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Предисловие
После внезапной кончины Сергея Александровича Иваненко его сын,
Павел Сергеевич, передал А.А.Чарахчьяну жесткий диск от домашнего
компьютера своего отца. На диске был обнаружен почти готовый к изда-
нию курс лекций С.А.Иваненко на английском языке. Настоящая моно-
графия является отредактированным текстом этих лекций. Ранее первые
две лекции, дополненные примерами конкретных алгоритмов для систе-
мы MATLAB, были опубликованы совместно с Pablo Barrera Sanches и
Guilmer Gonzalez Flores в виде технического отчета Национального Ав-
тономного Университета Мексики (UNAM).

Работу по редактированию текста была выполнена Б.Н.Азаренком.
Основная часть текста подверглась чисто редакторской правке: бы-
ли устранены опечатки в формулах, улучшен английский, заголовок
"Lecture"заменен на "Chapter и т.п. Отдельные пункты рукописи были
изложены слишком конспективно. Например, п. 10.8 состоял из двух
строчек, в последней главе отсутствовал текст, поясняющий рисунки с ре-
зультатами расчетов. Почти во всех таких случаях Б.Н.Азаренку удалось
найти соответствующие места в опубликованных работах С.А.Иваненко
и вставить их в текст монографии. Исключение составляет п. 10.9, текст
которого обрывается при выводе формул. Тем не менее мы решили оста-
вить этот пункт, так как его содержание может помочь читателю довести
эти выкладки до конца.

Так как в рукописи не было введения, мы сочли возможным допол-
нить текст настоящей монографии введением из предыдущей монографии
С.А.Иваненко 1997 года, изданной в ВЦ РАН, с небольшими дополнени-
ями о новых результатах. Кроме того Б.Н.Азаренок написал небольшое
дополнение к главе 5 с описанием алгоритма расстановки граничных уз-
лов при адаптации сетки.

При второй редакции, осуществленной в 2010г., были добавлены
комментарии и ссылки, отражающие некоторые последние результаты в
области построения сеток.

А.А.Чарахчьян, Б.Н.Азаренок



Preface
After a sudden death of Sergey Alexandrovich Ivanenko, his son Pavel
Sergeevich Ivanenko gave a hard disk of his father’s computer to Alexander
Charakhchyan. On that disk, we found a nearly ready course of lectures by
S.Ivanenko in English. The present monograph is an edited text of these
lectures. Earlier, first two lectures, added with examples of algorithms
for the system MATHLAB, were published by S.A.Ivanenko jointly with
Pablo Barrera Sanches and Guilmer Gonzalez Flores as a technical report
of National Autonomous University of Mexico (UNAM).

The editorial work was implemented by Boris Azarenok. A main part
of the text was only slightly corrected: misprints in formulas were removed,
English was corrected, title “Lecture” was substituted by “Chapter”, etc.
Certain sections were set forth rather briefly. For instance, Section 10.8
contained two lines, in the last Chapter there was not text with caption for
figures. Nearly in all cases B.Azarenok could find corresponding text in the
published papers by S.Ivanenko and inserted them into the manuscript. An
exception is Section 10.9 which breaks down during derivation of formulas.
Nevertheless, we decided to include this Section into the manuscript. The
reader may finish derivation.

There was not an introduction and we added the text with the
introduction taken from the monograph by S.A.Ivanenko, published at
Computing Center of RAS in 1997 with reference to some new results.
Besides, B.Azarenok wrote an Appendix to Chapter 5, where the algorithm
of boundary node redistribution for adaptive meshes is described.

In the second edition, performed in 2010, it was added comments and
references concerning certain new results on the subject of the monograph.

A.A.Charakhchyan, B.N.Azarenok
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Introduction1

The grid generation methods are intensively developed within last two
decades, but the first works appeared as early as 1960s. It connects with
numerous applications in computational fluids dynamics and adjacent fields.

The basic purpose of grid generation is to provide such a division of the
underlying domain into the cells or elements that we could obtain the most
precise solution of a differential problem. In the one-dimensional case such
an approach was developed by Tikhonov and Gorbunov [145], Bakvalov [16],
Grebennikov [60], Emel’yanov [46], De Boor [25], Pereia and Sewel [104],
Russel and Christiansen [114], Carrey and Dinh [30], and it is based on
error estimate between the approximate and exact solution. It was suggested
and developed the equidistribution principle based on such a mesh nodes
redistribution that some positive weight function multiplied by the grid
spacing was equal to a constant. As a weight function they define the
modulus of a corresponding derivative of the approximate solution (White
[157, 158], Anderson [2], Brackbill and Saltzman [26], etc.).

Generalization to the multidimensional case was executed in two
ways. The first concerns with calculating a priory estimates. Babuska
and Rheinbold [12] suggested a grid generation method to linear elliptic
problems. However, generalization of this method to the nonlinear case
becomes complicated because the error can be unrestricted by a residual of
the equation, i.e., reducing the residual in some norm may not lead the error
to reduce in the same norm. Besides these estimations are global, meanwhile
they are used for local supplementary refinement of the elements.

Moving adaptive grid generation methods, based on approximation
error estimate, were developed by Muller and Muller [98, 99], Dar’in and
Mazhukin [36], Degtyarev and Ivanova [39].

The other approach, based on interpolation error estimate, was
considered by Diaz et al. [40] and Oden et al. [101]. Conceptually it is

1Translated from the book [73] with additions by Editor



12 Introduction

more simple, however, it includes calculation of derivatives of the unknown
solution in the main problem. These methods are local and they can require
special formulae to compute derivatives, which are known only for a very
narrow class of problems. To the Poisson equation such formulae were
suggested by Babuska and Miller [13] and some its generalization by Oden
et al. [101]. In these works they used the governing equations to calculate
the derivatives. The main difficulty in applying the error estimates is both in
rather a complicate system of nonlinear equations to the grid and necessity
of their regularization so as to obtain a stable numerical solution.

On the other hand the approximation error depends strongly on the
minimal angle, see Thompson et al. [143]. For instance, the quantity, which
is inverse to the sine of the minimal angle, is in the right part of the error
estimate in the finite element method (Strang and Fix [137]). Generally
among the properties, having effect upon the accuracy, we can note the
following (Thompson et al. [143], Brackbill [28]): step size, cell shape
and dimension, homogeneity, smoothness, angle between the grid lines,
angle between the velocity vector and grid line, derivatives of the flow
parameters. Obviously that it is impossible to specify only one property of
the grid from the above list. Besides, some difficulties appear due to various
discretization methods of the original differential formulation in the grid
generation problem.

Thus, grid construction, based on the error estimate, runs into some
difficulties in the multidimensional case. In addition we specify the works
by Ivanenko [69, 72] where the examples of a non-uniqueness solution for
the grid problem, obtained by the error minimization, are suggested.

An alternative grid generation way was developed. It was considered as
the problem of constructing an information-computational medium, partially
by analogy with the real continuum. For instance, in the works by Anderson
and Ray [1], Nakahashi and Deiwert [100], Jaquotte [78], they use a
mechanical analogy (see also the review by Thompson [142]).

This information-computational medium should possess a number of
properties, such as smoothness, simplicity of computer representation, and
adaptivity, i.e., the grid should condense in the subdomains where the
solution undergoes sharp variations. The latter is illustrated in the work
by Thompson et al. [141], when the grid nodes can be represented as a finite
set of observers, placed so that to watch with maximum effectiveness for
the processes in the underlying domain.

The grid generation method should possess the ellipticity property, i.e.,
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determine influence of every observer upon the others, in the sense that if an
observer goes to more profitable position, then his neighbours follow him.
One may image such "clever"observers which can estimate the error and
accumulate in the subdomains where it is great. However, formalization of
this intuitive understanding is not easy and there is a large field for various
assumptions. There appears a lot of difficulties and ways to overcome them,
that is why the number of papers on this subject is rather great.

One of the most large difficulties is that in general the mesh is
constructed in domains of a complex form. A lot of heuristic algorithms
of irregular grid generation were developed. Many algorithms are based
on constructing the Delaunay cells and Voronoi diagrams: Delaunay [38],
Voronoi [154], Belikov [17], Sofronov et al. [129], Boender [24], George
[51], [59], [130], Baker [15], etc.. Other algorithms produce an irregular
mesh with refining the domain by cells: Vabishchevich [152], Baker [14],
Berger and Oliger [20], Blacker [21], Blacker and Meyers [22], Dannenhoffer
[35], Jiang and Carrey [80], Loehner and Parikh [96], Pyke [105], Rank and
Babushka [112]; with further smoothing and adaptation: Meshcheryakov and
Shapeev [97], Frey and Field [49], Kennon and Dulikravich [82], Kennon
and Anderson [83], Pardhanani and Carey [102].

Consider possibilities of the regular and irregular meshes. Under the
regular meshes we mean the grids where node neighbourhood is defined
by numeration. The typical example of such a mesh is a curvilinear grid
obtained using a mapping of the physical domain onto the parametric
square. The nodes are numbered with double indexing in the 2D and triple
indexing in the 3D case. On the irregular mesh, we need to define node
neighbourhood. As a rule irregular grids are used in the finite element
method, and often they consist of triangles in 2D and tetrahedra in the 3D
case.

Since the regular mesh is a special case of the irregular grid, hence,
irregular grids have wider applications, particularly in the domains with
very complicated geometry. On the other hand the regular mesh describes
rather well the properties of the solution or even can be a solution if,
for instance, one family of the coordinate lines coincide with the stream
lines (cf. Thompson et al. [140], Tolstykh [147]). Besides, the regular
grid structure means regularity of the discretized problem that leads the
numerical algorithms to be simplified and can be easily parallelized.

Considering a grid as an information-computational medium, one should
note that there is quite a different opinion concerning practical aspects of the
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adaptive meshes. In the monograph by Godunov et al. [57] the authors note
that "despite of every effort and long time spent on producing curvilinear and
moving meshes for numerical solving the partial differential equations, there
was not elaborated a final point of view relative to principles which should
lay in the basis of grid generation methods". This circumstance, specially
highlighted, from authors’ point of view should attract developers’ attention
to solving the questions formulated (see Prokopov [108]). At present, almost
in twenty years, the situation is nearly the same despite a lot of effort applied
to this problem.

Many formulations of objective functions for grid construction were
suggested and, despite of different points of view, they come to consent that
the mapping, used in grid generation, should be continuously differentiable
and the Jacobian must not be equal to zero (see Godunov and Prokopov [56],
Godunov et al. [57], Thompson et al. [143]). This very important property
guarantees that the mapping is one-to-one. These grids are obtained when
using elliptic equations (see Thompson et al. [143]) at constructing mapping
of the physical domain onto the parametric square in 2D and cube in the 3D
case.

However, as noted by Ivanenko and Charakhch’yan [67], not every
elliptic grid generator possesses the property to be one-to-one at the discrete
level. "If the boundary nodes are given so that the coordinate lines need not
be too bent to provide invertibility of the cells, then all algorithms generate
quite satisfactory meshes. Some grids are a bit better and the others a bit
worse, some algorithms work faster and the others a bit slower, nevertheless
all grids are suitable for modeling. If the coordinate lines should be strongly
bent so as to yield a satisfactory mesh, then the situation changes. Most
of the algorithms produce grids with folded cells, which are not fit for
modeling". In papers by Ivanenko and Charakhch’yan [66, 67] they compared
the suggested algorithm with others, including Winslow’s method [159], on
a number of domains with complex geometry. These examples have shown
that in the extremal cases the most algorithms produce grids with folded
cells and sometimes interior nodes even overspill the domain.

There are several approaches to overcome this difficulty. The first one
is the use of the orthogonal meshes to increase the minimal angle between
the coordinate lines (see Prokopov [106, 107], Sidorov et al. [126], [128],
Ushakova [148], Serezhnikova et al. [119], Brackbill and Saltzman [26],
Brackbill et al. [27], Ryskin and Leal [115], Steger and Shause [133], Arina
and Tardity [134]). However, it is not clear how the orthogonal mesh can be
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adaptive since there is insufficient number of degrees of freedom (Ryskin and
Leal [115], Brackbill [28]). This is in correspondence with the statement that
increase of orthogonality is achieved at the expense of adaptivity (Brackbill
and Saltzman [26]).

When constructing the orthogonal grids (or close to them), lack of
degrees of freedom can be compensated, for example, by refusing the fixed
node position on the entire boundary or on its part. Permission to move
the boundary nodes sometimes promotes to achieve desirable grids, but can
complicate joining the grids of separate subdomains.

In some cases there is no such a problem. For example, when solving
external problems in aerohydrodynamics, one side of the underlying domain
can be bounded by the body contour, whose shape should be given precisely,
and the other side by the outward shock wave, whose shape is determined
during modeling, or by rather a far external boundary. On these external
boundaries the requirements, imposed on the mesh nodes redistribution, can
be weakened in the interest of grid generation to obtain a high accuracy
first of all near the body. To this end, one may use hyperbolic and parabolic
equations, which are outside of the present study.

When generating regular meshes by constructing the curvilinear
coordinates (may be not orthogonal) in a complex domain one should
pay attention to producing an initial mesh. To obtain it, usually one uses
interpolation formulae. In a complex domain (if it is not cut into the blocks
of a simple geometry), application of the interpolation formulae produces
the initial mesh with folded cells. Eliminating this difficulty is the separate
problem in grid generation.

As an alternative one can use the following rather an universal method.
The iterative process of solving a complex system of the finite difference
grid equations can be considered as solving an unsteady problem. It can
include the artificial process of the domain boundary deformation. A complex
domain, where one needs to produce a grid, is changes by a more simple
domain, where a “good” mesh can be readily generated. Next the simple
domain is gradually deformed onto the initial domain.

Another way of overcoming difficulties, caused by a complex geometry,
is to apply block grids (Godunov et al. [57], Tu and Thompson [144],
Thompson et al. [143], etc.). Very complicated domains are cut into parts
so as to simplify grid construction in every block. The first drawback of
this approach is that the mesh is not smooth in the locations of the blocks
junction. The second drawback is the problem of automatical cutting the
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domain into suitable subdomains even in the 2D case (Prokopov [109],
Charakhch’yan [32, 33]). This way is quite realistic when generating in
dialog mode in a given fixed domain (Shih et al. [122]) and is rather difficult
when treating domains with deforming boundaries (as noted by Prokopov
[108]). This approach is close to producing irregular (unstructured) meshes.
The latter runs into difficulties in the problems with moving boundaries,
when at different time levels the mesh is of different structure.

And finally the last method, where the concept of convex grids is applied
(Ivanenko and Charakhch’yan [67]). The harmonic functional (Dirichlet
functional), used by Brackbill and Saltzman [26], is approximated so that
its minimum is attained on the grid consisting of convex quadrilateral cells.
This method of approximating the functional has advantages, particularly
for the mesh with not a large number of nodes, warranting that all cells are
convex quadrilaterals (of course, provided that there exists at least one such
a mesh). The fact is that in extremal situations, if the number of nodes is not
large, due to approximation error the differential properties, including one-
to-oneness, can be lost at discretization. Examples of failures were presented
by Ivanenko [65], Roach and Steinberg [113].

This approach can be extended to the adaptive meshes, if to use the
theory of the harmonic mappings (see Liseikin [91, 94], Ivanenko [70, 73,
74]). Here the problem of constructing harmonic coordinates on the surface
of graph of the adapted function is formulated. The harmonic coordinates are
generated using the harmonic mapping of the surface onto the parametric
square (or cube in the 3D case). Projection of these coordinates onto the
physical domain gives an adaptive-harmonic mesh (Ivanenko [71]). Similar
auxiliary surfaces were also applied by Dwyer et al. [42], Eiseman [45], and
Speckreijse [132].

Adaptive-harmonic meshes can be applied to the irregular grids (see
Ivanenko [72]). The basic principle can be formulated as follows. The
harmonic coordinates are constructed using the global mapping of the
physical domain onto the parametric square. As a result we obtain the
regular adaptive mesh. The irregular grid is the set of the local coordinates,
and in every cell (or element) we have particular coordinates. Therefore,
every cell, i.e., quadrilateral, can be mapped onto the same parametric
square using the harmonic mapping, and the final irregular mesh with
fixed connections should be sought by minimizing the sum of the harmonic
functionals, written for every cell. It will be the smoothing stage in the
method of irregular mesh generation. If the grid consists of triangles, every
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triangle should be mapped onto the equilateral triangle via the harmonic
mapping and the discrete functional should be fixed as a sum of the harmonic
functionals written for every triangle.

2A variational approach of adaptive mesh generation based on
minimizing the energy density functional depending on two metrics was
suggested by Ivanenko [75]. One metric is responsible for adaptation to the
solution, and the other, in the parametric domain, for grid lines condensing
and orthogonalization near the physical domain boundary. The use of two
metrics was suggested by Godunov and Prokopov [56, 111], however, they
apply the direct mapping and their method does not provide the mesh
from tangling in domains with complex geometry. In the approach used
by Ivanenko, constructing the inverse mapping leads the Jacobian of the
mapping to appear in the denominator of the functional, and this, in turn,
provides the numerical method with the barrier property preventing mesh
folding in the course of grid smoothing.

Simultaneously with Winslow’s method [159] there appeared the papers
concerning variational approaches in grid generation (see Sidorov [125],
Sidorov and Shabashova [126], Sidorov and Ushakova [127], Sidorov et
al. [128], Godunov and Prokopov [55], Yanenko et al. [161], Prokopov
[106, 108], Belinskii et al. [18], Liseikin [93], Sakhabutdinov et al. [116],
Shirokovskaya [123], Anderson [3], Bell and Shubin [19], Brackbill and
Saltzman [26], Brackbill [28], Eiseman [45], Kennon and Dulikravich [82],
Roach and Steinberg [113], Kennon and Anderson [83], Serezhnikova et al.
[119], etc.). Direct generalization of Winslow’s method was suggested by
Yanenko et al. [161], Brackbill and Saltzman [26].

Dvinsky [37] was the first to suggest to apply the theory of the
harmonic mappings in grid generation. Brackbill [28] derived the method of
constructing the adaptive meshes from variational formulation of diffusion
Winslow’s method [160] (cited by [28]) and from the functional with
directional control. The theory of harmonic mappings was used by Brackbill
[28] to derive conditions providing the solution of elliptic equations to exist.
In the works by Dvinsky [37] and Brackbill [28] adaptation is performed
by introducing a special metrics in the solution domain. Liseikin [91, 93]
introduced extension of the harmonic functional to the case of mapping the
surface of the graph of the adapted function onto the parametric square and
presented examples of adaptation by solving numerically the Euler equations.

2This paragraph was added by the Editor.
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The algorithm of minimizing the discrete analogy of this functional was
suggested by Ivanenko [70, 71, 72]. The algorithm of the boundary nodes
redistribution in the course of minimizing the functional was proposed by
Azarenok [6, 8].

Generalization of Winslow’s method [159] in the case of surfaces was
considered in number of works. The methods grid constructing on surfaces
based on solving elliptic equations were considered by Thomas [139], Takagi
et al. [138], Tomphson et al. [143], Warsi and Tiarn [155], Liseikin [92,
93], and based on variational approach by Saltsman [117], Jacquotte [78],
Ivanenko [70].

Elliptic equations are defined via the Gauss and Beltrami formulae
(Tomphson et al. [143], Warsi and Tiarn [155], Warsi [156], Steinberg
and Roach [136], Khamayseh and Mastin [84] or by projecting the
Poisson equations in assumption of orthogonality and zero curvature of the
transverse grid lines family (Thomas [139], Takagi et al. [138]). Adaptation
is performed using the source terms, but it is difficult to determine these
terms on the surface and yet one-to-oneness can be lost. In the variational
methods (Saltsman [117], Pearce [103]), the mesh is constructed from
the condition of minimizing the linear combination of the functionals of
smoothness, orthogonality, and adaptation (Brackbill and Saltzman [26]). In
the papers by Liseikin [91, 93] and Ivanenko [70], the harmonic functional
is used to construct the mapping of the surface onto the parametric square.

Generalization of Winslow’s method [159] for the 3D case was
considered by Shevelev [121], Liseikin [91], Tomphson et al. [143], Tu
and Thompson [144], Eiseman [45], Brackbill et al. [27], Brackbill [28],
Hegmeijer [64], Spekreijse [131], Ivanenko [73, 74], etc.).

3Thus, the harmonic mappings has been used for grid generation
within long time. In the present study, we consider algorithms of grid
construction using the harmonic mapping and its generalization, when
two metrics are used, in plane, surface and space within the frame of a
common approach. It allows to set forth carefully the algorithms, beginning
from theoretical foundation and ending by final computational formulae.
Variational methods possess one more important property: they guarantee
unfolded mesh generation. It means that even in domain with complex
geometry we can produce regular meshes without folded cells.

3This paragraph was corrected by the Editor.



Chapter 1

One-dimensional grid generation

for numerical solution of partial
differential equations

1.1 Transformation of independent variables

Consider the transformation of independent variables in general case.
Consider Euclidean space Rn, a bounded and connected homeomorphic

domains Ω0,Ω ⊂ Rn, and a map ϕ(x) : Ω0 → Ω, where x ∈ Ω0 and ϕ(x) ∈ Ω.
If we use ϕ(x) as the transformation of the independent variables in

the system of PDEs, describing the physical process, we need additional
conditions on the transformation in order to provide the equations to be
nonsingular in new variables. This is achieved by introducing additional
constrains for the transformation, such as condition of smoothness and the
condition guaranteeing that the transformation ϕ(x) is one-to-one.

In turn, if we consider a numerical solution for the system
of PDEs, we must introduce the discrete transformations ϕh(x) :

Ω
h

0 → Ω
h

between Ωh0 and Ωh, approximating the domains Ω0 and Ω
correspondingly. Discretization of the domain Ωh0 is obtained by dividing it
into nonintersecting domains Ωhi , i=1, . . . ,m, usually called finite elements
or finite volumes, such that

Ω
h

0 =

m⋃

i=1

Ω
h

i .

Convergence of Ωh0 → Ω0 and Ωh → Ω is considered at m→ ∞.
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In the theory of grid generation, the methods of implementing
such discretizations are considered. At the same time, application of the
numerical analysis will help us to find additional conditions, ensuring the
convergence ϕh(x) → ϕ(x) of the approximate solution to the exact solution
simultaneously with convergence of Ωh0 → Ω0 and Ωh → Ω.

These questions will be considered below, first in the one-dimensional
case.

We will start with the following example.
Example 1. Consider an ordinary differential equation

ε
d2u

dx2
= −du

dx
, x ∈ (0, 1) (1)

with boundary conditions

u(0) = 0, u(1) = 1. (2)

An analytical solution of the equation (1) with boundary conditions (2) can
be written as

u =
1 − e−ax

1 − e−a
.

where a=1/ε. This solution has the boundary layer at the left side of the
interval (0, 1).

Now we will look for a transformation of the independent variable
x=x(ξ), which is an invertible mapping of the unit interval (0, 1) onto itself,
such that the equation (1) will be as simple as possible. The following
relations hold

uξ = uxxξ, uξξ = uxxx
2
ξ + uxxξξ.

Substituting these relations into (1) we obtain

εuξξ = εuxxξξ − uxx
2
ξ = ux(εxξξ − x2

ξ). (3)

While deriving (3), we suppose that the Jacobian of the transformation
x = x(ξ) does not vanish, i.e. xξ 6= 0. If the right-hand side of (3) is equal
to zero, i.e.,

εxξξ − x2
ξ = 0. (4)

Then the equation (1) will take the form

uξξ = 0. (5)
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The solution of the equation (5) is the linear function u(ξ)=ξ. We can see
that in contrast to (1) the equation (4) is a nonlinear differential equation.
It can be solved directly, but it is better to rewrite it as an equation with
respect to ξ(x). We use the following relations

ξxxξ = 1, xξξξx + x2
ξξxx = 0.

Substituting these relations into (4) we obtain

εξxx = −ξx.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Grid solution of problem 1

Fig. 1.1:

Geometrically, see Fig.1.1, this is the same equation as (1). Equation
(5) can be rewritten also as

uξ = xξux = const. (6)

Theorem 1.1 Let

x(ξ) ∈ C1[0, 1], x(0) = 0, x(1) = 1.

If the Jacobian
xξ > 0, x ∈ [0, 1]
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then the mapping will be a homeomorphism (one-to-one and continuous
mapping).

Proof.

Consider two points ξ1 < ξ2. It is known there exists such a
point ξ′ ∈ (ξ1, ξ2) that

ξ2∫

ξ1

xξdξ = x(ξ2) − x(ξ1) = xξ(ξ
′)(ξ2 − ξ1) > 0.

From this x(ξ) is strictly monotonic, i.e. x(ξ) is a
homeomorphism.

l.q.q.d.

Example 2. For the ordinary differential equation

d2u

dx2
= 0.

consider the transformation of independent variable x=x(ξ). After
transforming to the new independent variable ξ we obtain

1

xξ

d

dξ

(
1

xξ

du

dξ

)
= 0.

Boundary conditions are the following

u(0) = 0, u(1) = 1.

The solution is written as
u = x.

Consider the following transformation

x =

{
αξ if 0 ≤ ξ ≤ 0.5
2(1 − 0.5α)(ξ − 0.5) + 0.5α if 0.5 ≤ ξ ≤ 1

.

The Jacobian is discontinuous in the point ξ=0.5, if α6=1

xξ =

{
α if ξ < 0.5
2 − α if ξ > 0.5

.
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For such transformation a new problem statement is necessary

d2u

dξ2
= 0, (ξ ∈ (0, 1))

⋂
(ξ 6= 0.5)

1

α
uξ

∣∣∣∣
0.5−0

=
1

2 − α
uξ

∣∣∣∣
0.5+0

u(0) = 0, u(1) = 1.

We can see that the transformation of the independent variable, which is not
continuously differentiable, leads to the new problem formulation for the
equation with discontinuous coefficients. Conclusion: we need continuous
differentiability.
Discrete case. As a discrete analog of the smoothness condition for the
transformation, first consider the transformation of three points ξ−h, ξ and
ξ+h onto three points x0=x(ξ−h), x1=x(ξ), x2=x(ξ+h), where h is small
enough.
From Taylor series the following expansions can be obtained

x2 − x1 = xξh+ xξξ
h2

2
+O(h3)

x1 − x0 = xξh− xξξ
h2

2
+O(h3)

(x2 − x1) − (x1 − x0) = xξξh
2 +O(h3).

Consequently,

(x2 − x1)

(x1 − x0)
= 1 +

xξξh
2 +O(h3)

xξh− xξξh2 +O(h3)

= 1 +
xξξ
xξ

h+O(h2)

where h=1/N and N is the number of intervals.
If xξξ<∞, then in the limit we obtain the following condition on the

ratio of lengths of the neighbor cells

(x2 − x1)

(x1 − x0)
−→ 1 with h→ 0.

From previous considerations it follows that the transformation of
independent variable x(ξ) must be
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I. A homeomorphism (xξ > 0, ξ ∈ [0, 1]).

II. Smooth (xξ ∈ C[0, 1]) and |xξξ| <∞ .

Example 3. Consider the transformation x = ξ2. The uniform grid in the ξ
- axe is defined as

ξi =
i

N
, i = 0, . . . , N.

The coordinates of grid nodes in the x - axe are computed as

x0 = 0, x1 =
1

N2
, x2 =

22

N2
. . . . .

In this case
x2 − x1

x1 − x0
= 3

and it does not tend to 0 for any number of grid nodes. The reason is that
the Jacobian is equal to 0 if ξ=0. In this case the Taylor series for the
lengths of the first and second cells contain a finite number of terms:

x2 − x1 = 2h2 +
2h2

2

x0 − x1 = −2h2 + h2 = −h2

and their ratio is exactly equal to 3.

1.2 Equidistribution principle

For the monotonic function u(x) we can find such a transformation x=x(ξ),
that the function u(x(ξ))=ũ(ξ) will be linear. In this case

ũξ = xξ|ux| = const > 0.

For the monotonic function |ux| 6= 0 and the constant is defined from
the relation

const =

1∫

0

|ux|dx = |u(1) − u(0)|.
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In the case if the derivative ux is a linear function of ξ we obtain

d

dξ
(ux) = xξuxx = const.

The equidistribution principle in this case takes the form,

xξ|uxx| = const > 0.

Example 4.

Consider the boundary-value problem for the ordinary second-order
differential equation

−εd
2u

dx2
+ u = 0, u(0) = 1, u(1) = 1.

The analytic solution can be written as

u = C(e−ax + ea(x−1)).

where

a = 1/
√
ε , C =

1 − e−a

1 − e−2a
.

The solution has the minimum at the point x=0.5

ux (0.5) = 0.

Variational formulation for the example 4

The variational statement for the problem from example 4 is to find the
minimum of the functional

1∫

0

[(
du

dx

)2

+ u2

]
dx→ min ,

with boundary conditions u(0) = 1, u(1) = 1.
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1.3 Nonstationary problems

1) The following nonstationary problem is considered with the solution of
the problem from example 1 as its stationary solution

∂u

∂t
+ a(x)

∂u

∂x
= ε

∂2u

∂x2
.

2) The following nonstationary problem is considered with the solution of
the problem from example 4 as its stationary solution

∂u

∂t
+ u = ε

∂2u

∂x2
.

3) If ε=0, we obtain the following convection equation of the first order

∂u

∂t
+ a(x)

∂u

∂x
= 0 .

4) The stationary solution of the problem from example 1 is obtained from
the solution of the associated nonstationary problem with the following
boundary and initial conditions

u(0, t) = 0, u(1, t) = 1, u(x, 0) = u0(x), a = −1, t → ∞ .

The stationary solution of the problem from example 4 is obtained
from the solution of the appropriate nonstationary problem with the
following boundary and initial conditions

u(0, t) = 1, u(1, t) = 1, u(x, 0) = u0(x), a = −1, t → ∞ .

Modern Numerical Methods

The following numerical methods can be used for solving these problems

• Finite difference method,

• Finite element method,

• Finite volume method.



One-dimensional grid generation 27

Consider the nonuniform grid

0 = x0 < x1 < · · · < xN−1 < xN = 1.

We introduce the following notations

h =
1

N
and hi+1/2 = xi+1 − xi, i = 0, . . . , N − 1 .

1.4 Finite difference method

In the finite difference method all derivatives are replaces by finite-
differences

ux ≈ ui+1 − ui
xi+1 − xi

, ux ≈ ui − ui−1

xi − xi−1
, ux ≈ ui+1 − ui−1

xi+1 − xi−1
.

For the example 1, the equation

−du
dx

= ε
d2u

dx2

can be approximated as

−ui+1 − ui−1

xi+1 − xi−1
= ε

2

xi+1 − xi−1

[
ui+1 − ui
xi+1 − xi

− ui − ui−1

xi − xi−1

]
,

or

−ui+1 − ui
xi+1 − xi

= ε
2

xi+1 − xi−1

[
ui+1 − ui
xi+1 − xi

− ui − ui−1

xi − xi−1

]
.

1.5 Finite element method

In the finite element method all unknown variables are approximated by
expansions

uh =

N−1∑

i=1

uiψi .
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Variational formulation is used then to obtain discrete analog of
the continuous problem. For the example 4 the corresponding variational
formulation is as follows

I =

1∫

0

[(
du

dx

)2

+ u2

]
dx→ min .

Substituting the expansion uh instead of u we obtain the discrete analog of
the functional

Ih =

1∫

0

[(
duh

dx

)2

+ (uh)2

]
dx→ min

ui, i=1,...,N−1
.

The simplest basis function ψi is the piecewise linear function, which
is linearly increased from 0 to 1 in the interval from xi−1 to xi and linearly
decreased from 1 to 0 in the interval from xi to xi+1, and it is equal to 0
elsewhere.

Substituting these basis functions into the discrete functional, we obtain

Ih =

N−1∑

i=1

[
ε
(ui+1 − ui)

2

(xi+1 − xi)
+

1

3
(u2
i + uiui+1 + u2

i+1)(xi+1 − xi)

]
.

If we use the simplest numerical integration formulas with quadrature
nodes coinciding with the nodes of the grid, we obtain another approximation
of the functional, which satisfies the maximum principle

Ĩh =
N−1∑

i=1

[
ε
(ui+1 − ui)

2

xi+1 − xi
+

1

2
(u2
i + u2

i+1)(xi+1 − xi)

]
.

The necessary conditions of the minimum of the appropriate functionals
can be obtained as

∂Ih

∂ui
= 0 or

∂Ĩh

∂ui
= 0, i = 1, . . . , N − 1 .
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1.6 Finite Volume Method

1.6.1 Generalized formulation 1

Variational formulation for the convection equation

∂u

∂t
+ a

∂u

∂x
= 0, a = const. ,

can be expressed as

x2∫

x1

(
∂u

∂t
+ a

∂u

∂x

)
dx =

∂

∂t

x2∫

x1

udx+ a[u(x2) − u(x1)] = 0 ,

for any x2>x1 .
This leads to the following semidiscrete approximation

∂

∂t
ui+1/2 + a(ui+1 − ui) = 0 , i = 1, . . . , N − 1 .

In the general case a = a(t, x) the upwind differences are used

uj+1
i+1/2 − uji+1/2

4t + aji
uji+1 − uji
xi+1 − xi

= 0, aji = a(tj , xi) ,

where

uji =

{
uji−1/2 if aji > 0

uji+1/2 if aji < 0
.

1.6.2 Generalized formulation 2

The generalized variational formulation is used for constructing numerical
algorithm directly on moving grid without interpolation [57]

∫ ∫

D

(
∂u

∂t
+ a

∂u

∂x

)
dxdt =

∮

∂D

(−udx+ audt) ,

where D is an arbitrary domain in the plane (x, t) and ∂D is the domain
boundary.
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Integrating we obtain the following finite-difference relations

uj+1
i+1/2(x

j+1
i+1 − xj+1

i ) − uji+1/2(x
j
i+1 − xji ) + a u

j+1/2
i+1 4t

−(xj+1
i+1 − xji+1)u

j+1/2
i+1 − a u

j+1/2
i 4t− (xj+1

i − xji )u
j+1/2
i = 0 .

It is convenient to introduce the velocity of grid points

W
j+1/2
i = (xj+1

i − xji )/4t.

In this case the scheme can be rewritten as

uj+1
i+1/2(x

j+1
i+1 − xj+1

i ) − uji+1/2(x
j
i+1 − xji )

+(a−W
j+1/2
i+1 )4t uj+1/2

i+1 − (a−W
j+1/2
i )4t uj+1/2

i = 0 .

1.6.3 Godunov’s theorem

Very important Godunov’s theorem [53, 54] states that even for linear
convection equation and so for the hyperbolic system of equations a
monotonic scheme of the second order of accuracy must be nonlinear.

Theorem 1.2 Godunov’s theorem. Two-layer linear monotonic scheme for
the equation

∂u

∂t
+ a

∂u

∂x
= 0 , a = const. ,

cannot be of the second-order accuracy.



Chapter 2

One-dimensional grid generation:

error estimates

In the unit interval of the axis x, consider nonuniform 1D grid with node
coordinates

xi, i = 0, . . . , N

satisfying boundary conditions

x0 = 0, xN = 1 .

It corresponds to the uniform ξ–grid

ξi =
i

N
, i = 0, . . . , N .

The mapping x(ξ) is approximated by xh : (ξ → x) constructed with
the use of piecewise-linear finite element basis functions

xh(ξ) =

N∑

i=0

xiψi(ξi)

xi = xh(ξi) .

The Jacobian of the transformation xh(ξ) for ξ ∈ [i/N, (i+1)/N ] is equal to

dxh

dξ
=
xi+1 − xi

1/N
=
hi+1/2

1/N
.
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The Jacobian is positive if and only if

hi+1/2 = xi+1 − xi > 0, i = 0, . . . , N − 1 .

A posteriori error estimate
This estimate is obtained for the difference between exact and

approximate solution, measured in particular norm, such as

||u − uh|| ≤ F (h, uh) .

The right-hand side in the posteriori estimate is a functional dependent on
approximate solution. This estimate is used in the finite element method, for
the so-called h-refinement.
A priori error estimate

This estimate is obtained for the difference between the exact and
approximate solution, measured in a particular norm, such as

||u− uh|| ≤ F (h, u) .

The right-hand side is a functional dependent on the exact solution. In the
finite element method with linear elements, this estimate takes the form

||u− uh||1 ≤ ch||u||2 .

where h is a maximal diameter of the elements.

2.1 A posteriori error estimates

We will start with the following
Example 2.1

Consider the boundary-value problem (example 4) with two boundary
layers in the solution:

ε
d2u

dx2
= u, u(0) = 1, u(1) = 1 .

Variational formulation is the following

I =

1∫

0

[
ε

(
du

dx

)2

+ u2

]
dx −→ min . (2.1)
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The approximate solution is of the form:

uh =

N∑

i=0

uiψi(x) with u0 = 1, uN = 1 .

A discrete analog of the functional is the following

Ih =

N−1∑

i=0

ε
(ui+1 − ui)

2

xi+1 − xi
+

1

3
(u2
i + uiui+1 + u2

i+1)(xi+1 − xi) .

Now consider the functional:

I = a(u, u) − 2(f, u) ,

where

a(u, v) =

1∫

0

(
ε
du

dx

dv

dx
+ uv

)
dx

is the scalar product and

||u||2E =

1∫

0

(εu2
x + u2)dx , (f, u) =

1∫

0

fudx .

Now we can suppose that the function f is chosen so that the unknown
solution u always satisfies the following boundary conditions

u(0) = 0 , u(1) = 0 ,

for example

ε
d2u

dx2
= u− 1 , f = u− 1

and we will use the following expansion for the approximate solution

uh =

N−1∑

i=1

uiψi(x) ,

such that uh(0)=uh(x0)=0, uh(1)=uh(xN )=0. Let u be a solution to the
minimization problem (2.1)

I = a(u, u) − 2(f, u) −→ min ,
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and let uh be a solution to its discrete analog

Ih = a(uh, uh) − 2(f, uh) −→ min .

Consider an arbitrary function v such that v(0)=0, v(1)=]0. Substitution of
u+ v instead of u into the expression for I gives

I = a(u+v, u+v)−2(f, u+v) = a(u, u)+2a(u, v)+a(v, v)−2(f, u)−2(f, v)

= I(u) + a(v, v) + 2[a(u, v) − (f, v)] ≥ I(u) .

The inequality is always satisfied if the following necessary condition (weak
formulation of the problem) holds

a(u, v) − (f, v) = 0 ∀v, such that v(0) = 0, v(1) = 0 . (2.2)

Similarly we can obtain that

a(uh, vh) − (f, vh) = 0 ∀vh, such that vh(0) = 0, vh(1) = 0 . (2.3)

From this it follows that at the point of minima of the functionals I and Ih

the following relations hold

I = −(f, u) = −a(u, u) , (2.4)

Ih = −(f, uh) = −a(uh, uh) . (2.5)

Note that we can substitute vh instead of v into (2.2). As a result we obtain

a(u, vh) − (f, vh) = 0 ∀vh, such that vh(0) = 0, vh(1) = 0 . (2.6)

Let u be the solution of the problem (2.1) and for arbitrary vh consider
the difference between u and vh measured in the energy norm

||u− uh||2E = a(u− vh, u− vh) = a(u, u) + a(vh, vh) − 2a(u, vh) . (2.7)

From (2.4) and (2.6) it follows that

a(u− vh, u− vh) = a(u, u) + a(vh, vh) − 2a(f, vh) = I(vh) − I(u) . (2.8)

Hence, we obtain an additional minimization property

a(u− uh, u− uh) = min
vh

a(u− vh, u− vh) .
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From (2.8) it follows that

a(u − uh, u− uh) = a(u, u)− a(uh, uh) = Ih − I ,

or
||u− uh||2E = Ih − I > 0 .

Grid adaptation can be based on minimization of the functional, obtained
from the posteriori error estimate

min
xi

min
ui

(
Ih(xi, ui) − I

)
.

Note: In the case of even number of grid nodes one half of nodes will be
in the left boundary layer, another half in the right boundary layer. But if
the number of nodes is odd, the central node will move to the right or to
the left boundary layer, i.e., the solution is not unique. This also means that
grid solution is not stable.

2.2 A priori error estimates: minimization of

approximation error

2.2.1 Problem formulation

Let u(x) be a smooth function and

uh =
∑

uiψi(x) .

Approximation error is defined as follows

EA = min
ui

||u−
∑

uiψi ‖ .

Basis functions ψi can be piecewise-constant and we can use the norm

||u||Lp
=

(∫
|u|p dx

)1/p

.

If ψi are piecewise-linear, then we can use the norm

||u||W 1
p

=

(∫
(|u|p + |ux|p)dx

)1/p

.
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Consider the problem of finding the best approximation. The solution
can be obtained from the minimization of the functional

min
xi

EA = min
xi

min
ui

||u−
∑

uiψi ‖ .

2.2.2 Interpolation error

If the coefficients in expansion

∑
uiψi

can be computed explicitly, for example as

ui = u(xi) ,

then we can introduce the interpolation error as follows

EI = ||u −
∑

uiψi ‖ .

It is obvious that
EA ≤ EI .

Consider the problem of grid generation from the minimization problem

min
xi

EI

with the following constraints

0 = x0 < x1 < x2 < · · · < xN = 1 .

The following Lemma holds.

Lemma 2.1 For any function u ∈ W 1
p there is a linear combination

uI =
∑

ui+1/2ψ
0
i+1/2(x)

called the interpolant of the function u such that

||u− uI ‖pLp
≤ 1

Np

1∫

0

(xhξ )
p+1

(
du

dx

)p
dξ ,
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where

uI =

N−1∑

i=0

ui+ 1
2
ψ0
i+ 1

2

(x), ui+ 1
2

=
1

hi+ 1
2

xi+1∫

xi

u(x)dx ,

and

||f ‖Lp
=




1∫

0

|f |pdx




1/p

.

Proof.

Let p<∞, then we can write the following inequalities

||u− uI ‖pLp
=

1∫

0

|u− uI |pdx =

N−1∑

i=0

xi+1∫

xi

|u− uI |pdx

=

N−1∑

i=0

xi+1∫

xi

∣∣∣∣∣∣
u(x) − 1

hi+1/2

xi+1∫

xi

u(x′)dx′

∣∣∣∣∣∣

P

dx

=

N−1∑

i=0

xi+1∫

xi

∣∣∣∣∣∣
1

hi+1/2

xi+1∫

xi

(u(x) − u(x′))dx′

∣∣∣∣∣∣

P

dx

=

N−1∑

i=0

xi+1∫

xi

∣∣∣∣∣∣
1

hi+1/2

xi+1∫

xi

dx′
x∫

x′

du

dx′′
dx′′

∣∣∣∣∣∣

P

dx

≤
N−1∑

i=0

xi+1∫

xi

∣∣∣∣∣∣
1

hi+1/2

xi+1∫

xi

dx′
xi+1∫

xi

∣∣∣∣
du

dx′′

∣∣∣∣ dx
′′

∣∣∣∣∣∣

P

dx

=
N−1∑

i=0

hi+1/2

∣∣∣∣∣∣

xi+1∫

xi

∣∣∣∣
du

dx′′

∣∣∣∣ dx
′′

∣∣∣∣∣∣

P

.

Using the Hölder inequality

∣∣∣∣
∫

u(x)v(x)dx

∣∣∣∣ ≤
(∫

|u(x)|qdx
)1/q (∫

|v(x)|pdx
)1/p

,
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where
q ≥ 1, 1/p+ 1/q = 1,

we obtain

xi+1∫

xi

1

∣∣∣∣
du

dx′′

∣∣∣∣ dx
′′ ≤




xi+1∫

xi

1qdx′′




1/q


xi+1∫

xi

∣∣∣∣
du

dx′′

∣∣∣∣
p

dx′′




1/p

,




xi+1∫

xi

∣∣∣∣
du

dx′′

∣∣∣∣ dx
′′




p

≤
xi+1∫

xi

h
p/q
i+1/2

∣∣∣∣
du

dx′′

∣∣∣∣
p

dx′′ .

Consequently,

||u−uI ‖pLp
≤

N−1∑

i=0

h
1+p/q
i+1/2

xi+1∫

xi

∣∣∣∣
du

dx

∣∣∣∣
p

dx ≤ 1

Np

1∫

0

(xhξ )
p+1

∣∣∣∣
du

dx

∣∣∣∣
p

dξ .

l.q.q.d.

Thus, we obtain the estimate for the first-order approximation error with
respect to h = 1/N .

Consider the functional

Ip =

1∫

0

(xξ)
p+1|ux|pdξ

the Euler’s equation to which is

xp+1
ξ |ux|p = const.

From this we obtain that the asymptotic condition on the Jacobian,
determining the optimal grid in norm Lp is the following:

xξ = const|u|−
p

p+1 .

For p→ ∞ we obtain a condition on the Jacobian for the grid, optimal
in the norm L∞, or if the function is continuous, in the uniform norm

xξ = const|ux|−1 , xξ|ux| = const. ,
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where
||u ‖∞= max

x∈[0,1]
|u| .

For the monotone function u(x), the grid, obtained from the discrete
analog of uξ=ux, xξ=const.,

u(ξi+1) − u(ξi) = u(xi+1) − u(xi) = u(xi) − u(xi−1)

is the exact solution not only to the best interpolation, but also for the best
approximation, because

εi+1/2 =
1

2
(u(xi+1) − u(xi)) =

1

2
(u(xi) − u(xi−1)) = εi−1/2 ,

where εi+1/2 is the error in uniform norm in the interval xi ≤ x ≤ xi+1 for
piecewise constant approximation.

Lemma 2.2 For any function u ∈ W 2
p there exists such a linear

combination uI =
∑
u(xi)ψi(x) that

||u− uI ||pLp
≤ 1

N2p

1∫

0

(xhξ )
2p+1

∣∣∣∣
d2u

dx2

∣∣∣∣
p

dξ ,

||u− uI ||pW 1
p
≤ 1

Np

1∫

0

(xhξ )
p+1

∣∣∣∣
d2u

dx2

∣∣∣∣
p

dξ .

Conditions on the Jacobian for grids, optimal in norms Lp and W 1
p , are

the following

xξ = const|uxx|−
p

2p+1 in the norm Lp ,

xξ = const|uxx|−
p

p+1 in the norm W 1
p .

In the case of norms C and C1 we have

xξ = const|uxx|−
1
2 in the norm of the space C(0, 1) ,

xξ = const|uxx|−1 in the norm of the spase C1(0, 1) .

Asymptotically the solution of the problem for the best interpolation is
the same as the solution of the problem for the best approximation.
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2.3 C. de Boor’s algorithm

Algorithm for constructing the grid, optimal in the uniform norm, is the
following

ξ(x)=c

x∫

0

(|uxx|+ε)1/2dx , c=




1∫

0

(|uxx| + ε)1/2dx



−1

,where ε is small enough,

uhxx =





D2u1 if x0 ≤ x ≤ x1

0.5(D2ui+1 +D2ui) if xi ≤ x ≤ xi+1

D2uN−1 if xN−1 ≤ x ≤ xN

.

Here

D2ui =
ui+1 − ui
xi+1 − xi

− ui − ui−1

xi − xi−1
.

First ξ(xi) are computed, then new values of x̃i can be obtained from
the formulas

k − 1

N
=

N∑

i=0

ξiψi(x̃k), k = 1, . . . , N − 1 ,

ξi = c

xi∫

0

(|uhxx| + ε)1/2dx, c = (

1∫

0

(|uhxx| + ε)1/2dx)−1 .

Repeat until convergence

ξ(x) = c

x∫

0

(|uhxx| + ε)1/2dx .

It would be good if the algorithm can be extended to the multidimensional
case but seems to be quite difficult or impossible.

2.4 One-dimensional harmonic mappings

Consider the problem of constructing a harmonic mapping of a unit interval
onto the graph of the function f(x).
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The Dirichlet functional has the form

I =

∫ 1

0

s2ξdξ =

1∫

0

x2
ξ(1 + f2

x)dξ .

where

s(x) =

∫ x

0

√
1 + f2

xdx , sξ = sxxξ .

For the inverse mapping we have

I =

∫ 1

0

(
dξ

ds

)2

ds =

∫ 1

0

1

s2ξ
ds =

∫ 1

0

1

(sxxξ)2
ds

=

∫ 1

0

1

(sxxξ)2
sξdξ =

∫ 1

0

1

sxxξ
dξ .

And, thus

I =

1∫

0

1

xξ
√

1 + f2
x

dξ . (2.9)

Euler equations are identical for both functionals

xξ
√

1 + f2
x = const.

To control the number of grid points in the layer of high gradients, we
introduce the scaling factor ca and instead of f consider the scaled function

f̃ = f · ca ,

and finally returning to the previous notation for f we obtain

xξ
√

1 + c2af
2
x = const.

The last expression can be rewritten as

xξ

√
1

ca
+ f2

x = const.

From this it follows that

xξ|fx| = const if ca → ∞ .
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This is also the condition on a grid, optimal in the uniform norm.
Consider the functional for the uniform grid on the curve of the vector

function with the function and it first derivative as the vector components

I =

1∫

0

1

xξ
√

1 + f2
x + f2

xx)
dξ .

Introduce two scaling factors c1 and c2

f̃x = c1fx , f̃xx = c2fxx .

The Euler equation is the following

xξ

√
1 + c21f

2
x + c22f

2
xx) = const.

Condition on a grid, optimal in the C1 norm, can be then obtained if
c2 → ∞, and c1 remains fixed

xξ|fxx| = const.

Example 2.2
Consider the piecewise linear function, see Fig.2.1

f(x) =

{
x/ε for 0 ≤ x < ε
1 for ε ≤ x ≤ 1

.

The error on the uniform grid is the following

Eeq =

{
1/2 for N ≤ 1

ε
1

2Nε
for N > 1

ε
.

The error on the grid, optimal in the uniform norm

Eopt =
1

2N

does not depend on ε.
The number of grid nodes in the boundary layer for adaptive-harmonic

grid is the following

Nε = N

√
c2a + ε2

1 − ε+
√
c2a + ε2

.
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If ε�ca then

Nε ≈ N
ca

1 + ca − ε
,

if ca=1, then

Nε ≈
N

2
.

Thus, the error on adaptive-harmonic grid is the following

Eharm = min

(
1

2
,

1 − ε+
√
c2a + ε2

2N
√
c2a + ε2

)
.

From this it follows, that

Eharm =

{
Eeq if ca = 0
Eopt if ca → ∞ .

x

f(x)

1

1

ε

Fig. 2.1: Example of piecewise-linear function with boundary layer



Chapter 3

Nondegenerate two-dimensional

grids

3.1 Topological background

Mappings defined on the closures of bounded domains will be considered.
Conditions for these mappings to be one-to-one will be obtained.

Consider Euclidean space Rn, a bounded and connected domain Ω ⊂ Rn,
and a map ϕ : Ω → Ω of class C1. The differentiability of ϕ at points of the
boundary ∂Ω of the domain Ω is understood in the usual sense as existence
of a map ϕ̃ : Ω̃ → Ω̃ of class C1 on a certain domain Ω̃ ⊃ Ω whose restriction
to Ω coincides with ϕ. The Jacobian matrix of ϕ at a point x is denoted by
ϕ′(x). The following theorem has been proven in [23].

Theorem 3.1 Suppose that ϕ maps the boundary ∂Ω of Ω
homeomorphically onto itself and

detϕ′(x) > 0 (x ∈ Ω). (3.1)

Then ϕ is a homeomorphism of Ω onto Ω.

For simply connected domains we can avoid the condition on the map
ϕ to be homeomorphic between boundaries.

Theorem 3.2 Let Ω ⊂ RN be a bounded, connected and simply connected
domain. Suppose that ϕ : Ω → Ω of class C1 maps the boundary ∂Ω of Ω
onto itself and satisfies the condition (3.1). Then ϕ is a homeomorphism
of Ω onto Ω.
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The following theorem is valid with weaker condition than (3.1).

Theorem 3.3 Suppose that ϕ maps the boundary ∂Ω of Ω
homeomorphically onto itself,

detϕ′(x) > 0 (x ∈ Ω),

and there exists such a point x0∈∂Ω that detϕ′(x0) > 0. Then ϕ is a
homeomorphism of Ω onto Ω.

If we have additional conditions on the boundary ∂Ω of the domain Ω
we can avoid the condition that the Jacobian is positive at least at one point
of the boundary.

Theorem 3.4 Suppose that ϕ maps the boundary ∂Ω of the domain Ω
homeomorphically onto itself, boundary ∂Ω is a n−1-dimensional manifold
of class C1 and that

detϕ′(x) > 0 (x ∈ Ω),

Then ϕ is a homeomorphism of Ω onto Ω.

Consider mappings from Ω0 onto Ω. The following analog of the theorem
1 can be proved

Theorem 3.5 Suppose that ϕ maps the boundary ∂Ω0 of the domain Ω0

homeomorphically onto the boundary ∂Ω of Ω and

detϕ′(x) > 0 (x ∈ Ω0).

Then ϕ is a homeomorphism from Ω0 onto Ω.

Analogs of theorems 3 and 4 are also valid for the mappings between
bounded domains.

Consider the case when the mapping ϕ : Ω0 → Ω is only continuous.
The mapping is called a local homeomorphism if for any point x ∈ Ω0 there
exists such a ball B(x, r) of sufficiently small radius r that B → ϕ(B) is a
homeomorphism. Then the following result holds

Theorem 3.6 Suppose that the local homeomorphism ϕ maps the boundary
∂Ω0 of the domain Ω0 homeomorphically onto the boundary ∂Ω of Ω. Then
ϕ is a homeomorphism from Ω0 onto Ω.
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The theorems 3.1 and 3.6 can be used in the case when the mapping ϕ
ia defined in the closure of the domain Ω0 and its values are in the closure of
the domain Ω. Let Ω0 and Ω be two bounded connected and homeomorphic
domains and let ϕ : Ω0 → Ω be a continuous mapping. Let a domain Ω0 is
devided into nonintersecting domains Ωi (i=1, . . . ,m) such, that

Ω0 =

m⋃

i=1

Ωi .

Let ϕ : Ω0 → Ω be a continuous mapping which is C1 smooth in the
Ωi. The restriction of ϕ to the Ωi will be denoted by ϕi (i=1, . . . ,m).

Theorem 3.7 Let ϕ be a homeomorphism between ∂Ω0 and ∂Ω and let for
any number of i=1, . . . ,m, its restriction ϕi be a homeomorphism between
∂Ωi and ϕi(∂Ωi), and let

detϕ′
i(x) > 0 (x ∈ Ωi), i = 1, . . . ,m, (3.2)

then ϕ is a homeomorphism between Ω0 and Ω.

These theorems, particularly the theorem 3.7, can be directly used in
the theory of grid generation to formulate sufficient conditions on a mesh
to be nondegenerate.

3.2 Two-dimensional structured (regular) grids

Grid generation problem in two dimensions will be considered in the
following formulation. In a simply connected domain Ω in the plane (x, y),
a grid

(x, y)ij , i = 1, . . . , i∗, j = 1, . . . , j∗, (3.3)

must be constructed with given coordinates of boundary nodes

(x, y)i1, (x, y)ij∗ , (x, y)1j , (x, y)i∗j . (3.4)

The problem can be treated as a discrete analog of the problem of
finding the functions x(ξ, η) and y(ξ, η) ensuring a one-to-one mapping of
the parametric square

0 < ξ < 1, 0 < η < 1 (3.5)
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η

ξ

1
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4

Fig. 3.1: Correspondence of node numbers for a mapping of square cell
i+1/2, j+1/2 in plane (ξ, η) onto corresponding quadrilateral cell in plane
(x, y)

onto the domain Ω, see Fig.3.1, with a given transformation of the square
boundary onto the boundary of Ω, associated with the boundary conditions
(3.4), i.e., on each side of the parametric square the following eight functions
are specified:

x(ξ, 0) = xbt(ξ), x(ξ, 1) = xtop(ξ), x(0, η) = xleft(η), x(1, η) = xright(η),

y(ξ, 0) = ybt(ξ), y(ξ, 1) = ytop(ξ), y(0, η) = yleft(η), y(1, η) = yright(η).

Instead of the parametric square (3.5) in the plane (ξ, η) the parametric
rectangle is often introduced to simplify the computational formulas

1 < ξ < i∗, 1 < η < j∗, (3.6)

associated with the square grid (ξi, ηj) in the plane (ξ, η) such that

ξi = i, ηj = j, i = 1, . . . , i∗; j = 1, . . . , j∗.

From the theorem 3.5 it follows that the curvilinear coordinate system,
constructed in a domain Ω, is nondegenerate if the Jacobian of the mapping
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x(ξ, η), y(ξ, η) is positive

J = xξyη − xηyξ > 0, 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 . (3.7)

Thus, the problem of constructing curvilinear coordinates in a domain
Ω can be formulated as the problem of finding a smooth mapping of the
parametric square onto the domain Ω which satisfies the condition of the
Jacobian positiveness (3.7). The mapping between boundaries must be
one-to-one which can be easily provided from the condition of monotonic
variations of ξ and η along the appropriate parts of the boundary of the
domain Ω.

Consequently, in the discrete case for the grid (3.3) a discrete analog
of the Jacobian positiveness must be also applied.

3.3 Discrete analog of the Jacobian positiveness

The mapping x(ξ, η) , y(ξ, η) will be approximated by quadrilateral finite
elements [137].

Let the coordinates (x, y)i,j of grid nodes be given. To construct the
mapping xh(ξ, η), yh(ξ, η) of the parametric rectangle (3.6) onto the domain
Ω such that xh(i, j)=xi,j and y

h(i, j)=yij we use quadrilateral isoparametric
finite elements [34, 67, 68]. The square cell numbered i+1/2, j+1/2 in the
plane (ξ, η) is mapped onto the quadrilateral cell in the plane (x, y) formed
by nodes with coordinates

(x, y)i,j , (x, y)i,j+1, (x, y)i+1,j+1, (x, y)i+1,j .

The cell vertices are numbered from 1 to 4 in the clockwise manner as
shown in Fig.3.1. The node (i, j) corresponds to the vertex 1, node (i, j+1)
to vertex 2, and so on. Each vertex is associated with a triangle: vertex 1
with 4412, vertex 2 with 4123 and so on. The doubled area Jk, k=1, 2, 3, 4,
of these triangles is introduced as follows

J1 = (x4 − x1)(y2 − y1) − (y4 − y1)(x2 − x1)

= (xi+1,j − xij)(yi,j+1 − yij) − (yi+1,j − xij)(xij+1 − xij).

In the first expression, the vertex indices are used and in the second the
corresponding node indices are used. The functions xh, yh for i≤ξ≤i+1,
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j≤η≤j+1 are represented in the form

xh(ξ, η) = x1+(x4−x1)(ξ−i)+(x2−x1)(η−j)+(x3−x4−x2+x1)(ξ−i)(η−j),

yh(ξ, η) = y1+(y4−y1)(ξ−i)+(y2−y1)(η−j)+(y3−y4−y2+y1)(ξ−i)(η−j).
(3.8)

Each side of the square is linearly transformed onto the appropriate side
of the quadrilateral. Consequently, the global transformation xh , yh is
continuous on the cell boundaries. To check the one-to-one property of
the transformation (3.8) we write out the expression for the Jacobian

Jh = xhξ y
h
η − xhηy

h
ξ = det

(
x4 − x1 +A(η − j) x2 − x1 +A(ξ − i)
y4 − y1 +B(η − j) y2 − y1 +B(ξ − i)

)
,

where A=x3−x4−x2+x1, B=y3−y4−y2+y1. The Jacobian is linear, not
bilinear, since the coefficient at ξη in this determinant is equal to zero.
Consequently, if Jh > 0 in all corners of the square, it does not vanish
inside this square. At the corner 1 (ξ=i, η=j) of the cell i+1/2, j+1/2 the
Jacobian

Jh(i, j) = (x4 − x1)(y2 − y1) − (y4 − y1)(x2 − x1),

i.e., Jh(i, j)=J1 is the doubled area of the triangle 4412 introduced above.

From this it follows that the condition of the Jacobian positiveness for
the mapping xh(ξ, η), yh(ξ, η)

xhξ y
h
η − xhηy

h
ξ > 0, 1 ≤ ξ ≤ i∗, 1 ≤ η ≤ j∗

is equivalent to the system of inequalities

[Jk]i+1/2,j+1/2 > 0, k = 1, 2, 3, 4; i = 1, . . . , i∗−1; j = 1, . . . , j∗−1, (3.9)

where

Jk = (xk−1 − xk)(yk+1 − yk) − (yk−1 − yk)(xk+1 − xk),

and in expressions for Jk one should put k−1=4 if k=1, and k+1=1 if k=4,
i.e., the index k is cyclic.

From the theorem 3.7 it follows the theorem.
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Theorem 3.8 Let the piecewise-bilinear mapping xh(ξ, η), yh(ξ, η) (3.8)
be a homeomorphism between the boundary of the rectangle (3.6) and
its piecewise-linear image. Suppose that this mapping satisfies conditions
(3.9). Then xh(ξ, η), yh(ξ, η) will be a homeomorphism.

If conditions (3.9) are satisfied, then all grid cells are convex
quadrilaterals. Hence, if the mapping x(ξ, η), y(ξ, η) is approximated by
piecewise-bilinear functions, then the one-to-one condition is equivalent to
the condition of convexity of all grid cells (3.9). Such grids were called
convex grids [34, 67], and only convex grids can be used in the finite
element method with conforming quadrilateral elements.

The set of grids satisfying inequalities (3.9) was called a convex grid
set and denoted by D [34, 67]. This is a subset of Euclidean space RN ,
where N=2(i∗−2)(j∗−2) is the total number of degrees of freedom of the
grid equal to double the number of its internal nodes. In this space D is an
open bounded set. Its boundary ∂D is the set of grids for which at least one
of the inequalities (3.9) becomes an equality.

3.4 Unstructured (irregular) two-dimensional

meshes

While constructing irregular meshes we must define a correspondence
between the local (for each element) and global node numeration. In Fig.3.2,
the simplest example of an irregular mesh is shown. Element numbers are
shown in circles. The local numeration is shown only for the element 1. The
global numeration is shown with a bold font.

The function n=n(N, k) is introduced to define a correspondence
between local and global node numbers:

n = n(N, k), n = 1, . . . , Nn, N = 1, . . . , Ne, k = 1, 2, 3, 4,

where n is the global node number, Nn is the total number of mesh nodes, N
is an element number, Ne is the number of elements, k is a local node number
in the element. This function is implemented in the computer program
as a function for a regular grid and as an array for an irregular mesh.
For example, for the irregular mesh shown in Fig.3.2 the correspondence
between local and global numerations is defined as follows

n(1, 1) = 1, n(1, 2) = 3, n(1, 3) = 4, n(1, 4) = 2.
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Fig. 3.2: Correspondence of node numbers for mapping of unit square in
plane (ξ, η) onto quadrilateral cell 1 of irregular mesh in plane (x, y)

For unstructured grids the array n(N, k) is filled in the process of grid
construction, e.g., by a front method. It is often necessary to use another
correspondence functions, e.g., when we must define numbers of two
elements from the number of their common edge or to define the neighbor
numbers for a given node. The choice of these functions depends on the
type of elements used and on the solver peculiarities. We will consider
below only the simplest data structure, defined by n(N, k), which is enough
for our purposes.

For structured grids, it is used the function with the same name instead
of the array n(N, k). It is convenient to use a one-dimensional numeration
instead of double indices. For node numbers of a structured grid, introduced
by (3.3), we have

N(i, j) = i+ (j − 1)(i∗ − 1), i = 1, . . . , i∗ − 1; j = 1, . . . , j∗ − 1,
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n(i, j) = i+ (j − 1)i∗, i = 1, . . . , i∗; j = 1, . . . , j∗,

where n(i, j) corresponds to the node i, j, and N(i, j) corresponds to the
cell number i+1/2, j+1/2. Then the correspondence function is defined as
follows

n(N(i, j), 1) = n(i, j), n(N(i, j), 2) = n(i, j + 1),

n(N(i, j), 3) = n(i+ 1, j + 1), n(N(i, j), 4) = n(i+ 1, j).

Now we consider conditions for the mesh node coordinates to assure
a mesh to be nondegenerate. Note that in the case of a structured grid
instead of the mapping x(ξ, η), y(ξ, η) of the parametric rectangle (3.5)
onto the domain Ω, a bilinear mapping of the same unit square onto each
quadrilateral cell can be considered. All argumentation will be true in this
case, since the Jacobian of the mapping xh(ξ, η), yh(ξ, η) does not change if
the square cell is shifted in the plane (ξ, η). Hence, for each cell of irregular
mesh a bilinear mapping of the unit square in the plane (ξ, η) onto this cell
can be introduced (see Fig.3.2). The condition of the Jacobian positiveness
can be written as follows

[Jk]N > 0, k = 1, 2, 3, 4; N = 1, . . . , Ne, (3.10)

where

Jk = (xk−1 − xk)(yk+1 − yk) − (yk−1 − yk)(xk+1 − xk)

is the area of the triangle written in local numeration. Consequently, all
mesh cells, satisfying the inequalities (3.10), will be convex quadrilaterals.

As in the case of structured grids, unstructured meshes, satisfying the
inequalities (3.10), will be called convex meshes.

As in the previous subsection the set of meshes, satisfying the
inequalities (3.10), is called a convex mesh set and denoted by D. This is a
subset of Euclidean space RNin , where Nin is the total number of degrees of
freedom on the mesh equal to double number of its internal nodes. In this
space, D is an open bounded set. Its boundary ∂D is the set of meshes for
which at least one of the inequalities (3.10) becomes an equality.



Chapter 4

Barrier methods in

two-dimensions

4.1 Planar harmonic grid generation

The simplest and most investigated elliptic equation is the Laplace
equation. That is why the following system

xξξ + xηη = 0, yξξ + yηη = 0

or its direct extensions may be considered for grid generation.
However, these equations can not guarantee the generation of a unfolded

grid. A simple example was constructed by Prokopov [110]. Let us consider
the transformation

x(ξ, η) =
1

2
(ξ2 − η2) − 2

3
ξ, y(ξ, η) = ξη +

1

2
ξ − 1

3
η ,

defined on the unit square 0<ξ<1, 0<η<1.
Obviously, this transformation satisfies the Laplace’s equation and the

Jacobian is

J(ξ, η) = xξyη − xηyξ = (ξ − 2

3
)(ξ − 1

3
) + (η +

1

2
)η .

Since

J(ξ, 0) = (ξ − 2

3
)(ξ − 1

3
) < 0

in the interval η=0, 1
3<ξ<

2
3 , the transformation is folded near the image of

the lower part of the square boundary. The example is of interest because
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the image of the square has a very simple form so degeneration of the
transformation and grid folding seems absolutely unexpected (see Fig.4.1).

(a) (b)

Fig. 4.1:

Experience has shown the efficiency and the reliability of the method
based on harmonic mapping, proposed by Winslow [159]. This is consistent
with the theoretical foundation of the method, since the theory guarantees
that the generated curvilinear coordinate system is nondegenerate. This
property follows from the general result on the existence and uniqueness of
the one-to-one harmonic mapping of an arbitrary simply connected domain
onto a parametric square.

Development of the method introduced by Godunov and Prokopov [56]
is based on the use of such additional parameters that there was no loss of
the one-to-one property. This approach was introduced to control the grid
spacing. Further developments of this approach were presented by Thompson
et.al. [143].

The system of two Laplace equations is used for constructing harmonic
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mappings. The natural way to extend this method is to use more common
elliptic equations with right-hand sides. However, in the general case it
is not clear how to obtain conditions on control parameters under which
the generation of a nondegenerate curvilinear coordinate system (structured
grid) is guaranteed.

4.2 Equations for harmonic grid generation

The method of grid generation guaranteeing a one-to-one mapping at the
continuous level was proposed in [159]. Two families of grid lines are
constructed as contours of functions ξ(x, y), η(x, y) satisfying two Laplace
equations

ξxx + ξyy = 0, ηxx + ηyy = 0 (4.1)

with Dirichlet boundary conditions associated with the one-to-one mapping
of a boundary of parametric square (3.6) onto the boundary of domain.

After transforming to the independent variables ξ, η, these equations
take the form

αxξξ − 2βxξη + γxηη = 0, αyξξ − 2βyξη + γyηη = 0, (4.2)

where

α = x2
η + y2

η =
ξ2x + ξ2y
J2

,

β = xξxη + yξyη =
ξxηx + ξyηy

J2
, (4.3)

γ = x2
ξ + y2

ξ =
η2
x + η2

y

J2
.

The standard approximation of Eqs. (4.2) with centered differences for
the first-order derivatives was used in [159, 56]. Computational formulas
for the extension of the method to the case of adaptive planar grids will be
described in detail below.

To extend the Winslow method, Godunov and Prokopov [56] suggested
to use such additional parameters that there was no loss of the one-to-one
property. This was achieved by introducing the transformation ξ=ξ(ϕ, ψ),
η=η(ϕ, ψ). Then instead of the system (4.2) we obtain

α′xϕϕ − 2β′xϕψ + γ′xψψ = axϕ + bxψ,
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α′yϕϕ − 2β′yϕψ + γ′yψψ = ayϕ + byψ, (4.4)

where

α′ = x2
ψ + y2

ψ, β
′ = xϕxψ + yϕyψ, γ

′ = x2
ϕ + y2

ϕ,

a =
α′ξϕϕ − 2β′ξϕψ + γ′ξψψ

ξϕηψ − ηϕξψ
ηψ − α′ηϕϕ − 2β′ηϕψ + γ′ηψψ

ξϕηψ − ηϕξψ
ξψ,

b =
α′ηϕϕ − 2β′ηϕψ + γ′ηψψ

ξϕηψ − ηϕξψ
ξϕ − α′ξϕϕ − 2β′ξϕψ + γ′ξψψ

ξϕηψ − ηϕξψ
ηϕ.

The grid control can be achieved by specifying functions ξ(ϕ, ψ), η(ϕ, ψ),
ensuring the one-to-one mapping of the parametric square in the plane (ξ, η)
onto the domain in the plane (ϕ, ψ).

In spite of the fact that there were no concrete recommendations on
the choice of control functions ξ(ϕ, ψ), η(ϕ, ψ) in [56], this paper is very
important from the point of view of methodology. Indeed, we can conclude
from the form of Eqs. (4.4), that if another equations, e.g., Poisson’s
equations, are used for grid generation instead of Laplace’s equations, then
for successful implementation not only right–hand sides should be specified,
but also the coefficients α, β, γ. Results of a long–time research on the
employment of the Poisson’s equations for adaptive grid generation are
presented in [143]. The absence of a considerable success in this way can
be explained perhaps by the fact that the property of equations mentioned
above guaranteeing the one-to-one mapping is not taken into account in
such approach. We will demonstrate this on an example of the equations
from [143].

4.3 The use of Poisson equations

Consider a more general system of elliptic equations instead of Laplace’s
equations

∂

∂x
(Dξx) +

∂

∂y
(Dξy) = P,

∂

∂x
(Dηx) +

∂

∂y
(Dηy) = Q. (4.5)

Multiplying the first equation by xξ, the second by xη, and summing we
obtain
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[
∂

∂x
(Dξx) +

∂

∂y
(Dξy)

]
xξ+

[
∂

∂x
(Dηx) +

∂

∂y
(Dηy)

]
xη = Pxξ+Qxη. (4.6)

Left–hand side of this equation is transformed as follows

[
∂

∂x
(Dξx) +

∂

∂y
(Dξy)

]
xξ +

[
∂

∂x
(Dηx) +

∂

∂y
(Dηy)

]
xη

=
∂

∂x
(Dξxxξ) +

∂

∂y
(Dξyxξ) +

∂

∂x
(Dηxxη) +

∂

∂y
(Dηyxη)

−Dξx
∂

∂x
(xξ) −Dξy

∂

∂y
(xξ) −Dηx

∂

∂x
(xη) −Dηy

∂

∂y
(xη).

The sum of the first four terms in the right–hand side is transformed with
the use of the following identity

∂x

∂x
= 1 = xξξx + xηηx,

∂x

∂y
= 0 = xξξy + xηηy,

and appears to be equal to Dx.

The sum of the remaining terms is transformed with the use of the
following formulas

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
,

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η
.

As a result we obtain that the left–hand side of the equation (4.6) is equal
to

−D(ξ2x + ξ2y)xξξ − 2D(ξxηx + ξyηy)xξη −D(η2
x + η2

y)xηη +Dx.

Substituting (4.3) into the last expression, we finally obtain

αxξξ − 2βxξη + γxηη =
(xξyη − xηyξ)

2

D
(Dx − Pxξ −Qxη). (4.7)
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The equation for y is derived in a similar manner. Multiplying the first
equation in (4.5) by yξ, the second by yη, and summing we obtain

[
∂

∂x
(Dξx) +

∂

∂y
(Dξy)

]
yξ+

[
∂

∂x
(Dηx) +

∂

∂y
(Dηy)

]
yη = Pyξ+Qyη. (4.8)

Left–hand side of this equation is transformed as follows

[
∂

∂x
(Dξx) +

∂

∂y
(Dξy)

]
yξ +

[
∂

∂x
(Dηx) +

∂

∂y
(Dηy)

]
yη

=
∂

∂x
(Dξxyξ) +

∂

∂y
(Dξyyξ) +

∂

∂x
(Dηxyη) +

∂

∂y
(Dηyyη)

−Dξx
∂

∂x
(yξ) −Dξy

∂

∂y
(yξ) −Dηx

∂

∂x
(yη) −Dηy

∂

∂y
(yη).

The sum of the first four terms in the left-hand side is transformed with the
use of the following identity

∂y

∂y
= 1 = yξξy + yηηy,

∂y

∂x
= 0 = yξξx + yηηx,

and appears to be equal to Dy.
The sum of the remaining terms is transformed with the use of the

above formulas for ∂
∂x and ∂

∂y . As a result we obtain that the left–hand side

of the equation (4.8) is equal to

−D(ξ2x + ξ2y)yξξ − 2D(ξxηx + ξyηy)yξη −D(η2
x + η2

y)yηη +Dy.

Substituting (4.3) into the last expression, we finally obtain

αyξξ − 2βyξη + γyηη =
(xξyη − xηyξ)

2

D
(Dy − Pyξ −Qyη). (4.9)

Comparing now the system (4.7),(4.9) with the system (4.4) we can see
that the form of right–hand side in the last looks like this part of Eqs. (4.4),
but the coefficients α, β, γ in (4.7),(4.9) are the same as in Eqs. (4.2).

Consequently, in spite of the use of a more general equation, the
resulting system (4.7),(4.9) does not have such a general form as Eqs. (4.4)
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and, therefore, it can be more limited in adaptive grid generation than Eqs.
(4.4). In the other words, the specification of only right–hand side might be
insufficient for successful adaptive grid generation and we need also to have
a procedure for specificating the coefficients α, β, γ.

As it will be shown below, if a grid is generated by using a harmonic
mapping between surfaces, then the resulting system of equations has the
form, similar to Eqs. (4.4) with new coefficients α, β, γ.

From this viewpoint the harmonic maps approach is well substantiated
and, therefore, will form the basis of all the following considerations.

4.4 Variational approach

In this section, we will consider the problem of unstructured grid smoothing
with the use of harmonic functional. The method can also be used for
structured grid generation, as it was described in [34, 67].

The process of unstructured grid generation usually contains two
stages. The meshes produced at the first stage by automated techniques
often exhibit large variations of mesh cell sizes. The smoothing techniques
are used then to form better shaped cells and yield more accurate analysis.

Various approaches have been developed, but the most promising is,
in our opinion, an approach based on the theory of harmonic mappings.
For regular grids such algorithms were proposed [26, 34, 67, 91, 161]. In
this section we will consider an extension of the method introduced in
papers [34, 67], which guarantees convexity of all grid cells in the case of
unstructured grids.

The Dirichlet (harmonic) functional was considered by Brackbill and
Saltzman [26]

I =

∫
x2
ξ + y2

ξ + x2
η + y2

η

J
dξdη. (4.10)

The minimum of this functional is attained on the harmonic mapping of the
domain Ω onto the parametric square. This functional and its generalizations
have been used in many papers for regular grid generation.

The problem of irregular mesh smoothing (or relaxation) is formulated
as follows. Let the coordinates of the unstructured grid be given

(x, y)n, n = 1, . . . , Nn . (4.11)
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The mesh is formed by quadrilateral elements, i.e. the array n(N, k)
is also defined. The problem is to find new coordinates of the mesh nodes
minimizing functional (4.10) value summed over all mesh cell when using
mapping of the unit square onto each cell of the mesh.

It is clear that for a regular grid this formulation is reduced to a discrete
analog of the problem of constructing harmonic coordinates ξ and η on the
domain Ω. Now we will consider the approximation of the functional (4.10).

The present algorithm is based on a particular approximation of the
functional (4.10) whereby the minimum ensures all mesh cells to be convex
quadrilaterals and guarantees grid nondegeneracy. While implementing, it
can be explicitly used peculiarity of vanishing Jacobian when the one-to-one
property is lost.

The mapping x(ξ, η), y(ξ, η) is approximated by functions xh(ξ, η),
yh(ξ, η) introduced in Section 3.3. Substituting these expressions into (4.10)
and approximating the integrals over the square cell by the quadrature
formulas with nodes coinciding with the square corners in the plane (ξ, η),
the following discrete analog can be obtained:

Ih =

Ne∑

N=1

4∑

k=1

1

4
[Fk]N , (4.12)

where Fk is the integrand evaluated in the k-th grid node:

Fk=[(xk+1 − xk)
2 + (xk − xk−1)

2 + (yk+1 − yk)
2 + (yk − yk−1)

2]J−1
k ,

and Jk is the doubled area of a triangle introduced in Section3.3.
Note that the approximation (4.12) of the functional (4.10) can be

obtained as follows. The square cell in the plane (ξ, η) is divided into
two triangles first by the diagonal 13, and then by diagonal 24. For each
subdivision the mapping of the square onto a quadrilateral cell in the plane
(x, y) is approximated by the function which is linear in each triangle.
Denote this function as before xh(ξ, η) , yh(ξ, η).

All derivatives in the integrand of the functional (4.10) are easy to
compute. For example, for one of two triangles obtained by splitting the
quadrilateral cell with the diagonal 13, we have

xhξ = x3 − x2, yhξ = y3 − y2, xhη = x2 − x1, yhη = y2 − y1,

Jh = (x1 − x2)(y3 − y2) − (y1 − y2)(x3 − x2).
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The integral (4.10) over the quadrilateral cell in the plane (ξ, η) is
approximated by half of the sum of values of this integral, computed for
piecewise-linear approximations on triangles, obtained for the first and the
second splitting. The result is the approximation (4.12).

The function Ih has the following property, which can be formulated as
a theorem:

Theorem 4.1 The function Ih has an infinite barrier on the boundary of
the set of convex meshes, i.e., if at least one of the quantities Jk tends to
zero for some cell while remaining positive, then Ih → +∞.

Proof.

In fact, suppose that Jk → 0 in the function (4.12) for
some cell, but Ih does not tend to +∞. Then the numerator
in the function (4.12) must also tend to zero, i.e., the lengths
of two sides of the cell tend to zero. Consequently, the areas
of all triangles that contain these sides must also tend to
zero. Repeating the argument as many times as necessary, we
conclude that the lengths of the sides of all grid cells, including
those at the boundary of the domain, must tend to zero, i.e.,
the mesh compresses into a point, which is impossible. This
completes the proof.

l.q.q.d.

To illustrate the theorem, consider the simplest case of 3x3 grid
generation. Boundary nodes are shown in Fig.4.2a. The problem is to find
coordinates of one internal node (x2,2, y2,2). The set of convex grids D is
the unit square, shown in Fig.4.2a. The boundary of the square consists of
straight lines connecting the following boundary nodes: (2,1) and (3,2), (3,2)
and (2,3), (2,3) and (1,2), (1,2) and (2,1). Contours of the function (4.12)
are shown also in Fig.4.2a. Values of the function (4.12) were computed for
each position of the center grid node on the square grid 51×51 inside the
unit square. An infinite barrier of the function (4.12) at the boundary of D
is easy to determine. It is shown also in Fig.4.2b, where the function (4.12)
is represented as a surface.

Thus, if the set D is not empty, the system of the algebraic equations

Rx =
∂Ih

∂xn
= 0 , Ry =

∂Ih

∂yn
= 0 ,
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has at least one solution which is a convex mesh. To find it one first must
have a certain initial convex mesh, and then use a method of unconstrained
minimization. Since the function (4.12) has an infinite barrier on the
boundary of the set of convex meshes, each step of the method can be
chosen so that the mesh remains convex always.

a b

Fig. 4.2: Boundary node distribution for 3×3 mesh and contours of barrier
function (4.12) in set of convex grids (a). Function (4.12) represented as
surface (b).

4.5 Minimization of the functional

First we consider a method of minimizing the function (4.12) assuming that
the initial convex grid has been found. Suppose the mesh at the lth step of
the iterations is determined. We use the quasi-Newtonian procedure when
the (l+1)th step is accomplished by solving two linear equations for each
interior node

τRx +
∂Rx
∂xn

(xl+1
n − xln) +

∂Rx
∂yn

(yl+1
n − yln) = 0 ,



Barrier methods in 2D 63

τRy +
∂Ry
∂xn

(xl+1
n − xln) +

∂Ry
∂yn

(yl+1
n − yln) = 0 . (4.13)

From this it follows

xl+1
n = xln − τ

(
Rx

∂Ry
∂yn

−Ry
∂Rx
∂yn

)(
∂Rx
∂xn

∂Ry
∂yn

− ∂Ry
∂xn

∂Rx
∂yn

)−1

,

yl+1
n = yln − τ

(
Ry

∂Rx
∂xn

−Rx
∂Ry
∂xn

)(
∂Rx
∂xn

∂Ry
∂yn

− ∂Ry
∂xn

∂Rx
∂yn

)−1

, (4.14)

where τ is the iteration parameter which is chosen so that the mesh remains
convex. To this end, after each step the conditions (3.10) are checked and
if they are not satisfied, this parameter is multiplied by 0.5. Note that
(4.14) is not the Newton-Raphson iteration process, because not all the
second derivatives are taken into account. The rate of convergence is slow
by comparison. However, the Newton-Raphson method gives a much more
complex system of linear equations.

Each derivative in the formulas (4.14) is the sum of a proper number
of terms, in accordance with the number of triangles containing the given
node as a vertex. For example, for the irregular mesh, shown in Fig.3.2, the
number of such triangles for node 3 is equal to 9.

Rather than write out such cumbersome expressions we consider the
first and second derivatives of the terms in the formulas (4.12). Arrays
storing the derivatives are first cleared, and then all mesh triangles are
scanned and the appropriate derivatives are added to the relevant elements
of the arrays. The use of the formulas (4.14) for the boundary node (if its
position on the boundary is not fixed) should be completed by the projection
of this node onto the boundary.

If the initial mesh is not convex, the computational formulas should be
modified so that the initial grid need not belong to the set of convex meshes
[68]. To achieve this, the quantities Jk appearing in the expressions for Rx,
Ry and in their derivatives are replaced with new quantities J̃k:

J̃k =

{
Jk if Jk > ε,

ε if Jk ≤ ε,

where ε>0 is some sufficiently small quantity.
It is important to choose an optimal value of ε so that the convex mesh

is constructed as fast as possible. The method used for specifying the value
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of ε is based on computing the absolute value of the average area of triangles
with negative areas

ε = max[αSneg/(Nneg + 0.01), ε1] ,

where Sneg is the double absolute value of the total area of triangles with
negative areas, and Nneg is the number of these triangles. The quantity
ε1>0 defines a lower bound of ε to avoid very large values appearing in
computations. The coefficient α is chosen experimentally and is in the range
0.3≤α≤0.7.

In practical implementation an arbitrary set of grid nodes can be marked
as movable during iterations, while all other nodes are considered as fixed.
All the terms in the function (4.12) which become independent on movable
nodes are excluded from computations. Since the boundary nodes are always
marked as fixed, four terms in (4.12) corresponding to “corner” triangles
{(1, 2); (1, 1); (2, 1)}, {(i∗−1, 1); (i∗, 1); (i∗, 2)}, {(1, j∗−1); (1, j∗); (2, j∗)},
and {(i∗−1, j∗); (i∗, j∗); (i∗, j∗−1)} are always excluded from computations.
As a result the method becomes applicable to those domains for which the
angle between two intersecting boundaries is greater than or equal to π,
despite of the fact that the corresponding grid cell becomes non-convex
independently on the interior node positions.

Computational formulas for the direct extension of the method in the
case of adaptive planar grids will be described in detail below.



Chapter 5

Adaptive-harmonic grid
generation

5.1 Harmonic maps between surfaces

Recall that for grid generation in a domain Ω the auxiliary problem of
constructing a harmonic mapping of this domain onto the parametric square
is involved. A mapping of the domain boundary onto the square boundary is
given. Laplace equations for unknown functions ξ and η are “inverted” into
the equations for the functions x and y, which are solved numerically then.
On the other hand, the problem can be stated as a variational minimization
of the harmonic functional dependent on the unknown functions x(ξ, η) and
y(ξ, η). The variational approach is convenient for extension of the method to
the case of surfaces. To do it the problem of finding the harmonic mapping
of the surface onto the parametric square is formulated. The one-to-one
mapping between boundaries should be specified.

In the following subsection a more general problem of constructing
harmonic mapping between manifolds is considered. The emphasis is placed
on the formulation of the conditions, providing the one-to-one mapping.

5.1.1 Theory of harmonic maps

Let M and N be two compact Riemannian manifolds (surfaces) of
dimensions dimM=m, dimN=n, respectively, with metrics g and h defined
in local coordinates ui and ξα, i=1, . . . ,m, α=1, . . . , n. The energy density
of a map ξ(u):(M, g) → (N, h) is called the function e(ξ):M → R(≥ 0),



66 Adaptive-harmonic grids

defined in local coordinates as follows

e(ξ)(u) = gij(u)
∂ξα(u)

∂ui
∂ξβ(u)

∂uj
hαβ(ξ(u)) , (5.1)

where the standard summation convention is assumed, gij and hij are the
elements of the metric tensors G and H of the manifolds M and N , and gij

is the inverse metric

gijgjk = δik =

{
1 if i = k ,

0 if i 6= k .

This means if gij are the elements of matrix G, then gij are the elements
of the inverse matrix G−1.

The generalization of the Dirichlet functional for a mapping ξ(u) is
called the energy of the mapping and is defined as follows

E(ξ) =

∫

M

e(ξ)(u)dM, where dM =
√

det(G)du1 . . . dum. (5.2)

The following definition is used to introduce the notation of harmonic
mapping.

A smooth map ξ(u):(M, g) → (N, h) is called harmonic if it is an
extremal of the energy functional E.

The Euler-Lagrange equations, whose solution minimizes the energy
(5.2), are the system of nonlinear partial differential equations and can be
written in the form

1√
det(G)

∂

∂ui

√
det(G)gij

∂ξγ

∂uj
+ gijΓγαβ

∂ξα

∂ui
∂ξβ

∂uj
= 0, (5.3)

where Γγαβ denote the Christoffel symbols of the second kind

Γγαβ =
1

2
hγφ

[
∂hφα
∂ξβ

+
∂hφβ
∂ξα

− ∂hαβ
∂ξφ

]
.

Partial differential equations (5.3) for a map ξ(u):(M, g) → (N, h) are of
considerable interest also in analysis and topology. Note, that in this context
there are no linear equations, since N has no additive structure.

Harmonic mappings have been introduced by Fuller [50]. Later on, in
the fundamental paper by Eells and Sampson [43] the question of existence
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of solutions (5.3) has been considered for closed manifolds M and N
(without boundaries) which are assumed to be smooth of class C5. It has
been proved that in case when N has non-positive curvature, each map from
M to N is homotopic to a harmonic map.

Eells and Sampson [43] approached the problem through the gradient-
line technique, which amounts to replacing the equations (5.3) by a system
of parabolic equations. The local equations are then replaced by global
equations of essentially the same form, embedding N in Euclidean space.
A stability theorem is established showing that a solution of the resulting
parabolic system does in fact produce one-parameter family of mappings
of M onto N . Fundamental solutions of the Laplace equation and the heat
equation on compact manifolds are used to establish a priori derivative
estimates and to construct solutions of the parabolic system. The latter is
transformed into a system of integro-differential equations of the Volterra
type.

Special cases of extremal mappings go back to a very beginning
of differential geometry. They include geodesics, harmonic functions, and
minimal submanifolds.

There are many classical examples of harmonic maps.

(a) The harmonic maps M → R are the harmonic functions.

(b) The harmonic maps R →M are the geodesics.

(c) Every isometry is harmonic.

(d) A conformal map is one which preserves angles. Every conformal
map in 2D is harmonic.

(e) If N is Riemannian manifold andM is a submanifold of least volume,
then the inclusion i:M → N is harmonic for the induced metric on M .

The theory of the energy functional and its harmonic extremals is
the first-order case of a general theory of the pth order energy and its
polyharmonic extremals (see [43]).

The result of Eels and Sampson [43] was extended by Hamilton [61] to
the case where both M and N are allowed to have a boundary.

Theorem (Hamilton, 1975 [61]). LetM and N be compact Riemannian
manifolds with boundary, dimM=m, dimN=n, the respectively. Suppose
that N has nonpositive Riemannian curvature and its boundary ∂N is
convex or empty. Then there exists a harmonic map ϕ:M → N in every
homotopy class.

The condition that ∂N is convex is a local condition which can
be expressed in terms of the Christoffel symbols. Choose a chart
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(ξ1, . . . , ξn−1, ξn) near ∂N such that N={ξn≥0}. The condition that ∂N
is convex is that in such a chart the matrix Γnαβ(1≤α, β≤n−1) is (weakly)
positive definite. To see the geometric meaning consider a geodesic φ=φα(t)
passing through a point on ∂N . The equation for a geodesic says

d2φn

dt2
+ Γnαβ

dφα

dt

dφβ

dt
= 0.

If φ is tangent to ∂N , dφn/dt=0, and only terms Γnαβ with 1 ≤ α, β ≤ n−1

appear. If Γnαβ(1≤α, β≤n−1) is positive definite, then d2φn/dt2≤0. Thus
the condition that ∂N is convex is that a geodesic tangent to ∂N does not
enter inside N . If M=R then the harmonic maps are the geodesics, so the
condition that ∂N is convex is clearly necessary.

The negative example was mentioned by Hamilton [61]. Harmonic maps
of a sphere into an ellipsoid of revolution are considered, which are of degree
k and axially symmetric. These exist if the ellipsoid is short and fat, but
not if it is tall and thin. Thus as the ellipsoid becomes taller and thinner,
at some point the harmonic map either bifurcates into a family of axially
asymmetric maps, or it ceases to exist at all. Which happens is not known.

For closed manifolds Hartman [63] proved that harmonic map is unique
in each homotopy class if N has strictly negative curvature.

All these resuts have been obtained without constraints on dimensions
of manifolds.

In the case both M and N are two-dimensional manifolds
(surfaces) with boundaries, the fundamental result on existence and
uniqueness of harmonic diffeomorphism (one-to-one smooth mapping)
proved independently by Sampson [118] and Shoen and Yau [124].

Theorem (Sampson 1978 [118], Shoen and Yau 1978 [124])
Let a map φ:M → N between two-dimensional Riemannian surfaces

M and N be a diffeomorphism, which is also a diffeomorphism between
boundaries ∂M and ∂N . Suppose the curvature of the surface N is
nonpositive and its boundary ∂N is convex, i.e., ∂N is a union of curves
having nonnegative geodesic curvature with respect to N . Then there exists
a unique harmonic map ϕ:M → N , which is a diffeomorphism, such that
ϕ is homotopy equivalent to φ and ϕ(∂M)=φ(∂M).

It should be noted that in case both M and N are bounded simply
connected domains in the plane, the last theorem was an old theorem and
was due to Rado and Choquet (see references in the paper by Shoen and Yau
[124]). In this case, harmonic maps are simply pairs of harmonic functions
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and the linear structure is available. For the properties of univalent harmonic
maps, one should mention the result of Levy [90], who proved the Jacobian
of such a map does not change sign.

In the paper by Joest and Shoen [81] it is shown that in the 2D case any
diffeomorphism from M to N is homotopic to harmonic diffeomorphism if
the boundary of N is locally convex without restrictions on the curvature of
N . This approach gives only the existence of some diffeomorphic harmonic
map homotopic to the given one. It may be possible that there are other
harmonic maps in the same homotopy class which are not diffeomorphisms.

5.1.2 Examples of non-homeomorphic harmonic maps

Before considering examples of non-homeomorphic harmonic mappings, we
first discuss Borel’s conjecture on existence of homeomorphisms between
manifolds.

Recall, that aspherical manifold is one whose universal cover is
contractible. In paticular, a compact non-positively curved Riemannian
manifold whose boundary is either empty or convex is an aspherical
manifold. Borel made the following conjecture.

Conjecture. Let M and N be compact Riemannian manifolds (with
possibly non-empty boundaries) such that N is aspherical. Let f :M → N
be a homotopy equivalence such that f(∂M) ∈ ∂N and f |∂M :∂M → ∂N
is a homeomorphism. Then f is homotopic to a homeomorphism via a
homotopy which is fixed on ∂M .

The results of Eells, Sampson [43] and Hamilton [61] would verify
Borel’s conjecture in the important case where N is non-positively curved
with either empty or convex boundary and M is a Riemannian manifold,
provided that the harmonic map they produce is always a homeomorphism.
Although both Sampson [118], and Shoen and Yau [124], have shown that
this is always true when dimN=2, the examples, constructed by Farrell and
Jones [48] show that it is sometimes not true when dimN>2. On the other
hand, Borel’s conjecture has been verified by a different method in [47] in a
large subclass of the above cases, namely, when N is closed (that is, ∂N is
empty), nonpositively curved and dimN 6=3, 4. The following Theorem has
been proved in [48].

Theorem (Farrell and Jones 1996 [48]). For each integer m>11,
there exists a pair of compact (connected) m-dimensional Riemmaniam
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manifolds (M, g) and (N, h) with both boundaries convex, and a harmonic
map ϕ:(M, g) → (N, h) with the following properties.

1. The sectional curvatures of (M, g) are all equal to -1, and the
sectional curvatures of (N, h) are all non-positive. Also ∂M is strictly
convex, that is, its second fundamental form is definite.

2. ϕ is homotopic to a diffeomorphism via a homotopy which is
fixed on ∂M . In particular, ϕ is homotopy equivalence, and its restriction
ϕ|∂M :∂M → ∂N is a diffeomorphism.

3. ϕ is not a diffeomorphism; that is, there are points x6=y in M with
ϕ(x)=ϕ(y).

It is still an open problem to find additional conditions for such harmonic
map to be a homeomorphism. Note, that in the 3D case it is still unknown
whether a harmonic map of an arbitrary domain Ω⊂R3 onto a convex domain
(unit cube) with a given homeomorphic mapping between boundaries is
always a homeomorphism.

From this it follows that the theory of harmonic maps is incomplete in
3D case, most important for applications. This is the reason for additional
investigations directed to the development of variational approaches to grid
generation and optimization.

5.1.3 Derivation of governing equations

We denote by Srn a n-dimensional surface in Rn+k with a local coordinate
system

(u1, . . . , un) = u ∈ Sn ⊂ Rn .

The surface is defined by a nondegenerate transformation

r(u) : Sn → Srn, r = (r1, . . . , rn+k). (5.4)

The new parameterizations of the surface Srn is defined by a mapping of a
unit cube Qn : {0<ξi<1, i=1, . . . , n} in Rn onto a surface Srn

r(u(ξ)) : Qn → Srn, ξ = (ξ1, . . . , ξn) ∈ Qn, (5.5)

which is the composition of r(u) and some nondegenerate transformation

u(ξ) : Qn → Sn. (5.6)

The problem of finding a new parameterizations of the surface is stated as
the problem of constructing this transformation u(ξ). The mapping r(u(ξ))
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defines on a surface Srn a new coordinate system (ξ1 . . . ξn)=ξ, which
generates a local metric tensor

Grξ = {grξij }, i, j = 1, 2 . . . , n,

whose elements are scalar products of the vectors ri=∂r/∂ξ
i and

rj=∂r/∂ξ
j:

grξij = rirj =

n+k∑

m=1

∂rm

∂ξi
∂rm

∂ξj
.

The elements of the metric tensor defined by the transformation r(u) are
given by

Gru = {gruij }, i, j = 1, 2 . . . , n.

These elements are the scalar products of the vectors ∂r/∂ui and ∂r/∂uj:

gruij =
n+k∑

m=1

∂rm

∂ui
∂rm

∂uj
.

Consider the contravariant metric tensors whose elements form the
symmetric matrices Gξr and Gur , inverse to the matrices Grξ and Gru:

gijξr = (−1)i+jdjiξr/ det(Grξ), gijur = (−1)i+jdjiur/ det(Gru),

where djiξr and djiur are the determinants of cofactors of the elements grξij and

gruij in the matrices Grξ and Gru correspondingly.
Let prove the following relation

gijξr =

n∑

m,l

gmlur
∂ξi

∂um
∂ξj

∂ul
. (5.7)

Indeed, substituting in the following identity the right-hand side of (5.7)
instead of glpξr we obtain

δpi = grξil g
lp
ξr =

∂rα

∂ξi
∂rα

∂ξl
glpξr =

∂rα

∂ut
∂rα

∂uh
∂ut

∂ξi
∂uh

∂ξl
glpξr = gruth g

mj
ur

∂ut

∂ξi
∂uh

∂ξl
∂ξl

∂um
∂ξp

∂uj

= gruth g
mj
ur δ

h
m

∂ut

∂ξi
∂ξp

∂uj
= gruth g

hj
ur

∂ut

∂ξi
∂ξp

∂uj
= δjt

∂ut

∂ξi
∂ξp

∂uj
= δpi .
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The summation is performed on repeated indices, here α = 1, 2, . . . , n +
k; i, j, l, p, t, h,m = 1, . . . , n. Now taking (5.7) into account, the functional
(5.2) takes the form

I =

∫

Srn

giiξrdS
rn =

∫

Srn

n∑

i,m,l

gmlur
∂ξi

∂um
∂ξi

∂ul
dSrn. (5.8)

In the derivation of the Euler equations the integration domain in (5.8) will
be replaced by Sn, and the surface element is transformed as follows

dSrn =
√

det(Gru)dSn =
√

det(Gru)du1 . . . dun.

Consequently the functional (5.8) can be written as:

I =

∫

Sn

√
det(Gru)




n∑

i,m,l

gmlur
∂ξi

∂um
∂ξi

∂ul


 du1 . . . dun. (5.9)

The quantities
√

det(Gru) and gmlur in the functional (5.9) are independent
of the functions ξi(u) and their derivatives, and hence remain unchanged
when ξ(u) is varied. Therefore the Euler equations for the functions ξi(u),
minimizing (5.9) are of the form

L(ξi) =

n∑

m=1

∂

∂um

(
√

det(Gru)

n∑

l=1

gmlur
∂ξi

∂ul

)
= 0, i = 1, . . . , n. (5.10)

The equations which each component ui(ξ) of the function u(ξ) satisfies,
can be derived from (5.10). To achieve this, the ith equation of the system
(5.10) is multiplied by ∂uj/∂ξi and summed over i. As a result, we have

n∑

i=1

L(ξi)
∂uj

∂ξi
=

n∑

i,m=1

∂

∂um

(
n∑

p=1

√
det(Gru)gmpur

∂ξi

∂up

)
∂uj

∂ξi
=

n∑

m=1

∂

∂um

(

n∑

i,p=1

√
det(Gru)gmpur

∂ξi

∂up
∂uj

∂ξi


−

n∑

i,m,p,t=1

√
det(Gru)gmpur

∂ξi

∂up
∂ξt

∂um
∂2uj

∂ξi∂ξt
= 0.

Here j=1, . . . , n.
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Now, multiplying each equation by 1/
√

det(Gru) and taking into

account (5.7) and the relation
∑n
i=1

∂ξi

∂up
∂uj

∂ξi = δjp , we finally obtain

gitξr
∂2uj

∂ξi∂ξt
=

1√
det(Gru)

n∑

m=1

∂

∂um

(√
det(Gru)gmjur

)
, j = 1, . . . , n.

(5.11)
This is a quasilinear system of elliptic equations which is a direct extension
of the system (4.2). It can be considered as a basis of the algorithms
for structured two-dimensional and three-dimensional adaptive grids, and
also grids on surfaces. For derivation of governing equations in all these
cases we need only to express the contravariant components gijξr and gijur

as functions on the covariant components gξrij and gurij and substitute the
associate expressions into (5.11) for n=2 and n=3.

5.2 Construction of two-dimensional adaptive-

harmonic structured grids by solving Euler

equations

5.2.1 Derivation of equations

Let Ω be a two-dimensional domain in R2 and let in an Euclidean space R3

the surface Sr2 be given as z = f(x, y). We introduce new notations

r = (r1, r2, r3) = (x, y, z) = (x, y, f(x, y)) ∈ Sr2 ⊂ R3 ,

u = (u1, u2) = (x, y) ∈ Ω ⊂ R2,

ξ = (ξ1, ξ2) = (ξ, η) ∈ Q2 ⊂ R2, rξ = (xξ, yξ, zξ), rη = (xη, yη, zη) .

The problem formulation is the following. Suppose we are given a
simply connected domain Ω with a smooth boundary in the plane (x, y).
Consider the surface z=f(x, y) of the graph of the function f ∈ C2(Ω). It
is required to find a mapping of the parametric square Q2 onto the domain
Ω under a given mapping between the boundaries such that the mapping of
the surface onto the parametric square be harmonic (see Fig.5.1). Thus, the
problem is to minimize the Dirichlet functional written for a surface

I =

∫ (
g11
ξr + g22

ξr

)
dSr2, (5.12)
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where g11
ξr , g

12
ξr g

22
ξr are the elements of the contravariant metric tensor Gξr

dependent on the elements of the covariant metric tensor Grξ as follows

g11
ξr = grξ22/ det(Grξ), g22

ξr = grξ11/ det(Grξ), g12
ξr = g21

ξr = −grξ12/ det(Grξ),

where

grξ11 = r2ξ = x2
ξ + y2

ξ + z2
ξ , g

rξ
12 = grξ21 = (rξ · rη) = xξxη + yξyη + zξzη ,

grξ22 = r2η = x2
η + y2

η + z2
η ,

det(Grξ) = grξ11g
rξ
22 − (grξ12)

2, zξ = fxxξ + fyyξ, zη = fxxη + fyyη. (5.13)

Inverting dependent and independent variables in (5.12) and noting that

dSr2 =

√
grξ11g

rξ
22 − (grξ12)

2dξdη,

we obtain

I =

∫
grξ11 + grξ22√

grξ11g
rξ
22 − (grξ12)

2

dξdη . (5.14)

The Euler equation for the functional (5.14) follows from (5.11) for n=2,
k=1. We need only to compute the elements of the covariant metric tensor
Grξ and contravariant metric tensor Gξr of the transform r(u)=r(x, y):Ω →
Sr2

r = (x, y, f(x, y)), rx = (1, 0, fx), ry = (0, 1, fy),

gru11 = r2x = 1 + f2
x , g

ru
12 = gru21 = rx · ry = fxfy, g

ru
22 = r2y = 1 + f2

y ,

det(Gru) = gru11 g
ru
22−(gru12 )2 = 1+f2

x+f2
y , det(Grξ) = det(Gru)(xξyη−xηyξ)2

g11
ur = gru22/ det(Gru) = (1 + f2

y )/(1 + f2
x + f2

y ).

g12
ur = −gru21/ det(Gru) = −fxfy/(1 + f2

x + f2
y ),

g22
ur = gru11/ det(Gru) = (1 + f2

x)/(1 + f2
x + f2

y ).

Substituting these expressions into (5.11) we obtain equations written in the
form convenient for the practical use

L(x) = αxξξ − 2βxξη + γxηη − J2D

[
∂

∂x

1 + f2
y

D
− ∂

∂y

fxfy
D

]
= 0,
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L(y) = αyξξ − 2βyξη + γyηη − J2D

[
∂

∂x

−fxfy
D

+
∂

∂y

1 + f2
x

D

]
= 0, (5.15)

where

D =
√

1 + f2
x + f2

y , J = xξyη − xηyξ , α = x2
η + y2

η + f2
η ,

β = xξxη + yξyη + fξfη , γ = x2
ξ + y2

ξ + f2
ξ .

-

6

�
�	
x

y

z

-

6η

ξdomain Ω
x(ξ, η), y(ξ, η)

Harmonic

z = f(x, y)

Sr2

�

~

Fig. 5.1: Harmonic coordinates on surface of graph of function z=f(x, y).

5.2.2 Numerical implementation

Equations (5.15) are approximated on the square grid of unit size with the
simplest difference relations

xξ ≈ [xξ]ij = 0.5(xi+1,j − xi−1,j), xη ≈ [xη]ij = 0.5(xi,j+1 − xi,j−1),

yξ ≈ [yξ]ij = 0.5(yi+1,j − yi−1,j), yη ≈ [yη]ij = 0.5(yi,j+1 − yi,j−1),

fξ ≈ [fξ]ij = 0.5(fi+1,j − fi−1,j), fη ≈ [fη]ij = 0.5(fi,j+1 − fi,j−1),

xξξ ≈ [xξξ]ij = xi+1,j − 2xij + xi−1,j ,
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xξη ≈ [xξη]ij = 0.25(xi+1,j+1 − xi+1,j−1 − xi−1,j+1 + xi−1,j−1),

xηη ≈ [xηη]ij = xi,j+1 − 2xij + xi,j−1, yξξ ≈ [yξξ]ij = yi+1,j − 2yij + yi−1,j ,

yξη ≈ [yξη]ij = 0.25(yi+1,j+1 − yi+1,j−1 − yi−1,j+1 + yi−1,j−1),

yηη ≈ [yηη]ij = yi,j+1 − 2yij + yi,j−1,

α ≈ [xη]
2
ij + [yη]

2
ij + [fη]

2
ij , β ≈ [xξ]ij [xη]ij + [yξ]ij [yη]ij + [fξ]ij [fη]ij ,

γ ≈ [xξ]
2
ij + [yξ]

2
ij + [fξ]

2
ij . (5.16)

Substitute these expressions into (5.15) and denote the difference
approximations of L(x) and L(y) as [L(x)]ij and [L(y)]ij , respectively.
Suppose that the coordinates of the grid nodes (x, y)ij at the lth step of
iterations are determined. Then the (l+1)th step is accomplished as follows

xl+1
ij = xlij + τ

[L(x)]ij
2[α]ij + 2[γ]ij

, yl+1
ij = ylij + τ

[L(y)]ij
2[α]ij + 2[γ]ij

. (5.17)

The expressions in square brackets denote the corresponding approximations
of expressions in the grid node (i, j) at the lth iteration step. The value of
iteration parameter τ is chosen within limits 0<τ<1, and usually τ=0.5.

Derivatives [fx]ij and [fy]ij in the ijth grid node are evaluated with the
centered differences

[fx]ij =
(fi+1,j − fi−1,j)(yi,j+1 − yi,j−1) − (fi,j+1 − fi,j−1)(yi+1,j − yi−1,j)

(xi+1,j − xi−1,j)(yi,j+1 − yi,j−1) − (xi,j+1 − xi,j−1)(yi+1,j − yi−1,j)
,

[fy]ij = − (fi+1,j − fi−1,j)(xi,j+1 − xi,j−1) − (fi,j+1 − fi,j−1)(xi+1,j − xi−1,j)

(xi+1,j − xi−1,j)(yi,j+1 − yi,j−1) − (xi,j+1 − xi,j−1)(yi+1,j − yi−1,j)
.

These formulas must be modified for the boundary nodes. Indices,
“leaving” the computational domain must be replaced by the nearest
boundary indices. For example, if j=1, then (i, j−1) must be replaced by
(i, j).

Note, that if [fξ]ij=0 and [fη]ij=0, then [fx]ij=0 and [fy]ij=0 and the
method (5.17) reduces to the Winslow method [159].

The adaptive-harmonic grid generation algorithm is formulated as
follows:

1. Compute the values of the control function at each grid node. The
result is fij .
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2. Evaluate derivatives (fx)ij and (fy)ij and other expressions in (5.17)
using the above formulas.

3. Make one iteration step and compute new values of xij and yij .
4. Repeat starting with Step 1 to convergency.

The resulting algorithm can be used in the numerical solution of the
partial differential equations. In this case at the first step of the algorithm
the values fij in each grid node are taken from the finite-difference or finite
element solution of the host equations.

Note, that to control the grid nodes number in the layers of high
gradients it is convenient to use caf instead of f(x, y). The larger the
coefficient ca, the greater the number of nodes in the layer of high gradients
of the function f .

5.3 Variational barrier method for two-dimen-

sional adaptive-harmonic grid generation

5.3.1 Problem formulation

In notations of the previous section the problem is formulated as follows.
Suppose a simply connected domain Ω with a smooth boundary in the plane
(x, y) is given. Consider the surface z=f(x, y) of the graph of the function
f∈C1(Ω). It is required to find a mapping of the parametric square Q2

onto a domain Ω under a given mapping between the boundaries so that
the mapping of the surface onto the parametric square be harmonic (see
Fig.5.1). Thus, the problem is to minimize the harmonic functional (5.14).

Substituting the expressions (5.13) for zξ and zη into (5.14) we obtain
the functional from [70] to define an adaptive-harmonic grid, clustered in
regions of high gradients of the function f(x, y)

I =

∫
(x2
ξ + x2

η)(1 + f2
x) + (y2

ξ + y2
η)(1 + f2

y ) + 2fxfy(xξyξ + xηyη)

(xξyη − xηyξ)
√

1 + f2
x + f2

y

dξdη.

(5.18)
The problem of irregular mesh smoothing and adaption is formulated as
follows. Let the coordinates of an irregular mesh be given. The mesh is
formed by quadrilateral elements, i.e. the array n(N, k) is also defined. The
problem is to find new coordinates of the mesh nodes, minimizing the sum
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of the functional (5.18) values, computed for a mapping of the unit square
onto an each cell of the mesh.

5.3.2 Approximation of the functional

The functional (5.18) possesses the same properties as the functional (4.10),
and it can be also approximated in such a way that its minimum is attained
on a mesh of convex quadrilaterals

Ih =

Ne∑

N=1

4∑

k=1

1

4
[Fk]N , (5.19)

where

Fk =
D1[1 + (fx)

2
k] +D2[1 + (fy)

2
k] + 2D3(fx)k(fy)k

Jk[1 + (fx)2k + (fy)2k]
1/2

,

D1 = (xk−1 − xk)
2 + (xk+1 − xk)

2, D2 = (yk−1 − yk)
2 + (yk+1 − yk)

2,

D3 = (xk−1 − xk)(yk−1 − yk) + (xk+1 − xk)(yk+1 − yk) ,

Jk = (xk−1 − xk)(yk+1 − yk) − (xk+1 − xk)(yk−1 − yk) .

Here (fx)k and (fy)k are the values of derivatives at the kth node of the
N th cell.

If the set of convex meshes D is not empty, the system of the algebraic
equations

Rx =
∂Ih

∂xn
= 0, Ry =

∂Ih

∂yn
= 0,

has at least one solution which is a convex mesh. To find it, one must
first find a certain initial convex mesh, and then use some method of
unconstrained minimization of the function Ih. Since this function has an
infinite barrier on the boundary of the set D, each step of the method can
be chosen so that the mesh always remains convex.

5.3.3 Minimization of the functional

Suppose the mesh at the lth step of the iterations is determined. We use
the quasi-Newtonian procedure when the (l+1)th step is accomplished as
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follows

xl+1
n = xln − τ

(
Rx

∂Ry
∂yn

−Ry
∂Rx
∂yn

)(
∂Rx
∂xn

∂Ry
∂yn

− ∂Ry
∂xn

∂Rx
∂yn

)−1

,

yl+1
n = yln − τ

(
Ry

∂Rx
∂xn

−Rx
∂Ry
∂xn

)(
∂Rx
∂xn

∂Ry
∂yn

− ∂Ry
∂xn

∂Rx
∂yn

)−1

, (5.20)

where τ is the iteration parameter, which is chosen so that the mesh remains
convex. With this purpose after each step conditions (3.10) are checked and
if they are not satisfied, this parameter is multiplied by 0.5. Then conditions
(3.10) are checked for the grid, computed with a new value of τ and if they
are not satisfied, this parameter is multiplied by 0.25, etc.

The adaptive-harmonic algorithm for r-refinement is formulated as
follows:

1. Generate an initial mesh by the use of a marching method.
2. Compute the values of the control function fn at every mesh node.
3. Evaluate the derivatives (fx)n, (fy)n and other expressions in (5.20).
4. Make one iteration step and compute new values of xn and yn.
5. Repeat starting with Step 2 to convergency.
Computational formulas for [fx]n and [fy]n will be presented below.

5.3.4 Derivation of computational formulas

Four triangles, introduced above, are considered for the quadrilateral cell
with number N . Each of these triangles corresponds to a corner with
number k and gives a proper contribution to the functional and also to the
value of its derivatives. Since the integrand in (5.18) does not depend on the
rotation of the coordinate system ξ, η, then all the computational formulas
will be the same for all triangles. We enumerate nodes of the triangle which
corresponds to the corner with local number k from 1 to 3 as follows:
node 1 corresponds to the local node number k−1 of the N th cell,
node 2 corresponds to the local node number k of the N th cell,
node 3 corresponds to the local node number k+1 of the N th cell.

Then in new numeration the expression for Fk will be

Fk =
D1[1 + (fx)

2
k] +D2[1 + (fy)

2
k] + 2D3(fx)k(fy)k

J2[1 + (fx)2k + (fy)2k]
1/2

, (5.21)
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where

D1 = (x1 − x2)
2 + (x3 − x2)

2, D2 = (y1 − y2)
2 + (y3 − y2)

2,

D3 = (x1 − x2)(y1 − y2) + (x3 − x2)(y3 − y2),

J2 = (x1 − x2)(y3 − y2) − (x3 − x2)(y1 − y2).

We introduce notations

U =
D1[1 + (fx)

2
k] +D2[1 + (fy)

2
k] + 2D3(fx)k(fy)k

[1 + (fx)2k + (fy)2k]
1/2

,

V = (x1 − x2)(y3 − y2) − (x3 − x2)(y1 − y2) .

We use the formulas for the derivatives of two functions ratio (chain rule).
Differentiating, we obtain

F =
U

V
,

Fx =
Ux − FVx

V
, Fy =

Uy − FVy
V

Fxx =
Uxx − 2FxVx − FVxx

V
, (5.22)

Fyy =
Uyy − 2FyVy − FVyy

V
, Fxy = Fyx =

Uxy − FxVy − FyVx − FVxy
V

.

For the triangle vertex with number 1 we should substitute appropriate
expressions instead of U and V , Ux and Vx, etc. into (5.21) and replace x
and y by x1 and y1.

For vertex 1 we have

Vx = y3 − y2 , Vy = x2 − x3 ,

Vxx = 0 , Vxy = 0 , Vyy = 0 .

Ux = 2
[1 + (fx)

2
k](x1 − x2) + (fx)k(fy)k(y1 − y2)

[1 + (fx)2k + (fy)2k]
1/2

,

Uy = 2
[1 + (fy)

2
k](y1 − y2) + (fx)k(fy)k(x1 − x2)

[1 + (fx)2k + (fy)2k]
1/2

,

Uxx = 2
1 + (fx)

2
k

[1 + (fx)2k + (fy)2k]
1/2

, Uxy = 2
(fx)k(fy)k

[1 + (fx)2k + (fy)2k]
1/2

,
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Uyy = 2
1 + (fy)

2
k

[1 + (fx)2k + (fy)2k]
1/2

.

For vertex 2 we have

Vx = y1 − y3 , Vy = x3 − x1 ,

Vxx = 0 , Vxy = 0 , Vyy = 0 .

Ux = 2
[1 + (fx)

2
k](2x2 − x1 − x3) + (fx)k(fy)k(2y2 − y1 − y3)

[1 + (fx)2k + (fy)2k]
1/2

,

Uy = 2
[1 + (fy)

2
k](2y2 − y1 − y3) + (fx)k(fy)k(2x2 − x1 − x3)

[1 + (fx)2k + (fy)2k]
1/2

,

Uxx = 4
1 + (fx)

2
k

[1 + (fx)2k + (fy)2k]
1/2

, Uxy = 4
(fx)k(fy)k

[1 + (fx)2k + (fy)2k]
1/2

,

Uyy = 4
1 + (fy)

2
k

[1 + (fx)2k + (fy)2k]
1/2

.

For vertex 3 we have

Vx = y2 − y1 , Vy = x1 − x2 ,

Vxx = 0 , Vxy = 0 , Vyy = 0 .

Ux = 2
[1 + (fx)

2
k](x3 − x2) + (fx)k(fy)k(y3 − y2)

[1 + (fx)2k + (fy)2k]
1/2

,

Uy = 2
[1 + (fy)

2
k](y3 − y2) + (fx)k(fy)k(x3 − x2)

[1 + (fx)2k + (fy)2k]
1/2

,

Uxx = 2
1 + (fx)

2
k

[1 + (fx)2k + (fy)2k]
1/2

, Uxy = 2
(fx)k(fy)k

[1 + (fx)2k + (fy)2k]
1/2

,

Uyy = 2
1 + (fy)

2
k

[1 + (fx)2k + (fy)2k]
1/2

.

Computations are performed as follows. Let F and its derivatives with
respect to x1 and y1 be computed via the formulas (5.22) for the N th
cell and kth triangle number. Then the computed values are added to the
appropriate array elements

Ih+ = F, [Rx]n+ = Fx, [Ry]n+ = Fy,



82 Adaptive-harmonic grids

[Rxx]n+ = Fxx, [Rxy]n+ = Fxy, [Ryy]n+ = Fyy,

where n=n(N, k−1).
Similarly for vertex 2, the correspondence between local and global

number is n=n(N, k).
Similarly for vertex 3, the correspondence between local and global

number is n=n(N, k+1).
Derivatives [fx]n and [fy]n are computed as follow. All triangles of the

mesh are scanned and for the kth triangle of the N th cell the following
values are computed

fx = (f1 − f2)(y3 − y2) − (f3 − f2)(y1 − y2) ,

fy = (x1 − x2)(f3 − f2) − (x3 − x2)(f1 − f2) ,

J2 = (x1 − x2)(y3 − y2) − (x3 − x2)(y1 − y2) .

Where f1, f2 and f3 are the values of the function f at the triangle vertices,
numbered as 1, 2 and 3, corresponding to the local numbers of corners
k− 1, k, and k+ 1 of a quadrilateral cell. Computed values are added to the
corresponding array elements (which were first cleared)

[fx]n+ = fx, [fy]n+ = fy, [J ]n+ = J2, n = n(N, k) .

New values of derivatives are computed as follows

[fx]n/ = [J ]n, [fy]n/ = [J ]n.

Here, according to C-language notation, a+ = b means, that the new value
of a becomes equal to a + b, and a/ = b means, that the new value of a
becomes equal to a/b.

1It is of importance the matter of boundary nodes redistributing, since a
proper algorithm to the boundary nodes allows for performing more robust
adaptive grid generation and modelling of the flow problems. This matter is
considered in the Appendix.

1This paragraph was added by the Editor.



Chapter 6

Adaptive-harmonic surface grid

generation

6.1 Finite-difference adaptive-harmonic surface

grid generator

6.1.1 Derivation of equations

Introduce the following notations

r = (r1, r2, r3, r4) = (x, y, z, f) ∈ Sr2 ⊂ R4,

u = (u1, u2) = (u, v) ∈ Q2 ⊂ R2,

ξ = (ξ1, ξ2) = (ξ, η) ∈ Q2 ⊂ R2.

rξ = (xξ, yξ, zξ, fξ), rη = (xη, yη, zη, fη) ,

ru = (xu, yu, zu, fu), rv = (xv, yv, zv, fv) .

Thus, consider a two-dimensional surface in a four-dimensional space,
defined as x=x(u, v), y=y(u, v), z=z(u, v), f=f(u, v). Let the functions
ξ = ξ(u, v), η = η(u, v) be used to define a new parametrization of a
surface.

Note that a harmonic mapping of a surface onto a parametric square
can be defined with the use of the first differential Beltrami’s parameter

(∇sξ∇sη) =
gru11 ξvηv − gru12 (ξuηv + ξvηu) + gru22 ξuηu

gru11 g
ru
22 − (gru12 )2

,
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Then the general harmonic functional can be written in the form

I =

∫
[(∇sξ∇sξ) + (∇sη∇sη)]dS

r2 , (6.1)

where dSr2 is the element of a surface Sr2.
The problem of constructing the quasiuniform harmonic grid on the

surface is stated as the problem of finding the new parametrization of
a surface u=u(ξ, η), v=v(ξ, η), minimizing the functional (6.1), when
f(u, v)=0. Inverting dependent and independent variables in (6.1), we have

I =

∫
gru11 (u2

ξ + u2
η) + 2gru12 (uξvξ + uηvη) + gru22 (v2

ξ + v2
η)√

gru11 g
ru
22 − (gru12 )2(uξvη − uηvξ)

dξdη , (6.2)

gru11 = x2
u + y2

u + z2
u, g

ru
12 = xuxv + yuyv + zuzv, g

ru
22 = x2

v + y2
v + z2

v.

The result of minimization will be a new parametrization u=u(ξ, η),
v=v(ξ, η) defining the quasiuniform grid on a surface. Difficulties
encountered in this problem are concerned with uniqueness of the solution
to its discrete analog. This is in spite of the result from the harmonic map
theory that the continuous problem has a unique solution.

To construct an adaptive grid on a surface we introduce a control
function f(u, v) which will define clustering in regions where its gradient is
large. In this case the functional (6.2) is to be minimized with the metric
tensor elements gruij defined as follows

gru11 = x2
u + y2

u + z2
u + f2

u ,

gru12 = xuxv + yuyv + zuzv + fufv , (6.3)

gru22 = x2
v + y2

v + z2
v + f2

v .

We write out the Euler equations for the functional (6.2) in the case of
adaption. These equations follow from the general equations if n=2, k=2

L(u) = αuξξ − 2βuξη + γuηη − J2D

[
∂

∂u

gru22
D

− ∂

∂v

gru12
D

]
= 0 ,

L(v) = αvξξ − 2βvξη + γvηη − J2D

[
∂

∂u

−gru12
D

+
∂

∂v

gru11
D

]
= 0 , (6.4)
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where

D =
√
gru11 g

ru
22 − (gru12 )2 ,

J = uξvη − uηvξ ,

α = grξ22D
2J2 = x2

η + y2
η + z2

η + f2
η ,

β = grξ12D
2J2 = xξxη + yξyη + zξzη + fξfη ,

γ = grξ11D
2J2 = x2

ξ + y2
ξ + z2

ξ + f2
ξ .

6.1.2 Numerical implementation

The algorithm similar to the method used for planar harmonic grid
generation is applied for numerical solution of (6.4), where x and y are
replaced by u and v, and [L(u)]ij and [L(v)]ij are the approximations of the
equations (6.4) at the grid node (i, j).

All derivatives with respect to u and v are computed via the formulas

[fu]ij =
(fi+1,j − fi−1,j)(vi,j+1 − vi,j−1) − (fi,j+1 − fi,j−1)(vi+1,j − vi−1,j)

(ui+1,j − ui−1,j)(vi,j+1 − vi,j−1) − (ui,j+1 − ui,j−1)(vi+1,j − vi−1,j)
,

[fv]ij =
(fi+1,j − fi−1,j)(ui,j+1 − ui,j−1) − (fi,j+1 − fi,j−1)(ui+1,j − ui−1,j)

(ui+1,j − ui−1,j)(vi,j+1 − vi,j−1) − (ui,j+1 − ui,j−1)(vi+1,j − vi−1,j)
.

The adaptive-harmonic surface grid generation algorithm is formulated
as follows:

1. Generate a quasi-uniform harmonic surface grid using the same
algorithm as for adaption, but with f=0.

2. Compute the values of the control function at each grid node. The
result is fij .

3. Evaluate derivatives (fu)ij and (fv)ij and other expressions in (6.4)
using the above formulas.

4. Make one iteration step and compute new values of uij and vij .
5. Repeat starting with Step 2 to convergency.

The resulting algorithm is simple in implementation but can demand a
special procedure for the choice of the parameter τ to achieve the numerical
stability.
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6.2 Variational barrier method

6.2.1 Problem formulation

We introduce the following notations

r = (r1, r2, r3, r4, . . . , r3+p) = (x, y, z, f1, . . . , fp) ∈ Sr2 ⊂ R3+p,

u = (u1, u2) = (u, v) ∈ Q2 ⊂ R2,

ξ = (ξ1, ξ2) = (ξ, η) ∈ Q2 ⊂ R2.

rξ = (xξ, yξ, zξ, f1,ξ, . . . , fp,ξ) , rη = (xη, yη, zη, f1,η, . . . , fp,η ,

ru = (xu, yu, zu, f1,u, . . . , fp,u) , rv = (xv, yv, zv, f1,v, . . . , fp,v) .

Thus, consider a two-dimensional surface in a (3+p)-dimensional space,
defined as x=x(u, v), y=y(u, v), z=z(u, v), f1=f1(u, v),. . . ,fp=fp(u, v). Let
the functions ξ=ξ(u, v), η=η(u, v) be used to define a new parametrization
of a surface.

Harmonic mapping of a surface onto a parametric square can be defined
with the use of the first differential Beltrami’s parameter

(∇sξ∇sη) =
gru11 ξvηv − gru12 (ξuηv + ξvηu) + gru22 ξuηu

gru11 g
ru
22 − (gru12 )2

,

Then the harmonic functional can be written in the form

I =

∫
[(∇sξ∇sξ) + (∇sη∇sη)]dS

r2 , (6.5)

where dSr2 is the element of a surface Sr2.
The problem of construction the quasiuniform harmonic grid on the

surface of control vector-function is stated as the problem of finding a new
parametrization of a surface u=u(ξ, η), v=v(ξ, η), minimizing the functional
(6.5).

Inverting dependent and independent variables in (6.5), we have

I =

∫
gru11 (u2

ξ + u2
η) + 2gru12 (uξvξ + uηvη) + gru22 (v2

ξ + v2
η)√

gru11 g
ru
22 − (gru12 )2(uξvη − uηvξ)

dξdη . (6.6)

To construct an adaptive grid on a surface x=x(u, v), y=y(u, v),
z=z(u, v), a control vector-function with components f1=f1(u, v), . . . ,
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fp=fp(u, v) is introduced which will define clustering in the regions where
its gradient is large. In this case the functional (6.6) is to be minimized
with the metric tensor elements gruij defined as follows

gru11 = x2
u + y2

u + z2
u + f2

1,u + · · · + f2
p,u) ,

gru12 = xuxv + yuyv + zuzv + f1,uf1,v + · · · + fp,ufp,v , (6.7)

gru22 = x2
v + y2

v + z2
v + f2

1,v + · · · + f2
p,v) .

The problem of irregular surface mesh smoothing and adaption is formu-
lated as follows. Let the coordinates of the irregular mesh in the plane (u, v)
be given

(u, v)n, n = 1, . . . , Nn .

The mesh is formed by quadrilateral elements,i.e., the array n(N, k) is
also defined. The functions x=x(u, v), y=y(u, v), z=z(u, v), f1=f1(u, v),
. . . , fp=fp(u, v) are assumed to be known. For example, they can be
computed by analytic formulas.

The problem is to find new coordinates of the mesh nodes, minimizing
the sum of the functional (6.6) values, computed for a mapping of the unit
square in the plane (ξ, η) onto each a cell of the mesh in the plane (x, y).

6.2.2 Approximation of functional

The functional (6.6) possesses all the properties of the functional used for
adaptive-harmonic grid generation and also can be approximated in such a
way that the minimum of its discrete analog is attained on a non-degenerate
grid of convex quadrilaterals in the plane (u, v). The same algorithm can be
used for its approximation and minimization

Ih =

Ne∑

N=1

4∑

k=1

1

4
[Fk]N , (6.8)

where

Fk =
D1g

ru
11 +D2g

ru
22 + 2D3g

ru
12

Jk
√
gru11 g

ru
22 − (gru12 )2

,

D1 = (uk−1 − uk)
2 + (uk+1 − uk)

2 , D2 = (vk−1 − vk)
2 + (vk+1 − vk)

2,

D3 = (uk−1 − uk)(vk−1 − vk) + (uk+1 − uk)(vk+1 − vk) ,
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Jk = (uk−1 − uk)(vk+1 − vk) − (uk+1 − uk)(vk−1 − vk) .

Here the values gruij are computed at the kth node of the N th cell. Note
that to control the mesh nodes number in the layers of high gradient it
is convenient to use cifi instead of fi(u, v), where ci is the coefficient of
adaptation for the ith component. The larger the coefficient ci, the greater
the number of nodes in the layer of high gradients of the function fi.

If the set of convex meshes D is not empty, the system of the algebraic
equations

Ru =
∂Ih

∂un
= 0 , Rv =

∂Ih

∂vn
= 0

has at least one solution which is a convex mesh. To find it, first one
must find a certain initial convex mesh, and then use some method of
unconstrained minimization of the function Ih. Since this function has the
infinite barrier on the boundary of the set of convex meshes, each step of
the method can be chosen so that the mesh always remains convex.

6.2.3 Minimization of functional

Suppose the mesh at the lth step of the iterations is determined. We use
the quasi-Newtonian procedure when the (l+1)th step is accomplished by
solving two linear equations for each interior node

τRu +
∂Ru
∂un

(ul+1
n − uln) +

∂Ru
∂vn

(vl+1
n − vln) = 0 ,

τRv +
∂Rv
∂un

(ul+1
n − uln) +

∂Rv
∂vn

(vl+1
n − vln) = 0 .

From this it follows

ul+1
n = uln − τ

(
Ru

∂Rv
∂vn

−Rv
∂Ru
∂vn

)(
∂Ru
∂un

∂Rv
∂vn

− ∂Rv
∂un

∂Ru
∂vn

)−1

,

vl+1
n = vln − τ

(
Rv

∂Ru
∂un

−Ru
∂Rv
∂un

)(
∂Ru
∂un

∂Rv
∂vn

− ∂Rv
∂un

∂Ru
∂vn

)−1

, (6.9)

where τ is the iteration parameter, which is chosen so that the mesh remains
convex. With this purpose after each step the conditions of convexity are
checked and, if they are not satisfied, this parameter is multiplied by 0.5.
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The adaptive-harmonic algorithm for the mesh relaxation on a surface
is formulated as follows:

1. Generate an initial mesh using a marching method.
2. Compute new values xn, yn, zn, and (fi)n at each mesh node.
3. Evaluate derivatives [xu]n and [xv]n, [yu]n and [yv]n, [zu]n and [zv]n,

[(fi,u]n and [(fi,v]n used in (6.9).
4. Make one iteration step (6.9) and compute new values of un and vn.
5. Repeat starting with Step 2 to convergency.
Computational formulas for [(fi,u]n and [(fi,v]n will be presented below.

6.2.4 Derivation of computational formulas

Note, that the approximation (6.8) of the functional (6.6) can be obtained
also as follows. The square cell in the plane (ξ, η) is divided into two
triangles, first by the diagonal 13, and then by 24. The mapping of the
square onto a quadrilateral cell in the plane (u, v) is approximated by a
function which is linear in each triangle. Denote these functions as uh(ξ, η),
vh(ξ, η). All derivatives in the integrand of (6.6) is easy to compute as it
was done in the planar case. Then the integral (6.6) over the square cell in
the plane (ξ, η) is approximated by a half of the sum of this integral values,
computed for piecewise-linear approximation on the triangles, obtained for
the first and the second splitting. The result is the approximation (6.8).

Four triangles, introduced above, are considered to the quadrilateral
cell with number N . Each of this triangles corresponds to a corner with
number k and gives a proper contribution to the functional and also to
the value of its derivatives. Since the integrand in (6.6) does not depend
on the rotation of the coordinate system ξ,η, then all the computational
formulas will be the same for all triangles. We enumerate the triangle nodes
corresponding to the corner with local number k from 1 to 3 as follows:
node 1 corresponds to local node number k−1 of the N th cell,
node 2 corresponds to local node number k of the N th cell,
node 3 corresponds to local node number k+1 of the N th cell.

Then in new numeration the expression for Fk will be

F =
D1g

ru
11 +D2g

ru
22 + 2D3g

ru
11

Jk
√
gru11 g

ru
22 − (gru12 )2

,

D1 = (u1 − u2)
2 + (u3 − u2)

2 , D2 = (v1 − v2)
2 + (v3 − v3)

2,
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D3 = (u1 − u2)(v1 − v2) + (u3 − u2)(v3 − v2) ,

Jk = (u1 − u2)(v3 − v2) − (u3 − u2)(v1 − v2) .

We introduce notations

U =
D1g

ru
11 +D2g

ru
22 + 2D3g

ru
11√

gru11 g
ru
22 − (gru12 )2

,

V = (u1 − u2)(v3 − v2) − (u3 − u2)(v1 − v2) .

For vertex 1 we have

Vu = v3 − v2 , Vv = u2 − u3 ,

Uu = 2
gru11 (u1 − u2) + gru12 (v1 − v2)√

gru11 g
ru
22 − (gru12 )2

, Uv = 2
gru11 (v1 − v2) + gru12 (u1 − u2)√

gru11 g
ru
22 − (gru12 )2

,

Uuu = 2
gru11√

gru11 g
ru
22 − (gru12 )2

, Uuv = 2
gru12√

gru11 g
ru
22 − (gru12 )2

,

Uvv = 2
gru22√

gru11 g
ru
22 − (gru12 )2

,

Vuv = 0 , Vuv = 0 , Vuv = 0 .

For vertex 2 we have

Vu = v1 − v3 , Vv = u3 − u1 ,

Uu = 2
gru11 (2u2 − u1 − u3) + gru12 (2v2 − v1 − v3)√

gru11 g
ru
22 − (gru12 )2

,

Uv = 2
gru22 (2v2 − v1 − v3) + gru12 (2u2 − u1 − u3)√

gru11 g
ru
22 − (gru12 )2

,

Uuu = 4
gru11√

gru11 g
ru
22 − (gru12 )2

, Uuv = 4
gru12√

gru11 g
ru
22 − (gru12 )2

,

Uvv = 4
gru22√

gru11 g
ru
22 − (gru12 )2

,

Vuu = 0 , Vuu = 0 , Vuu = 0 .
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For vertex 3 we have

Vu = v2 − v1 , Vv = u1 − u2 ,

Uu = 2
gru11 (u3 − u2) + gru12 (v3 − v2)√

gru11 g
ru
22 − (gru12 )2

, Uv = 2
gru22 (v3 − v2) + gru12 (u3 − u2)√

gru11 g
ru
22 − (gru12 )2

,

Uuu = 2
gru11√

gru11 g
ru
22 − (gru12 )2

, Uuv = 2
gru12√

gru11 g
ru
22 − (gru12 )2

,

Uvv = 2
gru22√

gru11 g
ru
22 − (gru12 )2

, Vuv = 0 , Vuv = 0 , Vuv = 0 .

Computations are performed as follows. Let F and its derivatives on u1

and v1 be computed for the N th cell and kth triangle. Then the computed
values are added to the appropriate array elements

Ih+ = F, [Ru]n+ = Fu , [Rv]n+ = Fv ,

[Ruu]n+ = Fuu , [Ruv]n+ = Fuv , [Rvv]n+ = Fvv,

where n=n(N, k−1).
Analogous for vertex 2, correspondence between local and global

number is n=n(N, k).
Analogous for vertex 3, correspondence between local and global

number is n=n(N, k+1).
The algorithm for evaluating the derivatives [fu]n and [fv]n is

formulated as follows. All triangles of the mesh are scanned and for the
kth triangle of the N th cell the following values are computed

fu = (f1 − f2)(v3 − v2) − (f3 − f2)(v1 − v2) ,

fv = (u1 − u2)(f3 − f2) − (u3 − u2)(f1 − f2) ,

J2 = (x1 − x2)(y3 − y2) − (x3 − x2)(y1 − y2) .

Where f1, f2 and f3 are the values of the function f at the vertices 1,2, and
3 of the triangle corresponding to local numbers k−1, k, k+1 of the corners
in the quadrilateral cell. Computed values are added to the corresponding
array elements (which were first cleared)

[fu]n+ = fu, [fv]n+ = fv, [J ]n+ = J2, n = n(N, k).
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New values of the derivatives are computed as follows

[fu]n/ = [J ]n, [fv]n/ = [J ]n.

Here, a/=b means that the new value of a becomes equal to a/b.
The derivatives [xu]n and [xv]n, [yu]n and [yv]n, [zu]n and [zv]n are

computed in a similar manner.

Thus, the iteration method for irregular surface mesh relaxation and
adaptation is described in detail.

6.3 Adaptation to curvature of surface

Consider a two-dimensional surface in the 6-dimensional space

r(u, v) = (r1, r2, r3, r4, r5, r6)(u, v) = (x, y, z, nx, ny, nz)(u, v) ∈ Sr2 ⊂ R6,

where nx, ny, nz are the component of the unit normal to the surface Sr2,
computed by formulas

nx =
yuzv − zuyv√

(yuzv − zuyv)2 + (xuzv − zuxv)2 + (xuyv − yuxv)2
,

ny = − xuzv − zuxv√
(yuzv − zuyv)2 + (xuzv − zuxv)2 + (xuyv − yuxv)2

,

nz =
xuyv − yuxv√

(yuzv − zuyv)2 + (xuzv − zuxv)2 + (xuyv − yuxv)2
.

The elements of the metric tensor gruij are

gru11 = x2
u + y2

u + z2
u + n2

x,u + n2
y,u + n2

z,u ,

gru12 = xuxv + yuyv + zuzv + nx,unx,v + ny,uny,v + nz,unz,v ,

gru22 = x2
v + y2

v + z2
v + n2

x,v + n2
y,v + n2

z,v .

One-dimensional case is

r(s) = (r1, r2, r3, r4)(s) = (x, y, nx, ny)(s) ∈ Sr1 ⊂ R4,
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where s is the length of the flat curve, i.e x2
s + y2

s = 1. Components of the
unit normal are computed as

nx = −ys, ny = xs.

The harmonic functional takes the form
∫

dξ

sξ|rs|
,

where rs = x2
s + y2

s + x2
ss + y2

ss. The Euler equation for the functional is

sξ
√
x2
s + y2

s + x2
ss + y2

ss = const.

From this it follows that if x2
ss + y2

ss � x2
s + y2

s , then sξK = const, where

K is the curvature of the flat curve, equal to K =
√
x2
ss + y2

ss.
On the other hand, it is the asymptotic condition on a grid, being

optimal in the norm C1. Consider the element of the curve which can be
approximated by the arc of the circle of the radius R=1/K. Let the grid size
along the curve will be equal to h. Then, to obtain the error in the norm C1

on the small part of the curve, corresponding to the small angle α=h/R, it
is necessary to find the difference between the length of the arc and length
of the line segment connecting its ends. From the equidistribution principle
we obtain that this value is the constant along the curve

αR− sinαR

αR
= const.

From this it follows that

α = h/R = sξK = const.

6.4 Example of nonuniqueness in grid genera-

tion on surface

Consider the flat curve x=x(s), y=y(s), 0≤s≤L, where s is the curve length.
The harmonic functional is

∫
s2ξdξ , where sξ = x2

ξ + y2
ξ .
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The functional for the mapping, inverse to harmonic, is

∫
s−2
ξ du =

∫
s−1
ξ dξ .

The Euler equations are the same

sξ = const .

The example of nonuniqueness is drawn in [135]. Let the curve

(x − 0.5)2 + y2 = 0.25 , y =
√
x(1 − x) , 0 ≤ x ≤ 1 ,

be given. Consider the one-point grid generation problem

(x2 − x1)
2 + (y2 − y1)

2 + (x2 − x3)
2 + (y2 − y3)

2 → min .

In our example x1=y1=y3=0, x3=1. Introduce notation x2=x and
substitute y=

√
x(x− 1) instead of y2. We have

x2 + (1 − x)2 + 2x(1 − x) = 1.

Consequently, this problem has infinitely many solutions. If we use the
functional ∫

s−1
ξ dξ ,

the approximation takes the form

x−1/2 + (1 − x)−1/2.

After minimization we obtain the unique solution

x =
1

2
.



Chapter 7

Adaptive-harmonic
three-dimensional grid

generation

7.1 Three-dimensional regular grids

In the 3D case for constructing a harmonic grid the system of equations,
defining a harmonic mapping of the domain Ω onto a parametric cube, is
considered

ξxx + ξyy + ξzz = 0 , ηxx + ηyy + ηzz = 0 , µxx + µyy + µzz = 0 . (7.1)

These equations are usually inverted to the equations for the functions
x=x(ξ, η, µ), y=y(ξ, η, µ), z=z(ξ, η, µ) which define one-to-one mapping of
the parametric cube onto the domain Ω. Instead of the Laplace equations
the Poisson equations have been also considered

ξxx + ξyy + ξzz = P1 , ηxx + ηyy + ηzz = P2 , µxx + µyy + µzz = P3 ,

and adaptation is achieved by a proper choice of functions P1, P2 and P3.

7.1.1 Derivation of equations

We will derive equations for the case of adaptation. Introduce notations

r = (r1, r2, r3, r4) = (x, y, z, f) ∈ Sr3 ⊂ R4,
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u = (u1, u2, u3) = (x, y, z) ∈ Ω ⊂ R3,

ξ = (ξ1, ξ2, ξ3) = (ξ, η, µ) ∈ Q3 ⊂ R3.

rξ = (xξ, yξ, zξ, fξ),

rη = (xη, yη, zη, fη),

rµ = (xµ, yµ, zµ, fµ),

rx = (1, 0, 0, fx), ry = (0, 1, 0, fy), rz = (0, 0, 1, fz).

The general harmonic functional in the 3D case has the form

I =

∫ (
g11
ξr + g22

ξr + g33
ξr

)
dSr3,

where dSr3 is the element of the surface Sr3.
Let the adapted/control function f(x, y, z) defines a three-dimensional

surface in four-dimensional space. Then this functional can be written as
follows

I =

∫

grξ11g
rξ
22 − (grξ12)

2 + grξ11g
rξ
33 − (grξ13)

2 + grξ22g
rξ
33 − (grξ23)

2

√
grξ11[g

rξ
22g

rξ
33 − (grξ23)

2] − grξ12(g
rξ
12g

rξ
33 − grξ13g

rξ
23) + grξ13(g

rξ
12g

rξ
23 − grξ22g

rξ
13)

dξdηdµ,

(7.2)
where

grξ11 = r2ξ , g
rξ
22 = r2η , grξ33 = r2µ , grξ12 = grξ21 = (rξ · rη) ,

grξ13 = grξ31 = (rξ · rµ) , grξ23 = grξ32 = (rη · rµ) ,
here

fξ = fxxξ+fyyξ+fzzξ, fη = fxxη+fyyη+fzzη, fµ = fxxµ+fyyµ+fzzµ .

The functional (7.2) can be used for harmonic coordinate generation on
the surface of the graph of the control function f(x, y, z) dependent on three
variables. Projection of these coordinates onto the physical domain gives
an adaptive-harmonic grid, clustered in the regions of high gradients of the
control function f(x, y, z).
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The Euler equations of the functional (7.2) follow from the general
equations for n=3, k=1. We need only to compute the elements of
the covariant metric tensor Gru and contravariant tensor Gur of the
transformation r(u)=r(x, y, z):Ω → Sr3

gru11 = r2x = 1 + f2
x ,

gru22 = r2y = 1 + f2
y ,

gru33 = r2z = 1 + f2
z ,

gru12 = gru21 = rx · ry = fxfy,

gru13 = gru31 = rx · rz = fxfz,

gru23 = gru32 = ry · rz = fyfz,

det(Gru) = gru11 [gru22 g
ru
33−(gru23 )2)]−gru12 (gru12 g

ru
33−gru13 gru23 )+gru13 (gru12 g

ru
23−gru22 gru13 ) =

(1 + f2
x)(1 + f2

y + f2
z ) − f2

xf
2
y − f2

xf
2
z = 1 + f2

x + f2
y + f2

z ,

det(Grξ) = grξ11[g
rξ
22g

rξ
33−(grξ23)

2]−grξ12(grξ12grξ33−grξ13grξ23)+grξ13(grξ12grξ23−grξ22grξ13) =

det(Gru)[xξ(yηzµ − yµzη) − yξ(xηzµ − xµzη) + zξ(xξyη − xηyξ)],

g11
ξr = [grξ22g

rξ
33 − (grξ23)

2]/ det(Grξ),

g12
ξr = −(grξ12g

rξ
33 − grξ13g

rξ
23)/ det(Grξ),

g13
ξr = (grξ12g

rξ
23 − grξ13g

rξ
22)/ det(Grξ),

g22
ξr = [grξ11g

rξ
33 − (grξ12)

2]/ det(Grξ),

g23
ξr = −(grξ11g

rξ
23 − grξ13g

rξ
12)/ det(Grξ),

g33
ξr = [grξ11g

rξ
22 − (grξ12)

2]/ det(Grξ),

g11
ur = (1 + f2

y + f2
z )/(1 + f2

x + f2
y + f2

z ),

g12
ur = −fxfy/(1 + f2

x + f2
y + f2

z ),

g13
ur = −fxfz/(1 + f2

x + f2
y + f2

z ),

g22
ur = (1 + f2

x + f2
z )/(1 + f2

x + f2
y + f2

z ),

g23
ur = −fyfz/(1 + f2

x + f2
y + f2

z ),
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g33
ur = (1 + f2

x + f2
y )/(1 + f2

x + f2
y + f2

z ).

Substituting these expressions into the general equations, we obtain

L(x) = g11
ξrxξξ + 2g12

ξrxξη + 2g13
ξrxξµ + g22

ξrxηη + 2g23
ξrxηµ + g33

ξrxµµ−

1

D

[
∂

∂x

1 + f2
y + f2

z

D
+

∂

∂y

−fxfy
D

+
∂

∂z

−fxfz
D

]
= 0,

L(y) = g11
ξryξξ + 2g12

ξryξη + 2g13
ξryξµ + g22

ξryηη + 2g23
ξryηµ + g33

ξryµµ−
1

D

[
∂

∂x

−fxfy
D

+
∂

∂y

1 + f2
x + f2

z

D
+

∂

∂z

−fyfz
D

]
= 0, (7.3)

L(z) = g11
ξrzξξ + 2g12

ξrzξη + 2g13
ξrzξµ + g22

ξrzηη + 2g23
ξrzηµ + g33

ξrzµµ−

1

D

[
∂

∂x

−fxfz
D

+
∂

∂y

−fyfz
D

+
∂

∂z

1 + f2
x + f2

y

D

]
= 0 ,

where

D =
√

1 + f2
x + f2

y + f2
z .

7.1.2 Numerical implementation

The problem of grid generation in three dimensions will be considered in
the following formulation. In a simply connected domain Ω in space x, y, z,
a grid

(x, y, z)ijm, i = 1, . . . , i∗; j = 1, . . . , j∗ ,m = 1, . . . ,m∗,

must be constructed with given coordinates of the boundary nodes

(x, y, z)ij1, (x, y, z)ijm∗ , (x, y, z)i1m, (x, y, z)ij∗m, (x, y, z)1jm, (x, y, z)i∗jm.

Instead of the parametric cube the following parametric domain can be
introduced to simplify the computational formulas

1 < ξ < i∗, 1 < η < j∗, 1 < µ < m∗,

associated with the cube grid (ξi, ηj , µm) such that

ξi = i, ηj = j , µm = m, i = 1, . . . , i∗; j = 1, . . . , j∗; m = 1, . . . ,m∗.
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Equations (7.3) are approximated on this grid with the use of a simplest
finite-difference relations for derivatives with respect to ξ, η, µ. For example,
derivatives of f(ξ, η, µ) are approximated as follows

fξ ≈ [fξ]ijm =
1

2
(fi+1,j,m − fi−1,j,m),

fη ≈ [fη]ijm =
1

2
(fi,j+1,m − fi,j−1,m),

fµ ≈ [fµ]ijm =
1

2
(fi,j,m+1 − fi,j,m−1),

fξξ ≈ [fξξ]ijm = fi+1,j,m − 2fijm + fi−1,j,m,

fξη ≈ [fξη]ijm =
1

4
(fi+1,j+1,m − fi+1,j−1,m − fi+1,j−1,m + fi−1,j−1,m),

fξµ ≈ [fξµ]ijm =
1

4
(fi+1,j,m+1 − fi+1,j,m−1 − fi−1,j,m+1 + fi−1,j,m−1),

fηη ≈ [fηη]ijm = fi,j+1,m − 2fijm + fi,j−1,m,

fηµ ≈ [fηµ]ijm =
1

4
(fi,j+1,m+1 − fi,j+1,m−1 − fi,j−1,m+1 + fi,j−1,m−1),

fµµ ≈ [fµµ]ijm = fi,j,m+1 − 2fijm + fi,j,m−1.

The explicit method is used to numerical solution of the resulting
difference equations

xl+1
ijm = xlijm + τ

[L(x)]ijm
2[g11

ξr ]ijm + 2[g22
ξr ]ijm + 2[g33

ξr ]ijm
,

yl+1
ijm = ylijm + τ

[L(y)]ijm
2[g11

ξr ]ijm + 2[g22
ξr ]ijm + 2[g33

ξr ]ijm
, (7.4)

zl+1
ijm = zlijm + τ

[L(z)]ijm
2[g11

ξr ]ijm + 2[g22
ξr ]ijm + 2[g33

ξr ]ijm
.

Consider the formulas for the derivatives transformation in the 3D case

xξfx + yξfy + zξfz = fξ ,

xηfx + yηfy + zηfz = fη ,
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xµfx + yµfy + zµfz = fµ ,

from this it follows

fx = fξ(yηzµ − yµzη)/J − fη(yξzµ − yµzξ)/J + fµ(yξzη − yηzµ)/J ,

fy = −fξ(xηzµ − xµzη)/J + fη(xξzµ − xµzξ)/J − fµ(xξzη − xηzµ)/J ,

fz = fξ(xηyµ − xµyη)/J − fη(xξyµ − xµyξ)/J + fµ(xξyη − xηyµ)/J ,

where

J = xξ(yηzµ − yµzη) − xη(yξzµ − yµzξ) + xµ(yξzη − yηzµ) .

Approximating all the derivatives ξ, η, µ in these expressions with the use of
the above formulas, we obtain the approximation of the derivatives [fx]ijm,
[fy]ijm and [fz]ijm, used in (7.4).

The adaptive-harmonic grid generation algorithm in three dimensions
is formulated as follows:

1. Generate a quasi-uniform harmonic grid using the same algorithm
as for adaptation, but with f=0.

2. Compute the values of the control function fijm at every grid node.
3. Evaluate derivatives [fx]ijm , [fy]ijm , [fz]ijm and substitute them

into (7.4).
4. Make one iteration step and compute new values of xijm, yijm , zijm.
5. Repeat starting with Step 2 to convergence.
The resulting algorithm is simple in implementation and can be used for

meshing 3D domains until the increased complexity of domain or boundary
layers produce the appearance of self-intersecting cells. Then the special
algorithm should be employed, based on a variational formulation and
guaranteeing nondegenerate grid generation.

7.2 Variational barrier method in 3D

7.2.1 Discrete analog of Jacobian positiveness

The 3D case is much more complicated then 2D case, because simple
conditions of Jacobian positiveness cannot be obtained for the trilinear
mapping of the unit cube onto the hexahedral cell, cf. [149]. The notation
of convexity also cannot be used, since faces of hexahedron are not plane.
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Fig. 7.1: Vertex numeration and decomposition of cube to tetrahedra
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Fig. 7.2: Vertex numeration for basis tetrahedron

That is why the approach developed for the 2D meshes cannot be extended
to the 3D case.

Nevertheless, the discrete analog of the Jacobian positiveness for the
mapping of the unit cube onto a hexahedral cell can be obtained. We use
the decomposition of the parametric cube to tetrahedra, which are mapped
onto the corresponding tetrahedra of the decomposed hexahedral cell. The
mapping of every tetrahedra is one-to-one. This approach is analogous to the
technique used in the 2D case for approximation of the harmonic functional
in such a way that it has an infinite barrier at the boundary of the set of
unfolded meshes. Remind that in the 2D case the quadrilateral cell is divided
into two triangles first by the one diagonal and then by the other. In the first
and second decomposition, the mapping is approximated by the functions
which are linear in each triangle. All conditions of Jacobian positiveness for
every such mapping coincide with the condition providing that all the mesh
cells to be convex quadrilaterals.
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Consider a unit cube in R3 space of variables ξ, η, µ shown in Fig.7.1.
We decompose it into two prisms by the plane 1584. Then we decompose
the prism shown in Fig.7.1 into three tetrahedra drawing the planes through
the diagonals 14, 25, 58, 45, 46. Denote T ξ5124, T

ξ
5684, T

ξ
5624 the obtained

tetrahedra. Note that all these tetrahedra are equal to each other (up to
rotation and reflection) and one of the cube edges corresponds to one of
them. For example, the tetrahedron T ξ5124 can be referred to the edge 12.

Only one extra tetrahedron is referred to this edge namely T ξ3126. What is

the difference between the tetrahedra T ξ5124 and T ξ3126 ? The answer is that
each of them corresponds to a proper type of the coordinate system, right-
hand or left-hand. It is easy to compute the total number of such tetrahedra.
It is equal to double number of the cube edges, i.e., 24. For the unit cube
the volume of one tetrahedron is equal to 1/6, and the total volume of all
such tetrahedra is equal to 4.

Consider the basis tetrahedron shown in Fig.7.2. Vertices are
enumerated from 1 to 4 as shown in Fig.7.2. Each of this vertex corresponds
to a radius-vector r1, r2, r3, r4, respectively, in space x, y, z. All these
vectors define the tetrahedron in space x, y, z. We introduce the basis vectors

e1 = r2 − r1, e2 = r3 − r2, e3 = r4 − r3.

Note that the coordinate system e1, e2, e3 is a right-hand system what is
easy to see from the orientation of the basis tetrahedron in Fig.7.2. Hence,
the volume of the “right” tetrahedron is equal to

JTright = (e1 × e2) · e3

At the same time, the volume of the “left” tetrahedron is equal to

JTleft = −(e1 × e2) · e3

Now, by analogy with the 2D case, the condition for the mesh to be
nondegenerate for the 3D hexahedral mesh can be expressed as follows

[(JTleft)m]N > 0, [(JTright)m]N > 0, m = 1, . . . , 12; N = 1, . . . , Ne, (7.5)

where (JTleft)m is a volume of the tetrahedron corresponding to the edge
number m and defining the left-hand coordinate system, (JTright)m is a
volume of the tetrahedron corresponding to the edge number m and defining
the right-hand coordinate system (every cube has 12 edges), N is the cell
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number, Ne is the total number of cells. Conditions (7.5) define the discrete
analog of the Jacobian positiveness in the 3D case. Meshes, satisfying
inequalities (7.5), we will call nondegenerate hexahedral meshes.1

As in the 2D case, we must introduce the correspondence between local
and global node numbers

n = n(N, k), n = 1, . . . , Nn, N = 1, . . . , Ne, k = 1, . . . , 8 ,

where n is the global node number, Nn is the total number of mesh nodes,
N is the element number, Ne is the number of elements, k is the local node
number in the element.

Remark. Fig. 7.3 presents the mesh consisting of one degenerated cell
with positive volume of the corner tetrahedra. This cell is obtained from
the cell, depicted in Fig. 7.1, by rotating top face 5678 through 180 degrees
about its center, directed parallel to x3-axis and passing through the center
of this face. One can see that the volume of all the corner tetrahedra are
positive (e.g. see the tetrahedron with vertices 1235). Consequently, as a
discrete analog of the condition of positiveness to the Jacobian one uses the
condition of positiveness to the corner tetrahedra, and then the cases, like
depicted in Fig. 7.3, are admitted.

That is why we have to use above described division into 24 tetrahedra
and introduce rather a complicated construction of the set of unfolded grids,
defined by the inequalities (7.5). It provides the discrete analog of the
harmonic functional with an infinite barrier on the boundary of the set
of unfolded meshes, see the next subsection for description.

7.2.2 Problem formulation

We use notations

r = (r1, r2, r3, r4) = (x, y, z, f) ∈ Sr3 ⊂ R4,

u = (u1, u2, u3) = (x, y, z) ∈ Ω ⊂ R3,

ξ = (ξ1, ξ2, ξ3) = (ξ, η, µ) ∈ Q3 ⊂ R3.

1In [10], it was suggested another, more effective, approximate conditions of hex cell and
mesh nondegeneracy. It implies the use of a set of 10 basis tetrahedra for every hex cell.
Comparison of effectiveness of the present nondegeneracy conditions and those of [10] was
performed in [151] (Editor).
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Fig. 7.3: Example of hex cell with positive corner Jacobians and zero
Jacobian in the center
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rξ = (xξ, yξ, zξ, fξ),

rη = (xη, yη, zη, fη),

rµ = (xµ, yµ, zµ, fµ),

rx = (1, 0, 0, fx), ry = (0, 1, 0, fy), rz = (0, 0, 1, fz).

The harmonic functional in the 3D case has the form

I =

∫ (
g11
ξr + g22

ξr + g33
ξr

)
dSr3,

where dSr3 is the element of the surface Sr3.
Let the adapted/control function f(x, y, z) defines a three-dimensional

surface in four-dimensional space. Then this functional can be written as
follows

I =

∫

g11g22 − (g12)
2 + g11g33 − (g13)

2 + g22g33 − (g23)
2

√
g11[g22g33 − (g23)2] − g12(g12g33 − g13g23) + g13(g12g23 − g22g13)

dξdηdµ,

(7.6)
where

g11 = r2ξ , g22 = r2η, g33 = r2µ , g12 = g21 = (rξ · rη) ,

g13 = g31 = (rξ · rµ) , g23 = g32 = (rη · rµ) .
The functional (7.6) can be used for harmonic coordinate generation on

the surface of the graph of the control function dependent on three variables.
Projection of these coordinates onto the physical domain gives an adaptive-
harmonic grid, clustered in regions of high gradients of the adapted function
f(x, y, z).

The problem of irregular 3D mesh smoothing and adaption is formulated
as follows. Let the coordinates of the irregular mesh in space x, y, z be given

(x, y, z)n, n = 1, . . . , Nn , (7.7)

The mesh is formed by hexahedral elements, i.e., the correspondence
n=n(N, k) is also defined. The problem is to find new nodal coordinates,
minimizing the sum of the functional (7.6) values, computed for a mapping
of the unit cube onto every cell of the mesh.
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7.2.3 Approximation of the functional

First consider the case when f(x, y, z)=0. The functional (7.6) in this case
can be written in a more simple form

I =

∫
(rξ × rη)

2 + (rξ × rµ)
2 + (rη × rµ)

2

(rξ × rη) · rµ
dξdηdµ, (7.8)

where “×” is a vector product, and “·” is a scalar product,

rξ = (xξ, yξ, zξ, fξ), rη = (xη , yη, zη, fη), rµ = (xµ, yµ, zµ, fµ).

Let the linear transformation xh(ξ, η, µ),yh(ξ, η, µ),zh(ξ, η, µ) maps the basis

tetrahedron T ξ1234 in space ξ, η, µ onto a tetrahedron T1234 in space x, y, z.
The value of the functional with the linear functions xh(ξ, η, µ), yh(ξ, η, µ),
zh(ξ, η, µ) can be computed precisely. Consequently, the approximation of
this functional can be written as

Ih =

Ne∑

N=1

12∑

m=1

1

24
[(Fm)left + (Fm)right]N , (7.9)

where

(Fm)left =
(rhξ × rhη )2 + (rhξ × rhµ)2 + (rhη × rhµ)2

(Jm)left
,

(Fm)right =
(rhξ × rhη )2 + (rhξ × rhµ)

2 + (rhη × rhµ)2

(Jm)right
,

(Jm)left = −(rhξ × rhη ) · rhµ,

(Jm)right = (rhξ × rhη ) · rhµ.
Consider one term in (7.9), for example (Fm)left, and suppose that the

Jacobian (Jm)left tends to zero, remaining positive. So as Ih does not tend to
infinity in this situation it is necessary that the numerator in (Fm)left must
also tend to zero. From the form of the numerator it follows that the vectors
e1=r2−r1, e2=r3−r2, e3=r4−r3 are parallel and, hence, all points r1, r2,
r3, r4 lie on a straight line. Consequently, the volumes of all tetrahedra that
contain corresponding faces must also tend to zero, including tetrahedron
defined by the edge 34 containing edge 23. Repeating argument as many
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times as necessary, we conclude that all mesh nodes, including those at the
boundary of the domain, must lie on a straight line, which is impossible.

From this it follows that the function (7.9) has the infinite barrier at
the boundary of nondegenerate 3D hexahedral meshes, satisfying inequalities
(7.5). Hence, if this set is not empty, the system of the algebraic equations

Rx =
∂Ih

∂xn
= 0 , Ry =

∂Ih

∂yn
= 0 , Rz =

∂Ih

∂zn
= 0 ,

has at least one solution which is a nondegenerate mesh. To find it, one must
first find a certain initial nondegenerate mesh and then use some method of
unconstrained minimization of the function Ih. Since this function has the
infinite barrier on the boundary of the set of nondegenerate meshes, each
step of the method can be chosen so that the mesh always satisfies the
inequalities (7.5).

For adaptive mesh generation with employing functional (7.2) we use
the same approach. Consider cell decomposition into the 24 tetrahedra,
described above. Then the mapping of the basis tetrahedron onto every
of these tetrahedra is approximated by the linear functions, with assumption
that f is also approximated by a linear function defined by its values at the
tetrahedron vertices. Then the integrand in (7.2) will be equal to constant.
Note that the integrand in (7.2) differs from (7.6). The first one is invariant
relative to orthogonal transformations of the basis tetrahedron. It means that
we need not use two terms in the approximation of (7.2) corresponding to
the right-hand and left-hand coordinate systems. The value of this functional
depends only on nodes numeration in the basis tetrahedron and does not on
its type.

7.2.4 Minimization of functional

Suppose the mesh at the lth step of the iterations is determined. We use
the quasi-Newtonian procedure when the (l+1)th step is accomplished by
solving two linear equations for every interior node

τRx +
∂Rx
∂xn

(xl+1
n − xln) +

∂Rx
∂yn

(yl+1
n − yln) +

∂Rx
∂zn

(zl+1
n − zln) = 0 ,

τRy +
∂Ry
∂xn

(xl+1
n − xln) +

∂Ry
∂yn

(yl+1
n − yln) +

∂Ry
∂zn

(zl+1
n − zln) = 0 ,
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τRz +
∂Rz
∂xn

(xl+1
n − xln) +

∂Rz
∂yn

(yl+1
n − yln) +

∂Rz
∂zn

(zl+1
n − zln) = 0 ,

From this it follows

xl+1
n = xln − τ

Rx

(
∂Ry

∂yn

∂Rz

∂zn
−∂Rz

∂yn

∂Ry

∂zn

)
−Ry

(
∂Rx

∂yn

∂Rz

∂zn
−∂Rz

∂yn

∂Rx

∂zn

)
+Rz

(
∂Rx

∂yn

∂Ry

∂zn
−∂Ry

∂yn

∂Rx

∂zn

)

det(R)
,

yl+1
n = yln − τ

−Rx
(
∂Ry

∂xn

∂Rz

∂zn
−∂Rz

∂xn

∂Ry

∂zn

)
+Ry

(
∂Rx

∂xn

∂Rz

∂zn
−∂Rz

∂xn

∂Rx

∂zn

)
−Rz

(
∂Rx

∂xn

∂Ry

∂zn
−∂Ry

∂xn

∂Rx

∂zn

)

det(R)
,

zl+1
n = zln − τ

Rx

(
∂Ry

∂xn

∂Rz

∂yn
−∂Rz

∂xn

∂Ry

∂yn

)
−Ry

(
∂Rx

∂xn

∂Rz

∂yn
−∂Rz

∂xn

∂Rx

∂yn

)
+Rz

(
∂Rx

∂xn

∂Ry

∂yn
−∂Ry

∂xn

∂Rx

∂yn

)

det(R)
,

(7.10)

det(R) =
∂Rx
∂xn

(
∂Ry
∂yn

∂Rz
∂zn

− ∂Rz
∂yn

∂Ry
∂zn

)
− ∂Rx
∂yn

(
∂Ry
∂xn

∂Rz
∂zn

− ∂Rz
∂xn

∂Ry
∂zn

)
+

∂Rx
∂zn

(
∂Ry
∂xn

∂Rz
∂yn

− ∂Rz
∂xn

∂Ry
∂yn

)
.

where τ is the iteration parameter which is chosen so that the mesh remains
nondegenerate. With this purpose after every step the conditions (7.5) are
checked and if they are not satisfied, this parameter is multiplied by 0.5.

The adaptive-harmonic algorithm for the 3D mesh relaxation and
adaption is formulated as follows:

1. Generate an initial mesh using a marching method.

2. Compute new values fn at every mesh node.

3. Make one iteration step (7.10) and compute new values of xn,yn,zn.

4. Repeat starting with Step 2 to convergency.

Note that the entire algorithm contains computational formulas for
[fx]n, [fy]n, [fz]n which will be presented below.
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7.2.5 Derivation of computational formulas

We will obtain computational formulas in the case of adaptation, i.e., we
approximate the functional (7.2). The used approach is similar to the method
in 2D.

Consider the linear transformation xh(ξ, η, µ), yh(ξ, η, µ), zh(ξ, η, µ)
of the basis tetrahedron shown in Fig.7.2 onto a tetrahedra of the cell
decomposition. The function f will be approximated by the linear function
fh(ξ, η, µ). Derivatives of these functions can be easily computed taking into
account the enumeration of the vertices in the basis tetrahedron

rhξ = (xhξ , y
h
ξ , z

h
ξ , f

h
ξ ) = r2 − r1 = (x2 − x1, y2 − y1, z2 − z1, f2 − f1) ,

rhη = (xhη , y
h
η , z

h
η , f

h
η ) = r3 − r2 = (x3 − x2, y3 − y2, z3 − z2, f3 − f2) ,

rhµ = (xhµ, y
h
µ, z

h
µ, f

h
µ ) = r4 − r3 = (x4 − x3, y4 − y3, z4 − z3, f4 − f3) .

From this it follows

gij = (ri+1 − ri) · (rj+1 − rj),

that is,

g11 = (r2 − r1)
2, g22 = (r3 − r2)

2, g33 = (r4 − r3)
2 ,

g12 = g21 = ((r3 − r2) · (r2 − r1)) ,

g13 = g31 = ((r4 − r3) · (r2 − r1)) ,

g23 = g32 = ((r4 − r3) · (r3 − r2)) . (7.11)

Substituting these expressions into the integrand of (7.2) we obtain

F = U/V ,

where

U = g11g22 − (g12)
2 + g11g33 − (g13)

2 + g22g33 − (g23)
2 , (7.12)

V=
√
g11[g22g33 − (g23)2] − g12(g12g33 − g13g23) + g13(g12g23 − g22g13) .

(7.13)
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We use the chain rule to differentiate the ratio of two functions. After
differentiating we obtain

Fx =
Ux − FVx

V
, Fy =

Uy − FVy
V

, Fz =
Uz − FVz

V
,

Fxx =
Uxx − 2FxVx − FVxx

V
,

Fyy =
Uyy − 2FyVy − FVyy

V
,

Fzz =
Uzz − 2FzVz − FVzz

V
, (7.14)

Fxy = Fyx =
Uxy − FxVy − FyVx − FVxy

V
,

Fxz = Fzx =
Uxz − FxVz − FzVx − FVxz

V
,

Fyz = Fzy =
Uyz − FzVy − FyVz − FVyz

V
.

For vertex 1 of the tetrahedron we should substitute the expressions
(7.11), (7.12),(7.13) into (7.14) instead of U , V , and also replace x, y, z by
x1, y1, z1 in the resulting formulas.

For vertex 2 x, y, z in (7.14) are replaced by x2, y2, z2.
For vertex 3 x, y, z in (7.14) are replaced by x3, y3, z3.
For vertex 4 x, y, z in (7.14) are replaced by x4, y4, z4.
When computing derivatives of fi on xj , yj , zj, i=1, . . . , 4, j=1, . . . , 4

we use the formulas for the transformation of derivatives in the 3D space

xξfx + yξfy + zξfz = fξ ,

xηfx + yηfy + zηfz = fη ,

xµfx + yµfy + zµfz = fµ .

From this it follows

fx = fξ(yηzµ − yµzη)/J − fη(yξzµ − yµzξ)/J + fµ(yξzη − yηzξ)/J ,

fy = −fξ(xηzµ − xµzη)/J + fη(xξzµ − xµzξ)/J − fµ(xξzη − xηzξ)/J ,

fz = fξ(xηyµ−xµyη)/J − fη(xξyµ−xµyξ)/J + fµ(xξyη−xηyξ)/J , (7.15)
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where

J = xξ(yηzµ − yµzη) − xη(yξzµ − yµzξ) + xµ(yξzη − yηzξ) .

Note that the derivatives with respect to x, y, z are independent on what
a system of coordinates, right-hand or left-hand, is used. Substituting
expressions for the derivatives of xh, yh, zh with respect to ξ, η, µ into
(7.15) we obtain the formulas for computation of the derivatives fhx , f

h
y , f

h
z .

We use the following formulas in computations

∂fi
∂xj

=

{
fhx if i=j,

0 if i 6=j,

∂fi
∂yj

=

{
fhy if i=j,

0 if i 6=j,
∂fi
∂zj

=

{
fhz if i=j,

0 if i 6=j,
Computations are performed as follows. Let F and its derivatives with

respect to x1,y1, and z1 in the numeration of the basis tetrahedron be
computed using formulas to the N th cell and the local node number k. Then
the computed values are added to the appropriate array elements (which were
first cleared)

Ih+ = F, [Rx]n+ = Fx, [Ry]n+ = Fy , [Rz]n+ = Fz ,

[Rxx]n+ = Fxx, [Ryy]n+ = Fyy, [Rzz]n+ = Fzz ,

[Rxy]n+ = Fxy, [Rxz]n+ = Fxz , [Ryz]n+ = Fyz ,

where n=n(N, k1). Here a+=b means that the new value of a becomes
equal to a+b.

Analogous for vertex 2, correspondence between local and global
number is n=n(N, k2).

Analogous for vertex 3, correspondence between local and global
number is n=n(N, k3).

Analogous for vertex 4, correspondence between local and global
number is n=n(N, k4).

Thus, the iteration method for irregular 3D mesh relaxation and
adaptation is described in detail.



Chapter 8

Grid-quality measures
Relevant quality measures for unstructured meshes is still an open problem.
Recent progress is presented in [41, 88, 95].

8.1 Tetrahedron shape measures

First we present the definition of a tetrahedron shape measure [41, 95]

Definition 1.

A tetrahedron shape measure is a continuous function that evaluates
the quality of a tetrahedron. It must be invariant to the translation,
rotation, reflection, and uniform scaling of the tetrahedron, i.e., to a
linear conformal mapping. There is no local maximum other than the
global maximum for a regular tetrahedron and there is no local minimum
other than the global minimum for a degenerate tetrahedron. For easy
comparison it should be scaled in the interval [0, 1]. Value 1 corresponds
to the regular tetrahedron and 0 corresponds to a degenerate tetrahedron.

Degenerate tetrahedron is a tetrahedron whose volume vanishes and
some of the edges do not vanish. When the volume of the tetrahedron is
negative, the tetrahedron is more than degenerate, it is inverted. If the mesh
contains negative tetrahedra, at the first stage the shape optimizer should
try to untangle them.

We use the following notations. T (r0, r1, r2, r3) stands for a non-de-
generate tetrahedron T with the vertices r0, r2, r3, r4, V denotes the volume
of T ; s0=area(4r1, r2, r3), s1=area(4r0, r2, r3), s2=area(4r0, r1, r3), and
s3=area(4r0, r1, r2) are the areas of the tetrahedron faces, lij=|ri − rj |,
0≤i<j≤3, denotes the length of the six edges of T .
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8.1.1 Radius ratio

The radius ratio RR of a tetrahedron T is defined as RR = Nρin/ρout, where
ρin and ρout are the inradius and circumradius of T , respectively, and N is
dimension of the spase. In [95] an easy way to compute this tetrahedron
shape measure in 3D is given

ρin = 3V
/ 3∑

i=0

si ,

ρout =

√
(a+ b+ c)(a+ b− c)(a+ c− b)(b+ c− a)

24V
,

RR = 3
ρin
ρout

=
216V 2

√
(a+ b+ c)(a+ b− c)(a+ c− b)(b+ c− a)

3∑
i=0

si

,

where a, b, c are the products of the lengths of opposite edges of T .

8.1.2 Mean ratio

Let R be an equilateral tetrahedron and M be the matrix involved in an affine
transformation from R to T . The mean ratio MR of the tetrahedron T is
the ratio of the geometric mean over the algebraic mean of the eigenvalues
λ1, λ2, λ3 of the matrix MTM . For positive numbers the geometric mean
is less or equal to the algebraic mean. A simple expression involving only
the volume and the edge lengths can be obtained (see [41])

MR =
3(det(MTM))1/3

tr(MTM)
=

3(λ1λ2λ3)
1/3

λ1 + λ2 + λ3
=

12(9V 2)1/3∑
0≤i<j≤3

l2ij
.

Similarly, for the inverse transformation the mean ratio can be defined as
(see the chapter of Weatherill in [62])

MR− =
3(det((M−1)TM−1))1/3

tr(M−1)TM−1)
=

3(λ−1
1 λ−1

2 λ−1
3 )1/3

λ−1
1 + λ−1

2 + λ−1
3

=
4(3V )4/3

3∑
i=0

s2i

.
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8.1.3 Solid angle

The solid angle θi at the vertex ri of the tetrahedron T is defined to be
the surface area formed by projecting each point of the face not containing
ri to the unit sphere centered at ri. The area of the unit sphere is 4π, the
maximum solid angle for a positive tetrahedron is 2π in the case of a flat
tetrahedron. The solid angle at the corner of rectangular tetrahedron is π/2.
The solid angle tetrahedron measure SA = σmin can be computed as follows
[41]:

SA = σmin = α min
0≤ß≤3

sin(θi/2) ,

sin(θi/2) = 12V



∏

i,k 6=i

(
(lij + lik)

2 − l2jk
)



−1/2

,

where

α−1 =
√

6/9 = 0.2721655

is the value of sin(θi/2) for four solid angles of the regular tetrahedron.

8.1.4 Dihedral angle

Each of six edges of a tetrahedron is surrounded by two triangular faces.
At a given edge, the dihedral angle between two faces is the angle between
the intersection of these faces and a plane perpendicular to the edge. For a
positive tetrahedron, the dihedral angle is bounded between zero and π. It is
equal to π minus the angle between the normals of the faces. The minimum
dihedral angle DA can be computed as

DA = ϕmin = α min
0≤ß<j≤3

(π − arccos(nij1 · nij2)),

where nij1 and nij2 are normals of the two triangular faces adjacent to the
edge ij and

α−1 = π − arccos(−1/3) = 1.230959

is the value of the six dihedral angles of the regular tetrahedron.

According to Def. 1 of a tetrahedron shape measure the minimum of
dihedral angles DM is not a tetrahedron shape measure.
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8.1.5 Edge ratio

The edge ratio ER of a tetrahedron T is the ratio of the smallest edge to
the largest edge

ER =

min
0≤ß<j≤3

lij

max
0≤ß<j≤3

lij
.

According to Def. 1 of a tetrahedron shape measure the edge ratio ER is not
a tetrahedron shape measure.

8.1.6 Aspect ratio

Tetrahedron shape measures that are the ratio of two characteristic
sizes of the tetrahedron can be called aspect ratio. They are usually
some quantity vanishing with the volume normalized by something that
does not vanish when the volume vanishes. The aspect ratio can be
proportional to the volume of the tetrahedron, radius, area or volume of
the insphere, or minimum of four solid angles. It can not be a function of
the circumsphere, smallest edge, and minimum dihedral angle because a
degenerate tetrahedron may have non-null circumsphere, smallest edge or
minimum dihedral angle. The aspect ratio may be normalized by the longest
edge, average of edges, sum of edges, sum of area of the faces, radius, area
or volume of the circumsphere, etc. One of such aspect ratio is used at
INRIA, France

AR =
12√
6

ρin
max

0≤ß<j≤3
lij

.

8.1.7 Equivalence of tetrahedron shape measures

One of the deepest analysis of tetrahedron shape measures is available
from Liu and Joe [95]. They define a notion of tetrahedron shape measure
equivalence.

Definition 2. (see [95])

Let p and q be two different tetrahedron shape measures with values
from [0, 1]. They are called equivalent if there exists positive constants c0,
c1, e0, e1 such that

c0p
e0 ≤ q ≤ c1p

e1 .
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Liu and Joe [95] proved the equivalence of the tetrahedron shape measures:
radius ratio RR, mean ratio MR, and solid angle SA. It implies that if
one of these tetrahedron shape measures approaches zero, which indicates
poor shaped tetrahedron, then the others do so. Conversely, if one of these
tetrahedron shape measures approaches unity, then the others do so.

Liu and Joe [95] made a conjecture about how the tetrahedron shape
measures should be equivalent. Another conjecture is proposed in [41].

Conjecture (see [41])
All tetrahedron shape measures that satisfy Definition 1 are equivalent

in the sense of Definition 2.
But it is obvious that this conjecture is false. Two tetrahedron shape

measures can be constructed such that one approaches zero as V α, α > 0,
when V → 0, another approaches zero as exp(−1/V ), where V is the volume
of a tetrahedron. These measures will satisfy Def.1 but obviously will not
satisfy Def.2.

As it was mentioned in [41] "the more a mesh is optimized with a
given tetrahedron shape measure, the closer to the optimal mesh it is for
any other tetrahedron shape measure. At the limit, if it were possible to
mesh a domain with only equilateral tetrahedra, as it is in 2D, all mesh
optimizers should converge to that mesh, whichever shape measure is used
in the mesh optimizer. The problem is that the optimal mesh does not exist
in 3D. It is impossible to fill the space with regular tetrahedra. So, the
converged state is unknown and depends slightly of the tetrahedron shape
measure used".

8.2 Trilinear mapping

Consider a trilinear mapping of a unit cube in space of variables u, v, w onto
a hexahedral cell in space of variables x, y, z with vertices r

ijk=r(i, j, k),
i, j, k∈{0, 1}

r(ξ1, ξ2, ξ3) = (1 − ξ1)(1 − ξ2)(1 − ξ3)r
000 + ξ1(1 − ξ2)(1 − ξ3)r

100+

(1 − ξ1)ξ2(1 − ξ3)r
010 + (1 − ξ1)(1 − ξ2)ξ3r

001+

ξ1ξ2(1 − ξ3)r
110 + ξ1(1 − ξ2)ξ3r

101+

(1 − ξ1)ξ2ξ3r
011 + ξ1ξ2ξ3r

111 .

(8.1)

Here r=(x1, x2, x3)
T=(x, y, z)T is a spatial position vector.
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Curvilinear coordinates are (ξ1, ξ2, ξ3)=(u, v, w), where u, v, w∈[0, 1].
Cell vertices are enumerated with triple indices (see fig.8.1)
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Fig. 8.1: Numeration of vertices in hexahedral cell

Covariant basis vectors are the following

gi =
∂r

∂ξi
.

Covariant basis vectors for trilinear mapping are equal to

gi(ξj , ξk) = (1 − ξj)(1 − ξk)g
00
i + ξj(1 − ξk)g

10
i + (1 − ξj)ξkg

01
i + ξjξkg

11
i ,
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where {i, j, k} is the cyclic permutation from {1, 2, 3} and

gmn1 = r
1mn − r

0mn, m, n ∈ {0, 1} ,
gmn2 = r

m1n − r
m0n, m, n ∈ {0, 1} ,

gmn3 = r
mn1 − r

mn0, m, n ∈ {0, 1} .

The Jacobian of the trilinear mapping is equal to J=g1·(g2×g3).
Obviously that

J =

1∑

i,j,k,l,m,n=0

αijklmn g
ij
1 · (gkl2 × gmn3 ) ,

where

αijklmn = (1 − ξ2)
1−iξi2(1 − ξ3)

1−jξj3(1 − ξ1)
1−kξk1 (1 − ξ3)

1−l

×ξl3(1 − ξ1)
1−mξm1 (1 − ξ2)

1−nξn3 ≥ 0,

and the coefficients αijklmn are strictly positive for the interior points of the
trilinear cell. It means that that if

gij1 · (gkl2 × gmn3 ) > 0, i, j, k, l,m, n ∈ {0, 1} ,

then it follows that the Jacobian of the trilinear mapping is positive in the
interior of the cell. Since on the boundary of cell some of the coefficients
αijklmn are always positive we obtain that J will be positive on the cell
boundary as well. There are additional conditions on gi (see fig.1)

g00
1 + g10

2 = g00
2 + g10

1 , g00
1 + g10

3 = g00
3 + g01

1 , g00
2 + g01

3 = g00
3 + g01

2 ,

g01
2 + g11

1 = g01
1 + g11

2 , g10
1 + g11

3 = g01
3 + g11

1 , g10
2 + g11

3 = g10
3 + g11

2 .

Each condition is associated with the corresponding face.
Necessary conditions of nondegeneracy of the trilinear mapping (8.1)

were considered in [10, 85, 86, 149, 150] and sufficient conditions in [149,
150, 153]. The most detailed analysis was performed in [149, 150] and it was
suggested the necessary and sufficient conditions of nondegeneracy which
do not coincide.1

1This paragraph was added by the Editor.
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8.3 Metric coefficients

Coefficients of the metric tensor are computed as follows

gij = gigj =
∂r

∂ξi

∂r

∂ξj
.

For the trilinear mapping (8.1) it follows that

∂r

∂u
= (1 − v)(1 − w)(r100 − r

000) + v(1 − w)(r110 − r
010)

+vw(r111 − r
011) + (1 − v)w(r101 − r

001),

∂r

∂v
= (1 − u)(1 − w)(r010 − r

000) + u(1 − w)(r110 − r
100)

+uw(r111 − r
101) + (1 − u)w(r011 − r

001),

∂r

∂w
= (1 − u)(1 − v)(r001 − r

000) + u(1 − v)(r101 − r
100)

+uv(r111 − r
110) + (1 − u)v(r011 − r

010).

Components of the metric tensor are computes as follows

g11 =
∂r

∂u

∂r

∂u
, g12 =

∂r

∂u

∂r

∂v
, g13 =

∂r

∂u

∂r

∂w
, g23 =

∂r

∂v

∂r

∂w
,

g22 =
∂r

∂v

∂r

∂v
, g33 =

∂r

∂w

∂r

∂w
.

The Jacobian is equal to

J =
∂r

∂u

(∂r
∂v

× ∂r

∂w

)
=xu(yvzw− zvyw)−xv(yuzw− zuyw)+xw(yuzv− zuyv).

The Determinant of the metric tensor

g = g11(g22g33 − g23g23) − g12(g12g33 − g13g23) + g13(g12g23 − g13g22).

can be computed also as g = J2 .
Components of the contravariant metric tensor are computes as follows

g11 = g−1(g22g33−g2
23), g

12 = −g−1(g12g33−g13g23), g13 = g−1(g12g23−g13g22),

g23 = −g−1(g11g23−g13g12), g22 = g−1(g11g33−g2
13), g

33 = g−1(g11g22−g2
12).
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8.4 Quality measures of curvilinear coordinate

systems

In this section we present quality measures for curvilinear coordinate system
from [94]

8.4.1 Aspect ratio

In the 2D case the aspect ratio is the measure of the departure of the cell
from a rhombus. In the 3D case the aspect ratio in the point u, v, w is
computed as follows

Qsk =
g11
g22

+
g22
g11

+
g11
g33

+
g33
g11

+
g22
g33

+
g33
g22

.

The normalized aspect ratio

Q̃sk =
6

Qsk
.

8.4.2 Skewness

There are four measures of skewness

Qsk,1 =
g2
12

g11g22
+

g2
13

g11g33
+

g2
23

g22g33
,

Qsk,2 =
g2
12

g11g22 − g2
12

+
g2
13

g11g33 − g2
13

+
g2
23

g22g33 − g2
23

,

Qsk,3 =
(g12)2

g11g22
+

(g13)2

g11g33
+

(g23)2

g22g33
,

Qsk,4 =
(g12)2

g11g22 − (g12)2
+

(g13)2

g11g33 − (g13)2
+

(g23)2

g22g33 − (g23)2
,

Normalized measures are the following

Q̃sk,1 = 1 −Qsk,1/3 , Q̃sk,2 = 1/(Qsk,2 + 1) ,

Q̃sk,3 = 1 −Qsk,3/3 , Q̃sk,4 = 1/(Qsk,4 + 1) .
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8.4.3 Orthogonality

Another quantities, characterizing departure from orthogonality, are as
follows

Qo,1 = g11g22g33/g , Qo,2 = g11g22g33g ,

Qo,3 = g2
12 + g2

13 + g2
23 , Qo,4 = (g12)2 + (g13)2 + (g23)2 .

Normalized quantities are

Q̃o,1 = 1/Qo,1 , Q̃o,2 = 1/Qo,2 ,

Q̃o,3 = 1/(Qo,3 + 1) , Q̃o,4 = 1/(Qo,4 + 1) .

8.4.4 Conformality

Deviation of the trilinear mapping from conformal can be measured by

Qcf,1 = g1/3(g11 + g22 + g33) , Qcf,2 = g−2/3(g11 + g22 + g33) .

Normalized quantities are

Q̃cf,1 = 1/Qcf,1 , Q̃cf,2 = 1/Qcf,2 .

8.4.5 Warping

Computational formulas for the second derivatives are the following

∂2
r

∂u∂v
= −v(1 − w)(r100 − r

000) + (1 − w)(r110 − r
010)

+w(r111 − r
011) − vw(r101 − r

001),

∂2
r

∂v∂w
= −(1 − u)(r010 − r

000) − u(r110 − r
100)

+u(r111 − r
101) + (1 − u)(r011 − r

001),

∂2
r

∂u∂w
= −(1 − v)(r100 − r

000) − w(r110 − r
010)

+v(r111 − r
011) + (1 − v)(r101 − r

001).
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It is easy to see that

∂2r/∂u2 = 0, ∂2r/∂v2 = 0, ∂2r/∂w2 = 0 .

Components of the vector product for the u, v surface are the following

sx = yuzv − yvzu , sy = −(xuzv − xvzu) , sz = xuyv − xvyu .

Elements of the second fundamental form are

b11 = 0 , b12 =
xuvsx + yuvsy + zuvsz√

s2x + s2y + s2z

, b22 = 0 .

Determinant of the metric tensor on the u, v surface is

guv = g11g22 − g2
12 .

Mean curvature squared on the u, v surface is

Quv1 =

(
guv22 b11 − 2guv12 b12 + guv11 b22

2guv

)2

.

Gaussian curvature squared is

Quv2 =

(
b11b22 − b212

guv

)2

.

Torsion is
Quu3 = α|∂2r/∂u2| = 0 .

Eccentricity is
Quu4 = α1|∂2r/∂u2| = 0 .

Quality measures are

Qw,1 = Quv1 +Quw1 +Qvv1 , Qw,2 = Quv2 +Quw2 +Qvw2 ,

Qw,3 = Quu3 +Qvv3 +Qww3 , Qw,4 = Quu4 +Qvv4 +Qww4 .

Normalized quantities are

Q̃w,1 = 1/Qw,1 , Q̃w,2 = 1/Qw,2 ,

Q̃w,3 = 1/(Qw,3 + 1) , Q̃w,4 = 1/(Qw,4 + 1) .
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8.5 Hexahedron shape measures

In the case of a hexahedron we can measure the quality of all corner
tetrahedrons. But in some cases it is not enough. There is an example
of a hexahedron which possesses positive corner Jacobians (volumes of the
corner tetrahedrons), but zero Jacobian at the center.

Not all shape measures, developed for measuring the deviation of the
shape of a tetrahedron from the shape of equilateral tetrahedron, presented
in the previous section, can be used in this case.

The mean ratio and condition number, introduced by Knupp [88], can
be used for these purposes. Let R be a tetrahedron (R0, R1, R2, R3) formed
by three orthogonal vectors (R1 − R0), (R2 − R0), and (R3 − R0), each
of unit length, and M be the matrix involved in an affine transformation
from R to T . The mean ratio MR of the tetrahedron T is the ratio of the
geometric mean to the algebraic mean of the eigenvalues λ1, λ2, λ3 of the
matrix MTM . For positive numbers the geometric mean is less or equal to
the algebraic mean. A simple expression involving only the volume and the
edge lengths can be obtained

MR =
3(det(MTM))1/3

tr(MTM)
=

3(λ1λ2λ3)
1/3

λ1 + λ2 + λ3
=

3(3V )2/3

3∑
i=1

l20i

.

Similarly, for the inverse transformation the mean ratio can be defined as

MR− =
3(det((M−1)TM−1))1/3

tr(M−1)TM−1)
=

3(λ−1
1 λ−1

2 λ−1
3 )1/3

λ−1
1 + λ−1

2 + λ−1
3

=
3(3V )4/3

4
3∑
i=1

s2i

.

The condition number CN can be introduced as follows (see [88])

1

(CN)2
= (MR)(MR−)

=
9

(λ1 + λ2 + λ3)(λ
−1
1 + λ−1

2 + λ−1
3 )

=
9(3V )2

4
3∑
i=1

l20i
3∑
i=1

s2i

.

Using the inequality

3(λ1λ2 + λ1λ3 + λ2λ3) ≤ (λ1 + λ2 + λ3)
2
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we can obtain the following estimates for the condition number

(MR−)3/2 =
9λ1λ2λ3√

3(λ1λ2 + λ1λ3 + λ2λ3)3/2
≥ 1

(CN)2

≥ 27λ1λ2λ3

(λ1 + λ2 + λ3)3
= (MR)3 .



Chapter 9

Grid optimization
An approach, presented herein, is based on the principle of the minimal
energy density of a mapping. This also leads to the variational formulation
of an elliptic grid generator.

The main idea is the following. A local shape measure is formulated for
every cell or element. With this purpose a linear mapping, which transforms
points in the simplex element with prescribed objective shape to points
in an arbitrary physical element, is considered. The energy density of a
linear mapping is defined as an averaged energy stored in the right-angled
parallelepiped of the unit volume in the physical space, provided that the
parallelepiped is the image of a cube in computational space. The shape
measure is a quantity inverse to the energy density. Maximum of such
a shape measure corresponds to the minimum of the energy density and
it is attained if and only if the shape of the element is the same as the
corresponding objective shape. For example, only two parameters define the
shape of a triangle: the lengths ratio of two sides and the angle between
them. Two triangles are of the same shape if these two parameters are
identical for the both triangles, which is equivalent to the minimum of the
energy density of the linear transformation between these triangles.

The sum of local energy densities forms the global energy density of
the grid deformation from prescribed objective shapes. This user-defined
grid quality measure is implemented in the optimization-based method for
grid generation and improvement. The approach can be considered as a
generalization of methods, based on constructing a mapping, which are a
composition of the algebraic map and inverse to harmonic mapping [56,
131] and give a guarantee that the composite mapping is invertible at the
continuous level. The present approach gives such a guarantee at the discrete
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level.

The energy density of grid deformation is a discrete functional with
an infinite barrier on the boundary of the set of unfolded grids. This
discrete functional is an extension of the barrier function from [34]. Barrier
functions for grid generation and optimization have been considered also in
[89, 146]. The barrier property is very important in problems with moving
boundaries and in moving adaptive grid technology because such methods
ensure generation of unfolded grids at every time step. Direct control of
cell shape is used to provide mesh orthogonality with prescribed width of
cells near the boundary. Adaptation to the solution of the host equations
can be realized as in the adaptive-harmonic grid generator. In the 3D case
the well known tetrahedron shape measure, such as the mean ratio, can
be obtained from the energy density of the deformation of the equilateral
tetrahedron. The condition number of the Jacobian matrix of [88], measured
in the Frobenius norm, can be obtained as well.

9.1 Energy density of linear transformation in

2D

Consider a linear mapping between two planes (X,Y )→(x, y), where
X(ξ, η), Y (ξ, η) and x(ξ, η), y(ξ, η) are the linear transformations (ξ, η)→
(X,Y ) and (ξ, η)→(x, y) with matrices C and c, respectively (see fig. 9.1).
Squared lengths of vectors with coordinates (X,Y ) and (x, y) are the
positive-definite quadratic forms

X2 + Y 2 = G11ξ
2 + 2G12ξη +G22η

2,

x2 + y2 = g11ξ
2 + 2g12ξη + g22η

2,

with matrices

G = (Gij) = CTC and g = (gij) = cT c,

respectively. A quadratic form, corresponding to the mapping (X,Y ) →
(x, y), is defined with the matrix (C−1)T cT cC−1. The characteristic equation
is of the form

det((C−1)T cT cC−1 − λE) = det(C)−2 det(cT c− λCTC) = 0,
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where E is the identity matrix. Consequently, if the matrix C is non-singular,
the characteristic equation for the matrix (C−1)T cT cC−1 has the same
solutions λ1,2 as the characteristic equation for the pair of the quadratic
forms

det(g − λG) = det(G) det(G−1g − λE) = 0.
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Fig. 9.1: Linear transformation of unit square to rectangle

The orthogonal invariants d1, d2 of a mapping (X,Y ) → (x, y) depend
upon eigenvalues λ1,2 of the matrix G−1g

d1 = λ1 + λ2 = tr(G−1g) =
g11G22 − 2g12G12 + g22G11

det(G)
,

d2 = λ1λ2 = det(G−1g) =
det(g)

det(G)
.

(9.1)

The energy density is defined as an averaged energy stored in the
rectangle of a unit area, provided that the rectangle is the image of a square
[75]. In linear, algebra it is known that any matrix A can be represented
in the form A = UDV T , where U and V are the orthogonal matrices, D
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is a diagonal matrix with diagonal elements equal to singular eigenvalues
of the matrix A. From this it follows that for any linear transformation
there exists such a unit square which is transformed into a rectangle with
sides length equal to

√
λ1 and

√
λ2 (singular eigenvalues of the matrix

cC−1 in our case). The averaged energy, stored in this rectangle, is equal
to 0.5d1 = 0.5(λ1 + λ2). Area of the rectangle is equal to

√
d2 =

√
λ1λ2.

Consequently, the energy density can be expressed as

e(x, y)(X,Y ) =
1

2

d1√
d2

=
1

2

λ1 + λ2√
λ1λ2

≥ 1. (9.2)

Substituting expressions (9.1) for d1 and d2 into (9.2) we obtain the final
expression to the energy density of a mapping (X,Y )→(x, y)

e(x, y)(X,Y ) =
1

2

tr(G−1g)√
det(G−1g)

=
1

2

g11G22 − 2g12G12 + g22G11√
det(g)

√
det(G)

. (9.3)

The properties of the energy density of a linear mapping are the
following:

1. The energy density is an orthogonal invariant, which remains
unchanged for orthogonal transformations of planes (X,Y ) and (x, y).
Moreover, it is also a conformal invariant, since e(x, y)(X,Y ) =
e(αx, αy)(βX, βY ) for any α, β > 0. In the 2D case the energy density is
identical for direct and inverse linear transformations, i.e., e(x, y)(X,Y ) =
e(X,Y )(x, y).

2. If a mapping x(X,Y ), y(X,Y ) becomes singular, i.e., J→0, and if
at least one of the quantities λ1 or λ2 does not tend to 0, then the energy
density e→∞. If the energy density does not tend to ∞ while J→0, the
transformation degenerates into a point: (X,Y )→(0, 0), and in this case
λ1 → 0 and λ2 → 0 simultaneously.

3. Optimality principle. Minimum of the energy density e(x, y)(X,Y )
of a linear transformation (X,Y )→(x, y) is equal to 1 and is attained if
and only if λ1=λ2, i.e., the transformation is conformal.

9.2 Shape measures of triangular and quadrila-

teral cells

Consider a linear transformation of a given triangle in the plane (X,Y ) to an
arbitrary triangle in the plane (x, y). The sides L1, L2, l1, l2 and angles Φ, ϕ
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of the triangles are shown in fig. 9.2. Correspondence between the vertices
of the triangles defines a unique linear transformation (X,Y )→(x, y). The
Jacobian of the transformation is equal to the areas ratio

J =
l1l2 sinϕ

L1L2 sin Φ
> 0 .

Note that the conditions of the transformation to be conformal are the
following

l1/l2 = L1/L2, ϕ = Φ . (9.4)

This also means that triangles are of the same shape. Our purpose is to
construct such a function et(l1, l2, ϕ, L1, L2,Φ) that its minimum ensures
(9.4).

Consider auxiliary linear transformations (ξ, η) → (x, y) and (ξ, η) →
(X,Y ) with matrices c and C of the right-angled triangle (half of the unit
square) in the plane (ξ, η), shown in fig.9.1, such that

g11 = l21, g22 = l22, g12 = l1l2 cosϕ, G11 = L2
1, G22 = L2

2, G12 = L1L2 cosΦ.

In this notations the energy density (9.3) takes the form

et =
1

2

l21L
2
2 + l22L

2
1 − 2l1l2L1L2 cosϕ cosΦ

l1l2 sinϕL1L2 sin Φ
. (9.5)

Note that conditions l1, l2, L1, L2 6= 0; ϕ,Φ 6= 0 and ϕ,Φ 6= π have been
used in derivation of (9.5).

To check the property of the function (9.5) to have the minimum in the
case when the triangles are of the same shape we introduce notations from
[58].

l21 = ρ exp(β), L2
1 = R exp(B), l22 = ρ exp(−β), L2

2 = R exp(−B) .

In these notations the expression (9.5) takes the form independent of ρ and
R

et = 2
sh2 β−B

2 + sin2 ϕ−Φ
2

sinϕ sin Φ
+ 1 . (9.6)

It is clear that the minimum of (9.6) is attained if β=B and ϕ=Φ, i.e., the
conditions (9.4) are satisfied. Note that 1/et is a triangular shape measure
according to the definition given in [41] and being applied to triangles.



Grid optimization 131

6

-
X

Y
HHHHHHHHH

�
�
�
�
�
�
�
��BB

B
B
B
B
B
B
B
B
B
B
B

0

1

2

Φ

L1

L2

6

-
x

y �
�

�
�

�
�@

@
@

@
@

@
0 1

2

ϕ

l1

l2

6

-@
@

@
@

@
@

ξ

η

0 1

2

cC−1

-

/

w

cC

Fig. 9.2: Linear transformation of triangle

Properties of the function (9.5) follow from the properties of the energy
density, formulated in Section 9.1.

The energy density of a quadrilateral element can be expressed as

eq =
1

4
(et0 + et1 + et2 + et3),

where etk is the function (9.5) for the triangle corresponding to the kth
vertex of the quadrilateral element.

9.3 Energy density of grid deformation

Consider an unstructured grid, formed by quadrilateral elements. In this
case the correspondence between local and global enumerations is defined
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as

n = n(N, k), n = 1, 2, . . . , Nn, N = 1, 2, . . . , Ne, k = 0, 1, 2, 3,

where n is the global node number, Nn is the total number of grid nodes,
N is an element number, Ne is the number of elements, k is the local node
number in the element.

The energy density of grid deformation can be obtained as an averaged
value

eh =
1

Ne

Ne∑

N=1

[eqk]N =
1

Ne

Ne∑

N=1

3∑

k=0

1

4

[
etk
]
N
, (9.7)

where etk is defined via (9.5). For a given grid in the plane (x, y) the opti-
mization problem to find the minimum of eh is formulated. Parameters,
defining the objective shapes of the quadrilaterals, expressed in (9.5) with
capital letters, must be specified for every grid cell. The procedure from [74]
is applied for minimization of eh. Note that if the objective shape is a square
for every cell, eh reduces to the barrier approximation of the harmonic
functional, described in detail in [34, 74].

There is an interesting property of the function (9.7). Consider a
hypothetical case when the structure of the grid and objective shapes for
every cell, identical to shapes of an existing grid, are known. If we specify
positions of two arbitrary neighboring nodes of the grid, then the positions
of all other nodes can be obtained sequentially from the condition eh = 1.
Similarly, if the positions of internal boundary nodes are specified, then all
other nodes can be obtained layer by layer as it can be done by a hyperbolic
method. At the same time the present method is elliptic [75].

Function (9.7) possesses a barrier property, i.e., eh→∞ if the area of
any triangle tends to zero.

9.4 Specification of objective shape near

boundary

To achieve grid orthogonality near the boundary we must specify
corresponding objective shape of cells. First, an “orthogonal” direction has
to be specified to every boundary node. To this end, a point of intersection
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of two lines, parallel to the corresponding parts of the boundary line, is
determined (see fig.9.3a). The vector r1, orthogonal to the interval (i−1, i)
of the boundary (see fig.9.3a), is obtained as

x1 = d0(−yi + yi−1)/
√

(xi−1 − xi)2 + (yi−1 − yi)2 ,

y1 = d0(xi − xi−1)/
√

(xi−1 − xi)2 + (yi−1 − yi)2 .

Here d0 is the width of the layer of cells adjacent to the boundary.
Coordinates of the vector r2 are computed similarly. The vector r is
determined from the conditions

r1(r − r1) = 0 , r2(r − r2) = 0.

Solving this system of linear equations, we obtain

x =
y2|r1|2 − y1|r2|2
x1y2 − x2y1

, y = −x2|r1|2 − x1|r2|2
x1y2 − x2y1

.

Cell shape in the next layer can be obtained similarly. For the smooth
transformation of cell shape from the boundary to the internal field a
linear interpolation of the objective shape is used along the corresponding
curvilinear coordinate lines. Shape of two cells at the ends of the layer of
interpolation are known. These cells are scaled and rotated in such a way
that their bottom sides coincide and interpolation is performed along lines,
connecting two top vertices of the cells (see fig.9.3b)

r̃2(j) = (1 − s)r2 + sr2′ , r̃3(j) = (1 − s)r3 + sr3′ . (9.8)

Interpolation coefficient s is determined from the position of the cell in the
interpolation layer: s=(j−1)/(Nj−1), where Nj is the total number of cells
in the interpolation layer along j-direction, j is the number of the cell in the
layer.

Coordinates of the objective cell vertices (Xk, Yk), k=0, 1, 2, 3 are
specified as follows

(X0, Y0) = (0, 0), (X1, Y1) = (1, 0), (X2, Y2) = (x̃2, ỹ2), (X3, Y3) = (x̃3, ỹ3).

Note that many other algorithms can be formulated for specification of
objective shapes. The notation “orthogonality near the boundary” can be
introduced by the user.
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Fig. 9.3: Cell shape specification for obtaining orthogonality near boundary
(a). Transformation of one cell shape to another by linear interpolation (9.8)
(b).

9.5 Energy density functional

In the continuous level the energy density functional can be written as
follows

I =
1

2

∫ ∫
tr(G−1g)√
det(G−1g)

dξdη =
1

2

∫ ∫
tr(g−1G)√
det(g−1G)

dξdη

=
1

2

∫ ∫
g11G22 − 2g12G12 + g22G11√

det(g)
√

det(G)
dξdη .

Note that the harmonic functional can be written as

Ĩ =
1

2

∫ ∫
g11G22 − 2g12G12 + g22G11√

det(g)
dξdη.

Consequently, the mapping delivering minimum to the functional I will be
harmonic if instead of the metric Gij the “scaled” metric G̃ij=Gij/

√
det(G)

is used. In this case
det(G̃)=1.

Consider adaptation to the function f(x, y). In this case

g11 = x2
ξ + y2

ξ + (fxxξ + fyyξ)
2,

g12 = xξxη + yξyη + (fxxξ + fyyξ)(fxxη + fyyη) ,
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g22 = x2
η + y2

η + (fxxη + fyyη)
2 .

Substituting these expressions into I, we finally obtain

I =
1

2

∫ ∫
α(1 + f2

x) + 2βfxfy + γ(1 + f2
y )

(xξyη − xηyξ)
√

1 + f2
x + f2

y

√
G11G22 −G2

12

dξdη,

where

α = x2
ξG22 − 2xξxηG12 + x2

ηG11 = det(G)[(xξ , xη)G
−1(xξ, xη)

T ],

β = xξyξG22 − (xξyη+xηyξ)G12 +xηyηG11 = det(G)[(xξ , xη)G
−1(yξ, yη)

T ],

γ = y2
ξG22 − 2yξyηG12 + y2

ηG11 = det(G)[(yξ, yη)G
−1(yξ, yη)

T ].

Here G−1 is the matrix inverse to the matrix G.
The minimization problem for the functional is equivalent to the

problem of constructing such a curvilinear coordinate system (structured
grid) on the surface z=f(x, y) that the averaged energy density for the
mapping (X,Y )→(x, y, f(x, y)) is minimized. The mapping (ξ, η)→(X,Y ) is
assumed to be known, and the metric tensor components Gij are calculated
as

G11 = X2
ξ + Y 2

ξ , G12 = XξXη + YξYη, G22 = X2
η + Y 2

η .

In the case of an unstructured grid, the problem is posed for the
energy density of the mapping of a target cell in the plane (X,Y ) to the
corresponding surface cell. In summary, a minimization problem is posed
for the sum of functionals written for every cell, i.e., for the averaged
energy density. To control the number of cells contained in a region of steep
gradient, it was previously proposed to replace the function f(x, y) (e.g., see
[74]) by the function caf(x, y). Here, f(x, y) is scaled so that the difference
of the maximal and minimal values of f equals the diagonal of the rectangle
circumscribed about the domain in the plane x, y:

fmax − fmin =
√

(xmax − xmin)2 + (ymax − ymin)2 .

The relative number of grid points, contained in a steep-gradient layer,
increases with rise of the adaptation factor ca, whose value is usually set
between 0.1 and 0.5. In the case of an elliptic problem, the relative number
of grid points contained in the layer is approximately equal to ca/(ca+1);
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that is about one-third of the points belongs to the steep-gradient layer when
ca=0.5.

Practical computations show that when a grid is adapted to a smooth
function, increase of ca makes the resulting grid “sensitive” to a larger
domain of sufficiently steep gradient. Furthermore, as ca → ∞, the grid
adapted to a continuously differentiable function f of one variable is optimal
in the C norm in the sense that the C-norm error of piecewise constant
interpolation is minimized. Indeed, with f replaced by caf(x), the one-
dimensional functional (in which Gij=δij) has the form

I =

∫
1

xξ
√

1 + c2af
2
x

dξ ,

and the corresponding Euler-Lagrange equation, which determines the
asymptotic behavior of the Jacobian of an adaptive harmonic grid, can be
written as

xξ = const(1/c2a + f2
x)

−1/2 .

At the same time, a grid that is optimal in the C norm under a piecewise
constant interpolation is characterized by a Jacobian asymptotically
expressed as

xξ = const|fx|−1 .

Therefore, the adaptive harmonic grid is optimal in the C norm as ca → ∞.
When an adaptive grid is to be generated for a vector function with

components fi(x, y), rather than for a scalar f(x, y), one can write the
functional I in the following generalized form:

I =
1

2

∫ ∫
αg̃11 + 2βg̃12 + γg̃22

(xξyη − xηyξ)
√
g̃11g̃22 − g̃2

12

√
G11G22 −G2

12

dξdη,

where

g̃11 = 1 +
∑

i

c2i (fi)
2
x, g̃12 =

∑

i

c2i (fi)x(fi)y, g̃22 = 1 +
∑

i

c2i (fi)
2
y.

The minimization problem for this functional is equivalent to the
problem of constructing such a coordinate system on the surface described
by the vector function

r(x, y) = (c1f1, c2f2...)(x, y) ,



Grid optimization 137

that the averaged energy density for the mapping (X,Y )→(x, y, r(x, y)) is
minimized. As a result one obtains a surface parametrization in the form
(x, y, c1f1, c2f2...)(ξ, η), which corresponds to a structured grid. In the case
of an unstructured grid, the problem is posed for the energy density for the
mapping of a given cell in the plane (X,Y ) to the corresponding surface cell.
When a problem in computational fluid dynamics is to be solved, fi(x, y)
denote either the flow variables u, v, p, ρ or their functions (e.g., |V | =√
u2 + v2), cf. [5].

A finite-difference analogue of the functional I can be derived as follows.
A square cell in the plane (ξ, η) is split into triangles by diagonals 02 and
13. The mapping of the square to a quadrilateral cell in the plane (x, y)
is approximated by the half-sum of two functions that are linear on the
triangles resulting from the two partitions. Denote the half-sums of these
functions by xh(ξ, η) and yh(ξ, η), respectively. They define a piecewise
linear mapping of a parametric square onto a quadrilateral cell. Unlike a
bilinear mapping, the inverse mapping of the quadrilateral to the parametric
square will then have derivatives that are discontinuous across the diagonals.
Furthermore, the mapping of a square to a quadrilateral cell in the plane
(X,Y ) with vertices having coordinates X0, Y0, X1, Y1, X2, Y2, X3, Y3 is
also approximated by the half-sum of two functions that are linear on the
triangles resulting from similar partitions. All derivatives in the integrand
of I are easy to calculate, and the integral over the square cell in the plane
(ξ, η) is approximated by the half-sum of the integrals of the piecewise
linear approximations of desired functions corresponding to the triangular
partitions of the square. As a result one obtains an approximation of the
integral I in the form

Ih =
1

2

Ne∑

N=1

3∑

k=0

1

4
[Fk]N ,

where

Fk =
αk[1 + (fx)

2
k] + 2βk(fx)k(fy)k + γk[1 + (fy)

2
k]

JkDk[1 + (fx)2k + (fy)2k]
1/2

,

αk = (xk+1−xk)2(G22)k−2(xk+1−xk)(xk−1−xk)(G12)k+(xk−1−xk)2(G11)k,

βk = (xk+1 − xk)(yk+1 − yk)(G22)k − [(xk+1 − xk)(yk−1 − yk)

+(xk−1 − xk)(yk+1 − yk)](G12)k + (xk−1 − xk)(yk−1 − yk)(G11)k ,
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γk = (yk+1−yk)2(G22)k−2(yk+1−yk)(yk−1−yk)(G12)k+(yk−1−yk)2(G11)k ,

Jk = (xk+1 − xk)(yk−1 − yk) − (xk−1 − xk)(yk+1 − yk) ,

G11 = (Xk+1 −Xk)
2 + (Yk+1 − Yk)

2,

G12 = (Xk+1 −Xk)(Xk−1 −Xk) + (Yk+1 − Yk)(Yk−1 − Yk),

G22 = (Xk−1 −Xk)
2 + (Yk−1 − Yk)

2,

Dk = (Xk+1 −Xk)(Yk−1 − Yk) − (Xk−1 −Xk)(Yk+1 − Yk)

=
√

(G11)k(G22)k − (G12)2k .

The expressions for (fx)k and (fy)k are the derivatives of f at the grid
point locally indexed by k in the N th cell. Approximation Ih is minimized
by applying the method described in detail in [74].

9.6 Derivation of computational formulas

Four triangles are considered for the quadrilateral cell with number N .
Each of these triangles corresponds to a corner with number k and gives a
proper contribution to the functional and also to the values of its derivatives.
Since the integrand in the functional does not depend on the rotation of the
coordinate system ξ, η, then all the computational formulas will be the same
for all triangles. We enumerate nodes of the triangle which corresponds to
the corner with the local number k from 0 to 2 as follows:

node 2 corresponds to the local node number k−1 of the N th cell,
node 0 corresponds to the local node number k of the N th cell,
node 1 corresponds to the local node number k+1 of the N th cell.
Then in the new numeration the expression for Fk will be

F =
α[1 + (fx)

2
k] + 2β(fx)k(fy)k + γ[1 + (fy)

2
k]

2J0D0[1 + (fx)2k + (fy)2k]
1/2

,

where

α = (x1 − x0)
2G22 − 2(x1 − x0)(x2 − x0)G12 + (x2 − x0)

2G11,

β = (x1 − x0)(y1 − y0)G22 − [(x1 − x0)(y2 − y0) + (x2 − x0)(y1 − y0)]G12

+(x2 − x0)(y2 − y0)G11,

γ = (y1 − y0)
2G22 − 2(y1 − y0)(y2 − y0)G12 + (y2 − y0)

2G11,
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J0 = (x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0),

G11 = (X1 −X0)
2 + (Y1 − Y0)

2,

G12 = (X1 −X0)(X2 −X0) + (Y1 − Y0)(Y2 − Y0),

G22 = (X2 −X0)
2 + (Y2 − Y0)

2,

D0 = (X1 −X0)(Y2 − Y0) − (X2 −X0)(Y1 − Y0) .

Introduce notations

U =
α[1 + (fx)

2
k] + 2β(fx)k(fy)k + γk[1 + (fy)

2
k]

2D0[1 + (fx)2k + (fy)2k]
1/2

,

V = (x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0) .

We use the chain rule for the derivatives of two functions ratio

F =
U

V
,

Fx =
Ux − FVx

V
, Fy =

Uy − FVy
V

,

Fxx =
Uxx − 2FxVx − FVxx

V
,

Fyy =
Uyy − 2FyVy − FVyy

V
,

Fxy = Fyx =
Uxy − FxVy − FyVx − FVxy

V
.

For the triangle vertex with number 1 we should substitute appropriate
expressions instead of U and V , Ux and Vx, etc. and replace x and y by x1

and y1.

Vx = y2 − y0, Vy = x0 − x2,

Ux =
(
[1 + (fx)

2
k][(x1 − x0)G22 − (x2 − x0)G12] + (fx)k(fy)k×

[(y1 − y0)G22 − (y2 − y0)G12]
)/(

D0[1 + (fx)
2
k + (fy)

2
k]

1/2
)
,

Uy =
(
[1 + (fy)

2
k][(y1 − y0)G22 − (y2 − y0)G12] + (fx)k(fy)k×

[(x1 − x0)G22 − (x2 − x0)G12]
)/(

D0[1 + (fx)
2
k + (fy)

2
k]

1/2
)
,
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Uxx =
[1 + (fx)

2
k]G22

D0[1 + (fx)2k + (fy)2k]
1/2

, Uxy =
(fx)k(fy)kG22

D0[1 + (fx)2k + (fy)2k]
1/2

,

Uyy =
[1 + (fy)

2
k]G22

D0[1 + (fx)2k + (fy)2k]
1/2

,

Vxx = 0, Vxy = 0, Vyy = 0.

For vertex 0 we have

Vx = y1 − y2, Vy = x2 − x1,

Ux =
[1 + (fx)

2
k][(x0 − x1)G22 − (2x0 − x1 − x2)G12 + (x0 − x2)G11]

D2[1 + (fx)2k + (fy)2k]
1/2

+

(fx)k(fy)k[(y0 − y1)G22 − (2y0 − y1 − y2)G12 + (y0 − y2)G11]

D0[1 + (fx)2k + (fy)2k]
1/2

,

Uy =
[1 + (fy)

2
k][(y0 − y1)G22 − (2y0 − y1 − y2)G12 + (y0 − y2)G11]

D0[1 + (fx)2k + (fy)2k]
1/2

+

(fx)k(fy)k[(x0 − x1)G22 − (2x0 − x1 − x2)G12 + (x0 − x2)G11]

D0[1 + (fx)2k + (fy)2k]
1/2

,

Uxx =
[1 + (fx)

2
k](G11 − 2G12 +G22)

D0[1 + (fx)2k + (fy)2k]
1/2

,

Uxy =
(fx)k(fy)k(G11 − 2G12 +G22)

D0[1 + (fx)2k + (fy)2k]
1/2

,

Uyy =
[1 + (fy)

2
k](G11 − 2G12 +G22)

D0[1 + (fx)2k + (fy)2k]
1/2

,

Vxx = 0, Vxy = 0, Vyy = 0.

For vertex 2 we have

Vx = y0 − y1, Vy = x1 − x0,

Ux =
(
[1 + (fx)

2
k][(x2 − x0)G11 − (x1 − x0)G12] + (fx)k(fy)k×

[(y2 − y0)G11 − (y1 − y0)G12]
/(

D0[1 + (fx)
2
k + (fy)

2
k]

1/2
)
,
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Uy =
(
1 + (fy)

2
k][(y2 − y0)G11 − (y1 − y0)G12] + (fx)k(fy)k×

[(x2 − x0)G11 − (x1 − x0)G12]
/(

D0[1 + (fx)
2
k + (fy)

2
k]

1/2
)
,

Uxx =
[1 + (fx)

2
k]G11

D0[1 + (fx)2k + (fy)2k]
1/2

, Uxy =
(fx)k(fy)kG11

D0[1 + (fx)2k + (fy)2k]
1/2

,

Uyy =
[1 + (fy)

2
k]G11

D0[1 + (fx)2k + (fy)2k]
1/2

,

Vxx = 0, Vxy = 0, Vyy = 0.

Computations are performed as follows. Let F and its derivatives with
respect to x1 and y1 be computed using the formulas for the N th cell
and kth triangle. Then the computed values are added to the appropriate
array elements

Ih+ = F, [Rx]n+ = Fx, [Ry]n+ = Fy ,

[Rxx]n+ = Fxx, [Rxy]n+ = Fxy, [Ryy]n+ = Fyy ,

where n=n(N, k+1).
Similarly to vertex 0, correspondence between the local and global

number is n=n(N, k).
Similarly to vertex 2, correspondence between the local and global

number is n = n(N, k−1).
Derivatives [fx]n and [fy]n are computed as follow. All triangles of the

mesh are scanned and for the triangle number k of the N th cell the following
values are computed

fx = (f1 − f0)(y2 − y0) − (f2 − f0)(y1 − y0),

fy = (x1 − x0)(f2 − f0) − (x2 − x0)(f1 − f0),

J0 = (x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0).

Here f0, f1, f2 are the values of the function f at the triangle vertices,
numbered as 2,0,1, with respect to local numbers of corners k−1, k, k+1 of
a quadrilateral cell. Computed values are added to the corresponding array
elements (which were first cleared)

[fx]n+ = fx , [fy]n+ = fy , [J ]n+ = J0 , n = n(N, k) .
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New values of derivatives are computed as follows

[fx]n/ = [J ]n , [fy]n/ = [J ]n .

Here a+=b means that the new value of a becomes equal to a+b, and a/=b
means that the new value of a becomes equal to a/b.

In the case of adaptation to the vector-function we replace

[1 + (fx)
2
k] by g̃11, [(fx)k(fy)k] by g̃12, [1 + (fy)

2
k] by g̃22,

and
√

1 + (fx)2k + (fy)2k by

√
g̃11g̃22−g̃2

12.

Here g̃11, g̃12, and g̃22 are computed by using the formulas from Section 9.5.

9.7 Three-dimensional case

Similarly to the 2D case consider a linear mapping (X,Y, Z)→(x, y, z),
where (ξ, η, µ)→(X,Y, Z) and (ξ, η, µ)→(x, y, z) are two linear transfor-
mations with matrices C and c. The characteristic equation for the matrix
(C−1)T cT cC−1 has the same solutions λ1,2,3 as the characteristic equation
for the pair of quadratic forms

det(g − λG) = det(G) det(G−1g − λE) = 0,

where g=cT c, G=CTC.
The energy density of a linear transformation is defined as an averaged

energy stored in the right-angled parallelepiped of a unit volume, provided
that the parallelepiped is the image of a cube. Similarly to the 2D case it
can be shown that for any linear transformation there exists such a unit
cube, which is transformed to a right-angled parallelepiped with lengths of
sides equal to

√
λ1,

√
λ2, and

√
λ3. In contrast to the 2D case, the energy

densities are different for the direct and inverse transformations

e+ = e(x, y, z)(X,Y, Z) =
1

3

λ1 + λ2 + λ3

(λ1λ2λ3)1/3
=

1

3

tr(G−1g)

(det(G−1g))1/3
,

e− = e(X,Y, Z)(x, y, z) =
1

3

λ1λ2 + λ1λ3 + λ2λ3

(λ1λ2λ3)2/3
=

1

3

tr(g−1G)

(det(g−1G))1/3
.
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It is easy to see that the inverse quantities 1/e+ and 1/e− are tetrahedron
shape measures according to the definition from [41, 95].

The condition number k of the matrix cC−1

k2 = ‖cC−1‖2‖Cc−1‖2 = tr(G−1g)tr(g−1G)

= (λ1 + λ2 + λ3)
(
λ−1

1 + λ−1
2 + λ−1

3

)
,

was introduces in [88]. It is easy to see that the condition number k is
proportional to the geometric mean of energy densities of direct and inverse
transformations, i.e., k2=9e+e−. Using the inequality

3(λ1λ2 + λ1λ3 + λ2λ3) ≤ (λ1 + λ2 + λ3)
2

we can obtain the following estimates for the condition number

9(e−)3/2 =

√
3(λ1λ2 + λ1λ3 + λ2λ3)

3/2

λ1λ2λ3
≤ k2 ≤ (λ1 + λ2 + λ3)

3

3λ1λ2λ3
= 9(e+)3 .

Consider energy densities for tetrahedra. Let a tetrahedron in space
(x, y, z) be defined such that one of vertices r0=0, the other vertices be
defined by three vectors r1, r2, and r3. Similarly a tetrahedron in space
(X,Y, Z) is defined by R0=0, R1, R2, and R3. If the tetrahedron in space
(X,Y, Z) is formed by orthogonal vectors of the unit length, then the energy
densities for the direct and inverse transformations are the following

e+ =
1

3

r21 + r22 + r23
V 2/3

, e− =
1

3

(r1 × r2)
2 + (r2 × r3)

2 + (r3 × r1)
2

V 4/3
,

where
V = r3 · (r1 × r2)

is the triple tetrahedron volume. For the equilateral objective tetrahedron
in space (X,Y, Z) it is easy to obtain that the energy density of the direct
transformation is inverse to the mean ratio, defined in [41]

e+ =
(r1 − r2)

2 + (r2 − r3)
2 + (r1 − r3)

2 + r21 + r22 + r23
12V 2/3

.

The energy density of the inverse transformation e− is proportional to the
ratio of the sum of squared areas of all faces to the corresponding degree of
the volume.
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The energy density of a hexahedron can be defined similarly to the 2D
case as a sum of 8 energy densities e+ of the corner tetrahedrons. In this
case the procedure of minimization of the corresponding functional is also
the same as in 2D, only expressions are more cumbersome. This functional
possesses a barrier property, associated with conditions of positive volumes
of all corner tetrahedrons for all hexahedral grid cells.



Chapter 10

Optimality principle for

nondegenerate grids

10.1 Equidistribution principle

In one space dimension for grid generation it was developed the
equidistribution principle, cf. [143]. The idea is that the Jacobian of the
mapping multiplied by some positive weight function is set equal to a
positive constant

ωxξ = const > 0 , ω(ξ) > 0 , ξ ∈ (0, 1) , (10.1a)

and the mapping x(ξ) satisfies the boundary conditions

x(0) = 0 , x(1) = 1 . (10.1b)

Instead of (10.1a) we may consider the minimization problem for the
functional

F =

1∫

0

ωx2
ξdξ , (10.2)

on the class of the functions x(ξ) satisfying the boundary conditions (10.1b).
By differentiating (10.1a) with respect to ξ we get the Euler equation to the
functional

(ωxξ)ξ = 0 . (10.3)

In practice all the adaptive methods are reduced to the equidistribution
principle. This is due to the function x(ξ), being the solution of (10.3) with
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the boundary conditions (10.1b), is one-to-one mapping ξ → x, since from
(10.1a) it follows that the Jacobian is positive. On the other hand, for any
smooth one-to-one mapping x∗(ξ) with the positive Jacobian we can define
the weight function w = const(x∗ξ)

−1 and then x∗(ξ) will satisfy the equation
(10.3). Therefore, both the variation formulation of minimizing the functional
(10.2) and the Euler equation (10.3) include as solutions all smooth one-to-
one mappings with positive Jacobian. A mapping, being not one-to-one, can
not satisfy the equation (10.3) with a positive weight function.

There are many attempts to extend the equidistribution principle to the
two-dimensional case. As one of many possible approaches the following
system may be considered as the 2D extension

(ω1xξ)ξ + (ω2xη)η = 0 ,

(ω1yξ)ξ + (ω2yη)η = 0 .

However, the class of all solutions of these equations with positive ω1 and
ω2 contains functions x(ξ, η), y(ξ, η) which cannot ensure that the mapping
to be a homeomorphism.

10.2 Formulation of variational principle

Consider the problem of constructing a smooth mapping of the parametric
square

Q = {(ξ, η) : 0 < ξ < 1, 0 < η < 1}
onto an arbitrary domain Ω with the given transformation between the
boundaries

(xΓ, yΓ) : ∂Q→ ∂Ω ,

where xΓ, yΓ are given functions such that the resulting mapping x(ξ, η),
y(ξ, η) is invertible.

The energy density functional is given by

F =
1

2

1∫

0

1∫

0

(x2
ξ + y2

ξ )G22 − 2(xξxη + yξyη)G12 + (x2
η + y2

η)G11

(xξyη − xηyξ)
√
G11G22 −G2

12

dξdη .

Here {Glm, l,m=1, 2} are the elements of the symmetric and positive
definite matrix G(ξ, η)=GT>0.
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Consider the metric g=(glm) of the transformation x(ξ, η), y(ξ, η) with
the elements

g11 = x2
ξ + y2

ξ , g12 = g21 = xξxη + yξyη , g22 = x2
η + y2

η .

The integrand in the above integral can be written as

1

2

tr(G−1g)√
det(G−1g)

=
1

2

λ1 + λ2√
λ1λ2

≥ 1 ,

where λ1 and λ2 are the eigenvalues of the matrix G−1g. The equality is
attained if and only if λ1=λ2. Then it follows that F≥1 and F = 1 if and
only if

Glm = α(ξ, η)glm ,

where α(ξ, η) is an arbitrary smooth function defined in the unit square.

Instead of G it is convenient to introduce the matrix G̃ with the
elements G̃lm=Glm/

√
det(G), such that det(G̃)=1. The functional takes

the form

F =
1

2

1 1∫∫

0 0

(x2
ξ + y2

ξ )G̃22−2(xξxη + yξyη)G̃12+(x2
η + y2

η)G̃11

xξyη − xηyξ
dξdη. (10.4)

The corresponding Euler equations for this functional can be written as1

αxξξ − 2βxξη + γxηη = xξ(−PG̃22 +QG̃12) + xη(PG̃12 −QG̃11) ,

αyξξ − 2βyξη + γyηη = yξ(−PG̃22 +QG̃12) + yη(PG̃12 −QG̃11) ,

where

α = x2
η + y2

η , β = xξxη + yξyη , γ = x2
ξ + y2

ξ ,

P=
1

2

(
α
∂G̃11

∂ξ
−2β

∂G̃12

∂ξ
+γ

∂G̃22

∂ξ

)
, Q=

1

2

(
α
∂G̃11

∂η
−2β

∂G̃12

∂η
+γ

∂G̃22

∂η

)
.

Consider the class of all homeomorphisms from the unit square onto
a domain Ω, satisfying the same boundary conditions as (xΓ, yΓ) : →∂Ω.

1This form of the Euler equations is incorrect. Correct Euler equations are given in [11]
(Editor).
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Recall that (xΓ, yΓ) : ∂Q→∂Ω is a homeomorphism between the boundaries.
We formulate the conjecture in the form of the

Optimality principle. A smooth mapping from the unit square Q onto
a domain Ω is a homeomorphism if and only if it is the minimum of the
functional (10.4) for some symmetric and positive definite matrix-function
G.

10.3 Discrete case

On a simply connected domain Ω in the plane x, y a grid {(x, y)ij ,
i=1, . . . , i∗; j=1, . . . , j∗} must be constructed with given coordinates of
boundary nodes (x, y)i1, (x, y)ij∗ , (x, y)1j , (x, y)i∗j .

Discrete analog of Jacobian positiveness may be written as inequalities

[Jk]i+1/2,j+1/2 > 0, k = 0, 1, 2, 3; i = 1, . . . , i∗ − 1; j = 1, . . . , j∗ − 1 ,

where

Jk = (xk+1 − xk)(yk−1 − yk) − (yk+1 − yk)(xk−1 − xk),

index k is cyclic.

The class of unfolded grids, with convex quadrilateral cells, satisfying
the conditions for the Jacobian we denote as WD.

Discrete analog of the functional (10.4) is

Fh =
1

(i∗ − 1)(j∗ − 1)

i∗−1∑

i=1

j∗−1∑

j=1

3∑

k=0

1

4
[Fk]i+1/2,j+1/2 , (10.5a)

Fk =
(rk+1−rk)2(G̃22)k−2(rk+1−rk)(rk−1−rk)(G̃12)k+(rk−1−rk)2(G̃11)k

2[(xk+1 − xk)(yk−1 − yk) − (yk+1 − yk)(xk−1 − xk)]
,

(10.5b)
where

rk = (xk, yk)
T , (rk+1 − rk)

2 = (xk+1 − xk)
2 + (yk+1 − yk)

2,

(rk+1 − rk)(rk−1 − rk) = (xk+1 − xk)(xk−1 − xk) + (yk+1 − yk)(yk−1 − yk),

(rk−1 − rk)
2 = (xk−1 − xk)

2 + (yk−1 − yk)
2 ,
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(G̃lm)k are the elements of the matrix G̃k=G̃
T
k>0, det(G̃k)=1, referred to

as a triangle with number k of the cell i+1/2, j+1/2.
Consider the set of symmetric positive definite matrices gk with the

elements

(g11)k = (rk+1 − rk)
2 , (g12)k = (g21)k = (rk+1 − rk)(rk−1 − rk) ,

(g22)k = (rk−1 − rk)
2 . (10.6)

Substituting (10.6) into (10.5) we obtain

Fk =
tr(G̃−1

k gk)

2
√

det(G̃−1
k gk)

=
λ1 + λ2

2
√
λ1λ2

≥ 1,

where λ1 and λ2 are the eigenvalues of the matrix G̃−1
k gk. The strict equality

is attained if and only if λ1 = λ2. From this it follows that Fk ≥ 1 and Fk = 1
if and only if

(G̃lm)k = (glm)k/
√

det(gk).

The function Fh possesses the barrier property.

Lemma For any set of symmetric and positive definite matrices at
every cell {G̃k(ij), k=0, 1, 2, 3; i=1, . . . , i∗ − 1; j=1, . . . , j∗ − 1} such that
det(G̃k)=1, the function Fh has an infinite barrier on the boundary of the
class of unfolded gridsWD, i.e., if in a cell the area of one of the triangles
tends to zero, at the same time remaining positive, then Fh → +∞.

Proof. Assume that Jk → 0 in some cell while Fh does not tend to
+∞. Then the numerator in (10.5b) must tend to zero as well. From this
and inequality

(rk+1 − rk)
2(G̃22)k−2(rk+1 − rk)(rk−1 − rk)(G̃12)k+(rk−1 − rk)

2(G̃11)k ≥
λmin(G̃k)

[
(rk+1 − rk)

2 + (rk−1 − rk)
2
]

it follows that the lengths of two corresponding sides of the cell tend to zero,
and, consequently, the areas of all triangles, including these sides, tend to
zero as well. Reiterating this argumentation as many as necessary one finds
that the lengths of all sides of all cells must tend to zero. In other words
the grid will shrink to a point, and this contradicts the boundary conditions
(the boundary grid nodes belong to the domain boundary).
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10.4 Discrete form of optimality principle

The discrete counterpart of the optimality principle is given by the following
theorem.

Theorem. A structured grid, constructed on a domain Ω for the given
coordinates of the boundary nodes is an element of the class of unfolded
gridsWD if and only if it is the minimum of the functional Fh for some set
of symmetric and positive definite matrices G̃k(ij), such that det(G̃k)=1.

Proof of the necessity. Let a grid satisfying inequalities

[Jk]i+1/2,j+1/2 > 0, k = 0, 1, 2, 3; i = 1, . . . , i∗ − 1; j = 1, . . . , j∗ − 1 ,

be given. Let in every cell four matrices G̃k, k=0, 1, 2, 3 be introduced as

(G̃11)k = (rk+1 − rk)
2, (G̃12)k = (g21)k = (rk+1 − rk)(rk−1 − rk) ,

(G̃22)k = (rk−1 − rk)
2 .

It is easy to see that

Fk =
tr(G̃−1

k gk)

2
√
G̃−1
k det(gk)

=
tr(g−1

k gk)

2
√

det(g−1
k gk)

= 1 .

Consequently, for every grid from WD there exists such a set of matrices
G̃k(ij) that Fh takes a minimal value equal 1. Let us show that the grid,
which corresponds to a minimum Fh=1, is unique.

Indeed, if Fh=1, then each term takes the minimal possible value
equal to Fk=1. Considering the sum of four terms for one cell we can
see that if coordinates of two adjacent vertices are specified, the last two
are determined uniquely from the conditions

Fk = 1, k = 0, 1, 2, 3.

Hence, in this case the grid can be constructed sequentially, starting from
the boundary. The constructed grid is unique.

Proof of the sufficiency. The function Fh is bounded from below and
has a barrier on the boundary of the set of unfolded grids according to
the Lemma of the barrier property. Since it is a continuous function, there
exists at least one grid which is the minimum of Fh and the equations (the
necessary conditions of minimum)

∂Fh/∂xij = 0 , ∂Fh/∂yij = 0 ,
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have at least one solution which is an unfolded grid. This completes the
proof.

10.5 Conformal invariants

Consider a smooth one-to-one mapping

x(ξ) : Rn → Rn , x = (x1, . . . , xn)T , ξ = (ξ1, . . . , ξn)T .

The elements of the Jacobi matrix a are

aij =
∂xi

∂ξj
.

The metric tensor g corresponding to the mapping x(ξ) is

gij(ξ) =

n∑

m=1

∂xm

∂ξi
∂xm

∂ξj
=

n∑

m=1

ami a
m
j ,

or in matrix form
g = aT a .

If det a 6=0, the symmetric matrix g will be positive definite. The element
of the length (dx)2=(dx1)2 + · · · + (dxn)2 is defined with the use of
dξ=(dξ1, . . . , dξn)T as follows

(dx)2 =

n∑

i=1

(dxi)2 = gij(ξ)dξ
idξj . (10.7)

After the change of variables ξ=ξ(η) it is transformed to

(dx)2 = g̃ij(η)dη
idηj ,

where

g̃ij(η) = gkm(ξ(η))
∂ξk

∂ηi
∂ξm

∂ηj
.

It is known that

(dx)2 =

n∑

i=1

λi(dη
i)2,
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where λi>0 are the eigenvalues of the matrix g. For the change of variables
ξ=ξ(η) such that at every point the Jacobi matrix b = (bij)=(∂ξi/∂ηj)
is continuous and orthogonal, this change ξ=ξ(η) is linear orthogonal
transformation b=const. The condition of orthogonality is bT b=I, where
I is the identity matrix.

The eigenvalues of the matrix g are determined from the characteristic
equation

det(g − λI) = 0 ,

which can be rewritten in the form

λn +O1λ
n−1 + · · · +On = 0 . (10.8)

Since the matrix g is symmetric and positive definite, the algebraic
equation (10.8) has n real roots λi>0, i=1, 2, . . . , n. The coefficients of (10.8)
are called orthogonal invariants Ok of the metric g or quadric form (10.7).
Invariant Ok is a sum of the determinants of the major minors obtained
from the matrix g by deleting of n−k strings and columns. In particular we
have that

O1 = tr(g) =

n∑

i=1

gii =

n∑

i=1

λi , On = det g = (det a)2 = λ1 . . . λn.

Consider the “normalized” characteristic equation to λ̃

λ̃ = λ/(det g)1/n = λ/(λ1 . . . λn)1/n ,

which can be written as

det

(
g

(det g)1/n
− λ̃I

)
= 0 ,

or in the equivalent form

λ̃n + C1λ̃
n−1 + C2λ̃

n−2 + · · · + 1 = 0 .

The value Ck=Ok/O
k/n
n is called a conformal invariant of the metric g

because it does not change under invertible conformal transforms ξ=ξ(η),
being the superposition of the orthogonal transformation and dilatation of
the coordinate system by factor of α. Since for the inverse mapping ξ=ξ(x)
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the eigenvalues λi(g
−1)=1/λi(g), then Ck are invariant under the invertible

conformal transforms y=y(x) as well. Obviously, that any smooth functions
of the conformal invariants are the conformal invariants. Similar is true for
the orthogonal invariants.

The following relations between the conformal and orthogonal invari-
ants are valid

On−k(g
−1) =

Ok(g)

On(g)
,

Cn−k(g
−1) =

On−k(g
−1)

On(g−1)(n−k)/n
=

Ok(g)

On(g)On(g)(k−n)/n
= Ck(g) .

Therefore, all invariants of the inverse mapping can be expressed in the
explicit form through the invariants of the direct mapping and, consequently,
through the elements of the matrix g. Further we will use only the invariants
Ok(g) and Ck(g).

Number of independent conformal invariants is equal n−1. Therefore, in
the 2D case there is one conformal invariant and two conformal invariants
in the 3D case. In the 1D case any transformation is conformal, therefore,
the concept of conformal invariant is senseless.

The conformal invariant Ck is equal to n multiplied by a ratio of the
arithmetic mean of all possible products of k different λi to their geometric
mean, consequently,

Ck/n ≥ 1, k = 1, . . . , n− 1 .

Hence, if the mapping x=x(ξ) is conformal (i.e. if all λi are equal to each
other), then Ck takes the least possible value equal n.

At present the values Ok(g) and Ck(g) at n=3 are applied to grid quality
estimate. Moreover, functionals depending on these quantities are used for
grid deformation.

10.6 Dirichlet type functionals

The problem of regular grid generation is considered as a discrete analog of
the problem on finding a homeomorphic mapping of come canonical domain
(e.g. a unit cube) onto a countable domain when the mapping between the
boundaries is defined. The general form of the functionals, invariant under
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orthogonal transformations for the direct x(ξ) and inverse ξ(x) mapping, is

Fo(x(ξ)) =

∫
f1(O1, . . . , On)dξ1 . . . dξn,

Fo(ξ(x))=

∫
f2(O1, . . . , On)(det g)1/2dξ1 . . . dξn=

∫
f2(O1, . . . , On)dx1 . . . dxn.

Here f1, f2 are some given functions of invariants. Note that these
functionals do not change at orthogonal transformations of the both
coordinates ξ and x. This is due to the Jacobian of transformation is the
orthogonal invariant.

The general form of the functionals, invariant under conformal
transformations for the direct x(ξ) and inverse ξ(x) mapping, is

Fc(x(ξ)) =

∫
f1(C1, . . . , Cn)dξ

1 . . . dξn, (10.9)

Fc(ξ(x)) =

∫
f2(C1, . . . , Cn)(det g)1/2dξ1 . . . dξn

=

∫
f2(C1, . . . , Cn)dx

1 . . . dxn . (10.10)

It is easy to see that the functional (10.9) is invariant under conformal
transformations of the coordinates x and (10.10) is invariant under conformal
transformations of the coordinates ξ. The integrands in these functionals
differ by a factor of (det g)1/2, the Jacobian of the transformation x(ξ) is
not the conformal invariant. Consequently, there are no functionals invariant
under conformal transformations of the coordinates x and ξ simultaneously.

If the functional is invariant under some class of transformations of
the coordinates ξ, consequently, the Euler equations to this functional
are invariant under this class of transformations. Therefore, if x(ξ) is an
extremal of the functional and y(η) is an extremal of the same functional,
written in new coordinates in the case of the transformation ξ=ξ(η) from
this class, then a new solution is obtained by a simple change of variables
y(η)=x(ξ(η)). The same is valid for the functionals invariant under some
class of transformations of the coordinates x. If x(ξ) is an extremal of a
functional of the same kind upon the coordinate transformation ỹ=ỹ(x),
under which the functional is invariant, then a new solution is obtained by
change of the variables y(ξ)=ỹ(x(ξ)).
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Examples.

1. Dirichlet functionals in the case n = 2.

F (x(ξ, η), y(ξ, η)) =

∫
(x2
ξ + y2

ξ + x2
η + y2

η)dξdη , (10.11)

where xξ=∂x/∂ξ, etc.

The conformal invariant is equal to the integrand in (10.11) divided by
the Jacobian

C =
x2
ξ + y2

ξ + x2
η + y2

η

xξyη − xξyη
.

Consequently, the integral (10.11) is the functional of kind (10.10) and,
therefore, it is invariant under conformal transformations of the plane (ξ, η).

For the inverse mapping ξ(x, y), η(x, y), the Dirichlet functional is

F (ξ(x, y), η(x, y)) =

∫
(ξ2x + η2

x + ξ2y + η2
y)dxdy

=

∫
x2
ξ + y2

ξ + x2
η + y2

η

xξyη − xξyη
dξdη , (10.12)

The integrand in (10.12) is the conformal invariant, therefore, the Dirichlet
functional for the inverse mapping is the functional of kind (10.9) and,
therefore, it is invariant under conformal transformations of the plane (x, y).

2. Dirichlet functionals in the case n > 2. For n-dimensional mappings
x=x(ξ) the Dirichlet functional is expressed in terms of the first orthogonal
invariant

F (x(ξ)) =

∫
O1dξ

1 . . . dξn =

∫ n∑

i,j=1

(
∂xi

∂ξj

)2

dξ1 . . . dξn .

It is easy to see that this functional can be represented neither in
form of (10.9) nor (10.10); therefore it is not invariant under conformal
transformations of both the coordinates x and ξ. To derive the functional
invariant under conformal transformations of the coordinates ξ, we use the

relation O
n/2
1 =C

n/2
1 O

1/2
n . Functional of kind (10.10), possessing the required
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property, is of the form

F (x(ξ)) =

∫
O
n/2
1 dξ1 . . . dξn =

∫
C
n/2
1 dx1 . . . dxn

=

∫ 


n∑

i,j=1

(
∂xi

∂ξj

)2


n/2

dξ1 . . . dξn .

The integral with C
n/2
1 is of kind (10.9) and, therefore, it is invariant under

conformal transformations of the coordinates x

F (x(ξ)) =

∫
C
n/2
1 dξ1 . . . dξn

=

∫ 


n∑

i,j=1

(
∂xi

∂ξj

)2


n/2

(det g)−1dx1 . . . dxn .

For the inverse transformation we have

F (ξ(x)) =

∫
On−1O

−1
n dx1 . . . dxn =

∫
On−1O

−1/2
n dξ1 . . . dξn,

which is not also invariant. The following functional possesses this property

F (ξ(x)) =

∫
Cpn−1dx

1 . . . dxn =

∫
Opn−1dξ

1 . . . dξn,

where
p =

n

2(n− 1)
,

is invariant under conformal transformations of ξ.
The functional

F (ξ(x)) =

∫
Cpn−1dξ

1 . . . dξn

is invariant under conformal transformations of x.
3. Euler equations in the case n = 3.
The system of the Laplace equations are the Euler equations for the

Dirichlet functional

4x = 0, 4y = 0, 4z = 0,
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where

4 =
∂2

∂ξ2
+

∂2

∂η2
+

∂2

∂µ2

are not invariant under conformal transformations of ξ, η, µ.
The Euler equations

∂

∂ξ

(
D
∂x

∂ξ

)
+

∂

∂η

(
D
∂x

∂η

)
+

∂

∂µ

(
D
∂x

∂µ

)
= 0,

∂

∂ξ

(
D
∂y

∂ξ

)
+

∂

∂η

(
D
∂y

∂η

)
+

∂

∂µ

(
D
∂y

∂µ

)
= 0,

∂

∂ξ

(
D
∂z

∂ξ

)
+

∂

∂η

(
D
∂z

∂η

)
+

∂

∂µ

(
D
∂z

∂µ

)
= 0,

where
D = (x2

ξ + y2
ξ + z2

ξ + x2
η + y2

η + z2
η + x2

µ + y2
µ + z2

µ)
1/2,

are invariant under conformal transformations of ξ, η, µ.
In the 2D case any conformal transformation is harmonic but this is

not the case in n ≥ 3. Consider the transformation

xi(ξ) =
ξi − ξi0∑n

i=1(ξ
i − ξi0)

2
.

This is a conformal transformation but it does not satisfy the system of
Laplace equations.

10.7 Extension to case of manifolds

Consider the smooth invertible transformation

X(ξ) : Rn → Rn, X = (X1, . . . , Xn)T , ξ = (ξ1, . . . , ξn)T .

Elements of the Jacobi matrix for the mappings x(ξ), x(X), and X(ξ) are
written as

aij =
∂xi

∂ξj
, Aij =

∂xi

∂Xj
, Bij =

∂X i

∂ξj
.

The metric tensors are

g = aTa , g̃ = ATA , G = BT .
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We have a=AB, and A=aB−1. From this it follows

g̃ = ATA = (B−1)T aTaB−1 .

The characteristic equation for the metric g̃ can be written as

det(g̃ − λI) = (detB)2 det(aTa− λBTB) = (detB)2 det(g − λG) = 0 .

The mapping X(ξ) is invertible, therefore, detB 6=0. We can use the
following characteristic equation for the pair of quadratic forms with the
matrices g and G

det(g − λG) = detGdet(gG−1 − λI) = 0 .

A conformal invariant C1 of the metric g̃=ATA can be written as

C1 = tr(gG−1) detG1/n det g−1/n ,

and the functional takes the form

F (x(ξ)) =

∫
C
n/2
1 dξ1 . . . dξn

=

∫ (
gijG

ji
)n/2

(detG)1/2(det g)−1/2dξ1 . . . dξn.

Here Gji are the elements of the matrix inverse to the matrix G. This
functional is called the energy density functional of the mapping x(X). It
is invariant under conformal transformations of the coordinates x and X
simultaneously.

Consider a mapping between manifolds (M,G)→(N, ḡ) with local
coordinates ξ and x. Instead of gij we use the following expression

ḡkm
∂xk

∂ξi
∂xm

∂ξj
,

and obtain the functional of the energy density of the mapping
(M,G)→(N, ḡ)

F (x(ξ)) =

∫ (
ḡkm

∂xk

∂ξi
∂xm

∂ξj
Gij
)n/2

(det ḡ)−1/2(det g)−1/2dM , (10.13)
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where dM=(detG)1/2dξ1 . . . dξn is the element of volume of the manifold
M . This functional is invariant under conformal transformations of the
manifolds M and N simultaneously.

More simple form has the functional of the energy, used in the theory
of harmonic mappings

Fe(x(ξ)) =

∫ (
ḡkm

∂xk

∂ξi
∂xm

∂ξj
Gij
)

(detG)1/2dξ1 . . . dξn . (10.14)

The functional (10.14) is called the mapping energy and its extremal is the
harmonic mapping. At present the theory of the harmonic mappings is well
developed and applied in various fields, cf. [44].

10.8 Curvilinear coordinates on manifold

Application of the theory of harmonic mappings for grid generation in the
3D case runs into some problems, since there is no theoretical base for
developing numerical algorithms. This is confirmed by numerical results of
[73]. Meanwhile 2D adaptive harmonic grids were successfully applied in
some applied problems, cf. [4, 5, 6, 7, 9, 73, 76].

Possibly, the energy density mapping functional (10.13) will help to
overcome this “dimensionality crisis”. Consider the problem of curvilinear
coordinate construction on the manifold (N, ḡ). Assume that x(ξ) :
(M,G)→(N, ḡ) is the mapping of manifolds with the local coordinates ξ
and x, respectively. The manifold M is a unit cube 0≤ξi≤1 with the defined
metric G; and x∈Ω, where Ω⊂R3 is a simply connected domain. Suppose
that a homeomorphic mapping between the boundaries ∂M→∂N is defined.
It is necessary to construct a homeomorphic mapping x(ξ) : (M,G)→(N, ḡ)
at the given mapping between the boundaries; meanwhile the latter is
written as a Dirichlet boundary condition. The mapping constructed in such
a way generates curvilinear coordinates on the manifold (N, ḡ). At the same
time x(ξ) is a curvilinear coordinate system in the domain Ω.

We formulate a hypothesis that represents the variational principle
allowing to distinguish a class of homeomorphic mappings among all
possible smooth mappings of a unit cube onto the manifold (N, ḡ).

Optimality principle. A smooth mapping x(ξ) : (M,G)→(N, ḡ) is a
homeomorphism if and only if it minimizes the energy density functional
F (see (10.13)) with certain “control” metric M .
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In the 2D case a discrete analog of this principle was proved in [77],
see Section 9.4.

The functional (10.13) depends on two metrics. The metric ḡ can be
defined depending on numerical solutions of a physical problem, for instance,
as the metric of the surface of a vector-function graph analogously as it is
executed when generating adaptive-harmonic meshes [73]. The metric G
can be defined so as to provide gride refining and orthogonalization near
the boundary. Realization of this approach in the 2D case is considered in
sec.9.4.

10.9 Approximation of energy density functio-

nal in 3D case

Consider the transformation between two manifolds x(ξ) : (Q3, G̃) → (Ω, ḡ),
where

r = (r1, r2, r3, r4) = (x, y, z, f) ∈ Sr3 ⊂ R4,

x = (x1, x2, x3) = (x, y, z) ∈ Ω ⊂ R3,

ξ = (ξ1, ξ2, ξ3) = (ξ, η, µ) ∈ Q3 ⊂ R3,

rx = (1, 0, 0, fx), ry = (0, 1, 0, fy), rz = (0, 0, 1, fz).

The functional of the energy density in the 3D case can be written as

Fρ(x(ξ)) =

∫ (
ḡkm

∂xk

∂ξi
∂xm

∂ξj
G̃ij
)3/2

(det ḡ)−1/2(det g)−1/2M. ,

where M. =(det G̃)1/2dξ1 . . . dξn is the element of volume of the manifold
(Q3, G̃).

Let adapted function f(x, y, z) define a three-dimensional surface in
four-dimensional space. In this case the metric defined by the transformation
Ω→Sr3 can be computed as follows

ḡ11 = r2x = 1 + f2
x , ḡ22 = r2y = 1 + f2

y , ḡ33 = r2z = 1 + f2
z ,

ḡ12 = ḡ21 = rx · ry = fxfy , ḡ13 = ḡ31 = rx · rz = fxfz ,

ḡ23 = ḡ32 = ry · rz = fyfz ,
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ḡ =




1 + f2
x fxfy fxfz

fxfy 1 + f2
y fyfz

fxfz fyfz 1 + f2
z


 , det ḡ = 1 + f2

x + f2
y + f2

z .

The metric g, defined by the transformation Q3 → Sr3, is

g =




r2ξ (rξ · rη) (rξ · rµ)
(rξ · rη) r2η (rη · rµ)
(rξ · rµ) (rη · rµ) r2µ


 .

The control metric G̃ = G̃T > 0 is the following

G̃−1 =




G̃11 G̃12 G̃13

G̃12 G̃22 G̃23

G̃13 G̃23 G̃33


 .

The energy density of the transformation (Q3, G̃) → Sr3 in one point
can be expressed as

ρ =

(
1
3 tr(G̃

−1g)
)3/2

√
G̃−1g

.

Here the manifold (Q3, G̃) is defined as as the unit cube Q3 with the metric
G̃. Instead of the metric it is convenient to introduce a normalized metric

G =
G̃

(
det G̃

)1/3
,

such that detG = 1. In this case Gij =
(
det G̃

)1/3

G̃ij .

Then the energy density can be written as

ρ =

(
1

3
ḡij

∂xi

∂ξk
∂xj

∂ξl
Gkl
)3/2

(det g)−1/2(det ḡ)−1/2 =
α3/2

3
√

3J
√

det ḡ
,
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where J =
√

det g is the determinant of the Jacobi matrix

J = det




xξ xη xµ
yξ yη yµ

zξ zη zµ


 = det

(
∂xi

∂ξk

)
.

It is easy to see that the expression for ρ contains 3x3x3x3=81 terms,
some of them are the same because the matrices ḡ and G are symmetric.

The expression for α is rather cumbersome. The expression, containing
only terms with ḡ11 and ḡ12 can be written as

α = ḡ11

(
∂x1

∂ξ1
∂x1

∂ξl
G11 +

∂x1

∂ξ2
∂x1

∂ξ2
G22 +

∂x1

∂ξ3
∂x1

∂ξ3
G33

)
+

ḡ11

(
+2

∂x1

∂ξ1
∂x1

∂ξ2
G12 + 2

∂x1

∂ξ1
∂x1

∂ξ3
G13 + 2

∂x1

∂ξ2
∂x1

∂ξ3
G23

)
+ 2ḡ12×

(
∂x1

∂ξ1
∂x2

∂ξ1
G11+

∂x1

∂ξ2
∂x2

∂ξ2
G22+

∂x1

∂ξ3
∂x2

∂ξ3
G33

)
+2ḡ12

(
∂x1

∂ξ1
∂x2

∂ξ2
+
∂x1

∂ξ2
∂x2

∂ξ1

)
G12

+2ḡ12

(
∂x1

∂ξ1
∂x2

∂ξ3
+
∂x1

∂ξ3
∂x2

∂ξ1

)
G13+2ḡ12

(
∂x1

∂ξ2
∂x2

∂ξ3
+
∂x1

∂ξ3
∂x2

∂ξ2

)
G23+ . . . .

Note that in the discretization we will obtain more complicated
expressions. Moreover, wee need also to compute derivatives such, as

Ux =
∂α3/2

∂x
=

3

2
α1/2 ∂α

∂x
,

Uxy =
∂2α3/2

∂x∂y
=

3

4
α−1/2 ∂α

∂x

∂α

∂x
+

3

2
α1/2 ∂

2α

∂x∂y
.

In general, these expressions after discretization will be extremely
complicated, that produces additional difficulties in writing and debugging
the computer code.

To simplify these expressions it is necessary to use tensor notations.
Consider the tetrahedron, shown in Fig.10.1. Coordinates of 4 vertices of
the tetrahedron can be denoted as following

xik, i = 1, 2, 3, k = 0, 1, 2, 3.
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Here i is the coordinate and k is the vertex number.
Consider the linear transformation of the coordinate tetrahedron in

space ξ1, ξ2, ξ3 onto the tetrahedron in space (x1, x2 x3). In this case

∂xi

∂ξk
= xik − xi0 = 4xik .

Expression for α in new notations will be the following

α = ḡij 4 xik 4 xjlG
kl.
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Fig. 10.1: Vertex numeration for the base tetrahedron

We readily obtain the following relations. For n 6= 0

∂ 4 xik
∂xmn

= δimδ
n
k , i, k,m = 1, 2, 3.

If n = 0, we obtain

∂ 4 xik
∂xmn

= δimδ
0
k, where δ0k = −1 for k = 1, 2, 3.



164 Optimality principle

In derivation of computational formulas first we consider the case n 6= 0

∂α

∂xmn
= ḡijδ

i
mδ

n
k 4 xilG

kl + ḡijδ
j
mδ

n
l 4 xikG

kl =

ḡmj 4 xjlG
nl + ḡim 4 xikG

kn = 2gmj 4 xjlG
nl.

∂2α

∂xmn ∂x
i
k

= 2ḡmiG
nk.

Note, that we need only the derivatives, corresponding to n = k. From this
we obtain

∂2α

∂xmn ∂x
i
k

= 2ḡmiG
nn, m, i, n = 1, 2, 3.

Now consider the case n = 0

∂α

∂xm0
= 2ḡijδ

i
mδ

0
k 4 xilG

kl = −2ḡmj 4 xjl (G
1l +G2l +G3l).

∂2α

∂xm0 ∂x
i
0

= −2ḡmjδ
j
nδ

0
l (G

1l +G2l +G3l) =

2ḡmj(G
11 + 2G12 + 2G13 +G22 + 2G23 +G33) =

2ḡmiδ
0
kδ

0
lG

kl, m, n, k, l = 1, 2, 3.

...................................................

At this place the chapter breaks down (Editor).



Chapter 11

Curvilinear grids in finite

element method
Consider an elliptic equation in a simply connected domain Ω with the
boundary Γ

− ∂

∂y
(p
∂u

∂x
) +

∂

∂x
(p
∂u

∂y
) − ∂

∂x
(r
∂u

∂x
) − ∂

∂y
(r
∂u

∂y
) = f , (11.1a)

with the boundary condition
u |Γ= 0. (11.1b)

We will assume that the input data of the problem is such that the solution
u is smooth enough for the validity all the following transformations.

To obtain an integral identity, multiply (11.1a) by v, which is equal to 0
on Γ, integrate over the domain Ω and use the Gauss formula. As a result
we obtain

a(u, v) = (f, v), (11.2)

where

a(u, v) =

∫

Ω

[r(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
) + p(

∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
)]dΩ ,

(f, v) =

∫

Ω

fvdΩ .

11.1 Standard finite element method

Suppose that a structured grid is constructed on a domain Ω. Every interior
node (i,j) is associated with the basis function ψij(x, y), constructed using
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isoparametric quadrilateral finite elements. An approximate solution of the
problem is represented in the form

uh =

i∗−1∑

i=2

j∗−1∑

j=2

uijψij(x, y) . (11.3)

Note that the function uh satisfies the boundary condition (11.1b). Here h
denotes the longest side of the grid cells. Substituting the expression (11.3)
to uh instead of u and the analogous expansion to vh instead of v into (11.2)
and equating the expressions at the coefficients in the series for vh to zero,
we obtain the system of the linear equations for the coefficients uij in (11.3)
which can be written in the form

(Ah + Bh)u = f. (11.4)

Elements of matrices Ah and Bh are calculated as

aklij =

∫

Ω

rh(
∂ψij
∂x

∂ψkl
∂x

+
∂ψij
∂y

∂ψkl
∂y

)dΩ , (11.5)

bklij =

∫

Ω

ph(
∂ψkl
∂x

∂ψij
∂y

− ∂ψkl
∂y

∂ψij
∂x

)dΩ . (11.6)

The components of the vector f are equal to

fij =

∫

Ω

f(x, y)ψij(x, y)dΩ. (11.7)

The quantities rh and ph approximate r and p and are expansions in terms
of piecewise-constant basis functions ψ0

i+1/2,j+1/2(x, y), which are equal to

one inside the grid cell (i+1/2, j+1/2) and zero elsewhere

rh =
i∗−1∑

i=1

j∗−1∑

j=1

ri+1/2,j+1/2ψ
0
i+1/2,j+1/2(x, y) ,

ph =
i∗−1∑

i=1

j∗−1∑

j=1

pi+1/2,j+1/2ψ
0
i+1/2,j+1/2(x, y) ,
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where

ri+1/2,j+1/2 = (rij + ri,j+1 + ri+1,j+1 + ri+1,j)/4 ,

pi+1/2,j+1/2 = (pij + pi,j+1 + pi+1,j+1 + pi+1,j)/4 .

Now consider the structure of non-zero element distribution for the
matrices Ah and Bh. Since the basis functions ψij(x, y) are non-zero only
inside quadrilaterals with a common vertex at grid node (i, j), it is easy to
see that these matrices will be block-tridiagonal matrices and each block
will be a tridiagonal matrix of order (i∗−2).

Thus, the structure of the matrix of the system of the linear equations
(11.4) corresponds to a finite-difference approximation of the operator of the
problem (11.1) on the nine-point stencil. Because this matrix has a regular
structure, it is required to store in the computer memory only its non-zero
elements. On the other hand, the elements of this matrix can be calculated at
every step of the iteration for its inversion, as it is usual for finite-difference
methods, achieving an even greater saving of computer memory, although
at the expense of increasing the computer time.

The successive over relaxation method is used for the numerical solution
of the system (11.4).

Consider computational formulas. In isoparametric finite elements the
mapping xh, yh of the unit square cell in the plane (ξ, η) onto the cell
Qi+1/2,j+1/2 in the plane (x, y) is used. Computational formulas for these
elements are valid if all grid cells are convex quadrilaterals.

Inside a square cell in the plane (ξ, η) the derivatives of the function
uh are computed from the formulas

∂uh

∂x
=

1

J
(
∂uh

∂ξ

∂yh

∂η
− ∂uh

∂η

∂yh

∂ξ
) ,

∂uh

∂y
=

1

J
(−∂u

h

∂ξ

∂xh

∂η
+
∂uh

∂η

∂xh

∂ξ
) .

If these expressions are substituted into the formula (11.5) for the elements
of the matrix Ah, the integrand in (11.5) will be a polynomial divided by
a linear function of ξ, η. This integral can be evaluated exactly, but the
expressions obtained are too cumbersome. It is better to use the simple
quadrature formulas.

To evaluate the integral (11.5) over the cell Qi+1/2,j+1/2 in the plane
(x, y), consider the bilinear form

IA =

∫

Qi+1/2,j+1/2

(
∂uh

∂x

∂vh

∂x
+
∂uh

∂y

∂vh

∂y
)dxdy .
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The integral is approximated by a quadrature formula with nodes coincident
with the vertices of the parametric square

IhA =
1

4
(∇uh∇vhJ |1 +∇uh∇vhJ |2 +∇uh∇vhJ |3 +∇uh∇vhJ |4) .

Then the elements of the local matrix corresponding to Ah are computed as
follows

aij = aji =
∂2IhA
∂ui∂vj

, i, j = 1, 2, 3, 4.

To obtain the elements of the matrix Bh consider the bilinear form

IB =

∫

Qi+1/2,j+1/2

(
∂uh

∂x

∂vh

∂y
− ∂uh

∂y

∂vh

∂x
)dxdy =

∫

∂Qi+1/2,j+1/2

uh
∂vh

∂s
ds.

The integral can be calculated exactly

IB =
u1 + u4

2
(v4−v1)+

u4 + u3

2
(v3−v4)+

u3 + u2

2
(v2−v3)+

u1 + u2

2
(v2−v1).

Introducing the notation

bij = −bji =
∂2IB
∂ui∂vj

, i, j = 1, 2, 3, 4,

finally we obtain

b11 = 0, b12 = 1/2, b13 = 0, b14 = −1/2, b22 = 0,

b23 = 1/2, b24 = 0, b33 = 0, b34 = 1/2, b44 = 0.

It is well known, that the expansion with coefficients uij , defined by
the solution of the linear system (11.4) converges to the exact solution u of
the problem (11.1), and the following estimate holds

‖u− uh‖1 ≤ ch,

with a constant c independent on h. Here the norm ‖u‖1 is defined as

‖u‖1 =

∫
(u2 + u2

x + u2
y)dΩ .
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11.2 Upstream finite element method

Note that the first two terms in (11.1a) are expressions dependent only on
ux and uy, and p can be considered as an analog of the stream function.
Indeed, (11.1a) can be rewritten in the form

qx
∂u

∂x
+ qy

∂u

∂y
− ∂

∂x
(r
∂u

∂x
) − ∂

∂y
(r
∂u

∂y
) = f ,

where qx= − ∂p/∂y and qy=∂p/∂x satisfy the continuity equation

∂qx
∂x

+
∂qy
∂y

= 0 .

This fact can be used to construct such an approximation, which is similar
to the finite-difference scheme with upwind differences. It can be done if the
first two terms in (11.1a) are approximated by a box method, and the second
two terms are approximated by the standard finite element method described
in the previous subsection. These approximations must be conformal in a
sense that the approximate solution to the problem (11.1) converges to the
exact one.

Consider approximations of first two terms in (11.1a). Every grid cell
is divided into four quadrilaterals, joining the mid-point of the opposite
sides by the straight-line sections, as shown in Fig.11.1. Equation (11.1a) is
integrated over the octogonal cell with vertices (11′22′33′44), consisting of
the quadrilaterals obtained at subdivision and containing the node (ij) as a
vertex. Denote this octagon by Eij . Integrating, we obtain

∫

∂Eij

(−∂p
∂s
u− r

∂u

∂n
)ds =

∫

Eij

fdxdy , (11.8)

where ∂/∂n and ∂/∂s are the derivatives in the normal and tangential
directions to the boundary ∂Eij of the octagon Eij . The first term in the
left-hand side of (11.4) is approximated as follows



∫

∂Eij

−∂p
∂s
uds




ij

= [p1 − p2]ij ũi,j+1/2
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+[p4 − p1]ij ũi+1/2,j + [p3 − p4]ij ũi,j−1/2 + [p2 − p3]ij ũi−1/2,j , (11.9)

where

ũi,j+1 =

{
uij if [p1 − p2]ij ≥ 0,

ui,j+1 if [p1 − p2]ij < 0.
(11.10)

Here ũi+1/2,j , ũi−1/2,j , and ũi,j−1/2 are calculated similarly. According
to the notation in Fig.11.1

[p1 − p2]ij = qi,j+1/2 = pi+1/2,j+1/2 − pi−1/2,j+1/2 ,

[p2 − p3]ij = qi−1/2,j = pi−1/2,j+1/2 − pi−1/2,j−1/2 ,

[p3 − p4]ij = qi,j−1/2 = pi−1/2,j−1/2 − pi+1/2,j−1/2 ,

[p4 − p1]ij = qi+1/2,j = pi+1/2,j−1/2 − pi+1/2,j+1/2 .

Now, instead of (11.4) consider the system of the linear equations

(Ah + Bh + Ch)u = f . (11.11)

The sum of the second and the third terms in (11.11) corresponds to the
approximation (11.9), (11.10) of the first two terms in (11.1a). Matrix Bh is
the same as in (11.4) and its elements are computed by formulas introduced
in previous subsection. The matrix Ch is symmetric and positive definite.
To show this, we will rewrite (11.9) in the form



∫

∂Eij

−∂p
∂s
uds




ij

= qi,j+1/2ui,j+1/2

+qi+1/2,jui+1/2,j + qi,j−1/2ui,j−1/2 + qi−1/2,jui−1/2,j , (11.12)

+
1

2
|qi,j+1/2|(uij − ui,j+1) +

1

2
|qi+1/2,j |(uij − ui+1,j) ,

+
1

2
|qi,j−1/2|(uij − ui,j−1) +

1

2
|qi−1/2,j |(uij − ui−1,j) ,

where

ui,j+1/2 =
1

2
(uij + ui,j+1), ui,j−1/2 =

1

2
(uij + ui,j−1),

ui+1/2 =
1

2
(uij + ui+1,j), ui−1/2 =

1

2
(uij + ui−1,j).
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The first four terms in the right-hand side of (11.12) correspond to Bhu and
can be obtained by the standard procedure of the finite-element method. The
matrix Bh is skew-symmetric

(Bhu,u) = 0 .

The last four terms in the right-hand side of (11.12) correspond to Ch.
Multiplying (11.12) by uij and summing over all internal nodes, we obtain

(Chu,u) =
∑

[
1

4
|qi,j+1/2|(uij − ui,j+1)

2 +
1

4
|qi+1/2,j |(uij − ui+1,j)

2

+
1

4
|qi,j−1/2|(uij − ui,j−1)

2 +
1

4
|qi−1/2,j |(uij − ui−1,j)

2] ≥ 0.

It can be shown that the expansion (11.4) with the coefficients uij ,
defined by the solution of the linear system (11.11), converges to the exact
solution u of the problem (11.1) and the following estimate holds

‖u− uh‖1 ≤ ch ,

with a constant c independent on h. This means that approximations by the
standard procedure of the finite element method and by upstream method
are conformal. This method is used for the numerical solution of the shallow
water equations, described in the next section.

The use of the upstream finite element method with a standard
approximation of the second derivatives on the square grid with the grid
size h for the equation

−4 u+ ux = 0 ,

gives a system of finite-difference equations

(8uij − ui−1,j−1 − ui,j−1 − ui+1,j−1 − ui−1,j − ui+1,j

− ui−1,j+1 − ui+1,j+1 − ui,j+1)/3 + h(uij − ui−1,j) = 0 ,

of first order approximation, satisfying the maximum principle.
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Fig. 11.1: Nine-point stencil and domain of integration Eij in box method
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Test computations
The methods of constructing adaptive-harmonic grids involve computation
of the adapted function at the grid nodes. But if that function is obtained by
numerical solution of a boundary-value problem, the nodal values differ from
the exact ones by a quantity O(hk), where k is the order of convergence.
This gives rise to the following contradiction. If the unknown function is
approximated by means of an expansion in terms of piecewise-constant basis
functions, the function

uh0 =
∑

uiϕ
0
i (x)

obtained by numerical solution cannot be used to construct a uniform grid
over its graph. Moreover, if the values of the function uh0 at cell centers
differ from exact value by O(h), in general case the derivative might be
computed with accuracy O(1), so there might be no convergence for the
grid.

The same is true for approximation by piecewise-linear functions. In
this case a scheme of not higher than second-order approximation is obtained
for a second-order equation, and again convergence of the finite difference
approximation to the second derivative cannot be guaranteed, since it can be
computed only with the accuracy O(1). In order to calculate this derivative
with sufficient accuracy, we must use additional information provided by
the hosted equation. This approach has been developed for the Poisson’s
equation, and formulas can be given to calculate the second derivatives
at grid nodes with the second order accuracy. These formulas contain the
function which approximates the control function with the second order in
the norm L2.

One possible way of constructing a universal algorithm which does not
suffer of this contradiction is the following. The solution is sought in the
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form of an expansion in terms of piecewise-linear basis functions in the 1D
case and piecewise-linear to triangular and piecewise-bilinear functions and
quadrilateral elements. The grid is generated by projection of the harmonic
coordinates constructed on the curve/surface of the approximate solution. In
this case it is not the error of the piecewise-linear approximation ‖u−uh‖C or
‖u−uh‖C1 , but the approximation error of the piecewise-constant functions
‖u− uh0‖C, which is minimized. And although the resulting grid will be not
optimal for the piecewise-linear approximation, it does help to improve the
accuracy and is quite suitable for calculations. It should be mentioned that
we usually start with the grid with spacings being clearly larger than the
width of the boundary layer. On this initial grid the error for the function is
of O(1) and for the derivative is of O(1/h). In such a situation such "loss of
the order"at adaptation seems natural. Perhaps it is the only way to perform
adaptation in real-world simulations.

Consider the equation

ε

(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂u

∂x
= π sin(πy), 0 < x < 1, 0 < y < 1, (12.1a)

with the boundary conditions

u |Γ= 0 . (12.1b)

The analytic solution of the problem (12.1) has the form

u =
1

πε
sin(πy)[(1 − c) exp(ax) + c exp(bx) − 1] , (12.2)

where

a =
1

2ε
(−1 +

√
1 + 4π2ε2), b =

1

2ε
(−1 −

√
1 + 4π2ε2),

c = (exp a− 1)/(expa− exp b).

Fig.12.1a shows the function (12.2) plots. The grid in Fig.12.1b was
constructed by the adaptive-harmonic grid generation method with ε=0.05.
This function has a boundary layer on the left-hand side of the square.

The calculations were carried out with four values of the parameter
ε=0.2, 0.05, 0.01, 0.001 on four embedded grids of 9×9, 17×17, 33×33,
65×65 nodes. The corresponding mesh spacing h=1/N was equal to
h=1/8, 1/16, 1/32, 1/64.
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Fig. 12.1: Function (12.2) plots with ε=0.05.

Every step of the iterative method of adaptive harmonic grid generation
consists of two stages. At the first stage, we compute the adapted function
values at the grid nodes. At the second stage, the new grid nodes coordinates
are determined. Once the convergence has been obtained, we estimate four
quantity characterizing the error. The first quantity, referred to as E0, is
equal to the approximation error in the C norm when approximating by
piece-wise constant functions

E0 =
max
x,y

|u− uh0 |

umax − umin
,

where

uh0 =

i∗−1∑

i=1

j∗−1∑

j=1

ui+1/2,j+1/2φ
o
i+1/2,j+1/2(x, y) ,

ui+1/2,j+1/2 =
1

4
(uij + ui,j+1 + ui+1,j+1 + ui+1,j .

The basis function φoi+1/2,j+1/2(x, y) is equal to 1 inside the cell (i+1/2,

j+1/2) and 0 outside this cell. umax and umin is the maximal and minimal
function value.
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The second quantity is the approximation error in the C norm when
approximating by the quadrilateral finite elements

E1 =
max
x,y

|u− uh|

umax − umin
,

where

uh =

i∗−1∑

i=2

j∗−1∑

j=2

uijφi,j(x, y) ,

uij is the function value in the node (i, j), and φi,j(x, y) is the basis function
of the quadrilateral isoparametric finite elements.

The quantity

E2 =

max
i,j

|u(xij , yij) − uij |

umax − umin

is the maximal difference of the approximate and exact solutions in the grid
nodes.

The error in the C1 norm

E3 =
max
x,y

(|ux − uhx|, |uy − uhy |)

max
x,y

√
u2
x + u2

y

is the maximal error of derivatives, normalized with respect to the maximal
modulus of the function u(x, y) gradient.

We will now analyze the experimental results. In the first series of
calculations, we used the values of uij obtained for the analytic solution,
i.e. uij=u(xij , yij), where u(x, y) is the analytic solution of the problem
(12.1). The curves of the error E0 as the function of the spacing h=1/N
are shown for the uniform square grid in Fig.12.2a and for the adaptive grid
in Fig.12.2b. Here and below the labels on the curves correspond to the
following values of the parameter ε: curve 1 was obtained with ε=0.2, 2
with ε=0.05, 3 with ε=0.01, and 4 with ε=0.001. Obviously, on the uniform
grids when ε is small, the error E0 behaves like the approximation error in
the C norm on a uniform grid in the 1D case. On the adaptive grid the error
E0 decreases linearly with h as that of on the adaptive grid in the 1D case.
Hence, adaptive grids help to preserve the correct convergence rate to uh0
with practically any number of nodes.
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The dependence of E1 on h for the uniform and adaptive grids are
shown in Figs.12.2c,d. Now we have a different situation. The adaptive grid
is highly accurate for small numbers of ε, as that of in the above calculations,
but does not give the correct convergence rate, especially with large values
of ε. In fact, the error decreases as O(h2) on the uniform grid with ε=0.2,
but decreases as O(h) on the adaptive grid for the same value of ε. Moreover,
the error E1 is less on the uniform grid than that of on the adaptive grid.
This is because the method minimizes E0, and does not E1. The results of
the next series of calculations are shown in Fig.12.3. The standard finite
element method, using a scheme with centered differences to approximate
the first derivatives, is used here to obtain the values of uij in the grid
nodes. The solution is distorted by oscillations for small values of ε, and the
iteration does not converge at all with ε=0.001. That is why the Fig.12.3
does not show any curves corresponding to this value of ε.

Graphs of the error E0 as a function of h are shown for the uniform
grid in Fig.12.3a, and for the adaptive grid in Fig.12.3b. As in the case of
the analytic solution, the error E0 decreases as O(h) on the adaptive grid,
and with ε=0.001 and h>1/32 it is larger than 0.6 on the uniform grid
due to the presence of spurious oscillations. The behavior of the error E0

on the adaptive grid with ε=0.01 demonstrates that oscillations are slightly
suppressed. The graphs of the error E1 for the uniform and adaptive grids
are shown in Fig.12.3c and Fig.12.3d, respectively. They are similar to the
respective graphs of the analytic solution. Here with ε=0.2 the convergence
rate is also higher on the uniform grid than on the adaptive grid and the
error E1 is less on the uniform grid than that of on the adaptive grid.

The graphs of the E2 error in the grid nodes are shown for the
structured and adaptive grids in Fig.12.3e and Fig.13.3f, respectively. On
the uniform grid a superconvergence is observed when ε=0.2, that is E2

decreases as O(h2+α), where α>0. At the same time, on the adaptive grid
the error E2 changes as O(h). Note that on the uniform grid with ε=0.01
and h=1/8 we have E2>0.8 due to the fact that the scheme is not-monotone.

The next series of computations was carried out with the upstream
finite element method. The graphs of the errors E0, E1 and E2 against h
for the uniform and adaptive grids are shown in Fig. 12.4. The uniform
grid corresponds to the cases a, c, e, and the adaptive grid to b, d, f . Even
though the scheme is only of the first-order approximation, the algorithm for
constructing a grid operates stably for any ε. In fact, the approximation of the
derivatives of the function u(x, y) is fairly accurate, since the corresponding
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estimate shows that they converge with first order with respect to h in the
norm L2. The fact that the scheme is of the first order is quite clear from
Fig.12.4c for the dependence of E1 on h with ε=0.2 and ε=0.05. We also
note that when ε=0.001 the values of E2 (the error in grid nodes) obtained
on the uniform grid are very small. Hence, with small ε and large h the
error in grid nodes does not reflect the accuracy of the method.

We are primarily interested in E1, the error of approximation by
the finite element method. As we have seen, the adaptive-harmonic grid
generator does not minimize E1 and, as a result, the correct rate of
convergence of the error E1 is not achieved for large h and ε. It turns
out that the correct convergence rate of the error E1 can be obtained if the
grid is constructed as the projection of the harmonic grid constructed on the
graph of the vector-function whose components are the partial derivatives
ux and uy, rather than on the surface of the graph of the function u(x, y).
However, this means that the values of the derivatives at grid nodes must
be computed with sufficient accuracy.

Figure 12.5a,b shows the graphs of E3 (the error in norm C1) against
h for the uniform and adaptive grids, respectively. The adaptive grid was
generated by a harmonic grid on the surface of the graph of the derivatives.
The values of the derivatives at the nodes are computed analytically. First-
order convergence is obtained for the derivatives. Figure 12.5c shows the
graphs of E0 against h and Fig.12.5d shows graphs of E1 against h. Note
that E0 behaves again as O(h), but correct second-order convergence was
obtained to E1, at least with values ε between 0.01 and 0.2. However, this
method could not be used for the approximate solution for the problem (12.1),
because the derivatives were not calculated with sufficient accuracy of the
function in grid nodes. Moreover, we were not able to obtain a good adaptive
grid, even by computing the derivatives using exact values of the function in
grid nodes using the analytic solution. Clearly, additional information about
the solution must be used to compute the second derivatives with sufficient
accuracy.
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Fig. 12.2: Curves of errors E0 and E1.
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Fig. 12.3: Graphs of E2, E1 and E0.
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Fig. 12.4: Graphs of errors E0, E1 and E2
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Fig. 12.5: Graphs of E3 and E0.



Chapter 13

Model of wind-induced

circulation in shallow water

13.1 Three-dimensional shallow water

equations

The system of three-dimensional Navier-Stokes equations can be written as

∂ũ

∂t
+ ũ

∂ũ

∂x
+ ṽ

∂ũ

∂y
+ w̃

∂ũ

∂z
= −1

ρ

∂p

∂x
+ fx, (13.1a)

∂ṽ

∂t
+ ũ

∂ṽ

∂x
+ ṽ

∂ṽ

∂y
+ w̃

∂ṽ

∂z
= −1

ρ

∂p

∂y
+ fy, (13.1b)

∂w̃

∂t
+ ũ

∂w̃

∂x
+ ṽ

∂w̃

∂y
+ w̃

∂w̃

∂z
= −1

ρ

∂p

∂z
+ fz, (13.1c)

∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z
= 0. (13.1d)

Here ũ, ṽ and w̃ are the velocity components in the x, y, z directions
respectively, ρ is the density, p is the pressure, fx, fy, and fz represent
components of mass force per unit volume. They can be written in the form

fx = lC ṽ + kz
∂2ũ

∂z2
,

fy = −lC ũ+ kz
∂2ṽ

∂z2
,
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fz = −g,
where kz is the coefficient of vertical viscosity, g is the acceleration due to
gravity, lC is the Coriolis parameter, defined as

lC = 2ω sin θ,

where ω is the angular speed of the Earth and θ is the latitude.
If we consider that the characteristic horizontal length scale is much

larger than the characteristic vertical length scale, then the equation (13.1c)
can be written as

1

ρ

∂p

∂z
= −g. (13.2)

This equation is called the hydrostatic equation. Consider the function
ς(x, y, t) defining the free surface level against the reference plane z=0.
Integrating the equation (13.2) from z to ς results in

p(x, y, z, t) = g

∫ ς

z

ρdz + pa. (13.3)

Here pa is the atmospheric pressure. Suppose that ρ and pa are constants.
Then the pressure term in equations (13.1a) and (13.1b) can be written as

1

ρ

∂p

∂x
= g

∂ς

∂x
,

1

ρ

∂p

∂y
= g

∂ς

∂y
. (13.4)

To obtain additional equation for the unknown free surface ς(x, y, t), we
integrate the continuity equation (13.1d) along the vertical axis

w̃(x, y, ς, t) − w̃(x, y, h(x, y), t) = −
∫ ς

−h

∂ũ

∂x
dz −

∫ ς

−h

∂ṽ

∂y
dz, (13.5)

where h(x, y) is water depth below the reference plane z = 0. Changes of the
bed are considered to be small and they are therefore neglected. Thus, h does
not depend on time. Equation (13.5) can be rewritten using substitutions for
w̃ at the free surface and the bottom. For z=ς(x, y, t) we have

w̃ =
dς

dt
=
∂ς

∂t
+ ũ

∂ς

∂x
+ ṽ

∂ς

∂y
.

For z= − h(x, y) we have

w̃ = −ũ∂h
∂x

− ṽ
∂h

∂y
.
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We use also the Leibnitz integration rule
∫ ς

−h

∂ũ

∂x
dz =

∂

∂x

∫ ς

−h

ũdz − ũ
∂ς

∂x
− ũ

∂h

∂x
,

∫ ς

−h

∂ṽ

∂y
dz =

∂

∂y

∫ ς

−h

ṽdz − ṽ
∂ς

∂y
− ṽ

∂h

∂y
.

Using all these derivations we obtain the following system of equations
which is called the three dimensional shallow water equations

∂ς

∂t
+

∂

∂x

∫ ς

−h

ũdz +
∂

∂y

∫ ς

−h

ṽdz, (13.6a)

∂ũ

∂t
+ ũ

∂ũ

∂x
+ ṽ

∂ũ

∂y
+ w̃

∂ũ

∂z
− lC ṽ = −g ∂ς

∂x
+ kz

∂2ũ

∂z2
, (13.6b)

∂ṽ

∂t
+ ũ

∂ṽ

∂x
+ ṽ

∂ṽ

∂y
+ w̃

∂ṽ

∂z
+ lC ũ = −g ∂ς

∂y
+ kz

∂2ṽ

∂z2
, (13.6c)

∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z
= 0. (13.6d)

This system of equations is solved with the following boundary and
initial conditions

ũnx + ṽny = ũn on Γl (13.7a)

kz
∂ũ

∂z
= λbũ

√
ũ2 + ṽ2 on the bottom z = −h(x, y) (13.7b)

kz
∂ṽ

∂z
= λbṽ

√
ũ2 + ṽ2 on the bottom z = −h(x, y) (13.7c)

kz
∂ũ

∂z
= λWWx

√
W 2
x +W 2

y on the free surface z = ς(x, y, t) (13.7d)

kz
∂ṽ

∂z
= λWWy

√
W 2
x +W 2

y on the free surfacez = ς(x, y, t) (13.7e)

ς(x, y, 0) = ς0(x, y), ũ(x, y, z, 0) = ũ0(x, y, z), ṽ(x, y, z, 0) = ṽ0(x, y, z),

w̃(x, y, z, 0) = w̃0(x, y, z). (13.7f)

Here nx and ny are the components of the external normal to the lateral
boundary Γl, ũn is a given function, λb is the coefficient of the bottom
friction, λW is the coefficient of the wind stress friction, Wx and Wy are
the components of the wind velocity.

The problem (13.6), (13.7) is used in simulation of 3D flows in natural
water bodies.
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13.2 Two-dimensional shallow water equations

Further simplification of the system (13.6) can be obtained by integrating
the equations (13.6b) and (13.6c) from −h to ς along the vertical axis. As a
result we have the following

∂ς

∂t
+
∂Hu

∂x
+
∂Hv

∂y
, (13.8a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− lCv = −g ∂ς

∂x
− λbu

√
u2 + v2 − λWWx

√
W 2
x +W 2

y ,

(13.8b)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ lCu = −g ∂ς

∂y
− λbv

√
u2 + v2 − λWWx

√
W 2
x +W 2

y .

(13.8c)
Here H = h+ ς and

Hu =

∫ ς

−h

ũdz, Hv =

∫ ς

−h

ṽdz .

13.3 Model of wind-induced circulation in

shallow water

13.3.1 Problem formulation

We consider the model of currents in shallow water body, described by
simplified shallow water equations

∂u

∂t
− lCv = −g ∂ς

∂x
− r

h
u+

τx
h
,

∂v

∂t
+ lCu = −g ∂ς

∂y
− r

h
v +

τy
h
,

∂

∂x
(hu) +

∂

∂y
(hv) = 0 .

Here u and v are the components of the averaged velocity vector, ς(x, y, t)
is the free surface level, h(x, y) is the depth, τx and τy are the components
of the frictional stress along the axes x and y, respectively, lC is the Coriolis
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parameter, equal to lC=2ω sin θ, where ω is the Earth’s angular velocity, θ
is the latitude, g is the acceleration due to gravity, r=Cf

√
u2+v2, Cf is the

bottom friction coefficient.
The condition on the boundary is

un = unx + vny = 0,

where nx and ny are the components of the external normal to the boundary.
Introduce the integral stream function

hu =
∂Ψ

∂y
, hv = −∂Ψ

∂x

and obtain an equation which we will solve in the simply connected domain
Ω with the boundary b.

∂

∂t
[
∂

∂x
(
1

h

∂Ψ

∂x
) +

∂

∂y
(
1

h

∂Ψ

∂y
)] +

∂

∂y
(
lC
h

∂Ψ

∂x
) − ∂

∂x
(
lC
h

∂Ψ

∂y
)

+
∂

∂x
(
r

h

∂Ψ

∂x
) +

∂

∂y
(
r

h

∂Ψ

∂y
) =

∂

∂y
(
τx
h

) − ∂

∂x
(
τy
h

). (13.9)

The initial and boundary conditions are written in the form

Ψ |b= 0, Ψ |t=0= Ψ0(x, y). (13.10)

We assign the components of the frictional stress of the wind by means of
formula

τx = CWWx

√
Wx +Wy , τy = CWWy

√
Wx +Wy ,

whereWx ї Wy are the components of the wind velocity, CW is a coefficient.
The implicit scheme was used to approximate (13.9) with respect to

time. The resulting elliptic equation for the integral stream function on the
upper time level is solved by the upstream finite element method described
in the previous section.

The input data were the values of the water body depth at nodes of
a square grid and the wind velocity. These values were interpolated to the
adaptive grid at each iteration using bilinear interpolation formulae.

The wind circulation was modelled with the following parameter values:
Cf=2.6 · 10−3, CW=3.1 · 10−6, g=9.8m/s2.
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13.3.2 Results of computations

In all the computations, block-structured grids were constructed by the
variational barrier method. Finite difference method cannot be applied here,
because this method does not guarantee the construction of convex grids.

Result of computations presented for the Mojaiskii reservoir
(Figs.13.1-13.6) show that grid generation method with condensation and
orthogonalization near the boundary based on the functional of the energy
density increases the accuracy of computations.

Another example of the simulation of the wind currents in the Piltun
and Chayvo bays is presented in Figs.13.7-13.10.
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Fig. 13.1:
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Fig. 13.2:
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Fig. 13.3:
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Fig. 13.4:
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Fig. 13.5:
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Fig. 13.6:
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Fig. 13.7:
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Fig. 13.8:
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Fig. 13.9:



198 Model of wind-induced circulation in the shallow water

Fig. 13.10:



Chapter 14

Moving grids in simulation of

free surface flow
In many approaches to numerical solution of free-surface problems, the
physical domain is transformed onto a computational domain (usually a
rectangle) through the change of variables involving the vertical coordinate
only. However, this approach cannot be applied in certain cases, as in the
presence of steep gradients of free surface level.

For this reason a technique for constructing curvilinear coordinate
system, guaranteeing invertibility at the continuous level and unfolded grid
generation at the discrete level is applied.

To simulate the flow through the overfall dam with discharge controlled
by hosting the gate, the model, based on the Euler equations, is applied. The
numerical method contains barrier method for grid generation and splitting
technique for the numerical solution of equations, describing the physical
process.

14.1 Problem formulation and choice of

mathematical model

The principal goal of this study is to construct a mathematical model that can
predict the overfall dam discharge ratings that correspond to various gate
openings and various head water heights. These ratings represent the dam
underflow and overflow discharge rates Qu(Hin) and Qo(Hin) as functions
of the head water height Hin and various gate openings. For Rublevskii
Dam the ratings cannot be derived from measurements, because just a few
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regimes (data points) can be observed during a calendar year and not all of
them can be quantified.

Rublevskii Dam, across the Moscow River (in operation since 1931), is
a two-span overfall dam. Each 30m span is equipped with roller gates. The
gates were designed and manufactured by the MAN Group company.

The roller gate is designed as a gate with downward leaf attached to
the headwater side of the roller and with runoff over its crest. The mass of
each gate is 62 tonnes as specified by the manufacture.

The roller is the hollow cylinder with a circular cross section of diameter
3.1m, covered with steel of thickness varying from 9.6mm at the gate posts
to 13.6mm in the middle of a span.

The downward leaf has a curved surface with a curvature radius of
2.946m. The leaf is covered with 9.7mm steel sheeting.

The gate is rolled along cog rails inclined at an angle 70 degrees. The
rails are fixed in grooves in the end posts and engaged with the socket
bands attached to the roller ends. Each gate is hosted by the socket chain
being pulled in at one end. The chain runs along a guide fixed to the gate
on the headwater side. The lower end of the chain is attached to a support,
and its upper end bears against a hoist gear. The geometric characteristics
of the Rublevskii Dam (Fig.14.1) we used to prescribe the geometry of the
mathematical model. The bottom profile was prescribed according to the
Rublevskii Dam detailed drawings.

Fig.14.2a shows the computational domain corresponding to the dam
cross section, including the roller gate as a portion of its boundary. The
domain has two geometries. The first one corresponds to a hoisted roller,
which is rotated so that each a point on its surface is displaced by a length
equal to its elevation. This design feature was confirmed by measurements.
Note that the roller opening is measured along the vertical direction. The
right and left boundaries of the computational domain are located 15 and 10m
from the roller axis, respectively. Fig.14.2b shows the computational domain
corresponding to the lowest position of the roller. The initial position of the
free surface (a surface profile is a line in 2D case) is also shown for both
geometries in Fig.14.2.

Let us discuss the physics of the flow in some detail. The runoff current
interacts with the underflow. As a result, a region of aerated turbulent flow
develops on the tail water side, which corresponds to a complex water-air
two-phase motion. However, tailwater turbulence has a little effect on the
underflow discharge rate and no effect on the runoff, because disturbances
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Fig. 14.1:

cannot propagate upstream the supercritical flow. Moreover, a standard dam
is designed so as to minimize the effect of turbulence on the total discharge
rate; otherwise, flow oscillations may prematurely wear out the roller gate.

Let us estimate the Reynolds number Re = UL/ν and the Froude
number Fr = U/

√
gH , where U is the reference velocity, L is the reference

horizontal length, H is the reference depth, µ = 10−6m2/s is the kinematic
viscosity, and g is the gravitational acceleration. Using the fact that U and
H vary from U = 0.1m/s and H = 5m at the inlet boundary to U = 2m/s
and H = 0.1m at the roller, and assuming the horizontal reference length



202 Moving grids in simulation of free surface flow

Fig. 14.2:

L = 5m, one finds that the Reynolds number varies from 5·105 to 107 with
the Froude number varies from 0.014 to 2.

The choice of a mathematical model is based on the following
considerations.

1. The shallow water approximation cannot be used because the flow
involves substantial vertical accelerations.

2. The flow through the dam is approximately uniform spanwise, which
makes it possible to restrict considerations to 2D formulation.

3. Preliminary estimates show that viscosity can be neglected.

4. Tailwater aeration can be neglected.

5. The problem must include determination of the free surface geometry,
which controls the overflow velocity distribution.

14.2 Mathematical formulation of problem

A 2D unsteady free surface inviscid incompressible flow is considered in a
coordinate system with horizontal x-axis pointing downstream and y-axis
pointing upwards.
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In a domain Ω with boundary Γ a solution is sought to the Euler
equations for the inviscid incompressible flow.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
, (14.1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
− g, (14.1b)

∂u

∂x
+
∂v

∂y
= 0 . (14.1c)

Here,u and v are flow velocity components, ρ = 103kg/m3, g = 9.81m/s3

is the gravitational acceleration due to gravity and p is pressure.
The domain Ω can be either simply connected or doubly connected

(when the rollers are in hoisted position). Its boundary Γ = Γl+Γr+Γt+Γb.
Here Γb represents the bottom and the roller surface where the following
impermeability conditions are set

un = unx + vny = 0, on Γb . (14.2a)

where nx and ny are the components of the outward normal to the boundary.
Γl and Γr are left and right boundaries, defined as x = xl and x = xr.
The free surface Γt is defined by means of two functions xs(s, t) and

ys(s, t), where s is the length along the boundary, t is time.
Boundary conditions:
Water flows into the domain across the boundary Γl, where a boundary

condition for pressure is set and a free-surface level is prescribed

∂p

∂n
= 0, y(0, t) = yl(t) on Γl . (14.2b)

Condition (14.2b) is used when the convective terms in Eqs. (14.1a, b) are
negligible on Γl. Otherwise, additional boundary conditions must be set; for
example, both velocity components can be prescribed on Γl.

Water flows out of the domain across the boundary Γr, where a single
boundary condition for pressure is sufficient

∂p

∂n
= 0 on Γr . (14.2c)

Two boundary conditions are set on the free surface Γt: a kinematic one
and a dynamic one. The kinematic condition is derived from the continuity
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equation written for the free surface, reflecting the fact that a fluid particle
initially located at the surface cannot move from it at subsequent moments

un = unx + vny =
∂xs
∂t

nx +
∂ys
∂t

ny on Γt . (14.2d)

The dynamics condition implies that the water and air pressure are
equal at the phase boundary (i.e. on the free surface)

p = Pa on Γt . (14.2e)

where Pa is the atmospheric pressure.
Since the flow may separate from the roller, condition (14.2a) is

supplemented by a condition for pressure analogous to (14.2e)

p = Pa if p < Pa on Γr . (14.2f)

When the flow separates, part of the boundary adjoining the roller
becomes free and begins to move with a certain velocity. However this
condition is used in unconstrained form, serious difficulties may arise
from the instability of a free-falling jet. For this reason, condition (14.2e)
is set on a stationary boundary (roller surface). As a consequence, the
mass conservation law is violated, and the tailwater discharge rate is
overpredicted. However, numerical results show that this does not lead to
significant error in discharge rating.

Initial conditions are

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y) at t = 0 in Ω . (14.3)

The problem is to find the functions

u(x, y, t), v(x, y, t), p(x, y, t) ,

satisfying equations (14.1) and the initial and boundary conditions (14.2) and
(14.3).

14.3 Splitting technique

The splitting technique with respect to physical processes used to solve
Eqs.(14.1) is designed as follows. Suppose that all flow variables are known
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at the time level tn. Then, the unknown values at tn+1=tn+τ are calculated
using the following stages.

Stage 1:
ũ− un

τ
= −un∂u

n

∂x
− vn

∂un

∂y
, (14.4a)

ṽ − vn

τ
= −un∂v

n

∂x
− vn

∂vn

∂y
− g , (14.4b)

Stage 2:
τ

ρ

(
∂2pn+1

∂x2
+
∂2pn+1

∂y2

)
=
∂ũ

∂x
+
∂ṽ

∂y
, (14.5)

Stage 3:

un+1 = ũ− τ

ρ

∂pn+1

∂x
, (14.6a)

vn+1 = ṽ − τ

ρ

∂pn+1

∂y
, (14.6b)

The physical meaning of this procedure is the following. At stage 1
the intermediate values ũ and ṽ of the velocity components are computed.
In general, they do not satisfy the continuity equation (14.1c). At stage 2
the pressure is calculated by solving the Poisson equation. The resulting
pressure is used at stage 3 to correct the velocity so that the continuity
equation is satisfied by the velocity components at the next time step.

14.4 Choice of grid and representation of

unknown variables

The computations were performed on a moving curvilinear grid constructed
for given coordinates of the boundary grid points at every time step.
The iterative variational barrier method (see Chapter 4) is used for grid
generation.

The choice of approximation of unknown variables is extremely
important for constructing a stable algorithm. The velocity components
u and v are treated as constant inside every cell of the moving grid at
every time level as that of in Godunov’s scheme [57]. The pressure p is
decomposed over the basis functions of the finite element method with
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quadrilateral isoparametric elements, and the values of pressure may be
interpreted as computed at the nodes. This makes the free-surface condition
for pressure easier to use as a boundary condition of the first kind, whereas
the conditions set on the bottom, roller, and fluid boundary are treated
as boundary conditions of the second kind (except for the region of jet
separation at the roller, where a condition of the first kind for pressure is
set).

14.5 Computation of free boundary

Let us now discuss the computation of the boundary. If the values of flow
variables are assumed to remain invariant during underlying time step, then
it is sufficient to calculate the velocities of boundary grid nodes in order
to determine a new location of the free surface. The velocities of boundary
nodes are calculated in terms of flow velocities on the cell edges located
on the free surface. Since velocity components are constant inside every
cell, the velocity component along the normal to the boundary is readily
calculated by projecting the velocity vector of the boundary cell onto the
outward normal to the boundary edge. Thus, a normal velocity component
is obtained for every edge of the open polygon representing the free surface.
The velocity of a vertex in the polygon is calculated as the half-sum of the
velocities of the edges adjoining the vertex on its left and right. At the
right boundary point, the projection of the normal velocity onto the vertical
axis is used. The location of the left boundary point is prescribed by the
boundary condition (14.2b). The known values of the time step and node
velocity are used to calculate new coordinates of the free-surface points.

However, this procedure may result in spurious oscillation of the free
surface, which can be suppressed by applying various smoothing methods.
In the present study a procedure, analogous to that of in [57] is employed.
It can be explained as follows. The initial distribution of grid nodes over the
free surface is stored and subsequently used at every time step. Once new
coordinates of the boundary nodes have been computed as described above,
the distances between grid nodes in the resulting open polygon are not
equal to that of on the initial free surface. For this reason, the coordinates
of boundary nodes are updated so as to define the distance between grid
nodes equal to their counterparts at the initial moment. This procedure, on
one hand, prevents the the occurrence of very short edges or degeneration
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of boundary cells and, on the other hand, stabilizes the free-surface motion.

Another difficulty arising in the free-surface problem is associated with
wave breakdown. This term refers to a nonuniquely defined free surface,
and special measures must be taken to continue the computation. In the
method used in the present study, wave breakdown is eliminated by using the
following constraint. The angle made by each edge of the open polygon with
x-axis is calculated when a new location of the free surface is computed. If
the resulting angle is close to or greater than π/2, then the right endpoint
of the edge is shifted so as to obtain a prescribed angle. In the present
modeling the limiting angle is prescribed by the condition that its cosine is
0.01.

14.6 Numerical method for stage 1

At stage 1 of the splitting scheme, the two transport equations in (14.4) are
solved for intermediate values ũ and ṽ of the velocity components. At this
stage, a grid for the new time step is already constructed, and new values
of the velocity components at the cell centers are sought at the (n+1)th
time step. The grid node coordinates at time tn and tn+1 and the values of
velocity components at tn are used as input data.

At t=0 the free-surface geometry and velocity field must be given.
If zero velocities are defined, the grid may degenerate at the roller crest.
For this reason initial velocities are calculated by solving the equation for
streamfunction. Boundary conditions include impermeability conditions on
the bottom and free surface and uniform velocities distributions at the inlet
and outlet boundaries. The ratio of the underflow and runoff discharge rate
is set at 2/1 in the case of a hoisted roller.

Equations (14.4) are computed with the first-order explicit Godunove-
type scheme, see the monograph [57]. Its implementation on a moving
mesh includes calculation of the normal and tangential velocity components
at every itercell face by solving one-dimensional Riemann problem for the
nonlinear transport equation. These quantities are determined so as to take
into account motion of the cell edge. The calculation formulas and stability
condition can be found in [57].

As a result the velocity components are calculated at the cell centers
at time tn+1. The remaining calculation stages are performed on the new
grid.
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Note that running time can be reduced by using the following technique.
Equations (14.4) can be solved within two steps. First, new values of
the velocity components are calculated on the grid constructed at time
tn+1 by applying an interpolation procedure where the transport equations
are solved with velocity equal to the reversed cell-edge velocity. Then,
Eqs.(14.4) are solved on the stationary mesh corresponding to the next
time level. Advantages of this technique is that we use nodes motion at the
separate stage. Since the flow velocity is much higher than the cell-edge
velocities, therefore, at the stage of solving Eqs. (14.4) we can perform
several "internal"time steps, that allows for increasing the time step and
reducing the total running time. The main part of time is spent on solving
the Poisson equation for the pressure at the stage 2 of the splitting scheme.

14.7 Method for solving Poisson equation at

stage 2

To solve the equation (14.5) we use the finite element method with
quadrilateral isoparametric elements (for detail description see [71] and
Chapter 11 of the present book). The problem is formulated in a generalized
form. The corresponding integrals are approximated by quadrature formulae,
where the nodes coincide with the grid nodes. As a result a regular
approximation, corresponding to a finite-difference scheme on nine-point
stencil, is obtained to the operator of the problem on the curvilinear mesh.
The matrix elements are obtained in the course of matrix inversion. An
integral of the right-hand part of the Poisson equation is replaced by the
integral over the cell, consisting of quadrilaterals resulting from the partition
of the grid cells adjoining the current grid point by the segments that join
the midpoints of their opposite sides, see Fig.11.1. This integral is replaced
by the contour integral as that of in the finite volume method.

The resulting set of linear equations is solved using a block
overrelaxation method [71]. The pressure from the preceding time level is
used as an initial guess. Iterations are terminated if maximal pressure change
at a node is less than one million of the highest pressure. This approach may
lead to substantial computational cost, which can be reduced by weakening
the accuracy requirement for a solution of the pressure equation.
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14.8 Calculation of velocity components at

stage 3

The velocity components un+1 and vn+1 are calculated via the standard
formulae of the finite element method. Recall, that since the pressure is
defined at the grid nodes, the pressure derivatives in (14.6) can be calculated
at any point inside a cell.

The velocity components at t=tn+1 are obtained via (14.6) at the cell
center. The cell center is defined by the bilinear mapping with parameters
ξ=η=0.5.

The continuity equation (14.1c) written for un+1 and vn+1 (which are
the constant within the cell) can be interpreted only in the weak sense,
i.e. as a system of integral identities. It would be interesting to analyze
alternative formulae for calculating the velocity components.

14.9 Results of computations

The above model can be applied to any flow regime, except for flows with the
surface level located at less than 10 cm above the roller. In this case there
arises the problem on providing grid nondegeneracy, because the free-surface
oscillation amplitude associated relaxation to a steady or quasi-steady regime
frequently exceeds 10 cm.

All computations were performed with constant time step equal 0.0025 s
in the case of the finest grid and 0.01 s to the coarsest grid.

Fig.14.3 shows the flow velocities for two regimes with hoisted rollers.
The flow regime, corresponding to a discharge rate of 550 m3/s and a
headwater height of 127.54 m, is illustrated by the grid and flow velocity
map shown in Figs.14.3a and 14.3b, respectively. The variation of the free-
surface height is weak here, and the elevation head (9 cm) is consistent
with that of obtained in measurements.

Fig.14.4 shows a grid fragment and the corresponding flow field
obtained by computing only the runoff flow for a free-surface height of
50 cm above the rollers. It is clear that a certain free-surface geometry
develops, determining the discharge rate. The separation point is located
at a distance of about 1/3 of the roller diameter from the roller crest. An
attached hydraulic jump is clearly seen on the right of the free-falling jet.
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Table 14.1 shows the discharge rating obtained in serial computations
for headwater heights corresponding to free-surface heights above the roller
crest varying from 15 to 50 cm (also shown for convenience).

Now consider the results of computations designed to obtain the
discharge rating for various gate openings in Rublevskii Dam. These
results are shown in table 14.2. The results of measurements are shown
in parentheses to demonstrate good agreement between predictions and
measurements.

Figs.14.5a and 14.5b show, respectively, the grid and flow-field velocity
map for a headwater height of 50 cm above the roller and a gate opening of
40 cm. Figs. 14.5c and 14.5d show the grid and flow-field velocity map for a
headwater height above the roller equal to 20 cm. The graphs demonstrate
the difference in runoff-underflow interaction between the two flow regimes.

Figs.14.6 shows a fragment of the computational domain with results
obtained on a finer grid for a gate opening of 35 cm. For comparison,
Fig.14.7 illustrates the case of gate opening equal to 50 cm. It is clear
that the basic difference between Figs.14.6 and 14.7 lies in virtual absence
of runoff-underflow interaction for the gate opening of 50 cm, due to an
underflow discharge substantially exceeding runoff. At the same time the
free-surface geometry in Fig.14.6 is somewhat different from that of shown
in Fig.14.7 while the tailwater height relative to the roller is substantially
higher in the latter case, which is obvious from a comparison of Figs.14.6
and 14.7.

Table 14.1.

Headwater height, m h (cm) Qn m
3/s

128.54 15 7
128.59 20 11
128.64 25 15
128.69 30 20
128.74 35 26
128.79 40 32
128.84 45 38
128.89 50 44.6
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Table 14.2.

Headwater height, m h, sm Qb m3/s Qt m3/s Qb+Qt m3/s

Gate opening A=0.1 m

128.69 20 39 10 49

128.79 30 40 21 61

128.89 40 40.5 32 72.5

128.99 50 41 45 86

Gate opening A=0.15 m

128.74 20 59 11 70

128.84 30 60 21 81

128.94 40 61 33 94

129.04 50 62 45 107

Gate opening A=0.2 m

128.79 20 78 11 89

128.89 30 79.5 22 101.5

128.99 40 81 33 114

129.01 42 83 37 (40) 120 (124)

129.09 50 84 46 130

Gate opening A=0.3 m

128.89 20 122 10 132

128.99 30 122.5 19 141.5

129.09 40 123 33 156

129.17 48 124 48 172 (165)

129.19 50 125 50 176

Gate opening A=0.35 m

128.94 20 151 10 161

129.04 30 152 19 171

129.14 40 158 35 194

129.21 47 162 45 207 (210)

129.24 50 164 48 212

Gate opening A=0.4 m

128.99 20 185 11 197

129.09 30 188 19 207

129.19 40 189 33 222

129.29 50 192 48 240

Gate opening A=0.45 m

129.04 20 216 9.5 225.5

129.14 30 219 20 239

129.24 40 224 33 257

129.28 44 226 36 (31) 262 (265)

129.34 50 228 49 269

Gate opening A=0.5 m

129.09 20 252 13 265

129.19 30 255 26 281

129.29 40 258 32 290

129.39 50 261 49 310
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Fig. 14.3:
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Fig. 14.4:
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Fig. 14.5:
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Fig. 14.6:
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Fig. 14.7:



Appendix. Boundary nodes

redistribution1

There are several ways to redistribute the grid nodes along the boundary
∂Ω of the domain Ω during adaptation. The simplest one is a fixed position
of every point on ∂Ω, referred to as “fixed position”. When moving the
interior nodes towards a discontinuity, some instability in mesh generation
and, consequently, in the flow problem solution near the points where the
discontinuity joins ∂Ω can arise. In the next method the boundary nodes
are treated as interior and the vectors of shift are projected onto ∂Ω [79];
we call it “unconstrained minimization”. This way can be used only if the
discontinuity is nearly orthogonal to ∂Ω. If not, then, when condensing,
the boundary nodes overlap, adjacent cells degenerate, and modeling breaks.
The next method consists of using the 1-D functional (2.9), referred to as
“1-D minimization”. It is more robust than the two methods discussed above
and can usually be used at adaptation. However, as it has been shown in
[6, 9], the 1-D and 2-D functionals are inconsistent. By this reason the
parameters of adaptation ca and τ should be selected separately. It requires
additional work and is particularly cumbersome when modeling unsteady
flow problems. Sometimes we get undesirable displacement of the boundary
nodes up to their overlap.

Constrained minimization

It is required that we perform redistribution of the interior and boundary
nodes consistently. In the suggested method we perform constrained
minimization of the discrete functional (5.19) under constraints defining
∂Ω, referred to as “constrained minimization”. We minimize the functional

1Written by B. Azarenok



218 Boundary nodes redistribution

[6]

Ĩh =

imax∑

i=1

4∑

k=1

1

4
[Fk]i +

∑

l∈L

λlGl = Ih +
∑

l∈L

λlGl, (A.1)

where the constraints Gl=G(xl, yl)=0 define ∂Ω, λl are the Lagrange
multipliers, and L is the set of the boundary nodes. Since the function
G(x, y) is assumed piecewise differentiable, the functional Ĩh holds the
infinite barrier on the boundary of the set of convex grids as Ih does if
f ∈ C1. Note that we use the adapted function caf instead of f (as it was
applied in section 5.2.2), where ca is the coefficient of adaptation.

If the set of convex grids is not empty, the system of algebraic equations
has at least one solution that is the convex mesh

Rx =
∂Ih

∂xi
+ λi

∂Gi
∂xi

= 0, Ry =
∂Ih

∂yi
+ λi

∂Gi
∂yi

= 0, Gi = 0. (A.2)

Here λi=0 if i/∈L and constraints are defined for the boundary nodes i ∈ L.
Consider the method of minimizing the functional (A.1) assuming the

grid to be convex at the lth step of the iterative procedure. We use the
quasi-Newton procedure to find the coordinates xl+1

i , yl+1
i of the ith node

from the system (A.2)

τRx +
∂Rx
∂xi

(xl+1
i − xli) +

∂Rx
∂yi

(yl+1
i − yli) +

∂Rx
∂λi

(λl+1
i − λli)=0,

τRy +
∂Ry
∂xi

(xl+1
i − xli) +

∂Ry
∂yi

(yl+1
i − yli) +

∂Ry
∂λi

(λl+1
i − λli)=0, (A.3)

τGi +
∂Gi
∂xi

(xl+1
i − xli) +

∂Gi
∂yi

(yl+1
i − yli)=0,

where

∂Rx
∂xi

=
∂2Ih

∂x2
i

+ λi
∂2Gi
∂x2

i

,
∂Rx
∂yi

=
∂2Ih

∂xi∂yi
+ λi

∂2Gi
∂xi∂yi

,
∂Rx
∂λi

=
∂Gi
∂xi

,

∂Ry
∂xi

=
∂2Ih

∂xi∂yi
+ λi

∂2Gi
∂xi∂yi

,
∂Ry
∂yi

=
∂2Ih

∂y2
i

+ λi
∂2Gi
∂y2

i

,
∂Ry
∂λi

=
∂Gi
∂yi

.

Resolving the last equation of (A.3) about yl+1
i −yli and substituting it

in the two remaining equations, we get the system
(
a11 a12

a21 a22

)(
xl+1
i − xli
λl+1
i − λli

)
=

(
a13

a23

)
,



Boundary nodes redistribution 219

where

a11 =
∂Rx
∂xi

− ∂Rx
∂yi

∂Gi
∂xi

/
∂Gi
∂yi

, a12 =
∂Gi
∂xi

,

a13 = τ

[
∂Rx
∂yi

Gi

/
∂Gi
∂yi

−Rx

]
,

a21 =
∂Ry
∂xi

− ∂Ry
∂yi

∂Gi
∂xi

/
∂Gi
∂yi

, a22 =
∂Gi
∂yi

,

a23 = τ

[
∂Ry
∂yi

Gi

/
∂Gi
∂yi

−Ry

]
.

Denoting 4 = a11a22 −a12a21, 41 = a13a22 −a23a12, 42 = a11a23 −a21a13

(since Gi = 0, the terms a13, a23 are simplified), we obtain

xl+1
i = xli + 41/4, λl+1

i = λli + 42/4, (A.4)

and yl+1
i is determined from the third equation of (A.3). If the constraints

are resolved about y in the form G(x, y)=y−g(x)=0, then

∂Gi
∂xi

= − ∂gi
∂xi

,
∂Gi
∂yi

= 1,

and above formulas are simplified. Constraints can be resolved about x in
the form G(x, y)=x−g̃(y)=0 and then (here it is better to resolve the third
equation of (A.3) about xl+1

i −xli)

∂Gi
∂xi

= 1,
∂Gi
∂yi

= −∂g̃i
∂yi

.

These two forms of G(x, y) can substitute for each other. For example, on
the part of ∂Ω that is nearly parallel to the axis x the boundary should be
defined in the form y=g(x), and where ∂Ω is nearly parallel to the axis y it
should be defined as x=g̃(y).

If ∂Ω is given by parametric functions x=x(t), y=y(t) or tabular
values (x, y)i, the following algorithm can be used. When calculating the
coordinates of the ith node, in the interval (xi−1, xi+1) we construct an
interpolating parabola t=t(x) using the values in three nodes i−1, i, i+1.
From (A.4) we compute an intermediate value x̃l+1

i , further from the
interpolation formula we determine ti=t(x̃

l+1
i ) and final values xl+1

i , yl+1
i

from the parametric formulas.
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Another way of redistributing the nodes along ∂Ω, given as parametric
functions or by tabular values, employs a constrained minimization of the
functional in parametric form and is based on solving the following system
of algebraic equations, referred to as “parametric minimization”,

Rt = Rx
∂xi
∂ti

+Ry
∂yi
∂ti

= 0,

via the quasi-Newton procedure

τRt +
∂Rt
∂ti

(tl+1
i − tli) = 0. (A.5)

Here

∂Rt
∂ti

=
∂Rx
∂xi

(
∂xi
∂ti

)2

+
∂Ry
∂yi

(
∂yi
∂ti

)2

+

(
∂Rx
∂yi

+
∂Ry
∂xi

)
∂xi
∂ti

∂yi
∂ti

+

Rx
∂2xi
∂t2i

+Ry
∂2yi
∂t2i

, Rx =
∂Ih

∂xi
, Ry =

∂Ih

∂yi
.

For the analytical control functions constrained and parametric
minimization give similar results. Real-world 2-D flow computations have
shown it is better to perform adaptation along the boundary using
constrained minimization (A.3), (A.4) since the procedure (A.5) does not
always ensure consistent redistribution of the nodes in Ω and on ∂Ω.

The use of the constrained minimization without adaptation (i.e. when
f=const) means that we seek the conformal mapping x(ξ, η), y(ξ, η) of the
parametric square onto the domain Ω with an additional parameter, so-called
conformal modulus.

Note that constrained minimization can be also used to the boundary
nodes redistribution when we use the functional with two metrics,
considered in Chapter 9.

Examples of modeling

We demonstrate a simple test illustrating the inconsistency of redistributing
the boundary and interior nodes when using various methods of boundary
nodes redistribution described above and vice versa, i.e., their consistency
when using another.
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The 50×50 adaptive mesh is generated in the unit square 0<x, y<1
when the control function is defined to be

f(x, y) =

{
1 if y < 0.5,
0 if y ≥ 0.5.

Fragments of the adapted meshes in the vicinity of the discontinuity
are presented in Fig. A.1. In the first case the coefficient ca=0.1; see
Fig. A.1(a)–(c). When we apply fixed position and 1-D minimization methods
of redistributing the boundary nodes (see Fig. A.1(a)–(b)), the horizontal
grid lines are not parallel and in the case of the other 3 methods they
are parallel. In the next case the coefficient ca=0.15; see Fig. A.1(d)–(f).
To the fixed position method the coordinate lines become more bent; see
Fig. A.1(d). Using 1-D minimization leads the boundary nodes to overlap (see
Fig. A.1(e)), i.e., the mesh to fold. This happens due to the inconsistency of
the nodes’ redistribution in Ω and on ∂Ω despite the fact that 1-D and 2-D
algorithms separately provide unfolded grid generation, see [6, 9]. In this
test unconstrained minimization gives the same result as constrained and
parametric minimization due to the discontinuity is orthogonal to ∂Ω and
here the horizontal lines almost merge near the discontinuity and remain
parallel, keeping the mesh unfolded; see Fig. A.1(f).

In the next example the discontinuity is not orthogonal to ∂Ω. The
control function is defined as

f(x, y) =

{
1 if y > 5x− 2,
0 if y ≤ 5x− 2.

Fragments of the adapted meshes near the top boundary are presented in
Fig. A.2. Here using unconstrained and 1-D minimization leads the boundary
nodes to overlap in several tenths of mesh iterations (see Fig. A.2(a)–(b)).
Constrained and parametric minimization maintain an unfolded mesh; see
Fig. A.2(c).
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Fig. A.1: Fragment of adapted mesh. The boundary nodes are redistributed
using fixed position (a), (d), 1-D minimization (b), (e), and unconstrained or
constrained or parametric minimization (c), (f). Coefficient ca=0.1 in cases
(a)–(c) and ca=0.15 in cases (d)–(f); iterative parameter τ=0.15.
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Fig. A.2: Fragment of adapted mesh. The boundary nodes are redistributed
using unconstrained (a), 1-D (b), and constrained or parametric
minimization (c) methods. Coefficient ca=0.3; iterative parameter τ=0.1.
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