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Preface of the First Edition

Following Keller [136] we call two problems inverse to each other if the formulation
of each of them requires full or partial knowledge of the other. By this definition, it
is obviously arbitrary which of the two problems we call the direct and which we
call the inverse problem. But usually, one of the problems has been studied earlier
and, perhaps, in more detail. This one is usually called the direct problem, whereas
the other is the inverse problem. However, there is often another more important
difference between these two problems. Hadamard (see [103]) introduced the con-
cept of a well-posed problem, originating from the philosophy that the mathematical
model of a physical problem has to have the properties of uniqueness, existence,
and stability of the solution. If one of the properties fails to hold, he called the prob-
lem ill-posed. It turns out that many interesting and important inverse problems in
science lead to ill-posed problems, whereas the corresponding direct problems are
well-posed. Often, existence and uniqueness can be forced by enlarging or reducing
the solution space (the space of “models”). For restoring stability, however, one has
to change the topology of the spaces, which is in many cases impossible because
of the presence of measurement errors. At first glance, it seems to be impossible
to compute the solution of a problem numerically if the solution of the problem
does not depend continuously on the data, that is, for the case of ill-posed problems.
Under additional a priori information about the solution, such as smoothness and
bounds on the derivatives, however, it is possible to restore stability and construct
efficient numerical algorithms.

We make no claim to cover all of the topics in the theory of inverse problems.
Indeed, with the rapid growth of this field and its relationship to many fields of nat-
ural and technical sciences, such a task would certainly be impossible for a single
author in a single volume. The aim of this book is twofold: first, we introduce the
reader to the basic notions and difficulties encountered with ill-posed problems. We
then study the basic properties of regularization methods for linear ill-posed prob-
lems. These methods can roughly be classified into two groups, namely, whether
the regularization parameter is chosen a priori or a posteriori. We study some of the
most important regularization schemes in detail.

The second aim of this book is to give a first insight into two special nonlinear
inverse problems that are of vital importance in many areas of the applied sciences.
In both inverse spectral theory and inverse scattering theory, one tries to determine
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a coefficient in a differential equation from measurements of either the eigenvalues
of the problem or the field “far away” from the scatterer. We hope that these two
examples clearly show that a successful treatment of nonlinear inverse problems
requires a solid knowledge of characteristic features of the corresponding direct
problem. The combination of classical analysis and modern areas of applied and
numerical analysis is, in the author’s opinion, one of the fascinating features of this
relatively new area of applied mathematics.

This book arose from a number of graduate courses, lectures, and survey talks
during my time at the universities of Géttingen and Erlangen/Niirnberg. It was my
intention to present a fairly elementary and complete introduction to the field of
inverse problems, accessible not only to mathematicians but also to physicists and
engineers. | tried to include as many proofs as possible as long as they required
knowledge only of classical differential and integral calculus. The notions of func-
tional analysis make it possible to treat different kinds of inverse problems in a
common language and extract its basic features. For the convenience of the reader,
I have collected the basic definitions and theorems from linear and nonlinear func-
tional analysis at the end of the book in an appendix. Results on nonlinear mappings,
in particular for the Fréchet derivative, are only needed in Chaps. 4 and 5.

The book is organized as follows. In Chap. 1, we begin with a list of pairs of
direct and inverse problems. Many of them are quite elementary and should be well
known. We formulate them from the point of view of inverse theory to demon-
strate that the study of particular inverse problems has a long history. Sections 1.3
and 1.4 introduce the notions of ill-posedness and the worst-case error. Although
ill-posedness of a problem (roughly speaking) implies that the solution cannot be
computed numerically — which is a very pessimistic point of view — the notion of
the worst-case error leads to the possibility that stability can be recovered if addi-
tional information is available. We illustrate these notions with several elementary
examples.

In Chap. 2, we study the general regularization theory for linear ill-posed equa-
tions in Hilbert spaces. The general concept in Sect. 2.1 is followed by the most
important special examples: Tikhonov regularization in Sect. 2.2, Landweber itera-
tion in Sect. 2.3, and spectral cutoff in Sect.2.4. These regularization methods are
applied to a test example in Sect. 2.5. While in Sects. 2.1-2.5 the regularization pa-
rameter has been chosen a priori, that is before starting the actual computation,
Sects. 2.6-2.8 are devoted to regularization methods in which the regularization pa-
rameter is chosen implicitly by the stopping rule of the algorithm. In Sects. 2.6 and
2.7, we study Morozov’s discrepancy principle and, again, Landweber’s iteration
method. In contrast to these linear regularization schemes, we will investigate the
conjugate gradient method in Sect. 2.8. This algorithm can be interpreted as a non-
linear regularization method and is much more difficult to analyze.

Chapter 2 deals with ill-posed problems in infinite-dimensional spaces. However,
in practical situations, these problems are first discretized. The discretization of lin-
ear ill-posed problems leads to badly conditioned finite linear systems. This subject
is treated in Chap. 3. In Sect. 3.1, we recall basic facts about general projection meth-
ods. In Sect. 3.2, we study several Galerkin methods as special cases and apply the
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results to Symm’s integral equation in Sect. 3.3. This equation serves as a popular
model equation in many papers on the numerical treatment of integral equations
of the first kind with weakly singular kernels. We present a complete and elemen-
tary existence and uniqueness theory of this equation in Sobolev spaces and apply
the results about Galerkin methods to this equation. In Sect. 3.4, we study colloca-
tion methods. Here, we restrict ourselves to two examples: the moment collocation
and the collocation of Symm’s integral equation with trigonometric polynomials or
piecewise constant functions as basis functions. In Sect. 3.5, we compare the differ-
ent regularization techniques for a concrete numerical example of Symm’s integral
equation. Chapter 3 is completed by an investigation of the Backus—Gilbert method.
Although this method does not quite fit into the general regularization theory, it is
nevertheless widely used in the applied sciences to solve moment problems.

In Chap. 4, we study an inverse eigenvalue problem for a linear ordinary differ-
ential equation of second order. In Sects. 4.2 and 4.3, we develop a careful analysis
of the direct problem, which includes the asymptotic behavior of the eigenvalues
and eigenfunctions. Section 4.4 is devoted to the question of uniqueness of the in-
verse problem, that is, the problem of recovering the coefficient in the differential
equation from the knowledge of one or two spectra. In Sect. 4.5, we show that this
inverse problem is closely related to a parameter identification problem for parabolic
equations. Section 4.6 describes some numerical reconstruction techniques for the
inverse spectral problem.

In Chap.5, we introduce the reader to the field of inverse scattering theory.
Inverse scattering problems occur in several areas of science and technology, such
as medical imaging, nondestructive testing of material, and geological prospecting.
In Sect. 5.2, we study the direct problem and prove uniqueness, existence, and con-
tinuous dependence on the data. In Sect. 5.3, we study the asymptotic form of the
scattered field as » — oo and introduce the far field pattern. The corresponding in-
verse scattering problem is to recover the index of refraction from a knowledge of
the far field pattern. We give a complete proof of uniqueness of this inverse problem
in Sect. 5.4. Finally, Sect. 5.5 is devoted to the study of some recent reconstruction
techniques for the inverse scattering problem.

Chapter 5 differs from previous ones in the unavoidable fact that we have to use
some results from scattering theory without giving proofs. We only formulate these
results, and for the proofs we refer to easily accessible standard literature.

There exists a tremendous amount of literature on several aspects of inverse
theory ranging from abstract regularization concepts to very concrete applications.
Instead of trying to give a complete list of all relevant contributions, I mention only
the monographs [17,93,98,123,151,156-158, 165,179,180, 197,239,240], the pro-
ceedings, [5,38,64,81,105,194,216,236], and survey articles [78,132,136,139,196]
and refer to the references therein.

This book would not have been possible without the direct or indirect contribu-
tions of numerous colleagues and students. But, first of all, I would like to thank my
father for his ability to stimulate my interest and love of mathematics over the years.
Also, I am deeply indebted to my friends and teachers, Professor Dr. Rainer Kress
and Professor David Colton, who introduced me to the field of scattering theory and
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influenced my mathematical life in an essential way. This book is dedicated to my
long friendship with them!

Particular thanks are given to Dr. Frank Hettlich, Dr. Stefan Ritter, and Dipl.-
Math. Markus Wartha for carefully reading the manuscript. Furthermore, I would
like to thank Professor William Rundell and Dr. Martin Hanke for their manuscripts
on inverse Sturm—Liouville problems and conjugate gradient methods, respectively,
on which parts of Chaps. 4 and 2 are based.

Karlsruhe Andreas Kirsch
April 1996



Preface of the Second Edition

The first edition of the book appeared 14 years ago. The area of inverse problems
is still a growing field of applied mathematics and an attempt at a second edition
after such a long time was a difficult task for me. The number of publications on the
subjects treated in this book has grown considerably and a new generation of math-
ematicians, physicists, and engineers has brought new concepts into the field. My
philosophy, however, has never been to present a comprehensive book on inverse
problems that covers all aspects. My purpose was (as I pointed out in the preface
of the first edition), and still is, to present a book that can serve as a basis for an
introductory (graduate) course in this field. The choice of material covered in this
book reflects my personal point of view: students should learn the basic facts for
linear ill-posed problems including some of the present classical concepts of reg-
ularization and also some important examples of more modern nonlinear inverse
problems.

Although there has been considerable progress made on regularization concepts
and convergence properties of iterative methods for abstract nonlinear inverse prob-
lems, I decided not to include these new developments in this monograph. One
reason is that these theoretical results on nonlinear inverse problems are still not
applicable to the inverse scattering problems that are my major field of interest. In-
stead, I refer the reader to the monographs [82, 133] where regularization methods
for nonlinear problems are intensively treated.

Also, in my opinion, every nonlinear inverse problem has its own character-
istic features that should be used for a successful solution. With respect to the
inverse scattering problem to determine the shape of the support of the contrast,
a whole class of methods has been developed during the last decade, sometimes
subsumed under the name Sampling Methods. Because they are very popular not
only in the field of inverse scattering theory but also in the field of electrical
impedance tomography (EIT) I decided to include the Factorization Method as
one of the prominent members in this monograph. The Factorization Method is
particularly simple for the problem of EIT and this field has attracted a lot of at-
tention during the past decade, therefore a chapter on EIT has been added to this
monograph as Chap.5 and the chapter on inverse scattering theory now becomes
Chap. 6.

ix
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The main changes of this second edition compared to the first edition concern
only Chaps.5 and 6 and Appendix A. As just mentioned, in Chap.5 we introduce
the reader to the inverse problem of electrical impedance tomography. This area
has become increasingly important because of its applications in medicine and en-
gineering sciences. Also, the methods of EIT serve as tools and guidelines for the
investigation of other areas of tomography such that optical and photoacoustic to-
mography.

The forward model of EIT is usually set up in the weak sense, that is, in ap-
propriate Sobolev spaces. Although I expect that the reader is familiar with the
basic facts on Sobolev spaces such as the trace theorem and Friedrich’s inequal-
ity, a tutorial section on Sobolev spaces on the unit disk is added in Appendix A,
Sect. A.5. The approach using Fourier techniques is not very common but fits well
with the presentation of Sobolev spaces of fractional order on the boundary of the
unit disk in Sect. A.4 of Appendix A. In Chap.5 on electrical impedance tomogra-
phy the Neumann-Dirichlet operator is introduced and its most important properties
such as monotonicity, continuity, and differentiability are shown. Uniqueness of the
inverse problem is proven for the linearized problem only because it was this ex-
ample for which Calderén presented his famous proof of uniqueness. (The fairly
recent uniqueness proof by Astala and Pdivirinta in [10] is far too complicated to be
treated in this introductory work.) As mentioned above, the Factorization Method
was developed during the last decade. It is a completely new and mathematically
elegant approach to characterize the shape of the domain where the conductivity
differs from the background by the Neumann-Dirichlet operator. The Factorization
Method is an example of an approach that uses special features of the nonlinear in-
verse problem under consideration and has no analogy for traditional linear inverse
problems.

Major changes are also made in Chap. 6 on inverse scattering problems. A section
on the Factorization Method has been added (Sect. 6.5) because inverse scattering
problems are the type of problem for which it is perfectly applicable. The rigor-
ous mathematical treatment of the Factorization Method makes it necessary to work
with weak solutions of the scattering problem. Therefore, here we also have to use
(local) Sobolev spaces rather than spaces of continuously differentiable functions.
I took the opportunity to introduce the reader to a (in my opinion) very natural ap-
proach to prove existence of weak solutions by the Lippmann—Schwinger equation
in L?(D) (where D contains the support of the contrast n— 1). The key is the fact that
the volume potential with any L>-density solves the corresponding inhomogeneous
Helmbholtz equation in the weak sense (just as in the case of smooth densities) and
can easily be proved by using the classical result and a density argument. The notion
of weak solutions has the advantage of allowing arbitrary L”-functions as indices of
refraction but makes it necessary to modify almost all of the arguments in this chap-
ter slightly. In Sect. 6.4 we dropped the motivating example for the uniqueness of
the inverse scattering problem (Lemma 6.8 in the first edition) because it has already
been presented for the uniqueness of the linearized inverse problem of impedance
tomography.
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Finally, I want to thank all the readers of the first edition of the monograph for
their extraordinarily positive response. I hope that with this second edition I added
some course material suitable for being presented in a graduate course on inverse
problems. In particular I have found that my students like the problem of impedance
tomography and, in particular, the Factorization Method and I hope that this is true
for others!

Karlsruhe Andreas Kirsch
March 2011
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Chapter 1
Introduction and Basic Concepts

1.1 Examples of Inverse Problems

In this section, we present some examples of pairs of problems that are inverse to
each other. We start with some simple examples that are normally not even recog-
nized as inverse problems. Most of them are taken from the survey article [136] and
the monograph [99].

Example 1.1. Find a polynomial p of degree n with given zeros xi,...,x,. This
problem is inverse to the direct problem: Find the zeros xy,...,x, of a given poly-
nomial p. In this example, the inverse problem is easier to solve. Its solution is
p(x) =c(x—xp)...(x—x,) with an arbitrary constant c.

Example 1.2. Find a polynomial p of degree n that assumes given values yy, ...,
yn € R at given points x1,...,x, € R. This problem is inverse to the direct problem
of calculating the given polynomial at given xi,...,x,. The inverse problem is the
Lagrange interpolation problem.

Example 1.3. Given a real symmetric n X n matrix A and n real numbers Ay, ..., A,
find a diagonal matrix D such that A + D has the eigenvalues A, ..., A,. This prob-
lem is inverse to the direct problem of computing the eigenvalues of the given matrix
A+D.

Example 1.4. This inverse problem is used on intelligence tests: Given the first few
terms ap,as,...,a; of a sequence, find the law of formation of the sequence; that
is, find a, for all n! Usually, only the next two or three terms are asked for to show
that the law of formation has been found. The corresponding direct problem is to
evaluate the sequence (a,) given the law of formation. It is clear that such inverse
problems always have many solutions (from the mathematical point of view), and
for this reason their use on intelligence tests has been criticized.

Example 1.5 (Geological prospecting). In general, this is the problem of determin-
ing the location, shape, and/or some parameters (such as conductivity) of geological
anomalies in Earth’s interior from measurements at its surface. We consider a simple
one-dimensional example and describe the following inverse problem.

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, 1
Applied Mathematical Sciences 120, DOI 10.1007/978-1-4419-8474-6_1,
© Springer Science+Business Media, LLC 2011
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Determine changes p = p(x), 0 < x < 1, of the mass density of an anomalous
region at depth & from measurements of the vertical component f,, (x) of the change
of force at x. p(¥')AX is the mass of a “volume element” at x’ and \/ (x — x')% + h2
is its distance from the instrument. The change of gravity is described by Newton’s
law of gravity f = yr% with gravitational constant y. For the vertical component,
we have

/ / / /
—p(x/)zAx 5 cosf =y hp(x)Ax 2k
(x—x)?+h [(x— )2+ 12]

e

Afy(x) =7y

Y
=

T+ 4+— = >

]
Y
=

This yields the following integral equation for the determination of p:

|
p) )
L (x) = yh dY for0<x<1. (1.1)
fo(x) =7y 0/[(x—x/)2+h2]3/2 X for0<x

We refer to [6, 93, 253] for further reading on this and related inverse problems in
geological prospecting.

Example 1.6 (Inverse scattering problem). Find the shape of a scattering object,
given the intensity (and phase) of sound or electromagnetic waves scattered by this
object. The corresponding direct problem is that of calculating the scattered wave
for a given object.

_— P

More precisely, the direct problem can be described as follows. Let a bounded region
D C RN (N =2 or 3) be given with smooth boundary 9D (the scattering object) and
a plane incident wave u'(x) = ¢**, where k > 0 denotes the wave number and 0 is
a unit vector that describes the direction of the incident wave. The direct problem is
to find the total field u = u’ 4 u* as the sum of the incident field u’ and the scattered
field u* such that
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Au+Ku=0 inRV\D, u=0 onaD, (1.2a)

a s
8_14 —iku’ = O(rf(NH)/z) for r = |x| — o uniformly in |x_| (1.2b)
r x

For acoustic scattering problems, v(x,t) = u(x)e " describes the pressure and
k = ®/c is the wave number with speed of sound c. For suitably polarized time
harmonic electromagnetic scattering problems, Maxwell’s equations reduce to the
two-dimensional Helmholtz equation Au+ k*u = 0 for the components of the elec-
tric (or magnetic) field u. The wave number k is given in terms of the dielectric
constant € and permeability 1 by k = /ey w.

In both cases, the radiation condition (1.2b) yields the following asymptotic
behavior:

s exp(ik|x . -
u'(x) = %uw(x)—i—(’)ﬂﬂ (NH)/z) as |x| — oo,

where £ = x/ |x|. The inverse problem is to determine the shape of D when the far
field pattern u..(%) is measured for all £ on the unit sphere in RV,

These and related inverse scattering problems have various applications in com-
puter tomography, seismic and electromagnetic exploration in geophysics, and
nondestructive testing of materials, for example. An inverse scattering problem of
this type is treated in detail in Chap. 6.

Standard literature on these direct and inverse scattering problems are the mono-
graphs [47,49, 159] and the survey articles [44,227].

Example 1.7 (Computer tomography). The most spectacular application of the
Radon transform is in medical imaging. For example, consider a fixed plane through
a human body. Let p(x,y) denote the change of density at the point (x,y), and let
L be any line in the plane. Suppose that we direct a thin beam of X-rays into the
body along L and measure how much the intensity is attenuated by going through
the body.

L

N

€

N> X

Let L be parametrized by (s,6), where s € R and 6 € [0, 7). The ray L, s has the
coordinates

se'® + iue'd € C, uekR,
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where we have identified C with R?. The attenuation of the intensity / is approxi-
mately described by dI = —ypIdu with some constant 7. Integration along the ray
yields

Inf(u :—y/p se’® + iue' )d

or, assuming that p is of compact support, the relative intensity loss is given by

In/ (oo :fy/ se'® + iue' )du.

In principle, from the attenuation factors we can compute all line integrals
(Rp)(s,0) := /p (se"‘s +iuei5) du, seR, 6€l0,m). (1.3)

Rp is called the Radon transform of p. The direct problem is to compute the Radon
transform Rp when p is given. The inverse problem is to determine the density p
for a given Radon transform Rp (that is, measurements of all line integrals).

The problem simplifies in the following special case, where we assume that p is
radially symmetric and we choose only vertical rays. Then p = p(r), r = \/x2 +y?,
and the ray L, passing through (x,0) can be parametrized by (x,u), u € R. This leads
to (the factor 2 is due to symmetry)

V(x):=1Inl(eo0) = —Zy/oop (\/x2 +u2) du.
0

Again, we assume that p is of compact support in {x : |x| < R}. The change of
variables u = v/r2 — x2 leads to

dr = (1.4)

x)=—27/wﬁp( 21//\/—/)()

A further change of variables z = R?> — 1 and y = R*> — x? transforms this equation
into the following Abel’s integral equation for the function z — p (\/ R? — z) :

7_
V( Rz—y):—y/MdL 0<y<R. (1.5)
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The standard mathematical literature on the Radon transform and its applications
are the monographs [115, 117, 188]. We refer also to the survey articles [118, 166,
168, 174].

The following example is due to Abel himself.

Example 1.8 (Abel’s integral equation). Let a mass element move along a curve I'
from a point p; on level & > 0 to a point pg on level 2 = 0. The only force acting on
this mass element is the gravitational force mg.

Ay
h P1
p Ix=wy(y)
> X
Po

The direct problem is to determine the time T in which the element moves from
p1 to po when the curve I' is given. In the inverse problem, one measures the time
T = T (h) for several values of / and tries to determine the curve I'. Let the curve be
parametrized by x = y/(y). Let p have the coordinates (y(y),y).

By conservation of energy; that is,

m s
E+U:§v +mgy = const = mgh,

we conclude for the velocity that

The total time 7 from p; to pg is

ds 1—H//
/ / Bl dy for h > 0.

Set ¢(y) = +/1+ y'(y)? and let f(h) := T (h)\/2g be known (measured). Then we
have to determine the unknown function ¢ from Abel’s integral equation

h
/ o) dy = f(h) forh> 0. (1.6)
0
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A similar — but more important — problem occurs in seismology. One studies the
problem to determine the velocity distribution ¢ of Earth from measurements of the
travel times of seismic waves (see [28]).

For further examples of inverse problems leading to Abel’s integral equations, we
refer to the lecture notes by R. Gorenflo and S. Vessella [96], the monograph [180],
and the papers [162,246].

Example 1.9 (Backwards heat equation). Consider the one-dimensional heat
equation

du(x,t) _ d%u(x,t)

ot ox2 (1.72)
with boundary conditions
u(0,t) =u(m,t)=0, >0, (1.7b)
and initial condition
u(x,0) =up(x), 0<x<m. (1.7¢)

Separation of variables leads to the (formal) solution

T

2
zane n? sin(nx) with a,= ;/uo(y) sin(ny)dy. (1.8)
0

The direct problem is to solve the classical initial boundary value problem: Given
the initial temperature distribution u and the final time 7', determine u(-, 7). In the
inverse problem, one measures the final temperature distribution u(-, T') and tries to
determine the temperature at earlier times ¢ < 7', for example, the initial temperature
u(-,0).

From solution formula (1.8), we see that we have to determine ug := u(-,0) from
the following integral equation:

/.
2
uwT) == [key)m()dy, 0<x<m, (19)
0
where

k(x,y) ==, ¢ T sin(nx) sin(ny). (1.10)

n=1

We refer to the monographs [17,158, 180] and papers [30,40,43,70,71,84,175,226]
for further reading on this subject.

Example 1.10 (Diffusion in inhomogeneous medium). The equation of diffusion in
an inhomogeneous medium (now in two dimensions) is described by the equation

du(x,t)
ot

zldiv()/Vu(x,t)), x€D, t>0, (1.11)
C
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where ¢ is a constant and y = y(x) is a parameter describing the medium. In the
stationary case, this reduces to

div(yVu) =0 inD. (1.12)

The direct problem is to solve the boundary value problem for this equation for given
boundary values u|yp and given function . In the inverse problem, one measures
u and the flux ydu/dv on the boundary dD and tries to determine the unknown
function y in D. This is the problem of impedance tomography which we consider
in more detail in Chap. 5.

The problem of impedance tomography is an example of a parameter identifica-
tion problem for a partial differential equation. Among the extensive literature on
parameter identification problems, we only mention the classical papers [148, 205,
206], the monographs [15, 17, 180], and the survey article [182].

Example 1.11 (Sturm—Liouville eigenvalue problem). Let a string of length L and
mass density p = p(x) > 0, 0 < x < L, be fixed at the endpoints x = 0 and x = L.
Plucking the string produces tones due to vibrations. Let v(x,7), 0 <x <L, ¢ >0,
be the displacement at x and time ¢. It satisfies the wave equation

*v(x,t)  9%v(x,t)
p(x) atz - axz ’

0<x<L,t>0, (1.13)

subject to boundary conditions v(0,7) = v(L,t) = 0 for ¢t > 0.
A periodic displacement of the form

v(x,1) = w(x) [acos o + bsinwi]

with frequency w > 0 is called a pure tone. This form of v solves the boundary
value problem (1.13) if and only if w and o satisfy the Sturm-Liouville eigenvalue
problem

W' (x)+ 0’ p(x)w(x) =0, 0 <x <L, w(0)=w(L)=0. (1.14)

The direct problem is to compute the eigenfrequencies @ and the corresponding
eigenfunctions for known function p. In the inverse problem, one tries to determine
the mass density p from a number of measured frequencies .

We see in Chap.4 that parameter estimation problems for parabolic and hy-
perbolic initial boundary value problems are closely related to inverse spectral
problems.

Example 1.12 (Inverse Stefan problem). The physicist Stefan (see [232]) modeled
the melting of arctic ice in the summer by a simple one-dimensional model. In par-
ticular, consider a homogeneous block of ice filling the region x > /¢ at time ¢ = 0.
The ice starts to melt by heating the block at the left end. Thus, at time # > 0 the
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region between x = 0 and x = s(¢) for some s(¢) > 0 is filled with water and the
region x > s(¢) is filled with ice.

Al

water ice

> X
l

Let u(x,t) be the temperature at 0 < x < s(¢) and time 7. Then u satisfies the one-
dimensional heat equation

2
8u§;,t) _ d gi);t) inD:= {(x,t) €R2:0<x<s(t), t >0} (1.15)

subject to boundary conditions %M(O,l) = f(¢) and u(s(z),t) =0 fort € [0,T] and
initial condition u(x,0) = up(x) for 0 < x < ¢.

Here, uo describes the initial temperature and f(f) the heat flux at the left
boundary x = 0. The speed at which the interface between water and ice moves
is proportional to the heat flux. This is described by the following Stefan condition:

d 0 ,
:l(? - ”(3(;) D for 1 e [0,77. (1.16)

The direct problem is to compute the curve s when the boundary data f and ug are
given. In the inverse problem, one has given a desired curve s and tries to reconstruct
u and f (or ugp).

We refer to the monographs [36, 180] and the classical papers [37, 85] for a
detailed introduction to Stefan problems.

In all of these examples, we can formulate the direct problem as the evaluation of an
operator K acting on a known “model” x in a model space X and the inverse problem
as the solution of the equation K (x) = y

Direct problem: given x (and K), evaluate K (x).
Inverse problem: given y (and K), solve K (x) =y for x.

In order to formulate an inverse problem, the definition of the operator K, including
its domain and range, has to be given. The formulation as an operator equation
allows us to distinguish among finite, semifinite, and infinite-dimensional, linear
and nonlinear problems.
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In general, the evaluation of K (x) means solving a boundary value problem for a
differential equation or evaluating an integral.

For more general and “philosophical” aspects of inverse theory, we refer
to [7,196].

1.2 IlI-Posed Problems

For all of the pairs of problems presented in the last section, there is a fundamental
difference between the direct and the inverse problems. In all cases, the inverse
problem is ill-posed or improperly-posed in the sense of Hadamard, while the direct
problem is well-posed. In his lectures published in [103], Hadamard claims that a
mathematical model for a physical problem (he was thinking in terms of a boundary
value problem for a partial differential equation) has to be properly-posed or well-
posed in the sense that it has the following three properties:

1. There exists a solution of the problem (existence).
2. There is at most one solution of the problem (uniqueness).
3. The solution depends continuously on the data (stability).

Mathematically, the existence of a solution can be enforced by enlarging the so-
lution space. The concept of distributional solutions of a differential equation is an
example. If a problem has more than one solution, then information about the model
is missing. In this case, additional properties, such as sign conditions, can be built
into the model. The requirement of stability is the most important one. If a problem
lacks the property of stability, then its solution is practically impossible to compute
because any measurement or numerical computation is polluted by unavoidable er-
rors: thus the data of a problem are always perturbed by noise! If the solution of a
problem does not depend continuously on the data, then in general the computed so-
lution has nothing to do with the true solution. Indeed, there is no way to overcome
this difficulty unless additional information about the solution is available. Here, we
remind the reader of the following statement (see Lanczos [154]):

A lack of information cannot be remedied by any mathematical trickery!

Mathematically, we formulate the notion of well-posedness in the following way.

Definition 1.13 (well-posedness). Let X and Y be normed spaces, K : X — Y a
(linear or nonlinear) mapping. The equation Kx =y is called properly-posed or well-
posed if the following holds:

1. Existence: For every y € Y there is (at least one) x € X such that Kx = y.

2. Uniqueness: For every y € Y there is at most one x € X with Kx =y.

3. Stability: The solution x depends continuously on y; that is, for every sequence
(xn) C X with Kx,, — Kx (n — o), it follows that x,, — x (n — o).

Equations for which (at least) one of these properties does not hold are called
improperly-posed or ill-posed.
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It is important to specify the full triple (X,Y, K) and their norms. Existence and
uniqueness depend only on the algebraic nature of the spaces and the operator; that
is, whether the operator is onto or one-to-one. Stability, however, depends also on
the topologies of the spaces, i.e., whether the inverse operator K -l.y — X is con-
tinuous.

These requirements are not independent of each other. For example, due to the
open mapping theorem (see Theorem A.25 of Appendix A), the inverse operator
K~! is automatically continuous if K is linear and continuous and X and Y are
Banach spaces.

As an example for an ill-posed problem, we study the classical example given by
Hadamard in his famous paper [103].

Example 1.14 (Cauchy’s problem for the Laplace equation). Find a solution u of
the Laplace equation

_ Qulxy) | 9%ulx.y)

Au(x,y) : 2 2y =0 inRx[0,00) (1.17a)
that satisfies the “initial conditions”
0
u(r,0)= (), Su(x.0)=gl), xek, (1.17b)
y

where f and g are given functions. Obviously, the (unique) solution for f(x) = 0
and g(x) = Lsin(nx) is given by

1
u(x,y) = — sin(nx)sinh(ny), x€R, y>0.
n
Therefore, we have
1
sup{[f(x)[+|g()|} = = — 0, n—eo,
xeR n

but |

sup|u(x,y)| = — sinh(ny) — 0, n— oo

x€R n
for all y > 0. The error in the data tends to zero while the error in the solution u
tends to infinity! Therefore, the solution does not depend continuously on the data,
and the problem is improperly-posed.

Many inverse problems and some of the examples of the last section (for further
examples, we refer to [99]) lead to integral equations of the first kind with continu-
ous or weakly singular kernels. Such integral operators are compact with respect to
any reasonable topology. The following example will often serve as a model case in
these lectures.
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Example 1.15 (Differentiation). The direct problem is to find the antiderivative y
with y(0) = 0 of a given continuous function x on [0, 1]; that is, compute

t
:/x €10,1]. (1.18)
0

In the inverse problem, we are given a continuously differentiable function y on
[0,1] with y(0) = 0 and want to determine x = y’. This means we have to solve the
integral equation Kx =y, where K : C[0, 1] — C|0, 1] is defined by

t
(Kx)( :/x €10,1], forxeC[o,1]. (1.19)
0

Here we equip C[0, 1] with the supremum norm ||x||,, := [max |x(#)]. The solution
<<

of Kx =y is just the derivative x = y/, provided y(0) = 0 and y is continuously
differentiable! If x is the exact solution of Kx =y, and if we perturb y in the norm
IIl.., then the perturbed right-hand side ¥ doesn’t have to be differentiable, and
even if it is the solution of the perturbed problem is not necessarily close to the
exact solution. We can, for example, perturb y by §sin(t/82) for small §. Then the
error of the data (with respect to ||-]|..) is & and the error in the solution is 1/8. The
problem (K,C[0,1],C[0,1]) is therefore ill-posed.

Now we choose a different space ¥ := {y € C'[0,1] : y(0) =0} for the right-
hand side and equip Y with the stronger norm ||x|| 1 := [max |/ (7). If the right-hand

side is perturbed with respect to this norm ||-|| -1, then the problem (K,C[0,1],Y) is
well-posed because K : C[0,1] — Y is boundedly invertible. This example again
illustrates the fact that well-posedness depends on the topology.

In the numerical treatment of integral equations, a discretization error cannot
be avoided. For integral equations of the first kind, a “naive” discretization usually
leads to disastrous results as the following simple example shows (see also [243]).

Example 1.16. The integral equation
1
/e”x(s)ds:y(t), 0<t<I, (1.20)
0

with y(¢) = (exp(z+ 1) — 1) /(¢ + 1), is uniquely solvable by x() = exp(r). We ap-
proximate the integral by the trapezoidal rule

1 n—1
/e”x(s) ds=~h <%x(0) + % ex(1)+ eﬂ”x(jh)>
0 =
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with & := 1/n. For t = ih, we obtain the linear system

1 1. n—1
h<§xo+§e”’xn+2eﬂh2x,~> =y(ih), i=0,...,n. (1.21)
j=1

Then x; should be an approximation to x(ih). The following table lists the error
between the exact solution x() and the approximate solution x; for ¢ = 0, 0.25, 0.5,
0.75, and 1. Here, i is chosen such that ih = t.

t n=4 n=38 n=16 n=32

0 0.44 —-3.08 1.08 —38.21
0.25 —-0.67 —-38.16 —25.17 50.91
0.5 095 —-7544 31.24 -—116.45
0.75 —-1.02 —-22.15 20.03 103.45
1 1.09 —-0.16 —4.23 —126.87

We see that the approximations have nothing to do with the true solution and
become even worse for finer discretization schemes.

In the previous two examples, the problem was to solve integral equations of the
first kind. Integral operators are compact operators in many natural topologies under
very weak conditions on the kernels. The next theorem implies that linear equations
of the form Kx = y with compact operators K are always ill-posed.

Theorem 1.17. Let X, Y be normed spaces and K : X — Y be a linear compact
operator with nullspace N (K) := {x € X : Kx = 0}. Let the dimension of the factor
space X /N (K) be infinite. Then there exists a sequence (x,) C X such that Kx, —
0 but (x,) does not converge. We can even choose (x,) such that ||x,|| — oo. In
particular, if K is one-to-one, the inverse K1l:vy> R(K) — X is unbounded. Here,
R(K) :={Kx €Y :x € X} denotes the range of K.

Proof. We set N'= N(K) for abbreviation. The factor space X /N is a normed
space with norm || [x]|| := inf{ |x+z|| : z € A/} since the nullspace is closed. The in-
duced operator K : X /N — Y, defined by K ([x]) := Kx, [x] € X /N, is well-defined,
compact, and one-to-one. The inverse K~! : ¥ D R(K) — X /N is unbounded
since otherwise the identity / = K~'K : X /N — X /N would be compact as a
composition of a bounded and a compact operator. This would contradict the
assumption that the dimension of X /N is infinite. Because K~! is unbounded,
there exists a sequence ([z,]) C X/N with Kz, — 0 and ||[z,]]] = 1. We choose
vy € N such that ||z, + v,|| > % and set x, := (2u + vn)/+/||Kzn]||. Then Kx,, — 0
and [|x, || — eo. o
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1.3 The Worst-Case Error

We come back to Example 1.15 of the previous section: Determine x € C[0, 1] such
that [y x(s)ds = y(t) for all € [0,1]. An obvious question is: How large could the
error be in the worst case if the error in the right side y is at most 6? The answer
is already given by Theorem 1.17: If the errors are measured in norms such that
the integral operator is compact, then the solution error could be arbitrarily large.
For the special Example 1.15, we have constructed explicit perturbations with this
property.

Howeyver, the situation is different if additional information is available. Before
we study the general case, we illustrate this observation for a model example.

Let y and ¥ be twice continuously differentiable and let a number E > 0 be avail-
able with

bl <& and [i"]. <E. (122)

Set z := §— y and assume that 7/(0) = z(0) =0 and 7/ (¢) > O for ¢ € [0, 1]. Then we
estimate the error X — x in the solution of Example 1.15 by

Therefore, under the above assumptions on z = § —y we have shown that || ¥ — x||., <
2VES if ||[§—y|l.. < & and E is a bound as in (1.22). In this example, 2VE § is a
bound on the worst-case error for an error 0 in the data and the additional informa-
tion ||x'[|.. = ||"’||. < E on the solution.

We define the following quite generally.

Definition 1.18. Let K : X — Y be a linear bounded operator between Banach
spaces, X; C X a subspace, and ||-||; a “stronger” norm on X;; that is, there exists
¢ > 0 such that ||x|| < c||x||, for all x € X;. Then we define

-7:(57E7|| : Hl) :=sup{||x[| : x € X1, HK)CH <6, ”le SE}? (1.23)

and call F(8,E,||-||,) the worst-case error for the error & in the data and a priori
information ||x||, <E.

F(8,E,|||l1) depends on the operator K and the norms in X, Y, and X;. It is de-
sirable that this worst-case error not only converge to zero as § tends to zero but that
it be of order §. This is certainly true (even without a priori information) for bound-
edly invertible operators, as is readily seen from the inequality [|x|| < [[K~!| ||Kx|.
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For compact operators K, however, and norm ||-||; = |||, this worst-case error
does not converge (see the following lemma), and one is forced to take a stronger
norm |-

Lemma 1.19. Let K : X — Y be linear and compact and assume that X /N (K) is
infinite-dimensional. Then for every E > 0 there exists ¢ > 0 and & > 0 such that
F(8,E,|-|) > cforall § € (0,8).

Proof. Assume that there exists a sequence 8, — 0 such that 7 (6,,E, || -||) — 0 as
n— 0. Let K : X/N(K) — Y be again the induced operator in the factor space. We
show that K~ is bounded: Let K ([x,y]) = Kx,, — 0. Then there exists a subsequence
(Xm, ) with [|Kxy, || < 8, for all n. We set

| { S | <,

E ||'an||71 Xiny s if ||‘xmn|| >E.

Then ||z,|| < E and || Kz, || < 0, for all n. Because the worst-case error tends to zero,
we also conclude that ||z,|| — 0. From this, we see that z, = x,,, for sufficiently
large n; that is, x,,, — 0 as n — oo. This argument, applied to every subsequence
of the original sequence (x,;), yields that x;, tends to zero for m — oo; that is, K -1
is bounded on the range R(K) of K. This, however, contradicts the assertion of
Theorem 1.17. ]

In the following analysis, we make use of the singular value decomposition of the
operator K (see Appendix A, Definition A.52). Therefore, we assume from now on
that X and Y are Hilbert spaces. In many applications X and Y are Sobolev spaces;
that is, spaces of measurable functions such that their (generalized) derivatives are
square integrable. Sobolev spaces of functions of one variables can be characterized
as follows:

t
H”(a,b):={ x € C" '[a,b] :x(f”l)(t):a—f—/l//ds, aeR, yel?) (1.24)

for pe N.

Example 1.20 (Differentiation). As an example, we study differentiation and set
X =Y =1%0,1),

(Kx)(t) :/x(s)ds, t€(0,1), x € 12(0,1),
0
and

X := {xcH'(0,1):x(1) =0}, (1.252)
X, := {x€ H*(0,1) : x(1) = 0, X'(0) = 0}. (1.25b)
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We define |[x||; := [[x'[|;2 and [|x[|, := ||x"|| ;2. Then the norms ||-[|;, j = 1,2, are
stronger than ||-||;2 (see Problem 1.2), and we can prove for every E > 0 and 6 > 0:

F(8.E,|-l,) VSE and F(8,E,|||,) < 8*3E"S. (1.26)

From this result, we observe that the possibility to reconstruct x is dependent on the
smoothness of the solution. We come back to this remark in a more general setting
(Theorem 1.21). We will also see that these estimates are asymptotically sharp; that
is, the exponent of 6 cannot be increased.

Proof of (1.26). First, assume that x € H'(0,1) with x(1) = 0. Partial integration,
which is easily seen to be allowed for H'-functions and the Cauchy—Schwarz in-
equality, yields

2
(4l

Il
o _
=
—

-~
=
=
—~

t=1

/ Yds| dt+ |x(¢) /x

0 =0

H
O\_
><

1
= — [¥ ) (Kx)0)dr < K2 €] (127)
0

This yields the first estimate. Now let x € H(0, 1) such that x(1) = 0 and x'(0) = 0.
Using partial integration again, we estimate

11z

Il
o _
><\
=
=

1

_ / xX(O) X" (1) dr + [x(1) X (1)]1 2,

0
1

- /x t)de < x|l 2 [|"]] 2 -
0

Now we substitute this into the right-hand side of (1.27):

2
Ixllz < 1Kx 2 [[¥']] 2 < 1Kl 2 A/ el 4/ 1272

From this, the second estimate of (1.26) follows. O
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It is possible to prove these estimates for more general situations, provided
smoothing properties of the operator K are known. The graph norms of suitable
powers of K*K play the role of ||-||;. We refer to [165] for the derivation of the
general theory and prove only a partial result.

Theorem 1.21. Let X and Y be Hilbert spaces, K : X — Y linear, compact, and
one-to-one with dense range R(K). Let K* : Y — X be the adjoint operator.

(a) Set X;:=R(K*) and ||x||, := ||(K*)_1x||yforx€X1. Then

F(8,E,,) < VSE.

Furthermore, for every E > 0 there exists a sequence 0, — 0 such that
.7(5,1,E, Il 1) = /0, E; that is, this estimate is asymptotically sharp.

(b) Set Xp :=R(K*K) and ||x||, := |‘(K*K)71x’|xf0rx € X;. Then

F(8,E,|||2) < 8*3E'3,

and for every E > 0 there exists a sequence 8, — 0 such that F (8,,E, || - |2) =
8PE.

The norms ||-||; and ||-||, are well-defined because K* and K*K are one-to-one.
In concrete examples, the assumptions x € R(K*) and x € R(K*K) are smooth-
ness assumptions on the exact solution x together with boundary conditions. In
the preceding example, where (Kx)(t) = [jx(s)ds, the spaces R(K*) and R(K*K)
coincide with the Sobolev spaces X| and X, defined in (1.25a) and (1.25b) (see
Problem 1.3).

Proof of Theorem 1.21. (a) Let x = K*z € X; with ||Kx||, < 6 and ||x||, < E; that
is, ||z|ly < E. Then

2
Ixllx = (K2, x)x = (z,Kx)y <|lz[ly [|Kx[ly <E$.

This proves the first estimate. Now let (U, x,,y,) be a singular system for K (see
Appendix A, Theorem A.53). Set £, = EK*y, = U,E x, and 6, := ,u,%E — 0. Then
|£al; = E, |K&u|| = 84, and ||, || = u,E = /0, E. This proves part (a). Part (b) is
proven similarly. a

Next, we consider Example 1.9 again. We are given the parabolic initial boundary
value problem

du(x,t)  d%u(x,t)
o ox2
u(0,t) =u(m,t)=0,1>0, u(x,0)=up(x),0<x<m.

O<x<m t>0,
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In the inverse problem, we know the final temperature distribution u(x,T),

0 < x < &, and we want to determine the temperature u(x, T) at time 7 € (0,T). As

additional information we also assume the knowledge of E > 0 with ||u(-,0)||,2 <E.
The solution of the initial boundary value problem is given by the series

[\

ug(y)sin(ny)dy, 0<x<m, t>0.

;|

o
—Z ”’smnx
n:

o\a

We denote the unknown function by v := u(-,7), set X =Y = L*(0, ), and

X :={vel*0,n):v= D ane7”21 sin(n-) with

n=1

T

2
an = — /uo(y) sin(ny)dy for some uy € L*(0, 1)

0
and ||v]|, := |Jug||,2 for v € X;. In this case, the operator K : X — Y is an integral
operator with kernel
) =
E Z Jsin(nx)sin(ny), x,y € [0, 7],

(see Example 1.9). Then we have for any 7 € (0,7T):
F(8,E,||-|l)) <E'"HT 8T, (1.28)

This means that under the information |[u(-,0)|/;» < E, the solution u(-,T) can be
determined from the final temperature distribution u(-,T'), the determination being
better the closer Tisto 7.

Proof of (1.28). Let v € X| and

T

2
a, = p /uo(y) sin(ny)dy, néeN,
0

be the Fourier coefficients of uy. From the definition of X; and

oo

(Kv)(x) =Y, e ay sin(nx),

n=1
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we conclude that the Fourier coefficients of v are given by exp(—n’t)a, and those
of Kv by exp(—n°T) a,. Therefore, we have to maximize

oo

EZM |2 —2n*t
2—1

subject to the constraints
T 2 2 2 20T 2
52\a,,| <E- and Z|an| <6
n=1

From the Holder inequality, we have (for p,g > 1 with 1/p+1/g =1 to be specified
in a moment):

T — T —
: 2 an‘z Pt _ z Z |an|2/q (‘an‘z/pe—znn)
n=1 n=1

- 1/q . 1/p
jad 2 e 2—2pn‘L’
(1500) (350"

We now choose p=7/t. Then 1/p=1/T and 1/qg =1—t/T. This yields the
assertion. ad

IN

The next chapter is devoted to the construction of regularization schemes that are
asymptotically optimal in the sense that, under the information x € Xi, ||x||;, < E,
and || —y|| < &, an approximation £ and a constant ¢ > 0 are constructed such that
£ =x||.. <cF(8.E,|II,)

As a first tutorial example, we consider the problem of numerical differentiation;
see Examples 1.15 and 1.20.

Example 1.22. We fix h € (0,1/2) and define the one-sided difference quotient by

[yt +h)—y(©)], 0<r<1/2,
v(t) =

S =S -

() —y(—n)], 1/2<1<1,

for any y € L?(0,1). First, we estimate ||v —y'||;> for smooth functions y; that is,
y € H?(0,1). From Taylor’s formula (see Problem 1.4), we have

tth
y(t+h)=y(t) £y (t)h+ / (t+£h—s)y"(s)ds;

t



1.3 The Worst-Case Error 19

that is,

t+h

o)~ @0)= 1 [ +h=s)y(5)ds

t

h
/y”(t +h—1)1dr,
0

S| =

for¢ € (0,1/2) and analogously for ¢ € (1/2,1). Hence, we estimate

1/2

i / lo(t) =y (1) dr
0

h h 1/2
://‘L's /y"(t—i—h—r)y"(t—l—h—s)dt drtds
00 0

hoh 12 1/2
< //‘cs /|y”(t—|—h—r)\2dt /|y”(t+h—s)|2dtd1'ds
00 0 0

h 2
1
<l | [ear| =35 1
0

and analogously for A2 [/ 2 lo(t) = y'(¢)|* dt. Summing these estimates yields

1
o < 5
where E is some bound on [[y"]| .

Now we treat the situation with errors. Instead of y(z) and y(¢ + ), we measure
§(¢) and §(¢ £ h), respectively. We assume that || — y|[,» < 8. Instead of v(t) we
compute () = +[§(t £h) — ()] /h for t € (0,1/2) or t € (1/2,1) respectively.
Because

Fe£h) —yER| 50 —y(0)]
h o

|5(t) = v(0)] <
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we conclude that || — v]|;2 < 2v/28/h. Therefore, the total error due to the error
on the right-hand side and the discretization error is

<2\/§5 1

7=y ,2 <lo=vllp2+]|v—y], < - +\/—§Eh. (1.29)

By this estimate, it is desirable to choose the discretization parameter / as the mini-
mum of the right-hand side of (1.29). Its minimum is obtained at h = 21/8/E. This
results in the optimal error ||o — y'||;2 < 2V2E d.

Summarizing, we note that the discretization parameter 4 should be of order
\/0/E if the derivative of a function is computed by the one-sided difference quo-
tient. With this choice, the method is optimal under the information ||x'||,» < E.

The two-sided difference quotient is optimal under the a priori information
[«”]|;2 < E and results in an algorithm of order 6%/ (see Example 2.4 in the
following chapter).

We have carried out the preceding analysis with respect to the L?>-norm rather
that the maximum norm, mainly because we present the general theory in Hilbert
spaces. For this example, however, estimates with respect to ||-||., are simpler to
derive (see the estimates preceding Definition 1.18 of the worst-case error).

The result of this example is of practical importance: For many algorithms using
numerical derivatives (for example, quasi-Newton methods in optimization), it is
recommended that you choose the discretization parameter € to be the square root of
the floating-point precision of the computer because a one-sided difference quotient
is used.

1.4 Problems

1.1. Show that Eqgs. (1.1) and (1.20) have at most one solution.
Hint: Extend p in (1.1) by zero into R and apply the Fourier transform.

1.2. Let the Sobolev spaces X; and X, be defined by (1.25a) and (1.25b), respec-
tively. Define the bilinear forms by

1 1
(ry)1 = / YOV () di and  (x,y) = / A1)y (1) dt
0 0

on Xj and X», respectively. Prove that X; are Hilbert spaces with respect to the inner
products (-,-);, j = 1,2, and that [[x]| ;> < [|x||; forall x € X, j = 1,2.

1.3. Let K : L?(0,1) — L?*(0,1) be defined by (1.19). Show that the ranges R(K*)
and R(K*K) coincide with the spaces X; and X, defined by (1.25a) and (1.25b),
respectively.
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1.4. Prove the following version of Taylor’s formula by induction with respect to n
and partial integration:
Lety € H""!(a,b) and t,t + h € [a,b]. Then
YO )
k

n
t
Yi+h) =Y, == H 4R, (t:h),
k=0 :

where the error term is given by

| t+h
Ry(t;h) = - /(t—i—h—s)"y(”J’l)(s)ds.
t






Chapter 2

Regularization Theory for Equations
of the First Kind

We saw in the previous chapter that many inverse problems can be formulated as
operator equations of the form

Kx=y,

where K is a linear compact operator between Hilbert spaces X and Y over the
field K = R or C. We also saw that a successful reconstruction strategy requires
additional a priori information about the solution.

This chapter is devoted to a systematic study of regularization strategies for solv-
ing Kx = y. In particular, we wish to investigate under which conditions they are
optimal; that is, of the same asymptotic order as the worst-case error. In Sect. 2.1,
we introduce the general concept of regularization. In Sects. 2.2 and 2.3, we study
Tikhonov’s method and the Landweber iteration as two of the most important regu-
larization strategies. In these three sections, the regularization parameter ot = 0/(0)
is chosen a priori; that is, before we start to compute the regularized solution. We
see that the optimal regularization parameter o depends on bounds of the exact solu-
tion; they are not known in advance. Therefore, it is advantageous to study strategies
for the choice of « that depend on the numerical algorithm and are made during the
algorithm (a posteriori). Different a posteriori choices are studied in Sects. 2.5-2.7.

All of them are motivated by the idea that it is certainly sufficient to compute an
approximation x*? of the solution x such that the norm of the defect Kx®:9 — y9 is
of the same order as the perturbation error § of the right-hand side. The classical
strategy, due to Morozov [176], determines ¢ by solving a nonlinear scalar equation.
To solve this equation, we still need a numerical algorithm such as the “regula falsi”
or the Newton method. In Sects. 2.6 and 2.7, we investigate two well-known iterative
algorithms for solving linear (or nonlinear) equations: Landweber’s method (see
[155]), which is the steepest descent method, and the conjugate gradient method.
The choices of o are made implicitly by stopping the algorithm as soon as the
defect HKx’” —y9 H is less than 76. Here, T > 1 is a given parameter.

Landweber’s method and Morozov’s discrepancy principle are easy to investigate
theoretically because they can be formulated as linear regularization methods. The
study of the conjugate gradient method is more difficult because the choice of o
depends nonlinearly on the right-hand side y. Because the proofs in Sect.2.7 are
very technical, we postpone them to an appendix.

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, 23
Applied Mathematical Sciences 120, DOI 10.1007/978-1-4419-8474-6_2,
© Springer Science+Business Media, LLC 2011
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2.1 A General Regularization Theory

For simplicity, we assume throughout this chapter that the compact operator K is
one-to-one. This is not a serious restriction because we can always replace the do-
main X by the orthogonal complement of the kernel of K. We make the assumption
that there exists a solution x € X of the unperturbed equation Kx = y. In other words,
we assume that y € R(K). The injectivity of K implies that this solution is unique.
In practice, the right-hand side y € Y is never known exactly but only up to an
error of, say, & > 0. Therefore, we assume that we know 8 > 0 and y® € Y with

Hy*y‘sH <3. 2.1)
It is our aim to “solve” the perturbed equation

Kx® =49, (2.2)

In general, (2.2) is not solvable because we cannot assume that the measured data
y? are in the range R(K) of K. Therefore, the best we can hope is to determine
an approximation x® € X to the exact solution x that is “not much worse” than the
worst-case error F(68,E, ||-||;) of Definition 1.18.

An additional requirement is that the approximate solution x® should depend con-
tinuously on the data y?. In other words, it is our aim to construct a suitable bounded
approximation R : Y — X of the (unbounded) inverse operator K~! : R(K) — X.

Definition 2.1. A regularization strategy is a family of linear and bounded
operators
Ry:Y —X, a>0,

such that
lim Ry Kx=x forallx € X;

oa—0

that is, the operators Ry K converge pointwise to the identity.

From this definition and the compactness of K, we conclude the following.

Theorem 2.2. Let R, be a regularization strategy for a compact operatorK : X —Y
where dimX = oo. Then we have

(1) The operators Ry are not uniformly bounded; that is, there exists a sequence
(ctj) with ||R0<jH — oo for j — eo.

(2) The sequence (RyKx) does not converge uniformly on bounded subsets of X;
that is, there is no convergence Ry K to the identity I in the operator norm.

Proof. (1) Assume, on the contrary, that there exists ¢ > 0 such that ||R|| < ¢ for
all o > 0. From Ry — K~y (ov — 0) for all y € R(K) and ||Rgy|| < c||y|| for
o > 0 we conclude that ||[K~1y|| < c||y|| for every y € R(K); that is, K~ ! is
bounded. This implies that I = K~'K : X — X is compact, a contradiction to
dimX = oo,
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(2) Assume that RyK — I in L(X,X). From the compactness of RyK and
Theorem A.32, we conclude that [ is also compact, which again would imply
that dimX < eo. g

The notion of a regularization strategy is based on unperturbed data; that is, the
regularizer R,y converges to x for the exact right-hand side y = Kx.

Now let y € R(K) be the exact right-hand side and y® € Y be the measured data
with Hy—y‘sH < 6. We define

x%9 .= Ryy? (2.3)

as an approximation of the solution x of Kx = y. Then the error splits into two parts
by the following obvious application of the triangle inequality:

x""‘txH < HRayS*Ray

|+ 1Ry — ]

< [1Ra || = ||+ IRakx — x]

and thus

This is our fundamental estimate, which we use often in the following.

We observe that the error between the exact and computed solutions consists of
two parts: The first term on the right-hand side describes the error in the data multi-
plied by the “condition number” ||Ry|| of the regularized problem. By Theorem 2.2,
this term tends to infinity as & tends to zero. The second term denotes the approxi-
mation error H (Ra —-K ’1) yH at the exact right-hand side y = Kx. By the definition
of a regularization strategy, this term tends to zero with a. Figure 2.1 illustrates the
situation.

We need a strategy to choose o = a(8) dependent on & in order to keep the total
error as small as possible. This means that we would like to minimize

X8 fo < 8|[Re|| + |RoKx —x]|. 2.4)

6 ||Ral| + [[RoKx —x]|.

error

s

o
e

e,
6 || R
it L

a* e}

Fig. 2.1 Behavior of the total error
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The procedure is the same in every concrete situation: One has to estimate the
quantities ||Ry/|| and ||RqKx — x|| in terms of o and then minimize this upper bound
with respect to a. Before we carry out these steps for two model examples, we
introduce the following notation.

Definition 2.3. A regularization strategy o = o.(0) is called admissible if o/(6) — 0

and
|

for every x € X.

) 13
Roc(ﬁ)y —xH:y ey,

Kx—ySH S(S}HO, 0—0,

Example 2.4 (Numerical differentiation by two-sided difference quotient). It is our
aim to compute the derivative of a function by the two-sided difference quotient
(see Example 1.22 for the one-sided difference quotient). Here ¢ = h is the step
size, and we define

% {4y (Hg) y(t+h)3y(t)] , 0<e< g

(Rpy)(t) = %[y(t+g>y(tg)], —<t<1—§,
- {3y(r)+y(th)4y (;gﬂ -3 <i<l,

NSRS

fory € L*(0,1). In order to prove that R, defines a regularization strategy, it suffices
to show that R;K are uniformly bounded with respect to % in the operator norm of
L*(0,1) and that ||R,Kx —x]||;2 tends to zero for smooth x (see Theorem A.27 of
Appendix A). Later, we show convergence for x € H*(0, 1).

The fundamental theorem of calculus (or Taylor’s formula from Problem 1.4 for
n = 0) yields

e R , ,
(Rhy)(f)—h /y(S)dS ; /y(s+t)ds, Sy <t<l-2,
1=h/2 _i)2
and thus
1—h/2 | bz
/‘(RhY)(t”zdt:ﬁ/ / /y'(s+t)y'(‘c+t)dtd1:ds.
h/2 —h/2—h/2 h/2

The Cauchy—Schwarz inequality yields

1-h/2

[ 1@ oFar< .

h/2
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From (Ryy)(t) =4 [y(t+h/2) —y(t)] /h—[y(t +h) — y(t)] /h for 0 <t < h/2 and an
analogous representation for 1 —h/2 <t < 1, similar estimates yield the existence
of ¢ > 0 with

HRhY||L2 <c H)’IHLz

for all y € H'(0,1). For y = Kx, x € L*(0,1), the uniform boundedness of (R;,K)
follows.

Now let x € H*(0,1) and thus y = Kx € H*(0,1). We apply Taylor’s formula
(see Problem 1.4) in the form (first again for 2/2 <t < 1—h/2)

+h/2
h n? 1
Yt h/2) 3 T3 (1)~ "0 =5 [ 23" tEh/2-5)ds.
0
Subtracting the formulas for 4+ and — yields
. hJ2
Riy)() =¥ (1) = 5 / Y0+ h/2=5) +Y" (1 —h/2+5)] ds,
0

and thus by changing the orders of integration und using the Cauchy—Schwarz in-
equality

1-h/2 | h/2 2
[ N0 -y oPar < gz 115 | [ 2
12 0
1
L

Similar applications of Taylor’s formula in the intervals (0,%4/2) and (1 —h/2,1)
yield an estimate of the form

|RnKx —x|| ;2 = HRhy—y'HLz <clEW

for all x € H*(0,1) with ||x”||;2 < E. Together with the uniform boundedness of
R;,K, this implies that R,Kx — x for all x € L?(0, 1).

In order to apply the fundamental estimate (2.4), we must estimate the first term;
that is, the L2-norm of Ry,. It is easily checked that there exists ¢, > 0 with ||Ryy||;2 <
c2|[yll2 /h for all y € L*(0,1). Estimate (2.4) yields

0
§C2_+61Eh27
12

HRhyé_x h
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where E is a bound on ||x”||;2 = |y""||,;2. Minimization with respect to & of the
expresssion on the right-hand side leads to

h(8)=c/8/E and HRh(B)yS*XHSEEl/‘%((Szﬂ

for some ¢ > 0 and & = ¢y /c +c1c?.

We observe that this strategy is asymptotically optimal for the information
|x"||;2 < E because it provides an approximation x% that is asymptotically not worse
than the worst-case error (see Example 1.20).

The (one- or two-sided) difference quotient uses only local portions of the func-
tion y. An alternative approach is to first smooth the function y by mollification and
then to differentiate the mollified function.

Example 2.5 (Numerical differentiation by mollification). Again, we define the
operator (Kx)(t) = [5x(s)ds, t € [0,1], but now as an operator from the (closed)
subspace

1
L3(0,1):={ z€ L*(0,1): /z(s)ds =0
0
of L2(0,1) into L2(0,1).
We define the Gaussian kernel vy, by

1
o/ T

Wol(t) = exp(—1*/0®), 1€R,

where o > 0 denotes a parameter. Then [ Wy (¢)dt = 1, and the convolution

= =

(Was3) 0= [ yalt=9)y(5)ds = [ wal9)y=s)ds. 1R

—oo —oo

exists and is an L?-function for every y € L?(R). Furthermore, by Young’s inequality
(see [41], p. 102), we have that

e ll2 < wallpr ylz2 = ¥ll2 - for ally € L2(R).
Therefore, the operators y — , * y are uniformly bounded in L?(R) with respect
to a.. We note that y, +y is infinitely often differentiable on R for every y € L?(R).
We need the two convergence properties

IWa*z—2ll2@) — 0 aso—0 foreveryze L%(0,1) (2.52)

and
W *z =2l < V2 |2 0 (2.5b)



2.1 A General Regularization Theory 29

for every z € H'(0,1) with z(0) = z(1) = 0. Here and in the following we identify
functions z € L?(0, 1) with functions z € L?(R) where we think of them being ex-
tended by zero outside of [0, 1].
Proof of (2.5a), (2.5b). It is sufficient to prove (2.5b) because the space
{z€ H'(0,1) : 2(0) = z(1) =0} is dense in L*(0,1), and the operators z — Wy * 2
are uniformly bounded from L?(0, 1) into L?(R).

Let the Fourier transform be defined by

oo

(F2) (1) ;:\/Lz_n / 2(s)eds, 1€ER,

for z € S, where the Schwarz space S is defined by

S:= {ze C”(R) : sup t”z(‘D(Z)‘ <eoforall p,ge€ No}-
teR

With this normalization, Plancherel’s theorem and the convolution theorem take the
form (see [41])

1F2ll o) = lellpamy s Fluxz)(t) = V2m (Fu)(t) (F2)(t), 1 €R,

forall z,u € S. Because S is dense in L?(RR), these formulas hold also for z € L*(R).
Now we combine these properties and conclude that

1oz = 2llgy = I1F (Wa +2) = Felagey = || [V27F (wa) 1] 72

2(R)
for every z € L*(0, 1). Partial integration yields that
FE0) = = /1 ()M =~ /1 2(s)eds = (~it) (F2) 1)
| 27 0 van 0

for all z € H'(0,1) with z(0) = z(1) = 0. We define the function ¢ by

O (1) ::,l [1 —Vz_nf(wa)} :% [1 _e,az,z/ﬂ’ reR.

i

Then we conclude that

1oz —2ll2my = 106 F )| gy < 16l |FE) | 2

= l9alle 171l 20.1)-
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From

(octl) 72 [1-ete]

and the elementary estimate [1 —exp(—7?)] /7 < 22 for all T > 0, the desired
estimate (2.5b) follows.

After these preparations we define the regularization operators Ry, : L>(0,1) —
L5(0,1) by

|90(1)] =

| R

‘&.l&

1
Ra)(0) = 5 (W) ()= [ 5 (vas) (5)ds
0

1
Wa*y / V/oc*y
0

for £ € (0,1) and y € L?(0,1). First, we note that R, is well-defined; that is, maps
L%(0,1) into L3(0,1) and is bounded. To prove that R, is a regularization strategy,
we proceed as in the previous example and show that

(@) [IRayl;2 < 52 [Vll2 forall > 0 and y € L*(0, 1),

(i) ||RaKx||;2 <2 ||x||;2 for all & > 0 and x € L§(0,1); that is, the operators Ro K
are uniformly bounded in L3(0, 1), and
(iii) ||[RoKx —x||;2 <2v2a ||¥||;2 for all o > 0 and x € H} (0, 1), where we have
set
1
H(0,1):={ x€ H'(0,1) : x(0) = x(1) =0, /x(s)ds =0
0

To prove part (i), we estimate with the Cauchy—Schwarz inequality

[Ravllz20,1) = 2 le/x*y||L2(O,l) <2 H‘I/&*yHLz

IN

2 H‘I’fx”u ||yHL2 0,1) \/— ||)’||L (0,1)

for all y € L2(0, 1) because

=

2
el ) = —2/wg(s)ds ~2yu(0) = 2.

0

This proves part (i).
Now lety € H'(0,1) with y(0) = y(1) = 0. Then, by partial integration,

1

1
(Ves2) O = [Valt =9)56)ds = [ yalt =) (5)ds = (wax¥) ().
0

0
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Taking y = Kx, x € L3(0,1) yields

1
(RaK)(0) = (o) (1)~ [ (W x2) (5) s
0

Part (ii) now follows from Young’s inequality.
Finally, we write

1
(RoKx)(1) = x(t) = (Yo x) () = x(1) —/[(ll/a *x) (s) —x(s)] ds
0

because fol x(s)ds = 0. Therefore, by (2.5b),
|RoKx = x|l 12(0.1) < 2 [[Waxx = X[ 20.1) < 2V20 ||¥]] 2

for all x € H}(0,1). This proves part (iii).

Now we conclude that Ry Kx converges to x for any x € L%(O7 1) by (ii), (iii),
and the denseness of H{(0,1) in L3(0,1). Therefore, R, defines a regularization
strategy. From (i) and (iii) we rewrite the fundamental estimate (2.4) as

46
< ——+2V20E
LZ_(x\/ﬁ+ va

if x € H} (0, 1) with ||| 2 < E, y = Kx, and y° € L*(0, 1) such that |[y® — y||,, < .
The choice o = ¢\/8/E again leads to the optimal order O (v/SE).

For further applications of the mollification method, we refer to the monograph
by Murio [180]. There exists an enormous number of publications on numerical

differentiation. We mention only the papers [3, 60, 65, 147] and, for more general
Volterra equations of the first kind, [24, 25, 66,67, 161].

HRay5 —X

A convenient method to construct classes of admissible regularization strategies
is given by filtering singular systems. Let K : X — Y be a linear compact operator,
and let (ij,x;,y;) be a singular system for K (see Appendix A, Definition A.52,
and Theorem A.53). As readily seen, the solution x of Kx =y is given by Picard’s
theorem (see Theorem A.54 of Appendix A) as

|
— (y, (2.6)
g m (v yi)x

provided the series converges; that is, y € R(K). This result illustrates again the
influence of errors in y. We construct regularization strategies by damping the
factors 1/u;.
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Theorem 2.6. Let K : X — Y be compact with singular system (l,x;,y;) and
q:(0,00) x (0,]IK[] — R

be a function with the following properties:

(1) |lg(o,n)| < 1forall oo >0and0 < u < |K]|.
(2) Forevery o0 > 0 there exists c(ot) such that

lg(o, 1) < cla)u forall 0<p <|K].

(3a) lirr%)q(a,,u) =1 for every 0 < . < ||K]|.
o—

Then the operator Ry : Y — X, a > 0, defined by
o 7“
Z ), YEY, 27

is a regularization strategy with ||Ry|| < c(a). A choice o« = o(0) is admissable
ifa(8) = 0and 6c(0(8)) — 0 as 6 — 0. The function q is called a regularizing
filter for K.

Proof. The operators R, are bounded because we have by assumption (2) that

c 1
IRay* = 2 (0, 1)) “2 ||
j=1 j

IN

x 2
ZI )| < ele)? Iyl
=1

that is, ||R¢|| < c¢(et). From

= (o 11; o
RaKx:2Q( ) (Kx,yj)xj, 2 (x,x)x;,
j=1 7 =1

and (Kx,y;) = (x,K*y;) = pj(x,x;), we conclude that

oo

[RaKx— x> =Y (e, 1)) — 11 | (%)) 2.8)

=1

Here K* denotes the adjoint of K (see Theorem A.23). This fundamental represen-
tation will be used quite often in the following. Now let x € X be arbitrary but fixed.
For € > 0 there exists N € N such that

=3

2
2 |(x,xj)|2 < %

n=N+1
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By (3a) there exists o > 0 such that

2
€
[qo, ) —1)* < 2P forall j=1,...,Nand 0 < o < 0.

With (1) we conclude that

N
IRaKx—x|? = 3 [g(o, 1) =11 | (x,x)) |
Jj=1

oo

+ Y gl ) — 172 |(xxp)|?

n=N+1
2 N 2
€ 2 &
< s 2|+ <
2|x7 =

for all 0 < o < 0. Thus we have shown that
RoKx — x (¢ —0) for every x € X. O

In this theorem, we showed convergence of Ry to the solution x. As Examples 2.4
and 2.5 indicate, we are particularly interested in optimal strategies; that is, those
that converge of the same order as the worst-case error. We see in the next theo-
rem that a proper replacement of assumption (3a) leads to such optimal strategies.
In parts (i) and (ii), we assume that the solution x is in the range of K* and K*K,
respectively. In concrete examples, these conditions correspond to smoothness as-
sumptions and boundary conditions on the exact solution x (see Problem 1.3 for an
example).

Theorem 2.7. Let assumptions (1) and (2) of the previous theorem hold.
(i) Let (3a) be replaced by the stronger assumption:

(3b) There exists ¢ > 0 with

|q(a,u)1|§c1? for alloo >0 and 0 < pu < |K||.

If, furthermore, x € R(K*), then

|RaKx—x|| < c1Ve ||z, (2.9a)

where x = K*z.
(ii) Let (3a) be replaced by the stronger assumption:
(3c) There exists co > 0 with

o
lg(o, i) — 1| SCZP Sforall >0 and 0 < p <|K|.
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If, furthermore, x € R(K*K), then

|ReKx—x|| < crex |zl (2.9b)
where x = K*Kz.

Proof. With x = K*z and (x,x;) = t;(z,y;), formula (2.8) takes the form

oo

2 2 2 2
IRaKx —x[* =Y lg(on ) = 117 7 |zy)|” < e [zl
j=1

The case (ii) is proven analogously. O

There are many examples of functions ¢ : (0,e) x (0,||K||]] — R that satisfy
assumptions (1), (2), and (3a-c) of the preceding theorems. We study two of the
following three filter functions in the next sections in more detail.

Theorem 2.8. The following three functions q satisfy the assumptions (1), (2), and
(3a—c) of Theorems 2.6 or 2.7, respectively:

(a) g(a, i) = p?/(a+ p?). This choice satisfies (2) with c(a) = 1/ (2\/at).
Assumptions (3b) and (3c) hold with ¢; = 1/2 and ¢, = 1, respectively.

(b) g(a,u) =1—(1 —au2)1/a for some 0 < a < 1/||K||*. In this case (2) holds
with c(a) = \/a/a. (3b) and (3c) are satisfied with c; = 1/\/2a and ¢c; = 1/a,
respectively.

(c) Let q be defined by

I, u>a,
0, u’<oa.

qlo, 1) = {

In this case (2) holds with c(a) = 1/\/a. (3b) and (3c) are satisfied with
C] =C) = 1.

Therefore, all of the functions q defined in (a), (b), and (c) are regularizing filters
that lead to optimal regularization strategies.

Proof. For all three cases, properties (1) and (3a) are obvious.

(a) Properties (2) and (3b) follow from the elementary estimate

u 1
PR <——= foralla,u >0

2V

because 1 — g(a, i) =t/ (o + p?). Property (3¢) is also obvious.
(b) Property (2) follows immediately from Bernoulli’s inequality:

2
1—(1—a,u2)1/a§1—( _%>_&7

o
thus |g(ee, ) < /lg(o, p)| < v/afocp.
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(3b) and (3c¢) follow from the elementary estimates

fa2ﬁ ! n —a —
w1 u)émadu(l w?) < P

forall f >0and0< pu <1/+/a.

(c) For property (2) it is sufficient to consider the case u? > c. In this case,
g(a, 1) =1 < u/y/a. For (3b) and (3c) we consider only the case u? < a.
Then pt (1 —g(o, 1)) = u < /o and > (1 —g(o, 1)) = 0> < v, 0

We will see later that the regularization methods for the first two choices of g
admit a characterization that avoids knowledge of the singular system. The choice
(c) of g is called the spectral cutoff. The spectral cutoff solution x%9 ¢ X is therefore
defined by

X0 = z 1( ,y,)

w=at

We combine the fundamental estimate (2.4) with the previous theorem and show the
following result for the cutoff solution.

Theorem 2.9. Let y° € Y be such that ||y5 —yH < 0, where y = Kx denotes the
exact right-hand side.

(a) Let K : X — Y be a compact and injective operator with singular system
(4j,xj,y;j). The operators

1
Roy:= Y, —yj)xj, yeY, (2.10)

MfZa J

define a regularization strategy with ||Ry|| < 1/+/o. This strategy is admissible
ifa(8) —0(8—0)and §*/a(8) —0(8 —0).

(b) Let x = K*z € R(K*) with ||z|| < E and ¢ > 0. For the choice a(8) = cd/E, we
have the estimate

(c) Letx=K*Kz € R(K*K) with ||z|| < E and ¢ > 0. The choice 0.(8) = ¢(8 /E)*/3
leads to the estimate

Therefore the spectral cutoff is optimal for the information H K*)~ x|| <Eor
H (K*K xH < E, respectively (if K* is one-to-one).

x“<5>v5—xH < <L+\/E> VSE. 2.11a)
/e

1
a(8),8 _ || < 1/3 §2/3
X xH < (\/24—6) EY3 823, (2.11b)
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Proof. Combining the fundamental estimate (2.4) with Theorems 2.7 and 2.8 yields
the error estimate

o
x“"s—xH < W—FV(X ||ZH
for part (b) and

o)
v = < &+ alel

for part (c). The choices a(8) = ¢8/E and o(8) = ¢(8/E)*? lead to the esti-
mates (2.11a) and (2.11b), respectively. O

The general regularization concept discussed in this section can be found in many
books on inverse theory [17, 98, 165]. It was not the aim of this section to study
the most general theory. This concept has been extended in several directions. For
example, in [74] (see also [78]) the notions of strong and weak convergence and
divergence are defined, and in [165] different notions of optimality of regularization
schemes are discussed.

The idea of using filters has a long history [97, 241] and is very convenient
for theoretical purposes. For given concrete integral operators, however, one often
wants to avoid the computation of a singular system. In the next sections, we
give equivalent characterizations for the first two examples without using singular
systems.

2.2 Tikhonov Regularization

A common method to deal with overdetermined finite linear systems of the form
Kx =y is to determine the best fit in the sense that one tries to minimize the defect
||Kx — y|| with respect to x € X for some norm in Y. If X is infinite-dimensional and
K is compact, this minimization problem is also ill-posed by the following lemma.

Lemma 2.10. Let X and Y be Hilbert spaces, K : X — Y be linear and bounded,
andy €Y. There exists £ € X with ||[K—y| < ||Kx—y|| for all x € X if and only if
X € X solves the normal equation K*KX = K*y. Here, K* : Y — X denotes the adjoint
of K.

Proof. A simple application of the binomial theorem yields

5 . 5 212
1Kx—y|* = || K% = y|[* = 2Re (K%~ y, K (x—£)) + | K (x = 2)]
= 2Re (K*(K%—y),x— &) + |[K(x— )|
for all x, & € X. If £ satisfies K*K£ = K*y, then |[Kx— y|® — ||K% — y|* > 0; that
is, £ minimizes ||Kx —y||. If, on the other hand, £ minimizes ||[Kx — y||, then we

substitute x = £+ ¢z for any # > 0 and z € X and arrive at

0 < 2tRe (K*(K£—y),z)+1%||Kz*.
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Division by ¢ > 0 and  — 0 yields Re (K*(K£—y),z) > 0 for all z € X; that is,
K*(K%—y) =0, and £ solves the normal equation. O

As a consequence of this lemma we should penalize the defect (in the language
of optimization theory) or replace the equation of the first kind K*KxX = K*y with
an equation of the second kind (in the language of integral equation theory). Both
viewpoints lead to the following minimization problem.

Given the linear, bounded operator K : X — Y and y € Y, determine x* € X that
minimizes the Tikhonov functional

Jo(x) = |[Kx—y|* + a||x]]* forxeX. (2.12)
We prove the following theorem.

Theorem 2.11. Let K : X — Y be a linear and bounded operator between Hilbert
spaces and oo > 0. Then the Tikhonov functional Jo, has a unique minimum x* € X.
This minimum x* is the unique solution of the normal equation

ox* + K*Kx® = K*y. (2.13)

Proof. Let (x,) C X be a minimizing sequence; that is, Jy (x,) — I := infrex Jo (x)
as n tends to infinity. We show that (x,) is a Cauchy sequence. Application of the
binomial formula yields that

1 1 o
Jo(xn) +Jo(Xm) = 2J <§(xn +xm)> + 2 ||K(xn_xm)||2+5 ||x,,—xm||2

o
>21+ 3 [ER——(k

The left-hand side converges to 2/ as n,m tend to infinity. This shows that (x,) is
a Cauchy sequence and thus convergent. Let x* = lim,_... x,, noting that x* € X.
From the continuity of J,, we conclude that Jy (x,) — Jo (x*); that is, Jo(x*) = I.
This proves the existence of a minimum of Jy.

Now we use the following formula as in the proof of the previous lemma:

Jo(x) —Jo(x*) = 2Re (Kx* —y,K(x— x%)) + 2 aRe (x*,x — x%)
+ K@ =) + ot [l =
= 2Re (K*(Kx* —y) + ox*, x — x%)
+ (K (e —x®)|* + e flx— x> 2.14)

for all x € X. From this, the equivalence of the normal equation with the mini-
mization problem for J,, is shown exactly as in the proof of Lemma 2.10. Finally,
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we show that oo/ + K*K is one-to-one for every o > 0. Let ax + K*Kx = 0.
Multiplication by x yields o(x,x) 4+ (Kx,Kx) = 0; that is, x = 0. O

The solution x* of Eq. (2.13) can be written in the form x* = R,y with
Ry = (al+K*'K)"'K*: Y — X. (2.15)

Choosing a singular system (u,x;,y;) for the compact operator K, we see that Ry
has the representation

y,yj)x], yey, (2.16)

5 () x 2

with g(o, ) = u?/ (o + p?). This function g is exactly the filter function that was
studied in Theorem 2.8, part (a). Therefore, applications of Theorems 2.6 and 2.7
yield the following.

Theorem 2.12. Let K : X — Y be a linear, compact operator and o > 0.

(a) The operator ol + K*K is boundedly invertible. The operators Ry, : Y — X from
(2.15) form a regularization strategy with ||Rq|| < 1/ (2y/et). It is called the

Tikhonov regularization method. Roy® is determined as the unique solution
x%% € X of the equation of the second kind

x%0 4 KFKx®0 = K*y9. (2.17)
Every choice a(8) — 0 (8 — 0) with §%/a(8) — 0 (8 — 0) is admissible.

(b) Let x = K*z € R(K*) with ||z|| < E. We choose o(0) = ¢ /E for some ¢ > 0.
Then the following estimate holds:

(8), _xH < % (1/Ve+Ve) VSE. (2.18a)

(c) Letx=K*Kz € R(K*K) with ||z|| < E. The choice a(8) = c(8/E)?*/> for some
¢ > 0 leads to the error estimate

Therefore, Tikhonov’s regularization method is optimal for the information
H(K*)_le <Eor H(K*K)_IXH < E, respectively (provided K* is one-to-one).

1
a(8)8 _ || < 1/3 52/3
X xH < (2\/E+C> E'/26°°. (2.18b)

Proof. Combining the fundamental estimate (2.4) with Theorems 2.7 and 2.8 yields
the error estimate
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for part (b) and
0
x0 x| < o=+
2Va

| 7a

for part (c). The choices a(8) = ¢8/E and o(8) = ¢(8/E)*? lead to the esti-
mates (2.18a) and (2.18b), respectively. O

The eigenvalues of K tend to zero, and the eigenvalues of a/ + K*K are bounded
away from zero by o > 0.

From Theorem 2.12, we observe that ¢ has to be chosen to depend on & in such a
way that it converges to zero as § tends to zero but not as fast as §2. From parts (b)
and (c), we conclude that the smoother the solution x is the slower o has to tend
to zero. On the other hand, the convergence can be arbitrarily slow if no a priori
assumption about the solution x (such as (b) or (¢)) is available (see [222]).

It is surprising to note that the order of convergence of Tikhonov’s regularization
method cannot be improved. Indeed, we prove the following result.

Theorem 2.13. Let K : X — Y be linear, compact, and one-to-one such that the
range R(K) is infinite-dimensional. Furthermore, let x € X, and assume that there
exists a continuous function @, : [0,00) — [0, ) with a(0) = 0 such that

(%im ‘ x®(6).8 —xH 523 =0
—0

for every y5 €Y with ||y‘S — Kx|| < 8, where x*(9)-% ¢ X solves (2.17). Then x = 0.

Proof. Assume, on the contrary, that x # 0.
First, we show that ot(8) 8-%/> — 0. Set y = Kx. From

(a(8)1+KK) (x990 —x) = K* (0 —y) — (&) x,

we estimate

o(3)] el < K3+ ((3) + K1)

@3

We multiply this equation by §2/3 and use the assumption that x*(%):9 tends to x
faster than 82/3 to zero; that is,

This yields a(8) 82/ — 0.
In the second part, we construct a contradiction. Let (u;,x;,y;) be a singular
system for K. Define

x*(0):0 —x” 8723 0.

§:=pj and Y :=y+§y; jeN.
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Then §; — 0 as j — o and, with a; := a/(6;),

xaj"(s/ —X = <xaj’5f —xaj) + (xaj —x)

(oI +K*K) ' K*(8;y;) + (x% —x)

Sill:
= j“jzxj+(xa-f—x).

Here x% is the solution of Tikhonov’s Eq. (2.17) for y® replaced by y. Because also
[lx% — x| 5;2/3 — 0, we conclude that

1/3
5j/ Mj .
2—»07 Jj — oo,
But, on the other hand,
831, 2 ~1
i B B = (1+0;87°7) " —1, j—e

2 = 2
ot oGt
This is a contradiction. O

This result shows that Tikhonov’s regularization method is not optimal for
stronger “smoothness” assumptions on the solution x; that is, under the assump-
tion x € (K*K)" (X) for some r € N, r > 2. This is in contrast to, e.g., Landweber’s
method or the conjugate gradient method, which are discussed later.

The choice of o in Theorem 2.12 is made a priori; that is, before starting the
computation of x* by solving the least squares problem. In Sects. 2.5 to 2.7 we
study a posteriori choices of o that is, choices of o made during the process of
computing x*.

It is possible to choose stronger norms in the penalty term of the Tikhonov func-
tional. Instead of (2.12), one can minimize the functional

2
HKx—y‘sH +olx]]] onX,

where |||, is a stronger norm (or only seminorm) on a subspace X; C X. This was
originally done by Phillips [199] and Tikhonov [237,238] (see also [86]) for lin-
ear integral equations of the first kind. They chose the seminorm ||x||; := ||x'||,2
or the H'-norm ||x|; := (|lx[[7> + ||x’||iz)l/2. By characterizing ||-||, through a
singular system for K, one obtains similar convergence results as above in the
stronger norm ||-||,. For further aspects of regularization with differential operators
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or stronger norms, we refer to [61, 107,163, 187] and the monographs [98, 99, 165].
The interpretation of regularization by smoothing norms in terms of reproducing
kernel Hilbert spaces has been observed in [120].

2.3 Landweber Iteration

Landweber [155], Fridman [87], and Bialy [18] suggested rewriting the equation
Kx =y in the form x = (I —aK*K)x + aK"y for some a > 0 and iterating this
equation; that is, computing

=0 and ¥"=(I—aK'K)x" ' +aK"y (2.19)

for m = 1,2,... . This iteration scheme can be interpreted as the steepest descent
algorithm applied to the quadratic functional x — ||Kx — y||* as the following lemma
shows.

Lemma 2.14. Let the sequence (x™) be defined by (2.19) and define the functional
v:X —Rbyy) = % |Kx—y||*, x € X. Then v is Fréchet differentiable in every
z€X and

V' (z)x =Re(Kz—y,Kx) =Re (K*(Kz—y),x), x€eX. (2.20)

The linear functional y'(z) can be identified with K*(Kz —y) € X in the Hilbert
space X over the field R. Therefore, X" = X"~ —aK*(Kx"~! —y) is the steepest
descent step with stepsize a.

Proof. The binomial formula yields

1
¥(z+x) — w(z) —Re(Kz—yKx) = 5 1 Kx||?

and thus

1
[Wlz+2) — w(e) —Re(Ke—y,Kx)| < 3 K| P,

which proves that the mapping x — Re (Kz — y,Kx) is the Fréchet derivative of
Y atz. O

Equation (2.19) is a linear recursion formula for x”. By induction with respect
to m, it is easily seen that x™ has the explicit form x™ = R,,y, where the operator
R, : Y — X is defined by

m—1
Ru:=ay (I-aK'K)*K* form=1,2,.... (2.21)
k=0
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Choosing a singular system (1, x;,y;) for the compact operator K, we see that R,y
has the representation

oo m—1
Ruy=a Y pj Y, (1—au:) (yy))
j=1 k=0
< 1 2\m
=3 — [1=(1—au)"] (»yj)x;
=
nd m
=3 ) (s ey, (2.22)
n=0 “J

with g(m, i) = [1 — (1 —au®)™]. We studied this filter function ¢ in Theorem 2.8,
part (b), when we defined o = 1/m. Therefore, applications of Theorems 2.6 and
2.7 yield the following result.

Theorem 2.15. (a) Again let K : X — Y be a compact operator and let 0 < a <
1/||K||%. Define the linear and bounded operators Ry, : Y — X by (2.21). These
operators R, define a regularization strategy with discrete regularlzatlon param-
eter o =1/m, m €N, and |Ry|| < \/am. The sequence x™® = R,,y® is computed
by the iteration (2.19); that is,

=0 and ¥"°=(I—aK*K)X" "% 4+ ak*y® (2.23)

form=1,2,.... Every strategy m(8) — oo (§ — 0) with §>m(8) — 0 (8 — 0)
is admissible.

(b) Again let x = K*z € R(K*) with ||z|| < E and 0 < ¢| < c3. For every choice
m(8) with ¢, 5 <m(0) <c % the following estimate holds:

HMW fo <e3VOE (2.242)

for some c3 depending on cy, ¢y, and a. Therefore, the Landweber iteration is
optimal for the information H(K*)’le <E.

(c) Now let x = K*Kz € R(K*K) with ||z]| < E and 0 < ¢ < ca. For every choice
m(8) with ¢ (E/8)*? < m(8) < c2(E/8)*3, we have

Hx'"@»ﬁ —xH < 3 EV3 823 (2.24b)

for some c3 depending on c1, ¢y, and a. Therefore, the Landweber iteration is
also optimal for the information H (K*K)’le <E.

Proof. Combining the fundamental estimate (2.4) with the Theorems 2.7 and 2.8
yields the error estimate

o ] < 8 vam+—= 14
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for part (b) and
1
K8 —xH < dvam+ - IIzll

for part (c). Replacing m in the first term by the upper bound and in the second by
the lower bound yields estimates (2.24a) and (2.24b), respectively. 0O

The choice x° = 0 is made to simplify the analysis. In general, the explicit itera-
tion x™ is given by

m—1
X"=a Y (I-aK*K)'K*'y+(I—aK*K)"x", m=1.2,....
k=0

In this case, R, is affine linear; that is, of the form R,y = 7" + S,,y, y € Y, for some
7" € X and some linear operator Sy, : ¥ — X.

For this method, we observe again that high precision (ignoring the presence of
errors) requires a large number m of iterations but stability forces us to keep m small
enough.

It can be shown by the same arguments as earlier that Landweber’s method is
optimal also with respect to stronger norms. If x € (K*K)" (X) for some r € N, the
following error estimate holds (see [165]):

(8)8 _ || < cpl/@r1) g2r/@r+1)
S E ’

where E is a bound on (K*K) "x. Therefore, this situation is different from
Tikhonov’s regularization method (see Theorem 2.13).

We come back to the Landweber iteration in the next chapter, where we show that
an optimal choice of m(8) can be made a posteriori through a proper stopping rule.

In this section, we have studied only the particular cases x € R(K*) and
x € R(K*K), which correspond to two particular smoothness assumptions in
concrete applications. It is possible to extend the theory to the case where
x € R((K*K)°/?). Here, (K*K)°/? denotes the (fractional) power of the self-
adjoint operator K*K. We come back to this generalization in Sect. 2.7 (see (2.42)
and Problems 2.4 and 2.5).

Other possibilities for regularizing first kind equations Kx =y with compact oper-
ators K, which we have not discussed, are methods using positivity or more general
convexity constraints (see [26,29,214,215].

2.4 A Numerical Example

In this section, we demonstrate Tikhonov’s regularization method for the following
integral equation of the first kind:

1
/(1 +1s)ex(s)ds =€, 0<t<I, (2.25)
0
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with unique solution x(¢) = 1 (see Problem 2.1). The operator K : L*(0,1) — L*(0, 1)
is given by

I
(Kx)(t) = /(1 +1s5)e” x(s)ds
0

and is self-adjoint; that is, K* = K. We note that x does not belong to the range of K
(see Problem 2.1). For the numerical evaluation of Kx, we use Simpson’s rule. With
ti=1i/n,i=0,...,n, neven, we replace (Kx)(#;) by

j=0 or n,

n
z (1+1¢j)€"ix(t;) where wj= j=13,....n—1,

3

4
3n’
2
— j=2,4,...,n—2.

3n ) .] ) ) ) n

We note that the corresponding matrix A is not symmetric. This leads to the dis-
cretized Tikhonov equation arx®% 4+ A%x*% = Ay®. Here, y® = (yla) € R is
a perturbation (uniformly distributed random vector) of the discrete right-hand
yi = exp(i/n) such that

I R N < I -
b= [ St < 8

i=0

The average results of ten computations are given in the following tables, where we
have listed the discrete norms fl —xo‘ﬁ!z of the errors between the exact solution
x(t) = 1 and Tikhonov’s approximation x*?.

In Table 2.1, we have chosen 6 = 0; that is, only the discretization error for
Simpson’s rule is responsible for the increase of the error for small o. This differ-
ence between discretization parameters n = 8 and n = 16 is noticeable for o¢ < 1073,
We refer to [243] for further examples.

Table 2.1 Tikhonov

o n=3_§ n=16
regularization for § =0

107! 2451071 2351071
1072 72%1072  6.8%1072
1073 26%1072  2.4%1072
1074 1.3%1072 1.2%1072
1073 2.6x1073 2.3%1073
10-° 93x107%  8.7x1074
1077 351074 44107
10-8 1.3%1073 3.2%1073
107° 1.6x1073 931075
10710 394103 2.1x1074
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Table 2.2 Tikhonov a 5§=00001 §=0001 6=001 &=0.1

regularization for & > 0 100 02317 0.2317 02310  0.2255
102 0.0681 0.0677 00692  0.1194
103 0.0238 0.0240 0.0268  0.1651
104 0.0119 0.0127 01172 1.0218
105 0.0031 0.0168 02553 3.0065
105 0.0065 0.0909 0.6513  5.9854
107 0.0470 0.2129 24573 30.595
108 0.1018 0.8119 5.9775
1077 0.1730 1.8985  16.587
1071 1.0723 14.642

Table 2.3 Landweber m 5§=00001 =000 =001 &=0.1

teration 1 0.8097 0.8097 0.8088 0.8135
2 0.6274 0.6275 0.6278 0.6327
3 0.5331 0.5331 0.5333 0.5331
4 0.4312 04311 0.4322 0.4287
5 0.3898 0.3898 0.3912 0.3798
6 0.3354 03353 0.3360 0.3339
7 03193 03192 03202 0.3248
8 0.2905 0.2904 0.2912 0.2902
9 0.2838 0.2838 0.2845 0.2817
10 02675 0.2675 0.2677 0.2681
100 0.0473 0.0474 0.0476 0.0534
200 0.0248 0.0248 0.0253 0.0409
300 0.0242 0.0242 0.0249 0.0347
400 0.0241 0.0241 0.0246 0.0385
500 0.0239 0.0240 0.0243 0.0424

In the Table 2.2, pcr we always took n = 16 and observed that the total error first
decreases with decreasing ¢ up to an optimal value and then increases again. This
is predicted by the theory, in particular by estimates (2.18a) and (2.18b).

In the Table 2.3, we list results corresponding to the iteration steps for
Landweber’s method with parameter a = 0.5 and again n = 16.

We observe that the error decreases quickly in the first few steps and then slows
down. To compare Tikhonov’s method and Landweber’s iteration, we note that the
error corresponding to iteration number m has to be compared with the error cor-
responding to oo = 1/(2m) (see the estimates in the proofs of Theorems 2.15 and
2.12). Taking this into acount, we observe that both methods are comparable where
precision is concerned. We note, however, that the computation time of Landweber’s
method is considerably higher than for Tikhonov’s method, in particular if the error
0 is small. On the other hand, Landweber’s method is stable with respect to pertur-
bations of the right-hand side and gives very good results even for large errors 6.

We refer also to Sect. 3.5, where these regularization methods are compared with
those to be discussed in the subsequent sections for Symm’s integral equation.
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2.5 The Discrepancy Principle of Morozov

The following three sections are devoted to a posteriori choices of the regularization
parameter «. In this section, we study a discrepancy principle based on the Tikhonov
regularization method. Throughout this section, we assume againthat K : X — Y is
a compact and injective operator between Hilbert spaces X and ¥ with dense range
R(K) C Y. Again, we study the equation

Kx=y

for given y € Y. The Tikhonov regularization of this equation was investigated in
Sect. 2.2. It corresponds to the regularization operators

Ry = (el +K*K)"'K* for o >0,

that approximate the unbounded inverse of K on R(K). We have seen that x* = Ry
exists and is the unique minimum of the Tikhonov functional

Jo(x) = [|[Kx—y|* +a|x]*, xeX, o>0. (2.26)
More facts about the dependence on ¢ and y are proven in the following theorem.

Theorem 2.16. Lety €Y, a > 0, and x* be the unique solution of the equation
ox* + K*Kx® = K*y. (2.27)

Then x* depends continuously on'y and a. The mapping o, +— ||x* || is monotonously
nonincreasing and
lim x* = 0.

o —so0

The mapping o — ||Kx®* —y|| is monotonously nondecreasing and

lim Kx* =y.
a—0

If K*y # 0, then strict monotonicity holds in both cases.

Proof. We proceed in four steps.

(i) Using the definition of J,, and the optimality of x*, we conclude that
2 2
o [l ])7 < T (x*) < Ja(0) = Iyl

that is, ||x%|| < ||y|| /+/c. This proves that x* — 0 as o — oo.
(ii) We choose o > 0 and 8 > 0 and subtract the equations for x* and xB:

o (xa —xﬁ) +K*K (xa —xﬂ> +(a—PB)xP =o0. (2.28)
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Multiplication by (x* —xP) yields

o ‘ x* —xﬁHz + HK (xa —xﬁ) H2 =pB-a) (xﬁ,xa —xﬁ) . (2.29)

From this equation, we first conclude that

1% — P

[l

xa—xﬁHz <IB—of |(Fx* =) < |p—al [+ |

d

that is,

o xa—xﬁH <IB—qf HxﬁH <|B—o L.

VB

This proves the continuity of the mapping o — x%.

(i) Now let B > o > 0. From (2.29) we conclude that (xf,x* —xP) > 0. Thus
B> < (xB,x®) < [|xB]| [[x*[}; that is,
tonicity of o — [|x%||.

(iv) We multiply the normal equation for xP by (x“ —xP ) This yields

xP|| < ||x¥||, which proves mono-

B (xﬂ,x“ —xﬁ> + (Kxﬁ -y, K(x* —xﬁ)) =0.
Now let o« > . From (2.29), we see that (xﬁ,x"‘ fxﬁ) < 0; that is,
2
o< (8 nbie ) =0 ) o]

The Cauchy-Schwarz inequality yields || KxP — y|| < [|Kx* —y].
(v) Finally, let € > 0. Because the range of K is dense in Y, there exists x € X with
|[Kx —y||* < £2/2. Choose oy such that a ||x||* < £2/2. Then

IKx* = y[* < Jo(x*) < Ja(x) < €%

that is, |Kx* — y|| < & for all o < atp. |

Now we consider the determination of ¢(6) from the discrepancy principle,
see [176-178].

We compute oc = (8) > 0 such that the corresponding Tikhonov solution X%,
that is, the solution of the equation

(an’5 —l—K*Kxa’a = K* 57
that is, the minimum of

5|2 2
Jas(x) = [[Kr=3® |+ el
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satisfies the equation
HKx""‘S—ySH —s. (2.30)

Note that this choice of ¢ by the discrepancy principle guarantees that, on the one
side, the error of the defect is d and, on the other side, ¢ is not too small.

Equation (2.30) is uniquely solvable, provided ||y® —y|| < & < [[y®||, because
by the previous theorem

i et =] = ] > 5

o —so0

and
lim HKxa’é—yaH =0<9d.
a—0

Furthermore, ot — ||Kx*? — y|| is continuous and strictly increasing.

Theorem 2.17. Let K : X — Y be linear, compact and one-to-one with dense range
inY. Let Kx=ywithxeX,y€Y, y5 €Y such that Hy—y5|| <d< Hy‘SH Let the

Tikhonov solution x*®) satisfy HI()CO“‘S)’6 —y‘sH =0 forall & € (0,8y). Then

(a) x*0)8 _, x for § — O; that is, the discrepancy principle is admissible.
(b) Letx =K*z € K*(Y) with ||z|| <E. Then

‘ x%(9).8 —xH <2V§E.

Therefore, the discrepancy principle is an optimal regularization strategy under
the information H (K*)’le <E.

Proof. x® := x®(9):% minimizes the Tikhonov functional
(5) 2 sl
IO () 1= Jo5).5(x) = (&) Il + |[Kx = 57|
Therefore, we conclude that

o(8) Hx5 H2 182 = JO ) < g0 (x)

o(8) |l + |y
o(8) | + &,

IN

and hence Hx5 || < [|x|| for all § > 0. This yields the following important estimate:

2 2
Hx5 —xH - Hx5 H —2Re (x%, %) + x|

<2 [”xHZ—Re(x‘S,x)} =2Re(x—x%,x).
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First, we prove part (b): Let x = K*z, z € Y. Then

5 I 5 5
Hx —xH < 2Re(x—x°,K'z) =2Re(y— Kx°,7)

< 2Re(y—y°,2) +2Re (y° —Kx® 2)
<20 |z||+28||z]| =48]z]| <40E.

(a) Now let x € X and € > 0 be arbitrary. The range R(K*) is dense in X because
K is one-to-one. Therefore, there exists £ = K*z € R(K™) such that ||£— x| < &/3.
Then we conclude by similar arguments as above that

s |° 5 5
Hx fo <2Re(x—x°,x—%)+2Re(x—x°,K"z)

€
<2 foxEH 3 +2Re(y—Kx®,2)

<2 Hx—xaH §+45 Izl -

This can be rewritten as (||x—x%|| — 33/3)2 <e?/9+46 |z
Now we choose & > 0 such that the right-hand side is less than 42 /9. Taking
the square root, we conclude that Hx —x || < ¢ for this 6. O

The condition || y5 || > ¢ certainly makes sense because otherwise the right-hand
side would be less than the error level §, and x® = 0 would be an acceptable approx-
imation to x.

The determination of o/(0) is thus equivalent to the problem of finding the zero

of the monotone function ¢ (o) := || Kx*? —y5Hz — &2 (for fixed § > 0). It is not

necessary to satisfy the equation HK)C"“S — y5H = § exactly. An inclusion of the
form

16 < HKJCO"‘3 —yaH <0

is sufficient to prove the assertions of the previous theorem.

The computation of o/(d) can be carried out with Newton’s method. The
derivative of the mapping o — x*% is given by the solution of the equation
(al+K*K) %x‘m = —x®%9 as is easily seen by differentiating (2.27) with re-
spect to c.

In the following theorem, we prove that the order of convergence O (/8 ) is best

possible for the discrepancy principle. Therefore, by the results of Example 1.20, it
cannot be optimal under the information || (K*K)~'x|| < E.

Theorem 2.18. Let K be one-to-one and compact, and let o((8) be chosen by the
discrepancy principle. Assume that for every x € R(K*K), y = Kx # 0, and all
sequences 8, — 0 and y* € Y with Hy—ys" < 6, and Hy‘s”H > &, for all n, the
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6n),6n

corresponding Tikhonov solutions x" = x( converge to x faster than /8, to

zero; that is,

|*" —x|| — 0 asn— oo,

\/_

Then the range R(K) has to be finite-dimensional.

Proof. We show first that the choice of «(8) by the discrepancy principle implies
the boundedness of c(8)/8. Abbreviating x := x*(8):8  we write

el = = )= b =kt < ]

- ﬁ HKK*(y5 —KxS)H < % K12,

where we applied K to (2.27). This yields ot(8) < 8 ||K||*/ (||y5 |- 9).

From |y°]| > [l — |ly=»°|| = Ily| — 8. we conclude also that |[y°| — & is
bounded away from zero for sufficiently small §. Thus we have shown that there
exists ¢ > 0 with &¢(8) < ¢6 for all sufficiently small §.

Now we assume that dimR(K) = e and construct a contradiction. Let (i;,x;,y;)
be a singular system of K and define

y:=y; and y5” ‘=y1+ 06y, with §,:= /.L,%.

Then 8, — 0 as n — o, y € R (K(K*K)) for every k € N and Hy‘s"fyH =06, <
V1+62 = || y‘s" H Therefore, the assumptions for the discrepancy principle are sat-
isfied. The solutions of Kx = y and &(§,)x" + K*Kx" = K*y% are given by

U O

1
x=—x; and x"= X1+ Xn,
w a(G)+up " ad)Fu]

respectively. o/(J,) has to be chosen such that ||Kx” —y% | = §,. We compute

Yy — — o(6,) x4 Uy On X
i (a(8)+ud) " a8+
and hence forn > 2
=l > s = VB e > VA
= o(8) + 2 1+ a(8, O
This contradicts ||x" — x|| = 0(v/8,). O

We remark that the estimate o:(8) < & |[K||* / (||y?|| — 8) derived in the previous

proof suggests to use & || K||* / (||y5 || — &) as a starting value for Newton’s method
to determine o¢(5)!
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There has been an enormous effort to modify the original discrepancy principle
while still retaining optimal orders of convergence. We refer to [76,83,90,191,217].

2.6 Landweber’s Iteration Method with Stopping Rule

It is very natural to use the following stopping criteria, which can be implemented
in every iterative algorithm for the solution of Kx =y.

Let r > 1 be a fixed number. Stop the algorithm at the first occurrence of m €
No with ||[Kx™% —y®|| < 8. The following theorem shows that this choice of m
is possible for Landweber’s method and leads to an admissible and even optimal
regularization strategy.

Theorem 2.19. Let K : X — Y be linear, compact, and one-to-one with dense range.
Let r > 1 and ¥ € Y be perturbations with Hy—y5|| < 0 and HySH > ré for all

8 € (0,8). Let the sequence x™°, m =0,1,2,..., be determined by Landweber’s
method; that is,

S — ymd e (y—Kx’"ﬁ) . m=0,1,2,..., 2.31)

for some 0 < a < 1/ ||K||*. Then the following assertions hold:

(1) limy; e Hme5 —y0 || = 0 for every 6 > 0; that is, the following stop-
ping rule is well-defined: Let m = m(8) € Ny be the smallest integer with
Hme’S —y‘SH <ré.

(2) 8%m(8) — 0 for 8§ — O; that is, this choice of m(8) is admissible. Therefore, by
the assertions of Theorem 2.15, the sequence x(8),8 converges to X.

(3) If x=K*z€ R(K*) or x = K"Kz € R(K*K) for some z with ||z|| < E, then we
have the following orders of convergence:

me((S),é —xH <cVES or (2.32a)
’x'"(‘”ﬁ —x” < cE'3§%3, (2.32b)

respectively, for some ¢ > 0. This means that this choice of m(8) is optimal.

Proof. In (2.22), we showed the representation

i (1—auj)"

Y, Yj)Xj
0 (%yj)xj

for every y € Y and thus

|KRmy —y|I* = 2‘1 (1—au?)™ ||
=
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From ’1 —auf’ < 1, we conclude that ||[KR,, —I|| < 1. Application to y° instead

of y yields
2 &= om 2
[&ee =3 = 3 (- awd)™ |00
j=1
(1) Let € > 0 be given. Choose J € N with
o 2 e
> ‘(y‘s,yj)‘ <3
j=T+1
Because |1 —a,uj2-|2m — 0 as m — oo uniformly for j = 1,...,J, we can find mg € N
with
2m 2
> (1-auj) ‘(y‘s,yj)‘
j=1
J &2
< — < — > .
_]ir}ax 1 a,u] g’ ,y]’ <3 for m > my

This implies that HK)C’”‘S —y5||2 < €2 for m > myp; that is, that the method is
admissible.

It is sufficient to prove assertion (2) only for the case m(8) — oo. We set m :=
m(38) for abbreviation. By the choice of m(8), we have for y = Kx

1KR-1y =31 = |[KRi-13° =32 || || (KRt =)y =5%)|
>rd—||[KRy_1—1|8>(r—1)4,

and hence
m(r—1)28> <m ¥, (1—ap?)™" 7 |oy)|
j=1
=3 m (1 —ap?)™" 7 @2 || (2.33)
j=1

We show that the series converges to zero as 6 — 0. (The dependence on J is hidden
in m.) First we note that mu?(1 —au?)*"=2 < 1/(2a) for all m > 2 and all u > 0.
Now we again split the series into a finite sum and a remaining series and esti-

2m—2
mate in the “long tail” the expression m (1 - a,ujz) {17 by 1/(2a) and note that

2m—2
m (1 — a,uf) tends to zero as m — eo uniformly in j € {1,...,J}. This proves

convergence and thus part (2).
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For part (3) we remind the reader of the fundamental estimate (2.4), which we
need in the following form (see Theorem 2.15, part (a)):

me’éfo < 8+/am+ |RuKx—x]. (2.34)

First, let x = K*z and ||z|| < E. Writing m = m(8) again we conclude from (2.33)
that

(172827 < X (1-an))™ it ()|
j=1

The estimate m*p* (1 — au?) =2

<1/a*forallm>2and 0 < u < 1//a yields
(r—1) 52m2< > Nzl

that is, we have shown the upper bound

Now we estimate the second term on the right-hand side of (2.34). From the
Cauchy-Schwarz inequality, we conclude that

hind 2m
(= RuK)x|* = 3 12 (1 —ap?) ™ |(zy))?
j=1

= 2 (a2 (1= ad)" |zl | [ (1= aud)" (z0)) ]
p=

<\/iu?(1—au?)zm(w>l2 3. (1-ai)™ )P
j=N——~——

Jj=1
<1

< IKRmy =y 2l < E [||(1= KRn)v=3®)| + | 0 = KRn)y?| ]
<E(1+7r)8.

Therefore, we conclude from (2.34) that

KM0)8 _ x SB\/(T(&—F R/ Kx—x SC\/E_S.
| | Ry K=

Now let x = K*Kz with ||z|| < E. By the same arguments as earlier, we conclude
that

(r—1)? 2 (1—au.,2)2m72 uf |(z,yj)]2.



54 2 Regularization Theory for Equations of the First Kind

Now we use the estimate > u° (1- a‘uz)zm—z <27/(8a) forallm>2,0<pu <
1/+/a, and we arrive at

27

—1)?8°<
(r=1) ~ 8a’m

that is,
m(8) < cE*P 8723,

for some ¢ > 0. To prove the second estimate (2.32b), we use Holder’s inequality

o o pr., 1/q
2 lajbjl < [2 Iajl"] [2 Ibﬂ] , (2.35)
j=1 j=1 J=1
where p,q > 1 with 1 /p+1/g=1. With p =3/2 and ¢ = 3, we conclude that
- 2
10— RuK)x|> = Y i} (1= ap?)™ | (z.x))2
j=1

Y [ (1= amd) ™ ) ) [ (1 - @)™ zxp) P
j=1

1/3
oo 23|
2m
<|Sust-ad | | S0 a et
j=1 j=1——~—
<1
< [IK Ry = YII*7 (1217
that is,
(I = RuK)x|| < E'3 (14 7)%38%3.
Therefore, (2.34) yields
Hx’"('s)75 —xH < d+/am(d)+ HRm((g)Kx—xH < cE'3 823, O

It is also possible to formulate a similar stopping criterion for Morozov’s dis-
crepancy principle. Choose an arbitrary monotonic decreasing sequence (0,) C
R with limy, . 0y = 0. Determine m = m(6) as the smallest integer m with
HKx“'"*S - y5H < r8. For details, we refer the reader to [79] or [165].

One can construct more general classes of methods through the spectral repre-
sentation of the solution x.

Comparing the regularizer x® of Landweber’s method with the true solution x, we
observe that the function ¢(u) = 1/u, u > 0, is approximated by the polynomial
Pu(u) = [1— (1 —au®)™] /u. It is certainly possible to choose better polynomial
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approximations of the function  — 1/u. Orthogonal polynomials are particularly
useful. This leads to the v-methods; see [20, 106], or [108].

A common feature of these methods that is very crucial in the analysis is the
fact that all of the polynomials IP,, are independent of y and y®. For the important
conjugate gradient algorithm discussed in the next section, this is not the case, and
that makes an error analysis much more difficult to obtain.

2.7 The Conjugate Gradient Method

In this section, we study the regularizing properties of the conjugate gradient
method. Because the proofs of the theorems are rather technical, we only state the
results and transfer the proofs to an appendix.

First, we recall the conjugate gradient method for least squares problems for
overdetermined systems of linear equations of the form Kx = y. Here, K € R™*"
and y € R™ with m > n are given. Because it is hopeless to satisfy all equations
simultaneously, one minimizes the defect f(x) := ||Kx—y||*>, x € R", where ||-||
denotes the Euclidean norm in R™. Standard algorithms for solving least squares
problems are the QR-algorithm or the conjugate gradient method; see [62,94, 119].
Because we assume that the latter is known for systems of equations, we formulate
it in Fig. 2.2 for the operator equation Kx =y, where K : X — Y is a bounded, linear,
and injective operator between Hilbert spaces X and Y with adjoint K* : ¥ — X.

Define again the function

fx) = |Kx—y|* = (Kx—y,Kx—y), xe€X.

We abbreviate Vf(x) := 2K*(Kx —y) € X and note that Vf(x) is indeed the Riesz
representation of the Fréchet derivative f'(x;-) of f at x (see Lemma 2.14). We call
two elements p,q € X K-conjugate if (Kp,Kq) = 0. If K is one-to-one, this bilinear
form has the properties of an inner product on X.

Theorem 2.20 (Fletcher—-Reeves). Let K : X — Y be a compact, linear and injec-
tive operator between Hilbert spaces X and Y. Then the conjugate gradient method
is well-defined and either stops or produces sequences (x), (p*) C X with the
properties

(V ),V f(x-f)) —0 forall j#k (2.36a)

and
(ka,Kpj) —0 forall j#k; (2.36b)

that is, the gradients are orthogonal and the directions p* are K-conjugate. Fur-
thermore,

(V F ),K*ka) —0 forall j <k (2.36¢)
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(]
< Ky=07 i STOP
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Fig. 2.2 The conjugate gradient method

The following theorem gives an interesting and different interpretation of the
elements x™.

Theorem 2.21. Ler (x™) and (p™) be the sequences of the conjugate gradient
method. Define the space Vi, := span{p°,...,p"}. Then we have the following
equivalent characterizations of V,,:

Vin = span {Vf(xo),...,Vf(xm)} (2.37a)
= span {pO,K*KpO, . (K*K)mpo} (2.37b)
for m=0,1,.... The space Vy, is called a Krylov space. Furthermore, x™ is the

minimum of f on V,,_1 for every m > 1.

By this result, we can write x in the form

X' =P, (K*K)p® =P,_1 (K*K)K"y (2.38)
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with a well-defined polynomial P,,_; € P,,_; of degree m — 1. Analogously, we
write the defect in the form

y—KxX" =y—KP,_1(K*'K)K*y =y — KK'P,,_1(KK")y
= Qm(KK*)y

with the polynomial Q,,(¢) := 1 —tP,,_(¢) of degree m.
Let (u;j,x;,y;) be a singular system for K. If it happens that

N
y= Y, ay; € Wy :=span{yi,...,yn}
j=1
for some N € N, then all iterates x™ € Ay := span{xy,...,xy} because

N
V=B (KKK y = Y 0Byt (1) .
j=1

In this exceptional case, the algorithm terminates after at most N iterations be-
cause the dimension of Ay is at most N and the gradients Vf(x') are orthogonal to
each other. This is the reason why the conjugate gradient method applied to matrix
equations stops after finitely many iterations. For operator equations in infinite-
dimensional Hilbert spaces, this method produces sequences of, in general, infinitely
many elements.

The following characterizations of Q,, are useful.

Lemma 2.22. (a) The polynomial Q,, minimizes the functional

H(Q):= |QKK")y|]> on {Q&Pu:Q(0)=1}

and satisfies

H(Qu) = [[Kx" =y
(b) For k # £, the following orthogonality relation holds:

(Qe, Q) : 2 2Qu(u?) Qu(u?) |(ryy)|* =0. (2.39)

Ify ¢ span{yy,...,yn} forany N €N, then (-,-) defines an inner product on the
space P of all polynomials.

Without a priori information, the sequence (x™) does not converge to the solution
x of Kx =y. The images, however, do converge to y. This is the subject of the next
theorem.
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Theorem 2.23. Let K and K* be one-to-one, and assume that the conjugate gradi-
ent method does not stop after finitely many steps. Then

KX" —y as m-— oo

foreveryyeY.

We give a proof of this theorem because it is a simple conclusion of the previous
lemma.

Proof. Let Q € P, be an arbitrary polynomial with Q(0) = 1. Then, by the previous
lemma,

Q) || (2.40)

M

Hme _y||2 =H(Qun) <HQ)=

j=1
Now let € > 0 be arbitrary. Choose J € N such that

=

S o) <

&2
j=J+1 2
and choose a function R € C[0, u?] with R(0) = 1, ||R||.. < I and R([JJZ) =0 for
j=1, g, ...,J. By the theorem of Weierstrassl thefe exist polynomials Q. € P,y with
HR — @mHm — 0 as m — . We set Q,, = Q,/Q,,(0), which is possible for suffi-
ciently large m because R(0) = 1. Then Q,, converges to R as m — oo and Q,,,(0) = 1.
Substituting this into (2.40) yields

|Kx"™ —y|* < H (Qu)
2

Qn(12) = RD)| [G3) ]+ Qnl 2 3 |03

<

N

1

~.
Il

2
< (1@ = RIZ I+ 5 1@ 2

This expression is less than £ for sufficiently large m. a

Now we return to the regularization of the operator equation Kx = y. The operator
Pn_1(K*K)K* : Y — X corresponds to the regularization operator R, of the general
theory. But this operator certainly depends on the right-hand side y. The mapping
y+— P, 1(K*K)K™"y is therefore nonlinear.

So far, we have formulated and studied the conjugate gradient method for un-
perturbed right-hand sides. Now we consider the situation where we know only an
approximation y° of y such that |[y® — y|| < . We apply the algorithm to y° instead
of y. This yields a sequence x™ and polynomials IP’;S,, and Q,Sn. There is no a pri-
ori strategy m = m(8) such that x”(%):9 converges to x as & tends to zero; see [68].
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An a posteriori choice as in the previous section, however, again leads to an opti-
mal strategy. We stop the algorithm with the smallest m = m(J) such that the defect
||me,6 - y5 H < 18, where T > 1 is some given parameter. From now on, we make
the assumption that y® is never a finite linear combination of the y ;. Then, by The-
orem 2.23, the defect tends to zero, and this stopping rule is well-defined. We want
to show that the choice m = m(8) leads to an optimal algorithm. The following
analysis, which we learned from [109], is more elementary than, e.g., in [20, 164],
or [165]. We carry out the complete analysis but, again, postpone the proofs to an
appendix because they are rather technical.
We recall that by our stopping rule

HKx’”@ﬁ—ySH <16 < Hme@*lﬁ—yaH. (2.41)

At this stage, we wish to formulate the smoothness assumptions x € R(K*) and
x € R(K*K), respectively, in a more general way because the analysis does not
become more difficult. We introduce the subspaces X© of X for 0 € R, 6 > 0, by

X° =R ((K*K)"/z) - {x ex:y 172 | (x,x)|” < oo} (2.42)
=1

with norm

l[x]lg == \/Z T [E=5]
j=1

In general, these spaces depend on K through (u;,x;,y;).

It is easily seen that (X,||-||;) are Hilbert spaces. For 6 < 0 the spaces X°
are defined as completions of X with respect to the norm ||-||; (see Appendix A,
Theorem A.10). Then (X, ||-|| ;) forms a scale of Hilbert spaces with the following
properties: 0] < 0, implies that X2 C X!, and the inclusion is compact. Further-
more, ||x||_; = ||Kx|| for x € X! (see Problem 2.3).

The assumptions x € X°, ||x|| ; < E generalize the former assumptions x = K*z €
R(K*), ||z]] < E (set 6 = 1) and x = K*Kz € R(K*K), ||z]| < E (set o = 2). The
following theorem establishes the optimality of the conjugate gradient method with
this stopping rule.

Theorem 2.24. Assume that y and y° do not belong to the linear span of finitely
manyy;. Let the sequence x"):8 be constructed by the conjugate gradient method
with stopping rule (2.41) for fixed parameter T > 1. Let x € X° for some 6 > 0 and
llx|l; < E. Then there exists ¢ > 0 with

e = 2@ < oot gl (2.43)

For 0 = 1 and o = 2, respectively, this estimate is of the same order as for
Landweber’s method. It is also optimal for any ¢ > 0 under the a priori information
||(K*K)"/2 | <E (see Problem 2.4).
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There is a much simpler implementation of the conjugate gradient method for
self-adjoint positive definite operators K : X — X. For such K there exists a unique
self-adjoint positive operator A : X — X with A2 = K. Let Kx = y and set 7 := Ax; that
is, Az =y. We apply the conjugate gradient method to the equation Ax = z without
knowing z. In the process of the algorithm, only the elements A*z =y, ||Ap’”H2 =
(Kp™,p™), and A*(AX™ — z) = Kx™ —y have to be computed. The square root A and
the quantity z do not have to be known explicitly, and the method is much simpler
to implement.

Actually, the conjugate gradient method presented here is only one member of
a large class of conjugate gradient methods. For a detailed study of these methods
in connection with ill-posed problems, we refer to [92, 112, 189, 190, 192] and, in
particular, the work [110].

2.8 Problems

2.1. Let K : L*(0,1) — L*(0, 1) be the integral operator
1
(Kx)(t) := /(1 +1s5)e’x(s)ds, 0<t<1.
0

Show by induction that

dn

1
W(Kx)(t) :/(n—i—l—&—ts)s"e”x(s)ds, 0<t<1l,n=0,1,....
0

Prove that K is one-to-one and that the constant functions do not belong to the range
of K.

2.2. Apply Tikhonov’s method of Sect. 2.2 to the integral equation
t
/x(s)ds — (1), 0<i<l.
0

Prove that for y € H'(0,1) with y(0) = 0 Tikhonov’s solution x* is given by the
solution of the boundary value problem

—ok(t)+x(t) =y(), 0<r<1, x(1)=0, %(0)=0.

2.3. Let K : X — Y be compact and one-to-one. Let the spaces X° be defined by
(2.42). Prove that X°? is compactly embedded in X°! for o, > 0.
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24. Let 0 > 0and F(3,E, ||-||;) be the worst-case error for K for the information
||lx||; < E (see Definition 1.18). Prove that

.'F(S,E, HHG) < 56/(1+G)E1/(1+U).
Hint: Use a singular system for the representations of ||x||, ||x||,, and ||Kx| and

apply Holder’s inequality (2.35).

2.5. Letg: (0,0) x (0, ||K|]] — R be a filter function with the properties (1) and (2)
of Theorem 2.6 where (3a) is replaced by:

(3d) There exists ¢ > 0 and o > 0 with

(o)
q((x,u)—1|§c<\/75> forall @ >0and 0 < u < ||K]||.

Let Ry : Y — X denote the corresponding operator and assume, furthermore, that
x € X© (see (2.42)). Prove the following error estimate:

IRaKx x| < ca®/? x|

Show that R, is asymptotically optimal for x € X° (see Problem 2.4) if, in addition,
there exists & > 0 with |g(o, )| < éu/+/a for all o, 1.

2.6. The iterated Tikhonov regularization (see [77,137]) x990 ig defined by
xO,a,é — O, (OCI—i—K*K)x"H'l’a’S — K*y‘s + axm,a.é

form=0,1,2,....

(a) Show that ¢"(a,p) := 1 — (1 —p?/(a+p?)", m=1,2,... , is the corre-
sponding filter function.

(b) Prove that this filter function leads to a regularizing operator R with ||R”|| <
m/(2+/c) and satisfies (3d) from Problem 2.5.

2.7. Fix y® with ||y — y%|| < & and let x*% be the Tikhonov solution corresponding
to a > 0. The curve

o8 _ 8>
o <f(a)> = (I =210 s,
g(a) x|
in R? is called an L-curve because it has often the shape of the letter L; see [80,113,
114].

Show by using a singular system that f’(a) = —ot g’ (o). Furthermore, compute
the curvature

1F (@) g () — g/ () £ (ex)]
(f' ()2 +g'(a)2)*?

and show that the curvature increases monotonously for 0 < o < 1/ ||K]|?.

Cla) =







Chapter 3
Regularization by Discretization

In this chapter, we study a different approach to regularizing operator equations
of the form Kx =y, where x and y are elements of certain function spaces. This
approach is motivated by the fact that for the numerical treatment of such equations
one has to discretize the continuous problem and reduce it to a finite system of
(linear or nonlinear) equations. We see in this chapter that the discretization schemes
themselves are regularization strategies in the sense of Chap. 2.

In Sect. 3.1, we study the general concept of projection methods and give a nec-
essary and sufficient condition for convergence. Although we have in mind the
treatment of integral equations of the first kind, we treat the general case where K is a
linear, bounded, not necessarily compact operator between (real or complex) Banach
or Hilbert spaces. Section 3.2 is devoted to Galerkin methods. As special cases,
we study least squares and dual least squares methods in Sects. 3.2.1 and 3.2.2. In
Sect. 3.2.3, we investigate the Bubnov—Galerkin method for the case where the oper-
ator satisfies a Garding’s inequality. In Sect. 3.3, we illustrate the Galerkin methods
for Symm’s integral equation of the first kind. This equation arises in potential the-
ory and serves as a model equation for more complicated situations. Section 3.4
is devoted to collocation methods. We restrict ourselves to the moment method in
Sect.3.4.1 and to collocation by piecewise constant functions in Sect. 3.4.2, where
the analysis is carried out only for Symm’s integral equation. In Sect. 3.5, we present
numerical results for various regularization techniques (Tikhonov, Landweber, con-
jugate gradient, projection, and collocation methods) tested for Dirichlet boundary
value problems for the Laplacian in an ellipse. Finally, we study the Backus—Gilbert
method in Sect. 3.6. Although not very popular among mathematicians, this method
is extensively used by scientists in geophysics and other applied sciences. The gen-
eral ideas of Sects. 3.1and 3.2 can also be found in, for example, [17, 151, 165].

3.1 Projection Methods

First, we recall the definition of a projection operator.

Definition 3.1. Let X be a normed space over the field K where K =R or K = C.
Let U C X be a closed subspace. A linear bounded operator P : X — X is called a
projection operator on U if

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, 63
Applied Mathematical Sciences 120, DOI 10.1007/978-1-4419-8474-6_3,
© Springer Science+Business Media, LLC 2011



64

3 Regularization by Discretization

Px e U forall x € X and
x=xforallxe U.

We now summarize some obvious properties of projection operators.

Theorem 3.2. Every nontrivial projection operator satisfies P> = P and ||P|| > 1.

Proof. P*x = P(Px) = Px follows from Px € U. Furthermore, ||P|| = ||P?|| < ||P||”
and P # 0. This implies ||P|| > 1. O

In the following two examples, we introduce the most important projection op-

erators.

Example 3.3. (a) (Orthogonal projection) Let X be a pre-Hilbert space over K =R

or K= C and U C X be a complete subspace. Let Px € U be the best approxi-
mation to x in U; that is, Px satisfies

|Px—x|| <|ju—x|| forallueU. 3.1

By the projection theorem (Theorem A.13 of Appendix A), P: X — U is linear
and Px € U is characterized by the abstract “normal equation” (x — Px,u) = 0
forall u € U; that is, x — Px € U~L. In this example, by the binomial theorem we
have

2 2
€] = [|Px + (x — Px)||
= HPx||2+ ||x—Px||2+2Re(x—Px,Px) > HPx||2;
—_——
=0

that is, ||P|| = 1. Important examples of subspaces U are spaces of splines or
finite elements.

(b) (Interpolation operator) Let X = Cla,b] be the space of real-valued continu-

ous functions on [a,b] supplied with the supremum norm. Then X is a normed
space over R. Let U = span{uy,...,u,} be an n-dimensional subspace and
t,...,tn € [a,b] such that the interpolation problem in U is uniquely solvable;
that is, det[u(#)] # 0. We define Px € U by the interpolant of x € Cla,b] in U,
ie., u=PxeU satisfies u(tj) =x(¢;) forall j=1,...,n. Then P: X — U isa
projection operator.

Examples for U are spaces of algebraic or trigonometric polynomials. As a
drawback of these choices, we note that from the results of Faber (see [185])
the interpolating polynomials of continuous functions x do not, in general, con-
verge to x as the degree of the polynomials tends to infinity. For smooth periodic
functions, however, trigonometric interpolation at equidistant points converges
with optimal order of convergence. We use this fact in Sect.3.2.2 Here, as an
example, we recall the interpolation by linear splines. For simplicity, we formu-
late only the case where the endpoints are included in the set of interpolation
points.
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Leta=1 <--- <t, = b be given points, and let U C C[a,b] be defined by

U = Sl(tl,...,tn)
= {xeC[a,b} :x|[tjA,j+]] ePy, j= 1,...,n—1}7 (3.2)

where P; denotes the space of polynomials of degree at most one. Then the
interpolation operator Q, : Cla,b] — Si(f1,...,1,) is given by

Onx =Y x(1;)9; forxe Cla,b],
j=1

where the basis functions §; € Sy (11,...,t,) are defined by

r—t;_
R Sy [ti—1,tj] (i j>2),
tji—1tj—1

5. _ tiv1—t

P =9 L e ) (fj<n—1), (3.3)
it =1

0, t¢ [tj—lvtj-kl]ﬂ

for j=1,...,n. In this example ||Q,]|.., = 1 (see Problem 3.1).

For general interpolation operators, ||Q,|| exceeds one and ||Q,|| is not bounded
with respect to n. This follows from the theorem of Banach-Steinhaus (see
Theorem A.26).

Now we define the class of projection methods.

Definition 3.4. Let X and Y be Banach spaces and K : X — Y be bounded and
one-to-one. Furthermore, let X;, C X and ¥,, C Y be finite-dimensional subspaces of
dimension n and Q,, : Y — Y, be a projection operator. For given y € Y the projection
method for solving the equation Kx = y is to solve the equation

0,Kx, = Qny forx, €X,. (3.4

Let {£,...,£} and {$1,...,9,} be bases of X, and ¥, respectively. Then we can

represent Q,y and every Q,K%;, j = 1,...,n, in the forms
n n
QnyZZﬁi)A’i and QnK)?J'ZZA,'J')AI,', j=1,...,n, 3.5)
i=1 i=1

with B, A;; € K. The linear combination x,, = 2/i_y @;%; solves (3.4) if and only if
a=(a,...,o)" € K" solves the finite system of linear equations

n
Y Aijaj=p;, i=1,...,n; thatis, Aoc=p. (3.6)
j=1
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The orthogonal projection and the interpolation operator from Example 3.3 lead
to the following important classes of projection methods, which are studied in more
detail in the next sections.

Example 3.5. Let K : X — Y be bounded and one-to-one.

(a) (Galerkin method) Let X and Y be pre-Hilbert spaces and X;, C X and ¥;, C Y be
finite-dimensional subspaces with dimX,, = dimY,, =n.Let Q,,: Y — Y, be the
orthogonal projection. Then the projected equation Q,Kx,, = O,y is equivalent
to

(Kxn,zn) = (372n)  forall g, € Y, (3.7a)

Again let X,, = span{%y,...,%,} and ¥, = span{3y,..., 9, }. Looking for a solu-
tion of (3.7a) in the form x, = 2’}:1 oj X; leads to the system

n
Y o (K2j,51) = (».9i) fori=1,....n, (3.7b)
j=1

or Ao = B, where A;; := (K#;,5;) and B; = (,5).

(b) (Collocation method) Let X be a Banach space, Y = Cla,b], and K : X — Cla, b]
be a bounded operator. Let a =# < --- < t, = b be given points (collocation
points) and ¥,, = Si(11,.. . ,t,) be the corresponding space (3.2) of linear splines
with interpolation operator Qny = X ¥(#;)J;. Let y € Cla,b] and some n-
dimensional subspace X, C X be given. Then Q,Kx, = O,y is equivalent to

(Kxy)(#) =y(t;) foralli=1,...,n. (3.8a)

If we denote by {)?1 yen ,)?,,} a basis of Xj,, then looking for a solution of (3.8a)
in the form x, = 2;?:1 ojX; leads to the finite linear system

OCj(KxAj)([,’) :y(ti), i= 1,...,n, (3.8b)

™=

1

J

orAa = B, where A;; = (K%;)(t;) and fB; = y(t;).

We are particularly interested in the study of integral equations of the form
b
/ k(t,5)x(s)ds = y(t), 1€ [a,b], (3.9)

in L2(a,b) or C[a,b] for some continuous or weakly singular function k. (3.7b) and
(3.8b) now take the form
Ao =j, (3.10)
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where x =3 o;f; and

b b
Az‘j=//k(t>S)fj(S)ﬁi(t)dsdt (3.11a)

\w-

Bi = [ y(t)9:(¢)dt (3.11b)

for the Galerkin method, and

b
Aij = /k(t,-,s))?j(s)ds (3.11¢)
Bi = y() (3.11d)

for the collocation method.

Comparing the systems of equations in (3.10), we observe that the computation
of the matrix elements (3.11c) is less expensive than for those of (3.11a) due to
the double integration for every matrix element in (3.11a). For this reason, collo-
cation methods are generally easier to implement than Galerkin methods. On the
other hand, Galerkin methods have convergence properties of high order in weak
norms (superconvergence) which are of practical importance in many cases, such as
boundary element methods for the solution of boundary value problems.

For the remaining part of this section, we make the following assumption.

Assumption 3.6. Let K : X — Y be a linear, bounded, and injective operator be-
tween Banach spaces, X, C X and Y, C Y be finite-dimensional subspaces of
dimension n, and Q, : Y — Y, be a projection operator. We assume that | J,cn Xy
is dense in X and that O, K |x, : Xy, — Yy is one-to-one and thus invertible. Let x € X
be the solution of

Kx=y. (3.12)

By x, € X,;, we denote the unique solutions of the equations
OnKxp = Qny (3.13)

forneN.

We can represent the solutions x, € X, of (3.13) in the form x,, = R,y, where
R, :Y — X, C X is defined by

R, = (QnK‘Xn)_lQn Y — X, CX. (G.14)
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The projection method is called convergent if the approximate solutions x,, € X, of
(3.13) converge to the exact solution x € X of (3.12) for every y € R(K); that is, if

R.Kx = (Q.Klx,) ' QuKx —x, n— oo, (3.15)

forevery x € X.

We observe that this definition of convergence coincides with Definition 2.1
of a regularization strategy for the equation Kx = y with regularization parameter
o = 1/n. Therefore, the projection method converges if and only if R, is a regular-
ization strategy for the equation Kx = y.

Obviously, we can only expect convergence if we require that | J,,y X, is dense in
X and O,y — yforally € R(K). But, in general, this is not sufficient for convergence
if K is compact. We have to assume the following boundedness condition.

Theorem 3.7. Let Assumption 3.6 be satisfied. The solution x, = R,y € X, of (3.13)
converges to x for every y = Kx if and only if there exists ¢ > 0 such that

|IR.K|| <c¢ forallneN. (3.16)
If (3.16) is satisfied the following error estimate holds:

[l — x|l < (14¢) min ||z, — x| (3.17)
n€Xn

with the same constant ¢ as in (3.16).

Proof. Let the projection method be convergent. Then R,Kx — x for every
x € X. The assertion follows directly from the principle of uniform boundedness
(Theorem A.26 of Appendix A).

Now let ||R,K|| be bounded. The operator R,K is a projection operator onto X,
because for z,, € X,, we have R, Kz, = (Q,,K|Xn)7lQnKz,, = z,. Thus we conclude
that

Xp—x=(R,K—Ix=(R,K—1I)(x—2z,) forallz, €X,.

This yields
o =l < e+ 1) =z forallz, € X,

and proves (3.17). Convergence x, — x follows because | J,,cy X, is dense in X. O

So far, we have considered the case where the right-hand side is known exactly.
Now we study the case where the right-hand side is known only approximately;
that is, we assume the knowledge of y® € Y with Hy5 — yH < 8. We understand the
operator R, from (3.14) as a regularization operator in the sense of the previous
chapter. We have to distinguish between two kinds of errors on the right-hand side.
The first kind measures the error in the norm of Y and corresponds to the kind
of perturbation discussed in Chap.2. We call this the continuous perturbation of
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the right-hand side. In this case, the norm of Y plays an essential role. A simple
application of the triangle inequality yields with xf = Rny‘g:

o8 o] = 8 oy

[+ 1Ruy =]

< IRl ||y® = ¥|| + [RaKx —x]]. (3.18)

This estimate corresponds to the fundamental estimate from (2.4). The first term
reflects the illposedness of the equation: The (continuous) error 6 of the right-hand
side is multiplied by the norm of R,,. The second term describes the discretization
error with exact data.

In practice one solves the discrete system (3.6) where the vector 3 is replaced by
a perturbed vector B9 € K" with

po-p[ =S |p-p[ <5

We call this the discrete perturbation of the right-hand side. Instead of (3.6) one
solves Aa® = B9 and defines x? € X,, by

In this case, the choices of basis functions £; € X, and J; € Y, are essential rather
than the norm of Y. We will see, however, that the condition number of A reflects
the ill-conditioning of the equation Kx = y. For a general discussion of the condition
number of discretized integral equations of the first kind, we refer to [223].

The last theorem of this general section is a perturbation result: It is sufficient
to study the question of convergence for the “principal part” of an operator K. In
particular, if the projection method converges for an operator K, then convergence
and the error estimates hold also for K + C, where C is compact relative to K (that
is, K~!C is compact).

Theorem 3.8. Let Assumption 3.6 hold. Let C : X — Y be a linear operator with
R(C) C R(K) such that K + C is one-to-one and K~'C is compact in X. Assume,
furthermore, that the projection method converges for K; that is, that R,Kx — x for
every x € X, where again

—1
Ry, = [QnKlX,,] On.
Then it converges also for K + C; that is,

[0/(K+C)[x,] ' Qu(K+C)x —x forallx€X.
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Let x € X be the solution of (K +C)x =y and xf, € X, be the solution of the corre-
sponding projected equation Q, (K + C)xf = yf for some yf € Y,. Then there exists
c > 0 with

<c [HKleR,,CxH + HKflyfRnys

} (3.19)

S
[EEE:

for all sufficiently large n and & > 0.

Proof. We have to compare the equations for xf and x; that is, the equations
0.(K +C)x% =y? and (K + C)x = y, which we rewrite in the forms

x4+ R,CxS = R,y?, (3.20a)

x+K'cx =K1y (3.20b)

The operators R,C = [R,K|K~'C converge to K~'C in the operator norm because
R,Kx — x for every x € X and K~!C is compact in X (see Theorem A.32 of
Appendix A). Furthermore, I + K~'C = K~!(K 4 C) is an isomorphism in X. We
apply the general Theorem A.35 of Appendix A to equations (3.20a) and (3.20b).
This yields the assertion. ]

The first term on the right-hand side of (3.19) is just the error of the projection
method for the equation Kx = Cx without perturbation of the right-hand side. By
Theorem 3.7, this is estimated by

HK_IfoRanH < (14¢) min HK_ICX*ZnH.
n€Xn

The second term on the right-hand side of (3.19) is the error for the equation Kx =y.
This theorem includes both the continuous and the discrete perturbations of the
right-hand side. For the continuous case we set yf = Qny5, while in the discrete
case we set y> = Y B3 9;.

3.2 Galerkin Methods

In this section, we assume that X and Y are (real or complex) Hilbert spaces; K :
X — 'Y is linear, bounded, and one-to-one; X,, C X and Y,, C Y are finite-dimensional
subspaces with dimX,, = dimY,, = n; and Q, : Y — Y, is the orthogonal projection
operator onto Y;,. Then equation Q,Kx, = O,y reduces to the Galerkin equations
(see Example 3.5)

(Kxp,zn) = (y,2n) forallz, € ¥, (3.21)

If we choose bases {£1,...,%, } and {J1,..., 9.} of X, and ¥,,, respectively, then this
leads to a finite system for the coefficients of x, = Z’}z 1 &% (see (3.7b)):

n
DAjo=p, i=1,...,n, (3.22)
i=1
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where

A,’j = (Kx’\j,}’)\,’) and Bi = (y,ﬁi). (323)
We observe that A;; and f3; coincide with the definitions (3.5) only if the set {f) o
j=1,... ,n} forms an orthonormal basis of Y,,.

The Galerkin method is also known as the Petrov—Galerkin method (see [198])
because Petrov was the first to consider the general situation of (3.21). The special
case X =Y and X, =Y, was studied by Bubnov in 1913 and later by Galerkin in
1915 (see [88]). For this reason, this special case is also known as the Bubnov—
Galerkin method. In the case when the operator K is self-adjoint and positive
definite, we will see that the Bubnow-Galerkin method coincides with the Rayleigh—
Ritz method, see [202] and [208].

In the following theorem, we prove error estimates for the Galerkin method of the
form (3.18). They differ only in the first term which corresponds to the perturbation
of the right-hand side. The second term bounds the error for the exact right-hand
side and tends to zero, provided assumption (3.16) of Theorem 3.7 is satisfied.

Theorem 3.9. Let Kx =y and assume that the Galerkin equations (3.21) are
uniquely solvable for every right-hand side.

(a) Let y5 €Y with Hy —y5 || < 6 be given and x,‘? € X, be the solution of

(Kx8,2:) = (%,24) forall z, €Y, (3.24)

Then the following error estimate holds:

xf—xH < 8 ||Rul| + |[RuKx —x]|. (3.25)

(b) Let A and B be given by (3.23) and B° € K" with |ﬁ—ﬁ5| < 8, where ||
denotes the Euclidean norm in K". Let a® € K" be the solution of Aa® = 9.
Define x,‘z = 2;5:1 Otj‘-3 Xj € Xy Then the following error estimates hold:

xp x| = 248+ Rk~ (3.262)
An
X3 —xH < by |Ral| 8+ ||RuKx — x|, (3.26b)
where
an:max{ > piti|| : 2|p,|2:1}, (3.27a)
=1 =1

n 2 n
b, = max{ N lpil 1D pidill = 1}, (3.27b)

= =1

and A, > 0 denotes the smallest singular value of the matrix A.



72 3 Regularization by Discretization

In the first term of the right-hand side of (3.26a) and (3.26b), we observe the depen-

dence on the choice of basis functions {)?J j=1,. n} and {)7] j=1,. ,n},
respectively. We note that a, = 1 or b, =1 if the sets {xj j=1,. n} or
{y iij=1,. n} respectively, form an orthonormal system.

Proof. Part (a) is a direct consequence of (3.18).
(b) From the triangle inequality Hx,‘z fo < Hxs fRnyH + ||Ryy — x||, we observe
that it is sufficient to estimate the first term.
We note that R,y = 3j_ OCJ)?j, where o satisfies the linear system Ao = f3.

Writing x% — R,y = Py 1( — o) %}, we estimate

xs —Ry| < ay

a‘s—a‘:an

A7 (B - B)|
<a,]a™|, ‘;35 ;3‘<—5

where ‘A‘l ‘2 denotes the spectral norm of A~ that is, the smallest singular
value of A. This yields (3.26a).

Now we choose yd € ¥, such that (y,9;) = B2 fori=1,...,n. Then R,y =
x% and thus

S
Yn — On),2
X —Ryy = [|Ry|| sup —( n Qi)

wely zll

—Ony

|

5105 (Y3 = Quy,3))

= ||Rx|| su . "
Pj Hz]‘:I p;Yj
n )
1Pj(ﬁ *Bj)
= IIRnH p =i
HZ/ lp/yj
\/Z?=1PJZ
< |IR.|| |B% — B sup ——
/ ’Zj:mm
< ||RnH by 6. O

We point out again that the Galerkin method is convergent only if the bounded-
ness assumption (3.16) of Theorem 3.7 is satisfied.

In the following three subsections we derive error estimates for three special
choices for the finite-dimensional subspaces X, and Y. The cases where X, and ¥,
are coupled by ¥, = K(X,) or X;, = K*(¥,,) lead to the least squares method or the
dual least squares method, respectively. Here, K* : Y — X denotes the adjoint of K.
In Sect. 3.2.3, we study the Bubnov—Galerkin method for the case where K satisfies
Garding’s inequality. In all of the subsections, we formulate the Galerkin equations
for the perturbed cases first without using particular bases and then with respect to
given bases in X,, and ¥},.
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3.2.1 The Least Squares Method

An obvious method to solve an equation of the kind Kx = y is the following: Given
a finite-dimensional subspace X,, C X, determine x,, € X,, such that

|Kxp —y|| < [|[Kzn—y| forall z, € X,,. (3.28)

Existence and uniqueness of x,, € X;, follow easily because X, is finite-dimensional
and K is one-to-one. The solution x,, € X;, of this least squares problem is character-
ized by

(Kxn,Kzn) = (v,Kzn) forall z, € X, (3.29a)

We observe that this method is a special case of the Galerkin method when we set
Y, :=K(X,).
Choosing a basis {£;: j =1,...,n} of X, leads to the finite system

n
o (KxAj,K)’C\,‘) = ﬂ,‘ = (y,K)’C\l') fori= 1, o, n, (3.29b)
j=1

J

or Ao = 3. The corresponding matrix A € K" with A;; = (K,Q j,K)Ei) is symmetric
(if K = R) or hermitean (if K = C) and positive definite because K is also one-
to-one.

Again, we study the case where the right-hand side is perturbed by an error. For
continuous perturbations, let x,‘? € X, be the solution of

(Kx2,Kz,) = (°,Kzy) forall z, € X,,, (3.30a)

where y% € Y is the perturbed right-hand side with H yo — yH <.

For the discrete perturbation, we assume that 3 € K" is replaced by [35 e K"
with | [35 — ﬁ‘ < &, where || denotes the Euclidean norm in K". This leads to the

following finite system of equations for the coefficients of x,‘z = 2;?:1 oc]‘?)?j:

n
Y af (K#j, k&) =B° fori=1,...,n. (3.30b)
j=1

This system is uniquely solvable because the matrix A is positive definite. For
least squares methods, the boundedness condition (3.16) is not satisfied without
additional assumptions. We refer to [225] or [151], Problem 17.2, for an example.
However, we can prove the following theorem.

Theorem 3.10. Let K : X — Y be a linear, bounded, and injective operator between
Hilbert spaces and X,, C X be finite-dimensional subspaces such that | J,cnX, is
dense in X. Let x € X be the solution of Kx =y and xs € X, be the least squares
solution from (3.30a) or (3.30D). Define

0y :=max{||z| : 20 € X, | Kznl| = 1} (3.31)
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and let there exist ¢ > 0, independent of n, such that

mei)r(l {lx=zall + 0n |[K(x—za)||} < cllx| forallxeX. (3.32)
Zn<An

Then the least squares method is convergent and |Ry|| < 0,. In this case, we have
the error estimate

fox,‘? < rnc,,6—|—5min{Hx—zn|| 17, € Xn} (3.33)

for some ¢ > 0. Here, 1, = 1 ifx,f € X,, solves (3.30a); that is, &6 measures the
continuous perturbation Hy‘S —yH. If & measures the discrete error ’[35 —ﬁ‘ in

5)?j € X, where al solves (3.30b), then ry

the Euclidean norm and x% = Y105
n 2 n
rm=maxs | Y |pi| K[ D ki ||| =1¢- (3.34)
j=1 j=1

is given by
Proof. We prove that ||R,K]|| is bounded uniformly in n. Let x € X and x,, := R,Kx.
Then x,, satisfies (Kxn,Kzn) = (Kx, Kzn) for all z, € X,,. This yields

”K(xnfzn)”z = (K(xnfzn)aK(xn *Zn))
= (K(x—z2),K(xn —2))
< K Gxe=zn) || 1K (en —2a) |

and thus ||K (x, — z,)|| < ||K(x — z,)]| for all z,, € X,,. Using this and the definition of
0., we conclude that

%2 = zall < 00 | K (X0 — z0) || < 00 [|K(x —z2)]],
and thus

x|l < Moen = zal| =+ (120 — X[ + [|x]]
< lxll =+ [lzn — xll + 0n 1K (x = za) 1]

This holds for all z,, € X,,. Taking the minimum, we have by assumption (3.32) that
|I%2]] < (14 ¢)]lx||. Thus the boundedness condition (3.16) is satisfied. Application
of Theorem 3.7 proves convergence.

Analogously we prove the estimate for ||R,||. Lety € Y and set x, := R,y. Then
from (3.29a) we have that

HKanz = (Kxn,Kx,,) = (y,Kxn) < (Y[ 1Koxall

and thus
[[xn ]l < O [|[Kxn |l < 00 ||y -

This proves the estimate ||R,|| < o,.
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The error estimates (3.33) follow directly from Theorem 3.9 and the estimates
(3.25) or (3.26b) for §; = K%;. O

For further numerical aspects of least squares methods, we refer to [69, 72, 95,
134,171,172,183, 184].

3.2.2 The Dual Least Squares Method

As a next example for a Galerkin method, we study the dual least squares method.
We will see that the boundedness condition (3.16) is always satisfied.
Given any finite-dimensional subspace Y, C Y, determine u,, € Y, such that

(KK*un,zn) = (y,z,,) forall z, € Y,,, (3.35)

where K* : Y — X denotes the adjoint of K. Then x, := K*u, is called the dual
least squares solution. It is a special case of the Galerkin method when we set X, :=
K*(Y,). Writing equation (3.35) for y = Kx in the form

(K*un,K*zn) = (x,K*z,,) for all z,, € Yy,

we observe that the dual least squares method is just the least squares method for
the equation K*u = x. This explains the name.

We assume again that the right-hand side is perturbed. Let y® € Y with
||y5 — y|| < 6. Instead of equation (3.35), one determines x,‘? = K*uff € X,, with

(K*un,K*zn) = (y‘s,zn) for all z,, € Yy,. (3.36)

For discrete perturbations, we choose a basis {y;: j=1,...,n} of ¥, and assume that
the right-hand sides 3; = (y, fq) ,i=1,...,n, of the Galerkin equations are perturbed
by a vector 3% € K" with |ﬁ5 — B| < 6 where |-| denotes the Euclidean norm in K".
Instead of (3.35), we determine

n
5 5 8 kg
X =K'uy = 3, o K" 5,

j=1
where a® € K" solves
Y ad (K'5;,K5;) = B2 fori=1,....n. (3.37)
j=1

First we show that equations (3.36) and (3.37) are uniquely solvable. K* : Y — X
is one-to-one because the range R(K) is dense in Y. Thus the dimensions of ¥,
and X, coincide and K* is an isomorphism from ¥}, onto X;,. It is sufficient to prove
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uniqueness of a solution to (3.36). Let u,, € Y, with (K*un, K*z,,) =0forall z;, € Y,.
For z, = u, we conclude that 0 = (K*u,,K*u,) = || K*u,||?; that is, K*u, = 0 or
u, =0.

Convergence and error estimates are proven in the following theorem.

Theorem 3.11. Let X and Y be Hilbert spaces and K : X — Y be linear, bounded,
and one-to-one such that the range R(K) is dense in Y. Let Y, C Y be finite-
dimensional subspaces such that \J,cn Yy is dense in'Y. Let x € X be the solution
of Kx =y. Then the Galerkin equations (3.36) and (3.37) are uniquely solvable for
every right-hand side and every n € N. The dual least squares method is convergent
and

Rl < On :=max{||za|| : 20 € Y, |[K*2n]| = 1}. (3.38)

Furthermore, we have the error estimates

Hx—xf < rn0n5+cmin{Hx—zn|| 1Zn € K*(Yn)} (3.39)

for some ¢ > 0. Here, r,, = 1 ifx,‘? € X, solves (3.36); that is, & measures the norm

||y5 —y|| inY. If 6 measures the discrete error |[35 —[3| and x% = f a]‘-sK*)A)j €
X,,, where o solves (3.37), then ry, is given by

n
Tn :max{ IATIEE
=1

n
Y pid;
j=1

- 1} . (3.40)

We note that r, =1 if {)7]- j=1,... ,n} forms an orthonormal system in'Y.

Proof. We have seen already that (3.36) and (3.37) are uniquely solvable for every
right-hand side and every n € N.

Now we prove the estimate ||R,K|| < 1, that is condition (3.16) with ¢ = 1. Let
x € X and set x,, := R,Kx € X,,. Then x,, = K*u,,, and u, €Y, satisfies

(K*un,K*z2) = (Kx,2,) forall z, € Y.
For z,, = u,, this implies
2 * 2 *
o6 [|” = 1K un|” = (va"‘n) = (x,K ”n) < 1] flxall 5

that proves the desired estimate. If we replace Kx by y in the preceding arguments,
we have

2
[l < {1y1] unll < G Iyl 11K" wnl| = G [[¥] [1xull

that proves (3.38).

Finally, we show that |J,,cn Xy is dense in X. Letx € X and € > 0. Because K*(Y)
is dense in X, there exists y € ¥ with ||x — K*y|| < £/2. Because |J,cnYx is dense
in Y, there exists y, € ¥, with ||y —y,|| < &/(2||K]||). The triangle inequality yields
that for x,, := K*y, € X,
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[ =]l < [lx =Ky + K" (y—yu) | < €.

Application of Theorem 3.9 and (3.25) and (3.26b) proves (3.39). O

3.2.3 The Bubnov-Galerkin Method for Coercive Operators

In this subsection, we assume that K : X — X is a linear and bounded operator and
X, n € N, are finite-dimensional subspaces. The Galerkin method reduces to the
problem of determining x,, € X, such that

(Kxn,zn) = (y,2n) forall z, € X, (3.41)

This special case is called the Bubnov—Galerkin method. Again, we consider two
kinds of perturbations of the right-hand side. If y® € X with H Vo — yH < 4 is a per-
turbed right-hand side, then instead of (3.41) we study the equation

(Kx2,21) = (3°,2,) forall z, € X,. (3.42)

The other possibility is to choose a basis {£;: j = 1,...,n} of X, and assume that
the right-hand sides §; = (y,£;),i=1,...,n, of the Galerkin equations are perturbed
by a vector 0 € K" with ‘ Bo — B| < J, where |-| denotes again the Euclidean norm
in K”. In this case, instead of (3.41), we have to solve

n
of (K&j,%) =P fori=1,....n, (3.43)
j=1

for o® € K" and set x,‘? = Z?:l Oz]‘-sﬁj.

Before we prove a convergence result for this method, we briefly describe the
Rayleigh—Ritz method and show that it is a special case of the Bubnov—Galerkin
method.

Let K : X — X also be self-adjoint and positive definite; that is, (Kx,y) = (x,Ky)
and (Kx,x) > 0 for all x,y € X with x # 0. We define the functional

v(z) := (Kz,2) —2Re(y,z) forzeX. (3.44)

From the equation
w(z) — w(x) =2Re (Kx —y,z—x) + (K(z—x),z— x) (3.45)
and the positivity of K, we easily conclude (see Problem 3.2) that x € X is the

unique minimum of v if and only if x solves Kx = y. The Rayleigh—Ritz method
is to minimize W over the finite-dimensional subspace X,,. From (3.45), we see that
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if x, € X;, minimizes y on X,, then, for z,, = x, &+ €u, with u, € X;, and € > 0, we
have that

0<wy(zy)— y(x,) =+e2Re (Kxn -y, un) +é&? (Ku,hu,,)

for all u, € X,. Dividing by € > 0 and letting € — 0 yields that x,, € X, satisfies
the Galerkin equation (3.41). If, on the other hand, x, € X, solves (3.41), then
from (3.45)

II/(Z”) - lll(xn) = (K(Zn *xn)7zn *xn) >0

for all z, € X,,. Therefore, the Rayleigh—Ritz method is identical to the Bubnov—
Galerkin method.

Now we generalize the Rayleigh—Ritz method and study the Bubnov—Galerkin
method for the important class of coercive operators. Before we can formulate the
results, we briefly recall some definitions.

Definition 3.12. Let V be a reflexive Banach space with dual space V*. We denote
the norms in V and V* by ||-||;, and ||-||,/«, respectively. A linear bounded operator
K : V* — V is called coercive if there exists y > 0 with

Re (x,Kx) > v |x|3. forallxe V*, (3.46)

with dual pairing (-,-) in (V*,V). The operator K satifies Gdrding’s inequality if
there exists a linear compact operator C : V* — V such that K + C is coercive; that is,

Re (x,Kx) > vy HxH‘z,* —Re(x,Cx) forallxe V™.

By the same arguments as in the proof of the Lax—Milgram theorem (see [116]),
it can be shown that every coercive operator is an isomorphism from V* onto V.
Coercive operators play an important role in the study of partial differential equa-
tions and integral equations by variational methods. In the usual definition, the roles
of V and V* are interchanged. For integral operators that are “smoothing,” our defi-
nition seems more appropriate. However, both definitions are equivalent in the sense
that the inverse operator K~! : V — V* is coercive in the usual sense with y replaced

by v/ K.

Definition 3.13. A Gelfand triple (V,X ,V*) consists of a reflexive Banach space
V, a Hilbert space X, and the dual V* of V such that

(a) V is a dense subspace of X, and
(b) the imbedding J : V — X is bounded.

We write V C X C V* because we can identify X with a dense subspace of V*. This
identification is given by the dual operator J* : X — V* of J, where we identify the
dual of the Hilbert space X by itself. From (x,y) = (J*x,y) forallx e X andy € V
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we see that with this identification the dual pairing (,-) in (V*,V) is an extension
of the inner product (-,-) in X, i.e, we write

(x,y) = (x,y) forallxeXandyeV.
Furthermore, we have the estimates
[0 < lxlly« llylly  forallxe V™, yeV,

and thus
|e )| < [lxlly= [Iylly  forallxe X, yeV.

J* is one-to-one and has dense range (see Problem 3.3). As before, we denote the
norm in X by ||-||.

Now we can prove the main theorem about convergence of the Bubnov—Galerkin
method for coercive operators.

Theorem 3.14. Ler (V,X,V*) be a Gelfand triple, and X,, C V be finite-dimensional
subspaces such that | J,cyn Xy, is dense in X. Let K : V* — V be coercive with constant
Y > 0. Let x € X be the solution of Kx =y. Then we have the following:

(a) There exist unique solutions of the Galerkin equations (3.41)—(3.43), and the
Bubnov-Galerkin method converges in V* with

[l = %ally < cmin{|lx—2zullys : 20 € Xa} (3.47)

for some ¢ > 0.
(b) Define p, > 0 by

pn = max{||u| : u € X, |lull,. =1} (3.48)

and the orthogonal projection operator P, from X onto X,. The Bubnov—
Galerkin method converges in X if there exists ¢ > O with

||l — Pau]|y« < pi llull forallueX. (3.49)
In this case, we have the estimates
1,
Rl < 2P (3.50)

and

foxs <c [rnp,%+min{||x—zn|| 220 € Xn )] (3.51)
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for some ¢ > 0. Here, r, = 1 ifx,"f € X, solves (3.42); that is, § measures the
norm Hy6 - yH in X. If 8 measures the discrete error |B5 — B| in the Euclidean

norm and xs = 2;?:1 ot]‘-S Xj € Xy, where o solves (3.43), then ry is given by

n 2 n .
ry = max 2|pj‘ : ijxj =15. (3.52)
j=1 j=1
Again, we note that r, = 1 if {)Gj cj=1,... ,n} forms an orthonormal system

inX.

Proof. (a) We apply Theorem 3.7 to the equations Kx =y, x € V*, and P,Kx, = P,y,
Xn € X,,, where we consider K as an operator from V* into V. We observe that the
orthogonal projection operator P, is also bounded from V into X,. This follows
from the observation that on the finite-dimensional space X;, the norms ||-|| and
|-l are equivalent and thus

[Pauelly < cllPaul < clull < &[|ully,  forueV.

The constants ¢, and thus ¢, depend on n. Because V is dense in X and X is dense
in V*, we conclude that also |J,cy Xy is dense in V*. To apply Theorem 3.7, we
have to show that (3.41) is uniquely solvable in V* and that R,K : V* — X,, CV*
is uniformly bounded with respect to n.

Because (3.41) is a finite-dimensional quadratic system, it is sufficient to prove
uniqueness. Let x, € X, satisfy (3.41) for y = 0. Because K is coercive, we have
that

7”an€* < Re (xn,Kx,;) = Re (Kx,x,) = 0;

thus x, = 0.
Now let x € V* and set x,, = R,,Kx. Then x,, € X,, satisfies

(Kxn,z,l) = (Kx,zn) for all z, € X,,. (3.53)
Again, we conclude that
YHXHH\Z/* < Re (xn, Kxn) = Re (Kx,x,) < ||Kx|ly (||

and thus
1 1
[y < e [Kx[ly < e 1K 2 vy Ixlly -

Because this holds for all x € V*, we conclude that

1
IRaK v ey = 2 K2y -

Then the assumptions of Theorem 3.7 are satisfied for K : V¥ — V.
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(b) Now let x € X and x,, = R,Kx. Using the estimates (3.47) and (3.49), we con-
clude that

[[x = x| < [l — Pox|| + || Bax — x|
< e = Pux[| =+ oo [|1Pax — x|+
< lx = Pax|| + pu | Pax — X[y + P [l = X[y«

< Jx = Pux|| + pn || Pax — x|y« + ¢ pp min [|x — z, ||
n€Xn

< [le = Bax][ + (e + 1) pa [ Bax = x|y

<2l +er Il = 2+cr) il

and thus ||x,| < ||x, — x| + [|x|| < (34 ¢1) ||x||. Application of Theorem 3.7
yields convergence in X .

Finally, we prove the estimate of R, in £(X,X). Lety € X and x,, = R,y. We
estimate

2
Y lxnlly+ < Re(xn, Kxn) = Re (y,x,) < Iy[] %]l < pal[¥I] [0l

and thus
1 2
[lx ]| < pn Hxnnv* < ,)_/pn Iyll s

that proves the estimate (3.50). Application of Theorem 3.9 and the estimates
(3.25) and (3.26b) proves (3.51). O

From our general perturbation theorem (Theorem 3.8), we observe that the as-
sumption of K being coercive can be weakened. It is sufficient to assume that K is
one-to-one and satisfies Garding’s inequality. We formulate the result in the next
theorem.

Theorem 3.15. The assertions of Theorem 3.14 also hold if K : V* — V is one-to-
one and satisfies Gdrding’s inequality with some compact operator C : V* — V.

For further reading, we refer to [186] and the monographs [17,151, 165].

3.3 Application to Symm’s Integral Equation of the First Kind

In this section, we apply the Galerkin methods to an integral equation of the first
kind, that occurs in potential theory. We study the Dirichlet problem for the Laplace
equation

Au=0 inQ, u=f ondQ, (3.54)
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where Q C R? is some bounded, simply connected region with analytic boundary
dQ and f € C(dQ) is some given function. The single layer potential

1
u(x) = - / o) Inlx—y|ds(y), x€Q, (3.55)
o0Q

solves the boundary value problem (3.54) if and only if the density ¢ € C(dQ)
solves Symm’s equation

—% / o) Injx—y|ds(y) = f(x) forxe I (3.56)
2Q

see [47]. It is well-known (see [125]) that in general the corresponding integral
operator is not one-to-one. One has to make assumptions on the transfinite diameter
of Q; see [250]. We give a more elementary assumption in the following theorem.

Theorem 3.16. Suppose there exists zo € Q with |x — zo| # 1 for all x € Q. Then
the only solution ¢ € C(dQ) of Symm’s Eq. (3.56) for f =0 is ¢ = 0; that is, the
integral operator is one-to-one.

Proof. We give a more elementary proof than in [126], but we still need a few results
from potential theory.

From the continuity of x — |x —zp|, we conclude that either |x — z9| < 1 for all
x € dQor |x—zo| > 1 for all x € Q. Assume first that |x — z9| < 1 for all x € IQ
and choose a disc A C Q with [x—z| < 1 for all x € dQ and z € A. Let ¢ € C(9dQ)
satisfy (3.56) for f = 0 and define u by

u(x):—%/(p(y) In|x—y|ds(y) forxec R>.
2Q

From potential theory (see [47]), we conclude that u is continuous in R2, harmonic
in R?\ dQ, and vanishes on dQ. The maximum principle for harmonic functions
implies that u vanishes in €. We show that u also vanishes in the exterior Q¢ of Q.
The main part is to prove that

6= [ otasty —o.
2Q

Without loss of generality, we can assume that d3 > 0. We study the function v
defined by

~

v(x) = u(x)+ % In|x —z|

1/‘ |x —z]
= — In ds(y), xeQf,
FACL =LY
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for some z € A. From the choice of A, we have that

~

v(x) = 91n|)c—z| <0 forxedQ.
T

Furthermore, v(x) — 0 as |x| tends to infinity. The maximum principle applied to
v in Q° yields that v(x) < 0 for all x € Q°. Now we study the asymptotic behavior
of v. Elementary calculations show that

1
= -9+ 01/ k)
for |x| — eo uniformly in y € dQ, z € A, and £ := x/ |x|. This implies that

I
o(x) = Hx;é () (y—2)ds(y) + O(1/ )

and thus
2 /q)(y)(y—z)ds(y) <0 forall |§|=1.
90

This implies that

/¢(y)de(y) =Z/¢(y)dS(y)~
0Q 0Q

Because this holds for all z € A, we conclude that [, ¢(y)ds(y) = 0.
Now we see from the definition of v (for any fixed z € A) that

u(x) =v(x) — 0 as |x| — co.

The maximum principle again yields u = 0 in Q°.
Finally, the jump conditions of the normal derivative of the single layer potential
operator (see [47]) yield

2¢(x) = lim [Vu(x—ev(x)) — Vu(x+ev(x))]-v(x) =0

e—0+

for x € dQ, where v(x) denotes the unit normal vector at x € dQ directed into the
exterior of Q.

This ends the proof for the case that max,cyq |x —zo| < 1. The case min,cyq
|x —zo| > 1 is settled by the same arguments. O

Now we assume that the boundary d< has a parametrization of the form

x=1v(s), se€]0,2x],
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for some 27-periodic analytic function y : [0,27] — R?, that satisfies |(s)| > 0 for
all s € [0,2x]. Then Symm’s equation (3.56) takes the form

2
1

[V mh) -~ vl ds=f0) forre02n] 35
0

for the transformed density y/(s) := ¢ (y(s)) |7(s)|, s € [0,27].
For the special case where € is the disc with center 0 and radius a > 0, we have
Ya(s) = a (coss,sins) and thus

In|ya(t) — a(s)| :1na+%ln (4 sinzt_Ts) . (3.58)

For general boundaries, we can split the kernel in the form

1 o l . zt—s
f;1n|y(t)fy(s)\ffﬁln <4s1n T)+k(t’s)’ t#s, (3.59)

for some function k that is analytic for ¢t # 5. From the mean value theorem, we
conclude that

. L.
limk(r,5) =~ In[ (1)
This implies that k has an analytic continuation onto [0,27] x [0,27]. With this,
splitting the integral equation (3.57) takes the form

2 o
,% /1//(5) In (4 sin? ITS> ds—|—/ y(s)k(t,s)ds = f(y(t)) (3.60)
0 0

for ¢ € [0,27]. We want to apply the results of the previous section on Galerkin
methods to this integral equation.

As the Hilbert space X, we choose X = L?(0,2r). The operators K, Ky, and C
are defined by

2
Kw)(1) =~ [ w(s) ]yt~ 7(s) as, @6l
0
1 27
(Kow)(1) = =5 O/W(s) {m (4 sinzt_Ts> - 1] ds, (3.61b)

Cy =Ky —Koy (3.61c)
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forr € [0,2x] and v € L2(07 1). First, we observe that K, Kj, and C are well-defined
and compact operators in L?(0,1) because the kernels are weakly singular (see
Theorem A.33 of Appendix A). They are also self-adjoint in L>(0, 1).

We define the finite-dimensional subspaces X, and Y, as the spaces of truncated
Fourier series:

X, =Y, = { Y aje’ aje (C}. (3.62)

j=—n

To investigate the mapping properties, we need the following technical result
(see [150]).

Lemma 3.17.

2r
1 ‘ —1/|n|, neZ,n#0,
—/e“” In (4 sin2f) ds = /i (3.63)
2r 2

0 0, n=0.

Proof. It suffices to study the case n € Ny. First let n € N. Integrating the geometric
sum
n-1 . . Ky
142 ) e +e™ =i(l—¢e")cot=, 0<s<2m,
Bl
yields
2
; s
"5 —1) cot=ds =2mi.
/ (e ) co 5 ds i
0
Integration of the identity

d . . .
I [(e"“ — 1) In (4 sin’ %)} =ine™In (4 sin? %) + (e"” - 1) cot%
s
yields
2n | 2 )
. . T
ins | (4 . 25) — _ ins _ 1 f _ _ =
/e n (4sin” 2 ds pn (e ) cotzds -
0 0

which proves the assertion for n € N.
It remains to study the case where n = 0. Define

2
1= /ln <4sin2 i) ds.
J 2
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Then we conclude that

2 2n

_ .25 ( 25

21 = /ln (4sm 2) ds+/ln 4cos 2) ds

0 0
2

_ .25 25

= '/ln(16sm 5 cos 2>ds
0
2 | 4

- /ln(4sin2s)ds:§/ln (4sin*2) ds =1
0 0

and thus / = 0. O

This lemma shows that the functions
U(t) :=e™, rel0,2n], nez, (3.64)

are eigenfunctions of Kjy:

1
Ko, = m W, forn#0 and (3.65a)
Koo = o. (3.65b)

Now can prove the mapping properties of the operators.

Theorem 3.18. Suppose there exists zg € Q with |x — zo| # 1 for all x € Q. Let the
operators K and Ky be given by (3.61a) and (3.61b), respectively. By H*(0,21) we
denote the Sobolev spaces of order s (see Sect. A.4 of Appendix A).

(a) The operators K and Ky can be extended to isomorphisms from H*~1(0,2r)
onto H*(0,21) for every s € R.

(b) The operator Ky is coercive from H’l/Z(O7 ) into H'/%(0,2n).

(c) The operator C = K — Ky is compact from H*~1(0,27) into H*(0,27) for every
seR.

Proof. Let y € L>(0,27). Then y has the representation

v(t)= Y one™ with Y |on]* < eo.

nez nez

From (3.65a) and (3.65b), we have that

1 .
(Kow)(t) = a0+ Y, — o e™
n£0 |n|
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and thus for any s € R:

1
2 2 2
Koyl = loo]” + Z(HHZ)S; |0t

n#0
(v.Koy) = |ow|? +Z Ian
n;ﬁO
> 3 (14+02) 2 o = |yl 1

nez

From the elementary estimate

1

(1_’_”2)#1 :2(1—|—n2)‘v7 , n#0,

IN
—
—
+
S
S—
D= —

we see that Ky can be extended to an isomorphism from H*~!(0,27) onto H*(0,27)
and is coercive for s = 1/2. The operator C is bounded from H"(0,27) into
H*(0,2r) for all r,s € R by Theorem A.45 of Appendix A. This proves part (c)
and that K = Ky +C is bounded from H*~!(0,27) into H(0,27). It remains to show
that K is also an isomorphism from H*~!(0,27) onto H*(0,27). From the Riesz the-
ory (Theorem A.34), it is sufficient to prove injectivity. Let w € H*~1(0,27) with
Ky = 0. From Koy = —Cy and the mapping properties of C, we conclude that
Koy € H"(0,2r) for all r € R; that is, w € H'(0,2x) for all r € R. In particular, this
implies that y is continuous and the transformed function ¢ (y(¢)) = w(¢)/|7(2)]
satisfies Symm’s equation (3.56) for f = 0. Application of Theorem 3.16 yields
¢ =0. O

We are now in a position to apply all of the Galerkin methods of the previous
section. We have seen that the convergence results require estimates of the condition
numbers of K on the finite-dimensional spaces X,,. These estimates are sometimes
called the stability property (see [126]).

Lemma 3.19. Let r > 5. Then there exists ¢ > 0 such that
lall2 < en[Kynll2 for all yy € Xa, (3.662)
1Wnllgr < en™ yallys  for all yi € Xa, (3.66b)
andalln € N.
Proof. Let y,(t) = ljl<n O exp(ijt) € X,. Then
1Kowll22 =27 (ool + 3 % oy’ — vl (3.67)

[jI<n

J#0
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which proves the estimate (3.66a) for K. The estimate for K follows from the ob-
servations that K = (KK, l) Ko and that KK, ! is an isomorphism in L?(0,27) by
Theorem 3.18, part (a).

The proof of (3.66b) is very simple and is left to the reader (see Problem 3.4). O

Combining these estimates with the convergence results of the previous section,
we have shown the following.

Theorem 3.20. Let v € H'(0,27) be the unique solution of (3.57); that is,
1 2n
(Ky)(1) = —— / w(s) In|y(r) = y(s)| ds = g(1) :== f(¥(r)),
0

for t € [0,2x] and some g € H™+1(0,21) for r > 0. Let g% € L*(0,271) with
||g6 —g||L2 < 6 and X,, defined by (3.62).

(a) Let l//,‘? € X, be the least squares solution; that is, the solution of

(Ky?,K¢y) = (¢°,K9n) forall ¢, € X, (3.68a)
or
(b) Let w¢ = KW with [ € X,, be the dual least squares solution; that is, {0
solves
(KW, K¢n) = (¢°,¢n) forall ¢, €X, (3.68b)
or

(c) Let ly,‘? € X,, be the Bubnov—Galerkin solution; that is, the solution of

(Kl 0n) = (°.0n) forall 9, € X,. (3.68¢)

Then there exists ¢ > 0 with

v v, <o+ vl (3.69)

foralln e N.

Proof. We apply Theorems 3.10, 3.11, and 3.15 (with V = H'/2(0,27) and V* =
H /2 (0,2m)) and use the estimates (see Lemma 3.19)

0p = max{||¢ull;2 : 0n € X, [|[KOul 2 =1} <cn, (3.70a)
Pn = maX{H‘Pn”LZ D € Xo, ||¢n||H71/2 = 1} <cy/n, (3.70b)

and
. 1
min{[|y = @ull2: dw € X} < |l — Byl 2 < p Wl (3.70¢)



3.3 Application to Symm’s Integral Equation of the First Kind 89

where P,y = ¥ <, @;y; denotes the orthogonal projection of the element y =
ez 0y onto X,,. For the simple proof of the second inequality in (3.70c), we refer
to Problem 3.4. a

It is interesting to note that different error estimates hold for discrete perturba-
tions of the right-hand side. Let us denote by f; the right-hand sides of (3.68a),
(3.68b), or (3.68c¢), respectively, for ¢ (¢) = exp(ikt). Assume that 3 is perturbed by
avector B¢ € C**! with |ﬁ - ﬁ5| < 8. We have to compute r,, of (3.34), (3.40), and
(3.52), respectively. Because the functions exp(ikt), k = —n,...,n, are orthogonal,
we compute r,, for (3.40) and (3.52) by

ZP/

j=—n

{ Y Ioif:

]77}1

1
;@:ﬁ;

For the least squares method, however, we have to compute

12

wax{ 3 ol 2l 3 % o) -1

j=n

ji pjKoe'”

j==n

2ol o

Jj=—n

that is, for discrete perturbations of the right-hand side, the estimate (3.69) is asymp-
totically the same for the dual least squares method and the Bubnov—Galerkin
method, while for the least squares method it has to be replaced by

Hw—ﬂbSc@%+%me) (3.71)

The error estimates (3.69) are optimal under the a priori information y €
H"(0,2r) and ||y||,- < 1. This is seen by choosing n ~ (1/5)1/(r+1), that gives
the asymptotic estimate

| Wf(é) — . <87

This is optimal by Problem 3.5.
From the preceding analysis, it is clear that the convergence property

) 1 r—s .
min{ly = ol o e X) <e(1) vl veH0.2m)
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and the stability property

10allpr < en™ ([ @nllpss s ¢n € X,

for r > s and n € N are the essential tools in the proofs. For regions £ with nons-
mooth boundaries, finite element spaces for X, are more suitable. They satisfy these
conditions for a certain range of values of r and s (depending on the smoothness of
the solution and the order of the finite elements). We refer to [56,59, 125-127,244]
for more details and boundary value problems for more complicated partial differ-
ential equations.

We refer to Problem 3.6 and Sect. 3.5, where the Galerkin methods are explicitly
compared for special cases of Symm’s equation.

For further literature on Symm’s and related integral equations, we refer to [11,
12,21,73,204,228,251].

3.4 Collocation Methods

We have seen that collocation methods are subsumed under the general theory of
projection methods through the use of interpolation operators. This requires the
space Y to be a reproducing kernel Hilbert space; that is, a Hilbert space in which
all the evaluation functionals y — y(¢) fory € Y and ¢ € [a, D] are bounded.

Instead of presenting a general theory as in [184], we avoid the explicit intro-
duction of reproducing kernel Hilbert spaces and investigate only two special, but
important, cases in detail. First, we study the minimum norm collocation method. It
turns out that this is a special case of a least squares method and can be treated by
the methods of the previous section. In Sect. 3.4.2, we investigate a second colloca-
tion method for the important example of Symm’s equation. We derive a complete
and satisfactory error analysis for two choices of ansatz functions.

First, we formulate the general collocation method again and derive an error
estimate in the presence of discrete perturbations of the right-hand side.

Let X be a Hilbert space over the field K, X,, C X be finite-dimensional subspaces
with dimX,, = n, and a <t} < --- <t, < b be the collocation points. Let K : X —
Cla,b] be bounded and one-to-one. Let Kx =y, and assume that the collocation
equations

(Kxa) (1) = y(t:), i=1,...,n, (3.72)
are uniquely solvable in X, for every right-hand side. Choosing a basis {)2, j=
1,... ,n} of X,,, we rewrite this as a system Aa. = 3, where x, = 2'}:1 ;% and

Aij = (Kxj)(t),  Bi=y(t). (3.73)

The following main theorem is the analog of Theorem 3.9 for collocation methods.
We restrict ourselves to the important case of discrete perturbations of the right-
hand side. Continuous perturbations could also be handled but are not of particular
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interest because point evaluation is no longer possible when the right-hand side is
perturbed in the L?-sense. This would require stronger norms in the range space and
leads to the concept of reproducing kernel Hilbert spaces (see [151]).

Theorem 3.21. Let {tl(n),...,t,(,")} C la,b], n € N, be a sequence of collocation
points. Assume that \J,cn X is dense in X and that the collocation method con-
verges. Let xf = 2;511 06;3)?]- € X,,, where o solves Aa® = B9. Here, B% € K"
satisfies |B — ﬁ‘s‘ < O where || again denotes the Euclidean norm in K. Then the
following error estimate holds:

a .
x,‘?foLz §C<T:5+1nf{||xzn :zneXn}), (3.74)

n
an = max{ Z pjX;
Jj=1

and Ay denotes the smallest singular value of A.

where

Y o = 1} (3.75)

j=1

Proof. Again we write Hx,‘? —x| < Hx,‘? — x| + [|xn — x||, where x, = R,y solves
the collocation equation for B instead of B%. The second term is estimated by
Theorem 3.7. We estimate the first term by

xS — x| < an|a? —a‘ =ap ’Afl(ﬁﬁ—ﬁ)‘
_ a
<an|a'], B0 B[ < T6. 0
n
Again we remark that a,, = 1 if {fj j= 1,...,n} forms an orthonormal system in X.

3.4.1 Minimum Norm Collocation

Again, let K : X — Cla,b] be a linear, bounded, and injective operator from the
Hilbert space X into the space C[a,b] of continuous functions on [a,b]. We assume
that there exists a unique solution of Kx =y. Leta <t < --- <1, < b be the set
of collocation points. Solving the equations (3.72) in X is certainly not enough to
specify the solution x,, uniquely. An obvious choice is to determine x,, € X from the
set of solutions of (3.72) that has a minimal L2-norm among all solutions.

Definition 3.22. x, € X is called the moment solution of (3.72) with respect to the
collocation points a <t} < --- <t, < b if x,, satisfies (3.72) and

[[%a]l ;2 = min{||za |2 : 2 € X satisfies (3.72)}.
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We can interpret this moment solution as a least squares solution. Because z —
(Kz)(t;) is bounded from X into K, Theorem A.22 by Riesz yields the existence of
ki € X with (Kz)(1;) = (ki,z) forall z€ X and i = 1,...,n. If, for example, X =
L?(a,b) and K is the integral operator

b
(K2)(t) = / k(t,5)z(s)ds, 1t € [a,b], z€ [2(a,b),

with real-valued kernel k then k; € L?(a,b) is explicitly given by k;(s) = k(t;,s). We
rewrite the moment equation (3.72) in the form

(ki,xn) =y(t) = (k,-,x), i=1,...,n.

The minimum norm solution x, of the set of equations is characterized by the pro-
jection theorem (see Theorem A.13 of Appendix A) and is given by the solution of
(3.72) in the space X,, :=span{k;: j=1,...,n}.

Now we define the Hilbert space Y by Y := R(K) with inner product

(y,2)y := (K’ly,Kflz) fory,z € K(X).
We omit the simple proof of the following lemma.

Lemma 3.23. Y is a Hilbert space that is continuously embedded in Cla,b). Fur-
thermore, K is an isomorphism from X onto Y.

Now we can rewrite (3.72) in the form.
(Kki,Kxy), = (Kki,y)y, i=1,...,n.

Comparing this equation with (3.30a), we observe that (3.72) is the Galerkin equa-
tion for the least squares method with respect to X,,. Thus we have shown that the
moment solution can be interpreted as the least squares solution for the operator
K : X — Y. Application of Theorem 3.10 yields the following theorem.

Theorem 3.24. Let K be one-to-one and {kj j=1,... ,n} be linearly independent
where kj € X are such that (Kz)(t;) = (kj,z) forallz € X, j=1,...,n. Then there
exists one and only one moment solution x,, of (3.72). x,, is given by

n
Xn= Y ajk;j, (3.76)
Jj=1

where o, € K" solves the linear system Ao, = B with

A,‘j = (Kkj)(t,') = (k,',kj) and ﬁ,’ = y(l,‘). 3.77)
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Let {tfn),...,t,gn)}C [a,D], n € N, be a sequence of collocation points such that
UnenXn is dense in X where

X, = span{kyl) cj=1,...,n}.

Then the moment method converges; that is, the moment solution x, € X,, of (3.72)
converges to the solution x € X of (3.72) in X. Ifxf = 2?:1 af kﬁ,”)’ where a® € K"
solves Ao’ = B9 with !B — B5| < 6, then the following error estimate holds:

Hx—xf §%6+cmin{||x—anLz:znGXn}, (3.78)
n
where
n (n) n 5
an:max{ ikl Y el :1} (3.79)
j=1 L2 j=1

and where A, denotes the smallest singular value of A.

Proof. The definition of |||, implies that o, = 1, where o, is given by (3.31).
Assumption (3.32) for the convergence of the least squares method is obviously
satisfied because

min {|}x =zl + 0n [K(x—=20)ly } < [l + o 1l = 2 ]

Application of Theorem 3.10 yields the assertion. O
As an example, we again consider numerical differentiation.
Example 3.25. Let X = L*(0,1) and K be defined by

t 1

(Kx)(1) = / x(s)ds = / k(t,5)x(s)ds, € [0,1],

0 0

1,s<t
with k(t,s) =< '~ =
(t,5) {0, §>1.
We choose equidistant nodes; that is, f; = ﬁ for j=0,...,n. The moment method
is to minimize HxHiz under the restrictions that
L
x(s)ds=y(t;), j=1,...,n. (3.80)
0
The solution x, is piecewise constant because it is a linear combination of the
piecewise constant functions k(z;,-). Therefore, the finite-dimensional space X, is

given by
Xp={zm€ L*(0,1) :Z"‘(tj—lafj) constant, j=1,...,n}. (3.81)

As basis functions £; of X, we choose £;(s) = k(t;,s).
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Then x, =X, ; k(tj,-) is the moment solution, where a solves Aa = 8 with
Bi = y(l‘i) and

1
1
Ay = / K 5) k{1, 5)ds =~ min{i, 1
;

It is not difficult to see that the moment solution is just the one-sided difference
quotient

Xu(t1) = %y(fl)’ xn(tj) = % () =y(i-0)], j=2,0m,
forh=1/n.

We have to check the assumptions of Theorem 3.24. First, K is one-to-one and
{k(tj,-) : j=1...,n} are linearly independent. The union |J,cyX, is dense in
[? (0,1) (see Problem 3.7). We have to estimate a, from (3.79), the smallest eigen-
value A, of A, and min{||x — z,||;2 : 24 € X, }.

Letp € R" with 2?:1 pj2 = 1. Using the Cauchy—Schwarz inequality, we estimate

2 1n n

1
ds§/2k(tj,s)2ds: yti= ”JZF :
: ~

o /=1 J

i pjk(t;,s)

Thus a, < +/(n+1)/2.

It is straightforward to check that the inverse of A is given by the tridiagonal
matrix

2 -1
-1 2-1

-1 2-1
-1 1]

We estimate the largest eigenvalue fimax of A~ by the maximum absolute row sum
Umax < 4n. This is asymptotically sharp because we can give a lower estimate of
Umax by the trace formula

1 Umax > trace(A™!) = D (A
=1

that is, we have an estimate of A,, of the form

1
— <A, < .
4n_kn_2n—l
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In Problem 3.7, it is shown that
1
min{foanL? 1n € Xn} < ; HXIHLZ .

Thus we have proven the following theorem.

Theorem 3.26. The moment method for (3.80) converges. The following error esti-
mate holds:
n+1 c oy
e YN
if x € Hl(O,l). Here, O is the discrete error on the right-hand side; that is,

2
o1 ‘ﬁ]‘s —y(tj)‘ < 8% and x% = P Ocj‘-s)?j, where a® € R" solves Ao® = B9.

S
[ERE:

The choice X, = Si(t1,...,t,) of linear splines leads to the two-sided difference
quotient (see Problem 3.9). We refer to [75,183,184] for further reading on moment
collocation.

3.4.2 Collocation of Symm’s Equation

We now study the numerical treatment of Symm’s equation (3.57); that is,

2
(Kw)(@) == [ w(s) ()~ 7(9)] ds = (1) (.82
0

for 0 <t < 2m by collocation methods. The integral operator K from (3.82) is
well-defined and bounded from L?(0,2r) into H'(0,27). We assume through-
out this subsection that K is one-to-one (see Theorem 3.16). Then we have seen
in Theorem 3.18 that equation (3.82) is uniquely solvable in L?(0,27) for every
gE€EH 1(0,2717); that is, K is an isomorphism. We define equidistant collocation
points by

fho=kZ fork=0,...2n—1.
n

There are several choices for the space X, C L?(0,27) of basis functions. Be-
fore we study particular cases, let X, = span{)ﬁ iij€eJ } C L%(0,27) be arbitrary.
J C Z denotes a set of indices with 2n elements. We assume that £;, j € J, form an
orthonormal system in L*(0,27).

The collocation equations (3.72) take the form

2
I
—;/%(s) In|y() — 7(s)| ds = g(t), k=0,....21—1,  (3.83)
0
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with v, € X,,. Let Q, : H'(0,27) — Y, be the trigonometric interpolation operator
into the 2n-dimensional space

n—1 )
Y, = { Y ame™ ay € (C}. (3.84)
m=—n

We recall some approximation properties of the interpolation operator Q :
H'(0,27) — Y,,. First, it is easily checked that Q,, is given by

2n—1
Ony =Y, w(t)
k=0
with Lagrange interpolation basis functions

1 n—1

0, M)k =0,....2n—1. (3.85)

2n m=—n

From Lemma A .43 of Appendix A we have the estimates

Iy —0uvl,2 < % Il forall e H'(0,2m), (3.862)
10wl < cllylly forall w e H'(0,2n). (3.86b)

Now we can reformulate the collocation equations (3.83) as
OnKyy = Ong  with y, € X, (3.87)

We use the perturbation result of Theorem 3.8 again and split K into the form K =
Ko + C with

(Kow)(1) i= — ;ﬂ 71,/@) [m <4 sin’ th) - 1} ds. (3.88)
0

Now we specify the spaces X,. As a first example, we choose the orthonormal
functions

1.
)Ej(t):me’” forj=—n,...,n—1. (3.89)

We prove the following convergence result.
Theorem 3.27. Let £;, j = —n,...,n— 1, be given by (3.89). The collocation

method is convergent; that is, the solution y, € X, of (3.83) converges to the so-
lution y € L*(0,21) of (3.82) in L*(0,27).
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Let the right-hand side of (3.83) be replaced by ﬁ8 € C*" with
2n—1

S |87 —eta)| <5
k=0

Let 0% € C" be the solution of Ao’ = B9, where Axj = KXj(ty). Then the following
error estimate holds:

vo-v|, <clvastmin{lv—gllz: 6 €X}], (390
where 1
5 L 5
yo(t)=—= Y, afe’.
Var =,

If w € H(0,21) for some r > 0, then

Proof. By the perturbation Theorem 3.8 it is sufficient to prove the result for Ky in-
stead of K. By (3.65a) and (3.65b), the operator Ky maps X,, into ¥,, = X,,. Therefore,
the collocation equation (3.87) for Kj reduces to

v -y

1
L2<c[\/26+; w||H,]. (3.91)

Koy, = Ong.

We want to apply Theorem 3.7 and have to estimate R,Ky where in this case R, =
(Kolx,) ~'0,,. Because Ky : L2(0,27) — H'(0,27) is invertible, we conclude that

1Rngll2 = [Wall2 < c1|KoWallgr = c1 1Qngllgr < c2llgllm

forall g € H'(0,27), and thus

IRiKW| 2 < ca[[Kyl[ < csllyll2

for all y € L?(0,27x). Application of Theorem 3.7 yields convergence.
To prove the error estimate (3.90), we want to apply Theorem 3.21 and hence
have to estimate the singular values of the matrix B defined by

By = (Ko&) (), koj=—n.on—1,
with £; from (3.89). From (3.65a) and (3.65b), we observe that

1 1

Byj=——
! V2r |jl

ik E .
&Rk j=—n,...,n—1,
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where 1/]j| has to be replaced by 1 if j = 0. Because the singular values of B are
the square roots of the eigenvalues of B*B, we compute

n—1 _ 1 1 n—1 A P)”
B'B), = Y BuBy=— 1 3 051
(B'B)yy = X BBy = 3 iy 2 ¢ =~ 5

k=—n =—n

where again 1/¢2 has to be replaced by 1 for £ = 0. From this, we see that the
singular values of B are given by \/n/(mf?) for £ = 1,...,n. The smallest singular
value is 1/y/n7. Estimate (3.74) of Theorem 3.21 yields the assertion. (3.91) follows
from Theorem A.44. a

Comparing the estimates (3.91) with the corresponding error estimate (3.69) for
the Galerkin methods, it seems that the estimate for the collocation method is better
because the error 6 is only multiplied by /z instead of n. Let us now compare the
errors of the continuous perturbation ||y — 6 ;2 With the discrete perturbation for

both methods. To do this, we have to “extend” the discrete vector ﬁ5 to a function
ys € X,,. For the collocation method, we have to use the interpolation operator Q)
and define y? € X, by y% = 2" : B‘sy j» where J; are the Lagrange basis functions

(3.85). Then y (1) = B2, and we estimate

)

Yn =Y =0y, + 1Ony = ¥ll12-

Writing
( Qny 2 P J 9
‘/_*ﬂ

a simple computation shows that

2 pj elkjn

]77}’1

:Z;)‘ﬁ,f— ‘ z}ﬁk Qny[k’:Z

=0

(3.92)

.
e

j=—n

Qny 2

Therefore, for the collocation method we have to compare the continuous error &
with the discrete error § \/n/ 7. This gives an extra factor of 1/z in the first terms of
(3.90) and (3.91).

For Galerkin methods, however, we define y? (1) = .- 3" [3]5 exp(ijt). Then

= 2p &j=—n

(y3,e7),, = ﬁj‘.s. Let P, be the orthogonal projection onto X,,. In

)
<||yn — Pny

S
Yn =Y 2=

2 TIEy =iz,
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we estimate the first term as

|

In this case, the continuous and discrete errors are of the same order.

Choosing trigonometric polynomials as basis functions is particularly suitable for
smooth boundary data. If dQ or the right-hand side f of the boundary value prob-
lem (3.54) are not smooth, then spaces of piecewise constant functions are more
appropriate. We now study the case where the basis functions £; € L%(0,27)
are defined by

2 ‘ 2

yf? — Py

L

_ LS ey i
2 - 27[ jzn‘ﬁj (y?e )

Lo ifr<Zorr>2n— L,
Ro)=q v " . (3.93a)
0, iff<r<2m—Z£,

n i —t: I
=4 Ve Th-ul<d (3.93b)
0, if|t—1;|> £,

forj=1,...,2n—1.Then%;, j=0,...,2n— 1, are also orthonormal in L*(0,27). In
the following lemma, we collect some approximation properties of the correspond-
ing spaces Xj,.

Lemma 3.28. Let X, = span{ﬁj :j=0,...,2n—1 } where X are defined by (3.93a)
and (3.93b). Let B, : L*(0,21) — X, be the orthogonal projection operator. Then
Upen Xn is dense in L*(0,27) and there exists ¢ > 0 with

lv=Pylie < = Wl foratl y € H'(0,2x), (3.942)

IK(y =Pl < 5 lyle forall y € L(0,21). (3.94b)

Proof. Estimate (3.94a) is left as an exercise. To prove estimate (3.94b), we use
(implicitly) a duality argument:

(K(W_PHW)’¢)L2

IK(y = Puy)l2 = sup
0#0 ||¢HL2
—Py,K
_ qup Y BVKO)
90 {2
.(I—P)K
_ Sup (‘V ( ) ¢)L2
640 91,2
I—P,)K
S HWHLZ sup ”( ) (pHL2
o0 ol
e 1Kol _ e

|wll,2 sup <= lwllp-
n L ozo 1102 n L o
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Before we prove a convergence theorem, we compute the singular values of the
matrix B defined by

2
1 _
Byj = (Kokj)(tx) = ~5- /fj(S) [ln (4 sin’ sz s) — 1} ds. (3.95)
0

Lemma 3.29. B is symmetric and positive definite. The singular values of B coin-
cide with the eigenvalues and are given by

JE and NEILLE i (3.962)
“0: —_ an um: —_ 2 . a
T T 2nw i (%‘H)

form=1,...,2n— 1. Furthermore, there exists ¢ > 0 with

1
ﬁgumgc\/ﬁ forallm=0,...,2n—1. (3.96b)

We observe that the condition number of B; that is, the ratio between the largest and
smallest singular values, is again bounded by n.

Proof. We write

! thr%
Bkj:f%,/; / [ln(4sm 5 )—l]ds:bjk
=2
with
t/-‘r%
1
be=—5- %/{ln(4sin2%>—l}ds,
t(—%

where we extended the definition of #; to all £ € Z. Therefore, B is circulant and
symmetric. The eigenvectors x and eigenvalues L, of B are given by

(m) imkz \ 211 2! imk X
=) and U, = Z bye™"n |
= k=0

respectively, form = 0,...,2n — 1, as is easily checked. We write L, in the form

2
L = —%O/El//m(s) [m (4 sin2%> - 1} ds = Koy (0)



3.4 Collocation Methods 101
with
N imk™ T
s)=4/—=€e"n for|s—H| < —, ke Z.
Vnls) = /> ls—nl < 2,

Let Wy, (t) = Yxez Pmk exp(ikt). Then by (3.65a) and (3.65b) we have

m:pm,()'f'z%-
7o I

Therefore, we have to compute the Fourier coefficients p,,x of y,,. They are
given by

I+2n

. 1 2n—1 -
Pk = 277:/%” e "ds= ,/ oy g &Mt / e "™ds.

s
2n

For k = 0, this reduces to

) [n 1 2”2‘16”"] n/m ifm=0,
m,0 = "=
™ 2n = 0 itm=1,...2n—1,

and for k # 0 to

=

2n mk
[n sin 2K 2n1 A in ™ ifm—keonT
Pk =\7 nl?n Zel(m B = rak Mo U e
j=0 0, ifm—k¢2nZ.

Thus we have ty = \/n/m and

-k s Tm
Ly = £2n Z ’sm% _ [nsing; z 1
m = 2 N2
TRy moomz K T 2w i (£ +))

form=1,...,2n— 1. This proves (3.96a). Because all eigenvalues are positive, the
matrix B is positive definite and the eigenvalues coincide with the singular values.
Taking only the first two terms in the series yields

> n sin 52 ( 1 N 1 >
=/ 2 2
Toam \ ()" (1-%)
_ /n 1 sinnx+sinn(1—x)
Voro2nm | x2 (1 —x)2
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with x =m/(2n) € (0,1). From the elementary estimate

sintx  sinz(l —x)

> 1
we conclude that
> i ! > !
o =2 Jan = Van
form=1,...,2n — 1. The upper estimate of (3.96b) is proven analogously. a

Now we can prove the following convergence result.

Theorem 3.30. Let £;, j =0,...,2n— 1, be defined by (3.93a) and (3.93b). The
collocation method is convergent; that is, the solution ¥, € X, of (3.83) converges
to the solution y € L*(0,27) of (3.82) in L*(0,27).

Let the right-hand side be replaced by ﬁ5 € C?" with

2n—1

Z ‘/3] g(t; ‘ <&

Let 0% € C?" be the solution of Ao’ = B, where Ayj = KX(t). Then the following
error estimate holds:

v

where y9 :25”0106ij Ifyw € H'(0,27), then

Proof. By the perturbation theorem (Theorem 3.8), it is sufficient to prove the result
for Ky instead of K. Again set

"’Hy <c[vVnd+min{|ly —ull2: ¢n € Xn}], (3.97)

1
)
vi-v|,<c [ﬁ6+ - ||w||H1] - (3.98)

R, = [QuKolx,] ' Qu: H'(0,27) — X, C I2(0,27),

let w € H'(0,27), and set v, = R,y = Z?”O a;%;. Then o € C*" solves Ba = f3
with B = w(#), and thus by (3.96b)

2n—1 1/2

2 Iy () \2
k=0

Iyl 2 =l < [B7Y], 1Bl < Van
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where |-| again denotes the Euclidean norm in C”. Using this estimate and (3.92) for
ﬁ,f = 0, we conclude that

IRaWl 2 = [[Wall 2 < 1| Qnwll 2 (3.99)

for all w € H'(0,27). Thus

IRnKowl 12 < n (| QuKow ]2

for all y € L?(0,27). Now we estimate ||R,Koy/| ;2 by the L>-norm of v itself.
Let ¥, = P,y¥ € X,, be the orthogonal projection of y € L2(0,27r) in X,. Then
R,Ko W, = W, and H‘T’"HLZ <||yl|,2, and thus

[RnKow = Wnl| 2 = [[RuKo(w — W) || 2 < n[|QuKo (W — ) [ 2
< n[|QuKoy — Koll 2 +n||[ Koy — Koh|| 2
+n||Ko W — QuKoWn)|| 2.

Now we use the error estimates (3.86a), (3.94a), and (3.94b) of Lemma 3.28. This
yields

[RaKoW — V|2 < c1 [ Kowllg + W2+ [ Ko W[ 1]
< e [[lwlle + ([l 2] <esllvlies
that is, |[R.Koy||;2 < ca|l|,2 for all w € L?(0,27). Therefore, the assumptions

of Theorem 3.7 are satisfied. The application of Theorem 3.21 yields the error
estimate (3.98). O

Among the extensive literature on collocation methods for Symm’s integral equa-
tion and related equations we mention only the work of [8,57,58,124,131,220,221].
Symm’s equation has also been numerically treated by quadrature methods; see
[80,152,218,219,229,230]. For more general problems, we refer to [9,59].

3.5 Numerical Experiments for Symm’s Equation

In this section, we apply all of the previously investigated regularization strategies
to Symm’s integral equation

2r
(Ky)(1) := —%/w(s) In|y(t) —¥(s)|ds =g(t), 0<t<2m,
0



104 3 Regularization by Discretization

where in this example y(s) = (cos s,2sin s), 0 <s < 2r, denotes the parametrization
of the ellipse with semiaxes 1 and 2. First, we discuss the numerical computation of
Ky. We write Ky in the form (see (3.60))

2 2
(Ky)(1) = f% / w(s) ln<4sin2t_TS>ds+ / w(s)k(t,s)ds,
0 0

for 0 <t < 2x, with the analytic function

L) -y
k(t,s) = —=—1 y LFES,
(t,5) " 4sin2’%s 7
k(t,t) = ——In|y(r)|, 0<r<2m

We use the trapezoidal rule for periodic functions (see [151]). Let t; = j%, j =
0,...,2n— 1. The smooth part is approximated by

2n1
/k(t,s) Zktt (t;), 0<r<2nm.

For the weakly singular part, we replace y by its trigonometric interpolation poly-
nomial Q,y = ¥2" i Yy (t;) L; into the 2n-dimensional space

n n—1
{Zajcos(jt) + Y bjsin(jit) :aj,bj € R}

Jj=0 J=1

over R (see Sect. A.4 of Appendix A). From (A.32) and Lemma 3.17, we conclude
that

21 2
st—s 1 .o t—s
/ ) In 4s1n T) ds ~ —%/(Qny/)(s) ln(4s1n T) ds
0
2n—1
= 2 W(t)R;(1), 0<r<2m,
=0

where

2
1 —
Ri(t) = fﬁ/Lj(s) ln(4sin2 th) ds
0

_! Lcos (t—t~)—|—nillcos (t—1tj)
n2n " / m " !

m=1
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for j =0,...,2n— 1. Therefore, the operator K is replaced by
2n—1

zwtj[ 1+ = k(ztj)] 0<r<2nm.

It is well-known (see [151]) that K,y converges uniformly to Ky for every 27-
periodic continuous function y. Furthermore, the error |K,y — K|, is exponen-
tially decreasing for analytic functions y. For t =, k = 0,...,2n — 1, we have
(Kaw)(t) = 255011% j w(z;) with the symmetric matrix

T .
Aij:R|k,j‘—‘r;k(tk,tj), k,j=0....2n—1,

where

(D" 1 min
Riy=—-¢—— — (=0,...,2n—1.
S { 2n + 2:‘ I A
For the numerical example, we take y(s) = exp(3 sins), 0<s<2m,and g = Ky
or, discretized, {; = exp(3sint;), j =0,...,2n— 1, and § = Ay. We take n = 60
and add uniformly distributed random noise on the data g. All the results show the
average of 10 computations. The errors are measured in the discrete norm |z\§ =

= 2271 1 |Z/ ,Z € (CZn

Flrst we consider Tikhonov’s regularization method for 6 = 0.1, § = 0.01,
6 =0.001, and 6§ = 0. In Fig. 3.1 we plot the errors ‘1;7“75 — 1/7‘2 and ‘Ali/""s —g\z
in the solution and the right-hand side, respectively, versus the regularization para-
meter O.

We clearly observe the expected behavior of the errors: For 6 > 0 the error in
the solution has a well-defined minimum that depends on &, while the defect always
converges to zero as ¢ tends to zero.

The minimal values errg of the errors in the solution are approximately 0.351,
0.0909, and 0.0206 for 6 = 0.1, 0.01, and 0.001, respectively. From this, we ob-
serve the order of convergence: increasing the error by factor 10 should increase the
error by factor 10%/3 &~ 4.64, which roughly agrees with the numerical results where
errs—o.1/errs—oo1 ~ 3.86 and errg_g o1/ errs—o.oo1 = 4.41.

In Fig. 3.2 we show the results for the Landweber iteration with a = 0.5 for the
same example where again 6 = 0.1, § = 0.01, § = 0.001, and 6 = 0. The errors in
the solution and the defects are now plotted versus the iteration number .

In Fig. 3.3 we show the results for the conjugate gradient method for the same
example where again 6 = 0.1, 6 = 0.01, 6 = 0.001, and 6 = 0. The errors in the
solution and the defects are again plotted versus the iteration number m.

Here we observe the same behavior as for Tikhonov’s method. We note the
difference in the results for the Landweber method and the conjugate gradient
method. The latter decreases the errors very quickly but is very sensitive to the
exact stopping rule, while the Landweber iteration is slow but very stable with
respect to the stopping parameter 7. The minimal values are errg_g; ~ 0.177,
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Fig. 3.1 Error for Tikhonov’s regularization method
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Fig. 3.2 Error for Landweber’s method (@ = 0.5)



3.5 Numerical Experiments for Symm’s Equation 107

1 0.5
0.8 0.4
0.7 0.35
0.6 0.3
0.5 0.25
0.4 0.2
0.3 0.15
0.2 0.1
0.1 0.05
0 0
2 3 4 5 6 7 8 9 10 0 2 4 6 8 10 12 14 16 18 20

0.035 0.018
0.03 0.016
0.014
0.025 0.012
0.02 0.01
0.015 0.008
0.01 0.006
0.004

0.005 0_002\
0 0

0 5 10 15 20 25 30 5 6 7 8 9 10

Fig. 3.3 Error for the conjugate gradient method

errs—ogo1 ~ 0.0352, and errs_p g9 ~ 0.0054 for the Landweber iteration and
errs—ogq ~ 0.172, errs_po; ~ 0.0266, and errg_g gy ~ 0.0038 for the conju-
gate gradient method. The corresponding factors are considerably larger than
10%/3 ~ 4.64 indicating the optimality of these methods also for smooth solutions
(see the remarks following Theorem 2.15).

Next, we compute the same example using some projection methods. First, we
list the results for the least squares method and the Bubnov—Galerkin method of
Sects. 3.2.1 and 3.2.3 in Tables 3.1 and 3.2 We observe that both methods produce
almost the same results, which reflect the estimates of Theorem 3.20. Note that for
6 = 0 the error decreases exponentially with m. This reflects the fact that the best
approximation min{ ||y — ¢, || : ¢, € X, } converges to zero exponentially due to the
analyticity of the solution y(s) = exp(3 sins) (see [151], Theorem 11.5).

Now we turn to the collocation methods of Sect.3.4. To implement the collo-
cation method (3.83) for Symm’s integral equation and the basis functions (3.89),
(3.93a), and (3.93b), we have to compute the integrals

2
17 ..
— / ¢ In|y(n) — 1(s)| ds, (3.1002)
0
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Table 3.1 Least squares method
n §=01 &§=001 §=0.001 §=0
1 38.190 38.190 38.190 38.190
2 15.772 15.769 15.768 15.768
3 5.2791 5.2514 5.2511 5.2511
4 1.6209 1.4562 1.4541 1.4541
5 1.0365 0.3551 3.433% 107! 3.432%107!
6 1.1954 0.1571 7.190% 102 7.045% 1072
10 2.7944 0.2358 2.742%1072 4.075% 1073
12 3.7602 0.3561 3.187% 1072 5.713%1077
15 49815 0.4871 497751072 5.570% 1010
20 7.4111 0.7270 7.300% 1072 3.530% 10712
Table 3.2 Bubnov—Galerkin method
n §=01 &6=001 &=0.001 §=0
1 38.190 38.190 38.190 38.190
2 15.771 15.769 15.768 15.768
3 5.2752 5.2514 5.2511 5.2511
4 1.6868 1.4565 1.4541 1.4541
5 1.1467 0.3580 3.434%107! 3.432%107!
6 1.2516 0.1493 7.168 %1072 7.045% 1072
10 2.6849 0.2481 2.881%1072 4.075% 1073
12 3.3431 0.3642 3.652% 1072 5.713x1077
15 4.9549 0.4333 5.719%1072 5.570% 10710
20 7.8845 0.7512 7.452%1072 3.519%10712
j=-m,....m—1,k=0,....2m— 1, and
| 2
—E/)?j(s) In|y(t) — y(s)| ds, jsk=0,....2m—1, (3.100b)
0
respectively. For the first integral (3.100a), we write using (3.63),
| 2n
—— [ mlyta) — v(5)| ds
0
2
1 . .0 L t
:——/e”sln(élsmz k— / |7/ k }/( )| ds
27‘60 - 2n 4s1n (tr—9)/2

2r

1 .
— / ¢ In
/A
0

— .l
=gje

(1) —
4sin®(t; —5)/2

P

where €; =0 for j =0and &; = 1/| j| otherwise. The remaining integral is computed

by the tfapezoidal rule.
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The computation of (3.100b) is more complicated. By Definition (3.93a), (3.93b)
of £;, we have to calculate

tj+1/(2m) /(2m)
[ mbw-ve)Pds= [ mfre) - rsrol ds
tjfﬂ/(Zm) 77t/(2m)

For j # k, the integrand is analytic, and we use Simpson’s rule

r/(2m) n
g(s)ds~ Y weg(se),
—xj(2m) =0
where
i i T 1, ¢{=0orn,
SEZE___’ = 47 621,3,...,”1_17
mn 2m 3mn

2, (=2,4,....n-2,

{=0,...,n. For j =k, the integral has a weak singularity at s = 0. We split the
integrand into

nt/(2m) /(2m)

2
/ 1n(4sin2 f) ds+ / In l7(t) ' Z(S+lk)| ds
2 4sin*(s/2)
—n/(2m) —n/(2m)
T m/(2m) 2
=-2 / ln(4sin2£> ds+ / an([k), Z(s+tk)| ds
2 4sin*(s/2)
/(2m) —m/(2m)

because In(4sin®(s/2)) is even and [j In(4sin?(s/2)) ds = 0 by (3.63). Both inte-
grals are approximated by Simpson’s rule. For the same example as earlier, with
100 integration points for Simpson’s rule we obtain the results shown in Tables 3.3
and 3.4.

The difference for § = 0 reflects the fact that the best approximation
min{ ||y — ¢u|| : ¢ € span{%;: j€J}}

converges to zero exponentially for £; defined by (3.89), while it converges to zero
only of order 1/n for £; defined by (3.93a) and (3.93b) (see Theorem 3.30).

We have seen in this section that the theoretical investigations of the regulariza-
tion strategies are confirmed by the numerical results for Symm’s integral equation.
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Table 3.3 Collocation method for basis functions (3.89)

m §=0.1 §=0.01 8 =0.001 §=0

1 6.7451 6.7590 6.7573 6.7578

2 1.4133 1.3877 1.3880 1.3879

3 0.3556 2.791% 107! 2.770% 107! 2.769 % 10!
4 0.2525 5.979% 102 5.752% 1072 5.758 %1072
5 0.3096 3.103% 102 1.110% 1072 1.099 %1072
6 0.3404 3.486 %102 3.753% 1073 1.905% 1073

10 0.5600 5.782% 1072 5.783% 1073 6.885%10~7
12 0.6974 6.766 % 102 6.752% 1073 8.135%107°
15 0.8017 8.371%102 8.586%1073 6.436 %1012
20 1.1539 1.163x107! 1.182%1072 1.806% 1013

Table 3.4 Collocation method for basis functions (3.93a) and (3.93b)

m §=0.1 §=0.01 8§ =0.001 §=0

1 6.7461 6.7679 6.7626 6.7625

2 1.3829 1.3562 1.3599 1.3600

3 0.4944 4.874%107! 4.909%107! 4.906 %1071
4 0.3225 1.971% 107! 2.000% 107! 2.004% 107!
5 0.3373 1.649% 107! 1.615% 107! 1.617% 107!
6 0.3516 1.341% 107! 1.291% 107! 1.291% 107!

10 0.5558 8.386% 1072 6.140% 1072 6.107 %1072
12 0.6216 7.716% 1072 4.516%1072 4.498 %1072
15 0.8664 9.091%102 3.137%1072 3.044 %1072
20 1.0959 1.168 107! 2.121%1072 1.809% 102
30 1.7121 1.688% 107! 1.862 %1072 8.669 %1073

3.6 The Backus—Gilbert Method

In this section, we study a different numerical method for “solving” finite moment
problems of the following type:

b
/kj(s)x(s)ds:yj, j=1,...,n. (3.101)

Here, y; € R are any given numbers and k; € L?(a,b) arbitrary given functions.
Certainly, we have in mind that y; = y(¢;) and k; = k(z;,-). In Sect. 3.4, we studied
the moment solution of such problems; see [167,209]. We saw that the moment
solution x, is a finite linear combination of the functions {k,...,k,}. Therefore,
the moment solution x, is as smooth as the functions k; even if the true solution is
smoother.

The concept originally proposed by Backus and Gilbert ([13, 14]) does not pri-
marly wish to solve the moment problem but rather wants to determine how well all
possible models x can be recovered pointwise.
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Define the finite-dimensional operator K : L?(a,b) — R" by
(Kx); = /kj(s)x(s)ds, j=1,...n, xel’(ab). (3.102)

We try to find a left-inverse S; that is, a linear operator S : R” — [? (a,b) such that
SKx~x forallx e L*(a,b). (3.103)

Therefore, SKx should be a simultaneous approximation to all possible x € L*(a, b).
Of course, we have to make clear the meaning of the approximation.
The general form of a linear operator S : R"* — L?(a,b) has to be

1= y0;t), t€(ab), y=(y)eR", (3.104)
=1

for some ¢; € L?(a,b) that are to be determined from the requirement (3.103):

(SKx)( zn: /b )x(s)ds

-/ lil"’(” qw)] s)ds
a U=

The requirement SKx ~ x leads to the problem of approximating Dirac’s delta dis-
tribution & (s — ) by linear combinations of the form ¥_, k;(s) ¢;(¢). For example,
one can show that the minimum of

/| /
a
(in the sense of distributions) is attained at ¢@(s) = A~'k(s), where k(s) =
(kl(s),...,k,,(s))—r and A;; = fabki(s)kj(s)ds, i,j =1,...,n. For this minimiza-
tion criterion, x = Z?=1 y;j@; is again the moment solution of Sect.3.4.1. In [167],
it is shown that minimizing with respect to an H*-norm for s > 1/2 leads to pro-
jection methods in H®-spaces. We refer also to [248] for a comparison of several
minimization criteria.

The Backus—Gilbert method is based on a pointwise minimization criterion: Treat

t € |a,b] as a fixed parameter and determine the numbers ¢; = @;(¢) for j=1,...,n,
as the solution of the following minimization problem:

2
dsdt

k608050

minimize / s —1t[* (3.105a)
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subject to @ € R" and

b
/ij(s)% ds=1. (3.105b)

a J=1

Using the matrix-vector notation, we rewrite this problem in short form:
minimize @' Q(r)@ subjectto r-@ =1,

where

b
Q(t)ij:/|s7t|2k,-(s)kj(s)ds, ii=1,..n,
a

b
rjz/kj(s)ds, j=1,...,n
a

This is a quadratic minimization problem with one linear equality constraint. We
assume that r # 0 because otherwise the constraint (3.105b) cannot be satisfied.
Uniqueness and existence are assured by the following theorem, which also gives a
characterization by the Lagrange multiplier rule.

Theorem 3.31. Assume that {ky,...,k,} are linearly independent. Then the sym-
metric matrix Q(t) € R"™" is positive definite for every t € |a,b]. The minimization
problem (3.105a), (3.105b) is uniquely solvable. ¢ € R" is a solution of (3.105a)
and (3.105D) if and only if there exists a number A € R (the Lagrange multiplier)
such that (@, 1) € R" X R solves the linear system

O)p—Ar=0 and r-o=1. (3.1006)

A = @' Q(t) @ is the minimal value of this problem.

Proof. From
2

b
0 09— [Is—1 ds

i kj(s) @;
=1

we conclude first that @ " Q(¢) @ > 0 and second that ¢ " Q(¢) @ = 0 implies that
3/i_1kj(s) @; = 0 for almost all s € (a,b). Because {k;} are linearly independent,
@; = 0 for all j follows. Therefore, Q(r) is positive definite. Existence, unique-
ness, and equivalence to (3.106) are elementary results from optimization theory;
see [245]. O

Definition 3.32. We denote by ((pj(t));le € R" the unique solution ¢ € R" of
(3.105a) and (3.105b). The Backus—Gilbert solution x, of

b

/kj(s)x,,(s)ds =y, j=1,...,n,

a
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is defined as

xn(t) =Y, y;@;(t), t€la,b]. (3.107)
j=1

The minimal value A = A (1) = (1) " Q(t)@(t) is called the spread.

We remark that, in general, the Backus—Gilbert solution x;,, = Z;le yj @; is not
a solution of the moment problem; that is, [ f kj(s)xn(s)ds # y;! This is certainly

a disadvantage. On the other hand, the solution x is analytic in [a,b] — even for
nonsmooth data k;. We can prove the following lemma.

Lemma 3.33. ¢@; and A are rational functions. More precisely, there exist polyno-
mials pj,q € Pyu—1) and p € Pay, such that ;= p;/q, j=1,...,n,and A =p/q.
The polynomial g has no zeros in [a,b].

Proof. Obviously, Q(t) = Qg — 2t Q1 + 1> Q> with symmetric matrices Qq, Q1, Q>.
We search for a polynomial solution p € [Pm]n and p € P40 of Q(t)p(t) — p(2)
r =0 with m = 2(n — 1). Because the number of equations is n(m+3) = 2n*> +n
and the number of unknowns is n(m -+ 1) 4 (m +3) = 2n*> +n + 1, there exists a
nontrivial solution p € [Pm] " and P € Puia. If p(f) = 0 for some 7 € [a,b], then
p(f) = 0 because r # 0. In this case, we divide the equation by (¢ — ). Therefore,
we can assume that p has no zero in [a, b].

Now we define ¢(t) := r- p(t) for ¢ € [a,b]. Then g € P, has no zero in [a,b]
because otherwise we would have

0=p@r-pt) =p@ T 0@ p(f):

thus p(f) = 0, a contradiction. Therefore, ¢ := p/q and A := p/q solves (3.106).
By the uniqueness result, this is the only solution. a

For the following error estimates, we assume two kinds of a priori information
on x depending on the norm of the desired error estimate. Let

X, = span{kj j= 1,...,n}.
Theorem 3.34. Let x € L?(a,b) be any solution of the finite moment problem

(3.101) and x,, = 27:1 Y@, be the Backus—Gilbert solution. Then the following error
estimates hold:

(a) Assume that x is Lipschitz continuous with constant { > 0, that is,
|x(t) —x(s)| < l|s—t| foralls,t€ la,b).

Then

5 (£) — x(1)| < £V —a a(t) (3.108)
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foralln €N, t € [a,b], where €,(t) is defined by

b

b
€2(1) :—min{/|s—t|2 12 ()2 dls : 20 € X, /z,,(s)ds_l}. (3.109)

(b) Let x € H'(a,b). Then there exists ¢ > 0, independent of x, such that
%0 —xll2 < c||¥]|,2 ll&nll.  forallneN. (3.110)

Proof. By the definition of the Backus—Gilbert solution and the constraint on ¢, we
have

Thus
b

() -x(0)| < [

a

|x(s) —x(2)| ds.

n

D ki(s) (1)
j=1
Now we distinguish between parts (a) and (b):

(a) Let |x(¢) —x(s)| < £|r —s|. Then, by the Cauchy—Schwarz inequality and the
definition of ¢y,

|t —s|ds

12
b 5 /

3 ki(s) 05(0)

|t —s|* ds

={0Vb—agy(t).

(b) First, we define the cutoff function Ag on [a,b] X [a,b] by

1, jt—s]>6,
ls(ts)—{Q t—s| <o (3.111)
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Then, by the Cauchy—Schwarz inequality again,

/A(;ts
/

<& [ 2509

2

()@ (@)| x(s) —x(t)| ds

x(s) —x(t)

t—s

As(2,5) ds

zj: 1) (t—s)

2

SOREGI

s—t

Integration with respect to ¢ yields

b [ b n
[ |75 | Z k0010
a |a J=

|x(s) —x(¢)| ds| dt

x(s) — x(t)

2
< l&all? As(t,s)dsdr.

Hoo

The following technical lemma from the theory of Sobolev spaces yields the
assertion. O

Lemma 3.35. There exists ¢ > 0 such that

—x(t) 2 1|2
As(t,s)dsdr < c||x'||,»

forall § >0 and x € H' (a,b). Here, the cutoff function A is defined by (3.111).

Proof. First, we estimate

t 2 t
Ix(s) —x(0)2 = /Lx’(r)dr <li—s] /\x’(r)yzdr

and thus, for s # 1,

t

1 , 2
< P /|x (7)|" dr|.

N

x(s) —x(t) [

s—t
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Now we fix t € (a,b) and write

[ [x6) =)
x(s)—x
As(t,s)d
/ s—1 5( ,S)
a
t), ( ) t b/,L ( ) s
t t
g/ 54,5 /|x’(r)|2drds+/ oll,3 /| ? drds
t—s s—1
a N t t
b
:/‘x’(s)’ As(t,s)ds,
a
where
\y
fll(z(—ml)df’ ass<t In 14 s<t
Ag(l S) _ ab _ max(0,t—s)’ ’
) b7
f’llf(f? dt, t<s<b In oG s=2t
N
Finally, we estimate
b b b
// [x(s) = (1) As(t,s) dsdt</’x /A5(t,s)dt ds
4 |S—f‘ ‘
and
b
/Aa(t,s)dt <c¢ forallse€ (a,b)and § >0
which is seen by elementary integration. ad

From these error estimates, we observe that the rate of convergence depends on
the magnitude of g,; that is, how well the kernels approximate the delta distribution.
Finally, we study the question of convergence for n — oo.

Theorem 3.36. Let the infinite-dimensional moment problem

/k (s)ds=yj, j=12...,

have a unique solution x € L*(a,b). Assume that {k; : j € N} is linearly independent
and dense in L?(a,b). Then

llenlle — O forn — oo,

||oo
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Proof. For fixed t € [a,b] and arbitrary & € (0,(b—a)/2), we define

b -1

e
@(s):{sof’ :S_iiig’ and  v(s) := /T;(r)dr #(s).

a

Then v € L?(a,b) and fab v(s)ds = 1. Because |JX,, is dense in L?(a,b), there exists
a sequence 9, € X, with &, — v in L?(a,b). This implies also that fab Tu(s)ds —
[?v(s)ds = 1. Therefore, the functions

a

Uy 1= [/b T),,(s)ds} _117,, € X,

converge to v in L?(a,b) and are normalized by [ ab vu(s)ds = 1. Thus v, is admissi-
ble, and we conclude that

b
enl1)? < /\s_t|2 wn(s)2ds

b b
= /\s—t|2 v(s)zds—&—2/|s—t|2 v(s)[un(s) — v(s)] ds

b
-|-/|s—t|2 [Un(s)—v(s)]zds
ab i

< /T;(s)ds (b—a)

2
+<b—a>2[2 Noll2 o — vl + lon — ol .

This shows that
b
limsupe,(t) <vVb—a /T)(s)ds forallz € [a,b].
Nn—oo g

Direct computation yields

b
/T;(s)dszc+|ln5\
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for some ¢ independent of §; thus

/=
liglsspsn(t) < rln(; forall 6 € (0,(b—a)/2).

This yields pointwise convergence; that is, &,(f) — 0 (n — o) for every ¢ € [a,b].
Because &,(r) is monotonic with respect to n, a well-known theorem from classical
analysis yields uniform convergence. O

For further aspects of the Backus—Gilbert method, we refer to [31, 102, 128, 144,
145,224,248,249].

3.7 Problems

3.1. LetQ,:Cla,b] — Si(t1,...,t,) be the interpolation operator from Example 3.3.
Prove that ||Q,||., = 1 and derive an estimate of the form

||oo

1Qnx — x| < ch [|¥']],

for x € C'{a,b], where h = max{t; —t;_; : t =2,...,n}.

3.2. LetK : X — X be self-adjoint and positive definite and let y € X. Define y(x) =
(Kx,x) —2Re (y,x) for x € X. Prove that x* € X is a minimum of y if and only if x*
solves Kx* = y.

3.3. Let (V,X,V*) be a Gelfand triple and J : V — X the embedding operator. Show
that J* : X — V* is one-to-one and that J*(X) is dense in V*.

3.4. Define the space X, by

X, = { D ajeij’:ajG(C}

|j|<n

and let P, : L?(0,27) — X, be the orthogonal projection operator. Prove that for
r > s there exists ¢ > 0 such that

[Wallgr < cn™ 7 [|nllys  forall w, € Xy,

1
— ||yl forall y € H"(0,27).

1B =l < ¢

3.5. Show that the worst-case error of Symm’s equation under the information
lw|l s < E for some s > 0 is given by

]-“(575" ||'\|Hs) < c &S/ (s+1)
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3.6. Let Q C R? be the disc of radius a = exp(—1/2). Then y = 1 is the unique
solution of Symm’s integral Eq. (3.57) for f = 1. Compute explicitly the errors of
the least squares solution, the dual least squares solution, and the Bubnov—Galerkin
solution as in Sect. 3.3, and verify that the error estimates of Theorem 3.20 are
asymptotically sharp.

3.7. Letty =k/n,k=1,...,n, be equidistant collocation points. Let X, be the space
of piecewise constant functions as in (3.81) and B, : [? (0,1) — X, be the orthogonal
projection operator. Prove that | JX,, is dense in L?(0, 1) and

1
e = Pall 2 < — || 2

for all x € H'(0,1) (see Problem 3.1).

3.8. Show that the moment solution can also be interpreted as the solution of a dual
least squares method.

3.9. Consider moment collocation of the equation
t
[x(s)ds =), telo.1],
0

in the space X, = Si(t1,...,4,) of linear splines. Show that the moment solution x,,
coincides with the two-sided difference quotient; that is,

wlt) = 5 [t +1) = y{e— 1)

where h = 1/n. Derive an error estimate for Hx,‘z fo ;2 as in Example 3.25.






Chapter 4
Inverse Eigenvalue Problems

4.1 Introduction

Inverse eigenvalue problems are not only interesting in their own right but also have
important practical applications. We recall the fundamental paper by Kac [132].
Other applications appear in parameter identification problems for parabolic or hy-
perbolic differential equations (see [149, 170,234]) or in grating theory ([140]).

We study the Sturm—Liouville eigenvalue problem in canonical form. The direct
problem is to determine the eigenvalues A and the corresponding eigenfunctions
u # 0 such that

2
—dd’;(zx)Jrq(x)u(x):)Lu(x), 0<x<1, (4.1a)
w(0)=0 and hu'(1)+Hu(1) =0, (4.1b)

where g € L*(0,1) and h, H € R with h?> + H? > 0 are given. In this chapter, we as-
sume that all functions are real-valued. In some applications, e.g., in grating theory,
complex-valued functions ¢ are also of practical importance. Essentially all of the
results of this chapter hold also for complex-valued g and are proven mainly by the
same arguments. We refer to the remarks at the end of each section.

The eigenvalue problem (4.1a), (4.1b) is a special case of the more general eigen-
value problem for w:

% (p(’)dv:zit)) +lpr(t) —g(t)Iw(t) =0, t€la,b], (4.2a)
0’ (@) + Baw(@) =0, cw (b) + Bpw(b) = 0. (4.2b)

Here p, r, and g are given functions with p(t) > 0 and r(¢t) > 0 for ¢ € [a,b],
and 0, 0, B, By € R are constants with o2 + B2 > 0 and oc,f + ﬁbz > 0. If we as-
sume, however, that g € C[a,b] and p, r € C?[a, b], then the Liouville transformation

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, 121
Applied Mathematical Sciences 120, DOI 10.1007/978-1-4419-8474-6_4,
© Springer Science+Business Media, LLC 2011
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reduces the eigenvalue problem (4.2a), (4.2b) to the canonical form (4.1a), (4.1b).
In particular, we define

b
o) = /2 r4) = [p(e) ()], / o(s)ds, 4.3)

the monotonic function x : [a,b] — [0, 1] by
x(t) = —/G(s)ds7 t € [a,b], 4.4)

and the new function u : [0,1] — R by u(x) := f(¢(x)) w(z(x)), x € [0,1], where
t = t(x) denotes the inverse of x = x(¢). Elementary calculations show that u satisfies
the differential Eq. (4.1a) with A = L?p and

() 5@ (p0F @)Y
a0 =2 |05+ 25 (P55 ﬂ() *

Also, it is easily checked that the boundary conditions (4.2b) are mapped into the
boundary conditions

hou/(O)-i-H()u(O):O and hlu’(1)+H1u(l):0 4.6)

with hy = a,0(a)/ (L f(a)) and Hy = B,/ f(a) — ouf'(a)/f(a)? and, analogously,
hi, Hy with a replaced by b.

In this chapter, we restrict ourselves to the study of the canonical Sturm-Liouville
eigenvalue problem (4.1a), (4.1b). In the first part, we study the case 4 = 0 in some
detail. At the end of Sect. 4.3, we briefly discuss the case where 4 = 1. In Sect. 4.3,
we prove that there exists a countable number of eigenvalues A, of this problem
and also prove an asymptotic formula. Because ¢ is real-valued, the problem is self-
adjoint, and the existence of a countable number of eigenvalues follows from the
general spectral theorem of functional analysis (see Appendix A, Theorem A.51).
Because this general theorem provides only the information that the eigenvalues
tend to infinity, we need other tools to obtain more information about the rate of
convergence. The basic ingredient in the proof of the asymptotic formula is the
asymptotic behavior of the fundamental system of the differential Eq. (4.1a) as ||
tends to infinity. Although all of the data and the eigenvalues are real-valued, we
use results from complex analysis, in particular Rouché’s theorem. This makes it
necessary to allow the parameter A in the fundamental system to be complex-valued.
The existence of a fundamental solution and its asymptotics is the subject of the next
section.

Section 4.5 is devoted to the corresponding inverse problem: Given the eigenval-
ues A, determine the function g. In Sect. 4.6, we demonstrate how inverse spectral
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problems arise in a parameter identification problem for a parabolic initial value
problem. Section 4.7, finally, studies numerical procedures for recovering ¢ that
have been suggested by Rundell and others (see [169,212,213]).

We finish this section with a “negative” result, as seen in Example 4.1.

Example 4.1. Let A be an eigenvalue and u a corresponding eigenfunction of
—u"(x) + q(x)u(x) = Au(x),0 <x < 1, u(0)=0, u(1)=0.

Then A is also an eigenvalue with corresponding eigenfunction v(x) := u(1 —x) of
the eigenvalue problem

—0"(x) +G(x)v(x) =Av(x),0<x <1, v(0)=0, v(1)=0,
where G(x) := q(1 —x).

This example shows that it is generally impossible to recover the function g un-
less more information is available. We will see that g can be recovered uniquely,
provided we know that it is an even function with respect to 1 /2 or if we know a sec-
ond spectrum; that is, a spectrum for a boundary condition different from u(1) = 0.

4.2 Construction of a Fundamental System

It is well-known from the theory of linear ordinary differential equations that the
following initial value problems are uniquely solvable for every fixed (real- or
complex-valued) g € C[0,1] and every given 4 € C:

—u" +q(x)u; = Auy,0<x<1, u(0)=1,u;/(0)=0 (4.7a)

—w)" +q(x)uy = Aup,0 <x <1, up(0) =0, uy'(0) = 1. (4.7b)

Uniqueness and existence for ¢ € L?(0,1) is shown in Theorem 4.4 below. The
set of functions {uy,uy} is called a fundamental system of the differential equation
—u" + qu= Auin (0,1). The functions u; and u, are linearly independent because
the Wronskian determinant is one:

up u
[u1,u5] := det Llll u;’] = —uuy =1. 4.8)

This is seen from

d
E[m,uz] =" —u"ur = u1 (g — A)uz — ur (g — A)u; =0
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and [u;,u3](0) = 1. The functions u; and u, depend on A and g. We express this
dependence often by u; = u;(-,A,q), j = 1,2. For ¢ € L*(0, 1), the solution is not
twice continuously differentiable anymore but is only an element of the Sobolev
space

H*(0,1) := ueCl[O,l]:u’(x):oc+/v(t)dt,oce(C,veLz(O,l) :
0

see (1.24). We write u” for v and observe that u” € L>(0,1). The most important
example is when g = 0. In this case, we can solve (4.7a) and (4.7b) explicitly and
have the following.

Example 4.2. Let g = 0. Then the solutions of (4.7a) and (4.7b) are given by

in(vA
uy(x,1,0) = cos(VAx) and up(x,A,0) = M, 4.9)
Vi
respectively. An arbitrary branch of the square root can be taken because s — cos(sx)
and s — sin(sx) /s are even functions.

We will see that the fundamental solution for any function ¢ € L?(0, 1) behaves
as (4.9) as |A| tends to infinity. For the proof of the next theorem, we need the
following technical lemma.

Lemma 4.3. Let g € L*(0,1) and k,k € C[0,1] such that there exists i > 0 with
|k(7)| < exp(ut) and |k(t)| < exp(ut) forall T € [0,1]. Let K,K : C[0,1] — C[0, 1]
be the Volterra integral operators with kernels k(x —t)q(t) and k(x —t)q(t), respec-
tively. Then the following estimate holds:

_ 1
(R 0) ()] < [[0]l. —q(x)"et”, 0<x <1, (4.10)
for all ¢ € C[0,1] and all n € N. Here, §(x) := [ |q(t)|dt. If ¢ € C[0,1] satisfies
also the estimate |¢(7)| < exp(Ut) for all T € [0,1], then we have

[(RK"'¢)(x)| < %c}(x)”e“x, 0<x<l, 4.11)

foralln e N.

Proof. We prove the estimates by induction with respect to n.
Forn =1, we estimate

(&) = | [ Rx=naw)o(0)ds
0

IN

H(IJHm/E“(X”)IQ(I)I dr <|[]]..e"q(x).

0
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Now we assume the validity of (4.10) for n. Because it holds also for K = K, we
estimate

X

[(RK"0)@)| < [ lq(o)|[(K"6) 1) dr

0
1 X [ A n
<119l e [ lato)lateyar
0

We compute the last integral by

[awtatera = [ waera= 2 [ e a
0 0 b

_ 1 A n+1
= an(X) :

This proves the estimate (4.10) for n+ 1.
For estimate (4.11), we only change the initial step n = 1 into

X

[(Ro)e)| < [eH=0et|q(r)] dr < ehg(x).
0

The remaining part is proven by the same arguments. O

Now we prove the equivalence of the initial value problems for u;, j = 1,2, to
Volterra integral equations.

Theorem 4.4. Let g € L*(0,1) and A € C. Then we have:

(a) ui,uy € H*(0,1) are solutions of (4.7a) and (4.7b), respectively, if and only if
uy,up € C[0,1] solve the Volterra integral equations:

I invVA(x—1)

w1 (x) = cos(VAx) + | XD 0 yuy (1) (4.12a)
O/ vV

s (x) = Sm%%x) + / Sm\/j%x_t) q(w(t) dr, (4.12b)

respectively, for 0 <x < 1.

(b) The integral Egs. (4.12a) and (4.12b) and the initial value problems (4.7a) and
(4.7b) are uniquely solvable. The solutions can be represented by a Neumann
series. Let K denote the integral operator

r sinv/A(x—1)

(K¢)(x) := q(t)o(t)dt, x€]0,1], (4.13)
[
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and define
C(x) :==cos(VAx) and S(x):= % (4.14)
Then
uy=Y K'C and up= Y K'S. (4.15)
n=0 n=0

The series converge uniformly with respect to (x,A,q) € [0,1] x A x Q for all
bounded sets A C C and Q C L*(0,1).

Proof. (a) We use the following version of partial integration for f,g € H>(0,1):

b

1080 = £ )" 0)] di = [/ @) = (0 0)]

a

b (4.16)

We restrict ourselves to the proof for u;. Let u; be a solution of (4.7a). Then

/ S(x—1)q(t)un(t) di = / S(e—1) [y (6) + )" (1)) dt
0 0

:/ul(;) AS(x—1)+S8"(x—1)| dr
0 =0
+ [ (S — 1) + 1 (1) (x = 1)] [ =)

=0
= uj(x) —cos (\/Ix) .

On the other hand, let u; € C[0, 1] be a solution of the integral Eq. (4.12a). Then
u is differentiable almost everywhere and

uy'(x) = —VAsin (\/I)c) —I—/xcos VA(x—1)q(t)u (1) dt.

0

From this, we observe that u;’ is continuous and even differentiable almost
everywhere and

u"(x) = —Acos (\/Ix) +q(x)u;(x)
- / VA sinVZ (x — 1)q(t)ur (1) dr
0

= —Auy(x) +q(x)u; (x).
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This proves the assertion because the right-hand side is in L%(0, 1) and the initial
conditions are obviously satisfied.

(b) We observe that all of the functions k(7) = cos(VAT), = sin(v/A1), and
k(t) = sin(v/At)/V/A for T € [0,1] satlsfy the estimate |k( )| < exp(ut) with
u=|Im VA |. This is obvious for the first two functions. For the third, it follows

from
T

/’cos \/_s)‘ ds = /Cosh(/.ts)ds <M’

0

sm(\/_r
VA

We have to study the integral operator K with kernel k(x —t)g(¢), where k(1) =
sin(v/A7)/v/A. We apply Lemma 4.3 with K = K. Estimate (4.10) yields

(1)

IK"|| < =€t < 1
for sufficiently large n uniformly for ¢ € Q and A € A. Therefore, the Neumann
series converges (see Appendix A, Theorem A.29), and part (b) is proven. O

The integral representation of the previous theorem yields the following asymp-
totic behavior of the fundamental system by comparing the case for arbitrary g with
the case of ¢ = 0.

Theorem 4.5. Let g € L? (0,1), A € C, and uy, uy be the fundamental system; that
is, the solutions of the initial value problems (4.7a) and (4.7b), respectively. Then
we have for all x € [0,1]:

~ cos(vx)| < — ImVA|x+ Hdt |, 4.17

() — cos(VAx) < o | m VAR 0/|q()| (4.17a)

ug(x)—% < ﬁexp |Im\/7_L|x+O/q(t)dt ) (4.17b)

‘ul’(x)—i—\/}_»sin(\/zx) < exp \Im\/?_t|x+/|q(t)|dt ) (4.17¢)
0

'(x) — cos(V/A. Imv/Alx+ )| dt |. 4.17d

‘uz (x) —cos(VAx)| < |\/_| exp | ImvA|x /|q )| ( )

Proof. Again, we use the Neumann series and define C(7) := cos(v/AT) and §(7) :=

A
sin(v/AT)/v/A. Let K be the integral operator with kernel ¢(¢) sin (\/I (x— t)) JVA.
Then



128 4 Inverse Eigenvalue Problems
uy (x) — cos(VAx) ‘ 2 |(K"C)(x
n=1

Now we set k() = sin(v27) and k(t) = sin(v’A7)/v/A and denote by K and K
the Volterra integral operators with kernels k(x —t) and k(x — 1), respectively. Then
K" = \/IXKK" and, by Lemma 4.3, part (b), we conclude that

n

] X
(K"C)(x)| < —=—| [ lg(t)| dr | exp (|ImV/A|x
|\/I|n' 0/ ( )

for n > 1. Summation now yields the desired estimate:

()—cos(\/_x)‘ exp |Im\/_|x+/\q )| dt

I\/_I

Because [S(x)| < —= | V] €XP (|Im Va |x) the same arguments prove the estimate
(4.17b). Differentlatlon of the integral Eqs. (4.12a) and (4.12b) yields

' () + V7 sin(VAx) = /cos VI (x—1)q(t)u (1) dt,

0

X

' (x) — cos(VAx) = / cos VA (x — 1)q()us(t) dr.

0

With K as before and K defined as the operator with kernel ¢(t) cos VA (x—1). Then
uy'(x) + VA sin(vVAx) = KEK”
uy (x) — cos(VAx) = K 2 K"S,

and we use Lemma 4.3, estimate (4.11), again. Summation yields the estimates
(4.17¢c) and (4.17d). O

In the next section, we need the fact that the eigenfunctions are continuously dif-
ferentiable with respect to ¢ and A. We remind the reader of the concept of Fréchet
differentiability (F-differentiability) of an operator between Banach spaces X and
Y (see Appendix A, Definition A.56). Here we consider the mapping (1,q) —
u;j(-,A,q) from C x L*(0,1) into C[0,1] for j = 1,2. We denote these mappings
by u; again and prove the following theorem.
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Theorem 4.6. Let u; : C x L*(0,1) — C[0,1], j = 1,2, be the solution operator of
(4.7a) and (4.7b), respectively. Then we have the following:

(a) uj is continuous.
(b) uj is continuously F-differentiable for every ()AL,Q) € C x L*(0,1) with partial

derivatives
%u/(wi,é) =uja (- 4.4) (4.182)

and
a%ﬂj('ﬁﬁ)(q) = ujqy(2,9), (4.18b)

where uj’l(~,i,(?) and ui,‘.q(~,i,c}) are solutions of the following initial bound-
ary value problems for j = 1,2:

— ()" + (@*i) ujp = uj(A.9) in(0,1)
u;;(0) =0, (u;2)' (0) =0,
()" + (0= 2) g = —qui(209) in (0,1),
uj4(0) =0, (ujq) (0) =0. (4.19)

(¢) Furthermore, for all x € [0,1] we have:

X

/ wje)?de = [ujz,u)(x), j=1.2, (4.20a)
0
/x up (Hua(t)dt = [uy 5, ua)(x) = [up 3, u1](x), (4.20b)
0
- / q(t)uj(0)*dr = [ujgu)(x), j=1,2, (4.20¢)
0
/X‘J(’)“I(I)”Z(’W = [u1,g,u2](x) = [u2,9,11] (x), (4.20d)

0

where [u,v] denotes the Wronskian determinant from (4.8).

Proof. (a), (b): Continuity and differentiability of u; follow from the integral
Egs. (4.12a) and (4.12b) because the kernel and the right-hand sides depend con-
tinuously and differentiably on A and g. It remains to show the representation of the
derivatives in (b). Let u = u;, j = 1 or 2. Then



130 4 Inverse Eigenvalue Problems

= [ut A+ —ut2)] 4 (a-4) % [ A +e)—ut )] =u(-A +e)

Furthermore, the homogeneous initial conditions are satisfied for the difference quo-
tient. The right-hand side converges uniformly to u(-,A) as € — 0. Therefore, the
difference quotient converges to u; uniformly in x. The same arguments yield the
result for the derivative with respect to g.

(c) Multiplication of the differential equation for u; ; by u; and the differential

equation for u; by u; ; and subtraction yields

w5 (x) = " ()i (x) = 2" ()uj(x)

= ) 1y ).

Integration of this equation and the homogeneous boundary conditions yield the first
equation of (4.20a). The proofs for the remaining equations use the same arguments
and are left to the reader. O

At no place in this section have we used the assumption that ¢ is real-valued.
Therefore, the assertions of Theorems 4.4, 4.5, and 4.6 also hold for complex-
valued g.

4.3 Asymptotics of the Eigenvalues and Eigenfunctions

We first restrict ourselves to the Dirichlet problem; that is, the eigenvalue problem
—u"(x) + q(x)u(x) = Au(x),0 < x < 1, u(0)=u(1)=0. 4.21)

Refer to the end of this section for different boundary conditions. Again, let g €
L%(0,1) be real-valued. We observe that A € C is an eigenvalue of this problem if
and only if A is a zero of the function f(1) :=ux(1,4,q). Again, uy = up(-,A,q) de-
notes the solution of the initial value problem (4.7b) with initial conditions u,(0) =0
and uy'(0) = 1. If up(1,4,q) =0, then uy (-, A, q) is the eigenfunction corresponding
to the eigenvalue A. The function f plays exactly the role of the well-known charac-
teristic polynomial for matrices and is therefore called the characteristic function of
the eigenvalue problem. Theorem 4.6 implies that f is differentiable; that is, analytic
in all of C. This observation makes it possible to use tools from complex analysis.
First, we summarize well-known facts about eigenvalues and eigenfunctions for the
Sturm-Liouville problem, which can easily be derived from abstract spectral theory
(see Theorems A.50 and A.51).
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Lemma 4.7. Let g € L*(0,1) be real-valued. Then:

(a) All eigenvalues ) are real.

(b) There exists a countable number of real eigenvalues A;, j € N, with correspond-
ing eigenfunctions g € C[0, 1] such that ngHLz = 1. The eigenfunctions form a
complete orthonormal system in L*(0,1).

(c) The geometric and algebraic multiplicities of the eigenvalues A are one; that is,
the eigenspaces are one-dimensional and the zeros of the characteristic function
are simple.

Proof. (a) and (b) follow from the fact that the boundary value problem is self-
adjoint. We refer to Problem 4.1 for a repetition of the proof.

(c) Let A be an eigenvalue and u, v be two corresponding eigenfunctions. Choose
a, B with & + 2 > 0 and such that o/ (0) = B/(0). The function w := ou — B
solves the differential equation and w(0) = w'(0) = 0; that is, w vanishes identically.
Therefore, u and v are linearly dependent.

We apply Theorem 4.6, part (c), to show that A is a simple zero of f. Because
up(1,A,q) =0, we have from (4.20a) for j = 2 that

d
f/(z’) = ﬁu2(171’3Q) = u2,l(172’5q)
1

)2
1/'Lq 0/u2xlq dx #0.

This proves part (c). 0O

We note that there are different ways to normalize the eigenfunctions. Instead
of requiring the L?-norm to be one, we sometimes normalize them such that
g;'(0) = 1. This is possible because g;'(0) # 0. Otherwise, the Picard-Lindelof
uniqueness theorem (see Theorem 4.4) would imply that g; vanishes identically.

Also, we need the following technical result.

Lemma 4.8. Let z € C with |z—nn| > rn/4 for all n € Z. Then
exp (|Imz|) < 4]sinz].

Proof. Let y(z) =exp|zz|/[sinz| forz = zy +iz2, 21,22 € R. We consider two cases:

Ist case: |z2] >1n2/2. Then

2¢l22] 2¢le2] 2
- - = <
le1—2 —e~iit| = elal — ekl | — =2kl

v(z) =

because exp(—2|z2|) < 1/2.
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2nd case: |z| < In2/2. From |z—nn| > ©/4 for all n, we conclude that
|21 —nn|* > n?/16 — 23 > n2/16 — (In2)?/4 > m?/64; thus [sinz;| > sin Z. With
|Re sinz| = [sinz; ||coshzz| > |sinz;|, we conclude that

o2l NG NG

7) < — < — <=7 <4
V(o) < [Re sinz| = [sinzi| ~ [sinZ| 0

Now we prove the “counting lemma,” a first crude asymptotic formula for the eigen-
values. As the essential tool in the proof, we use the theorem of Rouché from
complex analysis (see [2]), which we state for the convenience of the reader: Let
U C C be a domain and the functions F and G be analytic in C and |F (z) — G(z)| <
|G(z)| for all z € dU. Then F and G have the same number of zeros in U.

Lemma 4.9. Let g € L*(0,1) and N > 2exp(||q||;1) be an integer. Then:

(a) The characteristic function f(A) :=uy(1,4,q) has exactly N zeros in the half-
plane

H:={2eC:ReA < (N+1/2)°n%}. (4.22)

(b) For every m > N there exists exactly one zero of f in the set
Uy = {AG(C:|\/7_Lfm7r’<7r/2}. (4.23)

Here we take the branch with Re VA >0.
(c) There are no other zeros of f in C.

Proof. We are going to apply Rouché’s theorem to the function F(z) = f(z%) =
us(1,72,¢) and the corresponding function G of the eigenvalue problem for ¢ = 0;
that is, G(z) := sinz/z. For U we take one of the sets W, or V defined by

Wy ={z€C:|z—mn| < r/2},
Vg :={z€C:|Rez| < (N+1/2)m,|[Imz| <R}

for fixed R > (N + 1/2)x and want to apply Lemma 4.8:

(i) Firstlet z € dW,,: Forn € Z, n # m, we have |z—nr| > |m—n|n — |z —mn| >
n—m/2> n/4. For n = m, we observe that |z —mmn| = 7 /2 > r /4. Therefore,
we can apply Lemma 4.8 for z € dW,,. Furthermore, we note the estimate |z| >
mnu — |z—mn|= (m—1/2)n > Nr > 2N for all z € OW,,.

(ii) Let z € dVg, n € Z. Then |Rez| = (N+1/2)x or [Imz| = R. In either case,
we estimate |z — n7t|* = (Rez — n7)* + (Imz)* > n2/4 > 112 /16. Therefore, we
can apply Lemma 4.8 for z € dVg. Furthermore, we have the estimate |z| >
(N+1/2)m > 2N for all z € IVi.
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Application of Theorem 4.5 and Lemma 4.8 yields the following estimate for all
7€ dVRUIW,,:

sinz 1 4sinz| N
PO < S expimal+ ) < 55
Z |z |2
_ 2N |sinz sinz
lz| | z z

Therefore, F and G(z) := sinz/z have the same number of zeros in Vg and every
W... Because the zeros of G are +nm, n = 1,2,... we conclude that G has exactly
2N zeros in Vg and exactly one zero in every W,,. By the theorem of Rouché, this
also holds for F.

Now we show that F has no zero outside of Vg UlJ,~ny Win. Again, we ap-
ply Lemma 4.8: Let z ¢ Vg UU,,»y Win. From z ¢ Vg, we conclude that |z| =

(Rez)?+ (Imz)? > (N +1/2)x. For n > N, we have that |z — nx| > /2 because
7 ¢ Wy. For n <N, we conclude that |z —nr| > |z —nn > (N+1/2—n)n > /2.
We apply Lemma 4.8 again and use the second triangle inequality. This yields

sinz 1
|F(z)| > — —WGXP(\ImZHHfIHU)
5 [sinz 1_4exp(llqlly)]
z |2
> |2 1= 3] >0
z |z|

because |z| > (N + 1/2)m > 2N. Therefore, we have shown that f has exactly one
zero in every U,,, m > N, and N zeros in the set

HR::{?LE(C:0<Re\/I<(N+1/2)7t,

Im\/Z’<R}

and no other zeros. It remains to show that Hr C H. For A = |A|exp(if) € H,
we conclude that Re VA = y/[A[cos § < (N +1/2)x; thus Re A = |A|cos (29)
|A|cos? & < (N+1/2)°x2.

OoINE

This lemma proves again the existence of infinitely many eigenvalues. The ar-
guments are not changed for the case of complex-valued functions ¢q. In this case,
the general spectral theory is not applicable anymore because the boundary value
problem is not self-adjoint. This lemma also provides more information about the
eigenvalue distribution, even for the real-valued case. First, we order the eigenvalues
in the form

Al<}\,2<).3<---.

Lemma 4.9 implies that

VA, =nn+O(1); thatis, A, =n’m+O(n). (4.24)
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For the treatment of the inverse problem, it is necessary to improve this formula. It
is our aim to prove that

1
~ < . 2
Ay = n2r? +/q(l)dl+)tn where z

n=1

< oo, (4.25)

n

There are several methods to prove (4.25). We follow the treatment in [200]. The
key is to apply the fundamental theorem of calculus to the function 7 — A, (tg) for
t € [0, 1], thus connecting the eigenvalues A,, corresponding to g with the eigenvalues
n’n? corresponding to ¢ = 0 by the parameter ¢. For this approach, we need the
differentiability of the eigenvalues with respect to g.
For fixed n € N, the function g — A,(q) from L?(0,1) into C is well-defined and

Fréchet differentiable by the following theorem.

Theorem 4.10. For every n € N, the mapping q — MA,(q) from L*(0,1) into C is
continuously Fréchet differentiable for every § € L*(0,1) and

1

W (@a= [alxdawdr. qel?(.) (4.26)
0
Here, P
gn(x,q) == AL )
| 2],

denotes the L?>-normalized eigenfunction correspondzng 10 A = Mn(§).

Proof. We observe that us(1,A,,4) = 0 and apply the implicit function theorem to
the equation

MZ(IaA'vq) =0

in a neighborhood of (A,,4). This is possible because the zero A, of us(1,-,4) is sim-
ple by Lemma 4.7. The implicit function theorem (see Appendix A, Theorem A.61)
yields the existence of a unique function A, = A,(q) such that u»(1,4,(g),q) =0
for all ¢ in a neighborhood of ¢; we know this already. But it also implies that the
function A, is continuously differentiable with respect to ¢ and

0 AL . 0 A
0—(9—/1142(1,7%61)7L (q)q+a—quz(1,ln,q)q,

that is, uy 3 (1) (§)q + u2,4(1) = 0. With Theorem 4.6, part (c), we conclude that

u27q(1) _ _u27q(1)u2'(1)
u 5 (1) up 5 (1up! (1)

g w)() i gum(x)?dx | .
- gn 6]
-/

)Ln/@)q = -

s
g 5, 0] (1) jo us (x)2dx

where we have dropped the arguments 2 and g. ad
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Now we are ready to formulate and prove the main theorem which follows.

Theorem 4.11. Ler Q C L2(0, 1) be bounded, q € Q, and A, € C the corresponding
eigenvalues. Then we have

1 1
An :n27r2—|-/q(t)dt—/q(t)cos(2nm)dt+(’)(1/n) (4.27)
0

for n — oo uniformly for g € Q. Furthermore, the corresponding eigenfunctions g,
normalized to ||g,||;2 = 1, have the following asymptotic behavior:

gn(x) = V2sin(nmx) + O(1/n) and (4.28a)
g’ (x) = V2nmcos(nmx) + O(1) (4.28b)

as n — oo uniformly for x € [0,1] and g € Q.

We observe that the second integral on the right-hand side of (4.27) is the nth Fourier
coefficient a,, of g with respect to {cos(2znt):n=0,1,2,...,}. From Fourier the-
ory, it is known that a, converges to zero, and even more: Parseval’s identity yields
that 3" |an|2 < oo; that is, (4.25) is satisfied. If g is smooth enough, e.g., contin-
uously differentiable, then a,, tends to zero faster than 1/n. In that case, this term
disappears in the O(1/n) expression.

Proof. We split the proof into four parts:

(a) First, we show that g,(x) = v/2sin(v/A,x) + O(1/n) uniformly for (x,q) €
[0,1] x Q. By Lemma 4.9, we know that /4, = n + O(1), and thus by
Theorem 4.5

sin(v/2,x)
VA

With the formula 2 fol sin®(aut)dt = 1 —sin(2¢) /(20x), we compute

1 (x, A) = ) L oa ).

1 1
/uz(tJL,,)Zdt : /s1 ,,z dt+0O(1/n)
0 n

0
- -]
1
= 7 [1+0(1/n)].
Therefore, we have
() = —208)  _ Gin (/) + O(1/m).

Jo ua(t,An)2dt



136 4 Inverse Eigenvalue Problems

(b) Now we show that /A, =n+O(1/n) and g,(x) = v/2sin(nzx) + O(1/n). We
apply the fundamental theorem of calculus and use Theorem 4.10:

1
Ton— 1272 = n(q) — An(0) = / %M;q) dt
0
1 11
= /ln/(tq)th = //g,,(x,tq)zq(x) dxdt =O(1). (4.29)
0 00

This yields /A, = nm+ O(1/n) and, with part (a), the asymptotic form g, (x) =
V2sin(nmx) +O(1/n).

(c) Now the asymptotics of the eigenvalues follow easily from (4.29) by the obser-
vation that

gn(x,1q)? = 2sin® (nmx) + O(1/n) = 1 — cos(2nmx) + O(1/n),

uniformly for¢ € [0,1] and ¢ € Q.
(d) Similarly, we have for the derivatives

gn'(x) = ') V2V ncos(vAx) +0O(1)
AR e R
= V2nmcos(nmx) + O(1). H

Example 4.12. We illustrate Theorem 4.11 by the following two numerical
examples:

(a) Let g (x) = exp(sin(2mx)), x € [0,1]. Then g; is analytic and periodic with
period 1.
Plots of the characteristic functions A — f(A) for ¢; and ¢ = 0; that is, A +—
sinv/A/v/A are shown in Fig. 4.1.
(b) Let gz(x) = —5x for 0 < x < 0.4 and ¢ (x) =4 for 0.4 < x < 1. The function ¢
is not continuous.
Plots of the characteristic functions A +— f(A) for g, and g = 0 are shown in
Fig.4.2.

The Fourier coefficients of g; converge to zero of exponential order. The
following table shows the eigenvalues A, corresponding to ¢j, the eigenvalues
n?n? corresponding to ¢ = 0 and the difference

I
Cn ::ln—nznz—/q(x)dx forn=1,...,10:
0
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Fig. 4.1 Characteristic functions of g, q1, respectively, on [0, 20] and [5, 100]
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Fig. 4.2 Characteristic functions of g, g2, respectively, on [0, 20] and [5, 100]

A nr? ¢,

11.1 9.9 —2.04x1072
40.9 39.5 1.49%107!
90.1 88.8  2.73%x1073
1592 1579 —191%1073
248.0 246.7  7.74%x107*
356.6 3543  4.58%107*
4849 483.6  4.58%10°*
6329 631.7  4.07x107*
800.7 799.4  3.90%10~*
0882 987.0  3.83x10°*

We clearly observe the rapid convergence.
Because ¢, is not continuous, the Fourier coefficients converge to zero only

slowly. Again, we list the eigenvalues A, for ¢, the eigenvalues n

to g =0, and the differences

2

T

2

10 20 30 40 50 60 70 80 90 100

corresponding
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1
Cp = ln—nznz—/q(x)dx and

0
1

1
d, = An—n2n2—/q(x)dx+/q(x)cos(27rnx)dx
0

0
forn=1,...,10:
A n*m? Cn dy
12.1 9.9 1.86%1071  —1.46%10~!
41.1 395  —3.87%107! 8.86%1072
91.1 88.8 3.14% 107! 2.13x1072
159.8  157.9 1.61%1071  —6.70%1073

248.8  246.7 2.07%10°2 2.07x10°2
3574 3543 8.29%1072  —4.24%1073
4845  483.6  —1.25%107! 6.17x1073
6338  631.7 1.16%107! 3.91%1073
801.4 7994 —6.66%x10"2 —1.38x1073
989.0  987.0 5.43%1073 5.43%1073

Now we sketch the modifications necessary for Sturm-Liouville eigenvalue
problems of the type

—u"(x) +q(x)u(x) =Au(x), 0<x<1, (4.30)
u(0)=0, u'(1)+Hu(1)=0. (4.31)

Now the eigenvalues are zeros of the characteristic function
fA) =u'(1,A,q) +Huz(1,A,q9), A €C. (4.32)

For the special case where g = 0, we have uy(x, A,0) = sin(v/Ax) /v/A. The charac-
teristic function for this case is then given by

sinvV/A
T

The zeros of f forg=0and H =0are A, = (n+1/2)*n%,n=0,1,2,... It H # 0,
one has to solve the transcendental equation zcotz + H = 0. One can show (see
Problem 4.4) by an application of the implicit function theorem in R? that the eigen-
values for ¢ = 0 behave as

g(A) =cosVA+H

An = (n+1/2)*m> +2H+O(1/n).
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Lemma 4.7 is also valid because the boundary value problem is again self-adjoint.
The Counting Lemma 4.9 now takes the following form.

Lemma 4.13. Let g € L*(0,1) and N > 2exp(||q||;1) (1 + |H|) be an integer. Then
we have:

(a) The mapping f(A) :=uy'(1,A,q)+Hux(1,A,q) has exactly N zeros in the half-
plane
H:={1€C:ReA <N’m*}.

(b) f has exactly one zero in every set
Un:={2ec: ‘\/I—(m—l/Z)n?‘ <m/2}

provided m > N.
(c) There are no other zeros of f in C.

For the proof, we refer to Problem 4.3. We can apply the implicit function theo-
rem to the equation

up' (1,A(q),q) +Huz(1,A(q),q) =0

because the zeros are again simple. Differentiating this equation with respect to g
yields

|:u2,l/(17ﬁ'n7q’\) +Hu2,7t(17ﬁ'n7q,\)i| z’f/(é)q

Theorem 4.6 yields

1
[JuaaPd = (1) 1/(1) = (Do (1)
~——
0 =—Hu(1)

= —uy(1) [uz 1" (1) + Hup 2 (1)],

where again we have dropped the arguments A and 4. Analogously, we compute

1
— / q(t)uz(t)zdt =—uy(1) [I/tzﬂ/(l) +Hu27q(1)]
0

and thus |
g (1) +Hup (1) _ Jo a(t)us(1)*dt

An (Q)q: u27l/(1)+Hu2’l(1) f()l u2(t)2dt
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This has the same form as before. We continue as in the case of the Dirichlet bound-
ary condition and arrive at Theorem 4.14.

Theorem 4.14. Ler Q C 12 (0,1) be bounded, q € Q, and H € R. The eigenvalues
An have the asymptotic form

) 1 1
P (n—i—%) 7r2+2H+/q(t)dt—/q(t)cos(2n+1)77:tdt+(9(1/n) (4.33)
0 0

as n tends to infinity, uniformly in q € Q. For the L*-normalized eigenfunctions, we
have

gn(x) = V2sin(n+1/2)ax+O(1/n) and (4.34a)
g/ (x) = V2(n+1/2)mcos(n+1/2)mx + O(1) (4.34b)

uniformly for x € [0,1] and q € Q.

As mentioned at the beginning of this section, there are other ways to prove the
asymptotic formulas for the eigenvalues and eigenfunctions that avoid Lemma 4.9
and the differentiability of A4, with respect to g. But the proof in, e.g., [252], seems
to yield only the asymptotic behavior

1
A = 2 + /q(t)dt +O(1/n)
0

instead of (4.27). Here, (m,) denotes some sequence of natural numbers.

Before we turn to the inverse problem, we make some remarks concerning the
case where ¢ is complex-valued. Now the eigenvalue problems are no longer self-
adjoint, and the general spectral theory is not applicable anymore. With respect to
Lemma 4.7, it is still easy to show that the eigenfunctions corresponding to differ-
ent eigenvalues are linearly independent and that the geometric multiplicities are
still one. The Counting Lemma 4.9 is valid without restrictions. From this, we ob-
serve also that the algebraic multiplicities of 4, are one, at least for n > N. Thus, the
remaining arguments of this section are valid if we restrict ourselves to the eigen-
values A, with n > N. Therefore, the asymptotic formulas (4.27), (4.28a), (4.28b),
(4.33), (4.34a), and (4.34b) hold equally well for complex-valued q.

4.4 Some Hyperbolic Problems

As a preparation for the following sections, in particular Sects. 4.5 and 4.7, we study
some initial value problems for the two-dimensional linear hyperbolic partial differ-
ential equation
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PW(x,1)  9*W (x,1)

92 32 +a(x,t)W(x,t) =0,

where the coefficient a has the special form a(x,t) = p(r) — g(x). It is well-known
that the method of characteristics reduces initial value problems to Volterra integral
equations of the second kind, which can be studied in spaces of continuous func-
tions. This approach naturally leads to solution concepts for nonsmooth coefficients
and boundary data. We summarize the results in three theorems. In each of them
we formulate first the results for the case of smooth coefficients and then for the
nonsmooth case. We remark that it is not our aim to relax the solution concept to the
weakest possible case but rather to relax the assumptions only to the extent that are
needed in Sects. 4.5 and 4.7.

Although most of the problems — at least for smooth data — are subjects of
elementary courses on partial differential equations, we include the complete proofs
for the convenience of the reader.

Before we begin with the statements of the theorems, we recall some function
spaces:

CO[Ovl] = {fE C[071] f(O) = 0}7
cjlo,1] := c/[0,1]nGol0,1], j=1,2,

H'(0,1) := {feC[()l a+/ dtoceRgeLz(Ol)}
H(} (07 1) = Hl (07 1) ﬂc0[07 1]
and equip them with their canonical norms:

£l := max |f(x)| inGol0,1],

0<x<1

[flles = max_max,

£ (x)‘ incl[0,1],

Al = /NI + N2 in H'(0,1) and Hg (0,1).
Furthermore, define the triangular regions Ay C R? and A C R? by

Ag:={(x,f) eR*:0<t <x< 1}, (4.35a)
A={(xt)eR*: Jt| <x <1}, (4.35b)

We begin with an initial value problem, sometimes called the Goursat problem.

Theorem 4.15. (a) Let p,q € C[0,1] and f € C?[0,1] with f(0) = 0. Then there
exists a unique solution W € C?(Ag) of the following hyperbolic initial value
problem:

9*W (x,1) 3 *W (x,1)
ox? 01?2

+(p(t)—q(x))W(x,t) =0 in Ay, (4.36a)
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W(x,x) = f(x), 0<x<1, (4.36b)

W(x,0)=0, 0<x<1. (4.36¢)

(b) The solution operator (p,q,f) — W has an extension to a bounded operator
from L*(0,1) x L*(0,1) x Co[0, 1] into C(Ay).

(c) The operator (p,q, f) — (W(1,-),Wy(1,-)) has an extension to a bounded op-
erator from L*(0,1) x L2(0,1) x H}(0,1) into H'(0,1) x L*(0,1). Here and in the
following, we denote by Wy the partial derivative with respect to x.

Proof. First, we extend the problem to the larger region A and study the problem

W (x,)  3°W(x,1)

2 32 +a(x,t)W(x,t) =0 inA, (4.37a)
W(x,x) = f(x), 0<x<I1, (4.37b)
W(x,—x) = —f(x), 0<x<1, (4.37¢)

where we have set a(x,?) := p(|t]) — g(x) for (x,2) € A.
To treat problem (4.37a)—(4.37¢c), we make the change of variables

x=&+n, 1=5-n.
Then (x,¢) € Aif and only if (§,1) € D, where
D:={(&,n) e (0,1)x(0,1):n+&<1}. (4.38)

We setw(&,n):=W(E+n,E—n)for (§,n) € D. Then W solves problem (4.37a)—
(4.37c) if and only if w solves the hyperbolic problem

Tl @ rng-mpwem. Emen, (@.39)
=:a(&;n)

w(&,0) = f(&) for& €][0,1], (4.39b)

w(0,m) = —f(n) forn €]0,1]. (4.39¢)

Now let w be a solution of (4.39a)—(4.39c). We integrate the differential equation
twice and use the initial conditions. Then w solves the integral equation

n ¢
w(Em) = [ [a(E @ n)dgan — )+ £E). @40
00
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for (§,m) € D. This is a Volterra integral equation in two dimensions. We use the
standard method to solve this equation by successive iteration in C(D). Let A be the
Volterra integral operator defined by the integral on the right-hand side of (4.40). By
induction with respect to n € N, it can easily be seen that

[A"w) (€,m)l < lwll. llallz (511)”/2 n=12,..;

Hoo

thus [|A"w||.. < |wl|. Ha||L2 -1 Therefore, ||A"||., < 1 for sufficiently large » and the
Neumann series converges (see Appendix A, Theorem A.29). This proves that there
exists a unique solution w € C(D) of (4.40). From our arguments, uniqueness also
holds for (4.37a)—(4.37¢).

Now we prove that w € C?(D). We differentiate (4.40) with respect to &, which
gives

we(E,m) = [ [g(&+n")—p(|E—n"])]w(&,n")an'+ f'(§)

domiEr- édy—/p\y\ (8.E-y)dy+£(E)
¢

*“ﬁ\‘r o\:

and analogously for wy,. This form can be differentiated again. Thus w € C*(D), and
we have shown that W is the unique solution of (4.37a)—(4.37c¢).

Because a(x,-) is an even function and the initial data are odd functions with
respect to £, we conclude from the uniqueness result that the solution W (x,-) is also
odd. In particular, this implies that W (x,0) = 0 for all x € [0, 1], which proves that
W solves problem (4.36a)—(4.36c) and finishes part (a).

Part (b) follows immediately from the integral Eq.(4.40) because the integral
operator A : C(D) — C(D) depends continuously on the kernel @ € L?(D).

For part (c), we observe that

W(1,26-1)=w(&,1-&) and
1 1
Wel(1,26 1) = 5we(E,1- &)+ 5w (E,1-&).
Then the boundedness of the operator follows again by differentiating the integral
Eq. (4.40). By Theorem A.28, there exists a bounded extension of this operator from
L%(0,1) x L*(0,1) x H}(0,1) into H'(0,1) x L*(0,1). This ends the proof. O

If p,g € L?(0,1) and f € Co[0, 1], we call the solution

Wi = (300,500
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where w € C(Z) solves the integral Eq.(4.40), a weak solution of the Goursat
problem (4.36a)—(4.36¢c). We observe that for every weak solution W there exist se-
quences (px), (g2) C C[0,1] and (f,) C C*[0,1] with £,,(0) =0 and ||p, — p|,2 — O,
llgn — qll;2 — 0 and || f, — f||.. — O such that the solutions W,, € C*(A¢) of (4.36a)—
(4.36¢) corresponding to p,, g,, and f,, converge uniformly to W.

For the special case p = g = 0, the integral Eq. (4.40) reduces to the well-known

solution formula
Wi =7 (50e40) - (56-0).

The next theorem studies a Cauchy problem for the same hyperbolic differential
equation.

Theorem 4.16. (a)LethC2[0 1], g € C'0,1] with £(0) = f"(0) = g(0) =0, and
P,q €C[0,1] and F € C(Ao). Then there exists a unique solution W € C2( o) of the
Cauchy problem

PW (x,1)  9*W(x,1)

V) THED s (ple) - g W) =Fer) indo, (4410
W(l,t) = f(r) for0<t<1I, (4.41b)
%W(l,t) =gt) for0<r<1. (441c)

(b) Furthermore, the solution operator (p,q,F,f,g) — W has an extension to
a bounded operator from L*(0,1) x L*(0,1) x L*(Ag) x Hi(0,1) x L*(0,1) into
C(Ao)-

Proof. As in the proof of Theorem 4.15, we set a(x,) := p(|t]) — g(x) for (x,7) € A
and extend F to an even function on A by F(x, —t) = F (x,t) for (x,7) € Ag. We also
extend f and g to odd functions on [—1,1] by f(—t) = —f(¢) and g(—t) = —g(7)
fort € [0,1]. Then F € C (A), f € C*[—1,1], and g € C'[—1,1]. We again make the
change of variables

x=&+n, t=&-n, w&n)=W(E+n,E-n) for(§,n)eD

where D is given by (4.38). Then W solves (4.41a)—(4.41c) if and only if w solves

2*w(&,n)
d&an

where F(&,n) = F(E+n,§ —n) and a(&,n) = —a(§ +n,& —n). The Cauchy
conditions (4.41b) and (4.41c¢) transform into

w(§,1=6)=/f(26—1) and we(G,1-8)+wn(5,1-8)=28(26—1)

ag,mw&,n)+FEmn), (Emn)ebD
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for 0 < & < 1. Differentiating the first equation and solving for we and wy yields

we(8,1-8) =22~ 1)+ /(26— 1) and wy(E,1-8) =g(2 — 1) - f'(26 — 1)

for 0 < & < 1. Integration of the differential equation with respect to & from & to
1 —n yields

—

-n
%%n):_/ [a(&",mw(&',n) +F (&' +n)]dE' +g(1—2n) - f/(1-2n).
2

Now we integrate this equation with respect to 1 from 1 to 1 — & and arrive at

1-E1-n’

)= [ [ [ mwE )+ FE ) agtan
nog
1-¢

g1—2n)dn+ fRE-1)+ f(1—2n> (4.42)
n

for (§,m) € D. This is again a Volterra integral equation in two variables. Let A
denote the integral operator
1-é1-n'

(Aw)(&,n) = // n")d&'dn’, (§,m)eD

By induction, it is easily seen that

(A"W) (E,1)] < W], ||a~|zzﬁ<1 S

forall (§,m) € D and n € N; thus

14" W]|oo < [[Wl|.s llall72

L
(2n)!

for all n € N. For sufficiently large n, we conclude that ||A"||., < 1, which again
implies that (4.42) is uniquely solvable in C(D). Now we argue exactly as in the
proof of Theorem 4.15. ]

For the special case p = g = 0 and F = 0, the integral Eq. (4.42) reduces to the
well-known d’ Alembert formula
{ t+(1—x) 1 1
Wea)==3 [ e@dr+ 37+ 1=0)+ 370~ (1-2).

—(1-x)
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Finally, the third theorem studies a quite unusual coupled system for a pair (W, r) of

functions. We treat this system with the same methods as above.

Theorem 4.17. (a) Let p,q € C[0,1], F € C(Ay), f € C?[0,1], and g € C'[0, 1] such
that f(0) = f"(0) = g(0) = 0. Then there exists a unique pair of functions
(W,r) € C*(Ag) x C[0, 1] with

PW(x1)  9*W(x1)

+(p(t) —q(x))W(x,t) = F(x,t)r(x) inAgy, (4.43a)

ox? or?
W(x,x) = %/r(t)dt, 0<x<1, (4.43b)
0
W(x0)=0, 0<x<I, (4.43¢)
and
0
W(l,t)=f(t) and ——W(l,t)=g(t) forallt€][0,1]. (4.434d)

ox

(b) Furthermore, the solution operator (p,q,F, f,g) — (W,r) has an extension to
a bounded operator from L*(0,1) x L*(0,1) x C(Ag) x H}(0,1) x L*(0, 1) into
C(Ag) x L*(0,1).

Proof. We apply the same arguments as in the proofs of Theorems 4.15 and 4.16.

We define a(x,7) = p(|t|) — g(x) and extend F(x,-) to an even function and f and g to

odd functions. We again make the change of variables x =& +1n andt = £ — 1) and

seta(§,n) = —a(§+n,§ —n)and F(§,n) = F(§+n,& —n). In Theorem 4.16,
we have shown that the solution W of the Cauchy problem (4.43a) and (4.43d) is

equivalent to the integral equation

1-é1-7'
wEm = [ [ [a@ & )+ FE ) ') dgdn’
nog
¢

17
= [s-2myan +2p0E- D +370-2m) @)
n

for w(&,m) = W(& +n,E —n) (see Eq.(4.42)). From this and the initial con-
dition (4.43b), we derive a second integral equation. We set 1 = 0 in (4.44a),
differentiate, and substitute (4.43b). This yields the following Volterra equation after
an obvious change of variables:

1
27 = = [ [aley—owiey =)+ r(3)Fy =] dy

X

+g(2x—1)+f(2x—1). (4.44b)
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Assume that there exists a solution (w,r) € C(D) x C[0,1] of (4.44a) and (4.44b).
Then w is differentiable and W(x x) j w(x,0) = é (x). Now, because a(x,-)
and F(x,-) are even and f and g are odd functions, we conclude that W (x, -) is also
odd. In particular, W (x,0) = 0 for all x € [0, 1]. This implies W (0,0) = 0 and thus
W (x,x) = 1 [ r(t)dt. Therefore, we have shown that every solution of Eqs. (4.44a)
and (4.44b) satisfies (4.43a)—(4.43d) and vice versa.

Now we sketch the proof that the system (4.44a), (4.44b) is uniquely solvable for
(w,r) € C(D) x L>(0,1). We write the system in the form

() =4(0) o+
r r

. . . A1l A 1 ) 2 :
with obvious meanings of A = ;!' 42 and R = (R 1) € C(D) x L*(0,1). Then A is
well-defined from C (D) x L?(0,1) into itself and depends continuously on d € L?(A)
and F € C(D). We observe that (4.44b) is a Volterra equation for r if w is kept fixed.
From Appendix A, Example A.30, we can represent the solution r in the form

|
r(x) = (Aayw+Ra) (x / y) (A2a1w+Ry) (y)dy

= Lw(x) + h(x),

where the operator L and function 4 depend continuously on F.,a, f,and g. Using
the explicit expression of Ay;w yields an estimate of the form

[Lw(x)| < émax {|w(y,z—y)|:y<z<1l,x<y<1} forxe][0,1].

Now we substitute r = Lw + h into (4.44a), which yields

1-E1-7n'
wEem) = [ [ [aE nwE )+ FE )& + )] dg'dn’
noé
+R(E,m)
for some function R depending continuously on the data. Let B be the integral oper-
ator on the right-hand side and ¢ := ||@||;2 4 &||F|| ;2. By induction, one shows again

that

n

|(B"W)(E.1)] < ——[wl..(1= )" inD.
(2n)!
This again implies that ||B"||., tends to zero as n tends to infinity. The contraction
mapping theorem (see Appendix A, Theorem A.29) yields existence and uniqueness
of the system of integral equations in C(D) x L?(0, 1). The regularity of w and p
for part (a) and the extension in part (b) are proven analogously as in the proof of
Theorem 4.15. O
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4.5 The Inverse Problem

Now we study the inverse spectral problem. This is, given the eigenvalues A, of the
Sturm-Liouville eigenvalue problem

—u"(x) +q(x)u(x) = Au(x), 0 <x <1, u(0)=0, u(1)=0, (4.45)

determine the function g. We saw in Example 4.1 that the knowledge of the spectrum
{4 : n € N} is, in general, not sufficient to determine g uniquely. We need more
information, such as a second spectrum p,, of an eigenvalue problem of the form

—0"(x) + g(x)v(x) = pov(x), ©v(0)=0, v'(1)+Hv(1)=0, (4.46)

or some knowledge about the eigenfunctions.

The basic tool in the uniqueness proof for this inverse problem is the use of
the Gelfand—Levitan—Marchenko integral operator (see [89]). This integral operator
maps solutions of initial value problems for the equation —u” + qu = Au onto solu-
tions for the equation —u” + pu = Au and, most importantly, does not depend on A.
It turns out that the kernel of this operator is the solution of the hyperbolic boundary
value problem that was studied in the previous section.

Theorem 4.18. Let p,q € L*>(0,1), A € C, and u,v € H*(0,1) be solutions of
—u"(x) +q(x)u(x) = Au(x), 0<x<l1, u(0) =0, (4.47a)

—0"(x) + p(x)v(x) = Av(x), 0<x<I, v(0) =0, (4.47b)

such that u'(0) = v'(0). Also let K € C(Ag) be the weak solution of the Goursat
problem

PK(x,1)  9°K(x1)

72 P +(p(t) —q(x))K(x,t) =0 in Ao, (4.48a)
K(x0)=0, 0<x<I, (4.48b)
1 X
K(x,x) = 3 / (q(s)—p(s))ds, 0<x<1, (4.48c¢)
0

where the triangular region Ag is again defined by

Ag:i={(x,) eR*:0<t<x<1]}. (4.49)
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Then we have

u(x) = v(x) + /K(x,t)v(t)dt, 0<x<l. (4.50)

We remark that Theorem 4.15 with f(x) = % [¢ (q(s) — p(s)) ds implies that this
Goursat problem is uniquely solvable in the weak sense.

Proof. First, let p,q € C'[0,1]. Then K € C?(Ag) by Theorem 4.15. Define w by the
right-hand side of (4.50); that is,

w(x) = v(x) +/K(x,t)v(t)dt for0<x<1.
0

Then w(0) = v(0) = 0 = u(0) and w is differentiable with
w (x) = v'(x) + K(x,x)v(x) + /Kx(x,t)v(t)dt, 0<x<l1.
0

Again, we denote by K, K;, etc., the partial derivatives. For x = 0, we have w'(0) =
v'(0) = u’(0). Furthermore,

w'(x) = v"(x) + U(x)%K(x,x) + K (x,x)v (x)

—|—Kx(x,x)v(x)+/Kxx(x,t)v(t)dt
0
= [p(x) -1+ %K(x,x) —l—Kx(x,x)} v(x) + K (x,x)v" (x)

X

+/[(61(X) —p()K (x,1)0(r) + Ku (x,2) v (¢)] dt.

0

Partial integration yields
X
[Katwayooyar
0
X

_ / K (x,0)0" (1) de + [Ki (x,0) () — K (x,0) 0 (6)]
0

X

= / (p(t) — A) K (x,t)v(t)dt + K (x,x)v(x) — K (x,x)v' (x).
0
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Therefore, we have

wi(x) = |p(x)—2A+ %K(x,x) + Ky (x,x) + K (x,x) | v(x)

:Q%K(xﬁx):q(x)*l’(x)

that is, w solves the same initial value problem as u. The Picard—-Lindel6f uniqueness
theorem for initial boundary value problems yields w = u. Thus we have proven the
theorem for smooth functions p and q.

Now let p,q € L?(0,1). Then we choose functions (p,), (¢,) € C'[0, 1] with p, —
pand g, — g in L*(0, 1), respectively. Let K, be the solution of (4.48a)—(4.48c) for
pn and g,,. We have already shown that

X
(%) = v () +/Kn(x,t)vn(t)dt, 0<x<I,
0

for all n € N, where u, and v, solve (4.47a) and (4.47b), respectively, with u,,’(0) =
v, (0) = ' (0) = v’(0). From the continuous dependence results of Theorems 4.6
and 4.15(b), the functions uy,, v,, and K, converge uniformly to «, v, and K, respec-
tively. This proves the assertion of the theorem for p,q € L*(0,1). o

As an example we take p = 0 and v(x) = sin(v/Ax)/v/A and have the following
result.

Example 4.19. Let u be a solution of
—u"(x) + q(x)u(x) = Au(x), u(0)=0, u'(0)=1. 4.51)

Then we have the representation

sinvAx [ sin VAt
”(x)=—+/1<(x,t)—dt, 0<x<1, (4.52)
vi R

where the kernel K solves the following Goursat problem:

Ky (x,1) — Kyt (x,) —q(x)K (x,2) =0 in Ay, (4.53a)
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K(x,00=0, 0<x<l, (4.53b)

K(x,x) = /q(s)ds, 0<x<I. (4.53¢)
0

This example has an application that is interesting in itself but that we also need
in Sect. 4.7.

Theorem 4.20. Let A, be the eigenvalues of one of the eigenvalue problems (4.45)
or (4.46). Then the set of functions {sin(\/ln-) ‘ne N} is complete in L*(0,1). This
means that fol h(x)sinv/A,xdx = 0 for all n € N implies that h = 0.

Proof. Let T : L>(0,1) — L?(0,1) be the Volterra integral operator of the second
kind with kernel K; that is,

(Tv)(x)::v(x)+/K(x,t)v(t)dt, xe(0,1), vel0,1),
0

where K solves the Goursat problem (4.53a)—(4.53c). Then we know that T is an
isomorphism from L%(0, 1) onto itself. Define v, (x) := sin y/A,x for x € [0,1],neN.
Let u, be the solution of the initial value problem:

—uy" + quy = Aty in (0,1),  u,(0) =0, u,’(0)=1.
u, is the eigenfunction corresponding to A, and, by the preceding example,

1
Vi

Now, if [ 2(x)v,(x)dx = 0 for all n € N, then

Tvo, or =\ AT 'u,.

Uy =

I 1
0= O/h(x)Tlun(x)dx: O/Mn(x)(T*)_lh(x)dx foralln € N,

where T* denotes the L?-adjoint of T. Because {u,/ ||u,||,> : n € N} is complete in
L2(0,1) by Lemma 4.7, we conclude that (7*) "' = 0 and thus h = 0. O

Now we can prove the main uniqueness theorem.

Theorem 4.21. Let H € R, p,q € L*(0,1), and A,(p), An(q) be the eigenvalues
of the eigenvalue problem

—u"+ru=2Auin (0,1), u(0)=0, u(1)=0,
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corresponding to r = p and r = g, respectively. Furthermore, let U, (p) and U,(q)
be the eigenvalues of

—u" +ru=puin (0,1), u(0)=0, u'(1)+Hu(1)=0,

corresponding to r = p and r = q, respectively.
If 2n(p) = An(q) and pi,(p) = pin(q) for all n € N, then p = q.

Proof. From the asymptotics of the eigenvalues, we conclude that

1

holp) = w2+ [ p)dr+o(l), n—os
0
1

halg) =P+ [ g)dt+o(1), n— e,
0

and thus

n—oo

1
[ (00)=a(0))dr = lim (n(p) = 20(a)) =0. @54
0

Now let K be the solution of the Goursat problem (4.48a)—(4.48c). Then K depends
only on p and ¢ and is independent of the eigenvalues A, := A,(p) = A,(q) and
Wy = Un(p) = Uy (q). Furthermore, from (4.54) we conclude that K(1,1) = 0.

Now let u,, v, be the eigenfunctions corresponding to A,(g) and A, (p), respec-
tively; that is, solutions of the differential equations

—u" (%) + q(x)un(x) = Aty (x),  —0," (x) + p(X) va(x) = Ay (x)

for 0 < x < 1 with homogeneous Dirichlet boundary conditions on both sides.
Furthermore, we assume that they are normalized by u,’(0) = v,’(0) = 1. Then
Theorem 4.18 is applicable and yields the relationship

() = 0 (%) + / K(x,t)ua(r)dt  forx € [0,1], (4.55)
0

and all n € N. For x = 1, the boundary conditions yield

1
0= /K(l,t)v,,(t)dt foralln € N. (4.56)
0

Now we use the fact that the set {v,/||v.||;2 : n € N} forms a complete orthonormal
system in L?(0, 1). From this, K(1,¢) = 0 for all ¢ € [0, 1] follows.
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Now let i, and ¥, be eigenfunctions corresponding to U, and g and p, respec-
tively, with the normalization i,(0) = %, (0) = 1. Again, Theorem 4.18 is applicable
and yields the relationship (4.55) for i, and @, instead of u, und v,, respectively.
We differentiate this equation and arrive at

0=ﬂ;(1>—~’(1)+H[ﬁn(1>—@n(1)]
= 1 1) +/ (L,t)+HK(1,t) | 0,()dr.
=0

We conclude that fo «(1,8),(t) dt = 0 for all n € N. From this, Ky(1,#) = 0 for all
t € (0,1) follows because {7,/ |||,2} forms a complete orthonormal system.

Now we apply Theorem 4.16, which yields that K has to vanish identically. In
particular, this means that

0=

l\)l>—‘

/ g(s)ds forallxe (0,1).
0

Differentiating this equation yields that p = q. a

We have seen in Example 4.1 that the knowledge of one spectrum for the Sturm—
Liouville differential equation is not enough information to recover the function g
uniquely. Instead of knowing the spectrum for a second pair of boundary conditions,
we can use other kinds of information, as the following theorem shows.

Theorem 4.22. Let p,q € L*(0,1) with eigenvalues A,(p), A(q), and eigenfunc-
tions u, and vy, respectively, corresponding to Dirichlet boundary conditions u(0) =
0, u(1) = 0. Let the eigenvalues coincide; that is, A,(p) = Ay(q) for all n € N. Let
one of the following assumptions also be satisfied:

(a) Let p and q be even functions with respect to 1/2; that is, p(1 —x) = p(x) and
q(1—x) = q(x) forall x € [0,1].
(b) Let the Neumann boundary values coincide; that is, let
w'(1) (1)

I = o (0) foralln € N. 4.57)

Then p = q.

Proof. (a) The eigenfunctions are also even functions. This follows from the fact
that the eigenvalues are simple and that u and #(x) := u(1 —x) are eigenfunc-
tions corresponding to the same eigenvalue. Therefore, for every eigenfunction
u we have that /(1) = —u/(0); that is, «’(1)/u/(0) = —1. This reduces the
uniqueness question for part (a) to part (b).

(b) Now we normalize the eigenfunctions such that u,’ (0) = v,’(0) = 1. We follow
the first part of the proof of Theorem 4.21. From (4.56), we again conclude
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that K(1,7) vanishes for all ¢+ € (0,1). The additional assumption (4.57)
yields that u,’(1) = v,/(1). We differentiate (4.55), set x = 1, and arrive at
fol K (1,1)u,(t)dt = 0 for all n € N. Again, this implies that K,(1,-) =0, and
the proof follows the same lines as the proof of Theorem 4.21. a

4.6 A Parameter Identification Problem

This section and the next chapter are devoted to the important field of parameter
identification problems for partial differential equations. In Chap. 6, we study the
inverse scattering problem to determine the refractive index of a medium from mea-
surements of the scattered field, but in this section we consider an application of
the inverse Sturm-Liouville eigenvalue problem to the following parabolic initial
boundary value problem. First, we formulate the direct problem:

Let T > 0and Qr := (0,1) x (0,T) C R%, g € C[0,1] and f € C2[0,T] be given.
Let £(0) =0 and g(x) > 0 for x € [0,1]. Determine U € C (Qr), which is twice
continuously differentiable with respect to x and continuously differentiable with
respect to 7 in Q7 such that dU /dx € C (Qr) and

oU(x,t)  9*U(x,1)

5 = o2 q(x)U(x,t) in Qr, (4.58a)
U(x,0)=0, xel0,1], (4.58b)
U(0,1) =0, %U(l,t) = f(t), re€(0,7). (4.58c¢)

From the theory of parabolic initial boundary value problems, it is known that there
exists a unique solution of this problem. We prove uniqueness and refer to [153] or
(4.60) for the question of existence.

Theorem 4.23. Let f =0. Then U = 0 is the only solution of (4.58a)—(4.58c) in Q.
Proof. Multiply the differential Eq. (4.58a) by U (x,#) and integrate with respect to
x. This yields

1 1
1d 92U (x,1
EE/U(x,t)zdx = / [%U(x,t) - q(x)U(x,t)z} dx.
0 0
We integrate by parts and use the homogeneous boundary conditions:

1

1
EEQ/U(X,[) dx——/

0

U (x,t)

(T) (U] dr <0,
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This implies that  — [ U(x,7)2dx is nonnegative and monotonicly nonincreas-
ing. From [ U(x,0)?dx = 0, we conclude that f, U (x,t)?dx = 0 for all r; that is,
U=0. ad

Now we turn to the inverse problem. Let f be known and, in addition, U(1,7) for
all 0 < ¢ < T. The inverse problem is to determine the coefficient g.

In this section, we are only interested in the question if this provides sufficient
information in principle to recover g uniquely; that is, we study the question of
uniqueness of the inverse problem. It is our aim to prove the following theorem.

Theorem 4.24. Let Uy, U, be solutions of (4.58a)—(4.58¢) corresponding to q =
q1 > 0and g = q > 0, respectively, and to the same f. Let f(0) =0, f'(0) #0, and
U(1,t) =Ux(1,t) foralit € (0,T). Then q1 = g2 on [0,1].

Proof. Let g and U be ¢ or g3 and U; or Uy, respectively. Let A, and g,, n € N, be
the eigenvalues and eigenfunctions, respectively, of the Sturm—Liouville eigenvalue
problem (4.46) for H = 0; that is,

—u"(x) + q(x)u(x) = Lu(x), 0<x<1, u(0)=4'(1)=0.

We assume that the eigenfunctions are normalized by ||g,|/,2 = 1 for all n € N.
Furthermore, we can assume that g,(1) > 0 for all n € N. We know that {g, : n €
N} forms a complete orthonormal system in L?(0,1). Theorem 4.14 implies the
asymptotic behavior

My = (n+1/20 +G+4, with Y A2 < oo, (4.59a)

gn(x) = V2sin(n+1/2)mx+ O (1/n), (4.59b)

where § = fol q(x)dx. In the first step, we derive a series expansion for the solution
U of the initial boundary value problem (4.58a)—(4.58c). From the completeness of
{gn : n € N}, we have the Fourier expansion

, 1
U(x,t) = E‘Ian(t)gn(x) with  a,(t) = /U(x,t)g,,(x) dx,n € N,
"= 0

where the convergence is understood in the L?(0, 1)-sense for every ¢ € (0,T]. We
would like to substitute this into the differential equation and the initial and bound-
ary conditions. Because for this formal procedure the interchanging of summation
and differentiation is not justified, we suggest a different derivation of a,. We dif-
ferentiate a, and use the partial differential Eq. (4.58a). This yields

a,,’(t)_/gU;“ /1{ ax2 —q(x)U(x,1)]| gn(x)dx
0

0
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= f(t)gn(l) _xnan(t)'

With the initial condition a,(0) = 0, the solution is given by

t

ar(t) = g.(1) [ f(@)e M ar:

0
that is, the solution U of (4.58a)—(4.58c¢) takes the form

t

=

Ui =Y gn(1)gn(x) / F(t)e Mg, (4.60)

n=1 0

From partial integration, we observe that

t
/f DT =L 1(0) - 5 [ £,
n nO

and this decays as 1/A,,. Using this and the asymptotic behavior (4.59a) and (4.59D),
we conclude that the series (4.60) converges uniformly in Q7. For x = 1, the repre-
sentation (4.60) reduces to

t

U(l,r) = ign(l)z/f(r)eknv’:)dr

0

= [0 S a1 Pz, 1efo7)
0

= A(t—1)

Changing the orders of integration and summation is justified by Lebesgue’s theo-
rem of dominated convergence. This is seen from the estimate

=
oo

—Ans < —n?rls —o2n2s ¢
Zgn(l)ze "gcze gc/e do =
n=1 n=1 5 2\/Ts

and the fact that the function s — 1/4/s is integrable.
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Such a representation holds for U;(1,-) and U, (1, -) corresponding to g, and g,
respectively. We denote the dependence on ¢, and ¢, by superscripts (1) and (2),
respectively. From U;(1,-) = Ux(1,-), we conclude that

t

0= / F(0) [AV (= 1) - AP~ 7)) dr = O/ fe=1) [A0 (1) - AP (1)) dz;

0

that is, the function w := A()) — A(?) solves the homogeneous Volterra integral equa-
tion of the first kind with kernel f(¢ — 7). We differentiate this equation twice and
use f(0) =0and f'(0) # 0. This yields a Volterra equation of the second kind for w:

FO)w(r) + /f”(t —s)w(s)ds=0, t€][0,T].

Because Volterra equations of the second kind are uniquely solvable (see Exam-
ple A.30 of Appendix A), this yields w(¢) = O for all ¢, that is

i {g;(zl)(l)re_l’sl)’ = i [gg,z)(l)re_l’@’ forallz € (0,T).
n=1 n=1

We note that g;j ) (1) > 0 for j = 1,2 by our normalization. Now we can apply a result

from the theory of Dirichlet series (see Lemma 4.25) and conclude that 1,51) = 1,52)

and gg,l)(l) = gﬁ,z)(l) for all n € N. Applying the uniqueness result analogous to

Theorem 4.22, part (b), for the boundary conditions ©(0) = 0 and «'(1) = 0 (see
Problem 4.5), we conclude that g; = ¢». a

It remains to prove the following lemma.

Lemma 4.25. Let A, and U, be strictly increasing sequences that tend to infinity.
Let the series

ia,,e_}””’ and iﬁne_“"’
n=1

n=1

converge for every t € (0,T] and uniformly on some interval [6,T]. Let the limits
coincide, that is

Z Oc,,e%"’ = Z ﬁn[””t forallr € (0,T).
n=1

n=1

If we also assume that oy, # 0 and B, # 0 for all n € N, then oy, = B, and A, = Uy,
foralln e N.
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Proof. Assume that A; # u; or o # ;. Without loss of generality, we can assume
that t, > A; (otherwise, we have u; < U, < A; < A, and can interchange the roles
of A, and py,). Define

Co(t) 1= oppe™ P2 _ B o= (=2t fors > §.

By analytic continuation, we conclude that ¥;> | C,(¢t) = 0 for all # > 6 and that the
series converges uniformly on [§,0). Because

Ci(t) =0y — ﬁle_(“‘_)“)t,

there exists € > 0 and ¢; > 6 such that |C(¢)| > € for all t > ¢,. Choose ng € N with

forallt > 1.

SR

Then we conclude that

> |Ci(t |—

t\)lm

~lan-X60

for all + > #;. Now we let 7 tend to infinity. The first finite sum converges to zero,
which is a contradiction. Therefore, we have shown that A; = y; and oy = B;. Now
we repeat the argument for n = 2, etc. This proves the lemma. a

4.7 Numerical Reconstruction Techniques

In this section, we discuss some numerical algorithms suggested and tested by W.
Rundell, P. Sacks, and others. We follow closely the papers [169,212,213].

From now on, we assume knowledge of eigenvalues A, and y,, n € N, of the
Sturm—Liouville eigenvalue problems (4.45) or (4.46). It is our aim to determine the
unknown function g. Usually, only a finite number of eigenvalues is known. Then
one cannot expect to recover the total function g but only “some portion” of it (see
(4.62)).

The first algorithm we discuss uses the concept of the characteristic function
again. For simplicity, we describe the method only for the case where g is known to
be an even function; that is, g(1 — x) = ¢(x). Then we know that only one spectrum
suffices to recover g (see Theorem 4.22).

Recalling the characteristic function f(A) = uz(1,4,q) for the problem (4.45),
the inverse problem can be written as the problem of solving the equations

u(1,A,,q) =0 forallneN (4.61)
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for the function ¢. If we know only a finite number, say A, forn =1,...,N, then we
assume that g is of the form

N
q(X;a) = z an Qn(x)7 X € [O, 1]7 (4.62)
n=1

for coefficients @ = (ay,...,ay) € RY and some linear independent even functions
qn- If g is expected to be smooth and periodic, a good choice for g, is gn(x) =
cos(2w(n—1)x), n=1,...,N. Equation (4.61) then reduces to the finite nonlinear
system F (a) = 0, where F : RY — R" is defined by

Fu(a) :==us(1,An,q(;a)) forac R¥ andn=1,...,N.

Therefore, all of the well-developed methods for solving systems of nonlinear equa-
tions can be used. For example, Newton’s method

a* D = ® _ F (a(k)>_1 F (a(k)>, k=0,1,...,

is known to be quadratically convergent if F'(a)~! is regular. As we know from

Sect. 4.2, Theorem 4.6, the mapping F is continuously Fréchet differentiable for
every a € RV, The computation of the derivative is rather expensive, and in general
it is not known if F’(a) is regular. In [169] it was proven that F’(a) is regular for
sufficiently small @ and is of triangular form for a = 0. This observation leads to the
simplified Newton method of the form

a) = 4® _ p(0)1F (a<k>), k=0,1,....

For further aspects of this method, we refer to [169].

Before we describe a second algorithm, we observe that from the asymptotic
form (4.27) of the eigenvalues we have an estimate of § = fol q(x)dx. Writing the
differential equation in the form

—uy" (x) 4+ (g(x) = §) un(x) = (A — @) un(x), 0<x<1,

we observe that we can assume without loss of generality that jol q(x)dx=0.

Now we describe an algorithm that follows the idea of the uniqueness Theo-
rem 4.21. The algorithm consists of two steps. First, we recover the Cauchy data
f=K(1,) and g = K(1,-) from the two sets of eigenvalues. Then we suggest
Newton-type methods to compute g from these Cauchy data.

The starting point is Theorem 4.18 for the case p = 0. We have already formu-
lated this special case in Example 4.19. Therefore, let (A,,u,) be the eigenvalues and
eigenfunctions of the eigenvalue problem (4.45) normalized such that u,’(0) = 1.
The eigenvalues A, are assumed to be known. From Example 4.19, we have the
representation
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X
inv/4, inv/ At
Al L / Kt =2 dr, 0<x<1, (4.63)

un(x): ,[)W t,

where K satisfies (4.53a)—(4.53c) with K(1,1) = 5 L[4 q(t)dt = 0. From (4.63) for
x =1, we can compute K(1,#) because, by Theorem 4.20, the functions v, (1) =
siny/A,t form a complete system in L>(0,1). When we know only a finite number
A, ..., Ay of eigenvalues, we suggest representing K (1, ) as a finite sum of the form

N
K(1,t) =Y agsin(kmt),
k=1

arriving at the finite linear system

I Mz

1
/ n(knt)siny/ Ayt dt = —siny/A, forn=1,...,N. (4.64)
0

The same arguments yield a set of equations for the second boundary condition
u'(1) + Hu(1) = 0 in the form

\/ECOS\//anLHsm\//.TnJr/ (1,6) + HK(1,1)) sin/Ht di =

where now L, are the corresponding known eigenvalues. The representation
N
K. (1,t)+HK(1,1) Zbksm (krt)

leads to the system

1

be / sin(k7t) sin /it dt = — /Ty cos /Ty — Hsin /iy (4.65)

0

M=

k=1

forn=1,...,N. Equations (4.64) and (4.65) are of the same form and we restrict
ourselves to the discussion of (4.64). Asymptotically, the matrix A € RV*N defined
by Ay, = fol sin(kmt) sin\/ At dt is just %I . More precisely, from Parseval’s identity

1

2 1
/w(l)sin(km)dt = %/|l,l/(t)|2dt
0

0

Mg

k=1
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we conclude that

D /sin(km) [sin VAt — sin(nm)} dt

k=11p
1
1 2
= E/‘sin \/?L,,t—sin(nm)‘ dr.
0

The estimate (4.29) yields |4, — n?7%| < &||q||.. and thus

c
|V =nm| < gl
n

where ¢ is independent of ¢ and n. From this, we conclude that

1 2

| Y T
k=110

C 2
< — .
< 5 llal

The matrix A is thus diagonally dominant and therefore invertible for sufficiently
small ||¢|... Numerical experiments have shown that also for “large” values of g the
numerical solution of (4.65) does not cause any problems.

We are now facing the following inverse problem: Given (approximate values
of) the Cauchy data f = K(1,-) € H}(0,1) and g = K(1,) € L*(0,1), com-
pute g € LZ(O, 1) such that the solution of the Cauchy problem (4.41a)—(4.41c)
for p = 0 assumes the boundary data K (x,x) = 3 [ q(¢)dt for x € [0,1]. An al-
ternative way of formulating the inverse problem is to start with the Goursat
problem (4.53a)—(4.53c): Compute g € LZ(O, 1) such that the solution of the initial
value problem (4.53a)—(4.53c) has Cauchy data f(r) = K(1,¢) and g(¢) = K,(1,?)
forz € [0,1].

We have studied these coupled systems for K and ¢ in Theorem 4.17. Here we
apply it for the case where p = 0 and F = 0. It has been shown that the pair (K, r)
solves the system

9K (x,1) B 9K (x,1)
ox? or?

—q(x)K(x,t) =0 in Ao,
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and

0
K(l,r)=f(t) and a—K(l,t) =g(t) forallz €]0,1]
X
if and only if w(&,n) = K(§ + 1, —n) and r solve the system of integral
Egs. (4.44a) and (4.44Db). For this special choice of p and F, (4.44b) reduces to

— [aWKG2x—y)dy+g@x =D+ f2e-1),  @66)

where we have extended f and g to odd functions on [—1,1]. Denote by T(g) the
expression on the right-hand side of (4.66). For the evaluation of T'(¢), one has to
solve the Cauchy problem (4.41a)—(4.41c) for p = 0. Note that the solution K; that
is, the kernel K (y, 2x —y) of the integral operator T', also depends on g. The operator
T is therefore nonlinear!

The requirement r = ¢ leads to a fixed point equation ¢ = 27 (¢) in L*(0,1). It
was shown in [212] that there exists at most one fixed point ¢ € L*(0,1) of T. Even
more, Rundell and Sachs proved that the projected operator Py, T is a contraction on
the ball Byy :={q € L~(0,1) : ||¢||.. < M} withrespect to some weighted L™-norms.
Here, Pys denotes the projection onto By, defined by

[ q), lg(x)| <M,
(Puq)(x) = {Msjgnq(x), lg(x)[ > M.

Also, they showed the effectiveness of the iteration method ¢**!) = 2T (¢™) by
several numerical examples. We observe that for q( ) = 0 the first iterate q<1>
simply ¢V (x) = 2g(2x — 1) +2f"(2x — 1), x € [0, 1]. We refer to [212] for more
details.

As suggested earlier, an alternative numerical procedure based on the kernel
function K is to define the operator S from L?(0,1) into HJ(0,1) x L?(0,1) by
S(g)=(K(1,-),K(1,-)), where K solves the Goursat problem (4.53a)—(4.53¢). This
operator is well-defined and bounded by Theorem 4.15, part (c). If f € HO1 (0,1) and
g € L*(0,1) are the given Cauchy values K(1,-) and K,(1,-), respectively, then we
have to solve the nonlinear equation S(g) = (f,g). Newton’s method does it by the
iteration procedure

g =gV~ 5 [5(4W) - (£,9)], k=0.1,.... “.67)

For the implementation, one has to compute the Fréchet derivative of S. Using the
Volterra Eq. (4.40) derived in the proof of Theorem 4.15, it is not difficult to prove
that S is Fréchet differentiable and that S’ (q)r = (W(1,-),W(1,-)), where W solves
the inhomogeneous Goursat problem

Wi (x,8) — Wi (x,7) — g(x)W (x,7) = K (x,t)r(x) in Ao, (4.68a)
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W(x0) =0, 0<x<I, (4.68b)
1 X

W@J)zzj}@da 0<x<l. (4.68¢)
0

In Theorem 4.17, we showed that S’(g) is an isomorphism. We reformulate this
result.

Theorem 4.26. Let g € L*(0,1) and K be the solution of (4.53a)—~(4.53c). For every
f€H}0,1) and g € L*(0,1), there exists a unique r € L*(0,1) and a solution W of
(4.68a)—~(4.68¢) with W (1,-) = f and Wy(1,-) = g; that is, S'(q) is an isomorphism.

Implementing Newton’s method is quite expensive because in every step one has
to solve a coupled system of the form (4.68a)—(4.68c). Rundell and Sachs suggested
a simplified Newton method of the form

%HU:¢@_ymyﬂs@W)_U£ﬂ,k:OJPH

Because S(0) = 0, we can invert the linear operator §’(0) analytically. In particular,
we have §'(0)r = (W(1,-),W,(1,-)), where W now solves

Wi (x,2) — Wy (x,7) =0 in Ay,

1 X
W(x,0)=0, and W(x,x)= z/r(t)dt, 0<x<1,
0

because also K = 0. The solution W of the Cauchy problem
Wir(x,8) — Wy (x,6) =0 in Ay,

W(l,t)=f(t), and W,(l,¢r)=g(), 0<t<I,
is given by

t+(1—x)

Wi =—3 [ s@de+3f(+(1-0)+ 3~ (1-x),
t—(1—x)

where we have extended f and g to odd functions again. The solution r of §'(0)r =
(f,g) is therefore given by

r(x) = Z%W(x,x) =2f"(2x—1)+2g(2x—1).

In this chapter, we have studied only one particular inverse eigenvalue problem.
Similar theoretical results and constructive algorithms can be obtained for other
inverse spectral problems; see [4, 16]. For an excellent overview, we refer to the
lecture notes by W. Rundell [211].
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4.8 Problems

4.1. Letg, f € C[0,1] and g(x) > 0 for all x € [0, 1].
(a) Show that the following boundary value problem on [0, 1] has at most one solu-
tion u € C2[0, 1]:
—u"(x) + g(x)u(x) = f(x), u(0)=u(1)=0. (4.69)

(b) Let v; and v, be the solutions of the following initial value problems on [0, 1]:

—01"(x) +q(x)vi (x) =0, v1(0)=0, v'(0) =1,
0" (xX)+g@)nx) =0, »n(l)=0,n'(1)=1

Show that the Wronskian vy’ v, — 1,/ v; is constant. Define the following function
for some a € R:

Glx,y) = avi(x)n(y), 0<x<y<l,
5 avz(x)vl(y), O§y<x§ 1.

Determine a € R such that

1

ulx) = [ Gley)f)dy, xeo.1)

0

solves (4.69).

The function G is called Green’s function of the boundary value problem (4.69).
(c) Show that the eigenvalue problem

—u"(x) +q(x)u(x) = Au(x), u(0)=u(1) =0,

is equivalent to the eigenvalue problem for the integral equation

1

1
Iu(x) = /G(x,y)u(y)dy, xe0,1].
0

Prove Lemma 4.7, parts (a) and (b) by the general spectral theorem (Theo-
rem A.51 of Appendix A).
(d) How can one treat the case when g changes sign?
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4.2. Let H € R. Prove that the transcendental equation zcotz+ H = 0 has a count-
able number of zeros z,, and that

H
w=n+1/2) x4+ ——r— +O(1/n?).
%= (14 1/2) 7t o 01 /)
From this,
2 =(n+1/2° > +2H+O(1/n)
follows.

4.3. Prove Lemma 4.13.

4.4. Let g € C[0,1] be real- or complex-valued and A,, g, be the eigenvalues
and L?-normalized eigenfunctions, respectively, corresponding to ¢ and boundary
conditions u(0) = 0 and hu/(1) + Hu(1) = 0. Show by modifying the proof of The-
orem 4.20 that {g, : n € N} is complete in L?(0, 1). This gives — even for real g —
a proof different from the one obtained by applying the general spectral theory.

4.5. Consider the eigenvalue problem on [0, 1]:
—u"(x) + q(x)u(x) = Au(x), u(0)=1u'(1)=0.

Prove the following uniqueness result for the inverse problem: Let (A4,,u,) and
(U, vy) be the eigenvalues and eigenfunctions corresponding to p and ¢, respec-
tively. If A,, = u,, for all n € N and

= ) forallneN,

then p and ¢ coincide.






Chapter 5
An Inverse Problem in Electrical Impedance
Tomography

5.1 Introduction

Electrical impedance tomography (EIT) is a medical imaging technique in which an
image of the conductivity (or permittivity) of part of the body is determined from
electrical surface measurements. Typically, conducting electrodes are attached to
the skin of the subject and small alternating currents are applied to some or all of
the electrodes. The resulting electrical potentials are measured, and the process may
be repeated for numerous different configurations of applied currents.

Applications of EIT as an imaging tool can be found in fields such as medicine
(monitoring of the lung function or the detection of skin cancer or breast cancer),
geophysics (locating of underground deposits, detection of leaks in underground
storage tanks), or nondestructive testing (determination of cracks in materials).

To derive the EIT model we start from the time-harmonic Maxwell system in the
form

curlH + (iwe — y)E =0, curlE —iouH =0

in some domain which we take as a cylinder of the form B x R C R? with bounded
cross-section B C R?. Here, w, &, 7, and u denote the frequency, electric permittiv-
ity, conductivity, and magnetic permeability, respectively, which are all assumed to
be constant along the axis of the cylinder; that is, depend on x; and x; only. We note
that the real parts Re [exp(—iot) E(x)] and Re [exp(—iot) H(x)] are the physically
meaningful electric and magnetic field, respectively. For low frequencies o (i.e., for
small (wuy)-L? where L is a typical length scale of B), one can show (see, e.g.,
[42]) that the Maxwell system is approximated by

curlH—yE =0, curlE=0.

The second equation yields the existence! of a scalar potential u such that

E = —Vu. Substituting this into the first equation and taking the divergence yields

UTf the domain is simply connected.

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, 167
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div(}/Vu) = 0 in the cylinder. We restrict ourselves to the two-dimensional case and
consider the conductivity equation

div(yVu) =0 inB. (5.1)

There are several possibilities for modeling the attachment of the electrodes on the
boundary dB of B. The simplest of these is the continuum model in which the po-
tential U = u|p and the boundary current distribution f = yVu-v = ydu/dv are
both given on the boundary dB. Here, v = v(x) is the unit normal vector at x € JB
directed into the exterior of B. First, we observe that,2 by the divergence theorem,

' du
():/d' v d:/ —dﬂz/ dr;
B 1v(}/ M) * 83y3v an

that is, the boundary current distribution f has zero mean. In practice, f(x) is not
known for all x € dB. One actually knows the currents sent along wires attached
to N discrete electrodes that in turn are attached to the boundary dB. Therefore, in
the gap model one approximates f by assuming that f is constant at the surface of
each electrode and zero in the gaps between the electrodes. An even better choice
is the complete model. Suppose that f; is the electric current sent through the wire
attached to the jth electrode. At the surface S; of this electrode the current density

satisfies
u
[ vy,
Sj

In the gaps between the electrodes we have

u .
v 0 in QB\LJJS]-.

If electrochemical effects at the contact of S; with dB are taken into account, the
Dirichlet boundary condition u = U; on S is replaced by

du
u—l—zj}/% =U; onSj,

where z; denotes the surface impedance of the jth electrode. We refer to [19, 129,
130,231] for a discussion of these electrode models and the well-posedness of the
corresponding boundary value problems (for given 7).

In the inverse problem of EIT the conductivity function 7y is unknown and has
to be determined from simultaneous measurements of the boundary voltages U and
current densities f, respectively.

2 Provided ¥, f, and u are smooth enough.
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In this introductory chapter on EIT we restrict ourselves to the continuum model
as the simplest electrode model. We start with the precise mathematical formulation
of the direct and the inverse problem and prove well-posedness of the direct prob-
lem: existence, uniqueness, and continuous dependence on both the boundary data f
and the conductivity y. Then we consider the inverse problem of EIT. The question
of uniqueness is addressed, and we prove uniqueness of the inverse linearized prob-
lem. This problem is interesting also from an historical point of view because the
proof, given in Calderén’s fundamental paper [35], has influenced research on in-
verse medium problems monumentally. In the last section we introduce a technique
to determine the support of the contrast y — y; where y; denotes the known back-
ground conductivity. This Factorization Method has been developed fairly recently
— after publication of the first edition of this monograph — and is a prominent
member of a whole class of newly developed methods subsumed under the name
Sampling Methods.

5.2 The Direct Problem and the Neumann-Dirichlet Operator

Let B C R? be a given bounded domain with boundary dB and y: B — R and
f : dB — R be given real-valued functions. The direct problem is to determine u
such that

du

Tov
Throughout this chapter v = v(x) again denotes the exterior unit normal vector at
x € dB. As mentioned in the introduction we have to assume that [, fd¢ = 0. We
note that the solution is only unique up to an additive constant. Therefore, through-
out this chapter we make the following assumptions on B, ¥, and f.

div(yVu) =0 in B, =f ondB. (5.2)

Assumption 5.1. (a) B C R? is a bounded domain with Lipschitz continuous
boundary dB such that the exterior of B is connected.

(b) y € L*(B), and there exists Y > 0 such that y(x) > o for almost all x € B.

(c) f€L2(IB) where

12(9B) = {f € 12(9B) : /ande - o}.

We normalize the solution u such that it has vanishing mean on the boundary; that
is, u € H!(B) where

H!(B) = {ueHl(B) :/

wdt o}. (5.3)
oB

For any open and bounded set B C R? the Sobolev space H'(B) is defined as the
completion of C'(B) with respect to the norm

el = [ (5P + Pl
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We refer to Appendix A, Sect. A.5, where we introduce and study Sobolev spaces
H'(B) for the case of B being the unit disc. For more general domains B we refer
to, for example, [1, 173]. In (5.3) we use the fact that the trace u|yp on dB is well-
defined for u € H'(B) and represents an L?(dB)-function. The formulation (5.2) of
the boundary value problem has to be understood in the variational (or weak) sense.
Indeed, by multiplying the first equation of (5.2) with some test function y and
using Green’s first formula we arrive at

0= /l//le yYVu)d /qu/ Vudx-l—/l//}/Vu vdl
9B

—/qurVuder/l//de.
B

Therefore, we define the variational solution u € H! (B) of (5.2) by the solution of

/qu/~Vudx:/1//fd€ for all w € H(B). (5.4)
B

Existence and uniqueness follows from the representation theorem due to Riesz—
Fischer (cf. Theorem A.22).

Theorem 5.2. Let Assumptions 5.1 be satisfied. For every f € L2(dB) there exists a
unique variational solution u € H) (B) of (5.2), that is, a solution of the variational
Eq.(5.4). Furthermore, there exists a constant ¢ > 0 (independent of f) such that
lull 15y < cllfll12(am)- In other words: the operator f — u from L2(9B) to H} (B)
is bounded

Proof. We define a new inner product in the space H! (B) by

(1, 0) :/qu-Vvdx, u,v € H'(B).
B

The corresponding norm ||u||« = +/(u,u)s+ is equivalent to the ordinary norm
[Nl gy in H!(B). This follows from Friedrich’s inequality in the form (see
Theorem A.48 for the case of B being the unit disc and [1, 173] for more gen-
eral Lipschitz domains):

There exists cg > 0 such that
[0l 2(8) < cr ||Vl 2p  forall v € H(B). (5.5)

Indeed, from this the equivalence follows inasmuch as

Y
1—|—C12;

1o ) < IV < N0 < Il gy (56)
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for all v € H!(B). For fixed f € L2(dB) we can interpret the right-hand side of
(5.4) as a linear functional F on the space H!(B); that is, F(y) = (f, V)12(op) for

v € H!(B). This functional F is bounded by the inequality of Cauchy-Schwarz and
the trace theorem (with constant ¢y > 0) because

\FW| < 120 Wl 2008y < e fll2am 1W L 5)
< cllfllz@s Wl

with ¢ = cry/ (1 +¢%) /. In particular, ||F|| < c[|f1lz2(2p), and we can apply the
representation theorem of Riesz-Fischer in the Hilbert space (H!(B),(:,-).): there
exists a unique u € H!(B) with (u, y), = F(y) for all y € H!(B). This is exactly
the variational Eq. (5.4). Furthermore, ||u||.. = ||F || and thus by (5.6),

2 2 2
By gy < 2 2 = LEE 2 < 2 15 2,
)| Y Yo

that is, the operator f ~ u is bounded from L2(dB) into H! (B). O

This theorem implies the existence and boundedness of the Neumann—Dirichlet
operator.

Definition 5.3. The Neumann—Dirichlet operator A : L2(9B) — L%(dB) is defined
by Af = u|;p, where u € H!(B) is the uniquely determined variational solution of
(5.2); that is, the solution of (5.4).

Remark. This operator is bounded by the boundedness of the solution map f +— u
from L2(9B) to H}(B) and the boundedness of the trace operator from H](B) to
L2(dB). It is even compact because the trace operator is compact from H.(B) to
L2(dB). However, we do not make use of this latter property.

We show some properties of the Neumann—Dirichlet operator.

Theorem 5.4. Let Assumption 5.1 be satisfied. Then the Neumann—Dirichlet
map A is self-adjoint and positive; that is, (Af,g )Lz I8) (f,Ag)Lz(aB) and

(Af.f)r2(0m) > Ofor all f.g € LX(IB), f # 0.

Proof. This follows simply from the definition of A and Green’s first identity.
Let u,v € H!(B) be the solutions of (5.4) corresponding to boundary data f and
g, respectively. Then, by (5.4) for the pair g,v and the choice ¥ = u (note that

ulop = Af),
(Af,8)12(9m) /MgdKZ/YVwVvdx,
0B B

and this term is symmetric with respect to # and v. For f = g this also yields that A
is positive. o
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In the following we write A, to indicate the dependence on y. The next interesting
property is a monotonicity result.

Theorem 5.5. Let v,y € L”(B) with vy > 1> > Y a.e. on B. Then Ay, < Ay, in the
sense that

(A%faf)LZ(aB) < (A}’zfaf)LZ(BB) forallfeLi(c?B).

Proof. For fixed f € L2(9B) let u; € H!(B) be the corresponding solution of (5.2)
for y;, j = 1,2. From (5.4) (for Yy = %, u = uy, and ¥ = u; — up) we conclude that

(A = A f) oy = [ (=) £l = [ (Vi = Vi) - Vi
B B

1
_ 5/),2 [[Vitr|? = |Vaa]? = [V 1y — 1) [2] dix
B

1 1
< E/Yzwul\zdx*5/72W”2|2dx
B B
1 2 1 2
< 5/71 [Vuy | dx*z/?’z\v“ﬂ dx
B B
1
= z ((A}’l _A}’z)fvf)LZ(ag)
which proves the result. O

5.3 The Inverse Problem

As described in the introduction, the problem of electrical impedance tomography
is to determine (properties of) the conductivity distribution y from all — or at least a
large number of — pairs (f,u|yp). Because u|yp = Af we can rephrase this problem
as follows.

Inverse Problem: Determine the conductivity y from the given Neumann—Dirichlet
operator A : L2(dB) — L2(dB)!

As we have seen already in the previous chapter (and this is typical for studying
inverse problems) an intensive investigation of the direct problem has to precede
the treatment of the inverse problem. In particular we study the dependence of the
Neumann-Dirichlet map on y. First we show with an example that the inverse prob-
lem of impedance tomography is ill posed.
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Example 5.6. Let B = K(0,1) be the unit disk, § > 0 constant, and R € (0,1).
We define 1z € L™(B) by

( )_{ 1, R<x<1,
=144, W<k
Because 7Yz is piecewise constant the solution u is harmonic for x € K(0,1)\
{x: |x| = R} and satisfies the jump conditions u_ = u; and (1+ §)du/dr|_ =
du/dr|4 for |x| = R where v|s denotes the trace of v from the interior (—) and
exterior (+) of {x: |x| = R}, respectively.

We solve the boundary value problem (5.2) by expanding the boundary data f €
L2(dB) and the solution u into Fourier series; that is, for

@)= fue"?, ¢cl0,2n],
n#0

we make an ansatz for the solution of (5.2) in the form

% (bu+e) (L) ene r<R,
uro)=9 i
3 {bn(l%)‘ ‘—i—c,, (%) | q em"? r>R.

n#0

The ansatz already guarantees that « is continuous on the circle r = R. The unknown
coefficients by, ¢, are determined from the conditions (1+ §) du/dr| = du/or| N
for r = R and du/dr = f for r = 1. This yields the set of equations

(14+G) (bn+cn) =bu—cy

and
|n| i
b”W_C’lm‘R :f”
for all n # 0 which yields explicit formulas for b, and c,. Substituting this into the
form of u and taking r = 1 yields

o — RZ\n\ fn ing

(AYRf)((P):”(lafp):;mme , @€el0,2x], (5.7)
n#0

with & = 1 +2/4. We observe that Ay, is a diagonal operator from L2(0,27) into
itself with eigenvalues that behave asymptotically as 1/|n|. Therefore, the natural
setting for Ay, is to consider it as an operator from the Sobolev space H,, v 2(0, 27)
of order —1/2 into the Sobolev space HY 2(0,27r) of order 1/2; see Sect. A.4 of
Appendix A. We prefer the setting in L2(0,27) because the more general setting
does not give any more insight with respect to the inverse problem.
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Let A; be the operator with ¥y = 1 which is given by

(Af)(@) =, In o ¢ [0,27].

140 |n|

We estimate the difference by

2
o — R \fal?
Ay — A I =2r - -
| (Aye 1)f||L2(0,2n) ,gb o + R2In| n?
R4‘n‘ 2
=8n — 2 |f”2|
nz0 (00+ RN 7
4R* 5
< o2 Hf”LZ(O,Zn');

that is,
2R? 5
Ay — Al < o = 2R

because o > 1. Therefore, we have convergence of Ay, to A; in the operator norm
as R tends to zero. On the other hand, the difference ||yg — 1|/ = § is constant and
does not converge to zero as R tends to zero. This shows clearly that the inverse
problem to determine y from A is ill posed.

One can argue that perhaps the sup-norm for 7 is not appropriate to measure the
error in . Our example, however, shows that even if we replace g by a constant gr
which depends on R such that limg_o §g = o we still have convergence of Ay, to A
in the operator norm as R tends to zero. Taking, for example, §g = §/R> we observe
that [[yg — 1|[zr(s) — = as R tends to zero for arbitrary p > 1, and the problem of
impedance tomography is also ill posed with respect to any L”-norm.

A fundamental question for every inverse problem is the question of unigueness:
is the information — at least in principle — sufficient to determine the unknown
quantity? Therefore, in electrical impedance tomography we ask: does the knowl-
edge of the Neumann-Dirichlet operator A determine the conductivity ¥ uniquely
or is it possible that two different y correspond to the same A?

In full generality this fundamental question was not answered until nearly five
years ago by K. Astala and L. Pdivirinta in [10]. We state the result without proof.

Theorem 5.7. Let y;,y» € L™(B) with y;j(x) > y for j = 1,2 and almost all x € B.
We denote the corresponding Neumann—Dirichlet operators by A and A;, respec-
tively. If Ay = A, then N ="minb.

Instead of proving this theorem which uses refined arguments from complex
analysis we consider the linearized problem. Therefore, writing A(y) instead of Ay
to indicate the dependence on ¥, we consider the linear problem

Ay) + A/(Y)q = Ameas (5.8)
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where A'(y) : L(B) — L(L*(9B)) denotes the Fréchet derivative of the nonlinear
operator ¥ — A(y) from L™(B) to L(L2(dB)) at . Here, L(L2(dB)) denotes the
space of all linear and bounded operators from L2 (dB) into itself equipped with the
operator norm. The right-hand side Ayeas € £(L?(9B)) is given (“measured”), and
the contrast g € L™(B) has to be determined.

Theorem 5.8. Let U C L”(B) be given by U = {y € L*(B) : Y > 1 a.e. on B}.

(a) The mapping y+— A(y) from U to L(L%(dB)) is Lipschitz continuous.

(b) The mapping v — A(y) from U to L(L2(dB)) is Fréchet differentiable. The
Fréchet derivative N'(y) at y € U in the direction g € L”(B) is given by
[A(V)q] f = v|ap where v € HL(B) solves

Ju

div(va) = —div(un) in B, YW = —qW

on dB, (5.9

and u € H!(B) solves (5.2) with data y € U and f € L2(dB). The solution of
(5.9) is again understood in the weak sense; that is,

/yVl//-Vvdx: —/qu//~Vudx for all y € H!(B). (5.10)
B B

Proof. (a) Let y1,% € U, f € L2(dB), and u;,uy € H!(B) be the corresponding
weak solutions of (5.2). Taking the difference of (5.4) for the triples (,u1, f)
and (’)/27u23f) ylelds

/ 11 V(u —up) -Vydx = /()/2 —%)Vuy -Vydx forall y e Hg (B).
B B
With v = u; — u; and the lower bound Yy < 7 this yields

01V =) oy < [ 1|V —)ax

= /3(72771)Vu2'v(”1 7142)(1)(

< n = nll= V(0 = u2)ll2() [ Vasall 253

that is, there exists a constant ¢; > 0 (independent of y;,7») with

1
IV (1 —u2) | p2(5) < % 171 = ol [IVa2|p25)

<cln—»ll-llflz@s: (.11
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where we use the boundedness of the mapping f — u; (see Theorem 5.2). Now
we use the trace theorem and (5.6) to conclude that

HA<71)f_A(Y2)f||L2(BB) = ||(”1 - ”2)’33’|L2(93) <aln -1l Hf”LZ(BB);

that is,
A1) = ARl <c2lln — 1l

which proves part (a).

(b) Let y € U and g € L*(B) such that ||¢|| < 1/2. Then y+¢ > %/2 a.e. on B.
Letu,uy € H/(B) correspond to y and 7+ ¢, respectively, and boundary data f.
Subtraction of (5.4) for the triple y,u, f and (5.10) from (5.4) for (y+ q,uy, f)
yields

/yV(uq—u—v)-Vq/dx: /qV(u—uq)~Vl//dx forall w € H!(B).
JB JB

Taking W = uy — u — v yields as in part (a) an estimate of the form

1
[V (ug—u—0)ll 25 < % 14l 1V (10— ug) | 2(5)-
Now we use (5.11) (with u; = u and up = uy) to conclude that
C1 2
[V (ug —u—=2)ll 25 < % lgll= 1112 (am)-

Again by the trace theorem and (5.6) this yields

HA(Y"‘Q)JC_A(Y)JC_ [A/(Y)Q]fHLZ(aB) = H(”q_”_”)‘aBHLZ(aB)

2
< cllgl= £z 8-
which proves part (b). -

We now show that, for any given constant background medium 7, the linearized
inverse problem of electrical impedance tomography (5.8) has at most one solution;
that is, the Fréchet derivative is one-to-one. As already mentioned in the introduction
this proof is due to Calderén (see [35]) and has “opened the door” to many unique-
ness results in tomography and scattering theory. We come back to this method in
the next chapter where we prove uniqueness of an inverse scattering problem by this
method.

Theorem 5.9. Let y be constant. Then the Fréchet derivative N'(y) : L”(B) —
L(L%(9B)) is one-to-one.

Proof. First we note that we can assume without loss of generality that y = 1. Let
q € L™ (B) such that A'(y)g = 0; that is, [A’(y)q] f =0 for all f € L2(9B).
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The proof consists of two parts. First we show that g is orthogonal to all products of
two gradients of harmonic functions. Then, in the second part, by choosing special
harmonic functions we show that the Fourier transform of g vanishes.

Let u; € C*(B) be any harmonic function; that is, Au; = 0 in B. Define f €
L2(dB) by f = duy/dv on dB. Then u; is the solution of (5.2) with Neumann
boundary data f. We denote by v; € H} (B) the corresponding solution of (5.10):

/Vl]/'v’l)ldx: —/qvwvuldx for all l//GHol(B)
B B

Now we take a second arbitrary harmonic function u, € C?>(B) and set ¥ = us in the
previous equation. This yields

/un2~Vu1dx:—/Vug-Vvldxz—/vl%d(
B B oB

by Green’s first theorem. Now we note that v |95 = [A’(Y)q] f = 0. Therefore, we
conclude that the right-hand side vanishes; that is,

/unz -Vuydx =0 for all harmonic functions uy,u, € CZ(P). (5.12)

So far, we considered real-valued functions u; and u;. By taking the real and imag-
inary parts we can also allow complex-valued harmonic functions for #; and u5.

Now we fix any y € R? with y # 0. Let y- € R? be a vector (unique up to sign)
with y-y* = 0 and |y| = |y*|. Define the complex vectors z* € C2 by z* = 1 (iy £
y1). Then one computes that z*-z5 =0 and z" -z~ = —J|y]? and " +2z7 = iy.
From this we observe that the functions u™ (x) = exp(z* - x), x € R?, are harmonic
in all of R2. Therefore, substituting ™+ and u~ into (5.12) yields

O:/un*-Vu*dxzz /q () g = ——|y|2/q )™ dx.
B

From this we conclude that the Fourier transform of g (extended by zero in the
exterior of B) vanishes on R?\ {0}, and thus also ¢ itself. This ends the proof. O

5.4 The Factorization Method

In this section we consider the full nonlinear problem but restrict ourselves to the
more modest problem to determine only the shape of the region D where v differs
from the known background medium which we assume to be homogeneous with
conductivity 1.
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We sharpen the assumption on y of Assumption 5.1.

Assumption 5.10. In addition to Assumption 5.1 let there exist finitely many do-
mains Dj, j=1,...,m, such thatD_j CB andD_jﬂD_k: O for j # k and such that
the complement B\ D of the closure of the union D = UTzl Dj is connected. Fur-
thermore, there exists qy > 0 such that y=1 on B\ D and y > 1+ qo on D. We define
the contrast g by g =7y — 1.

The inverse problem of this section is to determine the shape of D from the
Neumann-Dirichlet operator A.

In the following we use the relative data A — A where A; : L2(dB) — L2(9B)
corresponds to the known background medium; that is, to ¥ = 1. The information
that A — A does not vanish simply means that the background is perturbed by some
contrast ¢ = Y — 1. In the Factorization Method we develop a criterion to decide
whether or not a given point z € B belongs to D. The idea is then to take a fine grid
in B and to check this criterion for every grid point z. This provides a pixel-based
picture of D.

We recall that Af = u|yz and Ay f = u1|yp, where u,u; € H!(B) solve

/(1 +q)Vu-Vydx = (f,¥)2(5p) forall y € HL(B), (5.13)
B

/Vul Vl]/dx = (f, W)LZ(QB) for all [/AS Hi(B). (5.14)
B

For the difference we have (A; — A)f = (u; — u)|;p, and u; —u € H!(B) satisfies
the variational equation

/(1 +q)V(uy—u)-Vydx = /qu -Vydx forall y € H!(B). (5.15)
B D

It is the aim to factorize the operator A; — A in the form
Al —A=A"TA,

where the operators A : L2(dB) — L?(D)? and T : L?(D)*> — L*(D)? are defined as
follows:3

o Af =Vu|p, where u; € H!(B) solves the variational Eq. (5.14), and
o Th=q(h—Vw) where w € H!(B) solves the variational equation

/(1+q)Vw-dex:/qh-V1//dx for all y € H' (B). (5.16)
B D

3 Here, L*(D)? denotes the space of vector-valued functions D — R? such that both components
are in L>(D).
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We note that the solution w of (5.16) exists and is unique. This is seen by the repre-
sentation Theorem A.22 of Riesz-Fischer because the right-hand side again defines
a linear and bounded functional F (y) = [,,qh-Vydx on H!(B). The left-hand side
of (5.16) is again the inner product (w, y)... The classical interpretation of the varia-
tional equation (under the assumption that all functions are sufficiently smooth) can
again be seen from Green’s first theorem. Indeed, in this case (5.16) is equivalent to

0= /l//div (1+q)Vw—qh] dx—/u/v-[(l—i—q)Vw—qh]dﬁ
oD

+ /l//Awdx— / l//—df
B\D d(B\D)

for all y. This yields

div[(1+¢q)Vw—gh]=0inD, Aw=0inB\D,

and
ow ow
v.[(1+q)Vw—qh}|7—%+on8D, W-Oon&B,
that is,
ow ow
v-[(l—i—q)VWH_—W+—q|_v-hon8D, W-Oon&B.

Theorem 5.11. Let the operators A : L2(dB) — L*(D)? and T : L*(D)?* — L*(D)?
be defined as above by (5.14) and (5.16), respectively. Then

Al —A=A"TA. (5.17)

Proof. We define the auxiliary operator M : L>(D)? — L2(dB) by Hh = w|; where
weH! (B) solves (5.16). Obviously, we conclude from (5.15) that A} — A = HA.

We determine the adjoint A* : L?(D)? — L2(dB) of A and prove that A*h = v| 55
where v € H!(B) solves the variational equation

/Vvon/ldx: /h~Vl//dx for all y € H!(B) (5.18)

and even for all w € H!(B) because it obviously holds for constants. The solution
v exists and is unique by the same arguments as above. Again, by applying Green’s
theorem we note that v is the variational solution of the boundary value problem

Av = {d”h in D, %% _0on 9B, (5.192)

0 inB\D, ov



180 5 An Inverse Problem in Electrical Impedance Tomography

v|— = v|+ on dD, 9 %v|,+:v~hon aD. (5.19b)

w3
To prove the representation of A*h we conclude from (5.18) for y = u; and (5.14)
that

(Af.h) 2 (p) :/Vul'hdx:/Vul'Vvdx: (f>v)2(98)
D B

and thus v|,p is indeed the value of the adjoint A*A.
Now it remains to show that H = A*T. Let h € L*>(D)? and w € H!(B) solve
(5.16). Then Hh = w|yp. We rewrite (5.16) as

/Vw-Vl//dx: /q(h—vw)-wdx for all y € H'(B). (5.20)
B D

The comparison with (5.18) yields A*(q(h — Vw)) = w|yp = Hh; that is, A*T = H.
Substituting this into A; — A = HA yields the assertion. O

Properties of the operators A and T are listed in the following theorem.

Theorem 5.12. The operator A : L2(B) — L*(D)? is compact, and the operator
T : L*(D)? — L*(D)? is self-adjoint and coercive:

(Th.h) oy = c|lhll oy forall he L2 (D), (5.21)

where ¢ = qo(1—qo/(1+qo)) > 0.

Proof. (i) For smooth functions u; € C> (B with Au; = 0in B and du;/dVv = f on
0B the following representation formula holds (see [47] or Theorem 6.12 for
the case of the three-dimensional Helmholtz equation).

) = [ 060 252 < 1) 5wl ), xeB
JB

= [ |0t 100~ A1) 5

Vo) (I)(x,y)} dl(y), x€B,
oB

where ® denotes the fundamental solution of the Laplace equation in R?; that is,

1
q)(xvy):_% ln|x_y|a X7éy

We can write Vuy in D in the form Vi ’ p=Ki f — K»A1 f where the operators
Ki,K> : L2(dB) — L*(D)?, defined by
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(K1 f)(x V/(ny dl(y), xeD,
(Kag) (x V/g ®(x,y)dly), xeD,

are compact as integral operators on bounded regions of integration with smooth
kernels. The representation A = K| — KA1 holds by a density argument (see
Theorem A.28). Therefore, also A is compact.

(ii) Let hy,hy € L*(D)? with corresponding solutions wy,w> € H!(B) of (5.16).
Then, with (5.16) for hy,w, and Y = wy:

(Thhhz)Lz(D) = /q(hl —Vwy)-hydx
D

= /qh1~h2dx—/qu1 -hpdx
D D

= /qh1 -hzdx—/(l +q)Vwy - Vwydx.
D B

This expression is symmetric with respect to h; and hy. Therefore, T is self-
adjoint.

For h € L?(D)? and corresponding solution w € H! (B) of (5.16) we conclude
that

(Th,h) 2 (p) /q|h Vw|2dx+/q (h—Vw)-Vwdx

>}

/q|h Vw|?dx+ /|VW|2d)C (with the help of (5.20))

[q0|h[> —2g0h- Vw+ (14 qo) [Vw|*] dx

@\U

2
q0 q0 2
vV 1+goVw— h| + h|~| dx
’ B v1+qo ‘ %( 1+qo>| ]

490 2
> qo (1 = 1+q0) 1Az p)

From this result and the factorization (5.17) we note that A; — A is compact,
self-adjoint (this follows already from Theorem 5.4), and nonnegative.

Now we derive the binary criterion on a point z € B to decide whether or not
this point belongs to D. First, for every point z € B we define a particular function
G(+,7) such that AG(-,z) =0in B\ {z} and dG(-,z)/dVv = 0 on dB such that G(x,z)

|
S

g
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becomes singular as x tends to z. We construct G from the Green’s function N for A
in B with respect to the Neumann boundary conditions.
We make an ansatz for N in the form N(x,z) = ®(x,z) — N(x,z) where again

1
CD()QZ):*EII”X—ZL x?‘éL

is the fundamental solution of the Laplace equation in R? and determine N(-,z) €
H!(B) as the unique solution of the Neumann problem

: . oN oD 1
AN(-,z)=0in B and W(-,Z) = W(.,Z) + o8] on 9B.

We note that the solution exists because [;5[d®/dV(-,z) + 1/|0B|] d¢ = 0. This is
seen by Green’s first theorem in the region B\ K(z,€):

%’cgae - / %(x,z)dﬁ(x)

JB [x—z|=¢
1 X—z x—z

- AT AT ) = 1.
2r / x—z]2 |x—2] ®)

[x—z|=¢

Then N = ® — N is the Green’s function in B with respect to the Neumann boundary
conditions; that is, N satisfies

. oON 1
AN(-,z)=0in B\ {z} and W(',Z) = ~13B| on dB.

From the differentiable dependence of the solution N(-,z) on the parameter z € B we
conclude that, for any fixed a € R? with |a| = 1, the function G(-,z) = a- V.N(-,z)
satisfies

AG(-,z) =0in B\ {z} and g—f(~7z)200n83. (5.22)

The function G(-,z) has the following desired properties.

Lemma 5.13. Lerz € B, R> 0, 6 € [0,27], and § > 0 be kept fixed. For € € [0,R)
define the set (part of a cone)

t
ng{z+r(0f)s ) 1€ <r<R, |9—t|<5}
sin ¢

with vertex in z. Let R be so small such that Cg C B. Then

lim [G(,2) [ 2(c,) = =
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Proof. By the smoothness of N(-,z) it is sufficient to consider only the part a -

V. In|x — z|. Using polar coordinates for x with respect to z (i.e., x=z+ r(i?stt)),

and the representation of a as a = ({r;) we have
2 R 0+6 5 2
—x)-a —t
/|a~Vzln|x—z|2dx_/de_/ / reos 570 gy gy
|x—z|* r
Ce Ce € 0-5
0+6 R | R
= / cosz(s—t)dt/—dr:cln—.
r £
6-0 €
——— —
=c
Therefore,

R -
IGC,22(cey 2 4 el = lla- VN, 2) 2y — oo fore —0.

O

We observe that the functions ¢,(x) = G(+,z)|yp are traces of harmonic functions
in B\ {z} with vanishing normal derivatives on d B. Comparing this with the classi-
cal formulation (5.19a) (5.19b) of the adjoint A* of A it seems to be plausible that
the “source region” D of (5.19a), (5.19b) can be determined by moving the source
point z in ¢,. This is confirmed in the following theorem.

Theorem 5.14. Let Assumptions 5.10 hold and let a € R* with |a| = 1 be fixed. For
every z € B define ¢, € L2(9B) by

0.(x) =G(x,z) =a-V.N(x,z), x€IB, (5.23)

where N denotes the Green’s function with respect to the Neumann boundary con-
dition. Then
€D <= ¢, € R(AY), (5.24)

where A* : L*(D)? — L2(dB) is the adjoint of A, given by (5.18), and R(A*) its
range.

Proof. First let z € D. Choose a disc K[z,€] = {x € R? : |x — z| < &} with center z
and radius & > 0 such that K[z, €] C D. Furthermore, choose a function ¢ € C(R?)
such that @(x) = 0 for |[x —z| < &/2 and @(x) =1 for [x —z| > € and set w(x) =
@(x)G(x,z) for x € B. Then w € H!(B) and w = G(-,7) in B\ D, thus w|;5 = ¢..

Next we determine u € H! (D) as a solution of Au = Aw in D, du/dv = 0 on dD;
that is, in weak form

/Vu-Vl//dx:/VW-VI]/dx—/l//;—vG(wZ)dfa v € H (D),
D D oD
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because dw/dv = dG(-,z)/dv on dD. Again, the solution exists and is unique.
Application of Green’s first theorem in B\ D yields

9 9
/WG(~,z)d6:/5G(~,z)d5:o.
oD JB

Therefore, the previous variational equation holds for all y € H'(D). Now let y €
H!(B) be a test function on B. Then

/Vu-Vl//dx: /Vw-Vy/dx—/ll/;—vG(-,z)dé
D D aD

:/Vw-Vy/dx—i—/VG(-,z)-Vl//dx:/Vw-Vq/dx.
D B\D B

Therefore, the definition & = Vu in D yields A*h = w|yp = ¢, and thus ¢, € R(A*).

Now we prove the opposite direction. Let z ¢ D. We have to show that ¢, is not
contained in the range of A* and assume, on the contrary, that ¢, = A*h for some
h € L*(D)?. Let v € H!(B) be the corresponding solution of (5.18). Therefore, the
function w = v — G(-,z) vanishes on dB and solves the following equations in the

weak form
ow B

v
for every € > 0 such that D¢(z) = DUK(z,€) C B, i.e

Aw = 01in B\ D¢(z2), 0 on dB,

Vw-Vydx=0

B\Dg(2)

for all y € H'(B\ D¢(z)) with y = 0 on dD¢(z). We extend w by zero into the
outside of B. Then w € H' (R?\ D¢(z)) because w =0 on dB and

/ V- Vyrdx=0

R?\D¢(2)

forall y € H' (R*\ D¢ (z)) which vanish on dD¢(z). Therefore, Aw = 0 in the exte-
rior Q =R?\ (DU{z}) of DU{z}. Now we use without proof that w is analytic in Q
and thus satisfies the unique continuation principle. Therefore, because it vanishes
in the exterior of B it has to vanish in all of the connected* set Q; that is, v = G(,z)
inB\ (DU{z}). B

The point z can either be on the boundary dD or in the exterior of D. In either
case there is a cone Cy of the form Cy = {z+r(5n1) : 0 <r <R, |6 —t| < 8} with

Co C B\D.Itis v|c, € L*(Cy) inasmuch as v € H! (B). However, Lemma 5.13 yields

4 Here we make use of the assumption that B\ D is connected.



5.4 The Factorization Method 185

that |G(-,2) | 2(c,) — o for & — 0 where Ce = {z+r(,) 1€ <r <R, |6 —1| < &}.

sint

This is a contradiction because v = G(+,z) in Cp and ends the proof. O

Therefore, we have shown an explicit characterization of the unknown domain
D by the range of the operator A*. This operator, however, is also unknown: only
A1 — A is known! The operators A* and A} — A are connected by the factoriza-
tion A; — A = A*TA. We can easily derive a second factorization of A; — A. The
operator A; — A is self-adjoint and compact as an operator from L2(9B) into itself.
Therefore, there exists a spectral decomposition of the form

(M =N f = 2 A (F, W) 1208 Vi
n=1

where A; € R denote the eigenvalues and y; € L2(dB) the corresponding or-
thonormal eigenfunctions of A; — A (see Theorem A. 51) Furthermore, from the
factorization and the coercivity of 7 it follows that ((A; — A)f, f) 12(om) = 0 forall

f € L2(9B). This implies A; > O for all j. Therefore, we can define
Wf=3 \ Ai (s ¥i)2(am) Vi
n=1

and have a second factorization in the form WW = A; — A. We write (A — A)'/?
for W. The operator (A; — A)'/? is also self-adjoint, and we have

(A=A 2(A =N =A—A=A*TA. (5.25)

We show that the ranges of (A; —A)'/? and A* coincide. This follows directly from
the following functional analytic result.

Lemma 5.15. Let X andY be Hilbert spaces, B: X - X,A: X —Y,andT:Y —Y
linear and bounded such that B = A*T A. Furthermore, let T be self-adjoint and
coercive; that is, there exists ¢ > 0 such that (Ty,y)y > c||y||3 for all y € Y. Then,

forany ¢ € X, ¢ #0,
¢ € R(A") < inf{(Bx,x)x :x€ X, (x,9)x =1} > 0.

Proof. (i) First, let ¢ =A*y € R(A*) for some y € Y. Then y # 0, and we estimate
for arbitrary x € X with (x,¢)x = 1:

(Bx,x)x = (A*TAx x)x = (TAx, Ax) > c||Ax|}

= lAxI} Y1} > — | (Ax,y)r|*
[N ||y Iy ||
|2 |2_ c

7 ol =

= Ay)x
R || 7 | ||y|\

Therefore, we have found a positive lower bound for the infimum.
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(ii) Second, let ¢ ¢ R(A*). Define the closed subspace

V={xeX:(¢,x)x =0} ={p}".

We show that the image A(V) is dense in the closure cl(R(A)) of the range of A.
Indeed, let y € cl(R(A)) such that y L Ax for all x € V; that is, 0 = (Ax,y)y =
(x,A*y) for all x € V; that is, A*y € V- = span{¢}. Because ¢ ¢ R(A*) we
conclude that A*y = 0. Therefore, y € cl(R(A)) NN (A*). This yields y = 0.
Therefore, A(V) is dense in cl(R(A)). Because A@/||¢||% is in the range of A
there exists a sequence %, € V such that A%, — —A¢/||¢[|%. We define x, :=
%+ 0/]0|%. Then (x,,¢)x = 1 and Ax, — 0 for n — oo, and we estimate

(Bxn,n)x = (TAxn, Axn)y < ||T|[|Ax]|} — 0, 11— oo,

and thus inf{(Bx,x)x :x € X, (x,¢)x =1} =0. 0

We apply this result to both of the factorizations of (5.25). In both cases, B =
Ay — A and X = L2(dB). First we set Y = L*(D)? and A : L2(dB) — L*(D)? and
T : L>(D)?> — L*(D)? as in the second factorization of (5.25). Because T is self-
adjoint and coercive we conclude for any ¢ € L2(9B), ¢ # 0, that

RS R(A*) A lnf{((Al _A)faf)LZ(aB) fe Lg(aB)’ (f7¢)L2(aB) = 1} > 0.

Second, we consider the first factorization of (5.25) with T being the identity. For
¢ € L2(dB), ¢ # 0, we conclude that

0 € R((A1—A)"/?) & inf{ (A, —A)f,f)L2<aB) (f,0)120m) =1} > 0.

The right-hand sides of the characterizations only depend on A} — A, therefore we
conclude that

R((A1 —A)'?) = R(AY). (5.26)
Application of Theorem 5.14 yields the main result of the Factorization Method:

Theorem 5.16. Let Assumptions 5.10 be satisfied. For fixed a € R? with a # 0 and
every z € Blet ¢, € L2(9B) be defined by (5.23); that is, ¢.(x) = a-V N(x,z), x € IB,
where N denotes the Green’s function for A with respect to the Neumann boundary

conditions. Then
€D <= ¢, € R((A1—A)'/?). (5.27)

We now rewrite the right-hand side with Picard’s Theorem A.54. First we show
injectivity of the operator A} — A.

5 Take a sequence (x;) in X such that Ax; — y. Then 0 = (A*y,x;)x = (3,Ax;)y — (3,¥)y; that is,
y=0.
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Theorem 5.17. The operator A| — A is one-to-one.

Proof. Let f € L2(dB) with (A; — A)f = 0. Then

0= (( )f f)LZ JB) (A TAf f)L2 dB)
= (TALAf) 2o = cllAf 12 p)

and thus A f = 0. Therefore, it suffices to prove injectivity of A. Let 0=Af = Vuy|p
where u; € H (B) denotes the weak solution of Auj = 01in Band du; /dv = f on dB.
Without proof we again use the regularity result that &; is analytic in B. Therefore,
Vu, is constant in D. The derivatives v; = du;/dx; are solutions of Av; = 0 in B
and v; = 0 in D. The unique continuation property yields v; = du;/dx; = 0 in all
of B and thus f =0. a

Therefore, the operator A| — A is self-adjoint, compact, one-to-one, and all eigen-
values are positive. Let {4;, y;} be an eigensystem of A; — A; thatis, A; > 0 are the
eigenvalues of Aj — A and y; € L3(dB) are the corresponding orthonormal eigen-
functions. The set {y; : j=1,2,...} is complete by the spectral theorem. Therefore,
{\/}TJ ,Wj,y;} is a singular system of the operator (A; — A)'/2. Application of Pi-
card’s Theorem A.54 yields

Theorem 5.18. Let Assumptions 5.10 be satisfied. For fixed a € R? with a # 0 and
for every 7 € B let ¢, € L2(dB) be defined by (5.23); that is, ¢,(x) = a-V,N(x,z),
x € dB. Then

q)Za II//)LZ(QB)
— <

zeD — 2 7
]

Jj=1

(5.28)

or, equivalently,

= (0 V) om |
TR |y, (5.29)

7€D < W(z):= lZ 'y

j=1

Here we agreed on the setting that the inverse of the series is zero in the case of
divergence. Therefore, W vanishes outside of D and is positive in the interior of D.
The function

I, W(z) >0,
0,

0, W(z)

sign W(z) = {

is thus the characteristic function of D.

We finish this section with some further remarks.

We leave it to the reader to show (see Problems 5.1-5.3) that in the case of B =
K(0,1) being the unit disk and D = K(0,R) the disk of radius R < 1 the ratios
(¢, l[/j)iz (9B) /A; behave as (|z|/R)*/. Therefore, convergence holds if and only if

|z] < R which confirms the assertion of the last theorem.
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In practice, only finitely many measurements are available; that is, the data oper-
ator A — A is replaced by a matrix M € R™*™. The question of convergence of the
series is obsolete because the sum consists of only finitely many terms. However,
in practice it is observed that the value of this sum is much smaller for points z in-
side of D than for points outside of D. Some authors (see [111]) suggest to test the
“convergence” by determining the slope of the straight line that best fits the curve
Jj — In[(¢:, Wj)iz(BB)/)Lj] (for some j only). The points z for which the slope is
negative provide a good picture of D.

A rigorous justification of a projection method to approximate the (infinite) series
by a (finite) sum has been given in [160].

In the implementation of the Factorization Method only the relative data oper-
ator A; — A has to be known and no other information on D. For example, it is
allowed (see Assumption 5.10) that D consist of several components. Furthermore,
the fact that the medium D is penetrable is not used. If one imposes some boundary
condition on dD the same characterization as in Theorem 5.18 holds. For example,
in [111] the Factorization Method has been justified for an insulating object D. In
particular, the Factorization Method provides a proof of uniqueness of D indepen-
dent of the nature of D; that is, whether it is finitely conducting, a perfect conductor
(Dirichlet boundary conditions on d D), a perfect insulator (Neumann boundary con-
ditions on dD), or a boundary condition of Robin-type.

5.5 Problems

For the problems let B be the unit disk in R? with center at the origin.

5.1. Show that the fundamental solution @ and the Green’s function N are given in
polar coordinates (x = r(cost,sint) " and z = p(cosT,sin7) ") as

1 &1 n
D(x,z) = ~3- Inr-+ ﬁ;; (—) cosn(t — 1),
X
N(x,z2) :<1>(x,z)+(I)<W,z>
=1

forp=lz| < |x| =r.
Hint: Write ® in the form
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and show ¥, L o cos(ns) = — 1 In[1 + & — 2 o cos s] by differentiation with re-
spect to o and applying the geometric series formula for ¥, o'~ exp(ins).

5.2. Show that ¢, from (5.23) is given by

a-(x—z)
mlx—z2’

6.(v) = W =1.

Also compute ¢, in polar coordinates for @ = (cosa,sina)' by the formulas of
Problem 5.1.

5.3. Compute the eigenvalues A, and the normalized eigenfunctions v, € L2(9B)
of A — Ay, and the coefficients (¢, Y) ;2 (yp, for the case of Example 5.6. Compute

the ratios (¢, Y)7, (9)/ 7 and validate the condition (5.29) of Theorem 5.18.

5.4. Consider the case of D C B being the annulus D = {x € B: R| < |x| < R}
for some 0 < R; < Ry < 1. Compute again the eigenvalues A, and the normalized
eigenfunctions y, € L2(dB) of A| — A and the coefficients (¢., y,) 12(ap)- Verify
that you can only determine the outer boundary {x : |x| = R, } by the Factorization
Method.






Chapter 6
An Inverse Scattering Problem

6.1 Introduction

We consider acoustic waves that travel in a medium such as a fluid. Let v(x,t)
be the velocity vector of a particle at x € R® and time ¢. Let p(x,t), p(x,t), and
S(x,t) denote the pressure, density, and specific entropy, respectively, of the fluid.
We assume that no exterior forces act on the fluid. Then the movement of the particle
is described by the following equations.

1
?9_1; +(v-VYv+yv+ I; Vp =0 (Euler’s equation), (6.1a)
dp .. _ .
" +div(pv) =0 (continuity equation), (6.1b)
f(p,S) = p (equation of state), (6.1¢)
as — .
5 +v-VS =0 (adiabatic hypothesis), (6.1d)

where the function f depends on the fluid. y is a damping coefficient, which we
assume to be piecewise constant. This system is nonlinear in the unknown functions
v, P, p, and S. Let the stationary case be described by vy = 0, time-independent dis-
tributions p = py(x) and S = Sp(x), and constant py such that py = f(po(x),So(x)).
The linearization of this nonlinear system is given by the (directional) derivative of
this system at (v, po, Po,So)- For deriving the linearization, we set

=ev(x,1)+0(e%),

)

p(x,t) = P0+£P1(x7t)+o (82) y
) = po(x) +epi(x,1)+ O (€),
)

= So(x) +S1(x,1) + O (2),

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, 191
Applied Mathematical Sciences 120, DOI 10.1007/978-1-4419-8474-6_6,
© Springer Science+Business Media, LLC 2011
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and we substitute this into (6.1a), (6.1b), (6.1c), and (6.1d). Ignoring terms with
O(£?) leads to the linear system

avl 1
7+}/U1+%Vp1 =0, (6.2a)
% +div(povy) = 0, (6.2b)
df(po,So) df(po,So) ,
p p1+ 53 S1 = p1, (6.2¢)
S
CL VS, = 0. (6.2d)
First, we eliminate S;. Because
0 Y d ,
0=V (po(x),S0(x)) = %pr A (gg V) vs,

we conclude by differentiating (6.2¢) with respect to ¢ and using (6.2d)

Ipi B 2 aPl
W—C(x) [W—I—vl‘Vpo , (6.2¢)

where the speed of sound c is defined by

c(x)? = % (po(x),So(x)).

Now we eliminate v; and p; from the system. This can be achieved by differentiating
(6.2e) with respect to time and using Egs. (6.2a) and (6.2b). This leads to the wave
equation for p;:

9*pi(x,t) | _dpi(x.1)
or? 4 ot

1

— WP pula)aiv | Ve 63
Po(x)

Now we assume that terms involving Vpy are negligible and that p; is time-periodic;

that is, of the form

p1(x,) =Re [u(x)e "]

with frequency @ > 0 and a complex-valued function u = u(x) depending only
on the spatial variable. Substituting this into the wave Eq.(6.3) yields the three-
dimensional Helmholtz equation for u:
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In free space, ¢ = ¢q is constant and y = 0. We define the wave number and the index
of refraction by

2
w C .Y
ki==>0 and =0 (1+il). 6.4
% >0 and n(x) R —Hw (6.4)
The Helmholtz equation then takes the form
Au+knu=0 (6.5)

where n is a complex-valued function with Ren(x) > 0 and Imn(x) > 0.

This equation holds in every source-free domain in R3. We assume in this chapter
that there exists a > 0 such that ¢(x) = ¢p and y(x) = 0 for all x with |x| > a; that is,
n(x) = 1 for x| > a. This means that the inhomogeneous medium {x € R* : n(x) # 1}
is bounded and contained in the ball K(0,a) := {y € R? : |y| < a} of radius a. By
K[0,a] := {y € R3 : |y| < a}, we denote its closure. We further assume that the
sources lie outside the ball K[0, a].

These sources generate “incident” fields u, that satisfy the unperturbed
Helmholtz equation Au’ + k*u’ = 0 in K[0,a]. In this introduction, we assume that
u' is either a point source or a plane wave; that is, the time-dependent incident fields
have the form

ik|x—z]
e ) ; e
Re ekP=2l=ior.  hat s, u'(x)

p’i(x,t):

=z T el

for a source at z with |z] > a, or
ph(x,1) =Re ekOx—ion, g i, U (x) = k0

for a unit vector § € R3.

In any case, u' is a solution of the Helmholtz equation Au’ +k*u’ = 0 in K[0,a].
In the first case, p’i describes a spherical wave that travels away from the source
with velocity c¢g. In the second case, p’i is a plane wave that travels in the direction
6 with velocity co.

The incident field is disturbed by the medium described by the index of refrac-
tion 7 and produces a “scattered wave” u°. The total field u = u' + u* satisfies the
Helmholtz equation Au + k%nu = 0 outside the sources. Furthermore, we expect the
scattered field to behave as a spherical wave far away from the medium. This can be
described by the following radiation condition

du*(x)

5 " iku*(x) =0 (l/rz) as r = |x| — oo, (6.6)

uniformly in x/ |x| € S2. Here we denote by S? the unit sphere in R3. We have now
derived a complete description of the direct scattering problem.
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Let the wave number k > 0, the index of refraction n = n(x) with n(x) = 1 for
|x| > a, and the incident field u’ be given. Determine the total field u that satisfies
the Helmholtz Eq. (6.5) in R3 outside the source region such that the scattered field
u® = u— u' satisfies the radiation condition (6.6).

In the inverse problem, one tries to determine the index of refraction n from
measurements of the field u outside of K(0,a) for several different incident fields
u' and/or different wave numbers k. The following example shows that the radially
symmetric case reduces to an ordinary differential equation.

Example 6.1. Let n = n(r) be radially symmetric: n is independent of the spherical
coordinates. Because in spherical polar coordinates (r, ¢, 0),

Afii ,,21 +;a_2+;i sin@i
2 9r\ dr)  r2sin?@ 992  r2sinB 00 00 )’

the Helmholtz equation for radially symmetric u = u(r) reduces to the following
ordinary differential equation of second order,

1
= (rzu (r) + k2 n(r)u(r) =0;

%

that is, )
' (r) + ~ (1) + Kon(r)u(r) =0 for r>0. (672)

From the theory of linear ordinary differential equations of second order with sin-
gular coefficients, we know that in a neighborhood of r = 0 there exist two linearly
independent solutions, a regular one and one with a singularity at = 0. We construct
them by making the substitution u(r) = v(r)/r in (6.7a). This yields the equation

V"(r) +K2n(r)v(r) =0 forr>0. (6.7b)
For the simplest case, where n(r) = 1, we readily see that u;(r) = osin(kr)/r
and u(r) = B cos(kr)/r are two linearly independent solutions. u; is regular and u;

is singular at the origin. Neither of them satisfies the radiation condition. However,
the combination u(r) = yexp(ikr)/r does satisfy the radiation condition because

(1) — iku(r) = —y SRR _ @<l>

as is readily seen. For the case of arbitrary n, we construct a fundamental system
{v1,n} of (6.7b); that is, v; and v, satisfy (6.7b) with v;(0) = 0, v{(0) = 1, and
1»(0) =1, ¥5(0) = 0. Then u; (r) = v;(r)/r is the regular and us (r) = v (r)/r is the
singular solution.

In the next section, we rigorously formulate the direct scattering problem and
prove the uniqueness and existence of a solution. The basic ingredients for the
uniqueness proof are a result by Rellich (see [203]) and a unique continuation
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principle for solutions of the Helmholtz equation. We prove neither Rellich’s lemma
nor the general continuation principle, but rather give a simple proof for a special
case of a unique continuation principle that is sufficient for the uniqueness proof of
the direct problem. This suggestion was recently made by Héhner (see [104]). We
then show the equivalence of the scattering problem with an integral equation. Ex-
istence is then proven by an application of the Riesz theorem A.34 of Appendix A.
Section 6.3 is devoted to the introduction of the far field patterns that describe the
scattered fields “far away” from the medium. We collect some results on the far field
operator, several of which are needed in Sect. 6.6. In Sect. 6.4, we prove uniqueness
of the inverse problem. Finally, in Sect. 6.6, we present three numerical algorithms
for solving the inverse scattering problem.

6.2 The Direct Scattering Problem

In this section, we collect properties of solutions of the Helmholtz equation that are
needed later. We prove uniqueness and existence of the direct scattering problem
and introduce the far field pattern. In the remaining part of this chapter, we restrict
ourselves to scattering problems for plane incident fields.

Throughout this chapter, we make the following assumptions. Let n € L= (R3)
and a > 0 with n(x) = 1 for almost all |x| > a. Assume that Ren(x) > 0 and
Imn(x) > 0 for almost all x € R3. Let k € R, k > 0, and § € R with 6] = 1.
We set ! (x) := exp(ik@ - x) for x € R3. Then ' solves the Helmholtz equation

Al +Ku' =0 inR>. (6.8)

We again formulate the direct scattering problem. Given n, k, 6 satisfying the pre-
vious assumptions, determine u € H._(IR?) such that

Au+kKnu=0 inR>, (6.9)

and v’ := u — u’ satisfies the Sommerfeld radiation condition

u®
or

—iku* = O(1/r*) forr=|x| — oo, (6.10)

uniformly in x/ |x| € S2. The index function n is not smooth, thus we cannot expect
that the solution u is smooth. Rather it belongs to a (local) Sobolev space. For any
open set Q C R? the Sobolev space H'(Q) is defined as the completion of {u €
C'(Q) : u,Vu € L*(Q)} with respect to the norm

Il =/ [ [V + 1]
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We refer to Chap.5 where we already used Sobolev spaces of functions on two-
dimensional domains B. The local space H, 110 . (R3) is defined by

Hl (R*) = {u: R} — C: ulx € H'(K) for every ball K = K(O,R)}.

The solution of (6.9) is understood in the variational (or weak) sense (compare with
(5.4) of Chap. 5):

/[Vu~Vl;/—k2nul//]dx:O (6.11)

R3

for all y € H'(IR) with compact support. We note that for |x| > a the total field
u and thus also the scattered field u* satisfy the Helmholtz equation Au + k*u = 0.
Well-known regularity results yield smoothness of u and * for |x| > a; in particular,
the radiation condition (6.10) is well-defined.

We need some results from the theory of the Helmholtz equation. We omit some
of the proofs and refer to [47,49] for a detailed investigation of the direct scattering
problems (provided n is smooth). The proof of uniqueness relies on the following
very important theorem, which we state without proof.

Lemma 6.2 (Rellich). Let u satisfy the Helmholtz equation Au + k*u = 0
for |x| >a. Assume, furthermore, that

R—soo

|x|=R

lim / lu(x) | ds(x) = 0. 6.12)

Then u =0 for |x| > a.

For the proof, we refer to [49] (Lemma 2.11). In particular, the condition (6.12)
of this lemma is satisfied if u(x) decays faster that 1/|x|. Note that the assertion of
this lemma does not hold if k is imaginary or if £ = 0.

The second important tool for proving uniqueness is the unique continuation
principle. For the uniqueness proof, only a special case is sufficient. We present a
simple proof by Hihner (see [104]), which is an application of the following re-
sult on periodic differential equations with constant coefficients. This lemma is also
needed in the uniqueness proof for the inverse problem (see Sect. 6.4). First, we de-
fine the cube Q := (—x,7)* € R3. Then every element g € L?(Q) can be expanded
into a Fourier series in the form

gx)= Y gjel*, xeR’ (6.13a)
jEZ3

with Fourier coefficients

U ,
8= s /g(y)e Ny, e (6.13b)
(2m)3 .
0
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The convergence of the series is understood in the L2-sense. Then Parceval’s equa-
tion holds in the form

jez3

@n) 3 IgiF = [ le) Py (6.13¢)
0

In particular, L?>(Q) can be defined by those functions g such that e |g;I?

converges. Analogously, one defines the Sobolev space H;e,(Q) of periodic func-
tions by

H),,(0) = {g el’(Q): Y, (1+jM)lgl* < w} :
jer?

Here we have set | j| = | j1 |+ | j2| + /3| for j = (ji1, j2, j3) € Z*. Then itis not difficult

to see that H),,(Q) C H'(Q). Furthermore, we identify L*(Q) and H,,,,(Q) with the

spaces of 27-periodic functions with respect to all variables: they satisfy g(27n +
x) = g(x) for almost all x € R? and n € Z>.

Lemma6.3. Let p € R3, o € R, and é = (l,i,O)T € C3. Then, for every t >0
and every g € L*(Q), there exists a unique solution w = w;(g) € Hil,er(Q) of the
differential equation

Aw+ (2té—ip)-Vw—(it+o)w=g inR>. (6.14)
The solution is again understood in the variational sense:

/[VW-VUJ—&- (te—ip/2)-(wWVy —yVw) + (it + a)wy]| dx
0

—— [gvax (6.15)
0

for all y € C'(Q) with support in Q. Furthermore, the following estimate holds

1
Wlliz(0) < A gl 2 forallg e L*(Q), 1 >0. (6.16)
In other words, there exists a linear and bounded solution operator

L:L*(Q) = L*(Q), g+ wilg),

of (6.14) with the property ||L;|| < 1/¢ for all ¢ > 0.

Proof. We expand g into the Fourier series (6.13a) with Fourier coefficients (6.13b).
The representation w(x) = ¥ ;53 w; exp(i j - x) leads to the equation

wi[=jl*+ij-(re—ip)—(it+ o) =g;, jeZ,



198 6 An Inverse Scattering Problem

for the coefficients w;. We estimate
|—ljI>+ij- (2te—ip) — (it + )| > [Im[--]|=¢[2j1—1] > ¢

forall j € 73 and t > 0. Therefore, the operator

8 ijx 2
(Lig)(x) == el geL7(Q),
t jezZ3 —|jI*+ij- (ip+2t8) — (it + o)

is well-defined and bounded with [|Z,|| < 1/¢ for every ¢ > 0. It remains to show
that w satisfies (6.15). Therefore, let ¥ € C'(Q) have support in Q. Then y can
be extended to a periodic function y € C!'(R?). Expanding y in the form y(x) =

Y jezs Wjexp(—ij-x) yields

/[Vw(x) Vy(x)+ (te—ip/2) - (w(x) Vy(x) — y(x) Vw(x))

(9]
+(it + o) w(x) y(x)] dx
=2r)* Y [|jF—ij- (2te—ip) + (it + o) wiy;
jez3
=@’ T g¥ = [s@ v
jez? 0
where we used the form of w;. O

Now we can give a simple proof of the following version of a unique continuation
principle.
Theorem 6.4. Let n € L=(R?) with n(x) = 1 for |x| > a be given. Let u € H'(R3)
be a solution of the Helmholtz equation Au+ k*nu = 0 in R> (in the variational
sense (6.11)) such that u(x) = 0 for all |x| > b for some b > a. Then u has to vanish
in all of R3.

Proof. Again define é = (1,i,0)" € C3, p = 2b/x, and the function
wix) i= PN (p) v e Qi (—m ),

for some ¢ > 0. Then w(x) = O for all |x| > /2, in particular near the boundary of
the cube. Extend w to a 27-periodic function in R? by w(27j 4 x) := w(x) forx € Q
and all j € Z3, j #0. Thenw € ngr(Q), and w satisfies the differential equation

Aw+ (2te —ip) - Vw— (it + 1/4)w = —p*KPiiw

in the variational sense as in the previous theorem. Here, we have set p = (1,0,0) "
and 7i(27j +x) := n(px) for almost all x € [—7, 7]* and j € Z3. Indeed, if u satisfies
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the Helmholtz Eq. (6.11) in the variational sense then, with any y € C'(Q) with
compact support in Q we express # and a new test function ¢ as

u(x) = e—i/<20)X1+(t/P)é-xw(x/p)’

o(x) = e/ (2p)x1—(t/p)éx v(x/p),
and substitute this into (6.11). Making the substitution z = px, we conclude by a
simple computation that w and y satisfy (6.15) for o = 1/4 and g = —p>k>iiw.
Application of the previous lemma to this differential equation yields the existence

of a linear bounded operator L, from L?(Q) into itself with ||, || < 1/ such that the
differential equation is equivalent to

w=—p**L, (fzw) .

Estimating
272 272
[ [ | L]
Wl = == liwlpg < ———= Wl
yields w = O for sufficiently large # > 0. Thus u also has to vanish. O

The preceding theorem is a special case of a far more general unique continuation
principle, which we formulate without proof here.

Let u € H. (Q) be a solution of the Helmholtz equation Au+ k*nu = 0 in a
domain Q C R3 (i.e., Q is open and connected). Furthermore, let n € L>(Q) and
u(x) = 0 on some open set. Then u =0 in all of Q.

For a proof we refer to, for example, [49].! Now we can prove the following
uniqueness result.

Theorem 6.5 (Uniqueness). The problem (6.9), (6.10) has at most one solution: if
u is a solution corresponding to u' =0, then u = 0.

Proof. Let u' = 0. The radiation condition (6.10) yields

5 ou . I
O(l/R):/ E—lku ds
[x|=R
) _
_ / <% +k2|u|2>ds+2k1m / u%ds. (6.17)
x{=R =R

We can transform the last integral using Green’s first theorem:

/ua—zds: / [uAli+ |Vul*] dx = / [|Vul* — k7 |u]*] dx;

|x|=R [x|<R [x|<R

! One has to modify the proof in [49] where n € C(Q) is assumed.
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that is,
P
Im / ué)—uds:k2 / Imn|ul*dx > 0.
r
|x|=R |x|<R

We substitute this into (6.17) and let R tend to infinity. This yields

2
+k2|u|2> ds <0,

R—soo

0 < limsup (—gu
P
|x|=R

and thus
lul*ds — 0 as R — oo,

Ix[=R

Rellich’s Lemma 6.2 implies u = 0 for |x| > a. Finally, the unique continuation

principle of Theorem 6.4 yields u = 0 in R3, O
Now let
® I R 6.18
(x,y) e orx,y € R”, x#y, (6.18)

be the fundamental solution or free space Green’s function of the Helmholtz
equation. Properties of the fundamental solution are summarized in the following
theorem.

Theorem 6.6. ®(-,y) solves the Helmholtz equation Au+k*u =0 in R\ {y} for
every y € R3. It satisfies the radiation condition

X

Jx

uniformly in x/ |x| € S? and y € Y for every bounded subset Y C R>. In addition,

'Vx(b(xvy) _ikq)(xay) = O(l/ |x|2)

eiklxl

—ikx-y 2
¢ 00/ ) (6.19)

q)(x,y) =

uniformly in £ = ﬁ €S*andycy.

The proof is not difficult and is left to the reader.
Now we construct volume potentials with this fundamental solution.

Theorem 6.7. Let Q C R? be a bounded domain. For every ¢ € L*(Q) the volume
potential

o) = [o0)P(y)dy, xeR, (6.20)
Q
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yields a function v € H} (R3) that satisfies the radiation condition (6.10) and is the

loc

only radiating solution of Av + Ky = —¢ in the variational sense; that is,
/[w.w—k%w] dx:/a)y/dx 6.21)
R3 Q

for all y € H'(R3) with compact support. Furthermore, for every ball K = K(0,R)
containing C in its interior there exists ¢ > 0 (only dependent on K, k, and Q) such
that

ol < cllllze) - (6.22)
We sketch a proof for the convenience of the reader. It consists of three parts.

(i) First we state without proof (see, e.g., [91]) that forany k € C and ¢ € C ! (ﬁ)
the potential v is continuously differentiable in all of R?, twice differentiable
in R\ 9Q, and solves Av +k?v = —¢ in Q and Av + k?>v = 0 in the exterior
of Q. Application of Green’s first theorem yields that v satisfies (6.21).

(ii) Second, we consider the special case k = i and still ¢ € C'(Q). From the form
of the fundamental solution we observe that v(x) decays exponentially as |x|
tends to infinity. By a simple approximation argument one concludes that (6.21)
holds for k = i and all y € H'(IR?). Substituting y = 7 yields

ol ey = [ [VoP+|oP)dr = [Tgax

R3 a
< \//|v|2dx\//|¢|2dx < ol ey 10z
Q Q

that is, [[v|[1(x) < [[0llg1 @3y < [|9]l;2(q) Which proves boundedness of ¢ —
v from L*(Q) into H'(K). Therefore, by Theorem A.28 this operator has a
bounded extension from L?(Q) into H!(K).

(iii) Third, we consider the case k > 0. We note that the operator

6~ [0 [@l)~ @il dy
Q

is bounded from L?(Q) into H'!(K) where we indicate the dependence of the
fundamental solution on k and on k = i, respectively. This follows from the
boundedness of the kernel V., [®(x,y) — ®@;(x,y)]. This, together with (ii),
proves boundedness of ¢ — v from L?(Q2) into H'(K). Uniqueness follows
directly from Theorem 6.5. a

Now we can transform the scattering problem into a Fredholm integral equation
of the second kind. The following theorem is needed quite often later on.
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Theorem 6.8. (a) Let u € Hlloc(R3) be a solution of the scattering problem
(6.9), (6.10). Then ulki 4 belongs to L*(K(0,a)) and solves the Lippmann—
Schwinger integral equation

u(x) = u'(x) — k? / (1=n(y)) @(x,y)u(y)dy, x€K[0,d]. (6.23)

[y|<a

(b) If. on the other hand, u € L* (K(O, a)) is a solution of the integral Eq. (6.23), then
u can be extended by the right-hand side of (6.23) to a solution u € Hllo C(R3) of
the scattering problem (6.9), (6.10).

Proof. (a) Let u be a solution of (6.9), (6.10) and v the volume potential with den-
sity k*(1 —n)u € L*(K(0,a)). By Theorem 6.7 we conclude that v € H,}, (R?)
and Av +k*v = k*(n— 1) u in the weak sense. From Au +k*u = k*(1 —n) u and
Au' +k*u' = 0 we conclude that A(v + u*) + k*(v + u*) = 0. Furthermore, v
and u’ both satisfy the radiation condition (6.10). The uniqueness Theorem 6.5
yields that v +u* = 0, thus u = u' +u* = u’ — v. This proves the first part.

(b) Letu € L*(K(0,a)) be a solution of (6.23). Again define v as the volume poten-
tial with density k*(1 —n)u € L*(K(0,a)). Then u = u' — v in K(0,a). Extend
u by the right-hand side of this formula to all of R3. Again, by Theorem 6.7,
we conclude that v € H. (R?) and Av + k*v = k*(n — 1) u in the weak sense.
Therefore, also u € HY (R*) and Au + k*u = —(Av + k*v) = k*(1 — n) u; that
is, Au—+ k*nu = 0. Therefore, u® = — v, which ends the proof. O

As a corollary, we can derive the following result on existence.

Theorem 6.9. Under the given assumptions on k, n, and 0, there exists a unique
solution u of the scattering problem (6.9), (6.10) or, equivalently, the integral
Eq.(6.23).

Proof. We apply the Riesz theory (Theorem A.34 of Appendix A) to the integral
equation u = u’ — Tu, where the operator T from L (K (0, a)) into itself is defined by

(Tu)(x) := K2 / (1 - n(y)) O(x,y)uly)dy, |x|<a. (6.24)

yi<a

This integral operator is compact. There are several ways to prove this. The simplest
is perhaps the observation that this integral operator is bounded from L? (K (O,a))
into the Sobolev space H'(K(0,a)) by Theorem 6.7. Furthermore, by Rellich’s
embedding theorem (see [1, 173]) the Sobolev space HI(K(O,a)) is compactly
embedded in L? (K (O,a)). One can also argue directly by observing that the ker-
nel ®(x,y) of this integral operator is weakly singular (see Theorem A.33 of
Appendix A for the one-dimensional case). Therefore, it is sufficient to prove
uniqueness of a solution to (6.23). This follows by Theorems 6.8 and 6.5. O
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Remark 6.10. From the proof we observe directly that the operator I + T is an iso-
morphism from L? (K(0,a)) onto itself.

As another application of the Lippmann—Schwinger integral equation, we derive
the following asymptotic behavior of u.

Theorem 6.11. Let u be the solution of the scattering problem (6.9), (6.10). Then

. ik|x]
“@ZMWﬁWM@+mUW)MMHw (6.25)
uniformly in £ = x/ |x|, where
K2 s
oo (£) = in / (n(y)—1) e Y u(y)dy forz e §% (6.26)
yl<a

The function u.. : 8> — C is called the far field pattern or scattering amplitude of
u. It is analytic on S* and determines u* outside of K(0,a) uniquely: u.. = 0 if and
only if u*(x) = 0 for |x| > a.

Proof. Formulas (6.25) and (6.26) follow directly from the asymptotic behavior
(6.19) of the fundamental solution ®. The analyticity of u.. follows from (6.26).
Finally, if u.. = 0, then an application of Rellich’s lemma yields that u* = u —u’ =0
for all |x| > a. O

The existence of a far field pattern; that is, a function u., with

ik|x|
uwpﬁﬂh@+muW)%mH% (6.27)

is not restricted to scattering problems. Indeed, Theorem 6.12 below assures the
existence of the far field pattern for every radiating solution of the Helmholtz
equation.

We now draw some further conclusions from the Lippmann—Schwinger integral
equation u + Tu = u'. First we note that we can also treat the integral equation in
L= (K(0,a)) or even in C(K[0,a]) because the volume potential maps L™-functions
u into continuous functions. In the following we consider 7 as an operator from
C(K[0,d]) into itself. We estimate the norm || T'|| of the integral operator T of (6.24)
with respect to the L™-norm:

(T < Rt =l elomax [ [@(cy)]dy forxe K[0.a]
x| <a

yl<a
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that is,

Tl <k|1— /
IT].. <k~ nmeax 4n|x y|

\y <a

k
_ (k) “) 11 —n|.; (6.28)

see Problem 6.4. We conclude that |||, < 1, provided (ka)?||1 —n||., < 2. The
contraction mapping Theorem A.29 yields uniqueness and existence of a solution
of the integral Eq. (6.23) for (ka)? ||1 — n||., < 2. We know this already even for all
values of (ka)?||1 — n||... But Theorem A.29 also tells us that for (ka)?||1 — n||., <2
the solution can be represented as a Neumann series in the form

=

u= Yy (=1 T/’ (6.29)

j=0
The first two terms of the series are
W) = ()~ [ (1) w() )y, xR (630)
R3

u” is called the Born approximation. It provides a good approximation to u in K [0, a]

for small values of (ka)?||1 — ||, because

- S VT — 2 1 (ka)* 2
[ un<JzszHu||w—||T|w1”T”w< S =nl

for (ka)?||1 —n||., < 2. The far field pattern depends on both the direction £ € 52
of observation and the direction 6 € S2 of the incident field u'. Therefore, we often
WIite Uoo ()?; é) to indicate this dependence. For the Born approximation, we see from
the asymptotic form (6.19) of ®(x,y) that

2 irO 8
7r]R3
k2 /( ) -
= 4 [ (n0) = 1) "7 dy, (6.31)
4an<3

and this is just the Fourier transform of m :=n — 1:

k2

=" m™ (ki —kB), 6 ¢€ 5%, (6.32)
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where the Fourier transform is defined by

fr(x) = /f(Y)e_i"'ydy, x €R3.

R3

From this, the reciprocity principle follows:
ub(—0;—%) = ub (£;,0) forx 6 e s> (6.33)

We show that this relation holds for u.. itself. Before we can prove this principle
for u.., we need the important Green’s representation theorem which expresses ra-
diating solutions of the Helmholtz equation in terms of the Dirichlet and Neumann
boundary data.

Theorem 6.12 (Green’s representation theorem). Ler Q C R3 be a bounded
domain and Q° =R\ Q its exterior. Let the boundary dQ be sufficiently smooth
so that Gauss’ theorem holds. Let the unit normal vector v(x) in x € dQ be directed
into the exterior of Q.

(a) Letu € C*(Q)NC'(Q). Then

u(x) = / [d)(x,y)%u(y)—u(y)%(yfb(x,y) ds(y)

o0Q
— [y [u0) +um)]dy, xeQ. (6.342)
Q

(b) Letu® € C?(Q°)NC(QC) be a solution of the Helmholtz equation Au® +k*u* =0
in QF, and let u* satisfy the radiation condition (6.10). Then

d , 40 . . 0, x€Q,
aé {d)(x,.)xu —u W(I)(x, )] ds = {—us(x), 1 eQ (6.34b)

The far field pattern of u* has the representation

1 d ey —ikey O
ten (%) = / [uf(y)me“b">—e s (y)} ds(y)  (6.35)
2Q

for % € S2.

For a proof, we refer to [47], Theorems 3.1 and 3.3. As a corollary, we prove the
following useful lemma.

Lemma 6.13. Let Q € R3 be a domain that is decomposed into two disjoint subdo-
mains: Q = Q; UQy such that QN Q, = 0. Let the boundaries dQ; and 9Q,
be smooth (i.e., C?). Let uj € C*(Q;) NC(Q;) for j = 1,2 be solutions of the
Helmholtz equation Auj + kzuj = 0 in Qj. Furthermore, let uy = uy on I' and
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duy/dv =duy/dv on T, where T denotes the common boundary T := 9| N 9Q;.
Then the function u, defined by

) — up(x), x€Q,
(x) {uz(x), x ey,

can be extended to an analytic function in CQ that satisfies the Helmholtz equation
Au+ku=0inQ.

Proof. It follows from Green’s representation theorem that #; and u, are analytic
in Q) and €, respectively. We fix xo € I'NQ and choose a small ball K (xo, &) that
is entirely in Q. Let K; := K(x0,€) NQ;, j = 1,2, and x € K;. We apply Green’s
representation theorems to u; in K and to u; in K, to arrive at

) = [ [060) om0 - 0) 5ot ase). xe ki
K

0= / {cb(x,y) %Mz(}’) —uz(y) %(y)dD(x,y)} ds(y), x€K.
oK,

We add both equations and note that the contributions on I'N K cancel. This yields

0= [ @) Jou0) -ut) g et as). xek
9K (xp.€) Y

Interchanging the roles of j = 1 and j = 2 yields

)= [ [000) o) ) g o) ast. xek
IK(xg.€)

The right-hand sides coincide and are analytic functions in K (xg, €). O

6.3 Properties of the Far Field Patterns

First, we prove a reciprocity principle for u... It states the (physically obvious) fact
that it is the same if we illuminate an object from the direction 6 and observe it
in the direction —X or the other way around: illumination from X and observation
in —6.

Theorem 6.14 (Reciprocity principle). Let u.(%;0) be the far field pattern cor-

responding to the direction X of observation and the direction 6 of the incident plane

wave. Then . . R
Ueo (£,0) = Uoo (—0;—%)  forall%,6 € S*. (6.36)
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Proof. First we observe that the variational solutions of the scattering problems
are analytic outside of the ball K(0,a). Therefore, the Green’s theorems and also
Theorem 6.12 are applicable. Application of Green’s second theorem to u’ and #* in
the interior and exterior of {x € R? : |x| = a}, respectively, yields

S PPN ; d ., A
0= / {u’(y;@) Wu’(y; =) —u'(y;—%) Wu’(y;@)] ds(y),
lyl=a
= / 0(3:0) 2 (3 —8) — (i) o (330) | ds().
av av
yl=a
(More precisely, to prove the second equation, one applies Green’s second theorem

to u* in the region {x € R} : a < |x| < R} with R > a and lets R tend to infinity.)
Now we use the representations (6.35) for the far field patterns ue. ()?;9) and

A

Uoo(—0;—%):

yl=a
We subtract the last of these equations from the sum of the first three. This yields

AT (oo (£,0) — oo (—6: —%) ]

A 0 d A
= [ [u030) -0~ i) 50000 s,
Iy|=a
So far, we have not used any information of u inside K (0, a). To use this information,
we choose a cutoff function ¢ € C(R?) with ¢(y) = 1 for |y| < a and ¢(y) = 0 for

|y| > b for some b > a. Then we set y(y) = ¢ (y)u(y; —£) in the variational form
(6.11) for u(-;0):

/ [Vu(y:0) - Vu(y; —£) — n(y) u(y; ) u(y; —£)] dy
ly|<a

[ [Vu0:8)- V(60 uli—0) ~Ro()u(s: ) uly: )] dy =0.

a<l|y|<b
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Interchanging the roles of u(-;8) and u(-;—£) and subtraction yield

[ [Vu(3:0)- ¥ (905) uy: =) = Valy: =) -V (00 u(x:0))] dy = .

a<ly|<b

The functions are smooth in the anullus {y : a < |y| < b}, thus we can apply Green’s
theorem which yields (note that the contribution on {y : |y| = b} vanishes) that

[u(y; 6) ;—vu(y; —%) —u(y; —%) ;—vu(y; 6)|ds(y) =0
[y|=a
and ends the proof. O
The far field patterns u. (£; é), £,0 € 52, define the integral operator
(Fg)(%) = /uw(ﬁ;é)g(é)ds(é) for § € 2, (6.37)
S2

which we call the far field operator. It is certainly compact in L?(5?) and is related
to the scattering operator S : L*(S%) — L*(S?) by
ik
S=I+-—F.
2r

The next results prove some properties of these operators. Some of them are impor-
tant in Sects. 6.5 and 6.6. In what follows, we denote by (-, ) the inner product

in L?(5%). We begin with a technical lemma (see [48]).

L2(8?%)

Lemma 6.15. For g,h € L*(S?), define the Herglotz wave functions v' and w' by

vi(x) = /eikx'ég(é) ds(9), xeR’, (6.38a)
S2

wix) = /eikx'éh(é) ds(6), xcR’, (6.38b)
2

respectively. Let v and w be the solutions of the scattering problem (6.9), (6.10)
corresponding to incident fields v' and w', respectively. Then

ik? / (Imn) vwdx
K(0,0)
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Proof. Let v° = v —v' and w* = w —w' denote the scattered fields with far field
patterns v., and w... Then, by linearity, v. = Fg and we, = Fh. As in the proof of
Theorem 6.14 we choose a cutoff function ¢ € C*(R3) with ¢(x) = 1 for |x| < a
and ¢(x) = 0 for |x| > b for some b > a. Then we set y = ¢ W in the variational
form (6.11) for v and get

0= /[Vv-VW—anvW]dx+ / [Vv~V(¢W)—k2nv(¢W)]dx

|x[<a a<|x|<b
= / [Vv-Vw—k nvw]dx— / v =——ds,
av
[x|<a [x|=a

where we applied Green'’s first theorem on the integral over {x: a < |x| < b} where
the functions are smooth. Analogously, we take ¥ = ¢ v in the complex conjugate
of (6.11) for w which yields

0= / [Vv~VW—k2ﬁvW]dx— /Wa—vds.
v

[x|<a |x|=a
We subtract the equations and arrive at
2ik? / (Imn)vwdx = / {v 3—3} —W;—:} ds.
K(0,a) |x|=a

The integral on the right-hand side is split into four parts by decomposing v =
v' 4+ v* and w = w' +w*. The integral

/ oW o
K Yov Woav|®

vanishes by Green’s second theorem because v’ and W' are solutions of the
Helmholtz equation Au + k*u = 0. We write

[ o2 22 [ o282,
Yoy ov |7 Yooy TV ov |

[x|=a |x|=R

and note that

vs(x)avgfx)—ws(x) ér :—r—.zvm()?)ww(f)—&—(’)(l/ﬁ).
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From this

JOW _ dv' . — .
/ [v S5 8v]ds — —sz/ux,wwds:—sz(Fg,Fh)LZ(SZ)

|x|=R s

follows as R tends to infinity. Finally, we use the definition of v/ and w' and the
representation (6.35) to compute

/ iE_—Sa_vi d
v ov Wav s

B WL R R :
_/g(G) /8K(0,a) [ek’ce 5 Y (x) 8vek 9] ds(x)ds(0)

Analogously, we have that

Jow_0v’
/ [v W—w av}ds:477:(Fg,h)L2(Sz).

|x|=a

This ends the proof. a

We can now give a simple proof of the unitarity of the scattering operator for
real-valued 7.

Theorem 6.16. Let n € L”(R3) be real-valued such that the support of n— 1 is
contained in K(0,a). Then F is normal (i.e., F*F = FF*), and S := 1+ (ik)/(27) F
is unitary (i.e., S*S§ =8S8* =1).

Proof. The preceding lemma implies that

for all g,h € L*(S?). By reciprocity (Theorem 6.14), we conclude that
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and thus F*g = RFRg, where (Rh)(%) := h(—%) for & € S2. Noting that
(Rg,Rh) 1252y = (8,1)12(52) = (1,8)p2(s2) for all g,h € L*(S?) and using (6.40)
twice, we conclude that

ik (F*h,F*g)12(52) = ik (RFRZ,RFR ) 2(52) = ik (FRE, FRR) 2 (52
= 21 (FRE,Rh)2(52) — 27 (RE, FRK) 1252,
= 27 (RFRE,h)12(52) — 27 (3, RFR) 122
=21 (h,F78)2(s2) = 27 (F 71, 8) 12 (52)
=21 (Fh,g)12(52) = 27 (h, Fg) 1252
= ik (Fh,Fg)2(s2).

This holds for all g, € L*(S?); thus F*F = F F*.
Finally, from (6.40), we conclude that

—(8,ikF"Fh) () = 21 (g, (F* = F)h) o) forall g,h € L*(5?);

thatis, ikF*F =2x (F —F *) This formula, together with the normality of F', yields
§*S = S§S§* =1 by substituting the definition of S into S*S and S S*. a

It is well known that the eigenvalues of unitary operators all lie on the unit circle
in C. From the definition S = I + (ik)/(27)F, we conclude that the eigenvalues
of F lie on the circle |27i/k — z| = 27t/k with center 27i/k and radius 27 /k. We
later show (Lemma 6.34) that the eigenvalues tend to zero from the right half of
this circle. These properties hold for real-valued indices of refraction n. For further
results for absorbing media (i.e., for which n is complex-valued), we refer to the
original literature [48].

A number of numerical methods for determining the shape D of the support of
the contrast n — 1, for example, the dual space method by Colton and Monk (or
“superposition of incident fields”, see [49, 50]) or the Linear Sampling Method
(see [45, 143]) study the question of unique solvability of the far field equation
Fg=1:

/uw(ﬁ;é)g(é)ds(é) —f(%), e

SZ
for different right-hand sides f. The question of injectivity of the far field opera-
tor F' is particularly important. We show that the null space of F is characterized

by the following unusual eigenvalue problem, the interior transmission eigenvalue
problem. Let D be some bounded domain that contains the support of m =n — 1.
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Interior Transmission Eigenvalue Problem: Determine k > 0 and v,w € H'(D),
(v,w) # (0,0), such that
Av+Kv=0inD, Aw+k*nw=0inD, (6.41a)

dv ow
3 = 3y " aD. (6.41b)

v = wondD,

We also consider an inhomogeneous version of this system:

Interior Transmission Problem: Given f, g determine v,w € H'(D) such that

Av+ kv =0inD, Aw+ k*nw = 0inD, (6.42a)
d 0
w—v = fondD, a—v“:—a—z:gon8D. (6.42b)

The solutions of (6.41a), (6.41b) and (6.42a), (6.42b), respectively, have to be un-
derstood in the weak sense; that is, for (6.42a), (6.42b):

/[VW~V1//—k2nww] dx — /[Vv-Vl//—kzvq/] dx = /gl//dx (6.43a)
D D oD

for all w € H!'(D) and

/[Vw-Vy/kanwu/] dx:/[Vv-Vl//—kzv y]dx=0 (6.43b)
D D

for all y € H'(D) with y = 0 on dD. The Dirichlet condition w — v = f on 9D is
understood in the sense of traces.
We can show the following theorem (see [52,53, 138]).

Theorem 6.17. Let D C R? be a bounded domain such that the exterior of D is
connected and n = 1 outside of D.

(a) g € L*(S?) is a solution of the homogeneous integral equation

/um()?;é)g(é)ds(é) =0, te$? (6.44)
52

if and only if there exist v,w € H'(D) such that (v,w) solve (6.41a), (6.41b),
and v is the Herglotz wave function defined by

v(x) = / NS o () ds(), xR, (6.45)
SZ

In particular, F is one-to-one if the system (6.41a), (6.41b) is only solvable by
the trivial solution v =w =0 in D.
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(b) Let z € D be fixed. The integral equation
/uw (£:0) g(8)ds(8) = e 2e 8, (6.46)
S2

of the first kind is solvable in L*(S?) if and only if the interior transmission

problem
Av+KkKv=0inD, Aw+k’nw=0inD, (6.47a)
Tl —
w(x) —v(x) = w on dD, (6.47b)
X —z

dw(x) du(x) _ 9 exp(iklx—z|)
v ov. v |x—¢

on dD, (6.47¢)

has a solution w,v € H'(D), and v is of the form (6.45).
(c) Forz & D the integral Eq. (6.46) is never solvable in L*(S?).

Proof. (a) Let g € L?(S?) be a solution of (6.44) and define v by (6.45). We observe
that the left-hand side of (6.44) is a superposition of far field patterns. Therefore,
the far field pattern w.. of the scattered field w* that corresponds to the incident
field v vanishes. The corresponding total field w =w’ + v € Hlloc(R3) satisfies
the Helmholtz equation Aw + k*nw = 0 in R? (in the weak sense). By Rellich’s
lemma (Lemma 6.2), the scattered field w* = w — v vanishes outside of D. This
yields that

dw=v) =0ondD

av

(also in the weak sense) and proves the first direction.

Now let v be of the form (6.45) and let there exist w € H'(D) such that
(v,w) solves the eigenvalue problem (6.41a), (6.41b). We extend w to all of
R? by setting w(x) := v(x) for x ¢ D. Then w € H,| (R?) because the traces
of w and v coincide on dD. Furthermore, w satisfies the Helmholtz equation
Aw +k*nw = 0 in all of R3. The difference w — v vanishes in the exterior of
D and obviously satisfies the radiation condition. Therefore, w is the unique
total field corresponding to the incident field v. The far field pattern w.. of the
corresponding scattered field w — v vanishes. As in the previous part, we see
that w is a superposition

w—v=0o0ondD and

w(x) = [ u(x:6)g(6)ds(6)
s
of total fields. For the corresponding far field patterns, we conclude that

0=ww(X) = /um(ﬁ;é) 2(0)ds(6)
S2

for all £ € S2. This proves part (a).
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(b) The proof is very similar to the preceding one. Let g € L? (Sz) be a solution of
(6.46) and define v as in (6.45). As in part (a), the integral is the far field pattern
We, corresponding to the total field w that satisfies the Helmholtz equation. Now
We does not vanish but is equal to the function exp(—ikz -x). By Theorem 6.6,
the only radiating solution of the Helmholtz equation with this far field pattern
is the spherical wave exp(ik |x — z|)/ |x — z|. Because z is contained in D and the
exterior of D is connected, the scattered waves w — v and exp(ik |x —z|)/ |x — Z|
have to coincide outside of D which proves the first direction. The second di-
rection is proved in the same way.

(c) Assume, on the contrary, that (6.46) is solvable for some g € L? (SQ) and define
v as in (6.45). Then, as in part (b), the spherical wave exp(ik|x—z|)/ |x—z]
coincides with v in the exterior of DU {z}. This leads to a contradiction as in
the proof of Theorem 5.24 because v is bounded in z and the spherical wave is
singular for x = z. a

As an application, we give conditions under which the range of the far field oper-
ator F is dense in L*(S?). From (Fg,h)Lz(Sz) = (g,F*h)Lz(Sz) for all g, € L2(S?),
it is seen that the orthogonal complement of the range of F is characterized by the
null space of the adjoint F* of F.

Theorem 6.18. The null space {h € L*(S?) : F*h = 0} consists exactly of those
functions h € L*(S?) for which the corresponding Herglotz wave functions

v(@) = [ TH)ds(s), xeR,
S2

satisfy the interior transmission eigenvalue problem (6.41a), (6.41b) for some
w e H' (D).
Proof. By using the reciprocity principle (Theorem 6.14), we conclude that

F*h:0<:>/uw(é;f)h(é)ds(é)zo for all £ € §2

S2
= /uw(—)?;—é) h(6)ds(d) =0 forall e s>
S2

= /um(ﬁ;é)h(—é)ds(é) =0 forall €S
52

Application of Theorem 6.17 yields the assertion. O

We call the wave number k an interior transmission eigenvalue of (6.41a), (6.41b)
if there exists no nontrivial pair (v, w) of fields that satisfies (6.41a), (6.41b).2

2 As proper assumptions on v, w one requires v,w € L?>(D) and v —w € H?(D). The differential
equations are understood in the “ultra weak sense”; see [143].
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By the previous theorem, F is one-to-one and the range of F is dense in L?(S?)
if k is not an interior transmission eigenvalue.

The results (b) and (c) of Theorem 6.17 indicate that it should be possible to
characterize the unknown set D by a criterion which depends on the solvability of
the integral Eq. (6.46) of the first kind. A mathematically rigorous formulation of
this idea leads to the Linear Sampling Method. We note, however, that even for
z € D the integral Eq. (6.46) is not always (even very rarely) solvable because of
the additional requirement that in the solution (v, w) of (6.47a) — (6.47¢) the part v
has to be a Herglotz wave function. This observation led to the development of the
Factorization Method which we present in Sect. 6.5 below.

It is an important assumption for the Factorization Method to work that the
wave number k is not an eigenvalue of the interior transmission eigenvalue prob-
lem (6.41a), (6.41Db). This is one of the motivations to study this eigenvalue problem
in more detail. In the case where D is not penetrable but acoustically soft (i.e.,
u = 0 on dD) the corresponding eigenvalue problem is just the classical eigenvalue
problem for —A in D with respect to the Dirichlet boundary condition # = 0 on
dD. Compared to this classical case the interior transmission eigenvalue problem is
much less understood. Under certain assumptions on 7 it has been shown already in
[46] that the spectrum is discrete and accumulates at most at infinity, if eigenvalues
exist at all. It took almost 20 years for the proof of existence of real eigenvalues (see
[32-34,195]). The reason for this gap is partially because the interior transmission
eigenvalue problem is not self-adjoint. Indeed, it has been shown for a special case
that there exist in fact also complex eigenvalues. The general case is still open. We
refer to [55] for a survey prior to 2007 and to [121, 142] for interior transmission
eigenvalue problems for other types of elliptic operators. Instead of the general sit-
uation we consider only the special example of D being the unit disk and n being
real-valued and radially symmetric (i.e., n = n(r)).

Example 6.19. Let D be the unit disk and let n depend only on r = |x|. We as-
sume that n € C2[0,0) such that n(r) > 1 for 0 < r < 1 and n(r) = 1 for r > 1.
The Helmbholtz equations for v and w reduce to ordinary differential equations. In
Example 6.1, we proved the representation v(r) = ocsin(kr)/r, 0 < r < 1, for some
o € R. With the substitution w(r) = y(r)/r, the equation for y reduces to (see (6.7b))

Y'(r)+Kn(r)y(r) =0, r>0, (6.48)

with boundary condition y(0) = 0 because w has to be regular at 0. (v,w) solves
the eigenvalue problem (6.41a), (6.41b) if and only if v and y satisfy the boundary
conditions

y(1)=w(1) =v(1) = asink

and
Yy (1) =w(1)+w' (1) =v(1)+ (1) = ak cosk.
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We use the Liouville transformation (see Sect.4.1)

s=s(r) ::/\/Mdt, Z(s) := [n(r(s))]1/4y(r(s))

0

again. Here, s — r(s) denotes the inverse function of the monotonic function
r+— s(r). It transforms the differential Eq. (6.48) into the following form for z;

Z'(s)+ (K —q(s))z(s) =0 for0<s <35, (6.49)

with

and '
§=s(1) :/\/n(t)dt > 1.
0
The boundary conditions transform to
A . !/ A l .
2(0)=0, z(§)=asink, Z'($)= akcosk+ ) osink.

The quantity k> plays the role of A of the previous chapter. Again, we denote by
Uy = uz(s,kZ,q) the function of the fundamental system corresponding to (6.49)
with u3(0) = 0 and u,’(0) = 1. Then z = B u, for some § € R. In order to satisfy
the remaining boundary conditions, ¢ and 3 have to satisfy the following system of
two equations:

1
osink—Buy(§)=0 and o (k cosk+ 7 sink) —Buy(8) =0.
The determinant is given by
A 1 . 1/ A .
fk) =ua(8) |k cosk+ 7 sink| —up'(8) sink.
With the asymptotic form of u,($) for k — e (see Theorem 4.5), we observe that
sin (k§
flk) = #k cosk — cos(k$) sink+ O(1/k)
= sin(k(§—1)) + O(1/k).

From this, we see that this determinant vanishes at infinitely many discrete values
of k.
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For this special case, we have shown the existence of infinitely many eigenvalues
of (6.41a) and (6.41b) that tend to infinity. The corresponding eigenfunctions v have
the form (6.45) because, by the following lemma, we have that

sin(kr) _ ak
r 4m

v(x) =« /eiik”?'ﬁds()?), x=rieR3.

S2

We observe that in this radially symmetric space the range of the far field operator
F is not dense in L?(S?) if k is a zero of f.

Lemma 6.20. Let p € R and % € S%. Then

/eip“e'ﬁds(yA) —4n S0P
§2 P

Proof. Because the integrand is spherically symmetric, we can assume without loss
of generality that £ is the “north pole”, that is, £ = (0,0,1) . Then

T
/ P 4 (§) = / / P50 Gin 9 0 do
52 00
1 .
:2n/eip“'ds:4rc512p. O
-1

We conclude this section with the remark that in the case when the index of refrac-
tion has a nonvanishing imaginary part (i.e., the medium is absorbing), there exist
no eigenvalues.

Theorem 6.21. If Imn(x) > 0 on some open set A C D, then the eigenvalue prob-
lem (6.41a), (6.41b) has no real eigenvalue k > 0.

Proof. Let (v,w) be a solution of (6.41a) and (6.41b) corresponding to some k > 0.
We substitute Y = v into (6.43a) (for g = 0) and y = w — v into the first equation
of (6.43b) and add the results. This yields

/UVWF — Kn|wf?] dxf/[|Vv|2 —K|v]?] dx =0.
D D

Now we take the imaginary part and arrive at

/Imn|w|2dx: 0.
D
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Because Imn(x) > 0 for all x and Imn(x) > 0 on the open set A we conclude that
w has to vanish in A. The general unique continuation principle (see the remark
following Theorem 6.4) implies that w vanishes in all of D. Therefore, the Cauchy
data v and dv/dVv vanish on dD; that is, using again (6.43a) for g = 0 and extending
v by zero outside of D,

/[VU'VI]/—kzvl[/] dx=0
R2

for all y € H'(R?). Now we can again apply the unique continuation principle
of Theorem 6.4 which yields that v also vanishes in D. Therefore, k cannot be an
eigenvalue. O

6.4 Uniqueness of the Inverse Problem

In this section, we want to determine if the knowledge of the far field pattern
Uoo ()?; é) provides enough information to recover the index of refraction n = n(x).
Therefore, let two functions n,ny € L™ (R3) be given with n;(x) = np(x) = 1 for
|x| > a. We assume that the corresponding far field patterns u o and up .. coincide,
and we wish to show that n; and n, also coincide. As a first simple case, we consider
the Born approximation again. Let
ull”w()é; 0) =ub .(£;0) forall £ € S?and some 8 € 5°.

Formula (6.32) implies that m}" (k& — k@) = m5 (ki — k@) for all £ € S2. Here, m; :=
nj— 1 for j = 1,2. Therefore, the Fourier transforms of m; and m; coincide on a
sphere with center k6 and radius k > 0. This, however, is not enough to conclude

that m; and m, coincide.
Let us now assume that

ulfym()?; )= ugw(ﬁ; ) forall £ € S?andall § € S°.

Then my’ (lo? — ké) =my (k)? — ké) for all %, 6 € S2. Therefore, the Fourier trans-
forms coincide on the set {k(£ — ) : £,0 € $?}, which describes a ball in R? with
center zero and radius 2k. The Fourier transforms of m; and m; are analytic func-
tions, therefore the unique continuation principle for analytic functions yields that
m7” and m5” coincide on all of R3 and thus m; = m,. Therefore, the knowledge of
{ub,(%,0) : £,6 € $?} is (theoretically) sufficient to recover the refraction index.

The same arguments also show that the knowledge of u’ (%; é) for all £ € §2,
some O € 2, and all k from an interval of R+ is sufficient to recover n. We refer to
Problem 6.1 for an investigation of this case.
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These arguments hold for the Born approximation to the far field pattern. We now
prove an analogous uniqueness theorem for the actual far field pattern, which is due
to A. Nachman [181], R. Novikov [193], and A. Ramm [201]. The proof consists of
three steps, which we formulate as lemmata. For the first result, we consider a fixed
refraction index n € L*(R?) with n(x) = 1 for |x| > a and show that the span of all
total fields that correspond to scattering problems with plane incident fields is dense
in the space of solutions of the Helmholtz equation in K(0,a).

Lemma 6.22. Let n € L=(R3) with n(x) = 1 for |x| > a. Let u(; é) denote the total
field corresponding to the incident field ¢*9*. Let b > a and define the space H by

H:={veH"(K(0,b)):Av+knv=0inK(0,b)}, (6.50)

where the solution of the Helmholtz equation is again understood in the variational
sense:

/ [Vv-Vl/l—kznvw} dx=0
K(0,b)

forall y € H' (K(0,b)) with y = 0 for |x| = b. Then span{u(-; é) k(0,0 : 6e s?}
is dense in H |k (o q) with respect to the norm in L*(K(0,a)).

Proof. Let v be in the closure of H such that

(v,u(-;é))Lz = / v(x)u(x;0)dx=0 forall § € 52,
K(0,a)

where we write (-,-);> instead of (-,-);2(k(0q))- The Lippmann—Schwinger
Eq. (6.23) yields u = (I+T)~'u’; thus

0= (v,(I+T) " (50)),, = (I+T") 'v,u'(0)),, (6.51)

for all 6 € 2. Set w:= (I +T*)~'v. Then w € L?(K(0,a)), and w satisfies the
“adjoint equation”

v(x) = ()+k2 1—n(x) / D(x y)dy, x€K][0,q].

Now set
Ww(x) = / w(y)®(x,y)dy forxeR>.
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Then 1 is a volume potential with L>-density w. We know from Theorem 6.7 that

W e HY (R?) satisfies AW + k%W = —w in R*(R?) in the weak sense:

/[Vw-vw—kzww]dxz /Wl,l/dx (6.52)
R3 K(0,a)

for all w € H'(R3) with compact support. The far field pattern W.. of W vanishes
because

— 1 .
(8)= - [ W) explikd-y)dy =
K(0,a)

1 )
g (1 (=0)) 2 =0

for all § € 2. Rellich’s lemma implies that w(x) = 0 for all x ¢ K(0,a).
Now let v; € H with v; — v in L?(K(0,a)). Then

/mjdx: /ijderkz / (1—n)Wwo;dsx. (6.53)

K(0.,a) K(0.a) K(0,a)

We recall that v; € H' (K(0,b)) satisfies

/[ij-vw—k%jw]dxz—k2 / (1—n)v;ydx (6.54)
|x|<b K(0,a)

for all y € H'(K(0,b)) with y = 0 for [x| = b. Because % vanishes for x| > a we
can substitute ¥ = w in (6.54). Also, we extend v; arbitrarily into the exterior of
K(0,b) to some function v; € H'(R*) with compact support and substitute ¥ = v;
in (6.52). Then the left-hand sides of both equations coincide, thus

—K? / (1—n)vjwdx= / wujdx.
K(0,a) K(0,a)
Therefore, Eq. (6.53) reduces to
/ vvjdx=0
K(0.a)

for all j. Letting j tend to infinity yields v = 0. a

The second lemma proves a certain “orthogonality relation” between solutions
of the Helmholtz equation with different indices of refraction n; and n,.
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Lemma 6.23. Let ny,n; € L (R?) be two indices of refraction with ny (x) = ny(x) =
1 for all |x| > a and assume that uj (%;0) = us ..(%; 0) for all £,0 € S%. Then

/ v1 (x) v2(x) [n1(x) — n2(x)] dx =0 (6.55)

K(0.a)

for all solutions v; € H'(K(0,b)) of the Helmholtz equation Avj+ k*njv; = 0,
j=1,2,in K(0,b), where b > a.

Proof. Let vy be any fixed solution of Av; + k*njv; = 0 in K(0,b). By the dense-
ness result of Lemma 6.22 it is sufficient to prove the assertion for v, := u(+; é) and
arbitrary 6 € S2. We set u = u; (-,0) — u»(+,8) which is the same as the difference
of the corresponding scattered fields. From uhm(-,é) = Uz é) and Rellich’s
Lemma 6.2, it follows that u vanishes outside K (0,a). Furthermore, u satisfies the
inhomogeneous Helmholtz equation

Au+k*nju :k2(n27n1)u2(~,é) :kz(ng —np)n

in the weak sense:

/[Vquf—kznluq/}dx:sz / (na—m) v ydx
R3 K(Ova)

for all y with compact support. The region on the left-hand side can be restricted to
K(0,a) because u vanishes outside of this ball. We set v = ¢ v; with some smooth
function ¢ of compact support which is 1 on K(0,a). This yields

K> / (n —mp) vy vpdx = / [Vu Vo —k*ny uvl] dx,
K(0,q) K(0,a)

and this term vanishes because v; is a weak solution of Av; +k%njv; = 0in K (0,b)
and u has compact support in K(0,b). O

The original proof of the third important “ingredient” of the uniqueness proof
was first given in [235]. It is of independent interest and states that the set of all
products vy v of functions v; that satisfy the Helmholtz equations Av; +k*n;v; = 0
in some bounded region Q is dense in L?(Q). This is exactly the kind of argument we
have used already for the uniqueness proof in the linearized problem of impedance
tomography (see Theorem 5.9). The situation in this chapter is more complicated
because we have to consider products of solutions of different differential equations
with nonconstant coefficients. The idea is to construct solutions u of the Helmholtz
equation Au+ k’nu = 0 in K(0,a) that behave asymptotically as exp(z-x). Here we
take n = nj or ny. The following result is crucial.
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Theorem 6.24. Let K(0,b) C R? be a ball of radius b and n € L= (K(0,b)) such
that n — 1 has compact support in K(0,D). Then there exist T > 0 and C > 0 such
that for all z € C* with z-z =0 and |z| > T there exists a solution u € H' (K(0,b))
of the differential equation

Au;+K*nu, =0 in K(0,b) (6.56)

of the form
u(x) = e (14 v,(x)), x€K(0,b). (6.57)

Furthermore, v, satisfies the estimate
C 3.
vzl 2k 0.)) < i forallze C’ withz-z=0and |z > T. (6.58)

Proof. The proof consists of two parts. First, we construct v, only for z = #é, where
é=1(1,i,0)" € C? and ¢ being sufficiently large. In the second part, we consider the
general case by rotating the geometry.

Let z = té for some ¢ > 0. By scaling the functions, we can assume without loss
of generality that K(0,b) is contained in the cube Q = [—7, w]*> C R3. We substitute
the ansatz

u(x) = €' [1+exp(—i/2x1) wi (x)]

into the Helmholtz Eq. (6.56). This yields the following differential equation for wy:

Awy (x) 4 (2t —ip) - Vwi (x) — (it + 1/4) wy (x)
= —k*n(x)w; (x) — K*n(x)exp(i/2x;) in Q,

where p = (1,0,0)—r € R3. The solution is again understood in the variational sense,
and we refer to the proof of the unique continuation principle (Theorem 6.4) for the
same kind of transformation.

We determine a 2x-periodic solution of this equation. Because this equation has
the form of (6.14) (for o« = 1/4), we use the solution operator L, of Lemma 6.3 and
write this equation in the form

wi + kL, (nw;) = ;i in Q, (6.59)

where we have set 7i(x) = —k*n(x) exp(i/2x). For large values of 7, the operator
K; : w +— K*L,(nw) is a contraction mapping in L?>(Q). This follows from the
estimates

k2
1Kewll 120 = & ILe(nw) | 2(g) < — llnwlz2 )

Rl
Il
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which implies that || K;|| < 1 for sufficiently large 7 > 0. For these values of ¢ there
exists a unique solution w; of (6.59). The solution depends continuously on the
right-hand side, therefore we conclude that there exists ¢ > 0 with

5 ck?
HWtHLZ(Q) < CHLI”HLZ(Q) < e nll..

forall + > T and some T > 0. This proves the theorem for the special choice z =té.

Now let z € C? be arbitrary with z-z =0 and |z| > T. From this, we observe
that [Rez| = [Imz| and (Rez) - (Imz) = 0. We decompose z in the unique form
7=t (&Jr i@) with @,b € S? and t > 0 and 4-b = 0. We define the cross-product
¢ = a x b and the orthogonal matrix R = [ab¢] € R¥3. Then tRé = z and thus
Rz =1té. The substitution x — Rx transforms the Helmholtz Eq. (6.56) into

Aw(x) + KE*n(Rx)w(x) =0, x € K(0,b),

for w(x) = v(Rx), x € K(0,b). Application of the first part of this proof yields the
existence of a solution w of this equation of the form

w(x) = e'®* [1+exp(—i/2x1)wi(x)],

where w; satisfies [|wy||2(g) < C/t for t > T. From v(x) = w(R"x), we conclude
that

v(x) = SR [1+exp(—i/2a-x)w, (R x)]
= e [1 +exp(—i/2a-x)w, (R"x)],

which proves the theorem for this case. O

Now we are able to prove the following analogy of Calderén’s approach (com-
pare with the proof of Theorem 5.9).

Theorem 6.25. Let Q C R? be a bounded domain and let ny,ny € L= (Q) such that
ny — 1 and ny — 1 have compact support in Q. Then the span of the set

{uluzzuj EHI(Q) solves (6.9) forn =n;, j= 1,2}

of products is dense in L*(Q).

Proof. Choose b > 0 such that Q is contained in the ball K(0,b). Let g € L*(Q) be
orthogonal to the span of the set of products. We have to show that g vanishes. We
note that in particular

/g(x) uy (x)uz(x)dx =0 (6.60)
Q
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for all solutions u; € H'(Q) of the Helmholtz equation Au;+ kznjuj =0in Q,
Jj = 1,2. In particular, (6.60) holds for all solutions of the Helmholtz equation in
K(0,D).

Fix an arbitrary vector y € R*\ {0} and a number p > 0. Choose a unit vector
a € R? and a vector b € R? with |b|* = |y|* + p? such that {y,a,b} forms an orthog-
onal system in R3. Set

1 i R 1 i R
1 zzb—z(y—i—pa) and ZZ:_Eb_E(y_pa)

Then 7/ -7/ = [Rez/|> — [Imz/[? + 2iRez/ -Imz/ = |b|?/4 — (]y|* +p?) /4 = 0 and
27> = (Ib]* + |y + p?) /4 > p?/4. Furthermore, ' + 22 = —iy.

Now we apply Theorem 6.24 with z/ to the Helmholtz equations Auj +k*nju; = 0
in K(0,b). We substitute the forms (6.57) of u; into the orthogonality relation (6.60)
and arrive at

0= /6(11”2)'““ [1+v1(x)] [1+v(x)] g(x)dx
Q
/ —iyx (1401 (x) + v2(x) + 01 (x) v2(x)] g(x) dx.
Q

By Theorem 6.24, there exist constants 7 > 0 and C > 0 with

c 2
loillizey < 77 < 5

for all p > T. Now we use the Cauchy—Schwarz inequality and let p tend to infinity.
This yields

/ e V¥ g(x)dx=0.

Q

Because the vector y € R\ {0} was arbitrary, we conclude that the Fourier trans-
form of g vanishes. This yields g = 0. a

As a corollary, we have the following uniqueness theorem.

Theorem 6.26. Let ni,ny € L*(R3) be two indices of refraction with ny(x) =
ny(x) =1 for all |x| > a. Let u) . and uy .. be the corresponding far field patterns,
and assume that they coincide; that is, uy (%;0) = 3 ..(%;8) for all %,0 € S%. Then
ny =nj.

Proof. We combine the orthogonality relation of Lemma 6.23 with the denseness
result of Theorem 6.25, where we choose Q = K(0,b). O
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The proof of Theorem 6.25 does not work in R? because in that case there is
no corresponding decomposition of y. However, using more complicated families
of solutions, uniqueness of the two-dimensional case has been shown by Bukhgeim
in [27].

6.5 The Factorization Method

It is the aim of this section to transfer the Factorization Method of the previous
chapter to the present scattering problem.? Therefore, in this section we are only in-
terested in determining the support of n — 1. We make the same kind of assumptions
on this support as in the previous chapter (compare to Assumptions 5.10).

Assumption 6.27. Let there exist finitely many domains Dj, j=1,...,M, such that
lTjﬁD_k = 0 for j # k and such that the complement R*>\ D of the closure of the
union D = Ul}il Dj is connected. Furthermore, let n € L=(R3) be real-valued such

that there exists ¢y > 0 withn =1 on R3 \Dandm=n—12>cyonD.
The far field operator F' plays the role of the difference A — A| of the Neumann-
Dirichlet operators. The first ingredient of the Factorization Method is again the

factorization of the data operator. To motivate the operators that appear in the fac-
torization we write the Helmholtz Eq. (6.9) in terms of the scattered field as

Au' + KPnu® = k(1 —n)u' = —k?mu’  in R3, (6.61)

where we have again defined the contrast m by m = n — 1. The source on the right-
hand side is of a special form. We allow more general sources and consider radiating
solutions v of equations of the form

Av+knv=—-mf inR3 (6.62)

for any f € L*(D). The solution is again understood in the weak sense: v € HIIOC(R3)
satisfies

/[Vqulsznvl//} dx:/mfl//dx 6.63)
R3 D

for all w € H'(R?) with compact support. This radiation problem has a unique solu-
tion for every f € L?(D). Indeed, we can consider the integral equation v +Tv = g
with the integral operator T from (6.24) and g € L? (K(0,a)) given by

g@)i= [ m0)Owy) fO)dy, il <a.

yl<a

3 Actually, it was a scattering problem for which the Factorization Method was first discovered
([141]) before it was applied to the problem of electrical impedance tomography in [22,23].
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where again m = n — 1. By Remark 6.10 this has a unique solution. We rewrite the
equation v+ Tv = g as

=K / m(y) ® v)dy+ /m ) F(y)dy,
[y[<a ly|<a
which shows (Theorem 6.7) that v € H} (R?), and v is a radiating solution of
Av+ kv = —k*mv —mf; that is, Av + k*nv = —mf.
We define the operator G from L? (D) into L*(S%) by Gf = v. where v € H (R?)

is the radiating solution of (6.62). Then we can prove the following factorization of
the far field operator F'.

Theorem 6.28. Again let G : L>(D) — L*(S?) be defined by Gf = v.., where v €
H} (R3) is the radiating solution of (6.62). Then

F =4nk*GS* G*, (6.64)

where S* is the L*-adjoint of S : L*(D) — L*(D) defined by

(Sy)(x) = ye / w(y)®(x,y)dy, x€D. (6.65)

We note that the integral in the definition of S is a volume potential with density y
and can be extended to a function w € H, llvc(R3) that radiates and is a solution of

Aw+kPw=—y inR? (6.66)

in the weak sense (see Theorem 6.7).

Proof of Theorem 6.28. From (6.61) and the definition of G we observe that
U = k*Gu'. As an auxiliary operator we define H : L>(S?) — L?(D) by

(Hg)(x) = /g(é) eikx'éds(é) :/g(é) u'(x;0)ds(0), xeD, (6.67)

where u'(; é) denotes the incident field of direction §. By the superposition prin-
ciple, F'g is the far field pattern corresponding to the incident field Hg; that is by
(6.61), F = k*GH. Now we consider the adjoint {* of H which is given by

= [y, est
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From the asymptotic behavior (6.19) of the fundamental solution ® we observe that
‘H*w = 4w w. where w., is the far field pattern of the volume potential

W) = [ WO Oly)dy, e R
D
By Theorem 6.7 the potential w satisfies (6.60); that is,
2 1 2
Aw+k‘nw = —m (—l//—k w) .
m

Using the definition of G this yields H*y = 4w, = 471G (y/m—k*w) = 4nGSy;
that is, H* = 41 GS and thus H = 47 S*G*. Substituting this into F = k>’GH yields
the assertion. O

Therefore, we arrived at a factorization of the far field operator in the form
F = GTG* with T = 4xk®S*. Tt has the same form of (5.17) (with A* replaced
by G) but there is an essential difference: In contrast to the operator 7 in the factor-
ization (5.17) the operator 7 (i.e. S) fails to be self-adjoint. Otherwise, the operator
F would be self-adjoint which is not the case. F is only normal by Theorem 6.16.
However, we can prove an analogous characterization of D by the range of G as in
Theorem 5.14.

Theorem 6.29. For any z € R define the function ¢, € L*>(S?) by
0.(%) =e %1 ze§2 (6.68)

Then z belongs to D if and only if ¢, belongs to the range R(G) of G.

Proof. It is very similar to the proof of Theorem 5.14.

First let z € D. Choose a disc K = K(z,€) = {x € R? : [x—z| < &} with center
z and radius & > 0 such that K C D. Furthermore, choose a function ¢ € C*(R?)
such that @(x) =0 for |x —z| < &/2 and @(x) = 1 for |x —z| > € and set v(x) =
4m@(x)®(x,z) for x € R3. Then v is a C*-function and coincides with 47®(-,z)
outside of D. By (6.19) the far field pattern of v is given by ¢.. Therefore, ¢, = G f
with f = —(Av +k*nv) /m in D which proves the first part.

Now let z ¢ D and assume, on the contrary, that ¢, = Gf € R(G) for some f €
L*(D). Let v € H} (R?) be the corresponding radiating solution of (6.62). Because
¢, is the far field pattern of 47®(+,z) and G is the far field pattern of v we conclude
from Rellich’s lemma that 47®(-,z) = v in the exterior of DU {z}. Now one argues
exactly as in the proof of Theorem 5.14. If z ¢ D then v is smooth in z and 47®(-, )
has a singularity in z that leads to a contradiction. For z € dD one again chooses a
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bounded piece Cy C R? of an open cone with vertex at z and Cy N D = 0 and shows
that @(-,z) ¢ H'(Cp). This contradicts v € H'(Cp) and the fact that v and 47 ®(-, z)
coincide. O

The third step in the Factorization Method expresses the range of the operator G
by the known far field operator F. First we again collect properties of the middle
operator S of the factorization (6.64).

Theorem 6.30. Again let S : L>(D) — L?>(D) defined by (6.65).

(a) Let Sy be given by Soyw = w/m in D. Then Sy is bounded, self-adjoint, and
coercive:

(Sov, ¥)r2(p) = Tl H Wiz forall y € L(D). (6.69)

(b) The difference S — Sy is compact from L*(D) into itself.

(c) Sisan isomorphismfrom L?(D) onto itself.

(d) Im(Sy,y)2(p) < O for all y € L*(D). Also, Im(Sy, y) 2y < 0 for all y in
the L? closure ofthe range R(G*) of G* with y # 0.

Proof. (a) This is obvious because S is just the multiplication of y by a function
that is bounded below by 1/||m||. and above by 1/cy.

(b) We have already used (see the proof of Theorem 6.9 where this operator appears
in the Lippmann—Schwinger equation) that the volume potential Sy — Soy de-
fines a compact operator in L?(D).

(c) By parts (a) and (b) it is sufficient to prove injectivity of S. Let Sy = 0 in D.
Setting @ = w/m we conclude that

@*kz/m(y)w(y)fb(-,y)dy:O inD.

Therefore, ¢ solves the homogeneous Lippmann—Schwinger integral Eq. (6.23)
and has thus to vanish by the uniqueness of the scattering problem. Therefore,
y also vanishes.

(d) Let y € L?(D) be arbitrary, set f = y — k’mw|p where w € H} (R?) is the
volume potential with density y. Then Sy = f/m. Because w satisfies Aw +
k>w = —y we observe that w satisfies also Aw 4 k*nw = —y +k>mw = —f in
the weak sense. Now we compute, by replacing y by f + k*mw,

1 - 1
(SY. ¥)12p) =D/;f[f+k2mW] dx:Zn—1f2dx+k2wadx.

Now let R > 0 be arbitrarily large such that D is contained in the ball of radius R.
Choose a function ¢ € C*(R?) of compact support such that ¢(x) = 1 for
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|x] < R. Substituting ¢@w for the test function in the weak formulation of
Aw +k>nw = — f yields

/fv_vdx: /[VW-V((pv_v)—kzn(p|w|2} dx
D R3
_ /UVW|2—k2n|w|2]dx+ / [Vw-V(gw) — Ko |w]?] dx.
[x|<R [x|>R

Substituting this into the equation for (S, y) 2(p) and taking the imaginary
part yields

(Y. )ya(p = Im [ [Voo- (o) 2 w2 d.

[x|>R

In the region {x : |x| > R} the function w is smooth and satisfies the Helmholtz
equation Aw + k?w = 0. Application of Green’s theorem in {x : |x| > R} (note
that ¢ has compact support) yields

d
Im(Sw, )25 = —K*Im / OW [Aw + k*w] dx — k*Tm / wa—vvv ds
|x|>R =0 |x|=R
— K*Im / AN
av
=R
Now we use the fact that |w(x)| decays as 1/|x| and, by the radiation condition

(6.10), dw/dr — ikw decays as 1/|x|*. Therefore, we can replace dw/dV by ikw
in the last formula and have that

Sy W)y =K [ wPds+O(1/R).

Ix[=R

Letting R tend to infinity yields by the definition (6.27) of the far field pattern

Im(Sy. W)y = K [ bwefds
52

which is nonpositive.

Now let w € L*(D) in the closure of R(G*) such that Im(Sy, y),> ) = 0.
Then the far field pattern w., of the corresponding volume potential w vanishes.
Rellich’s Lemma 6.2 and unique continuation yield that w vanishes outside of D.

From the proof of Theorem 6.28 we note that H = 47 S*G* where H : L>(S?) —
L*(D) is defined by (6.67). Because S* is an isomorphism from L?(D) onto itself
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the range of G* coincides with the range of H. Therefore, there exists a sequence
v; = Hg; € R(H) with y; — y in L*(D). Define v; by

vj(x) = /gj(é) eikx'éds(é) xeR3.

Then vj|p = y; and v; satisfies the Helmholtz equation Av; +k2vj =0 in all
of R3. Now we use the weak formulations of this equation and the equation Aw-+
KRw = —y:

/[VU/ . V(p 7]{2’Uj(p} dx = 0,
R3

/[VW-V(p—k2w¢] dx = /l]/(pdx
R3 D

for all ¢ € H'(R?) with compact support. We again choose a function ¢ € C*(R3)
with compact support such that ¢ = 1 on D. We consider the complex conjugate of
the first equation and substitute ¢ = ¢w; then we substitute ¢ = ¢v; in the second
equation and subtract the first from the second. This yields

[ 19w V(67) Vi Vigw] dx = [wrjax= [ yjax
D D

R3

First, we observe that the domain of integration of the integral on the left-hand side
reduces to D because w vanishes outside of D. Second, the integrand vanishes in D
because ¢ = 1 in D. Therefore, the integral vanishes and, letting j tend to infinity, we
conclude that [, |y|>dx = 0 because v; converges to y. This, finally, yields y =0
and ends the proof. a

Now we continue with the task of expressing the range of G by the known op-
erator F'. We make the assumption that k is not an interior transmission eigenvalue
in the sense that (6.41a), (6.41b) is only solvable by the trivial solution. Then F
is one-to-one by Theorem 6.17 and, furthermore, normal by Theorem 6.16 and
certainly compact. Therefore, there exists a complete set of orthonormal eigen-
functions y; € L?(S?) with corresponding eigenvalues A; € C, j = 1,2,3,... (see,
e.g., [207]). Furthermore, because the operator I + (ik)/(27) F is unitary (see again
Theorem 6.16), the eigenvalues A; of F lie on the circle of radius 1/r and center
i/r where r = k/(2m). We can now argue exactly as in the corresponding case of
impedance tomography. The spectral theorem for normal operators yields that F
has the form

Fy=Y 2w, ¥ ¥, vel’(s?). (6.70)
j=1
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Therefore, F has a second factorization in the form
F = (F*'F)/*R(F*F)'/*, (6.71)

where the self-adjoint operator (F*F)'/*: [?(5?) — L*(S?) and the signum R :
L?(S?) — L?(S?) of F are given by

Il
Ms

(F*F)/*y VIR (W w) e v, we L (SY), (6.72)

Aj
ﬁ (V¥ Vi wEeL(S?). (6.73)

~.
Il
-

=
<

Il
M

~.
Il

Again, as in the case of impedance tomography (see (5.25)) we have thus derived
two factorizations of F', namely

F = 4nk*GS*G* = (F*F)\/*R(F*F)'/*, (6.74)

We now show that these factorizations of F' imply again that the ranges of G and
(F*F )1/ 4 coincide. Then application of Theorem 6.29 provides the desired charac-
terization of D by F.

The following functional analytic result is a slight extension of Lemma 5.15.

Lemma 6.31. Let X and Y be Hilbert spaces and F : X — X and G : Y — X be
linear bounded operators such that the factorization F = GRG* holds for some
linear and bounded operator R : Y — Y that satisfies a coercivity condition of the
form: there exists ¢ > 0 with

|(Ry,y)y| = cllylly forally e R(G*) CY. (6.75)
Then, forany ¢ € X, ¢ #0,
¢ € R(G) < inf{|(Fx,x)x|:x€X, (x,¢)x =1} >0. (6.76)

We omit the proof because it follows exactly the same lines as the proof of
Lemma 5.15 (see also [143]).

We note again that the inf-condition depends only on F' and not on the factoriza-
tion itself. Therefore, we have the following corollary.

Corollary 6.32. Let X, Y1, and Y, be Hilbert spaces. Furthermore, let F : X — X
have two factorizations of the form F = G1 Ry G| = G2 R, G5 with bounded opera-
tors Gj:Y;j — X and R; : Y; — Y;, which both satisfy the coercivity condition (6.75).
Then the ranges of G and Gz coincide.

In order to apply this corollary to the factorization (6.74) we have to prove that
S:1*(D) — L*(D) and R : L?(S?) — L?(S?) satisfy the coercivity conditions (6.75).
The coercivity condition for S follows from Theorem 6.30.
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Lemma 6.33. There exists ¢y > 0 such that
(S W)pp)| = allylig foralyeR(GY) C LX(D) (6.77)

where again G* : L*(8%) — L*(D) is the adjoint of G as given in Theorem 6.28.

Proof. We assume, on the contrary, that there exists a sequence y; € R(G*) with
lwillz2p) = 1 and (Syj, j) 2(p) — 0. The unit ball is weakly compact in L?*(D);
thus there exists a weakly convergent subsequence of (y;). We denote this by
y; — y and note that y belongs to the closure of the range of G*. Now we write

(W=, So(v = ¥))) 12 )
= (V/vSO(‘I’f l//./'))LZ(D) - (V’jv (SO - S)(‘I/* Wi))Lz(D)
+ (W5 Svi) 2 o) — (W, SW) 2y - (6.78)

From the compactness of S — Sy we note that [|(S — So)(y — w;)ll;2(p) tends to
zero and thus also (v, (So — S) (v — v))) 12(p) by the Cauchy-Schwarz inequal-

ity. Therefore, the first three terms on the right-hand side of (6.78) converge
to zero, the last one to (y,Sy);2(p). Taking the imaginary part and noting that

(v —v;,S0(y— Wj))Lz(D) is real-valued yields y = 0 by part (d) of Theorem 6.30.
Now we write, using the coercivity of Sp by part (a) of Theorem 6.30,

1
e < (Vs So¥j)2py < |(wj,(So— SV 2 |+ ‘(‘l’jvS‘I/j)LZ(D) I
and the right-hand side tends to zero which is certainly a contradiction. O

Coercivity of the middle operator R : L?(5?) — L*(S?) in the second factorization
of (6.74) can also be proven by using the fact that the scattering operator is unitary.
Before doing this we prove a result of independent interest.

Lemma 6.34. Let A; € C, j €N, be the eigenvalues of the normal operator F. Then
Aj lie on the circle |2mi/k — z’ =27 [k with center 21i/k and radius 21 [k passing
through the origin and converging to zero from the right: ReA; > 0 for sufficiently
large j.

Proof. The fact that A; lie on the circle with center 27i/k passing through the ori-
gin follows from the unitarity of the scattering operator S = I + (ik)/(27) F (see
Theorem 6.16). We have only to show that the eigenvalues tend to zero from the
right. Let y; again be the normalized and orthogonal eigenfunctions corresponding
to the nonvanishing eigenvalues A;. From the factorization (6.64) it follows that

ATk (S* G ), G* i) a2y = (F W5, W22y = A 8
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with the Kronecker symbol §; , = 1 for j = £ and 0 otherwise. We set

2k\/T A
= G'w; and s;= L.
Qj WI Vi Sj

|41
Then (¢;,S¢¢),( L(s2) =) i0;.¢. From the facts that A; lie on the circle with center 27i/k

passing through the origin and that A; tends to zero as j tends to infinity we con-
clude that the only accumulation points of the sequence (s;) can be 41 or —1. The
assertion of the theorem is proven once we have shown that +1 is the only possi-
ble accumulation point. Assume, on the contrary, that s; — —1 for a subsequence.
From Lemma 6.33 we observe that the sequence (¢;) is bounded in L*(D). There-
fore, there exists a weakly convergent subsequence that we denote by ¢; — ¢. Now
we write exactly as in Eq. (6.78):

(90— 9,50(0 = 0)) 121
= ((P,So((P - (PJ))LZ(D) - ((p]> (S() _S)((p - q’]))[]([))
+ (97,507)12(p) — (9, S0) 12(p)-
—_———

=5j

The left-hand side is real-valued, the right-hand side tends to —1 — (¢,5¢),2(p).
Taking the imaginary part again shows that ¢ has to vanish, thus as before

0 < (9:509))12(p) = (@, (S0 =) @) 12p) + (9. 59 12 ()

The right-hand side converges to —1 which is impossible and ends the proof. o
Now we can easily prove coercivity of the operator R in (6.74).

Lemma 6.35. Assume that k is not an interior transmission eigenvalue. Then there
exists ¢y > 0 with

|(Ry, W) 22| > cz||qf||§2(52) forall w € L2(S?). (6.79)

Proof. It is sufficient to prove (6.79) for y € L?(S?) of the form y =¥ ;c;y; with
Hl//HL2 @) =2 cj|? = 1. With the abbreviation s; = 4;/|A;| it is

=

> sjlei?

J=1

[(Ry,y)12(e2)| = (ZS/CJWJ’ZCJWJ> =

2(32)

The complex number X7 ; s ile j|2 belongs to the closure of the convex hull C =
conv{s;: j € N} C C of the complex numbers s;. We conclude that

|(R1//,1,11)Lz(52)| > inf{|z]:z€C}
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for all y € L*(S?) with [ wll;2(s2) = 1. From the previous lemma we know that
the set C is contained in the part of the upper half-disk that is above the line
¢={t§+(1—1)1:t € R} passing through § and 1. Here, § is the pointin {s; : j € N}
with the smallest real part. Therefore, the distance of the origin to this convex hull
C is positive; that is, there exists ¢, with (6.79). O

By the range identity of Corollary 6.32 the ranges of G and (F*F)'/* coincide.
The combination of this result and Theorem 6.29 yields the main result of this
section.

Theorem 6.36. Assume that k* is not an interior transmission eigenvalue. For any
7 € R3 again define ¢, € L*(S%) by (6.68); that is,

0.(%) := exp(—ik%-z), %€ 82

Then
zeD < ¢.c R((F'F)'/%). (6.80)

We want to rewrite this condition using Picard’s Theorem A.54. Again let
Aj € C be the eigenvalues of the normal operator F with corresponding normal-
ized eigenfunctions y; € L?(S?). Then we note that (1/[A;[, y;,y;) is a singular
system of (F*F )1/4. Therefore, Picard’s Theorem A.54 converts the condition
¢, € R((F*F)'/*) into a decay behavior of the expansion coefficients.

Theorem 6.37. Under the assumptions of the previous theorem a point z € R3 be-
longs to D if and only if the series

2| (PZ?Wj L2 |

6.81

J
converges.

If we agree on the notation 1/eo = 0 and sign(¢) = 1 for ¢ > 0 and sign(z) = 0 for
t =0 then

—1

. |(¢27WJ)L2(52)|2 3

%(z) = sign ZT , zeR’, (6.82)
I j

is just the characteristic function of D. Formula (6.82) provides a simple and fast
technique to visualize the object D. One simply plots the inverse of the series (6.81).
In practice, this is a finite sum instead of a series, but the value of the finite sum is
much larger for points z outside than for points inside D. We refer to the original
paper [141] and to [143] for some typical plots.

We conclude this section with some further remarks on the Factorization Method.
The characteristic function ) derived in the previous theorem depends only on the
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operator F. Nothing else about the scattering medium has to be known for plotting
this function. In particular, it is not assumed that the support D of n — 1 is connected;
it can very well consist of several components. Also, the function ) can be plotted
in every case where the scattering operator S is unitary (and thus F is normal).
This is the case, for example, if the medium is perfectly soft or hard; that is, if
a Dirichlet or Neumann boundary condition, respectively, on dD is imposed. The
theoretical justification of the Factorization Method however (i.e., the proof that y is
indeed the characteristic function of D), has to be given in every single case. For the
Dirichlet and Neumann boundary condition and also for the impedance boundary
condition du/dVv + Au = 0 on dD with a real-valued function A this can be shown
(see [143]). This implies, in particular, a general uniqueness result. It is not possible
that different “scattering supports” D give rise to the same far field operator F'.
There are, however, cases of unitary scattering operators for which the Factorization
Method has not yet been justified. For example, if D consists of two components
D, and D, (separated from each other) and n > 14 c¢o on Dy butn < 1 —¢g on D,
it is not known whether the Factorization Method is valid. The same open question
arises for the case where the Dirichlet boundary condition is imposed on dD; and
the Neumann boundary condition on dD,. The main problem is the range identity;
that is, the characterization of the range of G by the known operator F'.

There also exist extensions of the Factorization Method for absorbing media. In
these cases, the far field operator fails to be normal. Although some results exist
on the existence of eigenvalues (see, e.g., [48]) the methods to construct the second
factorization as in (6.74) fail. Instead, one considers factorizations of the self-adjoint
operator Fy = |Re F|+ImF where ReF = (F +F*)/2 and ImF = (F — F*)/(2i)
are the self-adjoint parts of F, and |A| of a self-adjoint operator A is defined by its
spectral system. We refer to [143] for a comprehensive study of these cases.

6.6 Numerical Methods

In this section, we describe three types of numerical algorithms for the approximate
solution of the inverse scattering problem for the determination of n and not only of
the support D of n — 1. We assume - unless stated otherwise - that n € L™ (R?) with
n(x) = 1 outside some ball K = K(0,a) of radius a > 0.

The numerical methods we describe now are all based on the Lippmann—
Schwinger integral equation. We define the volume potential V¢ with density
¢ by

eiklx—yl

(Vo) (x) : (y)dy, x€K. (6.83)

) an |x—y| ¢
K
Then the Lippmann—Schwinger Eq. (6.23) takes the form

u—k*(mu)=u ink, (6.84)
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where again m = n— 1 and u'(x,0) = exp(ik0 - x). The far field pattern of u*® =
K?V (mu) is given by

K2 i
oo (£) = E/m(y)u(y) e gy ze s (6.85)

K

Defining the integral operator W : L(K) — L*(S?) by
K it 2
W) (§) =5 [w)e ™ ay, ses, (6.86)
K

we note that the inverse scattering problem is to solve the system of equations

u—k*V(mu) =u ink, (6.872)
W(mu) = f onS>. (6.87b)

Here, f denotes the measured far field pattern. From the uniqueness results of
Sect. 6.4, we expect that the far field patterns of more than one incident field have
to be known. Therefore, from now on, we consider u' = u'(x, é) = exp(iké X)),
u= u(x, é), and f=f ()2, é) to be functions of two variables. The operators V and
W from Egs. (6.83) and (6.86) can be considered as linear and bounded operators

Vi L*(KxS*) — L°(KxS$?%), (6.882)
W: L™(K xS — L”(8*x §%). (6.88b)

In the next sections, we discuss three methods for solving the inverse scattering
problem, the first two of which are based on the system (6.87a), (6.87b). We for-
mulate the algorithms and prove convergence results only for the setting in function
spaces, although for the practical implementations these algorithms have to be dis-
cretized. The methods suggested by Gutman and Klibanov [100, 101] and Kleinman
and van den Berg [146] are iteration methods based on the system (6.87a), (6.87b).
The first one is a regularized simplified Newton method, the second a modified
gradient method. In Sect. 6.6.3, we describe a different method, which has been pro-
posed by Colton and Monk in several papers (see [S0]-[54]) and can be considered
as an intermediate step towards the development of the Linear Sampling Method
(see [143]).

6.6.1 A Simplified Newton Method

For simplicity of the presentation we assume for this section that # is continuous;
that is, n € C(D) for some bounded domain D and n = 1 outside of D. By scaling
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the problem, we assume throughout this section that D is contained in the cube

Q = [—r,m]? C R3. We define the nonlinear mapping
T:C(Q)xC(QxS*) — C(QxS*) xC($* x 5% (6.89a)
by
T(m,u) := (u— K>V (mu), W (mu) ) (6.89b)

for m € C(Q) and u € C(Q x §?). Then the inverse problem can be written in the
form

T(m’u) = (uivf)'

The Newton method is to compute iterations (my,uy), £ =0,1,2,... by

(me1,ue1) = (me,ug) — T (mg,ug) [T (mg,ug) — (', )] (6.90)

for ¢ =0,1,2,.... The components of the mapping 7' are bilinear, thus it is not
difficult to see that the Fréchet derivative T’(m,u) of T at (m,u) is given by

T'(m,u)(1,v) = (sz(/.Lu) + 0 —k2V (mv), W(uu) + W(mv)) (6.91)

for u € C(Q) and v € C(Q x 5?).

The simplified Newton method is to replace T’ (my,uy) by some fixed T’ (i1, i)
(see Theorem A.60 of Appendix A). Then it is known that under certain assump-
tions linear convergence can be expected. We choose 772 = 0 and 7 = u'. Then the
simplified Newton method sets my, 1 = my + u and usyy = up + v, where (U, v)
solves T'(0,u’)(u,v) = (u', f) — T (my,u;). Using the characterization of T’, we
are led to the following algorithm.

(A) Setmg=0, uyg=u',and £ =0.
(B) Determine (i, v) € C(Q) x C(Q x S?) from the system of equations

KAV (uu') — v = u — ug+ K2V (mguy), (6.92a)

W(uu') = f—W(meuy). (6.92b)

(C) Set myy; =my+ u and uypy | = up+ v, replace £ by £+ 1, and continue with
step (B).

We assume in the following that the given far field pattern f is continuous (i.e.,
f € C(8? x §?)). Solving an equation of the form W (uu’) = p means solving the
integral equation of the first kind,

kv (D5 4T, A oA
/u(y)e”@(" ldy=-"3p(£.6), £0es (6.93)
Q
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We approximately solve this equation by a special collocation method. We observe
that the left-hand side is essentially the Fourier transform p™~ of u evaluated at
& = k(% — 6). As in Gutman and Klibanov [101], we define N € N to be the largest
integer not exceeding 2k/ /3, the set

Zyvi={jeZ’:|j}| <N,s=123}

of grid points, and the finite-dimensional space

Xy ;:{ Y ajella; ec}. (6.94)

JEZN

Then, for every j € Zy, there exist unit vectors %, éj € S? with j = k(ﬁj - éj). This
is easily seen from the fact that the intersection of S> with the sphere of radius 1 and
center j/k is not empty. For every j € Zy, we fix the unit vectors £; and 6; such that

J= k(% —0)). .
We solve (6.93) approximately by substituting £; and 6; into this equation. This
yields

i dr . A .
[uweay=-5p(:6), jezn. 6.95)
4

The left-hand sides are just the first Fourier coefficients of u, therefore the unique
solution of (6.95) in Xy is given by u = L;p, where the operator L; : C(5% x §?) —
Xy is defined by

1 " AN i
(L1p)(¥) = —5 27 D p(%),0;) e (6.96)
JEZN
The regularized algorithm now takes the form

(A,) Setmgy =0, up=1u',and £ =0.
(B,) Set

W =Ly [f—W(meu,)] and

v = u' —up— K2V (mguy) — KV (uu).

(C,) Setmyy; =my+ p and ugy; = ug+ v, replace £ by £+ 1, and continue with
step (B;).

Then we can prove the following (see [101]).

Theorem 6.38. There exists € > 0 such that, if m € C(Q) with |m||., < € and u =
u(x, 0) is the corresponding total field with exact far field pattern f(£,0) = u(%, 9),
then the sequence (my,uy) constructed by the regularized algorithm (A;), (By), (Cy)

converges to some (f,i) € Xy x C (Q X Sz) that satisfies the scattering problem
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with refraction contrast m. Its far field pattern ii.. coincides with f at the points
()?j, Gj) €8%x 82 Jj € Zn. I, in addition, the exact solution m satisfies m € Xy, then
the sequence (my,uy) converges to (m,u).

Proof. We define the operator
L:C(Qx8%) xC(8*x8*) — Xy x C(Q x 5%

by
L(w,p) := (Lip,w—K*V(u'Lip)).

Then L is a left inverse of 77(0,u’) on Xy x C(Q x §?); that is,
LT'(0,u')(u,v) = (u,v) forall (,v) € Xy x C(Q x §%).

Indeed, let (it,v) € Xy x C(Q x $?) and set (w,p) = T"(0,u’) (1, v), e, w=v+
K*V (uu') and p = W (uu'). The latter equation implies that

Ziiw dr A .
[uwyeay=-5p(5.6). e 2y,
0

Because i € Xy, this yields that 4 = Ljp and thus L(w,p) = (i, v).
With the abbreviations z, = (mg, ug) andR = (ui ,f), we can write the regularized
algorithm in the form

w41 =z2—L[T(z)—R], €(=0,12,...

in the space Xy X C(Q X Sz). We can now apply a general result about local con-
vergence of the simplified Newton method (see Appendix A, Theorem A.60). This
yields the existence of a unique solution (7, i) € Xy x C(Q X S2) of L [T (ﬁ’l,ﬁ) —
R] = 0 and linear convergence of the sequence (my,us) to (i, ii). The equation
i+kV (mﬁ) = u' is equivalent to the scattering problem by Theorem 6.8. The equa-
tion LlW(ﬁuZ) = L, f is equivalent to . (J?j, é]) = f()?j, é]) for all j € Zy. Finally,
if m € Xy, then (m, u) satisfies LT (m,u) = LR and thus (/i) = (m,u). This proves
the assertion. a

We have formulated the algorithm with respect to the Lippmann—Schwinger in-
tegral equation because our analysis on existence and continuous dependence is
based on this setting. There is an alternative way to formulate the simplified Newton
method in terms of the original scattering problems; see [101]. We note also that
our analysis can easily be modified to treat the case where only n € L*(K). For
numerical examples, we refer to [101].
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6.6.2 A Modified Gradient Method

The idea of the numerical method proposed and numerically tested by Kleinman and
van den Berg (see [146]) is to solve (6.87a), (6.87b) by a gradient-type method. For
simplicity, we describe the method again in the function space setting and refer for
discretization aspects to the original literature [146]. Again let K = K(0,a) contain
the support of m =1 —n.

(A) Choose my € L(K), up € L*(K x §?), and set £ = 0.
(B) Choose directions e; € L*(K x §?) and d; € L”(K), and set

Upp1 = U+ 0yep, myg =mg+ Pedy. (6.97)

The stepsizes oy, By > 0 are chosen in such a way that they minimize the func-

tional
lresilZ2esyy  Iserllfzisense)
V(e B) = — 3 ; (6.98a)
w122k xs2) 11172 (52 52)
where the defects ry | and s, are defined by
reer = u' — gy — KV (mecqugy), (6.98b)
o1 = f—W(mppueyr). (6.98¢)
(C) Replace ¢ by ¢+ 1 and continue with step (B).
There are different choices for the directions d; and ¢;. In [146],
dy(x) = —/d}(x, 0)uy(x,0)ds(6), xe K, and e :=r, (6.99)
S2

have been chosen where
dy = —W*(W(mpus) — f) € L™ (K x §%).

In this case, dy is the steepest descent direction of u — ||[W(uuy) —f”iz(szxsz).
In [242], for d; and e; Polak—Ribiere conjugate gradient directions are chosen.
A rigorous convergence analysis of either method has not been carried out.

A severe drawback of the methods discussed in Sects. 6.6.1 and 6.6.2 is that
they iterate on functions n, = my(x) and uy = u,(x,6). To estimate the storage re-
quirements, we choose a grid of order N - N - N grid points in K and M directions
01,...,0y € S%. Then both methods iterate on vectors of dimension N° - M. From
the uniqueness results, M is expected to be large, say, of order N2. For large values
of M, the method described next has proven to be more efficient.
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6.6.3 The Dual Space Method

The method described here is due to Colton and Monk [52,53] based on their earlier
work for inverse obstacle scattering problems (see [50, 51]). There exist various
modifications of this method, but we restrict ourselves to the simplest case.

This method consists of two steps. In the first step, one tries to determine a su-
perposition of the incident fields u’ = u'(-,8) such that the corresponding far field
pattern f (-, é) is (close to) the far field pattern of radiating multipoles. In the second
step, the function m is determined from an interior transmission problem.

We describe both steps separately. Assume for the following that the origin is
contained in K = K(0,a).

Step 1: Determine g € L?(S?) with

/f()%,é)g(é)ds(é) —1, fes (6.100)

In Theorem 6.17, we have proven that this integral equation of the first kind is
solvable in L2(S?) if and only if the interior transmission problem

Av+ kv =0inK, Aw+Kknw=0inK, (6.101a)
eik\x\
w(x) —v(x) = ER on dK, (6.101b)
X

dw(x)  du(x) d ek

. IK 6.101
v v av o (6.101c)
has a solution v,w € H'(K) such that
w(x) = / JF9 g(§)ds(§), xR, (6.102)

S2

The kernel of the integral operator in (6.100) is analytic with respect to both vari-
ables, thus (6.100) represents a severely ill-posed — but linear — equation and can
be treated by Tikhonov’s regularization method as described in Chap. 2 in detail. (In
this connection, see the remarks following Theorems 6.18 and 6.21.)

We formulate the interior transmission problem (6.101a) — (6.101c) as an integral
equation.

Lemma 6.39. v,w € H'(K) solve the boundary value problem (6.101a)—(6.101c)
if and only if v,w € H'(K) solve the system

w(x) = 0(0) =K [ miy)w) ®(ey)dy. xeX, (6.103)
K
eik\x\

w(x) —v(x) = H on dK, (6.104)

where againm =n — 1.
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Proof. Set ¢(x) = exp(ik|x|)/|x| = 4n®(x,0) for abbreviation. First, let v,w €
H! (K) solve the boundary value problem (6.101a)—(6.101c) in the weak sense. Set
u=w—vin K and u = ¢ in the exterior of K. Then u € H] (R?) because the
Dirichlet data of w — v and ¢ coincide on dK. The weak formulation (see (6.43a))
yields

/w%ds:/[Vu.vw—k%w—kzqu/} dx (6.105)
oK K

for all y € H'(K). Now we take y € H' (R?) with compact support and rewrite the
boundary integral as

a 3
/wa—?ids:— / (Vo -Vy -k y]dx
IK

R3\K

by using Green’s first theorem in the exterior of K (note that y has compact support).
Substituting this into the first equation yields

/[Vu-Vl//szul//} dx:kz/mwl//dx (6.106)
R3 K

for all y € H'(R3) with compact support. This is the weak formulation of Au +
kK?u = —k*mw and uniquely solved by the volume potential with density k>mw
(see Theorem 6.7). This proves the first part.

On the other hand, let v,w € H'(K) solve the system (6.103), (6.104). Let u €
H 110 . (R3) be the volume potential with density k>mw. Then u is the radiating solution
of Au+k>u = —k>mw in R?; that is, solves (6.106). Furthermore, from u = ¢ on 0K
and the uniqueness of the exterior Dirichlet boundary problem (see [49]) u has to
coincide with ¢ in the exterior of K. Substituting ¢ for u in the exterior of K in
formula (6.106) and again applying Green’s first theorem in the exterior of K yields
(6.105) which is the variational form of (6.101a)—(6.101c) and ends the proof. O

Motivated by this characterization, we describe the second step.

Step 2: With the (approximate) solution g € LZ(SZ) of (6.100), define the function
v = v, by (6.102). Determine m and w such that m, v,, and w solve the interior
boundary value problem (6.101a)—(6.101c) or, equivalently, the system

w— v, —k*V(mw) =0 inK, (6.107a)
K>V (mw) —4x®(-,0) =0 on JK, (6.107b)

where V' again denotes the volume potential operator (6.83) and @ the fundamental
solution (6.18).



6.6 Numerical Methods 243

Instead of solving both steps separately, we can combine them and solve the
following optimization problem. Given a compact subset C C L”(K), some € > 0
and ll N lg >0,

minimize J(g,w,m) on L*(S?) x L*(K) x C, (6.108a)
where
J(gw,m) = ||[Fg— 1||22(52)+8H8H22(52)

+ A Hw— vg—kZV(mw)Hiz(K)

+ Ao ||V (mw) — 4m (- }|L2 2K) (6.108b)
and the far field operator F : L?(5?) — L*(S?) is defined by (see (6.37))

(Fg)(%) := /f(;@é)g(é)ds(é), £esn.

Theorem 6.40. This optimization problem (6.108a), (6.108b) has an optimal solu-
tion (g, w,m) for every choice of €, 11, Ay > 0 and every compact subset C C L™ (K).

Proof. Let (gj,wj,m;) € L*(S?) x L*(K) x C be a minimizing sequence; that is,
J(gj,wj,mj) — J* where the optimal value J* is defined by

= inf{J(g,w,m) : (g,w,m) € L*(8?) x L*(K) xC}.

We can assume that (m;) converges to some m € C because C is compact. Several
tedious applications of the parallelogram equality

2 2 2 2
la+b|"=—lla—b|"+2|al"+2|b]
and the binomial formula
|6]|* = |lal|* + 2Re (a,b — a) + [la — b|>

yield

—J*> - ( (gj+80), w,+wé) )

1 1
75 (gjawlam/) ZJ(gfawlvm/)
1 2 5 2
+ 1 HF(gj_gf)HLZ(sz) + 1 ng_gKHLz(Sz)
A
+ Zl H(Wj —we) — Ugi—g¢ —sz(mj(wj _Wé)) Hiz(m
l

L
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From this we conclude that

=T 5 T8 wjsmj) + 5 T (80, wemj)

€ A
= g _ngEZ(sZ) + Zl [(w) = we) = vg;—g, — K2V (mj(wj —wy)) Hiz(,() :

The left-hand side tends to zero as j and ¢ tend to infinity, therefore we conclude that
(g;) is a Cauchy sequence, thus converging g; — g in L*(S?). Furthermore, from

|00 —we) = vgy—g =KV (m;(wj —w)) || o) — O
as £, j — oo and the convergence g; — g we conclude that
[(w) —we) =2V (mj(wj —w)) || 2 ) — O

as £, j — oo. The operators I — k*V (m;-) converge to the isomorphism I — k?V (m-)
in the operator norm of L?(K). Therefore, by Theorem A.35 of Appendix A, we
conclude that (w;) is a Cauchy sequence and thus is convergentin L2(K) to some w.
The continuity of J implies that J(g;,w;,m;) — J(g,w,m). Therefore, (g, w,m) is
optimal. a

6.7 Problems

6.1. Letu} _(£,6,k) and u} _(£,6,k) be the far field patterns of the Born approxi-

mations corresponding to observation £, angle of incidence 6, wave number k, and
indices of refraction n; and n», respectively. Assume that

uf o (%,0,k) = ub .(%,0,k)

for all £ € §2 and k € [k;,k»] C RT and some @ € S2. Prove that n; = n,.

6.2. Let w; be the unique solution of (6.59) for + > T. Extend w; to a 2m-periodic
function into all of R3. Define

u(x) = > [1+exp(—i/2x1)wi(x)], x€ R?,

where é = (1,i,0)T € C3.
Prove that u solves (6.56) in the variational sense.
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6.3. Prove the following result, sometimes called Karp’s theorem. Let uo. ()2; ) s
£,0 €S2, be the far field pattern and assume that there exists a function £ : [~1,1] —
C with

U (£0) = f(£-60) forall £,6 € S
Prove that the index of refraction n has to be radially symmetric: n = n(r).
Hint: Rotate the geometry and use the uniqueness result.

6.4. Show that for any a > 0

1
max / —dy:27va2.
w<a J [x—yl
[yl<a






Appendix A
Basic Facts from Functional Analysis

In this appendix, we collect some of the basic definitions and theorems from
functional analysis. We prove only those theorems whose proofs are not easily ac-
cessible. We recommend the monographs [135, 151,210, 247] for a comprehensive
treatment of linear and nonlinear functional analysis.

A.1 Normed Spaces and Hilbert Spaces

First, we recall two basic definitions.

Definition A.1 (Scalar Product, Pre-Hilbert Space). Let X be a vector space
over the field K = R or K = C. A scalar product or inner productis a mapping

(,): XxX—K

with the following properties:

(i) (x+y,2) = (x,2)+ (y,z) forall x,y,z € X,
(ii) (ox,y) = a(x,y) forallx,y € X and a € K,
(iii) (x,y) = (y,x) forall x,y € X,
(iv) (x,x) € Rand (x,x) >0, forall x € X,

(v) (x,x) >0ifx #0.

A vector space X over K with inner product (-,-) is called a pre-Hilbert space
over K.

The following properties are easily derived from the definition:

Vi) (x,y+2) = (x,y)+ (x,2) forall x,y,z € X,
(vii) (x,oy) =0(x,y) forall x,y € X and o € K.

Definition A.2 (Norm). Let X be a vector space over the field K = R or
K =C. A normonX is a mapping

I :X —R

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, 247
Applied Mathematical Sciences 120, DOI 10.1007/978-1-4419-8474-6,
© Springer Science+Business Media, LLC 2011
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with the following properties:

(i) ||x|| > O for all x € X with x # 0,
(i) ||ox|| =|o]|jx|| forall x € X and @ € K,
(i) [x+ ]| < [l + [y for all x,y € X.

A vector space X over K with norm ||-| is called normed space over K.
Property (iii) is called triangle inequality. Applying it to the identities

x=(x—y)+y and y = (y —x) + x yields the second triangle inequality
e =1l >[Il = [Iyll] for allx,y € X.

Theorem A.3. Let X be a pre-Hilbert space. The mapping ||-|| : X — R defined by

Il == V(x,x), x€X,

is a norm, i.e., it has properties (i), (ii), and (iii) of Definition A.2. Furthermore,
(iv) [(x,¥)| < x|l lly|| for all x,y € X (Cauchy—Schwarz inequality),

v) |lx+y|* =|Ix]|*+ [y|* £ 2Re (x,y) for all x,y € X (binomial formula),
(vi) x4 yI? + e =312 = 2 |lx|* +2 1y for all x,y € X.

In the following example, we list some of the most important pre-Hilbert and
normed spaces.

Example A.4. (a) C"is a pre-Hilbert space of dimension n over C with inner prod-
uct (x,y) 1= Y5 Xy

(b) C" is a pre-Hilbert space of dimension 2n over R with inner product (x,y) :=
Re Y} | ¥y

(c) R" is a pre-Hilbert space of dimension n over R with inner product (x,y) :=
Y1 Xk

(d) Define the set £2 of (real-valued) sequences by

62::{(xk)CR:ix%<oo}. (A.1)
k=1

Then ¢? is a linear space because if (x;), (y¢) € £, then (Ax;) and (x; + yy) are
also in £2. The latter follows from the binomial inequality (x +yx)? < 2x7 +2y7.

(X)) == Y xve x= (%), y= () € £,
k=1

defines an inner product on ¢2. It is well-defined by the Cauchy—Schwarz in-
equality.
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(e) The space Cla,b] of (real- or complex-valued) continuous functions on [a, b] is
a pre-Hilbert space over R with inner product

b

(X, ¥)2 = /x(t)y(t)dt, x,y € Cla,b]. (A.2a)

a

The corresponding norm is called the Euclidean norm and is denoted by

b
]2 ::\/(x,x)Lzzq// (1)[2dr, x € Cla,b). (A.2b)

(f) On the same vector space C|a, b] as in example (e), we introduce a norm by

¥l := max |x(z)[, x € Cla,b], (A.3)

a<t<b

that we call the supremum norm.
(g) Letm € Nand a € (0, 1]. We define the spaces C"[a,b] and C"™%[a,b] by

C"[a,b] = {x € Clap]: X157 times continuously }7

differentiable on [a, b]

’x(m) (1) — xm) (s)’

C™%a,b] := < x € C"[a,b] : sup = <oop,
t#s |t - S|
and we equip them with norms
= (k)
llx|lcm - Orgnkzg(mux ... (A.4a)
[ (1) = 5 5)
H-xucm.a = H.x”cm +Sup o (A4b)
s#t |t - S|

Every normed space carries a topology introduced by the norm, i.e., we can de-
fine open, closed, and compact sets; convergent sequences; continuous functions;
etc. We introduce balls of radius r and center x € X by

K(x,r)={yeX:[y—x|<r}, Kxr:={yeX:|y—x]<r}.

Definition A.5. Let X be a normed space over the field K = R or C.

(a) A subsetM C X is called bounded if there exists r > 0 with M C K(x,r). The set
M C X is called open if for every x € M there exists € > 0 such that K (x,€) C M.
The set M C X is called closed if the complement X \ M is open.
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(b) A sequence (x;)x C X is called bounded if there exists ¢ > 0 such that ||x;|| < ¢
for all k. The sequence (x;); C X is called convergent if there exists x € X such
that ||x — xi|| converges to zero in R. We denote the limit by x = limy_,.. x;, or
we write x;, — x as k — oo, The sequence (xy ), C X is called a Cauchy sequence
if for every € > 0 there exists N € N with ||x,, — x| < € for all m,k > N.

(c) Let (xx)r C X be a sequence. x € X is called an accumulation point if there
exists a subsequence (ak,,)n that converges to x.

(d) A set M C X is called compact if every sequence in M has an accumulation
point in M.

Example A.6. Let X = C[0,1] over R and x;(t) = t*, ¢ € [0,1], k € N. The se-
quence (x;) converges to zero with respect to the Euclidean norm ||-||;2 introduced
in (A.2b). With respect to the supremum norm ||-||, of (A.3), however, the sequence
does not converge to zero.

It is easy to prove that a set M is closed if and only if the limit of every convergent
sequence (xi);r C M also belongs to M. The sets

int(M) := {x € M : there exists € > 0 with K(x,&) C M}

and
cl(M) := {x € X : there exists (x)x C M withx = ]}im X}

are called the interior and closure, respectively, of M. The set M C X is called dense
in X if cl(M) = X.

In general, the topological properties depend on the norm in X. For finite-
dimensional spaces, however, these properies are independent of the norm. This
is seen from the following theorem.

Theorem A.7. Let X be a finite-dimensional space with norms ||-||, and ||-||,. Then
both norms are equivalent, i.e., there exist constants c; > ¢y > 0 with

cillxlly < Il S eallxlly  forallxeX.

In other words, every ball with respect to ||-||; contains a ball with respectto ||-||,
and vice versa. Further properties are collected in the following theorem.

Theorem A.8. Let X be a normed space over K and M C X be a subset.

(a) M is closed if and only if M = cl(M), and M is open if and only if M = int(M).

(b) If M # X is a linear subspace, then int(M) = 0, and cI(M) is also a linear
subspace.

(c) In finite-dimensional spaces, every subspace is closed.

(d) Every compact set is closed and bounded. In finite-dimensional spaces, the re-
verse is also true (Theorem of Bolzano—Weierstrass): In a finite-dimensional
normed space, every closed and bounded set is compact.

A crucial property of the set of real numbers is its completeness. It is also a
neccessary assumption for many results in functional analysis.
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Definition A.9 (Banach Space, Hilbert Space). A normed space X over K is
called complete or a Banach space if every Cauchy sequence converges in X. A
complete pre-Hilbert space is called a Hilbert space.

The spaces C" and R” are Hilbert spaces with respect to their canonical inner
products. The space C[a, b] is not complete with respect to the inner product (-,-);2
of (A.2a)! As an example, we consider the sequence x;(t) = t* for0 <t <1 and
x(t) =1 for 1 <7 < 2. Then (x;) is a Cauchy sequence in C[0,2] but does not
converge in C[0, 2] with respect to (+,-);2 because it converges to the function

x(t){o, t<1,

1, t>1,

that is not continuous. The space (C[a,b], |-||,,), however, is a Banach space.

Every normed space or pre-Hilbert space X can be “completed,” i.e., there exists
a “smallest” Banach or Hilbert space X, respectively, that extends X (i.e., ||x||y =
||lx|lg or (x,y)x = (x,¥)g, respectively, for all x,y € X). More precisely, we have the
following (formulated only for normed spaces).

Theorem A.10. Let X be a normed space with norm ||-||y. There exist a Banach
space (X,|-||z) and an injective linear operator J : X — X such that

(i) The range J(X) C X is dense in X, and
(ii) ||Jx||g = ||x||x for all x € X, i.e., J preserves the norm.

Furthermore, X is uniquely determined in the sense that if X is a second space with
properties (i) and (ii) with respect to a linear injective operator J, then the operator
JI7V J(X) — J(X) has an extension to a norm-preserving isomorphism from X
onto X. In other words, X and X can be identified.

We denote the completion of the pre-Hilbert space (Cla,b], (-,-);2) by L*(a,b).
Using Lebesgue integration theory, it can be shown that the space L?(a,b) is char-
acterized as follows. (The notions “measurable,” “almost everywhere” (a.e.), and
“integrable” are understood with respect to the Lebesgue measure.) First, we define
the vector space

£%(a,b) := {x: (a,b) — C : x is measurable and |x|* integrable},
where addition and scalar multiplication are defined pointwise almost everywhere.
Then £2(a,b) is a vector space because, for x,y € £?(a,b) and « € C, x+y and

ox are also measurable and owx,x +y € £?(a,b), the latter by the binomial theorem
lx(t) +y(0)* < 2|x(1)|* + 2|y(r)|*. We define a sesquilinear form on £2(a,b) by

b
(x,y) == /x(t))mdt, x,y € L2(a,b).
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(-,-) is not an inner product on £?(a,b) because (x,x) = 0 only implies that x
vanishes almost everywhere, i.e., that x € N/, where \ is defined by

N = {x€ L*(a,b): x(t) =0ae. on (a,b)}.
Now we define L?(a,b) as the factor space
L*(a,b) := L*(a,b) /N
and equip L?(a,b) with the inner product

b
(D)2 = [ 2t (@dr, x (i, ye bl

a

Here, [x],[y] € L*(a,b) are equivalence classes of functions in £2(a,b). Then it can
be shown that this definition is well-defined and yields an inner product on L?(a,b).
From now on, we write x € L?(a,b) instead of x € [x] € L?(a,b). Furthermore, it
can be shown by fundamental results of Lebesgue integration theory that L?(a, b) is
complete, i.e., a Hilbert space and contains C[a,b] as a dense subspace.

Definition A.11 (Separable Space). The normed space X is called separable if
there exists a countable dense subset M C X, i.e., if there exist M and a bijective
mappping j : N — M with cl(M) = X.

The spaces C", R", L?(a,b), and C|a, b] are all separable. For the first two exam-
ples, let M consist of all vectors with rational coefficients; for the latter examples,
take polynomials with rational coefficients.

Definition A.12 (Orthogonal Complement). Let X be a pre-Hilbert space (over
K=RorC).

(a) Two elements x and y are called orthogonal if (x,y) = 0.
(b) Let M C X be a subset. The set

M+ :={xeX:(x,y)=0forallye M}

is called the orthogonal complement of M.

M is always a closed subspace and M C (M L)L. Furthermore, A C B implies
that B+ C A*.

The following theorem is a fundamental result in Hilbert space theory and relies
heavily on the completeness property.

Theorem A.13 (Projection Theorem). Let X be a Hilbert space and V C X be a
closed subspace. Then V = (VJ-)l. Every x € X possesses a unique decomposition

of the form x = v+w, where v €V andw € VL. The operator P: X =V, x— v, is
called the orthogonal projection operator onto V and has the properties
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(a) Pv=vforveV,ie, P>P=P;
(b) ||lx—Px|| < ||x—v'|| forall v € V.

This means that Px € V is the best approximation of x € X in the closed sub-
space V.

A.2 Orthonormal Systems

In this section, let X always be a separable Hilbert space over the field K = R or C.

Definition A.14 (Orthonormal System). A countable set of elements A = {x; :
k=1,2,3,...} is called an orthonormal system (ONS) if

@) (xk,xj) =0 forall k # j and
(ii) ||xx]| =1 forall k € N.

A is called a complete or a maximal orthonormal system if, in addition, there is no
ONS B with A C Band A # B.

One can show using Zorn’s Lemma that every separable Hilbert possesses a max-
imal ONS. Furthermore, it is well-known from linear algebra that every countable
set of linearly independent elements of X can be orthonormalized.

For any set A C X, let

n
spanA::{Zakxk:akEK,xkeA,neN} (A.5)
=1

be the subspace of X spanned by A.

Theorem A.15. Let A = {x;: k=1,2,3,...} be an orthonormal system. Then

(a) Every finite subset of A is linearly independent.

(b) If A is finite, i.e, A ={x;:k=1,2,...,n}, then for every x € X there exist
uniquely determined coefficients o € K, k =1,...,n, such that

x— Y ogxil| <|lx—a| foralla € span A. (A.6)

k=1

The coefficients oy are given by o = (x7xk) fork=1,....,n
(c) Forevery x € X, the following Bessel inequality holds:

1) < Jlx)17, (A7)
k=1

and the series convergesin X.
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(d) A is complete if and only if spanA is dense in X.
(e) A is complete if and only if for all x € X the following Parseval equation holds:

2 x,x0)|* = ||x]%. (A.8)

(f) A is complete if and only if every x € X has a (generalized) Fourier expansion
of the form

M

()C,.Xk))Ck, (A9)

X =
k

Il
—_

where the convergence is understood in the norm of X. In this case, the Parseval
equation holds in the following more general form:

i ()0 (A.10)

This important theorem includes, as special examples, the classical Fourier
expansion of periodic functions and the expansion with respect to orthogonal poly-
nomials. We recall two examples.

Example A.16 (Fourier Expansion). (a) The functions xi(r) := exp(ikt)/\/2m,
k € Z, form a complete system of orthonormal functions in L?(0,27). By
part (f) of the previous theorem, every function x € L*(0,27) has an expansion
of the form

1 - 2

ikt —iks

:2— 2 ! /x(s)e "ds,
k==

where the convergence is understood in the sense of 1% ie

2

[

as M, N tend to infinity. For smooth periodic functions, one can even show uni-
form convergence (see Sect. A.4).

1

N 2n 2
— > eik’/x(s)e*ik“'ds
2, =y, ,

dt — 0

x(t) —

(b) The Legendre polynomials P,k =0,1,..., form a maximal orthonormal system
in L?(—1,1). They are defined by

dk
P(t) = %oz (1 — )k re(=1,1), ke Ny,
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_ [2k+1 1
"=\ "2
We refer to [122] for details.

Other important examples will be given later.

with normalizing constants

A.3 Linear Bounded and Compact Operators

For this section, let X and Y always be normed spaces and A : X — Y be a linear
operator.

Definition A.17 (Boundedness, Norm of A). The linear operator A is called
bounded if there exists ¢ > 0 such that

|Ax|| <c|x|| forallxeX.

The smallest of these constants is called the norm of A, i.e.,

A
A = sup 1421 A1D)
X

o lxll

Theorem A.18. The following assertions are equivalent:

(a) A is bounded.
(b) Ais continuous at x =0, i.e., x; — 0 implies that Ax; — 0.
(c) A is continuous for every x € X.

The space £(X,Y) of all linear bounded mappings from X to ¥ with the operator
norm is a normed space, i.e., the operator norm has properties (i), (ii), and (iii)
of Definition A.2 and the following: Let B € £L(X,Y) and A € L(Y,Z); then AB €
L(X,Z) and [|AB|| < [[A][[[B]].

Integral operators are the most important examples for our purposes.
Theorem A.19. (a) Let k € L*((c,d) x (a,b)). The operator

b
(Ax)(z) == /k(t,s)x(s) ds, te(c,d), xclL*(a,b), (A.12)

is well-defined, linear, and bounded from L?(a,b) into L?(c,d). Furthermore,

d b

4l < [ [ lkte.s) dsar.

c a
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(b) Let k be continuous on [c,d] X [a,b]. Then A is also well-defined, linear, and
bounded from Cla, b) into C|c,d] and

b
IA|lL = max /|k(t,s)| ds.
tele,d)
a

We can extend this theorem to integral operators with weakly singular kernels.
We recall that a kernel k is called weakly singular on [a,b] X |a,b] if k is defined and
continuous for all #,s € [a,b], t # s, and there exist constants ¢ > 0 and o € [0,1)
such that

|k(t,s)| <clt—s|~% forallt,s € [a,b], t #s.

Theorem A.20. Let k be weakly singular on [a,b]. Then the integral operator A,
defined by (A.12) for [c,d) = |a, D), is well-defined and bounded as an operator in
L?(a,b) as well as in C[a, b).

For the special case Y = K, we denote by X' := L(X,K) the dual space of X.
Analogously, the space (X ’)/ is called the bidual of X. The canonical embedding
J:X— (X’)’, defined by

(Jx)l:=((x), xeX,leX,
is linear, bounded, one-to-one, and satisfies ||Jx|| = ||x|| for all x € X.

Definition A.21 (Reflexive Space). The normed space X is called reflexive if the
canonical embedding is surjective, i.e., a norm-preserving isomorphism from X onto
the bidual space (X') '

The following important result gives a characterization of X’ in Hilbert spaces.

Theorem A.22 (Riesz—Fischer). Let X be a Hilbert space. For every x € X, the
Sunctional f,(y) := (y,x), y € X, defines a linear bounded mapping from X to K,
i.e., fx € X'. Furthermore, for every f € X' there exists one and only one x € X with

fO) = (y,x) forall y € X and

1A = sup O
P

This theorem implies that every Hilbert space is reflexive. It also yields the exis-
tence of a unique adjoint operator for every linear bounded operatorA: X — Y.
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Theorem A.23 (Adjoint Operator). Let A : X — Y be a linear and bounded
operator between Hilbert spaces. Then there exists one and only one linear bounded
operator A* 1 Y — X with the property

(Ax,y) = (x,A*y) forallxeX,y€Y.

This operator A* : Y — X is called the adjoint operator fo A. For X =Y, the oper-

ator A is called self-adjoint if A* = A.

Example A.24. (a) LetX = L*(a,b),Y = L*(c,d), and k € L*((c,d) x (a,b)). The
adjoint A* of the integral operator

b
(Ax)(1) = / k(t,5)x(s)ds, 1€ (c,d), xel(ab),

a

is given by

d
W0 = [Msnys)ds, 1€ (ab), yeli(cad)

(b) Let the space X = Cla, b] of continuous function over C be supplied with the
L?-inner product. Define f, g : C[a,b] — R by

b
fx):= /x(t)dt and g(x):=x(a) forxe Cla,b].

a

Both f and g are linear. f is bounded but g is unbounded. There is an extension
of f to a linear bounded functional (also denoted by f) on L?(a,b), i.e., f €
L?(a,b). By Theorem A.22, we can identify L?(a,b)’ with L?(a,b) itself. For
the given f, the representation function is just the constant function 1 because
f(x) = (x,1),2 for x € L*(a,b). The adjoint of f is calculated by

b
10 5= [0t = () = (0.8 0)

forall x € L?(a,b) and y € C. Therefore, f*(y) € L?(a, b) is the constant function
with value y.

(c) Let X be the Sobolev space H' (a,b), i.e., the space of L?-functions that possess
generalized L2-derivatives:

. 5 '
H'(a,b) = {x e L*(a,b): there exists Otc € Kandy € L*(a,b) with .
x(t) =a+ [,y(s)dsfort € (a,b)
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We denote the generalized derivative y € L?(a,b) by x'. We observe that
H'(a,b) C Cla,b] with bounded embedding. As an inner product in H'(a,b),
we define

(x7y)Hl ::x(a)m+(xlvyl)L27 x,yeHl(a,b).

Now let Y = L?(a,b) and A : H'(a,b) — L?(a,b) be the operator x — x’ for
x € H'(a,b). Then A is well-defined, linear, and bounded. It is easily seen that
the adjoint of A is given by

(A*y)(t):/y(s)ds, t€(ab), yel(ab).

The following theorems are two of the most important results of linear functional
analysis.

Theorem A.25 (Open Mapping Theorem). Let X,Y be Banach spaces and A :
X — Y a linear bounded operator from X onto Y. Then A is open, i.e., the images
A(U) C Y are open in Y for all open sets U C X. In particular, if A is a bounded
isomorphism from X onto Y, then the inverse A~ 1Y — X is bounded. This result is
sometimes called the Banach—Schauder theorem.

Theorem A.26 (Banach-Steinhaus, Principle of Uniform Boundedness). Let X
be a Banach space, Y be a normed space, I be an index set, and Ay, € L(X,Y),
a €1, be a collection of linear bounded operators such that

sup||[Agx|| < oo foreveryx € X.
ael

Then supge; ||[Aa| < ee.
As an immediate consequence, we have the following.

Theorem A.27. Let X be a Banach space, Y be a normed space, D C X be a dense
subspace, and A, € L(X,Y) for n € N. Then the following two assertions are equiv-
alent:

(i) Aux > 0asn— oo forallx € X.
(ii) sup,cp ||An|| < e and Ayx — 0 as n — oo for all x € D.

We saw in Theorem A.10 that every normed space X possesses a unique comple-
tion X. Every linear bounded operator defined on X can also be extended to X.

Theorem A.28. Let X, Y be Banach spaces, X C X adense subspace, and A : X — Y
be linear and bounded. Then there exists a linear bounded operator A : X — Y with

(i) Ax= Axforallx € X, i.e., A is an extension of A, and
(ii) ||A&]| = |IA]l.

Furthermore, the operator A is uniquely determined. If A is compact then also A.
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We now study equations of the form
x—Kx=y, (A.13)

where the operator norm of the linear bounded operator K : X — X is small. The
following theorem plays an essential role in the study of Volterra integral equations.

Theorem A.29 (Neumann Series). Let X be a Banach space over R or C and
K : X — X be a linear bounded operator with

limsup ||K"|| /" < 1. (A.14)

Then I — K is invertible, the Neumann series Y,” K" converges in the operator
norm, and

iK" =(1-K)""
n=0

Condition (A.14) is satisfied if, for example, |K™|| < 1 for some m € N.
Example A.30. Let A:={(t,s) eR*:a <5<t <b}.
(a) Letk € L*(A). Then the Volterra operator

(Kx)(t) := /k(t,s)x(s)ds, a<t<b,xeLl*a,b), (A.15)

is bounded in L?(a, b). There exists m € N with || K™||,» < 1. The Volterra equa-
tion of the second kind

x(r) — /k(t,s)x(s) ds=y(t), a<rt<b, (A.16)

is uniquely solvable in L?(a, b) for every y € L*(a,b), and the solution x depends
continuously on y. The solution x € L?(a,b) has the form

(1) = y(1) + / r(t,s)y(s)ds, 1€ (a,b),

with some kernel r € L2(A).

(b) Letk € C(Z). Then the operator K defined by (A.15) is bounded in Cla, b], and
there exists m € N with ||K™|| < 1. Equation (A.16) is also uniquely solvable
in Cla, b] for every y € Cla, b], and the solution x depends continuously on y.

For the remaining part of this section, we assume that X and Y are normed spaces
and K : X — Y a linear and bounded operator.
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Definition A.31 (Compact Operator). The operator K : X — Y is called compact
if it maps every bounded set S into a relatively compact set K(S).

We recall that a set M C Y is called relatively compact if every bounded sequence
(yj) C M has an accumulation point in cl(M), i.e., if the closure cl(M) is compact.
The set of all compact operators from X into Y is a closed subspace of £(X,Y) and
even a two-sided ideal by the following theorem.

Theorem A.32. (a) If K| and K, are compact from X into Y, then so are K| + K>
and LK for every A € K.

(b) Let K, : X — Y be a sequence of compact operators between Banach spaces
X andY. Let K : X — Y be bounded, and let K,, converge to K in the operator
norm, i.e.,

|IKx — Kx||

— 0 (n — o0).
[l

|IK, — K|| := sup
x#£0

Then K is also compact.
(¢c) IfLe L(X,Y)andK € L(Y,Z), and L or K is compact, then KL is also compact.
(d) Let A, € L(X,Y) be pointwise convergent to some A € L(X,Y), i.e., Apx — Ax
forallx € X. IfK : Z — X is compact, then |A,K —AK|| — 0, i.e., the operators
A, K converge to AK in the operator norm.

Theorem A.33. (a) Let k € L*((c,d) x (a,b)). The operator K : L*(a,b) —
L?(c,d), defined by

b
(Kx)(1) = / k(t,5)x(s)ds, 1€ (c,d), xel’(ab), (A.17)

is compact from L? (a,b) into L*(c,d).

(b) Let k be continuous on [c,d] X [a,b] or weakly singular on [a,b] X [a,b] (in this
case [c,d] = |a,D]). Then K defined by (A.17) is also compact as an operator
from Cla,b] into C|c,d).

We now study equations of the form
x—Kx=y, (A.18)

where the linear operator K : X — X is compact. The following theorem extends the
well-known existence results for finite linear systems of n equations and n variables
to compact perturbations of the identity.

Theorem A.34 (Riesz). Let X be a normed space and K : X — X be a linear
compact operator.

(a) The nullspace N'(I —K) = {x eX:ix= Kx} is finite-dimensional and the range
(I—K)(X) is closed in X.
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(b) If I — K is one-to-one, then I — K is also surjective, and the inverse (I — K)~!
is bounded. In other words, if the homogeneous equation x — Kx = 0 admits
only the trivial solution x = 0, then the inhomogeneous equation x — Kx =y is
uniquely solvable for every y € X and the solution x depends continuously on y.

The next theorem studies approximations of equations of the form Ax = y. Again,
we have in mind that A =7 — K.

Theorem A.35. Assume that the operator A : X — Y between Banach spaces X and
Y has a bounded inverse A~'. Let A, € L(X,Y) be a sequence of bounded operators
that converge in norm to A, i.e., ||A, — A|| — 0 as n — oo. Then, for sufficiently large
n, more precisely for all n with

A~ 4, —A4)| < 1, (A.19)
the inverse operators A, : Y — X exist and are uniformly bounded by

At < A7) <c. (A.20)
1—[lA=1 (A, —A)|

For the solutions of the equations
Ax=y and Apx, =y,
the error estimate
Jbn —2¢]| < e{ |l Anx — Axl| + [lyn = yII} (A21)

holds with the constant c from (A.20).

A.4 Sobolev Spaces of Periodic Functions

In this section, we recall definitions and properties of Sobolev (Hilbert) spaces of
periodic functions. A complete discussion including proofs can be found in the
monograph [151].

From Parseval’s identity, we note that x € L?(0,27) if and only if the Fourier

coefficients
i
— —iks
a = /x(s)e ds, ke€Z, (A.22)
0

are square summable. In this case

1

> Jal = = |lxll7-
kez 2n
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If x is periodic and continuously differentiable on [0,27], partial integration of
(A.22) yields the formula

2r

! X (s)e ™ ds,

27k
0

ap =

i.e., ikay, are the Fourier coefficients of x’ and are thus square summable. This mo-
tivates the introduction of subspaces H"(0,2r) of L?>(0,27) by requiring for their
elements a certain decay of the Fourier coefficients ay.

Definition A.36 (Sobolev Space). For r > 0, the Sobolev space H"(0,271) of
order r is defined by

"(0,2m) {Zake 21+k2)’|ak|2<oo}.

kEZ keZ

We note that H°(0,27) coincides with L?(0,27).

Theorem A.37. The Sobolev space H"(0,2n) is a Hilbert space with the inner
product defined by

(ey)ar = 3 (1+k) aby, (A.23)
keZ

where

= Z are™  and y(t Z bre™

keZ kEZ

The norm in H"(0,27) is given by

1/2
[l 7 = (Z(l +k2)’lak|2> :

keZ

We note that ||x||;2 = V27 ||x|| o, that is, the norms ||x||,2 and ||x| ;o are equiva-
lent on L*(0,27).

Theorem A.38. (a) For r € Ny := NU{0}, the space {x € C'[0,27] : x periodic}
is boundedly embedded in H"(0,2m).
(b) The space T of all trigonometric polynomials

n
_{ 2 akeik’:akE(C,neN}

k=—n

is dense in H"(0,27) for every r > 0.
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Definition A.39. For r > 0, we denote by H"(0,2) the dual space of H"(0,27),
i.e., the space of all linear bounded functionals on H"(0,27).

By Theorem A.22, we can identify H"(0,27) with H"(0,27) by using the inner
product (-, ) in H"(0,27). The following theorems give characterizations in terms
of the Fourier coefficients.

Theorem A.40. Let F € H"(0,21) and define ci := F (exp(ikt)) for k € Z. Then

1/2
|Fllgg— = <2(1+k2)’|ck|2) .

keZ

Conversely, let ¢, € C satisfy

N (1+E) 7" [ex]* < oo.
keZ

Then there exists a bounded linear functional F on H"(0,2m) with F (exp(ikt)) = cx
forallk € Z.

Theorem A.41. Let r > 0. On the space T of all trigonometric polynomials, define
the inner product and norm by

n

(P @) =Y, (1+K) "agby, (A.242)
k=—n
. 2
Ipll = 3, (1+K) " |a?, (A.24b)
k=—n
where . )
p)= 3 aet and qlt)= 3 b,
k=—n k=—n
Then the completion of T with respect to ||-||_, is norm-isomorphic to H"(0,2x).

The isomorphism is given by the extension of
J: T —-H " (0,2m),

where
2m

(Jp)x:= L/x(t)(Cp)(t)dt, x€H (0,2n), pe T, (A.25)
0

and

(Cp)(1) = i age™  for p(t) = i aie™.

k=—n k=—n

Therefore, we identify ||p||_, with ||J p|| - and simply write ||p|| ;.
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Proof. Let

Then

n
p(t)=Y be® eT and x(t)=Y ae™ € H'(0,27).
k==n keZ

n

(Jp)x= " aby. (A.26)
k=—n

Thus, by the Cauchy—Schwarz inequality,

Uil < 3 {0 R a1+ by}

k=—n
) 2, 1/2
< ( > (1+k2)r|dk|2> < > (1+k2)r|bk|2>
k=—n k=—n
= [lxllg- el -,

and thus ||Jp|z-- <||p||_,. Now we take

X0 = 3 {(1+K) B,
k=—n

2 .
Then ||z = [Ipll_, and (Tp)x= [lplf . ie..

(Jp)x
[l g

Pl = = llpll-,-

This yields [Jpll- = ]l

It remains to show that the range of J is dense in H~"(0,2x). Let F € H7(0,2x)
and ¢, = F(exp(ikt)) for k € Z. Define the polynomial p, € T by p,(t) =
i _ncrkexp(ikt). Then

Theorem A.40 yields that

. 0, |kl<n

F—J kt)) = ’ -

(F =T pu) {exp(iks)) {ck, k| > n.
pa—Fljr= Y (14" el — 0, n— . 0

[k|>n

Theorem A.42. (a) For r > s, the Sobolev space H"(0,21) is a dense subspace of
H*(0,27). The inclusion operator from H"(0,2m) into H*(0,21) is compact.
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(b) Forallr>0andx € H(0,21), y € L*(0,27), there holds

2

[x5)3()ds| < 27 [l Il
0

Theorems A.38 and A.41 imply that the space 7 of all trigonometric polynomials
is dense in H"(0,27) for every r € R. Now we study the orthogonal projection and
the interpolation operators with respect to equidistant knots and the 2n-dimensional
space

n—1
T, = { Z aie™ :ay € (C}. (A.27)

Lemma A.43. Let P, : L*(0,21) — 7, C L*(0,21) be the orthogonal projection
operator. Then P, is given by

n—1
(PX)(t) =Y ae™, xeL?0,2m), (A.28)
k=—n
where
i
ay = %/x(s)exp(—iks) ds, keZ,
0

are the Fourier coefficients of x. Furthermore, the following estimate holds:
1 r
[lx — Bux|| s < s x|l forall xe H"(0,2m), (A.29)

where r > s.

Proof. Let

n—1
x(t) = Z ae™ € 12(0,2m) andlet z(r) = 2 ae™ €T,
keZ =

be the right-hand side of (A.28). The orthogonality of exp(ikz) implies that x — z is
orthogonal to 7. This proves that z coincides with P,x. Now let x € H"(0,27). Then

x =Pz < Y, (1K) ||

|k|>n
= Y (1+&2) "9 (1 +-) |ar?
|k|>n

< (L+n2) " xl3 < 0?0 |x7 - O
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Now let#; := j%, j=0,...,2n — 1, be equidistantly chosen points in [0,27]. In-
terpolation of smooth periodic functions by trigonometric polynomials can be found
in numerous books as, for example, in [63]. Interpolation in Sobolev spaces of inte-
ger orders can be found in [39]. We give a different and much simpler proof of the
error estimates that are optimal and hold in Sobolev spaces of fractional order.

Theorem A.44. For every n € N and every 2x-periodic function x € C|0,27), there
exists a unique p, € T, with x(t;) = p,(t;) for all j =0,...,2n— 1. The trigonomet-
ric interpolation operator Q,, : {x € Cl0,2m] : x periodic} — T, has the form

2n—1

Onx =Y, x(tx)Lx
k=0

with Lagrange interpolation basis functions

1 n—1

Li(t) = n

m=-—n

M)k =0,... 2n—1. (A.30)

The interpolation operator Q, has an extension to a bounded operator from
H"(0,2m) into T, C H"(0,27) for all r > % Furthermore, Q, obeys estimates
of the form

C
= @l < —— Il forallx e H'(0,2m), (A31)

where 0 < s <randr > % The constant ¢ depends only on s and r.

Proof. The proof of the first part can be found in, for example, [151]. Let x(¢) =
S ez Amexp(imt). Direct calculation shows that for smooth functions x the interpo-
lation is given by

n—1
(Onx)(t) = Y, aje’"  with
j=-n

~ 12! —ijkm/n :
aj:—z () Jme j=—n,...,n—1.

The connection between the continuous and discrete Fourier coefficients is simply

12)11

~_ imk7 /n—ijkm/n
3= 155 ane
" =0 meZ
2n—1 k
:_zam Z {zm ]77:/11}
mGZ

= 2 Ajt2onl-

Le



A.4 Sobolev Spaces of Periodic Functions 267

It is sufficient to estimate P,x — Q,x because the required estimate holds for x — P,x
by formula (A.29). We have

n—1
(Pix—Qux) (1) = Y, [am— am] it

m=-—n

and thus by the Cauchy—Schwarz inequality

(| Pux — anH%—Iv

2
n—1 n-1
= Z |am _am|2 (1 +m2)s < cn® z zaerZnZ
m=—n m=—n |{£0
2
2 0 r/2 1
<en™ Y, |12 [(1+ (m+2n6)%) " ayion] T
m=—n | {£0 (14 (m+2n0)?)
n—1
1
<cn* 14 (m+2n0)%)" |ap o] .
m;n #ZO( ) lams2n %(1+(m+2n£)2)’
From the obvious estimate
2\ —2r m - —2r
Z(l+(m+2n£)) < (2n) 2(—+€) <cn
040 (Zo\2n
for all |m| < nand n € N, we conclude that
9 n—1 , 5
[Pux — Qullfpe < en®7 % 3 (14 (m+210)%) | a2t
m=—n {0
< en® 7 |lx| 3 =

For real-valued functions, it is more conveniant to study the orthogonal projection
and interpolation in the 2n-dimensional space

n n—1
{Zajcos(th— Y bjsin(jit) : aj,b; ER}.
j=0 =1

In this case, the Lagrange interpolation basis functions L are given by (see [151])

n—1
Li(t) = s {1 +2 2 cosm(t —ty) + cosn(t —tk)} , (A.32)

2n o

k=0,...,2n— 1, and the estimates (A.29) and (A.31) are proven by the same
arguments.
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Theorem A.45. Let r € N and k € C"([0,27] x [0,27]) be 2m-periodic with respect
to both variables. Then the integral operator K, defined by

2r
(Kx)(1) := / k(t,5)x(s)ds, 1€ (0,27), (A33)
0

can be extended to a bounded operator from HP(0,2r) into H"(0,21) for every
—r<p<r

Proof. Letx € L*(0,27x). From

. 2 _ .
@i  Toik(.s) -
E(Kx)(z)_o/ S x(s)ds, j=0,...0m

we conclude from Theorem A.42 that for x € L*(0,27)

d’/
T (Kx)(0)

DIk, )
e

and thus

KX < c1[[Kxller < ealx][ g

for all x € L?>(0,2x). Application of Theorem A.28 yields the assertion because
L%(0,27) is dense in H~"(0,27). O

A.5 Sobolev Spaces on the Unit Disc

Let B = {x € R?: |x| < 1} be the open unit disc with boundary dB. In this section
we consider functions from B into C that we describe by Cartesian coordinates
x = (x1,x2) or by polar coordinates (r, ¢). Functions on the boundary are identified
with 27-periodic functions on R. As in the case of the Sobolev spaces H*(0,27) we
define the Sobolev space H'!(B) by completion.

Definition A.46. The Sobolev space H'(B) is defined as the completion of C*(B)
with respect to the norm

171 a) = \/ [+ [5)[ dx (A349)
B
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We express the norm (A.34) in polar coordinates (7, ¢). The gradient is given in
polar coordinates as

af(r,e)

19 .
Virne) = =51+~ f(r’(p)(p

ro 09

)

where 7 = (Zi’;%) and Q = (’cgisn(p"’) denote the unit vectors. We fix r > 0 and expand

the function f(r,-) (formally) into a Fourier series with respect to ¢:

f(r@) =3, fu(r)e™®

mez
with Fourier coefficients
| 2r
fu(r) = E/f(r,r)e*im’ dt, meZ,
0
that depend on r. Therefore,
af(r,) o af(ne) . i
=Y fi(r)e™?, =i Y fulr)me™®.
> %Z (r) 70 %Z (r)
The norm in H'(B) is given by
1
2 ' m? 2 , 2
£ 17 s = 27 ZZ/ I+ | fn (D)™ + | fn ()| | rdr, (A.35)
me 0
because
2 _|9frno) P 1 |9f(ne) [’
‘Vf(r7(P)| —‘ 9r 2| d¢
and
2n 2
im 2
[ 2 sulr)ene| dgp =21 3, £t
0 meZ meZ

To every function f € C*(B) one can assign the trace f|;5 on dB. We denote this
mapping by 7, thus 7 : C*(B) — C=(dB) is defined as tf = f|;5. The following
result is central.

Theorem A.47 (Trace Theorem). The trace operator T has an extension to a
bounded operator from H'(B) to H'/*(OB) where again H'/>(dB) is identified
with the Sobolev space H1/2(0,277:) of periodic functions (see Definition A.36).
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©: H'(B) — H'/?(0B) is surjective. More precisely, there exists a bounded lin-
ear operator E : H'/*(0B) — H'(B) with 1o E = I on H'/*(dB) (i.e., E is a right

inverse of T).

Proof. Let f € C*(B). Then (see (A.35) and (A.23))

! 2
£l ) =27 X, Kl—k’%) (D) + | (P[] rar,

meZO
||Tf||12ql/2<33) =2r Z V 1+m2|frrl(1)|2'
meZ

We estimate, using the fundamental theorem of calculus and the inequality of
Cauchy and Schwarz,

1
0 = [ Pl )ar
0

1
=2 |fm(r)‘2rdr+2Re Fun(r) o (R dr
/ /

1

1 1
< 2/|fm(r)‘2rdr+2 /|fm(r)‘2r2dr /‘f,’n(r)lzrzdr.
0

0 0

Using the inequality 2ab < a* + b? yields

1
V1 —i—mz‘fm(l)‘z <21 —l—mz/‘fm(r)lzrdr
0
1 1
(1) [P [ 1100 ar
0 0
1 1
< 3(1—|—m2)/|fm(r)|2rdr+/’f,’n(r)|2rdr
0 0

1 ) 1
< 30/ <1+’%> |fm(r)|2rdr+0/|f,’n(r)‘2rdr,
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where we have also used the estimates > < r for r € [0,1] and V14+m? <1+ m2.
By summation we conclude that

||rf||§11/2(93) < 3||f||§11(3) for all f € C*(B). (A.36)

Therefore, the trace operator is bounded with respect to the norms of H'(B) and
H'/2(9B). By the general functional analytic Theorem A.28 the operator has an
extension to a bounded operator from H' (B) into H'/?(dB).

We define the operator E : C*(dB) — C=(B) by

ES)(ro) =Y, fur™e™, re0,1], ¢ €0,27].

mez

Here, again, f,, are the Fourier coefficients of f € C*(dB).
Obviously, (TEf) (@) = Y ez fme™® = f(@); that is, E is a right inverse of 7. It
remains to show the boundedness of E.

1BV ) = 27 2 [(1+ )!f A | fal i ”

meZ

=2 3, ol (g + 1) <28 3 (14 )

mez meZ

< \/527-5 Z ‘fm‘z\/ 14+m?2= \/EHTfH?.]l/Z(aB)'

mez

We used the inequality 1+ |m| < V2v/1+ m2. Therefore, E also possesses an ex-
tension to a bounded operator from H'/(dB) to H'(B). O

Remark. The trace operator is compact when considered as an operator from H' (B)
to L?(dB) because it is the composition of the bounded operator 7 : H'(B) —
H'/2(9B) and the compact embedding j : H'/>(dB) — L*(dB).

We now consider the subspaces
12(9B) = {feLZ(aB) ;/{_) de:O},
B
12(9B) = {f € H'/%(9B) : /a fdt = 0} ,
B

{feH( ):/aBrde:O}.

H, (B)

<o
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Because [;" exp(im@)de = 0 for m # 0 the spaces Hg/2(8B) and H!(B) consist
exactly of the functions with the representations

flo) = Z fmeim(p and
Mme”L
m#0

f(re) = z fm(’”)eim(pa

mez

that satisfy the summation conditions

S V1+mful* < o and

mez
m#0

ZO/IKH’:Z—;) (D)) | S| rdr < e and fo(1) =0,

mez

respectively.
We can define an equivalent norm in the subspace H! (B). This is a consequence
of the following result.

Theorem A.48 (Friedrich’s Inequality). Forall f € H!(B) we have
1£1l28) < V2V All2s)- (A.37)

Proof. Again, we use the representation of the norm in polar coordinates:

A = [ 5 61n(s) ) s
0

= /|fm(s)’2ds+2Re/fm(s)msds
0 0

1 1 1
< [l ds+2.| [l sds | [17)] sds
0 0 0

1 1
< /|fm(5)’2(1+s)ds+/|f,',,(s)‘2sds,
0 0

where we again used 2ab < a® + b? in the last step.
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First let [m| > 1. By 145 < m?/s+m?/s = 2m? /s it is
. 1
2 m 2 2
r!fm(r)‘ §2/s—2|fm(s)| sds—i—/!f,’n(s)! sds,
0 0

and thus by integration

1 1_ 2
/ryf,,,(r)|2dr§2/ <’?—2’fm(S)’2+‘f,/n(s)|2>sds. (A.38)
0 0

We finally consider fp. Itis fo(r) = — frl fo(s)ds because fo(1) =0, thus

|

1
2 2
}fo (1—r) /’fo rds§/|f6(s)| sdsg/}f(/)(s)‘ sds.
r 0
Therefore, (A.38) also holds for m = 0. Summation with respect to m yields the
assertion. a
Remark. Therefore, f + ||Vf||;25 defines an equivalent norm to || - |15 in

H!(B).Indeed, for f € H}(B) it holds by Friedrich’s inequality:
11z ) = 1728y + VA2 ) < 3IVA 225
thus

1
ﬁ\\fllmw) <NVF ) < Il sy forall f € Hy(B). (A.39)

So far, we considered spaces of complex-valued functions. The spaces of real-valued
functions are closed subspaces. In the Fourier representation one has

1, (P) = z fm(r)e*im(p — z f_m(r)eim(p :f(n(p) — z fm(r)eimq)

mez mezZ mez

because f(r, ) = f(r,®). Therefore, f_,, = f,, for all m. All of the theorems remain
valid also for Sobolev spaces of real-valued functions.

A.6 Spectral Theory for Compact Operators in Hilbert Spaces

Definition A.49 (Spectrum). Let X be a normed space and A: X — X be a
linear operator. The spectrum o (A) is defined as the set of (complex) numbers
A such that the operator A — Al does not have a bounded inverse on X. Here,
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I denotes the identity on X. A € 6(A) is called an eigenvalue of A if A— Al is
not one-to-one. If A is an eigenvalue, then the nontrivial elements x of the kernel
N(A=Ad) = {x €X : Ax— Ax =0} are called eigenvectors of A.

This definition makes sense for arbitrary linear operators in normed spaces. For
noncompact operators A it is possible that the operator A — A1 is one-to-one but fails
to be bijective. As an example, we consider X = ¢? and define A by

0, if k=1
Ax)g 1= ’ ’
(Ax)e {xk_h it k>2,
for x = (x;) € /2. Then A = 1 belongs to the spectrum of A but is not an eigenvalue
of A.

Theorem A.50. Let A : X — X be a linear operator.

(a) Let xj € X, j=1,...,n, be a finite set of eigenvectors corresponding to pair-
wise different eigenvalues A; € C. Then {xl, . ,xn} are linearly independent.
If X is a Hilbert space and A is self-adjoint (i.e., A* = A), then all eigenvalues
Aj are real-valued and the corresponding eigenvectors x1,...,X, are pairwise
orthogonal.

(b) Let X be a Hilbert space and A : X — X be self-adjoint. Then

where r(A) = sup{|A| : A € 6(A)} is called the spectral radius of A.

The situation is simpler for compact operators. We collect the most important
results in the following fundamental theorem.

Theorem A.51 (Spectral Theorem for Compact Self-Adjoint Operators). Let
K : X — X be compact and self-adjoint (and K # 0). Then the following hold:

(a) The spectrum consists only of eigenvalues and possibly 0. Every eigenvalue of K
is real-valued. K has at least one but at most a countable number of eigenvalues
with 0 as the only possible accumulation point.

(b) For every eigenvalue A # 0, there exist only finitely many linearly independent
eigenvectors, i.e., the eigenspaces are finite-dimensional. Eigenvectors corre-
sponding to different eigenvalues are orthogonal.

(c) We order the eigenvalues in the form

Ml = || = (A3 = ...
and denote by Pj : X — N (K — A;I) the orthogonal projection onto the

eigenspace corresponding to A;. If there exist only a finite number A1,. .., Ay of
eigenvalues, then
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If there exists an infinite sequence (A;) of eigenvalues, then
K=Y AP,
j=1
where the series converges in the operator norm. Furthermore,

= Amsa]-

‘k_ng
j=1

(d) Let H be the linear span of all of the eigenvectors corresponding to the eigen-
values A; # 0 of K. Then

X =cl(H) & N(K).

Sometimes, part (d) is formulated differently. For a common treatment of the
cases of finitely and infinitely many eigenvalues, we introduce the index set J C N,
where J is finite in the first case and / = N in the second case. For every eigenvalue
Aj, j € J, we choose an orthonormal basis of the corresponding eigenspace N (K —
AjI). Again, let the eigenvalues be ordered in the form

|7L1|Z|)~2‘2M3|2>0

By counting every A; # 0 relative to its multiplicity, we can assign an eigenvector
xj to every eigenvalue A;. Then every x € X possesses an abstract Fourier expansion
of the form

x=x0+ Y, (x,x))x;
jeJ

for some xo € N'(K) and
Kx= 2 Aj (x,xj)xj.
jer
As a corollary, we observe that the set {xj 1jed } of all eigenvectors forms a
complete system in X if K is one-to-one.

The spectral theorem for compact self-adjoint operators has an extension to non
self-adjoint operators K : X — Y. First, we have the following definition.

Definition A.52 (Singular Values). Let X and Y be Hilbert spacesand K : X — Y
be a compact operator with adjoint operator K* : ¥ — X . The square roots [1; = \/l_]
Jj € J, of the eigenvalues A4; of the self-adjoint operator K*K : X — X are called
singular values of K. Here again, J C N could be either finite or J = N.
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Note that every eigenvalue A of K*K is nonnegative because K*Kx = Ax implies
that A (x,x) = (K*Kx,x) = (Kx, Kx) >0,ie,A>0.

Theorem A.53 (Singular Value Decomposition). Let K : X — Y be a linear
compact operator, K* 1 Y — X its adjoint operator, and Uy > U > Uz... >0
the ordered sequence of the positive singular values of K, counted relative to its
multiplicity. Then there exist orthonormal systems (x;j) C X and (y;) C Y with the
following properties:

Kxj=ujy; and K'y;=px; foralljelJ.

The system (lj,x;,y;) is called a singular system for K. Every x € X possesses the
singular value decomposition

x=x0+ z (x,xj)x]
JjeJ
for some xy € N(K) and
Kx= 3 1 (x.x;);.

jer

The following theorem characterizes the range of a compact operator with the
help of a singular system.

Theorem A.54 (Picard). Let K : X — Y be a linear compact operator with
singular system (11j,x;,y;). The equation

Kx=y (A.40)
is solvable if and only if
. 1 2
YEN(K ) and Y — |(y)|” < e (A.41)
Jjes %)
In this case
1
x= — ()
jeJ Hj

is a solution of (A.40).

We note that the solvability conditions (A.41) require a fast decay of the Fourier
coefficients of y with respect to the orthonormal system (y;) in order for the series

al |
Z—2|w/|
=1 Hj
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to converge. Of course, this condition is only necessary for the important case where
there exist infinitely many singular values. As a simple example, we study the fol-
lowing integral operator.

Example A.55. Let K : L*(0,1) — L*(0, 1) be defined by

/x €(0,1), x€ L*(0,1).
0

Then
1

(K*y)(t):/y(s)ds and (K*Kx)( /1 /x(r)dr ds.

t 0

S

The eigenvalue problem K*Kx = Ax is equivalent to

S

/1/ T)dt | ds, te€l0,1].

Differentiating twice, we observe that for A # 0 this is equivalent to the eigenvalue
problem

A" +x=0in(0,1), x(1)=x"(0)=0.

Solving this yields

[2 2j-1 4
xj(t) —Cos—— mt, jeN, and A; T JEN

The singular values ; and the ONS {y; : j € N} are given by

uj:m,JeN, and

/2 . 2j—1
i(t) =4/ —si t, j€N.
yi(t) nsm 7 nt, j €

A.7 The Fréchet Derivative

In this section, we briefly recall some of the most important results for nonlinear
mappings between normed spaces. The notions of continuity and differentiability
carry over in a very natural way.
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Definition A.56. Let X and Y be normed spaces over the field K=RorC,U C X
an open subset, £t € U,and T : X D U — Y be a (possibly nonlinear) mapping.

(a) T is called continuous in £ if for every € > 0 there exists § > 0 such that
|T(x) =T (%)| <& forallx € U with ||x—£|| <8&.

(b) T is called Fréchet differentiable for £ € U if there exists a linear bounded
operator A : X — Y (depending on X) such that

limLHT(ﬁJrh)—T(ﬁ)fAhH =0. (A.42)

h=0 |||
We write 7/ (£) := A. In particular, 7' (£) € L(X,Y).

(c) The mapping T is called continuously Fréchet differentiable for £ € U if T
is Fréchet differentiable in a neighborhhod V of £ and the mapping 77 : V —
L(X,Y) is continuous in £.

Continuity and differentiability of a mapping depend on the norms in X and Y,
in contrast to the finite-dimensional case. If T is differentiable in £, then the linear
bounded mapping A in part (b) of Definition A.56 is unique. Therefore, T’(%£) := A
is well-defined. If T is differentiable in x, then 7T is also continuous in x. In the
finite-dimensional case X = K" and Y = K™, the linear bounded mapping 7’(x) is
given by the Jacobian (with respect to the Cartesian coordinates).

Example A.57 (Integral Operator). Let f : [c,d] X [a,b] x C — C be continuous
and continuously differentiable with respect to the third argument. Let the mapping
T : Cla,b] — Cc,d] be defined by

b
T(x)(t) :== /f(t,s,x(s))ds7 t € [e,d], x € Cla,b].

Then T is continuously Fréchet differentiable with derivative

b
(T'(x)z) (1) :/%f(t,s,x(s))z(s)ds, 1 € [c,d], x,z € Cla,b].

The following theorem collects further properties of the Fréchet derivative.

Theorem A.58. (a) LetT,S:X DU — Y be Fréchet differentiable for x € U. Then
T+ S and AT are also Fréchet differentiable for all A € K and

(T+8)() =T'@W)+5x),  AT)(x) = AT'(x).
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(b) Chainrule:LetT: X DU —V CY andS:Y DV — Z be Fréchet differentiable
forx €U and T (x) € V, respectively. Then ST is also Fréchet differentiable in
x and
(ST) (x) =S'(T(x)) T'(x) € L(X,Z).
—_——
eL(yz) €LXy)
(c) Special case: If T : X — Y is Fréchet differentiable for X € X, then so is Y : K —
Y, defined by y(t) := T (%), t € K, for every pointt € K and y'(1) =T’ (1£)% €
Y. Note that originally ' (1) € L(K,Y). In this case, one identifies the linear
mapping W' (t) : K — Y with its generating element ' (t) €Y.

We recall Banach’s contraction mapping principle.

Theorem A.59 (Contraction Mapping Principle). Let K C X be a closed subset
of the Banach space X and T : X D K — X a (nonlinear) mapping with the properties

(a) T maps K into itself, i.e., T(x) € K for all x € K, and
(b) T is a contraction on K, i.e., there exists ¢ < 1 with

IT(x)=TH)|| <clx—y| foralxyeKkK. (A.43)

Then there exists a unique X € K with T()E) = %. The sequence (x;) C K, defined
by xpy1 = T(x/g), £ =0,1,... converges to X for every xo € K. Furthermore, the
following error estimates hold:

|xes1 =% <c|lxe—%, ¢=0,1,..., (A.44a)
i.e., the sequence converges linearly to X,
Cé
||xg f)?H < —¢ Hx1 —on, (a priori estimate) (A.44Db)
ng —)?H < - erﬂ —Xx¢||, (a posteriori estimate) (A.44¢)
fort=1,2,...

The Newton method for systems of nonlinear equations has a direct analogy
for equations of the form 7'(x) =y, where T : X — Y is a continuously Fréchet
differentiable mapping between Banach spaces X and Y. We formulate a simplified
Newton method and prove local linear convergence. It differs from the ordinary
Newton method not only by replacing the derivative 7’(x¢) by 7”(£) but also by
requiring only the existence of a left inverse.

Theorem A.60 (Simplified Newton Method). Let T : X — Y be continuously
Fréchet differentiable between Banach spaces X and Y. Let V C X be a closed
subspace, €V and §:=T(%) €Y. Let L: Y — V be linear and bounded such that
Lis a left inverse of T'(2) : X — Y onV, i.e, LT'(R)v =v forallv V.
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Then there exist € > 0 such that for any y = T (%) with ¥ € X and H)E —)2” < gthe
following algorithm converges linearly to some X € V:

xo==% xp1=x—L[T(x)—5], £=0,1,2,.... (A.45)
The limit % € V satisfies L|T (%) — ] = 0.

Proof. We apply the contraction mapping principle of the preceding theorem to the
mapping
S(x) == x—L[T(x) =] =L[T'(®)x—T(x) + T(x)]

on some closed ball K [)?, p] C V. We estimate
IS@) = S@I < LI T'(®)(x —2) + T(2) = T(@) |

< [IZI =zl {HT’()?) ~T'()|

@ -TW+ T @2 }

lx =z

and
ISGo) =%l < LI T"(#) (x = %) = T(x) + T ()|
< LT (%) (x = 2) + T(%) = T(x)
+ILINTE) =T@E)
First, we choose p > 0 such that

||L|| ||T/()’C\) _T/(Z)H + ||T(Z)_T(x)+T/(Z)(X—Z)|| < 1
e =2l =2

forall x,z € K [)?, p] . This is possible because T is continuously differentiable.
Next, we choose € > 0 such that

R ]
ILINT (%) =T@] < 2p

for ||x — #|| < e. Then we conclude that

1
1S(x) = S(2)[| < 5 [[x—z|| forallx,z€K[%p],

— N

1
IS(x) — %] < §||x—)2H+§p <p forallxeK|%p].

Application of the contraction mapping principle ends the proof. a

The notion of partial derivatives of mappings T : X X Z — Y is introduced just
as for functions of two scalar variables as the Fréchet derivative of the mappings
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T(,z):X—YforzeZandT(x,-):Z—Y forx € X. We denote the partial deriva-
tives in (x,z) € X X Z by

%T(x,z) €L(X,Y) and %T()@Z) €L(Z)Y).

Theorem A.61 (Implicit Function Theorem). Let T : X X Z — Y be contin-
uously Fréchet differentiable with partial derivatives %T(x,z) € L(X,Y) and
a%T(x, z) € L(Z,Y). Furthermore, let T (£,2) = 0 and (%T()E,ZA) :Z —Y be a norm-
isomorphism. Then there exists a neighborhood U of X and a Fréchet differentiable
function y : U — Z such that y(£) = 2 and T (x,y(x)) = 0 for all x € U. The
Fréchet derivative W' € L(X,Z) is given by

-1
l//(x):—{aizT(x,w(x))] %T(x,l//(x)% xeU.

The following special case is very important. .

LetZ=Y=K;thus7:X xK—Kand T (A1) =0and 5T (%A) # 0. Then
there exists a neighborhood U of £ and a Fréchet differentiable function y : U — K
such that y(£) = A and T (x, y(x)) = 0 forall x € U and

1 P ,
l[/l(x):*ma—x’r(x,l]/(x)) EE(X,K):X, XGU,

where again X’ denotes the dual space of X.






Appendix B
Proofs of the Results of Section 2.7

In this appendix, we give the complete proofs of the theorems and lemmas of
Chap. 2, Sect. 2.7. For the convenience of the reader, we formulate the results again.

Theorem 2.20 (Fletcher—Reeves). Let K : X — Y be a bounded, linear, and in-
Jective operator between Hilbert spaces X and Y. The conjugate gradient method
is well-defined and either stops or produces sequences (xX™), (p™) C X with the
properties

(Vf(x’"), Vf(xj)) =0 forall j#m, (2.36a)
and

(Kp™,Kp’) =0 forall j#m; (2.36b)

that is, the gradients are orthogonal and the directions p™ are K-conjugate. Fur-
thermore, .
(Vf(&'),K*Kp™) =0 forall j <m. (2.36¢)

Proof. First, we note the following identities:

(@) VF(X™ ) = 2K (KX —y) = 2K*(Kx™ — y) — 2t,K*Kp™ = Vf(x™) —
2t, K*Kp™.

B) (p’",Vf(xm“)) ( V(™ )— (Kp'" Kp ) Obythedeﬁnitionoftm

@) tw=5(Vf(x"),p )IIKP’”II_ =3IV / IKp™ | since p"=5V f(x") +
}’m—le_l and (ﬁ)

Now we prove the following identities by induction with respect to m:

() (Vf(x™),Vf(x/)) =0for j=0,...,m—1,
(i) (Kp™,Kpi) =0for j=0,...,m—1.

Let m = 1. Then, using (),

0 (VA V) = [V~ 200 (Kp* KV (")) =0,
which vanishes by (y) since p? = JV£(x?).

283
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(ii) By the definition of p' and identity (o), we conclude that
(kp',kp°) = (p'. K*Kp°)

1|1

= 50 [ (VD) + 260,V /) = V()

= o I -0, 0] =

where we have used (), the definition of pO, and the choice of .
Now we assume the validity of (i) and (ii) for m and show it for m + 1:
(i) For j=0,...m— 1 we conclude that (setting y_; = 0 in the case j = 0)

(VA1) Vi) = (VF(™) = 26K Kp™, V f(x1))
= 2, (Vf(x),K*Kp™)
= —4ty(Kp' —y;1Kp ' Kp™) =0,

where we have used %V f(x/)+yj—1p’~! = p/ and assertion (ii) for m.

For j = m, we conclude that

(V@) Vrem)
= [IVS )P = 26 (VS ("), K"K ")

s LIVEEP G g
VAP =5 e (VKK

by (y). Now we write

(ko K" = (K0 K (59500 + 30071 ))
1

which implies that (Vf(x™!),Vf(x™)) vanishes.
(i) For j=0,...,m— 1, we conclude that, using (),

(kp™ Kp’) = (lVf(f"+l)+%np’”,K*Kp-f>
= L (VA VA)  VEGD)),
41

which vanishes by (i).
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For j = m by (c) and the definition of p™*!, we have

1

(ko k") = 5 (FVI60) 4 1™ VA = V) )
1

= {5 Tswn) 9
+ Y (Pmavf(xm)) —Ym (pm’vf(xm+l))}
————
=3IV

1
= o L IVAEIP = Vi)

by (i) and (). This term vanishes by the definition of };,. Thus we have proven
(1) and (ii) for m + 1 and thus for all m = 1,2,3... To prove (2.36¢c) we write

(Vf(x N,K*Kp™ )= 2(p"'—)/j,]pj71,K*Kpm) =0 forj<m,
and note that we have already shown this in the proof. ad

Theorem 2.21. Let (x™) and (p™) be the sequences of the conjugate gradient
method. Define the space V,, := span{p,...,p™}. Then we have the following
equivalent characterizations of V,,:

Vi = span{Vf(x"),....,Vf(x™)} (2.37a)
= span{p07K*Kp0,...,(K*K)mpo} (2.37b)
form=0,1,... . Furthermore, X" is the minimum of f on V,,_1 for every m > 1.

Proof. Let V,, = span{Vf(x?),...,Vf(x™)}. Then V = V. Assume that we have
already shown that V,,, = V. Slnce prtl = IV f (xm“) + ¥mp™ we conclude that
Vinst = Vipi1. We define the space V,, := span{ p°....(K*'K)"p®}. Then V; = V.
Assume that we have already shown that V,, = Vo Then we conclude that

Pt = KH(KX" T = y) + pp™
= K" (KxX" —y) — tnK*Kp" + Y p™
=p"- '}/mflpmil —tnK*Kp™" + Ymp™ € Vm+1~ (%)

On the other hand, from
(K*K)" ! p® = (K*K) [(K*K)"p"] € (K*K)(Vin)

and K*Kp/ € Vi1 C Vjup1 by (%) for j =0,...,m, we conclude also that V,,41 =
Vm+l~
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Now every x™ lies in V,,_. This is certainly true for m = 1, and if it holds for
m then it holds also for m + 1 since X! = x" —1t,, p" € Vp,. X is the minimum of
f onV,_; if and only if (Kx’” -, Kz) =0 for all z € V,,,_1. By (2.37a), this is the
case if and only if (Vf(x™),Vf(x/)) =0forall j=0,...,m — 1. This holds by the
preceding theorem. a

Lemma 2.22. (a) The polynomial Q, defined by Qpu(¢) = 1 —tP,,—1(t) with Py
from (2.38), minimizes the functional

H(Q) = QKK W|* on {QePy:QO0)=1}
and satisfies
H(Qn) = [[Kx" =]
(b) Fork # ¢, the following orthogonality relation holds:
(Q0Q) = X HUENQL)| 0] =0. (239)
j=1

Ify ¢ span{y,...,yn} forany N € N, then (-,-) defines an inner product on the
space P of all polynomials.

Proof. (a) Let Q € Py, be an arbitrary polynomial with Q(0) = 1. Set P(¢) := (1 _
Q(r))/t and x := P(K*K)K*y = —P(K*K)p € V;,_1. Then

y—Kx=y—KP(K*K)K*y = Q(KK")y.

Thus
H(Q) = |[Kx—y|* > |[Kx" —y|* = H(Qn).

(b) Let k # {. From the identity
1 . &
EVf(xk) = K* (K —y) = = ¥ 1;Qu(1]) (3 7)x,
j=1
we conclude that

0=—(VF(), VF(x")) = (Qx, Q).

Bl—

The properties of the inner product are obvious, except perhaps the definiteness.
If (Qg, Q) =0, then Qk(,uj?)(y,yj) vanishes for all j € N. The assumption on
y implies that (y,y;) # O for infinitely many j. But then the polynomial Q; has
infinitely many zeros /,sz. This implies Q; = 0, which ends the proof. a
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The following lemma is needed for the proof of Theorem 2.24.
Lemma 2.23. Let 0 <m <m(5), x € X° for some 6 >0, and ||x||; < E. Then

E
[~y <+ (1 oyiorve £
| 4050

Before we prove this lemma, we recall some properties of orthogonal functions (see

[233]).

As we saw in Lemma 2.22, the polynomials Q,, are orthogonal with respect to the
inner product (-, -). Therefore, the zeros A im> J=1,...,m, of Q,, are all real and

positive and lie in the interval (0, |[K Hz) By their normalization, Q,, must have the

form
Qult) n( - )

J

Furthermore, the zeros of two subsequent polynomials interlace; that is,

0< A< Mmt < Mam <Aoot < < notmt < o < | K|*.

Finally, from the factorization of Q,,, we see that

d & 1

EQm(I) = _Qm(t)j; )vj,m_t and

d2 m 2 m 1
a2 = l0) (Za ) AT

For 0 <1 < Ay », we conclude that %Qm(t) <0, %Qm(t) >0,and 0 < Qpu(r) <1

For the proof of the lemma and the following theorem, it is convenient to in-
troduce two orthogonal projections. For any € > 0, we denote by L¢ : X — X and
M, : Y — Y the orthogonal projections

Lez = 2 (z,%0)%n, z€X,

uZ<e

Mez:= Y (2,yn)yn, zE€Y.

pi<e
The following estimates are easily checked:

IMeKx|| < Ve | Lex|| and [|(1—Le)x|| < )Kx||

\/—HI Me

forall x € X.
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Proof of the lemma. Let A;,, be the zeros of (@fl. We suppress the dependence on
0. The orthogonality relation (2.39) implies that Q,‘Z is orthogonal to the polynomial
1+ QS (t)/ (A1 m —1t) of degree m — 1; that is,

Z‘u’%@m 'un Qm(nun) | ’yn)|2:0.
— Wi
This implies that
2 Qm nun 2 a2 | ;}’n |2
iy <}L'l m 'LLn

2
2 Qr(zz(our%)zz‘u—”’(ysvyn)‘z

ur%>)['l,m 'u'n B )Lll'm
2
Y Q0]
M%>Al.m
From this, we see that
2 2
[ESE =Sl I D YR Y Ko AV S OS]

“r%éllm #r%>ll,m

2
e S e L

i <;Ll m ,un

= (Dm(ﬂr%)z
*\.,0 2
= [ @nr [
where we have set

)ul,m
)L],m—l‘.

Op(t) = Q) /14 —— = Q3 (1)

lhm—t

Therefore,

Hy5 _ g H < HM,Lmebm (KK*)(® —y) H + HM;LmeDm (KK*)KxH .
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We estimate both terms on the right-hand side separately:

z Dy :u'n |y _}77}"1)|2

2
HM/m,y,,,fbm(KK*)(y‘S —y)H
<)Ll,m

IN

max &, ‘
0<r<Ay m

Z [q)m(‘un)Z’u’%JrZG] 20’ (x,%) |2

I*lr%g)tl,m

2
M2, @n (KK K|

< 119, (1)? 2.
< ogrf?ﬁ,m[ ()] x5

The proof is finished provided we can show that 0 < ®@,,(r) < 1 and

o+l

1

tHGd)i(t) < % forall 0 <t <Ay .
| Q0 (0)]

The first assertion follows from ®@,,(0) = 1, ®,,(4; ,,) =0, and

d 2] _ d A 2 M
a7 (O] = 200 Q) 770+ QY s

1 noo]
=@, (1)? [M _t_zz _t] <0.

Now we set W(t) :=t!7°®,,(t). Then y(0) = w(A;,,) = 0. Let7 € (0,4, ) be the
maximum of ¥ in this interval. Then y’'(f) = 0, and thus by differentiation

(0 + 1)i°®,,(1)? +A"+1d [@,(7)%] = 0;

dt
that is,
m 1 1 R d 1

o+1 2 —~ — —| >t —
[lelj7nz_t )vlm_t‘| ngz’jwm_t

LA Jd s ‘

>ty —=1t|—Q,(0

j=1)‘j»m dt ()

This implies that 7 < (o +1)/| 4Q3(0)|. With y(¢) <7°F! forall ¢ € [0, 21 5], the
assertion follows. O
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Theorem 2.24. Assume that y and y6 do not belong to the linear span of finitely
many y;. Let the sequence ™88 pe constructed by the conjugate gradient method
with stopping rule (2.41) for fixed parameter T > 1. Let x € X° for some ¢ > 0 and
lx|lg < E. Then there exists ¢ > 0 with

e @2 < cao/(@ D g/, (2.43)

Proof. Similar to the analysis of Landweber’s method, we estimate the error by the
sum of two terms: the first converges to zero as 0 — 0 independently of m, and the
second term tends to infinity as m — oo. The role of the norm ||R|| here is played
by | £Q@5,(0)['/2.

First, let 6 and m := m(8) be fixed. Set for abbreviation

d
Sado)|
Choose 0 < € < 1/q <Ay ,,. With
¥ = x—Q)(K'K)x =Pp_ (K"K)K"y,
we conclude that

=] <)

Le(e =) |+ [ = Le) or— )|

< |lLe(x— 1|+ |

Le(z—x"0)|

—H(I—ngy—mﬁ)H

< e +

LePS_ (K*K)K (y=37)|

¥
el v S
+ =5l
1+7
|+

VE

From € <A, ,, and 0 < Qﬁ, (1) <1for0 <t <Ay, we conclude that

0.

< E max [r°2Q5(1)| +5Or£1a<x VIR (1)
<t<¢

0<t<e

0<192Q (1) <e%? for0<t<e.

Furthermore,
1—Q8(t d
0< P8 (1)? = [1-Q%(1)] %() < EQQ(O)‘
—
<1
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for some s € [0, €]. Thus we have proven the basic estimate
m,8 c/2 6 1
Hx—x : HgEe F(147)—=+,/g8 for O<e<-. (2.44)
VE q
€ € (0,1/q) is a free parameter in this expression. We minimize the right-hand side

with respect to €. This gives

lo/2 _ T+148
: c E’

Since we do not know if &, lies in the interval (0, 1/ q), we have to distinguish
between two cases.

CaseI: ¢&.<1/q.Then
\/_< o 1/(oc+1) E 1/(o+1)
\/_* T+1 5

Hx_xm-ﬁH < c§0/ (o) p1/(o+1)

and thus

with constant ¢ > 0, which depends only on ¢ and 7. This case is finished.
Case II: €. > 1/q.In this case, we substitute € = 1/qg in (2.44) and conclude that

‘P xmﬂ’<Eq6ﬂ +(t+2)/gd <Ee’? + (1+2)/g0

T+1 o/(o+1)
< ( = ) 56/(G+1)E1/(6+1)+(T+2)\/§6.

It remains to estimate the quantity g = g, = |%an( 5) (0) | Until now, we have not
used the stopping rule. We will now use this rule to prove the estimate

£\ 2/(0+D)
gm <c (5) (2.45)
for some ¢ > 0, which depends only on ¢ and 7. Analogously to g,,, we define
Gm—1:= |%Q’i(6>7l (0)| By the previous lemma, we already know that
E
6 < [y — KOO <54+ (14 0) VP
m—1

that is,
ot (1+0)HI2E

! T—1 5
We have to prove such an estimate for m instead of m — 1.

d (2.46)
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Choose T > 1 and p* € (0, 1) with

T
—— <7 and T <2.
T-1 1—p*

If gm < gm—1/p", then we are finished by (2.46). Therefore, we assume that g, >
Gm—1/p*. From A, > Aj_1 - forall j=2,...,m, we conclude that

d &1 1ol
frd —_— —_ + m—
’ g A’ A’ ; jM7l )Ll m m=1-
This implies that
Gm—1 <P qm < }ﬁ +P Gm-1;
m
that is,
p*
T T
Finally, we need
L1 <m*1 1 _.p 1
= = =qdm—1=> rus
A2.,m A‘lﬁmfl j=1 Aj,mfl : 1 *P* ll,m

Now we set € := T'Ay ;.. Then

e <T—L 1y <20
1—p* ™ ’

Define the polynomial ¢ € P,,_; by

that is,
[¢(2)] <1 forall0<r<e.

For t > €, we conclude that

t

l‘—llm
e ms 7o
’ /’LLm

llA,m - l1 m
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that is, |
lo(t)] < ﬁ@ﬁ,(t)‘ forallt > &.

Since ¢(0) = 1, we can apply Lemma 2.22. Using the projector M, we conclude
that

08 < |0 — kb < |okr )’

< |Meo kK| + H(I—MEWKK* o

< [Mes® =) + Il + 7 @B x|
_,_/
b3 -swns]
1 T
<S4+ PEL — 5= 5+ (Thi,) " E,
T-1 T-1 ’
since | Mey| = ||[MeKx|| < £°F1/2|x|| ;. Defining ¢ := 7 — 7, we conclude that

3 < (T?Lhm) (o+1)/2 and thus finally

. 2/(c+1)
Qm<_+Qm1<T($) +Gm-1-

Combining this with (2.46) proves (2.45) and ends the proof. a
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