
SCIENTIFIC COMPUTING
An Introductory Survey

Michael T. Heath
University of Illinois

at Urbana-Champaign

ii

Copyright c©1997 by The McGraw-Hill Companies. All rights reserved.

About the Author

Michael T. Heath holds four positions at the University of Illinois at Urbana-Champaign:
Professor in the Department of Computer Science, Director of the Computational Science
and Engineering Program, Director of the Center for Simulation of Advanced Rockets,
and Senior Research Scientist at the National Center for Supercomputing Applications
(NCSA). He received a B.A. in Mathematics from the University of Kentucky, an M.S.
in Mathematics from the University of Tennessee, and a Ph.D. in Computer Science from
Stanford University. Before joining the University of Illinois in 1991, he spent a number of
years at Oak Ridge National Laboratory, first as Eugene P. Wigner Postdoctoral Fellow and
later as Computer Science Group Leader in the Mathematical Sciences Research Section.
His research interests are in numerical analysis—particularly numerical linear algebra and
optimization—and in parallel computing. He has has been an editor of the SIAM Journal
on Scientific Computing, SIAM Review, and the International Journal of High Performance
Computing Applications, as well as several conference proceedings. In 2000, he was named
an ACM Fellow.

iii

iv

To Mona

Contents

Preface xiii

Notation xvii

1 Scientific Computing 1
1.1 Introduction . 1

1.1.1 General Strategy . 2
1.2 Approximations in Scientific Computation 2

1.2.1 Sources of Approximation . 2
1.2.2 Data Error and Computational Error 3
1.2.3 Truncation Error and Rounding Error 4
1.2.4 Absolute Error and Relative Error 5
1.2.5 Sensitivity and Conditioning . 5
1.2.6 Backward Error Analysis . 6
1.2.7 Stability and Accuracy . 8

1.3 Computer Arithmetic . 8
1.3.1 Floating-Point Numbers . 8
1.3.2 Normalization . 10
1.3.3 Properties of Floating-Point Systems 10
1.3.4 Rounding . 11
1.3.5 Machine Precision . 12
1.3.6 Subnormals and Gradual Underflow 13
1.3.7 Exceptional Values . 13
1.3.8 Floating-Point Arithmetic . 14
1.3.9 Cancellation . 15

1.4 Mathematical Software . 20
1.4.1 Mathematical Software Libraries . 21
1.4.2 Scientific Computing Environments 22
1.4.3 Practical Advice on Software . 23

v

vi CONTENTS

1.5 Historical Notes and Further Reading . 25

2 Systems of Linear Equations 37
2.1 Linear Systems . 37

2.1.1 Singularity and Nonsingularity . 37
2.2 Solving Linear Systems . 39

2.2.1 Triangular Linear Systems . 40
2.2.2 Elementary Elimination Matrices . 41
2.2.3 Gaussian Elimination and LU Factorization 42
2.2.4 Pivoting . 44
2.2.5 Implementation of Gaussian Elimination 49
2.2.6 Complexity of Solving Linear Systems 50
2.2.7 Gauss-Jordan Elimination . 51
2.2.8 Solving Modified Problems . 52

2.3 Norms and Condition Numbers . 54
2.3.1 Vector Norms . 54
2.3.2 Matrix Norms . 56
2.3.3 Condition Number of a Matrix . 57

2.4 Accuracy of Solutions . 58
2.4.1 Residual of a Solution . 58
2.4.2 Estimating Accuracy . 60
2.4.3 Improving Accuracy . 62

2.5 Special Types of Linear Systems . 63
2.5.1 Symmetric Positive Definite Systems 63
2.5.2 Symmetric Indefinite Systems . 65
2.5.3 Band Systems . 66

2.6 Iterative Methods for Linear Systems . 67
2.7 Software for Linear Systems . 67

2.7.1 LINPACK and LAPACK . 69
2.7.2 Basic Linear Algebra Subprograms 69

2.8 Historical Notes and Further Reading . 70

3 Linear Least Squares 83
3.1 Data Fitting . 83
3.2 Linear Least Squares . 84
3.3 Normal Equations Method . 85

3.3.1 Orthogonality . 86
3.3.2 Normal Equations Method . 87
3.3.3 Augmented System Method . 89

3.4 Orthogonalization Methods . 89
3.4.1 Triangular Least Squares Problems 90
3.4.2 Orthogonal Transformations . 90
3.4.3 QR Factorization . 90
3.4.4 Householder Transformations . 91
3.4.5 Givens Rotations . 95

CONTENTS vii

3.4.6 Gram-Schmidt Orthogonalization . 98
3.4.7 Rank Deficiency . 101
3.4.8 Column Pivoting . 102

3.5 Comparison of Methods . 103
3.6 Software for Linear Least Squares . 103
3.7 Historical Notes and Further Reading . 105

4 Eigenvalues and Singular Values 115
4.1 Eigenvalues and Eigenvectors . 115

4.1.1 Nonuniqueness . 116
4.1.2 Characteristic Polynomial . 116
4.1.3 Properties of Eigenvalue Problems 117
4.1.4 Similarity Transformations . 118
4.1.5 Conditioning of Eigenvalue Problems 120

4.2 Methods for Computing All Eigenvalues . 121
4.2.1 Characteristic Polynomial . 121
4.2.2 Jacobi Method for Symmetric Matrices 122
4.2.3 QR Iteration . 124
4.2.4 Preliminary Reduction . 125

4.3 Methods for Computing Selected Eigenvalues 126
4.3.1 Power Method . 126
4.3.2 Normalization . 127
4.3.3 Geometric Interpretation . 128
4.3.4 Shifts . 128
4.3.5 Deflation . 129
4.3.6 Inverse Iteration . 129
4.3.7 Rayleigh Quotient . 130
4.3.8 Rayleigh Quotient Iteration . 131
4.3.9 Lanczos Method for Symmetric Matrices 132
4.3.10 Spectrum-Slicing Methods for Symmetric Matrices 133

4.4 Generalized Eigenvalue Problems . 135
4.5 Singular Values . 136

4.5.1 Singular Value Decomposition . 136
4.5.2 Applications of SVD . 137

4.6 Software for Eigenvalues and Singular Values 138
4.7 Historical Notes and Further Reading . 140

5 Nonlinear Equations 151
5.1 Nonlinear Equations . 151

5.1.1 Solutions of Nonlinear Equations . 152
5.1.2 Convergence Rates of Iterative Methods 153

5.2 Nonlinear Equations in One Dimension . 154
5.2.1 Bisection Method . 154
5.2.2 Fixed-Point Iteration . 155
5.2.3 Newton’s Method . 158

viii CONTENTS

5.2.4 Secant Method . 160
5.2.5 Inverse Interpolation . 162
5.2.6 Linear Fractional Interpolation . 163
5.2.7 Safeguarded Methods . 164
5.2.8 Zeros of Polynomials . 165

5.3 Systems of Nonlinear Equations . 165
5.3.1 Fixed-Point Iteration . 166
5.3.2 Newton’s Method . 167
5.3.3 Secant Updating Methods . 169
5.3.4 Broyden’s Method . 169
5.3.5 Robust Newton-Like Methods . 171

5.4 Software for Nonlinear Equations . 171
5.5 Historical Notes and Further Reading . 173

6 Optimization 183
6.1 Optimization Problems . 183

6.1.1 Local versus Global Optimization . 184
6.1.2 Relationship to Nonlinear Equations 185
6.1.3 Accuracy of Solutions . 186

6.2 One-Dimensional Optimization . 186
6.2.1 Golden Section Search . 186
6.2.2 Successive Parabolic Interpolation 188
6.2.3 Newton’s Method . 189
6.2.4 Safeguarded Methods . 191

6.3 Multidimensional Unconstrained Optimization 191
6.3.1 Direct Search Methods . 191
6.3.2 Steepest Descent Method . 191
6.3.3 Newton’s Method . 193
6.3.4 Quasi-Newton Methods . 195
6.3.5 Secant Updating Methods . 196
6.3.6 Conjugate Gradient Method . 197
6.3.7 Truncated Newton Methods . 199

6.4 Nonlinear Least Squares . 199
6.4.1 Gauss-Newton Method . 200
6.4.2 Levenberg-Marquardt Method . 201

6.5 Constrained Optimization . 202
6.5.1 Linear Programming . 205

6.6 Software for Optimization . 207
6.7 Historical Notes and Further Reading . 208

7 Interpolation 219
7.1 Interpolation . 219

7.1.1 Purposes for Interpolation . 219
7.1.2 Interpolation versus Approximation 220
7.1.3 Choice of Interpolating Function . 220

CONTENTS ix

7.1.4 Basis Functions . 221
7.2 Polynomial Interpolation . 222

7.2.1 Evaluating Polynomials . 224
7.2.2 Lagrange Interpolation . 224
7.2.3 Newton Interpolation . 225
7.2.4 Orthogonal Polynomials . 229
7.2.5 Interpolating a Function . 230
7.2.6 High-Degree Polynomial Interpolation 231
7.2.7 Placement of Interpolation Points 231

7.3 Piecewise Polynomial Interpolation . 232
7.3.1 Hermite Cubic Interpolation . 233
7.3.2 Cubic Spline Interpolation . 233
7.3.3 Hermite Cubic versus Cubic Spline Interpolation 234
7.3.4 B-splines . 236

7.4 Software for Interpolation . 238
7.4.1 Software for Special Functions . 239

7.5 Historical Notes and Further Reading . 239

8 Numerical Integration and Differentiation 245
8.1 Numerical Quadrature . 245

8.1.1 Quadrature Rules . 246
8.2 Newton-Cotes Quadrature . 246

8.2.1 Newton-Cotes Quadrature Rules . 246
8.2.2 Method of Undetermined Coefficients 247
8.2.3 Error Estimation . 249
8.2.4 Polynomial Degree . 250

8.3 Gaussian Quadrature . 251
8.3.1 Gaussian Quadrature Rules . 251
8.3.2 Change of Interval . 253
8.3.3 Gauss-Kronrod Quadrature Rules 254

8.4 Composite and Adaptive Quadrature . 255
8.4.1 Composite Quadrature Rules . 255
8.4.2 Automatic and Adaptive Quadrature 256

8.5 Other Integration Problems . 257
8.5.1 Integrating Tabular Data . 257
8.5.2 Infinite Intervals . 257
8.5.3 Double Integrals . 257
8.5.4 Multiple Integrals . 258

8.6 Integral Equations . 259
8.7 Numerical Differentiation . 261

8.7.1 Finite Difference Approximations . 262
8.7.2 Automatic Differentiation . 263

8.8 Richardson Extrapolation . 263
8.9 Software for Numerical Integration and Differentiation 266
8.10 Historical Notes and Further Reading . 267

x CONTENTS

9 Initial Value Problems for ODEs 275
9.1 Ordinary Differential Equations . 275

9.1.1 Initial Value Problems . 276
9.1.2 Higher-Order ODEs . 276
9.1.3 Stable and Unstable ODEs . 277

9.2 Numerical Solution of ODEs . 280
9.2.1 Euler’s Method . 280

9.3 Accuracy and Stability . 282
9.3.1 Order of Accuracy . 282
9.3.2 Stability of a Numerical Method . 284
9.3.3 Stepsize Control . 285

9.4 Implicit Methods . 286
9.5 Stiff Differential Equations . 288
9.6 Survey of Numerical Methods for ODEs . 290

9.6.1 Taylor Series Methods . 290
9.6.2 Runge-Kutta Methods . 291
9.6.3 Extrapolation Methods . 293
9.6.4 Multistep Methods . 293
9.6.5 Multivalue Methods . 297

9.7 Software for ODE Initial Value Problems 299
9.8 Historical Notes and Further Reading . 300

10 Boundary Value Problems for ODEs 309
10.1 Boundary Value Problems . 309
10.2 Shooting Method . 310
10.3 Superposition Method . 312
10.4 Finite Difference Method . 312
10.5 Finite Element Method . 314
10.6 Eigenvalue Problems . 318
10.7 Software for ODE Boundary Value Problems 319
10.8 Historical Notes and Further Reading . 319

11 Partial Differential Equations 325
11.1 Partial Differential Equations . 325

11.1.1 Classification of Partial Differential Equations 325
11.2 Time-Dependent Problems . 326

11.2.1 Semidiscrete Methods Using Finite Differences 327
11.2.2 Semidiscrete Methods Using Finite Elements 328
11.2.3 Fully Discrete Methods . 329
11.2.4 Implicit Finite Difference Methods 332
11.2.5 Hyperbolic versus Parabolic Problems 333

11.3 Time-Independent Problems . 335
11.3.1 Finite Difference Methods . 335
11.3.2 Finite Element Methods . 337

11.4 Direct Methods for Sparse Linear Systems 337

CONTENTS xi

11.4.1 Sparse Factorization Methods . 338
11.4.2 Fast Direct Methods . 340

11.5 Iterative Methods for Linear Systems . 341
11.5.1 Stationary Iterative Methods . 341
11.5.2 Jacobi Method . 342
11.5.3 Gauss-Seidel Method . 343
11.5.4 Successive Over-Relaxation . 344
11.5.5 Conjugate Gradient Method . 345
11.5.6 Rate of Convergence . 349
11.5.7 Multigrid Methods . 350

11.6 Comparison of Methods . 352
11.7 Software for Partial Differential Equations 355

11.7.1 Software for Initial Value Problems 356
11.7.2 Software for Boundary Value Problems 356
11.7.3 Software for Sparse Linear Systems 356

11.8 Historical Notes and Further Reading . 357

12 Fast Fourier Transform 367
12.1 Trigonometric Interpolation . 367

12.1.1 Continuous Fourier Transform . 368
12.1.2 Fourier Series . 369
12.1.3 Discrete Fourier Transform . 369

12.2 FFT Algorithm . 372
12.2.1 Limitations of the FFT . 374

12.3 Applications of DFT . 375
12.3.1 Fast Polynomial Multiplication . 376

12.4 Wavelets . 377
12.5 Software for FFT . 378
12.6 Historical Notes and Further Reading . 378

13 Random Numbers and Simulation 385
13.1 Stochastic Simulation . 385
13.2 Randomness and Random Numbers . 386
13.3 Random Number Generators . 386

13.3.1 Congruential Generators . 387
13.3.2 Fibonacci Generators . 388
13.3.3 Nonuniform Distributions . 388

13.4 Quasi-Random Sequences . 389
13.5 Software for Generating Random Numbers 390
13.6 Historical Notes and Further Reading . 390

xii CONTENTS

Preface

This book presents a broad overview of numerical methods and software for students and
professionals in computationally oriented disciplines who need to solve mathematical prob-
lems. It is not a traditional numerical analysis text in that it contains relatively little
detailed analysis of the computational algorithms presented. Instead, I try to convey a gen-
eral understanding of the techniques available for solving problems in each major category,
including proper problem formulation and interpretation of results, but I advocate the use
of professionally written mathematical software for obtaining solutions whenever possible.
The book is aimed much more at potential users of mathematical software than at potential
creators of such software. I hope to make the reader aware of the relevant issues in selecting
appropriate methods and software and using them wisely.

At the University of Illinois, this book is used as the text for a comprehensive, one-
semester course on numerical methods that serves three main purposes:

• As a terminal course for senior undergraduates, mainly computer science, mathematics,
and engineering majors

• As a breadth course for graduate students in computer science who do not intend to
specialize in numerical analysis

• As a training course for graduate students in science and engineering who need to use
numerical methods and software in their research. It is a core course for the interdisci-
plinary graduate program in Computational Science and Engineering sponsored by the
College of Engineering.

To accommodate this diverse student clientele, the prerequisites for the course and the book
have been kept to a minimum: basic familiarity with linear algebra, multivariate calculus,
and a smattering of differential equations. No prior familiarity with numerical methods
is assumed. The book adopts a fairly sophisticated perspective, however, and the course
moves at a rather rapid pace in order to cover all of the material, so a reasonable level of
maturity on the part of the student (or reader) is advisable. Beyond the academic setting,
I hope that the book will also be useful as a reference for practicing engineers and scientists
who may need a quick overview of a given computational problem and the methods and

xiii

xiv PREFACE

software available for solving it.
Although the book emphasizes the use of mathematical software, unlike some other

software-oriented texts it does not provide any software, nor does it concentrate on any
specific software packages, libraries, or environments. Instead, for each problem category
pointers are provided to specific routines available from publicly accessible repositories,
other textbooks, and the major commercial libraries and packages. In many academic
and industrial computing environments such software is already installed, and in any case
pointers are also provided to public domain software that is freely accessible via the Internet.
The computer exercises in the book are not dependent on any specific choice of software or
programming language.

The main elements in the organization of the book are as follows:
Chapters: Each chapter of the book covers a major computational problem area. The

first half of the book deals primarily with algebraic problems, whereas the second half
treats analytic problems involving derivatives and integrals. The first two chapters are
fundamental to the remainder of the book, but the subsequent chapters can be covered
in various orders according to the instructor’s preference. More specifically, the direct
interdependence of chapters is as follows:

Chapter Depends on Chapter Depends on Chapter Depends on
2 1 6 1–5 10 1, 2, 4, 5, 7–9
3 1, 2 7 1, 2 11 1, 2, 4–10
4 1–3 8 1, 2, 5, 7 12 1, 2, 7
5 1, 2, 4 9 1, 2, 4, 5, 7, 8 13 1

Thus, the main opportunities for moving material around are to cover Chapters 7 and 12
earlier and Chapter 6 later than their appearance in the book. For example, Chapters 3,
7, and 12 all involve some type of data fitting, so it might be desirable to cover them as
a unit. As another example, iterative methods for linear systems are covered in Chapter
11 on partial differential equations because that is where the most important motivating
examples come from, but much of this material could be covered immediately following
direct methods for linear systems in Chapter 2.

The entire book can be covered in one semester by moving at a rapid pace or by omitting
a few sections. There is also sufficient material for a more leisurely two-quarter course. A
one-quarter course would likely require omitting some chapters. Chapter 13, on random
numbers and stochastic simulation, is only peripherally related to the remainder of the book
and is an obvious candidate for omission if time runs short (random number generators are
used in a number of exercises throughout the book, however).

Examples: Almost every concept and method introduced is illustrated by one or more
examples. These examples are meant to supplement the relatively terse general discussion
and should be read as an essential part of the text. The examples have been kept as simple
as possible (sometimes at the risk of oversimplification) so that the reader can easily follow
them. In my experience, a simple example that is thoroughly understood is usually more
helpful than a more realistic example that is more difficult to follow.

Software: The lists of available software for each problem category are meant to be
reasonably comprehensive. I have not attempted to single out the “best” software available
for a given problem, partly because usually no single package is superior in all respects and

xv

partly to allow for the varied software availability and choice of programming language that
may apply for different readers. All of the recommended software is at least competently
written, and some of it is superb.

Exercises: The book contains many exercises, which are divided into three classes:

• Review questions, which are short-answer questions designed to test basic conceptual
understanding

• Exercises, which require somewhat more thought, longer answers, and possibly some hand
computation

• Computer problems, which require some programming and often involve the use of existing
software.

The review questions are meant for self-testing on the part of the reader. They include some
deliberate repetition to drive home key points and to build confidence in the mastery of the
material. The longer exercises are meant to be suitable for written homework assignments.
Some of these require manual computations with simple examples, whereas others are de-
signed to supply missing details of derivations and proofs omitted from the main text. The
latter should be especially useful if the book is used for a more theoretical course. The com-
puter problems provide an opportunity for hands-on experience in using the recommended
software for solving typical problems in each category. Some of these problems are generic,
but others are directly related to specific applications in various scientific and engineering
disciplines.

This book provides a fairly comprehensive introduction to scientific computing, but
scientific computing is only part of what has become known as computational science.
Computational science is a relatively new mode of scientific investigation that includes
several phases:

1. Development of a mathematical model—often expressed as some type of equation—of a
physical phenomenon or system of interest

2. Development of an algorithm to solve the equation numerically
3. Implementation of the algorithm in computer software
4. Numerical simulation of the physical phenomenon using the computer software
5. Representation of the computed results in some comprehensible form, often through

graphical visualization
6. Interpretation and validation of the computed results, which may lead to correction or

further refinement of the original mathematical model and repetition of the cycle, if
necessary.

As we construe it, scientific computing is primarily concerned with phases 2–4: the de-
velopment, implementation, and use of numerical algorithms and software. Although the
other phases are equally important in the overall process, their detailed study is beyond
the scope of this book. A serious study of mathematical modeling would require far more
domain-specific knowledge than we assume and far more space than we can accommodate.
Fortunately, mathematical modeling is the subject of numerous excellent books, some of a
general nature and others focusing on specific individual disciplines. Thus, although nu-
merous concrete applications appear in the exercises, our main discussion treats each major

xvi PREFACE

problem type in a very general form. Similarly, we measure the accuracy of computed
results with respect to the true solution of a given equation, whereas in practice results
should also be validated against the actual physical phenomenon being modeled whenever
possible. Learning about scientific computing is an important component in the training
of computational scientists and engineers, but there is more to computational science than
just numerical methods and software. Accordingly, this book is intended as only a portion
of a well-rounded curriculum in computational science, which should also include additional
computer skills—e.g., software design principles, data structures, non-numerical algorithms,
performance evaluation and tuning, graphics/visualization, and the software tools associ-
ated with all of these—as well as much deeper treatment of specific applications in science
and engineering.

The presentation of largely familiar material is inevitably influenced by other treatments
one has seen. My initial experience in presenting some of the material in this book was
as a graduate teaching assistant at Stanford University using a prepublication draft of
the book by Forsythe, Malcolm, and Moler [82]. “FMM” was one of the first software-
oriented textbooks on numerical methods, and its spirit is very much reflected in the current
book. I later used FMM very successfully in teaching in-house courses for practical-minded
scientists and engineers at Oak Ridge National Laboratory, and more recently I have used its
successor, by Kahaner, Moler and Nash [142], in teaching a similar course at the University
of Illinois. Readers familiar with those two books will recognize the origin of some aspects of
the treatment given here. As far as they go, those two books would be difficult to improve
upon; in the present book I have incorporated a significant amount of new material while
trying to preserve the spirit of the originals. In addition to these two obvious sources, I
have doubtless borrowed many examples and exercises from many other sources over the
years, for which I am grateful.

I would like to acknowledge the influence of the mentors who first introduced me to the
unexpected charms of numerical computation, Alston Householder and Gene Golub. I am
grateful for the feedback I have received from students and instructors who have used the
lecture notes from which this book evolved and from numerous reviewers, some anonymous,
who read and commented on the manuscript before publication. Specifically, I would like to
acknowledge the helpful input of Eric Grosse, Jason Hibbeler, Paul Hovland, Linda Kauf-
man, Thomas Kerkhoven, Cleve Moler, Padma Raghavan, David Richards, Faisal Saied,
Paul Saylor, Robert Skeel, and the following reviewers: Alan George, University of Wa-
terloo; Dianne O’Leary, University of Maryland; James M. Ortega, University of Virginia;
John Strikwerda, University of Wisconsin; and Lloyd N. Trefethen, Cornell University. Fi-
nally, I deeply appreciate the patience and understanding of my wife, Mona, during the
countless hours spent in writing the original lecture notes and then transforming them into
this book. With great pleasure and gratitude I dedicate the book to her.

Michael T. Heath

Notation

The notation used in this book is fairly standard and should require little explanation. We
freely use vector and matrix notation, generally using uppercase bold type for matrices,
lowercase bold type for vectors, regular (nonbold) type for scalars, and calligraphic type
for sets. Iteration and component indices are denoted by subscripts, usually i through n.
For example, a vector x and matrix A have entries xi and aij , respectively. On the few
occasions when both an iteration index and a component index are needed, the iteration
is indicated by a parenthesized superscript, as in x

(k)
i to indicate the ith component of the

kth vector in a sequence. Otherwise, xi denotes the ith component of a vector x, whereas
xi denotes the ith vector in a sequence.

For simplicity, we will deal primarily with real vectors and matrices, although most of
the theory and algorithms we discuss carry over with little or no change to the complex
field. The set of real numbers is denoted by R, n-dimensional real Euclidean space by Rn,
and the set of real m× n matrices by Rm×n.

The transpose of a vector or matrix is indicated by a superscript T , and the conjugate
transpose by superscript H (for Hermitian). Unless otherwise indicated, all vectors are
regarded as column vectors; a row vector is indicated by explicitly transposing a column
vector. For typesetting convenience, the components of a column vector are sometimes
indicated by transposing the corresponding row vector, as in x = [x1 x2]T . The inner
product (also known as dot product or scalar product) of two n-vectors x and y is simply
a special case of matrix multiplication and thus is denoted by xTy (or xHy in the complex
case). Similarly, their outer product, which is an n × n matrix, is denoted by xyT . The
identity matrix of order n is denoted by In (or just I if the dimension n is clear from
context), and its ith column is denoted by ei. A zero matrix is denoted by O, a zero
vector by o, and a zero scalar by 0. A diagonal matrix with diagonal entries d1, . . . , dn is
denoted by diag(d1, . . . , dn). Inequalities between vectors or matrices are to be understood
elementwise.

The ordinary derivative of a function f(t) of one variable is denoted by df/dt or by f ′(t).
Partial derivatives of a function of several variables, such as u(x, y), are denoted by ∂u/∂x,
for example, or in some contexts by a subscript, as in ux. Notation for gradient vectors and

xvii

xviii NOTATION

Jacobian and Hessian matrices will be introduced as needed. All logarithms are natural
logarithms (base e ≈ 2.718) unless another base is explicitly indicated.

The computational cost, or complexity, of numerical algorithms is usually measured
by the number of arithmetic operations required. Traditionally, numerical analysts have
counted only multiplications (and possibly divisions and square roots), because multiplica-
tions were usually significantly more expensive than additions or subtractions and because
in most algorithms multiplications tend to be paired with a similar number of additions
(for example, in computing the inner product of two vectors). More recently, the difference
in cost between additions and multiplications has largely disappeared.1 Computer vendors
and users like to advertise the highest possible performance, so it is increasingly common
for every arithmetic operation to be counted. Because certain operation counts are so well
known using the traditional practice, however, in this book only multiplications are usually
counted. To clarify the meaning, the phrase “and a similar number of additions” will be
added, or else it will be explicitly stated when both are being counted.

In quantifying operation counts and the accuracy of approximations, we will often use
“big-oh” notation to indicate the order of magnitude, or dominant term, of a function. For
an operation count, we are interested in the behavior as the size of the problem, say n,
becomes large. We say that

f(n) = O(g(n))

(read “f is big-oh of g” or “f is of order g”) if there is a positive constant C such that

|f(n)| ≤ C|g(n)|

for n sufficiently large. For example,

2n3 + 3n2 + n = O(n3)

because as n becomes large, the terms of order lower than n3 become relatively insignificant.
For an accuracy estimate, we are interested in the behavior as some quantity h, such as a
stepsize or mesh spacing, becomes small. We say that

f(h) = O(g(h))

if there is a positive constant C such that

|f(h)| ≤ C|g(h)|

for h sufficiently small. For example,

1
1− h

= 1 + h+ h2 + h3 + · · · = 1 + h+O(h2)

because as h becomes small, the omitted terms beyond h2 become relatively insignificant.
Note that the two definitions are equivalent if h = 1/n.

1Many modern microprocessors can perform a coupled multiplication and addition with a single
multiply-add instruction.

Chapter 1

Scientific Computing

1.1 Introduction

The subject of this book is traditionally called numerical analysis. Numerical analysis is
concerned with the design and analysis of algorithms for solving mathematical problems that
arise in computational science and engineering. For this reason, numerical analysis has more
recently become known as scientific computing . Numerical analysis is distinguished from
most other parts of computer science in that it deals with quantities that are continuous,
as opposed to discrete. It is concerned with functions and equations whose underlying
variables—time, distance, velocity, temperature, density, pressure, stress, and the like—are
continuous in nature.

Most of the problems of continuous mathematics (for example, almost any problem
involving derivatives, integrals, or nonlinearities) cannot be solved, even in principle, in a
finite number of steps and thus must be solved by a (theoretically infinite) iterative process
that ultimately converges to a solution. In practice, of course, one does not iterate forever,
but only until the answer is approximately correct, “close enough” to the desired result
for practical purposes. Thus, one of the most important aspects of scientific computing is
finding rapidly convergent iterative algorithms and assessing the accuracy of the resulting
approximation. If convergence is sufficiently rapid, even some of the problems that can be
solved by finite algorithms, such as systems of linear algebraic equations, may in some cases
be better solved by iterative methods, as we will see.

Consequently, a second factor that distinguishes numerical analysis is its concern with
approximations and their effects. Many solution techniques involve a whole series of ap-
proximations of various types. Even the arithmetic used is only approximate, for digital
computers cannot represent all real numbers exactly. In addition to having the usual prop-
erties of good algorithms, such as efficiency, numerical algorithms should also be as reliable
and accurate as possible despite the various approximations made along the way.

1

2 CHAPTER 1. SCIENTIFIC COMPUTING

1.1.1 General Strategy

In seeking a solution to a given computational problem, a basic general strategy, which
occurs throughout this book, is to replace a difficult problem with an easier one that has
the same solution, or at least a closely related solution. Examples of this approach include

• Replacing infinite processes with finite processes, such as replacing integrals or infinite
series with finite sums, or derivatives with finite difference quotients

• Replacing general matrices with matrices having a simpler form
• Replacing complicated functions with simple functions, such as polynomials
• Replacing nonlinear problems with linear problems
• Replacing differential equations with algebraic equations
• Replacing high-order systems with low-order systems
• Replacing infinite-dimensional spaces with finite-dimensional spaces

For example, to solve a system of nonlinear differential equations, we might first replace it
with a system of nonlinear algebraic equations, then replace the nonlinear algebraic system
with a linear algebraic system, then replace the matrix of the linear system with one of a
special form for which the solution is easy to compute. At each step of this process, we
would need to verify that the solution is unchanged, or is at least within some required
tolerance of the true solution.

To make this general strategy work for solving a given problem, we must have

• An alternative problem, or class of problems, that is easier to solve
• A transformation of the given problem into a problem of this alternative type that pre-

serves the solution in some sense

Thus, much of our effort will go into identifying suitable problem classes with simple solu-
tions and solution-preserving transformations into those classes.

Ideally, the solution to the transformed problem is identical to that of the original prob-
lem, but this is not always possible. In the latter case the solution may only approximate
that of the original problem, but the accuracy can usually be made arbitrarily good at the
expense of additional work and storage. Thus, primary concerns are estimating the accu-
racy of such an approximate solution and establishing convergence to the true solution in
the limit.

1.2 Approximations in Scientific Computation

1.2.1 Sources of Approximation

There are many sources of approximation or inexactness in computational science. Some of
these occur even before computation begins:

• Modeling: Some physical features of the problem or system under study may be sim-
plified or omitted (e.g., friction, viscosity).

• Empirical measurements: Laboratory instruments have finite precision. Their accu-
racy may be further limited by small sample size, or readings obtained may be subject to

1.2. APPROXIMATIONS IN SCIENTIFIC COMPUTATION 3

random noise or systematic bias. For example, even the most careful measurements of im-
portant physical constants, such as Newton’s gravitational constant or Planck’s constant,
typically yield values with at most eight or nine significant decimal digits.

• Previous computations: Input data may have been produced by a previous step whose
results were only approximate.

The approximations just listed are usually beyond our control, but they still play an im-
portant role in determining the accuracy that should be expected from a computation. We
will focus most of our attention on approximations over which we do have some influence.
These systematic approximations that occur during computation include

• Truncation or discretization: Some features of a mathematical model may be omitted
or simplified (e.g., replacing a derivative by a difference quotient or using only a finite
number of terms in an infinite series).

• Rounding The computer representation of real numbers and arithmetic operations upon
them is generally inexact.

The accuracy of the final results of a computation may reflect a combination of any or all
of these approximations, and the resulting perturbations may be amplified or magnified by
the nature of the problem being solved or the algorithm being used, or both. The study of
the effects of such approximations on the accuracy and stability of numerical algorithms is
traditionally called error analysis.

Example 1.1 Approximations. The surface area of the Earth might be computed using
the formula

A = 4πr2

for the surface area of a sphere of radius r. The use of this formula for the computation
involves a number of approximations:

• The Earth is modeled as a sphere, which is an idealization of its true shape.
• The value for the radius, r ≈ 6370 km, is based on a combination of empirical measure-

ments and previous computations.
• The value for π is given by an infinite limiting process, which must be truncated at some

point.
• The numerical values for the input data, as well as the results of the arithmetic operations

performed on them, are rounded in a computer.

The accuracy of the computed result depends on all of these approximations.

1.2.2 Data Error and Computational Error

As we have just seen, some errors can be attributed to the input data, whereas others are
due to subsequent computational processes. Although this distinction is not always clear-
cut (rounding, for example, may affect both the input data and subsequent computational

4 CHAPTER 1. SCIENTIFIC COMPUTING

results), it is nevertheless helpful in understanding the overall effects of approximations in
numerical computations.

A typical problem can be viewed as the computation of the value of a function, say
f :R → R (most realistic problems are multidimensional, but for now we consider only
one dimension for illustration). Denote the true value of the input data by x, so that the
desired true result is f(x). Suppose that we must work with inexact input, say x̂, and we
can compute only an approximation to the function, say f̂ . Then

Total error = f̂(x̂)− f(x)
= (f̂(x̂)− f(x̂)) + (f(x̂)− f(x))
= computational error + propagated data error.

The first term in the sum is the difference between the exact and approximate functions for
the same input and hence can be considered pure computational error . The second term
is the difference between exact function values due to error in the input and thus can be
viewed as pure propagated data error . Note that the choice of algorithm has no effect on
the propagated data error.

1.2.3 Truncation Error and Rounding Error

Similarly, computational error (that is, error made during the computation) can be subdi-
vided into truncation (or discretization) error and rounding error:

• Truncation error is the difference between the true result (for the actual input) and the
result that would be produced by a given algorithm using exact arithmetic. It is due
to approximations such as truncating an infinite series, replacing a derivative by a finite
difference quotient, replacing an arbitrary function by a polynomial, or terminating an
iterative sequence before convergence.
• Rounding error is the difference between the result produced by a given algorithm using

exact arithmetic and the result produced by the same algorithm using finite-precision,
rounded arithmetic. It is due to inexactness in the representation of real numbers and
arithmetic operations upon them, which we will consider in detail in Section 1.3.

By definition, then, computational error is simply the sum of truncation error and rounding
error.

Although truncation error and rounding error can both play an important role in a given
computation, one or the other is usually the dominant factor in the overall computational
error. Roughly speaking, rounding error tends to dominate in purely algebraic problems
with finite solution algorithms, whereas truncation error tends to dominate in problems
involving integrals, derivatives, or nonlinearities, which often require a theoretically infinite
solution process.

The distinctions we have made among the different types of errors are important for
understanding the behavior of numerical algorithms and the factors affecting their accuracy,
but it is usually not necessary, or even possible, to quantify precisely the individual types
of errors. Indeed, as we will soon see, it is often advantageous to lump all of the errors
together and attribute them to error in the input data.

1.2. APPROXIMATIONS IN SCIENTIFIC COMPUTATION 5

1.2.4 Absolute Error and Relative Error

The significance of an error is obviously related to the magnitude of the quantity being
measured or computed. For example, an error of 1 is much less significant in counting the
population of the Earth than in counting the occupants of a phone booth. This motivates
the concepts of absolute error and relative error , which are defined as follows:

Absolute error = approximate value− true value,

Relative error =
absolute error

true value
.

Some authors define absolute error to be the absolute value of the foregoing difference, but
we will take the absolute value explicitly when only the magnitude of the error is needed.

Relative error can also be expressed as a percentage, which is simply the relative error
times 100. Thus, for example, an absolute error of 0.1 relative to a true value of 10 would
be a relative error of 0.01, or 1 percent. A completely erroneous approximation would
correspond to a relative error of at least 1, or at least 100 percent, meaning that the
absolute error is as large as the true value. One interpretation of relative error is that if a
quantity x̂ has a relative error of about 10−t, the decimal representation of x̂ has about t
correct significant digits.

Another useful way to express the relationship between absolute and relative error is
the following:

Approximate value = (true value)× (1 + relative error).

Of course, we do not usually know the true value; if we did, we would not need to bother
with approximating it. Thus, we will usually merely estimate or bound the error rather
than compute it exactly, because the true value is unknown. For this same reason, relative
error is often taken to be relative to the approximate value rather than to the true value,
as in the foregoing definition.

1.2.5 Sensitivity and Conditioning

Difficulties in solving a problem accurately are not always due to an ill-conceived formula or
algorithm, but may be inherent in the problem being solved. Even with exact computation,
the solution to the problem may be highly sensitive to perturbations in the input data.

A problem is said to be insensitive, or well-conditioned , if a given relative change in the
input data causes a reasonably commensurate relative change in the solution. A problem
is said to be sensitive, or ill-conditioned , if the relative change in the solution can be much
larger than that in the input data.

More formally, we define the condition number of a problem f at x as

Cond =
|relative change in solution|
|relative change in input data|

=
|(f(x̂)− f(x))/f(x)|

|(x̂− x)/x|
,

where x̂ is a point near x. A problem is sensitive, or ill-conditioned, if its condition number
is much larger than 1. Anyone who has felt a shower go from freezing to scalding, or vice

6 CHAPTER 1. SCIENTIFIC COMPUTING

versa, at the slightest touch of the temperature control has had first-hand experience with
a sensitive system.

Example 1.2 Evaluating a Function. Consider the propagated data error when a
function f is evaluated for an approximate input argument x̂ = x+ h instead of the “true”
input value x. We know from calculus that

Absolute error = f(x+ h)− f(x) ≈ hf ′(x),

so that

Relative error =
f(x+ h)− f(x)

f(x)
≈ hf

′(x)
f(x)

,

and hence

Cond ≈
∣∣∣∣hf ′(x)/f(x)

h/x

∣∣∣∣ =
∣∣∣∣xf ′(x)
f(x)

∣∣∣∣ .
Thus, the relative error in the function value can be much larger or smaller than that in
the input, depending on the properties of the function involved and the particular value of
the input. For example, if f(x) = ex, then the absolute error ≈ hex, relative error ≈ h, and
cond ≈ |x|.

Example 1.3 Sensitivity. Consider the problem of computing values of the cosine
function for arguments near π/2. Let x ≈ π/2 and let h be a small perturbation to x. Then
the error in computing cos(x+ h) is given by

Absolute error = cos(x+ h)− cos(x) ≈ −h sin(x) ≈ −h,

and hence
Relative error ≈ −h tan(x) ≈ ∞.

Thus, small changes in x near π/2 cause large relative changes in cos(x) regardless of the
method for computing it. For example,

cos(1.57079) = 0.63267949× 10−5,

whereas
cos(1.57078) = 1.63267949× 10−5,

so that the relative change in the output, 1.58, is about a quarter of a million times larger
than the relative change in the input, 6.37× 10−6.

1.2.6 Backward Error Analysis

Analyzing the forward propagation of errors in a computation is often very difficult. More-
over, the worst-case assumptions made at each stage often lead to a very pessimistic bound
on the overall error. An alternative approach is backward error analysis: Consider the ap-
proximate solution obtained to be the exact solution for a modified problem, then ask how

1.2. APPROXIMATIONS IN SCIENTIFIC COMPUTATION 7

large a modification to the original problem is required to give the result actually obtained.
In other words, how much data error in the initial input would be required to explain all of
the error in the final computed result? In terms of backward error analysis, an approximate
solution to a given problem is good if it is the exact solution to a “nearby” problem.

These relationships are illustrated schematically (and not to scale) in Fig. 1.1, where x
and f denote the exact input and function, respectively, f̂ denotes the approximate function
actually computed, and x̂ denotes an input value for which the exact function would give
this computed result. Note that the equality f(x̂) = f̂(x) is due to the choice of x̂; indeed,
this requirement defines x̂.

•x̂ • f(x̂) = f̂(x)..

f•x • f(x)..

f

..
.............

f̂

↑||
backward error

||↓

↑||
forward error

||↓

Figure 1.1: Schematic diagram of backward error analysis.

Example 1.4 Backward Error Analysis. Suppose we want a simple function for
approximating the exponential function f(x) = ex, and we want to examine its accuracy for
the argument x = 1. We know that the exponential function is given by the infinite series

f(x) = ex = 1 + x+
x2

2!
+
x3

3!
+ · · · ,

so we might consider truncating the series after, say, four terms to get the approximation

f̂(x) = 1 + x+
x2

2
+
x3

6
.

The forward error in this approximation is then given by

f̂(x)− f(x).

To determine the backward error, we must find the input value x̂ for f that gives the output
value we actually obtained for f̂ , that is, for which f(x̂) = f̂(x). For the exponential
function, we know that this value is given by

x̂ = log(f̂(x)).

Thus, for the particular input value x = 1, we have, to seven decimal places,

f(x) = 2.718282, f̂(x) = 2.666667,

x̂ = log(2.666667) = 0.980829,

Forward error = f̂(x)− f(x) = −0.051615,

8 CHAPTER 1. SCIENTIFIC COMPUTING

Backward error = x̂− x = −0.019171.

The point here is not to compare the numerical values of the forward and backward errors
quantitatively, but merely to illustrate the concepts involved and to show that both are
legitimate approaches to assessing accuracy. In this case, the forward error indicates that
the accuracy is fairly good because the output is close to what we wanted to compute,
whereas the backward error indicates that the accuracy is fairly good because the output
we obtained is correct for an input that is only slightly perturbed.

1.2.7 Stability and Accuracy

The concept of stability of a computational algorithm is analogous to conditioning of a
mathematical problem. Both concepts have to do with sensitivity to perturbations, but
the term stability is usually used for algorithms and conditioning for problems (although
stability is sometimes used for problems as well, especially in differential equations). An
algorithm is stable if the result it produces is relatively insensitive to perturbations resulting
from approximations made during the computation. From the viewpoint of backward error
analysis, an algorithm is stable if the result it produces is the exact solution to a nearby
problem.

Accuracy, on the other hand, refers to the closeness of a computed solution to the true
solution of the problem under consideration. Stability of an algorithm does not by itself
guarantee that the computed solution is accurate: accuracy depends on the conditioning
of the problem as well as the stability of the algorithm. Stability tells us that the solution
obtained is exact for a nearby problem, but the solution to that nearby problem is not nec-
essarily close to the solution to the original problem unless the problem is well-conditioned.
Thus, inaccuracy can result from applying a stable algorithm to an ill-conditioned problem
as well as from applying an unstable algorithm to a well-conditioned problem.

1.3 Computer Arithmetic

As noted earlier, one type of approximation inevitably made in scientific computing is in
representing real numbers on a computer. In this section we will examine in some detail the
finite-precision arithmetic systems that are used for most scientific computations on digital
computers.

1.3.1 Floating-Point Numbers

In a digital computer, the real number system of mathematics is represented approximately
by a floating-point number system. The basic idea resembles scientific notation, in which
a number of very large or very small magnitude is expressed as a number of moderate
size times an appropriate power of ten. For example, 2347 and 0.0007396 are written as
2.347×103 and 7.396×10−4, respectively. In this format, the decimal point moves, or floats,
as the power of 10 changes. Formally, a floating-point number system is characterized by
four integers:

1.3. COMPUTER ARITHMETIC 9

β Base or radix
t Precision
[L,U] Exponent range

By definition, any number x in the floating-point system is represented as follows:

x = ±(d0 +
d1

β
+
d2

β2
+ · · ·+ dt−1

βt−1
)βe,

where
0 ≤ di ≤ β − 1, i = 0, . . . , t− 1,

and
L ≤ e ≤ U.

The part in parentheses, represented by the string of base-β digits d0d1 · · · dt−1, is called the
mantissa or significand , and e is called the exponent or characteristic of the floating-point
number x. The portion d1d2 · · · dt−1 of the mantissa is called the fraction. In a computer,
the sign, exponent, and mantissa are stored in separate fields of a given floating-point word,
each of which has a fixed width. The number zero is represented uniquely by having both
its mantissa and its exponent equal to zero.

Most computers today use binary (β = 2) arithmetic, but other bases have also been
used in the past, such as hexadecimal (β = 16) in IBM mainframes and β = 3 in an ill-fated
Russian computer. Octal (β = 8) and hexadecimal notations are also commonly used as a
convenient shorthand for writing binary numbers in groups of three or four binary digits
(bits), respectively. For obvious reasons, decimal (β = 10) arithmetic is popular in hand-
held calculators. To facilitate human interaction, a computer usually converts numerical
values from decimal notation on input and to decimal notation for output, regardless of
the base it uses internally. Parameters for some typical floating-point systems are given
in Table 1.1, which illustrates the trade-off between precision and exponent range implied
by their respective field widths. For example, working with the same 64-bit word length,
the Cray system has a wider exponent range than does IEEE double precision, but at the
expense of carrying less precision.

Table 1.1: Parameters for some typical floating-point systems

System β t L U

IEEE SP 2 24 −126 127
IEEE DP 2 53 −1, 022 1, 023
Cray 2 48 −16, 383 16, 384
HP calculator 10 12 −499 499
IBM mainframe 16 6 −64 63

The IEEE standard single-precision (SP) and double-precision (DP) binary floating-
point systems are by far the most important today. They have been almost universally
adopted for personal computers and workstations, and also for many mainframes and su-
percomputers as well. The IEEE standard was carefully crafted to eliminate the many
anomalies and ambiguities in earlier vendor-specific floating-point implementations and has

10 CHAPTER 1. SCIENTIFIC COMPUTING

greatly facilitated the development of portable and reliable numerical software. It also
allows for sensible and consistent handling of exceptional situations, such as division by
zero.

1.3.2 Normalization

A floating-point system is said to be normalized if the leading digit d0 is always nonzero
unless the number represented is zero. Thus, in a normalized floating-point system, the
mantissa m of a given nonzero floating-point number always satisfies

1 ≤ m < β.

(An alternative convention is that d0 is always zero, in which case a floating-point number
is said to be normalized if d1 6= 0, and β−1 ≤ m < 1 instead.) Floating-point systems are
usually normalized because

• The representation of each number is then unique.
• No digits are wasted on leading zeros, thereby maximizing precision.
• In a binary (β = 2) system, the leading bit is always 1 and thus need not be stored,

thereby gaining one extra bit of precision for a given field width.

1.3.3 Properties of Floating-Point Systems

A floating-point number system is finite and discrete. The number of normalized floating-
point numbers is

2(β − 1)βt−1(U − L+ 1) + 1

because there are two choices of sign, β − 1 choices for the leading digit of the mantissa, β
choices for each of the remaining t− 1 digits of the mantissa, and U −L+ 1 possible values
for the exponent. The 1 is added because the number could be zero.

There is a smallest positive normalized floating-point number,

Underflow level = UFL = βL,

which has a 1 as the leading digit and 0 for the remaining digits of the mantissa, and the
smallest possible value for the exponent. There is a largest floating-point number,

Overflow level = OFL = βU+1(1− β−t),

which has β−1 as the value for each digit of the mantissa and the largest possible value for
the exponent. Any number larger than OFL cannot be represented in the given floating-
point system, nor can any positive number smaller than UFL.

Floating-point numbers are not uniformly distributed throughout their range, but are
equally spaced only between successive powers of β. Not all real numbers are exactly
representable in a floating-point system. Real numbers that are exactly representable in a
given floating-point system are sometimes called machine numbers.

Example 1.5 Floating-Point System. An example floating-point system is illustrated

1.3. COMPUTER ARITHMETIC 11

in Fig. 1.2, where the tick marks indicate all of the 25 floating-point numbers in a system
having β = 2, t = 3, L = −1, and U = 1. For this system, the largest number is
OFL = (1.11)2 × 21 = (3.5)10, and the smallest positive normalized number is UFL =
(1.00)2 × 2−1 = (0.5)10. This is a very tiny, toy system for illustrative purposes only, but
it is in fact characteristic of floating-point systems in general: at a sufficiently high level of
magnification, every normalized floating-point system looks essentially like this one—grainy
and unequally spaced.

..

−4 −3 −2 −1 0 1 2 3 4

Figure 1.2: Example of a floating-point number system.

1.3.4 Rounding

If a given real number x is not exactly representable as a floating-point number, then it
must be approximated by some “nearby” floating-point number. We denote the floating-
point approximation of a given real number x by fl(x). The process of choosing a nearby
floating-point number fl(x) to approximate a given real number x is called rounding , and
the error introduced by such an approximation is called rounding error , or roundoff error.
Two of the most commonly used rounding rules are

• Chop: The base-β expansion of x is truncated after the (t− 1)st digit. Since fl(x) is the
next floating-point number towards zero from x, this rule is also sometimes called round
toward zero.

• Round to nearest : fl(x) is the nearest floating-point number to x; in case of a tie, we use
the floating-point number whose last stored digit is even. Because of the latter property,
this rule is also sometimes called round to even.

Rounding to nearest is the most accurate, but it is somewhat more expensive to implement
correctly. Some systems in the past have used rounding rules that are cheaper to implement,
such as chopping, but rounding to nearest is the default rounding rule in IEEE standard
systems.

Example 1.6 Rounding Rules. Rounding the following decimal numbers to two digits
using each of the rounding rules gives the following results

Number Chop Round to nearest Number Chop Round to nearest
1.649 1.6 1.6 1.749 1.7 1.7
1.650 1.6 1.6 1.750 1.7 1.8
1.651 1.6 1.7 1.751 1.7 1.8
1.699 1.6 1.7 1.799 1.7 1.8

12 CHAPTER 1. SCIENTIFIC COMPUTING

A potential source of additional error that is often overlooked is in the decimal-to-binary
and binary-to-decimal conversions that usually take place upon input and output of floating-
point numbers. Such conversions are not covered by the IEEE standard, which governs
only internal arithmetic operations. Correctly rounded input and output can be obtained
at reasonable cost, but not all computer systems do so. Efficient, portable routines for
correctly rounded binary-to-decimal and decimal-to-binary conversions—dtoa and strtod,
respectively—are available from netlib (see Section 1.4.1).

1.3.5 Machine Precision

The accuracy of a floating-point system can be characterized by a quantity variously known
as the unit roundoff , machine precision, or machine epsilon. Its value, which we denote by
εmach, depends on the particular rounding rule used. With rounding by chopping,

εmach = β1−t,

whereas with rounding to nearest,

εmach = 1
2β

1−t.

The unit roundoff is important because it determines the maximum possible relative error
in representing a nonzero real number x in a floating-point system:∣∣∣∣fl(x)− x

x

∣∣∣∣ ≤ εmach.

An alternative characterization of the unit roundoff that you may sometimes see is that
it is the smallest number ε such that

fl(1 + ε) > 1,

but this is not quite equivalent to the previous definition if the round-to-even rule is used.
Another definition sometimes used is that εmach is the distance from 1 to the next larger
floating-point number, but this may differ from either of the other definitions. Although
they can differ in detail, all three definitions of εmach have the same basic intent as measures
of the granularity of a floating-point system.

For the toy illustrative system in Example 1.5, εmach = 0.25 with rounding by chopping,
and εmach = 0.125 with rounding to nearest. For IEEE binary floating-point systems,
εmach = 2−24 ≈ 10−7 in single precision and εmach = 2−53 ≈ 10−16 in double precision. We
thus say that the IEEE single- and double-precision floating-point systems have about 7
and 16 decimal digits of precision, respectively.

Though both are “small,” the unit roundoff should not be confused with the underflow
level. The unit roundoff εmach is determined by the number of digits in the mantissa field
of a floating-point system, whereas the underflow level UFL is determined by the number
of digits in the exponent field. In all practical floating-point systems,

0 < UFL < εmach < OFL.

1.3. COMPUTER ARITHMETIC 13

1.3.6 Subnormals and Gradual Underflow

In the toy floating-point system illustrated in Fig. 1.2, there is a noticeable gap around
zero. This gap, which is present to some degree in any floating-point system, is due to
normalization: the smallest possible mantissa is 1.00. . . , and the smallest possible exponent
is L, so there are no floating-point numbers between zero and βL. If we relax our insistence
on normalization and allow leading digits to be zero (but only when the exponent is at its
minimum value), then the gap around zero can be “filled in” by additional floating-point
numbers. For our toy illustrative system, this relaxation gains six additional floating-point
numbers, the smallest positive one of which is (0.01)2×2−1 = (0.125)10, as shown in Fig. 1.3.

..

−4 −3 −2 −1 0 1 2 3 4

Figure 1.3: Example of a floating-point system with subnormals.

The extra numbers added to the system in this way are referred to as subnormal or
denormalized floating-point numbers. Although they usefully extend the range of magni-
tudes representable, subnormal numbers have inherently lower precision than normalized
numbers because they have fewer significant digits in their fractional parts. In particular,
extending the range in this manner does not make the unit roundoff εmach any smaller.

Such an augmented floating-point system is sometimes said to exhibit gradual underflow ,
since it extends the lower range of magnitudes representable rather than underflowing to
zero as soon as the minimum exponent value would otherwise be exceeded. The IEEE
standard provides for such subnormal numbers and gradual underflow. Gradual underflow
is implemented through a special reserved value of the exponent field because the leading
binary digit is not stored and hence cannot be used to indicate a denormalized number.

1.3.7 Exceptional Values

The IEEE floating-point standard provides two additional special values that indicate ex-
ceptional situations:

• Inf, which stands for “infinity,” results from dividing a finite number by zero, such as
1/0.

• NaN, which stands for “not a number,” results from undefined or indeterminate operations
such as 0/0, 0 ∗ Inf, or Inf/Inf.

Inf and NaN are implemented in IEEE arithmetic through special reserved values of the
exponent field.

Whether Inf and NaN are supported at the user level in a given computing environment
depends on the language, compiler, and run-time system. If available, these quantities can
be helpful in designing software that deals gracefully with exceptional situations rather than

14 CHAPTER 1. SCIENTIFIC COMPUTING

abruptly aborting the program. In MATLAB (see Section 1.4.2), for example, if Inf and NaN
arise, they are propagated sensibly through a computation (e.g., 1 + Inf = Inf). It is still
desirable, however, to avoid such exceptional situations entirely, if possible. In addition to
alerting the user to arithmetic exceptions, these special values can also be useful as flags
that cannot be confused with any legitimate numeric value. For example, NaN might be
used to indicate a portion of an array that has not yet been defined.

1.3.8 Floating-Point Arithmetic

In adding or subtracting two floating-point numbers, their exponents must match before
their mantissas can be added or subtracted. If they do not match initially, then the mantissa
of one of the numbers must be shifted until the exponents do match. In performing such
a shift, some of the trailing digits of the smaller (in magnitude) number will be shifted off
the end of the mantissa field, and thus the correct result of the arithmetic operation cannot
be represented exactly in the floating-point system. Indeed, if the difference in magnitude
is too great, then the entire mantissa of the smaller number may be shifted completely
beyond the field width so that the result is simply the larger of the operands. Another way
of saying this is that if the true sum of two t-digit numbers contains more than t digits,
then the excess digits will be lost when the result is rounded to t digits, and in the worst
case the operand of smaller magnitude may be lost completely.

Multiplication of two floating-point numbers does not require that their exponents
match—the exponents are simply summed and the mantissas multiplied. However, the
product of two t-digit mantissas will in general contain up to 2t digits, and thus once again
the correct result cannot be represented exactly in the floating-point system and must be
rounded.

Example 1.7 Floating-Point Arithmetic. Consider a floating-point system with β = 10
and t = 6. If x = 1.92403× 102 and y = 6.35782× 10−1, then floating-point addition gives
the result x + y = 1.93039 × 102, assuming rounding to nearest. Note that the last two
digits of y have no effect on the result. With an even smaller exponent, y could have
had no effect at all on the result. Similarly, floating-point multiplication gives the result
x ∗ y = 1.22326× 102, which discards half of the digits of the true product.

Division of two floating-point numbers may also give a result that cannot be represented
exactly. For example, 1 and 10 are both exactly representable as binary floating-point
numbers, but their quotient, 1/10, has a nonterminating binary expansion and thus is not
a binary floating-point number.

In each of the cases just cited, the result of a floating-point arithmetic operation may
differ from the result that would be given by the corresponding real arithmetic operation
on the same operands because there is insufficient precision to represent the correct real
result. The real result may also be unrepresentable because its exponent is beyond the
range available in the floating-point system (overflow or underflow). Overflow is usually
a more serious problem than underflow in the sense that there is no good approximation
in a floating-point system to arbitrarily large numbers, whereas zero is often a reasonable
approximation for arbitrarily small numbers. For this reason, on many computer systems

1.3. COMPUTER ARITHMETIC 15

the occurrence of an overflow aborts the program with a fatal error, but an underflow may
be silently set to zero without disrupting execution.

Example 1.8 Summing a Series. As an illustration of these issues, the infinite series

∞∑
n=1

1
n

has a finite sum in floating-point arithmetic even though the real series is divergent. At first
blush, one might think that this result occurs because 1/n will eventually underflow, or the
partial sum will eventually overflow, as indeed they must. But before either of these occurs,
the partial sum ceases to change once 1/n becomes negligible relative to the partial sum,
i.e., when 1/n < εmach

∑n−1
k=1(1/k), and thus the sum is finite (see Computer Problem 1.8).

As we have noted, a real arithmetic operation on two floating-point numbers does not
necessarily result in another floating-point number. If a number that is not exactly rep-
resentable as a floating-point number is entered into the computer or is produced by a
subsequent arithmetic operation, then it must be rounded (using one of the rounding rules
given earlier) to obtain a floating-point number. Because floating-point numbers are not
equally spaced, the absolute error made in such an approximation is not uniform, but the
relative error is bounded by the unit roundoff εmach.

Ideally, x flop y = fl(x op y) (i.e., floating-point arithmetic operations produce correctly
rounded results); and many computers, such as those meeting the IEEE floating-point
standard, achieve this ideal as long as x op y is within the range of the floating-point system.
Nevertheless, some familiar laws of real arithmetic are not necessarily valid in a floating-
point system. In particular, floating-point addition and multiplication are commutative but
not associative. For example, if ε is a positive floating-point number slightly smaller than
the unit roundoff εmach, then (1 + ε) + ε = 1, but 1 + (ε+ ε) > 1.

The failure of floating-point arithmetic to satisfy the normal laws of real arithmetic is
one reason that forward error analysis can be difficult. One advantage of backward error
analysis is that it permits the use of real arithmetic in the analysis.

1.3.9 Cancellation

Rounding is not the only necessary evil in finite-precision arithmetic. Subtraction between
two t-digit numbers having the same sign and similar magnitudes yields a result with fewer
than t significant digits, and hence it is always exactly representable (provided the two
numbers involved do not differ in magnitude by more than a factor of two). The reason
is that the leading digits of the two numbers cancel (i.e., their difference is zero). For
example, again taking β = 10 and t = 6, if x = 1.92403× 102 and z = 1.92275× 102, then
we obtain the result x − z = 1.28000 × 10−1, which, with only three significant digits, is
exactly representable.

Despite the exactness of the result, however, such cancellation nevertheless often implies
a serious loss of information. The problem is that the operands are often uncertain, owing
to rounding or other previous errors, in which case the relative uncertainty in the difference

16 CHAPTER 1. SCIENTIFIC COMPUTING

may be large. In effect, if two nearly equal numbers are accurate only to within rounding
error, then taking their difference leaves only rounding error as a result.

As a simple example, if ε is a positive number slightly smaller than the unit roundoff
εmach, then (1 + ε)− (1− ε) = 1− 1 = 0 in floating-point arithmetic, which is correct for the
actual operands of the final subtraction, but the true result of the overall computation, 2ε,
has been completely lost. The subtraction itself is not at fault: it merely signals the loss of
information that had already occurred.

Of course, the loss of information is not always complete, but the fact remains that the
digits lost to cancellation are the most significant, leading digits, whereas the digits lost in
rounding are the least significant, trailing digits. Because of this effect, computing a small
quantity as a difference of large quantities is generally a bad idea, for rounding error is likely
to dominate the result. For example, summing an alternating series, such as

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

for x < 0, may give disastrous results because of catastrophic cancellation (see Computer
Problem 1.9).

Example 1.9 Cancellation. Cancellation is not an issue only in computer arithmetic;
it may also affect any situation in which limited precision is attainable, such as empirical
measurements or laboratory experiments. For example, determining the distance from Man-
hattan to Staten Island by using their respective distances from Los Angeles will produce a
very poor result unless the latter distances are known with extraordinarily high accuracy.

As another example, for many years physicists have been trying to compute the total
energy of the helium atom from first principles using Monte Carlo techniques. The accuracy
of these computations is determined largely by the number of random trials used. As
faster computers become available and computational techniques are refined, the attainable
accuracy improves. The total energy is the sum of the kinetic energy and the potential
energy, which are computed separately and have opposite signs. Thus, the total energy
is computed as a difference and suffers cancellation. Table 1.2 gives a sequence of values
obtained over a number of years (these data were kindly provided by Dr. Robert Panoff).
During this span the computed values for the kinetic and potential energies changed by only
6 percent or less, yet the resulting estimate for the total energy changed by 144 percent.
The one or two significant digits in the earlier computations were completely lost in the
subsequent subtraction.

Table 1.2: Computed values for the total energy of the helium atom

Year Kinetic Potential Total
1971 13.0 −14.0 −1.0
1977 12.76 −14.02 −1.26
1980 12.22 −14.35 −2.13
1985 12.28 −14.65 −2.37
1988 12.40 −14.84 −2.44

1.3. COMPUTER ARITHMETIC 17

Example 1.10 Quadratic Formula. Cancellation and other numerical difficulties need
not involve a long series of computations. For example, use of the standard formula for the
roots of a quadratic equation is fraught with numerical pitfalls. As every schoolchild learns,
the two solutions of the quadratic equation

ax2 + bx+ c = 0

are given by

x =
−b±

√
b2 − 4ac

2a
.

For some values of the coefficients, naive use of this formula in floating-point arithmetic can
produce overflow, underflow, or catastrophic cancellation.

For example, if the coefficients are very large or very small, then b2 or 4ac may overflow
or underflow. The possibility of overflow can be avoided by rescaling the coefficients, such
as dividing all three coefficients by the coefficient of largest magnitude. Such a rescaling
does not change the roots of the quadratic equation, but now the largest coefficient is 1
and overflow cannot occur in computing b2 or 4ac. Such rescaling does not eliminate the
possibility of underflow, but it does prevent needless underflow, which could otherwise occur
when all three coefficients are very small.

Cancellation between −b and the square root can be avoided by computing one of the
roots using the alternative formula

x =
2c

−b∓
√
b2 − 4ac

,

which has the opposite sign pattern from that of the standard formula. But cancellation
inside the square root cannot be easily avoided without using higher precision (if the dis-
criminant is small relative to the coefficients, then the two roots are close to each other,
and the problem is inherently ill-conditioned).

As an illustration, we use four-digit decimal arithmetic, with rounding to nearest, to
compute the roots of the quadratic equation having coefficients a = 0.05010, b = −98.78,
and c = 5.015. For comparison, the correct roots, rounded to ten significant digits, are

1971.605916 and 0.05077069387.

Computing the discriminant in four-digit arithmetic produces

b2 − 4ac = 9757− 1.005 = 9756,

so that √
b2 − 4ac = 98.77.

The standard quadratic formula then gives the roots

98.78± 98.77
0.1002

= 1972 and 0.0998.

The first root is the correctly rounded four-digit result, but the other root is completely
wrong, with an error of about 100 percent. The culprit is cancellation, not in the sense

18 CHAPTER 1. SCIENTIFIC COMPUTING

that the final subtraction is wrong (indeed it is exactly correct), but in the sense that
cancellation of the leading digits has left nothing remaining but previous rounding errors.
The alternative quadratic formula gives the roots

10.03
98.78∓ 98.77

= 1003 and 0.05077.

Once again we have obtained one fully accurate root and one completely erroneous root,
but in each case it is the opposite root from the one obtained previously. Cancellation
is again the explanation, but the different sign pattern causes the opposite root to be
contaminated. In general, for computing each root we should choose whichever formula
avoids this cancellation, depending on the sign of b.

Example 1.11 Finite Difference Approximation. Consider the finite difference ap-
proximation to the first derivative

f ′(x) ≈ f(x+ h)− f(x)
h

.

We want h to be small so that the approximation will be accurate, but if h is too small,
then fl(x + h) may not differ from fl(x). Even if fl(x + h) 6= fl(x), we might still have
fl(f(x+ h)) = fl(f(x)) if f is slowly varying. In any case, we can expect some cancellation
in computing the difference f(x+ h)− f(x). Thus, there is a trade-off between truncation
error and rounding error in choosing the size of h.

If the relative error in the function values is bounded by ε, then the rounding error in
the approximate derivative value is bounded by 2ε|f(x)|/h. The Taylor series expansion

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)h2/2 + · · ·

gives an estimate of Mh/2 for the truncation error, where M is a bound for |f ′′(x)|. The
total error is therefore bounded by

2ε|f(x)|
h

+
Mh

2
,

which is minimized when
h = 2

√
ε|f(x)|/M.

If we assume that the function values are accurate to machine precision and that f and f ′′

have roughly the same magnitude, then we obtain the rule of thumb that it is usually best
to perturb about half the digits of x by taking

h ≈
√
εmach · |x|.

A typical example is shown in Fig. 1.4, where the error in the finite difference approxi-
mation for a particular function is plotted as a function of the stepsize h. This computation
was done in IEEE single precision with x = 1, and the error indeed reaches a minimum
at h ≈ √εmach. The error increases for smaller values of h because of rounding error, and
increases for larger values of h because of truncation error.

1.3. COMPUTER ARITHMETIC 19

The rounding error can be reduced by working with higher-precision arithmetic. Trunca-
tion error can be reduced by using a more accurate formula, such as the centered difference
approximation (see Section 8.7.1)

f ′(x) ≈ f(x+ h)− f(x− h)
2h

.

10−710−610−510−410−310−210−1 100

stepsize h

10−5

10−4

10−3

10−2

10−1

100

error

...
........
........
........
........
........
........
........
...........

..........
...........

..........
..........

............
...........

............
...........

............
...........

............
...........

............
...........

............
...........

............
...........

............
...........

.........

Figure 1.4: Error in finite difference approximation as a function of stepsize.

Example 1.12 Standard Deviation. The mean of a finite sequence of real values xi,
i = 1, . . . , n, is defined by

x̄ =
1
n

n∑
i=1

xi,

and the standard deviation is defined by

σ =

[
1

n− 1

n∑
i=1

(xi − x̄)2

]1/2

.

Use of these formulas requires two passes through the data: one to compute the mean and
another to compute the standard deviation. For better efficiency, it is tempting to use the
mathematically equivalent formula

σ =

[
1

n− 1

(
n∑
i=1

x2
i − nx̄2

)]1/2

to compute the standard deviation, since both the sum and the sum of squares can be
computed in a single pass through the data.

Unfortunately, the single cancellation at the end of the one-pass formula is often much
more damaging numerically than all of the cancellations in the two-pass formula combined.
The problem is that the two quantities being subtracted in the one-pass formula are apt to

20 CHAPTER 1. SCIENTIFIC COMPUTING

be relatively large and nearly equal, and hence the relative error in the difference may be
large (indeed, the result can even be negative, causing the square root to fail).

Example 1.13 Computing Residuals. Assessing the accuracy of a computation is often
difficult if one uses only the same precision as that of the computation itself. Perhaps this
observation should not be surprising: if we knew the actual error, we could have used it to
obtain a more accurate result in the first place.

As a simple example, suppose we are solving the scalar linear equation ax = b for the
unknown x, and we have obtained an approximate solution x̂. As one measure of the quality
of our answer, we wish to compute the residual r = b− ax̂. In floating-point arithmetic,

a×fl x̂ = ax̂(1 + δ1)

for some δ1 ≤ εmach. So

b−fl (a×fl x̂) = [b− ax̂(1 + δ1)](1 + δ2)
= [r − δ1ax̂](1 + δ2)
= r + δ2r − δ1ax̂− δ1δ2ax̂

≈ r + δ2r − δ1b.

But δ1b may be as large as εmachb, which may be as large as r. Thus, higher precision may
be required to enable a meaningful computation of the residual r.

1.4 Mathematical Software

This book covers a wide range of topics in numerical analysis and scientific computing. We
will discuss the essential aspects of each topic but will not have the luxury of examining any
topic in great detail. To be able to solve interesting computational problems, we will often
rely on mathematical software written by professionals. Leaving the algorithmic details to
such software will allow us to focus on proper problem formulation and interpretation of
results. We will consider only the most fundamental algorithms for each type of problem,
motivated primarily by the insight to be gained into choosing an appropriate method and
using it wisely. Our primary goal is to become intelligent users, rather than creators, of
mathematical software.

Before citing some specific sources of good mathematical software, let us summarize
the desirable characteristics that such software should possess, in no particular order of
importance:

• Reliability: always works correctly for easy problems
• Robustness: usually works for hard problems, but fails gracefully and informatively

when it does fail
• Accuracy: produces results as accurate as warranted by the problem and input data,

preferably with an estimate of the accuracy achieved

1.4. MATHEMATICAL SOFTWARE 21

• Efficiency: requires execution time and storage that are close to the minimum possible
for the problem being solved

• Maintainability: is easy to understand and modify
• Portability: adapts with little or no change to new computing environments
• Usability: has a convenient and well-documented user interface
• Applicability: solves a broad range of problems

Obviously, these properties often conflict, and it is rare software indeed that satisfies all of
them. Nevertheless, this list gives mathematical software users some idea what qualities to
look for and developers some worthy goals to strive for.

1.4.1 Mathematical Software Libraries

Several widely available sources of general-purpose mathematical software are listed here.
The software listed is written in Fortran unless otherwise noted. At the end of each chapter
of this book, specific routines are listed for given types of problems, both from these general
libraries and from more specialized packages. For additional information about available
mathematical software, see the URL http://gams.nist.gov on the Internet’s World-Wide
Web.

• FMM: A collection of software accompanying the book Computer Methods for Mathematical
Computations, by Forsythe, Malcolm, and Moler [82]. Available from netlib (see below).
• HSL (Harwell Subroutine Library): A collection of software developed at Harwell Labo-

ratory in England. See URL http://www.cse.clrc.ac.uk/Activity/HSL.
• IMSL (International Mathematical and Statistical Libraries): A commercial product of

Visual Numerics Inc., Houston, Texas. A comprehensive library of mathematical soft-
ware; the full library is available in Fortran, and a subset is available in C. See URL
http://www.vni.com.
• KMN: A collection of software accompanying the book Numerical Methods and Software,

by Kahaner, Moler, and Nash [142].
• NAG (Numerical Algorithms Group): A commercial product of NAG Inc., Downers Grove,

Illinois. A comprehensive library of mathematical software; the full library is available in
Fortran, and a subset is available in C. See URL http://www.nag.com.
• NAPACK: A collection of software designed to complement the book Applied Numerical

Linear Algebra, by Hager [116]. In addition to linear algebra, also contains routines for
nonlinear equations, unconstrained optimization, and fast Fourier transforms. Available
from netlib.
• netlib: A collection of free software from diverse sources available over the Internet.

See URL http://www.netlib.org, or send email containing the request “send index” to
netlib@ornl.gov, or ftp to one of several mirror sites, such as netlib.bell-labs.com
or netlib2.cs.utk.edu.

• NR (Numerical Recipes): A collection of software accompanying the book Numerical
Recipes, by Press, Teukolsky, Vetterling, and Flannery [205]. Available in C and Fortran
editions.
• NUMAL: A collection of software developed at the Mathematisch Centrum, Amsterdam.

Also available in Algol and Fortran, but most readily available in C from the book A

22 CHAPTER 1. SCIENTIFIC COMPUTING

Numerical Library in C for Scientists and Engineers, by Lau [162].
• PORT: A collection of software developed at Bell Laboratories. Some portions are available

from netlib, but other portions must be obtained commercially and licensed for use. See
the port directory in netlib for further information.
• SLATEC: A collection of software compiled by a consortium of U.S. government laborato-

ries. Available from netlib.
• SOL: A collection of software for optimization and related problems from the Systems

Optimization Laboratory at Stanford University. For further information, see URL
http://www.stanford.edu/~saunders/brochure/brochure.html.
• TOMS: A collection of software appearing in ACM Transactions on Mathematical Software

(formerly Collected Algorithms of the ACM). Available from netlib. The algorithms are
identified by number (in order of appearance) as well as by name.

1.4.2 Scientific Computing Environments

The software libraries just listed contain subroutines that are meant to be called by user-
written programs, usually in a conventional programming language such as Fortran or C.
An increasingly popular alternative for scientific computing is interactive environments that
provide powerful, conveniently accessible, built-in mathematical capabilities, often com-
bined with sophisticated graphics and a very high-level programming language designed for
rapid prototyping of new algorithms.

One of the most widely used such computing environments is MATLAB, which is a propri-
etary commercial product of The MathWorks, Inc. (see URL http://www.mathworks.com).
MATLAB, which stands for MATrix LABoratory, is an interactive system that integrates ex-
tensive mathematical capabilities, especially in linear algebra, with powerful scientific vi-
sualization, a high-level programming language, and a variety of optional “toolboxes” that
provide specialized capabilities in particular applications, such as signal processing, im-
age processing, control, system identification, optimization, and statistics. There is also
a MATLAB interface for the NAG mathematical software library mentioned in Section 1.4.1.
MATLAB is available for a wide variety of personal computers, workstations, and supercom-
puters, and comes in both professional and inexpensive student editions. If MATLAB is not
available on your computer system, there are similar, though less powerful, packages that
are freely available by ftp, including octave (http://www.che.wisc.edu/octave), RLaB
(http://rlab.sourceforge.net), and Scilab (http://www-rocq.inria.fr/scilab). Other
similar commercial products include GAUSS, HiQ, IDL, Mathcad, and PV-WAVE.

Another family of interactive computing environments is based primarily on symbolic
(rather than numeric) computation, often called computer algebra. These packages, which
include Axiom, Derive, Macsyma, Maple, Mathematica, MuPAD, Reduce, and Scratchpad,
provide many of the same mathematical and graphical capabilities, and in addition provide
symbolic differentiation, integration, equation solving, polynomial manipulation, and the
like, as well as arbitrary precision arithmetic.

Because MATLAB is probably the most widely used of these environments for the types
of problems discussed in this book, specific MATLAB functions, either from the basic envi-
ronment or from the supplementary toolboxes, are mentioned in the summaries of available
software for each problem category, along with software from the major conventional soft-

1.4. MATHEMATICAL SOFTWARE 23

ware libraries. Note that MATLAB has recently added symbolic computation to its capabilities
via a “symbolic math” toolbox based on Maple.

1.4.3 Practical Advice on Software

This section contains some practical advice on obtaining and using the software mentioned
throughout the book, especially for the purpose of programming assignments based on the
computer problems at the end of each chapter. The computer problems do not depend on
any particular software or programming language, and thus many options are available. The
best choice in a given case will depend on the user’s experience, resources, and objectives.

The software cited comes from a variety of sources, including large commercial libraries
such as IMSL and NAG, public repositories of free software such as netlib, and scientific
computing environments such as MATLAB. Many academic and industrial computing centers
and workstation laboratories will have a representative sample of such software already
installed and available for use. In any case, ample software is available free via the Internet
or at nominal cost from other sources (e.g., accompanying textbooks) for all of the computer
problems in this book. Locating, downloading, and installing suitable software is useful real-
world experience, and the skills learned in doing so are an important practical adjunct to
the other skills taught in this book.

Perhaps the most important choice is that of a programming language. Fortran is the
traditional language of scientific computing, and the overwhelming majority of existing
software libraries and applications codes are in Fortran, although C is catching up fast with
respect to available resources. In working with this book, the Fortran user will benefit from
the widest variety of available software and from compatibility with the preponderance of
existing application codes. In addition, since Fortran is a relatively restrictive language and
compilers for it have had the benefit of many years of tuning, Fortran produces somewhat
more efficient executable code on some computer systems.

C is a more versatile and expressive language than Fortran, and currently C is probably
the language most commonly taught in beginning programming courses. C also has the
advantage of being freely available (or at nominal cost) on almost any computer system,
whereas Fortran may be unavailable or considerably more expensive in some cases. C has
long been used as a primary language for systems programming, but more recently it has
become increasingly popular for scientific programming as well. If you desire to use C
with this book, there should be plenty of software available. For example, both major
commercial libraries, IMSL and NAG, have substantial subsets available in C, and the NR and
NUMAL libraries are also available in C at nominal cost (see Section 1.4.1).

In addition, on many computer systems it is fairly straightforward to call Fortran rou-
tines from C programs. The main differences to watch out for are that the routine names
may be slightly modified (often with an underscore before and/or after the usual name), all
arguments to Fortran subroutines should be passed by address (i.e., as pointers in C), and
C and Fortran have opposite array storage conventions (C matrices are stored row-wise,
Fortran matrices are stored column-wise). Finally, one can automatically convert Fortran
source code directly into C using the f2c converter that is available free from Bell Labora-
tories or from netlib, so that Fortran routines obtained via the Internet, for example, can
easily be used with C programs.

24 CHAPTER 1. SCIENTIFIC COMPUTING

A third choice of programming language that should be seriously considered is an inter-
active scientific computing environment, such as MATLAB. The user of such an environment
will enjoy several benefits. User programs will generally be much shorter, because of the
elimination of declarations, storage management, and many explicit loops. In addition, these
environments often have built-in functions for many of the problems we will encounter, which
greatly simplifies the interface with such routines because much of the necessary information
(array sizes, etc.) is passed implicitly by the environment. An additional bonus is built-in
graphics, which avoids having to do this separately in a postprocessing phase. Even if you
intend to use a standard language such as C or Fortran in the long run, you may still find it
beneficial to learn a package such as MATLAB for its usefulness as a rapid prototyping envi-
ronment in which new algorithms can be tried out quickly then later recoded in a standard
language, if necessary, for greater efficiency or compatibility. If you wish to learn MATLAB, in
addition to the superb tutorial and reference documentation that comes with it you might
also find one of the many books on MATLAB useful (see [18, 71, 120, 200, 204, 206, 229]).

Some of the computer problems in the book call for graphical output. Depending on
your computing environment, several options are available for producing the required plots.
In a Unix environment, simple plots can be made using the graph and plot commands (see
the corresponding man pages). In X-Windows, simple plots can be made on the screen with
the xgraph tool, and then hard copies can be made using the xwd and xpr utilities, or their
equivalents. Somewhat more sophisticated graphs can be made using free packages such as
gnuplot (available by ftp from ftp.dartmouth.edu/pub/gnuplot) or plplot (available
by ftp from dino.ph.utexas.edu/plplot), which are available for Unix and several other
operating systems. Much more sophisticated and powerful scientific visualization systems
are also available, but their capabilities go well beyond the simple plots needed for the
problems in this book. If you use a PC or Mac, dozens of graphics programs are available,
far too many to mention individually. Again, note that MATLAB and similar environments
have built-in graphics, which is a great convenience.

Another important programming consideration is performance. The performance of
today’s microprocessor-based computer systems often depends critically on judicious ex-
ploitation of a memory hierarchy (registers, cache, RAM, disk, etc.) both by the user and
by the optimizing compiler. Thus, it is important not only to choose the right algorithm
but also to implement it carefully to maximize the reuse of data while they are held in the
portions of the memory hierarchy with faster access times. Fortunately, the details of such
programming are usually hidden from the user inside the library routines recommended
in this text. This feature is just one of the many benefits of using existing, professionally
written software for scientific computing whenever possible.

If you use a scientific computing environment such as MATLAB, you should be aware
that there may be significant differences in performance between the built-in operations,
which are generally very fast, and those you program explicitly yourself, which tend to
be much slower owing to the interpreted mode of operation and to memory management
overhead. Thus, one should be very careful in making performance comparisons under
these circumstances. For example, one algorithm may be inferior to another in principle,
yet perform better because of more effective utilization of fast built-in operations.

For general advice on many practical aspects of using workstations, Unix, X-Windows,
graphics, and many other packages of interest in scientific computing, as well as performance

1.5. HISTORICAL NOTES AND FURTHER READING 25

considerations in programming, see [67, 85, 157].

1.5 Historical Notes and Further Reading

The subject we now call numerical analysis or scientific computing vastly predates the
advent of modern computers. Most of the concepts and many of the algorithms that are
in use today were first formulated by pre-twentieth century giants—Newton, Gauss, Euler,
Jacobi, and many others—whose names recur throughout this book. The main concern
then, as it is now, was finding efficient methods for obtaining approximate solutions to
mathematical problems that arose in physics, astronomy, surveying, and other disciplines.
Indeed, efficient use of computational resources is even more critical when using pencil,
paper, and brain power (or perhaps a hand calculator) than when using a modern high-
speed computer.

For the most part, modern computers have simply increased the size of problems that
are feasible to tackle. They have also necessitated more careful analysis and control of
rounding error, for the computation is no longer done by a human who can easily carry
additional precision as needed. There is no question, however, that the development of
digital computers was the impetus for the flowering of numerical analysis into the fertile
and vigorously growing field that has enabled the ubiquitous role computation now plays
throughout modern science and engineering. Indeed, computation has come to be regarded
as an equal and indispensable partner, along with theory and experiment, in the advance
of scientific knowledge and engineering practice [145].

For an account of the early history of numerical analysis, see [100]; for the more recent
development of scientific computing, see [188]. The literature of numerical analysis, from
textbooks to research monographs and journals, is much too vast to be covered adequately
here. This text will try to give appropriate credit for the major ideas presented (at least
those not already obvious from the name) and cite (usually secondary) sources for further
reading, but these citations and recommendations are by no means complete. There are
too many excellent general textbooks on numerical analysis to mention them all, but many
of these still make worthwhile reading (even some of the older ones, several of which have
recently been reissued in inexpensive reprint editions). Only those of most direct relevance
to our discussion will be cited.

Most numerical analysis textbooks contain a general discussion of error analysis. The
seminal reference on the analysis of rounding errors is [274], which is a treasure trove of
valuable insights. Its author, James H. Wilkinson, played a major role in developing and
popularizing the notion of backward error analysis and was also responsible for a number
of famous “computational counterexamples” that reveal various numerical instabilities in
unsuspected problems and algorithms. A more recent work in a similar spirit is [126]. For
various approaches to automating error analysis, see [5, 175, 180]. A MATLAB toolbox for
error analysis is discussed in [36].

Recent general treatments of computer arithmetic include [152, 193]. The book by Ster-
benz [237], though somewhat dated, remains the only book-length treatment of floating-
point arithmetic. See [150] for a more concise account. The effort to standardize floating-
point arithmetic and the high quality of the resulting standard were largely inspired by
William Kahan, who is also responsible for many well known computational counterex-

26 CHAPTER 1. SCIENTIFIC COMPUTING

amples. The IEEE floating-point standard can be found in [131]. A useful tutorial on
floating-point arithmetic and the IEEE standard is [97]. Although it is no substitute for
careful problem formulation and solution, extended precision arithmetic can occasionally be
useful for highly sensitive problems; several software packages providing multiple precision
floating-point arithmetic are available, including MP(#524), FM(#693), and MPFUN(#719)
from TOMS.

For an account of the emergence of mathematical software as a subdiscipline of numerical
analysis and computer science, see the survey [41] and the collections [44, 73, 122, 134,
209, 210]. Perhaps the earliest numerical methods textbook to be based on professional
quality software (not just code fragments for illustration) was [225], which is similar in tone,
style, and content to the very influential book by Forsythe, Malcolm and Moler [82] that
popularized this approach. In addition to the books mentioned in Section 1.4.1, the following
numerical methods textbooks focus on the specific software libraries or packages listed:
IMSL [211], NAG [128, 151], MATLAB [165, 187, 262], and Mathematica [231]. Other textbooks
that provide additional discussion and examples at an introductory level include [11, 29,
30, 38, 43, 94, 173, 240]. More advanced general textbooks include [47, 59, 103, 118, 132,
149, 195, 222, 242]. The books of Acton [2, 3] entertainingly present practical advice on
avoiding pitfalls in numerical computation.

The book of Strang [243] provides excellent background and insights on many aspects
of applied mathematics that are relevant to numerical computation in general, and in par-
ticular to almost every chapter of this book. For an elementary introduction to scientific
programming, see [261]. For advice on designing, implementing, and testing numerical soft-
ware, as opposed to simply using it, see [174]. Additional computer exercises and projects
can be found in [45, 72, 85, 89, 107, 109, 158].

Review Questions

1.1 True or false: A problem is ill-
conditioned if its solution is highly sensitive
to small changes in the problem data.

1.2 True or false: Using higher-precision
arithmetic will make an ill-conditioned prob-
lem better conditioned.

1.3 True or false: The conditioning of a
problem depends on the algorithm used to
solve it.

1.4 True or false: A good algorithm will pro-
duce an accurate solution regardless of the con-
dition of the problem being solved.

1.5 True or false: The choice of algorithm for
solving a problem has no effect on the propa-
gated data error.

1.6 True or false: If two real numbers are ex-
actly representable as floating-point numbers,
then the result of a real arithmetic operation

on them will also be representable as a floating-
point number.

1.7 True or false: Floating-point numbers
are distributed uniformly throughout their
range.

1.8 True or false: Floating-point addition is
associative but not commutative.

1.9 True or false: In a floating-point num-
ber system, the underflow level is the smallest
positive number that perturbs the number 1
when added to it.

1.10 Explain the distinction between trunca-
tion (or discretization) and rounding.

1.11 Explain the distinction between absolute
error and relative error.

1.12 Explain the distinction between compu-
tational error and propagated data error.

REVIEW QUESTIONS 27

1.13 (a) What is meant by the conditioning
of a problem?
(b) Is it affected by the algorithm used to solve
the problem?
(c) Is it affected by the precision of the arith-
metic used to solve the problem?

1.14 If a computational problem has a condi-
tion number of 1, is this good or bad? Why?

1.15 When is an approximate solution to a
given problem considered to be good accord-
ing to backward error analysis?

1.16 For a given floating-point number sys-
tem, describe in words the distribution of ma-
chine numbers along the real line.

1.17 In floating-point arithmetic, which is
generally more harmful, underflow or over-
flow? Why?

1.18 In floating-point arithmetic, which of the
following operations on two positive floating-
point operands can produce an overflow?
(a) Addition
(b) Subtraction
(c) Multiplication
(d) Division

1.19 In floating-point arithmetic, which of the
following operations on two positive floating-
point operands can produce an underflow?
(a) Addition
(b) Subtraction
(c) Multiplication
(d) Division

1.20 List two reasons why floating-point num-
ber systems are usually normalized.

1.21 In a floating-point system, what quan-
tity determines the maximum relative error in
representing a given real number by a machine
number?

1.22 (a) Explain the difference between the
rounding rules “round toward zero” and
“round to nearest” in a floating-point system.
(b) Which of these two rounding rules is more
accurate?
(c) What quantitative difference does this
make in the unit roundoff εmach?

1.23 In a t-digit binary floating-point system
with rounding to nearest, what is the value of
the unit roundoff εmach?

1.24 In a floating-point system with gradual
underflow (subnormal numbers), is the repre-
sentation of each number still unique? Why?

1.25 In a floating-point system, is the product
of two machine numbers usually exactly repre-
sentable in the floating-point system? Why?

1.26 In a floating-point system, is the quo-
tient of two nonzero machine numbers always
exactly representable in the floating-point sys-
tem? Why?

1.27 (a) Give an example to show that
floating-point addition is not necessarily asso-
ciative.

(b) Give an example to show that floating-
point multiplication is not necessarily associa-
tive.

1.28 Give an example of a number whose dec-
imal representation is finite (i.e., it has only a
finite number of nonzero digits) but whose bi-
nary representation is not.

1.29 Give examples of floating-point arith-
metic operations that would produce each of
the exceptional values Inf and NaN.

1.30 Explain why the cancellation that occurs
when two numbers of similar magnitude are
subtracted is often bad even though the result
may be exactly correct for the actual operands
involved.

1.31 Assume a decimal (base 10) floating-
point system having machine precision
εmach = 10−5 and an exponent range of ±20.
What is the result of each of the following
floating-point arithmetic operations?

(a) 1 + 10−7

(b) 1 + 103

(c) 1 + 107

(d) 1010 + 103

(e) 1010/10−15

(f) 10−10 × 10−15

28 CHAPTER 1. SCIENTIFIC COMPUTING

1.32 In a floating-point number system hav-
ing an underflow level of UFL = 10−38, which
of the following computations will incur an un-
derflow?
(a) a =

√
b2 + c2, with b = 1, c = 10−25.

(b) a =
√
b2 + c2, with b = c = 10−25.

(c) u = (v × w)/(y × z), with v = 10−15,
w = 10−30, y = 10−20, and z = 10−25.
In each case where underflow occurs, is it rea-
sonable simply to set to zero the quantity that
underflows?

1.33 (a) Explain in words the difference be-
tween the unit roundoff, εmach, and the under-
flow level, UFL, in a floating-point system.
Of these two quantities,
(b) Which one depends only on the number of
digits in the mantissa field?
(c) Which one depends only on the number of
digits in the exponent field?
(d) Which one does not depend on the round-
ing rule used?
(e) Which one is not affected by allowing sub-
normal numbers?

1.34 Let xk be a monotonically decreasing, fi-
nite sequence of positive numbers (i.e., xk >
xk+1 for each k). Assuming it is practical to
take the numbers in any order we choose, in
what order should the sequence be summed to
minimize rounding error?

1.35 Is cancellation an example of rounding
error? Why?

1.36 (a) Explain why a divergent infinite se-
ries, such as

∞∑
n=1

1
n
,

can have a finite sum in floating-point arith-
metic.
(b) At what point will the partial sums cease
to change?

1.37 In floating-point arithmetic, if you are
computing the sum of a convergent infinite se-
ries

S =
∞∑
i=1

xi

of positive terms in the natural order, what
stopping criterion would you use to attain the
maximum possible accuracy using the smallest
number of terms?

1.38 Explain why an alternating infinite se-
ries, such as

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

for x < 0, is difficult to evaluate accurately in
floating-point arithmetic.

1.39 If f is a real-valued function of a real
variable, the truncation error of the finite dif-
ference approximation to the derivative

f ′(x) ≈ f(x+ h)− f(x)
h

goes to zero as h → 0. If we use floating-
point arithmetic, list two factors that limit
how small a value of h we can use in practice.

1.40 For computing the midpoint m of an in-
terval [x, y], which of the following two formu-
las is preferable in floating-point arithmetic?
Why?

(a) m = (x+ y)/2.0

(b) m = x+ (y − x)/2.0

1.41 List at least two ways in which evalua-
tion of the quadratic formula

x =
−b±

√
b2 − 4ac

2a

may suffer numerical difficulties in floating-
point arithmetic.

Exercises

1.1 The average normal human body tem-
perature is usually quoted as 98.6 degrees
Fahrenheit, which might be presumed to have
been determined by computing the average

over a large population and then rounding to
three significant digits. In fact, however, 98.6
is simply the Fahrenheit equivalent of 37 de-
grees Celsius, which is accurate to only two

EXERCISES 29

significant digits.
(a) What is the maximum relative error in
the accepted value, assuming it is accurate to
within ±0.05◦ F?
(b) What is the maximum relative error in
the accepted value, assuming it is accurate to
within ±0.5◦ C?

1.2 What are the approximate absolute and
relative errors in approximating π by each of
the following quantities?
(a) 3
(b) 3.14
(c) 22/7

1.3 If a is an approximate value for a quan-
tity whose true value is t, and a has relative er-
ror r, prove from the definitions of these terms
that a = t(1 + r).

1.4 Consider the problem of evaluating the
function sin(x), in particular, the propagated
data error, i.e., the error in the function value
due to a perturbation h in the argument x.
(a) Estimate the absolute error in evaluating
sin(x).
(b) Estimate the relative error in evaluating
sin(x).
(c) Estimate the condition number for this
problem.
(d) For what values of the argument x is this
problem highly sensitive?

1.5 Consider the function f :R2 → R de-
fined by f(x, y) = x − y. Measuring the size
of the input (x, y) by |x| + |y|, and assuming
that |x| + |y| ≈ 1 and x − y ≈ ε, show that
cond(f) ≈ 1/ε. What can you conclude about
the sensitivity of subtraction?

1.6 The sine function is given by the infinite
series

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

(a) What are the forward and backward errors
if we approximate the sine function by using
only the first term in the series, i.e., sin(x) ≈ x,
for x = 0.1, 0.5, and 1.0?
(b) What are the forward and backward er-
rors if we approximate the sine function by

using the first two terms in the series, i.e.,
sin(x) ≈ x− x3/6, for x = 0.1, 0.5, and 1.0?

1.7 A floating-point number system is char-
acterized by four integers: the base β, the pre-
cision t, and the lower and upper limits L and
U of the exponent range.
(a) If β = 10, what are the smallest values of t
and U , and largest value of L, such that both
2365.27 and 0.0000512 can be represented ex-
actly in a normalized floating-point system?
(b) How would your answer change if the sys-
tem is not normalized, i.e., if gradual under-
flow is allowed?

1.8 In a floating-point system with precision
t = 6 decimal digits, let x = 1.23456 and
y = 1.23579.
(a) How many significant digits does the dif-
ference y − x contain?
(b) If the floating-point system is normalized,
what is the minimum exponent range for which
x, y, and y − x are all exactly representable?
(c) Is the difference y−x exactly representable,
regardless of exponent range, if gradual under-
flow is allowed? Why?

1.9 (a) Using four-digit decimal arithmetic
and the formula given in Example 1.1, com-
pute the surface area of the Earth, with r =
6370 km.
(b) Using the same formula and precision,
compute the difference in surface area if the
value for the radius is increased by 1 km.
(c) Since dA/dr = 8πr, the change in sur-
face area is approximated by 8πrh, where h
is the change in radius. Use this formula, still
with four-digit arithmetic, to compute the dif-
ference in surface area due to an increase of
1 km in radius. How does the value obtained
using this approximate formula compare with
that obtained from the “exact” formula in part
b?
(d) Determine which of the previous two an-
swers is more nearly correct by repeating both
computations using higher precision, say, six-
digit decimal arithmetic.
(e) Explain the results you obtained in parts
a–d.
(f) Try this problem on a computer. How
small must the change h in radius be for the

30 CHAPTER 1. SCIENTIFIC COMPUTING

same phenomenon to occur? Try both single
precision and double precision, if available.

1.10 Consider the expression

1
1− x

− 1
1 + x

,

assuming x 6= ±1.

(a) For what range of values of x is it diffi-
cult to compute this expression accurately in
floating-point arithmetic?

(b) Give a rearrangement of the terms such
that, for the range of x in part a, the compu-
tation is more accurate in floating-point arith-
metic.

1.11 If x ≈ y, then we would expect some
cancellation in computing log(x)− log(y). On
the other hand, log(x)−log(y) = log(x/y), and
the latter involves no cancellation. Does this
mean that computing log(x/y) is likely to give
a better result? (Hint : For what value is the
log function sensitive?)

1.12 (a) Which of the two mathematically
equivalent expressions

x2 − y2 and (x− y)(x+ y)

can be evaluated more accurately in floating-
point arithmetic? Why?

(b) For what values of x and y, relative to each
other, is there a substantial difference in the
accuracy of the two expressions?

1.13 The Euclidean norm of an n-dimensional
vector x is defined by

‖x‖2 =

(
n∑
i=1

x2
i

)1/2

.

How would you avoid overflow and harmful un-
derflow in this computation?

1.14 Give specific examples to show that
floating-point addition is not associative in
each of the following floating-point systems:

(a) The toy floating-point system of Exam-
ple 1.5

(b) IEEE single-precision floating-point arith-
metic

1.15 Explain how the various definitions for
the unit roundoff εmach given in Section 1.3.5
can differ in practice. (Hint : Consider the toy
floating-point system of Example 1.5.)

1.16 Let x be a given nonzero floating-point
number in a normalized system, and let y be an
adjacent floating-point number, also nonzero.

(a) What is the minimum possible spacing be-
tween x and y?

(b) What is the maximum possible spacing be-
tween x and y?

1.17 How many normalized machine numbers
are there in a single-precision IEEE floating-
point system? How many additional machine
numbers are gained if subnormals are allowed?

1.18 In a single-precision IEEE floating-point
system, what are the values of the largest ma-
chine number, OFL, and the smallest posi-
tive normalized machine number, UFL? How
do your answers change if subnormals are al-
lowed?

1.19 What is the IEEE single-precision bi-
nary floating-point representation of the deci-
mal fraction 0.1

(a) with chopping?

(b) with rounding to nearest?

1.20 (a) In a floating-point system, is the unit
roundoff εmach necessarily a machine number?

(b) Is it possible to have a floating-point sys-
tem in which εmach < UFL? If so, give an
example.

1.21 Assume that you are solving the
quadratic equation ax2 + bx + c = 0, with
a = 1.22, b = 3.34, and c = 2.28, using a
normalized floating-point system with β = 10,
t = 3.

(a) What is the computed value of the discrim-
inant b2 − 4ac?

(b) What is the correct value of the discrimi-
nant in real (exact) arithmetic?

(c) What is the relative error in the computed
value of the discriminant?

COMPUTER PROBLEMS 31

1.22 Assume a normalized floating-point sys-
tem with β = 10, t = 3, and L = −98.
(a) What is the value of the underflow level
UFL for this system?
(b) If x = 6.87× 10−97 and y = 6.81× 10−97,
what is the result of x− y?
(c) What would be the result of x − y if the
system permitted gradual underflow?

1.23 Consider the following claim: if two
floating-point numbers x and y with the same
sign differ by a factor of at most the base β
(i.e., 1/β ≤ x/y ≤ β), then their difference,
x− y, is exactly representable in the floating-
point system. Show that this claim is true for
β = 2, but give a counterexample for β > 2.

1.24 Some microprocessors have an instruc-
tion mpyadd(a,b,c), for multiply-add, which

takes single-length inputs and adds c to the
double-length product of a and b before nor-
malizing and returning a single-length result.
How can such an instruction be used to com-
pute double-precision products without using
any double-length variables (i.e., the double-
length product of a and b will be contained in
two single-length variables, say, s and t)?

1.25 Verify that the alternative quadratic for-
mula given in Example 1.10 indeed gives the
correct roots to the quadratic equation (in ex-
act arithmetic).

1.26 Give a detailed explanation of the nu-
merical inferiority of the one-pass formula for
computing the standard deviation compared
with the two-pass formula given in Exam-
ple 1.12.

Computer Problems

1.1 Write a program to compute the abso-
lute and relative errors in Stirling’s approxi-
mation

n! ≈
√

2πn (n/e)n

for n = 1, . . . , 10. Does the absolute error grow
or shrink as n increases? Does the relative er-
ror grow or shrink as n increases?

1.2 Write a program to determine approxi-
mate values for the unit roundoff εmach and the
underflow level UFL, and test it on a real com-
puter. (Optional : Can you also determine the
overflow level OFL, on your machine? This is
trickier because an actual overflow may be fa-
tal.) Print the resulting values in decimal, and
also try to determine the number of bits in the
mantissa and exponent fields of the floating-
point system you use.

1.3 In most floating-point systems, a quick
approximation to the unit roundoff can be ob-
tained by evaluating the expression

εmach ≈ |3 ∗ (4/3− 1)− 1|.

(a) Explain why this trick works.

(b) Try it on a variety of computers (in both
single and double precision) and calculators to
confirm that it works.

(c) Would this trick work in a floating-point
system with base β = 3?

1.4 Write a program to compute the math-
ematical constant e, the base of natural loga-
rithms, from the definition

e = lim
n→∞

(1 + 1/n)n.

Specifically, compute (1 + 1/n)n for n = 10k,
k = 1, 2, . . . , 20. If the programming language
you use does not have an operator for exponen-
tiation, you may use the equivalent formula

(1 + 1/n)n = exp(n log(1 + 1/n)),

where exp and log are built-in functions. De-
termine the error in your successive approxi-
mations by comparing them with the value of
exp(1). Does the error always decrease as n
increases? Explain your results.

1.5 (a) Consider the function

f(x) = (ex − 1)/x.

Use l’Hôpital’s rule to show that

lim
x→0

f(x) = 1.

(b) Check this result empirically by writing
a program to compute f(x) for x = 10−k,

32 CHAPTER 1. SCIENTIFIC COMPUTING

k = 1, . . . , 16. Do your results agree with the-
oretical expectations? Explain why.

(c) Perform the experiment in part b again,
this time using the mathematically equivalent
formulation

f(x) = (ex − 1)/ log(ex),

evaluated as indicated, with no simplification.
If this works any better, can you explain why?

1.6 Suppose you need to generate n + 1
equally spaced points on the interval [a, b],
with spacing h = (b− a)/n.

(a) In floating-point arithmetic, which of the
following methods,

x0 = a, xk = xk−1 + h, k = 1, . . . , n

or
xk = a+ kh, k = 0, . . . , n,

is better, and why?

(b) Write a program implementing both meth-
ods and find an example, say, with a = 0 and
b = 1, that illustrates the difference between
them.

1.7 (a) Write a program to compute an ap-
proximate value for the derivative of a function
using the finite-difference formula

f ′(x) ≈ f(x+ h)− f(x)
h

.

Test your program using the function sin(x)
for x = 1. Determine the error by compar-
ing with the built-in function cos(x). Plot the
magnitude of the error as a function of h, for
h = 1

2 ,
1
4 ,

1
8 , You should use a log scale

for h and for the magnitude of the error. Is
there a minimum value for the magnitude of
the error? How does the corresponding value
for h compare with the rule of thumb

h ≈ √εmach · |x| ?

(b) Repeat the exercise using the centered dif-
ference approximation

f ′(x) ≈ f(x+ h)− f(x− h)
2h

.

1.8 Consider the infinite series
∞∑
n=1

1
n
.

(a) Prove that the series is divergent. (Hint :
Group the terms in sets containing terms
1/(2k−1 + 1) down to 1/2k, for k = 1, 2,)
(b) Explain why summing the series in
floating-point arithmetic yields a finite sum.
(c) Try to predict when the partial sum will
cease to change in both IEEE single-precision
and double-precision floating-point arithmetic.
Given the execution rate of your computer for
floating-point operations, try to predict how
long each computation would take to complete.
(d) Write two programs to compute the sum of
the series, one in single precision and the other
in double precision. Monitor the progress of
the summation by printing out the index and
partial sum periodically. What stopping cri-
terion should you use? What result is actu-
ally produced on your computer? Compare
your results with your predictions, including
the execution time required. (Caution: Your
single-precision version should terminate fairly
quickly, but your double-precision version may
take much longer, so it may not be practical
to run it to completion, even if your computer
budget is generous.)

1.9 (a) Write a program to compute the ex-
ponential function ex using the infinite series

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · .

(b) Summing in the natural order, what stop-
ping criterion should you use?
(c) Test your program for

x = ±1,±5,±10,±15,±20,

and compare your results with the built-in
function exp(x).
(d) Can you use the series in this form to get
accurate results for x < 0? (Hint : e−x =
1/ex.)
(e) Can you rearrange the series or regroup the
terms in any way to get more accurate results
for x < 0?

COMPUTER PROBLEMS 33

1.10 Write a program to solve the quadratic
equation ax2 + bx + c = 0 using the standard
quadratic formula

x =
−b±

√
b2 − 4ac

2a

or the alternative formula

x =
2c

−b∓
√
b2 − 4ac

.

Your program should accept values for the co-
efficients a, b, and c as input and produce the
two roots of the equation as output. Your pro-
gram should detect when the roots are imagi-
nary, but need not use complex arithmetic ex-
plicitly. You should guard against unnecessary
overflow, underflow, and cancellation. When
should you use each of the two formulas? Try
to make your program robust when given un-
usual input values. Any root that is within
the range of the floating-point system should
be computed accurately, even if the other is
out of range. Test your program using the fol-
lowing values for the coefficients:

a b c
6 5 −4

6× 1030 5× 1030 −4× 1030

0 1 1
1 −105 1
1 −4 3.999999

10−30 −1030 1030

1.11 A cubic equation

ax3 + bx2 + cx+ d = 0,

where the coefficients are real and a 6= 0, has
at least one real root, which can be computed
in closed form as follows. Make the substitu-
tion y = x+b/(3a). Then the original equation
becomes

y3 + 3py + q = 0,

where

p =
3ac− b2

9a2

and

q =
27a2d− 9abc+ 2b3

27a3
.

If we now take

α =
−q +

√
4p3 + q2

2

and

β =
−q −

√
4p3 + q2

2
,

then one real root of the original cubic equa-
tion is given by

x = 3
√
α− 3

√
β.

Write a routine using this method in real arith-
metic to compute one real root of an arbitrary
cubic equation given its (real) coefficients. Try
to make your routine as robust as possible,
guarding against unnecessary overflow, under-
flow, and cancellation. What should your rou-
tine do if a = 0? Test your routine for various
values of the coefficients, analogous to those
used in the previous exercise.

1.12 (a) Write a program to compute the
mean x̄ and standard deviation σ of a finite
sequence xi. Your program should accept a
vector x of dimension n as input and produce
the mean and standard deviation of the se-
quence as output. For the standard deviation,
try both the two-pass formula

σ =

[
1

n− 1

n∑
i=1

(xi − x̄)2

]1/2

and the one-pass formula

σ =

[
1

n− 1

(
n∑
i=1

x2
i − nx̄2

)]1/2

and compare the results for an input sequence
of your choice.

(b) Can you devise an input data sequence that
dramatically illustrates the numerical differ-
ence between these two mathematically equiv-
alent formulas? (Caution: Beware of taking
the square root of a negative number.)

1.13 If an amount a is invested at interest rate
r compounded n times per year, then the final
value f at the end of one year is given by

f = a(1 + r/n)n.

This is the familiar formula for compound in-
terest . With simple interest, n = 1. Typically,

34 CHAPTER 1. SCIENTIFIC COMPUTING

compounding is done quarterly, n = 4, or per-
haps even daily, n = 365. Obviously, the more
frequent the compounding, the greater the fi-
nal amount, because more interest is paid on
previous interest. But how much difference
does this frequency actually make? Write a
program that implements the compound in-
terest formula. Test your program using an
initial investment of a = 100, an interest rate
of 5 percent (i.e., r = 0.05), and the following
values for n: 1, 4, 12, 365, 10,000, and 20,000.
Implement the compound interest formula in
two different ways:
(a) If the programming language you use does
not have an operator for exponentiation (e.g.,
C), then you might implement the compound
interest formula using a loop that repeatedly
multiplies a by (1+r/n) for a total of n times.
Even if your programming language does have
an operator for exponentiation (e.g., Fortran),
try implementing the compound interest for-
mula using such a loop and print your results
for the input values. Does the final amount al-
ways grow with the frequency of compounding,
as it should? Can you explain this behavior?
(b) With the functions exp(x) and log(x), the
compound interest formula can also be written

f = a exp(n log(1 + r/n)).

Implement this formula using the correspond-
ing built-in functions and compare your results
with those for the first implementation using
the loop, for the same input values.

1.14 The polynomial (x − 1)6 has the value
zero at x = 1 and is positive elsewhere. The
expanded form of the polynomial, x6 − 6x5 +
15x4−20x3 +15x2−6x+1, is mathematically
equivalent but may not give the same results
numerically. Compute and plot the values of
this polynomial, using each of the two forms,
for 101 equally spaced points in the interval
[0.995, 1.005], i.e., with a spacing of 0.0001.
Your plot should be scaled so that the values
for x and for the polynomial use the full ranges
of their respective axes. Can you explain this
behavior?

1.15 Write a program that sums n random,
single-precision floating-point numbers xi, uni-
formly distributed on the interval [0, 1] (see

Table 13.1 for an appropriate random num-
ber generator). Sum the numbers in each of
the following ways (use only single-precision
floating-point variables unless specifically in-
dicated otherwise):
(a) Sum the numbers in the order in which
they were generated, using a double-precision
variable in which to accumulate the sum.
(b) Sum the numbers in the order in which
they were generated, this time using a single-
precision accumulator.
(c) Use the following algorithm (due to Ka-
han), again using only single precision, to sum
the numbers in the order in which they were
generated:

s = x1

c = 0
for i = 2 to n

y = xi − c
t = s+ y
c = (t− s)− y
s = t

end

(d) Sum the numbers in order of increasing
magnitude (this will require that the numbers
be sorted before summing, for which you may
use a library sorting routine).
(e) Sum the numbers in order of decreasing
magnitude (i.e., reverse the order of summa-
tion from part d).
Run your program for various values of n and
compare the results for methods a through e.
You may need to use a fairly large value for
n to see a substantial difference. How do the
methods rank in terms of accuracy, and why?
How do the methods compare in cost? Can
you explain why the algorithm in part c works?

1.16 Write a program to generate the first n
terms in the sequence given by the difference
equation

xk+1 = 2.25xk − 0.5xk−1,

with starting values

x1 =
1
3

and x2 =
1
12
.

Use n = 225 if you are working in single pre-
cision, n = 60 if you are working in double

COMPUTER PROBLEMS 35

precision. Make a semilog plot of the values
you obtain as a function of k. The exact solu-
tion of the difference equation is given by

xk =
41−k

3
,

which decreases monotonically as k increases.
Does your graph confirm this theoretically ex-
pected behavior? Can you explain your re-
sults? (Hint : Find the general solution to the
difference equation.)

1.17 Write a program to generate the first n
terms in the sequence given by the difference
equation:

xk+1 = 111− (1130− 3000/xk−1)/xk,

with starting values

x1 =
11
2

and x2 =
61
11
.

Use n = 10 if you are working in single pre-
cision, n = 20 if you are working in double

precision. The exact solution is a monotoni-
cally increasing sequence converging to 6. Can
you explain your results?

1.18 The Euclidean norm of an n-dimensional
vector x is defined by

‖x‖2 =

(
n∑
i=1

x2
i

)1/2

.

Implement a robust routine for computing this
quantity for any given input vector x. Your
routine should avoid overflow and harmful un-
derflow. Compare both the accuracy and per-
formance of your robust routine with a more
straightforward naive implementation. Can
you devise a vector that produces significantly
different results from the two routines? How
much performance does the robust routine sac-
rifice?

36 CHAPTER 1. SCIENTIFIC COMPUTING

Chapter 2

Systems of Linear Equations

2.1 Linear Systems

Systems of linear algebraic equations arise in almost every aspect of applied mathematics
and scientific computation. Such systems often occur naturally, but they are also frequently
the result of approximating nonlinear equations by linear equations or differential equations
by algebraic equations. We will see many examples of such approximations throughout
this book. For these reasons, the efficient and accurate solution of linear systems forms the
cornerstone of many numerical methods for solving a wide variety of practical computational
problems.

In matrix-vector notation, a system of linear algebraic equations has the form

Ax = b,

where A is an m×n matrix, b is a given m-vector, and x is the unknown solution n-vector
to be determined. Such a system of equations asks the question, “Can the vector b be
expressed as a linear combination of the columns of the matrix A?” If so, the coefficients
of this linear combination are given by the components of the solution vector x. There may
or may not be a solution; and if there is a solution, it may or may not be unique. In this
chapter we will consider only square systems, which means that m = n, i.e., the matrix has
the same number of rows and columns. In later chapters we will consider systems where
m 6= n.

2.1.1 Singularity and Nonsingularity

An n × n matrix A is said to be singular if it has any one of the following equivalent
properties:

1. A has no inverse (i.e, there is no matrix M such that AM = MA = I, the identity
matrix).

2. det(A) = 0.

37

38 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

3. rank(A) < n (the rank of a matrix is the maximum number of linearly independent rows
or columns it contains).

4. Az = o for some vector z 6= o.

Otherwise, the matrix is nonsingular . The solvability of a system of linear equationsAx = b
is determined by whether the matrix A is singular or nonsingular. If the matrix A is
nonsingular, then its inverse, denoted by A−1, exists, and the system Ax = b always has a
unique solution x = A−1b regardless of the value for b. If, on the other hand, the matrix
A is singular, then the number of solutions is determined by the right-hand-side vector b:
for a given value of b there may be no solution, but if there is a solution x, so that Ax = b,
then we also have A(x+ γz) = b for any scalar γ, where the vector z is as in the foregoing
definition. Thus, if a singular system has a solution, then the solution cannot be unique. To
summarize the possibilities, for a given matrix A and right-hand-side vector b, the system
may have

One solution: nonsingular
No solution: singular

Infinitely many solutions: singular

In two dimensions, each linear equation determines a straight line in the plane. The
solution of the system is the intersection point of the two lines. If the two straight lines are
not parallel, then they have a unique intersection point (the nonsingular case). If the two
straight lines are parallel, then either they do not intersect at all (there is no solution) or
the two lines are the same (any point along the line is a solution). In higher dimensions,
each equation determines a hyperplane. In the nonsingular case, the unique solution is the
intersection point of all of the hyperplanes.

Example 2.1 Singularity and Nonsingularity. The 2× 2 system

2x1 + 3x2 = b1,

5x1 + 4x2 = b2,

or in matrix-vector notation [
2 3
5 4

] [
x1

x2

]
=
[
b1
b2

]
,

is nonsingular regardless of the value of b. If b = [8 13]T , for example, then the unique
solution is x = [1 2]T .

The 2× 2 system [
2 3
4 6

] [
x1

x2

]
=
[
b1
b2

]
is singular regardless of the value of b. With b = [4 7]T , there is no solution. With
b = [4 8]T , then

x =
[

γ
(4− 2γ)/3

]
is a solution for any real number γ.

2.2. SOLVING LINEAR SYSTEMS 39

2.2 Solving Linear Systems

To solve a linear system, the general strategy outlined in Section 1.1.1 suggests that we
should transform the system into one whose solution is the same as that of the original
system but is easier to compute. What type of transformation of a linear system leaves the
solution unchanged? The answer is that we can premultiply (i.e., multiply from the left)
both sides of the linear system Ax = b by any nonsingular matrix M without affecting the
solution. To see why this is so, note that the solution to the linear system MAx = Mb is
given by

x = (MA)−1Mb = A−1M−1Mb = A−1b.

Example 2.2 Permutations. An important example of such a transformation is the
fact that the rows of A and corresponding entries of b can be reordered without changing
the solution x. This is intuitively obvious: all of the equations in the system must be
satisfied simultaneously in any case, so the order in which they happen to be written down
is irrelevant; they may as well have been drawn randomly from a hat. Formally, such a
reordering of the rows is accomplished by premultiplying both sides of the equation by a
permutation matrix P , which is a square matrix having exactly one 1 in each row and
column and zeros elsewhere (i.e., an identity matrix with its rows and columns permuted).
For example, 0 0 1

1 0 0
0 1 0

 b1b2
b3

 =

 b3b1
b2

 .
A permutation matrix is always nonsingular; in fact, its inverse is simply its transpose,
P−1 = P T (the transpose of a matrix M , denoted by MT , is a matrix whose columns are
the rows of M , that is, if N = MT , then nij = mji). Thus, the reordered system can be
written PAx = Pb, and the solution x is unchanged.

Postmultiplying (i.e., multiplying from the right) by a permutation matrix reorders the
columns of the matrix instead of the rows. Such a transformation does change the solution,
but only in that the components of the solution are permuted. To see this, observe that the
solution to the system APx = b is given by

x = (AP)−1b = P−1A−1b = P T (A−1b).

Example 2.3 Diagonal Scaling. Another simple but important type of transformation
is diagonal scaling . Recall that a matrix D is diagonal if dij = 0 for all i 6= j, that is, the
only nonzero entries are dii, i = 1, . . . , n, on the main diagonal . Premultiplying both sides
of a linear system Ax = b by a nonsingular diagonal matrix D multiplies each row of the
matrix and right-hand side by the corresponding diagonal entry of D, and hence is called
row scaling . In principle, row scaling does not change the solution to the linear system,
but in practice it can affect the numerical solution process and the accuracy that can be
attained for a given problem, as we will see.

40 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

Column scaling—postmultiplying the matrix of a linear system by a nonsingular diagonal
matrix D—multiplies each column of the matrix by the corresponding diagonal entry of
D. Such a transformation does alter the solution, in effect changing the units in which the
components of the solution are measured. The solution to the scaled system ADx = b is
given by

x = (AD)−1b = D−1A−1b,

and hence the solution to the original system is given by D.

2.2.1 Triangular Linear Systems

The next question is what type of linear system is easy to solve. Suppose there is an equation
in the system Ax = b that involves only one of the unknown solution components (i.e., only
one entry in that row ofA is nonzero). Then that equation can easily be solved (by division)
for that unknown. Now suppose there is another equation in the system that involves only
two unknowns, one of which is the one already determined. By substituting the one solution
component already determined into this second equation, we can then easily solve for its
other unknown. If this pattern continues, with only one new unknown component arising
per equation, then all of the solution components can be computed in succession. A matrix
with this special property is called triangular , for reasons that will soon become apparent.
Because triangular linear systems are easily solved by this successive substitution process,
they are a suitable target in transforming a general linear system.

Although the general triangular form just described is all that is required to enable
the system to be solved by successive substitution, it is convenient to define two specific
triangular forms for computational purposes. A matrix A is upper triangular if all of its
entries below the main diagonal are zero (i.e., if aij = 0 for i > j). Similarly, a matrix is
lower triangular if all of its entries above the main diagonal are zero (i.e., if aij = 0 for
i < j). For an upper triangular system Ax = b, the successive substitution process is called
back-substitution and can be expressed as follows:

xn = bn/ann,

xi =

bi − n∑
j=i+1

aijxj

 /aii, i = n− 1, . . . , 1.

Similarly, for a lower triangular system Ax = b, the successive substitution process is called
forward-substitution and can be expressed as follows:

x1 = b1/a11,

xi =

bi − i−1∑
j=1

aijxj

 /aii, i = 2, . . . , n.

A matrix that is triangular in the more general sense defined earlier can be permuted into
upper or lower triangular form by a suitable permutation of its rows or columns.

2.2. SOLVING LINEAR SYSTEMS 41

Example 2.4 Triangular Linear System. Consider the upper triangular linear system 2 4 −2
0 1 1
0 0 4

x1

x2

x3

 =

 2
4
8

 .
The last equation, 4x3 = 8, can be solved directly for x3 = 2. This value can then be
substituted into the second equation to obtain x2 = 2, and finally both x3 and x2 are
substituted into the first equation to obtain x1 = −1.

2.2.2 Elementary Elimination Matrices

Our strategy then is to devise a nonsingular linear transformation that transforms a given
general linear system into a triangular linear system that we can then solve easily by suc-
cessive substitution. Thus, we need a transformation that replaces selected nonzero entries
of the given matrix with zeros. This can be accomplished by taking appropriate linear
combinations of the rows of the matrix, as we will now show.

Consider the 2-vector a = [a1 a2]T . If a1 6= 0, then[
1 0

−a2/a1 1

] [
a1

a2

]
=
[
a1

0

]
.

More generally, given an n-vector a, we can annihilate all of its entries below the kth
position, provided that ak 6= 0, by the following transformation:

Mk a =

1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · −mk+1 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −mn 0 · · · 1

a1
...
ak
ak+1

...
an

=

a1
...
ak
0
...
0

,

where mi = ai/ak, i = k + 1, . . . , n. The divisor ak is called the pivot . A matrix of this
form is sometimes called an elementary elimination matrix or Gauss transformation, and its
effect on a vector is to add a multiple of row k to each subsequent row, with the multipliers
mi chosen so that the result in each case is zero. Note the following about these elementary
elimination matrices:

1. Mk is a lower triangular matrix with unit main diagonal, and hence it must be nonsin-
gular.

2. Mk = I −meTk , where m = [0, . . . , 0,mk+1, . . . ,mn]T and ek is the kth column of the
identity matrix.

3. M−1
k = I +meTk , which means that M−1

k , which we will denote by Lk, is the same as
Mk except that the signs of the multipliers are reversed.

42 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

4. If Mj , j > k, is another elementary elimination matrix, with vector of multipliers t,
then

MkMj = I −meTk − teTj +meTk te
T
j = I −meTk − teTj ,

since eTk t = o. Thus, their product is essentially their “union.” Because they have the
same form, a similar result holds for the product of their inverses, LkLj . Note that the
order of multiplication is significant; these results do not hold for the reverse product.

Example 2.5 Elementary Elimination Matrices. If a = [2 4 −2]T , then

M1a =

 1 0 0
−2 1 0

1 0 1

 2
4
−2

 =

 2
0
0

 , and M2a =

 1 0 0
0 1 0
0 1

2 1

 2
4
−2

 =

 2
4
0

 .
We also note that

L1 = M−1
1 =

 1 0 0
2 1 0
−1 0 1

 , L2 = M−1
2 =

 1 0 0
0 1 0
0 −1

2 1

 ,
and

M1M2 =

 1 0 0
−2 1 0

1 1
2 1

 , L1L2 =

 1 0 0
2 1 0
−1 −1

2 1

 .

2.2.3 Gaussian Elimination and LU Factorization

With elementary elimination matrices, it is a fairly simple matter to reduce a general linear
system Ax = b to upper triangular form. We first choose an elementary elimination matrix
M1 according to the recipe given in Section 2.2.2, with the first diagonal entry a11 as pivot,
so that, when premultiplied by M1, the first column of A becomes zero below the first row.
Of course, all of the remaining columns of A, as well as the right-hand-side vector b, are
also multiplied by M1, so the new system becomes M1Ax = M1b, but by our previous
discussion the solution is unchanged.

Next we use the second diagonal entry as pivot to determine a second elementary
elimination matrix M2 that annihilates all of the entries of the second column of the
new matrix, M1A, below the second row. Again, M2 must be applied to the entire
matrix and right-hand-side vector, so that we obtain the further modified linear system
M2M1Ax = M2M1b. Note that the first column of the matrix M1A is not affected by
M2 because all of its entries are zero in the relevant rows. This process is continued for each
successive column until all of the subdiagonal entries of the matrix have been annihilated,
so that the linear system

MAx = Mn−1 · · ·M1Ax = Mn−1 · · ·M1b = Mb

is upper triangular and can be solved by back-substitution to obtain the solution to the
original linear system Ax = b.

2.2. SOLVING LINEAR SYSTEMS 43

The process we have just described is known as Gaussian elimination. It is also known
as LU factorization or LU decomposition because it decomposes the matrixA into a product
of a unit lower triangular matrix, L, and an upper triangular matrix, U . To see this, recall
that the product LkLj is unit lower triangular if k < j, so that

L = M−1 = (Mn−1 · · ·M1)−1 = M−1
1 · · ·M−1

n−1 = L1 · · ·Ln−1

is unit lower triangular. We have already seen that, by design, the matrix U = MA is
upper triangular. Therefore, we have expressed A as a product

A = LU ,

where L is unit lower triangular and U is upper triangular. Given such a factorization,
the linear system Ax = b can then be written as LUx = b and hence can be solved by
first solving the lower triangular system Ly = b by forward-substitution, then the upper
triangular system Ux = y by back-substitution. Note that the intermediate solution y
is the same as the transformed right-hand-side vector, Mb, in the previous formulation.
Thus, Gaussian elimination and LU factorization are simply two ways of expressing the
same solution process.

Example 2.6 Gaussian Elimination. We illustrate Gaussian elimination by solving the
linear system

2x1 + 4x2 − 2x3 = 2,
4x1 + 9x2 − 3x3 = 8,
−2x1 − 3x2 + 7x3 = 10,

or in matrix notation

Ax =

 2 4 −2
4 9 −3
−2 −3 7

x1

x2

x3

 =

 2
8

10

 = b.

To annihilate the subdiagonal entries of the first column of A, we subtract two times the
first row from the second row, and add the first row to the third row:

M1A =

 1 0 0
−2 1 0

1 0 1

 2 4 −2
4 9 −3
−2 −3 7

 =

 2 4 −2
0 1 1
0 1 5

 ,
M1b =

 1 0 0
−2 1 0

1 0 1

 2
8

10

 =

 2
4

12

 .
Now to annihilate the subdiagonal entry of the second column of M1A, we subtract the
second row from the third row:

M2M1A =

 1 0 0
0 1 0
0 −1 1

 2 4 −2
0 1 1
0 1 5

 =

 2 4 −2
0 1 1
0 0 4

 ,

44 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

M2M1b =

 1 0 0
0 1 0
0 −1 1

 2
4

12

 =

 2
4
8

 .
We have therefore reduced the original system to the equivalent upper triangular system 2 4 −2

0 1 1
0 0 4

x1

x2

x3

 =

 2
4
8

 ,
which can now be solved by back-substitution (as in Example 2.4) to obtain x = [−1 2 2]T .
To write out the LU factorization explicitly, we have

L = L1L2 =

 1 0 0
2 1 0
−1 0 1

 1 0 0
0 1 0
0 1 1

 =

 1 0 0
2 1 0
−1 1 1

 ,
so that

A =

 2 4 −2
4 9 −3
−2 −3 7

 =

 1 0 0
2 1 0
−1 1 1

 2 4 −2
0 1 1
0 0 4

 = LU .

2.2.4 Pivoting

There is one obvious problem with the Gaussian elimination process as we have described it,
as well as another, somewhat more subtle, problem. The obvious potential difficulty is that
the process breaks down if the leading diagonal entry of the remaining unreduced portion
of the matrix is zero at any stage, as computing the multipliers mi for a given column
requires division by the diagonal entry in that column. The solution to this problem is
almost equally obvious: if the diagonal entry is zero at stage k, then interchange row k of
the system with some subsequent row whose entry in column k is nonzero. As we know
from Example 2.2, such an interchange does not alter the solution to the system. With a
nonzero diagonal entry as pivot, the process can then proceed as usual.

But what if there is no nonzero entry on or below the diagonal in column k? Then there
is nothing to do at this stage, since all the entries to be annihilated are already zero, and
we can simply move on to the next column (i.e., Mk = I). Note that this step leaves a
zero on the diagonal, and hence the resulting upper triangular matrix U is singular, but
the LU factorization can still be completed. It does mean, however, that the subsequent
back-substitution process will fail, since it requires a division by each diagonal entry of U ,
but this is not surprising because the original matrix must have been singular anyway. A
more insidious problem is that in floating-point arithmetic we may not get an exact zero,
but only a very small diagonal entry, which brings us to the more subtle point.

In principle, any nonzero value will do as the pivot for computing the multipliers, but in
practice the choice should be made with some care to minimize error. When the remaining
portion of the matrix is multiplied by the resulting elementary elimination matrix, we
should try to limit the growth of the entries of the transformed matrix in order not to

2.2. SOLVING LINEAR SYSTEMS 45

amplify rounding errors. For this reason, it is desirable for the multipliers not to exceed 1
in magnitude. This requirement can be met by choosing the entry of largest magnitude on
or below the diagonal as pivot. Such a policy is called partial pivoting , and it is essential in
practice for a numerically stable implementation of Gaussian elimination for general linear
systems.

The row interchanges required by partial pivoting slightly complicate the formal descrip-
tion of LU factorization given earlier. In particular, each elementary elimination matrix Mk

is preceded by a permutation matrix Pk that interchanges rows to bring the entry of largest
magnitude into the diagonal pivot position. We still have MA = U , where U is upper
triangular, but now

M = Mn−1Pn−1 · · ·M1P1.

M−1 is still triangular in the general sense defined earlier, but because of the permutations,
M−1 is not necessarily lower triangular, though we still denote it by L. Thus, “LU”
factorization no longer literally means “lower times upper” triangular, but it is still equally
useful for solving linear systems by successive substitution.

We note that the permutation matrix

P = Pn−1 · · ·P1

permutes the rows of A into the order determined by partial pivoting. An alternative
interpretation, therefore, is to think of partial pivoting as a way of determining a row
ordering for the system under which no pivoting would be required for numerical stability.
Thus, we obtain the factorization

PA = LU ,

where now L really is lower triangular. To solve the linear system Ax = b, we first solve
the lower triangular system Ly = Pb by forward-substitution, then the upper triangular
system Ux = y by back-substitution.

The name “partial” pivoting comes from the fact that only the current column is
searched for a suitable pivot. A more exhaustive pivoting strategy is complete pivoting ,
in which the entire remaining unreduced submatrix is searched for the largest entry, which
is then permuted into the diagonal pivot position. Note that this requires interchanging
columns as well as rows, and hence it leads to a factorization of the form

PAQ = LU ,

where L is unit lower triangular, U is upper triangular, and P and Q are permutation
matrices that reorder the rows and columns, respectively, of A. To solve the linear system
Ax = b, we first solve the lower triangular system Ly = Pb by forward-substitution,
then the upper triangular system Uz = y by back-substitution, and finally we permute
the solution components to obtain x = Qz. Although the numerical stability of complete
pivoting is theoretically superior, it requires a much more expensive pivot search than
partial pivoting. Because the numerical stability of partial pivoting is more than adequate
in practice, it is almost universally used in solving linear systems by Gaussian elimination.

Since pivot selection depends on the magnitudes of individual matrix entries, the par-
ticular choice obviously depends on the scaling of the matrix. A diagonal scaling of the

46 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

matrix (recall Example 2.3) may result in a different sequence of pivots. For example, any
nonzero entry in a given column can be made the largest in magnitude simply by giving that
row a sufficiently heavy weighting. This does not mean that an arbitrary pivot sequence
is acceptable, however: a badly skewed scaling can result in an inherently sensitive system
and a correspondingly inaccurate solution. A well-formulated problem should have appro-
priately commensurate units for measuring the unknown variables (column scaling), and a
weighting of the individual equations that properly reflects their relative importance (row
scaling). It should also account for the relative accuracy of the input data. Under these
circumstances, the pivoting procedure will usually produce a solution that is as accurate as
the problem warrants (see Section 2.4).

Example 2.7 Pivoting. Here are some examples to illustrate the necessity of pivoting,
both in theory and practice, for a stable implementation of Gaussian elimination. We first
observe that the need for pivoting has nothing to do with whether the matrix is singular or
nearly singular. For example, the matrix

A =
[

0 1
1 0

]
is nonsingular yet has no LU factorization unless we interchange rows, whereas the singular
matrix

A =
[

1 1
1 1

]
does have an LU factorization.

In practice, using finite-precision arithmetic, we must avoid not only zero pivots but
also small pivots in order to prevent unacceptable error growth, as shown in the following
example. Let

A =
[
ε 1
1 1

]
,

where ε is a positive number smaller than the unit roundoff εmach in a given floating-point
system. If we do not interchange rows, then the pivot is ε and the resulting multiplier is
−1/ε, so that we get the elimination matrix

M =
[

1 0
−1/ε 1

]
,

and hence

L =
[

1 0
1/ε 1

]
and U =

[
ε 1
0 1− 1/ε

]
=
[
ε 1
0 −1/ε

]
in floating-point arithmetic. But then

LU =
[

1 0
1/ε 1

] [
ε 1
0 −1/ε

]
=
[
ε 1
1 0

]
6= A.

Using a small pivot, and a correspondingly large multiplier, has caused an unrecoverable
loss of information in the transformed matrix. If we interchange rows, on the other hand,
then the pivot is 1 and the resulting multiplier is −ε, so that we get the elimination matrix

M =
[

1 0
−ε 1

]
,

2.2. SOLVING LINEAR SYSTEMS 47

and hence

L =
[

1 0
ε 1

]
and U =

[
1 1
0 1− ε

]
=
[

1 1
0 1

]
in floating-point arithmetic. We therefore have

LU =
[

1 0
ε 1

] [
1 1
0 1

]
=
[

1 1
ε 1

]
,

which is the correct result after permutation.
Although the foregoing example is rather extreme, the principle holds in general that

larger pivots produce smaller multipliers and hence smaller errors. In particular, if the
largest entry on or below the diagonal in each column is used as pivot (partial pivoting),
then the multipliers are bounded in magnitude by 1. In Example 2.6, we did not use row
interchanges, and some of the multipliers were greater than 1. For illustration, we now
repeat that example, this time using partial pivoting. The system in Example 2.6 is 2 4 −2

4 9 −3
−2 −3 7

x1

x2

x3

 =

 2
8

10

 .
The largest entry in the first column is 4, so we interchange the first two rows using the
permutation matrix

P1 =

 0 1 0
1 0 0
0 0 1

 ,
obtaining the permuted system

P1Ax =

 4 9 −3
2 4 −2
−2 −3 7

x1

x2

x3

 =

 8
2

10

 = P1b.

To annihilate the subdiagonal entries of the first column, we use the elimination matrix

M1 =

 1 0 0
−1

2 1 0
1
2 0 1

 ,
obtaining the transformed system

M1P1Ax =

 4 9 −3
0 −1

2 −1
2

0 3
2

11
2

x1

x2

x3

 =

 8
−2
14

 = M1P1b.

The largest entry in the second column on or below the diagonal is 3
2 , so we interchange

the last two rows using the permutation matrix

P2 =

 1 0 0
0 0 1
0 1 0

 ,

48 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

obtaining the permuted system

P2M1P1Ax =

 4 9 −3
0 3

2
11
2

0 −1
2 −1

2

x1

x2

x3

 =

 8
14
−2

 = P2M1P1b.

To annihilate the subdiagonal entry of the second column, we use the elimination matrix

M2 =

 1 0 0
0 1 0
0 1

3 1

 ,
obtaining the transformed system

M2P2M1P1Ax =

 4 9 −3
0 3

2
11
2

0 0 4
3

x1

x2

x3

 =

 8
14

8
3

 = M2P2M1P1b.

We have therefore reduced the original system to an equivalent upper triangular system,
which can now be solved by back-substitution to obtain the same answer as before.

To write out the LU factorization explicitly, we have

L = M−1 = (M2P2M1P1)−1 = P T
1 L1P

T
2 L2 = 0 1 0

1 0 0
0 0 1

 1 0 0
1
2 1 0
−1

2 0 1

 1 0 0
0 0 1
0 1 0

 1 0 0
0 1 0
0 −1

3 1

 =

 1
2 −1

3 1
1 0 0
−1

2 1 0

 ,
and hence

A =

 2 4 −2
4 9 −3
−2 −3 7

 =

 1
2 −1

3 1
1 0 0
−1

2 1 0

 4 9 −3
0 3

2
11
2

0 0 4
3

 = LU .

Note that L is not lower triangular, but it is triangular in the more general sense (it is a
permutation of a lower triangular matrix). Alternatively, we can take

P = P2P1 =

 1 0 0
0 0 1
0 1 0

 0 1 0
1 0 0
0 0 1

 =

 0 1 0
0 0 1
1 0 0

 ,
and

L =

 1 0 0
−1

2 1 0
1
2 −1

3 1

 ,
so that

PA =

 0 1 0
0 0 1
1 0 0

 2 4 −2
4 9 −3
−2 −3 7

 =

 1 0 0
−1

2 1 0
1
2 −1

3 1

 4 9 −3
0 3

2
11
2

0 0 4
3

 = LU ,

2.2. SOLVING LINEAR SYSTEMS 49

where L now really is lower triangular but A is permuted.

As we have just seen, pivoting is generally required for Gaussian elimination to be stable.
There are some classes of matrices, however, for which Gaussian elimination is stable without
pivoting. For example, if the matrix A is diagonally dominant by columns, which means
that each diagonal entry is larger in magnitude than the sum of the magnitudes of the other
entries in its column,

n∑
i=1, i 6=j

|aij | < |ajj |, j = 1, . . . , n,

then pivoting is not required in computing its LU factorization by Gaussian elimination.
If partial pivoting is used on such a matrix, then no row interchanges will actually occur.
Another important class for which pivoting is not required is matrices that are symmetric
and positive definite, which will be defined in Section 2.5. Avoiding an unnecessary pivot
search can save a significant amount of time in computing the factorization.

2.2.5 Implementation of Gaussian Elimination

Gaussian elimination, or LU factorization, has the general form of a triple-nested loop,

for
for

for
aij = aij − (aik/akk)akj

end
end

end

where the indices i, j, and k of the for loops can be taken in any order, for a total of 3! = 6
different ways of arranging the loops. Some of the indicated arithmetic operations can be
moved outside the innermost loop for greater efficiency, depending on the specific indices
involved, and additional reorderings of the operations that do not have strictly nested
loops are also possible. These variations of the basic algorithm have different memory
access patterns (e.g., accessing memory row-wise or column-wise), and also differ in their
ability to take advantage of the architectural features of a given computer (e.g., cache,
paging, vectorization, multiple processors). Thus, their performance may vary widely on a
given computer or across different computers, and no single arrangement may be uniformly
superior.

Numerous implementation details of the algorithm are subject to variation in this way.
For example, the partial pivoting procedure we described searches along columns and inter-
changes rows, but alternatively, one could search along rows and interchange columns. We
have also taken L to have unit diagonal, but one could instead arrange for U to have unit
diagonal. Some of these variations of Gaussian elimination are of sufficient importance to
have been given names, such as the Crout and Doolittle methods.

Although the many possible variations on Gaussian elimination may have a dramatic
effect on performance, they all produce essentially the same factorization. Provided the
row pivot sequence is the same, if we have two LU factorizations PA = LU = L̂Û , then

50 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

this expression implies that L̂−1L = ÛU−1 = D is both lower and upper triangular, and
hence diagonal. If both L and L̂ are assumed to be unit lower triangular, then D must
in fact be the identity matrix I, and hence L = L̂ and U = Û , so that the factorization
is unique. Even without this assumption, however, we may still conclude that that the
LU factorization is unique up to diagonal scaling of the factors. This uniqueness is made
explicit in the LDU factorization PA = LDU , where L is unit lower triangular, U is unit
upper triangular, and D is diagonal.

Storage management is another important implementation issue. The numerous ma-
trices we considered—the elementary elimination matrices Mk, their inverses Lk, and the
permutation matrices Pk—merely describe the factorization process formally. They are not
formed explicitly in an actual implementation. To conserve storage, the L and U factors
overwrite the initial storage for the input matrix A, with the transformed matrix U occu-
pying the upper triangle of A (including the diagonal), and the multipliers that make up
the strict lower triangle of L occupying the (now zero) strict lower triangle of A. The unit
diagonal of L need not be stored.

To minimize data movement, the row interchanges required by pivoting are not usually
carried out explicitly. Instead, the rows remain in their original locations, and an auxiliary
integer vector is used to keep track of the new row order. Note that a single such vector
suffices, because the net effect of all of the interchanges is still just a permutation of the
integers 1, . . . , n.

2.2.6 Complexity of Solving Linear Systems

The Gaussian elimination process for computing the LU factorization requires about n3/3
floating-point multiplications and a similar number of additions. Solving the resulting
triangular system for a single right-hand-side vector by forward- and back-substitution
requires about n2 multiplications and a similar number of additions. Thus, as the order n
of the matrix grows, the LU factorization phase becomes increasingly dominant in the cost
of solving linear systems.

We can also solve a linear system by explicitly inverting the matrix so that the solution
is given by x = A−1b. But computing A−1 is tantamount to solving n linear systems: it
requires an LU factorization of A followed by n forward- and back-substitutions, one for
each column of the identity matrix. The total operation count is about n3 multiplications
and a similar number of additions (taking advantage of the zeros in the right-hand-side
vectors for the forward-substitution).

Thus, explicit inversion is three times as expensive as LU factorization. The subse-
quent matrix-vector multiplication x = A−1b to solve a linear system requires about n2

multiplications and a similar number of additions, which is similar to the total cost of
forward- and back-substitution. Hence, even for multiple right-hand-side vectors, matrix
inversion is more costly than LU factorization for solving linear systems. In addition, ex-
plicit inversion gives a less accurate answer. As a simple example, if we solve the 1 × 1
linear system 3x = 18 by division, we get x = 18/3 = 6, but explicit inversion would give
x = 3−1 × 18 = 0.333 × 18 = 5.99 using three-digit arithmetic. In this small example, in-
version requires an additional arithmetic operation and obtains a less accurate result. The
disadvantages of inversion become worse as the size of the system grows.

2.2. SOLVING LINEAR SYSTEMS 51

Explicit matrix inverses often occur as a convenient notation in various formulas, but
this practice does not mean that an explicit inverse is required to implement such a formula.
One merely need solve a linear system with an appropriate right-hand side, which might
itself be a matrix. Thus, for example, a product of the form A−1B should be computed
by LU factorization of A, followed by forward- and back-substitutions using each column
of B. It is extremely rare in practice that an explicit matrix inverse is actually needed, so
whenever you see a matrix inverse in a formula, you should think “solve a system” rather
than “invert a matrix.”

Another method for solving linear systems that should be avoided is Cramer’s rule, in
which each component of the solution is computed as a ratio of determinants. Though often
taught in elementary linear algebra courses, this method is astronomically expensive for full
matrices of nontrivial size. Cramer’s rule is useful mostly as a theoretical tool.

2.2.7 Gauss-Jordan Elimination

The motivation for Gaussian elimination is to reduce a general matrix to triangular form,
because the resulting linear system is easy to solve. Diagonal linear systems are even easier
to solve, however, so diagonal form would appear to be an even more desirable target. Gauss-
Jordan elimination is a variation of standard Gaussian elimination in which the matrix is
reduced to diagonal form rather than merely to triangular form. The same type of row
combinations are used to eliminate matrix entries as in standard Gaussian elimination,
but they are applied to annihilate entries above as well as below the diagonal. Thus, the
elimination matrix used for a given column vector a is of the form

1 · · · 0 −m1 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 1 −mk−1 0 · · · 0
0 · · · 0 1 0 · · · 0
0 · · · 0 −mk+1 1 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 −mn 0 · · · 1

a1
...

ak−1

ak
ak+1

...
an

=

0
...
0
ak
0
...
0

,

where mi = ai/ak, i = 1, . . . , n. This process requires about n3/2 multiplications and a
similar number of additions, which is 50 percent more expensive than standard Gaussian
elimination.

During the elimination phase, the same row operations are also applied to the right-
hand-side vector (or vectors) of a system of linear equations. Once the elimination phase
has been completed and the matrix is in diagonal form, then the components of the solution
to the linear system can be computed simply by dividing each entry of the transformed right-
hand side by the corresponding diagonal entry of the matrix. This computation requires a
total of only n divisions, which is significantly cheaper than solving a triangular system, but
not enough to make up for the more costly elimination phase. Gauss-Jordan elimination
also has the numerical disadvantage that the multipliers can exceed 1 in magnitude even if
pivoting is used.

Despite its higher overall cost, Gauss-Jordan elimination may be preferred in some
situations because of the extreme simplicity of its final solution phase. For example, it is

52 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

occasionally advocated for implementation on parallel computers because it has a uniform
workload throughout the factorization phase, and then all of the solution components can
be computed simultaneously rather than one at a time as in ordinary back-substitution.

Gauss-Jordan elimination is also sometimes used to compute the inverse of a matrix
explicitly, if desired. If the right-hand-side matrix is initialized to be the identity matrix
I and the given matrix A is reduced to the identity matrix by Gauss-Jordan elimination,
then the transformed right-hand-side matrix will be the inverse of A. For computing the
inverse, Gauss-Jordan elimination has about the same operation count as explicit inversion
by Gaussian elimination followed by forward- and back-substitution.

Example 2.8 Gauss-Jordan Elimination. We illustrate Gauss-Jordan elimination by
using it to compute the inverse of the matrix of Example 2.6. For simplicity, we omit
pivoting. We begin with the matrix A, augmented by the identity matrix I as right-hand
side, and repeatedly apply elimination matrices to annihilate off-diagonal entries of A until
we reach diagonal form, then scale by the remaining diagonal entries to produce the identity
matrix on the left, and hence the inverse matrix on the right. 1 0 0

−2 1 0
1 0 1

 2 4 −2 1 0 0
4 9 −3 0 1 0
−2 −3 7 0 0 1

 =

 2 4 −2 1 0 0
0 1 1 −2 1 0
0 1 5 1 0 1

 ,
 1 −4 0

0 1 0
0 −1 1

 2 4 −2 1 0 0
0 1 1 −2 1 0
0 1 5 1 0 1

 =

 2 0 −6 9 −4 0
0 1 1 −2 1 0
0 0 4 3 −1 1

 ,
 1 0 3

2
0 1 −1

4
0 0 1

 2 0 −6 9 −4 0
0 1 1 −2 1 0
0 0 4 3 −1 1

 =

 2 0 0 27
2 −11

2
3
2

0 1 0 −11
4

5
4 −1

4
0 0 4 3 −1 1

 ,
 1

2 0 0
0 1 0
0 0 1

4

 2 0 0 27
2 −11

2
3
2

0 1 0 −11
4

5
4 −1

4
0 0 4 3 −1 1

 =

 1 0 0 27
4 −11

4
3
4

0 1 0 −11
4

5
4 −1

4
0 0 1 3

4 −1
4

1
4

 , so A−1 =
1
4

 27 −11 3
−11 5 −1

3 −1 1

 .

2.2.8 Solving Modified Problems

In many practical situations linear systems do not occur in isolation but as part of a sequence
of related problems that change in some systematic way. For example, one may need to
solve a sequence of linear systems Ax = b having the same matrix A but different right-
hand sides b. After having solved the initial system by Gaussian elimination, then the L
and U factors already computed can be used to solve the additional systems by forward-
and back-substitution. The factorization phase need not be repeated in solving subsequent
linear systems unless the matrix changes. This procedure represents a substantial savings

2.2. SOLVING LINEAR SYSTEMS 53

in work, since additional triangular solutions cost only O(n2) work, in contrast to the O(n3)
cost of a factorization.

In fact, in some important special cases a new factorization can be avoided even when
the matrix does change. One such case that arises frequently is the addition of a matrix that
is an outer product uvT of two nonzero vectors u and v. This is called a rank-one change
because the outer product matrix uvT has rank one (i.e., only one linearly independent
row or column), and any rank-one matrix can be expressed as such an outer product of two
vectors. For example, if a single entry of the matrix A changes (say the (j, k) entry changes
from ajk to ãjk), then the new matrix is A−αejeTk , where ej and ek are the corresponding
columns of the identity matrix and α = ajk − ãjk.

The Sherman-Morrison formula gives the inverse of a matrix resulting from a rank-one
change to a matrix whose inverse is already known:

(A− uvT)−1 = A−1 +A−1u(1− vTA−1u)−1vTA−1,

where u and v are n-vectors. Evaluation of this formula requires only O(n2) work (for
matrix-vector multiplications) rather than the O(n3) work normally required for inversion.

To solve a linear system (A−uvT)x = b with the new matrix, we could use the foregoing
formula to obtain

x = (A− uvT)−1b = A−1b+A−1u(1− vTA−1u)−1vTA−1b.

We would prefer to avoid explicit inversion altogether, however. If we have an LU factor-
ization for A, then the following steps can easily be computed to obtain the solution to the
modified system:

1. Solve Az = u for z, so that z = A−1u.
2. Solve Ay = b for y, so that y = A−1b.
3. Compute x = y + [(vTy)/(1− vTz)]z.

Note that the first step is independent of b and hence need not be repeated if there are
multiple right-hand-side vectors b. Again, this procedure requires only triangular solutions
and inner products, so it requires only O(n2) work and no explicit inverses.

The Woodbury formula, in which u and v become n× k matrices U and V , generalizes
the Sherman-Morrison formula to a rank-k change in the matrix:

(A−UV T)−1 = A−1 +A−1U(I − V TA−1U)−1V TA−1.

Using similar techniques, it is possible to update the factorization rather than the inverse or
the solution. Caution must be exercised in using these updating formulas, however, because
in general there is no guarantee of numerical stability through successive updates as the
matrix changes.

Example 2.9 Rank-One Updating of Solutions. To illustrate the use of the Sherman-
Morrison formula, we solve the linear system 2 4 −2

4 9 −3
−2 −1 7

x1

x2

x3

 =

 2
8

10

 ,

54 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

which is a rank-one modification of the system in Example 2.6 (only the (3, 2) entry has
changed). We take A to be the matrix of Example 2.6, so we can use the LU factorization
already computed. One way to choose the update vectors is

u =

 0
0
−2

 and v =

 0
1
0

 ,
so that the matrix of the new system is A−uvT , and the right-hand-side vector b has not
changed. We can use the previously computed LU factorization of A to solve Az = u to
obtain z = [−3

2
1
2 −1

2]T , and we had already solvedAy = b to obtain y = [−1 2 2]T .
The final step is then to compute the updated solution

x = y +
vTy

1− vTz
z =

−1
2
2

+
2

1− 1
2

−3
2
1
2
−1

2

 =

−7
4
0

 .
We have thus computed the solution to the new system without refactoring the modified
matrix.

2.3 Norms and Condition Numbers

2.3.1 Vector Norms

To measure errors and sensitivity in solving linear systems, we need some notion of the “size”
of vectors and matrices. The scalar concept of magnitude, modulus, or absolute value can
be generalized to the concept of norms for vectors and matrices. Although a more general
definition is possible, all of the vector norms we will use are instances of p-norms, which for
an integer p > 0 and a vector x of dimension n are defined by

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

.

Important special cases are as follows:

• 1-norm:

‖x‖1 =
n∑
i=1

|xi|,

sometimes called the Manhattan norm because in the plane it corresponds to the distance
between two points as measured in “city blocks.”

• 2-norm:

‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

,

which corresponds to the usual notion of distance in Euclidean space.

2.3. NORMS AND CONDITION NUMBERS 55

• ∞-norm:
‖x‖∞ = max

1≤i≤n
|xi|,

which can be viewed as a limiting case as p→∞.

All of these norms give the same results qualitatively, but in certain circumstances a par-
ticular norm may be easiest to work with analytically or computationally. The 1-norm or
the ∞-norm is usually used in analyzing the sensitivity of solutions to linear systems. We
will also use the 2-norm later on in other contexts. The differences among these norms are
illustrated in Fig. 2.1, which shows the unit sphere, {x: ‖x‖ = 1}, in two dimensions for
each norm.

−2.0 2.0

−1.5

1.5

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

........

........

........

........
........
........
.........
.........
.........
..........

..........
...........

............
..............

.................
...........................

..
...................

...............
.............
...........
...........
..........
.........
.........
.........
.........
........
........
........
........
........

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
................................
..........................

(−1.6, 1.2)

1
2
∞

Figure 2.1: The unit sphere in various vector norms.

The norm of a vector is simply the factor by which the corresponding unit sphere must
be expanded or shrunk to encompass the vector. For example, the norms have the following
values for the vector shown in Fig. 2.1:∥∥∥∥[−1.6

1.2

]∥∥∥∥
1

= 2.8,
∥∥∥∥[−1.6

1.2

]∥∥∥∥
2

= 2.0,
∥∥∥∥[−1.6

1.2

]∥∥∥∥
∞

= 1.6.

In general, for any vector x in Rn, we have

‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞.

On the other hand, we also have

‖x‖1 ≤
√
n ‖x‖2, ‖x‖2 ≤

√
n ‖x‖∞, and ‖x‖1 ≤ n ‖x‖∞.

Thus, for a given n, any two of the norms differ by at most a constant, so they are all
equivalent in the sense that if one is small, they must all be proportionally small. Hence,
we can choose whichever norm is most convenient in a given context. In the remainder of
this book, an appropriate subscript will be used to indicate a specific norm, when necessary,
but the subscript will be omitted when it does not matter which particular norm is used.

For any vector norm, the following important properties hold, where x and y are any
vectors:

56 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

1. ‖x‖ > 0 if x 6= o.
2. ‖γx‖ = |γ| · ‖x‖ for any scalar γ.
3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

In a more general treatment, these three properties can be taken as the definition of a vector
norm. A useful variation on the triangle inequality is

‖x− y‖ ≥ ‖x‖ − ‖y‖.

2.3.2 Matrix Norms

We also need some way to measure the size or magnitude of matrices. Again, a more general
definition is possible, but all of the matrix norms we will use are defined in terms of an
underlying vector norm. Specifically, given a vector norm, we define the corresponding
matrix norm of a matrix A as follows:

‖A‖ = max
x6=0

‖Ax‖
‖x‖

.

Such a matrix norm is said to be subordinate to the vector norm. Intuitively, the norm of
a matrix measures the maximum stretching the matrix does to any vector, as measured in
the given vector norm.

Some matrix norms are much easier to compute than others. For example, the matrix
norm corresponding to the vector 1-norm is simply the maximum absolute column sum of
the matrix,

‖A‖1 = max
j

n∑
i=1

|aij |,

and the matrix norm corresponding to the vector∞-norm is simply the maximum absolute
row sum of the matrix,

‖A‖∞ = max
i

n∑
j=1

|aij |.

A handy way to remember these is that the matrix norms agree with the corresponding
vector norms for an n × 1 matrix. Unfortunately, the matrix norm corresponding to the
vector 2-norm is not so simple to compute; it turns out to be equal to the square root of the
largest eigenvalue of the matrix ATA, or, as we shall see later, the largest singular value of
A (see Section 4.5.2).

The matrix norms we have defined satisfy the following important properties, where A
and B are any matrices:

1. ‖A‖ > 0 if A 6= O.
2. ‖γA‖ = |γ| · ‖A‖ for any scalar γ.
3. ‖A+B‖ ≤ ‖A‖+ ‖B‖.
4. ‖AB‖ ≤ ‖A‖ · ‖B‖.
5. ‖Ax‖ ≤ ‖A‖ · ‖x‖ for any vector x.

2.3. NORMS AND CONDITION NUMBERS 57

In a more general treatment, the first three properties can be taken as the definition of
a matrix norm. The remaining two properties, known as submultiplicative or consistency
conditions, may or may not hold for these more general matrix norms, but they always hold
for the matrix norms subordinate to the vector p-norms.

2.3.3 Condition Number of a Matrix

The condition number of a square nonsingular matrix A with respect to a given norm is
defined as

cond(A) = ‖A‖ · ‖A−1‖.

By convention, cond(A) =∞ if A is singular. Since

‖A‖ · ‖A−1‖ =
(

max
x6=0

‖Ax‖
‖x‖

)
·
(

min
x6=0

‖Ax‖
‖x‖

)−1

,

the condition number of a matrix measures the ratio of the maximum stretching that the
matrix does to any nonzero vector to the maximum shrinking. We will see in Section 2.4.2
that this concept is consistent with the general notion of condition number defined in
Section 1.2.5: the condition number of the matrix bounds the ratio of the relative change
in the solution of a linear system to a given relative change in the input data.

The condition number is a measure of how close a matrix is to being singular: a matrix
with a large condition number (which we will quantify in Section 2.4.2) is nearly singular,
whereas a matrix with a condition number close to 1 is far from being singular. Note that
the determinant of a matrix is not a good indicator of near singularity: although a matrix
A is singular if det(A) = 0, the magnitude of a nonzero determinant, large or small, gives
no information on how close to singular the matrix may be. For example, det(αIn) = αn,
which can be arbitrarily small for |α| < 1, yet the matrix is perfectly well-conditioned for
any nonzero α, with a condition number of 1.

Some important properties of the condition number are

1. For any matrix A, cond(A) ≥ 1.
2. For the identity matrix, cond(I) = 1.
3. For any permutation matrix P , cond(P) = 1.
4. For any matrix A and nonzero scalar γ, cond(γA) = cond(A).
5. For any diagonal matrix D = diag(di), cond(D) = (max |di|)/(min |di|).

As we will see shortly, the usefulness of the condition number is in assessing the accuracy
of solutions to linear systems. Since the definition of the condition number involves the
inverse of the matrix, computing its value is obviously a nontrivial task. In fact, to compute
the condition number literally would require substantially more work than solving the linear
system whose accuracy is to be assessed using the condition number. In practice, therefore,
the condition number is merely estimated, to perhaps within an order of magnitude, as a
relatively inexpensive byproduct of the solution process.

The matrix norm ‖A‖ is easily computed as the maximum absolute column sum (or
row sum, depending on the norm used). It is estimating ‖A−1‖ at low cost that presents a

58 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

challenge. From the properties of norms, we know that if z is the solution to Az = y, then

‖z‖
‖y‖

≤ ‖A−1‖,

and the bound is achieved for some optimally chosen vector y. We thus wish to pick a
vector y so that the ratio ‖z‖/‖y‖ is as large as possible and therefore is a reasonable
estimate for ‖A−1‖. Finding the optimal y would be prohibitively expensive, but a useful
approximation can be obtained much more cheaply. One heuristic is to choose y as the
solution to the system ATy = c, where c is a vector whose components are ±1, with the
signs chosen successively to make the resulting y as large as possible.

The motivation for this approach may not be obvious now, but it is essentially equiv-
alent to one step of inverse iteration for computing the singular vector corresponding to
the smallest singular value of A (see Chapter 4). An alternative approach to condition
estimation is to treat it as a convex optimization problem that can be solved very efficiently
in practice using a heuristic algorithm. Most good modern software packages for solving
linear systems provide an efficient and reliable condition estimator, based on a sophisticated
implementation of one of the methods outlined here.

2.4 Accuracy of Solutions

2.4.1 Residual of a Solution

Intuitively, the most obvious way to check the validity of a solution is to substitute it into
the equation to see how closely the two sides match. The residual vector of an approximate
solution x̂ to the n× n linear system Ax = b is defined as

r = b−Ax̂.

In theory, if A is nonsingular, then the error ‖x̂−x‖ = 0 if and only if ‖r‖ = 0. In practice,
however, these quantities are not necessarily small simultaneously. If the computed solution
x̂ exactly satisfies

(A+E)x̂ = b,

then
‖r‖ = ‖b−Ax̂‖ = ‖Ex̂‖ ≤ ‖E‖ · ‖x̂‖,

so that we have the inequality
‖r‖

‖A‖ · ‖x̂‖
≤ ‖E‖
‖A‖

relating the relative residual to the relative change in the matrix. Thus, a large relative
residual implies a large backward error in the matrix, which means that the algorithm used
to compute the solution is unstable.

But how large is ‖E‖ likely to be in practice? Wilkinson [273] showed that for LU
factorization by Gaussian elimination, a bound of the form

‖E‖
‖A‖

≤ ρ n εmach

2.4. ACCURACY OF SOLUTIONS 59

holds, where ρ, called the growth factor , is the ratio of the largest entry of U to the largest
entry of A. Without pivoting, ρ can be arbitrarily large, and hence Gaussian elimination
without pivoting is unstable, as we have already seen. With partial pivoting, the growth
factor can still be as large as 2n−1 (since in the worst case the size of the entries can double
at each stage of elimination), but such behavior is extremely rare. In practice, there is little
or no growth in the size of the entries, so that

‖E‖
‖A‖

≈ n εmach.

This relation means that solving a linear system by Gaussian elimination with partial piv-
oting followed by back-substitution almost always yields a very small relative residual,
regardless of how ill-conditioned the system may be. Thus, a small relative residual is not
necessarily a good indicator that a computed solution is close to the “true” solution unless
the system is well-conditioned.

Complete pivoting yields an even smaller growth factor, in both theory and practice,
but the additional margin of stability it provides is usually not worth the extra expense.

Example 2.10 Small Residual. Using three-digit decimal arithmetic to solve the system[
0.641 0.242
0.321 0.121

] [
x1

x2

]
=
[

0.883
0.442

]
,

Gaussian elimination with partial pivoting yields the triangular system[
0.641 0.242

0 −0.000242

] [
x1

x2

]
=
[

0.883
−0.000383

]
,

and back-substitution then gives the computed solution

x =
[

0.782
1.58

]
.

The exact residual for this solution is

r = b−Ax =
[
−0.000622
−0.000202

]
,

which is as small as we can expect using only three-digit arithmetic. Yet the exact solution
for this system is easily seen to be

x =
[

1.00
1.00

]
,

so that the error is almost as large as the solution. The cause of this phenomenon is that
the matrix is very nearly singular (its condition number is more than 4000). The division
that determines x2 is between two quantities that are both on the order of rounding error,
and hence the result is essentially arbitrary. Yet, by design, when this arbitrary value for
x2 is then substituted into the first equation, a value for x1 is computed so that the first
equation is satisfied. Thus, we get a small residual, but a poor solution.

60 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

2.4.2 Estimating Accuracy

In addition to being a reliable indicator of near singularity, the condition number also
provides a quantitative estimate for the error in the computed solution to a linear system,
as we will now see. Let x be the solution to the nonsingular linear system Ax = b, and
let x̂ be the solution to the system Ax̂ = b + ∆b with a perturbed right-hand side. If we
define ∆x = x̂− x, then we have

b+ ∆b = Ax̂ = A(x+ ∆x) = Ax+A∆x.

Since Ax = b, we must have A∆x = ∆b, and hence ∆x = A−1∆b. Now

b = Ax ⇒ ‖b‖ ≤ ‖A‖ · ‖x‖,

and
∆x = A−1∆b ⇒ ‖∆x‖ ≤ ‖A−1‖ · ‖∆b‖,

which, upon using the definition cond(A) = ‖A‖ · ‖A−1‖, yields the estimate

‖∆x‖
‖x‖

≤ cond(A)
‖∆b‖
‖b‖

.

Thus, the condition number of the matrix determines the possible relative change in the
solution due to a given relative change in the right-hand-side vector, regardless of the
algorithm used to compute the solution (compare with the general notion of condition
number defined in Section 1.2.5). A similar result holds for relative changes in the entries
of the matrix A. If Ax = b and

(A+E)x̂ = b,

then
x− x̂ = A−1(b−Ax̂) = A−1Ex̂,

so that
‖∆x‖ ≤ ‖A−1‖ · ‖E‖ · ‖x̂‖,

which yields the estimate
‖∆x‖
‖x̂‖

≤ cond(A)
‖E‖
‖A‖

.

As an alternative to the algebraic derivations just given, calculus can be used to estimate
the sensitivity of linear systems. Introducing the real-valued parameter t, we define A(t) =
A+ tE and b(t) = b+ t∆b, and consider the solution x(t) to the linear system A(t)x(t) =
b(t). Differentiating this equation with respect to t, we obtain

A′(t)x(t) +A(t)x′(t) = b′(t),

so that we have
x′(t) = −A−1(t)A′(t)x(t) +A−1(t)b′(t),

and hence, evaluating at t = 0 and taking norms,

‖x′‖
‖x‖

≤ ‖A−1‖ · ‖A′‖+ ‖A−1‖ · ‖b
′‖
‖x‖

≤ cond(A)
(
‖A′‖
‖A‖

+
‖b′‖
‖b‖

)
.

2.4. ACCURACY OF SOLUTIONS 61

Thus, we again see that the relative change in the solution is bounded by the condition
number times the relative change in the problem data.

A geometric interpretation in two dimensions of these sensitivity results is that if the two
straight lines defined by the two equations are nearly parallel, then their point of intersection
is not sharply defined if the lines are a bit fuzzy because of rounding errors or other sources
of error. If, on the other hand, the lines are far from parallel, say nearly perpendicular, then
their intersection is relatively sharply defined. These two cases are illustrated in Fig. 2.2,
where the dashed lines indicate the region of uncertainty for each solid line, so that the
intersection point in each case could be anywhere within the shaded parallelogram. Thus,
a large condition number is associated with a large uncertainty in the solution.

..

.. ...

..
..

..
..

..
..

.................................

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
........

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
........

.............

.............

.............

.............

.............

.............

......................................

well-conditioned ill-conditioned

Figure 2.2: Well-conditioned and ill-conditioned linear systems.

To summarize, if the input data are accurate to machine precision, then a reasonable
estimate for the relative error in the computed solution to a linear system is given by

‖x̂− x‖
‖x‖

≈ cond(A) εmach.

One simple way of interpreting these results is that the computed solution loses about
log10(cond(A)) decimal digits of accuracy relative to the accuracy of the input. In Exam-
ple 2.10, for instance, with a condition number greater than 103, we lost all of the three-digit
precision available and obtained an arbitrary solution.

Before leaving the subject of assessing accuracy in terms of condition numbers, note
these two caveats:

• The foregoing analysis estimates the relative error in the largest components of the solu-
tion vector. The relative error in the smaller components can be much larger, because a
vector norm is dominated by the largest components of a vector. Componentwise error
bounds can be obtained but are somewhat more complicated to compute, and we will not
pursue this topic. Componentwise bounds are of particular interest when the system is
poorly scaled.
• The condition number of a matrix is affected by the scaling of the matrix (recall Ex-

ample 2.3). A large condition number can result simply from poor scaling, as well as
from near singularity. Rescaling the matrix can help the former, but not the latter (see
Section 2.4.3).

62 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

2.4.3 Improving Accuracy

Although the accuracy that can be expected in the solution of a linear system may seem set
in concrete, accuracy can be enhanced in some cases by rescaling the system or by iteratively
improving the initial computed solution. These measures are not always practicable, but
they may be worth trying.

Recall from Example 2.3 that diagonal scaling of a linear system leaves the solution either
unchanged (row scaling) or changed in such a way that the solution is easily recoverable
(column scaling). In practice, however, scaling affects the conditioning of the system and
the selection of pivots in Gaussian elimination, both of which in turn affect the accuracy
of the computed solution. Thus, row scaling and column scaling of a linear system can
potentially improve (or degrade) numerical stability and accuracy.

Accuracy is usually enhanced if all the entries of the matrix have about the same order
of magnitude or, better still, if the uncertainties in the matrix entries are all of about the
same size. Sometimes it is obvious by inspection how to scale the matrix to accomplish such
balance by the choice of measurement units for the respective variables and by weighting
each equation according to its relative importance and accuracy. No general automatic
technique has ever been developed, however, that produces optimal scaling in an efficient
and foolproof manner. Moreover, the scaling process itself can introduce rounding errors
unless care is taken (for example, by using only powers of the arithmetic base as scaling
factors).

Example 2.11 Scaling. As a simple example, the linear system[
1 0
0 ε

] [
x1

x2

]
=
[

1
ε

]
has condition number 1/ε and hence is very ill-conditioned if ε is very small. This ill-
conditioning means that small perturbations in the input data can cause relatively large
changes in the solution. For example, perturbing the right-hand side by the vector [0 −ε]T

changes the solution from [1 1]T to [1 0]T . If the second row is first multiplied by 1/ε,
however, then the system becomes perfectly well-conditioned, and the same perturbation
now produces a commensurately small change in the solution. Thus, the apparent ill-
conditioning was due purely to poor scaling. Unfortunately, how to correct poor scaling for
general matrices is much less obvious.

Iterative refinement is another means of potentially improving the accuracy of a com-
puted solution. Given an approximate solution x1 to the linear system Ax = b, compute
the residual

r1 = b−Ax1.

Now solve the linear system
Az1 = r1

and take
x2 = x1 + z1

2.5. SPECIAL TYPES OF LINEAR SYSTEMS 63

as a new and “better” approximate solution, since

Ax2 = A(x1 + z1) = Ax1 +Az1 = (b− r1) + r1 = b.

This process can be repeated to refine the solution successively until convergence, potentially
producing a solution that is accurate to full machine precision.

Unfortunately, iterative refinement requires double the storage, since both the original
matrix and its LU factorization are required (to compute the residual and to solve the
subsequent systems, respectively). Moreover, for iterative refinement to produce meaningful
improvement in the solution, the residual must usually be computed with higher precision
than that used in computing the initial solution (recall Example 1.13).

For these reasons, iterative improvement is often impractical to use routinely, but it can
still be useful in some circumstances. For example, iterative refinement can recover full
accuracy for systems that are badly scaled, and can sometimes stabilize solution methods
that are otherwise potentially unstable. Ironically, if the initial solution is relatively poor,
then the residual may be large enough to be computed without requiring extra precision.
We will return to iterative refinement later in Example 11.6.

2.5 Special Types of Linear Systems

Thus far we have assumed that the linear system has a general matrix and is dense, mean-
ing that essentially all of the matrix entries are nonzero. If the matrix has some special
properties, then work and storage can often be saved in solving the linear system. Some
examples of special properties that can be exploited include the following:

• Symmetric: A = AT , i.e., aij = aji for all i, j.
• Positive definite: xTAx > 0 for all x 6= o.
• Band : aij = 0 for all |i − j| > β, where β is the bandwidth of A. An important special

case is a tridiagonal matrix , for which β = 1.
• Sparse: most entries of A are zero.

Techniques for handling symmetric and band systems are relatively straightforward varia-
tions on Gaussian elimination for dense systems. Sparse linear systems with more general
nonzero patterns, on the other hand, require more sophisticated algorithms and data struc-
tures in order to avoid storing or operating on the zeros in the matrix (see Section 11.4.1).

The properties just defined for real matrices have analogues for complex matrices, but
in the complex case the ordinary matrix transpose is replaced by the conjugate transpose,
denoted by a superscript H. If γ = α + iβ is a complex number, where α and β are real
numbers and i =

√
−1, then its complex conjugate is defined by γ̄ = α− iβ. The conjugate

transpose of a matrix A is then given by {AH}ij = āji. Of course, for a real matrix A,
AH = AT . A complex matrix is Hermitian if A = AH , and positive definite if xHAx > 0
for all complex vectors x 6= o.

2.5.1 Symmetric Positive Definite Systems

If the matrixA is symmetric and positive definite, then an LU factorization can be arranged
so that U = LT , that is, A = LLT , where L is lower triangular and has positive diagonal

64 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

entries (but not, in general, a unit diagonal). This is known as the Cholesky factorization of
A, and an algorithm for computing it can be derived simply by equating the corresponding
entries of A and LLT and then generating the entries of L in the correct order. In the 2×2
case, for example, we have[

a11 a21

a21 a22

]
=
[
l11 0
l21 l22

] [
l11 l21

0 l22

]
,

which implies that

l11 =
√
a11, l21 = a21/l11, l22 =

√
a22 − l221.

One way to write the resulting general algorithm, in which the Cholesky factor L overwrites
the original matrix A, is as follows:

for j = 1 to n { for each column j }
for k = 1 to j − 1 { loop over all prior columns k }

for i = j to n { subtract a multiple of
aij = aij − aik · ajk column k from column j }

end
end
ajj = √ajj
for k = j + 1 to n { scale column j by square

akj = akj/ajj root of diagonal entry }
end

end

A number of facts about the Cholesky factorization algorithm make it very attractive and
popular for symmetric positive definite matrices:

• The n square roots required are all of positive numbers, so the algorithm is well-defined.
• No pivoting is required for numerical stability.
• Only the lower triangle of A is accessed, and hence the upper triangular portion need

not be stored.
• Only about n3/6 multiplications and a similar number of additions are required.

Thus, Cholesky factorization requires only about half as much work and half as much
storage as are required for LU factorization of a general matrix by Gaussian elimination.
Unfortunately, taking advantage of this gain in storage usually requires that one triangle of
the symmetric matrix be packed into a one-dimensional array, which is less convenient than
the usual two-dimensional storage for a matrix. For this reason, linear algebra software
packages commonly offer both packed storage and standard two-dimensional array storage
versions for symmetric matrices so that the user can choose between convenience and storage
conservation.

In some circumstances it may be advantageous to express the Cholesky factorization in
the form A = LDLT , where L is unit lower triangular and D is diagonal with positive
diagonal entries. Such a factorization can be computed by a simple variant of the standard
Cholesky algorithm, and it has the advantage of not requiring any square roots. The

2.5. SPECIAL TYPES OF LINEAR SYSTEMS 65

diagonal entries of D in the LDLT factorization are simply the squares of the diagonal
entries of L in the LLT factorization.

Example 2.12 Cholesky Factorization. To illustrate the algorithm, we compute the
Cholesky factorization of the symmetric positive definite matrix

A =

 5.0 0 2.5
0 2.5 0

2.5 0 2.125

 .
The successive transformations of the lower triangle of the matrix will be shown, as the
algorithm touches only this portion of the matrix. The first column has no prior columns,
so it is merely scaled by the square root of the diagonal entry,

√
5, to give 2.236

0 2.5
1.118 0 2.125

 .
The second column now requires updating by subtracting a multiple of the first column.
But in this case the multiplier in the second row of the first column is zero, so that the
second column is unaffected by the first column. Thus, the second column is simply scaled
by the square root of its diagonal entry,

√
2.5, to give 2.236

0 1.581
1.118 0 2.125

 .
Finally, the third column must be updated by subtracting multiples of the previous two
columns. The multipliers for the first two columns, found in the third row, are 1.118 and
zero, respectively. Updating the third column accordingly gives 2.236

0 1.581
1.118 0 0.875

 .
Taking the square root of the third diagonal entry then yields the final result

L =

 2.236
0 1.581

1.118 0 0.935

 .

2.5.2 Symmetric Indefinite Systems

If the matrix A is symmetric but indefinite (i.e., xTAx can take on both positive and
negative values), then Cholesky factorization is not applicable, and some form of pivoting is
generally required for numerical stability. Obviously, any pivoting must be symmetric—of

66 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

the form PAP T , where P is a permutation matrix—if the symmetry of the matrix is to
be preserved.

We would like to obtain a factorization of the form PAP T = LDLT , where L is unit
lower triangular and D is diagonal. Unfortunately, such a factorization, with diagonal D,
may not exist, and in any case it generally cannot be computed stably using only symmetric
pivoting. The best we can do is to take D to be either tridiagonal or block diagonal with
1× 1 and 2× 2 diagonal blocks. (A block matrix is a matrix whose entries are partitioned
into submatrices, or “blocks,” of compatible dimensions. In a block diagonal matrix, all of
these submatrices are zero except those on the main block diagonal.)

Efficient algorithms have been developed by Aasen for the tridiagonal factorization, and
by Bunch and Parlett (with subsequent improvements in the pivoting procedure by Bunch
and Kaufman) for the block diagonal factorization (see [104]). In either case, the pivoting
procedure yields a stable factorization that requires only about n3/6 multiplications and a
similar number of additions. Also, in either case, the subsequent solution phase requires
only O(n2) work. Thus, the cost of solving symmetric indefinite systems is similar to that
for positive definite systems using Cholesky factorization, and only about half the cost for
nonsymmetric systems using Gaussian elimination.

2.5.3 Band Systems

Gaussian elimination for band matrices differs little from the general case—the only al-
gorithmic changes are in the ranges of the loops. Of course, one should also use a data
structure for a band matrix that avoids storing zero entries. A common choice when the
band is dense is to store the matrix in a two-dimensional array by diagonals. If pivoting is
required for numerical stability, then the algorithm becomes slightly more complicated in
that the bandwidth can grow (but no more than double). Thus, a general-purpose band
solver for arbitrary bandwidth is very similar to a code for Gaussian elimination for general
matrices.

For a fixed small bandwidth, however, a band solver can be extremely simple, especially
if pivoting is not required for stability. Consider, for example, the tridiagonal matrix

A =

b1 c1 0 · · · 0

a2 b2 c2
. . .

...

0
. 0

...
. . . an−1 bn−1 cn−1

0 · · · 0 an bn

 .

If pivoting is not required for stability, which is often the case for tridiagonal systems arising
in practice (e.g., if the matrix is diagonally dominant or positive definite), then Gaussian
elimination reduces to the following simple algorithm:

d1 = b1
for i = 2 to n

mi = ai/di−1

di = bi −mici−1

end

2.6. ITERATIVE METHODS FOR LINEAR SYSTEMS 67

and the resulting LU factorization of A is given by

L =

1 0 · · · · · · 0
m2 1

.
...

0
.

...
...

. . . mn−1 1 0
0 · · · 0 mn 1

 , U =

d1 c1 0 · · · 0

0 d2 c2
. . .

...
...

. 0
...

. dn−1 cn−1

0 · · · · · · 0 dn

 .

In general, a band system of bandwidth β requires only O(βn) storage, and the fac-
torization requires only O(β2n) work, both of which represent substantial savings over full
systems if β � n.

2.6 Iterative Methods for Linear Systems

Gaussian elimination is an example of a direct method for solving linear systems, i.e., one
that produces the exact solution (assuming exact arithmetic) to a linear system in a finite
number of steps. Iterative methods for solving linear systems begin with an initial estimate
for the solution and successively improve it until the solution is as accurate as desired. In
theory, an infinite number of iterations might be required to converge to the exact solution,
but in practice the iterations terminate after the residual ‖b−Ax‖, or some other measure
of error, is as small as desired. For some types of problems, iterative methods may have
significant advantages over direct methods. Iterative methods for solving linear systems
will be postponed until Chapter 11, where we consider the numerical solution of partial
differential equations, which leads to sparse linear systems that are often best solved by
iterative methods.

2.7 Software for Linear Systems

Almost any software library for scientific computing contains routines for solving linear
systems of various types. Table 2.1 is a list of appropriate routines for solving real, general,
dense linear systems, and also for estimating the condition number, in some widely available
software collections. Some packages use different prefixes or suffixes in the routine names
to indicate the data type, typically s for single-precision real, d for double-precision real, c
for single-precision complex, and z for double-precision complex; only the single-precision
real versions are listed here. In most such subroutine libraries, more specialized routines are
available for particular types of linear systems, such as positive definite, symmetric, banded,
or combinations of these. Some of these routines are listed in Table 2.2; other routines that
are more storage efficient or cater to other special tasks may also be available.

Conventional software for solving linear systems Ax = b is sometimes implemented as
a single routine, or it may be split into two routines: one for computing a factorization and
another for solving the resulting triangular system. In either case, repeating the factoriza-
tion should not be necessary if additional solutions are needed with the same matrix but
different right-hand sides. The input typically required includes a two-dimensional array
containing the matrix A, a one-dimensional array containing the right-hand-side vector b

68 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

Table 2.1: Software for solving general linear systems

Condition
Source Factor Solve estimation
FMM decomp solve
HSL ma21 ma21
IMSL lftrg lfsrg lfcrg
KMN sgefs sgefs sgefs
LAPACK sgetrf sgetrs sgecon
LINPACK sgefa sgesl sgeco
MATLAB lu \ rcond
NAG f07adf f07aef f07agf
NAPACK fact solve con
NR ludcmp lubksb
NUMAL dec sol
SLATEC sgefa sgesl sgeco

Table 2.2: Software for solving special linear systems

Symmetric Symmetric General
Source positive definite indefinite band
HSL ma22 ma29 ma35
IMSL lftds/lfsds lftsf/lfssf lftrb/lfsrb
LAPACK spotrf/spotrs ssytrf/ssytrs sgbtrf/sgbtrs
LINPACK spofa/sposl ssifa/ssisl sgbfa/sgbsl
NAG f07fdf/f07fef f07mdf/f07mef f07bdf/f07bef
NAPACK sfact/ssolve ifact/isolve bfact/bsolve
NR choldc/cholsl bandec/banbks
NUMAL chldec2/chlsol2 decsym2/solsym2 decbnd/solbnd
SLATEC spofa/sposl ssifa/ssisl sgbfa/sgbsl

2.7. SOFTWARE FOR LINEAR SYSTEMS 69

(or a two-dimensional array for multiple right-hand-side vectors), the integer order of the
system n, the leading dimension of the array containing A (so that the subroutine can
interpret subscripts properly in the array), and possibly some work space and a flag indi-
cating the particular task to be performed. On return, the solution x usually overwrites the
storage for b, and the matrix factorization overwrites the storage for A. Additional output
may include a status flag to indicate any errors or warnings and an estimate of the condition
number of the matrix (or sometimes the reciprocal of the condition number). Because of
the additional cost of condition estimation, this feature is usually optional.

Solving linear systems using an interactive environment such as MATLAB is simpler than
when using conventional software because the package keeps track internally of details such
as the dimensions of vectors and matrices, and many matrix operations are built into the
syntax and semantics of the language. For example, the solution to the linear system
Ax = b is given in MATLAB by the “left division” operator, denoted by backslash, so that
x = A \ b. Internally, the solution is computed by LU factorization and forward- and back-
substitution, but the user need not be aware of this. The LU factorization can be computed
explicitly, if desired, by the MATLAB lu function, [L, U] = lu(A).

2.7.1 LINPACK and LAPACK

LINPACK is a standard software package for solving a wide variety of systems of linear
equations, both general dense systems and those having various special properties, such as
symmetric or banded. Solving linear systems is of such fundamental importance in scientific
computing that LINPACK has become a standard benchmark for comparing the performance
of computers. The LINPACK manual [63] is a useful source of practical advice on solving
systems of linear equations.

A more recent package called LAPACK updates the entire LINPACK collection for higher
performance on modern computer architectures, including some parallel computers. In
many cases, the newer algorithms in LAPACK also achieve greater accuracy, robustness,
and functionality than their predecessors in LINPACK. LAPACK includes both simple and
expert drivers for all of the major computational problems in linear algebra, as well as the
many underlying computational and auxiliary routines required for various factorizations,
triangular solutions, norm estimation, scaling, and iterative refinement. Both LINPACK and
LAPACK are available from netlib, and the linear system solvers in many other libraries and
packages are based directly on them.

2.7.2 Basic Linear Algebra Subprograms

The high-level routines in LINPACK and LAPACK are based on lower-level Basic Linear Algebra
Subprograms (BLAS). The BLAS were originally designed to encapsulate basic operations on
vectors so that they could be optimized for a given computer architecture while the high-
level routines that call them remain portable. New computer architectures have prompted
the development of higher-level BLAS that encapsulate matrix-vector and matrix-matrix
operations for better utilization of hierarchical memory such as cache, vector registers, and
virtual memory with paging. A few of the most important BLAS routines of each level are
listed in Table 2.3.

70 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

The key to good performance is data reuse, that is, performing as many arithmetic
operations as possible involving a given data item while it is held in the portion of the
memory hierarchy with the most rapid access. The level-3 BLAS have greater opportunity
for data reuse because they perform O(n3) operations on O(n2) data items, whereas in
the lower-level BLAS the number of operations is proportional to the number of data items.
Generic versions of the BLAS are available from netlib, and many computer vendors provide
custom versions that are optimized for highest performance on their particular systems.

Table 2.3: Examples of basic linear algebra subprograms (BLAS)

Level TOMS # Work Examples Function
1 539 O(n) saxpy Scalar times vector plus vector

sdot Inner product of two vectors
snrm2 Euclidean norm of a vector

2 656 O(n2) sgemv Matrix-vector multiplication
strsv Triangular solution
sger Rank-one update

3 679 O(n3) sgemm Matrix-matrix multiplication
strsm Multiple triangular solutions
ssyrk Rank-k update

2.8 Historical Notes and Further Reading

Elimination methods for solving systems of linear equations date from the nineteenth cen-
tury and earlier. Their careful error analysis, however, began only with the computer era.
Indeed, a grave concern of the early pioneers of digital computation, such as von Neumann
and Turing, was whether accumulated rounding error in solving large linear systems by
Gaussian elimination would render the results useless, and initially there was considerable
pessimism on this score. Computational experience soon showed that the method was
surprisingly stable and accurate in practice, however, and analyses eventually followed to
explain this good fortune (see especially the work of Wilkinson [273, 274, 275]).

As it turns out, Gaussian elimination with partial pivoting has a worse than optimal
operation count [248], is unstable in the worst case [273], and in a theoretical sense cannot
be implemented efficiently in parallel [264]. Yet it is consistently effective in practice,
even on parallel computers, and is one of the principal workhorses of scientific computing.
Most numerical algorithms obey Murphy’s law—“if anything can go wrong, it will”—but
Gaussian elimination seems to be a happy exception. For further discussion of some of the
“mysteries” of this remarkable algorithm, see [257].

For background on linear algebra, the reader may wish to consult the excellent text-
books by Strang [244, 246]. Additional examples, exercises, and practical applications of
computational linear algebra can be found in [127, 171]. The definitive reference on matrix
computations is [104]. More tutorial treatments include [49, 96, 116, 138, 239, 258, 268]. An
influential early work on solving linear systems, and one of the first to include high-quality
software, is [83]. A useful tutorial handbook on matrix computations, both in Fortran and

REVIEW QUESTIONS 71

MATLAB, is [42].
For a comprehensive treatment of error analysis and perturbation theory for linear sys-

tems and many other problems in linear algebra, see [126, 241]. An overview of condition
number estimation is given in [124]. A detailed survey of componentwise (as opposed to
normwise) perturbation theory in linear algebra is given in [125]. LINPACK and LAPACK are
documented in [63] and [8], respectively. For the BLAS (Basic Linear Algebra Subprograms)
see [61, 62, 164]. One of the earliest papers to examine the effect of the computing environ-
ment on the performance of Gaussian elimination and other matrix computations was [177].
For a sample of the now large literature on this topic, see [55, 64, 65, 194].

Review Questions

2.1 True or false: If a matrix A is nonsin-
gular, then the number of solutions to the lin-
ear system Ax = b depends on the particular
choice of right-hand-side vector b.

2.2 True or false: If a matrix has a very small
determinant, then the matrix is nearly singu-
lar.

2.3 True or false: If a triangular matrix has
a zero entry on its main diagonal, then the
matrix is necessarily singular.

2.4 True or false: If a matrix has a zero en-
try on its main diagonal, then the matrix is
necessarily singular.

2.5 True or false: An underdetermined sys-
tem of linear equations Ax = b, where A is
an m × n matrix with m < n, always has a
solution.

2.6 True or false: The product of two upper
triangular matrices is upper triangular.

2.7 True or false: The product of two sym-
metric matrices is symmetric.

2.8 True or false: The inverse of a nonsingu-
lar upper triangular matrix is upper triangu-
lar.

2.9 True or false: If the rows of an n × n
matrix A are linearly dependent, then the
columns of the matrix are also linearly depen-
dent.

2.10 True or false: A system of linear equa-
tions Ax = b has a solution if and only if the
m×n matrixA and the augmented m×(n+1)
matrix [A b] have the same rank.

2.11 True or false: If A is any n × n matrix
and P is any n× n permutation matrix, then
PA = AP .

2.12 True or false: Provided row interchanges
are allowed, the LU factorization always exists,
even for a singular matrix A.

2.13 True or false: If a linear system is well-
conditioned, then pivoting is unnecessary in
Gaussian elimination.

2.14 True or false: If a matrix is singular then
it cannot have an LU factorization.

2.15 True or false: If a nonsingular symmetric
matrix is not positive definite, then it cannot
have a Cholesky factorization.

2.16 True or false: A symmetric positive def-
inite matrix is always well-conditioned.

2.17 True or false: Gaussian elimination
without pivoting fails only when the matrix
is ill-conditioned or singular.

2.18 True or false: Once the LU factorization
of a matrix A has been computed to solve a
linear system Ax = b, then subsequent lin-
ear systems with the same matrix but different
right-hand-side vectors can be solved without
refactoring the matrix.

2.19 True or false: In explicitly inverting a
matrix by LU factorization and triangular so-
lution, the majority of the work is due to the
factorization.

2.20 True or false: If x is any n-vector, then
‖x‖1 ≥ ‖x‖∞.

2.21 True or false: The norm of a singular
matrix is zero.

2.22 True or false: If ‖A‖ = 0, then A = O.

72 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

2.23 True or false: ‖A‖1 = ‖AT ‖∞.

2.24 True or false: If A is any n × n nonsin-
gular matrix, then cond(A) = cond(A−1).

2.25 True or false: In solving a nonsingular
system of linear equations, Gaussian elimina-
tion with partial pivoting usually yields a small
residual even if the matrix is ill-conditioned.

2.26 True or false: Since the multipliers in
Gaussian elimination with partial pivoting are
bounded by 1 in magnitude, the elements of
the successive reduced matrices cannot grow
in magnitude.

2.27 Can a system of linear equationsAx = b
have exactly two distinct solutions?

2.28 Can the number of solutions to a linear
system Ax = b ever be determined solely from
the matrix A without knowing the right-hand-
side vector b?

2.29 In solving a square system of linear equa-
tions Ax = b, which would be a more serious
difficulty: that the rows of A are linearly de-
pendent, or that the columns of A are linearly
dependent? Explain.

2.30 (a) State one defining property of a sin-
gular matrix A.
(b) Suppose that the linear system Ax = b
has two distinct solutions x and y. Use the
property you gave in part a to prove that A
must be singular.

2.31 Given a nonsingular system of linear
equations Ax = b, what effect on the solu-
tion vector x results from each of the following
actions?
(a) Permuting the rows of [A b]
(b) Permuting the columns of A
(c) Multiplying both sides of the equation from
the left by a nonsingular matrix M

2.32 Suppose that both sides of a system of
linear equations Ax = b are multiplied by a
nonzero scalar α.
(a) Does this change the true solution x?
(b) Does this change the residual vector r =
b−Ax for a given x?
(c) What conclusion can be drawn about as-
sessing the quality of a computed solution?

2.33 Suppose that both sides of a system of
linear equations Ax = b are premultiplied by
a nonsingular diagonal matrix.
(a) Does this change the true solution x?
(b) Can this affect the conditioning of the sys-
tem?
(c) Can this affect the choice of pivots in Gaus-
sian elimination?

2.34 With a singular matrix and the use of ex-
act arithmetic, at what point will the solution
process break down in solving a linear system
by Gaussian elimination
(a) With partial pivoting?
(b) Without pivoting?

2.35 (a) What is the difference between par-
tial pivoting and complete pivoting in Gaus-
sian elimination?
(b) State one advantage of each type of pivot-
ing relative to the other.

2.36 Consider the following matrix A, whose
LU factorization we wish to compute using
Gaussian elimination:

A =

 4 −8 1
6 5 7
0 −10 −3

 .
What will the initial pivot element be if
(a) No pivoting is used?
(b) Partial pivoting is used?
(c) Complete pivoting is used?

2.37 Give two reasons why pivoting is essen-
tial for a numerically stable implementation of
Gaussian elimination.

2.38 If A is an ill-conditioned matrix, and
its LU factorization is computed by Gaussian
elimination with partial pivoting, would you
expect the ill-conditioning to be reflected in
L, in U , or both? Why?

2.39 (a) What is the inverse of the following
matrix?

1 0 0 0
0 1 0 0
0 m1 1 0
0 m2 0 1

(b) How might such a matrix arise in compu-
tational practice?

REVIEW QUESTIONS 73

2.40 (a) Can every nonsingular n× n matrix
A be written as a product, A = LU , where L
is a lower triangular matrix and U is an upper
triangular matrix?
(b) If so, what is an algorithm for accomplish-
ing this? If not, give a counterexample to il-
lustrate.

2.41 Given an n × n nonsingular matrix A
and a second n×n matrix B, what is the best
way to compute the n× n matrix A−1B?

2.42 If A and B are n × n matrices, with A
nonsingular, and c is an n-vector, how would
you efficiently compute the product A−1Bc?

2.43 If A is an n × n matrix and x is an n-
vector, which of the following computations re-
quires less work? Explain.
(a) y = (xxT)A
(b) y = x (xT A)

2.44 How does the computational work in
solving an n × n triangular system of linear
equations compare with that for solving a gen-
eral n× n system of linear equations?

2.45 Assume that you have already computed
the LU factorization, A = LU , of the nonsin-
gular matrix A. How would you use it to solve
the linear system ATx = b?

2.46 If L is a nonsingular lower triangular
matrix, P is a permutation matrix, and b is
a given vector, how would you solve each of
the following linear systems?
(a) LPx = b

(b) PLx = b

2.47 In the plane R2, is it possible to have a
vector x 6= o such that ‖x‖1 = ‖x‖∞? If so,
give an example.

2.48 In the plane R2, is it possible to have
two vectors x and y such that ‖x‖1 > ‖y‖1,
but ‖x‖∞ < ‖y‖∞? If so, give an example.

2.49 In general, which matrix norm is easier
to compute, ‖A‖1 or ‖A‖2? Why?

2.50 (a) Is the magnitude of the determinant
of a matrix a good indicator of whether the
matrix is nearly singular?
(b) If so, why? If not, what is a better indica-
tor of near singularity?

2.51 (a) How is the condition number of a
matrix A defined for a given matrix norm?

(b) How is the condition number used in esti-
mating the accuracy of a computed solution to
a linear system Ax = b?

2.52 Why is computing the condition number
of a general matrix a nontrivial problem?

2.53 Give an example of a 3 × 3 matrix A,
other than the identity matrix I, such that
cond(A) = 1.

2.54 Suppose that the n × n matrix A is
perfectly well-conditioned, i.e., cond(A) = 1.
Which of the following matrices would then
necessarily share this same property?

(a) cA, where c is any nonzero scalar

(b) DA, where D is any nonsingular diagonal
matrix

(c) PA, where P is any permutation matrix

(d) BA, where B is any nonsingular matrix

(e) A−1, the inverse of A

(f) AT , the transpose of A

2.55 Let A = diag(1
2) be an n × n diagonal

matrix with all its diagonal entries equal to 1
2 .

(a) What is the value of det(A)?

(b) What is the value of cond(A)?

(c) What conclusion can you draw from these
results?

2.56 Suppose that the n × n matrix A is ex-
actly singular, but its floating-point represen-
tation, fl(A), is nonsingular. In this case, what
would you expect the order of magnitude of the
condition number cond(fl(A)) to be?

2.57 Classify each of the following matrices as
well-conditioned or ill-conditioned:

(a)
[

1010 0
0 10−10

]
(b)

[
1010 0

0 1010

]
(c)

[
10−10 0

0 10−10

]
(d)

[
1 2
2 4

]

74 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

2.58 Which of the following are good indica-
tors that a matrix is nearly singular?

(a) Its determinant is small.

(b) Its norm is small.

(c) Its norm is large.

(d) Its condition number is large.

2.59 In a floating-point system having 10 dec-
imal digits of precision, if Gaussian elimination
with partial pivoting is used to solve a linear
system whose matrix has a condition number
of 103, and whose input data are accurate to
full machine precision, about how many digits
of accuracy would you expect in the solution?

2.60 Assume that you are solving a system of
linear equations Ax = b on a computer whose
floating-point number system has 12 decimal
digits of precision, and that the problem data
are correct to full machine precision. About
how large can the condition number of the ma-
trix A be before the computed solution x will
contain no significant digits?

2.61 Under what circumstances does a small
residual vector r = b−Ax imply that x is an
accurate solution to the linear systemAx = b?

2.62 LetA be an arbitrary square matrix and
c an arbitrary scalar. Which of the following
statements must necessarily hold?

(a) ‖cA‖ = |c| · ‖A‖.
(b) cond(cA) = |c| · cond(A).

2.63 (a) What is the main difference between
Gaussian elimination and Gauss-Jordan elim-
ination?

(b) State one advantage of each type of elimi-
nation relative to the other.

2.64 Rank the following methods according to
the amount of work required for solving a gen-
eral system of linear equations of order n:

(a) Gauss-Jordan elimination

(b) Gaussian elimination with partial pivoting

(c) Cramer’s rule

(d) Explicit matrix inversion followed by
matrix-vector multiplication

2.65 (a) How much storage is required to
store an n× n matrix of rank one efficiently?

(b) How many arithmetic operations are re-
quired to multiply an n-vector by an n × n
matrix of rank one efficiently?

2.66 In a comparison of ordinary Gaussian
elimination with Gauss-Jordan elimination for
solving a linear system Ax = b,
(a) Which has a more expensive factorization?
(b) Which has a more expensive back-
substitution?
(c) Which has a higher cost overall?

2.67 For each of the following elimination al-
gorithms for solving linear systems, is there
any pivoting strategy that can guarantee that
all of the multipliers will be at most 1 in abso-
lute value?
(a) Gaussian elimination
(b) Gauss-Jordan elimination

2.68 What two properties of a matrix A to-
gether imply that A has a Cholesky factoriza-
tion?

2.69 List three advantages of Cholesky factor-
ization compared with LU factorization.

2.70 How many square roots are required to
compute the Cholesky factorization of an n×n
symmetric positive definite matrix?

2.71 Let A = {aij} be an n × n symmetric
positive definite matrix.
(a) What is the (1, 1) entry of its Cholesky
factor L?
(b) What is the (n, 1) entry of its Cholesky
factor L?

2.72 What is the Cholesky factorization of
the following matrix?[

4 2
2 2

]
2.73 (a) Is it possible, in general, to solve a
symmetric indefinite linear system at a cost
similar to that for using Cholesky factoriza-
tion to solve a symmetric positive definite lin-
ear system?
(b) If so, what is an algorithm for accomplish-
ing this? If not, why?

2.74 Give two reasons why iterative improve-
ment for solutions of linear systems is often
impractical to implement.

EXERCISES 75

2.75 Suppose you have already solved the
n × n linear system Ax = b by LU factoriza-
tion and back-substitution. What is the fur-
ther cost (order of magnitude will suffice) of
solving a new system

(a) With the same matrix A but a different
right-hand-side vector?
(b) With the matrix changed by adding a ma-
trix of rank one?
(c) With the matrix A changed completely?

Exercises

2.1 In Section 2.1.1, four defining properties
are given for a singular matrix. Show that
these four properties are indeed equivalent.

2.2 Suppose that each of the row sums of an
n× n matrix A is equal to zero. Show that A
must be singular.

2.3 Suppose that A is a singular n × n ma-
trix. Prove that if the linear system Ax = b
has at least one solution x, then it has in-
finitely many solutions.

2.4 (a) Show that the following matrix is
singular.

A =

 1 1 0
1 2 1
1 3 2

(b) If b = [2 4 6]T , how many solutions are
there to the system Ax = b?

2.5 What is the inverse of the following ma-
trix?

A =

 1 0 0
1 −1 0
1 −2 1

2.6 Let A be an n × n matrix such that
A2 = 0, the zero matrix. Show that A must
be singular.

2.7 Let

A =
[

1 1 + ε
1− ε 1

]
.

(a) What is the determinant of A?
(b) In floating-point arithmetic, for what range
of values of ε will the computed value of the
determinant be zero?
(c) What is the LU factorization of A?
(d) In floating-point arithmetic, for what
range of values of ε will the computed value
of U be singular?

2.8 Let A and B be any two n×n matrices.
(a) Prove that (AB)T = BTAT .
(b) If A and B are both nonsingular, prove
that (AB)−1 = B−1A−1.

2.9 Let A be any nonsingular matrix. Prove
that (A−1)T = (AT)−1. For this reason, the
notation A−T can be used unambiguously to
denote this matrix.

2.10 Let P be any permutation matrix.
(a) Prove that P−1 = P T .
(b) Prove that P can be expressed as a prod-
uct of pairwise interchanges.

2.11 Write out a detailed algorithm for solv-
ing a lower triangular linear system Lx = b by
forward-substitution.

2.12 Verify that the dominant term in the
operation count (number of multiplications or
number of additions) for solving a lower trian-
gular system of order n by forward substitution
is n2/2.

2.13 How would you solve a partitioned linear
system of the form[

L1 O
B L2

] [
x
y

]
=
[
b
c

]
,

where L1 and L2 are nonsingular lower tri-
angular matrices, and the solution and right-
hand-side vectors are partitioned accordingly?
Show the specific steps you would perform in
terms of the given submatrices and vectors.

2.14 Prove each of the four properties of el-
ementary elimination matrices enumerated in
Section 2.2.2.

2.15 (a) Prove that the product of two lower
triangular matrices is lower triangular.
(b) Prove that the inverse of a nonsingular
lower triangular matrix is lower triangular.

76 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

2.16 (a) What is the LU factorization of the
following matrix? [

1 a
c b

]
(b) Under what condition is this matrix singu-
lar?

2.17 Write out the LU factorization of the fol-
lowing matrix (show both the L and U matri-
ces explicitly): 1 −1 0

−1 2 −1
0 −1 1

 .
2.18 Prove that the matrix

A =
[

0 1
1 0

]
has no LU factorization, i.e., no lower triangu-
lar matrix L and upper triangular matrix U
exist such that A = LU .

2.19 Let A be an n × n nonsingular matrix.
Consider the following algorithm:

1. Scan columns 1 through n of A in succes-
sion, and permute rows, if necessary, so
that the diagonal entry is the largest en-
try in magnitude on or below the diagonal
in each column. The result is PA for some
permutation matrix P .

2. Now carry out Gaussian elimination with-
out pivoting to compute the LU factoriza-
tion of PA.

(a) Is this algorithm numerically stable?
(b) If so, explain why. If not, give a counterex-
ample to illustrate.

2.20 Prove that if Gaussian elimination with
partial pivoting is applied to a matrix A that
is diagonally dominant by columns, then no
row interchanges will occur.

2.21 If A, B, and C are n×n matrices, with
B and C nonsingular, and b is an n-vector,
how would you implement the formula

x = B−1(2A+ I)(C−1 +A)b

without computing any matrix inverses?

2.22 Verify that the dominant term in the
operation count (number of multiplications or
number of additions) for LU factorization of a
matrix of order n by Gaussian elimination is
n3/3.

2.23 Verify that the dominant term in the
operation count (number of multiplications or
number of additions) for computing the inverse
of a matrix of order n by Gaussian elimination
is n3.

2.24 Verify that the dominant term in the
operation count (number of multiplications or
number of additions) for Gauss-Jordan elimi-
nation for a matrix of order n is n3/2.

2.25 (a) If u and v are nonzero n-vectors,
prove that the n×n outer product matrix uvT

has rank one.
(b) IfA is an n×n matrix such that rank(A) =
1, prove that there exist nonzero n-vectors u
and v such that A = uvT .

2.26 An n×n matrix A is said to be elemen-
tary if it differs from the identity matrix by a
matrix of rank one, i.e., if A = I − uvT for
some n-vectors u and v.
(a) If A is elementary, what condition on u
and v ensures that A is nonsingular?
(b) If A is elementary and nonsingular, prove
that A−1 is also elementary by showing that
A−1 = I − σuvT for some scalar σ. What is
the specific value for σ, in terms of u and v?
(c) Is an elementary elimination matrix, as de-
fined in Section 2.2.2, elementary? If so, what
are u, v, and σ in this case?

2.27 Prove that the Sherman-Morrison for-
mula

(A− uvT)−1 =

A−1 +A−1u(1− vTA−1u)−1vTA−1

given in Section 2.2.8 is correct. (Hint : Mul-
tiply both sides by A− uvT .)

2.28 Prove that the Woodbury formula

(A−UV T)−1 =

A−1 +A−1U(1− V TA−1U)−1V TA−1

given in Section 2.2.8 is correct. (Hint : Mul-
tiply both sides by A−UV T .)

EXERCISES 77

2.29 Prove that the vector p-norms satisfy the
properties given in Section 2.3.1 for p = 1, 2,
and ∞.

2.30 Prove that the matrix p-norms satisfy
the properties given in Section 2.3.2 for p = 1
and ∞.

2.31 Let A be a symmetric positive definite
matrix. Show that the function

‖x‖A = (xTAx)1/2

satisfies the three properties of a vector norm
given in Section 2.3.1. This vector norm is said
to be induced by the matrix A.

2.32 Show that the following functions sat-
isfy the first three properties of a matrix norm
given in Section 2.3.2 and hence are matrix
norms in the more general sense mentioned
there.

(a)
‖A‖max = max

i,j
|aij |

Note that this is simply the∞-norm of A con-
sidered as a vector in Rn

2
.

(b)

‖A‖F =

∑
i,j

|aij |2
1/2

Note that this is simply the 2-norm of A con-
sidered as a vector in R

n2
. It is called the

Frobenius norm.

2.33 Prove or give a counterexample: If A is
a nonsingular matrix, then ‖A−1‖ = ‖A‖−1.

2.34 Suppose thatA is a positive definite ma-
trix.

(a) Show that A must be nonsingular.

(b) Show that A−1 must be positive definite.

2.35 Suppose that the matrix A has a factor-
ization of the form A = BBT , with B non-
singular. Show that A must be symmetric and
positive definite.

2.36 Derive an algorithm for computing the
Cholesky factorization LLT of an n × n sym-
metric positive definite matrix A by equating
the corresponding entries of A and LLT .

2.37 Suppose that the symmetric matrix

B =
[
α aT

a A

]
of order n+ 1 is positive definite.

(a) Show that the scalar α must be positive
and the n× n matrix A must be positive defi-
nite.

(b) What is the Cholesky factorization of B in
terms of α, a, and the Cholesky factorization
of A?

2.38 Suppose that the symmetric matrix

B =
[
A a
aT α

]
of order n+ 1 is positive definite.

(a) Show that the scalar α must be positive
and the n× n matrix A must be positive defi-
nite.

(b) What is the Cholesky factorization of B in
terms of the constituent submatrices?

2.39 Verify that the dominant term in the
operation count (number of multiplications or
number of additions) for Cholesky factoriza-
tion of a symmetric positive definite matrix of
order n is n3/6.

2.40 Let A be a band matrix with band-
width β, and suppose that the LU factoriza-
tion PA = LU is computed using Gaussian
elimination with partial pivoting. Show that
the bandwidth of the upper triangular factor
U is at most 2β.

2.41 Let A be a nonsingular tridiagonal ma-
trix.

(a) Show that in general A−1 is dense.

(b) Compare the work and storage required in
this case to solve the linear system Ax = b
by Gaussian elimination and back-substitution
with those required to solve the system by ex-
plicit matrix inversion.

This example illustrates yet another reason
why explicit matrix inversion is usually a bad
idea.

78 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

2.42 (a) Devise an algorithm for computing
the inverse of a nonsingular n × n triangular
matrix in place, i.e., with no additional array
storage.
(b) Is it possible to compute the inverse of a
general nonsingular n × n matrix in place? If
so, sketch an algorithm for doing so, and if not,
explain why. For purposes of this exercise, you
may assume that pivoting is not required.

2.43 Suppose you need to solve the linear sys-
tem Cz = d, where C is a complex n× n ma-

trix and d and z are complex n-vectors, but
your linear equation solver handles only real
systems. Let C = A + iB and d = b + ic,
where A, B, b, and c are real and i =

√
−1.

Show that the solution z = x+ iy is given by
the 2n× 2n real linear system[

A −B
B A

] [
x
y

]
=
[
b
c

]
.

Is this a good way to solve this problem? Why?

Computer Problems

2.1 (a) Show that the matrix

A =

 0.1 0.2 0.3
0.4 0.5 0.6
0.7 0.8 0.9

is singular. Describe the set of solutions to the
system Ax = b if

b =

 0.1
0.3
0.5

 .
(b) If we were to use Gaussian elimination with
partial pivoting to solve this system using ex-
act arithmetic, at what point would the pro-
cess fail?
(c) Since some of the entries of A are not ex-
actly representable in a binary floating-point
system, the matrix is no longer exactly singu-
lar when entered into a computer; thus, solv-
ing the system by Gaussian elimination will
not necessarily fail. Solve this system on a
computer using a library routine for Gaussian
elimination. Compare the computed solution
with your description of the solution set in part
a. If your software includes a condition estima-
tor, what is the estimated value for cond(A)?
How many digits of accuracy in the solution
would this lead you to expect?

2.2 (a) Use a library routine for Gaussian
elimination to solve the system Ax = b, where

A =

 2 4 −2
4 9 −3
−2 −1 7

 , b =

 2
8

10

 .

(b) Use the LU factorization ofA already com-
puted to solve the system Ay = c, where

c =

 4
8
−6

 ,
without refactoring the matrix.

(c) If the matrix A changes so that a1,2 = 2,
use the Sherman-Morrison updating technique
to compute the new solution x without refac-
toring the matrix, using the original right-
hand-side vector b.

2.3 The following diagram depicts a plane
truss having 13 members (the numbered lines)
connected by 10 joints (the numbered circles).
The indicated loads, in tons, are applied at
joints 2, 5, and 6, and we wish to determine the
resulting force on each member of the truss.

1
...
..... 2

...
.....

3
...
..... 4

...
.....

5
...
..... 6

...
.....

7
...
.....

8
...
.....

1

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.......

2
..

3

........

........

........

........

........

........

........

........

........

....

4..

5

...

6
..

7

........

........

........

........

........

........

........

........

........

....

8..

9

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.......

10
..

11

........

........

........

........

........

........

........

........

........

....

12

...

13
..

10

..
........
..
........
........
..

15

..
........
..
........
........
..

20

..
........
..
........
........
..

For the truss to be in static equilibrium, there
must be no net force, horizontally or vertically,
at any joint. Thus, we can determine the mem-
ber forces by equating the horizontal forces to
the left and right at each joint, and similarly
equating the vertical forces upward and down-
ward at each joint. For the eight joints, this
would give 16 equations, which is more than

COMPUTER PROBLEMS 79

the 13 unknown forces to be determined. For
the truss to be statically determinate, that is,
for there to be a unique solution, we assume
that joint 1 is rigidly fixed both horizontally
and vertically, and that joint 8 is fixed verti-
cally. Resolving the member forces into hor-
izontal and vertical components and defining
α =

√
2/2, we obtain the following system of

equations for the member forces fi:

Joint 2 :
{
f2 = f6

f3 = 10

Joint 3 :
{
αf1 = f4 + αf5

αf1 + f3 + αf5 = 0

Joint 4 :
{
f4 = f8

f7 = 0

Joint 5 :
{
αf5 + f6 = αf9 + f10

αf5 + f7 + αf9 = 15

Joint 6 :
{
f10 = f13

f11 = 20

Joint 7 :
{
f8 + αf9 = αf12

αf9 + f11 + αf12 = 0
Joint 8 :

{
f13 + αf12 = 0

Use a library routine to solve this system of
linear equations for the vector f of member
forces. Note that the matrix of this system
is quite sparse, so you may wish to experi-
ment with a band solver or more general sparse
solver, although this particular problem in-
stance is too small for these to offer significant
advantage over a general solver.

2.4 Write a routine for estimating the condi-
tion number of a matrixA. You may use either
the 1-norm or the ∞-norm (or try both and
compare the results). You will need to com-
pute ‖A‖, which is easy, and estimate ‖A−1‖,
which is more challenging. As discussed in Sec-
tion 2.3.3, one way to estimate ‖A−1‖ is to
pick a vector y such that the ratio ‖z‖/‖y‖ is
large, where z is the solution to Az = y. Try
two different approaches to picking y:
(a) Choose y as the solution to the system
ATy = c, where c is a vector each of whose
components is ±1, with the sign for each com-
ponent chosen by the following heuristic. Us-
ing the factorization A = LU , the system
ATy = c is solved in two stages, successively
solving the triangular systems UTv = c and
LTy = v. At each step of the first triangular
solution, choose the corresponding component

of c to be 1 or −1, depending on which will
make the resulting component of v larger in
magnitude. (You will need to write a custom
triangular solution routine to implement this.)
Then solve the second triangular system in the
usual way for y. The idea here is that any
ill-conditioning in A will be reflected in U , re-
sulting in a relatively large v. The relatively
well-conditioned unit triangular matrix L will
then preserve this relationship, resulting in a
relatively large y.
(b) Choose some small number, say, five, dif-
ferent vectors y randomly and use the one pro-
ducing the largest ratio ‖z‖/‖y‖. (For this you
can use an ordinary triangular solution rou-
tine.)
You may use a library routine to obtain the
necessary LU factorization of A. Test your
program on the following matrices:

A =
[

0.641 0.242
0.321 0.121

]
,

B =

 10 −7 0
−3 2 6

5 −1 5

 .
How do the results using these two methods
compare? To check the quality of your esti-
mates, compute A−1 explicitly to determine
its true norm (this computation can also make
use of the LU factorization already computed).
If you have access to linear equations software
that already includes a condition estimator,
how do your results compare with its?

2.5 (a) Use a single-precision routine for
Gaussian elimination to solve the system
Ax = b, where

A =

21.0 67.0 88.0 73.0
76.0 63.0 7.0 20.0
0.0 85.0 56.0 54.0

19.3 43.0 30.2 29.4

 ,

b =

141.0
109.0
218.0
93.7

 .
(b) Compute the residual r = b − Ax using
double-precision arithmetic, if available (but
storing the final result in a single-precision vec-
tor r). Note that the solution routine may

80 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

destroy the array containing A, so you may
need to save a separate copy for computing
the residual. (If only one precision is available
in the computing environment you use, then
do all of this problem in that precision.)
(c) Solve the linear system Az = r to obtain
the “improved” solution x + z. Note that A
need not be refactored.
(d) Repeat steps b and c until no further im-
provement is observed.

2.6 An n × n Hilbert matrix H has entries
hij = 1/(i+ j − 1), so it has the form

1 1
2

1
3 · · ·

1
2

1
3

1
4 · · ·

1
3

1
4

1
5 · · ·

...
...

...
. . .

 .
For n = 2, 3, . . ., generate the Hilbert ma-
trix of order n, and also generate the n-vector
b = Hx, where x is the n-vector with all of its
components equal to 1. Use a library routine
for Gaussian elimination (or Cholesky factor-
ization, since the Hilbert matrix is symmetric
and positive definite) to solve the resulting lin-
ear systemHx = b, obtaining an approximate
solution x̂. Compute the∞-norm of the resid-
ual r = b−Hx̂ and of the error ∆x = x̂−x,
where x is the vector of all ones. How large
can you take n before the error is 100 percent
(i.e., there are no significant digits in the solu-
tion)? Also use a condition estimator to obtain
cond(H) for each value of n. Try to charac-
terize the condition number as a function of
n. As n varies, how does the number of cor-
rect digits in the components of the computed
solution relate to the condition number of the
matrix?

2.7 (a) What happens when Gaussian elimi-
nation with partial pivoting is used on a matrix
of the following form?

1 0 0 0 1
−1 1 0 0 1
−1 −1 1 0 1
−1 −1 −1 1 1
−1 −1 −1 −1 1

Do the entries of the transformed matrix grow?
What happens if complete pivoting is used in-
stead? (Note that part a does not require a
computer.)

(b) Use a library routine for Gaussian elimi-
nation with partial pivoting to solve various
sizes of linear systems of this form, using right-
hand-side vectors chosen so that the solution
is known. How do the error, residual, and con-
dition number behave as the systems become
larger? This artificially contrived system il-
lustrates the worst-case growth factor cited in
Section 2.4.1 and is not indicative of the usual
behavior of Gaussian elimination with partial
pivoting.

2.8 Multiplying both sides of a linear sys-
tem Ax = b by a nonsingular diagonal matrix
D to obtain a new system DAx = Db sim-
ply rescales the rows of the system and in the-
ory does not change the solution. Such scaling
does affect the condition number of the matrix
and the choice of pivots in Gaussian elimina-
tion, however, so it may affect the accuracy
of the solution in finite-precision arithmetic.
Note that scaling can introduce some round-
ing error in the matrix unless the entries of
D are powers of the base of the floating-point
arithmetic system being used (why?).

Using a linear system with randomly chosen
matrix A, and right-hand-side vector b cho-
sen so that the solution is known, experiment
with various scaling matrices D to see what
effect they have on the condition number of
the matrix DA and the solution given by a
library routine for solving the linear system
DAx = Db. Be sure to try some fairly skewed
scalings, where the magnitudes of the diago-
nal entries of D vary widely (the purpose is
to simulate a system with badly chosen units).
Compare both the relative residuals and the
error given by the various scalings. Can you
find a scaling that gives very poor accuracy?
Is the residual still small in this case?

2.9 (a) Use Gaussian elimination without
pivoting to solve the linear system[

ε 1
1 1

] [
x1

x2

]
=
[

1 + ε
2

]
for ε = 10−2k, k = 1, . . . , 10. The exact solu-
tion is x = [1 1]T , independent of the value
of ε. How does the accuracy of the computed
solution behave as the value of ε decreases?

COMPUTER PROBLEMS 81

(b) Repeat part a, still using Gaussian elimi-
nation without pivoting, but this time use one
iteration of iterative refinement to improve the
solution, computing the residual in the same
precision as the rest of the computations. Now
how does the accuracy of the computed solu-
tion behave as the value of ε decreases?

2.10 Consider the linear system[
1 1 + ε

1− ε 1

] [
x1

x2

]
=
[

1 + (1 + ε)ε
1

]
,

where ε is a small parameter to be specified.
The exact solution is obviously

x =
[

1
ε

]
for any value of ε.
Use a library routine based on Gaussian elim-
ination to solve this system. Experiment with
various values for ε, especially values near√
εmach for your computer. For each value of ε

you try, compute an estimate of the condition
number of the matrix and the relative error
in each component of the solution. How accu-
rately is each component determined? How
does the accuracy attained for each compo-
nent compare with expectations based on the
condition number of the matrix and the error
bounds given in Section 2.4.2? What conclu-
sions can you draw from this experiment?

2.11 (a) Write programs implementing Gaus-
sian elimination with no pivoting, partial piv-
oting, and complete pivoting.
(b) Generate several linear systems with ran-
dom matrices (i.e., use a random number gen-
erator to obtain the matrix entries) and right-
hand sides chosen so that the solutions are
known, and compare the accuracy, residuals,
and performance of the three implementations.
(c) Can you devise a (nonrandom) matrix for
which complete pivoting is significantly more
accurate than partial pivoting?

2.12 Write a routine for solving tridiagonal
systems of linear equations using the algorithm
given in Section 2.5.3 and test it on some sam-
ple systems. Describe how your routine would
change if you included partial pivoting. De-
scribe how your routine would change if the

system were positive definite and you com-
puted the Cholesky factorization instead of the
LU factorization.

2.13 The determinant of a triangular matrix
is equal to the product of its diagonal entries.
Use this fact to develop a routine for comput-
ing the determinant of an arbitrary n× n ma-
trix A by using its LU factorization. You may
use a library routine for Gaussian elimination
with partial pivoting to obtain the LU factor-
ization, or you may design your own routine.
How can you determine the proper sign for the
determinant? To avoid risk of overflow or un-
derflow, you may wish to consider computing
the logarithm of the determinant instead of the
actual value of the determinant.

2.14 Write programs implementing matrix
multiplication C = AB, where A is m × n
and B is n× k, in two different ways:

(a) Compute the mk inner products of rows of
A with columns of B,

(b) Form each column of C as a linear combi-
nation of columns of A.

In BLAS terminology (see Section 2.7.2), the
first implementation uses sdot, whereas the
second uses saxpy. Compare the performance
of these two implementations on your com-
puter. You may need to try fairly large matri-
ces before the differences in performance be-
come significant. Find out as much as you can
about your computer system (e.g., cache size
and cache management policy), and use this
information to explain the results you observe.

2.15 Implement Gaussian elimination using
each of the six different orderings of the triple-
nested loop and compare their performance on
your computer. For purposes of this exercise,
you may ignore pivoting for numerical stabil-
ity, but be sure to use test matrices that do not
require pivoting. You may need to try a fairly
large system before the differences in perfor-
mance become significant. Find out as much
as you can about your computer system (e.g.,
cache size and cache management policy), and
use this information to explain the results you
observe.

82 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

2.16 Both forward- and back-substitution
for solving triangular linear systems involve
nested loops whose two indices can be taken
in either order. Implement both forward- and
back-substitution using each of the two in-
dex orderings (a total of four algorithms), and
compare their performance for triangular test
matrices of various sizes. You may need to try
a fairly large system before the differences in
performance become significant. Is the best
choice of index orderings the same for both
algorithms? Find out as much as you can
about your computer system (e.g., cache size
and cache management policy), and use this
information to explain the results you observe.

2.17 Consider a horizontal cantilevered beam
that is clamped at one end but free along the
remainder of its length. A discrete model of
the forces on the beam yields a system of lin-
ear equations Ax = b, where the n×n matrix
A has the banded form

9 −4 1 0 · · · · · · 0

−4 6 −4 1
. . .

...

1 −4 6 −4 1
. . .

...

0
. 0

...
. . . 1 −4 6 −4 1

...
. . . 1 −4 5 −2

0 · · · · · · 0 1 −2 1

,

the n-vector b is the known load on the bar
(including its own weight), and the n-vector x
represents the resulting deflection of the bar

that is to be determined. We will take the bar
to be uniformly loaded, with bi = 1 for each
component of the load vector.
(a) Letting n = 100, solve this linear sys-
tem using both a standard library routine for
dense linear systems and a library routine de-
signed for band (or more general sparse) sys-
tems. How do the two routines compare in the
time required to compute the solution? How
well do the answers obtained agree with each
other?
(b) Verify that the matrix A has the UL fac-
torization A = RRT , where R is an upper
triangular matrix of the form

2 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. 0
...

. . . 1 −2 1
...

. . . 1 −2
0 · · · · · · · · · 0 1

.

Letting n = 1000, solve the linear system using
this factorization (two triangular solves will be
required). Also solve the system in its original
form using a band solver as in part a. How
well do the answers obtained agree with each
other? Which approach seems more accurate?
What is the condition number of A, and what
accuracy does it suggest that you should ex-
pect? Try iterative refinement to see if the
accuracy or residual improves for the less ac-
curate method.

Chapter 3

Linear Least Squares

What meaning should we attribute to a system of linear equations Ax = b if the matrix A
is not square? Since a nonsquare matrix cannot have an inverse, the system of equations
must have either no solution or a nonunique solution. Nevertheless, it is often useful to
define a unique vector x that satisfies the linear system in an approximate sense. In this
chapter we will see how such problems arise and consider methods for solving them.

Let A be an m × n matrix. We will be concerned primarily with the most commonly
occurring case, m > n, which is called overdetermined because there are more equations
than unknowns. Such a system usually has no exact solution in the usual sense. Later on
we will also briefly consider the underdetermined case, m < n, with fewer equations than
unknowns.

3.1 Data Fitting

Perhaps the most common source of overdetermined linear systems is data fitting , espe-
cially when the data have some random error associated with them, as do most empirical
laboratory measurements or other observations of nature. Given m data points (ti, yi), we
wish to find the n-vector x of parameters that gives the “best fit” to the model function
f(t,x), where f :Rn+1 → R. By best fit we mean

min
x

m∑
i=1

(yi − f(ti,x))2,

which is called a least squares solution because the sum of squares of differences between
model and data is minimized. Such a problem is usually known as regression analysis in
statistics. Note that the quantity being minimized is just the square of the Euclidean 2-
norm. Other norms, such as the 1-norm or ∞-norm, can be used instead, but they are less
convenient computationally and give different results with different statistical properties.

A least squares problem is linear if the function f is linear in the components of the
parameter vector x, which means that f is a linear combination

f(t,x) = x1φ1(t) + x2φ2(t) + · · ·+ xnφn(t)

83

84 CHAPTER 3. LINEAR LEAST SQUARES

of functions φj that depend only on t.

Example 3.1 Data Fitting. Polynomial fitting, with

f(t,x) = x1 + x2t+ x3t
2 + · · ·+ xnt

n−1,

is a linear least squares problem because a polynomial is linear in its coefficients xj , although
nonlinear in the independent variable t. An example of a nonlinear least squares data-fitting
problem is a sum of exponentials

f(t,x) = x1e
x2t + · · ·+ xn−1e

xnt.

We will consider nonlinear least squares problems in Section 6.4, but in this chapter we
will confine our attention to linear least squares problems. We will be concerned only with
numerical algorithms for solving least squares problems. For the many important statistical
considerations in formulating least squares problems and in interpreting the results, consult
any book on regression analysis or multivariate statistics.

3.2 Linear Least Squares

A linear least squares data-fitting problem can be written in matrix notation as

Ax ≈ b,

where aij = φj(ti) and bi = yi. For example, in fitting a quadratic polynomial, which has
three parameters, to the five data points (t1, y1), . . . , (t5, y5), the matrix A is 5× 3, and the
problem has the form

Ax =

1 t1 t21
1 t2 t22
1 t3 t23
1 t4 t24
1 t5 t25

x1

x2

x3

 ≈

y1

y2

y3

y4

y5

 = b.

A matrix A of this particular form, whose columns (or rows) are successive powers of some
independent variable, is called a Vandermonde matrix .

In least squares problems we write Ax ≈ b rather than Ax = b because the “equation”
is not usually satisfiable exactly. The approximate nature of least squares solutions should
not disturb us, however, because the goal is to smooth out random errors in the data
and capture the underlying trend. The method of least squares was developed by Gauss
for solving problems in astronomy, particularly determining the orbits of celestial bodies
such as planets and comets. The elliptical orbit of such a body is determined by five
parameters, so in principle only five observations of its position should be necessary to
determine the complete orbit. Owing to measurement errors, however, an orbit based on
only five observations would be highly unreliable. Instead, many more observations are

3.3. NORMAL EQUATIONS METHOD 85

taken and a least squares fit performed in order to smooth out the errors and obtain more
accurate values for the orbital parameters.

As we will see, an m × n linear least squares problem Ax ≈ b has a unique solution
provided that rank(A) = n (i.e., the columns of A are linearly independent). If rank(A) <
n, then A is said to be rank-deficient , and the corresponding linear least squares problem
does not have a unique solution. We will consider the implications of rank deficiency later,
but for now we will assume that A has full rank.

Example 3.2 Linear Least Squares Data Fitting. We illustrate linear least squares
by fitting a quadratic polynomial to the following five data points:

t −1.0 −0.5 0.0 0.5 1.0
y 1.0 0.5 0.0 0.5 2.0

The overdetermined 5× 3 linear system is therefore

Ax =

1 −1.0 1.0
1 −0.5 0.25
1 0.0 0.0
1 0.5 0.25
1 1.0 1.0

x1

x2

x3

 ≈

1.0
0.5
0.0
0.5
2.0

 = b.

The solution to this system, which we will see later how to compute, turns out to be
x = [0.086 0.40 1.4]T , which means that the approximating polynomial is

p(t) = 0.086 + 0.4t+ 1.4t2.

The resulting curve and the original data points are shown in Fig. 3.1. The least squares
solution minimizes the sum of squares of vertical distances between the data points and the
curve over all possible quadratic polynomials.

−1 0 1

1

2

...
.........................

.....................
.................

................
..............

...............
............
............
.............
...........
...........
............
...........
...........
...........
...........
..........
..........
..........
...........
..........
..........
..........
..........
..........
.........
.........
.........
.........
...

•

•

•

•

•

t

y

Figure 3.1: Least squares fit of a quadratic polynomial to the given data.

3.3 Normal Equations Method

The classical method for solving least squares problems, due to Gauss, can be derived in a
variety of ways. We first show how it can be derived using calculus. In matrix notation, the

86 CHAPTER 3. LINEAR LEAST SQUARES

least squares criterion for data fitting can be expressed as minimizing the squared Euclidean
norm

‖r‖22 = rTr

of the residual vector
r = b−Ax.

To minimize

‖r‖22 = rTr = (b−Ax)T (b−Ax) = bTb− 2xTATb+ xTATAx,

we take the derivative with respect to x and set it to zero:

2ATAx− 2ATb = o,

which reduces to an n× n square linear system

ATAx = ATb,

commonly known as the system of normal equations. The name comes from the fact that the
(i, j) entry of the matrix ATA is the inner product of the ith and jth columns of A; for this
reason ATA is also sometimes called the cross-product matrix of A. Provided rank(A) = n
(i.e., the columns of A are linearly independent), the matrix ATA is nonsingular, so that
the system of normal equations has a unique solution, which is also the unique solution to
the original least squares problem.

3.3.1 Orthogonality

A more geometric derivation of the normal equations is based on the concept of orthogo-
nality. Two vectors y and z are said to be orthogonal to each other, which is a synonym
for perpendicular or normal, if their inner product is zero, yTz = o.

Since the matrix A has n columns, the space spanned by the columns of A (i.e., the
set of all vectors of the form Ax), known as the column space or range space of A, is of
dimension n at most. In the usual case for least squares, m > n, this fact implies that the
m-vector b generally does not lie in the column space of A, and hence there is no exact
solution to the equation Ax = b. Rather than an exact solution, however, in least squares
problems we seek the vector in the column space of A that is closest to b (in the Euclidean
norm), which is given by the orthogonal projection of b onto the column space of A. For
this vector, the residual r = b−Ax is orthogonal to the column space of A. Thus, we have

o = ATr = AT (b−Ax),

or
ATAx = ATb,

which is again the system of normal equations. The geometric relationships we have just
described are shown in Fig. 3.2. This interpretation also suggests when the least squares
solution will be unique, for the orthogonal projection of b onto the column space of A will
have a unique representation of the form Ax if and only if the columns of A are linearly
independent.

3.3. NORMAL EQUATIONS METHOD 87

...
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
...

...
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
....................................

..........................

..............................

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

Ax

b r = b−Ax

Figure 3.2: Geometric depiction of a linear least squares problem.

3.3.2 Normal Equations Method

If A has full column rank, then the matrix ATA is nonsingular. Therefore, the n×n system
of normal equations

ATAx = ATb

can be used to obtain the solution x to the linear least squares problem Ax ≈ b. In
fact, in this case ATA is symmetric and positive definite, so we can compute its Cholesky
factorization,

ATA = LLT ,

where L is lower triangular. The solution x to the least squares problem can then be
computed by solving the triangular systems Ly = ATb and LTx = y.

The normal equations method is an example of the general strategy noted earlier, where
a difficult problem is converted to successively easier ones having the same solution. In this
case, the sequence of problem transformations is

Rectangular −→ square −→ triangular.

Unfortunately, this method also illustrates another important fact, namely, that a problem
transformation that is legitimate theoretically is not always advisable numerically, as we
will see shortly.

Example 3.3 Normal Equations Method. We illustrate the normal equations method
by using it to solve the quadratic polynomial data-fitting problem given in Example 3.2:

ATA =

 1 1 1 1 1
−1.0 −0.5 0.0 0.5 1.0

1.0 0.25 0.0 0.25 1.0

1 −1.0 1.0
1 −0.5 0.25
1 0.0 0.0
1 0.5 0.25
1 1.0 1.0

 =

 5.0 0.0 2.5
0.0 2.5 0.0
2.5 0.0 2.125

 ,

ATb =

 1 1 1 1 1
−1.0 −0.5 0.0 0.5 1.0

1.0 0.25 0.0 0.25 1.0

1.0
0.5
0.0
0.5
2.0

 =

 4.0
1.0
3.25

 .

88 CHAPTER 3. LINEAR LEAST SQUARES

We previously computed the Cholesky factorization of this symmetric positive definite ma-
trix in Example 2.12: 5.0 0.0 2.5

0.0 2.5 0.0
2.5 0.0 2.125

 =

 2.236 0 0
0 1.581 0

1.118 0 0.935

 2.236 0 1.118
0 1.581 0
0 0 0.935

 = LLT .

Solving the lower triangular system Ly = ATb by forward substitution, we obtain

y =

 1.789
0.632
1.336

 .
Finally, solving the upper triangular system LTx = y by back-substitution, we obtain

x =

 0.086
0.400
1.429

 .

In theory the system of normal equations gives the exact solution to a linear least squares
problem, but in practice this system can provide disappointingly inaccurate results. Some
of the potential difficulties are these:

1. Information can be lost in forming the normal equations matrix and right-hand-side
vector. For example, take

A =

 1 1
ε 0
0 ε

 ,
where ε is a positive number smaller than the square root of machine precision,

√
εmach,

in a given floating-point system. Then

ATA =
[

1 + ε2 1
1 1 + ε2

]
,

so that in floating-point arithmetic

fl(ATA) =
[

1 1
1 1

]
,

which is exactly singular.
2. The sensitivity of the solution is worsened, in that the condition of the normal equations

matrix is worse than that of the original matrix A. Specifically, the condition number
of the matrix is squared:

cond(ATA) = [cond(A)]2.

(We will see in Section 4.5.2 how to assign a condition number to a rectangular matrix.
For now, think of it as a measure of the distance to the closest rank-deficient matrix.)

These shortcomings do not make the normal equations method useless, but they are cause
for concern and provide motivation for seeking more numerically robust methods for linear
least squares problems.

3.4. ORTHOGONALIZATION METHODS 89

3.3.3 Augmented System Method

The augmented system method is a variant of the normal equations method that can be use-
ful in some situations. Together, the definition of the residual vector r and the requirement
that the residual be orthogonal to the columns of A give the system of two equations

r +Ax = b,

ATr = o,

which can be written in matrix form as the (m+ n)× (m+ n) augmented system[
I A
AT O

] [
r
x

]
=
[
b
o

]
,

whose solution yields both the desired vector x and the residual vector r.
At first glance, this method does not look promising: The augmented system is sym-

metric but not positive definite, it is larger than the original system, and it requires that we
store two copies of A. Moreover, if we simply pivot along the diagonal (equivalent to block
elimination in the block 2× 2 system), we reproduce the normal equations, whose potential
numerical shortcomings we have already observed. The one advantage we have gained is
that other pivoting strategies are now available, which can be beneficial for numerical or
other reasons.

The selection of pivots in computing a symmetric indefinite (see Section 2.5.2) or LU
factorization of the augmented system matrix will obviously depend on the relative magni-
tudes of the entries in the upper and lower block rows. Since the relative scales of r and x
are arbitrary, we introduce a scaling parameter α for the residual, giving the new system[

αI A
AT O

] [
r/α
x

]
=
[
b
o

]
.

The parameter α controls the relative weights of the entries in the two subsystems in
choosing pivots from either. A reasonable rule of thumb is to take

α = max
i,j
|aij |/1000,

but some experimentation may be required to determine the best value.
A straightforward implementation of this method can be prohibitive in cost [proportional

to (m+ n)3], so the special structure of the augmented matrix must be carefully exploited.
For example, the augmented system method is used effectively in MATLAB for large sparse
linear least squares problems.

3.4 Orthogonalization Methods

Owing to the potential numerical difficulties with the normal equations system, we need
an alternative method that does not require formation of the normal equations matrix
and right-hand-side vector. Thus, we seek a more numerically robust transformation that
produces a new problem whose solution is the same as that of the original least squares
problem but is more easily computed. We will see that, as with square linear systems,
triangular form is a suitable target in simplifying least squares problems. To preserve the
solution, however, we will need a new type of transformation to achieve triangular form.

90 CHAPTER 3. LINEAR LEAST SQUARES

3.4.1 Triangular Least Squares Problems

As we did with square linear systems, let us consider a least squares problem having an
upper triangular matrix. In the overdetermined case, where m > n, such a problem has the
form [

R
O

]
x ≈

[
b1

b2

]
,

where R is an n×n upper triangular matrix and where we have partitioned the right-hand-
side vector b similarly. Then we have

‖r‖22 = ‖b−Ax‖22 = ‖b1 −Rx‖22 + ‖b2‖22.

We have no control over the second term, ‖b2‖22, in the foregoing sum, but the first term
can be forced to be zero by choosing x to satisfy the triangular system

Rx = b1,

which can be solved for x by back-substitution. We have therefore found the least squares
solution x and can also conclude that the minimum sum of squares is

‖r‖22 = ‖b2‖22.

3.4.2 Orthogonal Transformations

Reducing a matrix to triangular form via Gaussian elimination is not appropriate for solving
least squares problems, for such a transformation does not preserve the Euclidean norm
and hence does not preserve the solution to the problem. We now define a type of linear
transformation that does preserve the Euclidean norm.

A matrix Q is said to be orthogonal if its columns are orthonormal, i.e., if QTQ = I,
the identity matrix. An orthogonal transformation Q preserves the Euclidean norm of any
vector x, since

‖Qx‖22 = (Qx)TQx = xTQTQx = xTx = ‖x‖22.
Orthogonal matrices can transform vectors in various ways, such as rotation or reflection;
but they do not change the Euclidean length of a vector. Hence, they preserve the solution
to a linear least squares problem.

Orthogonal matrices are of great importance in many areas of numerical computation
because their norm-preserving property means that they do not amplify error. Thus, for
example, orthogonal transformations can be used to solve square linear systems without
the need for pivoting for numerical stability. Unfortunately, orthogonalization methods are
significantly more expensive computationally than methods based on Gaussian elimination,
so their superior numerical properties come at a price that may or may not be worthwhile,
depending on context.

3.4.3 QR Factorization

Given an m× n matrix A, with m ≥ n, we seek an m×m orthogonal matrix Q such that

A = Q

[
R
O

]
,

3.4. ORTHOGONALIZATION METHODS 91

where R is n×n and upper triangular. Such a QR factorization transforms the linear least
squares problem Ax ≈ b into a triangular least squares problem having the same solution
because

‖b−Ax‖2 = ‖b−Q
[
R
O

]
x‖2 = ‖QTb−

[
R
O

]
x‖2.

As with Gaussian elimination, we wish to introduce zeros successively into the matrix A,
eventually reaching upper triangular form, but do so using orthogonal transformations. A
number of methods are possible, including

• Householder transformations (elementary reflectors)
• Givens transformations (plane rotations)
• Gram-Schmidt orthogonalization

We will focus mainly on the use of Householder transformations, the most popular and
generally the most effective approach in this context; but we will sketch the other two
methods as well.

QR factorization has many other uses besides solving least squares problems. For ex-
ample, if we partition Q into Q1, containing the first n columns, and Q2, containing the
remaining m− n columns, then we have

A = Q

[
R
O

]
= [Q1 Q2]

[
R
O

]
= Q1R.

Thus, if A has full column rank, so that R is nonsingular, then the columns of Q1 form an
orthonormal basis for the range space of A; and the columns of Q2 form an orthonormal
basis for its orthogonal complement, which is the same as the null space of AT (i.e., the
set of all vectors x such that ATx = o). Such orthonormal bases are useful in eigenvalue
computations, optimization, and many other problems, as we will see.

3.4.4 Householder Transformations

A Householder transformation H is a matrix of the form

H = I − 2
vvT

vTv
,

where v is a nonzero vector. From the definition, we see that H = HT = H−1, so that
H is both orthogonal and symmetric. Given a vector a, we wish to choose the vector v so
that

Ha =

α
0
...
0

 = α

1
0
...
0

 = αe1.

Using the formula for H, we have

αe1 = Ha = (I − 2
vvT

vTv
)a = a− v2vTa

vTv
,

92 CHAPTER 3. LINEAR LEAST SQUARES

and hence

v = (a− αe1)
vTv

2vTa
.

But the scalar factor is irrelevant in determining v, since it divides out in the formula for
H anyway, so we can take

v = a− αe1.

To preserve the norm, we must have α = ±‖a‖2, and the sign should be chosen to avoid
cancellation. Another potential numerical difficulty is that the computation of ‖a‖2 could
incur unnecessary overflow or underflow if the components of a are very large or very small.
Dividing a at the outset by its component of largest magnitude avoids this problem. Again,
such a scale factor does not change the resulting transformation H.

Example 3.4 Householder Transformation. To illustrate the construction just de-
scribed, we determine a Householder transformation that annihilates all but the first com-
ponent of the vector

a =

 2
1
2

 .
Following the foregoing recipe, we choose the vector

v = a− αe1 =

 2
1
2

− α
 1

0
0

 =

 2
1
2

−
α0

0

 ,
where α = ±‖a‖2 = ±3. Since a1 is positive, we can avoid cancellation by choosing the
negative sign for α. We therefore have

v =

 2
1
2

−
−3

0
0

 =

 5
1
2

 .
To confirm that the Householder transformation performs as expected, we compute

Ha = a− 2
vTa

vTv
v =

 2
1
2

− 2
15
30

 5
1
2

 =

−3
0
0

 ,
which shows that the zero pattern of the result is correct and that the norm is preserved.
Note that there is no need to form the matrix H explicitly, as the vector v is all we need
to apply H to any vector.

Using Householder transformations, we can successively introduce zeros column by col-
umn below the diagonal of a matrix A to reduce it to upper triangular form. Each House-
holder transformation must be applied to the remaining unreduced portion of the matrix,
but it will not affect any columns already reduced (and hence the zeros are preserved). In
applying a Householder transformation H to an arbitrary vector x, we note that

Hx = (I − 2
vvT

vTv
)x = x− (2

vTx

vTv
)v,

3.4. ORTHOGONALIZATION METHODS 93

which is substantially cheaper to compute than a general matrix-vector multiplication and
requires only that we know the vector v.

The process just described produces a factorization of the form

Hn · · ·H1A =
[
R
O

]
,

where R is upper triangular. The product of the successive Householder transformations
Hn · · ·H1 is itself an orthogonal matrix. Thus, if we take

QT = Hn · · ·H1, or equivalently, Q = HT
1 · · ·HT

n ,

then

A = Q

[
R
O

]
.

Hence, we have indeed computed the QR factorization of the matrix A, which we can
now use to solve the linear least squares problem. To preserve the solution, however, we
must also transform the right-hand-side vector b by the same sequence of Householder
transformations. We thus solve the equivalent triangular least squares problem[

R
O

]
x ≈ QTb.

For purposes of solving the linear least squares problem, the product Q of the Householder
transformations need not be explicitly formed. In most software for this problem, R is
stored in the upper triangle of the original array containing A, while the vectors v required
for forming the individual Householder transformations are stored in the (now zero) lower
triangular portion of A. (Technically, one additional vector of storage is required, since the
main diagonals of both Q and R must be stored.) As we have already seen, Householder
transformations are most easily applied in this form anyway (as opposed to explicit matrix-
vector multiplication), so the vectors v are all that is needed to solve the original least
squares problem as well as any subsequent problems having the same matrix but different
right-hand-side vectors. If Q is needed explicitly for some other reason, however, then it can
be computed by multiplying each Householder transformation in sequence times a matrix
that is initially the identity matrix I, but this computation will require additional storage.

Example 3.5 Householder QR Factorization. We illustrate Householder QR factor-
ization by using it to solve the quadratic polynomial data-fitting problem in Example 3.2,
with

A =

1 −1.0 1.0
1 −0.5 0.25
1 0.0 0.0
1 0.5 0.25
1 1.0 1.0

 , b =

1.0
0.5
0.0
0.5
2.0

 .
The Householder vector v1 for annihilating the subdiagonal entries of the first column of A

94 CHAPTER 3. LINEAR LEAST SQUARES

is

v1 =

1
1
1
1
1

−

−2.236

0
0
0
0

 =

3.236

1
1
1
1

 .
Applying the resulting Householder transformation H1 yields the transformed matrix and
right-hand side

H1A =

−2.236 0 −1.118

0 −0.191 −0.405
0 0.309 −0.655
0 0.809 −0.405
0 1.309 0.345

 , H1b =

−1.789
−0.362
−0.862
−0.362

1.138

 .
The Householder vector v2 for annihilating the subdiagonal entries of the second column of
H1A is

v2 =

0

−0.191
0.309
0.809
1.309

−

0
1.581

0
0
0

 =

0

−1.772
0.309
0.809
1.309

 .
Applying the resulting Householder transformation H2 yields

H2H1A =

−2.236 0 −1.118

0 1.581 0
0 0 −0.725
0 0 −0.589
0 0 0.047

 , H2H1b =

−1.789

0.632
−1.035
−0.816

0.404

 .
The Householder vector v3 for annihilating the subdiagonal entries of the third column of
H2H1A is

v3 =

0
0

−0.725
−0.589

0.047

−

0
0

0.935
0
0

 =

0
0

−1.660
−0.589

0.047

 .
Applying the resulting Householder transformation H3 yields

H3H2H1A =

−2.236 0 −1.118

0 1.581 0
0 0 0.935
0 0 0
0 0 0

 , H3H2H1b =

−1.789

0.632
1.336
0.026
0.337

 .
We can now solve the upper triangular system Rx = y, where y consists of the first three
components of the transformed right-hand side, by back-substitution to obtain

x =

 0.086
0.400
1.429

 .

3.4. ORTHOGONALIZATION METHODS 95

3.4.5 Givens Rotations

Householder transformations introduce many zeros in a column at once. Although generally
good for efficiency, this approach can be a bit heavy-handed when greater selectivity is
needed in introducing zeros. For this reason, some algorithms use Givens rotations instead,
which introduce zeros one at a time.

We seek an orthogonal matrix that annihilates a single given component of a vector.
One such orthogonal matrix is a plane rotation, often called a Givens rotation in the context
of QR factorization. Given a 2-vector a = [a1 a2]T , we want to choose scalars c and s,
which can be interpreted as the cosine and sine of the angle of rotation, such that[

c s
−s c

] [
a1

a2

]
=
[
α
0

]
,

with c2 + s2 = 1, or, equivalently, α =
√
a2

1 + a2
2. In effect, we will rotate a so that it is

aligned with the first coordinate axis. Then its second component will become zero. The
previous equation can be rewritten as[

a1 a2

a2 −a1

] [
c
s

]
=
[
α
0

]
.

We can now perform Gaussian elimination on this system to obtain the triangular system[
a1 a2

0 −a1 − a2
2/a1

] [
c
s

]
=
[

α
−αa2/a1

]
.

Back-substitution then gives

s =
αa2

a2
1 + a2

2

, c =
αa1

a2
1 + a2

2

.

Finally, the requirement that c2 + s2 = 1, or α =
√
a2

1 + a2
2, implies that

c =
a1√
a2

1 + a2
2

, s =
a2√
a2

1 + a2
2

.

As with Householder transformations, unnecessary overflow or underflow can be avoided
by appropriate scaling. If |a1| > |a2|, then we can work with the tangent of the angle of
rotation, t = s/c = a2/a1, so that the cosine and sine are given by

c = 1/
√

1 + t2, s = c · t.

If |a2| > |a1|, on the other hand, then we can use the analogous formulas involving the
cotangent τ = c/s = a1/a2, obtaining

s = 1/
√

1 + τ2, c = s · τ.

96 CHAPTER 3. LINEAR LEAST SQUARES

In either case, we can avoid squaring any magnitude larger than 1. Note that the angle of
rotation need not be determined explicitly, as only its cosine and sine are actually needed.

Example 3.6 Givens Rotation. To illustrate the construction just described, we deter-
mine a Givens rotation that annihilates the second component of the vector

a =
[

4
3

]
.

For this problem, we can safely compute the cosine and sine directly, obtaining

c =
a1√
a2

1 + a2
2

=
4
5

= 0.8 and s =
a2√
a2

1 + a2
2

=
3
5

= 0.6,

or, equivalently, we can use the tangent t = a2/a1 = 3/4 = 0.75 to obtain

c =
1√

1 + (0.75)2
=

1
1.25

= 0.8 and s = c · t = (0.8)(0.75) = 0.6.

Thus, the rotation is given by

G =
[

c s
−s c

]
=
[

0.8 0.6
−0.6 0.8

]
.

To confirm that the rotation performs as expected, we compute

Ga =
[

0.8 0.6
−0.6 0.8

] [
4
3

]
=
[

5
0

]
,

which shows that the zero pattern of the result is correct and that the norm is preserved.
Note that the value of the angle rotation, which in this case is about 36.87 degrees, does
not enter directly into the computation and need not be determined explicitly.

We have seen how to design a plane rotation to annihilate a given component of a
vector in two dimensions. To annihilate a selected component of a vector in n dimensions,
we can apply the same technique by rotating the target component, say j, with another
component, say i. The two selected components of the vector are used as before to determine
the appropriate 2×2 rotation matrix, which is then embedded as a 2×2 submatrix in rows
and columns i and j of the n-dimensional identity matrix I, as illustrated here for the case
n = 5, i = 2, j = 4:

1 0 0 0 0
0 c 0 s 0
0 0 1 0 0
0 −s 0 c 0
0 0 0 0 1

a1

a2

a3

a4

a5

 =

a1

α
a3

0
a5

 .
Using a sequence of such Givens rotations, we can selectively and systematically annihilate
entries of a matrix A to reduce the matrix to upper triangular form. The only restriction on
the order in which we annihilate entries is that we should avoid reintroducing nonzero values

3.4. ORTHOGONALIZATION METHODS 97

into matrix entries that have previously been annihilated, but this can be accomplished by
a number of different orderings. Once again, the product of all of the rotations is itself an
orthogonal matrix that gives us the desired QR factorization.

A straightforward implementation of the Givens method for solving general linear least
squares problems requires about 50 percent more work than the Householder method. It
also requires more storage, since each rotation requires two numbers, c and s, to define it
(and hence the zeroed entry aij does not suffice for storage). These work and storage dis-
advantages can be overcome to make the Givens method competitive with the Householder
method, but at the cost of a more complicated implementation. Therefore, the Givens
method is generally reserved for situations in which its greater selectivity is of paramount
importance, such as when the matrix is sparse or when some particular pattern of existing
zeros must be maintained.

As with Householder transformations, the matrix Q need not be formed explicitly be-
cause multiplication by the successive rotations produces the same effect as multiplication
by Q. If Q is needed explicitly for some other reason, however, then it can be computed by
multiplying each rotation in sequence times a matrix that is initially the identity matrix I.

Example 3.7 Givens QR Factorization. We illustrate Givens QR factorization by
using it to solve the quadratic polynomial data-fitting problem in Example 3.2, with

A =

1 −1.0 1.0
1 −0.5 0.25
1 0.0 0.0
1 0.5 0.25
1 1.0 1.0

 , b =

1.0
0.5
0.0
0.5
2.0

 .

We can annihilate the (5,1) entry of A using a Givens rotation based on the fourth and
fifth entries of the first column. The appropriate rotation is given by c = 0.707, s = 0.707.
Applying this rotation G1 to A and b yields

G1A =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0.707 0.707
0 0 0 −0.707 0.707

1 −1.0 1.0
1 −0.5 0.25
1 0.0 0.0
1 0.5 0.25
1 1.0 1.0

 =

1 −1.0 1.0
1 −0.5 0.25
1 0.0 0.0

1.414 1.061 0.884
0 0.354 0.530

and

G1b =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0.707 0.707
0 0 0 −0.707 0.707

1.0
0.5
0.0
0.5
2.0

 =

1.0
0.5
0.0
1.768
1.061

 .

We next annihilate the (4,1) entry using a Givens rotation based on the third and fourth
entries of the first column. The appropriate rotation is given by c = 0.577, s = 0.816.

98 CHAPTER 3. LINEAR LEAST SQUARES

Applying this rotation G2 yields

G2G1A =

1 0 0 0 0
0 1 0 0 0
0 0 0.577 0.816 0
0 0 −0.816 0.577 0
0 0 0 0 1

1 −1.0 1.0
1 −0.5 0.25
1 0.0 0.0

1.414 1.061 0.884
0 0.354 0.530

 =

1 −1.0 1.0
1 −0.5 0.25

1.732 0.866 0.722
0 0.612 0.510
0 0.354 0.530

and

G2G1b =

1 0 0 0 0
0 1 0 0 0
0 0 0.577 0.816 0
0 0 −0.816 0.577 0
0 0 0 0 1

1.0
0.5
0.0
1.768
1.061

 =

1.0
0.5
1.443
1.020
1.061

 .

We continue up the first column in this manner until all of its subdiagonal entries have
been annihilated. We then proceed similarly to the second and third columns, eventually
producing the upper triangular matrix and transformed right-hand side

QTA =

2.236 0 1.118

0 1.581 0
0 0 0.935
0 0 0
0 0 0

 , QTb =

1.789
0.632
1.336
0.338

0

 ,

where QT is the product of all of the Givens rotations used. We can now solve the upper
triangular system by back-substitution to obtain

x =

 0.086
0.400
1.429

 .

3.4.6 Gram-Schmidt Orthogonalization

Another method for computing the QR factorization is the Gram-Schmidt orthogonalization
process, which you may have seen in a calculus or linear algebra course. Given two vectors
a1 and a2, we can determine two orthonormal vectors q1 and q2 that span the same subspace
by orthogonalizing one of the given vectors against the other, as shown in Fig. 3.3.

This process can be extended to an arbitrary number of vectors ak (up to the dimension
of the space) by orthogonalizing each successive vector against all of the previous ones,
giving the classical Gram-Schmidt orthogonalization procedure:

3.4. ORTHOGONALIZATION METHODS 99

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........................
..........................

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...................................
..........................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............................

..........................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...................................

..........................

...........
...........
...........
...........
...........
...........
...........
............................

..........................

.............
.............

.............
...

.............
.............

.............
.............

.............
.............

.............
.............

.............

a1
a2

q1 q2

a2 − (qT1 a2)q1

Figure 3.3: One step of Gram-Schmidt orthogonalization.

for k = 1 to n
qk = ak
for j = 1 to k − 1

rjk = qTj ak
qk = qk − rjkqj

end
rkk = ‖qk‖2
qk = qk/rkk

end

If we take the ak to be the columns of the matrix A, then the resulting qk are the columns
of Q and the rij are the entries of the upper triangular matrix R in the QR factorization
of A.

Unfortunately, the classical Gram-Schmidt procedure requires separate storage for A,
Q, and R because the original ak are needed in the inner loop, and hence the qk cannot
overwrite the columns of A. This shortcoming can be alleviated, however, if we orthogo-
nalize each chosen vector in turn against all of the subsequent vectors, in effect generating
the upper triangular matrix R by rows rather than by columns. This rearrangement of the
computation is known as modified Gram-Schmidt orthogonalization:

for k = 1 to n
rkk = ‖ak‖2
qk = ak/rkk
for j = k + 1 to n

rkj = qTk aj
aj = aj − rkjqk

end
end

We have continued to write the ak and qk separately for clarity, but now they can in fact
share the same storage. (A programmer would have formulated the algorithm this way in
the first place.) Unfortunately, separate storage forQ andR is still required, a disadvantage
compared with the Householder method, for which Q and R can share the space formerly
occupied by A. On the other hand, Gram-Schmidt provides an explicit representation for
Q, which, if desired, would require additional storage with the Householder method.

In addition to requiring less storage than the classical procedure, an added bonus of
modified Gram-Schmidt is that it is also numerically superior to classical Gram-Schmidt:

100 CHAPTER 3. LINEAR LEAST SQUARES

the two procedures are mathematically equivalent, but in finite-precision arithmetic the
classical procedure tends to lose orthogonality among the computed qk. The modified
procedure also permits the use of column pivoting to deal with possible rank deficiency (see
Section 3.4.8). Although the modified Gram-Schmidt procedure has advantages in some
circumstances, for solving least squares problems it is somewhat inferior to the Householder
method in storage, work, and accuracy.

Example 3.8 Gram-Schmidt QR Factorization. We illustrate modified Gram-Schmidt
orthogonalization by again solving the quadratic polynomial data-fitting problem in Exam-
ple 3.2, with

A =

1 −1.0 1.0
1 −0.5 0.25
1 0.0 0.0
1 0.5 0.25
1 1.0 1.0

 , b =

1.0
0.5
0.0
0.5
2.0

 .
Normalizing the first column of A, we compute

r1,1 = ‖a1‖2 = 2.236, q1 = a1/r1,1 =

0.447
0.447
0.447
0.447
0.447

 .

Orthogonalizing the first column against the subsequent columns, we get

r1,2 = qT1 a2 = 0, r1,3 = qT1 a3 = 1.118,

so that the matrix is transformed to become
0.477 −1.0 0.50
0.447 −0.5 −0.25
0.447 0.0 −0.50
0.447 0.5 −0.25
0.447 1.0 0.50

 .

Normalizing the second column, we compute

r2,2 = ‖a2‖2 = 1.581, q2 = a2/r2,2 =

−0.632
−0.316

0
0.316
0.632

 .

Orthogonalizing the second column against the third column, we get

r2,3 = qT2 a3 = 0,

3.4. ORTHOGONALIZATION METHODS 101

so that the third column is unaffected. Finally, we normalize the third column

r3,3 = ‖a3‖2 = 0.935, q3 = a3/r3,3 =

0.535
−0.267
−0.535
−0.267

0.535

 .
We have thus obtained the QR factorization

A =

0.447 −0.632 0.535
0.447 −0.316 −0.267
0.447 0 −0.535
0.447 0.316 −0.267
0.447 0.632 0.535

 2.236 0 1.118

0 1.581 0
0 0 0.935

 = QR.

The transformed right-hand side is obtained from

QTb =

 0.447 0.447 0.447 0.447 0.447
−0.632 −0.316 0 0.316 0.632

0.535 −0.267 −0.535 −0.267 0.535

1.0
0.5
0.0
0.5
2.0

 =

 1.789
0.632
1.336

 .

We can now solve the upper triangular system Rx = QTb by back-substitution to obtain

x =

 0.086
0.400
1.429

 .

3.4.7 Rank Deficiency

So far we have assumed that A is of full rank, rank(A) = n. If this is not the case, i.e.,
if A has linearly dependent columns, then the QR factorization still exists, but the upper
triangular factor R is singular (as is ATA). Thus, many vectors x give the same minimum
residual norm, and the least squares solution is not unique. This situation usually arises
from a poorly designed experiment, insufficient data, or an inadequate or redundant model.
Thus, the problem should probably be reformulated or rethought.

If one insists on forging ahead as is, however, then a common practice is to select
the minimum residual solution x having the smallest norm. This may be computed by
QR factorization with column pivoting, which we consider next, or by the singular value
decomposition (SVD), which we will study in Section 4.5. Note that such a procedure for
dealing with rank deficiency also enables us to handle underdetermined problems, where
m < n, since the columns of A are necessarily linearly dependent in that case.

In practice, the rank of a matrix is often not clear-cut. Thus, a relative tolerance is
used to detect near rank deficiency of least squares problems, just as in detecting near

102 CHAPTER 3. LINEAR LEAST SQUARES

singularity of square linear systems. If a least squares problem is nearly rank-deficient,
then the solution will be sensitive to perturbations in the input data. We will be able to
examine these issues more precisely when we introduce the singular value decomposition of
a matrix in Section 4.5. Within the context of QR factorization, the most robust method for
detecting and dealing with possible rank deficiency is column pivoting, which we consider
next.

Example 3.9 Near Rank Deficiency. Consider the 3× 2 matrix

A =

 0.641 0.242
0.321 0.121
0.962 0.363

 .
If we compute the QR factorization of A, we find that

R =
[

1.1997 0.4527
0 0.0002

]
.

Thus, R is extremely close to being singular (indeed, it is exactly singular to the three-
digit accuracy with which the problem was stated), and if we use R to solve a least squares
problem, the result will be correspondingly sensitive to perturbations in the right-hand side.
For practical purposes, the rank of A is only one rather than two, since its columns are
nearly linearly dependent.

3.4.8 Column Pivoting

The columns of a matrixA can be viewed as an unordered set of vectors from which we wish
to select a maximal linearly independent subset. Rather than processing the columns in the
natural order in computing the QR factorization, we instead select for reduction at each
stage the column of the remaining unreduced submatrix having maximum Euclidean norm.
This column is interchanged (explicitly or implicitly) with the next column in the natural
order and then is zeroed below the diagonal in the usual manner. The transformation
required to do this must then be applied to the remaining unreduced columns, and the
process is repeated. The process just described is called column pivoting .

If rank(A) = k < n, then after k steps of this procedure, the norms of the remaining
unreduced columns will be zero (or “negligible” in finite-precision arithmetic) below row k.
Thus, we have produced an orthogonal factorization of the form

QTAP =
[
R S
O O

]
,

where R is k × k, upper triangular, and nonsingular, and P is a permutation matrix that
performs the column interchanges. At this point, a basic solution (i.e., a solution having
at most k nonzero components) to the least squares problem Ax ≈ b can be computed
by solving the triangular system Ry = c, where c is a vector composed of the first k
components of QTb, and then taking

x = P

[
y
o

]
.

3.5. COMPARISON OF METHODS 103

In the context of data fitting, this procedure amounts to ignoring components of the model
that are redundant or not well-determined. If a minimum-norm solution is desired, how-
ever, it can be computed at the expense of some additional processing (from the right) to
annihilate S as well.

In practice, the rank of A is usually unknown, so the column pivoting process is used
to discover the rank by monitoring the norms of the remaining unreduced columns and
terminating the factorization when the maximum value falls below some relative tolerance.

3.5 Comparison of Methods

We have now seen a number of methods for solving least squares problems. The choice
among them depends on the particular problem being solved and involves trade-offs among
efficiency, accuracy, and robustness.

The normal equations method is easy to implement: it simply requires matrix multipli-
cation and Cholesky factorization. Moreover, reducing the problem to an n × n system is
very attractive when m � n. By taking advantage of its symmetry, the formation of the
normal equations matrix ATA requires about n2m/2 multiplications and a similar number
of additions. Solving the resulting linear system by Cholesky factorization requires about
n3/6 multiplications and a similar number of additions. Unfortunately, the normal equa-
tions method produces a solution whose relative error is proportional to [cond(A)]2, and
the required Cholesky factorization can be expected to break down if cond(A) ≈ 1/

√
εmach

or worse.
For solving dense linear least squares problems, the Householder method is gener-

ally the most efficient and accurate of the orthogonalization methods. It requires about
n2m − n3/3 multiplications and a similar number of additions. It can be shown that the
Householder method produces a solution whose relative error is proportional to cond(A) +
‖r‖2[cond(A)]2, which is the best that can be expected since this is the inherent sensitivity
of the solution to the least squares problem itself. Moreover, the Householder method can
be expected to break down (in the back-substitution phase) only if cond(A) ≈ 1/εmach or
worse.

For nearly square problems, m ≈ n, the normal equations and Householder methods
require about the same amount of work. But for highly overdetermined problems, m� n,
the Householder method requires about twice as much work as the normal equations method.
On the other hand, the Householder method is more accurate and more broadly applicable
than the normal equations method. These advantages may not be worth the additional
cost, however, when the problem is sufficiently well-conditioned that the normal equations
method provides adequate accuracy. For rank-deficient or nearly rank-deficient problems, of
course, the Householder method with column pivoting can produce a useful solution when
the normal equations method would fail outright.

3.6 Software for Linear Least Squares

Table 3.1 is a list of appropriate routines for solving linear least squares problems, both those
having full rank and those that are rank-deficient. Most of the routines listed are based on

104 CHAPTER 3. LINEAR LEAST SQUARES

QR factorization. Many packages also include software for the singular value decomposition
(SVD), which can be used to solve least squares problems, although at greater computational
expense. The SVD provides a particularly robust method for determining numerical rank
and dealing with possible rank deficiency, as we will see in Section 4.5.

Table 3.1: Software for linear least squares problems

Source Factor Solve Rank-deficient
FMM svd svd
IMSL lqrrr lqrsl lsqrr
KMN sqrls sqrls ssvdc
LAPACK sgeqrf sormqr/strtrs sgeqpf/stzrqf
Lawson/Hanson [163] hft hs1 hfti
LINPACK sqrdc sqrsl sqrst
MATLAB qr \ svd
NAG f01axf f04anf f04jgf
NAPACK qr over sing/rsolve
NR qrdcmpa qrsolv svdcmp/svbksb
NUMAL lsqortdec lsqsol solovr
SLATEC sqrdc sqrsl llsia/sglss/minfit
SOL [279] hredl qrvslv mnlnls

aAs published, qrdcmp and qrsolv handle only square matrices, but they are easily
modified to handle rectangular matrices.

Conventional software for solving linear least squares problems Ax ≈ b is sometimes
implemented as a single routine, or it may be split into two routines: one for computing a
factorization and another for solving the resulting triangular system. The input typically
required includes a two-dimensional array containing the matrix A, a one-dimensional array
containing the right-hand-side vector b (or a two-dimensional array for multiple right-hand-
side vectors), the number of rows m and number of columns n in the matrix, the leading
dimension of the array containing A (so that the subroutine can interpret subscripts prop-
erly in the array), and possibly some work space and a flag indicating the particular task
to be performed. The user may also need to supply the relevant tolerance if column pivot-
ing or other means of rank determination is performed. On return, the solution x usually
overwrites the storage for b, and the matrix factorization overwrites the storage for A.

In MATLAB, the backslash operator used for solving square linear systems is extended to
include rectangular systems as well. Thus, the least squares solution to the overdetermined
system Ax ≈ b is given by x = A \ b. Internally, the solution is computed by QR factor-
ization, but the user need not be aware of this. The QR factorization can be computed
explicitly, if desired, by the MATLAB qr function, [Q, R] = qr(A).

In addition to mathematical software libraries such as those listed in the table, many
statistical packages have extensive software for solving least squares problems in various
contexts, and they often include many diagnostic features for assessing the quality of the
results. Well-known packages in this category include BMDP, Minitab, Omnitab, S, SAS, and
SPSS. There is also a statistics toolbox available for MATLAB. Additional software is available

3.7. HISTORICAL NOTES AND FURTHER READING 105

for data fitting using criteria other than least squares, particularly for the 1-norm and the
∞-norm, which are preferable in some contexts.

3.7 Historical Notes and Further Reading

The normal equations method for least squares problems, due to Gauss, dates from around
1800, and Gram-Schmidt orthogonalization from around 1900. The orthogonalization meth-
ods of Householder and Givens date from the late 1950s, and the numerically stable modified
form of Gram-Schmidt orthogonalization dates from the 1960s. The use of orthogonaliza-
tion, particularly the Householder method, for solving least squares problems was popular-
ized by Golub [101]. A tutorial introduction to Householder transformations (treating only
square systems) can be found in [28]. Comprehensive references on least squares compu-
tations include [19, 76, 163]. The books on matrix computations cited in Chapter 2 also
discuss linear least squares problems in some detail. For a statistical perspective on least
squares computations, see [148, 254].

We have discussed only the simplest type of least squares problems, in which the model
function is linear, only the values yi of the dependent variable are subject to random error
(i.e., the values ti of the independent variable t are taken as exact), and all of the data
points are weighted equally. We will discuss nonlinear least squares problems in Section 6.4.
Incorporating varying weights for the data points or more general cross-correlations among
the variables is relatively straightforward within the framework we have discussed. Allowing
varying weights for the data points, for example, simply involves multiplying both sides of
the least squares system by a diagonal matrix. When all of the variables are subject to
random error, so that the entries of the matrix A as well as those of the right-hand-side
vector b are uncertain, then minimizing the vertical distances between the data points and
the fitted curve may no longer be appropriate. Minimizing the orthogonal distances between
the data points and the curve is a reasonable alternative. It yields a more complicated
computational problem, but one that is still tractable using the singular value decomposition
(see Section 4.5.2). For a thorough discussion of this approach, called total least squares,
see [259].

Review Questions

3.1 True or false: If you are given four or
more data points, then fitting a straight line
to the data is a linear least squares problem,
whereas fitting a quadratic polynomial to the
data is a nonlinear least squares problem.

3.2 True or false: At the solution to a linear
least squares problem Ax ≈ b, the residual
vector r = b−Ax is orthogonal to the column
space of A.

3.3 True or false: An overdetermined lin-
ear least squares problem Ax ≈ b always has
a unique solution x that minimizes the Eu-
clidean norm of the residual vector r = b−Ax.

3.4 True or false: In solving a linear least
squares problem Ax ≈ b, if the vector b lies
in the column space of the matrix A, then the
residual is o.

3.5 True or false: In solving a linear least
squares problem Ax ≈ b, if the residual is o,
then the solution x must be unique.

3.6 True or false: The product of a House-
holder transformation and a Givens rotation is
always an orthogonal matrix.

3.7 True or false: If the n× n matrix Q is a
Householder transformation, and x is an arbi-

106 CHAPTER 3. LINEAR LEAST SQUARES

trary n-vector, then the last k components of
the vector Qx are zero for some k < n.

3.8 True or false: Methods based on orthog-
onal factorization are generally more expen-
sive computationally than methods based on
the normal equations for solving linear least
squares problems.

3.9 (a) In a data-fitting problem in which
m data points (ti, yi) are fit by a model func-
tion f(t,x), where t is the independent vari-
able and x is an n-vector of parameters to be
determined, what does it mean for the function
f to be linear in the components of x?
(b) Give an example of a model function
f(t,x) that is linear in this sense.
(c) Give an example of a model function
f(t,x) that is nonlinear.

3.10 In a linear least squares problem Ax ≈
b, where A is an m×n matrix, if rank(A) < n,
then which of the following situations are pos-
sible?
(a) There is no solution.
(b) There is a unique solution.
(c) There is a solution, but it is not unique.

3.11 In solving an overdetermined least
squares problem Ax ≈ b, which would be a
more serious difficulty: that the rows of A are
linearly dependent, or that the columns of A
are linearly dependent? Explain.

3.12 In an overdetermined linear least squares
problem with model function f(t,x) =
x1φ1(t) + x2φ2(t) + x3φ3(t), what will be the
rank of the resulting least squares matrix A if
we take φ1(t) = 1, φ2(t) = t, and φ3(t) = 1−t?

3.13 What is the system of normal equations
for the linear least squares problem Ax ≈ b?

3.14 List two ways in which use of the normal
equations for solving linear least squares prob-
lems may suffer loss of numerical accuracy.

3.15 Let A be an m× n matrix. Under what
conditions on the matrix A will the matrix
ATA be
(a) Symmetric?
(b) Nonsingular?
(c) Positive definite?

3.16 Which of the following properties of an
m×n matrix A, with m > n, indicate that the
minimum residual solution of the least squares
problem Ax ≈ b is not unique?

(a) The columns of A are linearly dependent.

(b) The rows of A are linearly dependent.

(c) The matrix ATA is singular.

3.17 (a) Can Gaussian elimination with piv-
oting be used to compute an LU factorization
of a rectangular m×n matrixA, where L is an
m× k matrix whose entries above its main di-
agonal are all zero, U is a k× n matrix whose
entries below its main diagonal are all zero,
and k = min{m,n}?

(b) If this were possible, would it provide a
way to solve an overdetermined least squares
problem Ax ≈ b, where m > n? Why?

3.18 (a) What is meant by two vectors x and
y being orthogonal to each other?

(b) Prove that if two nonzero vectors are or-
thogonal to each other, then they must also be
linearly independent.

(c) Give an example of two nonzero vectors in
the plane that are orthogonal to each other.

(d) Give an example of two nonzero vectors
in the plane that are not orthogonal to each
other.

(e) List two ways in which orthogonality is im-
portant in the context of linear least squares
problems.

3.19 In Euclidean n-space, is orthogonality a
transitive relation? That is, if x is orthogonal
to y, and y is orthogonal to z, is x necessarily
orthogonal to z?

3.20 (a) Why are orthogonal transforma-
tions, such as Householder or Givens, often
used to solve least squares problems?

(b) Why are such methods not often used to
solve square linear systems?

(c) Do orthogonal transformations have any
advantage over Gaussian elimination for solv-
ing square linear systems? If so, state one.

REVIEW QUESTIONS 107

3.21 Which of the following matrices are or-
thogonal?

(a)
[

0 1
1 0

]
(b)

[
1 0
0 −1

]
(c)

[
2 0
0 1

2

]
(d)

[√
2/2

√
2/2

−
√

2/2
√

2/2

]
3.22 Which of the following properties does
an n× n orthogonal matrix necessarily have?

(a) It is nonsingular.

(b) It preserves the Euclidean vector norm
when multiplied times a vector.

(c) Its transpose is its inverse.

(d) Its columns are orthonormal.

(e) It is symmetric.

(f) It is diagonal.

(g) Its Euclidean matrix norm is 1.

(h) Its condition number in the Euclidean
norm is 1.

3.23 Which of the following types of matrices
are necessarily orthogonal?

(a) Permutation

(b) Symmetric positive definite

(c) Householder transformation

(d) Givens rotation

(e) Nonsingular

(f) Diagonal

3.24 Show that multiplication by an orthogo-
nal matrix Q preserves the Euclidean norm of
a vector x.

3.25 What condition must a nonzero n-vector
w satisfy to ensure that the matrix H =
I − 2wwT is orthogonal?

3.26 If Q is a 2 × 2 orthogonal matrix such
that

Q

[
1
1

]
=
[
α
0

]
,

what must the value of α be?

3.27 How many scalar multiplications are re-
quired to multiply an arbitrary n-vector by
an n × n Householder transformation matrix
H = I − 2wwT , where w is an n-vector with
‖w‖2 = 1?

3.28 Given a vector a, in designing a House-
holder transformation H such that Ha =
αe1, we know that α = ±‖a‖2. On what basis
should the sign be chosen?

3.29 List one advantage and one disadvantage
of Givens rotations for QR factorization com-
pared with Householder transformations.

3.30 When used to annihilate the second
component of a 2-vector, does a Householder
transformation always give the same result as
a Givens rotation?

3.31 In addition to the input array contain-
ing the matrix A, which can be overwritten,
how much additional auxiliary array storage is
required to compute and store the following?

(a) The LU factorization of A by Gaussian
elimination with partial pivoting, where A is
n× n
(b) The QR factorization of A by Householder
transformations, where A is m× n

3.32 In solving a linear least squares problem
Ax ≈ b, where A is an m × n matrix with
m ≥ n and rank(A) < n, at what point will
the least squares solution process break down
(assuming exact arithmetic)?

(a) Using Cholesky factorization to solve the
normal equations

(b) Using QR factorization by Householder
transformations

3.33 Compared to the classical Gram-
Schmidt procedure, which of the following are
advantages of modified Gram-Schmidt orthog-
onalization?

(a) Requires less storage

(b) Requires less work

(c) Is more stable numerically

3.34 For computing the QR factorization of
anm×nmatrix, withm ≥ n, how large must n
be before there is a difference between the clas-
sical and modified Gram-Schmidt procedures?

108 CHAPTER 3. LINEAR LEAST SQUARES

3.35 Explain why the Householder method
requires less storage than the modified Gram-
Schmidt method for computing the QR factor-
ization of a matrix A.

3.36 Explain how QR factorization with col-
umn pivoting can be used to determine the
rank of a matrix.

3.37 Explain why column pivoting can be
used with the modified Gram-Schmidt orthog-

onalization procedure but not with the classi-
cal Gram-Schmidt procedure.

3.38 In terms of the condition number of the
matrix A, compare the range of applicabil-
ity of the normal equations method and the
Householder QR method for solving the lin-
ear least squares problem Ax ≈ b [i.e., for
what values of cond(A) can each method be
expected to break down?].

Exercises

3.1 If a vertical beam has a downward force
applied at its lower end, the amount by which
it stretches will be proportional to the magni-
tude of the force. Thus, the total length y of
the beam is given by the equation

y = x1 + x2t,

where x1 is its original length, t is the force ap-
plied, and x2 is the proportionality constant.
Suppose that the following measurements are
taken:

t 10 15 20
y 11.60 11.85 12.25

(a) Set up the overdetermined 3 × 2 system
of linear equations corresponding to the data
collected.

(b) Is this system consistent? If not, com-
pute each possible pair of values for (x1, x2)
obtained by selecting any two of the equations
from the system. Is there any reason to prefer
any one of these results?

(c) Set up the system of normal equations and
solve it to obtain the least squares solution to
the overdetermined system. Compare your re-
sult with those obtained in part b.

3.2 Suppose you are fitting a straight line to
the three data points (0,1), (1,2), (3,3).

(a) Set up the overdetermined linear system
for the least squares problem.

(b) Set up the corresponding normal equa-
tions.

(c) Compute the least squares solution by
Cholesky factorization.

3.3 Set up the linear least squares sys-
tem Ax ≈ b for fitting the model function
f(t,x) = x1t + x2e

t to the three data points
(1,2), (2,3), (3,5).

3.4 In fitting a straight line y = x0 + x1t
to the three data points (ti, yi) = (0,0), (1,0),
(1,1), is the least squares solution unique?
Why?

3.5 Let x be the solution to the linear least
squares problem Ax ≈ b, where

A =

1 0
1 1
1 2
1 3

 .
Let r = b−Ax be the corresponding residual
vector. Which of the following three vectors is
a possible value for r? Why?

(a)

1
1
1
1

 (b)

−1
−1

1
1

 (c)

−1

1
1
−1

3.6 (a) What is the Euclidean norm of the

minimum residual vector for the following lin-
ear least squares problem? 1 1

0 1
0 0

[x1

x2

]
≈

 2
1
1

(b) What is the solution vector x for this prob-
lem?

3.7 Let A be an m× n matrix and b an m-
vector.

EXERCISES 109

(a) Prove that a solution to the least squares
problem Ax ≈ b always exists.
(b) Prove that such a solution is unique if and
only if rank(A) = n.

3.8 Suppose that A is an m × n matrix of
rank n. Prove that the matrix ATA is posi-
tive definite.

3.9 Prove that the augmented system matrix
in Section 3.3.3 cannot be positive definite.

3.10 Let A be an n × n matrix, and assume
that A is both orthogonal and triangular.
(a) Prove that A must be diagonal.
(b) What are the diagonal entries of A?

3.11 Suppose that the partitioned matrix[
A B
O C

]
is orthogonal, where the submatrices A and
C are square. Prove that A and C must be
orthogonal, and B = O.

3.12 (a) Let A be an n×n matrix. Show that
any two of the following conditions imply the
other:

1. AT = A
2. ATA = I
3. A2 = I

(b) Give a specific example, other than the
identity matrix I or a permutation of it, of
a 3×3 matrix that has all three of these prop-
erties.
(c) Name a nontrivial class of matrices that
have all three of these properties.

3.13 Show that if the vector v 6= o, then the
matrix

H = I − 2
vvT

vTv

is orthogonal and symmetric.

3.14 Let a be any nonzero vector. If v =
a− αe1, where α = ±‖a‖2, and

H = I − 2
vvT

vTv
,

show that Ha = αe1.

3.15 Consider the vector a as an n×1 matrix.
(a) Write out its QR factorization, showing the
matrices Q and R explicitly.
(b) What is the solution to the linear least
squares problem ax ≈ b, where b is a given
n-vector?

3.16 Determine the Householder transforma-
tion that annihilates all but the first entry of
the vector [1 1 1 1]T . Specifically, if

(I − 2
vvT

vTv
)

1
1
1
1

 =

α
0
0
0

 ,
what are the values of the scalar α and the
vector v?

3.17 Suppose that you are computing the QR
factorization of the matrix

1 1 1
1 2 4
1 3 9
1 4 16

by Householder transformations.
(a) How many Householder transformations
are required?
(b) What does the first column of A become
as a result of applying the first Householder
transformation?
(c) What does the first column then become
as a result of applying the second Householder
transformation?
(d) How many Givens rotations would be re-
quired to compute the QR factorization of the
same matrix?

3.18 Consider the vector

a =

 2
3
4

 .
(a) Specify an elementary elimination matrix
that annihilates the third component of a.
(b) Specify a Householder transformation that
annihilates the third component of a.
(c) Specify a Givens rotation that annihilates
the third component of a.

110 CHAPTER 3. LINEAR LEAST SQUARES

(d) When annihilating a given nonzero com-
ponent of any vector, is it ever possible for
the corresponding elementary elimination ma-
trix and Householder transformation to be the
same? Why?
(e) When annihilating a given nonzero com-
ponent of any vector, is it ever possible for
the corresponding Householder transformation
and Givens rotation to be the same? Why?

3.19 Suppose you want to annihilate the sec-
ond component of a vector

a =
[
a1

a2

]
using a Givens rotation, but a1 is already zero.
(a) Is it still possible to annihilate a2 with a
Givens rotation? If so, specify an appropriate
Givens rotation; if not, explain why.
(b) Under these circumstances, can a2 be an-
nihilated with an elementary elimination ma-
trix? If so, how? If not, why?

3.20 A Givens rotation is defined by two pa-
rameters, c and s, and therefore would appear
to require two storage locations in a computer
implementation. The two parameters depend
on a single angle of rotation, however, so in
principle it should be possible to record the
rotation by storing only one number. Devise
an algorithm for storing and recovering Givens
rotations using only one storage location per
rotation.

3.21 Let A be an m×n matrix of rank n. Let

A = Q

[
R
O

]
be the QR factorization of A, with Q orthog-
onal and R an n× n upper triangular matrix.
Let ATA = LLT be the Cholesky factoriza-
tion of ATA.
(a) Show that RTR = LLT .
(b) Can one conclude that R = LT ? Why?

3.22 In Section 3.3 we observed that the nor-
mal equations matrix ATA is exactly singular
in floating-point arithmetic if

A =

 1 1
ε 0
0 ε

 ,

where ε is a positive number smaller than
the square root of machine precision εmach in
a given floating-point system. Show that if
A = QR is the QR factorization for this ma-
trixA, thenR is not singular, even in floating-
point arithmetic.

3.23 Verify that the dominant terms in the
operation count (number of multiplications or
number of additions) for solving anm×n linear
least squares problem by the normal equations
and Cholesky factorization are n2m/2 + n3/6.

3.24 Verify that the dominant terms in the
operation count (number of multiplications or
number of additions) for QR factorization of
an m × n matrix by Householder transforma-
tions are n2m− n3/3.

3.25 An n×n matrix P is an orthogonal pro-
jector if it is both idempotent (P 2 = P) and
symmetric (P = P T). Such a matrix projects
any given n-vector orthogonally onto a sub-
space (namely, the column space of P) but
leaves unchanged any vector that is already in
that subspace.

(a) Suppose that Q is an n× k matrix whose
columns form an orthonormal basis for a sub-
space S of Rn. Show that QQT is an orthog-
onal projector onto S.

(b) If A is a matrix with linearly independent
columns, show that A(ATA)−1AT is an or-
thogonal projector onto the column space of
A. How does this result relate to the linear
least squares problem?

(c) If P is an orthogonal projector onto a sub-
space S, show that I − P is an orthogonal
projector onto the orthogonal complement of
S.

(d) Let v be any nonzero n-vector. What
is the orthogonal projector onto the subspace
spanned by v?

(e) In the Gram-Schmidt procedure of Sec-
tion 3.4.6, if we define the orthogonal projec-
tors Pk = qkq

T
k , k = 1, . . . , n, show that the

classical Gram-Schmidt procedure is equiva-
lent to

qk = (I − (P1 + · · ·+ Pk−1))ak,

COMPUTER PROBLEMS 111

whereas the modified Gram-Schmidt proce-
dure is equivalent to

qk = (I − Pk−1) · · · (I − P1)ak.

(f) An alternative way to stablize the classi-
cal procedure is to apply it more than once
(i.e., iterative refinement), which is equivalent
to taking

qk = (I − (P1 + · · ·+ Pk−1))mak,

where m = 2 is typically sufficient. Show that
all three of these variations are mathematically
equivalent (though they may differ markedly in
finite-precision arithmetic).

3.26 Let v be a nonzero n-vector. The hyper-
plane normal to v is the (n − 1)-dimensional
subspace of all vectors y such that vTy = o.
A reflector is a linear transformation R such
that Rx = −x if x is a scalar multiple of v,
andRx = x if vTx = o. Thus, the hyperplane
acts as a mirror: for any vector, its component
within the hyperplane is invariant, whereas its
component orthogonal to the hyperplane is re-
versed.

(a) Show that R = 2P −I, where P is the or-
thogonal projector onto the hyperplane normal
to v. Draw a picture to illustrate this result
geometrically.

(b) Show that R is symmetric and orthogonal.

(c) Show that the Householder transformation

H = I − 2
vvT

vTv
,

is a reflector.

(d) Show that for any two vectors s and t such
that s 6= t and ‖s‖2 = ‖t‖2, there is a reflector
R such that Rs = t.

(e) Show that any orthogonal matrix Q is a
product of reflectors.

(f) Illustrate the previous result by expressing
the plane rotation[

c s
−s c

]
,

where c2 + s2 = 1, as a product of two reflec-
tors. For some specific angle of rotation, draw
a picture to show the mirrors.

Computer Problems

3.1 For n = 0, 1, . . . , 5, fit a polynomial of
degree n by least squares to the following data:

t 0.0 1.0 2.0 3.0 4.0 5.0
y 1.0 2.7 5.8 6.6 7.5 9.9

Make a plot of the original data points along
with each resulting polynomial curve (you may
make separate graphs for each curve or a sin-
gle graph containing all of the curves). Which
polynomial would you say captures the general
trend of the data better? Obviously, this is
a subjective question, and its answer depends
on both the nature of the given data (e.g., the
uncertainty of the data values) and the pur-
pose of the fit. Explain your assumptions in
answering.

3.2 A common problem in surveying is to
determine the altitudes of a series of points
with respect to some reference point. Since
the measurements are subject to error, more

observations are taken than are strictly nec-
essary to determine the altitudes, and the re-
sulting overdetermined system is solved in the
least squares sense to smooth out errors. Sup-
pose that there are four points whose altitudes
x1, x2, x3, x4 are to be determined. In addi-
tion to direct measurements of each xi with
respect to the reference point, measurements
are also taken of each point with respect to all
of the others. The resulting set of measure-
ments is as follows:

x1 = 2.95, x2 = 1.74,
x3 = −1.45, x4 = 1.32,

x1 − x2 = 1.23, x1 − x3 = 4.45,
x1 − x4 = 1.61, x2 − x3 = 3.21,
x2 − x4 = 0.45, x3 − x4 = −2.75.

Set up the corresponding least squares system
Ax ≈ b and use a library routine, or one of
your own design, to solve it for the best values

112 CHAPTER 3. LINEAR LEAST SQUARES

of the altitudes. How do the computed values
compare with the direct measurements of the
same quantities?

3.3 (a) For a series of matrices A of order n,
record the execution times for a library routine
to compute the LU factorization of A. Using
a linear least squares routine, or one of your
own design, fit a cubic polynomial to the ex-
ecution times as a function of n. To obtain
reliable results, use a fairly wide range of val-
ues for n, say, in increments of 100 from 100
up to several hundred, depending on the speed
and available memory of the computer you use.
You may obtain more accurate timings by av-
eraging several runs for a given matrix size.
The resulting cubic polynomial could be used
to predict the execution time for other values
of n not tried, such as very large values for
n. What is the predicted execution time for a
matrix of order 10,000?

(b) Try to determine the basic execution rate
(in floating-point operations per second, or
flops) for your computer by timing a known
computation, such as matrix multiplication.
You can then use this information to deter-
mine the complexity of LU factorization, based
on the polynomial fit to the execution times.
After converting to floating-point operations,
how does the dominant term compare with
the theoretically expected value of 4

3 n
3 (count-

ing both additions and multiplications)? Try
to explain any discrepancy. If you use a sys-
tem that provides operation counts automati-
cally, such as MATLAB or some supercomputers,
try this same experiment fitting the operation
counts directly.

3.4 (a) Solve the following least squares
problem using any method you like: 0.16 0.10

0.17 0.11
2.02 1.29

[x1

x2

]
≈

 0.26
0.28
3.31

 .
(b) Now solve the same least squares problem
again, but this time use the slightly perturbed
right-hand side

b =

 0.27
0.25
3.33

 .

(c) Compare your results from parts a and b.
Can you explain this difference?

3.5 A planet follows an elliptical orbit, which
can be represented in a Cartesian (x, y) coor-
dinate system by the equation

ay2 + bxy + cx+ dy + e = x2.

(a) Use a library routine, or one of your own
design, for linear least squares to determine
the orbital parameters a, b, c, d, e, given the
following observations of the planet’s position:

x 1.02 0.95 0.87 0.77 0.67
y 0.39 0.32 0.27 0.22 0.18
x 0.56 0.44 0.30 0.16 0.01
y 0.15 0.13 0.12 0.13 0.15

In addition to printing the values for the or-
bital parameters, plot the resulting orbit and
the given data points in the (x, y) plane.
(b) This least squares problem is nearly rank-
deficient. To see what effect this has on the
solution, perturb the input data slightly by
adding to each coordinate of each data point a
random number uniformly distributed on the
interval [−0.005, 0.005] (see Section 13.5) and
solve the least squares problem with the per-
turbed data. Compare the new values for the
parameters with those previously computed.
What effect does this difference have on the
plot of the orbit? Can you explain this behav-
ior?
(c) Solve the same least squares problem again,
for both the original and the perturbed data,
this time using a library routine (or one of your
own design) specifically designed to deal with
rank deficiency (by using column pivoting, for
example). Such a routine usually includes as
an input parameter a tolerance to be used in
determining the numerical rank of the matrix.
Experiment with various values for the toler-
ance, say, 10−k, k = 1, . . . , 5. What is the re-
sulting rank of the matrix for each value of the
tolerance? Compare the behavior of the two
solutions (for the original and the perturbed
data) with each other as the tolerance and the
resulting rank change. How well do the result-
ing orbits fit the data points as the tolerance
and rank vary? Which solution would you re-
gard as better: one that fits the data more

COMPUTER PROBLEMS 113

closely, or one that is less sensitive to small
perturbations in the data? Why?

3.6 To demonstrate the numerical difference
between the normal equations method and QR
factorization for linear least squares, we need a
problem that is ill-conditioned and also has a
small residual. We can generate such a prob-
lem as follows. We will fit a polynomial of
degree n− 1,

pn−1(t) = x1 + x2t+ x3t
2 + · · ·+ xnt

n−1,

to m data points (ti, yi), m > n. We choose
ti = (i− 1)/(m− 1), i = 1, . . . ,m, so that the
data points are equally spaced on the inter-
val [0, 1]. We will generate the corresponding
values yi by first choosing values for the xj ,
say, xj = 1, j = 1, . . . , n, and evaluating the
resulting polynomial to obtain yi = pn−1(ti),
i = 1, . . . ,m. We could now see whether we
can recover the xj that we used to generate
the yi, but to make it more interesting, we first
randomly perturb the yi values to simulate the
data error typical of least squares problems.
Specifically, we take yi = yi + (2ui − 1) ∗ ε,
i = 1, . . . ,m, where each ui is a random num-
ber uniformly distributed on the interval [0, 1)
(see Section 13.5) and ε is a small positive
number that determines the maximum per-
turbation. If you are using the equivalent of
IEEE double precision, reasonable parameters
for this problem are m = 21, n = 12, and
ε = 10−10.
Having generated the data set (ti, yi) as just
outlined, we will now compare the two meth-
ods for computing the least squares solution
to this polynomial data-fitting problem. First,
form the system of normal equations for this
problem and solve it using a library routine for
Cholesky factorization. Next, solve the least
squares system using a library routine for QR
factorization. Compare the two resulting solu-
tion vectors x. For which method is the solu-
tion more sensitive to the perturbation we in-
troduced into the data? Which method comes
closer to recovering the x that we used to gen-
erate the data? Does the difference in solutions
affect our ability to fit the data points (ti, yi)
closely by the polynomial? Why?

3.7 Use the augmented system method of
Section 3.3.3 to solve the least squares prob-

lem derived in the previous exercise. The aug-
mented system is symmetric but not positive
definite, so Cholesky factorization is not appli-
cable, but you can use a symmetric indefinite
or LU factorization. Experiment with various
values for the scaling parameter α. How do the
accuracy and execution time of this method
compare with those of the normal equations
and QR factorization methods?

3.8 The covariance matrix for the m × n
least squares problem Ax ≈ b is given by
σ2(ATA)−1, where σ2 = ‖b −Ax‖22/(m − n)
at the least squares solution x. The entries
of this matrix contain important information
about the goodness of the fit and any cross-
correlations among the fitted parameters. The
covariance matrix is an exception to the gen-
eral rule that inverses of matrices should never
be computed explicitly. If an orthogonaliza-
tion method is used to solve the least squares
problem, then the normal equations matrix
ATA is never formed, so we need an alter-
native method for computing the covariance
matrix.
(a) Show that (ATA)−1 = (RTR)−1, where
R is the upper triangular factor obtained by
QR factorization of A.
(b) Based on this fact, implement a routine for
computing the covariance matrix using only
the already computedR. (For purposes of this
exercise, you may ignore the scalar factor σ2.)
Test your routine on a few example matrices
to confirm that it gives the same result as com-
puting (ATA)−1.

3.9 Most library routines for computing the
QR factorization of an m × n matrix A re-
turn the matrix R in the upper triangle of the
storage for A and the Householder vectors in
the lower triangle of A, with an extra vector
to accommodate the overlap on the diagonal.
Write a routine that takes this output array
and auxiliary vector and forms the orthogonal
matrix Q explicitly by multiplying the corre-
sponding sequence of Householder transforma-
tions times an m×m matrix that is initialized
to the identity matrix I. Of course, the lat-
ter will require a separate array. Test your
program on several randomly chosen matrices
and confirm that your computed Q is indeed
orthogonal and that the product

114 CHAPTER 3. LINEAR LEAST SQUARES

Q

[
R
O

]
recovers A.

3.10 (a) Implement both the classical and
modified Gram-Schmidt procedures and use
each to generate an orthogonal matrix Q
whose columns form an orthogonal basis for
the column space of the Hilbert matrix H,
with entries hij = 1/(i + j − 1), for n =
2, . . . , 12 (see Computer Problem 2.6). As a
measure of the quality of the results (specifi-
cally, the potential loss of orthogonality), plot
the quantity − log10(‖I − QTQ‖), which can
be interpreted as “digits of accuracy,” for each
method as a function of n. In addition, try
applying the classical procedure twice (i.e., ap-
ply your classical Gram-Schmidt routine to its
own output Q to obtain a new Q), and again
plot the resulting departure from orthogonal-
ity. How do the three methods compare in
speed, storage, and accuracy?
(b) Repeat the previous experiment, but this
time use the Householder method, that is, use
the explicitly computed orthogonal matrix Q
resulting from Householder QR factorization
of the Hilbert matrix. Note that if the rou-
tine you use for Householder QR factorization
does not form Q explicitly, then you can ob-
tain Q by multiplying the sequence of House-
holder transformations times a matrix that is
initialized to the identity matrix I (see previ-
ous exercise). Again, plot the departure from
orthogonality for this method and compare it
with that of the previous methods.
(c) Yet another way to compute an orthogonal
basis is to use the normal equations. If we form
the normal equations matrix and compute its
Cholesky factorization ATA = LLT , then we
have

I = L−1(ATA)L−T

= (AL−T)T (AL−T),

which means that Q = AL−T is orthogonal,
and its column space is obviously the same as
that of A. Repeat the previous experiment us-
ing Hilbert matrices again, this time using the
Q obtained in this way from the normal equa-
tions (the required triangular solution may be
a little tricky, depending on the software you
use). Again, plot the resulting departure from
orthogonality and compare it with that of the
previous methods.

(d) Can you explain the relative quality of the
results you obtained for the various methods
used in these experiments?

3.11 What is the exact solution to the linear
least squares problem

1 1 1
ε 0 0
0 ε 0
0 0 ε

x1

x2

x3

 ≈

1
0
0
0

as a function of ε?

Solve this least squares problem using each of
the following methods. For each method, ex-
periment with the value of the parameter ε to
see how small you can take it and still obtain
an accurate solution. Pay particular attention
to values around ε ≈ √εmach and ε ≈ εmach.

(a) Normal equations method

(b) Augmented system method

(c) Householder QR method

(d) Givens QR method

(e) Classical Gram-Schmidt orthogonalization

(f) Modified Gram-Schmidt orthogonalization

(g) Classical Gram-Schmidt orthogonalization
with iterative refinement (i.e., CGS applied
twice)

Chapter 4

Eigenvalues and Singular Values

4.1 Eigenvalues and Eigenvectors

The standard algebraic eigenvalue problem is as follows: Given an n × n matrix A, find a
scalar λ and a nonzero vector x such that

Ax = λx.

Such a scalar λ is called an eigenvalue, and x is a corresponding eigenvector . In addition to
the “right” eigenvector defined above, we could also define a “left” eigenvector y such that
yTA = λyT , but since a left eigenvector of A is a right eigenvector of AT , we will consider
only right eigenvectors. The set of all the eigenvalues of a matrix A, denoted by λ(A), is
called the spectrum of A. The maximum modulus of the eigenvalues, max{|λ|:λ ∈ λ(A)},
is called the spectral radius of A, denoted by ρ(A).

An eigenvector of a matrix determines a direction in which the effect of the matrix is
particularly simple: The matrix expands or shrinks any vector lying in that direction by
a scalar multiple, and the expansion or contraction factor is given by the corresponding
eigenvalue λ. Thus, eigenvalues and eigenvectors provide a means of understanding the
complicated behavior of a general linear transformation by decomposing it into simpler
actions.

Eigenvalue problems occur in many areas of science and engineering. For example, the
natural modes and frequencies of vibration of a structure are determined by the eigenvec-
tors and eigenvalues of an appropriate matrix. The stability of the structure is determined
by the locations of the eigenvalues, and thus their computation is of critical interest. We
will also see later in this book that eigenvalues can be very useful in analyzing numerical
methods, such as the convergence analysis of iterative methods for solving systems of al-
gebraic equations, and the stability analysis of methods for solving systems of differential
equations.

Although most of our examples will involve only real matrices, both the theory and
computational procedures we will discuss in this chapter are generally applicable to complex
matrices. Notationally, the only difference in dealing with complex matrices is that the

115

116 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

conjugate transpose, denoted by AH , is used instead of the usual matrix transpose, AT

(recall the definitions of transpose and conjugate transpose from Section 2.5).

Example 4.1 Eigenvalues and Eigenvectors.

1. A =
[

1 0
0 2

]
: λ = 1, x =

[
1
0

]
and λ = 2, x =

[
0
1

]
.

2. A =
[

1 1
0 2

]
: λ = 1, x =

[
1
0

]
and λ = 2, x =

[
1
1

]
.

3. A =
[

3 −1
−1 3

]
: λ = 2, x =

[
1
1

]
and λ = 4, x =

[
1
−1

]
.

4. A =
[

1.5 0.5
0.5 1.5

]
: λ = 2, x =

[
1
1

]
and λ = 1, x =

[
−1

1

]
.

5. A =
[

0 1
−1 0

]
: λ = i, x =

[
1
i

]
and λ = −i, x =

[
i
1

]
, where i =

√
−1.

Note that for examples 1 and 2 the eigenvalues are the diagonal entries ofA, and for example
1 the eigenvectors are the columns of the identity matrix I. The matrices in examples 3
and 4 are symmetric, and the eigenvalues are real. Example 5 shows, however, that a
nonsymmetric real matrix need not have real eigenvalues.

4.1.1 Nonuniqueness

Neither eigenvalues nor eigenvectors are necessarily unique, in the following senses:

• The eigenvalues of a matrix are not necessarily all distinct. That is, more than one
direction may have the same expansion or contraction factor. In this case, we say that
the matrix has a multiple eigenvalue. For example, 1 is an eigenvalue of multiplicity n
for the n× n identity matrix I.
• Eigenvectors can obviously be scaled arbitrarily: if Ax = λx, then A(γx) = λ(γx) for

any scalar γ, so that γx is also an eigenvector corresponding to λ. For example,

If A =
[

1 1
0 2

]
, then γx = γ

[
1
1

]
=
[
γ
γ

]
is an eigenvector corresponding to the eigenvalue λ = 2 for any nonzero scalar γ. Conse-
quently, eigenvectors are usually normalized by requiring some norm of the vector to be
1.

4.1.2 Characteristic Polynomial

The equation Ax = λx is equivalent to

(A− λI)x = o.

4.1. EIGENVALUES AND EIGENVECTORS 117

This homogeneous equation has a nonzero solution x if and only if its matrix is singular.
Thus, the eigenvalues of A are the values λ such that

det(A− λI) = 0.

Now det(A − λI) is a polynomial of degree n in λ, called the characteristic polynomial of
A, and its roots are the eigenvalues of A.

Example 4.2 Characteristic Polynomial. As an example, consider the characteristic
polynomial of one of the matrices in Example 4.1:

det
([

3 −1
−1 3

]
− λ

[
1 0
0 1

])
= det

([
3− λ −1
−1 3− λ

])
= (3− λ)(3− λ)− (−1)(−1) = λ2 − 6λ+ 8 = 0,

so that the eigenvalues are given by

λ =
6±
√

36− 32
2

=
6± 2

2
= 2 and 4.

Because the eigenvalues of a matrix are the roots of its characteristic polynomial, we
can conclude from the Fundamental Theorem of Algebra that an n × n matrix A always
has n eigenvalues, but they need be neither distinct nor real. The algebraic multiplicity of
an eigenvalue is its multiplicity as a root of the characteristic polynomial. An eigenvalue
of algebraic multiplicity 1 is said to be simple. The geometric multiplicity of an eigenvalue
is the number of linearly independent eigenvectors corresponding to that eigenvalue. The
geometric multiplicity of an eigenvalue cannot exceed the algebraic multiplicity, but it can
be less than the algebraic multiplicity. An eigenvalue with the latter property is said to be
defective. Similarly, an n×n matrix that has fewer than n linearly independent eigenvectors
is said to be defective.

Although the eigenvalues are not necessarily real, complex eigenvalues of a real matrix
must occur in complex conjugate pairs (i.e., if α+ iβ is an eigenvalue of a real matrix, then
so is α− iβ, where i =

√
−1).

4.1.3 Properties of Eigenvalue Problems

Some properties of an eigenvalue problem that affect the choice of algorithm and software
to solve it are as follows:

• Are all of the eigenvalues needed, or only a few?
• Are only the eigenvalues needed, or are the corresponding eigenvectors also needed?
• Is the matrix real, or complex?
• Is the matrix relatively small and dense, or large and sparse?
• Does the matrix have any special properties, such as symmetry, or is it a general matrix?

118 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

Table 4.1: Some properties of matrices relevant to eigenvalue problems

Property Definition
Symmetric A = AT

Hermitian A = AH

Orthogonal ATA = AAT = I
Unitary AHA = AAH = I
Normal AHA = AAH

Some properties that a square matrix may have that are relevant to eigenvalue problems
are defined in Table 4.1 (see also Section 2.5).

Example 4.3 Matrix Properties. The following examples illustrate some of the matrix
properties relevant to eigenvalue problems:

Transpose:
[

1 2
3 4

]T
=
[

1 3
2 4

]
,

Conjugate transpose:
[

1 + i 1 + 2i
2− i 2− 2i

]H
=
[

1− i 2 + i
1− 2i 2 + 2i

]
,

Symmetric:
[

1 2
2 3

]
, nonsymmetric:

[
1 3
2 4

]
,

Hermitian:
[

1 1 + i
1− i 2

]
, nonHermitian:

[
1 1 + i

1 + i 2

]
,

Orthogonal:
[

0 1
1 0

]
,

[
−1 0

0 −1

]
, nonorthogonal:

[
1 1
1 2

]
,

Orthogonal:
[√

2/2
√

2/2
−
√

2/2
√

2/2

]
, unitary:

[
i
√

2/2
√

2/2
−
√

2/2 −i
√

2/2

]
,

Normal:

 1 2 0
0 1 2
2 0 1

 , nonnormal:
[

1 1
0 1

]
.

4.1.4 Similarity Transformations

In keeping with our general strategy, many numerical methods for computing eigenvalues
and eigenvectors are based on reducing the original matrix to a simpler form, whose eigen-
values and eigenvectors are then easily determined. Thus, we need to identify what types
of transformations preserve eigenvalues, and for what types of matrices the eigenvalues are
easily determined.

A matrix B is similar to a matrix A if there is a nonsingular matrix T such that

B = T−1AT .

4.1. EIGENVALUES AND EIGENVECTORS 119

Then
By = λy ⇒ T−1ATy = λy ⇒ A(Ty) = λ(Ty),

so that A and B have the same eigenvalues, and if y is an eigenvector of B, then x = Ty is
an eigenvector of A. Thus, similarity transformations preserve eigenvalues, and, although
they do not preserve eigenvectors, the eigenvectors are still easily recovered. Note that the
converse is not true: two matrices that are similar must have the same eigenvalues, but two
matrices that have the same eigenvalues are not necessarily similar.

Example 4.4 Similarity Transformation. From the eigenvalues and eigenvectors for
one of the matrices in Example 4.1, we see that

AT =
[

3 −1
−1 3

] [
1 1
1 −1

]
=
[

1 1
1 −1

] [
2 0
0 4

]
= TΛ,

and hence

T−1AT =
[

0.5 0.5
0.5 −0.5

] [
3 −1
−1 3

] [
1 1
1 −1

]
=
[

2 0
0 4

]
= Λ,

so that the original matrix is similar to the diagonal matrix, and in this case the eigenvectors
form the columns of the transformation matrix T .

The eigenvalues of a diagonal matrix are its diagonal entries, and the eigenvectors are
the corresponding columns of the identity matrix I. Thus, diagonal form is a desirable
target in simplifying eigenvalue problems for general matrices by similarity transformations.
Unfortunately, some matrices cannot be transformed into diagonal form by a similarity
transformation. The best that can be done, in general, is Jordan form, in which the matrix
is reduced nearly to diagonal form but may yet have a few nonzero entries on the first
superdiagonal, corresponding to one or more multiple eigenvalues.

Fortunately, every matrix can be transformed into triangular form—called Schur form
in this context—by a similarity transformation, and the eigenvalues of a triangular matrix
are also the diagonal entries, for A− λI must have a zero on its diagonal if A is triangular
and λ is any diagonal entry of A. The eigenvectors of a triangular matrix are not quite so
obvious but are still straightforward to compute. If

A− λI =

U11 u U13

o 0 vT

O o U33

is triangular, then the system U11y = u can be solved for y, so that

x =

 y
−1
o

is an eigenvector. (We have assumed that U11 is nonsingular, which means that we are
working with the first occurrence of λ on the diagonal.)

120 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

The simplest form attainable by a similarity transformation, as well as the type of
similarity transformation, depends on the properties of the given matrix. We obviously
prefer the simpler diagonal form when possible, and we also prefer orthogonal (or uni-
tary) similarity transformations when possible, for both theoretical and numerical reasons.
Unfortunately, not all matrices are unitarily diagonalizable, and some matrices are not di-
agonalizable at allTable 4.2 indicates what form is attainable for a given type of matrix
and a given type of similarity transformation. Given a matrix A with one of the prop-
erties indicated, there exist matrices B and T having the indicated properties such that
B = T−1AT . In the first four cases, the columns of T are the eigenvectors. In all cases,
the diagonal entries of B are the eigenvalues.

Table 4.2: Forms attainable by similarity transformations for various types of matrices

A T B

Distinct eigenvalues Nonsingular Diagonal
Real symmetric Orthogonal Real diagonal
Complex Hermitian Unitary Real diagonal
Normal Unitary Diagonal
Arbitrary Unitary Upper triangular (Schur form)
Arbitrary Nonsingular Almost diagonal (Jordan form)

4.1.5 Conditioning of Eigenvalue Problems

The condition of an eigenvalue problem is the sensitivity of the eigenvalues and eigenvectors
to small changes in the matrix. The condition of a matrix eigenvalue problem is not the
same as the condition of the matrix for solving linear equations. Different eigenvalues or
eigenvectors of a given matrix are not necessarily equally sensitive to perturbations in the
matrix.

The condition of a simple eigenvalue λ of a matrix A is given by 1/|yHx|, where x and y
are corresponding right and left eigenvectors normalized so that xHx = yHy = 1. In other
words, the sensitivity of a simple eigenvalue is proportional to the reciprocal of the cosine
of the angle between the corresponding left and right eigenvectors. Thus, a perturbation of
order ε in A may perturb the eigenvalue λ by as much as ε/|yHx|. The sensitivity of an
eigenvector depends on both the sensitivity of the corresponding eigenvalue and the distance
of that eigenvalue from other eigenvalues.

For a symmetric or Hermitian matrix, the right and left eigenvectors are the same,
so we have yHx = xHx = 1, and hence the eigenvalues are inherently well-conditioned.
More generally, the eigenvalues are well-conditioned for normal matrices, but for nonnormal
matrices the eigenvalues need not be well-conditioned. In particular, multiple or close eigen-
values can be poorly conditioned and therefore difficult to compute accurately, especially
if the matrix is defective. Balancing—scaling by a diagonal similarity transformation—can
improve the condition of an eigenvalue problem, and many software packages for eigenvalue
problems offer such an option.

4.2. METHODS FOR COMPUTING ALL EIGENVALUES 121

4.2 Methods for Computing All Eigenvalues

4.2.1 Characteristic Polynomial

Perhaps the most obvious method for computing the eigenvalues of a matrix A is by means
of its characteristic polynomial,

det(A− λI) = 0.

This is not recommended as a general numerical procedure, however, because the coeffi-
cients of the characteristic polynomial are not well-determined numerically, and its roots
can be very sensitive to perturbations in the coefficients. Moreover, solving for the roots of
a polynomial of high degree requires a great deal of work. In other words, the characteristic
polynomial gives an equivalent problem in theory, but in practice the solution is not pre-
served numerically; and in any case, computing the roots of the polynomial is no simpler
than the original eigenvalue problem. Indeed, one of the better ways of computing the roots
of a polynomial p(λ) = a0 + a1λ+ · · ·+ an−1λ

n−1 + λn is to compute the eigenvalues of the
companion matrix

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

using the methods discussed in this chapter.

Although it is not useful numerically, the characteristic polynomial does permit us to
make an important theoretical observation about computing eigenvalues. Abel proved that
the roots of a polynomial of degree greater than four cannot always be expressed by a closed-
form formula in the coefficients using ordinary arithmetic operations and root extractions.
Thus, in general, computing the eigenvalues of matrices of order greater than four requires
a (theoretically infinite) iterative process.

Example 4.5 Characteristic Polynomial. To illustrate some of the numerical difficul-
ties associated with the characteristic polynomial, consider the matrix

A =
[

1 ε
ε 1

]
,

where ε is a positive number slightly smaller than the square root of machine precision in
a given floating-point system. The exact eigenvalues of A are 1 + ε and 1− ε. Computing
the characteristic polynomial of A in floating-point arithmetic, we get

det(A− λI) = λ2 − 2λ+ (1− ε2) = λ2 − 2λ+ 1,

which has 1 as a double root. Thus, we cannot resolve the two eigenvalues by this method
even though they are quite distinct in the working precision. We would need up to twice
the precision in the coefficients of the characteristic polynomial to compute the eigenvalues
to the same precision as that of the input matrix.

122 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

4.2.2 Jacobi Method for Symmetric Matrices

One of the oldest methods for computing eigenvalues of symmetric matrices is due to Jacobi.
Starting with a symmetric matrix A0 = A, each iteration has the form

Ak+1 = JTk AkJk,

where Jk is a plane rotation chosen to annihilate a symmetric pair of entries in the matrix
Ak (so that the symmetry of the original matrix is preserved). Recall from Section 3.4.5
that a plane rotation is an orthogonal matrix that differs from the identity matrix I in only
four entries, and this 2× 2 submatrix has the form[

c s
−s c

]
,

with c and s the cosine and sine of the angle of rotation, respectively, so that c2 + s2 = 1.
The choice of c and s is slightly more complicated in this context than in the Givens
method for QR factorization because we are annihilating a symmetric pair of matrix entries
by a similarity transformation, as opposed to annihilating a single entry by a one-sided
transformation.

As before, it suffices to consider only the 2× 2 case,

JTAJ =
[
c −s
s c

] [
a b
b d

] [
c s
−s c

]
=

[
c2a− 2csb+ s2d c2b+ cs(a− d)− s2b

c2b+ cs(a− d)− s2b c2d+ 2csb+ s2a

]
,

where b 6= 0 (else there is nothing to do). The transformed matrix will be diagonal if

c2b+ cs(a− d)− s2b = 0.

Dividing both sides of this equation by c2b, we obtain

1 +
s

c

(a− d)
b

− s2

c2
= 0.

Making the substitution t = s/c, we obtain a quadratic equation

1 + t
(a− d)

b
− t2 = 0

for t, the tangent of the angle of rotation, from which we can recover c = 1/
√

1 + t2 and
s = c ·t. It is advantageous numerically to use the root of smaller magnitude of the equation
for t.

Example 4.6 Plane Rotation. To illustrate the use of a plane rotation to annihilate a
symmetric pair of off-diagonal entries, we consider the 2× 2 matrix

A =
[

1 2
2 1

]
.

4.2. METHODS FOR COMPUTING ALL EIGENVALUES 123

The quadratic equation for the tangent reduces to t2 = 1 in this case, so we have t = ±1.
Since the two roots are of the same magnitude, we arbitrarily choose t = −1, which yields
c = 1/

√
2 and s = −1/

√
2. Using the resulting plane rotation J , we then have

JTAJ =
[

1/
√

2 1/
√

2
−1/
√

2 1/
√

2

] [
1 2
2 1

] [
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]
=
[

3 0
0 −1

]
.

In the Jacobi method, plane rotations determined in this manner are repeatedly ap-
plied from both sides in systematic sweeps through the matrix until the off-diagonal mass
of the matrix is reduced to within some tolerance of zero. The resulting approximately
diagonal matrix is orthogonally similar to the original matrix; hence, we have the approx-
imate eigenvalues on the diagonal, and the product of all of the plane rotations gives the
eigenvectors.

Although the Jacobi method is reliable, simple to program, and capable of very high
accuracy, it converges rather slowly. It is also difficult to generalize beyond symmetric (or
Hermitian) matrices. Except for very small problems, the Jacobi method usually requires
five to ten times more work than more modern methods. Recently, however, the Jacobi
method has regained popularity because it is relatively easy to implement on parallel com-
puters.

The main source of inefficiency in the Jacobi method is that entries that have been an-
nihilated by a previous iteration can subsequently become nonzero again, thereby requiring
repeated annihilation. The main computational advantage of more modern methods is that
they are carefully designed to preserve zero entries once they have been introduced into the
matrix.

Example 4.7 Jacobi Method. Let

A0 =

 1 0 2
0 2 1
2 1 1

 .
We will repeatedly sweep through the matrix by rows and columns, annihilating successive
matrix entries. We first annihilate the symmetrically placed entries (1, 3) and (3, 1) using
the plane rotation

J0 =

 0.707 0 −0.707
0 1 0

0.707 0 0.707

 to obtain A1 = JT0 A0J0 =

 3 0.707 0
0.707 2 0.707

0 0.707 −1

 .
We next annihilate the symmetrically placed entries (1, 2) and (2, 1) using the plane rotation

J1 =

 0.888 −0.460 0
0.460 0.888 0

0 0 1

 to obtain A2 = JT1 A1J1 =

 3.366 0 0.325
0 1.634 0.628

0.325 0.628 −1

 .
We next annihilate the symmetrically placed entries (2, 3) and (3, 2) using the plane rotation

J2 =

 1 0 0
0 0.975 −0.221
0 0.221 0.975

 to obtain A3 = JT2 A2J2 =

 3.366 0.072 0.317
0.072 1.776 0
0.317 0 −1.142

 .

124 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

Beginning a new sweep, we again annihilate the symmetrically placed entries (1, 3) and (3,
1) using the plane rotation

J3 =

 0.998 0 −0.070
0 1 0

0.070 0 0.998

 to obtain A4 = JT3 A3J3 =

 3.388 0.072 0
0.072 1.776 0.005

0 0.005 −1.164

 .
This process continues until the off-diagonal entries are reduced to as small a magnitude as
desired. The result is an approximately diagonal matrix that is orthogonally similar to the
original matrix, with the orthogonal similarity transformation given by the product of the
plane rotations.

4.2.3 QR Iteration

QR iteration for computing eigenvalues and eigenvectors makes repeated use of the QR
factorization to produce a unitary similarity transformation of the matrix to diagonal or
triangular form. We initially take A0 = A, then at iteration k we compute the QR factor-
ization

Ak = QkRk,

and then form the reverse product

Ak+1 = RkQk.

Since
RkQk = QH

k AkQk,

we see that the successive matrices Ak are unitarily similar to each other. Moreover, it can
be shown that if the moduli of the eigenvalues are all distinct, then the Ak converge to
triangular form for a general initial matrix, or diagonal form for a symmetric initial matrix.
This condition is not a serious restriction in practice because eigenvalues are deflated out
as they are determined, which in this context simply means that we deal with successively
smaller submatrices as each eigenvalue is determined. For example, after the last row
of the matrix has converged to within some tolerance of zero (except, of course, for the
diagonal entry, which is then an approximate eigenvalue), it need be processed no further
and attention can be restricted to the leading submatrix of dimension n−1. Such reductions
continue successively until all the eigenvalues have been found.

Example 4.8 QR Iteration. Let

A0 =
[

7 2
2 4

]
.

We first compute the QR factorization A0 = Q0R0, obtaining

Q0 =
[

0.962 −0.275
0.275 0.962

]
and R0 =

[
7.28 3.02

0 3.30

]
.

4.2. METHODS FOR COMPUTING ALL EIGENVALUES 125

We next form the reverse product

A1 = R0Q0 =
[

7.83 0.906
0.906 3.17

]
.

We see that the off-diagonal entries are now smaller, so that the matrix is closer to being
diagonal, and the diagonal entries are now closer to the eigenvalues, which are 8 and 3 for
this problem. Repetition of this process would continue until the matrix is within tolerance
of being diagonal, and the diagonal entries would then closely approximate the eigenvalues.
The product of the orthogonal matrices Qk would yield the corresponding eigenvectors.

The convergence rate of QR iteration can be accelerated by incorporating shifts of the
following form:

Ak − σkI = QkRk,

Ak+1 = RkQk + σkI,

where σk is a rough approximation to an eigenvalue. This is called a shift because the entire
spectrum of the matrix is displaced temporarily by the amount σk and then subsequently
restored. One choice for the shift is simply the lower right corner entry of the matrix. A
better shift can be determined by computing the eigenvalues of the 2× 2 submatrix in the
lower right corner of the matrix. In either case, such a shift will become increasingly better
(i.e., closer to an eigenvalue) as the matrix converges to diagonal or triangular form.

Example 4.9 QR Iteration with Shifts. To illustrate the QR algorithm with shifts, we
repeat the previous example using a shift of σ0 = 4, which is the lower right corner entry
of the matrix. Thus, we first compute the QR factorization A0 − σ0I = Q0R0 so that we
have

Q0 =
[

0.832 0.555
0.555 −0.832

]
and R0 =

[
3.61 1.66

0 1.11

]
.

We next form the reverse product and add back the shift to obtain

A1 = R0Q0 + σ0I =
[

7.92 0.615
0.615 3.08

]
.

Compared with the unshifted algorithm, the off-diagonal entries are smaller after one iter-
ation, and the diagonal entries are closer approximations to the eigenvalues. For the next
iteration, we would use the new value of the lower right corner entry as the shift.

4.2.4 Preliminary Reduction

In the simple form just given, each iteration of the QR method requires O(n3) work. The
work per iteration can be reduced if the matrix is initially transformed into a simpler form.
In particular, it is advantageous if the matrix is as close as possible to triangular (or diagonal
for a symmetric matrix) before the QR iterations begin. A Hessenberg matrix is triangular
except for one additional nonzero diagonal immediately adjacent to the main diagonal.
Note that a symmetric Hessenberg matrix is tridiagonal. Any matrix can be reduced to

126 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

Hessenberg form in a finite number of steps by an orthogonal similarity transformation, for
example, by using Householder transformations. Moreover, upper Hessenberg or tridiagonal
form can then be preserved during the subsequent QR iterations. The advantages of this
initial reduction to upper Hessenberg or tridiagonal form are

• The work per QR iteration is reduced to at most O(n2).
• The convergence rate of the QR iterations is enhanced.
• If there are any zero entries on the first subdiagonal, then the problem can be broken

into two or more smaller subproblems.

Thus, the QR method is usually implemented as a two-stage process:

Symmetric −→ tridiagonal −→ diagonal
or

General −→ Hessenberg −→ triangular

The preliminary reduction requires a definite number of steps, whereas the subsequent
iterative stage continues until convergence. In practice, however, only a modest number of
iterations is usually required, so the O(n3) cost of the preliminary reduction is a significant
fraction of the total. The total cost is strongly affected by whether the eigenvectors are
needed because their inclusion determines whether the orthogonal transformations must be
accumulated. For the symmetric case, the overall cost is roughly 4

3n
3 arithmetic operations

(counting both additions and multiplications) if only the eigenvalues are needed, and about
9n3 operations if the eigenvectors are also desired. For the general case, the overall cost is
roughly 10n3 operations if only the eigenvalues are needed, and about 25n3 operations if
the eigenvectors are also desired.

4.3 Methods for Computing Selected Eigenvalues

4.3.1 Power Method

The QR and Jacobi methods are designed to compute all of the eigenvalues of a matrix
and consequently require a great deal of work. In practice, one may need only one or
a few eigenvalues and corresponding eigenvectors. The simplest method for computing a
single eigenvalue and eigenvector of a matrix is the power method , which in effect takes
successively higher powers of the matrix times an initial starting vector. Assume that the
matrix has a unique eigenvalue λ1 of maximum modulus, with corresponding eigenvector
u1. Then, starting from a given nonzero vector x0, the iteration scheme

xk = Axk−1

converges to a multiple of u1, the eigenvector corresponding to the dominant eigenvalue λ1.
To see why, we first express the starting vector x0 as a linear combination, x0 =∑n
i=1 αiui, where the ui are eigenvectors of A. We then have

xk = Axk−1 = A2xk−2 = · · · = Akx0

= Ak
n∑
i=1

αiui =
n∑
i=1

αiA
kui =

n∑
i=1

λki αiui

4.3. METHODS FOR COMPUTING SELECTED EIGENVALUES 127

= λk1(α1u1 +
n∑
i=2

(λi/λ1)kαiui).

Since |λi/λ1| < 1 for i > 1, successively higher powers go to zero, leaving only the component
corresponding to u1.

Example 4.10 Power Method. In the sequence of vectors produced by the power
method, the ratio of the values of a given component of xk from one iteration to the next
converges to the dominant eigenvalue λ1. For example, if

A =
[

1.5 0.5
0.5 1.5

]
and x0 =

[
0
1

]
,

then we obtain the following sequence.

k xTk Ratio
0 0.0 1.0
1 0.5 1.5 1.500
2 1.5 2.5 1.667
3 3.5 4.5 1.800
4 7.5 8.5 1.889
5 15.5 16.5 1.941
6 31.5 32.5 1.970
7 63.5 64.5 1.985
8 127.5 128.5 1.992

The sequence of vectors xk is converging to a multiple of the eigenvector [1 1]T , and the
ratio of successive iterates for each component is converging to the corresponding eigenvalue,
2, which we saw in Example 4.1 is indeed the largest eigenvalue of this matrix.

In practice the power method usually works, but it can fail for any of a number of
reasons:

• The starting vector may have no component in the dominant eigenvector u1 (i.e., α1 = 0).
This possibility is not a problem in practice, because rounding error usually introduces
such a component in any case.

• For a real matrix and starting vector, the iteration can never converge to a complex
vector.

• There may be more than one eigenvalue having the same (maximum) modulus, in which
case the iteration may converge to a vector that is a linear combination of the corre-
sponding eigenvectors.

4.3.2 Normalization

Geometric growth of the components at each iteration risks eventual overflow (or underflow
if the dominant eigenvalue is less than 1 in magnitude), so normalizing the approximate
eigenvector at each iteration is preferable, say, by requiring its largest component to have
modulus 1. This step gives the iteration scheme

yk = Axk−1,

128 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

xk = yk/‖yk‖∞.

With this normalization, ‖yk‖∞ → |λ1|, and xk → u1/‖u1‖∞.

Example 4.11 Power Method with Normalization. Repeating the previous example
with this normalized scheme, we get the following sequence:

k xTk ‖yk‖∞
0 0.000 1.0
1 0.333 1.0 1.500
2 0.600 1.0 1.667
3 0.778 1.0 1.800
4 0.882 1.0 1.889
5 0.939 1.0 1.941
6 0.969 1.0 1.970
7 0.984 1.0 1.985
8 0.992 1.0 1.992

The eigenvalue estimates have not changed, but now the approximate eigenvector is normal-
ized at each iteration, thereby avoiding geometric growth or shrinkage of its components.

4.3.3 Geometric Interpretation

The behavior of the power method is depicted geometrically in Fig. 4.1. The eigenvectors
of the example matrix are shown by dashed arrows. The initial vector

x0 =
[

0
1

]
= 1

[
1
1

]
+ 1

[
−1

1

]
contains equal components in the two eigenvectors. Repeated multiplication by the matrix
A, however, causes the component in the first eigenvector (corresponding to the larger
eigenvalue, 2) to dominate, and hence the sequence of vectors converges to that eigenvector.

−1.0 −0.5 0.0 0.5 1.0
0.0

0.5

1.0

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...............................

..........................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.................................

..........................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..............................

..........................

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
...................................

..........................

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
...........................

..........................

u2 u1

x0 x1 x2x3x4

...........
...........

..............................
..........................

...........
..............................

..........................

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

................... .
.............

.

...........
..
...........
..
...........
..
...........
..
...........
..
...........
..
...........
..
...........
..
...........
..
...........
..
...................

.

..............

Figure 4.1: Geometric interpretation of the power method.

4.3.4 Shifts

The convergence rate of the power method depends on the ratio |λ2/λ1|, where λ2 is the
eigenvalue having second-largest modulus: the smaller this ratio, the faster the convergence.

4.3. METHODS FOR COMPUTING SELECTED EIGENVALUES 129

It may be possible to choose a shift, A− σI, such that∣∣∣∣λ2 − σ
λ1 − σ

∣∣∣∣ < ∣∣∣∣λ2

λ1

∣∣∣∣ ,
and thus convergence is accelerated. Of course, the shift must then be added to the result
to obtain the eigenvalue of the original matrix. In our earlier example, for instance, if we
pick a shift of σ = 1 (which is equal to the other eigenvalue), then the ratio becomes zero
and the method converges in a single iteration. In general, we would not be able to make
such a fortuitous choice, but such shifts can still be extremely useful in some contexts, as
we will see later.

4.3.5 Deflation

Suppose that an eigenvalue λ1 and corresponding eigenvector x1 for a matrix A have been
computed. We now consider how to compute additional eigenvalues λ2, . . . , λn of A, if
needed, by a process called deflation, which effectively removes the known eigenvalue.

Let H be any nonsingular matrix such that Hx1 = αe1, a scalar multiple of the first
column of the identity matrix I (for example, an appropriate Householder transformation
is a good choice for H). Then the similarity transformation determined by H transforms
A into the form

HAH−1 =
[
λ1 bT

o B

]
,

where B is a matrix of order n− 1 having eigenvalues λ2, . . . , λn. Thus, we can work with
B to compute the next eigenvalue λ2. Moreover, if y2 is an eigenvector of B corresponding
to λ2, then

x2 = H−1

[
α
y2

]
, where α =

bTy2

λ2 − λ1
,

is an eigenvector corresponding to λ2 for the original matrix A, provided λ1 6= λ2. This
process can be repeated to find additional eigenvalues and eigenvectors, as needed.

An alternative approach to deflation is to let v1 be any vector such that vT1 x1 = λ1.
Then the matrix A− x1v

T
1 has eigenvalues 0, λ2, . . . , λn. Possible choices for v1 include

• v1 = λ1x1, if A is symmetric and x1 is normalized so that ‖x1‖2 = 1
• v1 = λ1y1, where y1 is the corresponding left eigenvector (i.e., ATy1 = λ1y1) normalized

so that yT1 x1 = 1
• v1 = ATek, if x1 is normalized so that ‖x1‖∞ = 1 and the kth component of x1 is 1

4.3.6 Inverse Iteration

For some applications, the smallest eigenvalue of a matrix is required rather than the largest.
We can make use of the fact that the eigenvalues of A−1 are the reciprocals of those of A,
and hence the smallest eigenvalue of A is the reciprocal of the largest eigenvalue of A−1.
We therefore use the inverse iteration scheme

Ayk = xk−1,

130 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

xk = yk/‖yk‖∞,

which is equivalent to the power method applied to A−1. Of course, the inverse of A is
not computed explicitly. Instead the system of linear equations is solved at each iteration,
perhaps by LU factorization, which need be done only once. Inverse iteration converges to
the eigenvector corresponding to the smallest eigenvalue of A. The eigenvalue obtained is
the dominant eigenvalue of A−1, and hence its reciprocal is the smallest eigenvalue of A in
modulus.

As before, a shifting strategy (working with A − σI for some scalar σ) can greatly
improve convergence. For this reason, inverse iteration is particularly useful for computing
the eigenvector corresponding to an approximate eigenvalue that has already been computed
by some other means because it converges very rapidly when applied to the matrix A−λI,
where λ is an approximate eigenvalue. Inverse iteration is also useful for computing the
eigenvalue of a matrix closest to a given value β, for if β is used as shift, then the desired
eigenvalue corresponds to the smallest eigenvalue of the shifted matrix.

Example 4.12 Inverse Iteration. As an illustration of inverse iteration, we apply it to
our previous example to compute the smallest eigenvalue, obtaining the sequence

k xTk ‖yk‖∞
0 0.000 1.0
1 −0.333 1.0 0.750
2 −0.600 1.0 0.833
3 −0.778 1.0 0.900
4 −0.882 1.0 0.944
5 −0.939 1.0 0.971
6 −0.969 1.0 0.985

which is converging to the eigenvector [−1 1]T corresponding to the dominant eigenvalue
of A−1, which is the same as the eigenvector corresponding to the smallest eigenvalue of A.
The approximate eigenvalue is converging to 1, which is its own reciprocal in this case.

4.3.7 Rayleigh Quotient

If one is given an approximate eigenvector x for a real matrix A, determining the best
estimate for the corresponding eigenvalue λ can be considered as an n × 1 linear least
squares approximation problem

xλ ≈ Ax.

From the normal equation xTxλ = xTAx, we see that the least squares solution is given
by

λ =
xTAx

xTx
.

The latter quantity, known as the Rayleigh quotient , has many useful properties. For
example, it can be used to accelerate the convergence of an iterative method such as the
power method, since at iteration k the Rayleigh quotient xTkAxk/x

T
k xk gives a better

approximation to an eigenvalue than that provided by the basic method alone.

4.3. METHODS FOR COMPUTING SELECTED EIGENVALUES 131

Example 4.13 Rayleigh Quotient. For Example 4.11 using the power method, the
value of the Rayleigh quotient at each iteration is shown next.

k xTk ‖yk‖∞ xTkAxk/x
T
k xk

0 0.000 1.0 1.500
1 0.333 1.0 1.500 1.800
2 0.600 1.0 1.667 1.941
3 0.778 1.0 1.800 1.985
4 0.882 1.0 1.889 1.996
5 0.939 1.0 1.941 1.999
6 0.969 1.0 1.970 2.000

Thus, the Rayleigh quotient converges to the dominant eigenvalue, 2, faster than the suc-
cessive approximations produced by the power method alone.

4.3.8 Rayleigh Quotient Iteration

Given an approximate eigenvector, the Rayleigh quotient yields a very good estimate for the
corresponding eigenvalue. Conversely, inverse iteration converges very rapidly to an eigen-
vector if an approximate eigenvalue is used as shift, with a single iteration often sufficing.
It is natural, therefore, to combine these two ideas in the Rayleigh quotient iteration

σk = xTkAxk/x
T
k xk,

(A− σkI)yk+1 = xk,

xk+1 = yk+1/‖yk+1‖∞,

starting from a given nonzero vector x0. This iteration scheme is especially effective for
symmetric matrices and usually converges very rapidly.

On the other hand, using a different shift at each iteration means that the matrix must
be refactored each time to solve the linear system, so that the cost per iteration is relatively
high unless the matrix has some special form that makes the factorization easy. In general,
the power method, inverse iteration, and Rayleigh quotient iteration show the expected
trade-off, with faster convergence coming at the expense of more work per iteration.

Rayleigh quotient iteration also works for complex matrices, for which the transpose is
replaced by conjugate transpose, and the Rayleigh quotient becomes xHAx/xHx.

Example 4.14 Rayleigh Quotient Iteration. Using the same matrix as our previous
examples and a randomly chosen starting vector x0, Rayleigh quotient iteration converges
to the accuracy shown in only two iterations:

k xTk σk
0 0.807 0.397 1.896
1 0.924 1.000 1.998
2 1.000 1.000 2.000

132 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

4.3.9 Lanczos Method for Symmetric Matrices

The power method produces a sequence of vectors, each of which is a successively better
approximation to an eigenvector. At any point in the process, however, the approximation is
based on a single vector, which spans a one-dimensional subspace. A better approximation
should result if we compute the best approximation to an eigenvector over an entire subspace
of higher dimension. The Rayleigh-Ritz procedure is a method for doing just that.

Let A be an n × n symmetric matrix, and let S be an n ×m matrix, n ≥ m, whose
columns span a subspace of dimension m. Orthogonalize the columns of S (see Section 3.4),
if necessary, to obtain an n ×m matrix Q with orthonormal columns spanning the same
subspace. Form the m ×m symmetric matrix B = QTAQ. Denote the eigenvalues and
corresponding eigenvectors of B by γi and yi, respectively, and let zi = Qyi, i = 1, . . . ,m.
Then it can be shown that the γi and zi, which are called Ritz values and Ritz vectors,
respectively, are the best possible approximations to eigenvalue-eigenvector pairs of A over
the subspace spanned by S. One must still compute the eigenvalues of B, but if m � n,
this problem should be much easier.

So how can we obtain a suitable subspace? The answer is that we can use the Krylov
subspace spanned by the sequence of vectors

x,Ax,A2x, . . . ,Am−1x,

where x is any nonzero starting vector. Note that this is just the sequence of vectors
generated by the power method, which means that we will obtain the best eigenvalue-
eigenvector approximation over the entire subspace spanned by all of the iterates, rather
than using only the last vector in the sequence. Orthogonalization of an arbitrary set of
vectors would be very expensive, but for the Krylov sequence, it can be shown that the
successive orthogonal vectors satisfy a three-term recurrence, so that each new vector need
be orthogonalized only against the previous two, rather than all of the previous vectors
(which means that they need not be saved). Thus, in this case the m ×m matrix QTAQ
is tridiagonal, and we denote it by Tm. As m increases, the eigenvalues of Tm become
increasingly better approximations to the extreme (largest and smallest) eigenvalues of A.

The ideas we have just outlined—using the Rayleigh-Ritz approximation over the Krylov
subspace and taking advantage of the resulting three-term recurrence—form the basis for
the Lanczos method for computing eigenvalues and eigenvectors of symmetric matrices.
Beginning with an arbitrary nonzero starting vector r0, and taking β0 = ‖r0‖2 and q0 = o,
the following steps are repeated for k = 1, . . . ,m:

1. qk = rk−1/βk−1.
2. uk = Aqk.
3. rk = uk − βk−1qk−1.
4. αk = qTk rk.
5. rk = rk − αkqk.
6. βk = ‖rk‖2.

The αk, k = 1, . . . ,m, and βk, k = 1, . . . ,m− 1, are the diagonal and subdiagonal entries,
respectively, of the symmetric tridiagonal matrix Tm. If at any point βk = 0, then the
algorithm appears to break down, but in that case an invariant subspace has already been

4.3. METHODS FOR COMPUTING SELECTED EIGENVALUES 133

identified (i.e., the Ritz values and vectors are already exact at that point). Note that
the algorithm as just stated does not produce the eigenvalues and eigenvectors directly
but rather the tridiagonal matrix Tm, whose eigenvalues and eigenvectors must then be
computed by some other method to obtain the Ritz values and vectors.

In principle, if the foregoing algorithm were run until m = n, then the resulting tridi-
agonal matrix would be orthogonally similar to A. In practice, unfortunately, rounding
error causes a loss of orthogonality that invalidates this expectation. This problem can be
overcome by reorthogonalizing the vectors as needed, but the expense of doing so can be
substantial. Alternatively, one can ignore the problem, in which case the algorithm still
produces good eigenvalue approximations, but multiple copies of some eigenvalues may be
generated, which can be a nuisance to say the least. In any case, there are better ways to
tridiagonalize a matrix (e.g., Householder’s method) than running the Lanczos algorithm
for n steps. The great virtue of the Lanczos method is its ability to produce good approx-
imations to the extreme eigenvalues with m � n, often on the order of

√
n. Moreover,

the algorithm requires only one matrix-vector multiplication by A per step and very little
auxiliary storage, so it is ideally suited to large sparse matrices, unlike methods that alter
the entries of A.

Example 4.15 Lanczos Method. The behavior of the Lanczos method is illustrated
in Fig. 4.2, where the algorithm is applied to a matrix of order 29 whose eigenvalues are
1, . . . , 29. The iteration count is plotted on the vertical axis, and the corresponding Ritz
values are on the horizontal axis. At each iteration k, the points (γi, k), i = 1, . . . , k, are
plotted. We see that the extreme eigenvalues are closely approximated by Ritz values after
only a few iterations, but the interior eigenvalues take much longer to appear. For this small
matrix with well-separated eigenvalues, the Ritz values are identical to the eigenvalues after
29 iterations, as theory predicts, but for more realistic problems this cannot be relied upon
owing to rounding error. Moreover, running the algorithm for a full n iterations may not
be feasible if n is very large. The main point, however, is the relatively rapid convergence
to the extreme eigenvalues, which is typical of the Lanczos method in general.

The Lanczos method most quickly produces approximate eigenvalues near the ends of
the spectrum. If eigenvalues are needed in the middle of the spectrum, say, near the value σ,
then the algorithm can be applied to the matrix (A−σI)−1, assuming that it is practical to
solve systems of the form (A− σI)x = y. Such a “shift-and-invert” strategy enables much
more rapid convergence to interior eigenvalues, since they correspond to extreme eigenvalues
of the new matrix.

A generalization of the Lanczos method to nonsymmetric matrices, known as the Arnoldi
method , reduces the input matrix to Hessenberg form rather than tridiagonal form. Several
software packages that implement the Lanczos and Arnoldi methods are available.

4.3.10 Spectrum-Slicing Methods for Symmetric Matrices

Another family of methods is based on counting eigenvalues. For real symmetric matrices,
there are various methods for determining the number of eigenvalues that are less than a
given real number σ. By systematically choosing various values for σ (slicing the spectrum

134 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

0 5 10 15 20 25 30

Ritz values

0

5

10

15

20

25

30

iteration

..

Figure 4.2: Convergence of Ritz values to eigenvalues in the Lanczos method.

at σ) and monitoring the resulting count, any eigenvalue can be isolated as accurately as
desired. We sketch such methods briefly here.

Let A be a real symmetric matrix. The inertia of A is a triple of integers consisting
of the numbers of positive, negative, and zero eigenvalues. A congruence transformation
has the form SAST , where S is any nonsingular matrix. Unless ST = S−1 (i.e., S is
orthogonal), a congruence is not a similarity transformation and hence does not preserve
the eigenvalues of A. However, by Sylvester’s Law of Inertia, a congruence transformation
does preserve the inertia of A, i.e., the numbers of positive, negative, and zero eigenvalues
are invariant under congruences.

If we can find a congruence transformation that makes the inertia easy to determine, then
we can apply it to the matrix A−σI to determine the numbers of eigenvalues to the right or
left of σ. An obvious candidate is the LDLT factorization discussed in Section 2.5.2, where
D is a matrix whose inertia is easily determined. By computing the LDLT factorization,
and hence the inertia, of A − σI for any desired value of σ, individual eigenvalues can be
isolated as accurately as desired using an interval bisection technique (see Section 5.2.1).

Another spectrum-slicing method for computing individual eigenvalues is based on the
Sturm sequence property of symmetric matrices. LetA be a symmetric matrix and let pk(σ)
denote the determinant of the leading principal submatrix of order k of A− σI. Then the
zeros of pk(σ) strictly separate (i.e., are interleaved with) those of pk−1(σ). Furthermore,
the number of agreements in sign of successive members of the sequence pk(σ), for k =
1, . . . , n, is equal to the number of eigenvalues of A that are strictly greater than σ. This
property allows the computation of the number of eigenvalues lying in a given interval.
The determinants pk(σ) are especially easy to compute if A is tridiagonal, so A is usually
transformed to this form before applying the Sturm sequence technique.

4.4. GENERALIZED EIGENVALUE PROBLEMS 135

4.4 Generalized Eigenvalue Problems

Many eigenvalue problems occurring in practice have the form of a generalized eigenvalue
problem

Ax = λBx,

where A and B are given n×n matrices. In structural vibration problems, for example, A
represents the stiffness matrix andB the mass matrix , and the eigenvalues and eigenvectors
determine the natural frequencies and modes of vibration of the structure (see Computer
Problem 4.12 for an example). A detailed study of the theory and algorithms for this
and other generalized eigenvalue problems is beyond the scope of this book, but the basic
methods available for their solution are briefly outlined next.

If either of the matrices A or B is nonsingular, then the generalized eigenvalue problem
can be converted to a standard eigenvalue problem, either

(B−1A)x = λx or (A−1B)x = (1/λ)x.

Such a transformation is not generally recommended, however, since it may cause

• Loss of accuracy due to rounding error in forming the product matrix, especially when
A or B is ill-conditioned
• Loss of symmetry when A and B are symmetric

If A and B are symmetric, and one of them is positive definite, then symmetry can still be
retained by using the Cholesky factorization. For example, if B = LLT , then the general-
ized eigenvalue problem can be rewritten as the standard symmetric eigenvalue problem

(L−1AL−T)y = λy,

and x can be recovered from the triangular linear system LTx = y. Transformation to a
standard eigenvalue problem may still incur unnecessary rounding error, however, and it
offers no help if both A and B are singular.

A numerically superior approach, which is applicable even when the matrices are sin-
gular or indefinite, is the QZ algorithm. Note that if A and B are both triangular, then
the eigenvalues are given by λi = aii/bii for bii 6= 0. This circumstance is the motivation
for the QZ algorithm, which reduces A and B simultaneously to upper triangular form by
orthogonal transformations. First, B is reduced to upper triangular form by an orthogonal
transformation Q0 applied on the left, and the same orthogonal transformation is also ap-
plied to A. Then a sequence of orthogonal transformations Qk is applied to both matrices
from the left to reduce A to upper Hessenberg form, and these alternate with orthogonal
transformations Zk applied on the right to restore B to upper triangular form. Finally, in a
process analogous to QR iteration for the standard eigenvalue problem, additional orthog-
onal transformations are applied, alternating on the left and right, so that A converges to
upper triangular form while maintaining the upper triangular form of B. The product of
all the transformations on the left is denoted by Q, and the product of those on the right
is denoted by Z, giving the algorithm its name. The eigenvalues can now be determined
from the mutually triangular form, and the eigenvectors can be recovered via Q and Z.

136 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

4.5 Singular Values

4.5.1 Singular Value Decomposition

The singular value decomposition (SVD) is an eigenvalue-like decomposition for rectangular
matrices. Let A be an m × n real matrix. Then the singular value decomposition has the
form

A = UΣV T ,

where U is an m ×m orthogonal matrix, V is an n × n orthogonal matrix, and Σ is an
m× n diagonal matrix, with

σij =
{

0 for i 6= j
σi ≥ 0 for i = j

.

The diagonal entries σi are called the singular values of A and are usually ordered so that
σi ≥ σi+1, i = 1, . . . , n − 1. The columns ui of U and vi of V are the corresponding left
and right singular vectors.

Example 4.16 Singular Value Decomposition. The singular value decomposition of

A =

1 2 3
4 5 6
7 8 9

10 11 12

is given by UΣV T =

0.141 0.825 −0.420 −0.351
0.344 0.426 0.298 0.782
0.547 0.028 0.664 −0.509
0.750 −0.371 −0.542 0.079

25.5 0 0
0 1.29 0
0 0 0
0 0 0

 0.504 0.574 0.644
−0.761 −0.057 0.646

0.408 −0.816 0.408

 .
Thus, we have σ1 = 25.5, σ2 = 1.29, and σ3 = 0. A singular value of zero indicates that the
matrix is rank-deficient; in general, the rank of a matrix is equal to the number of nonzero
singular values, which in this example is two.

The singular values of A are the nonnegative square roots of the eigenvalues of ATA,
and the columns of U and V are orthonormal eigenvectors of AAT and ATA, respectively.
Algorithms for computing the SVD work directly with A, however, without forming AAT

or ATA, thereby avoiding any loss of information associated with forming these matrix
products explicitly.

The SVD is usually computed by a variant of QR iteration. First, A is reduced to
bidiagonal form by orthogonal transformations, then the remaining off-diagonal entries are
annihilated iteratively. The SVD can also be computed by a variant of the Jacobi method,
which can be useful on parallel computers or if the matrix has some special structure. The
total number of arithmetic operations required to compute the SVD of an m × n dense
matrix is proportional to mn2 + n3, with the proportionality constants ranging from 2 to

4.5. SINGULAR VALUES 137

10 or more, depending on the particular algorithm used and the combination of singular
values and right or left singular vectors desired. If the matrix is large and sparse, then
bidiagonalization is most effectively performed by a variant of the Lanczos algorithm, which
is especially suitable if only a few of the extreme singular values and corresponding singular
vectors are needed.

4.5.2 Applications of SVD

The singular value decomposition A = UΣV T has many important applications, among
which are the following:

• Euclidean norm of a matrix. The matrix norm subordinate to the Euclidean vector norm
is given by the largest singular value of the matrix,

‖A‖2 = max
x6=o

‖Ax‖2
‖x‖2

= σmax.

• Condition number of a matrix. The condition number of a matrix A with respect to the
Euclidean norm is given by the ratio

cond(A) = σmax/σmin.

This result agrees with the definition of cond(A) for a square matrix given in Section 2.3.3
when using the Euclidean norm, and it also enables us to assign a condition number to a
rectangular matrix. Just as the condition number of a square matrix measures closeness
to singularity, the condition number of a rectangular matrix measures closeness to rank
deficiency.

• Rank of a matrix. In theory, the rank of a matrix is equal to the number of nonzero
singular values it has. In practice, however, the rank may not be well-determined in that
some singular values may be very small but nonzero. For many purposes it may be better
to regard any singular values falling below some threshold as negligible in determining
the “numerical rank” of the matrix. One way to interpret this is that the given matrix is
very near to (i.e., within the given threshold of) a matrix of the rank so determined.

• Solving linear systems or linear least squares problems. The minimum Euclidean norm
solution to Ax ≈ b is given by

x =
∑
σi 6=0

uTi b

σi
vi.

The SVD is especially useful for ill-conditioned or rank-deficient problems, since “small”
singular values can be dropped from the summation, thereby stabilizing the solution
(making it much less sensitive to perturbations in the data).
• Pseudoinverse of a matrix. Define the pseudoinverse of a scalar σ to be 1/σ if σ 6= 0,

and zero otherwise. Define the pseudoinverse of a (possibly rectangular) diagonal matrix
by transposing the matrix and taking the scalar pseudoinverse of each entry. Then the
pseudoinverse of a general real m× n matrix A, denoted by A+, is given by

A+ = V Σ+UT .

138 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

Note that the pseudoinverse always exists regardless of whether the matrix is square or
of full rank. If A is square and nonsingular, then the pseudoinverse is the same as the
usual matrix inverse, A−1. In any case, the least squares solution to Ax ≈ b of minimum
Euclidean norm is given by A+b.

• Orthonormal bases for range and null spaces. The columns of V corresponding to zero
singular values form an orthonormal basis for the null space ofA. The remaining columns
of V form an orthonormal basis for the orthogonal complement of the null space. Sim-
ilarly, the columns of U corresponding to nonzero singular values form an orthonormal
basis for the range space of A, and the remaining columns of U form an orthonormal
basis for the orthogonal complement of the range space.

• Approximating a matrix by one of lower rank. Another way to write the SVD is

A = UΣV T = σ1E1 + σ2E2 + · · ·+ σnEn,

where Ei = uiv
T
i . Each Ei is of rank 1 and can be stored using only m + n storage

locations. Moreover, the product Eix can be formed using only m + n multiplications.
Thus, a useful condensed approximation to A can be obtained by omitting from the
foregoing summation those terms corresponding to the smaller singular values, since they
have relatively little effect on the sum. It can be shown that this approximation using the
k largest singular values is the closest matrix of rank k to A in the Frobenius norm. (The
Frobenius norm of an m× n matrix is the Euclidean norm of the matrix considered as a
vector in Rmn.) Such an approximation is useful in image processing, data compression,
cryptography, and numerous other applications.
• Total least squares. In an ordinary linear least squares problem Ax ≈ b, we implicitly

assume that the entries of A are known exactly, whereas the entries of b are subject
to error. In curve-fitting or regression problems where all of the variables are subject
to measurement error or other uncertainty, it may make more sense to minimize the
orthogonal distances between the data points and the curve rather than the vertical
distances as in ordinary least squares. Such a total least squares solution can be computed
using the singular value decomposition [A b] = UΣV T . Provided that σn+1 is simple
and vn+1,n+1 6= 0, the total least squares solution is then given by

x = − 1
vn+1,n+1

 v1,n+1
...

vn,n+1

 .
More general problems, for example with multiple right-hand sides and with some of
the variables known exactly, can be handled by a similar approach but are rather more
complicated (see [259] for details).

4.6 Software for Eigenvalues and Singular Values

Table 4.3 is a list of some of the software available for eigenvalue and singular value problems.
The routines listed are in most cases high-level drivers whose underlying routines can also
be called directly if greater user control is required. Only the most comprehensive and
commonly occurring cases are listed, and only for real matrices. There are many additional

4.6. SOFTWARE FOR EIGENVALUES AND SINGULAR VALUES 139

routines available in these packages, including routines for complex matrices and for various
special situations, such as when only the eigenvalues and not the eigenvectors are needed,
or when only a few eigenvalues are needed, or when the matrix has some special property,
such as being banded. Routines are also available for both symmetric and nonsymmetric
generalized eigenvalue problems. EISPACK and its successor LAPACK are the standards in
software for dense eigenvalue problems, and the eigenvalue routines in most other libraries
are based on them.

Table 4.3: Software for standard dense eigenvalue and singular value problems

Eigenvalues/eigenvectors Singular value
Source General Symmetric decomposition
EISPACK rg rs svd
FMM svd
HSL eb06 ea06 eb10
IMSL evcrg evcsf lsvrr
LAPACK sgeev ssyev sgesvd
Lawson/Hanson [163] svdrs
LINPACK ssvdc
MATLAB eig eig svd
NAG f02agf f02abf f02wef
NAPACK diag sdiag sing
NR elmhes/hqr tred2/tqli svdcmp
NUMAL comeig1 qrisym qrisngvaldec
SLATEC rg rs ssvdc

Conventional software for computing eigenvalues is fairly complicated, especially if eigen-
vectors are also computed. The standard approach, QR iteration, is typically broken into
separate routines for the preliminary reduction to tridiagonal or Hessenberg form, and then
QR iteration for computing the eigenvalues. The orthogonal or unitary similarity trans-
formations may or may not be accumulated, depending on whether eigenvectors are also
desired. Because of the complexity of the underlying routines, higher-level drivers are often
provided for applications that do not require fine control. Typically, the input required is
a two-dimensional array containing the matrix, together with information about the size
of the matrix and the array containing it. The eigenvalues are returned in one or two
one-dimensional arrays, depending on whether they are real or complex; and normalized
eigenvectors, if requested, are similarly returned in one or two two-dimensional arrays.
Similar remarks apply to software for computing the singular value decomposition except
that arrays must be provided for both left and right singular vectors, if requested, and the
decomposition is always real if the input matrix is real.

As usual, life is simpler using an interactive environment such as MATLAB, in which
functions for eigenvalue and singular value computations are built in. A diagonal matrix D
of eigenvalues and full matrix V of eigenvectors of a (real or complex) matrix A are given
by the MATLAB function [V, D] = eig(A). Internally, the eigenvalues and eigenvectors are
computed by Hessenberg reduction and then QR iteration to obtain the Schur form of
the matrix, but the user need not be aware of this. If the Hessenberg or Schur forms are

140 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

desired explicitly, they can be computed by the MATLAB functions hess and schur. The
MATLAB function for computing the singular value decomposition has the form [U, S, V]
= svd(A).

For software implementing the Lanczos algorithm for large sparse symmetric eigenvalue
problems, see laso from netlib, ea15 from the Harwell library, lancz from napack, or the
software published in [46]. In addition, the Arnoldi method for large sparse nonsymmetric
eigenvalue problems is implemented in arpack, and the Lanczos method for computing
singular values and vectors of large sparse matrices is implemented in svdpack, both of
which are available from netlib. For solving total least squares problems, dtls is available
from netlib.

4.7 Historical Notes and Further Reading

The Jacobi method for computing eigenvalues dates from the mid-nineteenth century. The
power method is sufficiently obvious to have been rediscovered repeatedly, but as a practical
method its use dates from early in this century. Inverse iteration was proposed by Wielandt
in 1944. The Lanczos method was first published in 1950, and Arnoldi’s generalization of
it to nonsymmetric matrices followed in 1951. QR iteration was discovered independently
and simultaneously by Francis and Kublanovskaya in 1961, based on the earlier LR method
of Rutishauser (1958), which uses less stable elementary eliminations instead of orthogonal
transformations. The first practical algorithm for computing the singular value decomposi-
tion was proposed by Golub and Kahan in 1965, and the basic algorithm that is still in use
today was published by Businger and Golub in 1969. The direct precursors of most modern
software for eigenvalue and related problems were collected in [276], published in 1971.

The definitive reference on eigenvalue computations is [275]. Other excellent references
on this topic include [37, 108, 199]. Most of the books on matrix computations cited in
Chapter 2 also discuss eigenvalue and singular value computations in some detail, espe-
cially [104]. EISPACK is documented in [90, 233], and its successor LAPACK is documented
in [8]. For a detailed discussion of methods for large eigenvalue problems, see [46, 217]. For
a graphic example of the use of the SVD in image processing, see [9], and for its use in
cryptography, see [178].

Review Questions

4.1 True or false: The eigenvalues of a ma-
trix are not necessarily all distinct.

4.2 True or false: All the eigenvalues of a
real matrix are necessarily real.

4.3 True or false: An eigenvector corre-
sponding to a given eigenvalue of a matrix is
unique.

4.4 True or false: Every n×n matrix A has
n linearly independent eigenvectors.

4.5 True or false: If an n×n matrix is singu-
lar, then it does not have a full set of n linearly

independent eigenvectors.

4.6 True or false: A square matrix A is sin-
gular if and only if 0 is one of its eigenvalues.

4.7 True or false: If λ = 0 for every eigen-
value λ of a matrix A, then A = O.

4.8 True or false: The diagonal elements of
a complex Hermitian matrix must be real.

4.9 True or false: The eigenvalues of a com-
plex Hermitian matrix must be real.

REVIEW QUESTIONS 141

4.10 True or false: If two matrices have the
same eigenvalues, then the two matrices are
similar.

4.11 True or false: If two matrices are similar,
then they have the same eigenvectors.

4.12 True or false: Given any arbitrary square
matrix, there is some diagonal matrix that is
similar to it.

4.13 True or false: Given any arbitrary square
matrix, there is some triangular matrix that is
unitarily similar to it.

4.14 True or false: The condition number of
a matrix that determines the sensitivity of the
solution to a system of linear equations also de-
termines the sensitivity of the eigenvalues and
eigenvectors to perturbations in the matrix.

4.15 True or false: A matrix that is both sym-
metric and Hessenberg must be tridiagonal.

4.16 True or false: If an n × n matrix A has
distinct eigenvalues, then QR iteration applied
to A necessarily converges to a diagonal ma-
trix.

4.17 True or false: For a square matrix, the
eigenvalues and the singular values are the
same thing.

4.18 For a given matrix A,

(a) Can the same eigenvalue correspond to two
different eigenvectors?

(b) Can the same eigenvector correspond to
two different eigenvalues?

4.19 What are the eigenvalues and eigenvec-
tors of a diagonal matrix?

4.20 Which of the following conditions nec-
essarily imply that an n × n real matrix A
is diagonalizable (i.e., is similar to a diagonal
matrix)?

(a) A has n distinct eigenvalues.

(b) A has only real eigenvalues.

(c) A is nonsingular.

(d) A is equal to its transpose.

(e) A commutes with its transpose.

4.21 Which of the following classes of matri-
ces necessarily have all real eigenvalues?
(a) Real symmetric
(b) Real triangular
(c) Arbitrary real
(d) Complex symmetric
(e) Complex Hermitian
(f) Complex triangular with real diagonal
(g) Arbitrary complex

4.22 Let A and B be similar matrices, i.e.,
B = T−1AT for some nonsingular matrix T .
If y is an eigenvector of B, then exhibit an
eigenvector of A.

4.23 The eigenvalues of a matrix are the roots
of its characteristic polynomial. Does this fact
provide a generally effective numerical method
for computing the eigenvalues? Why?

4.24 Before applying QR iteration to find the
eigenvalues of a matrix, the matrix is usually
first transformed to a simpler form. For each
type of matrix listed below, what intermediate
form is appropriate?
(a) A general real matrix
(b) A real symmetric matrix

4.25 A general matrix can be reduced to tri-
angular form by a single QR factorization, and
the eigenvalues of a triangular matrix are its
diagonal entries. Does this procedure suffice
to compute the eigenvalues of the original ma-
trix? Why?

4.26 Gauss-Jordan elimination reduces a ma-
trix to diagonal form. Does this make the
eigenvalues of the matrix obvious? Why?

4.27 (a) Why is the Jacobi method for com-
puting all the eigenvalues of a real symmetric
matrix relatively slowly convergent?
(b) Name a method that is faster, and explain
briefly why it is faster.

4.28 For which of the following classes of ma-
trices of order n can the eigenvalues be com-
puted in a finite number of steps for arbitrary
n?
(a) Diagonal
(b) Tridiagonal
(c) Triangular

142 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

(d) Hessenberg
(e) General real matrix with distinct eigenval-
ues
(f) General real matrix with eigenvalues that
are not necessarily distinct

4.29 In using QR iteration for computing the
eigenvalues of a matrix, why is the matrix usu-
ally first reduced to some simpler form, such
as Hessenberg or tridiagonal?

4.30 Applied to a given matrix A, QR iter-
ation for computing eigenvalues converges to
either diagonal or triangular form. What prop-
erty of A determines which of these two forms
is obtained?

4.31 As a preliminary step before computing
its eigenvalues, a matrix A is often first re-
duced to Hessenberg form by a unitary simi-
larity transformation. Why stop there? If such
a preliminary reduction to Hessenberg form is
good, wouldn’t triangular form be even better?
What is wrong with this argument?

4.32 Order the following algorithms 1
through 4, from least work required to most
work required, for a general square matrix A:
(a) LU factorization by Gaussian elimination
with partial pivoting
(b) Computing all of the eigenvalues and eigen-
vectors
(c) Solving a triangular system by back-
substitution
(d) Computing the inverse of the matrix

4.33 The power method converges to which
eigenvector of a matrix?

4.34 (a) If a matrix A has a simple domi-
nant eigenvalue λ1, what quantity determines
the convergence rate of the power method for
computing λ1?
(b) How can the convergence rate of the power
method be improved?

4.35 Given an approximate eigenvector x for
a matrix A, what is the best estimate (in
the least squares sense) for the corresponding
eigenvalue?

4.36 List three conditions under which the
power method for computing an eigenvalue
may fail.

4.37 Inverse iteration converges to which
eigenvector of a matrix?

4.38 In the power method or inverse itera-
tion for computing eigenvalues and eigenvec-
tors, why are the vector iterates normalized at
each iteration?

4.39 What is the main reason that shifts are
used in iterative methods for computing eigen-
values, such as the power, inverse iteration,
and QR iteration methods?

4.40 Given a general square matrix A, what
method would you use to find the following?
(a) The smallest eigenvalue of A
(b) The largest eigenvalue of A
(c) The eigenvalue of A closest to some speci-
fied scalar β
(d) All of the eigenvalues of A

4.41 (a) Given an approximate eigenvalue λ
for a matrix, how can one obtain a good ap-
proximate eigenvector?
(b) Given an approximate eigenvector x for a
matrix, how can one obtain a good approxi-
mate eigenvalue?

4.42 What is a Krylov sequence, and for what
purpose is it useful?

4.43 Why is the Lanczos method faster than
the power method for computing a few eigen-
values of a real symmetric matrix?

4.44 What features make the Lanczos method
suitable for large sparse symmetric eigenvalue
problems?

4.45 What is meant by the inertia of a real
symmetric matrix?

4.46 (a) What is meant by a congruence
transformation of a real symmetric matrix?
(b) What properties of the matrix, if any, are
preserved by such a transformation.

4.47 Explain briefly how spectrum-slicing
methods work for computing individual eigen-
values of a real symmetric matrix.

4.48 (a) List two reasons why converting a
generalized eigenvalue problem Ax = λBx to
the standard eigenvalue problem (B−1A)x =
λx might not be a good idea.
(b) What is a better approach?

EXERCISES 143

4.49 List at least two applications for the sin-
gular value decomposition (SVD) of a matrix.

4.50 How are the singular values of an m× n
matrixA related to the eigenvalues of the n×n
matrix ATA?

4.51 Let A be an m× n matrix.
(a) What is the maximum number of nonzero
singular values that A can have?
(b) If rank(A) = k, how many nonzero singular
values does A have?

4.52 Let a be a nonzero column vector. Con-
sidered as an n × 1 matrix, a has only one
positive singular value. What is its value?

4.53 Is forming ATA and computing its
eigenvalues a good way to compute the sin-
gular values of a matrix A? Why?

4.54 What is the condition number of a ma-
trix with respect to the Euclidean vector norm,
expressed in terms of the singular values of the
matrix?

4.55 List two reliable methods for determin-
ing the rank of a rectangular matrix numeri-
cally.

4.56 If A is a 2n×n matrix, rank the follow-
ing methods according to the amount of work
required to solve the linear least squares prob-
lem Ax ≈ b.

(a) QR factorization by Householder transfor-
mations

(b) Normal equations

(c) Singular value decomposition

Exercises

4.1 (a) Prove that 5 is an eigenvalue of the
matrix

A =

6 3 3 1
0 7 4 5
0 0 5 4
0 0 0 8

 .
(b) Exhibit an eigenvector of A corresponding
to the eigenvalue 5.

4.2 What are the eigenvalues and corre-
sponding eigenvectors of the following matrix? 1 2 −4

0 2 1
0 0 3

4.3 Let

A =
[

1 4
1 1

]
.

Your answers to the following questions should
be numeric and specific to this particular ma-
trix, not just the general definitions.
(a) What is the characteristic polynomial of
A?
(b) What are the roots of the characteristic
polynomial of A?
(c) What are the eigenvalues of A?
(d) What are the corresponding eigenvectors
of A?

(e) Perform one iteration of the power method
on A, using x0 = [1 1]T as starting vector.

(f) To what eigenvector of A will the power
method ultimately converge?

(g) What eigenvalue estimate is given by
the Rayleigh quotient, using the vector x =
[1 1]T ?

(h) To what eigenvector of A would inverse
iteration ultimately converge?

(i) What eigenvalue of A would be obtained if
inverse iteration were used with shift σ = 2?

(j) If QR iteration were applied to A, to what
form would it converge: diagonal or triangu-
lar? Why?

4.4 Give an example of a 2 × 2 matrix A
and a nonzero starting vector x0 such that the
power method fails to converge to the eigenvec-
tor corresponding to the dominant eigenvalue
of A.

4.5 Suppose that all of the row sums of an
n× n matrix A have the same value, say, α.

(a) Show that α is an eigenvalue of A.

(b) What is the corresponding eigenvector?

4.6 Show that an n×n matrix A is singular
if and only if zero is one of its eigenvalues.

144 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

4.7 Let A be an n× n matrix.
(a) Show that A and AT have the same eigen-
values.
(b) Do A and AT also have the same eigen-
vectors? Prove or give a counterexample.

4.8 Prove that an n × n matrix A is diago-
nalizable by a similarity transformation if and
only if it has a complete set of n linearly inde-
pendent eigenvectors.

4.9 (a) Prove that all the eigenvalues of a
real symmetric matrix A are real (Hint : Con-
sider xTAx).
(b) Prove that all the eigenvalues of a complex
Hermitian matrix A are real (Hint : Consider
xHAx).

4.10 Prove that the eigenvalues of a positive
definite matrix A are all positive.

4.11 Prove that for any matrix norm subor-
dinate to a vector norm, ρ(A) ≤ ‖A‖.

4.12 Is there any real value for the parameter
α such that the matrix 1 0 α

4 2 0
6 5 3

(a) Has all real eigenvalues?
(b) Has all complex eigenvalues with nonzero
imaginary parts?
In each case, either give such a value for α or
give a reason why none exists.

4.13 Give an example of a symmetric com-
plex matrix (not Hermitian) that has com-
plex eigenvalues (i.e., with nonzero imaginary
parts).

4.14 If A and B are n× n matrices and A is
nonsingular, show that the matrices AB and
BA are similar.

4.15 Assume that A is a nonsingular n × n
matrix.
(a) What is the relationship between the eigen-
values of A and those of A−1? Prove your
answer.
(b) What is the relationship between the eigen-
vectors of A and those of A−1? Prove your
answer.

4.16 If λ is an eigenvalue of an n × n matrix
A, show that λ2 is an eigenvalue of A2.

4.17 Prove that if Ak = 0 for some positive
integer k (such a matrix is said to be nilpo-
tent), then all of the eigenvalues of A are zero.

4.18 What are the eigenvalues of an idempo-
tent matrix (i.e., A2 = A)?

4.19 (a) Suppose that A is an n×n symmet-
ric matrix. Let λ and γ, with λ 6= γ, be eigen-
values of A with corresponding eigenvectors x
and y, respectively. Show that yTx = 0 (i.e.,
eigenvectors corresponding to distinct eigen-
values of a symmetric matrix are orthogonal).
(b) More generally, suppose now that A is
not necessarily symmetric. If Ax = λx and
ATy = γy, with λ 6= γ, show that yTx = 0
(i.e., right and left eigenvectors corresponding
to distinct eigenvalues are orthogonal).

4.20 Let A be an n × n matrix such that
ρ(A) < 1.
(a) Show that I −A is nonsingular.
(b) Show that

(I −A)−1 =
∞∑
k=0

Ak.

4.21 If A is an n × n matrix of rank one,
then A must have the form A = uvT for some
nonzero vectors u and v.
(a) Show that the scalar uTv is an eigenvalue
of A.
(b) What are the other eigenvalues of A?
(c) If the power method is applied to A, how
many iterations are required for it to converge
exactly to the eigenvector corresponding to the
dominant eigenvalue?

4.22 Let λ1 ≤ λ2 ≤ · · · ≤ λn be the (real)
eigenvalues of an n× n real symmetric matrix
A.
(a) To which of the eigenvalues ofA is it possi-
ble for the power method to converge by using
an appropriately chosen shift σ?
(b) In each such case, what value for the shift
gives the most rapid convergence?
(c) Answer the same two questions for the in-
verse iteration method.

EXERCISES 145

4.23 Let the n×n complex Hermitian matrix
C be written as C = A+ iB (i.e., the matri-
ces A and B are its real and imaginary parts,
respectively). Define the 2n × 2n real matrix
C̄ by

C̄ =
[
A −B
B A

]
.

Let λ be an eigenvalue of C with correspond-
ing eigenvector x+ iy.
(a) Show that C̄ is symmetric.
(b) Show that λ is an eigenvalue of C̄, with
both [

x
y

]
and

[
−y
x

]
as corresponding eigenvectors.
(c) The previous results show that a routine
for real symmetric eigenvalue problems can be
used to solve complex Hermitian eigenvalue
problems. Is this a good approach? Why?

4.24 (a) What are the eigenvalues of the fol-
lowing complex symmetric matrix?[

2i 1
1 0

]
(b) How many linearly independent eigenvec-
tors does it have?
(c) Contrast this situation with that for a real
symmetric or complex Hermitian matrix.

4.25 (a) If λ is an eigenvalue of an orthogonal
matrix Q, show that |λ| = 1.
(b) What are the singular values of an orthog-
onal matrix?

4.26 (a) What are the eigenvalues of the
Householder transformation

H = I − 2
vvT

vTv
,

where v is any nonzero vector?
(b) What are the eigenvalues of the plane ro-
tation

G =
[

c s
−s c

]
,

where c2 + s2 = 1?

4.27 Let A be a symmetric tridiagonal ma-
trix having no zero entries on its subdiagonal.
Show that A must have distinct eigenvalues.

4.28 Let A be a singular upper Hessenberg
matrix having no zero entries on its subdiag-
onal. Show that the QR method applied to
A produces an exact eigenvalue after only one
iteration. This result suggests that the conver-
gence of the QR method will be very rapid if
we use a shift that is approximately equal to
an eigenvalue.

4.29 Verify that the successive orthogonal
vectors produced by the Lanczos algorithm
(Section 4.3.9) satisfy a three-term recurrence.
For example, Aq3 is already orthogonal to q1

and hence need be orthogonalized only against
q2 and q3.

4.30 (a) Consider the column vector a as an
n× 1 matrix. Write out its singular value de-
composition, showing the matrices U , Σ, and
V explicitly.

(b) Consider the row vector aT as a 1 × n
matrix. Write out its singular value decom-
position, showing the matrices U , Σ, and V
explicitly.

4.31 If A is an m × n matrix and b is an m-
vector, prove that the solution x of minimum
Euclidean norm to the least squares problem
Ax ≈ b is given by

x =
∑
σi 6=0

uTi b

σi
vi,

where the σi, ui, and vi are the singular values
and corresponding singular vectors of A.

4.32 Let A be an m×n real matrix. Consider
the symmetric eigenvalue problem[

O A
AT O

] [
u
v

]
= λ

[
u
v

]
.

(a) Show that if λ, u, and v satisfy this re-
lationship, with u and v suitably normalized,
then |λ| is a singular value of A with corre-
sponding left and right singular vectors u and
v, respectively.

(b) Is solving this eigenvalue problem a good
way to compute the SVD of the matrix A?
Why?

146 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

4.33 Prove that the pseudoinverse A+ of an
m × n matrix A, as defined using the SVD
in Section 4.5.2, satisfies the following four
properties, known as the Moore-Penrose con-
ditions.
(a) AA+A = A.
(b) A+AA+ = A+.
(c) (AA+)T = AA+.
(d) (A+A)T = A+A.

4.34 (a) If an n× n matrix A is nonsingular,
prove that A+ = A−1.
(b) If an m × n matrix A has rank n, prove
that A+ = (ATA)−1AT .
(c) If an m × n matrix A has rank m, prove
that A+ = AT (AAT)−1.

4.35 (a) What is the pseudoinverse of the fol-
lowing matrix? [

1 0
0 0

]

(b) If ε > 0, what is the pseudoinverse of the
following matrix? [

1 0
0 ε

]

(c) What do these results imply about the
conditioning of the problem of computing the
pseudoinverse of a given matrix?

Computer Problems

4.1 (a) Implement the power method to find
the dominant eigenvalue and a corresponding
eigenvector of the matrix

A =

 2 3 2
10 3 4
3 6 1

 .
As starting vector, take x0 = [0 0 1]T .
(b) Using any of the methods for deflation
given in Section 4.3.5, deflate out the eigen-
value found in part a and apply the power
method again to find the second largest eigen-
value of the same matrix.
(c) Use a general real eigensystem library rou-
tine to compute all of the eigenvalues and
eigenvectors of the matrix, and compare the
results with those obtained in parts a and b.

4.2 (a) Implement inverse iteration with a
shift to compute the eigenvalue nearest to 2,
and the corresponding eigenvector, of the ma-
trix

A =

 6 2 1
2 3 1
1 1 1

 .
You may use an arbitrary starting vector.
(b) Use a real symmetric eigensystem library
routine to compute all of the eigenvalues and
eigenvectors of the matrix, and compare the
results with those obtained in part a.

4.3 Write a program implementing Rayleigh
quotient iteration for computing an eigenvalue
and corresponding eigenvector of a matrix.
Test your program on the matrix in the previ-
ous exercise, using a random starting vector.

4.4 (a) Use a library routine to compute the
eigenvalues of the matrix

A =

−149 −50 −154
537 180 546
−27 −9 −25

 .
(b) Compute the eigenvalues of the same ma-
trix again, except with the a22 entry changed
to 180.01.

(c) Compute the eigenvalues of the same ma-
trix again, except with the a22 entry changed
to 179.99.

(d) What conclusion can you draw about the
conditioning of the eigenvalues of A?

4.5 Implement the following simple version
of QR iteration with shifts for computing the
eigenvalues of a general real matrix A.

Repeat until convergence:

1. σ = an,n (use corner entry as shift)
2. Compute QR factorization A− σI = QR
3. A = RQ+ σI

COMPUTER PROBLEMS 147

(These steps will be easy if you use a package
such as MATLAB but more involved if you use
a library routine for the QR factorization or
write your own.)
What convergence test should you use? Test
your program on the matrices in the first two
computer exercises above.

4.6 Write a program implementing the
Lanczos method as given in Section 4.3.9. Test
your program using a random symmetric ma-
trixA of order n having eigenvalues 1, 2, . . . , n.
To generate such a matrix, first generate an
n × n matrix B with random entries uni-
formly distributed on the interval [0, 1) (see
Section 13.5), and then compute the QR fac-
torization B = QR. Now take A = QDQT ,
where D = diag(1, . . . , n). The Lanczos al-
gorithm generates only the tridiagonal matrix
Tk at iteration k, so you will need to com-
pute its eigenvalues (i.e., the Ritz values γi,
i = 1, . . . , k) at each iteration, say, by using
a library routine based on QR iteration. For
the purpose of this exercise, run the Lanczos
algorithm for a full n iterations.
To see graphically how the Ritz values behave
as iterations proceed, construct a plot with the
iteration number on the vertical axis and the
Ritz values at each iteration on the horizontal
axis. Plot each pair (γi, k), i = 1, . . . , k, as a
discrete point at each iteration k (see Fig. 4.2).
As iterations proceed and the number of Ritz
values grows correspondingly, you should see
vertical “trails” of Ritz values converging on
the true eigenvalues. Try several values for n,
say, n = 10, 20, . . ., 50, making a separate plot
for each.

4.7 Compute all the roots of the polynomial

p(t) = 24− 40t+ 35t2 − 13t3 + t4

by forming the companion matrix (see Sec-
tion 4.2.1) and then calling an eigenvalue rou-
tine to compute its eigenvalues. Note that the
companion matrix is already in lower Hessen-
berg form (there is also an equivalent upper
Hessenberg form), which you may be able to
take advantage of, depending on the specific
software you use. Compare the speed and ac-
curacy of the companion matrix method with
those of a library routine designed specifically

for computing roots of polynomials (see Ta-
ble 5.2). You may need to experiment with
polynomials of larger degree to see a signifi-
cant difference.

4.8 Compute the eigenvalues of the Hilbert
matrix of order n (see Computer Problem 2.6)
for several values of n, say, up to n = 20. Can
you characterize the range of magnitudes of
the eigenvalues as a function of n?

4.9 A singular matrix must have a zero
eigenvalue, but must a nearly singular matrix
have a “small” eigenvalue? Consider a matrix
of the form

1 −1 −1 −1 −1
0 1 −1 −1 −1
0 0 1 −1 −1
0 0 0 1 −1
0 0 0 0 1

 ,
whose eigenvalues are obviously all ones. Use
a library routine to compute the singular val-
ues of such a matrix for various orders. How
does the ratio σmax/σmin behave as the order
of the matrix grows? What conclusions can
you draw?

4.10 A symmetric tridiagonal matrix with a
multiple eigenvalue must have a zero on its
subdiagonal, but do a close pair of eigen-
values imply that some subdiagonal element
must be small? Consider the symmetric tridi-
agonal matrix of order n = 2k + 1 having
k, k−1, . . . , 1, 0, 1, . . . , k as its diagonal entries
and all ones as its subdiagonal and superdiag-
onal entries. Compute the eigenvalues of this
matrix for various values of n. Does it have any
multiple or nearly multiple eigenvalues? What
conclusions can you draw?

4.11 A Markov chain is a system that has
n possible states and passes through a series
of transitions from one state to another. The
probability of a transition from state j to state
i is given by aij , where 0 ≤ aij ≤ 1 and∑n
i=1 aij = 1. Let A denote the matrix of

transition probabilities, and let x(k)
i denote the

probability that the system is in state i after
transition k. If the initial probability distribu-
tion vector is x(0), then the probability distri-
bution vector after k steps is given by

x(k) = Ax(k−1) = Akx(0).

148 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

The long-term behavior of the system is there-
fore determined by the value of limk→∞A

k.

Consider a system with three states and tran-
sition matrix

A =

 0.8 0.2 0.1
0.1 0.7 0.3
0.1 0.1 0.6

 ,
and suppose that the system is initially in state
1.

(a) What is the probability distribution vector
after three steps?

(b) What is the long-term value of the proba-
bility distribution vector?

(c) Does the long-term value of the probability
distribution vector depend on the particular
starting value x(0)?

(d) What is the value of limk→∞A
k, and what

is the rank of this matrix?

(e) Explain your previous results in terms of
the eigenvalues and eigenvectors of A.

(f) Must 1 always be an eigenvalue of the tran-
sition matrix of a Markov chain? Why?

(g) A probability distribution vector x is said
to be stationary if Ax = x. How can you
determine such a stationary value x using the
eigenvalues and eigenvectors of A?

(h) How can you determine a stationary value
x without knowledge of the eigenvalues and
eigenvectors of A?

(i) In this particular example, is it possible for
a previous distribution vector to recur, other
than a stationary distribution? For Markov
chains in general, is such nontrivial cyclic be-
havior possible? If not, why? If so, give an
example. (Hint : Think about the location of
the eigenvalues of A in the complex plane.)

(j) Can there be more than one stationary dis-
tribution vector for a given Markov chain? If
not, why? If so, give an example.

(k) Of what numerical method does this prob-
lem remind you?

4.12 Consider the spring-mass system

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

•

•

•m1

m2

m3

k1

k2

k3

with three masses m1, m2, and m3 at verti-
cal locations y1, y2, and y3 connected by three
springs having spring constants k1, k2, and k3.
According to Newton’s Second Law, the mo-
tion of the system is governed by the system
of ordinary differential equations

My′′ +Ky = 0,

where

M =

m1 0 0
0 m2 0
0 0 m3

is the mass matrix and

K =

 k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3

is the stiffness matrix . Such a system ex-
hibits simple harmonic motion with natural
frequency ω, i.e., the solution components are
given by

yk(t) = xke
iωt,

where xk is the amplitude, k = 1, 2, 3, and
i =
√
−1. To determine the frequency ω and

mode of vibration (i.e., the amplitudes xk), we
note that for each solution component,

y′′k (t) = −ω2xke
iωt.

Substituting this relationship into the differen-
tial equation, we obtain the algebraic equation

Kx = λMx,

where λ = ω2. Thus, the natural frequencies
and modes of vibration can be determined by
solving a generalized eigenvalue problem (see
Section 4.4).

For purposes of this problem, assume the val-
ues k1 = k2 = k3 = 1, m1 = 2, m2 = 3, and
m4 = 4, in arbitrary units.

COMPUTER PROBLEMS 149

(a) For this particular problem, the mass ma-
trix M is diagonal, so there is no harm in con-
verting the generalized eigenvalue problem to a
standard eigenvalue problem. Taking this ap-
proach, determine all three natural frequencies
and modes of vibration for the system, using
any combination you choose of the power and
inverse iteration methods (you may use shifts,
or deflation, or both).
(b) If you have access to a library routine for
solving generalized eigenvalue problems, use it
to solve this problem directly in its original
form, and compare the results with those ob-
tained in part a.

4.13 (a) The matrix exponential function of
an n × n matrix A is defined by the infinite
series

exp(A) = I +A+
A2

2!
+
A3

3!
+ · · · .

Write a program to evaluate exp(A) using the
foregoing series definition.
(b) An alternative way to compute the matrix
exponential uses the eigenvalue-eigenvector de-
composition

A = U diag(λ1, . . . , λn)U−1,

where λ1, . . . , λn are the eigenvalues of A and
U is a matrix whose columns are correspond-
ing eigenvectors. Then the matrix exponential
is given by

exp(A) = U diag(eλ1 , . . . , eλn)U−1.

Write a second program to evaluate exp(A)
using this method.
Test both methods using each of the following
test matrices:

A =
[

2 −1
−1 2

]
,

B =
[

113 −114
152 −153

]
.

Compare your results with those for a library
routine for computing the matrix exponential,
if you have access to one. Which of your two
routines is more accurate and robust? Try to
explain why. See [179] for several additional
methods for computing the matrix exponen-
tial.

4.14 Write a routine for solving an arbitrary,
possibly rank-deficient, linear least squares
problem Ax ≈ b using the singular value de-
composition. You may call a library routine
to compute the SVD, then use its output to
compute the least squares solution (see Sec-
tion 4.5.2). The input to your routine should
include the matrix A, right-hand-side vector
b, and a tolerance for determining the numer-
ical rank of A. Test your routine on some of
the linear least squares problems in Chapter 3.

4.15 (a) Write a routine that uses a one-sided
plane rotation to symmetrize an arbitrary 2×2
matrix. That is, given a 2×2 matrixA, choose
c and s so that[

c s
−s c

] [
a11 a12

a21 a22

]
=
[
b11 b12

b12 b22

]
is symmetric.

(b) Write a routine that uses a two-sided plane
rotation to annihilate the off-diagonal entries
of an arbitrary 2× 2 symmetric matrix. That
is, given a symmetric 2 × 2 matrix B, choose
c and s so that[

c −s
s c

] [
b11 b12

b12 b22

] [
c s
−s c

]

=
[
d11 0
0 d22

]
is diagonal.

(c) Combine the two routines developed in
parts a and b to obtain a routine for computing
the singular value decomposition A = UΣV T

of an arbitrary 2 × 2 matrix A. Note that
U will be a product to two plane rotations,
whereas V will be a single plane rotation. Test
your routine on a few randomly chosen 2 × 2
matrices and compare the results with those
for a library SVD routine.

By systematically solving successive 2×2 sub-
problems, the module you have just developed
can be used to compute the SVD of an arbi-
trary m × n matrix in a manner analogous to
the Jacobi method for the symmetric eigen-
value problem.

150 CHAPTER 4. EIGENVALUES AND SINGULAR VALUES

4.16 We will revisit Computer Problem 3.5
concerning the elliptical orbit of a planet, rep-
resented in a Cartesian (x, y) coordinate sys-
tem by the equation

ay2 + bxy + cx+ dy + e = x2.

The orbital parameters a, b, c, d, e can be de-
termined by a linear least squares fit to the
following observations of the planet’s position:

x 1.02 0.95 0.87 0.77 0.67
y 0.39 0.32 0.27 0.22 0.18
x 0.56 0.44 0.30 0.16 0.01
y 0.15 0.13 0.12 0.13 0.15

(a) Use a library routine to compute the sin-
gular value decomposition of the 10 × 5 least
squares matrix.
(b) Use the singular value decomposition to
compute the solution to the least squares prob-
lem. With the singular values in order of de-
creasing magnitude, compute the solutions us-
ing the first k singular values, k = 1, . . . , 5.
For each of the five solutions obtained, print
the values for the orbital parameters and also
plot the resulting orbits along with the given
data points in the (x, y) plane.
(c) Perturb the input data slightly by adding
to each coordinate of each data point a ran-
dom number uniformly distributed on the in-
terval [−0.005, 0.005] (see Section 13.5). Com-
pute the singular value decomposition of the
new least squares matrix, and solve the least
squares problem with the perturbed data as in
part b. Compare the new values for the pa-
rameters with those previously computed for
each value of k. What effect does this differ-
ence have on the plot of the orbits? Can you
explain this behavior? Which solution would
you regard as better: one that fits the data
more closely, or one that is less sensitive to
small perturbations in the data? Why?

4.17 Write a routine for computing the pseu-
doinverse of an arbitrary m × n matrix. You

may call a library routine to compute the sin-
gular value decomposition, then use its out-
put to compute the pseudoinverse (see Sec-
tion 4.5.2). Consider the use of a tolerance
for declaring relatively small singular values to
be zero. Test your routine on both singular
and nonsingular matrices. In the latter case,
of course, your results should agree with those
of standard matrix inversion. What happens
when the matrix is nonsingular, but severely
ill-conditioned (e.g., a Hilbert matrix)?

4.18 Consider the problem of fitting the
model function

f(t, x) = xt

(i.e., a straight line through the origin, with
slope x to be determined) to the following data
points:

t −2 −1 3
y −1 3 −2

(a) Perform a standard linear least squares fit
of such a line to y as a function of t, minimizing
the vertical distances between the data points
and the line (this procedure is appropriate if y
is subject to error and t is known exactly).
(b) Perform a standard linear least squares fit
of such a line to t as a function of y, minimiz-
ing the horizontal distances between the data
points and the line (this procedure is appro-
priate if t is subject to error and y is known
exactly).
(c) Perform a total least squares fit of the line
to the data, minimizing the orthogonal dis-
tances between the data points and the line
(this procedure is appropriate if both variables
are subject to error). Such a fit can be done us-
ing the singular value decomposition (see Sec-
tion 4.5.2).
(d) What is the resulting slope x of the line in
each case? Plot the data points and all three
lines on a single graph.

Chapter 5

Nonlinear Equations

5.1 Nonlinear Equations

We will now consider methods for solving nonlinear equations. Given a nonlinear function
f , we seek a value x for which

f(x) = 0.

Such a solution value for x is called a root of the equation, and a zero of the function f .
Though technically they have distinct meanings, these two terms are informally used more
or less interchangeably, with the obvious meaning. Thus, this problem is often referred to
as root finding or zero finding .

In discussing numerical methods for solving nonlinear equations, we will distinguish two
cases:

f :R→ R (scalar),

and
f :Rn → R

n (vector).

The latter is referred to as a system of nonlinear equations, in which we seek a vector x
such that all the component functions of f(x) are zero simultaneously.

Example 5.1 Nonlinear Equations. An example of a nonlinear equation in one dimen-
sion is

f(x) = x2 − 4 sin(x) = 0,

for which one approximate solution is x = 1.9. An example of a system of nonlinear
equations in two dimensions is

f(x) =
[
x2

1 − x2 + 0.25
−x1 + x2

2 + 0.25

]
=
[

0
0

]
,

for which the solution vector is x = [0.5 0.5]T .

151

152 CHAPTER 5. NONLINEAR EQUATIONS

5.1.1 Solutions of Nonlinear Equations

A system of linear equations always has a unique solution unless the matrix of the system
is singular. The existence and uniqueness of solutions for nonlinear equations are often
much more complicated and difficult to determine, and a much wider variety of behavior is
possible. Curved lines can intersect, or fail to intersect, in many more ways than straight
lines can. For example, unlike straight lines, two curved lines can be tangent without being
coincident. Whereas for systems of linear equations the number of solutions must be either
zero, one, or infinitely many, nonlinear equations can have any number of solutions.

Example 5.2 Solutions of Nonlinear Equations. For example:

• ex + 1 = 0 has no solution.
• e−x − x = 0 has one solution.
• x2 − 4 sin(x) = 0 has two solutions.
• x3 + 6x2 + 11x− 6 = 0 has three solutions.
• sin(x) = 0 has infinitely many solutions.

In addition, a nonlinear equation may have a multiple root , where both the function and
its derivative are zero, i.e., f(x) = 0 and f ′(x) = 0. In one dimension, this property means
that the curve has a horizontal tangent on the x axis. If f(x) = 0 and f ′(x) 6= 0, then x is
said to be a simple root .

Example 5.3 Multiple Root. Examples of equations having a multiple root include

x2 − 2x+ 1 = 0 and x3 − 3x2 + 3x− 1 = 0,

which are illustrated in Fig. 5.1.

.. ..

...
...............
............
..........
.........
........
.......
.......
......
......
......
......
.....
.....
.....
.....

..........
.........
........
........
........
.......
.......
.......
........
........
........
.........
..........
.........
.........
...............

.......................................
..........
.........
..........
.........
........
........
........
.......
.......
.......
........
........
........
.........
..........
..

Figure 5.1: Nonlinear equations having a multiple root.

What do we mean by an approximate solution x̂ to a nonlinear system,

‖f(x̂)‖ ≈ 0 or ‖x̂− x∗‖ ≈ 0,

where x∗ is the “true” solution to f(x) = 0? The first corresponds to having a small resid-
ual, whereas the second measures closeness to the (usually unknown) true solution. As with

5.1. NONLINEAR EQUATIONS 153

linear systems, these two criteria for a solution are not necessarily “small” simultaneously.
This feature is illustrated for one dimension in Fig. 5.2, where the two functions have about
the same uncertainty in their values (e.g., due to rounding error or measurement error) but
very different uncertainties in the locations of their roots (compare with Fig. 2.2). Thus,
we see that the same concept of sensitivity or conditioning applies to nonlinear equations:
it is the relative change in the solution due to a given relative change in the input data. For
example, a multiple root is ill-conditioned, since by definition the curve has a horizontal
tangent at such a root, and is therefore locally approximately parallel to the x axis.

..

...

........................
..............................

..
...

.....................................
............................

...............

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.........

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.........

.............
.............

.............
.............

well-conditioned ill-conditioned

Figure 5.2: Conditioning of roots of nonlinear equations.

The conditioning of the root-finding problem for a given function is the opposite of that
for evaluating the function: if the function value is insensitive to the value of the argument,
then the root will be sensitive, whereas if the function value is sensitive to the argument,
then the root will be insensitive. This property makes sense, because the two problems are
inverses of each other: if y = f(x), then finding x given y has the opposite conditioning
from finding y given x.

5.1.2 Convergence Rates of Iterative Methods

Unlike linear equations, most nonlinear equations cannot be solved in a finite number of
steps. Thus, we must usually resort to an iterative method that produces increasingly
accurate approximations to the solution, and we terminate the iteration when the result
is sufficiently accurate. The total cost of solving the problem depends on both the cost
per iteration and the number of iterations required for convergence, and there is often a
trade-off between these two factors.

To compare the effectiveness of iterative methods, we need to characterize their conver-
gence rates. We denote the error at iteration k by ek, and it is usually given by ek = xk−x∗,
where xk is the approximate solution at iteration k, and x∗ is the true solution. Some meth-
ods for one-dimensional problems do not actually produce a specific approximate solution
xk, however, but merely produce an interval known to contain the solution, with the length
of the interval decreasing as iterations proceed. For such methods, we take ek to be the
length of this interval at iteration k. In either case, a method is said to converge with rate
r if

lim
k→∞

‖ek+1‖
‖ek‖r

= C

for some finite nonzero constant C. Some particular cases of interest are these:

154 CHAPTER 5. NONLINEAR EQUATIONS

• If r = 1 and C < 1, the convergence rate is linear.
• If r > 1, the convergence rate is superlinear.
• If r = 2, the convergence rate is quadratic.

One way to interpret the distinction between linear and superlinear convergence is that,
asymptotically, a linearly convergent sequence gains a constant number of digits of accuracy
per iteration, whereas a superlinearly convergent sequence gains an increasing number of
digits of accuracy with each iteration. Specifically, a linearly convergent sequence gains
− logβ(C) base-β digits per iteration, but a superlinearly convergent sequence has r times as
many digits of accuracy after each iteration as it had the previous iteration. In particular,
a quadratically convergent method doubles the number of digits of accuracy with each
iteration.

5.2 Nonlinear Equations in One Dimension

We first consider methods for nonlinear equations in one dimension. Given a function
f :R→ R, we seek a point x such that f(x) = 0.

5.2.1 Bisection Method

In finite-precision arithmetic, there may not be a floating-point number x such that f(x)
is exactly zero. One alternative is to look for a very short interval [a, b] in which f has a
change of sign, since the corresponding continuous function must be zero somewhere within
such an interval. An interval for which the sign of f differs at its endpoints is called a
bracket . The bisection method begins with an initial bracket and successively reduces its
length until the solution has been isolated as accurately as desired. At each iteration, the
function is evaluated at the midpoint of the current interval, and half of the interval can
then be discarded, depending on the sign of the function at the midpoint. More formally,
the algorithm is as follows, where sign(x) = 1 if x ≥ 0 and sign(x) = −1 if x < 0:

Initial input: a function f , an interval [a, b] such that sign(f(a)) 6= sign(f(b)), and an
error tolerance tol.

while ((b− a) > tol) do
m = a+ (b− a)/2
if sign(f(a)) = sign(f(m)) then

a = m
else

b = m
end

end

a m b

..
......................................

..............................
....................

................
..............

............
............
...........
...........
..........
..........
..........
..........
..........
..........
..........
..........
.....

Example 5.4 Bisection Method. We illustrate the bisection method by finding a root
of the equation

f(x) = x2 − 4 sin(x) = 0.

For the initial bracketing interval [a, b], we take a = 1 and b = 3. All that really matters
is that the function values differ in sign at the two points. We evaluate the function at the

5.2. NONLINEAR EQUATIONS IN ONE DIMENSION 155

midpoint m = a + (b − a)/2 = 2 and find that f(m) has the opposite sign from f(a), so
we retain the first half of the initial interval by setting b = m. We then repeat the process
until the bracketing interval isolates the root of the equation as accurately as desired. The
sequence of iterations is shown here.

a f(a) b f(b)
1.000000 −2.365884 3.000000 8.435520
1.000000 −2.365884 2.000000 0.362810
1.500000 −1.739980 2.000000 0.362810
1.750000 −0.873444 2.000000 0.362810
1.875000 −0.300718 2.000000 0.362810
1.875000 −0.300718 1.937500 0.019849
1.906250 −0.143255 1.937500 0.019849
1.921875 −0.062406 1.937500 0.019849
1.929688 −0.021454 1.937500 0.019849
1.933594 −0.000846 1.937500 0.019849
1.933594 −0.000846 1.935547 0.009491
1.933594 −0.000846 1.934570 0.004320
1.933594 −0.000846 1.934082 0.001736
1.933594 −0.000846 1.933838 0.000445
1.933716 −0.000201 1.933838 0.000445
1.933716 −0.000201 1.933777 0.000122
1.933746 −0.000039 1.933777 0.000122
1.933746 −0.000039 1.933762 0.000041
1.933746 −0.000039 1.933754 0.000001
1.933750 −0.000019 1.933754 0.000001
1.933752 −0.000009 1.933754 0.000001
1.933753 −0.000004 1.933754 0.000001

The bisection method makes no use of the magnitudes of the function values, only their
signs. As a result, bisection is certain to converge but does so rather slowly. Specifically,
at each successive iteration the length of the interval containing the solution, and hence a
bound on the possible error, is reduced by half. This means that the bisection method is
linearly convergent, with r = 1 and C = 0.5. Another way of stating this is that we gain one
bit of accuracy in the approximate solution for each iteration of bisection. Given a starting
interval [a, b], the length of the interval after k iterations is (b− a)/2k, so that achieving an
error tolerance of tol requires ⌈

log2

(
b− a
tol

)⌉
iterations, regardless of the particular function f involved.

5.2.2 Fixed-Point Iteration

Given a function g:R→ R, a value x such that

x = g(x)

is called a fixed point of the function g, since x is unchanged when g is applied to it.
Fixed-point problems often arise directly in practice, but they are also important because

156 CHAPTER 5. NONLINEAR EQUATIONS

a nonlinear equation can often be recast as a fixed-point problem for a related nonlinear
function. Indeed, many iterative algorithms for solving nonlinear equations are based on
iteration schemes of the form

xk+1 = g(xk),

where g is a suitably chosen function whose fixed points are solutions for f(x) = 0. Such a
scheme is called fixed-point iteration or sometimes functional iteration, since the function g
is applied repeatedly to an initial starting value x0.

For a given equation f(x) = 0, there may be many equivalent fixed-point problems
x = g(x) with different choices for the function g. But not all fixed-point formulations
are equally useful in deriving an iteration scheme for solving a given nonlinear equation.
The resulting iteration schemes may differ not only in their convergence rates but also in
whether they converge at all.

Example 5.5 Fixed-Point Problems. For the nonlinear equation

f(x) = x2 − x− 2 = 0,

any of the choices

g(x) = x2 − 2,
g(x) =

√
x+ 2,

g(x) = 1 + 2/x,

g(x) =
x2 + 2
2x− 1

is a function whose fixed points are solutions to the equation f(x) = 0. Each of these
functions is plotted in Fig. 5.3, where we see that the intersection of the curve y = g(x)
with the line y = x is what we seek. By design, each of the functions passes through the
point (2, 2), and indeed f(2) = 0.

The corresponding iteration schemes are depicted graphically in Fig. 5.4. A vertical
arrow corresponds to evaluation of the function at a point, and a horizontal arrow pointing
to the line y = x indicates that the result of the previous function evaluation is used as
the argument for the next. For the first of these functions, even with a starting point very
near the solution, the iteration scheme diverges. For the other three functions, the iteration
scheme converges to the fixed point even if it is started relatively far from the solution,
although the apparent rates of convergence vary somewhat.

As one can see from Fig. 5.4, the behavior of fixed-point iteration schemes can vary
widely, from divergence, to slow convergence, to rapid convergence. What makes the dif-
ference? The simplest (though not the most general) way to characterize the behavior of
an iterative scheme xk+1 = g(xk) for the fixed-point problem x = g(x) is to consider the
derivative of g at the solution x∗, assuming that g is smooth. In particular, if x∗ = g(x∗)
and

|g′(x∗)| < 1,

5.2. NONLINEAR EQUATIONS IN ONE DIMENSION 157

0 1 2 3
0

1

2

3

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..

................................
...........................

.........

..

............................
.............................

..............................
...............................

................................
................................

.................................
..................................

............

.........
........
........
........
........
........
........
........
.........
.........
........
........
........
........
........
........
........
........
........
........
........
........
.......
.....
.....
.....
......
......
.......
........
...........
......................

y = x

y = x2+2
2x−1

y = 1 + 2/x
y =
√
x+ 2

y = x2 − 2

Figure 5.3: A fixed point of some nonlinear functions.

0 1 2 3
0

1

2

3

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
....

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.........
........
.......
........
.........
.....

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.......................

................

.................................
........
........
........
........
........
........
........
.......................
................
...

........

........

........

........

....................

................

y = x

y = x2 − 2

0 1 2 3
0

1

2

3

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
....

...........................
............................

.............................
..............................

...............................
................................

.................................
..................................

...................................
............

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....................

................

..
........
......................
................
......................................

y = x

y =
√
x+ 2

0 1 2 3
0

1

2

3

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......................

................

...
........
........
........
...

........

........

........

........

........

........

..................

................

..
........
........
........
..

........................

................

................................

y = x

y = 1 + 2/x

0 1 2 3
0

1

2

3

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..

..............................
..........................

......................
....

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......................

................

...
........
........
........
..

........

........

........

...

y = x

y = x2+2
2x−1

Figure 5.4: Fixed-point iterations for some nonlinear functions.

158 CHAPTER 5. NONLINEAR EQUATIONS

then the iterative scheme is locally convergent , i.e., there is an interval containing x∗ such
that the corresponding iterative scheme is convergent if started within that interval. If, on
the other hand, |g′(x∗)| > 1, then the corresponding iterative scheme diverges.

The proof of this result is simple and instructive, so we sketch it here. If x∗ is a fixed
point, then for the error at the kth iteration we have

ek+1 = xk+1 − x∗ = g(xk)− g(x∗).

By the Mean Value Theorem, there is a point θk between xk and x∗ such that

g(xk)− g(x∗) = g′(θk)(xk − x∗),

so that
ek+1 = g′(θk)ek.

We do not know the value of θk, but if |g′(x∗)| < 1, then by starting the iterations close
enough to x∗, we can be assured that there is a constant C such that |g′(θk)| ≤ C < 1, for
k = 0, 1, Thus, we have

|ek+1| ≤ C|ek| ≤ · · · ≤ Ck|e0|,

and since Ck → 0, then |ek| → 0 and the sequence converges.
As we can see from the proof, the asymptotic convergence rate of a fixed-point iteration

scheme is usually linear, with constant C = |g′(x∗)|. The smaller the constant, the faster
the convergence, so ideally we would like to have g′(x∗) = 0, in which case a similar proof
shows that the convergence rate is at least quadratic. We will next see a systematic way of
choosing g so that this occurs.

5.2.3 Newton’s Method

The bisection technique makes no use of the function values other than their signs, which
results in sure but slow convergence. More rapidly convergent methods can be derived by
using the function values to obtain a more accurate approximation to the solution at each
iteration. In particular, the truncated Taylor series

f(x+ h) ≈ f(x) + f ′(x)h

is a linear function of h that approximates f near a given x. We can therefore replace
the nonlinear function f with this linear function, whose zero is easily determined to be
h = −f(x)/f ′(x), assuming that f ′(x) 6= 0. Of course, the zeros of the two functions are
not identical in general, so we repeat the process. This motivates the following iteration
scheme, known as Newton’s method :

xk+1 = xk − f(xk)/f ′(xk).

Newton’s method can be interpreted as approximating the function f near xk by the tangent
line at f(xk). We can then take the next approximate solution to be the zero of this linear
function, and repeat the process. Newton’s method is illustrated in Fig. 5.5.

5.2. NONLINEAR EQUATIONS IN ONE DIMENSION 159

..

...
.........................

....................
..................

...............
.............
............
...........
...........
...........
..........
..........
..........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.........
........
........
........
........
........
........
........
........
.........
.........
.........
.........
.........
.........
...

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

xk↑
xk+1

Figure 5.5: Newton’s method for solving a nonlinear equation.

Example 5.6 Newton’s Method. We illustrate Newton’s method by again finding a
root of the equation

f(x) = x2 − 4 sin(x) = 0.

The derivative of this function is given by

f ′(x) = 2x− 4 cos(x),

so that the iteration scheme is given by

xk+1 = xk −
x2
k − 4 sin(xk)

2xk − 4 cos(xk)
.

Taking x0 = 3 as starting value, we get the sequence of iterations shown next, where
h = −f(x)/f ′(x) denotes the change in x at each iteration. The iteration is terminated
when |h| is as small as desired relative to |x|.

x f(x) f ′(x) h
3.000000 8.435520 9.959970 −0.846942
2.153058 1.294772 6.505771 −0.199019
1.954039 0.108438 5.403795 −0.020067
1.933972 0.001152 5.288919 −0.000218
1.933754 0.000000 5.287670 0.000000

We can view Newton’s method as a systematic way of transforming a nonlinear equation
f(x) = 0 into a fixed-point problem x = g(x), where

g(x) = x− f(x)/f ′(x).

To study the convergence of this scheme, we therefore determine the derivative

g′(x) = f(x)f ′′(x)/(f ′(x))2.

If x∗ is a simple root (i.e., f(x∗) = 0 and f ′(x∗) 6= 0), then g′(x∗) = 0. Thus, the asymptotic
convergence rate of Newton’s method for a simple root is quadratic, i.e., r = 2. We have

160 CHAPTER 5. NONLINEAR EQUATIONS

already seen an illustration of this: the fourth fixed-point iteration scheme in Example 5.5 is
Newton’s method for solving that example equation (note that the fourth iteration function
in Fig. 5.4 has a horizontal tangent at the fixed point).

The quadratic convergence rate of Newton’s method for a simple root means that asymp-
totically the error is squared at each iteration. Another way of stating this is that the
number of digits of accuracy in the approximate solution is doubled at each iteration of
Newton’s method. For a multiple root, on the other hand, Newton’s method is only linearly
convergent [with constant C = 1 − (1/m), where m is the multiplicity]. It is important to
remember, however, that these convergence results are only local, and Newton’s method
may not converge at all unless started close enough to the solution. For example, a relatively
small value for f ′(xk) (i.e., a nearly horizontal tangent) tends to cause the next iterate to
lie far away from the current approximation.

Example 5.7 Newton’s Method for Multiple Root. Both types of behavior are
shown in the following examples, where the first shows quadratic convergence to a simple
root and the second shows linear convergence to a multiple root. The multiplicity for the
second problem is 2, so C = 0.5.

f(x) = x2 − 1 f(x) = x2 − 2x+ 1
k xk xk
0 2.0 2.0
1 1.25 1.5
2 1.025 1.25
3 1.0003 1.125
4 1.00000005 1.0625
5 1.0 1.03125

5.2.4 Secant Method

One drawback of Newton’s method is that both the function and its derivative must be
evaluated at each iteration. The derivative may be inconvenient or expensive to evaluate,
so we might consider approximating it by a finite difference quotient over some small stepsize
h, as in Example 1.11; but this would require a second evaluation of the function at each
iteration purely for the purpose of obtaining derivative information. A better idea is to
base the finite difference approximation on successive iterates, where the function must be
evaluated anyway. This approach gives the secant method :

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)
.

The secant method can be interpreted as approximating the function f by the secant line
through the previous two iterates, and taking the zero of the resulting linear function to be
the next approximate solution, as illustrated in Fig. 5.6.

Example 5.8 Secant Method. We illustrate the secant method by again finding a root
of the equation

f(x) = x2 − 4 sin(x) = 0.

5.2. NONLINEAR EQUATIONS IN ONE DIMENSION 161

..

...
..................................

......................
..................

................
...............

..............
............
............
...........
...........
..........
..........
..........
..........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........
........
........
........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

.

........

.....

........

.....

.

xk−1xk↑
xk+1

Figure 5.6: Secant method for solving a nonlinear equation.

We take x0 = 1 and x1 = 3 as our two starting guesses for the solution. We evaluate the
function at each of these two points and generate a new approximate solution by fitting a
straight line to the two function values according to the secant formula. We then repeat the
process using this new value and the more recent of our two previous values. Note that only
one new function evaluation is needed per iteration. The sequence of iterations is shown
next, where h denotes the change in x at each iteration.

x f(x) h
1.000000 −2.365884
3.000000 8.435520 −1.561930
1.438070 −1.896774 0.286735
1.724805 −0.977706 0.305029
2.029833 0.534305 −0.107789
1.922044 −0.061523 0.011130
1.933174 −0.003064 0.000583
1.933757 0.000019 −0.000004
1.933754 0.000000 0.000000

Because each new approximate solution produced by the secant method depends on two
previous iterates, its convergence behavior is somewhat more complicated to analyze, so we
omit most of the details. It can be shown that the errors satisfy

lim
k→∞

|ek+1|
|ek| · |ek−1|

= c

for some finite nonzero constant c, which implies that the sequence is locally convergent
and suggests that the rate is superlinear. For each k we define

sk = |ek+1|/|ek|r,

where r is the convergence rate to be determined. Thus, we have

|ek+1| = sk|ek|r = sk(sk−1|ek−1|r)r = sks
r
k−1|ek−1|r

2
,

so that
|ek+1|

|ek| · |ek−1|
=

sks
r
k−1|ek−1|r

2

sk−1|ek−1|r |ek−1|
= sks

r−1
k−1 |ek−1|r

2−r−1.

162 CHAPTER 5. NONLINEAR EQUATIONS

But |ek| → 0, whereas the foregoing ratio on the left tends to a nonzero constant; so we
must have r2 − r − 1 = 0, which implies that the convergence rate is given by the positive
solution to this quadratic equation, r = (1 +

√
5)/2 ≈ 1.618. Thus, the secant method

is normally superlinearly convergent, but, like Newton’s method, it must be started close
enough to the solution in order to converge.

Compared with Newton’s method, the secant method has the advantage of requiring
only one new function evaluation per iteration, but it has the disadvantages of requiring
two starting guesses and converging somewhat more slowly, though still superlinearly. The
lower cost per iteration of the secant method often more than offsets the larger number of
iterations required for convergence, however, so that the total cost of finding a root is often
less for the secant method than for Newton’s method.

5.2.5 Inverse Interpolation

At each iteration of the secant method, a straight line is fit to two values of the function
whose zero is sought. A higher convergence rate (but not exceeding r = 2) can be obtained
by fitting a higher-degree polynomial to the appropriate number of function values. For
example, one could fit a quadratic polynomial to three successive iterates and use one of
its roots as the next approximate solution. There are several difficulties with this idea,
however: the polynomial may not have real roots, and even if it does they may not be
easy to compute, and it may not be easy to choose which root to use as the next iterate.
(On the other hand, if one seeks a complex root , then a polynomial having complex roots is
desirable; in Muller’s method , for example, a quadratic polynomial is used in approximating
complex roots.)

An answer to these difficulties is provided by inverse interpolation, in which one fits the
values xk as a function of the values yk = f(xk), say, by a polynomial p(y), so that the next
approximate solution is simply p(0). This idea is illustrated in Fig. 5.7, where a parabola
fitting y as a function of x has no real root (i.e., it fails to cross the x axis), but a parabola
fitting x as a function of y is merely evaluated at zero to obtain the next iterate.

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...............................

..........................

x

y

0

...
.................

.............
............
............
..........
...........
..........
..........
...........
.........
..........
.........
.........
.........
..........
.........
.........
..........
.........
.........
.........
..........
.........
.........
.........
.........
........
........
........
........

.................
..................

.................
.................

................
................

...............
...............

.............
..............

.............
.............
............
............
............
..........
...........
..........
...........
.........
..........
.........
.........
........
.........
.........
........
.........
........
.........
........
.........
........
..........
..........
.........
.......

•

•

•

quadratic fit

inverse fit

↑
next iterate

...

...
........
........
..

........
........
........
..

...........
...........

...........
...........

...........
.................................
..........................

Figure 5.7: Inverse interpolation for finding a root.

Using inverse quadratic interpolation, at each iteration we have three approximate solu-
tion values, which we denote by a, b, and c, with corresponding function values fa, fb, and
fc, respectively. The next approximate solution is found by fitting a quadratic polynomial

5.2. NONLINEAR EQUATIONS IN ONE DIMENSION 163

to a, b, and c as a function of fa, fb, and fc, and then evaluating the polynomial at 0. This
task is accomplished by the following formulas, whose derivation will become clearer after
we study Lagrange interpolation in Section 7.2.2:

u = fb/fc, v = fb/fa, w = fa/fc,

p = v(w(u− w)(c− b)− (1− u)(b− a)), q = (w − 1)(u− 1)(v − 1).

The new approximate solution is given by b + p/q. The process is then repeated with b
replaced by the new approximation, a replaced by the old b, and c replaced by the old
a. Note that only one new function evaluation is needed per iteration. The convergence
rate of inverse quadratic interpolation for root finding is r ≈ 1.839, which is the same as
for regular quadratic interpolation (Muller’s method). Again this result is local, and the
iterations must be started close enough to the solution to obtain convergence.

Example 5.9 Inverse Quadratic Interpolation. We illustrate inverse quadratic inter-
polation by again finding a root of the equation

f(x) = x2 − 4 sin(x) = 0.

Taking a = 1, b = 2, and c = 3 as starting values, the sequence of iterations is shown next,
where h = p/q denotes the change in x at each iteration.

x f(x) h
1.000000 −2.365884
2.000000 0.362810
3.000000 8.435520
1.886318 −0.244343 −0.113682
1.939558 0.030786 0.053240
1.933742 −0.000060 −0.005815
1.933754 0.000000 0.000011

5.2.6 Linear Fractional Interpolation

The zero-finding methods we have considered thus far may have difficulty if the function
whose zero is sought has a horizontal or vertical asymptote. A horizontal asymptote may
yield a tangent or secant line that is almost horizontal, causing the next approximate
solution to be far afield, and a vertical asymptote may be skipped over, placing the approx-
imation on the wrong branch of the function. Linear fractional interpolation, which uses a
rational fraction of the form

φ(x) =
x− u
vx− w

,

is a useful alternative in such cases. This function has a zero at x = u, a vertical asymptote
at x = w/v, and a horizontal asymptote at y = 1/v.

In seeking a zero of a nonlinear function f(x), suppose that we have three approximate
solution values, which we denote by a, b, and c, with corresponding function values fa, fb,

164 CHAPTER 5. NONLINEAR EQUATIONS

and fc, respectively. Fitting the linear fraction φ to the three data points yields a 3 × 3
system of linear equations 1 afa −fa

1 bfb −fb
1 cfc −fc

 uv
w

 =

 ab
c

 ,
whose solution determines the coefficients u, v, and w. We now replace a and b with b and
c, respectively, and take the next approximate solution to be the zero of the linear fraction,
c = u. Since v and w play no direct role, the solution to the foregoing system is most
conveniently implemented as a single formula for the change h in c, which is given by

h =
(a− c)(b− c)(fa − fb)fc

(a− c)(fc − fb)fa − (b− c)(fc − fa)fb
.

Linear fractional interpolation is also effective as a general-purpose one-dimensional zero
finder, as the following example illustrates. Its asymptotic convergence rate is the same
as that given by quadratic interpolation (inverse or regular), r ≈ 1.839. Once again this
result is local, and the iterations must be started close enough to the solution to obtain
convergence.

Example 5.10 Linear Fractional Interpolation. We illustrate linear fractional inter-
polation by again finding a root of the equation

f(x) = x2 − 4 sin(x) = 0.

Taking a = 1, b = 2, and c = 3 as starting values, the sequence of iterations is shown next.

x f(x) h
1.000000 −2.365884
2.000000 0.362810
3.000000 8.435520
1.906953 −0.139647 −1.093047
1.933351 −0.002131 0.026398
1.933756 0.000013 −0.000406
1.933754 0.000000 −0.000003

5.2.7 Safeguarded Methods

Rapidly convergent methods for solving nonlinear equations, such as Newton’s method, the
secant method, and other types of methods based on interpolation, are unsafe in that they
may not converge unless they are started close enough to the solution. Safe methods, such
as bisection, on the other hand, are slow and therefore costly. Which should one choose?

A solution to this dilemma is provided by hybrid methods that combine features of both
types of methods. For example, one could use a rapidly convergent method but maintain a
bracket around the solution. If the next approximate solution given by the rapid algorithm
falls outside the bracketing interval, one would fall back on a safe method, such as bisection,

5.3. SYSTEMS OF NONLINEAR EQUATIONS 165

for one iteration. Then one can try the rapid method again on a smaller interval with
a greater chance of success. Ultimately, the fast convergence rate should prevail. This
approach seldom does worse than the slow method and usually does much better.

A popular implementation of such a hybrid approach was originally developed by Dekker
and van Wijngaarden and later improved by Brent. This method, which is found in a number
of subroutine libraries, combines the safety of bisection with the faster convergence of inverse
quadratic interpolation. By avoiding Newton’s method, derivatives of the function are not
required. A careful implementation must address a number of potential pitfalls in floating-
point arithmetic, such as underflow, overflow, or an unrealistically tight user-supplied error
tolerance.

5.2.8 Zeros of Polynomials

Thus far we have discussed methods for finding a single zero of an arbitrary function in
one dimension. For the special case of a polynomial p(x) of degree n, one often may need
to find all n of its zeros, which may be complex even if the coefficients are real. Several
approaches are available:

• Use one of the methods we have discussed, such as Newton’s method or Muller’s method,
to find a single root x1 (keeping in mind that the root may be complex), then consider
the deflated polynomial p(x)/(x−x1) of degree one less. Repeat until all roots have been
found. It is a good idea to go back and refine each root using the original polynomial
p(x) to avoid contamination due to rounding error in the deflated polynomials.

• Form the companion matrix of the given polynomial and use an eigenvalue routine to
compute all of its eigenvalues (see Section 4.2.1). This method is reliable but relatively
inefficient in both work and storage.

• Use a method designed specifically for finding all the roots of a polynomial. Some of
these methods are based on classical techniques for isolating the roots of a polynomial in
a region of the complex plane, typically a union of discs, and then refining it in a manner
similar in spirit to bisection until the roots have been localized as accurately as desired.
Like bisection, such methods are guaranteed to work but are only linearly convergent.
More rapidly convergent methods are available, however, such as that of Jenkins and
Traub [136, 137], which is probably the most effective method available for finding all of
the roots of a polynomial.

The first two of these approaches are relatively simple to implement since they make use
of other software for the primary subtasks. The third approach is rather complicated, but
fortunately good software implementations are available.

5.3 Systems of Nonlinear Equations

We now consider nonlinear equations in more than one dimension. The multidimensional
case is much more difficult than the scalar case for a variety of reasons:

• A much wider range of behavior is possible, so that a theoretical analysis of the existence
and number of solutions is much more complex.

166 CHAPTER 5. NONLINEAR EQUATIONS

• There is no simple way, in general, to guarantee convergence to the correct solution or to
bracket the solution to produce an absolutely safe method.

• Computational overhead increases rapidly with the dimension of the problem.

Example 5.11 Systems of Nonlinear Equations. Consider the system of nonlinear
equations in two dimensions

f(x) =
[
x2

1 − x2 + γ
−x1 + x2

2 + γ

]
=
[

0
0

]
,

where γ is a given parameter. Each of the two component equations defines a parabola,
and any point where the two parabolas intersect is a solution to the system. Depending on
the particular value for γ, this system can have either zero, one, two, or four solutions, as
illustrated in Fig. 5.8.

...................
..................

................
...............

..............
............

...........
..........

.........
.........
........
........
........
.........
..........
...........
............
.............

...............
................

..................
...................

....

...
.............
...........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.

γ = 0.5
...................

..................
................

...............
..............

............
...........

..........
.........
........
........
........
........
.........
..........
...........
............
.............
...............

................
..................

...................
....................

...

...
.............
...........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..

γ = 0.25

...

..
.............

...........
..........

..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........
........
........
........
....

γ = −0.5

..

..
.............

...........
..........

..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
.....

γ = −1.0

Figure 5.8: Some systems of nonlinear equations.

5.3.1 Fixed-Point Iteration

Just as for one dimension, a system of nonlinear equations can be converted into a fixed-
point problem, so we now briefly consider the multidimensional case. If g:Rn → R

n, then
a fixed-point problem for g is to find an n-vector x such that

x = g(x).

5.3. SYSTEMS OF NONLINEAR EQUATIONS 167

The corresponding fixed-point iteration is simply

xk+1 = g(xk),

given some starting vector x0.
In one dimension, we saw that the convergence (and convergence rate) of fixed-point

iteration is determined by |g′(x∗)|, where x∗ is the solution. In higher dimensions the
analogous condition is

ρ(G(x∗)) < 1,

where G(x) denotes the Jacobian matrix of g evaluated at x,

{G(x)}ij =
∂gi(x)
∂xj

,

and ρ denotes the spectral radius, which is defined to be the maximum modulus of the
eigenvalues of the matrix (see Section 4.1). If the foregoing condition is satisfied, then the
fixed-point iteration converges if started close enough to the solution. (Note that testing
this condition does not necessarily require computing the eigenvalues, since ρ(A) ≤ ‖A‖
for any matrix A and any matrix norm subordinate to a vector norm; see Exercise 4.11.)
As with scalar systems, the smaller the spectral radius the faster the convergence rate. In
particular, if G(x∗) = O, the zero matrix, then the convergence rate is at least quadratic.
We will next see that Newton’s method is a systematic way of selecting g so that this
happens.

5.3.2 Newton’s Method

Many one-dimensional methods do not generalize directly to n dimensions. The most pop-
ular and powerful method that does generalize is Newton’s method, which in n dimensions
has the form

xk+1 = xk − Jf (xk)−1f(xk),

where Jf (x) is the Jacobian matrix of f ,

{Jf (x)}ij =
∂fi(x)
∂xj

.

In practice, we do not explicitly invert Jf (xk) but instead solve the linear system

Jf (xk)sk = −f(xk),

then take as the next iterate
xk+1 = xk + sk.

In this sense, Newton’s method replaces a system of nonlinear equations with a system of
linear equations, but since the solutions of the two systems are not identical in general, the
process must be repeated until the approximate solution is as accurate as desired.

168 CHAPTER 5. NONLINEAR EQUATIONS

Example 5.12 Newton’s Method. We illustrate Newton’s method by solving the
nonlinear system

f(x) =
[
x1 + 2x2 − 2
x2

1 + 4x2
2 − 4

]
=
[

0
0

]
,

for which the Jacobian matrix is given by

Jf (x) =
[

1 2
2x1 8x2

]
.

If we take x0 = [1 2]T , then

f(x0) =
[

3
13

]
and Jf (x0) =

[
1 2
2 16

]
.

Solving the system [
1 2
2 16

]
s0 =

[
−3
−13

]
gives s0 = [−1.83 −0.58]T , and hence

x1 = x0 + s0 =
[
−0.83

1.42

]
, f(x1) =

[
0

4.72

]
, Jf (x1) =

[
1 2

−1.67 11.3

]
.

Solving the system [
1 2

−1.67 11.3

]
s1 =

[
0

−4.72

]
gives s1 = [0.64 −0.32]T , and hence

x2 = x1 + s1 =
[
−0.19

1.10

]
, f(x2) =

[
0

0.83

]
, Jf (x2) =

[
1 2

−0.38 8.76

]
.

Iterations continue until convergence to the solution x∗ = [0 1]T .

We can determine the convergence rate of Newton’s method in n dimensions by differ-
entiating the corresponding fixed-point operator (assuming it is smooth) and evaluating the
resulting Jacobian matrix at the solution x∗:

g(x) = x− Jf (x)−1f(x),

G(x∗) = I − (Jf (x∗)−1Jf (x∗) +
n∑
i=1

fi(x∗)Hi(x∗)) = O,

where Hi(x) denotes a component matrix of the derivative of Jf (x)−1 (which is a tensor).
Thus, the convergence rate of Newton’s method for solving a nonlinear system is normally
quadratic, provided that the Jacobian matrix Jf (x∗) is nonsingular, but the algorithm may
have to be started close to the solution in order to converge.

The arithmetic overhead per iteration for Newton’s method in n dimensions can be
substantial:

5.3. SYSTEMS OF NONLINEAR EQUATIONS 169

• Computing the Jacobian matrix, either in closed form or by finite differences, requires the
equivalent of n2 scalar function evaluations for a dense problem (i.e., if every component
function of f depends on every variable). Computation of the Jacobian may be much
cheaper if it is sparse or has some special structure. Another alternative that may be
cheaper for computing derivatives is automatic differentiation (see Section 8.7.2).

• Solving the linear system by Gaussian elimination costs O(n3) arithmetic operations,
again assuming the Jacobian matrix is dense.

5.3.3 Secant Updating Methods

The high cost per iteration of Newton’s method and its finite difference variants has led to
the development of methods, analogous to the one-dimensional secant method, that grad-
ually build up an approximation to the Jacobian based on successive iterates and function
values without explicitly evaluating derivatives. Moreover, these methods save on compu-
tational overhead by updating a factorization of the approximate Jacobian matrix at each
iteration (using techniques similar to the Sherman-Morrison formula) rather than refactor-
ing it each time. Because of these two features, such methods are usually called secant
updating methods.

These savings in computational overhead are not without their own cost, however, in
that secant updating methods generally have superlinear but not quadratic convergence
rates. Nevertheless, there is often a net reduction in the overall cost of finding a solution,
especially when the problem function and its derivatives are expensive to evaluate.

5.3.4 Broyden’s Method

One of the simplest and most effective secant updating methods for solving nonlinear sys-
tems is Broyden’s method , which begins with an approximate Jacobian matrix and updates
it (or a factorization of it) at each iteration. The initial Jacobian approximation B0 can
be taken as the correct Jacobian (or a finite difference approximation to it) at the starting
point x0, or, to avoid computing derivatives altogether, B0 can simply be initialized to be
the identity matrix I. The steps of the algorithm at iteration k are as follows:

1. Solve Bksk = −f(xk) for sk.
2. xk+1 = xk + sk.
3. yk = f(xk+1)− f(xk).
4. Bk+1 = Bk + ((yk −Bksk)sTk)/(sTk sk).

The motivation for the formula for Bk+1 is that it gives the least change to Bk subject to
satisfying the secant equation

Bk+1(xk+1 − xk) = f(xk+1)− f(xk).

In this way, the sequence of matricesBk gains and maintains information about the behavior
of the function f along the various directions generated by the algorithm, without the need
for the function to be sampled purely for the purpose of obtaining derivative information.

170 CHAPTER 5. NONLINEAR EQUATIONS

Updating Bk as just indicated would still leave one needing to solve a linear system at
each iteration at a cost of O(n3) arithmetic. Therefore, in practice a factorization of Bk is
updated instead of Bk directly, so that the total cost per iteration is only O(n2).

Example 5.13 Broyden’s Method. We illustrate Broyden’s method by again solving
the nonlinear system of Example 5.12,

f(x) =
[
x1 + 2x2 − 2
x2

1 + 4x2
2 − 4

]
=
[

0
0

]
.

Again we let x0 = [1 2]T , so f(x0) = [3 13]T , and we let

B0 = Jf (x0) =
[

1 2
2 16

]
.

Solving the system [
1 2
2 16

]
s0 =

[
−3
−13

]
gives s0 = [−1.83 −0.58]T , and hence

x1 = x0 + s0 =
[
−0.83

1.42

]
, f(x1) =

[
0

4.72

]
, y0 =

[
−3
−8.28

]
.

From the updating formula, we therefore have

B1 =
[

1 2
2 16

]
+
[

0 0
−2.34 −0.74

]
=
[

1 2
−0.34 15.3

]
.

Solving the system [
1 2

−0.34 15.3

]
s1 =

[
0

−4.72

]
gives s1 = [0.59 −0.30]T , and hence

x2 = x1 + s1 =
[
−0.24
1.120

]
, f(x2) =

[
0

1.08

]
, y1 =

[
0

−3.64

]
.

From the updating formula, we therefore have

B2 =
[

1 2
−0.34 15.3

]
+
[

0 0
1.46 −0.73

]
=
[

1 2
1.12 14.5

]
.

Iterations continue until convergence to the solution x∗ = [0 1]T .

5.4. SOFTWARE FOR NONLINEAR EQUATIONS 171

5.3.5 Robust Newton-Like Methods

Newton’s method and its variants may fail to converge when started far from a solution.
Unfortunately, in n dimensions there is no simple analogue of bisection in one dimension
that can provide a fail-safe hybrid method. Nevertheless, safeguards can be taken that may
substantially widen the region of convergence for Newton-like methods.

The simplest of these precautions is the damped Newton method , in which the Newton
(or Newton-like) step sk is computed as usual at each iteration, but then the new iterate is
taken to be

xk+1 = xk + αksk,

where αk is a scalar parameter to be chosen. The motivation is that far from a solution
the full Newton step is likely to be unreliable—often much too large—and so αk can be
adjusted to ensure that xk+1 is a better approximation to the solution than xk. One way
to enforce this condition is to monitor ‖f(xk)‖2 and make sure that it decreases sufficiently
with each iteration. One might even minimize ‖f(xk + αksk)‖2 with respect to αk at
each iteration (see the discussion of line searches in Chapter 6). Whatever the strategy for
choosing αk, when the iterates become close enough to a solution, the value αk = 1 should
suffice, and indeed the αk must approach 1 in order to maintain the usual convergence rate.
Although this damping technique can improve the robustness of Newton-like methods, it is
not foolproof. For example, there may be no value for αk that produces sufficient decrease,
or the iterations may converge to a local minimum of ‖f(x)‖2 such that the function value
is not 0.

A somewhat more complicated but often more effective approach to making Newton-
like methods more robust is to maintain an estimate of the radius of a trust region within
which the Taylor series approximation, upon which Newton’s method is based, is sufficiently
accurate for the resulting computed step to be reliable. By adjusting the size of the trust
region as necessary to constrain the stepsize, these methods can usually make progress
toward a solution even when started far away, yet still converge rapidly once near a solution,
since the trust radius should then be large enough to permit full Newton steps to be taken.
Again, however, the point to which such a method converges may be a local minimum
of ‖f(x)‖2 without being a solution of the equation f(x) = o. Unlike damped Newton
methods, trust region methods may modify the direction as well as the length of the Newton
step when necessary, and hence they are generally more robust. See Section 6.3.3 for further
discussion and a graphical illustration (Fig. 6.6).

5.4 Software for Nonlinear Equations

Table 5.1 is a list of some of the software available for solving general nonlinear equations.
In the multidimensional case, we distinguish between routines that do or do not require the
user to supply derivatives for the functions, although in some cases the routines mentioned
offer both options.

Software for solving a nonlinear equation f(x) = 0 typically requires the user to supply
the name of a routine that computes the value of the function f for any given value of
x. The user must also supply absolute or relative error tolerances that are used in the
stopping criterion for the iterative solution process. Additional input for one-dimensional

172 CHAPTER 5. NONLINEAR EQUATIONS

Table 5.1: Software for nonlinear equations

One-dimensional Multidimensional
Source No derivatives No derivatives Derivatives
Brent [23] zero
FMM zeroin
HSL nb01/nb02 ns11
IMSL zbren neqbf neqnj
Dennis/Schnabel [57] nedriver nedriver
KMN fzero snsqe snsqe
MATLAB fzero fsolve
MINPACK [182] hybrd1 hybrj1
NAG c05adf c05nbf c05pbf
NAPACK root quasi
NR zbrent broydn newt
NUMAL zeroin quanewbnd
SLATEC fzero snsq/sos
TOMS zero1(#631) brentm(#554)

problems usually includes the endpoints of an interval in which the function has a change
of sign. Additional input for multidimensional problems includes the number of functions
and variables in the system and a starting guess for the solution, and may also include the
name of a routine for computing the Jacobian of the function and the name of an array to
be used as workspace for storing the Jacobian or an approximation to it. In addition to the
solution x, the output typically includes a status flag indicating any warnings or errors.

For both single equations and systems, it is highly advisable to make a preliminary plot,
or at least a rough sketch, of the function(s) involved to determine a good starting guess
or bracketing interval. Some trial and error may be required to determine an initial guess
for which a zero finder converges, or finds the desired root in cases with more than one
solution.

Some additional packages available for solving systems of nonlinear equations are based
on methods not covered in this book. One such approach is homotopy methods or con-
tinuation methods. Such methods parameterize the problem space and then track a curve
between a trivial problem instance and the actual problem to be solved. See Computer Prob-
lem 9.6 for an example of this approach, which can be especially useful for very difficult
nonlinear problems for which a good starting guess for the solution is unavailable. Software
implementing such methods includes fixpt(#555), dafne(#617), and hompack(#652), all
available from TOMS. Yet another approach is generalized bisection, which is implemented
in the routines chabis(#666) and intbis(#681) available from TOMS.

Table 5.2 is a list of specialized software for finding all the zeros of a polynomial with
real or complex coefficients.

5.5. HISTORICAL NOTES AND FURTHER READING 173

Table 5.2: Software for finding all the zeros of a polynomial

Source Real Complex
HSL pa17 pa16
IMSL zporc/zplrc zpocc
MATLAB roots roots
NAG c02agf c02aff
NAPACK czero
NR zrhqr zroots
SLATEC rpzero/rpqr79 cpzero/cpqr79
TOMS rpoly(#493) cpoly(#419)

5.5 Historical Notes and Further Reading

Most of the methods we discussed for solving nonlinear equations in one dimension—
including bisection, Newton, and secant—are quite venerable. Hybrid, safeguarded methods
for one-dimensional problems, as popularized by Brent [23], are a relatively recent develop-
ment. For systems of nonlinear equations, Newton’s method has served to motivate most
other methods, and it is the standard by which they are measured. Indeed, “Newton’s
method” has become as much a paradigm as a specific algorithm, synonymous with lo-
cal linear approximations to nonlinear problems of many different types. Secant updating
methods were first developed for optimization problems around 1959, but analogous meth-
ods were soon developed for solving systems of nonlinear equations; Broyden’s method was
published in 1965.

The basic methods for solving nonlinear equations in one variable are discussed in al-
most every general textbook on numerical methods. More detailed treatment of the classical
methods can be found in [129, 197, 256]. For zero finding using linear fractional interpo-
lation, see [135]; more general rational functions for this purpose are discussed in [161].
Definitive references on solving systems of nonlinear equations are [57, 196]. For a survey of
recent developments, see [147]. An incisive overview of the theory and convergence analysis
of secant updating methods appears in [56]. Homotopy, or continuation, methods are the
subject of [6]. The MINPACK software for nonlinear equations is documented in [182].

Review Questions

5.1 True or false: If an iterative method for
solving a nonlinear equation gains more than
one bit of accuracy per iteration, then it is said
to have a superlinear convergence rate.

5.2 True or false: For a given fixed level of
accuracy, a superlinearly convergent iterative
method always requires fewer iterations than a
linearly convergent method to find a solution
to that level of accuracy.

5.3 True or false: A small residual ‖f(x)‖
guarantees an accurate solution of a system of

nonlinear equations f(x) = o.

5.4 True or false: Newton’s method is an ex-
ample of a fixed-point iteration scheme.

5.5 Suppose you are using an iterative
method to solve a nonlinear equation f(x) = 0
for a root that is ill-conditioned, and you need
to choose a convergence test. Would it be bet-
ter to terminate the iteration when you find an
iterate xk for which |f(xk)| is small, or when
|xk − xk−1| is small? Why?

174 CHAPTER 5. NONLINEAR EQUATIONS

5.6 (a) What is the definition of the conver-
gence rate r of an iterative method?
(b) Is it possible to have a cubically conver-
gent method (r = 3) for finding a zero of a
function?
(c) If not, why, and if so, how might such a
scheme be derived?

5.7 If the errors at successive iterations of
an iterative method are as follows, how would
you characterize the convergence rate?
(a) 10−2, 10−4, 10−8, 10−16, . . .
(b) 10−2, 10−4, 10−6, 10−8, . . .

5.8 What condition ensures that the bisec-
tion method will find a zero of a continuous
nonlinear function f in the interval [a, b]?

5.9 (a) If the bisection method for finding
a zero of a function f :R → R starts with an
initial bracket of length 1, what is the length
of the interval containing the root after six it-
erations?
(b) Do you need to know the particular func-
tion f to answer the question in part a?
(c) If we assume that it is started with a
bracket for the solution in which there is a sign
change, is the convergence rate of the bisec-
tion method dependent on whether the solu-
tion sought is a simple root or a multiple root?
Why?

5.10 Suppose you are using the bisection
method to find a zero of a nonlinear func-
tion, starting with an initial bracketing inter-
val [a, b]. Give a general expression for the
number of iterations that will be required to
achieve an error tolerance of tol for the length
of the final bracketing interval.

5.11 What is meant by a quadratic conver-
gence rate for an iterative method?

5.12 If an iterative method squares the error
every two iterations, what is its convergence
rate r?

5.13 (a) What does it mean for a root of an
equation to be a multiple root?
(b) What is the effect of a multiple root on the
convergence rate of the bisection method?
(c) What is the effect of a multiple root on the
convergence rate of Newton’s method?

5.14 Which of the following behaviors are
possible in using Newton’s method for solving
a nonlinear equation?

(a) It may converge linearly.

(b) It may converge quadratically.

(c) It may not converge at all.

5.15 What is the convergence rate for New-
ton’s method for finding the root x = 2 of each
of the following equations?

(a) f(x) = (x− 1)(x− 2)2 = 0

(b) f(x) = (x− 1)2(x− 2) = 0

5.16 (a) What is meant by a fixed point of a
function g(x)?

(b) Given a nonlinear equation f(x) = 0, how
can you determine an equivalent fixed-point
problem, that is, a function g(x) such that a
fixed point x of g is a solution to the nonlinear
equation f(x) = 0?

(c) Specifically, what function g(x) results
from this approach?

5.17 In using the secant method for solving a
one-dimensional nonlinear equation,

(a) How many starting guesses for the solution
are required?

(b) How many new function evaluations are
required per iteration?

5.18 Let g:R→ R be a smooth function hav-
ing a fixed point x∗.

(a) What condition determines whether the it-
eration scheme xk+1 = g(xk) is locally conver-
gent to x∗?

(b) What is the convergence rate?

(c) What additional condition implies that the
convergence rate is quadratic?

(d) Is Newton’s method for finding a zero of a
smooth function f :R→ R an example of such
a fixed-point iteration scheme? If so, what is
the function g in this case? If not, then explain
why not.

5.19 In bracketing a zero of a nonlinear func-
tion, one needs to determine if two function
values, say f(a) and f(b), differ in sign. Is the
following a good way to test for this condition:
if (f(a) ∗ f(b) < 0) . . .? Why?

REVIEW QUESTIONS 175

5.20 Let g:R→ R be a smooth function, and
let x∗ be a point such that g(x∗) = x∗.
(a) State a general condition under which
the iteration scheme xk+1 = g(xk) converges
quadratically to x∗, assuming that the start-
ing guess x0 is close enough to x∗.
(b) Use this condition to prove that Newton’s
method is locally quadratically convergent to a
simple zero x∗ of a smooth function f :R→ R.

5.21 List one advantage and one disadvantage
of the secant method compared with the bisec-
tion method for finding a simple zero of a single
nonlinear equation.

5.22 List one advantage and one disadvantage
of the secant method compared with Newton’s
method for solving a nonlinear equation in one
dimension.

5.23 The secant method for solving a one-
dimensional nonlinear equation uses linear in-
terpolation of the given function at two points.
Interpolation at more points by a higher-
degree polynomial would increase the conver-
gence rate of the iteration.
(a) Give three reasons why such an approach
might not work well.
(b) What alternative approach using higher-
degree interpolation in this context avoids
these difficulties?

5.24 For solving a one-dimensional nonlin-
ear equation, how many function or derivative
evaluations are required per iteration of each
of the following methods?
(a) Newton’s method
(b) Secant method

5.25 Rank the following methods 1 through 3,
from slowest convergence rate to fastest con-
vergence rate, for finding a simple root of a
nonlinear equation in one dimension:
(a) Bisection method
(b) Newton’s method
(c) Secant method

5.26 In solving a nonlinear equation in one di-
mension, how many bits of accuracy are gained
per iteration of
(a) Bisection method?
(b) Newton’s method?

5.27 In solving a nonlinear equation f(x) = 0,
if you assume that the cost of evaluating the
derivative f ′(x) is about the same as the cost
of evaluating f(x), how does the cost of New-
ton’s method compare with the cost of the se-
cant method per iteration?

5.28 Suppose that you are using fixed-point
iteration based on the fixed-point problem x =
g(x) to find a solution x∗ to a nonlinear equa-
tion f(x) = 0. Which would be more favorable
for the convergence rate: a horizontal tangent
of g at x∗ or a horizontal tangent of f at x∗?
Why?

5.29 Suggest a procedure for safeguarding the
secant method for solving a one-dimensional
nonlinear equation so that it will still converge
even if started far from a root.

5.30 For what type of function is linear frac-
tional interpolation a particularly good choice
of zero finder?

5.31 Each of the following methods for com-
puting a root of a nonlinear equation has
the same asymptotic convergence rate. For
each method, specify a situation in which that
method is particularly appropriate.
(a) Regular quadratic interpolation
(b) Inverse quadratic interpolation
(c) Linear fractional interpolation

5.32 State at least one method for finding all
the zeros of a polynomial, and discuss its ad-
vantages and disadvantages.

5.33 Does the bisection method generalize to
finding zeros of multidimensional functions?
Why?

5.34 For solving an n-dimensional nonlinear
equation, how many scalar function evalua-
tions are required per iteration of Newton’s
method?

5.35 Relative to Newton’s method, which of
the following factors motivate secant updating
methods for solving systems of nonlinear equa-
tions?
(a) Lower cost per iteration
(b) Faster convergence rate
(c) Greater robustness far from solution
(d) Avoidance of computing derivatives

176 CHAPTER 5. NONLINEAR EQUATIONS

5.36 Give two reasons why secant updating
methods for solving systems of nonlinear equa-

tions are often more efficient than Newton’s
method despite converging more slowly.

Exercises

5.1 Consider the nonlinear equation

f(x) = x2 − 2 = 0.

(a) With x0 = 1 as a starting point, what is
the value of x1 if you use Newton’s method for
solving this problem?
(b) With x0 = 1 and x1 = 2 as starting points,
what is the value of x2 if you use the secant
method for the same problem?

5.2 Write out Newton’s iteration for solving
each of the following nonlinear equations:
(a) x3 − 2x− 5 = 0.
(b) e−x = x.
(c) x sin(x) = 1.

5.3 Newton’s method is sometimes used to
implement the built-in square root function on
a computer, with the initial guess supplied by
a lookup table.
(a) What is the Newton iteration for comput-
ing the square root of a positive number y (i.e.,
for solving the equation f(x) = x2 − y = 0,
given y)?
(b) If we assume that the starting guess has an
accuracy of 4 bits, how many iterations would
be necessary to attain 24-bit accuracy? 53-bit
accuracy?

5.4 On a computer with no functional unit
for floating-point division, one might instead
use multiplication by the reciprocal of the di-
visor. Apply Newton’s method to produce an
iterative scheme for approximating the recip-
rocal of a number y > 0 (i.e., to solve the equa-
tion f(x) = (1/x) − y = 0, given y). Consid-
ering the intended application, your formula
should not contain any divisions!

5.5 (a) Show that the iterative method

xk+1 =
xk−1f(xk)− xkf(xk−1)

f(xk)− f(xk−1)

is mathematically equivalent to the secant
method for solving a scalar nonlinear equation
f(x) = 0.

(b) When implemented in finite precision
floating-point arithmetic, what advantages or
disadvantages does the formula given in part a
have compared with the formula for the secant
method given in Section 5.2.4)?

5.6 Suppose we wish to develop an iterative
method to compute the square root of a given
positive number y, i.e., to solve the nonlinear
equation f(x) = x2 − y = 0 given the value of
y. Each of the functions g1 and g2 listed next
gives a fixed-point problem that is equivalent
to the equation f(x) = 0. For each of these
functions, determine whether the correspond-
ing fixed-point iteration scheme xk+1 = gi(xk)
is locally convergent to

√
y if y = 3. Explain

your reasoning in each case.
(a) g1(x) = y + x− x2.
(b) g2(x) = 1 + x− x2/y.
(c) What is the fixed-point iteration function
given by Newton’s method for this particular
problem?

5.7 The gamma function has the following
known values: Γ(0.5) =

√
π, Γ(1) = 1,

Γ(0.75) =
√
π/2. From these three values,

determine the approximate value x for which
Γ(x) = 1.5, using one step of each of the fol-
lowing methods.
(a) Quadratic interpolation
(b) Inverse quadratic interpolation
(c) Linear fractional interpolation

5.8 Express the Newton iteration for solv-
ing each of the following systems of nonlinear
equations.
(a)

x2
1 + x2

2 = 1,
x2

1 − x2 = 0.

(b)

x2
1 + x1x

3
2 = 9,

3x2
1x2 − x3

2 = 4.

COMPUTER PROBLEMS 177

(c)

x1 + x2 − 2x1x2 = 0,
x2

1 + x2
2 − 2x1 + 2x2 = −1.

(d)

x3
1 − x2

2 = 0,
x1 + x2

1x2 = 2.

(e)

2 sin(x1) + cos(x2)− 5x1 = 0,
4 cos(x1) + 2 sin(x2)− 5x2 = 0.

5.9 Carry out one iteration of Newton’s
method applied to the system of nonlinear
equations

x2
1 − x2

2 = 0,
2x1x2 = 1,

with starting value x0 = [0 1]T .

5.10 Suppose you are using the secant
method to find a root x∗ of a nonlinear equa-
tion f(x) = 0. Show that if at any iteration it
happens to be the case that either xk = x∗ or
xk−1 = x∗ (but not both), then it will also be
true that xk+1 = x∗.

5.11 Newton’s method for solving a scalar
nonlinear equation f(x) = 0 requires com-
putation of the derivative of f at each itera-
tion. Suppose that we instead replace the true

derivative with a constant value d, that is, we
use the iteration scheme

xk+1 = xk − f(xk)/d.

(a) Under what condition on the value of d will
this scheme be locally convergent?

(b) What will be the convergence rate, in gen-
eral?

(c) Is there any value for d that would still
yield quadratic convergence?

5.12 Consider the system of equations

x1 − 1 = 0,
x1x2 − 1 = 0.

For what starting point or points, if any, will
Newton’s method for solving this system fail?
Why?

5.13 Supply the details of a proof that if x∗ is
a fixed point of the smooth function g:R→ R,
and g′(x∗) = 0, then the convergence rate of
the fixed-point iteration scheme xk+1 = g(xk)
is at least quadratic if started close enough to
x∗.

5.14 Verify the formula given in Section 5.2.6
for the change h in c when using linear frac-
tional interpolation to find a zero of a nonlin-
ear function.

Computer Problems

5.1 For the equation

f(x) = x2 − x− 2 = 0,

each of the following functions yields an equiv-
alent fixed-point problem:

g1(x) = x2 − 2,
g2(x) =

√
x+ 2,

g3(x) = 1 + 2/x,
g4(x) = (x2 + 2)/(2x− 1).

(a) Analyze the convergence properties of
each of the corresponding fixed-point iteration

schemes for the root x = 2 by considering
|g′i(2)|.
(b) Confirm your analysis by implementing
each of the schemes and verifying its conver-
gence (or lack thereof) and approximate con-
vergence rate.

5.2 Implement the bisection, Newton, and
secant methods for solving nonlinear equations
in one dimension, and test your implementa-
tions by finding at least one root for each of the
following equations. What termination crite-
rion should you use? What convergence rate is
achieved in each case? Compare your results
(solutions and convergence rates) with those

178 CHAPTER 5. NONLINEAR EQUATIONS

for a library routine for solving nonlinear equa-
tions.
(a) x3 − 2x− 5 = 0.
(b) e−x = x.
(c) x sin(x) = 1.
(d) x3 − 3x2 + 3x− 1 = 0.

5.3 Repeat the previous exercise, this time
implementing the inverse quadratic interpola-
tion and linear fractional interpolation meth-
ods, and answer the same questions as before.

5.4 Consider the function

f(x) = (((x− 0.5) + x)− 0.5) + x,

evaluated as indicated (i.e., without any sim-
plification). On your computer, is there any
floating-point value x such that f(x) is exactly
zero? If you use a zero-finding routine on this
function, what result is returned, and what is
the value of f for this argument? Experiment
with the error tolerance to determine its effect
on the results obtained.

5.5 Compute the first several iterations of
Newton’s method for solving each of the fol-
lowing equations, starting with the given ini-
tial guess.
(a) x2 − 1 = 0, x0 = 106.
(b) (x− 1)4 = 0, x0 = 10.
For each equation, answer the following ques-
tions: What is the apparent convergence
rate of the sequence initially? What should
the asymptotic convergence rate of Newton’s
method be for this equation? How many itera-
tions are required before the asymptotic range
is reached? Give an analytical explanation of
the behavior you observe empirically.

5.6 Consider the problem of finding the
smallest positive root of the nonlinear equa-
tion

cos(x) + 1/(1 + e−2x) = 0.

Investigate, both theoretically and empirically,
the following iterative schemes for solving this
problem using the starting point x0 = 3. For
each scheme, you should show that it is in-
deed an equivalent fixed-point problem, deter-
mine analytically whether it is locally conver-
gent and its expected convergence rate, and

then implement the method to confirm your
results.

(a) xk+1 = arccos(−1/(1 + e−2xk)).

(b) xk+1 = 0.5 log(−1/(1 + 1/ cos(xk))).

(c) Newton’s method.

5.7 In celestial mechanics, Kepler’s equation

M = E − e sin(E)

relates the mean anomaly M to the eccentric
anomaly E of an elliptical orbit of eccentricity
e, where 0 < e < 1.

(a) Prove that fixed-point iteration using the
iteration function

g(E) = M + e sin(E)

is locally convergent.

(b) Use the fixed-point iteration scheme in part
a to solve Kepler’s equation for the eccentric
anomaly E corresponding to a mean anomaly
of M = 1 (radians) and an eccentricity of
e = 0.5.

(c) Use Newton’s method to solve the same
problem.

(d) Use a library zero finder to solve the same
problem.

5.8 In neutron transport theory, the critical
length of a fuel rod is determined by the roots
of the equation

cot(x) = (x2 − 1)/(2x).

Use a zero finder to determine the smallest
positive root of this equation.

5.9 The natural frequencies of vibration of a
uniform beam of unit length, clamped on one
end and free on the other, satisfy the equation

tan(x) tanh(x) = −1.

Use a zero finder to determine the smallest
positive root of this equation.

5.10 The vertical distance y that a
parachutist falls before opening the parachute
is given by the equation

y = log(cosh(t
√
gk))/k,

COMPUTER PROBLEMS 179

where t is the elapsed time in seconds, g =
9.8065 m/s2 is the acceleration due to gravity,
and k = 0.00341 m−1 is a constant related to
air resistance. Use a zero finder to determine
the elapsed time required to fall a distance of
1 km.

5.11 If an amount a is borrowed at interest
rate r for n years, then the total amount to be
repaid is given by

a(1 + r)n.

Yearly payments of p each would reduce this
amount by

n−1∑
0

p(1 + r)i = p
(1 + r)n − 1

r
.

The loan will be repaid when these two quan-
tities are equal.
(a) For a loan of a = $100,000 and yearly pay-
ments of p = $10,000, how long will it take to
pay off the loan if the interest rate is 6 percent,
i.e., r = 0.06?
(b) For a loan of a = $100,000 and yearly
payments of p = $10,000, what interest rate
r would be required for the loan to be paid off
in n = 20 years?
(c) For a loan of a = $100,000, how large must
the yearly payments p be for the loan to be
paid off in n = 20 years at 6 percent interest?
You may use any method you like to solve the
given equation in each case. For the purpose
of this problem, we will treat n as a continuous
variable (i.e., it can have fractional values).

5.12 (a) Write a program using Newton’s
method to compute the nth root of a given
number y, that is, to solve the nonlinear equa-
tion f(x) = xn − y = 0 for x, given y and n.
Since we want to be able to compute any nth
root, your routine should work for complex as
well as real roots. Test your program by com-
puting the complex cube root of 3 lying in the
upper left quadrant of the complex plane, us-
ing x0 = −1 + i as starting guess.
(b) Repeat part a, but this time use Muller’s
method (i.e., successive quadratic polynomial
interpolation). For this method, you will need
two additional starting guesses.

5.13 Write a program to solve the system of
nonlinear equations

16x4 + 16y4 + z4 = 16,
x2 + y2 + z2 = 3,

x3 − y = 0

using Newton’s method. You may solve the re-
sulting linear system at each iteration either by
a library routine or by a linear system solver
of your own design. As starting guess, you
may take each variable to be 1. In addition,
try nonlinear solvers from a subroutine library,
based on both Newton and secant updating
methods, and compare the solutions obtained
and the convergence rates with those for your
program.

5.14 The derivation of a two-point Gaussian
quadrature rule (which we will consider in
Section 8.3) on the interval [−1, 1] using the
method of undetermined coefficients leads to
the following system of nonlinear equations for
the nodes x1, x2 and weights w1, w2:

w1 + w2 = 2,
w1x1 + w2x2 = 0,

w1x
2
1 + w2x

2
2 =

2
3
,

w1x
3
1 + w2x

3
2 = 0.

Solve this system for x1, x2, w1, and w2 using
a library routine or one of your own design.
How many different solutions can you find?

5.15 Use a library routine, or one of your own
design, to solve the following system of nonlin-
ear equations:

sin(x) + y2 + log(z) = 3,
3x+ 2y − z3 = 0,
x2 + y2 + z3 = 6.

Try to find as many different solutions as you
can. You should find at least four.

5.16 Each of the following systems of non-
linear equations may present some difficulty
in computing a solution. Use a library rou-
tine, or one of your own design, to solve each
of the systems from the given starting point.

180 CHAPTER 5. NONLINEAR EQUATIONS

In some cases, the nonlinear solver may fail
to converge or may converge to a point other
than a solution. When this happens, try to
explain the reason for the observed behavior.
Also note the convergence rate attained, and if
it is slower than expected, try to explain why.
(a)

x1 + x2(x2(5− x2)− 2) = 13,
x1 + x2(x2(1 + x2)− 14) = 29,

starting from x1 = 15, x2 = −2.
(b)

x2
1 + x2

2 + x2
3 = 5,

x1 + x2 = 1,
x1 + x3 = 3,

starting from x1 = (1 +
√

3)/2, x2 = (1 −√
3)/2, x3 =

√
3 .

(c)

x1 + 10x2 = 0,√
5 (x3 − x4) = 0,
(x2 − x3)2 = 0,

√
10 (x1 − x4)2 = 0,

starting from x1 = 1, x2 = 2, x3 = 1, x4 = 1.
(d)

x1 = 0,
10x1/(x1 + 0.1) + 2x2

2 = 0,

starting from x1 = 1.8, x2 = 0.
(e)

104x1x2 = 1,
e−x1 + e−x2 = 1.0001,

starting from x1 = 0, x2 = 1.

5.17 Newton’s method can be used to com-
pute the inverse of a nonsingular n×n matrix
A. If we define the function F :Rn×n → R

n×n

by
F (X) = I −AX,

where X is an n× n matrix, then F (X) = O
precisely when X = A−1. Since F ′(X) =
−A, Newton’s method for solving this equa-
tion has the form

Xk+1 = Xk − [F ′(Xk)]−1F (Xk)

= Xk +A−1(I −AXk).

But A−1 is what we are trying to compute, so
instead we use the current approximation to
A−1, namely Xk. Thus, the iteration scheme
takes the form

Xk+1 = Xk +Xk(I −AXk).

(a) If we define the residual matrix

Rk = I −AXk

and the error matrix

Ek = A−1 −Xk,

show that

Rk+1 = R2
k and Ek+1 = EkAEk,

from which we can conclude that the conver-
gence rate is quadratic, despite using only an
approximate derivative.

(b) Write a program to compute the inverse
of a given input matrix A using this iteration
scheme. A reasonable starting guess is to take

X0 =
AT

‖A‖1 · ‖A‖∞
.

Test your program on a few randomly cho-
sen matrices and compare its accuracy and ef-
ficiency with conventional methods for com-
puting the inverse, such as LU factorization or
Gauss-Jordan elimination.

5.18 Newton’s method can be used to com-
pute an eigenvalue λ and corresponding eigen-
vector x of an n × n matrix A. If we define
the function f :Rn+1 → R

n+1 by

f(x, λ) =
[
Ax− λx
xTx− 1

]
,

then f(x, λ) = o precisely when λ is an eigen-
value and x is a corresponding normalized
eigenvector. Since

Jf (x, λ) =
[
A− λI −x

2xT 0

]
,

COMPUTER PROBLEMS 181

Newton’s method for solving this equation has
the form [

xk+1

λk+1

]
=
[
xk
λk

]
+
[
sk
δk

]
,

where [sk δk]T is the solution to the linear
system [

A− λkI −xk
2xTk 0

] [
sk
δk

]

= −
[
Axk − λkxk
xTk xk − 1

]
.

Write a program to compute an eigenvalue-
eigenvector pair of a given input matrix A us-
ing this iteration scheme. A reasonable start-
ing guess is to take x0 to be an arbitrary
normalized nonzero vector (i.e., xT0 x0 = 1)
and take λ0 = xT0Ax0 (why?). Test your
program on a few randomly chosen matrices
and compare its accuracy and efficiency with
those of conventional methods for computing a
single eigenvalue-eigenvector pair, such as the
power method. Note, however, that Newton’s
method does not necessarily converge to the
dominant eigenvalue.

182 CHAPTER 5. NONLINEAR EQUATIONS

Chapter 6

Optimization

6.1 Optimization Problems

We now turn to the problem of determining extreme values, or optimum values (maxima
or minima), that a given function has on a given domain. More formally, given a function
f :Rn → R, and a set S ⊆ Rn, we seek x ∈ S such that f attains a minimum on S at x, i.e.,
f(x) ≤ f(y) for all y ∈ S. Such a point x is called a minimizer , or simply a minimum, of
f . Since a maximum of f is a minimum of −f , it suffices to consider only minimization.

The objective function, f , may be linear or nonlinear, and it is usually assumed to
be differentiable. The constraint set S is usually defined by a system of equations or
inequalities, or both, that may be linear or nonlinear. A point x ∈ S that satisfies the
constraints is called a feasible point . If S = R

n, then the problem is unconstrained .
General continuous optimization problems have the form

min
x
f(x) subject to g(x) = o and h(x) ≤ o,

where f :Rn → R, g:Rn → R
m, and h:Rn → R

k. Optimization problems are classified by
the properties of the functions involved. For example, if f , g, and h are all linear, then we
have a linear programming problem.1 If any of the functions involved are nonlinear, then we
have a nonlinear programming problem. Important subclasses of the latter include problems
with a nonlinear objective function and linear constraints, or a nonlinear objective function
and no constraints. We will focus mainly on optimization problems in one dimension and
unconstrained problems in n dimensions.

We will not address discrete optimization problems—such as integer programming , in
which the variables can take on only integer values—because such problems usually require
combinatorial rather than numerical techniques. In addition to traditional combinatorial
techniques, such as branch-and-bound, there has been a great deal of research in recent
years on new approaches to discrete optimization, such as simulated annealing and genetic
algorithms, but these topics are beyond the scope of this book.

1The use of the term programming in optimization has nothing to do with computer programming, but
instead refers to planning activities in the sense of operations research or management science.

183

184 CHAPTER 6. OPTIMIZATION

Example 6.1 Optimization Problems. Optimization problems arise in many areas of
science, engineering, economics, and business. One might want to minimize the weight of
a structure subject to a constraint on its strength, or maximize its strength subject to a
constraint on its weight (note the duality here, which is common in optimization). One
might want to minimize the cost of a diet subject to nutritional constraints, and so on.

A concrete example is to minimize the surface area of a cylinder subject to a constraint
on its volume:

min
x1,x2

f(x1, x2) = 2πx1(x1 + x2) subject to g(x1, x2) = πx2
1x2 = V,

where x1 and x2 are the radius and height of the cylinder, respectively, and V is the required
volume. The solution to this problem minimizes the amount of material required to make
an appropriate container for the given quantity of liquid. (A sphere with the given volume
would require even less surface area but would not make a practical container.)

6.1.1 Local versus Global Optimization

A function f has a global minimum at a feasible point x∗ if f(x∗) ≤ f(x) for all feasible
points x. We say that f has a local minimum at a feasible point x∗ if f(x∗) ≤ f(x) for
all feasible points x in a neighborhood of x∗. These concepts are illustrated for a one-
dimensional unconstrained problem in Fig. 6.1.

..
..........
..........
.........
.........
.........
.........
.........
.........
..........
..........
............
...

.......
......
.....
...........
.........
.........
........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
........
........
.........
.........
..........
...........
......

↑
local minimum

↑
global minimum

Figure 6.1: Local and global minima.

Finding the global minimum of a function, or even verifying that a point is the global
minimum after it has been found, is a very difficult problem unless the function has special
properties. Most optimization methods are designed to find a local minimum, which may
or may not be the global minimum. In general, there is no foolproof way to guarantee that
a specific local minimum, or in particular the global minimum, will be found. Usually the
best one can do is to start the iterative solution process with an initial guess as close as
possible to the desired minimum point.

For many purposes, a local minimum of a function may suffice. If the global minimum
is desired, however, one way to try to find it is to use several different, widely separated
starting points. If they all produce the same result, then there is a good chance that the
global minimum has been found. If they produce different results, then taking the lowest

6.1. OPTIMIZATION PROBLEMS 185

of the local minima is the best one can do; but there may still be other unexplored regions
with even lower values.

Global optimization for general problems is an active area of research, but with few
ironclad results. For special categories of problems, however, global optimization is much
more tractable. For example, global solutions to linear programming problems, or more
generally convex programming problems, are routinely obtained by very efficient methods.

6.1.2 Relationship to Nonlinear Equations

Optimization is related to finding zeros of functions because extrema of smooth functions
correspond to zeros of their derivatives. For example, if x∗ minimizes an unconstrained
function f :Rn → R, then the partial derivative of f with respect to each variable xi is zero,
which means that x∗ is a solution to the system of equations ∇f(x) = o. [Recall that
the gradient of f evaluated at x, denoted by ∇f(x), is a vector-valued function whose ith
component function is the partial derivative of f with respect to xi, ∂f(x)/∂xi.]

The converse is not true, however: a solution to the system of nonlinear equations
∇f(x) = o, which is known as a stationary point or critical point , may be a minimum,
a maximum, or neither (e.g., a saddle point) of f . Nevertheless, many methods for opti-
mization are based on seeking a critical point of a gradient function, which is a system of
(generally nonlinear) equations. Any candidate solution found by such a method should be
checked for optimality.

A critical point x of an unconstrained objective function f can be checked for optimality
by considering the Hessian matrix Hf (x) of second partial derivatives of f ,

{Hf (x)}ij =
∂2f(x)
∂xi∂xj

,

evaluated at x. If f has continuous second partial derivatives, the Hessian matrix Hf (x)
is symmetric. At a critical point x, where ∇f(x) = o, if Hf (x) is

• Positive definite, then x is a minimum of f .
• Negative definite, then x is a maximum of f .
• Indefinite, then x is a saddle point of f .
• Singular, then a variety of behavior can occur.

There are a number of ways to test a symmetric matrix for positive definiteness. One
of the simplest and cheapest is to try to compute its Cholesky factorization: the Cholesky
algorithm will succeed if and only if the matrix is positive definite (of course, this suggestion
assumes that one has a Cholesky routine that fails gracefully when given a nonpositive
definite matrix as input). Another good method is to compute the inertia of the matrix
(see Section 4.3.10) using a symmetric factorization of the form LDLT , as in Section 2.5.2.
A much more expensive approach is to compute the eigenvalues of the matrix and check
whether they are all positive.

186 CHAPTER 6. OPTIMIZATION

6.1.3 Accuracy of Solutions

Consider the Taylor series expansion

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2
h2 +O(h3),

where f :R → R. If f(x∗) = 0 and f ′(x∗) 6= 0, as is usually the case in solving a nonlinear
equation, then the foregoing expansion indicates that for small values of h, f(x∗+ h) ≈ ch,
where c = f ′(x∗). This expression implies that small changes in x∗ cause proportionally
small changes in f(x∗), and hence the solution can be computed about as accurately as the
function values can be evaluated, which is often at the level of machine precision.

In a minimization problem, however, we usually have f ′(x∗) = 0 and f ′′(x∗) 6= 0, so that
for small values of h, f(x∗+h) ≈ f(x∗)+ch2, where c = f ′′(x∗)/2. This means that a small
change of order h in x∗ causes a change of order h2 in f(x∗), and hence one cannot expect
the accuracy of the solution to be less than the square root of the error in the function
values. Geometrically, a minimum is analogous to a multiple root of a nonlinear equation:
in either case a horizontal tangent implies that the function is locally approximately parallel
to the x axis, and hence the solution is relatively poorly conditioned. Although simple zeros
of a function can often be found to an accuracy of nearly full machine precision, minimizers
of a function can be found to an accuracy of only about half precision (i.e.,

√
εmach). This

fact should be kept in mind when selecting an error tolerance for an optimization problem:
an unrealistically tight tolerance may drive up the cost of computing a solution without
producing a concomitant gain in accuracy.

6.2 One-Dimensional Optimization

We begin our study of methods for optimization with problems in one dimension. The
one-dimensional case is simpler than multidimensional optimization yet illustrates many of
the ideas and issues that arise in higher dimensions.

First, we need a way of bracketing a minimum in an interval, analogous to the way
we used a sign change for bracketing solutions to nonlinear equations in one dimension.
A real-valued function f is unimodal on an interval if there is a unique value x∗ in the
interval such that f(x∗) is the minimum of f on the interval, and f is strictly decreasing for
x ≤ x∗ and strictly increasing for x∗ ≤ x. The significance of this property is that it enables
us to refine an interval containing a solution by computing sample values of the function
within the interval and discarding portions of the interval according to the function values
obtained, analogous to bisection for solving nonlinear equations.

6.2.1 Golden Section Search

Suppose f is a real-valued function that is unimodal on the interval [a, b]. Let x1 and x2

be two points within the interval, with x1 < x2. Comparing the function values f(x1) and
f(x2) and using the unimodality property will enable us to discard a subinterval, either
(x2, b] or [a, x1), and know that the minimum of the function lies within the remaining
subinterval. In particular, if f(x1) < f(x2), then the minimum cannot lie in the interval

6.2. ONE-DIMENSIONAL OPTIMIZATION 187

(x2, b], and if f(x1) > f(x2), then the minimum cannot lie in the interval [a, x1). Thus,
we are left with a shorter interval, either [a, x2] or [x1, b], within which we have already
computed one function value, either f(x1) or f(x2), respectively. Hence, we will need to
compute only one new function evaluation to repeat this process.

To make consistent progress in reducing the length of the interval containing the mini-
mum, we would like for each new pair of points to have the same relationship with respect
to the new interval that the previous pair had with respect to the previous interval. Such
an arrangement will enable us to reduce the length of the interval by a fixed fraction at each
iteration, much as we reduced the length by half at each iteration of the bisection method
for computing zeros of functions.

To accomplish this objective, we choose the relative positions of the two points as τ and
1 − τ , where τ2 = 1 − τ , so that τ = (

√
5 − 1)/2 ≈ 0.618 and 1 − τ ≈ 0.382. With this

choice, no matter which subinterval is retained, its length will be τ relative to the previous
interval, and the interior point retained will be at position either τ or 1− τ relative to the
new interval. Thus, we need to compute only one new function value, at the complementary
point, to continue the iteration. This choice of sample points is called golden section search.
The complete algorithm is as follows:

Initial input: a function f , an interval [a, b] on which f is unimodal, and an error
tolerance tol.

τ = (
√

5− 1)/2
x1 = a+ (1− τ)(b− a)
f1 = f(x1)
x2 = a+ τ(b− a)
f2 = f(x2)
while ((b− a) > tol) do

if (f1 > f2) then
a = x1

x1 = x2

f1 = f2

x2 = a+ τ(b− a)
f2 = f(x2)

else
b = x2

x2 = x1

f2 = f1

x1 = a+ (1− τ)(b− a)
f1 = f(x1)

end
end

..
..................
.............
...........
.........
........
........
.......
.......
......
......
......
......
.....
.....
.....
.....
.....
.....
...

...
.....
........
.....
........
.....
........
.....
........
.....
........
.....
........
.....
......

........

.....

........

...

........

.....
........
.....
........
.....
........
.....
........
.....
........
.....
........
.....
........
.....
......

a x1 x2 b

• •

..| | | |
a x1 x2 b

↓ ↓

..| | | |
a x1 x2 b

1−τ

↑ ↑

..| | | |
a x1 x2 b

τ

Golden section search is safe but slowly convergent. Specifically, it is linearly convergent,
with r = 1 and C ≈ 0.618.

Example 6.2 Golden Section Search. We illustrate golden section search by using it
to minimize the function

f(x) = 0.5− xe−x2
.

188 CHAPTER 6. OPTIMIZATION

Starting with the initial interval [0, 2], we evaluate the function at points x1 = 0.764 and
x2 = 1.236, obtaining f1 = 0.074 and f2 = 0.232. Since f1 < f2, we know that the minimum
must lie in the interval [a, x2], and thus we may replace b by x2 and repeat the process.
The first iteration is depicted in Fig. 6.2, and the full sequence of iterations is given next.

x1 f1 x2 f2

0.764 0.074 1.236 0.232
0.472 0.122 0.764 0.074
0.764 0.074 0.944 0.113
0.652 0.074 0.764 0.074
0.584 0.085 0.652 0.074
0.652 0.074 0.695 0.071
0.695 0.071 0.721 0.071
0.679 0.072 0.695 0.071
0.695 0.071 0.705 0.071
0.705 0.071 0.711 0.071

...

..
..................

...............
..............

.............
.............
............
............
............
............
............
............
............
............
............
............
............
.............
.............
..............

..............
..............

...............
.................

...................
.....................

..........................
.........

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

.

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

.

0 x1 x2 2

•

•

Figure 6.2: First iteration of golden section search for example problem.

Although unimodality plays a role in optimization similar to that played by a sign
change in root finding, there are important practical differences. A sign change brackets
a root of an equation regardless of how large the bracketing interval may be. The same
is true of unimodality, but in practice most functions cannot be expected to be unimodal
unless the interval is reasonably close to a minimum. Thus, rather more trial and error may
be required to find a suitable starting interval for optimization than that typically required
for root finding. In practice one might simply look for three points such that the value of
the objective function is lower at the inner point than at the two outer points. Although
golden section search always converges, it is not guaranteed to find the global minimum, or
even a local minimum, unless the objective function is unimodal on the starting interval.

6.2.2 Successive Parabolic Interpolation

Like bisection for solving nonlinear equations, golden section search makes no use of the
numerical function values other than to compare them, so one might conjecture that making
greater use of the function values would lead to faster methods. Indeed, as in solving
nonlinear equations, faster convergence can be attained by replacing the objective function
locally by a simple function that matches its values at some sample points.

6.2. ONE-DIMENSIONAL OPTIMIZATION 189

An example of this approach is successive parabolic interpolation. Initially, the function
is evaluated at three points and a quadratic polynomial is fit to the three resulting values.
The minimum of the parabola, if it has one, is taken to be a new estimate for the minimum
of the function. This new point then replaces the oldest of the three previous points and
the process is repeated until convergence. This process is illustrated in Fig. 6.3. Successive
parabolic interpolation is riskier than golden section search, since it does not necessarily
maintain a bracketing interval in which the solution is known to lie, but asymptotically it
converges superlinearly with convergence rate r ≈ 1.324.

..

..
....................
..............
............
..........
.........
........
........
.......
.......
.......
......
......
......
......
.....
.....
.....
.....
.....
.....
.....
.....
..............

.............
.............
.............

.............
.............

.............
.............

.............
............
.
..........
...
..........
...
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....
........
.....
........
.....
........
.....
........
.....
........
.....
........
.....
........
.....
........
.....
........
.....•

•

•

xk−2 xk−1xk xk+1

Figure 6.3: Successive parabolic iteration for minimizing a function.

Example 6.3 Successive Parabolic Interpolation. We illustrate successive parabolic
interpolation by using it to minimize the function of Example 6.2,

f(x) = 0.5− xe−x2
.

We evaluate the function at three points, say, x0 = 0, x1 = 0.6, and x2 = 1.2, obtaining
f(x0) = 0.5, f(x1) = 0.081, f(x2) = 0.216. We fit a parabola to these three points and take
its minimizer, x3 = 0.754, to be the next approximation to the solution. We then discard
x0 and repeat the process with the three remaining points. The first iteration is depicted
in Fig. 6.4, and the full sequence of iterations is given next.

xk f(xk)
0.000 0.500
0.600 0.081
1.200 0.216
0.754 0.073
0.721 0.071
0.692 0.071
0.707 0.071

6.2.3 Newton’s Method

A local quadratic approximation to the objective function is useful because the minimum
of a quadratic is easy to compute. Another way to obtain a local quadratic approximation
is to use a truncated Taylor series expansion,

f(x+ h) ≈ f(x) + f ′(x)h+
f ′′(x)

2
h2.

190 CHAPTER 6. OPTIMIZATION

...

..
..................

...............
..............

.............
.............
............
............
............
............
............
............
............
............
............
............
............
.............
.............
..............

..............
...

.............
.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
............
.
............
.
..........
...
..........
...
.........
....
.........
....
.........
....
.........
.

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

..

........

.....

........

.....

........

.....

........

.....

........

.....

•

•

•

x0 x1 x2x3

Figure 6.4: First iteration of successive parabolic iteration for example problem.

By differentiation, we find that the minimum of this quadratic function of h is given by
h = −f ′(x)/f ′′(x). This result suggests the iteration scheme

xk+1 = xk − f ′(xk)/f ′′(xk),

which is simply Newton’s method for solving the nonlinear equation f ′(x) = 0. As usual,
Newton’s method for finding a minimum normally has a quadratic convergence rate. Unless
it is started near the desired solution, however, Newton’s method may fail to converge, or
it may converge to a maximum or to an inflection point of the function.

Example 6.4 Newton’s Method. We illustrate Newton’s method by using it to minimize
the function of Example 6.2,

f(x) = 0.5− xe−x2
.

The first and second derivatives of f are given by

f ′(x) = (2x2 − 1)e−x
2

and
f ′′(x) = 2x(3− 2x2)e−x

2
,

so the Newton iteration for finding a zero of f ′ is given by

xk+1 = xk − (2x2
k − 1)/(2xk(3− 2x2

k)).

Using a starting guess of x0 = 1, we get the sequence of iterates shown next.

xk f(xk)
1.000 0.132
0.500 0.111
0.700 0.071
0.707 0.071

6.3. MULTIDIMENSIONAL UNCONSTRAINED OPTIMIZATION 191

6.2.4 Safeguarded Methods

As with solving nonlinear equations in one dimension, slow-but-sure and fast-but-risky
optimization methods can be combined to provide both safety and efficiency. A bracketing
interval, in which the solution is known to lie, is maintained so that if the fast method
generates an iterate that would lie outside the interval, then the safe method can be used
to reduce the length of the bracketing interval before trying the fast method again, with
a better chance of producing a reliable result. Most library routines for one-dimensional
optimization are based on such a hybrid approach. One popular combination, which requires
no derivatives of the objective function, is golden section search and successive parabolic
interpolation.

6.3 Multidimensional Unconstrained Optimization

We turn now to multidimensional unconstrained optimization, which has a number of fea-
tures in common with both one-dimensional optimization and with solving systems of non-
linear equations in n dimensions.

6.3.1 Direct Search Methods

Recall that golden section search for one-dimensional optimization makes no use of the
objective function values other than to compare them. Direct search methods for multidi-
mensional optimization share this property, although they do not retain the convergence
guarantee of golden section search. Perhaps the best known of these is the method of Nelder
and Mead. For minimizing a function f of n variables, the method begins with a set of n+1
starting points, forming a simplex in Rn, at which f is evaluated. A move is then made to
a new point along a straight line from the worst current point through the centroid of all of
the points. The new point then replaces the worst point, and the process is repeated. The
algorithm involves several parameters that determine how far to move along the line and
how much to expand or contract the simplex, depending on whether the search is successful
or not. Such direct search methods can be attractive for a nonsmooth objective function,
for which few other methods are applicable, and they are sometimes fairly effective when n
is small, but they tend to be quite expensive when n is larger than two or three.

6.3.2 Steepest Descent Method

As expected, greater use of the objective function and its derivatives leads to faster methods.
Let f :Rn → R be a real-valued function of n real variables. Recall that the gradient of f
evaluated at x, denoted by∇f(x), is a vector-valued function whose ith component function
is the partial derivative of f with respect to xi, ∂f(x)/∂xi. From calculus, we know that at
a given point x where the gradient vector is nonzero, the negative gradient, −∇f(x), points
downhill toward lower values of the function f . In fact, −∇f(x) is locally the direction
of steepest descent for the function f in the sense that the value of the function decreases
more rapidly along the direction of the negative gradient than along any other direction.

This fact leads to one of the oldest methods for multidimensional optimization, the
steepest descent method . Starting from some initial guess x0, each successive approximate

192 CHAPTER 6. OPTIMIZATION

solution is given by

xk+1 = xk − αk∇f(xk),

where αk is a line search parameter that determines how far to go in the given direction.

Given a direction of descent, such as the negative gradient, determination of an ap-
propriate value for the line search parameter αk at each iteration is a one-dimensional
minimization problem

min
α
f(xk − α∇f(xk))

that can be solved by the methods discussed in Section 6.2.

The steepest descent method is very reliable in that it can always make progress provided
the gradient is nonzero. But as the following example demonstrates, the method is rather
myopic in its view of the behavior of the function, and the resulting iterates can zigzag back
and forth, making very slow progress toward a solution. In general, the convergence rate of
steepest descent is only linear, with a constant factor that can be arbitrarily close to 1.

Example 6.5 Steepest Descent. We illustrate the steepest descent method by using it
to minimize the function

f(x) = 0.5x2
1 + 2.5x2

2,

whose gradient is given by

∇f(x) =
[
x1

5x2

]
.

If we take x0 = [5 1]T as starting point, the gradient is ∇f(x0) = [5 5]T . We next
perform a line search along the negative gradient direction, i.e.,

min
α
f(x0 − α∇f(x0)).

One-dimensional minimization of f as a function of α along the line gives α0 = 1
3 , so that the

next approximation is x1 = [3.333 −0.667]T . We then evaluate the gradient at this new
point to determine the next search direction and repeat the process. The resulting sequence
of iterations is shown numerically in the following table and graphically in Fig. 6.5, where
the ellipses represent level curves, or contours, on which the function f has a constant
value. The gradient direction at any given point is always normal to the level curve passing
through that point. Note that the minimum along a given search direction occurs when the
gradient at the new point is orthogonal to the search direction. The sequence of iterates
given by steepest descent is converging slowly toward the solution, which for this problem
is at the origin, where the minimum function value is zero.

6.3. MULTIDIMENSIONAL UNCONSTRAINED OPTIMIZATION 193

xk f(xk) ∇f(xk)
5.000 1.000 15.000 5.000 5.000
3.333 −0.667 6.667 3.333 −3.333
2.222 0.444 2.963 2.222 2.222
1.481 −0.296 1.317 1.481 −1.481
0.988 0.198 0.585 0.988 0.988
0.658 −0.132 0.260 0.658 −0.658
0.439 0.088 0.116 0.439 0.439
0.293 −0.059 0.051 0.293 −0.293
0.195 0.039 0.023 0.195 0.195
0.130 −0.026 0.010 0.130 −0.130

−6 6

−3

3

•...
...........

...........
...........

...........
...........

...........
...

...
......

...........................
...........

...........
.....................................
....................................

......
...........................

......................................
.........................

...
...

..............................
..........................

......................
...................

..................
................

...............
..............
............
............
............
..........
.........
.........
.........
.........
.........
.........
..........
............
............

............
..............

...............
................

..................
....................

.....................
...........................

...............................
..

..

...
.................................

.........................
......................

.................
...............
..............
.............
..............
..........
..........
..........
..........
.............
.............

..............
...............

..................
....................

........................
.................................

..
..

..
............................

.....................
.................

..............
..............
..............
..............
..............
..............

..............
...................

.....................
..............................

..

...
.......................

....................
....................
....................
....................
....................

....................
......................

..
..

Figure 6.5: Convergence of steepest descent.

6.3.3 Newton’s Method

A broader view of the function can be obtained by a local quadratic approximation, which
as we have seen is equivalent to Newton’s method. In the case of multidimensional opti-
mization, we seek a zero of the gradient. Thus, the iteration scheme for Newton’s method
has the form

xk+1 = xk −H−1
f (xk)∇f(xk),

where Hf (x) is the Hessian matrix of second partial derivatives of f ,

{Hf (x)}ij =
∂2f(x)
∂xi∂xj

,

evaluated at xk. As usual, we do not explicitly invert the Hessian matrix but instead use
it to solve a linear system

Hf (xk)sk = −∇f(xk)

for sk, then take as next iterate
xk+1 = xk + sk.

The convergence rate of Newton’s method for minimization is normally quadratic. As usual,
however, Newton’s method is unreliable unless started close enough to the solution.

194 CHAPTER 6. OPTIMIZATION

Example 6.6 Newton’s Method. We illustrate Newton’s method by again minimizing
the function of Example 6.5,

f(x) = 0.5x2
1 + 2.5x2

2,

whose gradient and Hessian are given by

∇f(x) =
[
x1

5x2

]
and Hf (x) =

[
1 0
0 5

]
.

If we take x0 = [5 1]T as starting point, the gradient is ∇f(x0) = [5 5]T . The linear
system to be solved for the Newton step is therefore[

1 0
0 5

]
s0 =

[
−5
−5

]
,

and hence the next approximate solution is

x1 = x0 + s0 =
[

5
1

]
+
[
−5
−1

]
=
[

0
0

]
,

which is the exact solution for this problem. That Newton’s method has converged in a
single iteration in this case should not be surprising, since the function being minimized is a
quadratic. Of course, the quadratic model used by Newton’s method is not exact in general,
but nevertheless it enables Newton’s method to take a more global view of the problem,
yielding much more rapid convergence than the steepest descent method.

Intuitively, unconstrained minimization is like finding the bottom of a bowl by rolling
a marble down the side. If the bowl is oblong, then the marble will rock back and forth
along the valley before eventually settling at the bottom, analogous to the zigzagging path
taken by the steepest descent method. With Newton’s method, the metric of the space
is redefined so that the bowl becomes circular, and hence the marble rolls directly to the
bottom.

Unlike the steepest descent method, Newton’s method does not require a line search
parameter because the quadratic model determines an appropriate length as well as direction
for the step to the next approximate solution. When started far from a solution, however,
it may still be advisable to perform a line search along the direction of the Newton step sk
in order to make the method more robust (this procedure is sometimes called the damped
Newton method). Once the iterations are near the solution, then the value αk = 1 for the
line search parameter should suffice for subsequent iterations.

An alternative to a line search is a trust region method , in which an estimate is main-
tained of the radius of a region in which the quadratic model is sufficiently accurate for the
computed Newton step to be reliable (see Section 5.3.5), and thus the next approximate
solution is constrained to lie within the trust region. If the current trust radius is binding,
minimizing the quadratic model function subject to this constraint may modify the direc-
tion as well as the length of the Newton step, as illustrated in Fig. 6.6. The accuracy of
the quadratic model at a given step is assessed by comparing the actual decrease in the
objective function value with that predicted by the quadratic model, and the trust radius

6.3. MULTIDIMENSIONAL UNCONSTRAINED OPTIMIZATION 195

•

•

..
......

................

...

..
.....................

.................
..............

.............
............
...........
..........
..........
.........
.........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.........
.........
.........
.........
..........

..........
...........

...........
............

..............
................

...................
..............................

..

contours of
quadratic model

Newton
step

neg. grad. dir.

trust radius

xk

xk+1

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

...
...

..............................
..........................

......................
...................

..................
................

...............
..............
............
............
............
..........
.........
.........
.........
.........
.........
.........
..........
............
............

............
..............

...............
................

..................
....................

.....................
...........................

...............................
..

..

...
..........................

.....................
................
................
................
................
................
................

................
......................

...........................
...

Figure 6.6: Modification of Newton step by trust region method.

is then increased or decreased accordingly. Once near a solution, the trust radius should be
large enough to permit full Newton steps, yielding rapid local convergence.

If the objective function f has continuous second partial derivatives, then the Hessian
matrixHf is symmetric; and near a minimum it is positive definite. Thus, the linear system
for the step to the next iterate can be solved by Cholesky factorization, requiring only about
half of the work required by LU factorization. Far from a minimum, however, Hf (xk) may
not be positive definite and thus may require a symmetric indefinite factorization. The
resulting Newton step sk may not even be a descent direction for the function, i.e., we may
not have

∇f(xk)Tsk < 0.

In this case, an alternative descent direction can be computed, such as the negative gradient
or a direction of negative curvature (i.e., a vector sk such that sTkHf (xk)sk < 0, which can
be obtained readily from a symmetric indefinite factorization of Hf (xk)), and a line search
performed. Another alternative is to shift the spectrum of Hf (xk) so that it becomes
positive definite, i.e., replace Hf (xk) with Hf (xk) +µI, where µ is a scalar chosen so that
the new matrix is positive definite. As µ varies, the resulting computed step interpolates
between the standard Newton step and the steepest descent direction. Such alternative
measures should become unnecessary once the approximate solution is sufficiently close to
the true solution, so that the ultimate quadratic convergence rate of Newton’s method can
still be attained.

6.3.4 Quasi-Newton Methods

Newton’s method usually converges very rapidly once it nears a solution, but it requires
a substantial amount of work per iteration, specifically O(n3) arithmetic and O(n2) scalar
function evaluations per iteration for a dense problem. This drawback has motivated the
development of quasi-Newton methods that converge somewhat less rapidly but require
much less work per iteration (and are often more robust as well).

Many variants of Newton’s method have been developed to improve its reliability and

196 CHAPTER 6. OPTIMIZATION

reduce its overhead. These quasi-Newton methods have the form

xk+1 = xk − αkB−1
k ∇f(xk),

where αk is a line search parameter and Bk is some approximation to the Hessian matrix
obtained in any of a number of ways, including secant updating, finite differences, periodic
reevaluation, or neglecting some terms in the true Hessian of the objective function.

Many quasi-Newton methods are more robust than the pure Newton method, are su-
perlinearly convergent, and have considerably lower overhead per iteration. For example,
secant updating methods for this problem require no second derivative evaluations, require
only one gradient evaluation per iteration, and solve the necessary linear system at each
iteration by updating methods that require only O(n2) work rather than the O(n3) work
that would be required by a matrix factorization at each step. This substantial savings
in work per iteration more than offsets their somewhat slower convergence rate (generally
superlinear but not quadratic), so that they usually take less total time to find a solution.

6.3.5 Secant Updating Methods

As with secant updating methods for solving nonlinear equations, the motivation for secant
updating methods for minimization is to reduce the work per iteration of Newton’s method
and possibly improve its robustness. One could simply use Broyden’s method to seek a zero
of the gradient, but this approach would not preserve the symmetry of the Hessian matrix.
Several secant updating formulas for unconstrained minimization have been developed that
not only preserve symmetry in the approximate Hessian matrix but also preserve positive
definiteness. Symmetry reduces the amount of work required by about half, and positive
definiteness guarantees that the quasi-Newton step will be a descent direction.

One of the most effective of these secant updating methods for minimization is called
BFGS, after the initials of its four coinventors. Starting with an initial guess x0 and a
symmetric positive definite approximate Hessian matrixB0, the following steps are repeated
until convergence.

1. Solve Bksk = −∇f(xk) for sk.
2. xk+1 = xk + sk.
3. yk = ∇f(xk+1)−∇f(xk).
4. Bk+1 = Bk + (ykyTk)/(yTk sk)− (Bksks

T
kBk)/(sTkBksk).

In practice, a factorization of Bk is updated rather than Bk itself, so that the linear
system for the quasi-Newton step sk can be solved at a cost ofO(n2) rather thanO(n3) work.
Note that unlike Newton’s method for minimization, no second derivatives are required.
These methods are often started with B0 = I, which means that the initial step is along
the negative gradient (i.e., the direction of steepest descent); and then second derivative
information is gradually built up in the approximate Hessian matrix through successive
iterations.

Like most secant updating methods, BFGS normally has a superlinear convergence rate,
even though the approximate Hessian does not necessarily converge to the true Hessian. A
line search can also be used to enhance the effectiveness of the method. Indeed, for a
quadratic objective function, if an exact line search is performed at each iteration, then

6.3. MULTIDIMENSIONAL UNCONSTRAINED OPTIMIZATION 197

the BFGS method terminates at the exact solution in at most n iterations, where n is the
dimension of the problem.

Example 6.7 BFGS Method. We illustrate the BFGS method by again minimizing the
function of Example 6.5,

f(x) = 0.5x2
1 + 2.5x2

2,

whose gradient is given by

∇f(x) =
[
x1

5x2

]
.

Starting with x0 = [5 1]T and B0 = I, the initial step is simply the negative gradient, so

x1 = x0 + s0 =
[

5
1

]
+
[
−5
−5

]
=
[

0
−4

]
.

Updating the approximate Hessian according to the BFGS formula, we get

B1 =
[

0.667 0.333
0.333 0.667

]
.

A new step is now computed and the process continued. The sequence of iterations is shown
in the following table:

xk f(xk) ∇f(xk)
5.000 1.000 15.000 5.000 5.000
0.000 −4.000 40.000 0.000 −20.000
−2.222 0.444 2.963 −2.222 2.222

0.816 0.082 0.350 0.816 0.408
−0.009 −0.015 0.001 −0.009 −0.077
−0.001 0.001 0.000 −0.001 0.005

The increase in function value on the first iteration could have been avoided by using a line
search.

6.3.6 Conjugate Gradient Method

The conjugate gradient method is another alternative to Newton’s method that does not
require explicit second derivatives. Indeed, unlike secant updating methods, the conjugate
gradient method does not even store an approximation to the Hessian matrix, which makes
it especially suitable for very large problems.

As we saw in Section 6.3.2, the steepest descent method tends to search in the same
directions repeatedly, leading to very slow convergence. As its name suggests, the conjugate
gradient method also uses gradients, but it avoids repeated searches by modifying the
gradient at each step to remove components in previous directions. The resulting sequence
of conjugate (i.e., orthogonal in some inner product) search directions implicitly accumulates
information about the Hessian matrix as iterations proceed. Theoretically, the method is
exact after at most n iterations for a quadratic objective function in n dimensions, but it is

198 CHAPTER 6. OPTIMIZATION

usually quite effective for more general unconstrained minimization problems as well. The
motivation for this algorithm is discussed in Section 11.5.5.

To minimize f starting from an initial guess x0, we initialize g0 = ∇f(x0) and s0 = −g0;
then the following steps are repeated until convergence.

1. xk+1 = xk + αksk, where αk is determined by a line search.
2. gk+1 = ∇f(xk+1).
3. βk+1 = (gTk+1gk+1)/(gTk gk).
4. sk+1 = −gk+1 + βk+1sk.

The formula for βk+1 given above is due to Fletcher and Reeves. An alternative formula,
due to Polak and Ribiere, is

βk+1 = ((gk+1 − gk)Tgk+1)/(gTk gk).

It is common to restart the algorithm after every n iterations, reinitializing to use the
negative gradient at the current point.

Example 6.8 Conjugate Gradient Method. We illustrate the conjugate gradient
method by using it to minimize the function

f(x) = 0.5x2
1 + 2.5x2

2,

whose gradient is given by

∇f(x) =
[
x1

5x2

]
.

Starting with x0 = [5 1]T , the initial search direction is the negative gradient,

s0 = −g0 = −∇f(x0) =
[
−5
−5

]
.

The exact minimum along this line is given by α0 = 1
3 , so that the next approximation is

x1 = [3.333 −0.667]T , at which point we compute the new gradient,

g1 = ∇f(x1) =
[

3.333
−3.333

]
.

So far there is no difference from the steepest descent method. At this point, however,
rather than search along the new negative gradient, we compute instead the quantity

β1 = (gT1 g1)/(gT0 g0) = 0.444,

which gives as the next search direction

s1 = −g1 + β1s0 =
[
−3.333

3.333

]
+ 0.444

[
−5
−5

]
=
[
−5.556

1.111

]
.

The minimum along this direction is given by α1 = 0.6, which gives the exact solution
at the origin. Thus, as expected for a quadratic function, the conjugate gradient method
converges in n = 2 steps in this case.

6.4. NONLINEAR LEAST SQUARES 199

6.3.7 Truncated Newton Methods

Despite its rapid asymptotic convergence, Newton’s method can be unattractive because of
its high cost per iteration, especially for very large problems, for which storage requirements
are also an important consideration. Another way of potentially reducing the work per
iteration is to solve the linear system for the Newton step,

Bksk = −∇f(xk),

where Bk is the true or approximate Hessian matrix, by an iterative method (see Sec-
tion 11.5) rather than by a direct method based on factorization of Bk. One advantage is
that only a few iterations of the iterative method may be sufficient to produce a step sk
that is almost as good as the true Newton step. Indeed, far from the minimum the true
Newton step may offer no special advantage, yet can be very costly to compute exactly.
Such an approach is called an inexact or truncated Newton method, since the linear system
for the Newton step is solved inexactly by terminating the linear iterative solver before
convergence.

A good choice for the linear iterative solver is the conjugate gradient method (see Sec-
tion 11.5.5). The conjugate gradient method begins with the negative gradient vector
and eventually converges to the true Newton step, so truncating the iterations produces
a step that is intermediate between these two vectors and is always a descent direction
provided Bk is positive definite. Moreover, since the conjugate gradient method requires
only matrix-vector products, the Hessian matrix need not be formed explicitly, which can
mean a substantial savings in storage. To supply the product Bkv, for example, the finite
difference approximation

Bkv ≈
∇f(xk + hv)−∇f(xk)

h

can be computed instead, without ever forming Bk.
In implementing a truncated Newton method, the termination criterion for the inner

iteration must be chosen carefully to preserve the superlinear convergence rate of the outer
iteration. In addition, special measures may be required if the matrix Bk is not positive
definite. Nevertheless, truncated Newton methods are usually very effective in practice and
are among the best methods available for large sparse problems.

6.4 Nonlinear Least Squares

Least squares data fitting can be viewed as an optimization problem. Given m data points
(ti, yi), we wish to find the n-vector x of parameters that gives the best fit in the least
squares sense to the model function f(t,x). If we define the components of the residual
vector r(x) by

ri(x) = yi − f(ti,x), i = 1, ...,m,

then we wish to minimize the function g(x) = 1
2r

T (x)r(x). The gradient vector and Hessian
matrix of g are given by

∇g(x) = JT (x)r(x)

200 CHAPTER 6. OPTIMIZATION

and

Hg(x) = JT (x)J(x) +
m∑
i=1

ri(x)Hi(x),

where J(x) is the Jacobian matrix of the vector function r(x), and Hi(x) denotes the
Hessian matrix of the component function ri(x). Thus, if xk is an approximate solution,
the Newton step sk is given by the linear system

[JT (xk)J(xk) +
m∑
i=1

ri(xk)Hi(xk)]sk = −JT (xk)r(xk).

6.4.1 Gauss-Newton Method

The m Hessian matrices Hi are usually inconvenient and expensive to compute. Moreover,
in Hg each of these matrices is multiplied by the residual component function ri, which
should be small at a solution if the fit of the model function to the data is reasonably good.
These features motivate the Gauss-Newton method for nonlinear least squares, in which the
second-order term is dropped and the linear system

JT (xk)J(xk)sk = −JT (xk)r(xk)

is solved for the approximate Newton step sk at each iteration. But we recognize this system
as the normal equations (see Section 3.3) for the linear least squares problem

J(xk)sk ≈ −r(xk),

which can be solved more reliably by orthogonal factorization (see Section 3.4). The next
approximate solution is then given by

xk+1 = xk + sk,

and the process is repeated until convergence. In effect, the Gauss-Newton method replaces
a nonlinear least squares problem with a sequence of linear least squares problems whose
solutions converge to the solution of the original nonlinear problem.

Example 6.9 Gauss-Newton Method. We illustrate the Gauss-Newton method for
nonlinear least squares by fitting the nonlinear model function

f(t,x) = x1e
x2t

to the data

t 0.0 1.0 2.0 3.0
y 2.0 0.7 0.3 0.1

For this model function, the entries of the Jacobian matrix of the residual function r are
given by

{J(x)}i,1 =
∂ri(x)
∂x1

= −ex2ti , {J(x)}i,2 =
∂ri(x)
∂x2

= −x1tie
x2ti .

6.4. NONLINEAR LEAST SQUARES 201

If we take x0 = [1 0]T as starting point, then the linear least squares problem to be solved
for the Gauss-Newton correction step s0 is

−1 0
−1 −1
−1 −2
−1 −3

 s0 ≈

−1
0.3
0.7
0.9

 .
The least squares solution to this system is s0 = [0.69 −0.61]T . We take x1 = x0 + s0 as
the next approximate solution and repeat the process until convergence. The sequence of
iterations is shown next.

xk ‖r(xk)‖22
1.000 0.000 2.390
1.690 −0.610 0.212
1.975 −0.930 0.007
1.994 −1.004 0.002
1.995 −1.009 0.002
1.995 −1.010 0.002

Like all methods based on Newton’s method, the Gauss-Newton method for solving
nonlinear least squares problems may fail to converge if it is started too far from the solution.
A line search can be used to improve its robustness, but additional modifications may be
necessary to ensure that the computed step is a descent direction when far from the solution.

In addition, if the residual function at the solution is too large, then the second-order
term omitted from the Hessian matrix may not be negligible, which means that the Gauss-
Newton approximation is not sufficiently accurate, so that the method converges very slowly
at best and may not converge at all. In such “large-residual” cases, it may be best to use a
general nonlinear minimization method that takes into account the true full Hessian matrix.

6.4.2 Levenberg-Marquardt Method

The Levenberg-Marquardt method is another useful alternative when the Gauss-Newton
approximation is inadequate or yields a rank-deficient linear least squares subproblem. In
this method, the linear system at each iteration is of the form

(JT (xk)J(xk) + µkI)sk = −JT (xk)r(xk),

where µk is a scalar parameter chosen by some strategy. The corresponding linear least
squares problem to be solved is [

J(xk)√
µkI

]
sk ≈

[
−r(xk)
o

]
.

This method, which is an example of a general technique known as regularization (see
Section 8.6), can be variously interpreted as replacing the term omitted from the true
Hessian by a scalar multiple of the identity matrix, or as shifting the spectrum of the
approximate Hessian to make it positive definite (or equivalently, as boosting the rank of

202 CHAPTER 6. OPTIMIZATION

the corresponding least squares problem), or as using a weighted combination of the Gauss-
Newton step and the steepest descent direction. With a suitable strategy for choosing the
parameter µk, the Levenberg-Marquardt method can be very robust in practice, and it
forms the basis for several effective software packages for solving nonlinear least squares
problems.

6.5 Constrained Optimization

A thorough study of constrained optimization is beyond the scope of this book, but the basic
ideas of some of the concepts and algorithms involved are briefly sketched here. Consider
the minimization of a nonlinear function subject to nonlinear equality constraints,

min
x
f(x) subject to g(x) = o,

where f :Rn → R and g:Rn → R
m, with m ≤ n. From multivariate calculus, we know that

a necessary condition for a feasible point x to be a solution to this problem is that the
negative gradient of f lies in the space spanned by the constraint normals, i.e., that

−∇f(x) = JTg (x)λ,

where Jg is the Jacobian matrix of g and λ is an m-vector of Lagrange multipliers. This con-
dition says that we cannot reduce the objective function without violating the constraints,
and it motivates the definition of the Lagrangian function, L:Rn+m → R, given by

L(x,λ) = f(x) + λTg(x),

whose gradient and Hessian are given by

∇L(x,λ) =
[
∇xL(x,λ)
∇λL(x,λ)

]
=
[
∇f(x) + JTg (x)λ

g(x)

]
and

HL(x,λ) =
[
B(x,λ) JTg (x)
Jg(x) O

]
,

where

B(x,λ) = ∇xxL(x,λ) = Hf (x) +
m∑
i=1

λiHgi(x).

Together, the necessary condition and the requirement of feasibility say that we are looking
for a critical point of the Lagrangian function, which is expressed by the system of nonlinear
equations [

∇f(x) + JTg (x)λ
g(x)

]
= o.

It is important to note that the block 2× 2 matrix HL is symmetric but cannot be positive
definite, even if the matrix B is positive definite (in general, B is not positive definite, but

6.5. CONSTRAINED OPTIMIZATION 203

an extra “penalty” term is sometimes added to the Lagrangian to make it so). Thus, a
critical point of L is necessarily a saddle point rather than a minimum or maximum.

If the Hessian of the Lagrangian is never positive definite, even at a constrained min-
imum, then how can we check a critical point of the Lagrangian for optimality? It turns
out that a sufficient condition for a constrained minimum is that the matrix B(x,λ) at the
critical point be positive definite on the tangent space to the constraint surface, which is
simply the null space of Jg (i.e., the set of all vectors orthogonal to the rows of Jg). If Z is a
matrix whose columns form a basis for this subspace, then we check whether the symmetric
matrix ZTBZ is positive definite. This condition says that we need positive definiteness
only with respect to locally feasible directions (i.e., parallel to the constraint surface), for
movement orthogonal to the constraint surface would violate the constraints. A suitable
matrix Z can be obtained from an orthogonal factorization of JTg (see Section 3.4.3).

Applying Newton’s method to the foregoing nonlinear system, we obtain a system of
linear equations [

B(x,λ) JTg (x)
Jg(x) O

] [
s
δ

]
= −

[
∇f(x) + JTg (x)λ

g(x)

]
for the Newton step (s, δ) in (x,λ) at each iteration. Many of the algorithms for solving
constrained optimization problems amount to different ways of solving this block 2×2 linear
system or some variant of it. Methods for constrained optimization fall roughly into three
categories:

• Range space methods, which are based on block elimination in the block 2 × 2 linear
system, yielding an approach akin to the normal equations for linear least squares
• Null space methods, which are based on orthogonal factorization of the matrix of con-

straint normals, JTg (x)
• Methods that solve the entire block 2 × 2 system directly, with an appropriate pivoting

strategy that takes advantage of its symmetry and sparsity

The methods just outlined for equality constraints can be extended to handle inequality
constraints by using an active set strategy in which the inequality constraints are provi-
sionally divided into those that are satisfied already (and can therefore be temporarily
disregarded) and those that are violated (and are therefore temporarily treated as equality
constraints). This division of the constraints is revised as iterations proceed until eventually
the correct constraints that are binding at the solution are identified.

Example 6.10 Constrained Optimization. As a simple illustration of constrained
optimization, we minimize the same quadratic function as in our previous examples,

f(x) = 0.5x2
1 + 2.5x2

2,

but this time subject to the constraint

g(x) = x1 − x2 − 1 = 0.

The Lagrangian function is given by

L(x, λ) = f(x) + λT g(x) = 0.5x2
1 + 2.5x2

2 + λ(x1 − x2 − 1),

204 CHAPTER 6. OPTIMIZATION

where the Lagrange multiplier λ is a scalar in this instance because there is only one
constraint. Since

∇f(x) =
[
x1

5x2

]
and Jg(x) = [1 −1] ,

we have

∇xL(x, λ) = ∇f(x) + JTg (x)λ =
[
x1

5x2

]
+ λ

[
1
−1

]
.

Therefore, the system of equations to be solved for a critical point of the Lagrangian is

x1 + λ = 0,
5x2 − λ = 0,
x1 − x2 = 1,

which in this case is a linear system whose matrix formulation is 1 0 1
0 5 −1
1 −1 0

x1

x2

λ

 =

 0
0
1

 .
Solving this system, we obtain the solution

x1 = 0.833, x2 = −0.167, λ = −0.833.

The solution is illustrated in Fig. 6.7. The necessary condition for optimality requires that
the negative gradient of the objective function line up with the gradient of the constraint,
and that the point lie on the line x1 − x2 = 1. The only point satisfying both requirements
is the solution we computed, indicated by a bullet in the diagram.

−1.5 1.5

−1.0

1.0

•...................
...........

......................................

...

.........
.........
.........
.........................
................

.................
.................

..................................

.........
.........
.........
.........................
................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
....

..
......

..
......

..
......

..
......

..
......

constraint x1 − x2 = 1
...

......

contours of 0.5x2
1 + 2.5x2

2
...

.....
.........
.......

..
.....................................

............................
.....................

...................
..................

...............
..............
............
............
............
............
............
............
............
............
............

............
...............

...............
................

...................
......................

...........................
..................................

...
...

...
..

................................
............................

......................
.....................

...................
................

................
.............
..............
.............
............
..........
...........
...........
.........
..........
..........
.........
..........
..........
..........
...........
...........

...........
.............

..............
...............

...............
..................

....................
....................

.........................
............................

...................................
..

...

..
...............................

......................
..................

...............
............
............
............
............
............
............
............

...............
..................

.......................
..............................

...
...

Figure 6.7: Solution to constrained optimization problem.

6.5. CONSTRAINED OPTIMIZATION 205

6.5.1 Linear Programming

One of the most important and commonly occurring constrained optimization problems is
linear programming . One standard form for such problems is

min
x
f(x) = cTx subject to Ax = b and x ≥ o,

where c is an n-vector, A is an m× n matrix, m < n, and b is an m-vector.
The feasible region for such a problem is a convex polyhedron in n-dimensional space,

and the minimum must occur at one of its vertices. The standard method for solving linear
programming problems, called the simplex method , systematically examines a sequence of
vertices to find the one yielding the minimum.

A detailed description of the simplex method is beyond the scope of this book; but the
main procedures, sketched here, make use of a number of tools we have already seen. Phase
1 of the simplex method is to find a vertex of the feasible region. A vertex of the feasible
region is a point where all of the constraints are satisfied, and n − m of the inequality
constraints are binding (i.e., xi = 0). If we choose any subset of n − m variables, called
nonbasic variables, and set them to zero, then we can use the equality constraints to solve
for the m remaining basic variables. If the resulting values for the basic variables are
nonnegative, then we have found a feasible vertex. Otherwise, we must choose a different
set of nonbasic variables and try again. There are systematic procedures, which involve
adding new artificial variables and constraints, to ensure that a feasible vertex is found
rapidly and efficiently.

Phase 2 of the simplex method moves systematically from vertex to vertex until the
minimum point is found. Starting from the feasible vertex found in Phase 1, a neighboring
vertex that has a smaller value for the objective function is selected. The specific new
vertex chosen is obtained by exchanging one of the current nonbasic variables for the basic
variable that produces the greatest reduction in the value of the objective function, subject
to remaining feasible. This process is then repeated until no vertex has a lower function
value than the current point, which must therefore be optimal.

The linear system solutions required at each step of the simplex method use matrix
factorization and updating techniques similar to those in Chapter 2. In particular, much of
the efficiency of the method depends on updating the factorization at each step as variables
are added or deleted one at a time.

In this brief sketch of the simplex method, we have glossed over many details, such as
the various degeneracies that can arise, the detection of infeasible or unbounded problems,
the updating of the factorization, and the optimality test. Suffice it to say that all of these
can be addressed effectively, so that the method is very reliable and efficient in practice,
able to solve problems having thousands of variables and constraints.

The efficiency of the simplex method in practice is somewhat surprising, since the num-
ber of vertices that must potentially be examined is(

n
m

)
=

n!
m! (n−m)!

,

which is enormous for problems of realistic size. Yet in practice, the number of iterations
required is usually only a small multiple of the number of constraints m, essentially inde-

206 CHAPTER 6. OPTIMIZATION

pendent of the number of variables n (the value of n affects the cost per iteration, but not
the number of iterations).

Although the simplex method is extremely effective in practice, in theory it can re-
quire in the worst case a solution time that is exponential in the size of the problem, and
there are contrived examples for which such behavior actually occurs. In recent years, new
methods for linear programming have been developed, such as those of Khachiyan and of
Karmarkar, whose worst-case solution time is polynomial in the size of the problem. These
methods move through the interior of the feasible region, not restricting themselves to inves-
tigating only its vertices. Although interior point methods are having significant practical
impact, the simplex method is still the predominant method in standard packages for linear
programming, and its effectiveness in practice is excellent.

Example 6.11 Linear Programming. To illustrate linear programming we consider a
graphical solution of the problem

min
x
f(x) = cTx = −8x1 − 11x2

subject to the linear inequality constraints

5x1 + 4x2 ≤ 40, −x1 + 3x2 ≤ 12, x1 ≥ 0, x2 ≥ 0.

The feasible region, which is bounded by the coordinate axes and the other two straight lines,
is shaded in Fig. 6.8. Contour lines of the objective function are drawn, with corresponding
values of the objective function shown along the bottom of the graph. The minimum value
necessarily occurs at one of the vertices of the feasible region, in this case the point x1 = 3.79,
x2 = 5.26, where the objective function has the value −88.2.

...

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

................

...

...

...

...

...

x1

x2

5x1 + 4x2 = 40

−x1 + 3x2 = 12

0 −27 −46 −66 −88.2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
...

Figure 6.8: Linear programming problem from Example 6.11.

6.6. SOFTWARE FOR OPTIMIZATION 207

6.6 Software for Optimization

Table 6.1 is a list of some of the software available for solving one-dimensional and un-
constrained optimization problems. In the multidimensional case, we distinguish between
routines that do or do not require the user to supply derivatives for the functions, although
in some cases the routines mentioned offer both options.

Table 6.1: Software for one-dimensional and unconstrained optimization

One-dimensional Multidimensional
Source No derivatives No derivatives Derivatives
Brent [23] localmin praxis
FMM fmin
HSL vd01/vd04 va04/va08/va09 va06/va10/va13
IMSL uvmif uminf umiah
KMN fmin uncmin
MATLAB fmin fmins
NAG e04abf e04jaf e04laf
NAPACK cg
NR brent powell dfpmin
NUMAL minin praxis flemin/rnk1min
PORT mnf mng
Schnabel et al. [220] uncmin uncmin
TOMS mini(#500)
TOMS smsno(#611) sumsl(#611)
TOMS bbvscg(#630) bbvscg(#630)
TOMS tnpack(#702)
TOMS tensor(#739) tensor(#739)

Software for minimizing a function f(x) typically requires the user to supply the name
of a routine that computes the value of the function f for any given value of x. The user
must also supply absolute or relative error tolerances that are used in the stopping criterion
for the iterative solution process. Additional input for one-dimensional problems usually
includes the endpoints of an interval in which the function is unimodal. (If the function is
not unimodal, then the routine often will still find a local minimum, but it may not be the
global minimum on the interval.) Additional input for multidimensional problems includes
the dimension of the problem and a starting guess for the solution, and may also include the
name of a routine for computing the gradient (and possibly the Hessian) of the function and
the name of an array to be used as workspace for storing the Hessian or an approximation
to it. In addition to the solution x, the output typically includes a status flag indicating
any warnings or errors. A preliminary plot of the functions involved can help greatly in
determining a suitable starting guess.

Table 6.2 is a list of some of the software available for solving nonlinear least squares
problems, linear programming problems, and general nonlinear constrained optimization
problems. Good software is also available from a number of sources for solving many other
types of optimization problems, including quadratic programming, linear or simple bounds

208 CHAPTER 6. OPTIMIZATION

constraints, network flow problems, etc. There is an optimization toolbox for MATLAB in
which some of the software listed in the tables can be found, along with numerous additional
routines for various other optimization problems. For the nonlinear analogue of total least
squares, called orthogonal distance regression, odrpack(#676) is available from TOMS. A
comprehensive survey of optimization software can be found in [184].

Table 6.2: Software for nonlinear least squares and constrained optimization

Nonlinear Linear Nonlinear
Source least squares programming programming
HSL ns13/va07/vb01/vb03 la01 vf01/vf04/vf13
IMSL unlsf dlprs nconf/ncong
MATLAB leastsq lp constr
MINPACK lmdif1
NAG e04fdf e04mbf e04vdf
netlib varpro/dqed
NR mrqmin simplx
NUMAL gssnewton/marquardt
PORT n2f/n2g/nsf/nsg
SLATEC snls1 splp
SOL minos npsol
TOMS nl2sol(#573)

6.7 Historical Notes and Further Reading

As with nonlinear equations in one dimension, the one-dimensional optimization meth-
ods based on Newton’s method or interpolation are classical. A theory of optimal one-
dimensional search methods using only function value comparisons was initiated in the
1950s by Kiefer, who showed that Fibonacci search, in which successive evaluation points
are determined by ratios of Fibonacci numbers, is optimal in the sense that it produces
the minimum interval of uncertainty for a given number of function evaluations. What
we usually want, however, is to fix the error tolerance rather than the number of function
evaluations, so golden section search, which can be viewed as a limiting case of Fibonacci
search, turned out to be more practical. See [272] for a detailed discussion of these methods.
As with nonlinear equations, hybrid safeguarded methods for one-dimensional optimization
were popularized by Brent [23].

For multidimensional optimization, most of the basic direct search methods were pro-
posed in the 1960s. The method of Nelder and Mead is based on an earlier method of
Spendley, Hext, and Himsworth. Another popular direct search method is that of Hooke
and Jeeves. For a survey of these methods, see [252].

Steepest descent and Newton’s method for multidimensional optimization were analyzed
as practical algorithms by Cauchy. Secant updating methods were originated by Davidon
(who used the term variable metric method) in 1959. In 1963, Fletcher and Powell published
an improved implementation, which came to be known as the DFP method. Continuing this

REVIEW QUESTIONS 209

trend of initialisms, the BFGS method was developed independently by Broyden, Fletcher,
Goldfarb, and Shanno in 1970. Many other secant updates have been proposed, but these
two have been the most successful, with BFGS having a slight edge. The conjugate gradient
method was originally developed by Hestenes and Stiefel in the early 1950s to solve sym-
metric linear systems by minimizing a quadratic function. It was later adapted to minimize
general nonlinear functions by Fletcher and Reeves in 1964.

The Levenberg-Marquardt method for nonlinear least squares was originally developed
by Levenberg in 1944 and improved by Marquardt in 1963. A definitive modern implemen-
tation of this method, due to Moré [181], can be found in MINPACK [182].

The simplex method for linear programming, which is still the workhorse for such prob-
lems, was originated by Dantzig in the late 1940s. The first polynomial-time algorithm for
linear programming, the ellipsoid algorithm published by Khachiyan in 1979, was based on
earlier work in the 1970s by Shor and by Judin and Nemirovskii (Khachiyan’s main contri-
bution was to show that the algorithm indeed has polynomial complexity). A much more
practical polynomial-time algorithm is the interior point method of Karmarkar, published in
1984, which is related to earlier barrier methods popularized by Fiacco and McCormick [78].

Good general references on optimization, with an emphasis on numerical algorithms,
are [40, 80, 95, 167, 189]. Algorithms for unconstrained optimization are covered in [57] and
the more recent surveys [98, 192]. The theory and convergence analysis of Newton’s method
and quasi-Newton methods are summarized in [183] and [56], respectively. For a detailed
discussion of nonlinear least squares, see [14]. The classic account of the simplex method
for linear programming is [48]. More recent treatments of the simplex method can be found
in [96, 167, 189]. For an overview of linear programming that includes polynomial-time
algorithms, see [99]. For a review of interior point methods in constrained optimization,
see [278].

Review Questions

6.1 True or false: Points that minimize a
nonlinear function are inherently less accu-
rately determined than points for which a non-
linear function has a zero value.

6.2 True or false: If a function is unimodal
on a closed interval, then it has exactly one
minimum on the interval.

6.3 True or false: In minimizing a unimodal
function of one variable by golden section
search, the point discarded at each iteration
is always the point having the largest function
value.

6.4 True or false: For minimizing a real-
valued function of several variables, the steep-
est descent method is usually more rapidly
convergent than Newton’s method.

6.5 True or false: The solution to a linear
programming problem must occur at one of

the vertices of the feasible region.

6.6 True or false: The approximate solution
produced at each step of the simplex method
for linear programming is a feasible point.

6.7 Suppose that the real-valued function
f is unimodal on the interval [a, b]. Let x1

and x2 be two points in the interval, with
a < x1 < x2 < b. If f(x1) = 1.232 and
f(x2) = 3.576, then which of the following
statements is valid?

1. The minimum of f must lie in the subin-
terval [x1, b].

2. The minimum of f must lie in the subin-
terval [a, x2].

3. You can’t tell which of these two subin-
tervals the minimum must lie in without
knowing the values of f(a) and f(b).

210 CHAPTER 6. OPTIMIZATION

6.8 (a) In minimizing a unimodal function
of one variable on the interval [0, 1] by golden
section search, at what two points in the inter-
val is the function initially evaluated?
(b) Why are those particular points chosen?

6.9 If the real-valued function f is mono-
tonic on the interval [a, b], will golden section
search to find a minimum of f still converge?
If not, why, and if so, to what point?

6.10 Suppose that the real-valued function f
is unimodal on the interval [a, b], and x1 and
x2 are points in the interval such that x1 < x2

and f(x1) < f(x2).
(a) What is the shortest interval in which you
know that the minimum of f must lie?
(b) How would your answer change if we hap-
pened to have f(x1) = f(x2)?

6.11 List one advantage and one disadvantage
of golden section search compared with succes-
sive parabolic interpolation for minimizing a
function of one variable.

6.12 (a) Why is linear interpolation of a func-
tion f :R → R not useful for finding a mini-
mum of f?
(b) In using quadratic interpolation for one-
dimensional problems, why would one use in-
verse quadratic interpolation for finding a zero
but regular quadratic interpolation for finding
a minimum?

6.13 For minimizing a function f :R → R,
successive parabolic interpolation and New-
ton’s method both fit a quadratic polynomial
to the function f and then take its minimum
as the next approximate solution.
(a) How do these two methods differ in choos-
ing the quadratic polynomials they use?
(b) What difference does this make in their re-
spective convergence rates?

6.14 Explain why Newton’s method mini-
mizes a quadratic function in one iteration but
does not solve a quadratic equation in one it-
eration.

6.15 Suppose you want to minimize a func-
tion of one variable, f :R → R. For each con-
vergence rate given, name a method that nor-
mally has that convergence rate for this prob-
lem:

(a) Linear but not superlinear

(b) Superlinear but not quadratic

(c) Quadratic

6.16 Suppose you want to minimize a func-
tion of several variables, f :Rn → R. For each
convergence rate given, name a method that
normally has that convergence rate for this
problem:

(a) Linear but not superlinear

(b) Superlinear but not quadratic

(c) Quadratic

6.17 Which of the following iterative meth-
ods have a superlinear convergence rate under
normal circumstances?

(a) Successive parabolic interpolation for min-
imizing a function

(b) Golden section search for minimizing a
function

(c) Interval bisection for finding a zero of a
function

(d) Secant updating methods for minimizing a
function of n variables

(e) Steepest descent method for minimizing a
function of n variables

6.18 (a) For minimizing a real-valued func-
tion f of n variables, what is the initial search
direction in the conjugate gradient method?

(b) Under what condition will the BFGS
method for minimization use this same initial
search direction?

6.19 For minimizing a quadratic function of
n variables, what is the maximum number of
iterations required to converge to the exact so-
lution (assuming exact arithmetic) from an ar-
bitrary starting point for each of the following
algorithms?

(a) Conjugate gradient method

(b) Newton’s method

(c) BFGS secant updating method with exact
line search

REVIEW QUESTIONS 211

6.20 (a) What is meant by a critical point (or
stationary point) of a smooth nonlinear func-
tion f :Rn → R?
(b) Is a critical point always a minimum or
maximum of the function?
(c) How can you test a given critical point to
determine which type it is?

6.21 Let f :R2 → R be a real-valued function
of two variables. What is the geometrical in-
terpretation of the vector

∇f(x) =
[
∂f(x)/∂x1

∂f(x)/∂x2

]
?

Specifically, explain the meaning of the direc-
tion and magnitude of ∇f(x).

6.22 (a) If f :Rn → R, what do we call the
Jacobian matrix of the gradient ∇f(x)?
(b) What special property does this matrix
have, assuming f is twice continuously differ-
entiable?
(c) What additional special property does this
matrix have near a local minimum of f?

6.23 The steepest descent method for mini-
mizing a function of several variables is usu-
ally slow but reliable. However, it can some-
times fail, and it can also sometimes converge
rapidly. Under what conditions would each of
these two types of behavior occur?

6.24 Consider Newton’s method for minimiz-
ing a function of n variables:
(a) When might the use of a line search pa-
rameter be beneficial?
(b) When might the use of a line search pa-
rameter not be beneficial?

6.25 Many iterative methods for solving mul-
tidimensional nonlinear problems replace the
given nonlinear problem by a sequence of linear
problems, each of which can be solved by some
matrix factorization. For each method listed,
what is the most appropriate matrix factoriza-
tion for solving the linear subproblems? (As-
sume that we start close enough to a solution
to avoid any potential difficulties.)
(a) Newton’s method for solving a system of
nonlinear equations
(b) Newton’s method for minimizing a func-
tion of several variables

(c) Gauss-Newton method for solving a non-
linear least squares problem

6.26 Let f :Rn → R
n be a nonlinear function.

Since ‖f(x)‖ = 0 if and only if f(x) = o, does
this relation mean that searching for a min-
imum of ‖f(x)‖ is equivalent to solving the
nonlinear system f(x) = o? Why?

6.27 (a) Why is a line search parameter al-
ways used in the steepest descent method for
minimizing a general function of several vari-
ables?

(b) Why might one use a line search parameter
in Newton’s method for minimizing a function
of several variables?

(c) Asymptotically, as the solution is ap-
proached, what should be the value of this line
search parameter for Newton’s method?

6.28 What is a good way to test a symmet-
ric matrix to determine whether it is positive
definite?

6.29 Suppose we want to minimize a func-
tion f :Rn → R using a secant updating
method. Why would one not just apply Broy-
den’s method for finding a zero of the gradient
of f?

6.30 To what method does the first iteration
of the BFGS method for minimization reduce
if the initial approximate Hessian is

(a) The identity matrix I?

(b) The exact Hessian at the starting point?

6.31 In secant updating methods for solving
systems of nonlinear equations or minimizing
a function of several variables, why is it prefer-
able to update a factorization of the approxi-
mate Jacobian or Hessian matrix rather than
update the matrix itself?

6.32 For solving a very large unconstrained
optimization problem whose objective function
has a sparse Hessian matrix, which type of
method would be better, a secant updating
method such as BFGS or the conjugate gra-
dient method? Why?

212 CHAPTER 6. OPTIMIZATION

6.33 How does the conjugate gradient method
for minimizing an unconstrained nonlinear
function differ from a truncated Newton
method for the same problem, assuming the
conjugate gradient method is used in the lat-
ter as the iterative solver for the Newton linear
system?

6.34 For what type of nonlinear least squares
problem, if any, would you expect the Gauss-
Newton method to converge quadratically?

6.35 For what type of nonlinear least squares
problem may the Gauss-Newton method con-
verge very slowly or not at all? Why?

6.36 For what two general classes of least
squares problems is the Gauss-Newton approx-
imation to the Hessian exact at the solution?

6.37 The Levenberg-Marquardt method adds
an extra term to the Gauss-Newton approxi-
mation to the Hessian. Give a geometric or al-
gebraic interpretation of this additional term.

6.38 What are Lagrange multipliers, and

what is their relevance to constrained opti-
mization problems?

6.39 Consider the optimization problem
min f(x) subject to g(x) = o, where f :Rn →
R and g:Rn → R

m.
(a) What is the Lagrangian function for this
problem?
(b) What is a necessary condition for optimal-
ity for this problem?

6.40 Explain the difference between range
space methods and null space methods for
solving constrained optimization problems.

6.41 What is meant by an active set strategy
for inequality-constrained optimization prob-
lems?

6.42 (a) Is it possible, in general, to solve
linear programming problems by an algorithm
whose computational complexity is polynomial
in the size of the problem data?
(b) Does the simplex method have this prop-
erty?

Exercises

6.1 Consider the function f :R2 → R defined
by

f(x) = 1
2 (x2

1 − x2)2 + 1
2 (1− x1)2.

(a) At what point does f attain a minimum?
(b) Perform one iteration of Newton’s method
for minimizing f using as starting point x0 =
[2 2]T .
(c) In what sense is this a good step?
(d) In what sense is this a bad step?

6.2 Let f :Rn → R be given by

f(x) = 1
2x

TAx− xT b+ c,

whereA is an n×n symmetric positive definite
matrix, b is an n-vector, and c is a scalar.
(a) Show that Newton’s method for minimiz-
ing this function converges in one iteration
from any starting point x0.
(b) If the steepest descent method is used on
this problem, what happens if the starting

value x0 is such that x0−x∗ is an eigenvector
of A, where x∗ is the solution?

6.3 Prove that the block 2×2 Hessian matrix
of the Lagrangian function for constrained op-
timization (see Section 6.5) cannot be positive
definite.

6.4 Consider the linear programming prob-
lem

min
x
f(x) = −3x1 − 2x2

subject to the inequality constraints

5x1 + x2 ≤ 6, 3x1 + 4x2 ≤ 6,

4x1 + 3x2 ≤ 6, x1 ≥ 0, x2 ≥ 0.

(a) How many vertices does the feasible region
have?

(b) Since the solution must occur at a vertex,
solve the problem by evaluating the objective
function at each vertex and choosing the one
that gives the lowest value.

COMPUTER PROBLEMS 213

(c) Obtain a graphical solution to the problem
by drawing the feasible region and contours of
the objective function, as in Fig. 6.8.

6.5 How can the linear programming prob-

lem given in Example 6.11 be stated in the
standard form given at the beginning of Sec-
tion 6.5.1? (Hint : Additional variables may
be needed.)

Computer Problems

6.1 (a) The function

f(x) = x2 − 2x+ 2

has a minimum at x∗ = 1. On your com-
puter, for what range of values of x near x∗

is f(x) = f(x∗)? Can you explain this phe-
nomenon? What are the implications regard-
ing the accuracy with which a minimum can
be computed?

(b) Repeat the preceding exercise, this time
using the function

f(x) = 0.5− xe−x
2
,

which has a minimum at x∗ =
√

2/2.

6.2 Consider the function f defined by

f(x) =
{

0.5 if x = 0
1− cos(x))/x2 if x 6= 0 .

(a) Use l’Hôpital’s rule to show that f is con-
tinuous at x = 0.

(b) Use differentiation to show that f has a
local maximum at x = 0.

(c) Use a library routine, or one of your own
design, to find a maximum of f on the interval
[−2π, 2π], on which −f is unimodal. Exper-
iment with the error tolerance to determine
how accurately the routine can approximate
the known solution at x = 0.

(d) If you have difficulty in obtaining a highly
accurate result, try to explain why. (Hint :
Make a plot of f in the vicinity of x = 0, say
on the interval [−0.001, 0.001] with a spacing
of 0.00001 between points.)

(e) Can you devise an alternative formulation
of f such that the maximum can be determined
more accurately? (Hint : Consider a double
angle formula.)

6.3 Use a library routine, or one of your own
design, to find a minimum of each of the fol-
lowing functions on the interval [0, 3]. Draw
a plot of each function to confirm that it is
unimodal.

(a) f(x) = x4 − 14x3 + 60x2 − 70x.

(b) f(x) = 0.5x2 − sin(x).

(c) f(x) = x2 + 4 cos(x).

(d) f(x) = Γ(x). (The gamma function, de-
fined by

Γ(x) =
∫ ∞

0

tx−1e−t dt, x > 0,

is a built-in function on many computer sys-
tems.)

6.4 Try using a library routine for one-
dimensional optimization on a function that is
not unimodal and see what happens. Does it
find the global minimum on the given interval,
merely a local minimum, or neither? Experi-
ment with various functions and different in-
tervals to determine the range of behavior that
is possible.

6.5 If a water hose with initial water veloc-
ity v is aimed at angle α with respect to the
ground to hit a target of height h, then the
horizontal distance x from nozzle to target sat-
isfies the quadratic equation

(g/(2v2 cos2 α))x2 − (tanα)x+ h = 0,

where g = 9.8065 m/s2 is the acceleration
due to gravity. How do you interpret the two
roots of this quadratic equation? Assuming
that v = 20 m/s and h = 13.5 m, use a one-
dimensional optimization routine to find the
maximum distance x at which the target can
still be hit, and the angle α for which the max-
imum occurs.

214 CHAPTER 6. OPTIMIZATION

6.6 Write a general-purpose line search rou-
tine. Your routine should take as input a vec-
tor defining the starting point, a second vec-
tor defining the search direction, the name of a
routine defining the objective function, and a
convergence tolerance. For the resulting one-
dimensional optimization problem, you may
call a library routine or one of your own de-
sign. In any case, you will need to determine
a bracket for the minimum along the search
direction using some heuristic procedure. Test
your routine for a variety of objective functions
and search directions. This routine will be use-
ful in some of the other computer exercises in
this section.

6.7 Consider the function f :R2 → R defined
by

f(x) = 2x3
1 − 3x2

1 − 6x1x2(x1 − x2 − 1).

(a) Determine all of the critical (stationary)
points of f analytically (i.e., without using a
computer).
(b) Classify each critical point found in part a
as a minimum, a maximum, or a saddle point,
again working analytically.
(c) Verify your analysis graphically by creat-
ing a contour plot or three-dimensional surface
plot of f over the region −2 ≤ xi ≤ 2, i = 1, 2.
(d) Use a library routine for minimization to
find the minima of both f and −f . Experi-
ment with various starting points to see how
well the routine gets around other types of crit-
ical points to find minima and maxima. You
may find it instructive to plot the sequence of
iterates generated by the routine.

6.8 Consider the function f :R2 → R defined
by

f(x) = 2x2
1 − 1.05x4

1 + x6
1/6 + x1x2 + x2

2.

Using any method or routine you like, how
many stationary points can you find for this
function? Classify each stationary point you
find as a local minimum, a local maximum, or
a saddle point. What is the global minimum
of this function?

6.9 Write a program to find a minimum of
Rosenbrock’s function,

f(x1, x2) = 100(x2 − x2
1)2 + (1− x1)2

using each of the following methods:

(a) Steepest descent

(b) Newton

(c) Damped Newton (Newton’s method with
a line search)

You should try each of the methods from each
of the three starting points x0 = [−1 1]T ,
[0 1]T , and [2 1]T . For any line searches
and linear system solutions required, you may
use either library routines or routines of your
own design. Plot the path taken in the plane
by the approximate solutions for each method
from each starting point.

6.10 Let A be an n × n real symmetric ma-
trix with eigenvalues λ1 ≤ · · · ≤ λn. It can
be shown that the stationary points of the
Rayleigh quotient (see Section 4.3.7) are eigen-
vectors of A, and in particular

λ1 = min
x

xTAx

xTx

and

λn = max
x

xTAx

xTx
,

with the minimum and maximum occurring at
the corresponding eigenvectors. Thus, we can
in principle compute the extreme eigenvalues
and corresponding eigenvectors of A using any
suitable method for optimization.

(a) Use an unconstrained optimization routine
to compute the extreme eigenvalues and cor-
responding eigenvectors of the matrix

A =

 6 2 1
2 3 1
1 1 1

 .
Is the solution unique in each case? Why?

(b) The foregoing characterization of λ1 and
λn remains valid if we restrict the vector x to
be normalized by taking xTx = 1. Repeat part
a, but use a constrained optimization routine
to impose this normalization constraint. What
is the significance of the Lagrange multiplier in
this context?

COMPUTER PROBLEMS 215

6.11 Write a routine implementing the BFGS
method of Section 6.3.5 for unconstrained min-
imization. For the purpose of this exercise, you
may refactor the resulting matrixB at each it-
eration, whereas in a real implementation you
would update either B−1 or a factorization of
B to reduce the amount of work per iteration.
You may use an initial value of B0 = I, but
you might also wish to include an option to
compute a finite difference approximation to
the Hessian of the objective function to use as
the initial B0. You may wish to include a line
search to enhance the robustness of your rou-
tine. Test your routine on some of the other
computer problems in this chapter, and com-
pare its robustness and convergence rate with
those of Newton’s method and the method of
steepest descent.

6.12 Write a routine implementing the con-
jugate gradient method of Section 6.3.6 for
unconstrained minimization. You will need a
line search routine to determine the parameter
αk at each iteration. Try both the Fletcher-
Reeves and Polak-Ribiere formulas for com-
puting βk+1 to see how much difference this
makes. Test your routine on both quadratic
and nonquadratic objective functions. For a
reasonable error tolerance, does your routine
terminate in at most n steps for a quadratic
function of n variables?

6.13 Using a library routine or one of your
own design, find least squares solutions to the
following overdetermined systems of nonlinear
equations:
(a)

x2
1 + x2

2 = 2,
(x1 − 2)2 + x2

2 = 2,
(x1 − 1)2 + x2

2 = 9.

(b)

x2
1 + x2

2 + x1x2 = 0,
sin2(x1) = 0,
cos2(x2) = 0.

6.14 The concentration of a drug in the
bloodstream is expected to diminish exponen-
tially with time. We will fit the model function

y = f(t,x) = x1e
x2t

to the following data:

t 0.5 1.0 1.5 2.0
y 6.80 3.00 1.50 0.75
t 2.5 3.0 3.5 4.0
y 0.48 0.25 0.20 0.15

(a) Perform the exponential fit using nonlinear
least squares. You may use a library routine
or one of your own design, perhaps using the
Gauss-Newton method.

(b) Taking the logarithm of the model func-
tion gives log(x1) + x2t, which is now linear
in x2. Thus, an exponential fit can also be
done using linear least squares, assuming that
we also take logarithms of the data points yi.
Use a linear least squares routine, or one of
your own design, to compute x1 and x2 in this
manner. Do the values obtained agree with
those determined in part a? Why?

6.15 A bacterial population P grows accord-
ing to the geometric progression

Pk = rPk−1,

where r is the growth rate. The following pop-
ulation counts (in billions) are observed:

k 1 2 3 4
Pk 0.19 0.36 0.69 1.3
k 5 6 7 8
Pk 2.5 4.7 8.5 14

(a) Perform a nonlinear least squares fit of the
growth function to these data to estimate the
initial population P0 and the growth rate r.

(b) By using logarithms, a fit to these data
can also be done by linear least squares (see
previous exercise). Perform such a linear least
squares fit to obtain estimates for P0 and r,
and compare your results with those for the
nonlinear fit.

6.16 The Michaelis-Menten equation de-
scribes the chemical kinetics of enzyme reac-
tions. According to this equation, if v0 is the
initial velocity, V is the maximum velocity, Km

is the Michaelis constant, and S is the sub-
strate concentration, then

v0 =
V

1 +Km/S
.

216 CHAPTER 6. OPTIMIZATION

In a typical experiment, v0 is measured as S
is varied, and then V and Km are to be deter-
mined from the resulting data.

(a) Given the measured data,

S 2.5 5.0 10.0
v0 0.024 0.036 0.053
S 15.0 20.0
v0 0.060 0.064

determine V and Km by performing a nonlin-
ear least squares fit of v0 as a function of S.
You may use a library routine or one of your
own design, perhaps using the Gauss-Newton
method.

(b) To avoid a nonlinear fit, a number of
researchers have rearranged the Michaelis-
Menten equation so that a linear least squares
fit will suffice. For example, Lineweaver and
Burk used the rearrangement

1
vo

=
1
V

+
Km

V
· 1
S

and performed a linear fit of 1/vo as a func-
tion of 1/S to determine 1/V and Km/V , from
which the values of V and Km can then be
derived. Similarly, Dixon used the rearrange-
ment

S

v0
=
Km

V
+

1
V
· S

and performed a linear fit of S/v0 as a func-
tion of S to determine Km/V and 1/V , from
which the values of V and Km can then be
derived. Finally, Eadie and Hofstee used the
rearrangement

v0 = V −Km ·
v0

S

and performed a linear fit of v0 as a function
of v0/S to determine V and Km.

Verify the algebraic validity of each of these
rearrangements. Perform the indicated linear
least squares fit in each case, using the same
data as in part a, and determine the result-
ing values for V and Km. Compare the re-
sults with those obtained in part a. Why do
they differ? For which of these linear fits are
the resulting parameter values closest to those
determined by the true nonlinear fit for these
data?

6.17 We wish to fit the model function

f(t,x) = x1 + x2t+ x3t
2 + x4e

x5t

to the following data:

t 0.00 0.25 0.50
y 20.00 51.58 68.73
t 0.75 1.00 1.25
y 75.46 74.36 67.09
t 1.50 1.75 2.00
y 54.73 37.98 17.28

We must determine the values for the five pa-
rameters xi that best fit the data in the least
squares sense. The model function is linear in
the first four parameters, but it is a nonlinear
function of the fifth parameter, x5. We will
solve this problem in five different ways:

(a) Use a general multidimensional uncon-
strained minimization routine with g(x) =
1
2r

T (x)r(x) as objective function, where r
is the residual function defined by ri(x) =
yi − f(ti,x). This method will determine all
five parameters (i.e., the five components of x)
simultaneously.

(b) Use a multidimensional nonlinear equation
solver to solve the system of nonlinear equa-
tions ∇g(x) = 0.

(c) Given a value for x5, the best values for
the remaining four parameters can be deter-
mined by linear least squares. Thus, we can
view the problem as a one-dimensional non-
linear minimization problem with an objective
function whose input is x5 and whose output
is the residual sum of squares of the result-
ing linear least squares problem. Use a one-
dimensional minimization routine to solve the
problem in this manner. (Hint : Your routine
for computing the objective function will in
turn call a linear least squares routine.)

(d) Solve the problem in the same manner as c,
except use a one-dimensional nonlinear equa-
tion solver to find a zero of the derivative of
the objective function in part c.

(e) Use the Gauss-Newton method for nonlin-
ear least squares to solve the problem. You
will need to call a linear least squares routine
to solve the linear least squares subproblem at
each iteration.

COMPUTER PROBLEMS 217

In each of the five methods, you may compute
any derivatives required either analytically or
by finite differences. You may need to do
some experimentation to find a suitable start-
ing value for which each method converges. Of
course, after you have solved the problem once,
you will know the correct answer, but try to
use “fair” starting guesses for the remaining
methods. You may need to use global vari-
ables in MATLAB or C, or common blocks in
Fortran, to pass information to subroutines in
some cases.

6.18 Use a library routine for linear program-
ming to solve the following problem:

max
x

f(x) = 2x1 + 4x2 + x3 + x4

subject to the constraints

x1 + 3x2 + x4 ≤ 4
2x1 + x2 ≤ 3

x2 + 4x3 + x4 ≤ 3

and
xi ≥ 0, i = 1, 2, 3, 4.

6.19 Use the method of Lagrange multipliers
to solve each of the following constrained opti-
mization problems. To solve the resulting sys-
tem of nonlinear equations, you may use a li-
brary routine or one of your own design. Once
you find a critical point of the Lagrangian func-
tion, remember to check it for optimality, ei-
ther by sampling the objective at nearby feasi-
ble points, or using the second-order optimal-
ity condition. You may also wish to compare
your results with those of a library routine de-
signed for constrained optimization.
(a) Quadratic objective function and linear
constraints:

min
x
f(x) = (4x1 − x2)2 + (x2 + x3 − 2)2

+(x4 − 1)2 + (x5 − 1)2

subject to

x1 + 3x2 = 0,
x3 + x4 − 2x5 = 0,

x2 − x5 = 0.

(b) Quadratic objective function and nonlinear
constraints:

min
x
f(x) = 4x2

1 + 2x2
2 + 2x2

3

−33x1 + 16x2 − 24x3

subject to

3x1 − 2x2
2 = 7,

4x1 − x2
3 = 11.

(c) Nonquadratic objective function and non-
linear constraints:

min
x
f(x) = (x1 − 1)2 + (x1 − x2)2

+(x2 − x3)2 + (x3 − x4)4 + (x4 − x5)4

subject to

x1 + x2
2 + x3

3 = 3
√

2 + 2,

x2 − x2
3 + x4 = 2

√
2− 2,

x1x5 = 2.

6.20 Use the method of Lagrange multipli-
ers to find the radius and height of a cylinder
having minimum surface area subject to the
constraint that its volume is one liter (1000
cc). See Example 6.1. How does the resulting
shape compare with that of one-liter cans or
bottles you see in a grocery store? How does
the resulting surface area compare with that
of a sphere having the same volume?

218 CHAPTER 6. OPTIMIZATION

Chapter 7

Interpolation

7.1 Interpolation

Interpolation simply means fitting some function to given data so that the function has the
same values as the given data. We have already seen several instances of interpolation in
various numerical methods, such as linear interpolation in the secant method for nonlinear
equations and successive parabolic interpolation for minimization. We will now make a
more general and systematic study of interpolation.

In general, the simplest interpolation problem in one dimension is of the following form:
for given data

(ti, yi), i = 1, . . . , n,

with t1 < t2 < · · · < tn, we seek a function f such that

f(ti) = yi, i = 1, . . . , n.

We call f an interpolating function, or simply an interpolant , for the given data. It is
often desirable for f(t) to have “reasonable” values for t between the data points, but such
a requirement may be difficult to quantify. In more complicated interpolation problems,
additional data might be prescribed, such as the slope of the interpolant at given points,
or additional constraints might be imposed on the interpolant, such as monotonicity, con-
vexity, or the degree of smoothness required. One could also consider higher-dimensional
interpolation in which f is a function of more than one variable, but we will not do so in
this book.

7.1.1 Purposes for Interpolation

Interpolation problems arise from many different sources and may have many different
purposes. Some of these include:

• Plotting a smooth curve through discrete data points
• Quick and easy evaluation of a mathematical function

219

220 CHAPTER 7. INTERPOLATION

• Replacing a “difficult” function by an “easy” one
• “Reading between the lines” of a table
• Differentiating or integrating tabular data

7.1.2 Interpolation versus Approximation

By definition, an interpolating function fits the given data points exactly. Interpolation is
usually not appropriate if the data points are subject to experimental errors or other sources
of significant error. It is usually preferable to smooth out such noisy data by a technique
such as least squares approximation (see Chapter 3).

Another context in which approximation is generally more appropriate than interpola-
tion is in the design of library routines for computing special functions, such as those usually
supplied by the Fortran and C math libraries. In this case, it is important that the ap-
proximating function be close to the exact underlying mathematical function for arguments
throughout some domain, but it is not essential that the function values match exactly at
any particular points. An appropriate type of approximation in this case is to minimize the
maximum deviation between the given function and the approximating function over some
interval. This approach is variously known as uniform, Chebyshev, or minimax approxima-
tion. A general study of approximation theory and algorithms is beyond the scope of this
book, however, and we will confine our attention to interpolation.

7.1.3 Choice of Interpolating Function

It is important to realize that there is some arbitrariness in most interpolation problems.
There are arbitrarily many functions that interpolate a given set of data points. Simply
requiring that some mathematical function fit the data points exactly leaves open such
questions as:

• What form should the function have? There may be relevant mathematical or physical
considerations that suggest a particular form of interpolant.
• How should the function behave between data points?
• Should the function inherit properties of the data, such as monotonicity, convexity, or

periodicity?
• If the function and data are plotted, should the results be visually pleasing?
• Are we interested primarily in the values of the parameters that define the interpolating

function, or simply in evaluating the function at various points for plotting or other
purposes?

The choice of interpolating function depends on the answers to these questions as well as
the data to be fit.

The selection of a function for interpolation is usually based on:

• How easy the function is to work with (determining its parameters from the data, evalu-
ating the function at a given point, differentiating or integrating the function, etc.)

• How well the properties of the function match the properties of the data to be fit (smooth-
ness, monotonicity, convexity, periodicity, etc.)

7.1. INTERPOLATION 221

Some families of functions commonly used for interpolation include:

• Polynomials
• Piecewise polynomials
• Trigonometric functions
• Exponentials
• Rational functions

In this chapter we will focus on interpolation by polynomials and piecewise polynomials.
We will consider trigonometric interpolation in Chapter 12. We have already seen an ex-
ample of interpolation by a rational function, namely, linear fractional interpolation, in
Section 5.2.6. The use of more general rational functions of arbitrary degree, known as
Padé approximation, is an important topic, but it is beyond the scope of this book.

7.1.4 Basis Functions

The family of functions chosen for interpolating a given set of data points is spanned by
a set of basis functions φ1(t), . . . , φn(t). The interpolating function f is chosen as a linear
combination of these basis functions,

f(t) =
n∑
j=1

xjφj(t),

where the parameters xj are to be determined. Requiring that f interpolate the data (ti, yi)
means that

f(ti) =
n∑
j=1

xjφj(ti) = yi, i = 1, . . . , n,

which is a system of linear equations that we can write as

Ax = y,

where the entries of the matrix A are given by aij = φj(ti) (i.e., aij is the value of the
jth basis function evaluated at the ith data point), the components of the right-hand-side
vector y are the known data values yi, and the components of the vector x to be determined
are the unknown parameters xj .

We have chosen the number of basis functions to be the same as the number of data
points so that we obtain a square linear system, and hence the data points can be fit
exactly. In other contexts, these two values would not necessarily be the same. In least
squares approximation, for example, the number of basis functions, and thus the number
of parameters to be determined, is usually smaller than the number of data points (i.e., the
system is overdetermined in that there are more equations than unknowns). Therefore, the
data usually cannot be fit exactly.

For a given family of functions, there may be many different choices of basis functions.
The particular choice of basis functions affects the conditioning of the linear systemAx = y,
the work required to solve it, and the ease with which the resulting interpolating function
can be evaluated or otherwise manipulated.

222 CHAPTER 7. INTERPOLATION

7.2 Polynomial Interpolation

The simplest and commonest type of interpolation uses polynomials. There is a unique
polynomial of degree at most n − 1 passing through n data points (ti, yi), i = 1, . . . , n,
where the ti are distinct. There are many ways to represent or compute this polynomial,
but all must give the same mathematical function. (Simple proof: if there were two, then
their difference would be a polynomial of degree at most n− 1 having n zeros, which must
be the zero polynomial.)

For example, with the monomial basis,

φj(t) = tj−1, j = 1, . . . , n,

the interpolating polynomial has the form

pn−1(t) = x1 + x2t+ · · ·+ xnt
n−1,

and its coefficients are determined by the n× n linear system
1 t1 · · · tn−1

1

1 t2 · · · tn−1
2

...
...

. . .
...

1 tn · · · tn−1
n

x1

x2
...
xn

 =

y1

y2
...
yn

 .
As we saw in Section 3.2, a matrix of this form is called a Vandermonde matrix.

Example 7.1 Monomial Basis. To illustrate polynomial interpolation using the mono-
mial basis, we will find a polynomial of degree two interpolating the three data points
(−2,−27), (0,−1), (1, 0). In general, there is a unique polynomial

p2(t) = x1 + x2t+ x3t
2

of degree two interpolating three points (t1, y1), (t2, y2), (t3, y3). With the monomial basis,
the coefficients of the polynomial are given by the system of linear equations 1 t1 t21

1 t2 t22
1 t3 t23

x1

x2

x3

 =

 y1

y2

y3

 .
For this particular set of data, this system becomes 1 −2 4

1 0 0
1 1 1

x1

x2

x3

 =

−27
−1

0

 .
Solving this system by Gaussian elimination yields the solution x = [−1 5 −4]T , so that
the interpolating polynomial is

p2(t) = −1 + 5t− 4t2.

7.2. POLYNOMIAL INTERPOLATION 223

Note that polynomial interpolation and polynomial evaluation are inverses of each other
in the following sense: if A is a Vandermonde matrix as just defined, then computing the
matrix-vector product Ax evaluates at n points the polynomial whose coefficients are given
by the components of x, whereas computing the productA−1y (by solving the linear system
Ax = y) determines the coefficients of the polynomial whose values at n points are given
by the components of y.

Solving the system Ax = y using a standard linear equation solver to determine the
coefficients of the interpolating polynomial requires O(n3) work. [Solvers for Vandermonde
systems with O(n2) complexity are possible, but they are based on other polynomial repre-
sentations that we will see shortly.] Moreover, when using the monomial basis, the resulting
Vandermonde matrix A is often ill-conditioned, especially for high-degree polynomials. The
reason for this is illustrated in Fig. 7.1, in which the first several monomials are plotted
on the interval [0, 1]. These functions are progressively less distinguishable as the degree
increases, which makes the columns of the Vandermonde matrix nearly linearly dependent.
For most choices of data points ti, the condition number of the Vandermonde matrix grows
at least exponentially with the number of data points n.

0.0 0.5 1.0

0.5

1.0 ...

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
..........

..
...

...................................
.............................

..........................
........................

......................
.....................

....................
...................

..................
.................

.................
................

................
...............

...............
...............

...............
..............

..............
..............

..............
..............

.............
.............
.............
.............
.............
............
.............
............
............
............
............
............
............
............
............
............
............
...........
...........
...........
...........
...........
......

..
...

......................................
..............................

..........................
.......................

.....................
...................

..................
.................

................
...............

...............
..............

..............
.............

.............
.............
............
............
............
............
............
...........
...........
...........
...........
...........
...........
...........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..

..
..

....................................
...........................

........................
.....................

...................
.................

................
...............

..............
..............

.............
.............
............
............
............
...........
...........
...........
...........
...........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..

...
..

.................................
..........................

......................
...................

.................
................

...............
..............

.............
............
............
...........
...........
...........
...........
..........
..........
..........
..........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.....

...
...

................................
........................

....................
.................

................
..............

.............
.............
............
............
...........
...........
..........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........
........
........
........
........
........
........
........
........
.........
.........
.........
.........
...

..
...

............................
.......................

...................
................

..............
.............
............
............
............
...........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.........
..........
.........
.........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.........
.........
.........
.........
..

..
..

............................
.....................

.................
...............

.............
.............
............
...........
...........
..........
..........
..........
.........
.........
.........
.........
.........
..........
..........
.........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.........
.........
.........
.........

1

t

t2

t3

Figure 7.1: Monomial basis functions.

Note that this ill-conditioning does not prevent fitting the data points well, since the
residual for the solution to the linear system will be small in any case, but it does mean
that the values of the coefficients may be poorly determined. Both the conditioning of the
linear system and the amount of computational work required to solve it can be improved
by using a different basis. A change of basis still gives the same interpolating polynomial
for a given data set (recall that the interpolating polynomial is unique). What does change
is the representation of that polynomial in a different basis.

The conditioning of the monomial basis can be improved somewhat by shifting and
scaling the independent variable t so that

φj(t) =
(
t− c
d

)j−1

,

224 CHAPTER 7. INTERPOLATION

where, for example, c = (t1+tn)/2 and d = (tn−t1)/2 are the midpoint and half the range of
the data, respectively. Thus, the new independent variable lies in the interval [−1, 1]. Such
a transformation also helps avoid overflow or harmful underflow in computing the entries
of the basis matrix or evaluating the resulting polynomial. Even with optimal shifting and
scaling, however, the monomial basis is usually still poorly conditioned, and we must seek
superior alternatives.

7.2.1 Evaluating Polynomials

In addition to the cost of determining the interpolating function, the cost of evaluating it at
a given point is an important factor in choosing an interpolation method. When represented
in the monomial basis, a polynomial

pn−1(t) = x1 + x2t+ · · ·+ xnt
n−1

can be evaluated very efficiently using Horner’s method , also known as nested evaluation
or synthetic division:

pn−1(t) = x1 + t(x2 + t(x3 + t(· · · (xn−1 + xnt) · · ·))),

which requires only n additions and n multiplications. For example,

1− 4t+ 5t2 − 2t3 + 3t4 = 1 + t(−4 + t(5 + t(−2 + 3t))).

The same principle applies in forming a Vandermonde matrix:

ai,j = φj(ti) = tj−1
i = ti φj−1(ti) = ti ai,j−1 for j = 2, . . . , n,

which is superior to using explicit exponentiation.
Other manipulations of the interpolating polynomial, such as differentiation or integra-

tion, are also relatively easy with the monomial basis representation.

7.2.2 Lagrange Interpolation

For a given set of data points (ti, yi), i = 1, . . . , n, the Lagrange basis functions are given
by

lj(t) =

∏n
k=1, k 6=j(t− tk)∏n
k=1, k 6=j(tj − tk)

.

For the Lagrange basis, we have

lj(ti) =
{

1 if i = j
0 if i 6= j

,

which means that the matrix of the linear system Ax = y is the identity matrix I. Thus,
in the Lagrange basis the polynomial interpolating the data points (ti, yi) is given by

pn−1(t) = y1l1(t) + y2l2(t) + · · ·+ ynln(t).

7.2. POLYNOMIAL INTERPOLATION 225

0.0 0.5 1.0

0.0

0.5

1.0 ..
..

........
......
.....
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
.......
.......
.......
.........

..
............

............
............

............
............

............
..................

...
...........
...........

...........
...........

...........
..........
.
..........
.
..........
.
..........
.
..........
.
..........
.
.........
..
.........
..
..........
.
..........
.
..........
.
..........
.
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

.........
..
........
...
........
...
.........
..
...........

..........
...........

...............
......

.....................
.....................

.....................
..................

...
.............
........

............
.........

...........
..........

...........
..........

...........
..........

...........
..........

............
.........

.................
....

.....................
.....................

.....................

.....................

.....................
..

....
...............

.............
...

...........
...........
.........

.........
.........
.........
....

.........
.........
.........
..

l1

l2
l3

l4

l5

Figure 7.2: Lagrange basis functions.

Fig. 7.2 shows the Lagrange basis functions for five equally spaced points on the interval
[0, 1]. Compare this graph with the corresponding graph for the monomial basis functions
in Fig. 7.1.

Lagrange interpolation makes it easy to determine the interpolating polynomial for a
given set of data points, but the Lagrangian form of the polynomial is more expensive
to evaluate for a given argument compared with the monomial basis representation. The
Lagrangian form is also more difficult to differentiate, integrate, etc.

Example 7.2 Lagrange Interpolation. We illustrate Lagrange interpolation by using
it to find the interpolating polynomial for the three data points (−2,−27), (0,−1), (1, 0)
of Example 7.1. The Lagrange form for the polynomial of degree two interpolating three
points (t1, y1), (t2, y2), (t3, y3) is

p2(t) = y1
(t− t2)(t− t3)

(t1 − t2)(t1 − t3)
+ y2

(t− t1)(t− t3)
(t2 − t1)(t2 − t3)

+ y3
(t− t1)(t− t2)

(t3 − t1)(t3 − t2)
.

For this particular set of data, this formula becomes

p2(t) = −27
(t− 0)(t− 1)

(−2− 0)(−2− 1)
+ (−1)

(t− (−2))(t− 1)
(0− (−2))(0− 1)

+ 0
(t− (−2))(t− 0)
(1− (−2))(1− 0)

= −27
t(t− 1)

6
+

(t+ 2)(t− 1)
2

.

Depending on the use to be made of it, the polynomial can be evaluated in this form for
any t, or it can be simplified to produce the same result as we saw previously for the same
data using the monomial basis (as expected, since the interpolating polynomial is unique).

7.2.3 Newton Interpolation

We have thus far seen two methods for polynomial interpolation, one for which the basis
matrix A is full (Vandermonde) and the other for which it is diagonal (Lagrange). As a
result, these two methods have very different trade-offs between the cost of computing the

226 CHAPTER 7. INTERPOLATION

interpolant and the cost of evaluating it for a given argument. We will now consider Newton
interpolation, for which the basis matrix is between these two extremes.

For a given set of data points (ti, yi), i = 1, . . . , n, the Newton interpolating polynomial
has the form

pn−1(t) = x1 + x2(t− t1) + x3(t− t1)(t− t2) + · · ·+ xn(t− t1)(t− t2) · · · (t− tn−1).

Thus, the basis functions for Newton interpolation are given by

φj(t) =
j−1∏
k=1

(t− tk), j = 1, . . . , n,

where we take the value of the product to be 1 when the limits make it vacuous. For i < j,
we then have φj(ti) = 0, so that the basis matrix A, with aij = φj(ti), is lower triangular.
Hence, the solution x to the system Ax = y, which determines the coefficients of the basis
functions in the interpolant, can be computed by forward-substitution in O(n2) arithmetic
operations. In practice, the triangular matrix need not be formed explicitly, since its entries
can be computed as needed during the forward-substitution process.

Fig. 7.3 shows the Newton basis functions for five equally spaced points on the interval
[0, 2]. Compare this graph with the corresponding graphs for the monomial and Lagrange
basis functions given earlier.

0.0 0.5 1.0 1.5 2.0

0.0

1.0

2.0

3.0

...

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
.....

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

......

.....................
.....................

....................
.

................
.....

..............
.......

............
.........

...........
..........

..........
..........
.

..........
..........
.

..........
..........
.

.........
.........
...

.........
.........
...

.........
.........
...

...............................
...

...............
..............

..

...........
...........
.........

..........
.........
.........
...

.........
......

φ1

φ2 φ3 φ4 φ5

Figure 7.3: Newton basis functions.

Example 7.3 Newton Interpolation. We illustrate Newton interpolation by using it
to find the interpolating polynomial for the three data points (−2,−27), (0,−1), (1, 0) of
Example 7.1. With the Newton basis, we have the triangular linear system 1 0 0

1 t2 − t1 0
1 t3 − t1 (t3 − t1)(t3 − t2)

x1

x2

x3

 =

 y1

y2

y3

 .

7.2. POLYNOMIAL INTERPOLATION 227

For this particular set of data, this system becomes 1 0 0
1 2 0
1 3 3

x1

x2

x3

 =

−27
−1

0

 ,
whose solution, obtained by forward-substitution, is x = [−27 13 −4]T . Thus, the
interpolating polynomial is

p(t) = −27 + 13(t+ 2)− 4(t+ 2)t,

which reduces to the same polynomial we obtained earlier by the other two methods.

Once the coefficients xj have been determined, the resulting Newton polynomial in-
terpolant can be evaluated efficiently for any argument using Horner’s nested evaluation
scheme:

pn−1(t) = x1 + (t− t1)(x2 + (t− t2)(x3 + (t− t3)(· · · (xn−1 + xn(t− tn−1)) · · ·))).

Thus, Newton interpolation has a better balance between the cost of computing the inter-
polant and the cost of evaluating it for a given argument than the other two methods.

The Newton basis functions can be derived by considering the problem of building a
polynomial interpolant incrementally as successive new data points are added. If pj(t) is a
polynomial of degree j − 1 interpolating j given points, then for any constant xj+1

pj+1(t) = pj(t) + xj+1φj+1(t)

is a polynomial of degree j that also interpolates the same j points. The free parameter
xj+1 can then be chosen so that pj+1(t) interpolates the (j + 1)st point, yj+1. Specifically,

xj+1 =
yj+1 − pj(tj+1)
φj+1(tj+1)

.

In this manner, Newton interpolation begins with the constant polynomial p1(t) = y1

interpolating the first data point and builds successively from there to incorporate the
remaining data points into the interpolant.

Example 7.4 Incremental Newton Interpolation. We illustrate by building the
Newton interpolant for the previous example incrementally as new data points are added.
We begin with the first data point, (t1, y1) = (−2,−27), which is interpolated by the
constant polynomial

p1(t) = y1 = −27.

Adding the second data point, (t2, y2) = (0,−1), we modify the previous polynomial so that
it interpolates the new data point as well:

p2(t) = p1(t) + x2φ2(t) = p1(t) +
y2 − p1(t2)
φ2(t2)

φ2(t)

= p1(t) +
y2 − y1

t2 − t1
(t− t1) = −27 + 13(t+ 2).

228 CHAPTER 7. INTERPOLATION

Finally, we add the third data point, (t3, y3) = (1, 0), modifying the previous polynomial so
that it interpolates the new data point as well:

p3(t) = p2(t) + x3φ3(t) = p2(t) +
y3 − p2(t3)
φ3(t3)

φ3(t)

= p2(t) +
y3 − p2(t3)

(t3 − t1)(t3 − t2)
(t− t1)(t− t2)

= −27 + 13(t+ 2)− 4(t+ 2)t.

Given a set of data points (ti, yi), i = 1, . . . , n, an alternative method for computing
the coefficients xk of the Newton polynomial interpolant is via quantities known as divided
differences, which are usually denoted by f [] and are defined recursively by the formula

f [t1, t2, . . . , tk] =
f [t2, t3, . . . , tk]− f [t1, t2, . . . , tk−1]

tk − t1
,

where the recursion begins with f [tk] = yk, k = 1, . . . , n. It turns out that the coefficient
of the jth basis function in the Newton interpolant is given by xj = f [t1, t2, . . . , tj]. Like
forward-substitution, use of this recursion also requires O(n2) arithmetic operations to
compute the coefficients of the Newton interpolant, but it is less prone to overflow or
underflow than is direct formation of the entries of the triangular Newton basis matrix.

Example 7.5 Divided Differences. We illustrate divided differences by using this
approach to derive the Newton interpolant for the same data points as in the previous
examples.

f [t1] = y1 = −27, f [t2] = y2 = −1, f [t3] = y3 = 0,

f [t1, t2] =
f [t2]− f [t1]
t2 − t1

=
−1− (−27)

0− (−2)
= 13,

f [t2, t3] =
f [t3]− f [t2]
t3 − t2

=
0− (−1)

1− 0
= 1,

f [t1, t2, t3] =
f [t2, t3]− f [t1, t2]

t3 − t1
=

1− 13
1− (−2)

= −4.

Thus, the Newton polynomial is given by

p(t) = f [t1]φ1(t) + f [t1, t2]φ2(t) + f [t1, t2, t3]φ3(t)
= f [t1] + f [t1, t2](t− t1) + f [t1, t2, t3](t− t1)(t− t2)
= −27 + 13(t+ 2)− 4(t+ 2)t.

Note that the validity of Newton interpolation does not depend on any particular order-
ing of the points t1, . . . , tn: in principle any ordering gives the same polynomial. However,
the conditioning of the triangular basis matrix A does depend on the ordering of the points.
Thus, the sensitivity of the coefficients to perturbations in the data depends on the par-
ticular ordering chosen, and the “left-to-right” ordering is not necessarily the best. For
example, it is often better to take the points in order of their distances from their mean or
their distances from a specific point at which the resulting interpolant will be evaluated.

7.2. POLYNOMIAL INTERPOLATION 229

7.2.4 Orthogonal Polynomials

Orthogonal polynomials are yet another useful type of basis functions for polynomials. An
inner product can be defined on the space of polynomials on an interval [a, b] by taking

(p, q) =
∫ b

a
p(t)q(t)w(t) dt,

where w(t) is a nonnegative weight function. Two polynomials p and q are said to be
orthogonal if (p, q) = 0. A set of polynomials {pi} is said to be orthonormal if

(pi, pj) =
{

1 for i = j
0 for i 6= j

.

Given a set of polynomials, the Gram-Schmidt orthogonalization process (see Sec-
tion 3.4.6) can be used to generate an orthonormal set spanning the same space. For
example, with the inner product given by the weight function w(t) ≡ 1 on the interval
[−1, 1], if we apply the Gram-Schmidt process to the set of monomials, 1, t, t2, t3, . . ., and
scale the results so that pk(1) = 1 for each k, we obtain the Legendre polynomials

1, t, (3t2 − 1)/2, (5t3 − 3t)/2, (35t4 − 30t2 + 3)/8, (63t5 − 70t3 + 15t)/8, . . . ,

the first n of which form an orthogonal basis for the set of polynomials of degree at most
n− 1. The first few Legendre polynomials are plotted in Fig. 7.4. Other choices of interval
and weight function similarly yield other well-known sets of orthogonal polynomials, some
of which are listed in Table 7.1.

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

.................
..............

.................
..............

.................
..............

.................
..............

.................
..............

.................
..............

.................
..............

.................
..............

.................
..............

.................
..............

.................
..............

.................
..............

.................
..............

.................
.................................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
....................

.
................

.....
..............

.......
............
.........

...........
..........

...........
..........

..........
..........
.

..........
..........
.

..........
..........
.

..........
..........

.........
..
.........
..
........
...
........
...
........
...
........
...
.........
..
.........
..
.........
..
..........
.
..........
.
..........
.
...........

...........
...........

...........
...........

...........
..........
.
..........
.
..........
.
..........
.
.........
..
.........
..
.........
..
........
...
........
...
........
...
.........
..
.........
..
..

............
..........

........
........
.......
.......
.......
.......

........
........
........

.........
.........

...........
..........

.................
..

........
.......
......
.......
.......
......
.....
.....
....
.....
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
.......
.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
......
......
......
......
......
.......
.......
.......
.......
........
........
........
.........
..........
..........
............
.............
................
.....................
..

..
................

..............
.............
............
............
............
...........
...........
...........
............
............
.............
..............

...............
......................

..
.....................
................
.............
............
...........
..........
.........
........
........
........
.......
.......
.......
.......
......
......
......
......
......
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....p0

p1

p2

p3 p4 p5

Figure 7.4: The first six Legendre polynomials.

Orthogonal polynomials have many useful properties and are the subject of an elegant
theory. One of their most important properties is that they satisfy a three-term recurrence
of the form

pk+1(t) = (αkt+ βk)pk(t)− γkpk−1(t),

which makes them very efficient to generate and evaluate. For example, the Legendre
polynomials satisfy the recurrence

(k + 1)pk+1(t) = (2k + 1)tpk(t)− kpk−1(t).

230 CHAPTER 7. INTERPOLATION

Table 7.1: Some commonly occurring sets of orthogonal polynomials

Name Interval Weight function
Legendre [−1, 1] 1
Chebyshev, first kind [−1, 1] (1− t2)−1/2

Chebyshev, second kind [−1, 1] (1− t2)1/2

Jacobi [−1, 1] (1− t)α(1 + t)β , α, β > −1
Laguerre [0,∞] e−t

Hermite [−∞,∞] e−t
2

Orthogonality makes such polynomials very convenient for least squares approximation of
a given function by a polynomial of any desired degree, since the matrix of the resulting
system of normal equations is diagonal. Orthogonal polynomials are also useful in generating
Gaussian quadrature rules, a topic considered in Section 8.3.

7.2.5 Interpolating a Function

Thus far we have thought only in terms of interpolating a discrete set of data points, so
little could be said about the behavior of the interpolant between the data points. If the
data points represent a discrete sample of an underlying continuous function, however, then
we may wish to know how closely the interpolant approximates the given function between
the sample points.

For polynomial interpolation, an answer to this question is given by the following rela-
tionship, where f is a sufficiently smooth function, pn−1 is the unique polynomial of degree
at most n− 1 that interpolates f at n points t1, . . . , tn, and θ is some (unknown) point in
the interval [t1, tn]:

f(t)− pn−1(t) =
f (n)(θ)
n!

(t− t1)(t− t2) · · · (t− tn).

Since the point θ is unknown, this result is not particularly useful unless we have a bound
on the appropriate derivative of f , but it still provides some insight into the factors affecting
the accuracy of polynomial interpolation.

Another useful form of polynomial interpolation for an underlying smooth function f is
the polynomial given by the truncated Taylor series

pn(t) = f(a) + f ′(a)(t− a) +
f ′′(a)

2
(t− a)2 + · · ·+ f (n)(a)

n!
(t− a)n.

This Taylor polynomial interpolates f in the sense that the values of pn and its first n
derivatives match those of f and its first n derivatives evaluated at t = a, so that pn(t)
is a good approximation to f(t) for t near a. We have seen the usefulness of this type
of polynomial interpolant in Newton’s method for root finding (where we used a linear
polynomial) and for minimization (where we used a quadratic polynomial).

7.2. POLYNOMIAL INTERPOLATION 231

7.2.6 High-Degree Polynomial Interpolation

High-degree interpolating polynomials are expensive to determine and evaluate. Moreover,
in some bases the coefficients of the polynomial may be poorly determined as a result of
ill-conditioning of the linear system to be solved. In addition to these undesirable computa-
tional properties, the use of high-degree polynomials for interpolation has some undesirable
theoretical consequences as well. Simply put, a high-degree polynomial necessarily has lots
of “wiggles,” which may bear no relation to the data to be fit. Although the polynomial
goes through the required data points, it may oscillate wildly between data points and thus
be useless for many of the purposes for which interpolation is done in the first place.

One manifestation of this difficulty is the potential lack of uniform convergence of the
interpolating polynomial to an underlying continuous function as the number of equally
spaced points (and hence the polynomial degree) increases. This phenomenon is illustrated
by Runge’s function, shown graphically in Fig. 7.5, where we see that the interpolating
polynomials of increasing degree converge nicely to the function in the middle of the interval,
but diverge near the endpoints.

−1.0 −0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

...
...

................................
.......................

..................
...............

.............
............
...........
...........
..........
..........
..........
..........
.........
.........
.........
..........
..........
.........
..........
.............

..
.......

.
........ .

....... ..
...... ...

.....
....

...
..

........
....

........
........

.........
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
..
..
..
..
...
...
....
......
..

.
.
.............

..
..
..
..
..
..
..
..
..
...

.................
...

..
..
..
..
..
..
..
..
..
..
..
..
..
..
...

...
....................................

..
..
.
.
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
....
.......
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f(t) = 1/(1 + 25t2)...

p5(t)........

p10(t)...............

Figure 7.5: Interpolation of Runge’s function at equally spaced points.

7.2.7 Placement of Interpolation Points

As we have just seen, equally spaced interpolation points may give unsatisfactory results,
especially near the ends of the interval. If, instead of being equally spaced, the points are
bunched near the ends of the interval, more satisfactory results are likely to be obtained
with polynomial interpolation. One way to accomplish this is to use the Chebyshev points

tk = − cos
(

(2k − 1)π
2n

)
, k = 1, . . . , n,

on the interval [−1, 1], or a suitable transformation of these points to an arbitrary interval.
The Chebyshev points are the abscissas of n points in the plane that are equally spaced
around the unit circle but have abscissas appropriately bunched near the ends of the interval
[−1, 1], as illustrated in Fig. 7.6. The name comes from the fact that the points tk are the
zeros of the nth Chebyshev polynomial of the first kind.

232 CHAPTER 7. INTERPOLATION

−1 0 1
0

1

........

........

........

........

........
........
........
........
.........
.........
.........
.........
.........
..........

..........
...........

...........
............

.............
...............

.................
......................

...
...

.....

....

........

.....

........

.....

........

.....

........

........

.....

........

.....

........

.....

........

.....

........

.....

...

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

...

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

...

........

.....

........

.....

........

.....

........

.....

........

.....

...

........

.....

........

.....

........

.....

........

........

.....

....•

•
•
• • • •

•
•

•
•• • • • • • • ••

Figure 7.6: Chebyshev points for interpolation.

Use of the Chebyshev points for polynomial interpolation distributes the error more
evenly and yields convergence throughout the interval for any sufficiently smooth underlying
function, as illustrated for Runge’s function in Fig. 7.7. Of course, one may have no choice
in placing the interpolation points, either because of existing measured data or because a
particular distribution (such as equally spaced) is required for other reasons.

−1.0 −0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

...
...

................................
.......................

..................
...............

.............
............
...........
...........
..........
..........
..........
..........
.........
.........
.........
..........
..........
.........
..........
.............

..
...

.......
........

.
........

........
........

.....
.................

....
....

......................
...

...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...

...
...

..........................
.........

f(t) = 1/(1 + 25t2)...

p5(t)........

p10(t)...............

Figure 7.7: Interpolation of Runge’s function at the Chebyshev points.

7.3 Piecewise Polynomial Interpolation

An appropriate choice of basis functions and interpolation points can mitigate some of
the difficulties associated with interpolation by a polynomial of high degree. Nevertheless,
fitting a single polynomial to a large number of data points is still likely to yield unsatisfac-
tory oscillating behavior in the interpolant. Piecewise polynomial interpolation provides an
alternative to the practical and theoretical difficulties incurred by high-degree polynomial
interpolation. The main advantage of piecewise polynomial interpolation is that a large
number of data points can be fit with low-degree polynomials.

In piecewise polynomial interpolation of a given set of data points (ti, yi), a different
polynomial is used in each subinterval [ti, ti+1]. For this reason, the abscissas ti at which
the interpolant changes from one polynomial to another are called knots, breakpoints, or
control points. The simplest example is piecewise linear interpolation, in which successive
data points are connected by straight lines.

7.3. PIECEWISE POLYNOMIAL INTERPOLATION 233

Although piecewise polynomial interpolation eliminates the problems of excessive oscil-
lation and nonconvergence, it appears to sacrifice smoothness of the interpolating function.
There are many degrees of freedom in choosing a piecewise polynomial interpolant, how-
ever, which can be exploited to obtain a smooth interpolating function despite its piecewise
nature.

7.3.1 Hermite Cubic Interpolation

In Hermite, or osculatory , interpolation, the derivatives as well as the values of the in-
terpolating function are specified at the data points. Specifying derivative values simply
adds more equations to the linear system that determines the parameters of the interpolat-
ing function. To have a well-defined solution, the number of equations and the number of
parameters to be determined must be equal.

To provide adequate flexibility while maintaining simplicity and computational effi-
ciency, piecewise cubic polynomials are the most common choice of function for Hermite
interpolation. A Hermite cubic interpolant is a piecewise cubic polynomial interpolant with
a continuous first derivative. A piecewise cubic polynomial with n knots has 4(n−1) param-
eters to be determined, since there are n− 1 different cubics and each has four parameters.
Interpolating the given data gives 2(n − 1) equations, because each of the n − 1 cubics
must match the two data points at either end of its subinterval. Requiring the derivative
to be continuous gives n − 2 additional equations, for at each of the n − 2 interior data
points the derivatives of the cubics on either side must match. We therefore have a total of
3n− 4 equations, which still leaves n free parameters. Thus, a Hermite cubic interpolant is
not unique, and the remaining free parameters can be chosen so that the result is visually
pleasing or satisfies additional constraints, such as monotonicity or convexity.

7.3.2 Cubic Spline Interpolation

In general, a spline is a piecewise polynomial of degree k that is continuously differentiable
k−1 times. For example, a linear spline is a piecewise linear polynomial that has degree one
and is continuous but not differentiable (it could be described as a “broken line”). A cubic
spline is a piecewise cubic polynomial that is twice continuously differentiable. As with a
Hermite cubic, interpolating the given data and requiring continuity of the first derivative
imposes 3n − 4 constraints on the cubic spline. Requiring a continuous second derivative
imposes n− 2 additional constraints, leaving two remaining free parameters.

The final two parameters can be fixed in a number of ways, such as:

• Specifying the first derivative at the endpoints t1 and tn, based either on desired boundary
conditions or on estimates of the derivative from the data
• Forcing the second derivative to be zero at the endpoints, which gives the so-called natural

spline
• Enforcing a “not-a-knot” condition, which effectively forces two consecutive cubic pieces

to be the same, at t2 and at tn−1

• Forcing the first derivatives as well as the second derivatives to match at the endpoints
t1 and tn (if the spline is to be periodic)

234 CHAPTER 7. INTERPOLATION

Example 7.6 Cubic Spline Interpolation. To illustrate spline interpolation, we will
determine the natural cubic spline interpolating three data points (ti, yi), i = 1, 2, 3. The
required interpolant is a piecewise cubic function defined by separate cubic polynomials in
each of the two intervals [t1, t2] and [t2, t3]. Denote these two polynomials by

p1(t) = α1 + α2t+ α3t
2 + α4t

3, p2(t) = β1 + β2t+ β3t
2 + β4t

3.

Eight parameters are to be determined, and we will therefore need eight equations. Requir-
ing the first cubic to interpolate the data at the endpoints of the first interval gives the two
equations

α1 + α2t1 + α3t
2
1 + α4t

3
1 = y1, α1 + α2t2 + α3t

2
2 + α4t

3
2 = y2.

Requiring the second cubic to interpolate the data at the endpoints of the second interval
gives the two equations

β1 + β2t2 + β3t
2
2 + β4t

3
2 = y2, β1 + β2t3 + β3t

2
3 + β4t

3
3 = y3.

Requiring the first derivative of the interpolating function to be continuous at t2 gives the
equation

α2 + 2α3t2 + 3α4t
2
2 = β2 + 2β3t2 + 3β4t

2
2.

Requiring the second derivative of the interpolating function to be continuous at t2 gives
the equation

2α3 + 6α4t2 = 2β3 + 6β4t2.

Finally, by definition a natural spline has second derivative equal to zero at the endpoints,
which gives the two equations

2α3 + 6α4t1 = 0, 2β3 + 6β4t3 = 0.

When particular data values are substituted for the ti and yi, this system of eight linear
equations can be solved for the eight unknown parameters αi and βi.

7.3.3 Hermite Cubic versus Cubic Spline Interpolation

The choice between Hermite cubic and spline interpolation depends on the data to be fit
and on the purpose for doing interpolation. If smoothness is of paramount importance,
then spline interpolation may be most appropriate. On the other hand, a Hermite cubic
interpolant may have a more pleasing visual appearance, and it allows the flexibility to
preserve monotonicity if the original data are monotonic. These issues are illustrated in
Figs. 7.8 and 7.9, where a monotone Hermite cubic and a cubic spline interpolate the same
monotonic data points (indicated by the bullets in the figures). We see that the additional
degree of smoothness required of the cubic spline causes it to overshoot, and the resulting
interpolant is not monotonic. The cubic Hermite, on the other hand, is clearly less smooth,
but visually it seems to reflect the behavior of the data better. In any case, it is advisable to
plot the interpolant and the original data to help assess how well the interpolating function
captures the behavior of the data.

7.3. PIECEWISE POLYNOMIAL INTERPOLATION 235

0 2 4 6 8 10
0

2

4

6

8•

•
•

• • • • •

...

Figure 7.8: Monotone Hermite cubic interpolation of monotonic data.

0 2 4 6 8 10
0

2

4

6

8•

•
•

• • • • •

..
....................

...........................
...

...................
.................

..................
..

Figure 7.9: Cubic spline interpolation of monotonic data.

236 CHAPTER 7. INTERPOLATION

7.3.4 B-splines

One might wonder if an arbitrary spline can be represented as a linear combination of basis
functions, which we have already seen can be done in various ways for polynomials. An
elegant answer to this question is provided by B-splines, which get their name from the fact
that they form a basis for the family of spline functions of a given degree.

B-splines can be defined in a number of different ways, including recursion, convolution,
and divided differences. Here we will define them recursively. Although in practice we use
only the finite set of knots t1, . . . , tn, for notational convenience we will assume an infinite
set of knots

· · · < t−2 < t−1 < t0 < t1 < t2 < · · ·

The additional knots can be taken as arbitrarily defined points outside the interval [t1, tn].
Again for notational convenience, we will also make use of the linear functions

vki (t) =
t− ti

ti+k − ti
.

To start the recursion, we define B-splines of degree 0 by

B0
i (t) =

{
1 if ti ≤ t < ti+1

0 otherwise
,

and then for k > 0 we define B-splines of degree k by

Bk
i (t) = vki (t)Bk−1

i (t) + (1− vki+1(t))Bk−1
i+1 (t).

Since B0
i is piecewise constant and vki is linear, we see from the definition that B1

i is
piecewise linear. Similarly, B2

i is in turn piecewise quadratic, and in general, Bk
i is a

piecewise polynomial of degree k. The first few B-splines are pictured in Fig. 7.10. Another
motivation for their name is their bell shape. For k = 1, they are often called “hat”
functions.

We note the following important properties of the B-spline functions Bk
i :

1. For t < ti or t > ti+k+1, Bk
i (t) = 0.

2. For ti < t < ti+k+1, Bk
i (t) > 0.

3. For all t,
∑∞

i=−∞B
k
i (t) = 1.

4. For k ≥ 1, Bk
i is k − 1 times continuously differentiable.

5. The set of functions {Bk
1−k, . . . , B

k
n−1} is linearly independent on the interval [t1, tn].

• The set of functions {Bk
1−k, . . . , B

k
n−1} spans the set of all splines of degree k having

knots ti.

Properties 1 and 2 together say that the B-spline functions have local support. Property 3
indicates how the functions are normalized, and property 4 says that they are indeed splines.
Properties 5 and 6 together say that for a given k, these functions form a basis for the set
of all splines of degree k having the same set of knots. Thus, if we use the B-spline basis,
the linear system to be solved for the spline coefficients will be nonsingular and banded.
The locality of the B-spline representation also means that if the data value at a given knot

7.3. PIECEWISE POLYNOMIAL INTERPOLATION 237

0.0

0.5

1.0 ..

ti ti+1 ti+2 ti+3 ti+4

B0
i

0.0

0.5

1.0

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..

ti ti+1 ti+2 ti+3 ti+4

B1
i

0.0

0.5

1.0

..
.....................

.................
...............

..............
.............
............
............
...........
...........
............
.............
................

...

ti ti+1 ti+2 ti+3 ti+4

B2
i

0.0

0.5

1.0

...
...........................

....................
.................

...............
..............

..............
..............

..............
...............

.................
.....................

...

ti ti+1 ti+2 ti+3 ti+4

B3
i

Figure 7.10: The first four B-splines.

238 CHAPTER 7. INTERPOLATION

changes, then the coefficients of only a few basis functions are affected, which is in marked
contrast to the standard polynomial representation, for which changing a single data point
changes all of the coefficients of the spline interpolant.

The use of the B-spline basis yields efficient and stable methods for determining and
evaluating spline interpolants, and many library routines for spline interpolation are based
on this approach. B-splines are also useful in many other contexts, such as the numerical
solution of differential equations, as we will see later.

7.4 Software for Interpolation

Table 7.2 is a list of some of the software available for polynomial interpolation and for
cubic spline interpolation in one dimension. Some of the spline packages offer the option of
Hermite cubic interpolation as well. A spline toolbox is also available for MATLAB. Tension
splines—a particularly flexible approach to spline curve fitting that conveniently allows
smoothing and shape preservation, if desired—are implemented in tspack(#716) from TOMS.
We note that software is also available from many of these same sources for interpolation in
two or more dimensions, both for regularly placed and for irregularly scattered data. For
generating orthogonal polynomials of various types, the software package orthpol(#726)
is available from TOMS.

Table 7.2: Software for polynomial and piecewise cubic interpolation

Polynomial Compute Evaluate
Source interpolation spline spline
FITPACK [60] curfit curev/splev
FMM spline seval
HSL tb02 tb04 tg01
IMSL csint/csdec/csher csval
KMN pchez pchev
MATLAB polyfit spline ppval
NAG e01aef e01baf/e01bef e02bbf/e01bff
NR polint spline splint
NUMAL newton
PPPACK [53] cubspl ppvalu
SLATEC polint bint4/bintk bvalu/bspev
Späth [236] newdia/newsol cub1r5/cub2r7 cubval

Software for interpolation often consists of two routines: one for computing an inter-
polant and another for evaluating it at any given point or set of points. The input to the
first routine includes the number of data points and two one-dimensional arrays containing
the values of the independent variable and corresponding function values to be fit, and
the output includes one or more arrays containing the coefficients of the interpolant. The
input to the second routine includes one or more values at which the interpolant is to be
evaluated, together with the arrays containing the coefficients previously determined, and
the output is the corresponding value(s) of the interpolant (and possibly its derivative) at

7.5. HISTORICAL NOTES AND FURTHER READING 239

the desired point(s).

7.4.1 Software for Special Functions

A number of functions that have proved useful in mathematics have become known as spe-
cial functions. Examples include elementary functions such as exponential, logarithmic, and
trigonometric functions, as well as functions that commonly occur in mathematical physics
(among other areas), such as the gamma and beta functions, Bessel functions, hyperge-
ometric functions, elliptic integrals, and many others. The specialized techniques used in
approximating these functions are beyond the scope of this book, but good software is avail-
able for evaluating almost any standard function of interest. The most frequently occurring
functions are typically supplied as built-in functions in most programming languages used
for scientific computing. Software for many additional functions can be found in most of the
general-purpose libraries mentioned in Section 1.4.1. In addition, netlib contains several
collections of special function routines, including amos, elefunt, fdlibm, fn, specfun, and
vfnlib, and routines for numerous individual functions can be found in TOMS. Of particular
note is the portable elementary function library fdlibm, available from netlib, which is
better than the default libraries supplied by many system vendors. An extensive survey of
available software for special functions can be found in [166].

7.5 Historical Notes and Further Reading

As the names associated with it—Newton, Lagrange, Hermite, and many others—suggest,
polynomial interpolation has long been an important part of applied mathematics. An
excellent reference on polynomial interpolation, approximation, orthogonal polynomials,
and related topics is [51]. Spline functions were first formulated by Schoenberg in 1946.
The theory of splines is presented in detail in [4, 221]. More computationally oriented
references on splines are [53, 60, 236], all of which include software. The use of splines
in computer graphics and geometric modeling is detailed in [16]. For monotone piecewise
cubic interpolation, see [88]. In addition to their use for interpolation, splines can also be
used for more general approximation. For example, least squares fitting by cubic splines is
a good method for smoothing noisy data; see [207, 208].

Review Questions

7.1 True or false: There are arbitrarily many
different mathematical functions that interpo-
late a given set of data points.

7.2 True or false: If an interpolating func-
tion accurately reproduces the given data val-
ues, then this fact implies that the coefficients
in the linear combination of basis functions are
well-determined.

7.3 True or false: If the polynomial interpo-
lating a given set of data points is unique, then
so is the representation of that polynomial.

7.4 True or false: When interpolating a con-
tinuous function by a polynomial at equally
spaced points on a given interval, the polyno-
mial interpolant always converges to the func-
tion as the number of interpolation points in-
creases.

7.5 What is the basic distinction between in-
terpolation and approximation of a function?

7.6 State at least two different applications
for interpolation.

240 CHAPTER 7. INTERPOLATION

7.7 Give two examples of numerical methods
(for problems other than interpolation itself)
that are based on polynomial interpolation.

7.8 Is it ever possible for two distinct poly-
nomials to interpolate the same n data points?
If so, under what conditions, and if not, why?

7.9 State at least two important criteria for
choosing a particular set of basis functions for
use in interpolation.

7.10 Determining the parameters of an inter-
polant can be interpreted as solving a linear
system Ax = y, where the matrix A depends
on the basis functions used and the vector y
contains the function values to be fit. Describe
in words the pattern of nonzero entries in the
matrix A for polynomial interpolation using
each of the following bases:

(a) Monomial basis

(b) Lagrange basis

(c) Newton basis

7.11 (a) Is interpolation an appropriate pro-
cedure for fitting a function to noisy data?

(b) If so, why, and if not, what is a good alter-
native?

7.12 (a) For a given set of data points (ti, yi),
i = 1, . . . , n, rank the following three methods
for polynomial interpolation according to the
cost of determining the interpolant (i.e., deter-
mining the coefficients of the basis functions),
from 1 for the cheapest to 3 for the most ex-
pensive:

Monomial basis

Lagrange basis

Newton basis

(b) Which of the three methods has the best-
conditioned basis matrix A, where aij =
φj(ti)?

(c) For which of the three methods is evaluat-
ing the resulting interpolant at a given point
the most expensive?

7.13 (a) What is a Vandermonde matrix?

(b) In what context does such a matrix arise?

(c) Why is such a matrix often ill-conditioned
when its order is relatively large?

7.14 Given a set of n data points, (ti, yi),
i = 1, ..., n, determining the coefficients xi of
the interpolating polynomial requires the so-
lution of an n × n system of linear equations
Ax = y.
(a) If we use the monomial basis 1, t, t2, ..., give
an expression for the entries aij of the matrix
A that is efficient to evaluate.
(b) Does the condition of A tend to get better,
or worse, or stay about the same as n grows?
(c) How does this change affect the accuracy
with which the interpolating polynomial ap-
proximates the given data points?

7.15 For Lagrange polynomial interpolation
of n data points (ti, yi), i = 1, . . . , n,
(a) What is the degree of each polynomial
function lj(t) in the Lagrange basis?
(b) What function results if we sum the n func-
tions in the Lagrange basis [i.e., if we take
g(t) =

∑n
j=1 lj(t), what function g(t) results]?

7.16 List one advantage and one disadvantage
of Lagrange interpolation compared with using
the monomial basis for polynomial interpola-
tion.

7.17 What is the computational cost (num-
ber of additions and multiplications) of evalu-
ating a polynomial of degree n using Horner’s
method?

7.18 Why is interpolation by a polynomial of
high degree often unsatisfactory?

7.19 How should the interpolation points be
placed in an interval in order to guarantee con-
vergence of the polynomial interpolant to suffi-
ciently smooth functions on the interval as the
number of points increases?

7.20 What does it mean for two polynomials
p and q to be orthogonal to each other on an
interval [a, b]?

7.21 (a) What is meant by a Taylor polyno-
mial?
(b) In what sense does it interpolate a given
function?

7.22 In fitting a large number of data points,
what is the main advantage of piecewise poly-
nomial interpolation over interpolation by a
single polynomial?

EXERCISES 241

7.23 (a) How does Hermite interpolation dif-
fer from ordinary interpolation?
(b) How does a cubic spline interpolant differ
from a Hermite cubic interpolant?

7.24 In choosing between Hermite cubic and
cubic spline interpolation, which should one
choose
(a) If maximum smoothness of the interpolant
is desired?
(b) If the data are monotonic and this property
is to be preserved?

7.25 (a) How many times is a Hermite cubic
interpolant continuously differentiable?
(b) How many times is a cubic spline inter-
polant continuously differentiable?

7.26 The continuity and smoothness require-
ments on a cubic spline interpolant still leave
two free parameters. Give at least two exam-
ples of additional constraints that might be im-
posed to determine the cubic spline interpolant
to a set of data points.

7.27 (a) How many parameters are required
to define a piecewise cubic polynomial with n
knots?

(b) Obviously, a similar number of equations is
required to determine those parameters. As-
suming the interpolating function is to be a
natural cubic spline, explain how the require-
ments on the function account for the neces-
sary number of equations in the linear system
to be solved for the parameters.

7.28 Which of the following interpolants to n
data points are unique?
(a) Polynomial of degree at most n− 1
(b) Hermite cubic
(c) Cubic spline

7.29 For which of the following types of inter-
polation is it possible, in general, to preserve
monotonicity in a set of n data points (i.e.,
the interpolant is increasing or decreasing if
the data points are increasing or decreasing)?
(a) Polynomial of degree at most n− 1
(b) Hermite cubic
(c) Cubic spline

7.30 Why is it advantageous if the basis func-
tions used for interpolation are localized (i.e.,
each basis function involves only a few data
points)?

Exercises

7.1 Given the three data points (−1, 1),
(0, 0), (1, 1), determine the interpolating poly-
nomial of degree two:

(a) Using the monomial basis

(b) Using the Lagrange basis

(c) Using the Newton basis

Show that the three representations give the
same polynomial.

7.2 Express the following polynomial in
the correct form for evaluation by Horner’s
method: p(t) = 5t3 − 3t2 + 7t− 2.

7.3 Write a formal algorithm for evaluat-
ing a polynomial at a given argument using
Horner’s nested evaluation scheme

(a) For a polynomial expressed in terms of the
monomial basis

(b) For a polynomial expressed in Newton form

7.4 How many multiplications are required
to evaluate a polynomial p(t) of degree n − 1
at a given point t
(a) Represented in the monomial basis?
(b) Represented in the Lagrange basis?
(c) Represented in the Newton basis?

7.5 In general, is it possible to interpolate
n data points by a piecewise quadratic polyno-
mial, with knots at the given data points, such
that the interpolant is
(a) Once continuously differentiable?
(b) Twice continuously differentiable?
In each case, if the answer is “yes,” explain
why, and if the answer is “no,” give the maxi-
mum value for n for which it is possible.

7.6 Assuming that t1, . . . , tn are distinct,
prove that the Vandermonde matrix A given
by aij = tj−1

i is nonsingular.

242 CHAPTER 7. INTERPOLATION

7.7 Compare the cost of forming a Vander-
monde matrix inductively, as in Section 7.2.1,
with the cost using explicit exponentiation.

7.8 Use Lagrange interpolation to derive the
formulas given in Section 5.2.5 for inverse
quadratic interpolation.

7.9 Prove that the formula using divided dif-
ferences given in Section 7.2.3,

xj = f [t1, t2, . . . , tj],

indeed gives the coefficient of the jth ba-
sis function in the Newton polynomial inter-

polant.

7.10 (a) Verify directly that the first six Leg-
endre polynomials given in Section 7.2.4 are
indeed mutually orthogonal.

(b) Verify directly that they satisfy the three-
term recurrence given in Section 7.2.4.

(c) Express each of the first six monomials, 1,
t, . . ., t5, as a linear combination of the first
six Legendre polynomials, p0, . . ., p5.

7.11 Verify the properties of B-splines enu-
merated in Section 7.3.4.

Computer Problems

7.1 (a) Write a routine that uses Horner’s
rule to evaluate a polynomial p(t) given its de-
gree n, an array x containing its coefficients,
and the value t of the independent variable at
which it is to be evaluated.

(b) Add options to your routine to evaluate the
derivative p′(t) or the integral

∫ b
a
p(t) dt, given

a and b.

7.2 (a) Write a routine for computing the
Newton polynomial interpolant for a given set
of data points, and a second routine for evalu-
ating the Newton interpolant at a given argu-
ment value using Horner’s rule.

(b) Write a routine for computing the new
Newton polynomial interpolant when a new
data point is added.

(c) If your programming language supports re-
cursion, write a recursive routine that imple-
ments part a by calling your routine for part
b recursively. Compare its performance with
that of your original implementation.

7.3 (a) Write the system of equations de-
rived in Example 7.6 in matrix form.

(b) Use a library routine, or one of your own
design, to solve the resulting 8×8 linear system
using the data given in Example 7.1.

(c) Plot the resulting natural cubic spline,
along with the given data points. Also plot the
first and second derivatives of the cubic spline
and confirm that all of the required conditions
are met.

7.4 An experiment has produced the follow-
ing data:

t 0.0 0.5 1.0 6.0 7.0 9.0
y 0.0 1.6 2.0 2.0 1.5 0.0

We wish to interpolate the data with a smooth
curve in the hope of obtaining reasonable val-
ues of y for values of t between the points at
which measurements were taken.

(a) Using any method you like, determine the
polynomial of degree five that interpolates the
given data, and make a smooth plot of it over
the range 0 ≤ t ≤ 9.

(b) Similarly, determine a cubic spline that in-
terpolates the given data, and make a smooth
plot of it over the same range.

(c) Which interpolant seems to give more rea-
sonable values between the given data points?
Can you explain why each curve behaves the
way it does?

(d) Might piecewise linear interpolation be a
better choice for these particular data? Why?

7.5 Interpolating the data points

t 0 1 4 9 16
y 0 1 2 3 4
t 25 36 49 64
y 5 6 7 8

should give an approximation to the square
root function.

COMPUTER PROBLEMS 243

(a) Compute the polynomial of degree eight
that interpolates these nine data points. Plot
the resulting polynomial as well as the cor-
responding values given by the built-in sqrt
function over the domain [0, 64].

(b) Use a cubic spline routine to interpolate the
same data and again plot the resulting curve
along with the built-in sqrt function.

(c) Which of the two interpolants is more ac-
curate over most of the domain?

(d) Which of the two interpolants is more ac-
curate between 0 and 1?

7.6 The gamma function is defined by

Γ(x) =
∫ ∞

0

tx−1e−t dt, x > 0.

For an integer argument n, the gamma func-
tion has the value

Γ(n) = (n− 1)! ,

so interpolating the data points

t 1 2 3 4 5
y 1 1 2 6 24

should yield an approximation to the gamma
function over the given range.

(a) Compute the polynomial of degree four
that interpolates these five data points. Plot
the resulting polynomial as well as the corre-
sponding values given by the built-in gamma
function over the domain [1, 5].

(b) Use a cubic spline routine to interpolate the
same data and again plot the resulting curve
along with the built-in gamma function.

(c) Which of the two interpolants is more ac-
curate over most of the domain?

(d) Which of the two interpolants is more ac-
curate between 1 and 2?

7.7 Consider the following population data
for the United States:

Year Population
1900 76, 212, 168
1910 92, 228, 496
1920 106, 021, 537
1930 123, 202, 624
1940 132, 164, 569
1950 151, 325, 798
1960 179, 323, 175
1970 203, 302, 031
1980 226, 542, 199

There is a unique polynomial of degree eight
that interpolates these nine data points, but
of course that polynomial can be represented
in many different ways. Consider the fol-
lowing possible sets of basis functions φj(t),
j = 1, . . . , 9:

1. φj(t) = tj−1

2. φj(t) = (t− 1900)j−1

3. φj(t) = (t− 1940)j−1

4. φj(t) = ((t− 1940)/40)j−1

(a) For each of these four sets of basis func-
tions, generate the corresponding Vander-
monde matrix and compute its condition num-
ber using a library routine for condition esti-
mation. How do the condition numbers com-
pare? Explain your results.

(b) Using the best-conditioned basis found in
part a, compute the polynomial interpolant
to the population data. Plot the resulting
polynomial, using Horner’s nested evaluation
scheme to evaluate the polynomial at one-year
intervals to obtain a smooth curve. Also plot
the original data points on the same graph.

(c) Use a cubic spline routine to interpolate the
population data, and again plot the resulting
curve on the same graph.

(d) Use both the polynomial and the spline to
extrapolate the population to 1990 and com-
pare the values obtained. How close are these
to the true value of 248,709,873 according to
the 1990 census?

(e) Determine the Lagrange interpolant to the
same nine data points and evaluate it at the
same yearly intervals as in parts b and c.
Compare the total execution time with those
for Horner’s nested evaluation scheme and for
evaluating the cubic spline.

244 CHAPTER 7. INTERPOLATION

(f) Determine the Newton form of the polyno-
mial interpolating the same nine data points.
Now determine the Newton polynomial of one
degree higher that also interpolates the ad-
ditional data point for 1990 given in part d,
without starting over from scratch (i.e., use
the Newton polynomial of degree eight already
computed to determine the new Newton poly-
nomial). Plot both of the resulting polynomi-

als (of degree eight and nine) over the interval
from 1900 to 1990.

(g) Round the population data for each year
to the nearest million and compute the cor-
responding polynomial interpolant of degree
eight using the same basis as in part b. Com-
pare the resulting coefficients with those de-
termined in part b. Explain your results.

Chapter 8

Numerical Integration and Differentiation

8.1 Numerical Quadrature

The numerical approximation of definite integrals is known as numerical quadrature. This
name derives from ancient methods for computing areas of curved figures, the most famous
example of which is the problem of “squaring the circle” (finding a square having the same
area as a given circle). In our case we wish to compute the area under a curve defined over
an interval on the real line. Thus, the quantity we wish to compute is of the form

I(f) =
∫ b

a
f(x) dx.

We will generally take the interval of integration to be finite, and we will assume for the
most part that the integrand f is continuous and smooth. We will consider only briefly
how to deal with an infinite interval of integration or an integrand function that may have
discontinuities or singularities.

Note that we seek a single number as an answer, not a function or a symbolic formula.
This feature distinguishes numerical quadrature from the solution of differential equations
or the evaluation of indefinite integrals, as in elementary calculus and in many packages for
symbolic computation.

An integral is, in effect, an infinite summation. It should come as no surprise that we
will approximate this infinite sum by a finite sum. Such a finite sum, in which the integrand
function is sampled at a finite number of points in the interval of integration, is called a
quadrature rule. Our main object of study will be how to choose the sample points and how
to weight their contributions to the quadrature formula so that we obtain a desired level
of accuracy at a reasonable computational cost. For numerical quadrature, computational
work is usually measured by the number of evaluations of the integrand function that are
required.

245

246 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

8.1.1 Quadrature Rules

An n-point quadrature formula has the form

I(f) =
∫ b

a
f(x) dx =

n∑
i=1

wif(xi) +Rn.

The points xi at which the function f is evaluated are called the nodes or abscissas, the
multipliers wi are called the weights, and Rn is the remainder or error. To estimate the
value of the integral, we simply compute the sum

I(f) ≈
n∑
i=1

wif(xi),

which is known as a quadrature rule.
The exact error term Rn usually involves information, such as higher derivatives of f ,

that is inconvenient or even impossible to obtain, so we usually content ourselves with
merely estimating the possible error in using a given rule. The error term can be estimated
by means of a Taylor series expansion of the integrand function, as we will see in subsequent
examples.

Quadrature rules are based on polynomial interpolation. In effect, the integrand func-
tion f is sampled at some number of points, the polynomial that interpolates the function
at those points is determined, and the integral of the interpolant is then taken as an ap-
proximation to the integral of the original function. In practice, however, the interpolating
polynomial is not determined explicitly each time a particular integral is to be evaluated.
Instead, polynomial interpolation is used to determine the weights corresponding to the
chosen nodes in a quadrature rule, which can be stored and then used in approximating any
integral over the interval. For example, if Lagrange interpolation is used, then the weights
are given by the integrals of the corresponding Lagrange basis functions for the given set of
points,

wi =
∫ b

a
li(x) dx, i = 1, . . . , n,

and these are independent of any particular integrand.

8.2 Newton-Cotes Quadrature

8.2.1 Newton-Cotes Quadrature Rules

In general, for any value of n, polynomial interpolation of degree n − 1 can be used to
generate an n-point quadrature rule. If the nodes xi are equally spaced in the interval [a, b],
the resulting interpolatory quadrature rule is known as a Newton-Cotes quadrature rule. A
Newton-Cotes rule is said to be closed if its nodes include the endpoints a and b; otherwise
the rule is said to be open.

As simple examples, interpolation at one, two, and three equally spaced points on the
interval [a, b] gives the first three Newton-Cotes quadrature rules:

8.2. NEWTON-COTES QUADRATURE 247

• Interpolating the function value at the midpoint of the interval by a constant (i.e., a
polynomial of degree zero) gives a one-point quadrature rule known as the midpoint rule
or rectangle rule:

I(f) ≈M(f) = (b− a)f
(
a+ b

2

)
.

• Interpolating the function values at the two endpoints of the interval by a straight line
(i.e., a polynomial of degree one) gives a two-point quadrature rule known as the trapezoid
rule:

I(f) ≈ T (f) =
b− a

2
(f(a) + f(b)).

• Interpolating the function values at three points (the two endpoints and the midpoint)
by a quadratic polynomial gives a three-point quadrature rule known as Simpson’s rule:

I(f) ≈ S(f) =
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
.

Example 8.1 Newton-Cotes Quadrature. As an example, we approximate the integral

I(f) =
∫ 1

0
e−x

2
dx

using each of the first three Newton-Cotes quadrature rules:

M(f) = (1− 0) exp(−0.25) ≈ 0.778801

T (f) =
1
2

[exp(0) + exp(−1)] ≈ 0.683940

S(f) =
1
6

[exp(0) + 4 exp(−0.25) + exp(−1)] ≈ 0.747180

The integrand and the interpolating polynomial for each rule are shown in Fig. 8.1. The
correctly rounded result for this problem is 0.746824. It is somewhat surprising to see that
the magnitude of the error from the trapezoid rule (0.062884) is about twice that from the
midpoint rule (0.031977), and that Simpson’s rule, with an error of only 0.000356, seems
remarkably accurate considering the size of the interval over which it is applied. We will
soon see explanations for these phenomena.

8.2.2 Method of Undetermined Coefficients

As we have seen, a quadrature rule can be derived directly by interpolating the integrand
function by a polynomial at a set of points and then integrating the interpolant. An
alternative derivation that yields some additional insight is the method of undetermined
coefficients. In deriving a quadrature rule of Newton-Cotes type on an interval [a, b], we
take the nodes x1, . . . , xn as given and consider the weights w1, . . . , wn as coefficients to
be determined. If we force the quadrature rule to integrate each of the polynomial basis
functions exactly, then, by linearity, it will integrate any polynomial of degree n−1 exactly.

248 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

0.0 0.5 1.0

1.0

|...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

..

f

................
midpoint

...........

trapezoid

..

Simpson

Figure 8.1: Integration of f(x) = e−x
2

by Newton-Cotes quadrature rules.

In this manner we obtain a system of n linear equations in n unknowns that determines the
appropriate set of weights for the quadrature rule.

Example 8.2 Method of Undetermined Coefficients. We illustrate the method of
undetermined coefficients by deriving a three-point rule

I(f) ≈ w1f(x1) + w2f(x2) + w3f(x3)

on the interval [a, b] using the monomial basis. The three equally spaced points are x1 = a,
x2 = (a + b)/2, and x3 = b, and the three monomial basis functions are 1, x, and x2. The
resulting system of equations is

w1 · 1 + w2 · 1 + w3 · 1 =
∫ b

a
1 dx = x|ba = b− a,

w1 · a+ w2 · (a+ b)/2 + w3 · b =
∫ b

a
x dx = (x2/2)|ba = (b2 − a2)/2,

w1 · a2 + w2 · ((a+ b)/2)2 + w3 · b2 =
∫ b

a
x2 dx = (x3/3)|ba = (b3 − a3)/3.

Written in matrix form, we recognize this system of equations 1 1 1
a (a+ b)/2 b
a2 ((a+ b)/2)2 b2

w1

w2

w3

 =

 b− a
(b2 − a2)/2
(b3 − a3)/3

as a Vandermonde system (recall Section 3.2). Solving it by Gaussian elimination, we obtain
the weights

w1 = (b− a)/6, w2 = 2(b− a)/3, w3 = (b− a)/6,

which we recognize as Simpson’s rule.

8.2. NEWTON-COTES QUADRATURE 249

8.2.3 Error Estimation

The error in the midpoint quadrature rule can be estimated by means of a Taylor series
expansion about the midpoint m = (a+ b)/2 of the interval [a, b]:

f(x) = f(m) + f ′(m)(x−m) +
f ′′(m)

2
(x−m)2 +

f ′′′(m)
6

(x−m)3 +
f iv (m)

24
(x−m)4 + · · · .

When we integrate this expression from a to b, the odd-order terms drop out, yielding

I(f) = f(m)(b− a) +
f ′′(m)

24
(b− a)3 +

f iv (m)
1920

(b− a)5 + · · ·

= M(f) + E + F + · · · ,

where we have used E and F to represent the first two terms in the error expansion for the
midpoint rule.

To derive a comparable error expansion for the trapezoid quadrature rule, we substitute
x = a and x = b into the Taylor series, add the two resulting series together, observe once
again that the odd-order terms drop out, solve for f(m), and substitute into the midpoint
formula to obtain

I(f) = T (f)− 2E − 4F − · · · .

Note that
T (f)−M(f) = 3E + 5F + · · · ,

and hence the difference between the two quadrature rules provides an estimate for the
dominant term in their error expansions,

E ≈ T −M
3

,

provided that the length of the interval, h = b − a, is sufficiently small that h5 � h3, and
the integrand f is such that f iv is reasonably well-behaved. Under these assumptions, we
may draw several conclusions from the previous derivations:

• Halving the length h of the interval decreases the error in either rule by a factor of about
1
8 .

• The midpoint rule is about twice as accurate as the trapezoid rule, despite being based
on polynomial interpolation of degree one less.
• The difference between the midpoint rule and the trapezoid rule can be used to estimate

the error in either of them.

An appropriately weighted combination of the midpoint and trapezoid rules eliminates the
E (i.e., h3) term from the error expansion:

I(f) =
2
3
M(f) +

1
3
T (f)− 2

3
F + · · ·

= S(f)− 2
3
F + · · · ,

250 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

which provides an alternative derivation for Simpson’s rule as well as an expression for its
error term.

Example 8.3 Error Estimation. We illustrate error estimation by computing the
approximate value for the integral

∫ 1
0 x

2 dx. Using the midpoint rule, we obtain

M(f) = (1− 0)
(

1
2

)2

=
1
4
,

and using the trapezoid rule we obtain

T (f) =
1− 0

2
(02 + 12) =

1
2
.

Thus, we have the estimate

E ≈ T −M
3

=
1/4
3

=
1
12
.

We conclude that the error in M is about 1
12 , and the error in T is about −1

6 .
In addition, we can now compute the approximate value for the integral given by Simp-

son’s rule,

S(f) =
2
3
M +

1
3
T =

2
3
· 1

4
+

1
3
· 1

2
=

1
3
,

which is the exact value for this integral (as is to be expected since, by design, Simpson’s
rule is exact for quadratic polynomials). Thus, the error estimates for M and T are in fact
exactly correct for this simple problem (though this would not be true in general).

8.2.4 Polynomial Degree

The accuracy of a quadrature rule is conveniently characterized by the notion of polynomial
degree. A quadrature rule is said to be of polynomial degree d if it is exact (i.e., its remainder
is zero) for every polynomial of degree d but is not exact for some polynomial of degree
d+1. Since an n-point Newton-Cotes rule is based on an interpolating polynomial of degree
n−1, we would expect such a rule to have polynomial degree at least n−1, and we enforced
this requirement by construction in the method of undetermined coefficients.

Thus, we would expect the midpoint rule to have polynomial degree zero, the trapezoid
rule degree one, Simpson’s rule degree two, and so on. We saw from a Taylor series ex-
pansion, however, that the error for the midpoint rule depends on the second and higher
derivatives of the integrand, which vanish for linear as well as constant polynomials. This
implies that the midpoint rule in fact integrates linear polynomials exactly, and hence its
polynomial degree is one rather than zero. Similarly, the error for Simpson’s rule depends on
the fourth and higher derivatives, which vanish for cubics as well as quadratic polynomials,
so that Simpson’s rule is of polynomial degree three rather than two.

In general, an odd-order Newton-Cotes rule gains an extra degree beyond that of the
polynomial interpolant on which it is based. This phenomenon is due to cancellation of
positive and negative errors, as illustrated for the midpoint and Simpson rules in Fig. 8.2,
which, on the left, shows a linear polynomial and the constant function interpolating it at the

8.3. GAUSSIAN QUADRATURE 251

midpoint and, on the right, a cubic and the quadratic interpolating it at the midpoint and
endpoints. Integration of the linear polynomial by the midpoint rule yields two congruent
triangles of equal area. The inclusion of one of the triangles compensates exactly for the
omission of the other. A similar phenomenon occurs for the cubic polynomial, where the
two shaded regions also have equal areas, so that the addition of one compensates for the
subtraction of the other. Such cancellation does not occur, however, for even-order Newton-
Cotes rules. Thus, in general, an n-point Newton-Cotes rule is of polynomial degree n− 1
if n is even, but of polynomial degree n if n is odd.

a bm
|

........

........

........

........

........

........

........

........

........

........

.

...
........
........
........
........
........
........
........
........
........
........
.

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
..
..
.

..

..

.
..
..
.
..
..
..
..
.
..
....
..
..
....
....
...
.
..
...
.....
..............

...............
.....
...
.
..
...
.
..
....
..
..
....
..
..
..
.
..
..
..
..
.
..
..
.

..

..

.
..
..
.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

a bm
|

............
..............

...............
...............

.................
...................

........................
.......................................

..
.........
.........
..........
..........
..........
............
...........
..............

.................
...

........

........

........

........

........

........

........

........

........

........

........

.

...
........
........
........
........
........
........
........
........
........
........
.

Figure 8.2: Cancellation of errors in the midpoint (left) and Simpson (right) rules.

8.3 Gaussian Quadrature

8.3.1 Gaussian Quadrature Rules

Newton-Cotes quadrature rules are simple and often effective, but they have a number of
drawbacks:

• The use of a large number of equally spaced nodes in a high-order Newton-Cotes rule
may incur the erratic behavior and unsatisfactory results often associated with high-
degree polynomial interpolation. For example, some of the weights for a high-order rule
may be negative, potentially leading to catastrophic cancellation in the summation.

• Closed Newton-Cotes rules require evaluation of the integrand function at the endpoints
of the interval, where singularities often lie.

• In general, Newton-Cotes rules are not of the highest polynomial degree possible for the
number of nodes used.

These drawbacks are largely overcome by Gaussian quadrature rules. Gaussian rules are
based on polynomial interpolation, but the nodes are not equally spaced within the interval.
Instead, the locations of the nodes are chosen to maximize the polynomial degree of the
resulting rule. In particular, the nodes tend to be bunched near the endpoints but do
not include the endpoints themselves. These two properties avoid both singularities at
the endpoints and unwanted oscillation in the polynomial interpolant, keeping the weights
positive and of reasonable magnitude.

An example of a Gaussian quadrature rule is the two-point rule on the interval [a, b],

I(f) ≈ G2(f) =
b− a

2

[
f

(
a+ b

2
− b− a

2
√

3

)
+ f

(
a+ b

2
+
b− a
2
√

3

)]
,

252 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

which has polynomial degree three. In general, for each n there is a unique n-point Gaussian
rule, and it is of polynomial degree 2n − 1. The nodes and weights for many Gaussian
quadrature rules are tabulated in [1, 251, 282].

Gaussian quadrature rules are significantly more difficult to derive than Newton-Cotes
rules. In particular, the system of equations that determines the nodes and weights is
nonlinear, and the resulting values are usually irrational numbers even if the endpoints a and
b are rational, as the foregoing two-point rule illustrates. The latter feature makes Gaussian
rules relatively inconvenient for hand computation, compared with using the weights for
simple Newton-Cotes rules. When using a computer, however, the nodes and weights are
usually tabulated in advance and stored in a subroutine that is called when needed, so the
user need not know their actual values.

Example 8.4 Gaussian Quadrature Rule. To illustrate the derivation of a Gaussian
quadrature rule, we consider the case of a two-point rule on the interval [−1, 1]. We seek a
quadrature rule of the form ∫ 1

−1
f(x) dx ≈ w1f(x1) + w2f(x2),

where the nodes xi and weights wi are to be chosen to maximize the polynomial degree of
the resulting quadrature rule.

We again use the method of undetermined coefficients, but now the nodes as well as the
weights are unknown parameters to be determined. Four parameters are to be determined,
so we would expect to be able to integrate cubic polynomials exactly because a cubic depends
on four parameters (its coefficients). Thus, we force the quadrature rule to be exact for each
member of a basis for the set of polynomials of degree three or less, and hence, by linearity,
exact for all cubic polynomials. Requiring the rule to integrate the first four monomials
exactly gives the system of four equations

w1 + w2 =
∫ 1

−1
1 dx = x|1−1 = 1 + 1 = 2,

w1x1 + w2x2 =
∫ 1

−1
x dx =

x2

2

∣∣∣∣1
−1

=
1
2
− 1

2
= 0,

w1x
2
1 + w2x

2
2 =

∫ 1

−1
x2 dx =

x3

3

∣∣∣∣1
−1

=
1
3

+
1
3

=
2
3
,

w1x
3
1 + w2x

3
2 =

∫ 1

−1
x3 dx =

x4

4

∣∣∣∣1
−1

=
1
4
− 1

4
= 0

in the four unknowns. One solution for this nonlinear system is given by

x1 = −1/
√

3, x2 = 1/
√

3, w1 = 1, w2 = 1,

and the other solution is obtained by reversing the signs of x1 and x2 (see Computer
Problem 5.14). Thus, the Gaussian quadrature rule has the form∫ 1

−1
f(x) dx ≈ f(−1/

√
3) + f(1/

√
3)

8.3. GAUSSIAN QUADRATURE 253

and has polynomial degree three.

Alternatively, the nodes of a Gaussian quadrature rule can be obtained by using orthog-
onal polynomials. If p is a polynomial of degree n such that∫ b

a
p(x)xk dx = 0, k = 0, . . . , n− 1,

and hence p is orthogonal on [a, b] to all polynomials of degree less than n, then it is fairly
easy to show (see Exercise 8.6) that

1. The n zeros of p are real, simple, and lie in the open interval (a, b).
2. The n-point interpolatory quadrature rule on [a, b] whose nodes are the zeros of p has

polynomial degree 2n− 1; i.e., it is the unique n-point Gaussian rule.

The nth Legendre polynomial (see Section 7.2.4) provides a suitable polynomial p. For
this reason, the resulting rule is often called a Gauss-Legendre quadrature rule. Of course,
the zeros of the Legendre polynomial must still be computed, and then the corresponding
weights for the quadrature rule can be determined in the usual way. This method also
extends naturally to various other weight functions and intervals corresponding to other
families of orthogonal polynomials. Of particular interest for semi-infinite or infinite in-
tervals are Gauss-Laguerre and Gauss-Hermite quadrature rules. The nodes and weights
for a Gaussian quadrature rule can also be computed by means of an eigenvalue problem
associated with the corresponding orthogonal polynomials and weight function [105].

8.3.2 Change of Interval

Gaussian rules are somewhat more difficult to apply than Newton-Cotes rules because the
weights and nodes are usually derived for some specific interval, such as [0, 1] or [−1, 1], and
thus the given interval of integration [a, b] must be transformed into a standard interval for
which the nodes and weights have been tabulated. If we wish to use a quadrature rule that
is tabulated on the interval [α, β],∫ β

α
f(x) dx ≈

n∑
i=1

wif(xi),

to approximate an integral on the interval [a, b],

I(g) =
∫ b

a
g(t) dt,

then we must use a change of variable from x in [α, β] to t in [a, b]. Many such transforma-
tions are possible, but a simple linear transformation

t =
(b− a)x+ aβ − bα

β − α

254 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

has the advantage of preserving the polynomial degree of the rule. The integral is then
given by

I(g) =
b− a
β − α

∫ β

α
g

(
(b− a)x+ aβ − bα

β − α

)
dx

≈ b− a
β − α

n∑
i=1

wig

(
(b− a)xi + aβ − bα

β − α

)
.

Example 8.5 Change of Interval. To illustrate a change of interval, we use a two-point
Gaussian quadrature rule derived for the interval [−1, 1] in Example 8.4 to approximate the
integral

I(g) =
∫ 1

0
e−t

2
dt

from Example 8.1. Using the linear transformation of variables just given, we get

t =
x+ 1

2
,

so that the integral is approximated by

I(g) ≈ 1
2

exp

−((−1/
√

3) + 1
2

)2
+ exp

−((1/
√

3) + 1
2

)2
 ≈ 0.746595,

which is slightly more accurate than the result given by Simpson’s rule for this integral (see
Example 8.1) despite using only two points instead of three.

8.3.3 Gauss-Kronrod Quadrature Rules

As we have seen, one convenient way to obtain an error estimate is by using two different
quadrature rules. Since Newton-Cotes quadrature rules use equally spaced nodes, rules
of different orders often have nodes in common. For example, the three nodes used in
Simpson’s rule are the same as those used in the midpoint and trapezoid rules. We can take
advantage of this fact to minimize the number of times that the integrand function must
be evaluated in using multiple rules of different orders to estimate the error.

We have seen that Gaussian quadrature rules are more accurate than Newton-Cotes
rules for the same number of nodes, but unfortunately, Gaussian rules of different orders
do not have any nodes in common (except that Gaussian rules of odd order always have
the midpoint as one node). Thus, if we seek to estimate the error by using Gaussian rules
of different orders, we must evaluate the integrand function at the full set of nodes of both
rules.

Avoiding this additional work is the motivation for Gauss-Kronrod quadrature rules.
Such rules come in pairs: an n-point Gaussian rule Gn and a (2n + 1)-point Kronrod rule
K2n+1 whose nodes are optimally chosen subject to the constraint that all of the nodes of
Gn are reused in K2n+1. The (2n + 1)-point Kronrod rule is of polynomial degree 3n + 1,
whereas a true (2n+ 1)-point Gaussian rule would be of polynomial degree 4n+ 1.

8.4. COMPOSITE AND ADAPTIVE QUADRATURE 255

In using such a Gauss-Kronrod pair, the value of K2n+1 is taken as the approximation to
the integral, and a realistic but conservative estimate for the error, based partly on theory
and partly on experience, is given by

(200|Gn −K2n+1|)1.5.

Because they efficiently provide both high accuracy and a reliable error estimate, Gauss-
Kronrod rules are among the most effective methods for numerical quadrature, and they
form the basis for many of the quadrature routines available in major software libraries.
The pair of rules (G7,K15), in particular, has become a commonly used standard.

8.4 Composite and Adaptive Quadrature

8.4.1 Composite Quadrature Rules

It is not feasible to use arbitrarily high-order quadrature rules in an attempt to attain
arbitrarily high accuracy in evaluating an integral over a given interval. A much better
alternative is to subdivide the original interval into subintervals, often called panels in this
context, then apply a lower-order quadrature rule in each panel. Summing all of these
partial results then yields an approximation to the overall integral.

This approach is equivalent to using piecewise interpolation to derive a composite, or
compound, quadrature rule over the given interval. For example, if the interval [a, b] is
partitioned into n panels, [xi−1, xi], i = 1, . . . , n, with a = x0 < x1 < x2 < · · · < xn−1 <
xn = b, then the composite midpoint rule is given by

I(f) ≈M(f) =
n∑
i=1

(xi − xi−1)f
(
xi−1 + xi

2

)
,

and the composite trapezoid rule by

I(f) ≈ T (f) =
n∑
i=1

(xi − xi−1)
f(xi−1) + f(xi)

2
.

Composite quadrature rules offer a particularly simple means of estimating error by using
two rules of different order. For example, we observed in Section 8.2.3 that halving the
interval length reduces the error in the midpoint or trapezoid rules by a factor of about 1

8 .
For a given interval [a, b], however, halving the width of each panel doubles the number of
panels, so the overall reduction in the error is by a factor of about 1

4 .
If the number of panels is n, and hence the average panel width is h = (b − a)/n,

then the dominant term in the remainder for the composite midpoint or trapezoid rules is
O(nh3) = O(h2), so the accuracy of these rules is said to be of second order. Similarly, the
composite Simpson’s rule is of fourth-order accuracy, meaning that the dominant term in
its remainder is O(h4), and hence halving the panel width reduces the error by a factor of
about 1

16 .

256 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

8.4.2 Automatic and Adaptive Quadrature

A composite quadrature rule with an error estimate can be used to produce an automatic
quadrature procedure: simply continue to subdivide all of the panels, say, by half, until the
overall error estimate falls below the required tolerance. This approach usually works, but
it may require substantially more work than methods tailored for the particular problem.
A more intelligent approach is adaptive quadrature, in which the domain of integration is
selectively refined to reflect the behavior of the particular integrand function.

For example, one might apply a quadrature rule over the entire original interval. If the
error tolerance is not met, subdivide the interval into two halves and apply the quadrature
rule in each. From this point on, if the sum of the error estimates for the individual panels
still exceeds the required tolerance, then the panel with the largest error is further halved,
and so on until the error tolerance is eventually met, if possible. In this way the integrand
function tends to be sampled most densely in regions where it is most active, as shown by
example in Fig. 8.3. Such an adaptive strategy forms the basis for most library subroutines
for one-dimensional integration.

...| | | | | | | | || | | | | | | || | | | | | | || | | | | | | | | | | | | | | || || | | | | | | || |

.

.
. .

.

. .
.

.
.

.
.

. .
.

.
..

.
.

.
.

.
.

.
. .
.
.
.
.

.
.

..
.
.

.
.
.
.

. .
. .

. .
.

Figure 8.3: Typical placement of evaluation points by an adaptive quadrature routine.

It may not be possible, however, to meet a given error tolerance in computing a given
integral. The accuracy attainable is limited both by the precision of the arithmetic used
and by the accuracy with which the integrand function can be evaluated. If the integrand
is noisy, or if the error tolerance is unrealistically tight relative to the machine precision,
then an adaptive quadrature routine may be unable to meet the error tolerance and will
likely expend a large number of function evaluations only to return a warning message
that its subdivision limit was exceeded. Such a result should not be regarded as a fault
of the adaptive routine but as a reflection of the difficulty of the problem or unrealistic
expectations on the part of the user, or both.

Although adaptive quadrature procedures tend to be very effective in practice, they can
be fooled: both the approximate integral and the error estimate can be completely wrong.
The reason is that the integrand function is sampled at only a finite number of points,
so it is possible that significant features of the integrand may be missed. For example,
it may happen that the interval of integration is very wide, but all of the “interesting”
behavior of the integrand is confined to a very narrow range. In this case, sampling by
the automatic routine may completely miss the interesting part of the integrand’s behavior,
and the resulting value for the integral may be completely wrong. This situation may seem
unlikely, but it can happen, for example, if we are trying to evaluate an integral over an
infinite interval and have truncated it unwisely (see Section 8.5.2).

Another potential difficulty with adaptive quadrature routines is that they may be very
inefficient in handling discontinuities (finite jumps in the integrand) and integrable singular-

8.5. OTHER INTEGRATION PROBLEMS 257

ities (points where the integrand becomes infinite but the integral still exists). For example,
an adaptive routine may expend a great many function evaluations in refining the region
around a discontinuity of the integrand because it assumes that the integrand is smooth
(but very steep). A good way to prevent this behavior is to call the quadrature routine
separately to compute the integral on either side of the discontinuity, thereby obviating
the need for the routine to resolve the discontinuity. A good strategy for dealing with a
singularity is to obtain an analytic formula for the integral in a neighborhood around the
singularity and use the adaptive routine to compute the integral elsewhere.

8.5 Other Integration Problems

8.5.1 Integrating Tabular Data

Thus far we have assumed that the integrand function can be evaluated at any desired
point within the interval of integration. This assumption may not be valid if the integrand is
defined only by a table of its values at selected points. A reasonable approach to integrating
such tabular data is by piecewise interpolation. For example, integrating the piecewise linear
interpolant to tabular data gives a composite trapezoid rule.

An excellent method for integrating tabular data is provided by Hermite cubic or cubic
spline interpolation. In effect, the overall integral is computed by integrating each of the
cubic pieces that make up the interpolant. This facility is provided by some of the spline
interpolation packages mentioned in Section 7.4.

8.5.2 Infinite Intervals

Although some quadrature routines are capable of handling integrals over infinite or semi-
infinite intervals, one may also be able to deal adequately with such problems using standard
quadrature routines for finite intervals. A number of approaches are possible:

• Replace the infinite limits of integration by finite values. Such finite limits should be
chosen carefully so that any omitted tail is negligible or its contribution is estimated,
if possible. But the remaining finite interval should not be so wide that an automatic
quadrature routine will be fooled into sampling badly.

• Transform the variable of integration so that the new interval is finite. Typical trans-
formations include x = − log t or x = t/(1 − t). Care must be taken not to introduce
singularities or other difficulties by such a transformation.
• Apply a quadrature rule, such as Gauss-Laguerre or Gauss-Hermite, designed for an

infinite interval.

8.5.3 Double Integrals

Thus far we have considered only one-dimensional integrals, where we wish to determine
the area under a curve over an interval. In evaluating a two-dimensional integral, we wish
to compute the volume under a surface over a region in the plane. For a rectangular region,

258 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

a double integral has the form ∫ b

a

∫ d

c
f(x, y) dx dy.

For a more general two-dimensional domain Ω, the integral takes the form∫ ∫
Ω
f(x, y) dA.

By analogy with numerical quadrature for one-dimensional integrals, the numerical approx-
imation of two-dimensional integrals is sometimes called numerical cubature.

To evaluate a double integral, a number of approaches are available, including the fol-
lowing:

• Use an automatic one-dimensional quadrature routine for each dimension, one for the
outer integral and the other for the inner integral. Each time the outer routine calls
its integrand function, the latter will call the inner quadrature routine. This approach
requires some care in setting the error tolerances for the respective quadrature routines.

• Use a product quadrature rule, which results from applying a one-dimensional rule to
successive dimensions. This approach is limited to standard domains, such as rectangles.

• Use a nonproduct quadrature rule. In recent years, such rules, including error estimates,
have become available. The most important case for automatic adaptive use is for tri-
angles, since many two-dimensional regions can be efficiently triangulated to any desired
degree of refinement.

8.5.4 Multiple Integrals

To evaluate a multiple integral in dimensions higher than two, the only generally viable
approach is the Monte Carlo method. The function is sampled at n points distributed
randomly in the domain of integration, and then the mean of these function values is
multiplied by the area (or volume, etc.) of the domain to obtain an estimate for the
integral. The error in this estimate goes to zero as n−1/2, which means, for example, that
to gain an extra decimal place of accuracy the number of sample points must be increased
by a factor of 100. For this reason, it is not unusual for Monte Carlo calculations of integrals
to require millions of evaluations of the integrand.

The Monte Carlo method is not competitive for integrals in one or two dimensions,
but the beauty of the method is that its convergence rate is independent of the number of
dimensions. Thus, for example, one million points in six dimensions amounts to only ten
points per dimension, which is vastly better than any type of conventional quadrature rule
would require for the same level of accuracy. The efficiency of Monte Carlo integration can
be enhanced by various methods for biasing the sampling, either to achieve more uniform
coverage of the sampled volume (e.g., by avoiding undesirable random clumping of the
sample points; see Section 13.4) or to concentrate sampling in regions where the integrand
is largest in magnitude (importance sampling) or in variability (stratified sampling), in a
spirit similar to adaptive quadrature. See Chapter 13 for further information on the use of
random sampling for numerical integration as well as other types of problems.

8.6. INTEGRAL EQUATIONS 259

8.6 Integral Equations

An integral equation is an equation in which the unknown to be determined is a function
inside an integral sign. An integral equation can be thought of as a continuous analogue,
or limiting case, of a system of algebraic equations. For example, the analogue of a linear
system Ax = y is a Fredholm integral equation of the first kind, which has the form∫ b

a
K(s, t)u(t) dt = f(s),

where the functions K, called the kernel , and f are known, and the function u is to be
determined. Integral equations arise naturally in many fields of science and engineering,
particularly observational sciences (e.g., astronomy, seismology, spectrometry), where the
kernel K represents the response function of an instrument (determined by calibration with
known signals), f represents measured data, and u represents the underlying signal that
is sought. In effect, we are trying to resolve the measured data f as a (continuous) linear
combination of standard signals. Integral equations can also result from Green’s function
methods [214] or boundary element methods [154] for solving differential equations (topics
beyond the scope of this book).

Establishing the existence and uniqueness of solutions to integral equations is much more
problematic than with algebraic equations. Moreover, when a solution does exist, it may be
extremely sensitive to perturbations in the input data f , which are often subject to random
experimental or measurement errors. The reason for this sensitivity is that integration is a
smoothing process, so its inverse (i.e., determining the integrand from the integral) is just
the opposite. Integrating an arbitrary function u against a smooth kernel K dampens any
high-frequency oscillation, so solving for u tends to introduce high-frequency oscillation in
the result. For example, Riemann showed that for any integrable kernel K,

lim
n→∞

∫ b

a
K(s, t) sin(nt) dt = 0,

which implies that an arbitrarily high-frequency component of u has an arbitrarily small
effect on f . Thus, integral equations of the first kind with smooth kernels are always
ill-conditioned.

A standard technique for solving integral equations numerically is to use a quadrature
formula to replace the integral by an approximating finite sum. Denote the nodes and
weights of the quadrature rule by tj and wj , j = 1, . . . n. We also choose n points si for the
variable s, often the same as the tj , but not necessarily so. Then the approximation to the
integral equation becomes

n∑
j=1

K(si, tj)wju(tj) = f(si), i = 1, . . . n.

This system of linear algebraic equations Ax = y, where aij = K(si, tj)wj , yi = f(si), and
xj = u(tj), can then be solved for x to obtain a discrete sample of approximate values of
the function u.

260 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

Example 8.6 Integral Equation. Consider the integral equation∫ 1

−1
(1 + αst)u(t) dt = 1

[i.e., K(s, t) = 1 + αst and f(s) = 1], where α is a known positive constant whose value is
unspecified for now. Using the composite midpoint quadrature rule with two panels, taking
t1 = −1

2 , t2 = 1
2 , and w1 = w2 = 1, and also taking s1 = −1

2 and s2 = 1
2 , we obtain the

linear system [
1 + α/4 1− α/4
1− α/4 1 + α/4

] [
x1

x2

]
=
[

1
1

]
.

It is easily verified that the solution to this linear system is x = [1
2

1
2]T , independent of

the value of α.
Now suppose that the measured values of y1 = f(s1) and y2 = f(s2) are in error by ε1

and ε2, respectively. Then by linearity, the change in the solution x is given by the same
linear system, but with a right-hand side of [ε1 ε2]T . The resulting change in x is therefore
given by [

∆x1

∆x2

]
=
[

(ε1 − ε2)/α+ (ε1 + ε2)/4
(ε2 − ε1)/α+ (ε1 + ε2)/4

]
.

Thus, if α is sufficiently small, the relative error in the computed value for x can be arbitrar-
ily large. A very small value for α in this particular kernel corresponds to a very insensitive
instrument with a very flat response. This is reflected in the conditioning of the matrix A,
whose columns become more nearly linearly dependent as α decreases in magnitude. This
simple example is typical of integral equations with smooth kernels.

Note that the sensitivity in the previous example is inherent in the problem and is not
due to the method of solving it. In general, such an integral operator with a smooth kernel
has zero as an eigenvalue (i.e., there are nonzero functions that it annihilates), and hence
using a more accurate quadrature rule makes the conditioning of the linear system worse
and the resulting solution more erratic. Because of this behavior, additional information
may be required to obtain a physically meaningful solution. Such techniques include:

• Truncated singular value decomposition. The solution to the system Ax = y is computed
using the SVD of A; but the small singular values of A, which reflect the ill-conditioning,
are omitted from the solution (see Section 4.5.2).

• Regularization. A damped solution is obtained by solving the minimization problem

min
x

(‖y −Ax‖22 + µ‖x‖22),

where the parameter µ determines the relative weight given to the norm of the residual
and the norm of the solution. This minimization problem is equivalent to the linear least
squares problem [

A√
µI

]
x ≈

[
y
o

]
,

8.7. NUMERICAL DIFFERENTIATION 261

which can be solved by the methods discussed in Chapter 3. More generally, other norms,
usually based on first or second differences between its components, can also be used to
weight the smoothness of the solution. The Levenberg-Marquardt method for nonlinear
least squares problems (see Section 6.4.2) is another example of regularization.

• Constrained optimization. Some norm of the residual ‖y − Ax‖ is minimized subject
to constraints on x that disallow nonphysical solutions. In many applications, for ex-
ample, the components of the solution x are required to be nonnegative. The resulting
constrained optimization problem can then be solved by one of the methods discussed in
Section 6.5.

A variety of such methods are implemented in the MATLAB toolbox documented in [121].
We have considered only Fredholm integral equations of the first kind. Many other

types arise in practice, including integral equations of the second kind (eigenvalue prob-
lems), Volterra integral equations (in which the upper limit of integration is s instead of
b), singular integral equations (in which one or both of the limits of integration are infi-
nite), and nonlinear integral equations. All types of integral equations can be discretized
by means of numerical quadrature, yielding a system of algebraic equations. Alternatively,
the unknown function u can be expressed as a linear combination u(t) =

∑n
j=1 cjφj(t) of

suitably chosen basis functions φj , which leads to a system of algebraic equations for the
coefficients cj . This type of approach will be examined in more detail in Section 10.5, when
we consider finite element methods for boundary value problems in differential equations.

8.7 Numerical Differentiation

We now turn briefly to numerical differentiation. It is important to realize that differentia-
tion is an inherently sensitive problem, as small perturbations in the data can cause large
changes in the result. Integration, on the other hand, is a smoothing process and is inher-
ently stable in this respect. The contrast between differentiation and integration should not
be surprising, since they are inverse processes to each other. The difference between them
is illustrated in Fig. 8.4, which shows two functions that have very similar definite integrals
but very different derivatives.

..
.........
..........
...........................

...........
.........
.........
.........
.........
..........
...............................

.........
.........
..........
.........
..........
......................................

..........
..........
..........
..

..........
..........
...

.............
..

...
..
...........
..
...........
..
...........
..
............
.
............
.
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

Figure 8.4: Two functions whose integrals are similar but whose derivatives are not.

When approximating the derivative of a function whose values are known only at a
discrete set of points, a good approach is to fit some smooth function to the given discrete
data and then differentiate the approximating function to approximate the derivatives of
the original function. If the given data are sufficiently smooth, then interpolation may be
appropriate; but if the given data are noisy, then a smoothing approximating function, such

262 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

as a least squares spline, is more appropriate.

8.7.1 Finite Difference Approximations

Although finite difference formulas are generally inappropriate for discrete or noisy data,
they are very useful for approximating derivatives of a smooth function that is known ana-
lytically or can be evaluated accurately for any given argument. We now develop some finite
difference formulas that will be useful in our study of the numerical solution of differential
equations.

Given a smooth function f :R→ R, we wish to approximate its first and second deriva-
tives at a point x. Consider the Taylor series expansions

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2
h2 +

f ′′′(x)
6

h3 + · · ·

and

f(x− h) = f(x)− f ′(x)h+
f ′′(x)

2
h2 − f ′′′(x)

6
h3 + · · · .

Solving for f ′(x) in the first series, we obtain the forward difference formula

f ′(x) =
f(x+ h)− f(x)

h
− f ′′(x)

2
h+ · · ·

≈ f(x+ h)− f(x)
h

,

which gives an approximation that is first-order accurate since the dominant term in the
remainder of the series is O(h). Similarly, from the second series we derive the backward
difference formula

f ′(x) =
f(x)− f(x− h)

h
+
f ′′(x)

2
h+ · · ·

≈ f(x)− f(x− h)
h

,

which is also first-order accurate. Subtracting the second series from the first gives the
centered difference formula

f ′(x) =
f(x+ h)− f(x− h)

2h
− f ′′′(x)

6
h2 + · · ·

≈ f(x+ h)− f(x− h)
2h

,

which is second-order accurate. Finally, adding the two series together gives a centered
difference formula for the second derivative

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
− f iv (x)

12
h2 + · · ·

≈ f(x+ h)− 2f(x) + f(x− h)
h2

,

8.8. RICHARDSON EXTRAPOLATION 263

which is also second-order accurate. By using function values at additional points, x± 2h,
x± 3h, . . . , we can derive similar finite difference approximations with still higher accuracy
or for higher-order derivatives.

Note that higher-accuracy difference formulas require more function values. Whether
these translate into higher overall cost depends on the particular situation, since a more
accurate formula may permit the use of a larger stepsize and correspondingly fewer steps. In
choosing a value for h, rounding error must also be considered in addition to the truncation
error given by the series expansion (see Example 1.11).

8.7.2 Automatic Differentiation

A number of alternatives are available for computing derivatives of a function, including
finite difference approximations and closed-form evaluation using formulas determined either
by hand or by a computer algebra package. Each of these methods has significant drawbacks,
however: manual differentiation is tedious and error-prone; symbolic derivatives tend to
be unwieldy for complicated functions; and finite difference approximations require the
sometimes delicate choice of a stepsize, and their accuracy is limited by discretization error.

Another alternative, at least for any function expressed by a computer program, is
automatic differentiation, often abbreviated as AD. The basic idea of AD is simple: a
computer program consists of basic arithmetic operations and elementary functions, each
of whose derivatives is easily computed. Thus, the function computed by the program is, in
effect, a composite of many simple functions whose derivatives can be propagated through
the program by repeated use of the chain rule, effectively computing the derivative of the
function step by step along with the function itself. The result is the true derivative of the
original function, subject only to rounding error but suffering no discretization error.

Though AD is conceptually simple, its practical implementation is more complicated,
requiring careful analysis of the input program and clever strategies for reducing the po-
tentially explosive complexity of the resulting derivative code. Fortunately, most of these
practical impediments have been successfully overcome, and a number of effective software
packages are now available for automatic differentiation. Some of these packages accept a
Fortran or C input code and then output a second code for computing the desired deriva-
tives, whereas other packages use operator overloading to perform derivative computations
automatically in addition to the function evaluation. When applicable, AD can be much
easier, more efficient, and more accurate than other methods for computing derivatives.
AD can also be useful for determining the sensitivity of the output of a program to per-
turbations in its input parameters. Such information might otherwise be obtainable only
through many repeated runs of the program, which could be prohibitively expensive for
large, complex programs.

8.8 Richardson Extrapolation

In many problems, such as numerical integration or differentiation, we compute an approx-
imate value for some quantity based on some stepsize. Ideally, we would like to obtain
the limiting value as the stepsize approaches zero, but we cannot take the stepsize to be
arbitrarily small because of excessive cost or rounding error. Based on values for nonzero

264 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

stepsizes, however, we may be able to estimate what the value would be for a stepsize of
zero.

Let F (h) denote the value obtained with stepsize h. If we compute the value of F for
some nonzero stepsizes, and if we know the theoretical behavior of F (h) as h → 0, then
we can extrapolate from the known values to obtain an approximate value for F (0). This
extrapolated value should have a higher-order accuracy than the values on which it is based.
We emphasize, however, that the extrapolated value, though an improvement, is still only
an approximation, not the exact solution, and its accuracy is still limited by the stepsize
and arithmetic precision used.

To be more specific, suppose that

F (h) = a0 + a1h
p +O(hr)

as h→ 0 for some p and r, with r > p. We assume that we know the values of p and r, but
not a0 or a1. Indeed, F (0) = a0 is the quantity we seek. Suppose that we have computed
F for two stepsizes, say, h and qh for some q > 1. Then we have

F (h) = a0 + a1h
p +O(hr)

and
F (qh) = a0 + a1(qh)p +O(hr).

This system of two linear equations in the two unknowns a0 and a1 is easily solved to obtain

a0 = F (h) +
F (h)− F (qh)

qp − 1
+O(hr).

Thus, the accuracy of the improved value, a0, is O(hr) rather than only O(hp).
If F (h) is known for several values of h, then the extrapolation process can be repeated

to produce still more accurate approximations, up to the limitations imposed by finite-
precision arithmetic. For example, if we have computed F for the values h, 2h, and 4h,
then the extrapolated value based on h and 2h can be combined with the extrapolated value
based on 2h and 4h in a further extrapolation to produce a still more accurate estimate for
F (0).

Example 8.7 Richardson Extrapolation. To illustrate Richardson extrapolation, we
use it to improve the accuracy of a finite difference approximation to the derivative of the
function sin(x) at the point x = 1. Using the first-order accurate, forward difference formula
derived in Section 8.7.1, we have for this problem

F (h) = a0 + a1h+O(h2),

which means that p = 1 and r = 2 in this case. Using stepsizes of h = 0.25 and 2h = 0.5
(i.e., q = 2), we get

F (h) =
sin(1.25)− sin(1)

0.25
= 0.430055,

and
F (2h) =

sin(1.5)− sin(1)
0.5

= 0.312048.

8.8. RICHARDSON EXTRAPOLATION 265

The extrapolated value is then given by

F (0) = a0 = F (h) +
F (h)− F (2h)

2− 1
= 2F (h)− F (2h) = 0.548061.

For comparison, the correctly rounded result is given by cos(1) = 0.540302. In this example
the extrapolation is linear, as can be seen on the left in Fig. 8.5, because the lowest-order
term in h is linear.

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...........................

..........................

...

F

h
0 0.25 0.5

0.5

1.0

•
•

• computed values...
.....................................
.....
........
.....

extrapolated value..
...

.............

.................................
.................................

..................................
.................................

.................................
....................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...........................

..........................

...

F

h
0 π/4 π/2

0.5

1.0
•

••

computed values
........
........
........
........
........
........
........
.................
.............

........

........

........

....................

.............

extrapolated value...

....................
......................

..........................
................................

..
.................................

Figure 8.5: Richardson extrapolation in Examples 8.7 (left) and 8.8 (right).

Example 8.8 Romberg Integration. As another example of Richardson extrapolation,
we evaluate the integral ∫ π/2

0
sin(x) dx.

If we use the composite trapezoid rule, we recall from Section 8.4.1 that

F (h) = a0 + a1h
2 +O(h4),

which means that p = 2 and r = 4 in this case. With h = π/4, we obtain the value
F (h) = 0.948059. With h = π/2 (i.e., q = 2), we obtain the value F (h) = 0.785398. The
extrapolated value is then given by

F (0) = a0 = F (π/4) +
F (π/4)− F (π/2)

22 − 1

= 0.948059 +
0.948059− 0.785398

4− 1
= 1.00228,

which is substantially more accurate than either value previously computed (the exact
answer is 1). In this example the extrapolation is quadratic, as can be seen on the right in
Fig. 8.5, because the lowest-order term in h is quadratic.

Evaluation of the trapezoid rule for additional values of h would permit further extrap-
olations to attain even higher accuracy, up to the limit imposed by the arithmetic precision.
Continued use of Richardson extrapolation in this manner, using the trapezoid quadrature
rule with various stepsizes, is called Romberg integration. It is capable of producing very
high accuracy for well-behaved problems.

266 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

8.9 Software for Numerical Integration and Differentiation

Table 8.1 is a list of some of the software available for numerical quadrature. Most of the
one-dimensional quadrature routines listed are adaptive routines based on Gauss-Kronrod
quadrature rules. We note that software for solving initial value problems for ordinary
differential equations, which will be covered in Chapter 9, can also be used for computing
definite integrals (see Computer Problem 9.5). Several routines are available for gener-
ating the nodes and weights for various Gaussian and other quadrature rules, including
gaussq from netlib; and iqpack(#655), extend(#672), and gauss (the latter is part of
the orthpol(#726) package), all from TOMS.

Table 8.1: Software for numerical integration and differentiation

Source One dimension Two dimensions n dimensions Differentiation
FMM quanc8
HSL qa02/qa04/qa05 qb01/qm01 td01
IMSL qdag/qdags twodq qand deriv
MATLAB quad/quad8 diff
KMN q1da
NAG d01ajf d01daf d01fcf d04aaf
NUMAL quadrat tricub
NR vegas/miser dfridr
QUADPACK qag/qags
SLATEC qag/qnc/qng/gaus8
TOMS squank(#379)/quad(#468) dcutri(#706) dcuhre(#698)

Software for numerical integration typically requires the user to supply the name of
a routine that computes the value of the integrand function for any argument. The user
must also supply the endpoints of the interval of integration, as well as absolute or relative
error tolerances. In addition to the approximate value of the integral, the output usually
includes an estimate of the error, a status flag indicating any warnings or error conditions,
and possibly a count of the number of function evaluations that were required.

Although adaptive quadrature routines can often be used as black boxes, they can be
ineffective for integrals having discontinuities, singularities, or other such difficulties. In
such cases, it may be advantageous to transform the problem to enable the automatic
routine to arrive at an accurate result more efficiently. For practical advice on handling
such problematic integrals, see [2, 3].

In the last column of Table 8.1 are listed some routines for numerical differentiation. In
addition, a number of packages are available that implement automatic differentiation (see
Section 8.7.2), including ADIC, ADIFOR, ADOL-C, ADOL-F, AMC, GRESS, Odyssée, and PADRE2.
See URL http://www.mcs.anl.gov/adifor/ for further information.

8.10. HISTORICAL NOTES AND FURTHER READING 267

8.10 Historical Notes and Further Reading

As mentioned earlier, quadrature is an ancient technique. Most of the methods we discussed
date from the nineteenth century or earlier, as the names associated with them suggest—
Simpson, Newton, Cotes, Gauss, and others. Kronrod published the quadrature rules that
bear his name in 1964. One of the earliest adaptive quadrature routines was published by
McKeeman in 1962. Many others have followed, most notably squank, cadre, qnc7, and
quanc8, culminating with the quadpack package, which represents the current state of the
art (see also TOMS #691).

Comprehensive general references on numerical integration are [52, 70, 74, 153]. The
computation of multiple integrals is discussed in [113, 169, 232, 250]. The quadpack package
is documented in [203]. Cautionary advice on using automatic quadrature routines can be
found in [168, 170]. For a comprehensive survey of extrapolation techniques, see [141]. For
more details on the numerical solution of integral equations, see [54, 277].

Review Questions

8.1 True or false: Since the midpoint
quadrature rule is based on interpolation by a
constant, whereas the trapezoid rule is based
on linear interpolation, the trapezoid rule is
generally more accurate than the midpoint
rule.

8.2 True or false: The polynomial degree of
a quadrature rule is the degree of the interpo-
lating polynomial on which the rule is based.

8.3 True or false: An n-point Newton-Cotes
quadrature rule is always of polynomial degree
n− 1.

8.4 True or false: Gaussian quadrature rules
of different orders never have any points in
common.

8.5 How can you estimate the error in a
quadrature formula without computing the
derivatives of the integrand function that
would be required by a Taylor series approxi-
mation?

8.6 (a) If a quadrature rule for an interval
[a, b] is based on polynomial interpolation at n
equally spaced points in the interval, what is
the highest degree such that the rule integrates
all polynomials of that degree exactly?

(b) How would your answer change if the
points were optimally placed to integrate the
highest possible degree polynomials exactly?

8.7 Would you expect an n-point Newton-
Cotes quadrature rule to work well for inte-
grating Runge’s function,

∫ 1

−1
(1 + 25x2)−1 dx,

if n is very large? Why?

8.8 (a) What is the polynomial degree of
Simpson’s rule for numerical quadrature?
(b) What is the polynomial degree of an n-
point Gaussian quadrature rule?

8.9 Newton-Cotes and Gaussian quadrature
rules are both based on polynomial interpola-
tion.
(a) What specific property characterizes a
Newton-Cotes quadrature rule for a given
number of nodes?
(b) What specific property characterizes a
Gaussian quadrature rule for a given number
of nodes?

8.10 (a) Explain how the midpoint rule,
which is based on interpolation by a polyno-
mial of degree zero, can nevertheless integrate
polynomials of degree one exactly.
(b) Is the midpoint rule a Gaussian quadrature
rule? Explain your answer.

8.11 Suppose that the quadrature rule∫ b

a

f(x) dx ≈
n∑
i=1

wif(xi)

is exact for all constant functions. What does
this imply about the weights wi or the nodes
xi?

268 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

8.12 If the integrand has an integrable singu-
larity at one endpoint of the interval of inte-
gration, which type of quadrature rule would
be better to use, a closed Newton-Cotes rule
or a Gaussian rule? Why?

8.13 What is the polynomial degree of each
of the following types of numerical quadrature
rules?
(a) An n-point Newton-Cotes rule, where n is
odd
(b) An n-point Newton-Cotes rule, where n is
even
(c) An n-point Gaussian rule
(d) What accounts for the difference between
the answers to parts a and b?
(e) What accounts for the difference between
the answers to parts b and c?

8.14 For each of the following properties,
state which type of quadrature, Newton-Cotes
or Gaussian, more accurately fits the descrip-
tion:
(a) Easier to compute nodes and weights
(b) Easier to apply for a general interval [a, b]
(c) More accurate for the same number of
nodes
(d) Has maximal polynomial degree for the
number of nodes
(e) Nodes easy to reuse as order of rule changes

8.15 What is the relationship between Gaus-
sian quadrature and orthogonal polynomials?

8.16 (a) What is the advantage of using a
Gauss-Kronrod pair of quadrature rules, such
as G7 and K15, compared with using two
Gaussian rules, such as G7 and G15, to obtain
an approximate integral with error estimate?
(b) How many evaluations of the integrand
function are required to evaluate both of the
rules G7 and K15 in a given panel?

8.17 Rank the following types of quadrature
rules in order of their polynomial degree for
the same number of nodes (1 for highest poly-
nomial degree, etc.):
(a) Newton-Cotes
(b) Gaussian
(c) Kronrod

8.18 (a) What is a composite quadrature
rule?

(b) Why is a composite quadrature rule prefer-
able to an ordinary quadrature rule for achiev-
ing high accuracy in numerically computing a
definite integral on a given interval?

(c) In using the composite trapezoid quadra-
ture rule to approximate a definite integral on
an interval [a, b], by what factor is the over-
all error reduced if the mesh size (i.e. panel
width) h is halved?

8.19 (a) Describe in general terms how adap-
tive quadrature works.

(b) How can the necessary error estimate be
obtained?

(c) Under what circumstances might such a
procedure produce a result that is seriously in
error?

(d) Under what circumstances might such a
procedure be very inefficient?

8.20 What is the most efficient way to use
an adaptive quadrature routine for comput-
ing a definite integral whose integrand has a
known discontinuity within the interval of in-
tegration?

8.21 What is a good way to integrate tabular
data (i.e., an integrand whose value is known
only at a discrete set of points)?

8.22 (a) How might one use a standard
quadrature routine, designed for integrating
over a finite interval, to integrate a function
over an infinite interval?

(b) What precautions would need to be taken
to ensure a good result?

8.23 How might one use a standard one-
dimensional quadrature routine to compute
the value of a double integral over a rectan-
gular region?

8.24 Why is Monte Carlo not a practical
method for computing one-dimensional inte-
grals?

8.25 Relative to other methods for numerical
quadrature, why is the Monte Carlo method
more effective in higher dimensions than in low
dimensions?

EXERCISES 269

8.26 Explain why integral equations of the
first kind with smooth kernels are always ill-
conditioned.

8.27 Explain how a quadrature rule can be
used to solve an integral equation numerically.
What type of computational problem results?

8.28 In solving an integral equation of the
first kind by numerical quadrature, does the
solution always improve if the order of the
quadrature rule is increased or the mesh size
is decreased? Why?

8.29 List three approaches for obtaining a
meaningful solution to an ill-conditioned linear
system approximating an integral equation of
the first kind.

8.30 Consider the problem of approximating
the derivative of a function that is measured
or sampled at only a finite number of points.

(a) One way to obtain an approximate deriva-
tive is to interpolate the discrete data points
and then differentiate the interpolant. Is this

a good method for approximating the deriva-
tive? Why?
(b) Similarly, one can approximate the inte-
gral of a function given by such discrete data
by integrating the interpolant. Is this a good
method for computing the integral? Why?

8.31 Comparing integration and differentia-
tion, which problem is inherently better con-
ditioned? Why?

8.32 (a) Suggest a good method for numer-
ically approximating the derivative of a func-
tion whose value is given only at a discrete set
of data points.
(b) For this problem, what would be the effect
of noisy data, and how would you cope with it
in your numerical method?

8.33 (a) Explain the basic idea of Richardson
extrapolation.
(b) Does it give a more accurate answer than
the values on which it is based?

8.34 What is meant by Romberg integration?

Exercises

8.1 (a) Compute the approximate value of
the integral

∫ 1

0
x3 dx, first by the midpoint rule

and then by the trapezoid rule.

(b) Use the difference between these two re-
sults to estimate the error in each of them.

(c) Combine the two results to obtain the
Simpson’s rule approximation to the integral.

(d) Would you expect the latter to be exact
for this problem? Why?

8.2 (a) Using the composite midpoint
quadrature rule, compute the approximate
value for the integral

∫ 1

0
x3 dx, using a mesh

size (panel width) of h = 0.5 and also using a
mesh size of h = 1.

(b) Based on the two approximate values com-
puted in part a, use Richardson extrapolation
to compute a more accurate approximation to
the integral.

(c) Would you expect the extrapolated result
computed in part b to be exact in this case?
Why?

8.3 If Q(f) =
∑n
i=1 wif(xi) is an interpola-

tory quadrature rule (i.e., based on polynomial
interpolation) on the interval [0, 1], then is it
true that

∑n
i=1 wi = 1? Prove your answer.

8.4 Fill in the details of the derivation of the
error estimates for the midpoint and trapezoid
quadrature rules given in Section 8.2.3. In par-
ticular, show that the odd-order terms drop
out in both cases, as claimed.

8.5 Suppose that Lagrange interpolation at
a given set of nodes x1, . . . , xn is used to de-
rive a quadrature rule. Prove that the corre-
sponding weights are given by the integrals of
the Lagrange basis functions, wi =

∫ b
a
li(x) dx,

i = 1, . . . , n.

8.6 Let p be a real polynomial of degree n
such that∫ b

a

p(x)xk dx = 0, k = 0, . . . , n− 1.

(a) Show that the n zeros of p are real, sim-
ple, and lie in the open interval (a, b). (Hint :

270 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

Consider the polynomial qk(x) = (x− x1)(x−
x2) · · · (x − xk), where xi, i = 1, . . . k, are the
roots of p in [a, b].)
(b) Show that the n-point interpolatory
quadrature rule on [a, b] whose nodes are the
zeros of p has polynomial degree 2n−1. (Hint :
Consider the quotient and remainder polyno-
mials when a given polynomial is divided by
p.)

8.7 Newton-Cotes quadrature rules are de-
rived by fixing the nodes and then determining
the corresponding weights by the method of
undetermined coefficients so that the polyno-
mial degree is maximized for the given nodes.
The opposite approach could also be taken,
with the weights fixed and the nodes to be de-
termined. In a Chebyshev quadrature rule, for
example, all of the weights are taken to have
the same constant value, w, thereby eliminat-
ing n multiplications in evaluating the result-
ing quadrature formula, since the single weight
can be factored out of the summation.
(a) Use the method of undetermined coef-
ficients to derive a three-point Chebyshev
quadrature rule on the interval [−1, 1].
(b) What is the polynomial degree of the re-
sulting rule?

8.8 In approximating the first derivative of
a function f :R → R, the forward difference
formula

f ′(x) ≈ f(x+ h)− f(x)
h

and the backward difference formula

f ′(x) ≈ f(x)− f(x− h)
h

are both first-order accurate, meaning that
their dominant error terms are O(h). Show
how these two formulas can be combined to
produce a difference approximation for the
first derivative of f that is second-order accu-
rate, i.e., whose dominant error term is O(h2).

8.9 Given a sufficiently smooth function
f :R→ R, use Taylor series to derive a second-
order accurate, one-sided difference approxi-
mation to f ′(x) in terms of the values of f(x),
f(x+ h), and f(x+ 2h).

8.10 Consider the following two methods for
approximating the second derivative of a func-
tion f at a point x:

1. Evaluate the finite difference quotient

f(x+ h)− 2f(x) + f(x− h)
h2

.

2. Interpolate f at the points x − h, x, and
x + h by a quadratic polynomial p(x) and
then evaluate p′′(x).

Do these two methods produce the same re-
sult? Why?

8.11 Suppose that the first-order accurate,
forward difference approximation to the
derivative of a function at a given point pro-
duces the value −0.8333 for h = 0.2 and the
value −0.9091 for h = 0.1. Use Richardson
extrapolation to obtain a better approximate
value for the derivative.

8.12 Archimedes approximated the value of π
by computing the perimeter of a regular poly-
gon inscribing or circumscribing a circle of di-
ameter 1. The perimeter of an inscribed poly-
gon with n sides is given by

pn = n sin(π/n),

and that of a circumscribed polygon by

qn = n tan(π/n),

and these values provide lower and upper
bounds, respectively, on the value of π.

(a) Using the Taylor series expansions for the
sine and tangent functions, show that pn and
qn can be expressed in the form

pn = a0 + a1h
2 + a2h

4 + · · ·

and
qn = b0 + b1h

2 + b2h
4 + · · · ,

where h = 1/n. What are the true values of
a0 and b0?

(b) Given the values p6 = 3.0000 and p12 =
3.1058, use Richardson extrapolation to pro-
duce a better estimate for π. Similarly, given
the values q6 = 3.4641 and q12 = 3.2154, use
Richardson extrapolation to produce a better
estimate for π.

COMPUTER PROBLEMS 271

Computer Problems

8.1 Since ∫ 1

0

4
1 + x2

dx = π,

one can compute an approximate value for π
using numerical integration of the given func-
tion.
(a) Use the midpoint, trapezoid, and Simpson
composite quadrature rules to compute the ap-
proximate value for π in this manner for vari-
ous stepsizes h. Try to characterize the error
as a function of h for each rule, and also com-
pare the accuracy of the rules with each other
(based on the known value of π). Is there any
point beyond which decreasing h yields no fur-
ther improvement? Why?
(b) Implement Romberg integration and re-
peat part a using it.
(c) Compute π again by the same method,
this time using a library routine for adap-
tive quadrature and various error tolerances.
How reliable is the error estimate it produces?
Compare the work required (integrand evalu-
ations and elapsed time) with that for parts a
and b.
(d) Compute π again by the same method,
this time using Monte Carlo integration with
various numbers n of sample points. Try to
characterize the error as a function of n, and
also compare the work required with that for
the previous methods. For a suitable random
number generator, see Section 13.5.

8.2 The integral in the previous problem is
rather easy. Repeat the problem, this time
computing the more difficult integral∫ 1

0

√
x log(x) dx = −4

9
.

8.3 Evaluate each of the following integrals.
(a) ∫ 1

−1

cos(x) dx

(b) ∫ 1

−1

1
1 + 100x2

dx

(c) ∫ 1

−1

√
|x| dx

Try several composite quadrature rules for var-
ious fixed mesh sizes and compare their effi-
ciency and accuracy. Also, try one or more
automatic adaptive quadrature routines using
various error tolerances, and again compare ef-
ficiency for a given accuracy.

8.4 Use numerical integration to verify or re-
fute each of the following conjectures.
(a) ∫ 1

0

√
x3 dx = 0.4

(b) ∫ 1

0

1
1 + 10x2

dx = 0.4

(c) ∫ 1

0

e−9x2
+ e−1024(x−1/4)2

√
π

dx = 0.2

(d) ∫ 10

0

50
π(2500x2 + 1)

dx = 0.5

(e) ∫ 100

−9

1√
|x|

dx = 26

(f) ∫ 10

0

25e−25x dx = 1

(g) ∫ 1

0

log(x) dx = −1

8.5 Each of the following integrands is de-
fined piecewise over the indicated interval. Use
an adaptive quadrature routine to evaluate
each integral over the given interval. For the
same overall accuracy requirement, compare
the cost of evaluating the integral using a sin-
gle subroutine call over the whole interval with
the cost when the routine is called separately

272 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

in each appropriate subinterval. Experiment
with both loose and strict error tolerances.

(a)

f(x) =
{

0 0 ≤ x < 0.3
1 0.3 ≤ x ≤ 1

(b)

f(x) =
{

1/(x+ 2) 0 ≤ x < e− 2
0 e− 2 ≤ x ≤ 1

(c)

f(x) =
{
ex − 1 ≤ x < 0
e1−x 0 ≤ x ≤ 2

(d)

f(x) =
{
e10x − 1 ≤ x < 0.5
e10(1−x) 0.5 ≤ x ≤ 1.5

8.6 Evaluate the following quantities using
each of the given methods:

(a) Use an adaptive quadrature routine to
evaluate each of the integrals

Ik = e−1

∫ 1

0

xkex dx

for k = 0, 1, . . . , 20.

(b) Verify that the integrals just defined satisfy
the recurrence

Ik = 1− kIk−1,

and use it to generate the same quantities,
starting with I0 = 1− e−1.

(c) Generate the same quantities using the
backward recurrence

Ik−1 = (1− Ik)/k,

beginning with In = 0 for some chosen value
n > 20. Experiment with different values of n
to see the effect on the accuracy of the values
generated.

(d) Compare the three methods with respect
to accuracy, stability, and execution time. Can
you explain these results?

8.7 The intensity of diffracted light near a
straight edge is determined by the values of
the Fresnel integrals

C(x) =
∫ x

0

cos
(
πt2

2

)
dt

and

S(x) =
∫ x

0

sin
(
πt2

2

)
dt.

Use an adaptive quadrature routine to evalu-
ate these integrals for enough values of x to
draw a smooth plot of C(x) and S(x) over the
range 0 ≤ x ≤ 5. You may wish to check your
results by obtaining a routine for computing
Fresnel integrals from a special function library
(see Section 7.4.1).

8.8 The period of a simple pendulum is de-
termined by the complete elliptic integral of
the first kind

K(x) =
∫ π/2

0

dθ√
1− x2 sin2 θ

.

Use an adaptive quadrature routine to eval-
uate this integral for enough values of x to
draw a smooth plot of K(x) over the range
0 ≤ x ≤ 1. You may wish to check your re-
sults by obtaining a routine for computing el-
liptic integrals from a special function library
(see Section 7.4.1).

8.9 The gamma function is defined by

Γ(x) =
∫ ∞

0

tx−1e−t dt, x > 0.

Write a program to compute the value of this
function from the definition using each of the
following approaches:
(a) Truncate the infinite interval of integra-
tion and use a composite quadrature rule, such
as trapezoid or Simpson. You will need to
do some experimentation or analysis to deter-
mine where to truncate the interval, based on
the usual trade-off between efficiency and ac-
curacy.
(b) Truncate the interval and use a standard
adaptive quadrature routine. Again, explore
the trade-off between accuracy and efficiency.
(c) Gauss-Laguerre quadrature is designed for
the interval [0,∞] and the weight function e−t,

COMPUTER PROBLEMS 273

so it is ideal for approximating this integral.
Look up the nodes and weights for Gauss-
Laguerre quadrature rules of various orders
(see [1, 251, 282], for example) and compute
the resulting estimates for the integral.

(d) If available, use an adaptive quadrature
routine designed for an infinite interval of in-
tegration.

For each method, compute the approximate
value of the integral for several values of x in
the range 1 to 10. Compare your results with
the values given by the built-in gamma func-
tion or with the known values for integer ar-
guments,

Γ(n) = (n− 1)! .

How do the various methods compare in effi-
ciency for a given level of accuracy?

8.10 Planck’s theory of blackbody radiation
leads to the integral∫ ∞

0

x3

ex − 1
dx.

Evaluate this integral using each of the meth-
ods in the previous exercise, and compare their
efficiency and accuracy.

8.11 In two dimensions, suppose that there
is a uniform charge distribution in the region
−1 ≤ x ≤ 1, −1 ≤ y ≤ 1. Then, with suitably
chosen units, the electrostatic potential at a
point (x̂, ŷ) outside the region is given by the
double integral

Φ(x̂, ŷ) =
∫ 1

−1

∫ 1

−1

dx dy√
(x̂− x)2 + (ŷ − y)2

.

Evaluate this integral for enough points (x̂, ŷ)
to plot the Φ(x̂, ŷ) surface over the region
2 ≤ x̂ ≤ 10, 2 ≤ ŷ ≤ 10.

8.12 Using any method you choose, evaluate
the double integral∫ ∫

e−xy dx dy

over each of the following regions:

(a) The unit square, i.e., 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

(b) The quarter of the unit disc lying in the
first quadrant, i.e., x2 + y2 ≤ 1, x ≥ 0, y ≥ 0.

8.13 (a) Write an automatic quadrature rou-
tine using the composite Simpson rule. Suc-
cessively refine a uniform mesh until a given
error tolerance is met. Estimate the error at
each stage by comparing the values obtained
for consecutive mesh sizes. What kind of data
structure is needed for reusing previously com-
puted function values?

(b) Write an adaptive quadrature routine using
the composite Simpson rule. Successively re-
fine only those subintervals that have not yet
met an error tolerance. What kind of data
structure is needed for keeping track of which
subintervals have converged?

After debugging, test your routines using some
of the integrals in the previous problems and
compare the results with those previously ob-
tained. How does the efficiency of your adap-
tive routine compare with that of your non-
adaptive routine?

8.14 Select an automatic adaptive quadrature
routine and try to devise an integrand function
for which it gives an answer that is completely
wrong. (Hint : This problem may require at
least one round of trial and error.) Can you
devise a smooth function for which the adap-
tive routine is seriously in error?

8.15 (a) Solve the integral equation∫ 1

0

(s2 + t2)1/2u(t) dt =
(s2 + 1)3/2 − s3

3

on the interval [0, 1] by discretizing the inte-
gral using the composite Simpson quadrature
rule with n equally spaced points tj , and also
using the same n points for the si. Solve the
resulting linear system Ax = y using a library
routine for Gaussian elimination with partial
pivoting. Experiment with various values for n
in the range from 3 to 15, comparing your re-
sults with the known unique solution, u(t) = t.
Which value of n gives the best results? Can
you explain why?

(b) For each value of n in part a, compute the
condition number of the matrix A. How does
it behave as a function of n?

(c) Repeat part a, this time solving the linear
system using the singular value decomposition,

274 CHAPTER 8. NUMERICAL INTEGRATION AND DIFFERENTIATION

but omit any “small” singular values. Try var-
ious thresholds for truncating the singular val-
ues, and again compare your results with the
known true solution.

(d) Repeat part a, this time using the method
of regularization. Experiment with various
values for the regularization parameter µ to
determine which value yields the best results
for a given value of n. For each value of µ, plot
a point on a two-dimensional graph whose axes
are the norm of the solution and the norm of
the residual. What is the shape of the curve
traced out as µ varies? Does this shape suggest
an optimal value for µ?

(e) Repeat part a, this time using an optimiza-
tion routine to minimize ‖y−Ax‖22 subject to
the constraint that the components of the so-
lution must be nonnegative. Again, compare
your results with the known true solution.

(f) Repeat part e, this time imposing the addi-
tional constraint that the solution be monoton-
ically increasing, i.e., x1 ≥ 0 and xi−xi−1 ≥ 0,
i = 2, . . . , n. How much difference does this
make in approximating the true solution?

8.16 In this exercise we will experiment
with numerical differentiation using data from
Computer Problem 3.1:

t 0.0 1.0 2.0 3.0 4.0 5.0
y 1.0 2.7 5.8 6.6 7.5 9.9

For each of the following methods for estimat-
ing the derivative, compute the derivative of
the original data and also experiment with ran-
domly perturbing the y values to determine
the sensitivity of the resulting derivative esti-
mates. For each method, comment on both
the reasonableness of the derivative estimates
and their sensitivity to perturbations. Note
that the data are monotonically increasing, so
one might expect the derivative always to be
positive.
(a) For n = 0, 1, . . . , 5, fit a polynomial of de-
gree n by least squares to the data, then differ-
entiate the resulting polynomial and evaluate
the derivative at each of the given t values.
(b) Interpolate the data with a cubic spline,
differentiate the resulting piecewise cubic poly-
nomial, and evaluate the derivative at each of
the given t values (some spline routines pro-
vide the derivative automatically, but it can
be done manually if necessary).
(c) Repeat part b, this time using a smoothing
spline routine. Experiment with various levels
of smoothing, using whatever mechanism for
controlling the degree of smoothing that the
routine provides.
(d) Interpolate the data with a monotonic Her-
mite cubic, differentiate the resulting piecewise
cubic polynomial, and evaluate the derivative
at each of the given t values.

Chapter 9

Initial Value Problems for Ordinary
Differential Equations

9.1 Ordinary Differential Equations

We now turn to the study of differential equations, that is, equations involving derivatives
of the unknown solution. We have previously considered only algebraic equations, for which
the unknown solution is a discrete vector in a finite-dimensional space. For a differential
equation, on the other hand, the unknown solution is a continuous function in an infinite-
dimensional space. Our approach to solving differential equations numerically will be based
on finite-dimensional approximations, a process called discretization. We will replace dif-
ferential equations with algebraic equations whose solutions approximate those of the given
differential equations.

First, we establish some notation and definitions. A system of ordinary differential
equations (ODEs) has the general form

y′(t) = f(t,y(t)),

where t is a real variable, y:R → R
n is a vector-valued function of t, f :Rn+1 → R

n, and
y′(t) = dy(t)/dt denotes the derivative with respect to t, i.e.,

y′1(t)
y′2(t)

...
y′n(t)

 =

dy1(t)/dt
dy2(t)/dt

...
dyn(t)/dt

 .
Thus, we have a system of coupled differential equations in which we are given the function
f and we wish to determine the unknown function y. An important special case, which we
will often consider for simplicity, is n = 1, i.e., a single scalar ODE.

275

276 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

9.1.1 Initial Value Problems

An ordinary differential equation y′ = f(t,y) by itself does not determine a unique solution
function because the equation merely specifies the slopes of the solution components y′(t)
at each point but not the actual solution value y(t) at any point. Thus, in general, there is
an infinite family of functions that satisfy the differential equation, provided f is sufficiently
smooth.

To single out a particular solution, we must specify the value, usually denoted by y0, of
the solution function at some point, usually denoted by t0. Thus, part of the given problem
data is the requirement that

y(t0) = y0.

This additional requirement determines a unique solution to the ODE, provided that f is
continuously differentiable. Because the independent variable t usually represents time, we
think of t0 as the initial time and y0 as the initial value. Hence, this is termed an initial
value problem. The ODE governs the dynamic evolution of the system in time from its
initial state y0 at time t0 onward, and we seek a function y(t) that describes the state of
the system as a function of time.

Example 9.1 Initial Value Problem. Consider the scalar ordinary differential equation
y′ = y. This is an ODE of the form y′ = f(t, y), where in this example f(t, y) = y. The
family of solutions for this equation is given by y(t) = cet, where c is any real constant.
If we impose an initial condition, such as requiring that y(t0) = y0, then this will single
out the unique particular solution that satisfies the initial condition. For this example, if
t0 = 0, then we get c = y0, which means that the solution is y(t) = y0e

t. Some members
of the family of solutions for this equation are sketched in Fig. 9.1, including the particular
solution that satisfies the given initial condition.

..
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...............................

..........................

t

y

t0

y0•

y′ = y

..
...

..
..

...
..

.......

..
...

......................................
...................................

................................
..............................

............................
..........................

........................
.......................

......................
.....................

.....

.................................
...............................

.............................
...........................

.........................
........................

......................
.....................

.....................
....................

...................
..................

..................
.................

................
................

................
...............

..

..........................
........................

.......................
......................

.....................
....................

...................
..................

..................
.................

.................
................

................
...............

...............
...............

..............
..............

..............
.............

.............
.............
.............
.............
.

Figure 9.1: The family of solution curves for the ODE y′ = y.

9.1.2 Higher-Order ODEs

If the first derivative is the highest-order derivative of the solution function appearing in
the equation, an ODE is said to be of first order. Equations with higher-order derivatives

9.1. ORDINARY DIFFERENTIAL EQUATIONS 277

occur frequently in practice but can be transformed into an equivalent first-order system as
follows. For example, given an nth order scalar equation

u(n) = f(t, u, u′, . . . , u(n−1)),

define the n new unknowns y1(t) = u, y2(t) = u′, . . . , yn(t) = u(n−1), so that the original
equation becomes the first-order system of n equations

y′1
y′2
...

y′n−1

y′n

 =

y2

y3
...
yn

f(t, y1, y2, . . . , yn)

 .

Thus, in general, a scalar ODE of order n is equivalent to a system of n first-order ODEs.
If a system of ODEs contains equations having higher-order derivatives, then each such
component equation can be transformed into an equivalent first-order system in this same
manner. For example, a system of two second-order equations would yield an equivalent
system of four first-order equations. For this reason, most ODE software is designed to solve
only first-order equations, and we will also restrict our attention to first-order equations in
discussing numerical solution methods.

Example 9.2 Newton’s Second Law. To illustrate the transformation of a higher-
order ODE into an equivalent system of first-order ODEs, consider Newton’s Second Law
of Motion, F = ma, in one dimension. This is a second-order ODE, since the acceleration a
is the second derivative of the position coordinate, which we denote by x. Thus, the ODE
has the form

x′′ = F/m,

where F and m represent force and mass, respectively. To transform this second-order,
scalar ODE into a system of two first-order ODEs, we define two new functions y1 = x and
y2 = x′. This step gives us the system of two first-order equations[

y′1
y′2

]
=
[
y2

F/m

]
.

We can now use a method for first-order equations to solve this system. When we do so,
the first component of the solution y1 will be the same as the solution x to the original
second-order equation. In addition, we will also get the second component y2, which is the
same as the velocity x′. In three dimensions, Newton’s Law would comprise three second-
order equations, one for each spatial coordinate, and would yield an equivalent system of
six first-order equations.

9.1.3 Stable and Unstable ODEs

Roughly speaking, if the members of the solution family for an ODE move away from
each other with time, then the equation is said to be unstable; but if the members of

278 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

the solution family move closer to each other with time, then the equation is said to be
stable. If the solution curves are neither converging nor diverging (i.e., they remain nearby
but do not actually come together), then the equation is said to be neutrally stable. This
definition of stability for ODEs is consistent with the general concept of stability discussed
in Section 1.2.7 in that it reflects the sensitivity of a solution of the ODE to perturbations. A
small perturbation to a solution of a stable equation will be damped out with time because
the solution curves are converging, whereas for an unstable equation the perturbation will
grow with time because the solution curves are diverging.

The stability of a cone provides a helpful geometric analogy. If a cone resting on its
circular base is slightly perturbed, it will return to its original position; the position is
stable. If a cone is balanced on its point, any slight perturbation will cause it to fall; the
position is unstable. If a cone is resting on its slanted side, then a slight perturbation will
move the cone to a new position nearby; the position is neutrally stable.

Note that the concept of stability of an ODE depends on the entire family of solutions,
not just on some particular solution. Moreover, both stable and unstable behavior can
occur in different portions of the domain of interest for the same equation.

This qualitative concept of stability for an ODE y′ = f(t,y) can be made more precise
quantitatively by considering the Jacobian matrix Jf (t,y) with entries

{Jf (t,y)}ij = ∂fi(t,y)/∂yj .

If any of the eigenvalues of this matrix have positive real parts, then the equation is unstable.
If all of the eigenvalues have negative real parts, then the equation is stable. If one or more
eigenvalues have zero real parts, and all of the remainder have negative real parts, then the
equation is neutrally stable. Since the entries of Jf are functions of t and y, its eigenvalues
may vary with time, and hence the stability of the equation may vary from region to region.
For scalar ODEs, which we will focus on for simplicity, stability of an ODE is determined
by the sign of its Jacobian, which is scalar valued in that case.

Example 9.3 Unstable ODE. In Example 9.1, we considered the scalar ODE y′ = y and
sketched its family of solution curves y(t) = cet in Fig. 9.1. From the exponential growth
of the solutions, we know that the solution curves for this equation move away from each
other as time increases, as we see in Fig. 9.1. We can therefore conclude that the equation
is unstable. More rigorously, we note that the Jacobian of f (i.e., ∂f/∂y) is positive (in
fact, it is the constant 1), so the equation is unstable.

Example 9.4 Stable ODE. Let us now consider a different scalar equation, namely,
y′ = −y. The family of solutions for this equation is given by y(t) = ce−t, where c is any
real constant. For this equation we see that the Jacobian of f is negative (∂f/∂y = −1),
so the equation is stable. We also can see this from the exponential decay of the solutions,
as shown in Fig. 9.2, in which some members of the solution family for this equation are
drawn.

Example 9.5 Neutrally Stable ODE. Consider the scalar ODE y′ = a, for a given

9.1. ORDINARY DIFFERENTIAL EQUATIONS 279

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.............................

..........................

t

y

t0

y′ = −y

..

..

..

...

Figure 9.2: The family of solution curves for the ODE y′ = −y.

constant a. The family of solutions is given by y(t) = at+ c, where c is any real constant.
Thus, the solution curves, as illustrated for a = 1

2 in Fig. 9.3, are parallel straight lines that
are neither converging nor diverging, and hence the equation is neutrally stable. Note that
∂f/∂y = 0 for this equation, consistent with its neutral stability. Note also that the issue
that determines stability is not whether the solution curves are increasing or decreasing
(either case can apply for this equation, depending on whether a is positive or negative)
but rather the relationship of the solution curves to each other.

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
................................

..........................

t

y

t0

y′ = 1
2

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.......

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.......

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.......

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.......

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.......

Figure 9.3: The family of solution curves for the ODE y′ = 1
2 .

Example 9.6 Linear System of ODEs. A linear, homogeneous system of ODEs with
constant coefficients has the form

y′ = Ay,

where A is an n × n matrix. Suppose we have the initial condition y(0) = y0. Let the
eigenvalues of A be denoted by λi, and the corresponding eigenvectors by ui, i = 1, . . . , n.
For simplicity, assume that the eigenvectors are linearly independent, so that we can express

280 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

y0 as a linear combination

y0 =
n∑
i=1

αiui.

Then it is easily confirmed that

y(t) =
n∑
i=1

αiuie
λit

is a solution to the ODE that satisfies the initial condition. We see that eigenvalues of A
with positive real parts yield exponentially growing solution components, eigenvalues with
negative real parts yield exponentially decaying solution components, and pure imaginary
eigenvalues with zero real parts yield oscillatory solution components. These are consis-
tent with our definitions of instability, stability, and neutral stability, respectively, as the
Jacobian J = A for this problem.

9.2 Numerical Solution of ODEs

An analytical solution of an ODE is a closed-form formula for computing the value of the
solution function at any point t. In contrast, a numerical solution of an ODE is a table of
approximate values of the solution function at a discrete set of points. Such a numerical
solution is obtained by simulating the behavior of the system governed by the differential
equation. Approximate solution values are generated step by step in discrete increments
moving across the interval in which the solution is sought. For this reason, numerical
methods for solving ODEs are sometimes called discrete variable methods.

In stepping from one discrete point to the next, we will in general incur some error, which
means that our new approximate solution value will lie on a different member of the family
of solution curves for the ODE from the one on which we started. The stability or instability
of the equation determines in part whether such errors are magnified or diminished with
time.

9.2.1 Euler’s Method

A numerical solution of an ODE is generated by simulating the behavior of the system
governed by the ODE. Starting at t0 with the given initial value, we wish to track the
trajectory dictated by the ODE. Evaluating f(t0, y0) tells us the slope of the trajectory at
that point. We use this information to predict the value y1 of the solution at some future
time t1 = t0 + h for some suitably chosen increment h.

The simplest example of this approach is Euler’s method . Consider the Taylor series

y(t+ h) = y(t) + y′(t)h+
y′′(t)

2
h2 + · · ·

= y(t) + f(t, y(t))h+
y′′(t)

2
h2 + · · · .

9.2. NUMERICAL SOLUTION OF ODES 281

Euler’s method is derived by dropping terms of second and higher order to obtain the
approximate solution value

yk+1 = yk + f(tk, yk)hk,

which allows us to step from time tk to time tk+1 = tk + hk. Equivalently, if we replace
the derivative in the differential equation y′ = f(t, y) with a finite difference quotient, we
obtain an approximating algebraic equation

yk+1 − yk
hk

= f(tk, yk),

which gives Euler’s method when solved for yk+1. Thus, Euler’s method advances the
solution by extrapolating along a straight line whose slope is given by f(tk, yk). Euler’s
method is called a single-step method because it depends on information at only one point
in time to advance to the next point.

Example 9.7 Euler’s Method. We previously considered the equation y′ = y, which
is easily solved analytically, but for illustration let us apply Euler’s method to solve it
numerically. For some stepsize h, we advance the solution from time t0 = 0 to time t1 =
t0 + h:

y1 = y0 + y′0h = y0 + y0h = y0(1 + h).

Note that the value for the solution we obtain at t1 is not exact (i.e., y1 6= y(t1)). For
example, if t0 = 0, y0 = 1, and h = 0.5, then we get y1 = 1.5, whereas the exact solution
for this initial value is y(0.5) = exp(0.5) ≈ 1.649.

From the Taylor series used to derive Euler’s method, we know that the error is propor-
tional to h2, so we can reduce the error for this step by a factor of 1

4 by reducing the stepsize
by a factor of 1

2 , provided rounding error is negligible. For any nonzero error, however, the
value y1 lies on a different member of the family of solution curves from the one on which
we started.

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...............................

..........................

t

y

t0 t1 t2 t3 t4

y0

y′ = y

•
•

•

•

•

.....................................
.....................................

......................................
..........................

..........................
..........................

..........................
.....................

..................
..................

..................
..................

..................
...................

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

..

...................................
..............................

...........................
.........................

......................
.....................

...................
..................

.................
................

................
...............

..............
..............

.............
.............
............
............
............
............
............
...........
...........
...........
...........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
........

......................................
................................

.............................
..........................

.......................
.....................

....................
...................

..................
.................

................
...............

..............
..............

.............
.............
.............
............
............
............
............
...........
...........
...........
...........
...........
..........
..........
..........
..........
..........
..........
..........
........

...
..................................

..............................
...........................

........................
......................

.....................
...................

..................
.................

................
...............

...............
..............

..............
.............

.............
.............
............
............
............
...........
...........
...........
...........
...........
...........
..........
..........
..........
..........

..
.....................................

................................
.............................

.........................
.......................

.....................
....................

...................
.................

.................
................

...............
...............

..............
..............

.............
.............
............
............
............
...........
...........
...........
...........
...........
...........
...........

..
..

..................................
..............................

..........................
........................

......................
.....................

...................
..................

.................
................

...............
...............

..............
..............

.............
.............
............
............
............
............
...........
...........
...........
.......

Figure 9.4: Euler’s method for the ODE y′ = y.

To continue the numerical solution process, we take another step from t1 to t2 = t1 +h =
1.0, obtaining y2 = y1 + y1h = 1.5 + (1.5)(0.5) = 2.25. Note that y2 differs not only from
the true solution of the original problem at t = 1, namely, y(1) = exp(1) ≈ 2.718 but it

282 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

also differs from the solution curve passing through the previous point (t1, y1), which has
the approximate value 2.473 at t = 1. Thus, we have moved to still another member of the
family of solution curves for this ODE. We can continue to take additional steps, generating
a table of discrete values of the approximate solution over whatever interval we desire. As
we do so, we will hop from one member of the solution family to another at each step.

For this unstable equation, the errors we make in the numerical method are amplified
with time as a result of the divergence of the solution curves, as shown in Fig. 9.4. For a
stable equation such as y′ = −y, on the other hand, the errors in the numerical solution
may diminish with time, as shown in Fig. 9.5.

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...........................

..........................

t

y

t0 t1 t2 t3 t4

y0

y′ = −y

•

•

•
•

•

..

..

...

...

...

...

Figure 9.5: Euler’s method for the ODE y′ = −y.

9.3 Accuracy and Stability

9.3.1 Order of Accuracy

Like other methods that replace derivatives with finite differences, a numerical procedure
for solving an ODE suffers from two distinct sources of error:

• Rounding error , which is due to the finite precision of floating-point arithmetic
• Truncation error (or discretization error), which is due to the method used, and which

would remain even if all arithmetic could be performed exactly

Although they arise from different sources, these two types of errors are not independent
of each other. For example, the truncation error can usually be reduced by using a smaller
stepsize h, but doing so may incur greater rounding error (see Example 1.11). In most
practical situations, however, truncation error is the dominant factor in determining the
accuracy of numerical solutions of ODEs, and we shall henceforth ignore rounding error.

The truncation error at step k of a numerical solution of an ODE can be further broken
down into:

• Local truncation error , denoted by Lk, which is the error made in one step of the numerical

9.3. ACCURACY AND STABILITY 283

method. More precisely,
Lk = yk − uk−1(tk),

where yk is the computed solution at tk, and uk−1 is the member of the family of true
solutions to the ODE that passes through the previous point (tk−1, yk−1).
• Global truncation error , denoted by Ek, which is the difference between the computed

solution and the true solution determined by the initial data at t0. More precisely,

Ek = yk − u0(tk) = yk − y(tk).

The global error is not necessarily the same as the sum of the local errors. The global error
will generally be greater than the sum of the local errors if the equation is unstable but
may be less than that sum if the equation is stable, as shown in Figs. 9.6 and 9.7, where
the local errors are indicated by small vertical bars between solution curves and the global
error is indicated by a bar at the end. Having a small global error is obviously what we
want, but we can control only the local error directly.

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..............................

..........................

t

y

t0 t1 t2 t3 t4

y0

y′ = y

global error

........

.

........

.....

........

........

...

........

........

........

....

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....................

.............

...
.....
........
.....

...............................
...............................

...............................
............................

......................
......................

......................
......................

......................
................

................
................

................
................

................
................

...............
............
............
............
............
............
............
............
............
............
............
............
.....

..............................
..........................

........................
......................

.....................
...................

..................
.................

................
...............

...............
..............

..............
.............
.............
............
............
............
............
...........
...........
...........
...........
...........
...........
...........
..........
..........
..........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...

................................
............................

.........................
.......................

......................
....................

..................
.................

.................
................

...............
...............

..............
.............

.............
.............
............
............
............
............
...........
...........
...........
...........
...........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.....

...................................
..............................

...........................
.........................

.......................
.....................

...................
..................

.................
................

................
...............

..............
..............

.............
.............
............
............
............
............
............
...........
...........
...........
...........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
......

......................................
................................

.............................
..........................

.......................
.....................

....................
...................

..................
.................

................
...............

..............
..............

.............
.............
.............
.............
............
............
............
...........
...........
...........
...........
...........
..........
..........
..........
..........
..........
..........
..........
......

...
...................................

...............................
...........................

........................
......................

.....................
...................

..................
.................

................
...............

...............
..............

..............
.............

.............
.............
............
............
............
...........
...........
...........
...........
...........
...........
..........
..........
..........
........

Figure 9.6: Local and global errors in Euler’s method for the ODE y′ = y.

The accuracy of a numerical method is said to be of order p if

Lk = O(hp+1
k).

The motivation for this definition, with the order one less than the exponent of the stepsize
in the local error, is that if the local error is of order p+ 1, then the sum of the local errors
from t0 to tk will be

tk − t0
h
O(hp+1) = O(hp),

where h is the average stepsize, and this gives a rough approximation of the global error
Ek.

Example 9.8 Accuracy of Euler’s Method. Consider the Taylor series

y(t+ h) = y(t) + y′(t)h+O(h2) = y(t) + f(t, y(t))h+O(h2).

284 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

If we take t = tk and h = hk, we get

y(tk+1) = y(tk) + f(tk, y(tk))hk +O(h2
k).

If we now subtract this from Euler’s method we get

yk+1 − y(tk+1) = [yk − y(tk)] + [f(tk, yk)− f(tk, y(tk))]hk −O(h2
k).

The difference on the left side preceding is the global error Ek+1. If there were no prior
errors, then we would have yk = y(tk), and the first two differences on the right side would
be zero, leaving only the O(h2

k) term, which is the local truncation error. This result means
that Euler’s method is first-order accurate.

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..............................

..........................

t

y

t0 t1 t2 t3 t4

y0

y′ = −y

global error

........

........

........

........

..

........

........

.

........

.

.....
........
.......

..

..

...

...

...

...

Figure 9.7: Local and global errors in Euler’s method for the ODE y′ = −y.

9.3.2 Stability of a Numerical Method

The concept of stability for numerical solutions of ODEs is analogous to, but distinct from,
the concept of stability of the ODE itself. Recall that an ODE is stable if its solution
curves do not diverge from each other with time. Similarly, a numerical method is said to
be stable if small perturbations do not cause the resulting numerical solutions to diverge
from each other without bound (recall the general notion of stability in Section 1.2.7). Such
divergence of numerical solutions could be due to instability of the ODE being solved, but
it can also be due to the numerical method itself, even when solving a stable ODE.

Example 9.9 Stability of Euler’s Method. From the derivation in Example 9.8 we see
that the global error is the sum of the local error and what might be termed the propagated
error . To characterize the latter, note that by the Mean Value Theorem we can write

f(tk, yk)− f(tk, y(tk)) = J(ξ)(yk − y(tk))

for some (unknown) value ξ, so that we can express the global error at step k + 1 as

Ek+1 = (1 + hkJ)Ek + Lk+1.

9.3. ACCURACY AND STABILITY 285

Thus, the global error is multiplied at each step by the factor (1 +hkJ), which is called the
amplification factor or growth factor . If |1 + hJ | < 1, then the errors do not grow, and the
method is stable. This condition is equivalent to requiring hJ to lie in the interval (−2, 0).
If this is not the case, then the errors grow and the method is unstable. Note that such
instability could be due to instability of the ODE (i.e., J > 0), but it can also occur for a
stable equation (J < 0) if h > −2/J . We will see a dramatic example of such numerical
instability for a stable equation in Example 9.11.

For a system of equations, the amplification factor for Euler’s method is the matrix
(I + hJ), and the condition for stability of the method is ρ(I + hJ) < 1, which is satisfied
if the eigenvalues of hJ lie inside a circle in the complex plane of radius 1 and centered at
−1 [notice that this includes the interval (−2, 0) of the single-equation case].

In general, the amplification factor depends on the particular ODE being solved (which
determines the Jacobian J), the particular numerical method used (which determines the
form of the amplification factor), and the stepsize h.

An alternative approach to assessing the accuracy and stability of a numerical method
is to apply the method to the linear ODE y′ = λy with initial condition y(0) = y0, whose
exact solution is given by y(t) = y0e

λt. This will enable us to determine the accuracy of
the method by comparing the computed and exact solutions and to determine stability by
characterizing the growth factor of the numerical solution.

For example, applying Euler’s method to this equation using a fixed stepsize h, we have

yk+1 = yk + λykh = (1 + λh)yk,

which means that
yk = (1 + λh)ky0.

Provided λ < 0, the exact solution decays to zero as t increases, as will the computed
solution if |1 + λh| < 1. This result agrees with our earlier stability analysis because J = λ
for this ODE. We also note that the growth factor 1 + λh agrees with the series expansion

eλh = 1 + λh+
(λh)2

2
+

(λh)3

6
+ · · ·

through terms of first order in h, and hence Euler’s method is first-order accurate. Especially
for more complicated numerical methods, a linear ODE is easier to work with than a general
ODE, and it produces essentially the same stability result if we equate λ with the Jacobian J
at a given point. An important caveat, however, is that λ is constant, whereas the Jacobian
J varies for a nonlinear equation, and hence the stability can potentially change.

9.3.3 Stepsize Control

In choosing a stepsize h for advancing the numerical solution of an ODE we would like to
take as large a step as possible to minimize computational cost, but we must also take into
account both stability and accuracy. Obviously, to yield a meaningful solution, the stepsize
must obey any stability restrictions imposed by the method being used. In addition, a
local error estimate is needed to ensure that the desired accuracy is attained. With Euler’s

286 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

method, for example, we know that the local error is approximately (y′′/2)h2, and hence
we should choose the stepsize so that

h ≤ (2tol/|y′′|)1/2,

where tol is the specified local error tolerance. Of course, we do not know the value of y′′,
but we can estimate it by a difference quotient of the form

y′′ ≈
y′k − y′k−1

tk − tk−1
.

Other methods of obtaining local error estimates are based on the difference between results
obtained using methods of different orders or different stepsizes.

9.4 Implicit Methods

Euler’s method is an explicit method in that it uses only information at time tk to advance
the solution to time tk+1. This may appear to be a virtue, but we saw that Euler’s method
has a rather limited stability interval of (−2, 0). A larger stability region can be obtained
by using information at time tk+1, which makes the method implicit . The simplest example
is the backward Euler method ,

yk+1 = yk + f(tk+1, yk+1)hk.

This method is implicit because we must evaluate f with the argument yk+1 before we know
its value. This statement simply means that a value for yk+1 that satisfies the preceding
equation must be determined, and if f is a nonlinear function of y, as is often the case, then
an iterative solution method, such as fixed-point iteration or Newton’s method, must be
used. A good starting guess for the iteration can be obtained from an explicit integration
method, such as Euler’s method, or from the solution at the previous time step.

Example 9.10 Backward Euler Method. Consider the nonlinear ODE

y′ = −y3

with initial condition y(0) = 1. Using the backward Euler method with a stepsize of h = 0.5,
we obtain the equation

y1 = y0 + f(t1, y1)h = 1− 0.5y3
1

for the solution value at the next step. This nonlinear equation for y1 is already set up to
solve by fixed-point iteration, repeatedly substituting successive values for y1 on the right-
hand side, or we could use any other method from Chapter 5, such as Newton’s method. In
any case, we need a starting guess for y1, for which we could simply use the previous solution
value, y0 = 1, or we could use an explicit method to produce a starting guess for the implicit
method. Using Euler’s method, for example, we would obtain y1 = y0 − 0.5y3

0 = 0.5 as a
starting guess for the iterative solution of the implicit equation. The iterations eventually
converge to the final value y1 ≈ 0.7709.

9.4. IMPLICIT METHODS 287

Given the extra trouble and computation in using an implicit method, one might wonder
why we would bother. The answer is that implicit methods generally have a significantly
larger stability region than comparable explicit methods. To determine the stability of the
backward Euler method, we apply it to the linear ODE y′ = λy, obtaining

yk+1 = yk + λyk+1h,

or
(1− λh)yk+1 = yk,

so that

yk =
(

1
1− λh

)k
y0.

Thus, to mimic the exponential decay of the exact solution when λ < 0, we must have
|1/(1− λh)| < 1. Moreover, the growth factor

1
1− λh

= 1 + λh+ (λh)2 + · · ·

agrees with the expansion for eλh through terms of order h, so the backward Euler method
is first-order accurate.

More generally, the amplification factor for the backward Euler method for a scalar
equation is 1/(1− hJ), which is less than 1 in magnitude for any positive h provided that
J < 0. Thus, the stability interval for the backward Euler method is (−∞, 0), or the
entire left half of the complex plane in the case of a system of equations, and hence for a
stable equation the method is stable for any positive stepsize. Such a method is said to be
unconditionally stable (other terms sometimes used for this concept are absolutely stable,
A-stable, or A0-stable). The great virtue of an unconditionally stable method is that the
desired local accuracy places the only constraint on our choice of stepsize. Thus, we may be
able to take much larger steps than for an explicit method of comparable order and attain
much higher overall efficiency despite requiring more computation per step.

Although the backward Euler method is unconditionally stable, its first-order accuracy
severely limits its usefulness. We can obtain a method of higher-order accuracy by combining
the Euler and backward Euler methods. In particular, averaging these two methods yields
the implicit trapezoid rule

yk+1 = yk +
f(tk, yk) + f(tk+1, yk+1)

2
hk.

To determine the stability and accuracy of this method, we apply it to the linear ODE
y′ = λy, obtaining

yk+1 = yk +
λyk + λyk+1

2
h,

which implies that

yk =
(

1 + λh/2
1− λh/2

)k
y0.

288 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

Thus, the method is stable if |(1 + λh/2)/(1 − λh/2)| < 1, which is true for any positive
value of h provided λ < 0. In addition, the growth factor

1 + λh/2
1− λh/2

=
(

1 +
λh

2

)(
1 +

λh

2
+
(
λh

2

)2

+
(
λh

2

)3

+ · · ·

)

= 1 + λh+
(λh)2

2
+

(λh)3

4
+ · · ·

agrees with the expansion of eλh through terms of order h2, and hence the trapezoid method
is second-order accurate.

More generally, the trapezoid rule has amplification factor (1+hJ/2)/(1−hJ/2), which
is less than 1 in magnitude for any positive stepsize provided that J < 0. The resulting
stability regions are the interval (−∞, 0) for a scalar equation and the entire left half of the
complex plane for a system of equations. Thus, the trapezoid rule is unconditionally stable
as well as second-order accurate.

We have now seen two examples of implicit methods that are unconditionally stable,
but not all implicit methods have this property. Implicit methods generally have larger
stability regions than explicit methods, but the allowable stepsize is not always unlimited.
Implicitness is not sufficient to guarantee stability, and stability is not sufficient to guarantee
accuracy.

9.5 Stiff Differential Equations

The solution curves for a stable equation converge with time. This convergence has the
favorable property of damping errors in a numerical solution, but if it is too rapid, as
illustrated in Fig. 9.8, then difficulties of a different type may arise. Such an equation is
said to be stiff .

..
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
............................

..........................

t

y

...

...

..

...

...

........

........

........

........

........

........

........

........

.........

........

........

.........
...

........

........

........

........

........

........

.........

........
.........
..

........

........

........

........

.........

........
.........
...

........

........

........

.........
..........
...

Figure 9.8: The family of solution curves for a typical stiff ODE.

Formally, a stable system of ODEs is stiff if the eigenvalues of its Jacobian matrix J
have greatly differing magnitudes. There may be an eigenvalue with a large negative real
part (corresponding to a strongly damped component of the solution) or a large imaginary
part (corresponding to a rapidly oscillating component of the solution). Such a differential
equation corresponds to a physical process whose components have disparate time scales or
a process whose time scale is small compared to the interval over which it is being studied.

9.5. STIFF DIFFERENTIAL EQUATIONS 289

Some numerical methods are very inefficient for stiff equations because the rapidly vary-
ing component of the solution forces very small stepsizes to be used to maintain stability.
Since the stability restriction depends on the rapidly varying component of the solution,
whereas the accuracy restriction depends on the slowly varying component, the stepsize
may be much more severely restricted by stability than by the required accuracy. For ex-
ample, Euler’s method with a fixed stepsize is unstable for solving a stiff equation, whereas
the implicit backward Euler method is stable for stiff problems. Stiff ODEs need not be
difficult to solve numerically provided a suitable method is chosen.

Example 9.11 Stiff ODE. To illustrate the numerical solution of a stiff ODE, consider
the equation

y′ = −100y + 100t+ 101

with initial condition y(0) = 1. The general solution of this ODE is y(t) = 1 + t+ ce−100t,
and the particular solution satisfying the initial condition is y(t) = 1 + t (i.e., c = 0). Since
the solution is linear, Euler’s method is theoretically exact for this problem. However, to
illustrate the effect of truncation or rounding errors, let us perturb the initial value slightly.
With a stepsize h = 0.1, the first few steps for the given initial values are:

t 0.0 0.1 0.2 0.3 0.4
Exact solution 1.00 1.10 1.20 1.30 1.40
Euler solution 0.99 1.19 0.39 8.59 −64.2
Euler solution 1.01 1.01 2.01 −5.99 67.0

The computed solution is incredibly sensitive to the initial value, as each tiny perturbation
results in a wildly different solution. An explanation for this behavior is shown in Fig. 9.9.
Any point deviating from the desired particular solution, even by only a small amount,
lies on a different solution curve, for which c 6= 0, and therefore the rapid transient of
the general solution is present. Euler’s method bases its projection on the derivative at
the current point, and the resulting large value causes the numerical solution to diverge
radically from the desired solution. This behavior should not surprise us. The Jacobian for
this equation is J = −100, so the stability condition for Euler’s method requires a stepsize
h < 0.02, which we are violating.

0.0 0.1 0.2

1.0

2.0

...
..

...
..

• •

•

..
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

............

...........
..........
.........
........
........
........
.........
..........
.............
.......................

....................................
...

..desired solution
desired solution

Euler solution

transient solution

Figure 9.9: Unstable solution of stiff ODE using Euler method.

By contrast, the backward Euler method has no trouble solving this problem. In fact,
the backward Euler solution is extremely insensitive to the initial value, as shown in the
following table,

290 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

t 0.0 0.1 0.2 0.3 0.4
Exact solution 1.00 1.10 1.20 1.30 1.40

BE solution 0.00 1.01 1.19 1.30 1.40
BE solution 2.00 1.19 1.21 1.30 1.40

and illustrated in Fig. 9.10. Even with a very large perturbation in the initial value, by
using the derivative at the next point rather than the current point, the transient is quickly
damped out and the backward Euler solution converges to the desired solution curve after
only a few steps. This behavior is consistent with the unconditional stability of the backward
Euler method for a stable equation.

0.0 0.1 0.2

1.0

2.0

...
..

...
..

•

•
•

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..
..

..
..desired solution

BE solution

Figure 9.10: Stable solution of stiff ODE using backward Euler method.

9.6 Survey of Numerical Methods for ODEs

Having covered the basic concepts of solving ordinary differential equations numerically, we
now briefly survey each of the major categories of methods for such problems.

9.6.1 Taylor Series Methods

We have already seen that Euler’s method can be derived from a Taylor series expansion. By
retaining more terms in the Taylor series, we can generate higher-order single-step methods.
For example, retaining one additional term in the Taylor series

y(t+ h) = y(t) + y′(t)h+
y′′(t)

2
h2 +

y′′′(t)
6

h3 + · · ·

gives the second-order method

yk+1 = yk + y′khk +
y′′k
2
h2
k.

Note, however, that this approach requires the computation of higher derivatives of y. These
can be obtained by differentiating y′ = f(t, y) using the chain rule, e.g.,

y′′ = ft(t, y) + fy(t, y)y′ = ft(t, y) + fy(t, y)f(t, y),

where the subscripts indicate partial derivatives with respect to the given variable. As the
order increases, such expressions for the derivatives rapidly become too complicated to be

9.6. SURVEY OF NUMERICAL METHODS FOR ODES 291

practical to compute, so Taylor series methods of higher order have not often been used
in practice. Recently, however, the availability of symbolic manipulation and automatic
differentiation systems has made these methods more feasible.

Example 9.12 Taylor Series Method. To illustrate the second-order Taylor series
method, we use it to solve the ODE

y′ = f(t, y) = −2ty2,

with initial value y(0) = 1. We differentiate f to obtain for this problem

y′′ = ft(t, y) + fy(t, y)f(t, y) = −2y2 + (−4ty)(−2ty2) = 2y2(4t2y − 1).

Taking a step from t0 = 0 to t1 = 0.25 using stepsize h = 0.25, we obtain

y1 = y0 + y′0h+
y′′0
2
h2 = 1 + 0− 0.0625 = 0.9375.

Continuing with another step from t1 = 0.25 to t2 = 0.5, we obtain

y2 = y1 + y′1h+
y′′1
2
h2 = 0.9375− 0.1099− 0.0421 = 0.7856.

For comparison, the exact solution for this problem is y(t) = 1/(1 + t2), and hence the true
solution at the integration points is y(0.25) = 0.9412 and y(0.5) = 0.8.

9.6.2 Runge-Kutta Methods

Runge-Kutta methods are single-step methods that are similar in motivation to Taylor series
methods but do not require the computation of higher derivatives. Instead, Runge-Kutta
methods simulate the effect of higher derivatives by evaluating f several times between tk
and tk+1.

Example 9.13 Derivation of a Runge-Kutta Method. The basic idea of Runge-Kutta
methods is best illustrated by example, the simplest of which is Heun’s method . Recall from
Section 9.6.1 that the second derivative of y is given by

y′′ = ft + fyf,

where each function is evaluated at (t, y). We can approximate the term on the right by
expanding f in a Taylor series in two variables

f(t+ h, y + hf) = f + hft + hfyf +O(h2),

from which we obtain

ft + fyf =
f(t+ h, y + hf)− f(t, y)

h
+O(h2).

292 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

With this approximation to the second derivative, the second-order Taylor series method
given in Section 9.6.1 becomes

yk+1 = yk + f(tk, yk)hk +
f(tk + hk, yk + hkf(tk, yk))− f(tk, yk)

2hk
h2
k

= yk +
f(tk, yk) + f(tk + hk, yk + hkf(tk, yk))

2
hk,

which can be implemented in the form

yk+1 = yk +
1
2

(k1 + k2),

where

k1 = f(tk, yk)hk,
k2 = f(tk + hk, yk + k1)hk.

Heun’s method, which is of second-order accuracy, is analogous to the implicit trapezoid
rule but remains explicit by using the Euler prediction yk +k1 instead of yk+1 in evaluating
f at tk+1.

Example 9.14 Heun’s Method. To illustrate the use of Heun’s method, we use it to
solve the ODE

y′ = −2ty2,

with initial value y(0) = 1. Taking a step from t0 = 0 to t1 = 0.25 using stepsize h = 0.25,
we obtain

k1 = f(t0, y0)h = 0 and k2 = f(t0 + h, y0 + k1)h = −0.125,

so that
y1 = y0 +

1
2

(k1 + k2) = 1− 0.0625 = 0.9375.

Continuing with another step from t1 = 0.25 to t2 = 0.5, we obtain

k1 = f(t1, y1)h = −0.1099 and k2 = f(t1 + h, y1 + k1)h = −0.1712,

so that
y2 = y1 +

1
2

(k1 + k2) = 0.9375− 0.1406 = 0.7969.

For comparison, the exact solution for this problem is y(t) = 1/(1 + t2), and hence the true
solution at the integration points is y(0.25) = 0.9412 and y(0.5) = 0.8.

The best-known Runge-Kutta method is the classical fourth-order scheme

yk+1 = yk +
1
6

(k1 + 2k2 + 2k3 + k4),

9.6. SURVEY OF NUMERICAL METHODS FOR ODES 293

where

k1 = f(tk, yk)hk,
k2 = f(tk + hk/2, yk + k1/2)hk,
k3 = f(tk + hk/2, yk + k2/2)hk,
k4 = f(tk + hk, yk + k3)hk.

This method is analogous to Simpson’s rule; indeed it is Simpson’s rule if f depends only
on t. For an illustration of the use of the classical fourth-order Runge-Kutta method for
solving a system of ODEs, see Example 10.1.

Runge-Kutta methods have a number of virtues. To proceed to time tk+1, they require
no history of the solution prior to time tk, which makes them self-starting at the beginning
of the integration, and also makes it easy to change stepsize during the integration. These
facts also make Runge-Kutta methods relatively easy to program, which accounts in part
for their popularity.

Unfortunately, classical Runge-Kutta methods provide no error estimate on which to
base the choice of stepsize. More recently, however, Fehlberg devised a Runge-Kutta method
that uses six function evaluations per step to produce both fifth-order and fourth-order
estimates of the solution, whose difference provides an estimate for the local error. This
approach has led to automatic Runge-Kutta solvers that are effective for many problems
but are relatively inefficient for stiff problems or when very high accuracy is required. It is
possible, however, to define implicit Runge-Kutta methods with superior stability properties
that are suitable for solving stiff equations.

9.6.3 Extrapolation Methods

Extrapolation methods are based on the use of a single-step method to integrate the ODE
over a given interval, tk ≤ t ≤ tk+1, using several different stepsizes hi and yielding results
denoted by Y (hi). This gives a discrete approximation to a function Y (h), where Y (0) =
y(tk+1). An interpolating polynomial or rational function Ŷ (h) is fit to these data, and
Ŷ (0) is then taken as the approximation to Y (0).

We saw another example of this approach in Richardson extrapolation for numerical
differentiation and integration (see Section 8.8). Extrapolation methods are capable of
achieving very high accuracy, but they tend to be much less efficient and less flexible than
other methods for ODEs, so they are used mainly when extremely high accuracy is required
and cost is not a significant factor.

9.6.4 Multistep Methods

Multistep methods use information at more than one previous point to estimate the solution
at the next point. For this reason, they are sometimes called methods with memory. Linear
multistep methods have the form

yk+1 =
n∑
i=1

αiyk+1−i + h

n∑
i=0

βif(tk+1−i, yk+1−i).

294 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

The parameters αi and βi are determined by polynomial interpolation. If β0 = 0, the
method is explicit, but if β0 6= 0, the method is implicit.

Example 9.15 Derivation of Multistep Methods. To illustrate the derivation of
multistep methods, we derive an explicit two-step method of the form

yk+1 = α1yk + (β1y
′
k + β2y

′
k−1)h,

where the parameters α1, β1, and β2 are to be determined. Using the method of undeter-
mined coefficients, we will force the formula to be exact for the first three monomials. If
y(t) = 1, then y′(t) = 0, so that we have the equation

1 = α1 · 1 + (β1 · 0 + β2 · 0)h.

If y(t) = t, then y′(t) = 1, so that we have the equation

tk+1 = α1tk + (β1 · 1 + β2 · 1)h.

If y(t) = t2, then y′(t) = 2t, so that we have the equation

t2k+1 = α1t
2
k + (β1 · 2tk + β2 · 2tk−1)h.

All three of these equations must hold for any values of the ti, so we make the convenient
choice tk−1 = 0, h = 1 (hence tk = 1 and tk+1 = 2) and solve the resulting 3 × 3 linear
system to obtain the values α1 = 1, β1 = 3

2 , β2 = −1
2 . Thus, the resulting explicit two-step

method is
yk+1 = yk +

1
2

(3y′k − y′k−1)h,

and by construction it is of order two.
Similarly, we can derive an implicit two-step method of the form

yk+1 = α1yk + (β0y
′
k+1 + β1y

′
k)h.

Again using the method of undetermined coefficients, we force the formula to be exact for
the first three monomials, obtaining the three equations

1 = α1 · 1 + (β0 · 0 + β1 · 0)h,
tk+1 = α1tk + (β0 · 1 + β1 · 1)h,
t2k+1 = α1t

2
k + (β0 · 2tk+1 + β1 · 2tk)h.

Making the convenient choice tk = 0, h = 1 (hence, tk+1 = 1), we solve the resulting 3× 3
linear system to obtain the values α1 = 1, β1 = 1

2 , β2 = 1
2 . Thus, the resulting implicit

two-step method is

yk+1 = yk +
1
2

(y′k+1 + y′k)h,

which we recognize as the trapezoid rule, and by construction it is of order two. Higher-
order multistep methods can be derived in this same manner, forcing the desired formula to

9.6. SURVEY OF NUMERICAL METHODS FOR ODES 295

be exact for as many monomials as there are parameters to be determined and then solving
the resulting system of equations for those parameters.

Alternatively, multistep methods can also be derived by numerical quadrature. For
example, since

y(tk+1) = y(tk) +
∫ tk+1

tk

y′(t) dt = y(tk) +
∫ tk+1

tk

f(t, y(t)) dt,

we can take

yk+1 = yk +
∫ tk+1

tk

p(t) dt,

where p(t) is a polynomial interpolating f(t, y) at the points (tk+1−n, yk+1−n), . . . , (tk, yk) for
an explicit method of order n, or (tk+2−n, yk+2−n), . . . , (tk+1, yk+1) for an implicit method
of order n.

Since multistep methods require several previous solution values and derivative values,
how do we get started initially, before we have any past history to use? One strategy is to use
a single-step method, which requires no past history, to generate solution values at enough
points to begin using a multistep method. Another option is to use a low-order method
initially and gradually increase the order as additional solution values become available.

As we saw with single-step methods, implicit multistep methods are usually more ac-
curate and stable than explicit multistep methods, but they require an initial guess to
solve the resulting (usually nonlinear) equation for yk+1. A good initial guess is conve-
niently supplied by an explicit method, so the explicit and implicit methods are used as a
predictor-corrector pair. One could use the corrector repeatedly (i.e., fixed-point iteration)
until some convergence tolerance is met, but doing so may not be worth the expense. So,
a fixed number of corrector steps, often only one, may be used instead, giving a PECE
(predict, evaluate, correct, evaluate) scheme. Although it has no effect on the value of yk+1,
the second evaluation of f in a PECE scheme yields an improved value of y′k+1 for future
use.

Alternatively, the nonlinear equation for yk+1 given by an implicit multistep method can
be solved by Newton’s method or other similar iterative method, again with a good starting
guess supplied by the solution at the previous step or by an explicit multistep method. In
particular, Newton’s method or a close variant of it is essential when using an implicit
multistep method designed for stiff ODEs, as fixed-point iteration will fail to converge for
reasonable stepsizes.

Example 9.16 Predictor-Corrector Method. To illustrate the use of a predictor-
corrector pair, we use the two multistep methods derived in Example 9.15 to solve the
ODE

y′ = −2ty2,

with initial value y(0) = 1. The second-order explicit method requires two starting values,
so in addition to the initial value y0 = 1 at t0 = 0 we will also use the value y1 = 0.9375 at
t1 = 0.25 obtained using the single-step Heun method in Example 9.14. We can now use

296 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

the second-order explicit method with stepsize h = 0.25 to take a step from t1 = 0.25 to
t2 = 0.5, obtaining the predicted value

ŷ2 = y1 +
1
2

(3y′1 − y′0)h = 0.9375 + 0.5(−1.3184 + 0)0.25 = 0.7727.

We evaluate f at this predicted value ŷ2 to obtain the corresponding derivative value ŷ′2 =
−0.5971. We can now use these predicted values in the corresponding implicit method (in
this case the trapezoid rule) to obtain the corrected solution value

y2 = y1 +
1
2

(y′2 + y′1)h = 0.9375 + 0.5(−0.5971− 0.4395)0.25 = 0.8079.

We evaluate f again using this new value y2 to obtain the improved value y′2 = −0.6528,
which would be needed in taking further steps. At this point we have completed the PECE
procedure for this step. The corrector could be repeated, if desired, until convergence is
obtained.

For comparison, the exact solution for this problem is y(t) = 1/(1 + t2), and hence the
true solution at the integration points is y(0.25) = 0.9412 and y(0.5) = 0.8.

One of the most popular pairs of multistep methods is the explicit fourth-order Adams-
Bashforth predictor

yk+1 = yk +
1
24

(55y′k − 59y′k−1 + 37y′k−2 − 9y′k−3)h

and the implicit fourth-order Adams-Moulton corrector

yk+1 = yk +
1
24

(9y′k+1 + 19y′k − 5y′k−1 + y′k−2)h.

Backward differentiation formulas (BDF), due to Gear, form another important family of
implicit multistep methods. BDF methods, typified by the formula

yk+1 =
1
11

(18yk − 9yk−1 + 2yk−2) +
6
11
y′k+1h,

have stability properties that make them particularly effective for solving stiff equations.
The general properties of multistep methods can be summarized as follows:

• They are not self-starting, because several previous solution values are required. Thus,
a special starting procedure must be used initially, such as a single-step method, until
enough values have been generated to begin using a multistep method of the desired
order.

• Changing stepsize is complicated, since the interpolation formulas are most conveniently
based on equally spaced intervals for several consecutive points.

• A good local error estimate can be determined from the difference between the predictor
and the corrector.

• They are relatively complicated to program.
• Being based on interpolation, they can efficiently provide solution values at output points

other than the integration points.

9.6. SURVEY OF NUMERICAL METHODS FOR ODES 297

• Implicit methods have a much greater region of stability than explicit methods but must
be iterated to convergence to realize this benefit fully (e.g., a PECE scheme is actually
explicit, albeit in a somewhat complicated way).

• Although implicit methods are more stable than explicit methods, they are still not
necessarily unconditionally stable. Indeed, no multistep method of greater than second
order is unconditionally stable, even if it is implicit.

• A properly designed implicit multistep method can be very effective for solving stiff
equations.

The stability and accuracy of some of the most popular multistep methods are summa-
rized in Table 9.1, where “stability threshold” indicates the left endpoint of the stability
interval for a scalar equation, and “error constant” indicates the coefficient of the hp+1

term in the local truncation error, where p is the order of the method. All of these Adams
methods have α1 = 1, and αi = 0 for i > 1, so we list only the βi. We observe that the
implicit methods are both more stable and more accurate than the corresponding explicit
methods of the same order.

Table 9.1: Properties of multistep methods

Explicit Methods
Stability Error

Order β1 β2 β3 β4 threshold constant
1 1 −2 1/2
2 3/2 −1/2 −1 5/12
3 23/12 −16/12 5/12 −6/11 3/8
4 55/24 −59/24 37/24 −9/24 −3/10 251/720

Implicit Methods
Stability Error

Order β0 β1 β2 β3 threshold constant
1 1 −∞ −1/2
2 1/2 1/2 −∞ −1/12
3 5/12 8/12 −1/12 −6 −1/24
4 9/24 19/24 −5/24 1/24 −3 −19/720

9.6.5 Multivalue Methods

As we have seen, changing stepsize is difficult with multistep methods because the past
history of the solution is most easily maintained at equally spaced intervals. Like multistep
methods, multivalue methods are based on polynomial interpolation, but they avoid many
of the implementation difficulties associated with multistep methods.

One of the key ideas motivating multivalue methods is the observation that the interpo-
lating polynomial itself can be evaluated at any point, not just at equally spaced intervals.
The equal spacing associated with multistep methods is simply an artifact of the way the
methods are represented as a linear combination of successive solution and derivative values

298 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

with fixed weights.
Another key idea in implementing multivalue methods is choosing the representation of

the interpolating polynomial so that its parameters are essentially the values of the solution
and one or more of its derivatives at a single point tk. This approach is analogous to using
a Taylor, rather than Lagrange, representation of the polynomial. The solution is advanced
in time by a simple transformation of this representation from one point to the next, and
changing the stepsize in doing so is easy. Multivalue methods turn out to be mathematically
equivalent to multistep methods, but multivalue methods are more convenient and flexible
to implement, so most modern software implementations are based on them.

Example 9.17 Multivalue Method. To make these ideas a bit more concrete, we
consider a four-value method for solving an ODE

y′ = f(t, y).

Instead of representing the interpolating polynomial by its value at four different points, we
represent it by its value and the values of its first three derivatives at a single point tk,

yk =

yk
hy′k

(h2/2)y′′k
(h3/6)y′′′k

 ,
where the solution value and derivative values indicated are approximations to those of the
true solution. For convenience, the derivatives are scaled to match the coefficients in a
Taylor series expansion. By differentiating the Taylor series

y(tk + h) = y(tk) + hy′ +
h2

2
y′′ +

h3

6
y′′′k + · · ·

three times, we see that the corresponding values at the next point tk+1 = tk + h are given
approximately by the transformation

ŷk+1 = Byk,

where the matrix B is given by

B =

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

 .
We have not yet used the differential equation, however, so we add a correction term to the
foregoing prediction to obtain the final value

yk+1 = ŷk+1 + αr,

where r is a fixed 4-vector and

α = h(f(tk+1, yk+1)− ŷ′k+1).

9.7. SOFTWARE FOR ODE INITIAL VALUE PROBLEMS 299

For consistency, i.e., for the ODE to be satisfied, we must have r2 = 1; but the three remain-
ing components of r can be chosen in various ways, resulting in different methods, analogous
to the different choices of parameters in multistep methods. For example, the four-value
method with r = [3

8 1 3
4

1
6]T is equivalent to the implicit fourth-order Adams-Moulton

method given in Section 9.6.4.

We can now see why it is easy to change stepsize with a multivalue method: we need
merely rescale the components of yk to reflect the new stepsize. Moreover, it is also easy
to change the order of the method simply by changing the components of r. These two
capabilities, combined with sophisticated tests and strategies for deciding when to change
order and stepsize, have led to the development of very powerful and efficient software
packages for solving ODEs based on variable-order/variable-step methods. Such routines
are analogous to adaptive quadrature routines (see Section 8.4.2) in that they automatically
adapt to a given problem, varying the order and stepsize of the integration method as
necessary to meet the user-supplied error tolerance in an efficient manner. Such routines
often have options for solving either stiff or nonstiff problems, and some even detect stiffness
automatically and select an appropriate method accordingly.

The ability to change order easily also obviates the need for special starting procedures.
With a variable-order/variable-step method, one can simply start with a first-order method,
which requires no additional starting values, and let the automatic order/stepsize selection
procedure increase the order as needed for the required accuracy.

9.7 Software for ODE Initial Value Problems

Table 9.2 is a list of some of the software available for numerical solution of initial value
problems for ordinary differential equations. Many of these routines have additional vari-
ants for special situations, such as root finding or sparse Jacobians. Another important
category that we have not discussed is differential-algebraic systems, in which the solution
must satisfy a system containing both differential and algebraic equations. The best-known
routine for solving such problems is dassl, which is available from netlib.

Software for solving an ODE y′ = f(t, y) typically requires the user to supply the name
of a routine that computes the value of the function f for any given values of t and y.
Additional input includes the number of equations in the system; the initial values of the
independent variable t and the vector y of dependent variables at the start of the integration;
the value tout of the independent variable at which the integration is to stop; and absolute
or relative error tolerances, or both. Additional input, especially for a stiff ODE solver, may
include the name of a routine for computing the Jacobian of f and the name of an array
to be used as workspace for storing such matrices. Output typically includes the solution
vector y at tout, a status flag indicating any warnings or error conditions, and possibly some
measures of the quality and cost of the solution. Usually such software is set up so that it
can be called repeatedly, with the new initial t equal to the previous tout, in order to obtain
output at desired points across the overall interval of integration.

300 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

Table 9.2: Software for ODE initial value problems

Source Runge-Kutta Adams Stiff
FMM rkf45
HSL da02 dc03
IMSL ivprk ivpag ivpag
KMN sdriv2 sdriv2
MATLAB ode23/ode45 ode113 ode15s/ode23s
NAG d02baf d02caf d02eaf
netlib dverk ode vode/vodpk
NR odeint stiff
NUMAL rke multistep gms
ODEPACK lsode lsode
SLATEC derkf deabm/sdriv1 debdf/sdriv2
TOMS gerk(#504) stint(#534)
TOMS brk45(#669)/rkn(#670) mebdf(#703)

9.8 Historical Notes and Further Reading

Euler proposed his method for initial value problems in 1768. Much of the early impetus
for the numerical solution of ordinary differential equations was from celestial mechanics.
For example, in 1846 Adams—for whom the classical linear multistep methods are named—
finished in a dead heat with Le Verrier in accurately predicting the location at which the
planet Neptune would be discovered. Their orbital calculations were based on known but
previously unexplained perturbations in the orbit of Uranus.

Runge-Kutta methods were developed independently by Runge and Kutta around 1900.
Fehlberg’s implementation, which permitted an efficient error estimate, was developed in
the 1960s. A practical method based on extrapolation was published by Bulirsch and Stoer
in 1966. Gear’s method for solving stiff ODEs was published in 1971, along with a very
influential computer program difsub (TOMS #407) implementing the method. Another
influential code for solving ODEs was developed at about the same time by Krogh. Mul-
tivalue methods were first proposed by Nordsieck in 1962 to address the implementation
difficulties of multistep methods. For the equivalence of multistep and multivalue methods,
see Skeel [230].

Recent books on the numerical solution of initial value problems for ODEs include [66,
133, 156, 224]. Earlier textbooks and monographs on this topic include [31, 77, 91, 123,
155, 160, 227]. In addition, see the surveys [32, 58, 92, 111, 226, 228, 238]. Practical advice
on using ODE software can be found in [223]. For solving differential-algebraic systems,
see [22].

Review Questions

9.1 True or false: An ODE whose solution
curves are unbounded as time increases is nec-
essarily unstable.

9.2 True or false: In the numerical solution
of an ODE, the global error grows only if the
equation is unstable.

REVIEW QUESTIONS 301

9.3 True or false: In solving an ODE numer-
ically, the roundoff error and the truncation
error are independent of each other.

9.4 True or false: In numerically solving an
initial value problem for an ODE, the global
truncation error is always at least as large as
the sum of the local truncation errors.

9.5 True or false: For solving a stable
differential equation numerically, an implicit
method is always stable.

9.6 True or false: With an unconditionally
stable method, one can take arbitrarily large
time steps in numerically solving a stable ODE
to achieve a given accuracy.

9.7 True or false: Stiff ODEs are always dif-
ficult and expensive to solve.

9.8 (a) In general, does a differential equa-
tion, by itself, determine a unique solution?
(b) If so, why, and if not, what additional in-
formation must be specified to determine a so-
lution uniquely?

9.9 (a) What is meant by a first-order ODE?
(b) Why are higher-order ODEs usually trans-
formed into equivalent first-order ODEs before
solving them numerically?

9.10 (a) Describe in words the distinction be-
tween a stable ODE and an unstable ODE.
(b) What is a mathematical criterion for de-
termining the stability of a system of ODEs
y′ = f(t, y)?
(c) Can the stability or instability of a system
of ODEs change with time?

9.11 Which of the following types of first-
order ODEs are stable?
(a) An equation whose solution curves con-
verge toward each other
(b) An equation whose Jacobian is negative
(c) A stiff equation
(d) An equation with exponentially decaying
solutions

9.12 Classify each of the following ODEs as
stable, unstable, or neutrally stable.
(a) y′ = y + t.
(b) y′ = y − t.

(c) y′ = t− y.
(d) y′ = 1.

9.13 How does a typical numerical solution of
an ODE differ from an analytical solution?

9.14 (a) What is Euler’s method for solving
an ODE?
(b) Show how it is derived.

9.15 Describe in words the difference between
the local truncation error and the global trun-
cation error in solving an initial value problem
for an ODE numerically.

9.16 Under what condition is the global error
in solving an initial value problem for an ODE
likely to be smaller than the sum of the local
errors at each step?

9.17 In solving an ODE numerically, which
is usually more significant, rounding error or
truncation error?

9.18 (a) Define in words the error amplifica-
tion factor for one step of a numerical method
for solving an initial value problem for an
ODE.
(b) Does the amplification factor depend only
on the equation, only on the method of solu-
tion, or on both?
(c) What is the value of the amplification fac-
tor for one step of Euler’s method?
(d) What stability region does this imply for
Euler’s method?

9.19 (a) What is the basic difference between
an explicit method and an implicit method for
solving an ODE numerically?
(b) Comparing these two types of methods, list
one relative advantage for each.
(c) Name a specific example of a method (or
family of methods) of each type.

9.20 The use of an implicit method for solv-
ing a nonlinear ODE requires the iterative so-
lution of a nonlinear equation. How can one
get a good starting guess for this iteration?

9.21 Is it possible for a numerical solution
method to be unstable when applied to a sta-
ble ODE?

9.22 What does it mean for a numerical ODE
method to be of order p?

302 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

9.23 (a) For solving ODEs, what is the
highest-order accuracy that a linear multistep
method can have and still be unconditionally
stable?
(b) Give an example of a method having these
properties (by name or by formula).

9.24 Compare the stability regions (i.e., the
stability constraints on the stepsize) for the
Euler and backward Euler methods for solving
a scalar ODE.

9.25 For the backward Euler method, which
factor places a stronger restriction on the
choice of stepsize: stability or accuracy?

9.26 Which of the following numerical meth-
ods for solving a stable ODE numerically are
unconditionally stable?
(a) Euler’s method
(b) Backward Euler method
(c) Trapezoid rule

9.27 (a) What is meant by a stiff ODE?
(b) Why may a stiff ODE be difficult to solve
numerically?
(c) What type of method is appropriate for
solving stiff ODEs?

9.28 Suppose one is using the backward Eu-
ler method to solve a nonlinear ODE numeri-
cally. The resulting nonlinear algebraic equa-
tion at each step must be solved iteratively.
If a fixed number of iterations are performed
at each step, is the resulting method uncondi-
tionally stable?

9.29 Explain why implicit methods are better
than explicit methods for solving stiff systems
of ODEs numerically.

9.30 What is the simplest numerical method
that is stable for integrating a stiff ODE?

9.31 For solving ODEs numerically, why is
it usually impractical to generate methods of
very high accuracy by using many terms in a
Taylor series expansion?

9.32 In solving an ODE numerically, with
which type of method, Runge-Kutta or multi-
step, is it easier to supply values for the numer-
ical solution at arbitrary output points within
each step?

9.33 (a) What is the basic difference between
a single-step method and a multistep method
for solving an ODE numerically?
(b) Comparing these two types of methods, list
one relative advantage for each.
(c) Name a specific example of a method (or
family of methods) of each type.

9.34 List two advantages and two disadvan-
tages of multistep methods compared with
classical Runge-Kutta methods for solving
ODEs numerically.

9.35 What is the principal drawback of a Tay-
lor series method compared with a Runge-
Kutta method for solving ODEs?

9.36 (a) What is the principal advantage of
extrapolation methods for solving ODEs nu-
merically?
(b) What are the disadvantages of such meth-
ods?

9.37 In using a multistep method to solve an
ODE numerically, why might one still need to
have a single-step method available?

9.38 Why are multistep methods for solv-
ing ODEs numerically often used in predictor-
corrector pairs?

9.39 If a predictor-corrector method for solv-
ing an ODE is implemented as a PECE
scheme, does the second evaluation affect the
value obtained for the solution at the point be-
ing computed? If so, what is the effect, and if
not, then why is the second evaluation done?

9.40 List two reasons why multivalue meth-
ods are easier to implement than multistep
methods for solving ODEs adaptively with au-
tomatic error control.

9.41 For each of the following properties,
state which type of ODE method, multistep
or classical Runge-Kutta, more accurately fits
the description:
(a) Self starting
(b) More efficient in attaining high accuracy
(c) Can be efficient for stiff problems
(d) Easier to program
(e) Easier to change stepsize
(f) Easier to obtain a local error estimate

EXERCISES 303

(g) Easier to produce output at arbitrary in-
termediate points within each step

9.42 Give two approaches to starting a mul-
tistep method initially when past solution his-
tory is not yet available.

Exercises

9.1 Write each of the following ODEs as an
equivalent first-order system of ODEs:
(a) y′′ = t+ y + y′.
(b) y′′′ = y′′ + ty.
(c) y′′′ = y′′ − 2y′ + y − t+ 1.

9.2 Write each of the following ODEs as an
equivalent first-order system of ODEs:
(a) Van der Pol equation:

y′′ = y′(1− y2)− y.

(b) Blasius equation:

y′′′ = −y y′′.

(c) Newton’s Second Law of Motion for two-
body problem:

y′′1 = −GMy1/(y2
1 + y2

2)3/2,

y′′2 = −GMy2/(y2
1 + y2

2)3/2.

9.3 Is the following system of ODEs stable?

y′1 = −y1 + y2,

y′2 = −2y2.

Explain your answer.

9.4 Consider the ODE y′ = −5y with initial
condition y(0) = 1. We will solve this ODE
numerically using a stepsize of h = 0.5.
(a) Is this ODE stable?
(b) Is Euler’s method stable for this ODE us-
ing this stepsize?
(c) Compute the numerical value for the ap-
proximate solution at t = 0.5 given by Euler’s
method.
(d) Is the backward Euler method stable for
this ODE using this stepsize?
(e) Compute the numerical value for the ap-
proximate solution at t = 0.5 given by the
backward Euler method.

9.5 With an initial value of y0 = 1 at t0 = 0
and a time step of h = 1, compute the approx-
imate solution value y1 at time t1 = 1 for the
ODE y′ = −y using each of the following two
numerical methods. (Your answers should be
numbers, not formulas.)
(a) Euler’s method
(b) Backward Euler method

9.6 For the ODE, initial value, and stepsize
given in Example 9.10, prove that fixed-point
iteration for solving the implicit equation for
y1 is in fact convergent. What is the conver-
gence rate?

9.7 Consider the initial value problem

y′′ = y

for t ≥ 0, with initial values y(0) = 1 and
y′(0) = 2.
(a) Express this second-order ODE as an
equivalent system of two first-order ODEs.
(b) What are the corresponding initial condi-
tions for the system of ODEs in part a?
(c) Is this a stable system of ODEs?
(d) Perform one step of Euler’s method for this
ODE system using a stepsize of h = 0.5.
(e) Is Euler’s method stable for this problem
using this stepsize?
(f) Is the backward Euler method stable for
this problem using this stepsize?

9.8 Consider the initial value problem for
the ODE y′ = −y2 with the initial condition
y(0) = 1. We will use the backward Euler
method to compute the approximate value of
the solution y1 at time t1 = 0.1 (i.e., take
one step using the backward Euler method
with stepsize h = 0.1 starting from y0 = 1
at t0 = 0). Since the backward Euler method
is implicit, and the ODE is nonlinear, we will
need to solve a nonlinear algebraic equation for
y1.

304 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

(a) Write out that nonlinear algebraic equa-
tion for y1.
(b) Write out the Newton iteration for solving
the nonlinear algebraic equation.
(c) Obtain a starting guess for the Newton it-
eration by using one step of Euler’s method for
the ODE.
(d) Finally, compute an approximate value for
the solution y1 by using one iteration of New-
ton’s method for the nonlinear algebraic equa-
tion.

9.9 For solving an ODE y′ = f(t, y) numer-
ically, each of the following methods,
(1)

yk+1 = yk +
1
2

[f(tk, yk)

+f(tk+1, yk + f(tk, yk)h)]h,

(2)

yk+1 = yk +
1
2

[3f(tk, yk)

−f(tk−1, yk−1)]h,

(3)

yk+1 = yk +
1
2

[f(tk, yk)

+f(tk+1, yk+1)]h

is of second order, but the methods also
have important differences. For each property
listed, state which of the three methods has or
have the given property.
(a) Single-step method
(b) Implicit method

(c) Self-starting

(d) Unconditionally stable

(e) Runge-Kutta type method

(f) Good for solving a stiff ODE

9.10 Use the linear ODE y′ = λy to analyze
the accuracy and stability of Heun’s method
(see Section 9.6.2). In particular, verify that
this method is second-order accurate, and de-
scribe or plot its stability region in the complex
plane.

9.11 The centered difference approximation

y′ ≈ yk+1 − yk−1

2h

leads to the two-step leapfrog method

yk+1 = yk−1 + f(tk, yk)2h

for solving the ODE y′ = f(t, y). Determine
the order of accuracy and the stability region
of this method.

9.12 Let A be an n×n matrix. Compare and
contrast the behavior of the linear difference
equation

xk+1 = Axk

with that of the linear differential equation

x′ = Ax.

What is the general solution in each case?
In each case, what property of the matrix
A would imply that the solution remains
bounded for any starting vector x0? You may
assume that the matrix A is diagonalizable.

Computer Problems

9.1 The populations of two species, a prey
denoted by y1 and predator denoted by y2, can
be modeled by a system of ODEs

y′1 = by1 − cy1y2,

y′2 = −dy2 + cy1y2

due to Lotka and Volterra. The parameters b
and d govern the birth rate of prey and death
rate of predators, respectively, and the param-

eter c governs the interaction of the two pop-
ulations. With the parameter values b = 1,
d = 10, and c = 1, and initial conditions
y1(0) = 0.5 and y2(0) = 1 (the populations
are normalized, and we treat them as contin-
uous variables), use a library routine to solve
this system numerically, integrating to t = 10.
Plot each of the two populations as a function
of time, and on a separate graph plot the tra-

COMPUTER PROBLEMS 305

jectory of the point (y1(t), y2(t)) in the plane
as a function of time. The latter is sometimes
called a “phase portrait.” Give a physical in-
terpretation of the behavior you observe. Can
you find nonzero initial populations such that
either of the populations eventually becomes
extinct?

9.2 The Kermack-McKendrick model for the
course of an epidemic in a population is given
by the system of ODEs

y′1 = −cy1y2,

y′2 = cy1y2 − dy2,

y′3 = dy2,

where y1 represents susceptibles, y2 represents
infectives in circulation, and y3 represents in-
fectives removed by isolation, death, or recov-
ery and immunity. The parameters c and d
represent the infection rate and removal rate,
respectively. Use a library routine to solve this
system numerically, with the parameter values
c = 1 and d = 5, and initial values y1(0) = 95,
y2(0) = 5, y3(0) = 0. Integrate from t = 0 to
t = 1. Plot each solution component on the
same graph as a function of t. As expected
with an epidemic, you should see the num-
ber of infectives grow at first, then diminish to
zero. Experiment with other values for the pa-
rameters and initial conditions. Can you find
values for which the epidemic does not grow, or
for which the entire population is wiped out?

9.3 Suppose that we have three chemical
species whose concentrations are denoted by
y1, y2, and y3. If the rate of the reaction
y1 → y2 is proportional to y1, and the rate
of the reaction y2 → y3 is proportional to y2,
then the concentrations are governed by the
system of ODEs

y′1 = −k1y1,

y′2 = k1y1 − k2y2,

y′3 = k2y2,

where k1 and k2 are the rate constants for the
two reactions.
(a) What is the Jacobian matrix for this ODE
system, and what are its eigenvalues? If the
rate constants are positive, is this system sta-
ble? Under what conditions will the system be
stiff?

(b) Solve the ODE system numerically, as-
suming initial concentrations y1(0) = y2(0) =
y3(0) = 1. Take k1 = 1 and experiment with
values of k2 of varying magnitude, specifically,
k2 = 10, 100, and 1000. For each value of k2,
solve the system using a Runge-Kutta method,
an Adams method, and a method designed for
stiff systems, such as a backward differentia-
tion formula. You may use library routines
for this purpose, or you may wish to develop
your own routines, perhaps using the classical
fourth-order Runge-Kutta method, the fourth-
order Adams-Bashforth predictor and Adams-
Moulton corrector, and the BDF formula given
in Section 9.6. If you develop your own codes,
a fixed stepsize will suffice for this exercise. If
you use library routines, compare the differ-
ent methods with respect to their efficiency, as
measured by function evaluations or execution
time, for a given accuracy. If you develop you
own codes, compare the different methods with
respect to accuracy and stability for a given
stepsize. In each instance, integrate the ODE
system from t = 0 until the solution is approx-
imately in steady state, or until the method is
clearly unstable or grossly inefficient.

9.4 Experiment with several different library
routines having automatic stepsize selection to
solve the ODE

y′ = −200ty2

numerically. Consider two different initial con-
ditions, y(0) = 1 and y(−3) = 1/901, and in
each case compute the solution until t = 1.
Monitor the stepsize used by the routines and
discuss how and why it changes as the solu-
tion progresses. Explain the difference in be-
havior for the two different initial conditions.
Compare the different routines with respect to
efficiency for a given accuracy requirement.

9.5 A definite integral
∫ b
a
f(t) dt can be eval-

uated by solving the equivalent ODE y′(t) =
f(t), a ≤ t ≤ b, with initial condition y(a) = 0.
The value of the integral is then simply y(b).
Use a library ODE solver to evaluate each
definite integral in the first several Computer
Problems for Chapter 8, and compare its ef-
ficiency with that of an adaptive quadrature
routine for the same accuracy.

306 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

9.6 Homotopy methods for solving systems
of nonlinear algebraic equations parameterize
the solution space x(t) and then follow a tra-
jectory from an initial guess to the final so-
lution. As one example of this approach, for
solving a system of nonlinear equations f(x) =
0, where f :Rn → R

n, with initial guess x0, the
following ODE initial value problem is a con-
tinuous analogue of Newton’s method:

x′ = −J−1
f (x)f(x), x(0) = x0,

where Jf is the Jacobian matrix of f , and of
course the inverse need not be computed ex-
plicitly. Use this method to solve the nonlin-
ear system given in Computer Problem 5.13.
Starting from the given initial guess, integrate
the resulting system of ODEs from t = 0 until
a steady state is reached. Compare the result-
ing solution with that obtained by a conven-
tional nonlinear system solver. Plot the tra-
jectory of the components of x(t) from t = 0
to the final solution. You may also want to try
this technique on some of the other Computer
Problems from Chapter 5.

9.7 An important problem in classical me-
chanics is the motion of two bodies under mu-
tual gravitational attraction. Suppose that a
body of mass m is orbiting a second body of
much larger massM , such as the earth orbiting
the sun. From Newton’s laws of motion and
gravitation, the orbital trajectory (x(t), y(t))
is described by the system of second-order
ODEs

x′′ = −GMx/r3,

y′′ = −GMy/r3,

where G is the gravitational constant and r =
(x2+y2)1/2 is the distance of the orbiting body
from the center of mass of the two bodies.
For this exercise, we choose units such that
GM = 1.
(a) Use a library routine to solve this system
of ODEs with the initial conditions

x(0) = 1− e, y(0) = 0,

x′(0) = 0 y′(0) =
(

1 + e

1− e

)1/2

,

where e is the eccentricity of the resulting el-
liptical orbit, which has period 2π. Try the

values e = 0 (which should give a circular or-
bit), e = 0.5, and e = 0.9. For each case, solve
the ODE for at least one period and obtain
output at enough intermediate points to draw
a smooth plot of the orbital trajectory. Make
separate plots of x versus t, y versus t, and
y versus x. Experiment with different error
tolerances to see how they affect the cost of
the integration and how close the orbit comes
to being closed. If you trace the trajectory
through several periods, does the orbit tend to
wander or remain steady?

(b) Check your numerical solutions in part a to
see how well they conserve the following quan-
tities, which should remain constant:

Conservation of energy:

(x′)2 + (y′)2

2
− 1
r

Conservation of angular momentum:

x y′ − y x′

9.8 Consider a restricted form of the three-
body problem in which a body of small mass
orbits two other bodies with much larger
masses, such as an Apollo spacecraft orbiting
the earth-moon system. We will use a two-
dimensional coordinate system in the plane de-
termined by the three bodies, with the origin
at the center of mass of the two larger bodies,
and the coordinate system rotating so that the
two larger bodies appear fixed. The coordinate
system is shown in the accompanying diagram,

...

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......................

................

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..

........

........

........

........

........

........

........

..

........

........

........

........

........

........

........

..• •

•

0 x

y

earth moon

spacecraft

r1 r2

...d

...D

where D is the distance from earth to moon, d
is the distance from the center of earth to the
center of mass, r1 is the distance from earth to
spacecraft, and r2 is the distance from moon
to spacecraft. The mass of the spacecraft is

COMPUTER PROBLEMS 307

assumed to be negligible compared with the
other masses.
By using Newton’s laws of motion and gravita-
tion, and allowing for the centrifugal and Cori-
olis forces due to the rotating coordinate sys-
tem, the motion of the spacecraft is described
by the system of second-order ODEs

x′′ = −G [M(x+ µD)/r3
1

+m(x− µ∗D)/r3
2]

+ Ω2x+ 2Ωy′,
y′′ = −G [My/r3

1 +my/r3
2]

+ Ω2y − 2Ωx′,

where G is the gravitational constant, M and
m are the masses of earth and moon, µ∗ and
µ are the mass fractions of earth and moon,
and Ω is the angular velocity of rotation of the
moon about the earth (and hence of the coor-
dinate system). The numerical values of these
quantities are given in the following table:

G 6.67259× 10−11m3/(kg s2)
M 5.974× 1024 kg
m 7.348× 1022 kg
µ∗ M/(m+M)
µ m/(m+M)
D 3.844× 108 m
d 4.669× 106 m
r1 [(x+ d)2 + y2]1/2

r2 [(D − d− x)2 + y2]1/2

Ω 2.661× 10−6/s

Use a library routine to solve this system of
ODEs with the initial conditions

x(0) = 4.613× 108, y(0) = 0,
x′(0) = 0, y′(0) = −1074.

Plot the resulting solution trajectory
(x(t), y(t)) in the plane as a function of time.
Indicate the positions of earth and moon on
the graph. Compute the solution for at least
one complete orbit (i.e., until the spacecraft
returns to its original location), which is from
t = 0 until approximately t = 2.4 × 106 s.
Experiment with various error tolerances to
see how much difference they make in whether
the orbit is actually closed. Try to monitor
the stepsize used by the ODE routine as the
integration progresses. When does the step-
size become smaller or larger? How close does
the spacecraft come to the surface of earth?
(Earth’s radius is 6.378× 106 m, so the center
of mass of the earth-moon system is actually
inside the earth.)

308 CHAPTER 9. INITIAL VALUE PROBLEMS FOR ODES

Chapter 10

Boundary Value Problems for Ordinary
Differential Equations

10.1 Boundary Value Problems

Thus far we have considered only initial value problems for ordinary differential equations.
We will now broaden our view to consider boundary value problems. A boundary value
problem for a differential equation specifies more than one point at which the solution or
its derivatives must have given values. For example, a two-point boundary value problem
for a second-order ODE has the form

y′′ = f(t, y, y′), a ≤ t ≤ b,

with boundary conditions
y(a) = α, y(b) = β.

An initial value problem for such a second-order equation would have specified both y and
y′ at a single point, say, t0. These initial data would have supplied all the information
necessary to begin a numerical solution method at t0, stepping forward to advance the
solution in time (or whatever the independent variable might be).

More generally, to single out a particular solution there must as many conditions spec-
ified as the order of a scalar ODE, or as the number of components in a first-order system
of ODEs. If all the conditions are specified at the same point, then we have an initial value
problem; otherwise, we have a boundary value problem. For example, a boundary value
problem for a system of two first-order ODEs has the form[

y′1
y′2

]
=
[
f1(t, y)
f2(t, y)

]
, a ≤ t ≤ b,

with boundary conditions
y1(a) = α, y2(b) = β.

The specification of boundary conditions at more than one point in a boundary value
problem does not permit as simple a numerical approach as for initial value problems and

309

310 CHAPTER 10. BOUNDARY VALUE PROBLEMS FOR ODES

also can make the existence and uniqueness of a solution more problematic. We will focus on
the simplest case, that of two-point boundary problems for second-order ODEs, and we will
consider several approaches for solving them numerically. These methods can be generalized
to higher-order ODEs, and some of them carry over to partial differential equations as well
(see Chapter 11).

10.2 Shooting Method

The shooting method replaces a given boundary value problem with a sequence of initial
value problems whose solutions converge to that of the original boundary value problem. In
the statement of a two-point boundary value problem for a second-order ODE, we are given
the value of y(a). If we also knew the value of y′(a), then we would have an initial value
problem that we could solve by one of the methods discussed in Chapter 9. Lacking that
information, however, we can try a sequence of increasingly accurate guesses until we find a
value for y′(a) such that when we solve the resulting initial value problem, the approximate
solution value at t = b matches the desired boundary value, y(b) = β.

The basic idea of the shooting method is illustrated in Fig. 10.1. Each curve represents
a solution of the same second-order ODE, with different values for the initial slope giving
different solution curves. All of the solutions start with the given initial value y(a) = α,
but for only one value of the initial slope does the resulting solution curve hit the desired
boundary condition y(b) = β.

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.....

a b
α

β

•

•

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.....

..
..

..
..

..............................
.................................

......................................
...

...
...

........................
.........................

...........................
..............................

.................................
.....................................

..
..

...
...

....................
.....................

......................
.......................

........................
..........................

...........................
.............................

................................
...................................

......................................
..

.....................................

..................
..................

...................
...................

....................
.....................

.....................
......................

.......................
........................

.........................
..........................

...........................
...........................

............................
............................

..................

................
................

.................
.................

.................
..................

..................
...................

...................
...................

....................
....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

...........

...............
...............

...............
...............

................
................

................
................

.................
.................

.................
.................

.................
..................

..................
..................

..................
..................

..................
.................

.................
.................

.................
................

........

..............
..............

..............
..............

..............
..............

...............
...............

...............
...............

...............
...............

...............
...............

................
................

................
................

................
...............

...............
...............

...............
...............

...............
..............

..............
..............

.........

.............
.............
.............
.............
.............
.............

.............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

.............
.............
.............
.............
.............
.............
............
............
............
.

Figure 10.1: Shooting method for a two-point boundary value problem.

Putting this approach more formally, for a given s, the value at the point b of the
solution y(b) to the initial value problem

y′′ = f(t, y, y′),

with initial conditions
y(a) = α, y′(a) = s,

can be considered as a function of s, say, g(s). Then the boundary value problem becomes
the problem of solving the equation g(s) = β. A one-dimensional zero finder (see Section 5.2)
can be used to solve this scalar equation.

Example 10.1 Shooting Method. We illustrate the shooting method by solving the

10.2. SHOOTING METHOD 311

two-point boundary value problem for the second-order ordinary differential equation

y′′ = 6t, 0 ≤ t ≤ 1,

with boundary conditions
y(0) = 0 and y(1) = 1.

For each guess for y′(0), we will integrate the ODE using the classical fourth-order Runge-
Kutta method to determine how close we come to hitting the desired solution value at t = 1.
Before doing so, however, we must first transform the second-order ODE into a system of
two first-order ODEs [

y′1
y′2

]
=
[
y2

6t

]
.

We first try an initial slope of y′(0) = 1. Using a stepsize of h = 0.5, we first step from
t0 = 0 to t1 = 0.5. The classical fourth-order Runge-Kutta method gives the approximate
solution value at t1

y(1) = y(0) +
1
6

(k1 + 2k2 + 2k3 + k4)

=
[

0
1

]
+

1
6

([
0.5
0.0

]
+ 2

[
0.50
0.75

]
+ 2

[
0.6875
0.7500

]
+
[

0.875
1.500

])
=
[

0.625
1.750

]
.

Next we step from t1 = 0.5 to t2 = 1, obtaining

y(2) =
[

0.625
1.750

]
+

1
6

([
0.875
1.500

]
+ 2

[
1.25
2.25

]
+ 2

[
1.4375
2.2500

]
+
[

2.0
3.0

])
=
[

2.0
4.0

]
,

so we have hit the value y(1) = 2 instead of the desired value y(1) = 1. We try again, this
time with an initial slope of y′(0) = −1, obtaining

y(1) =
[

0
−1

]
+

1
6

([
−0.5

0.0

]
+ 2

[
−0.50

0.75

]
+ 2

[
−0.3125

0.7500

]
+
[
−1.25

1.50

])
=
[
−0.375
−0.250

]
and

y(2) =
[
−0.375
−0.250

]
+

1
6

([
−0.125

1.500

]
+ 2

[
0.25
2.25

]
+ 2

[
0.4375
2.2500

]
+
[

1.0
3.0

])
=
[

0.0
2.0

]
,

so we have hit the value y(1) = 0 instead of the desired value y(1) = 1. We now have
the initial slope bracketed between −1 and 1. We omit the further iterations necessary to
identify the correct initial slope, which turns out to be y′(0) = 0:

y(1) =
[

0
0

]
+

1
6

([
0.0
0.0

]
+ 2

[
0.00
0.75

]
+ 2

[
0.1875
0.7500

]
+
[

0.375
1.500

])
=
[

0.125
0.750

]
and

y(2) =
[

0.125
0.750

]
+

1
6

([
0.375
1.500

]
+ 2

[
0.75
2.25

]
+ 2

[
0.9375
2.2500

]
+
[

1.5
3.0

])
=
[

1.0
3.0

]
,

312 CHAPTER 10. BOUNDARY VALUE PROBLEMS FOR ODES

−0.5

0.0

0.5

1.0

1.5

2.0

0.5 1.0

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..................

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............

...
...

...
...

...
...

...................
...................

...................
...................

...................
...................

...................
...................

...................
.................

•

•

•

•

•

•
•

← first attempt

← second attempt

← target

Figure 10.2: Shooting method for two-point boundary value problem in Example 10.1.

so we have indeed hit the target solution value, y(1) = 1. These results are illustrated in
Fig. 10.2.

A potential difficulty with the shooting method is that the initial value problem may be
ill-conditioned, perhaps owing to diverging solution curves over part of the domain, which
may make it difficult to hit the desired target. A remedy is provided by multiple shooting ,
in which the interval [a, b] is divided into subintervals and shooting is carried out over
each subinterval. Requiring continuity at the internal mesh points provides the boundary
conditions for the individual subproblems. Therefore, multiple shooting results in a system
of nonlinear equations to solve rather than just a single scalar equation.

10.3 Superposition Method

Another way of replacing boundary value problems with initial value problems is the super-
position method . Consider the homogeneous, linear, second-order ODE

y′′ = p(t)y + q(t)y′, a ≤ t ≤ b,

with boundary conditions
y(a) = α, y(b) = β.

The solution can be expressed as a superposition (i.e., linear combination) of two indepen-
dent solutions, which can be obtained numerically by solving the equation with each of the
two sets of initial conditions

y(a) = 1, y′(a) = 0 and y(a) = 0, y′(a) = 1.

This method becomes somewhat more complicated if the equation is inhomogeneous, and
much more complicated if the equation is nonlinear. Moreover, it may be necessary to use
orthogonalization to maintain independence of the solutions computed for the initial value
problems.

10.4 Finite Difference Method

Both the shooting and superposition methods convert boundary value problems into initial
value problems. We now consider methods that approximate boundary value problems

10.4. FINITE DIFFERENCE METHOD 313

directly by systems of algebraic equations. Finite difference methods convert boundary
value problems into systems of algebraic equations by replacing any derivatives that appear
with finite difference approximations. For example, to solve the two-point boundary value
problem

y′′ = f(t, y, y′), a ≤ t ≤ b,

with boundary conditions
y(a) = α, y(b) = β,

we first divide the interval [a, b] into n equally spaced subintervals. Let ti = a + ih, i =
0, 1, . . . , n, where h = (b− a)/n. We seek an approximation yi ≈ y(ti) at each of the mesh
points ti. We already have y0 = α and yn = β. We next replace the derivatives with finite
difference approximations (see Section 8.7.1), such as

y′(ti) ≈
yi+1 − yi−1

2h
and y′′(ti) ≈

yi+1 − 2yi + yi−1

h2
,

choosing the finite difference formulas so that they have the same order truncation error,
in this case O(h2), since the accuracy will be limited by the least accurate formula. This
replacement yields a system of algebraic equations

yi+1 − 2yi + yi−1 − h2f

(
ti, yi,

yi+1 − yi−1

2h

)
= 0

to be solved for the unknowns yi, i = 1, . . . , n− 1. This system of equations may be linear
or nonlinear, depending on whether f is linear or nonlinear in y and y′. In this example,
each equation in the system involves only three adjacent unknowns, which means that the
matrix of the linear system—or the Jacobian matrix in the nonlinear case—is tridiagonal,
thereby saving on both work and storage compared with a general system of equations. Such
savings are generally true of finite difference methods: they yield sparse systems because
each equation involves only a few variables.

Example 10.2 Finite Difference Method. We demonstrate the finite difference method
by using it to solve the two-point boundary value problem of Example 10.1,

y′′ = 6t, 0 ≤ t ≤ 1,

with boundary conditions
y(0) = 0 and y(1) = 1.

To illustrate the concepts involved, yet keep computation to a minimum, we will compute
an approximate solution at a single mesh point in the interval [0, 1], namely t = 0.5. Thus,
including the boundary points, we have three mesh points, t0 = 0, t1 = 0.5, and t2 = 1.
From the boundary conditions, we know that y0 = y(t0) = 0 and y2 = y(t2) = 1, and
we seek an approximate solution y1 ≈ y(t1). Approximating the second derivative by a
standard finite difference quotient at the point t1 gives the equation

y2 − 2y1 + y0

h2
= f(t1, y1, y

′
1).

314 CHAPTER 10. BOUNDARY VALUE PROBLEMS FOR ODES

Substituting the boundary data, mesh size, and right-hand side for this example, we obtain

1− 2y1 + 0
(0.5)2

= 6t1,

or
4− 8y1 = 6(0.5) = 3,

so that
y(0.5) ≈ y1 =

1
8

= 0.125,

which agrees with the approximate solution at t = 0.5 that we computed by the shooting
method in Example 10.1.

In a practical problem, a much smaller stepsize and many more mesh points would
be required to achieve acceptable accuracy, and we would therefore obtain a system of
equations to solve for the approximate solution values at the mesh points, rather than a
single equation as in this example. Nevertheless, this system would still be easy to solve
because it would be tridiagonal.

10.5 Finite Element Method

Another approach to reducing boundary value problems to algebraic systems is the finite
element method. Finite element methods approximate the solution to a boundary value
problem by a linear combination of a finite collection of basis functions φi, typically piece-
wise polynomials, which for historical reasons are called “elements.” The approximation
therefore has the form

y(t) ≈ u(t) =
n∑
i=1

xiφi(t).

The coefficients xi are determined by imposing one of several possible requirements on the
residual, which is defined, as usual, to be the difference between the left and right sides
of the differential equation. For this reason, these methods are also known as weighted
residual methods. Each of the three most commonly used criteria leads to a different class
of methods:

• Collocation: The residual is zero (i.e., the differential equation is satisfied exactly) at n
discrete points.
• Galerkin: The residual is orthogonal to the space spanned by the basis functions.
• Rayleigh-Ritz : The residual is minimized in a weighted least squares sense.

The latter two criteria are often equivalent. It may be helpful in understanding them to
recall Fig. 3.2: the true solution to the differential equation does not in general lie in the
space spanned by the basis functions, so we seek an approximate solution (i.e., a linear
combination of basis functions) such that the residual is minimized, or is orthogonal to the
space spanned by the basis functions. Because they are based on an inner product on a
function space, these two methods involve the computation of integrals, either analytically
or by some quadrature rule.

10.5. FINITE ELEMENT METHOD 315

Each of these three criteria leads to a system of equations to be solved for the coefficients
xi. The system of equations may be linear or nonlinear, depending on whether f is linear
or nonlinear. The system will be sparse, and hence require much less work and storage,
if the elements are “local,” which means that each basis function is zero throughout most
of the domain of the problem and that they have little overlap. Typical examples in one
dimension are B-splines, such as the piecewise linear “hat” functions (see Section 7.3.4).
The resulting sparse matrix of the system, called the stiffness matrix , is assembled element
by element and is a sum of contributions from each element.

A related family of methods, called spectral methods, uses eigenfunctions of the differen-
tial operator as basis functions for expanding the approximate solution (e.g., trigonometric
series for the second derivative operator). Similar use of other basis functions, such as
Legendre or Chebyshev polynomials, leads to a pseudospectral method .

Example 10.3 Collocation Method. We first illustrate the finite element method by
using collocation to solve the two-point boundary value problem of Example 10.1,

y′′ = 6t, 0 ≤ t ≤ 1,

with boundary conditions
y(0) = 0 and y(1) = 1.

With the finite element method, we approximate the solution of the ODE by a function
rather than by a table of approximate values. Specifically, using the collocation method,
we seek a function u(t) that satisfies the boundary conditions and also satisfies the ODE
exactly at a discrete set of mesh points in the interval. Again, for simplicity, we will use
only one interior mesh point, namely t = 0.5. For illustrative purposes, the function we
choose is a quadratic polynomial represented in the monomial basis, so

u(t) = x0 + x1t+ x2t
2.

Note that
u′(t) = x1 + 2x2t, and u′′(t) = 2x2.

In determining the coefficients xi, we will enforce the boundary conditions at the endpoints
of the interval, and the ODE at the point t = 0.5. For a general second-order two-point
boundary value problem

y′′ = f(t, y, y′), a ≤ t ≤ b,

with boundary conditions
y(a) = α and y(b) = β,

these requirements give the three equations,

x0 + x1a+ x2a
2 = α, x0 + x1b+ x2b

2 = β, and u′′(t) = f(t, u(t), u′(t)).

Substituting the data and functions for this example, we obtain the system of three equations

x0 = 0, x1 + x2 = 1, and 2x2 = 6(0.5) = 3,

316 CHAPTER 10. BOUNDARY VALUE PROBLEMS FOR ODES

which has the solution
x0 = 0, x1 = −0.5, x2 = 1.5.

Thus, the approximate solution function is

y(t) ≈ u(t) = −0.5t+ 1.5t2.

At the collocation point, t = 0.5, where we forced the function u to satisfy the ODE exactly,
we have the approximate solution value

y(0.5) ≈ u(0.5) = (−0.5)(0.5) + (1.5)(0.25) = 0.125,

which agrees with the solution value at t = 0.5 that we obtained previously by both the
shooting method (Example 10.1) and the finite difference method (Example 10.2).

In general, these three methods would not produce exactly the same results, but they
do so here because of the particular nature of the problem. The analytical solution is easily
seen to be y(t) = t3, so that the value y(0.5) = (0.5)3 = 0.125 is in fact exact. We note that
the quadratic polynomial produced by the collocation method agrees with the true solution
at the three points t0 = 0, t1 = 0.5, and t2 = 1 but does not agree exactly with the true
solution at any other points (why?). The approximate and exact solutions are plotted in
Fig. 10.3.

0.0

0.5

1.0

0.5 1.0
...

...............................
.......................

...................
................

...............
..............

.............
............
............
...........
...........
...........
..........
..........
..........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.

.............
.............

.............
.............

............
.
............
.
...........
..
...........
..
..........
...
..........
...
..........
...
..........
...
.........
....
.........
....

Figure 10.3: True solution (solid line) and approximate solution (dashed line) obtained by colloca-
tion.

Example 10.4 Galerkin Method. We further illustrate the concepts involved in the
finite element method by again solving the two-point boundary value problem of Exam-
ple 10.1,

y′′ = 6t, 0 ≤ t ≤ 1,

with boundary conditions
y(0) = 0 and y(1) = 1,

this time using the Galerkin method with piecewise linear polynomials. We again use the
same three mesh points, but now they become the knots in the piecewise linear polynomial
approximation. A convenient basis is given by the “hat” functions shown in Fig. 10.4.

Thus, we seek an approximate solution of the form

y(t) ≈ u(t) = x1φ1(t) + x2φ2(t) + x3φ3(t).

10.5. FINITE ELEMENT METHOD 317

0.0 0.5 1.0

1.0
............

............
............

............
............

............
............

............

φ1

0.0 0.5 1.0

1.0

.........
...
.........
...
.........
...
.........
...
.........
...
.........
...
.........
...
.........
...
.........
...............

............
............

............
............

............
............

............
............

φ2

0.0 0.5 1.0

1.0

.........
...
.........
...
.........
...
.........
...
.........
...
.........
...
.........
...
.........
...
.........
...

φ3

Figure 10.4: The “hat” function basis for piecewise linear polynomials.

From the boundary conditions, we must have x1 = 0 and x3 = 1. To determine the remain-
ing parameter x2, we impose the Galerkin condition. Recall that the Galerkin condition
requires that the residual be orthogonal to the space spanned by the basis functions and
hence to each basis function individually. Recall further (see Section 7.2.4) that the inner
product on a function space, and hence the notion of orthogonality, is defined by the inte-
gral of the product of the functions. Imposing the Galerkin condition on the interior basis
function φ2, we therefore obtain∫ 1

0
(u′′(t)− 6t)φ2(t) dt =

∫ 1

0
u′′(t)φ2(t) dt− 6

∫ 1

0
tφ2(t) dt = 0.

We can evaluate the first of these integrals by parts:∫ 1

0
u′′(t)φ2(t) dt = u′(t)φ2(t)|10 −

∫ 1

0
u′(t)φ′2(t) dt.

For the first term, since φ2(0) = φ2(1) = 0, we have u′(t)φ2(t)|10 = 0. Computing the
integral in the second term,∫ 1

0
u′(t)φ′2(t) dt =

∫ 1

0

(
3∑
i=1

xiφ
′
i(t)

)
φ′2(t) dt =

3∑
i=1

xi

∫ 1

0
φ′i(t)φ

′
2(t) dt

= x1(−1/h) + x2(2/h) + x3(−1/h),

where h = 1
2 is the spacing between mesh points. Finally, straightforward evaluation of the

other integral gives 6
∫ 1

0 tφ2(t) dt = 3
2 . Hence, the Galerkin condition gives us the equation

−2x1 + 4x2 − 2x3 = −3
2
.

Substituting the known values for x1 and x3 then gives x2 = 1
8 for the remaining unknown

parameter. Thus, the piecewise linear approximate solution is

y(t) ≈ u(t) = 0.125φ2(t) + φ3(t),

which is plotted in Fig. 10.5 along with the exact solution. We note that u(0.5) = 0.125,
which again is exact for this particular problem.

318 CHAPTER 10. BOUNDARY VALUE PROBLEMS FOR ODES

In a more realistic problem, there would be many more interior mesh points and basis
functions and correspondingly many parameters to be determined. The resulting system of
equations would be much larger, but it would still be sparse, and therefore relatively easy
to solve as long as basis functions with localized support, such as the “hat” functions, are
used. The resulting approximate solution function would become more accurate as more
mesh points are used.

0.0

0.5

1.0

0.5 1.0
...

...............................
.......................

...................
................

...............
..............

.............
............
............
...........
...........
...........
..........
..........
..........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.

.............
....
..........
..
..........
..
..........
..
..........
..
..........
..
..........
..
..........
..
..........
..
..........
..
..........
..
..........
..

Figure 10.5: True solution (solid line) and approximate solution (dashed line) obtained by Galerkin
method.

10.6 Eigenvalue Problems

A standard eigenvalue problem for a second-order ODE has the form

y′′ = λf(t, y, y′), a ≤ t ≤ b,

with boundary conditions
y(a) = α, y(b) = β,

and we seek not only the solution y but also λ as well. The (possibly complex) scalar λ is
called an eigenvalue and the solution y an eigenfunction for this two-point boundary value
problem. More general eigenvalue problems may involve higher-order systems, implicit
equations, more general boundary conditions, or nonlinear dependence on λ.

Discretization of an eigenvalue problem for an ODE results in an algebraic eigenvalue
problem whose solution approximates that of the original problem. For example, consider
the linear two-point boundary value problem

y′′ = λg(t)y, a ≤ t ≤ b,

with boundary conditions
y(a) = 0, y(b) = 0.

If we introduce discrete mesh points ti in the interval [a, b], with mesh spacing h, and use
a standard finite difference approximation for the second derivative, then we obtain an
algebraic system

yi+1 − 2yi + yi−1

h2
= λgiyi, i = 1, . . . , n,

10.7. SOFTWARE FOR ODE BOUNDARY VALUE PROBLEMS 319

where yi = y(ti) and gi = g(ti), and from the boundary conditions, y0 = 0 and yn+1 = 0.
If gi 6= 0, so that we can divide equation i by gi for i = 1, . . . , n, then we obtain a standard
algebraic eigenvalue problem Ay = λy, where A has the tridiagonal form

A =
1
h2

−2/g1 1/g1 0 · · · 0

1/g2 −2/g2 1/g2
. . .

...

0
. 0

...
. . . 1/gn−1 −2/gn−1 1/gn−1

0 · · · 0 1/gn −2/gn

 ,

which can be solved by the methods discussed in Chapter 4.

10.7 Software for ODE Boundary Value Problems

Table 10.1 is a list of some of the software available for numerical solution of boundary
value problems for ordinary differential equations. For a survey of software available for
two-point boundary value problems, see [39].

Table 10.1: Software for ODE boundary value problems

Source Shooting Superposition Finite difference Collocation Galerkin
IMSL bvpms bvpfd
HSL dd02
NAG d02haf d02gaf d02jaf
netlib musl/musn twpbvp colnew
NR shoot solvde
NUMAL femlag
SLATEC bvsup
TOMS colsys(#569)

10.8 Historical Notes and Further Reading

Classic references on the numerical solution of two-point boundary problems for ODEs
are [86, 146]. For an overview of finite difference methods, see the survey [201], and for
shooting methods, see [215]. A comprehensive treatment of methods for two-point boundary
value problems can be found in [10]. Most books on the finite element method are concerned
primarily with partial differential equations, but many of them discuss two-point boundary
value problems for ODEs as an introductory illustration; for example, see [17, 20, 140, 247].

Review Questions

10.1 What specific feature distinguishes a
boundary value problem from an initial value
problem for a system of ordinary differential

equations?

10.2 Explain how a one-dimensional zero
finder can be used to solve a two-point bound-

320 CHAPTER 10. BOUNDARY VALUE PROBLEMS FOR ODES

ary value problem for a second-order scalar
ordinary differential equation y′′ = f(t, y, y′)
with boundary conditions y(a) = α and y(b) =
β.

10.3 For each type of method listed for solv-
ing two-point boundary problems for ODEs,
state whether methods of this type convert the
boundary problem to one or more initial value
problems or to a system of algebraic equations:
(a) Finite difference
(b) Shooting
(c) Finite element
(d) Superposition

10.4 List two disadvantages of the superpo-
sition method for solving two-point boundary
value problems for second-order ODEs.

10.5 For solving a two-point boundary value
problem for a nonlinear second-order ODE,
both the finite difference method and the
shooting method are iterative. One of these
approximately satisfies the ODE at each it-
eration, but satisfies the boundary conditions
only upon convergence, whereas the other sat-
isfies the boundary conditions at each itera-
tion, but approximately satisfies the ODE only
upon convergence. Which is which?

10.6 (a) In solving two-point boundary value
problems for second-order ODEs, for what
type of problem is the multiple shooting
method likely to be more effective than the
ordinary shooting method?
(b) What disadvantage does the multiple
shooting method have, compared with the or-
dinary shooting method?

10.7 When a finite difference method is used
to convert a boundary value problem for a dif-
ferential equation into a system of algebraic
equations, what property determines whether
the algebraic system will be linear or nonlin-
ear?

10.8 Finite difference and finite element
methods for solving boundary value problems
convert the original differential equation into a
system of algebraic equations. Why does the
resulting linear system usually require far less
work to solve than the usual O(n3) that might
be expected?

10.9 Finite difference and finite element
methods for solving boundary value problems
both require the solution of a system of al-
gebraic equations, but the solutions to the re-
spective algebraic systems differ in their mean-
ings and how they are used.

(a) How do the quantities being solved for dif-
fer between the two types of methods?

(b) How do the resulting approximate solu-
tions to the boundary value problem differ in
nature?

10.10 Why is it advantageous if the basis
functions used the finite element method are
localized (i.e., each basis function is nonzero on
only a small portion of the problem domain)?

10.11 In solving a boundary value problem
by a finite element method, what requirement
does the collocation method impose on the ap-
proximate solution?

10.12 Suppose you are solving a two-point
boundary value problem for a linear second-
order ODE using the standard second-order
centered finite-difference approximations to
the derivatives. Describe the nonzero pattern
of the matrix of the resulting system of linear
algebraic equations.

10.13 Suppose you are using the shooting
method to solve a two-point boundary value
problem for an ODE on an interval [a, b]. If
the ODE in question is unstable on some por-
tion of the interval, then the resulting sequence
of initial value problems may be very sensitive
to initial conditions, making it difficult to hit
the required boundary condition.

(a) How could you cope with such ill-
conditioning?

(b) How would this affect the nonlinear alge-
braic equation to be solved?

10.14 In solving a two-point boundary value
problem for a second-order ODE numerically,
does the approximate solution produced by fi-
nite element collocation at a finite set of n dis-
crete points always agree with the exact solu-
tion at those n points?

EXERCISES 321

Exercises

10.1 Consider the two-point boundary value
problem for the second-order ODE

y′′ = y3 + t, a ≤ t ≤ b,

with boundary conditions

y(a) = α, y(b) = β.

To use the shooting method to solve this prob-
lem, one needs a starting guess for the initial
slope y′(a). One way to obtain such a starting
guess for the initial slope is, in effect, to do
a “preliminary shooting” in which we take a
single step of Euler’s method with h = b− a.
(a) Using this approach, write out the result-
ing algebraic equation for the initial slope.
(b) What starting value for the initial slope
results from this approach?

10.2 Suppose that the altitude of the trajec-
tory of a projectile is described by the second-
order ordinary differential equation y′′ = −4.
Suppose that the projectile is fired from po-
sition t = 0 and height y(0) = 1 and is to
strike a target at position t = 1, also of height
y(1) = 1.
(a) Solve this boundary value problem by the
shooting method:

1. To determine the initial slope at t = 0 re-
quired to hit the desired target at t = 1,
use the trapezoid rule with stepsize h = 1
to derive a system of two equations for the
unknown initial slope s0 = y′(0) and final
slope s1 = y′(1).

2. What are the resulting values for the initial
and final slopes?

3. Using the initial slope just determined and
a stepsize of h = 0.5, use the trapezoid
rule once again to compute the approxi-
mate height of the projectile at t = 0.5.

(b) Solve the same boundary value prob-
lem again, this time using a finite difference
method with h = 0.5. What is the result-
ing approximate height of the projectile at the
point t = 0.5?

(c) Solve the same boundary value problem
once again, this time using collocation at the
point t = 0.5, together with the boundary val-
ues, to determine a quadratic polynomial u(t)
approximating the solution. What is the re-
sulting approximate height of the projectile at
the point t = 0.5?

Computer Problems

10.1 Solve the two-point boundary value
problem

y′′ = 10y3 + 3y + t2, 0 ≤ t ≤ 1,

with boundary conditions

y(0) = 0, y(1) = 1,

by each of the following methods.

(a) Shooting method. Use a one-dimensional
nonlinear equation solver to find an initial
slope y′(0) such that the solution of the result-
ing initial value problem hits the target value
for y(1). Solve each required initial value prob-
lem using a library ODE solver or one of your
own design. Plot the sequence of solutions you
obtain.

(b) Finite difference method. Divide the given
interval 0 ≤ t ≤ 1 into n+1 equal subintervals,

0 = t0 < t1 < · · · < tn < tn+1 = 1,

with each subinterval of length h = 1/(n+ 1).
Let yi, i = 1, . . . , n, represent the approximate
solution values at the n interior points. Obtain
a system of n algebraic equations for the yi by
replacing the second derivative in the differen-
tial equation by the finite difference approxi-
mation

y′′i (t) ≈ yi+1 − 2yi + yi−1

h2
,

i = 1, . . . , n. Use a library routine, or one of
your own design, to solve the resulting system
of nonlinear equations. A reasonable start-
ing guess for the nonlinear solver is a straight

322 CHAPTER 10. BOUNDARY VALUE PROBLEMS FOR ODES

line between the boundary values. Plot the se-
quences of solutions you obtain for n = 1, 3,
7, and 15.

(c) Collocation method. Divide the given in-
terval 0 ≤ t ≤ 1 into n− 1 equal subintervals,

0 = t1 < t2 < · · · < tn−1 < tn = 1,

with each subinterval of length h = 1/(n− 1).
Take the approximate solution u(t) to be a
polynomial of degree n − 1. Forcing u(t) to
satisfy the boundary conditions at the end-
points and to satisfy the ODE at the n − 2
interior points yields a system of n equations
that determine the n coefficients of the polyno-
mial u(t). Use a library routine, or one of your
own design, to solve this system of nonlinear
algebraic equations. The resulting polynomial
can then be evaluated at any point in the inter-
val to obtain an approximate solution value at
that point. Print the polynomial coefficients
and plot the solutions you obtain for n = 3, 4,
5, and 6.

10.2 Solve the two-point boundary value
problem

y′′ = −(1 + ey), 0 ≤ t ≤ 1,

with boundary conditions

y(0) = 0, y(1) = 1,

using each of the methods in the previous ex-
ercise.

10.3 The curve of a hanging rope is described
by the system of ODEs

y′1 = cos(y3),
y′2 = sin(y3),
y′3 = (cos(y3)− sin(y3)| sin(y3)|)/y4,

y′4 = sin(y3)− cos(y3)| cos(y3)|,

where y1(t) and y2(t) are the horizontal and
vertical coordinates of the rope, y3(t) is the
angle between the tangent to the rope and the
horizontal axis, y4(t) is the tension in the rope,
and the variable t is the arc length along the
rope, with the length of the rope normalized
so that 0 ≤ t ≤ 1.

(a) Use both the shooting and finite difference
methods to determine the curve of the rope
when the boundary conditions are

y(0) =

0
0
0
1

 , y(1) =

0.75

0
0
1

 .
These conditions correspond to a slack rope.
Plot the solution curve you obtain for each
method.
(b) Use both the shooting and finite difference
methods to determine the curve of the rope
when the boundary conditions are

y(0) =

0
0
0
1

 , y(1) =

0.85
0.50

0
1

 .
These conditions correspond to a taut rope.
Plot the solution curve you obtain for each
method.

10.4 The deflection of a horizontal beam sup-
ported at both ends and subjected to axial
and transverse loads can be described by the
second-order ODE

y′′ = λ(−t2 − 1)y, −1 ≤ t ≤ 1,

with boundary conditions

y(−1) = 0, y(1) = 0.

The eigenvalues and eigenfunctions for this
two-point boundary value problem determine
the frequencies and modes of vibration of the
beam. Use a finite difference discretization
of the ODE to derive an algebraic eigenvalue
problem whose eigenvalues and eigenvectors
approximate those of the ODE, then compute
the eigenvalues and eigenvectors using a li-
brary routine (see Section 4.6). Experiment
with various mesh sizes and observe how the
eigenvalues behave.

10.5 The time-independent Schrödinger
equation in one dimension,

−ψ′′(x) + V (x)ψ(x) = Eψ(x),

where we have chosen units so that the quanti-
ties are dimensionless, describes the wave func-
tion ψ of a particle of energy E subject to a
potential function V . The square of the wave

COMPUTER PROBLEMS 323

function, |ψ(x)|2, can be interpreted as the
probability of finding the particle at position
x.
Assume that the particle is confined to a one-
dimensional box, say, the interval [0, 1], within
which it can move freely. Thus, the poten-
tial is zero within the unit interval and infinite
elsewhere. Since there is zero probability of
finding the particle outside the box, the wave
function must be zero at its boundaries. Thus,
we have an eigenvalue problem for the second-
order ODE

−ψ′′(x) = Eψ(x), 0 ≤ x ≤ 1,

subject to the boundary conditions

ψ(0) = 0 and ψ(1) = 0.

Note that the discrete eigenvalues E are the
only energy levels permitted; this feature gives
quantum mechanics its name.
Use a finite difference discretization of the
ODE to derive an algebraic eigenvalue prob-
lem whose eigenvalues and eigenvectors ap-
proximate those of the ODE, then compute

the eigenvalues and eigenvectors using a li-
brary routine (see Section 4.6). Experiment
with various mesh sizes and observe how the
eigenvalues behave.

An analytical solution to this problem is easily
obtained, which gives the eigenvalues

Ek = k2π2

and corresponding eigenfunctions

ψk(x) = sin(kπx), k = 1, 2,

How do your computed eigenvalues and eigen-
vectors compare with these analytical values as
the mesh size of your discretization decreases?
Try to characterize the error as a function of
the mesh size.

Note that a nonzero potential V would not
seriously complicate the numerical solution of
the Schrödinger equation, but would generally
make an analytical solution much more diffi-
cult to obtain.

324 CHAPTER 10. BOUNDARY VALUE PROBLEMS FOR ODES

Chapter 11

Partial Differential Equations

11.1 Partial Differential Equations

We turn now to partial differential equations (PDEs), where many of the numerical tech-
niques we saw for ODEs, both initial and boundary value problems, are also applicable.
The situation is more complicated with PDEs, however, because there are additional inde-
pendent variables, typically one or more space dimensions and possibly a time dimension
as well. Additional dimensions significantly increase computational complexity. Problem
formulation also becomes more complex than for ODEs, as we can have a pure initial value
problem, a pure boundary value problem, or a mixture of the two. Moreover, the equation
and boundary data may be defined over an irregular domain in space.

First, we establish some notation. For simplicity, we will deal only with single PDEs
(as opposed to systems of several PDEs) with only two independent variables (either two
space variables, which we denote by x and y, or one space and one time variable, which we
denote by x and t). In a more general setting, there could be any number of dimensions
and any number of equations in a coupled system of PDEs. We denote by u the unknown
solution function to be determined and its partial derivatives with respect to the independent
variables by appropriate subscripts: ux = ∂u/∂x, uxy = ∂2u/∂x∂y, etc.

11.1.1 Classification of Partial Differential Equations

Partial differential equations are classified by the value of the discriminant , b2− 4ac, in the
general linear, two-dimensional, second-order PDE

auxx + buxy + cuyy + dux + euy + fu+ g = 0,

b2 − 4ac > 0: hyperbolic,
b2 − 4ac = 0: parabolic,
b2 − 4ac < 0: elliptic.

In practice, this classification is not always so clean and simple. If the coefficients are
variable, then the type of the equation can vary from one region to another, and if there

325

326 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

is more than one equation in a system, each equation can be of a different type. And of
course, the problem may be nonlinear or of higher order or dimension. Nevertheless, these
terms are often used to describe PDEs even when the meaning is not so precise. Roughly
speaking,

• Hyperbolic PDEs describe time-dependent physical processes, such as wave motion, that
are not evolving toward a steady state.

• Parabolic PDEs describe time-dependent physical processes, such as the diffusion of heat,
that are evolving toward a steady state.

• Elliptic PDEs describe processes that have already reached a steady state, or equilibrium,
and hence are time-independent.

11.2 Time-Dependent Problems

Time-dependent PDEs usually involve both initial values and boundary values. For exam-
ple, the region in which the solution is desired, as well as the initial and boundary conditions
that must be specified, are shown for a problem with one space dimension in Fig. 11.1. Two
of the most commonly occurring examples of time-dependent PDEs are the heat equation,
which is parabolic, and the wave equation, which is hyperbolic.

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
................................

..........................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......
t

x
a b

problem domain

initial values

b
o
u
n
d
a
r
y
v
a
l
u
e
s

b
o
u
n
d
a
r
y
v
a
l
u
e
s

Figure 11.1: An initial-boundary value problem for a time-dependent PDE in one space dimension.

In one space dimension, the heat equation has the form

ut = cuxx, 0 ≤ x ≤ L, t ≥ 0,

with given initial and boundary conditions

u(0, x) = f(x), u(t, 0) = α, u(t, L) = β,

and c a positive constant. This equation models, for example, the diffusion of heat in a bar
of length L whose ends are maintained at temperatures given by the boundary conditions
and whose initial temperature distribution is given by the function f(x). The constant c,
which governs the rate of diffusion, depends on physical properties of the material, such as

11.2. TIME-DEPENDENT PROBLEMS 327

its thermal conductivity, specific heat, and density. The solution u to this equation gives
the subsequent temperature distribution as a function of both space and time.

In one space dimension, the wave equation has the form

utt = cuxx, 0 ≤ x ≤ L, t ≥ 0,

with given initial conditions

u(0, x) = f(x), ut(0, x) = g(x),

and boundary conditions
u(t, 0) = α, u(t, L) = β,

and c a positive constant. This equation models, for example, the vibrations of a violin
string of length L whose initial profile and velocity are given by the functions f(x) and g(x),
respectively, and whose ends are anchored as given by the boundary conditions. Because
it is second-order in time, this equation requires initial conditions for both the solution
function and its first derivative with respect to time. It turns out that the solution consists
of waves propagating to the left or right with speed

√
c. More generally, this equation

describes many types of wave motion, such as the propagation of sound waves in the air or
water waves in the ocean.

For both the heat equation and wave equation, we have given only the simplest type
of boundary conditions. More complicated boundary conditions may involve derivatives of
the solution as well as its values, or combinations of these, or may require that the solution
be periodic, for example.

Problems with more space dimensions incur greater computational requirements, both in
storage and execution time, but do not introduce significant additional conceptual difficulty,
so we will focus on time-dependent problems having a single space dimension. We will also
focus on relatively simple model problems, such as the heat and wave equations, rather
than attempt a broader treatment of partial differential equations in general. Nevertheless,
these model problems illustrate most of the important issues in the numerical solution of
PDEs.

11.2.1 Semidiscrete Methods Using Finite Differences

One way to solve a time-dependent PDE is to discretize in space but leave the time variable
continuous. This approach results in a system of ODEs, which can then be solved by the
methods discussed in Chapter 9. For example, consider the heat equation

ut = cuxx, 0 ≤ x ≤ 1, t ≥ 0,

with initial and boundary conditions

u(0, x) = f(x), u(t, 0) = 0, u(t, 1) = 0.

If we replace the derivative uxx with the finite difference approximation

uxx ≈
u(t, x+ ∆x)− 2u(t, x) + u(t, x−∆x)

(∆x)2
,

328 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

where ∆x = 1/(n+ 1), then we get a system of n ODEs

y′i(t) =
c

(∆x)2
[yi+1(t)− 2yi(t) + yi−1(t)], i = 1, . . . , n,

where yi(t) ≈ u(t, i∆x). From the boundary conditions, y0(t) and yn+1(t) are identically
zero, and from the initial conditions, yi(0) = f(xi), i = 1, . . . , n. We can therefore use an
ODE method to solve the initial value problem for this system. This approach is called the
method of lines. If we think of the solution u(t, x) as a surface over the space-time plane,
this method computes cross sections of that surface along a series of lines, each of which is
parallel to the time axis and corresponds to one of the discrete spatial mesh points.

The foregoing semidiscrete system can be written in matrix form as

y′ =
c

(∆x)2

−2 1 0 · · · 0

1 −2 1
. . .

...

0 1 −2
. . . 0

...
. 1

0 · · · 0 1 −2

y = Ay.

The Jacobian matrix A of this system has eigenvalues between −4c/(∆x)2 and 0, which
makes the ODE very stiff as the spatial mesh size ∆x becomes small. This stiffness, which is
typical of ODEs derived from PDEs in this manner, must be taken into account in choosing
an ODE method for solving the semidiscrete system (recall Section 9.5).

11.2.2 Semidiscrete Methods Using Finite Elements

Spatial discretization to convert a PDE into a system of ODEs can also be done by a finite
element approach. As we did for two-point boundary problems for ODEs, we approximate
the solution by a linear combination of basis functions, except that now the coefficients are
time dependent. Thus, we seek an approximate solution of the form

u(t, x) ≈
n∑
j=1

αj(t)φj(x),

where the φj(x) are the basis function over the spatial domain and the αj(t) are the time-
dependent coefficients. If we use collocation (we could also use Ritz or Galerkin methods),
then we substitute this approximation into the PDE and require that the equation be
satisfied exactly at a discrete set of points xi. For the heat equation, for example, this
yields a system of ODEs

n∑
j=1

α′j(t)φj(xi) = c
n∑
j=1

αj(t)φ′′j (xi), i = 1, . . . , n,

whose solution is the set of coefficient functions αj(t) that determine the approximate
solution to the PDE.

11.2. TIME-DEPENDENT PROBLEMS 329

The implicit form of the foregoing system of ODEs is not the explicit form required by
standard ODE methods, so we define the n× n matrices A and B by

aij = φj(xi), bij = φ′′j (xi).

Assuming the matrix A is nonsingular, we then obtain the system of ODEs

α′(t) = cA−1Bα(t),

which is in a form suitable for solution with standard ODE software (as usual, the matrix
A need not be inverted explicitly, but merely used to solve linear systems). We still need
an initial condition for the ODE, however, which we can obtain by requiring that the
solution satisfy the given initial condition for the PDE at the points xi. Again, the matrices
involved in this method will be sparse if the basis functions are “local,” such as B-splines.
Alternatively, we could use eigenfunctions of the differential operator (e.g., trigonometric
functions for uxx) as basis functions, which would give a spectral method, or other basis
functions, such as Legendre or Chebyshev polynomials, which would give a pseudospectral
method.

Unlike the finite difference method, the finite element method does not produce ap-
proximate values of the solution u directly, but rather it generates a representation of the
approximate solution as a linear combination of basis functions. The basis functions de-
pend only on the spatial variable, but the coefficients of the linear combination (given by
the solution to the system of ODEs) are time dependent. Thus, for any given time t, the
corresponding linear combination of basis functions generates a cross section of the solution
surface parallel to the spatial axis.

As with finite difference methods, systems of ODEs arising from semidiscretization of a
PDE by finite elements tend to be stiff, which should be taken into account in choosing an
ODE method for solving them.

11.2.3 Fully Discrete Methods

Fully discrete methods for PDEs discretize in both time and space dimensions. In a fully
discrete finite difference method, we replace the continuous domain of the equation by a
discrete mesh of points, we replace the derivatives in the PDE by finite difference approx-
imations, and we seek a numerical solution that is a table of approximate values at the
selected points in space and time. In two dimensions (one space and one time), the result-
ing approximate solution values represent points on the solution surface over the problem
domain in the space-time plane. The accuracy of the approximate solution depends on the
stepsizes in both space and time.

Replacement of all partial derivatives by finite differences results in a system of algebraic
equations for the unknown solution at the discrete set of sample points. This system may
be linear or nonlinear, depending on the underlying PDE. With an initial-value problem,
the solution is obtained by beginning with the initial values along some boundary of the
problem domain and marching forward in time step by step, generating successive rows in
the solution table. Such a time-stepping procedure may be explicit or implicit, depending
on whether the formula for the solution values at the next time step involves only past
information.

330 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

We would expect to obtain arbitrarily good accuracy by taking sufficiently small stepsizes
in time and space. The two stepsizes cannot always be chosen independently of each other,
however. For the approximate solution to converge to the true solution of the PDE as the
stepsizes in time and space go to zero, two conditions must be met:

• Consistency , which means that the local truncation error goes to zero as the stepsizes go
to zero (i.e., the discrete problem approximates the right continuous problem).
• Stability , which, as we have seen in other contexts, essentially means that the approximate

solution remains bounded. More specifically, the global error is bounded by a constant
times the local error.

The Lax Equivalence Theorem says that consistency and stability are together necessary and
sufficient for convergence. Neither condition alone is sufficient to guarantee convergence.

Example 11.1 Heat Equation. As an example of full discretization, consider the heat
equation

ut = cuxx, 0 ≤ x ≤ 1, t ≥ 0,

with initial and boundary conditions

u(0, x) = f(x), u(t, 0) = α, u(t, 1) = β.

We let ukj denote the approximate solution at xj = j∆x and tk = k∆t. If we replace ut by
a forward difference in time and uxx by a centered difference in space, with ∆x = 1/(n+1),
we get the scheme

uk+1
j − ukj

∆t
= c

ukj+1 − 2ukj + ukj−1

(∆x)2
, j = 1, . . . , n,

or
uk+1
j = ukj + c

∆t
(∆x)2

(ukj+1 − 2ukj + ukj−1), j = 1, . . . , n.

The boundary conditions give us uk0 = α and ukn+1 = β for all k, and the initial conditions
provide the starting values u0

j = f(xj) for all j, so that we can march the numerical
solution forward in time using the difference scheme. In Fig. 11.2a, the pattern of mesh
points involved in this scheme is indicated by the lines, with the arrow indicating the mesh
point at which the solution is being computed. Such a pattern is called the stencil of the
given finite difference scheme.

The local truncation error of this scheme is O(∆t)+O((∆x)2), so we say that the scheme
is first-order accurate in time and second-order accurate in space. The local error goes to
zero as ∆t and ∆x go to zero, so the scheme is consistent. To investigate its stability, we
note that this fully discrete explicit scheme is simply Euler’s method applied to the system
of ODEs resulting from the semidiscrete finite difference method for the heat equation given
in Section 11.2.1. There we saw that the Jacobian matrix of the semidiscrete system has
eigenvalues between −4c/(∆x)2 and 0, and hence the stability region for Euler’s method
requires that the time step satisfy

∆t ≤ (∆x)2

2c
.

11.2. TIME-DEPENDENT PROBLEMS 331

(a) Explicit method for
the heat equation

k − 1

k

k + 1

j − 1 j j + 1
• • •

• • •

• • •

..
........
........
........
........
........
........
........
..............................

..........................

(b) Explicit method for
the wave equation

k − 1

k

k + 1

j − 1 j j + 1
• • •

• • •

• • •

..

........

........

........

........

........

........

........

........

.........

........

........

........

........

........

........

........

.................................

..........................

(c) Implicit method for
the heat equation

k − 1

k

k + 1

j − 1 j j + 1
• • •

• • •

• • •..

........

........

........

........

........

........

........

........

..............................

..........................

(d) Crank-Nicolson method
for the heat equation

k − 1

k

k + 1

j − 1 j j + 1
• • •

• • •

• • •

..

..

........

........

........

........

........

........

........

........

..............................

..........................

Figure 11.2: Stencils of finite difference methods for time-dependent problems.

This restriction on the time step is rather severe and makes this explicit method relatively
inefficient compared with implicit methods that we will see shortly.

Example 11.2 Wave Equation. As a further illustration of the finite difference approach
to full discretization, we now consider the wave equation

utt = cuxx, 0 ≤ x ≤ 1, t ≥ 0,

with initial and boundary conditions

u(0, x) = f(x), ut(0, x) = g(x),

u(t, 0) = α, u(t, 1) = β.

Using centered difference formulas for both utt and uxx gives the finite difference scheme

uk+1
j − 2ukj + uk−1

j

(∆t)2
= c

ukj+1 − 2ukj + ukj−1

(∆x)2
,

or

uk+1
j = 2ukj − uk−1

j + c
(∆t)2

(∆x)2
(ukj+1 − 2ukj + ukj−1).

The stencil for this scheme is shown in Fig. 11.2b. We note that this scheme requires data
at two levels in time, which requires additional storage and also means that we need both
u0
j and u1

j to get started. These values can be obtained from the initial conditions

u0
j = f(xj), u1

j = f(xj) + (∆t)g(xj),

332 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

where in the latter we have used a forward difference approximation to the initial condition
ut = g(x). This scheme is second-order accurate in both space and time, and the stability
restriction on the time step is

∆t ≤ ∆x√
c
,

which is much less stringent than that for the scheme we considered for the heat equation.

11.2.4 Implicit Finite Difference Methods

In the finite difference schemes we have considered thus far the values of the approximate
solution at the next time level have been given by explicit formulas involving solution values
only at previous levels. For ODEs we saw that implicit methods are stable for a much greater
range of stepsizes, and the same is true of implicit methods for PDEs.

The explicit method that we considered for the heat equation results from applying
Euler’s method to the semidiscrete system of ODEs in Section 11.2.1. If instead we apply the
backward Euler method to the semidiscrete system, we obtain the implicit finite difference
scheme

uk+1
j = ukj + c

∆t
(∆x)2

(uk+1
j+1 − 2uk+1

j + uk+1
j−1),

whose stencil is shown in Fig. 11.2c. This scheme inherits the unconditional stability of the
backward Euler method, which means that there is no stability restriction on the relative
sizes of ∆t and ∆x. Accuracy is still a consideration, however, and the fact that this
particular method is only first-order accurate in time still limits the time step severely. The
simplest unconditionally stable implicit method for the heat equation that is second-order
accurate in time is the Crank-Nicolson method

uk+1
j = ukj + c

∆t
2(∆x)2

(uk+1
j+1 − 2uk+1

j + uk+1
j−1 + ukj+1 − 2ukj + ukj−1),

which results from applying the trapezoid rule to the semidiscrete system of ODEs (or
alternatively, by averaging the previous explicit and implicit methods). The stencil for the
Crank-Nicolson scheme is shown in Fig. 11.2d.

The much greater stability of implicit finite difference methods enables them to take
much larger time steps than are permissible with explicit methods, but they require more
work per step because we must solve a system of equations at each step to determine the
solution values at the next step. For both the backward Euler and Crank-Nicolson methods
for the heat equation in one space dimension, the linear system to be solved at each step
is tridiagonal, and thus both the work and the storage required are modest. In higher
dimensions the matrix of the linear system does not have such a simple form, but it is still
very sparse, with nonzeros in a very regular pattern. We will discuss methods for solving
such linear systems in Sections 11.4 and 11.5.

Obviously, many additional finite difference schemes are possible, depending on the par-
ticular PDE being solved, the order of accuracy sought, etc. Such schemes are usually
custom-tailored to take advantage of the specific features of a given problem. Finite dif-
ference schemes are relatively easy to derive; but analyzing their accuracy, stability, and
efficiency can be much more challenging, and consequently they should not be used blindly.

11.2. TIME-DEPENDENT PROBLEMS 333

11.2.5 Hyperbolic versus Parabolic Problems

Thus far we have treated all time-dependent problems alike: we simply replaced partial
derivatives by finite difference approximations and then considered the accuracy and stabil-
ity of the resulting scheme for stepping the approximate solution forward in time. A detailed
study of the theory of partial differential equations is beyond the scope of this book, but we
consider briefly a basic theoretical difference between hyperbolic and parabolic PDEs that
has significant implications for practical numerical solution methods.

Consider the following first-order hyperbolic PDE, known as the one-way wave equation
or advection equation:

ut = −cux, t ≥ 0,

with initial condition
u(0, x) = u0(x), x ≥ 0.

It is obvious from the chain rule that a solution is given by

u(t, x) = u0(x− ct).

Thus, the initial function u0 is simply propagated to the right (or to the left if c < 0) with
velocity c, as depicted in Fig. 11.3.

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..............................

..........................

.........
.........
.........
.........
.........
.........
.........
....................................

.........
.........
.........
.........
.........
.........
.........
..

.........
.........
.........
.........
.........
.........
....................................

.........
.........
.........
.........
.........
.........
.........
..

u

x

−→

t = 0 t > 0

Figure 11.3: A solution of the one-way wave equation.

Note that u0 need not be smooth or even continuous. This behavior is typical of hyper-
bolic equations: they propagate steep fronts or shocks (or anything else, including numerical
errors) undiminished—for this reason, they are said to be conservative. Such behavior can
potentially cause difficulties for numerical methods that are predicated on a certain degree
of smoothness. In particular, centered finite difference schemes, though desirable for their
higher accuracy, often induce unwanted oscillations in the numerical solution to a hyperbolic
equation near a sharp front. A useful alternative for the spatial derivatives in such cases
is to use one-sided differences whose sample points are on the side from which the front
is coming. Such upwind differencing biases the approximation toward the passing front,
reducing the tendency for unwanted oscillation. Upwind differencing is but the simplest of
several approaches to dealing with sharp fronts and discontinuities. Of course, if the initial
function is sufficiently smooth, such measures may not be required.

Example 11.3 Centered Versus Upwind Differencing for Sharp Front. Consider
the one-way wave equation

ut = −ux

334 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

with initial function u0 taken to be the step function defined by

u0(x) =
{

1 if x ≤ 0
0 if x > 0

.

The discontinuity in u0, a jump at x = 0, will be propagated to the right with time. From
the viewpoint of a particular point along the spatial axis, the solution will be 0 until the
step function passes by, after which the solution will be 1 (i.e., for a fixed x, the solution will
be a step function in t). We should expect finite difference methods to have some trouble
following this sharp front.

Fig. 11.4 shows the computed solution as a function of t at the point x = 1 (i.e., it is a
slice of the solution surface parallel to the t axis at the point x = 1). The solution on the
left was computed using centered spatial differencing of the form

ux ≈
u(t, x+ ∆x)− u(t, x−∆x)

2∆x
,

whereas the solution on the right was computed using upwind spatial differencing of the
form

ux ≈
u(t, x)− u(t, x−∆x)

∆x
.

The centered difference formula is second-order accurate and gives a closer approximation of
the sharp front. It overshoots, however, and then goes into an oscillation that is not present
in the true solution, which is the step function plotted on the same graph for comparison.
The one-sided difference formula is only first-order accurate and captures the sharp front
less well, but it is free of the undesirable oscillation exhibited by the centered method, and
in this sense it may be a better solution for many purposes. Notice that the one-sided
difference uses the adjacent point on the side from which the front is coming. If the front
were coming from the opposite direction, we would use the adjacent point on that side (i.e.,
x+ ∆x).

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...........................

..........................

..

u

t
0 1 2

1

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

..
............
...........
..........
..........
.........
.........
.........
.........
........
.........
.........
........
.........
........
.........
.........
........
.........
........
.........
.........
........
.........
..........
...........
...

............
............
..

....................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...........................

..........................

..

u

t
0 1 2

1

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

..
...............

...........
...........
..........
..........
.........
.........
.........
.........
..........
.........
..........
..........
.........
..........
..........
..........
..........
.............
...............

......................
...

Figure 11.4: Approximations to step function solution of one-way wave equation using centered
(left) and upwind (right) differencing.

In marked contrast to the behavior just described, parabolic equations are dissipative.
The solution tends toward a steady state with time, eventually “forgetting” the initial

11.3. TIME-INDEPENDENT PROBLEMS 335

conditions. Any lack of smoothness in the initial conditions, even possible inconsistency
in the initial and boundary conditions, is damped out. This behavior makes parabolic
equations very “forgiving” and relatively easy to solve numerically, as numerical errors tend
to diminish with time (provided a stable method is used). Thus, centered differences tend to
work well for parabolic problems, and high-accuracy solutions are relatively easy to obtain.

11.3 Time-Independent Problems

We now consider time-independent, elliptic PDEs in two space dimensions, such as the
Helmholtz equation

uxx + uyy + λu = f(x, y).

Important special cases of this equation include the Poisson equation (λ = 0) and the
Laplace equation (λ = 0 and f = 0). For simplicity, we consider this equation on the unit
square, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. There are numerous possibilities for the boundary conditions
that must be specified along each side of the square:

• Dirichlet boundary conditions, sometimes called essential boundary conditions, in which
the solution u is specified

• Neumann boundary conditions, sometimes called natural boundary conditions, in which
one of the derivatives ux or uy is specified

• Mixed boundary conditions, in which a combination of solution values and derivative
values is specified.

11.3.1 Finite Difference Methods

Finite difference methods for elliptic boundary value problems proceed as we have seen
before: we define a discrete mesh of points within the domain of the equation, replace the
derivatives in the PDE by finite differences, and seek a numerical solution at each of the
mesh points. Unlike time-dependent problems, however, we do not produce the solution
gradually by marching forward in time, but rather determine the approximate solution at
all of the mesh points simultaneously by solving a single system of algebraic equations.

Example 11.4 Laplace Equation. We illustrate this procedure with a simple example.
Consider the Laplace equation on the unit square

uxx + uyy = 0,

with boundary conditions as shown on the left in Fig. 11.5. We define a discrete mesh in
the domain, including boundaries, as shown on the right in Fig. 11.5.

The interior grid points where we will compute the approximate solution are given by

(xi, yj) = (ih, jh), i, j = 1, . . . , n,

where in our example n = 2 and h = 1/(n+ 1) = 1
3 . Next we replace the second derivatives

in the equation with the usual centered difference approximation at each interior mesh point

336 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

............................

..........................

..

...

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.....

y

x
0

0 0

1

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

............................

..........................

..

...

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.....

y

x
0

0 0

1

• •

• • • •

• • • •

• •

Figure 11.5: Boundary conditions (left) and mesh (right) for Laplace equation example.

to obtain the finite difference equation

ui+1,j − 2ui,j + ui−1,j

h2
+
ui,j+1 − 2ui,j + ui,j−1

h2
= 0,

where ui,j is an approximation to the true solution u(xi, yj) for i, j = 1, . . . , n, and represents
one of the given boundary values if i or j is 0 or n + 1. Simplifying and writing out the
resulting four equations explicitly, we obtain

4u1,1 − u0,1 − u2,1 − u1,0 − u1,2 = 0,
4u2,1 − u1,1 − u3,1 − u2,0 − u2,2 = 0,
4u1,2 − u0,2 − u2,2 − u1,1 − u1,3 = 0,
4u2,2 − u1,2 − u3,2 − u2,1 − u2,3 = 0.

Writing these four equations in matrix form, we have
4 −1 −1 0
−1 4 0 −1
−1 0 4 −1

0 −1 −1 4

u1,1

u2,1

u1,2

u2,2

 =

u0,1 + u1,0

u3,1 + u2,0

u0,2 + u1,3

u3,2 + u2,3

 =

0
0
1
1

 .
This system of equations can be solved for the unknowns ui,j either by a direct method
based on factorization or by an iterative method, yielding the solution

u1,1

u2,1

u1,2

u2,2

 =

0.125
0.125
0.375
0.375

 .

In a practical problem, the mesh size h would be much smaller and the resulting linear
system would be much larger than in the preceding example. The matrix would be very
sparse, however, since each equation would still involve at most only five of the variables,

11.4. DIRECT METHODS FOR SPARSE LINEAR SYSTEMS 337

thereby saving substantially on work and storage. We can be a bit more specific about the
nonzero pattern of the matrix of such a linear system. We have already seen in Section 10.4
how this type of finite difference method on a one-dimensional grid yields a tridiagonal
system. A rectangular two-dimensional grid can be thought of as a one-dimensional grid of
one-dimensional grids. Thus, with a row- or column-wise ordering of the grid points, the
corresponding matrix will be block tridiagonal , with each nonzero block being tridiagonal
or diagonal. Such a pattern is barely evident in the matrix of the previous example, where
the blocks are only 2× 2; for a slightly larger example, where the pattern is more evident,
see Fig. 11.6. This pattern generalizes to a three-dimensional grid, which can be viewed
as a one-dimensional grid of two-dimensional grids, so that the matrix would be block
tridiagonal, with the nonzero blocks themselves being block tridiagonal, and their subblocks
being tridiagonal. Of course, for a less regular grid or mesh, or a more complicated finite
difference stencil, the pattern would not be so simple, but sparsity would still prevail owing
to the local connectivity among the grid points.

11.3.2 Finite Element Methods

In Section 10.5 we considered finite element methods for solving boundary value problems
for ODEs. Finite element methods are also applicable to boundary value problems for
PDEs as well. Conceptually, there is no change in going from one dimension to two or three
dimensions: the solution is still represented as a linear combination of basis functions, and
some criterion (e.g., Galerkin) is applied to derive a system of equations that determines
the coefficients of the linear combination.

The main practical difference is that instead of subintervals in one dimension, the ele-
ments usually become triangles or rectangles in two dimensions, or tetrahedra or hexahedra
in three dimensions. Additional complications can occur, such as dealing with curved
boundaries. Basis functions typically used are bilinear or bicubic functions in two dimen-
sions or trilinear or tricubic functions in three dimensions, analogous to the “hat” functions
or piecewise cubics in one dimension. Of course, the increase in dimensionality means that
the linear system to be solved is much larger, but it is still sparse owing to the local sup-
port of the basis functions. Finite element methods for PDEs are extremely flexible and
powerful, but a detailed treatment of them is beyond the scope of this book.

11.4 Direct Methods for Sparse Linear Systems

All types of boundary value problems, as well as implicit methods for time-dependent PDEs,
give rise to systems of linear algebraic equations to solve. The use of finite difference schemes
involving only a few variables each, or the use of localized basis functions in a finite element
approach, causes the matrix of the linear system to be sparse. This sparsity can be exploited
to reduce the storage and work required for solving the linear system to much less than the
O(n2) and O(n3), respectively, that might be expected in a more naive approach. In this
section we briefly consider direct methods for solving large sparse linear systems, and then
in the following section we will discuss iterative methods for such systems in somewhat more
detail.

338 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

11.4.1 Sparse Factorization Methods

Gaussian elimination and its variants such as Cholesky factorization for symmetric positive
definite matrices are applicable to solving large sparse systems, but a great deal of care must
be exercised to achieve reasonable efficiency in both solution time and storage requirements.
The key to this efficiency is to store and operate on only the nonzero entries of the matrix.
Thus, special data structures are required rather than the simple two-dimensional arrays
that are so natural for storing dense matrices.

For one-dimensional problems, the equations and unknowns can usually be ordered
so that the nonzeros are concentrated in a relatively narrow band, which can be stored
efficiently in a rectangular two-dimensional array by diagonals. Algorithms are available for
reducing the bandwidth, if necessary, by reordering the rows and columns of the matrix. But
for problems in two or more dimensions, even the narrowest possible band often contains
mostly zeros, and hence any type of two-dimensional array storage would be prohibitively
wasteful. In general, sparse systems require data structures in which individual nonzero
entries are stored, along with the indices required to identify their locations in the matrix.
Explicitly storing the indices not only incurs additional storage overhead but also makes
arithmetic operations on the nonzeros less efficient owing to the indirect addressing required
to access the operands. Thus, such a representation is worthwhile only if the matrix is
sufficiently sparse, which is often the case for very large problems arising from PDEs and
many other applications.

When applied to a sparse matrix, LU or Cholesky factorization can be carried out in the
usual manner, but taking linear combinations of rows or columns to annihilate unwanted
nonzero entries can in turn introduce new nonzeros into locations in the matrix that were
initially zero. Such new nonzeros, called fill , must then be stored and, depending on their
locations, may eventually be annihilated themselves in order to obtain the triangular fac-
tors. In any case, the resulting triangular factors can be expected to contain at least as
many nonzeros as the original matrix and usually a significant amount of fill as well. The
amount of fill incurred is very sensitive to the order in which the rows and columns of the
matrix are processed, so one of the central problems in sparse factorization is to reorder the
original matrix to limit the amount of fill that the matrix suffers during factorization. Exact
minimization of fill turns out to be a very hard combinatorial problem (NP-complete), but
heuristic algorithms are available, such as minimum degree and nested dissection, that do
a good job of limiting fill for many types of problems. We sketch these algorithms briefly
in the following example; see [68, 93] for further details.

Example 11.5 Sparse Factorization. To illustrate sparse factorization, we consider a
matrix arising from a typical two-dimensional elliptic boundary value problem, the Laplace
equation on the unit square (see Example 11.4). A 3 × 3 grid of interior mesh points is
shown on the left in Fig. 11.6, with the points, or nodes, numbered in a natural, row-wise
order. The Laplace equation is then approximated by a system of linear equations using
the standard second-order finite difference approximation to the second derivatives. In the
diagram, a pair of nodes is connected by a line, or edge, if both appear in the same equation
in this system. We say that two nodes are neighbors if they are connected by an edge.

The nonzero pattern of the 9 × 9 symmetric positive definite matrix A of this linear

11.4. DIRECT METHODS FOR SPARSE LINEAR SYSTEMS 339

1
...
... 2

...
... 3

...
.....

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

....
4

...
... 5

...
... 6

...
.....

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

....
7

...
... 8

...
... 9

...
..... × × ×

× × × ×
× × ×

× × × ×
× × × × ×
× × × ×
× × ×
× × × ×
× × ×

.....................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................

.....................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................

.....................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................

.....................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................

×
× ×
× ×

× + + ×
× + × ×
× + × ×
× + + ×
× + × ×
× + × ×

mesh A L

Figure 11.6: Finite difference mesh and nonzero patterns of corresponding sparse matrix A and its
Cholesky factor L.

system is shown in the center of Fig. 11.6, where a nonzero entry of the matrix is indicated
by × and zero entries are blank. The diagonal entries of the matrix correspond to the
nodes in the mesh, and the nonzero off-diagonal entries correspond to the edges in the mesh
(i.e., aij 6= 0 ⇔ nodes i and j are neighbors). Note that the matrix is banded, but it also
has many zero entries inside the band. More specifically, the matrix is block tridiagonal,
with each nonzero block being either tridiagonal or diagonal, as expected for a row- or
column-wise ordering of a two-dimensional grid. Cholesky factorization of the matrix in
this ordering fills in the band almost completely, as shown on the right in Fig. 11.6, where
fill entries (new nonzeros) are indicated by +. We will see that there are other orderings in
which the matrix suffers considerably less fill.

Each step in the factorization process corresponds to the elimination of a node from the
mesh. Eliminating a node causes all of its neighboring nodes to become connected to each
other. If any such neighbors were not already connected, then fill results (i.e, new edges
in the mesh and new nonzeros in the matrix). Thus, a good heuristic for limiting fill is to
eliminate first those nodes having fewest neighbors. The number of neighbors of a given
node is called its degree, so this heuristic is known as minimum degree. At each step, the
minimum degree algorithm selects for elimination a node of smallest degree, breaking ties
arbitrarily. After the node has been eliminated, its former neighbors all become connected
to each other, so the degrees of some nodes may change. The process is then repeated,
with a new node of minimum degree eliminated next, and so on until all nodes have been
eliminated. A minimum degree ordering for our example problem is shown in Fig. 11.7,
along with the correspondingly permuted matrix and resulting Cholesky factor. Although
there is no obvious pattern to the nonzeros in the reordered matrix, the Cholesky factor
suffers much less fill than with the band ordering. This difference is much more pronounced
in larger problems, and more sophisticated variants of the minimum degree algorithm are
among the most effective general-purpose ordering algorithms known.

Nested dissection is a divide-and-conquer strategy for determining a good ordering to
limit fill in sparse factorization. First, a small set of nodes whose removal splits the mesh
into two pieces of roughly equal size is selected, and these separator nodes are numbered
last. Then the process is repeated recursively on each remaining piece of the mesh until
all nodes have been numbered. A nested dissection ordering for our example problem is
shown in Fig. 11.8, along with the correspondingly permuted matrix and resulting Cholesky
factor. Separating the mesh into two pieces means that no node in either piece is connected

340 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

1
...
... 5

...
... 2

...
.....

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

....
7

...
... 9

...
... 8

...
.....

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

....
3

...
... 6

...
... 4

...
..... × × ×

× × ××
× × ×
× × ×

× × × ×
× × × ×

× × × ×
× × × ×

× × × × ×
.....................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...................

.....................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................

.....................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................

.....................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................

×
×
×
×

× × ×
× × ×

× × + + ×
× × + + + ×

× × × × ×

mesh A L

Figure 11.7: Finite difference mesh reordered by minimum degree, with nonzero patterns of corre-
spondingly permuted sparse matrix A and its Cholesky factor L.

to any node in the other, and hence no fill can occur in either piece as a consequence of
the elimination of a node in the other. In other words, dissection induces blocks of zeros in
the matrix (indicated by the squares in Fig. 11.8) that are automatically preserved during
factorization, thereby limiting fill. The recursive nature of the algorithm can be seen in the
hierarchical block structure of the matrix, which would involve many more levels in a larger
problem.

1
...
... 3

...
... 2

...
.....

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

....
7

...
... 8

...
... 9

...
.....

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

....
4

...
... 6

...
... 5

...
..... × 2 × ×

2 × × ×
× × × ×

× 2 × ×
2 × × ×
× × × ×

× × × ×
× × × × ×

× × × ×

...
........
........
........
........
........
........
...

...
........
........
........
........
........
........
...

.....................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................

.....................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................

.....................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................

.....................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................

×
2 ×
× × ×

×
2 ×
× × ×

× + × + ×
× × × ×

× + × + + × ×

...
........
........
........
........
........
........
...

mesh A L

Figure 11.8: Finite difference mesh reordered by nested dissection, with nonzero patterns of corre-
spondingly permuted sparse matrix A and its Cholesky factor L.

Sparse factorization methods are accurate, reliable, and robust. They are the methods
of choice for one-dimensional problems and are usually competitive for two-dimensional
problems, but they can be prohibitively expensive in both work and storage for very large
three-dimensional problems. We will see that iterative methods provide a viable alternative
in these cases.

11.4.2 Fast Direct Methods

For certain types of PDEs, special techniques can be used to solve the resulting discretized
linear system much faster than would be expected. For example, for certain elliptic bound-
ary value problems having constant coefficients and simple boundaries (e.g., the Poisson
equation on a rectangular domain), the fast Fourier transform, or FFT (see Chapter 12),
can be used to compute the solution to the discrete system very efficiently, provided that
the number of mesh points in each dimension is a power of two. This technique is the basis

11.5. ITERATIVE METHODS FOR LINEAR SYSTEMS 341

for several “fast Poisson solver” software packages. For a problem with n mesh points,
such a fast Poisson solver computes the solution in O(n log2 n) operations, which is nearly
optimal since the cost of simply writing the output is O(n).

Somewhat more generally, for separable elliptic PDEs the method of cyclic reduction
permits similarly fast solutions. Cyclic reduction is a divide-and-conquer technique in which
the even-numbered equations in the systems are solved in terms of the odd-numbered ones,
and so on recursively until reaching the bottom of the recursion, where single equations
can be solved trivially. This idea obviously works best when the order of the system is a
power of two, but it can be adapted to handle systems of arbitrary order. These ideas—
FFT and cyclic reduction—can be combined, for example using FFT in one dimension and
cyclic reduction in the other. A more subtle combination results in the FACR (Fourier
analysis/cyclic reduction) method, which is even faster than either the FFT method or
the cyclic reduction method alone. The computational complexity of the FACR method is
O(n log log n), which is effectively optimal, since log log is essentially constant for problems
of any reasonable size.

11.5 Iterative Methods for Linear Systems

Iterative methods for solving linear systems begin with an initial estimate for the solution
and successively improve it until the solution is as accurate as desired. In theory, an infinite
number of iterations might be required to converge to the exact solution, but in practice
the iteration terminates when some norm of the residual ‖b−Ax‖, or some other measure
of error, is as small as desired.

11.5.1 Stationary Iterative Methods

Perhaps the simplest type of iterative method for solving Ax = b has the form

xk+1 = Gxk + c,

where the matrixG and vector c are chosen so that a fixed point of the equation x = Gx+c
is a solution to Ax = b. Such a method is said to be stationary if G and c are constant
over all iterations.

One way to obtain a suitable matrix G is by a splitting , in which the matrix A is written
as

A = M −N ,

with M nonsingular. We can then take G = M−1N and c = M−1b, so that the iteration
scheme becomes

xk+1 = M−1Nxk +M−1b,

which is implemented as
Mxk+1 = Nxk + b

(i.e., we solve a linear system with matrix M at each iteration).
Formally, this splitting scheme is a fixed-point iteration with iteration function

g(x) = M−1Nx+M−1b,

342 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

whose Jacobian matrix is
G(x) = M−1N .

Thus, the iteration scheme is convergent if

ρ(G) = ρ(M−1N) < 1,

and the smaller the spectral radius, the faster the convergence rate (see Section 5.3.1).
For rapid convergence, we should choose M and N so that ρ(M−1N) is as small as

possible. There is a trade-off, however, as the cost per iteration is determined by the cost
of solving a linear system with matrix M . As an extreme example, if M = A, then the
scheme converges in a single iteration (i.e., we have a direct method), but that one iteration
may be prohibitively expensive. In practice, M is chosen to approximate A in some sense,
but is usually constrained to have some simple form, such as diagonal or triangular, so that
the linear system at each iteration is easy to solve.

Example 11.6 Iterative Refinement. We have already seen one example of a stationary
iterative method, namely, iterative refinement of a solution already computed by Gaussian
elimination (see Section 2.4.3). Forward- and back-substitution using the LU factorization
in effect provide an approximation, call it B−1, to the inverse of A (i.e., for any right-hand-
side vector y, the solution B−1y can be computed by forward- and back-substitution using
the LU factors already computed). Iterative refinement then has the form

xk+1 = xk +B−1(b−Axk),

which can be rewritten
xk+1 = (I −B−1A)xk +B−1b.

Thus, we see that iterative refinement is a stationary iterative method with G = I−B−1A
and c = B−1b. The scheme therefore converges if ρ(I − B−1A) < 1, which should be
the case if B−1 is a good approximation to A−1, such as the use of forward- and back-
substitution with the LU factors obtained by Gaussian elimination with partial pivoting.
Indeed, the convergence condition may be satisfied even by a rather loose approximation to
the inverse. For example, iterative refinement can sometimes be used to stabilize “fast but
risky” algorithms.

11.5.2 Jacobi Method

In the matrix splitting A = M −N , the simplest choice for M is diagonal, specifically the
diagonal of A. Let D be a diagonal matrix with the same diagonal entries as A, and let L
and U be the strict lower and upper triangular portions of A, respectively, so that

M = D, N = −(L+U)

gives a splitting of A. If A has no zero diagonal entries, so that D is nonsingular, we obtain
the iterative scheme known as the Jacobi method:

x(k+1) = D−1(b− (L+U)x(k)).

11.5. ITERATIVE METHODS FOR LINEAR SYSTEMS 343

(We use parenthesized superscripts for the iteration index when we need to reserve subscripts
to refer to individual components of a vector.) Rewriting this scheme componentwise, we
see that, beginning with an initial guess x(0), the Jacobi method computes the next iterate
by solving for each component of x in terms of the others:

x
(k+1)
i =

bi −
∑

j 6=i aijx
(k)
j

aii
, i = 1, . . . , n.

Note that the Jacobi method requires double storage for the vector x because all of the
old component values are needed throughout the sweep, and therefore the new component
values cannot overwrite them until the sweep has been completed.

To illustrate the use of the Jacobi method, if we apply it to solve the system of finite
difference equations for the Laplace equation in Example 11.4, we get

u
(k+1)
i,j =

u
(k)
i−1,j + u

(k)
i,j−1 + u

(k)
i+1,j + u

(k)
i,j+1

4
,

which means that each new approximate solution at a given grid point is simply the average
of the previous solution components at the four surrounding grid points. In this sense,
solving the elliptic problem by an iterative method adds a timelike dimension (analogous to
a parabolic problem, in this case the heat equation) in which the initial solution “diffuses”
until a steady state is reached at the final solution.

The Jacobi method does not always converge, but it is guaranteed to converge under
conditions that are often satisfied in practice (e.g., if the matrix is diagonally dominant by
rows). Unfortunately, the convergence rate of the Jacobi method is usually unacceptably
slow.

11.5.3 Gauss-Seidel Method

One reason for the slow convergence of the Jacobi method is that it does not make use of
the latest information available: new component values are used only after the entire sweep
has been completed. The Gauss-Seidel method remedies this drawback by using each new
component of the solution as soon as it has been computed:

x
(k+1)
i =

bi −
∑

j<i aijx
(k+1)
j −

∑
j>i aijx

(k)
j

aii
, i = 1, . . . , n.

In the same notation as in Section 11.5.2, the Gauss-Seidel method corresponds to the
splitting

M = D +L, N = −U

and can be written in matrix terms as

x(k+1) = D−1(b−Lx(k+1) −Ux(k))
= (D +L)−1(b−Ux(k)).

In addition to faster convergence, another benefit of the Gauss-Seidel method is that dupli-
cate storage is not needed for the vector x, since the newly computed component values can

344 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

overwrite the old ones immediately (a programmer would have invented this method in the
first place because of its more natural and convenient implementation). On the other hand,
the updating of the unknowns must now be done successively, in contrast to the Jacobi
method, in which the unknowns can be updated in any order or even simultaneously. The
latter feature may make Jacobi preferable on a parallel computer.

To illustrate the use of the Gauss-Seidel method, if we apply it to solve the system of
finite difference equations for the Laplace equation in Example 11.4, we get

u
(k+1)
i,j =

u
(k+1)
i−1,j + u

(k+1)
i,j−1 + u

(k)
i+1,j + u

(k)
i,j+1

4
,

assuming that we sweep from left to right and bottom to top in the grid. Thus, we again
average the solution values at the four surrounding grid points but always use new compo-
nent values as soon as they become available rather than waiting until the current iteration
has been completed.

The Gauss-Seidel method does not always converge, but it is guaranteed to converge
under conditions that are often satisfied in practice and that are somewhat weaker than
those for the Jacobi method (e.g., if the matrix is symmetric and positive definite). Although
the Gauss-Seidel method converges more rapidly than the Jacobi method, it is often still
too slow to be practical.

11.5.4 Successive Over-Relaxation

The convergence rate of the Gauss-Seidel method can be accelerated by a technique called
successive over-relaxation (SOR), which in effect uses the step to the next Gauss-Seidel
iterate as a search direction, but with a fixed search parameter denoted by ω. Starting with
x(k), we first compute the next iterate that would be given by Gauss-Seidel, x(k+1)

GS , then
instead take the next iterate to be

x(k+1) = x(k) + ω(x(k+1)
GS − x(k)).

Equivalently, we can think of this scheme as taking a weighted average of the current iterate
and the next Gauss-Seidel iterate:

x(k+1) = (1− ω)x(k) + ωx
(k+1)
GS .

In either case, ω is a fixed relaxation parameter chosen to accelerate convergence. A
value ω > 1 gives over -relaxation, whereas ω < 1 gives under -relaxation (ω = 1 simply gives
the Gauss-Seidel method). We always have 0 < ω < 2 (otherwise the method diverges),
but choosing a specific value of ω to attain the best possible convergence rate is a difficult
problem in general and is the subject of an elaborate theory for special classes of matrices.

In the same notation as in Section 11.5.2, the SOR method corresponds to the splitting

M = D + ωL, N = (1− ω)D − ωU ,

and can be written in matrix terms as

x(k+1) = x(k) + ω[D−1(b−Lx(k+1) −Ux(k))− x(k)]
= (D + ωL)−1[(1− ω)D − ωU]x(k) + ω(D + ωL)−1b.

11.5. ITERATIVE METHODS FOR LINEAR SYSTEMS 345

Like the Gauss-Seidel method, the SOR method makes repeated forward sweeps through
the unknowns, updating them successively. A variant of SOR, known as SSOR (symmetric
SOR), alternates forward and backward sweeps through the unknowns. SSOR is not neces-
sarily faster than SOR (indeed SSOR is often slower), but it has the theoretical advantage
that its iteration matrix, G = M−1N , which is too complicated to express here, is similar
to a symmetric matrix when A is symmetric (which is not true of the iteration matrix for
SOR). For example, this makes SSOR useful as a preconditioner (see Section 11.5.5).

11.5.5 Conjugate Gradient Method

We now turn from stationary iterative methods to methods based on optimization. If A is
an n× n symmetric positive definite matrix, then the quadratic function

φ(x) = 1
2x

TAx− xTb

attains a minimum precisely when Ax = b. Thus, we can apply any of the optimization
methods discussed in Section 6.3 to obtain a solution to the corresponding linear system.
Recall from Section 6.3 that most multidimensional optimization methods progress from one
iteration to the next by performing a one-dimensional search along some search direction
sk, so that

xk+1 = xk + αsk,

where α is a search parameter chosen to minimize the objective function φ(xk +αsk) along
sk.

We note some special features of such a quadratic optimization problem. First, the
negative gradient is simply the residual vector:

−∇φ(x) = b−Ax = r.

Second, for any search direction sk, we need not perform a line search, because the optimal
choice for α can be determined analytically. Specifically, the minimum over α occurs when
the new residual is orthogonal to the search direction:

0 =
d

dα
φ(xk+1) = ∇φ(xk+1)T

d

dα
xk+1 = (Axk+1 − b)T (

d

dα
(xk + αsk)) = −rTk+1sk.

Since the new residual can be expressed in terms of the old residual and the search direction,

rk+1 = b−Axk+1 = b−A(xk + αsk) = (b−Axk)− αAsk = rk − αAsk,

we can thus solve for

α =
rTk sk

sTkAsk
.

If we take advantage of these properties in the algorithm of Section 6.3.6, we obtain
the conjugate gradient (CG) method for solving symmetric positive definite linear systems.
Starting with an initial guess x0 and taking s0 = r0 = b − Ax0, the following steps are
repeated for k = 0, 1, . . . until convergence:

1. αk = rTk rk/s
T
kAsk.

346 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

2. xk+1 = xk + αksk.
3. rk+1 = rk − αkAsk.
4. βk+1 = rTk+1rk+1/r

T
k rk.

5. sk+1 = rk+1 + βk+1sk.

Each iteration of the algorithm requires only a single matrix-vector multiplication, Ask,
plus a small number of inner products. The storage requirements are also very modest,
since the vectors x, r, and s can be overwritten.

Although the foregoing algorithm is not terribly difficult to derive, we content ourselves
here with the following intuitive motivation. The features noted earlier for the quadratic
optimization problem would make it extremely easy to apply the steepest descent method,
using the negative gradient—in this case the residual—as search direction at each iteration.
Unfortunately, we have already observed that its convergence rate is often very poor owing
to repeated searches in the same directions (zigzagging). We could avoid this repetition by
orthogonalizing each new search direction against all of the previous ones (see Section 3.4.6),
leaving only components in “new” directions, but this would appear to be prohibitively
expensive computationally and would also require excessive storage to save all of the search
directions. However, if instead of using the standard inner product we make the search
directions mutually A-orthogonal (vectors y and z are A-orthogonal if yTAz = 0), or
conjugate, then it can be shown that the successive A-orthogonal search directions satisfy a
three-term recurrence (this is the role played by β in the algorithm). This short recurrence
makes the computation very cheap, and, most important, it means that we do not need to
save all of the previous gradients, only the most recent two, which makes a huge difference
in storage requirements.

In addition to the other special properties already mentioned, it turns out that in the
quadratic case the residual at each step is minimal (with respect to the norm induced by A)
over the space spanned by the search directions generated so far. Since the search directions
are A-orthogonal, and hence linearly independent, this property implies that after at most
n steps the solution is exact, because the n search directions must span the whole space.
Thus, in theory, the conjugate gradient method is direct, but in practice rounding error
causes a loss of orthogonality, which spoils this finite termination property. As a result,
the conjugate gradient method is usually used in an iterative manner and halted when
the residual, or some other measure of error, is sufficiently small. In practice, the method
often converges in far fewer than n iterations. We will consider its convergence rate in
Section 11.5.6.

Although it is a significant improvement over steepest descent, the conjugate gradient
algorithm can still converge very slowly if the matrix A is ill-conditioned. Convergence can
often be substantially accelerated by preconditioning , which can be thought of as implicitly
multiplying A by M−1, where M is a matrix for which systems of the form Mz = y are
easily solved, and whose inverse approximates that of A, so that M−1A is relatively well-
conditioned. Technically, to preserve symmetry, we should apply the conjugate gradient
algorithm to L−1AL−T instead of M−1A, where M = LLT . However, the algorithm
can be suitably rearranged so that only M is used and the corresponding matrix L is not
required explicitly. The resulting preconditioned conjugate gradient algorithm is given here.
Starting with an initial guess x0 and taking r0 = b−Ax0 and s0 = M−1r0, the following

11.5. ITERATIVE METHODS FOR LINEAR SYSTEMS 347

steps are repeated for k = 0, 1, . . . until convergence:

1. αk = rTkM
−1rk/s

T
kAsk.

2. xk+1 = xk + αksk.
3. rk+1 = rk − αkAsk.
4. βk+1 = rTk+1M

−1rk+1/r
T
kM

−1rk.
5. sk+1 = M−1rk+1 + βk+1sk.

Note that in addition to the one matrix-vector multiplication, Ask, per iteration, we must
also apply the preconditioner, M−1rk, once per iteration.

The choice of an appropriate preconditioner depends on the usual trade-off between the
gain in the convergence rate and the increased cost per iteration that results from applying
the preconditioner. Many different choices of preconditioner have been proposed, and this
topic is an active area of research. Some of the types of preconditioning most commonly
used are:

• Diagonal (also called Jacobi): M is taken to be a diagonal matrix with diagonal entries
equal to those of A.

• Block diagonal (or block Jacobi): If the indices 1, . . . , n are partitioned into mutually
disjoint subsets, then mij = aij if i and j are in the same subset, and mij = 0 otherwise.
Natural choices include partitioning along lines or planes in two- or three-dimensional
grids, respectively, or grouping together physical variables that correspond to a common
node, as in many finite element problems.
• SSOR: Using a matrix splitting of the form A = L+D+LT as in Section 11.5.1, we can

take M = (D +L)D−1(D +L)T , or, introducing the SSOR relaxation parameter ω,

M(ω) =
1

2− ω
(

1
ω
D +L)(

1
ω
D)−1(

1
ω
D +L)T .

With optimal choice of ω, the SSOR preconditioner is capable of reducing the condition
number to cond(M−1A) = O(

√
cond(A)), but as usual, obtaining knowledge of this

optimal value may be impractical.
• Incomplete factorization: Ideally, one would like to solve the linear system directly using

the Cholesky factorization A = LLT , but this may incur unacceptable fill (see Sec-
tion 11.4.1). One may instead compute an approximate factorization A ≈ L̂L̂T that
allows little or no fill (e.g., restricting the nonzero entries of L̂ to be in the same positions
as those of the lower triangle of A), then use M = L̂L̂T as a preconditioner.

• Polynomial : M−1 is taken to be a polynomial in A that approximates A−1. One way
to obtain a suitable polynomial is to use a fixed number of steps of a stationary itera-
tive method to solve the preconditioning system Mzk = rk at each conjugate gradient
iteration.
• Approximate inverse: M−1 is determined by using an optimization algorithm to minimize

the residual

‖I −AM−1‖ or ‖I −M−1A‖

in some norm, with M−1 restricted to have a prescribed pattern of nonzero entries.

348 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

Note that some of these preconditioners require a significant amount of work to form them
initially, and this work must also be included in the cost trade-off mentioned earlier. The
conjugate gradient method is rarely used without some form of preconditioning. Since di-
agonal preconditioning requires almost no extra work or storage, at least this much precon-
ditioning is always advisable, and more sophisticated preconditioners are often worthwhile.

The conjugate gradient method is generally applicable only to symmetric positive defi-
nite systems. If the matrix A is indefinite or nonsymmetric, then the algorithm may break
down both theoretically (e.g., the corresponding optimization problem may not have a min-
imum) and practically (e.g., the formula for α may fail). The method can be generalized to
symmetric indefinite systems, as in the SYMMLQ algorithm of Paige and Saunders [198],
for example. The conjugate gradient method cannot be generalized to nonsymmetric sys-
tems, however, without sacrificing at least one of the two properties—the short recurrence
property and the minimum residual property—that largely account for its effectiveness.
Nevertheless, in recent years a number of related algorithms have been formulated for solv-
ing nonsymmetric linear systems, including GMRES, QMR, CGS, BiCG, Bi-CGSTAB, and
others. These algorithms tend to be significantly less robust or require considerably more
storage or work than the conjugate gradient algorithm that inspired them, but in many
cases they are still the most effective methods available for solving very large nonsymmetric
systems.

Example 11.7 Iterative Methods for Linear Systems. We illustrate various iterative
methods by using them to solve the 4×4 linear system for the Laplace equation on the unit
square in Example 11.4. In each case we take x(0) = 0 as starting guess.

The Jacobi method gives the following sequence of iterates for this problem:

k x1 x2 x3 x4

0 0.000 0.000 0.000 0.000
1 0.000 0.000 0.250 0.250
2 0.062 0.062 0.312 0.312
3 0.094 0.094 0.344 0.344
4 0.109 0.109 0.359 0.359
5 0.117 0.117 0.367 0.367
6 0.121 0.121 0.371 0.371
7 0.123 0.123 0.373 0.373
8 0.124 0.124 0.374 0.374
9 0.125 0.125 0.375 0.375

As expected, the Gauss-Seidel method converges somewhat faster, giving the following
sequence of iterates for this problem:

k x1 x2 x3 x4

0 0.000 0.000 0.000 0.000
1 0.000 0.000 0.250 0.312
2 0.062 0.094 0.344 0.359
3 0.109 0.117 0.367 0.371
4 0.121 0.123 0.373 0.374
5 0.124 0.125 0.375 0.375
6 0.125 0.125 0.375 0.375

11.5. ITERATIVE METHODS FOR LINEAR SYSTEMS 349

The optimal acceleration parameter in the SOR method turns out to be ω = 1.072 for this
problem, which is so close to 1 that it converges only slightly faster than Gauss-Seidel,
giving the following sequence of iterates:

k x1 x2 x3 x4

0 0.000 0.000 0.000 0.000
1 0.000 0.000 0.268 0.335
2 0.072 0.108 0.356 0.365
3 0.119 0.121 0.371 0.373
4 0.123 0.124 0.374 0.375
5 0.125 0.125 0.375 0.375

Finally, the conjugate gradient method converges in only two iterations for this problem,
giving the following sequence of iterates:

k x1 x2 x3 x4

0 0.000 0.000 0.000 0.000
1 0.000 0.000 0.333 0.333
2 0.125 0.125 0.375 0.375

11.5.6 Rate of Convergence

Example 11.7 is too small for the results to be representative of the relative performance of
the methods for problems of practical size. Recall from the discussion of convergence rates
in Section 5.1.2 that, asymptotically, a linearly convergent sequence with constant C gains
− log10(C) decimal digits per iteration. Thus, the quantity R = − log10(ρ(G)) serves as a
useful quantitative measure of the speed of convergence of a stationary iterative method
with iteration matrix G. In this context, R is sometimes called the rate of convergence, but
this term should not be confused the convergence rate r defined in Section 5.1.2.

If we use the same five-point finite difference approximation as in the previous example
for the Laplace equation on the unit square, but with an arbitrary k × k grid of interior
mesh points with mesh size h = 1/(k + 1), then the spectral radius ρ(G) and approximate
rate of convergence R for the stationary iterative methods are as shown in Table 11.1. We
see that the rates of convergence for Jacobi and Gauss-Seidel are proportional to the square
of the mesh size, or equivalently, that the number of iterations per digit of accuracy gained
is proportional to the number of mesh points. The constants of proportionality also tell us
that Gauss-Seidel is asymptotically twice as fast as Jacobi for this model problem. Optimal
SOR, on the other hand, is an order of magnitude faster than either of the other methods, as
its rate of convergence is proportional to the mesh size, and hence the number of iterations
per digit gained is proportional to the number of mesh points along one side of the grid.

Table 11.1: Spectral radius and rate of convergence for k × k grid problem

Method ρ(G) R

Jacobi cos(πh) (π2/ log 10)h2/2
Gauss-Seidel cos2(πh) (π2/ log 10)h2

Optimal SOR (1− sin(πh))/(1 + sin(πh)) (2π/ log 10)h

350 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

To make these results more concrete, in Table 11.2 are listed the spectral radius and
rate of convergence for each method for a range of values of k. We see that the spectral
radius is extremely close to 1 for large values of k, and hence all three methods converge
very slowly. From the rate of convergence R, we see that for k = 10 (a linear system of
order 100), Jacobi requires more than 50 iterations to gain a single decimal digit of accuracy,
Gauss-Seidel requires more than 25 iterations, and optimal SOR requires about 4 iterations.
For k = 100 (a linear system of order 10,000), to gain a single decimal digit of accuracy
Jacobi requires about 5000 iterations, Gauss-Seidel about 2500, and optimal SOR about
37. Thus, the Jacobi and Gauss-Seidel methods are impractical for a problem of this size,
and optimal SOR, though perhaps reasonable for this problem, also becomes prohibitively
slow for still larger problems. Moreover, the performance of SOR depends on knowledge
of the optimal value for the relaxation parameter ω, which is known analytically for this
simple model problem to be ω = 2/(1 + sin(πh)), but which is much harder to determine
in general.

Table 11.2: Spectral radius of iteration matrix and rate of convergence for k × k grid

Jacobi Gauss-Seidel Optimal SOR
k ρ(G) R ρ(G) R ρ(G) R

10 0.9595 0.018 0.9206 0.036 0.5604 0.252
50 0.9981 0.0008 0.9962 0.0016 0.8840 0.0535

100 0.9995 0.0002 0.9990 0.0004 0.9397 0.0270
500 0.99998 0.0000085 0.99996 0.000017 0.98754 0.005447

The convergence behavior of the nonstationary conjugate gradient method is more com-
plicated, but roughly speaking the error is reduced at each iteration by a factor of

√
κ− 1√
κ+ 1

on average, where

κ = cond(A) = ‖A‖2 · ‖A−1‖2 =
λmax(A)
λmin(A)

.

When the matrix A is well-conditioned (κ ≈ 1), convergence is rapid; but if A is very
ill-conditioned (κ� 1), then convergence can be arbitrarily slow. For this reason, a precon-
ditioner is usually used with the conjugate gradient method. By doing so, the preconditioned
matrix M−1A has a much smaller condition number than A, and hence the convergence
rate is greatly improved. The foregoing estimate is conservative, however, and the algorithm
may do much better than this. For example, if the matrix A has only m distinct eigenval-
ues, then theoretically, conjugate gradients converges in at most m iterations. Thus, the
detailed convergence behavior depends on all of the spectrum of A, not just on its extreme
eigenvalues, and in practice the convergence is often superlinear.

11.5.7 Multigrid Methods

We have seen that stationary iterative methods often have very poor rates of convergence.
There are various techniques for accelerating convergence, but these methods generally

11.5. ITERATIVE METHODS FOR LINEAR SYSTEMS 351

remain impractical for problems of realistic size. These convergence results are asymptotic,
however, and such methods may initially make rapid progress before eventually settling
into the slow asymptotic phase. In particular, many stationary iterative methods tend to
reduce the high-frequency (i.e., oscillatory) components of the error rapidly but reduce the
low-frequency (i.e., smooth) components of the error much more slowly, which produces the
poor asymptotic rate of convergence (see Computer Problems 11.13 and 12.14 for examples).
For this reason, such methods are sometimes called smoothers. This observation provides
the motivation for multigrid methods, which we now outline very briefly.

The notions of smooth or oscillatory components of the error are relative to the mesh
on which the solution is defined. In particular, a component that appears smooth on a fine
grid may appear oscillatory when sampled on a coarser grid. If we apply a smoother on the
coarser grid, then we may make rapid progress in reducing this (now oscillatory) component
of the error. After a few iterations of the smoother, the results can then be interpolated back
to the fine grid to produce a solution in which the low-frequency components of the error
have been reduced. It may then be desirable to use a few more iterations of the smoother on
the fine grid to ensure that the high-frequency components of the error are still small. The
net result is an approximate solution on the fine grid for which both the high-frequency and
low-frequency components of the error are reduced, and then the process can be repeated,
if desired, until some convergence criterion is met.

This idea can be extended to multiple levels of grids, so that error components of various
frequencies can be reduced rapidly, each at the appropriate level. Transition from a finer
grid to a coarser grid involves restriction (sometimes called injection), whereas transition
from a coarser grid to a finer grid involves interpolation (sometimes called prolongation).

If x̂ is an approximate solution to Ax = b, with residual r = b −Ax̂, then the error
e = x − x̂ satisfies the equation Ae = r. Thus, in improving the approximate solution
we can work with just this “residual equation” involving the error and the residual, rather
than the solution and original right-hand side. One advantage of the residual equation is
that zero is a reasonable starting guess for its solution. A two-grid method then takes the
following form:

1. On the fine grid, use a few iterations of a smoother to compute an approximate solution
x̂ for the system Ax = b.

2. Compute the residual r = b−Ax̂.
3. Restrict the residual to the coarse grid.
4. On the coarse grid, use a few iterations of a smoother on the residual equation to obtain

a coarse grid approximation to the error.
5. Interpolate the coarse grid correction to the fine grid to obtain an improved approximate

solution on the fine grid.
6. Apply a few iterations of a smoother to the corrected solution on the fine grid.

A multigrid method results from recursion in Step 4, that is, the coarse grid correction is
itself improved by using a still coarser grid, and so on down to some bottom level. The
computations become cheaper as one moves to coarser and coarser grids because the systems
become successively smaller. In particular, a direct method may be feasible on the coarsest
grid if the system is small enough.

352 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

There are many possible strategies for cycling through the various grid levels, the most
common of which are depicted schematically in Fig. 11.9. The V-cycle starts with the finest
grid and goes down through successive levels to the coarsest grid and then back up again to
the finest grid. To get more benefit from the coarser grids, where computations are cheaper,
the W-cycle zigzags among the lower-level grids before moving back up to the finest grid.
Full multigrid starts at the coarsest level, where a good initial solution is easier to come
by (perhaps by direct solution), then bootstraps this solution up through the grid levels,
ultimately reaching the finest grid.

........

........

........

........

........

........

........

........

........

...........................

..........................

...
........
........
..

........
........
........
..

fine

coarse

V-cycle W-cycle Full multigrid

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•...
.........
.........
.........
.........
.........
.........
.........
..........
.........
.........
.........
.........
.........
.........
.........
.........
........ ...

.........
.........
.........
.........
.........
.........
.........
...

.........
.........
.........
.........
.........
.........
.........
..........
.........
.........
.........
.........
.........
.........
.........
.........
........

.........
.........
.........
.........
.........
.........
.........
.........
...

.........
.........
.........
.........
.........
.........
.........
..........
.........
.........
.........
.........
.........
.........
.........
.........
...

.........
.........
.........
.........
.........
.........
.........
..........
.........
.........
.........
.........
.........
.........
.........
.........
........

Figure 11.9: Cycling schemes for multigrid methods.

By exploiting the strengths of the underlying iterative smoothers and avoiding their
weaknesses, multigrid methods are capable of extraordinarily good performance. In partic-
ular, at each level the smoother reduces the oscillatory component of the error very rapidly
and at a rate that is independent of the mesh size h (since only a few iterations of the
smoother, often only one, are performed at each level). Since all components of the error
appear oscillatory at some level, it follows that the convergence rate of the entire multigrid
scheme should be rapid and independent of the mesh size, which is in stark contrast to
the other iterative methods we have considered. Moreover, the cost of an entire cycle of
multigrid is only a modest multiple of the cost of a single sweep on the finest grid. As a
result, multigrid methods are among the most powerful methods available for solving sparse
linear systems arising from PDEs and are capable of converging to within the truncation
error of the discretization at a cost comparable to fast direct methods, although the latter
are much less broadly applicable.

11.6 Comparison of Methods

Now that we have examined both direct and iterative methods in some detail, we can
summarize their relative advantages and disadvantages for solving linear systems:

• Direct methods require no initial estimate for the solution, but they take no advantage
of it if a good estimate happens to be available.
• Direct methods are good at producing high accuracy, but they take no advantage if only

low accuracy is needed.
• Iterative methods are often dependent on special properties, such as the matrix being

symmetric positive definite, and are subject to very slow convergence for badly condi-

11.6. COMPARISON OF METHODS 353

tioned systems. Direct methods are more robust in both senses.
• Iterative methods usually require less work if convergence is rapid but often require

the computation or estimation of various parameters or preconditioners to accelerate
convergence, which at least partially offsets this advantage.

• Iterative methods do not require explicit storage of the matrix entries and hence are good
when the matrix can be produced easily on demand or is most easily implemented as a
linear operator.

• Iterative methods are less readily embodied in standard software packages, since the
best representation of the matrix is often problem-dependent and “hard-coded” in an
application program, whereas direct methods employ more standard storage schemes.

To make a more quantitative comparison, Table 11.3 shows the order of magnitude of the
computational cost for solving a discretized elliptic boundary value problem in two or three
dimensions (2-D or 3-D) by each of the methods we have discussed (and also a few methods
that we have not discussed). These results should be taken only as a rough guide, as they
depend on several assumptions:

• The discretization is by a finite difference scheme on a regular grid (k × k in two dimen-
sions, k× k× k in three dimensions) with mesh size h = 1/k. For the divide-and-conquer
methods, k is assumed to be a power of two (and all logarithms are base two).

• The resulting matrix is symmetric, positive definite, and sparse, with a constant number
of nonzeros per row and a condition number that is O(1/h2).

• For the iterative methods that depend on various parameters, optimal values are known
and used in all cases.
• For the band Cholesky method, the bandwidth is O(k) in two dimensions and O(k2) in

three dimensions.
• For the sparse Cholesky method, an optimal nested dissection ordering is used.
• For the preconditioned conjugate gradient method, the preconditioner reduces the con-

dition number to O(1/h).
• The iterative methods are iterated to convergence within the truncation error of the

discretization, i.e., until the initial error is reduced by a factor of h2.

In interpreting these results, several caveats should be kept in mind:

• We have omitted the proportionality constants. In theory these are irrelevant asymptot-
ically, but they may matter a great deal for a specific problem of interest, even quite a
large one. Also, the value of the proportionality constant for a given method depends on
the specific discretization used.

• The methods listed are not equally applicable. For the Poisson equation on the unit
square with the standard five-point difference scheme, for example, all of the foregoing
assumptions hold and all of the methods listed are applicable. But for more complicated
PDEs, domains, boundary conditions, and discretization schemes, some of the methods
listed may not be viable options.

• The methods listed are not equally reliable or robust. Many of the iterative methods
depend on judicious choices of parameters or preconditioners that may be difficult to
determine in advance, and their performance may degrade significantly with choices that

354 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

are less than optimal.
• The methods listed are not equally easy to implement—some are relatively straightfor-

ward, but others involve complicated algorithms and data structures. Because of such
differences, the methods may also vary significantly in the relative speeds with which they
perform an equivalent amount of computation.

• In practice the work may depend on implementation details. For example, the cost of
multigrid is sensitive to the particular strategy used for cycling through grid levels. The
figures given in the table assume the best possible case.

• Computational complexity alone does not necessarily determine the shortest time to a
solution. For example, a method with high-order accuracy usually requires more work
per grid point than a low-order method but may be able to use far fewer grid points to
achieve equivalent accuracy.

Table 11.3: Computational cost of solving elliptic boundary value problems as a function of k, the
number of points along each dimension in a regular two- or three-dimensional grid

Method 2-D 3-D
Dense Cholesky k6 k9

Jacobi k4 log k k5 log k
Gauss-Seidel k4 log k k5 log k
Band Cholesky k4 k7

Optimal SOR k3 log k k4 log k
Sparse Cholesky k3 k6

Conjugate gradient k3 k4

Optimal SSOR k2.5 log k k3.5 log k
Preconditioned CG k2.5 k3.5

Optimal ADI k2 log2 k k3 log2 k
Cyclic reduction k2 log k k3 log k
FFT k2 log k k3 log k
Multigrid V-cycle k2 log k k3 log k
FACR k2 log log k k3 log log k
Full Multigrid k2 k3

In Table 11.3 the computational work is stated in terms of the number of grid points
per dimension in a regular finite difference grid. In Table 11.4 the equivalent value for
the work in terms of n, the order of the matrix, is given for those methods that remain
viable choices for finite element discretizations with less regular meshes. The table gives the
exponent of n in the dominant term of the cost estimate. These results are applicable to
many finite element discretizations and are also consistent with the estimates in Table 11.3
for finite difference discretizations (with n = k2 or n = k3, depending on the dimension of
the problem).

In Table 11.3 the methods are listed in decreasing order of cost for two-dimensional
problems. Note that the ranking is somewhat different for three-dimensional problems.
The reason is that factorization methods suffer a much greater penalty in going from two
dimensions to three than do the other methods. Although factorization methods are much

11.7. SOFTWARE FOR PARTIAL DIFFERENTIAL EQUATIONS 355

Table 11.4: Exponent of n, the order of the matrix, in the computational cost of solving elliptic
boundary value problems in two or three dimensions

Method 2-D 3-D
Dense Cholesky 3 3
Band Cholesky 2 2.33
Sparse Cholesky 1.5 2
Conjugate gradient 1.5 1.33
Preconditioned CG 1.25 1.17
Multigrid 1 1

less competitive in terms of the work required for three-dimensional problems, they are
still useful in some cases because of their greater robustness. This is especially true for
nonsymmetric matrices, since iterative methods tend to be significantly less reliable in
that case. In addition, methods akin to factorization are often used to compute effective
preconditioners.

The tables show that multigrid methods can be optimal, in the sense that the cost of
computing the solution is of the same order as the cost of reading the input or writing
the output. The FACR method is also optimal for all practical purposes, since log log k is
effectively constant for any reasonable value of k. The other fast direct methods are almost
as effective in practice unless k is very large. Clearly these methods should be seriously
considered whenever they are applicable, and good software is available implementing them.
Unfortunately, their robustness and applicability can be quite limited, so these optimal or
nearly optimal methods, though they can be quite useful in the right context, are not a
panacea, and more conventional methods must often be relied upon in practice.

11.7 Software for Partial Differential Equations

Most of the problem categories we have studied previously are amenable to reasonably
efficient solution by general-purpose software. Methods for the numerical solution of partial
differential equations, on the other hand, tend to be much more problem-dependent, so that
PDEs are most often solved using custom-written software to take maximum advantage of
the particular features of a given problem. Nevertheless, some software does exist for a
few general classes of problems that occur often in practice. Table 11.5 is a list of some
of the software for the numerical solution of PDEs available from major libraries. General
problem-solving environments for partial differential equations are also available, including
a PDE toolbox for MATLAB.

Table 11.5: Library software for partial differential equations

Source 2-D Poisson 3-D Poisson Method of lines
IMSL fps2h fps3h molch
NAG d03eaf d03faf d03pcf
NUMAL richardson ark/arkmat
SLATEC hwscrt

356 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

In addition, we list next several individual routines and software packages, many of
which are available from netlib, for solving various types of PDEs and also for solving
sparse linear systems.

11.7.1 Software for Initial Value Problems

• CLAWPACK: 1-D and 2-D hyperbolic systems
• TOMS: numerous routines and packages for solving various time-dependent problems in

one or two space dimensions, including

- pdeone(#494): 1-D systems using method of lines
- pdecol(#540): 1-D systems using collocation
- m3rk(#553): three-step Runge-Kutta method for parabolic equations
- pdetwo(#565): 2-D systems using method of lines
- bdmg(#621): 2-D nonlinear parabolic equations
- epdcol(#688): 1-D systems using collocation
- pdecheb(#690): Chebyshev polynomial method for parabolic equations
- cwres(#731): moving-grid interface for 1-D systems

11.7.2 Software for Boundary Value Problems

• ELLPACK: general framework and specific algorithms for solving various elliptic boundary
value problems on two- and three-dimensional domains [212]
• FISHPACK: fast 2-D Helmholtz solvers using various coordinate systems
• MGGHAT: second-order linear elliptic PDEs using finite element method with adaptive mesh

refinement and a multigrid solver
• PLTMG: elliptic PDEs with grid generation, adaptive mesh refinement, and a multigrid

solver [13]
• TOMS: numerous routines and packages for solving various elliptic boundary value problems

(e.g., Poisson, Helmholtz) in two- or three-dimensional domains, including

- gma(#527): generalized marching algorithm for elliptic problems
- pwscrt(#541): fast 2-D Helmholtz solvers using various coordinate systems
- fft9(#543): fast 2-D Helmholtz solver
- helm3d(#572): fast 3-D Helmholtz solver
- cmmimp(#593): fast Helmholtz solver on nonrectangular planar region
- gencol(#637): collocation method for general 2-D domain
- intcol/hermcol(#638): collocation method for rectangular domain
- hfft(#651): high-order fast 3-D Helmholtz solver
- serrg2/b2eval(#685): separable elliptic equations on rectangular domain
- capc/reccn(#732): elliptic equations on irregular 2-D domain

11.7.3 Software for Sparse Linear Systems

• HSL: MA chapter of Harwell subroutine library contains numerous routines for solving
sparse linear systems

11.8. HISTORICAL NOTES AND FURTHER READING 357

• MATLAB: as of Version 4.0, sparse matrices are supported, including reorderings and fac-
torizations

• PCGPAK: preconditioned conjugate gradient methods for linear systems
• QMRPACK: quasi-minimal residual methods for nonsymmetric linear systems
• SLAP: iterative methods for symmetric and nonsymmetric linear systems
• SPARSKIT: iterative methods for sparse linear systems and utilities for manipulating sparse

matrices
• SPARSPAK: reorderings and factorizations for sparse linear systems and least squares prob-

lems
• SUPERLU: Gaussian elimination with partial pivoting for sparse linear systems
• SYMMLQ: iterative method for symmetric indefinite linear systems
• TEMPLATES: iterative methods documented in [15]
• TOMS:

- gpskca(#582): reordering sparse matrices for reduced bandwidth
- lsqr(#583): iterative method for linear systems and least squares problems
- itpack/nspcg(#586): stationary and nonstationary iterative methods for symmet-

ric and nonsymmetric linear systems
- sblas(#692): basic linear algebra subprograms for sparse matrices
- jpicc/jpicr(#740): incomplete Cholesky factorization preconditioner

• UMFPACK: unsymmetric multifrontal method for sparse linear systems
• YSMP: Yale Sparse Matrix Package, direct methods for linear systems
• Y12M: direct method for sparse linear systems

11.8 Historical Notes and Further Reading

The literature on numerical solution of partial differential equations is vast. Two early
classics on finite difference methods are [84, 213]. More recent treatments focusing mainly
on finite difference methods include [7, 112, 176, 186, 234, 249, 255]. Both finite difference
and finite element methods are discussed in [35, 117, 133, 159]. For a detailed discussion
of the method of lines, see [219]. For an introduction to finite element methods from a
numerical point of view, see [20, 50, 140, 265]. A deeper analysis of the finite element
method is given in [247]. A classic engineering text on finite elements is [281]; see also the
series [17, 33, 34]. Spectral and pseudospectral methods, though not treated in this book,
form another important family of methods for solving differential equations; see [81, 106].
Direct methods for solving sparse linear systems are discussed in detail in [68, 93]. Fast
direct methods, which were proposed by Hockney in 1965, are surveyed in [202, 253].

Of the iterative methods we discussed, the Jacobi and Gauss-Seidel methods date from
the nineteenth century, whereas the SOR and conjugate gradient methods were both de-
veloped around 1950 by Young and by Hestenes and Stiefel, respectively. The conjugate
gradient method proved ineffective as a direct method owing to rounding error, so it was
temporarily discarded until the early 1970s, when its use as an iterative method was pop-
ularized by Reid, Golub, and others (see [102]). For a negative result on the existence of a
true analogue of the conjugate gradient method for nonsymmetric systems, see [75]. The

358 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

multigrid method was popularized in the late 1970s by Brandt and numerous others. Classic
references on iterative methods for linear systems are [115, 263, 280]. For more up-to-date
treatments of iterative methods, see the surveys [15, 87, 147] or the more comprehensive
treatises [12, 114, 194, 218]. For an introduction to multigrid methods, see [24, 139, 271].

Review Questions

11.1 True or false: For solving a time-
dependent partial differential equation, a fi-
nite difference method that is both consistent
and stable converges to the true solution as the
stepsizes in time and in space go to zero.

11.2 True or false: The Gauss-Seidel iterative
method for solving a system of linear equations
Ax = b always converges.

11.3 True or false: The Gauss-Seidel method
is a special case of SOR (successive over-
relaxation) for solving a system of linear equa-
tions.

11.4 How does a semidiscrete method differ
from a fully discrete method for solving a time-
dependent partial differential equation?

11.5 (a) Explain briefly the method of lines
for solving an initial value problem for a time-
dependent partial differential equation in one
space dimension.

(b) How might the method of lines be used
to solve a pure boundary value problem for
a time-independent PDE in two space dimen-
sions?

11.6 Other than the usual concerns of stabil-
ity and accuracy, what additional important
consideration enters into the choice of a nu-
merical method for solving a system of ODEs
arising from semidiscretization of a PDE using
the method of lines?

11.7 In using a fully discrete finite difference
method for solving a time-dependent partial
differential equation with one space dimension,
can the sizes of the time step and space step
be chosen independently of each other? Why?

11.8 Fully discrete finite difference and finite
element methods for solving boundary value
problems convert the original differential equa-
tion into a system of algebraic equations. Why
does the resulting n× n linear system usually

require far less work to solve than the usual
O(n3) that might be expected?

11.9 Which of the following types of partial
differential equations are time-dependent?
(a) Elliptic
(b) Parabolic
(c) Hyperbolic

11.10 Classify each of the following partial
differential equations as hyperbolic, parabolic,
or elliptic. Also, state whether each equation
is time-dependent or time-independent.
(a) Laplace equation
(b) Wave equation
(c) Heat equation
(d) Poisson equation

11.11 What is meant by the stencil of a finite
difference method for solving a PDE numeri-
cally?

11.12 The heat equation ut = cuxx with ap-
propriate initial and boundary conditions can
be solved numerically by using a second-order,
centered finite difference approximation for
uxx and then solving the resulting system of
ordinary differential equations in time by some
numerical method.
(a) On what ODE method in time is the
Crank-Nicolson method based?
(b) What advantage does the Crank-Nicolson
method have over the use of the backward Eu-
ler method?
(c) What fundamental advantage do both of
these methods have over the use of Euler’s
method?

11.13 In solving the Laplace equation on the
unit square using the standard second-order
accurate finite difference scheme in both space
dimensions, what is the maximum number of
unknown solution variables that are involved
in any one equation of the resulting linear al-
gebraic system?

REVIEW QUESTIONS 359

11.14 Consider the numerical solution of the
heat equation, ut = cuxx, by a fully discrete
finite difference method. For the spatial dis-
cretization, suppose that we approximate the
second derivative by the standard second-order
accurate, centered difference formula.

(a) Why is Euler’s method impractical for the
time integration?

(b) Name a method for numerically solving the
heat equation that is unconditionally stable
and second-order accurate in both space and
time.

(c) On what ODE method is the time integra-
tion in this method based?

11.15 Implicit finite difference methods for
solving time-dependent PDEs require the so-
lution of a system of equations at each time
step. In using the backward Euler or trape-
zoid method to solve the heat equation in one
space dimension, what is the nonzero pattern
of the matrix of the linear system to be solved
at each time step?

11.16 (a) For a finite difference method for
solving a PDE numerically, what is meant by
the terms consistency, stability, and conver-
gence?

(b) How does the Lax Equivalence Theorem
relate these terms to each other?

11.17 Suppose you are solving the heat equa-
tion ut = uxx by applying an ODE method
to solve the semidiscrete system of ODEs re-
sulting from spatial discretization using the
standard second-order central difference ap-
proximation to the second derivative. Each of
the following ODE methods then gives a time-
stepping procedure that may or may not be
consistent, stable, or convergent. State which
of these three properties, if any, apply for each
method listed (note that none, one, or more
than one of the properties may apply in a given
case).

(a) Euler’s method with ∆t = ∆x

(b) Backward Euler method with ∆t = ∆x

(c) The “zero method,” which produces the
answer 0 at every time step

11.18 List two advantages and two disadvan-
tages of iterative methods compared with di-

rect methods for solving large sparse systems
of linear algebraic equations.

11.19 What principal factor limits the useful-
ness of direct methods based on matrix factor-
ization for solving very large sparse systems of
linear equations?

11.20 What is the computational complexity
of a fast Poisson solver for a problem with n
mesh points?

11.21 What is meant by fill in the factoriza-
tion of a sparse matrix?

11.22 Explain briefly how the minimum de-
gree algorithm works for reordering a symmet-
ric positive definite sparse matrix to limit fill
in its Cholesky factor.

11.23 Explain briefly how the nested dissec-
tion algorithm works for reordering a symmet-
ric positive definite sparse matrix to limit fill
in its Cholesky factor.

11.24 What is the general form of a station-
ary iterative method for solving a system of
linear equations Ax = b?

11.25 (a) What is meant by a splitting of a
matrix A?
(b) What form of iterative method for solving
a linear system Ax = b results from such a
splitting?
(c) What condition on the splitting guarantees
that the resulting iterative scheme is locally
convergent?
(d) For the matrix

A =
[

4 1
1 4

]
,

what is the splitting for the Jacobi method?
(e) For the same matrix as in part d, what is
the splitting for the Gauss-Seidel method?

11.26 In solving a nonsingular system of lin-
ear equations Ax = b, what property of the
matrix A would necessarily cause the Jacobi
iterative method to fail outright?

11.27 Which of the following methods for
solving a linear system are stationary iterative
methods?
(a) Jacobi method

360 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

(b) Steepest descent method

(c) Iterative refinement

(d) Gauss-Seidel method

(e) Conjugate gradient method

(f) SOR method

11.28 (a) In words (or formulas if you pre-
fer), describe the difference between the Jacobi
and Gauss-Seidel iterative methods for solving
a system of linear algebraic equations.

(b) Which method is more rapidly convergent?

(c) Which method requires less storage for the
successive approximate solutions?

11.29 Listed below are several properties that
may pertain to various methods for solving
systems of linear equations. For each of the
properties listed, state whether this quality
more accurately describes direct or iterative
methods:

(a) The entries of the matrix are not altered
during the computation.

(b) A good prior estimate for the solution is
helpful.

(c) The matrix entries are stored explicitly, us-
ing a standard storage scheme such as an array.

(d) The work required depends on the condi-
tioning of the problem.

(e) Once a given system has been solved, an-
other system with the same matrix but a dif-
ferent right-hand side is easily solved.

(f) Acceleration parameters or preconditioners
are usually employed.

(g) The maximum possible accuracy is rela-
tively easy to attain.

(h) “Black box” software is relatively easy to
implement.

(i) The matrix can be defined implicitly by its
action on an arbitrary vector.

(j) A factorization of the matrix is usually per-
formed.

(k) The amount of work required can often be
determined in advance.

11.30 Let A be a nonsingular matrix. Denote
the strict lower triangular portion of A by L,
the diagonal of A by D, and the strict upper
triangle of A by U .

(a) Express the Jacobi iteration scheme for
solving the linear system Ax = b in terms of
L, D, and U .
(b) Express the Gauss-Seidel iteration scheme
for solving the linear system Ax = b in terms
of L, D, and U .

11.31 What are the usual bounds on the re-
laxation parameter ω in the SOR method?

11.32 Rank the following iterative methods
for solving systems of linear equations in or-
der of their usual speed of convergence, from
fastest to slowest:
(a) Gauss-Seidel
(b) Jacobi
(c) SOR with optimal relaxation parameter ω

11.33 The conjugate gradient method for
solving a symmetric positive definite system of
linear equations is in principle a direct method.
Why is it used in practice as an iterative
method instead?

11.34 What two key features largely account
for the effectiveness of the conjugate gradient
method for solving large sparse symmetric pos-
itive definite linear systems?

11.35 When using the conjugate gradient
method to solve a system of linear algebraic
equations Ax = b, how can you accelerate its
convergence rate?

11.36 (a) What is meant by preconditioning
in the conjugate gradient method?
(b) List at least two types of preconditioners
used with the conjugate gradient method.

11.37 Why are some stationary iterative
methods for solving linear systems sometimes
called smoothers?

11.38 Explain briefly the basic idea of multi-
grid methods.

11.39 (a) Explain the difference between the
V-cycle and the W-cycle in multigrid methods.
(b) How does full multigrid differ from either
of these?

11.40 For solving linear systems arising from
elliptic boundary value problems, which type
of method, iterative or direct, suffers a greater
increase in work as the dimension of the prob-
lem increases? Why?

EXERCISES 361

11.41 Is any type of method capable of solv-
ing linear systems arising from elliptic bound-
ary value problems in time proportional to the

number of grid points? If so, name one, and if
not, why not?

Exercises

11.1 Suppose you are given a general-purpose
subroutine for solving initial value problems
for systems of n first-order ODEs y′ = f(t, y),
and this is the only software tool you have
available. For each type of problem in parts
a, b, and c to follow, describe how you could
use this routine to solve it. In each case, your
answer should address the following points:

1. What is the function f for the ODE sub-
problem?

2. How would you obtain the necessary initial
conditions?

3. What special properties, if any, would the
ODE subproblem have that would affect
the choice of ODE method?

(a) Compute the definite integral∫ b

a

g(t) dt.

(b) Solve the two-point boundary value prob-
lem

y′′ = y2 + t, 0 ≤ t ≤ 1,

with boundary conditions

y(0) = 0 and y(1) = 1.

(c) Solve the heat equation

ut = cuxx, 0 ≤ x ≤ 1, t ≥ 0,

with initial condition

u(0, x) = g(x)

and boundary conditions

u(t, 0) = 0, u(t, 1) = 0.

11.2 Consider a finite difference solution of
the Poisson equation uxx + uyy = x + y on
the unit square using the boundary conditions
and mesh points shown in the drawing. Use

a second-order accurate, centered finite differ-
ence scheme to compute the approximate value
of the solution at the center of the square.

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

............................

..........................

..

...

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.....

y

x
0

0 1

1

•

• • •

•

11.3 Give examples to show that neither con-
sistency nor stability alone is sufficient to guar-
antee convergence of a finite difference scheme
for solving a partial differential equation nu-
merically.

11.4 Draw pictures to illustrate the nonzero
pattern of the matrix resulting from a finite
difference discretization of the Laplace equa-
tion on a d-dimensional grid, with k grid points
in each dimension, for d = 1, 2, and 3, as de-
scribed at the end of Section 11.3.1. Use a
value of k that is large enough to show the
general pattern clearly. In each case, what are
the numerical values of the nonzero entries?

11.5 (a) For the matrix of Example 11.5, ver-
ify that the nonzero pattern of the Cholesky
factor, including fill, is as shown in Figs. 11.6–
11.8.

(b) Verify that the reorderings given in
Figs. 11.7–11.8 are indeed minimum degree
and nested dissection orderings, respectively.
In each case, write out the permutation ma-
trix P corresponding to the reordering, such
that the reordered matrix is given by PAP T ,
where A is the matrix in the original natural
ordering.

11.6 Prove that the Jacobi iterative method
for solving the linear system Ax = b con-

362 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

verges if the matrix A is diagonally dominant
by rows. (Hint : Use the ∞-norm.)

11.7 Prove that the SOR method diverges if
ω does not lie in the interval (0, 2).

11.8 Prove that the successive A-orthogonal
search directions generated by the conjugate
gradient method satisfy a three-term recur-
rence, so that each new gradient need be or-
thogonalized only against the previous two.

11.9 Show that the subspace spanned by the
firstm search directions in the conjugate gradi-

ent method is the same as the Krylov subspace
generated by the sequence r0, Ar0, A2r0, . . .,
Am−1r0.

11.10 On the basis of the background facts
and motivation outlined in Section 11.5.5, fill
in the details of the derivation of the con-
jugate gradient algorithm stated there. You
will probably find it easiest first to derive a
straightforward version of the algorithm, then
try to improve its efficiency by reducing the
number of matrix-vector multiplications and
other arithmetic required.

Computer Problems

11.1 Consider the heat equation

ut = uxx, 0 ≤ x ≤ 1, t ≥ 0,

with boundary conditions

u(t, 0) = 0, u(t, 1) = 0,

and initial condition

u(0, x) =
{

2x if 0 ≤ x ≤ 0.5
2− 2x if 0.5 ≤ x ≤ 1 .

(a) Using the full discretization given in Ex-
ample 11.1, with ∆x = 0.05 and ∆t = 0.0012,
evolve the solution from t = 0 to t = 0.06.
Plot the solution at the initial time, the final
time, and periodically in between (say, every
ten time steps or so). If you use interactive
graphics, you may prefer to plot the solution
at every time step, giving the effect of an ani-
mated movie.

(b) Repeat part a, but use a time step of
∆t = 0.0013. Plot the solution in the same
manner as before. Can you explain the differ-
ence in results?

(c) Solve the same equation again, this
time using the implicit method given in Sec-
tion 11.2.4 based on the backward Euler
method. Again use ∆x = 0.05, but try a much
larger time step, say, ∆t = 0.005 to advance
the solution from t = 0 to t = 0.06. Plot the
solution at each time step. How do the results
compare with those in parts a and b? Explain.

(d) Solve the same equation again, this time
using the Crank-Nicolson method given in Sec-
tion 11.2.4. Again use ∆x = 0.05 and ∆t =
0.005 to advance the solution from t = 0 to
t = 0.06. Plot the solution at each time step.
How do the results compare with your previous
results? Explain.
(e) Form the semidiscrete system for this equa-
tion given in Section 11.2.1, using a finite dif-
ference spatial discretization with ∆x = 0.05,
and use an ODE solver to integrate it from
t = 0 to t = 0.06. Plot the solution as be-
fore. How do the results compare with your
previous results?

11.2 (a) Use the method of lines and the ODE
solver of your choice to solve the heat equation

ut = uxx, 0 ≤ x ≤ 1, t ≥ 0,

with Dirichlet boundary conditions

u(t, 0) = 0, u(t, 1) = 0,

and initial condition

u(0, x) = sin(πx).

Integrate from t = 0 to t = 0.1. Plot
the computed solution, preferably as a three-
dimensional surface over the (t, x) plane. If
you do not have three-dimensional plotting ca-
pability, plot the solution as a function of x for
a few values of t, including the initial and fi-
nal times. Determine the maximum error in
the computed solution by comparing with the
exact solution

u(t, x) = exp(−π2t) sin(πx).

COMPUTER PROBLEMS 363

Experiment with various spatial mesh sizes h,
and try to characterize the error as a function
of h. On a log-log scale, plot the maximum
error as a function of h.
(b) Repeat part a, but this time with Neumann
boundary conditions

ux(t, 0) = 0, ux(t, 1) = 0,

and initial condition

u(0, x) = cos(πx),

and compare with the exact solution

u(t, x) = exp(−π2t) cos(πx).

11.3 Use the method of lines and the ODE
solver of your choice to solve the wave equa-
tion

utt = uxx, 0 ≤ x ≤ 1, t ≥ 0,

with boundary conditions

u(t, 0) = 0, u(t, 1) = 0,

and initial conditions

u(0, x) = sin(πx), ut(0, x) = 0.

Integrate from t = 0 to t = 2. Plot
the computed solution, preferably as a three-
dimensional surface over the (t, x) plane. If
you do not have three-dimensional plotting ca-
pability, plot the solution as a function of x for
a few values of t, including the initial and fi-
nal times. Determine the maximum error in
the computed solution by comparing with the
exact solution

u(t, x) = cos(πt) sin(πx).

Note that the solution is periodic with period
2, so the solution should be the same at t = 0
and t = 2. Is this true for your computed so-
lution? Experiment with various spatial mesh
sizes h, and try to characterize the error as
a function of h. On a log-log scale, plot the
maximum error as a function of h.

11.4 Use the method of lines and the ODE
solver of your choice to solve the first-order
hyperbolic equation

ut = −ux, 0 ≤ x ≤ 1, t ≥ 0,

with boundary condition

u(t, 0) = 1,

and initial condition

u(0, x) = 0.

Integrate from t = 0 to t = 2, and plot
the computed solution, preferably as a three-
dimensional surface over the (t, x) plane. If
you do not have three-dimensional plotting ca-
pability, plot the solution at x = 1 as a func-
tion of t. Try both one-sided (upwind) and
centered finite difference schemes for the spa-
tial discretization. The exact solution is a step
function of height 1 moving to the right with
velocity 1. Does either difference scheme come
close to this ideal? How would you describe
the difference between the computed solutions
given by the two schemes? Which computed
solution is smoother? Which is more accurate?

11.5 Use the method of lines and the ODE
solver of your choice to solve the nonlinear
Burgers’ equation

ut = −uux + vuxx, 0 ≤ x ≤ 1, t ≥ 0,

with boundary conditions

u(t, x) = 1/(1 + exp(x/(2v)− t/(4v)))

for x = 0 and x = 1, and initial condition

u(0, x) = 1/(1 + exp(x/(2v))),

where v is a scalar parameter representing vis-
cosity. Note that this equation has both a non-
linear convective (hyperbolic) term, −uux, and
a linear diffusion (parabolic) term, vuxx, and
the balance between them is determined by the
relative value of v.
Integrate from t = 0 to t = 2, and plot
the computed solution, preferably as a three-
dimensional surface over the (t, x) plane. If
you do not have three-dimensional plotting ca-
pability, plot the solution at x = 1 as a func-
tion of t. Experiment with various values for
v, say, v = 1, 0.5, 0.1, and 0.01. Try both one-
sided (upwind) and centered finite difference
schemes for the spatial discretization. Com-
pare your solutions with the exact solution,
which is the function used previously to de-
fine the boundary conditions. Compare the
accuracy and smoothness of the solutions com-
puted by the two schemes as v varies.

364 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

11.6 Use the standard five-point finite differ-
ence discretization to solve the Poisson equa-
tion

−uxx − uyy = 2

on the L-shaped region in the accompanying
diagram, with boundary conditions u(x, y) = 0
on all boundaries.

0.0 0.5 1.0
0.0

0.5

1.0

...
........
........
........
........
........
........
........
........
........
........
...

.

.

.

.
. . . .
. . . .
. . . .
. . . .
. . . .

(a) Choose a mesh size h (for example, h = 0.1
in the diagram) and set up the appropriate
matrix and right-hand-side vector. Solve the
resulting linear system by a direct method
and plot the resulting solution, preferably as a
three-dimensional surface over the (x, y) plane.
Experiment with various values for the mesh
size h and observe the effect on the solution.

(b) Repeat part a, but this time use the SOR
method to solve the linear system. Note that
with an iterative method you need not set up
the matrix explicitly but can work directly
with the approximate solution at each mesh
point, updating the values at each iteration.
For a given mesh size h, experiment with var-
ious values for the SOR parameter ω in the
range 0 < ω < 2. Can you find an optimal
value for ω? Does the optimal ω become larger
or smaller as h decreases?

11.7 The time-independent Schrödinger
equation in two dimensions,

−(ψxx(x, y) + ψyy(x, y)) + V (x, y)ψ(x, y)

= Eψ(x, y),

where we have chosen units so that the quanti-
ties are dimensionless, describes the wave func-
tion ψ of a particle of energy E subject to a
potential V . The square of the wave function,
|ψ(x, y)|2, can be interpreted as the probabil-
ity of finding the particle at position (x, y).

Assume that the particle is confined to a two-
dimensional box, say, the unit square, within

which it can move freely. Thus, the poten-
tial is zero within the unit square and infinite
elsewhere. Since there is zero probability of
finding the particle outside the box, the wave
function must be zero at its boundaries. Thus,
we have an eigenvalue problem for the elliptic
PDE

−(ψxx(x, y) + ψyy(x, y)) = Eψ(x, y),

on the unit square, subject to the boundary
condition ψ(x, y) = 0 on all boundaries. Note
that the discrete eigenvalues E are the only en-
ergy levels permitted; this feature gives quan-
tum mechanics its name.

Use a finite difference discretization of the
PDE to derive an algebraic eigenvalue prob-
lem whose eigenvalues and eigenvectors ap-
proximate those of the PDE, then compute
the eigenvalues and eigenvectors using a li-
brary routine (see Section 4.6). Experiment
with various mesh sizes and observe how the
eigenvalues behave.

An analytical solution to this problem is easily
obtained, which gives the eigenvalues

Ek,j = (k2 + j2)π2

and corresponding eigenfunctions

ψk,j(x, y) = sin(kπx) sin(jπy),

k, j = 1, 2,

How do your computed eigenvalues and eigen-
vectors compare with these analytical values as
the mesh size of your discretization decreases?
Try to characterize the error as a function of
the mesh size.

Note that a nonzero potential V would not
seriously complicate the numerical solution of
the Schrödinger equation but would generally
make an analytical solution much more diffi-
cult to obtain.

11.8 Verify empirically that the Jacobian of
the semidiscrete system of ODEs given in Sec-
tion 11.2.1 has eigenvalues between−4c/(∆x)2

and 0. For this exercise, you may take c = 1.
Experiment with several different mesh sizes
∆x. How do the eigenvalues behave as ∆x →
0?

COMPUTER PROBLEMS 365

11.9 Consider the semidiscrete system of
ODEs obtained from centered spatial dis-
cretization of the one-way wave equation, as
in Example 11.3. Examine the stability of Eu-
ler’s method for this system of ODEs by com-
puting the eigenvalues of its Jacobian matrix.
Is there any value for the size of the time step
that yields a stable method? Answer the same
question for the semidiscrete system obtained
from one-sided upwind differencing.

11.10 For the standard five-point approxima-
tion to Laplace’s equation on a k× k grid, ex-
periment with various values of the relaxation
parameter ω in the SOR method to see how
much difference this makes in the spectral ra-
dius of the resulting iteration matrix G and the
rate of convergence of the algorithm. Draw a
plot of ρ(G) as a function of ω for 0 < ω < 2.
How does the minimum of this curve compare
with the theoretical minimum given by

ρ(G) =
1− sin(πh)
1 + sin(πh)

,

which occurs for

ω =
2

1 + sin(πh)
,

where h = 1/(k+1)? Experiment with various
values of k, say, k = 10, 50, 100.

11.11 Verify empirically the spectral radius
and rate of convergence data given in Tables
11.1 and 11.2.

11.12 Implement the steepest descent and
conjugate gradient methods for solving sym-
metric positive definite linear systems. Com-
pare their performance, both in rate of conver-
gence and in total time required, in solving a
representative sample of test problems, both
well-conditioned and ill-conditioned. How
does the rate of convergence of the conjugate
gradient method compare with the theoretical
estimate given in Section 11.5.6?

11.13 Implement the Jacobi method for solv-
ing the n× n linear system Ax = b, where A
is the matrix resulting from a finite difference
approximation to the one-dimensional Laplace
equation on an interval, with boundary values
of zero at the endpoints. Thus, A is tridi-
agonal with diagonal elements equal to 2 and
subdiagonal and superdiagonal elements equal

to −1, and x represents the solution values at
the interior mesh points. Take b = o, so that
the exact solution is x = o, and therefore at
any iteration the error is equal to the current
value for x.
For the initial starting guess, take

xj = sin
(
jkπ

n+ 1

)
, j = 1, . . . , n.

For any given value of k, the resulting vec-
tor x represents a discrete sample of a sine
wave whose frequency depends on k. Thus,
by choosing various values for k and then ob-
serving the resulting Jacobi iterations, we can
determine the relative speeds with which com-
ponents of the error of various frequencies are
damped out.
With n = 50, perform this experiment for each
value of k, where k = 1, 5, 10, . . . , 25. For each
value of k, make a plot of the solution x at the
starting value and for each of the first ten iter-
ations of the Jacobi method. For what values
of k is the error damped out most rapidly and
most slowly? It turns out that frequencies be-
yond k = n/2 (called the Nyquist frequency;
see Section 12.1.3), simply repeat the previ-
ous frequencies, as you may wish to verify. Do
your results suggest that the Jacobi method is
a smoother, as discussed in Section 11.5.7? Try
the same experiment using a starting value for
x with all entries equal to 1. Does the error
decay rapidly or slowly, compared with your
previous experiments?

11.14 Implement a two-grid version of the
multigrid algorithm, as outlined in Sec-
tion 11.5.7. If recursion is supported in the
computing environment you use, you may find
it almost as easy to implement multiple grid
levels. Test your program on a simple elliptic
boundary value problem, such as the Laplace
equation in one dimension on the unit interval
or in two dimensions on the unit square with
given boundary conditions.

11.15 Using the standard five-point dis-
cretization of the Laplace equation on a k × k
grid in two dimensions, and systematically
varying k, verify empirically as many of the
results given in Table 11.3 as you can. Try
to determine the approximate proportionality
constant for the dominant term in each case.

366 CHAPTER 11. PARTIAL DIFFERENTIAL EQUATIONS

Chapter 12

Fast Fourier Transform

12.1 Trigonometric Interpolation

We have already studied interpolation by polynomials, piecewise polynomials, and splines.
In dealing with cyclic phenomena, it is often more appropriate and informative to use
trigonometric functions, specifically, linear combinations of sines and cosines. A function
x(t) is periodic if there is some constant p > 0 such that x(t + p) = x(t) for all t. The
smallest such p for a given function is called the period of the function. For example, sine
and cosine are both periodic with period 2π.

Representing a periodic function as a linear combination of sines and cosines decomposes
the function into its components of various frequencies, much as a prism resolves a light beam
into its constituent colors. The resulting coefficients of the trigonometric basis functions
tell us what frequencies are present in the function and in what amounts. Moreover, this
representation of the function in frequency space enables some of the manipulations of the
function required in many applications, such as signal processing or solving differential
equations, to be done much more efficiently than in the original time domain.

In representing a given function x(t) by a linear combination of sines and cosines, several
cases may arise:

• The function x(t) may be defined for all t ∈ (−∞,∞), or it may be defined only on some
finite interval.
• The function x(t) may or may not be periodic.
• The function x(t) may be a continuous function whose value is known for any argument
t, or its value may be given only at a discrete set of points tk.

Depending on the particular situation, we may require the continuous Fourier transform
(CFT), the Fourier series expansion, or the discrete Fourier transform (DFT) of the function
x, all of which will be defined shortly.

In this chapter it will be convenient to use complex exponential notation, which is related

367

368 CHAPTER 12. FAST FOURIER TRANSFORM

to ordinary trigonometric functions by Euler’s identity ,

eiθ = cos θ + i sin θ,

where i =
√
−1. Since

e−iθ = cos(−θ) + i sin(−θ) = cos θ − i sin θ,

we see that for a cosine wave of frequency k we have

cos(2πkt) =
e2πikt + e−2πikt

2
,

and similarly for a sine wave of frequency k,

sin(2πkt) = i
e−2πikt − e2πikt

2
,

which means that a pure cosine or sine wave of frequency k is equivalent to a sum or
difference, respectively, of complex exponentials of half the amplitude and of frequencies k
and −k.

For a given integer n, we will use the notation

w = e2πi/n

for the primitive nth root of unity. The nth roots of unity, sometimes called twiddle factors
in this context, are then given by wk, k = 0, . . . , n−1, and are illustrated for the case n = 4
in Fig. 12.1.

........

........
........
.........
.........
..........

...........
..............

......................
...............

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

•

•

•

•

1 = w0 = w4 = w8 · · ·

i = w1 = w5 = w9 · · ·

· · · w10 = w6 = w2 = −1

−i = w3 = w7 = w11 · · ·

2π/4

Figure 12.1: Roots of unity wk = e2πik/n in the complex plane for n = 4.

12.1.1 Continuous Fourier Transform

If x(t) is defined for all t ∈ (−∞,∞), then we can write

x(t) =
∫ ∞
−∞

y(f)e−2πift df,

12.1. TRIGONOMETRIC INTERPOLATION 369

where y is the continuous Fourier transform (CFT) of x, also known as the Fourier integral
transform, defined by

y(f) =
∫ ∞
−∞

x(t)e2πift dt,

assuming the integrals exist. If we think of the variable t as representing time, perhaps
in units of seconds, then the variable f represents frequency , in units of cycles per second,
or Hertz. In the CFT, frequency is a continuous variable, so all possible frequencies are
represented. The CFT transforms the function x from the time domain into the frequency
domain, and its inverse transforms the function y back into the time domain. The CFT
expresses the function x(t) as a “continuous linear combination” (i.e., an integral) of sines
and cosines over all possible frequencies.

For simplicity, throughout this chapter we will think of t as representing time, but the
same techniques apply to other types of variables as well. For example, if t represented a
spatial variable, then f would represent spatial frequency, sometimes called wave number ,
in units of cycles (or waves) per unit distance in space.

12.1.2 Fourier Series

If x(t) is periodic on the interval [a, b], then x can be expanded in a Fourier series

x(t) =
∞∑

m=−∞
yme

−2πimt/(b−a),

where

ym =
1

b− a

∫ b

a
x(t)e2πimt/(b−a) dt.

The ym are known as the Fourier coefficients of the function x. Here time is still continuous,
but the frequency domain is now discrete, although infinitely many frequencies are repre-
sented. Thus, we can view the Fourier series of a periodic function as a linear combination
of an infinite number of sines and cosines, but with discrete frequencies.

12.1.3 Discrete Fourier Transform

Suppose x(t) is sampled only at a finite set of equally spaced points tk = t0 + kh, k =
0, 1, . . . , n − 1, and is periodic with period nh. (For convenience, in this chapter we will
index sequences and corresponding components of vectors starting from zero rather than
one.) Using the notation xk = x(tk) and w = e2πi/n, we then have

xk =
1
n

n−1∑
m=0

ymw
−mk, k = 0, 1, . . . , n− 1,

where

ym =
n−1∑
k=0

xkw
mk, m = 0, 1, . . . , n− 1.

370 CHAPTER 12. FAST FOURIER TRANSFORM

The sequence {ym} is known as the discrete Fourier transform (DFT) of the sequence {xk},
and {xk} is the inverse DFT of {ym}. You may see other formulations in which the minus
sign in the exponent is interchanged between the DFT and the inverse DFT, and possibly
the scale factor 1/n as well (or perhaps 1/

√
n for both). These notational differences have

no material effect on the development or usefulness of the DFT.
The DFT can be viewed as trigonometric interpolation of x at n points by a finite linear

combination of sines and cosines, with both the time and frequency domains being finite and
discrete. The first few basis functions are shown in Fig. 12.2, where the real and imaginary
parts (i.e., cosines and sines of various frequencies) are plotted as separate curves. If plotted
in three dimensions (the complex plane plus t), each basis function would be a helix, each
with a different frequency. The DFT can also be interpreted as a discrete approximation to
the CFT or the Fourier series under appropriate conditions.

−1

0

1

0 π 2π

...

...

...........
...........
...........
...........
...........
............
............
............
............
............
.............
..............

...............
................

...................
............................

..
....................

.................
...............

..............
.............
............
............
............
............
............
...........
...........
...........
...........
...........
...

..
.....................

................
...............

..............
.............
.............
............
............
............
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
............
............
............
.............
.............

..............
...............

.................
.......................

.....................................

..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........
..........
...........
............
...

............
...........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........
..........
...........
............
...

............
...........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........

..
...........
.........
..........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........
..........
.........
.........
.........
.........
.........
..........
...........
.............

..
...........
.........
..........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........
..........
.........
.........
.........
.........
.........
..........
...........
.............

......................

Figure 12.2: Basis functions (sines and cosines) for the DFT.

The DFT of a sequence, even a purely real sequence, is in general complex. This property
may seem counterintuitive; but it is in essence only a notational artifact and should not
alarm us, as the inverse DFT will get us back into the real domain. How can the inverse
DFT of a complex sequence yield a purely real result? Obviously, through cancellation of
the imaginary parts. Note that the DFT of a real sequence of length n, though it has a
total of 2n real and imaginary parts, still contains essentially only n independent pieces
of information because the components of the second half of the transformed sequence are
complex conjugates of those in the first half. (More precisely, yk and yn−k are complex
conjugates for k = 1, . . . , (n/2) − 1). This fact can be used to save on storage if the input
sequence is known to be real.

The DFT resolves or decomposes an input sequence x into its underlying fundamental
frequency components, whose individual contributions are given by the elements of the
transformed sequence y. Two components of special interest are y0, which corresponds
to zero frequency (i.e., a constant function), and yn/2, which corresponds to the Nyquist
frequency—the highest frequency representable at the given sampling rate. The component
y0 is sometimes called the DC component, by analogy with nonoscillating direct electrical
current, and its value is simply the sum of the components of x. Because the DFT is
periodic in frequency, the components of y beyond the Nyquist frequency correspond to
frequencies that are the negatives of those below the Nyquist frequency.

12.1. TRIGONOMETRIC INTERPOLATION 371

Example 12.1 Discrete Fourier Transform. To illustrate the DFT, we transform two
sequences, one chosen randomly, the other chosen to have a definite cyclic character. For
the random sequence, we have

x =

4
0
3
6
2
9
6
5

−→ y =

35
−5.07− 8.66i
−3− 2i

9.07− 2.66i
−5

9.07 + 2.66i
−3 + 2i

−5.07 + 8.66i

.

We see that the transformed sequence is complex, but y0 and y4 are real, while y5, y6, and y7

are complex conjugates of y3, y2, and y1, respectively, as expected for a real input sequence.
There appears to be no discernible pattern to the frequencies present, as expected for a
random sequence. And y0 is indeed equal to the sum of the elements of x.

To illustrate the DFT of a cyclic sequence, we have

x =

1
−1

1
−1

1
−1

1
−1

−→ y =

0
0
0
0
8
0
0
0

.

This sequence was chosen deliberately to have the highest possible rate of oscillation (be-
tween 1 and −1) for this sampling rate. In the transformed sequence we see a nonzero
component at the Nyquist frequency (in this case y4), and no other component is present.
Again, y0 is equal to the sum of the elements of x.

Perhaps you noticed something unusual in definition of the DFT. In performing inter-
polation, we usually must solve a system of equations to determine the coefficients of the
linear combination of basis functions that fits the given data. Consider the case n = 4 for
the DFT, for example. We need to solve the linear system

1
n

1 1 1 1
1 w−1 w−2 w−3

1 w−2 w−4 w−6

1 w−3 w−6 w−9

y0

y1

y2

y3

 =

x0

x1

x2

x3

for the ym given the xk. We note, however, that

1
n

1 1 1 1
1 w−1 w−2 w−3

1 w−2 w−4 w−6

1 w−3 w−6 w−9

1 1 1 1
1 w1 w2 w3

1 w2 w4 w6

1 w3 w6 w9

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

372 CHAPTER 12. FAST FOURIER TRANSFORM

Since we can write out the inverse of the Vandermonde matrix explicitly, the computation
of the DFT is reduced to matrix-vector multiplication, as reflected in the formula given for
computing the ym in terms of the xk. Hence, we expect the work required to be O(n2)
arithmetic operations instead of the O(n3) that would be required to factor and solve the
linear system. With the fast Fourier transform (FFT) algorithm, however, we can do much
better still, bringing the work down to O(n log2 n) arithmetic operations, as we will soon
see.

12.2 FFT Algorithm

By taking advantage of certain symmetries and redundancies in the definition of the DFT, a
shortcut algorithm can be developed for evaluating the DFT very efficiently. For illustration,
consider the case n = 4. From the definition of the DFT we have

ym =
3∑

k=0

xkw
mk, m = 0, . . . , 3.

Writing out the four equations in full, we have

y0 = x0w
0 + x1w

0 + x2w
0 + x3w

0,

y1 = x0w
0 + x1w

1 + x2w
2 + x3w

3,

y2 = x0w
0 + x1w

2 + x2w
4 + x3w

6,

y3 = x0w
0 + x1w

3 + x2w
6 + x3w

9.

Noting from Fig. 12.1 that

w0 = w4 = 1, w2 = w6 = −1, w9 = w1,

and regrouping, we obtain the four equations

y0 = (x0 + w0x2) + w0(x1 + w0x3),
y1 = (x0 − w0x2) + w1(x1 − w0x3),
y2 = (x0 + w0x2) + w2(x1 + w0x3),
y3 = (x0 − w0x2) + w3(x1 − w0x3).

We now observe that the transform can be computed with only 8 additions/subtractions
and 6 multiplications, instead of the expected (4 − 1) ∗ 4 = 12 additions and 42 = 16
multiplications. Actually, even fewer multiplications are required for this small case, since
w0 = 1, but we have tried to illustrate how the algorithm works in general. The main point
is that computing the DFT of the original 4-point sequence has been reduced to computing
the DFT of its two 2-point even and odd subsequences. This property holds in general:
the DFT of an n-point sequence can be computed by breaking it into two DFTs of half the
length, provided n is even.

Before stating the general FFT algorithm formally, we first consider a complementary
development in terms of matrices that yields additional insight. For a given integer n, we

12.2. FFT ALGORITHM 373

define the Fourier matrix Fn by {Fn}mk = wmk. Thus, for example,

F1 = 1, F2 =
[

1 1
1 −1

]
, F4 =

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .
Let P4 be the permutation matrix

P4 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,
and D2 be the diagonal matrix

D2 =
[

1 0
0 i

]
.

Then we have

F4P4 =

1 1 1 1
1 −1 i −i
1 1 −1 −1
1 −1 −i i

 =
[
F2 D2F2

F2 −D2F2

]
,

i.e., F4 can be rearranged so that each block is a diagonally scaled version of F2. Such a
hierarchical splitting can be carried out at each level, provided the number of points is even.
In general, Pn is the permutation that groups the even-numbered columns of Fn before the
odd-numbered columns, and Dn/2 = diag(1, . . . , wn/2). Thus, to apply Fn to a sequence of
length n, we need merely apply Fn/2 to its even and odd subsequences and scale the results,
where necessary, by Dn/2.

This recursive divide-and-conquer approach to computing the DFT is formalized in the
following statement of the FFT algorithm, where we assume that n is a power of two:

procedure fft (x, y, n, w)
if n = 1 then

y[0] = x[0]
else

for k = 0 to (n/2)− 1
p[k] = x[2k] { split into even and
s[k] = x[2k + 1] odd subsequences }

end
fft (p, q, n/2, w2)
fft (s, t, n/2, w2)
for k = 0 to n− 1

y[k] = q[k mod (n/2)] + wkt[k mod (n/2)]
end

end

We note the following points about the preceding algorithm:

374 CHAPTER 12. FAST FOURIER TRANSFORM

• There are log2 n levels of recursion, each of which involves O(n) arithmetic operations,
so the total cost is O(n log2 n). If the weights wk are precomputed, the total number of
real floating-point operations required by the FFT algorithm is 5n log2 n, compared with
8n2 real floating-point operations for an ordinary complex matrix-vector product.
• For clarity, separate arrays are used for the subsequences, but in fact the transform can

be computed in place using no additional storage.
• The input sequence is assumed to be complex. If the input sequence is real, then addi-

tional symmetries in the DFT can be exploited to reduce the storage and operation count
by half.
• The output sequence is not produced in the natural order. Most FFT routines automat-

ically allow for this by appropriately rearranging either the input or output sequence.
This additional step does not affect the overall computational complexity, because the
necessary rearrangement (analogous to a sort) also costs O(n log2 n).
• The FFT algorithm can be formulated using iteration rather than recursion, which is

often desirable for greater efficiency or when using a programming language that does
not support recursion.

Despite its name, the fast Fourier transform is an algorithm, not a transform. It is
a particular way (or family of ways) of computing the discrete Fourier transform of a
sequence in a very efficient manner. As we have seen, the DFT is defined in terms of
a matrix-vector product, whose straightforward evaluation would appear to require O(n2)
arithmetic operations. Use of the FFT algorithm reduces the work to onlyO(n log2 n), which
makes an enormous practical difference in the time required to transform large sequences,
as illustrated in Table 12.1.

Table 12.1: Complexity of FFT algorithm versus matrix-vector multiplication

n n log2 n n2

64 384 4096
128 896 16384
256 2048 65536
512 4608 262144

1024 10240 1048576

Owing to the similar form of the DFT and its inverse (they differ only in the sign of
the exponent), the FFT algorithm can also be used to compute the inverse DFT efficiently.
This ability to transform back and forth quickly between the time domain and the frequency
domain makes it practical to perform any computations or analysis that may be required
in whichever domain is more convenient or efficient.

12.2.1 Limitations of the FFT

Although the FFT algorithm has revolutionized many aspects of numerical computation, it
is not always applicable or maximally efficient. In particular, the input sequence is assumed
to be:

12.3. APPLICATIONS OF DFT 375

• Equally spaced
• Periodic
• A power of two in length

The first two of these properties follow from the definition of the DFT, whereas the third is
required for maximal efficiency of the FFT algorithm. For example, the interpolant given
by the DFT, as a linear combination of sines and cosines, will necessarily be periodic, which
means that for a sequence of length n, we must have x0 = xn or, more generally, xk = xn+k

for any integer k (note that only x0 through xn−1 are actually specified). Thus, some care
must be taken in applying the FFT algorithm to produce the most meaningful results as
efficiently as possible. For instance, transforming a sequence that is not really periodic or
padding a sequence to make its length a power of two may introduce spurious noise and
complicate the interpretation of the results.

It is possible to define a “mixed-radix” FFT algorithm that does not require the number
of points n to be a power of two. The more general algorithm is still based on divide-and-
conquer; the sequence is not necessarily split exactly in half at each level, however, but
rather by the smallest prime factor of the remaining sequence length. For example, a
sequence of length 45 would be split into three subsequences of length 15, each of which
in turn would be split into three subsequences of length five. When a subsequence can be
split no further (i.e., when its length is prime), then its transform must be computed by
conventional matrix-vector multiplication. The efficiency of such an algorithm depends on
whether n is a product of small primes (ideally a power of two, of course). If this is not the
case, then much of the computational advantage of the FFT may be lost. For example, if n
itself is a prime, then the original sequence cannot be split at all, and the “fast” algorithm
then becomes standard O(n2) matrix-vector multiplication.

12.3 Applications of DFT

The DFT is often of direct interest itself and is also useful as a computational tool that
provides an efficient means for computing other quantities. The DFT is of direct interest
in detecting periodicities or cycles in discrete data. Moreover, it can be used to remove
unwanted periodicities. For example, to remove high-frequency noise from a sequence, one
can compute its DFT, set the high-frequency components of the transformed sequence to
zero, then compute the inverse DFT of the modified sequence to get back into the original
domain.

As another example, weather data often contain two distinct cycles, diurnal and annual.
One might want to remove one of these in order to study the other in isolation. Economic
data are also often “seasonally adjusted,” removing unwanted periodicities to reveal secular
trends. Because of such uses, the DFT is of vital importance in many aspects of signal
processing, such as digital filtering.

Some computations are simpler or more efficient in the frequency domain than in the
time domain. Examples include the discrete circular convolution of two sequences u and v
of length n,

{u ? v}m =
n−1∑
k=0

vkum−k, m = 0, 1, . . . , n− 1,

376 CHAPTER 12. FAST FOURIER TRANSFORM

and related quantities such as the cross correlation of two sequences or the autocorrelation
of a sequence with itself. In each case, the equivalent operation in the frequency domain is
simply pointwise multiplication (in some cases with complex conjugation).

For example, convolution is equivalent to multiplication by a circulant matrix , and such
a matrix is diagonalized by the DFT. Thus, if the convolution z of u and v is given by

z0

z1
...

zn−2

zn−1

 =

u0 un−1 un−2 · · · u1

u1 u0 un−1 · · · u2
...

.
...

un−2 · · · u1 u0 un−1

un−1 · · · u2 u1 u0

v0

v1
...

vn−2

vn−1

 ,
then the corresponding transformed sequences ẑ, û, and v̂ are related by

ẑ0

ẑ1
...

ẑn−2

ẑn−1

 = n

û0 0 · · · · · · 0
0 û1 0 · · · 0
...

.
...

0 · · · 0 ûn−2 0
0 · · · · · · 0 ûn−1

v̂0

v̂1
...

v̂n−2

v̂n−1

 .
For this reason, when computing the convolution of two sequences it is often advantageous
to use the FFT algorithm to compute the DFT of each sequence, compute their pointwise
product in the frequency domain, then compute the inverse DFT to get back into the time
domain, again via the FFT algorithm.

The FFT algorithm forms the basis for some exceptionally efficient methods for solving
certain elliptic boundary value problems, such as Poisson’s equation on a regular domain
with periodic boundary conditions (see Section 11.4.2). It also provides a similarly efficient
approach for implementing spectral or pseudospectral methods for time-dependent partial
differential equations with periodic boundary conditions.

12.3.1 Fast Polynomial Multiplication

The FFT algorithm also provides a fast method for some computations that might not
at first glance seem related to it. Consider, for example, the problem of multiplying two
polynomials p(t) and q(t), whose complexity by straightforward multiplication, using the
coefficients of the polynomials, is proportional to the product of their degrees. Suppose
that the product polynomial whose coefficients we wish to determine is of degree n − 1.
A polynomial of degree n − 1 is uniquely determined by its values at n distinct points.
Moreover, the value of the product polynomial at a particular point t is equal to the product
of the factor polynomials at that point, i.e., (p · q)(t) = p(t)q(t). The product polynomial
is therefore uniquely determined by the values of the pointwise product of p and q at n
distinct points.

Thus, one way to compute the product polynomial is to evaluate p and q at n dis-
tinct points, compute their pointwise product, and then obtain the product polynomial
by interpolation from these values. Since the pointwise product requires only O(n) arith-
metic operations, the overall efficiency of this method will depend on how efficiently we can
evaluate the given polynomials and then interpolate to obtain the product polynomial.

12.4. WAVELETS 377

Recall that evaluating a polynomial at a set of points is equivalent to multiplying the
vector of its coefficients by a Vandermonde matrix, and interpolation is equivalent to mul-
tiplying by the inverse of a Vandermonde matrix. These steps would appear to require at
least O(n2) arithmetic operations each, but they can be made much more efficient if we
choose the evaluation points carefully. In particular, if we choose the nth roots of unity,
then the necessary polynomial evaluations and interpolations become simply the DFT and
its inverse. For example, if

p(t) =
n−1∑
k=0

xkt
k,

then

p(wm) =
n−1∑
k=0

xk(wm)k =
n−1∑
k=0

xkw
mk = ym.

Thus, if the number of points n is a power of two and the FFT algorithm is used in this
manner, then the complexity of polynomial multiplication can be reduced to O(n log2 n).
Restricting n to be a power of two is not a serious limitation, since we can always consider
any polynomial to have degree one less than the next higher power of two by taking the
remaining coefficients to be zero. This result may seem to be of largely theoretical interest
because the savings are insignificant for polynomial degrees that are likely to occur in
practice, but it turns out to be useful in some applications, such as signal processing, and
it illustrates how the FFT can crop up in unexpected ways.

12.4 Wavelets

The sine and cosine functions used in Fourier analysis have many useful features of great
practical importance in a wide array of applications, but they are not ideal for all purposes.
In particular, these functions are very smooth (infinitely differentiable) and very broad
(nonzero almost everywhere on the real line). As a result, they are not very effective for
representing functions that change abruptly or have highly localized support. The Gibbs
phenomenon in the Fourier representation of a square wave (the “ringing” at the corners)
is one manifestation of this.

In response to this shortcoming, there has been intense interest in recent years in a new
type of basis functions called wavelets. A given wavelet basis is generated from a single
function φ(x), called a mother wavelet or scaling function, by dilation and translation, i.e.,
φ((x − b)/a), where a and b are real numbers with a 6= 0. There are many different ways
of choosing the mother wavelet. The main issue is the trade-off between smoothness and
compactness. A member of one of the most commonly used families of wavelets, due to
Daubechies, is illustrated in Fig. 12.3.

Typical choices for the dilation and translation parameters are a = 2−j and b = k2j ,
where j and k are integers, so that φjk(x) = φ(2jx − k). If the mother wavelet φ(x) has
sufficiently localized support, then ∫

φjkφmn = 0

378 CHAPTER 12. FAST FOURIER TRANSFORM

−0.1

0

0.1

..
.........
.........
.........
.........
...........
...........
............
..........
...........
............
...................
............
...........
............
............
..............................

................
..................
............
..............
................
................
..

.........

........

..........

.........

..........

..........
..........
.........
.................
..........
............
.................................

...............
..............
...

..........................
..................................

..

Figure 12.3: Daubechies’ D4 mother wavelet.

whenever the indices do not both match, i.e., the doubly-indexed basis functions φjk(x)
are orthogonal. By replicating the mother wavelet at many different scales, it is possible
to mimic the behavior of any function at many different scales; this property of wavelets
is called multiresolution. The Fourier basis functions are localized in frequency, but not in
time: small changes in frequency produce changes everywhere in the time domain. Wavelets
are localized in both frequency (by dilation) and time (by translation). This localization
tends to make the wavelet representation of a given function very sparse.

As with the Fourier transform, there is an analogous discrete wavelet transform, or
DWT. The DWT and its inverse can be computed very efficiently by a pyramidal, or
hierarchical, algorithm. In fact, the sparsity of the wavelet basis makes computation of the
DWT even faster than the FFT—it requires only O(n) work instead of O(n log2 n) for a
sequence of length n. Because of their efficiency, both in computation and in compactness of
representation, wavelets are playing an increasingly important role in many areas of signal
and image processing, such as data compression, noise removal, and computer vision, and
are even beginning to be used as basis functions for the solution of differential equations.

12.5 Software for FFT

Table 12.2 is a list of some of the software available for computing the DFT using the FFT
algorithm. Some of the routines compute both the transform and its inverse, whereas others
are used as a pair, one for the transform and the other for the inverse. We distinguish
between routines that transform only real sequences and those that transform complex
sequences. All of the routines listed are for one-dimensional transforms; software is also
available for transforms in two dimensions and higher. Software for wavelet transforms is
available from NR [205] and TOMS (#735). There is also a wavelet toolbox available for
MATLAB. For pointers to additional wavelet software, see [110, 130].

12.6 Historical Notes and Further Reading

The work of Fourier on the integral and series that now bear his name dates from the
early nineteenth century. The discrete Fourier transform is a more recent invention whose
popularity was prompted by the advent of digital computation and communication. Al-

REVIEW QUESTIONS 379

Table 12.2: FFT software
Source Real DFT Complex DFT
FFTPACK rfftf/rfftb cfftf/cfftb
HSL ft01
IMSL fftrf/fftrb fftcf/fftcb
KMN ezfftf/ezfftb cfftf/cfftb
MATLAB fft/ifft fft/ifft
NAG c06eaf/c06faf c06ecf/c06fcf
NAPACK fft/ffc
netlib realtr fft
NR realft four1
SLATEC rfftf1/rfftb1 cfftf1/cfftb1

though it had a number of precursors going all the way back to Gauss, the modern form
of the FFT algorithm for computing the DFT was discovered by Cooley and Tukey in the
mid-1960s. Their version of the algorithm quickly revolutionized many practical computa-
tions, including signal processing, convolutions, and time series analysis. It also inspired
the development of fast, divide-and-conquer algorithms for many other computations.

The theory and applications of Fourier analysis, both continuous and discrete, are cov-
ered in [185, 266, 267, 269, 270]. An accessible yet comprehensive introduction to the DFT
can be found in [25]. For a tutorial overview of FFT algorithms, see the survey in [69]. For
a detailed discussion of the FFT and its applications, see [26, 27]. The FFT is elegantly
presented from a matrix point of view in [260]. For a brief tutorial introduction to wavelets,
see [110, 245]; for a more comprehensive but still readable introduction, see [130, 143].

Review Questions

12.1 True or false: The fast Fourier transform
(FFT) algorithm can compute both the dis-
crete Fourier transform and its inverse with
equal efficiency.

12.2 (a) Why is the (continuous or discrete)
Fourier transform of a function said to be in
the frequency domain?
(b) Give two reasons why such a transforma-
tion into the frequency domain can be useful.

12.3 For what type of function would trigono-
metric interpolation be more appropriate than
polynomial or piecewise polynomial interpola-
tion?

12.4 For the sine function, sin(0) = sin(π).
Does this mean that the period of the sine
function is π? Why?

12.5 List two applications for the discrete
Fourier transform (DFT).

12.6 What two assumptions are implicitly
made in applying the DFT to a sequence (i.e.,
what two properties are the data assumed to
satisfy)?

12.7 (a) What property must the number of
points, n, satisfy for the FFT algorithm to be
maximally efficient relative to straightforward
evaluation of the DFT by matrix-vector mul-
tiplication?

(b) What is the arithmetic complexity of the
FFT algorithm in this case?

12.8 The DFT of a sequence of length n can
be interpreted as interpolation by a set of n
trigonometric basis functions.

(a) Why does computing the DFT not require
the solution of an n×n linear system by matrix

380 CHAPTER 12. FAST FOURIER TRANSFORM

factorization in order to determine the coeffi-
cients of the basis functions?
(b) What is the worst-case computational com-
plexity for computing the DFT? For what val-
ues of n is this the case?
(c) What is the best-case computational com-
plexity for computing the DFT? For what val-
ues of n is this the case?
(d) Explain briefly the reason for the differ-
ence, or the lack of it, between the complexi-
ties in parts b and c.

12.9 (a) Why might one consider padding a
sequence with zeros, if necessary, to make its
length a power of two before computing its
DFT via the FFT algorithm?
(b) Why might this not be a good idea?

12.10 Explain why the inverse DFT can be
computed just as efficiently as the forward

DFT using the FFT algorithm.

12.11 Why is the FFT algorithm useful for
computing the convolution of two sequences?

12.12 (a) Explain briefly how the FFT algo-
rithm can be used to multiply two polynomi-
als.
(b) How does the computational complexity
of this method compare with the conventional
approach to polynomial multiplication?

12.13 What advantages do wavelets have over
the trigonometric functions used in Fourier
analysis?

12.14 What two operations are used to gen-
erate a wavelet basis from a single mother
wavelet?

12.15 What is the computational complexity
of the discrete wavelet transform?

Exercises

12.1 Express each of the following trigono-
metric functions in complex exponential nota-
tion.
(a) 4 cos(2πkt)
(b) 6 sin(2πkt)

12.2 (a) Assuming that time is measured in
seconds, give an expression for a sine wave that
oscillates at a frequency of two complete cycles
per second.
(b) What values will you obtain if you sample
this function once per second?
(c) How often would you have to sample to get
an accurate value for the true frequency?

12.3 (a) What is the DFT of a pure cosine
wave cos(t) sampled at n equally spaced points
on the interval [0, 2π)?
(b) What is the DFT of a pure sine wave sin(t)
sampled at n equally spaced points on the in-
terval [0, 2π)?
(c) What is the DFT of the sum of the two
previous functions sampled at n equally spaced
points on the interval [0, 2π)?

12.4 For a given input sequence x, why is the
first component of its DFT, y0, always equal
to the sum of the components of x?

12.5 The Fourier matrix Fn defined by
{Fn}mk = wmk is obviously symmetric. For
what values of n, if any, is Fn Hermitian?

12.6 (a) Show that the matrix (1/
√
n)Fn is

unitary, where Fn is the Fourier matrix of or-
der n.

(b) Using this result, prove the discrete form
of Parseval’s Theorem,

‖y‖22 = n ‖x‖22,

where y = DFT(x).

12.7 If y is the DFT of a real sequence x of
length n, where n is a power of two, show that
y0 and yn/2 must be real.

12.8 Verify the operation count given in Sec-
tion 12.2 for computing the DFT of a sequence
of length n, where n is a power of two, using
the FFT algorithm.

12.9 If
y = DFT(x),

show that

x =
1
n

DFT(y),

COMPUTER PROBLEMS 381

where the overbar notation indicates complex
conjugation of each element of the sequence.
This result implies that a separate routine or

option for the inverse DFT is not really needed,
although one is often supplied for convenience
in many mathematical software libraries.

Computer Problems

12.1 (a) For each value of m, m = 1, . . . , 5,
compute the DFT of the sequence xk =
cos(mkπ), k = 0, . . . , 7. Explain your results.

(b) Draw a plot of the two functions cos(πt)
and cos(3t) over the interval 0 ≤ t ≤ 7.
Compute the DFT of each of the sequences
xk = cos(πk) and xk = cos(3k), k = 0, . . . , 7,
and compare the results. Explain why the
DFTs can be so different when the functions
are so similar.

12.2 Gauss analyzed the orbit of the asteroid
Pallas based on the observational data

θ 0 30 60 90
x 408 89 −66 10
θ 120 150 180 210
x 338 807 1238 1511
θ 240 270 300 330
x 1583 1462 1183 804

where θ is the ascension in degrees and x is the
declination in minutes.

(a) Fit the given data to the function

f(θ) = a0 +
5∑
k=1

[ak cos(2πkθ/360)+

bk sin(2πkθ/360)] + a6 cos(2π6θ/360),

where ak, k = 0, . . . , 6, and bk, k = 1, . . . , 5
are parameters to be determined by the fit.
Since there are twelve parameters and twelve
data points, the linear system to be solved is
square, and the result should interpolate the
data. As a matter of historical interest, Gauss
performed this computation by a divide-and-
conquer method closely related to the FFT al-
gorithm; see [100].

(b) Plot the original data points along with a
smooth curve of the function determined by
the parameters computed in part a.

(c) Use an FFT routine to compute the DFT
y of the sequence x.

(d) What relationship can you determine be-
tween the real and imaginary parts of y and
the parameters ak and bk computed in part
a? (Hint : You may need to scale by the se-
quence length or its square root, depending on
the particular FFT routine you use.)

12.3 Let x be a random sequence of length
n, say, n = 8. Use an FFT routine to com-
pute the DFT of x. Now shift the sequence
x circularly (i.e., end-around) one place to the
right and compute the DFT of the shifted se-
quence. How do the resulting transformed se-
quences compare? Take the modulus of each
component of each of the two sequences (called
the amplitude spectrum) and compare them
as well. Try other values for the shift dis-
tance, again comparing both the transformed
sequence and its amplitude spectrum to those
of the original unshifted sequence. What con-
clusion can you draw?

12.4 (a) Let x be the sequence xk = 1,
k = 0, . . . , n−1, where n is not a power of two.
Let x̂ be the same sequence padded with zeros
to make its length a power of two (i.e., x̂k = 1,
k = 0, . . . , n− 1 and x̂k = 0, k = n, . . . ,m− 1,
where m is the smallest power of two greater
than n). Taking n = 5 and m = 8, use a
mixed-radix FFT routine (i.e., one that al-
lows arbitrary sequence length) to compute the
DFT of both x and x̂ and compare the results.
Do the transformed sequences agree? What
can you conclude about padding with zeros in
order to make the sequence length a power of
two? Try other other values for n and m to de-
termine whether your findings are consistent.

(b) Try other sequences (e.g., nonconstant,
nonperiodic) for x, and other methods for
padding (e.g., linear interpolation between xn
and the replication of x0) and compare the re-
sulting transformed sequences. Can you find
any method for padding that does not alter
the transformed sequence?

382 CHAPTER 12. FAST FOURIER TRANSFORM

12.5 Using a mixed-radix FFT routine (i.e.,
one that allows arbitrary sequence length),
measure the elapsed time to compute the
DFT of a sequence of length n for n =
1, 2, 3, . . . , 1024 (i.e., for each integer value
from 1 to 1024). Plot the resulting execution
times as a function of n, using a logarithmic
scale for vertical axis. Are the upper and lower
envelopes of the resulting data consistent with
the theoretical complexity range of O(n log2 n)
to O(n2)?

12.6 (a) Create two-dimensional plots of the
n basis functions for the DFT of length n. On
the vertical axis plot the real and imaginary
parts of the discrete components of a given
basis function (using different colors or dash
patterns to distinguish them), and on the hor-
izontal axis plot the index of each component.
Although the DFT uses only discrete points,
you can connect those points to make contin-
uous curves, which will become smoother as n
increases. Try a fairly large value of n to see
smooth plots on your screen, but since there
will be n separate frames, don’t waste paper
by printing all of them.
(b) Create three-dimensional plots of the n ba-
sis functions for the DFT of length n. On two
of the axes plot the real and imaginary parts
of the discrete components of a given basis
function, and on the third axis plot the index
of each component. Connect the points for a
given function to make a continuous curve; it
will become smoother as n increases. Try a
fairly large value of n to see smooth plots on
your screen, but again use discretion in making
hard copies.

12.7 Use an eigenvalue routine to compute all
of the eigenvalues of the scaled DFT matrix
(1/
√
n)Fn for n = 1, 2, 3, . . . , 16. How many

different eigenvalues do you find? Do you ob-
serve any pattern in the multiplicities of the
eigenvalues? Try to devise a formula for the
multiplicity of each eigenvalue as a function of
n and then test it for some values of n not
already computed.

12.8 Show empirically that the DFT matrix
diagonalizes a circulant matrix by generating a
random circulant matrixC of order n and then
computing (1/n)FnCFHn , which should be di-
agonal. What does this result imply about the

eigenvectors of C? A value of n = 8 is reason-
able for your experiment, although you may
wish to try additional values.

12.9 If your programming environment sup-
ports recursion, implement a recursive version
of the FFT algorithm, as given in Section 12.2.
Compare its performance to a standard (pre-
sumably nonrecursive) FFT routine for input
sequences of various sizes (powers of two).

12.10 Implement the DFT using standard
matrix-vector multiplication by the appropri-
ate Vandermonde matrix. Compare its per-
formance to that of a standard FFT routine
for input sequences of various sizes, both pow-
ers of two and nonpowers of two (assuming
that the standard FFT routine permits a non-
power of two sequence length). In particular,
try some fairly large prime values for the input
sequence length and compare the performance
of the two routines.

12.11 Implement a routine for digital filter-
ing of a sequence. Use an FFT routine to
transform into the frequency domain, truncate
or otherwise attenuate the frequencies above a
given threshold, and then return to the orig-
inal domain via the inverse transform. Test
your routine for some representative noisy sig-
nals.

12.12 Implement a routine for computing the
convolution of two sequences. Use an FFT
routine to transform the sequences, compute
the pointwise product of the transformed se-
quences, and then transform them back into
the original domain using the inverse trans-
form.

12.13 Implement a routine for fast polyno-
mial multiplication using the FFT algorithm,
as outlined in Section 12.3.1. Test your rou-
tine on polynomials of various degrees, both
powers of two and nonpowers of two.

12.14 In this exercise we will use the DFT to
study properties of iterative methods for solv-
ing a system of linear equations. Implement
the Jacobi method for solving the n × n lin-
ear system Ax = b, where A is the matrix
resulting from a finite difference approxima-
tion to the one-dimensional Laplace equation
on an interval, with boundary values of zero

COMPUTER PROBLEMS 383

at the endpoints. Thus, A is tridiagonal with
diagonal elements equal to 2 and subdiagonal
and superdiagonal elements equal to −1; and
x represents the solution values at the interior
mesh points.
Take b = o, so that the exact solution is x = o,
and therefore at any iteration the error is equal
to the current value for x. As initial start-
ing value, take all of the entries of x equal to
1. Using a value for n that is a power of two
(n = 64 is a reasonable choice), perform a few
iterations of the Jacobi method, say, ten or so.
After each iteration, use an FFT routine to
compute the DFT of the approximate solution
vector, y = DFT(x). Next compute the power

spectrum, which is a vector whose entries are
the elementwise product of y and its complex
conjugate. Now plot the first half of the power
spectrum vector (i.e., up to the Nyquist fre-
quency), which shows the amount of “energy”
present at each frequency. Thus, your plot will
show the decay rate of the components of the
error of various frequencies. Which frequency
components are damped out most rapidly and
which most slowly? Do your results suggest
that the Jacobi method is a smoother, as dis-
cussed in Section 11.5.7?
You might find it interesting to repeat this ex-
periment with a two-dimensional problem us-
ing a two-dimensional FFT.

384 CHAPTER 12. FAST FOURIER TRANSFORM

Chapter 13

Random Numbers and Stochastic
Simulation

13.1 Stochastic Simulation

We have thus far considered only deterministic numerical methods for solving mathematical
problems. An alternative approach, which is often very powerful for certain types of prob-
lems, is stochastic simulation. A serious study of stochastic simulation methods is beyond
the scope of this book, but we will give a brief overview of these methods and the random
number generators on which they depend.

Stochastic simulation methods attempt to mimic or replicate the behavior of a system
by exploiting randomness to obtain a statistical sample of possible outcomes. Because of
the randomness involved, simulation methods are also commonly known in some contexts
as Monte Carlo methods. Such methods are useful for studying:

• Nondeterministic (stochastic) processes
• Deterministic systems that are too complicated to model analytically
• Deterministic problems whose high dimensionality makes standard discretizations infea-

sible (e.g., Monte Carlo integration; see Section 8.5.4)

The two main requirements for using stochastic simulation methods are:

• Knowledge of relevant probability distributions
• A supply of random numbers for making random choices

Knowledge of the relevant probability distributions depends on theoretical or empirical
information about the physical system being simulated. As a simple example, in simulating
a baseball game the known batting average of a player might determine the probability of
his or her getting a hit in a given turn at bat. A more practical example is simulating the
diffusion of particles (e.g., neutrons) through a medium (e.g., a shielding material). One
must know the “cross section” or “mean free path,” which are measures of the probability

385

386 CHAPTER 13. RANDOM NUMBERS AND SIMULATION

of a particle collision occurring, and also the probabilities of each possible outcome of a
collision. The path of a single particle through the medium is then simulated by a sequence
of random choices, each of which is weighted by the appropriate probability. By simulating
a large number of such particle trajectories, the probability distribution of the overall results
can be approximated, with the accuracy attained depending on the number of trials.

13.2 Randomness and Random Numbers

The concept of randomness is actually somewhat difficult to define. Physical processes that
we usually think of as random, such as flipping a coin or tossing dice, are in fact deterministic
if we know enough about the equations governing their motion and the appropriate initial
conditions. In recent years, the distinction between deterministic and random behavior has
become blurred by such concepts as chaotic behavior of dynamical systems. Owing to their
extreme sensitivity to initial conditions, the behavior of such systems can be unpredictable
in practice even though it is deterministic in principle. For example, detailed weather
predictions are impossible beyond approximately two weeks, even though we have a good
understanding of the physical processes involved.

One way of characterizing the unpredictability that we associate with randomness is to
say that a sequence of numbers is random if it has no shorter description than itself. In
other words, there is no more economical way to convey the sequence than simply listing its
members. Thus, for example, though each of the sequences {1, 2, 3, 4, 5}, {1, 1, 1, 1, 1}, and
{4, 1, 5, 3, 2} may be equally likely to occur, only the latter would be considered random.
In some cases, even when variables are not really random, such as the arrival times and
service times for a queue, they may be so complicated or imprecisely known that they are
best treated as random variables, and the study of such systems is often tractable only by
stochastic simulation methods.

In addition to unpredictability, another distinguishing characteristic of true randomness
is a lack of repeatability : one would not expect the same long random sequence of numbers
or coin tosses to occur twice. However, lack of repeatability could make testing algorithms
or debugging computer programs difficult, if not impossible. Thus, there are advantages
to generating random numbers by a repeatable process, but repeatability is a two-edged
sword. The statistical significance of a stochastic simulation depends on the independence
of the trials, which in turn depends on using different random sequences for each trial. In
1955, before computers were so common, the RAND Corporation published a book entitled
A Million Random Digits. It was used in selecting random trials for experimental designs
and simulations (and perhaps as bedtime reading for insomniacs?). It was soon realized,
however, that if everyone always started on page one, then all trials and simulations by all
the book’s users would depend on the quirks of the same random sequence. This generated
much debate on how to select a random starting point in the table of random numbers.

13.3 Random Number Generators

Although random numbers were once supplied by physical processes or tables, they are now
produced by computers. Computer algorithms for generating random numbers are in fact

13.3. RANDOM NUMBER GENERATORS 387

deterministic, although the sequence generated may appear random in that it exhibits no
apparent pattern. However, an algorithm for generating random numbers provides a short
description of the sequence it yields, which therefore by definition is not truly random,
so such a sequence is more accurately called pseudorandom. Although a pseudorandom
sequence may appear random, it is in fact quite predictable and reproducible, which is
important for debugging simulation programs and verifying results. Moreover, because
only finitely many numbers are representable on a computer, any sequence must eventually
repeat.

A good random number generator should have as many of the following properties as
possible:

• Random pattern. It should pass statistical tests of randomness.
• Long period. It should go as long as possible before repeating.
• Efficiency. It should execute rapidly and require little storage, since many simulations

require millions of random numbers.
• Repeatability. It should produce the same sequence if started with the same initial con-

ditions.
• Portability. It should run on different kinds of computers and be capable of producing

the same sequence on each.

It is very difficult to satisfy all of these requirements in a single random number generator.
For example, some random number generators in common use produce highly correlated
sequences, which may become visually evident when consecutive pairs or triples of members
of the sequence are plotted in space. This phenomenon has prompted the remark “random
numbers fall mainly in the planes” [172] and can invalidate simulation results obtained using
such a generator.

Early attempts at producing random number generators on computers often relied on
highly complicated procedures whose very complexity was felt to ensure randomness. An
example is the “midsquare” method, which squares each member of the sequence and takes
the middle portion of the result as the next member of the sequence. The lack of a theoretical
understanding of such methods proved disastrous, and it was soon recognized that simple
methods with a well-understood theoretical basis are far preferable.

13.3.1 Congruential Generators

Congruential random number generators have the form

xk = (axk−1 + b) (modM),

where a and b are given integers, the starting integer x0 is known as the seed , and the integer
M is approximately (often equal to) the largest integer representable on the machine.

The quality of such a generator depends on the choices of a and b, and in any case
its period cannot exceed M . It is possible to obtain a reasonably good random number
generator using this method, but the values of a and b must be chosen very carefully. Many
random number generators supplied with computer systems are of the congruential type,
and some of them are notoriously poor.

388 CHAPTER 13. RANDOM NUMBERS AND SIMULATION

A congruential generator produces random integers between 0 and M − 1. In order to
produce random floating-point numbers, say uniformly distributed on the interval [0, 1), the
random integers must be divided by M (but not using integer division!).

13.3.2 Fibonacci Generators

Alternative methods that produce floating-point random numbers on the interval [0, 1)
directly are the Fibonacci generators, which generate the new value as a difference, sum, or
product of previous values. A typical example is the subtractive generator

xk = xk−17 − xk−5.

We say that this generator has lags of 17 and 5. Not surprisingly, the lags must be chosen
carefully to produce a good subtractive generator. Note that such a formula may produce
a negative result, in which case the usual remedy is to add 1 to get back into the interval
[0, 1).

A Fibonacci generator requires more storage than a congruential generator and also
requires a special procedure to get started (analogous to a multistep method for solving
an ODE). On the other hand, Fibonacci generators require no division to produce floating-
point results, and well-designed Fibonacci generators have very good statistical properties.
Another advantage of Fibonacci generators is that they can have a much longer period than
congruential generators. The reason for this is that the repetition of a single member of the
sequence does not entail that all subsequent members will also repeat in the same order.

13.3.3 Nonuniform Distributions

Thus far we have discussed generating random numbers only from a uniform distribution
on the interval [0, 1). If we need a uniform distribution on some other interval [a, b), then
we can simply modify the values xk generated on [0, 1) by the transformation (b− a)xk + a
to obtain random numbers that are uniformly distributed on the desired interval.

A more difficult problem is to sample from nonuniform distributions. If the cumulative
distribution function of the desired probability density function is easily invertible, then we
can generate random samples with the desired distribution by generating uniform random
numbers and inverting them. For example, the exponential distribution with rate λ has
the density function

f(t) = λe−λt, t > 0,

and cumulative distribution function

F (x) =
∫ x

0
f(t) dt = 1− e−λx.

Given y = F (x), we can easily solve for x, obtaining

x = − log(1− y)
λ

.

Hence, to sample from the exponential distribution, we can take

xk = − log(yk)
λ

,

13.4. QUASI-RANDOM SEQUENCES 389

where yk is uniform on [0, 1).

Unfortunately, many important distributions are not easily invertible, and special meth-
ods must be employed to generate random numbers efficiently for these distributions. An
important example is the generation of random numbers that are normally distributed with
a given mean and variance. Some methods for generating normally distributed random
numbers are explored in Computer Problem 13.8. Available routines for normal random
numbers often assume a mean of 0 and variance of 1. If some other mean µ and vari-
ance σ2 are desired, then each value xk produced by the routine can be modified by the
transformation σxk + µ to achieve the desired normal distribution.

13.4 Quasi-Random Sequences

Despite the quest to develop algorithms for generating perfectly random numbers, true
randomness is not always a virtue. For some applications, such as Monte Carlo integration,
achieving reasonably uniform coverage of the sampled volume can be more important than
whether the sample points are truly random. The problem is that random sequences tend
to exhibit random clumping (lightning may indeed strike in nearly the same place twice if
it is truly random), leading to rather uneven coverage of the sampled volume for a given
number of points. At the other extreme, perfectly uniform coverage can be achieved by
using a regular grid of sample points, but as we saw in Section 8.5.4, such an approach does
not scale well to higher dimensions.

A compromise between these extremes of coverage and randomness is provided by quasi-
random sequences. Such sequences are in fact not random at all but are carefully constructed
to give uniform coverage of the sampled volume while maintaining a reasonably random ap-
pearance. By design the points tend to avoid each other, so the clumping associated with
true randomness is eliminated. The differences among these three sampling techniques
are illustrated in Fig. 13.1. Such quasi-random sequences, also called low-discrepancy se-
quences, are finding increasing use in Monte Carlo integration and other applications, such
as optimization by random search, where uniform coverage of the sampled volume is more
important than the statistical properties of the sampling procedure.

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..
...

Grid
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..

.

.
.

.

..
.

.

.
.

. ..
.

.
.

.

.

. .
.

.

.

.
.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.
.

..

.

.

.

.
.

.

.

.

.

.

..
.

.

.
...

..

.

.

.
.

.

.

.

.

.
.

.

.

.

.

. .
.
. .

.
.

.

. . .
. .

.
.

. .

..
..

.

.
.

..

.

.

.

.

..
.

.

.

..

.

.
.

.
..

.
.

.

.

.

.

.

.

.
.

.
..

.
.
.

... .
.

.

.
. .

.

.

..

.

.
.

.
.

. .

.
..

. .
.

.

.

..

.
.

.

...
.

.

.

.

..

.. .

.

.
.

.
.

.

.

.

.

.

..
.

.

.

.

.

.. .
.

.
.

.
.
.

.
.

.

.

.

.
.

.

.

..

.
..

. .

.

.

.

.

.
.

.

.

.

.
. .

.

.

.

.
.

.
.

.

.

.
.

.

.
.

.
.

. .

.

.

.

.

. .

.
.

.

.

.

.

.

.

.
.

.

. ..

..
.

.

.

.

...

.

. .

. .

.
. .

.
.

.
.

..

.

.
.

.
.

.

.

..

.

.

.

.

.

.

.
.

.

..

..

. .
.

.

.
...

.

.
.

.
.
.

.

.

.
.
.

.

.

.
. . .

.
. ..

...

.

.

Random
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Quasi-random

Figure 13.1: Three methods for sampling the unit square using the same number of points.

390 CHAPTER 13. RANDOM NUMBERS AND SIMULATION

13.5 Software for Generating Random Numbers

Table 13.1 is a list of some of the random number generators available in standard software
libraries. Generators are included only for uniform and normal distributions. Some of these
sources contain generators for several additional distributions, both continuous and discrete.
Software for generating quasi-random sequences is available from NR [205] and TOMS (#647,
#659). Although stochastic simulation programs can be written in any general-purpose
programming language, the particular needs of this field have motivated the development of
special-purpose languages and software systems for simulation, including GPSS, Simscript,
Simula, and SLAM.

Table 13.1: Software for generating random numbers

Source Uniform distribution Normal distribution
FMM urand
HSL fa04 fa05
IMSL rnunf rnnof
KMN uni rnor
MATLAB rand randn
NAG g05caf g05ddf
netlib zufall normalen
NR ran1/ran2/ran3 gasdev
RANLIB ranf/genunf gennor
SLATEC rand/runif rgauss
TOMS grand(#488)/randn(#712)

13.6 Historical Notes and Further Reading

Monte Carlo methods were developed in the 1940s by von Neumann, Ulam, Metropolis, and
others, primarily motivated by problems in nuclear physics such as neutron diffusion. For
a brief overview of randomness, random number generators, and simulation, see [107, 191].
For a detailed treatment of stochastic simulation and Monte Carlo methods, see [21, 79,
119, 144, 216, 235]. Congruential random number generators were proposed by Lehmer in
the 1950s. Volume 2 of the series by Knuth [150] contains a detailed discussion of random
number generators and their analysis. The development of quasi-random sequences dates
to the work of Halton and of Sobol’ in the 1960s. For a recent review of quasi-random
sequences and their applications, see [190].

Review Questions

13.1 True or false: Stochastic simulation
methods are useful only for nondeterministic
systems.

13.2 True or false: A very complicated algo-
rithm for generating random numbers tends to

be better than a simple one.

13.3 What two requirements are essential for
stochastic simulation methods?

13.4 In using stochastic simulation methods,

EXERCISES 391

why is repeatability desirable in practice, even
if undesirable in theory?

13.5 List at least three desirable properties of
a good random number generator.

13.6 What is meant by a congruential ran-
dom number generator?

13.7 What is meant by a Fibonacci random
number generator?

13.8 List two advantages and two disadvan-
tages of a Fibonacci generator compared with
a congruential generator for generating ran-
dom floating-point numbers uniformly dis-
tributed on the interval [0, 1).

13.9 If you have a random number genera-
tor for a uniform distribution on [0, 1), how
can you use it to generate random numbers
uniformly distributed on the interval [a, b) for
given real numbers a and b?

13.10 If you have a random number genera-
tor for a normal distribution with mean 0 and
variance 1, how can you use it to generate ran-
dom numbers uniformly normally distributed
with mean µ and variance σ2?

13.11 Why are quasi-random sequences some-
times more useful than truly random (or pseu-
dorandom) sequences?

Exercises

13.1 Consider a congruential random number
generator

xk = (axk−1 + b) (modM),

with b = 0, M = 8192, and the seed x0 = 1.
(a) What is the period of this generator if
a = 2?
(b) What is the period if a = 125?
(c) What is the longest possible period, given
these values for b, M , and x0?

13.2 (a) Choose a well-structured sport, such
as baseball or football, and discuss how you
would simulate a typical game. What type of
information would be required to perform a
fairly detailed and realistic simulation? Where
would random choices enter into the simula-
tion?

(b) Would it be feasible to simulate a sport
like basketball, soccer, or hockey in this man-
ner? Try to characterize the differences from
the previous case.

Computer Problems

13.1 (a) In this exercise we will perform a chi-
square test of the randomness of the sequence
generated by a random number generator. Di-
vide the interval [0, 1) into n equal subinter-
vals. Choose a library routine for generat-
ing uniformly distributed random numbers on
[0, 1). Generate k random numbers and count
the number ni that fall into each subinterval,
i = 1, . . . , n. Compute the chi-square statistic

χ2 =
n∑
i=1

(ni − k/n)2

k/n
.

In a table for the chi-square distribution
(see [282], for example, or a book on statis-
tics), look up the probability that the chi-
square statistic has the value you obtained for

n − 1 degrees of freedom. Carry out this ex-
periment for n = 10 and 20, and for k =
100, 200, . . . , 1000.

(b) Implement your own random number gen-
erator, using either the congruential or Fi-
bonacci method, and again perform the chi-
square test as outlined in part a. Experi-
ment with various choices for the parameters
of the generator to see what effect these have
on the randomness test. Can you find choices
of parameters that produce particularly good
or bad results in the randomness test (with-
out being obviously bad, such as having a very
short period)?

13.2 Monte Carlo integration requires ran-
dom sampling of a region in n-dimensional

392 CHAPTER 13. RANDOM NUMBERS AND SIMULATION

space. If the sequence of random numbers one
is using exhibits any serial correlation, then the
sampling may systematically miss a portion of
the region and may possibly even be confined
to a subregion of lower dimension, which would
obviously make the estimate for the integral
erroneous. One way to detect such serial cor-
relation is to plot pairs or triples of consecutive
random numbers in two or three dimensions,
so that any nonrandom pattern becomes ap-
parent visually.

(a) Use the congruential random number gen-
erator

xk = (axk−1 + b)(modM),

with a = 125, b = 0, M = 8192, and the seed
x0 = 1, to generate a sequence of random inte-
gers, and convert each to a floating-point num-
ber fk on [0, 1) by taking fk = xk/M . Plot 100
pairs of consecutive members of the sequence,
i.e., (f1, f2), (f3, f4), . . . , (f199, f200), as points
in the unit square. Do you notice any obvious
pattern? Make a second plot using 1000 pairs.
Now do you notice any obvious pattern?

(b) Repeat the previous experiment, but try
various values for the parameters a, b, and M .
Can you find values that show no obvious pat-
tern when plotted, even when you increase the
number of points further?

(c) Repeat the same experiment again, this
time using a library routine for generating uni-
form random numbers on [0, 1).

13.3 For each random number generator used
in the previous exercise, generate a sequence of
n random numbers, where n is a power of two.
Use an FFT routine to compute the DFT of
each sequence (see Chapter 12). In each case,
does the transformed sequence appear to be bi-
ased toward any particular frequencies, or does
it appear to be “white noise,” with all frequen-
cies represented approximately equally? You
may need to use a fairly large value of n, say,
n = 1024, to draw any significant conclusions.
How do the results of this “Fourier test” com-
pare with your other tests (i.e., do the same
generators fare well or poorly)?

13.4 A sequence of random numbers dis-

tributed uniformly on [0, 1) should have mean

µ =
∫ 1

0

x dx =
1
2

and variance

σ2 =
∫ 1

0

(x− µ)2 dx =
1
12
,

where σ is the standard deviation. Check each
of the random number generators used in the
previous exercise to see how close they come
to these values for a sequence of length 1000.
Do all of the generators pass this test?

13.5 (a) Suppose that you are given five in-
dependent random decimal digits. The possi-
ble outcomes can be classified much like poker
hands. Show analytically that the probability
of each possible outcome is given by the fol-
lowing table:

Hand Pattern Probability
Five of a kind aaaaa 0.0001
Four of a kind aaaab 0.0045
Full house aaabb 0.0090
Three of a kind aaabc 0.0720
Two pairs aabbc 0.1080
One pair aabcd 0.5040
Bust abcde 0.3024

(b) Use a library routine for generating random
numbers to determine the probability of each
possible outcome by random sampling. Exper-
iment with various numbers of trials. How do
your results compare with the analytical re-
sults in part a? What is the effect of taking
more trials?

(c) The ability to match the correct theoretical
distribution of poker hands (called the poker
test) is sometimes used as a measure of qual-
ity of random number generators. Try a poor
random number generator from one of the pre-
vious exercises and see if it passes this test, for
the same number of trials used in part b.

13.6 The birthday paradox : Use random tri-
als to determine the smallest number of per-
sons required for the probability to be greater
than 0.5 that two persons in a group have the
same birthday. Also try to justify your result
analytically.

COMPUTER PROBLEMS 393

13.7 Use random sampling to determine the
probability that the quadratic equation

ax2 + bx+ c = 0

will have only real roots, if each of its real co-
efficients a, b, and c is randomly chosen from
the interval [−1, 1]. Also try to justify your
result analytically.

13.8 In this exercise, we will consider three
different ways of generating random numbers
that are normally distributed with mean 0 and
variance 1.
(a) According to the Central Limit Theorem,
if xk, k = 1, . . . , n is a sequence of indepen-
dent random numbers from a distribution with
mean µ and variance σ2, then as n increases,

y =
∑n
k=1 xk − nµ
σ
√
n

approaches a normal distribution with mean
0 and variance 1. If the xk are uniformly dis-
tributed on [0, 1), then µ = 1

2 and σ2 = 1
12 ,

which implies that

y =
∑n
k=1 xk − n/2√

n/12

approaches a normal distribution with mean 0
and variance 1. The choice n = 12 makes the
foregoing formula particularly simple:

y =
12∑
k=1

xk − 6,

i.e., we just sum up a dozen uniform random
numbers and subtract 6, and the result should
be approximately normally distributed with
mean 0 and variance 1. You might also ex-
periment with other values for n to examine
the trade-off between cost and accuracy.
(b) Generate two random numbers x1 and x2,
uniformly distributed on [0, 1). Then it can be
shown that both

y1 = sin(2πx1)
√
−2 log(x2)

and
y2 = cos(2πx1)

√
−2 log(x2)

are normally distributed with mean 0 and vari-
ance 1.

(c) Generate two random numbers x1 and
x2 uniformly distributed on [−1, 1), and let
r = x2

1 + x2
2. If r > 1, reject this pair and gen-

erate a new uniform pair x1 and x2. If r ≤ 1,
then it can be shown that both

y1 = x1

√
−2 log(r)/r

and
y2 = x2

√
−2 log(r)/r

are normally distributed with mean 0 and vari-
ance 1.
Implement each of these three methods for
generating normally distributed random num-
bers. To test each routine, generate n = 1000
normal random numbers, compute a frequency
histogram with bin size σ = 1, and com-
pare the values obtained with the known val-
ues for a true normal distribution: . . . , 2.14%,
13.59%, 34.13%, 34.13%, 13.59%, 2.14%,
Also compare your results with a histogram
similarly obtained using a library routine for
generating normally distributed random num-
bers. You may find it instructive to plot the
histograms, perhaps superimposed with a suit-
ably scaled normal density curve. Compare
the methods with respect to accuracy and effi-
ciency. You may also wish to experiment with
other values for n.

13.9 One of the earliest examples of using
randomness to compute a deterministic quan-
tity is the Buffon needle problem, in which an
approximate value for π is determined by re-
peatedly throwing a needle onto a plane sur-
face ruled with equally spaced parallel lines,
such as the seams in a hardwood floor. We in-
troduce an (x, y) coordinate system to describe
the position of the center of the needle, with
the x axis parallel to the lines. Clearly, the
probability that the needle intersects a line is
independent of x, and depends only on y and
the angle θ between the needle and the x axis.
For simplicity, assume that the length of the
needle, as well as the distance between any two
adjacent lines, is 1.
By symmetry, we need be concerned only with
values for θ in the interval [0, π/2), and for y in
the interval [0, 1

2). To determine the propor-
tion of this rectangle in (θ, y) for which the nee-
dle intersects a line, we choose random values

394 CHAPTER 13. RANDOM NUMBERS AND SIMULATION

for θ and y, uniformly distributed on [0, π/2)
and [0, 1

2), respectively. Now a needle with its
center at (x, y) will intersect a line precisely
when y ≤ sin(θ)/2. Therefore, the probability
that the needle will intersect a line is simply
the ratio of the area under the curve sin(θ)/2
over the interval [0, π/2] to the total area of
the rectangle, which is just π/4. Thus, the
approximate value for π will simply be 2n/m,
where n is the total number of trials and m is
the number of trials for which y ≤ sin(θ)/2.
Use a library routine for generating uniform
random numbers to implement this method
for approximating π. How many trials are re-
quired to obtain k correct digits of π, where
k = 1, 2, 3, 4?

13.10 (a) Use the Monte Carlo method to
compute the area of a circle of diameter 1 in-
scribed in the unit square, 0 ≤ x, y ≤ 1. Gen-
erate a sequence (xk, yk) of n pairs of random
numbers uniformly distributed on [0, 1), and
count the number m falling within the circle.
Since the area of the square is 1, the area of the
circle should be approximated by m/n. Com-
pare your result with the known area, which is
given by A = πr2 = π/4. Use various values
for n, and try to characterize the size of the
error as a function of the number of random
trials.
(b) Use the Monte Carlo method to compute
the volume of a sphere of diameter 1 inscribed
in the unit cube, 0 ≤ x, y, z ≤ 1. Generate
a sequence (xk, yk, zk) of n triples of random
numbers uniformly distributed on [0, 1), and
count the number m falling within the sphere.
Since the volume of the cube is 1, the volume
of the sphere should be approximated by m/n.
Compare your result with the known volume,
which is given by V = 4πr3/3 = π/6. Use var-
ious values for n, and try to characterize the
size of the error as a function of the number of
random trials.
(c) Compare your results for parts a and b in
terms of the accuracy attained as a function of
the number of trials. Explain any relationship
you may observe.

13.11 Use random trials to simulate the be-
havior of the Markov chain given in Computer
Problem 4.11. For the same transition proba-
bilities and initial state given there, perform m

trials, taking k steps for each trial. Experiment
with the values for m and k, and compare the
resulting probability distribution vectors with
the results obtained by the methods in Chap-
ter 4.

13.12 (a) Radioactive decay is an inherently
nondeterministic process that can be simu-
lated very naturally using the Monte Carlo
method. Suppose that the probability of any
given atom decaying over a time interval ∆t
is given by λ, 0 < λ < 1. Then the history
of a single atom can be simulated by choosing
a sequence of random numbers xk, k = 1, . . .,
uniformly distributed on [0, 1). The atom sur-
vives until the first value xk for which xk < λ.
Use this approach to simulate an ensemble of n
atoms. Make a plot of the number of atoms re-
maining after k time increments, k = 1, . . . ,m.
Take λ = 0.1 and m = 50, and try the values
n = 10, 100, 1000, and 10,000, making a sepa-
rate graph for each value of n. How does the
value of n affect the smoothness of the result-
ing curve? Experiment with other values for
λ, n, and m to see the range of possible behav-
iors.

(b) We can also develop a continuous, deter-
ministic model of radioactive decay for an en-
semble of atoms. The change in the number
of atoms ∆n over time interval ∆t is propor-
tional to the number of atoms present and the
length of the time interval. Specifically,

∆n(t) = −λn(t) ∆t.

In the limit, this gives the ODE

n′(t) = −λn(t),

whose solution is

n(t) = n(0)e−λt,

the familiar decaying exponential model for ra-
dioactivity. For the same values of λ and initial
number of atoms n as in part a, plot the re-
sulting solution for t = 1, . . . ,m on the same
graph with the results from part a. How do
the two models compare? How is their agree-
ment affected by the initial number of atoms
n? Which model do you think is closer to the
way nature actually behaves? Why?

COMPUTER PROBLEMS 395

13.13 A random walk is a sequence of fixed-
length steps, each taken in a randomly (and in-
dependently) chosen direction. A random walk
can be used to model various physical phenom-
ena, such as Brownian motion of small parti-
cles suspended in a fluid. In this exercise we
will consider only the one-dimensional case in
which the walk begins at 0. The walk proceeds
by successive steps of unit length, with the
direction—positive or negative—chosen ran-
domly with equal probability. Write a pro-
gram to implement a random walk of n steps,
using a uniform random number generator to
choose the direction for each step, and com-
pute the distance from the origin at the end of
the walk. Run your program for n = 10, 100,
1000, and 10,000, averaging the distance from
the origin at the end of the walk over several
trials for each value of n. Try to character-
ize the average distance from the origin as a
function of n.

13.14 In a two-dimensional random walk,
steps are taken randomly on a two-dimensional
lattice of points, with the direction—up, down,
left, or right—chosen randomly with equal
probability. It turns out that such a random
walk can be used to solve the Laplace equation.
Impose a grid of points on the domain of the
equation, including the boundary, then start n
trials of a random walk from a given interior
grid point, terminating each trial when some
boundary point of the domain is hit. The solu-
tion at the starting grid point is then given by
the average over all the trials of the solution
values at the boundary points that were hit.

Implement this two-dimensional random walk
approach to solve the Laplace equation, using
the same grid and boundary values as in Ex-
ample 11.4. Compute the solution at each of
the interior grid points by averaging over n
trials from each point. How many trials are
required to obtain results comparable to those
in Example 11.4?

Because of the large number of trials required,
the random walk method is not competitive
with other numerical methods for computing
the solution over the entire domain. The ran-
dom walk method does have the advantage,
however, that it can compute the solution at
a single point without having to compute it

anywhere else, which is in contrast with most
other numerical methods. Moreover, the ran-
dom walk method can easily accommodate
very complicated boundaries that may be diffi-
cult to deal with using conventional numerical
methods.

13.15 A polymer can be modeled as a se-
quence of n segments (monomers) of fixed
length joined by n− 1 universal joints, so that
each angle between adjacent segments can take
any value from 0 to 360 degrees with equal
probability.
(a) Use a uniform random number generator
to implement this model of a polymer in two
dimensions. Assume that the units chosen are
such that the length of each segment is 1. The
n − 1 angles θk between successive segments
should be uniformly distributed on the interval
[0, 2π). Try several different values for n, say
10, 100, or more if your computer budget al-
lows (real polymers may have thousands of seg-
ments). Make several trials for each value of n
and compute the average overall length of the
polymer (i.e., the distance between the end-
points of the first and last segments in Carte-
sian coordinates). Try to characterize the av-
erage length of the polymer as a function of n.
You may find it interesting to draw a picture
of the polymer in two dimensions. Note that
the result is simply a kind of random walk.
(b) Repeat part a, but this time in three di-
mensions. To generate the direction of each
new segment, you will probably find it most
convenient to use spherical coordinates, with
both the azimuth and zenith angles, θ and
φ, chosen as random numbers uniformly dis-
tributed on the interval [0, 2π). To draw a pic-
ture and compute the length of the polymer,
however, you will find it easiest to use three-
dimensional Cartesian coordinates. Again, run
several trials for each value of n and try to
characterize the average length of the polymer
as a function of n. Does the increase in dimen-
sionality make a significant difference in the
length of the polymer for the same number of
segments?
(c) The previous model is unrealistic in part
because chemical bonds are not universal
joints, and they prefer certain bond angles over
others. Assume that instead we have swivel

396 CHAPTER 13. RANDOM NUMBERS AND SIMULATION

joints in three dimensions, with a fixed angle θ
and free angle φ. Use this new model to sim-
ulate polyethylene, which has a favored bond
angle of θ = 109◦. Again, run several trials
for the same values of n and characterize the
average length of the polymer as a function of
n. Does this model give significantly differ-
ent results from the previous model? When
plotted in three dimensions, do the simulated
polymers given by the two models look appre-
ciably different?

13.16 Suppose that neutrons enter one side of
a lead shielding wall that is four units thick.
Each neutron enters at a random angle and
travels a distance of one unit before colliding
with a lead nucleus. Such a collision causes the
neutron to bounce off in a random direction to
travel another unit distance before another col-
lision, and so on. After eight collisions, a given
neutron has lost all of its energy and therefore

stops. Use Monte Carlo simulation to deter-
mine the percentage of neutrons that exit from
the other side of the wall. Does it make a sig-
nificant difference whether the wall is modeled
as two-dimensional or three-dimensional?

13.17 Repeat one or more of the preceding ex-
ercises using a quasi-random sequence genera-
tor (see Section 13.5 for appropriate software)
instead of a standard random number genera-
tor. Does the quasi-random sequence pass any
of the randomness tests given in the first few
exercises? Does the quasi-random sequence
make a significant difference in accuracy or ef-
ficiency for any of your simulation results?

13.18 Evaluate the double integral given in
Computer Problem 8.12 using Monte Carlo in-
tegration. Try both a standard uniform ran-
dom number generator and a quasi-random se-
quence generator and compare their efficiency
in attaining a given level of accuracy.

Bibliography

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover, New
York, 1965.

[2] F. S. Acton. Numerical Methods That Work. Math. Assoc. Amer., Washington, DC,
1990. (reprint of 1970 edition).

[3] F. S. Acton. Real Computing Made Real. Princeton University Press, Princeton, NJ,
1996.

[4] J. H. Ahlberg, E. N. Nilson, and J. L. Walsh. The Theory of Splines and Their
Applications. Academic, New York, 1967.

[5] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic, New
York, 1983.

[6] E. L. Allgower and K. Georg. Numerical Continuation Methods. Springer-Verlag,
New York, 1990.

[7] W. F. Ames. Numerical Methods for Partial Differential Equations. Academic, San
Diego, CA, 3d edition, 1992.

[8] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK User’s
Guide. SIAM, Philadelphia, PA, 3d edition, 1999.

[9] H. C. Andrews and C. L. Patterson. Outer product expansions and their uses in
digital image processing. Amer. Math. Monthly, 82:1–13, 1975.

[10] U. M. Ascher, R. M. Mattheij, and R. D. Russell. Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations. SIAM, Philadelphia, PA, 1995.
(reprint of 1988 edition).

[11] K. Atkinson. Elementary Numerical Analysis. John Wiley & Sons, New York, 2d
edition, 1993.

397

398 BIBLIOGRAPHY

[12] O. Axelsson. Iterative Solution Methods. Cambridge University Press, New York,
1994.

[13] R. E. Bank. PLTMG: A Software Package for Solving Elliptic Partial Differential
Equations. SIAM, Philadelphia, PA, 1998.

[14] Y. Bard. Nonlinear Parameter Estimation. Academic, New York, 1970.

[15] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994.

[16] R. Bartels, J. Beatty, and B. Barsky. An Introduction to Splines for Use in Computer
Graphics and Geometric Modeling. Morgan Kaufmann, Los Altos, CA, 1987.

[17] E. B. Becker, G. F. Carey, and J. T. Oden. Finite Elements: An Introduction. Prentice
Hall, Englewood Cliffs, NJ, 1981. (Texas Finite Element Series, Vol. 1).

[18] A. Biran and M. Breiner. MATLAB 5 for Engineers. Addison-Wesley, Reading, MA,
1999.

[19] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA,
1996.

[20] J. F. Botha and G. F. Pinder. Fundamental Concepts in the Numerical Solution of
Partial Differential Equations. John Wiley & Sons, New York, 1983.

[21] P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation. Springer-Verlag,
New York, 2d edition, 1987.

[22] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations. SIAM, Philadelphia, PA, 1996. (reprint
of 1989 edition).

[23] R. P. Brent. Algorithms for Minimization without Derivatives. Prentice Hall, Engle-
wood Cliffs, NJ, 1973.

[24] W. L. Briggs. A Multigrid Tutorial. SIAM, Philadelphia, PA, 1987.

[25] W. L. Briggs and V. E. Henson. The DFT: An Owner’s Manual for the Discrete
Fourier Transform. SIAM, Philadelphia, PA, 1995.

[26] E. O. Brigham. The Fast Fourier Transform. Prentice Hall, Englewood Cliffs, NJ,
1974.

[27] E. O. Brigham. The Fast Fourier Transform and Its Applications. Prentice Hall,
Englewood Cliffs, NJ, 1988.

[28] P. Brinch Hansen. Householder reduction of linear systems. ACM Computing Surveys,
24(2):185–194, June 1992.

BIBLIOGRAPHY 399

[29] J. L. Buchanan and P. R. Turner. Numerical Methods and Analysis. McGraw-Hill,
New York, 1992.

[30] R. L. Burden and J. D. Faires. Numerical Analysis. Brooks/Cole, Pacific Grove, CA,
6th edition, 1997.

[31] J. C. Butcher. The Numerical Analysis of Ordinary Differential Equations. John
Wiley & Sons, New York, 1987.

[32] G. D. Byrne and A. C. Hindmarsh. Stiff ODE solvers: A review of current and coming
attractions. J. Comput. Phys., 70:1–62, 1987.

[33] G. F. Carey and J. T. Oden. Finite Elements: A Second Course. Prentice Hall,
Englewood Cliffs, NJ, 1983. (Texas Finite Element Series, Vol. 2).

[34] G. F. Carey and J. T. Oden. Finite Elements: Computational Aspects. Prentice Hall,
Englewood Cliffs, NJ, 1984. (Texas Finite Element Series, Vol. 3).

[35] M. A. Celia and W. G. Gray. Numerical Methods for Differential Equations. Prentice
Hall, Englewood Cliffs, NJ, 1992.

[36] F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computations.
SIAM, Philadelphia, PA, 1996.

[37] F. Chatelin. Eigenvalues of Matrices. John Wiley & Sons, New York, 1993.

[38] W. Cheney and D. Kincaid. Numerical Mathematics and Computing. Brooks/Cole,
Pacific Grove, CA, 4th edition, 1999.

[39] B. Childs, M. Scott, J. W. Daniel, E. Denman, and P. Nelson, editors. Codes for
Boundary Value Problems in ODEs. Springer-Verlag, New York, 1979.

[40] E. Chong and S. Żak. An Introduction to Optimization. John Wiley & Sons, New
York, 1996.

[41] W. J. Cody. The construction of numerical subroutine libraries. SIAM Review, 16:36–
46, 1974.

[42] T. F. Coleman and C. Van Loan. Handbook for Matrix Computations. SIAM, Philadel-
phia, PA, 1988.

[43] S. D. Conte and C. de Boor. Elementary Numerical Analysis. McGraw-Hill, New
York, 3d edition, 1980.

[44] W. R. Cowell, editor. Sources and Development of Mathematical Software. Prentice
Hall, Englewood Cliffs, NJ, 1984.

[45] R. E. Crandall. Projects in Scientific Computation. Springer-Verlag, New York, 1994.

[46] J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmetric Eigen-
value Computations. Birkhäuser, Boston, 1985.

400 BIBLIOGRAPHY

[47] G. Dahlquist and Å. Björck. Numerical Methods. Prentice Hall, Englewood Cliffs,
NJ, 1974.

[48] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, NJ, 1963.

[49] B. N. Datta. Numerical Linear Algebra and Applications. Brooks/Cole, Pacific Grove,
CA, 1995.

[50] A. J. Davies. The Finite Element Method: A First Approach. Oxford University
Press, New York, 1980.

[51] P. J. Davis. Interpolation and Approximation. Dover, New York, 1975. (reprint of
1963 edition).

[52] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic, New
York, 2d edition, 1984.

[53] C. de Boor. A Practical Guide to Splines. Springer-Verlag, New York, 2d edition,
1984.

[54] L. M. Delves and J. L. Mohamed. Computational Methods for Integral Equations.
Cambridge University Press, New York, 1985.

[55] J. W. Demmel, M. T. Heath, and H. A. van der Vorst. Parallel numerical linear
algebra. Acta Numerica, 2:111–197, 1993.

[56] J. E. Dennis and J. J. Moré. Quasi-Newton methods, motivation and theory. SIAM
Review, 19:46–89, 1977.

[57] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. SIAM, Philadelphia, PA, 1996. (reprint of 1983 edition).

[58] P. Deuflhard. Recent progress in extrapolation methods for ordinary differential equa-
tions. SIAM Review, 27:505–535, 1985.

[59] P. Deuflhard and A. Hohmann. Numerical Analysis: A First Course in Scientific
Computation. Walter de Gruyter, New York, 1995.

[60] P. Dierckx. Curve and Surface Fitting with Splines. Oxford University Press, New
York, 1993.

[61] J. Dongarra, J. DuCroz, I. S. Duff, and S. Hammarling. A set of level-3 basic linear
algebra subprograms. ACM Trans. Math. Software, 16:1–28, 1990.

[62] J. Dongarra, J. DuCroz, S. Hammarling, and R. J. Hanson. An extended set of Fortran
basic linear algebra subprograms. ACM Trans. Math. Software, 14:1–32, 1988.

[63] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK User’s
Guide. SIAM, Philadelphia, PA, 2d edition, 1979.

BIBLIOGRAPHY 401

[64] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Solving Linear
Systems on Vector and Shared Memory Computers. SIAM, Philadelphia, PA, 1990.

[65] J. J. Dongarra, F. G. Gustavson, and A. Karp. Implementing linear algebra algorithms
for dense matrices on a vector pipeline machine. SIAM Review, 26:91–112, 1984.

[66] J. R. Dormand. Numerical Methods for Differential Equations. CRC Press, Boca
Raton, FL, 1996.

[67] K. Dowd and C. Severance. High Performance Computing. O’Reilly & Associates,
Sebastopol, CA, 2d edition, 1998.

[68] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford
University Press, New York, 1986.

[69] P. Duhamel and M. Vetterli. Fast Fourier transforms: A tutorial review and a state
of the art. Signal Processing, 19:259–299, 1990.

[70] H. Engels. Numerical Quadrature and Cubature. Academic, New York, 1980.

[71] D. M. Etter. Introduction to MATLAB for Engineers and Scientists. Prentice Hall,
Upper Saddle River, NJ, 1996.

[72] D. M. Etter. Engineering Problem Solving with MATLAB. Prentice Hall, Upper
Saddle River, NJ, 2d edition, 1997.

[73] D. J. Evans, editor. Software for Numerical Mathematics. Academic, New York, 1974.

[74] G. Evans. Practical Numerical Integration. John Wiley & Sons, New York, 1993.

[75] V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence of
a conjugate gradient method. SIAM J. Numer. Anal., 21:315–339, 1984.

[76] R. W. Farebrother. Linear Least Squares Computations. Marcel Dekker, New York,
1987.

[77] S. O. Fatunla. Numerical Methods for Initial Value Problems in Ordinary Differential
Equations. Academic, New York, 1988.

[78] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Uncon-
strained Minimization Techniques. SIAM, Philadelphia, PA, 1990. (reprint of 1968
edition).

[79] G. S. Fishman. Monte Carlo: Concepts, Algorithms, and Applications. Springer-
Verlag, New York, 1996.

[80] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York, 2d
edition, 1987.

[81] B. Fornberg. A Practical Guide to Pseudospectral Methods. Cambridge University
Press, New York, 1996.

402 BIBLIOGRAPHY

[82] G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer Methods for Mathematical
Computations. Prentice Hall, Englewood Cliffs, NJ, 1977.

[83] G. E. Forsythe and C. B. Moler. Computer Solution of Linear Algebraic Systems.
Prentice Hall, Englewood Cliffs, NJ, 1967.

[84] G. E. Forsythe and W. R. Wasow. Finite Difference Methods for Partial Differential
Equations. John Wiley & Sons, New York, 1960.

[85] L. Fosdick, E. Jessup, C. Schauble, and G. Domik. An Introduction to High-
Performance Scientific Computing. The MIT Press, Cambridge, MA, 1995.

[86] L. Fox. The Numerical Solution of Two-Point Boundary Problems. Dover, New York,
1990. (reprint of 1957 edition).

[87] R. W. Freund, G. H. Golub, and N. M. Nachtigal. Iterative solution of linear systems.
Acta Numerica, 1:57–100, 1992.

[88] F. N. Fritsch and R. E. Carlson. Monotone piecewise cubic interpolation. SIAM J.
Numer. Anal., 17:238–246, 1980.

[89] W. Gander and J. Hřebiček. Solving Problems in Scientific Computing Using Maple
and MATLAB. Springer-Verlag, New York, 3d edition, 1997.

[90] B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Matrix Eigensystem
Routines: EISPACK Guide Extension. Springer-Verlag, New York, 1972.

[91] C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations.
Prentice Hall, Englewood Cliffs, NJ, 1971.

[92] C. W. Gear. Numerical solution of ordinary differential equations: Is there anything
left to do? SIAM Review, 23:10–24, 1981.

[93] A. George and J. W.-H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice Hall, Englewood Cliffs, NJ, 1981.

[94] C. F. Gerald and P. O. Wheatley. Applied Numerical Analysis. Addison-Wesley,
Reading, MA, 6th edition, 1999.

[95] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic, New
York, 1981.

[96] P. E. Gill, W. Murray, and M. H. Wright. Numerical Linear Algebra and Optimization,
volume 1. Addison-Wesley, Reading, MA, 1991.

[97] D. Goldberg. What every computer scientist should know about floating-point arith-
metic. ACM Computing Surveys, 18(1):5–48, March 1991.

[98] D. Goldfarb. Algorithms for unconstrained optimization: A review of recent devel-
opments. In W. Gautschi, editor, Mathematics of Computation 1943–1993: A Half
Century of Computational Mathematics, volume 48 of Proc. Symp. Appl. Math., pages
33–48. Amer. Math. Soc., 1993.

BIBLIOGRAPHY 403

[99] D. Goldfarb and M. J. Todd. Linear programming. In G. Nemhauser et al., editors,
Optimization, pages 73–170. North-Holland, New York, 1989.

[100] H. H. Goldstine. A History of Numerical Analysis from the 16th through the 19th
Century. Springer-Verlag, New York, 1977.

[101] G. H. Golub. Numerical methods for solving linear least squares problems. Numer.
Math., 7:206–216, 1965.

[102] G. H. Golub and D. P. O’Leary. Some history of the conjugate gradient and Lanczos
methods. SIAM Review, 31:50–102, 1989.

[103] G. H. Golub and J. M. Ortega. Scientific Computing and Differential Equations.
Academic, San Diego, CA, 2d edition, 1992.

[104] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, MD, 3d edition, 1996.

[105] G. H. Golub and J. H. Welsch. Calculation of Gauss quadrature rules. Math. Comp.,
23:221–230, 1969.

[106] D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Methods. SIAM,
Philadelphia, PA, 1977.

[107] H. Gould and J. Tobochnik. An Introduction to Computer Simulation Methods.
Addison-Wesley, Reading, MA, 2d edition, 1996.

[108] A. R. Gourlay and G. A. Watson. Computational Methods for Matrix Eigenproblems.
John Wiley & Sons, New York, 1973.

[109] T. A. Grandine. The Numerical Methods Programming Projects Book. Oxford Uni-
versity Press, New York, 1990.

[110] A. Graps. An introduction to wavelets. IEEE Comput. Sci. Engr., 2(2):50–61, 1995.

[111] G. K. Gupta, R. Sacks-Davis, and P. E. Tischer. A review of recent developments in
solving ODEs. ACM Computing Surveys, 17:5–47, 1985.

[112] B. Gustafsson, H.-O. Kreiss, and J. Oliger. Time Dependent Problems and Difference
Methods. John Wiley & Sons, New York, 1995.

[113] S. Haber. Numerical evaluation of multiple integrals. SIAM Review, 12:481–526, 1970.

[114] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Springer-
Verlag, New York, 1994.

[115] L. A. Hageman and D. M. Young. Applied Iterative Methods. Academic, New York,
1981.

[116] W. Hager. Applied Numerical Linear Algebra. Prentice Hall, Englewood Cliffs, NJ,
1988.

404 BIBLIOGRAPHY

[117] C. A. Hall and T. A. Porsching. Numerical Analysis of Partial Differential Equations.
Prentice Hall, Englewood Cliffs, NJ, 1990.

[118] G. Hämmerlin and K.-H. Hoffmann. Numerical Mathematics. Springer-Verlag, New
York, 1991. (translation of 1989 German edition).

[119] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Chapman and Hall,
New York, 1965.

[120] D. Hanselman and B. Littlefield. Mastering MATLAB 5. Prentice Hall, Upper Saddle
River, NJ, 1998.

[121] P. C. Hansen. Regularization tools: A MATLAB package for analysis and solution of
discrete ill-posed problems. Numerical Algorithms, 6:1–35, 1994.

[122] M. A. Hennell and L. M. Delves, editors. Production and Assessment of Numerical
Software. Academic, New York, 1980.

[123] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations. John Wiley
& Sons, New York, 1962.

[124] N. J. Higham. A survey of condition number estimation for triangular matrices. SIAM
Review, 29:575–596, 1987.

[125] N. J. Higham. A survey of componentwise perturbation theory in numerical linear
algebra. In W. Gautschi, editor, Mathematics of Computation 1943–1993: A Half
Century of Computational Mathematics, volume 48 of Proc. Symp. Appl. Math., pages
49–77. Amer. Math. Soc., 1993.

[126] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia,
PA, 1996.

[127] D. R. Hill. Experiments in Computational Matrix Algebra. Random House, New York,
1988.

[128] T. Hopkins and C. Phillips. Numerical Methods in Practice. Addison-Wesley, Reading,
MA, 1988.

[129] A. S. Householder. The Numerical Treatment of a Single Nonlinear Equation.
McGraw-Hill, New York, 1970.

[130] B. B. Hubbard. The World According to Wavelets. A K Peters, Ltd., Wellesley, MA,
2d edition, 1998.

[131] IEEE. IEEE standard 754-1985 for binary floating-point arithmetic. SIGPLAN No-
tices, 22(2):9–25, 1987. (see also IEEE Computer, March 1981).

[132] E. Isaacson and H. B. Keller. Analysis of Numerical Methods. Dover, New York, 1994.
(reprint of 1966 edition).

BIBLIOGRAPHY 405

[133] A. Iserles. A First Course in the Numerical Analysis of Differential Equations. Cam-
bridge University Press, New York, 1996.

[134] D. Jacobs, editor. Numerical Software: Needs and Availability. Academic, New York,
1978.

[135] P. Jarratt and D. Nudds. The use of rational functions in the iterative solution of
equations on a digital computer. Computer J., 8:62–65, 1965.

[136] M. A. Jenkins and J. F. Traub. Zeros of a complex polynomial. Comm. ACM, 15:97–
99, 1972.

[137] M. A. Jenkins and J. F. Traub. Zeros of a real polynomial. ACM Trans. Math.
Software, 1:178–189, 1975.

[138] A. Jennings and J. J. McKeown. Matrix Computation. John Wiley & Sons, New
York, 2d edition, 1992.

[139] D. C. Jespersen. Multigrid methods for partial differential equations. In G. H. Golub,
editor, Studies in Numerical Analysis, pages 270–318. Math. Assoc. Amer., Washing-
ton, DC, 1984.

[140] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Ele-
ment Method. Cambridge University Press, New York, 1987.

[141] D. C. Joyce. Survey of extrapolation processes in numerical analysis. SIAM Review,
13:435–488, 1971.

[142] D. Kahaner, C. Moler, and S. Nash. Numerical Methods and Software. Prentice Hall,
Englewood Cliffs, NJ, 1989.

[143] G. Kaiser. A Friendly Guide to Wavelets. Birkhäuser, Boston, 1994.

[144] M. H. Kalos and P. A. Whitlock. Monte Carlo Methods. John Wiley & Sons, New
York, 1986.

[145] W. J. Kaufmann and L. L. Smarr. Supercomputing and the Transformation of Science.
Scientific American Library, New York, 1993.

[146] H. B. Keller. Numerical Methods for Two-Point Boundary-Value Problems. Dover,
New York, 1992. (reprint of 1968 edition).

[147] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadel-
phia, PA, 1995.

[148] W. J. Kennedy and J. E. Gentle. Statistical Computing. Marcel Dekker, New York,
1980.

[149] D. Kincaid and W. Cheney. Numerical Analysis: Mathematics of Scientific Comput-
ing. Brooks/Cole, Pacific Grove, CA, 2d edition, 1996.

406 BIBLIOGRAPHY

[150] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, vol-
ume 2. Addison-Wesley, Reading, MA, 3d edition, 1998.

[151] N. Köckler. Numerical Methods and Scientific Computing. Oxford University Press,
New York, 1994.

[152] I. Koren. Computer Arithmetic Algorithms. Prentice Hall, Englewood Cliffs, NJ,
1993.

[153] A. R. Krommer and C. W. Ueberhuber. Computational Integration. SIAM, Philadel-
phia, PA, 1998.

[154] P. K. Kythe. Boundary Element Methods. CRC Press, Boca Raton, FL, 1995.

[155] J. D. Lambert. Computational Methods in Ordinary Differential Systems. John Wiley
& Sons, New York, 1973.

[156] J. D. Lambert. Numerical Methods for Ordinary Differential Systems. John Wiley &
Sons, New York, 1991.

[157] R. H. Landau and P. J. Fink. A Scientist’s and Engineer’s Guide to Workstations
and Supercomputers. John Wiley & Sons, New York, 1993.

[158] R. H. Landau and M. J. Páez. Computational Physics: Problem Solving with Com-
puters. John Wiley & Sons, New York, 1997.

[159] L. Lapidus and G. F. Pinder. Numerical Solution of Partial Differential Equations in
Science and Engineering. John Wiley & Sons, New York, 1982.

[160] L. Lapidus and J. Seinfeld. Numerical Solution of Ordinary Differential Equations.
Academic, New York, 1971.

[161] F. M. Larkin. Root-finding by fitting rational functions. Math. Comp., 35:803–816,
1980.

[162] H. T. Lau. A Numerical Library in C for Scientists and Engineers. CRC Press, Boca
Raton, FL, 1995.

[163] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. SIAM, Philadelphia,
PA, 1995. (updated reprint of 1974 edition).

[164] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra
subprograms for Fortran usage. ACM Trans. Math. Software, 5:308–325, 1979.

[165] G. Lindfield and J. Penny. Numerical Methods Using MATLAB. Prentice Hall, Upper
Saddle River, NJ, 2d edition, 2000.

[166] D. W. Lozier and F. W. J. Olver. Numerical evaluation of special functions. In
W. Gautschi, editor, Mathematics of Computation 1943–1993: A Half Century of
Computational Mathematics, volume 48 of Proc. Symp. Appl. Math., pages 79–125.
Amer. Math. Soc., 1993.

BIBLIOGRAPHY 407

[167] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading,
MA, 2d edition, 1984.

[168] J. N. Lyness. When not to use an automatic quadrature routine. SIAM Review,
25:63–88, 1983.

[169] J. N. Lyness and R. Cools. A survey of numerical cubature over triangles. In
W. Gautschi, editor, Mathematics of Computation 1943–1993: A Half Century of
Computational Mathematics, volume 48 of Proc. Symp. Appl. Math., pages 127–150.
Amer. Math. Soc., 1993.

[170] J. N. Lyness and J. J. Kaganove. Comments on the nature of automatic quadrature
routines. ACM Trans. Math. Software, 2:65–81, 1976.

[171] A. R. Magid. Applied Matrix Models. John Wiley & Sons, New York, 1985.

[172] G. Marsaglia. Random numbers fall mainly in the planes. Proc. Nat. Acad. Sci.,
61:25–28, 1968.

[173] J. H. Mathews and K. D. Fink. Numerical Methods Using MATLAB. Prentice Hall,
Upper Saddle River, NJ, 3d edition, 1999.

[174] W. Miller. The Engineering of Numerical Software. Prentice Hall, Englewood Cliffs,
NJ, 1984.

[175] W. Miller and C. Wrathall. Software for Roundoff Analysis of Matrix Algorithms.
Academic, New York, 1980.

[176] A. R. Mitchell and D. F. Griffiths. The Finite Difference Method in Partial Differential
Equations. John Wiley & Sons, New York, 1980.

[177] C. B. Moler. Matrix computations with Fortran and paging. Comm. ACM, 15:268–
270, 1972.

[178] C. B. Moler and D. Morrison. Singular value analysis of cryptograms. Amer. Math.
Monthly, 90:78–87, 1983.

[179] C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the exponential
of a matrix. SIAM Review, 20:801–836, 1978.

[180] R. E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia,
PA, 1979.

[181] J. J. Moré. The Levenberg-Marquardt algorithm: Implementation and theory. In
G. A. Watson, editor, Numerical Analysis, pages 105–116. Springer-Verlag, New York,
1977.

[182] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. User guide for MINPACK-1. Technical
Report ANL-80-74, Argonne National Laboratory, Argonne, IL, 1980.

408 BIBLIOGRAPHY

[183] J. J. Moré and D. C. Sorensen. Newton’s method. In G. H. Golub, editor, Studies in
Numerical Analysis, pages 29–82. Math. Assoc. Amer., Washington, DC, 1984.

[184] J. J. Moré and Stephen J. Wright. Optimization Software Guide. SIAM, Philadelphia,
PA, 1993.

[185] N. Morrison. Introduction to Fourier Analysis. John Wiley & Sons, New York, 1994.

[186] K. W. Morton and D. F. Mayers. Numerical Solution of Partial Differential Equations.
Cambridge University Press, New York, 1994.

[187] S. Nakamura. Numerical Analysis and Graphic Visualization with MATLAB. Prentice
Hall, Upper Saddle River, NJ, 1996.

[188] S. G. Nash, editor. A History of Scientific Computing. ACM Press, New York, 1990.

[189] S. G. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill, New
York, 1996.

[190] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. SIAM,
Philadelphia, PA, 1992.

[191] J. Nievergelt, J. C. Farrar, and E. M. Reingold. Computer Approaches to Mathematical
Problems. Prentice Hall, Englewood Cliffs, NJ, 1974.

[192] J. Nocedal. Theory of algorithms for unconstrained optimization. Acta Numerica,
1:199–242, 1992.

[193] A. R. Omondi. Computer Arithmetic Systems. Prentice Hall, Englewood Cliffs, NJ,
1994.

[194] J. M. Ortega. Introduction to Parallel and Vector Solution of Linear Systems. Plenum,
New York, 1988.

[195] J. M. Ortega. Numerical Analysis: A Second Course. SIAM, Philadelphia, PA, 1990.
(reprint of 1972 edition).

[196] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in
Several Variables. Academic, New York, 1970.

[197] A. M. Ostrowski. Solution of Equations and Systems of Equations. Academic, New
York, 2d edition, 1966.

[198] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM J. Numer. Anal., 12:617–629, 1975.

[199] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, PA, 1998.
(reprint of 1980 edition).

[200] E. Pärt-Enander, A. Sjöberg, B. Melin, and P. Isaksson. The MATLAB Handbook.
Addison-Wesley, Reading, MA, 1996.

BIBLIOGRAPHY 409

[201] V. Pereyra. Finite difference solution of boundary value problems in ordinary differen-
tial equations. In G. H. Golub, editor, Studies in Numerical Analysis, pages 243–269.
Math. Assoc. Amer., Washington, DC, 1984.

[202] M. Pickering. An Introduction to Fast Fourier Transform Methods for Partial Differ-
ential Equations, with Applications. John Wiley & Sons, New York, 1986.

[203] R. Piessens, E. deDoncker, C. Ueberhuber, and D. Kahaner. QUADPACK: A Sub-
routine Package for Automatic Integration. Springer-Verlag, New York, 1983.

[204] R. Pratap. Getting Started with MATLAB 5. Oxford University Press, New York,
1999.

[205] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes. Cambridge University Press, New York, 2d edition, 1992.

[206] D. Redfern and C. Campbell. The MATLAB 5 Handbook. Springer-Verlag, New York,
1998.

[207] C. H. Reinsch. Smoothing by spline functions. Numer. Math., 10:177–183, 1967.

[208] C. H. Reinsch. Smoothing by spline functions II. Numer. Math., 16:451–454, 1971.

[209] J. R. Rice, editor. Mathematical Software. Academic, New York, 1971.

[210] J. R. Rice, editor. Mathematical Software III. Academic, New York, 1977.

[211] J. R. Rice. Numerical Methods, Software, and Analysis. Academic, San Diego, CA,
2d edition, 1993.

[212] J. R. Rice and R. F. Boisvert. Solving Elliptic Problems Using ELLPACK. Springer-
Verlag, New York, 1985.

[213] R. Richtmyer and K. W. Morton. Difference Methods for Initial-Value Problems. John
Wiley & Sons, New York, 2d edition, 1967.

[214] G. F. Roach. Green’s Functions. Cambridge University Press, New York, 2d edition,
1982.

[215] S. Roberts and J. Shipman. Two-Point Boundary Value Problems: Shooting Methods.
Elsevier, New York, 1972.

[216] R. Rubinstein. Simulation and the Monte Carlo Method. John Wiley & Sons, New
York, 1981.

[217] Y. Saad. Numerical Methods for Large Eigenvalue Problems. John Wiley & Sons,
New York, 1992.

[218] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Co., Boston,
1996.

410 BIBLIOGRAPHY

[219] W. E. Schiesser. The Numerical Method of Lines Integration of Partial Differential
Equations. Academic, San Diego, CA, 1991.

[220] R. B. Schnabel, J. E. Koontz, and B. E. Weiss. A modular system of algorithms for
unconstrained minimization. ACM Trans. Math. Software, 11:419–440, 1985.

[221] L. L. Schumaker. Spline Functions. John Wiley & Sons, New York, 1981.

[222] H. R. Schwarz. Numerical Analysis: A Comprehensive Introduction. John Wiley &
Sons, New York, 1989.

[223] L. F. Shampine. What everyone solving differential equations numerically should
know. In I. Gladwell and D. K. Sayers, editors, Computational Techniques for Ordi-
nary Differential Equations, pages 1–17. Academic, New York, 1980.

[224] L. F. Shampine. Numerical Solution of Ordinary Differential Equations. Chapman
and Hall, New York, 1994.

[225] L. F. Shampine and R. C. Allen. Numerical Computing: An Introduction. W. B.
Saunders, Philadelphia, PA, 1973.

[226] L. F. Shampine and C. W. Gear. A user’s view of solving stiff ordinary differential
equations. SIAM Review, 21:1–17, 1979.

[227] L. F. Shampine and M. K. Gordon. Computer Solution of Ordinary Differential
Equations. W. H. Freeman, San Francisco, 1975.

[228] L. F. Shampine, H. A. Watts, and S. M. Davenport. Solving nonstiff ordinary differ-
ential equations—the state of the art. SIAM Review, 18:376–411, 1976.

[229] K. Sigmon. MATLAB Primer. CRC Press, Boca Raton, FL, 5th edition, 1998.

[230] R. D. Skeel. Equivalent forms of multistep methods. Math. Comp., 33:1229–1250,
1979.

[231] R. D. Skeel and J. B. Keiper. Elementary Numerical Computing with Mathematica.
McGraw-Hill, New York, 1993.

[232] I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Oxford University
Press, New York, 1994.

[233] B. T. Smith, J. M. Boyle, Y. Ikebe, V. C. Klema, and C. B. Moler. Matrix Eigensystem
Routines: EISPACK Guide. Springer-Verlag, New York, 2d edition, 1970.

[234] G. D. Smith. Numerical Solution of Partial Differential Equations. Oxford University
Press, New York, 3d edition, 1985.

[235] I. M. Sobol’. A Primer for the Monte Carlo Method. CRC Press, Boca Raton, FL,
1994.

[236] H. Späth. One Dimensional Spline Interpolation Algorithms. A K Peters, Ltd., Welles-
ley, MA, 1995.

BIBLIOGRAPHY 411

[237] P. H. Sterbenz. Floating-Point Computation. Prentice Hall, Englewood Cliffs, NJ,
1974.

[238] H. J. Stetter. Initial value problems for ordinary differential equations: Development
of ideas, techniques, and implementation. In W. Gautschi, editor, Mathematics of
Computation 1943–1993: A Half Century of Computational Mathematics, volume 48
of Proc. Symp. Appl. Math., pages 205–224. Amer. Math. Soc., 1993.

[239] G. W. Stewart. Introduction to Matrix Computations. Academic, New York, 1973.

[240] G. W. Stewart. Afternotes on Numerical Analysis. SIAM, Philadelphia, PA, 1996.

[241] G. W. Stewart and T. G. Sun. Matrix Perturbation Theory. Academic, New York,
1990.

[242] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, New
York, 2d edition, 1993.

[243] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, Welles-
ley, MA, 1986.

[244] G. Strang. Linear Algebra and Its Applications. W. B. Saunders, New York, 3d
edition, 1988.

[245] G. Strang. Wavelets. Amer. Scientist, 82:250–255, 1992.

[246] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley,
MA, 1993.

[247] G. Strang and G. Fix. An Analysis of the Finite Element Method. Prentice Hall,
Englewood Cliffs, NJ, 1973.

[248] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356, 1969.

[249] J. C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Chap-
man and Hall, New York, 1989.

[250] A. H. Stroud. Approximate Calculation of Multiple Integrals. Prentice Hall, Englewood
Cliffs, NJ, 1972.

[251] A. H. Stroud and D. Secrest. Gaussian Quadrature Formulas. Prentice Hall, Engle-
wood Cliffs, NJ, 1966.

[252] W. H. Swann. Direct search methods. In W. Murray, editor, Numerical Methods for
Unconstrained Optimization, pages 13–28. Academic, New York, 1972.

[253] P. N. Swarztrauber. Fast Poisson solvers. In G. H. Golub, editor, Studies in Numerical
Analysis, pages 319–370. Math. Assoc. Amer., Washington, DC, 1984.

[254] R. A. Thisted. Elements of Statistical Computing. Chapman and Hall, New York,
1988.

412 BIBLIOGRAPHY

[255] J. W. Thomas. Numerical Partial Differential Equations, volume 1. Springer-Verlag,
New York, 1995.

[256] J. F. Traub. Iterative Methods for the Solution of Equations. Prentice Hall, Englewood
Cliffs, NJ, 1964.

[257] L. N. Trefethen. Three mysteries of Gaussian elimination. SIGNUM Newsletter,
20(4):2–5, October 1985.

[258] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia, PA,
1997.

[259] S. Van Huffel and J. Vandewalle. The Total Least Squares Problem. SIAM, Philadel-
phia, PA, 1991.

[260] C. F. Van Loan. Computational Frameworks for the Fast Fourier Transform. SIAM,
Philadelphia, PA, 1992.

[261] C. F. Van Loan. An Introduction to Computational Science and Mathematics. Jones
and Bartlett, Sudbury, MA, 1996.

[262] C. F. Van Loan. Introduction to Scientific Computing. Prentice Hall, Upper Saddle
River, NJ, 2d edition, 2000.

[263] R. S. Varga. Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs, NJ, 1962.

[264] S. A. Vavasis. Gaussian elimination with pivoting is P-complete. SIAM J. Disc.
Math., 2:413–423, 1989.

[265] R. Wait and A. R. Mitchell. Finite Element Analysis and Applications. John Wiley
& Sons, New York, 1985.

[266] J. S. Walker. Fourier Analysis. Oxford University Press, New York, 1988.

[267] J. S. Walker. Fast Fourier Transforms. CRC Press, Boca Raton, FL, 2d edition, 1996.

[268] D. S. Watkins. Fundamentals of Matrix Computations. John Wiley & Sons, New
York, 1991.

[269] H. J. Weaver. Applications of Discrete and Continuous Fourier Analysis. John Wiley
& Sons, New York, 1983.

[270] H. J. Weaver. Theory of Discrete and Continuous Fourier Analysis. John Wiley &
Sons, New York, 1989.

[271] P. Wesseling. An Introduction to Multigrid Methods. John Wiley & Sons, New York,
1992.

[272] D. J. Wilde. Optimum Seeking Methods. Prentice Hall, Englewood Cliffs, NJ, 1964.

[273] J. H. Wilkinson. Error analysis of direct methods of matrix inversion. J. ACM,
8:281–330, 1961.

BIBLIOGRAPHY 413

[274] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice Hall, Englewood
Cliffs, NJ, 1963.

[275] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, New
York, 1965.

[276] J. H. Wilkinson and C. Reinsch, editors. Handbook for Automatic Computation,
Linear Algebra, volume 2. Springer-Verlag, New York, 1971.

[277] G. M. Wing. A Primer on Integral Equations of the First Kind. SIAM, Philadelphia,
PA, 1991.

[278] M. H. Wright. Interior methods for constrained optimization. Acta Numerica, 1:341–
407, 1992.

[279] M. H. Wright and S. Glassman. Fortran subroutines to solve linear least squares
problems and compute the complete orthogonal factorization. Technical Report SOL-
78-8, Systems Optimization Laboratory, Stanford University, Stanford, CA, April
1978.

[280] D. M. Young. Iterative Solution of Large Linear Systems. Academic, New York, 1971.

[281] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method. McGraw-Hill, New
York, 4th edition, 1989.

[282] D. Zwillinger, editor. Standard Mathematical Tables and Formulae. CRC Press, Boca
Raton, FL, 30th edition, 1996.

Index

abscissas, 246
absolute error, 5
absolute stability, 287
accuracy, 8

of function minimizer, 186
of least squares solution, 103
of linear system solution, 60
of polynomial interpolation, 223, 230
of roots of nonlinear equation, 186

active set strategy, 203
AD, 263
Adams methods, 297
Adams-Bashforth predictor, 296
Adams-Moulton corrector, 296
adaptive quadrature, 256
advection equation, 333
algebraic eigenvalue problem, 115
algebraic multiplicity, 117
amplification factor, 285
amplitude spectrum, 381
approximation, 2

by a low-rank matrix, 138
Chebyshev, 220
finite difference, 18, 160, 262, 313, 329,

335
least squares, 84
minimax, 220
uniform, 220
versus interpolation, 220

Arnoldi method, 133
augmented system method, 89

autocorrelation, 376
automatic differentiation, 263
automatic quadrature, 256

B-splines, 236, 315, 329
back-substitution, 40
backward difference formula, 262
backward differentiation formula, 296
backward error analysis, 6
backward Euler method, 286
band matrix, 63, 66, 338, 339
bandwidth, 63
base, 9
basic solution, 102
basic variables, 205
basis

B-spline, 236
Fourier, 370
Lagrange, 224
monomial, 222
Newton, 226
orthogonal, 229
orthonormal, 138
wavelet, 378

basis functions, 221
BDF methods, 296
BFGS method, 196
big-oh notation, xviii
birthday paradox, 392
bisection method, 154
bit, 9
BLAS, 69

414

INDEX 415

block diagonal matrix, 66, 347
block matrix, 66
block tridiagonal, 337
boundary conditions, 309, 326
boundary value problem

for elliptic PDE, 335
for ODE, 309
for PDE, 354

bracket
for nonlinear equation, 154
for optimization, 186

breakpoints, 232
Brent’s method, 165
Broyden’s method, 169
Buffon needle problem, 393
Burgers’ equation, 363

C programming language, 23
cancellation, 15, 250
centered difference formula, 262
Central Limit Theorem, 393
CFT, 369
characteristic, 9
characteristic polynomial, 117, 121
Chebyshev points, 231
Chebyshev polynomials, 230
Chebyshev quadrature rule, 270
chi-square test, 391
Cholesky factorization, 64
circulant matrix, 376
classification of PDEs, 325
collocation method, 314, 315, 328
column pivoting, 102
column scaling, 40, 62
column space, 86
companion matrix, 121, 165
complete elliptic integral, 272
complete pivoting, 45
complex conjugate, 63
complex conjugate eigenvalues, 117
complex exponential notation, 367
complex root, 162
complexity

of band systems, 67
of BFGS method, 196

of Broyden’s method, 170
of Cholesky factorization, 64
of discrete wavelet transform, 378
of eigenvalue problems, 126
of elliptic boundary value problems,

354
of fast Fourier transform, 374
of interior point methods, 206
of LU factorization, 50
of matrix inversion, 50
of Newton’s method

for nonlinear systems, 168
for optimization, 195

of normal equations, 103
of polynomial evaluation, 224, 227
of polynomial interpolation, 223, 226
of polynomial multiplication, 377
of QR factorization, 103
of secant-updating methods, 196
of simplex method, 206
of singular value decomposition, 136
of symmetric indefinite systems, 66
of triangular systems, 50

composite quadrature rule, 255
compound interest, 33, 179
compound quadrature rule, 255
computational error, 4
computational science, xv
computer algebra, 22
condition number

of a matrix, 57
of a problem, 5

conditioning, 5
of a linear system, 60
of an eigenvalue, 120

congruence transformation, 134
congruential random number generator, 387
conjugate directions, 197, 346
conjugate gradient method

for linear systems, 345
for optimization, 198
preconditioned, 346

conjugate transpose, xvii, 63, 116
conservative PDE, 333
consistency, 57, 330

416 INDEX

constrained optimization, 183, 202
constraints, 183
continuation methods, 172
continuous Fourier transform, 369
control points, 232
convergence

of BFGS method, 196
of bisection method, 155
of conjugate gradient method, 350
of fixed-point iteration

in n dimensions, 167
in one dimension, 158

of Gauss-Seidel method, 344, 349
of golden section search, 187
of interpolating polynomial, 231, 232
of inverse quadratic interpolation, 163
of Jacobi method for linear systems,

343, 349
of linear fractional interpolation, 164
of Monte Carlo integration, 258
of multigrid methods, 352
of Newton’s method

for 1-dim. nonlinear equation, 159
for 1-dim. optimization, 190
for n-dim. nonlinear equation, 168
for n-dim. optimization, 193

of PDE solution, 330
of secant method, 162
of secant-updating methods, 196
of SOR method, 349
of stationary iterative methods, 342
of steepest descent method, 192
of successive parabolic interpolation,

189
convergence rate, 153

linear, 154
quadratic, 154
superlinear, 154

convolution, 236, 375
covariance matrix, 113
Cramer’s rule, 51
Crank-Nicolson method, 332
critical point, 185
cross correlation, 376
cubic equation, 33

cubic spline, 233
cyclic reduction, 341

damped Newton method, 171, 194
data error, 4
data fitting, 83
decomposition

LU, 43
singular value, 136

defective eigenvalue, 117
defective matrix, 117
deflation, 124, 129, 165
degree, 339
denormalized floating-point number, 13
dense matrix, 63
descent direction, 195
DFT, 370
diagonal matrix, xvii, 39, 119
diagonal scaling, 39, 62
diagonally dominant matrix, 49, 343
differentiation, 261
digital filtering, 375
direct methods for sparse linear systems,

337
direct search methods, 191
direction of negative curvature, 195
Dirichlet boundary conditions, 335
discrete Fourier transform, 370
discrete variable methods, 280
discrete wavelet transform, 378
discretization, 3, 280, 327, 329, 335
discretization error, see truncation error
discriminant, 17, 325
dissipative PDE, 334
distribution

exponential, 388
nonuniform, 388
normal, 389, 393
uniform, 388

divided differences, 228, 236
double integral, 258
double precision, 9
DWT, 378

eigenfunction, 318
eigenvalue, 115, 318

INDEX 417

eigenvector, 115
EISPACK, 139
elementary elimination matrix, 41
elementary matrix, 76
elliptic PDE, 326
εmach, 12
error

absolute, 5
computational, 4
data, 4
discretization, 4
global, 283
local, 282
relative, 5
rounding, 4
truncation, 4

error analysis, 3
backward, 6

error estimate
for composite quadrature rule, 255
for Euler’s method, 284
for finite difference approximations, 262
for Gauss-Kronrod rule, 255
for least squares solution, 103
for linear system solution, 60
for midpoint rule, 249
for Monte Carlo integration, 258
for predictor-corrector method, 296
for Runge-Kutta method, 293
for Simpson’s rule, 250
for trapezoid rule, 249

essential boundary conditions, 335
Euclidean condition number, 137
Euclidean norm, 54, 137
Euler’s identity, 368
Euler’s method, 280
evaluating polynomials, 224
exponent, 9
exponent range, 9
exponential distribution, 388
exponential function, 149
exponential of a matrix, 149
extrapolation, 264
extrapolation methods for ODEs, 293

FACR method, 341
factorization

Cholesky, 64
incomplete, 347
LU, 43
QR, 91
sparse, 338

fast direct methods, 340
fast Fourier transform, 372
fast Poisson solver, 341
fast polynomial multiplication, 377
feasible point, 183
Fehlberg’s method, 293
FFT algorithm, 373
Fibonacci random number generator, 388
fill, 338
finite difference approximation, 18, 160,

262, 313, 327, 329, 335
finite difference method

for ODE boundary value problems, 313
for PDE boundary value problems, 335
for time-dependent PDE, 329

finite element method
for ODE boundary value problems, 314
for PDE boundary value problems, 337

fixed point, 155
fixed-point iteration

in n dimensions, 167
in one dimension, 156

fixed-point problem
in n dimensions, 166
in one dimension, 156

Fletcher-Reeves formula, 198
fl(x), 11
floating-point number, 8

denormalized, 13
normalized, 10
subnormal, 13

flops, 112
FMM, 21
Fortran, 23
forward difference formula, 262
forward-substitution, 40
Fourier integral transform, 369
Fourier series, 369

418 INDEX

Fourier transform
continuous, 369
discrete, 370
fast, 372

fraction, 9
Fredholm integral equations, 259
frequency, 369
Fresnel integrals, 272
Frobenius norm, 77, 138
full multigrid, 352
fully discrete method, 329
functional iteration, 156
Fundamental Theorem of Algebra, 117

Galerkin method, 314, 316
gamma function, 213, 243, 272
Gauss transformation, 41
Gauss-Hermite quadrature, 253, 257
Gauss-Jordan elimination, 51
Gauss-Kronrod quadrature, 254
Gauss-Laguerre quadrature, 253, 257
Gauss-Legendre quadrature, 253
Gauss-Newton method, 200
Gauss-Seidel method, 343
Gaussian elimination, 43
Gaussian quadrature rule, 251
Gear’s method, 296
generalized eigenvalue problem, 135
geometric multiplicity, 117
Gibbs phenomenon, 377
Givens QR factorization, 97
Givens rotation, 95
global error, 283
global minimum, 184
global optimization, 185
golden section search, 187
gradient, 185
gradual underflow, 13
Gram-Schmidt orthogonalization, 229

classical, 98
modified, 99

Gram-Schmidt QR factorization, 99
graphics, 24
growth factor

for Gaussian elimination, 59

for ODE solution, 285

hat functions, 236, 315, 316
heat equation, 326, 330
Helmholtz equation, 335
Hermite cubic interpolation, 233
Hermite interpolation, 233
Hermite polynomials, 230
Hermitian matrix, 63, 118
Hessenberg matrix, 125
Hessian matrix, 185, 193
Heun’s method, 291
high-degree polynomial interpolation, 231
high-order ODE, 277
Hilbert matrix, 80, 114
homotopy methods, 172, 306
Horner’s method, 224, 227
Householder QR factorization, 93
Householder transformation, 91
HSL, 21
hybrid methods

for nonlinear equations, 164
for optimization, 191

hyperbolic PDE, 326
hyperplane, 38, 111

idempotent matrix, 110, 144
identity matrix, xvii
IEEE standard, 9
ill-conditioned matrix, 57
ill-conditioned problem, 5
ill-conditioned root, 153
implicit finite difference method, 332
implicit methods, 286, 294
implicit ODE, 329
IMSL, 21
induced norm, 77
inertia, 134, 185
inexact Newton method, 199
Inf, 13
infinite interval of integration, 257
infinity, 13
initial condition, 276, 326
initial value problem

for ODE, 276
for PDE, 326

INDEX 419

initial-boundary value problem, 326
injection, 351
inner product, xvii
insensitive problem, 5
integer programming, 183
integral equations, 259

first kind, 259
second kind, 261
singular, 261

integration
of a function, 245
of tabular data, 257

interior point methods, 206
interpolant, 219
interpolating function, 219
interpolation, 219, 351

cubic spline, 233
Hermite, 233
inverse, 162
Lagrange, 224
Newton, 226
osculatory, 233
piecewise polynomial, 232
polynomial, 222
trigonometric, 367

inverse interpolation, 162
inverse iteration, 129
inverse power method, 130
iterative methods for linear systems, 341
iterative refinement, 62, 111, 342

Jacobi method
for eigenvalues, 122
for linear systems, 342

Jacobi polynomials, 230
Jacobian matrix, 167, 278
Jenkins-Traub method, 165
Jordan form, 119

Kahan summation algorithm, 34
Karmarkar’s method, 206
Kepler’s equation, 178
Kermack-McKendrick epidemic model, 305
kernel, 259
Khachiyan’s method, 206
KMN, 21

knots, 232
Krylov subspace, 132

Lagrange basis, 224
Lagrange interpolation, 224
Lagrange multipliers, 202
Lagrangian function, 202
Laguerre polynomials, 230
Lanczos method, 132
LAPACK, 69
Laplace equation, 335
Lax Equivalence Theorem, 330
leapfrog method, 304
least squares

linear, 83
nonlinear, 199

Legendre polynomials, 229, 253
Levenberg-Marquardt method, 201
line search, 192
linear algebraic equations, 37
linear convergence, 154
linear fractional interpolation, 163
linear least squares, 83
linear multistep method, 293
linear programming, 183, 205
LINPACK, 69
local convergence, 158
local error, 282
local minimum, 184
Lotka-Volterra equation, 304
low-discrepancy sequence, 389
lower triangular matrix, 40
LU decomposition, 43
LU factorization, 43

machine epsilon, 12
machine number, 10
machine precision, 12
main diagonal, 39
mantissa, 9
Markov chain, 147
mass matrix, 135, 148
mathematical software, 20
MATLAB, 22, 24
matrix exponential, 149
matrix inversion, 50

420 INDEX

matrix norm, 56
maximization, 183
maximum, 183
mean, 19
Mean Value Theorem, 158, 284
method of lines, 328
method of undetermined coefficients, 247,

252, 294
Michaelis-Menten equation, 215
midpoint rule, 247
minimization, 183
minimizer, 183
minimum, 183

global, 184
local, 184

minimum degree, 339
minimum-norm solution, 103, 137
mixed boundary conditions, 335
mixed-radix FFT, 375
model function, 83, 199
monomial basis, 222
Monte Carlo method, 258, 385
Moore-Penrose conditions, 146
mother wavelet, 377
Muller’s method, 162
multigrid methods, 351
multiple eigenvalue, 116
multiple integral, 258
multiple root, 152

effect on Newton’s method, 160
multiple shooting, 312
multiplicity

algebraic, 117
geometric, 117

multiply-add instruction, xviii, 31
multiresolution, 378
multistep method, 293
multivalue methods, 297

NAG, 21
NaN, 13
NAPACK, 21
natural boundary conditions, 335
natural spline, 233
Nelder and Mead method, 191

nested dissection, 339
nested evaluation, 224, 227
netlib, 21
Neumann boundary conditions, 335
neutral stability, 278
neutron shielding, 385, 396
Newton basis, 226
Newton interpolation, 226
Newton’s method

for 1-dim. nonlinear equation, 158
for 1-dim. optimization, 190
for n-dim. nonlinear equation, 167
for n-dim. optimization, 193
for eigenvalue problem, 180
for matrix inversion, 180

Newton-Cotes quadrature rule, 246
nilpotent matrix, 144
nodes, 246
noise removal by FFT, 375
nonbasic variables, 205
nonlinear equations, 151
nonlinear programming, 183
nonlinear systems, 165
nonsingular matrix, 38
nonuniform distribution, 388
norm

Euclidean, 54
Frobenius, 138
induced, 77
matrix, 56
subordinate, 56
vector, 54

normal distribution, 389, 393
normal equations, 86
normal matrix, 118
normalized eigenvector, 116, 127
normalized floating-point number, 10
not a number, 13
not-a-knot condition, 233
NR, 21
null space, 91
NUMAL, 22
numerical analysis, 1
numerical cubature, 258
numerical differentiation, 261

INDEX 421

numerical integration, 245
numerical quadrature, 245
Nyquist frequency, 370

O notation, xviii
objective function, 183
ODE, 275
one-way wave equation, 333
optimization, 183

constrained, 202
one-dimensional, 186
unconstrained, 191

orbit computation, 84, 112, 150, 306
order of an ODE method, 283
order of magnitude, xviii
ordinary differential equations, 275
orthogonal distance regression, 208
orthogonal matrix, 90, 118
orthogonal polynomials, 229, 253
orthogonal projector, 110
orthogonal vectors, 86
oscillation, 231, 259, 280, 333, 351
osculatory interpolation, 233
outer product, xvii, 53, 76
overdetermined linear system, 83
overflow, 10

Padé approximation, 221
parabolic PDE, 326
Parseval’s Theorem, 380
partial differential equations, 325

conservative, 333
dissipative, 334
elliptic, 326, 335
hyperbolic, 326, 333
parabolic, 326, 334
time-dependent, 326
time-independent, 335

partial pivoting, 45
PDE, 325
PECE, 295
performance, 24
period

of a function, 367
of a random number generator, 387

periodic function, 367

periodic spline, 233
permutation matrix, 39
piecewise polynomial interpolation, 232
pivot, 41
pivoting

column, 102
complete, 45
partial, 45
symmetric, 66

plane rotation, 95, 122
Poisson equation, 335
poker test, 392
Polak-Ribiere formula, 198
polymer model, 395
polynomial degree, 250
polynomial evaluation, 224
polynomial interpolation, 222
polynomial multiplication, 376
PORT, 22
positive definite matrix, 63
positive definiteness

tests for, 185
power method, 126
power spectrum, 383
precision, 9
preconditioning, 346, 347
predictor-corrector, 295
product quadrature rule, 258
programming languages, 23
projector, 110
prolongation, 351
propagated error, 4, 284
pseudoinverse, 137
pseudorandom numbers, 387
pseudospectral method, 315, 329

QR factorization, 91
by Givens method, 97
by Gram-Schmidt method, 99
by Householder method, 93

QR iteration for eigenvalues, 124
quadratic convergence, 154
quadratic equation, 17, 33, 393
quadratic formula, 17
quadrature rule, 246

422 INDEX

Chebyshev, 270
composite, 255
compound, 255
Gauss-Hermite, 253, 257
Gauss-Kronrod, 254
Gauss-Laguerre, 253, 257
Gaussian, 251
midpoint, 247
Newton-Cotes, 246
product, 258
rectangle, 247
Simpson, 247
trapezoid, 247

quasi-Newton methods, 196
quasi-random sequence, 389
QZ algorithm, 135

radioactive decay, 394
radix, 9, 375
random number generator, 387

congruential, 387
Fibonacci, 388
normal, 393

random walk, 395
randomness, 386
range space, 86
rank, 38
rank deficiency, 85, 101, 137
rank determination, 103, 137
rank-one change, 53
rank-one matrix, 53, 76, 144
rate of convergence

of stationary iterative methods, 349
Rayleigh quotient, 130
Rayleigh quotient iteration, 131
Rayleigh-Ritz method, 314
Rayleigh-Ritz procedure, 132
rectangle rule, 247
recursion, 236, 341, 351, 374
reflector, 111
regression analysis, 83
regularization, 201, 260
relative error, 5
relative residual, 58
relaxation parameter, 344

remainder, 246
repeatability, 386
residual, 20
residual equation, 351
residual vector, 58
restriction, 351
Richardson extrapolation, 264
Ritz values, 132
Ritz vectors, 132
Romberg integration, 265
root finding, 151
root of an equation, 151
roots of polynomials, 165
roots of unity, 368
rounding, 11
rounding error, 4, 11, 282
rounding rules, 11
rounding:, 3
row scaling, 39, 62
Runge’s function, 231
Runge-Kutta methods, 291

saddle point, 185
safeguarded methods

for nonlinear equations, 164
for optimization, 191

scaling
column, 40, 62
diagonal, 39, 62
row, 39, 62

scaling function, 377
Schrödinger equation, 322, 364
Schur form, 119
scientific computing, 1
scientific computing environments, 22
secant equation, 169
secant method, 160
secant updating methods, 169
seed, 387
self-starting, 293, 296
semidiscrete method

finite difference, 327
finite element, 328

sensitive problem, 5
sensitivity, 5, 6

INDEX 423

separator, 339
Sherman-Morrison formula, 53
shifts, 125, 129, 130
shooting method, 310
significand, 9
similarity transformation, 118
simple eigenvalue, 117
simple root, 152
simplex, 191
simplex method, 205
Simpson’s rule, 247
single precision, 9
single-step method, 281
singular integral equations, 261
singular matrix, 37
singular value decomposition, 136
singular values, 136
singular vectors, 136
SLATEC, 22
slicing the spectrum, 133
software

for differentiation, 266
for eigenvalues, 139
for fast Fourier transform, 379
for generating random numbers, 390
for integration, 266
for interpolation, 238
for linear least squares, 104
for linear programming, 208
for linear systems, 68
for nonlinear equations, 172
for nonlinear least squares, 208
for nonlinear programming, 208
for ODE boundary value problems, 319
for ODE initial value problems, 300
for optimization, 207
for PDEs, 355
for singular values, 139
for sparse linear systems, 356
for special functions, 239
for zeros of polynomials, 173

software libraries, 21
SOL, 22
solution

of a differential equation, 280

of least squares problem, 83
basic, 102
minimum-norm, 103, 137

of linear system, 38
of nonlinear equation, 152
of optimization problem, 183

SOR method, 344
sparse factorization, 338
sparse matrix, 63, 315, 329, 332, 337
special functions, 239
spectral method, 315, 329
spectral radius, 115, 167
spectrum, 115
spectrum slicing, 134
spline, 233
spline quadrature, 257
splitting, 341
square matrix, 37
SSOR method, 345
SSOR preconditioning, 347
stability

of a PDE method, 330
of an algorithm, 8
of an ODE, 278
of an ODE method, 284

stability interval, 285
stability region, 285
stable algorithm, 8
stable ODE, 278
stable ODE method, 284
stable PDE method, 330
standard deviation, 19
stationary iterative methods, 341
stationary point, 185
steepest descent method, 191
stencil, 330
stepsize control, 285
stiff differential equation, 288, 296, 328
stiffness matrix, 135, 148, 315
stochastic simulation, 385
Sturm sequence, 134
subnormal floating-point number, 13
subordinate norm, 56
successive over-relaxation, 344
successive parabolic interpolation, 189

424 INDEX

superlinear convergence, 154
superposition method, 312
SVD, 136
Sylvester’s Law of Inertia, 134
symbolic computation, 22
symmetric indefinite matrix, 65
symmetric matrix, 63, 118
synthetic division, 224
systems of linear equations, 37

tangent space, 203
Taylor polynomial, 230
Taylor series, 158, 186, 189, 230, 249, 262,

280, 283, 290
Taylor series methods for ODEs, 290
three-body problem, 306
three-term recurrence, 132, 229, 346
time-dependent PDE, 326
time-independent PDE, 335
time-stepping, 329
TOMS, 22
total least squares, 105, 138
transpose, xvii, 39
trapezoid rule

for heat equation, 332
for ODEs, 287, 294
for quadrature, 247

triangle inequality, 56
triangular matrix, 40, 90, 119, 226
tridiagonal matrix, 63, 66, 125, 132, 313,

319, 332
trigonometric interpolation, 367
truncated Newton method, 199
truncation, 3
truncation error, 4, 282

for Euler’s method, 284
for finite difference approximations, 262
for heat equation, 330, 332
for multistep methods, 297
for quadrature rules, 249
for wave equation, 332

trust region method, 171, 194
twiddle factors, 368
two-body problem, 306

unconditional stability, 287

unconstrained optimization, 183, 191
underdetermined linear system, 83, 101
underflow, 10

gradual, 13
undetermined coefficients, 247
uniform distribution, 388
unimodal function, 186
uniqueness

of least squares solution, 85, 86, 101
of linear system solution, 38
of polynomial interpolant, 222

unit roundoff, 12
unit sphere, 55
unitary matrix, 118
unstable ODE, 278
upper triangular matrix, 40
upwind differencing, 333

V-cycle, 352
Vandermonde matrix, 84, 222, 372
variable metric method, 208
vector norm, 54
Volterra integral equations, 261

W-cycle, 352
wave equation, 327, 331
wave number, 369
wavelets, 377
weight function, 229
weighted residual method, 314
weights, 246
well-conditioned matrix, 57
well-conditioned problem, 5
Woodbury formula, 53

zero finding, 151
zero of a function, 151
zeros of polynomials, 165

