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Preface

Driven by the needs of applications the field of inverse problems has been one
of the fastest growing areas in applied mathematics in the last decades. It is
well known that these problems typically lead to mathematical models that are
ill-posed. This means especially that their solution is unstable under data pertur-
bations.

Numerical methods that can cope with this problem are so-called regularization
methods. The analysis of such methods for linear problems is relatively complete.
The theory for nonlinear problems is developed to a much lesser extent. Several
results on the well-known Tikhonov regularization and some results on Landweber
iteration can be found in [45].

In the last years, more emphasis was put on the investigation of iterative regu-
larization methods. It turned out that they are an attractive alternative to Tikhonov
regularization especially for large scale nonlinear inverse problems. This book is
devoted to the convergence and convergence rates analysis of iterative regulariza-
tion methods like Landweber iteration and Newton type methods derived during
the last ten years. In comparison to the recent monograph by Bakushinsky and
Kokurin [5] we not only use standard smoothness conditions but also structural
conditions on the equations under consideration and demonstrate, when they com-
pensate for each other.

For aspects not covered by this book we refer the reader to other references. For
instance we only give a deterministic but not a statistical error analysis; for the
latter cf., e.g., [82, 155]. We also do not put our emphasis on specially designed
computational methods for certain inverse problems such as parameter identifi-
cation in PDEs of different types or inverse scattering. Here, we wish to refer
the interested reader to corresponding references in [45] and the large number of
recent publications on this subject.

We thank Herbert Egger (Linz), Markus Grasmair, Klaus Frick, Florian Frühauf,
Richard Kowar, Frank Lenzen (Innsbruck), and Tom Lahmer (Erlangen) for their
careful reading of parts of a preliminary draft of this book.

Each of us cooperated with several coauthors, who definitely influenced our
understanding of the field. Special thanks are due to them.

We gratefully acknowledge financial support from the Austrian Fonds zur
Förderung der wissenschaftlichen Forschung (projects Y-123INF, P15617, FSP
S9203, S9207 and T7-TEC) and the German Forschungsgemeinschaft (project
Ka 1778/1).

Barbara Kaltenbacher (Blaschke), Andreas Neubauer, and Otmar Scherzer
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1 Introduction

Various feature articles concerned with Inverse Problems have been published re-
cently in journals with high impact: in his article “In industry seeing is believing”
West [159] describes the use of tomographical methods, such as X-ray, electro-
magnetic, and ultrasound tomography, for industrial applications like monitoring
oil pipelines.

In their feature article “Mathematical methods in Imaging” Hero and Krim [70]
discuss stochastic approaches for imaging. This article contains very early refer-
ences from the 19th century to a problem of image warping which is a nonlinear
inverse problem.

A feature story by Kowalenko [100] “Saving lives, one land mine at a time”
describes recent research for land mine detection, where sensoring techniques like
ground penetration radar and electromagnetic induction are used.

Another area of applications is medical imaging treated by Gould in “The rise
and rise of medical imaging” [51] and by Vonderheid in “Seeing the invisible”
[156].

It is a fact that many inverse problems are ill-posed in the sense that noise in
measurement data may lead to significant misinterpretations of the solution. The
ill-posedness can be handled either by incorporating a-priori information via the
use of transformations, which stabilizes the problem, or by using appropriate nu-
merical methods, called regularization techniques.

Typically, inverse problems are classified as linear or nonlinear. A classical ex-
ample of a linear problem is computerized tomography (cf., e.g., Natterer [121]).
The Radon transform, which is the basis of CT, has first been studied by Radon
[133] in 1917 and until the first realization of a tomograph a huge amount of math-
ematical results have been developed. We refer to Webb [158] for a history of
the development of CT scanners. Nowadays linear ill-posed problems still play
an important role in inverse problems: we mention for instance the problem of
thermoacoustical tomography (cf. [104, 105, 106, 160]).

Nonlinear inverse problems appear in a variety of natural models such as impe-
dance tomography (cf., e.g., Borcea [12]) but also emerge, when for instance ge-
ometrical restrictions on the solution to be recovered are imposed: for highly un-
stable problems, it is advisable to constrain the degrees of freedom in the recon-
struction according to physical principles, and for instance only recover the shapes
of inclusions. Although the underlying problem may be linear (as for the inver-
sion of the Radon transform) the geometrical constraints may make the problem
nonlinear.
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Due to rapidly evolving innovative processes in engineering and business, more
and more new nonlinear inverse problems arise. However, in contrast to computer-
ized tomography, a deep understanding of mathematical and physical aspects that
would be necessary for deriving problem specific solution approaches can often
not be gained for these new problems due to the lack of time. Therefore, one needs
algorithms that can be used to solve inverse problems in their general formulation
as nonlinear operator equations. It is the topic of this book to investigate such
algorithms and provide a rigorous stability, convergence and convergence rates
analysis.

1.1 Regularization methods

In this book, we treat problems given as nonlinear operator equations

F (x) = y , (1.1)

where F : D(F ) → Y with domain D(F ) ⊂ X . We restrict our attention to
Hilbert spaces X and Y with inner products 〈 · , · 〉 and norms ‖ · ‖ , respectively;
they can always be identified from the context in which they appear. Moreover, ⊂
always denotes subset or equal, i.e., A ⊂ A.

Taking into account that in practice the data y are almost never available pre-
cisely, we denote the measured perturbed data by yδ and assume that these noisy
data satisfy

‖yδ − y‖ ≤ δ . (1.2)

Problems of the form (1.1) that we have in mind are ill-posed in the sense that
the solutions of (1.1) do not depend continuously on the data. Therefore, special
methods, so-called regularization methods, are needed to get stable approxima-
tions of solutions of (1.1).

The probably most well-known method for solving nonlinear ill-posed problems
is Tikhonov regularization: it consists in approximating a solution of (1.1) by a
minimizer xδ

α of the functional

x �→ ‖F (x) − yδ‖2 + α‖x− x0‖2, (1.3)

where x0 ∈ X typically unifies all available a-priori information on the solution
and α is a positive parameter.
Tikhonov regularization has been investigated extensively both for the solution

of linear as well as nonlinear ill-posed problems (cf. [45] for a survey on contin-
uous regularization methods and references therein). Under mild assumptions on
the operator F it can be shown that, for α > 0 fixed, the minimizers xδ

α of the
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functional (1.3) are stable with respect to perturbations of the data y. Moreover, if
(1.1) is solvable and if the regularization parameter α := α(δ) satisfies that α→ 0
and that δ2/α → 0 as δ → 0, then xδ

α converges to a solution of (1.1). In gen-
eral, this convergence can be arbitrarily slow. Convergence rates results have been
proven if F is Fréchet-differentiable and if the x0-minimum-norm solution of (1.1)
(denoted by x†) satisfies

x† − x0 = (F ′(x†)∗F ′(x†))μv

with 1/2 ≤ μ ≤ 1 and ‖v‖ sufficiently small. If α is properly chosen in depen-
dence on the noise level δ then the rate

‖xδ
α − x†‖ = O

(
δ

2μ
2μ+1

)
may be achieved.

1.2 Iterative regularization methods

The minimization of the Tikhonov functional for nonlinear ill-posed problems is
usually realized via iterative methods. Since for linear ill-posed problems iterative
regularization methods (see [45]) are an attractive alternative to Tikhonov regular-
ization, we are interested in the regularization properties of iterative methods when
applied to nonlinear problems.

In this book we concentrate on the numerical solution of (1.1) with iterative
techniques of the form

xδ
k+1 = xδ

k +Gk(xδ
k, y

δ) , k ∈ N ,

for various choices of Gk. It turns out that under certain conditions the iteration
scheme combined with an appropriate stopping criterion yields stable approxima-
tions of a solution of (1.1). The conditions for obtaining convergence and con-
vergence rates results are more complicated than the ones needed in the analysis
of Tikhonov regularization. This is due to the fact that the standard analysis of
Tikhonov regularization does not incorporate a particular algorithm for finding the
global minimizers. However, it is a-priori not guaranteed that the regularized so-
lutions can be calculated with a convergent numerical algorithm that is not trapped
in a local minimum. An analysis of convexity of the Tikhonov functional, guar-
anteeing global convergence of most numerical methods, has been performed by
Chavent and Kunisch [27, 28, 29]. It has been pointed out in [66] that the condi-
tions needed by Chavent and Kunisch and those necessary to prove convergence
of iterative techniques are closely related.
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For a linear problem Kx = y, where K is a linear operator between Hilbert
spaces, many iterative methods for approximating K†y (here K† denotes the
Moore–Penrose inverse, cf. Nashed [117]) are based on a transformation of the
normal equation into an equivalent fixed point equation like, e.g.,

x = x+K∗(y −Kx) . (1.4)

Since K∗(y −Kx) is the direction of the negative gradient of the quadratic func-
tional

‖y −Kx‖2,

the appropriate fixed point equation for nonlinear problems is given by

x = φ(x) := x+ F ′(x)∗(y − F (x)) (1.5)

assuming that the nonlinear operator F is differentiable.
For well-posed problems convergence of iterative schemes is typically proven

by fixed point arguments using contraction properties of the fixed point operator.
This is true for instance for descent algorithms and Newton type methods. For
ill-posed problems the situation is different, since there the operator φ is no con-
traction. The convergence theory for well-posed problems can be generalized to
nonexpansive operators φ, i.e.,

‖φ(x) − φ(x̃)‖ ≤ ‖x− x̃‖, x, x̃ ∈ D(φ) .

Iterative methods for approximating fixed points of such operators have been con-
sidered in [3, 4, 16, 60, 130], to name just a few. In most of these references the
major emphasis was put on a constructive proof of existence of fixed points of φ;
Bakushinskii and Goncharskii [4] (see also [3, 5]) also considered the regularizing
properties of such iterative schemes.

We believe that in many practical examples it is almost impossible to check an-
alytically whether the operator φ is nonexpansive or not. Therefore, we replace the
nonexpansivity of φ by local properties that are easier to verify and that guarantee
at least local convergence of the iteration methods.

In the next two chapters we deal with the classical Landweber iteration and
some modifications of it. In Chapter 4 we treat Newton type methods and in Chap-
ter 5 multilevel methods. In Chapter 6 we discuss level set methods for inverse
problems and how they can be realized via iterative regularization techniques. In
Chapter 7 we present two numerical applications where we compare the perfo-
mance of different iteration methods discussed in this book. Finally, in the last
chapter we give comments on some other iterative regularization approaches that
are not covered in this book.
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As mentioned in Section 1.2, most iterative methods for linear ill-posed problems
are based on the fixed point equation (1.4). In 1951, Landweber [110] proved
strong convergence of the method of successive approximations applied to (1.4)
for linear compact operators. An extensive study of this method including conver-
gence rates results can be found, e.g., in [45, Section 6.1].

If we apply the method of successive approximations to the fixed point equation
(1.5), we obtain a natural extension to nonlinear problems. Assuming throughout
this chapter that F is a map between Hilbert spaces X and Y , and that F has a
continuous Fréchet-derivative F ′(·), the nonlinear Landweber iteration is defined
via

xδ
k+1 = xδ

k + F ′(xδ
k)

∗(yδ − F (xδ
k)) , k ∈ N0 , (2.1)

where yδ are noisy data satisfying (1.2). By xδ
0 = x0 we denote an initial guess

which may incorporate a-priori knowledge of an exact solution. If the Landweber
iteration is applied to exact data, i.e., using y instead of yδ in (2.1), then we write
xk instead of xδ

k.
In case of noisy data, the iteration procedure has to be combined with a stopping

rule in order to act as a regularization method. We will employ the discrepancy
principle, i.e., the iteration is stopped after k∗ = k∗(δ, yδ) steps with

‖yδ − F (xδ
k∗)‖ ≤ τδ < ‖yδ − F (xδ

k)‖, 0 ≤ k < k∗ , (2.2)

where τ is an appropriately chosen positive number.
We mention that Morozov’s discrepancy principle [116] – with τ > 1 – has

been applied successfully by Vainikko [152] to the regularization of linear ill-posed
problems via Landweber iteration. In [34], Defrise and De Mol used a different
technique to study the stopping rule (2.2) for τ > 2.

The results on convergence and convergence rates presented in the next sections
were established in [67].

2.1 Basic conditions

For nonlinear problems, iteration methods like (2.1) will in general not converge
globally. We are able to prove local convergence if we impose some conditions on
F .
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As in the linear case, the Landweber iteration can only converge if problem (1.1)
is properly scaled. For our analysis we assume that

‖F ′(x)‖ ≤ 1 , x ∈ B2ρ(x0) ⊂ D(F ) , (2.3)

where B2ρ(x0) denotes a closed ball of radius 2ρ around x0. Of course, instead
of scaling the equation, in (2.1) one could also add a relaxation paramater to
F ′(xδ

k)
∗(yδ − F (xδ

k)).
In addition to this scaling property, we need the following local condition:

‖F (x) − F (x̃) − F ′(x)(x− x̃)‖ ≤ η‖F (x) − F (x̃)‖, η < 1
2 ,

x, x̃ ∈ B2ρ(x0) ⊂ D(F ) .
(2.4)

Both conditions are strong enough to ensure local convergence to a solution of
(1.1) if equation (1.1) is solvable in Bρ(x0). They also guarantee that all iterates
xδ

k, 0 ≤ k ≤ k∗, remain in D(F ), which makes the Landweber iteration well
defined. Otherwise it would be necessary to project the iterates onto D(F ) (cf.,
e.g., Vasin [154] and Eicke [43]).

From (2.4) it follows immediately with the triangle inequality that

1
1 + η

‖F ′(x)(x̃− x)‖ ≤ ‖F (x̃) − F (x)‖ ≤ 1
1 − η

‖F ′(x)(x̃ − x)‖ (2.5)

for all x, x̃ ∈ B2ρ(x0). Thus, condition (2.4) seems to be rather restrictive. How-
ever, the condition is quite natural as the following argument shows: if F ′(·) is
Lipschitz continuous and x, x̃ ∈ D(F ), then the error bound

‖F (x̃) − F (x) − F ′(x)(x̃− x)‖ ≤ c‖x̃ − x‖2 (2.6)

holds for the Taylor approximation of F . For ill-posed problems, however, it turns
out that this estimate carries too little information about the local behaviour of
F around x to draw conclusions about convergence of the nonlinear Landweber
iteration, since the left hand side of (2.6) can be much smaller than the right hand
side for certain pairs of points x̃ and x, whatever close to each other they are.
For example, fix x ∈ D(F ), and assume that F is weakly closed and compact.
Then F ′(x) is compact, and hence, for every sequence {x̃n} with x̃n ∈ D(F ),
‖x̃n − x‖ = ε for all n ∈ N, and x̃n ⇀ x as n → ∞, the left hand side of (2.6)
goes to zero as n→ ∞ whereas the right hand side remains cε2 for all n.

For several examples one can even prove the stronger condition

‖F (x) − F (x̃) − F ′(x)(x− x̃)‖ ≤ c‖x − x̃‖ ‖F (x) − F (x̃)‖. (2.7)

Provided ‖x− x̃‖ is sufficiently small, this implies condition (2.4).
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To prove local convergence, we will always assume that the equation F (x) = y
is solvable in Bρ(x0). Note that then (2.5) even implies the existence of a unique
solution of minimal distance to x0. This so-called x0-minimum-norm solution will
be denoted by x† (compare [45]). We show the following general result:

Proposition 2.1 Let ρ, ε > 0 be such that

‖F (x) − F (x̃) − F ′(x)(x− x̃)‖ ≤ c(x, x̃)‖F (x) − F (x̃)‖,
x, x̃ ∈ Bρ(x0) ⊂ D(F ) ,

(2.8)

for some c(x, x̃) ≥ 0, where c(x, x̃) < 1 if ‖x− x̃‖ ≤ ε.

(i) Then for all x ∈ Bρ(x0)

Mx := {x̃ ∈ Bρ(x0) : F (x̃) = F (x)} = x+ N (F ′(x)) ∩ Bρ(x0)

and N (F ′(x)) = N (F ′(x̃)) for all x̃ ∈Mx. Moreover,

N (F ′(x)) ⊃ {t(x̃− x) : x̃ ∈Mx, t ∈ R},

where instead of ⊃ equality holds if x ∈
◦
Bρ(x0).

(ii) If F (x) = y is solvable in Bρ(x0), then a unique x0-minimum-norm solution
exists. It is characterized as the solution x† of F (x) = y in Bρ(x0) satisfying
the condition

x† − x0 ∈ N (F ′(x†))⊥. (2.9)

Proof. Let x, x̃ ∈ Bρ(x0) with x �= x̃ and F (x) = F (x̃). Then (2.8) implies that
x̃−x ∈ N (F ′(x)). If we set xt := x+t(x̃−x), t ∈ [0, 1], then xt−x ∈ N (F ′(x))
and again by (2.8) we obtain that F (xt) = F (x) if t ≤ t := ε/‖x̃−x‖ . Moreover,
x̃− x ∈ N (F ′(xt)). If t < 1, we have to repeat this procedure with x replaced by
xt. After finitely many steps it then follows that

F (xt) = F (x) = F (x̃) and x̃− x ∈ N (F ′(xt)) for all t ∈ [0, 1] . (2.10)

Let now h ∈ N (F ′(x)). Then there obviously exist t �= 0 and s ∈ R such that
xt,s := x+ th + s(x̃− x) satisfies xt,s ∈ Bρ(x0) ∩ Bε(x). Now (2.8) and (2.10)
imply that F (xt,s) = F (x) = F (x̃) and that xt,s − x̃ = th + (s − 1)(x̃ − x) ∈
N (F ′(x̃)). Thus, (2.10) yields that h ∈ N (F ′(x̃)). Changing roles of x and x̃
shows that

N (F ′(x)) = N (F ′(x̃)) . (2.11)

On the other hand, if h ∈ N (F ′(x)) is such that xt,0 ∈ Bρ(x0) for some t �= 0,
then it follows as above that F (xt,0) = F (x) for all t ∈ R with xt,0 ∈ Bρ(x0).
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This together with (2.10) and (2.11) implies all assertions of (i) noting that for

x ∈
◦
Bρ(x0) and h ∈ N (F ′(x)) there always exists a t �= 0 such that xt,0 ∈ Bρ(x0).

We will now turn to the assertions in (ii) and assume that F (x) = y is solvable
in Bρ(x0). Then it follows with (i) that

M := {x ∈ Bρ(x0) : F (x) = y}

is not empty, bounded, closed, and convex. Thus, M is weakly compact. Since the
norm is weakly lower semicontinuous, an x0-minimum-norm solution exists. By
the convexity of M , the x0-minimum-norm solution is unique and will be denoted
by x†.

Let h ∈ N (F ′(x†)) and xt := x† + th. Then it follows from above that
F (xt) = F (x†) for all t ∈ R with xt ∈ Bρ(x0). Therefore,

‖xt − x0‖2 = ‖x† − x0‖2 + t2‖h‖2 + 2t〈x† − x0, h 〉 > ‖x† − x0‖2 if t �= 0

and hence 〈x† − x0, h 〉 = 0 if t �= 0 exists with xt ∈ Bρ(x0). If xt /∈ Bρ(x0) for
all t �= 0, then trivially 〈x† − x0, h 〉 = 0. Thus, x† − x0 ∈ N (F ′(x†))⊥.

Let us now assume that x† ∈ M satisfies (2.9) and that x∗ ∈ M with x∗ �= x†.
Then (2.9) and (2.10) imply that

‖x∗ − x0‖2 = ‖x∗ − x†‖2 + ‖x† − x0‖2 + 2〈x∗ − x†, x† − x0 〉
= ‖x∗ − x†‖2 + ‖x† − x0‖2 > ‖x† − x0‖2.

Thus, x† is the unique x0-minimum-norm solution. �

If F (x) = y is solvable in Bρ(x0) but a condition like (2.8) is not satisfied,
then at least existence (but no uniqueness) of an x0-minimum-norm solution is
guaranteed provided that F is weakly sequentially closed (see [45, Chapter 10]).

2.2 Convergence of the Landweber iteration

Before we turn to a convergence analysis of the nonlinear Landweber iteration we
want to emphasize that for fixed iteration index k the iterate xδ

k depends continu-
ously on the data yδ, since xδ

k is the result of a combination of continuous oper-
ations. This will be an important point in our analysis below; similar arguments
were used for a general theory developed by Alifanov and Rumjancev [2].

To begin with, we formulate the following monotonicity property that gives us
a clue how to choose the number τ in the stopping rule (2.2).
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Proposition 2.2 Assume that the conditions (2.3) and (2.4) hold and that the equa-
tion F (x) = y has a solution x∗ ∈ Bρ(x0). If xδ

k ∈ Bρ(x∗), a sufficient condition
for xδ

k+1 to be a better approximation of x∗ than x
δ
k is that

‖yδ − F (xδ
k)‖ > 2

1 + η

1 − 2η
δ . (2.12)

Moreover, it then holds that xδ
k, x

δ
k+1 ∈ Bρ(x∗) ⊂ B2ρ(x0).

Proof. Let us assume that xδ
k ∈ Bρ(x∗). Then, due to the triangle inequality,

x∗, xδ
k ∈ B2ρ(x0). Hence, (2.3) and (2.4) are applicable and we obtain together

with definition (2.1) and (1.2) that

‖xδ
k+1 − x∗‖2 − ‖xδ

k − x∗‖2

= 2〈xδ
k+1 − xδ

k, x
δ
k − x∗ 〉 + ‖xδ

k+1 − xδ
k‖2

= 2〈 yδ − F (xδ
k), F

′(xδ
k)(x

δ
k − x∗) 〉 + ‖F ′(xδ

k)
∗(yδ − F (xδ

k))‖2

≤ 2〈 yδ − F (xδ
k), y

δ − F (xδ
k) − F ′(xδ

k)(x∗ − xδ
k) 〉 − ‖yδ − F (xδ

k)‖2

≤ ‖yδ − F (xδ
k)‖(2δ + 2η‖y − F (xδ

k)‖ − ‖yδ − F (xδ
k)‖)

≤ ‖yδ − F (xδ
k)‖(2(1 + η)δ − (1 − 2η)‖yδ − F (xδ

k)‖) . (2.13)

The assertions now follow since the right hand side is negative if (2.12) holds. �

In view of this proposition, the number τ in the stopping rule (2.2) should be
chosen subject to the following constraint depending on η, with η as in (2.4):

τ > 2
1 + η

1 − 2η
> 2 . (2.14)

From the proof of Proposition 2.2 we can easily extract an inequality that guaran-
tees that the stopping index k∗ in (2.2) is finite and hence well defined.

Corollary 2.3 Let the assumptions of Proposition 2.2 hold and let k∗ be chosen
according to the stopping rule (2.2), (2.14). Then

k∗(τδ)2 <

k∗−1∑
k=0

‖yδ − F (xδ
k)‖2 ≤ τ

(1 − 2η)τ − 2(1 + η)
‖x0 − x∗‖2. (2.15)

In particular, if yδ = y (i.e., if δ = 0), then

∞∑
k=0

‖y − F (xk)‖2 <∞ . (2.16)
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Proof. Since xδ
0 = x0 ∈ Bρ(x∗), it follows by induction that Proposition 2.2 is

applicable for all 0 ≤ k < k∗. From (2.13) we then conclude that

‖xδ
k+1 − x∗‖2 − ‖xδ

k − x∗‖2 ≤ ‖yδ − F (xδ
k)‖2(2τ−1(1 + η) + 2η − 1) .

Adding up these inequalities for k from 0 through k∗ − 1, we obtain

(1 − 2η − 2τ−1(1 + η))
k∗−1∑
k=0

‖yδ − F (xδ
k)‖2 ≤ ‖x0 − x∗‖2 − ‖xδ

k∗ − x∗‖2

which together with (2.2) yields (2.15). Obviously, if δ = 0 then k∗ may be
any positive integer in (2.15) and τ may be chosen arbitrarily large yielding the
estimate ∞∑

k=0

‖y − F (xk)‖2 ≤ 1
(1 − 2η)

‖x0 − x∗‖2.

�

Note that (2.16) implies that, if Landweber iteration is run with precise data
y = yδ, then the residual norms of the iterates tend to zero as k → ∞. That is, if
the iteration converges, then the limit is necessarily a solution of F (x) = y. We
will prove this convergence in the next theorem.

Theorem 2.4 Assume that the conditions (2.3) and (2.4) hold and that F (x) = y
is solvable in Bρ(x0). Then the nonlinear Landweber iteration applied to exact
data y converges to a solution of F (x) = y. If N (F ′(x†)) ⊂ N (F ′(x)) for all
x ∈ Bρ(x†), then xk converges to x† as k → ∞.

Proof. We know from Section 2.1 that the unique x0-minimum-norm solution, x†,
exists in Bρ(x0). Let

ek := xk − x† ,

then Proposition 2.2 implies that ‖ek‖ monotonically decreases to some ε ≥ 0.
We are going to show that {ek} is a Cauchy sequence. Given j ≥ k we choose
some integer l between k and j with

‖y − F (xl)‖ ≤ ‖y − F (xi)‖ for all k ≤ i ≤ j . (2.17)

We have
‖ej − ek‖ ≤ ‖ej − el‖ + ‖el − ek‖ (2.18)

and
‖ej − el‖2 = 2〈 el − ej , el 〉 + ‖ej‖2 − ‖el‖2,
‖el − ek‖2 = 2〈 el − ek, el 〉 + ‖ek‖2 − ‖el‖2.

(2.19)
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For k → ∞, the last two terms on each of the right hand sides of (2.19) converge
to ε2 − ε2 = 0. We now apply (2.1) and (2.4) to show that 〈 el − ej , el 〉 also tends
to zero as k → ∞ :

|〈 el − ej, el 〉| =
∣∣∣ j−1∑

i=l

〈F ′(xi)∗(y − F (xi)), el 〉
∣∣∣

≤
j−1∑
i=l

|〈 y − F (xi), F ′(xi)(xl − x†) 〉|

≤
j−1∑
i=l

‖y − F (xi)‖ ‖F ′(xi)(xl − xi + xi − x†)‖

≤
j−1∑
i=l

‖y − F (xi)‖
(
‖y − F (xi) − F ′(xi)(x† − xi)‖

+ ‖y − F (xl)‖ + ‖F (xi) − F (xl) − F ′(xi)(xi − xl)‖
)

≤ (1 + η)
j−1∑
i=l

‖y − F (xi)‖ ‖y − F (xl)‖ + 2η
j−1∑
i=l

‖y − F (xi)‖2

≤ (1 + 3η)
j−1∑
i=l

‖y − F (xi)‖2,

where we have used (2.17) to obtain the last inequality. Similarly, one can show
that

|〈 el − ek, el 〉| ≤ (1 + 3η)
l−1∑
i=k

‖y − F (xi)‖2.

With these estimates it follows from (2.16) that the right hand sides of (2.19) go
to zero as k → ∞. Thus, it follows with (2.18) that {ek} and hence also {xk}
are Cauchy sequences. Finally, in view of the remark following Corollary 2.3, the
limit of xk as k → ∞ must be a solution of F (x) = y.

If N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ Bρ(x†), then by the definition (2.1) of
the iterates

xk+1 − xk ∈ R(F ′(xk)∗) ⊂ N (F ′(xk))⊥ ⊂ N (F ′(x†))⊥

and hence
xk − x0 ∈ N (F ′(x†))⊥ for all k ∈ N .

Therefore, this then also holds for the limit of xk. Since x† is the unique solution
for which this condition holds (cf. (2.9)), this proves that xk → x† as k → ∞. �
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We mention that the proof of xk to be a Cauchy sequence is similar to an argu-
ment by McCormick and Rodrigue [114], that they have applied to prove conver-
gence of the method of steepest descent for linear problems.

Remark 2.5 We emphasize that, in general, the limit of the Landweber iterates is
no x0-minimum-norm solution. However, since the monotonicity result of Propo-
sition 2.2 holds for every solution, the limit of xk has to be at least close to x†. As
can be seen below, it has to be the closer the larger ρ can be chosen.

ρ

2ρ

x0
x†

x† + N (F ′(x†))

�����

The sketch on the left shows the initial
element x0, the x0-minimum-norm so-
lution x†, the subset x† + N (F ′(x†))
and in bold the region, where the limit
of the iterates xk can be.

It is well known that, if yδ does not belong to the range of F , then the iterates
xδ

k of (2.1) cannot converge but still allow a stable approximation of a solution of
F (x) = y provided the iteration is stopped after k∗ steps. The next result shows
that the stopping rule (2.2), (2.14) renders the Landweber iteration a regularization
method.

Theorem 2.6 Let the assumptions of Theorem 2.4 hold and let k∗ = k∗(δ, yδ) be
chosen according to the stopping rule (2.2), (2.14). Then the Landweber iterates
xδ

k∗ converge to a solution of F (x) = y. If N (F ′(x†)) ⊂ N (F ′(x)) for all
x ∈ Bρ(x†), then xδ

k∗ converges to x
† as δ → 0.

Proof. Let x∗ be the limit of the Landweber iteration with precise data y and let
{δn} be a sequence converging to zero as n → ∞. Denote by yn := yδn a corre-
sponding sequence of perturbed data, and by kn = k∗(δn, yn) the stopping index
determined from the discrepancy principle for the Landweber iteration applied to
the pair (δn, yn).

Assume first that k is a finite accumulation point of {kn}. Without loss of
generality, we can assume that kn = k for all n ∈ N. Thus, from the definition of
kn it follows that

‖yn − F (xδn
k )‖ ≤ τδn . (2.20)
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As k is fixed, xδ
k depends continuously on yδ, and hence, if we go to the limit

n→ ∞ in (2.20), we obtain

xδn
k → xk , F (xδn

k ) → F (xk) = y as n→ ∞ .

In other words, the kth iterate of the Landweber iteration with precise data is a
solution of F (x) = y, and hence, the iteration terminates with x∗ = xk, and
xδn

kn
→ x∗ for this subsequence δn → 0.

It remains to consider the case where kn → ∞ as n → ∞. Then, for kn > k
Proposition 2.2 yields

‖xδn
kn

− x∗‖ ≤ ‖xδn
k − x∗‖ ≤ ‖xδn

k − xk‖ + ‖xk − x∗‖. (2.21)

Given ε > 0 it follows from Theorem 2.4 that we can fix some k = k(ε) so
large that the second term on the right hand side of (2.21) is smaller than ε/2.
Because of the stability of the nonlinear Landweber iteration we also have that
‖xδn

k − xk‖ < ε/2 for all n > n(ε, k), showing that the left hand side of (2.21)
is smaller than ε for n sufficiently large (so that kn > k). Thus, xδn

kn
→ x∗ as

n→ ∞. �

2.3 Convergence rates

It is well known that, under the general assumptions of the previous section, the
rate of convergence of xk → x∗ as k → ∞ (with precise data) or xδ

k∗ → x∗ as
δ → 0 (with perturbed data) will, in general, be arbitrarily slow. For linear ill-
posed problems Kx = y convergence rates are obtained if the following source
conditions are satisfied (cf. [45]):

x† − x0 = (K∗K)μv , μ > 0 , v ∈ N (K)⊥.

For nonlinear problems, the corresponding condition is given by (cf. [45])

x† − x0 = (F ′(x†)∗F ′(x†))μv , v ∈ N (F ′(x†))⊥. (2.22)

In many examples, this condition implies a certain smoothness of x†−x0 if μ > 0.
In contrast to Tikhonov regularization, assumption (2.22) (with ‖v‖ sufficiently

small) is not enough to obtain convergence rates for Landweber iteration. In [67]
rates were proven under the additional assumption that F satisfies

F ′(x) = RxF
′(x†) and ‖Rx − I‖ ≤ c‖x− x†‖, x ∈ B2ρ(x0) , (2.23)

where {Rx : x ∈ B2ρ(x0)} is a family of bounded linear operators Rx : Y → Y
and c is a positive constant.
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Unfortunately, the conditions above are not always satisfied (see [67, Exam-
ple 4.3]). To enlarge the applicability of the results, in this section we consider
instead of (2.1) the following slightly modified iteration method,

xδ
k+1 = xδ

k + ωGδ(xδ
k)

∗(yδ − F (xδ
k)) , k ∈ N0 , (2.24)

where, as above, xδ
0 = x0 is an initial guess, Gδ(x) := G(x, yδ), and G is a

continuous operator mapping D(F )×Y into L(X ,Y). The iteration will again be
stopped according to the discrepancy principle (2.2).

Another modification were the operator F is approximated by a sequence of
operators Fk that are possibly easier to evaluate was considered in [134].

To obatin local convergence and convergence rates for the modification (2.24)
we need the following assumptions:

Assumption 2.7 Let ρ be a positive number such that B2ρ(x0) ⊂ D(F ).

(i) The equation F (x) = y has an x0-minimum-norm solution x† in Bρ(x0).

(ii) There exist positive constants c1, c2, c3 and linear operators Rδ
x such that for

all x ∈ Bρ(x†) the following estimates hold:

‖F (x)−F (x†)−F ′(x†)(x−x†)‖ ≤ c1‖F (x)−F (x†)‖ ‖x−x†‖ , (2.25)

Gδ(x) = Rδ
xG

δ(x†) , (2.26)

‖Rδ
x − I‖ ≤ c2‖x− x†‖ , (2.27)

‖F ′(x†) −Gδ(x†)‖ ≤ c3δ . (2.28)

(iii) The scaling parameter ω in (2.24) satisfies the condition

ω‖F ′(x†)‖2 ≤ 1 . (2.29)

Note that, if instead of (2.25) the slightly stronger condition (2.7) holds in
B2ρ(x0), then the unique existence of the x0-minimum-norm solution x† follows
from Proposition 2.1 if F (x) = y is solvable in Bρ(x0).

The next theorem states that under Assumption 2.7 the modified Landweber
iteration (2.24) converges locally to x† if τ is chosen properly:

Theorem 2.8 Let Assumption 2.7 hold and let k∗ = k∗(δ, yδ) be chosen according
to the stopping rule (2.2). Moreover, we assume that ‖x0 − x†‖ is so small and
that the parameter τ in (2.2) is so large that

2η1 + η2
2η

2
3 < 2 (2.30)
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and

τ >
2(1 + η1 + c3η2‖x0 − x†‖)

2 − 2η1 − η2
2η

2
3

, (2.31)

where

η1 := ‖x0 − x†‖(c1 + c2(1 + c1‖x0 − x†‖)) ,

η2 := 1 + c2‖x0 − x†‖,
η3 := 1 + 2c3‖x0 − x†‖.

Then the modified Landweber iterates xδ
k∗ converge to x

† as δ → 0.

Proof. The proof follows essentially the lines of the last section: the results of
Proposition 2.2, Corollary 2.3, Theorem 2.4 and Theorem 2.6 are also valid for the
modified Landweber iteration. We only show the major differences of the proofs.

To simplify the notation we set K := F ′(x†) and eδk := xδ
k − x†. We show in a

first step that ‖eδk‖ is monotonically decreasing for k ≤ k∗.
Let us assume that xδ

k ∈ Bρ(x†). Then it follows with (2.24) and (1.2) that

‖eδk+1‖2 − ‖eδk‖2 = 2ω〈 yδ − F (xδ
k), Gδ(xδ

k)e
δ
k 〉

+ω2‖Gδ(xδ
k)

∗(yδ − F (xδ
k))‖2

≤ ω‖yδ − F (xδ
k)‖(2δ + 2‖F (x†) − F (xδ

k) +Gδ(xδ
k)e

δ
k‖

− 2‖yδ − F (xδ
k)‖ + ω‖Gδ(xδ

k)‖2‖yδ − F (xδ
k)‖) .

The conditions (2.25) – (2.28) yield the estimates

‖F (x†) − F (xδ
k) +Gδ(xδ

k)e
δ
k‖

≤ ‖F (xδ
k) − F (x†) −Keδk‖ + ‖(I −Rδ

xδ
k
)Keδk‖

+ ‖Rδ
xδ

k
(K −Gδ(x†))eδk‖

≤ ‖eδk‖
(
‖y − F (xδ

k)‖(c1 + c2(1 + c1‖eδk‖)) + c3δ(1 + c2‖eδk‖)
)

and
‖Gδ(xδ

k)‖ ≤ (1 + c2‖eδk‖)(‖K‖ + c3δ) .

Since (2.30) and (2.31) imply that τ > 2, it follows with (1.2), (2.2), and (2.25)
that for k < k∗ and c1‖eδk‖ < 1

δ ≤ ‖Keδk‖
1 − c1‖eδk‖

.
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Combining the estimates above with (1.2) and (2.29) we obtain

‖eδk+1‖2 − ‖eδk‖2 ≤ ω‖yδ − F (xδ
k)‖

(
2δ(1 + ηδ

k,1 + c3η
δ
k,2‖eδk‖)

− ‖yδ − F (xδ
k)‖(2 − 2ηδ

k,1 − (ηδ
k,2η

δ
k,3)

2)
)
,

(2.32)

where

ηδ
k,1 := ‖eδk‖(c1 + c2(1 + c1‖eδk‖)) ,

ηδ
k,2 := 1 + c2‖eδk‖ ,

ηδ
k,3 := 1 +

c3‖eδk‖
1 − c1‖eδk‖

.

Since xδ
0 = x0 ∈ Bρ(x†) and since, by virtue of (2.30), c1‖e0‖ ≤ 1/2, it now

follows together with (2.32), (2.2), and (2.31) that ‖eδ1‖ < ‖eδ0‖ = ‖e0‖ , as long
as k∗ > 0, and that estimate (2.32) is applicable with k = 1 if 1 < k∗.

Let us now assume that ‖e0‖ > ‖eδ1‖ > . . . > ‖eδk‖ for some 0 ≤ k < k∗.
Then, by monotonicity, it follows from (2.32) that

‖eδk+1‖2 − ‖eδk‖2 ≤ ω‖yδ − F (xδ
k)‖

(
2δ(1 + η1 + c3η2‖e0‖)

− ‖yδ − F (xδ
k)‖(2 − 2η1 − η2

2η
2
3)
)

implying as above that ‖eδk+1‖ < ‖eδk‖ . Thus, we have shown by induction that
‖eδk‖ is monotonically decreasing for k ≤ k∗.

Moreover, it follows that a similar estimate like (2.15) holds that guarantees that
the stopping index k∗ is finite if δ > 0 and that

∞∑
k=0

‖y − F (xk)‖2 <∞ .

Now we show that also the results of Theorem 2.4 are valid. Note that due to
(2.25) – (2.28) we get the estimate

‖G0(xi)(xl − x†)‖ ≤ (1 + c2‖xi − x†‖)(1 + c1‖xl − x†‖)‖y − F (xl)‖.
Together with (2.17) and the monotonicity of ‖xi − x†‖ we then obtain that

|〈 el − ej , el 〉| = ω
∣∣∣ j−1∑

i=l

〈G0(xi)∗(y − F (xi)), xl − x† 〉
∣∣∣

≤ ω(1 + c2‖x0 − x†‖)(1 + c1‖x0 − x†‖)
j−1∑
i=l

‖y − F (xi)‖2.
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This yields convergence of xk towards a solution x ∈ Bρ(x†) and, due to (2.26) and
(2.28), that x−x0 ∈ N (F ′(x†))⊥. Since (2.25) implies that x−x† ∈ N (F ′(x†)),
we obtain that

‖x† − x0‖2 = ‖x† − x‖2 + ‖x− x0‖2.

Since x† is an x0-minimum-norm solution, this implies that x = x†.
The convergence of xδ

k∗ towards x† as δ → 0 follows as in the proof of Theo-
rem 2.6 noting that due to the continuity of G the modified Landweber iterates xδ

k

again depend continuously on yδ. �

If we, in addition to Assumption 2.7, require that x† satisfies the source con-
dition (2.22), then we even obtain convergence rates. For the proof we need the
following lemmata:

Lemma 2.9 Let p and q be nonnegative. Then there is a positive constant c(p, q)
independent of k so that

k−1∑
j=0

(j + 1)−p(k − j)−q ≤ c(p, q)(k + 1)1−p−qh(k)

with

h(k) :=

⎧⎪⎨⎪⎩
1 , max{p, q} < 1 ,

ln(k + 1) , max{p, q} = 1 ,

(k + 1)max{p,q}−1 , max{p, q} > 1 .

Proof. Let us first assume that q = 0 (the case p = 0 is similar). Then the follow-
ing estimate

k−1∑
j=0

(j + 1)−p ≤ 1 +
∫ k

1
x−p dx =

{
1 + (1 − p)−1(k1−p − 1) , p �= 1 ,
1 + ln(k) , p = 1 ,

holds, which immediately yields the assertion.
Now assume that p > 0 and q > 0. Since the function f(s) := s−p(1 − s)−q is

convex in (0, 1), we obtain that

k−1∑
j=0

(j + 1)−p(k − j)−q

= (k + 1)1−p−q
k−1∑
j=0

(
j + 1
k + 1

)−p (
1 − j + 1

k + 1

)−q 1
k + 1

≤ (k + 1)1−p−q

∫ 1−h

h
s−p(1 − s)−q ds
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≤ (k + 1)1−p−q

(
2q

∫ 1
2

h
s−p ds+ 2p

∫ 1−h

1
2

(1 − s)−q ds

)

for h := 1/(2k + 2). Now the assertion follows from the last estimate. �

Lemma 2.10 Let K ∈ L(X ,Y) and ω > 0 be such that ω‖K‖2 ≤ 1 and let
s ∈ [0, 1] and k ∈ N0. Then the following estimates hold:

‖(I − ωK∗K)k(K∗K)s‖ ≤ ω−s(k + 1)−s , (2.33)

‖(I − ωK∗K)kK∗‖ ≤ ω− 1
2 (k + 1)−

1
2 , (2.34)∥∥∥ω k−1∑

j=0

(I − ωKK∗)j(KK∗)s
∥∥∥ ≤ (ωk)1−s . (2.35)

Moreover, for any v ∈ N (K)⊥ it holds that

ck(s, v) := (k + 1)s‖(I − ωK∗K)k(K∗K)sv‖ → 0 as k → ∞ . (2.36)

Proof. It follows by means of spectral theory (see, e.g., [45]) that

‖(I − ωK∗K)k(K∗K)s‖ ≤ ω−s sup
λ∈[0,1]

(1 − λ)kλs,

‖(I − ωK∗K)kK∗‖ ≤ ω− 1
2 sup

λ∈[0,1]
(1 − λ)kλ

1
2 ,

∥∥∥ω k−1∑
j=0

(I − ωKK∗)j(KK∗)s
∥∥∥ ≤ ω1−s sup

λ∈[0,1]
(1 − (1 − ωλ)k)λs−1.

The estimates now follow by some calculus arguments. To show the last asser-
tion let {Eλ} be a spectral family of K∗K. Then due to (2.33) and Lebesgue’s
Dominated Convergence Theorem

lim
k→∞

ck(s, v)2 = lim
k→∞

(k + 1)2s

∫ 1
ω

+

0
(1 − ωλ)2kλ2s d‖Eλv‖2

=
∫ 1

ω
+

0
lim

k→∞
(k + 1)2s(1 − ωλ)2kλ2s d‖Eλv‖2

=
{

0 , s > 0 ,
‖Pv‖, s = 0 ,

where P is the orthogonal projector onto N (K). Since v ∈ N (K)⊥, it follows
that ‖Pv‖ = 0. �
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Proposition 2.11 Let Assumption 2.7 hold. If x† − x0 satisfies (2.22) with some
0 < μ ≤ 1/2 and ‖v‖ sufficiently small, then there exist positive sequences γ1,k

and γ2,k, depending on μ and v, with

‖xδ
k − x†‖ ≤ ω−μ(k + 1)−μγ1,k , γ1,k ≤ 2γ‖v‖, (2.37)

‖yδ − F (xδ
k)‖ ≤ ω−(μ+ 1

2 )(k + 1)−(μ+ 1
2 )γ2,k , γ2,k ≤ 8γ‖v‖, (2.38)

γ := 1 +
τ

τ − 2
(2.39)

for 0 ≤ k < k∗. Here k∗ is the stopping index of the discrepancy principle (2.2)
with τ > 2. In the case of exact data (δ = 0), (2.37) and (2.38) hold for all k ≥ 0.
Moreover, γ1,k → 0 and γ2,k → 0 as k → ∞ if μ < 1/2.

Proof. To simplify the notation we set K := F ′(x†) and eδk := xδ
k − x†. Note that

eδ0 = e0 = x0 − x†. We will now show by induction that

‖eδj‖ ≤ ω−μ(j + 1)−μγ1,j , γ1,j ≤ 2γ‖v‖, (2.40)

‖Keδj‖ ≤ 1
4ω

−(μ+ 1
2 )(j + 1)−(μ+ 1

2 )γ2,j , γ2,j ≤ 8γ‖v‖, (2.41)

holds for all 0 ≤ j < k∗ and ‖v‖ sufficiently small. Especially, we assume that
‖v‖ is so small that (2.30) and (2.31) hold. This is possible, since τ > 2. Note
that, due to (2.22), ‖e0‖ ≤ ‖K‖2μ‖v‖ .

Now it follows from the proof of Theorem 2.8 that xδ
k ∈ Bρ(x†) ⊂ D(F ) and

that ‖eδk‖ is monotonically decreasing for k ≤ k∗.
For j = 0 the assertions in (2.40) and (2.41) are trivially satisfied with

γ1,0 = ‖v‖ and γ2,0 = 4‖v‖,

since due to (2.22) and (2.29) the estimates

‖e0‖ ≤ ω−μ‖v‖ and ‖Ke0‖ ≤ ω−(μ+ 1
2 )‖v‖

hold.
We now assume that (2.40) and (2.41) are true for all 0 ≤ j < k with some

k ≤ k∗. Thus, we obtain from (2.24) and (2.26) the representation

eδk = (I − ωK∗K)eδk−1 + ω
[
(Gδ(x†)∗ −K∗)(Rδ

xδ
k−1

)∗(yδ − F (xδ
k−1))

+K∗(yδ − y) +K∗((Rδ
xδ

k−1
)∗ − I)(yδ − F (xδ

k−1))

−K∗(F (xδ
k−1) − F (x†) −Keδk−1)

]
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which yields the expression

eδk = (I − ωK∗K)ke0 + ω

k−1∑
j=0

(I − ωK∗K)k−j−1pδ
j

+ω

k−1∑
j=0

(I − ωK∗K)k−j−1K∗qδ
j (2.42)

+ω
[ k−1∑

j=0

(I − ωK∗K)jK∗
]
(yδ − y)

and consequently

Keδk = (I − ωKK∗)kKe0 + ω

k−1∑
j=0

(I − ωKK∗)k−j−1Kpδ
j

+ω

k−1∑
j=0

(I − ωKK∗)k−j−1KK∗qδ
j (2.43)

+ [I − (I − ωKK∗)k](yδ − y) ,

where

pδ
j := (Gδ(x†)∗ −K∗)(Rδ

xδ
j
)∗(yδ − F (xδ

j)) , (2.44)

qδ
j := ((Rδ

xδ
j
)∗ − I)(yδ − F (xδ

j)) − (F (xδ
j) − F (x†) −Keδj) . (2.45)

We will now derive estimates for ‖eδk‖ and ‖Keδk‖ . For this purpose, we esti-
mate ‖pδ

j‖ and ‖qδ
j‖ with j as above.

First of all note that, by virtue of (1.2), (2.2), and (2.25), we obtain for j < k ≤
k∗ that

‖yδ − F (xδ
j)‖ ≤ ‖yδ − F (xδ

j)‖ +
1

τ − 1
(‖yδ − F (xδ

j)‖ − τδ)

≤ τ

τ − 1
(‖yδ − F (xδ

j)‖ − ‖yδ − y‖)

≤ 2‖y − F (xδ
j)‖

and

‖y − F (xδ
j)‖ ≤ 1

1 − c1‖eδj‖
‖Keδj‖.
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This together with (2.40), the monotonicity of ‖eδj‖ , and the fact that, due to (2.30),
c1‖e0‖ ≤ 1/2, yields the estimates

‖y − F (xδ
j)‖ ≤ 2‖Keδj‖ and ‖yδ − F (xδ

j)‖ ≤ 4‖Keδj‖. (2.46)

The conditions (2.25), (2.27), and (2.28) together with (2.44) and (2.45) imply
that

‖pδ
j‖ ≤ c3δ(1 + c2‖eδj‖)‖yδ − F (xδ

j)‖,
‖qδ

j‖ ≤ ‖eδj‖(c2 ‖yδ − F (xδ
j)‖ + c1‖y − F (xδ

j)‖) ,

which together with (2.40) and (2.46) yields that

‖pδ
j‖ ≤ c4δ‖Keδj‖, c4 := 4c3

(
1 + c2 min

{
1

2c1
, ρ

})
, (2.47)

‖qδ
j‖ ≤ c5‖eδj‖ ‖Keδj‖, c5 := 2c1 + 4c2 . (2.48)

The estimates (2.41) and (2.47) and the proof of Lemma 2.9 (p = 1/2 and
q = 0) imply that

∥∥∥ω k−1∑
j=0

(I − ωK∗K)k−j−1pδ
j

∥∥∥ ≤ 2c4ω
1
2−μγ‖v‖δ

k−1∑
j=0

(j + 1)−(μ+ 1
2 )

≤ 4c4ω
1
2−μγ‖v‖

√
kδ

and (2.34), (2.40), (2.41), (2.48), and Lemma 2.9 imply that

∥∥∥ω k−1∑
j=0

(I − ωK∗K)k−j−1K∗qδ
j

∥∥∥
≤ 4c5ω

−2μγ2‖v‖2
k−1∑
j=0

(j + 1)−(2μ+ 1
2 )(k − j)−

1
2

≤ 4c5ω
−2μγ2‖v‖2(k + 1)−μc6,k(μ)

with

c6,k(μ) := c(2μ+ 1
2 ,

1
2)(k + 1)−μ

⎧⎨⎩
1 , μ < 1

4 ,

ln(k + 1) , μ = 1
4 ,

(k + 1)2μ− 1
2 , μ > 1

4 ,

(2.49)

≤ 4
ec(2μ+ 1

2 ,
1
2) . (2.50)
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Combining the estimates above with (1.2), (2.22), (2.35), (2.36) (with s = μ), and
(2.42), we finally get

‖eδk‖ ≤ (k + 1)−μ(ck(μ, v) + 4c5ω
−2μγ2‖v‖2c6,k(μ))

+ (4c4ω
1
2−μγ‖v‖ + ω

1
2 )
√
kδ .

(2.51)

Now we turn to an estimate for ‖Keδk‖ . It follows with (2.34), (2.41), (2.47),
and Lemma 2.9 that∥∥∥ω k−1∑

j=0

(I − ωKK∗)k−j−1Kpδ
j

∥∥∥
≤ 2c4ω

−μγ‖v‖δ
k−1∑
j=0

(j + 1)−(μ+ 1
2 )(k − j)−

1
2

≤ 2c4c(1
2 ,

1
2 )ω−μγ‖v‖δ (2.52)

and with (2.33), (2.40), (2.41), (2.48), and Lemma 2.9 that∥∥∥ω k−1∑
j=0

(I − ωKK∗)k−j−1KK∗qδ
j

∥∥∥
≤ 4c5ω

−(2μ+ 1
2 )γ2‖v‖2

k−1∑
j=0

(j + 1)−(2μ+ 1
2 )(k − j)−1

≤ 4c5ω
−(2μ+ 1

2 )γ2‖v‖2(k + 1)−(μ+ 1
2 )c7,k(μ)

with

c7,k(μ) := c(2μ+ 1
2 , 1)(k + 1)−μ

{
ln(k + 1) , μ ≤ 1

4 ,

(k + 1)2μ− 1
2 , μ > 1

4 ,
(2.53)

≤ max
{

1, 1
μe

}
c(2μ + 1

2 , 1) . (2.54)

A combination of the estimates above with (1.2), (2.22), (2.36) (with s = μ+1/2),
and (2.43), now yields that

‖Keδk‖ ≤ (k + 1)−(μ+ 1
2 )(ck(μ+ 1

2 , v)

+ 4c5ω
−(2μ+ 1

2 )γ2‖v‖2c7,k(μ)) (2.55)

+ (2c4c(1
2 ,

1
2)ω−μγ‖v‖ + 1)δ .

Note that, due to (2.29), it holds that ‖I − (I − ωKK∗)k‖ ≤ 1.
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We now derive an estimate for δ in terms of k. By (1.2), (2.2), (2.25), and the
monotonicity of ‖eδk‖ , we obtain for k < k∗ that

τδ < ‖yδ − F (xδ
k)‖ ≤ δ +

1
1 − c1‖e0‖ ‖Keδk‖.

We will assume that ‖v‖ is so small that

4c4 max{2, c(1
2 ,

1
2)}ω−μγ‖v‖ + c1τ ‖e0‖ ≤ τ − 2 (2.56)

holds. Note that τ > 2. Together with (2.55) this yields

δ ≤ 2
(τ − 2)(1 − c1‖e0‖)

(k + 1)−(μ+ 1
2 )c8,k(μ) (2.57)

with

c8,k(μ, v) := ck(μ+ 1
2 , v) + 4c5ω

−(2μ+ 1
2 )γ2‖v‖2c7,k(μ) . (2.58)

This together with (2.51), (2.55), and (2.56) yields

‖eδk‖ ≤ ω−μ(k + 1)−μγ1,k and ‖Keδk‖ ≤ 1
4ω

−(μ+ 1
2 )(k + 1)−(μ+ 1

2 )γ2,k

with

γ1,k := ωμck(μ, v) + 4c5ω
−μγ2‖v‖2c6,k(μ) +

τ

τ − 2
ωμ+ 1

2 c8,k(μ, v) , (2.59)

γ2,k :=
8(τ − 1)
τ − 2

ωμ+ 1
2 c8,k(μ, v) . (2.60)

Together with (2.33), (2.36), (2.39), (2.50), and (2.54) we get the estimate

γ1,k ≤ γ‖v‖(1 + c9γ
2‖v‖) and γ2,k ≤ 4γ‖v‖(1 + c9γ

2‖v‖)

with
c9 := 4ω−μc5 max

{
4
e ,

1
μe

}
max{c(2μ+ 1

2 ,
1
2), c(2μ + 1

2 , 1)}
This shows that (2.40) and (2.41) hold for all 0 ≤ j < k∗ provided ‖v‖ is suffi-
ciently small, namely so small that (2.30), (2.31), (2.56), and

c9γ
2‖v‖ ≤ 1

hold. Together with (2.46) this shows that the assertions (2.37) and (2.38) are valid.
Let us now assume that δ = 0 and μ < 1/2. Then (2.36), (2.49), (2.53), (2.58),

(2.59), and (2.60) imply that γ1,k → 0 and γ2,k → 0 as k → ∞. �
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For the proof of the main result of this section we need the following interesting
lemma.

Lemma 2.12 Let the assumptions of Theorem 2.8 hold. If k∗(δ, yδ) �→ ∞ as

δ → 0, then x† − x0 ∈ R(F ′(x†)∗) = R((F ′(x†)∗F ′(x†))
1
2 ).

Proof. As mentioned in the proof of Theorem 2.8 the Landweber iterates depend
continuously on yδ. Thus, xδ

k → xk as δ → 0.
Let us now assume that k∗(δ, yδ) �→ ∞ as δ → 0. Then there exists a sequence

δn → 0 as n → ∞ with k∗(δn, yδn) = k ∈ N0. Using the notation of Proposition
2.11 and the fact that, due to Theorem 2.8, xδ

k
= xδ

k∗ → x† as δ → 0, we obtain
with (2.42) (with δ = 0)

0 = e0
k

= (I − ωK∗K)ke0 + ω

k−1∑
j=0

(I − ωK∗K)k−j−1K∗q0
j .

This immediately implies the assertion. �

In the next theorem we prove that for the modified Landweber iteration we ob-
tain the same convergence rates and the same asymptotical estimate for k∗ as for
linear ill-posed problems (compare [45, Theorem 6.5]) if μ ≤ 1/2 in (2.22).

Theorem 2.13 Let Assumption 2.7 hold and let k∗ = k∗(δ, yδ) be chosen accord-
ing to the stopping rule (2.2) with τ > 2. If x† − x0 satisfies (2.22) with some
0 < μ ≤ 1/2 and ‖v‖ sufficiently small, then it holds that

k∗ = O
(
‖v‖ 2

2μ+1 δ
− 2

2μ+1

)
and

‖xδ
k∗ − x†‖ =

⎧⎪⎨⎪⎩
o
(
‖v‖ 1

2μ+1 δ
2μ

2μ+1

)
, μ < 1

2 ,

O
(√‖v‖δ

)
, μ = 1

2 .

Proof. We use the same notation as in the proof of Proposition 2.11 and assume
that ‖v‖ is so small that all the estimates of that proof hold. If we put

fk∗ = (I − ωK∗K)k∗v + ω

k∗−1∑
j=0

(I − ωK∗K)k∗−j−1(K∗K)−μK∗qδ
j , (2.61)
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then (2.33), (2.36), (2.40), (2.41), (2.48), and Lemma 2.9 imply the estimate

‖fk∗‖ ≤ ck∗(0, v) + 4c5ω
−μγ2‖v‖2

k∗−1∑
j=0

(j + 1)−(2μ+ 1
2 )(k∗ − j)μ−

1
2

≤ cμ(ck∗(0, v) + c1,k∗ ‖v‖) , (2.62)

where cμ > 0 plays the role of a generic constant depending on μ and

c1,k∗ := (k∗ + 1)−μ

⎧⎨⎩
1 , μ ≤ 1

4 ,

ln(k∗ + 1) , μ = 1
4 ,

(k∗ + 1)2μ− 1
2 , μ > 1

4 .

(2.63)

On the other hand, we obtain with (1.2), (2.2), (2.22), (2.25), (2.43), (2.52), and
(2.61) that

‖K(K∗K)μfk∗‖ ≤ ‖Keδk∗‖ +
∥∥∥ω k∗−1∑

j=0

(I − ωKK∗)k−j−1Kpδ
j

∥∥∥
+ ‖[I − (I − ωKK∗)k](yδ − y)‖

≤ (1 + c1‖e0‖)‖y − F (xδ
k∗)‖ + cμδ

≤ ((1 + c1‖e0‖)(1 + τ) + cμ)δ ≤ cμδ .

Together with (2.62), the interpolation inequality now yields

‖(K∗K)μfk∗‖ ≤ cμ(ck∗(0, v) + c1,k∗ ‖v‖)
1

2μ+1 δ
2μ

2μ+1 .

From (2.42), (2.51), and (2.61) we conclude that

‖eδk∗‖ ≤ ‖(K∗K)μfk∗‖ + cμ
√
k∗δ .

If k∗ > 0, we can apply (2.57) with k = k∗ − 1 to obtain

k
μ+ 1

2∗ ≤ cμδ
−1(ck∗−1(μ+ 1

2 , v) + c2,k∗ ‖v‖) ,

where

c2,k∗ := k−μ
∗

{
ln(k∗) , μ ≤ 1

4 ,

k
2μ− 1

2∗ , μ > 1
4 .

(2.64)

Combining the estimates above we obtain that

‖eδk∗‖ ≤ cμ(ck∗(0, v)+ck∗−1(μ+ 1
2 , v)+(c1,k∗ +c2,k∗)‖v‖)

1
2μ+1 δ

2μ
2μ+1 . (2.65)
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Together with (2.33), (2.36), (2.63), and (2.64) this implies already the rate

O
(
‖v‖ 1

2μ+1 δ
2μ

2μ+1

)
.

Let us now assume that μ < 1/2. If k∗(δ, yδ) �→ ∞ as δ → 0, then it follows
with Lemma 2.12 that we could have chosen μ = 1/2 in (2.22) from the very

beginning yielding even the better rate O
(√‖v‖δ

)
.

If k∗(δ, yδ) → ∞ as δ → 0, then it follows from (2.36), (2.63), and (2.64) that

ck∗(0, v) + ck∗−1(μ+ 1
2 , v) + (c1,k∗ + c2,k∗)‖v‖ → 0 as δ → 0

yielding the rate o
(
‖v‖ 1

2μ+1 δ
2μ

2μ+1

)
. �

Under the Assumption 2.7, and according to Theorem 2.13 the best possible rate
of convergence is

‖xδ
k∗ − x†‖ = O(

√
δ)

attained when μ = 1/2. Even if μ > 1/2 we cannot improve this rate without
an additional restriction of the nonlinearity of F . We believe that this is a natural
effect as the following argument shows: even without noise we have, due to (2.42),
that

x† − x1 = (K∗K)μ(I − ωK∗K)v −K∗q0
0 ,

and K∗q0
0 /∈ R((K∗K)μ) for any μ > 1/2, in general. Thus, the source condition

(2.22) with μ > 1/2 will not remain true for x† − x1, x† − x2, and so on, and
therefore, we cannot expect a better rate of convergence, in general.

Note that for linear ill-posed problems there is no restriction (cf., e.g., [45]).
This can also be seen from the proof of Proposition 2.11, since then pδ

j = qδ
j = 0

and (2.36) holds for all s ≥ 0.

2.4 An example

In [67] three examples were considered where the conditions for obtaining con-
vergence rates were checked, namely a nonlinear Hammerstein equation and two
parameter estimation problems. For the first two examples conditions (2.26) and
(2.27) are satisfied with Gδ(x) = F ′(x), i.e., the convergence rates analysis can
be applied to the Landweber iterates (2.1). In the third example, where a diffusion
coefficient is estimated, this is no longer the case. However, the conditions are
satisfied for modified Landweber iterates as in (2.24):

Example 2.14 We treat the problem of estimating the diffusion coefficient a in

−(a(s)u(s)s)s = f(s) , s ∈ (0, 1) ,

u(0) = 0 = u(1) ,
(2.66)
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where f ∈ L2; the subscript s denotes derivative with respect to s.
In this example, F is defined as the parameter-to-solution mapping

F : D(F ) := {a ∈ H1[0, 1] : a(s) ≥ a > 0} → L2[0, 1]

a �→ F (a) := u(a) ,

where u(a) is the solution of (2.66). One can prove that F is Fréchet-differentiable
with

F ′(a)h = A(a)−1[(hus(a))s] ,

F ′(a)∗w = −B−1[us(a)(A(a)−1w)s] ,

where

A(a) : H2[0, 1] ∩H1
0 [0, 1] → L2[0, 1]

u �→ A(a)u := −(aus)s

and

B : D(B) := {ψ ∈ H2[0, 1] : ψ′(0) = ψ′(1) = 0} → L2[0, 1]

ψ �→ Bψ := −ψ′′ + ψ ;

note that B−1 is the adjoint of the embedding operator from H1[0, 1] in L2[0, 1].
First of all, we show that F satisfies condition (2.25): let F (a) = u, F (ã) = ũ,

and w ∈ L2. Noting that (ũ−u) ∈ H2 ∩H1
0 and that A(a) is one-to-one and onto

for a, ã ∈ D(F ) we obtain that

〈F (ã) − F (a) − F ′(a)(ã − a), w) 〉L2

= 〈 (ũ− u) −A(a)−1[((ã− a)us)s], w 〉L2

= 〈A(a)(ũ − u) − ((ã− a)us)s, A(a)−1w 〉L2

= 〈 ((ã− a)(ũs − us))s, A(a)−1w 〉L2

= −〈 (ã− a)(ũ− u)s, (A(a)−1w)s 〉L2

= 〈F (ã) − F (a), ((ã − a)(A(a)−1w)s)s 〉L2 .

This together with the fact that ‖g‖L∞ ≤ √
2‖g‖H1 and that ‖g‖L∞ ≤ ‖g′‖L2 if

g ∈ H1 is such that g(ξ) = 0 for some ξ ∈ [0, 1], yields the estimate

‖F (ã) − F (a) − F ′(a)(ã− a)‖L2

≤ sup
‖w‖

L2=1
〈F (ã) − F (a), ((ã − a)(A(a)−1w)s)s 〉L2
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≤ ‖F (ã) − F (a)‖L2 sup
‖w‖

L2 =1

[∥∥∥( ã− a

a

)
s

∥∥∥
L2
‖a(A(a)−1w)s‖L∞

+
∥∥∥ ã− a

a

∥∥∥
L∞

‖w‖L2

]
≤ a−1(1 +

√
2 + a−1

√
2‖a‖H1)‖F (ã) − F (a)‖L2 ‖ã− a‖H1 . (2.67)

This implies (2.25).
As mentioned in the introduction of this section, the conditions (2.26) and (2.27)

are not fulfilled with Gδ(x) = F ′(x). Noting that F ′(a)∗w is the unique solution
of the variational problem: for all v ∈ H1

〈 (F ′(a)∗w)s, vs 〉L2 + 〈F ′(a)∗w, v 〉L2 = 〈u(a), ((A(a)−1w)sv)s 〉L2 , (2.68)

we propose to choose Gδ in (2.24) as follows: Gδ(a)∗w = G(a, uδ)∗w is the
unique solution g of the variational problem

〈 gs, vs 〉L2 + 〈 g, v 〉L2 = 〈uδ , ((A(a)−1w)sv)s 〉L2 , v ∈ H1 . (2.69)

This operator Gδ obviously satisfies (2.26), since

G(ã, uδ)∗ = G(a, uδ)∗R(ã, a)∗

with
R(ã, a)∗ = A(a)A(ã)−1.

The condition (2.27) is satisfied, since one can estimate as in (2.67) that

‖R(ã, a)∗−I‖ = ‖A(a)A(ã)−1−I‖ ≤ a−1(1+
√

2+a−1
√

2‖ã‖H1)‖ã−a‖H1 .

Note that a constant c2 independent from ã can be found, since it is assumed that
ã ∈ Bρ(a). Now we turn to condition (2.28): using (2.68) and (2.69) we obtain
similarly to (2.67) the estimate

‖(F ′(a)∗ −G(a, uδ)∗)w‖H1 = sup
‖v‖

H1 =1
〈u(a) − uδ, ((A(a)−1w)sv)s 〉L2

≤ a−1(1 +
√

2 + a−1
√

2‖a‖H1)‖u(a) − uδ‖L2 ‖w‖L2 .

This together with F (a†) = u(a†) and ‖uδ − u(a†)‖L2 ≤ δ implies that

‖F ′(a†) −G(a†, uδ)‖ ≤ a−1(1 +
√

2 + a−1
√

2‖a†‖H1) δ

and hence (2.28) holds.
Thus, Theorem 2.13 is applicable, i.e., if ω and τ are chosen appropriately, then

the modified Landweber iterates aδ
k∗ (cf. (2.24)) where k∗ is chosen according
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to the stopping rule (2.2) converge to the exact solution a† with the rate O(
√
δ)

provided that
a† − a0 = −B−1[us(a)(A(a)−1w)s]

with ‖w‖ sufficiently small. Note that this means that

a† − ao ∈ H3 , (a† − a0)s(0) = 0 = (a† − a0)s(1) ,

z :=
(a† − a0)ss − (a† − a0)

us(a)
∈ H1 ,

∫ 1

0
z(s) ds = 0 .

Basically this means that one has to know all rough parts of a† up to H3. But
without this knowledge one cannot expect to get the rate O(

√
δ).



3 Modified Landweber methods

In this chapter we deal with some modifications of the Landweber iteration. In the
first section we show that better rates may be obtained for solutions that satisfy
stronger smoothness conditions if the iteration is performed in a subspace of X
with a stronger norm. This leads us directly to regularization in Hilbert scales.
On the other hand for solutions with poor smoothness properties the number of
iterations may be reduced if the iteration is performed in a space with a weaker
norm.

By adding an additional penalty term to the iteration scheme, one can obtain
convergence rates results under weaker restrictions on the nonlinearity of F (see
Section 3.2). A variant of this approach that does not need derivatives of F is
mentioned in Section 3.3.

In Section 3.4 we prove convergence of the steepest descent and the minimal
error method. These methods can be viewed as Landweber iteration with variable
coefficients ω. Finally, in the last section of this chapter we study the Landweber–
Kaczmarz method, a variant of Landweber iteration for problems where F de-
scribes a system of equations.

3.1 Landweber iteration in Hilbert scales

It is well known for Tikhonov regularization that convergence rates can be im-
proved if the exact solution is smooth enough and if the regularizing norm in X
is replaced by a stronger one in a Hilbert scale (cf. [45, 120, 123]). The same
is true for Landweber iteration (cf. [124]). Before we can go into details of this
modification, we shortly repeat the definition of a Hilbert scale:

Let L be a densely defined unbounded selfadjoint strictly positive operator in X .
Then (Xs)s∈R denotes the Hilbert scale induced by L if Xs is the completion of⋂∞

k=0D(Lk) with respect to the Hilbert space norm ‖x‖s := ‖Lsx‖X ; obviously
‖x‖0 = ‖x‖X (see [102] or [45, Section 8.4] for details).

We will now replace F ′(xδ
k)

∗ in (2.1) by the adjoint of F ′(xδ
k) considered as

an operator from Xs into Y . Usually s ≥ 0, but we will see below that there
are special cases where a negative choice of s can be advantageous. Since by
definition of Xs this adjoint is given by L−2sF ′(xδ

k)
∗, (2.1) is replaced by the

iteration process

xδ
k+1 = xδ

k + L−2sF ′(xδ
k)

∗(yδ − F (xδ
k)) , k ∈ N0 . (3.1)
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As in the previous chapter the iteration process is stopped according to the dis-
crepancy principle (2.2). As always we assume that the data yδ satisfy (1.2), i.e.,
‖yδ − y‖ ≤ δ, and that xδ

0 = x0 is an initial guess.
To prove convergence rates we need some basic conditions. We will relax the

conditions used in [124] as suggested in [42]. For an approach, where the Hilbert
scale is chosen in the space Y , see [41].

Assumption 3.1

(i) F : D(F )(⊂ X ) → Y is continuous and Fréchet-differentiable in X .

(ii) F (x) = y has a solution x†.

(iii) ‖F ′(x†)x‖ ≤ m‖x‖−a for all x ∈ X and some a > 0, m > 0. Moreover,
the extension of F ′(x†) to X−a is injective.

(iv) B := F ′(x†)L−s is such that ‖B‖X ,Y ≤ 1, where −a < s. If s < 0, F ′(x†)
has to be replaced by its extension to Xs.

Usually, for the analysis of regularization methods in Hilbert scales a stronger
condition than (iii) is used, namely (cf., e.g., [124])

‖F ′(x†)x‖ ∼ ‖x‖−a for all x ∈ X , (3.2)

where the number a can be interpreted as a degree of ill-posedness of the linearized
problem in x†. However, this condition is not always fulfilled. Sometimes one can
only prove that condition (iii) in Assumption 3.1 holds. It might also be possible
that one can prove an estimate from below in a slightly weaker norm (see examples
in [42]), i.e.,

‖F ′(x†)x‖ ≥ m‖x‖−ã for all x ∈ X and some ã ≥ a,m > 0 . (3.3)

The next proposition will shed more light onto condition (iii) in Assumption 3.1
and (3.3).

Proposition 3.2 Let Assumption 3.1 hold. Then for all ν ∈ [0, 1] it holds that

D((B∗B)−
ν
2 ) = R((B∗B)

ν
2 ) ⊂ Xν(a+s) ,

‖(B∗B)
ν
2 x‖ ≤ mν ‖x‖−ν(a+s) for all x ∈ X , (3.4)

‖(B∗B)−
ν
2 x‖ ≥ m−ν ‖x‖ν(a+s) for all x ∈ D((B∗B)−

ν
2 ) . (3.5)

Note that condition (iii) is equivalent to

R(F ′(x†)∗) ⊂ Xa and ‖F ′(x†)∗w‖a ≤ m‖w‖ for all w ∈ Y . (3.6)
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If in addition condition (3.3) holds, then for all ν ∈ [0, 1] it holds that

Xν(ã+s) ⊂ R((B∗B)
ν
2 ) = D((B∗B)−

ν
2 ) ,

‖(B∗B)
ν
2 x‖ ≥ mν ‖x‖−ν(ã+s) for all x ∈ X , (3.7)

‖(B∗B)−
ν
2 x‖ ≤ m−ν ‖x‖ν(ã+s) for all x ∈ Xν(ã+s) . (3.8)

Note that condition (3.3) is equivalent to

Xã ⊂ R(F ′(x†)∗) and ‖F ′(x†)∗w‖ ã ≥ m‖w‖
for all w ∈ N (F ′(x†)∗)⊥ with F ′(x†)∗w ∈ Xã .

(3.9)

Proof. The proof follows the lines of Corollary 8.22 in [45] noting that the results
there not only hold for s ≥ 0 but also for s > −a. �

In our convergence analysis the following shifted Hilbert scale will play an im-
portant role

X̃r := D((B∗B)
s−r

2(a+s)Ls) equipped with the norm

|||x|||r := ‖(B∗B)
s−r

2(a+s)Lsx‖X ,
(3.10)

where a, s, and B are as in Assumption 3.1. In the next proposition we summarize
some properties of this shifted Hilbert scale.

Proposition 3.3 Let Assumption 3.1 hold and let (X̃r)r∈R be defined as in (3.10).

(i) The space X̃q is continuously embedded in X̃p for p < q, i.e., for x ∈ X̃q

|||x|||p ≤ γp−q |||x|||q , (3.11)

where γ is such that

〈 (B∗B)−
1

2(a+s)x, x 〉 ≥ γ‖x‖2 for all x ∈ D((B∗B)−
1

2(a+s) ) .

(ii) The interpolation inequality holds, i.e., for all x ∈ X̃r

|||x|||q ≤ |||x|||
r−q
r−p
p |||x|||

q−p
r−p
r , p < q < r . (3.12)

(iii) The following estimates hold:

‖x‖r ≤ m
r−s
a+s |||x|||r for all x ∈ X̃r ⊂ Xr if s ≤ r ≤ a+ 2s ,

‖x‖r ≥ m
r−s
a+s |||x|||r for all x ∈ Xr ⊂ X̃r if − a ≤ r ≤ s .

(3.13)
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Especially, we obtain the estimate

‖x‖0 ≤ m
−s
a+s |||x|||0 for all x ∈ X̃0 ⊂ X0 if s ≤ 0 . (3.14)

Moreover,
|||x|||−a = ‖F ′(x†)x‖ for all x ∈ X . (3.15)

(iv) If in addition (3.3) holds, the following estimates hold with
p = s+ r−s

a+s(ã+ s) :

‖x‖p ≥ m
r−s
a+s |||x|||r for all x ∈ Xp ⊂ X̃r if s ≤ r ≤ a+ 2s ,

‖x‖p ≤ m
r−s
a+s |||x|||r for all x ∈ X̃r ⊂ Xp if − a ≤ r ≤ s .

(3.16)

Especially, we obtain the estimate

‖x‖0 ≤ m
−s
a+s |||x|||r for all x ∈ X̃r ⊂ X0 , r = s ã−a

ã+s , if s > 0 . (3.17)

If ã = a, i.e., in case (3.2) holds,

‖x‖r ∼ |||x|||r for all x ∈ Xr = X̃r if − a ≤ r ≤ a+ 2s . (3.18)

Proof. The proof follows from Proposition 8.19 in [45] and Proposition 3.2. �

For the convergence rates analysis we need some smoothness conditions on the
solution x† and the Fréchet-derivative of F .

Assumption 3.4

(i) x0 ∈ B̃ρ(x†) := {x ∈ X : x − x† ∈ X̃0 ∧ |||x − x†|||0 ≤ ρ} ⊂ D(F )
for some ρ > 0.

(ii) ‖F ′(x†) − F ′(x)‖
eX−b,Y ≤ c |||x† − x|||β0 for all x ∈ B̃ρ(x†) and some

b ∈ [0, a], β ∈ (0, 1], and c > 0.

(iii) x† − x0 ∈ X̃u for some (a − b)/β < u ≤ b + 2s, i.e., there is an element
v ∈ X so that

Ls(x† − x0) = (B∗B)
u−s

2(a+s)v and ‖v‖0 = |||x0 − x†|||u . (3.19)

Before we start our analysis we want to discuss the conditions above.
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Remark 3.5 First of all we want to mention that, if (3.2) holds, then, due to (3.18),
the conditions in Assumptions 3.1 and 3.4 are equivalent to the ones in Assump-
tion 2.1 in [124].

Note that, due to (3.15), F ′(x†) has a continuous extension to X̃−a ⊃ X−a.
Therefore, condition (ii) in Assumption 3.4 implies that F ′(x) has at least a con-
tinuous extension to X̃−b ⊃ X in a neighbourhood of x†. By definition of the
space X̃−b, condition (ii) is equivalent to

‖(B∗B)−
b+s

2(a+s)L−s(F ′(x†)∗ − F ′(x)∗)‖Y ,X ≤ c |||x† − x|||β0 . (3.20)

By virtue of (3.6) and Proposition 3.3 (iii), this implies that L−2sF ′(xδ
k)

∗ maps
Y at least into X̃b+2s ⊂ Xb+2s and hence F ′(xδ

k)
∗ maps Y at least into Xb while

F ′(x†)∗ maps Y into Xa.
Note that, if s = 0, (3.20) reduces to

‖(F ′(x†)∗F ′(x†))−
b

2a (F ′(x†)∗ − F ′(x)∗)‖Y ,X ≤ c‖x† − x‖β
0

(compare [67, (3.18)]). Moreover, if b = a and β = 1, this condition is equivalent
to (2.27) with ‖Rδ

x − I‖ replaced by ‖(Rδ
x − I)Q‖ , where Q is the orthogonal

projector from Y onto R(F ′(x†)).
Condition (iii) in Assumption 3.4 is a smoothness condition for the exact so-

lution comparable to (2.22). Usually Xu is used instead of X̃u. However, as
mentioned above, these conditions are equivalent if (3.2) holds. If b = a, then
u ≤ a + 2s is allowed, which is the usual restriction for regularization in Hilbert
scales. Note that for Tikhonov regularization of nonlinear problems in Hilbert
scales we needed the restriction a ≤ s ≤ u (cf. [123]). However, one can show
that under the stronger Lipschitz condition (3.20) (with β = 1), the results in [123]
are even valid for a − b ≤ s ≤ u. For Landweber iteration even oversmoothing
(i.e., u < s) is allowed as for Tikhonov regularization in the linear case (cf. [45,
Section 8.5]).

Lemma 3.6 Let Assumptions 3.1 and 3.4 hold. Moreover, let k∗ = k∗(δ, yδ)
be chosen according to the stopping rule (2.2) with τ > 2, and assume that
|||eδj |||0 ≤ ρ and that |||eδj |||u ≤ ρu for all 0 ≤ j < k ≤ k∗ and some ρu > 0,
where eδj := xδ

j − x†. Then there is a positive constant γ1 (independent of k) so
that the following estimates hold:

|||eδk|||u ≤ |||x0 − x†|||u + δk
a+u

2(a+s)

+ γ1

k−1∑
j=0

(k − j)−
a+2s−u
2(a+s) |||eδj |||

b+u(1+β)
a+u

−a ‖eδj‖
a(1+β)−b

a+u
u (3.21)
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+ γ1

k−1∑
j=0

(k − j)−
b+2s−u
2(a+s) |||eδj |||

a+u(1+β)
a+u

−a ‖eδj‖
aβ

a+u
u ,

|||eδk|||−a ≤ (k + 1)−
a+u

2(a+s) |||x0 − x†|||u + δ

+ γ1

k−1∑
j=0

(k − j)−1 |||eδj |||
b+u(1+β)

a+u
−a ‖eδj‖

a(1+β)−b
a+u

u (3.22)

+ γ1

k−1∑
j=0

(k − j)−
b+a+2s
2(a+s) |||eδj |||

a+u(1+β)
a+u

−a ‖eδj‖
aβ

a+u
u .

Proof. From (3.1) we immediately obtain the representation

eδk+1 = (I − L−2sF ′(x†)∗F ′(x†))eδk + L−2sF ′(x†)∗(yδ − y − qδ
k) + L−2spδ

k

with

qδ
k := F (xδ

k) − F (x†) − F ′(x†)eδk , (3.23)

pδ
k := (F ′(xδ

k)
∗ − F ′(x†)∗)(yδ − F (xδ

k)) , (3.24)

and furthermore, due to the definition of B (cf. Assumption 3.1 (iv)), the closed
expression (note that eδ0 = e0)

eδk = L−s(I−B∗B)kLse0 +
k−1∑
j=0

L−s(I−B∗B)k−j−1(B∗(yδ−y−qδ
j )+L

−spδ
j) .

Together with (1.2), (3.10), and (3.19) we now obtain the estimates

|||eδk|||u ≤ ‖(B∗B)
s−u

2(a+s) (I −B∗B)k(B∗B)
u−s

2(a+s) v‖0

+ ‖(B∗B)
s−u

2(a+s)

k−1∑
j=0

(I −B∗B)jB∗‖ δ

+
k−1∑
j=0

‖(B∗B)
s−u

2(a+s) (I −B∗B)k−j−1B∗‖ ‖qδ
j‖ (3.25)

+
k−1∑
j=0

‖(B∗B)
s−u

2(a+s) (I −B∗B)k−j−1(B∗B)
b+s

2(a+s)‖

·‖(B∗B)−
b+s

2(a+s)L−spδ
j‖0
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and

|||eδk|||−a ≤ ‖(B∗B)
1
2 (I −B∗B)k(B∗B)

u−s
2(a+s) v‖0

+ ‖(B∗B)
1
2

k−1∑
j=0

(I −B∗B)jB∗‖ δ

+
k−1∑
j=0

‖(B∗B)
1
2 (I −B∗B)k−j−1B∗‖ ‖qδ

j‖ (3.26)

+
k−1∑
j=0

‖(B∗B)
1
2 (I −B∗B)k−j−1(B∗B)

b+s
2(a+s) ‖

·‖(B∗B)−
b+s

2(a+s)L−spδ
j‖0 .

Next we derive estimates for ‖qδ
j‖ and ‖(B∗B)−

b+s
2(a+s)L−spδ

j‖0. Assumption 3.4
(ii), (3.12), and (3.23) imply that

‖qδ
j‖ ≤

∫ 1

0
‖F ′(xδ

j + ξ(x† − xδ
j)) − F ′(x†))eδj‖ dξ

≤ c
β+1 |||eδj |||−b |||eδj |||β0 ≤ c

β+1 |||eδj |||
b+u(1+β)

a+u
−a |||eδj |||

a(1+β)−b
a+u

u . (3.27)

Since τ > 2, (1.2) and (2.2) imply that for all 0 ≤ k < k∗

‖yδ − F (xδ
k)‖ < ‖yδ − F (xδ

k)‖ + (‖yδ − F (xδ
k)‖ − 2δ)

≤ 2(‖yδ − F (xδ
k)‖ − ‖y − yδ‖) ≤ 2‖y − F (xδ

k)‖.
Thus, we obtain together with (3.15), (3.20), (3.23), (3.24), and F (x†) = y (cf. As-
sumption 3.1 (ii)) that

‖(B∗B)−
b+s

2(a+s)L−spδ
j‖0 ≤ 2c‖y − F (xδ

j)‖ |||eδj |||β0
≤ 2c(‖qδ

j‖ + |||eδj |||−a) |||eδj |||β0
(3.28)

for all 0 ≤ j < k.
Since, due to (3.11) and (3.27),

‖qδ
j‖ ≤ c

β+1γ
a−b−uβ |||eδj |||−a |||eδj |||βu , (3.29)

(3.12), (3.28), and the assumption that |||eδj |||u ≤ ρu now imply that

‖(B∗B)−
b+s

2(a+s)L−spδ
j‖0 ≤ γ̃ |||eδj |||

a+u(1+β)
a+u

−a |||eδj |||
aβ

a+u
u (3.30)

holds for all 0 ≤ j < k and some γ̃ > 0 (independent of k).
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Combining the estimates (3.25), (3.26), (3.27), and (3.30), and using Lemma
2.10 and (3.19), now yield the assertions (3.21) and (3.22). �

We are now in the position to state the main results of this section:

Proposition 3.7 Let Assumptions 3.1 and 3.4 hold. Moreover, let k∗ = k∗(δ, yδ)
be chosen according to the stopping rule (2.2) with τ > 2 and let |||x0 − x†|||u be
sufficiently small. Then

|||xδ
k − x†|||r ≤ 4(τ−1)

τ−2 |||x0 − x†|||u(k + 1)−
u−r

2(a+s) (3.31)

for −a ≤ r < u and

‖yδ − F (xδ
k)‖ ≤ 2τ 2

τ−2 |||x0 − x†|||u(k + 1)−
a+u

2(a+s) (3.32)

for all 0 ≤ k < k∗. In the case of exact data (δ = 0), the estimates above hold for
all k ≥ 0.

Proof. We proceed similar as in the proof of Proposition 2.11. As a first step we
show by induction that

|||eδj |||u ≤ η |||x0 − x†|||u , 0 ≤ j ≤ k∗ , (3.33)

and

|||eδj |||−a ≤ η(j + 1)−
a+u

2(a+s) |||x0 − x†|||u , 0 ≤ j < k∗ , (3.34)

hold if |||x0 − x†|||u is sufficiently small and

η =
4(τ − 1)
τ − 2

. (3.35)

As mentioned in Remark 3.5 xδ
j − x0 ∈ Xb+2s ⊂ X , hence xδ

j ∈ X . Therefore,

(3.11) and (3.33) imply that xδ
j remains in B̃ρ(x†) if |||x0 − x†|||u is so small that

γ−uη |||x0 − x†|||u ≤ ρ. We will assume this in the following. Note that this
guarantees that the iteration process (3.1) is well defined.

By virtue of (3.21) and (3.22), (3.33) and (3.34) are true for j = 0; note that,
due to (3.26), estimate (3.22) is valid without the term δ for k = 0.

Let us now assume that (3.33) and (3.34) are true for all 0 ≤ j < k < k∗. Then
we have to verify (3.33) and (3.34) for j = k:
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Using (3.21) and (3.22) as well as (3.33) and (3.34) for j < k it follows that

|||eδk|||u ≤ |||x0 − x†|||u + δk
a+u

2(a+s)

+ γ1(η |||x0 − x†|||u)1+β
k−1∑
j=0

(k − j)−
a+2s−u
2(a+s) (j + 1)−

b+u(1+β)
2(a+s)

+ γ1(η |||x0 − x†|||u)1+β
k−1∑
j=0

(k − j)−
b+2s−u
2(a+s) (j + 1)−

a+u(1+β)
2(a+s) ,

|||eδk|||−a ≤ (k + 1)−
a+u

2(a+s) |||x0 − x†|||u + δ

+ γ1(η |||x0 − x†|||u)1+β
k−1∑
j=0

(k − j)−1(j + 1)−
b+u(1+β)

2(a+s)

+ γ1(η |||x0 − x†|||u)1+β
k−1∑
j=0

(k − j)−
b+a+2s
2(a+s) (j + 1)−

a+u(1+β)
2(a+s) .

Furthermore with Lemma 2.9 the following estimates,

|||eδk|||u ≤ |||x0 − x†|||u(1 + γ2 |||x0 − x†|||βu) + δk
a+u

2(a+s) , (3.36)

|||eδk|||−a ≤ (k + 1)−
a+u

2(a+s) |||x0 − x†|||u(1 + γ2 |||x0 − x†|||βu) + δ , (3.37)

hold for some γ2 > 0 (independent of k).
We will now derive an estimate for δ in terms of k: (1.2), (2.2), F (x†) = y,

(3.15), (3.23), and (3.29) imply that

(τ − 1)δ ≤ ‖yδ − F (xδ
j)‖ − ‖yδ − y‖

≤ ‖y − F (xδ
j)‖ ≤ ‖qδ

j‖ + |||eδj |||−a

≤ (1 + c
β+1γ

a−b−uβ |||eδj |||βu) |||eδj |||−a (3.38)

for all 0 ≤ j < k < k∗ and hence (3.33) and (3.34) for j = k − 1 yield that

δ ≤ τ
2(τ−1)ηk

− a+u
2(a+s) |||x0 − x†|||u (3.39)

provided that cγa−b−uβηβ |||x0 − x†|||βu/(β + 1) ≤ (τ − 2)/2 which we assume in
the following.

This together with (3.35) and (3.36) implies that

|||eδk|||u ≤ |||x0 − x†|||u(1 + γ2 |||x0 − x†|||βu + τ
2(τ−1)η) ≤ η |||x0 − x†|||u
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if γ2 |||x0 −x†|||βu ≤ 1 which we again assume to hold in the following. This proves
(3.33) for j = k. Note that (3.38) is now also applicable to j = k. Together with
(3.33) this implies that

δ ≤ τ
2(τ−1) |||eδk|||−a

and hence together with (3.35) and (3.37) that

|||eδk|||−a ≤ 2(τ−1)
τ−2 (k + 1)−

a+u
2(a+s) |||x0 − x†|||u(1 + γ2 |||x0 − x†|||βu)

≤ η(k + 1)−
a+u

2(a+s) |||x0 − x†|||u
which proves (3.34) for j = k.

Since (3.36) and (3.39) are also valid for k = k∗, (3.33) also holds for j = k∗.
Thus, if |||x0 − x†|||u is sufficiently small, namely if

|||x0 −x†|||u ≤ min{ργuη−1, (τ −2)(β+ 1)(2c)−1γuβ+b−aη−β, γ−1
2 } , (3.40)

then (3.12), (3.33), (3.34), and (3.35) imply the estimate (3.31).
Since similar to the derivation of (3.38) we obtain that

‖yδ − F (xδ
k)‖ ≤ δ + (1 + c

β+1γ
a−b−uβ |||eδk|||βu) |||eδk|||−a

≤ τ
τ−1(1 + c

β+1γ
a−b−uβ |||eδk|||βu) |||eδk|||−a ,

the estimate (3.32) now follows with (3.33), (3.34), (3.35), and (3.40).
In the case of exact data (δ = 0), the estimates hold for all k ≥ 0, since then

Lemma 3.6 holds for all k ≥ 0. �

Theorem 3.8 Under the assumptions of Proposition 3.7 the following estimates
are valid for δ > 0 and some positive constants cr:

k∗ ≤
(

2τ
τ−2 |||x0 − x†|||u δ−1

) 2(a+s)
a+u

(3.41)

and for −a ≤ r < u

|||xδ
k∗ − x†|||r ≤ cr |||x0 − x†|||

a+r
a+u
u δ

u−r
a+u . (3.42)

Proof. The estimate (3.41) follows immediately from (3.35) and (3.39) (with
k = k∗).

We will now derive an estimate for |||eδk∗ |||−a. Combining F (x†) = y, (1.2),
(2.2), (3.23), (3.29), and (3.33) (with j = k∗) we obtain that

|||eδk∗ |||−a ≤ ‖qδ
k∗‖ + δ + ‖yδ − F (xδ

k∗)‖
≤ c

β+1γ
a−b−uβηβ |||x0 − x†|||βu |||eδk∗ |||−a + (τ + 1)δ
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and hence that
|||eδk∗ |||−a ≤ γ̃δ

for some γ̃ > 0 if cγa−b−uβηβ |||x0 − x†|||βu/(β + 1) < 1, which is a further
restriction on |||x0 − x†|||u in addition to (3.40) if τ ≥ 4.

Thus for |||x0 − x†|||u sufficiently small, we now obtain with (3.12) and (3.33)
(with j = k∗) that

|||eδk∗ |||r ≤ |||eδk∗ |||
u−r
a+u
−a |||eδk∗ |||

a+r
a+u
u ≤ (γ̃δ)

u−r
a+u (η |||x0 − x†|||u)

a+r
a+u

which verifies (3.42). �

As usual for regularization in Hilbert scales, we are interested in obtaining con-
vergence rates with respect to the norm in X = X0.

Corollary 3.9 Under the assumptions of Proposition 3.7 the following estimates
hold:

‖xδ
k∗ − x†‖0 = O

(
δ

u
a+u

)
if s ≤ 0 , (3.43)

‖xδ
k∗ − x†‖0 = O

(
‖xδ

k∗ − x†‖s

)
= O

(
δ

u−s
a+u

)
if 0 < s < u . (3.44)

If in addition (3.3) holds, then for s > 0 the rate can be improved to

‖xδ
k∗ −x†‖0 = O

(
|||xδ

k∗ −x†|||r
)

= O
(
δ

u−r
a+u

)
if r := s(ã−a)

ã+s ≤ u . (3.45)

Proof. The proof follows immediately from Proposition 3.3 (iii), (iv) and Theo-
rem 3.8. �

Remark 3.10 Note that (3.41) implies that k∗ is finite for δ > 0 and hence xδ
k∗ is

a stable approximation of x†.
Moreover, it can be seen from (3.41) that the larger s the faster k∗ possibly

grows if δ → 0. As a consequence, s should be kept as small as possible to reduce
the number of iterations and hence to reduce the numerical effort: this means that,
in the case b = a, s > 0 is only necessary if u > a. However, if F ′ is only locally
Lipschitz continuous in X̃0 (i.e., b = 0, β = 1), then a < u ≤ 2s and hence
s > a/2 is necessary.

On the other hand, if u is close to 0, it might be possible to choose a negative
s. According to (3.43), we would still get the optimal rate, but, due to (3.41), k∗
would not grow so fast. Choosing a negative s could be interpreted as a precon-
ditioned Landweber method (cf. [42]). If for instance β = 1, a/2 < b ≤ a, and
a − b < u < b, then a choice s = (u − b)/2 < 0 is possible (cf. Assumption 3.4
(iii)).
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We will now comment on the rates in Corollary 3.9: if only Assumption 3.1
(iii) is satisfied, i.e., if ‖F ′(x†)x‖ may be estimated through the norm in X−a only
from above, convergence rates in X0 can only be given if s < u, i.e., only for the
case of undersmoothing. If s > 0 the rates will not be optimal in general. To
obtain rates also for s > u, i.e., for the case of oversmoothing, condition (3.3) has
to be additionally satisfied. From what we said on the choice of s above, the case
of oversmoothing is not desirable. However, note that the rates for ‖xδ

k∗ − x†‖0

can be improved if (3.3) holds also for 0 < s < u. Moreover, if ã = a, i.e., if
the usual equivalence condition (3.2) is satisfied, then we always obtain the usual
optimal rates O(δ

u
a+u ) (see [123]).

For numerical computations one has to approximate the infinite-dimensional
spaces by finte-dimensional ones. Also the operators F and F ′(x)∗ have to be
approximated by suitable finite-dimensional realizations. An appropriate conver-
gence rates analysis has been carried out in [124]. This analysis also shows that a
modification, where F ′(xδ

k)
∗ in (3.1) is replaced by Gδ(xδ

k) similar as in (2.24), is
possible.

Numerical results, where Landweber iteration in Hilbert scales has been applied
to a nonlinear Hammerstein equation, can be found in [124]. The results there
show that the correct choice of Hilbert scale can reduce the number of iterations to
obtain the same quality as for standard Landweber iteration tremendously.

3.2 Iteratively regularized Landweber iteration

In [144], the following modification of Landweber iteration was suggested:

xδ
k+1 = xδ

k + F ′(xδ
k)

∗(yδ − F (xδ
k)) + βk(x0 − xδ

k)

with 0 < βk ≤ βmax <
1
2 .

(3.46)

The additional term βk(xδ
k − x0) compared to the classical Landweber iteration

(2.1) is motivated by the iteratively regularized Gauss–Newton method, see Sec-
tion 4.2.

First we show that under certain conditions xδ
k remains in a ball around x0.

Proposition 3.11 Assume that F (x) = y has a solution x∗ ∈ Bρ(x0) and let
κ ∈ (0, 1) be a fixed positive constant and

c(ρ) := ρ
1 − βmax +

√
1 + βmax(2 − βmax)κ−2

2 − βmax
. (3.47)
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(i) Let the conditions (2.3) and (2.4) hold on Bρ+c(ρ)(x0) with η in (2.4) satis-
fying

E := 1 − 2η − 2βmax(1 − η) − κ2 > 0 . (3.48)

If xδ
k ∈ Bc(ρ)(x∗), then a sufficient condition for xδ

k+1 ∈ Bc(ρ)(x∗) ⊂
Bρ+c(ρ)(x0) is that

‖yδ − F (xδ
k)‖ > 2(1 − βmax)

1 + η

E
δ . (3.49)

(ii) Assume that the conditions (2.3) and (2.4) hold on Bρ+ĉ(ρ)(x0) with η in
(2.4) satisfying (3.48) and

ĉ(ρ) := c(ρ) +D(1 + η) + 1
2(Dβmax + ρ) (3.50)

for some D > 0. If xδ
k ∈ Bĉ(ρ)(x∗), a sufficient condition for xδ

k+1 ∈
Bĉ(ρ)(x∗) ⊂ Bρ+ĉ(ρ)(x0) is that

δ

βk
≤ D . (3.51)

Proof. It follows immediately from the definition (3.46) that

‖xδ
k+1 − x∗‖2 = (1 − βk)2‖xδ

k − x∗‖2 + β2
k ‖x0 − x∗‖2

+ 2βk(1 − βk)〈xδ
k − x∗, x0 − x∗ 〉

+ ‖F ′(xδ
k)

∗(yδ − F (xδ
k))‖2 (3.52)

+ 2(1 − βk)〈 yδ − F (xδ
k), F

′(xδ
k)(x

δ
k − x∗) 〉

+ 2βk〈x0 − x∗, F ′(xδ
k)

∗(yδ − F (xδ
k)) 〉 .

This estimate together with (1.2), (2.3), (2.4), and the formulae

〈 yδ − F (xδ
k), F

′(xδ
k)(x

δ
k − x∗) 〉

= 〈 yδ − F (xδ
k), y

δ − y 〉 − ‖yδ − F (xδ
k)‖2 (3.53)

−〈 yδ − F (xδ
k), F (xδ

k) − F (x∗) − F ′(xδ
k)(x

δ
k − x∗) 〉

and

2βk ‖x0 − x∗‖ ‖yδ − F (xδ
k)‖ ≤ κ−2β2

k ‖x0 − x∗‖2 + κ2‖yδ − F (xδ
k)‖2
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yields that

‖xδ
k+1 − x∗‖2 ≤ (1 − βk)2‖xδ

k − x∗‖2 + β2
k(1 + κ−2)‖x0 − x∗‖2

+ 2βk(1 − βk)‖xδ
k − x∗‖ ‖x0 − x∗‖ (3.54)

+ ‖yδ − F (xδ
k)‖

(
2(1 − βk)(1 + η)δ

− ‖yδ − F (xδ
k)‖(1 − 2η − 2βk(1 − η) − κ2)

)
.

We first consider case (i). For 0 ≤ βk ≤ βmax, (3.48) implies that

1 − βmax

1 − 2η − 2βmax(1 − η) − κ2 ≥ 1 − βk

1 − 2η − 2βk(1 − η) − κ2 .

Hence, we obtain together with (3.49), (3.54), ‖x0 − x∗‖ ≤ ρ, and ‖xδ
k − x∗‖ ≤

c(ρ) that

‖xδ
k+1 − x∗‖2 ≤ (1 − βk)2c(ρ)2 + β2

k(1 + κ−2)ρ2 + 2βk(1 − βk)ρc(ρ) ≤ c(ρ)2 .

The last inequality follows from (3.47) and the fact that

(1 − βk)2c2 + β2
k(1 + κ−2)ρ2 + 2βk(1 − βk)ρc ≤ c2

if

c ≥ ρ
1 − βk +

√
1 + βk(2 − βk)κ−2

2 − βk
,

which is true for c(ρ).
Now we turn to case (ii). From (1.2) and (2.3) it follows that

‖yδ − F (xδ
k)‖ ≤ ‖yδ − y‖ +

∫ 1

0
‖F ′(x∗ + t(xδ

k − x∗))(xδ
k − x∗)‖ dt

≤ δ + ‖xδ
k − x∗‖.

This together with βk ≤ βmax, (3.48), (3.51), (3.54), and ‖x0 − x∗‖ ≤ ρ yields
the estimate

‖xδ
k+1 − x∗‖2 + E‖yδ − F (xδ

k)‖2

≤ (1 − βk)2‖xδ
k − x∗‖2 (3.55)

+β2
k

(
(1 + κ−2)ρ2 + 2D2(1 − βk)(1 + η)

)
+ 2βk(1 − βk)‖xδ

k − x∗‖(ρ +D(1 − βk))
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and furthermore with ‖xδ
k − x∗‖ ≤ ĉ(ρ) that

‖xδ
k+1 − x∗‖2 ≤ (1 − βk)2ĉ(ρ)2 + β2

k

(
(1 + κ−2)ρ2 + 2D2(1 − βk)(1 + η)

)
+ 2βk(1 − βk)ĉ(ρ)(ρ+D(1 + η)) ≤ ĉ(ρ)2 .

The correctness of the last inequality follows similar as for case (i) noting that

(1 − βk)a+
√

(1 − βk)2a2 + βk(2 − βk)(p+ 2(1 − βk)q)
2 − βk

≤ c(ρ) + 1
2D(1 + η) + 1

2

√
D(1 + η)(D(1 + η + 2βmax) + 2ρ)

≤ c(ρ) +D(1 + η) + 1
2(Dβmax + ρ) = ĉ(ρ) ,

where a := ρ+D(1 + η), p := (1 + κ−2)ρ2, and q := D2(1 + η). �

Note that if βmax = 0, then in case (i) κ may be chosen as 0 and hence (3.49)
reduces to condition (2.12), which is required to prove monotonicity of ‖eδk‖ for
the classical Landweber iteration (2.1).

Since ĉ(ρ) ≥ c(ρ), in case (ii) the conditions (2.3) and (2.4) have to be satisfied
on a larger domain than in case (i).

The proposition above gives rise to the following two stopping criteria for the
iteratively regularized Landweber iteration:

The first is an a-posteriori stopping rule, namely the discrepancy principle (2.2),
i.e., the iteration is terminated after k∗ = k∗(δ, yδ) steps with

‖yδ − F (xδ
k∗)‖ ≤ τδ < ‖yδ − F (xδ

k)‖, 0 ≤ k < k∗ ,

where

τ > 2(1 − βmax)
1 + η

E
(3.56)

and E is as in (3.48).
The second is an a-priori stopping rule, where the iteration is terminated after

k∗ = k∗(δ) steps with

Dβk∗ < δ ≤ Dβk , 0 ≤ k < k∗ , (3.57)

for some D > 0. If βk → 0 as k → ∞, then obviously in (3.57) k∗(δ) < ∞ for
δ > 0.

Next we prove a result similar to Corollary 2.3 for the classical Landweber
iteration.
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Corollary 3.12 Assume that F (x) = y has a solution x∗ ∈ Bρ(x0).

(i) Let the assumptions of Proposition 3.11 (i) hold. If the iteratively regularized
Landweber iteration is stopped according to the a-posteriori stopping rule
(2.2), (3.56), then

k∗(τδ)2 <

k∗−1∑
k=0

‖yδ − F (xδ
k)‖2 ≤ Ψ−1ρ2

(
1 + 2(1 + κ−2)

k∗−1∑
k=0

βk

)
with

Ψ := E − 2τ−1(1 − βmax)(1 + η) > 0 . (3.58)

In particular, if yδ = y (i.e., if δ = 0), then

∞∑
k=0

‖y − F (xk)‖2 ≤ E−1ρ2
(

1 + 2(1 + κ−2)
∞∑

k=0

βk

)
.

(ii) Let the assumptions of Proposition 3.11 (ii) hold. If the iteratively regular-
ized Landweber iteration is stopped according to the a-priori stopping rule
(3.57), then it follows that

k∗−1∑
k=0

‖yδ − F (xδ
k)‖2 ≤ E−1

(
ρ2 + Φ

k∗−1∑
k=0

βk

)
with

Φ := 2(ρ+D(1 + η))(ρ(1 + κ−2) +D(1 + η) + 1
2 (Dβmax + ρ) .

Proof. We first consider case (i). Since xδ
0 = x0 ∈ Bρ(x∗), it follows by induction

that Proposition 3.11 (i) is applicable for all 0 ≤ k < k∗. Therefore, it follows
with (3.47) that ‖xδ

k − x∗‖ ≤ c(ρ) < ρ
√

1 + κ−2 < ρ(1 + κ−2). Moreover, we
obtain with (3.54) and (3.58) that

‖xδ
k+1 − x∗‖2 + Ψ‖yδ − F (xδ

k)‖2

≤ (1 − βk)2‖xδ
k − x∗‖2 + β2

k(1 + κ−2)ρ2 (3.59)

+ 2βk(1 − βk)‖xδ
k − x∗‖ρ

≤ ‖xδ
k − x∗‖2 + 2ρ2(1 + κ−2)βk .

Note that, due to (3.48) and (3.56), Ψ > 0. Thus, the assertion of case (i) now
follows by induction.
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In the noise free case, k∗ may be any positive integer and τ may be chosen
arbitrarily large yielding the appropriate estimate for δ = 0. Note that Ψ may be
replaced by E then.

Let us now turn to case (ii). It follows immediately from Proposition 3.11 (ii)
and (3.55) that

‖xδ
k+1 − x∗‖2 +E‖yδ − F (xδ

k)‖2

≤ ‖xδ
k − x∗‖2 + β2

k

(
(1 + κ−2)ρ2 + 2D2(1 − βk)(1 + η)

)
+ 2βk(1 − βk)ĉ(ρ)(ρ+D(1 + η))

≤ ‖xδ
k − x∗‖2 + Φβk , (3.60)

where we used the fact that ĉ(ρ) ≤ ρ(1 + κ−2) +D(1 + η) + 1
2 (Dβmax + ρ). The

assertion of case (ii) now follows as above by induction. �

It follows from the corollary above that the termination index k∗(δ, yδ) deter-
mined by the discrepancy principle (2.2), (3.56) is finite for δ > 0 if the following
condition ∞∑

k=0

βk <∞ (3.61)

holds.
The same condition is needed to prove convergence of the iteratively regularized

Landweber iteration for the noise free case.

Theorem 3.13 Assume that the conditions (2.3) and (2.4) hold on Bρ+c(ρ)(x0)
with c(ρ) as in (3.47) and η satisfying (3.48). Moreover, assume that F (x) = y is
solvable in Bρ(x0) and that {βk} satisfies (3.61). Then the iteratively regularized
Landweber iteration applied to exact data y converges to a solution of F (x) = y
in Bρ+c(ρ)(x0). If N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ Bρ+c(ρ)(x0), where
x† denotes the unique x0-minimum-norm solution, then xk converges to x† as
k → ∞.

Proof. The proof is similar to the one of Theorem 2.4 for Landweber iteration.
However, now we cannot use the monotonicity of the solution errors ‖ek‖ , where
ek := xk − x†.

From Proposition 3.11 (i) it follows that the sequence {‖ek‖} is bounded, and
hence it has a convergent subsequence {‖ekn‖} with limit ε ≥ 0. It follows
immediately from (3.59) that

‖ek+1‖ ≤ (1 − βk)‖ek‖ + βkρ
√

1 + κ−2
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and therefore by induction that

‖ek‖ ≤ ‖em‖
k−1∏
l=m

(1 − βl) + ρ
√

1 + κ−2
(

1 −
k−1∏
l=m

(1 − βl)
)

(3.62)

for m < k, where we have used the formula

1 −
n∏

l=m

(1 − βl) =
n∑

j=m

βj

n∏
l=j+1

(1 − βl) , (3.63)

which is satisfied for n ≥ m with the usual convention that
∏n

l=n+1(1 − βl) = 1.
If kn−1 < k < kn, then it follows from (3.62) that

‖ek‖ ≤ ‖ekn−1‖ + (ρ
√

1 + κ−2 − ‖ekn−1‖)
(

1 −
k−1∏

l=kn−1

(1 − βl)
)
,

‖ek‖ ≥ ‖ekn‖ − (ρ
√

1 + κ−2 − ‖ek‖)
(

1 −
kn−1∏
l=k

(1 − βl)
)
.

These estimates together with the convergence of ‖ekn‖ immediately yield that

lim
k→∞

‖ek‖ = ε ,

since (3.61) implies that

k−1∏
l=m

(1 − βl) → 1 as m→ ∞ , k > m . (3.64)

Note that kn−1, kn → ∞ as k → ∞.
Now we proceed as in Theorem 2.4: if for n ≥ k we choose m with n ≥ m ≥ k

such that

‖y − F (xm)‖ ≤ ‖y − F (xi)‖ for all k ≤ i ≤ n ,

then convergence of the iterates xk is guaranteed, if we can show that the terms
〈 em − en, em 〉 and 〈 em − ek, em 〉 tend to zero as k → ∞. Since, due to Corol-
lary 3.12 (i) and (3.61), the residuals y − F (xk) converge to zero as k → ∞, the
limit of xk must then be a solution of F (x) = y.

From (3.46) and (3.63) we obtain by induction the representation

ek = em

k−1∏
l=m

(1 − βl) +
k−1∑
j=m

F ′(xj)∗(y − F (xj))
k−1∏

l=j+1

(1 − βl)

+ (x0 − x†)
(

1 −
k−1∏
l=m

(1 − βl)
)
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for m < k. Using this formula, we obtain the estimate

|〈 em − en, em 〉| ≤
(

1 −
n−1∏
l=m

(1 − βl)
)
|〈x0 − xm, em 〉|

+
n−1∑
j=m

( n−1∏
l=j+1

(1 − βl)
)
|〈 y − F (xj), F ′(xj)(xm − x†) 〉|.

Since |〈x0 − xm, em 〉| is bounded, the first term on the right hand side tends to
zero due to (3.64). Since (1−βl) ≤ 1, the second term on the right hand side may
be estimated by

(1 + 3η)
n−1∑
j=m

‖y − F (xj)‖2

as in Theorem 2.4. Due to (3.61), it follows from Proposition 3.11 (i) that this sum
tends to zero as m → ∞. This shows that 〈 em − en, em 〉 → 0. Analogously one
verifies that 〈 em − ek, em 〉 → 0.

The last assertion on the x0-minimum-norm solution follows as in the proof of
Theorem 2.4. �

The next result shows that the iteratively regularized Landweber iteration to-
gether with the a-posteriori stopping rule (2.2), (3.56) is a regularization method.

Theorem 3.14 Let the assumptions of Theorem 3.13 hold and let k∗ = k∗(δ, yδ)
be chosen according to the stopping rule (2.2), (3.56). Then the iteratively regular-
ized Landweber iterates xδ

k∗ converge to a solution of F (x) = y. If N (F ′(x†)) ⊂
N (F ′(x)) for all x ∈ Bρ+c(ρ)(x0), then xδ

k∗ converges to x
† as δ → 0.

Proof. The proof is analogous to the one of Theorem 2.6. �

In the next theorem we verify the regularization properties of the iteratively
regularized Landweber iteration if it is terminated by the a-priori rule (3.57).

Theorem 3.15 Assume that the conditions (2.3) and (2.4) hold on Bρ+ĉ(ρ)(x0)
with ĉ(ρ) as in (3.50) and η satisfying (3.48). Moreover, assume that F (x) = y
is solvable in Bρ(x0) and that {βk} satisfies (3.61). In addition, let k∗ = k∗(δ)
be chosen according to the stopping rule (3.57). Then the iteratively regularized
Landweber iterates xδ

k∗ converge to a solution of F (x) = y. If N (F ′(x†)) ⊂
N (F ′(x)) for all x ∈ Bρ+ĉ(ρ)(x0), then xδ

k∗ converges to x
† as δ → 0.
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Proof. Since ĉ(ρ) ≥ c(ρ), Theorem 3.13 is applicable. Let x∗ be the limit of the
iteratively regularized Landweber iteration with precise data y and let {δn} be a
sequence converging to zero as n → ∞. Denote by yn := yδn a corresponding
sequence of perturbed data, and by kn = k∗(δn) the stopping index determined by
(3.57). Since βk > 0 and since, due to (3.61), βk → 0 as k → ∞, it holds that
kn → ∞. Then for kn > k we conclude from (3.60) that

‖xδn
kn

− x∗‖2 ≤ (‖xδn
k − xk‖ + ‖xk − x∗‖)2 + Φ

kn−1∑
l=k

βk .

Using (3.61), the rest of the proof is analogous to the one of Theorem 2.6. �

Convergence rates results for the classical Landweber iteration were obtained
only under restrictive conditions on the nonlinearity of F (see Assumption 2.7).
We will show in the following theorem that similarly to Tikhonov regularization
convergence rates for iteratively regularized Landweber iteration may be obtained
under less restrictive assumptions on F if a sufficiently strong source condition is
satisfied. Even condition (2.4) is not needed.

Assumption 3.16 Let ρ be a positive number such that B2ρ(x0) ⊂ D(F ).

(i) The equation F (x) = y has an x0-minimum-norm solution x† in Bρ(x0)
satisfying the source condition

x† − x0 = F ′(x†)∗w , w ∈ N (F ′(x†)∗)⊥.

This corresponds to (2.22) with μ = 1/2 (cf. [45, Proposition 2.18]).

(ii) The operator F is Fréchet-differentiable and satisfies ‖F ′(x)‖ ≤ ω ≤ 1 in
B2ρ(x0). If ω < 1, then this condition is stronger than the previously used
scaling condition (2.3).

(iii) The Fréchet-derivative is locally Lipschitz continuous, i.e.,

‖F ′(x) − F ′(x̃)‖ ≤ L‖x− x̃‖ , x, x̃ ∈ B2ρ(x0) .

Theorem 3.17 Let Assumption 2.7 hold, let {βk} be monotonically decreasing,
and assume that positive parameters a, b, c, d exist such that the following condi-
tions hold:

(1 + a)ω2 + b+ c+ d+ 2β0 − 2 ≤ 0 , (3.65)

‖x0 − x†‖2 ≤ 2β0

√
qdL−1 ≤ ρ2 , (3.66)√

qd−1L < p ≤ β−1
0 , (3.67)



50 Chapter 3 Modified Landweber methods

βk(1 − βk(p−
√
qd−1L)) ≤ βk+1 , (3.68)

where
q := ‖w‖2(ω2(1 + a−1) + b−1) + 2‖w‖D + c−1D2 , (3.69)

p := 1 + (1 − L‖w‖)(1 − β0)) , (3.70)

and D is as in (3.57). If the iteratively regularized Landweber iteration is termi-
nated with the a-priori stopping criterion (3.57), then it holds that

‖xδ
k∗ − x†‖ = O(

√
δ) .

In the noise free case (δ = D = 0), we get the rate

‖xk − x†‖ = O(
√
βk) .

Proof. Let us assume that xδ
k ∈ Bρ(x†) ⊂ B2ρ(x0) for some 0 ≤ k < k∗ and note

that, due to the Lipschitz continuity of F ′, it holds that

‖F (x) − F (x̃) − F ′(x̃)(x− x̃)‖ ≤ 1
2L‖x− x̃‖2 , x, x̃ ∈ B2ρ(x0) . (3.71)

Together with (1.2), (3.52), (3.53), and Assumption 3.16, we then obtain the esti-
mate

‖xδ
k+1 − x†‖2 ≤ (1 − βk)2‖xδ

k − x†‖2 + β2
kω

2‖w‖2

+ 2βk(1 − βk)‖w‖(δ + ‖yδ − F (xδ
k)‖ + 1

2L‖xδ
k − x†‖2)

+ω2‖yδ − F (xδ
k)‖2 + 2βkω

2‖w‖ ‖yδ − F (xδ
k)‖

+ 2(1 − βk)‖yδ − F (xδ
k)‖(δ − ‖yδ − F (xδ

k)‖
+ 1

2L‖xδ
k − x†‖2)

≤ ‖xδ
k − x†‖2(1 − βk)(1 − βk(1 − L‖w‖))

+β2
kω

2‖w‖2(1 + a−1) + 2βk ‖w‖δ + b−1β2
k ‖w‖2 + c−1δ2

+ ‖yδ − F (xδ
k)‖2((1 + a)ω2 + b+ c+ d+ 2β0 − 2)

+ 1
4d

−1L‖xδ
k − x†‖4 .

Note that 2AB ≤ s−1A2 + sB2 for all s,A,B > 0. Using (3.57), (3.65), (3.69),
(3.70), and setting

γδ
k := β−1

k ‖xδ
k − x†‖2

then yields that

γδ
k+1 ≤ β−1

k+1βk

(
γδ

k(1 − pβk) + qβk + 1
4d

−1Lβk(γδ
k)

2
)
. (3.72)
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We will now show by induction that xδ
k remains in Bρ(x†) and that γδ

k ≤ 2
√
qdL−1

for all 0 ≤ k ≤ k∗. The assertion holds for k = 0 due to (3.66). Let us now assume
that it holds for k < k∗. Using (3.67), (3.68), and (3.72) we now obtain that

γδ
k+1 ≤ 2

√
qdL−1β−1

k+1βk(1 − βk(p−
√
qd−1L)) ≤ 2

√
qdL−1 .

Moreover, (3.66) and the monotonicity of {βk} yield that xδ
k+1 ∈ Bρ(x†). This

already proves the rate result for the noise free case, since k∗(0) = ∞. The rate
for the noisy case follows from (3.57), since then βk∗ ≤ D−1δ. �

Remark 3.18 We discuss the assumptions made in Theorem 3.17:
Since ω ≤ 1 and since β0 <

1
2 , positive parameters a, b, c, d always exist sat-

isfying conditions (3.65) – (3.67) as long as ‖w‖ and D in (3.57) are sufficiently
small.

To explain (3.68), we assume for the sake of simplicity that p −
√
qd−1L = 1.

If β̃k is defined by

β̃k+1 := β̃k(1 − β̃k) , β̃0 <
1
2 ,

then it holds that β̃k ↘ 0 and β̃k ∼ (k+ 1)−1. Moreover, for any other monotoni-
cally decreasing sequence {βk} satisfying

βk+1 ≥ βk(1 − βk) , β0 = β̃0 ,

it holds that βk ≥ β̃k. A possible choice is for instance given by

βk = (k + 3)−1 .

Unfortunately, for sequences {βk} satisfying (3.68) it always holds that
∑∞

k=0 βk

is divergent. Thus, these sequences are not compatible with the general conver-
gence results of the iteratively regularized Landweber iteration above (cf. (3.61)).

Remark 3.19 In the proof of Theorem 3.17 it was nowhere used that x† has to
be an x0-minimum-norm solution. Mereley a solution in Bρ(x0) is needed that
satisfies the source conditions in Assumption 3.16 (i). However, if x† − x0 =
F ′(x†)∗w with L‖w‖ < 1, then x† ∈ Bρ(x0) is already the unique x0-minimum-
norm solution as the following argument shows: let x ∈ Bρ(x0), x �= x†, be such
that F (x) = y. Then (3.71) implies that

‖x− x0‖2 = ‖x− x†‖2 + ‖x† − x0‖2 + 2〈F ′(x†)(x− x†), w 〉
≥ ‖x− x†‖2 + ‖x† − x0‖2 − 2‖w‖ ‖F ′(x†)(x− x†)‖
≥ ‖x− x†‖2(1 − L‖w‖) + ‖x0 − x†‖2 > ‖x0 − x†‖2.
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Finally, we want to mention that an inspection of the proof of Theorem 3.17
shows that a convergence rate result can also be proven for iterates xδ

k, where
k∗ is chosen according to the discrepancy principle (2.2), (3.56). Under similar
conditions as in Theorem 3.17 one obtains the rate

‖xδ
k∗ − x†‖ = O(

√
βk∗) .

3.3 A derivative free approach

Based on an idea by Engl and Zou [47], Kügler, in his thesis [108] (see also [107]),
developed a modification of Landweber iteration for parameter identification prob-
lems where it is not needed that F is Fréchet-differentiable.

In this approach, the nonlinear operator F is defined via an equation, i.e.,
F (x) = y is the solution of the equation

C(x)y = f (3.73)

where C(x) : Y0 → Y∗
0 and f ∈ Y∗

0 is a known right hand side. Y0 is a closed
subspace of the Hilbert space Y and Y∗

0 is the dual space of Y0.
The following assumption is essential for the analysis developed in [108]: there

exist positive constants α1 and α2 such that

α1‖v − w‖2 ≤ (C(x)v − C(x)w, v − w) , v, w ∈ Y0 ,

and
(C(x)v − C(x)w, y) ≤ α2‖v − w‖ ‖y‖, v, w, y ∈ Y

hold for all x ∈ D(F ) ⊂ X . The pairing (· , ·) denotes the duality product.
Moreover, it is assumed that the operator C(x) consists of an operator A(·)

depending linearly on x and a part B that is independent of x, i.e.,

C(x) = A(x) +B and A(·)u ∈ L(X ,Y∗
0 ) .

This assumption already guarantees the unique solvability of (3.73).
The assumption above is for instance satisfied for the parameter estimation prob-

lem

− div(a∇u) + b(u) = f in Ω ,

u = 0 on ∂Ω ,

with A(·) and B defined by

(A(a)u, v) :=
∫

Ω
a(s)∇u∇v ds , (Bu, v) :=

∫
Ω
b(u)v ds ,

and X = Y = H1(Ω), Y0 := H1
0 (Ω), D(F ) = {a ∈ X : a ≥ a a.e.}, a > 0.
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In [108], the following modification of Landweber iteration is suggested (com-
pare (3.46)):

xδ
k+1 = xδ

k + ωL(xδ
k)

∗(yδ − F (xδ
k)) + βk(x0 − xδ

k) . (3.74)

The linear operator L(·) : X → Y0 is defined by

L(x)h = −JA(h)F (x) ,

where J : Y∗
0 → Y0 is the duality map. ω is the usual scaling parameter (cf., e.g.,

(2.24)) and the parameters βk satisfy the condition

0 ≤ βk+1 ≤ βk ≤ 1 and βk → 0 as k → ∞ .

As for classical Landweber iteration the method (3.74) can only converge if the
iteration operator L(·)∗ is (locally) uniformly bounded and if the scaling parameter
ω is properly chosen.

As stopping rule the discrepancy principle (2.2) is used. However, note that in
this modified case in general the data have to satisfy stronger conditions: for a
parameter estimation problem as the one above, usually the observation space is
chosen to be L2(Ω). In this modification, the space Y = H1(Ω), meaning that the
data have to be smooth and that the noise can be measured in the norm of the space
H1(Ω), otherwise the method in (3.74) is not well defined.

Following the ideas in [144] (see Section 3.2), convergence of the iterates xδ
k∗

was proven in [108] provided that condition (3.61) is satisfied, i.e.,

∞∑
k=0

βk <∞ .

To obtain convergence rates appropriate source and smallness conditions have to
hold as in the classical case. To obtain the rate O(

√
δ) in the classical case it is

needed that x† − x0 ∈ R((F ′(x†)∗F ′(x†))
1
2 ) = R(F ′(x†)∗). It turns out that the

appropriate source condition for the modified method (3.74) is given by

x† − x0 ∈ R(L(x†)∗) .

If ‖x0 − x†‖ is sufficiently small, if τ in (2.2) is sufficiently large, and if the
parameters βk satisfy a condition similar to (3.68), then it is proven that

‖xδ
k − x†‖ = O(

√
βk∗) .

For an a-priori stopping rule even the rate O(
√
δ) could be shown (see [108, The-

orem 5.2.1] for details). As already mentioned in Remark 3.18, the condition on
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the parameters βk needed for the convergence rates results implies that
∞∑

k=0

βk = ∞

and hence contradicts condition (3.61) needed for the convergence proof.

3.4 Steepest descent and minimal error method

In this section we consider iterative regularization methods of the form

xδ
k+1 = xδ

k + ωδ
ks

δ
k , sδ

k := F ′(xδ
k)

∗(yδ − F (xδ
k)) , k ∈ N0 , (3.75)

where the coefficients ωδ
k are chosen as

ωδ
k :=

‖sδ
k‖2

‖F ′(xδ
k)s

δ
k‖2

(3.76)

for the steepest descent method and

ωδ
k :=

‖yδ − F (xδ
k)‖2

‖sδ
k‖2

(3.77)

for the minimal error method. Note that the choice ωδ
k = 1 corresponds to the

classical Landweber iteration.
In [44] it has been shown that even for the solution of linear ill-posed problems

the steepest descent method is only a regularization method when stopped via a
discrepancy principle and not via an a-priori parameter choice strategy. Therefore,
we will use (2.2), (2.14) as stopping rule.

In the following proposition we will prove monotonicity of the errors and well
definedness of the steepest descent and minimal error method.

Proposition 3.20 Assume that (2.4) holds and that F (x) = y has a solution
x∗ ∈ Bρ(x0). Let k∗ = k∗(δ, yδ) be chosen according to the stopping rule (2.2),
(2.14). Then xδ

k as in (3.75) with ωδ
k as in (3.76) or (3.77) is well defined and

‖xδ
k+1 − x∗‖ ≤ ‖xδ

k − x∗‖ , 0 ≤ k < k∗ .

Moreover, xδ
k ∈ Bρ(x∗) ⊂ B2ρ(x0) for all 0 ≤ k ≤ k∗ and

k∗−1∑
k=0

ωδ
k‖yδ − F (xδ

k)‖2 ≤ Ψ−1‖x0 − x∗‖2 (3.78)

with
Ψ := (1 − 2η) − 2τ−1(1 + η) . (3.79)
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Proof. Let xδ
k ∈ Bρ(x∗) for some 0 ≤ k < k∗. To prove that xδ

k+1 is well defined,
we have to show that sδ

k �= 0 and that F ′(xδ
k)s

δ
k �= 0.

Let us first assume that sδ
k = 0. Then (3.75) implies that

0 = 〈 sδ
k, x

δ
k − x∗ 〉 = 〈 yδ − F (xδ

k), y
δ − y 〉 − ‖yδ − F (xδ

k)‖2

−〈 yδ − F (xδ
k), F (xδ

k) − F (x∗) − F ′(xδ
k)(x

δ
k − x∗) 〉 .

Together with (1.2) and (2.4) we now obtain that

‖yδ − F (xδ
k)‖2 ≤ ‖yδ − F (xδ

k)‖(δ + η(δ + ‖yδ − F (xδ
k)‖))

and furthermore with (2.14) that

‖yδ − F (xδ
k)‖ ≤ 1 + η

1 − η
δ ≤ τ

2
δ ,

which is a contradiction to (2.2). Thus, sδ
k �= 0.

Now, assume that F ′(xδ
k)s

δ
k = 0. Then obviously sδ

k ∈ N (F ′(xδ
k)). By the

definition of sδ
k (cf. (3.75)) we also have that sδ

k ∈ R(F ′(xδ
k)

∗) ⊂ N (F ′(xδ
k))

⊥.
Consequently sδ

k = 0, which is a contradiction to what we just proved above. This
shows that F ′(xδ

k)s
δ
k �= 0. Therefore, xδ

k+1 with ωδ
k as in (3.76) or (3.77) is well

defined by (3.75) and we obtain with (1.2) and (2.4) that

‖xδ
k+1 − x∗‖2 − ‖xδ

k − x∗‖2

= 2〈xδ
k+1 − xδ

k, x
δ
k − x∗ 〉 + ‖xδ

k+1 − xδ
k‖2

= 2ωδ
k〈 yδ − F (xδ

k), F
′(xδ

k)(x
δ
k − x∗) 〉 + (ωδ

k)
2‖sδ

k‖2

≤ ωδ
k ‖yδ − F (xδ

k)‖(2(1 + η)δ − (1 − 2η)‖yδ − F (xδ
k)‖)

−ωδ
k(‖yδ − F (xδ

k)‖2 − ωδ
k‖sδ

k‖2.

Together with (2.2) this yields the estimate

‖xδ
k+1 − x∗‖2 + Ψωδ

k‖yδ − F (xδ
k)‖2

≤ ‖xδ
k − x∗‖2 − ωδ

k(‖yδ − F (xδ
k)‖2 − ωδ

k ‖sδ
k‖2)

(3.80)

with Ψ as in (3.79). Note that, due to (2.14), Ψ > 0.
We will now show that the expression in brackets on the right hand side of (3.80)

is nonnegative if ωδ
k is as in (3.76) or (3.77). For the latter it is obvious from the

definition that the expression in brackets is equal to zero. Let us now assume that
ωδ

k is defined as in (3.76). Then

ωδ
k‖sδ

k‖2 =
〈F ′(xδ

k)s
δ
k, y

δ − F (xδ
k) 〉2

‖F ′(xδ
k)s

δ
k‖2

≤ ‖yδ − F (xδ
k)‖2.



56 Chapter 3 Modified Landweber methods

Together with (3.80) this shows that

‖xδ
k+1 − x∗‖2 + Ψωδ

k‖yδ − F (xδ
k)‖2 ≤ ‖xδ

k − x∗‖2.

Noting that x0 ∈ Bρ(x∗) the assertions now follow by induction. �

For the classical Landweber iteration we used the scaling properties (2.3) or
(2.29) that make the computation of an estimate of ‖F ′(x)‖ necessary. This is no
longer needed for the steepest descent or minimal error method. However, to be
able to prove convergence we need that F ′ is continuous and that

ω := sup
x∈B2ρ(x0)

‖F ′(x)‖ <∞ . (3.81)

This condition guarantees that ωδ
k defined by either (3.76) or (3.77) is bounded

from below by ω−2. Moreover, (2.2) and (3.78) then imply that k∗ <∞.
In case of exact data there are two possibilities. If k∗ < ∞, then an exact

solution of F (x) = y has been found. If k∗ = ∞, then we will show below that
the iterates converge to a solution.

Theorem 3.21 Assume that the conditions (2.4) and (3.81) hold and that the equa-
tion F (x) = y is solvable in Bρ(x0). Let k∗ = k∗(0, y) = ∞. Then the iterates
xk defined as in (3.75) with exact data (yδ = y) and ωk as in (3.76) or (3.77) con-
verge to a solution of F (x) = y. If N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ Bρ(x†),
then xk converges to x† as k → ∞.

Proof. The proof is analogous to the one of Theorem 2.4. ‖y−F (xi)‖2 has to be
replaced by ωi‖y − F (xi)‖2 and we use Proposition 3.20 to conclude that

∞∑
k=0

ωk‖y − F (xk)‖2 <∞ ,

which together with (3.81) implies that ‖y − F (xk)‖ → 0 as k → ∞. �

The next result shows that the stopping rule (2.2), (2.14) renders the steepest
descent and minimal error method a regularization method.

Theorem 3.22 Assume that the conditions (2.4) and (3.81) hold and that the equa-
tion F (x) = y is solvable in Bρ(x0). Let k∗ = k∗(δ, yδ) be chosen according to
the stopping rule (2.2), (2.14). Then the iterates xδ

k∗ defined via (3.75) with ωδ
k as

in (3.76) or (3.77) converge to a solution of F (x) = y. IfN (F ′(x†)) ⊂ N (F ′(x))
for all x ∈ Bρ(x†), then xδ

k∗ converges to x
† as δ → 0.
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Proof. First of all, we want to mention that it is an immediate consequence of
(2.2), (3.75) – (3.77), and Proposition 3.20 that for all 0 ≤ k < k∗(0, y) it holds
that for δ > 0 sufficiently small

k∗(δ, yδ) > k , xδ
l is well defined , and

lim
δ→0

xδ
l = xl , 0 ≤ l ≤ k + 1 .

(3.82)

Let now x∗ be the limit of xk (cf. Theorem 3.21) and let {δn} be a sequence
converging to zero as n → ∞. Denote by yn := yδn a corresponding sequence
of perturbed data, and by kn = k∗(δn, yn) the stopping index determined from the
discrepancy principle for the Landweber iteration applied to the pair (δn, yn).

If k̃ := k∗(0, y) <∞, then (3.82) and Proposition 3.20 imply that kn ≥ k̃ for n
sufficiently large and that

‖xδn
kn

− x∗‖ ≤ ‖xδn

k̃
− x∗‖ = ‖xδn

k̃
− xk̃‖ → 0 as n→ ∞ .

If k∗(0, y) = ∞, then kn → ∞ as n → ∞ and the assertion follows as in the
proof of Theorem 2.6. �

For linear ill-posed problems, i.e., when F (x) ≡ F , the basic idea to prove
convergence rates for the steepest descent and minimal error method is to verify
that (F ∗F )−

1
2 (xk − x†) is bounded if x† − x0 = (F ∗F )

1
2 v (cf. [50]). This idea

can be carried over to nonlinear problems:
One can show that (F ′(x†)∗F ′(x†))−

1
2 (xk − x†) is bounded if the source con-

dition (2.22) with μ = 1/2 holds and if (2.23) is satisfied.

Theorem 3.23 Assume that the conditions (2.23) with c sufficiently small and
(2.22) with μ = 1/2 hold and that x† ∈ Bρ(x0). Then

‖xk − x†‖ = O(k−
1
2 ) ,

where xk is defined as in (3.75) with exact data (yδ = y) and ωk as in (3.76) or
(3.77).

Proof. See [125]. �

So far, convergence rates have been proven only in the case of exact data.

Remark 3.24 For the solution of linear ill-posed problems it is well known that a
reduction of iteration steps may be achieved if instead of (3.75) one uses an itera-
tion procedure, where the search direction is different from the gradient direction,
i.e.,

xδ
k+1 = xδ

k + ωδ
ks

δ
k , sδ

k := F ′(xδ
k)

∗(yδ − F (xδ
k)) + βδ

k−1s
δ
k−1 , (3.83)
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k ∈ N0. The coefficients ωδ
k and βδ

k−1 depend on k, xδ
k, x

δ
k−1, . . . , x0, y

δ. The
most prominent representative is the conjugate gradient method.

When using iteration methods (3.83) for nonlinear ill-posed problems, one can
prove similar results as for the steepest descent and minimal error method provided
that the coefficients ωδ

k and βδ
k−1 depend continuoulsy on the iterates and satisfy

some additional conditions (cf. [142]). Unfortunately, conjugate gradient type
methods do not satisfy these conditions and to our knowledge no convergence
results exist for these methods when applied to nonlinear ill-posed problems.

3.5 The Landweber–Kaczmarz method

In this section we study the numerical solution of an operator equation F (x) = y
where

F := (F0, . . . , Fp−1) :
p−1⋂
i=0

D(Fi) ⊂ X → Yp (3.84)

and y = (y0, . . . , yp−1) with p > 1. For this problem the Landweber iteration
reads as follows

xδ
k+1 = xδ

k +
p−1∑
i=0

F ′
i (x

δ
k)

∗(yδ
i − Fi(xδ

k)) , k ∈ N0 .

The Landweber–Kaczmarz method is defined by

xδ
k+1 = xδ

k + F ′
k(x

δ
k)

∗(yδ
k − Fk(xδ

k)) , k ∈ N0 . (3.85)

For simplicity of presentation, here and below we use the notation

Fk := Frk
and yδ

k := yδ
rk

with k = p �k/p� + rk and

rk ∈ {0, . . . , p− 1} . (3.86)

With �x� we denote the biggest integer less or equal x, i.e., �1� = 1, �0.9� = 0.
The Landweber–Kaczmarz method applies the Landweber iteration steps cycli-

cally. It is obvious that the principal idea of Kaczmarz’s method, also called alge-
braic reconstruction technique (ART) (cf. [69]), can be used in conjunction with
any other iterative procedure, such as Newton type methods (cf. [22]).

The Kaczmarz algorithm has proven to be an efficient method for solving in-
verse problems with a bilinear structure (see, e.g., [122]). It is closely related to
the method of adjoint fields frequently used by engineers (see [19, 149]). Some
more references on Kaczmarz type algorithms are [6, 112, 113, 115].
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In order to prove convergence and stability of the Landweber–Kaczmarz method
(cf. [62, 101]), we basically require the same conditions on the operators Fi as they
are required for F for proving convergence and stability of Landweber iteration,
i.e., we assume that

B2ρ(x0) ⊂
p−1⋂
i=0

D(Fi) for some ρ > 0 , (3.87)

that the operators Fi are Fréchet-differentiable in the closed ball B2ρ(x0), and that
each of them satisfies the conditions (2.3) and (2.4).

In particular, it follows from these assumptions that (2.5) holds for every Fi,
i = 0, . . . , p− 1. This, together with N (F ′(x)) =

⋂p−1
i=0 N (F ′

i (x)) implies that

F (x) = F (x̃) ⇐⇒ x− x̃ ∈ N (F ′(x))

holds for x, x̃ ∈ B2ρ(x0). Under the above assumptions it follows that

1
p

p−1∑
i=0

‖F ′
i (x)‖2 ≤ 1

for all x ∈ B2ρ(x0) and that

‖F (x) − F (x̃) − F ′(x)(x− x̃)‖2

=
p−1∑
i=0

‖Fi(x) − Fi(x̃) − F ′
i (x)(x− x̃)‖2

≤ η2
p−1∑
i=0

‖Fi(x) − Fi(x̃)‖2 = η2‖F (x) − F (x̃)‖2

for all x, x̃ ∈ B2ρ(x0). Thus, the operator F/
√
p satisfies the convergence con-

ditions of Landweber iteration. However, the opposite is not true, i.e., if F/
√
p

satisfies (2.4), then it is not guaranteed that each Fi satisfies (2.4). In this sense the
convergence conditions of the Landweber–Kaczmarz method are stronger than for
the Landweber iteration.

As for the Landweber iteration we need a stopping rule. Here it is convenient to
modify (3.85) as follows

xδ
k+1 = xδ

k + ωδ
kF

′
k(x

δ
k)

∗(yδ
k − Fk(xδ

k)) , k ∈ N0 , (3.88)

where

ωδ
k :=

{
1 , if τδ < ‖yδ

k − Fk(xδ
k)‖ ,

0 , else ,
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with τ as in (2.14). The iteration is terminated if it stagnates over a full cycle of p
successive iterates, i.e., the iteration is stopped after k∗ = k∗(δ, yδ) steps with

ωδ
k∗−i = 0 , i = 0, . . . , p− 1 , and ωδ

k∗−p = 1 . (3.89)

Note that in case of exact data, the Landweber–Kaczmarz iterates (3.85) and its
modifications (3.88) coincide. The stopping rule (3.89) for the modified method
guarantees that xk∗ is a solution of F (x) = y if k∗ = k∗(0, y) is finite.

For comparison the Landweber iteration is stopped according to the discrepancy
principle (2.2), which for F as in (3.84) reads as

p−1∑
i=0

‖yδ
i − Fi(xδ

k∗)‖2 ≤ p τ 2δ2 <

p−1∑
i=0

‖yδ
i − Fi(xδ

k)‖2 , 0 ≤ k < k∗ .

Obviously, for the case p = 1, the termination procedure for the modified Landwe-
ber–Kaczmarz method above results in Landweber iteration stopped by (2.2). If
p > 1, then the stopping rule (3.89) guarantees that

‖yδ
i − Fi(xδ

k∗)‖ ≤ τδ , i = 0, . . . , p− 1 ,

since then xδ
k∗ = xδ

k∗−i for all i = 0, . . . , p− 1.
To prove local convergence, we will always assume that the equation F (x) = y

is solvable in Bρ(x0). As already mentioned at the end of Section 2.1, condition
(2.5) implies that then there also exists a unique x0-minimum-norm solution x†

satisfying condition (2.9), i.e.,

x† − x0 ∈ N (F ′(x†))⊥.

Analogously to Proposition 2.2 it can be shown that, if F (x) = y has a solution
x∗ in Bρ(x0) and if the operators Fi are Fréchet-differentiable in B2ρ(x0) and
satisfy the conditions (2.3), (2.4), and (3.87), then the errors of the iterates of the
Landweber–Kaczmarz method are monotonically decreasing for 0 ≤ k < k∗,
i.e., under these assumptions it can be shown that, if xδ

k ∈ Bρ(x∗), a sufficient
condition for xδ

k+1 as in (3.85) to be a better approximation of x∗ than xδ
k is that

‖yδ
k − Fk(xδ

k)‖ > 2
1 + η

1 − 2η
δ .

Moreover, it then holds that xδ
k, x

δ
k+1 ∈ Bρ(x∗) ⊂ B2ρ(x0). Following (2.13), one

can analogously show that for δ = 0

‖xk+1 − x∗‖2 + (1 − 2η)‖yk − Fk(xk)‖2 ≤ ‖xk − x∗‖2 .
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From this it follows by induction that

∞∑
k=0

‖yk − Fk(xk)‖2 ≤ 1
(1 − 2η)

‖x0 − x∗‖2 . (3.90)

We will now prove local convergence of the Landweber–Kaczmarz method
(3.85) in case of exact data.

Theorem 3.25 Assume that the operators Fi are Fréchet-differentiable in B2ρ(x0)
and satisfy the conditions (2.3), (2.4), and (3.87). Moreover, we assume that
F (x) = y has a a solution in Bρ(x0), where F is as in (3.84). Then the Landwe-
ber–Kaczmarz method applied to exact data y converges to a solution of F (x) = y.
If

N (F ′
i (x

†)) ⊂ N (F ′
i (x)) for all x ∈ Bρ(x†) , i = 0, 1, . . . , p− 1 , (3.91)

then xk converges to x†.

Proof. The proof is similar to the one of Theorem 2.4, but differs at a central
point. As mentioned above, we know that the unique x0-minimum-norm solution
x† exists in Bρ(x0) and that {‖ek‖} is monotonically decreasing, where ek :=
xk − x†. Thus, it converges to some ε ≥ 0. For given k ≤ j we have

k = p �k/p� + rk ≤ j = p �j/p� + rj with rk, rj ∈ {0, . . . , p− 1} .
Now we can choose l0 ∈ N0 in such a way that �k/p� ≤ l0 ≤ �j/p� and

p−1∑
s=0

‖ys − Fs(xp l0+s)‖ ≤
p−1∑
s=0

‖ys − Fs(xp i0+s)‖ (3.92)

for �k/p� ≤ i0 ≤ �j/p�. Moreover, we select

l := p l0 + (p− 1) . (3.93)

Again, we have (2.18) and (2.19) and as in the proof of Theorem 2.4 it suffices to
show that 〈 el − ej , el 〉 and 〈 el − ek, el 〉 tend to zero for k → ∞. Following the
lines of the proof of Theorem 2.4 we obtain together with (2.4) and (3.85) that

|〈 el − ek, el 〉| ≤ (1 + η)
l−1∑
i=k

‖yi − Fi(xi)‖ ‖yi − Fi(xl)‖

+ 2η
l−1∑
i=k

‖yi − Fi(xi)‖2 .
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In particular, from this and (3.90) it follows that 〈 el − ek, el 〉 → 0 for k → ∞ if

l−1∑
i=k

‖yi − Fi(xi)‖ ‖yi − Fi(xl)‖ → 0 .

To prove this, we will first derive an estimate for ‖yi−Fi(xl)‖: since i = p �i/p�+
ri with ri ∈ {0, . . . , p − 1}, we obtain with (2.5), (2.3), (3.85), (3.86), and (3.93)
that

‖yi − Fi(xl)‖ = ‖yri − Fri(xp l0+p−1)‖

≤ ‖yri − Fri(xp l0+ri
)‖ +

p−2∑
s=ri

‖Fri(xp l0+s+1) − Fri(xp l0+s)‖

≤ ‖yri − Fri(xp l0+ri
)‖ +

1
1 − η

p−2∑
s=ri

‖F ′
ri

(xp l0+s)(xp l0+s+1 − xp l0+s)‖

≤ ‖yri − Fri(xp l0+ri
)‖ +

1
1 − η

p−2∑
s=ri

‖xp l0+s+1 − xp l0+s‖

= ‖yri − Fri(xp l0+ri
)‖ +

1
1 − η

p−2∑
s=ri

‖F ′
s(xp l0+s)∗(ys − Fs(xp l0+s))‖

≤ 2 − η

1 − η

p−2∑
s=ri

‖ys − Fs(xp l0+s)‖ .

Together with (3.92) this yields the estimate

l−1∑
i=k

‖yi − Fi(xi)‖ ‖yi − Fi(xl)‖

≤
l0∑

i0=
k/p�

p−1∑
ri=0

‖yri − Fri(xp i0+ri)‖ ‖yri − Fri(xl)‖

≤ 2 − η

1 − η

l0∑
i0=
k/p�

( p−1∑
ri=0

‖yri − Fri(xp i0+ri)‖
p−2∑
s=ri

‖ys − Fs(xp l0+s)‖
)

≤ 2 − η

1 − η

l0∑
i0=
k/p�

( p−1∑
ri=0

‖yri − Fri(xp i0+ri)‖
)2
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≤ 2 − η

1 − η
p

l0∑
i0=
k/p�

p−1∑
ri=0

‖yri − Fri(xp i0+ri)‖2

≤ 2 − η

1 − η
p

l∑
i=k−rk

‖yi − Fi(xi)‖2.

Since k − rk → ∞ if k → ∞, it now follows together with (3.90) that
〈 el − ek, el 〉 → 0 for k → ∞. Analogously one can show that 〈 el − ej , el 〉 → 0.

Obviously (3.90) implies that ‖yk − Fk(xk)‖ → 0 as k → ∞. Hence, (3.86)
yields that

lim
n→∞ ‖ys − Fs(xp n+s)‖ = 0 for all s ∈ {0, . . . , p− 1} .

Now a similar argument as in the proof of Theorem 2.4 shows that {xk} converges
to a solution of F (x) = y.

If (3.91) holds, then by definition of the Landweber–Kaczmarz method (cf.
(3.85)) it follows with (3.86) that

xk+1−xk ∈ R(F ′
k(xk)∗) ⊂ N (F ′

k(xk))⊥ ⊂ N (F ′
k(x

†))⊥ ⊂
( p−1⋂

i=0

N (F ′
i (x

†))
)⊥

and hence that

xk − x0 ∈
( p−1⋂

i=0

N (F ′
i (x

†))
)⊥

for all k ∈ N .

Therefore, this then also holds for the limit of xk. Since x† is the unique solution
for which this condition holds (cf. (2.9)), this proves that xk → x† as k → ∞. �

The next theorem shows that the modified Landweber–Kaczmarz method (3.88)
in combination with the discrepancy principle is a regularization method.

Theorem 3.26 Let the assumptions of Theorem 3.25 hold and assume that
‖yδ

i − yi‖ ≤ δ for all i ∈ {0, . . . , p − 1}. Moreover, let k∗ = k∗(δ, yδ) be
determined according to (3.89). Then the modified Landweber–Kaczmarz iterates
xδ

k∗ converge to a solution of F (x) = y. If in addition (3.91) holds, then xδ
k∗

converges to x† as δ → 0.

Proof. The proof is analogous to the one of Theorem 2.6. �



4 Newton type methods

As can be seen from the previous chapters, Landweber iteration and its modifica-
tions are easy to realize numerically. However, the number of iterations needed can
be rather large. Therefore, one wants to find faster methods. For well-posed prob-
lems Newton type methods are the appropriate answer. The key idea of any New-
ton type method consists in repeatedly linearizing the operator equation F (x) = y
around some approximate solution xδ

k, and then solving the linearized problem

F ′(xδ
k)(x

δ
k+1 − xδ

k) = yδ − F (xδ
k)

for xδ
k+1. However, usually these linearized problems are also ill-posed if the

nonlinear problem is ill-posed (cf. [45, Section 10.1]) and, therefore, they have to
be regularized.

If we apply Tikhonov regularization to the linearized problem, we end up with
the Levenberg–Marquardt method that is treated in the first section of this chap-
ter. Adding a penalty term yields the well-known iteratively regularized Gauss–
Newton method introduced by Bakushinskii (see Section 4.2). Generalizations of
this method, where instead of Tikhonov regularization other regularization tech-
niques are used, can be found in Section 4.3.

One disadvantage of these Newton type methods is that usually operators in-
volving the derivative of F have to be inverted. For well-posed problems a reduc-
tion of the numerical effort is achieved via Quasi-Newton methods, e.g., Broyden’s
method. In Section 4.4, a modification of this method is investigated that may be
applied to ill-posed problems.

4.1 Levenberg–Marquardt method

The original idea of the Levenberg–Marquardt methodwas to minimize the squared
misfit, ‖F (x) − yδ‖2, within a trust region, i.e., a ball of radius ηk around xδ

k is
chosen and the linearized functional is minimized within this ball. This is easily
seen to be equivalent to minimizing

‖yδ − F (xδ
k) − F ′(xδ

k)z‖2 + αk ‖z‖2 (4.1)

for z = zk, where αk is the corresponding Lagrange parameter. Then this is
repeated with xδ

k+1 = xδ
k + zk instead of xδ

k and possibly some updated trust
region radius ηk+1 until convergence.
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Another justification for (4.1) is the regularization induced by adding the penalty
term αk ‖z‖2 to the linearized problem. This is equivalent to applying Tikhonov
regularization to the linearized problem F ′(xδ

k)h = yδ − F (xδ
k) yielding the iter-

ation procedure

xδ
k+1 = xδ

k + (F ′(xδ
k)

∗F ′(xδ
k) + αkI)−1F ′(xδ

k)
∗(yδ − F (xδ

k)) , (4.2)

where as above yδ are noisy data satisfying the estimate (1.2). The sequence of
iteration dependent regularization parameters αk has to be chosen appropriately.
Hanke [63] proposes to do so a-posteriori by the following discrepancy principle:
let α = αk be such that

pδ
k(α) := ‖yδ − F (xδ

k) − F ′(xδ
k)(x

δ
k+1(α) − xδ

k)‖ = q‖yδ − F (xδ
k)‖ (4.3)

with some fixed q ∈ (0, 1), where xδ
k+1(α) is defined as in (4.2) with αk replaced

by α. Since

pδ
k(α) = α‖(F ′(xδ

k)F
′(xδ

k)
∗ + αI)−1(yδ − F (xδ

k))‖,

it immediately follows that the function pδ
k is continuous and strictly increasing if

yδ − F (xδ
k) �= 0 and if F ′ is continuous, which we assume througout this section.

Moreover,

lim
α→∞ pδ

k(α) = ‖yδ − F (xδ
k)‖ ,

lim
α→0

pδ
k(α) = ‖P δ

k (yδ − F (xδ
k))‖ ≤ ‖yδ − F (xδ

k) − F ′(xδ
k)(x− xδ

k)‖

for any x ∈ D(F ), where P δ
k is the orthogonal projector onto R(F ′(xδ

k))
⊥. There-

fore, (4.3) has a unique solution αk provided

‖yδ − F (xδ
k) − F ′(xδ

k)(x
† − xδ

k)‖ ≤ q
γ ‖yδ − F (xδ

k)‖ (4.4)

holds for some γ > 1, where x† denotes the x0-minimum-norm solution (see
the end of Section 2.1), which is assumed to exist in Bρ(x0) in the following.
It even holds that, among all x ∈ X with ‖yδ − F (xδ

k) − F ′(xδ
k)(x − xδ

k)‖ ≤
q‖yδ − F (xδ

k)‖ , x = xδ
k+1 with αk determined by (4.3) is the one with minimal

distance to xδ
k (cf. Groetsch [53, p. 44]).

Following Hanke [63], we will now state some convergence results for this
method. First of all, similarly to Proposition 2.2 for nonlinear Landweber itera-
tion, monotonicity of the error can be established.
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Proposition 4.1 Let 0 < q < 1 < γ and assume that (1.1) has a solution and that
(4.4) holds so that αk can be defined via (4.3). Then, the following estimates hold:

‖xδ
k − x†‖2 − ‖xδ

k+1 − x†‖2 ≥ ‖xδ
k+1 − xδ

k‖2, (4.5)

‖xδ
k − x†‖2 − ‖xδ

k+1 − x†‖2

≥ 2(γ − 1)
γαk

‖yδ − F (xδ
k) − F ′(xδ

k)(x
δ
k+1 − xδ

k)‖2 (4.6)

≥ 2(γ − 1)(1 − q)q
γ‖F ′(xδ

k)‖2
‖yδ − F (xδ

k)‖2. (4.7)

Proof. Setting Kk := F ′(xδ
k) and using (4.2), we obtain analogously to estimate

(2.13) for Landweber iteration that

‖xδ
k+1 − x†‖2 − ‖xδ

k − x†‖2

= 2〈xδ
k+1 − xδ

k, x
δ
k − x† 〉 + ‖xδ

k+1 − xδ
k‖2

= 〈 (KkK
∗
k + αkI)−1(yδ − F (xδ

k)) , 2Kk(xδ
k − x†)

+ (KkK
∗
k + αkI)−1KkK

∗
k(yδ − F (xδ

k)) 〉
= − 2αk ‖(KkK

∗
k + αkI)−1(yδ − F (xδ

k))‖2

− ‖(K∗
kKk + αkI)−1K∗

k(yδ − F (xδ
k))‖2

+ 2〈 (KkK
∗
k + αkI)−1(yδ − F (xδ

k)) , y
δ − F (xδ

k) −Kk(x† − xδ
k) 〉

≤ − ‖xδ
k+1 − xδ

k‖2 − 2α−1
k ‖yδ − F (xδ

k) −Kk(xδ
k+1 − xδ

k)‖ (4.8)(
‖yδ − F (xδ

k) −Kk(xδ
k+1 − xδ

k)‖ − ‖yδ − F (xδ
k) −Kk(x† − xδ

k)‖
)
,

where we have used the Cauchy–Schwarz inequality and the identity

αk(KkK
∗
k + αkI)−1(yδ − F (xδ

k)) = yδ − F (xδ
k) −Kk(xδ

k+1 − xδ
k) . (4.9)

By (4.4) and the parameter choice (4.3), we have

‖yδ − F (xδ
k) −Kk(x† − xδ

k)‖ ≤ γ−1‖yδ − F (xδ
k) −Kk(xδ

k+1 − xδ
k)‖.

Thus, (4.8) and γ > 1 imply (4.5) and (4.6).
To obtain, (4.7), we derive an upper bound for αk: it follows immediately from

(4.3) and (4.9) that

q‖yδ − F (xδ
k)‖ = αk ‖(KkK

∗
k + αkI)−1(yδ − F (xδ

k))‖
≥ αk

αk + ‖Kk‖2 ‖yδ − F (xδ
k)‖
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and hence that

αk ≤ q

1 − q
‖Kk‖2.

This together with (4.3) yields (4.7). �

Based on this proposition, and similarly to Theorem 2.4, convergence in case of
exact data can be proven if condition (2.7) holds in a closed ball around x0, i.e.,

‖F (x) − F (x̃) − F ′(x)(x − x̃)‖ ≤ c‖x− x̃‖ ‖F (x) − F (x̃)‖,
x, x̃ ∈ B2ρ(x0) ⊂ D(F ) .

(4.10)

Note that according to Proposition 2.1 this already yields the unique existence of
the x0-minimum-norm solution x† ∈ Bρ(x0) if the equation (1.1) is solvable in
Bρ(x0).

Theorem 4.2 Let 0 < q < 1 and assume that (1.1) is solvable in Bρ(x0), that
F ′ is uniformly bounded in Bρ(x†), and that the Taylor remainder of F satisfies
(4.10) for some c > 0. Then the Levenberg–Marquardt method with exact data
yδ = y, ‖x0 − x†‖ < q/c and αk determined from (4.3), converges to a solution
of F (x) = y as k → ∞.

Proof. Define γ := q(c‖x0 −x†‖)−1 which is greater than 1 by assumption. Then
(4.10) with x = x0 and x̃ = x† implies (4.4), and hence, by Proposition 4.1,

‖xk+1 − x†‖ ≤ ‖xk − x†‖

for k = 0. By induction this inequality remains true for all k ∈ N showing
that during the entire iteration the assumptions of Proposition 4.1 are satisfied and
‖xk − x†‖ is monotonically decreasing .

The rest of the proof is similarly to the proof of Theorem 2.4 for Landweber
iteration: for arbitrary j ≥ k we choose l between k and j according to (2.17).
Hence, setting Kk := F ′(xk) and η := c‖x0 − x†‖ ≥ c‖xi − x†‖ for i ≥ 0, we
obtain together with (4.10) that

‖Ki(xl − x†)‖ ≤ ‖y − F (xl)‖ + c‖xi − x†‖ ‖y − F (xi)‖
+ c‖xl − xi‖ ‖F (xl) − F (xi)‖

≤ (1 + 5η)‖y − F (xi)‖.
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Setting ek := xk − x†, we now obtain together with (4.9) that

|〈 el − ej, el 〉| =
∣∣∣ j−1∑

i=l

〈 (K∗
i Ki + αiI)−1K∗

i (y − F (xi)), el 〉
∣∣∣

≤
j−1∑
i=l

‖(KiK
∗
i + αiI)−1(y − F (xi))‖ ‖Kiel‖

≤ (1 + 5η)
j−1∑
i=l

α−1
i ‖y − F (xi) −Ki(xi+1 − xi)‖ ‖y − F (xi)‖.

Due to (4.3) and (4.6), the right hand side is bounded from above by

γ(1 + 5η)
2q(γ − 1)

(‖el‖2 − ‖ej‖2) .

Similarly, one can show that

|〈 el − ek, el 〉| ≤ γ(1 + 5η)
2q(γ − 1)

(‖ek‖2 − ‖el‖2) .

Consequently, by (2.18), (2.19), and the fact that the monotone sequence {‖ek‖}
has a limit, we can conclude that {ek} and hence {xk} is a Cauchy sequence.
Since F ′ is uniformly bounded in Bρ(x†), by (4.7), ‖y − F (xk)‖ goes to zero as
k → ∞, so the limit of xk has to be a solution of (1.1). �

For noisy data the iteration has to be stopped after an appropriate number of
steps. If this index k∗ is determined by the discrepancy principle (2.2), i.e.,

‖yδ − F (xδ
k∗)‖ ≤ τδ < ‖yδ − F (xδ

k)‖, 0 ≤ k < k∗ ,

with the constant τ chosen larger than 1/q, then we obtain convergence of the
iterates xδ

k∗ towards a solution of (1.1) as the noise level δ tends to zero.

Theorem 4.3 Let the assumptions of Theorem 4.2 hold. Additionally let k∗ =
k∗(δ, yδ) be chosen according to the stopping rule (2.2) with τ > 1/q. Then
for ‖x0 − x†‖ sufficiently small, the discrepancy principle (2.2) terminates the
Levenberg–Marquardt method with αk determined from (4.3) after finitely many
iterations k∗, and

k∗(δ, yδ) = O(1 + | ln δ|) .
Moreover, the Levenberg–Marquardt iterates xδ

k∗ converge to a solution of the
equation F (x) = y as δ → 0.
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Proof. First of all, we show monotonicity of ‖xδ
k − x†‖ up to the stopping index

defined by (2.2). If k∗ = 0, nothing has to be shown. Let us now assume that
k∗ ≥ 1 and that

‖x0 − x†‖ < qτ − 1
c(1 + τ)

with c as in (4.10), which by

‖yδ − F (x0) − F ′(x0)(x† − x0)‖ ≤ δ + c‖x0 − x†‖ ‖y − F (x0)‖
≤ (1 + c‖x0 − x†‖)δ + c‖x0 − x†‖ ‖yδ − F (x0)‖

implies that (4.4) holds with γ = qτ [1 + c(1 + τ)‖x0 − x†‖]−1 > 1. Hence, we
can apply Proposition 4.1 for k = 0. An induction argument as in the proof of
Theorem 4.2 now yields the desired monotonicity result.

Summing up both sides of (4.7) from 0 to k∗ − 1, one obtains with (2.2) that

k∗τ 2δ2 ≤
k∗−1∑
k=0

‖yδ − F (xδ
k)‖2

≤ γ

2(γ − 1)(1 − q)q
sup

x∈Bρ(x†)
‖F ′(x)‖2 ‖x0 − x†‖2.

Thus, k∗ is finite for δ > 0.
Convergence of xδ

k∗ to a solution of (1.1) follows now analogously to the proof
of Theorem 2.6 for Landweber iteration.

To show the logarithmic estimate for k∗, we use the triangle inequality, assump-
tion (4.10) and (4.3) to conclude that

q‖yδ − F (xδ
k)‖ = ‖yδ − F (xδ

k) − F ′(xδ
k)(x

δ
k+1 − xδ

k)‖
≥ ‖yδ − F (xδ

k+1)‖ − ‖F (xδ
k+1) − F (xδ

k) − F ′(xδ
k)(x

δ
k+1 − xδ

k)‖
≥ ‖yδ − F (xδ

k+1)‖ − c‖xδ
k+1 − xδ

k‖ ‖F (xδ
k+1) − F (xδ

k)‖
≥ (1 − c‖xδ

k+1 − xδ
k‖)‖yδ − F (xδ

k+1)‖ − c‖xδ
k+1 − xδ

k‖ ‖yδ − F (xδ
k)‖

and hence with (2.2) and (4.5) that

τδ ≤ ‖yδ − F (xδ
k∗−1)‖ ≤ q̃‖yδ − F (xδ

k∗−2)‖ ≤ q̃k∗−1‖yδ − F (x0)‖
with

q̃ :=
q + c‖x0 − x†‖
1 − c‖x0 − x†‖ .

If ‖x0 − x†‖ is sufficiently small, then q̃ < 1, which yields the desired estimate
for k∗. �
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Convergence rates under source conditions (2.22), i.e.,

x† − x0 = (F ′(x†)∗F ′(x†))μv , μ > 0 , v ∈ N (F ′(x†))⊥,

have been established by Rieder in [137] (see also [138]) for

0 < μmin ≤ μ ≤ 1
2 , (4.11)

under the condition

F ′(x) = RxF
′(x†) and ‖I −Rx‖ ≤ cR‖x− x†‖,

x ∈ Bρ(x0) ⊂ D(F ) ,
(4.12)

which is related to Assumption 2.7 (ii) in Section 2.3 above. The minimal exponent
μmin depends on the constant cR in (4.12) and is strictly positive. Saturation at
μ = 1/2 naturally arises from the combination of Tikhonov regularization, that
shows a well-known saturation phenomenon at μ = 1, with a discrepancy principle
as a stopping rule that has been proven to shift the saturation exponent (also called
qualification) of linear regularization methods by −1/2 (cf. [45]). We want to
mention that Rieder in [137] also considers the application of other regularization
methods than Tikhonov regularization in each Newton step. Generalizations of
this kind will be considered in Section 4.3 below. Due to the difficulty of showing
convergence rates, we will not follow the Levenberg–Marquardt approach there
but the method introduced in Section 4.2 below.

Using a-priori strategies instead of the a-posteriori choices (2.2) and (4.3) for
k∗ and αk, respectively, we will show in Theorem 4.7 below, that almost opti-
mal rates can be obtained under the smoothness condition (2.22) for any μ in the
interval (0, 1/2] provided that condition (4.12) holds. Compared to a-posteriori
strategies this has the drawback that μ (or a positive lower bound on it) has to
be known to guarantee convergence rates, but also the advantages that (except for
strict positivity) no restriction like (4.11) on μ has to hold and that one saves the
effort of computing αk from the nonlinear equation (4.3).

If (4.12) holds, the range of the adjoint of the Fréchet-derivative, F ′(x)∗, and

hence of (F ′(x)∗F ′(x))
1
2 is locally invariant. By the inequality of Heinz, this also

implies range invariance of all powers of (F ′(x)∗F ′(x)) smaller than 1/2.

Lemma 4.4 Let K ∈ L(X ,Y) and R ∈ L(Y,Y) with ‖I −R‖ < 1/2. Then for
any μ ∈ [0, 1/2] it holds that R((K∗R∗RK)μ) = R((K∗K)μ) and that

‖((K∗R∗RK)μ)†(K∗K)μ‖ ≤ (1 − ‖I −R‖)−2μ , (4.13)

‖((K∗K)μ)†(K∗R∗RK)μ‖ ≤ (1 − ‖I −R‖)2μ(1 − 2‖I −R‖)−2μ. (4.14)
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Proof. We use the inequality of Heinz (see, e.g., [45, Proposition 8.21]), which
says that for two densely defined unbounded selfadjoint strictly positive operators
L and A on a Hilbert space H with

D(A) ⊆ D(L) and ‖Lx‖ ≤ ‖Ax‖ for all x ∈ D(A) ,

it also holds that

D(Aκ) ⊆ D(Lκ) and ‖Lκx‖ ≤ ‖Aκx‖ for all x ∈ D(Aκ) , (4.15)

for all κ ∈ [0, 1]. Setting A := ((K∗K)
1
2 )†, L := (1− ‖I−R‖)((K∗R∗RK)

1
2 )†,

and H := N ((K∗K)
1
2 )⊥ = N (K)⊥ = N (RK)⊥ = N ((K∗R∗RK)

1
2 )⊥ ⊆ X ,

with the norm of X , we obtain

D(A) = R((K∗K)
1
2 ) = R(K∗) = R(K∗R∗) = R((K∗R∗RK)

1
2 ) = D(L) .

Note that, since ‖I − R‖ < 1, by the Neumann series expansion, R and R∗ are
invertible with

‖R−1‖ ≤ 1
1 − ‖I −R‖ and ‖I −R−1‖ ≤ ‖I −R‖

1 − ‖I −R‖ . (4.16)

Since the operators

T := (K∗K)−
1
2K∗ : N (K∗)⊥ → H ,

T̃ := (K∗R∗)−1(K∗R∗RK)
1
2 : H → N ((K∗R∗)⊥

are isomorphisms, for any x ∈ D(A) = D(L), i.e., x = (K∗R∗RK)
1
2w for some

w ∈ H, we have that

‖Ax‖ = ‖TR∗T̃w‖ ≥ (1 − ‖I −R‖)‖w‖ = ‖Lx‖.

Therefore, (4.15) with κ = 2μ now implies (4.13).
The identity R((K∗R∗RK)μ) = R((K∗K)μ) follows from a further applica-

tion of (4.15) noting that one can show similiarly as above that also the estimate

‖Ax‖ ≤ 2
1 − ‖I −R‖ ‖Lx‖

holds. Finally, (4.14) follows as above by interchanging the role of K and RK
using (4.16). Note that, since ‖I−R‖ < 1/2, (4.16) implies that ‖I−R−1‖ < 1.�
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The idea of the convergence proof given below is now that if (2.22) holds with
μ ≤ 1/2 for the initial guess x0, then all the subsequent iterates also remain
in the range of (F ′(x†)∗F ′(x†))μ and their preimages under (F ′(x†)∗F ′(x†))μ,
vδ
k := ((F ′(x†)∗F ′(x†))μ)†(xk − x†), are uniformly bounded.

To prove this, we need the estimates given in the following two lemmata:

Lemma 4.5 Let K ∈ L(X ,Y), s ∈ [0, 1], and let {αk} be a sequence satisfying
αk > 0 and αk → 0 as k → ∞. Then it holds that

wk(s) := α1−s
k ‖(K∗K+αkI)−1(K∗K)sv‖ ≤ ss(1−s)1−s‖v‖ ≤ ‖v‖ (4.17)

and that

lim
k→∞

wk(s) =

{
0 , 0 ≤ s < 1 ,

‖v‖, s = 1 ,
(4.18)

for any v ∈ N (A)⊥.

Proof. The assertions follow with spectral theory similar as in the proof of
Lemma 2.10. �

Lemma 4.6 Let (4.12) hold and assume that xδ
k ∈ Bρ(x0). Moreover, we put

K := F ′(x†) and eδk := xδ
k − x† and assume that eδk = (K∗K)μvδ

k for some
0 < μ ≤ 1/2 and some vδ

k ∈ X and that cR‖eδk‖ < 1/2. Then there exists a
vδ
k+1 ∈ X such that eδk+1 = (K∗K)μvδ

k+1 and the following estimates hold:

‖vδ
k+1‖ ≤ (1 − 2cR‖eδk‖)−2μ‖vδ

k‖ + (1 − cR‖eδk‖)2μ (4.19)

(1 − 2cR‖eδk‖)−2μα
−(μ+ 1

2 )

k (3
2cR‖eδk‖ ‖Keδk‖ + δ) ,

‖eδk+1‖ ≤ αμ
k(1 − cR‖eδk‖)−2μ‖vδ

k‖ (4.20)

+ 1
2α

− 1
2

k (3
2cR‖eδk‖ ‖Keδk‖ + δ) ,

‖Keδk+1‖ ≤ (1 − cR‖eδk‖)−1
(
(1 − cR‖eδk‖)−2μα

μ+ 1
2

k ‖vδ
k‖ (4.21)

+ 3
2cR‖eδk‖ ‖Keδk‖ + δ

)
.

Proof. Denoting Kk := F ′(xδ
k), we can rewrite the error as follows,

eδk+1 = αk(K∗
kKk + αkI)−1(K∗K)μvδ

k

+ (K∗
kKk + αkI)−1K∗

k(yδ − F (xδ
k) +Kke

δ
k) .

(4.22)
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This, due to (4.12), (4.13), Lemma 4.5, and the Taylor remainder estimate

‖F (x†) − F (x) + F ′(x)(x − x†)‖

=
∥∥∥ ∫ 1

0
(F ′(x† + t(x− x†)) − F ′(x))(x − x†) dt

∥∥∥
=

∥∥∥ ∫ 1

0
(Rx†+t(x−x†) −Rx)F ′(x†)(x− x†) dt

∥∥∥
≤ 3

2cR‖x− x†‖ ‖F ′(x†)(x− x†)‖ (4.23)

for x ∈ Bρ(x0), as well as (1.2), implies (4.20). Note that

‖I −Rxδ
k
‖ ≤ cR ‖eδk‖ < 1

2 . (4.24)

By Lemma 4.4 and (4.12), the error representation (4.22) also implies that eδk+1
is in the range of (K∗K)μ. Its preimage under (K∗K)μ can be represented as

vδ
k+1 = ((K∗K)μ)†(K∗

kKk)
μ
(
αk(K∗

kKk + αkI)−1((K∗
kKk)

μ)†(K∗K)μvδ
k

+ (K∗
kKk + αkI)−1((K∗

kKk)
μ)†K∗

k(yδ − F (xδ
k) +Kke

δ
k)
)
.

This together with Lemma 4.5, (1.2), (4.12), (4.13), (4.14), (4.23), and (4.24)
yields (4.19).

Finally, to derive (4.21), we apply K on both sides of (4.22) and use (4.12) to
obtain

Keδk+1 = R−1
xδ

k

(
αkKk(K∗

kKk + αkI)−1(K∗K)μvδ
k

+Kk(K∗
kKk + αkI)−1K∗

k(yδ − F (xδ
k) +Kke

δ
k)
)
.

Now (4.21) again follows with Lemma 4.5, (1.2), (4.12), (4.13), (4.16), (4.23), and
(4.24). �

In order to deduce convergence rates from these estimates, here both αk and the
stopping index k∗ are chosen a-priori, namely according to

αk = α0q
k , for some α0 > 0 , q ∈ (0, 1) , (4.25)

and

ηk∗α
μ+ 1

2
k∗ ≤ δ < ηkα

μ+ 1
2

k , 0 ≤ k < k∗ ,

ηk := η(k + 1)−(1+ε) , for some η > 0 , ε > 0 .
(4.26)
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Theorem 4.7 Let a solution x† of (1.1) exist and let (4.12) as well as (2.22) hold
with some 0 < μ ≤ 1/2 and ‖v‖ sufficiently small. Moreover, let αk and k∗ be
chosen according to (4.25) and (4.26) with η sufficiently small, respectively. Then
the Levenberg–Marquardt iterates defined by (4.2) remain in Bρ(x0) and converge
with the rate

‖xδ
k∗ − x†‖ = O

(
(δ (1 + | ln δ|)(1+ε))

2μ
2μ+1

)
.

Moreover,
‖F (xδ

k∗) − y‖ = O
(
δ (1 + | ln δ|)(1+ε)

)
and

k∗ = O(1 + | ln δ|) .
For the noise free case (δ = 0, η = 0) we obtain that

‖xk − x†‖ = O(αμ
k) ,

and that

‖F (xk) − y‖ = O
(
α

μ+ 1
2

k

)
.

Proof. Let γ̃ > 0, ‖v‖ , and η satisfy the following smallness assumptions,

q−μγ̃αμ
0 ≤ min{ 1

3cR
, ρ

2} , (4.27)

‖v‖ ≤ q−μγ̃αμ
0 ‖K‖−2μ min{1 , 3

2q
− 1

2α
1
2
0 ‖K‖−1} , (4.28)

and

exp
(

12μcRγ̃α
μ
0

qμ(1 − qμ)

)(
‖v‖ +

9cRγ̃2αμ
0

4q(2μ+ 1
2 )(1 − qμ)

+ ηcε

)
≤ γ̃ , (4.29)

where cε is defined by

cε :=
∞∑

j=0

(j + 1)−(1+ε). (4.30)

Note that this can always be achieved, e.g., by choosing first γ̃ > 0 so small that
(4.27) is satisfied and that

exp
(

12μcRγ̃α
μ
0

qμ(1 − qμ)

)
≤ 2 and

9cRγ̃2αμ
0

4q(2μ+ 1
2 )(1 − qμ)

<
γ̃

6
.

Then one chooses ‖v‖ so small that (4.28) holds and that ‖v‖ ≤ γ̃/6. Finally, one
chooses η so small that ηcε < γ̃/6. This yields (4.29).
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Moreover, let {γδ
k} be a sequence defined recursively via

γk+1 := (1 + 12μcRq−μγ̃αμ
k)γk

+ (1 + 6μcRq−μγ̃αμ
k)(9

4cRq
−(2μ+ 1

2 )γ̃2αμ
k + ηk) ,

γ0 := ‖v‖.
(4.31)

With the notation of Lemma 4.6, we will show by induction that

eδk = (K∗K)μvδ
k , ‖vδ

k‖ ≤ γk ,

‖eδk‖ ≤ q−μγ̃αμ
k ≤ ρ

2 , ‖Keδk‖ ≤ 3
2q

−(μ+ 1
2 )γ̃α

μ+ 1
2

k

(4.32)

hold for all k ≤ k∗. Note that ‖eδk‖ ≤ ρ/2 guarantees that xδ
k remains in Bρ(x0).

For k = 0, (4.32) follows directly from (2.22), v0 := v, γ0 = ‖v‖ , (4.27),
(4.28), and the estimates ‖e0‖ ≤ ‖K‖2μ‖v‖ as well as ‖Ke0‖ ≤ ‖K‖2μ+1 ‖v‖ .

Assuming that (4.32) holds for some 0 < k < k∗, we now apply Lemma 4.6.
Together with (4.25), (4.26), (4.31), and the simple estimates(

1
1 − s

)2μ

≤ 1 +
2μs

1 − s
≤ 1 + 3μs ,(

1
1 − 2s

)2μ

≤ 1 +
4μs

1 − 2s
≤ 1 + 12μs ,(

1 − s

1 − 2s

)2μ

≤ 1 +
2μs

1 − 2s
≤ 1 + 6μs ,

1
1 − s

≤ 3
2
,

that follow from the Bernoulli inequality provided that 0 ≤ s ≤ 1/3 and μ ≤ 1/2,
we obtain the estimates

‖vδ
k+1‖ ≤ (1 + 12μcRq

−μγ̃αμ
k)γk

+ (1 + 6μcRq
−μγ̃αμ

k)(9
4cRq

−(2μ+ 1
2 )γ̃2αμ

k + ηk) = γk+1 ,

‖eδk+1‖ ≤ αμ
k [ (1 + 3μcRq

−μγ̃αμ
k)γk + 1

2(9
4cRq

−(2μ+ 1
2 )γ̃2αμ

k + ηk) ]

≤ q−μαμ
k+1γk+1 ,

‖Keδk+1‖ ≤ 3
2α

μ+ 1
2

k [ (1 + 3μcRq
−μγ̃αμ

k)γk + (9
4cRq

−2(μ+ 1
2 )γ̃2αμ

k + ηk) ]

≤ 3
2q

−μ+ 1
2α

μ+ 1
2

k+1 γk+1 .

Note that, due to (4.25) and (4.27), cRq−μγ̃αμ
k ≤ 1/3. Thus, (4.32) holds for all

k ≤ k∗ if we can show that

γδ
k ≤ γ̃ for all k ∈ N . (4.33)
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From the recursion formula (4.31) one immediately gets the representation

γk =
( k−1∏

j=0

(1 + 12μcRq
−μγ̃αμ

j )
)
γ0 +

k−1∑
j=0

( k−1∏
l=j+1

(1 + 12μcRq
−μγ̃αμ

l )
)

·(1 + 6μcRq
−μγ̃αμ

j )(9
4cRq

−(2μ+ 1
2 )γ̃2αμ

j + ηj)

which together with (4.25), (4.26), (4.29), (4.30), γ0 = ‖v‖ , and the estimate

k−1∏
j=0

(1 + aj) ≤ exp
( k−1∑

j=0

aj

)
, aj ≥ 0 , 0 ≤ j ≤ k − 1 ,

yields

γk ≤
( k−1∏

j=0

(1 + 12μcRq
−μγ̃αμ

j )
)(
γ0 +

k−1∑
j=0

(9
4cRq

−(2μ+ 1
2 )γ̃2αμ

j + ηj)
)

≤ exp
(

12μcRq
−μγ̃

k−1∑
j=0

αμ
j

)(
γ0 +

k−1∑
j=0

(9
4cRq

−(2μ+ 1
2 )γ̃2αμ

j + ηj)
)

≤ exp
(

12μcRγ̃α
μ
0

qμ(1 − qμ)

)(
γ0 +

9cRγ̃2αμ
0

4q(2μ+ 1
2 )(1 − qμ)

+ ηcε

)
≤ γ̃ .

Thus, (4.33) is shown.
Since we obtain analogoulsy to (4.23) that

‖F (xδ
k) − F (x†) −Keδk‖ ≤ 1

2cR ‖eδk‖ ‖Keδk‖,

(4.27) and (4.32) imply that

‖F (xδ
k) − y‖ ≤ 7

4q
−(μ+ 1

2 )γ̃α
μ+ 1

2
k . (4.34)

This together with (4.32) implies the assertions of the theorem for the noise free
case δ = 0, η = 0.

In case of noisy data, (4.32) with k = k∗, as well as the stopping rule (4.26)
yield

‖eδk∗‖ = O(αμ
k∗) = O

(
(δη−1

k∗ )
2μ

2μ+1

)
. (4.35)

Now (4.25) and (4.26) imply that

δ ≤ ηkα
μ+ 1

2
k ≤ ηα

μ+ 1
2

0 q(μ+ 1
2 )k
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for k < k∗ and hence that

k∗ = O(1 + | ln δ|) .
This together with (4.26), (4.34), and (4.35) proves the assertions for the noisy
case. �

4.2 Iteratively regularized Gauss–Newton method

In this section we deal with the iteratively regularized Gauss–Newton method

xδ
k+1 = xδ

k + (F ′(xδ
k)

∗F ′(xδ
k) + αkI)−1(F ′(xδ

k)
∗(yδ − F (xδ

k))

+αk(x0 − xδ
k)) ,

(4.36)

where, as always, xδ
0 = x0 is an initial guess for the true solution, αk is a sequence

of positive numbers tending towards zero, and yδ are noisy data satisfying the
estimate (1.2). This method is quite similar to Levenberg–Marquardt iterations
(4.2).

Note that the approximate solution xδ
k+1 minimizes the functional

φ(x) := ‖yδ − F (xδ
k) − F ′(xδ

k)(x− xδ
k)‖2 + αk ‖x− x0‖2.

This means that xδ
k+1 minimizes the Tikhonov functional where the nonlinear

function F is linearized around xδ
k (cf. [45, Chapter 10]).

We emphasize that for a fixed number of iterations the process (4.36) is a stable
algorithm if F ′(·) is continuous.

This method was introduced by Bakushinskii. In [3] he proved local conver-
gence essentially under the source condition (2.22) with μ ≥ 1 assuming that F ′

is Lipschitz continuous. For the noise free case he even proved the rate

‖xn − x†‖ = O(αk) .

In [11] it was shown that convergence rates can even be obtained if μ < 1 and
also for the noisy case. A convergence analysis for a continuous analogue of the
iteratively regularized Gauss–Newton method was derived in [92].

As for Landweber iteration (cf. Chapter 2), Lipschitz continuity of F ′ is not
sufficient to obtain rates if μ < 1/2 in (2.22). Similarly to Assumption 2.7 (ii) we
then need further conditions on F ′ that guarantee that the linearization is not too
far away from the nonlinear operator F . However, for the case μ ≥ 1/2, Lipschitz
continuity of F ′ suffices to prove convergence rates for the iteratively regularized
Gauss–Newton method as for Tikhonov regularization or the iteratively regularized
Landweber iteration.

For our convergence analysis we need an assumption similar to Assumption 2.7.
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Assumption 4.8 Let ρ be a positive number such that B2ρ(x0) ⊂ D(F ).

(i) The equation F (x) = y has an x0-minimum-norm solution x† in Bρ(x0).

(ii) x† satisfies the source condition (2.22) for some 0 ≤ μ ≤ 1, i.e.,

x† − x0 = (F ′(x†)∗F ′(x†))μv , v ∈ N (F ′(x†))⊥.

(iii) If μ < 1/2, the Fréchet-derivative F ′ satisfies the conditions

F ′(x̃) = R(x̃, x)F ′(x) +Q(x̃, x) (4.37)

‖I −R(x̃, x)‖ ≤ cR (4.38)

‖Q(x̃, x)‖ ≤ cQ‖F ′(x†)(x̃− x)‖ (4.39)

for x, x̃ ∈ B2ρ(x0), where cR and cQ are nonnegative constants.

If μ ≥ 1/2, the Fréchet-derivative F ′ is Lipschitz continuous in B2ρ(x0),
i.e.,

‖F ′(x̃) − F ′(x)‖ ≤ L‖x̃− x‖, x, x̃ ∈ B2ρ(x0) (4.40)

for some L > 0.

(iv) The sequence {αk} in (4.36) satisfies

αk > 0 , 1 ≤ αk

αk+1
≤ r , lim

k→∞
αk = 0 , (4.41)

for some r > 1.

We show in the following proposition that the conditions (4.37) – (4.39) imply
that F is constant on x†+N (F ′(x†))∩Bρ(x†) assuming that ρ, cR and cQ are suf-
ficiently small (compare (2.5)). Note that these conditions are slightly weaker than
(2.26) and (2.27) for Landweber iterates. Moreover, we prove that the condition
x† − x0 ∈ N (F ′(x†))⊥, which is an immediate consequence of Assumption 4.8
(ii), is not restrictive. It is automatically satisfied for the then unique x0-minimum-
norm solution (compare Proposition 2.1).

Proposition 4.9 Let x† ∈ Bρ(x0) ⊂ D(F ) be a solution of F (x) = y and let the
conditions (4.37) – (4.39) hold.

(i) If x−x† ∈ N (F ′(x†)) and x ∈ Bρ(x0), then F (x) = F (x†) = y. Moreover,
if cR + ρcQ < 1, then

x− x† ∈ N (F ′(x†)) ⇐⇒ F (x) = F (x†)

holds in Bρ(x0).
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(ii) If x† − x0 ∈ N (F ′(x†))⊥ and if cR + ρcQ < 1, then x† is the unique
x0-minimum-norm solution in Bρ(x0). On the other hand, if x† is an
x0-minimum-norm solution in Bρ(x0), then x† − x0 ∈ N (F ′(x†))⊥.

Proof. (i) Let x ∈ Bρ(x0). Then conditions (4.37) – (4.39) imply the following
estimate

‖F (x) − F (x†) − F ′(x†)(x− x†)‖

=
∥∥∥∫ 1

0
(F ′(x† + t(x− x†)) − F ′(x†))(x− x†) dt

∥∥∥
=

∥∥∥∫ 1

0
[ (R(x† + t(x− x†), x†) − I)F ′(x†)

+Q(x† + t(x− x†), x†) ](x− x†) dt
∥∥∥

≤ (cR + 1
2cQ‖x− x†‖)‖F ′(x†)(x− x†)‖

and hence

‖F (x) − F (x†)‖ ≤ (1 + cR + 1
2cQ‖x− x†‖)‖F ′(x†)(x− x†)‖ (4.42)

and

‖F (x) − F (x†)‖ ≥ (1 − cR − 1
2cQ‖x− x†‖)‖F ′(x†)(x− x†)‖. (4.43)

Since ‖x− x†‖ ≤ 2ρ, both estimates imply the assertions.
The proof of the assertions in (ii) is similar to the one of Proposition 2.1. �

Before we can prove convergence or convergence rates for the iteration process
(4.36) we need some preparatory lemmata. In the first lemma we derive an estimate
for ‖eδk+1‖ and ‖Keδk+1‖ assuming that xδ

k ∈ Bρ(x†).

Lemma 4.10 Let Assumption 4.8 hold and assume that xδ
k ∈ Bρ(x†). Moreover,

set K := F ′(x†), eδk := xδ
k − x†, and let wk(·) be defined as in (4.17).

(i) If 0 ≤ μ < 1/2, we obtain the estimates

‖eδk+1‖ ≤ αμ
kwk(μ) + cRα

μ
kwk(μ+ 1

2)

+ cQ‖Keδk‖α
μ− 1

2
k (1

2wk(μ) + wk(μ+ 1
2)) (4.44)

+α
− 1

2
k (cR ‖Keδk‖ + 3

4cQ‖eδk‖ ‖Keδk‖ + 1
2δ) ,
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‖Keδk+1‖ ≤ (1 + 2cR(1 + cR))α
μ+ 1

2
k wk(μ+ 1

2)

+ ‖Keδk‖
(
cQ(1 + cR)αμ

k (wk(μ) + 1
2wk(μ+ 1

2 ))

+ cQcRα
μ
kwk(μ+ 1

2)

+ (1 + cR)(2cR + 3
2cQ‖eδk‖)

)
(4.45)

+ ‖Keδk‖2cQ

(
cQα

μ− 1
2

k (1
2wk(μ) + wk(μ+ 1

2))

+α
− 1

2
k (cR + 3

4cQ‖eδk‖)
)

+ (1 + cR + 1
2cQα

− 1
2

k ‖Keδk‖) δ .

(ii) If 1/2 ≤ μ ≤ 1, we obtain the estimates

‖eδk+1‖ ≤ αμ
kwk(μ) + L‖eδk‖

(
1
2α

μ− 1
2

k wk(μ) (4.46)

+ ‖(K∗K)μ−
1
2 v‖

)
+ 1

2α
− 1

2
k (1

2L‖eδk‖2 + δ) ,

‖Keδk+1‖ ≤ αk‖(K∗K)μ−
1
2 v‖

+L2‖eδk‖2(1
2α

μ− 1
2

k wk(μ) + ‖(K∗K)μ−
1
2 v‖) (4.47)

+Lα
1
2
k ‖eδk‖(α

μ− 1
2

k wk(μ) + 1
2 ‖(K∗K)μ−

1
2 v‖)

+ (1
2Lα

− 1
2

k ‖eδk‖ + 1)(1
2L‖eδk‖2 + δ) .

Proof. We set Kk := F ′(xδ
k). Due to (2.22), we can rewrite (4.36) as follows

eδk+1 = −αk(K∗K + αkI)−1(K∗K)μv

−αk(K∗
kKk + αkI)−1

(
K∗

k(K −Kk) (4.48)

+ (K∗ −K∗
k)K

)
(K∗K + αkI)−1(K∗K)μv

+ (K∗
kKk + αkI)−1K∗

k(yδ − F (xδ
k) +Kke

δ
k) .

(i) Let us first consider the case that 0 ≤ μ < 1/2. Since xδ
k ∈ Bρ(x†) ⊂

B2ρ(x0), the conditions (4.37) – (4.39) are applicable. By reasoning similar to that
in the proof of Proposition 4.9, we obtain that

‖F (xδ
k) − F (x†) −Kke

δ
k‖ ≤ (2cR + 3

2cQ‖eδk‖)‖Keδk‖. (4.49)
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The well-known estimates (see (4.17))

‖(K∗
kKk + αkI)−1‖ ≤ α−1

k , ‖(K∗
kKk + αkI)−1K∗

k‖ ≤ 1
2α

− 1
2

k ,

and

K∗
k(K −Kk) + (K∗ −K∗

k)K = K∗
k(R∗(x†, xδ

k) −R(xδ
k, x

†))K

+Q∗(x†, xδ
k)K −K∗

kQ(xδ
k, x

†)

imply that

‖αk(K∗
kKk + αkI)−1(K∗

k(K −Kk)

+ (K∗ −K∗
k)K)(K∗K + αkI)−1(K∗K)μv‖

≤
(

1
2α

1
2
k ‖R∗(x†, xδ

k) −R(xδ
k, x

†)‖ + ‖Q∗(x†, xδ
k)‖

)
·‖K(K∗K + αkI)−1(K∗K)μv‖
+ 1

2α
1
2
k ‖Q(xδ

k, x
†)‖ ‖(K∗K + αkI)−1(K∗K)μv‖.

This together with (1.2), (4.17), (4.48), and F (x†) = y yields the estimate (4.44).
Note that

‖K(K∗K + αkI)−1(K∗K)μv‖ = α
μ− 1

2
k wk(μ+ 1

2) .

Since, due to (4.37), K = R(x†, xδ
k)Kk + Q(x†, xδ

k), we obtain together with
(4.48) that

Keδk+1 = −αkK(K∗K + αkI)−1(K∗K)μv

−αk(R(x†, xδ
k)Kk +Q(x†, xδ

k))(K
∗
kKk + αkI)−1(

K∗
k(R∗(x†, xδ

k) − R(xδ
k, x

†))K +Q∗(x†, xδ
k)K

−K∗
kQ(xδ

k, x
†)
)
(K∗K + αkI)−1(K∗K)μv

− (R(x†, xδ
k)Kk +Q(x†, xδ

k))(K
∗
kKk + αkI)−1K∗

k

(F (xδ
k) − F (x†) −Kke

δ
k + y − yδ) .

Now the estimate (4.45) for ‖Keδk+1‖ follows together with (1.2), (4.38), (4.39),
(4.17) and (4.49).

(ii) Let us now consider the case that 1/2 ≤ μ ≤ 1. Then the following esti-
mates

‖K −Kk‖ ≤ L‖eδk‖ and ‖F (xδ
k) − F (x†) −Kke

δ
k‖ ≤ 1

2L‖eδk‖2
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are valid. This together with ‖K(K∗K + αkI)−1(K∗K)
1
2 ‖ ≤ 1, (1.2), (4.17),

and (4.48) implies (4.46) and (4.47). �

In the next lemma we show a general asymptotic result on sequences defined by
quadratic recursions.

Lemma 4.11 Let {aδ
k}k∈N0

, δ ≥ 0, be a family of sequences satisfying

0 ≤ aδ
k ≤ a and lim sup

δ→0, k→∞
aδ

k ≤ a0

for some a, a0 ∈ R
+
0 . Moreover, let γ

δ
k be such that

0 ≤ γδ
k+1 ≤ aδ

k + bγδ
k + c(γδ

k)2 , 0 ≤ k < k∗(δ) , γδ
0 := γ0 (4.50)

holds, where b, c, γ0 are nonnegative constants, k∗(δ) ∈ N0 for any δ > 0, and
k∗(δ) → k∗(0) := ∞ as δ → 0.

(i) If c > 0, b+ 2
√
ac ≤ 1, and γ0 ≤ γ(a), then

γδ
k ≤ max{γ0, γ(a)} , 0 ≤ k ≤ k∗(δ) .

If in addition a0 < a, then

lim sup
δ→0

γδ
k∗(δ) ≤ γ(a0) , lim sup

k→∞
γ0

k ≤ γ(a0) .

Here γ(p) and γ(p), where p ∈ [0, a], denote the fixed points of the equation
p+ bγ + cγ2 = γ, i.e.,

γ(p) :=
2p

1 − b+
√

(1 − b)2 − 4pc
,

γ(p) :=
1 − b+

√
(1 − b)2 − 4pc
2c

.

(4.51)

(ii) If c = 0 and b < 1, then

γδ
k ≤ γ0 +

a

1 − b
, 0 ≤ k ≤ k∗(δ) ,

and

lim sup
δ→0

γδ
k∗(δ) ≤

a0

1 − b
, lim sup

k→∞
γ0

k ≤ a0

1 − b
.
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Proof. Let us first assume that c > 0, b + 2
√
ac ≤ 1, and γ0 ≤ γ(a), i.e., we

consider case (i). Since γδ
k+1 ≤ a+ bγδ

k + c(γδ
k)2 and since

p+ bγ + cγ2 = γ + c(γ − γ(p))(γ − γ(p)) , p ∈ [0, a] , (4.52)

it follows by induction that

γδ
k ≤ max{γ0, γ(a)} ≤ γ(a) , 0 ≤ k ≤ k∗(δ) .

Let us now assume that a0 < a and that 0 < ε < a − a0 is arbitrary, but fixed.
Then there is a δ̃(ε) > 0 and a k̃(ε) ∈ N0 such that

∀0 ≤ δ ≤ δ̃(ε), k ≥ k̃(ε) : aδ
k ≤ a0 + ε .

We define the sequence {ãε
k}k∈N0

via

ãε
k :=

⎧⎨⎩
sup

0≤δ≤δ̃(ε)

aδ
k , k < k̃(ε) ,

a0 + ε , k ≥ k̃(ε) ,

and the sequence {γ̃ε
k}k∈N0

recursively via

γ̃ε
k+1 := ãε

k + bγ̃ε
k + c(γ̃ε

k)2 , k ∈ N0 , γ̃ε
0 := γ0 .

Then it follows by induction that

γδ
k ≤ γ̃ε

k , 0 ≤ k ≤ k∗(δ) ,

provided that 0 ≤ δ ≤ δ̃(ε) which we will assume in the following. Moreover, it
follows as above that

γ̃ε
k ≤ max{γ0, γ(a)} ≤ γ(a) < γ(a0 + ε) , k ∈ N0 .

Let us first assume that γ̃ε
k < γ(a0 + ε) for all k ≥ k̃(ε). Then it follows with

(4.52) that γ̃ε
k is strictly monotonically increasing for k ≥ k̃(ε).

Let us now assume that γ(a0 + ε) ≤ γ̃ε
k ≤ γ(a0 + ε) for some k = l ≥ k̃(ε).

Then it again follows with (4.52) that

γ(a0 + ε) = (a0 + ε) + bγ(a0 + ε) + cγ(a0 + ε)2 ≤ ãε
k + bγ̃ε

k + c(γ̃ε
k)2

= γ̃ε
k+1 ≤ γ̃ε

k ≤ γ(a0 + ε) .

Hence, γ(a0 + ε) ≤ γ̃ε
k ≤ γ(a0 + ε) for all k ≥ l and γ̃ε

k is monotonically
decreasing for k ≥ l.
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These arguments show that γ̃ε
k is convergent. Since γ(a) < γ(a0 + ε), the only

possible limit then is γ(a0 + ε). Hence,

lim sup
δ→0

γδ
k∗(δ) ≤ γ(a0 + ε) , lim sup

k→∞
γ0

k ≤ γ(a0 + ε) .

Since ε > 0 was arbitrary, this proves the assertion.
Let us now assume that c = 0 and b < 1, i.e., we consider case (ii). It follows

by induction that

γδ
k ≤ bkγ0 +

k−1∑
j=0

aδ
jb

k−1−j , 0 ≤ k ≤ k∗(δ) .

The assertions now follow with the limsup condition satisfied by aδ
k. �

It is well known that in the noisy case convergence can be only expected if the
iteration is stopped appropriately. Besides the discrepancy principle (2.2), which is
an a-posteriori stopping rule that was successfully used together with Landweber
iteration (cf. Chapters 2 and 3), we first want to study an a-priori stopping rule.
The reason is that even in the linear case O(

√
δ) is the best possible rate that can

be achieved for (4.36) with (2.2) (cf., e.g., [45]). However, with an a-priori rule
the best rate will be O(δ

2
3 ).

We will consider now the following a-priori stopping rule, where the iteration is
stopped after k∗ = k∗(δ) steps with⎧⎨⎩ ηα

μ+ 1
2

k∗ ≤ δ < ηα
μ+ 1

2
k , 0 ≤ k < k∗ , 0 < μ ≤ 1 ,

k∗(δ) → ∞ and η ≥ δα
− 1

2
k∗ → 0 as δ → 0 , μ = 0 ,

(4.53)

for some η > 0. Note that, due to (4.41), this guarantees that k∗(δ) < ∞, if
δ > 0 and that k∗(δ) → ∞ as δ → 0. In the noise free case (δ = 0) we can set
k∗(0) := ∞ and η := 0.

We will show in the next theorem that this a-priori stopping rule yields conver-
gence and convergence rates for the iteratively regularized Gauss–Newton method
(4.36) provided that ‖v‖ , cR, cQ, and η are sufficiently small.

Theorem 4.12 Let Assumption 4.8 hold and let k∗ = k∗(δ) be chosen according
to (4.53).

(i) If 0 ≤ μ < 1/2, we assume that the following closeness conditions hold:{
b+ 2

√
ac ≤ 1 and γ0 ≤ γ(a) , cQ > 0 ,

b < 1 , cQ = 0 ,
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αμ
0 ((1 + cR + 3

2cQcγα
μ
0 )‖v‖ + cγ(cR + 3

4ρcQ) + 1
2η) ≤ ρ ,

where

a := rμ+ 1
2 (‖v‖ + (1 + cR)(2cR ‖v‖ + η)) ,

b := rμ+ 1
2 (1

2cQα
μ
0 ((3 + 5cR)‖v‖ + η) + (1 + cR)(2cR + 3

2ρcQ)) ,

c := rμ+ 1
2 cQα

μ
0 (3

2cQα
μ
0 ‖v‖ + cR + 3

4ρcQ) ,

γ0 := α
−(μ+ 1

2 )

0 ‖F ′(x†)(x0 − x†)‖,

cγ :=

{
max{γ0, γ(a)} , cQ > 0 ,

γ0 + a
1−b , cQ = 0 ,

and γ(a) and γ(a) are as in (4.51).

(ii) If 1/2 ≤ μ ≤ 1, we assume that the following closeness conditions hold:

b+ 2
√
ac ≤ 1 , γ0 ≤ γ(a) , and αμ

0 cγ ≤ ρ ,

where

a := rμ(‖v‖ + 1
2η) ,

b := rμL(1
2α

μ− 1
2

0 ‖v‖ + ‖(F ′(x†)∗F ′(x†))μ−
1
2 v‖) ,

c := rμ 1
4Lα

μ− 1
2

0 ,

γ0 := α−μ
0 ‖x0 − x†‖,

cγ := max{γ0, γ(a)} ,
and γ(a) and γ(a) are as in (4.51).

Then we obtain that

‖xδ
k∗ − x†‖ =

⎧⎨⎩ o(1) , μ = 0 ,

O
(
δ

2μ
2μ+1

)
, 0 < μ ≤ 1 .

For the noise free case (δ = 0, η = 0) we obtain that

‖xk − x†‖ =

{
o(αμ

k ) , 0 ≤ μ < 1 ,

O(αk) , μ = 1 ,

and that

‖F (xk) − y‖ =

⎧⎨⎩ o
(
α

μ+ 1
2

k

)
, 0 ≤ μ < 1

2 ,

O(αk) , 1
2 ≤ μ ≤ 1 .
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Proof. Let K and eδk be defined as in Lemma 4.10. Let us first assume that 0 ≤
μ < 1/2 and that the conditions in (i) hold. Moreover, let γδ

k := α
−(μ+ 1

2 )

k ‖Keδk‖ .
We will show by induction that γδ

k satisfies an estimate (4.50) with b, c as in (i) and

aδ
k := rμ+ 1

2 (1 + 2cR(1 + cR))wk(μ+ 1
2) + (1 + cR)δα

−(μ+ 1
2 )

k∗−1

and that xδ
k ∈ Bρ(x†) for all 0 ≤ k ≤ k∗. Note that, due to (4.17), (4.18), and

(4.53), aδ
k satisfies the conditions in Lemma 4.11 with a as in (i) and

a0 :=

{
rμ+ 1

2 (1 + cR)η , μ > 0 ,

0 , μ = 0 ,

and that, due to Assumption 4.8 (i), x0 ∈ Bρ(x†). Let us assume that xδ
j ∈ Bρ(x†)

for all 0 ≤ j ≤ k and that

γδ
j+1 ≤ aδ

j + bγδ
j + c(γδ

j )
2 (4.54)

for all 0 ≤ j < k and some 0 ≤ k < k∗. Then it follows with (4.17), (4.41),
and (4.45) that (4.54) is also satisfied for j = k. Due to the first two closeness
conditions in (i), it follows as in Lemma 4.11 that

γδ
k ≤ cγ .

Together with (4.17), (4.41), (4.44), and (4.53) we obtain the estimate

‖eδk+1‖ ≤ αμ
0 ((1 + cR + 3

2cQcγα
μ
0 )‖v‖cγ (cR + 3

4ρcQ) + 1
2η) .

Due to the third closeness condition in (i) this implies that xδ
k+1 ∈ Bρ(x†). Due to

(4.53), these induction steps are possible up to k = k∗ − 1.
Now (4.18), (4.41), (4.44), Lemma 4.11 and (4.53) imply that

‖eδk∗‖ =

⎧⎨⎩ O(αμ
k∗) = O

((
α

μ+ 1
2

k∗

) 2μ
2μ+1

)
= O

(
δ

2μ
2μ+1

)
, μ > 0 ,

o(1) , μ = 0 .

Note that a0 = 0 if μ = 0 and that in all interesting cases 0 < a. The case
a = a0 = 0 corresponds to the trivial noise free case with xk = x†.

For the general noise free case, δ = η = 0, the assertions follow as above
with Lemma 4.11 noting that then a0 = 0 also for μ > 0. The last assertion on
‖F (xk) − y‖ follows together with (4.42).

Let us now assume that 1/2 ≤ μ ≤ 1 and that the conditions in (ii) hold.
Moreover, let γδ

k := α−μ
k ‖eδk‖ . Using (4.17), (4.41), (4.46), and (4.53), it follows
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with induction as in case (i) that γδ
k satisfies an estimate (4.50) with b, c as in (ii)

and
aδ

k := rμ(wk(μ) + 1
2η)

and that xδ
k ∈ Bρ(x†) for all 0 ≤ k ≤ k∗. Note that, due to (4.18), aδ

k satisfies the
conditions in Lemma 4.11 with a as in (ii) and

a0 :=

{
1
2r

μη , 1
2 ≤ μ < 1 ,

a , μ = 1 .

Due to Lemma 4.11 we now obtain as in case (i) that

‖eδk∗‖ = O
(
δ

2μ
2μ+1

)
and ‖ek‖ =

{
o(αμ

k) , 1
2 ≤ μ < 1 ,

O(αk) , μ = 1 .

Note that for the non-trivial noise free case 0 = a0 < a if μ < 1. Together with
(4.47) we now obtain that ‖Kek‖ = O(αk) and, hence together with the estimate
‖F (xk) − y‖ ≤ ‖Keδk‖ + L‖eδk‖2/2 that ‖F (xk) − y‖ = O(αk). �

The closeness conditions in the theorem above cannot be checked for a real
practical problem, since they involve the exact solution. One can see, however,
that the conditions are satisfied if ‖v‖ , cR, cQ, and η are sufficiently small.

Since αk can be chosen as αk := 2−k, the iteratively regularized Gauss–Newton
method converges much faster than the Landweber iteration method. However,
each iteration step is more expensive due to the fact that one has to invert the
operator (F ′(xδ

k)
∗F ′(xδ

k) + αkI).
Unfortunately, the a-priori stopping rule (4.53) has the disadvantage that one

needs information on the smoothness of the exact solution, i.e., the parameter μ.
A-posteriori stopping rules only need available information. Thus, we will now
study the discrepancy principle (2.2), i.e., k∗ = k∗(δ) is chosen such that

‖yδ − F (xδ
k∗)‖ ≤ τδ < ‖yδ − F (xδ

k)‖, 0 ≤ k < k∗ ,

with τ > 1 sufficiently large. As mentioned above already, one cannot expect
to obtain a better rate than O(

√
δ) with this selection criterion even if (2.22) is

satisfied with μ > 1/2.
As for the a-priori stopping rule, (4.53), we can prove convergence rates for

μ ≤ 1/2 if ‖v‖ , cR, and cQ are sufficiently small.

Theorem 4.13 Let Assumption 4.8 hold for some 0 ≤ μ ≤ 1/2, where we assume
that (4.37) – (4.39) also hold for μ = 1/2, and let k∗ = k∗(δ) be chosen according
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to (2.2) with τ > 1. Moreover, we assume that the following closeness conditions
hold: {

b+ 2
√
ac ≤ 1 and γ0 ≤ γ(a) , cQ > 0 ,

b < 1 , cQ = 0 ,

αμ
0 ((1 + cR + 3

2cQcγα
μ
0 )‖v‖ + cγ(cR + 3

4ρcQ + β)) ≤ ρ ,

rq < 1 ,

1 + 2cR(1 + cR)
1 − rq

+ (1 + α−1
0 ‖F ′(x†)‖2)rq2 < 2 ,

where

a := rμ+ 1
2 (1 + 2cR(1 + cR))‖v‖,

b := rμ+ 1
2 (1

2cQα
μ
0 (3 + 5cR)‖v‖ + (1 + cR)(2cR + 3

2ρcQ + 2β)) ,

c := rμ+ 1
2 cQα

μ
0 (3

2cQα
μ
0 ‖v‖ + cR + 3

4ρcQ + β) ,

β :=
1 + cR + 1

2ρcQ

2(τ − 1)
,

γ0 := α
−(μ+ 1

2 )

0 ‖F ′(x†)(x0 − x†)‖,

cγ :=

{
max{γ0, γ(a)} , cQ > 0 ,

γ0 + a
1−b , cQ = 0 ,

q := r−(μ+ 1
2 )b+ cQcγα

μ
0 (3

2cQα
μ
0 ‖v‖ + cR + 3

4ρcQ + β) ,

and γ(a) and γ(a) are as in (4.51). Then we obtain the rates

‖xδ
k∗ − x†‖ =

⎧⎨⎩ o
(
δ

2μ
2μ+1

)
, 0 ≤ μ < 1

2 ,

O(
√
δ) , μ = 1

2 .

Proof. Let K and eδk be defined as in Lemma 4.10. We may assume that v �= 0 in
Assumption 4.8 (ii), because otherwise (1.2), (2.2), and τ > 1 would imply that
xδ

k∗ = x0 = x†.

Let γδ
k := α

−(μ+ 1
2 )

k ‖Keδk‖ . Then one can show similar to the proof of Theorem
4.12 (case (i)) that γδ

k satisfies an estimate (4.50) with b, c as above and

aδ
k := rμ+ 1

2 (1 + 2cR(1 + cR))wk(μ+ 1
2)
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and that xδ
k ∈ Bρ(x†) for all 0 ≤ k ≤ k∗ noting that, due to (1.2), (2.2), and (4.42),

the estimate

(τ − 1)δ < (1 + cR + 1
2ρcQ)‖Keδk‖, 0 ≤ k < k∗ , (4.55)

holds and that, due to (4.17) and (4.18), aδ
k satisfies the conditions in Lemma 4.11

with a as above and

a0 :=

{
0 , μ < 1

2 ,

a , μ = 1
2 .

Thus,
γδ

k ≤ cγ , 0 ≤ k ≤ k∗ . (4.56)

Now (4.41), (4.17), (4.44), and (4.55) imply that

‖eδk∗‖ = O
(
αμ

k∗−1(wk∗−1(μ) + wk∗−1(μ+ 1
2 ) + γδ

k∗−1)
)
. (4.57)

We will show that all three terms in the estimate above converge with the desired
rate. In a first step we show that

‖Keδk+1‖ ≤
(1 + 2cR(1 + cR)

1 − rq
+ (1 +α−1

0 ‖K‖2)q
)
α

μ+ 1
2

k wk(μ+ 1
2) (4.58)

for all 0 ≤ k < k∗. Note that (4.41), (4.17), (4.45) and (4.56) yield the estimate

‖Keδk+1‖ ≤ (1 + 2cR(1 + cR))α
μ+ 1

2
k wk(μ+ 1

2) + (1 + cR + 1
2cQcγα

μ
0 )δ

+ ‖Keδk‖
(

3
2 (1 + cR)cQα

μ
0 ‖v‖ + cQcRα

μ
0 ‖v‖ + 3

2c
2
Qcγα

2μ
0 ‖v‖

+ (2cR + 3
2ρcQ)(1 + cR + 1

2cQcγα
μ
0 )

)
.

Together with (4.55) we obtain that

‖Keδk+1‖ ≤ (1 + 2cR(1 + cR))α
μ+ 1

2
k wk(μ+ 1

2 ) + q‖Keδk‖ (4.59)

and hence by induction that

‖Keδk+1‖ ≤ (1+2cR(1+cR))
k∑

j=0

α
μ+ 1

2
j wj(μ+ 1

2)qk−j + ‖Ke0‖qk+1. (4.60)

Let {Eλ} denote a spectral family of K∗K. (4.41) and (4.17) imply that

α
μ+ 1

2
k+1 wk+1(μ+ 1

2) =
( ∫ ∞

0

( αk+1

αk+1 + λ

)2
λ2μ+1 d‖Eλv‖2

) 1
2

≥ r−1α
μ+ 1

2
k wk(μ+ 1

2)
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and hence that

α
μ+ 1

2
j wj(μ+ 1

2 ) ≤ rk−jα
μ+ 1

2
k wk(μ+ 1

2 ) , 0 ≤ j ≤ k . (4.61)

This together with (4.60) and

‖Ke0‖ =
(∫ ∞

0

(αk + λ

αk

)2( αk

αk + λ

)2
λ2μ+1 d‖Eλv‖2

) 1
2

≤ (1 + α−1
k ‖K‖2)α

μ+ 1
2

k wk(μ+ 1
2)

≤ (1 + α−1
0 ‖K‖2rk)α

μ+ 1
2

k wk(μ+ 1
2)

yields

‖Keδk+1‖ ≤
(
(1 + 2cR(1 + cR))

k∑
j=0

(rq)k−j

+ (1 + α−1
0 ‖K‖2rk)qk+1

)
α

μ+ 1
2

k wk(μ+ 1
2 ) .

Since r > 1 and rq < 1, this proves (4.58).
An inspection of the proof of Lemma 4.10 shows that analogously to the esti-

mate (4.59) one obtains that

(1 − 2cR(1 + cR))α
μ+ 1

2
k wk(μ+ 1

2) ≤ ‖Keδk+1‖ + q‖Keδk‖
for 0 ≤ k < k∗. This together with (4.58) and (4.61) implies that

‖Keδk∗‖ ≥ (1 − 2cR(1 + cR))α
μ+ 1

2
k∗−1wk∗−1(μ+ 1

2 )

− q
(1 + 2cR(1 + cR)

1 − rq
+ (1 + α−1

0 ‖K‖2)q
)
α

μ+ 1
2

k∗−2wk∗−2(μ+ 1
2)

≥
(

2 − 1 + 2cR(1 + cR)
1 − rq

− (1 + α−1
0 ‖F ′(x†)‖2)rq2

)
α

μ+ 1
2

k∗−1wk∗−1(μ+ 1
2 ) .

Since b < 1, we also have that cR + ρcQ/2 < 1. Therefore, using (1.2), (2.2),
(4.43), ‖eδk∗‖ ≤ ρ and the fifth closeness condition, we get

α
μ+ 1

2
k∗−1wk∗−1(μ+ 1

2 ) = O(‖Keδk∗‖) = O(δ) . (4.62)
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Due to (4.41) and (4.17), this implies that

k∗ = k∗(δ) → ∞ as δ → 0 . (4.63)

This together with (4.41), (4.17), (4.62), and the Hölder inequality yields

αμ
k∗−1wk∗−1(μ)

=
( ∫ ∞

0

(( αk∗−1

αk∗−1 + λ

)2
λ2μ+1

) 2μ
2μ+1

( αk∗−1

αk∗−1 + λ

) 1
2μ+1

d‖Eλv‖2
) 1

2

≤ (α
μ+ 1

2
k∗−1wk∗−1(μ+ 1

2))
2μ

2μ+1

(∫ ∞

0

( αk∗−1

αk∗−1 + λ
)2 d‖Eλv‖2

) 1
4μ+2

= o(δ
2μ

2μ+1 ) .

Moreover, (4.58) and (4.62) imply that

‖Keδk∗−1‖ = O(δ) .

Together with (4.57) and (4.62) we finally obtain that

‖eδk∗‖ = o
(
δ

2μ
2μ+1

)
+O

((
α

μ+ 1
2

k∗−1wk∗−1(μ+ 1
2)
) 2μ

2μ+1
wk∗−1(μ+ 1

2)
1

2μ+1

+ ‖Keδk∗−1‖
2μ

2μ+1 (γδ
k∗−1)

1
2μ+1

)
= o

(
δ

2μ
2μ+1

)
+O

(
δ

2μ
2μ+1 (wk∗−1(μ+ 1

2) + γδ
k∗−1)

1
2μ+1

)
The assertions now follow together with (4.17), (4.18), (4.56), and (4.63) noting
that, due to Lemma 4.11,

γδ
k∗ = o(1) , 0 ≤ μ < 1

2 ,

since a0 = 0 < a for μ < 1/2. �

4.3 Generalizations of the iteratively regularized
Gauss–Newton method

In this section, we will study generalizations of the results in the previous sections
into several directions:

First of all, we will consider regularization methods other than Tikhonov regu-
larization for the linear subproblems in each Newton step. Such modified Newton
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type methods for solving (1.1) have been studied and analyzed in several recent
publications, see, e.g., [37, 64, 79, 83, 135]. The in general unbounded inverse of
F ′(x) in the definition of the Newton step is replaced by a bounded approximation,
defined via a regularizing operator, i.e.,

Rα(F ′(x)) ≈ F ′(x)† .

More precisely, α > 0 is a small regularization parameter, and Rα satisfies

Rα(K)y → K†y as α→ 0 for all y ∈ R(K) ,

‖Rα(K)‖ ≤ Φ(α) , and ‖Rα(K)K‖ ≤ cK ,

for all K ∈ L(X ,Y) with ‖K‖ ≤ cs ,

(4.64)

for some positive function Φ(α) and some positive constants cK , cs. Note that,
especially in view of operators K with unbounded inverses, Φ(α) has to tend
to infinity as α goes to zero; we assume w.l.o.g. that Φ(α) is proportional to
1/
√
α. A possibility of defining regularization methods satisfying (4.64) is given

via spectral theory (cf., e.g., [45]) by choosing a piecewise continuous real func-
tion gα : [0, λ] → R, λ > 0, satisfying

gα(λ) → λ−1 as α→ 0 for all λ ∈ (0, λ] ,

sup
λ∈[0,λ]

|λgα(λ)| ≤ cg , and sup
λ∈[0,λ]

|gα(λ)| ≤ c(α) , (4.65)

for some positive constant cg and some positive function c(α), and by setting

Rα(K) := gα(K∗K)K∗. (4.66)

Then Rα satisfies (4.64) with Φ(α) = (cgc(α))
1
2 , cK = cg, and cs = λ

1
2 .

Within the so-defined class, many well-known regularization methods such as
Tikhonov regularization, Landweber iteration, and Lardy’s method can be found.
Note, however, that the slightly more general concept (4.64) additionally includes
regularization by discretization, which we will also take into consideration below.

Using a monotonically decreasing sequence αk ↘ 0 of regularization parame-
ters, one arrives at a class of regularized Newton methods

xδ
k+1 = x0 +Rαk

(F ′(xδ
k))(y

δ − F (xδ
k) − F ′(xδ

k)(x0 − xδ
k)) . (4.67)

As in the previous sections, yδ are noisy data satisfying the estimate (1.2) and
the superscript δ is omitted in the noise free case. Note that in the limiting case
αk → 0, so thatRαk

(F ′(x)) converges pointwise towards F ′(x)†, this formulation
is equivalent to the usual Newton method. The special choice

Rαk
(F ′(xδ

k)) = (F ′(xδ
k)

∗F ′(xδ
k) + αkI)−1F ′(xδ

k)
∗
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corresponds to the iteratively regularized Gauss–Newton method discussed in Sec-
tion 4.2.

As a further generalization, we will not only consider Hölder type source con-
ditions (2.22), but also logarithmic source conditions that are more appropriate for
severely ill-posed problems (cf. [77, 79]), i.e.,

x† − x0 = fL
μ (F ′(x†)∗F ′(x†))v , μ > 0 , v ∈ N (F ′(x†))⊥ ⊂ X ,

fL
μ (λ) := (− ln(λc−1

L ))−μ , cL > c2
s ,

(4.68)

with cs as in (4.64). As in the Hölder type case fL
μ (K∗K) is defined via functional

calculus (cf., e.g., [45]).
Note that a generalization to logarithmic source conditions is possible also for

the nonlinear Landweber iteration discussed in Chapter 2, see [37].
In order to obtain convergence rates under regularity conditions (2.22) or (4.68),

in analogy to the assertions of Lemma 4.5 for Tikhonov regularization with source
conditions (2.22), the regularizing operators Rα have to converge to the inverse
of K at some rate on the set of solutions satisfying the regularity conditions. The
appropriate conditions are

‖(I −Rα(K)K)(K∗K)μ‖ ≤ c1,μα
μ and (4.69)

‖K(I −Rα(K)K)(K∗K)μ‖ ≤ c2,μα
μ+ 1

2 (4.70)

for all K ∈ L(X ,Y) with ‖K‖ ≤ cs

in the Hölder type case and

‖(I −Rα(K)K)fL
μ (K∗K)‖ ≤ c3,μ| ln(α)|−μ and (4.71)

‖K(I −Rα(K)K)fL
μ (K∗K)‖ ≤ c4,μα

1
2 | ln(α)|−μ (4.72)

for all K ∈ L(X ,Y) with ‖K‖ ≤ cs

in the logarithmic case. Here, c1,μ, c2,μ, c3,μ, c4,μ are positive constants and α ≤ α
for some α < 1 in (4.71).

To make all these methods well defined, we assume the forward operators F to
be Fréchet-differentiable with derivatives being uniformly bounded in a neighbour-
hood of x0. This uniform bound has to be such that applicability of the respective
regularization method can be guaranteed. We assume that

‖F ′(x)‖ ≤ cs for all x ∈ B2ρ(x0) ⊂ D(F ) , (4.73)

with cs as in (4.64). This can always be achieved by proper scaling.
Newton type methods rely on the local validity of the first order Taylor approx-

imation, i.e., the linearization of the nonlinear operator equation to be solved. In
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classical convergence proofs of Newton’s method, a local Lipschitz condition on
F ′,

‖F ′(x̃) − F ′(x)‖ ≤ L‖x̃− x‖, x, x̃ ∈ B2ρ(x0) , (4.74)

is used implying a Taylor remainder estimate being quadratic in terms of the differ-
ence between x and x̃. As we have seen in Section 4.2, unless a source condition
(2.22) with μ ≥ 1/2 is satisfied, stronger assumptions on F are required in a
convergence analysis.

The nonlinearity conditions considered so far, see (2.4), (2.25), (4.10), (4.12),
and (4.37) – (4.39) enable an estimate of the Taylor remainder in terms of differ-
ences between function values of the forward operator. Similar to the analysis of
the iteratively regularized Gauss–Newton method (compare (4.37) – (4.39)), we
assume that

F ′(x̃) = R(x̃, x)F ′(x) +Q(x̃, x) , ‖R(x̃, x)F ′(x)‖ ≤ cs ,

‖I −R(x̃, x)‖ ≤ cR‖x̃− x‖, and ‖Q(x̃, x)‖ ≤ cQ‖F ′(x†)(x̃− x)‖ (4.75)

hold for x, x̃ ∈ B2ρ(x0), where cR and cQ are nonnegative constants with
cR + cQ > 0. Note that for investigating the general case, we here use a slightly
stronger estimate on ‖I − R(x̃, x)‖ than in (4.38). In case cQ = 0, this means
local range invariance of the adjoint of F ′(x).

Alternatively, we will show that the convergence proofs for the iteratively regu-
larized Gauss–Newton method, and more generally, Newton type methods induced
by regularization methods according to (4.64) can be carried out under local range
invariance of F ′(x), namely

F ′(x̃) = F ′(x)R(x̃, x) and ‖I −R(x̃, x)‖ ≤ cR‖x̃− x‖ (4.76)

for x, x̃ ∈ B2ρ(x0) and some positive constant cR. This does not extend to the
part of the convergence analysis for the a-posteriori stopping rule according to the
discrepancy principle: it is intuitively clear that when using this principle, which is
based on information on function values of F only, also a Taylor estimate in terms
of values of F , and hence an assumption of the type (4.75), will be required for
analyzing a Newton type iteration.

Condition (4.76) is closely related to the so-called affine covariant Lipschitz
condition in [38], which will be considered in more detail in Section 4.4 below.

To illustrate condition (4.76), we give the following simple example of parame-
ter estimation from exterior measurements.

Example 4.14 Let Ω ⊂ R
d with d ∈ {1, 2, 3} be some bounded domain with

smooth boundary and consider the problem of estimating the coefficient c in

−Δu+ c u = f , in Ω ,

u = g , on ∂Ω ,
(4.77)
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from measurements of u outside Ω∗ ⊂ Ω, where f ∈ L2(Ω) and g ∈ H
3
2 (Ω).

In this example, the forward operator F is the composition of the parameter-to-
solution mapping G for (4.77) with an observation operator T , i.e.:

F := T ◦G : D(F ) → L2(Ω \ Ω∗) ,

G : D(F ) → H2(Ω) T : H2(Ω) → L2(Ω \ Ω∗)
c �→ G(c) := u(c) , u �→ u

∣∣∣
Ω\Ω∗

.

One can show (cf. [32]) that there exists γ > 0 such that G and hence F is well
defined on

D(F ) = {c ∈ L2(Ω) : ‖c− ĉ‖L2 < γ for some ĉ ∈ L2(Ω) with ĉ ≥ 0 a.e.} .

It can be argued that the Fréchet-derivative of F is given by F ′ = T ◦ G′, where
G′(c)h = −A(c)−1[hu(c)], for c ∈ D(F ) and h ∈ X = L2(Ω), and

A(c) : H2(Ω) ∩H1
0 (Ω) → L2(Ω)

u �→ −Δu+ c u .

Consequently, if

|u(c0)(x)| ≥ κ > 0 for all x ∈ Ω

holds for some c0 ∈ D(F ) so that |u(c)(x)| ≥ κ/2 > 0 is satisfied for all
c ∈ B2ρ(c0), x ∈ Ω, and some ρ > 0 sufficiently small, then (4.76) holds with

R(c̃, c)h = (u(c))−1A(c)A(c̃)−1[hu(c̃)] .

Note that the same reasoning would go through when considering measurements
of u on the boundary of Ω∗ only instead of the full dimensional set Ω \ Ω∗, i.e., T
would be replaced by some trace type operator, mapping the solution u(c) to the
measured boundary values. However, then, in general, c would not be uniquely
identifiable from these measurements. For further parameter identification prob-
lems of similar type see, e.g., [22].

In order to be able to carry out the estimates in the proof of Theorem 4.16
below, we have to make some additional assumptions on the regularization param-
eters αk and the regularization methods Rα in view of the respective nonlinearity
conditions (4.74), (4.75), or (4.76). All conditions needed are summarized in the
following assumption.
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Assumption 4.15 Let ρ be a positive number such that B2ρ(x0) ⊂ D(F ).

(i) The equation F (x) = y has an x0-minimum-norm solution x† in Bρ(x0)
satisfying the condition x† − x0 ∈ N (F ′(x†))⊥. Moreover, F is Fréchet-
differentiable and satisfies the scaling property (4.73).

(ii) Let Rα be a regularization method satisfying (4.64), where Φ(α) satisfies

Φ(α) = cΦα
− 1

2 (4.78)

for some positive constant cΦ.

(iii) The parameters αk in the iteration procedure (4.67) satisfy condition (4.41),
i.e.,

αk > 0 , 1 ≤ αk

αk+1
≤ r , lim

k→∞
αk = 0 ,

for some r > 1. In case (4.68) holds, we will assume that α0 < 1.

(iv) Let one of the following three conditions hold:

(a) The nonlinearity condition (4.76) holds together with

‖Rα(KR)KR−Rα(K)K‖ ≤ c1‖I −R‖ (4.79)

for all operators K ∈ L(X ,Y) and R ∈ L(X ,X ) with ‖K‖ ≤ cs,
‖KR‖ ≤ cs and ‖I −R‖ ≤ cI < 1.

If the source condition (2.22) or (4.68) holds for some μ > 0, we also
assume that Rα satisfies (4.69) or (4.71), respectively.

(b) The nonlinearity condition (4.75) holds and Rα satisfies (4.69) and
(4.70) for all 0 ≤ μ ≤ μ0 for some μ0 ≥ 1/2. (Note that μ0 is called
the qualification of the regularization method, cf. [45]). Moreover, we
assume that

‖KRα(K)‖ ≤ c2 (4.80)

and that either cQ = 0 in (4.75) or

‖Rα(K̃)K̃ −Rα(K)K‖ ≤ c1‖K̃ −K‖α− 1
2 , (4.81)

‖K(Rα(K̃)K̃ −Rα(K)K)‖ ≤ c1‖K̃ −K‖ (4.82)

hold for all K, K̃ ∈ L(X ,Y) with ‖K‖ ≤ cs, ‖K̃‖ ≤ cs.
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If the source condition (2.22) holds, we assume that 0 < μ ≤ 1/2.
In the logarithmic case, i.e., when (4.68) holds, we assume that Rα

satisfies (4.71), (4.72), and the conditions

‖Rα(RK)RK −Rα(K)K‖ ≤ c1‖I −R‖, (4.83)

‖K(Rα(RK)RK −Rα(K)K)‖ ≤ c1α
1
2 ‖I −R‖ (4.84)

for all operators K ∈ L(X ,Y) and R ∈ L(Y,Y) with ‖K‖ ≤ cs,
‖KR‖ ≤ cs and ‖I −R‖ ≤ cI < 1.

(c) The Lipschitz condition (4.74) holds. The solution x† and the reg-
ularization method Rα satisfy (2.22) and (4.69) for some μ ≥ 1/2,
respectively. In addition, Rα fulfills the condition

‖(Rα(K̃)K̃ −Rα(K)K)(K∗K)
1
2 ‖ ≤ c1‖K̃ −K‖ (4.85)

for all K, K̃ ∈ L(X ,Y) with ‖K‖, ‖K̃‖ ≤ cs.

Here c1, c2, and cI are some positive constants and cs is as in (4.64).

Now we shall state and prove convergence as k → ∞ in the noiseless case, as
well as convergence in the situation of noisy data, using an appropriate a-priori
stopping rule. In the general case, convergence can be achieved if the stopping
index k∗ = k∗(δ) is chosen such that (compare (4.53))

k∗ → ∞ and η ≥ δα
− 1

2
k∗ → 0 as δ → 0 . (4.86)

If additional source conditions hold, an appropriate choice is

ηα
μ+ 1

2
k∗ ≤ δ < ηα

μ+ 1
2

k , 0 ≤ k < k∗ , (4.87)

in the Hölder type case, i.e., when (2.22) holds, and

ηα
1
2
k∗ | ln(αk∗)|−μ ≤ δ < ηα

1
2
k | ln(αk)|−μ, 0 ≤ k < k∗ , (4.88)

in the logarithmic case, i.e., when (4.68) holds. In all cases η is some sufficiently
small positive constant.

Theorem 4.16 Let Assumption 4.15 hold and let xδ
k be defined by the sequence

(4.67). Moreover, let η and ‖x0 −x†‖ be sufficiently small. Then, in the noise free
case (δ = 0, η = 0), the sequence xk converges to x† as k → ∞. In case of noisy
data and with the choice (4.86), xδ

k∗ converges to x
† as δ → 0.
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If in addition the source condition (2.22) or (4.68) holds with ‖v‖ sufficiently
small and if k∗ = k∗(δ) is chosen according to the stopping rule (4.87) and (4.88),
respectively, then we obtain the convergence rates

‖xδ
k∗ − x†‖ =

{
O
(
δ

2μ
2μ+1

)
, in the Hölder type case ,

O((1 + | ln(δ)|−μ) , in the logarithmic case .

In the noise free case, we obtain the rates

‖xk − x†‖ =

{
O(αμ

k) , in the Hölder type case ,

O(| ln(αk)|−μ) , in the logarithmic case .

Proof. To derive a recursive error estimate, we assume that the current iterate xδ
k

is in Bρ(x†) and that k < k∗. Note that k∗ = ∞ if δ = 0. This guarantees that
x†, xδ

k ∈ B2ρ(x0). Moreover, as in the previous section, we set eδk := xδ
k − x†,

K := F ′(x†), and Kk := F ′(xδ
k) and assume that cR‖eδk‖ ≤ cI , so that the

conditions of Assumption 4.15 are applicable to Kk. Then eδk+1 may be rewritten
in the form

eδk+1 = (I −Rαk
(K)K)(x0 − x†)

+ (Rαk
(K)K −Rαk

(Kk)Kk)(x0 − x†) (4.89)

−Rαk
(Kk)(F (xδ

k) − F (x†) −Kke
δ
k) −Rαk

(Kk)(y − yδ)

and hence, due to (1.2), (4.64), and (4.78)

‖eδk+1‖ ≤ wk + ‖(Rαk
(K)K −Rαk

(Kk)Kk)(x0 − x†)‖
+ ‖Rαk

(Kk)(F (xδ
k) − F (x†) −Kke

δ
k)‖ + cΦδα

− 1
2

k ,
(4.90)

where

wk := ‖(I −Rαk
(K)K)(x0 − x†)‖ → 0 as k → ∞ , (4.91)

since x0 −x† ∈ N (F ′(x†))⊥ (see Assumption 4.15 (i)). In the Hölder type or log-
arithmic case, i.e., when (2.22) and (4.69) or (4.68) and (4.71) hold, respectiveley,
by (4.73) we even obtain that

wk ≤
{
c1,μα

μ
k ‖v‖ , in the Hölder type case ,

c3,μ| ln(αk)|−μ‖v‖ , in the logarithmic case .
(4.92)

Let us first consider case (iv)(a) of Assumption 4.15. Due to (4.76), the third term
on the right hand side of (4.89) can be rewritten as

Rαk
(Kk)Kk

∫ 1

0
(R(x† + teδk, x

δ
k) − I)eδk dt ,
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which together with (4.64), (4.73), (4.76), (4.79), and (4.90) yields

‖eδk+1‖ ≤ wk + c1cR‖x0 − x†‖ ‖eδk‖ + 1
2cKcR‖eδk‖2 + cΦδα

− 1
2

k . (4.93)

Due to (4.41), (4.64), (4.86), and (4.91), we can now apply Lemma 4.11 to the
sequence γδ

k := ‖eδk‖ with

aδ
k := wk + δα

− 1
2

k for 0 ≤ k ≤ k∗ , a := η + ‖x0 − x†‖(1 + cK) ,

a0 := 0 , b := c1cR‖x0 − x†‖, c := 1
2cKcR .

If η and ‖x0−x†‖ are sufficiently small, then a, b, and c satisfy all the conditions of
the lemma. Moreover, max{γ0, γ(a)} can be made smaller than min{ρ, cI/cR},
so that we can guarantee that xδ

k remains in Bρ(x†) and cR‖eδk‖ ≤ cI for all
k ≤ k∗. Thus, xδ

k converges to x† as k → ∞ in the noise free case, and as δ → 0
in the noisy case, respectively.

To prove convergence rates under source conditions, we consider the sequence
γδ

k := ψ(αk)−1‖eδk‖ , where

ψ(α) :=

{
αμ , in the Hölder type case ,

| ln(α)|−μ , in the logarithmic case .
(4.94)

Then (4.41), (4.92), and (4.93) imply that

γδ
k+1 ≤ c̃(cμ‖v‖ + c1cR‖x0 − x†‖γδ

k + 1
2cKcRψ(αk)(γδ

k)2 + cΦδα
− 1

2
k ψ(αk)−1) ,

where c̃ := rμ, cμ := c1,μ in the Hölder type case and c̃ := (1+ln(r)| ln(α0)|−1)μ,
cμ := c3,μ in the logarithmic case, respectively.

Hence, due to (4.87) and (4.88), Lemma 4.11 is again applicable with

aδ
k := c̃(cμ‖v‖ + cΦδα

− 1
2

k ψ(αk)−1) for 0 ≤ k < k∗ ,

a0 := a := c̃(cμ‖v‖ + cΦη) , b := c̃c1cR‖x0 − x†‖, c := 1
2 c̃cKcRψ(α0) ,

provided ‖v‖ and η are sufficiently small. Thus, γδ
k is uniformly bounded for

k ≤ k∗, and hence

‖eδk‖ ≤ γ̃ψ(αk) , 0 ≤ k ≤ k∗ ,

for some positive constant γ̃. This together with (4.94) immediately yields the
convergence rate result in the noise free case. In the noisy case, the error estimate
in terms of δ follows together with (4.87) and (4.88), respectively.
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We now consider case (iv)(b) of Assumption 4.15. Note that, due to (4.75), the
first two terms on the right hand side of the error decomposition (4.89) may be
rearranged to

(I −Rαk
(K)K)(x0 − x†) + (Rαk

(K)K −Rαk
(Kk)Kk)(x0 − x†)

= (I −Rαk
(Rδ

kK)Rδ
kK)(x0 − x†)

+ (Rαk
(Rδ

kK)Rδ
kK −Rαk

(Kk)Kk)(x0 − x†) ,

where Rδ
k := R(xδ

k, x
†), and that

F (xδ
k) − F (x†) −Kke

δ
k =

∫ 1

0
[ (R(x† + teδk, x

†) −Rδ
k)Ke

δ
k

+ (Q(x† + teδk, x
†) −Q(xδ

k, x
†))eδk ] dt .

Thus, we obtain together with (4.64), (4.73), (4.75), (4.78), cQ = 0 or (4.81), and
(4.90) that

‖eδk+1‖ ≤ ‖(I −Rαk
(Rδ

kK)Rδ
kK)(x0 − x†)‖

+ c1cQ‖x0 − x†‖α− 1
2

k ‖Keδk‖ (4.95)

+ 3
2(cR + cQ)cΦα

− 1
2

k ‖eδk‖ ‖Keδk‖ + cΦδα
− 1

2
k .

Since (4.69) holds,

‖(I −Rαk
(Rδ

kK)Rδ
kK)(x0 − x†)‖ → 0 as k → ∞ . (4.96)

This can be seen as follows: since, due to (4.64) and (4.75), the operators
(I − Rαk

(Rδ
kK)Rδ

kK) : N (K)⊥ → X are uniformly bounded, by the Banach–
Steinhaus Theorem it is sufficient to show that (4.96) holds for all x0 − x† from a
dense subset of N (K)⊥, e.g., the set {(K∗K)μv : v ∈ X} for some 0 < μ ≤
1/2. But this is satisfied, since

‖(I −Rαk
(Rδ

kK)Rδ
kK)(K∗K)μ‖ ≤ c1,μ(1 − cI)−2μαμ

k (4.97)

due to (4.13), (4.69), and (4.75).
If (4.83) holds, we obtain together with (4.75) and (4.91) that

‖(I −Rαk
(Rδ

kK)Rδ
kK)(x0 − x†)‖ ≤ wk + c1cR‖x0 − x†‖ ‖eδk‖

which together with (4.95) yields the estimate

‖eδk+1‖ ≤ wk + c1‖x0 − x†‖(cR ‖eδk‖ + cQα
− 1

2
k ‖Keδk‖)

+ 3
2(cR + cQ)cΦα

− 1
2

k ‖eδk‖ ‖Keδk‖ + cΦδα
− 1

2
k .

(4.98)
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Since α
− 1

2
k shows up in the second and third term of the estimates (4.95) and (4.98),

we can only get a proper bound by making direct use of the fact that ‖Keδk‖ can
be expected to converge faster to zero than ‖eδk‖ . For this purpose, analogously
to the proof of Lemma 4.10, we derive a separate estimate also for ‖Keδk‖ by
applying K to both sides of (4.89). Thus, we obtain together with (1.2), (4.64),
(4.73), (4.75), (4.78), (4.80), and cQ = 0 or (4.82) that

‖Keδk+1‖ ≤ ‖K(I −Rαk
(Rδ

kK)Rδ
kK)(x0 − x†)‖

+ c1cQ(1 − cI)−1‖x0 − x†‖ ‖Keδk‖ (4.99)

+
(
(1 + cR‖eδk‖)c2 + cQcΦα

− 1
2

k ‖Keδk‖
)

·
(

3
2(cR + cQ)‖eδk‖ ‖Keδk‖ + δ

)
,

where we used the representation K = R(x†, xδ
k)Kk +Q(x†, xδ

k) and the estimate
‖(Rδ

k)−1‖ ≤ (1 − cI)−1.
Again, similarly to (4.96) and (4.97), we obtain together with (4.13), (4.70),

(4.75), and the Banach–Steinhaus Theorem that

α
− 1

2
k ‖K(I −Rαk

(Rδ
kK)Rδ

kK)(x0 − x†)‖ → 0 as k → ∞ (4.100)

and that

‖K(I −Rαk
(Rδ

kK)Rδ
kK)(K∗K)μ‖ ≤ c2,μ(1 − cI)−(2μ+1)α

μ+ 1
2

k (4.101)

for some 0 < μ ≤ 1/2.
If (4.84) holds, we obtain together with (4.75) that

‖K(I −Rαk
(Rδ

kK)Rδ
kK)(x0 − x†)‖ ≤ ‖K(I −Rαk

(K)K)(x0 − x†)‖
+ c1cR‖x0 − x†‖α

1
2
k ‖eδk‖

which together with (4.99) yields the estimate

‖Keδk+1‖ ≤ ‖K(I −Rαk
(K)K)(x0 − x†)‖

+ c1‖x0 − x†‖(cRα
1
2
k ‖eδk‖ + cQ(1 − cI)−1‖Keδk‖) (4.102)

+
(
(1 + cR‖eδk‖)c2 + cQcΦα

− 1
2

k ‖Keδk‖
)

·
(

3
2(cR + cQ)‖eδk‖ ‖Keδk‖ + δ

)
.
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Note that

‖K(I −Rαk
(K)K)(x0 − x†)‖ ≤ c4,μα

1
2
k | ln(αk)|−μ‖v‖ (4.103)

if (4.68) and (4.72) hold.
Similarly as above, we now apply Lemma 4.11 to

γδ
k := max{‖eδk‖, α

− 1
2

k ‖Keδk‖}

to show that xδ
k remains in Bρ(x†) and cR‖eδk‖ ≤ cI for all k ≤ k∗ and that xδ

k

converges to x† as k → ∞ in the noise free case, and as δ → 0 in the noisy case,
respectively, if η and ‖x0−x†‖ are sufficiently small, by combining (4.41), (4.86),
(4.95), (4.96), (4.99), and (4.100).

The convergence rates are obtained by applying Lemma 4.11 to

γδ
k := ψ(αk)−1 max{‖eδk‖, α

− 1
2

k ‖Keδk‖} ,

where ψ(α) is as in (4.94). Here we have to combine (4.41), (4.87), (4.95),
(4.97), (4.99), and (4.101) in the Hölder type case, i.e., when (2.22) holds for some
0 < μ ≤ 1/2. In the logarithmic case, i.e., when (4.68) holds, we have to combine
(4.41), (4.88), (4.92), (4.98), (4.102), and (4.103). In all cases ‖v‖ and η have to
be sufficiently small.

Finally, we treat case (iv)(c) of Assumption 4.15. Using (2.22) with μ ≥ 1/2,
(4.64), (4.73), (4.74), (4.78), (4.85), (4.90), and (4.92), we obtain the estimate

‖eδk+1‖ ≤ c1,μα
μ
k ‖v‖ + c1L‖K‖2μ−1 ‖v‖ ‖eδk‖ + 1

2LcΦα
− 1

2
k ‖eδk‖2 + cΦδα

− 1
2

k .

As above, an application of Lemma 4.11 to γδ
k := α−μ

k ‖eδk‖ yields the desired
rates provided that ‖v‖ and η are sufficiently small. �

Now we will apply this theorem to some special regularization methods Rα that
are defined via spectral theory as in (4.66) with a function gα satisfying (4.65).
We consider three methods: Tikhonov regularization, iterated Tikhonov regular-
ization, and Landweber iteration.

Tikhonov regularization is defined via gα(λ) := (λ+ α)−1 yielding

Rα(K) = (K∗K + αI)−1K∗, I −Rα(K)K = α(K∗K + αI)−1. (4.104)

As mentioned in the beginning of this section, this choice yields the iteratively
regularized Gauss–Newton method that was extensively studied in Section 4.2. A
generalization for this method consists in treating logarithmic source conditions
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and the nonlinearity condition (4.76). The results concerning logarithmic source
conditions can be found in Hohage’s thesis [79].

It is well known (cf., e.g., [45]) that Rα as in (4.104) satisfies (4.64) and (4.78)
with cK = cΦ = 1. cs can be chosen arbitrary; according to (4.73) the best choice
then is cs := supx∈B2ρ(x0) ‖F ′(x)‖ .

Iterated Tikhonov regularization is defined via

gα(λ) :=
n∑

j=0

β−1
j

n∏
l=j

βl(λ+ βl)−1,

where {βj} is a bounded sequence in R
+ such that also β−1

j+1βj is bounded. This
yields

Rα(K) =
n∑

j=0

β−1
j

( n∏
l=j

βl(K∗K + βlI)−1
)
K∗,

I −Rα(K)K =
n∏

j=0

βj(K∗K + βjI)−1.

(4.105)

The calculation of wn := Rα(K)z is done iteratively via

wn = (K∗K + βnI)−1(K∗z + βnwn−1) , w−1 := 0 .

The effective regularization parameter α in (4.105) is given by

α = αk :=
( nk∑

j=0

β−1
j

)−1
.

Thus, the method is only defined for a sequence of regularization parameters. The
number of inner iterations, nk, has to be chosen such that (4.41) (cf. Assump-
tion 4.15 (iii)) is satisfied. In view of Theorem 4.16, αk should decay as fast as
possible so that less Newton steps are needed for fixed δ.

We will restrict the choice of βj to the special sequence

βj := βqj , (4.106)

with q ∈ (0, 1] and some positive constant β. If q = 1, the choice is stationary and
becomes Lardy’s method, otherwise it is non-stationary, which is more attractive,
since less iteration steps are needed. For the effective regularization parameter it
then holds that

αk = β(nk + 1)−1 if q = 1 and αk ∼ qnk if q < 1 . (4.107)

This means, for Lardy’s method nk should grow exponentially, while in the non-
stationary case nk ∼ k.
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Iterated Tikhonov regularization also satisfies (4.64) and (4.78) with arbitrary
cs (cf. [65]).

Landweber iteration is defined via

gα(λ) :=
n−1∑
j=0

(1 − λ)j

yielding

Rα(K) =
n−1∑
j=0

(I −K∗K)jK∗, I −Rα(K)K = (I −K∗K)n, (4.108)

with the effective regularization parameter

α = αk := (nk + 1)−1,

where, as for Lardy’s method, nk should grow exponentially.
It follows with Lemma 2.10 that this regularization method satisfies (4.64) and

(4.78) with cK = cΦ = 1 if cs = 1. Note that one could also choose a larger
scaling parameter, namely some cs <

√
2. Then the estimates in Lemma 2.10

remain valid for some larger constants. However, we will assume in the following
that cs = 1.

Corollary 4.17 Let Assumption 4.15 (i) and (iii) hold and let xδ
k be defined by the

sequence (4.67), where the regularization method Rα is defined by either (4.104),
(4.105) with (4.106), or (4.108). Moreover, let one of the following three conditions
hold:

(i) The nonlinearity condition (4.76) holds.

(ii) The nonlinearity condition (4.75) holds and we assume that 0 < μ ≤ 1/2 if
the source condition (2.22) holds.

(iii) The Lipschitz condition (4.74) holds and the solution x† satisfies (2.22) for
some μ ≥ 1/2.

Then the convergence and convergence rates results of Theorem 4.16 hold for the
appropriate smallness and source conditions as well as the appropriate stopping
rules, where in case of Tikhonov regularization, i.e., (4.104), μ ≤ 1 has to hold in
(2.22).
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Proof. Since we have mentioned above that the three regularization methods un-
der consideration satisfy conditions (4.64) and (4.78) and hence fulfill Assump-
tion 4.15 (ii), the proof follows immediately with Theorem 4.16 if we can show
that Rα satisfies the appropriate conditions of Assumption 4.15 (iv).

It is well known that all three methods satisfy (4.69), where in case of Tikhonov
regularization the restriction μ ≤ 1 holds (cf. (4.17), [65], and (2.33), respec-
tively). Due to the fact that the following symmetry condition

(K∗K)
1
2 (Rα(K)K) = Rα(K)K(K∗K)

1
2

holds for all regularization methods constructed via (4.66), this already implies
(4.70) with c2,μ = c1,μ+ 1

2
, where in case of Tikhonov regularization the restriction

μ ≤ 1/2 holds. Moreover, it also implies (4.71) and (4.72) (see [80, Lemma 4]).
Since

KRα(K) = Rα(K∗)K∗

holds for all regularization methods constructed via (4.66), condition (4.80) fol-
lows from (4.64) with c2 = cK . Since also

(Rα(K)K)∗ = Rα(K)K

holds for all regularization methods constructed via (4.66), condition (4.85) fol-
lows from (4.82). Thus, it remains to show that the conditions (4.79) and (4.81) –
(4.84) hold for the specific regularization methods.

First we show them for Tikhonov regularization, i.e., (4.104). Using the decom-
position

Rα(K̃)K̃ −Rα(K)K = α(K∗K + αI)−1
(
K∗(K̃ −K)

+ (K̃∗ −K∗)K̃
)
(K̃∗K̃ + αI)−1,

(4.109)

it immediately follows with (4.17) that (4.81) and (4.82) hold.
Let us now assume that R ∈ L(X ,X ) with ‖I − R‖ ≤ cI < 1. Then (4.17)

and (4.109) imply that

‖Rα(KR)KR−Rα(K)K‖ ≤ ‖I −R‖(1 + ‖R−1‖)

and hence (4.79) is shown.
Finally, we assume thatR ∈ L(Y,Y) with ‖I−R‖ ≤ cI < 1 to obtain together

with (4.17) and (4.109) that

‖Rα(RK)RK −Rα(K)K‖ ≤ 1
4 ‖I −R‖(1 + ‖R−1‖) ,

‖K(Rα(RK)RK −Rα(K)K)‖ ≤ 1
2 ‖I −R‖(1 + ‖R−1‖)α

1
2
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which yields (4.83) and (4.84).

For the iterative methods, iterated Tikhonov regularization and Landweber iter-
ation, we make use of the formulae

n∏
j=0

Aj −
n∏

j=0

Bj =
n∑

j=0

( j−1∏
l=0

Al

)
(Aj −Bj)

( n∏
l=j+1

Bl

)
, (4.110)

p∑
j=m

( j−1∏
l=0

Al

)
(I −Aj)C

( n∏
l=j+1

Bl

)

=
p∑

j=m

( j−1∏
l=0

Al

)
C(I −Bj)

( n∏
l=j+1

Bl

)
(4.111)

+
(m−1∏

l=0

Al

)
C
( n∏

l=m

Bl

)
−

( p∏
l=0

Al

)
C
( n∏

l=p+1

Bl

)

that hold for linear operators Aj , Bj , C for 0 ≤ m ≤ p ≤ n, with the usual
conventation

∏−1
j=0Aj := I and

∏n
j=n+1Bj := I . The second formula follows

with a telescope sum argument and the first formula is actually a special case of
the second one.

Using (4.110) with Aj := (I − K∗K) and Bj := (I − K̃∗K̃) we obtain for
Landweber iteration the representation

Rα(K̃)K̃ −Rα(K)K = (I −K∗K)n − (I − K̃∗K̃)n

=
n−1∑
j=0

(I −K∗K)j
(
K∗(K̃ −K) (4.112)

+ (K̃∗ −K∗)K̃
)
(I − K̃∗K̃)n−1−j .

This together with (2.34) yields

‖Rα(K̃)K̃ −Rα(K)K‖ ≤ ‖K̃ −K‖
n−1∑
j=0

(
(j + 1)−

1
2 + (n− j)−

1
2

)
≤ 4n

1
2 ‖K̃ −K‖,



Section 4.3 Generalizations of the iteratively regularized Gauss–Newton method 107

hence (4.81) holds. Moreover, we obtain

‖K(Rα(K̃)K̃ −Rα(K)K)‖

≤
∥∥∥ n−1∑

j=0

(I −KK∗)jKK∗(K̃ −K)(I − K̃∗K̃)n−1−j
∥∥∥

+ ‖K̃ −K‖
n−1∑
j=0

(j + 1)−
1
2 (n − j)−

1
2 .

Since, due to Lemma 2.9, the sum in the second term is bounded, (4.82) is shown
to hold if we can show that also the first term can be estimated from above by
‖K̃ − K‖ times a constant. To achieve this we split the sum into two parts and
use formula (4.111) with Aj := (I −KK∗), Bj := (I − K̃∗K̃), C := K̃ −K ,
and m := 0 as well as (2.33) to obtain

∥∥∥ n−1∑
j=0

(I −KK∗)jKK∗(K̃ −K)(I − K̃∗K̃)n−1−j
∥∥∥

≤
∥∥∥ p∑

j=0

(I −KK∗)j(K̃ −K)K̃∗K̃(I − K̃∗K̃)n−1−j
∥∥∥ (4.113)

+ ‖(K̃ −K)(I − K̃∗K̃)n‖

+ ‖(I −KK∗)p+1(K̃ −K)(I − K̃∗K̃)n−1−p‖

+
∥∥∥ n−1∑

j=p+1

(I −KK∗)jKK∗(K̃ −K)(I − K̃∗K̃)n−1−j
∥∥∥

≤ ‖K̃ −K‖
(

2 +
p∑

j=0

(n− j)−1 +
n−1∑

j=p+1

(j + 1)−1
)
.

This together with

p∑
j=0

(n− j)−1 +
n−1∑

j=p+1

(j + 1)−1 ≤ 2 ln 2 , p := �n
2 � , (4.114)

yields the desired estimate.
Let us now assume that R ∈ L(X ,X ) with ‖I − R‖ ≤ cI < 1. Using (4.112)
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with K̃ = KR yields

Rα(KR)KR−Rα(K)K =
n−1∑
j=0

(I −K∗K)j
(
K∗K(R− I)

+ (R∗ − I)(R−1)∗K̃∗K̃
)
(I − K̃∗K̃)n−1−j .

Applying formula (4.111) twice and using the same sum splitting trick as in esti-
mate (4.113) it follows as above with (4.114) that (4.79) holds.

To show that (4.83) and (4.84) hold we have to use (4.112) with K̃ = RK ,
where R ∈ L(Y,Y) with ‖I −R‖ ≤ cI < 1, and obtain

Rα(RK)RK −Rα(K)K =
n−1∑
j=0

(I −K∗K)jK∗
(
(R− I)R−1

+ (R∗ − I)
)
K̃(I − K̃∗K̃)n−1−j.

This together with (2.34) yields

‖Rα(RK)RK −Rα(K)K‖ ≤ ‖I −R‖(1 + ‖R−1‖)
n−1∑
j=0

(j + 1)−
1
2 (n− j)−

1
2

and hence (4.83) holds due to Lemma 2.9.
Applying K from the left side and using formula (4.111) and the sum splitting

trick similar as in (4.113), we obtain together with (2.33) (which also holds for
s = 3/2) and (2.34) the estimate

‖K(Rα(RK)RK −Rα(K)K)‖
≤ ‖I −R‖(1 + ‖R−1‖)

(
(n+ 1)−

1
2 + (n− q)−

1
2

+
p∑

j=0

(n− j)−
3
2 +

n−1∑
j=p+1

(j + 1)−1(n− j)−
1
2

)
.

Choosing p := �n/2�, Lemma 2.9 and (4.114) imply that

‖K(Rα(RK)RK −Rα(K)K)‖ ≤ c1‖I −R‖(n+ 1)−
1
2

for some c1 > 0 and thus (4.84) holds.
Finally, we turn to iterated Tikhonov regularization, where the proofs are quite

similar to the Landweber case. Using (4.110) with Aj := βj(K∗K + βjI)−1 and
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Bj := βj(K̃∗K̃ + βjI)−1 we obtain the representation

Rα(K̃)K̃ −Rα(K)K

=
n∏

j=0

βj(K∗K + βjI)−1 −
n∏

j=0

βj(K̃∗K̃ + βjI)−1

=
n∑

j=0

( j∏
l=0

βl(K∗K + βlI)−1
)
β−1

j

(
K∗(K̃ −K) (4.115)

+ (K̃∗ −K∗)K̃
)( n∏

l=j

βl(K̃∗K̃ + βlI)−1
)
.

This together with∥∥∥(K∗K)s
p∏

l=m

βl(K∗K + βlI)−1
∥∥∥ ≤

(
sup
λ≥0

λ
( p∏

l=m

(1 + λβ−1
l )

)−1)s

≤
( p∑

l=m

β−1
l

)−s
, 0 ≤ s ≤ 1 , (4.116)

where 0 ≤ m ≤ p, yields

‖Rα(K̃)K̃ −Rα(K)K‖

≤ ‖K̃ −K‖
n∑

j=0

β−1
j

(( j∑
l=0

β−1
l

)− 1
2 +

( n∑
l=j

β−1
l

)− 1
2
)

≤ c1‖K̃ −K‖α− 1
2

k ,

where n = nk and c1 is a positive constant, and hence (4.81) holds. For the last
estimate we used the special choice (4.106) for {βj} and (4.107).

To obtain an estimate for ‖K(Rα(K̃)K̃ − Rα(K)K)‖ we proceed as for the
Landweber case and use the sum splitting trick as in (4.113). Combining (4.111)
and (4.116), and noting that I − βj(KK∗ + βjI)−1 = (KK∗ + βjI)KK∗, we
obtain that

‖K(Rα(K̃)K̃ −Rα(K)K)‖

≤ ‖K̃ −K‖
(

2 +
p∑

j=1

β−1
j−1

( n∑
l=j−1

β−1
l

)−1
+

n∑
j=p+1

β−1
j

( j∑
l=0

β−1
l

)−1

+
n∑

j=0

β−1
j

( j∑
l=0

β−1
l

)− 1
2
( n∑

l=j

β−1
l

)− 1
2
)
.
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Since, due to (4.106), the term in brackets is bounded if we choose p := �n/2� for
the case q = 1 and p = n for the case q < 1, this shows that (4.82) holds.

The proofs for the estimates (4.79), (4.83), and (4.84) follow the lines of the
Landweber case. Note that for the estimate of (4.84) one needs an appropriate
bound like in (4.116) also for s = 3/2. This is in fact possible, since∥∥∥(K∗K)s

p∏
l=m

βl(K∗K + βlI)−1
∥∥∥

≤
(

sup
λ≥0

λ2
( p∏

l=m

(1 + λβ−1
l )

)−1) s
2

≤
( p−1∑

l=m

p∑
i=l+1

β−1
l β−1

i

)− s
2
, 0 ≤ s ≤ 2 ,

where 0 ≤ m < p. �

The methodology proposed in this section can also be applied to regularization
methods outside the class defined via (4.66). Among those is regularization by
projection, where the infinite-dimensional linear operator equation is projected to
a finite-dimensional subspace Yk of the data space Y , where we assume that

Y1 ⊂ Y2 ⊂ Y3 ⊂ . . . ⊂ R(K) ,
⋃
l∈N

Yl = R(K) , (4.117)

and is solved in a best approximate sense, so that

Rα(K) = (QlK)†Ql = (QlK)† = PlK
† , (4.118)

where Ql and Pl are the orthogonal projectors onto Yl and Xl := K∗Yl, respec-
tively. Note that ‖Rα(K)K‖ = ‖Pl‖ = 1 and that PlK

†y → K†y as l → ∞
(cf. [45, Theorem 3.24]). Moreover, it holds that (cf. [45, Lemma 5.10])

‖(I−Rα(K)K)(K∗K)μ‖ = ‖(I−Pl)(K∗K)μ‖ ≤ 4
π ‖(I−Ql)K‖2μ (4.119)

for μ ∈ (0, 1] and hence also that

‖K(I −Rα(K)K)(K∗K)μ‖ ≤ ‖K(I − Pl)‖ ‖(I − Pl)(K∗K)μ‖
≤ 4

π ‖(I −Ql)K‖2μ+1, (4.120)

where we have used that QlK(I − Pl) = 0.
Let us assume that the spaces Yl have the property that

‖(I −Ql)y‖ ≤ c̃1h
p
l ‖y‖Yp
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for all y ∈ Yp ⊂ Y , where p, c̃1 > 0. Such properties are for instance fulfilled
for finite element spaces Yl and Sobolev spaces Yp (cf., e.g., Ciarlet [30]). hl usu-
ally plays the role of a mesh size parameter of the discretization, with hl → 0 as
l → ∞, which is only a suggestive notation, though, and does not exclude mesh-
less discretization methods. If K has the smoothing property that R(K) ⊂ Yp,
then we obtain an estimate

‖(I −Ql)K‖ ≤ c̃1‖K‖X ,Yph
p
l . (4.121)

On the other hand, inverse inequalities (cf. [30] in the context of finite elements)
yield an estimate for (QlK)† in terms of the mesh size, i.e.,

‖(QlK)†‖ ≤ c̃2h
−p̃
l (4.122)

for some p̃, c̃2 > 0 and all linear operators K satisfying

K ∈ L(X ,Yp) , ‖K‖X ,Yp ≤ cs , R(K) = Y . (4.123)

With the correspondence

α = αk := h2p
lk

(4.124)

for the regularization parameter, (4.117) – (4.123) imply that (4.64), (4.69) and
(4.70) hold for μ ∈ (0, 1], where we additionally restrict the opertors K to those
satisfying (4.123). An inspection of the proof of Theorem 4.16, however, shows
that the results remain valid, as long as (4.123) holds for all operators K = F ′(x)
with x ∈ B2ρ(x0).

If the additional condition

p = p̃ (4.125)

holds, (4.122) and (4.124) imply that Rα defined by (4.118) satisfies (4.78).
To reduce the number of Newton steps, as for the methods in Corollary 4.17, the

discretization level lk should grow as fast as possible still satisfying that hlk/hlk+1

remains bounded so that (4.41) holds.
It turns out that (4.121) – (4.123) and (4.125) are natural conditions in the con-

text of parameter identification and discretization by finite elements. For instance,
for the parameter estimation problem of Example 2.14 the conditions are satisfied
with p = p̃ = 2 if u(a0)s is bounded away form zero and if quadratic splines are
used for the subspaces Yk (cf. [87, 88]).

With these preliminaries, we can prove convergence and convergence rates un-
der Hölder type source conditions if F ′ satisfies the nonlinearity condition (4.75)
with cQ = 0.
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Corollary 4.18 Let Assumption 4.15 (i) and (iii) hold and let xδ
k be defined by

the sequence (4.67), where the regularization method Rα is defined by (4.118),
(4.124) and satisfies (4.121) and (4.122) for all operators as in (4.123). Moreover,
we assume that the nonlinearity condition (4.75) holds with cQ = 0, that (4.125)
holds, and that (4.123) holds for all K = F ′(x) with x ∈ B2ρ(x0).
If η and ‖x0 − x†‖ are sufficiently small, then, in the noise free case (δ = 0,

η = 0), the sequence xk converges to x† as k → ∞. In case of noisy data and
with the choice (4.86), xδ

k∗ converges to x
† as δ → 0.

If in addition the source condition (2.22) holds for 0 < μ ≤ 1/2 with ‖v‖
sufficiently small and if k∗ = k∗(δ) is chosen according to the stopping rule (4.87),
then we obtain the convergence rates

‖xδ
k∗ − x†‖ = O

(
δ

2μ
2μ+1

)
,

‖xk − x†‖ = O(αμ
k) .

Proof. It follows from the considerations above that the results are an immediate
consequence of Theorem 4.16 if we can show that (4.80) is satisfied. However, it
follows from (4.118), (4.121) – (4.123), and (4.125) that

‖KRα(K)‖ ≤ ‖QkK(QkK)†‖ + ‖(I −Qk)K(QkK)†‖ ≤ 1 + c̃1c̃2cs .
�

So far we have dealt with a-priori stopping rules. In Section 4.2, we have seen
that convergence rates results can be obtained for the iteratively regularized Gauss–
Newton method also when stopped via the discrepancy principle (2.2) if x† satisfies
the Hölder type source condition (2.22) with μ ≤ 1/2. Results on convergence
rates under logarithmic source conditions can be found in [77] for the iteratively
regularized Gauss–Newton method, in [37] for the nonlinear Landweber iteration,
and, in a very general setting in [79].

For general methods of the form (4.67) convergence rates as in Theorem 4.13
have been proven in [85] for the modified discrepancy principle

max{‖F (xδ
k∗−1) − yδ‖, σk∗} ≤ τδ < max{‖F (xδ

k−1) − yδ‖, σk} ,

1 ≤ k < k∗, where

σk := ‖F (xδ
k−1) + F ′(xδ

k−1)(x
δ
k − xδ

k−1) − yδ‖,

provided that the nonlinearity condition (4.75) and Hölder type source condition
(2.22) hold and that τ > 1 is sufficiently large. Moreover, it was shown that
k∗(δ, yδ) satisfies the logarithmic bound O(1 + | ln δ|) if αk ∼ qk.
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In [8], Bauer and Hohage consider a different a posteriori stopping rule and
show optimal convergence rates also under Hölder type source conditions (2.22)
with μ > 1/2. Acceleration of Newton type methods by preconditioning is pro-
posed and analyzed by Egger in [40]. Burger and Mühlhuber in [23, 24] formulate
parameter identification problems for PDEs as constrained minimization problems
and consider their solution by sequential quadratic programming.

4.4 Broyden’s method for ill-posed problems

As mentioned above, Newton’s method exhibits very good convergence properties,
namely local quadratic convergence for well-posed problems. However, the need
for calculating and inverting the derivative F ′(x) in each Newton step means a
considerable effort in some applications. Therefore, certain modifications of New-
ton’s method try to reduce this effort by approximating F ′(x) and its inverse in
such a way that fast convergence can be achieved. A very successful class of such
Quasi-Newton methods are those that produce approximates for F ′(x) and its in-
verse by updating with operators of finite rank, usually rank one or two. Among
them Broyden’s method stands out, which works with rank-one-updates and, un-
der certain conditions, yields superlinear convergence. It was first studied in the
finite-dimensional setting in [17, 36] and later on also in general Banach- or Hilbert
spaces (see [52, 139]).

In this section we will consider Broyden’s method as a regularization method
for nonlinear ill-posed problems (1.1). An advantageous feature additional to those
mentioned above is that, due to the finite rank also of the inverse update, it suffi-
cies to regularize only one linear operator, namely the operator B0 defining the
first quasi-Newton step. For all subsequent steps, we can apply the usual Broyden
update. Of course, as in the previously studied iterative methods, also in Broy-
den’s method an appropriate stopping index has to be chosen, due to the noise
propagation.

First of all, we will introduce Broyden’s method and state some of its important
properties for well-posed problems. Then we derive an iterative method for (1.1)
based on Broyden’s method, where the regularization is achieved by mollifying
the data and by stopping the iteration at an index k = k∗. Under conditions related
to (4.76) we show convergence, convergence rates (under source conditions), and
superlinear convergence under a compactness assumption.

We wish to mention that an alternative approach to the one we are using is to
apply Broyden’s method to a regularized version of (1.1) (see Haber [57]). An
advantage of the methodology proposed there is that compactness of the differ-
ence between F ′(x†) and its initial approximation B0 used in the method, as it is
required for obtaining superlinear convergence, naturally holds for ill-posed prob-
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lems. On the other hand an advantage of the method we propose here is, that an
appropriate regularization parameter only for a linear problem (see (4.132) below)
and not for the fully nonlinear problem (1.1) has to be found.

Broyden’s method was first defined in [17] for finite-dimensional regular prob-
lems, i.e., problems F (x) = y with F : R

n → R
n having an invertible derivative

F ′(x), by the following recursion:

sk = −B−1
k (F (xk) − y) ,

xk+1 = xk + sk , (4.126)

Bk+1 = Bk +
〈 sk, · 〉
‖sk‖2 (F (xk+1) − y) ,

as long as Bk is regular and F (xk) − y and hence also sk does not vanish. Here
x0 is an initial guess assumed to be sufficiently close to x†, B0 is some regular
and sufficiently good initial approximation to F ′(x†) (e.g., B0 := F ′(x0)), and
x† denotes a solution of F (x) = y. Note that Bk+1 satisfies the so-called secant
condition

Bk+1sk = F (xk+1) − F (xk) =
∫ 1

0
F ′(xk + θsk)sk dθ ≈ F ′(xk)sk ,

i.e., it approximates the derivative F ′(xk) in the direction sk. For directions or-
thogonal to sk, there is no change in applying Bk+1 compared to Bk, since

(Bk+1 −Bk)s = 0 for all s⊥sk .

It is well known, (cf., e.g., [36],) that under a Lipschitz condition on F ′ (see (4.74))
the operators Bk and B−1

k stay uniformly bounded and Broyden’s method con-
verges locally not only linearly

‖xk+1 − x†‖ ≤ q‖xk − x†‖ (4.127)

with a convergence factor q that can be made the smaller, the closer x0, B0 are
to x†, F ′(x†), respectively. This would be also the case for the frozen Newton
method replacing F ′(xk) by B0. For Broyden’s method, however, convergence
occurs even at a superlinear rate, i.e.,

lim sup
k→∞

‖xk+1 − x†‖
‖xk − x†‖ = 0 . (4.128)

Moreover, due to the Sherman-Morrison formula

(B + 〈 v, · 〉u)−1 = B−1 − 〈 v,B−1 · 〉
1 + 〈 v,B−1u 〉 B

−1u , (4.129)
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which holds for regular matrices B as long as 1 + 〈 v,B−1u 〉 �= 0 (cf., e.g., [36,
Lemma 4.2]), Bk is regular for all k ∈ N with Hk = B−1

k satisfying the recursion

Hk+1 = Hk − 〈 sk,Hk · 〉
〈 sk,Hk(F (xk+1) − F (xk)) 〉 Hk(F (xk+1) − y) ,

where the denominator does not vanish for all k with sk �= 0 and xk sufficiently
close to x†, since by the linear convergence (4.127), and uniform boundedness of
the operators Hk (cf. [36]),

〈 sk,Hk(F (xk+1) − F (xk)) 〉 = ‖sk‖2 + 〈 sk,Hk(F (xk+1) − y)) 〉
≥ ‖sk‖

(
‖xk − x†‖ − (1 + ‖Hk‖ sup

x∈[x†,xk+1]

‖F ′(x)‖)‖xk+1 − x†‖
)

≥ ‖sk‖
(

1 − q(1 + ‖Hk‖ sup
x∈[x†,xk+1]

‖F ′(x)‖)
)
‖xk − x†‖ > 0 ,

for ‖x0 − x†‖ , ‖B0 − F ′(x†)‖ , and consequently q > 0 sufficiently small.
In the form (4.126), Broyden’s method can be immediately defined for regular

problems, i.e., continuously invertible F ′(x†) and B0, also in general, not neces-
sarily finite-dimensional Hilbert spaces ([52, 139]). Moreover, it can be shown
that with (4.74) the local linear convergence rate and, if B0 − F ′(x†) is a compact
operator, also the local superlinear convergence rate (4.128) remain valid (cf. [52]).

For ill-posed problems, however, no continuous inverse of F ′(x) exists in gen-
eral. Therefore, the results in [52] cannot be applied directly to ill-posed problems.

It will turn out that nonlinearity conditions like (4.76) are appropriate for analyz-
ing Broyden’s method for ill-posed problems. More precisely, the range invariance
assumption (4.76) implies that

F ′(x̃)†F ′(x) exists for all x̃, x ∈ B2ρ(x0) and

‖F ′(x̃)†[F ′(x+ t(x̃− x)) − F ′(x)](x̃− x)‖ ≤ L̃ t ‖x̃− x‖2 , (4.130)

t ∈ [0, 1] , x̃, x ∈ B2ρ(x0) ,

with L̃ = (1 + 4ρcR)cR, where we assume that B2ρ(x0) ⊂ D(F ). This is related
to the affine covariant Lipschitz condition,

‖F ′(x̃)−1[F ′(x+ t(x̃− x)) − F ′(x)](x̃ − x)‖ ≤ L̃ t ‖x̃− x‖2 ,

t ∈ [0, 1] , x̃, x ∈ B2ρ(x0) ,
(4.131)

introduced by Deuflhard, Heindl and Potra in [38, 39] for proving convergence of
Newton’s method for well-posed problems. Condition (4.131) can be seen as a
generalization of the local Lipschitz condition (4.74) on the Fréchet-derivative F ′



116 Chapter 4 Newton type methods

as it is usual in the proof of quadratic convergence of Newton’s method. In [39] it
is shown that the assumption that F ′(x)−1 exists on the domain of F together with
(4.131) is sufficient for proving a locally quadratic convergence rate for Newton’s
method. In [118] Nashed and Chen use a related condition, namely

‖F ′(x0)
(F ′(x̃) − F ′(x))‖ ≤ c‖x̃− x‖

to prove quadratic convergence of a Newton type method

xk+1 = xk − F ′(xk)
F (xk)

with outer inverses F ′(xk)
 of F ′(xk). (Here an outer inverse of a linear operator
A is a linear operator A
 with A
AA
 = A
.)

An important consequence of (4.130) is that for exact data, the Newton step
F ′(xk)†(y − F (xk)) exists, even for an ill-posed problem (1.1). In fact, it can
be shown that under condition (4.130) or (4.76), the result in [39] on quadratic
convergence of Newton’s method remains valid in the ill-posed setting with exact
data, see [83, Lemma 2.2]. Thus, in case of noisy data, it suffices to replace yδ by
a mollified version yδ

α that lies in the range of F , to apply Newton’s method, and
to stop the iteration at an appropriately chosen index.

We will now show that in this way, one can also adopt Broyden’s method for
ill-posed problems and preserve superlinear convergence in case of exact data, if
some closeness and compactness assumption on B0 is satisfied. In an asymptotic
sense, this fast convergence can also be proven in case of noisy data.

For ill-posed problems one could think of replacing the Broyden step sk in
(4.126) by

sδ
k = −(Bδ

k)
†(F (xk) − yδ) ,

where yδ are nosiy data satisfying (1.2), i.e., ‖y − yδ‖ ≤ δ. However, due to
the possible non-closedness of the range of Bδ

k, this step will in general not exist
for noisy data. Therefore, some regularization technique has to be applied. As
mentioned above, we do so by smoothing the data before starting the iteration. For
this purpose, we replace yδ by the mollified version

yδ
α = F (x0) +MRα(M)(yδ − F (x0)) , (4.132)

where M is a linear bounded operator and Rα is some regularization operator
satisfying (4.64), (4.78) and

M †MRα(M) = Rα(M) = Rα(M)MM †. (4.133)

Note that this condition is fulfilled by any regularization method Rα defined via
spectral theory as in (4.66) as well as for regularization by projection (see (4.118)).
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If α = α(δ) is an appropriately chosen regularization parameter (see, e.g., [45]),
which we will assume in the following, if (4.76) holds, and if R(M) = R(F ′(x))
(see (4.139) below), then yδ

α → y as δ → 0.
The modified Broyden method is now defined as follows:

sδ
k = −(Bδ

k)
†(F (xδ

k) − yδ
α) ,

xδ
k+1 = xδ

k + sδ
k , (4.134)

Bδ
k+1 = Bδ

k +
〈 sδ

k, · 〉
‖sδ

k‖2
(F (xδ

k+1) − yδ
α) ,

with xδ
0 := x0. The linear bounded operator Bδ

0 may depend on δ. In the noise
free case, yδ

α is replaced by y and the superscript δ is omitted, i.e.,

sk = −B†
k(F (xk) − y) ,

xk+1 = xk + sk , (4.135)

Bk+1 = Bk +
〈 sk, · 〉
‖sk‖2 (F (xk+1) − y) .

In order to guarantee stability of the method, we have to make sure that
(Bδ

k)
†(F (xδ

k) − yδ
α) can be computed in a stable way. Since Bδ

k differs from Bδ
0

only by an operator of finite rank and since we have mollified the data according to
(4.132) such that the difference to F (x0) lies within the range of M , it suffices to
have a method for a stable evaluation of (Bδ

0)†(F (x)−F (x0)) for any x ∈ B2ρ(x0)
and of (Bδ

0)†MRα(M)z for any z ∈ Y .
If (4.76) holds and if we choose

Bδ
0 = B0 = M = F ′(x) for some x ∈ B2ρ(x0) ⊂ D(F ) , (4.136)

then

F ′(x)†(F (x) − F (x0)) = F ′(x)†F ′(x)
∫ 1

0
R(x0 + t(x− x0), x)(x− x0) dt .

In applications, an explicit expression for the integral can usually be derived sim-
ilarly to condition (4.76) itself (see the examples in [84]). Note that the operator
F ′(x)†F ′(x) is the orthogonal projector onto N (F ′(x))⊥. If

N (F ′(x)) = {0} , (4.137)

then F ′(x)†F ′(x) = I .
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Example 4.19 Let us consider the same parameter identification problem as in
Example 4.14, namely the identification of c in

−Δu+ c u = f , in Ω ,

u = g , on ∂Ω ,

from measurements of u outside Ω∗ ⊂ Ω. Then we obtain∫ 1

0
R(c0 + t(c− c0, c))(c− c0) dt = u(c)−1A(c)(u(c0) − u(c))

provided u(c) is bounded away from zero, since in this example

A(c0 + t(c− c0))−1[(c− c0)u(c0 + t(c− c0))] = − d

dt
u(c0 + t(c− c0)) .

In case u can be measured in all of Ω (i.e., T = I in Example 4.14), condition
(4.137) is satisfied.

Assuming that T = I , there is also another possibility for choosing M , B0, and
Bδ

0 than the one in (4.136), which is more advantageous concerning the conver-
gence of the iterates xδ

k, namely

Mh := F ′(c)h = −A(c)−1[hu(c)] ,

B0h := −A(c)−1[hu(c†)] , Bδ
0h := −A(c)−1[huδ

α] .
(4.138)

Here, u = u(c†) are the exact data and uδ
α are mollified data as in (4.132) using

the measured data uδ instead of yδ. Assuming that u(c†) and uδ
α are bounded away

from zero, we get

(Bδ
0)†MRα(M)z = (uδ

α)−1u(c)Rα(M)z ,

B†
0MRα(M)z = (u(c†)−1u(c)Rα(M)z .

The next lemma will be helpful to show that the sequence {xδ
k} is well defined

by (4.134) for all k up to a certain index provided the condition

R(F ′(x)) = R(Bδ
0) = R(B0) = R(M) , x ∈ B2ρ(x0) ⊂ D(F ) (4.139)

holds. Note that this condition is trivially satisfied for the choice (4.136) if (4.76)
holds.

Lemma 4.20 Let (4.76) and (4.139) hold, let xδ
k ∈ B2ρ(x0), and let us assume

that R(Bδ
k) = R(Bδ

0). Then xδ
k+1 is well defined by (4.134).
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If in addition xδ
k+1 ∈ B2ρ(x0) and

〈 sδ
k, (B

δ
k)†(F (xδ

k+1) − F (xδ
k)) 〉 �= 0 (4.140)

holds, then Bδ
k+1 is well defined by (4.134), R(Bδ

k+1) = R(Bδ
0), N (Bδ

k+1) =
N (Bδ

k), and the operatorsH
δ
k+1 and Ĥ

δ
k+1 are well defined onR(Bδ

0) andR(B̂δ
0),

respectively, and satisfy the recursion formulae

Hδ
k+1 = Hδ

k − 〈 sδ
k,H

δ
k · 〉

〈 sδ
k,H

δ
k(F (xδ

k+1) − F (xδ
k)) 〉H

δ
k(F (xδ

k+1) − yδ
α) ,

Ĥδ
k+1 = Ĥδ

k − 〈 sδ
k, Ĥ

δ
k · 〉

〈 sδ
k, Ĥ

δ
kF

′(x†)†(F (xδ
k+1) − F (xδ

k)) 〉
·Ĥδ

kF
′(x†)†(F (xδ

k+1) − yδ
α) ,

where

Hδ
k := (Bδ

k)
† , Ĥδ

k := (B̂δ
k)

† , B̂δ
k := F ′(x†)†Bδ

k . (4.141)

Here, x† denotes a solution of (1.1), which is assumed to exist in Bρ(x0).

Proof. First we show an analogon to the Sherman-Morrison formula (4.129),
namely

N (B + 〈 v, · 〉u) = N (B) , R(B + 〈 v, · 〉u) = R(B) , and

(B + 〈 v, · 〉u)† = B† − 〈 v,B†· 〉
1 + 〈 v,B†u 〉B

†u , (4.142)

if v ∈ N (B)⊥, u ∈ R(B) , and 1 + 〈 v,B†u 〉 �= 0 ,

for any B ∈ L(X ,Y), by just checking the Moore–Penrose equations

T †T = PN (T )⊥ ,

TT † = PR(T )

∣∣∣
D(T †)

, D(T †) = R(T ) + R(T )⊥ ,

TT †T = T ,
T †TT † = T †,

(4.143)

that uniquely characterize the generalized inverse T † of T (cf., e.g., [45, Section
2.1]). Here, PH denotes the orthogonal projector onto the closed subspace H.
Note that the first identity automatically implies the third one. The first identity is
satisfied, since

(B†− 〈 v,B†· 〉
1 + 〈 v,B†u 〉B

†u)(B+〈 v, · 〉u) = B†B+
〈 v, [I −B†B] · 〉

1 + 〈 v,B†u 〉 B†u = B†B,
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which also implies that N (B + 〈 v, · 〉u) = N (B). The second identity holds,
since

(B + 〈 v, · 〉u)(B† − 〈 v,B†· 〉
1 + 〈 v,B†u 〉B

†u)

= BB† +
〈 v,B†· 〉

1 + 〈 v,B†u 〉 [I −BB†]u = BB†,

which also implies that R(B + 〈 v, · 〉u) = R(B). Finally, the fourth identity
holds, since

(B† − 〈 v,B†· 〉
1 + 〈 v,B†u 〉B

†u)(B + 〈 v, · 〉u)(B† − 〈 v,B†· 〉
1 + 〈 v,B†u 〉B

†u)

= B†B(B† − 〈 v,B†· 〉
1 + 〈 v,B†u 〉B

†u) = B† − 〈 v,B†· 〉
1 + 〈 v,B†u 〉B

†u .

Thus, (4.142) is shown.
Since (4.76) and (4.139) imply that

F (xδ
k) − yδ

α = F (xδ
k) − F (x0) +MRα(M)(F (x0) − yδ)

∈ R(Bδ
0) = R(K) ,

(4.144)

where K := F ′(x†), it follows together with R(Bδ
k) = R(Bδ

0) that xδ
k+1 is well

defined by (4.134). Moreover, (4.139), (4.141), and (4.143) imply that the opera-
tors B̂δ

k and (B̂δ
k)

† are bounded and satisfy

(B̂δ
k)

† = (Bδ
k)

†K , (B̂δ
k)

†K† = (Bδ
k)

† ,

N (B̂δ
k) = N (Bδ

k) , R(B̂δ
k) = R(B̂δ

0) = N (K)⊥.
(4.145)

Let us now assume that xδ
k+1 ∈ B2ρ(x0) and that (4.140) holds. Then sδ

k �= 0
and hence Bδ

k+1 is well defined by (4.134). Since (4.144) now also holds for k+1,
since sδ

k ∈ N (Bδ
k)

⊥ and since (4.140) implies that

1 + ‖sδ
k‖−2〈 sδ

k, (B
δ
k)

†(F (xδ
k+1) − yδ

α) 〉 �= 0 ,

the remaining assertions follow with (4.134), (4.141), (4.142), and (4.145). �

In the following theorem we will prove a result on local linear convergence of
Broyden’s method provided that

x0 − x† ∈ N (Bδ
0)⊥ = N (B0)⊥ (4.146)
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holds and that ‖x0 − x†‖ and ‖B̂δ
0 −K†K‖ are sufficiently small.

Due to the propagation of data noise during the iteration, k has to be appropri-
ately stopped. We will show in the next theorem that everything works well until
k∗ = k∗(δ) defined by

‖sδ
k∗‖ ≤ τΔδ

α < ‖sδ
k‖ , 0 ≤ k < k∗ , (4.147)

for some τ > 0 sufficiently large, where Δδ
α is a computable expression satisfying

0 < Δδ
α → 0 , γ̃ ≥ ‖M †(y − yδ

α)‖(Δδ
α)−1 → 0 for δ → 0 , (4.148)

where we assume that α is appropriately chosen in dependence of δ and γ̃ is some
positive constant. If τΔδ

α < ‖sδ
k‖ for all k ∈ N0, then k∗ := ∞. We will give a

criterion in the next theorem that guarantees that k∗ < ∞. In the noise free case,
we choose k∗(0) via (4.147) by setting Δδ

α = 0.
If the regularization method Rα used in the definition of yδ

α (cf. (4.132)) fulfills
(4.64), (4.78), and (4.133), then

‖M †(y − yδ
α)‖ = ‖(M † −Rα(M))(y − F (x0)) +Rα(M)(y − yδ))‖

≤ ‖(I −Rα(M)M)M †(y − F (x0))‖ +O(δα− 1
2 ) (4.149)

= O(‖M †(y − F (x0)‖ + δα− 1
2 ) .

Note that ‖M †(y − F (x0))‖ < ∞ if (4.76) and (4.139) hold. Moreover, it holds
that M †(y − F (x0)) → 0 as δ → 0.

If Rα also satisfies (4.69) and if the source condition

M †(y − F (x0)) = (M∗M)μv , v ∈ X ,

holds for some μ > 0, then it follows with (4.149) that

‖M †(y − yδ
α)‖ = o(δ

2μ
2μ+1 )

provided α is appropriately chosen. In this case,

Δδ
α = δ

2μ
2μ+1 (4.150)

would satisfy (4.148) and would hence be an appropriate choice in (4.147).
Note that the constant γ̃ in (4.148) need not be known explicitely, which is

practically relevant, since γ̃ has to contain an estimate of the typically unknown
norm of the source element v appearing in the source condition. The choice of
Δδ

α above, however, still relies on the knowledge of the exponent μ or at least on
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a positive lower bound of μ. If no such bound is available or if μ = 0, then the
heuristic estimate

Δδ
α = δα− 1

2

can be used, where α is chosen via an a-posteriori selection criterion (cf. [45,
Section 4.3]). Of course, instead of the Hölder type source condition above also
logarithmic source conditions (4.68) can be considered.

Theorem 4.21 Let (4.76), (4.139), and (4.146) hold and let us assume that
‖x0 − x†‖ and ‖B̂δ

0 −K†K‖ are sufficiently small and that τ > 0 is sufficiently
large so that

c(δ, q) + γ̃τ−1‖M̂‖ ≤ q

1 + q
(4.151)

holds for some q ∈ (0, 1/3], where

c(δ, q) := ‖B̂δ
0 −K†K‖ + 1

2cR‖x0 − x†‖ 1 + q2

(1 − q)2 , (4.152)

B̂δ
0 := K†Bδ

0 , M̂ := K†M , K := F ′(x†), x† denotes a solution of (1.1), which is
assumed to exist in Bρ(x0), cR is as in (4.76), and γ̃ is as in (4.148).
Then the sequence {xδ

k} is well defined by (4.134) in Bρ(x†) ⊂ B2ρ(x0) for all
0 ≤ k ≤ k∗ + 1, where k∗ = k∗(δ) <∞ is defined as in (4.147). Moreover,

‖xδ
k+1 − x†‖ ≤ q‖xδ

k − x†‖ ≤ qk+1‖x0 − x†‖ (4.153)

and
‖B̂δ

k+1 −K†K‖ ≤ c(δ, q) (4.154)

hold for all 0 ≤ k < k∗ and

‖xδ
k∗ − x†‖ = O(Δδ

α) , ‖xδ
k∗+1 − x†‖ = O(Δδ

α) , (4.155)

and
k∗ = O(1 + | ln Δδ

α|) . (4.156)

Proof. We will use an induction argument to show that for all 0 ≤ k ≤ k∗ the
following assertions hold:

xδ
k ∈ B2ρ(x0) , R(Bδ

k) = R(Bδ
0) , xδ

k − x† ∈ N (Bδ
k)

⊥ = N (Bδ
0)⊥, (4.157)

‖xδ
k − x†‖ ≤ qk‖x0 − x†‖, (4.158)

‖B̂δ
k −K†K‖ ≤ ‖B̂δ

0 −K†K‖ (4.159)

+ 1
2cR‖x0 − x†‖ (1 + q2)(1 − qk)

(1 − q)2 .
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Note that, due to (4.139), B̂0 and M̂ are bounded.
Since xδ

0 = x0 and (4.146) holds, the assertions are trivially satisfied for k = 0.
Let us now assume that the assertions hold for some 0 ≤ k < k∗. Then

Lemma 4.20 implies that xδ
k+1 is well defined by (4.134).

It follows with (4.134), (4.141), (4.143), (4.145), and xδ
k − x† ∈ N (Bδ

k)
⊥ that

xδ
k+1 − x† = xδ

k − x† − Ĥδ
kK

†(F (xδ
k) − yδ

α)

= Ĥδ
k

(
(B̂δ

k −K†K)(xδ
k − x†) (4.160)

−K†(F (xδ
k) − y −K(xδ

k − x†)) −K†(y − yδ
α)

)
and that

Ĥδ
kK

†K = Ĥδ
k . (4.161)

Therefore,

1 = ‖Ĥδ
kB̂

δ
k‖ = ‖Ĥδ

k − Ĥδ
k(K†K − B̂δ

k)‖ ≥ ‖Ĥδ
k‖(1 − ‖B̂δ

k −K†K‖) ,

which yields the estimate

‖Ĥδ
k‖ ≤ 1

1 − ‖B̂δ
k −K†K‖ . (4.162)

The image of the Taylor remainder under K† can be estimated by means of (4.76):

‖K†(F (xδ
k) − y −K(xδ

k − x†))‖

= ‖K†
∫ 1

0
(F ′(x† + t(xδ

k − x†)) −K)(xδ
k − x†) dt‖

≤ 1
2cR‖xδ

k − x†‖2. (4.163)

For the data error effect one gets with (4.139), (4.141), (4.143), (4.147), and
(4.148) the estimate

‖K†(y−yδ
α)‖ ≤ ‖M̂‖ ‖M †(y−yδ

α)‖ ≤ γ̃‖M̂‖Δδ
α ≤ γ̃τ−1‖M̂‖ ‖sδ

k‖. (4.164)

Since (4.152), (4.158), and (4.159) imply that

‖B̂δ
k −K†K‖ + 1

2cR‖xδ
k − x†‖ ≤ c(δ, q) , (4.165)

we obtain together with (4.134) and (4.160) – (4.164) that

(1 − (c(δ, q) + γ̃τ−1‖M̂‖))‖xδ
k+1 − x†‖ ≤ (c(δ, q) + γ̃τ−1‖M̂‖)‖xδ

k − x†‖



124 Chapter 4 Newton type methods

and hence with (4.151) that

‖xδ
k+1 − x†‖ ≤ q‖xδ

k − x†‖. (4.166)

Thus, xδ
k+1 ∈ B2ρ(x0) and (4.158) also holds for k + 1.

We will now estimate 〈 sδ
k, (B

δ
k)†(F (xδ

k+1) − F (xδ
k)) 〉 from below. Using

(4.134), (4.139), (4.141), (4.158), and (4.162) – (4.166), we obtain

〈 sδ
k, (B

δ
k)

†(F (xδ
k+1) − F (xδ

k)) 〉
= ‖sδ

k‖2 + 〈 sδ
k, Ĥ

δ
kK

†(F (xδ
k+1) − yδ

α) 〉
≥ ‖sδ

k‖
(
‖sδ

k‖ − ‖Ĥδ
k‖(‖xδ

k+1 − x†‖

+ ‖K†(F (xδ
k+1) − yδ

α −K(xδ
k+1 − x†))‖

)
≥ ‖sδ

k‖
(
‖sδ

k‖ − 1
1 − c(δ, q)

(‖xδ
k+1 − x†‖ + 1

2cR‖xδ
k+1 − x†‖2

+ γ̃τ−1‖M̂‖ ‖sδ
k‖)

)
≥ ‖sδ

k‖2
(

1 − q + 1
2cRq

k+2‖x0 − x†‖ + (1 + q)γ̃τ−1‖M̂‖
(1 − c(δ, q))(1 + q)

)
,

where we have used the estimate

‖xδ
k+1 − x†‖
‖sδ

k‖
≤ q

1 − q
. (4.167)

Since under the assumption that q < 1/3 and that (4.151) holds, the expression in
brackets is larger than 0, we may apply Lemma 4.20 to conclude that Bδ

k+1 is well
defined, that R(Bδ

k+1) = R(Bδ
0), and that N (Bδ

k+1) = N (Bδ
k). The last identity

together with (4.134) and xδ
k − x† ∈ N (Bδ

k)
⊥ = N (Bδ

0)⊥ implies that

xδ
k+1 − x† ∈ N (Bδ

0)⊥ = N (Bδ
k)

⊥ = N (Bδ
k+1)

⊥.

To show (4.159), we define

B̃δ
k+1 := B̂δ

k +
〈 sδ

k, · 〉
‖sδ

k‖2
(K†K − B̂δ

k)s
δ
k (4.168)

for which it obviously holds that

(B̃δ
k+1 −K†K)s =

{
(B̂δ

k −K†K)s , if s⊥sδ
k ,

0 , if s ∈ span(sδ
k) .

(4.169)
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Together with (4.163), which also holds for k + 1, we now obtain the estimate

‖B̃δ
k+1 − B̂δ

k+1‖ =
∥∥∥〈 sδ

k, · 〉
‖sδ

k‖2

(
(K†K − B̂δ

k)s
δ
k −K†(F (xδ

k+1) − yδ
α)

)∥∥∥
=

∥∥∥〈 sδ
k, · 〉

‖sδ
k‖2

(
K†(F (xδ

k) − F (x†) −K(xδ
k − x†))

−K†(F (xδ
k+1) − F (x†) −K(xδ

k+1 − x†))
)∥∥∥

≤ cR (‖xδ
k − x†‖2 + ‖xδ

k+1 − x†‖2)
2 (‖xδ

k − x†‖ − ‖xδ
k+1 − x†‖)

. (4.170)

Thus, the difference between B̂δ
k and K†K satisfies the bounded deterioration

condition

‖B̂δ
k+1 −K†K‖ ≤ ‖B̂δ

k −K†K‖ +
cR (‖xδ

k − x†‖2 + ‖xδ
k+1 − x†‖2)

2 (‖xδ
k − x†‖ − ‖xδ

k+1 − x†‖)
.

Note that, due to (4.166) the denominator does not vanish. Together with (4.158),
(4.159), and (4.166) we now obtain that

‖B̂δ
k+1 −K†K‖

≤ ‖B̂0 −K†K‖ + 1
2cR ‖x0 − x†‖ (1 + q2)(1 − qk)

(1 − q)2

+
cR ‖xδ

k − x†‖2(1 + q2)
2‖xδ

k − x†‖(1 − q)

≤ ‖B̂0 −K†K‖ + 1
2cR ‖x0 − x†‖ (1 + q2)

(1 − q)2 (1 − qk + qk(1 − q)) ,

which implies that (4.159) also holds for k+1. This finishes the induction. The es-
timates (4.153) and (4.154) now follow with (4.152), (4.158), (4.159), and (4.166).

Since (4.134) and (4.166) imply that

‖sδ
k‖ ≤ (1 + q)‖xδ

k − x†‖, (4.171)

we obtain together with (4.147) and (4.158) that

0 < τΔδ
α < ‖sδ

k‖ ≤ (1 + q)‖xδ
k − x†‖ ≤ (1 + q)qk ‖x0 − x†‖ .

This implies that k∗ <∞ and that the estimate (4.156) holds.
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Since (4.157) holds for k = k∗, also xδ
k∗+1 is well defined. Now (4.154) and

(4.160) – (4.165) imply that

‖xδ
k∗+1 − x†‖ ≤ q‖xδ

k∗ − x†‖ +
γ̃‖M̂‖

1 − c(δ, q)
Δδ

α .

This together with (4.147) and ‖xδ
k∗ −x†‖ ≤ ‖xδ

k∗+1 −x†‖ + ‖sδ
k∗‖ immediately

yields (4.155). �

Note that for the rate in the theorem above it is necessary that ‖B̂δ
0 −K†K‖ is

sufficiently small for all δ. This is always satisfied at least for sufficiently small δ
if ‖B̂0 −K†K‖ is sufficiently small and if ‖B̂δ

0 − B̂0‖ → 0 as δ → 0.
If Δδ

α is as in (4.150), then (4.156) implies that k∗ = O(1 + | ln δ|) as for the
previously considered Newton type methods.

For the proof of asymptotically superlinear convergence, we need the follow-
ing lemma, where we estimate the influence of the mollified noisy data. We will
assume that B̂δ

0 and B̂0 satisfy the condition

‖B̂δ
0 − B̂0‖ ≤ cM ‖M †(y − yδ

α)‖ (4.172)

for some positive cM .

Lemma 4.22 Let the assumptions of Theorem 4.21 hold and assume that (4.151)
also holds for δ = 0. Moreover, assume that (4.172) is valid. Then there exists a
constant c > 0 such that for all k ≤ min{k∗(δ), k∗(0)}

‖xδ
k − xk‖ ≤ c‖M †(y − yδ

α)‖, (4.173)

where xδ
k and xk are defined by (4.134) and (4.135), respectively, and k∗ is chosen

by the stopping rule (4.147).

Proof. First of all, we want to mention that {xk} is also well defined, since an
inspection of the proof of Theorem 4.21 shows that the assertions (4.153) and
(4.154) remain valid for xk for all k < k∗(0). Omitting the superscript δ in B̂δ

k,
Ĥδ

k , etc., should reflect the noise free case.
Since (4.145), (4.146), (4.157), and Lemma 4.20 imply that

R(B̂δ
k) = N (K)⊥ = R(B̂k) and N (B̂δ

k) = N (Bδ
0) = N (B0) = N (B̂k) ,

we obtain together with (4.143) and (4.161) that

Ĥk(B̂δ
k − B̂k)Ĥδ

k = Ĥk − Ĥδ
k = Ĥδ

k(B̂δ
k − B̂k)Ĥk . (4.174)
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This together with (4.160) yields

xδ
k+1 − xk+1 = Ĥδ

k(B̂δ
k −K†K)(xδ

k − x†) − Ĥk(B̂k −K†K)(xk − x†)

− Ĥδ
k(K†(F (xδ

k) − yδ
α) −K†K(xδ

k − x†))

+ Ĥk(K†(F (xk) − y) −K†K(xk − x†))

= Ĥk(B̂δ
k − B̂k)Ĥδ

k(xδ
k − x†) + Ĥk(B̂k −K†K)(xδ

k − xk)

+ Ĥδ
k(B̂δ

k − B̂k)Ĥk(K†(F (xk) − y −K(xk − x†))

− Ĥδ
k(K†(y − yδ

α))

− Ĥδ
k(K†(F (xδ

k) − F (xk) −K(xδ
k − xk)) ,

where we assume that k < min{k∗(δ), k∗(0)}. Due to (4.154) and (4.162),

‖Ĥ(δ)
k ‖ ≤ 1

1 − c(δ, q)
, (4.175)

where (δ) means that it holds with and without δ. Since (4.158) and (4.165) imply
that

‖B̂k −K†K‖ + 1
2cR‖xδ

k − xk‖ ≤ c(0, q) + 1
2cRq

k ‖x0 − x†‖,
we obtain together with (4.163), which also holds for x† replaced by xk, (4.164),
(4.175), and the representation above that

‖xδ
k+1 − xk+1‖

≤ 1
1 − c̃(q)

(
(c(0, q) + 1

2cRq
k‖x0 − x†‖)‖xδ

k − xk‖ (4.176)

+ ‖M̂‖ ‖M †(y − yδ
α)‖

)
+

1
(1 − c̃(q))2 ‖B̂δ

k − B̂k‖
(
‖xδ

k − x†‖ + 1
2cRq

k‖x0 − x†‖ ‖xk − x†‖
)
,

where
c̃(q) := max{c(δ, q), c(0, q)} . (4.177)

We will now derive an estimate for ‖B̂δ
k+1 − B̂k+1‖ . Using (4.76), (4.134),

(4.141), (4.143), (4.157), (4.168), and (4.169), we obtain the representation

B̂δ
k+1 − B̂k+1 = (B̂δ

k+1 − B̃δ
k+1) − (B̂k+1 − B̃k+1)

+ (B̃δ
k+1 −K†K)(Pspan(sδ

k)⊥ + Pspan(sδ
k))

− (B̃k+1 −K†K)(Pspan(sk)⊥ + Pspan(sk))
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=
〈 sδ

k, · 〉
‖sδ

k‖
K†K(Rδ

k − I)
sδ
k

‖sδ
k‖

− 〈 sk, · 〉
‖sk‖ K†K(Rk − I)

sk

‖sk‖
+ (B̂δ

k −K†K)Pspan(sδ
k)⊥ − (B̂k −K†K)Pspan(sk)⊥

=
(〈 sδ

k, · 〉
‖sδ

k‖
− 〈 sk, · 〉

‖sk‖
)
K†K(Rδ

k − I)
sδ
k

‖sδ
k‖

+
〈 sk, · 〉
‖sk‖ K†K(Rδ

k −Rk)
sδ
k

‖sδ
k‖

+
〈 sk, · 〉
‖sk‖ K†K(Rk − I)

(
sδ
k

‖sδ
k‖

− sk

‖sk‖
)

+ (B̂δ
k − B̂k)Pspan(sδ

k)⊥

+ (B̂k −K†K)(Pspan(sδ
k)⊥ − Pspan(sk)⊥) ,

where we have used the notations

Rδ
k :=

∫ 1

0
R(xδ

k + t(xδ
k+1 − xδ

k), x
†) dt ,

Rk :=
∫ 1

0
R(xk + t(xk+1 − xk), x†) dt .

(4.178)

This together with the estimates

‖Pspan(sδ
k)⊥ − Pspan(sk)⊥‖ =

∥∥∥〈 sδ
k, · 〉

‖sδ
k‖

− 〈 sk, · 〉
‖sk‖

∥∥∥ =
∥∥∥ sδ

k

‖sδ
k‖

− sk

‖sk‖
∥∥∥

=
‖(sδ

k − sk)‖s(δ)k ‖ + s
(δ)
k (‖sk‖ − ‖sδ

k‖)‖
‖sδ

k‖ ‖sk‖

≤ 2‖sδ
k − sk‖

max{‖sδ
k‖, ‖sk‖}

and

‖I −R(δ)‖ ≤ 1
2cR(‖x(δ)

k+1 − x†‖ + ‖x(δ)
k − x†‖) ,

‖K†K(Rδ
k −Rk)‖ ≤

∫ 1

0
‖K†KR(xk + t(xk+1 − xk), x†)

(R(xδ
k + t(xδ

k+1 − xδ
k), xk + t(xk+1 − xk)) − I)‖ dt

≤ cR(‖xδ
k+1 − xk+1‖ + ‖xδ

k − xk‖)

·
(

1
2 + 1

3cR(‖xk+1 − x†‖ + ‖xk − x†‖)
)
,
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which follow with (4.76) and (4.178), yields

‖B̂δ
k+1 − B̂k+1‖ ≤ 2‖sδ

k − sk‖
max{‖sδ

k‖, ‖sk‖}
(
‖B̂k −K†K‖

+ 1
2cR(‖xδ

k+1 − x†‖ + ‖xk+1 − x†‖
+ ‖xδ

k − x†‖ + ‖xk − x†‖)
)

(4.179)

+ ‖B̂δ
k − B̂k‖ + cR(‖xδ

k+1 − xk+1‖ + ‖xδ
k − xk‖)

·
(

1
2 + 1

3cR(‖xk+1 − x†‖ + ‖xk − x†‖)
)
.

Since (4.76), (4.134), (4.141), (4.145), (4.164), (4.174), (4.175), and (4.177) imply
that

‖sδ
k − sk‖ = ‖Ĥδ

kK
†(F (xδ

k) − yδ
α) − ĤkK

†(F (xk) − y)‖
≤ 1

(1 − c̃(q))2 ‖B̂δ
k − B̂k‖(1 + 1

2cR‖xk − x†‖)‖xk − x†‖

+
1

1 − c̃(q)

(
(1 + 1

2cR(‖xδ
k − x†‖ + ‖xk − x†‖))‖xδ

k − xk‖

+ ‖M̂‖ ‖M †(y − yδ
α)‖

)
,

we now obtain together with (4.153), (4.152), (4.159), (4.167), and (4.179) that

‖x(δ)
k+1 − x†‖ ‖B̂δ

k+1 − B̂k+1‖

≤ 2q
(1 − q)(1 − c̃(q))

(1
2cR(1 + q)qk ‖x0 − x†‖ + c(0, q))

·
(1 + 1

2cRq
k‖x0 − x†‖

1 − c̃(q)
‖B̂δ

k − B̂k‖ ‖xk − x†‖ (4.180)

+ (1 + cRq
k ‖x0 − x†‖)‖xδ

k − xk‖ + ‖M̂‖ ‖M †(y − yδ
α)‖

)
+ cRq

k+1‖x0 − x†‖(1
2 + 1

3cR(1 + q)qk ‖x0 − x†‖)

·(‖xδ
k+1 − xk+1‖ + ‖xδ

k − xk‖) + q‖x(δ)
k − x†‖ ‖B̂δ

k − B̂k‖.
Let us now define

γk := max{1
2 ‖xδ

k − xk‖, ‖xδ
k − x†‖ ‖B̂δ

k − B̂k‖, ‖xk − x†‖ ‖B̂δ
k − B̂k‖} .

Then we obtain with (4.176) and (4.180) for all k < min{k∗(δ), k∗(0)} that

γk+1 ≤ max{c1, c2}γk + max{c3, c4}‖M̂‖ ‖M †(y − yδ
α)‖,
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where

c1 :=
c(0, q) + 1

2cR‖x0 − x†‖
1 − c̃(q)

+
1 + 1

2cR‖x0 − x†‖
2(1 − c̃(q))2 ,

c2 := a
(1 + 1

2cR‖x0 − x†‖
1 − c̃(q)

+ 2(1 + cR‖x0 − x†‖)
)

+ q + b(1 + c1) ,

c3 :=
1

2(1 − c̃(q))
,

c4 := a+ b c3 ,

a :=
2q

(1 − q)(1 − c̃(q))
(c(0, q) + 1

2(1 + q)cR‖x0 − x†‖) ,

b := 2qcR ‖x0 − x†‖(1
2 + 1

3(1 + q)cR ‖x0 − x†‖) .

Note that max{c1, c2} < 1 if ‖x0 − x†‖ , ‖B̂δ
0 − K†K‖ and ‖B̂0 − K†K‖ are

sufficiently small, which we assume in the following. Note that this also implies
that c̃(q) defined by (4.177) becomes sufficiently small.

Thus, we obtain for all k ≤ min{k∗(δ), k∗(0)} that

‖xδ
k − xk‖ ≤ 2γk ≤ 2γ0 max{c1, c2}k +

2 max{c3, c4}
1 − max{c1, c2} ‖M̂‖ ‖M †(y − yδ

α)‖.

This together with γ0 = ‖x0 −x†‖ ‖B̂δ
0 − B̂0‖ and (4.172) proves the assertion. �

Essential for the proof of the next theorem is also the following result by
Griewank [52]:

Proposition 4.23 Let {Ck}k∈N, {C̃k}k∈N ⊂ L(X ,X ) be sequences of positive
semidefinite selfadjoint operators, {sk}k∈N ⊂ X\{0}, {γk}k∈N ⊂ R, and c, σ
nonnegative constants such that for all k ∈ N

dim(R(Ck − C0)) <∞ , ‖Ck+1 − C̃k+1‖ ≤ cγk ,

C̃k+1sk = σ sk , 〈 v, C̃k+1v 〉 ≤ 〈 v,Ckv 〉 if v⊥sk ,

λ∗(C0) ≥ σ ,

∞∑
k=0

γk <∞ ,

where λ∗(C) := inf{‖C − T‖ : T compact}. Then

lim sup
k→∞

〈 sk, Cksk 〉
‖sk‖2 ≤ λ∗(C0) .

Proof. See [52, Theorem 3.2]. �
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Theorem 4.24 Let (4.76), (4.139), (4.146), and (4.172) hold and let us assume
that ‖x0−x†‖ and ‖B̂0−K†K‖ are sufficiently small and that τ > 0 is sufficiently
large. Moreover, let us assume that B̂0 −K†K is compact. Then

lim
δ→0

‖xδ
k∗ − x†‖

‖xδ
k∗−1 − x†‖ = 0 . (4.181)

Moreover, if k∗(0) is finite, then xk∗ = x†, otherwise

lim sup
k→∞

‖xk+1 − x†‖
‖xk − x†‖ = 0 , (4.182)

where xδ
k and xk are defined by (4.134) and (4.135), respectively, and k∗ is chosen

by the stopping rule (4.147). x† denotes a solution of (1.1), which is assumed to
exist in Bρ(x0).

Proof. First of all, we assume that (4.151) holds for all δ ≥ 0 sufficiently small
and some q ∈ (0, 1/3] so that then the results of Theorem 4.21 are applicable.
Note that this is possible due to the fact that we assumed that ‖x0 − x†‖ and
‖B̂0 −K†K‖ are sufficiently small and that τ > 0 is sufficiently large and since
(4.172) holds.

We will first consider the noise free case. If k∗(0) = k̃ < ∞, then it follows
with (4.147) that sδ

k̃
= 0 and hence that xk̃+1 = xk̃. Since an inspection of the

proof of Theorem 4.21 shows that (4.166) in the noise free case also holds for
k = k̃, this shows that xk̃ = x†.

Let us now assume that k∗(0) = ∞. We will show that (4.182) holds. By
(4.134), (4.141), (4.168), (4.169), (4.170), and Theorem 4.21, the assumptions of
Proposition 4.23 are fulfilled for

γk = ‖xk − x†‖ , σ = 0 , Ck = (B̂k −K†K)∗(B̂k −K†K) ,

C̃k+1 = (B̃k+1 −K†K)∗(B̃k+1 −K†K) , and λ∗(C0) = 0 .

Thus,

lim sup
k→∞

‖(B̂k −K†K)sk‖
‖sk‖ = 0 . (4.183)

Now (4.134), (4.141), (4.145), (4.154), (4.163), and (4.175) imply that

‖xk+1 − x†‖ = ‖Ĥk(B̂k −K†K)(xk+1 − x†)

+ Ĥk(B̂k −K†K)(xk − xk+1)

− Ĥk(K†(F (xk) − y −K(xk − x†)))‖
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≤ 1
1 − c(0, q)

(
c(0, q)‖xk+1 − x†‖ + ‖(B̂k −K†K)sk‖

+ 1
2cR‖xk − x†‖2

)
,

where we have used the fact that (I − ĤkB̂k)(xk − x†) = 0, which follows from
(4.143) and (4.157).

This estimate together with (4.183) and (4.171) (δ = 0) yields

lim sup
k→∞

‖xk+1 − x†‖
‖xk − x†‖ ≤ 1

1 − 2c(0, q)
lim sup

k→∞

(
(1 + q)

‖(Bk −K†K)sk‖
‖sk‖

+ 1
2cR ‖xk − x†‖

)
= 0 .

Note that, due to (4.151) and (4.152), c(0, q) < 1/2.
Let us now turn to the situation of noisy data. Note that, due to (4.148) and

(4.173), xδ
k depends continuously on δ for all k ≤ min{k∗(δ), k∗(0)}.

Let us first assume that k∗(0) = k̃ <∞. Then we now from above that xk̃ = x†.
Due to (4.147), this also implies that

lim inf
δ→0

k∗(δ) ≥ k̃ . (4.184)

Moreover, we obtain together with (4.147), (4.153), and (4.171) that

‖xδ
k+1 − x†‖

‖xδ
k − x†‖ ≤

(1 + q)‖xδ
k̃
− xk̃‖

τΔδ
α

for all k̃− 1 ≤ k < k∗(δ) and δ > 0 sufficiently small. This together with (4.148)
and (4.173) implies the assertion (4.181).

Now we assume that k∗(0) = ∞. Then (4.184) implies that k∗(δ) → ∞.
Moreover, (4.147), (4.148), (4.153), (4.173), and (4.171) imply that

‖xδ
k+1 − x†‖

‖xδ
k − x†‖ ≤

(
1 +

‖xδ
k − xk‖

‖xδ
k − x†‖

) ‖xk+1 − x†‖
‖xk − x†‖ +

‖xδ
k+1 − xk+1‖
‖xδ

k − x†‖

≤ ‖xk+1 − x†‖
‖xk − x†‖ +

c(1 + q)2‖M †(y − yδ
α)‖

τΔδ
α

for all k < k∗(δ). Thus, assertion (4.181) follows with (4.148) and (4.182). �

Remark 4.25 Note that if we choose M , Bδ
0 , and B0 as in (4.136), then the oper-

ator B̂0 −K†K will in general not be compact, hence yielding only linear but not
superlinear convergence.
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If we look at Example 4.19 with the assumptions that T = I and that u(c†),
uδ

α, and u(c) are bounded away from zero, and if we choose M , Bδ
0 , and B0 as in

(4.138), then the operator B̂0 −K†K is compact. This can be shown as follows:
using the formula

A(c)−1z = A(c̃)−1[z + (c̃− c)A(c)−1z] ,

one obtains that

(B̂0 −K†K)h = u(c†)−1(c† − c)A(c)−1[hu(c†)] .

The compactness now follows from Sobolev’s Embedding Theorem, since A(c)−1

maps L2(Ω) into H2(Ω) ∩ H1
0 (Ω). Using this argument one can also show that

(4.172) holds. Since it was already shown earlier that (4.76) holds and since obvi-
ously (4.139) and (4.146) hold, Theorem 4.24 is applicable for this example.



5 Multilevel methods

It is well known from the solution of partial differential equations and optimiza-
tion problems that multilevel methods have a high numerical efficiency. This is
achieved by combining the information on different levels of discretization. Espe-
cially multigrid methods play an essential role that use appropriate combinations
of smoothing steps on fine grids with coarse grid corrections.

In Section 5.1, we introduce regularization by discretization, which provides the
basis for the multigrid methods that will be investigated in Section 5.2.

The main result of this chapter concerns the full multigrid method, i.e., a multi-
level iteration with multigrid preconditioning, that can be established as an iterative
regularization method for nonlinear ill-posed problems.

For combinations of previously presented regularization methods for nonlinear
ill-posed problems with discretization on different levels of refinement, we refer to
[143] and [37, Section 4].

5.1 Regularization by discretization

Regularization methods for ill-posed operator equations (1.1) are usually defined
in an infinite-dimensional setting and have to be discretized for calculating a nu-
merical solution. Since finite-dimensional problems are always well-posed in the
sense of stable data dependence one could also think of stabilizing an ill-posed
problem by discretization.

Projection methods for the regularization of (usually linear) ill-posed problems
have been studied and analyzed in a number of publications, whereof we can only
cite a short list (cf., e.g., [7, 18, 46, 55, 96, 119, 129, 132, 151]).

An analysis of discretization methods for linear ill-posed problems (cf., e.g.,
[45, Section 3.3]) shows that, while discretization in the preimage space does not
generically converge (cf. a counterexample by Seidman [147]), finite-dimensional
projection in the image space always yields a regularization method. Therefore,
when considering regularization purely by discretization, we prefer the latter ap-
proach. Note that in Section 4.3 we have considered the combination of regular-
ization by projection for linearized problems with a Newton type iteration (see also
[86]). Now we apply regularization by image space projection directly to nonlinear
problems.

The main purpose of this section is to provide preliminaries and results that will
be required for the analysis of multigrid methods in Section 5.2.



Section 5.1 Regularization by discretization 135

A straightforward generalization of regularization by projection to nonlinear
problems, F (x) = y, is to approximate an exact solution x† by a solution xδ

l of the
finite-dimensional problem

QlF (xδ
l ) = Qly

δ , xδ
l ∈ x0 + Xl := x0 +K∗


 Yl , (5.1)

where Ql is the orthogonal projector onto the finite-dimensional subspace Yl,

Y1 ⊂ Y2 ⊂ Y3 ⊂ . . . ⊂ R(K
) ,
⋃
k∈N

Yk = R(K
) , (5.2)

andK
 is a known bounded linear operator that can be seen as some approximation
to F ′(x) and that is needed in the numerical computations. As always x0 is an
initial guess for the solution x†. The results of the linear case can be carried over
to the nonlinear setting if one of the following two nonlinearity conditions on the
operator F is satisfied: either the tangential cone condition (cf. [141])

‖F (x) − F (x̃) −K
(x− x̃)‖ ≤ ctc‖K
(x− x̃)‖ , x, x̃ ∈ B2ρ(x0) , (5.3)

or the range invariance condition

F (x) − F (x̃) = K
R(x, x̃)(x− x̃) ,

‖R(x, x̃) − I‖ ≤ cR , x, x̃ ∈ B2ρ(x0) ,
(5.4)

where ctc and cR are positive constants and B2ρ(x0) denotes a closed ball of ra-
dius 2ρ around x0. The last condition means that the range of divided difference
operators DF (x, x̃) in

F (x) − F (x̃) = DF (x, x̃)(x− x̃)

remains unchanged in B2ρ(x0). The divided difference operators DF (x, x̃) are not
uniquely defined by this equation. If F is Fréchet-differentiable in B2ρ(x0), then
one may set

DF (x, x̃) =
∫ 1

0
F ′(x̃+ t(x− x̃)) dt .

If K
 is set to F ′(x
) for some x
 ∈ B2ρ(x0), then (5.3) can usually be verified
similarly to (2.4). For the alternative nonlinearity condition (5.4), the previously
considered condition (4.76) is sufficient as long as ρ is sufficiently small.

We will here and in the section on multigrid methods concentrate on condition
(5.4) and refer to [87, 88, 93] for corresponding results under condition (5.3).

For the convergence analysis of this projection method we need assumptions
similar to (4.121) – (4.125):
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Assumption 5.1 Let {hl}l∈N be a real sequence with hl ↘ 0 as l → ∞.

(i) Smoothing and approximation property: let Yp be a Banach space such that

Yp ⊂ Y , K
 ∈ L(X ,Yp) , ‖I −Ql‖Yp,Y ≤ c̃1h
p
l ,

for some p, c̃1 > 0.

(ii) Inverse inequality:

γ−1
l

≤ c̃2h
−p
l

for some c̃2 > 0, where

γ
l
:= ‖(QlK
)†‖−1 = inf{‖K∗


 y‖ : ‖y‖ = 1 ∧ y ∈ Yl} . (5.5)

(iii) Bound on hl: let
hl

hl+1
≤ r

for some r > 1 (compare (4.41)).

It has been mentioned already at the end of Section 4.3 when dealing with pro-
jection methods that this assumption is satisfied for parameter identification prob-
lems like the one in Example 2.14 if finite elements are used for the spaces Yl

(cf. [88]).
As usual for nonlinear problems, the initial guess x0 has to be sufficiently close

to x†. Moreover, we assume that the difference x0 − x† is orthogonal to the
nullspace of K
, i.e.,

x0 − x† ∈ N (K
)⊥ (5.6)

so that it can be expected to be well approximated by functions in Xl = K∗

 Yl

(compare (2.9) and (4.146)). This condition together with (5.4) also uniquely se-
lects a solution of (1.1) in B2ρ(x0) if cR is sufficiently small. Moreover, condition
(5.4) also guarantees that problem (5.1) has a solution xδ

l for all l up to some index

l
rd

depending on the data noise level. In addition, the approximations xδ
l satisfy

error estimates similar to the linear case (cf. [45, Theorem 3.26]):

Proposition 5.2

(i) Let (5.4) with cR < 1/2 hold and assume that x, x̃ ∈ B2ρ(x0) are such that
F (x) = F (x̃) and x− x̃ ∈ N (K
)⊥. Then x = x̃.
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(ii) Let (1.2) and (5.4) with cR < 1 hold and let ‖x0 −x†‖ be sufficiently small.
Then there exist positive constants crd

1 , crd
2 , and crd

3 independent of l and δ
such that problem (5.1) has a solution xδ

l in B2ρ(x0) for all l ≤ l̃rd and

‖xδ
l − x†‖ ≤ crd

1 (‖(I − Pl)(x0 − x†)‖ + δγ−1
l

) , (5.7)

where l̃rd is defined by

l̃rd := max{l̃ : crd
2 ‖x0 − x†‖ + crd

3 δγ
−1
l

≤ ρ for all l ≤ l̃} , (5.8)

γ
l
is as in (5.5), and Pl is the orthogonal projector onto Xl = K∗


 Yl.

Proof. First we prove (i). It is an immediate consequence of (5.4) that

0 = F (x) − F (x̃) = K
R(x, x̃)(x− x̃) .

This implies that R(x, x̃)(x − x̃) ∈ N (K
) and hence together with x − x̃ ∈
N (K
)⊥ that

R(x, x̃)(x− x̃) = PN (K�)R(x, x̃)(x− x̃) = PN (K�)(R(x, x̃) − I)(x− x̃) ,

from which we conclude with (5.4) that

‖x− x̃‖ = ‖R(x, x̃)−1PN (K�)(R(x, x̃) − I)(x− x̃)‖ ≤ cR
1 − cR

‖x− x̃‖.

Thus ‖x− x̃‖ = 0, since cR
1−cR

< 1.
For the proof of (ii) see [87, Theorem 2]. The essential part of the proof deals

with existence of a solution of (5.1). This part is quite similar to the verification of
solvability of the coarse grid equation in the proof of Proposition 5.4 below. �

Convergence or convergence rates can be achieved if the iteration is appropri-
ately stopped. We suggest to choose the stopping index l∗ = l∗(δ) such that

l∗ → ∞ and η ≥ δh−p
l∗ → 0 as δ → 0 (5.9)

or via
ηh

(2μ+1)p
l∗ ≤ δ < ηh

(2μ+1)p
l , 0 ≤ l < l∗ , (5.10)

if the source condition

x0 − x† = (K∗

K
)

μv , μ > 0 , v ∈ N (K
)⊥ (5.11)

holds. In both cases η is a positive constant.
Assumption 5.1 and (5.6) together with the estimate (5.7) and the stopping cri-

terion (5.9) immediately yield convergence of xδ
l∗ to x† as δ → 0.
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Moreover, if the source condition (5.11) holds for some μ ∈ (0, 1] and if the
stopping criterion (5.10) is used, then Assumption 5.1, (4.119), and (5.7) imply
that

‖xδ
l∗ − x†‖ = O(δ

2μ
2μ+1 ) .

Note that l∗ ≤ l̃rd (cf. (5.8)) if η is sufficiently small.
See [87] for results on optimal convergence rates where instead of (5.9) and

(5.10) the discrepancy principle (2.2) (with k replaced by l) is used.

5.2 Multigrid methods

Multigrid methods (MGM) are well known to be extremely efficient solvers for
large scale systems of equations resulting from partial differential equations and
integral equations of the second kind and have been extensively studied in the
last years (see, e.g., [13, 14, 56, 59]). A well-known application of multigrid
operators is the full multigrid method (FMGM), i.e., the simple nested iteration
scheme starting at the coarsest level and consisting of multigrid preconditioned
fixed point steps on gradually refining levels.

For ill-posed problems the behaviour of MGM is not so well understood, yet.
The main problem lies in the definition of smoothing operators. The crucial effect
of smoothing out the higher frequency part of the error, that the usual iterative
schemes such as Jacobi, Gauss–Seidel, or SOR show in discretizations of PDEs
or second kind integral equations, gets lost for first kind integral equations, due
to their adverse eigensystem structure: here high frequencies correspond to small
singular values of the forward operator and are therefore strongly amplified by
inversion.

An analysis of multigrid methods for (Tikhonov) regularized ill-posed prob-
lems, with possibly small but positive regularization parameter α and a discretiza-
tion in preimage space can be found in [68, 136] (see also [58]). We here concen-
trate more on the aspect of regularization solely by discretization, and therefore
apply projection in image space for the reasons mentioned above, still including
the possibility of additional regularization (see [88]).

The simplest case of a two grid method is sketched in Figure 5.1 and can be
used to recursively define a multigrid method by replacing the exact solution on
the coarser level again by a two grid step.

The nonlinear multigrid method (cf. [59], see also [14] for a different variant)
for the approximate solution of the projected equation (1.1) with noisy data yδ,
i.e.,

QlF (x) = Qly
δ =: fl ∈ Yl
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fine level

coarse level
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◦ • pre-smoothing S2

◦ post-smoothing S2 (optional)
� solution B1

↘ restriction
↗ prolongation

Figure 5.1 The two grid method B2

in x0 + Xl = x0 +K∗

 Yl, with K
 as in (5.3) or (5.4), can be inductively defined

as follows:

Algorithm 5.3 (Nonlinear Multigrid Method, NMGM)
Let xinit ∈ (x0 + Xl) ∩ Bρ(x0), fl ∈ Yl.

(i) Set NMGM(1, xinit, fl) := Φ1(xinit, fl) ∈ x0 + X1.

(ii) Assume that NMGM(l− 1, s, d) has been defined for all s ∈ (x0 +Xl−1)∩
Bρ(x0) and d ∈ Yl−1 and that it maps into x0 + Xl−1. Moreover, let
x̃l−1 ∈ (x0 + Xl−1) ∩ Bρ(x0) and f̃l−1 := Ql−1F (x̃l−1) be given.

(iii) Pre-smoothing: Set xsmo := Sl(xinit, fl).

Coarse grid correction: Set dl−1 := Ql−1(F (xsmo) − fl)
Choose λl−1 ∈ R

+

Set d̃l−1 := f̃l−1 − λl−1dl−1

Set s(0)
l−1 := x̃l−1

For i = 1, . . . ,m :
Set s(i)l−1 = NMGM(l − 1, s(i−1)

l−1 , d̃l−1)

Set NMGM(l, xinit, fl) := xsmo + λ−1
l−1(s

(m)
l−1 − x̃l−1).

Here Φ1(xinit, fl) is a (typically iterative) solution method on the coarsest grid
that is supposed to approximate a solution of Q1F (x) = Q1fl in x0 + X1 in a
sense to be specified below (see (5.22)).

The damping parameter λl−1 must in principle be chosen at each level such
that certain closeness requirements (see (5.20) below) are satisfied. The auxiliary
values x̃l−1, f̃l−1, that are used for constructing starting points for the coarse grid
iteration, are here preliminarily assumed to be a-priori fixed. In the nested iteration
(see Algorithm 5.5 below), where the operators NMGM are used, they are defined
in the course of the iteration.

To simplify notation, we use a cycle regime m that is constant over the dis-
cretization levels. Of course, also a level dependent cycle regimem = m(l) can be
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used, e.g., the alternating cycle withm(l) = 1+mod(l, 2). For the V-cyclem ≡ 1
and the alternating cycle in the linear case we refer to [89] and [88], respectively.
Note that Algorithm 5.3 is well defined only if NMGM(l−1, s(i−1)

l−1 , d̃l−1) remains
within Bρ(x0). This will be guaranteed by the conditions in Proposition 5.4 below.

As mentioned above, the smoothing operators Sl have to be carefully chosen.
In [94], King shows that an appropriate choice in the linear case, F (x) = K
x, is
the operator

Slin
l := ξlK

∗

 (I −Ql−1)Ql (5.12)

with ξl ≈ ‖(QlK
)†‖2, more precisely,

ξlγ
2
l−1 ≤ 1 and ξlγ

2
l
≥ c > 0 , (5.13)

where γ
l

is as in (5.5) and γl is defined by

γl := ‖(I −Ql)K
‖. (5.14)

Note that

γ
l

= inf{‖QlK
v‖ : ‖v‖ = 1 ∧ v ∈ Xl}
≤ inf{‖QlK
v‖ : ‖v‖ = 1 ∧ v ∈ X⊥

l−1 ∩ Xl}
= inf{‖Ql(I −Ql−1)K
v‖ : ‖v‖ = 1 ∧ v ∈ X⊥

l−1 ∩ Xl} ≤ γl−1 ,

since
N (Ql−1K
) = R(K∗


Ql−1) = X⊥
l−1 (5.15)

and hence c ≤ 1 has to hold in (5.13). If Assumption 5.1 holds, an appropiate
choice for ξl is given by

ξl ∼ h−2p
l .

We mention in passing that to achieve optimal convergence factors one should
choose ξl as large as possible subject to the constraint (5.13). Thus, for computa-
tional purposes, it sometimes pays off to precompute (an approximation of) γl−1
and set

ξl = γ−2
l−1 .

The operator Slin
l acts as a stabilized rough approximation of the inverse of

QlK
 on the high frequency part (I −Ql−1)Yl of Yl, while just removing the low
frequency part Ql−1Yl = Yl−1, leaving its treatment to the coarse grid correction.

The operator I−Slin
l K
 is symmetric with its spectrum contained in (0, 1): note

that Slin
l K
 = ξlK

∗

 (Ql −Ql−1)K
, where we use the fact that in nested spaces Yl

Ql−1Ql = Ql−1 = QlQl−1 holds. Moreover, (5.13) and (5.14) imply that

〈 I − Slin
l K
v, v 〉 = ‖v‖2 − ξl‖Ql(I −Ql−1)K
v‖2 ≥ (1 − ξlγ

2
l−1)‖v‖2 ≥ 0



Section 5.2 Multigrid methods 141

for all v ∈ X and hence

‖I − Slin
l K
‖ ≤ 1 and ‖Slin

l K
‖ ≤ 1 . (5.16)

In addition, it can be shown as in [94, Lemma 2.5] that I −Slin
l K
 is a contraction

on X⊥
l−1 ∩ Xl: using Ql−1K
(I − Pl−1) = 0 (cf. (5.15)), we obtain that

(I − Slin
l K
)Pl(I − Pl−1) = (I − Slin

l K
)(I − Pl−1)Pl

= (I − ξlK
∗

QlK
)Pl(I − Pl−1)

and for all v ∈ Xl that

〈 (I − ξlK
∗

QlK
)v, v 〉 = ‖v‖2 − ξl‖QlK
v‖2 ≤ (1 − ξlγ

2
l
)‖v‖2.

This together with (5.13) implies that

‖(I − Slin
l K
)Pl(I − Pl−1)‖ ≤

√
1 − c . (5.17)

Generalizing the smoothing operator (5.12) to the nonlinear situation, we set

Sl(xinit, fl) := xinit − ξlK
∗

 (I −Ql−1)(QlF (xinit) − fl) ,

xinit ∈ Xl, fl ∈ Yl ,
(5.18)

with ξl chosen according to (5.13).
The uniform contraction property of I − Slin

l K
 on the high frequency part
of level l, in combination with the coarse grid correction, enables us to prove a
uniform contraction factor estimate for I − NMGM(l, xinit, QlF ).

Proposition 5.4 Let (5.4) with sufficiently small cR < 1 hold and let NMGM be
as in Algorithm 5.3 with Sl defined as in (5.18), where ξl satisfies (5.13). Moreover,
we assume that the cycle regimem is chosen such that

cm > 1 (5.19)

and that the sequences {λl}, {x̃l} are such that

4
(1 + cR)2

1 − cR
λlρ̃+ ‖x̃l − x0‖ ≤ ρ̃ (5.20)

for all l ∈ N, where ρ̃ > 0 satisfies

(3 + 2cR)ρ̃ ≤ 2ρ . (5.21)
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In addition, we assume that

‖Φ1(xinit, Q1F (x)) − x‖ ≤ ε‖xinit − x‖ (5.22)

for all xinit, x ∈ (x0 + X1) ∩ Bρ̃(x0), where

ε := (cm)−
1

2(m−1) (5.23)

and c is as in (5.13).
Then NMGM has the level independent contraction factor ε, i.e.,

‖NMGM(l, xinit, QlF (x)) − x‖ ≤ ε‖xinit − x‖ (5.24)

for all l ∈ N and all xinit, x ∈ (x0 + Xl) ∩ Bρ̃(x0).

Proof. The proof is done by induction. For l = 1, (5.24) trivially holds by (5.22)
and Algorithm 5.3 (i). Let us now assume that (5.24) holds with l replaced by l−1
and ε as in (5.23), and let xinit, x ∈ (x0 + Xl) ∩ Bρ̃(x0) be arbitrary but fixed.

Denoting by
xsmo := Sl(xinit, QlF (x))

the result of the smoothing step, it follows with Algorithm 5.3 (iii) and (5.18) that
NMGM(l, xinit, QlF (x)) ∈ x0 + Xl and that we can decompose the error into its
relatively high and relatively low frequent contributions as follows

NMGM(l, xinit, QlF (x)) − x = (I − Pl−1)(xsmo − x)︸ ︷︷ ︸
∈X⊥

l−1

+ Pl−1(xsmo − x) + λ−1
l−1(s

(m)
l−1 − x̃l−1)︸ ︷︷ ︸

∈Xl−1

.
(5.25)

Due to (5.4), (5.12), and (5.18), the difference between xsmo and x can be written
as

xsmo − x = xinit − x− ξlK
∗

 [I −Ql−1]Ql(F (xinit) − F (x))

= (I − Slin
l K
)(xinit − x) + Slin

l K
(I −R(xinit, x))(xinit − x) ,

and hence, using the properties (5.16) and (5.17) of Slin
l , we get the estimates

‖xsmo − x‖ ≤ (1 + cR)‖xinit − x‖, (5.26)

‖(I − Pl−1)(xsmo − x)‖ ≤ (
√

1 − c+ cR)‖xinit − x‖. (5.27)

Moreover, we obtain together with (5.21) that ‖xsmo − x0‖ ≤ 2ρ and hence (5.4)
is applicable to xsmo.
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To make the induction hypothesis applicable, we now show that the coarse grid
equation

Ql−1F (s) = d̃l−1 (5.28)

with
d̃l−1 = Ql−1(F (x̃l−1) − λl−1(F (xsmo) − F (x))) , (5.29)

has a solution sl−1 ∈ (x0 + Xl−1) ∩ Bρ̃(x0) (that is supposed to be approximated

by s(i)l−1 as given in Algorithm 5.3 (iii)): consider the sequence

s0 := x̃l−1 , sj+1 = sj − (Ql−1K
)†(Ql−1F (sj) − d̃l−1) , (5.30)

which obviously remains in x0 +Xl−1. Then we obtain together with (5.4), (5.26),
and (5.29) that

‖s1 − s0‖ ≤ ‖(Ql−1K
)†Ql−1(F (x̃l−1) − d̃l−1‖
≤ λl−1‖(Ql−1K
)†Ql−1(F (xsmo) − F (x)‖
≤ λl−1‖R(xsmo, x)(xsmo − x)‖
≤ λl−1(1 + cR)2‖xinit − x‖ ≤ 2λl−1(1 + cR)2ρ̃ ,

which together with (5.20) implies that s0, s1 ∈ Bρ̃(x0) ⊂ B2ρ(x0). It now follows
with induction, (5.4), (5.20), the estimate

‖sj+1 − sj‖ = ‖sj − sj−1 − (Ql−1K
)†Ql−1(F (sj) − F (sj−1))‖
= ‖(Ql−1K
)†Ql−1K
(I −R(sj, sj−1))(sj − sj−1)‖
≤ cR‖sj − sj−1‖ ≤ 2cjRλl−1(1 + cR)2ρ̃ ,

and the triangle inequality that the sequence {sj} remains in Bρ̃(x0). Moreover, it
follows that {sj} is a Cauchy sequence and, therefore, converges to some sl−1 ∈
(x0 +Xl−1)∩Bρ̃(x0), which, by taking limits j → ∞ in (5.30), solves (5.28), i.e.,

Ql−1(λ−1
l−1(F (sl−1) − F (x̃l−1)) + F (xsmo) − F (x)) = 0 . (5.31)

We can now apply the induction hypothesis to obtain that

‖s(1)
l−1 − sl−1‖ ≤ ε‖x̃l−1 − sl−1‖.

Thus, it follows together with the estimate

‖s(1)
l−1 − x0‖ ≤ ‖x̃l−1 − x0‖ + 2‖x̃l−1 − sl−1‖
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and (5.20) that s(1)
l−1 ∈ Bρ̃(x0). By induction we obtain that s(i)l−1 remains in Bρ̃(x0)

and that

‖s(m)
l−1 − sl−1‖ ≤ εm‖x̃l−1 − sl−1‖. (5.32)

Due to the nonlinearity of the problem, there is a non-vanishing discrepancy on the
coarse grid, namely

∂s := λ−1
l−1(sl−1 − x̃l−1) + Pl−1(xsmo − x) . (5.33)

(Note that in the linear case ∂s = 0.) This ∂s also enters into the total error, and
can be estimated as follows: by (5.4), and applying (Ql−1K
)† to (5.31), we can
write

0 = Pl−1(λ−1
l−1R(sl−1, x̃l−1)(sl−1 − x̃l−1) +R(xsmo, x)(xsmo − x))

and, therefore,

∂s = Pl−1∂s = Pl−1R(sl−1, x̃l−1)∂s + Pl−1(I −R(sl−1, x̃l−1))∂s

= −Pl−1R(xsmo, x)(xsmo − x) + Pl−1R(sl−1, x̃l−1)(xsmo − x)

+Pl−1(I −R(sl−1, x̃l−1))∂s ,

which yields

‖∂s‖ = ‖(I + Pl−1(R(sl−1, x̃l−1) − I))−1Pl−1

(R(sl−1, x̃l−1) −R(xsmo, x))(xsmo − x)‖
≤ 2cR

1 − cR
‖xsmo − x‖

and, by the triangle inequality, also

λ−1
l−1‖x̃l−1 − sl−1‖ = ‖∂s − Pl−1(xsmo − x)‖

≤ 2cR
1 − cR

‖xsmo − x‖ + ‖Pl−1(xsmo − x)‖.

Together with (5.25), (5.32), and (5.33) we finally obtain the estimate

‖NMGM(l, xinit, QlF (x)) − x‖2

≤ ϕ(‖[(I − Pl−1)(xsmo − x)‖, ‖xsmo − x‖)
(5.34)



Section 5.2 Multigrid methods 145

with

ϕ(a, b) := a2c1 + b2c2 + b(b2 − a2)
1
2 c3 , (5.35)

c1 := 1 − ε2m,

c2 := ε2m +
4c2

R

(1 − cR)2 (1 + εm)2, (5.36)

c3 :=
4cR

1 − cR
εm(1 + εm) .

Obviously ϕ is monotonically increasing with respect to b. Since

∂ϕ

∂a
(a, b) = a(2c1 − b(b2 − a2)−

1
2 c3) ,

ϕ is monotonically increasing for all 0 ≤ a ≤ b if

4c2
1a

2 ≤ b
2(4c2

1 − c2
3) .

According to (5.26), (5.27), and (5.34) – (5.36), this means that

‖NMGM(l, xinit, QlF (x)) − x‖2

≤ ϕ((
√

1 − c+ cR)‖xinit − x‖, (1 + cR)‖xinit − x‖)

≤ (1 − c+ ε2mc+ c cR)‖xinit − x‖2 (5.37)

for some c > 0 independent of l, ε, and cR provided that

4c2
R(1 + cR)2ε2m(1 + εm)2 ≤ (1 − cR)2(1 − ε2m)2(c+ 2cR(1 −

√
1 − c)) .

This can always be achieved if cR is sufficiently small which we will assume in
the following.

Now, by our assumptions

1 − c < c(m) := (1 − 1
m)(cm)−

1
m−1 , (5.38)

which can be seen as follows: for

ψ(t) := 1 − t− (1 − 1
m)(mt)−

1
m−1

it holds that ψ( 1
m) = 0 and that ψ′(t) = −1 + (mt)−

m
m−1 < 0 for all t > 1/m.

Thus, it follows with (5.19) that ψ(c) < 0, which proves (5.38). Together with
(5.23) we can conclude that

1 − c+ ε2mc+ c cR = 1 − c− c(m) + c cR + ε2 ≤ ε2

for cR sufficiently small. Now the assertion follows with (5.37). �
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We now consider the application of the nonlinear multigrid operator of Algo-
rithm 5.3 in a nested iteration (cf. [59]) for finding an approximation x̃δ

l to a solu-
tion xδ

l of (5.1). For simplicity of notation, we consider only one iteration on each
level:

Algorithm 5.5 (Nonlinear Full Multigrid Method, NFMGM)

(i) Set x̃δ
1 := Φ1(x0, Q1y

δ).

(ii) For k = 2, . . . , l: Set x̃δ
k := NMGM(k, x̃δ

k−1, Qky
δ), where x̃k−1 as in

Algorithm 5.3 is chosen as x̃δ
k−1.

In the simple situation of V-cycle multigrid operators, this can be schematically
represented as in Figure 5.2.

level k = 4

k = 3

k = 2

k = 1 ��
���
•x̃2

�
��	��

���
•�

���
•x̃3

�
��	•

�
��	��

���
•�

���
•�

���
•x̃4 • smoothing Sk

� solution B1

↘ restriction

↗ prolongation

Figure 5.2 The FMGM with m ≡ 1

To prove convergence and convergence rates we assume a geometrically de-
creasing mesh size, i.e.,

hl = h0σ
l (5.39)

with some h0 > 0 and σ ∈ (0, 1).
As always, the iteration has to be stopped appropriately. We suggest to choose

the stopping index l∗ = l∗(δ) as in (5.9) or via

ησl∗pγ̃l∗(μ) ≤ δ < ησlpγ̃l(μ) , 0 ≤ l < l∗ , (5.40)

if the source condition (5.11) holds (compare (5.10)), where

γ̃l(μ) :=

⎧⎨⎩
εl , ε > σ2pμ ,
lσ2μpl , ε = σ2pμ ,
σ2μpl , ε < σ2pμ .

(5.41)
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Theorem 5.6 Let (1.2), (5.39), Assumption 5.1, and the assumptions of Proposi-
tion 5.4 hold with condition (5.20) replaced by

16
(1 + cR)2

1 − cR
λl ≤ 1 . (5.42)

Moreover, let x† be a solution of (1.1) satisfying (5.6) with ‖x0 − x†‖ sufficiently
small.

If l∗ is chosen according to (5.9) with η > 0 sufficiently small, then x̃δ
l is well

defined by Algorithm 5.5 and converges to x† as δ → 0.

If the source condition (5.11) is satisfied for some μ ∈ (0, 1], if l∗ is chosen
according to (5.40), and if ε < σ2pμ, then we obtain the convergence rate

‖x̃δ
l∗ − x†‖ = O(δ

2μ
2μ+1 ) .

In the noise free case (δ = 0), x̃l converges to x† as l → ∞ and, if (5.11) holds
with μ ∈ (0, 1], the rate

‖x̃l − x†‖ = O(γ̃l(μ))

is obtained.

Proof. First of all, we want to mention that we may assume that the solution xδ
l of

(5.1) not only exists in B2ρ(x0) but also in Bρ̃(x0) with possibly slightly adjusted
constants crd

1 , c
rd
2 , c

rd
3 and level bound l̃rd in Proposition 5.2.

We will now show by induction that x̃δ
l satisfies (5.20) for all l ≤ l̃mg, where

l̃mg := max{l̃ ≤ l̃rd : cmg
1 ‖x0 − x†‖ + cmg

2 δσ−lp ≤ 1
2 ρ̃ for all l ≤ l̃} (5.43)

with

cmg
1 :=

max{1, (1 + ε)crd
1 }

1 − ε
and cmg

2 :=
(1 + ε)crd

1 c̃2

hp
0(1 − εσp)

, (5.44)

ρ̃ is as in (5.21), h0 and σ are as in (5.39), c̃2 is as in Assumption 5.1 (ii), and ε is
as in (5.23). Note that, due to (5.19), ε < 1. Thus, Proposition 5.4 is applicable
then.

We only show the general step: using Algorithm 5.5, (5.1), and Proposition 5.4,
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we obtain the estimate

‖x̃δ
l − x†‖ ≤ ‖x̃δ

l − xδ
l ‖ + ‖xδ

l − x†‖
≤ ε(‖x̃δ

l−1 − xδ
l−1‖ + ‖xδ

l−1 − xδ
l ‖) + ‖xδ

l − x†‖

≤ εl‖x0 − xδ
1‖ +

l−1∑
k=1

εk ‖xδ
l−k − xδ

l−k+1‖ + ‖xδ
l − x†‖

≤ εl(‖P1(x0 − x†)‖ + ‖P1(xδ
1 − x†)‖)

+
l−1∑
k=1

εk(‖xδ
l−k − x†‖ + ‖xδ

l−k+1 − x†‖) + ‖xδ
l − x†‖

≤ εl‖P1(x0 − x†)‖ + (1 + ε)
l−1∑
k=0

εk ‖xδ
l−k − x†‖

and hence Proposition 5.2 (ii), Assumption 5.1 (ii), (5.39), (5.43), and (5.44) yield

‖x̃δ
l − x†‖ ≤ εl ‖P1(x0 − x†)‖

+cmg
1 (1 − ε)

l−1∑
k=0

εk ‖(I − Pl−k)(x0 − x†)‖ (5.45)

+ cmg
2 δσ−lp

≤ cmg
1 ‖x0 − x†‖ + cmg

2 δσ−lp ≤ 1
2 ρ̃ . (5.46)

Since ‖x0 − x†‖ is sufficiently small, we may assume that ‖x0 − x†‖ ≤ ρ̃/4,
which together with (5.46) implies that ‖x̃δ

l − x0‖ ≤ 3ρ̃/4 and further with (5.42)
that (5.20) is satisfied which makes Proposition 5.4 applicable.

Note that, due to (5.8), (5.39), and (5.43), l∗ as chosen by (5.9) or (5.40)
satisfies l∗ ≤ l̃mg if ‖x0 − x†‖ and η > 0 are sufficiently small, which we
will assume in the following. This together with (5.45) and the fact that, due to
(5.6), ‖(I − Pl)(x0 − x†)‖ → 0 as l → ∞ already yields convergence of x̃δ

l∗ and
x̃l towards x†.

Let us now assume that (5.11) holds for some μ ∈ (0, 1]. Then we obtain with
(4.119), Assumption 5.1 (i), (5.41), and (5.45) that

‖x̃δ
l − x†‖ = O(γ̃l(μ) + δσ−lp) ,

which proves the rate in the noise free case. In the noisy case, (5.40) implies that

‖x̃δ
l∗ − x†‖ = O(γ̃l∗(μ)) ,
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since
γ̃l∗−1(μ)
γ̃l∗(μ)

≤ c

for some positive constant c. If ε < σ2pμ this finally implies the rate O(δ
2μ

2μ+1 ). �

Under the tangential cone condition (5.3) optimal convergence rates can also be
achieved by means of the discrepancy principle (2.2) (see [93, Theorem 3]).



6 Level set methods

Level set methods have been applied successfully for shape design, shape recov-
ery, and free boundary value problems (see, e.g., Burger and Osher [25] for a
survey on level set methods for inverse problems applications).

Typically level set methods for the solution of inverse problems are based on
evolutionary equations that are solved via a time marching scheme. The solution
of this scheme at an appropriate time is considered an approximation of the inverse
problem. For a-priori given time stepping the marching scheme can be considered
as an iterative method.

In this chapter we derive in a systematic way iterative level set methods, iterative
regularization techniques, and evolutionary equations for level set problems. All
three concepts are formally linked, but it is notable that the analysis of the three
concepts is significantly different.

In shape recovery, one is faced with the problem of finding the shape ∂D of an
object D satisfying

F (χ(D)) = y , (6.1)

where χ(D) denotes the characteristic function of a set D.
Shape design consists in minimization of an energy functional f(D) over a suit-

able class of objects D. Previously, shape recovery in inverse problems has been
implemented by recovering parametrized shapes. There is rich literature on this
subject: some relevant work on inverse problems applications can be found in
[71, 72, 73, 74, 75, 78, 81, 95, 103]. The approach is limited to applications,
where the number of connected components of D is known a-priori. Topological
optimization is used for shape design where the number of connected components
of the optimal shape is not specified a-priori (see, e.g., [9]).

Level set methods are capable of handling splitting and merging topologies and
are currently a strong research topic for the numerical solution of inverse problems
without a-priori specified numbers of connected components.

The basic idea of level set methods is to represent ∂D as the zero level set of a
function φ, i.e., we have

∂D = {φ = 0} and D = {φ ≥ 0} . (6.2)

For some background on level set methods we refer, e.g., to Osher, Sethian, and
Fedkiw [126, 127, 148].

We recall that for any measurable set D �= ∅ satisfying

int(D) = D ,
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∂D can be represented as the zero level set of a W 1,∞ function (see, e.g., Delfour
and Zolesio [35]). A level set function with ∂D = {φ = 0} is given, for instance,
by the signed distance function

φ = −dD + dCD ,

where dD and dCD denote the distance functions to D and CD, respectively. Here,
CD denotes the complementary set toD. The functions dD and dCD are uniformly
Lipschitz continuous and satisfy |∇dD| ≤ 1 and |∇dCD| ≤ 1 (see [35]).

Let Ω ⊂ R
n be a bounded domain with Lipschitz boundary, in which the object

to be recovered is contained, then from the above considerations it follows that

dD, dCD ∈W 1,∞(Ω) ⊂W 1,2(Ω) .

We consider level set functions in the Hilbert space W 1,2(Ω). In particular, all
signed distance functions are contained in this space.

We define the discontinuous projection operator

P : W 1,2(Ω) → L∞(Ω), φ �→ χ({φ ≥ 0}) .
In level set methods for shape recovery the problem of solving (6.1) is replaced by
the problem of solving

F (P (φ)) = y . (6.3)

In the sequel we assume that the operator F is continuous from L1(Ω) into the
Hilbert space L2(Ω̃). The operator F (P (·)) is difficult to deal with analytically,
since it is the decomposition of a continuous operator and an operator that is
not weakly closed on the set of functions with binary range {0, 1} with respect
to the L2-topology. Note for instance that the characteristic functions ρn :=∑2n

i=1 χ((2i−1)/2n,2i/2n) of the set
⋃2n

i=1((2i − 1)/2n, 2i/2n) are weakly conver-
gent to 1/2, which is not a function with binary range {0, 1}.

For noisy data yδ, we use the energy functional

J(φ) := 1
2 ‖F (P (φ)) − yδ‖2

L2(Ω̃)
. (6.4)

In general, the functional J is not Fréchet-differentiable, but the subdifferential of
J can be defined, at least in a formal setting. The concept of a subdifferential is
outlined below. Formally, it reads as

∂J(φ) = P ′(φ)∗F ′(P (φ))∗(F (P (φ)) − yδ) , (6.5)

where F ′(z)∗ is the formal adjoint with respect to the spaces L2(Ω) and L2(Ω̃),
i.e.,

〈F ′(z)h, g 〉L2(Ω̃) = 〈h, F ′(z)∗g 〉L2(Ω)
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for all h ∈ L2(Ω) and g ∈ L2(Ω̃). Moreover, for φ, φ̃, φ̂ ∈W 1,2(Ω),

〈P ′(φ)φ̂, φ̃ 〉L2(Ω) = 〈 φ̂, P ′(φ)∗φ̃ 〉W 1,2(Ω) .

The functional F ′(P (φ(t)))P ′(φ(t)) can be considered as the shape derivative of
the functional F with respect to the interface given by the support of P ′(φ). The
right hand side of (6.5) is of a complex nature, since the functional derivative P ′

of P only exists in a distributional setting.
The Landweber iteration for the solution of (6.3) is given by

φk+1 ∈ φk − ∂J(φk) . (6.6)

We use the symbol ∈ , since, in general, ∂J(φk) is set-valued. Therefore, for a
practical realization of (6.6) a single element of ∂J(φk) has to be selected.

In the level set community, it is more convenient to base the consideration on a
continuous regularization method instead of (6.6), namely

∂φ

∂t
(t) ∈ −∂J(φ)(t) , t > 0 , and φ(0) = φ0 , (6.7)

and consider (6.6) as a method for numerically realizing (6.7).
Currently, for inverse problems applications, there is neither a convergence or

stability analysis of (6.6) available nor results for existence and uniqueness of a
solution of (6.7). However, as we will show below, the implicit time steps of
(6.7) are well defined. It is worth noting that implicit time stepping methods lead
to Newton type level set regularization models as they have been introduced by
Burger [20].

In the remainder of this chapter we proceed as follows: we give an overview
on existence results of time-dependent processes based on the concept of maxi-
mal monotone operators. By this argumentation we can highlight the difficulties
in performing a rigorous analysis of equations of type (6.7). Moreover, the the-
ory of maximal monotone operators and evolutionary processes reveals some syn-
ergies with the analysis of the Landweber iteration. This is expected, since the
Landweber iteration can be considered as an explicit time stepping algorithm for
the solution of the according parabolic process.

6.1 Continuous regularization

Continuous regularization for the solution of the nonlinear operator equation (1.1)
consists in solving the time-dependent equation

∂x

∂t
(t) = F ′(x(t))∗(yδ − F (x(t))) , t > 0 , and x(0) = x0 , (6.8)
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up to a certain time T . For inverse and ill-posed problems, under certain assump-
tions, x(T ) is a stable approximation of the solution of (1.1). The stopping time T
plays the role of a regularization parameter.

The explicit Euler method for approximating (6.8) at time t+ Δt is given by

x(t+ Δt) ≈ x(t) + ΔtF ′(x(t))∗(yδ − F (x(t))) , (6.9)

which can be considered as an iteration step of a Landweber iteration, where Δt
plays the role of ω (see (2.24); cf. [10]).

The implicit Euler method for solving (6.8) consists in solving the Euler equa-
tion

(x− x(t)) − ΔtF ′(x)∗(yδ − F (x)) = 0 (6.10)

and denoting a solution by x(t + Δt). The solution of (6.10) approximates the
solution of (6.8) at t + Δt. We recall that, if the functional ‖F (x) − yδ‖2 is
convex, then the solution of (6.10) is the unique minimizer of the functional

‖x− x(t)‖2 + Δt‖F (x) − yδ‖2. (6.11)

This means that the implict Euler method corresponds to iterative Tikhonov regu-
larization, where 1/Δt plays the role of α.

For an efficient minimization of (6.11) the Gauss–Newton method can be used
(compare (4.36)), which consists in putting x(0) := x(t) and

x(k+1) = x(k) +
(
I + ΔtF ′(x(k))∗F ′(x(k))

)−1(
ΔtF ′(x(k))∗(yδ − F (x(k))) + (x(0) − x(k))

)
.

(6.12)

Assume that one iteration of (6.12) is sufficient to calculate a close approximation
of x(t+ Δt), then

x(t+ Δt) ≈ x(t) + Δt
(
I + ΔtF ′(x(t))∗F ′(x(t))

)−1

F ′(x(t))∗(yδ − F (x(t)))
(6.13)

(see also [92]). Comparing this time-marching scheme with the explicit Euler
method (6.9), it is quite paradox to see that both methods can be considered as
approximations of x(t+Δt), although the right hand sides are formally completely
different. It is of course no contradiction, since our derivation of (6.13) is based on
the assumption that one step of (6.12) provides a reasonable approximation of the
minimizer of the functional (6.11). We also stress the fact that, by simply setting
xδ

k+1 := x(t + Δt) and xδ
k := x(t), (6.13) looks like the Levenberg–Marquardt

method (cf. (4.2)).
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The above considerations indicate that both, Landweber iteration and the Leven-
berg–Marquardt scheme, can be considered as time marching schemes, in which
case they are considered as approximations of the solution of the continuous prob-
lem (6.8). Note that the existence of a solution of (6.8) is not required in the
analysis of iterative regularization methods, but is needed in order to show that
time marching schemes approximate the solution of (6.8).

A classical concept for solutions of (6.8) is provided by semigroup theory based
on the theory of maximal monotonicity and subgradients. These concepts are out-
lined below. For a detailed discussion on semigroup theory we refer to Brézis [15],
Zeidler [161], and Evans [48].

Let X be a real Banach space. We recall that a functional J : X → R ∪ {+∞}
is convex if

J(tx+ (1 − t)x̃) ≤ tJ(x) + (1 − t)J(x̃) for all x, x̃ ∈ X and t ∈ [0, 1] .

It is proper if J �≡ +∞. In particular, it follows from the definition of a convex
functional that

D(J) = {x ∈ X : J(x) < +∞}
is convex.

A functional J defined on X is called lower semicontinuous if xk → x implies
that

J(x) ≤ lim inf
k→∞

J(xk) .

The subdifferential ∂J of a convex, proper functional J defined on X is defined for
x ∈ X satisfying J(x) �= +∞ as follows: ∂J(x) consists of all elements ρ ∈ X ∗

(the dual space of X ) satisfying

J(x̃) ≥ J(x) + ρ(x̃− x) for all x̃ ∈ X . (6.14)

In particular, if X is a real Hilbert space, then ρ ∈ ∂J(x) ⊂ X if J(x) �= +∞
and

J(x̃) ≥ J(x) + 〈 ρ, x̃− x 〉 for all x̃ ∈ X . (6.15)

We set
D(∂J) = {x ∈ X : J(x) �= +∞ and ∂J(x) �= ∅} .

Theorem 6.1 Assume that X is a real Hilbert space and that J : X → R∪{+∞}
is convex, proper and lower semicontinuous. Then it holds:

(i) D(∂J) ⊂ D(J) .

(ii) Monotonicity: If ρ ∈ ∂J(x) and ρ̃ ∈ ∂J(x̃), then 〈 ρ− ρ̃, x− x̃ 〉 ≥ 0 .
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(iii) J(x∗) = min
x∈X

J(x) if and only if 0 ∈ ∂J(x∗) .

(iv) For each x0 ∈ X and λ > 0, the problem

x+ λ∂J(x) " x0 (6.16)

has a unique solution u ∈ D(∂J). (6.16) is an inclusion equation and the
left hand side is, in general, a set consisting of x+λρ = x0 with x ∈ D(∂J)
and ρ ∈ ∂J(x) .

Proof. See [48, p. 524 ff]. �

Example 6.2 Below we give two examples for subgradients:

(i) Let C be a nonempty, closed, convex subset of a real Hilbert space X . We
define χ(x) = 0 if x ∈ C and χ(x) = +∞ if x �∈ C . Obviously, the sub-
gradient of χ is only defined for x ∈ C and according to (6.15) an element
ρ of the subgradient has to satisfy

χ(x̃) ≥ 〈 ρ, x̃− x 〉 for all x̃ ∈ X

or equivalently

0 ≥ 〈 ρ, x̃− x 〉 for all x̃ ∈ C .

In particular, it follows from this inequality that ρ = 0 ∈ ∂χ(x) for every
x ∈ C . If x ∈ int(C), then there exists an ε > 0 such that

0 ≥ 〈 ρ, x̃ − x 〉 for all x̃ ∈ X with ‖x̃− x‖ < ε .

This shows that {0} = ∂χ(x) for x ∈ int(C) .

(ii) Let J(x) := ‖F (x) − yδ‖2/2 be convex on a real Hilbert space X , with F
Fréchet-differentiable. Then the subgradient ∂J(x) is single-valued and is
given by F ′(x)∗(F (x) − yδ).

Let J : X → R ∪ {+∞} be a convex, proper, and lower semicontinuous
functional on a real Hilbert space X . For each λ > 0 we define the nonlinear
resolvent Jλ : X → D(∂J) by setting

Jλ(x0) = x ,

where x is the unique solution of

x+ λ∂J(x) " x0 ,
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which exists due to Theorem 6.1 (iv). Note that Jλ(x0) can as well be characterized
as the minimizer of the functional

x→ 1
2 ‖x− x0‖2 + λJ(x) .

Thus, the nonlinear resolvent corresponds to a Tikhonov type regularized solution.
For each λ > 0 the Yosida approximation Aλ : X → X is defined by

Aλ(x0) :=
x0 − Jλ(x0)

λ
.

We denote by 2X the power set of a real Hilbert space X . For a set-valued
operator A : X → 2X we denote by

D(A) = {x ∈ X : A(x) �= ∅}

its domain and by

R(A) =
⋃

x∈X
A(x)

its range. The operator A is called single-valued if A(x) consists of a single ele-
ment for all x ∈ D(A). The operator A is called monotone if

〈 zx − zx̃, x− x̃ 〉 ≥ 0 for all x̃ ∈ D(A) , zx̃ ∈ A(x̃) , (6.17)

and for all x ∈ D(A), zx ∈ A(x). A monotone operator A is called maximal
monotone if for every pair (x, zx) ∈ X × X which satisfies (6.17) for every
x̃ ∈ D(A) and zx̃ ∈ A(x̃) it holds that x ∈ D(A) and zx ∈ A(x). The terminology
maximal monotone operator is motivated from the fact that it is a monotone oper-
ator that has no proper extension. An extension A of A satisfies that the graph of
A is a real subset of the graph of A. In particular this means that D(A) ⊂ D(A).
For instance, the function in the center of Figure 6.1 is monotone but not max-
imal monotone, since it has a proper extension, which is plotted in the right of
Figure 6.1.

A continuous and monotonically increasing function f : R → R is a typical
example for a maximal monotone operator. For some other examples of maximal
monotone operators see Example 6.7 below.

The following theorem holds for subdifferentials:

Theorem 6.3 Assume that X is a real Hilbert space and that J : X → R∪{+∞}
is convex, proper, and lower semi-continuous. Then ∂J is maximal monotone.

Proof. See, e.g., Zeidler [161, p. 845]. �
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Figure 6.1 left: a maximal monotone function; center and right: a function which
is not maximal monotone and its maximal monotone extension

Our intention is to cite an existence result for the ordinary differential equation

∂x

∂t
(t) ∈ −∂J(x(t)) , t > 0 , and x(0) = x0 . (6.18)

Theorem 6.4 Let X be a real Hilbert space and J : X → R ∪ {+∞} be convex,
proper and lower semicontinuous. Moreover, assume that ∂J is densely defined,
i.e., D(∂J) = X . Then for each x0 ∈ D(∂J) there exists a unique function

x ∈ C([0,∞);X ) with
∂x

∂t
∈ L∞((0,∞);X )

satisfying

x(0) = x0 ,

x(t) ∈ D(∂J) for each t > 0 ,

∂x

∂t
∈ −∂J(x(t)) for almost every t > 0 .

(For the definition of the spaces C([0,∞);X ) and L∞((0,∞);X ) see [48].)

Proof. See Evans [48, p. 529 ff]. �

This result can be generalized from gradient flow equations to equations with
maximal monotone operators.

For the analysis of evolutionary processes with maximal monotone operators

∂x

∂t
(t) ∈ −A(x(t)) + f(t) , 0 < t ≤ T , and x(0) = x0 , (6.19)

typically the following notion of a solution is used (see Brezis [15, p. 65]):
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Definition 6.5 Let X be a real Hilbert space and A a maximal monotone operator.
A function x ∈ C([0, T ];X ) is called solution of (6.19) if f ∈ L1((0, T );X ) and
if there exist sequences fn ∈ L1((0, T );X ) and xn ∈ C([0, T ];X ), where xn is
absolutely continuous in (0, T ) and xn(t) ∈ D(A) for all t ∈ (0, T ), satisfying:

fn → f with respect to the L1((0, T );X )-norm ,

∂xn

∂t
+A(xn) " fn , t > 0 ,

‖xn(t) − x(t)‖ → 0 uniformly in [0, T ] .

Theorem 6.6 Assume that A is maximal monotone on X . If f ∈ L1((0, T );X )
and x0 ∈ D(A), then there exists a unique solution of (6.19).

Proof. See Brezis [15, Theorem 3.4]. �

Example 6.7 We apply the theorems above to some examples:

(i) LetC and χ be as in Example 6.2 (i). Then the subdifferential ∂χ is maximal
monotone. Therefore, it follows with Theorem 6.6 that for every x0 ∈ C the
differential equation

∂x

∂t
∈ −∂χ(x) , t > 0 , and x(0) = x0 ,

has a unique solution.

(ii) LetK : X → Y be a bounded linear operator between real Hilbert spaces X
and Y . Then the functional J(x) := ‖Kx − yδ‖2/2 is convex, proper, and
lower semi-continuous and the subgradient ∂J(x) is given byK∗(Kx−yδ).
According to Theorem 6.3, ∂J(x) is maximal monotone. Due to Theorem
6.4, the problem

∂x

∂t
(t) = −K∗(Kx− yδ) , t > 0 , and x(0) = x0 , (6.20)

has a unique solution xδ ∈ C([0,∞);X ) with ∂xδ

∂t ∈ L∞((0,∞);X ) for
any x0 ∈ X . Thus, for linear inverse problems continuous regularization
attains a solution.

(iii) Let F : D(F ) ⊂ X → Y be a nonlinear continuously Fréchet-differentiable
operator between two real Hilbert spaces X and Y , which satisfies (2.3) and

‖F (x) − F (x̃) − F ′(x)(x− x̃)‖ ≤ c‖F (x) − F (x̃)‖2,

x, x̃ ∈ B2ρ(x0) ⊆ D(F ) ,
(6.21)
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for some c > 0. Note, that in contrast to (2.4) we assume now an exponent 2
in the right hand side of the inequality. Hence, this condition is even stronger
than (2.25).

We assume that there exists a solution of F (x) = y in Bρ(x0) which is
denoted by x∗ and define the operator

G(x) :=
{
F ′(x)∗(F (x) − yδ) , x ∈ B2ρ(x0) ,
∅ , x �∈ B2ρ(x0) ,

with ‖yδ − y‖ ≤ δ (see (1.2)). Since it follows from (2.3) that

‖F (x) − y‖ ≤
∫ 1

0
‖F ′(x∗ + t(x− x∗))‖ ‖x− x∗‖ dt

≤ ‖x− x∗‖ ≤ ‖x− x0‖ + ‖x0 − x∗‖ ≤ 3ρ

for all x ∈ B2ρ(x0), we obtain for all x, x̃ ∈ B2ρ(x0) that

〈G(x) −G(x̃), x− x̃ 〉
= 〈F (x) − yδ, F ′(x)(x− x̃) 〉 − 〈F (x̃) − yδ, F ′(x̃)(x− x̃) 〉
= 〈F (x) − yδ, F (x) − F (x̃) 〉 − 〈F (x̃) − yδ, F (x) − F (x̃) 〉

− 〈F (x) − yδ, F (x) − F (x̃) − F ′(x)(x− x̃) 〉
+ 〈F (x̃) − yδ, F (x) − F (x̃) − F ′(x̃)(x− x̃) 〉

≥ (1 − 2c(3ρ + δ))‖F (x) − F (x̃)‖2 ≥ 0

if 2c(3ρ+ δ) ≤ 1. Thus, under this assumption, G is monotone on B2ρ(x0).
With G we identify the set-valued mapping that maps x onto ∅ if x /∈
B2ρ(x0). This mapping is monotone on X . According to [161, Theorem
32.M], there exists a maximal monotone extension G : X → 2X for which
D(G) = D(G) = B2ρ(x0) and the graph of G is a subset of the graph of G.

The proof of the maximal monotone extension requires Zorn’s Lemma and
is, thus, not constructive. Here, since G is single-valued, we can specify
G in int(B2ρ(x0)): for x ∈ int(B2ρ(x0)) let x̃ = x + th, where ‖h‖ ≤
2ρ − ‖x − x0‖ and t ∈ (−1, 1). Then it is evident that x̃ ∈ int(B2ρ(x0)).
Since G is monotone, we have by definition that

〈 ρx − ρx̃, x− x̃ 〉 ≥ 0 for all ρx ∈ G(x) and ρx̃ ∈ G(x̃) .

Since G is a maximal monotone extension, we have G(x) ⊂ G(x) and,
therefore, that

〈 ρx −G(x̃), x− x̃ 〉 = −t〈 ρx −G(x+ th), h 〉 ≥ 0 for all ρx ∈ G(x) .
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Since the above inequality holds for all t ∈ (−1, 1), we obtain together with
the continuity of G in int(B2ρ(x0)), which follows from the continuity of
F ′, that 〈 ρx −G(x), h 〉 = 0. Since this equality holds for all h sufficiently
small, we have ρx = G(x).

Together with Theorem 6.6 we obtain that the differential equation

∂x

∂t
∈ −G(x) , 0 < t ≤ T , and x(0) = x0 ,

has a unique solution. This shows that there exists a solution for continuous
regularization if (6.21) and (2.3) hold. We emphasize that the existence of a
solution of continuous regularization has not been proven under the weaker
convergence condition (2.4) for Landweber iteration.

For continuous regularization applied to linear problems (see Example 6.7 (ii)),
Tautenhahn [150] provided the following results, which can be derived from gen-
eral results of Vainikko and Veretennikov [153]:

(i) In the case of noise free data, i.e., yδ = y, the solution x(T ) of (6.20)
satisfies x(T ) → x† for T → ∞.

(ii) A-priori parameter selection criterion: let yδ satisfy (1.2). Then for
T := T (δ) satisfying T (δ) → ∞ and δ2T (δ) → 0 as δ → 0, it holds
that xδ(T ) → x†.

(iii) A-posteriori parameter strategy: let yδ satisfy (1.2) and assume that

‖Kx† − yδ‖ > τδ

for some τ > 1. Then for T∗ satisfying the discrepancy principle

‖Kxδ(T∗) − yδ‖ = τδ

it holds that
xδ(T∗) → x† .

The difficulty associated with the analysis of gradient flow equations for nonlin-
ear inverse problems is the existence theory of a solution. If one assumes the non-
linearity condition (2.4), then maximal monotonicity of G(x) := F ′(x)∗(F (x) −
yδ) is not guaranteed and, consequently, classical existence theory of parabolic
processes (as outlined above) is not available. Only if (6.21) holds, existence of
the solution of the evolutionary process is guaranteed. Tautenhahn [150] carried
over the results for continuous regularization from linear inverse problems to non-
linear ones. However, there the theorectical results on convergence and stability
are based on the assumption that a solution of the gradient flow equation exists.
This is of course not a trivial assumption.
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6.2 Level set regularization

Santosa [140] introduced level set methods based on the gradient descent flow
equation (6.7) for the level set function. Several analytical difficulties show up for
this approach. To name but a few:

(i) The energy functional J(φ) defined in (6.4) is in general not convex.

(ii) The definition of J involves the evaluation of a discontinuous operator P .
To make the functional J formally well defined, it has to be relaxed. This is
outlined below.

(iii) The operator φ �→ ∂J(φ) is not maximal monotone and, therefore, nonlin-
ear semigroup theory is not applicable. It neither satisfies (6.21) nor (2.4).
Consequently, the theory of continuous regularization is not applicable ei-
ther.

In the following we mimic nonlinear semigroup theory and consider implicit time
steps of (6.7) consisting in the solution of

φ(t+ Δt) − φ(t)
Δt

∈ −∂J(φ)(t + Δt) .

The solution of this equation may not be unique, and some elements could be
critical points. We restrict our attention only to a solution φ(t + Δt) that is a
global minimizer of

Jλ(φ) := 1
2λ‖F (P (φ)) − yδ‖2

L2(Ω̃)
+ 1

2 ‖φ− φ0‖2
W 1,2(Ω) , (6.22)

with λ = 1/Δt and φ0 = φ(t). As a prerequisite step we analyze the functionals
Jλ analytically and prove existence of a minimizer, approximation properties and
discuss the numerical realization. The analysis of the according time-dependent
process (6.7) is still open.

Application of the Gauss–Newton method for minimizing (6.22) and assuming
similar to (6.12) and (6.13) that one iteration step is sufficient to obtain a rea-
sonable approximation of φ(t + Δt) we can again proceed iteratively and get the
following approximation of (6.7):

φ(t+ Δt) = φ(t) + Δt(I + ΔtB(t)∗B(t))−1B(t)∗(yδ − F (φ(t)))
with B(t) := F ′(P (φ(t)))P ′(φ(t)) .

(6.23)

As in (6.13), by a change of variable, φk+1 = φ(t+Δt) and φk = φ(t), we recover
the Levenberg–Marquardt method.
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Figure 6.2 left: a domain with minimal length boundary; right: the domain on
the right is equal to the domain on the left almost everywhere, but the
boundary has different length

Two domainsD1 andD2 are considered to be identical if the characteristic func-
tions are identical almost everywhere. Of course, we want to exclude ambiguous
cases and aim to recover only a domain with minimal boundary length.

In Figure 6.2, we have plotted two domains which are identical almost every-
where but the length of the boundary is different. To exclude this ambiguity the
additional penalization term |P (φ)|BV(Ω) is added to the functional Jλ. Here,
BV(Ω) is the space of functions of bounded variation with its usual semi norm
| · |BV(Ω) (see [49]). This ensures the selection of a domain with minimal boundary
length among all almost everywhere equivalent sets. The use of this penalization
term and the above argumentation is inspired by a series of papers by Kohn and
Strang [97, 98, 99], who discussed the necessity of using this penalization term for
shape optimization and recovery. Thus, we consider the modified functional

Jλ,β(φ) = 1
2λ‖F (P (φ)) − yδ‖2

L2(Ω̃)
+ β |P (φ)|BV(Ω) + 1

2 ‖φ− φ0‖2
W 1,2(Ω) ,

where β is a fixed positive parameter. In order to cope with difficulties in the analy-
sis of this functional, due to the discontinuous operator P , we study the equivalent
problem of minimizing

Jλ,β(z, φ) = 1
2λ‖F (z) − yδ‖2

L2(Ω̃)
+ β |z|BV(Ω) + 1

2 ‖φ− φ0‖2
W 1,2(Ω) (6.24)

subject to the constraint z = P (φ).
Here the difficulties arising from the discontinuous operator become apparent.

Since the operator P is discontinuous, the equation z = P (φ) has to be interpreted
set-valued as outlined below. To this end, we consider continuous approximations
of P . The operators

Pε(φ) :=

⎧⎨⎩
0 , φ < −ε ,
1 + ε−1φ , φ ∈ [−ε, 0] ,
1 , φ > 0 ,

(6.25)
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satisfy

‖Pε(φ̃) − Pε(φ)‖L1(Ω) ≤ ε−1 meas(Ω)
1
2 ‖φ̃− φ‖L2(Ω)

and are, therefore, continuous from L2(Ω) into L1(Ω). Of course, any other choice
of a family of approximations being continuous from L2(Ω) into L1(Ω) is suitable
as well.

Next we define generalized minimizers and minimal admissible pairs of the
functional Jλ,β.

Definition 6.8 (i) A pair of functions (z, φ) ∈ L1(Ω) ×W 1,2(Ω) is called ad-
missible if there exists a sequence {φk} of functions in W 1,2(Ω) such that
‖φk − φ‖L2(Ω) → 0 and if there exists a sequence {εk} of positive numbers
converging to zero such that ‖Pεk

(φk) − z‖L1(Ω) → 0.

(ii) A generalized solution of (6.3) is an admissible pair (z, φ) ∈ L1(Ω) ×
W 1,2(Ω) satisfying F (z) = y.

(iii) A generalized minimizer of Jλ,β is an admissible pair of functions (z, φ)
minimizing

J̃λ,β(z, φ) := 1
2λ‖F (z) − yδ‖2

L2(Ω̃)
+ ρ(z, φ) (6.26)

over the set of admissible pairs, where

ρ(z, φ) := inf lim inf
k→∞

{β |Pεk
(φk)|BV(Ω) + 1

2 ‖φk − φ0‖2
W 1,2(Ω)} (6.27)

is the relaxation of

β |P (φ)|BV(Ω) + 1
2 ‖φ− φ0‖2

W 1,2(Ω)

and the infimum is taken over all sequences {εk} and {φk} as in (i).

(iv) A minimal admissible pair (z†, φ†) satisfies F (z†) = y and

ρ(z†, φ†) = ρmin := inf{ρ(z, φ) : (z, φ) is admissible

and F (z) = y} . (6.28)

Let (z, φ) be admissible and ρ(z, φ) < ∞, then there exists a sequence {φk}
of W 1,2(Ω)-functions converging to φ in L2(Ω) and there exists a sequence of
positive numbers {εk} converging to zero and satisfying Pεk

(φk) → z in L1(Ω).
From the weak lower semicontinuity of the BV(Ω)-seminorm it follows that

|z|BV(Ω) ≤ lim inf
k→∞

|Pεk
(φk)|BV(Ω) .
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In particular, this shows that under the assumption ρ(z, φ) < ∞, we have
z ∈ BV(Ω). The above calculations also show that

β|z|BV(Ω) + 1
2 ‖φ− φ0‖2

W 1,2(Ω) ≤ ρ(z, φ) . (6.29)

If (z, φ) is admissible and ρ(z, φ) = +∞, then by definition z ∈ L1(Ω) and
φ ∈W 1,2(Ω), but z /∈ BV(Ω). In this situation (6.29) is trivially satisfied.

The concept of sets of admissible pairs is required since the operator P is dis-
continuous. For a continuous operator P , we could choose in the above definition
Pεk

= P and, consequently, the set of admissible pairs is (P (φ), φ), i.e., single-
valued.

In general, the admissible pair according to a function z ∈ L1(Ω) is not unique
as the following examples show:

Example 6.9

(i) Let φ ∈ W 1,2(Ω) and {εk} be a sequence of positive numbers converging
to zero, then it follows with (6.25) and Lebesgue’s Dominated Convergence
Theorem that

lim
k→∞

‖Pεk
(φ) − P (φ)‖L1(Ω) =

∫
Ω

lim
k→∞

fk(t) dt = 0 ,

where

fk(t) :=

{
1 + ε−1

k φ(t) , −εk < φ(t) < 0 ,

0 , otherwise .

By taking φk = φ, it follows with Definition 6.8 (i) that (P (φ), φ) is admis-
sible.

(ii) For φ ∈ W 1,2(Ω) let φk := φ/k. Moreover, let {εk} be a sequence of
positive numbers satisfying kεk → 0. Then it follows as above that

lim
k→∞

‖Pεk
(φk) − P (φ)‖L1(Ω) =

∫
Ω

lim
k→∞

gk(t) dt = 0 ,

where

gk(t) :=

{
1 + (kεk)−1φ(t) , −kεk < φ(t) < 0 ,

0 , otherwise .

This shows that (P (φ), 0) is admissible.

(iii) Let κ ∈ [0, 1]. Then (κχ(Ω), 0) is admissible. This follows immediately
with Definition 6.8 (i) if we choose φk := (κ − 1)/k and εk = 1/k, since
then Pεk

(φk) = κ.
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In the following lemma we prove that the functional ρ is weakly lower semicon-
tinuous on the set of admissible pairs.

Lemma 6.10 If there exists a sequence of admissible pairs {(zk, φk)} such that
zk → z in L1(Ω) and φk ⇀ φ inW 1,2(Ω), then (z, φ) is admissible and

ρ(z, φ) ≤ lim inf
k∈N

ρ(zk, φk) ,

where ρ is defined as in (6.27).

Proof. First, we prove that (z, φ) is admissible. Since (zk, φk) is admissible, it
follows from Definition 6.8 (i), (iii) that there exist εk > 0 and ψk ∈ W 1,2(Ω)
such that

‖ψk−φk‖L2(Ω) ≤ k−1, εk ≤ k−1, and ‖Pεk
(ψk)−zk‖L1(Ω) ≤ k−1, (6.30)

and, if ρ(zk, φk) <∞, then also

|ρ(zk, φk) − (β |Pεk
(ψk)|BV(Ω) + 1

2 ‖ψk − φ0‖2
W 1,2(Ω))| ≤ k−1. (6.31)

Since, due to Sobolev’s Embedding Theorem, φk ⇀ φ in W 1,2(Ω) implies that
φk → φ in L2(Ω), we obtain together with zk → z in L1(Ω) and (6.30) that
ψk → φ in L2(Ω) and Pεk

(ψk) → z in L1(Ω). Thus, (z, φ) is admissible.
Now (6.27) and (6.31) imply that

ρ(z, φ) ≤ lim inf
k→∞

(β |Pεk
(ψk)|BV(Ω) + 1

2 ‖ψk − φ0‖2
W 1,2(Ω))

≤ lim inf
k→∞

(ρ(zk, φk) + k−1) ,

which proves the assertion. �

The definition of ρ(z, φ) is impractical for a numerical realization, since it is
defined via a homogenization procedure. The following arguments indicate an
explicit characterization of this functional if the curve {φ = 0} is not fat, i.e., the
(n − 1)-dimensional Hausdorff measure of {φ = 0} is finite and z = χD, where
D has compact support in Ω. In this case, we conjecture that ∂D = {φ = 0} and
that

ρ(z, φ) = βHn−1(∂D) + 1
2 ‖φ− φ0‖2

W 1,2(Ω) .

In the case of curve fattening the situation is more involved, and we conjecture that

inf
{z : (z,φ) is admissible}

ρ(z, φ) = βHn−1(∂D) + 1
2 ‖φ− φ0‖2

W 1,2(Ω) ,

where ∂D is the minimal surface contained in the set {φ = 0}.
In the following proposition we show that there exists a minimal admissible pair

(cf. Definition 6.8 (iv)).
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Proposition 6.11 Assume that F : L1(Ω) → L2(Ω̃) is continuous and that (6.3)
has a generalized solution in the sense of Definition 6.8 (ii). Then there exists a
minimal admissible pair (z†, φ†).

Proof. Let {(zk, φk)} be a sequence of admissible pairs satisfying F (zk) = y and
ρ(zk, φk) → ρmin as k → ∞, where ρmin is defined as in (6.28). Note that nothing
has to be shown if ρmin = ∞. Therefore, we assume that ρmin <∞.

According to the definition of admissible pairs, there exist sequences {εk,l}
and {φk,l} satisfying Pεk,l

(φk,l) → zk in L1(Ω) as l → ∞. This shows that
‖zk‖L∞(Ω) ≤ 1. Since Ω is bounded, we have that ‖zk‖L1(Ω) ≤ meas(Ω). From
(6.29) it follows that the sequence {(zk, φk)} is uniformly bounded in BV(Ω) ×
W 1,2(Ω). Consequently, from Sobolev’s Embedding Theorem and the fact that
BV(Ω) is compactly embedded into L1(Ω) (see, e.g., [111]), it follows that there
exists a convergent subsequence in L1(Ω) × L2(Ω), which, for simplicity of no-
tation, we again denote by {(zk, φk)} and the limit is denoted by (z†, φ†). More-
over, {φk} is weakly convergent in W 1,2(Ω). It now follows from Lemma 6.10
that (z†, φ†) is admissible and that

ρmin = lim
k→∞

ρ(zk, φk) ≥ ρ(z†, φ†) .

Since F is continuous from L1(Ω) into L2(Ω̃), it follows that y = F (zk) →
F (z†) as k → ∞. Now, by Definition 6.8 (iv), (z†, φ†) is a minimal admissible
pair. �

Proposition 6.12 Assume that F : L1(Ω) → L2(Ω̃) is continuous. Then Jλ,β has
a generalized minimizer in the sense of Definition 6.8 (iii) for all λ, β > 0.

Proof. Since (0, 0) is an admissible pair, the set of admissible pairs is not empty.
Suppose that {(zk, φk)} is a minimizing sequence of admissible pairs, i.e.,

0 ≤ J̃λ,β(zk, φk) → inf J̃λ,β ≤ J̃λ,β(0, 0) <∞ .

Using (6.29) and embedding theorems, we can argue as in the previous proof
that there exists a convergent subsequence in L1(Ω) × L2(Ω), again denoted by
{(zk, φk)} with {φk} being weakly convergent in W 1,2(Ω). Due to Lemma 6.10,
the limit (z, φ) is admissible. Moreover, using that ρ is weakly lower semi-continu-
ous it follows that

inf J̃λ,β = lim
k→∞

J̃λ,β(zk, φk) = lim
k→∞

(
1
2λ‖F (zk) − yδ‖2

L2(Ω̃)
+ ρ(zk, φk)

)
≥ 1

2λ‖F (z) − yδ‖2
L2(Ω̃)

+ ρ(z, φ) = J̃λ,β(z, φ) .

Thus, according to Definition 6.8 (iii), (z, φ) is a generalized minimzer of Jλ,β . �
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Below, we state a convergence result. The proof uses classical techniques from
the analysis of Tikhonov type regularization methods (cf, e.g., [45]). Note that in
our functional α = 1/λ plays the role of the regularization parameter.

Theorem 6.13 Assume that F : L1(Ω) → L2(Ω̃) is continuous and that a mini-
mal admissible pair (z†, φ†) exists with ρ(z†, φ†) < ∞. Moreover, let yδ satisfy
(1.2) and let λ = λ(δ) be such that λ(δ) → ∞ and δ2λ(δ) → 0 as δ → 0. Then
every sequence {(zk, φk)}, where (zk, φk) is a generalized minimizer of Jλ,β for
λ = λ(δk) and δk → 0 as k → ∞, has a convergent subsequence. The limit of
every convergent subsequence is a minimal admissible pair.

Proof. Let {δk} be an arbitrary but fixed sequence satisfying δk → 0 as k → ∞.
The existence of a generalized minimizer (zk, φk) of Jλ,β for λ = λ(δk) follows
from Proposition 6.12. By definition of these minimizers (see Definition 6.8 (iii)),

1
2λ(δk)‖F (zk) − yδ

k‖2
L2(Ω̃)

+ ρ(zk, φk) ≤ 1
2λ(δk)δ2

k + ρ(z†, φ†) .

Consequently,
lim

k→∞
F (zk) = y (6.32)

and
lim sup

k→∞
ρ(zk, φk) ≤ ρ(z†, φ†) . (6.33)

Using (6.29) and embedding theorems, we can argue as in the proof of Proposition
6.11 that there exists a convergent subsequence in L1(Ω) × L2(Ω), again denoted
by {(zk, φk)}, with {φk} being weakly convergent in W 1,2(Ω). Due to Lemma
6.10, the limit (z, φ) is admissible. Moreover, using that ρ is weakly lower semi-
continuous it follows together with (6.33) that

ρ(z, φ) ≤ lim inf
k→∞

ρ(zk, φk) ≤ lim sup
k→∞

ρ(zk, φk) ≤ ρ(z†, φ†) .

This, together with (6.32) and Definition 6.8 (iv) shows that (z, φ) is a minimal
admissible pair. �

To avoid the calculation of the infimum in (6.27), for numerical computations
we will approximate the regularization functional in Definition 6.8 (iii) by the
following stabilized functional

J ε
λ,β(φ) := 1

2λ‖F (Pε(φ)) − yδ‖2
L2(Ω̃)

+ β |Pε(φ)|BV(Ω) + 1
2 ‖φ− φ0‖2

W 1,2(Ω) .

Proposition 6.14 Assume F : L1(Ω) → L2(Ω̃) is continuous. Then, J ε
λ,β has a

minimizer for every ε, λ, β > 0.
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Proof. The proof is similar to the proof of Proposition 6.11. �

In the following proposition we show that for ε → 0 the minimizers of J ε
λ,β

approximate generalized minimizers of Jλ,β. This justifies the use of the func-
tional J ε

λ,β for a numerical realization. Note that in contrast to the minimizer of

J ε
λ,β , which is a function of W 1,2(Ω), the minimizer of J̃λ,β is an admissible pair

(zλ,β , φλ,β). Recall that the function zλ,β is not uniquely defined by φλ,β if it
attains critical values in a neighbourhood of the zero level set.

Proposition 6.15 Assume that F : L1(Ω) → L2(Ω̃) is continuous and that
λ, β > 0 are fixed. Then

lim inf
ε→0

J ε
λ,β(φε

λ,β) = inf J̃λ,β ,

where φε
λ,β is a minimizer of J ε

λ,β and J̃λ,β is defined as in (6.26). Moreover,
there exists a sequence {εk} with εk → 0 as k → ∞ such that (Pεk

(φεk
λ,β), φεk

λ,β)

converges to a generalized minimizer of Jλ,β, i.e., a minimzer of J̃λ,β.

Proof. Let εk be an arbitrary sequence of positive numbers converging to zero.
Since, due to Proposition 6.14, J εk

λ,β has a minimizer φεk
λ,β , and since, due to (6.25),

J εk
λ,β(φεk

λ,β) = 1
2λ‖F (Pεk

(φεk
λ,β)) − yδ‖2

L2(Ω̃)
+ β |Pεk

(φεk
λ,β)|BV(Ω)

+ 1
2 ‖φεk

λ,β − φ0‖2
W 1,2(Ω)

≤ 1
2λ‖F (0) − yδ‖2

L2(Ω̃)
+ 1

2 ‖εkχ(Ω) + φ0‖2
W 1,2(Ω)

= J εk
λ,β(−εkχ(Ω)) ,

the sequence {(Pεk
(φεk

λ,β), φεk
λ,β)} is uniformly bounded in BV(Ω) × W 1,2(Ω).

Thus, using embedding theorems, we can argue as in the proof of Proposition 6.11
that there exists a convergent subsequence in L1(Ω) × L2(Ω), again denoted by
{(Pεk

(φεk
λ,β), φεk

λ,β)}, with {φεk
λ,β} being weakly convergent in W 1,2(Ω). Accord-

ing to Definition 6.8 (i), the limit (z, φ) ∈ L1(Ω)×W 1,2(Ω) is admissible. It now
follows with the continuity of F and the definition of J̃λ,β (see (6.26)) that

J̃λ,β(z, φ) ≤ lim
k→∞

J εk
λ,β(φεk

λ,β) (6.34)

and hence
inf J̃λ,β ≤ lim inf

ε→0
J ε

λ,β(φε
λ,β) .

According to Proposition 6.12, there exists a minimizing pair (zλ,β, φλ,β) of
J̃λ,β . Taking into account the definition of admissible pairs, there exists a sequence
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{εk} of positive numbers converging to zero and a sequence {φk} in W 1,2(Ω)
satisfying

(Pεk
(φk), φk) → (zλ,β , φλ,β) in L1(Ω) × L2(Ω) ,

ρ(zλ,β, φλ,β) = lim
k→∞

{β |Pεk
(φk)|BV(Ω) + ‖φk − φ0‖2

W 1,2(Ω)} .
(6.35)

For this sequence {εk}, a subsequence (again denoted by {εk}) and (z, φ) exist as
above satisfying (6.34). This yields the estimate

J̃λ,β(z, φ) ≤ lim inf
k→∞

J εk
λ,β(φεk

λ,β) ≤ lim inf
k→∞

J εk
λ,β(φk)

= 1
2λ‖F (zλ,β) − yδ‖2

L2(Ω̃)
+ ρ(zλ,β, φλ,β) = inf J̃λ,β .

This proves the assertions. �

It follows from the proof above that for every sequence {εk} having the property
(6.35) a subsequence exists satisfying the convergence result of Proposition 6.15.

Remark 6.16 In this chapter we have discussed iterative methods for solving level
set equations of the form (6.3) (cf. (6.7), (6.23)). In comparison with gradient flow
methods, Newton type methods (such as (6.23)) are more natural for solving (6.3),
since the operator P is discontinuous and, in general, the subdifferential of the
energy functional

1
2λ‖F (z) − yδ‖2

L2(Ω̃)
+ β |z|BV(Ω)

is set-valued, which requires an additional selection step for the gradient flow
methods.

A Newton type method for minimizing the energy function Jλ,β (see (6.24))
can be interpreted as realization of an implicit time step of the Euler equation of
the time discretized time evolution process. From a theoretical point of view the
existence of a minimizer is guaranteed by our analysis.



7 Applications

Iterative methods have been used for solving inverse problems such as scattering
problems (see, e.g., [66]). A vast amount of shape recovery problems (which are
by nature non-linear) in scattering and electrical impedance imaging have been
solved with iterative regularization methods. We refer to [72, 73, 74, 76, 103]
and the references therein. Later on, these methods have been supplemented by
level set techniques for shape recovery (see [25]), which share the same objec-
tive but allow for multiple connected objects. For numerical realization both of
them essentially use the same techniques of shape derivatives, but the numerical
realization is different.

In this book we present two applications. The first one is from Schlieren to-
mography. It is solved by a Landweber–Kaczmarz method, which we consider a
prime candidate for solving tomographic problems. The second example concerns
a parameter estimation problem from nonlinear magnetics. It is solved by various
iterative methods which have been analyzed in this book. Moreover, the numerical
performance of the algorithms is compared.

7.1 Reconstruction of transducer pressure fields from
Schlieren images

We deal with the following problem from Schlieren tomography: in order to test
and improve ultrasound transducers it is necessary to estimate their unperturbed
pressure fields. Nowadays this is done as follows: an ultrasound transducer is
placed on the top of a water tank and sends pressure waves into the tank. The
generated pressure variations within the water tank cause density changes that can
scatter light. At an appropriate time instance the light intensity of a laser beam is
measured on one side of the tank via an optical Schlieren system (see Figure 7.1).
This procedure is repeated for a set of rotation angles of the transducer. For practi-
cal aspects on the realization of Schlieren systems and more background informa-
tion see, e.g., [26, 131].

This problem may be modelled as follows: let D ⊂ R
2 denote the unit disc and

let σi ∈ S1, i = 0, . . . , N − 1, be a set of recording angles. (Associated with each
σi there is an angle ϕi ∈ [0, π) with σi = (cosϕi, sinϕi)). The Schlieren system
output in direction of σi is then given via the square of the Radon transform, i.e.,

Fi(p) := R2
i (p) with Ri(p)(s) :=

∫
R

p(sσi + rσ⊥i ) dr , s ∈ [−1, 1] ,
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Figure 7.1 A Schlieren optical system

where s is the signed distance of the line Li(s) := sσi + Rσ⊥i from the origin
in D and p denotes the pressure. Note that, since in general the pressure function
has positive and negative values, the Schlieren data cannot be reduced to standard
x-ray tomography. Now, the problem of reconstructing the pressure function p
consists in solving the equation

F (p) := (F0(p), . . . , FN−1(p)) = yδ = (yδ
0 , . . . , y

δ
N−1) .

It was shown in [61] that the operators Fi are continuous and Fréchet-differentiable
from L4(D) to L2[−1, 1] and hence, due to the embedding theorem, also from
H1

0 (D) to L2[−1, 1]. Since we are interested in functions p with jumps, we choose
a different space: in our numerical computations we approximate the pressure
function by piecewise constant functions on a uniform 480 × 480 grid of [−1, 1]2

assuming that the function is 0 outside of D. Therefore, we define the operators
Fi on the appropriate finite-dimensional space X equipped with the L2-norm into
L2[−1, 1]. The operators Fi are then continuous and Fréchet-differentiable even
on X with

F ′
i (p)h = 2Ri(p)Ri(h) and F ′

i (p)
∗v = 2PR∗

i (Ri(p)v) ,

whereR∗
i z(ξ) = z(〈 ξ, σi 〉) and P is the orthogonal projector fromL2(D) onto X .

Since the grid is very fine, Pz may be approximated well enough by the piecewise
constant spline interpolant of z.

The synthetic Schlieren data were simulated for 251 different equally distributed
angles within the interval [0, π). Uniformly distributed noise of level δ = 0.01%
was added to the synthetic data. All numerical simulations were performed by
Richard Kowar (University of Innsbruck) on an Intel Xenon CPU 5160 with 3
GHz. The basic system software was Fedore core FC6. We compare the perfor-
mance of the following three methods: the Landweber–Kaczmarz method (3.85)
(LK), its modification (3.88) (mLK), and the Levenberg–Marquardt method (4.2)
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Figure 7.2 Example 1: exact function (upper left), mLK (upper right), LK (lower
left), LM (lower right)

(LM), where the linear system appearing in the latter was solved approximately
by a few conjugate gradient steps. In the Landweber–Kaczmarz method and its
modification a scaling parameter was introduced similarly to (2.24) to guarantee
the scaling property (2.3).

Our numerical simulations demonstrate that for this problem the modified
Landweber–Kaczmarz method is the fastest method and yields the best results.

We present two examples of synthetic pressure functions. Both are piecewise
continuous, however, the second one has a large area of zero pressure that contains
several stripes, where then the derivative operators F ′

i (with Li(s) subset of the
stripes) vanish. It turns out that such pressure functions are much more difficult to
estimate than others.

For the results of the first example see Figure 7.2. The reconstruction quality
with mLK and with LK are equally good and the reconstruction with LM yields a
strongly smoothed version of the exact pressure function. The estimated negative
part in the LM-reconstuction is positive and almost equal to zero. τ in the discrep-
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Figure 7.3 Example 2: exact function (upper left), mLK (upper right), LK (lower
left), LM (lower right)

ancy principle was chosen to be 4.7. The CPU times were 75 s for mLK, 163 s for
LK, and 102 s for LM.

The results of the second example are given in Figure 7.3. The reconstruction
quality with mLK and with LK are again equal, whereas the reconstruction with
LM is much worse. One can also see that the reconstructions via mLK and LK
contain negative artifacts, τ = 3.5. The CPU times were 125 s for mLK, 147 s for
LK, and 186 s for LM.

7.2 Identification of B-H curves in nonlinear magnetics

Magnetostatic fields can be described by a subset of Maxwell’s equations leading
to the following system of PDEs for the magnetic vector potential A,

∇× (ν∇×A) = Jimp , (7.1)
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Figure 7.4 Typical B-H curve in magnetics (left) and measurement setup in reluc-
tivity identification (right)

where ν is the magnetic reluctivity (i.e., the reciprocal of the magnetic permeability
μ) and Jimp is the impressed current density. The magnetic flux density B as well
as the magnetic field intensity H can be expressed as

B = ∇× A , H = νB .

In the situation of high magnetic fields, the parameter ν is not constant but depends
on the magnetic flux density, i.e.,

H = ν(B)B , (7.2)

where H and B denote the magnitude of the vectorial quantities H and B, respec-
tively.

It is a practically relevant inverse problem in material characterization to deter-
mine the curve B �→ ν(B) or equivalently the so-called B-H curve from indirect
measurements (cf. [90], see Figure 7.4 for a typical example).

In a usual experimental setup for determining the reluctivity ν in (7.2) (see Fig-
ure 7.4), the impressed current density takes the form

Jimp =

⎧⎨⎩
I

|Ωc|eJ , in Dc ,

0 , else ,

and additional measurements of the magnetic flux through the coil

Φ =
∮

Cc

A · ds =
∫

Ωc

B · n dσ (7.3)

are available. Here, I is the prescribed current, eJ is the unit vector in current
direction, Dc is the region covered by the excitation coil, Ωc is its cross sectional
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Figure 7.5 Schematic of probe with coil (left), quasi straight detail (middle), and
cut along x-z plane (right)

area, and Cc is the boundary curve of Ωc. Note that the identity of the integrals
in (7.3) holds due to Stokes’ Theorem. The computational domain comprises the
probe, the coil, as well as the surrounding air region. Conditions on the outer
boundary are

n× A = 0 . (7.4)

Therefore, the inverse problem under consideration is the identification of the re-
luctivity ν = ν(B) in the nonlinear B-H relation (7.2) from measurements of the
magnetic flux Φ for different currents I in an excitation coil.

By an appropriate experimental setup, this can be reduced to the spatially 1D
case: consider a ring-shaped probe entwined with an excitation/measurement coil
according to Figure 7.5 with a large interior radius so that the curvature can be
neglected and the magnetic flux density points into z direction but does not vary in
z direction. Moreover, we consider a cut along the x-z plane in which A must be
parallel to the y axis and dependence of A and B on y may be neglected, so that
altogether

B(x, y, z) = (0, 0, Bz(x))T

or equivalently
A(x, y, z) = (0, Ay(x), 0)T .

With u(x) := Ay(x) the system (7.1) with boundary conditions (7.4) becomes

−c(x, ux(x))x = Iχ[a,b](x) , x ∈ (0, L) ,
u(0) = u(L) = 0 ,

(7.5)

where

c(x, ζ) =
{
μ−1

0 ζ , x ∈ [0, b) ,
ν(ζ)ζ , x ∈ [b, L] ,
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χS denotes the characteristic function on a set S, and we have normalized |Ωc| to
one. The interval (0, L) is the left half of the symmetric one-dimensional domain
containing the subinterval [a, b] as the coil winding region and [b, L] as the test
material region. The measurements (7.3) can (in a rescaled form) be rewritten as

Φ = u(a) . (7.6)

In [90] we considered the fully 3D setting and applied a regularized Newton type
method with a multigrid preconditioner in the solution of the linearized problem
in each Newton step. Here we will compare several methods discussed in this
book. For this purpose, we restrict ourselves to the one-dimensional setting (7.5),
(7.6) to avoid technicalities arising from the appropriate spline representation of
the B-H curves (cf., e.g., [128] for a recent paper on this subject) as well as the
numerical solution of the 3D Maxwell system and refer to [90] for further details
and references. Moreover we wish to point the reader to [1] for an application of
our multigrid method to a large scale inverse problem in pollution detection.

Our aim is to determine the function f : [λ, λ] → R defined by

f−1(ζ) = ν(ζ)ζ ,

i.e., f is the function whose graph describes the B-H curve. For simplicity we con-
sider a fixed interval [λ, λ] and refer to [109] for the identification of a nonlinearity
in a PDE as well as its domain. With the forward operator

F : D(F ) ⊆ H2(λ, λ) → L2([I, I])

f �→ (I �→ uI(a)) where uI solves (7.5)

and the data y = (I �→ Φ), this can be written as an operator equation F (f) = y.
The choice of L2([I, I]) as our data space is motivated by the fact that we can
only measure point but not derivative values and the requirement of working with
a Hilbert space. The domain of F is chosen as

D(F ) = {f ∈ H2(λ, λ) : f ′(λ) ≥ μ0 > 0}
to guarantee well-definedness of the forward problem. Note that by the continuity
of the embedding H2(λ, λ) → C1([λ, λ]), the domain D(F ) has nonempty inte-
rior. In our discretization of the problem we use an ansatz for f ′ (rather than for
f ) by piecewise linear splines to easily monitor monotonicity of f by positivity
of the coefficients of f ′ in terms of the hat function basis. We mention in passing
that with this ansatz one can as well easily safeguard monotonicity by projection
(cf. [91]), which did not appear to be necessary in our example, though. From f ′

the original function f is obtained by (analytical) integration using the fact that
f(0) = 0.
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The spaces Yl for discretization in image space are defined as continuous piece-
wise linear functions on a grid of size hl, i.e., Yl is the span of the hat functions on
an equidistant partition of [I, I ] with mesh size

hl = 2−l.

It was shown in [90] that within the natural setting described above the inverse
problem of B-H curve identification is as ill-posed as 3/2 differentiations. Hence
the parameter ξl in the smoothing step of the multigrid method should be chosen
according to

ξl ∼ h−3
l .

To satisfy condition (5.13) with a maximal ξl in order to obtain the best possible
convergence rate, we approximately compute γl−1, i.e., the maximal singular value
of the operator (I−Ql−1)K
, which can be done with small additional effort, e.g.,
by a few steps of the power method, and set ξl = 1/γ2

l−1.
Figure 7.6 shows the results obtained with 1000 Landweber iterations (LW),

1000 steepest descent (SD) iterations, 1000 minimal error iterations (ME), 100
steps of the Levenberg–Marquardt method (LM), 30 steps of the (IRGN), and with
6 levels of the nonlinear full multigrid method (NFMGM) for noiseless data.

All calculations were done on a laptop with an Intel Pentium M 1.6 GHz proces-
sor using Matlab 7.2. The CPU times and errors as well as residuals are displayed
in the table below, where fk denotes the result of the respective method:

CPU time (s)
‖fk − f‖H2

‖f‖H2

‖F (fk) − y‖L2

‖y‖L2

LW (1000 steps) 3150 0.1016 0.0066
SD (1000 steps) 3148 0.0881 0.0050
ME (1000 steps) 3081 0.0818 0.0041
LM (100 steps) 326 0.0505 0.0019
IRGN (30 steps) 97 0.0264 0.0040
NFMGM (6 levels) 88 0.0236 0.0027

In Figure 7.7 we show a comparison of the Levenberg–Marquardt method and
the iteratively regularized Gauss–Newton method after five iterations. It seems
that LM is better at the beginning whereas from Figure 7.6 it can be seen that
while IRGN yields good results, LM appears to get the same difficulties with re-
constructing f close to the right hand boundary as the Landweber type iterations.
This is possibly due to the fact that the initial guess appearing in each of the IRGN
steps helps to prevent the slope at the right hand boundary point from differing too
much from the initial slope at this point.
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Figure 7.6 Results (solid line) for 1000 LW (upper left), 1000 SD (upper right),
1000 ME (center left), 100 LM (center right), 30 IRGN (lower left),
and 6 NFMGM (lower right); starting value: dashed, exact solution:
pluses
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Figure 7.7 Fifth iterate of the LM (left) and of the IRGN (right), respectively;
starting value: dashed, exact solution: pluses

Figure 7.8 shows intermediate results for the nonlinear full multigrid method.
Obviously, a considerable portion of the solution is already recovered at relatively
coarse levels of discretization, so that only few of the more costly iterations on
the finer levels are necessary, which explains the computational efficiency of this
method.

To test the performance of the nonlinear full multigrid method with noisy data,
we added uniformly distributed random noise to the synthetic data, that we had
generated on a finer grid than the one used in computations to avoid an inverse
crime. As a stopping rule for determining the discretization level in dependence of
the noise level, we used the discrepancy principle with τ = 2. Results at a noise
level of 1% and 10% are displayed in Figure 7.9. The convergence behaviour for
this example as the noise level tends to zero is shown in the table below:

δ l∗
‖f δ

l∗ − f‖H2

‖f‖H2

8% 1 0.3515
4% 2 0.2354
2% 3 0.1783
1% 4 0.1165

0.5% 5 0.0752
0.25% 6 0.0517
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Figure 7.8 First (upper left), second (upper right), third (lower left), and fourth
(lower right) level of the NFMGM; starting value: dashed, exact solu-
tion: pluses
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Figure 7.9 Result (solid line) of nonlinear full multigrid with 1% (left) and 10%
(right) noise in the data; starting value: dashed, exact solution: pluses
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In this chapter we give comments on some other iterative regularization approaches
that are not covered in this book.

Over the years there have been developed various methods for solving ill-posed
and inverse problems in a stable way.

We have already mentioned Tikhonov regularization, where the operator F is a
mapping between Hilbert spaces X and Y and a solution of (1.1) is approximated
by the minimizer of the Tikhonov functional defined in (1.3). Recently (see, e.g.,
[145]), there have been many studies devoted to variational regularization in Ba-
nach spaces, consisting in minimizing the functional

x �→ G(‖F (x) − yδ‖) + αΦ(‖x − x0‖) ,

where G and Φ are typically primitives of weight functions (see [31] for more
background on weight functions and their role in convex analysis).

This book focuses on solving operator equations (1.1) in Hilbert spaces with
iterative regularization methods in a stable way by early termination of the itera-
tion. These methods can be similarly defined in a Banach space setting. To see
this, let F : X → Y be an operator between Banach spaces X and Y , and take into
account that the steepest descent direction of the functional

x �→ 1
2 ‖F (x) − yδ‖2

is given by −F ′(x)#(F (x) − yδ), where F ′(x)# : Y∗ → X ∗ is the dual adjoint
operator. Note that the operator is defined on the dual spaces of the Banach spaces
X and Y , respectively. Then for instance the Landweber iteration reads as follows

JX (xδ
k+1 − xδ

k) = −F ′(xδ
k)

#(F (xδ
k) − yδ) , (8.1)

where JX is the duality mapping from X into X ∗ (see [31] for more background
on duality mappings).

We emphasize that iterative methods as studied in this book are based on the
least squares fit for minimizing 1

2 ‖F (x) − yδ‖2. Iterative methods can also be
based on other fit-to-data functionals: for instance consider the minimization of

x �→ G(‖F (x) − yδ‖) ,

with a convex function G, then the Landweber iteration iteration reads as follows

JX (xδ
k+1 − xδ

k) = −F ′(xδ
k)

#G′(F (xδ
k) − yδ) ,

where the evaluation of the function G′ is understood pointwise.
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In Banach spaces, a similar approach to (8.1) for solving ill-posed problems has
been suggested in [146], where the iteration

JX (xδ
k+1) − JX (xδ

k) = −F ′(xδ
k)

#(F (xδ
k) − yδ) (8.2)

has been considered. Noting that JX (x − xδ
k) is the steepest descent functional

of 1
2 ‖x − xδ

k‖2, while JX (x) − JX (xδ
k) is the steepest descent functional of

1
2 ‖x‖2 − 1

2 ‖xδ
k‖2 − 〈JX (xδ

k), x 〉, which is the Bregman distance, the approach
in (8.1) could be called explicit Tikhonov-Morozov iteration whereas the one in
(8.2) could be called explicit Bregman iteration. Bregman distance regularization
methods that are implicit variants of the methods proposed in [146] have been
considered for instance in [21].

Another research topic on iterative methods concerns the minimization of pe-
nalized functionals

x �→ ‖F (x) − yδ‖2 + α‖x‖X , (8.3)

where the penalization term ‖ · ‖X (with X a Banach space) is used to take into
account additional constraints, such as sparsity. These iteration methods yield ap-
proximations for minimizers of the functional above and not of the original prob-
lem (1.1). Typical results on convergence of the iterates are shown for k → ∞
for fixed α > 0 (see [33]). Since the minimization of the functional in (8.3) is
a well-posed problem, it is not necessary to terminate the iteration number k as
δ → 0.

In case of an L1-penalization, the following semi-implicit fixed point iteration

xδ
k+1 = xδ

k − F ′(xδ
k)

∗(F (xδ
k) − yδ) − α sgn(xδ

k+1)

was considered in [33]. Here, sgn is a set-valued function, defined as 1 for positive
values, −1 for negative values, and sgn(0) ∈ [−1, 1]. Note that the operator
x+ α sgn(x) is invertible.

As already mentioned, this book is primarily devoted to solving equations in
Hilbert spaces. The operators involved are usually compact with unbounded in-
verses. The main applications we have in mind are solutions of integral equations,
parameter identification problems and tomographic problems. Other areas, like the
solution of ill-posed partial differential equations, like degenerate partial differen-
tial equations, are not considered and should be tackled with different methods.
There the partial differential operator is in general unbounded and even the eval-
uation of the forward problem is ill-posed in our sense. We refer to the recent
monograph [54] by Groetsch that applies to the stable evaluation of differential
operators.
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[133] J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs
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