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Preface

We feel happy and honoured while presenting this book “ Advanced Mathematics’ for engi-
neering students studying in B. Tech. IV Semester (EE and EC Branch) of Rajasthan Technical
University and al Indian Universities. In this book we have presented the subject matter in very sim-
ple and precise manner. The treatment of the subject is systematic and the exposition easily under-
standable. All standard examples have been included and their model solutions have also been given.

This book falls into five units:

In first and second unit we have discussed the Numerical Analysis. The unit | deals with Finite
Difference—Forward, Backward and Central difference, Newton's formulafor Forward and Backward
differences, Interpolation, Stirling’s formula and Lagrange’s interpolation formula. Solution of non-
linear equationsin one variable by Newton-Raphson method, Simultaneous algebraic equation by Gauss
and Regula-Falsi method, Solution of simultaneous equations by Gauss elimination and Gauss Seidel
methods, Fitting of curves (straight line and parabola of second degree) by method of least squares
are aso discussed.

In unit 1, we have discussed Numerical differentiation, Numerical Integration, Trapezoidal rule,
Simpson’s one-third and three-eighth rules. Numerical solution of ordinary differential equations of
first order, Picard's method, Euler’s and modified Euler’s methods. Miline's method and Runga-K utta
fourth order method, Simple linear difference equations with constant coefficients are also discussed
in the unit.

Unit Il deals with the special functions, Bessel’s functions of first and second kind, Simple
recurrence relations, Orthogonal property of Bessel's transformation and generating functions.
Legendre’s function of first kind, Simple recurrence relations, Orthogonal property and generating
function are also discussed.

In unit IV, the basic principles of probability theory is given in order to prepare the background
for its application to various fields. Baye's theorem with simple applications, Expected value, Theo-
retical probability distributions—Binomial, Poisson and Normal distributions are discussed.

Unit V deals with Lines of regression, concept of ssmple Co-relation and Rank correlation. Z-
transforms, its inverse, simple properties and application to difference equations are also discussed.

We are grateful to New Age International (P) Limited, Publishers and the editorial department
for their commitment and encouragement in bringing out this book within a short span of period.
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Unit 1
NUMERICAL ANALYSIS-I

In this unit, we shall discuss finite differences, forward, backward and central
differences. Newton’s forward and backward differences interpolation formula,
Stirling’s formula, Lagrange’s interpolation formula.

The unit is divided into five chapters:
The chapter first deals with the forward, backward, central differences and relation

between them, fundamental theorem of the difference calculus, factorial notation
and examples.

Chapter second deals with interpolation formula of Newton’s forward, Newton'’s
backward, Stirling’s for equally width of arguments, and Lagrange’s formula for
unequally width of arguments.

Chapter third deals with solution of linear simultaneous equation by Gauss
elimination and Gauss-Seidel method.

Chapter fourth deals with solution of algebraic and transcendental equation by
Regula-Falsi and Newton-Raphson method.

Chapter fifth deals with fitting of curves for straight line and parabola of second
degree by method of least squares.
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CuartEr 1

Calculus of Finite Differences

INTRODUCTION

Numerical analysis has great importance in the field of Engineering, Science and Technology etc.

In numerical analysis, we get the result in numerical form by computing methods of given data.
The base of numerical analysis is calculus of finite difference which deals with the changes in the
dependent variable due to changes in the independent variable.

1.1. FINITE DIFFERENCES

Suppose the function y = f(x) hasthe valuesy, y,, Y, .- y, for the equally spaced values x = X, X, + h,

Xy + 2h, ..... Xy + nh. If y = (x) be any function then the value of the independent variable ‘X’ is called

argument and corresponding value of dependent variabley is called entry. To determine the value of y

and % for some intermediate values of X, is based on the principle of finite difference. Which requires
X

three types of differences.

1.2. FORWARD DIFFERENCES

The differences y, — Yy, Y, = Yps -ooe- Y, —Y,_, ae caled the first forward differences of the function
y="f(x) and we denote these difference by A y,, Ay, ... A'y,, respectively, where A is called the
descending or forward difference operator.
In general, the first forward differences is defined by
Ayx = VYer1~Yx
The differences of the first forward differences are called the second forward differences and
denoted by A2y, A2y, etc.
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Therefore, we have A%y, = A [y, -y,

= Ayl—Ay0
=(Y,—Y) = (Y1 =Yy
=Y, 2y, Y,
Similarly, A% =AY, =Y = (V3= YD) — (Vo= Y) =Y =2y, Y,

Ingeneral, we have A%, = Ay, , , — Ay,
Again, the differences of second forward differences are called third forward differences and
denoted by A3y, A%y, etc.

Therefore, we have A%y, = A%, — A%y,

=(Y3=2¥, +Y) = (Y= 2y, + o)

=y,—3y,+3y,-Y, ardsoon
In generdl, the nth forward difference is given by

Anyx = An_1yx+ 1 —Ant Yy
Forward Difference Table

Argument | Entry First Differences | Second Differences | Third Differences | Fourth Differences
X y = f(X) Ay A%y A3y Y
Xo Yo
Y1=Yo =AY
X *+h Vi Ay, = Ay, = A%,
Yo=Y = Ayl AZyl -2 Yo= A Yo
X+ 2h Y> Ay, — Ay, = Ay, Ay, = Ayy = A%y,
Y=Y, = Ayz Azyz -2 Y1 = A Y1
%+t3n | s Ay; = Ay, = A%,
y4 - y3 = Ayg
X, +4h Y,

1.3. BACKWARD DIFFERENCES

The differencesy, — Yy, Y, =Yy, -0 ¥ — ¥, @€ caled the first backward differences of the function
y = f(x) and we denote these differences by Vy,, Vy,, ....., Vy, , respectively, where V is called the
ascending or backward differences operator.

In general, the first backward difference is defined by
Vyx =Y Yxo1
The differences of the first backward differences are called second backward differences and
denoted by V?y,, V2y,, etc.

Therefore V2, = V(y,—yy) = Vy, = Vy;
= (yz_yl) _(yl_yo) = yz_zyl + y0
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In general, we have V% =Vy —Vy

Again the differences of second backward differences are called third backward differences and
denoted by V3y,, V3y, etc.

Therefore, we have V3y, = V% —V?y
In general, the nth backward differences is given by
Vnyx = Vn—lyX _ Vn—lyX _1
Backward Differences Table

Argument | Entry First Diff. Second Diff. Third Diff. Fourth Diff.
X y = f(x) Vy Vy Viy Viy
Xo Yo
yl - yo = Vyl
%th | v Vy, = Vy, =V,
Yo=Y = Vyz szs - V2 = V3 Y3
X+ 2h Y> Vy; = Vy, = V2y, V3, = Vi, = VY,
y3 - yz = Vyg V2y4 - VZ y3 = V3 y4
Vy, = Vy; =V,
X, +3h A
y4_ y3 = Ay4
X, + 4h Y4

1.4. CENTRAL DIFFERENCES

Thedifferencesy, —Yy= 0¥/, Y, =Y = 0 Ygpreeees Y= Yr1 = 0Y,, 4, @€ called central differences and
d is caled central difference operator.

Similarly 8Yz, — OYyp = 8%,
Yo — 8Yg, = 8%,
and 3%y, — &%, = &y,, andsoon.
The Central Difference Table

Argument Entry First Diff. Second Diff. Third Diff. Fourth Diff.
X y = f(x) dy &%y &y Sty
X9 Yo

%1
X1 Y1 8%y,
Y3 8%y,
X5 Yo %, 3%,
Y5/ Vs
X Y3 &%,
Y71
X4 Ya
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1.5. SHIFT OPERATOR E

The shift (increment) operator E is defined as
BY, = Yyen
E%Y, = Yy 2n
E"Y, = Yis mn
The inverse operator E is defined as
BN =Yer e = Yeon

1.6. RELATIONS BETWEEN THE OPERATORS

(i) We know that AY, = Yoon =Yy = EY = Yy
Ay, =(E-1)y,
- A=E-1
or
(i) We have VY= Y= Yeon =Yy —E1Y,
Vyx =(1- E_l) Y«
- V=1-F1
or
(iii) We have EVY, = E(Y, =Yy ) = BY = BV = Yoen— Y
EVy, = Ay,

EV=A ()

Again Vny = Vyx+h = Yyen — Y%
VEy, = Ay,
or VE=A (i)

By (i) and (ii) EV=VE=A

(iV) Since 8 Y = Yxen2 = Y2 = Eﬂzyx —-E12 Yx
Sy, = (B2 -E"?)y,

Thus §=EV2_Ep12

(v) We have AY, =Y, o h— Yy
=By, -y =(E-Dy,
= (EJJZ _ E—J/Z) EY2 Y,
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Ay, = dEV2y,
= A =8 EY?
(vi) We have E f(x) =f(x + h)
=f(x) + hf’(x) + h—z f7(x) + ... [By Taylor’s Theorem]

2!

h2
=100+ hD 10 + 20 D19 + .

h2
:(l+hD+§D2 ..... J f (X)

E f(x) = &0 f(x)

E=éD

(vii) Wehave (1+A) (1-V)f(x)=(1+A) (f() -V (X))
= (1+4) [f() — (f(x) — f(x— )]
=(1+A)f(x—h)=Ef(x—h)
A+A) Q-V)f(x)=1(x)
Thus a1+A)@2-V)=1

1.7. FUNDAMENTAL THEOREM OF THE DIFFERENCE CALCULUS

If f(X) be a polynomial of nth degree in x, then the nth difference of f(X) is constant and A™* f(x) = 0.
Proof. Consider the nth degree polynomial
f(X)=A+ AX+AX+ . +AX
where A, A, A,, ..... A, are constants and n is a positive integer.
By the definition, we have
Af(X) = f(x + h) — f(X)
=[Ag+A (x+h) + A, (x+h)2+ A (X+ )T —[Ag+ Ax+ AX + ..+ A X
=A h+ A [(x+h)2 = + A [(x+ h)3 =] + ... + A, [(x+h)"—x1]
=A h+A,[x*+2C, xh+h?—x°] + Aj[x3+3C, x> h+3C,xh? + h3 -] + ...
+ A, [X"+"C, X" h+1C,x"=2h?+ ...+ "C_ h"—x")
Af(X) =B, +Bx+ B+ ...+ B X" +nAhx"? (1.1
where B, B, ..... B, ;

By (1.1), we see that the first difference of a polynomial of degree n is again a polynomial of
degree (n —1).

are constants



8 ADVANCED MATHEMATICS

Again Af(x) = Af (X + h) — Af(X)
=B, +B,(x+h)+By(x+h)?+....+B_; (x+h)"2+nAh(x+h"
—[B +Bx+ By x*+ ...+ B, _, xX""2+nAhx™]
=B, h+ By [(x+h)?2—x7 + B, [(x+ h)*—x3 + ......
+B_[(x+h)2—x"2] +n A h[(x+h)t—x-]]
=B,h+B,[¥*+2C, xh+h?-x] +B,[x®+3C, x*h
+3C, xh?+h3—x3 + ...+ B, _, [xX""2+"2C x3h
+M2C, X" 3 h?+ ...+ "2C , h"=2—x"—2]
+nA h [X*+™C x "2 h+ MC, xS 2 + L+ MC h"—x™]
=C,+Cyx+Cyx*+ ...+ C _ X3+ n(n-1) h? A x"~2 -(1.2)
where C,, C,, ....., C _, are constants

By (1.2) we see that the second difference of a polynomial of degree nis again a polynomial of
degree (n —2)
Proceeding in the same way, we will get a zero degree polynomial for the nth difference

i.e, A"fx)=n(n-1) (n-2)...1h"a x"""=n!h"a,
Thus, nth difference is constant
Now A™LE(x) = A[A"f()] =A[n!h"a]=0 [+ AC=0Q]

1.8. FACTORIAL FUNCTION

A product of theform x (x—h) (x—2h) ...... (x—(n—1) h) iscalled factorial function and denoted by x™.
Thus xM =x(x—h) (x—2h) ..... (x—(n—=1) h).
If interval of differencing is unity.
Then XM =x(x-1) (X=2) (X—=3) ..... (x—(n—1))

1.9. TO SHOW THAT A"x" = n! h" AND A" x(" =0

Proof. By the definition of A we have
AX = (x + h)® — xO
=(x+h)(x+h=h) (x+h=2h) ... (x+h—=(n—-21)h)
—X(x=h) (x—=2h) ...... (x=(n=21h)

=(x+hx(x—=h) (x—2h) ... (x=(n-=2)h)

— X(x=h) (x=2h) ..... x=(n=2)h) (x=(n—=21)h)
=x(x—=h) (x—=2h) ..... X=(n=2)h) (x+h)=(x—(n=21)h)
=x("=Y ph=nph x"-D
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Again AP = AAX) = A[ nhx("=D] = nh A xX("=D = ph [(x + h)(" =1 — x(n-1)]
=nh[(x+h) (x+h-=h) (x+h=2h) ... (x+h—(n-2)h)
—X(X=h) (x=2h) ...... (Xx=(n=2) h]
=nh[(x+h) x (x—h) (x=2h) ..... (Xx—=(n-=23)h)
—X(x—=h) (x-=2h) ..... (Xx—=(n=3) h) (x—(n—2) h)]
=nhx(x—h) (x—2h) ...... Xx—=(n=3)h) [x+h—=(x—(n—-2) h)
=nhx"-2d (n-1)h
=n(n-1hZx"-2
Proceeding in the same way, we get
A XM =n(n-1)(n-2) ... 1hnx(mM =nthn
Agan A"IxM=AA"XN) =A(N! M =0

1.10. TO SHOW THAT f(a + nh) = f(a) + "C, Af(a) + "C, A% f(a) + ..... +"C_A"f(a)
We shall prove this by the method of mathematical induction
We have Af(a) =f(a+h)—f(a)
. f(a+h)=Af(a) + f(a) =f(a) + Af(a) itistrueforn=1
Again Af (a+h)=f(a+2h)—f(a+h)

f(a+ 2h) = Af(a+ h) + f(a + h)
=A[Af(a) + f(a) ] + Af(a) + f(a)
= f(a) + 2Af(a) + A% f(a)
f(a+2h) =f(a) +2C, A f(a) + A% f(a)
Itistrueforn=2
Similarly f(a+3h)=Af (a+2h) +f(a+2h)
= A [f(a) + 2Af(a) + A? f(a)] + [f(a) + 2Af(a) + A2 f (a)]
=f(a) + 3A f(a) + 3A% f(a) + A%f(a)
f(a+3h) =f(a) + 3C, A f(a) + 3C, A% f(a) + A% f(a)
Itistrueforn=3
Now Assume that it is true for n = k then
f(a + kh) = f(a) + KC, Af(a) + *C, A2f(a) + ...... +KC, AXf(a)
Now we shall show that thisresult istrueforn=k + 1
Now f(a+ (k+ 1) h) = f(a + kh) + Af (a + kh)
= [f(a) + C, Af () +C, A% f(a) + ...... +KC, A*f(a)]
+A [ f(a) + kC, Af () + *C,A%f (a) ...... C, AX f(a)]
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=f(a) + [C, + 1] Af(a) + [C, + *C|] A%f(a)
+[*Cy+*C)] A3 f(a) + ...... + AK*f(a).
f(a+ (k+1)h)="f(a) +k*1C Af(a) + K*IC,A%(a) + **IC A% (a) + ......... + Ak+1f(a)
Hence theresult istrueforn=k+ 1 [« kC +kC. ,,=K"C., ]
So by the principle of mathematical induction it is true for al n, we have
f (a+nh) =f(a) + "C, Af (a) + "CA?f(a) + ......... +"C A" f (a)

SOLVED EXAMPLES

Example 1. Prove that A% = E® - 3E? + 3E - 1.
Solution. By the definition we have
Af(x) = f(x + h) —f(x), Ef (X) = f(x + h)
and E" f(x) = f(x + nh) ()
. A? f(x) = A[f(x + h) —f(X)] = f(x + 2h) — 2f(x + h) + f(X)
and ABf(X) = A[f(x + 2h) — 2f (x + h) + f(X)]
=f(x + 3h) — 3f(x + 2h) + 3f(x + h) = f(X)
= E3f(x) — 3E2 f(X) + 3Ef(X) —f(X) [Using (i)]
A% f(x) = (E3-3E2+ 3E-1) f(X)
or AS=E3-3E?+3E-1. Henceproved.
Example 2. Evaluate
(i) A cosh (a + bx) (i) A tan™ ax
Solution. (i) By the definition of A, we have
A cosh (a + bx) = cosh (a + b(x + h)) —cosh (a + bx)
a+ b(x+2) +a+bx sinh &% b(x+2)— a— bx

=2sinh (a+ bx+%) sinh (bzh) Ans.

(i) By the definition of A, we have
A tan? ax = tan™! a(x + h) —tan™ ax

=2sinh

- h
1+ a(x + h)ax 1+a“x” +a“xh

Example 3. Evaluate:
(i) A%(3e9) (i) A [Sn (ax + b)].
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Solution. (i) A?[3e]=3A%[e]=3A.A[e]=3A[e"1-¢€]
=3[ 2—etlogtl4 g
=3[e?-2e+ 1]e*=3(e—1)? e
(i) By the definition of A, we have
Alsin(ax + b)] =sin(a(x+ h) + b) —sin (ax + b)

(a(x+h)+b+ax+b) , (a(x+h)+b—ax+b)
=2 cos x gn

2 2
:2cos(ax+ b+ah) sina—h.
2 2

Example 4. Evaluate A (3x + € + sin ).
Solution. By the definition of A, we have
ABX+e*+s8nx) =[3(x+h) + X" + gin (x + h)] - [3x + e+ sinX]

:3h+e2X[(e2h—1)+2cos(x+2+xjsin X”z“x

=3h+eXe?-1)+ 2cos(x+2)sin(2).
Example 5. Evaluate A [e log 3X].
Solution. We have A [f(X) g(X)] = f(x + h) Ag(x) + g(X) Af(X)
Take f(x) = €, g(X) = log 3x
then A (€ log 3x) = 2X*M A log 3x + log 3x A €
=X+ [ log 3(x + h) —log 3x] + log 3x . (€2** M — )

= X [eZh log (1+2j +(€®" -1) log 3x}.

Example 6. Evaluate A" (é>*b), h= 1.
Solution. We have A f(x) = f(x + 1) — f(X)
- Aeax+b:ea(x+1)+b_eax+b:eax+b(ea_1)
Again A2 X+ = A(AS™+D) = A [ D (62— 1)]

=(8—1) Ae**b=(e2-1) e™*b (e8-1)

= (€2 —1)2 b
Proceeding in the same way, we get

An(eax +b) = (ea_ 1)n eX+b

Example7. Showthat Ay, = V''y,, .
Solution. V'y . =(1-ENy,.,, [+ V=1-E1
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E-1)
= (?j Your = (E-1)"E7 Yic4r

=(E-1"y, [+ A=E-1]
=A"y,. Hence proved.

Example 8. Prove that A log f(x) = log {1+ @}

f(x)

Solution. By the definition of A, we have
Alog f(x) = log f(x + h) — log f(x)

_ f(x+h) E f(X)

=log o Iog{ () }

_ @+ A) f(x) .. _
—Iog{f(x)} [ E=1+A4]
=log {f(x);EXA)f(m} =log {1+ Aff((x)ﬂ Hence proved.

2
Example 9. Evaluate (?EJ x3, h=1.

2 _1\2 2 _
solution. We have [ & xe = [ (E=1)" oo | BT+ 1=2E g
E E E

=[E+E1-2]x3=(x+1)°3+(x—-1)°3 —2x3
=x3+ 3%+ 3Xx+ 1+ x5 - 3% + 3x— 1- 23 = 6X.
Example 10. Evaluate A3 (1 -x) (1-2x) (1-3x), h= 1.
Solution. Here f)=(1-x) (1—-2%) (1-3X%)
=1-6x+11x°—6x3
which is a polynomial of degree 3in x
A3 f(X) = A3(1 - 6x + 11x% — 6x°)
=0-6.0+11.0-6.3! =-36.

Example 11. If
X 1 2 3 4 5
y 2 5 10 20 30

find by forward difference table A% y(1).
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Solution. First, we form forward difference table

X y = f(x) Ay A%y A3y Aty
1 2
3
2 5 2
5 3
3 10 5 -8
10 -5
4 20 0
10
5 30

By above we observe that A%y(1) = —8.

Example 12. Represent the function f(x) = x* — 12x3 + 42x%2— 30x + 9 and its successive differ-
ences into factorial notation.

Solution. Let x* — 12x3 + 42x2 — 30x + 9 = AX¥ + Bx® + Cx@ + Dx® + E

SAX(X=1) (x—2) (x=3) +Bx(x—1) (x—-2) +Cx (x—1) +Dx+E ..(i)

where A, B, C, D and E are constants . Now, we will find the value of these constants

Putting x=0in(i)weget, E=9

Againputtingx=121in(i),weget1-12+42-30+9=D+E

= D=1

Putting x=2in(i),weget16—-12x8+42x4-30x2+9=2C+2D+E

= C=13

Puttingx=3in (i), weget 81 —-12x27+42x9-30x3+9=6B+6C+3D +E
= B=-6

Equating the coefficient of x* on both sides, we get A = 1. Putting the valuesof A, B, C, D, Ein
(i), we get
f(x) = x* = 12x3 + 42x% — 30x + 9 = X —6x + 13x(D + xD + 9

Now Af(X) = 4x3) — 18x@ + 26xM + 1

A%(x) = 12x@ — 36x(D + 26

A3f(X) = 24xD) — 36

AM(X) = 24

A(X) =0
Aliter: Let f(X) = x* — 12x3 + 42x° —30x + 9

=A¥ +Bx® + Cx@ + Dx® + E
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Now, we obtain the values of A, B, C, D, E by synthetic division. The procedure is as follows:

1 1 -12 42 -30 9=E
0 1 -11 31

2 1 -11 31 1=D
0 2 —-18

3 1 -9 13=C
0 3

4 1 -6=B
0
1=A

Hence f(x) = x4 —6x3 + 13x@ + xD + 9,

Example 13. Find the function whose first differenceis 9x* + 11x + 5.
Solution. Let f(x) be the required function then Af(x) = 9x? + 11x + 5
First, we change A f(x) in factorial notation
Let f(x) = 9% + 11x+ 5= Ax@ + BxD + C
=Ax(x-1)+Bx+ C (1)

Putting x=0 wegetC=5
Putting x=1 weget 9+11+5=B+C = C=20
On comparing like termin (i) we get A= 9
On putting in (i), we get

Af (x) = 9x@ + 20x(D + 5

ox®  20x®@
3 +
=3xX(x—1) (x=2) + 10x(x—1) +5x + C,
f(x) =33+ x2+x+C.
Example 14. Find the function whose first difference is e+ b,
Solution. Let f(x) be the required function
Then Af(x) = e P (i)
Let us consider f(x) = Aex*b
Af(X) = A[AS™* P = AA @+ D
- A[ea(x+1)+b_eax+b]
= AP [e2—1] (i)

Integrating, we get  f(x) = +5x + C, where C, is constant of Integration
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On comparing (i) and (ii) we get

Az 1
T ef-1
eax+b
f(x) = ——.
) &1

Example 15. What is the lowest degree polynomial which takes the following values

X 0 1 2 3 4 5
f(x) 0 3 8 15 24 35
Solution. First we prepare the forward difference table
X f(x) Af(X) AZ(X) ASf(X)
0 0
3
1 3 2
5 0
2 8 2
7 0
3 15 2
9 0
4 24 2
11
5 35

We know that f(a + nh) = f(a) + "C, Af(a) + "C, A%f(a) + "C, A3f(a) + .....
Puttinga=0, h=1, n=x, we get

f(x) = f(0) +*C, Af (0) +*C, A2£(0) +*C, AS(0) + ... (D)
Putting the value of f(0), Af(0), A2 f(0) and A%f(0) in (1) from Difference table, we get

xX(x-1) 5 X(X=-D(x-2)
! " 3!

f)=0+x.3+ .0+0

=3X+ X (%x=1) =x2+ 2x.
Example 16. A second degree polynomial passes through the points (0, 1) (1, 3), (2, 7), and
(3, 13). Find the polynomial.
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Solution. First we prepare the forward difference table

X f(x) Af(X) A%f(X) ASf(X)
0 1
2
1 3 2
4 0
2 7 2
6
3 13
We know that

f(a+ nh) = f(a) + "C, Af(a) + "C, A2 f(a) + "C, A% f(a) ...... "C, A" f(a)
Puttinga=0, h=1, n=x, we get
f(x) = f(0) +*C, A f(0) +*C, A2 f(0) + *C, A®(0) + ... (1)
Putting the values of f(0), Af(0), A%f(0) and A3f(0) from difference table in (1) we get

0

f0)=1+x.2+ X(X271)2+X(x—1)(x_2) |

3!
=1+2Xx+X(X=1)=x>+x+ 1.
Example 17. Given Uy=21u=1u,=21u,=28 and u, = 29 find A4u0 without forming
difference table.
Solution. Wehave  A*u,=(E—1)*u, = (E*-*C,E3+*C,E* - “C,E + 1) u,
= E*u, — 4B3u, + 6E%u,— 4E u, + U,
=Uu,—4u, +6u, —4u, + U,
=29-4%x28+6%x21-4x11+1
=29-112+126-44+1=0.
Example 18. Prove that
(i) f(4) = f(3) + Af(2) + A2f(1) + A3 (D)
(ii) f(4) = f(0) + 4Af(0) + 6A? f(-1) + 10A3 f(— 1)
as for asthird difference.
Solution. (i) We have
Af (3) =1f(4) —1(3)

or f(4) = {(3) + Af(3)
=1(3) + A[f(2) + Af(2)] [ Af(2) =1(3) —f(2)]
= f(3) + Af(2) + AX(2)
= f(3) + Af(2) + A[f(1) + Af(1)] [ Af(1) =1(2) —f(1)]

f(4) = f(3) + Af(2) + A2 f(1) + A3f(1) Hence proved.
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(il) We have
f(4) =f(-1+5)=E>f(-1) = (1 + A)*f(- 1)
= (1+°C, A +5°C, A2+ 5C, A3+ °C, A%+ °C_ A®) f(-1)
=f (- 1) + 5Af(— 1) + 10 A2 f(- 1) + 10 A3 f(— 1) taking upto 3rd difference
= [f(= 1) + Af(— 1)] + 4 [Af(= 1) + A%(~ 1)] + 6 A2 f (- 1) + 10A3 f(— 1)
= [f(= 1) + Af (= 1)] + 4A[f (= 1) + Af(= 1)] + 6A2 f(— 1) + 10A%(~ 1)
= f(0) + 4AF(0) + 6A2 f(— 1) + 10A3 f(— 1) [ Af(=1) = f(0) — f(= 1)]
= f(4) = f(0) + 4Af(0) + 6A? f(— 1) + 10A%f(—-1) Hence proved.
Example 19. Prove that u, = u,_, + Au,_, + AU, 5+ ...... +A™u,  + AMu

- : n A" E"-A"
Solution. Consider u, —A"u,__ =u —A"E " u, = (1—E)ux = ( £ )ux
_ 1 (E-A)[E" T +E"PA+E" A 4L+ Ay, (- E=1+A)
= (E—A)
=S(EY+AEP+AE3+ L+ AV EU,
u—A"u,_ =u AU, +AZU Gt AN
u =u,_, +Au,_,+ A%+ ...+ A"y __+ A"u__~ Henceproved.

Example 20. Prove that u; X + u, X2 + upd + .....

=X u+X—2Au X’ AU + ...and0< x< 1
= Ut o At g At .
Solution. RHS = u + XA +X—3A2
ution. M. ._1—X Ul W Ul (1_ )3 Ul .....
2 3

X X X )
= + E-Du, + —(E-D°u, +......

1_Xu1 (1—X)2( )1 (1_ )3( ) 1

:X_X2+X3 u, + XZ_ZXB+ Eu
1-x (1_X)2 (1_X)3 ...... 1 (1—X)2 (l—x)3 ...... 1

=X 1+ x ) + x* (1+ iju
1-x\" (1-x) “ (1-x)? 1-x) 2

— 2 3
=u; X+u,Xx +U3X+ ...... .
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Example 21. Provethat u, + u, + U, + ...+ U =

NHC Uyt "TIC, AUyt "TIC A% UGt L+ AN U,
i = 2
Solution. We have uy + U, + U, + ... + U = Uy + Euy + E* Uy + ... + E"U,
En+l_1
=(1+E+E%+ .. +E”)u0:ﬁu0 [Sum of nterm in G.P]

_@+A)™ -1
N fu"

1
= Z[1+"+1ClA+”+1CZA2+"+1C3A3+ ...... +N*1C AN 1]y,

= % [™ C, Au, + ™ICAZ Uy + MIC A3 Uy + ..., +MIC Ay
= M™Cuy + ™CyA Uy + ™MC;A%Uy + ..+ AMUy = RH.S,
Example 22. Prove that u, + "C, u;x + "C, ux* + ..... + ux"
=(1+X) Uy + "C L+ X)X AUy + "C,y (L + X)TEXE A2 U+ .+ X AN U,
Solution. RH.S. (1 + X)"uy + "C, (1 + X)™ xAu, + "C, (1 + )" X2A%uy + ..... + XAy,
=((1+X) +xA)" Uy = (1 +x(1+A)"uy=(L+xE)"u,
=(1+"C, xE+ "C, ¥ E?+"C;x 3 E¥+ ...+ X"EM)u,
= Uy +"Ciu; x+"Cyu, X2+ "Cuy X3+ L+ XU, = LH.S.
Example23. A"u, = u,, , —"Ciu, ., +"CoU, o — .
Solution. RHSu., -"Cu. . ,+"Cu,. ,—
=(E"-"C,E" 1 +"C,E™? — ...+ (-1 u,
=(E-1)"u =A", =L.HS.

1. Provethat A?=FE?-2E+1.
2. Provethat if f(x) and g(x) are the function of x then
(i) A[f(x) + g(x)] = Af(X) + Ag(X) (i) Alaf(x)] = a Af(x)
(iii) A[f() g()] = f(x) A g(x) + g(x + 1) f(x) =f(x + 1) A g(x) + g(x) Af(x)

(iV)A{f(x)}zg(x)A f()-f(x)Agx)
9(x) 9(x) g(x + h)
3. Evaluate
(i) A[sinh (a + bx)] (i) Altan ax]

(i) A [cot 2¥] (iv) A (x + cos X)
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4.

5.

10.

11.

12.
13.

14.
15.
16.
17.
18.

(V) A (@R +e+2)
(vii) A [ log bx]

Evaluate
(i) AZ cos 2x

(iii) (A_Ez] 3
Evaluate
o (3)
(iii) A8 (ax—1) (bx2— 1) (©C - 1)

Ee*
) AZeX’

AZ
Prove that e¢ = (E] e

Provethat V"y, = A"y .

Evaluate

(i) (A2 +A-1) (@ +2x+1)
(iii) (E+2) (E+1) (2" + x)

(vi) A [log X]
2
cost}

(if) A% (ab™)

(viii)A{

.y 0| Bx+12
() & {4—54—6}
(i) A" [sin (ax + b)]

(iv) A" [ax" + bx"—1]

; theinterval of differencing being h.

(i) (A+ 1) (2A—1) (X + 2x +1)
(iv) (E2 + 3E + 2) 2 + x

Write down the polynomial of lowest degree which satisfies the following set of number 0, 7, 26, 63,

124, 215, 342, 511.

A third degree polynomial passes through the points (0, — 1) (1, 1) (2, 1) and (3, — 2). Find the
polynomial.
Construct a forward difference table for
X 0 5 10 15 20 25
f(x) 1 14 18 24 32

If f(0) = —3, f(2) = 6, f(2) = 8, f(3) = 12 prepare forward difference table.
Given f(0) = 3, (1) = 12, f(2) = 81, f(3) = 200, f (4) = 100 and f(5) = 8. Form a difference table and find

AB £(0).

Given u, = 3, u; = 12, u, = 81, u, = 200, u, = 100, ug = 8 find A®>u, without forming difference table.

If f(0) =—3, f(1) = 6, f(2) = 8, f (3) = 12 and the third difference being constant, find f(6).
Represent the function f(x) = 2x3 — 3x? + 3x — 10 and its successive differences into factorial notation.

Find the function whose first difference is x® + 3x2 + 5x + 12.

Obtain the function whose first differenceis:

(i) x(x— 1)

(v) sinx

(i) e
(iv) X + Bx

(iii) a
(vi) 5%,
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CHAPTER 2

Interpolation

INTRODUCTION

Suppose y = f (x) be a function of x and y,, y,, ¥,, ....., ¥, are the values of the function f (x) at x,, X;, X,,
-, X, respectively, then the method to obtaining the value of f (x) at point x = x; which lie between x,
and x, is called interpolation.

Thus, interpolation is the technique of computing the value of the function outside the given
interval.

If x = x; does not lie between x, and x, then computing the value of f (x) at this point is called the
extra polation.

The study of interpolation depends on the calculus of finite difference.

In this chapter, we shall discuss Newton-Gregory forward and backward interpolation, Lagrange’s,
Stirling’s interpolation formula and method of finding the missing one and more term.

2.1. TO FIND ONE MISSING TERM

Method 1. Suppose one value of f (x) be missing from the set of (n + 1) values (i.e., n values are given)
of x, the values of x being equidistant. Let the unknown value be X. Now construct the difference table.
We can assume y = f (x) to be a polynomial of degree (n — 1) in X, since n values of y are given. Now
equating to zero the nth difference, we get the value of X.

Method 2. Suppose one value of f (x) be missing from the set of (n + 1) values (i.e., n values are
given) of x, the values of x being equidistant. Then we can assume y = f (x) to be a polynomial of degree
(n-1)inx

. A"f(x)=0
or (E-D"f(x)=0
or (E"-"C,E™+"C,E™?— ..+ (-1)"Nf(X)=0

or E'f(x)-"C,E™ f(X) +"C,E™?f(X) ..+ (-1)"f(x)=0
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or f(x+nh)-"C f(x+(n-1)h)+"C,f(x+(n-2)h)—....+(-1)"f(x) =0 ..(2.1)
If x=x,is the first value of x then putting x = x; in (2.1) and solving we get the missing term.
To find two missing term. Suppose two value X, and X, of f(x) be missing from the set of
(n +2) values (i.e., n values are given) of x, the values of x being equidistant. Then, we can assume y =
f (x) be a polynomial of degree (n — 1) in x
- Af(x)=0
or f(x+nh)-"C,f(x+(n-1)h)+"C,f(x+(n-2)h)— ...+ (-1)"f(x)=0 ..(2.2)
If X = X, is the first value of x then putting x = x,, and x = X, successively in (2.2), we get two
equation in missing X; and X,. On solving we get X, and X,.

2.2. NEWTON-GREGORY’S FORMULA FOR FORWARD INTERPOLATION WITH
EQUAL INTERVALS

Let y = f (x) be a function which assumes the values f (a), f(a+h), f (a + 2h), ....., f (a + nh) for x = a,
a+h,a+ 2h, ..., a+ nh respectively where h is the difference of the arguments. Let f (x) be a polyno-
mial in x of degree n. So f (x) can be written as

f(x)=a,+a,(x-a)+a,(x-a)(x-a-h)+a;(x-a)(x-a-h) (x-—a-2h)
+o +a (x-a)(x-a-h)... (x—a-(n-1)h) ..(23)
where a,, a;, a,, ..., &, are constants
Putting successively the values x =a, a+h, a + 2h, ...... ,a+nhin(2.3), we get
f(@=a, or a,=f(a)
f(@a+h)=a,+a,(@a+h-a)

fa+h)-a, _ f(a+h)-f(a) _Af(a)

or f@+h)=a,+a,h = a = n h h
: Af(a)
ie., a ="

f(@a+2h)=a,+a,(a+2h-a)+a,(@a+2h-a)(a+2h-a-h)
=a, +a,2h+a, 2hh
2h?a, =f (a + 2h) - 2ha, - a,
_ f(a+2h)-2(f(a+h)—f(a)) - f(a)
% 2112

_ f(a+2h)—2f(a+h)+ f(a) _A*f(a)
- 21h2 T 21p?
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Proceeding in the same way, we get

_ A%f(a)
3_ 3!h3 ------

A" f(a)

T

Putting the values a,, a,, a,, ...., &, into (1), we get

f(x)=f(a)+(x—a)$ s x—a) (x—a—h) AT@

21h?
Af(a)
+(x-a) (x—a-h)(x—a-2h) 31h +oe
+(x—a)(x—a-h)(x—a—-2h)+ ...+ (x—a—(n-1h) A'f(d) (2.4)
nth"!

This is Newton-Gregory formula for forward interpolation putting x = a + hu in (2.4), we get

fa+hu)=f@)+unf@+ U= p2fys .+ YUY (“_Z)n“'“‘(“_(”_l»

1 A" f (a).

2.3. NEWTON-GREGORY’S FORMULA FOR BACKWARD INTERPOLATION
WITH EQUAL INTERVALS

Lety = f(x) be a function which assumes the values f (a), f (a + h), f (a +2h), ..., f(@+nh) forx =a, a
+h, a+2h, ..., a + nh, respectively where h is the difference of arguments. Let f (x) be a polynomials
in x of degree n. So f (x) can be written as
f(x) =a,+a,(x—a-nh) +a,(x-—a-nh) (x-a-(n-1)h)
+a, (x—a-nh) (x-a-(n-1)h) (x-a-(n-2)h) +.....

+a, (x-a-nh) (x-—a-(n-1)h) ... (x—a-h) ..(2.5)
where  a,, a;, a,, ...... , @, are constants
Putting successively the valuesx=a+nh,a+ (n-1)h,a+(n-2) h, ...... ,a+hin(2.5), we get

f(@a+nh)=a, = a;=f(a+nh)

f@+(n-1)h)y=a, +a, (a+ (n-1)h-a-nh)

_ f(a+nh)-f(a+(n-1)h) Vf(a+nh)

= h T
f@+(n-2)h)y=a,+a,(a+(n-2)h-a-nh)

+a,(@+(n-2)h-a-nh).(@a+(n-2)h-a- (n-1)h)

_ V*f(a+nh)

YT
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Proceeding in the same way, we get

_ V3¥f(a+nh)
3 - W ......
o = V" f (a+nh)
Putting the values a,, a,, a,, ....., @, into (2.5), we get
V£ (a+ nh) V2f(a+nh)

f(x)=f(a+nh)+ (x—a-nh) +(X-a-nh)(x—a-(n —1)h) 21H?

h
ot (X—a—nh) (X=a—(=1h) ... (x—=a—h) V”L’:”h) .(2.6)
n'h
This is the Newton-Gregory’s formula for backward interpolation putting x =a + nh + hu in
(2.6), we get

1
f(@+nh+hu)=f(a+ nh)+qu(a+nh)+% V2 f(a+nh)
lllll N u(u+1) (u+2?1.'.....(u+n—l) VO£ (a + nh).

2.4. LAGRANGE’S INTERPOLATION FORMULA FOR UNEQUAL INTERVALS

Letyo, Yy, Yy - Y, € the values of function y = f (x) corresponding to the arguments X, X,, X,, ...., X, not
necessarily equally spaced. Since there are (n + 1) values of f (x) so (n + 1)th difference is zero. Thus
f (x) is supposed to be polynomial in x of degree n.

Then y=f(x=a,(x-x) X=X)) ... (X=x,) +a;, (X=X%g) (X=X%)) ..(x = X)
+a,(X = Xp) (X=Xp) ..o (X=X) oo +a, (X =X) (X=X) ... (xX=x,_4) ...(2.7)
where a,, a,, &, ....., &, are constants.
To determine a, put x = X, and y =y, in (2.7), we get
Yo = 8y(Xg = X) (Xg = X) wvov (% —X%,)
_ Yo
= %= (Xo = %1) (Xg = Xp) evee (Xg = Xp)
Similarly to determine a, put x = x; and y =y, in (2.7), we get
Y =8y (X = Xg) (Xg = X,) e (X, =x.)
Y1
(X = Xo) (X; = X5) ... (X, — X,

Proceeding in this way, we get

= al_

an = (x, — Xo) (x, — Xl) ...... (x, — Xn—l)
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Putting these values of a,, a,, ....., @ in (2.7), we get
(X=%X) (X=%;) e (x=x,)
(Xg = %) (Xg = X3) ... (Xo = Xp) °°
(X=Xg) (X =X%;) (X = X3) ... (x=x,) y
(X1 = Xo) (X; = X5) (X = X3) .. (X —X,) !
(X =Xo) (X=%X) (X = X3) ...... (X = Xp_1)
(Xn - XO) (Xn - Xl) (Xn - X2) ------ (Xn - Xn—l)
which is the Lagrange’s interpolation formula.

y=f(x) =

2.5. STIRLING’S DIFFERENCE FORMULA

The mean of Gauss’s forward difference formula and Gauss’s backward difference formula gives Stirling’s
difference formula

We have Gauss’s forward difference formula is
uu-1) , u+Hu(u-1)
Tar Mty A

N (u+l)u(u4—'l)(u—2) Al

Yu=YotUAY,+

Yoo F .(2.8)

and Gauss’s backward difference formula is

_ u(u+1) (U+Duu-1) U+2)(U+Yu(u-1)
Yo=Yt UAY .t 42 Azy_l + 2 3l A3 y,+ 40 A4y_2 +
(2.9)
The mean of (2.8) and (2.9) is
2_1) (Ay_, +A% ) L2(u2
_ (Ay +Ay7 ) u2 U(U l) ( y,]_ y72 u (U _l)
yu_y0+u%+zA2y_l+ 3 5 +TA4y_2+ .....

This formula is called the Stirling’s difference formula.

SOLVED EXAMPLES

Example 1. Given u, = 580, u; = 556, u, = 520, u, = —, u, = 384, find u,.
Solution. Let the missing term u, = X



26

ADVANCED MATHEMATICS

The forward difference table is

X U, Au, A%, Adu, Atu,
0 580
- 24
1 556 -12
-36 X—472
2 520 X —484 1860 — 4X
X =520 1388 - X
3 X 904 - 2X
384 - X
4 384

Here four values of u, are given. Therefore, we can assume u, to be a polynomial of degree 3 in x
A*u, =0 or 1860-4X=0
or X = 465.

Aliter: Here four values of u, are given. Therefore, we can assume u, to be a polynomial of
degree 3 in x

A*u, =0
or (E-ND*u,=0
or (E*-4C, E®+“C,E2-*C,E+1)u, =0
or E*u, - 4E3u, + 6E2 u, — 4Eu, +u, =0
or U ygn — 48U, 5, tOU 5 —4Uu ,  +Uu =0

Putting x =0 and h = 1, we get
u, —4uy + 6u, —6u, +u, =0

or 384-4X +6x520-6 %556 +580=0
or 1860 -4X =0 = X =1465.
Example 2. Estimate the missing term in the following:
X 1 2 3 4 5 6 7
y 2 4 8 — 32 64 128

Solution. Let X be the missing term. Since there are 6 values of y are given, then we have
ASy=0

or (E-1°y, =0
or (E6—6C1E5 + 6C2 E4—6C:3 ES + 6C4 E2—6C5 E+I) Yy = 0
or yx+6h_6yx+5h+ 15yx+4h_20yx+3h+ 15yx+2h_6yx+h Ty = 0

Putting x =1 and h = 1 in above, we get
y; — 6yg + 19y — 20y, + 15y, -6y, +y, =0
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or 128 -6%x64+15%x32-20X+15x8-6%x4+2=0
or 128 - 384 + 480 -20X+120-24+2=0
or 322-20X =0
X= 322 _ 16.1.
20
Example 3. Obtain the missing terms in the following table:
X 1 2 3 4 5 6 7 8
f (%) 1 8 — 64 — 216 343 512

Solution. Let X, and X, are the missing term. Here six values of f (x) are given. Therefore, we

can assume f (x) to be a polynomial of degree 5 in x

- ASF (x) = 0

or (E-Néf(x)=0

or (ES - 6C, E5 + 6C, E4 —6C,E® + 6C, E2 = 6C,E + I) f (x) = 0
or f(x+6h)—6f(x+5h)+15f (x+4h)—20 f (x+3h) + 15 (x + 2h) =6 f (x+h)+f (x)=0
()

Putting h =1 and x = 1, and 2 successively in (i), we get
f(7) -6f(6)+15f(5)-20f(4)+15f(3)-6F (2)+f(1)=0

and f(8)-6f(7)+15f(6)-20f(B)+15f(4)-6f (3)+f (2)=0

or 343 -6 x 216 + 15X, -20 x 64 + 15X, -6 x8+1=0

and 512 -6 x 343 + 15 x 216 - 20X, + 15x 64 -6X, +8=0

or 15X, + 15X, = 2280

and 20X, + 6X, = 2662
On solving, we have X, =27, X,=125

i.e., f(3)=27 and f(5)=125.

Example 4. Find the first term of the series whose second and subsequent terms are
8,30 -1,0.
Solution. Given

or

X 0 1 3 4
f (X) — 8 0 -1
There are 5 values of f (x) are given
Then we have A f(x)=0

(E-15f(x)=0
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or
or
or

or

or
or
or
or
or
or

(E5-5C, E*+5°C, E3 ~5C, E2+5C,E-°C, 1) f (x) =0
ES f (x) — 5E* f (x) + 10E3f (x) — 10E? f (x) + 5Ef (x) = f (x) = 0
f(x+5)-5f(x+4)+10f(x+3)-10f(x+2)+5f(x+1)-f(x)=0
Putting x = 0, we get
f(5)-5f(@4)+10f(3)-10f(2) +5f(1)-f(0)=0
0-5(-1)+10x0-10x3+5x8-f(0)=0 or f(0)=15.
Example 5. Given that u, + ug = 1.9243, u, + u, = 1.9590,
u, + U, = 1.9823, and u, + u, = 1.9956. Find u, .
Solution. Since there are 8 values of u, are given.
Then, we have ABu,=0 or (E-1®8u,=0
(E®-8C, E7+8C, E® - 8C, E® + 8C, E* - 8C, E® + ®C, E? - °C, E + °C, 1)y,
E8u, — 8E'u, + 28E°u, — 56E°u, + 70E*u, — 56E3u, + 28E%u, — 8EU, + U, = 0
Ug — 8u, + 28ug — 56U + 70 u, — 56u, + 28u, — 8u, + U, =0
(ug + Ug) = 8 (U, +uy) + 28 (ug + u,) — 56 (Ug + uy) + 70U, =0
1.9243 — 8 x 1.9590 + 28 x 1.9823 — 56 x 1.9956 + 70 u, = 0
70u, = 69.9969 or u,=0.9999.
Example 6. From the following table, find the number of students who obtain less than 45 marks.

Marks 30-40 40-50 50-60 60-70 70-80

No. of students 31 42 51 35 31

Solution. The difference table of the given data is as under

Marks No. of students Af (X) A% (%) A (X) A% (X)
Below 40 31
42
Below 50 73 9
51 -25
Below 60 124 -16 37
35 12
Below 70 159 -4
31
Below 80 190

X—a 45-40

Here h=10,a=40,x=45,u=
h 10
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By Newton-Gregory forward interpolation formula

u(u-1) uu-1u-2)
21

fx=f@+uAf(@+—— 31

A%f (a) +
(0.5) (0.5—1) (0.5 - 2)

f (45) = f (40) + 0.5A f (40) + 31

(0.5) (0.5—1)
21

A f (40) + A3 f (40)

, (05)(05-1)(05-2)(05-3)
41

A% (40)

=31+0.5x%42 +

(0-5)(—0.5) , (0.5) (-05) (-1.5) ‘ 25)+(05)( 0.5) (1.5) (- 25)
2 6 24

=31+21-1.125-1.563 -1.445
f (45) = 47.867.
Example 7. Using Newton’s forward difference formula find the value of f(1.6) if

X 1 14 1.8 2.2
f (X) 3.49 4.82 5.96 6.5
Solution. The difference table of the given data is as under:
X f (%) Af (X) A%f (X) A3f (X)
1 3.49
1.33
14 4.82 -0.19
1.14 -041
1.8 5.96 -0.6
0.54
2.2 6.5
_ 3
Here a=1,h=0.4, x:1.6thenu:&41: 5 =15
By Newton-Gregory forward formula
u-1 uu-1)(u-2
f(x)y=f(@+uAf(a)+ (2 ) Mﬁf(a)h...
5-1 15(15-1)(15-2
f(1.6):f(1)+1.5Af(1)+%A2f() ( )( )
:3.49+1.5><1.33+15X05(—019) 15x05x(=05) 4 49y
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=3.49 + 1.995 - 0.07125 + 0.025625
f(1.6) = 5.439375
Solution by using of Backward Interpolation Formula
The backward difference table of the given data is as under

X f (%) Vi (X) V2t (x) V3£ (x)
1 3.49

1.33
1.4 4.82 -0.19

1.14 -041
1.8 5.96 -0.6

0.54
2.2 6.5

Herex=1.6,a+nh=22,h=04then u=

X—(a+nh) 16-22 -0.6

By Newton-Gregory backward formula

f(1.6)=f(2.2) + (- 1.5) x 0.54 + w (-0.6) +

1
f(a+nh+hu):f(a+nh)+qu(a+nh)+@

=6.5-0.81-0.225 - 0.025625

f (1.6) = 5.439375.
Example 8. The population of a town in the decennial census were as under estimate the popu-

lation for the year 1895 and 1925.

0.4

V2 £ (a+ nh)

N uu+1) (u+2)

0.4

(-1.5) (-1.5+1)(~1.5+2)

15

V3f(a+nh)+

3!

Year x

1891

1901

1911

1921

1931

Population f(x)
(In thousands)

46

66

81

93

101

(- 0.41)
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Solution. The difference table of the given data is as under:

X y =f(x) Af (X) A%f () A3f (x) A (X)
1891 46
20
1901 66 -5
15 2
1911 81 -3 -3
12 -1
1921 93 -4
8
1931 101
(i) Here a=1891, h =10, x = 1895, u = —18951_01891 = % =04

By Newton-Gregory forward formula,

f(x):f(a)+uAf(a)+% A2f (a) +WA31‘(51)
L, uu-1 (u4—! 2) (u-3) A+ i
f (1995) = f (1891) + 0.4A f (1891) + W A% f (1891)

L OO4-D(04-2) 0o, (0.4) (0.4 —1) (0.4 — 2) (0.4 — 3)

4
N . A*f (1891)

(0.4) (- 0.6) (— 1.6)
3!

, (0.4)(-06) Lﬁ 16)(-28) g

:46+(0.4)><20+W(_5)+ 2)

=46 +8+ 0.6 + 0.128 + 0.1248 = 54.8528

(ii) Again here a=1891, h =10, x=1925, u= %_01891 =34
Put these values in (i), we get
34)(3.4-1
f (1925) = f (1891) + 3.4 A f (1891) + G4 E4-1) A? f (1891)

2!
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(3.4) (3.4 —1) (3.4 — 2)(3.4 - 3)

L, 34)(34-1(34-2)

3 4
3 A3 f(1891) + T A* f(1891)
34x24 34x24x14 34x24x14%x04
=46 +3.4 %20+ X (=5)+ ——————(2) + -3)
2! 3! 41
=46 + 68 — 20.4 + 3.808 — 0.5712 = 96.8368.
Solution by using Backward Interpolation Formula
The backward difference table of the given data is as under
X y = f(x) Vi(x) V2(x) V3 f(x) V4(x)
1891 46
20
1901 66 -5
15 2
1911 81 -3 -3
12 -1
1921 93 -4
8
1931 101
1895-1931 -36
(i) Here (n+hu) =1931, h=10, x=1895 then u = = =-36

10 10

By Newton-Gregory backward formula, we have

f(a+nh+hu):f(a+nh)+qu(a+nh)+wsz(a+nh)

uu+1) (u+2)
MY

N uu+1)(u+2)(u+3)

V3 f (a+nh) T

V4f(@a+nh)+ ...

(~3.6) (- 3.6 +1)

f (1995) =  (1931) + (- 3.6) x V f (1931) + 2! virassy
, (-36)(-36 ; D(=36+2) gs (1931
, (£36)(-36+1)(-36+2)(-36+3) . (1931)

41
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=101+ (-3.6) x 8+ o 3

, (-36) (- 2.621 (l— 16)(=06) _s

=101 - 28.8 — 18.72 + 2.496 — 1.1232 = 54.8528
f (1995) = 54.8528.
n+hu=1931, h = 10, x = 1925

X—(a+nh) _1925-1931 -6

(i) Again here

(-36)x(-26) _,, (-36)(-26)(-16)

-1

Then u= —=-06
h 10 10
By Newton-Gregory formula, we have
-06)(-06+1
f (1925) = f (1931) + (- 0.6) V f (1931) + (£06) (2' ) V2§ (1931)
. (-0.6) (- 0.6;1) (-06+2) V3 (1931)
-06)(-06+1)(-06+2)(-06+3
, (£06) (06 )(4| t2)(208+3) it 193
-0. : —0.6)(0.4) (1.4
=101+ (- 0.6) x 8 + (00)x(04) 06)21‘(04) (—ay+ )(3' ACONE
N (- 0.6)(0.4) (1.4) (2.4) < (-3)
41
=101 -4.8 +0.48 + 0.056 + 0.1008 = 96.8368.
Example 9. From the following table, find the form of the function f (x).
X 0 1 2 3 4
f(x) 3 6 11 18 27
Solution. The difference table of the given data is as under:
X f(x) Af(X) A?f(xX) A3f(X) A*(X)
0 3
3
1 6 2
5 0
2 11 2 0
7 0
3 18 2
9
4 27
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x—0
=X

Here a=0,h=1u=

By Newton-Gregory formula

f(X):f(a)+uAf(a)+%Azf(a)+w

:f(0)+XAf(O)+%A2f(O)+W
x(x —1)
21

2

=3+x.3+

f(x)=x2+2x+3.
Example 10. Use Lagrange’s interpolation formula to find y when x = 2 given.

X

0

1

3

4

y

5

6

50

105

Solution. Here  x,=0, x=1, Xx,=3, Xx;=4
and Yo=5 VY,=6, y,=50, y,=105

Putting x = 2 and above values in the Lagrange’s formula, we get
2) = 2-)(2-3)(2-4) y 2-0)(2-3)(2-4) CE s 2-02-1n(@2-4 5
K= 0-D(0-3)(0-4 1-0)21-3)(1-4) B-0)(B3-1)(B-4)
N 2-02-1)(2-3) X 105
4-0)(4-1)(4-3)

_ Ix(=D)x(=2) +2><(—l)><(—2)x6+2><l><(—2)x +2><l><(—l)x105
D) x(-3)x(—4) Ix(-2)x(-3) 3x2x(-1) 4x3x1
__lo , 100 105 -10+48+400-210
12 3 6 12 -
Example 11. The value of x and y are given as below:
X 0 1 2 5
y 2 5 7 8

Find the value of y when x = 4.
Solution. Here X, =1,
and Yo=2, ¥,=5 VY,=7, y,=8

X, =0, X,=2, X3=5
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Putting x = 4 and the above values in Lagrange’s formula, we get
4-1)(4-2)(4-5) <24 (4-0)(4-2)(4-5) 5+ 4-0)(4-1)(4-5) y

r@= (0-1)(0-2)(0-5) 1-0(1-2)(1-5) 2-0)(2-1)(2-5)
. 4-0014-H@4-2 y
(5-00(5-1)(5-2)
_ 3x2x (-1 9 4 4x2x(-1) y +4><3><(—l)x +4><3><2x
(=) (-2)(-5) 1x (1) (- 4) 2x1x(-3) 5x4x3
_ 6 16 _6+20+16 42 _
‘§+(‘1O)+14+€‘75 —5—8.4
f(4)=8.4.
Example 12. Find the value of y at x = 5 given that:
X 1 3 4 8 10
y 8 15 19 32 40

Solution. Here  x,=1, x, =3, x,=4, x=8 x,=10
and Yo=8, y,=15 y,=19, y,=32, y,= 40
Putting x = 5 and the above values in Lagrange’s formula, we get

_(5-3)(5-4(5-8)(5-10) , 4, (5-1)(5-4)(5-8)(5-10) « 15

e (1-3)(1-4)(1-8)(1-10) B3-1)(3-4)(3-8)(3-10)
, 6-D(6E-3(5-8(5-10) o (5-1(5-3)(5-4)(5-10) .,
(4-1)(4-3)(4-8)(4-10) (8-1) (8-3)(8—4)(8-10)
(5-1)(-3)(5-4(-8) % 40

(10 -1) (10 — 3) (10 — 4) (10— 8)

B 2Xx1x(-3)x(-5) « 84 4x1x(-3)x(-5) % 15

T (=2 x (=YX (=T)x(-9) 2x (=) % (=5)%(=7)

4x2x(-3)x(-5) 4x2x1x(=5) 4x2x1x(=3)

P axIx(-)x(-6) 1T 7xsxaxc2) P oxrxexz O

_40 90 95 32 80 _ 40 58 95
e e T et
63 7 3 7 63 63 7 5
f (5) = 22.746.
Example 13. Apply Lagrange’s formula to find the cubic polynomial which includes the follow-

ing values of x and y.

X 0 1 4 6

Y, 1 -1 1 -1
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Solution. Here  x,=0, x, =1, x,=4, X;=6
and Yo=1, y;=-1, y,=1, y,=-1
Putting the above values in Lagrange’s formula, we get
f(x):(x—l)(x—4)(x—6)1 (x=0) (x —4)(x—6) (1) + (x=0)(x-1)(x-6)
(0-1)(0-4)(0-6) @1-0@1-4@1-6) 4-0(4-1)(@4-6)
N x=-0(x-1D(x—-4)
(6-0)(6-1)(6-4)

-1

1
=_1 [x3 — 11x% + 34x — 24] — -— [x3 - 10x? + 24x] - i[x3 — 7x% + 6X]
24 15 24

- % [x3 — 5% + 4x]

=l 30 19,04
6 3
Example 14. Using Lagrange’s method, prove that
Y3 = 0.05 (Y, +¥g) = 0.3(y; +Ys) + 0.75(y, +y,).
Solution. Here  x,=0,%x, =1,X,=2,X;=4,X,=5,X=6
and their corresponding values of function are given by y,, ;. ¥,, Y, Y5 and y
Now using Lagrange’s formula, we have
_(x=D(x=2)(x=H) (x=5) (x=6) , (x=0)(x=2)(x=4)(x=5)(x-6)
KT 0-1)(0-2)(0-4(0-50-6) 0 @-0)@-2)A-4) (-5 1-6)
(x 0O(x-D(x—-4)(x-5)(x—6) (x=0)(x=1) (x=2)(x—=5) (x—6)
(2 0)(2-1)(2-4)(2-5)(2-6) Y2 (4-0)(4-1)(4-2)(4-5)(4-6)
(x 0O(x-D(x-2)(x—4)(x—-6) xX=-0)(x-1)(x-2)(x—4)(x-5)
(5 0)5-)(5-2)(5-4)(5-6) Ys ¥ (6-0)(6-1)(6-2)(6—-4)(6-5)

To find y,, so putting x = 3 in above, we get

o %% 8 1
Y3~ oa0Y0 " e0 V1T ag V2T ag YaT g0 Y5 T 4076

1

1
20
=0.05 (y, +Yg) — 0.3 (y, +ys) + 0.75(y, +y,). Hence proved.

oY)~ 019+ 30+ )
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Example 15. Use Stirling formula to compute u,, ,

from the following data.

X 10 11 12 13 14
10%u, 23967 28060 31788 35209 38368
. . .. . . 122-12
Solution. Here h = 1. Now taking 12 as origin, the required value of u isu = —1 =0.2
The difference table is as under:
X u Yy Ay, A%y, A3y, A%y,
10 -2 23967
4093
11 -1 28060 - 365
3728 58
12 0 31788 - 307 -13
3421 45
13 1 35209 - 262
3159
14 2 38368
Stirling formula is
_ (Ayp +Ay,) U u’® -1) u2(u? - 1)
yu—yo + U # +ZA2y +T(A3y_l+A3y_2)+ T A* _2+ .....
0.2(3421+3728)  (0.2)? 0.2)((0.2)* -1
=31788 + ( > )+( ) (—307)+%(45+58)
2 2
. (0.2)°((0.2)* -1) - 13)
41
=31788 + 714.9 - 6.14 — 3.296 + 0.0208
= 32493.4848.
Example 16. Use Stirling formula, to compute log 337.5 from the following data.
X 310 320 330 340 350 360
log,, x 2.4913617 2.5051500 2.5185139 2.5314789 2.5440680 2.5563025

Solution. Here

10

=0.75

h = 10. Now taking 330 as origin, the required value of u is
U= 337.5-330
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The difference table is as under:

X u Yy Ay, A%y, A3y, A%y, Ady,
310 -2 2.4913617
0.0137883
320 -1 2.5051500 —0.0004244
0.0133639 0.0000255
330 0 2.5185139 —0.0003989 —0.0000025
0.0129650 0.0000230 0.0000008
340 1 2.5314789 —0.0003759 —0.0000017
0.0125891 0.0000213
350 2 2.5440680 —0.0003546
0.0122345
360 3 2.5563025
Stirling formula is
Jymypru BTN U D) (8 P A SO Yoot

=2.5185139 + (0.75)

2

2!

3!

2

(00133639 + 0.0129650) _ (0.75)°

41

2

21
. (0.75) ((0.75)* - 1) (0.0000255 +0.0000230) , (0.75) ((0.75)°

(- 0.0003989)

3!

=2.52827374.
Example 17. Use Stirling formula to find y,, from the following data

2

41

=1 (0.0000025)

Y,o = 14.035, y,. = 13.674, y,) = 13.275, y,, = 12.734, y,, = 12.089, y,, = 11.309.

Solution. Here h =5. Now taking 30 as origin, the required value of u = 32 5 30 =04
The difference table is as under:
X u Yy Ay, A%y, A3y, A%y, Ady,
20 -2 14.035
-0.361
25 -1 13.674 —-0.038
—-0.399 —-0.104
30 0 13.275 -0.142 0.142
—-0.541 —-0.038 -0.211
35 1 12.734 —-0.104 —-0.069
—0.645 -0.031
40 2 12.089 -0.135
—-0.780
45 3 11.309
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Stirling formula is

WY, +8y) W Ul ) (By g Ay ) WD)

Ya=Yo ¥ 2 21 AYaT g, 2 41 -2

_ _ 2
- 13.275 + (0.4) . 0'3992 0541) (0‘;) (- 0.142) + )

%.4)2_1) (0.038 - 0.104j
2

. (0.4)? ((0.4)?
41

—Y) (0.142)

=13.275-0.188 - 0.01136 + 0.001848 — 0.0007952
= 13.07669.

1. Find the missing term in the following table:

X 1 2 3 4 5

y 2 5 7 — 32

2. Estimate the missing term in the following table.

X 0 1 2 3 4
f (%) 1 3 9 — 81

Given log 100 = 2, log 101 = 2.0043, log 103 = 2.0128, log 104 = 2.0170, find log 102.
4. Estimate the production of cotton in the year 1935 from the data given below (in millions of pales).

Year 1931 1932 1933 1934 1935 1936 1937
Production 17.1 13.0 14.0 9.6 — 12.4 18.2

5. Obtain the missing terms in the following table.

X 2 2.1 2.2 23 2.4 25 2.6
f(x) 0.135 — 0.111 0.100 — 0.082 0.024

6. The values of x and vy are given as below:

X 5 6 9 11
y 12 13 14 16

Find the value of y when x = 10.
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10.

11.

12.

13.

14.

15.
16.

17.

18.

Find u, given u, = 580, u, = 556, u, = 520 and u, = 385.

The following table gives the normal weights of babies during the first 12 months life:

Age in months 0 2 5 8 10 12
Weight in Ibs 7.5 10.25 15 16 18 21
Estimate the weight of the body at the age of 7 months.
Apply Lagrange’s formula to find f (x) at x = 1.50, using the following values of the function.
X 1.00 1.20 1.40 1.60 1.80 2.00
f(x) 0.2420 0.1942 0.1497 0.1109 0.0790 0.0540
Find the form of the function given by:
X 0 1 2 3 4
f(x) 3 6 11 18 27
Find the form of the function given by:
X 3 2 1 —1
f (x) 3 12 15 — 7l

Using Lagrange’s formula, prove thaty, =y, — 0.3(ys —Y_5) + 0.2 (Y 5~ Y_5).

. 1 1[1 1
Using Lagrange’s formula, prove that y, = > ,+ Y- 5[5 (Y3 —W1) — 7 (y_q— y_3)}.

Use Stirling’s formula to find f (28) given f (20) = 49225, f (25) = 48316, f (30) = 47236,
f (35) = 45926, f (40) = 44306.

Use Stirling’s formula to find f (35) given f (20) =512, f (30) = 439, f (40) = 346, f (53) = 243.

Find the value of y(5) from the following table using Lagrange’s interpolation formula.

X 1 2 3 4 7

y 2 4 8 16 128
Find f(3) by Lagrange’s interpolation formula from the following table.

X 0 1 2 4 5

f(x) 0 16 48 88 0
Find the value of sin 52° from the given table.
0° 45° 50° 55° 60°
sin 6 0.7071 0.7660 0.8192 0.8660
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19. Find the number of men getting wages between Rs 10 and Rs 15 from the following table.

Wages in Rs 0-10 10-20 20-30 30-40
Frequency 9 30 35 42

20. From the following table, find y when x = 1.25.

X 1 1.5 2.0 2.5
y 4.00 18.25 44.00 84.25

21. Find the value of the area of the circle of diameter 82 from the following data.

D(Diameter) 80 85 90 95 100

A(Area) 5026 5674 6362 7088 7854

22. Find the value of f (1.5) and f (7.5) from the given table.

X 1 2 3 4 5 6 7 8

f(x) 1 8 27 64 125 216 343 512

23. From the following table, find the form of the function f (x).

X 3 5 7 9 11

f (X) 6 24 58 108 174

24. It I, represents the number of persons living at age x in a life table, find as accurately as the data will
permit the value of |,;. Given that I, = 512, I, = 439, |,, = 346, I, = 243.

ANSWERS
1. 14 2.31 3. 2.0086 4. 6.609 5. 0.123, 0.090
. 1467 7.465.25 8.15.7 Ibs 9.0.1295 10. X2 +2x +3
11 x*-9x? + 17x + 6 14. 47692 15. 395 16. 32 17. 84
18. 0.788003 19.15 20. 9.875 21. 5280

22. 3.375, 421.87 23.2x°-7x+9 24. 274.



CHAPTER 3

Solution of Linear Simultaneous
Equations

INTRODUCTION

Simultaneous linear equations occur in the field of science and engineering like as analysis of a network
under sinusoidal steady-state condition, determination of the output of a chemical plant and finding the
cost of reaction, the analysis of electronic circuits having a number of invariant element etc.

We solved the system of simultaneous linear equation by matrix method or by Cramer’s rule.
But these methods are fail for large system. In this chapter we discuss some direct and iterative method
of solutions.

3.1. LINEAR EQUATIONS

Let us consider m first degree equations in n variables

Ay Xy +apXy +. +a,X, =b
Ay Xy + ApXy + . +a,,X, =D,

Ay X+ 8y, Xy e+ A X, = by

The system of above equations can be written in the matrix form as follows

A Ay e an || X b,
Ay Ayy e n || X2 | b,
Apy Apy e amn || X, b,
le., AX=B
Xy b,
Xz b,
where A= [aij]mxn, X=|.[,B=].
Xn bm

42
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The system of equations given above is said to be homogeneous if all the b, (i=1, 2 ..... m) are
zero. Otherwise, it is called as non-homogeneous system. The solution of such equations can be obtained

by
1. Determinant method
2. Matrix inversion method
3. Direct methods
(i) Gauss elimination method  (ii) Gauss-Jordan method  (iii) Triangularization method
4. Indirect methods
(i) Tacobi iterative method (i) Gauss-Seidel iterative method (iii) Relaxation method
But in the present chapter we shall discuss only Gauss elimination and Gauss-Seidel method.

3.2. GAUSS ELIMINATION METHOD

In this method, the unknowns from the system of equations are eliminated successively such that system
of equations is reduced to an upper triangular system from which the unknowns are determined by back
substitution. We proceed stepwise as follows.

Consider the system of equations

A Xy + Xy o +a,,X, =b,
Ay Xy +AyXy + . +a,,X, =h,
: : S ..(3.1)
B Xy + Ay, Xy F e + a8 X, = by,

Step 1. To eliminate x, from the second, third .... nth equation
Assuming a,, # 0. The variable x, eliminated from second equation by subtracting % times the
11

first equation from the second equation, similarly we eliminate x, from third equation by subtracting

il times the first equation from the third equation, etc. We get new system of equation as
11

A Xy FapXy + .. +a,X, =b
DX, +..nn +b,.x, =b;
DXy +.... + by, X, = bg ..(3.2)

Step 2. To eliminate x, from the third, fourth ...... nth equation

b
Assuming b,, # 0. The variable x, eliminated from third equation by subtracting bﬁ times the

22
second equation from the third equation, similarly we eliminate x, from fourth equation by subtracting

by,

b times the second equation from the fourth equation etc. We get new system of equation as
22
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A Xy F Xy + A3Xg .. +a,X, =D
’
Dy, Xy +0psXg + .. +Db,,X, =b;
CazXg +.uve +C3p X, = by ..(3.3)
CraXg +.ven + Con X = by

Proceeding in the same way we eliminate x, in third step, we eliminate x, in fourth step and so

on. We get new system of equation as

Ay Xy + Xy +aXg .o +a,X,=b
Doy Xy 4+ DygXg + ... +b,.x, =b;
CaaX3 +.oun. +C3p X, =hJ ..(3.4)
A X = brswmil)
To evaluate the unknown
The value of x, X, ..... X are given by (3.4) by back substitution.
3.3. GAUSS-SEIDEL METHOD
Let us consider a system of n equation in n variables in which a;, # 0
Ay Xy + Xy F e +a,,X, =b
Ag Xy + AgXy . +a,,X, =D,
Ag Xy + AgXy e + ag, X, = b, ..(3.5)
A Xy + App Xy + o + a,,X, =b,
Above equation can be written as
1
X, =—[b; —a;,X; — agXgeen. Ay X, ]
11
1
Xy, =——[b, —a,X; —ayXg ... .. aynXn]
22
1 3.6
Xz =——[b; —ag X, —agHX, ...... agnXn ] (3.6)
33
1
Xp=——[by —ayX; =Xz ... 8n(n-1)Xn-1
nn
Put the first approximations Xfl), X;(_,l), ...... : Xr(]l) in R.H.S. of first equation of (3.6), we get
1
2 1 1 1
X2 = b, —a,xP —axP ... a,xP]

Ay
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Now put x®& x® x{...... x& in RH.S. of second equation of (3.6), we get

1
2 2 1 1
xP) = —[b, —ayx? —ax{P ......a,,xP]
22
Now put x{2, x2, x®,......, x® in R.H.S of third equation of (3.6), we get
put X; 2 3 n q g
1
2 2 2 1
X = [by — agyx? —a,x? ... a,xP]
33

@) %@, x@,

Proceeding in the same way put X; in the last equation of (3.6), we get

1

2 2 2 2

Xr(1 J=— [b, — anlxl( ’ - an2X£ LB an(n—l))(r(mf)l]
nn

This is the first stage of iteration

The whole process is repeated till the values of x X, are obtained to desired accuracy

Xy vevene
ll 2! )
Gauss-Seidel method is also known as a method of successive displacement.

SOLVED EXAMPLES

Example 1. Solve by Gauss’s elimination method the following:

X+ X, +2X; =4 (i)
X, +X, =X, =4 (i)
2X; = 3X, = 5X3 = =5 ..(iii)

Solution. Eliminating x, from second and third equation by subtracting 3 and 2 times of first
equation respectively, we get

X, X, +2X;=4 ..(1v)
2%, + 9%, = 16 (V)
SX, + 9%, =13 .(vi)

Again eliminating x, from (vi) with the help of (v). Divide (v) by 2 and then this equation is
subtracted after multiplies by 5 from (vi), we get

X;+ X, +2X; =4 .. (vii)
9
x2+§ X;=8 . (viii)
- % Xg =—27
or X, =2

3
Substitute the value of x, into (viii), we get

X2:8_2X2:_1
2
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and again substitute the values of x, and x, into (vii), we get
X,=4+1-4=1
Hence, the solutions of the equation are
X, =1, x2:—1,x3:2.
Example 2. Solve 2x; + 4x, + X; =3
X, +2X, — 2%, = -2
Xp =X, + X3 =6
by Gauss’s elimination method.
Solution. We can write the given equations in the following order

Xp =Xy + X3 =6 ()
2%, + 4%, + X, =3 ..(ii)
3X, +2X, = 2X;=—2 (i)

Eliminating x, from (ii) and (iii) equation by subtracting 2 and 3 times of first equation respec-
tively, we get

Xp =X, +X;=6 . (V)
BX, — X3 =-9 (V)
SX,—5%X; = =20 ..(vi)

Again eliminating x, from (vi) with the help of (v). Divide (v) by 6 and then this equation is
subtracted after multiplies by 5 from (vi), we get

Xp =X, +X;=6 <. (vii)
Bx, —X; =-9 . (viii)
X3=3
Substitute the value of x, into (viii), we get
-9+43
X, = 5 =-1

and again substitute the values of x, and x, into (vii), we get
X, =6-1+3=2
Hence, the solutions of the equation are
X; =2, x2:—1,x3:3.
Example 3. Solve 6x+3y+22=6
6x+4y+3z2=0
20x + 15y + 122 =0
by Gauss’s elimination method.
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Solution. First, divide first equation by 6, we get

1 1 :
X+Ey+§Z:1 (i)
6x+ 4y+3z=0 ..(ii)

20x + 15y +12z2=0 ..(iii)

Eliminating x from (ii) and (iii) equation by subtracting 6 and 20 times of first equation
respectively, we get

X+ 1 + 1 z=1 (iv)
2 y 37
y+z=-6 (V)
5y+%z:—20 (Vi)
Now eliminating y from (vi) by subtracting 5 times of (v), we get
X + E + l z=1 (V”)
2 Y 37
y+z=-6 .. (viii)
— = 1
3 z=10
or z=30

Substitute the value of z into (viii), we get
y=-6-30=-236
and again substitute the values of y and z into (vii), we get
1 1
X:l_E (—36)—§ (80)
or XxX=9
Hence the solution of the equations are
x=9,y=-36,2=30
Example 4. Solve the system of equation by Gauss-Seidel iteration method
83x + 11y —4z = 95
7x + 52y + 132 =104
X+8y+292=71
Solution. The given equation can be written in the iteration form as

X = 8_13 (95 - 11y + 42) (i)
-1 (104 - 7x - 13z) (i)
Y75

1
zZ= 29 (71 - 3x - 8y) ..(iii)
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Taking first xM =0, y@® =0, z® = 0 and put these values in (i), we get

1
x@ = — (95 - 11y® — 47
23 ( y )

=l @95-11x0+4x0)=2 =114
83 83
Put x@ =114, y® =0, zO = 0, in (ii), we get

1 1
@ = = (104 - 7x@ - 13zW) = — (104 -7 x 1.14 - 13 x 0
y& =5 ( X 20) = o ( )

_ 96.02 _ 185
52
Put x@ =1.14, y@ =185,z =0 in (iii), we get

1
7@ = — (71 - 3x®@ — gy
29 ( y)

1 52.78
=— (71-3x1.14-8x1. =—— =182
o5 (713 8% 1.85) = = 8
Now put x@ =1.14, y@ =185, 2 =1.82in (i), we get

1
x® = — (95 - 11 y@ + 470
23 ( y 1

1
X9 = = [95-11x 1.85+ 4 x 1.82]

81.93
=22 20,99
83
Put x(® =0.99, y@ =1.85, 2@ = 1.82 in (ii), we get

1 1
Y9 = = [104 - 7x9~13 29] = = [104 - 7 x 0.99 - 13 x 1.82]

= ﬂ =141.
52
Put x®) =0.99, y® =1.41, 7 =1.82 in (iii), we get

1
7@3) = — (71 - 3x®) — 8gy®
29 ( )

1
= (71-3x0.99-8x 141
59 ( )

56.75
=—— =1
29 95

Now put x® =0.99, y©® =1.41, z® =1.95in (i), we get

1
x@ = — (95 — 11y® + 4703
83 ( y )
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1
=— (95-11x1.41+4 x 1.95)
83
-1 (8729)=105
83 T
Put x@® =1.05 y® =141, z® =1.95in (ii), we get
1
y® = = (104 — 7x®) — 137(3))

1
= 25 (1047 x 1,05~ 13 x 1.95)

7]_3
= =1.37
52

Put x@® =1.05 y® =1.37,z0 =1.95in (iii), we get

1
@ == —3x(4 — gy®
z 29 (71 - 3x®) — 8y

—i(71 3x1.05-8x 1.37)
T 29 ' '

56.89
=—— =1
29 96
Here x® =105, y® =137, z4 =196

The values are sufficiently close to x(®, y®), z( respectively. Hence the solution is
x=1.05, y=1.37, z=1.96.
Example 5. Solve the following system of equation by Gauss-Seidel iteration method
10x+2y+z=9
2X+ 20y -2z =-44
—-2x+ 3y + 10z = 22
Solution. The given equation can be written in the iteration form as

1 .
=10 9-2y-2) (i)
I )
y_ 20 ( 4 —2X+ Z) ...(“)
l
(22 +2x - 3y) ..(iii)
Taking first xM =0, yD =0, z 1) = 0 and put these values in (i), we get
1 1 9
2= — _2(1)_ Ly = — -2 — =— =0.
X 10 (9 -2y — z(b) 10 9-2%x0-0) 10 0.9

Put x@ =0.9, y® =0, z® =0 in (ii), we get

1
y(2>:2—l0 (—44—2x(2>+2z(1>):2—0 (-44-2x09+2x0)
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—_8 509
20

Put x?=0.9, y@=-2.29, z =0 in (iii), we get
/0= 1 (2242x09-3x(229) = — (30.67) = 3.067
10 10
Now put x@ =0.9, y@ =-2.29 7@ =3.067 in (i), we get

1 1
@)= = (9_2y@ _ 72y = = (9_2 x (= 2.29) — 3.067
X 0 (9-2y %) 0 (9-2x(-2.29) - 3.067)

10513
© 10

Put x® =1.051, y@ =-2.29, zd =3.067 in (ii), we get

=1.051

y® = 2—10 (- 44 - 2 x x® + 20 = % (- 44 — 2 x 1.051 + 2 x 3.067)

1
= — (-39.968) =-1.99
20 ( )
Put x® = 1.051, y® = - 1.99, z® = 3.067 in (iii), we get

1
7® = = (22 + 2x® = 3y®
10 ( y)
1
=1 (22 + 2 x 1.051 — 3 x (- 1.99))

1
= — (30.072) = 3.007
10 (30.072) = 3.00

Now put x® =1.051, y® = —-1.99, z® = 3.007 in (i), we get

1
4 = — (9-2y® _ 70
X 10 (9-2y z8)

= (9o 2% (- 199) - 3.007) = o = 0,997
=19 O-2x (199 -3007) = =5 =0.

Put x® =0.997, y® =-1.99, 23 =3.007 in (ii), we get

1
(&) = — (= 44 — 2x&¥ ®
y 20 (— 44 — 2x*%) + 2z0))

1
= 55 (-44-2X0.997 + 2 x 3.007) = o+ (39.98) = - 1.99
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Put x =0.997, y® =-1.99, 24 = 3.007 in (iii), we get
(4)—i 22+2x-3 —i 22 +2x0.997 -3 1.99
z —10( X—Y)—lo( 997 - 3x (- 1.99))
1
=10 (29.964) = 2.99
Here x® =997, y® = -1.99, 2" =299

The values are sufficiently close to x®), y©®, z® respectively. Hence solution is
x=0997=1,2y=-199=2,27=299 = 3.

Apply Gauss’s elimination method to solve the following system of equations:

1 4x +x,+3x;=11 2.5x—y—-2z=142
3%, + 44X, + 2%, =11 x-3y-z=-30
2%, + 3%, + X, =7 2x—-y—-3z=-50
&, 2x+y+z=10 4. X+4y-z=-5
3x+2y+32=18 X+y-6z=-12
X+4y+9z=16 3X-y-z=4
5. 2x+3y-z=5 6. X, +Xx,+x,=10
4x+4y-3z=3 2%, + X, + 22X, = 17
2x=3y +22=2 3X; + 2%, + X5 = 17
Apply Gauss-seidel iteration method to solve the following system of equation:
7. 2Ix+6y-z=85 8. 2x+4y+z=3
6x + 15y + 22 =72 X+2y-22=-2
X +y+ 54z =110 X-y+z=6
9. 20x+y-2z=17 10. 17x, + 65x, — 13x, + 50x, = 84
3x+20y-z=-18 12x, + 16X, + 37%; + 18x, =25
2x =3y +20z =25 56x, + 23x, + 11x; — 19x, = 36

3%, = 5X, + 47, + 10x, = 18

ANSWERS
=1, X=1, X3=2 2.x=4107, y=15.77, z=23.79
x=7, y=-9 z=5 4.x=1647, y=-1140, z=2.084
x=1 y=2, 7= 6.x1=2, x2=3, x3=5

X=243, y=357, z=192 8.x=2, y=-1 1=3
x=1 y=-1, z=1 10. x, =5.34, x,=-524, x,=-183, x,=6.12

© N o w e



CuartER 4

Solution of Algebraic and
Transcendental Equations

4.1. ALGEBRAIC EQUATION

An expression of the form f (x) = ax" + a,x™ + a,x"2 + ... +a, x+a,=0a,#0

where all a,, a,, ...... , &, are constants and n is a positive integer, called an algebraic equation of degree
n, in X.

4x5 + 3x5+ 9x* + x3 + 3x— 6 = 0, x3 — x — 1 = 0 are the example of algebraic equation.

4.2. TRANSCENDENTAL EQUATION

An expression which contain some other functions such as exponential, trigonometric, logarithmic etc.
are called transcendental equation 3x — \/1+sin x =0, x log,, X = 72, cos x = x e* are the example of
transcendental equation.

4.3. ROOT OF THE EQUATION

The value of x which satisfying the equation f (x) = 0 is called the root of the equation.

The roots of the linear, quadratic, cubic, or biquadratic equations are obtained by available
methods, but for transcendental equation or higher degree equation can not solved by these methods
easily. So those types of equation can be solved by numerical methods such as bisection, secant, Newton-
Raphson, Regula-Falsi method etc.

In this chapter, we shall discuss only Regula-Falsi and Newton-Raphson method.
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4.4. NEWTON-RAPHSON METHOD

Let x = X, be an approximate value of the roots of the equation f (x) = 0 which is algebraic or transcen-
dental and let x, + h be the correct value of the corresponding root where h be a real number sufficiently
small. Then

f(x,+h)=0 ..(4.2)
Expanding by Taylor’s theorem
f(x +h):f(x)+£f'(x)+ﬁf”(x)+h—3f”’(x)+ =0
0 0+ RSPy o+ 3 Y

Since h is very small, so neglecting second and higher order terms, we get
f(x) +hf’(x)=0

= ——ﬂalsof'(xo);to
(%)
Thus, the first approximation of the root is given by
f(Xo)
X, =X, +h=x,—
PO T ()

Similarly taking x, as initial approximation, to be the better approximation of the root x, is
obtained as

x2:x1—M f/(xg) 20

f7(x;)
Proceeding in the same way we get better approximation of the root is given by
f(Xn)
=x — , 0,1,23..
Xn+l Xn f/(xn)
This is known as Newton-Raphson formula.
4.5. REGULA-FALSI METHOD
This is the oldest method for finding the real root of the equation Y Ao, f(Xo))
f (x) = 0. In this method we take two points X, and x, such that f (x)
and f (x,) are of opposite signs i.e., f (x;) f (x,) < 0. The root must lie X3
in between x,; and x; since the graph y = f (x) crosses the x-axis be- X, [ %
tween these two points. o X

Now equation of the chord joining the two points

. D(xs, f(x3))
Alx,, T (xy)] and B[x,, f (x))] is

C(xy f(x2))
B(xy, f(x4))




54 ADVANCED MATHEMATICS

y = f(xo) _ f(x1) = f(%)
X — Xq X, — Xg

(4.2)

In this method the curve between the points A [x,, f (x,)] and B[x,, f (x,)] is replaced by the chord
AB by joining the points A and B and taking the point of intersection of the chord with the x-axis as an
approximation to the root which is given by putting y = 0 in (4.2). Thus, we have

(X, = Xo)
=y _——07 _ f(X
2= )~ fxg)

If now f (x,) and f (x,) are of opposite signs, then the root lies between x; and x,. Then replace the
part of curve between the points A(x,, f (x,)) and C(x,, f (x,)) by the chord joining these points and this
chord intersect the x-axis then we get second approximation to the root which is given by

(X2 = Xo)
=y - ——=—9 _ f(x
570 o) T0g)

The procedure is repeated till the root is found to desired accuracy.

SOLVED EXAMPLES

Example 1. Find the real root of the equation x? — 5x + 2 = 0 by Newton-Raphson’s method.
Solution. Let f(X)=x?-5x+2=0 and f’(x)=2x-5 (i)
Now f(4)=42-5x4+2=-2

f(5)=52-5x5+2=2
Therefore, one real root lies between 4 and 5
By Newton-Raphson’s formula

NV 1)) _X_xﬁ—5xn+2_2xﬁ—5xn—xr’;’+5xn—2
T () " 2%, -5 2x, —5
2
Xp —2 .
X .4 = wheren=0,1,2,3, ... (T
n+l 2Xn _5 ( )
Take X, =4

Putting n = 0 in (ii), we get first approximation
2 _ 2 _ _
=02 _ 47 -2 1672 14,04
2%y -5 2x4-5 8-5 3
Again, putting n = 1 in (ii), we get second approximation

_ x -2 (46667)° -2 217780-2 19.7780

2 2x,-5 2x46667-5 93334-5 43334
Putting n = 2 in (ii), we get third approximation

(= X2—2 _ (45640)* -2 _208308-2 188308
° 2x,-5 2x(45640)-5 91281-5 41281

= 4.5640

=4.5616
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Putting n = 3 in (ii), we get fourth approximation

_ x2-2 (45616)2-2 208084-2 188084

X, = = = = =4.5616
2X,—5 2x45616-5 91232-5 41232

Here X, = x,. Thus, the root of equation x? — 5x + 2 = 0 is 4.5616.
Example 2. Find the real root of the equation x3 — 3x — 5 = 0 by Newton-Raphson’s method.

Solution. Let f(x)=x*-3x-5=0 (i)
then f/(x)=3x?-3

Now f(2)=23-3x2-5=-3
and f(3)=33-3x3-5=13

Therefore, one real root lies between 2 and 3
By Newton-Raphson’s formula, we have

. oy f(Xy) oy Xa —3%, =5 _ 33 —3X, — X3 +3X, +5
LT (k) T 3x2 -3 3xZ-3
3
_ 2% *S wheren=0,1,2, 3, ... ..(ii)

1T g3
Take Xy =2

Putting n = 0 in (ii), we get first approximation

3 3
X, = 2xg +5 _ 2.22 +5:E - 23333,
3x; -3 32°-3 9

Again putting n = 1 in (ii), we get second approximation

‘= 2.x+5 2.(2.3333)°+5 30.4063 _s

,= 2 R 2804
3xZ -3 3.(23333)° -3 133333

Putting n = 2 in (ii), we get third approximation

o =2:%+5_2.(22804)° +5 287171 _

3 ) = > = 2.2790
3x; -3  3.(2.2804)° -3 12.6006
Putting n = 3 in (ii), we get fourth approximation
3 3
_2x3+5 _ 2.(22790)° +5 _ 286735 _ 2 2790

47 3x2-3  3.(22790)2 -3 125815

Here x, = x, therefore the root of the equation
x3 - 3x—5=01s2.2790.
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Example 3. Using Newton-Raphson’s method find the cube root of 10 correct to four places of

decimal.

Solution. Let f(x)=x*-10=0 (i)
then f/(x) =3x?

Now f(2)=22-10=-2 and f(3)=3*-10=17

then

Therefore, one real root lies between 2 and 3.
By Newton-Raphson’s formula, we have

3 _ 3_ 3
X . =% - f(Xn) =x - Xn 210:3xn x2+10
f7(x,) 3x;, 3x;,
2x3 +10 .
X1 =z — wheren=0,1,2,3, ... (i)
3X;

Take x,=2
Putting n = 0 in (ii), we get first approximation

_2x3+10 22°+10 26

X, = = === =2.1666
t3x? 322 12

Putting n = 1 in (ii), we get second approximation

‘= 2x; +10 _ 2(21666)° +10 30.3407 _

) 5 = =2.1545
3X; 3% (2.1666) 14.0824
Putting n = 2 in (ii), we get third approximation
2x3 +10 2.(21545)° +10 30.0018
Xy = > = 7 = =2.1544
3X; 3.(21545) 13.9256
Putting n = 3 in (ii), we get fourth approximation
3 3
. = 2x; +10 _ 2(21544)° +10 _ 29.9990 _ 2 1544

4 3x? 3.(21544)> 139247

Here x, = x, therefore the cube root of 10 is 2.1544.
Example 4. Find the real root of tan x = 4x by using Newton-Raphson’s method.

Solution. Let f(x)=tanx-4x=0 ()
f'(x)=sec?x-4=0
Now f(0)=0 and f(1)=-3.982

f (0) = 0 so exact root of f (x) =0 is 0
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By Newton-Raphson’s method, we have

f(x,) tan x, —4x, X, sec’ x, — tan x, .
Xne1 = Xy — 7 =X, - 2 = 2 ---(”)
(X)) sec” X, —4 sec” x, —4
where n=0,1,23, ...
Take x,=0.
Putting n = 0, we get first approximation
_ XgSec® Xo—tanx, 01-0 _ 0
! sec? x, — 4 1-4
Hence the root of tan x — 4x =0 is 0.
Example 5. Using Newton-Raphson’s method find the solution of e* = 3x.
Solution. Let f(x)=e*-3x=0 ()
then f'(x)=e*-3
Now f(0)=1 and f(1)=-0.28
Therefore root lies between 0 and 1
By Newton’s formula, we have
_ flx,) _ e —3x, x,e™ —3x, —e™ +3x,
X =X — =X, - =
n+1 n f,(xn) n exn -3 eJCn -3
Xp -1 ..
= %’13), wheren=0,1,2,3, ... ..(ii)
e —

Take x, = 0.
Putting n = 0 in (ii), we get first approximation
o (xg-1) e(0-1) -1
Xl:e X(XO ):eg ):_:0.5
e’ -3 e -3 -2
Again putting n = 1 in (ii), we get second approximation
e"(x,—1) €% (05-1) -0.82436
= = = = 0.61006
2T T3 e’ -3  —135127

Putting n = 2 in (ii), we get third approximation
e’ (x, —1) e”*%%(0.61006 -1) _ —0.71770

X, = = =0.61900
P e -3 g0 61006 _ 3 — 015945
Putting n = 3 in (ii), we get fourth approximation
3 (xg—1) e™%%(061900-1) - 0.70754
y =& - e ) _ 2070754 _ 61905

et -3 0 3 T -114293
Here x, = x,. Therefore, the root of equation * = 3x is 0.6190 Ans.
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then

and

Example 6. Find the real root of the equation 3x = cos x + 1 by Newton-Raphson’s method

Solution. Let f(x)=3x—-cosx—-1=0 (1)
f’(x)=3+sinx=0
Now f(0)=-2 and f(1)=3-cosl-1=2-0.5403 =1.4597

Therefore, root lies between 0 and 1
By Newton-Raphson’s formula, we have
« =y f(x,) x 3X, —C0Ss X, —1 _ X, sin X, +cos x, +1
M f(x,) " 3+sinx, 3+sin x,

(i)
Take X, =0.
Putting n = 0 in (ii), we get first approximation

Xo SiN Xy +C0S Xg+1  0sin0O+cosO+1 2
== _ =~ = 0.6666
3+sin x, 3+sin0 3

Putting n = 1 in (ii), we get second approximation
X, sinx; +cos x; +1  (0.6666) sin (0.6666) + cos (0.6666) + 1

X, =

2= 3+sinx, 3 +sin (0.6666)
_ 06666 > 0.6183+0.7859 +1 _ 0.4122 + 0.7859 +1
3+0.6183 3.6183
- 21381 _ 6074
36183

Putting n = 2 in (ii), we get third approximation
_ X sinx, +cosx, +1 (0.6074)sin (0.6074) + cos (0.6074) +1

3 3+sin x, 3+sin (0.6074)
_ 06074x 05707 +0.8211+1 03466 +0.8211+1 21677 _ 0.6071
B 3+0.5707 35707 © 35707

Putting n = 3 in (ii), we get fourth approximation
_ X3 Sin X3 +C0s Xy +1  (0.6071)sin (0.6071) + cos (0.6071) +1

4 3+5sin X, 3+5sin (0.6071)
_ 06071x 05704 +0.8213+1 0.3463+0.8213+1 21676 _ 0.6071
B 3+0.5704 3.5704 © 35704 '

Here x, = x, therefore, the root of 3x — cos x — 1 = 0 is 0.6071.
Example 7. Use the method of false position, find the real root of the equation x3 — 2x =5 = 0.
Solution. We have f(x)=x*-2x-5=0 (i)
Now f(2)=23-2x2-5=-1

f(3)=3%-2x3-5=16
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Therefore, one real root lies between 2 and 3
Takingx,=2andx; =3 = f(x))=f(2)=-1, f(x))=1(3)=16
Then by Regula-Falsi method, we get

X, =X, ——————— f(x)=2—-——— (- 1)
2700 R ()~ F(x) % T 16—(-1)
=2+ i=§ = 2.0588
17 17
Now f(x,) = (2.0588) = (2.0588)2 - 2 x (2.0588) — 5 by (i)
=-0.3910
Therefore, one real root lies between 2.0588 and 3
Taking x,=2.0588,x,=3 = f(x,) =f(2.0588)=-0.3910
f(x)=f(3)=16
Then by Regula-Falsi method, we get
X1 — X 3-2.0588
Xo =Xy — —————— T(Xy) =2.0588 - —— =" x(-~0.3910
3TT0T f(x) - f(xg) C 16 — (- 0.3910) ( )
= 2.0588 + 0.9412 x (0.3910) = 2.0588 + 0.02245 = 2.0812
16.391
Now f (x,) = f (2.0812) = (2.0812)3 - 2 x (2.0812) - 5 = - 0.1479

Therefore, one root lies between 2.0812 and 3
Taking x, = 2.0812, x, = 3
= f (x,) = f (2.0812) = - 0.1479, f (x,) = f (3) = 16
Then by Regula-Falsi method, we get
X, — Xo

%70 T (6 — (%)

f(xo)

=

5 op1p. 3720812 (-01479) _, o, 0.9188x (01479)
16 — (- 0.1479) 161479
= 2.0812 + 0.0084 = 2.0896
Now f (x,) = f (2.0896) = (2.0896)% — 2 x (2.0896) — 5 = — 0.0551

Therefore, one root lies between 2.0896 and 3
Taking X, =2.0896, x, = 3
f (x;) = (2.0896) = -0.0551, f(x,)=f(3)=16
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Then by Regula-Falsi method, we get

17X gy =00896- > 2080 (g 0551)
16— (— 0.0551)

%570 F (k) — F(xo)

0.9104
16.0551
Now f (x5) = f(2.0927) = (2.0927)3 - 2 x (2.0927) - 5 = — 0.0206
Therefore, one real root lies between 2.0927 and 3
Taking x, = 2.0927, x, = 3
f (x,) = f(2.0927) = - 0.0206, f (x,) =  (3) = 16
Then by Regula-Falsi method, we get

_ X1 — Xg _ 3-2.0927
Xe=Xg— ——L 20 f(x)=2.0927 - ——=""2°_ »(~0.0206
60 (xy) = F(X) () 16 — (— 0.0206) ( )

=2.0896 + % 0.0551 = 2.0896 + 0.0031 = 2.0927

0.9073
16.0206
Now f (x) = f (2.0938) = (2.0938)® - 2 x (2.0938) — 5 = — 0.0083
Therefore, one root lies between 2.0938 and 3
Taking x, = 2.0938, x, = 3
f (x,) = f(2.0938) = - 0.0083
f(x)=1(3)=16
Then by Regula-Falsi method, we get
X, — Xg 3-2.0938

X, =X — =t 20w f(x)=2.0038 - —>°°C % (-0.0083
TR0 (%) — F(Xo) (0 16 — (- 0.0083) ( )
0.9062

16.0083
=2.0938 + 0.00046 = 2.0942
Now f (2.0942) = (2.0942)3 — 2 x (2.0942) — 5 = — 0.0030
Therefore, root lies between 2.0942 and 3
Taking x, = 2.0942, x, = 3
= f (x,) = f(2.0942) = -0.0030, f(x,) =f(3) =16
Then by Regula-Falsi method, we get

=2.0927 +

x 0.0206 = 2.0927 + 0.0011 = 2.0938

=2.0938 +

% 0.0083

3-2.0942

X1 — Xp
Xq = X _ 2T eVIRe
16— (- 0.0030)

8700 f(xy) — f(xo)

0.9052
16.0030

f (xo) = 2.0942 — x (= 0.0030)

=2.0942 + % 0.0030 = 2.0942 + 0.00016 = 2.0943
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Here X, = Xg
Hence, the root is 2.094 correct to three decimal places.

Example 8. Determine the real root of the equation xe* = 2 using Regula-Falsi method correct
to three decimal places.

Solution. Let f(x)=xe*x-2=0
Now f(0)=0-2=-2
and f (0.5) = 0.5e5 — 2 = — 1.1756

f(0.7) =-0.5903
f(0.9) = 0.2136
Therefore, one real root lies between 0.7 and 0.9
Taking x, = 0.7, x, = 0.9
= f (x;) =f(0.7) =-0.5903, f (x,) = f (0.9) = 0.2136
Then by Regula-Falsi method, we get

X, — X
=0.7- 09-07 x (-0.5903) = 0.7 + 22 x(05903)
0.2136 — (— 0.5903) 0.8039
= 0.8469
Now f (x,) = f (0.8469) = (0.8469) €0846% — 2 = — 0,0247
Therefore, root lies between 0.8469 and 0.9
Taking x, = 0.8469, x, = 0.9
= f (x,) = (0.8469) = - 0.0247, f (x,) = f (0.9) = 0.2136
Then by Regula-Falsi method, we get
Xy =Xgm X0 f(y=07- 09708409 (0o
f(x) = f(xo) 0.2136 — (— 0.0247)
0.0531
=07+ 02383 x 0.0247 = 0.8524
Now f (x5) = f (0.8524) = (0.8524) %8524 — 2 = — 0.00089
Therefore, root lies between 0.8524 and 0.9
Taking x, = 0.8524, x, = 0.9
= f (x,) = f (0.8524) = - 0.00089, f (x,) = f (0.9) = 0.2136
X; — X 0.9-0.8524
Xy =Xg— m =0.8524 - 02136 — (= 0.00085) x (- 0.00089)
=0.8524 + 0.0476 x (0.00089) = 0.8526

0.21449
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Here X, =X,
Hence, the root is 0.852 correct to three decimal places.

1.

4.

Find the real root of the equation x* — x — 10 = 0, correct to three decimal places by Newton-Raphson’s

method.

By using Newton-Raphson’s method find the real root of the following equation:

(i) x*-x-13=0 (i) x*-5x+3=0
(iii)y x3—4x+1=0
Using Newton-Raphson’s method. Find the square root of 12 correct to three

places of decimal.

Using Newton-Raphson’s method obtain the real root of the following equation:

(i) x = 29 (i) x2+4sinx=0
(iii) x sin x + cos x =0 (iv) log x = cos x

Using Regula-Falsi method, obtain the real root of the following equation:
() x*-9%x+1=0 (ii)x?—2x-1=0
(iiiy x3-x?-2=0

Find a real root of the equation x? — log, x — 12 = 0, using Regula-Falsi method correct to three decimal

place.
Find real root of the following equation by using Regula-Falsi method:
xeX-3=0.

ANSWERS
1.85558 2. (i) 1.967 (ii) 0.6566 (iii) 0.254
3.4641 4. (i) 5.3852 (ii) - 1.9338 (iii) 2.798

(i) 2.9428 (ii) 2.4141 (iii) 1.6955 6. 3.6461

(iv) 1.3030
7. 1.046



CHAPTER D

Curve Fitting

INTRODUCTION

Curve fitting have a great importance in the field of statistics (not only theoretical but also practical)
Engineering and Science.

5.1. SCATTER DIAGRAM

Let (x;, y)):1=1,2...nbe nsets of numerical values of two variables Yt
x and y. If we plot these n sets on the graph then we get a diagram.
This resulting diagram is called the scatter diagram.
O >

5.2. CURVE FITTING

Let (X, ¥;) (X5, Yy) woo (X, y,) are the n numerical values of two variables x (independent) and y (de-
pendent). By the scatter diagram, we get an approximate relation between these two variables called
empirical law. Curve fitting means that relationship between two variable in the form of equation of the
curve from the given data. In other words, the method of obtaining an equation of best fit is called curve
fitting.
Methods of Curve Fitting

Following are some methods for fitting a curve:

1. Graphical method 2. Method of least squares

3. Method of group averages 4. Method of moments.

But in this chapter, we shall discuss only method of least squares for straight line and parabola.
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5.3. METHOD OF LEAST SQUARES

Let us consider a set of m observations (x;, y;) : i =1, 2, 3..... m of two variables x and y. We wish to fit
a polynomial of degree n. Assume that such curve is

y =a+bx +cx? + ... qx" of these values. ..(5.1)

In order to determine a, b, c ..... g such that it represents the curve of best fit. Now we apply the
principle of least squares so put X = X, X, ..... X, in (5.1), we get

y; =a+bx, +oxZ ... gx]
Y, =a+bx, +cxZ+ ...+ oxJ ..(5.2)

- 2 n
Yno=a+bx +cox s+ ... +ox]

where y/, y; ..... Y/ are the expected value of y for x = x, X, ..... X, respectively, which are other than
observed values y,, Y, ..... Yy, of y for x = x, X, ..... X, respectively. In general expected values and
observed values are different, the difference y; —y/; i =1, 2 ..... m are called residuals.

Let A=Z(y,—-y)>=Z[y,—(a+bx +ox?....gx")’;i=1,2...m.
The constanta, b, ¢ ..... g are choosen as the sum of squares of y,—y;;i=1,2 ... mis minimum.
Now for maximum and minimum

A _g A A
oa ab aq
On solving these equations, we get
ma + bIX + CIX? + ...+ qZxX" = Iy
axx + bIx? + cXx® + ...+ gZx"! = Ixy ..(5.3)

axx? + bZx3 + cZx* + ... + XX"2 = Tx%y

aXx" + bIx™ + cIx"™? + ..+ qZx?" = Xy
These equations are known as normal equations. On solving these normal equations, we get the
values of constants a, b, ¢ ..... g.
Note 1: If n =1, then the curve to be fitted is a straight line y = a + bx whose normal equations are
3y = ma + bxx
Xy = aXx + bEx?
which can be solved for a and b.

Note 2: If n = 2, then the curve to be fitted is a parabola of second degree y = a + bx + cx? whose normal
equations are Ty = ma + bEIx + cIx?

Xy = aXxx + bIx? + cxx®
X%y = axx? + bxxd + cxx*

which can be solved for a, b and c.
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5.4.

WORKING RULE TO FIT A STRAIGHT LINE TO GIVEN DATA BY METHOD
OF LEAST SQUARES

1)
2
3)

(4)
(5)

Let the equation of straight line be y = a + bx.
From the given data we calculate x, Xy, £x?, and Zxy.
Putting above values in normal equations
ma + bXx = Xy
aXx + bIx? = Ixy.
Solving equations (i) and (ii) for a and b.
Putting the values of a and b in y = a + bx we get equation of straight line of best fit.

0)
...(ii)

5.5. WORKING RULE TO FIT A PARABOLA TO THE GIVEN DATA BY METHOD

OF LEAST SQUARES

1)
2
3)

(4)
(5)

Let the equation of the parabola be y = a + bx + cx2.
From the given data we calculate Xx, Ty, x?, x3, Zx*, Xxy and Zx?y.
Putting above values in normal equations

ma + bIx + cIx? = Xy (i)
axx + bEx? + cZx® = Xxy (i)
azx? + bEx3 + cIx* = Tx?y. .. (iii)

Solving equations (i), (ii) and (iii) for a,b and c.
Putting the values of a and b in y = a + bx + cx? we get equation of parabola of best fit.

SOLVED EXAMPLES

Example 1. Fit a straight line y = a + bx, to the following data regarding x as the independent

variable by the method of least squares.

X 0 1 3 6 8

y 1 3 2 4 5

Solution. Let the equation of straight line be y = a + bx and the normal equations are:
ma + bXx = Xy
axx + bIx? = Ixy
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Now

X y D& Xy

0 1 0 0

1 3 1 3

3 2 9 6

6 4 36 24

8 5 64 40
>x =18 Yy =15 >x? =110  xy =73

Here m =5, ¥x = 18, Xy = 15, Ix?>= 110, Zxy = 73.
Put these values in normal equations

5a

+18b =15

18a + 110b = 73
On solving (i) and (ii), we get
a=1.488,b=0.420

Thus, the equation of straight line y = 1.488 + 0.42x.

()
.. (i)

Example 2. Fit a straight line to the following data regarding x as a independent variable.

X

1

2

3

4

5

y

5

7

9

10

1

Solution. Let equation of straight line be y = a + bx and the normal equations are:

Now

ma + bXx = Xy
axx + bIx? = Xxy
X y X2 Xy
1 5 1 5
2 4 14
3 9 27
4 10 16 40
5 11 25 55
>x =15 Sy =42 ¥x? =55 xy = 141

Here m =5, Ix = 15, Xy = 42, ¥x? = 55, Ixy = 141.
Put these values in normal equations, we have

5a + 15b = 42
15a + 55b = 141

0
...(ii)
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On solving (i) and (ii), we get
a=39 and b=15
Thus, the equation of straight line is y = 3.9 + 1.5x.
Example 3. Find a least squares straight line for the following data.

X 1 2 3 4

y 3 7 13 21

Solution. Let equation of straight line be y = a + bx and the normal equations are:
ma + bXx = Xy
aXx + bIx? = Ixy

Now X y & Xy
1 1 3
2 4 14
3 13 9 39
4 21 16 84
>x =10 Sy =44 >x? =30 >xy = 140

Here m = 4, x = 10, Xy = 44, £x? = 30, xy = 140.
Put these values in normal equations

4a +10b =44
10a + 30b = 140

On solving (i) and (ii), we get

a=-4 and b=6

Thus, the equation of straight line is y = -4 + 6x.

(i)
..(ii)

Example 4. Fit a straight line to the following data regarding x as the independent variable.

X

1

2

3

4

5

6

y

1200

900

600

200

110

50

Solution. Let the equation of straight line be y = a + bx and the normal equations are:

ma + bXx = Xy
azx + bIx? = Ixy
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Now

X y X2 Xy

1 1200 1200
2 900 1800
3 600 1800
4 200 16 800
5 110 25 550
6 50 36 300

>x=21 Yy = 3060 ¥x2 =091 ¥xy = 6450

Here m = 6, Ix = 21, Ty = 3060, Xx? = 91, Ixy = 6450.
Put these values in normal equations

6a + 21b = 3060
21a + 91b = 6450

On solving (i) and (ii), we get

a=1361.97 and
Thus, the equation of straight line is

b =-243.42
y =1361.97 — 243.42 x.

(i)
..(ii)

Example 5. Fit a polynomial of the second degree to the data points given in the following table.

X

0

1

2

y

1

6

17

Solution. Lety = a + bx + cx? be a parabola to be fitted for the given data and normal equations

are:

Now

Herem=3,3x =3, Xy =24, Xx? =5, 2x3 = 9, Ix* = 17, Xxy = 40, Ix% = 74.

ma + bXx + cIx? = Xy
aXx + bXx? + cXx® = Ixy
azx? + bxx3 + cxx* = Ix%y

X y X2 P x* Xy X2y
0 1 0 0 0 0 0
1 6 1 1 1 6 6
2 17 4 8 16 34 68
X =3 Sy=24| Ix*=5 x3=9 | IX*=17| Zxy=40| XXy =74
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are

Put these values in normal equations, we have
3a+3b+5c=24 (i)
3a+5b+9c=140 ..(ii)
5a+9b+17c =74 ..(iii)
On solving (i), (ii) and (iii), we get a=1,b=2,¢c=3
Thus, the equation of required parabola isy = 1 + 2x + 3x2.
Example 6. Find the values of a, b and ¢ so that y = a + bx + cx? is the best fit to the data.

X 0 1 2 3 4

y 1 0 3 10 21

Solution. Lety = a + bx + cx2 be a parabola to be fitted for the given data and normal equations

ma + bZx + cIx? = Xy
aXx + bXx? + cx3 = Zxy
axx? + bIx® + cIx* = Ix?y

Now X y X2 5 S Xy X2y
0 0 0 0 0
1 1 1 0
2 4 8 16 6 12
3 10 9 27 81 30 90
4 21 16 64 256 84 336
Ix=10 | Zy=35| Xx*=30 | =x3=100| =x* =354 | Ixy = 120| =x?y = 438

Here m =5, £x = 10, Xy = 35, =x? = 30, x3 = 100, x* = 354, Xxy = 120 and Zx%y = 438
Put these values in normal equations, we have
5a + 10b + 30c = 35
10a + 30b + 100c = 120

30a + 100b + 354c = 438

On solving (i), (ii) and (iii), we get a =1, b =-3, ¢ = 2 and equation of parabola

y=1-3x+2x%
Example 7. Fit a second degree parabola to the following data x as the independent variable.
X 1 2 3 4 5 6 7 8 9
y 2 6 7 8 10 1 11 10 9
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Solution. Let equation of second degree parabola be y = a + bx + c¢x? and the normal equations are

ma + bIx + cIx? = Xy
aXx + bIx? + cIx3 = Ixy
azx? + bxx3 + cxx* = Ix%y

Now X y X2 x3 s Xy X2y
1 2 1 2 2
2 6 4 8 16 12 24
3 7 27 81 21 63
4 8 16 64 256 32 128
5 10 25 125 625 50 250
6 11 36 216 1296 66 396
7 11 49 343 2401 77 539
8 10 64 512 4096 80 640
9 9 81 729 6561 81 729

Xx =45 Ty =74 | Zx?=285|Xx3 = 2025 Zx* = 15333| Xxy = 421| =x%y = 2771

Here m =9, Ix = 45, Xy = 79, Xx? = 285, Xx3 = 2025, Ix* = 15333, Xxy = 421 and Xx%y = 2771

Put these values in normal equations, we have

9a + 45b + 285¢c = 74 ()
45a + 285b + 2025¢ = 421 (i)
285a + 2025b + 15333c = 2771 (i)
On solving (i), (ii) and (iii), we get =-0.923,b=3.52,¢c=-0.267

Thus, the equation of parabola is y = — 0.923 + 3.52x — 0.267x2.

1.

2. Find a least squares straight line for the following data:

Find a least squares straight line for the following data:

X 1 2 3 4 5 6
y 6 4 3 5 4 2

X 0 1 2 3 4
y 1.0 2.9 48 6.7 8.6
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3. Show that the line of best fit to the following data is given by

10.

X 6 7 7 8 8 8 9 9 10
y 5 5 4 5 4 3 4 3 &
Find the best values of a and b so that y = a + bx fits the data given in the table.
X 0 1 2 3 4
y 1 1.8 3.3 45 6.3
Obtain the least squares straight line fit to the following data:
X 0.2 0.4 0.6 0.8 1
f (X) 0.447 0.632 0.775 0.894 1
Fit a linear curve to the data {(x, y): (1, 1) (2, 5) (3, 11) (4, 8) (5, 14)}.
Fit a second degree parabola to the following data taking x as independent and y as dependent variable.
X 1 2 3 4 5 6 7 8 9
y 2 6 7 8 10 11 11 10 9
Fit a parabolic curve to the following data x as the independent variable.
X 1 2 3 4 5
y 6 17 34 57 86
Find the least squares approximation of second degree for the discrete data.
X -2 -1 0 1 2
f(x) 15 1 1 3 19
Fit a parabola y = a + bx + cx? in least square sense to the data.
X 10 12 15 23 20
y 14 17 23 25 21
ANSWERS
y =5.799 — 0.514x 2. y=1+1.9% 3. y=8-0.5x 4. y=0.72 + 1.33x
5. f(x) = 0.3392 + 0.684x 6. y= —% +% X 7. y=—1+3.55x - 0.27x?
y =1+ 2x+3x? 9. f(x) = 037 +3E:>’>);+155X2

10. y =-8.89 + 3.03x — 0.07x2.
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Unit II

NUMERICAL ANALYSIS-II

In this unit, we shall discuss numerical differentiation, numerical integration and
numerical solution of ordinary differential equation of first order.

The chapter first deals with differentiation of function is solved by first approxima-
tion with the help of interpolation formula and differentiating this formula as many
times as required.

The chapter second deals with integration of function by Trapezoidal rule,
Simpson’s “1/3” rule and Simpson’s “3/8” rule.

Chapter third deals with solution of ordinary differential equation of first order by
Euler's method, Euler’s modified method, Picard’s method, Milne’s method, and
Runge-Kutta method.
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Cuarter 1

Numerical Differentiation

INTRODUCTION
Numerical differentiation is the process of obtaining the value of the derivative of a function from a set

of numerical values of that function

1. If the argument are equally spaced.
(a) We will use Newton-Gregory forward formula. If we desire to find the derivative of the

function at a point near to beginning.
(b) If we desire to find the derivative of the function at a point near to end then we will use

Newton-Gregory backard formula.
(c) If the derivative at a point is near the middle of the table we apply stirling difference formula.

2. Incase the argument are unequally spaced then we should use Newton’s divided differenc formula.

1.1. DERIVATIVES USING FORWARD DIFFERENCE FORMULA

We have Newton’s Gregory forward difference formula

u(u-1) uu-1)(u-2
y:yo+UAyo+T Ay, + %My(ﬁ ...... ..(1.1)
where u=2*"% ..(1.2)
Differentiating both sides of (1.1) w.r.t. x, we get
dy d uu-1) , uu-2)(u-2) 3
dx—dx{yo+uAy0+ | AyO+TA Yo toeen
_ (u-1) ,  3u?-6u+2 , du
_|:Ay0+ 21 AyO +TA y0+ ..... d_x (13)
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But by (1.2 ﬂ—i

ut by (1.2) x T

Putting in (1.3), we get
dy_l{Ayo_FZu—l

dx h
At x=a = u=0thenfrom (1.4), we get

Ay +———— Ny, +..... ..(1.4)

dyj i[ 1., 1 4 1, }

= =AYy — =AY+ =AYy, — = Ay, +.....

(dx ol Yo > Yo 3 Yo 1 Yo ..(1.5)
Now differentiating both sides (1.4) w.r.t. x, we get

dy 1], 6u-6 5  12u®-36u+22 ., du
d7_h_Ay°+ 30 AyO+TA Yo +oeee dx
1|, 6u-6 5 12u*-36u+22 .,
—hz{Ayo+ 30 Ay, + 20 Ay
du 1
b = — 16
[ dx h} (1.6)

At x = a, u =0 then from (1.6), we get

d?y 11 3 11 4 i|
— =—|AY, - Ay, + =AY, .....
[dleza h? [ YomBYo 2V

Proceeding in the same way, we get successive differentiations at the required points as

d3y 17 5 3., }
— =— | ANy, — =AYy, +.....
[dxgsza h3 [ yO 2 yO

1.2. DERIVATIVES USING BACKWARD DIFFERENCE FORMULA

We have Newton’s Gregory backward difference formula

u(u+1)

5 UurhWr2) gs 7)

y:yn+uvyn+ 31 n

VZy +

X — X
where u= n

.(1.8)
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Differentiating both sides of (1.7) w.r.t. x, we get

d d u(u+1 uu+D) (u+2
d—iza{yn+uVyn+%V2yn+%V3yn+ ..... }

2
=| Vy, pu+l +lszn S +éu+2 V3y, 4. du ..(1.9)
3! dx
du 1 L
But by (1.8) & _h putting in (1.9), we get
dy 1 2u+l_,  3u+6U+2 g
&—F{Vyrﬁ—v y”+TV Yo+ ..(1.10)
Atx=x, = u=0thenfrom (1.10), we get
dy 1 12 1os
(d_x)x=xn —F{Vyn +§V A +§V Vo F o (1.12)

Now differentiating both sides of (1.10) w.r.t. X, we get

2 2
o|y_1{vzn+6u+6V3 12u +36u+22V4n+ ...... }du

= +
d  h TR 41 dx
1o, Bu+6_3 1202 +36U+22_,
17 —_ (112
h{v o, 3l Voy, + 21 VY, 4 (1.12)
Atx =x, u=0then from (1.12), we get
d2y 1 11
[dxzj =hz[V2yn +V3y, +EV4yn o } ..(1.13)
X=X,

Proceeding in the same way, we get successive differentiation at the required point

d3y 1[cs 3.4 }
— =—|Vy +-V +onns .
[dXSJM v 39y,

1.3. DERIVATIVES USING STIRLING DIFFERENCE FORMULA

We have Stirling difference formula

_ Ay + Ay ) U, uu? -1) ( Ay, + Ay,
! y°+u( A TR MY 2
2 2
u“ (u” -1
TR T (1.14)
where u=X"Xo ...(1.15)
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Now differentiating both sides of (1.14) w.r.t. X, we get

Ay, + A 2 2_1( Ay, +A°
dy _ d Yo +U Yo T AY_; LU Ny + uu® -1 Ay, Yoo
2 21 31 2

dx dx

27,2
u(u® -1)
+TA4y72+ ------ }

Ay, + Ay, 2 u -1 Ay, + A%, 40 -2u) 4 du
l:( +UATY_, + 30 > + Al Ay ... &

But d_u = % by (1.15) put in above, we get
dy 1 1Ay, +Ay, ) 3 -1( Ay, +Ay,) 4®-2u ,
x l:T+uAy1+ 3 > + 2l AY 5.
(1.16)
At X=X, u=0thenfrom (1.16), we get
(ﬂj _L Ao tAY, 1Ay A, ),
i) = 5 5 R
Again differentiating (1.16) w.r.t. x on both sides, we get
2 3 3 2
dy _1 A2y1+6—u AVt Ay, |, (12 2A“y72+ ...... du
x> h 3! 2 41 dx
1 6u [ A%y , + A%y 12u -2 du 1
2 -1 -2 4 .. _
h2 l:Ayl 3!( > + T Ay, 4. [ dx_h}
.(1.17)

At x = Xy, u =0 then from (1.17), we get

d®u 17, 1,
-— =7 -— Ay, +.
[deLXO i [ e

Proceeding in the same way, we get successive differentiation at the required point.

1.4. DERIVATIVES USING NEWTON’S DIVIDED DIFFERENCE FORMULA

We have Newton’s divided difference formula

y =1(X)) + (X=x%p) Af (xg) + (X =X%g) (X =X;) A% (Xg) + (X =X5) (X =X;) (X = X,) A (%) + ..
...(1.18)
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Now, differentiating (1.18) w.r.t. X, we get

d

d_y = Af(xp) + [(x = X)) + (X = X)] A%(x)) + [(X =%;) (X = X,) + (X = X) (X = X))
+ (X = Xg) (X = Xp)] A3(Xp) -..... ..(1.19)

Putting x = a in (1.18) we get value of first derivative at x = a

Again differentiating (1.19) w.r.t. x, we get

2
% = 2% (%) + [2(x = xg) + 2(x = X;) + 2(x = X,)] A*(x) + ... ...(1.20)
X
Putting x = a in (1.20) we get value of second derivative at x = a
Note 1. If we want to determine the value of the derivatives of the function near the beginning of argu-
ments, we use Newton’s forward formula.
2. If derivative required near the end of arguments, we use Newton’s backward formula.
3. If derivative required at the middle of the given arguments, we apply and central difference formula.

4. And we use Newton’s divided difference formula when argument are not equally spaced.

SOLVED EXAMPLES

2
Example 1. Find % and % of y = x3 at x = 50 from the following table:
X X
X 50 51 52 53 54 55 56
y = x13 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259

Solution. Since x = 50 lies near the beginning of the table therefore in this case we shall use
Newton’s forward formula. The difference table is as below:

X y= X113 Ay Azy A3y
50 3.6840

0.0244
51 3.7084 —0.0003

0.0241 0
52 3.7325 —0.0003

0.0238 0
53 3.7563 —0.0003

0.0235 0
54 3.7798 —0.0003

0.0232 0
55 3.8030 —0.0003

0.0229
56 3.8259
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Here a=50, h=1then
dy) _1 , ;
(dxjx_a_h[AyO__AYO +§Ay0 ...... }
dy) 1 [ }
Ay = 00244—— 0.0003) + = (0
(dx X=50 l (- ) ( )
= 0.0244 + 0.00015 = 0.02455.  Ans.
dZ
nd (—Z] = Ly, - A, + ]
X X=a h

d%y 1
(d?]hso = 7 [(-0.0003)

dx?
Example 2. Find f ’(1.5) and f ”(1.5) from the following table:

dZ
(_y] =-0.0003. Ans.
x=50

X 1.5 2.0 2.5 3.0

3.5 4.0

f(x) 3.375 7.000 13.625 24.000

38.875 59.000

Solution. Since x = 1.5 lies near the beginning of the table therefore in this case we shall use

Newton’s forward formula. The difference table is

X f(x) Af(X) A?f(xX) A3f(x) A*(X)

1.5 3.375
3.625

2.0 7.000 3.000
6.625 75

2.5 13.625 3.75 0
10.375 75

3.0 24.000 4.5 0
14.875 75

35 38.875 5.25
20.125

4.0 59.000

Here a=1.5and h = 0.5 then

dx

or (dy) l[3625——><3000+ % (0.75) = 0 }
x=15
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or f/(1.5) = oi [3.625 - 1.5 + 0.25] = é x 2.375 = 4.75

5
dZ
and (—Z] =1
dx® )
X=a

2
aoypoo 1 [3.000—0.75+E.o ...... }
dx x=15 (0.5) 12

1
f7(1.5)= —- [2.25] =9
(13) 0.25 [2.23]

1
o2 [Azy0 — Ny + = Alyg e }

Hence  f’(1.5) =475 and f”(1.5)=9 Ans.
Example 3. Find the first and second derivatives of the functions tabulated below at the point 1.1

X 1.0 1.2 1.4 1.6 1.8 2.0

f(x) 0 0.1280 0.5440 1.2960 2.4320 4.0000

Solution. Since x = 1.1 lies near the beginning of the table therefore in this case we shall use
Newton’s Gregory forward formula. The difference table is as below:

X f(x) Af(X) A?f(x) A3f(x) A*(X)
1.0 0
0.1280
1.2 0.1280 0.2880
0.4160 0.0480
1.4 0.5440 0.3360 0
0.7520 0.0480
1.6 1.2960 0.3840 0
1.1360 0.0480
1.8 2.4320 0.4320
1.5680
2.0 4.0000
Since 1.1 lies between given argument so we have
_ uu-1 ,, uu-)Uu-2) .,
f(x)—f(x0)+uAf(x0)+TAf(xo)+TA f (X)) + oo
()
X —X - .
where u= o - X1 5(x — 1) ...(ii)

h 0.2
Differentiating (i) w.r.t. x on both sides, we get

2_
2u lAzf(x0)+3u 6u + 2

£00 = | Af
00 =] Af(x) + = 31 X dx
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... du
Butb — =5
ut by (ii) i

2u—-1 3u® — 6u+2
f’(x):5{Af(x0)+ 5] Azf(x0)+—3' A F(Xg) onn } ...(iii)
Atx=11 u=511-1)=05
— 2 —
£/(1.1) =5 [0.128 ; % (0.2880) + 2(02) 66(0'5) *2 (0.048)}
=5[0.128 + 0 — 0.002] = 0.63
£(1.1) = 0.63
Differentiating (iii) again w.r.t. X, we get
£7(x) = S{Azf(xo) 00 3t k) } du
3! dx
= 25 [A2F (x;) + (U= 1) A¥F(xg) + ....] [ du _ 5}
dx

Atx=11 = u=511-1)=05
f”(1.1) = 25 [0.2880 + (0.5 — 1) (0.0480)] = 25[0.2880 — 0.024]
f7(1.1)=6.6

Hence f’(1.1) =0.63 and f 7(1.1) = 6.6  Ans.

Example 4. Given that

0° 0 10 20 30 40

sin 6° 0.000 0.1736 0.3420 0.5000 0.6428

Find cos 6 when 6 = 10°.
Solution. Since 6 = 10° lies near the beginning of the table therefore in this case we shall use

Newton’s forward formula. The difference table is as below:

0° sin 6° Af(X) A%(x) A3f(x)
0 0.000
0.1736
10 0.1736 —0.0052
0.1684 —0.0052
20 0.3420 —-0.0104 0.0004
0.1580 —0.0048
30 0.5000 —-0.0152
0.1428
40 0.6428
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Here f(x) =sin 0, a = 10, h = 10° = 0.1745 radian

dy ) 1 1, 1 5 1 .,
- == |AYy — =AY+ =AY, — =AY, ..
(dg ooe N [ Yo > Yo 3 Yo 4 Yo }
(oS 6)g_1¢o = 1 01684 + (0.0104) + 1 (- 0.0048)
= 0 |© , (0 3
=——— x0.1720
01745
=0.9856 Ans.
2
Example 5. From the following table find the values of % and % atx=2.03
X X
X 1.96 1.98 2.00 2.02 2.04
y 0.7825 0.7739 0.7651 0.7563 0.7473
Solution.
X y vy vy Viy vy
1.96 0.7825
—0.0086
1.98 0.7739 —0.0002
—0.0088 0.0002
2.00 0.7651 0 —0.0004
—0.0088 —0.0002
2.02 0.7563 —0.0002
—0.0090
2.04 0.7473
Here x, = 2.04, h=0.02, x = 2.03
. yo X=X _203-204 001 _ 1
h 0.02 0.02 2
Now by derivative of Newton’s backward formula, we have
dYJ_l 2u+1_,  3u+6uU+2_,
(dX _h|:Vyn+ 21 Vyn+ 31 Vyn
4u® +18u” +22u+ 6
+ V4yn + .. (|)

41
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2
dy 1 2(— ;j +1 3(— ;j + 6(— ;j +2
(—) = ——|-0.0090 + ———=— (- 0.0002) +

dx x=2.03 0.02 21 31

(- 0.0002)

3 2
4(— ;j + 18(— ;j + 22(— ;j +6
+ Y (—0.0004)

= 0722 [- 0.0090 + 0 + 0.000008 + 0.000017)

=-0.44875
Again differentiating (i), w.r.t. X, we get

d2y 1 6uU+6 12u? + 36U + 22
(_J =7 {szn =3 Vy, +Tv4yn Foreen

dx?

1
7 = - |-00002+ ~—=2 (~00002)
dX" )y p0s  (0.02) 6

2
12(— ;) + 36(— ;) + 22
+ x (= 0.0004)
24

=1
0.0004

2
(d—ZJ =-1.05
dx x=2.03
2

d
Hence (—yj = -0.44875 and (dg’] =-105. Ans.
dX Jx=2.03 X=2.03

[- 0.0002 — 0.0001 - 0.00012]

Example 6. Find f’(93) from the following table:

X 60 75 90 105 120

f(x) 28.2 38.2 43.2 40.9 37.2
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Solution. Since 93 lies near the central point of the table therefore in this case we shall use
Stirling formula. The difference table is given by

u X f(x) Af(X) A*(X) A%(X) A% (X)
-2 60 28.2
10.0
-1 75 38.2 -5
5~ 23
0 90 43.2<__ 73 82
T~—23— 59—
+1 105 40.9 -14
-3.7
2 120 37.2

Here x,=90, x =93, h=15

Putting these values in Stirling formula for first derivative, we get

2 3 3 3 _
Lz[wmzyﬁsu 1(Ay1+Ayzj+4u 2 }

dx h 2 3! 2 41

dy _ 1 [5+(-23) 302) -1
(dxjx=93 15 {T +HO2)x (7+ =7 —

2 41

f/93)= = | 2L 4 (—146) - 220 2010
=15 | 7 T CMO 352

1 {2.7 3168 3.0716}
= Tls (1.35 - 1.46 — 0.26400 - 0.1257)

f’(93) =-0.3331. Ans.
Example 7. Find f’(6) from the following table:

X 0 1 3 4 5 7 9

f(x) 150 108 0 - 54 - 100 — 144 -84

Solution. In this case the values of the arguments are not equally spaced. So we shall use
Newton’s divided difference formula. The divided difference table is given below.
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X f(x) Af(X) AH(X) ASH(X) A%(X)
0 150
1 —
08 150:_42
1-0
—54+42
1 108 - T =_
3-0
0+4
=1
4-0
0-108 —-54+54 1-1
=-54 = —— =0
3-1 > 4-1 0 5-0
4-0
- =1
3 0 51
-54-0 _
4-3
— 46 +54 1-1
- =+4 —=0
4 >4 5-3 7-1
-1 -
00+54:_46 8 4:1
5-4 7-3
—22+46 1-1
5 - 100 - =8 ﬁ_o
—144 -
+1OO:_22 13 8:1
7-5 9-4
30+ 22
7 - 144 =13
9-5
~84+144 _
9-7
9 -84

By Newton’s divided difference formula, we have
f(x) = f(xg) + (X = Xg) Af(Xg) + (X = Xo) (X = X;) AZ(X) + (X = Xp) (X =X ) (X = X,) A3f(x) + ......

Differentiating (i) w.r.t. X, we get
P00 = A f(xg) + [(x = X)) + (= %) AZ() + [(X = X,) (X = %) + (X = Xg) (x = %,)
+ (X = Xg) (X =x))] x A3(X) + ......
Here x=6,%x,=0,%x,=1,X,=3,X;=4 ... putting in above, we get

f/6)=—42+[6-1)+(6-0)](-4)+[(6-1) (6-23) + (6—0) (6—23) + (6 0)
(6-1J1

=—42+11x(-4)+(15+18+30) x 1
=—42-44+63=-23
f16) =-23. Ans.
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Example 8. From the following table, find f ’(10).

X 3 5 11 27 34

(x) -13 23 899 17315 35606

Solution. In this case the values of the argument are not equally spaced. So we shall use Newton’s

divided difference formula. The divided difference table is given below.
X f(x) A f(x) A?(x) A3f(x) A*(x)
23— (-13)
-1 —— =18
3 3 53
146 -18 — 16
11-3
899 - 23 40-16
=14 =1
° 23 11-5 6 27-3
1026 — 146 1-1
27-5 10 3-3 0
17315-899 69 - 40
11 899 ﬂ—lOZG 345 =1
2613 -1026
-1 %
27 | a7a1s | 200185 o3
34 -27
34 35606
By Newton’s divided difference formula, we have
f(x) = f(x)) + (X = Xp) A f(x)) + (X = Xg) (X = x;) A%(xp) + (X = Xp) (X = X;) (X = X,) A%F(xp) + ......
(i)

Differentiating (i) w.r.t. X, we get
P00 = AF(x) + (= X,) + (X=%g) AZF(5) + [(Xx=X;) (X=Xp) + (X =Xg) (X=X) + (X=X )(x = X,)]
x A% (Xg) + ...
Here  x=10, X, =3, X, =5, X, =11, X, =27, x, = 34.
f’(10) =18 + ((10-5) + (10 - 3)) 16 + [(10 — 5) (10 — 11) + [(10 - 3) (10 — 11)
+(10-3)(10-5)]x1
=18+12x16+[(-5)+(-7)+35]x1
=18+192 + 23
f’(10) = 233. Ans.
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L Find £/(1)for () = - L

using the following data:

+x°
X 1.0 11 1.2 1.3 1.4
f(x) 0.2500 0.2268 0.2066 0.1890 0.1736

2. Find the first, second and third derivatives of the function tabulated below, at the point x = 1.5

X 1.5 2.0 2.5 3.0 3.5 4.0
f(x) 3.375 7.000 13.625 24.000 38.875 59.000

3. Find y’(0) and y”(0) from the following table:

X 0 1 2 3 4 5
y 4 8 15 7 6 2

4. Find the derivative of f(x) at x = 0.4 from the following table:

X 0.1 0.2 0.3 0.4
y = f(x) 1.10517 1.22140 1.34986 1.49182

5. Find f’(1.1) and f”(1.1) from the following table:

X 1 11 1.2 1.3 14 1.5 1.6
y 7.989 8.403 8.781 9.129 9.451 9.750 10.031

6. Find f’(1.5) from the following table:

X 0.0 0.5 1.0 15 2.0
f(x) 0.3989 0.3521 0.2420 0.1295 0.0540

7. Find f’(0.6) and f”(0.6) from the following table:

X 0.4 0.5 0.6 0.7 0.8
f(x) 1.5836 1.7974 2.0442 2.3275 2.6510

8. Find f’(0.04) from the following table:

X 0.01 0.02 0.03 0.04 0.05 0.06
f(x) 0.1023 0.1047 0.1071 0.1096 0.1122 0.1148
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CHAPTER 2

Numerical Integration

INTRODUCTION
Numerical integration is the process of obtaining the value of a definite integral from a set of numerical

b
values of the integrand. The process to finding the value of the definite integral | = J f (x) dx of a
a

function of a single variable, is called as numerical quadrature. If we apply this for function of two
variables it is called mechanical cubature.

The problem of numerical integration is solved by first approximating the function f (x) by a
interpolating polynomial and then integrating it between the desired limit.

Thus f(x) =P, (x)

j: f (x) dx = j: P_(x) dx.

2.1. A GENERAL QUADRATURE FORMULA FOR EQUALLY SPACED

ARGUMENTS

b

Let 1= 00 dx

a
Further lety = f (x), consider the values Y, Y;, ¥y, -y Y, TOr X = Xg, X+, Xy + 2h, ..., X, + nh.
Let us divide the interval (a, b) into n sub-intervals of equal width h i.e., b-a _ h
LetxO:a,xl:x0+h:a+h,x2:x0+2h:a+2h, ...... ,xn:x0+nh:b

_ bf( )d _ x0+nhf( )dx

Then | = L x) dx —LO X (2.1

90
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Now by Newton’s forward interpolation formula

uu-1) uu-u-2)
21 Ao+ 3!

y=f(X) =y, tudy,+ A3y, +
where u=s ——

du:d—hx = dx=hdu

Putting above relation in (2.1), we get

_n " uu-1 uu-Hu-2) 3
I—hJ.O{yo+uAy0+ 21 Ayo+TAy0 ....... du
n’ n® n?) A% n Ay,
=h|ny, +—Ay, +| — —— | =22 4| — —n®*+n? | =22 .. + up to (n +1) terms
[y" 2 Y3 T2 2 4 3! pto(n+1)

Xo +nh 2 3 2 2 4 3
J- f(X)dXZh ny0+n_Ay0+ n__n_ ﬂ+ n__n3+n2 Ayo ......
Xo 2 3 2 4 3

+up to (n + 1) terms ] ..(2.2)

This is the general quadrature formula.

2.2. THE TRAPEZOIDAL RULE

Putting n = 1 in general quadrature formula (2.2) and neglecting all differences higher then first, we get

Xo +h 1 1 N
J-x Fx) dX=h[y0 +§Ay°:|= h[)’o +E(Y1 —YO)}=h—(y° 5 2

Xo +2h ( + )
Similarly j e dx:h%

Xo +nh
| F(x) dx = h Y=t *¥n)
Xo +(n=1h 2

Adding these n integrals, we get
Xo +nh 1
L f(x)dx=h [2 (Yo +¥n)+(yp +yz oo ynl)}

This rule is called the Trapezoidal rule.
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2.3. SIMPSON’S ONE-THIRD RULE

Putting n = 2 in general quadrature formula (2.2) and neglecting all differences higher then second, we
get
2

Xo +2h 2 23 22 A2
. rooa “{ZVO r A *[?‘7)??

1
h[ZyO +2(Y; = Yo) +§(Y2 -2y, + yo)}

h
§ [yo + 4y1 + y2]

o Xo +4h h
Similarly J.X o f (x) dX=§ [y, +4y;+y,]

X +nh h
| OO =2 (y, ,+ 4y, +Y,)

X +(n-1)h

Adding all these integrals, we get

1
This is known as Simpson’s 3 rule.

2.4. SIMPSON’S THREE-EIGHTH RULE

Putting n = 3 in general quadrature formula (2.2) and neglecting all differences higher then third, we
get

Xo +3h 9 332 32 A2y0 3! 3 2 A3y0
J.XO f(x)dx_h|:3y0+EAy0+[?—7J 21 + 7—3 +3 T
9 9 3
=h 3yo+§(y1—yo)+z(y2—2y1+yo)+§(y3—3y2+3y1—yo)
3h
= N [y, + 3y, + 3y, + Y3l

o Xo +6h 3h
Similarly X f (x) dx Y [y;+ 3y, +3ys + Yl

X + 3
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Xg +nh 3h
j f(X)dX=§[yn_3+3yn—2+3yn—1+yn]

X +(n-3)h

Adding all these integrals, we get

This formula is known as Simpson’s three-eight’s rule.

SOLVED EXAMPLES

1
Example 1. Use Trapezoidal rule to evaluate J.O x® dx considering five sub-intervals.

. . . . 1-0
Solution. Divide the interval [0, 1] into five parts each of width h = 5 - 0.2 and compute

the value of y = x2 at each points of sub-interval. These values are given below:

X 0 0.2 0.4 0.6 0.8 1

y=x 0 0.008 0.064 0.216 0.512 1

By Trapezoidal rule, we have

1 h
JO x3dx:5[yo +2(y, +Y, Y ty,) Y

2

= 07 [0 +2(0.008 + 0.064 + 0.216 + 0.512) + 1]
2

= 07 [2x0.8+1]=0.26. Ans.

n/2 .
Example 2. Evaluate JO e®"* dx correct to four decimal places by Simpson’s one-third and

three-eighth rule, dividing the interval (O, g) into three equal parts.

Solution. Divide the interval (0, ;t) into three parts each of width h = WZE and

6
compute the value of y = eS"* at each point of sub-interval. These values are given below:

I
2

T T
X 0 6 3

y = esinx 1 1.64872 2.45960 2.71828
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/2

By Simpson’s one-third rule, we have J

i h
0 eszdX=§[yO+4(y1)+2(y2)+y3]

- L;G [1+4 x 1.64872 + 2 x 2.45960 + 2.71828]

= 1—72[15.23236] = 2.659. Ans.

By Simpson’s three-eighth rule, we have

n2 3h
J'O oSN X dy = g [yo + 3(yl + YQ) + Y3]

| w
ola

[1+ 3 (1. 64872 + 2.45960) + 2.71828]

0| w
ola

(16.04324) = 3.1513. Ans.

XZ

1+x°

1
Example 3. Find the value of log, 2 from J'O dx , using Simpson’s one-third rule, by

dividing the range into four equal parts.

. - . : . 1-0
Solution. Divide the interval [0, 1] into four equal parts each of width h = 2 - 0.25 and

2

X . . .
compute the value of f (x) = o at each point of sub-interval. These values are given below:
+ X

X X2 x3 1+x3 f(x)=x41+x3

0 0 0 1 0
0.25 0.0625 0.015625 1.015625 0.061538
0.50 0.25 0.125 1.125 0.222222
0.75 0.5625 0.421875 1.421875 0.395604

1 1 1 2 0.5

By Simpson’s one-third rule, we have
2

1 X h
jo T dX—g[yo+4(yl+y3)+2y2+y4]
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0._55 [0 + 4(0.061538 + 0.395604) + 2(0.222222) + 0.5]

0.25
= 3 [2.773015] = 0.231084. Ans.
Again J-l X =1 3 dx =+ Iog(1+x3)1—£I092
01+x% " 3ho14x® 3 , 3
1
=3 X (0.693147) = 0.231049
Therefore the error =0.231084 — 0.231049 = 0.000034. Ans.
6
Example 4. Evaluate J. . dx > by using Trapezoidal, Simpson’s one-third and three-eighth rule.
0 14X

Solution. Divide the interval (0, 6) into six parts each of width h = 1 and compute the value of

1 ) . .
y = 1ol at each point of sub-interval. These values are given below
+ X

1+%°

0.5

0.2

0.1
0.0588
0.0385
0.027

o 01 A WO N P O

By Trapezoidal rule, we have

J.G dx :E [yo+2(y1+y2+y3+y4+y5)+y6]
01+x% 2

= % [L+2(0.5+0.2+0.1+0.0588 + 0.0385) + 0.027]

= %[2.8216] =1.4108. Ans.
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By Simpson’s one-third rule, we have

6 h
,[ dX2=7 [Vo t 4 (Yy + Ya+ Ye) + 20y, +Y,) + Vel
01+x 3

1
= 3 [1+4(0.5+0.1+0.0385) +2(0.2 + 0.0588) + 0.027]

= % [1.027 + 4 x 0.6385 + 2 x 0.2588]

= % [4.0986] = 1. 3662. Ans.

By Simpson’s three-eight rule, we have

6 dx 3h
J Zg [y0+3(y1+y2+y4+y5)+2(y3)+y6]

01+ x°

3
=8 [1+3(0.5+0.2+0.0588 + 0.0385) + 2(0.1) + 0.027]

(3.6189) = 1.3570. Ans.

o] w

3
Example 5. Calculate the approximate value of J:3 x* dx by using Trapezoidal rule, Simpson’s

one-third and three eight rule, by dividing the range in six equal parts.

Solution. Divide the range (- 3, 3) into six equal parts each of width h = 3- é_ 3 =1 and

compute the value of y = x* at each point of sub-interval. These values are given as below:

X -3 -2 -1 0 1 2 3

y=xt 81 16 1 0 1 16 81

By Trapezoidal rule, we have

3 h
J.,g N dx:g[yo+2(yl+y2+y3+y4+y5)+y6]

1
[81+2(16+1+0+1+16)+81]

2
% [ 162 + 68] = 115. Ans.
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By Simpson’s one-third rule, we have

3 h
jfs x4 dx=2 [Vo+4 (Y, +Ys+Ys)+2(Y,+Y,) + Vel

%[81+4(16+0+16)+2(1+1)+81]

% [162 +4x32+2x2] = % (294) = 98. Ans.
By Simpson’s three-eighth rule, we have

3 3h
st x* dx = 3 Dot 301+ Y, + Y, +¥g) +2(y5) + el

2[81+3(16+1+1+16)+2.0+81]

3[162+3><34]:99

But the exact value of

573

3 4 3 4 X 2 o5
.[Sx dx ZJOX dx {5}0 5()

= % x 243 =97.2. Ans.
Example 6. Use Simpson’s rule dividing the range into ten equal parts, to show that

1 log (1+ x®)
) =z =010
+ X

Solution. Dividing the interval (0, 1) into ten equal parts of width h = 0 = 0.1 and compute

log (1+ x?)
1

the value of f (x) = >— at each points of sub-interval. These values are given below
X
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log (1+ x%)
X X2 1+ x? log (1 + x?) — 8
0 0 1.0 0 0
0.1 0.01 1.01 0.009950 0.009851
0.2 0.04 1.04 0.039220 0.037712
0.3 0.09 1.09 0.086177 0.079062
0.4 0.16 1.16 0.14842 0.127948
0.5 0.25 1.25 0.223143 0.178514
0.6 0.36 1.36 0.307484 0.226091
0.7 0.49 1.49 0.398776 0.267634
0.8 0.64 1.64 0.494696 0.301644
0.9 0.81 1.81 0.593326 0.327804
1.0 1.0 2.0 0.693147 0.346573

By Simpson’s one-third rule, we have

1 log (1+ x? h
jo%dxi[yow(yl+y3+y5+y7+yg)+2(y2+y4+y6+y8)+y10]

0.1
= 3 [0+ 4(0.009851 +0.079062 + 0.178514 + 0.267634 + 0.327804)
+2(0.037712 + 0.127948 + 0.226091 + 0.301644) + 0.346573]

0.1
=3 [5.184839] = 0.17282793. Ans.
52
Example 7. Evaluate L log, x dx by Simpson’s one-third and three-eighth rule.
. - . . . . 52-4
Solution. Dividing the interval (4, 5.2) into six equal parts of width h = 5 = 0.2 and

compute the value of f (x) = log, x at each point of sub-interval. These values are given below:

X 4 4.2 4.4 4.6 4.8 5.0 5.2
f(x) 1.386294 1.435084 | 1.481604 1.526056 | 1.568615 1.609437 | 1.648658

By Simpson’s one-third rule, we have
5.2 h
J.4 Ioge x dx = § [yo + 4(y1 Ty, + y5) +2 (y2 + y4) + ye]

0.2
= 3 [1.386294 + 4(1.435084 + 1.526056 + 1.609437)

+2(1.481604 + 1.568615) + 1.648658]
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= E (27.417698) = 1.827847

By Simpson’s three—elghth rule, we have
J, toge xax = S 1y 30y, +y, vy 4y 200 + v
= @ [1.386294 + 3(1.435084 + 1.481604 + 1.568615 + 1.609437)
+ 2(1.526056) + 1.648658]
= 8 x (24.371294) = 1.827847. Ans.

0.7 1/2_—x
Example 8. Evaluate _[OSX e dx.

. o . ) . 0.7-05
Solution. Dividing the interval (0.5, 0.7) into four equal parts of width h = — =0.05 and
compute the value of f (x) = x¥2e™* at each point of sub-interval. These values are given below:
X x1/2 e X f (X) = x1/2 eX
0.50 0.707106 0.606530 0.428881
0.55 0.741619 0.576949 0.427876
0.60 0.774596 0.548811 0.425107
0.65 0.806225 0.522045 0.420886
0.70 0.836660 0.496585 0.415473

By Trapezoidal rule, we have

0.7 1/2 ,—x _h +2 + +
X e dx——[y0 (,+Y, +Y3) TVl

% [0.428881 + 2 (0.427876 + 0.425107 + 0.420886) + 0.415473]

= % (3.392092) = 0.0848023. Ans.

. 1
By Simpson’s 3 rule, we have

o xM2gx [y, +4(y, +Vy,)+2y +
o dx = [y0 (Y, +Y3) + 2y, +Y,]

@[O 428881 + 4(0.427876 + 0.420886) + 2(0.425107) + 0.415473]

= % [5.089616] = 0.0848269. Ans.
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0 1+x
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by using Simpson’s one-third and three-eighth rule. Hence obtain the approximate

2

value of & in each case.
2. A curve is drawn to pass through the points given by the following table:

X 1
y 2.0

1.5 2
2.4 2.7

2.5 3
2.8 3.0

3.5 4
2.6 2.1

Estimate the area bounded by the curve, the x-axis and the lines x = 1, x = 4 by Simpson’s rule.

0 dx

2 1+X

3. Evaluate by dividing the range into eight equal parts by Simpson’s one-third rule.

1
4. Show that J;) ;j_—xx = log 2 = 0.69315 by using Simpson’s one-third rule.

5.2
5. Calculate the value of the integral J log x dx by using Trapezoidal rule, Simpson’s one-third and
4

three-eighth rule.

6. Use Simpson’s one-third rule to find the approximate area of the cross-section of a river 80 meter wide,
the depth y at a distance x from one bank being given by the following table:

X 0 10 20 30 40 50 60 70 80
y 0 4 7 9 12 15 14 8 3
& X
7. Evaluate -[o e” dx, by Simpson’s rule using the data.
X 0 1 2 3 4
e 1 2.72 7.39 20.39 54.60

and compare it with the actual value.

/2
8. Calculate an approximate value of the integral J sin x dx by (i) Trapezoidal rule (ii) Simpson’s one-
0

third rule (iii) Simpson’s three-eighth rule.
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CHAPTER 3

Ordinary Differential Equations
of First Order

INTRODUCTION

In this chapter, we will discuss the important methods of solving ordinary differential equation of first
order having numerical coefficients and given boundary or initial conditions

(i.e., % = f(x,y)given y(x,) = yoj numerically.

These method also useful to solve those types of problem related to first order differential equa-
tion which cannot be integrated analytically.

For example, % =x% +y2-c?
X

Some important methods are:

1. Euler’s method

2. Euler’s Modified method

3. Picard’s method of successive approximation
4. Runge-Kutta method

5. Milne’s series method.

3.1. EULER’S METHOD

This is simplest and oldest method was devised by Euler. It illustrates, the basic idea of those numerical
methods which seek to determine the change Ay in y corresponding to a small increase in the argu-
ments X.

Consider the differential equation

=W f 3.1
Y=g =) (3.)
with initial condition y =y, when x = X, i.e., y(X,) = Y,
102
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We wish to solve (3.1), for the values of y at x = x;
where x; = x, +ih,i=1,2,3, ...
Now integrate (3.1), we have

X
y1=yo+fx f(x, y) dx
Let f(x, y) = f(x, y,) where x, <x <x; ..(3.2)

Now yl:y0+ J.X:f(Xo,yo)dX

= yo + (Xl - Xo) f (Xol yo)
=Yo + (X ¥o) [ h=x—X]
Similarly for x, < x <x,, we have
Yo =Yp thf(x, yy)
Proceeding in the same way, we have finally
yn+l = yn +h f(xn’ yn) ---(3-3)
Thus, starting from x, when'y =y, we can construct a table of y for given steps of h in x.

The process of Euler’s method is very slow and to obtain desired accuracy with Euler’s method,
h should be taken small.

3.2. EULER’S MODIFIED METHOD

Instead of approximating f(x, y) by f(x,, y,) in (3.2), the integral in (3.3) is approximated by Trapezoidal
rule to obtain

h

V1Yot 5 [f (g Yo) + f(xp, yy)] ..(3.4)
Thus we obtain the formula
h

y, ("D =y + > [ f(Xg Vo) + O, y;™M)] (n1=0,1,2..) ..(3.5)

This is the nth approximation of y,. The formula (3.3) uses the initial value y,© from Euler’s
method.

1@ =y, + h f(x,, Yo)-

3.3. PICARD’S METHOD OF SUCCESSIVE APPROXIMATION

Consider the differential equation

,_dy _
Y= f(x, y) ...(3.6)
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with the initial condition'y =y, for x = X, i.e., y(X,) =Y,
Integrating the differential equation (3.6), we have
Y=Yyt L f(x y) dx ..(3.7)

Equation (3.7) in which the unknown function y appears under the integral sign, is called an
integral equation. In this method, the first approximation y@ is obtained by replacing y by Yo in f(x, y) in
R.H.S. of (3.7) and integrating w.r.t. x, we get

i, Yy =y + j £(%, yo) dx .(38)

The second approximation y® is obtained by replacing y by y in f(x, y) in R.H.S. of (3.7) and
integrating w.r.t. x, we get

yd =y, + L f(x, y®) dx ..(3.9)
Proceeding in the same way we obtain y©®, y® .. y™! and y" where
YO =yo+ [ fx,y ) dx (3.10)
Xo
with yO =y,

we repeat the steps till the two value of y becomes same to the desired degree of accuracy.

3.4. RUNGE-KUTTA METHOD

This method is most commonly used method and most suitable when computation of higher derivatives
is complicated.

Consider the following differential equation
dy :
a = f(x, y) with y(Xo) =Y

Runge-Kutta method of order four is given by
Yorr =Y, Tk for x=x,+h
h
where x = %[kl +M+ ks} = 5 I+ 20 +K) + k]
where k, =f (X, ¥o)
h h
kZZf(XO +§,y0 +k1§j

h h
k3:f(x0+2,y0+k22j

k, = f(, + h, y, + k;h)
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3.5. MILNE’S SERIES METHOD

If we solve the differential equation d—i = f(x, y) with y(x,) =y, by this method, we first obtain the

approximate value of y_, by predictor formula and then improve this value by means of a corrector
formula.

The predicted value of the solution is given by
4h 4 / 9
Yner = Yna ? (Zyn—z_yn—l +2y')
The predicted value is substituted in corrector formula

h 7 7 7
YO =Yoa + 3 (Yoos +4Y, + Vi)

to improve that predicted value.

SOLVED EXAMPLES

Example 1. Given % _y=X with the initial conditiony =1 when x =0 findy forx =01 in 4
X y+X
steps by Euler’s method.

: dy _y—-x _ _ _ _ 01 _
Solution. We have X yrx fx,¥), % =0,y,=1 and h= = 0.025
We know that Yoot = Yp + DECX, YD)

By putting n =1, 2, 3, we get
Yo — Xo
=y, + hf(x, y,) =y, +h ———
Y1 = Yo * hf(Xq, Vo) = Yo Yo + X
=1+ (0.025) x 120 _ 25
1+0
y, = 1.025
Again Y, =y, + hf(x;, y,) =y, + h noX
Yit+X%
=1.025 + (0.025) x 102520025 _ ) 195 4 0,025 x L
1025+ 0.025 1.05
y, = 1.0488
Now again Ya =Y, + Nf(Xy, y,) =y, + h Y2 7%
Yo + X%,
10488 — 0.05

=1.0488 + (0.025) x 10488+ 0.05
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10438

=1.0488 + 0.025 x 10988

y, = 1.07152

. Y3 — X3
Again Yy =Yg+ hf(x, y5) =y, +h —=—+
4 3 3" 73 3 yS + XS
107152 + 0,095 x 107152 — 0.075
o ‘ 107152 + 0.075
y, = 1.09324

Hence Yo = 1.09324 Ans.

Example 2. Use Euler’s method compute y(0.5) for differential equation % =y?—x?withy=1
X

when x = 0.
Solution. We have d—i =y - x2=1(x,y), % =0,y,=1
0.5
and let h= 5 =0.1

We known that Yoir=Ya tNT(X,y,)
By puttingn =0, 1, 2, 3, 4, we get
Y1 = Yo + hf (%5, Yo) = Yo + (Y5 — %5)
=1+(0.1)(12-0)=1.1

Yo=Yy thix, y) =y, + h(y; = x{)
= 1.1+ (0.1) [(L.1)2 - (0.1)7] = 1.1 + (0.1) (L.21 — 0.01)

=1.220 [ x =% +h]
Y3 =Y, + hi(X, ¥,) =¥, + h (v —x7)
= 1.22 + (0.1) [(1.22)2 - (0.2)2] [o %, =%, +h]

= 1.22 + (0.1) (1.4484) = 1.36484
Y=Yy *+ hf (X ¥5) = V5 + h(y3 - x2)
= 1.36484 + (0.1) [(1.36484)2 — (0.3)?]
= 1.36484 + (0.1) (1.7728) = 1.54212
Y5 =Yy + hf(X, ¥,) =Y, + h(y; = x5)
= 1.54212 + (0.1) [(1.54212) — (0.4)7] = 1.7639
Hence y(0.5) = 1.7639 Ans.
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Example 3. Using Euler’s modified method, solve numerically the equation % =X+,/|y| with
X

y(0) = 1 for 0 <x <0.6 in the steps of 0.2.

Solution. Here  f(x,y) =x+ \]y|, %, =0, y,=1andh=0.2

By Euler’s method, we have
Yy = Yo + (X, ¥p) =1 +(0.2) (0+ 1) =1.2
y, =12

The value of y,, thus obtained is improved by Euler’s modified method

D = o 21X Yo) + 1000 1))
Put n =0, we get

h
v =y +E[f(xo' Yo) + f(x1, y{”)]

14 0;22[(o+\/1)+(0.2+«/ﬁ)]
=1+ 0.2295 =1.2295
Putn =1, we get
h
R +§[f(x0, ¥o) + f(x1, yi7)]

=1+ 0—22 [(0 + V1) + (0.2 + ¥1.2295)]

=1+ 0.2309 = 1.2309
Put n =2, we get

h
v =V, +§[f(x0, Yo) + (%, y12)]

=1+ 0_; [(0 + /1) + (0.2 + +/1.2309)]

=1+ 0.2309 = 1.2309 [+ v =yBN
Hence we take y, =1.2309 atx=10.2
Now, we proceed to compute y at x = 0.4
Applying Euler’s method, we have

Yo =Yy + Nf(x;, yy)

=y, +h(x; + M)

=1.2309 + 0.2 (0.2 + /12309 )

=1.2309 + 0.2(1.30945) =1.49279



108

ADVANCED MATHEMATICS

The value of y,, thus obtained is improved by Euler’s modified method

(n+1)

W =y 2 L0 9 + £ Y5
Putn =0, yP=y, + g [f (¢ yy) + (X y5)]

=1.2309 + 0_; [(0.2 ++/1.2309) + (0.4 + ~/1.49279)] = 1.52402
Putn=1,weget y@=y, +g [f(xy, v) + F(Xp, Y5

=1.2309 + 0—; [(0.2 ++/1.2309) + (0.4 + ~/1.52402)] = 1.525297
Putn=2,weger Y = +0 [0 1)+ 106, Y]

=1.2309 + 0;22 [(0.2 + 4/1.2309) + (0.4 + +/1525297)] = 1.52535
Putn =3, we get Y% =y, + 1003 1)+ F 0, ¥E0)]

=1.2309 + 0;22 [(0.2 + 4/1.2309) + (0.4 + +/152535)] = 1.52535

5 = 340

Hence, we take y,=152535atx =04
Again, we proceed to compute y at x = 0.6
Applying Euler’s method, we have

Ya =Yy * Nf(xy, ) =y, + (X + /1Y, 1)
=1.52535 + 0.2(0.4 + 4/1.52535) = 1.85236
The value of y,, thus obtained is improved by Euler’s modified method

W =y 106 ¥2) + 10, 4]

Putn = 0 Y = gy T (g, ¥2) + £ )
=1.52535 + % [(0.4 + +1.52535) + (0.6 + +/1.85236)] = 1.88496

Putn = 1 W =y, 21k, ¥a) + 100, ¥E)]

= 152535 + 0—; [(0.4 + /152535) + (0.6 + ~/1.88496)] = 1.88615
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h
Putn =2 y§3)=yz+§[f(xz,yz)+f(x3,y§2))]
=1.52535 + % [(0.4 + V1.52535) + (0.6 + +/1.88615)] = 1.88619
h
Putn=3 yé“>=yz+5[f(xz,yz)+f(xs,y§3>>]

= 152535 + % [(0.4 ++/1.52535) + (0.6 + /1.88619)] = 1.88619

X y3(3) = y3(4)
Hence, we take y, =1.88619atx =0.6
= y(0.2) = 1.2309, y(0.4) = 1.52535, y(0.6) = 1.88619. Ans.

Example 4. Using Euler’s modified method, compute y(0.1) correct to six decimal figures where

a _ . - _

ax =X + y with y(0) = 0.94.
Solution. Here  f(x,y) =x?+y,%,=0,y,=0.94,h=0.1
By Euler’s method, we have

yl = yo + hf (Xol yo) = yo +h [Xg + yO]
=0.94 + (0.1) [0 + 0.94] = 1.034
The value of y,, thus obtained is improved by Euler’s modified method

+ h
VMY = yo + 2 [ (X0, Vo) + £, ¥i™)]
h
Putn =0 V= Yo + 5 [F 00 ¥o) + F00 )]
0.1
=0.94 + > [(0 +0.94) + ((0.1)? + 1.034)] = 1.0392
h
Putn =1 Vi = Yo + 5 [F (0 Yo) + 0, y1)]
0.1
=0.94 + > [(0 + 0.94) + ((0.1)? + (1.0392))] = 1.03946
h
Putn =2 Y =yo+ 5 IF 00, o) + 0, ¥
0.1
=0.94+— [(0+094) + ((0.1)% + 1.03946)] = 1.039473
h
Putn=3 Y1(4)=yO +§[f(x0,y0)+f(x1,y1‘3))]

01
=094+ — [(0+0.94) + ((0.1) + 1.039473)] = 1.030473
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Here yd =y
Hence y, = 1.039473
= y(.1) = 1.039473. Ans.

Example 5. Use Picard’s method to solve % =x-yforx=0.1and 0.2 given thaty = 1 when
X

Solution. We have f (x, y) =x-yand x,=0,y,=1
Now first approximation

y(l):yo+.[x f(x,yo)dX=yo+L (X_yO)dX

« x2 X x2
=1+ - =1+|——-X| =—-x+1
.[o (x=1)dx { 2 L 2
Second approximation
X
yd =y, + J

Xo

X Z X 2
=1+ .[o l:x—(xz—x+lﬂdx=l+.[o (ZX—Xz—ljdX

f(x, yP)dx=y, + JX (x —y®) dx

Third approximation

VO =y + [ Ty dx=yo+ [ (x=y®)ox

3 4 3 X
:1+_|.X X+ x4 x—1|dx =1+ X2+ -2 _x
0 6 24 3 0

x* X8

= - 4xP-x+1
24 3

Fourth approximation
Yy =y, + JX

Xo

4 3
:l+JX x—| 2 - X 1k _x+1||dx
0 24 3

fOxy?)dx=y, + J; (x =y dx
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4 3
:l+.[X 2x - X+ X %2 _1|dx
0 24 3
5 4 3
X

, x> xt X8 " x> X )
=1+ = = —+———+Xx " —x+1
{X X}O 120 " 12

—_— + - =
120 12 3 3
Fifth approximation

yo=y,+ [

Xo

foy @ dx=yo+ 0=y @) ax

:1+ X2+X76_X75+£_X73_X '
720 60 12 3

6 5 4 3
xt x5 x* x
ot e x?—x+1

T 720 60 12 3
When x = 0.1, we have
Yo = 1,y = 0.905, y® = 0.9098, y©® = 0.90967, y® = 0.90967
i.e., y =0.90967 at x = 0.1
When x = 0.2, we have
Y, = 1,y =0.82, y@ = 0.83867, y© = 0.83740, y = 0.83746
y® =0.83746
i.e., y =0.83746 at x = 0.2. Ans.

Example 6. Apply Picard’s method to solve % = x + y? given that when x, = 0, y, = 0 up to
X

third order of approximation.
Solution. We have f(x,y)=x+y? and x,=0,y,=0
Now first approximation

y=y,+ [

0

f(x, yo)dx=yo+.[xX (x+yg)dx=0+J0X(x+0)dx
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Second approximation
v =y + [ F00y®ydx=yo + [ (x+ (y9)?) dx

« 2\? « 4 2 5\ 2 5
y(z):0+J x+| dx=J x+ X dx=| o X 2 X X
0 2 0 4 2 20 2 20

0
Third approximation
X X
Yo =y, + LO o, y@) dx=y, + _[Xo[x +(y?)*] dx

2 52 4 10 7
:0+JAX x+] X4 X dx=JAX x+ 0 X X Ny
0 2 20 0 4 400 20

~ X2 x5 X8 1 X
Sl —+——
2 20 160 4400 0

X2 X5 XS X11

—t+—+ .
2 20 160 4400

Example 7. Use Runge-Kutta method to solve % =xy forx=1.2, 1.4, initially x =1,y = 2.
X

Solution. Here x, =1, y,=2, f(x, y) =xy
= (X Yg) =1x2=2
Let h=0.2 then k, = f(x,, y,) = 2

_ h h h h 0.2 0.2
k,=f (xo 5% +k1§j=(x0 +§)(y0+k1 E)=(1+7)(2+2x7)

= (1.1)(2.2) = 2.42

h h h h 0.2 0.2
k3:f(x0 +§, Yo + Kk, 2j:(xo +2j(y0 +k, 2j=(1+2j(2+2.42x2j

= (1.1) (2.242) = 2.4662
k, = (%o + h, Yo + ksh) = (xg + h) (Y + ksh) = (1 +0.2)(2 + 2.4662 x 0.2)
= (1.2)(2.49324) = 2.9918

K= g [k, + 20k, + k) + k] = O_éZ [2 +2 (242 + 2.4662) + 2.9918]

= O_éZ [2 +9.7724 + 2.9918]

k =0.49214
This show that X, =X, +h=1+02=12
and Y, =Y+ k=2+0.49214 = 2.4921
Therefore y(1.2) = 2.4921. Ans.
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Now for the second interval

X, =1.2,y, = 24921, f(x, y) = xy
= f(x,, ¥,) = Xy, = 1.2 x 2.4921 = 2.99052
Let h=0.2thenk, =f(x;,y,) =2.99052

h h h h
kzzf(x1+2,y1+k1 2j:(xl+2j(y1+k1 2)

=(1.2+0.1) (2.4921+ 2.9905 x Ozzj
=(1.3) (2.79105) = 3.6283

k —f(x +h +k h)—(x +h)( +k h)
3= 1 2:Y1 25 )71 Y1 25
= (1.2 + 022j (2.4921+ 3.6283 x OZZJ

= (1.3) (2.8548) = 3.71143
k, = f(x, + h,y, +k;h) = (x, + h) (y, + k;h) = (1.2 +0.2) (2.4921 + 3.71128 x 0.2)
= (1.4)(3.2343) = 4.5281

k= % [(k, + 2)k, + k) +k,]

- 0_62 [2.9905 + 2 (3.6283 + 3.7112) + 4.5281] = 0.73992

This show that x,=x, +h=12+02=14
y, =Yy, + k=24921 + 0.73992 = 3.2330
Therefore y(1.4) = 3.2321. Ans.

Example 8. Solve the equation % = — 2xy? with initial condition y(0) = 1 by Runge-Kutta’s

method for x = 0.2 and 0.4 with h = 0.2.
Solution. Here x, = 0, y, = 1, f(x, y) = — 2xy?

= f(Xg Vo) = — 2X,¥5 =0
Let h=0.2thenk, =f(x, y,) =0

h h h h)?
k2=f(x0+§,y0+k1§j=—2(xo+§j(y0+k1§j

:_2(0+O;j(1+0><(22j =-2(0.1)(1)=-0.2

h h h h)?
kg =f (x0+2,yo+k2 2j=—2(x0+2j(y0+k2 2)

- (o N ngj (1 +(-02)x o;jz = _ 2(0.1)(0.98)2 = - 0.1920
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K, = £, + h, Yy + Ksh) == 2 (%, + h) (y, + k;h)?
=—2(0 + 0.2)[1 + (~ 0.1920)(0.2)] = — 0.36986
k:% [k, + 2(k, + k3) + k]

- 0_62 [0 + 2((- 0.2) + (= 0.1920)) + ( 0.36986)]

= O—Ef (- 1.15386) = — 0.03846

This show that X, =% +h=0+02=02
and Y, =Y, + k=1+(-0.03846) = 0.96154
Therefore y(0.2) = 0.96154. Ans.

Now for the second interval
X, =0.2,y, =0.9615
f(x, y) = — 2xy?
= f(x,, y,) = —2x,y2 =—2x 0.2 x (0.9615)? = — 0.36979
Let h=0.2thenk, =f(x;, y,) =-0.36979

h h h h)?
kzzf(xﬁ'i,)ﬁ"'lﬁEjz_z(xﬁ'aj()ﬁ"'klij
02 02\
=-2 (0-2+é) (0.9615+(— O.36979><—é ))

= -2(0.3) (0.85473) = - 0.51284

h h h h)?
k3=f(x1+2, y, + K, 2):-2(x1 +2j(y1+k2 2)
2
- (0.2 +0;) (0.9615+(— 0.51284 XO;D

= - 2(0.3) (0.82849) = — 0.49709

k, = f0¢, + h, y, + kgh) = =2 (x, + h)(y, + k;h)?
= -2 (0.2 +0.2) (0.9615 + (— 0.49709) x 0.2)?
= — 2 (0.4)(0.7431) = — 0.59454

h
k:g [k, +2 (k, + k) + k]
_02
6
This show that X, =X, + h=02+02=04

y, =y, + k=0.9615 - 0.099473 = 0.86202
Therefore y(0.4) = 0.86202. Ans.

(—0.36979 + 2 (- 0.51284 — 0.49709) — 0.59454) = — 0.099473



ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER 115

Example 9. Compute y(2) if y(x) is the solution of %z% (x + y) assuming y(0) = 2,
y(0.5) = 2.636, y(1) = 3.595, y(1.5) = 4.968.
Solution. Here f(x, y) = % (x +y) then we have
, 1
X, =0 Yo =2 Yo=-(0+2)=1
1
X, = 0.5 y, = 2.636 Yo = (0.5+2.636) =1568
1
X, =1 y, = 3.595 A =5 (1+3595) =2.2975
1
X, = 1.5 y, = 4.968 A =5 (L5+ 4.968) = 3.234

By the predictor formula, we have
4h ’ ’ ’
Y= yo + ? [2y1 Yot 2y3]
=2+ % (0.5) [ 2 x 1.568 — 2.2975 + 2 x 3.234]
2
=2+ 3 [7.3065) = 6.871
L1 1
Now i =§(x4 +y4)=§(2+6.871)=4.4355
Now by corrector formula
h 7 7 ’
Yo=Y §[y2 +4y; +Y,]
0.5
=3.595 + 5 [2.2975 + 4 x 3.234 + 4.4355]

0.5
=3.595 + 3 [19.669] = 6.873166 = 6.8732

Corrected A =% (X4 +V,) =% (2 + 6.8732) = 4.4366
Again using corrector formula, we get

h ’ ’ ’
y4:y2+§[y2+4y3+y4]



116 ADVANCED MATHEMATICS

05
= 3,595 + —~ [2.2075 + 4 x 3.234 + 4.4366]

=3.595 + % [19.6701] = 6.87335 = 6.8734

Hence y(2) = 6.8734. Ans.

Example 10. Solve initial value problem % =1+ xy? y(0)=1,h=0.1for x=0.4 by using
X

Milne’s method when it is given

X 0.1 0.2 0.3

y 1.105 1.223 1.355

Solution. Here f(x, y) = 1 + xy? then, we have

X, =0 Yo=1 Yo=1+0x12=1

X, = 0.1 y, = 1.105 y{ =1+ (0.1)(1.105)2 = 1.1221
X, = 0.2 y, = 1223 y5 =1+ (0.2)(1.223)2 = 1.2991
X, = 0.3 y, = 1.355 y3 =1+ (0.3) (1.355)% = 1.5508

By the predictor formula, we have
4h ’ ’ ’
Yi=Yo T ?[Zh =Y, +2ys5]

—14 4x(01)
3

[2 x 1.1221 — 1.2991 + 2 x 1.5508]

=1+ 0?4 [4.0467] = 1.53956 = 1.539

Now yi =1+ Xx,y2 =1+ (0.4) (L539)? =1.9474
Now by corrector formula

h 7 7 ’
Ya=Y * §[y2 +4y; +Y,]
01
=1.223 + ? [1.2991 + 4 x 1.5508 + 1.9474]
01
=1.223 + ? [9.4497] = 1.53799

Corrected i =1+ x,yZ =1+ (0.4) (L538)% = 1.9461
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Again using corrector formula
h ’ ’ ’
Ya=Yy * §[y2 +4y; +Y,]
0.1
=1223 + 3 [1.2991 + 4 x 1.5508 + 1.9474]

1
=1223 + 0? [9.4497] = 1.53799

Hence y(0.4) = 1.53799 = 1.538. Ans.

1. Use Picard’s method to solve % =1+ xy with y(2) = 0.
X

d
2. Use Picard’s method to solve —> = x + y for x=0.1 and x = 0.2 with x, = 0, y, = 1.
dx

. d . . L
3. Use Picard’s method to solve d—)): =y —xwith y =2 when x = 0 up to third order of approximation.
d
4. Find the solution of d—)): =1 + xy with y(0) = 1 in the interval [0, 0.5] by using Picard’s method such that
the value of y is correct to three decimal place. (Take h = 0.1)
5. Use Picard’s method to approximation the value of y when x = 0.1 given that y = 1 when x = 0,
dy

= _ 3
dx—3x+y.

. . . d .
6. Use Euler’s method compute y(0.04) for the differential equation d—)): =—ywithy=1atx=0.
7. Use Euler’s method with h = 0.1 to find the solution of the differential equation % = x% + y? with
X
y(0) =0 in the range 0 < x < 0.5.

. d . . . . .
8. Given d—)): =x +y, find the value of y in the range 0 < x < 1 with h = 0.1 given that y(0) = 1 using Euler’s
method.
. d .
9. Find y(2.2) for d—)): = — xy? where y(2) = 1 by Euler’s modified method.

. . . . d
10. Using Euler’s modified method, compute y(2) in steps of 0.2 given that d—)): =

2+ [xy withy(1) = 1.

11. Given that d—)): = log,, (x +y) with the initial condition y(0) = 1, find y at x = 0.2, 0.3, 0.4 and 0.5 in steps
of 0.1.

12. Using Runge-Kutta’s method, find the approximate value of x=0.1 and x = 0.2 if % =X + y? given that
atx=0,y=1
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13.

14.

15.

16.

17.

18.

19.

o) (o) (O] eSS

10.
11.

12.
13,

14.

15.

17.
19.

Solve dy =%y forx=10.5, 1.0, 1.5, 2 [h = 0.5] by using Runge-Kutta’s method with x, = 0, y, = 1.

dx
Solve the equation d—)): = x +y with initial condition y(0) = 1 by Runge-Kutta’s rule fromx=0tox=0.4
with h = 0.1.

Use Runge-Kutta’s method to calculate the approximate value of x = 0.8 if %:,/x +y given that
X
y (0.4) =0.41 and h=0.2.

. d .
Solve the equation d—)): = x—Yy2for x=0.8 given that y(0) =0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762

by Milne’s method.
d
Use Milne’s method to solve d—)): = x + y with initial condition y(0) = 1 from x = 0.20 to x = 0.30

. . d .
Use Milne’s method to solve the equation Ll 2e* —y at x = 0.4 given that y(0) = 2, y(0.1) = 2.01,

dx
y(0.2) = 2.04, y(.3) = 2.09.

. d .
Solve the equation d—)): =1+y?for x=0.8 and 1.0 given that y(0) = 0, y(0.2) = .2027, y(0.4) = 0.4228,

y(0.6) = 0.6841.

ANSWERS
5 4 3 (2
(3)=X__X_+X__X_+X_£ 2 =1.1103 and = 1.2427
y 15 4 3 2 15 . (y)x= 0.1 ' (y)x=0. 2 .
4 3 2
yO=-X X 1 X ioxi2
24 6 2

(Y)yz0.4 = 1.505, ()05 = 1.677
(V)o=1, (V) = 1.105, (Y)y=p, = 1.203, (Y),-05 = 1.355
(Vyeo1 = 1.127

— 0.6705 7. y(0.5) = 0.03002
y(1) = 3.1874 9.0.7018
y(2) = 5.0516

y(0.2) = 1.0083, y(0.3) = 1.0184

y(0.4) = 1.0322, y(0.5) = 1.0

y(0.1) = 1.1165, y(0.2) = 1.2736

y(0.5) = 1.3571, y(1) = 1.5837

y(1.5) = 1.7555, y(2) = 1.8957

y(0.1) = 1.1103, y(0.2) = 1.2428

y(0.3) = 1.3997, y(0.4) = 1.5836

y(0.6) = 0.61035, y(0.8) = 0.84899 16. (Y),-qg = 0.3046
(Y)y=000 = 1.2428 and (y),_q 3, = 1.3997 18. y(0.4) = 2.1621
(¥)og=1.0294 and (y), = 1.5557.



Cuarter 4

Difference Equations

INTRODUCTION

In this chapter, we shall discuss basic concepts of difference equation, homogeneous and non-homoge-
neous linear difference equation with constant coefficient.

4.1. DIFFERENCE EQUATIONS

An equation which contain independent variable, dependent variable and the successive differences of
the dependent variable is called the difference equation.

Examples
(1) Ynsp = 6Yqeq +9y,=0
) (E2 +BE+9)y, =2" ie, y,,+6y,,+Yy,=2"
(3) (A2+3A+2)y,=1 or A% +3Ay +2y =1
or (Y2 = 2Yns1 + V) +3(Yns1 — Yn) +2Yp =1
or Yoz + Yo =1.

4.2. ORDER OF DIFFERENCE EQUATION

The order of the difference equation is the difference between the largest and smallest arguments occur-
ring in the difference equation divided by the unit of argument.

Thus, the order of the difference equation

_ Largest argument — Smallest argument
B Unit of argument

The order of the difference equation Yn., — 7y, =5 is
(n+2)-n _
-

119
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4.3. DEGREE OF DIFFERENCE EQUATION

The highest degree of y_’s in the difference equation is called the degree of the difference equation.

2-— .
Example 1. The order and degree of y, ,, + 4y, ., +4y,=2"are Lln =2 and 1 respectively.
2 n+3-n
Example 2. The order and degree of Y,,3 +3Yno +3Yn1 + Y, = 0 are — =3and 2

respectively.

4.4. SOLUTION OF DIFFERENCE EQUATION

Any function which satisfies the given difference equation is called the solution of the difference equa-
tion.

A solution in which the number of arbitrary constants is equal to the order of the difference
equation is called general solution of the difference equation.

A solution which is obtained from the general solution by assigning particular values is called
particular solution.

4.5. FORMATION OF DIFFERENCE EQUATION

Example 1. Write the difference equation A%+ A%+ Ay_+y_ = 0 in the subscript notation.
Solution. We have Ay, =y, -V,
A%y = Yoy = 2Yoa + Yy
A%, = Yniz = 3Yns2 + 3Yni1 — Vn
Putting in given difference equation

(yn+3 - 3yn+2 + 3yn+1 - yn) + (yn+2 - 2yn+1 + yn) + (yn+1 - yn) +Yn= 0

or Yna 2yn+2 + 2yn+1 =0
or E3y, - 2E% +2Ey, =0
or (E®-2E%+ 2E)y, = 0.

Example 2. Form the difference equation from the equation y = Ax? — Bx.
Solution. We have Ay = A(Ax? — Bx) = AAX? — BAX
=A{(x+1)-x}-B{(x + 1) -x}
Ay=A(2x+1)-B ()
and Ay=A{A(2x+1)-B}=AA(2x+1)-BA
=A{2x+1) +1-(2x+1)}
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A% =2A (i)
. 1,
By (ii) =3 A%y
o 1,
Put in (i), we get B:EAy(2x+1)—Ay
1
or B= > (2x + 1)A%y — Ay
Putting these values in given equation, we get
y= E Azy} x? — E (2x +1) A’y — Ay} X
= {l N (2x +l)x} A%y + xAy
2 2
2y = [- X2 = X] A%y + 2x Ay
or (P +X)A%y —x Ay +2y=0
or (X2 + X)(yn+2 - 2yn+1 + yn) —2X (yn+1 - yn) +2y,=0
or (X2 + XY,y — (2% + 4X)Y, ,, + (X +3x + 2)y, = 0. Ans.

Example 3. Form by y, = A2" + B(- 2)" a difference equation by eliminating the constants
A and B.

Solution. We have y, =A2"+ B(-2)" = y,—-A2"-B(-2)"
Y.y = 2A2" - 2B(- 2)" = Y, —2A2" + 2B(- 2)"
Yo, = 4A2" + 4B(- 2)" = Yy — 4A2" - 4B(- 2)"
Eliminate A and B, we get
Yo -1 -1
Youu —2 2|=0 or vy,,-4y, =0 Ans
Yoz —4 —4

4.6. LINEAR DIFFERENCE EQUATION

A difference equation in which 'y, y, .1, Vi -ooooe occur to the first degree only and are not multiplied
together is called the linear difference equation.

A linear difference equations of order k is

aO yk+n * 81 Yiken-1 T @2Ykan-2 T oeeees +akyn = R(n) ---(4-1)

If R(n) = 0 then the equation (4.1) is called the linear homogeneous difference equation other-
wise it is called non-homogeneous difference equation.
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4.7. HOMOGENEOUS LINEAR DIFFERENCE EQUATION WITH CONSTANT

COEFFICIENT

An equation of the form
+a,l)y, =0 -.(4.2)

or o(E)y,=0
a, are all constants, is known as homogeneous linear difference equation with

where Qg Agy v

constant coefficient
Lety, = m" be the solution of the difference equation (4.2), then we have

apm™* +am™ 4 . +am’"=0
= (a,m* +am“*+. ... +a,)m" =0 ..(4.3)
which show that m" is the solution of (4.3) if m satisfies
: (4.4

agm“ +am“ 4. +a, =

Equation (4.4) is known as auxiliary equation. This equation has k roots which we take m,,

m,,...,m,. Here some cases arise.

Case I. When roots are all real and distinct
m, are real and distinct roots of auxiliary equation (4.4), then the solution is

Ifm,m, ...
Yy, =c,(m)"+c,(m)" ...

Case I1. When some of the roots are equal
If two roots be equal i.e., m; = m,, then the solution is 'y, = (¢, + c,n) (M,)" + c,(m)" + ......

C (m)".

If three roots be equal i.e., m; = m, = m,, then the solution is
Y, = (¢, + ¢,n + ¢gn?) (m))" + ¢, (m,)" +
= m,, then the solution is

+ ¢, n*1] (my)".

+ ¢ (m)"

If k roots be equal i.e, m; =m,=m,
— 2
Y, =[c, +cn+cgn”+..

Case I11. When the roots are complex number
We know that if complex roots occur then they must be conjugate complex number

i.e., if (oo + i) is the root then (oo — iP) is also a root where o and [ are real. Then the solution is
Yo = Cy(0 + )" + Cy(0t = iB)"

which can be written as

Y, =7" (A, cosnb + A, sin no)

y=Jo?+B> and A =c, +c, A,=i(c,-c,)

0 = tan~! (B/a).
Case IV. When some of the complex roots are equal
Let the root (o £ i B) becomes twice then the solution.

where
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¥, =7" [(A, + A,n) cos N6 + (A, + A,n) sin n6]

where y=a?+p> and ©=tan? (B/a).

4.8. NON-HOMOGENEOUS LINEAR DIFFERENCE EQUATION WITH CON-
STANT COEFFICIENT

The equation of the form

(@Ek+ &E " +......+a,1)y, =R(n) ...(4.5)
or o(E)y, = R(n)
where  a,, a;, &, ... a, are all constants is known as non-homogeneous linear difference equation

with constant coefficient.

The general solution of (4.5) consists of two parts, complementary function and particular integral
Complementary function is the general solution of the homogeneous equation i.e., left hand side

. . 1
of (4.5) and particular integral = —— R(n).
o(E)

Rules for Obtaining the Particular Integral
. . 1
The particular integral (P.1.) = @ R(n).
Case |. When R(n) = a"
I T T .
= @ a"= @ a" provided ¢(a) =0
If & (a) =0, then for the equation
(E-a)ky, =a";k is positive integer.

1 an = nin-)(n-2)...... (n—=(k-12) ank

P.I.

Pl =

~ (E-a)" k!
Particular case: When k=1
Pl= -1 an=pant
E-a
When k =2
Pl = ! > a"=n(n-1)a"2
(E-a)

Case I1. When R(n) = sin an or cos an
ian _ —ian

. e e
Pl.=——sinan=

1 1
o(E) o(E) 2
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_l 1 ian_i —iayn
_E{ (€") (e )}

o(E) o(E)
1 { 1 ian 1 —ian}
S TRAPVATTO A Tay ©
21 | 0(e™) o(e™)
mi — i _E 1 ian 1 —ian
Similarly Pl = o(E) cos an = 5 {q)(e‘a) e + o™ e }

Provided ¢ (€'3) # 0 and ¢ (e7'2) # 0.
Case I11. When R(n) = nk
Pl pk=o_ 1
o(E) o(1+A4)
=[o (1 +A)]"nk
First, we expand [&(1 + A)]™ in ascending power of A by the Binomial theorem as far as the term
in Ak, then express nk in the factorial notation and distribute it each term of the expansion.

[+ E=1+A4]

Case IV. When R(n) = a" F(n), where F(n) being a polynomial in n.
Pl = L a" F(n)=a" 1 F(n).
o(E) o(aE)

SOLVED EXAMPLES

Example 1. Solve the difference equationy, ., - 2y,,, — 8y, = 0.
Solution. The given equation can be written as
(E2-2E-8)y =0

The auxiliary equation is m> —2m -8 = 0

Therootsarem=-2,4

Hence, the solutionis 'y, =c, (-2)"+c,4". Ans.

Example 2. Solve the difference equationy, ,, -2y, ., - 5y,,, + 6y, =0.

Solution. The given difference equation can be written as

(E3-2E?-5E +6)y. =0

The auxiliary equation is m3-2m?-5m+6 =0

Therootsarem=1,-2,3

Hence, the solution is y, =¢,(1)" + c,(- 2)" +¢,3". Ans.

Example 3. Solve y, .5 + ¥, — 8Y,., — 12y, = 0.

Solution. The given difference equation can be written as
(E3+E2-8E-12)y =0

The auxiliary equation is m3+m? -8m-12=0
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Therootsarem=-2,-2,3

Hence, the solution is y, = (¢, + ¢c,n)(-2)" + ¢;3". Ans.

Example 4. Solve the difference equation 9y, ,, -6y, +y, =0.

Solution. The given difference equation can be written as
(9E2-6E + 1)y, =0

The auxiliary equationis ~ 9m?-6m+1=0

w|

1
The roots are m = 3

n
Hence, the solutionis y, =(c, +¢c,n) (lj .
3

Example 5. Solve y, ., + 16y, = 0.
Solution. The given difference equation can be written as
(E2+16)y =0
The auxiliary equationis m?+ 16 =0
The roots are m = + 4i
Hence, the solutionis y, =c,(4i)" + ¢, (- 4i)"
Yo = 4" ey ()" + c(- i)'}

( .. n)n ( .. n)n
=4n4c, | cos— +isin=| +c,|cos= —isin—
2 2 2 2

nm nm nm

005—+|sm +C, | COS— —isin-—
{ 2) ( 2 2}
{ +02)cos +|(c1 C,)sin nzn}

nrw

=4" A005—+ Bsmz}

Example 6. Solve y, ., — 4y, ,, + 13y, = 0.

Solution. The given difference equation can be written as
(E?-4E +13)y, =0

The auxiliary equation is m®>—4m + 13 =0

4+ /16-4%x13 4=6i

The roots are m= = =2+3i
2 2

Let 2+3i=r(cos@+isin®) = r=(13)"2and 6 =tan?! (g)
Therefore solution is

y, = (13)"2 {c, cos nb + c, sin nB} where 6 = tan~! (2)
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Example 7. Solve y, ,, = ¥,+1 + ¥, = 0 giventhaty, = 1,y, = l+2‘/§ .
Solution. The given difference equation can be written as (E>-E + 1)y, =0
The auxiliary equation ism>—m+1=0
1+ J1-4 1+.3i
The roots are m = = 3
2 2
1+i43) 1-iv3)"
Hence the solutionis 'y =c, ( +'2 j +¢, ( _2I J
n n
T .. T T .. T
=c; (cos+|sm j +C, (cos—lsm j
3 3 3 3
nt . . nm nt . . nm
=c, (Cos+|sm j+c2 (cos—lsm j
3 3 3 3
nmo . nm
=(c, +¢,) cos? +1i (¢, —¢,) sin 3
nm . nm .
=Acos — +Bsin — (
1+43
But y,=1 and vy, = 2\/—
1=Acos0+Bsin0 = A=1
1+/3 T W
and 5 —A0033+Bsm3
1
+43 11,58 o B=1
2 2 2
Put A=1landB=1in (i), we get
nm nm

=c0S — + sin —.
Yo 3 3

Example 8. Solve the difference equationy, ., -2y, +5y,=2.3"-4.7"

Solution. The given difference equation can be written as
(E2-2E+5)y =2.3"-4.7
The auxiliary equationis m?-2m+5=0
2% J4—4x5
2-1
Let 1+2i=r(cos®+isin®) = r=_/5and@=tan'2
Therefore complementary solution is
= (5)"2 (c, cos n@ + ¢, sin nG) where 6 = tan! 2

The roots are =1+2i
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The particular solution is given by

P.I.:2¥2.3”—4.7n
E°-2E+5
1 1
=2———3" -4 7
E°-2E+5 E°-2E+5
=2 E3"_4i7”:£3n_i7"
8 40 4 10
Hence solution is y,=C.F +Pl

. 1.0 1.4
= (5)"2 {c, cos n@ + ¢, sin n6}+z3 —57 . Ans.

Example 9. Solve the difference equation (E? - 3E — 4)y, = 3".
Solution. The auxiliary equation of given difference equation is m? —=3m—-4=10
Therootsarem=-1, + 4,
Therefore complementary solution is ¢, (- 1)" + ¢, 4"
The particular solution is given by

1 n

Pl = — 3= 1 3“=—£3“
E2_3E-4 9-9-4 4
Hence solution is y,=CF +PlL=c,(-1)"+c4" - % 3" Ans.
Example 10. Solve the difference equation
y(n +2)-3y(n +1) +2y(n) =6.2"
or Yorz = Ypeg T2y, =6.2"
Solution. The given difference equation can be written as
(E2-3E +2)y,=6.2"
The auxiliary equation is m>-3m+2=0
The rootsarem=1, 2.
Therefore the complementary solution is ¢ (1)" + ¢,(2)".
The particular solution is given by
Pl = ﬁ 6.2" [- F(2)=0]
:;6.2”:;6.2”:6 2"
(E-1)(E-2) (2-1)(E-2) (E-2)
=6.n 2" =3n2"
Hence solution is y,=C.F +Pl

Yy, =¢C, +¢c,2"+3n2".  Ans.
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. 1
Aliter : Pl = m 6.2"
1
:6m2”.1 [ F((@2)=0]
=6.2" L 1=6. 20—+ 4
(2E)? —3(2E) + 2 4E? —6E +2
=6.2" L 1
T AL+ A -6(1+A)+2
1
:6'2n4(l+2A+A2)—6(1+A)+21:6'2nm'1
:3.2“;.1:3.2“£(1+2A)‘1.1
A(L+2A) A

:3.2“% (1-2A+4A2 ... ).1:3.2“% (1-0+0..)
Pl1.=3.2"n.

Example 11. Solve y,,, + &%, = cos an.
Solution. The given difference equation can be written as

(E? + a?)y, = cos an
The auxiliary equation is m? + a2 = 0
The roots are m = + ia.
Therefore the complementary solution is
c,(ia)" + ¢, (—ia)" = a" {c,(i)" + c,(—=1)")

. ( T njn ( T njn
=a"{c, [cos=+isin=| +c,|cos= —isin=
2 2 2 2

nft .. N nft .. N
=a" C, (cos+|sm j+Cz (COS—ISIH j
{ 2 2 2 2
nw

nm . . N nm .
=a"<(c; +¢c,)cos—+1i(c, —C,)sin— ¢ =a" {Acos— + Bsin —.
a {( 1+ C) 5 (¢, —¢,) 5 } a { 5 5 }
The particular solution is given by

e ian + e—ian

cosan =
(E? +a?) 2

Pl =

2

2

{

1 i 1 i
= iam . tom e
2 +a e +a

iayn 1 —iayn
v O E T ’}

E2+a
1
2
1
i

E
e
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~ 1 {eian (e72ia + a2)_’_e7ian (e2ia + aZ)}

2 (e2ia + a2) (e72ia + a2)
1 (&2 4 ga0-2) | 42 (gian | g-iany
2 { 1+a% (@ +e ) +a* }
_12cosa(n-2)+a’2cosan _ cosa(n—2)+a’ cosan
2 1+2a’cos2a+a®* 1+2a’cos2a+a’
Hence solution y,=C.F +Pl

nn} , cosa(n—2)+ a® cos an

n{Acosn—n+ Bsin —
Yn=2 2 2 1+2a® cos2a+a*

1
Aliter: P.l. = ——— cos an
E? + a2

= Real part of EZ;Jraz (cos an + i sin an)
= Real part of % efan

E“+a
= Real part of % (e?)"

E“+a

1 _
= Real part of a2 glan

e—zia + az .
1an
(eZia + aZ) (e—Zia + aZ)

ia(n-2) + aZeian

= Real part of

= Real part of - .
P 1+a® (e +e ) +a*

cosa(n—2)+isina(n—2)+a’ (cosan+isin an)
1+2a% cos2a+a*

= Real part of

cosa(n —2) +a’ cos an +i (sin a (n — 2) + a° sin an)
1+2a% cos2a+a*

Real part of

cosa (n—2)+a? cosan
1+2a®cos2a+a’
Example 12. Solve y, ., — 2 cos o y,,; + Y, = COS on.
Solution. The given difference equation can be written as
(E?-2cosa E+ 1)y, =cosan
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The auxiliary equation is m?

The roots are

_ 2c0s o t4/4cos? o4

—-2cosom+1=0

= (cos o £ i sin o)

2.1

Therefore complementary solution is

¢, (cos o + i sin )" + ¢, (cos o — i sin o)"

= ¢, (cos nov + i sin na) + ¢, (cos no — i sin nor)

= (c, +¢,) cos na + i(c, - ¢,) sin no

= A cos na + B sin no

The particular solution is given by

Pl =

1

E2 -2cosaE +1

COS N

—ino

1 e e

E2-2

(eioc + e—ioc )

E+1

—ino

1 e +e

E2—(ei°‘+e*i°‘)E+l 2

) +E™)"}

1
2
1
2

N\l—\

g

Ioc)(E efl(x)

i(x n 1 —ioyn
el(x)(E e—loc)( ) + (E_eia)(E_efioc) (e ) }

.
e

o yn 1 —ioyn
e—ioc) (€")" + (e—ioc _eioc)(E _efi(x) (&™) }

Ia)(el(x _

1

(E —e')2isina

1

iocy\n 1 —ia\n
EV Caisingy (E—e) © )}

" Aisina

" disina

" 4i
Hence solution

Y, = Acosno + Bsin no +

1

sin o,
y,=C.F. +Pl

(ei(x)n

1
E_el(x

{n (eioc)nfl -n

1 —ioyn
TEoe ¢ ’}

(efi(x )nfl} - n

(ei(n—l)oc _ efi(nfl)oc)
4i sin o

nsin (n — 1o

2sin o

2isin(n-o =

nsin (n—1o
2sin o

Ans.
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Example 13. Solve 8y ., -6y, ,, +y,=5sin (%’“j

Solution. The given difference equation can be written as

(8E2 - 6E + 1)y, = 5sin (”7")

The auxiliary equation is 8m>—6m + 1 =0
11

The roots are m=—,—
4 2

o 1\" "
Therefore complementary solution is ¢, (Zj +¢, (—j

The particular solution is given by

P.l —155in(nn)
T 8E? —6E +1 2

1
2

=S
2i

in \" —in\"
1 - — 5 1
5 e2 _ e2 :7_27
8E“ —6E +1 2i 8E° —6E +1

i"-(=n"

R pem S
 2i|8E*-6E+1  8E’-6E+1

_E— l in_ l (_i)n
2|82 -6i+1  8(—i)? —6(—i)+1

- i
| 7+6i 7 —6i

B n n
—(7—6i)(cosg+isingj +(7+6i)(cosg—isinnj

SEA IR (—i)“}

2

—(7—6i)(cosn;+isinn;j+(7+6i)(cosn;—isin

(7 + 6i)(7 - 6i)

?)
2

N[ o

49 + 36



132 ADVANCED MATHEMATICS

[ 7005——7|5|nn—+6| cos——65|nn—+7005n—7E
2 2 2 2 2

—7|smn—+6| CO0S — +65|nnn}
2 2 2

i .. nm . nm nm
=—__ J_ iad i 6005——75|n—
34{ 14i sin > +12i cos 2} 17{ 5 2}

Hence solution is

1\" 1\" 1 nm . nm
=C,|=| +¢,|=| +—=36c0s——7sin—;. Ans.
I 1(4) 2@ 17{ 2 2}

Example 14. Solve the difference equation
Yosp — 6Ypey + 8Y, =307 + 2.
Solution. The given difference equation can be written as
(E2-6E +8)y, =3n?+2
The auxiliary equation is m?>-6m+ 8 =10
Therootsare m=2,4
Therefore the complementary solution is  ¢,2" + ¢,4"
The particular solution is given by
PlL=__ 1 @n2+2)= L
E’ -6E +8 (1+A)*>—6(1+A)+8
_ 1
C142A+A*—6-6A+8
1

1
= 2 2) = —
A2—4A+3(3n +2) 3

(3n% +2)

(Bn?+2)

o
2
(1_4A—A )
3

) (3n% +2)

(3n% +2)

( 4A — N

oo\H

9 +oen ) (3n@ + 3n® + 2)

oo\H

[ 4A - A2 (4A—A2)2

=L (3n® 4 3n® 49y, HBN+3) -6 166
48 8 44
:—3n(n—l)+3n+2+8n+2+— =n?+—-n+—
3 3 3 9

8n 44

Hence solution y, = C.F. + PI. = ¢;2" + ¢,4" + n? + 39
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Example 15. Solve the difference equation
Yosp — 4y, =n?+n-1.
Solution. The given difference equation can be written as
(E*-4)y,=n*+n-1
The auxiliary equationis m?2-4=0
Therootsare m=2,-2
Therefore the complementary solution is  ¢,(2)" + ¢,(- 2)"
The particular solution is given by

(n+n-1) - 1 2 _
2 n“+n-1
E°-4 (1+A)2—4( )

1
- A2+2A—3(n2+n_l)

= (n* +n-1)

2
_3(1_2A+A )
3

[+ n?2+n-1=n@+2n® 1]

I/~ 7 _ N

_ @
_-1 n‘2)+2n‘1)—1+2(2n +2)+2+4.2
3 3 9
:—E n(n—l)+2n—l+4n+8)
3 3 9
_n°_mn 17
3 9 27
Hence solution y,=C.F +Pl

2

n n 17
=c,2"+¢,(-2)' - —————.
=G 2(=2) 3 9 27
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Solve the following homogeneous difference equations

1. (E*-2E-8)y,=0 2.2y, 5 t2y,=0

3. fnh+2)+f(n+1)-56f(n)=0 4. (A-2)? (A—S)yn:O

5. (A2-5A+ 4)y,=0 6. Yne3 +t Yni2 — Vo1 —Yn =0

7. AYnip +29Y,=0 8. Yn+sa = 4Yni3 +6Yni2 = 4Yni1 +Vn =0
9. Yni2 +2¥nia +4Y,=0 10. Yns2 = 2Yn41 +5Y, =0

11. Solve the difference equation y, ., — 4y, _, + 4y, =0 and find the particular solution satisfying the initial
conditions y, =1 andy, =3

12. Solve 2y, —5Yn,1 +2y, =0 withy,=0,y, =1
Solve the following non-homogeneous difference equations

13 Yniz =AY +3yn =4". 14.y,., —4y, =5.3n.
15. Yoo +Y,=5.2"withy,=1,y,=0 16. f(n + 2) — 3f(n + 1) + 2f(n) = 4"
17. Yni2 = 4yn+1 + 4yn =2" 18. Yn+2 — 7Yn+1 + 1ZYn =cosn
19. Y., —16y, =cos(n/2) 20. Yo +Yn=4c0S2n
21. y,,, +a%y, =sinan 22,y Lt Y Y, =4+l
ANSWERS
n n 1 f
L Wn=a(+2)" +c (-4 2. Yn =q(5) +6, (2)"
f(n) = ¢, (7)" + c,(- 8)" 4.y, =(c, +c,n) 3"+ c,6"
Yy, =¢2"+c,5" 6.y,=(c, +c,n(=1)"+c,
_(5Y nm . nm _ e
7. y,= 7 010087+(>28|n7 8.y, = (c, + c,n +cyn® + ¢,n°)(1)
—on _r o —En - — tancl
9. y,=2"c, cos 3)Ntesin|{ 5 n 10.y, =5" (c, cos nO + ¢, sin nB) where 6 = tan™* 2
_ " _ | _ (1 . __2(1)" 2,
11. y,=(c;+¢c,n)2" and y,=(n+2)2 12-yn—01§ +C,2 andyn——g > +§()
— n 1 n — n 2 n n
1By, =c +cd+ 54 14y, =c2"+c,(-2)"+3

n 1
15. 'y, =cos % +2" 16.f(n) =c, +c,2" + 5 4n
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Unit III

SPECIAL FUNCTION

Exponential, Logarithmic, trigonometric, hyperbolic, etc., are the elementary func-
tions. While Bessel's functions, Legendre’s polynomial, Laguerre polynomial, Hermite
polynomial. Chebyshev polynomial, Beta function, Gamma function, Error function,
etc., are the special functions.

In this unit we shall discuss only two types of special functions, Bessel's and
Legendre’s.

Chapter first deals with the Bessel’s function of first and second kind, orthogonal
property of Bessel's function recurrence relations and generating functions.

Chapter second deals with the Legendre’s function of first kind, orthogonal prop-
erty of Legendre’s function recurrence relations, and generating function.
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Cuarter 1

Bessel’'s Functions

1.1. BESSEL’S EQUATION

2

The differential equation of the form xz% + x% + (x2 —n?) y = 0 is called the Bessel’s differential
X X

equation. The solution of Bessel’s equation is called Bessel’s function. It is also known as cylindrical

and spherical function.
Bessel’s functions are appear in

(1) the elasticity (2) the fluid motion (3) planetary motion
(4) the oscillatory motion of a hanging chain (5) dynamical astronomy
(6) electrical fields (7) potential theory

(8) Euler’s theory of circular membrane.

1.2. SOLUTION OF THE BESSEL’S FUNCTIONS

To find the solution of Bessel’s differential equation

2
ng z +X% +(x2—n2)y:0 ..(1.1)
X X

Let y= 2 a,x™" be the series solution of (1.1)

r=0
d - _
so that d—i = Z‘O‘ (m+r)a, x™ 1 ..(1.2)
and d’y = i (m+r)(m+r—1)a, x™"? ..(1.3)
dx? s

139
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Substituting these values in (1.1), we get

oo

x2z (m+r)(m+r-1a, x™"2+ xz (m+r)a, x™ ™+ (x? —n?) Z a, x™" =

r=0 r=0 r=0
or Z a, [((m+r)(Mm+r—1)x™" + (m+r) XM + xMH+2 _ n2xm*r] = g
r=0
or 2 a [(m+r)(m+r—-2+(m+r)—n?)x™" —x™™2] =0
r=0
or 2 a, [(m+r)2 —n?)x™" —x™ ™21 =0 ..(1.4)
r=0

Since the equation (1.4) is an identity, therefore the coefficients of various powers of x must be
zero.

Equating to zero the coefficients of the lowest power of x (i.e. x™) in (1.4), we get
a,[m*-n’]=0
But a,#0
m>-n?=0 or m=%n ..(1.5)
Now equating to zero the coefficients of the next lowest degree term of x (i.e. x™?) in (1.4), we
have
a,[(m+1)>-n?=0
But (m+ 1)2—n? =0 for m =+ n given by (1.5)
a, =0
Again equating to zero the coefficient of the general term (i.e. X*"*2) in (1.4), we get
a.,,[(m+r+2)2-n’l+a =0
1
C(m+r+2)? —n?
1

or a,,=-— a ..(1.6
"2 (m+r+2+n)(M+r+2-n) (1.6)

or

ar+2 = ar

Putting r = 1 in (1.6), we get

1
a,=- a,=0 (- a=0
® (M+n+3)(M-n+3) * ( 1=0)
Similarly puttingr =3,5, 7, ...... ,in (1.6), we geteach a; =a; = ag ...... =0

Now two cases arise here
Case I. When m = n, from (1.6), we have

1
a . ,=— a
"2en+r+2)(r+2) "
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Puttingr=0, 2, 4, ...... etc.

1
= o oy 0T T o - EN)
(2n+2)(2) 2211(n+1)
1 1 1

ST @) 2T T 20+ T P i) (e 2)

a, x M = z E.jern+r
r= r=0

- n n+1 n+2 n+3 n+4
= aox + alx + a2x + a3x + a4x ......

1

y

o

= OXn_ > 1 a, Xn+2+ - 1 aoXn+4
2°11(n+1) 2°21(n+)(n+2)

_a o Xn+2 Xn+4
=X -y~ ...

T2 (n+1)  2°21(n+1) (n+2)

2 4
— n X X
=ax' |1-— t o T e
2°11(n+1) 2°2!'(n+1(n+2)
_ 1
2"T(n+1)
The above solution is called Bessel’s function of the first kind of order n and denoted by J (x)

If a,

160 = x" { X2 x* ]
n(X)_ n l_ 2 + A A AN Ayttt
2" T(n+1) 2°11(n+1) 2°2!'(n+1D(n+2)

i 2r

_ X v X
_Z“F(n+l)g;‘( D 2 rin+)(N+2).....(n+r)
~ el (X n+2r 1
3 (x) = ZO, (-1) (Ej m ..(L.7)

Case Il. Whenm =-n
The series solution is obtained by replacing n by — n in the (1.7)

. oo (X n+2r 1
J_n(x)—ga -1 [5) FIT(n+r+1)

1.3. GENERAL SOLUTION OF BESSEL’S EQUATION

The solution of the Bessel’s differential equation of the type y(x) = A J (x) + BJ_,(x) where A and B are
arbitrary constants is called general solution.
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1.4. INTEGRATION OF BESSEL’S EQUATIONS IN SERIES FORN =0

For n = 0 the Bessel’s differential equation is

—+——+y=0 ..(1.8)

dx 4
dzy — N m+r-2
and —z—zar(m+r)(m+r—1)x
X
r=0
Substituting these values in (1.8), we get
i m+r-2 N m+r—1 N m+r —
a (m+r)(m+r-1)x +_2 a, (m+r)x +Zarx =0
r=0 X r=0 r=0
or 2 a, [(m +0M+r-Dx™ 2+ (m+r)x™"? 4 x’“”] =0
r=0
or 2 a, [(m + r)2 xM+r-2 Xm+r] =0 “_(1_9)
r=0
which is an identity. Equating to zero the coefficient of the lowest power of x(i.e. X™?), we have
am?=0
But a,=0therefore m>=0, .. m=0 ...(1.10)

Now equating to zero the coefficient of the next lowest power of x give (i.e. xX™), we have
a(m+1)>=0
But (m + 1) # 0 for m = 0 given by (1.10)
Now equating to zero the coefficient of the general term (i.e. x™"), we have
a,(M+r+2)2+a =0

a =&

"2 (m+r+2)?

Whenm =0, we have a_,=- 8
r+2 (r +2)2
Puttingr=1,3,5...... etc., we have a, = a3 = Ag oo =0
Again putting r =0, 2, 4 etc., we have
_ a, _ a. _ ao
a2——2—g, a4——4—§ = 2,7 etc.
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Since

Whenm =0

8

- r_ 2 3 4
Y=, ax  =ag+ax+ad +agt+ax

r=0
:ao_:_gx2+%x4 ......
=4, 1_X_z+)2(_42— ZXS T e
2 2°4° 2°4%6
If a,=1theny=Jy(x)
.Jo(x):l—x—z x* - S

22 + 2242 224262
Jo(X) is also known as Bessel’s function of order zero.

1.5. GENERATING FUNCTION FOR J (X)

X 1
Prove that J (x) is the coefficient of z" in the expansion of ez(Z Z)

1(2_1) X
Proof. We have e?\ %/ ze? .e Z
Xz

1 (xzj2 1 (xzj3
=|1l+—+—|—=| +—|—
2 212 31\ 2

()

o (N

Now coefficient of z" in this expansion

) - b )

:nl'@ - (njl)!(;jm i) @4 '

(-1)°

(-1°
r'(n+1)

2!T(n+3)

ol

IR 1(:(nl)i 2) (;jm "

l(xzj“

+onns +——| +
ni\ 2
n+2 2
1 Xz X 1 (x

+ () ...... Xx|1——+ o+
(n+2)1\ 2 21 2'\2z

X n+4
2)
2

oo (5]

G
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; X n+2r_
_2( b r'l“(n+r+1)( j =3

Similarly, the coefﬂment of z™ in the above expansion

)Gl e ()

=G {r((nliol)( )“ +r((;i)12) (;)M " 2|(r(i)i 3)(X)n+4 """ }

= (- 1" 3,

Hence we obtained e? ( ) 2 2" J, (x).

N=—co

1.6. RECURRENCE RELATIONS FOR J (X)

(1) xJ,"(x) = nJ(X) = xJ,,4(X)
Proof. We know that
i (_ 1)r (Xjn+2r
J = _— | =
) ZO‘ r'T(n+r+1)\2

Differentiating w.r.t x, we get

(1" (n+2r) (x\"** 1
I () = rzo‘ r'l"(n+r+l)( j 2

XJ (x)—z & (n+2r)( jmr

~ r!iT(n+r+1)
i ( 1) n X n+2r had (_1)r or é ﬁ n+2r-1
z 'F(n+r+1)( ) +z(; r!l“(n+r+1)2(2j

X n+2r-1
=" (X)+Xz (r—l)'F(n+r+1) (_j

r=0

] ) . a l)H X (n+1)+2(r-1)
nJ (x) XZ(; (r=D!TI(n+1) +(r-1)+1] (Ej

B ~ ad (_ 1)5 X (n+1)+2s N ) L
=nJ (X) X; ST+ 1) +5+1] (2) [~ Puttingr-1=g]

xJ./(X) = nJ, (x) = xJ,, (X). Hence proved.
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(I xJ,/(x) ==nJ (x) +xJ,_; (X)
Proof. We know that
~ nd (_ 1)r 5 n+2r
() = 2 r'r(n+r+1) (2)

r=0
Differentiating (1) w.r.t “x”, we get

- D'(n+2r) (x\"? 1
zo‘ 'F(n+r+1)(2j "2
_ D" (n+2r) (X" D" @n+2r-n)(x near
of X () = rz;‘ r'l"(n+r+1)() _z r'r’'(n+r+1) (2)

o ED 20 (x)T N DT -n ()
‘Z: 'F(n+r+1)[2j +§.‘ r!l"(n+r+1)(2j

_ fd (_1)r X n+2r hod (_1)r 2(n+r) é n+2r—1£
——nz r!l“(n+r+1)(2j +2 r!l“(n+r).(n+r)(2j 2

r=0 r=0

0o 1 n+2r-1r
=-nJ (x) +x 2 r'i‘(n).”) (X)

r=0

oo

(n-1)+2r
=-nJ,(x) + Z rIT[(n - 1)+I’+1]( )

=0
=-nJ (x) + xJn_l(x)

xJ.'(X) = =nJ (x) + xJ,_;(X). Hence proved.
(1N 23./(x) =J,_,(x) = J,,,(X)
Proof. By recurrence relation (1) and (1), we have
xJ./(x) = nJ (x) = xJ,.,,(X) (1)
xJ.'(x) ==nJ (x) +xJ_;(X) ..(ii)
On adding, we get
2xJ./(%) = x [, (%) = I, (¥)]
or 23/(x) = 3,1 (X) = I, (%) Hence proved.
(V) 2nJ () = x [J,,(x) + J.,,(¥)]
Proof. By recurrence relation (1) and (1), we have
xJ."(x) = nd (X) = xJ,,; (X) (i)
xJ./(X) ==nJ () +xJ._; (X) (i)
On subtracting, we get
0=2nJ,(x) = xJ,,(X) = xJ,_,(X)
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or 2nJ (x) = X[J,,,(x) + I, (¥)]. Hence proved.

d
V) ax X 3,001 == x"J 4 (x)

Proof. We have % [x"J, (0] == nx™1 J (x) + x" 3/ (X)

=x™ [-nd (x) + xJ."(X)]

=x" [-nJ () +nJ (X) = xJ.,,(X)]
By recurrence relation (1)

= x " = %3, (0]

di [x"J,0)] =-x"J,,(x). Hence proved.
X
vy L ae=x3,, )

dax

Proof. We have (;j_x X" 3,001 = nx"1 J (x) + x"J."(x) = x" [nJ (x) + xJ,/(X)]

=x" I (x)-nd (x) +xJ_, ()]  [By recurrence relation (I1)]

% [xX"J(x)]=x"J (). Hence proved.

1.7. ORTHOGONAL PROPERTY OF BESSEL’S FUNCTIONS

X 0 if oazp
-[o x J (ax) J, (Bx) dx = {% [0, if o=p

where a, B3 are the roots of J (x) = 0.

Proof. We know that
2

xz% +x% + (0?2 -n?)y=0 ..(1.12)
2

XZ% + xg—z +(BPX?>-n?)z=0 ..(1.12)
X X

Solution of (1.11) and (1.12) equations are y = J (a0 X), z = J,(Bx) respectively. Multiplying
(1.11) by Z and (1.12) by Y and subtracting, we get
X X

dzy d?z dy dz s a2
X(dez ydxzj +(de_ydx)+(a -B9) xyz=0
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and

or

a4 x(zﬂ—yzj +(0? =B xyz=0
dx dx dx

Integrating w.r.t. x, both sides of (1.13) from 0 to 1, we get
1
1
[x(zdy - ydzﬂ +(0? —B2?) -[o xyzdz =0
0

dx " dx
1 dy dz)
2—o? dx = | x| z—= —y—
B oc)joxyz X H oV ax L
_(,dy dz)
( dx ydx =l
Putting the values of  y=J (ax) = %=0€Jn'(ax)
X
dz _

z=JBx) = ™ BJ,(Bx) in (1.14), we get
X

(B? - a?) j: X Jp(00x) J(Bx) dx = [ad (v X) I, (Bx) — BI," (BX) Iy, (0 X)),

= o, (0) J,(B) = BI,"(B) I()
Since a, [3 are the roots of J (x) = 0 therefore J (o) =0, J (B) =0

Then by (1.15) (B2 - 02) [ X () J,(Bx) dx = 0

1
J:) x J, (@x) J, (Bx) dx =0 Hence proved.
By (1.15), we have

(B2 - ) [} X 3y (00 3y (BR) €% = 003 (@) 3,(8) - B3, (B) 3,(@)

When o=

.(1.13)

.(1.14)

..(1.15)

..(1.16)

We also know that J (o) = 0 and B3 as a variable approaching o then from (1.16), we have

o J," (@) J, (B)

oot .
fim [ 3n000) 3y (Be) e = fim =

Now apply L’Hospitals Rule

[1x(3,(000)? dx = i ©35(0) J3(B)
0 B—a 2B

1 1
=3 () (o)) = p (Jnea(0))?

0 it 0B

1
Hence _[0 X Jp (o) Jn (Bx) dx = {% (Jpaa(o))? if =B

‘gform‘
0
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SOLVED EXAMPLES

Example 1. Prove that J_(x) = (- 1)" J ()

had —n+2r
Solution. We have  J_ () =) (-1)" (ﬁj ';
re 2 r'r(=n+r+1)

_ n-1 ] X —n+2r 1 oo . X —n+2r 1
2 () a2 G arceens

r=n

oo X—n+2r 1
05 () s
Z;‘( ) 2 r'r'(-n+r+1)

On putting r = n + k, we have

oo . X n+2k 1
1,022 D ‘(3 eenmeen

_ . oo ) X n+2k 1
=CD zg =1 (Ej KIT(n+k + 1)

J_ ) =(1"J (x). Hence proved.
Example 2. Prove that

[~ —veinteger = o]

(i) 3y, ) = (nzxj sin x (if) Iy, ) = (nzxj COS X

Solution. We have
n 2 4
3,0=_* DS\ S T (i)
2"T(n+1) 2°11(n+1) 2" 2'(n+1)(n+2)
(1) Substituting n = 1/2 in equation (i)

X1/2 X2 X4

Jp(X) = 1-
: u, j 4 (l j(l j
vz 1= 2911 =41 2% 21 = +1||{=+2

2 2+1 (2 > >

_ X x? . x*
NN 2.3 2.3.45 "
2

_ [2.x 1 x x°
Y LRRAR Y QU
T X 13 15
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2 .
= (—j sin x. Hence proved.
X

(I1) Now substituting n = —1/2 in (i) we have

-1/2 X2 X4
+ .

X
1-—
+ 1 )

Jp )= / T , 1 ) 1
vz = 2°1 | ——+1| 2°21-—=+1||-=+2
S ( 2 ) ( 2 )( 2
2 x? x*
== |[1-—+————+......
X 1.2 1.2.3.4
_[2
J_1p(X) = |— cosx. Hence proved.
X
. 2 (1 .
Example 3. Prove that (i) J,, (x) = = ( sin X — cos xj.
X \ X

(ii) Jgp(x) = \/n_Tx [(3 ;zxz j sin x —g cos x}.

Solution. By recurrence relation (1V), we have
2nJ () =x [J,; %) +J,,,(X)]

Ja®) = 2 3,00 =3, 40 0

or
(1) Putting n = 1/2 in (i), we get

1
Jyp () = - Jip (%) = J_4p(%)
1 / 2 . [2
== |— sinx- [— c0s X
X X X
2 (1 .
= [— | =sinx—cosX|. Hence proved.
™ \ X

(1) Again putting n = 3/2 in (i), we get

Jg() = ; 3200 = J1(%)

3 [2 (1 . j /2 .
=— J— | —SsInX—CcoSX|—_ |— sInX
X Vmx \ X X
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or

or

and

[2 (3( 1 . ) . )
= |—|—|——SINX—COS X [—SIN X
X \ X X

2 _ 2
o [(3 X Jsin x—2 cos XJ. Hence proved.
X x? X

Example 4. Prove that x2J "(x) = (n> = n —x2) J (x) + xJ,,,(X).
Solution. We have the Bessel’s equation is
2

xz¥ +x% +(?-n)y=0
Since J (x) is the solution of egn. (i) so

X237 () +xJ3/() + (x*-n?) J.(x) =0
By the recurrence relation (1) we have

xJ/(x) =nd (x) = xJ,,(X)
On putting the value of xJ."(x) from (ii) in (i), we get

x2J” () + nJ (x) = xJ_,,(x) + (x*-n?) J_(x) =0

237 (X) = (N*=n-x2) J (x) +xJ_,,(x). Hence proved.

Example 5. Prove that 4] "(x) = J_, (x) = 2J,(X) + J,,,(X).
Solution. By recurrence relation (111) we have
23/(x) = 3,4, () =, (X)
Differentiating both sides, we have
217 () =3, 0)-J3,, (X
437 (x) =237, (x)—23,,(x)
Now puttingn=n-21andn+ 1in (i)
27 (%)=, -J,(x)
27, (%) =3, ()= J,,,(X)
Substituting these in (ii), we get
437 (x)=J,,0)-J,(x)=J,(x)+J,, X
4)"(x) =3 ,(x) - 2] (x) +J,,(x). Hence proved.

n+1

Example 6. Prove that % (xJ,3..1) =x(@,.2- 32

Solution. We have % (CQURNI) I INVINIE D & AN IR D VIV 4

n “n+l n+1

By the recurrence formula (1) and (I1), we have
xJ."(x) = nJ (X) = xJ,,(X)
xJ.'(x) ==nJ () +xJ_;(X)

...(ii)

0

...(ii)

0

...(ii)
...(iii)
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Putting n=n+ 1, in (iii), we get
XJpa () == (+1)J ., (x) +xJ,(X) ..(iv)

On putting the value of xJ.’(x) and xJ; , , () in equation (i), we get

% (X‘]n‘Jn+l) = ‘Jn‘Jn+1 + [an(X) - X‘]n+1(X):I ‘Jn+1 + ‘Jn[_ (n+1) ‘Jn+1(x) + X‘]n(x)]

—(n+1) ., J,+XxJ2(X)

+nJJ X‘JZ n+l “n

=J n‘J n+1 n“n+l n+1

di (x3.J,,0) =x(3,2= JZ,1). Hence proved.
X

[n‘]n_(n+2)‘]n+2+(n+4)‘]n+4 ---- ]

2
Example 7. Prove that J_, = "

and hence deduce that % xJ,=(n+1)J ., -n+3)J ,+(N+5J ... :

Solution. By the recurrence formula IV
2nJ (x) = x[J,_,(x) + J.,,(X)]

2n .
or J4= = J.(x) = J,,(¥) (i)
Putting n =n + 2 in (i), we get
2(n+2
‘]n+1 = ( X ) Jn+2(X) _Jn+3 (X)

Putting the value of J__,(x) in (i), we get

Ja= 200,00 = 20D 00 40,00 (i)
Again putting n =n + 4 in (i), we get

s = Z(H):- 4 Jnea(®) = Jois(X)
Putting the value of J__, in (ii), we get

3,=" 00— 2(”+2) 3,0 + 2(”: D 3 00-3 )

Proceeding in the same way and take J. — 0 as n — oo, we have

=}

2 2 2
Jn_lzgnJ ;(n+2)J +;(n+4)Jn+4 ......
2
:; [N, -(n+2)J ,+(N+4)J ., ... ]. ..(ii)

Hence proved.
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or

or

Deduction: On putting n =n + 1 in (iii), we get

%xJn:(n+l)Jn+1—(n+3)J +(n+5)J

n+3 n+s5 et '

Example 8. Prove that J,(x) + 3J,"(x) + 4J,”(x) = 0.
Solution. We have  2J'=J ,-J
Differentiating w.r.t. x, we get
23 =301
2207 =230 1-23,=00,-3) -0, =) =3, ,-2), +J .,
Differentiating again w.r.t. x, we get
2207 =31, =237+ 31,
2207=2) ,-22)/+2]/,,
= Uns = Ine1) = 2000 = Jni) * dhi = s
=3, 3-3),+3),,-Js
Putting n =0, we get
28" =3,-3),+3J, -,
=(-1)33,-3(-1)J; +3), -3, =-2], + 6],
43" ==33+33, =-J;+3(-J)) (v 3 ==
J,+3)7+43,7=0
J,(x) +3J,°(x) +4J,”(x) = 0. Hence proved.

/2
Example 9. Prove that -[o VTX J o (2¥) dx = 1.

Solution. We have J,,(x) = /i sin x
X

On replacing x by 2x, we get

Jip (2¢) = /% sin2x or  Jux Jy,(2x) = sin 2x

Now integrating w.r.t. “x”” from 0 to /2, we get

/2 /2 i 2 /2
.[0 Jrx 3,,(2x) dx = .[0 sin 2x dx = {_ 0052 X}

0

=- % [cos m—cos 0) = 1. Hence proved.
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1

X
. -n _ N
Example 10. Prove that if n > - 1, JO X Jp(X)dx = PN m X J,(X)

Solution. We know that
d _
™ (x"J,(x) =-x"J.,(x

Integrating w.r.t. x from 0 to x, we get
xd I
+ JO ™ (x"J.(x) dx = — J; X" Jppa(x) dx
or [x" 3, ], =- jo X J,.,1(x) dx

X o I T J,(x)
or [ 3,000 dx= [x 3, (%) X"L“OT}

1
=-x"J,(x) + ZH—\/m . Hence proved.

|:' x—0 x" _2”\/n+l

Example 11. Form the following using Generating function for J (x)
(i) cos (x sin ) = J, + 2J, c0s 20 + 2], C0S 46 + ......

(i) sin (x sin 6) = 2J; sin 6 + 2J,sin 36 + ......

(i.ii) c_os (x cos ©) = J,—2J,C0s 26 + 2], C0s 40 + ......

(iv) sin (x cos ©) = 2J; cos © —2J, cos 30 + ......

(V) cosx=J,—2, +2],— ...

(vi)sinx =2, —2); + 2); —......

X

Z 271 >
Solution. We know that e’-’( Z) = 2 2" J,(x)

N=—oo

(et
SN P I RS L I R £
0[22)1[ . 53

Putting z=¢e® = z"=¢™ =cosnd +isinnd
and 77" =¢7M = cos nO —isinnd

Mt A _
o =2cosn@and| z — =2isinnd,n=1, 2, 3,

0
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From (i), we have
eltsin®) = 3+ (2i sin ) J; + (2 cos 26) J, + (2i sin 36) J; + ......
or  cos (xsin @) +isin (x sin 6) = (J, + 2J, cos 20 + 2], cos 46 ......)
+1i(2),8in 6 +2],8in 36 +......) ..(ii)
(i) Equating the real parts on both sides of (ii), we get

cos (x sin 6) = J;, + 2J,c0s 26 + 2J, C0s 40 + ...... ..(1i0)
(i) Equating the imaginary parts on both sides of (ii), we get
sin (x sin 8) = 2J, sin © + 2J,sin 30 + 2J.sin 56 + ...... (iv)

(i) Putting 6 = /2 — 0 in (iii), we get

cos (xsin (g—e)) =Jy *+2J, cos 2(2—9] +2J,cos 4 (g—ej +o

or cos (x cos 6) = J, - 2J, cos 26 + 2], C0os 46 — ...... (V)

(iv) Putting 6 = g —01n (iv), we get

sin (xsin [g—e)) =2J,sin (g—ej +2J,sin 3 [’2‘—6) +2J.sin5 [g—e) + o

or sin (x cos 6) = 2J; cos 6 — 2J, cos 30 + 2J, COS 56 + ...... (Vi)
(v) Putting 6 = w/2 in (iii), we get
cosx=J,-2J,+2J,- 2 + ...
(vi) Putting 6 = w/2 in (iv), we get
sinx =2J, —2J, +2J, - 2], + ...

1. Prove that [J,,(})]? + [J_y,()]* = ix
T

2. Prove that (i) J_5,(X) = - fi (1 COS X +8in xj
X \X
" _ |2 3-x? 3 .
(i) g, (x) = - 2 cosx+;smx .

3. Prove that J (x) is even and odd function for even n and for odd n respectively.

2
4. ProvethatJ .. +J = ™ (n+4)J

n+4°
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CHAPTER 2

Legendre’s Functions

2.1. INTRODUCTION

The differential equation

2
(1—xz)% —2xd—i +n(n+1)y=0

d
is known as Legendre’s equation. The above equation can also be written as

i{(1— xz)ﬂ} +n(n + 1) y = 0; where n is an integer.
dx dx

2.2. SOLUTION OF LEGENDRE’S EQUATION

The Legendre’s differential equation is

& +n(n+1)y=0 ..(2.1)

d?y
—x ) _
(1-x% 2 2X <

Let y= 2 a, X", a, # 0 be the series solution of (2.1) so that
r=0

%: 2 a, (m—r)x™"* ..(2.2)
r=0
dzy — N m-r-2
and pea 2 a, (m-r)y(m-r-2x ..(2.3)
X r=0

156



LEGENDRE’'S FUNCTIONS 157

or

or

or

or

Z€ro.

Substituting these values in (2.1), we get

(1-x3) i a(m-r)(m-r—-1)x"-r-2_2x i a, (m-r)yxm-r-1

r=0 r=0

D) Y a (=0

r=0

i a [A-x)(Mm-r(M-r=1)x"-r-2_2x(m-r)x""~1+nn+1)x"-"7=0
r=0

i a [Mm-nNMm-r-)x""2+nn+1)-M-r)(m-r-1)-2m-}x"-1=0
r=0

i a, [(Mm=-r)(m-r-)m*-"2+{nn+1)-Mm-r)(m-r+1)}x""1=0
r=0

i a [(m-rNMm-r-1)x"r2+{(n2-(m-r+n-(Mm-r}x"-7=0
r=0

i a [Mm-rMm-r-Dx"""2+{n-M-nN}n+m-r+1)x" =0 ..(2.4)
r=0

Since the equaiton (2.4) is an identity, therefore the coefficients of various powers of x must be

Equating to zero the coefficient of the highest power of x (i.e., xX™), we have

a;(n-mM©n+m+1)=0

Buta,20 .. m=n or m=-(n+1) ...(2.5)

Now equating to zero the coefficient of the next lower power of x (i.e., x ™~1), we have
a(n-m+1)(n+m=0

But neither (n —m + 1) nor (n + m) is zero for m = n or — (n + 1) given by (2.5)

a,; =0
Again equating to zero the coefficient of the general term (i.e., x™~"), we have
a_,M-r+2)(m-r+1)+am-m+r)(n+m-r+1)=0

= _more2)m-r+d 5 rsp .(2.6)
(n-m+r)(n+m-r+1)
- (m-2
Putting r=3, a,= (m=1)(m-2) a, =0

37 (n-m+3)(n+m=-2) 1~



158 ADVANCED MATHEMATICS

Similarly putting r=5,7,9etc. in (2.6), we geteach a,=a;=a;....=0
Now two cases arise here
Case I. When m = n then from (2.6), we have

~ (n-r+2)(n-r+1)

a, = 22
r2n-r+1)
Putting r=2,4 ... etc.

_ n(n-1
a,=— "7

2 2(2n-1) %

_ (n—2)(n—3)a _Nn-1)(n-2)(n-3) a and o on
4 42n-3) 2 2.4(2n-1)(2n-3) °77

y= T a =3 a K
r=0 r=0

=g x"+ax"l +a,x""2+ax " 3+a, x4
nin-1) o X124 nn-)(-2)(n-3)

= n_
X on—1 % 2 4(2n—-1)(2n-3) 0
=a, [ x" - n(n - 1) x"% 4 nn-Hn-2)(n-3 X" 2.7)
2(2n-1) 2.4(2n-1)(2n-13)
which is solution of (2.1) in a series of descending power of x.
Case Il. When m = — (n + 1) then from (2.6), we have
__(+r=-0(n+r)
" ren+r+1) 2
Putting r=2,4, ..... etc.
_ (n+D)(n+2)
27 2(2n+3)
4
= (n+3)(n+4) a,= (n+l)(n+2)(n+3)(n+4)a0 ...... and so on.
4(2n +5) 2.4(2n+3)(2n+5)
y= 2 arXm—r - 2 arx—(n+1)fr
r=0 r=0
- aO X—(n+1) + al X—(n+2) + a2 X—(n+3) + a3 X—(x+4) + a4x—(n+5) ______
ca ey (MEDM+2) oy
0 2(2n+3) °
+(n+l)(n+2)(n+3)(n+4) ~ (5)

2.4(2n+3)(2n +5) T
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=a |-+ _ (n+1)(n+2) x-(1+3) | (n+)(n+2)(n+3)(n+4) x—(1+5) .(2.8)
0 2(2n +3) 2.4@2n+3)(2n+5 7

which is another solution of (2.1) in a series of descending power of x.
Legendre’s Polynomial P_(x)

1.3.5.....(2n-1)

If n is a positive integer and a, = '
n!

the solution (2.7) is P,(x) and called

Legendre’s function of the first kind so that

P (x) = 1.3.5....... (2n-1) — |y n(n—1) Xn,2+n(n—l) (n=2)(n-3) 4
n n! 2(2n-1) 2.4(2n-1)(2n-3) 7

Legendre’s Polynomial Q,(x)
n!
1.3.5....(2n+1)

Legendre’s function of the second kind so that

- n! —(n+1)_(n+l)(n+2) —(n+3)
Q, (x) 13 {x —2(2n+3) X o .

If nis a positive integer and a, = the solution (2.8) is Q. (x) and called

2.3. GENERAL SOLUTION OF LEGENDRE’S EQUATION

The solution of the Legendre’s differential equation of the type
y(x) = AP, (x) + BQ, (X)
where A and B are arbitrary constant is called general solution.

2.4. GENERATING FUNCTION OF LEGENDRE’S POLYNOMIAL P,(X)

To show that P, (x) is the coefficient of h" in the expansion of (1- 2xh + h?)-2 in ascending powers
of h

We have (1 -2xh+ h?)2={1-h (2x - h)} 2
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Now the coefficient of h" in above expansion is

_13...2n-1 + 1.3...2n-3) N
S dom oy @
1.3...... (2n-5)

n-2 n-4
Y oao oy 2@
n-2 _ _ _ n-4
_ on Xn__(n_)X2 N 2n(2n - 2) ><(n 2)(n 3)x4
2.4....2n 2n-1 2 (2n-1)(2n-73) 2! 2

1.3...2n-1) |, _2n (n_l)x”-2+ (2n)(2n-2) (n-2)(n-3) x"*
2n-1 2> (2n-1)(2n-3) 21 24

1.3..... (2n-1) N n(n—1) Xn,2+n(n—l)(n—2)(n—3) NN
n! 2.(2n-1) 2.42n-1) (2n-3)

=P, (x). Hence proved.
Hence, we obtained

. h"Ry(x) = (1 2xh +h?) 12,
n=0

2.5. ORTHOGONAL PROPERTIES OF LEGENDRE’S POLYNOMIALS

1
(i) L P.(x) P, (x)dx =0if m#n

2

1
(ii) L (P,(x))? dx =

Proof. (i) We have Legendre’s equation

2
(1= LZ-zxdl +n(n+1)y=0 (2.1
dx dx
This equation can also be written as
d 2y dy
&{(l—x )&} +n(n+1)y =0 ..(2.9)

Since P, (x) is a solution of (2.1) therefore

;X{(l— xz)(“:(;“x(x)} +n(n+1)P,(x)=0 ..(2.10)
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Similarly di{(l_ x2) %} smm+1)P_(x)=0 (2.11)
X X

Now multiplying (2.10) by P,.(x) and (2.11) by P (x) and then subtract, we get
d dP, (x) d dp, (x)
P_(x) ——{(1—x2)—n -P_(X) — (1= x%)—m
m()dx{( x) dx} n()dx{( x) dx}
+{nn+1)-mm+1)}P X P.(x)=0 ..(212)
Integrating (2.12) w.r.t. x from — 1 to 1, we get

1 d PN PV d . 2 dR, (X)

1
+{n(n + 1) -m(m + l)}j POy (0 dx =0
After integrating, we get

dPn(x)T _'[1 dP, (x) {(l_xz)dpn(x)
1

1
a0 @) ) Fe ]
1

}dx—[Pn(x)(l—x )

dx | -1 dx Cdx dx
+ fl dPg)EX) {(1— x2) dPZ)EX)} dx + {n(n + 1) - m(m + 1)} -[11 P.(x) P, (x)dx =0
or fn(n+1)—m(m+1)} fl P.(X) P, (X) dx =0

Hence f P()P (X)dx =0 if m#n.
-1

(if) We have by generating function

Zh“ P.(X) = (1 -2xh + h?)12

n=0
Squaring both sides, we get
[Po(X) + hP,(x) + h? Py(x) + ...... h"P. (x) + .....]2 = (1 - 2xh + h?)7?
or (Po(x))? + (WP (x))? + (h? P,(x))? + ...... (h"P, (X)) + ......
+2 [Py (x) hP,(x) + Py(x) h?P, (x) + ...... Py (NP (X) ......
+hP,(x) h2P,(x) + hP (x)h3P4(x) + ....... ]1=(1-2xh +h?)1
1

. 2n 2 . m+n _
20 (R0 +2 3 TR (0P (0= s

n=0 m,n=0
m=#n

or
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Integrating both sides w.r.t. x from — 1 to 1, we get

'S " ! N m+n 1 d
.l.lnzz:,)hz (F’n(X))2 dx+2'[1 zoh P, ()P, (x) dx:J. X

e ~11-2xh +h?
m=#n

- n 1 N m+n ! ! d
n;hz [ Ron?dce2 3 0" [ 0P, (9 ax= | X

or na 11-2xh+h?
m#n
- ) 1 1
2n 2 4y 4 _ 2
or Z&h L(Pn(x)) de=" {Iog (L—2xh+h )L

1
=~ o [log (1 -2 +h?) ~log (1 + 2h + h?)]

- 2_lh [log (1 - h)*—log (1 + h)’]

ihzn ,[1 (P,(x))? dx = — lo a+h” - Lpgg[1rD 2
“~ R " 2h g(l_h)2 ~ 2h 1-h

h 1-h h 3
2 4 2n
=241+ h— + h— ...... = .
3 5 2n+1
Equating the coefficients of h?", we have
1 2

P,(x))? dx = :
[ (B0 de=

2.6. LAPLACE’S FIRST INTEGRAL FOR P,(X)

P, (x)= %J‘O”[X +./(x? = 1) cos0]" do, Where n'is a positive integer.
Proof. We know that

where a2 > b? ..(2.13)

J'ﬂ o =
oathcos6 \/az —p2

Let us takinga =1 —hxand b =h/(x* —1)
and putting in (2.13), we get
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T _'rt de
Ja=hx)2 —h2(x2=1) 0 1—hx+h,/(x2 -1) cos 6
or yis :Jﬂ do
\/l+ h?x? —2hx —h®x?2 +h?  J0 1—h[x £ /(x*> —1) cos 6]
or mt (1 -2hx +h?)12 = onld—eht where t= x+./(x* —1) cos 6

= J'n(l—ht)’lde
0

— '[ni h" t" do
0 n=0

Equating the coefficient of h" on both sides, we get

P, (x) = J:t“ de
P, (X) = %J:[x +.J(x* —=1) cos 0]" do
- %'[:[xi,/(xz 1) cos6]" de .

2.7. LAPLACE’S SECOND INTEGRAL FOR P, (X)

where n is a positive integer

1 do
Pn(X) = ;J.O n+1
[xi,/x2 -1 cose]

Proof. We knowthat [0 _ T g2syp2 ..(2.14)
oathcos6 \/az —p2

Let us taking a = xh — L and b = h /x> =1 on putting in (2.14), we get

i :Jﬂ do
Jxh=1? —h?(x> =1)  ° xh—1+h,/(x2 —1) cos O

T

m do
JX2h? +1-2xh—h?x? + h? '[0 —1+h[xi,/(x2 -1) cose]
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nt (1- 2xh + hd) 12 = J.: 1d$ - where t= [x +/x* —1cos e]

T 1 1 -1/2 . 1 1 -1
—|1-2X—+— - | =]11-=
h( h hzj .[o ht( htj de
o 1 1 1 1 1 e 1
—PX)=] S|1+—+—5 ... —.... de = I T
T r;) h" n( ) .[o t( ht h2t2 A" j _[0 g hntn+1

1
Equating the coefficient of hr on both sides, we have

T do T de
P (x) = _[0 tnT_,L [Xi\/Xz —1cose]"*!

_1gn de
NS -

T JX2—1cos@]™D

2.8. RODRIGUE’S FORMULA

1 d"
To prove that P (x) = X2 —1)"
P ) 2" n!dx" ( )
Proof. Let y=(x>-1)" ...(2.15)

Differentiating w.r.t. x, we get
y, =n(x*>-1)"-1 2x
or (x> =1)y, = 2nx(x? - 1)"
or (x> = 1)y, = 2nxy
Again differentiating w.r.t. x, we get
(x*—1)y, + 2xy, = 2nxy, + 2ny

or (x?=1)y, +2(1-n)xy, —2ny =0
Differentiating both sides n times by Leibnitz’s theorem, we get
5 n(n-1)
(X = 1)y, ¥ N2XY, 21 2y, +2(1-n) [xy,,,+ny,]-2ny =0
or (x®=1)y,,,*2X[n+(2-n)ly,,, +[N(n-1)+2 (L -n)n—2nJy,=0
or (x2=1)y, ., *2xy,,,—n(n+1)y =0
dn+2y dn+1y dny
or 1-x? -2X +n(n+1 =0 ..(2.16
( ) dxn+2 dxn+1 ( ) dxn ( )
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d"y
Let = =vputin (2.16), we get
X
d?v dv
1-x°) — —=2x — +n(n+1)v=0
( ) dx? dx (n+1)
d"y
This show that v = e is a solution of legendre’s equation
X
d"y
Therefore C =P (x) ..(2.17)
dxn n
o dy) _ _
Putting x = 1, we get C X" =P(1)=1 [ P(1)=1] ..218)
x=1
Now y=(-1)"=(x+1"(x-1)"
Differentiating w.r.t. x n times by Leibnitz’s theorem, we get
d n d n-1
S s ey 9 (-1 nC, n(x+ )i (x— 1)
dx" dx
n-2

+"C,n(n-1) (x+1)"-2 2 (x=21)"

-3
#1CnM-1) (n-2) (x+ 13 9 (ko1
dx"3

L nCn [d_nn (X+1)nj (X—].)n
dx

=(x+1)"nl+"C, n(x+1)“‘1%! (x-1)1+"C,n(n-1) (x + 1)"~2 ;_: (x=1)"=3+ ...

+.n!(x=1)"
Put x =1, we get

n
(d—}fj =2n1
ax” ), _,

. 1
Put in (2.18) C= Y

Substituting the value of C in (2.17), we get

1 d"y
P, (xX) =
n ) 2" n! dx"
1 d"(x*-1" )
P (x)= . =(xc=1)"
n() 2nn| dxn [ y ( )]
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2.9. RECURRENCE RELATIONS

M @n+1)xP, (x)=(n+1)P_, (X)+nP_ _,(x)
Proof. By the generating function, we have

(1-2xh +h?)12 = i h"P,(x) (i)

n=0
Differentiating (i) both sides w.r.t. h, we get

oo

- % (1-2xh +h?)32 (- 2x+2hy= > nh"* P,(x)

n=0

o (x=h)y(1—2xh+h2)Y2=(1-2xh+h?) D nh"* P (x)

n=0
or (x—h) D h"P(x) =(L-2xh+h?) Y nh" By (x)
n=0 n=0
or x Y h" P ()= Y h"™ P, (x)
n=0 n=0

= i nh"? P (x) - 2x i nh" P, (x) + i nh™* P, (x) ..(ii)

n=0 n=0 n=0
Equating the coefficients of h" on both sides of (ii), we get
XP,(X)=P,_,(x)=(n+1)P, ., X)=n2xP (x)+(n-1)P,_,(X)

or @n+1)xP () =(n+1) P, ., (x)+nP_, (X).

(I nP_(x) = xP/(x) =P’ _,(X)
Proof. By the generating function, we have

(1-2xh + h?)12 = i h" P,(x) (i)

n=0

Differentiating (i) both sides w.r.t. h, we get

- %(1 —2xh +h2)32 (2 + 2h) = ) nh"™* B, ()

n=0

or (X—=h) (L= 2xh +h)-32= >, nh"* P, (x) (i)

n=0
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or

or

or
or

or

and

Again differentiating (i) both sides w.r.t. x, we get

- % (1-2xh+h2 3 (-2n)= 3. h" P/(X)

n=0

h(1—2xh+h2)32= >, h" B/(x)

n=0

Multiplying (ii) by h and (iii) by (x — h) then subtract, we get

0=h i nh"™ P, (x) - (x — h) i h" P/(x)

n=0 n=0

i nh" Pn(x)=xi h" Pn'(x)—i h"*1 P/(x) -

n=0 n=0 n=0

Equating the coefficient of h" on both sides of (iv), we get

nP, (x) = xP;, (x) = P}, _; (X).

()P, (x)=P,_,(x)=(2n+1)P_(x)
Proof. By recurrence relation I, we have
X2n+1)P (x)=(n+1P,,, x)+nP,_, (X

Differentiating (i) w.r.t. X, we get

X2n+ P () +@n+ 1P, (xX)=(n+1)P; ., (X)+nP;_, (X

By recurrence relation 1, we have
X P (x)=nP, (x) +P,_; (X)
Putting x P/ (x) in (ii), we get

@n+1) (P, () +P7_, (X)) +@n+1)P (x)=(+1)P, ., (X)+nP,_, (X
@En+1)(n+1)P,(x) =(n+ 1P, ., () +[n-2n+ 1] P, _, (X

@n+1)(n+1)P, X)=(n+DP ,(X)-(n+1) P _, (X

@En+1)P () =P, (X)=P,_; (X).

(IV)(n+ 1) P (X) =P’ ., (X)=xP’ (X)
Proof. By recurrence relation (I1) and (I11), we have.
NP (x) =xP’" (x) =P, _; (X)
@n+1)P.(X)=P, ., (X)=-P;,_, (X
Subtract (i) from (ii), we get

@n+1)P. (X)-nP (xX)=P, ., (X)=P/_, (X)=xP, (xX)+P/_, (x)

n+1

(n+1) P, (x) =P/ ., (X)=xP; (X).

...(iii)

..(iv)

0)

...(ii)

...(ii)



168 ADVANCED MATHEMATICS

(V) @1=-x%) Py () =n(P,_,—xP)
Proof. By recurrence relation (1) and (1V), we have

nP, (x) =xP1 (x) - P/ _; (X) (i)

and (n+1) P (x) =P,y (X) = xP; (x) ..(ii)
Putting (n — 1) in place of n in (ii), we get

nP,_, () =P, (x)—xP, _, (X) ...(iii)

Now multiplying (i) by x and subtract from (iii), we get
NP, _,(x) =nxP, (X) =P/ (x) = xP_, (X) - X2 Pl (X) = xP _; (X)

(1-x3) P’ (x) =n[P,_,(x) = xP, (X].

(V1) L-x) P’ (x)=(n+1) (xP, (X) =P, ,(x)
Proof. By recurrence relation (1) and (V), we have
@n+1)xP,(x)=(n+1) P, X)+nP, _, (X) (i)
and (1-x P (x)=n[P, _; (x)—xP, ()] (i)
By (i) nP,_,x)=@n+1)xP,(x)-(n+1)P,,,(X)

Putting in (ii), we get
(1-x3) PLX)=@n+1)xP,X)-(n+1) P, ,, (X)—nxP, (x)

1-x) P, (x)=(n+1)[xP () =P, X]

SOLVED EXAMPLES

3x2 -1 5x3 — 3x

Example 1. Show that P, (x) =1, P, (x) =%, P, () = , Py (x) = c and
35x* —30x? +3
P,)="F 2 .
8
Solution. By the Rodrigue’s formula, we have
_ 1 4" N _

P.(X) = 127 o x¢-1) (1)

Put n =0 in (i), we have
1 d°
P(X)= ———— (x¥*-1)°=1
2 012° dx° ¢-1

= P,(x)=1
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Put n =1 in (i), we have
1 db
112t dx*

= P,(X) =X

P.(X) = (x* =1t =% 2x =X

Put n =2 in (i), we have

1 od s o 1 od _1d s
P20 g e T T T T g g Y
1
== (3x*-1
2( )
_1 .0
= P, (x) = 5 (3x¢-1)
Put n = 3 in (i), we have
— 1 d3 2 3= 1 d2 2 2 _ld2 2 2
P3(X)_3!?W(X_l)_ﬁd73(x_l) 2x—§d7(x—1)x

_1d a2 = Lio0s3 Ll
= 8dx(5X —-6xc+1)= 8(20x -12x) = 2(5x - 3X)

Put n =4 in (i), we have

P, () = i (x2 = 1)4 = o1 i A(x2—1)3 2x = 1 i [(x2-1)% (7x%2 - 1)]
4 412% dx* 24 .16 dx® 3.16 dx?
1 d

=+ 9 2-1)@2¢-18x) = 37116 (210x* - 180x2 + 18) = %(35X4 — 302 + 3).

©3.16 dx
Example 2. Express 3 + 4x — x? in term of Legendre polynomials.
Solution. We have
PobX)=1 = 1=P,(x),P,(x)=x = x=P,(x),
3x%? -1 2P, (x) +1
2 T RT
On putting these values in the given equation, we have
2R, (x) + Py(x) _ 9Ry (x) +12R(x) — 2P, (x) — Py ()
3 3

= P,(x) =

3+4x—x2 =3P (x) +4 P,(x) -

1
= 5[8Py (x) + 12 P,(x) — 2P,(x)].
Example 3. Show that (i) P, (1) =1, (i) P, (- X) = (= 1)"P, (x), (iii) P (- 1) = (= 1)".

Solution. (i) We have 2 h"P_(X) = (1 - 2xh + h?)72
n=0

0
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Putting x = 1in (i) on both sides, we have

S WP @)= (1-2h+h) 2= (1-hyl=1+h+h2+ . +h"+

n=0

i h"p(1)= ), h"
n=0 n=0

Equating the coefficients of h" on both sides, we have
P1)=1
(ii) Putting — h in place of h on both sides of (i), we have

oo

S (~h)"P, = (1 + 2xh + W) V2

n=0

Again putting — x in place of x on both sides of (i), we have

Y h"R, (-X) = (1 + 2xh +h?)=12

n=0

By (ii) and (iii), we have

3 om0 =Y WP, (- %)
n=0 n=0

Equating the coefficient of h" on both sides, we have
1"P, (¥) =P, (=%)
or P,=x)=(-1"P,(x)
(iii) Putting x = 1 in (v), we have
P.D=CD"P (1)=(C1"
Example 4. Prove that (1 — 2xz + z2)~Y2 is a solution of the equation
z a:;izzv) +B_Ei({(l_ xz)%} = 0.

Solution. Let v=(1-2xz+ 212

V= 2 z" Pn(X)
n=0

3

Then =Y, 2" R(x)

n=0

..(ii)

...(iii)

(V)

(V)

Since P, (1) = 1 By (ii)

0
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or

or

Differentiating partially both sides w.r.t. z two times, we have

a - (zv) = Z (n+Dnz2""" p_(x)

2 oo

. aa_z(zv) =Y nn+D2" p_(x) (i)
Z

n=0

Now differentiating partially (i) both sides w.r.t. x, we have
N O _n
—= 2'R/(x
E EO v (X)

ov N
1-x3)— =(1-x2 2"P/(x)
A-05 =u-92

Again differentiating partially both sides w.r.t. x, we have

J 2V _ 9] o N 0o
&{(H )&}—ax{a X )n;z P, (x)}

= (1-x2) i 2" Pn”(x)—2xi 2" P/ (x) ...(iii)

n=0 n=0
On adding (ii) and (iii), we get

oo

9’ P d . " 0 pr " 0 pr
zaz—z(zv)+&{(l—x2)d—\):}=z nin+1)z Pn(x)+(1—x2)22 P/ (x)—2x22 P’ (x)

n=0 n=0 n=0

= i [(L-x*) PY(x) = 2x B (x) +n(n +1) P, ()] 2"

n=0
= 2 0z'=0 [~ P, (x) is the solution of Legendre’s equation]

This shows that v = (1 — 2xz + z2)Y2 is the solution of the given equation.

1- 22 =
Example 5. Prove that ———— = = 2n+1)P.(x)z".
P (1-2xz + 2%)%? Z:‘) ( )R ()
Solution. We have (1 - 2xz + z2)-2 = 2 2" B, (x) ..(i)

n=0
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or

or

or

or

Differentiating on both sides w.r.t. z, we have

- % (1-2xz+ 7932 (- 2x + 22) = 2 nz" ! P,(x)
n=0

(x—2) (1—2xz +22)~32 = 2 nz"* B, (x)
n=0

27 (x—7) (- 2x2 + 232 = D, 2n2" By(%) ...(ii)
n=0

Adding (i) and (ii)
(1-2xz+22) Y2+ 27 (x-2) (1 - 2xz + 2232 = 2 2" Py (x) + 2 2nz" P, (x)
n=0 n=0

1-2xz2+2% +2z2(x -2
(1—2xz +2%)%?

) iz“(l+2n) P, (x)
n=0

1-7?
(1-2xz +2°)%?

= i( 2n+1)z" P,(x)-
n=0

r=0
Solution. By the recurrence relation Il1, we have
(2n+1)P =P’ ,-P’ , ()
Putting n=1,2,3,4,5 ..., nin (i), we get
3P, =P, - P
5P, =P3- P}
P, =P, - P,
@2n-3)P,_, =P 1 -Pi_3
@n-1)P _, =P P _,
(2n+1) Pn = l:),n+1_ P,n—l
Adding above results, we get
3P, +5P, + TP, + ... (2n+ 1) P=P/+ P/ - P— P, (i)

But P,=1, and P, =X
P,=0 and P;=1=P,
Put in (ii)
3P, +5P,+7P,+ ... 2n+1) P =P +P ,, -0-P,
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Hence P7,,(X)+ P (X)=P,+3P, +5P,+ 7P, + ..... +(2n+1) P,

n
= ) (2r+1)P,  Proved.

r=0
Example 7. Prove that

Pirsir X)) =@2n+1)P, (X)+2nxP,, _, (x) +(2n-1) X2 Py, (X) +

Solution. By the recurrence relation IV, we have
PPo=nP,_,+xP"
Putting n=2,3, ..... (2n-1), 2n, (2n + 1), we have

P'y_1=@n=1) Py _, +xPy
Pl =20 Py +XP%

Pén +1 = (2n + l) I:)2n + XPIZn

Multiplying the equation in above x>"~1, x2"=2, .. x?, X, 1 respectively and adding, we get
+2x2 =1 P +x2"where P} = 1.

Ppai1=(@n+1) Py +2nXP,  +(2n=1) X2 P, ,+ ......

Example 8. Show that

Q) | pn(x)dx=Tl+l [P, )-P, _,(XN]+C

[t 1
(i) | R =2 [P, (9= Py (0

+1

Solution. By the recurrence relation Ill, we have
@n+1)P (x)=P; , (X)-P_, (X

or P (x) = ﬁ P/, (9 -P, ()]

(i) Integrating, both sides of (i) w.r.t. x, we have

J-Pn(x)dx=ﬁ [Py () -P, (] +c

(ii) Integrating both sides of (i) w.r.t. x from x to 1, we get
1

J:l R (X) dx = ﬁ{Pn +1 (X) - Pnl(x):l

X

+ 2X2n—1 pl + X2n_

0
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_ 1 B B
_M[Pn+l(l) Poo1 () =P ) +P_; (X]
[ P, ,(X=1=P,_, (¥]
1 1
J.X Pn(x)dx=(2n+1) [P,_1 () =P, 1 (]

Example 9. Prove that ,[11 (x*-1)P,,, P/dx= —(2n inf;(;nll 3 .

Solution. From recurrence relation (V), we have
(x*=1) P =n(xP,-P,_,)
or x-1)P ,,P=n(xP, -P,_ )P ., (i)
Integrating both sides of (i) w.r.t. x from — 1 to 1, we get

n+1

1 2 , 1
J.—l (X _1) I:)n+1 I:)n dx:J. ! n(XPn - Pn—l) I:)n+1 dx

1 1
= nJ:1 xP, P, dx—n'[l PP, dx

! 1
= nJ.—l XPn Pn+1 dx [ J:l pn(x) Pm (X) dx=0 if m= nil
1 (N+1)P,.,+nkR,_;
- n.|:1 on+1 n+1 X (By recurrence formula I)

nn+1) ¢ _, n?
= P2, d PP, d
on+1 o1 N+l X+2n+l-|-—1 n-1Fnsg OX
0 ifmzn
n(n+1) 2 1
= +0 P,(X)P,(x)dx={ 2 .
2n+1 2(n+1)+1 .[1 n () P () il if m=n
_ 2n(n+1)
(2n+1)(2n+3)
Example 10. Prove that J'l (1-x9 P P/ d)(:w ., where o is Kronecker delta
-1 (2m+1)
. 0 m=#n
ie,d = {l m=1"

. 1
Solution. We have J. (1-x?)P; P/ dx
-1
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or

1
’ 1 d ’
- {(1 —x2) P/ Pn}l - jl[Pn Sla- xz)Pm}} dx
1t d , .
== [ Py L@ x)Piyox (D)
Since P_ is a solution of the Legendre’s equation therefore
(1-x%)Pr—2xP, +m(m+1)P =0

d ,
” {A-x3P }=—mm+1)P_
Put in (i), we get
1 2 ’ ’ 1
L(l— x%) P P/ dx = — LP“{_ m(m +1)P, } dx

_ 2m(m+1)
2m+1 ™" @2m+1) ™

=mm+1) [ pp, dx=m(m+1)

where Smn is Kronecker delta.

1.

@©

Express f (x) = x* + 2x3 + 2x2 — x — 3 in term of Legendre’s polynomials.
Prove that P, (x) is an even or odd function of x according as n is even or odd respectively.
Show that

" (-)"2n1
(i) P,(0) = 0, if n is odd (i) P, (0) = e ')2. ifnis even.
n/2!
1+2z 1 -«

Prove that ——— — = = [P,(x) + P, 1 (X)]Zn )

1-2xz+2% 2 ,gf) ’
Prove that
i 1 . n(n +1)
O P, @)= 30+ 1) (i) Py (1) = 10t =
Prove that (n + 1) [P, P’ , , =P, ., P"]1=(n+1)?P 2~ (x*-1) P’ 2.

1 2n
Prove that '[ xP.P. . dx= ;

T
J.l Rydx  _ 2h" , prove it.

1 Ji-2xh+h2  2n+1
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Unit IV

STATISTICS AND PROBABILITY

Probability theory is used in many situation which involve an element of uncer-
tainty. It is used to make important decision on business, to determine premiums on
insurance policies, to determine demand in inventory control. Apart from it is used in
Engineering. Science, Social Science, Genetics etc. Probability theory is also used
in medical sciences.

In this unit, we shall discuss some basic idea of probability, addition and
multiplication theorems of probability, Baye’'s theorem with simple applications.
Expected value, Theoretical probability distributions—Binomial, Poisson and normal
distributions and applications of probability in many area of human activities. Lines
of regression, correlation and rank-correlation are also discussed.

Chapter 1 deals with basic idea of probability, theorems of probability and Baye'’s
theorem with their applications.

Chapter 2 deals with random variable, probability distribution: Binomial, Poisson
and Normal distributions.

In chapter 3, the lines of regression, concept of simple correlation and rank-cor-
relation will be discussed.

In the 16 Century an italian mathematician Jerome Cardon (1501-1576) wrote
the first book on the subject of probability theory “Book on Games of Chance’. Besides
Cardon, Pascal (1623-1662). Fermat (1601-1665), J. Bernoulli (1654-1705). De
Moiure (1667-1754), Chebychev (1821-1894), A.A. Markov (1856-1922) and
A.N.Kolmogorov (1903 ...... ) gives outstanding contributions in probability theory.

Probability theory is designed to estimate the degree of uncertainty regarding the
happening of a given phenomenon. The word probable itself indicates such a situa-
tion. Its dictionary meaning is “likely though not certain to occur”. Hence, when a
coin is tossed a tail is likely to occur but may not occur. When a die is thrown, it may
or may not show the number 6.
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Cuarter 1

Theory of Probability

INTRODUCTION

Before we discuss formal definition of probability, first we shall define certain terminologies and nota-
tions, which are used in defining probability.

1.1. TERMINOLOGY AND NOTATIONS

1. Random experiment: Any experiment whose outcomes cannot be predicted or determined in advance
is a random experiment.

OR

A random experiment is an experiment whose outcomes or result is not unique and therefore
cannot be predicted with certainty.

Tossing of a coin, head or tail may occur, throwing a die, 1, 2, 3, 4, 5 or 6 may appear and
drawing a card from a well shuffled pack of cards are examples of random experiments.

2. Sample space and sample point: The set of all possible outcomes of a random experiment is
called the sample space and each element of a sample space is called a sample point.

If a die is thrown, it will land with anyone of its 6 faces pointing upward, resulting in anyone of
the numbers 1, 2, 3, 4, 5, 6 appearing on the top face. Hence, the number of each face is a possible
result. We write

S={1,2,3,4,5,6}
The set Sis a sample space of throwing a die and 1, 2, 3, 4, 5, 6 are called sample point.
When two dice is thrown, then the sample space consists of the following 36 points:

(L1, L2, (L3, L4), (L5, (L6)]
21, 22, 23, 24), (25, (26)
13D, (32, (33, (34), (35, (36)
S=1(4,2, (42, (43), (44), (45), (46)
51, (52, (53, (54), (55), (56
1(6,1), (6,2), (6,3), (6,4), (6,5, (66)]

179
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Note. The set of all possible outcomes of a single performance of a random experiment is exhaustive
events or sample space.

3. Event: Any subset A of a sample space Sis called an event.
Consider the experiment of tossing of a coin, we have
S={H, T}
Here are 4 subsets of S ¢, {H}, {T}, {H, T}. Each subset of Sis an event.

4. Simple event: An event is said to be simple event, if it has only one sample point. In tossing
of a coin, the events {H} and {T} are simple events.

5. Compound event: An event is said to be compound event, if it has more than one sample

point. When two coins are tossed once then sample space (S) = {HH, HT, TH, TT}. Each event of Sis
compound event.

6. Complement of an event: The complement of an event A S
with respect to the sample space Sis the set of all elements of S ////
which are not in A. A

A=S-A

7. Favourable events: The number of cases favourable to an
event in a trial is the number of outcomes which entail the happening
of the event. For example, in throwing of two dice, the number of cases favourable to getting the sum 6
is (1,5), (2, 4),(3,3),(3,3), (4,2), (5 1),ie6.

8. Equally likely events: Events are said to be equally likely, if there is no reason to expect any

one in preference to any other. For example, In throwing a die, all the six faces are equally likely to
come.

9. Mutually exclusive events. Two events A and B are said to be mutually exclusive events iff
AnB=0.

If a die is thrown, we will get either an ‘even number’ or an ‘odd number’. The event A ““getting
an even number” and event B “getting an odd number”. We say that A and B are mutually exclusive
events because both the events cannot occur at the same time. We have

A={2,4,6} and B={1, 3,5}

Then, AnB=¢

In tossing of a coin, we will get either a head or tail. The event A ““getting a head”” and event B
“getting a tail”. We say that A and B are mutually exclusive events because both the events cannot
occur at the same time.

We have A={H} and B={T}

Then, ANnB=¢

Note. 1. Simple events of a sample space are always mutually exclusive.

2. The events, which ensure the required happening is called favourable events.

10. Odd in favour of an event and odd against an event: Let there are moutcomes favourable

to a certain event and n outcomes are not favourable to the event in a sample space, then
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odd in favour of the event = m

n
and odd against the event = n
m

11. Permutation: A permutation is an arrangement of objects in a definite order.
The number of permutations of n objects used r at a time, denoted by "P, is
p o !
" o(n-r)!
12. Combination: A combination is a selection of objects without regard to order.
The number of combinations of n distinct objects selected r at a time, denoted by "C, is

n :ni!
" ori(n-r)!

1.2. DEFINITIONS

The chance of happening of an event when expressed quantitatively is called probability. However, we
give three definitions of probability:

(1) Classical or Mathematical definition of probability.

(2) Statistical or Empirical definition of probability.

(3) Axiomatic definition of probability.

1. Classical or Mathematical definition of probability: If an event A can happen mways out
of possible n mutually exclusive and equally likely outcomes of a random experiment then probability

of Ais

_ Number of favourable cases _ m
P(A) = _ ==
Total numbers of possible cases n

The probability of not happening of A is
n-m
n

P(A)=1- " =
n

Thus, P(A)+P(A)=1,0<PA)<1 and 0<P(A)<1.
Note. 1. If P(A) = 1, then Ais called certain event.
2. If P(A) = 0, then Ais called impossible event.
3. This definition is fail when outcomes are not equally likely and number of outcomes is infinite.
4. The probability of an event is a number between 0 and 1. If occurrence is certain, its probability
is 1. If the event cannot occur, its probability is 0.
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2. Statistical or Empirical definition of probability: If trial be repeated for a large number of
times, say n, under the same conditions, and a certain event A happen on mtimes then the probability of
the event Ais

PA) = lim

n—e n

where, the limit is unique and finite.

3. Axiomatic definition of probability: Let Sbe a finite sample space and A be any event in S
then probability of A is defined by following three conditions.

(i) Forevery event Ain S0<P(A) <1
(i) P(§ = 1.
(iii) 1f Aand B are mutually exclusive events in S then
P(A U B) = P(A) + P(B).

1.3. ELEMENTARY THEOREMS ON PROBABILITY

Theorem 1. The probability of the impossible event is zero i.e. P(¢) = 0.

Proof: Since, impossible event contains no sample point, therefore, the certain event Sand the
impossible event ¢ are mutually exclusive

= Sup=S
= P(SU ¢) = P(9
= P(S + P(9) =P(9
= P(¢) = 0.

Theorem 2: The probability of the complementary event A of A is given by
P(A)=1-P(A).

Proof: Since, Aand A are mutually disjoint events, so that

AUA=S
= P(AU A)=P(9
= P(A) + P(A) = P(S [+ P9 =1]
=1
= P(A)=1-P(A)

Note. 1. If ¢ is the impossible event and Sis the sample space then S = ¢
= P(s) = P(9)
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and P(S)=1-P(9
=1-1=0
i.e, P(®)=0
Theorem 3: For any two events A and B.
(i) P(AN B) = P(A) —P(An B) (i) P(A N B) = P(B) —P(A N B)
Proof: (i) From the Venn diagram, we have S
A=(AnB)U (AN B) A B
where, AN Band AN B are disjoint events. ﬁé@
= P(A) =P(ANB)+ P(An B)
= P(AN B) = P(A) - P(An B).
(i) From the Venn diagram, we have
B=(AnB)uU (A NnB)
where, An Band A N B are disjoint events.
= P(B) = P(An B) + P(A N B)
= P(A N B) =P(B) - P(An B)
Theorem 4. If B C A, then
(i) P(An B) =P(A) - P(B) (ii) P(B) < P(A) S

(iii) P(A N B) < P(A) and P(A N B) < P(B)

Proof: (i) If Bc A, then Band A n B are mutually exclusive
events, so that

A=BuU (AN B)
= P(A) =P(B) + P(AN B)
= P(An B) = P(A) - P(B) (1)
(i) If BC A, then by (1), we have
P(An B) =P(A) - P(B)

= PANB)=0
- P(A) - P(B) > 0
= P(A) > P(B)
or P(B) < P(A) -2

(i) If B c A, then by (2), we have
P(B) < P(A)
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Since, AnBcA and AnBcB
= P(ANnB)<P(A) and P(AnN B)<P(B).

1.4. ADDITION THEOREM OF PROBABILITY

Theorem 1: If A and B are two events, then

P(A U B) = P(A) + P(B) - P(A N B) S
Proof: From the Venn diagram, we have A B
AUB=AU (A NB) @
where, Aand A N B are mutually disjoint events.
=  P(AUB)=P(A) +P(A NB)
=P(A) + P(B) - P(AN B) [~ P(AnB)=P(B)-PANB)]..(2)

Note. 1. If Aand B are disjoint events, then
P(ANB)=P(0) =0
Then by (1), we have
P(A U B) = P(A) + P(B)
2. P(A v B) is also written as P(A + B) and P(A n B) is also written as P(AB).
Theorem 2: If A, B and C are any three events, then
PAUBUC)=PA)+PB)+P(C)-PANB)-PBNC)-P(CnA)+P(AnBNC).
Proof: Using the above theorem 1 for two events, we have
PAUBUC)=P[AuU (Bu Q)]
=P(A)+PBuUC)-P[ANn(Bu C)]
=PA) +[P(B)+P(C)-PBNC)-P[(AnB) U (AN C)]
=P(A)+PB)+P(C)-P(BNC)-[P(ANnB)+ P(ANC)-P(AnBN C)]
=P(A)+PB)+P(C)-PANB)-PBNC)-P(CnA)+PANnBNC)

Theorem 3: If A, A, A, ... , A, are n mutually exclusive events, then the probability of the
happening of one of themis

P(A,UA UA U ... UA) = P(A) + P(A) + P(A) + ... + P(A).
Proof: Let N be the total number of mutually exclusive, exhaustive and equally likely cases of
which m, are favourable to A;, m, are favourable to A,, m, are favourable to A, and so on.

Probability of happening of event A =P(A)) = %
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Probability of happening of event A, = P(A)) = %

3

SOLVED EXAMPLES

Example 1: What is the chance that a leap year, selected at random, will contain 53 Sundays?

Solution: We know that a leap year consists of 366 days and contains 52 complete weeks and 2
days over.

Combinations of these two days are as follows:

(1) Monday, Tuesday (2) Tuesday, Wednesday
(3) Wednesday, Thursday (4) Thursday, Friday
(5) Friday, Saturday (6) Saturday, Sunday

(7) Sunday, Monday
Of these seven P(S) = 7 are likely cases only and last two are favourable i.e. n(A) = 2.

. . n(A) 2
The required probability = —— ==,
quitea p Y " "7

Example 2: From a pack of 52 cards, one is drawn at random. Find the probability of getting a

king.
Solution: From a pack of 52 cards 1 card can be drawn in 52 ways, i.e. n(S) = 52.
Number of ways in which a card can be king = 4

i.e. n(A) = 4

n(A
The required probability = n((S)) = 5% = %
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Example 3: What is the probability of throwing a number greater than 3 with an ordinary die
whose faces are numbered from 1 to 6.

Solution: There are 6 possible ways in which the die can fall, and all of these there (4, 5, 6) are
favourable to the event required

i.e nS =6 and n(A) =3
A
= P(>3):%:2:;.

Example4: A coinistossed. If it shows head, we draw a ball from a bag consisting of 3 blue and
4 white balls; if it shows tail, we throw a die. Describe the sample space of the experiment.

Solution: Let us denote the blue balls by B, B,, B, and white balls by W,, W,, W, W,.
The sample space of the experiment is
S={HB,, HB,, HB,, HW,, HW,, HW,, HW,, T, T,, T,, T,, T, T}

Example 5: From a pack of 52 cards there are drawn at random. Find the chance that they are
a king, a queen and a knave.

Solution: From a pack of 52 cards a draw of 3 can be made in **C, ways.
Thus, n(s = *2C,

In a pack of 52 cards are 4 kings, 4 queens and 4 knaves. A king can be drawn in C, ways, a
queen in *C, ways and a knave in “C, ways. Each of these ways be withdrawn in “C, x C, x *C, ways.

Thus, n(A) = “C, x 4C, x “C,
n(A 4 4 4
The required probability ~ P(A) = % - G stCCISX !
_4x4x4x1x2x3 _ 16 .
52 x51x 50 5525

Example 6: In a given race the odds in favour of four horses, A, B,C,Darel:3,1:4,1:5,
1: 6 respectively. Assuming that a dead heat is impossible, find the chance that one of them wins the
race.

Solution: Let p,, p,, p; and p, be the probabilities of winning of the horses A, B, C and D
respectively, then

1 1
P(A):p1:21 P(B):pzzg

1 1
P(C)=p,=—,P(D)=p,= -.
© =p, 6 (D) =p, g
Since, these are mutually exclusive events the chance that one of them wins
= P(A) + P(B) + P(C) + P(D)
=P TPt P TRy
1,11 1 _319

+ =22
4 5 6 7 420
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Example 7: If froma lottery of 30 tickets, marked 1, 2, 3, ...... four tickets be drawn, what is the
chance that marked 1 and 2 are among them.

Solution: We have, n(S) = *°C, (four tickets can be selected)

When 2 tickets are to be included always, remaining two can be selected in 2C, ways, i.e.
n(A) = %C,

28
The required chance P(A) = nA = 30C2 =i.
nes *c, 145

Example 8: A manufacturer supplies cheap quarter horse power motorsin a hot of 25. A buyer
before taking a lot, tests a random sample of 5 motors and acceptsthe lot if they are all good, otherwise
he rgjects the lot. Find the probability that

(i) he will accept a lot containing 5 defective motors.
(i) he will reject a lot containing only one defective motor.
Solution: The buyer can choose a random sample of 5 motors out of 25 in *C, ways.

(i) The buyer will accept a lot, if in his sample all the motors are good. That means his sample
consists of 5 motors from 20 nondefective motors. So the number of ways of selecting the sample for
acceptance of the lot, will be 2°C,

20!
20 | |
The required probability = zsgz = %
5120!

_ 20x19x18x17x16 _ 2584
25x24x23x22x21 8855
(if) When he is rejecting a lot containing one defective motor, so his sample will contain the only

defective motor and 4 others which are chosen from the 24 non-defective motors. So number of ways of
selecting this sample is

=0.292

— 24 1
= 2¢, x I,

241
#“c, _ 41200 _ 5 _

1
g, 251 T 255
5120!

What is the chance of throwing a 3 with an ordinary die?

The required probability = =0.2

What is the chance of that a non-leap year should have fifty three Sundays?

An integer is chosen at random from the first two hundred digits. What is the probability that the integer
chosen is divisible by 6 or 8.
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4. Inaclass of 66 students 13 are boys and the rest are girls. Find the probability that a student selected will
be a girl.

5. A bag contains 7 white and 12 black balls. Find the probability of drawing a white ball.

6. A card is drawn from an ordinary pack and a gambler bets that it is a spade or an ace. What are the odds
against his winning this bet?
7. From aset of 17 cards, number 1, 2, 3, ...... 16, 17, one is drawn at random. Show that the chance that its

R .9
number is divisible by 3 or 5 or 7 is 17

8. A bag contains 9 discs of which 4 are red, 3 are blue and 2 are yellow. A disc drawn at random from the
bag. Calculate the probability that it will be (i) red (ii) yellow (iii) blue (iv) not blue.

9. In the odds in favour of an event are 4 to 5, find the probability that it will occur.
10. In asingle throw of two dice, find the probability of getting a total of 9 or 11.
11. Find the probability of drawing either an ace or a spade or both from a pack of cards.

2
12. Probability that a boy will pass an examination is T and that for a girl it is % What is the probability

that at least one of them passes examination?

ANSWERS
1 1 1 53
1. — 2. - 3 = 4. —
6 7 4 66
7 4 212 4
. = .9t0 4 == S =
5 19 6.9to 8 9'9'3'3 9 9
10. 1 11.i 12.g
6 13 25

1.5. INDEPENDENT EVENTS

Two events are said to be independent events, if the occurrence of one does not effect the occurrence of
the other.

OR
Two events A and B are said to be independent events iff P(A n B) = P(A) . P(B).

When a die is thrown, let A be the event “number appearing is a multiple of 3’* and B be the
event ‘““number appearing is even”. \We have

A={3,6}, B={2 4,6}

and P(A):E=l
6 3
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_3_1
P52
AN B={6}
PANB) =<
Using, P(A N B) = P(A) . P(B)
1_ 1.1
6 3 2

Hence, A and B are independent events.

1.6. CONDITIONAL PROBABILITY

Let Aand B be events such that P(B) # 0. The conditional probability of A given B, denoted by P(A/B),
is defined by
P(AN B)
P(B)

where, P(A/B) is the probability of occurrence of A given that B has already happened.

Theorem: If the two events A and B are independent events, then

P(A/B) = P(A) and P(B/A) = P(B)
Proof: We know that if A and B are given to be independent events, then
P(A N B) = P(A) . P(B)

P(ANB) _ P(A).P(B)

P(A/B) =

we have, P(A/B) = P(B) = P(B) = P(A)
_ P(AnB) _ P(A).P(B) _
and P(B/A) = W =R P(B).

1.7. MULTIPLICATIVE THEORY OF PROBABILITY OR THEOREM OF
COMPOUND PROBABILITY

If there are two events, the respective probability of which are known then the probability that both will
happen simultaneously is the product of the probability of one and the conditional probability of the
other, given that the first has occurred, i.e.

P(A N B) = P(A) P(B/A)
or P(B N A) = P(B) . P(A/B)
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Proof: Let out of n outcomes, m, be the number of cases favourable to the happening of A.
Probability of happening of the event A= P(A) = M
n
Let m, be the number of cases favourable to the happening of B.

Conditional probability of B, given that A has happened = P(B/A) = My
m

Thus, the number of cases favourable to the happening of both A and B are m, out of n.
PANB) =" =", M _pny pE/A).
n n m

Note. 1. If Aand B are independent events, then
P(B/A) = P(B)

P(A N B) = P(A) . P(B)

2. P(A n B) is also written as P(A and B) or P(AB).

3. P(A U B) is also written as P(A or B).

4. Term ‘independent’ is defined in terms of ““probability of events” whereas mutually exclusive is de-
fined in terms of ““events™. Moreover, mutually exclusive events never have an outcome common, but independ-
ent events do have an outcome common, provided each event is non-empty. Clearly ‘independent” and ‘mutually
exclusive’ do not have the same meaning.

5. If two events A and B are independent, then
(i) Aand B are independent event.
(i) A and B are independent event.

(iii) A and B are independent event.

SOLVED EXAMPLES

Example 1. A die is thrown twice and the sum of the numbers appearing is observed to be 6.
What is the conditional probability that the number 4 has appeared at least once?

Solution: Let A = number 4 appears at least once
B = the sum of the numbers appearing is 6

then,
A={(41),(42),(43),(44),(45),(46),(1,4),(24),3,4), 54, 6 4}
and B={(1,5),(24), @3 3). (42,5 1)}
. - _P(AnB) _2
The required probability P(A/B) = R

Example 2: A dieisrolled twice and the sum of the numbers appearing on themis observed to
be 7. What is the conditional probability that the number 2 has appeared at least once?

Solution: Let A= getting the number 2 at least once
B = getting 7 as the sum of the numbers on two dice.
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Then, A={(2,1), (2 2),(2,3),(24),(2,5),(2,6),(1,2),(3,2),(42),5,2),(6,2)}
and B={(2,5), (3, 4), 4,73),(5,2),(6,1),(1,6)}
H ih _—P(AF\B):E:}
The required probability P(A/B) = P(B) 6 3

Example 3: A family has two children. What is the conditional probability that both are boys
given that at least one of themis a boy?

Solution: Let the sample space Sis given by

S={(b, b), (b, 9). (9, b), (9. 9)}

Let A denote the event that both children are boys, B the event that at least one of them is a boy
and all outcomes are equally likely, then the desired probability is

1

P(ANB) _ 4 _1

"B TeE T3 Ts
4

Example 4: Ajeet can either take a course in computers or in maths. If Ajeet takes the computer

course, then he will receive an A grade with probability%; if he takes the maths course then he will

receive an A grade with probability % Ajeet decides to base his decision on the flip of a fair coin. What

is the probability that Ajeet will get an A in maths?

Solution: Let C be the event that Ajeet takes maths and A denote the event that he receives on
A in whatever course he takes, then the desired probability is
P(An C) =P(C) P(A/IC)
1. 1
= _ X _ ==
2 3 6

Example 5: Ashu and Ankit appear in an interview for two vacancies in the same post. The

1

probability of Ashu's selection is % and that of Ankit's selection is % What is the probability that

(i) both of them will be selected? (i) none of them will be selected?
(iii) only one of them is selected?

Solution: Let A denote the Ashu is selected and B denote the Ankit is selected then A and B are
independent.

1. P(both of them will be selected)

= P(An B) = P(A) P(B) = - x

1
35

~N -
[
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2. P(none of them will be selected)
= P(not A and not B)
= P(not A) . P(not B)
=[1-PMA)][1-P(B)

1
:(l_lj [l—):6X4:ﬁ_
7 S 7 5 5

3. P(only one of them will be selected)
=P(*Aand not B’ or ‘B and not A”)
= P(A and not B) + P(B and not A)
= P(A) P (not B) + P(B) P(not A)
=P(A) [1-P(B)] + P(B)[1 - P(A)]

1 ( 1) 1 ( 1) 1.4 1 _6_10_2
= x[(l-—|+=x|l-—|=="X—+_x_—_=__=_,
7 5 5 7 7 5 5 7 3 7

Example 6: The probability that a teacher will give an unannounced test during any class meet-

ing is % If a student is absent twice, what is the probability that he will miss at least one test?

Solution: Let T, be the event of I test held on his first day of absence and T, be the event of I
test held on second day of his absence. Since, T, and T, are independent, then the required probability

P(probability that he will miss at least one test)
P(T,uT,)=P(T)+P(T,)-P(T, T,
= P(Tl) + P(Tz) - P(Tl) P(Tz)

Example 7: Three groups of children contain 3 girl and 1 boy; 2 girls and 2 boys; 1 girl and 3
boys respectively. One child is selected at random from each group. Find the chance that there selected
comprise 1 girl and 2 boys.

Solution: Let A, B and C be the three groups. Given that

A B C
Boys 1 2 3
Girls 3 2 1

Let B,, B,, B, be the events of selecting a boy from A, B and C group respectively and let G,, G,,
G, be the events of selecting a girl from A, B and C group respectively. Then B;, B,, B;, G,, G,, G; are
independent events such that
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P(B) = 7. P(B) =2 =~ P(B) =,
P(G,) = % P(G,) = % =2 P(G)= 7.
Now one girl and 2 boys can be chosen in the following three mutually exclusive ways.
Groups A B C
()] Girl Boy Boy
() Boy Girl Boy
(nn Boy Boy Girl

The required probability = P(I) + P(1I) + P(llI)
=P(G,nB,nBy)+PB,NG,NB,)+PB, NB,NG,)
= P(G,) P(B,) P(B,) + P(B,) P(G,) P(B,) + P(B,) P(B)) P(G,)
31 3 1 1 3 1 1 1

= X—X—+4+—X—X—+—X—X

4 2 4 4 2 4 4 2 4

Example 8: A and B are two independent witness in a case. The probability that A will speak the
truth is x and the probability that B will speak the truth is y. A and B agree in a certain statement. Show
Xy

that the probability that this statement is true; ——— = |
1-XxX-y+2xy

Solution: Let E,; be the event that A and B agree in a statement and E, be the event that their
statement is correct.

Then, PED)=xy+(1-x)(1-y)
=1-x-y+2xy
and P(E, VUE,) =xy

We know that
P(El U E2) = P(El) P(E2/El) = P(E2) P(El/Ez)

P(EJE)) =
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1. IfP(A) = % and P(B) = % find

(i) P(A U B), if A and B are mutually exclusive events.
(ii) P(A n B), if A and B are independent events.

2. In the two dice experiment, if A is the event of getting the sum of numbers on dice as 11 and B is the
event of getting a number other than 5 on the first die, find P(A n B). Are A and B independent events?

3. If Aand B are independent events, then show that
(i) A, B (i) A B and
(iii) A, B are also independent events.
4. A problem of statistics is given to three students A, B and C whose chances of solving it are 1/2, 3/4 and

1/4 respectively. What is the probability that the problem will be solved?

5. A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn
from each bag. Find the probability that

(i) both are red, (ii) both are black,
(iii) one is red and one is black.
6. A bag contains 19 tickets, numbered from 1 to 19. A ticket is drawn and then another ticket is drawn
without replacement. Find the probability that both the tickets will show an even number.
7. A bag contains 5 white, 7 red and 8 black balls. If four balls are drawn one by one without replacement,
find the probability of getting all white balls.

8. An article manufactured by a company consists of two parts A and B. In the process of manufacture of
part A, 9 out of 100 are likely to be defective. Similarly, 5 out of 100 are likely to be defective in the
manufacture of part B. Find the probability (i) that the assembled part will not be defective (ii) that the
assembled part will be defective.

9. A bag contains 4 white and 6 black balls. If two balls are drawn in succession, what is the probability that
one is white and other is black?

10. A bag contain 10 white and 15 black balls. Two balls are drawn in succession. What is the probability
that first is white and second is black?

ANSWERS
. 14 o1 1 29
1 (i) = (i) = 2. %' Not. 4. TR
.9 1 21 4 1
5. (i) T (i) 2 (iii) il 6. 19 7. 969"
8 1

8. (i) 0.8645 i) 0.1355 9. — o, =,
0 0) = y
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1.8. THEOREM OF TOTAL PROBABILITY

Theorem: Let B, B,, B, ...... , B, be subsets of a sample space S such that
(i) Each B; is a proper subset of S i.e.,
B,cS i=12, ... nandB, # S.
(ii)B, UB, U ...... uB,=Sand
BimBj:q),i,j:l,Z, ...... n,i#j.
Then, for any event A of S

P(A)=i P(B, N A) = Y, P(B)P(A/B;) with P(B) #0,i=1,2, ... n.

i=1 i=1

Proof: It is given that

1 2 n i=1
and B, Bj =¢ foranyiand j
i.e., their union is S and B;’s are mutually disjoint sets.
Therefore, A=ANnS=An (Ln) Bi)
i=1

=An(B,UB,U.... U B,)
=(AnB)U((ANB)uU.... U(ANB)
Thesets AN B, AnB,, ..., An B, are all mutually disjoint sets. We have
P(A)=P[(AnB)U(ANB,)uU... UPANB,)]
=P(ANB)+PANB)+... +P(ANB)
=P(B,NnA)+P(B,NA)+ ... +P(B,NA)

= P(B NA)
i=1
= P(B)P(A/B) (Using by multiple theorem)
i=1
1.9. BAYE’S THEOREM
LetB,, B, B, ...... , B, are mutually exclusive events with P(B;)) #0 (i=1, 2, ...... n). For any arbitrary

event A in sample space S with P(A) # 0 and for 1 <k <n.
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P(By) P(A/By)

n

Y. P(B)P(A/B))

i=1

P(BJA) =

Proof: By the definition of conditional probability

P(B, N A)
P(BJA) = —* 7 (1
(BY/A) P(A) oy
By the theorem of total probability
P(A)= P(B,nA) =Y P(B)P(A/B) (2)
i=1 i=1
Also from the theory of multiplication
P(B, N A) =P(B,) P (A/B,) ..(3)

Putting the values of P(A) and P(B, n A) from (2) and (3) in equation (1), we get
P(B,) P(A/B,)

n

Y. P(B)P(A/B))

i=1

P(BJA) =

SOLVED EXAMPLES

Example 1. In 1888 there will be three candidates for the position of Director—Dr. Singhal,
Dr. Mehra and Dr. Chatterji—whose chances of getting the appointment are in the proportion 4 : 2 : 3
respectively. The probability that Dr. Singhal, if selected, will abolish co-education in the college is 0.3.
The probability of Dr. Mehra and Dr. Chatterji doing the same are respectively 0.5 and 0.8. What is the
probability that co-education will be abolished in the college?
Solution: Let B, B, and B, be the probability of being appointed of Dr. Singhal, Dr. Mehra and
Dr. Chatterji respectively. Let the probability of co-education being abolished be A. Then, by the theorem
of total probability, we have
P(A) = P(B,) P(A/B,) + P(B,) P(A/B,) + P(B;) P(A/B,)
4 2 3
=_x(03)+ —=x(05)+ = x (0.8
5 X (03)+ 5% (05) + = x(08)
= 3 + E + i = E
15 9 15 45
Example 2: An urn | contains 3 white and 4 red balls and an urn Il contains 5 white and 6 red
balls. One ball is drawn at random from one of the urn and is found to be white, find the probability that
it was drawn from urn I.
Solution: Let B, : the ball is drawn from urn |
B,: the ball is drawn from urn Il

A: the ball is white
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To find P(B,/A).
By Baye’s theorem

P(B,) P(A/B,) "
P(B,) P(A/B,) + P(B,) P(A/B,)

Since, two urn are equally likely to be selected,

P(B,/A) =

1
P(B,) =P(B,) = 5
P(A/B,) = Probability of a white ball is drawn from urn | = %

P(A/B,) = Probability of a white ball is drawn from urn 1l = 1_51

By (1), we have

Example 3: The probability that a person can hit a target is % and the probability that another

person can hit the same target is 2 . But the first person can fire 8 shoots in the time the second person

5
fires 10 shoots. They fire together, what is the probability that the second person shoots the target.

Solution: Let A denote the event of shooting the target and B, denote the event that the first
person shoots the target and B, denote the event that the second person shoots the target. Therefore,
P(B,/A) is the probability that the second person shoots the targets.

3
Now, we have  P(A/B,) = 5 P(A/B,) = %

It is given that the ratio of the shoots of the first person to those of the second person in the same
... 8. 4
time I1Is — Le. —.

10 5

Thus, we have P(B,) = % P(B,)

By Baye’s theorem, we have
P(B,) P(A/B,)

P(B./A) =
G/ = e, p(aiB) + P(B,) P(AIB,)
2 2
4 3 2 3.4 2 11
2PB,).2+PB,). = ZxT4+%
5 (B,) 5+ (2)5 5X5+5
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Example 4: The contents of urns I, Il and I1I are as follows:
1 White, 2 black and 3 red balls,
2 White, 1 black and 1 red balls,
and 4 white, 5 black and 3 red balls.
One urn is chosen at random and two balls drawn. They happen to be white and red. What is the
probability that they come from urns I, Il or 111?
Solution: Let B,: Urn I is chosen;
B,: Urn Il is chosen;
B, Urn 111 is chosen
and A: the two balls are white and red.
To find P(B,/A), P(B,/A) and P(B,/A).

Now, P(B,) =P(B,) =P(B,) = % Since, three urns are equally likely to be selected.
P(A/B,) = Probability of a white and a red ball are drawn from urn |
_'cx’c _1
GCZ 5
P(A/B,) = Probability of a white and a red ball are drawn from urn I
_CGixie 1
‘C, 3
P(A/B,) = Probability of a white and a red ball are drawn from urn 111
12 Cz 1
By Baye’s theorem, we have
_ P(B,) P(A/B,)
P(B,/A) =
P(B,) P(A/B,) + P(B,) P(A/B,) + P(B;)P(A/B,)
1 1
- 375 )
11,1112 118
3 5 3 3 3 1

.. 55 15
Similarly, P(B,/JA) = — and P(B,/A) = —.
Y. P(BAA) 118 (Bs/A) 59

Example5: A bag contains 3 black and 4 red balls. Two balls are drawn at random one at a time
without replacement. What is the probability that the first ball selected is black if the second ball is

known to be red.
Solution: Let B, be the event of the first ball being black (bb, br)

Let B, be the event of the first ball being red (rb, rr)
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Let A be the event of second ball being red (br, rr)
To find P(B,/A).
We have A=(AnB)N(ANB,) ()
By theorem of multiplication or compound probability
P(AnB,)) = P(B,) P(A/B))

3_4_2

= - X —-—=—,
7 6 7

P(An B,) = P(B,) P(A/B,)

4 3_2

= X - =—
7 6 7

By (1), we have P(A)=P(AnB,)+P(ANB,)

2 2 _4

= — + —_ = —
7T 7 7

The required probability

2
P(B,/A) = % =L

N -

7
Example 6: In a bolt factory, machines M;, M, and M, manufacture respectively 25%, 35% and
40% of the total of their output 5, 4 and 2 percent are defective bolts. A bolt is drawn at random from the

product and is found to be defective. What is the probability that it was manufactured by machine M,,
M, and M,?

Solution: Let A, B, C denote the events that the bolt was manufactured by machines M,, M, and
M respectively and let D denote the event of its being defective. Then

P(A) = 0.25, P(B) = 0.35, P(C) = 0.40
The probability that a defective bolt is drawn from those manufactured by M, is
P(DIA) = — =0.05
100

Similarly, P(DIB) = —+ = 0.04, P(DIC) = —= = 0.02
100 100
By Baye’s theorem, we have
P(A) P(D/A)
P(A) P(D/A) + P(B) P(D/B) + P(C) P(D/C)
~ 0.25 x 0.05
"~ 0.25x0.05 + 0.35x 0.04 + 0.40 x 0.02

P(A/D) =
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140 80

Similarly, P(B/D) = 315 and P(C/D) = —.

345

Example 7: In a certain college 25% of boys and 10% of girls are studying mathematics. The
girls constitute 60% of the student body (a) what is the probability that mathematics is being studied?
(b) If a student is selected at random and is found to be studying mathematics, find the probability that

student is a girl? (c) a boy?
Solution: Given that probability of a boy P(B)

_40 2
100 5
and Probability of a girl P(G)
- 60 _3
100 5
Probability that maths is studied given that the student is a boy
= P(M/B) = E = E
100 4
- 10 1
Similarly, P(M/G)= — = —
y (WG) 100 10

(a) Probability that math is studied

P(M) = P(G) P(M/G) + P(B) P(M/B)

31 21 _4
" 5°10
(b) By Baye’s theorem, we have
Probability that a math student is a girl
P(G) P(M/G)
P(M)

54 25

P(G/M) =

gl w
e

4
25
(c) Probability that a maths student is a boy
P(B) P(M/B)
P(M)

| w

P(B/M) =

NN

2
2

4
25

(by theorem on total probability)
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1. Abag X contains 2 white and 3 red balls and a bag Y contains 4 white and 5 red balls. One ball is drawn
at random from one of the bags and is found to be red. Find the probability that it was drawn from bag Y.

2. Three urns contain 6 red, 4 black; 4 red 6 black; 5 red, 5 black balls respectively. One of the urns is
selected at random and a ball is drawn from it. If the ball drawn is red, find the probability that it drawn
from the first urn.

3. Abusinessman goes to hotels H;, H,, H,, 20%, 50%, 30% of the time, respectively. It is known that 5%,
4%, 8% of the rooms in H,, H,, H; hotels have faulty plumbing (i) Determine the probability that the
businessman goes to hotel with faulty plumbing (ii) what is the probability that business’s room having
faulty plumbing is assigned to hotel H,?

4. There are three boxes containing respectively 1 white, 2 red, 3 black balls; 2 white, 3 red, 1 black balls;
3 white, 1 red, 2 black balls. A box is chosen at random and from it two balls are drawn at random. The
two balls are one red and one white. What is the probability that they come from the (i) first box,
(ii) second box (iii) third box.

5. Anurn contains 10 white, 9 black, 8 red and 3 blue balls. Balls are drawn one by one at random from the
urn until 2 blue balls are obtained at the 11th draw. Find the probability of drawing 2 blue balls upto 11th
draw.

6. Suppose the supply of transistors is produced by three systems S,, S, and S,. Further, suppose that S,
produces 20%, S, produces 30% and S, produces 50% of the supply and that the defective (D) rates for
three systems S, S, S are respectively 0.01, 0.02 and 0.05. If a transistor is randomly selected from the
supply and is found to be defective, find (i) P(S,/D) (ii) P(S,/D) (iii) P(S,/D).

7. The chance that a doctor will diagnose a disease correctly is 70%. The chance that a patient dies by his
treatment after correct diagonals is 35% and the chance of death by wrong diagnosis is 80%. If a patient
dies after taking his treatment, what is the chance that the disease was diagnosed correctly.

8. Companies B, B,, B, produce 30%, 45% and 25% of the cars respectively. It is known that 2%, 3% and
2% of the cars produced from B,, B, and B, are defective.

(i) What is the probability that a car purchased is defective?

(ii) If a car purchased is found to be defective, what is the probability that this car is produced
by company B, ?

ANSWERS
25 2 . 4
1 = 2. = 3. (i) 0.054 (i) @
L2 .. 6 03 19
4. (i) i (i) T (iii) i 5, 406
6. (i) 0.061 (ii) 0.182 (iii) 0.757 7. g

. . 10
8. (i) 0.0245 (||)4—9.
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1.10. BINOMIAL THEOREM

Let the probability of the happening of an event in one trial is p and g = 1 — p be the probability that the
event fails in one trial. Let us find out the probability of exactly r successes in n trails.

The chance that an event happens at least r times in n trials is given
P= pn + nCl pn—lq + nczpn—ZqZ + .+ nCr prqn—r
Hence, the probability that the event will happen exactly r times in n trails is the (n + 1) term in
the expansion of (g + p)".

1.11. MULTINOMIAL THEOREM

If a dice has f faces marked with 1, 2, 3, ...... f, the probability of throwing a total p with n dice is given
by

_ Coefficient of x" in the expansion of (x" + x* +x® +....+ x')"

fn
@-xH"
Coeff. of x” in L PP

_ x"(1-x)

= o

_ Coeff.of X" in(@-x")"@A-x)"

= =

Note. If n dice are different with faces f,, f,, f,, ......, f., then the required chance is

_ Coeff.ofxpin(x1+x2+ ...... +xfl)(x1+x2+ ...... +xf2) ...... (x1+x2+ ...... +xf")

fifp f3onn. f,

1.12. RANDOM VARIABLE

A variable, which takes a definite set of values with a definite probability associated with each value is
called a random variable.

Hence, if a variable x takes the values x,, X,, x

21 Xgy ween

i=1
P(x), which has respective probabilities p,, p,, pg, --.... P, for X, Xo, Xg, e , X, is known as the probabil-

ity function of x. The variable x in such a case is called the random variable.
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1.13. EXPECTED VALUE
When X is a discrete variable, which may take n mutually exclusive values x; (i=1, 2, 3, ...... , ) and no

other, with respective probabilities p, (i=1, 2, 3, ...... , N) the expectation of X is

E(X) = pyX; + X, + PgXg + oo +p X, = 2 Pi X
when X is a continuous variable, the expectation of x is given by

E(X) = on () dx

where, ¢(x) is the probability density defining the function
Note 1. If X and Y are random variables, then
E(XX +Y) = E(X) + E(Y)
2. If X'and Y are independent random variables, then
E(XY) = E(X) E(Y)
3. The expected value of a random variable X, denoted by E(X) or u, is defined as

Z x; f(x) (if X is discrete)
EX)oru=4 1
x f(x)dx (if X is continuous)

.E(@X+b)=akE(X) +b

-E{a (0} = a E{o(x)}
10. V(aX + b) = a?V(X), where V(X) is the variance of X.

4. Mean (X) = E(X) = u,

5. u, = E(X?)

6. Variance 62 = E(X?) — [E(X)]* = u," — u,"?
7.1/ = E(X7)

8

9

SOLVED EXAMPLES

Example 1: In a single throws, with a pair of dice, what is the chance of throwing doublets or

not.

Solution: When throw a pair of dice, we get only 6 doublets namely (1, 1); (2, 2); (3, 3); (4, 4);
(5, 5); (6, 6).

The chance of throwing a doublet in one throw = 6% _1

And the chance of not throwing a doublet =1- % = g
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Example 2: A dice is thrown five times. Find the probability of 3 coming up (i) exactly 3 times
(ii) at least 3 times.

Solution: The probability of 3 coming up = %
Let p=1/6andq=5/6.

. . . 1)° (5)?
The probability of 3 successes in 5 trails is 5C3 (Ej (6) .

Probability of at least 3 successes = Probability of 3 or 4 or 5 successes
1)\? (5 1) (5) 1)°

-5 = ~ 5 = Bl I =
C3(6) (6) ' C“(ej 6) " Cs(ej‘

Example 3: Four dice are thrown, what is the probability that the sum of the number appearing
on the dice is 18?

Solution: The probability that the sum of the number appearing on the dice is 18

_ Coeff.of x® in (x + x* +......+ x°)*

64
_ Coeff.of x*in(1+x+......+ x°)*
= o
_ Coeff.of x" in (1-x°)* 1-x)~*
64

Coeff.of x* in (1-4x® +6x* ......) x 1+ 4x +10x? +...... + 16x®
+ o + 680X )

_680-660+60 _80 _ 5

Example 4: A person throws two dice, one the common cube, and the other regular tetrahedron,
the number in the lowest face being taken in the case of a tetrahedron. What is the chance that the sum
of the numbers thrown is not less than 5.

Solution: We know that the common cube has 6 faces and the regular tetrahedron has 4 faces.
Hence, 6 x 4 is the total number of ways in which the cube and the tetrahedron can fall.

The favourable ways of getting a sum not less than 5

= the sum of the coeff. of x5 x5, ..., x%in (x + X + ...... +x8) (x + x2 + x3 + x%)

= the sum of the coeff. of x>, x5, ......  X300n (2 + 2x3 + 3x* + 4x5 + 4x5 + 4x7 + 3x8 + 2x% + x19)
=4+4+4+3+2+1

The required chance = = %
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Example 5: Four tickets marked 00, 01, 10, 11 respectively are placed in a bag. A ticket is
drawn at random five times, being replaced each time. Find the probability that the sum of the numbers
on tickets thus drawn is 23.

Solution: Given that four tickets marked 00, 01, 10, 11 respectively are placed in a bag.
The four tickets can be drawn five times in 4° ways.
The favourable number of ways for obtaining a sum

= Coeff. of x23 in (X0 + x! + x10 + x11)®

= Coeff. of 23 in (1 + x)° (1 + x10)5 (on factorization)
= Coeff. of x?%in (1 + 5x + 10x? + 10x3 + 5x* + x°) (1 + 5x%0 + 10x° + ......)
=100
. - 100 25
Hence, the required probabilit = = —.
a P Y 4° 256

Example 6: If m things are distributed among a men and b women, show that the chance that the

m m
number of things received by men is odd, is 1b+a) -b-a)
2 (@a+hb)"

Solution: Given that m things are distributed among a men and b women. The probability that

.. a
men may get a thing is ——.
v g a+b

The probability that a women may get a thing is %.

If out of m things ‘a’ men get only one thing and other things go to the women, then the probabil-

ity for men is
b m-1
(575 [a2s)
a+b)la+b

Similarly, the probability that ‘a’ men may get three things, five things, ...... are respectively

3 m-3 5 m-5
me a b me a b
3 , "Cy R
a+b a+b a+b a+b

Let A be the event the number of things got by men is odd and A, denotes the event
‘men get ith thing’

Thus, the probability that the number of things received by men is odd is,
P(A) = P(A,) + P(A;) + P(Ag) + .....

m-1 3 m-3 5 m-5
=mnc |2 b +mc, | @ b +mc | @ b T
Ha+b/)la+h *la+b a+b la+b a+b
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1
= GO [mC1 ab™! + "C, a%h™ + "Cya’ bt 4. ]
—_ ; l m _ l _ m
(@t [E(bﬂ'ﬂ) 2(b a) }

_1 (b+a)" -(b-a)"
2 (a+b)" '

Example 7: From a bag containing 5 one rupee coins and 3 coins of 20 paisa each, a person is
allowed to draw 2 coins indiscriminately. Find the value of his expectation.

Solution: Given that a bag containing 5 one rupee coins and 3 coins of 20 paisa each.

s, _s

Probability of drawing 2 rupees =

8c, 14

Probability of drawing 1 rupee and one 20 paisa coin

= 5C1 X 3C1 = E
8¢, 28
. . o c, _ 3
Probability of drawing two 20 paisa coins = # = 28"
2

The values of draws in three cases are Rs 2, 1.20 and 0.40 rupees respectively.

1
Expected value = x 2+ B x 1.20 + 3 0.40
14 28 28
10 180 12
= 4+ — 4+ —
14 280 280
_ 200+180+12
280
392 7

= — =— =Rs. 140.
280 °

Example 8: A person draws cards one by one from a pack until he draws all the aces. How many
cards he may be expected to draw?

Solution: Let a person has to make n draws for all aces. It means that in n — 1 draws, three aces
and in nt", one ace. The probability of such an occurrence

_ 4C3 % 48Cn_4 y 1
2Cos 52-(n-1)
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_4x48(n-n!G2-n+n! 1
(n—4)1(52-n)!52! 52-n+1

_4n-)(h-2)(n-3)
49x50x51x52

The least square number of draws he has to make is 4 and the maximum number 52. Hence,
n range 4 to 52.

The expected number of draws

:i L4 (n-D(-2)(n-3)
~  49x50x51x52

4 52 . 52 3 52 ) 52
~ 49% 50 x 51x 52 Zln _Gén _llén _Gén '

Example 9: A makes a bet with B of 5S to 2S that in a single throw with two dice he will throw
seven before B throws four. Each has a pair of dice and they throw simultaneously until one of them
wins, equal throws being disregarded. Find B’s expectation.

Solution: The chance of 7 throwing with two dice
_ Coeff.of x” in (x +x* +x* +...... + x°)?
= -

_ Coeff.of x*in(1-x°)° 1-%7 _
36

w
cn|cD
|~

Similarly, the chance of throwing 4 is %

Hence, A’s chance in each trail is double of B’s.

Now let
x = B’s chance on the supposition

then, 2x = A’s chance clearly and

A’s chance + B’s chance = 1
ie. 2x+x=1
ie. 3x=1
i.e X = 1

3

. 1
B’s expectation = 3 of 55 - % of 2S = 4d.
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Example 10: An urn contains n tickets numbered from 1 to n and m tickets are drawn one by one
without replacements from the urn. What is the mathematical expectation of the sum of the numbers
drawn?

Solution: Suppose the variable associated with the j ticket be x

1
Now, E(x) = Zpyx; = n X

_1nn+1) _n+1

n 2 2

Let S be the sum, then the expected value of the sum
E(S) = ZE(x) =m Z E(x)
—m (n+1) .
2

Example 11: What is the expectation of the number of failures preceding the first success in an
infinite series of independent trails with constant probability of successes.

Solution: The probabilities of success in first, second, third, ...... trails respectively are
P, ap, &°p, &, ...
Let X be the no. of failures
Then, the expected number of failures preceding the first success
EX)=0.p+1.9p+20%p +......
=qgp[1+29+3g°+.... ], q<1
- gp [
(1-q)?

i-p
-

p=1-q]

1. Ifonaverage 1 vessel in every 10 is wrecked find the probability that out of 5 vessels expected to arrive,
4 at least will arrive safely.

- |

2. A teacher claims that he could often tell while his students were still in their first year whether they will
obtain I, 11, 111 divisions or fail in their final examinations. To demonstrate his claim, he forecasts the
fates of 8 students. Find the probability of his being correct in 5 cases.

3. Five coins whose faces are marked, 2, 3 are thrown; what is the chance of obtaining a total of 12?
Determine the probability of throwing more than 8 with 3, perfectly symmetrical dice.
5. If three symmetrical dice are thrown, calculate the probability that the sum of numbers is 12.
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6.

10.

A and B in turns toss an ordinary die for a prize of Rs. 44. The first to toss a ‘six’ wins. If A has first
throw, what is his expectation?

A bag contains 2 white and 3 black balls. Four persons A, B, C and D in the order named each draw one
ball and do not replace it. The person to draw a white ball receives Rs. 200. Determine their expecta-
tions.

A box containing 2" tickets among which "C; bear the numberi, (i=0, 1,2, ...... n). A group of m tickets
is drawn, what is the expectation of the sum of numbers?
A person draws 2 balls from a bag containing 3 white and 5 black balls. If he is to receive Rs. 10 for

every white ball which he draws and Rs. 1 for every black ball. What is his expectation?

Two players of equal skill A and B play a set of games; they leave off playing when A wants 3 points and
B wants 2. If the stake is Rs. 16, what share ought each to take?

ANSWERS
45927 , 189 2 5 72
" 50000 " 8192 "6 “o1 27
25 6. 24 7. 80, 60, 40, 20 g M
" 216 : C O TR )

9. 8.75 10.5, 11



CHAPTER 2

Theoretical Distributions

In this chapter, we shall discuss some probability distribution such as Binomial, Poisson, Normal
distribution with their applications. In theoretical distribution, normal distribution is most important
distribution. Binomial and Poisson distributions are discrete probability distribution and Normal
distribution is continuous probability distribution.

Before we discuss formal theoretical probability distribution, first we shall define certain

terminologies and notations, which are used in defining theoretical distributions.

2.1. TERMINOLOGY AND NOTATIONS

1

Random variable: A variable, which takes a definite set of values with a definite probability
associated with each value is called a random variable.

Continuousrandom variable: A random variable X is said to be a continuous random variable,
if it takes all possible values between its limits. For example, height of a tree, weight of a school
children etc.

Discrete random variable: A random variable X is said to be a discrete random variable, if it
takes only finite values between its limits, for example, the number of student appearing in a
festival consisting of 400 students is a discrete random variable which can assume values other
than 0, 1, 2, ...... , 400.

Continuous probability distribution: Let X be a random variable which assume values in the
interval [- oo, o], then the probability in (a, b) is defined by

b
Pla<x<b)= [ f(x)dx
a
where, f(x) is called probability density function which satisfies the following conditions:
()20 Vxe (-es, ) i) [ 10 =1

Discrete probability distribution: Let X be a random variable which assume values X, X, ......, X
with probability p;, p,, ....... , P, respectively, then the probability is

210
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PX=x)=p(x) or f(x)for i=12 ... , N
where, p(x;) is called the probability mass function which satisfies the following conditions:

(i) f (x) >0 (ii) Z f(x)=1
i=1

6. Mean and variance of random variables: Let X be a random variable which assume values
OPD S , X, with probability p,, p,, ....... » P, respectively.

We denote mean (average or expected value) by u (X or m)

_ P . _
or E(X) = o =Zp; X [ Zp=1]

And we denote variance by (o? or w, or p’, — ;2 or  E(X?) - [E(X)]?)
= 2 pi(x —%)? or 2 pi (% —m)?

Standard deviation (c) = + +/variance .

2.2. BINOMIAL DISTRIBUTION

Binomial distribution is the extension of the theorem of probability. Binomial distribution was discov-
ered by James-Bernoulli in 1700. Let X be the random variable denote the number of successes in these
n trials. Let p and g be the probabilities of success and failure one any one trial. Then in the n independ-
ent trails the probability that there will be r successes and n — r failures is given by

PX=r="C,p"q""", r=0,1,2, ... , N
The probability distribution of the random variable X is therefore given by

X 0 1 2 | r n
P(X) nCO pO qn nCl pl qn—l nC2 pz qn—z nCr pr qn—r nCn pn qn—n
Hence, the probability distribution is called the binomial distribution because forr=0, 1, 2, ......, n,

are the probabilities of the successive terms of the binomial expansion of (q + p)".
Note. 1. The constant n, p, g are called parameters of the distribution.
2. Also denoted b(r; n,p)="C.p" "', r=0,1,2,....n

3. For N set of n trial the successes 0, 1, 2, .....r, ....., n are given by N(q + p)", which is called binomial
distribution.
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2.3. CONSTANTS OF BINOMIAL DISTRIBUTION

For the binomial distribution
P(X=r="C.p"q"", r=0,1,2, ... , N
: p+q=1
Taking out origin at 0 successes, we have

n
W=EX)= ), 1, pf g

r=0

=0.9"+1."C,pg™1+2C,p? q"2+3."Cyp3qT 3+ ... +np"

:0+nm“‘+%nm—n2¥q“2+%nm—lﬂn—a3&q“3+

:np[qn—l_}_n—lclpqn—z_}_n—lc2 p2qn—3+ llllll +pn—1]
=np(q+p)"~t,sinceq+p=1
Mean ( X ) = np

n
W,=E(X?)= Y r0C prgh-"

r=0

= 2 [r+r(r=DIC pg"-"

r=0

n n
- Z rncr pr qn—r+ Z I’(I’—l) nCr pr qn—r
r=0 r=0

< n(n-1)
=np+ rgo r(r-1) (-1 n—ZCIr_2 prgn-r

n

=np +n(n - 1) p? Z n—ZCr_2 pr2gn-r

r=0
=np+n(n-21)p?(q+p)"~2% since q+p=1
=np+n(n-1)p?
=np[1+(n-1)p]
=np [1+np-p]
=np [q + np]
= npq + n%p?
Variance (u,) = W', — ;2 or E(X?) - [E(X)]?

()
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=npq +n? p? — n?p?
=npq
Variance (u, or 6%) = npq

and Standard deviation (c) = \/npq

n
Wy=E(X¥)= Y r°0C, pgn

r=0

= 2 [rr=1)(r-2)+3r(r-1)+r]"C,p"q"~"

r=0
On simplification in above similar manner, we have
=n(n-1) (n-2)p*(q+p)"~*+3n(n-1)p? (@ +p)" 2 +np(q+p)"~*
=n(n-1) (n-2)p3+3n(n-1)p?+np
Uy = Wy —3u, Wy +2u = npa(q - p)

n
W,=E(X) = X, e plgn

r=0

= Z {rr-1)(r-2)(r=-3)+6r(r-1)(r-2)+7r(r-1)+r}"C p'gq"-"

r=0
On simplification in above similar manner, we have
=n(n-1)(n-2) (n-3)p*+6n(n-1) (n-2) p®+ 7n(n - 1) p?> + np
Wy = M/4 - 4!“{/3“/1 + 6!“{/2 Mllz - 3M/14 =npq [ 1+ 3(n - 2) pq]
2

2 2
Now, g, = Mo _[wa@-pI"_(a-p)

W, (npa)® npg
2,242 _ 1-6
B, = M_42= 3n°pq ;nng(l 6pa) _ 5, 120PA (Kurtosis)
U, n“pq npq
YW= B, = 9-P  (Skewness)
~vhpq
1-6pq
= -3= .
=P, npq

Note. 1. The mean of binomial distribution is greater than the variance, since 0 < q < 1.

1
2. If skewness is zero i.e.,, B, =0sop=q= 5

1 1
3. If p< o skewness is positive, if p > o negative.
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SOLVED EXAMPLES

Example 1. Show that for the binomial distribution (q + p)", u, ., = pq (nr Wp_q + ddt
where, u_is the rth moment about the mean. Hence, obtain u, , u, and p,.
Solution: Using the definition of rth moment about mean, we have
u, = E [X—EX)T"
n
= ) (x—np)'nC prqn-
x=0
Differentiating with respect to p both sides, we get
dl"LI’_ . _ _ r-1n X qh— X
—L =3 —nr (x-np)~11C p* g
dp x=0
n
+ Z (X — np)r nCX [X px—lqn—x_ (n _ X) px qn—x—l]
x=0
n
=—nr Z (x—np)™ "C p*q"~*
x=0
. 1
+ Y (x=np)’ nc, (—) [xq —np +xp] p*q "%
x=0 pq
l n
=—nrp_y +— Y, (x=mp)""C, [x (p + g) - np] p'g™
pq Xx=0
— 1 . _ r+ln X yN—X
=—nryp_, +— Y (x=np)™"C, p*q
pq Xx=0
_ 1
=-nrpe t oq ]
d
= Uryn = pq (nrur_1 + dltjr) (1)

Puttingr=1, 2, 3in (1), we get

=pq(0+n), sincep, =0,p,=1
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= npq
d
u3=DQ(dL;+n-2u1)
=pg (ng—np+2n.0)=npq (q-p)

- dus
= —=+n.3
Uy pq( dp Mz)

= pq Hp{np(l— p) (1-2p)}+3n. npq}

dp
= pq [n - 6np + 6np* + 3n°pq]
= npq - 6np?q + 6np3q + 3n?p?g?
= 3n%p?g? + npq + 6npq (p* - p)
= 3n%p?q? + npq + 6np?q (p - 1)
= 3n%p?g? + npq - 6np*q?
= 3n%p?g? + npq (1 - 6pQq).

Example 2: A die is tossed thrice. Getting an even number is considered as success. What is
variance of the binomial distribution ?

= pq {d{np —3np” + 2np*} + 3n2pq}

Solution: Let p be the probability of getting an even number
3 1 1 1

i.e., =Z=-—-theng=1-===,n=3
P 6 2 q 2 2
The variance of binomial distribution = npg, where gq=1-p
1_3
=3x 5 X 5 = Z

Example 3: The mean and variance of a binomial distribution are 4 and 3 respectively. Find the
probability of getting exactly six successes in this distribution.

Solution: The mean of binomial distribution =np =4 (given) (1)
and the variance of binomial distribution =npq = 3 (given) (2
Using (1) and (2), we have

npg=3 = 4.9=3 = (=

Nl ow

3 _1

d =1-gq=1-—==—
an p q 1 4
4

by (1), np=4 = nX%: = n=16
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6 /3\1° 8008 x 3"
The probability of 6 success = 16C, Gj (gj =

Example 4: In 256 sets of 12 tosses of a coin, in how many cases one can expect 8 heads and
4 tails.

N |-

Solution: Let p be the probability of head i.e., p = % and g be the probability of tail i.e., q =

n=12, N = 256.

12
The binomial distribution is  N(q + p)" = 256 (% + %)

The probability of 8 heads and 4 tails in 12 trial is

v, (1) (1) 495
*12) (2) 4096
The expected number of such cases in 256 sets

= 256 _I =309=31 I
X ~
096 . (nearly).

Example 5: During war, 1 ship out of 9 was sunk on an average in making a voyage. What was
the probability that exactly 3 out of a convoy of 6 ships would arrive safely ?

Solution: Let p be the probability of a ship arriving safely i.e.,
1 8 1
=1--=- then q=1-p= ¢
p 9 9 q P=179
n=6,N=1

The binomial distribution is

1 8)
N@+p)"=|=+—

(@+p) (9 9)
The probability that exactly 3 ship arrive safely

3 3
=5, (g) (3) _ oo x 312 _ 10240

9) \o 9°  9f
1
Example 6: The probability that a pen manufactured by a company will be defective is 0 If

12 such pens are manufactured, find the probability that
(i) exactly two will be defective.
(ii) at least one will be defective.
(iii) none will be defective.
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Solution: Given that the probability of a defective pen = 1—10 =0.1

Then the probability of a non-defective penis=1-0.1=0.9
(i) The probability that exactly two pen will be defective
=12C, (0.1)? (0.9 = 0.2301
(i) The probability that at least two will be defective
= 1 — {Probability that either none or one is non-defective}
=1-{%C, (0.9)* + *2C, (0.1) (0.9)"}
=1-0.6588 = 0.3412
(iii) The probability that none will be defective
=12C,, (0.9)*2=0.2833.

Example 7: Six dice are thrown 729 times. How many times do you expect at least three dice to
show a five or six ?

Solution: Let p be the chance of getting 5 or 6 with one die

1 1 2
then ==, =1l-===
P 3 a 3 3

n=~6, N =729

Since, dice are in sets of 6 and there are 729 sets.
The binomial distribution is

N(q + p)" = 729 (Eﬁ)ﬁ

The required number is

3 3 4 2 5 6
s 6 (5) (5) +e(5) () o la) (B)+ = (3)
3) \3 3) (3 3) (3 3
729
= 55 {160+60+12+1}=233

Example 8: A perfect cubical die is thrown a large number of times in set of 8. The occurrence
of 5 or 6 is called a success. In what proportion of sets do you expect 3 successes.

Solution: Let p = the chance of occurrence 5 or 6 with one die =

ol N
Wl

g=1l-p=1-==—, n=8

(AR
w| N
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The binomial distribution is given by

2 1)
N(g+p)"=N|=+=
(@+p) ( 3 3)
The number of sets in which 3 successes are expected

3 5 | 5
nvlee[H] (2] L an B 2
3)\3 3151 38

Iy 95
N.8X7X6X5'X2 B 56><32_Nl792

3x2x51x3%  243x27 6591
The percentage is =N 1792 X 100 _ 27.3%.
6591 N

Example 9: In 800 families with 4 children each how many families would be expected to have
(i) 2 boys and 2 girls (ii) at least one boy (iii) no girl (iv) at least two girls ? Assuming that equal
probabilities for boys and girls.

Solutioin: Since, the probabilities for boys and girls are equal

Then let p = probability of having a boy =

N[~ NP

and q = probability of having a girl =
Here n=4, N=800

4
The binomial distribution is N (q + p)" =800 (% + %) .

(i) The expected number of families having 2 boys and 2 girls

2 2
=gooc, (1] (L] 28096 _ 5
2) 2 16

(i) The expected number of families having at least one boy

oo () (3 (3 (<6 (= )]

= i
(iii) The expected number of families having no girl

[4+6+4+1]=750.

4
:800404 1 =@ = 50.
2 16
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(iv) The expected number of families having at most two girls

-wn i (3] (& - (T = 3]

5 [6 + 4 + 1] = 550.

Example 10: The probability that a men aged 60 years will live up to 70 years is 0.65. What is
the probability that out of ten men now 60 years, at least 7 would live up to 70 years ?

Solution: Given that the probability of a men aged 60 years will live up to 70 years is = 0.65
Then p=065 g=1-p=1-065=0.35
n=10
Let X be the number of men who live up to 70 years.
The probability that out of 10 men, r men will up to 70 years is
P(X=r)="C p"g"~"=1C, (0.65)" (0.35)10-"

The probability of at least 7 men would live up to 70 years.
P(X>7)=P(X=7)+P(X=8)+P (X=9)+P (X =10)

=10C, (0.65)" (0.35)* + 19C, (0.65)8 (0.35)% + 1°C, (0.65)° (0.35)* + 1°C,, (0.65)*°

=0.2523 + 0.1756 + 0.0725 + 0.0135 = 0.5140.

Example 11: Assuming that on the average one telephone number out of 15 called between
2 p.m. and 3 p.m. on week days is busy. What is the probability that if 6 randomly selected telephone
numbers are called (i) not more than three, (ii) at least three of them will be busy ?

Solution: Let p be the probability of a telephone number out of 15 called between 2 p.m. and
3 p.m. on week days is busy,

ie., :ithen g=1-—=—,n=6,N=1
15 5

14 1Y)°
The binomial distributionis N (q + p)" = | — + —
e binomial distribution is (+p) (15 15)

(i) The probability that not more than three will be busy
P(X<3)=P(X=0)+P(X=1)+P(X=2)+P(X=23)

) v (5T ) e G (3 (3 (3

15 15) \ 15 15) \ 15 15) 15
_ (19°
(15)°

2744 x 4150
(15)°

[2744 + 1176 + 210 + 20]

=0.9997
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(i) The probability that at least three of them will be busy
P(X>3)=P(X=3)+P(X=4)+P (X=5)+P (X =6)

3 3 2 4 5 6
= 6C, @4y i1y, 5C, “Jy (1) 6C, (14) (l) +6C, (l)
15 15 15 15 15/)\15 15

= 0.005.

Example 12: The following data are the number of seeds germinating out of 10 on damp filter
for 80 sets of seeds. Fit a binomial distribution to these data:

X 0 1 2 3 4 5 6 7 8 9 10 Total

f 6 20 28 12 8 6 0 0 0 0 0 80

Solution: Given thatn =10, N =80 and Xf = 80.

The arithmetic mean = Ez_:x

_1Ix20+2%x284+3%x124+4%x8+5x6+6x0+7x0+8x0+9x0+10x0

80
174
" 80
The mean of a binomial distribution = np
174 174
np = 80 = p= 30 <10 =0.2175
Then q=1-p=0.7825.

Hence, the binomial distribution to be fitted to the data is
N(q + p)" = 80 (0.7825 + 0.2175)10
Thus, the theoretical frequencies are

X 0 1 2 3 4 5 6 7 8 9 10

f 6.9 19.1 24.0 17.8 8.6 2.9 0.7 0.1 0 0 0

4
1. The mean and variance of binomial distribution are 4 and 3 respectively. Find P(X >1).

2. The items produced by a firm are supposed to contain 5% defective items. What is the probability that a
sample of 8 items will contain less than 2 defective items ?
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10.

11.

12.

13.

14.

Find the binomial distribution for which the mean is 4 and variance is 3.
Bring out the fallcy in the statement:
The mean of a binomial distribution is 3 and variance is 4.

If 10% bolts produced by a machine are defective, determine the probability that out of 10 bolts chosen
at random (i) 1 (ii) none (iii) at least one (iv) at most two bolts, will be defective.

An irregular six-faced die is thrown, and the expectation that in 100 throws it will give five even num-
bers is twice the expectation that it will give four even numbers. How many times in 10,000 sets of 10
throws would you expect it to give no even number ?

The incidence of occupational disease in an industry is such that the workmen have a 25% chance of
suffering from it. What is the probability that out of six workmen 4 or more will contact the disease ?

A box contains ‘a’ red and ‘b’ black balls, ‘n’ balls are drawn. Find the expected number of red balls
drawn.

Assuming that half the population are consumers of rice so that the chance of an individual being a
1

consumer is 5 and assuming that 100 investigators, each take ten individuals to see whether they are

consumers, how many investigators do you except to report that three people or less are consumers ?

Find the most probable number of heads in 99 tossing of a biased coin, given that the probability of a

3
head in a single tossing is 5

In litters of 4 mice the number of litters which contained 0, 1, 2, 3, 4 females were noted. The figures are
given in the table below:

Number of female mice 0 1 2 3 4 Total

Number of litters 8 32 34 24 5 103

In the chance of obtaining a female in a single trial is assumed constant, estimate this constant of un-
known probability.

1
The probability of a man hitting a target in e He fires 7 times. What is the probability of his hitting the

target at least twice. How many times must he fires so that the probability of his hitting at least one is

greater than % ?

Eight coins are tossed at a time, 256 times. Number of heads observed at each throw are recorded and the
results are as given below. Find the expected frequency and fit a binomial distribution. What are the
theoretical values of the mean and standard deviation ? Calculate also the mean and standard deviation
of the observed frequencies.

The probability that a bomb droped from a plane strike the target is é . If six such bombs are droped find

the probability that at least two will strike the target, and exactly two will strike the target.
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15. In a precision bombing attack there is a 50% chance that anyone bomb will strike the target. Two direct
hits are required to destroy the target completely. How many bombs must be dropped to give a 99%
chance or better of completely destroying the target ?

16. If a coin is tossed N times, where N is very large even number. Show that the probability of getting

112
exactly 1 N — p heads and 1 N + p tails is approximately (—) g2p2N
2 2 ’

7N
ANSWERS
1. 0.99863 2. 8C, (0.05)° (0.95)® + 8C, (0.05)* (0.95)"
1Y (3)6-
3. P(X=r)=1C (Z) (4) ,r=0,1,23,...,16. 4. np > npg, since q <1
5. (i) 0.03874 (ii) 0.3487 (iii) 0.6513
(iv) 0.58114 6. 1 (approximately) 7.0.0376
na

8. ok 9. 17 (approximately) 10. 59 and 60
11. 103 (0.534 + 0.466)* 12. n > 3.8, so the least value of n is 4.
13. 5,4.0,1.41,4.0,1.44 14. 0.345, 0.246 15. 11.

2.4. POISSON’S DISTRIBUTION

Poisson distribution was discovered by a french mathematician Simeon Denis Poisson in 1837. Poisson
distribution is also a discrete probability distribution of a discrete random variable, which has no upper
bound. Poisson distribution is a limiting form of the binomial distribution (q + p)" under the following
conditions:

(i) n — oo, i.e., the number of trials is indefinitely large.
(ii) p — 0, i.e., the constant probability of success for each trial is indefinitely small.
(iii) np is a finite quantity, say m.

m . .
Thus, p = o g=1- m , where m is a positive real number.
n

Poisson distribution deals with situations explained below:
(i) Number of suicides or deaths by heart attack in 1 minute.
(if) Number of accidents that take place on a busy road in time t.
(iii) Number of printing mistakes at each unit of the book.
(iv) Number of cars passing a certain street in time t.
(v) Emission of radioactive particles.
(vi) Number of faulty blades in a packet of 1000.
(vii) Number of person born blind per year in a certain village.
(viii) Number of telephone calls received at a particular switch board in 1 minute.
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The probability distribution of a random variable X is said to be a Poisson distribution, if the
random variable assumes only non-negative values and its probability distribution is given by

ro—m

m
Px=n="°" r=012 .
rli

where, m is called the parameter of the distribution and m >0
The probability of r successes in a binomial distribution
P(X=r)="C, pq""

~ ni b =) (n-2)...... (n-r+1 1_py-r
ETEnY prgqh-r= o p"(1-p)
1 2 r-1 r _ n-r .r
~ l(l—n)(l_n) ........ (l_n)p (1 p) n
- r!
1 2 r-1 r n-r
) (l_n)(l_n) ........ (l—n)(np) 1-p)
N r!

ml‘ e—m
= , = 0, 1, 2, ......
r!
The probability of 0, 1, 2, ....... | SR successes are
-m -m .2 -m .3 -m .r
eem & & M e mo € M .. respectively.
11 2! 3! r!

oo

o o r.—m r
Note. It should be noted that 2 P(X=r)= Z m e' =e‘m2 M —gmem=1,
r=0

|
s r: oy r:
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2.5. CONSTANTS OF POISSON DISTRIBUTION

Mi:E(X):ZI’P(XZr)
r=0

- e m'
:ZI’. |
r=0 r:

Mean ()_() =m

W,=E(X2)= Y r2.P(X=r)
r=0

e m'

r!

= i {fr(r-2) +r}

r=0

< rr-De™m" <~ r.e™m
:Z (r-1) +2
= r! r!

=m?e MeM+m=m?+m
Variance (u,) = W', —u? or E(X?2) - [E(X)]?

=m?+m-m?=m

Variance (u, or 6%) = m

Hence, mean of Poisson distribution = Variance of Poisson distribution

Standard deviation  (6) = JVm

W, = E(X3) = i r}P(X =r)
r=0
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= 2 {r(r—l)(r—2)+3r(r—1)+r}

r=0
) _ _ _ ) re—mmr
:Z rr-)(r-2)e™ 32 rr-He " m" 1)e +2 '
r=0 r! r=0 r
_e—mm3 e~ Mm 2 +e ™. m
Z(r—3)l Z(r—Z)' Z(r—l)'
=md+3m? + m.
Mg = Wy — 3y Wy + 27
=m

W, =E(X% = i r* P(X =r)

r=0
_Z{r(r—l)(r—2)(r—3)+6r(r—1)(r—2)+7r(r—1)+r}e _m
r=0
_e—mm“z 4)' 6e M 32 3 +7e mmzz (r-2)1
i 0 mr 1
te mzo Y

=m*+6m3+ 7m2 + m.
My = Wy — AW, Wy + 6% - 3,
= (m* + 6m3 + 7m? + m) — 4(m3 + 3m? + m) (m) + 6 (M*> + m) m - 3 m*

=3m2+m
2
Hm  mom
8 ﬂ_3m2+m_3 1
2 Mzz m2 m
1
Yﬁ\/B_Fﬁ
1
= —-3=—
Y, =B, -

When m — oo, 3, =0andf, =3
Hence, Poisson distribution is always positively skewed.
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Note. W, =W —pym=m-m=0,since
w, =W, -"Cop . m+"C, W, ,mi—

2.6. RECURRENCE FORMULA FOR POISSON DISTRIBUTION

Poisson distribution for r successes, we have

mre—m
PX=r)= =7~ r=0,1,23..... (1)
where m is the mean of successes.
mr+1e—m
Also PX=r+1)=—, r=0,1,2, ...... (2
( ) (r+1)! )
divide (2) by (1), we get
Pr+) m
P(r) r+1
m
Pr+1)= — P
= (r+1)= —— P@)

This is the recurrence formula for Poisson distribution.

2.7. MODE OF THE POISSON DISTRIBUTION

The value of r which gives the greatest probability is the mode of the Poisson distribution. Thus
r-1,-m ro—m r+l,-m
m-_e"” _me” m"e
(r=1! (! (r+D!

Where, m>r>m-1

i.e., m-1<r<m

Thus, if m is an integer then there are two modes m — 1 and m. If m is not an integer then the
mode is the integral value between m — 1 and m.

SOLVED EXAMPLES

Example 1: Show that for the Poisson distribution with mean m

_ du, N r e 'm’
Heag S0MM_ g+ m-ct , Where = Xgo (x —m) —
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Solution: Given that u, = Z (x-m)" e m_'

Differentiating with respect to m both sides, we get

oo

er \ r-1 e m” r 1
P - (x-m (x—-m)".— m x=1_ X g-m
am ;:0( ) ( ) = XZO (&7 . xm }

——rZ(x m)rle Z (x=m)_ m) emm -1 {x-m}

x=0

oo -m . x-1
_ _ r1 € m
rus 3 ey S

x=0 )

— 1 r+1e
=—rp,_, EZO(X m) ol
1
Sl L
du
= My = rm!"lr— mdn:

Example 2: Six coins are tossed 6400 times. Using the Poisson distribution, what is approxi-
mate probability of getting six heads x times.

Solution: Let p be the probability of getting all the six head in a throw of six coins. i.e.,

_1_1
P= %6 "6a
Here, n = 6400

. . 1
The mean of Poisson distribution = np = 6400 x o =100

. . . _ . _ e 1%100)*
The probability of getting all six heads x times according to Poisson distribution is —
x1

Example 3: Show that for a Poisson’s distribution y, v, c m = 1, when ¢ and m are the standard
deviation and mean respectively.

Solution: In Poisson distribution vy, = % and vy, = %
The standard deviation (©) = Jm

and the mean =m
Now, we have ylyzcm:ixix\/ﬁ xm =1

Jm m
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Example 4: If X is a Poisson variate such that P(X =2) = 9P (X =4) + 90 P (X = 6). Find the
mean and variance of X.
Solution: The Poisson distribution is

r,—m
P(x=r=1°

Given that P(X=2)=9P(X=4)+90P (X = 6)

6,—m

2,.-m 4,-m m°e
= me _gMEe g

21 41 6!

m? 3m* m°
= —_— —t —

2 8 8
= 4=3m?+m* = m*+3m?-4=0
= M-1)M?*+4)=0 = (M-1)=0 = m=1 (Taking only real values)

Hence, the mean and variance of X are each equal to 1.

Example 5: In a Poisson distribution P(x) for x = 0 is 0.1. Find the mean given that
log, 10 = 2.3026.

Solution: The Poisson distribution is

XA—M
P(X)=me, , Xx=0,1,2,...,m>0 (1)
X!

Given that for x=0 P(x) =0.1
Then by (1), we have

0,—-m
01= m;. = eM=01 = e"=10
= m = log, 10 = 2.3026.

Example 6: If 2% electric bulbs manufactured by a company be defective, find the probability of
(i) O (i) 1 (iii) 2 (iv) 3 defectives in a lot of 100 bulbs.
Solution: Let p be the probability of electric bulbs manufactured by a company be defective.

o .2
S P= 100"
Given that, n =100
2
we have, np =100 X -=~ =2 =m (mean)

100
Let X be the number of electric bulbs manufactured by a company be defective.
me™ 27 e?

Then, PX=r)= pr pr

, r=0,1,23, ..
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2% 1 1
()PX=0)= “o === =0135
0! e (2718)
N 2e? 2 2
i) P(X = 1) = == =—— =2x(0.135) = 0.2706
(i) PX=1) 11 e? (2.718)? (0139
2%e? 2 2
(iii) P (X =2) = === > =2 x(0.135) = 0.2706
21 &2 (2.718)
(W)PM—SY-féq—ijl—ix——i———Q3QX(0B$—018
31 3 ¢ 3 (2.718)2 ' ' o

Example 7: A Poisson distribution has a double mode at x = 4 and x = 5. Find the probability
that x will have either of these values P(x = 4) = P(x = 5).
Solution: The Poisson distribution is

r .—m

m
PXx=r)= 2% =012 ..
rli

Given that P(x=4)=P (x=5)

mie™ mie™
= = = m=5
41 51
We know that, e =0.006738
4
. 7
Then P(x=4)= —5 X O4O|06 38

The required probability is

P(x=4)+P(x=5)=2P(x =4)
4
.0067
Z o x 5 ><O4O'06 38 - 0.35.

Hence, it is easy to show that P(4) > P(3) and also greater than P(6).
Example8: Fita Poisson’s distribution to the following data and calculate theoretical frequencies:

Deaths 0 1 2 3 4

Frequencies 122 60 15 2 1

Solution: The Poisson distribution is

r.—m
Pa:n:mﬁ , r=0,1,23, .. (D)
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2f(x) 0x122+1x60+2x15+3x2+4x1 100

Here, mean = 5t 122+160+16+2+1 =00 T0°7M
Now, e~ 05 =0.61 (approximately)
By equation (1), the number of r deaths is given by

(0.5) e 0°

ZZOOX—', r=0,1,2,3,4.
r!

for r=0,1, 2, 3, 4 the theoretical frequencies are 121, 61, 15, 2 and 0.

Example 9: If the variance of the Poisson distribution is 2, find the probabilities for r =1, 2, 3,4
from the reccurrence relation of the Poisson distribution. Also find P(r > 4).

Solution: We know that for Poisson’s distribution mean and variance both are equal.
i.e., mean = variance = 2.
Recurrence relation for Poisson distribution

P(r+1) = % P(r)

= P(r+1)= é P(r) (1)

—-mr

) o e’"m
The Poisson’s distribution is  P(r) = g r=01,23, ...

P(0) = e = e2 = 0.1353

By (1), ifr=0, P(1) = Oil P(0) = 2 x (0.1353) = 0.2706
_+_

. 2

ifr=1, P(2) = —— P(1) =0.2706
1+1

. 2 _ 2 _

ifr=2, P(3) = —— P(2) = = x(0.2706) = 0.1804
2+1 3

. 2 1

ifr=3, P(4)= —— P (3) = = x(0.1804) = 0.0902
3+1 3

Now, we have P(r>4)=P(4)+P(5)+P(6)+ .......
=1-[P(0) + P(1) + P(2) + P(3)]
=1-10.1353 + 0.2706 + 0.2706 + 0.1804]
=1-0.8569 = 0.1431.

Example 10: If the probability that an individual suffers a bad reaction from injection of a given
serum is 0.001. Determine the probability that out of 2000 individual (i) exactly 3, (ii) more than
2 individuals suffer from bad reaction, (iii) none.
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Solution: Let p be the probability that an individual suffers a bad reaction from injection of a

given serum

i.e., p = 0.001
Since, p is very small so we used Poisson’s distribution.
Given that n = 2000

we have np = 0.001 x 2000 = 2

Let X be the number of individuals who suffer from bad reaction.
me™ 27e?
r! r!
(i) The probability for exactly 3

Then PX=r)=

2% 4 4

T3l 37 3x(2.718)°

(i) The probability for more than 2 individuals suffer from bad reaction
P(X>2)=1-[P(X=0)+P (X=1)+P(X = 2)]

20e? 2te? 2%2¢7
=1- { + + ]

P(X =3) = =0.18

0! 1! 2!
1 2 2 5
:l—[2+2+2:|:1—5:1——2:0.323
e e° e e? (2.718)
(iii) The probability for none
0,-2
P(X:O):2e :e‘zzizz L > =0.135
0! e’ (2.718)

Example 11: In a certain factory turning Lexi blades, there is a small chance, 0.002 for any

blade to be defective. The blades are in packets of 10. Use Poisson distribution to calculate the approxi-
mate number of packet containing no defective, one defective and two defective blades respectively in a
consignment of 10,000 packets.

i.e.,

Solution: Let p be the probability that a blade is defective
p = 0.002
Since, p is very small so Poisson’s distribution is used. Here, n = 10 then
m =np = 10 x 0.002 = 0.02.
Let X denote the number of defective blades in a packet of 10. Then
m'e™™ (0.02) e*?

P(X=r)= - LE

1
e 002=1-(0.2) + > (0.02)% + ....... =0.9802 (nearly)
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Now the number of packets containing no defective blade is
= 10,000 x 0.9802 = 9802
The number of packets containing one defective blade
=10,000 x me~™
= 10,000 x (0.2) e~ 92
= 10,000 x (0.2) (.9802)
=196
The number of packets containing two defective blades
=10,000 x m? g™
= 10,000 x (0.2)% e~ 02
= 10,000 x (0.2)? (0.9802)
= 2 (nearly).
Example 12: If X and Y be independent Poisson variates, show that the conditional distribution
of X, given X +Y = n, is binomial.
Solution: Let X and Y be independent Poisson variates with parameters m; and m,.

We have, P {X =

r _P(X=r,X+Y=n)
X+Y=n

P(X +Y=n)
P(X=r)xP(Y=n-r)
P(X+Y=n)

mlr e—ml " mzn—r e—m2
_ o r! (h-n! _ nt m" m,"
(m, +m,)" e~ (T +m) rtn-r)t  (m +m,)"

n!

r

m m
L _and q= 2__ then
m, +m, m, +m,

="C,p"q""" (0<r<n)
Hence, the conditional distribution of X, given X +Y, is binomial.

If X be a Poisson variate such that 3P(X = 3) = 4P(X = 4), find P (X = 7).
Criticise the following statement:
The mean of a Poisson distribution is 7, while the standard deviation is 6.
3. The probability that a man aged 50 years will die within a year is 0.01125. What is the probability that of
12 such men at least 11 will reach their fifty first birthday ?

Letting p=
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4.

10.

11.

12.

13.

14.

A car-hire-firm has two cars, which if hires, out day by day. The number of demands for a car on each
day is distributed as Poisson distribution with mean 1.5. Calculate the proportion of days on which
neither car is used and the proportion of days on which some demand is refused {e-1° = 0.2231}.

If m is the parameter of a Poisson variate, show that the probabilities that the value of the variate taken
at random is even or odd are e~ ™ cosh m and e™ sinh m.

Letters were received in an office on each of 100 days. Assuming the following data to form a random
sample from a Poisson’s distribution. Fit the distribution and calculate the expected frequencies taking
e 4=0.183.

Number of letters 0 1 2 3 4 5 6 7 8 9 10
Frequencies 1 4 15 22 21 20 8 6 2 0 1

The frequency of accidents per shift in a factory is given in the following table. Calculate the mean
number of accidents per shift. Find the corresponding Poisson distribution and compare with actual
observations.

Accidents per shift 0 1 2 3 4 Total
Frequencies 192 100 24 3 1 320

A manufacturer of coffer pins knows that 5 per cent of his product is defective. If he sells coffer pins in
boxes of 100 and guarantees that not more than 4 pins will be defective, what is the approximate prob-
ability that a box will fail to meet the guaranteed quality ? (e=® = 0.0067).

A telephone switch board handles 600 calls on the average during a rush hour. The board can make a
maximum of 20 connections per minute. Use Poisson distribution to estimate the probability that the
board will be over during any given minute [e™° = 0.00004539].

Suppose that a book of 600 pages contains 40 printing mistakes. Assume that these errors are randomly
distributed throughout the book and x, the number of errors per page has a Poisson distribution. What is
the probability that 10 pages selected at random will be free of errors ?

Find the probability that at most defective fuses will be found in a box of 200 fuses, if experience show
that 2 per cent of such fuses are defective.

An insurance company found that only 0.01% of the population is involved in a certain type of accident
each year. If its 1000 policy holders were randomly selected from the population. What is the probability
that not more than two of its clients are involved in such an accident next year ? {e0! = 0.9048}.

Red blood cell deficiency may be determined by examining a specimen of the blood under a microscope.
Suppose a certain small fixed volume contains on the average 20 red cells for normal persons. Using
Poisson distribution, obtain the probability that a specimen from a normal person will contain less than
15 red cells.

Show how the Poisson distribution

r o,—m

m e

rt

(r=0,1,23 ....)

can be regarded as the limiting case of the binomial distribution. Hence or otherwise obtain the mean and
the variance of the Poisson distribution, assuming the variance of the binomial distribution.
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ANSWERS
7 -3
1. e 2. Wrong , because ¢ = Jm 3. 0.9916.
7!
. 0.1912625.
6. 1.83,7.32,14.64,9.22, 19.52, 15.62, 10.41, 5.95, 2.975, 1.322 and 5.99.
20 o
7. 104,97, 24,4, 1. 8. 0.56200. 8. 1-0.00004539 ), —-.
r=0 -
10. 0.51. 11. 0.785. 12. 0.9998.
14 20 r
ER YA CUMS
r!
r=0

2.8. NORMAL DISTRIBUTION

Normal distribution was discovered by a English mathematician De-Moivre in 1733. Normal distribu-
tion is a continuous probability distribution. Normal distribution has got wide application in the theory
of statistics. The normal distribution also known as error function. Normal distribution as the limiting
case of binomial distribution (g + p)" as n — oo, neither p nor q being very small, it is given by

N(m, 0) = f(x) = y(x) = —~ ¢ 2 <x< . 0 (1)
m, o) =1(X) =y(X) = —— , —o° X < oo, — o0 m oo, 0>
y o0+/2T

where  m = Arithmetic mean (w)
o = Standard deviation are two parameters of the continuous distribution. Equation (1) is also
called the normal curve. It is also denoted by X ~ N (m, 6?).

2.9. CONSTANTS OF NORMAL DISTRIBUTION

About the origin, we have

i l 2 2

W= J._m o Ge‘X 120 M dx (1)
1 o x" e—><2/2c52

= dx
2T -[—oo c
X dx 1 ¢ 2
Put 2ot =5 Z=dt= —— o"t" et 2 gt
o c \N2T J—w
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N e 1o
= o J. t"e 2 dt

Jon
=0, whennisodd {property of definite integrals}
Hence, all odd moment about the origin is vanish.
i.e., U=y =ws = =0
If n is even, by equation (1), we have

2 l°° _y2 2
, —JX”eXlzGdX

Hn = N2 o do
2 X
Puttingg —— =u = ——dx=du
g 20° o2
- Lr’ (2us?)"™ D2 ¢ 62 dy
2m o Jo
— c"2"? r’ u72 gu gy
T
c"2"'? (n+lj o
— T —= d — n-1 ,—x
In > [ I'n J.O X e dx}
Whenn =2
2 n2/2 2
o2 o°.2 1
)= r3/2 = =n =¢?
S = Jn 2
Whenn =4
2 »2 4
o2 5 c .4 31
' = = = Z.ZJn =36*
M= 27 T 22
Whenn=20

’

0 50
2 1 1.1
MOZG—F—:—w/n =1

Vo2 n

Here mean is at the origin itself, these are also undashed
u, e, W, =y, Wy = g etc

M2
Now, =2 =0; p=4=2 23
1 MZS 2 Mzz 04
Y, = /[31 =0; 'YZ:O

Hence, the normal curve has zero kurtosis.
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2.10. MOMENT ABOUT THE MEAN M

m L
W, 1:'[ (X_m)2n+1 e 2 o dx
" —o0 V2m o
_z[x—mf
_ 02”+1J'°° (x—mj“”e 2\ o ix
Vem J-- o o
. X—m
Putting T:t = %:dt
o
1
_ 0_2n+1 _ J.oo t2n+1 e_Etzdt
2T —eo

=0, since it is integral of an odd function of t.

1(x-m\?
S
Now we have uZH:J' (x-m)2" ——= ¢ 2\ o Jgy
- Vro

Putting =t > — =dt
o o
2n 2
_ O < on. ot
= t<"e 2 dt
V2n -|.-°°
Putting t? = 2T, t = /2T
2n
o oo daT
- 2T e T —— = 2tdt =2dT
2T -[—w 27 V2T
or dt= dT
NG
2[’!—1 2n
—‘/_G J T"e ' dT
- -
2[’! 2n 0o
= e ar
T

2" o*" 1
= Uy, = F(n + E) (1)
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Putting n=n-1in (1), we get

2n—1 0_2n—2 1
Mz”‘ZZTF(n_Ej ..(2)
Now equation (1) divide by (2), we get

202 F(n + ]
Man _ 2 [+ In=(n-1)T(n-1)]
MZn—Z F(n — 1)
2
=202 (n - 1)
2

= Mon =07 (2N = 1) Uy, _,

which is the recurrence relation for the moments of normal distribution.

2.11. AREA UNDER THE NORMAL CURVE

The probability density function of the normal distribution is given by

— o0 <X < oo,

—1(x-m)?
1 S5
f(x)=——e?\ ©
) J2n o

If X is a normal random variable with mean m and A2

standard deviation o, then the random variable z = ( X m)

o}
has the normal distribution with mean 0 and the standard
deviation 1. The random variable z is called the standard
normal random variable.

Nv

The probability density function of standard nor- o
mal random variable z is given by

1 iz
fz) = —e 2 , —o<z<

J2n

Note 1. The graph of f(z) is famous ‘bell shaped’ curve.
2. If f(z) is the probability density function for the normal distribution, then

1
Pe<2< )= [T 1@z = [T e d
4
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2.12. PROPERTIES OF THE NORMAL DISTRIBUTION AND NORMAL CURVE

The normal probability curve is

1)
2
3)

(4)
()

(6)

()
®)

)

(10)

f(x) = \/% cse_;[x;mj

—oco< X< oo

»

! ! ! >
™ M-30m-26 m—cX=mm+om+26 m+3c

|
w
|
N
|
=
o
=
N
w
N v

Mean, Meadian and Mode of the Normal distribution coincide.
Area under the normal curve is unity.
The probability of the continuous random variable X (X, < X < X,) is denoted by

NCEEEN S
P(xlsxsxz)_'[Xl ot ( ) dx
Where m is the mean and o is standard deviation.
The curve is bell-shaped and symmetry about the line x = m i.e., y-axis.
As x increases then f(x) decreases rapidly, the maximum probability at point x = w is given by

f(x) or [P(X)]ax = ﬁ

Since, f(x) is probability density function, so it never be negative, i.e., no portion of the curve
lies below the x-axis.

x-axis is an asymptote of the curve.

The point of inflexion of the normal curve are x = £ 6 when the origin is taken at the mean.

Mean deviation about mean = \/E c = % o (approximate).
T

Area under the normal curve is distributed as following 68.27% area lies betweenm—-ctom+ o
or(X-otox +o0) ie, between -1<z<1

94.45% area lies between m — 26 to m + 20, i.e., between—-2<z<2

99.73% area lies between m — 3c to m + 30, i.e., between-3<z<3

50% area lies in between —0.745<7z<0.745

99% area lies in between —2.58 <z <2.58.
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SOLVED EXAMPLES

4
Example 1: Prove that for normal distribution the mean deviation from the mean equal to 5 of

standard deviation nearly.

Solution: Let m and o be the mean and standard deviation of the normal distribution respec-
tively.

By definition of mean deviation
= r’ |x—m| f(x) dx

1
1 “ -7 . X—m dx
= J clzle 2 odz Putting z = = dz=?

1 1
Q Q
3 S
5
| ~ S
('DI (.DI
N‘NN N
| — | N
o 8
o
N

c\/E.l =0.7979906=080c
T

8 4
=10°"35C
Example 2: If X is a normal variate with mean12 and standard deviation 4. Find
(i) P(X = 20) (i) P(X <20) (iii) P (0 <X <12).
Solution: Giventhatm=12 and oc=4
X-m X-12
c - 4
20-12
== -
P(X>20)=P (Z>2)
=05-P(0< Z2<2)
=0.5-04772 [+ P(0<Z<2)+P(Z=2)=05]
=0.0228. (Using table)

Let Z=

(i) When X = 20, y 2
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(ii) P (X <20) = P(Z<2)
=05+P0<Z<2)
= 0.5+ 0.4772
= 0.9772

(iiii) When x:o,z:_le =_3andforX=12,2=0
POSX<12)=P(-3<Z<0)=P(0<Z<3) = 0.4987.

Example 3: Assume the mean height of soldiers to be 68.22 inches with a variance of
10.8 (inches)?. How many soldiers in a regiment of 1000 would you expect to be over 6 feet tall? Given
that the area under the standard normal curve between Z = 0 and Z = 0.35 is 0.1368; and between
Z=0andZ=1.15is 0.3746.

Solution: Given that mean (m) = 68.22, variance (¢?) = 10.8

and standard deviation (o) = /108

X-m
We have Z=
(o)
- . X —68.22
J10.8
- X —68.22
© 3.286
72 - 68.22
When X =72, Z= ——= =115
e 3.286
Now P(X 272)=P (Z>1.15) = 0.5-0.3749 = 0.1251

The probability of getting a soldier above six feet is 0.1251. Hence, the number of soldiers who
are over 6 feet tall.

=1000 x 0.1251 = 125.1
= 125 (nearly).

Example 4: Assuming the resistance of the resistors to be normally distributed with mean
100 ohms and standard deviation 2 ohms, what percentage of resistors will have resistance between
98 ohms to 102 ohms.

Solution: Given that mean (m) = 100 ohms
standard deviation (c) = 2 ohms
X —-m
(&}

We have Z=
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X -100
7=
= 2
102 -1
When X =102, Zz%zl
98 - 100
When X = 98, Z= 5 =_
Now, P(98<X<102)=P(-1<Z<1)
=2P(0<Z<1)

=2 x (0.3413) = 0.6826
Hence, 68.26% of resistors will have resistance between 98 ohms to 102 ohms.

Example 5: In a Normal distribution 31% items are under 45 and 8% are over 64. Find the
mean and standard deviation of the distribution.

Solution: Let m and o be the mean and standard
deviation respectively.

45—
If x =45, 7= oM
(o)
If x=64, z=%4-m 4% 0 4 =
(e}
The area between 0 and 45-m _ 0.50 -0.31=0.19
(e}
From the table, for the area 0.19,
Z =0.496
45-M __ 5496 (1)
(e}
64-m
Area betweenZ=0and Z = =05-0.08=0.42

From the table, for the area 0.42, Z = 1.405
64 —-m
(o)
Solving equation (1) and (2), we get
m=50 and o =10.

Example 6: The distribution of weekly wages for 500 workers in a factory is approximately
normal with the mean and students derivation of Rs. 75 and Rs. 15. Find the number of workers who
receive weekly wages:

(i) more than Rs. 90 (i) less than Rs. 45.

= 1.405 (2
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Solution: The normal distribution is

s
f(x) = e 2l 7/ _e<x<oo (1)
®) J2m o
Giventhat N=500, m=75 and o =15.
we have 7= X-m_X-75
c 15
. 90-75
(i) when X =90, Z= 15 =1 o % =45 m=75 x,=90 oo

c=15
P(X>90)=P(Z>1)=05-P(0<Z<1)

=0.5-0.3413 = 0.1587
The number of workers who receive weekly wages more than Rs. 90
=0.1587 x 500
=79.35 = 79 (nearly) workers.
_45-75 _
== -
P(X<45)=P(Z<-2)=05-P(-2<2<0)
=05-P(0<Z<2
=0.5-0.4772 =0.0228
Hence, the number of workers who receive weekly wages more than Rs. 45
=0.0228 x 500 = 11.4 i.e., 11 (nearly) workers.

Example 7: The life of army shoes is ‘normally’ distributed with mean 8 months and standard
deviation 2 months. If 5000 pairs are issued how many pair would be expected to need replacement

after12 months? {Given that P(Z>2)=0.0288and Z = ( X—m j}
(0}

(if) When X = 45, z

-2

Solution: Given that

Mean (m) = 8,
Standard deviation (o)=2
Number of pairs of shoes = 5000
Total month (x) =12

We have z=X-m_12-8_,
c 2
Area (Z>2) = 0.0228

The number of pairs whose life is more than 12 months (Z > 2)
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= 5000 x 0.0228 = 114
Replacement after 12 months
= 5000 — 114 = 4886 pairs of shoes.

Example 8: If the height of 300 students are normally distributed with mean 64.5 inches and
standard deviation 3.3 inches, how many students have height

(i) less than 5 feet

(ii) between 5 feet and 5 feet 9 inches.

Also, find the height below which 99% of the students lie.
Solution: Giventhat m =64.5, 6 =3.3and N = 300.

X-m_ X -645

We have Z=
o 3.3
(i) For X = 60 7= 80045 45 _ 145
or A =55, T 33 33

P(X<60)=P(Z<-1.36)=05-(-136<Z<0)
=05-(0<Z<1.36)
=05-0.4131 (Using table)
= 0.0869.
The number of student having height less than 5 feet
=0.0869 x 300
=26.07 i.e., 26 students.
(i) P(60 < X <69) =P(-1.36<Z<1.36)
= 2P (0 < Z < 1.36) = 2(0.4131) = 0.8262

The number of student having heights lie between 60 inches and 69 inches = 0.8262 x 300
=247.86 i.e., 248 students.

Now let P(X < X)) =0.99

= P(Z<Z,)=0.99
Xy—m
where z,=—
(&}
= P(0<Z<Z)=0.99-05=0.49

Using the table giving areas under normal curve Z, = 2.33

S = Xi=m _ X, - 645

! o 3.3
= X, =645 +3.3x2.33
= X, =72.18

Hence, 99% of the students have height below 72.18 inches.
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Example 9: A coin is tossed 12 times. Find the probability, both exactly and by fitting a normal
distribution of getting

(i) 4 heads, (i) atmost 4 heads.
Solution: The binomial distribution is
PX=rn="C p'q""", r=0,12 ... ..(1)
1 1 1 -
Here, p= 5 q=1- PR and n = 12. Let X denote the probability of head occurrence.

The probability of 4 heads

1) (1)® (12)! 11x5x%9
P(X=4)=12, (E) (Ej T aixgina? T ge - =012

Now, P(X<4)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)

o B = GG = T =T

- 2% [lZCO + lZCl + 12C2 + lZC3 + 12c4]

2% [1+ 12 + 66 + 220 + 495]

_ 194 _
aiT 0.194

The normal distribution is

N(m, 0?) = ! e ;[X;mjz

—0< X<, —co<M<oo, >0 -.(2)

1
Mean(m):np:12x§:6

. 1 1
Variance (6%) = npq = 12 x > X 5= 3

For n<4

X-m 45-6 -15
Z= = = =_05x /3 =—05x1.732=-0.866
o J3 J3
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The probability
P(-<Z<-0.866) =0.5-P (0<Z<0.866)
Probability number of heads < 4 = 0.5 — 0.3068
=0.1932
Probability of 4 heads by normal distribution

—o0 m=6 x=4 oo

=P(3.5<x<45)

_ P(M <z @j
IR NRVE] V3
=P (- 1.231 < Z < - 0.7385)
=P(0<Z<1.231) - P(0 < Z<0.7385)
=0.3907 - 0.2700 = 0.120.

Example 10: Fit a normal curve to the following data:

Length of the 8.60 8.59 8.58 8.57 8.56 8.55 | 8.54 8.53 8.52
line (in Cms.)
Frequencies 2 3 4 9 10 8 4 1 1
Solution: Here a = 8.56
X f d=(x-a) fd fd?
8.60 2 0.04 0.08 0.0032
8.59 3 0.03 0.09 0.0027
8.58 4 0.02 0.08 0.0016
8.57 9 0.01 0.09 0.0009
8.56 10 0 0 0
8.55 8 -0.01 -0.08 0.0008
8.54 4 -0.02 -0.08 0.0016
8.53 1 -0.03 -0.03 0.0009
8.52 1 -0.04 —-0.04 0.0016
Xf=42 ¥ fd=0.11 > fd? = 0.0133
fd 011

M —a+ — =856 + — =8.56262
ean(m)=a >F 8.56 I 8.5626

2 2 2
Standard deviation (o) = 2fd” _(=fd = 00133 (011 =0.0176.
>f >f 42 42
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The equation of the normal curve fitted to the given data is

— 0 <X< oo

1/ x—-m
1
P(x) = e 2 °
M= fno
where m = 8.56262, o =0.0176.

Example 11: For — .o < x < oo, and probability density

L)
f(x) = e 2\ ©
N
Show that the total probability is 1.

Solution: The total probability

1(x-m)?
L
= f(x)dx = e 2L 9 ) dx
JLrea=p ]
X—m
Let =t
V2o
= dx=J2odt
(e} 2 had _tz
e dt
Towol-
:%r e ¥ dt
e
_ 2 * _t2 —
‘ﬁjoe dt {Asf()=f()}
Now let ?=y or t=.y
= 2tdt=dy
2 (= _, dy
=_—_ | eV =L
\/EJ-O 2,y
1 =~ _ _
Ly
o 1 By G integral
:iJ- 2 1e‘ydy ); amma integ
Jr o J-e‘X x"tdx=In
0
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1. Let X be a normal variate with mean 30 and standard deviation 5, find the probabilities that
(i) 26 < X < 40, (ii) X =45 and (iii) | X-=30|>5

2. Students of a class were given anaptitute test. Their marks were found to be normally distributed with
mean 60 and standard deviation 5. What percentage of students scored more than 60 marks?

3. 1000 light bulbs with a mean life of 120 days are installed in a new factory, their length of life is
normally distributed with standard deviation 20 days. How many bulbs will expire in less than 90 days?

4. On afinal examination in mathematics, the mean was 72, and the standard deviation was 15. Determine
the standard scores of students receiving grades.
(i) 60 (i) 72 (iii) 93.

5. In a male population of 1000, the mean height is 68.16 inches and standard deviation is 3.2 inches. How
many men may be more than 6 feet (72 inches)?

6. For a certain normal distribution the first moment about 10 is 40 and the fourth moment about 50 is 48.
What is the arithmetic mean and variance of the normal distribution.

7. In a normal distribution whose mean is 2 and standard deviation 3, find a value of the variate such that
the probability of the interval from the mean to the value is 0.4115. Find another value such that the
probability for the interval from x = 3.5 to that value is 0.2307.

8. Arandom variable x is normally distributed with m = 12 and standard deviation 2. Find P(9.6 < x < 13.8)
given that for % =0.9, A=0.3159 and for ~ =1.2, A= 0.3849.
o

9. There are six hundred students in P.G. class and the probability for any student to need a particular book
on statistics from the University Library on one day is 0.05. How many copies of the book should be
kept in the University Library, so that the probability may be greater than 0.90 that none of the student
needing a copy from the Library has to come back disappointed.

10. If shells are classified as A, B, C according as the length breadth index as under 75, between 75 and 80,
or over 80, find approximately (assuming that distribution is normal) the mean and standard deviation of
a series in which A are 58%, B are 38%, and C are 4% being given that

2

1
==
2 dx then f(0.20)=0.08 and f(1.75) = 0.46.

1 t
f(t)—ﬁ'[oe

11. Prove that for the normal distribution, the quartile deviation, the mean deviation and the standard devia-
tion are approximately in the ratio 10 : 12 : 15.

ANSWERS
1. (i) 0.7653 (ii) 0.0014 (iii) 0.3174. 2. 50%. 3. 67.
(i) - 0.8 (ii) 0 (iii) 1.4. 5. 115. 6. 6.05, 6.26.

7. 0.7008. 8. 37. 9. 743, 3.23.



CHAPTER 3

Correlation and Regression

Modern age is an age of planning. Economic planning means direction and control of economic resources
both current and potential to meet the social and economic objectives of the state. In absence of statistics
planning cannot be imagined. All economic plans of a country are based on statistical data of economic
activity of that country. Statistics is the branch of scientific method which deals with data obtained by
counting or measuring the properties of population of natural phenomena.

Statistics is a branch of science which deals with the collection of data. Classification and tabulation
of numerical facts as the basis for explanation, description and comparison of phenomena. Modern
statistics takes into consideration however, biological, astronomical and physical as well as social
phenomena. Statistics methods are used in every department of human activity. Psychology, education,
public health, agriculture, business, economics and administration.

Statistics methods are also useful to stock-exchange brokers, bankers, speculators and public
utility. Concerns like water works, electric supply companies, railways etc. Statistics analysis of railway
working is very important in their expansion programmes. The records on the basis of demand in
several parts of the year, railways authorities make adequate provision for services by increasing the
length of trains providing special trains such as Jammu, Banglore, Goa, Mumbai etc. in summer.
Therefore, in every business (big or small) used of statistical data in any form.

3.1. FREQUENCY DISTRIBUTION

Frequency distribution is a way to represent the large amount of data according to quantitative charac-
teristics frequency distribution helps the management of the bank for announcing new saving policies
for the benefit to its customers.

3.2. BIVARIATE FREQUENCY DISTRIBUTION

The study of relationship between two or more variables is one of the most important problems in life.
In a bivariate distribution, we find the relationship between the two variables. For example, if we find
the heights and weights of 10™ class of student, we shall get a bivariate distribution. Here, one variable
is related to height and other variable is related to weight.

248
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Let the pairs (X, ¥;), (X5, Yo)s covee. » (X, y,,) of two variable x and y with frequencies f, f,, ...... . .

n
Z f, = N, then it define a frequency distribution which is called a bivariate frequency distribution.
i

3.3. CORRELATION

The relationship between two variables such that a change in one is accompanied by change in the other
in such a way that an increase in one is accompanied by an increase or decrease in the other, is called a
correlation. For example, the number of policemen and the number of crimes, the number of trains and
the number of passengers.

If there is no relationship indicated between two variables then they are said to uncorrelated or
statistically independent. For example, marks in statistics of a child and weights of her mother.

It is not necessary that one unit of change in one variable is followed by one unit of change in
other variable. It is also not essential that the ratio should be the same in all cases.

3.4. POSITIVE CORRELATION

If an increase or decrease in the values of one variable corresponds to an increase or decrease in other
variable respectively, then the correlation is said to be positive correlation. For example, age of husbands
and wives are known to have a positive correlation.

If an increase or decrease in the values of one variable is always followed by a corresponding
and proportional increase or decrease in other variable, then the correlation is said to be perfect positive
correlation.

3.5. NEGATIVE CORRELATION

If an increase or decrease in the values of one variable corresponds to a decrease or increase in other
variable respectively, then the correlation is said to be negative correlation. For example, the number of
fourth class workers in a college and the number of duty room in a college.

If an increase or decrease in the values of one variable is always followed by a corresponding
and proportional decrease or increase in other variable, then the correlation is said to be perfect positive
correlation.

3.6. LINEAR OR NON-LINEAR CORRELATION

When the variations in the values of two variables are in a constant ratio, then correlation is said to be
linear correlation. This type of relationship represented by a linear equation of the form Y = aX + b.
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Otherwise, if the ratio of variation in the values of two variables are not constant, then correlation
is said to be non-linear correlation. This type of relationship represented by y = a + bx + cx? etc.
Note: If the change in one variable has a very little effect in the other variable then there is no correlation.

3.7. COEFFICIENT OF CORRELATION

The coefficient of correlation measures the degree of relationship between two or more variable. The
coefficient of correlation varies between -1 to +1. If the coefficient of correlation reaches unity then it
is perfect. The +1 indicates perfect positive correlation and —1 indicates perfect negative correlation.
Whenever the value of coefficient of correlation is zero then there is no correlation.

3.8. MEASUREMENT OF CORRELATION

Correlation in two or more variables can be studied by the following methods :
(i) Karl Pearson’s coefficients of correlation.
(if) Rank correlation or Spearman’s coefficient of rank correlation.
(iii) Scatter diagram or dot diagram.
(iv) Correlation table.
(v) Graphic method.
(vi) Concurrent deviations method.

In this chapter, we shall discuss Karl Pearson’s coefficient of correlation, Rank correlation and
Scatter diagram method only.

3.9. KARL PEARSON’S COEFFICIENTS OF CORRELATION

Karl Pearson (1867-1936), a great statistician and biologist, developed a formula for the calculation of
coefficient of correlation. The correlation coefficient between two variables X and Y denoted by 7,
defined as

Cov(X,Y
yox, vy = SN )
Gx Oy
If(x,y);1=1,23, ... n be the set of n pairs of values of variable X and Y then

Cov (X, Y) =E[(X-X)(Y-Y)]

=2 (6 -X) (5 -1
r.]i=1
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where,

=1

6% = E[X - E(X)I* = E[X - X]?
n
-1 2 (X = X)?
n i=1
o4 =E[Y —E(Y)F = E[Y = Y)?
1v -
== (i -Y)
n i=1
Putting these values of Cov (X, Y'), o, and &, in (1), we get

ENCERSIE
(X Y) = =

n — @
{12(&—%)2] {12(%—?)2]
N nio

Y (= X)(y; V)
Y(XY)= =

n 1/2 n 1/2 (3)
{2 (% — xf] {2 (v —Y)2]
i=1 i=1

where X and Y are the means of X and Y respectively.
Note. 1. Cov (X, Y) = o,y (also write)

2. Karl Pearson’s coefficient of correlation is also called product moment correlation coefficient, because
Cov (X,Y)=E[{X-EX)}{Y-E(Y)}
3. Simplifying equation (2), we have

1x - - 1% o oo
S =X = V) = D fayi =Y =Xy + XV}
i=1 i=1
lzn: 1 1

n& n n

n

=1
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1x 7y 1 2 g2
— Xi—X) == Xi =X
and ”;:1(' ) nE i

1% o 1 -
SONVEMEEED NG
i=1

Now by (2), we get

1% —
*2 XiYi = XY
nic

(2 e -xf s -]

Theorem 1: Prove that the coefficient of correlation | y|<1lie,-1<y<1.

Y(X Y)=

Proof: We know that by schwartz inequality, if a,, b, i=1, 2, 3, ...... , N are real quantities then
we have
2
n n n
2 ab | < 2 a? 2 b? (1)
i=1 i=1 i=1
the sign of equality is satisfied iff H_%H_ & _ el
b, b, b n

Puta,=X-Xandb,=Y-V

where, X and Y are two variables and X and Y are their means. By (1), we have

2
{2 (x-i)(v—?)] < (X=X (Y -Y)?

i=1 i=1 i=1

2
{2 (x—X)(Y—Y)]
i=1

or m - <1
D (X=X D (Y -Y)
i=1 i=1
or X Y)<1
= lvl<1
= -1<y<1l

Note: 1. If y = -1, then perfect negative correlation.
2. If y=1, then perfect positive correlation.
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Theorem 2: If X and Y are independent variable, then they are uncorrelated but converse is not

true.
Proof: We know that the covariance between two variable X and Y is
Cov (X, Y) = E[{X-E(X)}{Y - E(Y)}]
= E[(X = X) (Y =Y)]
= E(XY) - E(X) . E(Y)
Since, it is given X and Y are independent variables then
E(XY) = E(X) E(Y)
. Cov (XY)=0
The coefficient of correlation
Y (X, Y) — Cov. (XY) -0

JJvariance X . ,/variance Y
Hence, two variables X and Y are uncorrelated.
Now let two random variables X and Y with probability density function

l —2<x<2

f(x)=14" and Y = X?

0, otherwise

Now. E(X)—jzxf(x)dx—ljzxdx—i «] “lu_a=0
’ ) T4l 42,8
2 2
and E(XY):E(X3):J x3 f(x)dx=£JA x? dx
-2 4J-2

1[x*T 1

==|—| =-[16-16]=0

4 4], 16

Cov (XY) = E(XY) - E(X) .E(Y)=0

i.e., the correlation coefficient is zero but the variables are dependent, by the relation Y = X2.
Theorem 3: The correlation coefficient is independent of change of origin and scale.
Proof: The correlation coefficient, between two variables X and Y is

Cov (X,Y)

X, Y)=
Y(XY) .

()
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Let X=a+hU and Y=b+KkV, wherea,b, h, kare constants; n> 0, k > 0.
To show that YyX, Y)=y(U,V)
Since, X=za+hU = E(X)=a+hEU)
and Y=b+kV = E)=b+kE()
X —E(X)=h[U-E(U)]
and Y —E(Y) =Kk[V - E(V)].
Now, Cov (X, Y) = E[{X-E(X)}{Y - E(Y)}]
= E[M{U -E(U)} k{V - E(V)}]
= hk E[{U - E(U)} {V - E(V)}] = hk Cov (UV) ..(2)
oy = E{X - E(X)}?] = E["*{U - E(U)}?]
=h?E[U-E(U)]=h? 06 ..(3)
and o2 = E[{Y - E(Y)}’] = E[k¥{V - E(V)}4]

= k2 E[V - E(V)] = k?c? (4
Using equation (1), (2), (3) and (4), we have

Cov(X,Y) _hkCov(U,V) Cov(U,V)
6y 06,  hoykoy GyOy

Y(X Y)= =y(U, V).

3.10. PROBABLE ERROR

The coefficient of correlation also has a probable error. It is that amount when added to and subtracted
from the coefficient of correlation would give such limits within which we can reasonably expect the
values of coefficient of correlation to vary. The formula for probable error is
1- yz
P.E. = (0.6745) x .
( ) T

The following rules are observed for probable error:

(i) If y<0.30, then it is insignificant.
(i) If y < P.E, then it is not at all significant.
(iii) 1f 0.4 < y< 0.6, then correlation cofficient is normal.
(iv) If y> 0.9, then it is highly significant.
(v) If y> 6 P.E, then it is significant i.e., correlation is certain.
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3.11. CORRELATION COEFFICIENT FOR A BIVARIATE FREQUENCY
DISTRIBUTION

For a bivariate frequency distribution

sty _ UV

Hzf u? _(=tuy } {Ef V2 - (A HM
>f >f

where, f is the frequency of a particular rectangle in the correlation table, and

=2 y=Y=Y
h k

’Y:

SOLVED EXAMPLES

Example 1: Calculate the coefficient of correlation between X and Y using the following data.

X -10 -5 0 5 10
Y 5 9 7 11 13
Solution:
X Y X2 Y2 XY
-10 100 25 -50
-5 25 81 —45
0 0 49 0
5 11 25 121 55
10 13 100 169 130
X=0 SY =45 ¥X2 =250 SY 2 =445 =XY =90
We have, X==3X=0,
— 1
Y==23XY= 5 x45=9
The correlation coefficient
1 XY - XY
YY) = e e—————
\/{ X2 — XZH Y2 —YZ}
n n
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E><90—O><9
5

\/{é x 250 — (0)2} {é X 445 — (9)2}

18 —E—og
J50x8 20

Example 2: Calculate the correlation coefficient for the following heights (in inches) of fathers
(X) and their sons (Y).

X 65 66 67 67 68 69 70 72
Y 67 68 65 68 72 72 69 71
Solution:
X Y X2 Y2 XY
65 67 4225 4489 4355
66 68 4356 4624 4488
67 65 4489 4225 4355
67 68 4489 4624 4556
68 72 4624 5184 4896
69 72 4761 5184 4968
70 69 4900 4761 4830
72 71 5184 5041 5112
>X =544 >Y =552 ¥X2=137028 >Y?2=38132 XY = 37560
We have )7=£ZX=%:68
n 8
Y = 1 TY = 552 69
n 8
The correlation coefficient
1 XY - XY

0= \/{i zxzn— Xz}{i xy? —\?2}

%x 37560 — 68 x 69

_ 4695 - 4692

\/{; x 37028 - (68)2} {; x 38132 - (69)2} - J45x55

= 0.603.
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Example 3: Calculate the coefficient of correlation between X and Y using the following data.

X 1 2 3 4 5 6 7 8 9
Y 9 8 10 12 11 13 14 16 15
Solution: Let us assume mean for X be 5 and for Y be 12
X Y U=Xx-X V=Y-Y u2 V2 uv
1 -4 -3 16 9 12
2 -3 -4 9 16 12
3 10 -2 -2 4 4 4
4 12 -1 0 1 0 0
5 11 0 -1 0 1 0
6 13 1 1 1 1 1
7 14 2 2 4 4 4
8 16 3 4 9 16 12
9 15 4 3 16 9 12
n=9 0 0 YU2=60 *V2 = 60 UV =57
U=12U=o, v=1sv-o
n n
Cov (U, V) = lzuv —LT\7=3><57—0=2=6.33
n 9 9
o, “Llyu2_g2-tieo-0-60_ 6.66
n 9 9
— 1
G, leveov2oli60-0-89 _ge6
n 9 9
The correlation coefficient
YU, V) = Cov (U, V) _ 6.33 _ 633 _ 0.950.
Gy Oy ,/6.66x 6.66 6.66
Example 4: Calculate the coefficient of correlation from the following data.
X 1 3 5 7 8 10

Y 8 12 15 17 18 20
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Solution: Let us assume mean for X be 7 and for Y be 15

table.

X Y U=Xx-X V=Y-Y u? V2 uv
1 8 -6 -7 36 49 42
3 12 -4 -3 16 9 12
5 15 -2 0 4 0
7 17 0 2 0 4
8 18 1 3 1 9
10 20 3 5 9 25 15
n==6 -8 0 >U? = 66 V2 =96 UV =72
_ 1 -8 _ 1 1
U=—3U=—=-133, V=23XY==x0=0
n 6 n 6

O, :EZUZ—L72=3><66—(—1.33)2
v n 6

=11-1.77=9.23

GVZZ%ZVZ VL =%><96—(0)2 ~16

The correlation coefficient

Example 5: Calculate the value of the Pearson’s coefficient of correlation for the following

YU, V)=

Cov(U,V)

12 12

G, Oy J9.23x16 1215

Cov (U,V):%2UV—U\7=%><72—(—1.33)><0 =12

= 0.9876.

X

16-18

18-20

20-22

22-24

10-20
20-30
30-40
40-50
50-60
60-70

N W W N

e = S~ I =

N D W o1 W

P N B ODN

Solution: Let us assume X = 30-40,

And we have = w an

U

and

10

dVv

Y =18-20,

2

_ Y -(1820)
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Y | 16-18 | 18-20 | 20-22 | 22-24 f u fu fu? >fV | UZfV
X
10-20 2 1 1 4 -2 -8 16 -1 2
20-30 3 2 3 2 10 -1 -10 10 4 -4
30-40 3 4 5 6 18 0 0 0 14 0
40-50 2 2 3 4 11 1 11 11 9 9
50-60 1 2 2 5 2 10 20 6 12
60-70 1 2 1 4 3 12 36 4 12
f 10 11 16 15 52 Total 15 93 36 31
\Y -1 0 1 2 Total
fv -10 0 16 30 36
V2 10 0 16 60 86
>fu -5 3 8 9 15
VIfU 5 0 8 18 31
From the table,
>fV =36
>fV2 =86
fU=15
>fU? =93
>f=52
fUV = 31.
The Pearson coefficient of correlation is
stuy - STUXIV
v=
\/{quz —WHZWZ _EV)?
>f >f

31

_15><36

52

31x52-15x36

2
931"
52

1072

I

1072

2
86— 30~
52

/14644536 382638

j " J(93x 52— 225) (86 x 52  1296)




260 ADVANCED MATHEMATICS

3.12. RANK CORRELATION OR SPEARMAN'’S COEFFICIENT OF RANK
CORRELATION

Charles Edward Spearman (1906) a great psychologist and statistician, developed a formula for the
calculation of coefficient of correlation, which is called the ““Rank correlation coefficient or Spearman’s
correlation coefficient.

Let us suppose that sometimes the condition is such type which cannot be measured quantita-
tively, but can be ranked among themselves. For example, it is possible for a class-teacher to arrange his
students in ascending or descending order of intelligence, even though intelligence cannot be measured
quantitatively. There are so many attributes which are incapable of quantitative measurement such as
honesty, character, morality etc.

Suppose (x;, ¥;),1=1,2,3, ... , N be the ranks of n individuals of a group corresponding to two
characteristics A and B. Assuming that no two individuals are equal in either classification, each indi-
vidual takes the values 1, 2, 3, .... n.

Now, X =

2
Zx?—Y2:£(12+22+32+ ...... +n2)—[nT+l)
n

_(+D@n+) (+D)® _n’-1_,
- 6 4 12
Let di:Xi—in(Xi—X)—(Yi—V)

Traz=Llsq-%)-@y, -
n n

= 20(x, - X)? + 2, - V)2 =2 205 = X) - (5, -V}

= 65 +0,—2Cov(X,Y)

1 1 1{n*-1 n*-1 1
or COV(X,Y):E[G§+G§—HEdi2}:{ _tyd?

+ i
2| 12 12 n
1 - —
= —(n?-1)— — Zd,
12 ( ) 2n !
The correlation coefficient, between two variable X and Y is

1
Cov(X,Y) _ 12

GxOy \/nz—l\/nz—l
12 12

1
2_1)-—xd?
(" -1)-- Zdi

Y(X Y)=
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oz d?

or -
n(n? —1)

The method of measuring association between two sets of ranks is known as the rank correlation
method.

3.13. RANK CORRELATION COEFFICIENT FOR REPEATED RANKS

Suppose given the following data:

X 68 64 75 50 64 80 75 40 55 64

Y 62 58 68 45 81 60 68 48 50 70

Here, we see that in X-series, 75 occurs 2 times. 64 occurs 3 times and in Y-series, 68 occurs
2 times. If any two or more individuals have same value with respect to characteristics X and Y, then
Spearman’s rank formula is fails. For these common ranking the correct formula for vy, to *d? we add

w for each value repeated, where m is the number of times a value occurs. As in given above
example,
: 2% -1) 3(3*-1) 1 5
For the X-series = (12 )+ (12 ):§+2:_
For the Y-series = # = %
6 (Ed2 + g + ;)
e v=1- n(n? —1)

3.14. SCATTER DIAGRAM OR DOT DIAGRAM

In this method the values of two variables (series) are plotted on a graph, taking one on X-axis and the
other along Y-axis. There is one dot for one pair of series, there being as many dots on the graph as there
pairs. This collection of dots is called a scatter diagram or dot diagram.
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v A

Positive correlation

Y A

X v

Negative correlation

b 4

(0]

Perfect positive (+1)

x Vv

Perfect negative (-1)

o

Xv

X Vv

No correlation

Example 6: The marks secured by students in mathematics and statistics are given below:

Mathematics (X) 10 15 12 17 13 16 25 14 22
Statistics (Y) 30 42 45 46 33 34 40 35 39
Calculate the rank correlation coefficient.
Solution: Calculation of the coefficient of rank correlation
X Rank of X Y Rank of Y R,-R,=d (R, -R,)?=d?
Rl RZ
10 9 30 9 0
15 5 42 3 2 4
12 8 45 2 6 36
17 3 46 1 2 4
13 7 33 8 -1 1
16 4 34 7 -3 9
25 1 40 4 -3 9
14 6 35 6 0 0
22 2 39 5 -3 9
n=9 n=9 >d =10 >d2 =72
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The coefficient of rank correlation

_ 63d® _, 6x72 _, 432 _ .,
n(n® —1) 9(9% -1) 720
Example 7: Ten competitors in beauty contest are ranked by three judges in the following order:
First Judge by R, 1 6 5 10 3 2 4 9 7 8
Second Judge by R, 3 5 8 4 7 10 2 1 6 9
Third Judge by R, 6 4 9 8 1 2 3 10 5 7

Use the rank correlation method to discuss which pair of judges have the nearest approach to
common tastes in beauty.

Solution: Calculation of the coefficient of rank correlation between the ranking of first, second
and third Judges.

R, R, R, Ri-R,=d; | Ri-Ry=d, | R,-R;=4d, d12 dz2 d§
1 3 6 -2 -5 -3 4 25 9
6 5 4 1 2 1 1 4 1
5 8 9 -3 -4 -1 9 16 1
10 4 8 6 2 -4 36 4 16
3 7 1 -4 2 6 16 4 36
2 10 2 -8 0 8 64 0 64
4 2 3 2 1 -1 4 1 1
9 1 10 8 -1 -9 64 1 81
7 6 5 1 2 1 1 4 1
8 9 -1 1 2 1 1 4
2d, =0 ¥d,=0 $d,=0 [Ed? =200 |£d? =60 | £d; =214
Here, n = 10.
)y 2
YA =1- 20 g 6x20_, M0__ 7 _ 4y,
n(n? - 1) 10 x 99 33 33
2
yY(1,3)=1- Gfdz _1-0x60 47 4636
n(n® —1) 10 x 90 11 11
62d? 214 214 4
7(2,3)=1-—3= o Sxad 24 49 a7
n(n? -1) 10 x 90 165 165

Here, we see that the first and third Judges have the nearest approach to their tastes for beauty.
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Example 8: Calculate the coefficient of rank correlation from the following data.

X 48 33 40 9 16 16 65 24 16 57

Y 13 13 24 6 15 4 20 9 6 19

Solution: Calculation of the coefficient of rank correlation

X Rank of X Y Rank of Y R,-R,=d R,-R, =d?
Ry R,
48 3 13 55 -25 6.25
33 5 13 55 -05 0.25
40 4 24 1 3 9.00
9 10 6 8.5 1.5 2.25
16 8 15 4 4 16.00
16 8 4 10 -2 4.00
65 1 20 2 -1 1.00
24 6 9 7 -1 1.00
16 8 6 8.5 -05 0.25
57 2 19 3 -1 1.00
n=10 n=10 >d=0 >d? = 41.00

Here, we see that in X-series, 16 occurs 3 times and in Y-series 13 occurs 2 times and 6 occurs
2 times.

The total correlation for X-series is
_3(3%-1)
o T
The total correlation for Y-series is

2

2 2
_A2° -1 220-1) 11,
12 12 2 2
The coefficient of rank correlation
1 1

2 J— —
. G[Ed +2+2+2}_l 6[41+3]_1_@
L 10(102 — 1) - 990 990
= 1-0.2666 = 0.7334.

Example 9: Calculate the coefficient of rank correlation from the following data.

X 68 64 75 50 64 80 75 40 55 64

Y 62 58 68 45 81 60 68 48 50 74
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Solution: Calculation of the coefficient of rank correlation.

X Rank of X Y Rank of Y R,-R,=d R, -R, =d?
Rl RZ
68 4 62 5 -1 1
64 6 58 7 -1 1
75 25 68 3.5 -1 1
50 9 45 10 -1 1
64 6 81 1 5 25
80 1 60 6 -5 25
75 25 68 35 -1 1
40 10 48 9 1 1
55 8 50 8 0 0
64 6 74 2 4 16
n=10 n=10 >d=0 Td2=72

Here, we see that in X-series, 75 occurs 2 times, 64 occurs 3 times and in Y-series, 68 occurs

2 times.
The total correlation for X-series is

2 _ 2 _
_ 2(2 1)+3(3 l):£+2:§
12 12 2
The total correlation for Y-series is
_202%-1 1
12 2
The rank correlation coefficient
2,9, 1
G[Ed 5 _,_B[72+3] _, 450

'Y:]__

n(n® —1) 10 x 90
Example 10: If X; +Y; = n + 1, show that y = - 1.
Solution: Given X, +Y,=n+1
Let Xi=Y;= oIi
= d=2X,-(n+1)
>d? =43X? - 4(n + 1) =X+ n(n + 1)?
4 n(n+1)6(2n+1) _4(n+1). n(n2+1)

1
== n(n?-1
= (- 1)

+n(n+1)?

=0.5.
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=]1-— @ =
! n(n? —1)

Example 11: If X and Y are uncorrelated random variables, find the coefficient of correlation
between X + Y and X - Y.

Solution: LetU=X+Y and V=X-=-Y
Then correlation coefficient is

(U -T)V -V)
= (1)
NGy oy
Let U=X+Y, V=X-Y
and X=X=%X Y=Y =y

Wehave Z(U-U)(V-V)=ZHX+Y)-(X+Y)HX-Y)-(X-Y)}H

=Z[(x +y) (x-y)] = 2¥* - Iy’ = noy —no;

1 — 1 R
Also we have, o) = " YU -U)? = T(X+Y)= (X +Y)]

:%Z(x+y)2 :%[Zx2+2y2 +23xy]

= Gi + G?,

Here, we have Xxy = 0, becuase X and Y are not correlated
P 2 2 2
Similarly, oy =0y + 0y

from equation (1), we have

2 2
_ n (Gx _Gy)
Jn(e? +o2)Hn (o2 +02)}
o, -0,
Y= "> 2"
oy + 0,

Example 12: Establish the formula ¢%_, = 6% + 67 - 2yo0y, Where v is the correlation
coefficient between X and Y.
Solution: The correlation coefficient between X and Y is
Cov (X,Y)

YX,Y)= T"y (1)

We know that, o4 =E(X?) and Cov (X,Y)=E(X,Y)
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= 02 y =E(X —Y)? = E(X?) + E(Y2) = 2E(X, Y)
= 6% +06% —2Cov (X,Y)
= COV(X,Y):%[G§(+G$—G§(7Y]
from equation (1), we have

1
L%+ 0% ~0%y]

’Y:
640,
2 2 2
02 +062-6%_
N _ Ox tOy —Ox.y
2640y
= 6% _y =G + G4 —2Y5,Gy.

1. Calculate the coefficient of correlation between X and Y from the table of their values:

X 1 3 4 6 8 9 11 14

Y 1 2 4 4 5 7 8 9

2. Calculate the coefficient of correlation between the values of X and Y given below:

X 78 89 97 69 59 79 68 61

Y 125 137 156 112 107 136 123 108

3. Calculate the coefficient of correlation for the following ages of husband and wife:

Husband’s age 23 27 28 29 30 31 33 35 36 39

Wife’s age 18 22 23 24 25 26 28 29 30 32

4. Calculate of coefficient of correlation for X and Y from the following data:

X 45 55 56 58 60 65 68 70 75 80 85

Y 56 50 48 60 62 64 65 70 74 82 90
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5. From the following data calculate the coefficient of correlation and find its probable error:

Mean Annual birth
rate per 1000 35.3| 33.5| 31.4| 30.5| 29.3 | 28.2 | 26.3| 23.6 | 20.1 | 19.9 | 16.7
of population

Mean Annual death
rate per 1000 30.8| 19.4| 18.9| 18.7| 17.7 | 16.0 | 14.7 | 143 | 144 | 12.2 | 12.1
of population

6. Find the value of the Pearson’s coefficient of correlation for the following table:

Y 0-5 5-10 10-15 15-20 20-25
X
0-4 1 2 — — —
4-8 — 4 8 =
8-12 — — 3 4 —
12-16 — — — 2 1

7. Find Pearson’s coefficient of correlation from the following table :

Y 94.5 96.5 98.5 1005 | 1025 | 1045 | 106.5 | 1085 | 110.5
X
29.5 — — 4 & 4 1 —

59.5 1 8 18 6 9 2 3 1
89.5 7 & 16 16 4 4 1 — 1
119.5 5 9 10 9 2 — 1 2 —
149.5 3 5 1 — 1 — — —
179.5 4 2 1 — — — — —
209.5 4 4 - 1 — — — — —
239.5 1 1 — — — — — — —

8. Ten students got the following percentage of marks in mathematics and statistics:
S.No. of
students 1 2 3 4 5 6 7 8 9 10
Marks in

mathematic 78 36 98 25 75 82 90 62 65 39

Marks in
statistics 84 51 91 60 68 62 86 58 53 47

Find the coefficient of correlation and rank correlation of the above.
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9. The figures in the following table give the number of criminal convictions and the number unemployed
(in millions) for the years 1998-2007. Find the coefficient of rank correlation.

Years 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007
Number convicted

of crime 788 | 812 | 7.86 | 7.25 | 7.44 | 7.22 | 8.28 | 8.83 | 10.54| 9.46
Number of

unemployed 126 | 124 | 143 | 119 | 133 | 134 | 250 | 2.67 | 2.78 | 2.26

10. Calculate the coefficient of correlation from the following data by the method of rank differences:

X 81 78 73 73 69 68 62 58
Y 10 12 18 18 18 22 20 24
11. The following are the numbers of hours which 10 students studied for an examination and the scores they
obtained:
No. of hour
studied (X) 8 5 11 13 10 5 18 15 2 8
Scores (Y) 56 44 79 72 70 54 94 85 33 65
Calculate the rank correlation coefficient.
12. A sample of 12 fathers and their eldest sons gave the following data about their height in inches:
Father | 65 63 67 64 68 62 70 66 68 67 69 71
Son 68 66 68 65 69 66 68 65 71 67 68 70
Calculate the coefficient of rank correlation.
ANSWERS
0.977. 2. 0.957. 3. 0.95. 4.0.92. 5. 0.98, 0.0805.
. 0.6. 7. —0.49. 8. 0.78, 0.818. 9. 0.09. 10. — 0.928.
11. 0.975. 12. 0.722.

3.15. REGRESSION

The study of regression has a great importance in physical sciences, where the data are generally in
functional relationship. The word ‘Regression’ was used by sir Francis Galton (1822-1911) in a paper
entitled ‘Regression towards Mediocrity in Hereditary stature” in his studies connected with the relation
between the heights of fathers and heights of sons. Knowledge of regression analysis comes in handy in
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finding the probable value of one variable for a given value of the other, when the two variables are
known to be correlated. Thus, if we know that two series is relating to supply and price are correlated
we can find out what would be the effect on price, if the supply of commodity is increased or decreased
to a particular level.

3.16. LINE OF REGRESSION

Regression is the estimation for prediction of unknown values of one variable from known values of
another variable. The line which describes the average relationship between two variables is known as
line of regression. The equations describing the regression lines are called regression equations. A
regression equation is the algebric expression of regression line.

A regression line is one which shows that the best mean values of one variable corresponding to
mean values of the other variable. With two series x and y, if the two regression lines range themselves
along two straight lines, the correlation between x and y is linear. If the two straight lines of regression
coincide, correlation is perfect. If the two lines cut each other at right angles, correlation is zero.

Let Y = aX + b be the equation of the line of the best fit of x. Changing the origin to (X,Y),
where X is the mean of x-series and Y is the mean of y-series. Let x, y be the deviations from the

respective means X and Y .

X=X-X, y=Y-Y
Then, equation Y = aX + b is changed in the form
y=ax+h
where, Xx=X-X and y=Y-Y

Let (x., Y,) be any point. Then the difference between this point and the above line is
y,—aX,—b
Hence U, the sum of the squares of such distance is
U =X (y-ax - b)?, for all values of c.
Now for U is minimum, we choose a and b such that

a—U:—22x(y—ax—b):0
oa
ouU
and — =-2X(y-ax-b)=0
m (y )
= Xy — aXx? —bZx =0
and Yy—-axx-nb=0
Since, Xx =0 =Xy, we get
= b=0 and azz—xg

X
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Dy _Coviy) _ 9

2 2
X (o o,

= a=

where, v is the coefficient of correlation between x and y.
Hence, the equation to the line of regression

= Y—V:y&(x—)_() where, x =X - Xandy=Y -Y,

X

which is called the regression line of Y on X.
Similarly, the regression line of X on Y is

X-X=y2X(Y-Y)
Oy

Therefore, if the straight line is so chosen that the sum of squares of deviation parallel to the axis
of x is minimum, it is called the line of regression of x on y.

3.17. STANDARD ERROR OF ESTIMATE

The standard error measures the accuracy of estimate.

(v — 2
It is given by B = ,f%

where, y is the observed value, y, is the estimated value and n is the number of pairs of items.
Note.

- c . - .
1. The coefficient y — and y 9% are called the regression coefficient of y on x, and of x on y respectively.
Oy Gy

2. If the two lines of regression coincide, the correlation between the variables is perfect i.e.,

,Or 1%
GX YGX
= v=1
= y=+1

3. If the variables x and y are independent i.e., the coefficient of correlation between them is zero.
4. Some diagrams for differents values of v.
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Y A Y A Y4
o r=+1 X o r=—1 X © r=0 X
Y h Ylk
o M 0 X

r>0 r<o

Sy _ Ox _
5. Also denotes y =by,andy = by,
Oy oy

SOLVED EXAMPLES

Example 1: If 6 be the angle between the lines of regression, show that

(1-v*) o9,
Y oi+o)

tan 6 =

Explain the significance of the formula, when y=0, y=+ 1.
Solution: The regression line of y on x

y-y =y — (=X

X

Here slope m =y

X

The regression line of x on y

o 9 -
X=X=y =(y-Y)
y

()

- 2)

E)
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10
The slope m,==—
Y Oy

If m, and m, are the slops of the lines and © is the angle between them, we have

10y Oy

m, —m o o
tanezljmml = is 1(2
1 l+y—y.——y
GX YGX

Oy (1-7°
AU _[l—sz 0,0,

2 2
Y oy + Oy

T .
wheny=0,tan 6 =, 6= o i.e., the two lines of regression are perpendicular to each other or variables

are uncorrelated.
Wheny==1,tan® =0, 0 =0 or & i.e., the lines coincide and therefore is a perfect correlation
between the two variables x and y. The estimated value of y is the same for all values of x or vice-versa.
Example 2: For two variables x and y with the same mean, the two regression equations are

y =ax + b and x = ay + 3. Show that %:i:—z. Find also the common mean.
Solution: Suppose the common mean is m.
The given two regression equations arey = ax + b ..(1)
and X=oy+p (2
y—m=a(X—m) .(3)
and X—m= oy —m) ..(4)
Comparing equation (3) and (4) with (1) and (2), we get
b=m(l-a) ..(5)
and B=m(l-ow) ...(6)
Dividing (5) by (6), we get
b 1l-a
B 1-a
Also (5) and (6), we have
b
m= 2 % .
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Example 3: Prove that the Pearson’s coefficient of correlation y lies between — 1 and + 1.

Solution: Let U= X(y — ax — b)? (1)
L ouU ouU
For U is minimum when — =0and — =0
oa db
differentiate partially (1) with respect to a and b respectively, we get
ouU
— =-23Xx(y-ax-h)=0
a (y )
ouU
and %——Zz(y—ax—b)—o.
Since, Xx = 0 = Xy, then we get
b=0 and a= z X)zl
X

Now by (1), we have
U=3X(y—ax)?=Xy?—2aX xy + a’Z x°

2
_ = xy 2y ) o
=3y>-2 JEXY + X
y > x? y (Exzj

2 2 2
S AL L) :22_(2xy2)
X X X

2 xy)?
:Eyz{l_( zy)z}
2 X2y

Xy

JEX? Zy?

= 3Zy?[1-7v?], wherey=

=(1-y* Ty
Since, U be the sum of squares then X y? will not be negative.
= 1-y2>20 or ¥<1

Hence, v lies between — 1 and + 1.

Example 4: Show that the coefficient of correlation is the geometric mean between the two
regression coefficients.

c
Solution: The regression coefficient of y on x =y —~

X

. . o

The regression coefficient of xony =y —%*
o)

y

; Gy Gx
Geometricmean= _[Y — .Y —
X Gy



CORRELATION AND REGRESSION 275

= v = coefficient of correlation.
Example 5: For a bivariate distribution
n=18, X2 =160, XY2 =96, XX = 12, IY = 18, XY =48,
find the equation of the lines of regression and v.
Solution: We have,

ol 122 e
n 18 3 )
n 18
1 _ 60 4 26
22 Z¥X?2-X2=—-_=2_
Ox = 18 9 9 ®)
1., o, 96 13
2 - Zyy?_y2=""_1="="
Sy = 18 3 @
Cov (X,Y) = EEXY - XY
n

_ 48 ( )()_48-12_§:

18 18 18
_Cov(X,Y) 2 6 |3
Now YY) Joz ot [26 13_E\ﬁ
EECE

The regression line of Y on X is

YYy (XX)

) 13\(\[( "j

Y —1=(0.692) (X -0.666)
Y =0.692X - 0.461 + 1
Y =0.692X + 0.538
The regression line of X on 'Y is

X- X)=7 GX(Y Y)

5o

6 =
1—3(Y 1)

ooIN oolm
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= X=0.46Y-0.46 + 0.66
= X=0.46Y + 0.20.

Example 6: Two random variables have the least square regression lines with equations

3X+2y-26=0 and 6x+y-31=0,

find the mean values and the coefficient of correlation between x and y.

and

and

Solution: Given equations are
3X+2y-26=0
6x+y-31=0

()
2)

Since, the two lines of regression pass through the point (X, y) , we have

3X+2y =26
6X +y =31
Solving (3) and (4), we get
X=4 and y =7

From (1), we have y=- §x+l3

_ 3

by, = - >

Now from (2), we have

X:— E +£‘
6 y 6

1

bxy__ E

byx.bxy:(_gjx(_%)

N

1
=+ — =%
= v=E5 +05

Since, both regression coefficient b, and b, are negative.

Then v=-0.5.

-(3)
(4)

(5

..(6)

c
l: b =y —=and b, =y Ox
o, o
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Example 7: Calculate the coefficient of correlation and obtain the line of regression for the

following data.

X 1 2 3 4 5 6 7 8 9
Y 9 8 10 12 1 13 14 16 15
find also an estimate for Y which would correspond to X = 6.2.
Solution: Let X =4and Y =13.
X Y U=X- X v=y-Y U2 V2 uv
1 -3 -4 9 16 12
2 -2 -5 4 25 10
3 10 -1 -3 1 9
4 12 0 -1 0 1
5 11 1 -2 1 4 -
6 13 2 0 4 0
7 14 3 1 9 1
8 16 4 3 16 9 12
9 15 5 2 25 4 10
XU=9 XV=-9 YU? =69 *V2 =69 YUV =48
Hence, U:EEU=l x9=1,
n 9
V = =3V==x(-9)=-1
1 —_— 1
Cov(U,V):HEUV—U =9 x48—-1(-1) =5.33+1=6.33
GS = EZU2 -U? =£><69—1 = @=6.66
n 9 9
1 — 1 60
2 =232 -V2="x69-1=— =6.66
o T 9 9
Cov (UV) _ 6.33 633 _

0.95.

Jo? o2 [666x666 666
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G,=0,= 80
X Y 9
The regression line of Y on X is
Y-Y= y Y (X =X)
X
= Y -13=(0.95) “60/ (X -4)
/609
= Y -13=(0.95) (X-4)
= Y =0.95X - 3.80 + 13
= Y =0.95X +9.20.

Example 8: Show that the A.M. of the coefficient of regression is greater than the coefficient of

correlation.

Solution: The regression line of Y on X is

Y-Y= y Y (X =X) ..(1)
X
The regression line of Xon Y is
X-X=y2X(y-Y) (2)
Y
Now to show that, we have
c c
Yyt
Ox Oy S
2 Y
2 2
cy +0
= ——*>0 = o62+02-26,06,>0
2640y
= (o, -0,)>>0

Which is true.

1.

2. Find Cov (X, Y ), when X =50, XY = - 30, £XY = - 115, n = 10.

Find the correlation coefficient and the equation of regression lines for the following values of X and Y:

X

1

2

3

4

5

2

5

3

8

7
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3. Given the following data:

X Y
Arithmetic 36 85
mean
Standard 1 8
deviation

Correlation coefficient between X and Y is 0.66.

(a) Find two regression lines.

(b) Estimate value of X, when Y = 75.

4. Find the coefficient of correlation for X and Y from the following data:

X

45 55 56

58

60

65

68

70

75

80

85

Y

56 50 48

60

62

64

65

70

74

82

90

Also find the equation of the lines of regression.

5. The lines of regression for a data are given as under:

2y —x-50=0,

3y-2x-10=0.

Show that the regression estimate of y for x = 150 is 100, whereas the regression estimate of x corre-
sponding to y = 100 is 145. Explain the difference.
6. The variables x and y are connected by the equations ax + by + ¢ = 0, show that the correlation between
them is — 1, if the sign of a and b are like, and + 1 if they are different.

7. A study of prices of a certain commodity at Hapur and Kanpur yield the following data:

Hapur Kanpur
Rs Rs
Average price per kilo 2.463 2.797
Standard deviation 0.326 0.207
v between prices at 0.774

Hapur and Kanpur

Estimate from the above data the most likely price
(i) At Kanpur corresponding to the price of Rs. 3.052 per kilo at Hapur.
(ii) At Hapur corresponding to the price of Rs. 2.334 per kilo at Kanpur.
8. Heights of fathers and sons are given in the inches

Height of Father (X) 65

66

67

67 68

69

71

73

Height of Son (Y) 67

68

64

68 72

70

69

70

From the two lines of regression and calculate the expected average height of the son when the height of
the father is 67.5 inches.
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10.

11.

12.

10.

11.

© © N wDdhPE

The equations of two regression lines obtained in a correlation analysis of 60 observations are 5x = 6y +
24 and 1000 y = 768x — 3608. What is the correlation coefficient and what is its probable error ?

5
Show that the ratio of the coefficient of variability of x to that of y is ETR What is the ration of variances

of x and y?
In a partially destroyed laboratory record of an analysis correlation data, the following results only are
legible:
variance of x = 9. Regression equations:
8x — 10y + 66 = 0, 40x — 18y = 214.
(i) What are the mean values of x and y,
(ii) The standard deviation of y,
(iii) The coefficient of correlation between x and y?
A student has obtained the following answers to certain problems. Discuss the criticise them
(i) Mean = 3, variance = 5 for a binomial distribution.
(if) Mean = 4, variance = 3 for a poisson distribution.
(iii) Coefficient of regression of y on x = 3.2.
Coefficient of regression of x on y = 0.8 for a bivarate distribution.
Prove that:

@) E, =0, (1-1)" (b) E, =0, (1-y)"2
YX y Xy X

ANSWERS

0.81, X =05Y +0.5,Y=13X+1.1

35

(a) X = 0.9075Y — 41.1375, Y = 0.48X + 67.72, (b) 26.925

0.92, Y = 0.99X + 1.02, X = 0.85 Y + 9.47

(i) 3.086 (ii) 1.899

X =0.524 Y +32.29, Y = 0.421X + 39.77, 68.19.

v =+ 0.96, 0.0068, 5/4

(i) 13,17 (ii) 4 (iiii) 0.6

5
(i) Wrong, because here g = 3 >1

(if) Mean = variance (in Poisson distribution) wrong
(iii) Contradiction; because y2 = 2.56 > 1, which is never greater than unity.



Unit V

CALCULUS OF VARIATIONS AND TRANSFORMS

In this chapter, we deal with calculus of variations and problems of determining
the maximum or minimum values of a definite integral involving in a certain
function, strong variation, weak variation, simple variation problems and Euler’s
equation are also discussed.

Calculus of variations has a great importance to solving the problems of
dynamics of rigid bodies, as a unifying influence in mechanics, vibration problems
and as a guide in the mathematical interpretation of many physical phenomena.
First in 1744 Euler, discovered the basic differential equation for a minimizing
curve. The calculus of variations also deals with minimum problems depending
upon surfaces, analytical mechanics, optimization of orbits and the study of
extrema of functionals.

In differential calculus, we discuss the problems of maxima and minima of
functions. The calculus of variations is concerned with maximizing or minimizing
functionals.
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Cuarter 1

Calculus of Variations

1.1. FUNCTIONAL

A real valued function f whose domain is the set of real functions is Y 4
called a functional. Let us consider the problem to determine a curve
y = y(x) through two points P(x,, y,) and Q(x,, y,) for which Ql%y Y)
y(x)) =Yy, Y(X,) =Y, such that

X dy 2
.|.><l ~ 1+ (d_xj o ~(L1) Py, ¥1)

is a minimum. 0 X

In general terms, to determine the curve y =y(x), where y(x;) =y, and y(x,) =y, such that for

agiven functionf(x, y%) or f(XVy,Y)
X

_[ 2f(X, y,¥") dx is maximum or minimum ..(1.2)

X
Hence, an integral such as (1.1) and (1.2), which assumes a definite value for functions of the
type y = y(x) is known as functional.

Note. A function y = y(x), which extremizes a functional is known as extremal or extremizing function.

1.2. EULER’S EQUATION

A necessary condition for

| = L (v, y7) dx with y(x,) =y, andy (x,) =Y,
to be an extremum (maximum or minimum) is that
of d [ of dy
[, = O, h f =2
ay dx(ay’) where -y dx

This is called Euler’s equation.
283
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X2 , YA
Proof: Given that I = J;l f(x, y,y’) dx ..(1.3) =y g
Lety =y(x) be the curve joining two points P(x,, y,) and Q(x,, ¥,) Qb2 ¥2)
which makes the given function | an extremum. Poc v Y =y
Let Y =y(x) + ag(x) ..(1.4) "
be a neighbouring curve joining these point P and Q, where o, is a small n
parameter but independent of x and g(x) is an arbitrary differentiable © M
function.
At the end point P and Q, g (x;) =0 =g (x,) ..(L.5)
When a=0, neighbouring curve (1.4) becomes
Y =y(x), which is extremal
If we replace y by Y in equation (1.3) then, we get
JXZ f(x,Y,Y)dx = JXZ F{(x, y(x) + ag(x), y'(x) + ag’(x)} dx
X Xy
=I(a) which is a function of o
Hence, I (a) = jXZ f(x,Y,Y’) dx .(L6)
Xy
The functional | (function of o) is a maximum or minimum for o. = 0, when
') =0 .(1.7)
Differentiating equation (1.6) under the integral sign by Leibnitz’s rule, we have
I (o) = JXZ(a—f%+a—fa—Y+ of dv )dx
x \dx oo dY dor  dY’ da
ox
Since o is independent of x, so P 0, we have
x(of Y of 9Y’
I'(o) = — —+ dx ..(1.8
=], (av da " Y’ aoc) (L8)
Differentiating (1.4) with respect to x, we get
Y =y(x) + ag'(x) -(1.9)
Again differentiating (1.9) with respect to o, we get
aY’
%o =g'(x) ..(1.10)
Now differentiating (1.4) with respect to o, we have
oY
o =g(x) . (1.10)

Using equation (1.8), we have

(@)= [ a0+ 50 |ax
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Integrating the second term on the right by parts, we have

e of of X x d [ of
=) v dX+H8Y’g(X)}X f dx(aY’)g(X) dx}

1

%, of of of x d [ of
= . dx + - — il d
o a0 g | g o ot |- [7 8 (5 oo
X of  d ( of .
=| =— d - — .
. 9y g(x)dx +0 J'Xl dx(aY’) g(x) dx (Using 1.5)
x, |of d( of
= = d
.l.xl {av dx(aY’)} 9(x) dx
For extremum value, we have
I"(a) =0
x, |of d [ of
= — - d
= 0 .l.xl {av dx(aY’)} 9(x) dx
Since, g(x) is an arbitrary differentiable function then, we have
of d( of
— - =0 ..(1.12
aY dx(aY') (1.12)
which is the required Euler’s equation.
1.3. EQUIVALENT FORMS OF EULER’S EQUATION
X;
1. Let I:'[ f(x,y,y") dx
X1
Here f is a function of x, y and y’
Differentiating f with respect to x, we get
dt ot of dy ot dy
dx ox ody dx oy’ dx
i _af of , of
or ax ox ' dy y 3y’ y ..(1.13)
Now consideri y’ of = x a_f +vy” of ..(1.14)
dx{” oy’ dx \ 9y’ oy’

Subtracting (1.14) from (1.13), we get

df  d( ,of of of , ,df of
Y sSFao Tt Y Y o 5
dx dx\” 9y ox oy dx | dy
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d , of of ,|of d of
— =Y = -—=Y > 5
dx ay oX dy dx\ady

d , of of _ ]
™ f-y 3y’ Tox 0 (Using Euler’s equation)
d of of
H — | f=vV - = (L
ence dx{ y ay’} > 0 (1.15)

2. Since aa—;, is also a function of x, y, y’.

f
L = h ' e .
o oy~ ) (1.16)
Then dfof :ﬁ:%+%ﬂ+dh dy
dx{ay’) dx ox dy dx dy” dx

_ o of o(of Y, o (of ),
== += y' + y
ox\ay’ ) oay\ay’ ay’ \ 9y’

. i AT L S L S

= .(1.17
oxay’ " oyay’ y ay’? (17
Using (1.12) and (1.17), we get
of [ 9%t 9%f , 9%f
—- -+ -y +—5Yy"r =0
dy |oxdy’ odyay oy’
2 2 2
or ,0°f  o°f o°f of _ (1.18)

a/2+ya /+ 7 A
y yoy’  oxdy’ dy

1.4. SOLUTION OF EULER’S EQUATIONS

There are several situations in which we can easily be obtain the solution of Euler’s equation in follow-
ing cases:

of
Case I: When f is independent of x then P 0.

By equation (1.15), we have

d of
| foy ==
dX( Y By’) °



CALCULUS OF VARIATIONS 287

Integrating, we get f- y’% = Constant ..(1.19)
y

Case II: When f is independent of y then g—f =0
y

By equation (1.12), we have i( of ) =0
dx \ ay’
. of
Integrating, we get NG = Constant ..(1.20)
y

Case I11: When f is independent of y” then aa—f = 0. By equation (1.21), we have
y

a_f 0 121
v - -(1.21)
. of of
Case IV: When f is independent of x and y then P =0and a_y =0
X
2 2
of - 0 and o°f _
oxay’ oyay’
By equation (18), we have
o’ f
g =0 ..(1.22
ay/Z ( )

0% f
If — #0then y"=0
ay/Z y

which gives a solution of the form

y=ax+b. ..(1.23)

Note: Any function which satisfies Euler’s equation is called a Extremal. Extremal is obtained by solving
the Euler’s equation.

1.5. STRONG AND WEAK VARIATIONS

Suppose y = f (x) is a curve passing through P(x,, y,) and Q (x,, y,). Let another curve y = f (x) through
P and Q be obtained by displacing points on y = f (x) parallel to y-axis, the displacement of P and Q ,
being zero, then variation 8y of y is defined as

dy =f(x) - f,(x)
and variation is defined as  dy”=f’(x) - f{(x)
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d
h oy = — (&Y
where Y= (dy’)

Here, if dy is small then the variation is called strong variation and if &y’ is small, then the
variation is called weak variation.

1.6. ISOPERIMETRIC PROBLEMS

The problem of maximum or minimum with constraints, it is required to determine the maximum or
minimum of a function of several variable g(x,, X, ...... , X,) where the variables x,, x,, ....... , X, are
connected by some given condition or relation called a constraints. In calculus of variations, in some
problems, it is necessary to determine extremum of an integral while one or more integrals involving
the same variables and the same limits are to be kept constant. Such type problems are called isoperimetric
problems and mostly solved by the method of Lagrange’s multipliers. For example, to determine the
shape of the closed curve of the given perimeter enclosing maximum area.

Let the isoperimetric problem consists of determine a function f (x) which extremizes the functional
| = Jxxzf(x, v, y) dx (1.24)
Subject to the condition that th; another integral
J= J:g(x, y,y)dx =C ..(1.25)

To solve this type of problem, we use the method of Lagrange’s multipliers and consider an
integral

H= Jxxzh(x, v, y’) dx ..(1.26)

where h=f+Ag andA isthe Lagrange’s multiplier.
For H is extremum, if | is extremum because J is constant. Then, the modified Euler’s equation

is given by
% — i oh =0
ay dx\ay’

1.7. VARIATIONAL PROBLEMS INVOLVING SEVERAL DEPENDENT
VARIABLES

Let us consider the functional

| = sz(x, Vir Yor eees Yo Y Y \Yn) dx ..(1.27)

involving n functions y,, y,, ...... , Y, of x.
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The necessary condition for this integral (1.27) to be extremum is

of d(af

a_yi_& ayl, =V, 1=1,409, ...

These are Euler’s equations for the n functions.

1.8. FUNCTIONALS INVOLVING SECOND ORDER DERIVATIVES

Let the extremum of a functional

XZ 7 ”
I:.[ f(x,y,y,y”)dx

Xy

A necessary condition for above functional to be extremum is

of d of d? ( of
~ |71 375, | =0
dy dx\ody dx“ \ gy

Proof: Given that

X;
1= [ ey YY) dx (1.28)

X

Let y(x) be the function which makes (1.28) extremum and satisfies the boundary conditions
y(X) =Yy V) =Y, V(X)) =Y andy'(x,) =Y,
Now consider a differentiable function g(x) such that

9(x;) =0=09(x,) }
, ’ ..(1.29
and g’(x;)=0=g"(x,) (1.29)
Putting y + ag in place of y in (1.28), we get
X, X
I(c1) :J f(x,y+og,y +ag’y” +ag”) dx = jX?F dx .(1.30)
Xy :

Differentiating (1.30) under the integral sign, we get

ﬂzszd_FdX:sz oF dy L OF dy’  OF oy,
doo Jx do dy do. 9y’ do  dy” da
:J'Xz ajg_i_aF g+ oF g | d
x \ dy ay’ ay”
For extremum value of (1.28), we have

ﬂ—0 when o =0

do

% (dF oF oF
—g+ "+ 71dx =0
= J.Xl (ay g Y g PG g )

X
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- J.Xl a_y g dx J.: STF g’ dx + J.:lz ;; g” dx = @

Integrating by parts with respect to x, we have
% of oF |7 ped(of of 1" ped( of
—gd - — dx + ! “dx =0
o dy ° X+L}y' gL J, dx[ay’)g ' {By” ’ } I, dx[ay”)g '
% of o | d (o o 1"
or —gdx+ dx !
X, ay g X |:ay/ gi|xl J.Xl dX [ay )g |:ay// g i|x

1

d(aF N ° % d?(of _
- gl +| 7= |9dx=0
dx \ ay” ) x dx \ dy

Using equation (1.29), we get

X2 of xe d ( of x d® ( of
—gdx—| — dx+| —|=—|gdx =
or X dy g J.xl dx (By’) g J.xl dx? (ay”)g 0
x| of d [ of d* ( of
+— dx =
o -l.xl{ay dx(ay) dx? (ay Hg
This equation must hold good for all values of g(x), we get
of d [ of d? ( of
- = +—|—1=0 (131
ay dx(ay') dx? (ay”) (13D
Hence in general, a necessary condition for the functional | = szf(x, Yoy Y,y ™) dx to be
extremum is
2
CLRNCN (L PR () IS )n a:‘n) =0 (1.32)
oy dxlay’ ) dx?\oay” ady

This equation is called the Euler-Poisson equation and its solutions are called extremals.

SOLVED EXAMPLES

1
Example 1: Find the curves on which the functional JO [(y)? + 12xy] dx with y (0) = 0 and

y (1) = 1 can be extremized.
Solution: The Euler’s equation is

dy dx\oay’ )
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! 2
Given that | = JO (y’c +12xy) dx
with y(©0)=0,y(1)=1
Here f=y?2+ 12xy
Then —f =12x and L 2y’
ay - ay/ =zy
Putting these values of of and of in (i), we get
ay ay’
12x — di(Zy') =0 or 12x-2y”"=0
X
or y’—6x=0 or y” = 6x
or y =3x2+c; or y=x3+cx+c,

Applying the given boundary condition in (iii), we get
y(0)=0=0+c,.0+c, = c,=0
y1)=1=13+c . 1+c, = ¢ +¢,=0

Solving these equations, we get ¢,=¢, =0

Hence, the required equation from (iii) is

y =x.
Example 2: Test for an extremum the functional

1
Y01 = J ey +y* —2yy)dey @ =1y (M) =2

Solution: The Euler’s equation is

o _d (o)
ay dx\oy’ =0

! 2 2
Given that | = JO (xy +y“—2y“y’) dx
with y0) =1, y@)=2
Here f=xy+y?-2y?y
Then ot =X+ 2y —4yy’
ay
of
d = - 2y?
an Y’ y
of

Putting these values of — and

3y Yz in (i), we get

X+ 2y —4yy — %(— 2y =0

...(ii)

...(iii)

()

...(ii)
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or X+2y—-4yy +4yy’ =0

X
or Xx+2y=0 or y:—E ..(iii)

Applying the given boundary condition in (iii), we get
y (0) =1=0, which is not possible
1
1)=2=-=2,
y(1) 5

Hence, these are no extremal because it is not satisfy the boundary condition.
Example 3: Prove that the shortest distance between two points in a plane is a straight line.
Solution: Let P(x,, y,) and Q(x,, y,) be the two given points and s is the length of the arc joining

these points.
5= szds=r21/1+[ﬂ)2 dx = [ "Y1+ y? dx 0,
X X1 dx X1

again contradiction.

Then
with y(X) =Y Y0,) =Y,
If S satisfies the Euler’s equation then it will be minimum.
of d of
The Euler’s equationis — —— =0 (i
q dy  dx ( ay') (i)
In equation (i), f=J1+y? Y4
of o 1 or- ,
Then ¥ % o2 (1+y?)22y) Ay
///S
Putting these values of g—f and % in (ii), we get ‘_/
y y P(x, ¥1)
0- i Y =0 or a4 A 0 X
dX ’l_’_ y'2 dX 'l+ y/2
Integrating both sides, we get
y > =a (Constant)
VI+yY
Squaring both sides, we get
y?=a’ (1+y?) or y?(l-a%)=a’
2
or y2=_2 _=m(Lety or y2=m?
or y=m on integrating, we get
or y=mx+c ..(iii)

which is a straight line.
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Now Y(Xl) =Y, and y (XZ) =Y
By (iii), we have

mx, +c=y, :
and mx, +c=yz} (V)

On subtracting, we get

Yo=Y

-y, =m(x, — X or m=
Yo=Yy =M, —Xy) X, — X,

Subtracting (iv) from (iii), we get
Yo=Y
=== (X = X,).
X, — %, (x=x,)
Example 4: Find the path on which a particle in a absence of friction, will slide from one point
to another in the shortest time under the action of gravity.

Y=Y =mM(X=x,) or y-y, =

Solution: Suppose the particle start sliding on the curve OA from O with zero velocity. Let
OP = S and t be the time taken from O to P. Using the principle of work and energy, we have

K.E. at P — K.E. at O = Work done in moving the particle from O to P.

= e 0 = mgy
2 Y A
or v2 = 2gy
r [ﬁ)z =2
ds _
or i 2qy o >
Let T be the time taken by the particle from O to A. Then P(X.Y)
T= ,[ dt = _[Xlﬂ ds Al y1)

X d
J \/ﬁ \/2_J°_S
Xl\'“y ()

L

1+y?

Jy
of f 1 2y’ ’
Then — =0 and J y = y

ox 3_)/':2\5 J1+y7 _\/y\/1+y’2

Here f=

{which independent of x}
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Since, f is independent of x then Euler’s equation reduces to

f-y ((’?_;') = ¢ (Constant) ..(i)

Putting the value of f and ;f, in (ii), we get
y

y1+y”? IV
\/y \/y\/l+y’2
l+y/2_y/2 “e
\/y ,l+y/2
— 1=cfy J1+y”?

Squaring both sides, we get

2
1=cy(1+y?) or 1+[ﬂ) =é
dx coy
1-yc? -
or W 2yc = or y_ jazy {Let izza}
dx cy dx y c
_ y
or dx = a_y dy
Integrating both sides, we get
X _ Yy y
J.OdX—'[0 /_a—y dy
Putting y=asin’0 .. (iii)

= dy = 2a sin 6 cos 6 do

0 / asin® 0 )
= ——— —.2asin®cosOdo
X -[o a—asin’0

) o )
:'[0 2asin edeza'[ (1—cos 20)dé
0

- 0
:a(e_sm 29)
2 Jo

X = g (26 - sin 26) . (iv)
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Putting 5= b and 26 = ¢. Then by equations (iii) and (iv), we get . y=a sin 0
Xx=b (6 —sin ¢) y:%(l—cosZG)
and y=Db (1-cos ) =b (1-cos )

which is a cycloid.
Example 5: Show that the geodesics on a sphere of radius a are its great circles.
Solution: We know that in spherical coordinates (r, 6, 0),
X=rsin®,cosd, y=rsinOsind, z=rcoso (i)
The arc element on a sphere of radius a is given by
ds? = dr? + (rd6)? + (r sin 6 do)?

L o wor=a
= a? de? + (a sin 6)? do [thendr=0}
2
or ds.:a\/l+sin2 e(@j de
de
0
= [a.A+sinZe 62
s Jela +sin“ 6.¢"°do (i)

Now the geodesic on the sphere r = a is the curve for which s is minimum. From (ii), we have

f =aJl+sin?0.¢"

Which is a function of 6 and ¢” while ¢ is absent. Then the Euler’s equation reduces to

aa(; = ¢, (Constant)

asin0.¢”
a/(1+5in%0.¢"?)
Squaring both sides, we get

Cy

or sin‘e . ¢ =c,? (1 +sin? 6. ¢?)
or sin?@ . (sin?0 —c,?) ¢"2=c,?
or do = G
0 sin g sin? 0 —c?
2
or do ¢ cosec” 6

do J@—c? cosec? 6)
Integrating both sides, we get

.[d¢:.[ Ja

2
c, cosec” 0 do +c,

—¢,? cosec’ 0)
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¢, cosec’ 6 de

o= Ja-ehH-ecotoy]

_ ._1{ c cot o }
=—sint i ———=" +¢,
[(1-c)]

. c, cotO
or sin (¢ +¢,) = >
[(A-c)]
. . c,coto
sin ¢ cos ¢, + cos  sinc, = >
-¢°)
€0S Cy+/(1—¢,?) sinc,4/(L-c,?)
to= sin ¢ cos ¢
C G
cot® =Asin ¢ + B cos ¢
or acos O =Aasin0sin¢d+Bacosdsind
or Z=Ay+Bx r=aj
which is the required geodesics arcs of the great circles.
Example 6: Find the plane curve of fixed perimeter and maximum area.
Solution: Let | be the perimeter of the closed curve, then
Xy 2
= l+y’ X i
| j y? d ()
The area enclosed by the curve, x-axis and two perpendicular lines is
Xy Y A
= X i
A J;lyd (i)
Now we have to find maximum value of (ii) subject to constraint —/i
(). Using Lagrange’s multipliers, we have P i
f=y+ayl+y”? i |
For maximum or minimum value of A, f must satisfy the Euler’s OKTN' ' 1
equation NlTN

o afan)_,
gy dxlay’ )

1 .
= 1—xd{(l+ y'%) 1’2(2y')} =0
dx (2

d y’
= 1-A2—| ———1|=0
dx[ 'l_’_y/ZJ
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Integrating with respect to x, we get

= W:X_Cl

Squaring both sides, we get

= A2y?=(x-c) (1+y?)
= {A - (x—c)?}y? = (x—c,)>
2 _ (x - C1)2
- VW o)
y/ = (X - Cl)

0 - (x—c)’¥"
Integrating with respect to x both sides, we get
y=— {02 (x-c )} +c,
or y—c¢,=—{A% - (x—c)?}"
Squaring both sides, we get
(Y- =+{A*—(x-c)?} or (x—c)+(y-cy®=»n*
This is the equation of a circle whose centre is (c,, ¢,) and radius is A.

Example 7: Prove that the sphere is the solid figure of revolution which, for a given surface
area, has maximum volume.

Solution: Let us consider the arc OPA of the curve which rotates Y4
about the x-axis.

Then the surface /—\’P\M y)
a a LM A
=12 = | 2ny J1+y"? i
S -[o my ds -[o Y y’ dx

) o

b 4

a 2 .e -
and volume V= .[0 my“ dx ..(ii)
Now we have to maximize V with the given surface S.
Let f=my? g=2ny/1+y"?

and h=f+Ag=my? + A2ny, 1+ y’?

Since, h is independent of x i.e., h does not contain x. Then the Euler equation reduce to

h - y’( ah,j =c, (Constant) (1)
dy
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2myA(2

or 7ty2+7\,27'ty l+y/2 y l M Cl
1+y
2 7 2mAyy”?

or Ty + 2my A 1+’ =c,

72y _ ’2
or ny? + 2wy (1+y’7) — 2nyAy .

\/l+ y’2 !

or ny? +

Since, the curve passes through the origin O and A for whichy =0, soc, =0
Vo 2myA 0 or y+ 2\
T — = =

or yyl+y2 =-2)

squaring both sides, we get

2 4%2 -
1+ [dy) 4% y
dx

or y—dy = dx

[47\‘2 _y2

Integrating both sides, we get

402 —y? =x+c,

or JaZ =y? =—(x+cy) (V)
At 0, from (iv), we get C,=—2AX
Then by (iv), we have m =-(x-2))
Squaring both sides, we get 4A? —y? = (x — 2A)?> or (X = 210)% + y? = 4\?
which is a circle
Hence, on revolving the circle about x-axis, the solid formed is a sphere.

) . /2 dx ) dy _
Example 8: Show that the functional JO 2xy + m + ™ dt such that x(0) = 0,

x(/2) =-1,y(0) =0, y(n/2) = 1 is extremum for x = —sint,y = sin t.
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Solution: The Euler’s equations are

a—f—i( of ):0 ()
ox dt\ox’
of df of .
——— =0
ay dt(ay') (i
n/2 2 2
Given that J. 2Xy+ (de +(dyj dt
0 dt dt
Here f =2xy +x2+y?
of
Then — =2y, of =2x/, a—f =2x and a—f =2y
ox ox’ dy ay’
o
Putting these values of a_f and a—, in (i), we get
ox X
d d?x
2y — —(2X) = — -y =
y dt( X)=0 = =z -y=0
d?x
— = (i
Also putting the values ofa—f and f in (ii), we get
p g ay ay/ ! g
d e d’y  _
2x—dt (2y)=0 = F_X_O
d2y .
dt? ()
From (iii) and (iv), we have
d*x d?y
FZF:X or (D4—1)X:0
Its solution is
x(t) =cet+cet+cycost+c,sint ..(Vv)
Now from (iii), we have
y(t) =x”
=c, et +c,et—cycost—c,sint [using (V)] (Vi)

Applying the given boundary conditions in (v) and (vi), we have
x(0)=0=c, +¢c,+c4
X(TE/Z) =—1= Cl en/2 4 C2 e T2 4 C4

y(0)=0=c, +c,-¢,
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y(@2)=1=c, e"2+c,e™2—-c,
Solving these equations, we get
¢,=¢,=¢,=0 and ¢c,=-1
Hence, the required solution from (v) and (vi) is
x=-sint and y=sint.

/4
Example 9: Show that the curve which extremizes the functional | = J (y”? -y + x?) dx
0
under the conditions y (0) =0, y10) = 1, y(/4) = y{(w/4) = % isy =sinx.
Solution: The Euler’s equation for second order derivatives is
f f f
L d J =0 (i)
dy dx \ay’ dx ay”
Given that 1= [y -y e x) ox (i)
0
Here f=y?-y? +x2
of of of
Then -2y, — =0 and —; =2y
ay Y Y y” y
Putting these values in (i), we get
2
—2y—— (O)+ d (2y”) 0 or —2y+2y®=0
or y(4)—y:0 or (D*-1)y=0
Its solution is
y(X) = c,e¥ + Cc,e™ + 5 COS X + C, Sin X .. (i)
y'(X) =c, & —c,e*-cgsin X+, COS X ..(Iv)

Applylng the given boundary condition in (iii) and (iv), we get
y(0)=0=c,+c,+¢,
y(@0)=1=c,-c,+¢c,

y(75/4):—l =c, e +¢ e‘”"‘+—l c +—l c
/2 1 2 /2 3 /2 4
1 1 1
’ - - n/4 _ -4 _ _— —_—
Y (xl4) V2 ERE V2 Gt 7 %

Solving these equations, we get
¢c,=¢C,=¢;=0 and ¢c,=1
Hence, the required solution from (iii) is y = sin x.
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/2
1. On which curve the functional Jn (y’2 = y2 +2xy) dy with y (0) = 0 and y (n/2) = 0, be extremized?
0

X2
2. Find a complete solution of the Euler’s equation for J; (y* -y’ =2y cosh x) dx_
1

N 2
3. Find the extremal of the functional 1= J. ’ 1+,Z dx .
y

X1

’2

X
4. Find the extremals of the functional | y3 dx.
X X

X
5. Solve the Euler’s equation for J' ’ (x+y)y’ dx.
X1

X
6. Solve the Euler’s equation for J ’ @+ x%y")y’ dx.
X1
7. Find the extremal of the function and extremum value of the

/2
[ o=y ox
0
subject to y(0) = 0, y(n/2) = 1.
8. Solve the variational problem
2
J [x2y’2 +2y(x+y)]dx =0, given y(1) =y(2) = 0.
1

9. Find the geodesics on a right circular cylinder of radius a.
¥
10. Find the extremal of the function | = -[o (y’? - y?) dx with boundary conditions y(0) = 0, y(r) = 1 and

T
subject to the constraint '[0 ydx=1,

1 1
11. Find a function y(x) for which J (x2 + y’2) dx is extremum, given that J y2 dx =2,y(0) =0, y(1) = 0.
0 0

1 2 2
12. Show that the functional J {Zx +(%) +(%) }dt, such that x(0) =1, y(0) =1,x(1) =15, y(1)=1
0

1+t?

is extremum for x = 5

y=t.

/2
13. Find the extremals of the functionals [ (y”? —y? + x?) dx that satisfies the conditions y(0) = 1,
y'(0) =0, y(n/2) =0, y'(n/2) = - 1.
. X2 R R WP
14. Find the extremal of J 16y —y”° +x°) dx.
Xy

X
15. Find the extremal of [ (2xy — y”’z) dx.

X
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CHAPTER 2

Z-Transform

INTRODUCTION

In this chapter, we shall discuss a new type of transform, Z-transform. The progress of communication
engineering is based on discrete analysis. Z-transform plays an important role in solving difference
equation which represent a discrete system. Thus, the study of Z-transform is necessary part for engineers
and scientists. Z-transform has many properties like Laplace transform but Z-transform operates on a
sequences {u_} of discrete integer-(*2) valued arguments (n =0, £ 1, + 2, .....) and Laplace transform
operates on a continuous function that is the main difference between these transforms.

2.1. Z-TRANSFORM

Let {u.} be a sequence defined for discrete valuesn=0, 1, 2, 3, ...... then, the Z-transform of sequence
{u,} is denoted by Z(u,) and defined as

Zu)= X U 2" =) (2.1)

N=—o

Provided the infinite series (2.1) is convergent and U is a function of complex number z.
For n<0, u,=0
The Z-transform is defined as

Zu)= D U, 2"
n=0

2.2. LINEARITY PROPERTIES

Let {u } and {v } be discrete sequences then
Z (au, +bv)) =aZ(u,) + bZ(v,)
where a and b are constants.
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Proof: By the definition, we have

oo

Z(au, + bv,) = 2 (au, +bv,)z™" = 2 au,z" + 2 bv,z"
n=0 n=0

n=0

=a 2 u,z" +b 2 vpz " =aZ(u,)+bZ(v). Hence proved.
n=0 n=0

2.3. CHANGE OF SCALE PROPERTY OR DAMPING RULE

If {u } be any discrete sequence and Z(u,) = U(z) then
() Z(a"u)=U@) (i) Z@u)=U (gj

Proof: (i) By the definition, we have

oo

Z@"u)= 2 (@"uy)z™" = 2 uy(az)™" = U (az). Hence proved.
n=0

n=0
(ii) By the definition, we have

oo oo 7 -n 7
Z@",) = 2 @",)z ™" = 2 Un(g) =U (aj' Hence proved.
n=0 n=0

2.4. SOME STANDARD Z-TRANSFORMS

(i) Z(a“):i, n>0

Proof: By the definition, we have

[The sum of infinite term of G.P.]

Hence proved.

Some Particular Cases

(1) 2= =
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-n

Mx

Proof: We have  Z (1) =

Il
o

n

v 1 1 1 1
= 2 —=lt+t—t =+
=z z 7 2
:i:i. Hence proved.
1.1 z-1
z
(2) Z(k) = where k is constant

Proof: We have Z(k) = 2 kz™" =g 2 2"
n=0

k
= —Zl (By above case). Hence proved.
Z —

(3) ZI( 1) = ﬁ

Proof: Takinga=-1inZzZ@") = Lz

We get Z(-1)" = L
z+1

(ii) Z(nP) = -z % [Z(nPD],pe N

Proof: By the definition, we have
Z(nP) = 2 nPz™"
n=0

and Z(nP-1) = 2 n"*z™"  (on replacing p by p - 1)

n=0
Differentiating (2.3) w.r.t. z, we get

oo

%[Z(np—l)] {2 nP?tz n] = 2 npfl(_ n) ;-1

n=0

=_71 i nPz™" = _ 71 [z(nP)]
n=0

(2.2)

(2.3)

[By (2.2)]
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Thus Z[nP]=-z % [Z(nP~Y]. Hence proved. ..(2.4)
Some Particular Cases
Zn)= ——=
M "= =37
Proof: Taking p =1 in (2.4), we get
d d| z
7 -——7 - _7 | =
()=-2 dz 2] * iz L - 1}
-, @ _1_22) =’ . Hence proved.
(z-1 (z-1)
(2) taking p = 2 in (2.4), we get
d d z
Zn)=-z—1Z =——|—
™) Zdz[ (] =-2 dz{(z—l)2
_1\2 _ _ 2
=-7 Wz-1) zi(z D S 23 . Hence proved.
(z-1 (z-1
Similarly,
3 2
(3) Z(n%) = M’#
(z-1)
4 3 2
(@) 2(n%) = 7"+ 71z +1512 +1
(z-1
2.5. SHIFTING U, TO THE RIGHT
If Z(u)) =U (2) then Z(u,_) =z7"U(2),r>0
Proof: By the definition, we have
Z(un—r) = 2 un—r27n = 2 unfrzi(nir)ir =" 2 un—rzi(nir)
n=0 n=0 n=0
=z" 2 uszk [take n —r = K]

k=-r

_ —k
k=0

Z(u,_,)=z7"U(z). Hence proved.

[ u,=0ifn<0]
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2.6. SHIFTING U, TO THE LEFT

If Z(u) = U(z) then Z(u
Proof: By the definition, we have

-n _ —(N+r)+r
Z(un+r): E,un+rz _E,un+rz
n=0 n=0

ha) =2 U@ -uy-uzt—u,z?u, 7]

oo

S - —k
=7 2 Unir Z (e =Z'Z U 2
n=0

k=r

oo r-1
=7 2 Uy z’k—z u, z ¥
k=0 k=0

Z(u

n+ r)
Particular Case

(1) Z(uy 4 1) =2 [U (2) = ugl.
(2) Z(u, ,,) =2[U () —uy— z7'u,].

2.7. MULTIPLICATION BY n

=7MU@) —uy—uzt —u,z? . u._, z7- 1.

(taken +r =k)

Hence proved.

If Z(u)=U(2)
Then Z(nu ):—ziu (2
" dz

Proof: By the definition, we have

Z(nu)) = 2 nu,z " =-7 2 u, (-n)z "
n=0 n=0
S d, __, d © n
=- — (") =-z2— u, z
zgoun i) dzﬂ; :

Z(nu) =-12 di U (z). Hence proved.
z

Particular case

2

d
(1) Z(nuy) = (- 2)° oz YO

k

d
(2) Z(n*u,) = (- 2)* o YO
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2.8. DIVISION BY n

nMdz.

If Z(u) = U(z). Then Z (an) =_j .

Proof: By the definition, we have

- © - -
z(u_“jzz Lo yon :ZUn—z “=—2 unJ'z "1 dz
n n=0 n n=0 0

n n=0
=_ J.nrg u, z7n-1 dz=—'|.nz_1 rg) U, 7 "dz =— ,[n@dz

7 (“nj - J'n Y@ 4. Hence Proved.
n z

2.9. INITIAL VALUE THEOREM

If Z(u,) = U (2) thenu, = lim U (2).

Proof: By the definition, we have
Zu)=U@= D, i
n=0

or U(z)=u T
SUpt Tt e
taking limit on both sides as z — o, we get
. . U, u
lim U@)=lim|u, +—=+—2>+...... =u
Zoe @ HO[UO 7 z° 0

U, = lim U(z). Hence proved.

Z— o

Hence

Some Particular Cases

(Lu, = Zli_>nl 2 [U(z) - ug]

(2)u,= ZIi_)nl 22[U(2) - uy - u,(2)]
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2.10. FINAL VALUE THEOREM

If Z(u,)) = U (2), then lim u = lim (z-1) U(2)
n— oo z—>1

Proof: By the definition, we have

Z(u, ,,—Uu) = 2 (Upsq —Uy)z "
n=0

or Z(u,, ) —Z(u,) = 2 Uy —u)z™"
n=0

U@ -ud-U@ = Y Uy~ )z

n=0

or (z-1) U(2) - zuy= i Uy —u)z™"

n=0
Taking limit on both sides as z — 1, we get

lim [z 1) U(2) - 2u,] = Iimlz (U, ,—u)z™"
= 275020

im (-1 U@ -uy= Y, U~ )
7 no0

= Iinl [(u —ug) + (U, —u) +...... +(U,,,—u)l=u_-u,
or u_= le_r>n1 (z-1) U@

lim u = Iim1 (z-1)U(2). Hence proved.
n— e Z—

SOLVED EXAMPLES

Example 1: Find the Z-transform of the following sequence:

(i) {15, 10, 7, 4, %,—1, 0, 3, 6} (ii) {Z—ln} _2<n<4

wl3)
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Solution: (i) We have

Z{u } = i u,z"

n=—oco

:1524+1023+722+4z+1—£+%+%+%. AnS.
7 7° 7° 2

4

, 1 1 1

ii) We have Z{u} = — 72" =42 +27+1+ — +—+—+——F. Ans
(i) {uy} ngz 2" 47> 87° 167*

= 1 1 1 1

iii) We have Z{u } = — = . +9722+372+ 1+ —+—5+—= + ... Ans.
(i) (U} gj n 3z 972 2778 ns

Example 2: Find the Z-transform of {a

2|
— >
—_—
=)
[\
©

Solution: We have

an
Example 3: Find the Z-transform of 7} ,h>1.
Solution: We have

z {ann} :i annznzi 1(;)" _ a+;(aj2+1(aj3 llllll

n=1 n=1

=-log (1—aj. Ans.
z

Example 4: Find the Z-transform of 2n + 5 sin T _ 3a4,

Solution: We know that
.. n
Z(Zn +5sin %n - 3a4j =2Z(n) + 5Z (sm f) -3a*Z(1)

z sinTE
— Z .

=2 s +5 -3’
(z-1) 22—220052+1 z-1
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5z L
_ 2z 2 z
_(z—l)2+ 2 1 _3a4z—l
z —223+1
2z 52 3a’z

Ans.

C(z-1)? " J2(22 -J2z+1) z-1
Example 5: Find the Z-transform of (n — 1)%.
Solution: We know that
Z[(n =1)?]1=Z(n* = 2n + 1) = Z(n?) - 2Z(n) + Z(1)
%4z z z
@0 @) @D
_ % +7-21z-1)+2(z-1)°% _ ®-37% +4z
) (z-1)° -
Example 6: Find the Z-transform of sin (an + b), where a and b are constants.

Ans.

Solution: We know that
Z [sin (an + b)] = Z(sin an cos b + cos an sin b)
=cos b Z (sin an) + sin b Z (cos an)

zsina ) 72 —zcosa
:COSb.—2 +s|nb—2
z°—2zcosa+1 z°—2zcosa+1

_z(sinacoshb+zsinb—cosasinb)
2* —2zcosa+1

Z[sin (a—Db) + z sin b]

Thus Z[sin (an + b)] = 5 Ans.
z°—-2zcosa+1

Example 7: Find the Z-transform of the following:

@iy 2" (ii) sin 2n (iii)an*3

Solution: (i) We have Z(a") = —>—

z
Th Z(2") = ——
en (2" I

oo o an
Aliter: We have Z@") = 2 a"z" = 2 oy
n=0 n=0

Z(2") = i i—:=1+§+(§)2 +(§)3

n=0
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1 Z
=—~ =——. Ans
l_g -2
z
ii : zsin 6
(i) We have Z(sinng) = ———
z°—2zc0s0+1
Then Z(sin 2n) = ﬂL Ans.
z°-2zc0s2+1
(iii) We have Z(a"+3) = z(a"a%) = ad z(a")
_a’z
z—-a
adz
Thus, z(@"*3) = . Ans.
z—-a

Example 8: Find the Z-transform of the following:
(i) na" (i) n2 a",
Solution: (i) We have Z(n) = U(2) = ——
(z-1)

Using damping rule, we get

mo[Z2)Y_ zla _ a
Z(na)—U(a)— , 12_(z—a)2' Ans
(21
2
(i) We have (") =U(@) = (ZZ _+1)Zs

Using damping rule, we get

Z(n?a") =U (éj = (:‘)2 +(;) _az’ +a’z

o e

Example 9: Find the Z-transform of the following:
(i) cos no (i) a" cos n6
z

Solution: (i) We have Z(1) = U(z) = 1

Then Z(e"9 =7 [(eie)n .l} =U (e 2) (by damping rule)

ez oz 2(z-€")
= e = 6 T (5 _ a0 (7 _al®
e%% -1 z-¢ (z-e ") (z-¢"7)
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~ 22 —ze®
22 —z2(e"® +e ) +1
2 - -
. 2° —z(cos 6 +isin B)
or Z(cos nO —isin nB) =
( ) 72 —2z7c0s0+1

Compair on both sides real parts, we get

72 —7¢0s0

Z(cos ) = ——————. Ans.
z°—2zc0s6+1
(i) Let Z (cos nB) = U(2)
Then Z(a" cos no) = U (éj [by damping rule]

2o
B

2
Z°—azcoso
5 5 - Ans.
2 —2azcosO+a

Z(a" cos no) =

Example 10: Find the Z-transform of
(i) sinh n6 (ii) " sinh n6
Solution: (i) We have

no

-no
Z(sinh n6) = Z [%) =%[Z(ee)n -2(™*)"

_1) oz oz | _1z(z-e)-z2(z-¢%)
21z-¢® z-e®| 2 (z-e"@z-e)
1 z(e®-e®) 1  2zsinhe
) 72 _z(ee +e e)-4-1 " 272 -2zcosh0+1
= zsinh 6 Ans
z2°—2zcosho+1
(i) We have  Z(a" sinh n@) = Z[(a™t)™ sinh nB] = U (a'2) (By damping rule)
where U(z) = Z(sinh no)
azsinho

Z(a" sinh no) =
( ) (a?2)? —2(a*z)cosh @ +1
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(a" sinh nB) = — zasinh 0 5
7°—2azcosO+a

1
Example 11: Show that Z (mj =elZ

Hence, evaluate (i) Z (ﬁj (i) z (Lj

n+2!
Solution: We have

Ans.

1 - 1
Z| = :z _z*n:1+i£+ii2
nt) = n! 11z 2!z
= elZ . Hence proved.

1
+_
31z

(i) Shifting i' one unit to the left, we get
n!

1 _ i _ _ 1z _
z (Mj = Z{Z(n J l} =z(e 1)

D! one unit to the left, we get
+1)!

1 1
z ((n+2)!J:{Z((n +1)!)_1} =z [2(e¥*-1) - 1]

=72 -1-71. Ans.

(ii) Shifting

2
Example 12: If U(z) = % then find u, , u, and us.

(2+3z271+427%)

2
Solution: We have U (z) = 222 +3%+4 _ 1 —
z (1-3z7)

@-3°

Then by initial value theorem

i 12+3z271 44772
U, = lim =lim-————=
0 zl—>ooU(Z) zI—>O z (1—3271)3

u

12+32 4477

lim z[U@Z)-u]=limz=—" —— =
N [ () O] z->0 7 (1—3271)

Z—> o0

u, = lim z2[U(2) —u,—u, z7Y]

: 1 2+3z27t+4772 2
im g2 | L 23 A 2],
z— 00 z 1-3z7) z

1
_3 paas

ADVANCED MATHEMATICS
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o
W
1

lim 2[U@) -u,-u,zt-u,z?
Jim U@ -uy-u, u,z7]

-1 -2
lim 23| 12532 427 o 2 2o g3
Z—00 z 1-3z7) 7 2

1. Find the Z-transform of the following:

(i) 5 (if) sin 3n (iii) (n + 1)2
q .. ALY L ale™?
(iv) (cos 6 + i sin Q)" (V) 3n—4sin e + 5a (vi) -
(vii) sin (n + 1) 0 (viii) sinh ("7“) (iX) cos ('%“ + g) .
2. Find the Z-transform of the following:
(i) ea" (ii) nea" (iii) n2ea",
Find the Z-transform of (i) sin n® (ii) a"sin n6
4. Find the Z-transform of (i) cosh n® (ii) a" cosh no.
5. Find the Z-transform of (i) cos (%ﬂ + g) (ii) cosh (%ﬂ + e).

6. Find the Z-transform of n sin no.

272 +52+14
(-1

8. Find the Z-transform of et sin 2t.

7. IfU@) = , find uy, u;, u, and u,.

(z3 +2) cos 0 — 27°
(2> —2zcos O +1)°

9. Using Z(n) = ﬁ show that Z(n cos n6) =

(z2 +2)

3,2
-1 show that Z[(n + 1)2] = (Z+2%)

@z-1°"

10. Using Z(n?) =
11. Find Z (- 2" sin n@).

z z .
12. 1t Z{u }= o + .1 then find Z{u, , ,}.

13. Find the Z-transform of unit impulse function which is given by

o =

n

1 ifn=0
0 ifnz0"
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2.11. INVERSE Z-TRANSFORM

It is denoted by z*U(z) = u_ and defined as u, = 271 [U(z)] = Z* {Z U, z”].
n=0

2.12. CONVOLUTION THEOREM

If ZY[U(2)] = u, and Z1 [V(2)] = v, then Z[U (2). V(2)] = 2 Un Voom = U, * Vv,
m=0

Where, the symbol = denotes the convolution operation.

Proof: We have  Z (u ) =U(z) = 2 u,z" and  Z(v,) =V(z) = 2 VaZ "
n=0 m=0

U(z) V(2) = i uz " i vz "
n=0 n=0

= -1 —2 -n
=(Up+ Uz + U,z + U 27 )
-1 -2 -n
X (Vo +ViZ+ V270 + L, +v iz )
= 2 (UgVy + Vg + e Uy +UpVp)Z "
n=0

n
=Z(UgV, F UV, F o +U, vV, FUV) =2 [2 Un vnmJ
m=0

n
Hence Z1[U@@) V(2)] = 2 Un Va_m. Hence proved.
m=0

SOLVED EXAMPLES

2

zZ
(-2

Example 1: Find Z1 { } by convolution theorem.

2
Solution: We have Zz71 { z 2} =2n
Z p—

i (= o]
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n
=y 2mem (By Convolution theorem)

n n
=2ny 2mom=2n Y 1=2"(n+1). Ans.
n=0 n=0

2

Example 2: Using convolution theorem evaluate Z* |
(z-a)(z-b)

Solution: We have Z1 {L} =a" and Z1 {Z} =pn

z-a z-b
Y RS NS B SV
(z-a)(z-D) z—-a z-b
= a""" (By Convolution theorem)
— bn i (E)m — br‘l l+E +(a)2 + +(a)n
& \b) b (b)) 7 b

( ) _ {“*1 b“”}
- a_ b"(a—b)
b

2 n+1 n+1
a‘t-b
z1 { Z } = . Ans.

(z-a)(z-h) a-b

Example 3: Find Z! | — 22(222 -1 :
z°—-52°+8z2-4

Solution: We have

22(2z-1)  22(2z-1)
22522 +482-4 (z-1)(z-2)?
2z 27 6z

= @D - 2 + Z-2° (By partial fraction)

Then. Z_ILS 22(22 - 1) }: Z‘{ 22 2z 6 }

-5z +82-4 2-1 z1-2 (z2-2)

ey | 2 4|22
_221{2_1}—221{2_2}32{(2_2)2}

=2.1"-22"+3n.2". Ans.
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27% + 32
(z+2)(z-4)

222432 1z +1l( z)

Examples 4: Find the inverse Z-transform of

Solution: We have

(z+2)(z—4)_g(z+2) 6lz-4
2
Then 71| 2| _ga {lz+llz}
(z+2)(z-4) 6z+2 6 z-4
1 11
==(2)"+— (4)". Ans.
S 2"+ (@) Ans

Example 5: Find the inverse Z-transform of log (LJ by power series method.
Z+

z

_ [1_1+1 }
olz 222 3T

oo n
L LS e

Solution: We have U(z) = log I Iog;z— log (1+1)
z+1 (l+l) z

n=0 n
Z1 [U(@)] = {Z ]
= u, = —b)" Ans.
Example 6: Find Z* S — |z]|>2.
z-D@Ez-2
z 2 1

Solution: We have U(z) = = _
@ (z-D)(z-2) z-2 z-1

. 2
Since, |z|>2 = |z|>1 and ‘;

Now U()= 2 ___1 . 2(1—2)1 —1(1—1)1
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Now coefficient Zh=2"1_1 n>1
71 [U@)] = {2"1- 1)}.  Ans.

1. Use convolution theorem, to evaluate inverse Z-transform of the following:

z

: ? - 22
0[] T}

n
2. Provethati*izz—.
n! n! n!

3. Find the inverse Z-transform of the following:

- 2-20z N
Oeren o

, (i) ————.
(z-12) (z+3)° (z-2)

. . z
4. Find the inverse Z-transform of ————.
z°+11z2+24

5. mwz{atﬁétgymm|u<umzqu3mmzpa
6. Find the Z1 {(Z +22)2 } 7. Evaluate Z1 {(2_2)2(22_1)}
2
8. Find the inverse Z-transform of U(z) = 1 £ 1
(=3)=3)
NS el
)5 <lzl<y (i) |z]< 3.
9. ObtainZ‘l{ 22 2} . lz|>2.
(z-2)
ANSWERS
1. (i) a"(n+1) anﬂflgi
o —
L1 - o1 1 1
3. (|)E(2”+2.n2 2m) — 4n (i) {n} {|||)_2—5 _3)n_g n(_3)n+2_5 on

1 n n
4. 5137 -8y
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(1 0z 2 7 1z 22 2
5 ()- §+3—2+3—3+3—4 ..... + E+2_2+?+2_4 ......

(i) (-2 n>0 (iii) {(3'1—162”_1) :fé
6. e ines i
o< -3 o4(2] (3]

9. {n.2"}.

2.13. SOLUTION OF DIFFERENCE EQUATION BY Z-TRANSFORM

Example 1: Using the Z-transform, Solve y, ,, — 5y, ., + 6y, = u, withy, =0,y, = land u, =1 for
n=0,12,....

Solution: We havey, ., -5y, +6y, =u, ...(2.5)
with y,=0,y,=landu =1forn=0,1,2, ...
Taking the Z-transform on both sides of (2.5), we have
Z(Yy 13 = Yt 6Y,) = Z(u,)

or Z(Y, +,) = 5Z(Y, , 1) — 6Z(y,) = Z(1)

or V(@) -y, - Y,z - 52[Y(@) - Yol - 6Y(2) = ﬁ [ Z(y,) = Y@
or (22—52+6)Y(z):i+z [ ¥,=0y,=1]
or Y(z) = z

(z-1) (2> -5z +6)

Z2

z-)(z-2)(z-3)
Taking inverse Z-transform, on both sides, we get

Z(y,) =

o]
n z-D(z-2)(z-3)
:z—l{l : -2 : +§ : }
2 (z-1 (z-2) 2(z-3)
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Y R 9,1 z +§z’1 z
T2t S| T =2 T 2 7-3

1 3
Ya= 73 - 1-22)"+ 2 (3)". Ans.

Example 2: Solvey, ., -3y, ,— 4y, = 3" by Z-transform.
Solution: We have vy, ,-3y,,,—4y,=3" ...(2.6)
Taking the Z-transform on both sides of (2.6), we get

2o = 3Yn4q — Y] = Z[37]

or Zlyy ) - 320y ] - 42l = [+ Z0,) = y@)]
or Z0Y@) - Yo - ¥i2 ] - 320V - vl - YD) = T [ 207 = Q)
or (2-32-4)Y(2) = ZTZ;), + (22 - 32)y, + 2y,
_ z z2(z-73) z
or Y(z)—(2_3)(22_32_4)+22_32_4y0+22_32_4y1
z N 2(z-3) z

T3 D=8 4= TG De-a"

e i e I P P B |

SR | [ | (I iy P o Yo
4\1z2-3 5{z-4 20l z+1 51z-4 51z+1

N 1( z )} 1 z
5lz-4) 5lz+1)|
Taking inverse Z-transform on both sides, we get

O e e B E e B 2

1 1 1 1 4 1 1
:_73n+_4n+__1n+ _4n __ln + 74“_7_1[1
R e P e

_ o (1Y W) (1+4Vo_y1)_n
"43+(5+5+5)4+20 5 5)D

1
Y= 23“ +c4"+c, (-1)" Ans.
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Example 3: Solvey, ., + 2y ., +y,=n with y,=0=y,.
Solution: We have 'y, ,,+2y,,,;+Yy,=n ..(2.7)
with y,=0,y,=1
Taking the Z-transform on both sides of (2.7), we get
ZIY, + 5 Yy eq * Vol = 2I0]
z

or Ly, . 1 +2Z[y, . 1+ Zly ] = W

or 22 [Y(@) - Yo -,z + 22[Y(2) - Yol + Y(2) = ﬁ [ Zly,] = Y(@)]
2

or (Z2+22+1)y(2) = (g

or Y(z) = Z

(z-1)%*(z+1)?

_1 2 z z z
Y(Z)_Z{ z—1+(z—1)2+z+1+(z+1)2}

Taking inverse Z-transform on both sides, we get

y, = % [-@O"+n+(=1)"=n(-1)" = % (n-H[I-CDT Ans

Solving the following difference equation:

1 1\ i .
1. yn+1+zyn:(z) n>0withy=0. 2.6y, Yr+1-Y,=0 given y,=0,y, =1
yn+2_4yn+1+3yn:Sn' 4"yn+2+6yn+1+gynZZnWith y0:0:yl'
Yoo —4y,=n-1 6. Y., 4y, +3y,=3" with y,=0,y, =1

yn+2_2yn+1+yn:nzzn'

ANSWERS
_ (1Y 1Y 5 (1)”_(_1)”
Ly =2(1) 1) 2= 2|(3)'-(-
1 1 5
3. yn:cl+023”+§5“. 4.yn:2—5[2”—(—3)”+§n(—3)”}
5 = 2n+(c +l) 2n+1 1n1 6 —§(1)n+i3n 3( 3)n
+ T4 2%g) D" gy T T T ¢

7. y,=c,*nc,+ (n?—8n+20)2".



Table 1
(Area under standard normal curve from 0 to Z)

0 z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 1141
0.3 1179 1217 .1255 1293 1331 .1368 .1406 .1443 .1480 1517
0.4 .1554 1591 .1628 .1664 .1700 1736 1772 .1808 .1844 .1879
0.5 1915 .1950 .1985 .2019 .2054 .2088 2123 .2157 .2190 2224
0.6 .2257 2291 .2324 .2357 .2389 2422 .2454 .2486 .2517 .2549
0.7 .2580 .2611 .2642 .2673 .2704 2734 2764 2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 3133
0.9 .3159 .3186 3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621
11 .3643 .3665 .3686 .3708 3729 3749 3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 4015
1.3 .4032 4049 4066 .4082 4099 4115 4131 A147 4162 A177
1.4 4192 4207 4222 4236 4251 4265 4279 4292 4306 4319
1.5 4332 4345 4357 4370 4382 4394 4406 4418 4429 4441
1.6 4452 4463 4474 4484 4495 .4505 4515 4525 4535 4545
1.7 .4554 .4564 4573 .4582 4591 .4599 4608 4616 4625 4633
1.8 4641 4649 .4656 4664 4671 4678 4686 4693 4699 4706
1.9 4713 4719 4726 4732 4738 4744 4750 4756 4761 A767
2.0 AT72 4778 4783 4788 4793 4798 4803 4808 4812 4817
2.1 4821 4826 .4830 4834 4838 4842 4846 4850 4854 4857
2.2 4861 .4864 .4868 4871 4875 4878 4881 4884 4887 4890
2.3 .4893 .4896 .4898 4901 4904 4906 4909 4911 4913 4916
2.4 4918 4920 4922 4925 4927 4929 4931 4932 4934 4936
2.5 .4938 .4940 4941 4943 4945 4946 4948 4949 4951 4952
2.6 4953 .4955 4956 4957 4959 4960 4961 4962 4963 4964
2.7 4965 .4966 4967 4968 4969 4970 4971 4972 4973 4974
2.8 4974 4975 4976 4977 4977 4978 4979 4979 4980 4981
2.9 4981 .4982 .4982 .4983 4984 4984 4985 4985 4986 4986
3.0 .4987 .4987 .4987 .4988 .4988 .4989 4989 4989 4990 4990
3.1 .4990 4991 4991 4991 4992 4992 4992 4992 4993 4993
3.2 .4993 .4993 4994 4994 4994 4994 4994 4995 4995 4995
3.3 4995 4995 4995 4996 4996 4996 4996 4996 4996 .4997
3.4 .4997 4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998
3.6 .4998 .4998 4999 4999 4999 4999 4999 4999 4999 4999
3.9 .5000
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