y),x− x̂)+‖K(x− x̂)‖2

for all x, x̂ ∈ X . If x̂ satisfies K∗Kx̂ = K∗y, then ‖Kx− y‖2 −‖Kx̂− y‖2 ≥ 0; that
is, x̂ minimizes ‖Kx− y‖. If, on the other hand, x̂ minimizes ‖Kx− y‖, then we
substitute x = x̂ + tz for any t > 0 and z ∈ X and arrive at

0 ≤ 2t Re (K∗(Kx̂− y),z)+ t2 ‖Kz‖2 .
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Division by t > 0 and t → 0 yields Re (K∗(Kx̂− y),z) ≥ 0 for all z ∈ X ; that is,
K∗(Kx̂− y) = 0, and x̂ solves the normal equation. ��

As a consequence of this lemma we should penalize the defect (in the language
of optimization theory) or replace the equation of the first kind K∗Kx̂ = K∗y with
an equation of the second kind (in the language of integral equation theory). Both
viewpoints lead to the following minimization problem.

Given the linear, bounded operator K : X → Y and y ∈ Y , determine xα ∈ X that
minimizes the Tikhonov functional

Jα(x) := ‖Kx− y‖2 + α ‖x‖2 for x ∈ X . (2.12)

We prove the following theorem.

Theorem 2.11. Let K : X → Y be a linear and bounded operator between Hilbert
spaces and α > 0. Then the Tikhonov functional Jα has a unique minimum xα ∈ X.
This minimum xα is the unique solution of the normal equation

α xα + K∗Kxα = K∗y. (2.13)

Proof. Let (xn) ⊂ X be a minimizing sequence; that is, Jα(xn) → I := infx∈X Jα(x)
as n tends to infinity. We show that (xn) is a Cauchy sequence. Application of the
binomial formula yields that

Jα(xn)+ Jα(xm) = 2Jα

(
1
2

(xn + xm)
)

+
1
2
‖K(xn − xm)‖2 +

α
2
‖xn − xm‖2

≥ 2 I +
α
2
‖xn − xm‖2 .

The left-hand side converges to 2I as n,m tend to infinity. This shows that (xn) is
a Cauchy sequence and thus convergent. Let xα = limn→∞ xn, noting that xα ∈ X .
From the continuity of Jα , we conclude that Jα(xn) → Jα(xα); that is, Jα(xα) = I.
This proves the existence of a minimum of Jα .

Now we use the following formula as in the proof of the previous lemma:

Jα(x)− Jα(xα) = 2Re (Kxα − y,K(x− xα))+ 2α Re (xα ,x− xα)

+ ‖K(x− xα)‖2 +α ‖x− xα‖2

= 2Re (K∗(Kxα − y)+ αxα , x− xα)

+ ‖K(x− xα)‖2 +α ‖x− xα‖2 (2.14)

for all x ∈ X . From this, the equivalence of the normal equation with the mini-
mization problem for Jα is shown exactly as in the proof of Lemma 2.10. Finally,
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we show that α I + K∗K is one-to-one for every α > 0. Let αx + K∗Kx = 0.
Multiplication by x yields α(x,x)+ (Kx,Kx) = 0; that is, x = 0. ��

The solution xα of Eq. (2.13) can be written in the form xα = Rαy with

Rα := (αI + K∗K)−1K∗ : Y −→ X . (2.15)

Choosing a singular system (μ j,x j,y j) for the compact operator K, we see that Rαy
has the representation

Rα y =
∞

∑
n=0

μ j

α + μ2
j

(y,y j)x j =
∞

∑
n=0

q(α,μ j)
μ j

(y,y j)x j, y ∈ Y, (2.16)

with q(α,μ) = μ2/
(
α + μ2

)
. This function q is exactly the filter function that was

studied in Theorem 2.8, part (a). Therefore, applications of Theorems 2.6 and 2.7
yield the following.

Theorem 2.12. Let K : X → Y be a linear, compact operator and α > 0.

(a) The operator αI +K∗K is boundedly invertible. The operators Rα : Y → X from
(2.15) form a regularization strategy with ‖Rα‖ ≤ 1/

(
2
√

α
)
. It is called the

Tikhonov regularization method. Rαyδ is determined as the unique solution
xα ,δ ∈ X of the equation of the second kind

α xα ,δ + K∗Kxα ,δ = K∗yδ . (2.17)

Every choice α(δ ) → 0 (δ → 0) with δ 2/α(δ ) → 0 (δ → 0) is admissible.
(b) Let x = K∗z ∈ R(K∗) with ‖z‖ ≤ E. We choose α(δ ) = cδ/E for some c > 0.

Then the following estimate holds:

∥
∥
∥xα(δ ),δ − x

∥
∥
∥≤ 1

2

(
1/

√
c+

√
c
)√

δ E. (2.18a)

(c) Let x = K∗Kz ∈R(K∗K) with ‖z‖ ≤ E. The choice α(δ ) = c(δ/E)2/3 for some
c > 0 leads to the error estimate

∥
∥
∥xα(δ ),δ − x

∥
∥
∥≤

(
1

2
√

c
+ c

)
E1/3 δ 2/3. (2.18b)

Therefore, Tikhonov’s regularization method is optimal for the information∥
∥(K∗)−1x

∥
∥≤ E or

∥
∥(K∗K)−1x

∥
∥≤ E, respectively (provided K∗ is one-to-one).

Proof. Combining the fundamental estimate (2.4) with Theorems 2.7 and 2.8 yields
the error estimate

∥∥
∥xα ,δ − x

∥∥
∥≤ δ

2
√

α
+

√
α

2
‖z‖
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for part (b) and
∥∥
∥xα ,δ − x

∥∥
∥≤ δ

2
√

α
+ α ‖z‖

for part (c). The choices α(δ ) = cδ/E and α(δ ) = c(δ/E)2/3 lead to the esti-
mates (2.18a) and (2.18b), respectively. ��

The eigenvalues of K tend to zero, and the eigenvalues of αI +K∗K are bounded
away from zero by α > 0.

From Theorem 2.12, we observe that α has to be chosen to depend on δ in such a
way that it converges to zero as δ tends to zero but not as fast as δ 2. From parts (b)
and (c), we conclude that the smoother the solution x is the slower α has to tend
to zero. On the other hand, the convergence can be arbitrarily slow if no a priori
assumption about the solution x (such as (b) or (c)) is available (see [222]).

It is surprising to note that the order of convergence of Tikhonov’s regularization
method cannot be improved. Indeed, we prove the following result.

Theorem 2.13. Let K : X → Y be linear, compact, and one-to-one such that the
range R(K) is infinite-dimensional. Furthermore, let x ∈ X, and assume that there
exists a continuous function α : [0,∞) → [0,∞) with α(0) = 0 such that

lim
δ→0

∥∥
∥xα(δ ),δ − x

∥∥
∥ δ−2/3 = 0

for every yδ ∈ Y with
∥∥yδ −Kx

∥∥≤ δ , where xα(δ),δ ∈ X solves (2.17). Then x = 0.

Proof. Assume, on the contrary, that x �= 0.

First, we show that α(δ )δ−2/3 → 0. Set y = Kx. From

(α(δ ) I + K∗K)
(

xα(δ ),δ − x
)

= K∗
(

yδ − y
)
−α(δ )x,

we estimate

|α(δ )| ‖x‖ ≤ ‖K‖δ +
(

α(δ )+‖K‖2
) ∥
∥∥xα(δ),δ − x

∥
∥∥ .

We multiply this equation by δ−2/3 and use the assumption that xα(δ ),δ tends to x
faster than δ 2/3 to zero; that is,

∥∥
∥xα(δ ),δ − x

∥∥
∥ δ−2/3 → 0.

This yields α(δ )δ−2/3 → 0.
In the second part, we construct a contradiction. Let (μ j,x j,y j) be a singular

system for K. Define

δ j := μ3
j and yδ j := y + δ j y j, j ∈ N.



40 2 Regularization Theory for Equations of the First Kind

Then δ j → 0 as j → ∞ and, with α j := α(δ j),

xα j ,δ j − x =
(

xα j ,δ j − xα j

)
+(xα j − x)

= (α jI + K∗K)−1 K∗(δ jy j)+ (xα j − x)

=
δ j μ j

α j + μ2
j

x j +(xα j − x) .

Here xα j is the solution of Tikhonov’s Eq. (2.17) for yδ replaced by y. Because also

‖xα j − x‖ δ−2/3
j → 0, we conclude that

δ 1/3
j μ j

α j + μ2
j

−→ 0, j → ∞.

But, on the other hand,

δ 1/3
j μ j

α j + μ2
j

=
μ2

j

α j + μ2
j

=
(

1 + α j δ−2/3
j

)−1
−→ 1, j → ∞.

This is a contradiction. ��

This result shows that Tikhonov’s regularization method is not optimal for
stronger “smoothness” assumptions on the solution x; that is, under the assump-
tion x ∈ (K∗K)r (X) for some r ∈ N, r ≥ 2. This is in contrast to, e.g., Landweber’s
method or the conjugate gradient method, which are discussed later.

The choice of α in Theorem 2.12 is made a priori; that is, before starting the
computation of xα by solving the least squares problem. In Sects. 2.5 to 2.7 we
study a posteriori choices of α; that is, choices of α made during the process of
computing xα .

It is possible to choose stronger norms in the penalty term of the Tikhonov func-
tional. Instead of (2.12), one can minimize the functional

∥∥
∥Kx− yδ

∥∥
∥

2
+ α ‖x‖2

1 on X1,

where ‖·‖1 is a stronger norm (or only seminorm) on a subspace X1 ⊂ X . This was
originally done by Phillips [199] and Tikhonov [237, 238] (see also [86]) for lin-
ear integral equations of the first kind. They chose the seminorm ‖x‖1 := ‖x′‖L2

or the H1-norm ‖x‖1 :=
(
‖x‖2

L2 + ‖x′‖2
L2

)1/2
. By characterizing ‖·‖1 through a

singular system for K, one obtains similar convergence results as above in the
stronger norm ‖·‖1. For further aspects of regularization with differential operators



2.3 Landweber Iteration 41

or stronger norms, we refer to [61, 107, 163, 187] and the monographs [98, 99, 165].
The interpretation of regularization by smoothing norms in terms of reproducing
kernel Hilbert spaces has been observed in [120].

2.3 Landweber Iteration

Landweber [155], Fridman [87], and Bialy [18] suggested rewriting the equation
Kx = y in the form x = (I − aK∗K)x + aK∗y for some a > 0 and iterating this
equation; that is, computing

x0 := 0 and xm = (I −aK∗K)xm−1 + aK∗y (2.19)

for m = 1,2, . . . . This iteration scheme can be interpreted as the steepest descent
algorithm applied to the quadratic functional x �→ ‖Kx− y‖2 as the following lemma
shows.

Lemma 2.14. Let the sequence (xm) be defined by (2.19) and define the functional
ψ : X → R by ψ(x) = 1

2 ‖Kx− y‖2, x ∈ X. Then ψ is Fréchet differentiable in every
z ∈ X and

ψ ′(z)x = Re(Kz− y,Kx) = Re (K∗(Kz− y),x) , x ∈ X . (2.20)

The linear functional ψ ′(z) can be identified with K∗(Kz− y) ∈ X in the Hilbert
space X over the field R. Therefore, xm = xm−1 − aK∗(Kxm−1 − y) is the steepest
descent step with stepsize a.

Proof. The binomial formula yields

ψ(z+ x)−ψ(z)−Re(Kz− y,Kx) =
1
2
‖Kx‖2

and thus

|ψ(z+ x)−ψ(z)−Re(Kz− y,Kx)| ≤ 1
2
‖K‖2 ‖x‖2 ,

which proves that the mapping x �→ Re(Kz − y,Kx) is the Fréchet derivative of
ψ at z. ��

Equation (2.19) is a linear recursion formula for xm. By induction with respect
to m, it is easily seen that xm has the explicit form xm = Rmy, where the operator
Rm : Y → X is defined by

Rm := a
m−1

∑
k=0

(I−aK∗K)kK∗ for m = 1,2, . . . . (2.21)
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Choosing a singular system (μ j,x j,y j) for the compact operator K, we see that Rmy
has the representation

Rmy = a
∞

∑
j=1

μ j

m−1

∑
k=0

(1−aμ2
j )

k (y,y j)x j

=
∞

∑
j=1

1
μ j

[
1− (1−aμ2

j )
m] (y,y j)x j

=
∞

∑
n=0

q(m,μ j)
μ j

(y,y j)x j , y ∈ Y, (2.22)

with q(m,μ) =
[
1− (1−aμ2)m

]
. We studied this filter function q in Theorem 2.8,

part (b), when we defined α = 1/m. Therefore, applications of Theorems 2.6 and
2.7 yield the following result.

Theorem 2.15. (a) Again let K : X → Y be a compact operator and let 0 < a <
1/‖K‖2. Define the linear and bounded operators Rm : Y → X by (2.21). These
operators Rm define a regularization strategy with discrete regularization param-
eter α = 1/m, m ∈N, and ‖Rm‖ ≤

√
am. The sequence xm,δ = Rmyδ is computed

by the iteration (2.19); that is,

x0,δ = 0 and xm,δ = (I−aK∗K)xm−1,δ + aK∗yδ (2.23)

for m = 1,2, . . . . Every strategy m(δ ) → ∞ (δ → 0) with δ 2 m(δ ) → 0 (δ → 0)
is admissible.

(b) Again let x = K∗z ∈ R(K∗) with ‖z‖ ≤ E and 0 < c1 < c2. For every choice
m(δ ) with c1

E
δ ≤ m(δ ) ≤ c2

E
δ , the following estimate holds:

∥
∥∥xm(δ ),δ − x

∥
∥∥≤ c3

√
δ E (2.24a)

for some c3 depending on c1, c2, and a. Therefore, the Landweber iteration is
optimal for the information

∥
∥(K∗)−1x

∥
∥≤ E.

(c) Now let x = K∗Kz ∈ R(K∗K) with ‖z‖ ≤ E and 0 < c1 < c2. For every choice
m(δ ) with c1(E/δ )2/3 ≤ m(δ ) ≤ c2(E/δ )2/3, we have

∥∥
∥xm(δ),δ − x

∥∥
∥≤ c3 E1/3 δ 2/3 (2.24b)

for some c3 depending on c1, c2, and a. Therefore, the Landweber iteration is
also optimal for the information

∥
∥(K∗K)−1x

∥
∥≤ E.

Proof. Combining the fundamental estimate (2.4) with the Theorems 2.7 and 2.8
yields the error estimate

∥
∥
∥xm,δ − x

∥
∥
∥≤ δ

√
am+

1√
2a

‖z‖
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for part (b) and ∥
∥
∥xm,δ − x

∥
∥
∥≤ δ

√
am+

1
a
‖z‖

for part (c). Replacing m in the first term by the upper bound and in the second by
the lower bound yields estimates (2.24a) and (2.24b), respectively. ��

The choice x0 = 0 is made to simplify the analysis. In general, the explicit itera-
tion xm is given by

xm = a
m−1

∑
k=0

(I −aK∗K)kK∗y +(I−aK∗K)mx0, m = 1,2, . . . .

In this case, Rm is affine linear; that is, of the form Rmy = zm +Smy, y ∈Y , for some
zm ∈ X and some linear operator Sm : Y → X .

For this method, we observe again that high precision (ignoring the presence of
errors) requires a large number m of iterations but stability forces us to keep m small
enough.

It can be shown by the same arguments as earlier that Landweber’s method is
optimal also with respect to stronger norms. If x ∈ (K∗K)r (X) for some r ∈ N, the
following error estimate holds (see [165]):

∥∥
∥xm(δ ),δ − x

∥∥
∥≤ cE1/(2r+1) δ 2r/(2r+1),

where E is a bound on (K∗K)−r x. Therefore, this situation is different from
Tikhonov’s regularization method (see Theorem 2.13).

We come back to the Landweber iteration in the next chapter, where we show that
an optimal choice of m(δ ) can be made a posteriori through a proper stopping rule.

In this section, we have studied only the particular cases x ∈ R(K∗) and
x ∈ R(K∗K), which correspond to two particular smoothness assumptions in
concrete applications. It is possible to extend the theory to the case where
x ∈ R

(
(K∗K)σ/2

)
. Here, (K∗K)σ/2 denotes the (fractional) power of the self-

adjoint operator K∗K. We come back to this generalization in Sect. 2.7 (see (2.42)
and Problems 2.4 and 2.5).

Other possibilities for regularizing first kind equations Kx = y with compact oper-
ators K, which we have not discussed, are methods using positivity or more general
convexity constraints (see [26, 29, 214, 215].

2.4 A Numerical Example

In this section, we demonstrate Tikhonov’s regularization method for the following
integral equation of the first kind:

1∫

0

(1 + ts)ets x(s)ds = et , 0 ≤ t ≤ 1, (2.25)
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with unique solution x(t)= 1 (see Problem 2.1). The operator K : L2(0,1)→ L2(0,1)
is given by

(Kx)(t) =
1∫

0

(1 + ts)ets x(s)ds

and is self-adjoint; that is, K∗ = K. We note that x does not belong to the range of K
(see Problem 2.1). For the numerical evaluation of Kx, we use Simpson’s rule. With
ti = i/n, i = 0, . . . ,n, n even, we replace (Kx)(ti) by

n

∑
j=0

wj (1 + tit j)etit j x(t j) where wj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
3n

, j = 0 or n,

4
3n

, j = 1,3, . . . ,n−1,

2
3n

, j = 2,4, . . . ,n−2.

We note that the corresponding matrix A is not symmetric. This leads to the dis-
cretized Tikhonov equation α xα ,δ + A2xα,δ = Ayδ . Here, yδ =

(
yδ

i

)
∈ R

n+1 is
a perturbation (uniformly distributed random vector) of the discrete right-hand
yi = exp(i/n) such that

∣∣
∣y− yδ

∣∣
∣
2

:=

√
1

n + 1

n

∑
i=0

(
yi − yδ

i

)2 ≤ δ .

The average results of ten computations are given in the following tables, where we
have listed the discrete norms

∣
∣1− xα ,δ ∣∣

2 of the errors between the exact solution

x(t) = 1 and Tikhonov’s approximation xα,δ .
In Table 2.1, we have chosen δ = 0; that is, only the discretization error for

Simpson’s rule is responsible for the increase of the error for small α. This differ-
ence between discretization parameters n = 8 and n = 16 is noticeable for α ≤ 10−8.
We refer to [243] for further examples.

Table 2.1 Tikhonov
regularization for δ = 0

α n = 8 n = 16

10−1 2.4∗10−1 2.3∗10−1

10−2 7.2∗10−2 6.8∗10−2

10−3 2.6∗10−2 2.4∗10−2

10−4 1.3∗10−2 1.2∗10−2

10−5 2.6∗10−3 2.3∗10−3

10−6 9.3∗10−4 8.7∗10−4

10−7 3.5∗10−4 4.4∗10−4

10−8 1.3∗10−3 3.2∗10−5

10−9 1.6∗10−3 9.3∗10−5

10−10 3.9∗10−3 2.1∗10−4
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Table 2.2 Tikhonov
regularization for δ > 0

α δ = 0.0001 δ = 0.001 δ = 0.01 δ = 0.1

10−1 0.2317 0.2317 0.2310 0.2255
10−2 0.0681 0.0677 0.0692 0.1194
10−3 0.0238 0.0240 0.0268 0.1651
10−4 0.0119 0.0127 0.1172 1.0218
10−5 0.0031 0.0168 0.2553 3.0065
10−6 0.0065 0.0909 0.6513 5.9854
10−7 0.0470 0.2129 2.4573 30.595
10−8 0.1018 0.8119 5.9775
10−9 0.1730 1.8985 16.587
10−10 1.0723 14.642

Table 2.3 Landweber
iteration

m δ = 0.0001 δ = 0.001 δ = 0.01 δ = 0.1

1 0.8097 0.8097 0.8088 0.8135
2 0.6274 0.6275 0.6278 0.6327
3 0.5331 0.5331 0.5333 0.5331
4 0.4312 0.4311 0.4322 0.4287
5 0.3898 0.3898 0.3912 0.3798
6 0.3354 0.3353 0.3360 0.3339
7 0.3193 0.3192 0.3202 0.3248
8 0.2905 0.2904 0.2912 0.2902
9 0.2838 0.2838 0.2845 0.2817
10 0.2675 0.2675 0.2677 0.2681
100 0.0473 0.0474 0.0476 0.0534
200 0.0248 0.0248 0.0253 0.0409
300 0.0242 0.0242 0.0249 0.0347
400 0.0241 0.0241 0.0246 0.0385
500 0.0239 0.0240 0.0243 0.0424

In the Table 2.2, pcr we always took n = 16 and observed that the total error first
decreases with decreasing α up to an optimal value and then increases again. This
is predicted by the theory, in particular by estimates (2.18a) and (2.18b).

In the Table 2.3, we list results corresponding to the iteration steps for
Landweber’s method with parameter a = 0.5 and again n = 16.

We observe that the error decreases quickly in the first few steps and then slows
down. To compare Tikhonov’s method and Landweber’s iteration, we note that the
error corresponding to iteration number m has to be compared with the error cor-
responding to α = 1/(2m) (see the estimates in the proofs of Theorems 2.15 and
2.12). Taking this into acount, we observe that both methods are comparable where
precision is concerned. We note, however, that the computation time of Landweber’s
method is considerably higher than for Tikhonov’s method, in particular if the error
δ is small. On the other hand, Landweber’s method is stable with respect to pertur-
bations of the right-hand side and gives very good results even for large errors δ .

We refer also to Sect. 3.5, where these regularization methods are compared with
those to be discussed in the subsequent sections for Symm’s integral equation.
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2.5 The Discrepancy Principle of Morozov

The following three sections are devoted to a posteriori choices of the regularization
parameter α . In this section, we study a discrepancy principle based on the Tikhonov
regularization method. Throughout this section, we assume again that K : X −→Y is
a compact and injective operator between Hilbert spaces X and Y with dense range
R(K) ⊂ Y . Again, we study the equation

Kx = y

for given y ∈ Y . The Tikhonov regularization of this equation was investigated in
Sect. 2.2. It corresponds to the regularization operators

Rα = (αI + K∗K)−1K∗ for α > 0,

that approximate the unbounded inverse of K on R(K). We have seen that xα = Rαy
exists and is the unique minimum of the Tikhonov functional

Jα(x) := ‖Kx− y‖2 +α ‖x‖2 , x ∈ X , α > 0. (2.26)

More facts about the dependence on α and y are proven in the following theorem.

Theorem 2.16. Let y ∈Y , α > 0, and xα be the unique solution of the equation

α xα + K∗Kxα = K∗y. (2.27)

Then xα depends continuously on y and α . The mapping α �→ ‖xα‖ is monotonously
nonincreasing and

lim
α→∞

xα = 0.

The mapping α �→ ‖Kxα − y‖ is monotonously nondecreasing and

lim
α→0

Kxα = y.

If K∗y �= 0, then strict monotonicity holds in both cases.

Proof. We proceed in four steps.

(i) Using the definition of Jα and the optimality of xα , we conclude that

α ‖xα‖2 ≤ Jα(xα) ≤ Jα(0) = ‖y‖2 ;

that is, ‖xα‖ ≤ ‖y‖/
√

α . This proves that xα → 0 as α → ∞.
(ii) We choose α > 0 and β > 0 and subtract the equations for xα and xβ :

α
(

xα − xβ
)

+ K∗K
(

xα − xβ
)

+(α −β )xβ = 0. (2.28)
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Multiplication by
(
xα − xβ) yields

α
∥
∥∥xα − xβ

∥
∥∥

2
+
∥
∥∥K

(
xα − xβ

)∥∥∥
2
= (β −α)

(
xβ ,xα − xβ

)
. (2.29)

From this equation, we first conclude that

α
∥
∥
∥xα − xβ

∥
∥
∥

2
≤ |β −α|

∣
∣
∣
(

xβ ,xα − xβ
)∣∣
∣≤ |β −α|

∥
∥
∥xβ

∥
∥
∥
∥
∥
∥xα − xβ

∥
∥
∥ ;

that is,

α
∥
∥∥xα − xβ

∥
∥∥≤ |β −α|

∥
∥∥xβ

∥
∥∥≤ |β −α| ‖y‖

√
β

.

This proves the continuity of the mapping α �→ xα .
(iii) Now let β > α > 0. From (2.29) we conclude that

(
xβ ,xα − xβ) ≥ 0. Thus

∥
∥xβ∥∥2 ≤

(
xβ ,xα) ≤

∥
∥xβ∥∥ ‖xα‖; that is,

∥
∥xβ∥∥ ≤ ‖xα‖ , which proves mono-

tonicity of α �→ ‖xα‖.
(iv) We multiply the normal equation for xβ by

(
xα − xβ). This yields

β
(

xβ ,xα − xβ
)

+
(

Kxβ − y,K(xα − xβ )
)

= 0.

Now let α > β . From (2.29), we see that
(
xβ ,xα − xβ)≤ 0; that is,

0 ≤
(

Kxβ − y,K(xα − xβ )
)

=
(

Kxβ − y,Kxα − y
)
−
∥
∥
∥Kxβ − y

∥
∥
∥

2
.

The Cauchy–Schwarz inequality yields
∥
∥Kxβ − y

∥
∥≤ ‖Kxα − y‖.

(v) Finally, let ε > 0. Because the range of K is dense in Y , there exists x ∈ X with
‖Kx− y‖2 ≤ ε2/2. Choose α0 such that α0 ‖x‖2 ≤ ε2/2. Then

‖Kxα − y‖2 ≤ Jα(xα ) ≤ Jα(x) ≤ ε2;

that is, ‖Kxα − y‖ ≤ ε for all α ≤ α0. ��

Now we consider the determination of α(δ ) from the discrepancy principle,
see [176–178].

We compute α = α(δ ) > 0 such that the corresponding Tikhonov solution xα ,δ ;
that is, the solution of the equation

α xα ,δ + K∗Kxα ,δ = K∗yδ ,

that is, the minimum of

Jα ,δ (x) :=
∥
∥
∥Kx− yδ

∥
∥
∥

2
+α ‖x‖2 ,
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satisfies the equation ∥
∥
∥Kxα ,δ − yδ

∥
∥
∥ = δ . (2.30)

Note that this choice of α by the discrepancy principle guarantees that, on the one
side, the error of the defect is δ and, on the other side, α is not too small.

Equation (2.30) is uniquely solvable, provided
∥
∥yδ − y

∥
∥ ≤ δ <

∥
∥yδ∥∥ , because

by the previous theorem

lim
α→∞

∥
∥
∥Kxα ,δ − yδ

∥
∥
∥ =

∥
∥
∥yδ

∥
∥
∥ > δ

and

lim
α→0

∥
∥
∥Kxα,δ − yδ

∥
∥
∥ = 0 < δ .

Furthermore, α �→
∥
∥Kxα,δ − yδ∥∥ is continuous and strictly increasing.

Theorem 2.17. Let K : X → Y be linear, compact and one-to-one with dense range
in Y . Let Kx = y with x ∈ X, y ∈ Y, yδ ∈ Y such that

∥
∥y− yδ∥∥ ≤ δ <

∥
∥yδ∥∥. Let the

Tikhonov solution xα(δ ) satisfy
∥
∥∥Kxα(δ ),δ − yδ

∥
∥∥ = δ for all δ ∈ (0,δ0). Then

(a) xα(δ ),δ → x for δ → 0; that is, the discrepancy principle is admissible.
(b) Let x = K∗z ∈ K∗(Y ) with ‖z‖ ≤ E. Then

∥
∥
∥xα(δ ),δ − x

∥
∥
∥≤ 2

√
δ E.

Therefore, the discrepancy principle is an optimal regularization strategy under
the information

∥
∥(K∗)−1x

∥
∥≤ E.

Proof. xδ := xα(δ),δ minimizes the Tikhonov functional

J(δ )(x) := Jα(δ),δ (x) = α(δ )‖x‖2 +
∥
∥
∥Kx− yδ

∥
∥
∥

2
.

Therefore, we conclude that

α(δ )
∥
∥
∥xδ

∥
∥
∥

2
+δ 2 = J(δ )(xδ ) ≤ J(δ )(x)

= α(δ )‖x‖2 +
∥
∥
∥y− yδ

∥
∥
∥

2

≤ α(δ )‖x‖2 + δ 2,

and hence
∥
∥xδ∥∥≤ ‖x‖ for all δ > 0. This yields the following important estimate:

∥
∥
∥xδ − x

∥
∥
∥

2
=

∥
∥
∥xδ

∥
∥
∥

2
−2Re(xδ ,x)+‖x‖2

≤ 2
[
‖x‖2 −Re(xδ ,x)

]
= 2Re (x− xδ ,x).
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First, we prove part (b): Let x = K∗z, z ∈ Y . Then

∥
∥∥xδ − x

∥
∥∥

2
≤ 2Re (x− xδ ,K∗z) = 2Re(y−Kxδ ,z)

≤ 2Re (y− yδ ,z)+ 2Re(yδ −Kxδ ,z)

≤ 2δ ‖z‖+ 2δ ‖z‖ = 4δ ‖z‖ ≤ 4δ E.

(a) Now let x ∈ X and ε > 0 be arbitrary. The range R(K∗) is dense in X because
K is one-to-one. Therefore, there exists x̂ = K∗z ∈R(K∗) such that ‖x̂− x‖ ≤ ε/3.
Then we conclude by similar arguments as above that

∥
∥
∥xδ − x

∥
∥
∥

2
≤ 2Re (x− xδ ,x− x̂)+ 2Re(x− xδ ,K∗z)

≤ 2
∥
∥
∥x− xδ

∥
∥
∥

ε
3

+ 2Re(y−Kxδ ,z)

≤ 2
∥∥
∥x− xδ

∥∥
∥

ε
3

+ 4δ ‖z‖ .

This can be rewritten as
(∥∥x− xδ∥∥− ε/3

)2 ≤ ε2/9 + 4δ ‖z‖.
Now we choose δ > 0 such that the right-hand side is less than 4ε2/9. Taking

the square root, we conclude that
∥
∥x− xδ

∥
∥≤ ε for this δ . ��

The condition
∥
∥yδ∥∥ > δ certainly makes sense because otherwise the right-hand

side would be less than the error level δ , and xδ = 0 would be an acceptable approx-
imation to x.

The determination of α(δ ) is thus equivalent to the problem of finding the zero

of the monotone function φ(α) :=
∥
∥Kxα ,δ − yδ∥∥2 − δ 2 (for fixed δ > 0). It is not

necessary to satisfy the equation
∥
∥Kxα,δ − yδ

∥
∥ = δ exactly. An inclusion of the

form

c1δ ≤
∥
∥
∥Kxα ,δ − yδ

∥
∥
∥≤ c2δ

is sufficient to prove the assertions of the previous theorem.
The computation of α(δ ) can be carried out with Newton’s method. The

derivative of the mapping α �→ xα ,δ is given by the solution of the equation
(αI + K∗K) d

dα xα ,δ = −xα,δ , as is easily seen by differentiating (2.27) with re-
spect to α .

In the following theorem, we prove that the order of convergenceO
(√

δ
)

is best

possible for the discrepancy principle. Therefore, by the results of Example 1.20, it
cannot be optimal under the information

∥
∥(K∗K)−1x

∥
∥≤ E .

Theorem 2.18. Let K be one-to-one and compact, and let α(δ ) be chosen by the
discrepancy principle. Assume that for every x ∈ R(K∗K), y = Kx �= 0, and all
sequences δn → 0 and yδn ∈ Y with

∥
∥y− yδn

∥
∥ ≤ δn and

∥
∥yδn

∥
∥ > δn for all n, the
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corresponding Tikhonov solutions xn = xα(δn),δn converge to x faster than
√

δn to
zero; that is,

1√
δn

‖xn − x‖ −→ 0 as n → ∞.

Then the range R(K) has to be finite-dimensional.

Proof. We show first that the choice of α(δ ) by the discrepancy principle implies
the boundedness of α(δ )/δ . Abbreviating xδ := xα(δ ),δ , we write

∥
∥
∥yδ

∥
∥
∥− δ =

∥
∥
∥yδ

∥
∥
∥−

∥
∥
∥yδ −Kxδ

∥
∥
∥≤

∥
∥
∥Kxδ

∥
∥
∥

=
1

α(δ )

∥∥
∥KK∗(yδ −Kxδ )

∥∥
∥≤ δ

α(δ )
‖K‖2 ,

where we applied K to (2.27). This yields α(δ ) ≤ δ ‖K‖2 /
(∥∥yδ

∥
∥− δ

)
.

From
∥
∥yδ∥∥ ≥ ‖y‖ −

∥
∥y− yδ∥∥ ≥ ‖y‖ − δ , we conclude also that

∥
∥yδ∥∥− δ is

bounded away from zero for sufficiently small δ . Thus we have shown that there
exists c > 0 with α(δ ) ≤ cδ for all sufficiently small δ .

Now we assume that dimR(K) = ∞ and construct a contradiction. Let (μ j,x j,y j)
be a singular system of K and define

y := y1 and yδn := y1 +δnyn with δn := μ2
n .

Then δn → 0 as n → ∞, y ∈ R
(
K(K∗K)k

)
for every k ∈ N and

∥
∥yδn − y

∥
∥ = δn <√

1 + δ 2
n =

∥
∥yδn

∥
∥. Therefore, the assumptions for the discrepancy principle are sat-

isfied. The solutions of Kx = y and α(δn)xn + K∗Kxn = K∗yδn are given by

x =
1
μ1

x1 and xn =
μ1

α(δn)+ μ2
1

x1 +
μnδn

α(δn)+ μ2
n

xn,

respectively. α(δn) has to be chosen such that
∥
∥Kxn − yδn

∥
∥ = δn. We compute

xn − x = − α(δn)
μ1

(
α(δn)+ μ2

1

) x1 +
μnδn

α(δn)+ μ2
n

xn

and hence for n ≥ 2

‖xn − x‖ ≥ μnδn

α(δn)+ μ2
n

=
√

δn
1

1 + α(δn)/δn
≥

√
δn

1
1 + c

.

This contradicts ‖xn − x‖ = o(
√

δn). ��

We remark that the estimate α(δ )≤ δ ‖K‖2 /
(∥∥yδ

∥
∥− δ

)
derived in the previous

proof suggests to use δ ‖K‖2 /
(∥∥yδ

∥
∥− δ

)
as a starting value for Newton’s method

to determine α(δ )!
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There has been an enormous effort to modify the original discrepancy principle
while still retaining optimal orders of convergence. We refer to [76,83,90,191,217].

2.6 Landweber’s Iteration Method with Stopping Rule

It is very natural to use the following stopping criteria, which can be implemented
in every iterative algorithm for the solution of Kx = y.

Let r > 1 be a fixed number. Stop the algorithm at the first occurrence of m ∈
N0 with

∥
∥Kxm,δ − yδ

∥
∥ ≤ r δ . The following theorem shows that this choice of m

is possible for Landweber’s method and leads to an admissible and even optimal
regularization strategy.

Theorem 2.19. Let K : X →Y be linear, compact, and one-to-one with dense range.
Let r > 1 and yδ ∈ Y be perturbations with

∥
∥y− yδ∥∥ ≤ δ and

∥
∥yδ∥∥ ≥ rδ for all

δ ∈ (0,δ0). Let the sequence xm,δ , m = 0,1,2, . . ., be determined by Landweber’s
method; that is,

xm+1,δ = xm,δ + aK∗
(

y−Kxm,δ
)

, m = 0,1,2, . . . , (2.31)

for some 0 < a < 1/‖K‖2. Then the following assertions hold:

(1) limm→∞
∥
∥Kxm,δ − yδ∥∥ = 0 for every δ > 0; that is, the following stop-

ping rule is well-defined: Let m = m(δ ) ∈ N0 be the smallest integer with∥
∥Kxm,δ − yδ

∥
∥≤ rδ .

(2) δ 2m(δ ) → 0 for δ → 0; that is, this choice of m(δ ) is admissible. Therefore, by
the assertions of Theorem 2.15, the sequence xm(δ ),δ converges to x.

(3) If x = K∗z ∈R(K∗) or x = K∗Kz ∈R(K∗K) for some z with ‖z‖ ≤ E, then we
have the following orders of convergence:

∥
∥
∥xm(δ ),δ − x

∥
∥
∥ ≤ c

√
E δ or (2.32a)

∥
∥
∥xm(δ ),δ − x

∥
∥
∥ ≤ cE1/3 δ 2/3, (2.32b)

respectively, for some c > 0. This means that this choice of m(δ ) is optimal.

Proof. In (2.22), we showed the representation

Rmy =
∞

∑
j=1

1− (1−aμ2
j )

m

μ j
(y,y j)x j

for every y ∈Y and thus

‖KRmy− y‖2 =
∞

∑
j=1

(
1−aμ2

j

)2m ∣
∣(y,y j)

∣
∣2 .
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From
∣∣
∣1−aμ2

j

∣∣
∣ < 1, we conclude that ‖KRm − I‖ ≤ 1. Application to yδ instead

of y yields
∥∥
∥Kxm,δ − yδ

∥∥
∥

2
=

∞

∑
j=1

(
1−aμ2

j

)2m
∣∣
∣(yδ ,y j)

∣∣
∣
2
.

(1) Let ε > 0 be given. Choose J ∈ N with

∞

∑
j=J+1

∣
∣
∣(yδ ,y j)

∣
∣
∣
2
<

ε2

2
.

Because |1−aμ2
j |2m → 0 as m → ∞ uniformly for j = 1, . . . ,J, we can find m0 ∈ N

with

J

∑
j=1

(
1−aμ2

j

)2m
∣
∣
∣(yδ ,y j)

∣
∣
∣
2

≤ max
j=1,...,J

(
1−aμ2

j

)2m
J

∑
j=1

∣
∣
∣(yδ ,y j)

∣
∣
∣
2
≤ ε2

2
for m ≥ m0.

This implies that
∥∥Kxm,δ − yδ∥∥2 ≤ ε2 for m ≥ m0; that is, that the method is

admissible.
It is sufficient to prove assertion (2) only for the case m(δ ) → ∞. We set m :=

m(δ ) for abbreviation. By the choice of m(δ ), we have for y = Kx

‖KRm−1y− y‖ ≥
∥
∥∥KRm−1yδ − yδ

∥
∥∥−

∥
∥∥(KRm−1 − I)(y− yδ)

∥
∥∥

≥ rδ −‖KRm−1 − I‖ δ ≥ (r−1)δ ,

and hence

m(r−1)2 δ 2 ≤ m
∞

∑
j=1

(
1−aμ2

j

)2m−2 ∣
∣(y,y j)

∣
∣2

=
∞

∑
j=1

m
(
1−aμ2

j

)2m−2 μ2
j

∣
∣(x,x j)

∣
∣2 . (2.33)

We show that the series converges to zero as δ → 0. (The dependence on δ is hidden
in m.) First we note that mμ2(1− aμ2)2m−2 ≤ 1/(2a) for all m ≥ 2 and all μ ≥ 0.
Now we again split the series into a finite sum and a remaining series and esti-

mate in the “long tail” the expression m
(

1−aμ2
j

)2m−2
μ2

j by 1/(2a) and note that

m
(

1−aμ2
j

)2m−2
tends to zero as m → ∞ uniformly in j ∈ {1, . . . ,J}. This proves

convergence and thus part (2).
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For part (3) we remind the reader of the fundamental estimate (2.4), which we
need in the following form (see Theorem 2.15, part (a)):

∥
∥
∥xm,δ − x

∥
∥
∥≤ δ

√
am+‖RmKx− x‖ . (2.34)

First, let x = K∗z and ‖z‖ ≤ E . Writing m = m(δ ) again we conclude from (2.33)
that

(r−1)2 δ 2 m2 ≤
∞

∑
j=1

m2 (
1−aμ2

j

)2m−2 μ4
j

∣
∣(z,y j)

∣
∣2 .

The estimate m2μ4
(
1−aμ2

)2m−2 ≤ 1/a2 for all m ≥ 2 and 0 ≤ μ ≤ 1/
√

a yields

(r−1)2 δ 2 m2 ≤ 1
a2 ‖z‖2 ;

that is, we have shown the upper bound

m(δ ) ≤ 1
a(r−1)

E
δ

.

Now we estimate the second term on the right-hand side of (2.34). From the
Cauchy–Schwarz inequality, we conclude that

‖(I−RmK)x‖2 =
∞

∑
j=1

μ2
j

(
1−aμ2

j

)2m |(z,y j)|2

=
∞

∑
j=1

[
μ2

j

(
1−aμ2

j

)m |(z,y j)|
][(

1−aμ2
j

)m |(z,y j)|
]

≤
√

∞

∑
j=1

μ4
j

(
1−aμ2

j

)2m
|(z,y j)|2

√√
√
√√

∞

∑
j=1

(
1−aμ2

j

)2m

︸ ︷︷ ︸
≤1

|(z,y j)|2

≤ ‖KRmy− y‖‖z‖ ≤ E
[∥∥
∥(I−KRm)(y− yδ)

∥
∥
∥+

∥
∥
∥(I −KRm)yδ

∥
∥
∥
]

≤ E (1 + r)δ .

Therefore, we conclude from (2.34) that

∥
∥
∥xm(δ),δ − x

∥
∥
∥≤ δ

√
am(δ )+

∥
∥Rm(δ)Kx− x

∥
∥≤ c

√
E δ .

Now let x = K∗Kz with ‖z‖ ≤ E . By the same arguments as earlier, we conclude
that

(r−1)2 δ 2 ≤
∞

∑
j=1

(
1−aμ2

j

)2m−2 μ6
j

∣
∣(z,y j)

∣
∣2 .
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Now we use the estimate m3μ6
(
1−aμ2

)2m−2 ≤ 27/(8a3) for all m ≥ 2, 0 ≤ μ ≤
1/

√
a, and we arrive at

(r−1)2 δ 2 ≤ 27
8a3 m3 ‖z‖2 ;

that is,

m(δ ) ≤ cE2/3 δ−2/3,

for some c > 0. To prove the second estimate (2.32b), we use Hölder’s inequality

∞

∑
j=1

|a jb j| ≤
[

∞

∑
j=1

|a j|p
]1/p [ ∞

∑
j=1

|b j|q
]1/q

, (2.35)

where p,q > 1 with 1/p + 1/q = 1. With p = 3/2 and q = 3, we conclude that

‖(I−RmK)x‖2 =
∞

∑
j=1

μ4
j

(
1−aμ2

j

)2m |(z,x j)|2

=
∞

∑
j=1

[
μ4

j

(
1−aμ2

j

)4m/3 |(z,x j)|4/3
][(

1−aμ2
j

)2m/3 |(z,x j)|2/3
]

≤
[

∞

∑
j=1

μ6
j

(
1−aμ2

j

)2m |(z,x j)|2
]2/3

⎡

⎢
⎣

∞

∑
j=1

(
1−aμ2

j

)2m

︸ ︷︷ ︸
≤1

|(z,x j)|2

⎤

⎥
⎦

1/3

≤ ‖KRmy− y‖4/3 ‖z‖2/3 ;

that is,

‖(I −RmK)x‖ ≤ E1/3 (1 + r)2/3 δ 2/3.

Therefore, (2.34) yields

∥∥
∥xm(δ ),δ − x

∥∥
∥≤ δ

√
am(δ )+

∥
∥Rm(δ)Kx− x

∥
∥≤ cE1/3 δ 2/3. ��

It is also possible to formulate a similar stopping criterion for Morozov’s dis-
crepancy principle. Choose an arbitrary monotonic decreasing sequence (αm) ⊂
R with limm→∞ αm = 0. Determine m = m(δ ) as the smallest integer m with∥∥Kxαm,δ − yδ∥∥≤ rδ . For details, we refer the reader to [79] or [165].

One can construct more general classes of methods through the spectral repre-
sentation of the solution x.

Comparing the regularizer xδ of Landweber’s method with the true solution x, we
observe that the function φ(μ) = 1/μ , μ > 0, is approximated by the polynomial
Pm(μ) =

[
1− (1−aμ2)m

]
/μ . It is certainly possible to choose better polynomial
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approximations of the function μ �→ 1/μ . Orthogonal polynomials are particularly
useful. This leads to the ν-methods; see [20, 106], or [108].

A common feature of these methods that is very crucial in the analysis is the
fact that all of the polynomials Pm are independent of y and yδ . For the important
conjugate gradient algorithm discussed in the next section, this is not the case, and
that makes an error analysis much more difficult to obtain.

2.7 The Conjugate Gradient Method

In this section, we study the regularizing properties of the conjugate gradient
method. Because the proofs of the theorems are rather technical, we only state the
results and transfer the proofs to an appendix.

First, we recall the conjugate gradient method for least squares problems for
overdetermined systems of linear equations of the form Kx = y. Here, K ∈ R

m×n

and y ∈ R
m with m ≥ n are given. Because it is hopeless to satisfy all equations

simultaneously, one minimizes the defect f (x) := ‖Kx− y‖2, x ∈ R
n, where ‖·‖

denotes the Euclidean norm in R
m. Standard algorithms for solving least squares

problems are the QR-algorithm or the conjugate gradient method; see [62, 94, 119].
Because we assume that the latter is known for systems of equations, we formulate
it in Fig. 2.2 for the operator equation Kx = y, where K : X →Y is a bounded, linear,
and injective operator between Hilbert spaces X and Y with adjoint K∗ : Y → X .

Define again the function

f (x) := ‖Kx− y‖2 = (Kx− y,Kx− y), x ∈ X .

We abbreviate ∇ f (x) := 2K∗(Kx− y) ∈ X and note that ∇ f (x) is indeed the Riesz
representation of the Fréchet derivative f ′(x; ·) of f at x (see Lemma 2.14). We call
two elements p,q ∈ X K-conjugate if (K p,Kq) = 0. If K is one-to-one, this bilinear
form has the properties of an inner product on X .

Theorem 2.20 (Fletcher–Reeves). Let K : X → Y be a compact, linear and injec-
tive operator between Hilbert spaces X and Y . Then the conjugate gradient method
is well-defined and either stops or produces sequences (xk), (pk) ⊂ X with the
properties

(
∇ f (xk),∇ f (x j)

)
= 0 for all j �= k (2.36a)

and (
K pk,K p j

)
= 0 for all j �= k ; (2.36b)

that is, the gradients are orthogonal and the directions pk are K-conjugate. Fur-
thermore, (

∇ f (x j),K∗K pk
)

= 0 for all j < k. (2.36c)
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Fig. 2.2 The conjugate gradient method

The following theorem gives an interesting and different interpretation of the
elements xm.

Theorem 2.21. Let (xm) and (pm) be the sequences of the conjugate gradient
method. Define the space Vm := span{p0, . . . , pm}. Then we have the following
equivalent characterizations of Vm:

Vm = span
{

∇ f (x0), . . . ,∇ f (xm)
}

(2.37a)

= span
{

p0,K∗K p0, . . . ,(K∗K)m p0} (2.37b)

for m = 0,1, . . . . The space Vm is called a Krylov space. Furthermore, xm is the
minimum of f on Vm−1 for every m ≥ 1.

By this result, we can write xm in the form

xm = −Pm−1(K∗K)p0 = Pm−1(K∗K)K∗y (2.38)
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with a well-defined polynomial Pm−1 ∈ Pm−1 of degree m − 1. Analogously, we
write the defect in the form

y−Kxm = y−KPm−1(K∗K)K∗y = y−KK∗
Pm−1(KK∗)y

= Qm(KK∗)y

with the polynomial Qm(t) := 1− t Pm−1(t) of degree m.
Let (μ j,x j,y j) be a singular system for K. If it happens that

y =
N

∑
j=1

α jy j ∈WN := span{y1, . . . ,yN}

for some N ∈ N, then all iterates xm ∈ AN := span{x1, . . . ,xN} because

xm = Pm−1(K∗K)K∗y =
N

∑
j=1

α j Pm−1(μ2
j )μ j x j.

In this exceptional case, the algorithm terminates after at most N iterations be-
cause the dimension of AN is at most N and the gradients ∇ f (xi) are orthogonal to
each other. This is the reason why the conjugate gradient method applied to matrix
equations stops after finitely many iterations. For operator equations in infinite-
dimensional Hilbert spaces, this method produces sequences of, in general, infinitely
many elements.

The following characterizations of Qm are useful.

Lemma 2.22. (a) The polynomial Qm minimizes the functional

H(Q) := ‖Q(KK∗)y‖2 on {Q ∈ Pm : Q(0) = 1}

and satisfies
H (Qm) = ‖Kxm − y‖2 .

(b) For k �= �, the following orthogonality relation holds:

〈Qk,Q�〉 :=
∞

∑
j=1

μ2
j Qk(μ2

j )Q�(μ2
j )

∣∣(y,y j)
∣∣2 = 0. (2.39)

If y /∈ span{y1, . . . ,yN} for any N ∈ N, then 〈·, ·〉 defines an inner product on the
space P of all polynomials.

Without a priori information, the sequence (xm) does not converge to the solution
x of Kx = y. The images, however, do converge to y. This is the subject of the next
theorem.
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Theorem 2.23. Let K and K∗ be one-to-one, and assume that the conjugate gradi-
ent method does not stop after finitely many steps. Then

Kxm −→ y as m → ∞

for every y ∈ Y.

We give a proof of this theorem because it is a simple conclusion of the previous
lemma.

Proof. Let Q∈Pm be an arbitrary polynomial with Q(0) = 1. Then, by the previous
lemma,

‖Kxm − y‖2 = H (Qm) ≤ H (Q) =
∞

∑
j=1

Q(μ2
j )

2
∣
∣(y,y j)

∣
∣2 . (2.40)

Now let ε > 0 be arbitrary. Choose J ∈ N such that

∞

∑
j=J+1

∣
∣(y,y j)

∣
∣2 <

ε2

2

and choose a function R ∈ C[0,μ2
1 ] with R(0) = 1, ‖R‖∞ ≤ 1 and R(μ2

j ) = 0 for

j = 1,2, . . . ,J. By the theorem of Weierstrass, there exist polynomials Q̃m ∈Pm with∥
∥R− Q̃m

∥
∥

∞ → 0 as m → ∞. We set Q̂m = Q̃m/Q̃m(0), which is possible for suffi-
ciently large m because R(0)= 1. Then Q̂m converges to R as m→∞ and Q̂m(0)= 1.
Substituting this into (2.40) yields

‖Kxm − y‖2 ≤ H
(
Q̂m

)

≤
J

∑
j=1

∣
∣∣
∣
∣
∣
∣
Q̂m(μ2

j )−R(μ2
j )︸ ︷︷ ︸

=0

∣
∣∣
∣
∣
∣
∣

2

∣
∣(y,y j)

∣
∣2 +

∥
∥Q̂m

∥
∥2

∞ ∑
j>J

∣
∣(y,y j)

∣
∣2

≤
∥
∥Q̂m −R

∥
∥2

∞ ‖y‖2 +
ε2

2

∥
∥Q̂m

∥
∥2

∞ .

This expression is less than ε2 for sufficiently large m. ��

Now we return to the regularization of the operator equation Kx = y. The operator
Pm−1(K∗K)K∗ : Y → X corresponds to the regularization operator Rα of the general
theory. But this operator certainly depends on the right-hand side y. The mapping
y �→ Pm−1(K∗K)K∗y is therefore nonlinear.

So far, we have formulated and studied the conjugate gradient method for un-
perturbed right-hand sides. Now we consider the situation where we know only an
approximation yδ of y such that

∥
∥yδ − y

∥
∥≤ δ . We apply the algorithm to yδ instead

of y. This yields a sequence xm,δ and polynomials P
δ
m and Q

δ
m. There is no a pri-

ori strategy m = m(δ ) such that xm(δ),δ converges to x as δ tends to zero; see [68].
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An a posteriori choice as in the previous section, however, again leads to an opti-
mal strategy. We stop the algorithm with the smallest m = m(δ ) such that the defect∥
∥Kxm,δ − yδ

∥
∥≤ τδ , where τ > 1 is some given parameter. From now on, we make

the assumption that yδ is never a finite linear combination of the y j . Then, by The-
orem 2.23, the defect tends to zero, and this stopping rule is well-defined. We want
to show that the choice m = m(δ ) leads to an optimal algorithm. The following
analysis, which we learned from [109], is more elementary than, e.g., in [20, 164],
or [165]. We carry out the complete analysis but, again, postpone the proofs to an
appendix because they are rather technical.

We recall that by our stopping rule

∥
∥
∥Kxm(δ),δ − yδ

∥
∥
∥≤ τδ <

∥
∥
∥Kxm(δ )−1,δ − yδ

∥
∥
∥ . (2.41)

At this stage, we wish to formulate the smoothness assumptions x ∈ R(K∗) and
x ∈ R(K∗K), respectively, in a more general way because the analysis does not
become more difficult. We introduce the subspaces Xσ of X for σ ∈ R, σ ≥ 0, by

Xσ := R
(
(K∗K)σ/2

)
:=

{
x ∈ X :

∞

∑
j=1

μ−2σ
j

∣
∣(x,x j)

∣
∣2 < ∞

}
(2.42)

with norm

‖x‖σ :=

√
∞

∑
j=1

μ−2σ
j

∣
∣(x,x j)

∣
∣2.

In general, these spaces depend on K through (μ j,x j,y j).
It is easily seen that (Xσ ,‖·‖σ) are Hilbert spaces. For σ < 0 the spaces Xσ

are defined as completions of X with respect to the norm ‖·‖σ (see Appendix A,
Theorem A.10). Then (Xσ ,‖·‖σ ) forms a scale of Hilbert spaces with the following
properties: σ1 < σ2 implies that Xσ2 ⊂ Xσ1, and the inclusion is compact. Further-
more, ‖x‖−1 = ‖Kx‖ for x ∈ X−1 (see Problem 2.3).

The assumptions x ∈ Xσ , ‖x‖σ ≤ E generalize the former assumptions x = K∗z ∈
R(K∗), ‖z‖ ≤ E (set σ = 1) and x = K∗Kz ∈ R(K∗K), ‖z‖ ≤ E (set σ = 2). The
following theorem establishes the optimality of the conjugate gradient method with
this stopping rule.

Theorem 2.24. Assume that y and yδ do not belong to the linear span of finitely
many y j. Let the sequence xm(δ),δ be constructed by the conjugate gradient method
with stopping rule (2.41) for fixed parameter τ > 1. Let x ∈ Xσ for some σ > 0 and
‖x‖σ ≤ E. Then there exists c > 0 with

∥
∥∥x− xm(δ ),δ

∥
∥∥≤ cδ σ/(σ+1) E1/(σ+1). (2.43)

For σ = 1 and σ = 2, respectively, this estimate is of the same order as for
Landweber’s method. It is also optimal for any σ > 0 under the a priori information∥∥(K∗K)σ/2

∥∥≤ E (see Problem 2.4).
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There is a much simpler implementation of the conjugate gradient method for
self-adjoint positive definite operators K : X → X . For such K there exists a unique
self-adjoint positive operator A : X →X with A2 = K. Let Kx = y and set z := Ax; that
is, Az = y. We apply the conjugate gradient method to the equation Ax = z without
knowing z. In the process of the algorithm, only the elements A∗z = y, ‖Apm‖2 =
(K pm, pm), and A∗(Axm − z) = Kxm −y have to be computed. The square root A and
the quantity z do not have to be known explicitly, and the method is much simpler
to implement.

Actually, the conjugate gradient method presented here is only one member of
a large class of conjugate gradient methods. For a detailed study of these methods
in connection with ill-posed problems, we refer to [92, 112, 189, 190, 192] and, in
particular, the work [110].

2.8 Problems

2.1. Let K : L2(0,1) → L2(0,1) be the integral operator

(Kx)(t) :=
1∫

0

(1 + ts)ets x(s)ds, 0 < t < 1.

Show by induction that

dn

dtn (Kx)(t) =
1∫

0

(n + 1 + ts)sn ets x(s)ds, 0 < t < 1, n = 0,1, . . . .

Prove that K is one-to-one and that the constant functions do not belong to the range
of K.

2.2. Apply Tikhonov’s method of Sect. 2.2 to the integral equation

t∫

0

x(s)ds = y(t), 0 ≤ t ≤ 1.

Prove that for y ∈ H1(0,1) with y(0) = 0 Tikhonov’s solution xα is given by the
solution of the boundary value problem

−α ẍ(t)+ x(t) = ẏ(t), 0 < t < 1, x(1) = 0, ẋ(0) = 0.

2.3. Let K : X → Y be compact and one-to-one. Let the spaces Xσ be defined by
(2.42). Prove that Xσ2 is compactly embedded in Xσ1 for σ2 > σ1.
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2.4. Let σ > 0 and F(δ ,E,‖·‖σ ) be the worst-case error for K for the information
‖x‖σ ≤ E (see Definition 1.18). Prove that

F(δ ,E,‖·‖σ ) ≤ δ σ/(1+σ) E1/(1+σ).

Hint: Use a singular system for the representations of ‖x‖, ‖x‖σ , and ‖Kx‖ and
apply Hölder’s inequality (2.35).

2.5. Let q : (0,∞)× (0,‖K‖]→ R be a filter function with the properties (1) and (2)
of Theorem 2.6 where (3a) is replaced by:

(3d) There exists c > 0 and σ > 0 with

|q(α,μ)−1| ≤ c

(√
α

μ

)σ
for all α > 0 and 0 < μ ≤ ‖K‖ .

Let Rα : Y → X denote the corresponding operator and assume, furthermore, that
x ∈ Xσ (see (2.42)). Prove the following error estimate:

‖RαKx− x‖ ≤ cασ/2 ‖x‖σ .

Show that Rα is asymptotically optimal for x ∈ Xσ (see Problem 2.4) if, in addition,
there exists c̃ > 0 with |q(α,μ)| ≤ c̃μ/

√
α for all α,μ .

2.6. The iterated Tikhonov regularization (see [77, 137]) xm,α ,δ is defined by

x0,α,δ = 0, (α I + K∗K)xm+1,α,δ = K∗yδ + α xm,α ,δ

for m = 0,1,2, . . . .

(a) Show that qm(α,μ) := 1 −
(
1− μ2/(α + μ2)

)m
, m = 1,2, . . . , is the corre-

sponding filter function.
(b) Prove that this filter function leads to a regularizing operator Rm

α with ‖Rm
α‖ ≤

m/(2
√

α) and satisfies (3d) from Problem 2.5.

2.7. Fix yδ with
∥
∥y− yδ

∥
∥≤ δ and let xα ,δ be the Tikhonov solution corresponding

to α > 0. The curve

α �→
(

f (α)
g(α)

)
:=

(∥
∥Kxα,δ − yδ∥∥2

∥
∥xα ,δ∥∥2

)

, α > 0,

in R
2 is called an L-curve because it has often the shape of the letter L; see [80,113,

114].
Show by using a singular system that f ′(α) = −α g′(α). Furthermore, compute

the curvature

C(α) :=
| f ′(α)g′′(α)−g′(α) f ′′(α)|

( f ′(α)2 + g′(α)2)3/2

and show that the curvature increases monotonously for 0 < α ≤ 1/‖K‖2.





Chapter 3
Regularization by Discretization

In this chapter, we study a different approach to regularizing operator equations
of the form Kx = y, where x and y are elements of certain function spaces. This
approach is motivated by the fact that for the numerical treatment of such equations
one has to discretize the continuous problem and reduce it to a finite system of
(linear or nonlinear) equations. We see in this chapter that the discretization schemes
themselves are regularization strategies in the sense of Chap. 2.

In Sect. 3.1, we study the general concept of projection methods and give a nec-
essary and sufficient condition for convergence. Although we have in mind the
treatment of integral equations of the first kind, we treat the general case where K is a
linear, bounded, not necessarily compact operator between (real or complex) Banach
or Hilbert spaces. Section 3.2 is devoted to Galerkin methods. As special cases,
we study least squares and dual least squares methods in Sects. 3.2.1 and 3.2.2. In
Sect. 3.2.3, we investigate the Bubnov–Galerkin method for the case where the oper-
ator satisfies a Gårding’s inequality. In Sect. 3.3, we illustrate the Galerkin methods
for Symm’s integral equation of the first kind. This equation arises in potential the-
ory and serves as a model equation for more complicated situations. Section 3.4
is devoted to collocation methods. We restrict ourselves to the moment method in
Sect. 3.4.1 and to collocation by piecewise constant functions in Sect. 3.4.2, where
the analysis is carried out only for Symm’s integral equation. In Sect. 3.5, we present
numerical results for various regularization techniques (Tikhonov, Landweber, con-
jugate gradient, projection, and collocation methods) tested for Dirichlet boundary
value problems for the Laplacian in an ellipse. Finally, we study the Backus–Gilbert
method in Sect. 3.6. Although not very popular among mathematicians, this method
is extensively used by scientists in geophysics and other applied sciences. The gen-
eral ideas of Sects. 3.1and 3.2 can also be found in, for example, [17, 151, 165].

3.1 Projection Methods

First, we recall the definition of a projection operator.

Definition 3.1. Let X be a normed space over the field K where K = R or K = C.
Let U ⊂ X be a closed subspace. A linear bounded operator P : X → X is called a
projection operator on U if

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,
Applied Mathematical Sciences 120, DOI 10.1007/978-1-4419-8474-6 3,
c© Springer Science+Business Media, LLC 2011
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• Px ∈U for all x ∈ X and
• Px = x for all x ∈U .

We now summarize some obvious properties of projection operators.

Theorem 3.2. Every nontrivial projection operator satisfies P2 = P and ‖P‖ ≥ 1.

Proof. P2x = P(Px) = Px follows from Px ∈U . Furthermore, ‖P‖ =
∥∥P2

∥∥≤ ‖P‖2

and P �= 0. This implies ‖P‖ ≥ 1. 	


In the following two examples, we introduce the most important projection op-
erators.

Example 3.3. (a) (Orthogonal projection) Let X be a pre-Hilbert space over K = R

or K = C and U ⊂ X be a complete subspace. Let Px ∈U be the best approxi-
mation to x in U ; that is, Px satisfies

‖Px− x‖ ≤ ‖u− x‖ for all u ∈U. (3.1)

By the projection theorem (Theorem A.13 of Appendix A), P : X →U is linear
and Px ∈ U is characterized by the abstract “normal equation” (x−Px,u) = 0
for all u ∈U ; that is, x−Px ∈U⊥. In this example, by the binomial theorem we
have

‖x‖2 = ‖Px +(x−Px)‖2

= ‖Px‖2 +‖x−Px‖2 + 2 Re(x−Px,Px)
︸ ︷︷ ︸

=0

≥ ‖Px‖2 ;

that is, ‖P‖ = 1. Important examples of subspaces U are spaces of splines or
finite elements.

(b) (Interpolation operator) Let X = C[a,b] be the space of real-valued continu-
ous functions on [a,b] supplied with the supremum norm. Then X is a normed
space over R. Let U = span{u1, . . . ,un} be an n-dimensional subspace and
t1, . . . ,tn ∈ [a,b] such that the interpolation problem in U is uniquely solvable;
that is, det[u j(tk)] �= 0. We define Px ∈ U by the interpolant of x ∈C[a,b] in U ,
i.e., u = Px ∈U satisfies u(t j) = x(t j) for all j = 1, . . . ,n. Then P : X → U is a
projection operator.

Examples for U are spaces of algebraic or trigonometric polynomials. As a
drawback of these choices, we note that from the results of Faber (see [185])
the interpolating polynomials of continuous functions x do not, in general, con-
verge to x as the degree of the polynomials tends to infinity. For smooth periodic
functions, however, trigonometric interpolation at equidistant points converges
with optimal order of convergence. We use this fact in Sect. 3.2.2 Here, as an
example, we recall the interpolation by linear splines. For simplicity, we formu-
late only the case where the endpoints are included in the set of interpolation
points.
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Let a = t1 < · · · < tn = b be given points, and let U ⊂C[a,b] be defined by

U = S1(t1, . . . ,tn)

:=
{

x ∈C[a,b] : x|[t j ,t j+1 ] ∈ P1, j = 1, . . . ,n−1

}
, (3.2)

where P1 denotes the space of polynomials of degree at most one. Then the
interpolation operator Qn : C[a,b] →S1(t1, . . . ,tn) is given by

Qnx =
n

∑
j=1

x(t j) ŷ j for x ∈C[a,b],

where the basis functions ŷ j ∈ S1(t1, . . . ,tn) are defined by

ŷ j(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t − t j−1

t j − t j−1
, t ∈ [t j−1,t j] (if j ≥ 2),

t j+1 − t

t j+1 − t j
, t ∈ [t j,t j+1] (if j ≤ n−1),

0, t /∈ [t j−1,t j+1],

(3.3)

for j = 1, . . . ,n. In this example ‖Qn‖∞ = 1 (see Problem 3.1).
For general interpolation operators, ‖Qn‖ exceeds one and ‖Qn‖ is not bounded
with respect to n. This follows from the theorem of Banach–Steinhaus (see
Theorem A.26).

Now we define the class of projection methods.

Definition 3.4. Let X and Y be Banach spaces and K : X → Y be bounded and
one-to-one. Furthermore, let Xn ⊂ X and Yn ⊂ Y be finite-dimensional subspaces of
dimension n and Qn : Y →Yn be a projection operator. For given y ∈Y the projection
method for solving the equation Kx = y is to solve the equation

QnKxn = Qny for xn ∈ Xn. (3.4)

Let
{

x̂1, . . . , x̂n
}

and
{

ŷ1, . . . , ŷn
}

be bases of Xn and Yn, respectively. Then we can
represent Qny and every QnKx̂ j, j = 1, . . . ,n, in the forms

Qny =
n

∑
i=1

βi ŷi and QnKx̂ j =
n

∑
i=1

Ai j ŷi, j = 1, . . . ,n, (3.5)

with βi, Ai j ∈ K. The linear combination xn = ∑n
j=1 α j x̂ j solves (3.4) if and only if

α = (α1, . . . ,αn)� ∈ K
n solves the finite system of linear equations

n

∑
j=1

Ai j α j = βi, i = 1, . . . ,n ; that is, Aα = β . (3.6)
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The orthogonal projection and the interpolation operator from Example 3.3 lead
to the following important classes of projection methods, which are studied in more
detail in the next sections.

Example 3.5. Let K : X → Y be bounded and one-to-one.

(a) (Galerkin method) Let X and Y be pre-Hilbert spaces and Xn ⊂ X and Yn ⊂Y be
finite-dimensional subspaces with dimXn = dimYn = n. Let Qn : Y → Yn be the
orthogonal projection. Then the projected equation QnKxn = Qny is equivalent
to (

Kxn,zn
)

=
(
y,zn

)
for all zn ∈ Yn. (3.7a)

Again let Xn = span{x̂1, . . . , x̂n} and Yn = span{ŷ1, . . . , ŷn}. Looking for a solu-
tion of (3.7a) in the form xn = ∑n

j=1 α j x̂ j leads to the system

n

∑
j=1

α j
(
Kx̂ j, ŷi

)
=
(
y, ŷi

)
for i = 1, . . . ,n, (3.7b)

or Aα = β , where Ai j :=
(
Kx̂ j, ŷi

)
and βi =

(
y, ŷi

)
.

(b) (Collocation method) Let X be a Banach space, Y = C[a,b], and K : X →C[a,b]
be a bounded operator. Let a = t1 < · · · < tn = b be given points (collocation
points) and Yn = S1(t1, . . . ,tn) be the corresponding space (3.2) of linear splines
with interpolation operator Qny = ∑n

j=1 y(t j) ŷ j . Let y ∈ C[a,b] and some n-
dimensional subspace Xn ⊂ X be given. Then QnKxn = Qny is equivalent to

(Kxn)(ti) = y(ti) for all i = 1, . . . ,n. (3.8a)

If we denote by
{

x̂1, . . . , x̂n
}

a basis of Xn, then looking for a solution of (3.8a)
in the form xn = ∑n

j=1 α j x̂ j leads to the finite linear system

n

∑
j=1

α j(Kx̂ j)(ti) = y(ti), i = 1, . . . ,n, (3.8b)

or Aα = β , where Ai j = (Kx̂ j)(ti) and βi = y(ti).

We are particularly interested in the study of integral equations of the form

b∫

a

k(t,s)x(s)ds = y(t), t ∈ [a,b], (3.9)

in L2(a,b) or C[a,b] for some continuous or weakly singular function k. (3.7b) and
(3.8b) now take the form

Aα = β , (3.10)
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where x = ∑n
j=1 α j x̂ j and

Ai j =
b∫

a

b∫

a

k(t,s) x̂ j(s) ŷi(t)dsdt (3.11a)

βi =
b∫

a

y(t) ŷi(t)dt (3.11b)

for the Galerkin method, and

Ai j =
b∫

a

k(ti,s) x̂ j(s)ds (3.11c)

βi = y(ti) (3.11d)

for the collocation method.
Comparing the systems of equations in (3.10), we observe that the computation

of the matrix elements (3.11c) is less expensive than for those of (3.11a) due to
the double integration for every matrix element in (3.11a). For this reason, collo-
cation methods are generally easier to implement than Galerkin methods. On the
other hand, Galerkin methods have convergence properties of high order in weak
norms (superconvergence) which are of practical importance in many cases, such as
boundary element methods for the solution of boundary value problems.

For the remaining part of this section, we make the following assumption.

Assumption 3.6. Let K : X → Y be a linear, bounded, and injective operator be-
tween Banach spaces, Xn ⊂ X and Yn ⊂ Y be finite-dimensional subspaces of
dimension n, and Qn : Y → Yn be a projection operator. We assume that

⋃
n∈N Xn

is dense in X and that QnK|Xn : Xn →Yn is one-to-one and thus invertible. Let x ∈ X
be the solution of

Kx = y. (3.12)

By xn ∈ Xn, we denote the unique solutions of the equations

QnKxn = Qny (3.13)

for n ∈ N.

We can represent the solutions xn ∈ Xn of (3.13) in the form xn = Rny, where
Rn : Y → Xn ⊂ X is defined by

Rn :=
(
QnK|Xn

)−1
Qn : Y −→ Xn ⊂ X . (3.14)
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The projection method is called convergent if the approximate solutions xn ∈ Xn of
(3.13) converge to the exact solution x ∈ X of (3.12) for every y ∈R(K); that is, if

RnKx =
(
QnK|Xn

)−1
QnKx −→ x, n → ∞, (3.15)

for every x ∈ X .
We observe that this definition of convergence coincides with Definition 2.1

of a regularization strategy for the equation Kx = y with regularization parameter
α = 1/n. Therefore, the projection method converges if and only if Rn is a regular-
ization strategy for the equation Kx = y.

Obviously, we can only expect convergence if we require that
⋃

n∈N Xn is dense in
X and Qny→ y for all y∈R(K). But, in general, this is not sufficient for convergence
if K is compact. We have to assume the following boundedness condition.

Theorem 3.7. Let Assumption 3.6 be satisfied. The solution xn = Rny ∈ Xn of (3.13)
converges to x for every y = Kx if and only if there exists c > 0 such that

‖RnK‖ ≤ c for all n ∈ N. (3.16)

If (3.16) is satisfied the following error estimate holds:

‖xn − x‖ ≤ (1 + c) min
zn∈Xn

‖zn − x‖ (3.17)

with the same constant c as in (3.16).

Proof. Let the projection method be convergent. Then RnKx → x for every
x ∈ X . The assertion follows directly from the principle of uniform boundedness
(Theorem A.26 of Appendix A).

Now let ‖RnK‖ be bounded. The operator RnK is a projection operator onto Xn

because for zn ∈ Xn we have RnKzn =
(
QnK|Xn

)−1
QnKzn = zn. Thus we conclude

that
xn − x = (RnK − I)x = (RnK − I)(x− zn) for all zn ∈ Xn.

This yields
‖xn − x‖ ≤ (c + 1) ‖x− zn‖ for all zn ∈ Xn

and proves (3.17). Convergence xn → x follows because
⋃

n∈N Xn is dense in X . 	


So far, we have considered the case where the right-hand side is known exactly.
Now we study the case where the right-hand side is known only approximately;
that is, we assume the knowledge of yδ ∈ Y with

∥
∥yδ − y

∥
∥≤ δ . We understand the

operator Rn from (3.14) as a regularization operator in the sense of the previous
chapter. We have to distinguish between two kinds of errors on the right-hand side.
The first kind measures the error in the norm of Y and corresponds to the kind
of perturbation discussed in Chap. 2. We call this the continuous perturbation of
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the right-hand side. In this case, the norm of Y plays an essential role. A simple
application of the triangle inequality yields with xδ

n := Rnyδ :

∥
∥xδ

n − x
∥
∥ ≤

∥
∥
∥xδ

n −Rny
∥
∥
∥+‖Rny− x‖

≤ ‖Rn‖
∥∥yδ − y

∥∥+‖RnKx− x‖ . (3.18)

This estimate corresponds to the fundamental estimate from (2.4). The first term
reflects the illposedness of the equation: The (continuous) error δ of the right-hand
side is multiplied by the norm of Rn. The second term describes the discretization
error with exact data.

In practice one solves the discrete system (3.6) where the vector β is replaced by
a perturbed vector β δ ∈ K

n with

∣∣
∣β δ −β

∣∣
∣
2
=

n

∑
j=1

∣∣
∣β δ

j −β j

∣∣
∣
2
≤ δ 2.

We call this the discrete perturbation of the right-hand side. Instead of (3.6) one
solves Aαδ = β δ and defines xδ

n ∈ Xn by

xδ
n =

n

∑
j=1

αδ
j x̂ j.

In this case, the choices of basis functions x̂ j ∈ Xn and ŷ j ∈ Yn are essential rather
than the norm of Y . We will see, however, that the condition number of A reflects
the ill-conditioning of the equation Kx = y. For a general discussion of the condition
number of discretized integral equations of the first kind, we refer to [223].

The last theorem of this general section is a perturbation result: It is sufficient
to study the question of convergence for the “principal part” of an operator K. In
particular, if the projection method converges for an operator K, then convergence
and the error estimates hold also for K +C, where C is compact relative to K (that
is, K−1C is compact).

Theorem 3.8. Let Assumption 3.6 hold. Let C : X → Y be a linear operator with
R(C) ⊂ R(K) such that K +C is one-to-one and K−1C is compact in X. Assume,
furthermore, that the projection method converges for K; that is, that RnKx → x for
every x ∈ X, where again

Rn =
[
QnK|Xn

]−1
Qn.

Then it converges also for K +C; that is,

[
Qn(K +C)|Xn

]−1
Qn(K +C)x −→ x for all x ∈ X .
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Let x ∈ X be the solution of (K +C)x = y and xδ
n ∈ Xn be the solution of the corre-

sponding projected equation Qn(K +C)xδ
n = yδ

n for some yδ
n ∈Yn. Then there exists

c > 0 with ∥
∥
∥x− xδ

n

∥
∥
∥≤ c

[∥
∥K−1Cx−RnCx

∥
∥+

∥
∥
∥K−1y−Rnyδ

n

∥
∥
∥
]

(3.19)

for all sufficiently large n and δ > 0.

Proof. We have to compare the equations for xδ
n and x; that is, the equations

Qn(K +C)xδ
n = yδ

n and (K +C)x = y, which we rewrite in the forms

xδ
n + RnCxδ

n = Rnyδ
n , (3.20a)

x + K−1Cx = K−1y. (3.20b)

The operators RnC =
[
RnK

]
K−1C converge to K−1C in the operator norm because

RnKx → x for every x ∈ X and K−1C is compact in X (see Theorem A.32 of
Appendix A). Furthermore, I + K−1C = K−1(K +C) is an isomorphism in X . We
apply the general Theorem A.35 of Appendix A to equations (3.20a) and (3.20b).
This yields the assertion. 	


The first term on the right-hand side of (3.19) is just the error of the projection
method for the equation Kx = Cx without perturbation of the right-hand side. By
Theorem 3.7, this is estimated by

∥∥K−1Cx−RnCx
∥∥≤ (1 + c) min

zn∈Xn

∥∥K−1Cx− zn
∥∥ .

The second term on the right-hand side of (3.19) is the error for the equation Kx = y.
This theorem includes both the continuous and the discrete perturbations of the
right-hand side. For the continuous case we set yδ

n = Qnyδ , while in the discrete
case we set yδ

n = ∑n
i=1 β δ

i ŷi.

3.2 Galerkin Methods

In this section, we assume that X and Y are (real or complex) Hilbert spaces; K :
X →Y is linear, bounded, and one-to-one; Xn ⊂ X and Yn ⊂Y are finite-dimensional
subspaces with dimXn = dimYn = n; and Qn : Y → Yn is the orthogonal projection
operator onto Yn. Then equation QnKxn = Qny reduces to the Galerkin equations
(see Example 3.5) (

Kxn,zn
)

=
(
y,zn

)
for all zn ∈ Yn. (3.21)

If we choose bases
{

x̂1, . . . , x̂n
}

and
{

ŷ1, . . . , ŷn
}

of Xn and Yn, respectively, then this
leads to a finite system for the coefficients of xn = ∑n

j=1 α j x̂ j (see (3.7b)):

n

∑
i=1

Ai j α j = βi, i = 1, . . . ,n, (3.22)



3.2 Galerkin Methods 71

where
Ai j =

(
Kx̂ j, ŷi

)
and βi =

(
y, ŷi

)
. (3.23)

We observe that Ai j and βi coincide with the definitions (3.5) only if the set
{

ŷ j :
j = 1, . . . ,n

}
forms an orthonormal basis of Yn.

The Galerkin method is also known as the Petrov–Galerkin method (see [198])
because Petrov was the first to consider the general situation of (3.21). The special
case X = Y and Xn = Yn was studied by Bubnov in 1913 and later by Galerkin in
1915 (see [88]). For this reason, this special case is also known as the Bubnov–
Galerkin method. In the case when the operator K is self-adjoint and positive
definite, we will see that the Bubnow-Galerkin method coincides with the Rayleigh–
Ritz method, see [202] and [208].

In the following theorem, we prove error estimates for the Galerkin method of the
form (3.18). They differ only in the first term which corresponds to the perturbation
of the right-hand side. The second term bounds the error for the exact right-hand
side and tends to zero, provided assumption (3.16) of Theorem 3.7 is satisfied.

Theorem 3.9. Let Kx = y and assume that the Galerkin equations (3.21) are
uniquely solvable for every right-hand side.

(a) Let yδ ∈ Y with
∥
∥y− yδ∥∥≤ δ be given and xδ

n ∈ Xn be the solution of

(
Kxδ

n ,zn
)

=
(
yδ ,zn

)
for all zn ∈ Yn. (3.24)

Then the following error estimate holds:

∥
∥
∥xδ

n − x
∥
∥
∥≤ δ ‖Rn‖+

∥
∥RnKx− x

∥
∥. (3.25)

(b) Let A and β be given by (3.23) and β δ ∈ K
n with

∣∣β −β δ ∣∣ ≤ δ , where |·|
denotes the Euclidean norm in K

n. Let αδ ∈ K
n be the solution of Aαδ = β δ .

Define xδ
n = ∑n

j=1 αδ
j x̂ j ∈ Xn. Then the following error estimates hold:

∥
∥∥xδ

n − x
∥
∥∥ ≤ an

λn
δ +

∥
∥RnKx− x

∥
∥, (3.26a)

∥∥
∥xδ

n − x
∥∥
∥ ≤ bn ‖Rn‖ δ +

∥
∥RnKx− x

∥
∥, (3.26b)

where

an = max

{∥∥
∥
∥

n

∑
j=1

ρ j x̂ j

∥∥
∥
∥ :

n

∑
j=1

∣
∣ρ j
∣
∣2 = 1

}
, (3.27a)

bn = max

{√
n

∑
j=1

∣
∣ρ j
∣
∣2 :

∥∥
∥
∥

n

∑
j=1

ρ j ŷ j

∥∥
∥
∥= 1

}

, (3.27b)

and λn > 0 denotes the smallest singular value of the matrix A.
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In the first term of the right-hand side of (3.26a) and (3.26b), we observe the depen-
dence on the choice of basis functions

{
x̂ j : j = 1, . . . ,n

}
and

{
ŷ j : j = 1, . . . ,n

}
,

respectively. We note that an = 1 or bn = 1 if the sets
{

x̂ j : j = 1, . . . ,n
}

or{
ŷ j : j = 1, . . . ,n

}
, respectively, form an orthonormal system.

Proof. Part (a) is a direct consequence of (3.18).
(b) From the triangle inequality

∥
∥xδ

n − x
∥
∥ ≤

∥
∥xδ

n −Rny
∥
∥+ ‖Rny− x‖, we observe

that it is sufficient to estimate the first term.
We note that Rny = ∑n

j=1 α j x̂ j , where α satisfies the linear system Aα = β .

Writing xδ
n −Rny = ∑n

j=1

(
αδ

j −α j
)
x̂ j, we estimate

∥
∥
∥xδ

n −Rny
∥
∥
∥ ≤ an

∣
∣
∣αδ −α

∣
∣
∣= an

∣
∣
∣A−1(β δ −β )

∣
∣
∣

≤ an
∣
∣A−1

∣
∣
2

∣
∣
∣β δ −β

∣
∣
∣≤

an

λn
δ ,

where
∣
∣A−1

∣
∣
2 denotes the spectral norm of A−1; that is, the smallest singular

value of A. This yields (3.26a).
Now we choose yδ

n ∈Yn such that
(
yδ

n , ŷi
)
= β δ

i for i = 1, . . . ,n. Then Rnyδ
n =

xδ
n and thus

∥
∥
∥xδ

n −Rny
∥
∥
∥ ≤ ‖Rn‖

∥
∥
∥yδ

n −Qny
∥
∥
∥= ‖Rn‖ sup

zn∈Yn

(
yδ

n −Qny,zn
)

‖zn‖

= ‖Rn‖ sup
ρ j

∑n
j=1 ρ j

(
yδ

n −Qny, ŷ j
)

∥
∥
∥∑n

j=1 ρ jŷ j

∥
∥
∥

= ‖Rn‖ sup
ρ j

∑n
j=1 ρ j

(
β δ

j −β j
)

∥
∥
∥∑n

j=1 ρ j ŷ j

∥
∥
∥

≤ ‖Rn‖
∣∣
∣β δ −β

∣∣
∣ sup

ρ j

√
∑n

j=1 ρ2
j

∥
∥
∥∑n

j=1 ρ j ŷ j

∥
∥
∥

≤ ‖Rn‖ bn δ . 	

We point out again that the Galerkin method is convergent only if the bounded-

ness assumption (3.16) of Theorem 3.7 is satisfied.
In the following three subsections we derive error estimates for three special

choices for the finite-dimensional subspaces Xn and Yn. The cases where Xn and Yn

are coupled by Yn = K(Xn) or Xn = K∗(Yn) lead to the least squares method or the
dual least squares method, respectively. Here, K∗ : Y → X denotes the adjoint of K.
In Sect. 3.2.3, we study the Bubnov–Galerkin method for the case where K satisfies
Gårding’s inequality. In all of the subsections, we formulate the Galerkin equations
for the perturbed cases first without using particular bases and then with respect to
given bases in Xn and Yn.
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3.2.1 The Least Squares Method

An obvious method to solve an equation of the kind Kx = y is the following: Given
a finite-dimensional subspace Xn ⊂ X , determine xn ∈ Xn such that

‖Kxn − y‖ ≤ ‖Kzn − y‖ for all zn ∈ Xn. (3.28)

Existence and uniqueness of xn ∈ Xn follow easily because Xn is finite-dimensional
and K is one-to-one. The solution xn ∈ Xn of this least squares problem is character-
ized by (

Kxn,Kzn
)

=
(
y,Kzn

)
for all zn ∈ Xn. (3.29a)

We observe that this method is a special case of the Galerkin method when we set
Yn := K(Xn).

Choosing a basis {x̂ j : j = 1, . . . ,n} of Xn leads to the finite system

n

∑
j=1

α j
(
Kx̂ j,Kx̂i

)
= βi =

(
y,Kx̂i

)
for i = 1, . . . ,n, (3.29b)

or Aα = β . The corresponding matrix A ∈ K
n×n with Ai j =

(
Kx̂ j,Kx̂i

)
is symmetric

(if K = R) or hermitean (if K = C) and positive definite because K is also one-
to-one.

Again, we study the case where the right-hand side is perturbed by an error. For
continuous perturbations, let xδ

n ∈ Xn be the solution of

(
Kxδ

n ,Kzn
)

=
(
yδ ,Kzn

)
for all zn ∈ Xn, (3.30a)

where yδ ∈ Y is the perturbed right-hand side with
∥
∥yδ − y

∥
∥≤ δ .

For the discrete perturbation, we assume that β ∈ K
n is replaced by β δ ∈ K

n

with
∣
∣β δ −β

∣
∣≤ δ , where |·| denotes the Euclidean norm in K

n. This leads to the
following finite system of equations for the coefficients of xδ

n = ∑n
j=1 αδ

j x̂ j:

n

∑
j=1

αδ
j

(
Kx̂ j,Kx̂i

)
= β δ

i for i = 1, . . . ,n. (3.30b)

This system is uniquely solvable because the matrix A is positive definite. For
least squares methods, the boundedness condition (3.16) is not satisfied without
additional assumptions. We refer to [225] or [151], Problem 17.2, for an example.
However, we can prove the following theorem.

Theorem 3.10. Let K : X →Y be a linear, bounded, and injective operator between
Hilbert spaces and Xn ⊂ X be finite-dimensional subspaces such that

⋃
n∈N Xn is

dense in X. Let x ∈ X be the solution of Kx = y and xδ
n ∈ Xn be the least squares

solution from (3.30a) or (3.30b). Define

σn := max
{
‖zn‖ : zn ∈ Xn, ‖Kzn‖ = 1

}
(3.31)
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and let there exist c > 0, independent of n, such that

min
zn∈Xn

{
‖x− zn‖+ σn ‖K(x− zn)‖

}
≤ c‖x‖ for all x ∈ X . (3.32)

Then the least squares method is convergent and ‖Rn‖ ≤ σn. In this case, we have
the error estimate

∥∥
∥x− xδ

n

∥∥
∥≤ rnσn δ + c̃ min

{
‖x− zn‖ : zn ∈ Xn

}
(3.33)

for some c̃ > 0. Here, rn = 1 if xδ
n ∈ Xn solves (3.30a); that is, δ measures the

continuous perturbation
∥
∥yδ − y

∥
∥. If δ measures the discrete error

∣
∣β δ −β

∣
∣ in

the Euclidean norm and xδ
n = ∑n

j=1 αδ
j x̂ j ∈ Xn, where αδ solves (3.30b), then rn

is given by

rn = max

{√
n

∑
j=1

∣
∣ρ j
∣
∣2 :

∥∥
∥
∥
∥

K

(
n

∑
j=1

ρ j x̂ j

)∥∥
∥
∥
∥

= 1

}

. (3.34)

Proof. We prove that ‖RnK‖ is bounded uniformly in n. Let x ∈ X and xn := RnKx.
Then xn satisfies

(
Kxn,Kzn

)
=
(
Kx,Kzn

)
for all zn ∈ Xn. This yields

‖K(xn − zn)‖2 =
(
K(xn − zn),K(xn − zn)

)

=
(
K(x− zn),K(xn − zn)

)

≤ ‖K(x− zn)‖ ‖K(xn − zn)‖

and thus ‖K(xn − zn)‖ ≤ ‖K(x− zn)‖ for all zn ∈ Xn. Using this and the definition of
σn, we conclude that

‖xn − zn‖ ≤ σn ‖K(xn − zn)‖ ≤ σn ‖K(x− zn)‖ ,

and thus

‖xn‖ ≤ ‖xn − zn‖+‖zn − x‖+‖x‖
≤ ‖x‖+

[
‖zn − x‖+ σn‖K(x− zn)‖

]
.

This holds for all zn ∈ Xn. Taking the minimum, we have by assumption (3.32) that
‖xn‖ ≤ (1 + c)‖x‖. Thus the boundedness condition (3.16) is satisfied. Application
of Theorem 3.7 proves convergence.

Analogously we prove the estimate for ‖Rn‖. Let y ∈ Y and set xn := Rny. Then
from (3.29a) we have that

‖Kxn‖2 =
(
Kxn,Kxn

)
=
(
y,Kxn

)
≤ ‖y‖ ‖Kxn‖

and thus
‖xn‖ ≤ σn ‖Kxn‖ ≤ σn ‖y‖ .

This proves the estimate ‖Rn‖ ≤ σn.
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The error estimates (3.33) follow directly from Theorem 3.9 and the estimates
(3.25) or (3.26b) for ŷ j = Kx̂ j . 	


For further numerical aspects of least squares methods, we refer to [69, 72, 95,
134, 171, 172, 183, 184].

3.2.2 The Dual Least Squares Method

As a next example for a Galerkin method, we study the dual least squares method.
We will see that the boundedness condition (3.16) is always satisfied.

Given any finite-dimensional subspace Yn ⊂ Y , determine un ∈Yn such that

(
KK∗un,zn

)
=
(
y,zn

)
for all zn ∈ Yn, (3.35)

where K∗ : Y → X denotes the adjoint of K. Then xn := K∗un is called the dual
least squares solution. It is a special case of the Galerkin method when we set Xn :=
K∗(Yn). Writing equation (3.35) for y = Kx in the form

(
K∗un,K

∗zn
)

=
(
x,K∗zn

)
for all zn ∈ Yn,

we observe that the dual least squares method is just the least squares method for
the equation K∗u = x. This explains the name.

We assume again that the right-hand side is perturbed. Let yδ ∈ Y with∥
∥yδ − y

∥
∥≤ δ . Instead of equation (3.35), one determines xδ

n = K∗uδ
n ∈ Xn with

(
K∗uδ

n ,K∗zn
)

=
(
yδ ,zn

)
for all zn ∈ Yn. (3.36)

For discrete perturbations, we choose a basis {ŷ j : j = 1, . . . ,n} of Yn and assume that
the right-hand sides βi =

(
y, ŷi

)
, i = 1, . . . ,n, of the Galerkin equations are perturbed

by a vector β δ ∈K
n with

∣∣β δ −β
∣∣≤ δ where |·| denotes the Euclidean norm in K

n.
Instead of (3.35), we determine

xδ
n = K∗uδ

n =
n

∑
j=1

αδ
j K∗ŷ j,

where αδ ∈ K
n solves

n

∑
j=1

αδ
j

(
K∗ŷ j,K

∗ŷi
)

= β δ
i for i = 1, . . . ,n. (3.37)

First we show that equations (3.36) and (3.37) are uniquely solvable. K∗ : Y → X
is one-to-one because the range R(K) is dense in Y . Thus the dimensions of Yn

and Xn coincide and K∗ is an isomorphism from Yn onto Xn. It is sufficient to prove



76 3 Regularization by Discretization

uniqueness of a solution to (3.36). Let un ∈Yn with
(
K∗un,K∗zn

)
= 0 for all zn ∈Yn.

For zn = un we conclude that 0 =
(
K∗un,K∗un

)
= ‖K∗un‖2; that is, K∗un = 0 or

un = 0.
Convergence and error estimates are proven in the following theorem.

Theorem 3.11. Let X and Y be Hilbert spaces and K : X → Y be linear, bounded,
and one-to-one such that the range R(K) is dense in Y . Let Yn ⊂ Y be finite-
dimensional subspaces such that

⋃
n∈NYn is dense in Y . Let x ∈ X be the solution

of Kx = y. Then the Galerkin equations (3.36) and (3.37) are uniquely solvable for
every right-hand side and every n ∈ N. The dual least squares method is convergent
and

‖Rn‖ ≤ σn := max
{
‖zn‖ : zn ∈Yn, ‖K∗zn‖ = 1

}
. (3.38)

Furthermore, we have the error estimates

∥
∥
∥x− xδ

n

∥
∥
∥≤ rnσn δ + c min

{
‖x− zn‖ : zn ∈ K∗(Yn)

}
(3.39)

for some c > 0. Here, rn = 1 if xδ
n ∈ Xn solves (3.36); that is, δ measures the norm∥∥yδ − y

∥∥ in Y . If δ measures the discrete error
∣∣β δ −β

∣∣ and xδ
n = ∑n

j=1 αδ
j K∗ŷ j ∈

Xn, where αδ solves (3.37), then rn is given by

rn = max

{√
n

∑
j=1

∣
∣ρ j
∣
∣2 :

∥
∥
∥
∥

n

∑
j=1

ρ j ŷ j

∥
∥
∥
∥= 1

}

. (3.40)

We note that rn = 1 if
{

ŷ j : j = 1, . . . ,n
}

forms an orthonormal system in Y .

Proof. We have seen already that (3.36) and (3.37) are uniquely solvable for every
right-hand side and every n ∈ N.

Now we prove the estimate ‖RnK‖ ≤ 1, that is condition (3.16) with c = 1. Let
x ∈ X and set xn := RnKx ∈ Xn. Then xn = K∗un, and un ∈ Yn satisfies

(
K∗un,K

∗zn
)

=
(
Kx,zn

)
for all zn ∈Yn.

For zn = un this implies

‖xn‖2 = ‖K∗un‖2 =
(
Kx,un

)
=
(
x,K∗un

)
≤ ‖x‖ ‖xn‖ ,

that proves the desired estimate. If we replace Kx by y in the preceding arguments,
we have

‖xn‖2 ≤ ‖y‖ ‖un‖ ≤ σn ‖y‖ ‖K∗un‖ = σn ‖y‖ ‖xn‖ ,

that proves (3.38).
Finally, we show that

⋃
n∈N Xn is dense in X . Let x ∈ X and ε > 0. Because K∗(Y )

is dense in X , there exists y ∈ Y with ‖x−K∗y‖ < ε/2. Because
⋃

n∈NYn is dense
in Y , there exists yn ∈ Yn with ‖y− yn‖ < ε/(2‖K‖). The triangle inequality yields
that for xn := K∗yn ∈ Xn
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‖x− xn‖ ≤ ‖x−K∗y‖+‖K∗(y− yn)‖ ≤ ε.

Application of Theorem 3.9 and (3.25) and (3.26b) proves (3.39). 	


3.2.3 The Bubnov–Galerkin Method for Coercive Operators

In this subsection, we assume that K : X → X is a linear and bounded operator and
Xn, n ∈ N, are finite-dimensional subspaces. The Galerkin method reduces to the
problem of determining xn ∈ Xn such that

(
Kxn,zn

)
=
(
y,zn

)
for all zn ∈ Xn. (3.41)

This special case is called the Bubnov–Galerkin method. Again, we consider two
kinds of perturbations of the right-hand side. If yδ ∈ X with

∥
∥yδ − y

∥
∥≤ δ is a per-

turbed right-hand side, then instead of (3.41) we study the equation

(
Kxδ

n ,zn
)

=
(
yδ ,zn

)
for all zn ∈ Xn. (3.42)

The other possibility is to choose a basis {x̂ j : j = 1, . . . ,n} of Xn and assume that
the right-hand sides βi =

(
y, x̂i

)
, i = 1, . . . ,n, of the Galerkin equations are perturbed

by a vector β δ ∈K
n with

∣
∣β δ −β

∣
∣≤ δ , where |·| denotes again the Euclidean norm

in K
n. In this case, instead of (3.41), we have to solve

n

∑
j=1

αδ
j

(
Kx̂ j, x̂i

)
= β δ

i for i = 1, . . . ,n, (3.43)

for αδ ∈ K
n and set xδ

n = ∑n
j=1 αδ

j x̂ j.
Before we prove a convergence result for this method, we briefly describe the

Rayleigh–Ritz method and show that it is a special case of the Bubnov–Galerkin
method.

Let K : X → X also be self-adjoint and positive definite; that is, (Kx,y) = (x,Ky)
and (Kx,x) > 0 for all x,y ∈ X with x �= 0. We define the functional

ψ(z) :=
(
Kz,z

)
−2Re(y,z) for z ∈ X . (3.44)

From the equation

ψ(z)−ψ(x) = 2Re
(
Kx− y,z− x

)
+
(
K(z− x),z− x

)
(3.45)

and the positivity of K, we easily conclude (see Problem 3.2) that x ∈ X is the
unique minimum of ψ if and only if x solves Kx = y. The Rayleigh–Ritz method
is to minimize ψ over the finite-dimensional subspace Xn. From (3.45), we see that
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if xn ∈ Xn minimizes ψ on Xn, then, for zn = xn ± εun with un ∈ Xn and ε > 0, we
have that

0 ≤ ψ(zn)−ψ(xn) = ±ε 2Re
(
Kxn − y,un

)
+ ε2(Kun,un

)

for all un ∈ Xn. Dividing by ε > 0 and letting ε → 0 yields that xn ∈ Xn satisfies
the Galerkin equation (3.41). If, on the other hand, xn ∈ Xn solves (3.41), then
from (3.45)

ψ(zn)−ψ(xn) =
(
K(zn − xn),zn − xn

)
≥ 0

for all zn ∈ Xn. Therefore, the Rayleigh–Ritz method is identical to the Bubnov–
Galerkin method.

Now we generalize the Rayleigh–Ritz method and study the Bubnov–Galerkin
method for the important class of coercive operators. Before we can formulate the
results, we briefly recall some definitions.

Definition 3.12. Let V be a reflexive Banach space with dual space V ∗. We denote
the norms in V and V ∗ by ‖·‖V and ‖·‖V∗ , respectively. A linear bounded operator
K : V ∗ →V is called coercive if there exists γ > 0 with

Re〈x,Kx〉 ≥ γ ‖x‖2
V ∗ for all x ∈V ∗, (3.46)

with dual pairing 〈·, ·〉 in (V ∗,V ). The operator K satifies Gårding’s inequality if
there exists a linear compact operator C : V ∗ →V such that K +C is coercive; that is,

Re〈x,Kx〉 ≥ γ ‖x‖2
V∗ −Re〈x,Cx〉 for all x ∈V ∗.

By the same arguments as in the proof of the Lax–Milgram theorem (see [116]),
it can be shown that every coercive operator is an isomorphism from V ∗ onto V .
Coercive operators play an important role in the study of partial differential equa-
tions and integral equations by variational methods. In the usual definition, the roles
of V and V ∗ are interchanged. For integral operators that are “smoothing,” our defi-
nition seems more appropriate. However, both definitions are equivalent in the sense
that the inverse operator K−1 : V →V ∗ is coercive in the usual sense with γ replaced
by γ/‖K‖2.

Definition 3.13. A Gelfand triple
(
V,X ,V ∗) consists of a reflexive Banach space

V , a Hilbert space X , and the dual V ∗ of V such that

(a) V is a dense subspace of X , and
(b) the imbedding J : V → X is bounded.

We write V ⊂ X ⊂V ∗ because we can identify X with a dense subspace of V ∗. This
identification is given by the dual operator J∗ : X → V ∗ of J, where we identify the
dual of the Hilbert space X by itself. From (x,y) = 〈J∗x,y〉 for all x ∈ X and y ∈ V
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we see that with this identification the dual pairing 〈·, ·〉 in (V ∗,V ) is an extension
of the inner product (·, ·) in X , i.e, we write

〈x,y〉 = (x,y) for all x ∈ X and y ∈V.

Furthermore, we have the estimates

|〈x,y〉| ≤ ‖x‖V∗ ‖y‖V for all x ∈V ∗, y ∈V,

and thus

|(x,y)| ≤ ‖x‖V∗ ‖y‖V for all x ∈ X , y ∈V.

J∗ is one-to-one and has dense range (see Problem 3.3). As before, we denote the
norm in X by ‖·‖.

Now we can prove the main theorem about convergence of the Bubnov–Galerkin
method for coercive operators.

Theorem 3.14. Let (V,X ,V ∗) be a Gelfand triple, and Xn ⊂V be finite-dimensional
subspaces such that

⋃
n∈N Xn is dense in X. Let K : V ∗ →V be coercive with constant

γ > 0. Let x ∈ X be the solution of Kx = y. Then we have the following:

(a) There exist unique solutions of the Galerkin equations (3.41)–(3.43), and the
Bubnov–Galerkin method converges in V ∗ with

‖x− xn‖V∗ ≤ c min
{
‖x− zn‖V∗ : zn ∈ Xn

}
(3.47)

for some c > 0.
(b) Define ρn > 0 by

ρn = max
{
‖u‖ : u ∈ Xn, ‖u‖V∗ = 1

}
(3.48)

and the orthogonal projection operator Pn from X onto Xn. The Bubnov–
Galerkin method converges in X if there exists c > 0 with

‖u−Pnu‖V ∗ ≤
c

ρn
‖u‖ for all u ∈ X . (3.49)

In this case, we have the estimates

‖Rn‖ ≤
1
γ

ρ2
n (3.50)

and ∥∥
∥x− xδ

n

∥∥
∥≤ c

[
rnρ2

n + min
{
‖x− zn‖ : zn ∈ Xn

}]
(3.51)
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for some c > 0. Here, rn = 1 if xδ
n ∈ Xn solves (3.42); that is, δ measures the

norm
∥∥yδ − y

∥∥ in X. If δ measures the discrete error
∣∣β δ −β

∣∣ in the Euclidean
norm and xδ

n = ∑n
j=1 αδ

j x̂ j ∈ Xn, where αδ solves (3.43), then rn is given by

rn = max

{√
n

∑
j=1

∣
∣ρ j
∣
∣2 :

∥
∥
∥
∥

n

∑
j=1

ρ j x̂ j

∥
∥
∥
∥= 1

}

. (3.52)

Again, we note that rn = 1 if
{

x̂ j : j = 1, . . . ,n
}

forms an orthonormal system
in X.

Proof. (a) We apply Theorem 3.7 to the equations Kx = y, x∈V ∗, and PnKxn = Pny,
xn ∈Xn, where we consider K as an operator from V ∗ into V . We observe that the
orthogonal projection operator Pn is also bounded from V into Xn. This follows
from the observation that on the finite-dimensional space Xn the norms ‖·‖ and
‖·‖V are equivalent and thus

‖Pnu‖V ≤ c‖Pnu‖ ≤ c‖u‖ ≤ c̃‖u‖V for u ∈V.

The constants c, and thus c̃, depend on n. Because V is dense in X and X is dense
in V ∗, we conclude that also

⋃
n∈N Xn is dense in V ∗. To apply Theorem 3.7, we

have to show that (3.41) is uniquely solvable in V ∗ and that RnK : V ∗ → Xn ⊂V ∗

is uniformly bounded with respect to n.
Because (3.41) is a finite-dimensional quadratic system, it is sufficient to prove
uniqueness. Let xn ∈ Xn satisfy (3.41) for y = 0. Because K is coercive, we have
that

γ ‖xn‖2
V ∗ ≤ Re〈xn,Kxn〉 = Re(Kx,xn) = 0;

thus xn = 0.
Now let x ∈V ∗ and set xn = RnKx. Then xn ∈ Xn satisfies

(
Kxn,zn

)
=
(
Kx,zn

)
for all zn ∈ Xn. (3.53)

Again, we conclude that

γ ‖xn‖2
V ∗ ≤ Re 〈xn,Kxn〉 = Re (Kx,xn) ≤ ‖Kx‖V ‖xn‖V∗

and thus

‖xn‖V∗ ≤
1
γ
‖Kx‖V ≤ 1

γ
‖K‖L(V∗,V ) ‖x‖V∗ .

Because this holds for all x ∈V ∗, we conclude that

‖RnK‖L(V∗,V ∗) ≤
1
γ
‖K‖L(V∗,V ) .

Then the assumptions of Theorem 3.7 are satisfied for K : V ∗ →V .
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(b) Now let x ∈ X and xn = RnKx. Using the estimates (3.47) and (3.49), we con-
clude that

‖x− xn‖ ≤ ‖x−Pnx‖+‖Pnx− xn‖

≤ ‖x−Pnx‖+ ρn‖Pnx− xn‖V∗

≤ ‖x−Pnx‖+ ρn‖Pnx− x‖V∗ +ρn ‖x− xn‖V ∗

≤ ‖x−Pnx‖+ ρn‖Pnx− x‖V∗ + cρn min
zn∈Xn

‖x− zn‖V∗

≤ ‖x−Pnx‖+(c + 1)ρn‖Pnx− x‖V∗

≤ 2 ‖x‖+ c1 ‖x‖ = (2 + c1) ‖x‖ ,

and thus ‖xn‖ ≤ ‖xn − x‖+ ‖x‖ ≤ (3 + c1) ‖x‖. Application of Theorem 3.7
yields convergence in X .

Finally, we prove the estimate of Rn in L(X ,X). Let y ∈ X and xn = Rny. We
estimate

γ ‖xn‖2
V ∗ ≤ Re 〈xn,Kxn〉 = Re (y,xn) ≤ ‖y‖ ‖xn‖ ≤ ρn ‖y‖ ‖xn‖V∗

and thus

‖xn‖ ≤ ρn ‖xn‖V∗ ≤
1
γ

ρ2
n ‖y‖ ,

that proves the estimate (3.50). Application of Theorem 3.9 and the estimates
(3.25) and (3.26b) proves (3.51). 	


From our general perturbation theorem (Theorem 3.8), we observe that the as-
sumption of K being coercive can be weakened. It is sufficient to assume that K is
one-to-one and satisfies Gårding’s inequality. We formulate the result in the next
theorem.

Theorem 3.15. The assertions of Theorem 3.14 also hold if K : V ∗ →V is one-to-
one and satisfies Gårding’s inequality with some compact operator C : V ∗ →V.

For further reading, we refer to [186] and the monographs [17, 151, 165].

3.3 Application to Symm’s Integral Equation of the First Kind

In this section, we apply the Galerkin methods to an integral equation of the first
kind, that occurs in potential theory. We study the Dirichlet problem for the Laplace
equation

Δu = 0 in Ω, u = f on ∂Ω, (3.54)
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where Ω ⊂ R
2 is some bounded, simply connected region with analytic boundary

∂Ω and f ∈C(∂Ω) is some given function. The single layer potential

u(x) = − 1
π

∫

∂ Ω

φ(y) ln |x− y| ds(y), x ∈ Ω, (3.55)

solves the boundary value problem (3.54) if and only if the density φ ∈ C(∂Ω)
solves Symm’s equation

− 1
π

∫

∂ Ω

φ(y) ln |x− y| ds(y) = f (x) for x ∈ ∂Ω; (3.56)

see [47]. It is well-known (see [125]) that in general the corresponding integral
operator is not one-to-one. One has to make assumptions on the transfinite diameter
of Ω; see [250]. We give a more elementary assumption in the following theorem.

Theorem 3.16. Suppose there exists z0 ∈ Ω with |x− z0| �= 1 for all x ∈ ∂ Ω. Then
the only solution φ ∈ C(∂Ω) of Symm’s Eq. (3.56) for f = 0 is φ = 0; that is, the
integral operator is one-to-one.

Proof. We give a more elementary proof than in [126], but we still need a few results
from potential theory.

From the continuity of x �→ |x− z0|, we conclude that either |x− z0| < 1 for all
x ∈ ∂Ω or |x− z0| > 1 for all x ∈ ∂Ω. Assume first that |x− z0| < 1 for all x ∈ ∂Ω
and choose a disc A ⊂ Ω with |x− z| < 1 for all x ∈ ∂Ω and z ∈ A. Let φ ∈ C(∂Ω)
satisfy (3.56) for f = 0 and define u by

u(x) = − 1
π

∫

∂Ω

φ(y) ln |x− y| ds(y) for x ∈ R
2.

From potential theory (see [47]), we conclude that u is continuous in R
2, harmonic

in R
2 \ ∂Ω, and vanishes on ∂Ω. The maximum principle for harmonic functions

implies that u vanishes in Ω. We show that u also vanishes in the exterior Ωe of Ω.
The main part is to prove that

φ̂ :=
∫

∂ Ω

φ(y)ds(y) = 0.

Without loss of generality, we can assume that φ̂ ≥ 0. We study the function v
defined by

v(x) := u(x)+
φ̂
π

ln |x− z|

=
1
π

∫

∂Ω

φ(y) ln
|x− z|
|x− y| ds(y), x ∈ Ωe,
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for some z ∈ A. From the choice of A, we have that

v(x) =
φ̂
π

ln |x− z| ≤ 0 for x ∈ ∂ Ω.

Furthermore, v(x) → 0 as |x| tends to infinity. The maximum principle applied to
v in Ωe yields that v(x) ≤ 0 for all x ∈ Ωe. Now we study the asymptotic behavior
of v . Elementary calculations show that

|x− z|
|x− y| = 1 +

1
|x| x̂ · (y− z)+O

(
1/ |x|2

)

for |x| → ∞ uniformly in y ∈ ∂ Ω, z ∈ A, and x̂ := x/ |x|. This implies that

v(x) =
1

π |x| x̂ ·
∫

∂Ω

φ(y)(y− z)ds(y)+O
(
1/ |x|2

)

and thus
x̂ ·
∫

∂ Ω

φ(y)(y− z)ds(y) ≤ 0 for all |x̂| = 1.

This implies that ∫

∂ Ω

φ(y)yds(y) = z
∫

∂ Ω

φ(y)ds(y).

Because this holds for all z ∈ A, we conclude that
∫

∂Ω φ(y)ds(y) = 0.
Now we see from the definition of v (for any fixed z ∈ A) that

u(x) = v(x) → 0 as |x| → ∞.

The maximum principle again yields u = 0 in Ωe.
Finally, the jump conditions of the normal derivative of the single layer potential

operator (see [47]) yield

2φ(x) = lim
ε→0+

[
∇u
(
x− εν(x)

)
−∇u

(
x + εν(x)

)]
·ν(x) = 0

for x ∈ ∂Ω, where ν(x) denotes the unit normal vector at x ∈ ∂Ω directed into the
exterior of Ω.

This ends the proof for the case that maxx∈∂ Ω |x− z0| < 1. The case minx∈∂Ω
|x− z0| > 1 is settled by the same arguments. 	


Now we assume that the boundary ∂Ω has a parametrization of the form

x = γ(s), s ∈ [0,2π ],
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for some 2π-periodic analytic function γ : [0,2π] → R
2, that satisfies |γ̇(s)| > 0 for

all s ∈ [0,2π ]. Then Symm’s equation (3.56) takes the form

− 1
π

2π∫

0

ψ(s) ln |γ(t)− γ(s)| ds = f (γ(t)) for t ∈ [0,2π ] (3.57)

for the transformed density ψ(s) := φ
(
γ(s)

)
|γ̇(s)|, s ∈ [0,2π ].

For the special case where Ω is the disc with center 0 and radius a > 0, we have
γa(s) = a

(
coss,sins

)
and thus

ln |γa(t)− γa(s)| = lna +
1
2

ln

(
4 sin2 t − s

2

)
. (3.58)

For general boundaries, we can split the kernel in the form

− 1
π

ln |γ(t)− γ(s)|= − 1
2π

ln

(
4 sin2 t − s

2

)
+ k(t,s), t �= s, (3.59)

for some function k that is analytic for t �= s. From the mean value theorem, we
conclude that

lim
s→t

k(t,s) = − 1
π

ln |γ̇(t)| .

This implies that k has an analytic continuation onto [0,2π ]× [0,2π ]. With this,
splitting the integral equation (3.57) takes the form

− 1
2π

2π∫

0

ψ(s) ln

(
4 sin2 t − s

2

)
ds+

2π∫

0

ψ(s)k(t,s)ds = f (γ(t)) (3.60)

for t ∈ [0,2π ]. We want to apply the results of the previous section on Galerkin
methods to this integral equation.

As the Hilbert space X , we choose X = L2(0,2π). The operators K, K0, and C
are defined by

(Kψ)(t) = − 1
π

2π∫

0

ψ(s) ln |γ(t)− γ(s)| ds, (3.61a)

(K0ψ)(t) = − 1
2π

2π∫

0

ψ(s)
[

ln

(
4 sin2 t − s

2

)
−1

]
ds, (3.61b)

Cψ = Kψ −K0ψ (3.61c)
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for t ∈ [0,2π ] and ψ ∈ L2(0,1). First, we observe that K, K0, and C are well-defined
and compact operators in L2(0,1) because the kernels are weakly singular (see
Theorem A.33 of Appendix A). They are also self-adjoint in L2(0,1).

We define the finite-dimensional subspaces Xn and Yn as the spaces of truncated
Fourier series:

Xn = Yn =
{ n

∑
j=−n

α j ei jt : α j ∈ C

}
. (3.62)

To investigate the mapping properties, we need the following technical result
(see [150]).

Lemma 3.17.

1
2π

2π∫

0

eins ln
(

4 sin2 s
2

)
ds =

{
−1/ |n| , n ∈ Z, n �= 0,

0, n = 0.
(3.63)

Proof. It suffices to study the case n ∈ N0. First let n ∈ N. Integrating the geometric
sum

1 + 2
n−1

∑
j=1

ei js + eins = i
(
1− eins) cot

s
2
, 0 < s < 2π ,

yields
2π∫

0

(
eins −1

)
cot

s
2

ds = 2π i.

Integration of the identity

d
ds

[(
eins −1

)
ln
(

4sin2 s
2

)]
= ineins ln

(
4sin2 s

2

)
+
(
eins −1

)
cot

s
2

yields

2π∫

0

eins ln
(

4sin2 s
2

)
ds = − 1

in

2π∫

0

(
eins −1

)
cot

s
2

ds = −2π
n

,

which proves the assertion for n ∈ N.
It remains to study the case where n = 0. Define

I :=
2π∫

0

ln
(

4sin2 s

2

)
ds.
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Then we conclude that

2 I =
2π∫

0

ln
(

4sin2 s
2

)
ds+

2π∫

0

ln
(

4cos2 s
2

)
ds

=
2π∫

0

ln
(

16sin2 s
2

cos2 s
2

)
ds

=
2π∫

0

ln
(
4sin2 s

)
ds =

1
2

4π∫

0

ln
(

4sin2 s
2

)
ds = I

and thus I = 0. 	


This lemma shows that the functions

ψ̂n(t) := eint , t ∈ [0,2π], n ∈ Z, (3.64)

are eigenfunctions of K0:

K0ψ̂n =
1
|n| ψ̂n for n �= 0 and (3.65a)

K0ψ̂0 = ψ̂0. (3.65b)

Now can prove the mapping properties of the operators.

Theorem 3.18. Suppose there exists z0 ∈ Ω with |x− z0| �= 1 for all x ∈ ∂Ω. Let the
operators K and K0 be given by (3.61a) and (3.61b), respectively. By Hs(0,2π) we
denote the Sobolev spaces of order s (see Sect. A.4 of Appendix A).

(a) The operators K and K0 can be extended to isomorphisms from Hs−1(0,2π)
onto Hs(0,2π) for every s ∈ R.

(b) The operator K0 is coercive from H−1/2(0,2π) into H1/2(0,2π).
(c) The operator C = K −K0 is compact from Hs−1(0,2π) into Hs(0,2π) for every

s ∈ R.

Proof. Let ψ ∈ L2(0,2π). Then ψ has the representation

ψ(t) = ∑
n∈Z

αn eint with ∑
n∈Z

|αn|2 < ∞.

From (3.65a) and (3.65b), we have that

(K0ψ)(t) = α0 + ∑
n �=0

1
|n| αn eint
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and thus for any s ∈ R:

‖K0ψ‖2
Hs = |α0|2 + ∑

n �=0

(
1 + n2)s 1

n2 |αn|2

(
ψ ,K0ψ

)
= |α0|2 + ∑

n �=0

1
|n| |αn|2

≥ ∑
n∈Z

(
1 + n2)−1/2 |αn|2 = ‖ψ‖2

H−1/2 .

From the elementary estimate

(
1 + n2)s−1 ≤

(
1 + n2

)s

n2 ≤
(
1 + n2

)s

1
2

(
1 + n2

) = 2
(
1 + n2)s−1

, n �= 0,

we see that K0 can be extended to an isomorphism from Hs−1(0,2π) onto Hs(0,2π)
and is coercive for s = 1/2. The operator C is bounded from Hr(0,2π) into
Hs(0,2π) for all r,s ∈ R by Theorem A.45 of Appendix A. This proves part (c)
and that K = K0 +C is bounded from Hs−1(0,2π) into Hs(0,2π). It remains to show
that K is also an isomorphism from Hs−1(0,2π) onto Hs(0,2π). From the Riesz the-
ory (Theorem A.34), it is sufficient to prove injectivity. Let ψ ∈ Hs−1(0,2π) with
Kψ = 0. From K0ψ = −Cψ and the mapping properties of C, we conclude that
K0ψ ∈ Hr(0,2π) for all r ∈R; that is, ψ ∈ Hr(0,2π) for all r ∈R. In particular, this
implies that ψ is continuous and the transformed function φ(γ(t)) = ψ(t)/ |γ̇(t)|
satisfies Symm’s equation (3.56) for f = 0. Application of Theorem 3.16 yields
φ = 0. 	


We are now in a position to apply all of the Galerkin methods of the previous
section. We have seen that the convergence results require estimates of the condition
numbers of K on the finite-dimensional spaces Xn. These estimates are sometimes
called the stability property (see [126]).

Lemma 3.19. Let r ≥ s. Then there exists c > 0 such that

‖ψn‖L2 ≤ cn ‖Kψn‖L2 for all ψn ∈ Xn, (3.66a)

‖ψn‖Hr ≤ cnr−s ‖ψn‖Hs for all ψn ∈ Xn, (3.66b)

and all n ∈ N.

Proof. Let ψn(t) = ∑| j|≤n α j exp(i jt) ∈ Xn. Then

‖K0ψn‖2
L2 = 2π

[
|α0|2 + ∑

| j|≤n
j �=0

1
j2

∣
∣α j
∣
∣2
]
≥ 1

n2 ‖ψn‖2
L2 , (3.67)
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which proves the estimate (3.66a) for K0. The estimate for K follows from the ob-
servations that K =

(
K K−1

0

)
K0 and that K K−1

0 is an isomorphism in L2(0,2π) by
Theorem 3.18, part (a).

The proof of (3.66b) is very simple and is left to the reader (see Problem 3.4). 	


Combining these estimates with the convergence results of the previous section,
we have shown the following.

Theorem 3.20. Let ψ ∈ Hr(0,2π) be the unique solution of (3.57); that is,

(Kψ)(t) := − 1
π

2π∫

0

ψ(s) ln |γ(t)− γ(s)| ds = g(t) := f (γ(t)),

for t ∈ [0,2π] and some g ∈ Hr+1(0,2π) for r ≥ 0. Let gδ ∈ L2(0,2π) with∥
∥gδ −g

∥
∥

L2 ≤ δ and Xn defined by (3.62).

(a) Let ψδ
n ∈ Xn be the least squares solution; that is, the solution of

(
Kψδ

n ,Kφn
)

=
(
gδ ,Kφn

)
for all φn ∈ Xn (3.68a)

or
(b) Let ψδ

n = Kψ̃δ
n with ψ̃δ

n ∈ Xn be the dual least squares solution; that is, ψ̃δ
n

solves (
Kψ̃δ

n ,Kφn
)

=
(
gδ ,φn

)
for all φn ∈ Xn (3.68b)

or
(c) Let ψδ

n ∈ Xn be the Bubnov–Galerkin solution; that is, the solution of

(
Kψδ

n ,φn
)

=
(
gδ ,φn

)
for all φn ∈ Xn. (3.68c)

Then there exists c > 0 with

∥
∥
∥ψδ

n −ψ
∥
∥
∥

L2
≤ c

(
nδ +

1
nr ‖ψ‖Hr

)
(3.69)

for all n ∈ N.

Proof. We apply Theorems 3.10, 3.11, and 3.15 (with V = H1/2(0,2π) and V ∗ =
H−1/2(0,2π)) and use the estimates (see Lemma 3.19)

σn = max
{
‖φn‖L2 : φn ∈ Xn, ‖Kφn‖L2 = 1

}
≤ cn, (3.70a)

ρn = max
{
‖φn‖L2 : φn ∈ Xn, ‖φn‖H−1/2 = 1

}
≤ c

√
n, (3.70b)

and

min{‖ψ −φn‖L2 : φn ∈ Xn} ≤ ‖ψ −Pnψ‖L2 ≤ 1
nr ‖ψ‖Hr , (3.70c)
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where Pnψ = ∑| j|≤n α jψ j denotes the orthogonal projection of the element ψ =
∑n∈Z α jψ j onto Xn. For the simple proof of the second inequality in (3.70c), we refer
to Problem 3.4. 	


It is interesting to note that different error estimates hold for discrete perturba-
tions of the right-hand side. Let us denote by βk the right-hand sides of (3.68a),
(3.68b), or (3.68c), respectively, for φk(t) = exp(ikt). Assume that β is perturbed by
a vector β δ ∈C

2n+1 with
∣
∣β −β δ

∣
∣≤ δ . We have to compute rn of (3.34), (3.40), and

(3.52), respectively. Because the functions exp(ikt), k = −n, . . . ,n, are orthogonal,
we compute rn for (3.40) and (3.52) by

max

{√
n

∑
j=−n

∣
∣ρ j
∣
∣2 :

∥
∥
∥∥

n

∑
j=−n

ρ j ei j·
∥
∥
∥∥

L2
= 1

}

=
1√
2π

.

For the least squares method, however, we have to compute

r2
n = max

{
n

∑
j=−n

∣
∣ρ j
∣
∣2 :

∥
∥
∥
∥

n

∑
j=−n

ρ j K0ei j·
∥
∥
∥
∥

L2
= 1

}

= max

{
n

∑
j=−n

∣
∣ρ j
∣
∣2 : 2π

(
|ρ0|2 + ∑

j �=0

1
j2

∣
∣ρ j
∣
∣2
)

= 1

}

=
n2

2π
;

that is, for discrete perturbations of the right-hand side, the estimate (3.69) is asymp-
totically the same for the dual least squares method and the Bubnov–Galerkin
method, while for the least squares method it has to be replaced by

∥
∥
∥ψδ

n −ψ
∥
∥
∥

L2
≤ c

(
n2 δ +

1
nr ‖ψ‖Hr

)
. (3.71)

The error estimates (3.69) are optimal under the a priori information ψ ∈
Hr(0,2π) and ‖ψ‖Hr ≤ 1. This is seen by choosing n ∼

(
1/δ

)1/(r+1)
, that gives

the asymptotic estimate

∥∥ψδ
n(δ)−ψ

∥∥
L2 ≤ cδ r/(r+1).

This is optimal by Problem 3.5.
From the preceding analysis, it is clear that the convergence property

min{‖ψ −φn‖Hs : φn ∈ Xn} ≤ c

(
1
n

)r−s

‖ψ‖Hr , ψ ∈ Hr(0,2π),
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and the stability property

‖φn‖Hr ≤ cnr−s ‖φn‖Hs , φn ∈ Xn,

for r ≥ s and n ∈ N are the essential tools in the proofs. For regions Ω with nons-
mooth boundaries, finite element spaces for Xn are more suitable. They satisfy these
conditions for a certain range of values of r and s (depending on the smoothness of
the solution and the order of the finite elements). We refer to [56, 59, 125–127, 244]
for more details and boundary value problems for more complicated partial differ-
ential equations.

We refer to Problem 3.6 and Sect. 3.5, where the Galerkin methods are explicitly
compared for special cases of Symm’s equation.

For further literature on Symm’s and related integral equations, we refer to [11,
12, 21, 73, 204, 228, 251].

3.4 Collocation Methods

We have seen that collocation methods are subsumed under the general theory of
projection methods through the use of interpolation operators. This requires the
space Y to be a reproducing kernel Hilbert space; that is, a Hilbert space in which
all the evaluation functionals y �→ y(t) for y ∈ Y and t ∈ [a,b] are bounded.

Instead of presenting a general theory as in [184], we avoid the explicit intro-
duction of reproducing kernel Hilbert spaces and investigate only two special, but
important, cases in detail. First, we study the minimum norm collocation method. It
turns out that this is a special case of a least squares method and can be treated by
the methods of the previous section. In Sect. 3.4.2, we investigate a second colloca-
tion method for the important example of Symm’s equation. We derive a complete
and satisfactory error analysis for two choices of ansatz functions.

First, we formulate the general collocation method again and derive an error
estimate in the presence of discrete perturbations of the right-hand side.

Let X be a Hilbert space over the field K, Xn ⊂ X be finite-dimensional subspaces
with dimXn = n, and a ≤ t1 < · · · < tn ≤ b be the collocation points. Let K : X →
C[a,b] be bounded and one-to-one. Let Kx = y, and assume that the collocation
equations

(Kxn)(ti) = y(ti), i = 1, . . . ,n, (3.72)

are uniquely solvable in Xn for every right-hand side. Choosing a basis
{

x̂ j : j =
1, . . . ,n

}
of Xn, we rewrite this as a system Aα = β , where xn = ∑n

j=1 α j x̂ j and

Ai j = (Kx̂ j)(ti), βi = y(ti). (3.73)

The following main theorem is the analog of Theorem 3.9 for collocation methods.
We restrict ourselves to the important case of discrete perturbations of the right-
hand side. Continuous perturbations could also be handled but are not of particular



3.4 Collocation Methods 91

interest because point evaluation is no longer possible when the right-hand side is
perturbed in the L2-sense. This would require stronger norms in the range space and
leads to the concept of reproducing kernel Hilbert spaces (see [151]).

Theorem 3.21. Let
{

t(n)
1 , . . . ,t(n)

n
}
⊂ [a,b], n ∈ N, be a sequence of collocation

points. Assume that
⋃

n∈N Xn is dense in X and that the collocation method con-
verges. Let xδ

n = ∑n
j=1 αδ

j x̂ j ∈ Xn, where αδ solves Aαδ = β δ . Here, β δ ∈ K
n

satisfies
∣∣β −β δ ∣∣ ≤ δ where |·| again denotes the Euclidean norm in K. Then the

following error estimate holds:

∥∥
∥xδ

n − x
∥∥
∥

L2
≤ c

(
an

λn
δ + inf

{
‖x− zn‖ : zn ∈ Xn

}
)

, (3.74)

where

an = max

{∥∥∥
∥

n

∑
j=1

ρ jx̂ j

∥
∥∥
∥ :

n

∑
j=1

∣∣ρ j
∣∣2 = 1

}
(3.75)

and λn denotes the smallest singular value of A.

Proof. Again we write
∥∥xδ

n − x
∥∥ ≤

∥∥xδ
n − xn

∥∥+ ‖xn − x‖, where xn = Rny solves
the collocation equation for β instead of β δ . The second term is estimated by
Theorem 3.7. We estimate the first term by

∥
∥
∥xδ

n − xn

∥
∥
∥ ≤ an

∣
∣
∣αδ −α

∣
∣
∣= an

∣
∣
∣A−1(β δ −β )

∣
∣
∣

≤ an
∣∣A−1

∣∣
2

∣∣
∣β δ −β

∣∣
∣≤

an

λn
δ . 	


Again we remark that an = 1 if
{

x̂ j : j = 1, . . . ,n
}

forms an orthonormal system in X .

3.4.1 Minimum Norm Collocation

Again, let K : X → C[a,b] be a linear, bounded, and injective operator from the
Hilbert space X into the space C[a,b] of continuous functions on [a,b]. We assume
that there exists a unique solution of Kx = y. Let a ≤ t1 < · · · < tn ≤ b be the set
of collocation points. Solving the equations (3.72) in X is certainly not enough to
specify the solution xn uniquely. An obvious choice is to determine xn ∈ X from the
set of solutions of (3.72) that has a minimal L2-norm among all solutions.

Definition 3.22. xn ∈ X is called the moment solution of (3.72) with respect to the
collocation points a ≤ t1 < · · · < tn ≤ b if xn satisfies (3.72) and

‖xn‖L2 = min
{
‖zn‖L2 : zn ∈ X satisfies (3.72)

}
.
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We can interpret this moment solution as a least squares solution. Because z �→
(Kz)(ti) is bounded from X into K, Theorem A.22 by Riesz yields the existence of
ki ∈ X with (Kz)(ti) =

(
ki,z

)
for all z ∈ X and i = 1, . . . ,n. If, for example, X =

L2(a,b) and K is the integral operator

(Kz)(t) =
b∫

a

k(t,s)z(s)ds, t ∈ [a,b], z ∈ L2(a,b),

with real-valued kernel k then ki ∈ L2(a,b) is explicitly given by ki(s) = k(ti,s). We
rewrite the moment equation (3.72) in the form

(
ki,xn

)
= y(ti) =

(
ki,x

)
, i = 1, . . . ,n.

The minimum norm solution xn of the set of equations is characterized by the pro-
jection theorem (see Theorem A.13 of Appendix A) and is given by the solution of
(3.72) in the space Xn := span{k j : j = 1, . . . ,n}.

Now we define the Hilbert space Y by Y := R(K) with inner product

(y,z)Y :=
(
K−1y,K−1z

)
for y,z ∈ K(X).

We omit the simple proof of the following lemma.

Lemma 3.23. Y is a Hilbert space that is continuously embedded in C[a,b]. Fur-
thermore, K is an isomorphism from X onto Y .

Now we can rewrite (3.72) in the form.

(
Kki,Kxn

)
Y =

(
Kki,y

)
Y , i = 1, . . . ,n.

Comparing this equation with (3.30a), we observe that (3.72) is the Galerkin equa-
tion for the least squares method with respect to Xn. Thus we have shown that the
moment solution can be interpreted as the least squares solution for the operator
K : X → Y . Application of Theorem 3.10 yields the following theorem.

Theorem 3.24. Let K be one-to-one and
{

k j : j = 1, . . . ,n
}

be linearly independent
where k j ∈ X are such that (Kz)(t j) =

(
k j,z

)
for all z ∈ X, j = 1, . . . ,n. Then there

exists one and only one moment solution xn of (3.72). xn is given by

xn =
n

∑
j=1

α j k j, (3.76)

where α ∈ K
n solves the linear system Aα = β with

Ai j = (Kkj)(ti) =
(
ki,k j

)
and βi = y(ti). (3.77)
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Let
{

t(n)
1 , . . . ,t(n)

n
}
⊂ [a,b], n ∈ N, be a sequence of collocation points such that⋃

n∈N Xn is dense in X where

Xn := span
{

k(n)
j : j = 1, . . . ,n

}
.

Then the moment method converges; that is, the moment solution xn ∈ Xn of (3.72)

converges to the solution x ∈ X of (3.72) in X. If xδ
n = ∑n

j=1 αδ
j k(n)

j , where αδ ∈ K
n

solves Aαδ = β δ with
∣
∣β −β δ ∣∣≤ δ , then the following error estimate holds:

∥∥
∥x− xδ

n

∥∥
∥≤

an

λn
δ + c min

{
‖x− zn‖L2 : zn ∈ Xn

}
, (3.78)

where

an = max

{∥∥
∥∥

n

∑
j=1

ρ jk
(n)
j

∥
∥
∥∥

L2
:

n

∑
j=1

∣
∣ρ j
∣
∣2 = 1

}
(3.79)

and where λn denotes the smallest singular value of A.

Proof. The definition of ‖·‖Y implies that σn = 1, where σn is given by (3.31).
Assumption (3.32) for the convergence of the least squares method is obviously
satisfied because

min
zn∈Xn

{
‖x− zn‖ + σn ‖K(x− zn)‖Y

}
≤ ‖x‖ + σn ‖x‖ = 2 ‖x‖ .

Application of Theorem 3.10 yields the assertion. 	

As an example, we again consider numerical differentiation.

Example 3.25. Let X = L2(0,1) and K be defined by

(Kx)(t) =
t∫

0

x(s)ds =
1∫

0

k(t,s)x(s)ds, t ∈ [0,1],

with k(t,s) =
{

1, s ≤ t,
0, s > t.

We choose equidistant nodes; that is, t j = j
n for j = 0, . . . ,n. The moment method

is to minimize ‖x‖2
L2 under the restrictions that

t j∫

0

x(s)ds = y(t j), j = 1, . . . ,n. (3.80)

The solution xn is piecewise constant because it is a linear combination of the
piecewise constant functions k(t j , ·). Therefore, the finite-dimensional space Xn is
given by

Xn =
{

zn ∈ L2(0,1) : zn|(t j−1,t j) constant, j = 1, . . . ,n
}
. (3.81)

As basis functions x̂ j of Xn we choose x̂ j(s) = k(t j,s).



94 3 Regularization by Discretization

Then xn = ∑n
j=1 α j k(t j, ·) is the moment solution, where α solves Aα = β with

βi = y(ti) and

Ai j =
1∫

0

k(ti,s)k(t j ,s)ds =
1
n

min{i, j}.

It is not difficult to see that the moment solution is just the one-sided difference
quotient

xn(t1) =
1
h

y(t1), xn(t j) =
1
h

[
y(t j)− y(t j−1)

]
, j = 2, . . . ,n,

for h = 1/n.
We have to check the assumptions of Theorem 3.24. First, K is one-to-one and

{k(t j, ·) : j = 1 . . . ,n} are linearly independent. The union
⋃

n∈N Xn is dense in
L2(0,1) (see Problem 3.7). We have to estimate an from (3.79), the smallest eigen-
value λn of A, and min

{
‖x− zn‖L2 : zn ∈ Xn

}
.

Let ρ ∈R
n with ∑n

j=1 ρ2
j = 1. Using the Cauchy–Schwarz inequality, we estimate

1∫

0

∣
∣
∣
∣

n

∑
j=1

ρ jk(t j,s)
∣
∣
∣
∣

2

ds ≤
1∫

0

n

∑
j=1

k(t j ,s)2ds =
n

∑
j=1

t j =
n + 1

2
.

Thus an ≤
√

(n + 1)/2.
It is straightforward to check that the inverse of A is given by the tridiagonal

matrix

A−1 = n

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 1

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

.

We estimate the largest eigenvalue μmax of A−1 by the maximum absolute row sum
μmax ≤ 4n. This is asymptotically sharp because we can give a lower estimate of
μmax by the trace formula

n μmax ≥ trace(A−1) =
n

∑
j=1

(
A−1)

j j = (2n−1)n;

that is, we have an estimate of λn of the form

1
4n

≤ λn ≤
1

2n−1
.
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In Problem 3.7, it is shown that

min
{
‖x− zn‖L2 : zn ∈ Xn

}
≤ 1

n

∥
∥x′
∥
∥

L2 .

Thus we have proven the following theorem.

Theorem 3.26. The moment method for (3.80) converges. The following error esti-
mate holds:

∥
∥
∥x− xδ

n

∥
∥
∥

L2
≤
√

n + 1
2

δ +
c
n

∥
∥x′
∥
∥

L2

if x ∈ H1(0,1). Here, δ is the discrete error on the right-hand side; that is,

∑n
j=1

∣
∣
∣β δ

j − y(t j)
∣
∣
∣
2
≤ δ 2 and xδ

n = ∑n
j=1 αδ

j x̂ j , where αδ ∈ R
n solves Aαδ = β δ .

The choice Xn = S1(t1, . . . ,tn) of linear splines leads to the two-sided difference
quotient (see Problem 3.9). We refer to [75,183,184] for further reading on moment
collocation.

3.4.2 Collocation of Symm’s Equation

We now study the numerical treatment of Symm’s equation (3.57); that is,

(Kψ)(t) := − 1
π

2π∫

0

ψ(s) ln |γ(t)− γ(s)| ds = g(t) (3.82)

for 0 ≤ t ≤ 2π by collocation methods. The integral operator K from (3.82) is
well-defined and bounded from L2(0,2π) into H1(0,2π). We assume through-
out this subsection that K is one-to-one (see Theorem 3.16). Then we have seen
in Theorem 3.18 that equation (3.82) is uniquely solvable in L2(0,2π) for every
g ∈ H1(0,2π); that is, K is an isomorphism. We define equidistant collocation
points by

tk := k
π
n

for k = 0, . . . ,2n−1.

There are several choices for the space Xn ⊂ L2(0,2π) of basis functions. Be-
fore we study particular cases, let Xn = span

{
x̂ j : j ∈ J

}
⊂ L2(0,2π) be arbitrary.

J ⊂ Z denotes a set of indices with 2n elements. We assume that x̂ j , j ∈ J, form an
orthonormal system in L2(0,2π).

The collocation equations (3.72) take the form

− 1
π

2π∫

0

ψn(s) ln |γ(tk)− γ(s)| ds = g(tk), k = 0, . . . ,2n−1, (3.83)
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with ψn ∈ Xn. Let Qn : H1(0,2π) → Yn be the trigonometric interpolation operator
into the 2n-dimensional space

Yn :=

{
n−1

∑
m=−n

ameimt : am ∈ C

}

. (3.84)

We recall some approximation properties of the interpolation operator Qn :
H1(0,2π)→ Yn. First, it is easily checked that Qn is given by

Qnψ =
2n−1

∑
k=0

ψ(tk) ŷk

with Lagrange interpolation basis functions

ŷk(t) =
1
2n

n−1

∑
m=−n

eim(t−tk), k = 0, . . . ,2n−1. (3.85)

From Lemma A.43 of Appendix A we have the estimates

‖ψ −Qnψ‖L2 ≤ c
n
‖ψ‖H1 for all ψ ∈ H1(0,2π), (3.86a)

‖Qnψ‖H1 ≤ c ‖ψ‖H1 for all ψ ∈ H1(0,2π). (3.86b)

Now we can reformulate the collocation equations (3.83) as

QnKψn = Qng with ψn ∈ Xn. (3.87)

We use the perturbation result of Theorem 3.8 again and split K into the form K =
K0 +C with

(K0ψ)(t) := − 1
2π

2π∫

0

ψ(s)
[

ln

(
4 sin2 t − s

2

)
−1

]
ds. (3.88)

Now we specify the spaces Xn. As a first example, we choose the orthonormal
functions

x̂ j(t) =
1√
2π

ei jt for j = −n, . . . ,n−1. (3.89)

We prove the following convergence result.

Theorem 3.27. Let x̂ j, j = −n, . . . ,n − 1, be given by (3.89). The collocation
method is convergent; that is, the solution ψn ∈ Xn of (3.83) converges to the so-
lution ψ ∈ L2(0,2π) of (3.82) in L2(0,2π).
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Let the right-hand side of (3.83) be replaced by β δ ∈ C
2n with

2n−1

∑
k=0

∣
∣∣β δ

k −g(tk)
∣
∣∣
2
≤ δ 2.

Let αδ ∈C
2n be the solution of Aαδ = β δ , where Ak j = Kx̂ j(tk). Then the following

error estimate holds:
∥∥
∥ψδ

n −ψ
∥∥
∥

L2
≤ c

[√
nδ + min

{
‖ψ −φn‖L2 : φn ∈ Xn

}]
, (3.90)

where

ψδ
n (t) =

1√
2π

n−1

∑
j=−n

αδ
j ei jt .

If ψ ∈ Hr(0,2π) for some r > 0, then

∥
∥
∥ψδ

n −ψ
∥
∥
∥

L2
≤ c

[√
nδ +

1
nr ‖ψ‖Hr

]
. (3.91)

Proof. By the perturbation Theorem 3.8 it is sufficient to prove the result for K0 in-
stead of K. By (3.65a) and (3.65b), the operator K0 maps Xn into Yn = Xn. Therefore,
the collocation equation (3.87) for K0 reduces to

K0ψn = Qng.

We want to apply Theorem 3.7 and have to estimate RnK0 where in this case Rn =(
K0|Xn

)−1
Qn. Because K0 : L2(0,2π)→ H1(0,2π) is invertible, we conclude that

‖Rng‖L2 = ‖ψn‖L2 ≤ c1 ‖K0ψn‖H1 = c1 ‖Qng‖H1 ≤ c2 ‖g‖H1

for all g ∈ H1(0,2π), and thus

‖RnKψ‖L2 ≤ c2 ‖Kψ‖H1 ≤ c3 ‖ψ‖L2

for all ψ ∈ L2(0,2π). Application of Theorem 3.7 yields convergence.
To prove the error estimate (3.90), we want to apply Theorem 3.21 and hence

have to estimate the singular values of the matrix B defined by

Bk j = (K0x̂ j)(tk), k, j = −n, . . . ,n−1,

with x̂ j from (3.89). From (3.65a) and (3.65b), we observe that

Bk j =
1√
2π

1
| j| ei jk π

n , k, j = −n, . . . ,n−1,
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where 1/ | j| has to be replaced by 1 if j = 0. Because the singular values of B are
the square roots of the eigenvalues of B∗B, we compute

(
B∗B

)
� j =

n−1

∑
k=−n

Bk� Bk j =
1

2π
1

|�| | j|
n−1

∑
k=−n

eik( j−�) π
n =

n
π

1
�2 δ� j,

where again 1/�2 has to be replaced by 1 for � = 0. From this, we see that the
singular values of B are given by

√
n/(π�2) for � = 1, . . . ,n. The smallest singular

value is 1/
√

nπ. Estimate (3.74) of Theorem 3.21 yields the assertion. (3.91) follows
from Theorem A.44. 	


Comparing the estimates (3.91) with the corresponding error estimate (3.69) for
the Galerkin methods, it seems that the estimate for the collocation method is better
because the error δ is only multiplied by

√
n instead of n. Let us now compare the

errors of the continuous perturbation
∥
∥y− yδ∥∥

L2 with the discrete perturbation for

both methods. To do this, we have to “extend” the discrete vector β δ to a function
yδ

n ∈ Xn. For the collocation method, we have to use the interpolation operator Qn

and define yδ
n ∈ Xn by yδ

n = ∑2n−1
j=1 β δ

j ŷ j, where ŷ j are the Lagrange basis functions

(3.85). Then yδ
n (tk) = β δ

k , and we estimate

∥
∥
∥yδ

n − y
∥
∥
∥

L2
≤
∥
∥
∥yδ

n −Qny
∥
∥
∥

L2
+‖Qny− y‖L2 .

Writing

yδ
n (t)−Qny(t) =

n−1

∑
j=−n

ρ j ei jt ,

a simple computation shows that

n−1

∑
k=0

∣
∣∣β δ

k − y(tk)
∣
∣∣
2

=
n−1

∑
k=0

∣
∣∣β δ

k −Qny(tk)
∣
∣∣
2
=

n−1

∑
k=0

∣
∣
∣∣
∣

n−1

∑
j=−n

ρ j eik j π
n

∣
∣
∣∣
∣

2

= 2n
n−1

∑
j=−n

∣∣ρ j
∣∣2 =

n
π

∥∥
∥yδ

n −Qny
∥∥
∥

2

L2
. (3.92)

Therefore, for the collocation method we have to compare the continuous error δ
with the discrete error δ

√
n/π. This gives an extra factor of

√
n in the first terms of

(3.90) and (3.91).
For Galerkin methods, however, we define yδ

n (t) = 1
2π ∑n

j=−n β δ
j exp(i jt). Then

(
yδ

n ,ei j·)
L2 = β δ

j . Let Pn be the orthogonal projection onto Xn. In

∥
∥
∥yδ

n − y
∥
∥
∥

L2
≤
∥
∥
∥yδ

n −Pny
∥
∥
∥

L2
+‖Pny− y‖L2 ,
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we estimate the first term as

∥
∥
∥yδ

n −Pny
∥
∥
∥

2

L2
=

1
2π

n

∑
j=−n

∣
∣
∣β δ

j −
(
y,ei j·)

∣
∣
∣
2
.

In this case, the continuous and discrete errors are of the same order.
Choosing trigonometric polynomials as basis functions is particularly suitable for

smooth boundary data. If ∂Ω or the right-hand side f of the boundary value prob-
lem (3.54) are not smooth, then spaces of piecewise constant functions are more
appropriate. We now study the case where the basis functions x̂ j ∈ L2(0,2π)
are defined by

x̂0(t) =

{√ n
π , if t < π

2n or t > 2π − π
2n ,

0, if π
2n < t < 2π − π

2n ,
(3.93a)

x̂ j(t) =

{√ n
π , if

∣
∣t − t j

∣
∣< π

2n ,

0, if
∣
∣t − t j

∣
∣> π

2n ,
(3.93b)

for j = 1, . . . ,2n−1. Then x̂ j , j = 0, . . . ,2n−1, are also orthonormal in L2(0,2π). In
the following lemma, we collect some approximation properties of the correspond-
ing spaces Xn.

Lemma 3.28. Let Xn = span
{

x̂ j : j = 0, . . . ,2n−1
}

, where x̂ j are defined by (3.93a)
and (3.93b). Let Pn : L2(0,2π) → Xn be the orthogonal projection operator. Then⋃

n∈N Xn is dense in L2(0,2π) and there exists c > 0 with

‖ψ −Pnψ‖L2 ≤ c
n
‖ψ‖H1 for all ψ ∈ H1(0,2π), (3.94a)

‖K(ψ −Pnψ)‖L2 ≤ c
n
‖ψ‖L2 for all ψ ∈ L2(0,2π). (3.94b)

Proof. Estimate (3.94a) is left as an exercise. To prove estimate (3.94b), we use
(implicitly) a duality argument:

‖K(ψ −Pnψ)‖L2 = sup
φ �=0

(
K(ψ −Pnψ),φ

)
L2

‖φ‖L2

= sup
φ �=0

(
ψ −Pnψ ,Kφ

)
L2

‖φ‖L2

= sup
φ �=0

(
ψ,(I−Pn)Kφ

)
L2

‖φ‖L2

≤ ‖ψ‖L2 sup
φ �=0

‖(I −Pn)Kφ‖L2

‖φ‖L2

≤ c̃
n
‖ψ‖L2 sup

φ �=0

‖Kφ‖H1

‖φ‖L2
≤ c

n
‖ψ‖L2 . 	
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Before we prove a convergence theorem, we compute the singular values of the
matrix B defined by

Bk j = (K0x̂ j)(tk) = − 1
2π

2π∫

0

x̂ j(s)
[

ln

(
4 sin2 tk − s

2

)
−1

]
ds. (3.95)

Lemma 3.29. B is symmetric and positive definite. The singular values of B coin-
cide with the eigenvalues and are given by

μ0 =
√

n
π

and μm =
√

n
π

sin mπ
2n

2nπ ∑
j∈Z

1
(

m
2n + j

)2 (3.96a)

for m = 1, . . . ,2n−1. Furthermore, there exists c > 0 with

1√
πn

≤ μm ≤ c
√

n for all m = 0, . . . ,2n−1. (3.96b)

We observe that the condition number of B; that is, the ratio between the largest and
smallest singular values, is again bounded by n.

Proof. We write

Bk j = − 1
2π

√
n
π

t j+ π
2n∫

t j− π
2n

[
ln

(
4 sin2 s− tk

2

)
−1

]
ds = b j−k

with

b� = − 1
2π

√
n
π

t�+ π
2n∫

t�− π
2n

[
ln
(

4 sin2 s
2

)
−1
]

ds,

where we extended the definition of t� to all � ∈ Z. Therefore, B is circulant and
symmetric. The eigenvectors x(m) and eigenvalues μm of B are given by

x(m) =
(

eimk π
n

)2n−1

k=0
and μm =

2n−1

∑
k=0

bk eimk π
n ,

respectively, for m = 0, . . . ,2n−1, as is easily checked. We write μm in the form

μm = − 1
2π

2π∫

0

ψm(s)
[
ln
(

4 sin2 s
2

)
−1
]

ds = K0ψm(0)
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with

ψm(s) =
√

n
π

eimk π
n for |s− tk| ≤

π
2n

, k ∈ Z.

Let ψm(t) = ∑k∈Z ρm,k exp(ikt). Then by (3.65a) and (3.65b) we have

μm = ρm,0 + ∑
k �=0

ρm,k

|k| .

Therefore, we have to compute the Fourier coefficients ρm,k of ψm. They are
given by

ρm,k =
1

2π

2π∫

0

ψm(s)e−iksds =
√

n
π

1
2π

2n−1

∑
j=0

eim j π
n

t j+ π
2n∫

t j− π
2n

e−iksds.

For k = 0, this reduces to

ρm,0 =
√

n
π

1
2n

2n−1

∑
j=0

eim j π
n =

{√
n/π if m = 0,

0 if m = 1, . . . ,2n−1,

and for k �= 0 to

ρm,k =
√

n
π

sin πk
2n

πk

2n−1

∑
j=0

ei(m−k) j π
n =

⎧
⎨

⎩

√
n
π

2n
πk

sin
πk
2n

, if m− k ∈ 2nZ,

0, if m− k /∈ 2nZ.

Thus we have μ0 =
√

n/π and

μm =
√

n
π

2n
π ∑

k−m∈2nZ

∣
∣sin πk

2n

∣
∣

k2 =
√

n
π

sin πm
2n

2nπ ∑
j∈Z

1
(

m
2n + j

)2

for m = 1, . . . ,2n−1. This proves (3.96a). Because all eigenvalues are positive, the
matrix B is positive definite and the eigenvalues coincide with the singular values.
Taking only the first two terms in the series yields

μm ≥
√

n
π

sin πm
2n

2nπ

(
1

(
m
2n

)2 +
1

(
1− m

2n

)2

)

=
√

n
π

1
2nπ

(
sinπx

x2 +
sinπ(1− x)

(1− x)2

)
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with x = m/(2n) ∈ (0,1). From the elementary estimate

sinπx
x2 +

sinπ(1− x)
(1− x)2 ≥ 8, x ∈ (0,1),

we conclude that

μm ≥ 4
π

1√
πn

≥ 1√
πn

for m = 1, . . . ,2n−1. The upper estimate of (3.96b) is proven analogously. 	


Now we can prove the following convergence result.

Theorem 3.30. Let x̂ j, j = 0, . . . ,2n− 1, be defined by (3.93a) and (3.93b). The
collocation method is convergent; that is, the solution ψn ∈ Xn of (3.83) converges
to the solution ψ ∈ L2(0,2π) of (3.82) in L2(0,2π).

Let the right-hand side be replaced by β δ ∈ C
2n with

2n−1

∑
j=0

∣
∣
∣β δ

j −g(t j)
∣
∣
∣
2
≤ δ 2.

Let αδ ∈C
2n be the solution of Aαδ = β δ , where Ak j = Kx̂ j(tk). Then the following

error estimate holds:

∥
∥
∥ψδ

n −ψ
∥
∥
∥

L2
≤ c

[√
nδ + min

{
‖ψ −φn‖L2 : φn ∈ Xn

}]
, (3.97)

where ψδ
n = ∑2n−1

j=0 αδ
j x̂ j. If ψ ∈ H1(0,2π), then

∥
∥
∥ψδ

n −ψ
∥
∥
∥

L2
≤ c

[√
nδ +

1
n
‖ψ‖H1

]
. (3.98)

Proof. By the perturbation theorem (Theorem 3.8), it is sufficient to prove the result
for K0 instead of K. Again set

Rn =
[
QnK0|Xn

]−1
Qn : H1(0,2π)−→ Xn ⊂ L2(0,2π),

let ψ ∈ H1(0,2π), and set ψn = Rnψ = ∑2n−1
j=0 α j x̂ j . Then α ∈ C

2n solves Bα = β
with βk = ψ(tk), and thus by (3.96b)

‖ψn‖L2 = |α| ≤
∣∣B−1

∣∣
2 |β | ≤

√
πn

[
2n−1

∑
k=0

|ψ(tk)|2
]1/2
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where |·| again denotes the Euclidean norm in C
n. Using this estimate and (3.92) for

β δ
k = 0, we conclude that

‖Rnψ‖L2 = ‖ψn‖L2 ≤ n ‖Qnψ‖L2 (3.99)

for all ψ ∈ H1(0,2π). Thus

‖RnK0ψ‖L2 ≤ n ‖QnK0ψ‖L2

for all ψ ∈ L2(0,2π). Now we estimate ‖RnK0ψ‖L2 by the L2-norm of ψ itself.
Let ψ̃n = Pnψ ∈ Xn be the orthogonal projection of ψ ∈ L2(0,2π) in Xn. Then

RnK0ψ̃n = ψ̃n and
∥
∥ψ̃n

∥
∥

L2 ≤ ‖ψ‖L2 , and thus

∥
∥RnK0ψ − ψ̃n

∥
∥

L2 =
∥
∥RnK0(ψ − ψ̃n)

∥
∥

L2 ≤ n
∥
∥QnK0

(
ψ − ψ̃n

)∥∥
L2

≤ n ‖QnK0ψ −K0ψ‖L2 + n
∥∥K0ψ −K0ψ̃n

∥∥
L2

+n
∥
∥K0ψ̃n −QnK0ψ̃n)

∥
∥

L2 .

Now we use the error estimates (3.86a), (3.94a), and (3.94b) of Lemma 3.28. This
yields

∥
∥RnK0ψ − ψ̃n

∥
∥

L2 ≤ c1
[
‖K0ψ‖H1 +‖ψ‖L2 +

∥
∥K0ψ̃n

∥
∥

H1

]

≤ c2
[
‖ψ‖L2 +

∥
∥ψ̃n

∥
∥

L2

]
≤ c3 ‖ψ‖L2 ;

that is, ‖RnK0ψ‖L2 ≤ c4 ‖ψ‖L2 for all ψ ∈ L2(0,2π). Therefore, the assumptions
of Theorem 3.7 are satisfied. The application of Theorem 3.21 yields the error
estimate (3.98). 	


Among the extensive literature on collocation methods for Symm’s integral equa-
tion and related equations we mention only the work of [8,57,58,124,131,220,221].
Symm’s equation has also been numerically treated by quadrature methods; see
[80, 152, 218, 219, 229, 230]. For more general problems, we refer to [9, 59].

3.5 Numerical Experiments for Symm’s Equation

In this section, we apply all of the previously investigated regularization strategies
to Symm’s integral equation

(Kψ)(t) := − 1
π

2π∫

0

ψ(s) ln |γ(t)− γ(s)| ds = g(t), 0 ≤ t ≤ 2π,
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where in this example γ(s) =
(
coss,2sin s

)
, 0≤ s≤ 2π , denotes the parametrization

of the ellipse with semiaxes 1 and 2. First, we discuss the numerical computation of
Kψ . We write Kψ in the form (see (3.60))

(Kψ)(t) = − 1
2π

2π∫

0

ψ(s) ln
(

4sin2 t − s
2

)
ds+

2π∫

0

ψ(s)k(t,s)ds,

for 0 ≤ t ≤ 2π , with the analytic function

k(t,s) = − 1
2π

ln
|γ(t)− γ(s)|2

4sin2 t−s
2

, t �= s,

k(t,t) = − 1
π

ln |γ̇(t)| , 0 ≤ t ≤ 2π .

We use the trapezoidal rule for periodic functions (see [151]). Let t j = j π
n , j =

0, . . . ,2n−1. The smooth part is approximated by

2π∫

0

k(t,s)ψ(s)ds ≈ π
n

2n−1

∑
j=0

k(t,t j)ψ(t j), 0 ≤ t ≤ 2π.

For the weakly singular part, we replace ψ by its trigonometric interpolation poly-
nomial Qnψ = ∑2n−1

j=0 ψ(t j)L j into the 2n-dimensional space

{
n

∑
j=0

a j cos( jt)+
n−1

∑
j=1

b j sin( jt) : a j,b j ∈ R

}

over R (see Sect. A.4 of Appendix A). From (A.32) and Lemma 3.17, we conclude
that

− 1
2π

2π∫

0

ψ(s) ln
(

4sin2 t − s
2

)
ds ≈ − 1

2π

2π∫

0

(
Qnψ

)
(s) ln

(
4sin2 t − s

2

)
ds

=
2n−1

∑
j=0

ψ(t j)R j(t), 0 ≤ t ≤ 2π,

where

R j(t) = − 1
2π

2π∫

0

Lj(s) ln
(

4sin2 t − s
2

)
ds

=
1
n

{
1
2n

cosn(t − t j)+
n−1

∑
m=1

1
m

cosm(t − t j)

}
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for j = 0, . . . ,2n−1. Therefore, the operator K is replaced by

(Knψ)(t) :=
2n−1

∑
j=0

ψ(t j)
[
R j(t)+

π
n

k(t, t j)
]
, 0 ≤ t ≤ 2π .

It is well-known (see [151]) that Knψ converges uniformly to Kψ for every 2π-
periodic continuous function ψ . Furthermore, the error ‖Knψ −Kψ‖∞ is exponen-
tially decreasing for analytic functions ψ . For t = tk, k = 0, . . . ,2n− 1, we have
(Knψ)(tk) = ∑2n−1

j=0 Ak j ψ(t j) with the symmetric matrix

Ak j := R|k− j| +
π
n

k(tk,t j), k, j = 0 . . . ,2n−1,

where

R� =
1
n

{
(−1)�

2n
+

n−1

∑
m=1

1
m

cos
m�π

n

}

, � = 0, . . . ,2n−1.

For the numerical example, we take ψ(s) = exp
(
3 sins

)
, 0 ≤ s ≤ 2π , and g = Kψ

or, discretized, ψ̃ j = exp
(
3 sin t j

)
, j = 0, . . . ,2n− 1, and g̃ = Aψ̃ . We take n = 60

and add uniformly distributed random noise on the data g̃. All the results show the
average of 10 computations. The errors are measured in the discrete norm |z|22 :=
1
2n ∑2n−1

j=0

∣
∣z j
∣
∣2, z ∈ C

2n.
First, we consider Tikhonov’s regularization method for δ = 0.1, δ = 0.01,

δ = 0.001, and δ = 0. In Fig. 3.1 we plot the errors
∣
∣ψ̃α ,δ − ψ̃

∣
∣
2 and

∣
∣Aψ̃α ,δ − g̃

∣
∣
2

in the solution and the right-hand side, respectively, versus the regularization para-
meter α .

We clearly observe the expected behavior of the errors: For δ > 0 the error in
the solution has a well-defined minimum that depends on δ , while the defect always
converges to zero as α tends to zero.

The minimal values errδ of the errors in the solution are approximately 0.351,
0.0909, and 0.0206 for δ = 0.1, 0.01, and 0.001, respectively. From this, we ob-
serve the order of convergence: increasing the error by factor 10 should increase the
error by factor 102/3 ≈ 4.64, which roughly agrees with the numerical results where
errδ=0.1/errδ=0.01 ≈ 3.86 and errδ=0.01/errδ=0.001 ≈ 4.41.

In Fig. 3.2 we show the results for the Landweber iteration with a = 0.5 for the
same example where again δ = 0.1, δ = 0.01, δ = 0.001, and δ = 0. The errors in
the solution and the defects are now plotted versus the iteration number m.

In Fig. 3.3 we show the results for the conjugate gradient method for the same
example where again δ = 0.1, δ = 0.01, δ = 0.001, and δ = 0. The errors in the
solution and the defects are again plotted versus the iteration number m.

Here we observe the same behavior as for Tikhonov’s method. We note the
difference in the results for the Landweber method and the conjugate gradient
method. The latter decreases the errors very quickly but is very sensitive to the
exact stopping rule, while the Landweber iteration is slow but very stable with
respect to the stopping parameter τ . The minimal values are errδ=0.1 ≈ 0.177,
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Fig. 3.1 Error for Tikhonov’s regularization method
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Fig. 3.2 Error for Landweber’s method (a = 0.5)
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Fig. 3.3 Error for the conjugate gradient method

errδ=0.01 ≈ 0.0352, and errδ=0.001 ≈ 0.0054 for the Landweber iteration and
errδ=0.1 ≈ 0.172, errδ=0.01 ≈ 0.0266, and errδ=0.001 ≈ 0.0038 for the conju-
gate gradient method. The corresponding factors are considerably larger than
102/3 ≈ 4.64 indicating the optimality of these methods also for smooth solutions
(see the remarks following Theorem 2.15).

Next, we compute the same example using some projection methods. First, we
list the results for the least squares method and the Bubnov–Galerkin method of
Sects. 3.2.1 and 3.2.3 in Tables 3.1 and 3.2 We observe that both methods produce
almost the same results, which reflect the estimates of Theorem 3.20. Note that for
δ = 0 the error decreases exponentially with m. This reflects the fact that the best
approximation min

{
‖ψ −φn‖ : φn ∈ Xn

}
converges to zero exponentially due to the

analyticity of the solution ψ(s) = exp(3 sin s) (see [151], Theorem 11.5).
Now we turn to the collocation methods of Sect. 3.4. To implement the collo-

cation method (3.83) for Symm’s integral equation and the basis functions (3.89),
(3.93a), and (3.93b), we have to compute the integrals

− 1
π

2π∫

0

ei js ln |γ(tk)− γ(s)| ds, (3.100a)
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Table 3.1 Least squares method

n δ = 0.1 δ = 0.01 δ = 0.001 δ = 0

1 38.190 38.190 38.190 38.190
2 15.772 15.769 15.768 15.768
3 5.2791 5.2514 5.2511 5.2511
4 1.6209 1.4562 1.4541 1.4541
5 1.0365 0.3551 3.433∗10−1 3.432∗10−1

6 1.1954 0.1571 7.190∗10−2 7.045∗10−2

10 2.7944 0.2358 2.742∗10−2 4.075∗10−5

12 3.7602 0.3561 3.187∗10−2 5.713∗10−7

15 4.9815 0.4871 4.977∗10−2 5.570∗10−10

20 7.4111 0.7270 7.300∗10−2 3.530∗10−12

Table 3.2 Bubnov–Galerkin method

n δ = 0.1 δ = 0.01 δ = 0.001 δ = 0

1 38.190 38.190 38.190 38.190
2 15.771 15.769 15.768 15.768
3 5.2752 5.2514 5.2511 5.2511
4 1.6868 1.4565 1.4541 1.4541
5 1.1467 0.3580 3.434∗10−1 3.432∗10−1

6 1.2516 0.1493 7.168∗10−2 7.045∗10−2

10 2.6849 0.2481 2.881∗10−2 4.075∗10−5

12 3.3431 0.3642 3.652∗10−2 5.713∗10−7

15 4.9549 0.4333 5.719∗10−2 5.570∗10−10

20 7.8845 0.7512 7.452∗10−2 3.519∗10−12

j = −m, . . . ,m−1, k = 0, . . . ,2m−1, and

− 1
π

2π∫

0

x̂ j(s) ln |γ(tk)− γ(s)| ds, j,k = 0, . . . ,2m−1, (3.100b)

respectively. For the first integral (3.100a), we write using (3.63),

− 1
π

2π∫

0

ei js ln |γ(tk)− γ(s)| ds

= − 1
2π

2π∫

0

ei js ln
(

4sin2 tk − s

2

)
ds− 1

2π

2π∫

0

ei js ln
|γ(tk)− γ(s)|2

4sin2(tk − s)/2
ds

= ε j ei jtk − 1
2π

2π∫

0

ei js ln
|γ(tk)− γ(s)|2

4sin2(tk − s)/2
ds,

where ε j = 0 for j = 0 and ε j = 1/ | j| otherwise. The remaining integral is computed
by the trapezoidal rule.
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The computation of (3.100b) is more complicated. By Definition (3.93a), (3.93b)
of x̂ j, we have to calculate

t j+π/(2m)∫

t j−π/(2m)

ln |γ(tk)− γ(s)|2 ds =

π/(2m)∫

−π/(2m)

ln
∣
∣γ(tk)− γ(s+ t j)

∣
∣2 ds.

For j �= k, the integrand is analytic, and we use Simpson’s rule

π/(2m)∫

−π/(2m)

g(s)ds ≈
n

∑
�=0

w� g(s�),

where

s� = �
π

mn
− π

2m
, w� =

π
3mn

·

⎧
⎨

⎩

1, � = 0 or n,

4, � = 1,3, . . . ,n−1,

2, � = 2,4, . . . ,n−2,

� = 0, . . . ,n. For j = k, the integral has a weak singularity at s = 0. We split the
integrand into

π/(2m)∫

−π/(2m)

ln
(

4sin2 s

2

)
ds+

π/(2m)∫

−π/(2m)

ln
|γ(tk)− γ(s+ tk)|2

4sin2(s/2)
ds

= −2

π∫

π/(2m)

ln
(

4sin2 s
2

)
ds+

π/(2m)∫

−π/(2m)

ln
|γ(tk)− γ(s+ tk)|2

4sin2(s/2)
ds

because ln
(
4sin2(s/2)

)
is even and

∫ π
0 ln

(
4sin2(s/2)

)
ds = 0 by (3.63). Both inte-

grals are approximated by Simpson’s rule. For the same example as earlier, with
100 integration points for Simpson’s rule we obtain the results shown in Tables 3.3
and 3.4.

The difference for δ = 0 reflects the fact that the best approximation

min
{
‖ψ −φn‖ : φn ∈ span{x̂ j : j ∈ J}

}

converges to zero exponentially for x̂ j defined by (3.89), while it converges to zero
only of order 1/n for x̂ j defined by (3.93a) and (3.93b) (see Theorem 3.30).

We have seen in this section that the theoretical investigations of the regulariza-
tion strategies are confirmed by the numerical results for Symm’s integral equation.
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Table 3.3 Collocation method for basis functions (3.89)

m δ = 0.1 δ = 0.01 δ = 0.001 δ = 0

1 6.7451 6.7590 6.7573 6.7578
2 1.4133 1.3877 1.3880 1.3879
3 0.3556 2.791∗10−1 2.770∗10−1 2.769∗10−1

4 0.2525 5.979∗10−2 5.752∗10−2 5.758∗10−2

5 0.3096 3.103∗10−2 1.110∗10−2 1.099∗10−2

6 0.3404 3.486∗10−2 3.753∗10−3 1.905∗10−3

10 0.5600 5.782∗10−2 5.783∗10−3 6.885∗10−7

12 0.6974 6.766∗10−2 6.752∗10−3 8.135∗10−9

15 0.8017 8.371∗10−2 8.586∗10−3 6.436∗10−12

20 1.1539 1.163∗10−1 1.182∗10−2 1.806∗10−13

Table 3.4 Collocation method for basis functions (3.93a) and (3.93b)

m δ = 0.1 δ = 0.01 δ = 0.001 δ = 0

1 6.7461 6.7679 6.7626 6.7625
2 1.3829 1.3562 1.3599 1.3600
3 0.4944 4.874∗10−1 4.909∗10−1 4.906∗10−1

4 0.3225 1.971∗10−1 2.000∗10−1 2.004∗10−1

5 0.3373 1.649∗10−1 1.615∗10−1 1.617∗10−1

6 0.3516 1.341∗10−1 1.291∗10−1 1.291∗10−1

10 0.5558 8.386∗10−2 6.140∗10−2 6.107∗10−2

12 0.6216 7.716∗10−2 4.516∗10−2 4.498∗10−2

15 0.8664 9.091∗10−2 3.137∗10−2 3.044∗10−2

20 1.0959 1.168∗10−1 2.121∗10−2 1.809∗10−2

30 1.7121 1.688∗10−1 1.862∗10−2 8.669∗10−3

3.6 The Backus–Gilbert Method

In this section, we study a different numerical method for “solving” finite moment
problems of the following type:

b∫

a

k j(s)x(s)ds = y j, j = 1, . . . ,n. (3.101)

Here, y j ∈ R are any given numbers and k j ∈ L2(a,b) arbitrary given functions.
Certainly, we have in mind that y j = y(t j) and k j = k(t j, ·). In Sect. 3.4, we studied
the moment solution of such problems; see [167, 209]. We saw that the moment
solution xn is a finite linear combination of the functions {k1, . . . ,kn}. Therefore,
the moment solution xn is as smooth as the functions k j even if the true solution is
smoother.

The concept originally proposed by Backus and Gilbert ([13, 14]) does not pri-
marly wish to solve the moment problem but rather wants to determine how well all
possible models x can be recovered pointwise.
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Define the finite-dimensional operator K : L2(a,b) → R
n by

(Kx) j =
b∫

a

k j(s)x(s)ds, j = 1, . . . ,n, x ∈ L2(a,b). (3.102)

We try to find a left-inverse S; that is, a linear operator S : R
n → L2(a,b) such that

SKx ≈ x for all x ∈ L2(a,b). (3.103)

Therefore, SKx should be a simultaneous approximation to all possible x ∈ L2(a,b).
Of course, we have to make clear the meaning of the approximation.

The general form of a linear operator S : R
n → L2(a,b) has to be

(Sy)(t) =
n

∑
j=1

y j ϕ j(t), t ∈ (a,b), y = (y j) ∈ R
n, (3.104)

for some ϕ j ∈ L2(a,b) that are to be determined from the requirement (3.103):

(SKx)(t) =
n

∑
j=1

ϕ j(t)
b∫

a

k j(s)x(s)ds

=
b∫

a

[
n

∑
j=1

k j(s)ϕ j(t)

]

x(s)ds.

The requirement SKx ≈ x leads to the problem of approximating Dirac’s delta dis-
tribution δ (s− t) by linear combinations of the form ∑n

j=1 k j(s)ϕ j(t). For example,
one can show that the minimum of

b∫

a

b∫

a

∣
∣
∣
∣

n

∑
j=1

k j(s)ϕ j(t)− δ (s− t)
∣
∣
∣
∣

2

dsdt

(in the sense of distributions) is attained at ϕ(s) = A−1k(s), where k(s) =
(
k1(s), . . . ,kn(s)

)�
and Ai j =

∫ b
a ki(s)k j(s)ds, i, j = 1, . . . ,n. For this minimiza-

tion criterion, x = ∑n
j=1 y jϕ j is again the moment solution of Sect. 3.4.1. In [167],

it is shown that minimizing with respect to an H−s-norm for s > 1/2 leads to pro-
jection methods in Hs-spaces. We refer also to [248] for a comparison of several
minimization criteria.

The Backus–Gilbert method is based on a pointwise minimization criterion: Treat
t ∈ [a,b] as a fixed parameter and determine the numbers ϕ j = ϕ j(t) for j = 1, . . . ,n,
as the solution of the following minimization problem:

minimize

b∫

a

|s− t|2
∣
∣
∣
∣

n

∑
j=1

k j(s)ϕ j

∣
∣
∣
∣

2

ds (3.105a)
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subject to ϕ ∈ R
n and

b∫

a

n

∑
j=1

k j(s)ϕ j ds = 1. (3.105b)

Using the matrix-vector notation, we rewrite this problem in short form:

minimize ϕ�Q(t)ϕ subject to r ·ϕ = 1,

where

Q(t)i j =
b∫

a

|s− t|2 ki(s)k j(s)ds, i, j = 1, . . . ,n,

r j =
b∫

a

k j(s)ds, j = 1, . . . ,n.

This is a quadratic minimization problem with one linear equality constraint. We
assume that r �= 0 because otherwise the constraint (3.105b) cannot be satisfied.
Uniqueness and existence are assured by the following theorem, which also gives a
characterization by the Lagrange multiplier rule.

Theorem 3.31. Assume that {k1, . . . ,kn} are linearly independent. Then the sym-
metric matrix Q(t) ∈ R

n×n is positive definite for every t ∈ [a,b]. The minimization
problem (3.105a), (3.105b) is uniquely solvable. ϕ ∈ R

n is a solution of (3.105a)
and (3.105b) if and only if there exists a number λ ∈ R (the Lagrange multiplier)
such that (ϕ ,λ ) ∈ R

n ×R solves the linear system

Q(t)ϕ −λ r = 0 and r ·ϕ = 1. (3.106)

λ = ϕ�Q(t)ϕ is the minimal value of this problem.

Proof. From

ϕ�Q(t)ϕ =
b∫

a

|s− t|2
∣
∣
∣
∣

n

∑
j=1

k j(s)ϕ j

∣
∣
∣
∣

2

ds

we conclude first that ϕ�Q(t)ϕ ≥ 0 and second that ϕ�Q(t)ϕ = 0 implies that
∑n

j=1 k j(s)ϕ j = 0 for almost all s ∈ (a,b). Because {k j} are linearly independent,
ϕ j = 0 for all j follows. Therefore, Q(t) is positive definite. Existence, unique-
ness, and equivalence to (3.106) are elementary results from optimization theory;
see [245]. 	

Definition 3.32. We denote by

(
ϕ j(t)

)n
j=1 ∈ R

n the unique solution ϕ ∈ R
n of

(3.105a) and (3.105b). The Backus–Gilbert solution xn of

b∫

a

k j(s)xn(s)ds = y j, j = 1, . . . ,n,
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is defined as

xn(t) =
n

∑
j=1

y j ϕ j(t), t ∈ [a,b]. (3.107)

The minimal value λ = λ (t) = ϕ(t)�Q(t)ϕ(t) is called the spread.

We remark that, in general, the Backus–Gilbert solution xn = ∑n
j=1 y j ϕ j is not

a solution of the moment problem; that is,
∫ b

a k j(s)xn(s)ds �= y j! This is certainly
a disadvantage. On the other hand, the solution x is analytic in [a,b] — even for
nonsmooth data k j. We can prove the following lemma.

Lemma 3.33. ϕ j and λ are rational functions. More precisely, there exist polyno-
mials p j,q ∈ P2(n−1) and ρ ∈ P2n such that ϕ j = p j/q, j = 1, . . . ,n, and λ = ρ/q.
The polynomial q has no zeros in [a,b].

Proof. Obviously, Q(t) = Q0 − 2t Q1 + t2 Q2 with symmetric matrices Q0, Q1, Q2.
We search for a polynomial solution p ∈

[
Pm
]n

and ρ ∈ Pm+2 of Q(t)p(t)−ρ(t)
r = 0 with m = 2(n− 1). Because the number of equations is n(m + 3) = 2n2 + n
and the number of unknowns is n(m + 1)+ (m + 3) = 2n2 + n + 1, there exists a
nontrivial solution p ∈

[
Pm
]n

and ρ ∈ Pm+2. If p(t̂) = 0 for some t̂ ∈ [a,b], then
ρ(t̂) = 0 because r �= 0. In this case, we divide the equation by (t − t̂). Therefore,
we can assume that p has no zero in [a,b].

Now we define q(t) := r · p(t) for t ∈ [a,b]. Then q ∈ Pm has no zero in [a,b]
because otherwise we would have

0 = ρ(t̂)r · p(t̂) = p(t̂)�Q(t̂) p(t̂) ;

thus p(t̂) = 0, a contradiction. Therefore, ϕ := p/q and λ := ρ/q solves (3.106).
By the uniqueness result, this is the only solution. 	


For the following error estimates, we assume two kinds of a priori information
on x depending on the norm of the desired error estimate. Let

Xn = span
{

k j : j = 1, . . . ,n
}
.

Theorem 3.34. Let x ∈ L2(a,b) be any solution of the finite moment problem
(3.101) and xn = ∑n

j=1 y jϕ j be the Backus–Gilbert solution. Then the following error
estimates hold:

(a) Assume that x is Lipschitz continuous with constant � > 0; that is,

|x(t)− x(s)| ≤ � |s− t| for all s,t ∈ [a,b].

Then

|xn(t)− x(t)| ≤ �
√

b−a εn(t) (3.108)
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for all n ∈ N, t ∈ [a,b], where εn(t) is defined by

ε2
n (t) := min

{ b∫

a

|s− t|2 |zn(s)|2 ds : zn ∈ Xn,

b∫

a

zn(s)ds = 1

}
. (3.109)

(b) Let x ∈ H1(a,b). Then there exists c > 0, independent of x, such that

‖xn − x‖L2 ≤ c
∥
∥x′
∥
∥

L2 ‖εn‖∞ for all n ∈ N. (3.110)

Proof. By the definition of the Backus–Gilbert solution and the constraint on ϕ , we
have

xn(t)− x(t) =
n

∑
j=1

y j ϕ j(t)− x(t)
b∫

a

n

∑
j=1

k j(s)ϕ j(t)ds

=
n

∑
j=1

b∫

a

k j(s)
[
x(s)− x(t)

]
ϕ j(t)ds.

Thus

|xn(t)− x(t)| ≤
b∫

a

∣
∣∣
∣

n

∑
j=1

k j(s)ϕ j(t)
∣
∣∣
∣ |x(s)− x(t)| ds.

Now we distinguish between parts (a) and (b):

(a) Let |x(t)− x(s)| ≤ � |t − s|. Then, by the Cauchy–Schwarz inequality and the
definition of ϕ j,

|xn(t)− x(t)| ≤ �

b∫

a

1 ·
∣∣
∣
∣

n

∑
j=1

k j(s)ϕ j(t)
∣∣
∣
∣ |t − s| ds

≤ �
√

b−a

⎡

⎣
b∫

a

∣∣
∣
∣

n

∑
j=1

k j(s)ϕ j(t)
∣∣
∣
∣

2

|t − s|2 ds

⎤

⎦

1/2

= �
√

b−aεn(t).

(b) First, we define the cutoff function λδ on [a,b]× [a,b] by

λδ (t,s) =
{

1, |t − s| ≥ δ ,

0, |t − s| < δ .
(3.111)
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Then, by the Cauchy–Schwarz inequality again,

⎡

⎣
b∫

a

λδ (t,s)
∣
∣
∣
∣

n

∑
j=1

k j(s)ϕ j(t)
∣
∣
∣
∣ |x(s)− x(t)| ds

⎤

⎦

2

=

⎡

⎣
b∫

a

∣
∣
∣∣

n

∑
j=1

k j(s)ϕ j(t)(t − s)
∣
∣
∣∣λδ (t,s)

∣
∣
∣∣
x(s)− x(t)

t − s

∣
∣
∣∣ ds

⎤

⎦

2

≤ εn(t)2

b∫

a

λδ (t,s)
∣
∣
∣
∣
x(s)− x(t)

s− t

∣
∣
∣
∣

2

ds.

Integration with respect to t yields

b∫

a

⎡

⎣
b∫

a

λδ (t,s)
∣
∣
∣
∣

n

∑
j=1

k j(s)ϕ j(t)
∣
∣
∣
∣ |x(s)− x(t)| ds

⎤

⎦

2

dt

≤ ‖εn‖2
∞

b∫

a

b∫

a

∣
∣
∣
∣
x(s)− x(t)

s− t

∣
∣
∣
∣

2

λδ (t,s)dsdt.

The following technical lemma from the theory of Sobolev spaces yields the
assertion. 	


Lemma 3.35. There exists c > 0 such that

b∫

a

b∫

a

∣
∣
∣
∣
x(s)− x(t)

s− t

∣
∣
∣
∣

2

λδ (t,s)dsdt ≤ c
∥
∥x′
∥
∥2

L2

for all δ > 0 and x ∈ H1(a,b). Here, the cutoff function λδ is defined by (3.111).

Proof. First, we estimate

|x(s)− x(t)|2 =

∣
∣
∣
∣
∣
∣

t∫

s

1 · x′(τ)dτ

∣
∣
∣
∣
∣
∣

2

≤ |t − s|

∣
∣
∣
∣
∣
∣

t∫

s

∣
∣x′(τ)

∣
∣2 dτ

∣
∣
∣
∣
∣
∣

and thus, for s �= t,

∣
∣
∣∣
x(s)− x(t)

s− t

∣
∣
∣∣

2

≤ 1
|s− t|

∣
∣
∣
∣∣
∣

t∫

s

∣
∣x′(τ)

∣
∣2 dτ

∣
∣
∣
∣∣
∣
.
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Now we fix t ∈ (a,b) and write

b∫

a

∣
∣∣
∣
x(s)− x(t)

s− t

∣
∣∣
∣

2

λδ (t,s)ds

≤
t∫

a

λδ (t,s)
t − s

t∫

s

∣∣x′(τ)
∣∣2 dτ ds+

b∫

t

λδ (t,s)
s− t

s∫

t

∣∣x′(τ)
∣∣2 dτ ds

=
b∫

a

∣
∣x′(s)

∣
∣2 Aδ (t,s)ds,

where

Aδ (t,s) =

⎧
⎪⎪⎨

⎪⎪⎩

s∫

a

λδ (t,τ)
|t−τ| dτ, a ≤ s < t,

b∫

s

λδ (t,τ)
|t−τ| dτ, t < s ≤ b,

=

⎧
⎨

⎩

ln t−a
max(δ ,t−s) , s ≤ t,

ln b−t
max(δ ,s−t) , s ≥ t.

Finally, we estimate

b∫

a

b∫

a

|x(s)− x(t)|2

|s− t|2
λδ (t,s)dsdt ≤

b∫

a

∣∣x′(s)
∣∣2
⎛

⎝
b∫

a

Aδ (t,s)dt

⎞

⎠ ds

and
b∫

a

Aδ (t,s)dt ≤ c for all s ∈ (a,b) and δ > 0

which is seen by elementary integration. 	


From these error estimates, we observe that the rate of convergence depends on
the magnitude of εn; that is, how well the kernels approximate the delta distribution.
Finally, we study the question of convergence for n → ∞.

Theorem 3.36. Let the infinite-dimensional moment problem

b∫

a

k j(s)x(s)ds = y j, j = 1,2 . . . ,

have a unique solution x∈ L2(a,b). Assume that {k j : j ∈N} is linearly independent
and dense in L2(a,b). Then

‖εn‖∞ −→ 0 for n → ∞.
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Proof. For fixed t ∈ [a,b] and arbitrary δ ∈
(
0,(b−a)/2

)
, we define

ṽ(s) :=

{
1

|s−t| , |s− t| ≥ δ ,

0, |s− t|< δ ,
and v(s) :=

⎡

⎣
b∫

a

ṽ(τ)dτ

⎤

⎦

−1

ṽ(s).

Then v ∈ L2(a,b) and
∫ b

a v(s)ds = 1. Because
⋃

Xn is dense in L2(a,b), there exists
a sequence ṽn ∈ Xn with ṽn → v in L2(a,b). This implies also that

∫ b
a ṽn(s)ds →

∫ b
a v(s)ds = 1. Therefore, the functions

vn :=
[∫ b

a
ṽn(s)ds

]−1
ṽn ∈ Xn

converge to v in L2(a,b) and are normalized by
∫ b

a vn(s)ds = 1. Thus vn is admissi-
ble, and we conclude that

εn(t)2 ≤
b∫

a

|s− t|2 vn(s)2 ds

=
b∫

a

|s− t|2 v(s)2 ds+ 2

b∫

a

|s− t|2 v(s)
[
vn(s)− v(s)

]
ds

+
b∫

a

|s− t|2
[
vn(s)− v(s)

]2
ds

≤

⎡

⎣
b∫

a

ṽ(s)ds

⎤

⎦

−2

(b−a)

+(b−a)2
[

2 ‖v‖L2 ‖vn − v‖L2 +‖vn − v‖2
L2

]
.

This shows that

limsup
n→∞

εn(t) ≤
√

b−a

⎡

⎣
b∫

a

ṽ(s)ds

⎤

⎦

−1

for all t ∈ [a,b].

Direct computation yields

b∫

a

ṽ(s)ds ≥ c + |lnδ |
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for some c independent of δ ; thus

limsup
n→∞

εn(t) ≤
√

b−a
c + |lnδ | for all δ ∈

(
0,(b−a)/2

)
.

This yields pointwise convergence; that is, εn(t) → 0 (n → ∞) for every t ∈ [a,b].
Because εn(t) is monotonic with respect to n, a well-known theorem from classical
analysis yields uniform convergence. 	


For further aspects of the Backus–Gilbert method, we refer to [31, 102, 128, 144,
145, 224, 248, 249].

3.7 Problems

3.1. Let Qn :C[a,b]→S1(t1, . . . ,tn) be the interpolation operator from Example 3.3.
Prove that ‖Qn‖∞ = 1 and derive an estimate of the form

‖Qnx− x‖∞ ≤ ch
∥
∥x′
∥
∥

∞

for x ∈C1[a,b], where h = max{t j − t j−1 : t = 2, . . . ,n}.

3.2. Let K : X →X be self-adjoint and positive definite and let y∈X . Define ψ(x) =(
Kx,x

)
−2Re(y,x) for x ∈ X . Prove that x∗ ∈ X is a minimum of ψ if and only if x∗

solves Kx∗ = y.

3.3. Let (V,X ,V ∗) be a Gelfand triple and J : V → X the embedding operator. Show
that J∗ : X →V ∗ is one-to-one and that J∗(X) is dense in V ∗.

3.4. Define the space Xn by

Xn =

{

∑
| j|≤n

a j ei jt : a j ∈ C

}

and let Pn : L2(0,2π) → Xn be the orthogonal projection operator. Prove that for
r ≥ s there exists c > 0 such that

‖ψn‖Hr ≤ cnr−s ‖ψn‖Hs for all ψn ∈ Xn,

‖Pnψ −ψ‖Hs ≤ c
1

nr−s ‖ψ‖Hr for all ψ ∈ Hr(0,2π).

3.5. Show that the worst-case error of Symm’s equation under the information
‖ψ‖Hs ≤ E for some s > 0 is given by

F
(
δ ,E,‖·‖Hs

)
≤ cδ s/(s+1).
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3.6. Let Ω ⊂ R
2 be the disc of radius a = exp(−1/2). Then ψ = 1 is the unique

solution of Symm’s integral Eq. (3.57) for f = 1. Compute explicitly the errors of
the least squares solution, the dual least squares solution, and the Bubnov–Galerkin
solution as in Sect. 3.3, and verify that the error estimates of Theorem 3.20 are
asymptotically sharp.

3.7. Let tk = k/n, k = 1, . . . ,n, be equidistant collocation points. Let Xn be the space
of piecewise constant functions as in (3.81) and Pn : L2(0,1)→ Xn be the orthogonal
projection operator. Prove that

⋃
Xn is dense in L2(0,1) and

‖x−Pnx‖L2 ≤
1
n

∥∥x′
∥∥

L2

for all x ∈ H1(0,1) (see Problem 3.1).

3.8. Show that the moment solution can also be interpreted as the solution of a dual
least squares method.

3.9. Consider moment collocation of the equation

t∫

0

x(s)ds = y(t), t ∈ [0,1],

in the space Xn = S1(t1, . . . ,tn) of linear splines. Show that the moment solution xn

coincides with the two-sided difference quotient; that is,

xn(t j) =
1

2h

[
y
(
t j+1 + h

)
− y
(
t j−1 −h

)]
,

where h = 1/n. Derive an error estimate for
∥
∥xδ

n − x
∥
∥

L2 as in Example 3.25.





Chapter 4
Inverse Eigenvalue Problems

4.1 Introduction

Inverse eigenvalue problems are not only interesting in their own right but also have
important practical applications. We recall the fundamental paper by Kac [132].
Other applications appear in parameter identification problems for parabolic or hy-
perbolic differential equations (see [149, 170, 234]) or in grating theory ([140]).

We study the Sturm–Liouville eigenvalue problem in canonical form. The direct
problem is to determine the eigenvalues λ and the corresponding eigenfunctions
u �= 0 such that

−d2u(x)
dx2 + q(x)u(x) = λ u(x), 0 ≤ x ≤ 1, (4.1a)

u(0) = 0 and hu′(1)+ Hu(1) = 0, (4.1b)

where q ∈ L2(0,1) and h,H ∈ R with h2 + H2 > 0 are given. In this chapter, we as-
sume that all functions are real-valued. In some applications, e.g., in grating theory,
complex-valued functions q are also of practical importance. Essentially all of the
results of this chapter hold also for complex-valued q and are proven mainly by the
same arguments. We refer to the remarks at the end of each section.

The eigenvalue problem (4.1a), (4.1b) is a special case of the more general eigen-
value problem for w:

d
dt

(
p(t)

dw(t)
dt

)
+[ρr(t)−g(t)]w(t) = 0, t ∈ [a,b], (4.2a)

αaw′(a)+ βaw(a) = 0, αbw′(b)+ βbw(b) = 0. (4.2b)

Here p, r, and g are given functions with p(t) > 0 and r(t) > 0 for t ∈ [a,b],
and αa,αb,βa,βb ∈ R are constants with α2

a + β 2
a > 0 and α2

b + β 2
b > 0. If we as-

sume, however, that g ∈C[a,b] and p, r ∈C2[a,b], then the Liouville transformation

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,
Applied Mathematical Sciences 120, DOI 10.1007/978-1-4419-8474-6 4,
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reduces the eigenvalue problem (4.2a), (4.2b) to the canonical form (4.1a), (4.1b).
In particular, we define

σ(t) :=

√
r(t)
p(t)

, f (t) := [p(t)r(t)]1/4 , L :=
b∫

a

σ(s)ds, (4.3)

the monotonic function x : [a,b]→ [0,1] by

x(t) :=
1
L

t∫

a

σ(s)ds, t ∈ [a,b], (4.4)

and the new function u : [0,1] → R by u(x) := f (t(x)) w(t(x)), x ∈ [0,1], where
t = t(x) denotes the inverse of x = x(t). Elementary calculations show that u satisfies
the differential Eq. (4.1a) with λ = L2ρ and

q(x) = L2
[

g(t)
r(t)

+
f (t)
r(t)

(
p(t) f ′(t)

f (t)2

)′]

t=t(x)
. (4.5)

Also, it is easily checked that the boundary conditions (4.2b) are mapped into the
boundary conditions

h0u′(0)+ H0u(0) = 0 and h1u′(1)+ H1u(1) = 0 (4.6)

with h0 = αaσ(a)/(L f (a)) and H0 = βa/ f (a)−αa f ′(a)/ f (a)2 and, analogously,
h1, H1 with a replaced by b.

In this chapter, we restrict ourselves to the study of the canonical Sturm–Liouville
eigenvalue problem (4.1a), (4.1b). In the first part, we study the case h = 0 in some
detail. At the end of Sect. 4.3, we briefly discuss the case where h = 1. In Sect. 4.3,
we prove that there exists a countable number of eigenvalues λn of this problem
and also prove an asymptotic formula. Because q is real-valued, the problem is self-
adjoint, and the existence of a countable number of eigenvalues follows from the
general spectral theorem of functional analysis (see Appendix A, Theorem A.51).
Because this general theorem provides only the information that the eigenvalues
tend to infinity, we need other tools to obtain more information about the rate of
convergence. The basic ingredient in the proof of the asymptotic formula is the
asymptotic behavior of the fundamental system of the differential Eq. (4.1a) as |λ |
tends to infinity. Although all of the data and the eigenvalues are real-valued, we
use results from complex analysis, in particular Rouché’s theorem. This makes it
necessary to allow the parameter λ in the fundamental system to be complex-valued.
The existence of a fundamental solution and its asymptotics is the subject of the next
section.

Section 4.5 is devoted to the corresponding inverse problem: Given the eigenval-
ues λn, determine the function q. In Sect. 4.6, we demonstrate how inverse spectral
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problems arise in a parameter identification problem for a parabolic initial value
problem. Section 4.7, finally, studies numerical procedures for recovering q that
have been suggested by Rundell and others (see [169, 212, 213]).

We finish this section with a “negative” result, as seen in Example 4.1.

Example 4.1. Let λ be an eigenvalue and u a corresponding eigenfunction of

−u′′(x)+ q(x)u(x) = λu(x),0 < x < 1, u(0) = 0, u(1) = 0.

Then λ is also an eigenvalue with corresponding eigenfunction v(x) := u(1− x) of
the eigenvalue problem

−v ′′(x)+ q̃(x)v(x) = λv(x),0 < x < 1, v(0) = 0, v(1) = 0,

where q̃(x) := q(1− x).

This example shows that it is generally impossible to recover the function q un-
less more information is available. We will see that q can be recovered uniquely,
provided we know that it is an even function with respect to 1/2 or if we know a sec-
ond spectrum; that is, a spectrum for a boundary condition different from u(1) = 0.

4.2 Construction of a Fundamental System

It is well-known from the theory of linear ordinary differential equations that the
following initial value problems are uniquely solvable for every fixed (real- or
complex-valued) q ∈C[0,1] and every given λ ∈ C:

−u1
′′ + q(x)u1 = λu1,0 < x < 1, u1(0) = 1, u1

′(0) = 0 (4.7a)

−u2
′′ + q(x)u2 = λu2,0 < x < 1, u2(0) = 0, u2

′(0) = 1. (4.7b)

Uniqueness and existence for q ∈ L2(0,1) is shown in Theorem 4.4 below. The
set of functions {u1,u2} is called a fundamental system of the differential equation
−u′′ + qu = λu in (0,1). The functions u1 and u2 are linearly independent because
the Wronskian determinant is one:

[u1,u2] := det

[
u1 u2

u1
′ u2

′

]
= u1u2

′ −u1
′u2 = 1. (4.8)

This is seen from

d
dx

[u1,u2] = u1u2
′′ −u1

′′u2 = u1(q−λ )u2−u2(q−λ )u1 = 0
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and [u1,u2](0) = 1. The functions u1 and u2 depend on λ and q. We express this
dependence often by u j = u j(·,λ ,q), j = 1,2. For q ∈ L2(0,1), the solution is not
twice continuously differentiable anymore but is only an element of the Sobolev
space

H2(0,1) :=

⎧
⎨

⎩
u ∈C1[0,1] : u′(x) = α +

x∫

0

v(t)dt, α ∈ C,v ∈ L2(0,1)

⎫
⎬

⎭
,

see (1.24). We write u′′ for v and observe that u′′ ∈ L2(0,1). The most important
example is when q = 0. In this case, we can solve (4.7a) and (4.7b) explicitly and
have the following.

Example 4.2. Let q = 0. Then the solutions of (4.7a) and (4.7b) are given by

u1(x,λ ,0) = cos(
√

λx) and u2(x,λ ,0) =
sin(

√
λx)√

λ
, (4.9)

respectively. An arbitrary branch of the square root can be taken because s �→ cos(sx)
and s �→ sin(sx)/s are even functions.

We will see that the fundamental solution for any function q ∈ L2(0,1) behaves
as (4.9) as |λ | tends to infinity. For the proof of the next theorem, we need the
following technical lemma.

Lemma 4.3. Let q ∈ L2(0,1) and k̃,k ∈ C[0,1] such that there exists μ > 0 with
|k̃(τ)| ≤ exp(μτ) and |k(τ)| ≤ exp(μτ) for all τ ∈ [0,1]. Let K̃,K : C[0,1]→C[0,1]
be the Volterra integral operators with kernels k̃(x− t)q(t) and k(x− t)q(t), respec-
tively. Then the following estimate holds:

∣
∣(K̃Kn−1φ)(x)

∣
∣≤ ‖φ‖∞

1
n!

q̂(x)neμx, 0 ≤ x ≤ 1, (4.10)

for all φ ∈ C[0,1] and all n ∈ N. Here, q̂(x) :=
∫ x

0 |q(t)|dt. If φ ∈ C[0,1] satisfies
also the estimate |φ(τ)| ≤ exp(μτ) for all τ ∈ [0,1], then we have

∣
∣(K̃Kn−1φ)(x)

∣
∣≤ 1

n!
q̂(x)neμx, 0 ≤ x ≤ 1, (4.11)

for all n ∈ N.

Proof. We prove the estimates by induction with respect to n.
For n = 1, we estimate

∣∣(K̃φ)(x)
∣∣ =

∣
∣
∣∣
∣
∣

x∫

0

k̃(x− t)q(t)φ(t)dt

∣
∣
∣∣
∣
∣

≤ ‖φ‖∞

x∫

0

eμ(x−t) |q(t)| dt ≤ ‖φ‖∞ eμxq̂(x).
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Now we assume the validity of (4.10) for n. Because it holds also for K = K̃, we
estimate

∣
∣(K̃Knφ)(x)

∣
∣ ≤

x∫

0

eμ(x−t) |q(t)| |(Knφ)(t)| dt

≤ ‖φ‖∞
1
n!

eμx

x∫

0

|q(t)| q̂(t)n dt.

We compute the last integral by

x∫

0

|q(t)| q̂(t)ndt =
x∫

0

q̂′(t)q̂(t)ndt =
1

n + 1

x∫

0

d
dt

(
q̂(t)n+1) dt

=
1

n + 1
q̂(x)n+1.

This proves the estimate (4.10) for n + 1.
For estimate (4.11), we only change the initial step n = 1 into

∣
∣(K̃φ)(x)

∣
∣ ≤

x∫

0

eμ(x−t)eμt |q(t)| dt ≤ eμxq̂(x).

The remaining part is proven by the same arguments. 
�
Now we prove the equivalence of the initial value problems for u j, j = 1,2, to

Volterra integral equations.

Theorem 4.4. Let q ∈ L2(0,1) and λ ∈ C. Then we have:

(a) u1,u2 ∈ H2(0,1) are solutions of (4.7a) and (4.7b), respectively, if and only if
u1,u2 ∈C[0,1] solve the Volterra integral equations:

u1(x) = cos(
√

λx)+
x∫

0

sin
√

λ (x− t)√
λ

q(t)u1(t)dt, (4.12a)

u2(x) =
sin(

√
λx)√

λ
+

x∫

0

sin
√

λ (x− t)√
λ

q(t)u2(t)dt, (4.12b)

respectively, for 0 ≤ x ≤ 1.
(b) The integral Eqs. (4.12a) and (4.12b) and the initial value problems (4.7a) and

(4.7b) are uniquely solvable. The solutions can be represented by a Neumann
series. Let K denote the integral operator

(Kφ)(x) :=
x∫

0

sin
√

λ(x− t)√
λ

q(t)φ(t)dt, x ∈ [0,1], (4.13)
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and define

C(x) := cos(
√

λx) and S(x) :=
sin(

√
λx)√

λ
. (4.14)

Then

u1 =
∞

∑
n=0

KnC and u2 =
∞

∑
n=0

KnS. (4.15)

The series converge uniformly with respect to (x,λ ,q) ∈ [0,1]×Λ ×Q for all
bounded sets Λ ⊂ C and Q ⊂ L2(0,1).

Proof. (a) We use the following version of partial integration for f ,g ∈ H2(0,1):

b∫

a

[
f ′′(t)g(t)− f (t)g′′(t)

]
dt =

[
f ′(t)g(t)− f (t)g′(t)

] ∣∣∣ba. (4.16)

We restrict ourselves to the proof for u1. Let u1 be a solution of (4.7a). Then

x∫

0

S(x− t)q(t)u1(t)dt =
x∫

0

S(x− t)
[
λu1(t)+ u1

′′(t)
]

dt

=
x∫

0

u1(t)

⎡

⎣λS(x− t)+ S′′(x− t)
︸ ︷︷ ︸

=0

⎤

⎦ dt

+
[
u1

′(t)S(x− t)+ u1(t)S′(x− t)
]∣∣t=x

t=0

= u1(x)− cos
(√

λx
)

.

On the other hand, let u1 ∈C[0,1] be a solution of the integral Eq. (4.12a). Then
u1 is differentiable almost everywhere and

u1
′(x) = −

√
λ sin

(√
λ x
)

+
x∫

0

cos
√

λ (x− t)q(t)u1(t)dt.

From this, we observe that u1
′ is continuous and even differentiable almost

everywhere and

u1
′′(x) = −λ cos

(√
λx
)

+ q(x)u1(x)

−
x∫

0

√
λ sin

√
λ (x− t)q(t)u1(t)dt

= −λu1(x)+ q(x)u1(x).
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This proves the assertion because the right-hand side is in L2(0,1) and the initial
conditions are obviously satisfied.

(b) We observe that all of the functions k(τ) = cos(
√

λτ), k(τ) = sin(
√

λ τ), and
k(τ) = sin(

√
λτ)/

√
λ for τ ∈ [0,1] satisfy the estimate |k(τ)| ≤ exp(μτ) with

μ = |Im
√

λ |. This is obvious for the first two functions. For the third, it follows
from ∣

∣
∣
∣∣
sin(

√
λ τ)√

λ

∣
∣
∣
∣∣
≤

τ∫

0

∣
∣
∣cos(

√
λs)
∣
∣
∣ ds =

τ∫

0

cosh(μs)ds ≤ eμτ .

We have to study the integral operator K with kernel k(x− t)q(t), where k(τ) =
sin(

√
λ τ)/

√
λ . We apply Lemma 4.3 with K̃ = K. Estimate (4.10) yields

‖Kn‖ ≤ q̂(1)n

n!
eμ < 1

for sufficiently large n uniformly for q ∈ Q and λ ∈Λ . Therefore, the Neumann
series converges (see Appendix A, Theorem A.29), and part (b) is proven. 
�

The integral representation of the previous theorem yields the following asymp-
totic behavior of the fundamental system by comparing the case for arbitrary q with
the case of q = 0.

Theorem 4.5. Let q ∈ L2(0,1), λ ∈ C, and u1, u2 be the fundamental system; that
is, the solutions of the initial value problems (4.7a) and (4.7b), respectively. Then
we have for all x ∈ [0,1]:

∣
∣
∣u1(x)− cos(

√
λx)
∣
∣
∣ ≤

1

|
√

λ |
exp

⎛

⎝|Im
√

λ |x +
x∫

0

|q(t)| dt

⎞

⎠, (4.17a)

∣
∣
∣
∣
∣
u2(x)−

sin(
√

λx)√
λ

∣
∣
∣
∣
∣
≤ 1

|λ | exp

⎛

⎝|Im
√

λ |x +
x∫

0

|q(t)| dt

⎞

⎠, (4.17b)

∣
∣
∣u1

′(x)+
√

λ sin(
√

λx)
∣
∣
∣ ≤ exp

⎛

⎝|Im
√

λ |x +
x∫

0

|q(t)| dt

⎞

⎠, (4.17c)

∣
∣
∣u2

′(x)− cos(
√

λx)
∣
∣
∣ ≤

1

|
√

λ |
exp

⎛

⎝|Im
√

λ |x +
x∫

0

|q(t)| dt

⎞

⎠. (4.17d)

Proof. Again, we use the Neumann series and define C(τ) := cos(
√

λ τ) and S(τ) :=
sin(

√
λ τ)/

√
λ . Let K be the integral operator with kernel q(t)sin

(√
λ (x− t)

)
/
√

λ .

Then
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∣
∣
∣u1(x)− cos(

√
λx)
∣
∣
∣≤

∞

∑
n=1

|(KnC)(x)| .

Now we set k̃(τ) = sin(
√

λ τ) and k(τ) = sin(
√

λ τ)/
√

λ and denote by K̃ and K
the Volterra integral operators with kernels k̃(x− t) and k(x− t), respectively. Then
Kn = 1√

λ
K̃Kn−1 and, by Lemma 4.3, part (b), we conclude that

|(KnC)(x)| ≤ 1

|
√

λ |n!

⎛

⎝
x∫

0

|q(t)| dt

⎞

⎠

n

exp
(
|Im

√
λ |x
)

for n ≥ 1. Summation now yields the desired estimate:

∣
∣
∣u1(x)− cos(

√
λx)
∣
∣
∣≤

1

|
√

λ |
exp

⎛

⎝|Im
√

λ |x +
x∫

0

|q(t)| dt

⎞

⎠ .

Because |S(x)| ≤ 1
|
√

λ | exp
(
|Im

√
λ |x
)

, the same arguments prove the estimate

(4.17b). Differentiation of the integral Eqs. (4.12a) and (4.12b) yields

u1
′(x)+

√
λ sin(

√
λx) =

x∫

0

cos
√

λ(x− t)q(t)u1(t)dt,

u2
′(x)− cos(

√
λx) =

x∫

0

cos
√

λ(x− t)q(t)u2(t)dt.

With K as before and K̃ defined as the operator with kernel q(t)cos
√

λ(x− t). Then

u1
′(x)+

√
λ sin(

√
λ x) = K̃

∞

∑
n=0

KnC,

u2
′(x)− cos(

√
λ x) = K̃

∞

∑
n=0

KnS,

and we use Lemma 4.3, estimate (4.11), again. Summation yields the estimates
(4.17c) and (4.17d). 
�

In the next section, we need the fact that the eigenfunctions are continuously dif-
ferentiable with respect to q and λ . We remind the reader of the concept of Fréchet
differentiability (F-differentiability) of an operator between Banach spaces X and
Y (see Appendix A, Definition A.56). Here we consider the mapping (λ ,q) �→
u j(·,λ ,q) from C× L2(0,1) into C[0,1] for j = 1,2. We denote these mappings
by u j again and prove the following theorem.
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Theorem 4.6. Let u j : C×L2(0,1) → C[0,1], j = 1,2, be the solution operator of
(4.7a) and (4.7b), respectively. Then we have the following:

(a) u j is continuous.
(b) u j is continuously F-differentiable for every (λ̂ , q̂) ∈ C×L2(0,1) with partial

derivatives
∂

∂λ
u j(·, λ̂ , q̂) = u j,λ(·, λ̂ , q̂) (4.18a)

and
∂
∂q

u j(·, λ̂ , q̂)(q) = u j,q(·, λ̂ , q̂), (4.18b)

where u j,λ (·, λ̂ , q̂) and u j,q(·, λ̂ , q̂) are solutions of the following initial bound-
ary value problems for j = 1,2:

−
(
u j,λ
)′′ +

(
q̂− λ̂

)
u j,λ = u j(·, λ̂ , q̂) in (0,1)

u j,λ (0) = 0,
(
u j,λ
)′ (0) = 0,

−(u j,q)′′ +
(

q̂− λ̂
)

u j,q = −qu j(·, λ̂ , q̂) in (0,1),

u j,q(0) = 0, (u j,q)
′ (0) = 0. (4.19)

(c) Furthermore, for all x ∈ [0,1] we have:

x∫

0

u j(t)2dt = [u j,λ ,u j](x), j = 1,2, (4.20a)

x∫

0

u1(t)u2(t)dt = [u1,λ ,u2](x) = [u2,λ ,u1](x), (4.20b)

−
x∫

0

q(t)u j(t)2dt = [u j,q,u j](x), j = 1,2, (4.20c)

−
x∫

0

q(t)u1(t)u2(t)dt = [u1,q,u2](x) = [u2,q,u1](x), (4.20d)

where [u,v ] denotes the Wronskian determinant from (4.8).

Proof. (a), (b): Continuity and differentiability of u j follow from the integral
Eqs. (4.12a) and (4.12b) because the kernel and the right-hand sides depend con-
tinuously and differentiably on λ and q. It remains to show the representation of the
derivatives in (b). Let u = u j , j = 1 or 2. Then
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−u′′(·, λ̂ + ε)+
(

q̂− λ̂ − ε
)

u(·, λ̂ + ε) = 0,

−u′′(·, λ̂ )+
(

q̂− λ̂
)

u(·, λ̂ ) = 0;

thus

−1
ε

[
u(·, λ̂ + ε)−u(·, λ̂)

]′′
+
(

q̂− λ̂
) 1

ε

[
u(·, λ̂ + ε)−u(·, λ̂)

]
= u(·, λ̂ + ε).

Furthermore, the homogeneous initial conditions are satisfied for the difference quo-
tient. The right-hand side converges uniformly to u(·, λ̂ ) as ε → 0. Therefore, the
difference quotient converges to uλ uniformly in x. The same arguments yield the
result for the derivative with respect to q.

(c) Multiplication of the differential equation for u j,λ by u j and the differential
equation for u j by u j,λ and subtraction yields

u2
j(x) = u j

′′(x)u j,λ (x)−u j,λ
′′(x)u j(x)

=
d
dx

(
u j

′(x)u j,λ (x)−u j,λ
′(x)u j(x)

)
.

Integration of this equation and the homogeneous boundary conditions yield the first
equation of (4.20a). The proofs for the remaining equations use the same arguments
and are left to the reader. 
�

At no place in this section have we used the assumption that q is real-valued.
Therefore, the assertions of Theorems 4.4, 4.5, and 4.6 also hold for complex-
valued q.

4.3 Asymptotics of the Eigenvalues and Eigenfunctions

We first restrict ourselves to the Dirichlet problem; that is, the eigenvalue problem

−u′′(x)+ q(x)u(x) = λu(x),0 < x < 1, u(0) = u(1) = 0. (4.21)

Refer to the end of this section for different boundary conditions. Again, let q ∈
L2(0,1) be real-valued. We observe that λ ∈ C is an eigenvalue of this problem if
and only if λ is a zero of the function f (λ ) := u2(1,λ ,q). Again, u2 = u2(·,λ ,q) de-
notes the solution of the initial value problem (4.7b) with initial conditions u2(0)= 0
and u2

′(0) = 1. If u2(1,λ ,q) = 0, then u2(·,λ ,q) is the eigenfunction corresponding
to the eigenvalue λ . The function f plays exactly the role of the well-known charac-
teristic polynomial for matrices and is therefore called the characteristic function of
the eigenvalue problem. Theorem 4.6 implies that f is differentiable; that is, analytic
in all of C. This observation makes it possible to use tools from complex analysis.
First, we summarize well-known facts about eigenvalues and eigenfunctions for the
Sturm–Liouville problem, which can easily be derived from abstract spectral theory
(see Theorems A.50 and A.51).
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Lemma 4.7. Let q ∈ L2(0,1) be real-valued. Then:

(a) All eigenvalues λ are real.
(b) There exists a countable number of real eigenvalues λ j, j ∈N, with correspond-

ing eigenfunctions g j ∈C[0,1] such that
∥∥g j
∥∥

L2 = 1. The eigenfunctions form a
complete orthonormal system in L2(0,1).

(c) The geometric and algebraic multiplicities of the eigenvalues λ are one; that is,
the eigenspaces are one-dimensional and the zeros of the characteristic function
are simple.

Proof. (a) and (b) follow from the fact that the boundary value problem is self-
adjoint. We refer to Problem 4.1 for a repetition of the proof.

(c) Let λ be an eigenvalue and u, v be two corresponding eigenfunctions. Choose
α , β with α2 + β 2 > 0 and such that αu′(0) = βv ′(0). The function w := αu−βv
solves the differential equation and w(0) = w′(0) = 0; that is, w vanishes identically.
Therefore, u and v are linearly dependent.

We apply Theorem 4.6, part (c), to show that λ is a simple zero of f . Because
u2(1,λ ,q) = 0, we have from (4.20a) for j = 2 that

f ′(λ ) =
∂

∂λ
u2(1,λ ,q) = u2,λ (1,λ ,q)

=
1

u2
′(1,λ ,q)

1∫

0

u2(x,λ ,q)2dx �= 0.

This proves part (c). 
�

We note that there are different ways to normalize the eigenfunctions. Instead
of requiring the L2-norm to be one, we sometimes normalize them such that
g j

′(0) = 1. This is possible because g j
′(0) �= 0. Otherwise, the Picard–Lindelöf

uniqueness theorem (see Theorem 4.4) would imply that g j vanishes identically.
Also, we need the following technical result.

Lemma 4.8. Let z ∈ C with |z−nπ | ≥ π/4 for all n ∈ Z. Then

exp(|Imz|) < 4 |sinz| .

Proof. Let ψ(z) = exp |z2|/ |sinz| for z = z1 + iz2, z1,z2 ∈R. We consider two cases:

1st case: |z2| > ln2/2. Then

ψ(z) =
2e|z2|

|eiz1−z2 − e−iz1+z2 | ≤
2e|z2|

e|z2| − e−|z2|
=

2

1− e−2|z2|
< 4

because exp(−2 |z2|) < 1/2.
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2nd case: |z2| ≤ ln2/2. From |z−nπ | ≥ π/4 for all n, we conclude that
|z1 −nπ |2 ≥ π2/16− z2

2 ≥ π2/16− (ln2)2/4 ≥ π2/64; thus |sinz1| ≥ sin π
8 . With

|Re sinz| = |sin z1| |coshz2| ≥ |sinz1|, we conclude that

ψ(z) ≤ e|z2|

|Re sinz| ≤
√

2
|sinz1|

≤
√

2∣
∣sin π

8

∣
∣ < 4.


�

Now we prove the “counting lemma,” a first crude asymptotic formula for the eigen-
values. As the essential tool in the proof, we use the theorem of Rouché from
complex analysis (see [2]), which we state for the convenience of the reader: Let
U ⊂C be a domain and the functions F and G be analytic in C and |F(z)−G(z)|<
|G(z)| for all z ∈ ∂U. Then F and G have the same number of zeros in U.

Lemma 4.9. Let q ∈ L2(0,1) and N > 2exp(‖q‖L1) be an integer. Then:

(a) The characteristic function f (λ ) := u2(1,λ ,q) has exactly N zeros in the half-
plane

H :=
{

λ ∈ C : Reλ < (N + 1/2)2π2} . (4.22)

(b) For every m > N there exists exactly one zero of f in the set

Um :=
{

λ ∈ C :
∣
∣
√

λ −mπ
∣
∣< π/2

}
. (4.23)

Here we take the branch with Re
√

λ ≥ 0.
(c) There are no other zeros of f in C.

Proof. We are going to apply Rouché’s theorem to the function F(z) = f (z2) =
u2(1,z2,q) and the corresponding function G of the eigenvalue problem for q = 0;
that is, G(z) := sinz/z. For U we take one of the sets Wm or VR defined by

Wm := {z ∈ C : |z−mπ|< π/2} ,

VR := {z ∈ C : |Re z| < (N + 1/2)π, |Imz| < R}

for fixed R > (N + 1/2)π and want to apply Lemma 4.8:

(i) First let z ∈ ∂Wm: For n ∈ Z, n �= m, we have |z−nπ | ≥ |m−n|π −|z−mπ | ≥
π −π/2 > π/4. For n = m, we observe that |z−mπ |= π/2 > π/4. Therefore,
we can apply Lemma 4.8 for z ∈ ∂Wm. Furthermore, we note the estimate |z| ≥
mπ −|z−mπ |= (m−1/2)π > Nπ > 2N for all z ∈ ∂Wm.

(ii) Let z ∈ ∂VR, n ∈ Z. Then |Re z| = (N + 1/2)π or |Imz| = R. In either case,
we estimate |z−nπ |2 = (Re z−nπ)2 +(Imz)2 ≥ π2/4 > π2/16. Therefore, we
can apply Lemma 4.8 for z ∈ ∂VR. Furthermore, we have the estimate |z| ≥
(N + 1/2)π > 2N for all z ∈ ∂VR.
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Application of Theorem 4.5 and Lemma 4.8 yields the following estimate for all
z ∈ ∂VR ∪∂Wm:

∣
∣
∣
∣F(z)− sinz

z

∣
∣
∣
∣ ≤

1

|z|2
exp(|Imz|+‖q‖L1) ≤

4 |sin z|
|z|2

N

2

=
2N
|z|

∣
∣
∣
∣
sinz

z

∣
∣
∣
∣<
∣
∣
∣
∣
sinz

z

∣
∣
∣
∣ .

Therefore, F and G(z) := sinz/z have the same number of zeros in VR and every
Wm. Because the zeros of G are ±nπ , n = 1,2, . . . we conclude that G has exactly
2N zeros in VR and exactly one zero in every Wm. By the theorem of Rouché, this
also holds for F .

Now we show that F has no zero outside of VR ∪⋃m>N Wm. Again, we ap-
ply Lemma 4.8: Let z /∈ VR ∪⋃m>N Wm. From z /∈ VR, we conclude that |z| =√

(Re z)2 +(Imz)2 ≥ (N +1/2)π . For n > N, we have that |z−nπ|> π/2 because
z /∈ Wn. For n ≤ N, we conclude that |z−nπ| ≥ |z|− nπ ≥ (N + 1/2− n)π ≥ π/2.
We apply Lemma 4.8 again and use the second triangle inequality. This yields

|F(z)| ≥
∣
∣
∣
∣
sinz

z

∣
∣
∣
∣−

1

|z|2
exp(|Imz|+‖q‖L1)

≥
∣∣
∣
∣
sinz

z

∣∣
∣
∣

[
1− 4exp(‖q‖L1)

|z|

]

≥
∣
∣
∣
∣
sinz

z

∣
∣
∣
∣

[
1− 2N

|z|

]
> 0

because |z| ≥ (N + 1/2)π > 2N. Therefore, we have shown that f has exactly one
zero in every Um, m > N, and N zeros in the set

HR :=
{

λ ∈ C : 0 < Re
√

λ < (N + 1/2)π,
∣
∣
∣Im

√
λ
∣
∣
∣< R

}

and no other zeros. It remains to show that HR ⊂ H. For λ = |λ |exp(iθ) ∈ HR,
we conclude that Re

√
λ =

√
|λ |cos θ

2 < (N + 1/2)π ; thus Reλ = |λ |cos
(
2 θ

2

)
≤

|λ |cos2 θ
2 < (N + 1/2)2π2. 
�

This lemma proves again the existence of infinitely many eigenvalues. The ar-
guments are not changed for the case of complex-valued functions q. In this case,
the general spectral theory is not applicable anymore because the boundary value
problem is not self-adjoint. This lemma also provides more information about the
eigenvalue distribution, even for the real-valued case. First, we order the eigenvalues
in the form

λ1 < λ2 < λ3 < · · · .

Lemma 4.9 implies that

√
λn = nπ +O(1); that is, λn = n2π2 +O(n). (4.24)
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For the treatment of the inverse problem, it is necessary to improve this formula. It
is our aim to prove that

λn = n2π2 +
1∫

0

q(t)dt + λ̃n where
∞

∑
n=1

∣
∣
∣λ̃n

∣
∣
∣
2
< ∞. (4.25)

There are several methods to prove (4.25). We follow the treatment in [200]. The
key is to apply the fundamental theorem of calculus to the function t �→ λn(tq) for
t ∈ [0,1], thus connecting the eigenvalues λn corresponding to q with the eigenvalues
n2π2 corresponding to q = 0 by the parameter t. For this approach, we need the
differentiability of the eigenvalues with respect to q.

For fixed n ∈ N, the function q �→ λn(q) from L2(0,1) into C is well-defined and
Fréchet differentiable by the following theorem.

Theorem 4.10. For every n ∈ N, the mapping q �→ λn(q) from L2(0,1) into C is
continuously Fréchet differentiable for every q̂ ∈ L2(0,1) and

λn
′(q̂)q =

1∫

0

gn(x, q̂)2q(x)dx, q ∈ L2(0,1). (4.26)

Here,

gn(x, q̂) :=
u2(x, λ̂n, q̂)∥

∥
∥u2(·, λ̂n, q̂)

∥
∥
∥

L2

denotes the L2-normalized eigenfunction corresponding to λ̂n := λn(q̂).

Proof. We observe that u2(1, λ̂n, q̂) = 0 and apply the implicit function theorem to
the equation

u2(1,λ ,q) = 0

in a neighborhood of (λ̂n, q̂). This is possible because the zero λ̂n of u2(1, ·, q̂) is sim-
ple by Lemma 4.7. The implicit function theorem (see Appendix A, Theorem A.61)
yields the existence of a unique function λn = λn(q) such that u2(1,λn(q),q) = 0
for all q in a neighborhood of q̂; we know this already. But it also implies that the
function λn is continuously differentiable with respect to q and

0 =
∂

∂λ
u2(1, λ̂n, q̂)λn

′(q̂)q +
∂

∂q
u2(1, λ̂n, q̂)q;

that is, u2,λ (1)λn
′(q̂)q + u2,q(1) = 0. With Theorem 4.6, part (c), we conclude that

λn
′(q̂)q = − u2,q(1)

u2,λ (1)
= − u2,q(1)u2

′(1)
u2,λ (1)u2

′(1)

= − [u2,q,u2](1)
[u2,λ ,u2](1)

=
∫ 1

0 q(x)u2(x)2dx
∫ 1

0 u2(x)2dx
=

1∫

0

gn(x, q̂)2q(x)dx,

where we have dropped the arguments λ̂ and q̂. 
�
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Now we are ready to formulate and prove the main theorem which follows.

Theorem 4.11. Let Q ⊂ L2(0,1) be bounded, q ∈ Q, and λn ∈ C the corresponding
eigenvalues. Then we have

λn = n2π2 +
1∫

0

q(t)dt −
1∫

0

q(t)cos(2nπt)dt +O(1/n) (4.27)

for n → ∞ uniformly for q ∈ Q. Furthermore, the corresponding eigenfunctions gn,
normalized to ‖gn‖L2 = 1, have the following asymptotic behavior:

gn(x) =
√

2sin(nπx)+O(1/n) and (4.28a)

gn
′(x) =

√
2nπ cos(nπx)+O(1) (4.28b)

as n → ∞ uniformly for x ∈ [0,1] and q ∈ Q.

We observe that the second integral on the right-hand side of (4.27) is the nth Fourier
coefficient an of q with respect to {cos(2πnt) : n = 0,1,2, . . . ,}. From Fourier the-
ory, it is known that an converges to zero, and even more: Parseval’s identity yields
that ∑∞

n=0 |an|2 < ∞; that is, (4.25) is satisfied. If q is smooth enough, e.g., contin-
uously differentiable, then an tends to zero faster than 1/n. In that case, this term
disappears in the O(1/n) expression.

Proof. We split the proof into four parts:

(a) First, we show that gn(x) =
√

2sin(
√

λnx) + O(1/n) uniformly for (x,q) ∈
[0,1] × Q. By Lemma 4.9, we know that

√
λn = nπ + O(1), and thus by

Theorem 4.5

u2(x,λn) =
sin(

√
λnx)√

λn
+O(1/n2).

With the formula 2
∫ 1

0 sin2(αt)dt = 1− sin(2α)/(2α), we compute

1∫

0

u2(t,λn)2dt =
1
λn

1∫

0

sin2
(√

λnt
)

dt +O(1/n3)

=
1

2λn

[
1− sin(2

√
λn)

2
√

λn

]
+O(1/n3)

=
1

2λn
[1 +O(1/n)].

Therefore, we have

gn(x) =
u2(x,λn)√∫ 1

0 u2(t,λn)2dt
=
√

2sin(
√

λnx)+O(1/n).
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(b) Now we show that
√

λn = nπ +O(1/n) and gn(x) =
√

2sin(nπx)+O(1/n). We
apply the fundamental theorem of calculus and use Theorem 4.10:

λn −n2π2 = λn(q)−λn(0) =
1∫

0

d
dt

λn(tq)dt

=
1∫

0

λn
′(tq)qdt =

1∫

0

1∫

0

gn(x,tq)2q(x)dxdt = O(1). (4.29)

This yields
√

λn = nπ +O(1/n) and, with part (a), the asymptotic form gn(x) =√
2sin(nπx)+O(1/n).

(c) Now the asymptotics of the eigenvalues follow easily from (4.29) by the obser-
vation that

gn(x,tq)2 = 2sin2(nπx)+O(1/n) = 1− cos(2nπx)+O(1/n),

uniformly for t ∈ [0,1] and q ∈ Q.
(d) Similarly, we have for the derivatives

gn
′(x) =

u2
′(x,λn)√∫ 1

0 u2(t,λn)2dt
=

√
2
√

λn cos(
√

λnx)+O(1)
√

1 +O(1/n)

=
√

2nπ cos(nπx)+O(1). 
�

Example 4.12. We illustrate Theorem 4.11 by the following two numerical
examples:

(a) Let q1(x) = exp(sin(2πx)), x ∈ [0,1]. Then q1 is analytic and periodic with
period 1.

Plots of the characteristic functions λ �→ f (λ ) for q1 and q = 0; that is, λ �→
sin

√
λ/

√
λ are shown in Fig. 4.1.

(b) Let q2(x) = −5x for 0 ≤ x ≤ 0.4 and q2(x) = 4 for 0.4 < x ≤ 1. The function q2

is not continuous.
Plots of the characteristic functions λ �→ f (λ ) for q2 and q = 0 are shown in

Fig. 4.2.

The Fourier coefficients of q1 converge to zero of exponential order. The
following table shows the eigenvalues λn corresponding to q1, the eigenvalues
n2π2 corresponding to q = 0 and the difference

cn := λn −n2π2 −
1∫

0

q(x)dx for n = 1, . . . ,10:
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Fig. 4.1 Characteristic functions of q,q1, respectively, on [0, 20] and [5, 100]
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Fig. 4.2 Characteristic functions of q,q2, respectively, on [0, 20] and [5, 100]

λn n2π2 cn

11.1 9.9 −2.04∗10−2

40.9 39.5 1.49∗10−1

90.1 88.8 2.73∗10−3

159.2 157.9 −1.91∗10−3

248.0 246.7 7.74∗10−4

356.6 354.3 4.58∗10−4

484.9 483.6 4.58∗10−4

632.9 631.7 4.07∗10−4

800.7 799.4 3.90∗10−4

988.2 987.0 3.83∗10−4

We clearly observe the rapid convergence.
Because q2 is not continuous, the Fourier coefficients converge to zero only

slowly. Again, we list the eigenvalues λn for q2, the eigenvalues n2π2 corresponding
to q = 0, and the differences
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cn := λn −n2π2 −
1∫

0

q(x)dx and

dn := λn −n2π2 −
1∫

0

q(x)dx +
1∫

0

q(x)cos(2πnx)dx

for n = 1, . . . ,10:

λn n2π2 cn dn

12.1 9.9 1.86∗10−1 −1.46∗10−1

41.1 39.5 −3.87∗10−1 8.86∗10−2

91.1 88.8 3.14∗10−1 2.13∗10−2

159.8 157.9 1.61∗10−1 −6.70∗10−3

248.8 246.7 2.07∗10−2 2.07∗10−2

357.4 354.3 8.29∗10−2 −4.24∗10−3

484.5 483.6 −1.25∗10−1 6.17∗10−3

633.8 631.7 1.16∗10−1 3.91∗10−3

801.4 799.4 −6.66∗10−2 −1.38∗10−3

989.0 987.0 5.43∗10−3 5.43∗10−3

Now we sketch the modifications necessary for Sturm–Liouville eigenvalue
problems of the type

−u′′(x)+ q(x)u(x) = λu(x), 0 < x < 1, (4.30)

u(0) = 0, u′(1)+ Hu(1) = 0. (4.31)

Now the eigenvalues are zeros of the characteristic function

f (λ ) = u2
′(1,λ ,q)+ Hu2(1,λ ,q), λ ∈ C. (4.32)

For the special case where q = 0, we have u2(x,λ ,0) = sin(
√

λx)/
√

λ . The charac-
teristic function for this case is then given by

g(λ ) = cos
√

λ + H
sin

√
λ√

λ
.

The zeros of f for q = 0 and H = 0 are λn = (n + 1/2)2π2, n = 0,1,2, . . . If H �= 0,
one has to solve the transcendental equation zcotz + H = 0. One can show (see
Problem 4.4) by an application of the implicit function theorem in R

2 that the eigen-
values for q = 0 behave as

λn = (n + 1/2)2π2 + 2H +O(1/n).
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Lemma 4.7 is also valid because the boundary value problem is again self-adjoint.
The Counting Lemma 4.9 now takes the following form.

Lemma 4.13. Let q ∈ L2(0,1) and N > 2exp(‖q‖L1)(1 + |H|) be an integer. Then
we have:

(a) The mapping f (λ ) := u2
′(1,λ ,q)+Hu2(1,λ ,q) has exactly N zeros in the half-

plane
H :=

{
λ ∈ C : Reλ < N2π2} .

(b) f has exactly one zero in every set

Um :=
{

λ ∈ C :
∣∣
∣
√

λ − (m−1/2)π
∣∣
∣< π/2

}

provided m > N.
(c) There are no other zeros of f in C.

For the proof, we refer to Problem 4.3. We can apply the implicit function theo-
rem to the equation

u2
′(1,λn(q),q)+ Hu2(1,λn(q),q) = 0

because the zeros are again simple. Differentiating this equation with respect to q
yields

[
u2,λ

′(1, λ̂n, q̂)+ Hu2,λ(1, λ̂n, q̂)
]

λn
′(q̂)q

+ u2,q
′(1, λ̂n, q̂)+ Hu2,q(1, λ̂n, q̂) = 0.

Theorem 4.6 yields

1∫

0

u2(t)2dt = u2,λ (1) u2
′(1)

︸ ︷︷ ︸
=−Hu2(1)

−u2,λ
′(1)u2(1)

= −u2(1)
[
u2,λ

′(1)+ Hu2,λ(1)
]
,

where again we have dropped the arguments λ̂n and q̂. Analogously, we compute

−
1∫

0

q(t)u2(t)2dt = −u2(1)
[
u2,q

′(1)+ Hu2,q(1)
]

and thus

λn
′(q̂)q = − u2,q

′(1)+ Hu2,q(1)
u2,λ

′(1)+ Hu2,λ(1)
=
∫ 1

0 q(t)u2(t)2dt
∫ 1

0 u2(t)2dt
.
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This has the same form as before. We continue as in the case of the Dirichlet bound-
ary condition and arrive at Theorem 4.14.

Theorem 4.14. Let Q ⊂ L2(0,1) be bounded, q ∈ Q, and H ∈ R. The eigenvalues
λn have the asymptotic form

λn =
(

n +
1
2

)2

π2 + 2H +
1∫

0

q(t)dt −
1∫

0

q(t)cos(2n + 1)πt dt +O(1/n) (4.33)

as n tends to infinity, uniformly in q ∈ Q. For the L2-normalized eigenfunctions, we
have

gn(x) =
√

2sin(n + 1/2)πx +O(1/n) and (4.34a)

gn
′(x) =

√
2(n + 1/2)π cos(n + 1/2)πx +O(1) (4.34b)

uniformly for x ∈ [0,1] and q ∈ Q.

As mentioned at the beginning of this section, there are other ways to prove the
asymptotic formulas for the eigenvalues and eigenfunctions that avoid Lemma 4.9
and the differentiability of λn with respect to q. But the proof in, e.g., [252], seems
to yield only the asymptotic behavior

λn = m2
nπ2 +

1∫

0

q(t)dt +O(1/n)

instead of (4.27). Here, (mn) denotes some sequence of natural numbers.
Before we turn to the inverse problem, we make some remarks concerning the

case where q is complex-valued. Now the eigenvalue problems are no longer self-
adjoint, and the general spectral theory is not applicable anymore. With respect to
Lemma 4.7, it is still easy to show that the eigenfunctions corresponding to differ-
ent eigenvalues are linearly independent and that the geometric multiplicities are
still one. The Counting Lemma 4.9 is valid without restrictions. From this, we ob-
serve also that the algebraic multiplicities of λn are one, at least for n > N. Thus, the
remaining arguments of this section are valid if we restrict ourselves to the eigen-
values λn with n > N. Therefore, the asymptotic formulas (4.27), (4.28a), (4.28b),
(4.33), (4.34a), and (4.34b) hold equally well for complex-valued q.

4.4 Some Hyperbolic Problems

As a preparation for the following sections, in particular Sects. 4.5 and 4.7, we study
some initial value problems for the two-dimensional linear hyperbolic partial differ-
ential equation



4.4 Some Hyperbolic Problems 141

∂ 2W (x,t)
∂x2 − ∂ 2W (x,t)

∂ t2 + a(x,t)W (x,t) = 0,

where the coefficient a has the special form a(x,t) = p(t)− q(x). It is well-known
that the method of characteristics reduces initial value problems to Volterra integral
equations of the second kind, which can be studied in spaces of continuous func-
tions. This approach naturally leads to solution concepts for nonsmooth coefficients
and boundary data. We summarize the results in three theorems. In each of them
we formulate first the results for the case of smooth coefficients and then for the
nonsmooth case. We remark that it is not our aim to relax the solution concept to the
weakest possible case but rather to relax the assumptions only to the extent that are
needed in Sects. 4.5 and 4.7.

Although most of the problems — at least for smooth data — are subjects of
elementary courses on partial differential equations, we include the complete proofs
for the convenience of the reader.

Before we begin with the statements of the theorems, we recall some function
spaces:

C0[0,1] := { f ∈C[0,1] : f (0) = 0} ,

C j
0[0,1] := C j[0,1]∩C0[0,1], j = 1,2,

H1(0,1) :=
{

f ∈C[0,1] : f (x) = α +
∫ x

0
g(t)dt,α ∈ R,g ∈ L2(0,1)

}
,

H1
0 (0,1) := H1(0,1)∩C0[0,1]

and equip them with their canonical norms:

‖ f‖∞ := max
0≤x≤1

| f (x)| in C0[0,1],

‖ f‖C j := max
�=1,..., j

max
0≤x≤1

∣
∣
∣ f (�)(x)

∣
∣
∣ in C j

0[0,1],

‖ f‖H1 :=
√
‖ f‖2

L2 +‖ f ′‖2
L2 in H1(0,1) and H1

0 (0,1).

Furthermore, define the triangular regions Δ0 ⊂ R
2 and Δ ⊂ R

2 by

Δ0 :=
{
(x,t) ∈ R

2 : 0 < t < x < 1
}

, (4.35a)

Δ :=
{
(x,t) ∈ R

2 : |t| < x < 1
}

. (4.35b)

We begin with an initial value problem, sometimes called the Goursat problem.

Theorem 4.15. (a) Let p,q ∈ C[0,1] and f ∈ C2[0,1] with f (0) = 0. Then there
exists a unique solution W ∈ C2(Δ0) of the following hyperbolic initial value
problem:

∂ 2W (x,t)
∂ x2 − ∂ 2W (x,t)

∂ t2 +(p(t)−q(x))W (x,t) = 0 in Δ0, (4.36a)
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W (x,x) = f (x), 0 ≤ x ≤ 1, (4.36b)

W (x,0) = 0, 0 ≤ x ≤ 1. (4.36c)

(b) The solution operator (p,q, f ) �→ W has an extension to a bounded operator
from L2(0,1)×L2(0,1)×C0[0,1] into C(Δ0).
(c) The operator (p,q, f ) �→ (W (1, ·),Wx(1, ·)) has an extension to a bounded op-
erator from L2(0,1)×L2(0,1)×H1

0 (0,1) into H1(0,1)×L2(0,1). Here and in the
following, we denote by Wx the partial derivative with respect to x.

Proof. First, we extend the problem to the larger region Δ and study the problem

∂ 2W (x,t)
∂x2 − ∂ 2W (x,t)

∂ t2 + a(x,t)W(x,t) = 0 in Δ, (4.37a)

W (x,x) = f (x), 0 ≤ x ≤ 1, (4.37b)

W (x,−x) = − f (x), 0 ≤ x ≤ 1, (4.37c)

where we have set a(x,t) := p(|t|)−q(x) for (x,t) ∈ Δ.
To treat problem (4.37a)–(4.37c), we make the change of variables

x = ξ +η , t = ξ −η.

Then (x,t) ∈ Δ if and only if (ξ ,η) ∈ D, where

D := {(ξ ,η) ∈ (0,1)× (0,1) : η +ξ < 1} . (4.38)

We set w(ξ ,η) :=W (ξ +η,ξ −η) for (ξ ,η)∈D. Then W solves problem (4.37a)–
(4.37c) if and only if w solves the hyperbolic problem

∂ 2w(ξ ,η)
∂ξ ∂η

= −a(ξ + η,ξ −η)
︸ ︷︷ ︸

=:ã(ξ ,η)

w(ξ ,η), (ξ ,η) ∈ D, (4.39a)

w(ξ ,0) = f (ξ ) for ξ ∈ [0,1], (4.39b)

w(0,η) = − f (η) for η ∈ [0,1]. (4.39c)

Now let w be a solution of (4.39a)–(4.39c). We integrate the differential equation
twice and use the initial conditions. Then w solves the integral equation

w(ξ ,η) =
η∫

0

ξ∫

0

ã(ξ ′,η ′)w(ξ ′,η ′)dξ ′dη ′ − f (η)+ f (ξ ), (4.40)
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for (ξ ,η) ∈ D. This is a Volterra integral equation in two dimensions. We use the
standard method to solve this equation by successive iteration in C(D). Let A be the
Volterra integral operator defined by the integral on the right-hand side of (4.40). By
induction with respect to n ∈ N, it can easily be seen that

|(Anw) (ξ ,η)| ≤ ‖w‖∞ ‖ã‖n
L2

1
n!

(ξ η)n/2, n = 1,2, . . . ;

thus ‖Anw‖∞ ≤ ‖w‖∞ ‖ã‖n
L2

1
n! . Therefore, ‖An‖∞ < 1 for sufficiently large n and the

Neumann series converges (see Appendix A, Theorem A.29). This proves that there
exists a unique solution w ∈ C(D) of (4.40). From our arguments, uniqueness also
holds for (4.37a)–(4.37c).

Now we prove that w ∈ C2(D). We differentiate (4.40) with respect to ξ , which
gives

wξ (ξ ,η) =
η∫

0

[
q(ξ + η ′)− p(

∣
∣ξ −η ′∣∣)

]
w(ξ ,η ′)dη ′ + f ′(ξ )

=

ξ+η∫

ξ

q(y)w(ξ ,y− ξ )dy−
ξ∫

ξ−η

p(|y|)w(ξ ,ξ − y)dy + f ′(ξ )

and analogously for wη . This form can be differentiated again. Thus w ∈C2(D), and
we have shown that W is the unique solution of (4.37a)–(4.37c).

Because a(x, ·) is an even function and the initial data are odd functions with
respect to t, we conclude from the uniqueness result that the solution W (x, ·) is also
odd. In particular, this implies that W (x,0) = 0 for all x ∈ [0,1], which proves that
W solves problem (4.36a)–(4.36c) and finishes part (a).

Part (b) follows immediately from the integral Eq. (4.40) because the integral
operator A : C(D) →C(D) depends continuously on the kernel ã ∈ L2(D).

For part (c), we observe that

W (1,2ξ −1) = w(ξ ,1−ξ ) and

Wx((1,2ξ −1) =
1
2

wξ (ξ ,1−ξ )+
1
2

wη (ξ ,1−ξ ).

Then the boundedness of the operator follows again by differentiating the integral
Eq. (4.40). By Theorem A.28, there exists a bounded extension of this operator from
L2(0,1)×L2(0,1)×H1

0 (0,1) into H1(0,1)×L2(0,1). This ends the proof. 
�

If p,q ∈ L2(0,1) and f ∈C0[0,1], we call the solution

W (x,t) = w

(
1
2
(x + t),

1
2
(x− t)

)
,
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where w ∈ C(Δ) solves the integral Eq. (4.40), a weak solution of the Goursat
problem (4.36a)–(4.36c). We observe that for every weak solution W there exist se-
quences (pn),(qn)⊂C[0,1] and ( fn)⊂C2[0,1] with fn(0) = 0 and ‖pn − p‖L2 → 0,
‖qn −q‖L2 → 0 and ‖ fn − f‖∞ → 0 such that the solutions Wn ∈C2(Δ0) of (4.36a)–
(4.36c) corresponding to pn, qn, and fn converge uniformly to W .

For the special case p = q = 0, the integral Eq. (4.40) reduces to the well-known
solution formula

W (x,t) = f

(
1
2
(x + t)

)
− f

(
1
2
(x− t)

)
.

The next theorem studies a Cauchy problem for the same hyperbolic differential
equation.

Theorem 4.16. (a) Let f ∈C2[0,1], g ∈C1[0,1] with f (0) = f ′′(0) = g(0) = 0, and
p,q ∈C[0,1] and F ∈C(Δ0). Then there exists a unique solution W ∈C2(Δ0) of the
Cauchy problem

∂ 2W (x,t)
∂x2 − ∂ 2W (x,t)

∂ t2 +(p(t)−q(x))W (x,t) = F(x,t) in Δ0, (4.41a)

W (1,t) = f (t) for 0 ≤ t ≤ 1, (4.41b)

∂
∂ x

W (1,t) = g(t) for 0 ≤ t ≤ 1. (4.41c)

(b) Furthermore, the solution operator (p,q,F, f ,g) �→ W has an extension to
a bounded operator from L2(0,1)× L2(0,1)× L2(Δ0)× H1

0 (0,1)× L2(0,1) into
C(Δ0).

Proof. As in the proof of Theorem 4.15, we set a(x,t) := p(|t|)−q(x) for (x,t) ∈ Δ
and extend F to an even function on Δ by F(x,−t) = F(x,t) for (x,t) ∈ Δ0. We also
extend f and g to odd functions on [−1,1] by f (−t) = − f (t) and g(−t) = −g(t)
for t ∈ [0,1]. Then F ∈C

(
Δ
)
, f ∈C2[−1,1], and g ∈C1[−1,1]. We again make the

change of variables

x = ξ + η , t = ξ −η , w(ξ ,η) = W (ξ +η ,ξ −η) for (ξ ,η) ∈ D,

where D is given by (4.38). Then W solves (4.41a)–(4.41c) if and only if w solves

∂ 2w(ξ ,η)
∂ξ ∂η

= ã(ξ ,η)w(ξ ,η)+ F̃(ξ ,η), (ξ ,η) ∈ D,

where F̃(ξ ,η) = F(ξ + η,ξ −η) and ã(ξ ,η) = −a(ξ + η,ξ −η). The Cauchy
conditions (4.41b) and (4.41c) transform into

w(ξ ,1−ξ ) = f (2ξ −1) and wξ (ξ ,1−ξ )+ wη(ξ ,1− ξ ) = 2g(2ξ −1)
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for 0 ≤ ξ ≤ 1. Differentiating the first equation and solving for wξ and wη yields

wξ (ξ ,1−ξ ) = g(2ξ −1)+ f ′(2ξ −1) and wη(ξ ,1−ξ ) = g(2ξ −1)− f ′(2ξ −1)

for 0 ≤ ξ ≤ 1. Integration of the differential equation with respect to ξ from ξ to
1−η yields

∂w(ξ ,η)
∂η

= −
1−η∫

ξ

[
ã(ξ ′,η)w(ξ ′,η)+ F̃(ξ ′ + η)

]
dξ ′ + g(1−2η)− f ′(1−2η).

Now we integrate this equation with respect to η from η to 1− ξ and arrive at

w(ξ ,η) =

1−ξ∫

η

1−η ′∫

ξ

[
ã(ξ ′,η ′)w(ξ ′,η ′)+ F̃(ξ ′,η ′)

]
dξ ′dη ′

−
1−ξ∫

η

g(1−2η ′)dη ′ +
1
2

f (2ξ −1)+
1
2

f (1−2η) (4.42)

for (ξ ,η) ∈ D. This is again a Volterra integral equation in two variables. Let A
denote the integral operator

(Aw)(ξ ,η) =

1−ξ∫

η

1−η ′∫

ξ

ã(ξ ′,η ′)w(ξ ′,η ′)dξ ′dη ′, (ξ ,η) ∈ D.

By induction, it is easily seen that

|(Anw)(ξ ,η)| ≤ ‖w‖∞ ‖ã‖n
L2

1
√

(2n)!
(1− ξ −η)n

for all (ξ ,η) ∈ D and n ∈ N; thus

‖Anw‖∞ ≤ ‖w‖∞ ‖ã‖n
L2

1
√

(2n)!

for all n ∈ N. For sufficiently large n, we conclude that ‖An‖∞ < 1, which again
implies that (4.42) is uniquely solvable in C(D). Now we argue exactly as in the
proof of Theorem 4.15. 
�

For the special case p = q = 0 and F = 0, the integral Eq. (4.42) reduces to the
well-known d’Alembert formula

W (x,t) = −1
2

t+(1−x)∫

t−(1−x)

g(τ)dτ +
1
2

f (t +(1− x))+
1
2

f (t − (1− x)) .
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Finally, the third theorem studies a quite unusual coupled system for a pair (W,r) of
functions. We treat this system with the same methods as above.

Theorem 4.17. (a) Let p,q∈C[0,1], F ∈C(Δ0), f ∈C2[0,1], and g∈C1[0,1] such
that f (0) = f ′′(0) = g(0) = 0. Then there exists a unique pair of functions
(W,r) ∈C2(Δ0)×C[0,1] with

∂ 2W (x,t)
∂x2 − ∂ 2W (x,t)

∂ t2 +(p(t)−q(x))W (x,t) = F(x,t)r(x) in Δ0, (4.43a)

W (x,x) =
1
2

x∫

0

r(t)dt, 0 ≤ x ≤ 1, (4.43b)

W (x,0) = 0, 0 ≤ x ≤ 1, (4.43c)

and

W (1,t) = f (t) and
∂
∂ x

W (1,t) = g(t) for all t ∈ [0,1]. (4.43d)

(b) Furthermore, the solution operator (p,q,F, f ,g) �→ (W,r) has an extension to
a bounded operator from L2(0,1)×L2(0,1)×C(Δ0)×H1

0 (0,1)×L2(0,1) into
C(Δ0)×L2(0,1).

Proof. We apply the same arguments as in the proofs of Theorems 4.15 and 4.16.
We define a(x,t)= p(|t|)−q(x) and extend F(x, ·) to an even function and f and g to
odd functions. We again make the change of variables x = ξ +η and t = ξ −η and
set ã(ξ ,η) = −a(ξ +η ,ξ −η) and F̃(ξ ,η) = F(ξ +η ,ξ −η). In Theorem 4.16,
we have shown that the solution W of the Cauchy problem (4.43a) and (4.43d) is
equivalent to the integral equation

w(ξ ,η) =

1−ξ∫

η

1−η ′∫

ξ

[
ã(ξ ′,η ′)w(ξ ′,η ′)+ F̃(ξ ′,η ′)r(ξ ′ +η ′)

]
dξ ′dη ′

−
1−ξ∫

η

g(1−2η ′)dη ′ +
1
2

f (2ξ −1)+
1
2

f (1−2η) (4.44a)

for w(ξ ,η) = W (ξ + η,ξ − η) (see Eq. (4.42)). From this and the initial con-
dition (4.43b), we derive a second integral equation. We set η = 0 in (4.44a),
differentiate, and substitute (4.43b). This yields the following Volterra equation after
an obvious change of variables:

1
2

r(x) = −
1∫

x

[
ã(x,y− x)w(x,y− x)+ r(y)F̃(x,y− x)

]
dy

+ g(2x−1)+ f ′(2x−1). (4.44b)
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Assume that there exists a solution (w,r) ∈ C(D)×C[0,1] of (4.44a) and (4.44b).
Then w is differentiable and d

dxW (x,x) = d
dx w(x,0) = 1

2 r(x). Now, because a(x, ·)
and F(x, ·) are even and f and g are odd functions, we conclude that W (x, ·) is also
odd. In particular, W (x,0) = 0 for all x ∈ [0,1]. This implies W (0,0) = 0 and thus
W (x,x) = 1

2

∫ x
0 r(t)dt. Therefore, we have shown that every solution of Eqs. (4.44a)

and (4.44b) satisfies (4.43a)–(4.43d) and vice versa.
Now we sketch the proof that the system (4.44a), (4.44b) is uniquely solvable for

(w,r) ∈C(D)×L2(0,1). We write the system in the form

(
w
r

)
= A

(
w
r

)
+ R

with obvious meanings of A = A11 A12
A21 A22

and R =
(R1

R2

)
∈ C
(
D
)
×L2(0,1). Then A is

well-defined from C(D)×L2(0,1) into itself and depends continuously on ã∈ L2(Δ)
and F̃ ∈C(D). We observe that (4.44b) is a Volterra equation for r if w is kept fixed.
From Appendix A, Example A.30, we can represent the solution r in the form

r(x) = (A21w+ R2)(x)+
1∫

x

b̃(x,y)(A21w+ R2) (y)dy

= Lw(x)+ h(x),

where the operator L and function h depend continuously on F̃ , ã, f , and g. Using
the explicit expression of A21w yields an estimate of the form

|Lw(x)| ≤ c̃max{|w(y,z− y)| : y ≤ z ≤ 1,x ≤ y ≤ 1} for x ∈ [0,1].

Now we substitute r = Lw+ h into (4.44a), which yields

w(ξ ,η) =

1−ξ∫

η

1−η ′∫

ξ

[
ã(ξ ′,η ′)w(ξ ′,η ′)+ F̃(ξ ′,η ′)Lw(ξ ′ + η ′)

]
dξ ′dη ′

+R̃(ξ ,η)

for some function R̃ depending continuously on the data. Let B be the integral oper-
ator on the right-hand side and c := ‖ã‖L2 + c̃‖F̃‖L2 . By induction, one shows again
that

|(Bnw)(ξ ,η)| ≤ cn
√

(2n)!
‖w‖∞ (1−ξ −η)n in D.

This again implies that ‖Bn‖∞ tends to zero as n tends to infinity. The contraction
mapping theorem (see Appendix A, Theorem A.29) yields existence and uniqueness
of the system of integral equations in C(D)×L2(0,1). The regularity of w and p
for part (a) and the extension in part (b) are proven analogously as in the proof of
Theorem 4.15. 
�
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4.5 The Inverse Problem

Now we study the inverse spectral problem. This is, given the eigenvalues λn of the
Sturm–Liouville eigenvalue problem

−u′′(x)+ q(x)u(x) = λ u(x), 0 < x < 1, u(0) = 0, u(1) = 0, (4.45)

determine the function q. We saw in Example 4.1 that the knowledge of the spectrum
{λn : n ∈ N} is, in general, not sufficient to determine q uniquely. We need more
information, such as a second spectrum μn of an eigenvalue problem of the form

−v ′′(x)+ q(x)v(x) = μv(x), v(0) = 0, v ′(1)+ Hv(1) = 0, (4.46)

or some knowledge about the eigenfunctions.
The basic tool in the uniqueness proof for this inverse problem is the use of

the Gelfand–Levitan–Marchenko integral operator (see [89]). This integral operator
maps solutions of initial value problems for the equation −u′′ + qu = λu onto solu-
tions for the equation −u′′+ pu = λu and, most importantly, does not depend on λ .
It turns out that the kernel of this operator is the solution of the hyperbolic boundary
value problem that was studied in the previous section.

Theorem 4.18. Let p,q ∈ L2(0,1), λ ∈ C, and u,v ∈ H2(0,1) be solutions of

−u′′(x)+ q(x)u(x) = λu(x), 0 < x < 1, u(0) = 0, (4.47a)

− v ′′(x)+ p(x)v(x) = λv(x), 0 < x < 1, v(0) = 0, (4.47b)

such that u′(0) = v ′(0). Also let K ∈ C(Δ0) be the weak solution of the Goursat
problem

∂ 2K(x,t)
∂x2 − ∂ 2K(x,t)

∂ t2 +(p(t)−q(x))K(x,t) = 0 in Δ0, (4.48a)

K(x,0) = 0, 0 ≤ x ≤ 1, (4.48b)

K(x,x) =
1
2

x∫

0

(q(s)− p(s)) ds, 0 ≤ x ≤ 1, (4.48c)

where the triangular region Δ0 is again defined by

Δ0 :=
{
(x,t) ∈ R

2 : 0 < t < x < 1
}

. (4.49)
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Then we have

u(x) = v(x)+
x∫

0

K(x,t)v(t)dt, 0 ≤ x ≤ 1. (4.50)

We remark that Theorem 4.15 with f (x) = 1
2

∫ x
0 (q(s)− p(s)) ds implies that this

Goursat problem is uniquely solvable in the weak sense.

Proof. First, let p,q ∈C1[0,1]. Then K ∈C2(Δ0) by Theorem 4.15. Define w by the
right-hand side of (4.50); that is,

w(x) := v(x)+
x∫

0

K(x,t)v(t)dt for 0 ≤ x ≤ 1.

Then w(0) = v(0) = 0 = u(0) and w is differentiable with

w′(x) = v ′(x)+ K(x,x)v(x)+
x∫

0

Kx(x,t)v(t)dt, 0 < x < 1.

Again, we denote by Kx, Kt , etc., the partial derivatives. For x = 0, we have w′(0) =
v ′(0) = u′(0). Furthermore,

w′′(x) = v ′′(x)+ v(x)
d
dx

K(x,x)+ K(x,x)v ′(x)

+Kx(x,x)v(x)+
x∫

0

Kxx(x,t)v(t)dt

=
[

p(x)−λ +
d

dx
K(x,x)+ Kx(x,x)

]
v(x)+ K(x,x)v ′(x)

+
x∫

0

[(q(x)− p(t))K(x,t)v(t)+ Ktt(x,t)v(t)] dt.

Partial integration yields

x∫

0

Ktt (x,t)v(t)dt

=
x∫

0

K(x,t)v ′′(t)dt +
[
Kt(x,t)v(t)−K(x,t)v ′(t)

]t=x
t=0

=
x∫

0

(p(t)−λ )K(x,t)v(t)dt + Kt(x,x)v(x)−K(x,x)v ′(x).
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Therefore, we have

w′′(x) =

⎡

⎢⎢
⎢
⎣

p(x)−λ +
d
dx

K(x,x)+ Kx(x,x)+ Kt(x,x)
︸ ︷︷ ︸

=2 d
dx K(x,x)=q(x)−p(x)

⎤

⎥⎥
⎥
⎦

v(x)

+(q(x)−λ )
x∫

0

K(x,t)v(t)dt

= (q(x)−λ )

⎡

⎣v(x)+
x∫

0

K(x,t)v(t)dt

⎤

⎦= (q(x)−λ )w(x);

that is, w solves the same initial value problem as u. The Picard–Lindelöf uniqueness
theorem for initial boundary value problems yields w = u. Thus we have proven the
theorem for smooth functions p and q.

Now let p,q∈ L2(0,1). Then we choose functions (pn),(qn)∈C1[0,1] with pn →
p and qn → q in L2(0,1), respectively. Let Kn be the solution of (4.48a)–(4.48c) for
pn and qn. We have already shown that

un(x) = vn(x)+
x∫

0

Kn(x,t)vn(t)dt, 0 ≤ x ≤ 1,

for all n ∈ N, where un and vn solve (4.47a) and (4.47b), respectively, with un
′(0) =

vn
′(0) = u′(0) = v ′(0). From the continuous dependence results of Theorems 4.6

and 4.15(b), the functions un, vn, and Kn converge uniformly to u, v , and K, respec-
tively. This proves the assertion of the theorem for p,q ∈ L2(0,1). 
�

As an example we take p = 0 and v(x) = sin(
√

λx)/
√

λ and have the following
result.

Example 4.19. Let u be a solution of

−u′′(x)+ q(x)u(x) = λu(x), u(0) = 0, u′(0) = 1. (4.51)

Then we have the representation

u(x) =
sin

√
λx√

λ
+

x∫

0

K(x,t)
sin

√
λ t√

λ
dt, 0 ≤ x ≤ 1, (4.52)

where the kernel K solves the following Goursat problem:

Kxx(x,t)−Ktt(x,t)−q(x)K(x,t) = 0 in Δ0, (4.53a)
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K(x,0) = 0, 0 ≤ x ≤ 1, (4.53b)

K(x,x) =
1
2

x∫

0

q(s)ds, 0 ≤ x ≤ 1. (4.53c)

This example has an application that is interesting in itself but that we also need
in Sect. 4.7.

Theorem 4.20. Let λn be the eigenvalues of one of the eigenvalue problems (4.45)
or (4.46). Then the set of functions

{
sin
(√

λn·
)

: n ∈ N
}

is complete in L2(0,1). This

means that
∫ 1

0 h(x)sin
√

λnxdx = 0 for all n ∈ N implies that h = 0.

Proof. Let T : L2(0,1) → L2(0,1) be the Volterra integral operator of the second
kind with kernel K; that is,

(Tv)(x) := v(x)+
x∫

0

K(x,t)v(t)dt, x ∈ (0,1), v ∈ L2(0,1),

where K solves the Goursat problem (4.53a)–(4.53c). Then we know that T is an
isomorphism from L2(0,1) onto itself. Define vn(x) := sin

√
λnx for x ∈ [0,1], n∈N.

Let un be the solution of the initial value problem:

−un
′′ + qun = λnun in (0,1), un(0) = 0, un

′(0) = 1.

un is the eigenfunction corresponding to λn and, by the preceding example,

un =
1√
λn

Tvn or vn =
√

λnT−1un.

Now, if
∫ 1

0 h(x)vn(x)dx = 0 for all n ∈ N, then

0 =
1∫

0

h(x)T−1un(x)dx =
1∫

0

un(x)(T ∗)−1 h(x)dx for all n ∈ N,

where T ∗ denotes the L2-adjoint of T . Because {un/‖un‖L2 : n ∈ N} is complete in
L2(0,1) by Lemma 4.7, we conclude that (T ∗)−1 h = 0 and thus h = 0. 
�

Now we can prove the main uniqueness theorem.

Theorem 4.21. Let H ∈ R, p,q ∈ L2(0,1), and λn(p), λn(q) be the eigenvalues
of the eigenvalue problem

−u′′+ ru = λu in (0,1), u(0) = 0, u(1) = 0,
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corresponding to r = p and r = q, respectively. Furthermore, let μn(p) and μn(q)
be the eigenvalues of

−u′′+ ru = μu in (0,1), u(0) = 0, u′(1)+ Hu(1) = 0,

corresponding to r = p and r = q, respectively.
If λn(p) = λn(q) and μn(p) = μn(q) for all n ∈ N, then p = q.

Proof. From the asymptotics of the eigenvalues, we conclude that

λn(p) = n2π2 +
1∫

0

p(t)dt + o(1), n → ∞,

λn(q) = n2π2 +
1∫

0

q(t)dt + o(1), n → ∞,

and thus
1∫

0

(p(t)−q(t)) dt = lim
n→∞

(λn(p)−λn(q)) = 0. (4.54)

Now let K be the solution of the Goursat problem (4.48a)–(4.48c). Then K depends
only on p and q and is independent of the eigenvalues λn := λn(p) = λn(q) and
μn := μn(p) = μn(q). Furthermore, from (4.54) we conclude that K(1,1) = 0.

Now let un, vn be the eigenfunctions corresponding to λn(q) and λn(p), respec-
tively; that is, solutions of the differential equations

−un
′′(x)+ q(x)un(x) = λnun(x), −vn

′′(x)+ p(x)vn(x) = λnvn(x)

for 0 < x < 1 with homogeneous Dirichlet boundary conditions on both sides.
Furthermore, we assume that they are normalized by un

′(0) = vn
′(0) = 1. Then

Theorem 4.18 is applicable and yields the relationship

un(x) = vn(x)+
x∫

0

K(x,t)vn(t)dt for x ∈ [0,1], (4.55)

and all n ∈ N. For x = 1, the boundary conditions yield

0 =
1∫

0

K(1,t)vn(t)dt for all n ∈ N. (4.56)

Now we use the fact that the set {vn/‖vn‖L2 : n ∈ N} forms a complete orthonormal
system in L2(0,1). From this, K(1,t) = 0 for all t ∈ [0,1] follows.
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Now let ũn and ṽn be eigenfunctions corresponding to μn and q and p, respec-
tively, with the normalization ũ′n(0) = ṽ ′

n(0) = 1. Again, Theorem 4.18 is applicable
and yields the relationship (4.55) for ũn and ṽn instead of un und vn, respectively.
We differentiate this equation and arrive at

0 = ũ′n(1)− ṽ ′
n(1)+ H [ũn(1)− ṽn(1)]

= K(1,1)
︸ ︷︷ ︸

=0

ṽn(1)+
1∫

0

⎛

⎝Kx(1,t)+ H K(1,t)
︸ ︷︷ ︸

=0

⎞

⎠ ṽn(t)dt.

We conclude that
∫ 1

0 Kx(1,t)ṽn(t)dt = 0 for all n ∈ N. From this, Kx(1,t) = 0 for all
t ∈ (0,1) follows because {ṽn/‖ṽn‖L2} forms a complete orthonormal system.

Now we apply Theorem 4.16, which yields that K has to vanish identically. In
particular, this means that

0 = K(x,x) =
1
2

x∫

0

(p(s)−q(s)) ds for all x ∈ (0,1).

Differentiating this equation yields that p = q. 
�

We have seen in Example 4.1 that the knowledge of one spectrum for the Sturm–
Liouville differential equation is not enough information to recover the function q
uniquely. Instead of knowing the spectrum for a second pair of boundary conditions,
we can use other kinds of information, as the following theorem shows.

Theorem 4.22. Let p,q ∈ L2(0,1) with eigenvalues λn(p), λn(q), and eigenfunc-
tions un and vn, respectively, corresponding to Dirichlet boundary conditions u(0)=
0, u(1) = 0. Let the eigenvalues coincide; that is, λn(p) = λn(q) for all n ∈ N. Let
one of the following assumptions also be satisfied:

(a) Let p and q be even functions with respect to 1/2; that is, p(1− x) = p(x) and
q(1− x) = q(x) for all x ∈ [0,1].

(b) Let the Neumann boundary values coincide; that is, let

un
′(1)

un
′(0)

=
vn

′(1)
vn

′(0)
for all n ∈ N. (4.57)

Then p = q.

Proof. (a) The eigenfunctions are also even functions. This follows from the fact
that the eigenvalues are simple and that u and ũ(x) := u(1− x) are eigenfunc-
tions corresponding to the same eigenvalue. Therefore, for every eigenfunction
u we have that u′(1) = −u′(0); that is, u′(1)/u′(0) = −1. This reduces the
uniqueness question for part (a) to part (b).

(b) Now we normalize the eigenfunctions such that un
′(0) = vn

′(0) = 1. We follow
the first part of the proof of Theorem 4.21. From (4.56), we again conclude
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that K(1,t) vanishes for all t ∈ (0,1). The additional assumption (4.57)
yields that un

′(1) = vn
′(1). We differentiate (4.55), set x = 1, and arrive at

∫ 1
0 Kx(1,t)vn(t)dt = 0 for all n ∈ N. Again, this implies that Kx(1, ·) = 0, and

the proof follows the same lines as the proof of Theorem 4.21. 
�

4.6 A Parameter Identification Problem

This section and the next chapter are devoted to the important field of parameter
identification problems for partial differential equations. In Chap. 6, we study the
inverse scattering problem to determine the refractive index of a medium from mea-
surements of the scattered field, but in this section we consider an application of
the inverse Sturm–Liouville eigenvalue problem to the following parabolic initial
boundary value problem. First, we formulate the direct problem:

Let T > 0 and ΩT := (0,1)× (0,T) ⊂ R
2, q ∈C[0,1] and f ∈C2[0,T ] be given.

Let f (0) = 0 and q(x) ≥ 0 for x ∈ [0,1]. Determine U ∈ C
(
ΩT
)
, which is twice

continuously differentiable with respect to x and continuously differentiable with
respect to t in ΩT such that ∂U/∂x ∈C

(
ΩT
)

and

∂U(x,t)
∂ t

=
∂ 2U(x,t)

∂x2 −q(x)U(x,t) in ΩT , (4.58a)

U(x,0) = 0, x ∈ [0,1], (4.58b)

U(0,t) = 0,
∂
∂x

U(1,t) = f (t), t ∈ (0,T ). (4.58c)

From the theory of parabolic initial boundary value problems, it is known that there
exists a unique solution of this problem. We prove uniqueness and refer to [153] or
(4.60) for the question of existence.

Theorem 4.23. Let f = 0. Then U = 0 is the only solution of (4.58a)–(4.58c) in ΩT .

Proof. Multiply the differential Eq. (4.58a) by U(x,t) and integrate with respect to
x. This yields

1
2

d
dt

1∫

0

U(x,t)2 dx =
1∫

0

[
∂ 2U(x,t)

∂x2 U(x,t)−q(x)U(x,t)2
]

dx.

We integrate by parts and use the homogeneous boundary conditions:

1
2

d
dt

1∫

0

U(x,t)2 dx = −
1∫

0

[(
∂U(x,t)

∂x

)2

+ q(x)U(x,t)2

]

dx ≤ 0.
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This implies that t �→
∫ 1

0 U(x,t)2dx is nonnegative and monotonicly nonincreas-
ing. From

∫ 1
0 U(x,0)2 dx = 0, we conclude that

∫ 1
0 U(x,t)2 dx = 0 for all t; that is,

U = 0. 
�

Now we turn to the inverse problem. Let f be known and, in addition, U(1,t) for
all 0 < t ≤ T . The inverse problem is to determine the coefficient q.

In this section, we are only interested in the question if this provides sufficient
information in principle to recover q uniquely; that is, we study the question of
uniqueness of the inverse problem. It is our aim to prove the following theorem.

Theorem 4.24. Let U1, U2 be solutions of (4.58a)–(4.58c) corresponding to q =
q1 ≥ 0 and q = q2 ≥ 0, respectively, and to the same f . Let f (0) = 0, f ′(0) �= 0, and
U1(1,t) = U2(1,t) for all t ∈ (0,T ). Then q1 = q2 on [0,1].

Proof. Let q and U be q1 or q2 and U1 or U2, respectively. Let λn and gn, n ∈ N, be
the eigenvalues and eigenfunctions, respectively, of the Sturm–Liouville eigenvalue
problem (4.46) for H = 0; that is,

−u′′(x)+ q(x)u(x) = λ u(x), 0 < x < 1, u(0) = u′(1) = 0.

We assume that the eigenfunctions are normalized by ‖gn‖L2 = 1 for all n ∈ N.
Furthermore, we can assume that gn(1) > 0 for all n ∈ N. We know that {gn : n ∈
N} forms a complete orthonormal system in L2(0,1). Theorem 4.14 implies the
asymptotic behavior

λn = (n + 1/2)2 + q̂+ λ̃n with
∞

∑
n=1

λ̃ 2
n < ∞, (4.59a)

gn(x) =
√

2sin(n + 1/2)πx +O (1/n) , (4.59b)

where q̂ =
∫ 1

0 q(x)dx. In the first step, we derive a series expansion for the solution
U of the initial boundary value problem (4.58a)–(4.58c). From the completeness of
{gn : n ∈ N}, we have the Fourier expansion

U(x,t) =
∞

∑
n=1

an(t)gn(x) with an(t) =
1∫

0

U(x,t)gn(x)dx,n ∈ N,

where the convergence is understood in the L2(0,1)-sense for every t ∈ (0,T ]. We
would like to substitute this into the differential equation and the initial and bound-
ary conditions. Because for this formal procedure the interchanging of summation
and differentiation is not justified, we suggest a different derivation of an. We dif-
ferentiate an and use the partial differential Eq. (4.58a). This yields

an
′(t) =

1∫

0

∂U(x,t)
∂ t

gn(x)dx =
1∫

0

[
∂ 2U(x,t)

∂x2 −q(x)U(x,t)
]

gn(x)dx
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=
[

gn(x)
∂U(x,t)

∂x
−U(x,t)gn

′(x)
]x=1

x=0

+
1∫

0

U(x,t)

⎡

⎢
⎣gn

′′(x)−q(x)gn(x)︸ ︷︷ ︸
=−λngn(x)

⎤

⎥
⎦ dx

= f (t)gn(1)−λnan(t).

With the initial condition an(0) = 0, the solution is given by

an(t) = gn(1)
t∫

0

f (τ)e−λn(t−τ)dτ;

that is, the solution U of (4.58a)–(4.58c) takes the form

U(x,t) =
∞

∑
n=1

gn(1)gn(x)
t∫

0

f (τ)e−λn(t−τ)dτ. (4.60)

From partial integration, we observe that

t∫

0

f (τ)e−λn(t−τ)dτ =
1
λn

f (t)− 1
λn

t∫

0

f ′(τ)e−λn(t−τ)dτ,

and this decays as 1/λn. Using this and the asymptotic behavior (4.59a) and (4.59b),
we conclude that the series (4.60) converges uniformly in ΩT . For x = 1, the repre-
sentation (4.60) reduces to

U(1,t) =
∞

∑
n=1

gn(1)2

t∫

0

f (τ)e−λn(t−τ)dτ

=
t∫

0

f (τ)
∞

∑
n=1

gn(1)2e−λn(t−τ)

︸ ︷︷ ︸
=: A(t − τ)

dτ, t ∈ [0,T ].

Changing the orders of integration and summation is justified by Lebesgue’s theo-
rem of dominated convergence. This is seen from the estimate

∞

∑
n=1

gn(1)2e−λns ≤ c
∞

∑
n=1

e−n2π2s ≤ c

∞∫

0

e−σ2π2sdσ =
c

2
√

πs

and the fact that the function s �→ 1/
√

s is integrable.



4.6 A Parameter Identification Problem 157

Such a representation holds for U1(1, ·) and U2(1, ·) corresponding to q1 and q2,
respectively. We denote the dependence on q1 and q2 by superscripts (1) and (2),
respectively. From U1(1, ·) = U2(1, ·), we conclude that

0 =
t∫

0

f (τ)
[
A(1)(t − τ)−A(2)(t − τ)

]
dτ =

t∫

0

f (t − τ)
[
A(1)(τ)−A(2)(τ)

]
dτ;

that is, the function w := A(1)−A(2) solves the homogeneous Volterra integral equa-
tion of the first kind with kernel f (t − τ). We differentiate this equation twice and
use f (0) = 0 and f ′(0) �= 0. This yields a Volterra equation of the second kind for w:

f ′(0)w(t)+
t∫

0

f ′′(t − s)w(s)ds = 0, t ∈ [0,T ].

Because Volterra equations of the second kind are uniquely solvable (see Exam-
ple A.30 of Appendix A), this yields w(t) = 0 for all t, that is

∞

∑
n=1

[
g(1)

n (1)
]2

e−λ (1)
n t =

∞

∑
n=1

[
g(2)

n (1)
]2

e−λ (2)
n t for all t ∈ (0,T ).

We note that g( j)
n (1) > 0 for j = 1,2 by our normalization. Now we can apply a result

from the theory of Dirichlet series (see Lemma 4.25) and conclude that λ (1)
n = λ (2)

n

and g(1)
n (1) = g(2)

n (1) for all n ∈ N. Applying the uniqueness result analogous to
Theorem 4.22, part (b), for the boundary conditions u(0) = 0 and u′(1) = 0 (see
Problem 4.5), we conclude that q1 = q2. 
�

It remains to prove the following lemma.

Lemma 4.25. Let λn and μn be strictly increasing sequences that tend to infinity.
Let the series

∞

∑
n=1

αne−λnt and
∞

∑
n=1

βne−μnt

converge for every t ∈ (0,T ] and uniformly on some interval [δ ,T ]. Let the limits
coincide, that is

∞

∑
n=1

αne−λnt =
∞

∑
n=1

βne−μnt for all t ∈ (0,T ].

If we also assume that αn �= 0 and βn �= 0 for all n ∈ N, then αn = βn and λn = μn

for all n ∈ N.
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Proof. Assume that λ1 �= μ1 or α1 �= β1. Without loss of generality, we can assume
that μ2 > λ1 (otherwise, we have μ1 < μ2 ≤ λ1 < λ2 and can interchange the roles
of λn and μn). Define

Cn(t) := αne−(λn−λ1)t −βne−(μn−λ1)t for t ≥ δ .

By analytic continuation, we conclude that ∑∞
n=1Cn(t) = 0 for all t ≥ δ and that the

series converges uniformly on [δ ,∞). Because

C1(t) = α1 −β1e−(μ1−λ1)t ,

there exists ε > 0 and t1 > δ such that |C1(t)| ≥ ε for all t ≥ t1. Choose n0 ∈ N with

∣
∣
∣∣
∣

n0

∑
n=1

Cn(t)

∣
∣
∣∣
∣
<

ε
2

for all t ≥ t1.

Then we conclude that
∣∣
∣
∣
∣

n0

∑
n=2

Cn(t)

∣∣
∣
∣
∣
=

∣∣
∣
∣
∣
C1(t)−

n0

∑
n=1

Cn(t)

∣∣
∣
∣
∣
≥ |C1(t)|−

∣∣
∣
∣
∣

n0

∑
n=1

Cn(t)

∣∣
∣
∣
∣
≥ ε

2

for all t ≥ t1. Now we let t tend to infinity. The first finite sum converges to zero,
which is a contradiction. Therefore, we have shown that λ1 = μ1 and α1 = β1. Now
we repeat the argument for n = 2, etc. This proves the lemma. 
�

4.7 Numerical Reconstruction Techniques

In this section, we discuss some numerical algorithms suggested and tested by W.
Rundell, P. Sacks, and others. We follow closely the papers [169, 212, 213].

From now on, we assume knowledge of eigenvalues λn and μn, n ∈ N, of the
Sturm–Liouville eigenvalue problems (4.45) or (4.46). It is our aim to determine the
unknown function q. Usually, only a finite number of eigenvalues is known. Then
one cannot expect to recover the total function q but only “some portion” of it (see
(4.62)).

The first algorithm we discuss uses the concept of the characteristic function
again. For simplicity, we describe the method only for the case where q is known to
be an even function; that is, q(1− x) = q(x). Then we know that only one spectrum
suffices to recover q (see Theorem 4.22).

Recalling the characteristic function f (λ ) = u2(1,λ ,q) for the problem (4.45),
the inverse problem can be written as the problem of solving the equations

u2(1,λn,q) = 0 for all n ∈ N (4.61)
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for the function q. If we know only a finite number, say λn for n = 1, . . . ,N, then we
assume that q is of the form

q(x;a) =
N

∑
n=1

an qn(x), x ∈ [0,1], (4.62)

for coefficients a = (a1, . . . ,aN) ∈ R
N and some linear independent even functions

qn. If q is expected to be smooth and periodic, a good choice for qn is qn(x) =
cos(2π(n− 1)x), n = 1, . . . ,N. Equation (4.61) then reduces to the finite nonlinear
system F(a) = 0, where F : R

N → R
N is defined by

Fn(a) := u2(1,λn,q(·;a)) for a ∈ R
N and n = 1, . . . ,N.

Therefore, all of the well-developed methods for solving systems of nonlinear equa-
tions can be used. For example, Newton’s method

a(k+1) = a(k)−F ′
(

a(k)
)−1

F
(

a(k)
)
, k = 0,1, . . . ,

is known to be quadratically convergent if F ′(a)−1 is regular. As we know from
Sect. 4.2, Theorem 4.6, the mapping F is continuously Fréchet differentiable for
every a ∈ R

N . The computation of the derivative is rather expensive, and in general
it is not known if F ′(a) is regular. In [169] it was proven that F ′(a) is regular for
sufficiently small a and is of triangular form for a = 0. This observation leads to the
simplified Newton method of the form

a(k+1) = a(k) −F ′(0)−1F
(

a(k)
)
, k = 0,1, . . . .

For further aspects of this method, we refer to [169].
Before we describe a second algorithm, we observe that from the asymptotic

form (4.27) of the eigenvalues we have an estimate of q̂ =
∫ 1

0 q(x)dx. Writing the
differential equation in the form

−un
′′(x)+ (q(x)− q̂)un(x) = (λn − q̂)un(x), 0 ≤ x ≤ 1,

we observe that we can assume without loss of generality that
∫ 1

0 q(x)dx = 0.
Now we describe an algorithm that follows the idea of the uniqueness Theo-

rem 4.21. The algorithm consists of two steps. First, we recover the Cauchy data
f = K(1, ·) and g = Kx(1, ·) from the two sets of eigenvalues. Then we suggest
Newton-type methods to compute q from these Cauchy data.

The starting point is Theorem 4.18 for the case p = 0. We have already formu-
lated this special case in Example 4.19. Therefore, let (λn,un) be the eigenvalues and
eigenfunctions of the eigenvalue problem (4.45) normalized such that un

′(0) = 1.
The eigenvalues λn are assumed to be known. From Example 4.19, we have the
representation
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un(x) =
sin

√
λnx√

λn
+

x∫

0

K(x,t)
sin

√
λnt√

λn
dt, 0 ≤ x ≤ 1, (4.63)

where K satisfies (4.53a)–(4.53c) with K(1,1) = 1
2

∫ 1
0 q(t)dt = 0. From (4.63) for

x = 1, we can compute K(1,t) because, by Theorem 4.20, the functions vn(t) =
sin

√
λnt form a complete system in L2(0,1). When we know only a finite number

λ1, . . . ,λN of eigenvalues, we suggest representing K(1, ·) as a finite sum of the form

K(1,t) =
N

∑
k=1

ak sin(kπt),

arriving at the finite linear system

N

∑
k=1

ak

1∫

0

sin(kπt)sin
√

λnt dt = −sin
√

λn for n = 1, . . . ,N. (4.64)

The same arguments yield a set of equations for the second boundary condition
u′(1)+ Hu(1) = 0 in the form

√
μn cos

√
μn + H sin

√
μn +

1∫

0

(Kx(1,t)+ HK(1,t))sin
√

μnt dt = 0,

where now μn are the corresponding known eigenvalues. The representation

Kx(1,t)+ HK(1,t) =
N

∑
k=1

bk sin(kπt)

leads to the system

N

∑
k=1

bk

1∫

0

sin(kπt)sin
√

μnt dt = −√
μn cos

√
μn −H sin

√
μn (4.65)

for n = 1, . . . ,N. Equations (4.64) and (4.65) are of the same form and we restrict
ourselves to the discussion of (4.64). Asymptotically, the matrix A ∈ R

N×N defined
by Akn =

∫ 1
0 sin(kπt)sin

√
λnt dt is just 1

2 I. More precisely, from Parseval’s identity

∞

∑
k=1

∣
∣
∣∣
∣
∣

1∫

0

ψ(t)sin(kπt)dt

∣
∣
∣∣
∣
∣

2

=
1
2

1∫

0

|ψ(t)|2 dt
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we conclude that

∞

∑
k=1

∣
∣
∣∣
∣
∣

1∫

0

sin(kπt)
[
sin
√

λnt − sin(nπt)
]

dt

∣
∣
∣∣
∣
∣

2

=
1
2

1∫

0

∣
∣
∣sin
√

λnt − sin(nπt)
∣
∣
∣
2

dt.

The estimate (4.29) yields
∣
∣λn −n2π2

∣
∣≤ c̃‖q‖∞ and thus

∣
∣
∣
√

λn −nπ
∣
∣
∣≤

c
n
‖q‖∞ ,

where c is independent of q and n. From this, we conclude that

∞

∑
k=1

∣∣
∣
∣
∣
∣

1∫

0

sin(kπt)
[
sin
√

λnt − sin(nπt)
]

dt

∣∣
∣
∣
∣
∣

2

≤ 1
2

∣
∣
∣
√

λn −nπ
∣
∣
∣
2

≤ c2

2n2 ‖q‖2
∞ .

The matrix A is thus diagonally dominant and therefore invertible for sufficiently
small ‖q‖∞. Numerical experiments have shown that also for “large” values of q the
numerical solution of (4.65) does not cause any problems.

We are now facing the following inverse problem: Given (approximate values
of) the Cauchy data f = K(1, ·) ∈ H1

0 (0,1) and g = Kx(1, ·) ∈ L2(0,1), com-
pute q ∈ L2(0,1) such that the solution of the Cauchy problem (4.41a)–(4.41c)
for p = 0 assumes the boundary data K(x,x) = 1

2

∫ x
0 q(t)dt for x ∈ [0,1]. An al-

ternative way of formulating the inverse problem is to start with the Goursat
problem (4.53a)–(4.53c): Compute q ∈ L2(0,1) such that the solution of the initial
value problem (4.53a)–(4.53c) has Cauchy data f (t) = K(1,t) and g(t) = Kx(1,t)
for t ∈ [0,1].

We have studied these coupled systems for K and q in Theorem 4.17. Here we
apply it for the case where p = 0 and F = 0. It has been shown that the pair (K,r)
solves the system

∂ 2K(x,t)
∂ x2 − ∂ 2K(x,t)

∂ t2 −q(x)K(x,t) = 0 in Δ0,

K(x,x) =
1
2

x∫

0

r(t)dt, 0 ≤ x ≤ 1,

K(x,0) = 0, 0 ≤ x ≤ 1,



162 4 Inverse Eigenvalue Problems

and

K(1,t) = f (t) and
∂
∂x

K(1,t) = g(t) for all t ∈ [0,1]

if and only if w(ξ ,η) = K(ξ + η ,ξ − η) and r solve the system of integral
Eqs. (4.44a) and (4.44b). For this special choice of p and F , (4.44b) reduces to

1
2

r(x) = −
1∫

x

q(y)K(y,2x− y)dy + g(2x−1)+ f ′(2x−1), (4.66)

where we have extended f and g to odd functions on [−1,1]. Denote by T (q) the
expression on the right-hand side of (4.66). For the evaluation of T (q), one has to
solve the Cauchy problem (4.41a)–(4.41c) for p = 0. Note that the solution K; that
is, the kernel K(y,2x−y) of the integral operator T , also depends on q. The operator
T is therefore nonlinear!

The requirement r = q leads to a fixed point equation q = 2T (q) in L2(0,1). It
was shown in [212] that there exists at most one fixed point q ∈ L∞(0,1) of T . Even
more, Rundell and Sachs proved that the projected operator PMT is a contraction on
the ball BM := {q ∈ L∞(0,1) : ‖q‖∞ ≤ M} with respect to some weighted L∞-norms.
Here, PM denotes the projection onto BM defined by

(PMq)(x) =
{

q(x), |q(x)| ≤ M,

M signq(x), |q(x)| > M.

Also, they showed the effectiveness of the iteration method q(k+1) = 2T (q(k)) by
several numerical examples. We observe that for q(0) = 0 the first iterate q(1) is
simply q(1)(x) = 2g(2x− 1) + 2 f ′(2x− 1), x ∈ [0,1]. We refer to [212] for more
details.

As suggested earlier, an alternative numerical procedure based on the kernel
function K is to define the operator S from L2(0,1) into H1

0 (0,1)× L2(0,1) by
S(q) = (K(1, ·),Kx(1, ·)), where K solves the Goursat problem (4.53a)–(4.53c). This
operator is well-defined and bounded by Theorem 4.15, part (c). If f ∈ H1

0 (0,1) and
g ∈ L2(0,1) are the given Cauchy values K(1, ·) and Kx(1, ·), respectively, then we
have to solve the nonlinear equation S(q) = ( f ,g). Newton’s method does it by the
iteration procedure

q(k+1) = q(k)−S′(q(k))−1
[
S(q(k))− ( f ,g)

]
, k = 0,1, . . . . (4.67)

For the implementation, one has to compute the Fréchet derivative of S. Using the
Volterra Eq. (4.40) derived in the proof of Theorem 4.15, it is not difficult to prove
that S is Fréchet differentiable and that S′(q)r = (W (1, ·),Wx(1, ·)), where W solves
the inhomogeneous Goursat problem

Wxx(x,t)−Wtt(x,t)−q(x)W(x,t) = K(x,t)r(x) in Δ0, (4.68a)
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W (x,0) = 0, 0 ≤ x ≤ 1, (4.68b)

W (x,x) =
1
2

x∫

0

r(t)dt, 0 ≤ x ≤ 1. (4.68c)

In Theorem 4.17, we showed that S′(q) is an isomorphism. We reformulate this
result.

Theorem 4.26. Let q ∈ L2(0,1) and K be the solution of (4.53a)–(4.53c). For every
f ∈ H1

0 (0,1) and g ∈ L2(0,1), there exists a unique r ∈ L2(0,1) and a solution W of
(4.68a)–(4.68c) with W (1, ·) = f and Wx(1, ·) = g; that is, S′(q) is an isomorphism.

Implementing Newton’s method is quite expensive because in every step one has
to solve a coupled system of the form (4.68a)–(4.68c). Rundell and Sachs suggested
a simplified Newton method of the form

q(k+1) = q(k)−S′(0)−1
[
S
(

q(k)
)
− ( f ,g)

]
, k = 0,1, . . . .

Because S(0) = 0, we can invert the linear operator S′(0) analytically. In particular,
we have S′(0)r = (W (1, ·),Wx(1, ·)), where W now solves

Wxx(x,t)−Wtt(x,t) = 0 in Δ0,

W (x,0) = 0, and W (x,x) =
1
2

x∫

0

r(t)dt, 0 ≤ x ≤ 1,

because also K = 0. The solution W of the Cauchy problem

Wxx(x,t)−Wtt(x,t) = 0 in Δ0,

W (1,t) = f (t), and Wx(1,t) = g(t), 0 ≤ t ≤ 1,

is given by

W (x,t) = −1
2

t+(1−x)∫

t−(1−x)

g(τ)dτ +
1
2

f (t +(1− x))+
1
2

f (t − (1− x)) ,

where we have extended f and g to odd functions again. The solution r of S′(0)r =
( f ,g) is therefore given by

r(x) = 2
d
dx

W (x,x) = 2 f ′(2x−1)+ 2g(2x−1).

In this chapter, we have studied only one particular inverse eigenvalue problem.
Similar theoretical results and constructive algorithms can be obtained for other
inverse spectral problems; see [4, 16]. For an excellent overview, we refer to the
lecture notes by W. Rundell [211].
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4.8 Problems

4.1. Let q, f ∈C[0,1] and q(x) ≥ 0 for all x ∈ [0,1].

(a) Show that the following boundary value problem on [0,1] has at most one solu-
tion u ∈C2[0,1]:

−u′′(x)+ q(x)u(x) = f (x), u(0) = u(1) = 0. (4.69)

(b) Let v1 and v2 be the solutions of the following initial value problems on [0,1]:

−v1
′′(x)+ q(x)v1(x) = 0, v1(0) = 0, v1

′(0) = 1,

−v2
′′(x)+ q(x)v2(x) = 0, v2(1) = 0, v2

′(1) = 1.

Show that the Wronskian v1
′v2−v2

′v1 is constant. Define the following function
for some a ∈ R:

G(x,y) =
{

av1(x)v2(y), 0 ≤ x ≤ y ≤ 1,

av2(x)v1(y), 0 ≤ y < x ≤ 1.

Determine a ∈ R such that

u(x) :=
1∫

0

G(x,y) f (y)dy, x ∈ [0,1],

solves (4.69).

The function G is called Green’s function of the boundary value problem (4.69).
(c) Show that the eigenvalue problem

−u′′(x)+ q(x)u(x) = λu(x), u(0) = u(1) = 0,

is equivalent to the eigenvalue problem for the integral equation

1
λ

u(x) =
1∫

0

G(x,y)u(y)dy, x ∈ [0,1].

Prove Lemma 4.7, parts (a) and (b) by the general spectral theorem (Theo-
rem A.51 of Appendix A).

(d) How can one treat the case when q changes sign?
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4.2. Let H ∈ R. Prove that the transcendental equation zcot z+ H = 0 has a count-
able number of zeros zn and that

zn = (n + 1/2)π +
H

(n + 1/2)π
+O(1/n2).

From this,
z2

n = (n + 1/2)2 π2 + 2H +O(1/n)

follows.

4.3. Prove Lemma 4.13.

4.4. Let q ∈ C[0,1] be real- or complex-valued and λn, gn be the eigenvalues
and L2-normalized eigenfunctions, respectively, corresponding to q and boundary
conditions u(0) = 0 and hu′(1)+ Hu(1) = 0. Show by modifying the proof of The-
orem 4.20 that {gn : n ∈ N} is complete in L2(0,1). This gives — even for real q —
a proof different from the one obtained by applying the general spectral theory.

4.5. Consider the eigenvalue problem on [0,1]:

−u′′(x)+ q(x)u(x) = λ u(x), u(0) = u′(1) = 0.

Prove the following uniqueness result for the inverse problem: Let (λn,un) and
(μn,vn) be the eigenvalues and eigenfunctions corresponding to p and q, respec-
tively. If λn = μn for all n ∈ N and

un(1)
un

′(0)
=

vn(1)
vn

′(0)
for all n ∈ N,

then p and q coincide.





Chapter 5
An Inverse Problem in Electrical Impedance
Tomography

5.1 Introduction

Electrical impedance tomography (EIT) is a medical imaging technique in which an
image of the conductivity (or permittivity) of part of the body is determined from
electrical surface measurements. Typically, conducting electrodes are attached to
the skin of the subject and small alternating currents are applied to some or all of
the electrodes. The resulting electrical potentials are measured, and the process may
be repeated for numerous different configurations of applied currents.

Applications of EIT as an imaging tool can be found in fields such as medicine
(monitoring of the lung function or the detection of skin cancer or breast cancer),
geophysics (locating of underground deposits, detection of leaks in underground
storage tanks), or nondestructive testing (determination of cracks in materials).

To derive the EIT model we start from the time-harmonic Maxwell system in the
form

curlH +(iωε − γ)E = 0, curlE − iωμH = 0

in some domain which we take as a cylinder of the form B×R ⊂ R
3 with bounded

cross-section B ⊂ R
2. Here, ω , ε , γ , and μ denote the frequency, electric permittiv-

ity, conductivity, and magnetic permeability, respectively, which are all assumed to
be constant along the axis of the cylinder; that is, depend on x1 and x2 only. We note
that the real parts Re

[
exp(−iωt)E(x)

]
and Re

[
exp(−iωt)H(x)

]
are the physically

meaningful electric and magnetic field, respectively. For low frequencies ω (i.e., for
small (ωμγ) · L2 where L is a typical length scale of B), one can show (see, e.g.,
[42]) that the Maxwell system is approximated by

curlH − γE = 0, curlE = 0.

The second equation yields the existence1 of a scalar potential u such that
E = −∇u. Substituting this into the first equation and taking the divergence yields

1 If the domain is simply connected.

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,
Applied Mathematical Sciences 120, DOI 10.1007/978-1-4419-8474-6 5,
c© Springer Science+Business Media, LLC 2011

167



168 5 An Inverse Problem in Electrical Impedance Tomography

div
(
γ∇u

)
= 0 in the cylinder. We restrict ourselves to the two-dimensional case and

consider the conductivity equation

div(γ∇u) = 0 in B. (5.1)

There are several possibilities for modeling the attachment of the electrodes on the
boundary ∂B of B. The simplest of these is the continuum model in which the po-
tential U = u|∂ B and the boundary current distribution f = γ ∇u ·ν = γ ∂u/∂ν are
both given on the boundary ∂B. Here, ν = ν(x) is the unit normal vector at x ∈ ∂B
directed into the exterior of B. First, we observe that,2 by the divergence theorem,

0 =
∫

B
div

(
γ∇u

)
dx =

∫

∂ B
γ

∂u
∂ν

d� =
∫

∂ B
f d�;

that is, the boundary current distribution f has zero mean. In practice, f (x) is not
known for all x ∈ ∂B. One actually knows the currents sent along wires attached
to N discrete electrodes that in turn are attached to the boundary ∂B. Therefore, in
the gap model one approximates f by assuming that f is constant at the surface of
each electrode and zero in the gaps between the electrodes. An even better choice
is the complete model. Suppose that f j is the electric current sent through the wire
attached to the jth electrode. At the surface S j of this electrode the current density
satisfies ∫

S j

γ
∂u
∂ν

d� = f j.

In the gaps between the electrodes we have

γ
∂u
∂ν

= 0 in ∂B
∖⋃

j

S j.

If electrochemical effects at the contact of S j with ∂B are taken into account, the
Dirichlet boundary condition u = Uj on S j is replaced by

u + z jγ
∂u
∂ν

= Uj on S j,

where z j denotes the surface impedance of the jth electrode. We refer to [19, 129,
130, 231] for a discussion of these electrode models and the well-posedness of the
corresponding boundary value problems (for given γ).

In the inverse problem of EIT the conductivity function γ is unknown and has
to be determined from simultaneous measurements of the boundary voltages U and
current densities f , respectively.

2 Provided γ , f , and u are smooth enough.
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In this introductory chapter on EIT we restrict ourselves to the continuum model
as the simplest electrode model. We start with the precise mathematical formulation
of the direct and the inverse problem and prove well-posedness of the direct prob-
lem: existence, uniqueness, and continuous dependence on both the boundary data f
and the conductivity γ . Then we consider the inverse problem of EIT. The question
of uniqueness is addressed, and we prove uniqueness of the inverse linearized prob-
lem. This problem is interesting also from an historical point of view because the
proof, given in Calderón’s fundamental paper [35], has influenced research on in-
verse medium problems monumentally. In the last section we introduce a technique
to determine the support of the contrast γ − γ1 where γ1 denotes the known back-
ground conductivity. This Factorization Method has been developed fairly recently
— after publication of the first edition of this monograph — and is a prominent
member of a whole class of newly developed methods subsumed under the name
Sampling Methods.

5.2 The Direct Problem and the Neumann–Dirichlet Operator

Let B ⊂ R
2 be a given bounded domain with boundary ∂ B and γ : B → R and

f : ∂B → R be given real-valued functions. The direct problem is to determine u
such that

div(γ∇u) = 0 in B, γ
∂u
∂ν

= f on ∂ B. (5.2)

Throughout this chapter ν = ν(x) again denotes the exterior unit normal vector at
x ∈ ∂B. As mentioned in the introduction we have to assume that

∫
∂ B f d� = 0. We

note that the solution is only unique up to an additive constant. Therefore, through-
out this chapter we make the following assumptions on B, γ , and f .

Assumption 5.1. (a) B ⊂ R
2 is a bounded domain with Lipschitz continuous

boundary ∂ B such that the exterior of B is connected.
(b) γ ∈ L∞(B), and there exists γ0 > 0 such that γ(x) ≥ γ0 for almost all x ∈ B.
(c) f ∈ L2

�(∂B) where

L2
�(∂B) =

{
f ∈ L2(∂B) :

∫

∂ B
f d� = 0

}
.

We normalize the solution u such that it has vanishing mean on the boundary; that
is, u ∈ H1

� (B) where

H1
� (B) =

{
u ∈ H1(B) :

∫

∂ B
ud� = 0

}
. (5.3)

For any open and bounded set B ⊂ R
2 the Sobolev space H1(B) is defined as the

completion of C1(B) with respect to the norm

‖u‖H1(B) =
√∫

B
[|∇u|2 + |u|2]dx.
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We refer to Appendix A, Sect. A.5, where we introduce and study Sobolev spaces
H1(B) for the case of B being the unit disc. For more general domains B we refer
to, for example, [1, 173]. In (5.3) we use the fact that the trace u|∂B on ∂ B is well-
defined for u ∈ H1(B) and represents an L2(∂B)-function. The formulation (5.2) of
the boundary value problem has to be understood in the variational (or weak) sense.
Indeed, by multiplying the first equation of (5.2) with some test function ψ and
using Green’s first formula we arrive at

0 =
∫

B

ψ div(γ∇u)dx = −
∫

B

γ∇ψ ·∇udx +
∫

∂B

ψγ∇u ·ν d�

= −
∫

B

γ ∇ψ ·∇udx +
∫

∂B

ψ f d�.

Therefore, we define the variational solution u ∈ H1
� (B) of (5.2) by the solution of

∫

B

γ ∇ψ ·∇udx =
∫

∂ B

ψ f d� for all ψ ∈ H1
� (B). (5.4)

Existence and uniqueness follows from the representation theorem due to Riesz–
Fischer (cf. Theorem A.22).

Theorem 5.2. Let Assumptions 5.1 be satisfied. For every f ∈ L2
�(∂B) there exists a

unique variational solution u ∈ H1
� (B) of (5.2), that is, a solution of the variational

Eq. (5.4). Furthermore, there exists a constant c > 0 (independent of f ) such that
‖u‖H1(B) ≤ c‖ f‖L2(∂B). In other words: the operator f 	→ u from L2

�(∂B) to H1
� (B)

is bounded.

Proof. We define a new inner product in the space H1
� (B) by

(u,v)∗ =
∫

B

γ ∇u ·∇v dx, u,v ∈ H1
� (B).

The corresponding norm ‖u‖∗ =
√

(u,u)∗ is equivalent to the ordinary norm
‖ · ‖H1(B) in H1

� (B). This follows from Friedrich’s inequality in the form (see
Theorem A.48 for the case of B being the unit disc and [1, 173] for more gen-
eral Lipschitz domains):

There exists cF > 0 such that

‖v‖L2(B) ≤ cF ‖∇v‖L2(B) for all v ∈ H1
� (B). (5.5)

Indeed, from this the equivalence follows inasmuch as

γ0

1 + c2
F

‖v‖2
H1(B) ≤ γ0‖∇v‖2

L2(B) ≤ ‖v‖2
∗ ≤ ‖γ‖∞‖v‖2

H1(B) (5.6)
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for all v ∈ H1
� (B). For fixed f ∈ L2

�(∂B) we can interpret the right-hand side of
(5.4) as a linear functional F on the space H1

� (B); that is, F(ψ) = ( f ,ψ)L2(∂B) for

ψ ∈ H1
� (B). This functional F is bounded by the inequality of Cauchy-Schwarz and

the trace theorem (with constant cT > 0) because

∣
∣F(ψ)

∣
∣ ≤ ‖ f‖L2(∂B) ‖ψ‖L2(∂ B) ≤ cT ‖ f‖L2(∂ B)‖ψ‖H1(B)

≤ c‖ f‖L2(∂B) ‖ψ‖∗

with c = cT

√
(1 + c2

F)/γ0. In particular, ‖F‖ ≤ c‖ f‖L2(∂B), and we can apply the

representation theorem of Riesz-Fischer in the Hilbert space
(
H1
� (B),(·, ·)∗

)
: there

exists a unique u ∈ H1
� (B) with (u,ψ)∗ = F(ψ) for all ψ ∈ H1

� (B). This is exactly
the variational Eq. (5.4). Furthermore, ‖u‖∗ = ‖F‖ and thus by (5.6),

‖u‖2
H1(B) ≤

1 + c2
F

γ0
‖u‖2

∗ =
1 + c2

F

γ0
‖F‖2 ≤ c2 1 + c2

F

γ0
‖ f‖2

L2(∂ B);

that is, the operator f 	→ u is bounded from L2
�(∂B) into H1

� (B). ��

This theorem implies the existence and boundedness of the Neumann–Dirichlet
operator.

Definition 5.3. The Neumann–Dirichlet operator Λ : L2
�(∂B) → L2

�(∂B) is defined
by Λ f = u|∂ B, where u ∈ H1

� (B) is the uniquely determined variational solution of
(5.2); that is, the solution of (5.4).

Remark. This operator is bounded by the boundedness of the solution map f 	→ u
from L2

�(∂B) to H1
� (B) and the boundedness of the trace operator from H1

� (B) to
L2
�(∂B). It is even compact because the trace operator is compact from H1

� (B) to
L2
�(∂B). However, we do not make use of this latter property.

We show some properties of the Neumann–Dirichlet operator.

Theorem 5.4. Let Assumption 5.1 be satisfied. Then the Neumann–Dirichlet
map Λ is self-adjoint and positive; that is, (Λ f ,g)L2(∂ B) = ( f ,Λg)L2(∂ B) and

(Λ f , f )L2(∂B) > 0 for all f ,g ∈ L2
�(∂B), f = 0.

Proof. This follows simply from the definition of Λ and Green’s first identity.
Let u,v ∈ H1

� (B) be the solutions of (5.4) corresponding to boundary data f and
g, respectively. Then, by (5.4) for the pair g,v and the choice ψ = u (note that
u|∂B = Λ f ),

(Λ f ,g)L2(∂B) =
∫

∂ B

ugd� =
∫

B

γ ∇u ·∇v dx,

and this term is symmetric with respect to u and v . For f = g this also yields that Λ
is positive. ��
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In the following we write Λγ to indicate the dependence on γ . The next interesting
property is a monotonicity result.

Theorem 5.5. Let γ1,γ2 ∈ L∞(B) with γ1 ≥ γ2 ≥ γ0 a.e. on B. Then Λγ1 ≤ Λγ2 in the
sense that

(
Λγ1 f , f

)
L2(∂ B) ≤

(
Λγ2 f , f

)
L2(∂ B) for all f ∈ L2

�(∂B).

Proof. For fixed f ∈ L2
�(∂B) let u j ∈ H1

� (B) be the corresponding solution of (5.2)
for γ j , j = 1,2. From (5.4) (for γ = γ2, u = u2, and ψ = u1 −u2) we conclude that

(
(Λγ1 −Λγ2) f , f

)
L2(∂ B) =

∫

∂ B

(u1 −u2) f d� =
∫

B

γ2 (∇u1 −∇u2) ·∇u2 dx

=
1
2

∫

B

γ2
[
|∇u1|2 −|∇u2|2 −|∇(u1 −u2)|2

]
dx

≤ 1
2

∫

B

γ2 |∇u1|2 dx− 1
2

∫

B

γ2 |∇u2|2 dx

≤ 1
2

∫

B

γ1 |∇u1|2 dx− 1
2

∫

B

γ2 |∇u2|2 dx

=
1
2

(
(Λγ1 −Λγ2) f , f

)
L2(∂ B)

which proves the result. ��

5.3 The Inverse Problem

As described in the introduction, the problem of electrical impedance tomography
is to determine (properties of) the conductivity distribution γ from all — or at least a
large number of — pairs ( f ,u|∂B). Because u|∂ B = Λ f we can rephrase this problem
as follows.

Inverse Problem: Determine the conductivity γ from the given Neumann–Dirichlet
operator Λ : L2

�(∂ B) → L2
�(∂B)!

As we have seen already in the previous chapter (and this is typical for studying
inverse problems) an intensive investigation of the direct problem has to precede
the treatment of the inverse problem. In particular we study the dependence of the
Neumann–Dirichlet map on γ . First we show with an example that the inverse prob-
lem of impedance tomography is ill posed.
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Example 5.6. Let B = K(0,1) be the unit disk, q̂ > 0 constant, and R ∈ (0,1).
We define γR ∈ L∞(B) by

γR(x) =
{

1, R < |x| < 1,

1 + q̂, |x| < R.

Because γR is piecewise constant the solution u is harmonic for x ∈ K(0,1) \
{x : |x| = R} and satisfies the jump conditions u− = u+ and (1 + q̂)∂u/∂ r|− =
∂u/∂ r|+ for |x| = R where v |± denotes the trace of v from the interior (−) and
exterior (+) of {x : |x| = R}, respectively.

We solve the boundary value problem (5.2) by expanding the boundary data f ∈
L2
�(∂B) and the solution u into Fourier series; that is, for

f (ϕ) = ∑
n =0

fn einϕ , ϕ ∈ [0,2π],

we make an ansatz for the solution of (5.2) in the form

u(r,ϕ) =

⎧
⎪⎪⎨

⎪⎪⎩

∑
n =0

(bn + cn)
(

r
R

)|n|
einϕ , r < R,

∑
n =0

[
bn

(
r
R

)|n| + cn
(

r
R

)−|n|
]

einϕ , r > R.

The ansatz already guarantees that u is continuous on the circle r = R. The unknown
coefficients bn, cn are determined from the conditions (1 + q̂)∂u/∂ r

∣∣
− = ∂u/∂ r

∣∣
+

for r = R and ∂u/∂ r = f for r = 1. This yields the set of equations

(1 + q̂)(bn + cn) = bn − cn

and

bn
|n|
R|n| − cn |n|R|n| = fn

for all n = 0 which yields explicit formulas for bn and cn. Substituting this into the
form of u and taking r = 1 yields

(ΛγR f )(ϕ) = u(1,ϕ) = ∑
n =0

α −R2|n|

α + R2|n|
fn

|n| einϕ , ϕ ∈ [0,2π ], (5.7)

with α = 1 + 2/q̂. We observe that ΛγR is a diagonal operator from L2
�(0,2π) into

itself with eigenvalues that behave asymptotically as 1/|n|. Therefore, the natural

setting for ΛγR is to consider it as an operator from the Sobolev space H−1/2
� (0,2π)

of order −1/2 into the Sobolev space H1/2
� (0,2π) of order 1/2; see Sect. A.4 of

Appendix A. We prefer the setting in L2
�(0,2π) because the more general setting

does not give any more insight with respect to the inverse problem.
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Let Λ1 be the operator with γ = 1 which is given by

(Λ1 f )(ϕ) = ∑
n =0

fn

|n| einϕ , ϕ ∈ [0,2π ].

We estimate the difference by

‖(ΛγR −Λ1) f‖2
L2(0,2π) = 2π ∑

n =0

∣
∣
∣
∣∣
α −R2|n|

α + R2|n| −1

∣
∣
∣
∣∣

2
| fn|2
n2

= 8π ∑
n =0

R4|n|
(
α + R2|n|)2

| fn|2
n2

≤ 4R4

α2 ‖ f‖2
L2(0,2π);

that is,

‖ΛγR −Λ1‖ ≤
2R2

α
≤ 2R2

because α ≥ 1. Therefore, we have convergence of ΛγR to Λ1 in the operator norm
as R tends to zero. On the other hand, the difference ‖γR −1‖∞ = q̂ is constant and
does not converge to zero as R tends to zero. This shows clearly that the inverse
problem to determine γR from Λ is ill posed.

One can argue that perhaps the sup-norm for γ is not appropriate to measure the
error in γ . Our example, however, shows that even if we replace q̂ by a constant q̂R

which depends on R such that limR→0 q̂R = ∞ we still have convergence of ΛγR to Λ1

in the operator norm as R tends to zero. Taking, for example, q̂R = q̂/R3 we observe
that ‖γR − 1‖Lp(B) → ∞ as R tends to zero for arbitrary p ≥ 1, and the problem of
impedance tomography is also ill posed with respect to any Lp-norm.

A fundamental question for every inverse problem is the question of uniqueness:
is the information — at least in principle — sufficient to determine the unknown
quantity? Therefore, in electrical impedance tomography we ask: does the knowl-
edge of the Neumann–Dirichlet operator Λ determine the conductivity γ uniquely
or is it possible that two different γ correspond to the same Λ?

In full generality this fundamental question was not answered until nearly five
years ago by K. Astala and L. Päivärinta in [10]. We state the result without proof.

Theorem 5.7. Let γ1,γ2 ∈ L∞(B) with γ j(x) ≥ γ0 for j = 1,2 and almost all x ∈ B.
We denote the corresponding Neumann–Dirichlet operators by Λ1 and Λ2, respec-
tively. If Λ1 = Λ2 then γ1 = γ2 in B.

Instead of proving this theorem which uses refined arguments from complex
analysis we consider the linearized problem. Therefore, writing Λ(γ) instead of Λγ
to indicate the dependence on γ , we consider the linear problem

Λ(γ)+ Λ′(γ)q = Λmeas, (5.8)
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where Λ′(γ) : L∞(B) →L
(
L2(∂B)

)
denotes the Fréchet derivative of the nonlinear

operator γ 	→ Λ(γ) from L∞(B) to L
(
L2
�(∂ B)

)
at γ . Here, L

(
L2
�(∂B)

)
denotes the

space of all linear and bounded operators from L2
�(∂ B) into itself equipped with the

operator norm. The right-hand side Λmeas ∈ L
(
L2(∂B)

)
is given (“measured”), and

the contrast q ∈ L∞(B) has to be determined.

Theorem 5.8. Let U ⊂ L∞(B) be given by U =
{

γ ∈ L∞(B) : γ ≥ γ0 a.e. on B
}

.

(a) The mapping γ 	→ Λ(γ) from U to L
(
L2
�(∂B)

)
is Lipschitz continuous.

(b) The mapping γ 	→ Λ(γ) from U to L
(
L2
�(∂B)

)
is Fréchet differentiable. The

Fréchet derivative Λ′(γ) at γ ∈ U in the direction q ∈ L∞(B) is given by[
Λ′(γ)q

]
f = v |∂B where v ∈ H1

� (B) solves

div
(
γ∇v

)
= −div

(
q∇u

)
in B, γ

∂v
∂ν

= −q
∂ u

∂ν
on ∂B, (5.9)

and u ∈ H1
� (B) solves (5.2) with data γ ∈ U and f ∈ L2

�(∂B). The solution of
(5.9) is again understood in the weak sense; that is,

∫

B

γ ∇ψ ·∇v dx = −
∫

B

q∇ψ ·∇udx for all ψ ∈ H1
� (B). (5.10)

Proof. (a) Let γ1,γ2 ∈ U , f ∈ L2
�(∂ B), and u1,u2 ∈ H1

� (B) be the corresponding
weak solutions of (5.2). Taking the difference of (5.4) for the triples (γ1,u1, f )
and (γ2,u2, f ) yields

∫

B
γ1 ∇(u1 −u2) ·∇ψ dx =

∫

B
(γ2 − γ1)∇u2 ·∇ψ dx for all ψ ∈ H1

� (B).

With ψ = u1 −u2 and the lower bound γ0 ≤ γ1 this yields

γ0 ‖∇(u1 −u2)‖2
L2(B) ≤

∫

B
γ1

∣∣∇(u1 −u2)
∣∣2 dx

=
∫

B
(γ2 − γ1)∇u2 ·∇(u1 −u2)dx

≤ ‖γ1 − γ2‖∞‖∇(u1 −u2)‖L2(B)‖∇u2‖L2(B);

that is, there exists a constant c1 > 0 (independent of γ1,γ2) with

‖∇(u1 −u2)‖L2(B) ≤
1
γ0

‖γ1 − γ2‖∞ ‖∇u2‖L2(B)

≤ c1 ‖γ1 − γ2‖∞ ‖ f‖L2(∂B), (5.11)
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where we use the boundedness of the mapping f 	→ u2 (see Theorem 5.2). Now
we use the trace theorem and (5.6) to conclude that

‖Λ(γ1) f −Λ(γ2) f‖L2(∂ B) =
∥
∥(u1 −u2)

∣
∣
∂B

∥
∥

L2(∂ B) ≤ c2 ‖γ1 − γ2‖∞ ‖ f‖L2(∂ B);

that is,
‖Λ(γ1)−Λ(γ2)‖ ≤ c2 ‖γ1 − γ2‖∞

which proves part (a).
(b) Let γ ∈ U and q ∈ L∞(B) such that ‖q‖∞ ≤ γ0/2. Then γ + q ≥ γ0/2 a.e. on B.

Let u,uq ∈ H1
� (B) correspond to γ and γ +q, respectively, and boundary data f .

Subtraction of (5.4) for the triple γ,u, f and (5.10) from (5.4) for (γ + q,uq, f )
yields

∫

B
γ ∇(uq −u− v) ·∇ψ dx =

∫

B
q∇(u−uq) ·∇ψ dx for all ψ ∈ H1

� (B).

Taking ψ = uq −u− v yields as in part (a) an estimate of the form

‖∇(uq −u− v)‖L2(B) ≤
1
γ0

‖q‖∞‖∇(u−uq)‖L2(B).

Now we use (5.11) (with u1 = u and u2 = uq) to conclude that

‖∇(uq −u− v)‖L2(B) ≤
c1

γ0
‖q‖2

∞‖ f‖L2(∂B).

Again by the trace theorem and (5.6) this yields

∥
∥Λ(γ + q) f −Λ(γ) f −

[
Λ′(γ)q

]
f‖L2(∂B) =

∥
∥(uq −u− v)

∣
∣
∂ B

∥
∥

L2(∂B)

≤ c‖q‖2
∞‖ f‖L2(∂B),

which proves part (b). ��

We now show that, for any given constant background medium γ , the linearized
inverse problem of electrical impedance tomography (5.8) has at most one solution;
that is, the Fréchet derivative is one-to-one. As already mentioned in the introduction
this proof is due to Calderón (see [35]) and has “opened the door” to many unique-
ness results in tomography and scattering theory. We come back to this method in
the next chapter where we prove uniqueness of an inverse scattering problem by this
method.

Theorem 5.9. Let γ be constant. Then the Fréchet derivative Λ′(γ) : L∞(B) →
L
(
L2
�(∂B)

)
is one-to-one.

Proof. First we note that we can assume without loss of generality that γ = 1. Let
q ∈ L∞(B) such that Λ′(γ)q = 0; that is,

[
Λ′(γ)q

]
f = 0 for all f ∈ L2

�(∂B).
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The proof consists of two parts. First we show that q is orthogonal to all products of
two gradients of harmonic functions. Then, in the second part, by choosing special
harmonic functions we show that the Fourier transform of q vanishes.

Let u1 ∈ C2(B) be any harmonic function; that is, Δu1 = 0 in B. Define f ∈
L2
�(∂B) by f = ∂ u1/∂ν on ∂B. Then u1 is the solution of (5.2) with Neumann

boundary data f . We denote by v1 ∈ H1
� (B) the corresponding solution of (5.10):

∫

B

∇ψ ·∇v1 dx = −
∫

B

q∇ψ ·∇u1 dx for all ψ ∈ H1
� (B).

Now we take a second arbitrary harmonic function u2 ∈C2(B) and set ψ = u2 in the
previous equation. This yields

∫

B

q∇u2 ·∇u1 dx = −
∫

B

∇u2 ·∇v1 dx = −
∫

∂ B

v1
∂u2

∂ν
d�

by Green’s first theorem. Now we note that v1|∂ B =
[
Λ′(γ)q

]
f = 0. Therefore, we

conclude that the right-hand side vanishes; that is,

∫

B

q∇u2 ·∇u1 dx = 0 for all harmonic functions u1,u2 ∈C2(B). (5.12)

So far, we considered real-valued functions u1 and u2. By taking the real and imag-
inary parts we can also allow complex-valued harmonic functions for u1 and u2.

Now we fix any y ∈ R
2 with y = 0. Let y⊥ ∈ R

2 be a vector (unique up to sign)
with y · y⊥ = 0 and |y| = |y⊥|. Define the complex vectors z± ∈ C

2 by z± = 1
2 (iy±

y⊥). Then one computes that z± · z± = 0 and z+ · z− = − 1
2 |y|2 and z+ + z− = iy.

From this we observe that the functions u±(x) = exp(z± · x), x ∈ R
2, are harmonic

in all of R
2. Therefore, substituting u+ and u− into (5.12) yields

0 =
∫

B

q∇u+ ·∇u− dx = z+ · z−
∫

B

q(x)e(z++z−)·x dx = −1
2
|y|2

∫

B

q(x)eiy·x dx.

From this we conclude that the Fourier transform of q (extended by zero in the
exterior of B) vanishes on R

2 \ {0}, and thus also q itself. This ends the proof. ��

5.4 The Factorization Method

In this section we consider the full nonlinear problem but restrict ourselves to the
more modest problem to determine only the shape of the region D where γ differs
from the known background medium which we assume to be homogeneous with
conductivity 1.
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We sharpen the assumption on γ of Assumption 5.1.

Assumption 5.10. In addition to Assumption 5.1 let there exist finitely many do-
mains Dj, j = 1, . . . ,m, such that Dj ⊂ B and D j ∩Dk = /0 for j = k and such that
the complement B \D of the closure of the union D =

⋃m
j=1 D j is connected. Fur-

thermore, there exists q0 > 0 such that γ = 1 on B\D and γ ≥ 1+q0 on D. We define
the contrast q by q = γ −1.

The inverse problem of this section is to determine the shape of D from the
Neumann–Dirichlet operator Λ.

In the following we use the relative data Λ−Λ1 where Λ1 : L2
�(∂B) → L2

�(∂B)
corresponds to the known background medium; that is, to γ = 1. The information
that Λ−Λ1 does not vanish simply means that the background is perturbed by some
contrast q = γ − 1. In the Factorization Method we develop a criterion to decide
whether or not a given point z ∈ B belongs to D. The idea is then to take a fine grid
in B and to check this criterion for every grid point z. This provides a pixel-based
picture of D.

We recall that Λ f = u|∂B and Λ1 f = u1|∂ B, where u,u1 ∈ H1
� (B) solve

∫

B

(1 + q)∇u ·∇ψ dx = ( f ,ψ)L2(∂B) for all ψ ∈ H1
� (B), (5.13)

∫

B

∇u1 ·∇ψ dx = ( f ,ψ)L2(∂B) for all ψ ∈ H1
� (B). (5.14)

For the difference we have (Λ1 −Λ) f = (u1 − u)|∂ B, and u1 − u ∈ H1
� (B) satisfies

the variational equation
∫

B

(1 + q)∇(u1−u) ·∇ψ dx =
∫

D

q∇u1 ·∇ψ dx for all ψ ∈ H1
� (B). (5.15)

It is the aim to factorize the operator Λ1 −Λ in the form

Λ1 −Λ = A∗T A,

where the operators A : L2
�(∂B) → L2(D)2 and T : L2(D)2 → L2(D)2 are defined as

follows:3

• A f = ∇u1|D, where u1 ∈ H1
� (B) solves the variational Eq. (5.14), and

• Th = q(h−∇w) where w ∈ H1
� (B) solves the variational equation

∫

B

(1 + q)∇w ·∇ψ dx =
∫

D

qh ·∇ψ dx for all ψ ∈ H1
� (B). (5.16)

3 Here, L2(D)2 denotes the space of vector-valued functions D → R
2 such that both components

are in L2(D).
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We note that the solution w of (5.16) exists and is unique. This is seen by the repre-
sentation Theorem A.22 of Riesz-Fischer because the right-hand side again defines
a linear and bounded functional F(ψ) =

∫
D qh ·∇ψ dx on H1

� (B). The left-hand side
of (5.16) is again the inner product (w,ψ)∗. The classical interpretation of the varia-
tional equation (under the assumption that all functions are sufficiently smooth) can
again be seen from Green’s first theorem. Indeed, in this case (5.16) is equivalent to

0 =
∫

D

ψ div
[
(1 + q)∇w−qh

]
dx−

∫

∂D

ψ ν ·
[
(1 + q)∇w−qh

]
d�

+
∫

B\D

ψ Δw dx−
∫

∂ (B\D)

ψ
∂w
∂ν

d�

for all ψ . This yields

div
[
(1 + q)∇w−qh

]
= 0 in D, Δw = 0 in B\D,

and

ν ·
[
(1 + q)∇w−qh

]∣∣
− =

∂w
∂ν

∣
∣
∣∣
+

on ∂D,
∂ w
∂ν

= 0 on ∂B;

that is,

ν ·
[
(1 + q)∇w

]∣∣
−− ∂w

∂ν

∣∣
∣
∣
+

= q|− ν ·h on ∂D,
∂w
∂ν

= 0 on ∂ B.

Theorem 5.11. Let the operators A : L2
�(∂ B) → L2(D)2 and T : L2(D)2 → L2(D)2

be defined as above by (5.14) and (5.16), respectively. Then

Λ1 −Λ = A∗T A. (5.17)

Proof. We define the auxiliary operator H : L2(D)2 → L2
�(∂B) by Hh = w|∂ B where

w ∈ H1
� (B) solves (5.16). Obviously, we conclude from (5.15) that Λ1 −Λ = HA.

We determine the adjoint A∗ : L2(D)2 → L2
�(∂B) of A and prove that A∗h = v |∂B

where v ∈ H1
� (B) solves the variational equation

∫

B

∇v ·∇ψ dx =
∫

D

h ·∇ψ dx for all ψ ∈ H1
� (B) (5.18)

and even for all ψ ∈ H1(B) because it obviously holds for constants. The solution
v exists and is unique by the same arguments as above. Again, by applying Green’s
theorem we note that v is the variational solution of the boundary value problem

Δv =
{

divh in D,

0 in B\D,

∂v
∂ν

= 0 on ∂B, (5.19a)
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v |− = v |+ on ∂D,
∂

∂ν
v |− − ∂

∂ν
v |−+ = ν ·h on ∂ D. (5.19b)

To prove the representation of A∗h we conclude from (5.18) for ψ = u1 and (5.14)
that

(A f ,h)L2(D) =
∫

D

∇u1 ·hdx =
∫

B

∇u1 ·∇v dx = ( f ,v)L2(∂B),

and thus v |∂B is indeed the value of the adjoint A∗h.
Now it remains to show that H = A∗T . Let h ∈ L2(D)2 and w ∈ H1

� (B) solve
(5.16). Then Hh = w|∂B. We rewrite (5.16) as

∫

B

∇w ·∇ψ dx =
∫

D

q(h−∇w) ·∇ψ dx for all ψ ∈ H1
� (B). (5.20)

The comparison with (5.18) yields A∗(q(h−∇w)
)

= w|∂ B = Hh; that is, A∗T = H.
Substituting this into Λ1 −Λ = HA yields the assertion. ��

Properties of the operators A and T are listed in the following theorem.

Theorem 5.12. The operator A : L2
�(∂B) → L2(D)2 is compact, and the operator

T : L2(D)2 → L2(D)2 is self-adjoint and coercive:

(T h,h)L2(D) ≥ c‖h‖2
L2(D) for all h ∈ L2(D)2, (5.21)

where c = q0
(
1−q0/(1 + q0)

)
> 0.

Proof. (i) For smooth functions u1 ∈C2(B with Δu1 = 0 in B and ∂u1/∂ν = f on
∂B the following representation formula holds (see [47] or Theorem 6.12 for
the case of the three-dimensional Helmholtz equation).

u1(x) =
∫

∂ B

[
Φ(x,y)

∂u1(y)
∂ν

−u1(y)
∂

∂ν(y)
Φ(x,y)

]
d�(y), x ∈ B,

=
∫

∂ B

[
Φ(x,y) f (y)− (Λ1 f )(y)

∂
∂ν(y)

Φ(x,y)
]

d�(y), x ∈ B,

where Φ denotes the fundamental solution of the Laplace equation in R
2; that is,

Φ(x,y) = − 1
2π

ln |x− y|, x = y.

We can write ∇u1 in D in the form ∇u1
∣
∣
D = K1 f −K2Λ1 f where the operators

K1,K2 : L2
�(∂B) → L2(D)2, defined by
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(K1 f )(x) = ∇
∫

∂ B

Φ(x,y) f (y)d�(y), x ∈ D,

(K2g)(x) = ∇
∫

∂ B

g(y)
∂

∂ν(y)
Φ(x,y)d�(y), x ∈ D,

are compact as integral operators on bounded regions of integration with smooth
kernels. The representation A = K1 −K2Λ1 holds by a density argument (see
Theorem A.28). Therefore, also A is compact.

(ii) Let h1,h2 ∈ L2(D)2 with corresponding solutions w1,w2 ∈ H1
� (B) of (5.16).

Then, with (5.16) for h2,w2 and ψ = w1:

(T h1,h2)L2(D) =
∫

D

q(h1 −∇w1) ·h2 dx

=
∫

D

qh1 ·h2 dx−
∫

D

q∇w1 ·h2 dx

=
∫

D

qh1 ·h2 dx−
∫

B

(1 + q)∇w1 ·∇w2 dx.

This expression is symmetric with respect to h1 and h2. Therefore, T is self-
adjoint.

For h∈ L2(D)2 and corresponding solution w ∈H1
� (B) of (5.16) we conclude

that

(T h,h)L2(D) =
∫

D

q |h−∇w|2 dx +
∫

D

q(h−∇w) ·∇wdx

=
∫

D

q |h−∇w|2 dx +
∫

B

|∇w|2 dx (with the help of (5.20))

≥
∫

D

[
q0 |h|2 −2q0 h ·∇w+(1 + q0) |∇w|2

]
dx

=
∫

D

[∣
∣∣
∣
√

1 + q0 ∇w− q0√
1 + q0

h

∣
∣∣
∣

2

+ q0

(
1− q0

1 + q0

)
|h|2

]

dx

≥ q0

(
1− q0

1 + q0

)
‖h‖2

L2(D).

��
From this result and the factorization (5.17) we note that Λ1 −Λ is compact,

self-adjoint (this follows already from Theorem 5.4), and nonnegative.
Now we derive the binary criterion on a point z ∈ B to decide whether or not

this point belongs to D. First, for every point z ∈ B we define a particular function
G(·,z) such that ΔG(·,z) = 0 in B\{z} and ∂G(·,z)/∂ν = 0 on ∂B such that G(x,z)
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becomes singular as x tends to z. We construct G from the Green’s function N for Δ
in B with respect to the Neumann boundary conditions.

We make an ansatz for N in the form N(x,z) = Φ(x,z)− Ñ(x,z) where again

Φ(x,z) = − 1
2π

ln |x− z|, x = z,

is the fundamental solution of the Laplace equation in R
2 and determine Ñ(·,z) ∈

H1
� (B) as the unique solution of the Neumann problem

ΔÑ(·,z) = 0 in B and
∂ Ñ
∂ν

(·,z) =
∂ Φ
∂ν

(·,z)+
1

|∂B| on ∂B.

We note that the solution exists because
∫

∂B

[
∂Φ/∂ν(·,z)+ 1/|∂ B|

]
d� = 0. This is

seen by Green’s first theorem in the region B\K(z,ε):

∫

∂B

∂Φ
∂ν

(·,z)d� =
∫

|x−z|=ε

∂ Φ
∂ν

(x,z)d�(x)

= − 1
2π

∫

|x−z|=ε

x− z
|x− z|2 ·

x− z
|x− z| d�(x) = −1.

Then N = Φ− Ñ is the Green’s function in B with respect to the Neumann boundary
conditions; that is, N satisfies

ΔN(·,z) = 0 in B\ {z} and
∂ N
∂ν

(·,z) = − 1
|∂B| on ∂B.

From the differentiable dependence of the solution Ñ(·,z) on the parameter z ∈B we
conclude that, for any fixed a ∈ R

2 with |a| = 1, the function G(·,z) = a ·∇zN(·,z)
satisfies

ΔG(·,z) = 0 in B\ {z} and
∂ G
∂ν

(·,z) = 0 on ∂B. (5.22)

The function G(·,z) has the following desired properties.

Lemma 5.13. Let z ∈ B, R > 0, θ ∈ [0,2π], and δ > 0 be kept fixed. For ε ∈ [0,R)
define the set (part of a cone)

Cε =
{

z+ r

(
cos t
sin t

)
: ε < r < R, |θ − t|< δ

}

with vertex in z. Let R be so small such that Cε ⊂ B. Then

lim
ε→0

‖G(·,z)‖L2(Cε ) = ∞.
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Proof. By the smoothness of Ñ(·,z) it is sufficient to consider only the part a ·
∇z ln |x− z|. Using polar coordinates for x with respect to z

(
i.e., x = z+ r

(cost
sint

))
,

and the representation of a as a =
(coss

sins

)
we have

∫

Cε

∣
∣a ·∇z ln |x− z|

∣
∣2dx =

∫

Cε

(
(z− x) ·a

)2

|x− z|4 dx =
R∫

ε

θ+δ∫

θ−δ

r2 cos2(s− t)
r4 r dt dr

=
θ+δ∫

θ−δ

cos2(s− t)dt

︸ ︷︷ ︸
=c

R∫

ε

1
r

dr = c ln
R
ε

.

Therefore,

‖G(·,z)‖L2(Cε ) ≥
√

c ln
R
ε
−‖a ·∇zÑ(·,z)‖L2(C0) → ∞ for ε → 0.

��

We observe that the functions φz(x) = G(·,z)|∂ B are traces of harmonic functions
in B\{z} with vanishing normal derivatives on ∂ B. Comparing this with the classi-
cal formulation (5.19a) (5.19b) of the adjoint A∗ of A it seems to be plausible that
the “source region” D of (5.19a), (5.19b) can be determined by moving the source
point z in φz. This is confirmed in the following theorem.

Theorem 5.14. Let Assumptions 5.10 hold and let a ∈ R
2 with |a|= 1 be fixed. For

every z ∈ B define φz ∈ L2
�(∂B) by

φz(x) = G(x,z) = a ·∇zN(x,z), x ∈ ∂ B, (5.23)

where N denotes the Green’s function with respect to the Neumann boundary con-
dition. Then

z ∈ D ⇐⇒ φz ∈R(A∗), (5.24)

where A∗ : L2(D)2 → L2
�(∂B) is the adjoint of A, given by (5.18), and R(A∗) its

range.

Proof. First let z ∈ D. Choose a disc K[z,ε] = {x ∈ R
2 : |x− z| ≤ ε} with center z

and radius ε > 0 such that K[z,ε] ⊂ D. Furthermore, choose a function ϕ ∈C∞(R2)
such that ϕ(x) = 0 for |x− z| ≤ ε/2 and ϕ(x) = 1 for |x− z| ≥ ε and set w(x) =
ϕ(x)G(x,z) for x ∈ B. Then w ∈ H1

� (B) and w = G(·,z) in B\D, thus w|∂B = φz.
Next we determine u ∈ H1

� (D) as a solution of Δu = Δw in D, ∂u/∂ν = 0 on ∂D;
that is, in weak form

∫

D

∇u ·∇ψ dx =
∫

D

∇w ·∇ψ dx−
∫

∂D

ψ
∂

∂ν
G(·,z)d�, ψ ∈ H1

� (D),
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because ∂w/∂ν = ∂G(·,z)/∂ν on ∂D. Again, the solution exists and is unique.
Application of Green’s first theorem in B\D yields

∫

∂ D

∂
∂ν

G(·,z)d� =
∫

∂ B

∂
∂ν

G(·,z)d� = 0.

Therefore, the previous variational equation holds for all ψ ∈ H1(D). Now let ψ ∈
H1
� (B) be a test function on B. Then

∫

D

∇u ·∇ψ dx =
∫

D

∇w ·∇ψ dx−
∫

∂ D

ψ
∂

∂ν
G(·,z)d�

=
∫

D

∇w ·∇ψ dx +
∫

B\D

∇G(·,z) ·∇ψ dx =
∫

B

∇w ·∇ψ dx.

Therefore, the definition h = ∇u in D yields A∗h = w|∂ B = φz and thus φz ∈R(A∗).
Now we prove the opposite direction. Let z /∈ D. We have to show that φz is not

contained in the range of A∗ and assume, on the contrary, that φz = A∗h for some
h ∈ L2(D)2. Let v ∈ H1

� (B) be the corresponding solution of (5.18). Therefore, the
function w = v −G(·,z) vanishes on ∂B and solves the following equations in the
weak form

Δw = 0 in B\Dε(z),
∂w

∂ν
= 0 on ∂B,

for every ε > 0 such that Dε(z) = D∪K(z,ε) ⊂ B, i.e

∫

B\Dε (z)

∇w ·∇ψ dx = 0

for all ψ ∈ H1
(
B \Dε (z)

)
with ψ = 0 on ∂Dε(z). We extend w by zero into the

outside of B. Then w ∈ H1
(
R

2 \Dε(z)
)

because w = 0 on ∂ B and
∫

R2\Dε (z)

∇w ·∇ψ dx = 0

for all ψ ∈ H1
(
R

2 \Dε (z)
)

which vanish on ∂Dε (z). Therefore, Δw = 0 in the exte-
rior Ω = R

2 \
(
D∪{z}

)
of D∪{z}. Now we use without proof that w is analytic in Ω

and thus satisfies the unique continuation principle. Therefore, because it vanishes
in the exterior of B it has to vanish in all of the connected4 set Ω; that is, v = G(·,z)
in B\

(
D∪{z}

)
.

The point z can either be on the boundary ∂D or in the exterior of D. In either
case there is a cone C0 of the form C0 =

{
z+ r

(cost
sin t

)
: 0 < r < R, |θ − t|< δ

}
with

C0 ⊂B\D. It is v |C0 ∈ L2(C0) inasmuch as v ∈H1
� (B). However, Lemma 5.13 yields

4 Here we make use of the assumption that B\D is connected.
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that ‖G(·,z)‖L2(Cε ) →∞ for ε → 0 where Cε =
{

z+r
(cost

sin t

)
: ε < r < R, |θ −t|< δ

}
.

This is a contradiction because v = G(·,z) in C0 and ends the proof. ��
Therefore, we have shown an explicit characterization of the unknown domain

D by the range of the operator A∗. This operator, however, is also unknown: only
Λ1 − Λ is known! The operators A∗ and Λ1 −Λ are connected by the factoriza-
tion Λ1 −Λ = A∗TA. We can easily derive a second factorization of Λ1 −Λ. The
operator Λ1 −Λ is self-adjoint and compact as an operator from L2

�(∂B) into itself.
Therefore, there exists a spectral decomposition of the form

(Λ1 −Λ) f =
∞

∑
n=1

λ j ( f ,ψ j)L2(∂ B) ψ j,

where λ j ∈ R denote the eigenvalues and ψ j ∈ L2
�(∂ B) the corresponding or-

thonormal eigenfunctions of Λ1 −Λ (see Theorem A.51). Furthermore, from the
factorization and the coercivity of T it follows that

(
(Λ1 −Λ) f , f

)
L2(∂B) ≥ 0 for all

f ∈ L2
�(∂B). This implies λ j ≥ 0 for all j. Therefore, we can define

W f =
∞

∑
n=1

√
λ j ( f ,ψ j)L2(∂ B) ψ j,

and have a second factorization in the form WW = Λ1 −Λ. We write (Λ1 −Λ)1/2

for W . The operator (Λ1 −Λ)1/2 is also self-adjoint, and we have

(Λ1 −Λ)1/2(Λ1 −Λ)1/2 = Λ1 −Λ = A∗T A. (5.25)

We show that the ranges of (Λ1 −Λ)1/2 and A∗ coincide. This follows directly from
the following functional analytic result.

Lemma 5.15. Let X and Y be Hilbert spaces, B : X → X, A : X →Y , and T : Y →Y
linear and bounded such that B = A∗T A. Furthermore, let T be self-adjoint and
coercive; that is, there exists c > 0 such that (Ty,y)Y ≥ c‖y‖2

Y for all y ∈ Y . Then,
for any φ ∈ X, φ = 0,

φ ∈R(A∗) ⇐⇒ inf
{
(Bx,x)X : x ∈ X , (x,φ)X = 1

}
> 0.

Proof. (i) First, let φ = A∗y ∈R(A∗) for some y ∈Y . Then y = 0, and we estimate
for arbitrary x ∈ X with (x,φ)X = 1:

(Bx,x)X = (A∗TAx,x)X = (TAx,Ax)Y ≥ c‖Ax‖2
Y

=
c

‖y‖2
Y

‖Ax‖2
Y‖y‖2

Y ≥ c

‖y‖2
Y

∣
∣(Ax,y)Y

∣
∣2

=
c

‖y‖2
Y

∣∣(x,A∗y)X
∣∣2 =

c

‖y‖2
Y

∣∣(x,φ)X
∣∣2 =

c

‖y‖2
Y

.

Therefore, we have found a positive lower bound for the infimum.
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(ii) Second, let φ /∈R(A∗). Define the closed subspace

V =
{

x ∈ X : (φ ,x)X = 0
}

= {φ}⊥.

We show that the image A(V ) is dense in the closure cl(R(A)) of the range of A.
Indeed, let y ∈ cl(R(A)) such that y ⊥ Ax for all x ∈ V ; that is, 0 = (Ax,y)Y =
(x,A∗y) for all x ∈ V ; that is, A∗y ∈ V⊥ = span{φ}. Because φ /∈ R(A∗) we
conclude that A∗y = 0. Therefore, y ∈ cl(R(A))∩N (A∗). This yields y = 0.5

Therefore, A(V ) is dense in cl(R(A)). Because Aφ/‖φ‖2
X is in the range of A

there exists a sequence x̃n ∈ V such that Ax̃n → −Aφ/‖φ‖2
X . We define xn :=

x̃n + φ/‖φ‖2
X . Then (xn,φ)X = 1 and Axn → 0 for n → ∞, and we estimate

(Bxn,xn)X = (TAxn,Axn)Y ≤ ‖T‖‖Axn‖2
Y −→ 0, n → ∞,

and thus inf
{
(Bx,x)X : x ∈ X , (x,φ)X = 1

}
= 0. ��

We apply this result to both of the factorizations of (5.25). In both cases, B =
Λ1 −Λ and X = L2

�(∂B). First we set Y = L2(D)2 and A : L2
�(∂B) → L2(D)2 and

T : L2(D)2 → L2(D)2 as in the second factorization of (5.25). Because T is self-
adjoint and coercive we conclude for any φ ∈ L2

�(∂B), φ = 0, that

φ ∈R(A∗) ⇔ inf
{(

(Λ1 −Λ) f , f
)

L2(∂ B) : f ∈ L2
�(∂ B), ( f ,φ)L2(∂ B) = 1

}
> 0.

Second, we consider the first factorization of (5.25) with T being the identity. For
φ ∈ L2

�(∂B), φ = 0, we conclude that

φ ∈R
(
(Λ1 −Λ)1/2)⇔ inf

{(
(Λ1 −Λ) f , f

)
L2(∂ B) : ( f ,φ)L2(∂B) = 1

}
> 0.

The right-hand sides of the characterizations only depend on Λ1 −Λ, therefore we
conclude that

R
(
(Λ1 −Λ)1/2) = R(A∗). (5.26)

Application of Theorem 5.14 yields the main result of the Factorization Method:

Theorem 5.16. Let Assumptions 5.10 be satisfied. For fixed a ∈ R
2 with a = 0 and

every z∈B let φz ∈L2
�(∂B) be defined by (5.23); that is, φz(x) = a ·∇zN(x,z), x∈ ∂B,

where N denotes the Green’s function for Δ with respect to the Neumann boundary
conditions. Then

z ∈ D ⇐⇒ φz ∈R
(
(Λ1 −Λ)1/2). (5.27)

We now rewrite the right-hand side with Picard’s Theorem A.54. First we show
injectivity of the operator Λ1 −Λ.

5 Take a sequence (x j) in X such that Axj → y. Then 0 = (A∗y,x j)X = (y,Ax j)Y → (y,y)Y ; that is,
y = 0.
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Theorem 5.17. The operator Λ1 −Λ is one-to-one.

Proof. Let f ∈ L2
�(∂B) with (Λ1 −Λ) f = 0. Then

0 =
(
(Λ1 −Λ) f , f

)
L2(∂ B) = (A∗TA f , f )L2(∂B)

= (TA f ,A f )L2(D)2 ≥ c‖A f‖2
L2(D)2

and thus A f = 0. Therefore, it suffices to prove injectivity of A. Let 0 = A f = ∇u1|D
where u1 ∈H1

� (B) denotes the weak solution of Δu1 = 0 in B and ∂u1/∂ν = f on ∂B.
Without proof we again use the regularity result that u1 is analytic in B. Therefore,
∇u1 is constant in D. The derivatives v j = ∂u1/∂x j are solutions of Δv j = 0 in B
and v j = 0 in D. The unique continuation property yields v j = ∂u1/∂x j = 0 in all
of B and thus f = 0. ��

Therefore, the operator Λ1−Λ is self-adjoint, compact, one-to-one, and all eigen-
values are positive. Let {λ j,ψ j} be an eigensystem of Λ1−Λ; that is, λ j > 0 are the
eigenvalues of Λ1 −Λ and ψ j ∈ L2

�(∂B) are the corresponding orthonormal eigen-
functions. The set {ψ j : j = 1,2, . . .} is complete by the spectral theorem. Therefore,
{
√

λ j,ψ j,ψ j} is a singular system of the operator (Λ1 −Λ)1/2. Application of Pi-
card’s Theorem A.54 yields

Theorem 5.18. Let Assumptions 5.10 be satisfied. For fixed a ∈ R
2 with a = 0 and

for every z ∈ B let φz ∈ L2
�(∂B) be defined by (5.23); that is, φz(x) = a ·∇zN(x,z),

x ∈ ∂B. Then

z ∈ D ⇐⇒
∞

∑
j=1

(φz,ψ j)2
L2(∂B)

λ j
< ∞ (5.28)

or, equivalently,

z ∈ D ⇐⇒ W (z) :=

[
∞

∑
j=1

(φz,ψ j)2
L2(∂B)

λ j

]−1

> 0. (5.29)

Here we agreed on the setting that the inverse of the series is zero in the case of
divergence. Therefore, W vanishes outside of D and is positive in the interior of D.
The function

sign W (z) =
{

1, W (z) > 0,

0, W (z) = 0,

is thus the characteristic function of D.

We finish this section with some further remarks.
We leave it to the reader to show (see Problems 5.1–5.3) that in the case of B =

K(0,1) being the unit disk and D = K(0,R) the disk of radius R < 1 the ratios
(φz,ψ j)2

L2(∂B)/λ j behave as (|z|/R)2 j . Therefore, convergence holds if and only if

|z| < R which confirms the assertion of the last theorem.
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In practice, only finitely many measurements are available; that is, the data oper-
ator Λ1 −Λ is replaced by a matrix M ∈ R

m×m. The question of convergence of the
series is obsolete because the sum consists of only finitely many terms. However,
in practice it is observed that the value of this sum is much smaller for points z in-
side of D than for points outside of D. Some authors (see [111]) suggest to test the
“convergence” by determining the slope of the straight line that best fits the curve
j 	→ ln

[
(φz,ψ j)2

L2(∂ B)/λ j
]

(for some j only). The points z for which the slope is
negative provide a good picture of D.

A rigorous justification of a projection method to approximate the (infinite) series
by a (finite) sum has been given in [160].

In the implementation of the Factorization Method only the relative data oper-
ator Λ1 −Λ has to be known and no other information on D. For example, it is
allowed (see Assumption 5.10) that D consist of several components. Furthermore,
the fact that the medium D is penetrable is not used. If one imposes some boundary
condition on ∂D the same characterization as in Theorem 5.18 holds. For example,
in [111] the Factorization Method has been justified for an insulating object D. In
particular, the Factorization Method provides a proof of uniqueness of D indepen-
dent of the nature of D; that is, whether it is finitely conducting, a perfect conductor
(Dirichlet boundary conditions on ∂ D), a perfect insulator (Neumann boundary con-
ditions on ∂D), or a boundary condition of Robin-type.

5.5 Problems

For the problems let B be the unit disk in R
2 with center at the origin.

5.1. Show that the fundamental solution Φ and the Green’s function N are given in
polar coordinates (x = r(cost,sin t)� and z = ρ(cosτ,sinτ)�) as

Φ(x,z) = − 1
2π

lnr +
1

2π

∞

∑
n=1

1
n

(ρ
r

)n
cosn(t − τ),

N(x,z) = Φ(x,z)+ Φ
(

x
|x|2 ,z

)

= − 1
2π

lnr +
1

2π

∞

∑
n=1

1
n

ρn
(

1
rn + rn

)
cosn(t − τ),

for ρ = |z| < |x| = r.

Hint: Write Φ in the form

Φ(x,z) = − 1
2π

lnr− 1
4π

ln

[
1 +

(ρ
r

)2
−2

ρ
r

cos(t − τ)
]
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and show ∑∞
n=1

1
n αn cos(ns) = − 1

2 ln
[
1+α2−2α cos s

]
by differentiation with re-

spect to α and applying the geometric series formula for ∑∞
n=1 αn−1 exp(ins).

5.2. Show that φz from (5.23) is given by

φz(x) =
a · (x− z)
π |x− z|2 , |x| = 1.

Also compute φz in polar coordinates for a = (cosα,sinα)� by the formulas of
Problem 5.1.

5.3. Compute the eigenvalues λn and the normalized eigenfunctions ψn ∈ L2
�(∂B)

of Λ1−ΛγR and the coefficients (φz,ψn)L2(∂ B) for the case of Example 5.6. Compute

the ratios (φz,ψn)2
L2(∂B)/λn and validate the condition (5.29) of Theorem 5.18.

5.4. Consider the case of D ⊂ B being the annulus D = {x ∈ B : R1 < |x| < R2}
for some 0 < R1 < R2 < 1. Compute again the eigenvalues λn and the normalized
eigenfunctions ψn ∈ L2

�(∂B) of Λ1 −Λ and the coefficients (φz,ψn)L2(∂ B). Verify
that you can only determine the outer boundary {x : |x| = R2} by the Factorization
Method.





Chapter 6
An Inverse Scattering Problem

6.1 Introduction

We consider acoustic waves that travel in a medium such as a fluid. Let v(x,t)
be the velocity vector of a particle at x ∈ R

3 and time t. Let p(x,t), ρ(x,t), and
S(x,t) denote the pressure, density, and specific entropy, respectively, of the fluid.
We assume that no exterior forces act on the fluid. Then the movement of the particle
is described by the following equations.

∂v
∂ t

+(v ·∇)v + γ v +
1
ρ

∇p = 0 (Euler’s equation), (6.1a)

∂ρ
∂ t

+ div(ρv) = 0 (continuity equation), (6.1b)

f (ρ,S) = p (equation of state), (6.1c)

∂S
∂ t

+ v ·∇S = 0 (adiabatic hypothesis), (6.1d)

where the function f depends on the fluid. γ is a damping coefficient, which we
assume to be piecewise constant. This system is nonlinear in the unknown functions
v , ρ , p, and S. Let the stationary case be described by v0 = 0, time-independent dis-
tributions ρ = ρ0(x) and S = S0(x), and constant p0 such that p0 = f

(
ρ0(x),S0(x)

)
.

The linearization of this nonlinear system is given by the (directional) derivative of
this system at (v0, p0,ρ0,S0). For deriving the linearization, we set

v(x,t) = ε v1(x,t)+O
(
ε2) ,

p(x,t) = p0 + ε p1(x,t)+O
(
ε2) ,

ρ(x,t) = ρ0(x)+ ε ρ1(x,t)+O
(
ε2) ,

S(x,t) = S0(x)+ ε S1(x,t)+O
(
ε2) ,
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and we substitute this into (6.1a), (6.1b), (6.1c), and (6.1d). Ignoring terms with
O(ε2) leads to the linear system

∂v1

∂ t
+ γ v1 +

1
ρ0

∇p1 = 0, (6.2a)

∂ρ1

∂ t
+ div(ρ0 v1) = 0, (6.2b)

∂ f (ρ0,S0)
∂ρ

ρ1 +
∂ f (ρ0,S0)

∂S
S1 = p1, (6.2c)

∂S1

∂ t
+ v1 ·∇S0 = 0. (6.2d)

First, we eliminate S1. Because

0 = ∇ f
(
ρ0(x),S0(x)

)
=

∂ f (ρ0,S0)
∂ρ

∇ρ0 +
∂ f (ρ0,S0)

∂S
∇S0,

we conclude by differentiating (6.2c) with respect to t and using (6.2d)

∂ p1

∂ t
= c(x)2

[
∂ρ1

∂ t
+ v1 ·∇ρ0

]
, (6.2e)

where the speed of sound c is defined by

c(x)2 :=
∂

∂ρ
f
(
ρ0(x),S0(x)

)
.

Now we eliminate v1 and ρ1 from the system. This can be achieved by differentiating
(6.2e) with respect to time and using Eqs. (6.2a) and (6.2b). This leads to the wave
equation for p1:

∂ 2 p1(x,t)
∂ t2 + γ

∂ p1(x,t)
∂ t

= c(x)2 ρ0(x)div

[
1

ρ0(x)
∇p1(x,t)

]
. (6.3)

Now we assume that terms involving ∇ρ0 are negligible and that p1 is time-periodic;
that is, of the form

p1(x,t) = Re
[
u(x)e−iωt]

with frequency ω > 0 and a complex-valued function u = u(x) depending only
on the spatial variable. Substituting this into the wave Eq. (6.3) yields the three-
dimensional Helmholtz equation for u:

Δu(x)+
ω2

c(x)2

(
1 + i

γ
ω

)
u = 0.
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In free space, c = c0 is constant and γ = 0. We define the wave number and the index
of refraction by

k :=
ω
c0

> 0 and n(x) :=
c2

0

c(x)2

(
1 + i

γ
ω

)
. (6.4)

The Helmholtz equation then takes the form

Δu + k2nu = 0 (6.5)

where n is a complex-valued function with Ren(x) ≥ 0 and Imn(x) ≥ 0.
This equation holds in every source-free domain in R

3. We assume in this chapter
that there exists a > 0 such that c(x) = c0 and γ(x) = 0 for all x with |x| ≥ a; that is,
n(x)= 1 for |x| ≥ a. This means that the inhomogeneous medium {x∈R

3 : n(x) �= 1}
is bounded and contained in the ball K(0,a) := {y ∈ R

3 : |y| < a} of radius a. By
K[0,a] := {y ∈ R

3 : |y| ≤ a}, we denote its closure. We further assume that the
sources lie outside the ball K[0,a].

These sources generate “incident” fields ui, that satisfy the unperturbed
Helmholtz equation Δui + k2ui = 0 in K[0,a]. In this introduction, we assume that
ui is either a point source or a plane wave; that is, the time-dependent incident fields
have the form

pi
1(x,t) =

1
|x− z| Re eik|x−z|−iωt ; that is, ui(x) =

eik|x−z|

|x− z| ,

for a source at z with |z| > a, or

pi
1(x,t) = Re eikθ̂ ·x−iωt ; that is, ui(x) = eikθ̂ ·x,

for a unit vector θ̂ ∈ R
3.

In any case, ui is a solution of the Helmholtz equation Δui + k2ui = 0 in K[0,a].
In the first case, pi

1 describes a spherical wave that travels away from the source
with velocity c0. In the second case, pi

1 is a plane wave that travels in the direction
θ̂ with velocity c0.

The incident field is disturbed by the medium described by the index of refrac-
tion n and produces a “scattered wave” us. The total field u = ui + us satisfies the
Helmholtz equation Δu+ k2nu = 0 outside the sources. Furthermore, we expect the
scattered field to behave as a spherical wave far away from the medium. This can be
described by the following radiation condition

∂us(x)
∂ r

− ik us(x) = O
(
1/r2) as r = |x| −→ ∞, (6.6)

uniformly in x/ |x| ∈ S2. Here we denote by S2 the unit sphere in R
3. We have now

derived a complete description of the direct scattering problem.
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Let the wave number k > 0, the index of refraction n = n(x) with n(x) = 1 for
|x| ≥ a, and the incident field ui be given. Determine the total field u that satisfies
the Helmholtz Eq. (6.5) in R

3 outside the source region such that the scattered field
us = u−ui satisfies the radiation condition (6.6).

In the inverse problem, one tries to determine the index of refraction n from
measurements of the field u outside of K(0,a) for several different incident fields
ui and/or different wave numbers k. The following example shows that the radially
symmetric case reduces to an ordinary differential equation.

Example 6.1. Let n = n(r) be radially symmetric: n is independent of the spherical
coordinates. Because in spherical polar coordinates (r,φ ,θ),

Δ =
1
r2

∂
∂ r

(
r2 ∂

∂ r

)
+

1

r2 sin2 θ
∂ 2

∂φ 2 +
1

r2 sinθ
∂

∂θ

(
sinθ

∂
∂θ

)
,

the Helmholtz equation for radially symmetric u = u(r) reduces to the following
ordinary differential equation of second order,

1
r2

(
r2u′(r)

)′
+ k2 n(r)u(r) = 0;

that is,

u′′(r)+
2
r

u′(r)+ k2n(r)u(r) = 0 for r > 0. (6.7a)

From the theory of linear ordinary differential equations of second order with sin-
gular coefficients, we know that in a neighborhood of r = 0 there exist two linearly
independent solutions, a regular one and one with a singularity at r = 0. We construct
them by making the substitution u(r) = v(r)/r in (6.7a). This yields the equation

v ′′(r)+ k2 n(r)v(r) = 0 for r > 0. (6.7b)

For the simplest case, where n(r) = 1, we readily see that u1(r) = α sin(kr)/r
and u2(r) = β cos(kr)/r are two linearly independent solutions. u1 is regular and u2

is singular at the origin. Neither of them satisfies the radiation condition. However,
the combination u(r) = γ exp(ikr)/r does satisfy the radiation condition because

u′(r)− iku(r) = −γ
exp(ikr)

r2 = O
(

1
r2

)

as is readily seen. For the case of arbitrary n, we construct a fundamental system
{v1,v2} of (6.7b); that is, v1 and v2 satisfy (6.7b) with v1(0) = 0, v ′

1(0) = 1, and
v2(0) = 1, v ′

2(0) = 0. Then u1(r) = v1(r)/r is the regular and u2(r) = v2(r)/r is the
singular solution.

In the next section, we rigorously formulate the direct scattering problem and
prove the uniqueness and existence of a solution. The basic ingredients for the
uniqueness proof are a result by Rellich (see [203]) and a unique continuation
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principle for solutions of the Helmholtz equation. We prove neither Rellich’s lemma
nor the general continuation principle, but rather give a simple proof for a special
case of a unique continuation principle that is sufficient for the uniqueness proof of
the direct problem. This suggestion was recently made by Hähner (see [104]). We
then show the equivalence of the scattering problem with an integral equation. Ex-
istence is then proven by an application of the Riesz theorem A.34 of Appendix A.
Section 6.3 is devoted to the introduction of the far field patterns that describe the
scattered fields “far away” from the medium. We collect some results on the far field
operator, several of which are needed in Sect. 6.6. In Sect. 6.4, we prove uniqueness
of the inverse problem. Finally, in Sect. 6.6, we present three numerical algorithms
for solving the inverse scattering problem.

6.2 The Direct Scattering Problem

In this section, we collect properties of solutions of the Helmholtz equation that are
needed later. We prove uniqueness and existence of the direct scattering problem
and introduce the far field pattern. In the remaining part of this chapter, we restrict
ourselves to scattering problems for plane incident fields.

Throughout this chapter, we make the following assumptions. Let n ∈ L∞(R3)
and a > 0 with n(x) = 1 for almost all |x| ≥ a. Assume that Ren(x) ≥ 0 and
Imn(x) ≥ 0 for almost all x ∈ R

3. Let k ∈ R, k > 0, and θ̂ ∈ R
3 with |θ̂ | = 1.

We set ui(x) := exp(ikθ̂ · x) for x ∈ R
3. Then ui solves the Helmholtz equation

Δui + k2ui = 0 in R
3. (6.8)

We again formulate the direct scattering problem. Given n, k, θ̂ satisfying the pre-
vious assumptions, determine u ∈ H1

loc(R
3) such that

Δu + k2nu = 0 in R
3, (6.9)

and us := u−ui satisfies the Sommerfeld radiation condition

∂us

∂ r
− ik us = O(1/r2) for r = |x| → ∞, (6.10)

uniformly in x/ |x| ∈ S2. The index function n is not smooth, thus we cannot expect
that the solution u is smooth. Rather it belongs to a (local) Sobolev space. For any
open set Ω ⊂ R

3 the Sobolev space H1(Ω) is defined as the completion of
{

u ∈
C1(Ω) : u,∇u ∈ L2(Ω)

}
with respect to the norm

‖u‖H1(Ω) =
√∫

Ω

[
|∇u|2 + |u|2

]
dx.
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We refer to Chap. 5 where we already used Sobolev spaces of functions on two-
dimensional domains B. The local space H1

loc(R
3) is defined by

H1
loc(R

3) =
{

u : R
3 → C : u|K ∈ H1(K) for every ball K = K(0,R)

}
.

The solution of (6.9) is understood in the variational (or weak) sense (compare with
(5.4) of Chap. 5): ∫

R3

[
∇u ·∇ψ − k2nuψ

]
dx = 0 (6.11)

for all ψ ∈ H1(R3) with compact support. We note that for |x| > a the total field
u and thus also the scattered field us satisfy the Helmholtz equation Δu + k2u = 0.
Well-known regularity results yield smoothness of u and us for |x|> a; in particular,
the radiation condition (6.10) is well-defined.

We need some results from the theory of the Helmholtz equation. We omit some
of the proofs and refer to [47,49] for a detailed investigation of the direct scattering
problems (provided n is smooth). The proof of uniqueness relies on the following
very important theorem, which we state without proof.

Lemma 6.2 (Rellich). Let u satisfy the Helmholtz equation Δu + k2u = 0
for |x|>a. Assume, furthermore, that

lim
R→∞

∫

|x|=R

|u(x)|2 ds(x) = 0. (6.12)

Then u = 0 for |x| > a.

For the proof, we refer to [49] (Lemma 2.11). In particular, the condition (6.12)
of this lemma is satisfied if u(x) decays faster that 1/|x|. Note that the assertion of
this lemma does not hold if k is imaginary or if k = 0.

The second important tool for proving uniqueness is the unique continuation
principle. For the uniqueness proof, only a special case is sufficient. We present a
simple proof by Hähner (see [104]), which is an application of the following re-
sult on periodic differential equations with constant coefficients. This lemma is also
needed in the uniqueness proof for the inverse problem (see Sect. 6.4). First, we de-
fine the cube Q := (−π ,π)3 ∈ R

3. Then every element g ∈ L2(Q) can be expanded
into a Fourier series in the form

g(x) = ∑
j∈Z3

g j ei j·x, x ∈ R
3, (6.13a)

with Fourier coefficients

g j =
1

(2π)3

∫

Q

g(y)e−i j·y dy, j ∈ Z
3. (6.13b)
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The convergence of the series is understood in the L2-sense. Then Parceval’s equa-
tion holds in the form

(2π)3 ∑
j∈Z3

|g j|2 =
∫

Q

|g(y)|2 dy. (6.13c)

In particular, L2(Q) can be defined by those functions g such that ∑ j∈Z3 |g j|2
converges. Analogously, one defines the Sobolev space H1

per(Q) of periodic func-
tions by

H1
per(Q) =

{

g ∈ L2(Q) : ∑
j∈Z3

(1 + | j|2) |g j|2 < ∞

}

.

Here we have set | j|= | j1|+ | j2|+ | j3| for j =( j1, j2, j3)∈Z
3. Then it is not difficult

to see that H1
per(Q) ⊂ H1(Q). Furthermore, we identify L2(Q) and H1

per(Q) with the
spaces of 2π-periodic functions with respect to all variables: they satisfy g(2πn +
x) = g(x) for almost all x ∈ R

3 and n ∈ Z
3.

Lemma 6.3. Let p ∈ R
3, α ∈ R, and ê = (1, i,0)
 ∈ C

3. Then, for every t > 0
and every g ∈ L2(Q), there exists a unique solution w = wt(g) ∈ H1

per(Q) of the
differential equation

Δw+
(
2tê− ip

)
·∇w− (it + α)w = g in R

3. (6.14)

The solution is again understood in the variational sense:

∫

Q

[
∇w ·∇ψ +

(
tê− ip/2

)
· (w∇ψ −ψ ∇w

)
+(it + α)wψ

]
dx

= −
∫

Q

gψ dx (6.15)

for all ψ ∈C1(Q) with support in Q. Furthermore, the following estimate holds

‖w‖L2(Q) ≤
1
t
‖g‖L2(Q) for all g ∈ L2(Q), t > 0. (6.16)

In other words, there exists a linear and bounded solution operator

Lt : L2(Q) → L2(Q), g �→ wt(g),

of (6.14) with the property ‖Lt‖ ≤ 1/t for all t > 0.

Proof. We expand g into the Fourier series (6.13a) with Fourier coefficients (6.13b).
The representation w(x) = ∑ j∈Z3 wj exp(i j · x) leads to the equation

wj
[
−| j|2 + i j ·

(
2tê− ip

)
− (it + α)

]
= g j, j ∈ Z

3,
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for the coefficients wj. We estimate

∣∣−| j|2 + i j ·
(
2tê− ip

)
− (it + α)

∣∣ ≥ |Im [· · · ]| = t |2 j1 −1| ≥ t

for all j ∈ Z
3 and t > 0. Therefore, the operator

(Ltg)(x) := ∑
j∈Z3

g j

−| j|2 + i j ·
(
ip + 2tê

)
− (it + α)

ei j·x, g ∈ L2(Q),

is well-defined and bounded with ‖Lt‖ ≤ 1/t for every t > 0. It remains to show
that w satisfies (6.15). Therefore, let ψ ∈ C1(Q) have support in Q. Then ψ can
be extended to a periodic function ψ ∈ C1(R3). Expanding ψ in the form ψ(x) =
∑ j∈Z3 ψ j exp(−i j · x) yields

∫

Q

[
∇w(x) ·∇ψ(x)+

(
tê− ip/2

)
·
(
w(x)∇ψ(x)−ψ(x)∇w(x)

)

+(it + α)w(x)ψ(x)
]

dx

= (2π)3 ∑
j∈Z3

[
| j|2 − i j ·

(
2tê− ip

)
+(it + α)

]
wjψ j

= −(2π)3 ∑
j∈Z3

g jψ j = −
∫

Q

g(x)ψ(x)dx

where we used the form of wj . �
Now we can give a simple proof of the following version of a unique continuation

principle.

Theorem 6.4. Let n ∈ L∞(R3) with n(x) = 1 for |x| ≥ a be given. Let u ∈ H1(R3)
be a solution of the Helmholtz equation Δu + k2nu = 0 in R

3 (in the variational
sense (6.11)) such that u(x) = 0 for all |x| ≥ b for some b ≥ a. Then u has to vanish
in all of R

3.

Proof. Again define ê = (1, i,0)
 ∈ C
3, ρ = 2b/π , and the function

w(x) := ei/2x1−t ê·x u(ρx), x ∈ Q := (−π,π)3,

for some t > 0. Then w(x) = 0 for all |x| ≥ π/2, in particular near the boundary of
the cube. Extend w to a 2π-periodic function in R

3 by w(2π j+x) := w(x) for x ∈ Q
and all j ∈ Z

3, j �= 0. Then w ∈ H1
per(Q), and w satisfies the differential equation

Δw+
(
2tê− ip

)
·∇w− (it + 1/4)w = −ρ2k2ñw

in the variational sense as in the previous theorem. Here, we have set p = (1,0,0)


and ñ(2π j+x) := n(ρx) for almost all x ∈ [−π,π]3 and j ∈ Z
3. Indeed, if u satisfies
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the Helmholtz Eq. (6.11) in the variational sense then, with any ψ ∈ C1(Q) with
compact support in Q we express u and a new test function φ as

u(x) = e−i/(2ρ)x1+(t/ρ) ê·x w(x/ρ),

φ(x) = ei/(2ρ)x1−(t/ρ) ê·x ψ(x/ρ),

and substitute this into (6.11). Making the substitution z = ρx, we conclude by a
simple computation that w and ψ satisfy (6.15) for α = 1/4 and g = −ρ2k2ñw.
Application of the previous lemma to this differential equation yields the existence
of a linear bounded operator Lt from L2(Q) into itself with ‖Lt‖ ≤ 1/t such that the
differential equation is equivalent to

w = −ρ2k2 Lt
(
ñw

)
.

Estimating

‖w‖L2(Q) ≤ ρ2k2

t
‖ñw‖L2(Q) ≤ ρ2k2 ‖n‖∞

t
‖w‖L2(Q)

yields w = 0 for sufficiently large t > 0. Thus u also has to vanish. �
The preceding theorem is a special case of a far more general unique continuation

principle, which we formulate without proof here.
Let u ∈ H1

loc(Ω) be a solution of the Helmholtz equation Δu + k2nu = 0 in a
domain Ω ⊂ R

3 (i.e., Ω is open and connected). Furthermore, let n ∈ L∞(Ω) and
u(x) = 0 on some open set. Then u = 0 in all of Ω.

For a proof we refer to, for example, [49].1 Now we can prove the following
uniqueness result.

Theorem 6.5 (Uniqueness). The problem (6.9), (6.10) has at most one solution: if
u is a solution corresponding to ui = 0, then u = 0.

Proof. Let ui = 0. The radiation condition (6.10) yields

O(1/R2) =
∫

|x|=R

∣
∣
∣
∣
∂u
∂ r

− ik u

∣
∣
∣
∣

2

ds

=
∫

|x|=R

(∣
∣
∣∣
∂u
∂ r

∣
∣
∣∣
2

+ k2 |u|2
)

ds+ 2k Im
∫

|x|=R

u
∂u
∂ r

ds. (6.17)

We can transform the last integral using Green’s first theorem:

∫

|x|=R

u
∂u
∂ r

ds =
∫

|x|<R

[
uΔu+ |∇u|2

]
dx =

∫

|x|<R

[
|∇u|2 − k2n |u|2

]
dx ;

1 One has to modify the proof in [49] where n ∈C(Ω) is assumed.
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that is,

Im
∫

|x|=R

u
∂ u

∂ r
ds = k2

∫

|x|<R

Imn |u|2dx ≥ 0.

We substitute this into (6.17) and let R tend to infinity. This yields

0 ≤ limsup
R→∞

∫

|x|=R

(∣
∣
∣
∣
∂u
∂ r

∣
∣
∣
∣

2

+ k2 |u|2
)

ds ≤ 0,

and thus ∫

|x|=R

|u|2 ds −→ 0 as R → ∞.

Rellich’s Lemma 6.2 implies u = 0 for |x| > a. Finally, the unique continuation
principle of Theorem 6.4 yields u = 0 in R

3. �

Now let

Φ(x,y) :=
eik|x−y|

4π |x− y| for x,y ∈ R
3, x �= y, (6.18)

be the fundamental solution or free space Green’s function of the Helmholtz
equation. Properties of the fundamental solution are summarized in the following
theorem.

Theorem 6.6. Φ(·,y) solves the Helmholtz equation Δu + k2u = 0 in R
3 \ {y} for

every y ∈ R
3. It satisfies the radiation condition

x
|x| ·∇xΦ(x,y)− ik Φ(x,y) = O(1/ |x|2)

uniformly in x/ |x| ∈ S2 and y ∈ Y for every bounded subset Y ⊂ R
3. In addition,

Φ(x,y) =
eik|x|

4π |x| e−ikx̂·y +O(1/ |x|2) (6.19)

uniformly in x̂ = x
|x| ∈ S2 and y ∈ Y .

The proof is not difficult and is left to the reader.
Now we construct volume potentials with this fundamental solution.

Theorem 6.7. Let Ω ⊂ R
3 be a bounded domain. For every φ ∈ L2(Ω) the volume

potential

v(x) :=
∫

Ω

φ(y)Φ(x,y)dy, x ∈ R
3, (6.20)
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yields a function v ∈ H1
loc(R

3) that satisfies the radiation condition (6.10) and is the
only radiating solution of Δv + k2v = −φ in the variational sense; that is,

∫

R3

[
∇v ·∇ψ − k2v ψ

]
dx =

∫

Ω

φ ψ dx (6.21)

for all ψ ∈ H1(R3) with compact support. Furthermore, for every ball K = K(0,R)
containing Ω in its interior there exists c > 0 (only dependent on K, k, and Ω) such
that

‖v‖H1(K) ≤ c ‖φ‖L2(Ω) . (6.22)

We sketch a proof for the convenience of the reader. It consists of three parts.

(i) First we state without proof (see, e.g., [91]) that for any k ∈ C and φ ∈ C1(Ω)
the potential v is continuously differentiable in all of R

3, twice differentiable
in R

3 \ ∂Ω, and solves Δv + k2v = −φ in Ω and Δv + k2v = 0 in the exterior
of Ω. Application of Green’s first theorem yields that v satisfies (6.21).

(ii) Second, we consider the special case k = i and still φ ∈C1(Ω). From the form
of the fundamental solution we observe that v(x) decays exponentially as |x|
tends to infinity. By a simple approximation argument one concludes that (6.21)
holds for k = i and all ψ ∈ H1(R3). Substituting ψ = v yields

‖v‖2
H1(R3) =

∫

R3

[
|∇v |2 + |v |2

]
dx =

∫

Ω

v φ dx

≤
√∫

Ω

|v |2 dx

√∫

Ω

|φ |2 dx ≤ ‖v‖H1(R3) ‖φ‖L2(Ω) ;

that is, ‖v‖H1(K) ≤ ‖v‖H1(R3) ≤ ‖φ‖L2(Ω) which proves boundedness of φ �→
v from L2(Ω) into H1(K). Therefore, by Theorem A.28 this operator has a
bounded extension from L2(Ω) into H1(K).

(iii) Third, we consider the case k > 0. We note that the operator

φ �→
∫

Ω

φ(y)
[
Φk(·,y)−Φi(·,y)

]
dy

is bounded from L2(Ω) into H1(K) where we indicate the dependence of the
fundamental solution on k and on k = i, respectively. This follows from the
boundedness of the kernel ∇x

[
Φk(x,y)− Φi(x,y)

]
. This, together with (ii),

proves boundedness of φ �→ v from L2(Ω) into H1(K). Uniqueness follows
directly from Theorem 6.5. �

Now we can transform the scattering problem into a Fredholm integral equation
of the second kind. The following theorem is needed quite often later on.
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Theorem 6.8. (a) Let u ∈ H1
loc(R

3) be a solution of the scattering problem
(6.9), (6.10). Then u|K[0,a] belongs to L2

(
K(0,a)

)
and solves the Lippmann–

Schwinger integral equation

u(x) = ui(x)− k2
∫

|y|<a

(
1−n(y)

)
Φ(x,y)u(y)dy, x ∈ K[0,a]. (6.23)

(b) If, on the other hand, u∈ L2
(
K(0,a)

)
is a solution of the integral Eq. (6.23), then

u can be extended by the right-hand side of (6.23) to a solution u ∈ H1
loc(R

3) of
the scattering problem (6.9), (6.10).

Proof. (a) Let u be a solution of (6.9), (6.10) and v the volume potential with den-
sity k2(1−n)u ∈ L2

(
K(0,a)

)
. By Theorem 6.7 we conclude that v ∈ H1

loc(R
3)

and Δv +k2v = k2(n−1)u in the weak sense. From Δu+k2u = k2(1−n)u and
Δui + k2ui = 0 we conclude that Δ(v + us) + k2(v + us) = 0. Furthermore, v
and us both satisfy the radiation condition (6.10). The uniqueness Theorem 6.5
yields that v + us = 0, thus u = ui + us = ui − v . This proves the first part.

(b) Let u∈ L2
(
K(0,a)

)
be a solution of (6.23). Again define v as the volume poten-

tial with density k2(1−n)u ∈ L2
(
K(0,a)

)
. Then u = ui − v in K(0,a). Extend

u by the right-hand side of this formula to all of R
3. Again, by Theorem 6.7,

we conclude that v ∈ H1
loc(R

3) and Δv + k2v = k2(n− 1)u in the weak sense.
Therefore, also u ∈ H1

loc(R
3) and Δu + k2u = −(Δv + k2v) = k2(1− n)u; that

is, Δu + k2nu = 0. Therefore, us = −v , which ends the proof. �

As a corollary, we can derive the following result on existence.

Theorem 6.9. Under the given assumptions on k, n, and θ̂ , there exists a unique
solution u of the scattering problem (6.9), (6.10) or, equivalently, the integral
Eq. (6.23).

Proof. We apply the Riesz theory (Theorem A.34 of Appendix A) to the integral
equation u = ui−Tu, where the operator T from L2

(
K(0,a)

)
into itself is defined by

(Tu)(x) := k2
∫

|y|<a

(
1−n(y)

)
Φ(x,y)u(y)dy, |x| < a. (6.24)

This integral operator is compact. There are several ways to prove this. The simplest
is perhaps the observation that this integral operator is bounded from L2

(
K(0,a)

)

into the Sobolev space H1
(
K(0,a)

)
by Theorem 6.7. Furthermore, by Rellich’s

embedding theorem (see [1, 173]) the Sobolev space H1
(
K(0,a)

)
is compactly

embedded in L2
(
K(0,a)

)
. One can also argue directly by observing that the ker-

nel Φ(x,y) of this integral operator is weakly singular (see Theorem A.33 of
Appendix A for the one-dimensional case). Therefore, it is sufficient to prove
uniqueness of a solution to (6.23). This follows by Theorems 6.8 and 6.5. �
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Remark 6.10. From the proof we observe directly that the operator I + T is an iso-
morphism from L2

(
K(0,a)

)
onto itself.

As another application of the Lippmann–Schwinger integral equation, we derive
the following asymptotic behavior of u.

Theorem 6.11. Let u be the solution of the scattering problem (6.9), (6.10). Then

u(x) = ui(x)+
eik|x|

|x| u∞
(
x̂
)
+O(1/ |x|2) as |x| → ∞ (6.25)

uniformly in x̂ = x/ |x|, where

u∞
(
x̂
)

=
k2

4π

∫

|y|<a

(
n(y)−1

)
e−ikx̂·y u(y)dy for x̂ ∈ S2. (6.26)

The function u∞ : S2 → C is called the far field pattern or scattering amplitude of
u. It is analytic on S2 and determines us outside of K(0,a) uniquely: u∞ = 0 if and
only if us(x) = 0 for |x| > a.

Proof. Formulas (6.25) and (6.26) follow directly from the asymptotic behavior
(6.19) of the fundamental solution Φ. The analyticity of u∞ follows from (6.26).
Finally, if u∞ = 0, then an application of Rellich’s lemma yields that us = u−ui = 0
for all |x| > a. �

The existence of a far field pattern; that is, a function u∞ with

us(x) =
eik|x|

|x| u∞
(
x̂
)
+O(1/ |x|2) as |x| → ∞, (6.27)

is not restricted to scattering problems. Indeed, Theorem 6.12 below assures the
existence of the far field pattern for every radiating solution of the Helmholtz
equation.

We now draw some further conclusions from the Lippmann–Schwinger integral
equation u + Tu = ui. First we note that we can also treat the integral equation in
L∞(K(0,a)

)
or even in C

(
K[0,a]

)
because the volume potential maps L∞-functions

u into continuous functions. In the following we consider T as an operator from
C
(
K[0,a]

)
into itself. We estimate the norm ‖T‖ of the integral operator T of (6.24)

with respect to the L∞-norm:

|(Tu)(x)| ≤ k2 ‖1−n‖∞ ‖u‖∞ max
|x|≤a

∫

|y|<a

|Φ(x,y)| dy for x ∈ K[0,a] ;
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that is,

‖T‖∞ ≤ k2 ‖1−n‖∞ max
|x|≤a

∫

|y|<a

1
4π |x− y| dy

=
(ka)2

2
‖1−n‖∞ ; (6.28)

see Problem 6.4. We conclude that ‖T‖∞ < 1, provided (ka)2 ‖1−n‖∞ < 2. The
contraction mapping Theorem A.29 yields uniqueness and existence of a solution
of the integral Eq. (6.23) for (ka)2 ‖1−n‖∞ < 2. We know this already even for all
values of (ka)2 ‖1−n‖∞. But Theorem A.29 also tells us that for (ka)2 ‖1−n‖∞ < 2
the solution can be represented as a Neumann series in the form

u =
∞

∑
j=0

(−1) j T jui. (6.29)

The first two terms of the series are

ub(x) := ui(x)− k2
∫

R3

(
1−n(y)

)
ui(y)Φ(x,y)dy, x ∈ R

3. (6.30)

ub is called the Born approximation. It provides a good approximation to u in K[0,a]
for small values of (ka)2 ‖1−n‖∞ because

∥
∥
∥u−ub

∥
∥
∥

∞
≤

∞

∑
j=2

‖T‖ j
∞
∥
∥ui

∥
∥

∞ = ‖T‖2
∞

1
1−‖T‖∞

≤ (ka)4

2
‖1−n‖2

∞

for (ka)2 ‖1−n‖∞ < 2. The far field pattern depends on both the direction x̂ ∈ S2

of observation and the direction θ̂ ∈ S2 of the incident field ui. Therefore, we often
write u∞

(
x̂; θ̂

)
to indicate this dependence. For the Born approximation, we see from

the asymptotic form (6.19) of Φ(x,y) that

ub
∞(x̂; θ̂ ) =

k2

4π

∫

R3

(
n(y)−1

)
eikθ̂ ·y e−ikx̂·y dy

=
k2

4π

∫

R3

(
n(y)−1

)
eik(θ̂−x̂)·y dy, (6.31)

and this is just the Fourier transform of m := n−1:

ub
∞
(
x̂; θ̂

)
=

k2

4π
m∼(kx̂− kθ̂

)
, x̂, θ̂ ∈ S2, (6.32)
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where the Fourier transform is defined by

f∼(x) :=
∫

R3

f (y)e−ix·ydy, x ∈ R
3.

From this, the reciprocity principle follows:

ub
∞(−θ̂ ;−x̂) = ub

∞(x̂; θ̂) for x̂, θ̂ ∈ S2. (6.33)

We show that this relation holds for u∞ itself. Before we can prove this principle
for u∞, we need the important Green’s representation theorem which expresses ra-
diating solutions of the Helmholtz equation in terms of the Dirichlet and Neumann
boundary data.

Theorem 6.12 (Green’s representation theorem). Let Ω ⊂ R
3 be a bounded

domain and Ωc := R
3 \Ω its exterior. Let the boundary ∂ Ω be sufficiently smooth

so that Gauss’ theorem holds. Let the unit normal vector ν(x) in x ∈ ∂ Ω be directed
into the exterior of Ω.

(a) Let u ∈C2(Ω)∩C1(Ω). Then

u(x) =
∫

∂Ω

[
Φ(x,y)

∂
∂ν

u(y)−u(y)
∂

∂ν(y)
Φ(x,y)

]
ds(y)

−
∫

Ω

Φ(x,y)
[
Δu(y)+ k2u(y)

]
dy, x ∈ Ω. (6.34a)

(b) Let us ∈C2(Ωc)∩C1(Ωc) be a solution of the Helmholtz equation Δus+k2us = 0
in Ωc, and let us satisfy the radiation condition (6.10). Then

∫

∂Ω

[
Φ(x, ·) ∂

∂ν
us −us ∂

∂ν
Φ(x, ·)

]
ds =

{
0, x ∈ Ω,

−us(x), x /∈ Ω.
(6.34b)

The far field pattern of us has the representation

u∞
(
x̂
)

=
1

4π

∫

∂Ω

[
us(y)

∂
∂ν(y)

e−ikx̂·y − e−ikx̂·y ∂
∂ν

us(y)
]

ds(y) (6.35)

for x̂ ∈ S2.

For a proof, we refer to [47], Theorems 3.1 and 3.3. As a corollary, we prove the
following useful lemma.

Lemma 6.13. Let Ω ∈ R
3 be a domain that is decomposed into two disjoint subdo-

mains: Ω = Ω1 ∪Ω2 such that Ω1 ∩ Ω2 = /0. Let the boundaries ∂Ω1 and ∂Ω2

be smooth (i.e., C2). Let u j ∈ C2(Ω j) ∩C1(Ω j) for j = 1,2 be solutions of the
Helmholtz equation Δu j + k2u j = 0 in Ω j. Furthermore, let u1 = u2 on Γ and
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∂u1/∂ν = ∂u2/∂ν on Γ, where Γ denotes the common boundary Γ := ∂ Ω1 ∩ ∂ Ω2.
Then the function u, defined by

u(x) =
{

u1(x), x ∈ Ω1,

u2(x), x ∈ Ω2,

can be extended to an analytic function in Ω that satisfies the Helmholtz equation
Δu + k2u = 0 in Ω.

Proof. It follows from Green’s representation theorem that u1 and u2 are analytic
in Ω1 and Ω2, respectively. We fix x0 ∈ Γ∩Ω and choose a small ball K(x0,ε) that
is entirely in Ω. Let Kj := K(x0,ε)∩Ω j , j = 1,2, and x ∈ K1. We apply Green’s
representation theorems to u1 in K1 and to u2 in K2 to arrive at

u1(x) =
∫

∂ K1

[
Φ(x,y)

∂
∂ν

u1(y)−u1(y)
∂

∂ν(y)
Φ(x,y)

]
ds(y), x ∈ K1,

0 =
∫

∂ K2

[
Φ(x,y)

∂
∂ν

u2(y)−u2(y)
∂

∂ν(y)
Φ(x,y)

]
ds(y), x ∈ K1.

We add both equations and note that the contributions on Γ∩K cancel. This yields

u1(x) =
∫

∂K(x0,ε)

[
Φ(x,y)

∂
∂ν

u(y)−u(y)
∂

∂ν(y)
Φ(x,y)

]
ds(y), x ∈ K1.

Interchanging the roles of j = 1 and j = 2 yields

u2(x) =
∫

∂K(x0,ε)

[
Φ(x,y)

∂
∂ν

u(y)−u(y)
∂

∂ν(y)
Φ(x,y)

]
ds(y), x ∈ K2.

The right-hand sides coincide and are analytic functions in K(x0,ε). �

6.3 Properties of the Far Field Patterns

First, we prove a reciprocity principle for u∞. It states the (physically obvious) fact
that it is the same if we illuminate an object from the direction θ̂ and observe it
in the direction −x̂ or the other way around: illumination from x̂ and observation
in −θ̂ .

Theorem 6.14 (Reciprocity principle). Let u∞
(
x̂; θ̂

)
be the far field pattern cor-

responding to the direction x̂ of observation and the direction θ̂ of the incident plane
wave. Then

u∞
(
x̂; θ̂

)
= u∞

(
−θ̂ ;−x̂

)
for all x̂, θ̂ ∈ S2. (6.36)
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Proof. First we observe that the variational solutions of the scattering problems
are analytic outside of the ball K(0,a). Therefore, the Green’s theorems and also
Theorem 6.12 are applicable. Application of Green’s second theorem to ui and us in
the interior and exterior of {x ∈ R

3 : |x| = a}, respectively, yields

0 =
∫

|y|=a

[
ui(y; θ̂ )

∂
∂ν

ui(y;−x̂)−ui(y;−x̂)
∂

∂ν
ui(y; θ̂ )

]
ds(y),

0 =
∫

|y|=a

[
us(y; θ̂)

∂
∂ν

us(y;−x̂)−us(y;−x̂)
∂

∂ν
us(y; θ̂ )

]
ds(y).

(More precisely, to prove the second equation, one applies Green’s second theorem
to us in the region {x ∈ R

3 : a < |x| < R} with R > a and lets R tend to infinity.)
Now we use the representations (6.35) for the far field patterns u∞

(
x̂; θ̂

)
and

u∞
(
−θ̂ ;−x̂

)
:

4π u∞
(
x̂; θ̂

)
=

∫

|y|=a

[
us(y; θ̂ )

∂
∂ν

ui(y;−x̂)−ui(y;−x̂)
∂

∂ν
us(y; θ̂ )

]
ds(y),

4πu∞
(
−θ̂ ;−x̂

)
=

∫

|y|=a

[
us(y;−x̂)

∂
∂ν

ui(y; θ̂)−ui(y; θ̂ )
∂

∂ν
us(y;−x̂)

]
ds(y).

We subtract the last of these equations from the sum of the first three. This yields

4π
[
u∞

(
x̂; θ̂

)
−u∞

(
−θ̂ ;−x̂

)]

=
∫

|y|=a

[
u(y; θ̂ )

∂
∂ν

u(y;−x̂)−u(y;−x̂)
∂

∂ν
u(y; θ̂)

]
ds(y).

So far, we have not used any information of u inside K(0,a). To use this information,
we choose a cutoff function φ ∈C∞(R3) with φ(y) = 1 for |y| ≤ a and φ(y) = 0 for
|y| ≥ b for some b > a. Then we set ψ(y) = φ(y)u(y;−x̂) in the variational form
(6.11) for u(·; θ̂ ):

∫

|y|<a

[
∇u(y; θ̂) ·∇u(y;−x̂)− k2n(y)u(y; θ̂ )u(y;−x̂)

]
dy

+
∫

a<|y|<b

[
∇u(y; θ̂) ·∇

(
φ(y)u(y;−x̂)

)
− k2φ(y)u(y; θ̂ )u(y;−x̂)

]
dy = 0.
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Interchanging the roles of u(·; θ̂) and u(·;−x̂) and subtraction yield

∫

a<|y|<b

[
∇u(y; θ̂ ) ·∇

(
φ(y)u(y;−x̂)

)
−∇u(y;−x̂) ·∇

(
φ(y)u(y; θ̂ )

)]
dy = 0.

The functions are smooth in the anullus {y : a < |y|< b}, thus we can apply Green’s
theorem which yields (note that the contribution on {y : |y| = b} vanishes) that

∫

|y|=a

[
u(y; θ̂)

∂
∂ν

u(y;−x̂)−u(y;−x̂)
∂

∂ν
u(y; θ̂)

]
ds(y) = 0

and ends the proof. �

The far field patterns u∞
(
x̂; θ̂

)
, x̂, θ̂ ∈ S2, define the integral operator

(Fg)(x̂) =
∫

S2

u∞(x̂; θ̂ )g(θ̂ )ds(θ̂ ) for x̂ ∈ S2, (6.37)

which we call the far field operator. It is certainly compact in L2(S2) and is related
to the scattering operator S : L2(S2) → L2(S2) by

S = I +
ik
2π

F.

The next results prove some properties of these operators. Some of them are impor-
tant in Sects. 6.5 and 6.6. In what follows, we denote by

(
·, ·
)

L2(S2) the inner product

in L2(S2). We begin with a technical lemma (see [48]).

Lemma 6.15. For g,h ∈ L2(S2), define the Herglotz wave functions v i and wi by

v i(x) =
∫

S2

eikx·θ̂ g
(
θ̂
)

ds(θ̂ ), x ∈ R
3, (6.38a)

wi(x) =
∫

S2

eikx·θ̂ h
(
θ̂
)

ds(θ̂ ), x ∈ R
3, (6.38b)

respectively. Let v and w be the solutions of the scattering problem (6.9), (6.10)
corresponding to incident fields v i and wi, respectively. Then

ik2
∫

K(0,a)

(Imn)v wdx

= 2π
(
Fg,h

)
L2(S2) −2π

(
g,Fh

)
L2(S2) − ik

(
Fg,Fh

)
L2(S2). (6.39)
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Proof. Let v s = v − v i and ws = w−wi denote the scattered fields with far field
patterns v∞ and w∞. Then, by linearity, v∞ = Fg and w∞ = Fh. As in the proof of
Theorem 6.14 we choose a cutoff function φ ∈ C∞(R3) with φ(x) = 1 for |x| ≤ a
and φ(x) = 0 for |x| ≥ b for some b > a. Then we set ψ = φ w in the variational
form (6.11) for v and get

0 =
∫

|x|<a

[
∇v ·∇w− k2nv w

]
dx +

∫

a<|x|<b

[
∇v ·∇(φ w)− k2nv (φ w)

]
dx

=
∫

|x|<a

[
∇v ·∇w− k2nv w

]
dx−

∫

|x|=a

v
∂w
∂ν

ds,

where we applied Green’s first theorem on the integral over {x : a < |x| < b} where
the functions are smooth. Analogously, we take ψ = φ v in the complex conjugate
of (6.11) for w which yields

0 =
∫

|x|<a

[
∇v ·∇w− k2nv w

]
dx−

∫

|x|=a

w
∂v
∂ν

ds.

We subtract the equations and arrive at

2ik2
∫

K(0,a)

(Imn)v wdx =
∫

|x|=a

[
v

∂w
∂ν

−w
∂v
∂ν

]
ds.

The integral on the right-hand side is split into four parts by decomposing v =
v i + v s and w = wi + ws. The integral

∫

|x|=a

[
v i ∂wi

∂ν
−wi ∂v i

∂ν

]
ds

vanishes by Green’s second theorem because v i and wi are solutions of the
Helmholtz equation Δu + k2u = 0. We write

∫

|x|=a

[
v s ∂ws

∂ν
−ws ∂v s

∂ν

]
ds =

∫

|x|=R

[
v s ∂ ws

∂ν
−ws ∂v s

∂ν

]
ds

and note that

v s(x)
∂ ws(x)

∂ r
−ws(x)

∂v s(x)
∂ r

= −2ik
r2 v∞

(
x̂
)

w∞
(
x̂
)
+O(1/r3).
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From this

∫

|x|=R

[
v s ∂ws

∂ν
−ws ∂v s

∂ν

]
ds −→ −2ik

∫

S2

v∞ w∞ ds = −2ik (Fg,Fh)L2(S2)

follows as R tends to infinity. Finally, we use the definition of v i and wi and the
representation (6.35) to compute

∫

|x|=a

[
v i ∂ws

∂ν
−ws ∂v i

∂ν

]
ds

=
∫

S2

g
(
θ̂
)∫

∂ K(0,a)

[

eikx·θ̂ ∂ws(x)
∂ν

−ws(x)
∂

∂ν
eikx·θ̂

]

ds(x)ds(θ̂ )

= −4π
∫

S2

g
(
θ̂
)

w∞
(
θ̂
)

d(θ̂ ) = −4π
(
g,Fh

)
L2(S2).

Analogously, we have that

∫

|x|=a

[
v s ∂wi

∂ν
−wi ∂v s

∂ν

]
ds = 4π

(
Fg,h

)
L2(S2).

This ends the proof. �

We can now give a simple proof of the unitarity of the scattering operator for
real-valued n.

Theorem 6.16. Let n ∈ L∞(R3) be real-valued such that the support of n− 1 is
contained in K(0,a). Then F is normal (i.e., F∗F = F F∗), and S := I +(ik)/(2π)F
is unitary (i.e., S∗S = S S∗ = I).

Proof. The preceding lemma implies that

ik
(
Fg,Fh

)
L2(S2) = 2π

(
Fg,h

)
L2(S2) −2π

(
g,Fh

)
L2(S2) (6.40)

for all g,h ∈ L2(S2). By reciprocity (Theorem 6.14), we conclude that

(F∗g)(x̂) =
∫

S2

u∞
(
θ̂ ; x̂

)
g
(
θ̂
)

ds(θ̂ ) =
∫

S2

u∞
(
−x̂;−θ̂

)
g
(
θ̂
)

ds(θ̂)

=
∫

S2

u∞
(
−x̂; θ̂

)
g
(
−θ̂

)
ds(θ̂ )
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and thus F∗g = RFRg, where (Rh)(x̂) := h(−x̂) for x̂ ∈ S2. Noting that
(Rg,Rh)L2(S2) = (g,h)L2(S2) = (h,g)L2(S2) for all g,h ∈ L2(S2) and using (6.40)
twice, we conclude that

ik (F∗h,F∗g)L2(S2) = ik (RFRg,RFRh)L2(S2) = ik (FRg,FRh)L2(S2)

= 2π (FRg,Rh)L2(S2)−2π (Rg,FRh)L2(S2)

= 2π (RFRg,h)L2(S2)−2π (g,RFRh)L2(S2)

= 2π (h,F∗g)L2(S2)−2π (F∗h,g)L2(S2)

= 2π (Fh,g)L2(S2)−2π (h,Fg)L2(S2)

= ik (Fh,Fg)L2(S2).

This holds for all g,h ∈ L2(S2); thus F∗F = F F∗.
Finally, from (6.40), we conclude that

−(g, ikF∗Fh)L2(S2) = 2π
(
g,(F∗ −F)h

)
L2(S2) for all g,h ∈ L2(S2) ;

that is, ikF∗F = 2π
(
F −F∗). This formula, together with the normality of F , yields

S∗S = S S∗ = I by substituting the definition of S into S∗S and S S∗. �

It is well known that the eigenvalues of unitary operators all lie on the unit circle
in C. From the definition S = I + (ik)/(2π)F , we conclude that the eigenvalues
of F lie on the circle

∣
∣2π i/k− z

∣
∣ = 2π/k with center 2πi/k and radius 2π/k. We

later show (Lemma 6.34) that the eigenvalues tend to zero from the right half of
this circle. These properties hold for real-valued indices of refraction n. For further
results for absorbing media (i.e., for which n is complex-valued), we refer to the
original literature [48].

A number of numerical methods for determining the shape D of the support of
the contrast n− 1, for example, the dual space method by Colton and Monk (or
“superposition of incident fields”, see [49, 50]) or the Linear Sampling Method
(see [45, 143]) study the question of unique solvability of the far field equation
Fg = f :

∫

S2

u∞
(
x̂; θ̂

)
g(θ̂ )ds(θ̂) = f

(
x̂
)
, x̂ ∈ S2,

for different right-hand sides f . The question of injectivity of the far field opera-
tor F is particularly important. We show that the null space of F is characterized
by the following unusual eigenvalue problem, the interior transmission eigenvalue
problem. Let D be some bounded domain that contains the support of m = n− 1.
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Interior Transmission Eigenvalue Problem: Determine k > 0 and v ,w ∈ H1(D),
(v ,w) �= (0,0), such that

Δv + k2v = 0 in D, Δw + k2nw = 0 in D, (6.41a)

v = w on ∂ D,
∂v
∂ν

=
∂w
∂ν

on ∂D. (6.41b)

We also consider an inhomogeneous version of this system:

Interior Transmission Problem: Given f ,g determine v ,w ∈ H1(D) such that

Δv + k2v = 0 in D, Δw + k2nw = 0 in D, (6.42a)

w− v = f on ∂D,
∂ w
∂ν

− ∂v
∂ν

= g on ∂D. (6.42b)

The solutions of (6.41a), (6.41b) and (6.42a), (6.42b), respectively, have to be un-
derstood in the weak sense; that is, for (6.42a), (6.42b):

∫

D

[
∇w ·∇ψ − k2nwψ

]
dx−

∫

D

[
∇v ·∇ψ − k2v ψ

]
dx =

∫

∂ D

gψ dx (6.43a)

for all ψ ∈ H1(D) and

∫

D

[
∇w ·∇ψ − k2nwψ

]
dx =

∫

D

[
∇v ·∇ψ − k2v ψ

]
dx = 0 (6.43b)

for all ψ ∈ H1(D) with ψ = 0 on ∂D. The Dirichlet condition w− v = f on ∂D is
understood in the sense of traces.

We can show the following theorem (see [52, 53, 138]).

Theorem 6.17. Let D ⊂ R
3 be a bounded domain such that the exterior of D is

connected and n = 1 outside of D.

(a) g ∈ L2(S2) is a solution of the homogeneous integral equation

∫

S2

u∞
(
x̂; θ̂

)
g(θ̂)ds(θ̂ ) = 0, x̂ ∈ S2, (6.44)

if and only if there exist v ,w ∈ H1(D) such that (v ,w) solve (6.41a), (6.41b),
and v is the Herglotz wave function defined by

v(x) =
∫

S2

eikx·ŷ g(ŷ)ds(ŷ), x ∈ R
3. (6.45)

In particular, F is one-to-one if the system (6.41a), (6.41b) is only solvable by
the trivial solution v = w = 0 in D.
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(b) Let z ∈ D be fixed. The integral equation
∫

S2

u∞
(
x̂; θ̂

)
g(θ̂)ds(θ̂ ) = e−ikz·x̂, x̂ ∈ S2, (6.46)

of the first kind is solvable in L2(S2) if and only if the interior transmission
problem

Δv + k2v = 0 in D, Δw + k2nw = 0 in D, (6.47a)

w(x)− v(x) =
exp(ik |x− z|)

|x− z| on ∂ D, (6.47b)

∂w(x)
∂ν

− ∂v(x)
∂ν

=
∂

∂ν
exp(ik |x− z|)

|x− z| on ∂D, (6.47c)

has a solution w,v ∈ H1(D), and v is of the form (6.45).
(c) For z /∈ D the integral Eq. (6.46) is never solvable in L2(S2).

Proof. (a) Let g∈ L2(S2) be a solution of (6.44) and define v by (6.45). We observe
that the left-hand side of (6.44) is a superposition of far field patterns. Therefore,
the far field pattern w∞ of the scattered field ws that corresponds to the incident
field v vanishes. The corresponding total field w = ws + v ∈ H1

loc(R
3) satisfies

the Helmholtz equation Δw+ k2nw = 0 in R
3 (in the weak sense). By Rellich’s

lemma (Lemma 6.2), the scattered field ws = w−v vanishes outside of D. This
yields that

w− v = 0 on ∂D and
∂ (w− v)

∂ν
= 0 on ∂D

(also in the weak sense) and proves the first direction.
Now let v be of the form (6.45) and let there exist w ∈ H1(D) such that

(v ,w) solves the eigenvalue problem (6.41a), (6.41b). We extend w to all of
R

3 by setting w(x) := v(x) for x /∈ D. Then w ∈ H1
loc(R

3) because the traces
of w and v coincide on ∂D. Furthermore, w satisfies the Helmholtz equation
Δw + k2nw = 0 in all of R

3. The difference w− v vanishes in the exterior of
D and obviously satisfies the radiation condition. Therefore, w is the unique
total field corresponding to the incident field v . The far field pattern w∞ of the
corresponding scattered field w− v vanishes. As in the previous part, we see
that w is a superposition

w(x) =
∫

S2
u(x; θ̂)g(θ̂ )ds(θ̂ )

of total fields. For the corresponding far field patterns, we conclude that

0 = w∞(x̂) =
∫

S2

u∞
(
x̂; θ̂

)
g(θ̂ )ds(θ̂ )

for all x̂ ∈ S2. This proves part (a).
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(b) The proof is very similar to the preceding one. Let g ∈ L2(S2) be a solution of
(6.46) and define v as in (6.45). As in part (a), the integral is the far field pattern
w∞ corresponding to the total field w that satisfies the Helmholtz equation. Now
w∞ does not vanish but is equal to the function exp

(
−ikz · x

)
. By Theorem 6.6,

the only radiating solution of the Helmholtz equation with this far field pattern
is the spherical wave exp(ik |x− z|)/ |x− z|. Because z is contained in D and the
exterior of D is connected, the scattered waves w−v and exp(ik |x− z|)/ |x− z|
have to coincide outside of D which proves the first direction. The second di-
rection is proved in the same way.

(c) Assume, on the contrary, that (6.46) is solvable for some g ∈ L2(S2) and define
v as in (6.45). Then, as in part (b), the spherical wave exp(ik |x− z|)/ |x− z|
coincides with v in the exterior of D∪{z}. This leads to a contradiction as in
the proof of Theorem 5.24 because v is bounded in z and the spherical wave is
singular for x = z. �

As an application, we give conditions under which the range of the far field oper-
ator F is dense in L2(S2). From

(
Fg,h

)
L2(S2) =

(
g,F∗h

)
L2(S2) for all g,h ∈ L2(S2),

it is seen that the orthogonal complement of the range of F is characterized by the
null space of the adjoint F∗ of F .

Theorem 6.18. The null space
{

h ∈ L2(S2) : F∗h = 0
}

consists exactly of those
functions h ∈ L2(S2) for which the corresponding Herglotz wave functions

v(x) :=
∫

S2

eikx·ŷ h(−ŷ)ds(ŷ), x ∈ R
3,

satisfy the interior transmission eigenvalue problem (6.41a), (6.41b) for some
w ∈ H1(D).

Proof. By using the reciprocity principle (Theorem 6.14), we conclude that

F∗h = 0 ⇐⇒
∫

S2

u∞
(
θ̂ ; x̂

)
h
(
θ̂
)

ds(θ̂ ) = 0 for all x̂ ∈ S2

⇐⇒
∫

S2

u∞
(
−x̂;−θ̂

)
h
(
θ̂
)

ds(θ̂ ) = 0 for all x̂ ∈ S2

⇐⇒
∫

S2

u∞
(
x̂; θ̂

)
h
(
−θ̂

)
ds(θ̂ ) = 0 for all x̂ ∈ S2.

Application of Theorem 6.17 yields the assertion. �
We call the wave number k an interior transmission eigenvalue of (6.41a), (6.41b)

if there exists no nontrivial pair (v ,w) of fields that satisfies (6.41a), (6.41b).2

2 As proper assumptions on v ,w one requires v ,w ∈ L2(D) and v −w ∈ H2(D). The differential
equations are understood in the “ultra weak sense”; see [143].
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By the previous theorem, F is one-to-one and the range of F is dense in L2(S2)
if k is not an interior transmission eigenvalue.

The results (b) and (c) of Theorem 6.17 indicate that it should be possible to
characterize the unknown set D by a criterion which depends on the solvability of
the integral Eq. (6.46) of the first kind. A mathematically rigorous formulation of
this idea leads to the Linear Sampling Method. We note, however, that even for
z ∈ D the integral Eq. (6.46) is not always (even very rarely) solvable because of
the additional requirement that in the solution (v ,w) of (6.47a) – (6.47c) the part v
has to be a Herglotz wave function. This observation led to the development of the
Factorization Method which we present in Sect. 6.5 below.

It is an important assumption for the Factorization Method to work that the
wave number k is not an eigenvalue of the interior transmission eigenvalue prob-
lem (6.41a), (6.41b). This is one of the motivations to study this eigenvalue problem
in more detail. In the case where D is not penetrable but acoustically soft (i.e.,
u = 0 on ∂D) the corresponding eigenvalue problem is just the classical eigenvalue
problem for −Δ in D with respect to the Dirichlet boundary condition u = 0 on
∂D. Compared to this classical case the interior transmission eigenvalue problem is
much less understood. Under certain assumptions on n it has been shown already in
[46] that the spectrum is discrete and accumulates at most at infinity, if eigenvalues
exist at all. It took almost 20 years for the proof of existence of real eigenvalues (see
[32–34, 195]). The reason for this gap is partially because the interior transmission
eigenvalue problem is not self-adjoint. Indeed, it has been shown for a special case
that there exist in fact also complex eigenvalues. The general case is still open. We
refer to [55] for a survey prior to 2007 and to [121, 142] for interior transmission
eigenvalue problems for other types of elliptic operators. Instead of the general sit-
uation we consider only the special example of D being the unit disk and n being
real-valued and radially symmetric (i.e., n = n(r)).

Example 6.19. Let D be the unit disk and let n depend only on r = |x|. We as-
sume that n ∈ C2[0,∞) such that n(r) > 1 for 0 ≤ r < 1 and n(r) = 1 for r ≥ 1.
The Helmholtz equations for v and w reduce to ordinary differential equations. In
Example 6.1, we proved the representation v(r) = α sin(kr)/r, 0 < r < 1, for some
α ∈R. With the substitution w(r) = y(r)/r, the equation for y reduces to (see (6.7b))

y′′(r)+ k2n(r)y(r) = 0, r > 0, (6.48)

with boundary condition y(0) = 0 because w has to be regular at 0. (v ,w) solves
the eigenvalue problem (6.41a), (6.41b) if and only if v and y satisfy the boundary
conditions

y(1) = w(1) = v(1) = α sink

and

y′(1) = w(1)+ w′(1) = v(1)+ v ′(1) = αk cosk.
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We use the Liouville transformation (see Sect. 4.1)

s = s(r) :=
r∫

0

√
n(t)dt, z(s) :=

[
n
(
r(s)

)]1/4
y
(
r(s)

)

again. Here, s �→ r(s) denotes the inverse function of the monotonic function
r �→ s(r). It transforms the differential Eq. (6.48) into the following form for z;

z′′(s)+
(
k2 −q(s)

)
z(s) = 0 for 0 < s < ŝ, (6.49)

with

q(s) :=
1
4

[
n(r)−3/4

(
n(r)−5/4 n′(r)

)′]

r=r(s)

and

ŝ = s(1) =
1∫

0

√
n(t)dt > 1.

The boundary conditions transform to

z(0) = 0, z(ŝ) = α sink, z′(ŝ) = αk cosk +
1
4

α sink.

The quantity k2 plays the role of λ of the previous chapter. Again, we denote by
u2 = u2(s,k2,q) the function of the fundamental system corresponding to (6.49)
with u2(0) = 0 and u2

′(0) = 1. Then z = β u2 for some β ∈ R. In order to satisfy
the remaining boundary conditions, α and β have to satisfy the following system of
two equations:

α sink−β u2(ŝ) = 0 and α
(

k cosk +
1
4

sink

)
−β u2

′(ŝ) = 0.

The determinant is given by

f (k) = u2(ŝ)
[

k cosk +
1
4

sin k

]
−u2

′(ŝ) sink.

With the asymptotic form of u2(ŝ) for k → ∞ (see Theorem 4.5), we observe that

f (k) =
sin

(
kŝ
)

k
k cosk− cos

(
kŝ
)

sink +O(1/k)

= sin
(
k(ŝ−1)

)
+O(1/k).

From this, we see that this determinant vanishes at infinitely many discrete values
of k.
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For this special case, we have shown the existence of infinitely many eigenvalues
of (6.41a) and (6.41b) that tend to infinity. The corresponding eigenfunctions v have
the form (6.45) because, by the following lemma, we have that

v(x) = α
sin(kr)

r
=

αk
4π

∫

S2

e−ikrx̂·ŷ ds(ŷ), x = rx̂ ∈ R
3.

We observe that in this radially symmetric space the range of the far field operator
F is not dense in L2(S2) if k is a zero of f .

Lemma 6.20. Let ρ ∈ R and x̂ ∈ S2. Then

∫

S2

eiρ x̂·ŷds(ŷ) = 4π
sinρ

ρ
.

Proof. Because the integrand is spherically symmetric, we can assume without loss
of generality that x̂ is the “north pole”, that is, x̂ = (0,0,1)
. Then

∫

S2

eiρ x̂·ŷ ds(ŷ) =
2π∫

0

π∫

0

eiρ cosθ sinθ dθ dφ

= 2π
1∫

−1

eiρs ds = 4π
sinρ

ρ
. �

We conclude this section with the remark that in the case when the index of refrac-
tion has a nonvanishing imaginary part (i.e., the medium is absorbing), there exist
no eigenvalues.

Theorem 6.21. If Imn(x) > 0 on some open set A ⊂ D, then the eigenvalue prob-
lem (6.41a), (6.41b) has no real eigenvalue k > 0.

Proof. Let (v ,w) be a solution of (6.41a) and (6.41b) corresponding to some k > 0.
We substitute ψ = v into (6.43a) (for g = 0) and ψ = w− v into the first equation
of (6.43b) and add the results. This yields

∫

D

[
|∇w|2 − k2n |w|2

]
dx−

∫

D

[
|∇v |2 − k2|v |2

]
dx = 0.

Now we take the imaginary part and arrive at

∫

D

Im n |w|2 dx = 0.
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Because Imn(x) ≥ 0 for all x and Imn(x) > 0 on the open set A we conclude that
w has to vanish in A. The general unique continuation principle (see the remark
following Theorem 6.4) implies that w vanishes in all of D. Therefore, the Cauchy
data v and ∂v/∂ν vanish on ∂D; that is, using again (6.43a) for g = 0 and extending
v by zero outside of D,

∫

R2

[
∇v ·∇ψ − k2v ψ

]
dx = 0

for all ψ ∈ H1(R2). Now we can again apply the unique continuation principle
of Theorem 6.4 which yields that v also vanishes in D. Therefore, k cannot be an
eigenvalue. �

6.4 Uniqueness of the Inverse Problem

In this section, we want to determine if the knowledge of the far field pattern
u∞

(
x̂; θ̂

)
provides enough information to recover the index of refraction n = n(x).

Therefore, let two functions n1,n2 ∈ L∞(R3) be given with n1(x) = n2(x) = 1 for
|x| ≥ a. We assume that the corresponding far field patterns u1,∞ and u2,∞ coincide,
and we wish to show that n1 and n2 also coincide. As a first simple case, we consider
the Born approximation again. Let

ub
1,∞(x̂; θ̂) = ub

2,∞(x̂; θ̂) for all x̂ ∈ S2 and some θ̂ ∈ S2.

Formula (6.32) implies that m∼
1

(
kx̂−kθ̂

)
= m∼

2

(
kx̂−kθ̂

)
for all x̂ ∈ S2. Here, mj :=

n j − 1 for j = 1,2. Therefore, the Fourier transforms of m1 and m2 coincide on a
sphere with center kθ̂ and radius k > 0. This, however, is not enough to conclude
that m1 and m2 coincide.

Let us now assume that

ub
1,∞(x̂; θ̂) = ub

2,∞(x̂; θ̂) for all x̂ ∈ S2 and all θ̂ ∈ S2.

Then m∼
1

(
kx̂− kθ̂

)
= m∼

2

(
kx̂− kθ̂

)
for all x̂, θ̂ ∈ S2. Therefore, the Fourier trans-

forms coincide on the set {k(x̂− θ̂) : x̂, θ̂ ∈ S2}, which describes a ball in R
3 with

center zero and radius 2k. The Fourier transforms of m1 and m2 are analytic func-
tions, therefore the unique continuation principle for analytic functions yields that
m∼

1 and m∼
2 coincide on all of R

3 and thus m1 = m2. Therefore, the knowledge of
{ub

∞(x̂; θ̂ ) : x̂, θ̂ ∈ S2} is (theoretically) sufficient to recover the refraction index.
The same arguments also show that the knowledge of ub

∞(x̂; θ̂ ) for all x̂ ∈ S2,
some θ̂ ∈ S2, and all k from an interval of R>0 is sufficient to recover n. We refer to
Problem 6.1 for an investigation of this case.
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These arguments hold for the Born approximation to the far field pattern. We now
prove an analogous uniqueness theorem for the actual far field pattern, which is due
to A. Nachman [181], R. Novikov [193], and A. Ramm [201]. The proof consists of
three steps, which we formulate as lemmata. For the first result, we consider a fixed
refraction index n ∈ L∞(R3) with n(x) = 1 for |x| ≥ a and show that the span of all
total fields that correspond to scattering problems with plane incident fields is dense
in the space of solutions of the Helmholtz equation in K(0,a).

Lemma 6.22. Let n ∈ L∞(R3) with n(x) = 1 for |x| ≥ a. Let u
(
·; θ̂

)
denote the total

field corresponding to the incident field eikθ̂ ·x. Let b > a and define the space H by

H :=
{
v ∈ H1(K(0,b)

)
: Δv + k2nv = 0 in K(0,b)

}
, (6.50)

where the solution of the Helmholtz equation is again understood in the variational
sense: ∫

K(0,b)

[
∇v ·∇ψ − k2nv ψ

]
dx = 0

for all ψ ∈ H1
(
K(0,b)

)
with ψ = 0 for |x| = b. Then span

{
u
(
·; θ̂

)
|K(0,a) : θ̂ ∈ S2

}

is dense in H|K(0,a) with respect to the norm in L2
(
K(0,a)

)
.

Proof. Let v be in the closure of H such that

(
v ,u(·; θ̂)

)
L2 =

∫

K(0,a)

v(x)u(x; θ̂ )dx = 0 for all θ̂ ∈ S2,

where we write (·, ·)L2 instead of (·, ·)L2(K(0,a)). The Lippmann–Schwinger

Eq. (6.23) yields u = (I + T)−1ui; thus

0 =
(
v ,(I + T)−1ui(·; θ̂)

)
L2 =

(
(I + T∗)−1v ,ui(·; θ̂ )

)
L2 (6.51)

for all θ̂ ∈ S2. Set w := (I + T ∗)−1v . Then w ∈ L2
(
K(0,a)

)
, and w satisfies the

“adjoint equation”

v(x) = w(x)+ k2(1− n(x)
) ∫

K(0,a)

Φ(x,y)w(y)dy, x ∈ K[0,a].

Now set

w̃(x) :=
∫

K(0,a)

w(y)Φ(x,y)dy for x ∈ R
3.
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Then w̃ is a volume potential with L2-density w. We know from Theorem 6.7 that
w̃ ∈ H1

loc(R
3) satisfies Δw̃+ k2w̃ = −w in R

3(R3) in the weak sense:

∫

R3

[
∇w̃ ·∇ψ − k2w̃ψ

]
dx =

∫

K(0,a)

wψ dx (6.52)

for all ψ ∈ H1(R3) with compact support. The far field pattern w̃∞ of w̃ vanishes
because

w̃∞(θ̂) =
1

4π

∫

K(0,a)

w(y) exp(ikθ̂ · y)dy =
1

4π
(
w,ui(·;−θ̂)

)
L2 = 0

for all θ̂ ∈ S2. Rellich’s lemma implies that w̃(x) = 0 for all x /∈ K(0,a).
Now let v j ∈ H with v j → v in L2

(
K(0,a)

)
. Then

∫

K(0,a)

v v j dx =
∫

K(0,a)

wv j dx + k2
∫

K(0,a)

(1−n) w̃v j dx. (6.53)

We recall that v j ∈ H1
(
K(0,b)

)
satisfies

∫

|x|<b

[
∇v j ·∇ψ − k2v j ψ

]
dx = −k2

∫

K(0,a)

(1−n)v j ψ dx (6.54)

for all ψ ∈ H1
(
K(0,b)

)
with ψ = 0 for |x| = b. Because w̃ vanishes for |x| > a we

can substitute ψ = w̃ in (6.54). Also, we extend v j arbitrarily into the exterior of
K(0,b) to some function v j ∈ H1(R3) with compact support and substitute ψ = v j

in (6.52). Then the left-hand sides of both equations coincide, thus

−k2
∫

K(0,a)

(1−n)v j w̃ dx =
∫

K(0,a)

wv j dx.

Therefore, Eq. (6.53) reduces to

∫

K(0,a)

v v j dx = 0

for all j. Letting j tend to infinity yields v = 0. �

The second lemma proves a certain “orthogonality relation” between solutions
of the Helmholtz equation with different indices of refraction n1 and n2.
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Lemma 6.23. Let n1,n2 ∈ L∞(R3) be two indices of refraction with n1(x) = n2(x) =
1 for all |x| ≥ a and assume that u1,∞(x̂; θ̂) = u2,∞(x̂; θ̂) for all x̂, θ̂ ∈ S2. Then

∫

K(0,a)

v1(x)v2(x)
[
n1(x)−n2(x)

]
dx = 0 (6.55)

for all solutions v j ∈ H1
(
K(0,b)

)
of the Helmholtz equation Δv j + k2n jv j = 0,

j = 1,2, in K(0,b), where b > a.

Proof. Let v1 be any fixed solution of Δv1 + k2n1v1 = 0 in K(0,b). By the dense-
ness result of Lemma 6.22 it is sufficient to prove the assertion for v2 := u2(·; θ̂) and
arbitrary θ̂ ∈ S2. We set u = u1

(
·, θ̂

)
−u2

(
·, θ̂

)
which is the same as the difference

of the corresponding scattered fields. From u1,∞
(
·, θ̂

)
= u2,∞

(
·, θ̂

)
and Rellich’s

Lemma 6.2, it follows that u vanishes outside K(0,a). Furthermore, u satisfies the
inhomogeneous Helmholtz equation

Δu + k2n1 u = k2(n2 −n1)u2(·, θ̂ ) = k2(n2 −n1)v2

in the weak sense:
∫

R3

[
∇u ·∇ψ − k2n1 uψ

]
dx = −k2

∫

K(0,a)

(n2 −n1)v2 ψ dx

for all ψ with compact support. The region on the left-hand side can be restricted to
K(0,a) because u vanishes outside of this ball. We set ψ = φ v1 with some smooth
function φ of compact support which is 1 on K(0,a). This yields

k2
∫

K(0,a)

(n1 −n2)v1 v2 dx =
∫

K(0,a)

[
∇u ·∇v1 − k2n1 uv1

]
dx,

and this term vanishes because v1 is a weak solution of Δv1 + k2n1v1 = 0 in K(0,b)
and u has compact support in K(0,b). �

The original proof of the third important “ingredient” of the uniqueness proof
was first given in [235]. It is of independent interest and states that the set of all
products v1v2 of functions v j that satisfy the Helmholtz equations Δv j + k2n jv j = 0
in some bounded region Ω is dense in L2(Ω). This is exactly the kind of argument we
have used already for the uniqueness proof in the linearized problem of impedance
tomography (see Theorem 5.9). The situation in this chapter is more complicated
because we have to consider products of solutions of different differential equations
with nonconstant coefficients. The idea is to construct solutions u of the Helmholtz
equation Δu+ k2nu = 0 in K(0,a) that behave asymptotically as exp(z ·x). Here we
take n = n1 or n2. The following result is crucial.



222 6 An Inverse Scattering Problem

Theorem 6.24. Let K(0,b) ⊂ R
3 be a ball of radius b and n ∈ L∞(K(0,b)

)
such

that n− 1 has compact support in K(0,b). Then there exist T > 0 and C > 0 such
that for all z ∈ C

3 with z · z = 0 and |z| ≥ T there exists a solution uz ∈ H1
(
K(0,b)

)

of the differential equation

Δuz + k2nuz = 0 in K(0,b) (6.56)

of the form
uz(x) = ez·x (1 + vz(x)

)
, x ∈ K(0,b). (6.57)

Furthermore, vz satisfies the estimate

‖vz‖L2(K(0,b)) ≤ C
|z| for all z ∈ C

3 with z · z = 0 and |z| ≥ T. (6.58)

Proof. The proof consists of two parts. First, we construct vz only for z = tê, where
ê = (1, i,0)
 ∈ C

3 and t being sufficiently large. In the second part, we consider the
general case by rotating the geometry.

Let z = tê for some t > 0. By scaling the functions, we can assume without loss
of generality that K(0,b) is contained in the cube Q = [−π,π]3 ⊂ R

3. We substitute
the ansatz

u(x) = etê·x [1 + exp(−i/2x1)wt(x)
]

into the Helmholtz Eq. (6.56). This yields the following differential equation for wt :

Δwt(x)+
(
2tê− ip

)
·∇wt(x)−

(
it + 1/4

)
wt (x)

= −k2n(x)wt(x)− k2n(x)exp(i/2x1) in Q,

where p = (1,0,0)
 ∈ R
3. The solution is again understood in the variational sense,

and we refer to the proof of the unique continuation principle (Theorem 6.4) for the
same kind of transformation.

We determine a 2π-periodic solution of this equation. Because this equation has
the form of (6.14) (for α = 1/4), we use the solution operator Lt of Lemma 6.3 and
write this equation in the form

wt + k2Lt(nwt) = Lt ñ in Q, (6.59)

where we have set ñ(x) = −k2n(x) exp(i/2x1). For large values of t, the operator
Kt : w �→ k2Lt(nw) is a contraction mapping in L2(Q). This follows from the
estimates

‖Ktw‖L2(Q) = k2 ‖Lt(nw)‖L2(Q) ≤ k2

t
‖nw‖L2(Q)

≤ k2 ‖n‖∞
t

‖w‖L2(Q) ,
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which implies that ‖Kt‖ < 1 for sufficiently large t > 0. For these values of t there
exists a unique solution wt of (6.59). The solution depends continuously on the
right-hand side, therefore we conclude that there exists c > 0 with

‖wt‖L2(Q) ≤ c ‖Lt ñ‖L2(Q) ≤ ck2

t
‖n‖∞

for all t ≥ T and some T > 0. This proves the theorem for the special choice z = tê.
Now let z ∈ C

3 be arbitrary with z · z = 0 and |z| ≥ T . From this, we observe
that |Re z| = |Imz| and

(
Re z

)
·
(
Imz

)
= 0. We decompose z in the unique form

z = t
(
â + ib̂

)
with â, b̂ ∈ S2 and t > 0 and â · b̂ = 0. We define the cross-product

ĉ = â× b̂ and the orthogonal matrix R =
[
â b̂ ĉ

]
∈ R

3×3. Then t Rê = z and thus
R
z = tê. The substitution x �→ Rx transforms the Helmholtz Eq. (6.56) into

Δw(x)+ k2n(Rx)w(x) = 0, x ∈ K(0,b),

for w(x) = v(Rx), x ∈ K(0,b). Application of the first part of this proof yields the
existence of a solution w of this equation of the form

w(x) = etê·x [1 + exp(−i/2x1)wt(x)
]
,

where wt satisfies ‖wt‖L2(Q) ≤ C/t for t ≥ T . From v(x) = w
(
R
x

)
, we conclude

that

v(x) = etê·R
x [1 + exp(−i/2 â · x)wt
(
R
x

)]

= ez·x [1 + exp(−i/2 â · x)wt
(
R
x

)]
,

which proves the theorem for this case. �

Now we are able to prove the following analogy of Calderón’s approach (com-
pare with the proof of Theorem 5.9).

Theorem 6.25. Let Ω ⊂ R
3 be a bounded domain and let n1,n2 ∈ L∞(Ω) such that

n1 −1 and n2 −1 have compact support in Ω. Then the span of the set

{
u1 u2 : u j ∈ H1(Ω) solves (6.9) for n = n j, j = 1,2

}

of products is dense in L2(Ω).

Proof. Choose b > 0 such that Ω is contained in the ball K(0,b). Let g ∈ L2(Ω) be
orthogonal to the span of the set of products. We have to show that g vanishes. We
note that in particular ∫

Ω

g(x)u1(x)u2(x)dx = 0 (6.60)
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for all solutions u j ∈ H1(Ω) of the Helmholtz equation Δu j + k2n ju j = 0 in Ω,
j = 1,2. In particular, (6.60) holds for all solutions of the Helmholtz equation in
K(0,b).

Fix an arbitrary vector y ∈ R
3 \ {0} and a number ρ > 0. Choose a unit vector

â ∈ R
3 and a vector b ∈ R

3 with |b|2 = |y|2 +ρ2 such that
{

y, â,b
}

forms an orthog-
onal system in R

3. Set

z1 :=
1
2

b− i
2

(
y + ρ â

)
and z2 := −1

2
b− i

2

(
y−ρ â

)
.

Then z j · z j = |Rez j |2 − |Imz j|2 + 2iRez j · Imz j = |b|2/4−
(
|y|2 + ρ2

)
/4 = 0 and

∣∣z j
∣∣2 =

(
|b|2 + |y|2 + ρ2

)
/4 ≥ ρ2/4. Furthermore, z1 + z2 = −iy.

Now we apply Theorem 6.24 with z j to the Helmholtz equations Δu j +k2n ju j = 0
in K(0,b). We substitute the forms (6.57) of u j into the orthogonality relation (6.60)
and arrive at

0 =
∫

Ω

e(z1+z2)·x [1 + v1(x)
] [

1 + v2(x)
]

g(x)dx

=
∫

Ω

e−i y·x [1 + v1(x)+ v2(x)+ v1(x)v2(x)
]

g(x)dx.

By Theorem 6.24, there exist constants T > 0 and C > 0 with

∥
∥v j

∥
∥

L2(Ω) ≤ C
|z j| ≤ 2C

ρ

for all ρ ≥ T . Now we use the Cauchy–Schwarz inequality and let ρ tend to infinity.
This yields ∫

Ω

e−i y·x g(x)dx = 0.

Because the vector y ∈ R
3 \ {0} was arbitrary, we conclude that the Fourier trans-

form of g vanishes. This yields g = 0. �

As a corollary, we have the following uniqueness theorem.

Theorem 6.26. Let n1,n2 ∈ L∞(R3) be two indices of refraction with n1(x) =
n2(x) = 1 for all |x| ≥ a. Let u1,∞ and u2,∞ be the corresponding far field patterns,
and assume that they coincide; that is, u1,∞(x̂; θ̂) = u2,∞(x̂; θ̂ ) for all x̂, θ̂ ∈ S2. Then
n1 = n2.

Proof. We combine the orthogonality relation of Lemma 6.23 with the denseness
result of Theorem 6.25, where we choose Ω = K(0,b). �
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The proof of Theorem 6.25 does not work in R
2 because in that case there is

no corresponding decomposition of y. However, using more complicated families
of solutions, uniqueness of the two-dimensional case has been shown by Bukhgeim
in [27].

6.5 The Factorization Method

It is the aim of this section to transfer the Factorization Method of the previous
chapter to the present scattering problem.3 Therefore, in this section we are only in-
terested in determining the support of n−1. We make the same kind of assumptions
on this support as in the previous chapter (compare to Assumptions 5.10).

Assumption 6.27. Let there exist finitely many domains D j, j = 1, . . . ,M, such that
D j ∩Dk = /0 for j �= k and such that the complement R

3 \D of the closure of the
union D =

⋃M
j=1 D j is connected. Furthermore, let n ∈ L∞(R3) be real-valued such

that there exists c0 > 0 with n = 1 on R
3 \D and m = n−1 ≥ c0 on D.

The far field operator F plays the role of the difference Λ−Λ1 of the Neumann-
Dirichlet operators. The first ingredient of the Factorization Method is again the
factorization of the data operator. To motivate the operators that appear in the fac-
torization we write the Helmholtz Eq. (6.9) in terms of the scattered field as

Δus + k2nus = k2(1−n)ui = −k2mui in R
3, (6.61)

where we have again defined the contrast m by m = n−1. The source on the right-
hand side is of a special form. We allow more general sources and consider radiating
solutions v of equations of the form

Δv + k2nv = −m f in R
3 (6.62)

for any f ∈ L2(D). The solution is again understood in the weak sense: v ∈ H1
loc(R

3)
satisfies

∫

R3

[
∇v ·∇ψ − k2nv ψ

]
dx =

∫

D

m f ψ dx (6.63)

for all ψ ∈ H1(R3) with compact support. This radiation problem has a unique solu-
tion for every f ∈ L2(D). Indeed, we can consider the integral equation v + Tv = g
with the integral operator T from (6.24) and g ∈ L2

(
K(0,a)

)
given by

g(x) :=
∫

|y|<a

m(y)Φ(x,y) f (y)dy, |x| < a,

3 Actually, it was a scattering problem for which the Factorization Method was first discovered
([141]) before it was applied to the problem of electrical impedance tomography in [22, 23].
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where again m = n−1. By Remark 6.10 this has a unique solution. We rewrite the
equation v + Tv = g as

v(x) = k2
∫

|y|<a

m(y)Φ(x,y)v(y)dy +
∫

|y|<a

m(y)Φ(x,y) f (y)dy,

which shows (Theorem 6.7) that v ∈ H1
loc(R

3), and v is a radiating solution of
Δv + k2v = −k2mv −m f ; that is, Δv + k2nv = −m f .

We define the operator G from L2(D) into L2(S2) by G f = v∞ where v ∈H1
loc(R

3)
is the radiating solution of (6.62). Then we can prove the following factorization of
the far field operator F .

Theorem 6.28. Again let G : L2(D) → L2(S2) be defined by G f = v∞, where v ∈
H1

loc(R
3) is the radiating solution of (6.62). Then

F = 4πk2 GS∗G∗, (6.64)

where S∗ is the L2-adjoint of S : L2(D) → L2(D) defined by

(Sψ)(x) =
1

m(x)
ψ(x)− k2

∫

D

ψ(y)Φ(x,y)dy, x ∈ D. (6.65)

We note that the integral in the definition of S is a volume potential with density ψ
and can be extended to a function w ∈ H1

loc(R
3) that radiates and is a solution of

Δw+ k2 w = −ψ in R
3 (6.66)

in the weak sense (see Theorem 6.7).

Proof of Theorem 6.28. From (6.61) and the definition of G we observe that
u∞ = k2Gui. As an auxiliary operator we define H : L2(S2) → L2(D) by

(Hg)(x) =
∫

S2

g(θ̂)eik x·θ̂ ds(θ̂ ) =
∫

S2

g(θ̂)ui(x; θ̂ )ds(θ̂ ), x ∈ D, (6.67)

where ui(·; θ̂ ) denotes the incident field of direction θ̂ . By the superposition prin-
ciple, Fg is the far field pattern corresponding to the incident field Hg; that is by
(6.61), F = k2GH. Now we consider the adjoint H∗ of H which is given by

(H∗ψ)(x̂) =
∫

D

ψ(y)e−ik y·x̂dy, x̂ ∈ S2.
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From the asymptotic behavior (6.19) of the fundamental solution Φ we observe that
H∗ψ = 4π w∞ where w∞ is the far field pattern of the volume potential

w(x) =
∫

D

ψ(y)Φ(x,y)dy, x ∈ R
3.

By Theorem 6.7 the potential w satisfies (6.66); that is,

Δw+ k2nw = −m

(
1
m

ψ − k2w

)
.

Using the definition of G this yields H∗ψ = 4π w∞ = 4πG
(
ψ/m−k2w

)
= 4πGSψ;

that is, H∗ = 4π GS and thus H = 4π S∗G∗. Substituting this into F = k2GH yields
the assertion. �

Therefore, we arrived at a factorization of the far field operator in the form
F = GT G∗ with T = 4πk2S∗. It has the same form of (5.17) (with A∗ replaced
by G) but there is an essential difference: In contrast to the operator T in the factor-
ization (5.17) the operator T (i.e. S) fails to be self-adjoint. Otherwise, the operator
F would be self-adjoint which is not the case. F is only normal by Theorem 6.16.
However, we can prove an analogous characterization of D by the range of G as in
Theorem 5.14.

Theorem 6.29. For any z ∈ R
3 define the function φz ∈ L2(S2) by

φz(x̂) = e−ik z·x̂, x̂ ∈ S2. (6.68)

Then z belongs to D if and only if φz belongs to the range R(G) of G.

Proof. It is very similar to the proof of Theorem 5.14.
First let z ∈ D. Choose a disc K = K(z,ε) = {x ∈ R

2 : |x− z| < ε} with center
z and radius ε > 0 such that K ⊂ D. Furthermore, choose a function ϕ ∈ C∞(R3)
such that ϕ(x) = 0 for |x− z| ≤ ε/2 and ϕ(x) = 1 for |x− z| ≥ ε and set v(x) =
4πϕ(x)Φ(x,z) for x ∈ R

3. Then v is a C∞-function and coincides with 4πΦ(·,z)
outside of D. By (6.19) the far field pattern of v is given by φz. Therefore, φz = G f
with f = −(Δv + k2nv)/m in D which proves the first part.

Now let z /∈ D and assume, on the contrary, that φz = G f ∈ R(G) for some f ∈
L2(D). Let v ∈ H1

loc(R
3) be the corresponding radiating solution of (6.62). Because

φz is the far field pattern of 4πΦ(·,z) and G f is the far field pattern of v we conclude
from Rellich’s lemma that 4πΦ(·,z) = v in the exterior of D∪{z}. Now one argues
exactly as in the proof of Theorem 5.14. If z /∈ D then v is smooth in z and 4πΦ(·,z)
has a singularity in z that leads to a contradiction. For z ∈ ∂ D one again chooses a
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bounded piece C0 ⊂ R
3 of an open cone with vertex at z and C0 ∩D = /0 and shows

that Φ(·,z) /∈ H1(C0). This contradicts v ∈ H1(C0) and the fact that v and 4πΦ(·,z)
coincide. �

The third step in the Factorization Method expresses the range of the operator G
by the known far field operator F . First we again collect properties of the middle
operator S of the factorization (6.64).

Theorem 6.30. Again let S : L2(D) → L2(D) defined by (6.65).

(a) Let S0 be given by S0ψ = ψ/m in D. Then S0 is bounded, self-adjoint, and
coercive:

(S0ψ ,ψ)L2(D) ≥ 1
‖m‖∞

‖ψ‖2
L2(D) for all ψ ∈ L2(D). (6.69)

(b) The difference S−S0 is compact from L2(D) into itself.
(c) S is an isomorphism from L2(D) onto itself.
(d) Im(Sψ ,ψ)L2(D) ≤ 0 for all ψ ∈ L2(D). Also, Im(Sψ ,ψ)L2(D) < 0 for all ψ in

the L2-closure of the range R(G∗) of G∗ with ψ �= 0.

Proof. (a) This is obvious because S0ψ is just the multiplication of ψ by a function
that is bounded below by 1/‖m‖∞ and above by 1/c0.

(b) We have already used (see the proof of Theorem 6.9 where this operator appears
in the Lippmann–Schwinger equation) that the volume potential Sψ −S0ψ de-
fines a compact operator in L2(D).

(c) By parts (a) and (b) it is sufficient to prove injectivity of S. Let Sψ = 0 in D.
Setting ϕ = ψ/m we conclude that

ϕ − k2
∫

D

m(y)ϕ(y)Φ(·,y)dy = 0 in D.

Therefore, ϕ solves the homogeneous Lippmann–Schwinger integral Eq. (6.23)
and has thus to vanish by the uniqueness of the scattering problem. Therefore,
ψ also vanishes.

(d) Let ψ ∈ L2(D) be arbitrary, set f = ψ − k2mw|D where w ∈ H1
loc(R

3) is the
volume potential with density ψ . Then Sψ = f/m. Because w satisfies Δw +
k2w = −ψ we observe that w satisfies also Δw+ k2nw = −ψ + k2mw = − f in
the weak sense. Now we compute, by replacing ψ by f + k2mw,

(Sψ ,ψ)L2(D) =
∫

D

1
m

f
[

f + k2mw
]

dx =
∫

D

1
m
| f |2 dx + k2

∫

D

f wdx.

Now let R > 0 be arbitrarily large such that D is contained in the ball of radius R.
Choose a function ϕ ∈ C∞(R3) of compact support such that ϕ(x) = 1 for
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|x| ≤ R. Substituting ϕw for the test function in the weak formulation of
Δw+ k2nw = − f yields

∫

D

f wdx =
∫

R3

[
∇w ·∇(ϕw)− k2nϕ |w|2

]
dx

=
∫

|x|<R

[
|∇w|2 − k2n |w|2

]
dx +

∫

|x|>R

[
∇w ·∇(ϕw)− k2ϕ |w|2

]
dx.

Substituting this into the equation for (Sψ ,ψ)L2(D) and taking the imaginary
part yields

Im(Sψ ,ψ)L2(D) = k2 Im
∫

|x|>R

[
∇w ·∇(ϕw)− k2ϕ |w|2

]
dx.

In the region {x : |x| > R} the function w is smooth and satisfies the Helmholtz
equation Δw + k2w = 0. Application of Green’s theorem in {x : |x| > R} (note
that ϕ has compact support) yields

Im(Sψ ,ψ)L2(D) = −k2 Im
∫

|x|>R

ϕ w [Δw+ k2w︸ ︷︷ ︸
=0

]dx− k2 Im
∫

|x|=R

w
∂w
∂ν

ds

= −k2 Im
∫

|x|=R

w
∂w
∂ν

ds.

Now we use the fact that |w(x)| decays as 1/|x| and, by the radiation condition
(6.10), ∂w/∂ r− ikw decays as 1/|x|2. Therefore, we can replace ∂w/∂ν by ikw
in the last formula and have that

Im(Sψ ,ψ)L2(D) = −k3
∫

|x|=R

|w|2ds+O(1/R).

Letting R tend to infinity yields by the definition (6.27) of the far field pattern

Im(Sψ ,ψ)L2(D) = −k3
∫

S2

|w∞|2ds

which is nonpositive.
Now let ψ ∈ L2(D) in the closure of R(G∗) such that Im(Sψ ,ψ)L2(D) = 0.
Then the far field pattern w∞ of the corresponding volume potential w vanishes.
Rellich’s Lemma 6.2 and unique continuation yield that w vanishes outside of D.

From the proof of Theorem 6.28 we note that H = 4π S∗G∗ where H : L2(S2) →
L2(D) is defined by (6.67). Because S∗ is an isomorphism from L2(D) onto itself
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the range of G∗ coincides with the range of H. Therefore, there exists a sequence
ψ j = Hg j ∈R(H) with ψ j → ψ in L2(D). Define v j by

v j(x) =
∫

S2

g j(θ̂)eik x·θ̂ ds(θ̂ ) x ∈ R
3.

Then v j|D = ψ j and v j satisfies the Helmholtz equation Δv j + k2v j = 0 in all
of R

3. Now we use the weak formulations of this equation and the equation Δw+
k2w = −ψ :

∫

R3

[
∇v j ·∇ϕ − k2v jϕ

]
dx = 0,

∫

R3

[
∇w ·∇ϕ − k2wϕ

]
dx =

∫

D

ψ ϕ dx

for all ϕ ∈ H1(R3) with compact support. We again choose a function φ ∈C∞(R3)
with compact support such that φ = 1 on D. We consider the complex conjugate of
the first equation and substitute ϕ = φw; then we substitute ϕ = φv j in the second
equation and subtract the first from the second. This yields

∫

R3

[
∇w ·∇(φv j)−∇v j ·∇(φw)

]
dx =

∫

D

ψ v j dx =
∫

D

ψ ψ j dx.

First, we observe that the domain of integration of the integral on the left-hand side
reduces to D because w vanishes outside of D. Second, the integrand vanishes in D
because φ = 1 in D. Therefore, the integral vanishes and, letting j tend to infinity, we
conclude that

∫
D |ψ |2dx = 0 because v j converges to ψ . This, finally, yields ψ = 0

and ends the proof. �

Now we continue with the task of expressing the range of G by the known op-
erator F . We make the assumption that k is not an interior transmission eigenvalue
in the sense that (6.41a), (6.41b) is only solvable by the trivial solution. Then F
is one-to-one by Theorem 6.17 and, furthermore, normal by Theorem 6.16 and
certainly compact. Therefore, there exists a complete set of orthonormal eigen-
functions ψ j ∈ L2(S2) with corresponding eigenvalues λ j ∈ C, j = 1,2,3, . . . (see,
e.g., [207]). Furthermore, because the operator I +(ik)/(2π)F is unitary (see again
Theorem 6.16), the eigenvalues λ j of F lie on the circle of radius 1/r and center
i/r where r = k/(2π). We can now argue exactly as in the corresponding case of
impedance tomography. The spectral theorem for normal operators yields that F
has the form

Fψ =
∞

∑
j=1

λ j(ψ ,ψ j)L2(S2) ψ j, ψ ∈ L2(S2). (6.70)
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Therefore, F has a second factorization in the form

F = (F∗F)1/4 R(F∗F)1/4, (6.71)

where the self-adjoint operator (F∗F)1/4 : L2(S2) → L2(S2) and the signum R :
L2(S2) → L2(S2) of F are given by

(F∗F)1/4ψ =
∞

∑
j=1

√
|λ j|(ψ,ψ j)L2(S2) ψ j, ψ ∈ L2(S2), (6.72)

Rψ =
∞

∑
j=1

λ j

|λ j|
(ψ ,ψ j)L2(S2) ψ j, ψ ∈ L2(S2). (6.73)

Again, as in the case of impedance tomography (see (5.25)) we have thus derived
two factorizations of F , namely

F = 4πk2GS∗G∗ = (F∗F)1/4 R(F∗F)1/4. (6.74)

We now show that these factorizations of F imply again that the ranges of G and
(F∗F)1/4 coincide. Then application of Theorem 6.29 provides the desired charac-
terization of D by F .

The following functional analytic result is a slight extension of Lemma 5.15.

Lemma 6.31. Let X and Y be Hilbert spaces and F : X → X and G : Y → X be
linear bounded operators such that the factorization F = GRG∗ holds for some
linear and bounded operator R : Y → Y that satisfies a coercivity condition of the
form: there exists c > 0 with

∣
∣(Ry,y)Y

∣
∣ ≥ c‖y‖2

Y for all y ∈R(G∗) ⊂ Y. (6.75)

Then, for any φ ∈ X, φ �= 0,

φ ∈R(G) ⇐⇒ inf
{∣∣(Fx,x)X

∣∣ : x ∈ X , (x,φ)X = 1
}

> 0. (6.76)

We omit the proof because it follows exactly the same lines as the proof of
Lemma 5.15 (see also [143]).

We note again that the inf-condition depends only on F and not on the factoriza-
tion itself. Therefore, we have the following corollary.

Corollary 6.32. Let X, Y1, and Y2 be Hilbert spaces. Furthermore, let F : X → X
have two factorizations of the form F = G1 R1 G∗

1 = G2 R2 G∗
2 with bounded opera-

tors Gj : Yj → X and R j : Yj →Yj, which both satisfy the coercivity condition (6.75).
Then the ranges of G1 and G2 coincide.

In order to apply this corollary to the factorization (6.74) we have to prove that
S : L2(D)→ L2(D) and R : L2(S2)→ L2(S2) satisfy the coercivity conditions (6.75).
The coercivity condition for S follows from Theorem 6.30.
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Lemma 6.33. There exists c1 > 0 such that

∣
∣(Sψ ,ψ)L2(D)

∣
∣ ≥ c1‖ψ‖2

L2(D) for all ψ ∈R(G∗) ⊂ L2(D) (6.77)

where again G∗ : L2(S2) → L2(D) is the adjoint of G as given in Theorem 6.28.

Proof. We assume, on the contrary, that there exists a sequence ψ j ∈ R(G∗) with
‖ψ j‖L2(D) = 1 and (Sψ j,ψ j)L2(D) → 0. The unit ball is weakly compact in L2(D);
thus there exists a weakly convergent subsequence of (ψ j). We denote this by
ψ j ⇀ ψ and note that ψ belongs to the closure of the range of G∗. Now we write

(
ψ −ψ j,S0(ψ −ψ j)

)
L2(D)

=
(
ψ ,S0(ψ −ψ j)

)
L2(D) −

(
ψ j,(S0 −S)(ψ −ψ j)

)
L2(D)

+ (ψ j,Sψ j)L2(D) − (ψ j,Sψ)L2(D). (6.78)

From the compactness of S − S0 we note that ‖(S − S0)(ψ − ψ j)‖L2(D) tends to

zero and thus also
(
ψ j,(S0 − S)(ψ −ψ j)

)
L2(D) by the Cauchy-Schwarz inequal-

ity. Therefore, the first three terms on the right-hand side of (6.78) converge
to zero, the last one to (ψ ,Sψ)L2(D). Taking the imaginary part and noting that(
ψ −ψ j,S0(ψ −ψ j)

)
L2(D) is real-valued yields ψ = 0 by part (d) of Theorem 6.30.

Now we write, using the coercivity of S0 by part (a) of Theorem 6.30,

1
‖m‖∞

≤ (ψ j,S0ψ j)L2(D) ≤
∣
∣(ψ j,(S0 −S)ψ j)L2(D)

∣
∣+

∣
∣(ψ j,Sψ j)L2(D)

∣
∣,

and the right-hand side tends to zero which is certainly a contradiction. �

Coercivity of the middle operator R : L2(S2)→ L2(S2) in the second factorization
of (6.74) can also be proven by using the fact that the scattering operator is unitary.
Before doing this we prove a result of independent interest.

Lemma 6.34. Let λ j ∈C, j ∈N, be the eigenvalues of the normal operator F. Then
λ j lie on the circle

∣
∣2πi/k− z

∣
∣ = 2π/k with center 2πi/k and radius 2π/k passing

through the origin and converging to zero from the right: Reλ j > 0 for sufficiently
large j.

Proof. The fact that λ j lie on the circle with center 2πi/k passing through the ori-
gin follows from the unitarity of the scattering operator S = I + (ik)/(2π)F (see
Theorem 6.16). We have only to show that the eigenvalues tend to zero from the
right. Let ψ j again be the normalized and orthogonal eigenfunctions corresponding
to the nonvanishing eigenvalues λ j. From the factorization (6.64) it follows that

4π k2(S∗G∗ψ j, G∗ψ�)L2(S2) = (Fψ j, ψ�)L2(S2) = λ j δ j,�
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with the Kronecker symbol δ j,� = 1 for j = � and 0 otherwise. We set

ϕ j =
2k
√

π
√
|λ j|

G∗ψ j and s j =
λ j

|λ j|
.

Then (ϕ j,Sϕ�)L(S2) = s jδ j,�. From the facts that λ j lie on the circle with center 2πi/k
passing through the origin and that λ j tends to zero as j tends to infinity we con-
clude that the only accumulation points of the sequence (s j) can be +1 or −1. The
assertion of the theorem is proven once we have shown that +1 is the only possi-
ble accumulation point. Assume, on the contrary, that s j →−1 for a subsequence.
From Lemma 6.33 we observe that the sequence (ϕ j) is bounded in L2(D). There-
fore, there exists a weakly convergent subsequence that we denote by ϕ j ⇀ ϕ . Now
we write exactly as in Eq. (6.78):

(
ϕ −ϕ j,S0(ϕ −ϕ j)

)
L2(D)

=
(
ϕ ,S0(ϕ −ϕ j)

)
L2(D) −

(
ϕ j,(S0 −S)(ϕ −ϕ j)

)
L2(D)

+ (ϕ j,Sϕ j)L2(D)
︸ ︷︷ ︸

= s j

−(ϕ j,Sϕ)L2(D).

The left-hand side is real-valued, the right-hand side tends to −1− (ϕ ,Sϕ)L2(D).
Taking the imaginary part again shows that ϕ has to vanish, thus as before

0 ≤ (ϕ j,S0ϕ j)L2(D) = (ϕ j,(S0 −S)ϕ j)L2(D) + (ϕ j,Sϕ j)L2(D).

The right-hand side converges to −1 which is impossible and ends the proof. �
Now we can easily prove coercivity of the operator R in (6.74).

Lemma 6.35. Assume that k is not an interior transmission eigenvalue. Then there
exists c2 > 0 with

∣
∣(Rψ ,ψ)L2(S2)

∣
∣ ≥ c2‖ψ‖2

L2(S2) for all ψ ∈ L2(S2). (6.79)

Proof. It is sufficient to prove (6.79) for ψ ∈ L2(S2) of the form ψ = ∑ j c jψ j with
‖ψ‖2

L2(S2) = ∑ j |c j|2 = 1. With the abbreviation s j = λ j/|λ j| it is

∣
∣(Rψ ,ψ)L2(S2)

∣
∣ =

∣
∣
∣
∣
∣∣

(
∞

∑
j=1

s j c j ψ j,
∞

∑
j=1

c j ψ j

)

L2(S2)

∣
∣
∣
∣
∣∣

=

∣
∣
∣
∣
∣

∞

∑
j=1

s j|c j|2
∣
∣
∣
∣
∣
.

The complex number ∑∞
j=1 s j|c j|2 belongs to the closure of the convex hull C =

conv{s j : j ∈ N} ⊂ C of the complex numbers s j . We conclude that

∣
∣(Rψ ,ψ)L2(S2)

∣
∣ ≥ inf{|z| : z ∈ C}
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for all ψ ∈ L2(S2) with ‖ψ‖L2(S2) = 1. From the previous lemma we know that
the set C is contained in the part of the upper half-disk that is above the line
� =

{
t ŝ+(1−t)1 : t ∈R

}
passing through ŝ and 1. Here, ŝ is the point in {s j : j ∈N}

with the smallest real part. Therefore, the distance of the origin to this convex hull
C is positive; that is, there exists c2 with (6.79). �

By the range identity of Corollary 6.32 the ranges of G and (F∗F)1/4 coincide.
The combination of this result and Theorem 6.29 yields the main result of this
section.

Theorem 6.36. Assume that k2 is not an interior transmission eigenvalue. For any
z ∈ R

3 again define φz ∈ L2(S2) by (6.68); that is,

φz(x̂) := exp(−ik x̂ · z), x̂ ∈ S2.

Then

z ∈ D ⇐⇒ φz ∈R
(
(F∗F)1/4). (6.80)

We want to rewrite this condition using Picard’s Theorem A.54. Again let
λ j ∈ C be the eigenvalues of the normal operator F with corresponding normal-
ized eigenfunctions ψ j ∈ L2(S2). Then we note that

(√
|λ j|,ψ j ,ψ j

)
is a singular

system of (F∗F)1/4. Therefore, Picard’s Theorem A.54 converts the condition
φz ∈R

(
(F∗F)1/4

)
into a decay behavior of the expansion coefficients.

Theorem 6.37. Under the assumptions of the previous theorem a point z ∈ R
3 be-

longs to D if and only if the series

∑
j

∣
∣(φz,ψ j)L2(S2)

∣
∣2

|λ j|
(6.81)

converges.

If we agree on the notation 1/∞ = 0 and sign(t) = 1 for t > 0 and sign(t) = 0 for
t = 0 then

χ(z) = sign

[

∑
j

∣
∣(φz,ψ j)L2(S2)

∣
∣2

|λ j|

]−1

, z ∈ R
3, (6.82)

is just the characteristic function of D. Formula (6.82) provides a simple and fast
technique to visualize the object D. One simply plots the inverse of the series (6.81).
In practice, this is a finite sum instead of a series, but the value of the finite sum is
much larger for points z outside than for points inside D. We refer to the original
paper [141] and to [143] for some typical plots.

We conclude this section with some further remarks on the Factorization Method.
The characteristic function χ derived in the previous theorem depends only on the
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operator F . Nothing else about the scattering medium has to be known for plotting
this function. In particular, it is not assumed that the support D of n−1 is connected;
it can very well consist of several components. Also, the function χ can be plotted
in every case where the scattering operator S is unitary (and thus F is normal).
This is the case, for example, if the medium is perfectly soft or hard; that is, if
a Dirichlet or Neumann boundary condition, respectively, on ∂D is imposed. The
theoretical justification of the Factorization Method however (i.e., the proof that χ is
indeed the characteristic function of D), has to be given in every single case. For the
Dirichlet and Neumann boundary condition and also for the impedance boundary
condition ∂u/∂ν +λu = 0 on ∂D with a real-valued function λ this can be shown
(see [143]). This implies, in particular, a general uniqueness result. It is not possible
that different “scattering supports” D give rise to the same far field operator F .
There are, however, cases of unitary scattering operators for which the Factorization
Method has not yet been justified. For example, if D consists of two components
D1 and D2 (separated from each other) and n ≥ 1 + c0 on D1 but n ≤ 1− c0 on D2

it is not known whether the Factorization Method is valid. The same open question
arises for the case where the Dirichlet boundary condition is imposed on ∂ D1 and
the Neumann boundary condition on ∂ D2. The main problem is the range identity;
that is, the characterization of the range of G by the known operator F .

There also exist extensions of the Factorization Method for absorbing media. In
these cases, the far field operator fails to be normal. Although some results exist
on the existence of eigenvalues (see, e.g., [48]) the methods to construct the second
factorization as in (6.74) fail. Instead, one considers factorizations of the self-adjoint
operator F# = |ReF |+ ImF where ReF = (F + F∗)/2 and ImF = (F −F∗)/(2i)
are the self-adjoint parts of F , and |A| of a self-adjoint operator A is defined by its
spectral system. We refer to [143] for a comprehensive study of these cases.

6.6 Numerical Methods

In this section, we describe three types of numerical algorithms for the approximate
solution of the inverse scattering problem for the determination of n and not only of
the support D of n−1. We assume - unless stated otherwise - that n ∈ L∞(R3) with
n(x) = 1 outside some ball K = K(0,a) of radius a > 0.

The numerical methods we describe now are all based on the Lippmann–
Schwinger integral equation. We define the volume potential Vφ with density
φ by

(Vφ)(x) :=
∫

K

eik|x−y|

4π |x− y| φ(y)dy, x ∈ K. (6.83)

Then the Lippmann–Schwinger Eq. (6.23) takes the form

u− k2V (mu) = ui in K, (6.84)
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where again m = n− 1 and ui(x, θ̂ ) = exp
(
ikθ̂ · x

)
. The far field pattern of us =

k2V (mu) is given by

u∞
(
x̂
)

=
k2

4π

∫

K

m(y)u(y)e−ikx̂·y dy, x̂ ∈ S2. (6.85)

Defining the integral operator W : L∞(K) → L∞(S2) by

(Wψ)
(
x̂
)

:=
k2

4π

∫

K

ψ(y)e−ikx̂·y dy, x̂ ∈ S2, (6.86)

we note that the inverse scattering problem is to solve the system of equations

u− k2V (mu) = ui in K, (6.87a)

W (mu) = f on S2. (6.87b)

Here, f denotes the measured far field pattern. From the uniqueness results of
Sect. 6.4, we expect that the far field patterns of more than one incident field have
to be known. Therefore, from now on, we consider ui = ui

(
x, θ̂

)
= exp

(
ikθ̂ · x

)
,

u = u
(
x, θ̂

)
, and f = f

(
x̂, θ̂

)
to be functions of two variables. The operators V and

W from Eqs. (6.83) and (6.86) can be considered as linear and bounded operators

V : L∞(K ×S2) −→ L∞(K ×S2), (6.88a)

W : L∞(K ×S2) −→ L∞(S2 ×S2). (6.88b)

In the next sections, we discuss three methods for solving the inverse scattering
problem, the first two of which are based on the system (6.87a), (6.87b). We for-
mulate the algorithms and prove convergence results only for the setting in function
spaces, although for the practical implementations these algorithms have to be dis-
cretized. The methods suggested by Gutman and Klibanov [100,101] and Kleinman
and van den Berg [146] are iteration methods based on the system (6.87a), (6.87b).
The first one is a regularized simplified Newton method, the second a modified
gradient method. In Sect. 6.6.3, we describe a different method, which has been pro-
posed by Colton and Monk in several papers (see [50]–[54]) and can be considered
as an intermediate step towards the development of the Linear Sampling Method
(see [143]).

6.6.1 A Simplified Newton Method

For simplicity of the presentation we assume for this section that n is continuous;
that is, n ∈ C(D) for some bounded domain D and n = 1 outside of D. By scaling
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the problem, we assume throughout this section that D is contained in the cube
Q = [−π ,π ]3 ⊂ R

3. We define the nonlinear mapping

T : C(Q)×C
(
Q×S2) −→ C

(
Q×S2)×C

(
S2 ×S2) (6.89a)

by
T (m,u) :=

(
u− k2V (mu), W (mu)

)
(6.89b)

for m ∈ C(Q) and u ∈ C
(
Q× S2

)
. Then the inverse problem can be written in the

form
T (m,u) = (ui, f ).

The Newton method is to compute iterations (m�,u�), � = 0,1,2, . . . by

(m�+1,u�+1) = (m�,u�)−T ′(m�,u�)−1[T (m�,u�)− (ui, f )
]

(6.90)

for � = 0,1,2, . . .. The components of the mapping T are bilinear, thus it is not
difficult to see that the Fréchet derivative T ′(m,u) of T at (m,u) is given by

T ′(m,u)(μ ,v) =
(

k2V (μu)+ v − k2V (mv), W (μu)+W(mv)
)

(6.91)

for μ ∈C(Q) and v ∈C
(
Q×S2

)
.

The simplified Newton method is to replace T ′(m�,u�) by some fixed T ′(m̂, û)
(see Theorem A.60 of Appendix A). Then it is known that under certain assump-
tions linear convergence can be expected. We choose m̂ = 0 and û = ui. Then the
simplified Newton method sets m�+1 = m� + μ and u�+1 = u� + v , where (μ ,v)
solves T ′(0,ui)(μ ,v) =

(
ui, f

)
− T

(
m�,u�

)
. Using the characterization of T ′, we

are led to the following algorithm.

(A) Set m0 = 0, u0 = ui, and � = 0.
(B) Determine (μ ,v) ∈C(Q)×C

(
Q×S2

)
from the system of equations

k2V (μui)− v = ui −u� + k2V (m�u�), (6.92a)

W (μui) = f −W (m�u�). (6.92b)

(C) Set m�+1 = m� + μ and u�+1 = u� + v , replace � by � + 1, and continue with
step (B).

We assume in the following that the given far field pattern f is continuous (i.e.,
f ∈ C(S2 × S2)). Solving an equation of the form W (μui) = ρ means solving the
integral equation of the first kind,

∫

Q

μ(y)eiky·(θ̂−x̂) dy = −4π
k2 ρ

(
x̂, θ̂

)
, x̂, θ̂ ∈ S2. (6.93)
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We approximately solve this equation by a special collocation method. We observe
that the left-hand side is essentially the Fourier transform μ∼ of μ evaluated at
ξ = k(x̂− θ̂). As in Gutman and Klibanov [101], we define N ∈ N to be the largest
integer not exceeding 2k/

√
3, the set

ZN :=
{

j ∈ Z
3 : | js| ≤ N, s = 1,2,3

}

of grid points, and the finite-dimensional space

XN :=
{

∑
j∈ZN

a j ei j·x : a j ∈ C

}
. (6.94)

Then, for every j ∈ ZN , there exist unit vectors x̂ j, θ̂ j ∈ S2 with j = k
(
x̂ j − θ̂ j

)
. This

is easily seen from the fact that the intersection of S2 with the sphere of radius 1 and
center j/k is not empty. For every j ∈ZN , we fix the unit vectors x̂ j and θ̂ j such that
j = k

(
x̂ j − θ̂ j

)
.

We solve (6.93) approximately by substituting x̂ j and θ̂ j into this equation. This
yields

∫

Q

μ(y)e−i j·y dy = −4π
k2 ρ

(
x̂ j, θ̂ j

)
, j ∈ ZN . (6.95)

The left-hand sides are just the first Fourier coefficients of μ , therefore the unique
solution of (6.95) in XN is given by μ = L1ρ , where the operator L1 : C(S2 ×S2) →
XN is defined by

(L1ρ)(x) = − 1
2π2k2 ∑

j∈ZN

ρ
(
x̂ j, θ̂ j

)
ei j·x. (6.96)

The regularized algorithm now takes the form

(Ar) Set m0 = 0, u0 = ui, and � = 0.
(Br) Set

μ := L1
[

f −W(m�u�)
]

and

v := ui −u�− k2V (m�u�)− k2V (μui).

(Cr) Set m�+1 = m� + μ and u�+1 = u� + v , replace � by �+ 1, and continue with
step (Br).

Then we can prove the following (see [101]).

Theorem 6.38. There exists ε > 0 such that, if m ∈ C(Q) with ‖m‖∞ ≤ ε and u =
u(x, θ̂ ) is the corresponding total field with exact far field pattern f (x̂, θ̂ ) = u∞(x̂, θ̂ ),
then the sequence (m�,u�) constructed by the regularized algorithm (Ar), (Br), (Cr)
converges to some (m̃, ũ) ∈ XN ×C

(
Q × S2

)
that satisfies the scattering problem
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with refraction contrast m̃. Its far field pattern ũ∞ coincides with f at the points(
x̂ j, θ̂ j

)
∈ S2×S2, j ∈ZN. If, in addition, the exact solution m satisfies m ∈ XN, then

the sequence
(
m�,u�

)
converges to (m,u).

Proof. We define the operator

L : C
(
Q×S2)×C

(
S2 ×S2)−→ XN ×C

(
Q×S2)

by

L(w,ρ) :=
(

L1ρ , w− k2V (uiL1ρ)
)
.

Then L is a left inverse of T ′(0,ui) on XN ×C
(
Q×S2

)
; that is,

LT ′(0,ui)(μ ,v) = (μ ,v) for all (μ ,v) ∈ XN ×C
(
Q×S2).

Indeed, let (μ ,v) ∈ XN ×C
(
Q× S2

)
and set (w,ρ) = T ′(0,ui)(μ ,v), i.e., w = v +

k2V (μui) and ρ = W (μui). The latter equation implies that

∫

Q

μ(y)e−i j·y dy = −4π
k2 ρ

(
x̂ j, θ̂ j

)
, j ∈ ZN .

Because μ ∈ XN , this yields that μ = L1ρ and thus L(w,ρ) = (μ ,v).
With the abbreviations z� =

(
m�,u�

)
and R = (ui, f ), we can write the regularized

algorithm in the form

z�+1 = z� −L
[
T (z�)−R

]
, � = 0,1,2, . . .

in the space XN ×C
(
Q× S2

)
. We can now apply a general result about local con-

vergence of the simplified Newton method (see Appendix A, Theorem A.60). This
yields the existence of a unique solution (m̃, ũ) ∈ XN ×C

(
Q× S2

)
of L

[
T
(
m̃, ũ

)
−

R
]

= 0 and linear convergence of the sequence (m�,u�) to (m̃, ũ). The equation
ũ+k2V

(
m̃ũ

)
= ui is equivalent to the scattering problem by Theorem 6.8. The equa-

tion L1W
(
m̃ũ

)
= L1 f is equivalent to ũ∞

(
x̂ j, θ̂ j

)
= f

(
x̂ j, θ̂ j

)
for all j ∈ ZN . Finally,

if m ∈ XN , then (m,u) satisfies LT (m,u) = LR and thus
(
m̃, ũ

)
= (m,u). This proves

the assertion. �

We have formulated the algorithm with respect to the Lippmann–Schwinger in-
tegral equation because our analysis on existence and continuous dependence is
based on this setting. There is an alternative way to formulate the simplified Newton
method in terms of the original scattering problems; see [101]. We note also that
our analysis can easily be modified to treat the case where only n ∈ L∞(K). For
numerical examples, we refer to [101].
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6.6.2 A Modified Gradient Method

The idea of the numerical method proposed and numerically tested by Kleinman and
van den Berg (see [146]) is to solve (6.87a), (6.87b) by a gradient-type method. For
simplicity, we describe the method again in the function space setting and refer for
discretization aspects to the original literature [146]. Again let K = K(0,a) contain
the support of m = 1−n.

(A) Choose m0 ∈ L∞(K), u0 ∈ L2(K ×S2), and set � = 0.
(B) Choose directions e� ∈ L2(K ×S2) and d� ∈ L∞(K), and set

u�+1 = u� + α� e�, m�+1 = m� + β� d�. (6.97)

The stepsizes α�,β� > 0 are chosen in such a way that they minimize the func-
tional

Ψ�(α,β ) :=
‖r�+1‖2

L2(K×S2)

‖ui‖2
L2(K×S2)

+
‖s�+1‖2

L2(S2×S2)

‖ f‖2
L2(S2×S2)

, (6.98a)

where the defects r�+1 and s�+1 are defined by

r�+1 := ui −u�+1− k2V
(
m�+1 u�+1

)
, (6.98b)

s�+1 := f −W
(
m�+1 u�+1

)
. (6.98c)

(C) Replace � by �+ 1 and continue with step (B).

There are different choices for the directions d� and e�. In [146],

d�(x) = −
∫

S2

d̃�(x, θ̂ )u�(x, θ̂ )ds(θ̂), x ∈ K, and e� := r� (6.99)

have been chosen where

d̃� = −W ∗(W (m�u�)− f
)
∈ L∞(K ×S2).

In this case, d� is the steepest descent direction of μ �→ ‖W (μu�)− f‖2
L2(S2×S2).

In [242], for d� and e� Polak–Ribière conjugate gradient directions are chosen.
A rigorous convergence analysis of either method has not been carried out.

A severe drawback of the methods discussed in Sects. 6.6.1 and 6.6.2 is that
they iterate on functions m� = m�(x) and u� = u�(x, θ̂ ). To estimate the storage re-
quirements, we choose a grid of order N ·N ·N grid points in K and M directions
θ1, . . . ,θM ∈ S2. Then both methods iterate on vectors of dimension N6 ·M. From
the uniqueness results, M is expected to be large, say, of order N2. For large values
of M, the method described next has proven to be more efficient.
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6.6.3 The Dual Space Method

The method described here is due to Colton and Monk [52,53] based on their earlier
work for inverse obstacle scattering problems (see [50, 51]). There exist various
modifications of this method, but we restrict ourselves to the simplest case.

This method consists of two steps. In the first step, one tries to determine a su-
perposition of the incident fields ui = ui(·, θ̂ ) such that the corresponding far field
pattern f (·, θ̂ ) is (close to) the far field pattern of radiating multipoles. In the second
step, the function m is determined from an interior transmission problem.

We describe both steps separately. Assume for the following that the origin is
contained in K = K(0,a).

Step 1: Determine g ∈ L2(S2) with
∫

S2

f
(
x̂, θ̂

)
g
(
θ̂
)

ds(θ̂) = 1, x̂ ∈ S2. (6.100)

In Theorem 6.17, we have proven that this integral equation of the first kind is
solvable in L2(S2) if and only if the interior transmission problem

Δv + k2v = 0 in K, Δw + k2nw = 0 in K, (6.101a)

w(x)− v(x) =
eik|x|

|x| on ∂K, (6.101b)

∂w(x)
∂ν

− ∂v(x)
∂ν

=
∂

∂ν
eik|x|

|x| on ∂K, (6.101c)

has a solution v ,w ∈ H1(K) such that

v(x) =
∫

S2

eikx·ŷ g(ŷ)ds(ŷ), x ∈ R
3. (6.102)

The kernel of the integral operator in (6.100) is analytic with respect to both vari-
ables, thus (6.100) represents a severely ill-posed — but linear — equation and can
be treated by Tikhonov’s regularization method as described in Chap. 2 in detail. (In
this connection, see the remarks following Theorems 6.18 and 6.21.)

We formulate the interior transmission problem (6.101a) – (6.101c) as an integral
equation.

Lemma 6.39. v ,w ∈ H1(K) solve the boundary value problem (6.101a)–(6.101c)
if and only if v ,w ∈ H1(K) solve the system

w(x)− v(x) = k2
∫

K

m(y)w(y)Φ(x,y)dy, x ∈ K, (6.103)

w(x)− v(x) =
eik|x|

|x| on ∂ K, (6.104)

where again m = n−1.
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Proof. Set φ(x) = exp(ik|x|)/|x| = 4πΦ(x,0) for abbreviation. First, let v ,w ∈
H1(K) solve the boundary value problem (6.101a)–(6.101c) in the weak sense. Set
u = w− v in K and u = φ in the exterior of K. Then u ∈ H1

loc(R
3) because the

Dirichlet data of w− v and φ coincide on ∂K. The weak formulation (see (6.43a))
yields

∫

∂ K

ψ
∂φ
∂ν

ds =
∫

K

[
∇u ·∇ψ − k2uψ − k2mwψ

]
dx (6.105)

for all ψ ∈ H1(K). Now we take ψ ∈ H1(R3) with compact support and rewrite the
boundary integral as

∫

∂ K

ψ
∂φ
∂ν

ds = −
∫

R3\K

[
∇φ ·∇ψ − k2φ ψ

]
dx

by using Green’s first theorem in the exterior of K (note that ψ has compact support).
Substituting this into the first equation yields

∫

R3

[
∇u ·∇ψ − k2uψ

]
dx = k2

∫

K

mwψ dx (6.106)

for all ψ ∈ H1(R3) with compact support. This is the weak formulation of Δu +
k2u = −k2mw and uniquely solved by the volume potential with density k2mw
(see Theorem 6.7). This proves the first part.

On the other hand, let v ,w ∈ H1(K) solve the system (6.103), (6.104). Let u ∈
H1

loc(R
3) be the volume potential with density k2mw. Then u is the radiating solution

of Δu+k2u =−k2mw in R
3; that is, solves (6.106). Furthermore, from u = φ on ∂K

and the uniqueness of the exterior Dirichlet boundary problem (see [49]) u has to
coincide with φ in the exterior of K. Substituting φ for u in the exterior of K in
formula (6.106) and again applying Green’s first theorem in the exterior of K yields
(6.105) which is the variational form of (6.101a)–(6.101c) and ends the proof. �

Motivated by this characterization, we describe the second step.

Step 2: With the (approximate) solution g ∈ L2(S2) of (6.100), define the function
v = vg by (6.102). Determine m and w such that m, vg, and w solve the interior
boundary value problem (6.101a)–(6.101c) or, equivalently, the system

w− vg − k2V (mw) = 0 in K, (6.107a)

k2V (mw)−4π Φ(·,0) = 0 on ∂K, (6.107b)

where V again denotes the volume potential operator (6.83) and Φ the fundamental
solution (6.18).
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Instead of solving both steps separately, we can combine them and solve the
following optimization problem. Given a compact subset C ⊂ L∞(K), some ε > 0
and λ1,λ2 > 0,

minimize J(g,w,m) on L2(S2)×L2(K)×C, (6.108a)

where

J(g,w,m) := ‖Fg−1‖2
L2(S2) + ε ‖g‖2

L2(S2)

+ λ1
∥
∥w− vg − k2V (mw)

∥
∥2

L2(K)

+ λ2
∥∥k2V (mw)−4π Φ(·,0)

∥∥2
L2(∂K) , (6.108b)

and the far field operator F : L2(S2) → L2(S2) is defined by (see (6.37))

(Fg)
(
x̂
)

:=
∫

S2

f
(
x̂, θ̂

)
g
(
θ̂
)

ds(θ̂ ), x̂ ∈ S2.

Theorem 6.40. This optimization problem (6.108a), (6.108b) has an optimal solu-
tion (g,w,m) for every choice of ε,λ1,λ2 > 0 and every compact subset C ⊂ L∞(K).

Proof. Let (g j,wj,mj) ∈ L2(S2)× L2(K)×C be a minimizing sequence; that is,
J(g j,wj,m j) → J∗ where the optimal value J∗ is defined by

J∗ := inf
{

J(g,w,m) : (g,w,m) ∈ L2(S2)×L2(K)×C
}
.

We can assume that (m j) converges to some m ∈ C because C is compact. Several
tedious applications of the parallelogram equality

‖a + b‖2 = −‖a−b‖2 + 2‖a‖2 + 2‖b‖2

and the binomial formula

‖b‖2 = ‖a‖2 + 2Re(a,b−a)+‖a−b‖2

yield

−J∗ ≥ −J

(
1
2
(g j + g�),

1
2
(wj + w�),m j

)

= − 1
2

J(g j,wj,mj)−
1
2

J(g�,w�,mj)

+
1
4

∥
∥F(g j −g�)

∥
∥2

L2(S2) +
ε
4

∥
∥g j −g�

∥
∥2

L2(S2)

+
λ1

4

∥
∥(wj −w�)− vg j−g�

− k2V
(
m j(wj −w�)

)∥∥2

L2(K)

+
λ2k4

4

∥∥V
(
mj(wj −w�)

)∥∥2
L2(∂K) .
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From this we conclude that

−J∗ +
1
2

J(g j,wj ,mj)+
1
2

J(g�,w�,mj)

≥ ε
4

∥
∥g j −g�

∥
∥2

L2(S2) +
λ1

4

∥
∥(wj −w�)− vg j−g�

− k2V
(
m j(wj −w�)

)∥∥2

L2(K) .

The left-hand side tends to zero as j and � tend to infinity, therefore we conclude that
(g j) is a Cauchy sequence, thus converging g j → g in L2(S2). Furthermore, from

∥
∥(wj −w�)− vg j−g�

− k2V
(
mj(wj −w�)

)∥∥
L2(K)

−→ 0

as �, j → ∞ and the convergence g j → g we conclude that

∥
∥(w j −w�)− k2V

(
mj(wj −w�)

)∥∥
L2(K) −→ 0

as �, j → ∞. The operators I − k2V (mj·) converge to the isomorphism I − k2V (m·)
in the operator norm of L2(K). Therefore, by Theorem A.35 of Appendix A, we
conclude that (wj) is a Cauchy sequence and thus is convergent in L2(K) to some w.
The continuity of J implies that J(g j,wj,mj) → J(g,w,m). Therefore, (g,w,m) is
optimal. �

6.7 Problems

6.1. Let ub
1,∞(x̂, θ̂ ,k) and ub

2,∞(x̂, θ̂ ,k) be the far field patterns of the Born approxi-

mations corresponding to observation x̂, angle of incidence θ̂ , wave number k, and
indices of refraction n1 and n2, respectively. Assume that

ub
1,∞(x̂, θ̂ ,k) = ub

2,∞(x̂, θ̂ ,k)

for all x̂ ∈ S2 and k ∈ [k1,k2] ⊂ R
+ and some θ̂ ∈ S2. Prove that n1 = n2.

6.2. Let wt be the unique solution of (6.59) for t ≥ T . Extend wt to a 2π-periodic
function into all of R

3. Define

u(x) := etê·x [1 + exp(−i/2x1)wt(x)
]
, x ∈ R

3,

where ê = (1, i,0)
 ∈ C
3.

Prove that u solves (6.56) in the variational sense.



6.7 Problems 245

6.3. Prove the following result, sometimes called Karp’s theorem. Let u∞
(
x̂; θ̂

)
,

x̂, θ̂ ∈ S2, be the far field pattern and assume that there exists a function f : [−1,1]→
C with

u∞
(
x̂; θ̂

)
= f

(
x̂ · θ̂

)
for all x̂, θ̂ ∈ S2.

Prove that the index of refraction n has to be radially symmetric: n = n(r).
Hint: Rotate the geometry and use the uniqueness result.

6.4. Show that for any a > 0

max
|x|≤a

∫

|y|<a

1
|x− y| dy = 2π a2.





Appendix A
Basic Facts from Functional Analysis

In this appendix, we collect some of the basic definitions and theorems from
functional analysis. We prove only those theorems whose proofs are not easily ac-
cessible. We recommend the monographs [135, 151, 210, 247] for a comprehensive
treatment of linear and nonlinear functional analysis.

A.1 Normed Spaces and Hilbert Spaces

First, we recall two basic definitions.

Definition A.1 (Scalar Product, Pre-Hilbert Space). Let X be a vector space
over the field K = R or K = C. A scalar product or inner productis a mapping

(·, ·) : X ×X −→ K

with the following properties:

(i) (x + y,z) = (x,z)+ (y,z) for all x,y,z ∈ X ,
(ii) (αx,y) = α(x,y) for all x,y ∈ X and α ∈ K,

(iii) (x,y) = (y,x) for all x,y ∈ X ,
(iv) (x,x) ∈ R and (x,x) ≥ 0, for all x ∈ X ,
(v) (x,x) > 0 if x �= 0.

A vector space X over K with inner product (·, ·) is called a pre-Hilbert space
over K.

The following properties are easily derived from the definition:

(vi) (x,y + z) = (x,y)+ (x,z) for all x,y,z ∈ X ,
(vii) (x,αy) = α(x,y) for all x,y ∈ X and α ∈ K.

Definition A.2 (Norm). Let X be a vector space over the field K = R or
K = C. A norm on X is a mapping

‖·‖ : X −→ R

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, 247
Applied Mathematical Sciences 120, DOI 10.1007/978-1-4419-8474-6,
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with the following properties:

(i) ‖x‖ > 0 for all x ∈ X with x �= 0,
(ii) ‖αx‖ = |α| ‖x‖ for all x ∈ X and α ∈ K,

(iii) ‖x + y‖ ≤ ‖x‖+‖y‖ for all x,y ∈ X .

A vector space X over K with norm ‖·‖ is called normed space over K.

Property (iii) is called triangle inequality. Applying it to the identities
x = (x − y) + y and y = (y − x) + x yields the second triangle inequality
‖x− y‖ ≥

∣
∣‖x‖−‖y‖

∣
∣ for all x,y ∈ X .

Theorem A.3. Let X be a pre-Hilbert space. The mapping ‖·‖ : X −→ R defined by

‖x‖ :=
√

(x,x), x ∈ X ,

is a norm, i.e., it has properties (i), (ii), and (iii) of Definition A.2. Furthermore,

(iv) |(x,y)| ≤ ‖x‖‖y‖ for all x,y ∈ X (Cauchy–Schwarz inequality),

(v) ‖x± y‖2 = ‖x‖2 +‖y‖2 ± 2Re(x,y) for all x,y ∈ X (binomial formula),
(vi) ‖x + y‖2 +‖x− y‖2 = 2‖x‖2 + 2‖y‖2 for all x,y ∈ X.

In the following example, we list some of the most important pre-Hilbert and
normed spaces.

Example A.4. (a) C
n is a pre-Hilbert space of dimension n over C with inner prod-

uct (x,y) := ∑n
k=1 xkyk.

(b) C
n is a pre-Hilbert space of dimension 2n over R with inner product (x,y) :=

Re∑n
k=1 xkyk.

(c) R
n is a pre-Hilbert space of dimension n over R with inner product (x,y) :=

∑n
k=1 xkyk.

(d) Define the set �2 of (real-valued) sequences by

�2 :=
{

(xk) ⊂ R :
∞

∑
k=1

x2
k < ∞

}
. (A.1)

Then �2 is a linear space because if (xk),(yk) ∈ �2, then (λxk) and (xk + yk) are
also in �2. The latter follows from the binomial inequality (xk +yk)2 ≤ 2x2

k +2y2
k.

(x,y) :=
∞

∑
k=1

xkyk, x = (xk), y = (yk) ∈ �2,

defines an inner product on �2. It is well-defined by the Cauchy–Schwarz in-
equality.
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(e) The space C[a,b] of (real- or complex-valued) continuous functions on [a,b] is
a pre-Hilbert space over R with inner product

(x,y)L2 :=
b∫

a

x(t)y(t)dt, x,y ∈C[a,b]. (A.2a)

The corresponding norm is called the Euclidean norm and is denoted by

‖x‖L2 :=
√

(x,x)L2 =

√
∫ b

a
|x(t)|2 dt, x ∈C[a,b]. (A.2b)

(f) On the same vector space C[a,b] as in example (e), we introduce a norm by

‖x‖∞ := max
a≤t≤b

|x(t)| , x ∈C[a,b], (A.3)

that we call the supremum norm.
(g) Let m ∈ N and α ∈ (0,1]. We define the spaces Cm[a,b] and Cm,α [a,b] by

Cm[a,b] :=
{

x ∈C[a,b] :
x is m times continuously
differentiable on [a,b]

}
,

Cm,α [a,b] :=

⎧
⎨

⎩
x ∈Cm[a,b] : sup

t �=s

∣
∣
∣x(m)(t)− x(m)(s)

∣
∣
∣

|t − s|α
< ∞

⎫
⎬

⎭
,

and we equip them with norms

‖x‖Cm := max
0≤k≤m

∥
∥x(k)∥∥

∞, (A.4a)

‖x‖Cm,α := ‖x‖Cm + sup
s �=t

∣
∣
∣x(m)(t)− x(m)(s)

∣
∣
∣

|t − s|α
. (A.4b)

Every normed space carries a topology introduced by the norm, i.e., we can de-
fine open, closed, and compact sets; convergent sequences; continuous functions;
etc. We introduce balls of radius r and center x ∈ X by

K(x,r) := {y ∈ X : ‖y− x‖< r}, K[x,r] := {y ∈ X : ‖y− x‖ ≤ r}.

Definition A.5. Let X be a normed space over the field K = R or C.

(a) A subset M ⊂ X is called bounded if there exists r > 0 with M ⊂K(x,r). The set
M ⊂X is called open if for every x∈M there exists ε > 0 such that K(x,ε)⊂M.
The set M ⊂ X is called closed if the complement X \M is open.
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(b) A sequence (xk)k ⊂ X is called bounded if there exists c > 0 such that ‖xk‖ ≤ c
for all k. The sequence (xk)k ⊂ X is called convergent if there exists x ∈ X such
that ‖x− xk‖ converges to zero in R. We denote the limit by x = limk→∞ xk, or
we write xk → x as k → ∞. The sequence (xk)k ⊂ X is called a Cauchy sequence
if for every ε > 0 there exists N ∈ N with ‖xm − xk‖ < ε for all m,k ≥ N.

(c) Let (xk)k ⊂ X be a sequence. x ∈ X is called an accumulation point if there
exists a subsequence (akn)n that converges to x.

(d) A set M ⊂ X is called compact if every sequence in M has an accumulation
point in M.

Example A.6. Let X = C[0,1] over R and xk(t) = tk, t ∈ [0,1], k ∈ N. The se-
quence (xk) converges to zero with respect to the Euclidean norm ‖·‖L2 introduced
in (A.2b). With respect to the supremum norm ‖·‖∞ of (A.3), however, the sequence
does not converge to zero.

It is easy to prove that a set M is closed if and only if the limit of every convergent
sequence (xk)k ⊂ M also belongs to M. The sets

int(M) := {x ∈ M : there exists ε > 0 with K(x,ε) ⊂ M}

and

cl(M) :=
{

x ∈ X : there exists (xk)k ⊂ M with x = lim
k→∞

xk
}

are called the interior and closure, respectively, of M. The set M ⊂ X is called dense
in X if cl(M) = X .

In general, the topological properties depend on the norm in X . For finite-
dimensional spaces, however, these properies are independent of the norm. This
is seen from the following theorem.

Theorem A.7. Let X be a finite-dimensional space with norms ‖·‖1 and ‖·‖2. Then
both norms are equivalent, i.e., there exist constants c2 ≥ c1 > 0 with

c1 ‖x‖1 ≤ ‖x‖2 ≤ c2 ‖x‖1 for all x ∈ X .

In other words, every ball with respect to ‖·‖1 contains a ball with respect to ‖·‖2
and vice versa. Further properties are collected in the following theorem.

Theorem A.8. Let X be a normed space over K and M ⊂ X be a subset.

(a) M is closed if and only if M = cl(M), and M is open if and only if M = int(M).
(b) If M �= X is a linear subspace, then int(M) = /0, and cl(M) is also a linear

subspace.
(c) In finite-dimensional spaces, every subspace is closed.
(d) Every compact set is closed and bounded. In finite-dimensional spaces, the re-

verse is also true (Theorem of Bolzano–Weierstrass): In a finite-dimensional
normed space, every closed and bounded set is compact.

A crucial property of the set of real numbers is its completeness. It is also a
neccessary assumption for many results in functional analysis.
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Definition A.9 (Banach Space, Hilbert Space). A normed space X over K is
called complete or a Banach space if every Cauchy sequence converges in X . A
complete pre-Hilbert space is called a Hilbert space.

The spaces C
n and R

n are Hilbert spaces with respect to their canonical inner
products. The space C[a,b] is not complete with respect to the inner product (·, ·)L2

of (A.2a)! As an example, we consider the sequence xk(t) = tk for 0 ≤ t ≤ 1 and
xk(t) = 1 for 1 ≤ t ≤ 2. Then (xk) is a Cauchy sequence in C[0,2] but does not
converge in C[0,2] with respect to (·, ·)L2 because it converges to the function

x(t) =
{

0, t < 1,

1, t ≥ 1,

that is not continuous. The space
(
C[a,b],‖·‖∞

)
, however, is a Banach space.

Every normed space or pre-Hilbert space X can be “completed,” i.e., there exists
a “smallest” Banach or Hilbert space X̃ , respectively, that extends X (i.e., ‖x‖X =
‖x‖X̃ or (x,y)X = (x,y)X̃ , respectively, for all x,y ∈ X ). More precisely, we have the
following (formulated only for normed spaces).

Theorem A.10. Let X be a normed space with norm ‖·‖X . There exist a Banach
space

(
X̃ ,‖·‖X̃

)
and an injective linear operator J : X → X̃ such that

(i) The range J(X) ⊂ X̃ is dense in X̃ , and
(ii) ‖Jx‖X̃ = ‖x‖X for all x ∈ X, i.e., J preserves the norm.

Furthermore, X̃ is uniquely determined in the sense that if X̂ is a second space with
properties (i) and (ii) with respect to a linear injective operator Ĵ, then the operator
ĴJ−1 : J(X) → Ĵ(X) has an extension to a norm-preserving isomorphism from X̃
onto X̂ . In other words, X̃ and X̂ can be identified.

We denote the completion of the pre-Hilbert space
(
C[a,b],(·, ·)L2

)
by L2(a,b).

Using Lebesgue integration theory, it can be shown that the space L2(a,b) is char-
acterized as follows. (The notions “measurable,” “almost everywhere” (a.e.), and
“integrable” are understood with respect to the Lebesgue measure.) First, we define
the vector space

L2(a,b) :=
{

x : (a,b) → C : x is measurable and |x|2 integrable
}
,

where addition and scalar multiplication are defined pointwise almost everywhere.
Then L2(a,b) is a vector space because, for x,y ∈ L2(a,b) and α ∈ C, x + y and
αx are also measurable and αx,x+ y ∈ L2(a,b), the latter by the binomial theorem
|x(t)+ y(t)|2 ≤ 2 |x(t)|2 + 2 |y(t)|2. We define a sesquilinear form on L2(a,b) by

〈x,y〉 :=
b∫

a

x(t)y(t)dt, x,y ∈ L2(a,b).
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〈·, ·〉 is not an inner product on L2(a,b) because 〈x,x〉 = 0 only implies that x
vanishes almost everywhere, i.e., that x ∈ N , where N is defined by

N :=
{

x ∈ L2(a,b) : x(t) = 0 a.e. on (a,b)
}
.

Now we define L2(a,b) as the factor space

L2(a,b) := L2(a,b)/N

and equip L2(a,b) with the inner product

(
[x], [y]

)
L2 :=

b∫

a

x(t)y(t)dt, x ∈ [x], y ∈ [y].

Here, [x], [y] ∈ L2(a,b) are equivalence classes of functions in L2(a,b). Then it can
be shown that this definition is well-defined and yields an inner product on L2(a,b).
From now on, we write x ∈ L2(a,b) instead of x ∈ [x] ∈ L2(a,b). Furthermore, it
can be shown by fundamental results of Lebesgue integration theory that L2(a,b) is
complete, i.e., a Hilbert space and contains C[a,b] as a dense subspace.

Definition A.11 (Separable Space). The normed space X is called separable if
there exists a countable dense subset M ⊂ X , i.e., if there exist M and a bijective
mappping j : N → M with cl(M) = X .

The spaces C
n, R

n, L2(a,b), and C[a,b] are all separable. For the first two exam-
ples, let M consist of all vectors with rational coefficients; for the latter examples,
take polynomials with rational coefficients.

Definition A.12 (Orthogonal Complement). Let X be a pre-Hilbert space (over
K = R or C).

(a) Two elements x and y are called orthogonal if (x,y) = 0.
(b) Let M ⊂ X be a subset. The set

M⊥ :=
{

x ∈ X : (x,y) = 0 for all y ∈ M
}

is called the orthogonal complement of M.

M⊥ is always a closed subspace and M ⊂
(
M⊥)⊥. Furthermore, A ⊂ B implies

that B⊥ ⊂ A⊥.
The following theorem is a fundamental result in Hilbert space theory and relies

heavily on the completeness property.

Theorem A.13 (Projection Theorem). Let X be a Hilbert space and V ⊂ X be a

closed subspace. Then V =
(
V⊥)⊥. Every x ∈ X possesses a unique decomposition

of the form x = v +w, where v ∈V and w ∈V⊥. The operator P : X →V, x �→ v , is
called the orthogonal projection operator onto V and has the properties
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(a) Pv = v for v ∈V, i.e., P2 = P;
(b) ‖x−Px‖ ≤ ‖x− v ′‖ for all v ′ ∈V.

This means that Px ∈ V is the best approximation of x ∈ X in the closed sub-
space V .

A.2 Orthonormal Systems

In this section, let X always be a separable Hilbert space over the field K = R or C.

Definition A.14 (Orthonormal System). A countable set of elements A = {xk :
k = 1,2,3, . . .} is called an orthonormal system (ONS) if

(i)
(
xk,x j
)

= 0 for all k �= j and
(ii) ‖xk‖ = 1 for all k ∈ N.

A is called a complete or a maximal orthonormal system if, in addition, there is no
ONS B with A ⊂ B and A �= B.

One can show using Zorn’s Lemma that every separable Hilbert possesses a max-
imal ONS. Furthermore, it is well-known from linear algebra that every countable
set of linearly independent elements of X can be orthonormalized.

For any set A ⊂ X , let

span A :=

{
n

∑
k=1

αkxk : αk ∈ K, xk ∈ A, n ∈ N

}

(A.5)

be the subspace of X spanned by A.

Theorem A.15. Let A = {xk : k = 1,2,3, . . .} be an orthonormal system. Then

(a) Every finite subset of A is linearly independent.
(b) If A is finite, i.e., A = {xk : k = 1,2, . . . ,n}, then for every x ∈ X there exist

uniquely determined coefficients αk ∈ K, k = 1, . . . ,n, such that

∥∥
∥
∥
∥

x−
n

∑
k=1

αkxk

∥∥
∥
∥
∥
≤ ‖x−a‖ for all a ∈ span A. (A.6)

The coefficients αk are given by αk =
(
x,xk
)

for k = 1, . . . ,n.
(c) For every x ∈ X, the following Bessel inequality holds:

∞

∑
k=1

|(x,xk)|2 ≤ ‖x‖2 , (A.7)

and the series converges in X.
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(d) A is complete if and only if spanA is dense in X.
(e) A is complete if and only if for all x ∈ X the following Parseval equation holds:

∞

∑
k=1

|(x,xk)|2 = ‖x‖2 . (A.8)

(f) A is complete if and only if every x ∈ X has a (generalized) Fourier expansion
of the form

x =
∞

∑
k=1

(
x,xk
)
xk, (A.9)

where the convergence is understood in the norm of X. In this case, the Parseval
equation holds in the following more general form:

(x,y) =
∞

∑
k=1

(x,xk)(y,xk). (A.10)

This important theorem includes, as special examples, the classical Fourier
expansion of periodic functions and the expansion with respect to orthogonal poly-
nomials. We recall two examples.

Example A.16 (Fourier Expansion). (a) The functions xk(t) := exp(ikt)/
√

2π,
k ∈ Z, form a complete system of orthonormal functions in L2(0,2π). By
part (f) of the previous theorem, every function x ∈ L2(0,2π) has an expansion
of the form

x(t) =
1

2π

∞

∑
k=−∞

eikt

2π∫

0

x(s)e−iksds,

where the convergence is understood in the sense of L2, i.e.,

2π∫

0

∣
∣∣
∣x(t)−

1
2π

N

∑
k=−M

eikt

2π∫

0

x(s)e−iksds

∣
∣∣
∣

2

dt −→ 0

as M,N tend to infinity. For smooth periodic functions, one can even show uni-
form convergence (see Sect. A.4).

(b) The Legendre polynomials Pk, k = 0,1, . . ., form a maximal orthonormal system
in L2(−1,1). They are defined by

Pk(t) = γk
dk

dtk (1− t2)k, t ∈ (−1,1), k ∈ N0,
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with normalizing constants

γk =

√
2k + 1

2
1

k!2k .

We refer to [122] for details.

Other important examples will be given later.

A.3 Linear Bounded and Compact Operators

For this section, let X and Y always be normed spaces and A : X → Y be a linear
operator.

Definition A.17 (Boundedness, Norm of A). The linear operator A is called
bounded if there exists c > 0 such that

‖Ax‖ ≤ c‖x‖ for all x ∈ X .

The smallest of these constants is called the norm of A, i.e.,

‖A‖ := sup
x�=0

‖Ax‖
‖x‖ . (A.11)

Theorem A.18. The following assertions are equivalent:

(a) A is bounded.
(b) A is continuous at x = 0, i.e., x j → 0 implies that Ax j → 0.
(c) A is continuous for every x ∈ X.

The space L(X ,Y ) of all linear bounded mappings from X to Y with the operator
norm is a normed space, i.e., the operator norm has properties (i), (ii), and (iii)
of Definition A.2 and the following: Let B ∈ L(X ,Y) and A ∈ L(Y,Z); then AB ∈
L(X ,Z) and ‖AB‖ ≤ ‖A‖‖B‖.

Integral operators are the most important examples for our purposes.

Theorem A.19. (a) Let k ∈ L2
(
(c,d)× (a,b)

)
. The operator

(Ax)(t) :=
b∫

a

k(t,s)x(s)ds, t ∈ (c,d), x ∈ L2(a,b), (A.12)

is well-defined, linear, and bounded from L2(a,b) into L2(c,d). Furthermore,

‖A‖L2 ≤
d∫

c

b∫

a

|k(t,s)| dsdt.
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(b) Let k be continuous on [c,d]× [a,b]. Then A is also well-defined, linear, and
bounded from C[a,b] into C[c,d] and

‖A‖∞ = max
t∈[c,d]

b∫

a

|k(t,s)| ds.

We can extend this theorem to integral operators with weakly singular kernels.
We recall that a kernel k is called weakly singular on [a,b]× [a,b] if k is defined and
continuous for all t,s ∈ [a,b], t �= s, and there exist constants c > 0 and α ∈ [0,1)
such that

|k(t,s)| ≤ c |t − s|−α for all t,s ∈ [a,b], t �= s.

Theorem A.20. Let k be weakly singular on [a,b]. Then the integral operator A,
defined by (A.12) for [c,d] = [a,b], is well-defined and bounded as an operator in
L2(a,b) as well as in C[a,b].

For the special case Y = K, we denote by X ′ := L(X ,K) the dual space of X .
Analogously, the space

(
X ′)′ is called the bidual of X . The canonical embedding

J : X →
(
X ′)′, defined by

(Jx)� := �(x), x ∈ X , � ∈ X ′,

is linear, bounded, one-to-one, and satisfies ‖Jx‖ = ‖x‖ for all x ∈ X .

Definition A.21 (Reflexive Space). The normed space X is called reflexive if the
canonical embedding is surjective, i.e., a norm-preserving isomorphism from X onto
the bidual space

(
X ′)′.

The following important result gives a characterization of X ′ in Hilbert spaces.

Theorem A.22 (Riesz–Fischer). Let X be a Hilbert space. For every x ∈ X, the
functional fx(y) := (y,x), y ∈ X, defines a linear bounded mapping from X to K,
i.e., fx ∈ X ′. Furthermore, for every f ∈ X ′ there exists one and only one x ∈ X with
f (y) = (y,x) for all y ∈ X and

‖ f‖ := sup
y �=0

| f (y)|
‖y‖ = ‖x‖ .

This theorem implies that every Hilbert space is reflexive. It also yields the exis-
tence of a unique adjoint operator for every linear bounded operator A : X −→ Y .
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Theorem A.23 (Adjoint Operator). Let A : X −→ Y be a linear and bounded
operator between Hilbert spaces. Then there exists one and only one linear bounded
operator A∗ : Y −→ X with the property

(Ax,y) = (x,A∗y) for all x ∈ X , y ∈ Y.

This operator A∗ : Y −→ X is called the adjoint operator to A. For X = Y, the oper-
ator A is called self-adjoint if A∗ = A.

Example A.24. (a) Let X = L2(a,b), Y = L2(c,d), and k ∈ L2
(
(c,d)× (a,b)

)
. The

adjoint A∗ of the integral operator

(Ax)(t) =
b∫

a

k(t,s)x(s)ds, t ∈ (c,d), x ∈ L2(a,b),

is given by

(A∗y)(t) =
d∫

c

k(s,t)y(s)ds, t ∈ (a,b), y ∈ L2(c,d).

(b) Let the space X = C[a,b] of continuous function over C be supplied with the
L2-inner product. Define f ,g : C[a,b] → R by

f (x) :=
b∫

a

x(t)dt and g(x) := x(a) for x ∈C[a,b].

Both f and g are linear. f is bounded but g is unbounded. There is an extension
of f to a linear bounded functional (also denoted by f ) on L2(a,b), i.e., f ∈
L2(a,b)′. By Theorem A.22, we can identify L2(a,b)′ with L2(a,b) itself. For
the given f , the representation function is just the constant function 1 because
f (x) = (x,1)L2 for x ∈ L2(a,b). The adjoint of f is calculated by

f (x) · y =
b∫

a

x(t)ydt = (x,y)L2 =
(
x, f ∗(y)

)
L2

for all x∈L2(a,b) and y∈C. Therefore, f ∗(y)∈L2(a,b) is the constant function
with value y.

(c) Let X be the Sobolev space H1(a,b), i.e., the space of L2-functions that possess
generalized L2-derivatives:

H1(a,b) :=
{

x ∈ L2(a,b) :
there exists α ∈ K and y ∈ L2(a,b) with
x(t) = α +

∫ t
a y(s)ds for t ∈ (a,b)

}
.
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We denote the generalized derivative y ∈ L2(a,b) by x′. We observe that
H1(a,b) ⊂ C[a,b] with bounded embedding. As an inner product in H1(a,b),
we define

(
x,y
)

H1 := x(a)y(a)+ (x′,y′)L2 , x,y ∈ H1(a,b).

Now let Y = L2(a,b) and A : H1(a,b) −→ L2(a,b) be the operator x �→ x′ for
x ∈ H1(a,b). Then A is well-defined, linear, and bounded. It is easily seen that
the adjoint of A is given by

(A∗y)(t) =
t∫

a

y(s)ds, t ∈ (a,b), y ∈ L2(a,b).

The following theorems are two of the most important results of linear functional
analysis.

Theorem A.25 (Open Mapping Theorem). Let X ,Y be Banach spaces and A :
X → Y a linear bounded operator from X onto Y . Then A is open, i.e., the images
A(U) ⊂ Y are open in Y for all open sets U ⊂ X. In particular, if A is a bounded
isomorphism from X onto Y , then the inverse A−1 : Y → X is bounded. This result is
sometimes called the Banach–Schauder theorem.

Theorem A.26 (Banach–Steinhaus, Principle of Uniform Boundedness). Let X
be a Banach space, Y be a normed space, I be an index set, and Aα ∈ L(X ,Y ),
α ∈ I, be a collection of linear bounded operators such that

sup
α∈I

‖Aα x‖ < ∞ for every x ∈ X .

Then supα∈I ‖Aα‖ < ∞.

As an immediate consequence, we have the following.

Theorem A.27. Let X be a Banach space, Y be a normed space, D ⊂ X be a dense
subspace, and An ∈ L(X ,Y) for n ∈ N. Then the following two assertions are equiv-
alent:

(i) Anx → 0 as n → ∞ for all x ∈ X.
(ii) supn∈N ‖An‖ < ∞ and Anx → 0 as n → ∞ for all x ∈ D.

We saw in Theorem A.10 that every normed space X possesses a unique comple-
tion X̃ . Every linear bounded operator defined on X can also be extended to X̃ .

Theorem A.28. Let X̃ ,Ỹ be Banach spaces, X ⊂ X̃ a dense subspace, and A : X → Ỹ
be linear and bounded. Then there exists a linear bounded operator Ã : X̃ → Ỹ with

(i) Ãx = Ax for all x ∈ X, i.e., Ã is an extension of A, and
(ii)
∥
∥Ã
∥
∥= ‖A‖.

Furthermore, the operator Ã is uniquely determined. If A is compact then also Ã.
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We now study equations of the form

x−Kx = y, (A.13)

where the operator norm of the linear bounded operator K : X → X is small. The
following theorem plays an essential role in the study of Volterra integral equations.

Theorem A.29 (Neumann Series). Let X be a Banach space over R or C and
K : X → X be a linear bounded operator with

limsup
n→∞

‖Kn‖1/n < 1. (A.14)

Then I −K is invertible, the Neumann series ∑∞
n=0 Kn converges in the operator

norm, and
∞

∑
n=0

Kn = (I −K)−1.

Condition (A.14) is satisfied if, for example, ‖Km‖ < 1 for some m ∈ N.

Example A.30. Let Δ :=
{
(t,s) ∈ R

2 : a < s < t < b
}

.

(a) Let k ∈ L2(Δ). Then the Volterra operator

(Kx)(t) :=
t∫

a

k(t,s)x(s)ds, a < t < b, x ∈ L2(a,b), (A.15)

is bounded in L2(a,b). There exists m ∈N with
∥
∥Km
∥
∥

L2 < 1. The Volterra equa-
tion of the second kind

x(t)−
t∫

a

k(t,s)x(s)ds = y(t), a < t < b, (A.16)

is uniquely solvable in L2(a,b) for every y∈ L2(a,b), and the solution x depends
continuously on y. The solution x ∈ L2(a,b) has the form

x(t) = y(t)+
t∫

a

r(t,s)y(s)ds, t ∈ (a,b),

with some kernel r ∈ L2(Δ).
(b) Let k ∈C

(
Δ
)
. Then the operator K defined by (A.15) is bounded in C[a,b], and

there exists m ∈ N with
∥
∥Km
∥
∥

∞ < 1. Equation (A.16) is also uniquely solvable
in C[a,b] for every y ∈C[a,b], and the solution x depends continuously on y.

For the remaining part of this section, we assume that X and Y are normed spaces
and K : X → Y a linear and bounded operator.



260 A Basic Facts from Functional Analysis

Definition A.31 (Compact Operator). The operator K : X → Y is called compact
if it maps every bounded set S into a relatively compact set K(S).

We recall that a set M ⊂Y is called relatively compact if every bounded sequence
(y j) ⊂ M has an accumulation point in cl(M), i.e., if the closure cl(M) is compact.
The set of all compact operators from X into Y is a closed subspace of L(X ,Y) and
even a two-sided ideal by the following theorem.

Theorem A.32. (a) If K1 and K2 are compact from X into Y , then so are K1 + K2

and λ K1 for every λ ∈ K.
(b) Let Kn : X −→ Y be a sequence of compact operators between Banach spaces

X and Y . Let K : X −→ Y be bounded, and let Kn converge to K in the operator
norm, i.e.,

‖Kn −K‖ := sup
x �=0

‖Knx−Kx‖
‖x‖ −→ 0 (n −→ ∞).

Then K is also compact.
(c) If L∈L(X ,Y ) and K ∈L(Y,Z), and L or K is compact, then KL is also compact.
(d) Let An ∈ L(X ,Y) be pointwise convergent to some A ∈ L(X ,Y ), i.e., Anx → Ax

for all x ∈ X. If K : Z → X is compact, then ‖AnK−AK‖→ 0, i.e., the operators
AnK converge to AK in the operator norm.

Theorem A.33. (a) Let k ∈ L2
(
(c,d) × (a,b)

)
. The operator K : L2(a,b) →

L2(c,d), defined by

(Kx)(t) :=
b∫

a

k(t,s)x(s)ds, t ∈ (c,d), x ∈ L2(a,b), (A.17)

is compact from L2(a,b) into L2(c,d).
(b) Let k be continuous on [c,d]× [a,b] or weakly singular on [a,b]× [a,b] (in this

case [c,d] = [a,b]). Then K defined by (A.17) is also compact as an operator
from C[a,b] into C[c,d].

We now study equations of the form

x−Kx = y, (A.18)

where the linear operator K : X → X is compact. The following theorem extends the
well-known existence results for finite linear systems of n equations and n variables
to compact perturbations of the identity.

Theorem A.34 (Riesz). Let X be a normed space and K : X → X be a linear
compact operator.

(a) The nullspace N (I−K) =
{

x ∈ X : x = Kx
}

is finite-dimensional and the range
(I −K)(X) is closed in X.
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(b) If I −K is one-to-one, then I −K is also surjective, and the inverse (I −K)−1

is bounded. In other words, if the homogeneous equation x−Kx = 0 admits
only the trivial solution x = 0, then the inhomogeneous equation x−Kx = y is
uniquely solvable for every y ∈ X and the solution x depends continuously on y.

The next theorem studies approximations of equations of the form Ax = y. Again,
we have in mind that A = I −K.

Theorem A.35. Assume that the operator A : X →Y between Banach spaces X and
Y has a bounded inverse A−1. Let An ∈L(X ,Y ) be a sequence of bounded operators
that converge in norm to A, i.e., ‖An −A‖→ 0 as n → ∞. Then, for sufficiently large
n, more precisely for all n with

∥
∥A−1(An −A)

∥
∥< 1, (A.19)

the inverse operators A−1
n : Y → X exist and are uniformly bounded by

∥
∥A−1

n

∥
∥≤

∥
∥A−1

∥
∥

1−‖A−1(An −A)‖ ≤ c. (A.20)

For the solutions of the equations

Ax = y and Anxn = yn,

the error estimate

‖xn − x‖ ≤ c
{
‖Anx−Ax‖+‖yn − y‖

}
(A.21)

holds with the constant c from (A.20).

A.4 Sobolev Spaces of Periodic Functions

In this section, we recall definitions and properties of Sobolev (Hilbert) spaces of
periodic functions. A complete discussion including proofs can be found in the
monograph [151].

From Parseval’s identity, we note that x ∈ L2(0,2π) if and only if the Fourier
coefficients

ak =
1

2π

2π∫

0

x(s)e−iks ds, k ∈ Z, (A.22)

are square summable. In this case

∑
k∈Z

|ak|2 =
1

2π
‖x‖2

L2 .
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If x is periodic and continuously differentiable on [0,2π ], partial integration of
(A.22) yields the formula

ak =
−i

2πk

2π∫

0

x′(s)e−iks ds,

i.e., ikak are the Fourier coefficients of x′ and are thus square summable. This mo-
tivates the introduction of subspaces Hr(0,2π) of L2(0,2π) by requiring for their
elements a certain decay of the Fourier coefficients ak.

Definition A.36 (Sobolev Space). For r ≥ 0, the Sobolev space Hr(0,2π) of
order r is defined by

Hr(0,2π) :=
{

∑
k∈Z

akeikt : ∑
k∈Z

(1 + k2)r |ak|2 < ∞
}

.

We note that H0(0,2π) coincides with L2(0,2π).

Theorem A.37. The Sobolev space Hr(0,2π) is a Hilbert space with the inner
product defined by

(x,y)Hr := ∑
k∈Z

(1 + k2)rakbk, (A.23)

where

x(t) = ∑
k∈Z

akeikt and y(t) = ∑
k∈Z

bkeikt .

The norm in Hr(0,2π) is given by

‖x‖Hr =

(

∑
k∈Z

(1+ k2)r |ak|2
)1/2

.

We note that ‖x‖L2 =
√

2π ‖x‖H0 , that is, the norms ‖x‖L2 and ‖x‖H0 are equiva-
lent on L2(0,2π).

Theorem A.38. (a) For r ∈ N0 := N∪{0}, the space
{

x ∈Cr[0,2π] : x periodic
}

is boundedly embedded in Hr(0,2π).
(b) The space T of all trigonometric polynomials

T :=
{ n

∑
k=−n

akeikt : ak ∈ C, n ∈ N

}

is dense in Hr(0,2π) for every r ≥ 0.
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Definition A.39. For r ≥ 0, we denote by H−r(0,2π) the dual space of Hr(0,2π),
i.e., the space of all linear bounded functionals on Hr(0,2π).

By Theorem A.22, we can identify H−r(0,2π) with Hr(0,2π) by using the inner
product (·, ·)Hr in Hr(0,2π). The following theorems give characterizations in terms
of the Fourier coefficients.

Theorem A.40. Let F ∈ H−r(0,2π) and define ck := F
(
exp(ikt)

)
for k ∈ Z. Then

‖F‖H−r =

(

∑
k∈Z

(1 + k2)−r |ck|2
)1/2

.

Conversely, let cm ∈ C satisfy

∑
k∈Z

(1 + k2)−r |ck|2 < ∞.

Then there exists a bounded linear functional F on Hr(0,2π) with F
(
exp(ikt)

)
= ck

for all k ∈ Z.

Theorem A.41. Let r ≥ 0. On the space T of all trigonometric polynomials, define
the inner product and norm by

(p,q)H−r :=
n

∑
k=−n

(1 + k2)−rakbk, (A.24a)

‖p‖−r :=
n

∑
k=−n

(1 + k2)−r |ak|2 , (A.24b)

where

p(t) =
n

∑
k=−n

akeikt and q(t) =
n

∑
k=−n

bkeikt .

Then the completion of T with respect to ‖·‖−r is norm-isomorphic to H−r(0,2π).
The isomorphism is given by the extension of

J : T → H−r(0,2π),

where

(Jp)x :=
1

2π

2π∫

0

x(t)(Cp)(t)dt, x ∈ Hr(0,2π), p ∈ T , (A.25)

and

(Cp)(t) =
n

∑
k=−n

akeikt for p(t) =
n

∑
k=−n

akeikt .

Therefore, we identify ‖p‖−r with ‖Jp‖H−r and simply write ‖p‖H−r .
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Proof. Let

p(t) =
n

∑
k=−n

bkeikt ∈ T and x(t) = ∑
k∈Z

akeikt ∈ Hr(0,2π).

Then

(Jp)x =
n

∑
k=−n

akbk. (A.26)

Thus, by the Cauchy–Schwarz inequality,

|(Jp)x| ≤
n

∑
k=−n

{
(1 + k2)r/2 |ak|

}{
(1 + k2)−r/2 |bk|

}

≤
(

n

∑
k=−n

(1+ k2)r |ak|2
)1/2( n

∑
k=−n

(1 + k2)−r |bk|2
)1/2

= ‖x‖Hr ‖p‖−r ,

and thus ‖Jp‖H−r ≤ ‖p‖−r. Now we take

x(t) =
n

∑
k=−n

{
(1 + k2)−rbkeikt .

Then ‖x‖Hr = ‖p‖−r and (Jp)x = ‖p‖2
−r, i.e.,

‖Jp‖H−r ≥
(Jp)x
‖x‖Hr

= ‖p‖−r .

This yields ‖Jp‖H−r = ‖p‖−r.
It remains to show that the range of J is dense in H−r(0,2π). Let F ∈ H−r(0,2π)

and ck = F
(
exp(ikt)

)
for k ∈ Z. Define the polynomial pn ∈ T by pn(t) =

∑n
k=−n ck exp(ikt). Then

(
F − Jpn

)(
exp(ikt)

)
=
{

0, |k| ≤ n,

ck, |k| > n.

Theorem A.40 yields that

‖Jpn −F‖2
H−r = ∑

|k|>n

(1 + k2)−r |ck|2 −→ 0, n → ∞. �

Theorem A.42. (a) For r > s, the Sobolev space Hr(0,2π) is a dense subspace of
Hs(0,2π). The inclusion operator from Hr(0,2π) into Hs(0,2π) is compact.
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(b) For all r ≥ 0 and x ∈ Hr(0,2π), y ∈ L2(0,2π), there holds

∣
∣
∣
∣∣
∣

2π∫

0

x(s)y(s)ds

∣
∣
∣
∣∣
∣
≤ 2π ‖x‖Hr ‖y‖H−r .

Theorems A.38 and A.41 imply that the space T of all trigonometric polynomials
is dense in Hr(0,2π) for every r ∈ R. Now we study the orthogonal projection and
the interpolation operators with respect to equidistant knots and the 2n-dimensional
space

Tn :=

{
n−1

∑
k=−n

akeikt : ak ∈ C

}

. (A.27)

Lemma A.43. Let Pn : L2(0,2π) → Tn ⊂ L2(0,2π) be the orthogonal projection
operator. Then Pn is given by

(Pnx)(t) =
n−1

∑
k=−n

akeikt , x ∈ L2(0,2π), (A.28)

where

ak =
1

2π

2π∫

0

x(s)exp(−iks)ds, k ∈ Z,

are the Fourier coefficients of x. Furthermore, the following estimate holds:

‖x−Pnx‖Hs ≤
1

nr−s ‖x‖Hr for all x ∈ Hr(0,2π), (A.29)

where r ≥ s.

Proof. Let

x(t) = ∑
k∈Z

akeikt ∈ L2(0,2π) and let z(t) =
n−1

∑
k=−n

akeikt ∈ Tn

be the right-hand side of (A.28). The orthogonality of exp(ikt) implies that x− z is
orthogonal to Tn. This proves that z coincides with Pnx. Now let x ∈Hr(0,2π). Then

‖x−Pnx‖2
Hs ≤ ∑

|k|≥n

(1 + k2)s |ak|2

= ∑
|k|≥n

(1 + k2)−(r−s)
[
(1 + k2)r |ak|2

]

≤ (1+ n2)s−r ‖x‖2
Hr ≤ n2(s−r)‖x‖2

Hr . �
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Now let t j := j π
n , j = 0, . . . ,2n−1, be equidistantly chosen points in [0,2π]. In-

terpolation of smooth periodic functions by trigonometric polynomials can be found
in numerous books as, for example, in [63]. Interpolation in Sobolev spaces of inte-
ger orders can be found in [39]. We give a different and much simpler proof of the
error estimates that are optimal and hold in Sobolev spaces of fractional order.

Theorem A.44. For every n ∈N and every 2π-periodic function x ∈C[0,2π ], there
exists a unique pn ∈ Tn with x(t j) = pn(t j) for all j = 0, . . . ,2n−1. The trigonomet-
ric interpolation operator Qn :

{
x ∈C[0,2π ] : x periodic

}
→Tn has the form

Qnx =
2n−1

∑
k=0

x(tk)Lk

with Lagrange interpolation basis functions

Lk(t) =
1

2n

n−1

∑
m=−n

eim(t−tk), k = 0, . . . ,2n−1. (A.30)

The interpolation operator Qn has an extension to a bounded operator from
Hr(0,2π) into Tn ⊂ Hr(0,2π) for all r > 1

2 . Furthermore, Qn obeys estimates
of the form

‖x−Qnx‖Hs ≤
c

nr−s ‖x‖Hr for all x ∈ Hr(0,2π), (A.31)

where 0 ≤ s ≤ r and r > 1
2 . The constant c depends only on s and r.

Proof. The proof of the first part can be found in, for example, [151]. Let x(t) =
∑m∈Z am exp(imt). Direct calculation shows that for smooth functions x the interpo-
lation is given by

(Qnx)(t) =
n−1

∑
j=−n

â je
i jt with

â j =
1

2n

2n−1

∑
k=0

x
(
tk
)
e−i jkπ/n, j = −n, . . . ,n−1.

The connection between the continuous and discrete Fourier coefficients is simply

â j =
1
2n

2n−1

∑
k=0

∑
m∈Z

ameimkπ/n−i jkπ/n

=
1
2n ∑

m∈Z

am

2n−1

∑
k=0

[
ei(m− j)π/n

]k

= ∑
�∈Z

a j+2n�.
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It is sufficient to estimate Pnx−Qnx because the required estimate holds for x−Pnx
by formula (A.29). We have

(
Pnx−Qnx

)
(t) =

n−1

∑
m=−n

[
am − âm

]
eimt

and thus by the Cauchy–Schwarz inequality

‖Pnx−Qnx‖2
Hs

=
n−1

∑
m=−n

|am − âm|2 (1 +m2)s ≤ cn2s
n−1

∑
m=−n

∣
∣
∣∣
∣∑
� �=0

am+2n�

∣
∣
∣∣
∣

2

≤ cn2s
n−1

∑
m=−n

∣
∣
∣
∣
∣∑
� �=0

[(
1 +(m+ 2n�)2)r/2

am+2n�

] 1
(
1 +(m+ 2n�)2

)r/2

∣
∣
∣
∣
∣

2

≤ cn2s
n−1

∑
m=−n

[

∑
� �=0

(
1+(m +2n�)2)r |am+2n�|2 ∑

� �=0

1
(
1 +(m +2n�)2

)r

]

.

From the obvious estimate

∑
� �=0

(
1+(m +2n�)2)−r ≤ (2n)−2r ∑

� �=0

( m
2n

+ �
)−2r

≤ cn−2r

for all |m| ≤ n and n ∈ N, we conclude that

‖Pnx−Qnx‖2
Hs ≤ cn2(s−r)

n−1

∑
m=−n

∑
� �=0

(
1 +(m+ 2n�)2)r |am+2n�|2

≤ cn2(s−r)‖x‖2
Hr . �

For real-valued functions, it is more conveniant to study the orthogonal projection
and interpolation in the 2n-dimensional space

{
n

∑
j=0

a j cos( jt)+
n−1

∑
j=1

b j sin( jt) : a j,b j ∈ R

}

.

In this case, the Lagrange interpolation basis functions Lk are given by (see [151])

Lk(t) =
1

2n

{

1 +2
n−1

∑
m=1

cosm(t − tk)+ cosn(t − tk)

}

, (A.32)

k = 0, . . . ,2n − 1, and the estimates (A.29) and (A.31) are proven by the same
arguments.
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Theorem A.45. Let r ∈ N and k ∈Cr
(
[0,2π ]× [0,2π ]

)
be 2π-periodic with respect

to both variables. Then the integral operator K, defined by

(Kx)(t) :=
2π∫

0

k(t,s)x(s)ds, t ∈ (0,2π), (A.33)

can be extended to a bounded operator from H p(0,2π) into Hr(0,2π) for every
−r ≤ p ≤ r.

Proof. Let x ∈ L2(0,2π). From

d j

dt j (Kx)(t) =
2π∫

0

∂ jk(t,s)
∂ t j x(s)ds, j = 0, . . . ,r,

we conclude from Theorem A.42 that for x ∈ L2(0,2π)

∣
∣
∣∣

d j

dt j (Kx)(t)
∣
∣
∣∣≤ 2π

∥
∥
∥∥

∂ jk(t, ·)
∂ t j

∥
∥
∥∥

Hr
‖x‖H−r

and thus

‖Kx‖Hr ≤ c1 ‖Kx‖Cr ≤ c2 ‖x‖H−r

for all x ∈ L2(0,2π). Application of Theorem A.28 yields the assertion because
L2(0,2π) is dense in H−r(0,2π). �

A.5 Sobolev Spaces on the Unit Disc

Let B = {x ∈ R
2 : |x| < 1} be the open unit disc with boundary ∂B. In this section

we consider functions from B into C that we describe by Cartesian coordinates
x = (x1,x2) or by polar coordinates (r,ϕ). Functions on the boundary are identified
with 2π-periodic functions on R. As in the case of the Sobolev spaces Hs(0,2π) we
define the Sobolev space H1(B) by completion.

Definition A.46. The Sobolev space H1(B) is defined as the completion of C∞(B)
with respect to the norm

‖ f‖H1(B) =
√∫

B

[∣∣ f (x)
∣
∣2 +
∣
∣∇ f (x)

∣
∣2]dx. (A.34)
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We express the norm (A.34) in polar coordinates (r,ϕ). The gradient is given in
polar coordinates as

∇ f (r,ϕ) =
∂ f (r,ϕ)

∂ r
r̂ +

1
r

∂ f (r,ϕ)
∂ϕ

ϕ̂,

where r̂ =
(cosϕ

sinϕ
)

and ϕ̂ =
(− sinϕ

cosϕ
)

denote the unit vectors. We fix r > 0 and expand
the function f (r, ·) (formally) into a Fourier series with respect to ϕ:

f (r,ϕ) = ∑
m∈Z

fm(r)eimϕ

with Fourier coefficients

fm(r) =
1

2π

2π∫

0

f (r,t)e−imt dt, m ∈ Z,

that depend on r. Therefore,

∂ f (r,ϕ)
∂ r

= ∑
m∈Z

f ′m(r)eimϕ ,
∂ f (r,ϕ)

∂ϕ
= i ∑

m∈Z

fm(r)meimϕ .

The norm in H1(B) is given by

‖ f‖2
H1(B) = 2π ∑

m∈Z

1∫

0

[(
1 +

m2

r2

)∣
∣ fm(r)

∣
∣2 +
∣
∣ f ′m(r)

∣
∣2
]

r dr, (A.35)

because

∣
∣∇ f (r,ϕ)

∣
∣2 =
∣
∣
∣
∣
∂ f (r,ϕ)

∂ r

∣
∣
∣
∣

2

+
1
r2

∣
∣
∣
∣
∂ f (r,ϕ)

∂ϕ

∣
∣
∣
∣

2

and
2π∫

0

∣
∣
∣∣
∣∑m∈Z

fm(r)eimϕ

∣
∣
∣∣
∣

2

dϕ = 2π ∑
m∈Z

∣∣ fm(r)
∣∣2.

To every function f ∈ C∞(B) one can assign the trace f |∂ B on ∂B. We denote this
mapping by τ, thus τ : C∞(B) → C∞(∂B) is defined as τ f = f |∂ B. The following
result is central.

Theorem A.47 (Trace Theorem). The trace operator τ has an extension to a
bounded operator from H1(B) to H1/2(∂B) where again H1/2(∂B) is identified
with the Sobolev space H1/2(0,2π) of periodic functions (see Definition A.36).
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τ : H1(B) → H1/2(∂B) is surjective. More precisely, there exists a bounded lin-
ear operator E : H1/2(∂B) → H1(B) with τ ◦E = I on H1/2(∂B) (i.e., E is a right
inverse of τ).

Proof. Let f ∈C∞(B). Then (see (A.35) and (A.23))

‖ f‖2
H1(B) = 2π ∑

m∈Z

1∫

0

[(
1 +

m2

r2

)∣
∣ fm(r)

∣
∣2 +
∣
∣ f ′m(r)

∣
∣2
]

r dr,

‖τ f‖2
H1/2(∂ B) = 2π ∑

m∈Z

√
1 +m2

∣
∣ fm(1)

∣
∣2.

We estimate, using the fundamental theorem of calculus and the inequality of
Cauchy and Schwarz,

∣
∣ fm(1)

∣
∣2 =

1∫

0

d

dr

(
r2
∣
∣ fm(r)

∣
∣2)dr

= 2

1∫

0

∣∣ fm(r)
∣∣2r dr +2Re

1∫

0

fm(r) f ′m(r)r2 dr

≤ 2

1∫

0

∣
∣ fm(r)

∣
∣2r dr +2

√√
√
√
√

1∫

0

∣
∣ fm(r)

∣
∣2r2 dr

√√
√
√
√

1∫

0

∣
∣ f ′m(r)

∣
∣2r2 dr.

Using the inequality 2ab ≤ a2 + b2 yields

√
1 +m2

∣
∣ fm(1)

∣
∣2 ≤ 2

√
1 +m2

1∫

0

∣
∣ fm(r)

∣
∣2r dr

+ (1 + m2)
1∫

0

∣
∣ fm(r)

∣
∣2r2 dr +

1∫

0

∣
∣ f ′m(r)

∣
∣2r2 dr

≤ 3(1 +m2)
1∫

0

∣
∣ fm(r)

∣
∣2r dr+

1∫

0

∣
∣ f ′m(r)

∣
∣2r dr

≤ 3

1∫

0

(
1 +

m2

r2

)∣
∣ fm(r)

∣
∣2r dr +

1∫

0

∣
∣ f ′m(r)

∣
∣2r dr,
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where we have also used the estimates r2 ≤ r for r ∈ [0,1] and
√

1+ m2 ≤ 1 +m2.
By summation we conclude that

‖τ f‖2
H1/2(∂ B) ≤ 3‖ f‖2

H1(B) for all f ∈C∞(B). (A.36)

Therefore, the trace operator is bounded with respect to the norms of H1(B) and
H1/2(∂B). By the general functional analytic Theorem A.28 the operator has an
extension to a bounded operator from H1(B) into H1/2(∂B).

We define the operator E : C∞(∂B) →C∞(B) by

(E f )(r,ϕ) = ∑
m∈Z

fmr|m|eimϕ , r ∈ [0,1], ϕ ∈ [0,2π ].

Here, again, fm are the Fourier coefficients of f ∈C∞(∂ B).
Obviously, (τE f )(ϕ) = ∑m∈Z fmeimϕ = f (ϕ); that is, E is a right inverse of τ. It

remains to show the boundedness of E.

‖E f‖2
H1(B) = 2π ∑

m∈Z

1∫

0

[(
1 +

m2

r2

)∣
∣ fmr|m|∣∣2 +

∣
∣ fm|m|r|m|−1

∣
∣2
]

r dr,

= 2π ∑
m∈Z

∣∣ fm
∣∣2
(

1
2|m|+2

+ |m|
)
≤ 2π ∑

m∈Z

∣∣ fm
∣∣2(1 + |m|

)

≤
√

22π ∑
m∈Z

∣
∣ fm
∣
∣2
√

1 + m2 =
√

2‖τ f‖2
H1/2(∂B).

We used the inequality 1 + |m| ≤
√

2
√

1+ m2. Therefore, E also possesses an ex-
tension to a bounded operator from H1/2(∂B) to H1(B). �

Remark. The trace operator is compact when considered as an operator from H1(B)
to L2(∂B) because it is the composition of the bounded operator τ : H1(B) →
H1/2(∂B) and the compact embedding j : H1/2(∂B) → L2(∂ B).

We now consider the subspaces

L2
�(∂B) =

{
f ∈ L2(∂B) :

∫

∂ B
f d� = 0

}
,

H1/2
� (∂B) =

{
f ∈ H1/2(∂B) :

∫

∂ B
f d� = 0

}
,

H1
� (B) =

{
f ∈ H1(B) :

∫

∂B
τ f d� = 0

}
.
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Because
∫ 2π

0 exp(imϕ)dϕ = 0 for m �= 0 the spaces H1/2
� (∂ B) and H1

� (B) consist
exactly of the functions with the representations

f (ϕ) = ∑
m∈Z
m�=0

fmeimϕ and

f (r,ϕ) = ∑
m∈Z

fm(r)eimϕ ,

that satisfy the summation conditions

∑
m∈Z
m�=0

√
1 + m2| fm|2 < ∞ and

∑
m∈Z

1∫

0

[(
1 +

m2

r2

)∣∣ fm(r)
∣∣2 +
∣∣ f ′m(r)

∣∣2
]

r dr < ∞ and f0(1) = 0,

respectively.
We can define an equivalent norm in the subspace H1

� (B). This is a consequence
of the following result.

Theorem A.48 (Friedrich’s Inequality). For all f ∈ H1
� (B) we have

‖ f‖L2(B) ≤
√

2‖∇ f‖L2(B). (A.37)

Proof. Again, we use the representation of the norm in polar coordinates:

r
∣
∣ fm(r)

∣
∣2 =

r∫

0

d
ds

(
s
∣
∣ fm(s)

∣
∣2)ds

=
r∫

0

∣
∣ fm(s)

∣
∣2 ds+ 2Re

r∫

0

fm(s) f ′m(s)sds

≤
1∫

0

∣
∣ fm(s)

∣
∣2 ds+ 2

√√
√
√√

1∫

0

∣
∣ fm(s)

∣
∣2sds

√√
√
√√

1∫

0

∣
∣ f ′m(s)

∣
∣2sds

≤
1∫

0

∣
∣ fm(s)

∣
∣2(1 + s)ds+

1∫

0

∣
∣ f ′m(s)

∣
∣2sds,

where we again used 2ab ≤ a2 + b2 in the last step.
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First let |m| ≥ 1. By 1+ s ≤ m2/s+ m2/s = 2m2/s it is

r
∣
∣ fm(r)

∣
∣2 ≤ 2

1∫

0

m2

s2

∣
∣ fm(s)

∣
∣2sds+

1∫

0

∣
∣ f ′m(s)

∣
∣2sds,

and thus by integration

1∫

0

r
∣
∣ fm(r)

∣
∣2 dr ≤ 2

1∫

0

(
m2

s2

∣
∣ fm(s)

∣
∣2 +
∣
∣ f ′m(s)

∣
∣2
)

sds. (A.38)

We finally consider f0. It is f0(r) = −
∫ 1

r f ′0(s)ds because f0(1) = 0, thus

r
∣
∣ f0(r)

∣
∣2 ≤ (1− r)

1∫

r

∣
∣ f ′0(s)

∣
∣2r ds ≤

1∫

r

∣
∣ f ′0(s)

∣
∣2sds ≤

1∫

0

∣
∣ f ′0(s)

∣
∣2sds.

Therefore, (A.38) also holds for m = 0. Summation with respect to m yields the
assertion. �

Remark. Therefore, f �→ ‖∇ f‖L2(B) defines an equivalent norm to ‖ · ‖H1(B) in

H1
� (B). Indeed, for f ∈ H1

� (B) it holds by Friedrich’s inequality:

‖ f‖2
H1(B) = ‖ f‖2

L2(B) +‖∇ f‖2
L2(B) ≤ 3‖∇ f‖2

L2(B),

thus

1√
3
‖ f‖H1(B) ≤ ‖∇ f‖L2(B) ≤ ‖ f‖H1(B) for all f ∈ H1

� (B). (A.39)

So far, we considered spaces of complex-valued functions. The spaces of real-valued
functions are closed subspaces. In the Fourier representation one has

f (r,ϕ) = ∑
m∈Z

fm(r)e−imϕ = ∑
m∈Z

f−m(r)eimϕ = f (r,ϕ) = ∑
m∈Z

fm(r)eimϕ

because f (r,ϕ) = f (r,ϕ). Therefore, f−m = fm for all m. All of the theorems remain
valid also for Sobolev spaces of real-valued functions.

A.6 Spectral Theory for Compact Operators in Hilbert Spaces

Definition A.49 (Spectrum). Let X be a normed space and A : X −→ X be a
linear operator. The spectrum σ(A) is defined as the set of (complex) numbers
λ such that the operator A − λ I does not have a bounded inverse on X . Here,
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I denotes the identity on X . λ ∈ σ(A) is called an eigenvalue of A if A − λ I is
not one-to-one. If λ is an eigenvalue, then the nontrivial elements x of the kernel
N (A−λnI) =

{
x ∈ X : Ax−λx = 0

}
are called eigenvectors of A.

This definition makes sense for arbitrary linear operators in normed spaces. For
noncompact operators A it is possible that the operator A−λ I is one-to-one but fails
to be bijective. As an example, we consider X = �2 and define A by

(Ax)k :=
{

0, if k = 1,

xk−1, if k ≥ 2,

for x = (xk) ∈ �2. Then λ = 1 belongs to the spectrum of A but is not an eigenvalue
of A.

Theorem A.50. Let A : X → X be a linear operator.

(a) Let x j ∈ X, j = 1, . . . ,n, be a finite set of eigenvectors corresponding to pair-
wise different eigenvalues λ j ∈ C. Then

{
x1, . . . ,xn

}
are linearly independent.

If X is a Hilbert space and A is self-adjoint (i.e., A∗ = A), then all eigenvalues
λ j are real-valued and the corresponding eigenvectors x1, . . . ,xn are pairwise
orthogonal.

(b) Let X be a Hilbert space and A : X → X be self-adjoint. Then

‖A‖ = sup
‖x‖=1

|(Ax,x)| = r(A),

where r(A) = sup
{
|λ | : λ ∈ σ(A)

}
is called the spectral radius of A.

The situation is simpler for compact operators. We collect the most important
results in the following fundamental theorem.

Theorem A.51 (Spectral Theorem for Compact Self-Adjoint Operators). Let
K : X → X be compact and self-adjoint (and K �= 0). Then the following hold:

(a) The spectrum consists only of eigenvalues and possibly 0. Every eigenvalue of K
is real-valued. K has at least one but at most a countable number of eigenvalues
with 0 as the only possible accumulation point.

(b) For every eigenvalue λ �= 0, there exist only finitely many linearly independent
eigenvectors, i.e., the eigenspaces are finite-dimensional. Eigenvectors corre-
sponding to different eigenvalues are orthogonal.

(c) We order the eigenvalues in the form

|λ1| ≥ |λ2| ≥ |λ3| ≥ . . .

and denote by Pj : X → N (K − λ jI) the orthogonal projection onto the
eigenspace corresponding to λ j. If there exist only a finite number λ1, . . . ,λm of
eigenvalues, then
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K =
m

∑
j=1

λ jPj.

If there exists an infinite sequence (λ j) of eigenvalues, then

K =
∞

∑
j=1

λ jPj,

where the series converges in the operator norm. Furthermore,

∥
∥
∥
∥K −

m

∑
j=1

λ jPj

∥
∥
∥
∥= |λm+1| .

(d) Let H be the linear span of all of the eigenvectors corresponding to the eigen-
values λ j �= 0 of K. Then

X = cl(H) ⊕ N (K).

Sometimes, part (d) is formulated differently. For a common treatment of the
cases of finitely and infinitely many eigenvalues, we introduce the index set J ⊂ N,
where J is finite in the first case and J = N in the second case. For every eigenvalue
λ j, j ∈ J, we choose an orthonormal basis of the corresponding eigenspace N (K −
λ jI). Again, let the eigenvalues be ordered in the form

|λ1| ≥ |λ2| ≥ |λ3| ≥ . . . > 0.

By counting every λ j �= 0 relative to its multiplicity, we can assign an eigenvector
x j to every eigenvalue λ j. Then every x ∈ X possesses an abstract Fourier expansion
of the form

x = x0 + ∑
j∈J

(
x,x j
)
x j

for some x0 ∈N (K) and

Kx = ∑
j∈J

λ j
(
x,x j
)
x j.

As a corollary, we observe that the set
{

x j : j ∈ J
}

of all eigenvectors forms a
complete system in X if K is one-to-one.

The spectral theorem for compact self-adjoint operators has an extension to non
self-adjoint operators K : X → Y . First, we have the following definition.

Definition A.52 (Singular Values). Let X and Y be Hilbert spaces and K : X → Y
be a compact operator with adjoint operator K∗ : Y →X . The square roots μ j =

√
λ j,

j ∈ J, of the eigenvalues λ j of the self-adjoint operator K∗K : X → X are called
singular values of K. Here again, J ⊂ N could be either finite or J = N.
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Note that every eigenvalue λ of K∗K is nonnegative because K∗Kx = λx implies
that λ (x,x) =

(
K∗Kx,x

)
=
(
Kx,Kx

)
≥ 0, i.e., λ ≥ 0.

Theorem A.53 (Singular Value Decomposition). Let K : X −→ Y be a linear
compact operator, K∗ : Y −→ X its adjoint operator, and μ1 ≥ μ2 ≥ μ3 . . . > 0
the ordered sequence of the positive singular values of K, counted relative to its
multiplicity. Then there exist orthonormal systems (x j) ⊂ X and (y j) ⊂ Y with the
following properties:

Kx j = μ jy j and K∗y j = μ jx j for all j ∈ J.

The system (μ j,x j,y j) is called a singular system for K. Every x ∈ X possesses the
singular value decomposition

x = x0 + ∑
j∈J

(
x,x j
)
x j

for some x0 ∈ N (K) and

Kx = ∑
j∈J

μ j
(
x,x j
)
y j.

The following theorem characterizes the range of a compact operator with the
help of a singular system.

Theorem A.54 (Picard). Let K : X −→ Y be a linear compact operator with
singular system (μ j,x j,y j). The equation

Kx = y (A.40)

is solvable if and only if

y ∈ N (K∗)⊥ and ∑
j∈J

1

μ2
j

∣
∣(y,y j)

∣
∣2 < ∞. (A.41)

In this case

x = ∑
j∈J

1
μ j

(y,y j)x j

is a solution of (A.40).

We note that the solvability conditions (A.41) require a fast decay of the Fourier
coefficients of y with respect to the orthonormal system (y j) in order for the series

∞

∑
j=1

1

μ2
j

∣
∣(y,y j)

∣
∣2
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to converge. Of course, this condition is only necessary for the important case where
there exist infinitely many singular values. As a simple example, we study the fol-
lowing integral operator.

Example A.55. Let K : L2(0,1) −→ L2(0,1) be defined by

(Kx)(t) :=
t∫

0

x(s)ds, t ∈ (0,1), x ∈ L2(0,1).

Then

(K∗y)(t) =
1∫

t

y(s)ds and (K∗Kx)(t) =
1∫

t

⎛

⎝
s∫

0

x(τ)dτ

⎞

⎠ds.

The eigenvalue problem K∗Kx = λx is equivalent to

λ x(t) =
1∫

t

⎛

⎝
s∫

0

x(τ)dτ

⎞

⎠ds, t ∈ [0,1].

Differentiating twice, we observe that for λ �= 0 this is equivalent to the eigenvalue
problem

λx′′ + x = 0 in (0,1), x(1) = x′(0) = 0.

Solving this yields

x j(t) =

√
2
π

cos
2 j−1

2
πt, j ∈ N, and λ j =

4
(2 j−1)2π2 , j ∈ N.

The singular values μ j and the ONS {y j : j ∈ N} are given by

μ j =
2

(2 j−1)π
, j ∈ N, and

y j(t) =

√
2
π

sin
2 j−1

2
πt, j ∈ N.

A.7 The Fréchet Derivative

In this section, we briefly recall some of the most important results for nonlinear
mappings between normed spaces. The notions of continuity and differentiability
carry over in a very natural way.
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Definition A.56. Let X and Y be normed spaces over the field K = R or C, U ⊂ X
an open subset, x̂ ∈U , and T : X ⊃U →Y be a (possibly nonlinear) mapping.

(a) T is called continuous in x̂ if for every ε > 0 there exists δ > 0 such that∥∥T (x)−T
(
x̂
)∥∥≤ ε for all x ∈U with ‖x− x̂‖ ≤ δ .

(b) T is called Fréchet differentiable for x̂ ∈ U if there exists a linear bounded
operator A : X → Y (depending on x̂) such that

lim
h→0

1
‖h‖
∥∥T
(
x̂+ h
)
−T
(
x̂
)
−Ah
∥∥= 0. (A.42)

We write T ′(x̂
)

:= A. In particular, T ′(x̂
)
∈ L(X ,Y ).

(c) The mapping T is called continuously Fréchet differentiable for x̂ ∈ U if T
is Fréchet differentiable in a neighborhhod V of x̂ and the mapping T ′ : V →
L(X ,Y ) is continuous in x̂.

Continuity and differentiability of a mapping depend on the norms in X and Y ,
in contrast to the finite-dimensional case. If T is differentiable in x̂, then the linear
bounded mapping A in part (b) of Definition A.56 is unique. Therefore, T ′(x̂

)
:= A

is well-defined. If T is differentiable in x, then T is also continuous in x. In the
finite-dimensional case X = K

n and Y = K
m, the linear bounded mapping T ′(x) is

given by the Jacobian (with respect to the Cartesian coordinates).

Example A.57 (Integral Operator). Let f : [c,d]× [a,b]×C → C be continuous
and continuously differentiable with respect to the third argument. Let the mapping
T : C[a,b]→C[c,d] be defined by

T (x)(t) :=
b∫

a

f
(
t,s,x(s)

)
ds, t ∈ [c,d], x ∈C[a,b].

Then T is continuously Fréchet differentiable with derivative

(
T ′(x)z

)
(t) =

b∫

a

∂
∂x

f
(
t,s,x(s)

)
z(s)ds, t ∈ [c,d], x,z ∈C[a,b].

The following theorem collects further properties of the Fréchet derivative.

Theorem A.58. (a) Let T,S : X ⊃U →Y be Fréchet differentiable for x ∈U. Then
T + S and λT are also Fréchet differentiable for all λ ∈ K and

(T +S)′(x) = T ′(x)+ S′(x) , (λT )′(x) = λT ′(x).
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(b) Chain rule: Let T : X ⊃U →V ⊂Y and S : Y ⊃V → Z be Fréchet differentiable
for x ∈U and T (x) ∈ V, respectively. Then ST is also Fréchet differentiable in
x and

(ST )′(x) = S′
(
T (x)
)

︸ ︷︷ ︸
∈L(Y,Z)

T ′(x)
︸ ︷︷ ︸
∈L(X ,Y )

∈ L(X ,Z).

(c) Special case: If T : X →Y is Fréchet differentiable for x̂ ∈ X, then so is ψ : K→
Y , defined by ψ(t) := T (tx̂), t ∈ K, for every point t ∈ K and ψ ′(t) = T ′(tx̂

)
x̂ ∈

Y . Note that originally ψ ′(t) ∈ L(K,Y ). In this case, one identifies the linear
mapping ψ ′(t) : K → Y with its generating element ψ ′(t) ∈ Y.

We recall Banach’s contraction mapping principle.

Theorem A.59 (Contraction Mapping Principle). Let K ⊂ X be a closed subset
of the Banach space X and T : X ⊃K →X a (nonlinear) mapping with the properties

(a) T maps K into itself, i.e., T (x) ∈ K for all x ∈ K, and
(b) T is a contraction on K, i.e., there exists c < 1 with

‖T (x)−T(y)‖ ≤ c‖x− y‖ for all x,y ∈ K. (A.43)

Then there exists a unique x̃ ∈ K with T
(
x̃
)

= x̃. The sequence (x�) ⊂ K, defined
by x�+1 := T

(
x�

)
, � = 0,1, . . . converges to x̃ for every x0 ∈ K. Furthermore, the

following error estimates hold:

∥
∥x�+1 − x̃

∥
∥≤ c

∥
∥x�− x̃

∥
∥, � = 0,1, . . . , (A.44a)

i.e., the sequence converges linearly to x̃,

∥
∥x�− x̃

∥
∥ ≤ c�

1− c

∥
∥x1 − x0

∥
∥, (a priori estimate) (A.44b)

∥
∥x�− x̃

∥
∥ ≤ 1

1− c

∥
∥x�+1 − x�

∥
∥, (a posteriori estimate) (A.44c)

for � = 1,2, . . .

The Newton method for systems of nonlinear equations has a direct analogy
for equations of the form T (x) = y, where T : X → Y is a continuously Fréchet
differentiable mapping between Banach spaces X and Y . We formulate a simplified
Newton method and prove local linear convergence. It differs from the ordinary
Newton method not only by replacing the derivative T ′(x�) by T ′(x̂

)
but also by

requiring only the existence of a left inverse.

Theorem A.60 (Simplified Newton Method). Let T : X → Y be continuously
Fréchet differentiable between Banach spaces X and Y . Let V ⊂ X be a closed
subspace, x̂ ∈V and ŷ := T (x̂) ∈ Y . Let L : Y →V be linear and bounded such that
L is a left inverse of T ′(x̂) : X → Y on V , i.e., LT ′(x̂)v = v for all v ∈V.
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Then there exist ε > 0 such that for any ȳ = T (x̄) with x̄ ∈ X and
∥
∥x̄− x̂

∥
∥≤ ε the

following algorithm converges linearly to some x̃ ∈V:

x0 = x̂, x�+1 = x� −L
[
T (x�)− ȳ

]
, � = 0,1,2, . . . . (A.45)

The limit x̃ ∈V satisfies L
[
T (x̃)− ȳ

]
= 0.

Proof. We apply the contraction mapping principle of the preceding theorem to the
mapping

S(x) := x−L
[
T (x)− ȳ

]
= L
[
T ′(x̂)x−T (x)+ T(x̄)

]

on some closed ball K
[
x̂,ρ
]
⊂V . We estimate

‖S(x)−S(z)‖ ≤ ‖L‖
∥
∥T ′(x̂)(x− z)+ T(z)−T (x)

∥
∥

≤ ‖L‖‖x− z‖
{
∥
∥T ′(x̂)−T ′(z)

∥
∥

+
‖T (z)−T (x)+ T ′(z)(x− z)‖

‖x− z‖

}

and

‖S(x)− x̂‖ ≤ ‖L‖
∥
∥T ′(x̂)(x− x̂)−T (x)+ T(x̄)

∥
∥

≤ ‖L‖
∥
∥T ′(x̂)(x− x̂)+ T (x̂)−T(x)

∥
∥

+ ‖L‖‖T (x̂)−T(x̄)‖

First, we choose ρ > 0 such that

‖L‖
[∥
∥T ′(x̂)−T ′(z)

∥
∥+

‖T (z)−T (x)+ T ′(z)(x− z)‖
‖x− z‖

]
≤ 1

2

for all x,z ∈ K
[
x̂,ρ
]
. This is possible because T is continuously differentiable.

Next, we choose ε ≥ 0 such that

‖L‖‖T (x̂)−T (x̄)‖ ≤ 1
2

ρ

for ‖x̄− x̂‖ ≤ ε. Then we conclude that

‖S(x)−S(z)‖ ≤ 1
2
‖x− z‖ for all x,z ∈ K

[
x̂,ρ
]
,

‖S(x)− x̂‖ ≤ 1
2
‖x− x̂‖+

1
2

ρ ≤ ρ for all x ∈ K
[
x̂,ρ
]
.

Application of the contraction mapping principle ends the proof. �

The notion of partial derivatives of mappings T : X ×Z → Y is introduced just
as for functions of two scalar variables as the Fréchet derivative of the mappings
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T (·,z) : X →Y for z ∈ Z and T (x, ·) : Z →Y for x ∈ X . We denote the partial deriva-
tives in (x,z) ∈ X ×Z by

∂
∂x

T (x,z) ∈ L(X ,Y ) and
∂
∂ z

T (x,z) ∈ L(Z,Y ).

Theorem A.61 (Implicit Function Theorem). Let T : X × Z → Y be contin-
uously Fréchet differentiable with partial derivatives ∂

∂x T (x,z) ∈ L(X ,Y ) and
∂
∂ z T (x,z) ∈L(Z,Y ). Furthermore, let T

(
x̂, ẑ
)
= 0 and ∂

∂ z T
(
x̂, ẑ
)

: Z →Y be a norm-
isomorphism. Then there exists a neighborhood U of x̂ and a Fréchet differentiable
function ψ : U → Z such that ψ(x̂) = ẑ and T

(
x,ψ(x)

)
= 0 for all x ∈ U. The

Fréchet derivative ψ ′ ∈ L(X ,Z) is given by

ψ ′(x) = −
[

∂
∂ z

T
(
x,ψ(x)

)
]−1 ∂

∂x
T
(
x,ψ(x)

)
, x ∈U.

The following special case is very important.
Let Z = Y = K; thus T : X ×K → K and T

(
x̂, λ̂
)

= 0 and ∂
∂λ T
(
x̂, λ̂
)
�= 0. Then

there exists a neighborhood U of x̂ and a Fréchet differentiable function ψ : U → K

such that ψ(x̂) = λ̂ and T
(
x,ψ(x)

)
= 0 for all x ∈U and

ψ ′(x) = − 1
∂

∂λ T
(
x,ψ(x)

)
∂
∂ x

T
(
x,ψ(x)

)
∈ L(X ,K) = X ′, x ∈U,

where again X ′ denotes the dual space of X .





Appendix B
Proofs of the Results of Section 2.7

In this appendix, we give the complete proofs of the theorems and lemmas of
Chap. 2, Sect. 2.7. For the convenience of the reader, we formulate the results again.

Theorem 2.20 (Fletcher–Reeves). Let K : X → Y be a bounded, linear, and in-
jective operator between Hilbert spaces X and Y . The conjugate gradient method
is well-defined and either stops or produces sequences (xm), (pm) ⊂ X with the
properties

(
∇ f (xm),∇ f (x j)

)
= 0 for all j �= m, (2.36a)

and (
K pm,K p j)= 0 for all j �= m; (2.36b)

that is, the gradients are orthogonal and the directions pm are K-conjugate. Fur-
thermore, (

∇ f (x j),K∗K pm)= 0 for all j < m. (2.36c)

Proof. First, we note the following identities:

(α) ∇ f (xm+1) = 2K∗(Kxm+1 − y) = 2K∗(Kxm − y) − 2tmK∗K pm = ∇ f (xm) −
2tmK∗K pm.

(β )
(

pm,∇ f (xm+1)
)
=
(

pm,∇ f (xm)
)
−2tm

(
K pm,K pm

)
= 0 by the definition of tm.

(γ) tm = 1
2

(
∇ f (xm), pm

)
‖K pm‖−2 = 1

4 ‖∇ f (xm)‖2 /‖K pm‖2 since pm= 1
2 ∇ f (xm)+

γm−1 pm−1 and (β ).

Now we prove the following identities by induction with respect to m:

(i)
(
∇ f (xm),∇ f (x j)

)
= 0 for j = 0, . . . ,m−1,

(ii)
(
K pm,K p j

)
= 0 for j = 0, . . . ,m− 1.

Let m = 1. Then, using (α),

(i)
(
∇ f (x1),∇ f (x0)

)
=
∥
∥∇ f (x0)

∥
∥2 −2t0

(
K p0,K∇ f (x0)

)
= 0,

which vanishes by (γ) since p0 = 1
2 ∇ f (x0).

283
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(ii) By the definition of p1 and identity (α), we conclude that

(
K p1,K p0) =

(
p1,K∗K p0)

= − 1
2t0

[
1
2

(
∇ f (x1)+ γ0 p0,∇ f (x1)−∇ f (x0)

)
]

= − 1
2t0

[1
2

∥∥∇ f (x1)
∥∥2 − γ0

(
p0,∇ f (x0)

)]
= 0,

where we have used (β ), the definition of p0, and the choice of γ0.
Now we assume the validity of (i) and (ii) for m and show it for m+ 1:

(i) For j = 0, . . .m−1 we conclude that (setting γ−1 = 0 in the case j = 0)

(
∇ f (xm+1),∇ f (x j)

)
=
(
∇ f (xm)−2tmK∗K pm,∇ f (x j)

)

= −2tm
(
∇ f (x j),K∗K pm)

= −4tm
(
K p j − γ j−1K p j−1,K pm)= 0,

where we have used 1
2 ∇ f (x j)+ γ j−1p j−1 = p j and assertion (ii) for m.

For j = m, we conclude that

(
∇ f (xm+1),∇ f (xm)

)

= ‖∇ f (xm)‖2 −2tm
(
∇ f (xm),K∗K pm)

= ‖∇ f (xm)‖2 − 1
2
‖∇ f (xm)‖2

‖K pm‖2

(
∇ f (xm),K∗K pm)

by (γ). Now we write

(
K pm,K pm) =

(
K pm,K

(
1
2

∇ f (xm)+ γm−1 pm−1
))

=
1
2

(
K pm,K∇ f (xm)

)
,

which implies that
(
∇ f (xm+1),∇ f (xm)

)
vanishes.

(ii) For j = 0, . . . ,m−1, we conclude that, using (α),

(
K pm+1,K pj) =

(
1
2

∇ f (xm+1)+ γmpm,K∗K p j
)

= − 1
4t j

(
∇ f (xm+1),∇ f (x j+1)−∇ f (x j)

)
,

which vanishes by (i).
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For j = m by (α) and the definition of pm+1, we have

(
K pm+1,K pm) =

1
2tm

(
1
2

∇ f (xm+1)+ γm pm,∇ f (xm)−∇ f (xm+1)
)

=
1

2tm

{
1
2

(
∇ f (xm+1),∇ f (xm)

)
− 1

2

∥∥∇ f (xm+1)
∥∥2

+ γm
(

pm,∇ f (xm)
)

︸ ︷︷ ︸
= 1

2 ‖∇ f (xm)‖2

−γm
(

pm,∇ f (xm+1)
)}

=
1

4tm

{
γm ‖∇ f (xm)‖2 −

∥
∥∇ f (xm+1)

∥
∥2
}

by (i) and (β ). This term vanishes by the definition of γm. Thus we have proven
(i) and (ii) for m +1 and thus for all m = 1,2,3 . . . To prove (2.36c) we write

(
∇ f (x j),K∗K pm)= 2

(
p j − γ j−1 p j−1,K∗K pm)= 0 for j < m,

and note that we have already shown this in the proof. �

Theorem 2.21. Let (xm) and (pm) be the sequences of the conjugate gradient
method. Define the space Vm := span{p0, . . . , pm}. Then we have the following
equivalent characterizations of Vm:

Vm = span
{

∇ f (x0), . . . ,∇ f (xm)
}

(2.37a)

= span
{

p0,K∗K p0, . . . ,(K∗K)m p0} (2.37b)

for m = 0,1, . . . . Furthermore, xm is the minimum of f on Vm−1 for every m ≥ 1.

Proof. Let Ṽm = span
{

∇ f (x0), . . . ,∇ f (xm)
}

. Then V0 = Ṽ0. Assume that we have
already shown that Vm = Ṽm. Since pm+1 = 1

2 ∇ f (xm+1)+ γm pm we conclude that
Vm+1 = Ṽm+1. We define the space V̂m := span

{
p0, . . . ,(K∗K)m p0

}
. Then V1 = V̂1.

Assume that we have already shown that Vm = V̂m. Then we conclude that

pm+1 = K∗(Kxm+1 − y)+ γmpm

= K∗(Kxm − y)− tmK∗K pm + γm pm

= pm − γm−1 pm−1 − tmK∗K pm + γmpm ∈ V̂m+1. (∗)

On the other hand, from

(K∗K)m+1 p0 = (K∗K)
[
(K∗K)m p0] ∈ (K∗K)(Vm)

and K∗K p j ∈ Vj+1 ⊂ Vm+1 by (∗) for j = 0, . . . ,m, we conclude also that Vm+1 =
V̂m+1.
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Now every xm lies in Vm−1. This is certainly true for m = 1, and if it holds for
m then it holds also for m+ 1 since xm+1 = xm − tm pm ∈ Vm. xm is the minimum of
f on Vm−1 if and only if

(
Kxm − y,Kz

)
= 0 for all z ∈ Vm−1. By (2.37a), this is the

case if and only if
(
∇ f (xm),∇ f (x j)

)
= 0 for all j = 0, . . . ,m− 1. This holds by the

preceding theorem. �

Lemma 2.22. (a) The polynomial Qm, defined by Qm(t) = 1− tPm−1(t) with Pm−1

from (2.38), minimizes the functional

H(Q) := ‖Q(KK∗)y‖2 on {Q ∈ Pm : Q(0) = 1}

and satisfies

H
(
Qm
)

= ‖Kxm − y‖2 .

(b) For k �= �, the following orthogonality relation holds:

〈Qk,Q�〉 :=
∞

∑
j=1

μ2
j Qk(μ2

j )Q�(μ2
j )
∣
∣(y,y j)

∣
∣2 = 0. (2.39)

If y /∈ span{y1, . . . ,yN} for any N ∈ N, then 〈·, ·〉 defines an inner product on the
space P of all polynomials.

Proof. (a) Let Q ∈ Pm be an arbitrary polynomial with Q(0) = 1. Set P(t) :=
(
1−

Q(t)
)
/t and x := P(K∗K)K∗y = −P(K∗K)p0 ∈Vm−1. Then

y−Kx = y−KP(K∗K)K∗y = Q(KK∗)y.

Thus

H
(
Q
)

= ‖Kx− y‖2 ≥ ‖Kxm − y‖2 = H
(
Qm
)
.

(b) Let k �= �. From the identity

1
2

∇ f (xk) = K∗(Kxk − y) = −
∞

∑
j=1

μ jQk(μ2
j )(y,y j)x j,

we conclude that

0 =
1
4

(
∇ f (xk),∇ f (x�)

)
= 〈Qk,Q�〉.

The properties of the inner product are obvious, except perhaps the definiteness.
If 〈Qk,Qk〉 = 0, then Qk(μ2

j )(y,y j) vanishes for all j ∈ N. The assumption on
y implies that (y,y j) �= 0 for infinitely many j. But then the polynomial Qk has
infinitely many zeros μ2

j . This implies Qk = 0, which ends the proof. �
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The following lemma is needed for the proof of Theorem 2.24.

Lemma 2.23. Let 0 < m ≤ m(δ ), x ∈ Xσ for some σ > 0, and ‖x‖σ ≤ E. Then

∥
∥
∥Kxm,δ − yδ

∥
∥
∥≤ δ +(1 +σ)(σ+1)/2 E

∣
∣ d

dt Q
δ
m(0)
∣
∣(σ+1)/2

.

Before we prove this lemma, we recall some properties of orthogonal functions (see
[233]).

As we saw in Lemma 2.22, the polynomials Qm are orthogonal with respect to the
inner product 〈·, ·〉. Therefore, the zeros λ j,m, j = 1, . . . ,m, of Qm are all real and
positive and lie in the interval

(
0,‖K‖2). By their normalization, Qm must have the

form

Qm(t) =
m

∏
j=1

(
1− t

λ j,m

)
.

Furthermore, the zeros of two subsequent polynomials interlace; that is,

0 < λ1,m < λ1,m−1 < λ2,m < λ2,m−1 < · · · < λm−1,m−1 < λm,m < ‖K‖2 .

Finally, from the factorization of Qm, we see that

d
dt

Qm(t) = −Qm(t)
m

∑
j=1

1
λ j,m − t

and

d2

dt2 Qm(t) = Qm(t)

⎡

⎣
(

m

∑
j=1

1
λ j,m − t

)2

−
m

∑
j=1

1
(λ j,m − t)2

⎤

⎦ .

For 0 ≤ t ≤ λ1,m, we conclude that d
dt Qm(t) ≤ 0, d2

dt2 Qm(t) ≥ 0, and 0 ≤ Qm(t) ≤ 1.
For the proof of the lemma and the following theorem, it is convenient to in-

troduce two orthogonal projections. For any ε > 0, we denote by Lε : X → X and
Mε : Y → Y the orthogonal projections

Lε z := ∑
μ2

n≤ε
(z,xn)xn, z ∈ X ,

Mε z := ∑
μ2

n≤ε
(z,yn)yn, z ∈Y.

The following estimates are easily checked:

‖Mε Kx‖ ≤
√

ε ‖Lεx‖ and ‖(I−Lε)x‖ ≤
1√
ε
‖(I −Mε)Kx‖

for all x ∈ X .



288 B Proofs of the Results of Section 2.7

Proof of the lemma. Let λ j,m be the zeros of Q
δ
m. We suppress the dependence on

δ . The orthogonality relation (2.39) implies that Q
δ
m is orthogonal to the polynomial

t �→ Q
δ
m(t)/(λ1,m− t) of degree m−1; that is,

∞

∑
n=1

μ2
n Q

δ
m(μ2

n )
Q

δ
m(μ2

n )
λ1,m − μ2

n

∣∣(yδ ,yn)
∣∣2 = 0.

This implies that

∑
μ2

n≤λ1,m

Q
δ
m(μ2

n )2 μ2
n

λ1,m − μ2
n

∣
∣(yδ ,yn)

∣
∣2

= ∑
μ2

n >λ1,m

Q
δ
m(μ2

n )2 μ2
n

μ2
n −λ1,m

∣
∣(yδ ,yn)

∣
∣2

≥ ∑
μ2

n >λ1,m

Q
δ
m(μ2

n )2
∣∣(yδ ,yn)

∣∣2.

From this, we see that

∥
∥∥yδ −Kxm,δ

∥
∥∥

2
=

⎛

⎝ ∑
μ2

n≤λ1,m

+ ∑
μ2

n >λ1,m

⎞

⎠Q
δ
m(μ2

n )2
∣∣(yδ ,yn)

∣∣2

≤ ∑
μ2

n≤λ1,m

Q
δ
m(μ2

n )2
{

1+
μ2

n

λ1,m − μ2
n

}

︸ ︷︷ ︸
=:Φm(μ2

n )2

∣
∣(yδ ,yn)

∣
∣2

=
∥
∥
∥Mλ1,m

Φm(KK∗)yδ
∥
∥
∥

2
,

where we have set

Φm(t) := Q
δ
m(t)
√

1+
t

λ1,m − t
= Q

δ
m(t)

√
λ1,m

λ1,m − t
.

Therefore,

∥
∥∥yδ −Kxm,δ

∥
∥∥≤
∥
∥∥Mλ1,m

Φm(KK∗)(yδ − y)
∥
∥∥+
∥
∥∥Mλ1,m

Φm(KK∗)Kx
∥
∥∥ .
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We estimate both terms on the right-hand side separately:

∥
∥∥Mλ1,m

Φm(KK∗)(yδ − y)
∥
∥∥

2
= ∑

μ2
n≤λ1,m

Φm(μ2
n )2
∣
∣(yδ − y,yn)

∣
∣2

≤ max
0≤t≤λ1,m

Φm(t)2
∥
∥∥yδ − y

∥
∥∥

2
,

∥
∥∥Mλ1,m

Φm(KK∗)Kx
∥
∥∥

2
= ∑

μ2
n≤λ1,m

[
Φm(μ2

n )2μ2+2σ
n

]
μ−2σ

n

∣
∣(x,xn)

∣
∣2

≤ max
0≤t≤λ1,m

[
t1+σ Φm(t)2]‖x‖2

σ .

The proof is finished provided we can show that 0 ≤ Φm(t) ≤ 1 and

t1+σ Φ2
m(t) ≤

(
1 + σ

| d
dt Q

δ
m(0)|

)σ+1

for all 0 ≤ t ≤ λ1,m.

The first assertion follows from Φm(0) = 1, Φm(λ1,m) = 0, and

d
dt

[
Φm(t)2] = 2Qm(t)

d
dt

Qm(t)
λ1,m

λ1,m − t
+Qm(t)2 λ1,m

(λ1,m − t)2

= Φm(t)2

[
1

λ1,m − t
−2

m

∑
j=1

1
λ j,m − t

]

≤ 0.

Now we set ψ(t) := t1+σ Φm(t)2. Then ψ(0) = ψ(λ1,m) = 0. Let t̂ ∈ (0,λ1,m) be the
maximum of ψ in this interval. Then ψ ′(t̂) = 0, and thus by differentiation

(σ + 1)t̂σ Φm(t̂)2 + t̂σ+1 d
dt

[
Φm(t̂)2]= 0;

that is,

σ + 1 = t̂

[

2
m

∑
j=1

1
λ j,m − t̂

− 1
λ1,m − t̂

]

≥ t̂
m

∑
j=1

1
λ j,m − t̂

≥ t̂
m

∑
j=1

1
λ j,m

= t̂

∣
∣
∣
∣

d
dt

Q
δ
m(0)
∣
∣
∣
∣ .

This implies that t̂ ≤ (σ + 1)/
∣∣ d

dt Q
δ
m(0)
∣∣. With ψ(t) ≤ t̂σ+1 for all t ∈ [0,λ1,m], the

assertion follows. �
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Theorem 2.24. Assume that y and yδ do not belong to the linear span of finitely
many y j. Let the sequence xm(δ),δ be constructed by the conjugate gradient method
with stopping rule (2.41) for fixed parameter τ > 1. Let x ∈ Xσ for some σ > 0 and
‖x‖σ ≤ E. Then there exists c > 0 with

∥
∥
∥x− xm(δ ),δ

∥
∥
∥≤ cδ σ/(σ+1)E1/(σ+1). (2.43)

Proof. Similar to the analysis of Landweber’s method, we estimate the error by the
sum of two terms: the first converges to zero as δ → 0 independently of m, and the
second term tends to infinity as m → ∞. The role of the norm ‖Rα‖ here is played
by | d

dt Q
δ
m(0)|1/2.

First, let δ and m := m(δ ) be fixed. Set for abbreviation

q :=
∣
∣
∣
∣

d
dt

Q
δ
m(0)
∣
∣
∣
∣ .

Choose 0 < ε ≤ 1/q ≤ λ1,m. With

x̄ := x−Q
δ
m(K∗K)x = P

δ
m−1(K

∗K)K∗y,

we conclude that
∥
∥
∥x− xm,δ

∥
∥
∥ ≤
∥
∥
∥Lε(x− xm,δ )

∥
∥
∥+
∥
∥
∥(I −Lε)(x− xm,δ )

∥
∥
∥

≤ ‖Lε (x− x̄‖+
∥∥
∥Lε(x̄− xm,δ )

∥∥
∥

+
1√
ε

∥
∥
∥(I −Mε)(y−Kxm,δ )

∥
∥
∥

≤
∥
∥
∥LεQ

δ
m(K∗K)x

∥
∥
∥+
∥
∥
∥LεP

δ
m−1(K

∗K)K∗(y− yδ)
∥
∥
∥

+
1√
ε

∥
∥
∥y− yδ

∥
∥
∥+

1√
ε

∥
∥
∥yδ −Kxm,δ

∥
∥
∥

≤ E max
0≤t≤ε

∣
∣tσ/2

Q
δ
m(t)
∣
∣+δ max

0≤t≤ε

∣
∣√tPδ

m−1(t)
∣
∣+

1 + τ√
ε

δ .

From ε ≤ λ1,m and 0 ≤ Q
δ
m(t) ≤ 1 for 0 ≤ t ≤ λ1,m, we conclude that

0 ≤ tσ/2
Q

δ
m(t) ≤ εσ/2 for 0 ≤ t ≤ ε.

Furthermore,

0 ≤ tPδ
m−1(t)

2 =
[
1−Q

δ
m(t)
]

︸ ︷︷ ︸
≤1

1−Q
δ
m(t)

t︸ ︷︷ ︸
=− d

dt Qδ
m(s)

≤
∣
∣
∣
∣

d
dt

Q
δ
m(0)
∣
∣
∣
∣
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for some s ∈ [0,ε]. Thus we have proven the basic estimate

∥
∥∥x− xm,δ

∥
∥∥≤ Eεσ/2 +(1 + τ)

δ√
ε

+
√

qδ for 0 < ε ≤ 1
q
. (2.44)

ε ∈ (0,1/q) is a free parameter in this expression. We minimize the right-hand side
with respect to ε. This gives

ε(σ+1)/2
∗ =

τ + 1
σ

δ
E

.

Since we do not know if ε∗ lies in the interval
(
0,1/q

)
, we have to distinguish

between two cases.

Case I: ε∗ ≤ 1/q. Then

√
q ≤ 1√

ε∗
=
(

σ
τ + 1

)1/(σ+1)(E
δ

)1/(σ+1)

and thus
∥
∥
∥x− xm,δ

∥
∥
∥≤ cδ σ/(σ+1)E1/(σ+1)

with constant c > 0, which depends only on σ and τ . This case is finished.

Case II: ε∗ > 1/q. In this case, we substitute ε = 1/q in (2.44) and conclude that

∥
∥
∥x− xm,δ

∥
∥
∥ ≤ Eq−σ/2 +(τ + 2)

√
qδ ≤ Eεσ/2

∗ +(τ + 2)
√

qδ

≤
(

τ + 1
σ

)σ/(σ+1)

δ σ/(σ+1)E1/(σ+1) + (τ + 2)
√

qδ .

It remains to estimate the quantity q = qm =
∣
∣ d

dt Q
δ
m(δ )(0)

∣
∣. Until now, we have not

used the stopping rule. We will now use this rule to prove the estimate

qm ≤ c

(
E
δ

)2/(σ+1)

(2.45)

for some c > 0, which depends only on σ and τ . Analogously to qm, we define
qm−1 :=

∣
∣ d

dt Q
δ
m(δ )−1(0)

∣
∣. By the previous lemma, we already know that

τδ <
∥∥yδ −Kxm(δ )−1,δ∥∥≤ δ +(1 + σ)(σ+1)/2 E

q(σ+1)/2
m−1

;

that is,

q(σ+1)/2
m−1 ≤ (1 + σ)(1+σ)/2

τ −1
E
δ

. (2.46)

We have to prove such an estimate for m instead of m−1.
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Choose T > 1 and ρ∗ ∈ (0,1) with

T
T −1

< τ and T
ρ∗

1−ρ∗ ≤ 2.

If qm ≤ qm−1/ρ∗, then we are finished by (2.46). Therefore, we assume that qm >
qm−1/ρ∗. From λ j,m ≥ λ j−1,m−1 for all j = 2, . . . ,m, we conclude that

qm =
∣∣
∣
∣

d
dt

Q
δ
m(0)
∣∣
∣
∣=

m

∑
j=1

1
λ j,m

≤ 1
λ1,m

+
m−1

∑
j=1

1
λ j,m−1

=
1

λ1,m
+ qm−1.

This implies that

qm−1 ≤ ρ∗qm ≤ ρ∗

λ1,m
+ρ∗qm−1;

that is,

qm−1 ≤
ρ∗

(1−ρ∗)λ1,m
.

Finally, we need

1
λ2,m

≤ 1
λ1,m−1

≤
m−1

∑
j=1

1
λ j,m−1

= qm−1 ≤
ρ∗

1−ρ∗
1

λ1,m
.

Now we set ε := T λ1,m. Then

ε ≤ T
ρ∗

1−ρ∗λ2,m ≤ 2λ2,m.

Define the polynomial φ ∈ Pm−1 by

φ(t) := Q
δ
m(t)
(

1− t
λ1,m

)−1

=
m

∏
j=2

(
1− t

λ j,m

)
.

For t ≤ ε and j ≥ 2, we note that

1 ≥ 1− t
λ j,m

≥ 1− ε
λ2,m

≥−1;

that is,
|φ(t)| ≤ 1 for all 0 ≤ t ≤ ε.

For t ≥ ε , we conclude that

∣
∣
∣
∣1−

t

λ1,m

∣
∣
∣
∣=

t −λ1,m

λ1,m
≥ ε

λ1,m
−1 = T −1;
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that is,

|φ(t)| ≤ 1
T −1

∣
∣Qδ

m(t)
∣
∣ for all t ≥ ε.

Since φ(0) = 1, we can apply Lemma 2.22. Using the projector Mε , we conclude
that

τδ <
∥
∥
∥yδ −Kxδ

m−1

∥
∥
∥≤
∥
∥
∥φ(KK∗)yδ

∥
∥
∥

≤
∥∥
∥Mεφ(KK∗)yδ

∥∥
∥+
∥∥
∥(I −Mε )φ(KK∗)yδ

∥∥
∥

≤
∥
∥
∥Mε(yδ − y)

∥
∥
∥+‖Mε y‖+

1
T −1

∥
∥
∥Qδ

m(KK∗)yδ
∥
∥
∥

︸ ︷︷ ︸
=‖yδ−Kxm,δ‖

≤ δ + ε(σ+1)/2E +
1

T −1
δ =

T
T − 1

δ +
(
Tλ1,m

)(σ+1)/2
E,

since ‖Mεy‖ = ‖Mε Kx‖ ≤ ε(σ+1)/2 ‖x‖σ . Defining c := τ − T
T−1 , we conclude that

c δ
E ≤
(
T λ1,m

)(σ+1)/2
and thus finally

qm ≤ 1
λ1,m

+qm−1 ≤ T

(
E
cδ

)2/(σ+1)

+qm−1.

Combining this with (2.46) proves (2.45) and ends the proof. �
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55. D. Colton, L. Päivärinta, and J. Sylvester. The interior transmission problem. Inverse Probl.
Imaging, 1:13–28, 2007.

56. M. Costabel. Boundary integral operators on Lipschitz domains: elementary results. SIAM
J. Math. Anal., 19:613–626, 1988.

57. M. Costabel, V.J. Ervin, and E.P. Stephan. On the convergence of collocation methods for
Symm’s integral equation on smooth open arcs. Math. Comput., 51:167–179, 1988.

58. M. Costabel and E.P. Stephan. On the convergence of collocation methods for boundary inte-
gral equations on polygons. Math. Comput., 49:461–478, 1987.

59. M. Costabel and W. Wendland. Strong ellipticity of boundary integral operators. J. Reine
Angew. Math., 372:39–63, 1986.

60. J. Cullum. Numerical differentiation and regularization. SIAM J. Numer. Anal., 8:254–265,
1971.

61. J. Cullum. The effective choice of the smoothing norm in regularization. Math. Comput.,
33:149–170, 1979.

62. J.W. Daniel. The conjugate gradient method for linear and nonlinear operator equations. SIAM
J. Numer. Anal., 4:10–26, 1967.

63. P.J. Davis. Interpolation and approximation. Blaisdell, New York, 1963.
64. E. Deuflhard and E. Hairer, editors. Numerical Treatment of Inverse Problems in Differential

and Integral Equations, New York, 1983. Springer.
65. T.F. Dolgopolova and V.K. Ivanov. Numerical differentiation. Comput. Math. Math. Phys.,

6:570–576, 1966.
66. P.P.B. Eggermont. Approximation properties of quadrature methods for Volterra equations of

the first kind. Math. Comput., 43:455–471, 1984.
67. P.P.B. Eggermont. Beyond superconvergence of collocation methods for Volterra equations

of the first kind. In G. Hämmerlin and K.H. Hoffmann, editors, Constructive Methods for the
Practical Treatment of Integral Equations, pages 110–119, Boston, 1985. Birkhäuser.
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111. M. Hanke and M. Brühl. Recent progress in electrical impedance tomography. Inverse Prob-

lems, 19:S65–S90, 2003.
112. M. Hanke and H. Engl. An optimal stopping rule for the ν-method for solving ill-posed prob-

lems using Christoffel functions. J. Approx. Theor., 79:89–108, 1994.
113. M. Hanke and C. Hansen. Regularization methods for large-scale problems. Surv. Math. Ind.,

3:253–315, 1993.
114. C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review,

34:561–580, 1992.
115. S. Helgason. The Radon Transform. Birkhäuser–Verlag, Boston, 1980.
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Backus–Gilbert solution, 112
backwards heat equation, 6
Banach space, 251
Banach–Schauder theorem, 258
Bessel inequality, 253
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Born approximation, 204, 218
bounded operator, 255
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Cauchy problem, 10, 144
Cauchy sequence, 250
Cauchy–Schwarz inequality, 248
chain rule, 279
characteristic function, 130, 138, 187
closed set, 249
closure of set, 250
coercive operator, 78
collocation method, vii, 66, 90, 107
compact operator, 10, 260
compact set, 250
complete model, 168

complete ONS, 253
complete space, 251
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conjugate gradient method, vi, 23, 55, 105
continuity equation, 191
continuous mapping, 278
continuous perturbation, 68
continuum model, 168
contraction mapping principle, 279
convergence property, 89
convergent sequence, 250
convolution, 28
convolution theorem, 29

D
d’Alembert formula, 145
dense set, 250
differentiation, 11, 14, 18
diffusion in inhomogeneous medium, 6
direct problem, v
direct scattering problem, 193, 195
Dirichlet problem, 130
discrepancy principle, vi, 23, 46, 47
discrete perturbation, 69
dual least squares method, 72, 75
dual least squares solution, 88
dual space, 256

E
eigenvalue, 274
eigenvector, 274
EIT, 167
electrical impedance tomography, 167
equation of state, 191
Euclidean norm, 249
Eulers equation, 191
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factorization, 179, 226, 231
Factorization Method, 177, 225
far field equation, 211
far field operator, 208
far field pattern, vii, 3, 203
Fourier coefficients, 261, 269
Fourier expansion, 254, 275
Fourier series, 269
Fourier transform, 29
Fréchet differentiable, 41, 128, 278
frequency, 192
Friedrich’s inequality, 170, 272
fundamental solution, 182, 200
fundamental system, 123, 216

G
Galerkin method, vi, 66, 70
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Gaussian kernel, 28
Gelfand triple, 78
Gelfand–Levitan–Marchenko integral operator,
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geological prospecting, 1
geometric multiplicity, 131
Goursat problem, 141, 148, 162
Green’s function, 164, 182, 200
Green’s representation theorem, 205
Gårding’s inequality, 78

H
Hölder inequality, 18, 54
Helmholtz equation, 3, 192
Herglotz wave function, 208, 212
Hilbert space, 251
hyperbolic equation, 140
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ill-posed problem, v, 9
implicit function theorem, 134, 139
improperly-posed problem, 9
incident field, 193
index of refraction, vii, 193
inf-condition, 185, 231
initial value problem, 123
inner product, 247
interior of set, 250
interior transmission eigenvalue, 214
interior transmission eigenvalue problem, 211
interior transmission problem, 212
interpolation operator, 64

inverse eigenvalue problem, vii
inverse problem, v
inverse scattering problem, 2, 194
inverse scattering theory, vii
inverse spectral problem, vii
inverse Stefan problem, 7
iterated Tikhonov regularization, 61
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K-conjugate, 55

L
L-curve, 61
Lagrange basis function, 266
Lagrange interpolation problem, 1
Landweber iteration, vi, 23, 41, 51, 105
Laplace equation, 81
least squares method, 72, 73, 107
least squares solution, 88
Lebesgue integration, 251
Legendre polynomial, 254
Linear Sampling Method, 215
linear spline, 64
Liouville transformation, 121, 216
Lippmann–Schwinger equation, 202, 235

M
maximal ONS, 253
Maxwell’s equations, 167
minimum norm collocation, 91
mollification method, 28
moment problem, 110
moment solution, 91

N
Neumann series, 259
Neumann–Dirichlet operator, 171
Newton method, 237, 279
norm of operator, 255
normal equation, 37
numerical differentiation, 26, 28, 93

O
ONS, 253
open mapping theorem, 258
open set, 249
orthogonal complement, 252
orthogonal projection, 64, 66, 70, 265
orthonormal system, 253
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P
parameter identification problem, vii, 7, 154
Parseval equation, 254
partial derivative, 280
Petrov–Galerkin method, 71
Picard’s theorem, 31, 187, 234
Picard–Lindelöf theorem, 131
Plancherel’s theorem, 29
plane wave, 193
point source, 193
pre-Hilbert space, 247
projection method, vi, 65
projection method, convergent, 68
projection operator, 63
projection theorem, 252
properly-posed problem, 9

R
radially symmetric, 194
radiation condition, 3, 193
Radon transform, 4
Rayleigh–Ritz method, 71, 77
reciprocity principle, 205, 206
reflexive space, 256
regularization strategy, 23, 24, 32, 68
regularization strategy, admissable, 26, 32
regularization theory, vi
regularizing filter, 32
relatively compact set, 260
reproducing kernel Hilbert space, 90
Riesz theorem, 260
Riesz–Fischer theorem, 170, 256
Rouché’s theorem, 132

S
Sampling Method, 169
scalar product, 247
scattered field, 194
scattering amplitude, 203
scattering operator, 208
Schwarz space, 29
self-adjoint operator, 257
separable space, 252
simplified Newton method, 237, 279
Simpson’s rule, 44
single layer, 82
singular system, 16, 31, 187, 234, 276
singular value decomposition, 14, 276

singular values, 275
Sobolev space, 14, 124, 169, 170, 195, 257,

262, 268
Sommerfeld radiation condition, 195
spectral cutoff, vi, 35
spectral radius, 274
spectral theorem, 274
spectrum, 273
speed of sound, 192
spherical wave, 193
stability property, 87, 90
steepest descent algorithm, 23, 41
Stefan condition, 8
Sturm–Liouville eigenvalue problem, 7, 121,

155
supremum norm, 249
Symm’s integral equation, vii, 82, 95, 103

T
Taylor’s formula, 21, 27
Tikhonov functional, 37, 46
Tikhonov regularization, vi, 23, 36, 43, 46, 105
Trace Theorem, 269
trapezoidal rule, 11
triangle inequality, 248
trigonometric interpolation, 96, 104, 266
trigonometric polynomial, 262

V
variational solution, 170
vector norm, 247
Volterra integral equation, 125, 143
Volterra integral operator, 259
volume potential, 200

W
wave equation, 7, 192
wave number, 193
weak solution, 170
weakly singular kernel, 256
well-posed problem, v, 9
worst-case error, 13
Wronskian determinant, 123

Y
Young’s inequality, 28
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