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Preface

We feel happy and honoured while presenting this book “Advanced Mathematics” for engi-
neering students studying in B. Tech. IV Semester (EE and EC Branch) of Rajasthan Technical
University and all Indian Universities. In this book we have presented the subject matter in very sim-
ple and precise manner. The treatment of the subject is systematic and the exposition easily under-
standable. All standard examples have been included and their model solutions have also been given.

This book falls into five units:

In first and second unit we have discussed the Numerical Analysis. The unit I deals with Finite
Difference—Forward, Backward and Central difference, Newton’s formula for Forward and Backward
differences, Interpolation, Stirling’s formula and Lagrange’s interpolation formula. Solution of non-
linear equations in one variable by Newton-Raphson method, Simultaneous algebraic equation by Gauss
and Regula-Falsi method, Solution of simultaneous equations by Gauss elimination and Gauss Seidel
methods, Fitting of curves (straight line and parabola of second degree) by method of least squares
are also discussed.

In unit II, we have discussed Numerical differentiation, Numerical Integration, Trapezoidal rule,
Simpson’s one-third and three-eighth rules. Numerical solution of ordinary differential equations of
first order, Picard’s method, Euler’s and modified Euler’s methods. Miline’s method and Runga-Kutta
fourth order method, Simple linear difference equations with constant coefficients are also discussed
in the unit.

Unit III deals with the special functions, Bessel’s functions of first and second kind, Simple
recurrence relations, Orthogonal property of Bessel’s transformation and generating functions.
Legendre’s function of first kind, Simple recurrence relations, Orthogonal property and generating
function are also discussed.

In unit IV, the basic principles of probability theory is given in order to prepare the background
for its application to various fields. Baye’s theorem with simple applications, Expected value, Theo-
retical probability distributions—Binomial, Poisson and Normal distributions are discussed.

Unit V deals with Lines of regression, concept of simple Co-relation and Rank correlation. Z-
transforms, its inverse, simple properties and application to difference equations are also discussed.

We are grateful to New Age International (P) Limited, Publishers and the editorial department
for their commitment and encouragement in bringing out this book within a short span of period.
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In this unit, we shall discuss finite differences, forward, backward and central
differences. Newton’s forward and backward differences interpolation formula,
Stirling’s formula, Lagrange’s interpolation formula.

The unit is divided into five chapters:

The chapter first deals with the forward, backward, central differences and relation
between them, fundamental theorem of the difference calculus, factorial notation
and examples.

Chapter second deals with interpolation formula of Newton’s forward, Newton’s
backward, Stirling’s for equally width of arguments, and Lagrange’s formula for
unequally width of arguments.

Chapter third deals with solution of linear simultaneous equation by Gauss
elimination and Gauss-Seidel method.

Chapter fourth deals with solution of algebraic and transcendental equation by
Regula-Falsi and Newton-Raphson method.

Chapter fifth deals with fitting of curves for straight line and parabola of second
degree by method of least squares.
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Numerical analysis has great importance in the field of Engineering, Science and Technology etc.

In numerical analysis, we get the result in numerical form by computing methods of given data.
The base of numerical analysis is calculus of finite difference which deals with the changes in the
dependent variable due to changes in the independent variable.

	
	
���������������

Suppose the function y = f(x) has the values y0, y1, y2, ...... yn for the equally spaced values x = x0, x0 + h,
x0 + 2h, ..... x0 + nh. If y = f (x) be any function then the value of the independent variable ‘x’ is called
argument and corresponding value of dependent variable y is called entry. To determine the value of y

and 
dy

dx
 for some intermediate values of x, is based on the principle of finite difference. Which requires

three types of differences.

	
�
�����������������

The differences y1 – y0,  y2 – y1, ..... yn – yn – 1 are called the first forward differences of the function
y = f (x) and we denote these difference by ∆ y0, ∆ y1 ..... ∆ yn, respectively, where ∆ is called the
descending or forward difference operator.

In general, the first forward differences is defined by

 ∆yx = yx + 1 – yx

The differences of the first forward differences are called the second forward differences and
denoted by ∆2y0, ∆

2y, etc.

CCCCCHAPTERHAPTERHAPTERHAPTERHAPTER     11111
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Therefore, we have ∆2y0 = ∆ [y1 – y0]

= ∆y1 – ∆y0

= (y2 – y1) – (y1 – y0)

= y2 – 2y1 + y0

Similarly,   ∆2y1 = ∆[y2 – y1] = (y3 – y2) – (y2 – y1) = y3 – 2y2 + y1

In general, we have ∆2yx = ∆yx + 1 – ∆yx

Again, the differences of second forward differences are called third forward differences and
denoted by ∆3y0, ∆3y1 etc.

Therefore, we have ∆3y0 = ∆2y1 – ∆2y0

= (y3 – 2y2 + y1) – (y2 – 2y1 + y0)

= y3 – 3y2 + 3y1 – y0 and so on

In general, the nth forward difference is given by

∆n yx = ∆n –1 yx + 1 – ∆n –1 yx

Forward Difference Table

Argument Entry First Differences Second Differences Third Differences Fourth Differences

x y = f(x) ∆y ∆2y ∆3 y ∆4y

x0 y0

y1 – y0 = ∆y0

x0 + h y1 ∆y1 – ∆y0 = ∆2y0

y2 – y1 = ∆y1 ∆2y1 – ∆2 y0 = ∆3 y0

x0 + 2h y2 ∆y2 – ∆y1 = ∆2y1 ∆3y1 – ∆3y0 = ∆4 y0

y3 – y2 = ∆y2 ∆2y2 – ∆2 y1 = ∆3 y1

x0 + 3h y3 ∆y3 – ∆y2 = ∆2y2

y4 – y3 = ∆y3

x0 + 4h y4

	
�
������������������

The differences y1 – y0, y2 – y1, ....., yn – yn – 1  are called the first backward differences of the function
y = f (x) and we denote these differences by ∇y1, ∇y2, ....., ∇yn , respectively, where ∇ is called the
ascending or backward differences operator.

In general, the first backward difference is defined by

  ∇yx = yx – yx – 1

The differences of the first backward differences are called second backward differences and
denoted by ∇2y2, ∇

2y3, etc.

Therefore  ∇2y2 = ∇(y2 – y1) = ∇y2 – ∇y1

= (y2 – y1) – (y1 – y0) = y2 – 2y1 + y0
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In general, we have ∇2yx = ∇yx – ∇yx – 1

Again the differences of second backward differences are called third backward differences and
denoted by ∇3y3, ∇

3y4 etc.

Therefore, we have ∇3yx = ∇2yx – ∇2yx – 1

In general, the nth backward differences is given by

  ∇nyx = ∇n–1yx – ∇n–1yx –1

Backward Differences Table

Argument Entry First Diff. Second Diff. Third Diff. Fourth Diff.
x y = f(x) ∇y ∇2y ∇3y ∇4y

x0 y0

y1 – y0 = ∇y1

x0 + h y1 ∇y2 – ∇y1 = ∇2y2
y2 – y1 = ∇y2 ∇2y3 – ∇2y2 = ∇3 y3

x0 + 2h y2 ∇y3 – ∇y2 = ∇2 y3 ∇3y4 – ∇3y3 = ∇4y4

y3 – y2 = ∇y3 ∇2y4 – ∇2 y3 = ∇3 y4

∇y4 – ∇y3 = ∇2y4
x0 + 3h y3

y4 – y3 = ∆y4

x0 + 4h y4

�	
�
����������������

The differences y1 – y0 =  δ y1/2, y2 – y1 = δ y3/2,.....,  yn – yn –1 = δyn–1/2 are called central differences and
δ is called central difference operator.

Similarly δy3/2 – δy1/2 = δ2y1

δy5/2 – δy3/2 = δ2y2

and δ2y2 – δ2y1 = δ3 y3/2 and so on.

The Central Difference Table

Argument Entry First Diff. Second Diff. Third Diff. Fourth Diff.

x y = f(x) δy δ2y δ3y δ4y

x0 y0
δy1/2

x1 y1 δ2y1
δy3/2 δ3y3/2

x2 y2 δ2y2 δ4y2

δy5/2 δ2y5/2
x3 y3 δ2y3

δy7/2

x4 y4
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�
����������������

The shift (increment) operator E is defined as

 Eyx = yx + h

 E2yx = yx + 2h

 � �

 Enyx = yx + nh

The inverse operator E–1 is defined as

 E–1 yx = yx + (– h)  = yx – h.

	
�
��������������������������

(i) We know that ∆yx = yx+h  – yx = Eyx – yx

 ∆yx = (E – 1) yx

∴ ∆ = E – 1

or   E = ∆ + 1

(ii) We have  ∇yx = yx – yx – h = yx  – E–1 yx

 ∇yx = (1 – E–1) yx

∴ ∇ = 1 – E–1

or    E–1 = 1 – ∇
(iii) We have E∇yx = E ( yx – yx –h) = Eyx – Eyx–h = yx+h – yx

    E∇yx = ∆yx

E ∇ = ∆ ...(i)

Again ∇Eyx = ∇yx+h = yx +h – yx

∇Eyx = ∆yx

or    ∇E = ∆ ...(ii)

By (i) and (ii)    E∇ = ∇E = ∆

(iv) Since δ yx = yx + h/2 – yx – h/2 = E1/2yx – E–1/2 yx

 δ yx = (E1/2 – E–1/2) yx

Thus  δ = E1/2 – E–1/2

(v) We have  ∆yx = yx + h – yx

= Eyx – yx = (E – 1) yx

= (E1/2 – E–1/2) E1/2 yx
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 ∆yx = δ E1/2 yx

⇒ ∆ = δ E1/2

(vi) We have  E f(x) = f(x + h)

= f (x) + hf ′(x) + 
h2

2 !
 f ″ (x) + ... [By Taylor’s Theorem]

= f (x) + hD f(x) + 
h2

2 !
D2 f(x) + ....

= 1
2

2
2+ +

�

��
�

��
hD

h
D

!
.....   f (x)

   E f (x) = ehD f(x)

E = ehD

(vii) We have (1 + ∆) (1 – ∇) f(x) = (1 + ∆) (f(x) – ∇ f(x))

= (1 + ∆) [f(x) – (f(x) –  f(x – h))]

= (1 + ∆) f(x – h) = E f(x – h)

  (1 + ∆) (1 – ∇) f(x) = f(x)

Thus (1 + ∆) (1 – ∇) = 1

	
�
����������������������������������������

If f(x) be a polynomial of nth degree in x, then the nth difference of f(x) is constant and ∆n+1  f(x) = 0.

Proof. Consider the nth degree polynomial

  f (x) = A0 + A1x + A2x
2 + ..... + Anx

n

where A0,  A1, A2, ..... An are constants and n is a positive integer.

By the definition, we have

∆f(x) = f(x + h) – f(x)

= [A0 + A1 (x + h) + A2 (x + h)2 + ..... An (x + h)n] – [A0 + A1x + A2x2 + ..... + An x
n]

= A1 h + A2 [(x + h)2 – x2] + A3 [(x + h)3 – x3] + ...... + An [(x + h)n – xn]

= A1 h + A2 [x
2 + 2C1 x h + h2 – x2] + A3[x

3 + 3C1 x
2 h + 3C2 x h2 + h3 – x3] + .....

+ An [xn + nC1 x
n–1 h + nC2 x

n – 2 h2 + ... + nC n h
n – xn)

 ∆f (x) = B1 + B2x + B3x2 + ..... + Bn–1 xn–2 + n Anh xn– 1 ...(1.1)

where B1, B2 ..... Bn – 1 are constants

By (1.1), we see that the first difference of a polynomial of degree n is again a polynomial of
degree (n – 1).
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Again ∆2f(x) = ∆f (x + h) – ∆f(x)

= B1 + B2 (x + h) + B3 (x + h)2 + ..... + Bn–1 (x + h)n –2 + nAnh (x + h)n–1

– [B1 + B2x + B3 x2 + ..... + Bn – 1 xn – 2 + n Anh xn–1]

= B2 h + B3 [(x + h)2 – x2] + B4 [(x + h)3 – x3] + ......

+ Bn–1[(x + h)n–2 – xn–2] + n Anh [(x + h)n–1 – xn –1]

= B2 h + B3 [ x2 + 2C1  x h + h2 – x2] + B4 [x3 + 3C1 x
2 h

+ 3C2 x h2 + h3 – x3] + ..... + Bn – 1 [xn – 2 + n–2C1 x
n–3 h

+ n–2C2 xn –3 h2 + ...... + n–2Cn–2 hn – 2 – xn – 2 ]

+ nAn h  [xn–1 + n–1C1 x
n – 2 h + n–1C2 x

n–3 h2 + ... + n–1Cn–1 h
n – xn–1]

= C2 + C3 x + C4 x
2 + ...... + Cn – 1 x

n–3 + n(n – 1) h2 An xn –2 ...(1.2)

where C2, C3, ....., Cn – 1 are constants

By (1.2) we see that the second difference of a polynomial of degree n is again a polynomial of
degree (n – 2)

Proceeding in the same way, we will get a zero degree polynomial for the nth difference

i.e.,  ∆n f(x) = n(n – 1)  (n – 2) .... 1 hn an x
n – n = n ! hn an

Thus, nth difference is constant

Now   ∆n+1 f (x) = ∆[∆n f(x)] = ∆ [n ! hn an] = 0 [� ∆C = 0]

	
�
�������������������

A product of the form x (x – h) (x – 2h) ...... (x – (n – 1) h) is called factorial function and denoted by x(n).

Thus x(n)  = x(x – h) (x – 2h) ..... (x – (n – 1) h).

If interval  of differencing is unity.

Then x(n) = x(x – 1) (x – 2) (x – 3) ..... (x – (n – 1))

	
�
 �������������∆����� �!���"��� ��� ∆�#	���� �!�$

Proof. By the definition of ∆ we have
 ∆x(n) = (x + h)(n)  – x(n)

= (x + h) (x + h – h) (x + h – 2h) ..... (x + h – (n – 1)h)

– x(x – h) (x – 2h) ...... (x – (n – 1)h)
= (x + h)x (x – h) (x – 2h) ..... (x – (n – 2)h)

–  x(x – h) (x – 2h) ..... (x – (n – 2)h) (x – (n – 1)h)
= x (x – h) (x – 2h) ..... (x – (n – 2)h) ((x + h) – (x – (n – 1)h)

= x(n – 1) nh = nh  x(n –1)
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Again  ∆2x(n) = ∆∆x(n) = ∆[ nhx(n – 1)] = nh ∆ x(n – 1) = nh [(x + h)(n – 1) – x(n – 1)]

= nh [(x + h) (x + h – h) (x + h – 2h) ..... (x + h – (n – 2)h)

– x (x – h) (x – 2h) ...... (x – (n – 2) h]

= nh [(x + h) x (x – h) (x – 2h) ..... (x – (n – 3)h)

– x (x – h) (x – 2h) ..... (x – (n – 3) h) (x – (n – 2) h)]

= nh x(x – h) (x – 2h) ...... (x – (n – 3)h) [x + h – (x – (n – 2) h)

= nh x(n – 2) (n – 1) h

= n (n – 1)h2 x(n – 2)

Proceeding in the  same way, we get

 ∆n x(n) = n (n – 1) (n – 2) ...... 1 hn x(n–n) = n ! hn

Again  ∆n + 1 x(n) = ∆(∆n xn) = ∆(n ! hn) = 0

	
	$
��������������%�&�#�'( �!�%�& �#�'�
	
�∆%�& �#�'�

�
�∆��%�& �#�




�#�'�

'
�∆'��%�& 

We shall prove this by the method of mathematical induction

We have ∆f (a) = f (a + h) – f (a)

∴ f (a + h) = ∆f(a) + f (a) = f (a) + ∆f (a) it is true for n = 1

Again  ∆f (a + h) = f(a + 2h) – f (a + h)

∴   f(a + 2h) = ∆f(a + h) + f(a + h)

= ∆ [∆ f(a) + f(a) ] + ∆f(a) + f(a)

= f(a) + 2∆f(a) + ∆2 f(a)

 f (a + 2h) = f(a) + 2C1 ∆ f(a) + ∆2 f(a)

It is true for n = 2

Similarly      f (a + 3h) = ∆f (a + 2h) + f (a + 2h)

= ∆ [f(a) + 2∆f(a) + ∆2 f(a)] + [f(a) + 2∆f(a) + ∆2 f (a)]

= f(a) + 3∆ f(a) + 3∆2 f(a) + ∆3f(a)

f(a + 3h) = f(a) + 3C1 ∆ f(a) + 3C2 ∆2 f(a) + ∆3 f(a)

It is true for n = 3

Now Assume that it is true for n = k  then

f(a + kh) = f(a) + kC1 ∆f(a) + kC2 ∆
2 f(a) + ...... + kCk ∆k f(a)

Now we shall show that this result is true for n = k + 1

Now f(a + (k + 1) h) = f(a + kh) + ∆f (a + kh)

= [f(a) + kC1 ∆f (a) + kC2 ∆2 f(a) + ...... + kCk ∆
k f(a)]

+ ∆ [ f(a) + kC1 ∆f (a) + kC2 ∆
2 f (a) ...... kCk ∆

k  f(a)]
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= f(a) + [kC1 + 1] ∆f(a) + [kC2
 + kC1] ∆2 f(a)

+ [kC3
 + kC2] ∆

3 f(a) + ...... + ∆k +1f(a).

f (a + (k + 1) h) = f (a) + k +1C1 ∆f (a) + k +1C2∆2f (a) + k +1C3∆
3f (a) + ......... + ∆k + 1f (a)

Hence the result is true for n = k + 1 [� kCr + kCr + 1 = k +1Cr + 1]

So by the principle of mathematical induction it is true for all n, we have

  f (a + nh) = f (a) + nC1 ∆f (a) + nC2∆
2 f(a) + ......... + nCn∆n f (a)

���������	
����

Example 1. Prove that ∆3 ≡ E3 – 3E2 + 3E – 1.

Solution. By the definition we have

 ∆f(x) = f(x + h) – f(x), E f (x) = f(x + h)

and En f(x) = f(x + nh) ...(i)

∴ ∆2 f(x) = ∆[f(x + h) – f (x)] = f(x + 2h) – 2f(x + h) + f(x)

and  ∆3f(x) = ∆[f(x + 2h) – 2f (x + h) + f(x)]

= f(x + 3h) – 3f (x + 2h) + 3f(x + h) – f (x)

= E3f(x) – 3E2 f (x) + 3E f (x) – f(x) [Using (i)]

∆3 f(x) = (E3 – 3E2 + 3E – 1) f(x)

or  ∆3 ≡ E3 – 3E2 + 3E – 1. Hence proved.

Example 2. Evaluate

(i) ∆ cosh (a + bx) (ii) ∆ tan–1 ax

Solution. (i) By the definition of ∆, we have

 ∆ cosh (a + bx) = cosh (a + b(x + h)) – cosh (a + bx)

= 2 sinh 
a b x h a bx+ + + +( )

2
 sinh 

a b x h a bx+ + − −( )

2

= 2 sinh a bx
bh+ +�

�
�
�2

 sinh bh

2
�
�
�
�

Ans.

(ii) By the definition of ∆, we have

∆ tan–1 ax = tan–1 a(x + h) – tan–1 ax

= tan–1 a x h ax

a x h ax

( )

( )

+ −
+ +1

 = tan–1 
ah

a x a xh1 2 2 2+ +
�
��

�
��

. Ans.

Example 3. Evaluate:

(i) ∆2(3ex) (ii) ∆ [Sin (ax + b)].
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Solution. (i)   ∆2 [3ex] = 3∆2 [ex] = 3 ∆ . ∆ [ex] = 3∆ [ex + 1 – ex]

= 3[ex + 2 – ex + 1 – ex + 1 + ex]

= 3[e2 – 2e + 1]ex = 3(e – 1)2 ex

(ii) By the definition of ∆, we have

  ∆[sin (ax + b)] = sin (a (x + h) + b) – sin (ax + b)

= 2 cos 
a x h b ax b( )+ + + +�
�

�
�2

 × sin 
a x h b ax b( )+ + − +�
�

�
�2

= 2 cos ax b
ah+ +�

�
�
�2

 sin 
ah

2
.

Example 4. Evaluate ∆ (3x + e2x + sin x).

Solution. By the definition of ∆, we have

 ∆(3x + e2x + sin x) = [3(x + h) + e2(x + h) + sin (x + h)] – [3x + e2x + sin x]

= 3h + e2x [(e2h – 1) + 2 cos 
x h x x h x+ +�
�

�
�

+ −
2 2

sin

= 3h + e2x(e2h – 1) + 2 cos x
h h+�

�
�
�

�
�
�
�2 2

sin .

Example 5. Evaluate ∆ [e2x log 3x].

Solution. We have ∆ [f(x) g(x)] = f(x + h) ∆g(x) + g(x) ∆f(x)

Take  f(x) = e2x, g(x) = log 3x

then  ∆ (e2x log 3x) = e2(x + h) ∆ log 3x + log 3x ∆ e2x

= e2(x + h) [ log 3(x + h) – log 3x] + log 3x . (e2(x + h) – e2x)

= e2x e
h

x
e xh h2 21 1 3log ( ) log+�

�
�
�

+ −�
�	



��

.

Example 6. Evaluate ∆n (eax + b), h = 1.

Solution. We have ∆ f(x) = f(x + 1) – f(x)

∴ ∆eax + b = ea (x + 1) + b – eax + b = eax + b (ea – 1)

Again  ∆2 eax + b = ∆(∆eax + b) = ∆ [eax + b (ea – 1)]

= (ea – 1) ∆eax + b = (ea – 1) eax + b (ea – 1)

= (ea – 1)2 eax + b

Proceeding in the same way, we get

 ∆n(eax +b) = (ea – 1)n eax + b.

Example 7.  Show that ∆ryx = ∇ ryx+r .

Solution.  ∇r yx + r = (1 – E–1)r yx +r [� ∇ ≡ 1 – E–1]
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= 
E

E

r−�
�

�
�

1
 yx+r = (E – 1)r E–r yx +r

= (E – 1)r yx [� ∆ = E – 1]

= ∆r yx. Hence proved.

Example 8. Prove that ∆ log f(x) = log 1
f(x)

f(x)
+

�

�
	




�
�

∆
.

Solution. By the definition of ∆, we have

 ∆ log f(x) = log f(x + h) – log f(x)

= log 
f x h

f x

E f x

f x

( )

( )
log

( )

( )

+ =
�

�
	




�
�

= log 
( ) ( )

( )

1 +�

�
	




�
�

∆ f x

f x
[� E = 1 + ∆]

= log 
f x f x

f x

( ) ( )

( )

+�

�
	




�
�

∆
 = log 1 +

�

�
	




�
�

∆f x

f x

( )

( )
Hence proved.

Example 9. Evaluate 
∆2

E

�

��
�

��
x3 , h = 1.

Solution. We have 
∆2

E

�

��
�

��
x3 = 

( )E I

E

−�

�
	




�
�

2

x3 = 
E I E

E

2 2+ −�

�
	




�
�x3

= [E + E–1 – 2I] x3 = (x + 1)3 + (x – 1)3  – 2x3

= x3 + 3x2 + 3x + 1 + x3 – 3x2 + 3x – 1– 2x3 = 6x.

Example 10. Evaluate ∆3 (1 – x) (1 – 2x) (1 – 3x), h = 1.

Solution. Here f(x) = (1 – x) (1 – 2x) (1 – 3x)

= 1 – 6x + 11x2 – 6x3

which is a polynomial of degree 3 in x

∴ ∆3 f(x) = ∆3(1 – 6x + 11x2 – 6x3)

= 0 – 6.0 + 11.0 – 6 . 3! = – 36.

Example 11. If

x 1 2 3 4 5

y 2 5 10 20 30

find by forward difference table ∆4 y(1).



CALCULUS OF FINITE DIFFERENCES 13

Solution. First, we form forward difference table

x y = f(x) ∆y ∆2y ∆3y ∆4y

1 2
3

2 5 2
5 3

3 10 5 – 8
10 – 5

4 20 0
10

5 30

By above we observe that ∆4y(1) = – 8.

Example 12. Represent the function f(x) = x4 – 12x3 + 42x2 – 30x + 9 and its successive differ-
ences into factorial notation.

Solution. Let x4 – 12x3 + 42x2 – 30x + 9 = Ax(4) + Bx(3) + Cx(2) + Dx(1) + E

= Ax (x – 1) (x – 2) (x – 3) + Bx(x – 1) (x – 2) + Cx (x – 1) + Dx + E ...(i)

where A, B, C, D and E are constants . Now, we will find the value of these constants

Putting x = 0 in (i) we get, E = 9

Again putting x = 1 in (i), we get 1 – 12 + 42 – 30 + 9 = D + E

⇒  D = 1

Putting x = 2 in (i), we get 16 – 12 × 8 + 42 × 4 – 30 × 2 + 9 = 2C + 2D + E

⇒ C = 13

Putting x = 3 in (i), we get 81 – 12 × 27 + 42 × 9 – 30 × 3 + 9 = 6B + 6C + 3D + E

⇒   B = – 6

Equating the coefficient of x4 on both sides, we get A = 1. Putting the values of A, B, C, D, E in
(i), we get

 f(x) = x4 – 12x3 + 42x2 – 30x + 9 = x(4) – 6x(3) + 13x(2) + x(1) + 9

Now ∆f(x) = 4x(3) – 18x(2) + 26x(1) + 1

 ∆2f(x) = 12x(2) – 36x(1) + 26

 ∆3f(x) = 24x(1) – 36

 ∆4f(x) = 24

 ∆5f(x) = 0

Aliter: Let  f(x) = x4 – 12x3 + 42x2 – 30x + 9

= Ax(4) + Bx(3) + Cx(2) + Dx(1) + E
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Now, we obtain the values of A, B, C, D, E  by synthetic division. The procedure is as follows:

1 1 – 12 42 – 30 9 = E

0 1 – 11 31

2 1 – 11 31   1 = D

0 2 – 18

3 1 – 9  13 = C

0 3

4 1 – 6 = B

0

 1 = A

Hence  f(x) = x(4) – 6x(3) + 13x(2) + x(1) + 9.

Example 13. Find the function whose first difference is 9x2 + 11x + 5.

Solution. Let f(x) be the required function then ∆f(x) = 9x2 + 11x + 5

First, we change ∆ f (x) in factorial notation

Let  f(x) = 9x2 + 11x + 5 = Ax(2) + Bx(1) + C

= Ax(x – 1) + Bx + C ...(i)

Putting x = 0 we get C = 5

Putting x = 1 we get 9 + 11 + 5 = B + C ⇒ C = 20

On comparing like term in (i) we get A = 9

On putting in (i), we get

 ∆f (x) = 9x(2) + 20x(1) + 5

Integrating, we get  f(x) = 
9

3

20

2

3 2x x( ) ( )

+  + 5x + C1 where C1 is constant of Integration

= 3x(x – 1) (x – 2) + 10x(x – 1) + 5x + C1

 f(x) = 3x3 + x2 + x + C.

Example 14. Find the function whose first difference is eax + b.

Solution. Let f(x)  be the required function

Then  ∆f(x) = eax +b ...(i)

Let us consider  f(x) = Aeax + b

so that ∆f(x) = ∆[Aeax + b] = A∆ eax + b

= A [ea(x + 1) + b – eax + b]

= Aeax + b [ea – 1] ...(ii)
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On comparing (i) and (ii) we get

 A = 
1

1ea −

∴ f(x) = 
e

e

ax b

a

+

− 1
.

Example 15. What is the lowest degree polynomial which takes the following values

x 0 1 2 3 4 5

f(x) 0 3 8 15 24 35

Solution. First we prepare the forward difference table

x f(x) ∆f(x) ∆2f(x) ∆3f(x)

0 0
3

1 3 2
5 0

2 8 2
7 0

3 15 2
9 0

4 24 2
11

5 35

We know that  f (a + nh) = f(a) + nC1 ∆f (a) + nC2 ∆2 f (a) + nC3 ∆
3 f (a) + .....

Putting a = 0, h = 1, n = x, we get

 f(x) = f(0) + xC1 ∆f (0) + xC2 ∆2 f(0) + xC3 ∆
3 f(0) + ..... ...(1)

Putting the value of f(0), ∆f(0), ∆2 f(0) and ∆3f(0) in (1) from Difference table, we get

 f(x) = 0 + x . 3 + 
x x x x x( )

!

( ) ( )

!

− + − −1

2
2

1 2

3
 . 0 + 0

= 3x + x (x– 1) = x2 + 2x.

Example 16. A second degree polynomial passes through the points (0, 1) (1, 3), (2, 7), and
(3, 13). Find the polynomial.



16 ADVANCED MATHEMATICS

Solution. First we prepare the forward difference table

x f(x) ∆f(x) ∆2f(x) ∆3f(x)

0 1
2

1 3 2
4 0

2 7 2
6

3 13

We know that

f(a + nh) = f(a) + nC1 ∆f(a) + nC2 ∆
2 f(a) + nC3 ∆

3 f(a) ...... nCn ∆n f(a)

Putting a = 0, h = 1, n = x, we get

 f(x) = f(0) + xC1 ∆ f(0) + xC2 ∆2 f(0) + xC3 ∆
3 f(0) + ... ...(1)

Putting the values of f(0), ∆f(0), ∆2f(0)  and ∆3f(0) from difference table in (1) we get

 f(x) = 1 + x . 2 + 
x x x x x( )

!

( ) ( )

!

− + − −1

2
2

1 2

3
 . 0

= 1 + 2x + x (x – 1) = x2 + x + 1.

Example 17. Given u0 = 1, u1 = 11, u2 = 21, u3 = 28 and u4 = 29 find ∆4u0 without forming
difference table.

Solution. We have   ∆4 u0 = (E – I)4 u0 = (E4 – 4C1 E
3 + 4C2 E

2 – 4C3 E + I) u0

= E4u0 – 4E3u0 + 6E2u0 – 4E u0 + u0

= u4 – 4u3 + 6u2 – 4u1 + u0

= 29 – 4 × 28 + 6 × 21 – 4 × 11 + 1

= 29 – 112 + 126 – 44 + 1 = 0.

Example 18. Prove that

(i) f(4) = f(3) + ∆f(2) + ∆2 f(1) + ∆3 f(1)

(ii) f(4) = f(0) + 4∆f(0) + 6∆2 f(–1) + 10∆3 f(– 1)

as for as third difference.

Solution. (i) We have

 ∆f (3) = f(4) – f(3)

or  f(4) = f(3) + ∆f(3)

= f(3) + ∆[f(2) + ∆f(2)] [� ∆f(2) = f(3) – f(2)]

= f(3) + ∆f(2) + ∆2f(2)

= f(3) + ∆f(2) + ∆2[f(1) + ∆f(1)] [� ∆f(1) = f(2) – f(1)]

 f(4) = f(3) + ∆f(2) + ∆2 f(1) + ∆3 f(1) Hence proved.
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(ii) We have

  f(4) = f(– 1 + 5) = E5 f(– 1) = (1 + ∆)5 f(– 1)

= (1 + 5C1 ∆ + 5C2 ∆2 + 5C3 ∆
3 + 5C4 ∆4 + 5C5 ∆5) f(–1)

= f (– 1) + 5∆f(– 1) + 10 ∆2 f(– 1) + 10 ∆3 f(– 1) taking upto 3rd difference

= [f(– 1) + ∆f(– 1)] + 4 [∆f(– 1) + ∆2f(– 1)] + 6 ∆2 f (– 1) + 10∆3 f(– 1)

= [f (– 1) + ∆f (– 1)] + 4∆[f (– 1) + ∆f (– 1)] + 6∆2 f(– 1) + 10∆3f(– 1)

= f(0) + 4∆f(0) + 6∆2 f(– 1) + 10∆3 f(– 1) [� ∆f(–1) = f(0) – f(– 1)]

⇒  f(4) = f(0) + 4∆f(0) + 6∆2 f(– 1) + 10∆3 f(– 1) Hence proved.

Example 19. Prove that ux = ux –1 + ∆ux–2 + ∆2ux–3 + ...... + ∆n–1 ux–n + ∆n ux–n.

Solution. Consider ux – ∆n ux–n = ux – ∆nE–n ux = 1 −
�

��
�

��
∆n

nE
ux = 

E

E

n n

n

−�

��
�

��
∆

ux

 = 1 1 2 3 2 1

E

E E E E u

En

n n n n
x( ) [ ..... ]

( )

− + + + +
−

− − − −∆ ∆ ∆ ∆
∆

(� E = 1 + ∆)

 = (E–1 + ∆E–2 + ∆2E–3 + ..... + ∆n – 1 E–n)ux

 ux – ∆n ux – n = ux – 1 + ∆ux–2 + ∆2 ux–3 + ..... + ∆n – 1 ux – n

∴   ux = ux– 1 + ∆ux– 2 + ∆2ux– 3 + ..... + ∆n–1 ux – n + ∆n ux – n. Hence proved.

Example 20. Prove that u1 x + u2 x2 + u3x
3 + .....

= 
x

1 x−
 u1 + 

x

1 x

2

2( )−
 ∆u1 + 

x

1 x

3

3( )−
 ∆2 u1 + ..... and 0 < x < 1.

Solution. R.H.S. = 
x

x1 −
 u1 + 

x

x

2

21( )−
 ∆u1 + 

x

x

3

31( )−
 ∆2 u1 + .....

= 
x

x
u

x

x
E u

x

x
E u

1 1
1

1
11

2

2 1

3

3
2

1−
+

−
− +

−
− +

( )
( )

( )
( ) ......

= 
x

x

x

x

x

x1 1 1

2

2

3

3−
−

−
+

−
�

��
�

��( ) ( )
......  u1 + 

x

x

x

x

2

2

3

31

2

1( ) ( )
......

−
−

−
+

�

��
�

��
 Eu1

+ 
x

x

3

31( )
......

−
+

�

��
�

��
E2u1 + .....

= 
x

x

x

x
u

x

x

x

x
u

1
1

1 1
1

1

1

1

2

2

2

2−
+

−
�
��

�
��

+
−

+
−

�
�

�
�

− −

( ) ( )

+ 
x

x

x

x
u

3

3

3

31
1

1( )
......

−
+

−
�
�

�
�

+
−

= u1 x + u2 x
2 + u3 x

3 + ...... .
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Example 21. Prove that u0 + u1 + u2 + .....+ un =
n +1C1 u0 + n + 1C2 ∆ u0 + n + 1C3 ∆

2 u0+ ...... +  ∆
n u0.

Solution. We have u0 + u1 + u2 + ...... + un = u0 + Eu0 + E2 u0 + ...... + En u0

= (1 + E + E2 + ...... + En) u0 = 
E

E

n + −
−

1 1

1
 u0 [Sum of n term in G.P.]

= 
( )1 11+ −+∆

∆

n

u0

= 
1

∆
[1 + n + 1C1 ∆ + n + 1C2 ∆

2 + n + 1C3 ∆
3 + ...... + n + 1Cn + 1 ∆

n + 1 – 1] u0

= 
1

∆
 [n+1 C1 ∆u0 + n+1C2∆

2 u0 + n+1C3 ∆
3 u0 + ...... + n+1Cn+1  ∆n+1 u0]

= n+1C1u0 + n+1C2 ∆ u0 + n+1C3 ∆
2 u0 + ..... + ∆n u0 = R.H.S.

Example 22. Prove that u0 + nC1 u1x + nC2 u2x
2 + ..... + unx

n

= (1 + x)n u0 + nC1 (1 + x)n–1 x ∆u0 + nC2 (1 + x)n–2
 x

2 ∆2 u0 + ..... + xn ∆n u0

Solution. R.H.S. (1 + x)n u0 + nC1 (1 + x)n–1 x∆u0 + nC2 (1 + x)n–2 x2∆2 u0 + ...... + xn∆n u0

= ((1 + x) + x∆)n u0 = (1 + x ( 1 + ∆))n u0 = (1 + xE)n u0

= (1 + nC1 xE + nC2 x
2 E2 + nC3 x

3 E3 + ..... + xn E n )u0

= u0 + nC1 u1 x + nC2 u2 x
2 + nC3 u3 x

3 + ..... + xn un = L.H.S.

Example 23. ∆n ux = ux+n – nC1ux+n–1 + nC2 ux + n–2 – ......+ (– 1)n ux.

Solution. R.H.S. ux +n – nC1 ux + n – 1 + nC2 ux + n–2 – ..... + (– 1)n ux

= (En – nC1 E
n –1 + nC2 E

n–2 – ..... + (– 1)n) ux

= (E – 1)nux = ∆nyx = L.H.S.

�����������

1. Prove that ∆2 ≡ E2 – 2E + 1.

2. Prove that if f(x) and g(x) are the function of x then

(i) ∆[f(x) + g(x)] = ∆f(x) + ∆g(x) (ii) ∆[af(x)] = a ∆f(x)

(iii) ∆[f(x) g(x)] = f(x) ∆ g(x) + g(x + 1) f(x) = f(x + 1) ∆ g(x) + g(x) ∆f(x)

(iv) ∆ 
f x

g x

g x f x f x g x

g x g x h

( )

( )

( ) ( ) ( ) ( )

( ) ( )

�

�
	




�
� = −

+
∆ ∆

.

3. Evaluate

(i) ∆[sinh (a + bx)] (ii) ∆[tan ax]

(iii) ∆ [cot 2x] (iv) ∆ (x + cos x)
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(v) ∆ (x2 + ex + 2) (vi) ∆ [log x]

(vii) ∆ [eax log bx] (viii) ∆ 
x

x

2

2cos

�

�
	




�
�

4. Evaluate

(i) ∆2 cos 2x (ii) ∆2 (abcx)

(iii)
∆2

E

�

��
�

��
 x3 (iv) ∆2 

5 12

5 62
x

x x

+
+ +

�

�
	




�
� .

5. Evaluate

(i) ∆n 
1

x
�
�
�
� (ii) ∆n [sin (ax + b)]

(iii) ∆6 (ax – 1) (bx2 – 1) (cx3 – 1) (iv) ∆n [axn + bxn – 1]

6. Prove that ex = 
∆2

E

�

��
�

��
 ex . 

Ee

e

x

x∆2
; the interval of differencing being h.

7. Prove that ∇n yx = ∆nyx–n.

8. Evaluate

(i) (2∆2 + ∆ – 1) (x2 + 2x + 1) (ii) (∆ + 1) (2∆ – 1) (x2 + 2x +1)

(iii) (E + 2) (E + 1) (2x + h + x) (iv) (E2 + 3E + 2) 2x+h + x

9. Write down the polynomial of lowest degree which satisfies the following set of number 0, 7, 26, 63,
124, 215, 342, 511.

10. A third degree polynomial passes through the points (0, – 1) (1, 1) (2, 1) and (3, – 2). Find the
polynomial.

11. Construct a forward difference table for

x 0 5 10 15 20 25

f(x) 7 11 14 18 24 32

12. If f(0) = – 3, f(1) = 6, f(2) = 8, f(3) = 12 prepare forward difference table.

13. Given f(0) = 3, f(1) = 12, f(2) = 81, f(3) = 200, f (4) = 100 and f(5) = 8. Form a difference table and find
∆5 f(0).

14. Given u0 = 3, u1 = 12, u2 = 81, u3 = 200, u4 = 100, u5 = 8 find ∆5 u0 without forming difference table.

15. If f(0) = – 3, f(1) = 6, f(2) = 8, f (3) = 12 and the third difference being constant, find f(6).

16. Represent the function f(x) = 2x3 – 3x2 + 3x – 10 and its successive differences into factorial notation.

17. Find the function whose first difference is x3 + 3x2 + 5x + 12.

18. Obtain the function whose first difference is:

(i) ex (ii) x(x – 1) (iii) a

(iv) x(2) + 5x (v) sin x (vi) 5x.
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19. Prove that u0 + xC1 ∆u1 + xC2 ∆
2 u2 + .... = ux + xC1 ∆

2 ux–1 + xC2 ∆
4 u x–2

 + .....

20. Prove that  ux+n  = un + xC1 ∆ux–1 + x+1C2 ∆
2 ux–2 + x+2C3∆

3 ux–3 + ......

21. Prove that ∆n ux–n = ux –  nC1 ux–1 +  nC2  ux–2 – nC3 ux–3  +  .....

22. Prove that u0 + 
u x u x u x1 2

2
3

3

1 2 3! ! !
.....+ + +  = ex  u x u

x
u

x
u0 0

2
2

0

3
3

0
2 3

+ + + +
�

�
	




�
�∆ ∆ ∆

! !
.....

������

3. (i) 2 sinh 
b

2
�
�
�
�

 cosh a
b

bx+ +�
�

�
�2

(ii)
sin

cos cos ( )

a

ax a x + 1

(iii) – cosec 2x+1 (iv) h – 2 sin x
h

+�
�

�
�2

 sin 
h

2
�
�
�
�

(v) 2hx + h2 + ex(eh – 1) (vi) log 1 +�
�

�
�

h

x

(vii) eax e
h

x
e bxah ahlog ( ) log1 1+�

�
�
�

+ −�

�	



��
(viii)

h x h x x h x h

x h x

( ) cos sin sin ( )

cos ( ) cos

2 2 2 2

2 2 2

2+ + +
+

4. (i) – 4 sin2 h cos (2x + 2h) (ii) (bc – 1)2 abcx

(iii) 6x (iv)
4

2 3 4

6

3 4 5( ) ( ) ( ) ( ) ( ) ( )x x x x x x+ + +
+

+ + +

5. (i) ( ) !

( ) ( ) ...... ( )

−
+ + +

1

1 2

n n

x x x x n
(ii) 2

2 2
sin sin

a
ax b n

an
�
�

�
�

+ + +�
�

�
�

�
��

�
��

π

(iii) 720 abc (iv) a (n !).

8. (i) 5h2 + 2hx + 2h – x2 – 2x – 1 (ii) 5h2 + 2hx + 2h – x2 – 2x – 1

(iii) h (iv) h

9. x3 + 3x2 + 3x 10. – 
1

6
 (x3 + 3x2 – 16x + 6)

13. 755 14. 755

15. 126 16. 2x(3) + 3x(2) + 2x(1) – 10, 6x(2) + 6x(1) + 2, 12x + 6, 12

17.
1

4
x(4) + 2x(3) + 

9

2
 x(2) + 12x(1)  + C

18. (i) 
e

e

x

h( )− 1
 + C (ii)

x( )3

3
 + C (iii) ax + C

(iv)
x x( ) ( )3 2

3

5

2
+  + C (v) – 

1

2
 sin x (vi)

1

4
 5x.
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Suppose y = f (x) be a function of x and y0, y1, y2, ....., yn are the values of the function f (x) at x0, x1, x2,
...., xn respectively, then the method to obtaining the value of f (x) at point x = xi which lie between x0
and xn  is called interpolation.

Thus, interpolation is the technique of computing the value of the function outside the given
interval.

If x = xi does not lie between x0 and xn then computing the value of f (x) at this point is called the
extra polation.

The study of interpolation depends on the calculus of finite difference.

In this chapter, we shall discuss Newton-Gregory forward and backward interpolation, Lagrange’s,
Stirling’s interpolation formula and method of finding the missing one and more term.

	
�
������������������������

Method 1. Suppose one value of f (x) be missing from the set of (n + 1) values (i.e., n values are given)
of x, the values of x being equidistant. Let the unknown value be X. Now construct the difference table.
We can assume y = f (x) to be a polynomial of degree (n – 1)  in x, since n values of y are given. Now
equating to zero the nth difference, we get the value of X.

Method 2. Suppose one value of f (x) be missing from the set of (n + 1) values (i.e., n values are
given) of x, the values of x being equidistant. Then we can assume y = f (x) to be a polynomial of degree
(n – 1) in x

∴      ∆n f (x) = 0

or         (E – I)n  f (x) = 0

or   (En – nC1 E
 n–1 + nC2 E n–2 – ..... + (–1)n I) f (x) = 0

or En f (x) – nC1 E n–1 f (x) + nC2 E n–2 f (x) – ..... + (– 1)n f (x) = 0

CCCCCHAPTERHAPTERHAPTERHAPTERHAPTER     22222

Interpolation
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or f (x + nh) – nC1 f (x + (n – 1)h) + nC2 f (x + (n – 2)h) – ..... + (– 1)n f (x) = 0 ...(2.1)

If x = x0 is the first value of x then putting x = x0 in (2.1) and solving we get the missing term.

To find two missing term. Suppose two value X1 and X2 of f (x) be missing from the set of
(n + 2) values (i.e., n values are given) of x, the values of x being equidistant. Then, we can assume y =
f (x) be a polynomial of degree (n – 1) in x

∴  ∆n f (x) = 0

or f (x + nh) – nC1 f (x + (n – 1) h) + nC2 f (x + (n – 2)h) – ..... + (– 1)n f (x) = 0 ...(2.2)

If x = x0 is the first value of x then putting x = x0, and x = x1 successively in (2.2), we get two
equation in missing X1 and X2. On solving we get X1 and X2.

	
	
 ����������������������������������������������������

������ ���������

Let y = f (x) be a function which assumes the values f (a),  f (a + h), f (a + 2h), ....., f (a + nh) for x = a,
a + h, a + 2h, ....., a + nh respectively where h is the difference of the arguments. Let f (x) be a polyno-
mial in x of degree n. So f (x) can be written as

 f (x) = a0 + a1(x – a) + a2 (x – a) (x – a – h) + a3 (x – a) (x – a – h) (x – a – 2h)

 + ...... + an (x – a) (x – a – h) ..... (x – a – (n – 1) h) ...(2.3)

where a0, a1, a2, ....., an are constants

Putting successively the values x = a, a + h, a + 2h, ......, a + nh in (2.3), we get

  f (a) = a0 or a0 = f (a)

 f (a + h) = a0 + a1 (a + h – a)

or  f (a + h) = a0 + a1 h ⇒ a1 = 
f a h a

h

f a h f a

h

f a

h

( ) ( ) ( ) ( )+ −
=

+ −
=0 ∆

i.e.,  a1 = 
∆f a

h

( )

   f (a + 2h) = a0 + a1 (a + 2h – a) + a2 (a + 2h – a) (a + 2h – a – h)

= a0 + a12h + a2 2h.h

 2h2 a2 = f (a + 2h) – 2ha1 – a0

 a2 = 
f a h f a h f a f a

h

( ) ( ( ) ( )) ( )

!

+ − + − −2 2

2 2

= 
f a h f a h f a

h

f a

h

( ) ( ) ( )

!

( )

!

+ − + + =2 2

2 22

2

2

∆
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Proceeding in the same way, we get

  a3 = 
∆3

33

f a

h

( )

!
......

 a
f a

n hn

n

n= ∆ ( )

!

Putting the values a0, a1, a2, ...., an into (1), we get

   f (x) = f (a) + (x – a) 
∆f a

h

( )
 + (x – a) (x – a – h) ∆2

22

f a

h

( )

!

+ (x – a) (x – a – h) (x – a – 2h) 
∆3

3

f a

hn

( )

!
 + ......

+ (x – a) (x – a – h) (x – a – 2h) + ..... + (x – a – (n – 1)h) ∆n

n

f a

n h

( )

! !
...(2.4)

This is Newton-Gregory formula for forward interpolation putting x = a + hu in (2.4), we get

f (a + hu) = f (a) + u∆ f (a) + 
u u( )

!

− 1

2
 ∆2 f (a) + ..... + 

u u u u n

n

( ) ( ) ..... ( ( ))

!

− − − −1 2 1
 ∆n f (a).

	
�
 ������������������������������������ �������������
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Let y = f (x) be a function which assumes the values f (a), f (a + h), f (a +2h), ...,  f (a + nh) for x = a, a
+ h, a + 2h, ...., a + nh, respectively where h is the difference of arguments. Let f (x) be  a polynomials
in x of degree n. So  f (x) can be written as

f (x) = a0 + a1(x – a – nh) + a2(x – a – nh) (x – a – (n – 1)h)
+ a3 (x – a – nh) (x – a – (n – 1)h) (x – a – (n – 2)h) + .....

+ an (x– a – nh) (x – a – (n – 1)h) ..... (x – a – h) ...(2.5)
where a0, a1, a2, ......, an are constants

Putting successively the values x = a + nh, a + (n – 1)h, a + (n – 2) h, ......, a + h in (2.5), we get
    f (a + nh) = a0 ⇒ a0 = f (a + nh)

 f (a + (n – 1)h) = a0  + a1 (a + (n – 1)h – a – nh)

a1 = 
f a nh f a n h

h

f a nh

h

( ) ( ( ) ) ( )+ − + −
=

∇ +1

 f (a + (n – 2)h) = a0 + a1(a + (n – 2) h – a – nh)
+ a2 (a + (n – 2)h – a – nh) . (a + (n – 2) h – a –  (n – 1)h)

a2 = ∇ +2

22

f a nh

h

( )

!
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Proceeding in the same way, we get

a3 = 
∇ +3

33

f a nh

h

( )

!
  ......

an = 
∇ +n

n

f a nh

n h

( )

!

Putting the values a0, a1, a2, ....., an into (2.5), we get

f (x) = f (a + nh) + (x – a – nh) 
∇ +f a nh

h

( )
 + (x – a – nh) (x – a – (n  – 1)h) 

∇ +2

22

f a nh

h

( )

!

+ ...... + (x – a – nh) (x – a – (n – 1)h) ...... (x – a – h) ∇ +n

n

f a nh

n h

( )

!
...(2.6)

This is the Newton-Gregory’s formula for backward interpolation putting  x = a + nh + hu in
(2.6), we get

   f (a + nh + hu) = f (a + nh) + u∇f (a + nh) + 
u u( )

!

+ 1

2
 ∇2 f (a + nh)

+ ..... + 
u u u u n

n

( ) ( ) ...... ( )

!

+ + + −1 2 1
 ∇n f (a + nh).

	
�
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Let y0, y1, y2, ..., yn be the values of function y = f (x) corresponding to the arguments x0, x1, x2, ...., xn not
necessarily equally spaced. Since there are (n + 1) values of f (x) so (n + 1)th difference is zero. Thus
 f (x) is supposed to be polynomial in x of degree n.

Then y = f (x) = a0 (x – x1) (x – x2) ..... (x – xn) + a1 (x – x0) (x – x2) ....(x – xn)

+ a2(x – x0) (x – x1) ..... (x – xn) ..... + an (x – x0) (x – x1) ..... (x – xn – 1) ...(2.7)

where a0, a1, a2, ......, an are constants.

To determine a0 put x = x0 and  y = y0 in (2.7), we get

y0 = a0(x0 – x1) (x0 – x2) ...... (x0 – xn)

⇒ a0 = 
y

x x x x x xn

0

0 1 0 2 0( ) ( ) ...... ( )− − −
Similarly to determine a1 put x = x1 and y = y1 in (2.7), we get

y1 = a1 (x1 – x0) (x1 – x2) ...... (x1 – xn)

⇒ a1 = 
y

x x x x x xn

1

1 0 1 2 1( ) ( ) ...... ( )− − −
Proceeding in this way, we get

 an = 
y

x x x x x x
n

n n n n( ) ( ) ...... ( )− − − −0 1 1
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Putting these values of a1, a2, ....., an in (2.7), we get

 y = f (x) = 
( ) ( ) ...... ( )

( ) ( ) ...... ( )

x x x x x x

x x x x x x
n

n

− − −
− − −

1 2

0 1 0 2 0

 y0

+ 
( ) ( ) ( ) ...... ( )

( ) ( ) ( ) ...... ( )

x x x x x x x x

x x x x x x x x
n

n

− − − −
− − − −

0 2 3

1 0 1 2 1 3 1

 y1 + .....

+ 
( ) ( ) ( ) ...... ( )

( ) ( ) ( ) ...... ( )

x x x x x x x x

x x x x x x x x
n

n n n n n

− − − −
− − − −

−

−

0 1 2 1

0 1 2 1

 yn

which is the Lagrange’s interpolation formula.
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The mean of Gauss’s forward difference formula and Gauss’s backward difference formula gives Stirling’s
difference formula

We have Gauss’s forward difference formula is

 yu = y0 + u ∆y0 + 
u u( )

!

− 1

2
∆2y–1 + 

( ) ( )

!

u u u+ −1 1

3
 ∆3 y–1

+ 
( ) ( ) ( )

!

u u u u+ − −1 1 2

4
 ∆4y–2 + ...... ...(2.8)

and Gauss’s backward difference formula is

yu = y0 + u∆y– 1 + 
u u( )

!

+ 1

2
∆2y–1 + 

( ) ( )

!

u u u+ −1 1

3
∆3 y–2 + 

( ) ( ) ( )

!

u u u u+ + −2 1 1

4
 ∆4y–2 + ......

...(2.9)

The mean of (2.8) and (2.9) is

yu = y0 + u 
( )

!

∆ ∆y y u0 1
2

2 2

+
+−  ∆2 y–1 + 

u u y y( )

!

( )2 3
1

3
21

3 2

− +− −∆ ∆
 + 

u u2 2 1

4

( )

!

−
 ∆4 y–2 + .....

This formula is called the Stirling’s difference formula.

��������!������

Example 1. Given u0 = 580, u1 = 556, u2 = 520, u3 = —, u4  = 384, find u3.

Solution. Let the missing term u3 = X
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∴ The forward difference table is

x ux ∆ux ∆2ux ∆3ux ∆4ux

0 580
– 24

1 556 – 12
– 36 X – 472

2 520 X  – 484 1860 – 4X
X – 520 1388 – X

3 X 904 – 2X
384 – X

4 384

Here four values of ux are given. Therefore, we can assume ux to be a polynomial of degree 3 in x

∴ ∆4 ux  = 0 or 1860 – 4X = 0

or X = 465.

Aliter: Here four values of  ux are given. Therefore, we can assume ux to be a polynomial of
degree 3 in x

∴ ∆4 ux  = 0

or (E – I)4 ux = 0

or (E4 – 4C1 E3 + 4C2E2 – 4C3 E + I) ux = 0

or E4 ux – 4E3 ux + 6E2 ux – 4Eux + ux = 0

or ux + 4h  – 4ux + 3h  + 6ux + 2h – 4ux + h + ux = 0

Putting x = 0 and h = 1, we get

 u4 – 4u3 + 6u2 – 6u1 + u0 = 0

or 384 – 4X  + 6 × 520 – 6 × 556 + 580 = 0

or  1860 – 4X = 0 ⇒ X = 465.

Example 2. Estimate the missing term in the following:

x 1 2 3 4 5 6 7

y 2 4 8 — 32 64 128

Solution. Let X be the missing term. Since there are 6 values of y are given, then we have
∆6 y = 0

or  (E – I)6 yx = 0

or (E6 – 6C1E5 + 6C2 E
4 – 6C3 E

3 + 6C4 E
2 – 6C5 E + I) yx = 0

or  yx + 6h – 6yx + 5h + 15yx + 4h – 20yx + 3h + 15yx + 2h – 6yx + h + yx = 0

Putting x = 1 and h = 1 in above, we get

y7 – 6y6  + 15y5 – 20y4 + 15y3 – 6y2 + y1 = 0
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or  128 – 6 × 64 + 15 × 32 – 20X + 15 × 8 – 6 × 4 + 2 = 0

or  128 – 384 + 480 – 20X + 120 – 24 + 2 = 0

or  322 – 20X  = 0

X = 
322

20
 = 16.1.

Example 3. Obtain the missing terms in the following table:

x 1 2 3 4 5 6 7 8

f (x) 1 8 — 64 — 216 343 512

Solution. Let X1 and X2 are the missing term. Here six values of f (x) are given. Therefore, we
can  assume f (x) to be a polynomial of degree 5 in x

∴   ∆6f (x) = 0

or  (E – I)6 f (x) = 0

or (E6 – 6C1 E
5 + 6C2 E

4 – 6C3 E
3 + 6C4 E

2 – 6C5 E + I) f (x) = 0

or f (x + 6h) – 6 f (x + 5h) + 15 f (x + 4h) – 20 f (x + 3h) + 15 f (x + 2h) – 6 f (x + h) + f (x) = 0

...(i)

Putting h = 1 and x = 1, and 2 successively in (i), we get

   f (7)  – 6 f (6) + 15 f (5) – 20 f (4) + 15 f (3) – 6 f (2) + f (1) = 0

and    f (8) – 6 f (7) + 15 f (6) – 20 f (5) + 15 f (4) – 6 f  (3) + f  (2) = 0

or    343 – 6 × 216 + 15X2 – 20 × 64 + 15X1 – 6 × 8 + 1 = 0

and   512 – 6 × 343 + 15 × 216 – 20X2 + 15 × 64 – 6X1 + 8 = 0

or   15X2 + 15X1 = 2280

and   20X2 + 6X1 = 2662

On solving, we have  X1 = 27, X2 = 125

i.e., f (3) = 27 and f (5) = 125.

Example 4. Find the first term of the series whose second and subsequent terms are

8, 3, 0, –1, 0.

Solution. Given

x 0 1 2 3 4 5

f (x) — 8 3 0 – 1 0

There are 5 values of f (x) are given

Then we have    ∆5 f (x) = 0

or    (E – I)5 f (x) = 0
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or     (E5 – 5C1 E
4 + 5C2 E3  – 5C3 E

2 + 5C4 E – 5C5 I) f (x) = 0

or     E5 f (x) – 5E4 f (x) + 10E3 f (x) – 10E2 f (x) + 5E f (x) – f (x) = 0

or f (x + 5) – 5 f (x + 4) + 10 f (x + 3) – 10 f (x + 2) + 5 f (x + 1) – f (x) = 0

Putting x = 0, we get

  f (5) – 5 f (4) + 10 f (3) – 10 f (2) + 5f (1) – f (0) = 0

or   0 – 5(– 1) + 10 × 0 – 10 × 3 + 5 × 8 – f (0) = 0 or f (0) = 15.

Example 5. Given that u0 + u8 = 1.9243, u1 + u7 = 1.9590,

u2 + u6 = 1.9823, and u3 + u5 = 1.9956. Find u4 .

Solution. Since there are 8 values of ux are given.

Then, we have  ∆8 u0 = 0 or (E – I)8 u0 = 0

or (E8 – 8C1 E7 + 8C2 E6 – 8C3 E5 + 8C4 E
4 – 8C5 E3 + 8C6 E2 – 8C7 E + 8C8 I)u0

or E8u0 – 8E7u0 + 28E6u0 – 56E5u0 + 70E4u0 – 56E3u0 + 28E2u0 – 8Eu0 + u0 = 0

or  u8 – 8u7 + 28u6 – 56u5 + 70 u4 – 56u3 + 28u2 – 8u1 + u0 = 0

or  (u8 + u0) – 8 (u7 + u1) + 28 (u6 + u2) – 56 (u5 + u3) + 70u4 = 0

or 1.9243 – 8 × 1.9590 + 28 × 1.9823 – 56 × 1.9956 + 70 u4 = 0

or 70u4 = 69.9969 or u4 = 0.9999.

Example 6. From the following table, find the number of students who obtain less than 45 marks.

Marks 30–40 40–50 50–60 60–70 70–80

No. of students 31 42 51 35 31

Solution. The difference table of the given data is as under

Marks No. of students ∆f (x) ∆2f (x) ∆3f (x) ∆4f (x)

Below 40 31

42

Below 50 73 9

51 – 25

Below 60 124 – 16 37
35 12

Below 70 159 – 4

31

Below 80 190

Here h = 10, a = 40, x = 45, u = 
x a

h

− = −45 40

10
 = 0.5
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By Newton-Gregory forward interpolation formula

f (x) = f (a) + u ∆ f (a) + 
u u( )

!

− 1

2
 ∆2 f (a) + 

u u u( ) ( )

!

− −1 2

3
 ∆3 f (a) + ......

f (45) = f (40) + 0.5∆ f (40) + 
(0.5) (0.5 1)

2 !

− ∆2 f (40) + 
(0.5) (0.5 1) (0.5 2)

3!

− −
 ∆3 f (40)

+ 
(0.5) (0.5 1) (0.5 2) (0.5 3)

4 !

− − −  ∆4 f (40)

   = 31 + 0.5 × 42  + 
(0.5) ( 0.5)

2

−
 9 + 

(0. 5) ( .5) 1.5)

6

− −0 (
 (– 25) + 

(0.5) ( .5) (1.5) ( 2.5)

24

− −0
37

 = 31 + 21 – 1.125 – 1.563 – 1.445

f (45) = 47.867.

Example 7. Using Newton’s forward difference formula find the value of f(1.6) if

x 1 1.4 1.8 2.2

f (x) 3.49 4.82 5.96 6.5

Solution. The difference table of the given data is as under:

x f (x) ∆f (x) ∆2f (x) ∆3f (x)

1 3.49

1.33

1.4 4.82 – 0.19
1.14 – 0.41

1.8 5.96 – 0.6

0.54

2.2 6.5

Here a = 1, h = 0.4, x = 1.6 then u = 
1.6 1

0.4

0.6

0.4

− =  = 
3

2
  = 1.5

By Newton-Gregory forward formula

 f (x) = f (a) + u ∆ f (a) + 
u u( )

!

− 1

2
 ∆2 f (a) + 

u u u( ) ( )

!

− −1 2

3
 ∆3 f (a) + ....

  f (1.6) = f (1) + 1.5 ∆ f (1) + 
1.5(1.5 1)

2 !

−
 ∆2 f (1) + 

1.5(1.5 1) (1.5

3!

− − 2)
 ∆3 f (1)

= 3.49 + 1.5 × 1.33 + 
1.5 .5

2 !

× 0
 (– 0.19) + 

1.5 .5 ( 0.5)

3!

× × −0
 (– 0.41)
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= 3.49 + 1.995 – 0.07125 + 0.025625

    f(1.6) = 5.439375

Solution by using of Backward Interpolation Formula

The backward difference table of the given data is as under

x f (x) ∇f (x) ∇2f (x) ∇3f (x)

1 3.49

1.33

1.4 4.82 – 0.19

1.14 – 0.41

1.8 5.96 – 0.6

0.54

2.2 6.5

Here x = 1.6, a + nh = 2.2, h = 0.4 then u = 
x a nh

h

− + = − = −( ) 1.6 2.2

0.4

.6

0.4

0
 = – 1.5

By Newton-Gregory backward formula

f (a + nh + hu) = f (a + nh) + u∇f (a + nh) + 
u u( )

!

+1

2
∇2 f (a + nh)

+ 
u u u( ) ( )

!

+ +1 2

3
 ∇3 f (a + nh) + .....

f (1.6) = f (2.2) + (– 1.5) × 0.54 + 
( 1.5)( 1.5 1)

2 !

− − +
 ( – 0.6) + 

( 1.5) ( 1.5 1)( 1.5+2)

3!

− − + −
 (– 0.41)

= 6.5 – 0.81 – 0.225 – 0.025625

f (1.6) = 5.439375.

Example 8. The population of a town in the decennial census were as under estimate the popu-
lation for the year 1895 and 1925.

Year x 1891 1901 1911 1921 1931

Population f(x) 46 66 81 93 101

(In thousands)
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Solution. The difference table of the given data is as under:

x y = f (x) ∆f (x) ∆2f (x) ∆3f (x) ∆4f (x)

1891 46
20

1901 66 – 5

15 2

1911 81 – 3 – 3

12 – 1

1921 93 – 4
8

1931 101

(i) Here a = 1891, h = 10, x = 1895, u = 
1895 1891

10

4

10

− =  = 0.4

By Newton-Gregory forward formula,

f (x) = f (a) + u∆ f (a) + 
u u( )

!

− 1

2
 ∆2 f (a)  + 

u u u( ) ( )

!

− −1 2

3
 ∆3 f (a)

+ 
u u u u( ) ( ) ( )

!

− − −1 2 3

4
 ∆4 f (a) + ..... ...(i)

f (1995) = f (1891) + 0.4∆ f (1891) + 
( . ) ( . )

!

0 4 0 4 1

2

−
 ∆2 f (1891)

  + 
( . ) ( . ) ( . )

!

0 4 0 4 1 0 4 2

3

− −
 ∆3 f (1891) + 

( . ) ( . ) ( . ) ( . )

!

0 4 0 4 1 0 4 2 0 4 3

4

− − −
 ∆4 f (1891)

= 46 + (0.4) × 20 + 
(0.4) ( .6)

2 !

− 0
 (– 5) + 

(0.4) ( .6) ( 1.6)

3!

− −0
 (2)

+ 
(0.4) ( .6) ( 1.6) ( 2.6)

4 !

− − −0
 (–3)

= 46 + 8 + 0.6 + 0.128 + 0.1248 = 54.8528

(ii) Again here a = 1891, h = 10, x = 1925, u = 
1925 1891

10

−
 = 3.4

Put these values in (i), we get

f (1925) = f (1891) + 3.4 ∆ f (1891) + 
(3.4) (3.4 1)

2 !

−
 ∆2 f (1891)
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+ 
(3.4) (3.4 1) (3.4 2)

3!

− −
 ∆3 f (1891) + 

(3.4) (3.4 1) (3.4 2)(3.4 3)

4 !

− − −
 ∆4 f (1891)

= 46 + 3.4 × 20 + 
3.4 2.4

2 !

×
 × (– 5) + 

3.4 2.4 1.4

3!

× ×
(2) + 

3.4 2.4 1.4 .4

4 !

× × × 0
 (–3)

= 46 + 68 – 20.4 + 3.808 – 0.5712 = 96.8368.

Solution by using Backward Interpolation Formula

The backward difference table of the given data is as under

x y = f(x) ∇f(x) ∇2f(x) ∇3 f(x) ∇4f(x)

1891 46

20

1901 66 – 5

15 2

1911 81 – 3 – 3

12 – 1

1921 93 – 4

8

1931 101

(i) Here  (n + hu) = 1931, h = 10, x = 1895 then u = 
1895 1931

10

36

10

− = −
 = – 3.6

By Newton-Gregory backward formula, we have

 f (a + nh + hu) = f (a + nh) + u ∇f (a + nh) + 
u u( )

!

+ 1

2
 ∇2 f (a + nh)

+ 
u u u( ) ( )

!

+ +1 2

3
 ∇3 f (a + nh) + 

u u u u( ) ( ) ( )

!

+ + +1 2 3

4
 ∇4 f (a + nh) + .....

 f (1995) = f (1931) + (– 3.6) × ∇ f (1931) + 
( 3.6) ( 3.6 1)

2 !

− − +
 ∇2 f (1931)

+ 
( 3.6) ( 3.6 1) ( 3.6 2)

3!

− − + − +
 ∇3f (1931)

+ 
( 3.6) ( 3.6 1) ( 3.6 2) ( 3.6 3)

4 !

− − + − + − +
 ∇4f (1931)
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= 101 + (– 3.6) × 8 + 
( 3.6) ( 2.6)

2 !

− × −
 (– 4) + 

( 3.6) ( 2.6) (

3!

− − − 1.6)
 (– 1)

+ 
( 3.6) ( 2.6) ( 1.6 ( 0.6)

4 !

− − − −)
 (– 3)

= 101 – 28.8 – 18.72 + 2.496 – 1.1232 = 54.8528

f (1995) = 54.8528.

(ii) Again here  n + hu = 1931, h = 10, x = 1925

Then  u = 
x a nh

h

− +( )
 = 

1925 1931

10

6

10

− = −
 = – 0.6

By Newton-Gregory formula, we have

f (1925) = f (1931) + (– 0.6) ∇ f (1931) + 
( . ) ( . )

!

− − +0 6 0 6 1

2
 ∇2 f  (1931)

+ 
( . ) ( . ) ( . )

!

− − + − +0 6 0 6 1 0 6 2

3
∇3f (1931)

+ 
( . ) ( . ) ( . ) ( . )

!

− − + − + − +0 6 0 6 1 0 6 2 0 6 3

4
 ∇4 f (1931)

= 101 + (– 0.6) × 8 + 
( . ) ( . )

!

− ×0 6 0 4

2
 ( – 4) + 

( .6) (0.4) (1.4)

3!

− 0
 (– 1)

+ 
( .6) (0.4) (1.4) (2.4)

4 !

− 0
 × (– 3)

= 101 – 4.8 + 0.48 + 0.056 + 0.1008 = 96.8368.

Example 9. From the following table, find the form of the function f (x).

x 0 1 2 3 4

f(x) 3 6 11 18 27

Solution. The difference table of the given data is as under:

x f(x) ∆f(x) ∆2f(x) ∆3f(x) ∆4f(x)

0 3
3

1 6 2
5 0

2 11 2 0
7 0

3 18 2
9

4 27
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Here a = 0, h = 1, u = 
x − 0

1
 = x

By Newton-Gregory formula

f (x) = f (a) + u ∆f (a) + 
u u( )

!

− 1

2
 ∆2 f (a) + 

u u u( ) ( )

!

− −1 2

3
 ∆3 f (a) + .....

= f (0) + x ∆f (0) + 
x x( )

!

− 1

2
∆2 f (0) + 

x x x( ) ( )

!

− −1 2

3
 ∆3 f (0) + .....

= 3 + x . 3 + 
x x( )

!

− 1

2
 2

f (x) = x2 + 2x + 3.

Example 10. Use Lagrange’s interpolation formula to find y when x = 2 given.

x 0 1 3 4

y 5 6 50 105

Solution. Here  x0 = 0, x1= 1,  x2 = 3, x3 = 4

and y0 = 5, y1 = 6, y2 = 50,  y3 = 105

Putting x = 2 and above values in the Lagrange’s formula, we get

  y(2) = 
( ) ( ) ( )

( ) ( ) ( )

2 1 2 3 2 4

0 1 0 3 4

− − −
− − −0

 × 5 + 
( ) ( ) ( )

( ) ( ) ( )

2 0 2 3 2 4

1 0 1 3 1 4

− − −
− − −

× 6 + 
( ) ( ) ( )

( ) ( ) ( )

2 0 2 1 2 4

3 0 3 1 3 4

− − −
− − −  × 50

+ 
( ) ( ) ( )

( ) ( ) ( )

2 0 2 1 2 3

4 0 4 1 4 3

− − −
− − −

 × 105

= 
1 1 2

1 3 4

× − × −
− × − × −

( ) ( )

( ) ( ) ( )
 × 5 + 

2 1 2

1 2 3

× − × −
× − × −

( ) ( )

( ) ( )
 × 6 + 

2 1 2

3 2 1

× × −
× × −

( )

( )
 × 50 + 

2 1 1

4 3 1

× × −
× ×

( )
 × 105

= – 
10

12
 + 4 + 

100

3

105

6
–  = 

− + + −10 48 400 210

12
 = 19.

Example 11. The value of x and y are given as below:

x 0 1 2 5

y 2 5 7 8

Find the value of y when x = 4.

Solution. Here  x0 = 0,  x1 = 1, x2 = 2, x3 = 5

and y0 = 2, y1 = 5, y2 = 7, y3 = 8
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Putting x = 4 and the above values in Lagrange’s formula, we get

 f (4) = 
( ) ( ) ( )

( ) ( ) ( )

4 1 4 2 4 5

0 1 0 2 0 5

− − −
− − −

 × 2 + 
( ) ( ) ( )

( ) ( ) ( )

4 0 4 2 4 5

1 0 1 2 1 5

− − −
− − −

 × 5 + 
( ) ( ) ( )

( ) ( ) ( )

4 0 4 1 4 5

2 0 2 1 2 5

− − −
− − −

 × 7

+ 
( ) ( ) ( )

( ) ( ) ( )

4 0 4 1 4 2

5 0 5 1 5 2

− − −
− − −

 × 8

= 
3 2 1

1 2 5

× × −
− − −

( )

( ) ( ) ( )
 × 2 + 

4 2 1

1 1 4

× × −
× − × −

( )

( ) ( )
 × 5 + 

4 3 1

2 1 3

× × −
× × −

( )

( )
 × 7 + 

4 3 2

5 4 3

× ×
× ×

 × 8

= 
6

5
 + (– 10) + 14 + 

16

5
 = 

6 20 16

5

42

5

+ + =  = 8.4

f (4) = 8.4.

Example 12. Find the value of y at x = 5 given that:

x 1 3 4 8 10

y 8 15 19 32 40

Solution. Here x0 = 1, x1 = 3,   x2 = 4,   x3 = 8, x4 = 10

and y0 = 8, y1 = 15, y2 = 19, y3 = 32, y4 =  40

Putting x = 5 and the above values in Lagrange’s formula, we get

f (5) = ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

5 3 5 4 5 8 5 10

1 3 1 4 1 8 1 10

− − − −
− − − −

 × 8 + 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

5 1 5 4 5 8 5 10

3 1 3 4 3 8 3 10

− − − −
− − − −

 × 15

+ 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

5 1 5 3 5 8 5 10

4 1 4 3 4 8 4 10

− − − −
− − − −

 × 19 + 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

5 1 5 3 5 4 5 10

8 1 8 3 8 4 8 10

− − − −
− − − −

 × 32

 + 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

5 1 5 3 5 4 5 8

10 1 10 3 10 4 10 8

− − − −
− − − −

 × 40

= 
2 1 3 5

2 3 7 9

× × − × −
− × − × − × −

( ) ( )

( ) ( ) ( ) ( )
 × 8 + 

4 1 3 5

2 1 5 7

× × − × −
× − × − × −

( ) ( )

( ) ( ) ( )
 × 15

+ 
4 2 3 5

3 1 4 6

× × − × −
× × − × −

( ) ( )

( ) ( )  × 19 + 
4 2 1 5

7 5 4 2

× × × −
× × × −

( )

( )
 × 32 + 

4 2 1 3

9 7 6 2

× × × −
× × ×

( )
 × 40

= 
40

63

90

7

95

3

32

7

80

63
− + + −  = – 

40

63

58

7

95

5
− +

f (5) = 22.746.

Example 13. Apply Lagrange’s formula to find the cubic polynomial which includes the follow-
ing values of x and y.

x 0 1 4 6

yx 1 – 1 1 – 1
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Solution. Here  x0 = 0, x1 = 1,  x2 = 4, x3 = 6

and y0 = 1, y1 = – 1, y2 = 1, y3 = – 1

Putting the above values in Lagrange’s formula, we get

f (x) = 
( ) ( ) ( )

( ) ( ) ( )

x x x− − −
− − −

1 4 6

0 1 0 4 0 6
 1 + 

( ) ( ) ( )

( ) ( ) ( )

x x x− − −
− − −

0 4 6

1 0 1 4 1 6
 (–1) + 

( ) ( ) ( )

( ) ( ) ( )

x x x− − −
− − −

0 1 6

4 0 4 1 4 6
  1

 + 
( ) ( ) ( )

( ) ( ) ( )

x x x− − −
− − −

0 1 4

6 0 6 1 6 4
 (–1)

= – 
1

24
 [x3 – 11x2 + 34x – 24] – 

1

15
 [x3 – 10x2 + 24x] – 

1

24
[x3 – 7x2 + 6x]

– 
1

60
 [x3 – 5x2 + 4x]

= – 
1

6
x3 + 

3

2
x2 – 

10

3
x + 1.

Example 14. Using Lagrange’s method, prove that

y3 = 0.05 (y0 + y6 ) – 0.3(y1 + y5) + 0.75(y2 + y4).

Solution. Here  x0 = 0, x1 = 1, x2 = 2, x3 = 4, x4 = 5, x5 = 6

and their corresponding values of function are given by y0, y1, y2, y4, y5 and y6

Now using Lagrange’s formula, we have

yx = 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x x x x x− − − − −
− − − − −

1 2 4 5 6

0 1 0 2 0 4 0 5 0 6
 y0 + 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x x x x x− − − − −
− − − − −
0 2 4 5 6

1 0 1 2 1 4 1 5 1 6
 y1

 + 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x x x x x− − − − −
− − − − −

0 1 4 5 6

2 0 2 1 2 4 2 5 2 6
 y2 + 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x x x x x− − − − −
− − − − −

0 1 2 5 6

4 0 4 1 4 2 4 5 4 6
 y4

+ 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x x x x x− − − − −
− − − − −

0 1 2 4 6

5 0 5 1 5 2 5 4 5 6
 y5 + 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x x x x x− − − − −
− − − − −

0 1 2 4 5

6 0 6 1 6 2 6 4 6 5
 y6

To find y3, so putting x = 3 in above, we get

 y3 = 
12

240
y0 – 

18

60
 y1 + 

36

48
 y2 + 

36

48
 y4 – 

18

60
 y5 + 

12

240
y6

= 
1

20
(y0 + y6) – 

3

10
(y1 + y5) + 

3

4
(y2 + y4)

= 0.05 (y0 + y6) – 0.3 (y1 + y5) + 0.75(y2 + y4). Hence proved.



INTERPOLATION 37

Example 15. Use Stirling formula to compute u12.2 from the following data.

x 10 11 12 13 14

105ux 23967 28060 31788 35209 38368

Solution. Here h = 1. Now taking 12 as origin, the required value of u is u = 
12 2 12

1

. −
 = 0.2

The difference table is as under:

x u yu ∆yu ∆2yu ∆3yu ∆4yu

10 – 2 23967
4093

11 – 1 28060 – 365
3728 58

12 0 31788 – 307 – 13
3421 45

13 1 35209 – 262
3159

14 2 38368

Stirling formula is

yu = y0  + u 
( )∆ ∆y y0 1

2

+ −  + 
u2

2 !
 ∆2 y–1 + 

u u( )

!

2 1

3

−
(∆3y–1 + ∆3y–2) + 

u u2 2 1

4

( )

!

−
 ∆4 y–2 + .....

= 31788 + 
0.2(3421 3728)

2

+ + ( . )

!

0 2

2

2

 (– 307) + 
( . )(( . ) )

!

0 2 0 2 1

3

2 −
(45 + 58)

+ 
( . ) (( . ) )

!

0 2 0 2 1

4

2 2 −
(– 13)

= 31788 + 714.9 – 6.14 – 3.296 + 0.0208

= 32493.4848.

Example 16. Use Stirling formula, to compute log 337.5 from the following data.

x 310 320 330 340 350 360

log10 x 2.4913617 2.5051500 2.5185139 2.5314789 2.5440680 2.5563025

Solution. Here h = 10. Now taking 330 as origin, the required value of u is

u = 
337.5 330

10

−
 = 0.75
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The difference table is as under:

x u yu ∆yu ∆2yu ∆3yu ∆4yu ∆5yu

310 – 2 2.4913617
0.0137883

320 – 1 2.5051500 – 0.0004244
0.0133639 0.0000255

330 0 2.5185139 – 0.0003989 – 0.0000025
0.0129650 0.0000230 0.0000008

340 1 2.5314789 – 0.0003759 – 0.0000017
0.0125891 0.0000213

350 2 2.5440680 – 0.0003546
0.0122345

360 3 2.5563025

Stirling formula is

  yu = y0 + u 
( )

!

∆ ∆y y u0 1
2

2 2

+
+−  ∆2y–1 + 

u u y y( )

!

( )2 3
1

3
21

3 2

− +− −∆ ∆
 + 

u u2 2 1

4

( )

!

−
 ∆4 y– 2

 + ......

= 2.5185139 + (0.75)  
(0.0133639 .0129650)

2

+ 0
 + 

(0.75)

2 !

2

(– 0.0003989)

+ (0.75)

3!

2((0.75) ) ( . . )− +1 0 0000255 0 0000230

2
 + (0.75)

4 !

2 2((0.75) )− 1  (0.0000025)

= 2.52827374.

Example 17. Use Stirling formula to find y32  from the following data

y20 = 14.035, y25 = 13.674, y30 = 13.275, y35 = 12.734, y40 = 12.089, y45 = 11.309.

Solution. Here h = 5. Now taking 30 as origin, the required value of u = 
32 30

5

−
 = 0.4

The difference table is as under:

x u yu ∆yu ∆2yu ∆3yu ∆4yu ∆5yu

20 – 2 14.035
– 0.361

25 – 1 13.674 – 0.038
– 0.399 – 0.104

30 0 13.275 – 0.142 0.142
– 0.541 – 0.038 – 0.211

35 1 12.734 – 0.104 – 0.069
– 0.645 – 0.031

40 2 12.089 – 0.135
– 0.780

45 3 11.309
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Stirling formula is

yu = y0 + 
u y y( )∆ ∆0 1

2

+ −  + 
u2

2 !
 ∆2 y–1 + 

u u y y( )

!

( )2 3
1

3
21

3 2

− +− −∆ ∆
 + 

u u2 2 1

4

( )

!

−
 ∆4y–2 + .....

 = 13.275 + (0.4) 
( . . ) ( . )

!

− − +0 399 0 541

2

0 4

2

2

 (– 0.142) + 
( ) (( . ) )

!

0 0 4 1

3

2.4 −
 

0 038 0104

2

. .−�
�

�
�

 + 
( ) (( . ) )

!

0 0 4 1

4

2 2.4 −
(0.142)

 = 13.275 – 0.188 – 0.01136 + 0.001848 – 0.0007952

 = 13.07669.

����������	


1. Find the missing term in the following table:

x 1 2 3 4 5

y 2 5 7 — 32

2. Estimate the missing term in the following table.

x 0 1 2 3 4

f (x) 1 3 9 — 81

3. Given log 100 = 2, log 101 = 2.0043, log 103 = 2.0128, log 104 = 2.0170, find log 102.

4. Estimate the production of cotton in the year 1935 from the data given below (in millions of pales).

Year 1931 1932 1933 1934 1935 1936 1937

Production 17.1 13.0 14.0 9.6 — 12.4 18.2

5. Obtain the missing terms in the following table.

x 2 2.1 2.2 2.3 2.4 2.5 2.6

f (x) 0.135 — 0.111 0.100 — 0.082 0.024

6. The values of x and  y are given as below:

x 5 6 9 11

y 12 13 14 16

Find the value of y when x = 10.
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7. Find u3 given u0 = 580, u1 = 556, u2 = 520 and u4 = 385.

8. The following table gives the normal weights of babies during the first 12 months life:

Age in months 0 2 5 8 10 12

Weight in lbs 7.5 10.25 15 16 18 21

Estimate the weight of the body at the age of 7 months.

9. Apply Lagrange’s formula to find f (x) at x = 1.50, using the following values of the function.

x 1.00 1.20 1.40 1.60 1.80 2.00

f (x) 0.2420 0.1942 0.1497 0.1109 0.0790 0.0540

10. Find the form of the function given by:

x 0 1 2 3 4

f (x) 3 6 11 18 27

11. Find the form of the function given by:

x 3 2 1 – 1

f (x) 3 12 15 – 21

12. Using Lagrange’s formula, prove that y1 = y3 – 0.3(y5 – y–3) + 0.2 (y–3 – y– 5).

13. Using Lagrange’s formula, prove that y0 = 
1

2
(y1 +  y–1) – 

1

8

1

2

1

23 1 1 3( ) ( )y y y y− − −�
��

�
	
− − .

14. Use Stirling’s formula to find f (28) given f (20) = 49225, f (25) = 48316, f (30) = 47236,
f (35) = 45926, f (40) = 44306.

15. Use Stirling’s formula to find f (35) given  f (20) = 512, f (30) = 439, f (40) = 346, f (53) = 243.

16. Find the value of y(5) from the following table using Lagrange’s interpolation formula.

x 1 2 3 4 7

y 2 4 8 16 128

17. Find f(3) by Lagrange’s interpolation formula from the following table.

x 0 1 2 4 5

f (x) 0 16 48 88 0

18. Find the value of sin 52° from the given table.

θ° 45° 50° 55° 60°

sin θ 0.7071 0.7660 0.8192 0.8660
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19. Find the number of men getting wages between Rs 10 and Rs 15 from the following table.

Wages in Rs 0–10 10–20 20–30 30–40

Frequency 9 30 35 42

20. From the following table, find y when x = 1.25.

x 1 1.5 2.0 2.5

y 4.00 18.25 44.00 84.25

21. Find the value of the area of the circle of diameter 82 from the following data.

D(Diameter) 80 85 90 95 100

A(Area) 5026 5674 6362 7088 7854

22. Find the value of f (1.5) and f (7.5) from the given table.

x 1 2 3 4 5 6 7 8

f (x) 1 8 27 64 125 216 343 512

23. From the following table, find the form of the function f (x).

x 3 5 7 9 11

f (x) 6 24 58 108 174

24. If lx represents the number of persons living at age x in a life table, find as accurately as the data will
permit the value of l47. Given that l20 = 512, l30 = 439, l40 = 346, l50 = 243.

�������

1. 14 2. 31 3. 2.0086 4. 6.609 5. 0.123, 0.090

6. 14.67 7. 465.25 8. 15.7 lbs 9. 0.1295 10. x2 + 2x + 3

11. x3 – 9x2 + 17x + 6 14. 47692 15. 395 16. 32 17. 84

18. 0.788003 19. 15 20. 9.875 21. 5280

22. 3.375, 421.87 23. 2x2 – 7x + 9 24. 274.
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Simultaneous linear equations occur in the field of science and engineering like as analysis of a network
under sinusoidal steady-state condition, determination of the output of a chemical plant and finding the
cost of reaction, the analysis of electronic circuits having a number of invariant element etc.

We solved the system of simultaneous linear equation by matrix method or by Cramer’s rule.
But these methods are fail for large system. In this chapter we discuss some direct and iterative method
of solutions.

	
�
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Let us consider m first degree equations in n variables

a x a x a x b
a x a x a x b

a x a x a x b

n n

n n

m m mn n m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =
+ + + =

+ + + =

�

�
��

�
�
�

.....
......

: : : :
.....

. . . .

The system of above equations can be written in the matrix form as follows

a a a
a a a

a a a

x
x

x

b
b

b

n

n

m m mn n m

11 12 1

21 22 2

1 2

1

2

1

2

......

......

:
......

: :
. . .

�

�

�
�
�
�

�
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�

�
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�
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�
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i.e., AX = B

where A = [aij]m×n , X =  

x
x

x

B

b
b

bn m

1

2

1

2

:
,

:
. .
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The system of equations given above is said to be homogeneous if all the bi (i = 1, 2 ..... m) are
zero. Otherwise, it is called as non-homogeneous system. The solution of such equations can be obtained
by

1. Determinant method

2. Matrix inversion method

3. Direct methods

(i) Gauss elimination method (ii) Gauss-Jordan method (iii) Triangularization method

4. Indirect methods

(i) Tacobi iterative method (ii) Gauss-Seidel iterative method (iii) Relaxation method

But in the present chapter we shall discuss only Gauss elimination and Gauss-Seidel method.

	
�
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In this method, the unknowns from the system of equations are eliminated successively such that system
of equations is reduced to an upper triangular system from which the unknowns are determined by back
substitution. We proceed stepwise as follows.

Consider the system of equations

a x a x a x b
a x a x a x b

a x a x a x b

n n

n n

m m mn n m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =
+ + + =

+ + + =

�

�
��

�
�
�

......
......

: : : :
......

. . . .
...(3.1)

Step 1. To eliminate x1 from the second, third .... nth equation

Assuming a11 ≠ 0. The variable x1 eliminated from second equation by subtracting 
a
a

21

11
 times the

first equation from the second equation, similarly we eliminate x1 from third  equation by subtracting

a
a

31

11
 times the first equation from the third equation, etc. We get new system of equation as

a x a x a x b

b x b x b

b x b x b

b x b x b

n n

n n

n n

m mn n m

11 1 12 2 1 1

22 2 2 2

32 2 3 3

2 2

+ + + =
+ + = ′
+ + = ′

+ + = ′

�

�

�
��

�

�
�
�

......

......

......

: : :

......

. . .
...(3.2)

 Step 2. To eliminate x2 from the third, fourth ...... nth equation

Assuming b22 ≠ 0. The variable x2 eliminated from third equation by subtracting 
b

b
32

22
 times the

second equation from the third equation, similarly we eliminate x2 from fourth equation by subtracting
b

b
42

22

 times the second equation from the fourth equation etc. We get new system of equation as
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a x a x a x a x b

b x b x b x b

c x c x b

c x c x b

n n

n n

n n

m mn n m

11 1 12 2 13 3 1 1

22 2 23 3 2 2

33 3 3 3

3 3

+ + + + =
+ + + = ′

+ + = ′′

+ + = ′′

�

�

�
��

�

�
�
�

......

......

......

: : :

......

. . .
...(3.3)

Proceeding in the same way we eliminate x3 in third step, we eliminate x4 in fourth step and so
on. We get new system of equation as

a x a x a x a x b

b x b x b x b

c x c x b

d x b

n n

n n

n n

nn n m
m

11 1 12 2 13 3 1 1

22 2 23 3 2 2

33 3 3 3

1

+ + + + =
+ + + = ′

+ + = ′′

=

�

�

�
��

�

�
�
�− ′

......

......

......

: :
. .

( )

...(3.4)

To evaluate the unknown

The value of x1 x2 ..... xn are given by (3.4) by back substitution.
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Let us consider a system of n equation in n variables in which aii ≠ 0

a x a x a x b

a x a x a x b

a x a x a x b

a x a x a x b

n n

n n

n n

n n nn n n

11 1 12 2 1 1

21 1 22 2 2 2

31 1 32 2 3 3

1 1 2 2

+ + + =
+ + + =
+ + + =

+ + + =

�

�

�
��

�

�
�
�

......

......

......

: : : :

......

. . . . ...(3.5)

Above equation can be written as

x
a

b a x a x a xn n1
11

1 12 2 13 3 1
1= − −[ ...... ]

x
a

b a x a x a xn n2
22

2 21 1 23 3 2
1= − −[ . .. ... ]

x
a

b a x a x a xn n3
33

3 31 1 32 2 3
1= − −[ .. .. .. ]

�

�

�
�
�
�
�
�

�

�
�
�
�
�
�

...(3.6)

:
.

x
a

b a x a x a xn
nn

n n n n n n= − − − −
1

1 1 2 2 1 1[ . .. .. . ( )

Put the first approximations x x xn1
1

2
1 1( ) ( ) ( ), , ......,   in R.H.S. of first equation of (3.6), we get

x
a

b a x a x a xn n1
2

11
1 12 2

1
13 3

1
1

11( ) ( ) ( ) ( )[ ...... ]= − −
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Now put x x x xn1
2

2
1

3
1 1( ) ( ) ( ) ( )......  in R.H.S. of second equation of (3.6), we get

     x a
b a x a x a xn n2

2

22
2 21 1

2
23 3

1
2

11( ) ( ) ( ) ( )[ ...... ]= − −

Now put x x x xn1
2

2
2

3
1 1( ) ( ) ( ) ( ), , , ......,  in R.H.S of third equation of (3.6), we get

 x
a

b a x a x a xn n3
2

33
3 31 1

2
32 2

2
3

11( ) ( ) ( ) ( )[ ...... ]= − −

Proceeding in the same way put x x x xn1
2

2
2

3
2 1( ) ( ) ( ) ( ), , , ......,  in the last equation of (3.6), we get

 x
a

b a x a x a xn
nn

n n n n n n
( ) ( ) ( )

( )
( )[ ...... ]2

1 1
2

2 2
2

1 1
21= − − − −

This is the first stage of iteration

The whole process is repeated till the values of x1, x2, ......, xn are obtained to desired accuracy

Gauss-Seidel method is also known as a method of successive displacement.

�������������

Example 1. Solve by Gauss’s elimination method the following:

  x1 + x2 + 2x3 = 4 ...(i)

 3x1  + x2 – 3x3 = – 4 ...(ii)

 2x1 – 3x2 – 5x3 = – 5 ...(iii)

Solution. Eliminating x1 from second and third equation by subtracting 3 and 2 times of first
equation respectively, we get

   x1 + x2 + 2x3 = 4 ...(iv)

    2x2 + 9x3 = 16 ...(v)

5x2 + 9x3 = 13 ...(vi)

Again eliminating x2 from (vi) with the help of (v). Divide (v) by 2 and then this equation is
subtracted after multiplies by 5 from (vi), we get

  x1 + x2 + 2x3 = 4 ...(vii)

 x2 + 
9

2
 x3 = 8 ...(viii)

– 
27

2 3x  = – 27

or   x3 = 2

Substitute the value of x3 into (viii), we get

 x2 = 8 – 
9

2
 × 2 = – 1
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and again substitute the values of x2 and x3 into (vii), we get

  x1 = 4 + 1 – 4 = 1

Hence, the solutions of the equation are

 x1 = 1, x2 = – 1, x3 = 2.

Example 2. Solve  2x1 + 4x2 + x3 = 3

3x1 + 2x2 – 2x3 = – 2

x1 – x2 + x3 = 6

by Gauss’s elimination method.

Solution. We can write the given equations in the following order

 x1 – x2 + x3 = 6 ...(i)

 2x1 + 4x2 + x3 = 3 ...(ii)

 3x1 + 2x2 – 2x3 = – 2 ...(iii)

Eliminating x1 from (ii) and (iii) equation by subtracting 2 and 3 times of first equation respec-
tively, we get

 x1 – x2 + x3 = 6 ... (iv)

 6x2 – x3 = – 9 ...(v)

 5x2 – 5x3 = – 20 ...(vi)

Again eliminating x2 from (vi) with the help of (v). Divide (v) by 6 and then this equation is
subtracted after multiplies by 5 from (vi), we get

 x1 – x2 + x3 = 6 ...(vii)

 6x2 – x3 = – 9 ...(viii)

x3 = 3

Substitute the value of x3 into (viii), we get

x2 = 
− +9 3

6
 = – 1

and again substitute the values of x2 and x3 into (vii), we get

x1 = 6 – 1 + 3 = 2

Hence, the solutions of the equation are

  x1 = 2, x2 = – 1, x3 = 3.

 Example 3.  Solve 6x + 3y + 2z = 6

 6x + 4y + 3z = 0

20x + 15y + 12z = 0

by Gauss’s elimination method.
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Solution. First, divide first equation by 6, we get

   x + 
1

2
 y + 

1

3
z  = 1 ...(i)

  6x +  4y + 3z = 0 ...(ii)

 20x + 15y + 12z = 0 ...(iii)

Eliminating x from (ii) and (iii) equation by subtracting 6 and 20 times of first equation
respectively, we get

  x + 
1

2
 y + 

1

3
 z = 1 ...(iv)

 y + z = – 6 ...(v)

 5y + 
16

3
 z = – 20 ...(vi)

Now eliminating y from (vi) by subtracting 5 times of (v), we get

x + 
1

2
 y + 

1

3
 z = 1 ...(vii)

 y + z = – 6 ...(viii)

   
1

3
 z = 10

or  z = 30

Substitute the value of z into (viii), we get

y = – 6 – 30 = – 36

and again substitute the values of y and z into (vii), we get

x = 1 – 
1

2
 (– 36) – 

1

3
 (80)

or  x = 9

Hence the solution of the equations are

 x = 9, y = – 36, z = 30

Example 4. Solve the system of equation by Gauss-Seidel iteration method

 83x + 11y – 4z = 95

  7x + 52y + 13z = 104

3x + 8y + 29z = 71

Solution. The given equation can be written in the iteration form as

x = 
1

83
 (95 – 11y + 4z) ...(i)

y = 
1

52
 (104 – 7x – 13z) (ii)

z = 
1

29
 (71 – 3x – 8y) ...(iii)
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Taking first x(1) = 0,  y(1) = 0, z(1) = 0 and put these values in (i), we get

x(2) = 
1

83
 (95 – 11y(1) – 4z(1))

= 
1

83
 (95 – 11 × 0 + 4 × 0) = 

95

83
 = 1.14

Put x(2) = 1.14, y(1) = 0, z(1) = 0, in (ii), we get

y(2) = 
1

52
 (104 – 7x(2) – 13z(1)) = 

1

52
 (104 – 7 × 1.14 – 13 × 0)

= 
96 02

52

.
 = 1.85

Put   x(2) = 1.14,  y(2) = 1.85, z(1) = 0 in (iii), we get

z(2) = 
1

29
 (71 – 3x(2) – 8y(2))

= 
1

29
 (71 – 3 × 1.14 – 8 × 1.85) = 

52 78

29

.
 = 1.82

Now put x(2) = 1.14,  y(2) = 1.85,  z(2) = 1.82 in (i), we get

  x(3) = 
1

83
 (95 – 11 y(2) + 4z(2)]

x(3) = 
1

83
 [95 – 11 × 1.85 + 4 × 1.82]

= 
81 93

83

.
 = 0.99

Put x(3) = 0.99, y(2) = 1.85, z(2) = 1.82 in (ii), we get

y(3) = 
1

52
 [104 – 7x(3) – 13 z(3)] = 

1

52
 [104 – 7 × 0.99 – 13 × 1.82]

= 
73

52

.41
 = 1.41.

Put x(3) = 0.99,  y(3) = 1.41,  z(2) = 1.82 in (iii), we get

z(3) = 
1

29
 (71 – 3x(3) – 8y(3))

= 
1

29
 (71 – 3 × 0.99 – 8 × 1.41)

= 
56 75

29

.
 = 1.95

Now put x(3) = 0.99, y(3) = 1.41,  z(3) = 1.95 in (i), we get

x(4) = 
1

83
 (95 – 11y(3) + 4z(3))
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= 
1

83
 (95 – 11 × 1.41 + 4 × 1.95)

= 
1

83
 (87.29) = 1.05

Put x(4) = 1.05,  y(3) = 1.41,  z(3) = 1.95 in (ii), we get

y(4) = 
1

52
 (104 – 7x(3) – 13z(3))

= 
1

52
 (104 – 7 × 1.05 – 13 × 1.95)

= 
71 3

52

.
 = 1.37

Put x(4) = 1.05,  y(4) = 1.37, z(3) = 1.95 in (iii), we get

z(4) = 
1

29
 (71 – 3x(4) – 8y(4))

= 
1

29
 (71 – 3 × 1.05 – 8 × 1.37)

= 
56 89

29

.
 = 1.96

Here x(4) = 1.05,  y(4) = 1.37,  z(4) = 1.96

The values are sufficiently close to x(3),  y(3),  z(3) respectively. Hence the solution is

   x = 1.05,  y = 1.37,  z = 1.96.

Example 5. Solve the following system of equation by Gauss-Seidel iteration method

10x + 2y + z = 9

2x + 20y – 2z = – 44

– 2x + 3y + 10z = 22

Solution. The given equation can be written in the iteration form as

x = 
1

10
 (9 – 2y – z) ...(i)

y = 
1

20
 (– 44 – 2x + 2z) ...(ii)

z = 
1

10
 (22 + 2x – 3y) ...(iii)

Taking first x(1) = 0,  y(1) = 0,  z(1) = 0 and put these values in (i), we get

x(2) = 
1

10
 (9 – 2y(1) – z(1)) = 

1

10
 (9 – 2 × 0 – 0) = 

9

10
 = 0.9

Put x(2) = 0.9,  y(1) = 0,  z(1) = 0 in (ii), we get

y(2) = 
1

20
 (– 44 – 2x(2) + 2z(1)) = 

1

20
 (– 44 – 2 × 0.9 + 2 × 0)
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= – 
45 8

20

.
 = – 2.29

Put x(2) = 0.9,  y(2) = – 2.29,  z(1) = 0 in (iii), we get

z(2) = 
1

10
 (22 + 2 × 0.9 – 3 × (– 2.29)) = 

1

10
 (30.67) = 3.067

Now put x(2) = 0.9,  y(2) = – 2.29,  z(2) = 3.067 in (i), we get

x(3) = 
1

10
 (9 – 2y(2) – z(2)) = 

1

10
 (9 – 2 × (– 2.29) – 3.067)

= 
10 513

10

.
 = 1.051

Put x(3) = 1.051,  y(2) = – 2.29,  z(2) = 3.067 in (ii), we get

y(3) = 
1

20
 (– 44 – 2 × x(3) + 2z(2)) = 

1

20
 (– 44 – 2 × 1.051 + 2 × 3.067)

= 
1

20
 (– 39.968) = – 1.99

Put x(3) = 1.051, y(3) = – 1.99, z(2) = 3.067 in (iii), we get

z(3) = 
1

10
 (22 + 2x(3) – 3y(3))

= 
1

10
 (22 + 2 × 1.051 – 3 × (– 1.99))

= 
1

10
 (30.072) = 3.007

Now put x(3) = 1.051, y(3) = – 1.99, z(3) = 3.007 in (i), we get

x(4) = 
1

10
 (9 – 2y(3) – z(3))

= 
1

10
 (9 – 2 × (– 1.99) – 3.007) = 

9 973

10

.
 = 0.997

Put x(4) = 0.997,  y(3) = – 1.99, z(3) = 3.007 in (ii), we get

y(4) = 
1

20
 (– 44 – 2x(4) + 2z(3))

= 
1

20
 (– 44 – 2 × 0.997 + 2 × 3.007) = 

1

20
 (39.98) = – 1.99
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Put x(4) = 0.997,  y(4) = – 1.99, z(3) = 3.007 in (iii), we get

z(4) = 
1

10
 (22 + 2x – 3y) = 

1

10
 (22 + 2 × 0.997 – 3x (– 1.99))

= 
1

10
 (29.964) = 2.99

Here x(4) = .997, y(4) = – 1.99, z(4) = 2.99

The values are sufficiently close to x(3), y(3), z(3)  respectively. Hence solution is

 x = 0.997 ≈ 1, 2y = – 1.99 ≈ 2, z = 2.99 ≈ 3.

���������	
�

Apply Gauss’s elimination method to solve the following system of equations:

1. 4x1 + x2 + 3x3 = 11 2. 5x – y – 2z = 142

  3x1 + 4x2 + 2x3 = 11   x – 3y – z = – 30

2x1 + 3x2 + x3 = 7 2x – y – 3z = – 50

3. 2x + y + z = 10 4.  x + 4y – z = – 5

3x + 2y + 3z = 18  x + y – 6z = – 12

  x + 4y + 9z = 16  3x – y – z = 4

5.   2x + 3y – z = 5 6. x1 + x2 + x3 = 10

4x + 4y – 3z = 3 2x1 + x2 + 2x3 = 17

2x – 3y + 2z = 2 3x1 + 2x2 + x3 = 17

Apply Gauss-seidel iteration method to solve the following system of equation:

7. 27x + 6y – z = 85 8.  2x + 4y + z = 3

   6x + 15y + 2z = 72 3x + 2y – 2z = – 2

 x + y + 54z = 110 x – y + z = 6

9. 20x + y – 2z = 17 10. 17x1 + 65x2 – 13x3 + 50x4 = 84

 3x + 20y – z = – 18 12x1 + 16x2 + 37x3 + 18x4 = 25

2x – 3y + 20z = 25 56x1 + 23x2 + 11x3 – 19x4 = 36

3x1 – 5x2 + 47x3 + 10x4 = 18

�������

1. x1 = 1, x2 = 1,  x3 = 2 2. x = 41.07, y = 15.77, z = 23.79

3. x = 7,   y = – 9, z = 5 4. x = 1.647, y = – 1.140, z = 2.084

5. x = 1,   y = 2,    z = 3 6. x1 = 2, x2 = 3, x3 = 5

7. x = 2.43, y = 3.57, z = 1.92 8. x = 2,  y = – 1, z = 3

9. x = 1,   y = – 1,  z = 1 10. x1 = 5.34, x2 = – 5.24, x3 = – 1.83, x4 = 6.12
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An expression of the form f (x) ≡ a0xn + a1x
n–1 + a2xn–2 + ...... + an–1x + an = 0, a0 ≠ 0

where all a0, a1, ......, an are constants and n is a positive integer, called an algebraic equation of degree
n, in x.

4x6 + 3x5 + 9x4 + x3 + 3x – 6 = 0, x3 – x – 1 = 0 are the example of algebraic equation.

����� �
��������������������

An expression which contain some other functions such as exponential, trigonometric, logarithmic etc.

are called transcendental equation 3x – 1 + sin x  = 0, x log10 x = 72, cos x = x ex are the example of

transcendental equation.

�����
������������������

The value of x which satisfying the equation f (x) = 0 is called the root of the equation.

The roots of the linear, quadratic, cubic, or biquadratic equations are obtained by available
methods, but for transcendental equation or higher degree equation can not solved by these methods
easily. So those types of equation can be solved by numerical methods such as bisection, secant, Newton-
Raphson, Regula-Falsi method etc.

In this chapter, we shall discuss only Regula-Falsi and Newton-Raphson method.

CCCCCHAPTERHAPTERHAPTERHAPTERHAPTER     44444

Solution of Algebraic and
Transcendental Equations
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Let x = x0 be an approximate value of the roots of the equation f (x) = 0 which is algebraic or transcen-
dental and let x0 + h be the correct value of the corresponding root where h be a real number sufficiently
small. Then

f (x0 + h) = 0 ...(4.1)

Expanding by Taylor’s theorem

f (x0 + h) = f (x0) + 
h

1!
 f ′(x0) + 

h2

2 !
  f ″(x0) + 

h3

3!
 f ′″(x0) + ...... = 0

Since h is very small, so neglecting second and higher order terms, we get

f (x0) + h f ′(x0) = 0

⇒  h = – 
f x

f x

( )

( )
0

0′
 also f ′(x0) ≠ 0

Thus, the first approximation of the root is given by

  x1 = x0 + h = x0 – 
f x

f x

( )

( )
0

0′

Similarly taking x1 as initial approximation, to be the better approximation of the root x2 is
obtained as

 x2 = x1 – f x

f x

( )

( )
1

1′
f ′(x0) ≠ 0

Proceeding in the same way we get better approximation of the root is given by

 xn+1 = xn – 
f x

f x
n

n

( )

( )′
, n = 0, 1, 2, 3 .....

This is known as Newton-Raphson formula.

�����
������������������

This is the oldest method for finding the real root of the equation
f (x) = 0. In this method we take two points x0 and x1 such that f (x0)
and f (x1) are of opposite signs i.e., f (x0) f (x1) < 0. The root must lie
in between x0 and x1 since the graph y = f (x) crosses the x-axis be-
tween these two points.

Now equation of the chord  joining  the two points
A[x0, f (x0)] and B[x1, f (x1)] is

Y

O X

x2 x4

A(x x ))00, f(

B(x , )1 f(x )1

C(x , )2 f(x )2

D(x , )3 f(x )3

x3
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y f x

x x

f x f x

x x

−
−

= −
−

( ) ( ) ( )0

0

1 0

1 0
...(4.2)

In this method the curve between the points A [x0, f (x0)] and B[x1, f (x1)] is replaced by the chord
AB by joining the points A and B and taking the point of intersection of the chord with the x-axis as an
approximation to the root which is given by putting y = 0 in (4.2). Thus, we have

x2 = x0 – 
( )

( ) ( )
( )

x x

f x f x
f x1 0

1 0
0

−
−

If now f (x0) and f (x2) are of opposite signs, then the root lies between x0 and x2. Then replace the
part of curve between the points A(x0, f (x0)) and C(x2, f (x2)) by the chord joining these points and this
chord intersect the x-axis then we get second approximation to the root which is given by

x3 = x0 – 
( )

( ) ( )
( )

x x

f x f x
f x2 0

2 0
0

−
−

The procedure is repeated till the root is found to desired accuracy.

���������������

Example 1. Find the real root of the equation x2 – 5x + 2 = 0 by Newton-Raphson’s method.

Solution. Let  f (x) = x2 – 5x + 2 = 0 and f ′(x) = 2x – 5 ...(i)

Now   f (4) = 42 – 5 × 4 + 2 = – 2

f (5) = 52 – 5 × 5 + 2 = 2

Therefore, one real root lies between 4 and 5

By Newton-Raphson’s formula

xn+1 = xn – 
f x

f x
n

n

( )

( )′
 = xn – 

x x

x

x x x x

x
n n

n

n n n n

n

2 2 25 2

2 5

2 5 5 2

2 5

− +
−

=
− − + −

−

  xn+1 = 
x

x
n

n

2 2

2 5

−
−

where n = 0, 1, 2, 3, ...... ...(ii)

Take x0 = 4

Putting n = 0 in (ii), we get first approximation

x1 = 
x

x
0
2

0

22

2 5

4 2

2 4 5

16 2

8 5

14

3

−
−

= −
× −

= −
−

=  = 4.6667

Again, putting n = 1 in (ii), we get second approximation

x2 = 
x

x
1
2

1

22

2 5

4 6667 2

2 4 6667 5

21 7780 2

9 3334 5

19 7780

4 3334

−
−

= −
× −

= −
−

=( . )

.

.

.

.

.
 = 4.5640

Putting n = 2 in (ii), we get third approximation

x3 = x

x
2
2

2

22

2 5

4 5640 2

2 4 5640 5

20 8308 2

91281 5

18 8308

41281

−
−

= −
× −

= −
−

=( . )

( . )

.

.

.

.
 = 4.5616
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Putting n = 3 in (ii), we get fourth approximation

  x4 = 
x

x
3
2

3

22

2 5

4 5616 2

2 4 5616 5

20 8084 2

91232 5

18 8084

4 1232

−
−

= −
× −

= −
−

=( . )

.

.

.

.

.
 = 4.5616

Here x3 = x4. Thus, the root of equation x2 – 5x + 2 = 0 is 4.5616.

Example 2. Find the real root of the equation x3 – 3x – 5 = 0 by Newton-Raphson’s method.

Solution. Let f (x) = x3 – 3x – 5 = 0 ...(i)

then  f ′(x) = 3x2 – 3

Now f (2) = 23 – 3 × 2 – 5 = – 3

and f (3) = 33 – 3 × 3 – 5 = 13

Therefore, one real root lies between 2 and 3

By Newton-Raphson’s formula, we have

xn+1 = xn – 
f x

f x
n

n

( )

( )′
 = xn – 

x x

x

x x x x

x
n n

n

n n n n

n

3

2

3 3

2

3 5

3 3

3 3 3 5

3 3

− −
−

=
− − + +

−

xn+1 = 
2 5

3 3

3

2

x

x
n

n

+
−

  where n = 0, 1, 2, 3, ...... ...(ii)

Take   x0 = 2

Putting n = 0 in (ii), we get first approximation

x1 = 
2 +

−
= +

−
=

x

x
0
3

0
2

3

2

5

3 3

2 2 5

3 2 3

21

9

.

.
 = 2.3333.

Again putting n = 1 in (ii), we get second approximation

 x2 = 2 5

3 3

2 2 3333 5

3 2 3333 3

30

13 3333
1
3

1
2

3

2

. . ( . )

. ( . )

.4063

.

x

x

+
−

= +
−

=  = 2.2804

Putting n = 2 in (ii), we get third approximation

  x3 = 2 5

3 3

2 2 2804 5

3 2 2804 3

28 7171

12 6006
2
3

2
2

3

2

. . ( . )

. ( . )

.

.

x

x

+
−

= +
−

=  = 2.2790

Putting n = 3 in (ii), we get fourth approximation

x4 = 
2 5

3 3
3
3

3
2

x

x

+
−

 = 
2 2 2790 5

3 2 2790 3

28 6735

12 5815

3

2

.( . )

.( . )

.

.

+
−

=  = 2.2790

Here x3 = x4 therefore the root of the equation

x3 – 3x – 5 = 0 is 2.2790.
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Example 3. Using Newton-Raphson’s method find the cube root of 10 correct to four places of
decimal.

Solution. Let f (x) = x3 – 10 = 0 ...(i)

then  f ′(x) = 3x2

Now f (2) = 23 – 10 = – 2 and f (3) = 33 – 10 = 17

Therefore, one real root lies between 2 and 3.

By Newton-Raphson’s formula, we have

xn+1 = xn – 
f x

f x
n

n

( )

( )′
 = xn – 

x

x

x x

x
n

n

n n

n

3

2

3 3

2

10

3

3 10

3

−
=

− +

xn+1 = 
2 10

3

3

2

x

x
n

n

+
where n = 0, 1, 2, 3, ...... ...(ii)

Take  x0 = 2

Putting n = 0 in (ii), we get first approximation

  x1 = 
2 10

3

2 2 10

3 2

26

12
0
3

0
2

3

2

x

x

+
= + =.

.
 = 2.1666

Putting n = 1 in (ii), we get second approximation

x2 = 
2 10

3

2 2 1666 10

3 2 1666

30 3407

14 0824
1
3

1
2

3

2

x

x

+
= +

×
=( . )

( . )

.

.
 = 2.1545

Putting n = 2 in (ii), we get third approximation

  x3 = 
2 10

3

2 2 1545 10

3 21545

30 0018

13 9256
2
3

2
2

3

2

x

x

+
= + =.( . )

.( . )

.

.
 = 2.1544

Putting n = 3 in (ii), we get fourth approximation

x4 = 
2 10

3

2 21544 10

3 21544

29 9990

13 9247
3
3

3
2

3

2

x

x

+
= + =( . )

.( . )

.

.
 = 2.1544

Here x3 = x4 therefore the cube root of 10 is 2.1544.

Example 4. Find the real root of tan x = 4x by using Newton-Raphson’s method.

Solution. Let  f (x) = tan x – 4x = 0 ...(i)

then f ′(x) = sec2 x – 4 = 0

Now  f (0) = 0 and f (1) = – 3.982

� f (0) = 0 so exact root of f (x) = 0 is 0
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By Newton-Raphson’s method, we have

 xn+1 = xn – 
f x

f x
n

n

( )

( )′
 = xn – 

tan

sec

sec tan

sec

x x

x

x x x

x
n n

n

n n n

n

−
−

=
−
−

4

4 42

2

2   ...(ii)

where n = 0, 1, 2, 3, .....

Take x0 = 0.

Putting n = 0, we get first approximation

x1 = 
x x x

x
0

2
0 0

2
0 4

0 1 0

1 4

sec tan

sec

.−
−

= −
−

 = 0

Hence the root of tan x – 4x = 0 is 0.

Example 5. Using Newton-Raphson’s method find the solution of ex = 3x.

Solution. Let  f (x) = ex – 3x = 0 ...(i)

then   f ′(x) = ex – 3

Now  f (0) = 1 and f (1) = – 0.28

Therefore root lies between 0 and 1

By Newton’s formula, we have

 xn+1 = xn – f x
f x

n

n

( )
( )′

 = xn – 
e x

e

x e x e x

e

x
n

x
n

x
n

x
n

x

n

n

n n

n

−
−

=
− − +

−
3

3

3 3

3

= 
e x

e

x
n

x

n

n

( )−
−

1

3
, where n = 0, 1, 2, 3, ...... ...(ii)

Take x0 = 0.

Putting n = 0 in (ii), we get first approximation

x1 = 
e x

e

e

e

x

x

0

0

0
0

0

1

3

0 1

3

1

2

( ) ( )−
−

= −
−

= −
−

 = 0.5

Again putting n = 1 in (ii), we get second approximation

x2 = 
e x

e

e

e

x

x

1

1

1
0 5

0 5

1

3

0 5 1

3

0 82436

135127

( ) ( . ) .

.

.

.

−
−

= −
−

= −
−

 = 0.61006

Putting n = 2 in (ii), we get third approximation

x3 = 
e x

e

e

e

x

x

2

2

2
0 61006

0 61006

1

3

0 61006 1

3

( ) ( . ).

.

−
−

= −
−

 = 
−
−

0 71770

0 15945

.

.
 = 0.61900

Putting n = 3 in (ii), we  get fourth approximation

x4 = 
e x

e

e

e

x

x

3

3

3
0 61900

0 61900

1

3

0 61900 1

3

( ) ( . ).

.

−
−

= −
−

 = 
−
−

0 70754

114293

.

.
 = 0.61905

Here x3 = x4. Therefore, the root of equation ex = 3x is 0.6190 Ans.
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Example 6. Find the real root of the equation 3x = cos x + 1 by Newton-Raphson’s method

Solution. Let  f (x) = 3x – cos x – 1 = 0 ...(i)

then   f ′(x) = 3 + sin x = 0

Now  f (0) = – 2 and f (1) = 3 – cos 1 – 1 = 2 – 0.5403 = 1.4597

Therefore, root lies between 0 and 1

By Newton-Raphson’s formula, we have

xn+1 = xn – 
f x

f x
x

x x

x
n

n
n

n n

n

( )

( )

cos

sin′
= − − −

+
3 1

3
 = 

x x x

x
n n n

n

sin cos

sin

+ +
+

1

3
...(ii)

Take x0 = 0.

Putting n = 0 in (ii), we get first approximation

x1 = 
x x x

x
0 0 0

0

1

3

sin cos

sin

+ +
+

 = 
0 0 0 1

3 0

2

3

sin cos

sin

+ +
+

=  = 0.6666

Putting n = 1 in (ii), we get second approximation

 x2 = 
x x x

x
1 1 1

1

1

3

0 6666 0 6666 0 6666 1

3 0 6666

sin cos

sin

( . ) sin ( . ) cos ( . )

sin ( . )

+ +
+

= + +
+

= 
0 6666 0 6183 0 7859 1

3 0 6183

0 4122 0 7859 1

3 6183

. . .

.

. .

.

× + +
+

= + +

= 
2 1481

3 6183

.

.
 = 0.6074

Putting n = 2 in (ii), we get third approximation

x3 = 
x x x

x
2 2 2

2

1

3

0 6074 0 6074 0 6074 1

3 0 6074

sin cos

sin

( . ) sin ( . ) cos ( . )

sin ( . )

+ +
+

= + +
+

= 
0 6074 0 5707 0 8211 1

3 0 5707

0 3466 0 8211 1

3 5707

. . .

.

. .

.

× + +
+

= + +
 = 

2 1677

3 5707

.

.
 = 0.6071

Putting n = 3 in (ii), we get fourth approximation

x4 = 
x x x

x
3 3 3

3

1

3

0 6071 0 6071 0 6071 1

3 0 6071

sin cos

sin

( . ) sin ( . ) cos ( . )

sin ( . )

+ +
+

= + +
+

= 
0 6071 0 5704 0 8213 1

3 0 5704

0 3463 0 8213 1

3 5704

. . .

.

. .

.

× + +
+

= + +
 = 

2 1676

3 5704

.

.
 = 0.6071.

Here x3 = x4 therefore, the root of 3x – cos x – 1 = 0 is 0.6071.

Example 7. Use the method of false position, find the real root of the equation x3 – 2x – 5 = 0.

Solution. We have f (x) = x3 – 2x – 5 = 0 ...(i)

Now  f (2) = 23 – 2 × 2 – 5 = – 1

and  f (3) = 33 – 2 × 3 – 5 = 16
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Therefore, one real root lies between 2 and 3

∴ Taking x0 = 2 and x1 = 3 ⇒ f (x0) = f (2) = – 1,  f (x1) = f (3) = 16

Then by Regula-Falsi method, we get

x2 = x0 – 
x x

f x f x
1 0

1 0

−
−( ) ( )

 f (x0) = 2 – 
3 2

16 1

−
− −( )

 (– 1)

= 2 + 
1

17

35

17
=  = 2.0588

Now  f (x2) = f (2.0588) = (2.0588)3 – 2 × (2.0588) – 5 by (i)

= – 0.3910

Therefore, one real root lies between 2.0588 and 3

∴ Taking  x0 = 2.0588, x1 = 3 ⇒ f (x0) = f (2.0588) = – 0.3910

 f (x1) = f (3) = 16

Then by Regula-Falsi method, we get

 x3 = x0 – 
x x

f x f x
f x1 0

1 0
0

−
−( ) ( )

( ) = 2.0588 – 
3 2 0588

16 0 3910

−
− −

.

( . )
 × (– 0.3910)

= 2.0588 + 
0 9412

16 391

.

.
 × (0.3910) = 2.0588 + 0.02245 = 2.0812

Now f (x3) = f (2.0812) = (2.0812)3 – 2 × (2.0812) – 5 = – 0.1479

Therefore, one root lies between 2.0812 and 3

∴ Taking x0 = 2.0812, x1 = 3

⇒ f (x0) = f (2.0812) = – 0.1479, f (x1) = f (3) = 16

Then by Regula-Falsi method, we get

x4 = x0 – 
x x

f x f x
1 0

1 0

−
−( ) ( )

 f (x0)

= 2.0812 – 
3 2 0812 0 1479

16 0 1479
2 0812

0 9188 0 1479

161479

− × −
− −

= + ×. ( . )

( . )
.

. ( . )

.

= 2.0812 + 0.0084 = 2.0896

Now  f (x4) = f (2.0896) = (2.0896)3 – 2 × (2.0896) – 5 = – 0.0551

Therefore, one root lies between 2.0896 and 3

∴ Taking x0 = 2.0896, x1 = 3

f (x0) = f (2.0896) = – 0.0551,  f (x1) = f (3) = 16
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Then by Regula-Falsi method, we get

x5 = x0 – 
x x

f x f x
1 0

1 0

−
−( ) ( )

 f (x0) = 2.0896 – 
3 2 0896

16 0 0551
0 0551

−
− −

−.

( . )
( . )

= 2.0896 + 
0 9104

16 0551

.

.
 × 0.0551 = 2.0896 + 0.0031 = 2.0927

Now f (x5) = f (2.0927) = (2.0927)3 – 2 × (2.0927) – 5 = – 0.0206

Therefore, one real root lies between 2.0927 and 3

∴ Taking x0 = 2.0927, x1 = 3

f (x0) = f (2.0927) = – 0.0206, f (x1) = f (3) = 16

Then by Regula-Falsi method, we get

x6 = x0 – 
x x

f x f x
1 0

1 0

−
−( ) ( )

 f (x0) = 2.0927 – 
3 2 0927

16 0 0206
0 0206

−
− −

× −.

( . )
( . )

= 2.0927 + 
0 9073

16 0206

.

.
 × 0.0206 = 2.0927 + 0.0011 = 2.0938

Now  f (x6) = f (2.0938) = (2.0938)3 – 2 × (2.0938) – 5 = – 0.0083

Therefore, one root lies between 2.0938 and 3

∴ Taking x0 = 2.0938, x1 = 3

  f (x0) = f (2.0938) = – 0.0083

f (x1) = f (3) = 16

Then by Regula-Falsi method, we get

x7 = x0 – 
x x

f x f x
1 0

1 0

−
−( ) ( )

 × f (x0) = 2.0938 – 
3 2 0938

16 0 0083

−
− −

.

( . )
 × (– 0.0083)

= 2.0938 + 
0 9062

16 0083

.

.
 × 0.0083

= 2.0938 + 0.00046 = 2.0942

Now  f (2.0942) = (2.0942)3 – 2 × (2.0942) – 5 = – 0.0030

Therefore, root lies between 2.0942 and 3

∴ Taking x0 = 2.0942, x1 = 3

⇒   f (x0) = f (2.0942) = – 0.0030, f (x1) = f (3) = 16

Then by Regula-Falsi method, we get

x8 = x0 – 
x x

f x f x
1 0

1 0

−
−( ) ( )

 f (x0) = 2.0942 – 
3 2 0942

16 0 0030

−
− −

.

( . )
 × (– 0.0030)

= 2.0942 + 
0 9052

16 0030

.

.
 × 0.0030 = 2.0942 + 0.00016 = 2.0943
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Here x7 = x8

Hence, the root is 2.094 correct to three decimal places.

Example 8. Determine the real root of the equation xex = 2 using Regula-Falsi method correct
to three decimal places.

Solution. Let  f (x) = xex – 2 = 0

Now  f (0) = 0 – 2 = – 2

and f (0.5) = 0.5e0.5 – 2 = – 1.1756

f (0.7) = – 0.5903

f (0.9) = 0.2136

Therefore, one real root lies between 0.7 and 0.9

∴ Taking x0 = 0.7, x1 = 0.9

⇒ f (x0) = f (0.7) = – 0.5903, f (x1) = f (0.9) = 0.2136

Then by Regula-Falsi method, we get

x2 = x0 – 
x x

f x f x
1 0

1 0

−
−( ) ( )

 f (x0)

= 0.7 – 
0 9 0 7

0 2136 0 5903

. .

. ( . )

−
− −

 × (– 0.5903) = 0.7 + 
0 2

0 8039
0 5903

.

.
( . )×

= 0.8469

Now  f (x2) = f (0.8469) = (0.8469) e0.8469 – 2 = – 0.0247

Therefore, root lies between 0.8469 and 0.9

∴ Taking x0 = 0.8469, x1 = 0.9

⇒ f (x0) = f (0.8469) = – 0.0247, f (x1) = f (0.9) = 0.2136

Then by Regula-Falsi method, we get

x3 = x0 – 
x x

f x f x
1 0

1 0

−
−( ) ( )

 f (x0) = 0.7 – 
0 9 0 8469

0 2136 0 0247

. .

. ( . )

−
− −

 × (– 0.0247)

= 0.7 + 
0 0531

0 2383

.

.
 × 0.0247 = 0.8524

Now  f (x3) = f (0.8524) = (0.8524) e0.8524 – 2 = – 0.00089

Therefore, root lies between 0.8524 and 0.9

∴ Taking x0 = 0.8524, x1 = 0.9

⇒ f (x0) = f (0.8524) = – 0.00089, f (x1) = f (0.9) = 0.2136

x4 = x0 – 
x x

f x f x
1 0

1 0

−
−( ) ( )

 = 0.8524 – 
0 9 0 8524

0 2136 0 00089

. .

. ( . )

−
− −

 × (– 0.00089)

= 0.8524 + 
0 0476

0 21449

.

.
 × (0.00089) = 0.8526
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Here x3 = x4

Hence, the root is 0.852 correct to three decimal places.

���
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1. Find the real root of the equation x4 – x – 10 = 0, correct to three decimal places by Newton-Raphson’s
method.

2. By using Newton-Raphson’s method find the real root of the following equation:

(i) x4 – x – 13 = 0 (ii) x3 – 5x + 3 = 0

(iii) x3 – 4x + 1 = 0

3. Using Newton-Raphson’s method. Find the square root of 12 correct to three places of decimal.

4. Using Newton-Raphson’s method obtain the real root of the following equation:

(i) x = 29 (ii) x2 + 4 sin x = 0

(iii) x sin x + cos x = 0 (iv) log x = cos x

5. Using Regula-Falsi method, obtain the real root of the following equation:

(i) x3 – 9x + 1 = 0 (ii) x2 – 2x – 1 = 0

(iii) x3 – x2 – 2 = 0

6. Find a real root of the equation x2 – loge x – 12 = 0, using Regula-Falsi method correct to three decimal
place.

7. Find real root of the following equation by using Regula-Falsi method:

xex – 3 = 0.

�����
�

1. 1.85558 2. (i) 1.967 (ii) 0.6566 (iii) 0.254

3. 3.4641 4. (i) 5.3852 (ii) – 1.9338 (iii) 2.798 (iv) 1.3030

5. (i) 2.9428 (ii) 2.4141 (iii) 1.6955 6. 3.6461 7. 1.046
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Curve fitting have a great importance in the field of statistics (not only theoretical but also practical)
Engineering and Science.

	
�
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Let (xi, yi): i = 1, 2 ... n be n sets of numerical values of two variables
x and y. If we plot these n sets on the graph then we get a diagram.
This resulting diagram is called the scatter diagram.

	
�
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Let (x1, y1) (x2, y2) ..... (xn, yn) are the n numerical values of two variables x (independent) and y (de-
pendent). By the scatter diagram, we get an approximate relation between these two variables called
empirical law. Curve fitting means that relationship between two variable in the form of equation of the
curve from the given data. In other words, the method of obtaining an equation of best fit is called curve
fitting.

Methods of Curve Fitting

Following are some methods for fitting a curve:

1. Graphical method 2. Method of least squares

3. Method of group averages 4. Method of moments.

But in this chapter, we shall discuss only method of least squares for straight line and parabola.
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Let us consider a set of m observations (xi, yi) : i = 1, 2, 3..... m of two variables x and y. We wish to fit
a polynomial of degree n. Assume that such curve is

 y = a + bx + cx2 + ..... qxn of these values. ...(5.1)

In order to determine a, b, c ..... q such that it represents the curve of best fit. Now we apply the
principle of least squares so put x = x1, x2 ..... xm in (5.1), we get

  y′1 = a + bx1 + cx1
2 .... qx1

n

  y′2 = a + bx2 + cx2
2 + ..... + qx2

n ...(5.2)

�

  y′m = a + bxm + cxm
2 + ..... + qxm

n

where y′1, y′2 ..... y′m are the expected value of y for x = x1, x2 ..... xm respectively, which are other than
observed values y1,  y2 ..... ym of y for x = x1, x2 ..... xm respectively. In general expected values and
observed values are different, the difference yi – y′i ; i = 1, 2 ..... m are called residuals.

Let A = Σ (yi – y′i)
2 = Σ [yi – (a + bxi + cxi

2 ..... qxi
n)2]; i = 1, 2 ..... m.

The constant a, b, c ..... q  are choosen as the sum of squares of  yi – y′i ; i = 1, 2 ..... m is minimum.

Now for maximum and minimum

∂
∂

= ∂
∂

= ∂
∂

=A

a

A

b

A

q
0 0 0, .....

On solving these equations, we get

ma + bΣx + cΣx2 + .....+ qΣxn = Σy

aΣx + bΣx2 + cΣx3 + .....+ qΣxn+1 = Σxy ...(5.3)

    aΣx2 + bΣx3 + cΣx4 + ..... + qΣxn+2 = Σx2y

�

 aΣxn + bΣxn+1 + cΣxn+2 + .....+ qΣx2n = Σxny

These equations are known as normal equations. On solving these normal equations, we get the
values of constants a, b, c ..... q.

Note 1: If  n = 1, then the curve to be fitted is a straight line y = a + bx whose normal equations are

Σy = ma + bΣx

Σxy = aΣx + bΣx2

which can be solved for a and b.

Note 2: If n = 2, then the curve to be fitted is a parabola of second degree y = a + bx + cx2 whose normal
equations are   Σy = ma + bΣx + cΣx2

  Σxy = aΣx + bΣx2 + cΣx3

Σx2y = aΣx2 + bΣx3 + cΣx4

which can be solved for a, b and c.

�
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�
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(1) Let the equation of straight line be y = a + bx.
(2) From the given data we calculate Σx, Σy, Σx2, and Σxy.
(3) Putting above values in normal equations

 ma + bΣx = Σy ...(i)

aΣx + bΣx2 = Σxy. ...(ii)

(4) Solving equations (i) and (ii) for a and b.
(5) Putting the values of a and b in y = a + bx we get equation of straight line of best fit.

	
	
 ����������������������������������������������������������
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(1) Let the equation of the parabola be y = a + bx + cx2.
(2) From the given data we calculate Σx, Σy, Σx2, Σx3, Σx4, Σxy and Σx2y.

(3) Putting above values in normal equations

 ma + bΣx + cΣx2 = Σy ...(i)

 aΣx + bΣx2 + cΣx3 = Σxy ...(ii)

 aΣx2 + bΣx3 + cΣx4 = Σx2y. ...(iii)

(4) Solving equations (i), (ii) and (iii) for a,b and c.
(5) Putting the values of a and b in y = a + bx + cx2 we get equation of parabola of best fit.

�������������

Example 1. Fit a straight line y = a + bx, to the following data regarding x as the independent
variable by the method of least squares.

x 0 1 3 6 8

y 1 3 2 4 5

Solution. Let the equation of straight line be y = a + bx and the normal equations are:

 ma + bΣx = Σy

aΣx + bΣx2 = Σxy
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Now x y x2 xy

0 1 0 0

1 3 1 3

3 2 9 6

6 4 36 24

8 5 64 40

Σx = 18 Σy = 15 Σx2 = 110 Σxy = 73

Here m = 5, Σx = 18, Σy = 15, Σx2 =  110, Σxy = 73.

Put these values in normal equations

 5a + 18b = 15 ...(i)

 18a + 110b = 73 ...(ii)

On solving (i) and (ii), we get

a = 1.488, b = 0.420

Thus, the equation of straight line y = 1.488 + 0.42x.

Example 2. Fit a straight line to the following data regarding x as a independent variable.

x 1 2 3 4 5

y 5 7 9 10 11

Solution. Let equation of straight line be y = a + bx and the normal equations are:

 ma + bΣx = Σy

aΣx + bΣx2 = Σxy

Now x y x2 xy

1 5 1 5

2 7 4 14

3 9 9 27

4 10 16 40

5 11 25 55

Σx = 15 Σy = 42 Σx2 = 55 Σxy = 141

Here m = 5, Σx = 15, Σy = 42, Σx2 = 55, Σxy = 141.

Put these values in normal equations, we have

5a + 15b = 42 ...(i)

15a + 55b = 141 ...(ii)
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On solving (i) and (ii), we get

a = 3.9 and b = 1.5

Thus, the equation of straight line is  y = 3.9 + 1.5x.

Example 3. Find a least squares straight line for the following data.

x 1 2 3 4

y 3 7 13 21

Solution. Let equation of straight line be y = a + bx and the normal equations are:

  ma + bΣx = Σy

 aΣx + bΣx2 = Σxy

Now x y x2 xy

1 3 1 3

2 7 4 14

3 13 9 39

4 21 16 84

Σx = 10 Σy = 44 Σx2 = 30 Σxy = 140

Here m = 4, Σx = 10, Σy = 44, Σx2 = 30, Σxy = 140.

Put these values in normal equations

4a  + 10b = 44 ...(i)

 10a + 30b = 140 ...(ii)

On solving (i) and (ii), we get

a = – 4 and b = 6

Thus, the equation of straight line is  y = – 4 + 6x.

Example 4. Fit a straight line to the following data regarding x as the independent variable.

x 1 2 3 4 5 6

y 1200 900 600 200 110 50

Solution. Let the equation of straight line be y = a + bx and the normal equations are:

   ma + bΣx = Σy

aΣx + bΣx2 = Σxy
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Now x y x2 xy

1 1200 1 1200

2 900 4 1800

3 600 9 1800

4 200 16 800

5 110 25 550

6 50 36 300

Σx = 21 Σy = 3060 Σx2 = 91 Σxy = 6450

Here m = 6, Σx = 21, Σy = 3060, Σx2 = 91, Σxy = 6450.

Put these values in normal equations

6a + 21b = 3060 ...(i)

21a + 91b = 6450 ...(ii)

On solving (i) and (ii), we get

a = 1361.97 and b = – 243.42

Thus, the equation of straight line is  y = 1361.97 – 243.42 x.

Example 5. Fit a polynomial of the second degree to the data points given in the following table.

x 0 1 2

y 1 6 17

Solution. Let y = a + bx + cx2 be a parabola to be fitted for the given data and normal equations
are:

ma + bΣx + cΣx2 = Σy

  aΣx + bΣx2 + cΣx3 = Σxy

aΣx2 + bΣx3 + cΣx4 = Σx2y

Now x y x2 x3 x4 xy x2y

0 1 0 0 0 0 0

1 6 1 1 1 6 6

2 17 4 8 16 34 68

Σx = 3 Σy = 24 Σx2 = 5 Σx3 = 9 Σx4 = 17 Σxy = 40 Σx2y = 74

Here m = 3, Σx = 3, Σy = 24, Σx2 = 5, Σx3 = 9, Σx4 = 17, Σxy = 40, Σx2y = 74.
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Put these values in normal equations, we have

 3a + 3b + 5c = 24 ...(i)

 3a + 5b + 9c = 40 ...(ii)

 5a + 9b + 17c = 74 ...(iii)

On solving (i), (ii) and (iii), we get   a = 1, b = 2, c = 3

Thus, the equation of required parabola is y = 1 + 2x + 3x2.

Example 6. Find the values of a, b and c so that y = a + bx + cx2 is the best fit to the data.

x 0 1 2 3 4

y 1 0 3 10 21

Solution. Let y = a + bx + cx2 be a parabola to be fitted for the given data and normal equations
are

ma + bΣx + cΣx2 = Σy

 aΣx + bΣx2 + cΣx3 = Σxy

aΣx2 + bΣx3 + cΣx4 = Σx2y

Now x y x2 x3 x4 xy x2y

0 1 0 0 0 0 0

1 0 1 1 1 0 0

2 3 4 8 16 6 12

3 10 9 27 81 30 90

4 21 16 64 256 84 336

Σx = 10 Σy = 35 Σx2 = 30 Σx3 = 100 Σx4 = 354 Σxy = 120 Σx2y = 438

Here m = 5, Σx = 10, Σy = 35, Σx2 = 30, Σx3 = 100, Σx4 = 354, Σxy = 120 and Σx2y = 438

Put these values in normal equations, we have

 5a + 10b + 30c = 35 ...(i)

10a + 30b + 100c = 120 ...(ii)

 30a + 100b + 354c = 438 ...(iii)

On solving (i), (ii) and (iii), we get   a = 1, b = – 3, c = 2 and equation of parabola

y = 1 – 3x + 2x2.

Example 7. Fit a second degree parabola to the following data x as the independent variable.

x 1 2 3 4 5 6 7 8 9

y 2 6 7 8 10 11 11 10 9



70 ADVANCED MATHEMATICS

Solution. Let equation of second degree parabola be y = a + bx + cx2 and the normal equations are

ma + bΣx + cΣx2 = Σy

 aΣx + bΣx2 + cΣx3 = Σxy

aΣx2 + bΣx3 + cΣx4 = Σx2y

Now x y x2 x3 x4 xy x2y

1 2 1 1 1 2 2

2 6 4 8 16 12 24

3 7 9 27 81 21 63

4 8 16 64 256 32 128

5 10 25 125 625 50 250

6 11 36 216 1296 66 396

7 11 49 343 2401 77 539
8 10 64 512 4096 80 640

9 9 81 729 6561 81 729

Σx =45 Σy = 74 Σx2 = 285 Σx3 = 2025 Σx4 = 15333 Σxy = 421 Σx2y = 2771

Here m = 9, Σx = 45, Σy = 79, Σx2 = 285, Σx3 = 2025, Σx4 = 15333, Σxy = 421 and Σx2y = 2771

Put these values in normal equations, we have

 9a + 45b + 285c = 74 ...(i)

45a + 285b + 2025c = 421 ...(ii)

285a + 2025b + 15333c = 2771 ...(iii)

On solving (i), (ii) and (iii), we get   a = – 0.923, b = 3.52, c = – 0.267

Thus, the equation of parabola is y = – 0.923 + 3.52x – 0.267x2.

������� 	
�

1. Find a least squares straight line for the following data:

x 1 2 3 4 5 6

y 6 4 3 5 4 2

2. Find a least squares straight line for the following data:

x 0 1 2 3 4

y 1.0 2.9 4.8 6.7 8.6
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3. Show that the line of best fit to the following data is given by

x 6 7 7 8 8 8 9 9 10

y 5 5 4 5 4 3 4 3 3

4. Find the best values of a and b so that y = a + bx fits the data given in the table.

x 0 1 2 3 4

y 1 1.8 3.3 4.5 6.3

5 Obtain the least squares straight line fit to the following data:

x 0.2 0.4 0.6 0.8 1

f (x) 0.447 0.632 0.775 0.894 1

6. Fit a linear curve to the data {(x, y): (1, 1) (2, 5) (3, 11) (4, 8) (5, 14)}.

7. Fit a second degree parabola to the following data taking x as independent and y as dependent variable.

x 1 2 3 4 5 6 7 8 9

y 2 6 7 8 10 11 11 10 9

8. Fit a parabolic curve to the following data x as the independent variable.

x 1 2 3 4 5

y 6 17 34 57 86

9. Find the least squares approximation of second degree for the discrete data.

x – 2 – 1 0 1 2

f (x) 15 1 1 3 19

10. Fit a parabola y = a + bx + cx2 in least square sense to the data.

x 10 12 15 23 20

y 14 17 23 25 21

�����

1. y = 5.799 – 0.514x 2. y = 1 + 1.9x 3. y = 8 – 0.5x 4. y = 0.72 + 1.33x

5. f(x) = 0.3392 + 0.684x 6. y = − +9

10

29

10
x 7. y = – 1 + 3.55x – 0.27x2

8.  y = 1 + 2x + 3x2 9. f(x) = 
0 37 35 155

35

2. + +x x

10. y = – 8.89 + 3.03x – 0.07x2.
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In this unit, we shall discuss numerical differentiation, numerical integration and
numerical solution of ordinary differential equation of first order.

The chapter first deals with differentiation of function is solved by first approxima-
tion with the help of interpolation formula and differentiating this formula as many
times as required.

The chapter second deals  with integration of function by Trapezoidal rule,
Simpson’s “1/3” rule and Simpson’s “3/8” rule.

Chapter third deals with solution of ordinary differential equation of first order by
Euler’s  method, Euler’s modified method, Picard’s method, Milne’s method, and
Runge-Kutta method.
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Numerical differentiation is the process of obtaining the value of the derivative of a function from a set
of numerical values of that function

1. If the argument are equally spaced.
(a) We will use Newton-Gregory forward formula. If we desire to find the derivative of the

function at a point near to beginning.
(b) If we desire to find the derivative of the function at a point near to end then we will use

Newton-Gregory backard formula.
(c) If the derivative at a point is near the middle of the table we apply stirling difference formula.

2. In case the argument are unequally spaced then we should use Newton’s divided differenc formula.
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We have Newton’s Gregory forward difference formula

y = y0 + u ∆y0 + 
u u( )

!

− 1

2
 ∆2 y0 + 

u u u( ) ( )

!

− −1 2

3
 ∆3y0 + ...... ...(1.1)

where u = 
x a

h

−
. ...(1.2)

Differentiating both sides of (1.1) w.r.t. x, we get

  
dy

dx

d

dx
y u y

u u
y

u u u
y= + + − + − − +

�

�
�

�

�
�0 0

2
0

3
0

1

2

1 2

3
∆ ∆ ∆( )

!

( ) ( )

!
.....

= ∆ ∆ ∆y
u

y
u u

y
du

dx0
2

0

2
3

0

2 1

2

3 6 2

3
+

−
+

− +
+

�

�
�

�

�
�

( )

! !
..... ...(1.3)
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But by (1.2)    
du

dx h
= 1

Putting in (1.3), we get

 
dy

dx
 = 

1 2 1

2

3 6 2

30
2

0

2
3

0h
y

u
y

u u
y∆ ∆ ∆+ − + − + +

�

�
�

�

�
�! !

..... ...(1.4)

At x = a ⇒ u = 0 then from (1.4), we get

 
dy

dx h
y y y y

x a

�
�
	



= − + − +�
��

�
��=

1 1

2

1

3

1

40
2

0
3

0
4

0∆ ∆ ∆ ∆ ..... ...(1.5)

Now differentiating both sides (1.4) w.r.t. x, we get

   
d y

dx h
y

u
y

u u
y

du

dx

2

2
2

0
3

0

2
4

0

1 6 6

3

12 36 22

4
= +

−
+

− +
+

�

�
�

�

�
�∆ ∆ ∆

! !
.....

= 
1 6 6

3

12 36 22

42
2

0
3

0

2
4

0h
y

u
y

u u
y∆ ∆ ∆+

−
+

− +�

�
�

�

�
�! !

.....

�
du

dx h
=�

��
�
��

1 ...(1.6)

At x = a, u = 0 then from (1.6), we get

 
d y

dx h
y y y

x a

2

2 2
2

0
3

0 0

1 11

12

�

��
	


�
= − +�

��
�
��=

4∆ ∆ ∆ .....

Proceeding in the same way, we get  successive differentiations at the required points as

d y

dx h
y y

x a

3

3 3
3

0
4

0

1 3

2

�

��
	


�
= − +�

��
�
��=

∆ ∆ .....

� �

	
�
 �������������������������������������������

We have Newton’s Gregory backward difference formula

y = yn + u ∇ yn +  
u u( )

!

+ 1

2
 ∇2 yn + 

u u u( ) ( )

!

+ +1 2

3
∇3 yn + ..... ...(1.7)

where u = 
x x

h
n−

. ...(1.8)
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Differentiating both sides of (1.7) w.r.t. x, we get

dy

dx

d

dx
y u y

u u
y

u u u
yn n n n= + ∇ + + ∇ + + + ∇ +

�

�
�

�

�
�

( )

!

( ) ( )

!
.....

1

2

1 2

3
2 3

= ∇ +
+

∇ +
+ +

∇ +
�

�
�

�

�
�y

u
y

u u
y

du

dxn n n
2 1

2

3 6 2

3
2

2
3

! !
...... ...(1.9)

But by (1.8) 
du

dx h
= 1

 putting in (1.9), we get

dy

dx h
y

u
y

u u
yn n n= ∇ + + ∇ + + + ∇ +

�

�
�

�

�
�

1 2 1

2

3 6 2

3
2

2
3

! !
...... ...(1.10)

At x = xn ⇒ u = 0 then from (1.10), we get

 
dy

dx h
y y y

x x
n n n

n

�
�
	

 = ∇ + ∇ + ∇ +

�

�
�

�

�
�

=

1 1

2

1

3
2 3

! !
...... ...(1.11)

Now differentiating both sides of (1.10) w.r.t. x, we get

d y

dx h
y

u
y

u u
y

du

dxn n n

2

2
2 3

2
41 6 6

3

12 36 22

4
= ∇ +

+
∇ +

+ +
∇ +

�

�
�

�

�
�! !

......

= 
1 6 6

3

12 36 22

42
2 3

2
4

h
y

u
y

u u
yn n n∇ + + ∇ + + + ∇ +

�

�
�

�

�
�! !

...... ...(1.12)

At x = xn, u = 0 then from (1.12), we get

d y

dx h
y y y

x x

n n n

n

2

2 2
2 3 41 11

12

�

��
	


�
= ∇ + ∇ + ∇ +�

��
�
��=

...... ...(1.13)

Proceeding in the same way, we get successive differentiation at the required point

d y

dx h
y y

x x

n n

n

3

3 3
3 41 3

2

�

��
	


�
= ∇ + ∇ +�

��
�
��=

...... .

	
�
 �������������������������������������������

We have Stirling difference formula

y = y0 + u ∆ ∆y y u0 1
2

2 2

+�
�

	



+
!
 ∆2 y–1 + 

u u y y( )

!

2 3
1

3
21

3 2

− +�

��
	


�
− −∆ ∆

+ 
u u2 2 1

4

( )

!

−
 ∆4y–2 +

 ...... ...(1.14)

where u = 
x x

h

− 0 ...(1.15)
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Now differentiating both sides of (1.14) w.r.t. x, we get

 
dy

dx
 = 

d

dx
 y u

y y u
y

u u y y
0

0 1
2

2
1

2 3
1

3
2

2 2

1

3 2
+

+�
��

	

�

+ + − +�

�
�
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�
�
�

−
−

− −∆ ∆
∆

∆ ∆
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( )
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+ 
u u

y
2 2

4
2

1

4

( )

!
......

−
+

�

�
�−∆

= 
∆ ∆

∆
∆ ∆y y

u y
u y y0 1 2

1

2 3
1

3
2

2

3 1

3 2

+�
��

	

�

+ + − +�

��
	


�
�

�
�
�

−
−

− −

!
 + 

4 2

4

3
4

2
u u

y
−�

��
	


�
�

�
�
�

−!
......∆   

du

dx

But
du

dx
 = 

1

h
 by (1.15) put in above, we get

 
dy

dx h
= 1

 ∆ ∆
∆

∆ ∆
∆

y y
u y

u y y u u
y0 1 2

1

2 3
1

3
2

3
4

22

3 1

3 2
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+
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�
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−
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......

...(1.16)

At x = x0, u = 0 then from (1.16), we get

dy

dx x x

�
�
	

 = 0

 = 
1

h
 

∆ ∆ ∆ ∆y y y y0 1
2

1
3

2

2

1

6 2

+ − +�
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�
+
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�
�
�

�

�
�
�

− − − ......

Again differentiating (1.16) w.r.t. x on both sides, we get

d y

dx

2

2  = 
1

h
 ∆ ∆ ∆ ∆2

1

3
1

3
2

2
4

2
6

3 2

12 2

4
y

u y y u
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......  du
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= 
1
2h

 ∆
∆ ∆

∆2
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3
1

3
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2
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3 2
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4
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u y y u
y−
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...... �
du
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��
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��

1

...(1.17)

At x = x0, u = 0 then from (1.17), we get

d u

dx
x x

2

2

0

�

��
	


� =

 = 
1
2h

 ∆ ∆2
1

4
2

1

12
y y− −− +�

��
�
��

......

Proceeding in the same way, we get successive differentiation at the required point.

	
�
 ��������������������������������������������������

We have Newton’s divided difference formula

y = f (x0) + (x – x0) �f (x0) + (x – x0) (x – x1) �2f (x0) + (x – x0) (x – x1) (x – x2) �3f (x0) + ...
...(1.18)
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Now, differentiating (1.18) w.r.t. x, we get

dy

dx
 = �f(x0) + [(x – x1) + (x – x0)] �2f(x0) + [(x – x1) (x – x2) + (x – x0) (x – x2)

+ (x – x0) (x – x1)] �3f(x0) ...... ...(1.19)

Putting x = a in (1.18) we get value of first derivative at x = a

Again differentiating (1.19) w.r.t. x, we get

 d y

dx

2

2
 = 2�2f(x0) + [2(x – x0) + 2(x – x1) + 2(x – x2)] �2f(x0) + ... ...(1.20)

Putting x = a in (1.20) we get value of second derivative at x = a

Note 1. If we want to determine the value of the derivatives of the function near the beginning of argu-
ments, we use Newton’s forward formula.

2. If derivative required near the end of arguments, we use Newton’s backward formula.

3. If derivative required at the middle of the given arguments, we apply and central difference formula.

4. And we use Newton’s divided difference formula when argument are not equally spaced.

��������������

Example 1. Find 
dy

dx
 and 

d y

dx

2

2
 of y = x1/3 at x = 50 from the following table:

x 50 51 52 53 54 55 56

y = x1/3 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259

Solution. Since x = 50 lies near the beginning of the table therefore in this case we shall use
Newton’s forward formula. The difference table is as below:

x y = x1/3 ∆y ∆2y ∆3y

50 3.6840
0.0244

51 3.7084 – 0.0003
0.0241 0

52 3.7325 – 0.0003
0.0238 0

53 3.7563 – 0.0003
0.0235 0

54 3.7798 – 0.0003
0.0232 0

55 3.8030 – 0.0003
0.0229

56 3.8259
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Here a = 50, h = 1 then

  
dy

dx x a

�
�
	

 =

 = 
1

h
 ∆ ∆ ∆y y y0

2
0

3
0

1

2

1

3
− +�

��
�
��

......

 
dy

dx x

�
�
	

 =50

 = 
1

1
 0 0244

1

2
0 0003

1

3
0. ( . ) ( )− − +�

��
�
��

= 0.0244 + 0.00015 = 0.02455. Ans.

and
d y

dx
x a

2

2

�

��
	


� =

 = 
1
2h

 [∆2y0 – ∆3y0 + ......]

 
d y

dx
x

2

2
50

�

��
	


� =

 = 
1

12  [(– 0.0003)]

 
d y

dx
x

2

2
50

�

��
	


� =

 = – 0.0003. Ans.

Example 2. Find f  ′(1.5) and f ″(1.5) from the following table:

x 1.5 2.0 2.5 3.0 3.5 4.0

f(x) 3.375 7.000 13.625 24.000 38.875 59.000

Solution. Since x = 1.5 lies near the beginning of the table therefore in this case we shall use
Newton’s forward formula. The difference table is

x f(x) ∆f(x) ∆2f(x) ∆3f(x) ∆4f(x)

1.5 3.375
3.625

2.0 7.000 3.000
6.625 .75

2.5 13.625 3.75 0
10.375 .75

3.0 24.000 4.5 0
14.875 .75

3.5 38.875 5.25
20.125

4.0 59.000

Here a = 1.5 and h = 0.5 then

dy

dx x a

�
�
	

 =

 = 
1

h
 ∆ ∆ ∆y y y0

2
0

3
0

1

2

1

3
− +�

��
�
��

......

or
dy

dx x

�
�
	

 =1 5.

 = 
1

0 5.
 3 625

1

2
3 000

1

3
0 75 0. . ( . ) ......− × + × −�

��
�
��
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or f ′(1.5) = 
1

0 5.
 [3.625 – 1.5 + 0.25] = 

1

0 5.
 × 2.375 = 4.75

and
d y

dx
x a

2

2

�

��
	


� =

 = 
1
2h

 ∆ ∆ ∆2
0

3
0

4
0

11

12
y y y− +�

��
�
��

......

 
d y

dx
x

2

2
1 5

�

��
	


� = .

 = 
1

0 5 2( . )
 3 000 0 75

11

12
0. . . ......− +�

��
�
��

 f ″(1.5) = 
1

0 25.
 [2.25] = 9

Hence f ′(1.5) = 4.75 and f ″(1.5) = 9 Ans.

Example 3.  Find the first and second derivatives of the functions tabulated below at the point 1.1

x 1.0 1.2 1.4 1.6 1.8 2.0

f(x) 0 0.1280 0.5440 1.2960 2.4320 4.0000

Solution. Since x = 1.1 lies near the beginning of the table therefore in this case we shall use
Newton’s Gregory forward formula. The difference table is as below:

x f(x) ∆f(x) ∆2f(x) ∆3f(x) ∆4f(x)

1.0 0
0.1280

1.2 0.1280 0.2880
0.4160 0.0480

1.4 0.5440 0.3360 0
0.7520 0.0480

1.6 1.2960 0.3840 0
1.1360 0.0480

1.8 2.4320 0.4320
1.5680

2.0 4.0000

Since 1.1 lies between given argument so we have

f (x) = f (x0) + u∆f (x0) + 
u u( )

!

− 1

2
 ∆2f (x0) + 

u u u( ) ( )

!

− −1 2

3
 ∆3 f (x0) + ......

...(i)

where u = 
x x

h

− 0  = 
x − 1

0 2.
 = 5(x – 1) ...(ii)

Differentiating (i) w.r.t. x on both sides, we get

 f ′(x) = ∆ ∆ ∆f x
u

f x
u u

f x( )
!

( )
!

( ) ......0
2

0

2
3

0
2 1

2

3 6 2

3
+ − + − +�

�
�

�

�
�  

du

dx
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But by (ii) 
du

dx
 = 5

∴  f ′(x) = 5 ∆ ∆ ∆f x
u

f x
u u

f x( )
!

( )
!

( ) ......0
2

0

2
3

0
2 1

2

3 6 2

3
+

−
+

− +�

�
�

�

�
� ...(iii)

At x = 1.1, u = 5(1.1 – 1) = 0.5

∴  f ′(1.1) = 5 0 128
2 0 5 1

2
0 2880

3 0 5 6(0 5 2

6
0 048

2

.
( . )

( . )
( . ) . )

( . )+ − + − +�

�
�

�

�
�

= 5[0.128 + 0 – 0.002] = 0.63

 f ′(1.1) = 0.63

Differentiating (iii) again w.r.t. x, we get

f ″(x) = 5 ∆ ∆2
0

3
0

6 6

3
f x

u
f x( )

!
( ) ......+ −�

�
�

�

�
�  

du

dx

= 25 [∆2 f (x0) + (u – 1) ∆3 f (x0) + ......] �
du

dx
=�

��
�
��

5

At x = 1.1 ⇒ u = 5(1.1 – 1) = 0.5

∴  f ″(1.1) = 25 [0.2880 + (0.5 – 1) (0.0480)] = 25[0.2880 – 0.024]

 f ″(1.1) = 6.6

Hence f ′(1.1) = 0.63 and f ″(1.1) = 6.6 Ans.

Example 4. Given that

θ° 0 10 20 30 40

sin θ° 0.000 0.1736 0.3420 0.5000 0.6428

Find cos θ when θ = 10°.

Solution. Since θ = 10° lies near the beginning of the table therefore in this case we shall use
Newton’s forward formula. The difference table is as below:

θ° sin θ° ∆f(x) ∆2f(x) ∆3f(x)

0 0.000
0.1736

10 0.1736 – 0.0052
0.1684 – 0.0052

20 0.3420 – 0.0104 0.0004
0.1580 – 0.0048

30 0.5000 – 0.0152
0.1428

40 0.6428



NUMERICAL DIFFERENTIATION 83

Here f(x) = sin θ, a = 10, h = 10° = 0.1745 radian

dy

dθ θ

�
�
	

 = °10

 = 
1

h
  ∆ ∆ ∆ ∆y y y y0

2
0

3
0

4
0

1

2

1

3

1

4
− + −�

��
�
��

......

  (cos θ)θ=10° = 
1

10
 01684

1

2
0 0104

1

3
0 0048. ( . ) ( . )+ + −�

��
�
��

= 
1

0 1745.
 × 0.1720

= 0.9856 Ans.

Example 5. From the following table find the values of dy

dx
 and d y

dx

2

2
 at x = 2.03

x 1.96 1.98 2.00 2.02 2.04

y 0.7825 0.7739 0.7651 0.7563 0.7473

Solution.

x y ∇y ∇2y ∇3y ∇4y

1.96 0.7825
– 0.0086

1.98 0.7739 – 0.0002
– 0.0088 0.0002

2.00 0.7651 0 – 0.0004
– 0.0088 – 0.0002

2.02 0.7563 – 0.0002
– 0.0090

2.04 0.7473

Here xn = 2.04, h = 0.02, x = 2.03

⇒  u = 
x x

h
n−

 = 
2 03 2 04

0 02

. .

.

−
 = – 

0 01

0 02

.

.
 = – 

1

2

Now by derivative of  Newton’s backward formula, we have

dy

dx
�
�
	

  = 

1

h
 ∇ +

+
∇ +

+ +
∇

�

�
� y

u
y

u u
yn n n

2 1

2

3 6 2

3
2

2
2

! !

+ 
4 18 22 6

4

3 2
4u u u
yn

+ + +
∇ +

�

�
�!

...... ...(i)
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dy

dx x

�
�
	

 =2 03.

 = 
1

0 02.
− +

−��
	

 +

− +
−��
	

 + −��

	

 +

�

�

�
�
�
�

0 0090
2

1
2

1

2
0 0002

3
1
2

6
1
2

2

3

2

.
!

( . )
!

 (– 0.0002)

+ 
4

1
2

18
1
2

22
1
2

6

4
0 0004

3 2

−��
	

 + −��

	

 + −��

	

 +

−

�

�

�
�
�
�

!
( . )

= 
1

0 02.
 [– 0.0090 + 0 + 0.000008 + 0.000017)

= – 0.44875

Again differentiating (i), w.r.t. x, we get

 
d y
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2h
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0 0002
6

1
2

6

6
0 0002. ( . )

+ 
12

1
2

36
1
2
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24
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2
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�

+ −�
��

	

�

+
× −

�

�

�
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�
�
�

( . )

= 
1

0 0004.
 [– 0.0002 – 0.0001 – 0.00012]

 
d y

dx
x

2

2
2 03

�

��
	


� = .

 = – 1.05

Hence 
dy

dx x

�
�
	

 =2 03.

 = – 0.44875 and
d y

dx
x

2

2
2 03

�

��
	


� = .

 = – 1.05. Ans.

Example 6. Find f ′(93) from the following table:

x 60 75 90 105 120

f(x) 28.2 38.2 43.2 40.9 37.2



NUMERICAL DIFFERENTIATION 85

Solution. Since 93 lies near the central point of the table therefore in this case we shall use
Stirling formula. The difference table is given by

u x f(x) ∆f(x) ∆2f(x) ∆3f(x) ∆4f(x)

– 2 60 28.2

10.0

– 1 75 38.2 – 5

5 – 2.3

0 90 43.2 – 7.3 8.2
– 2.3 5.9

+ 1 105 40.9 – 1.4

– 3.7

2 120 37.2

Here x0 = 90, x = 93, h = 15

∴  u = 
93 90

15

−
 = 

3

15
 = 1

5
 = 0.2

Putting these values in Stirling formula for first derivative, we get

 
dy

dx h
= 1

 
∆ ∆

∆
∆ ∆

∆
y y

u y
u y y u u

y0 1 2
1

2 3
1

3
2

3
4

22

3 1

3 2

4 2

4

+
+ + − +�

��
	


�
+ −�

�
�
�

�

�
�
�

−
−

− −
−! !

......

dy

dx x

�
�
	

 = 93

 = 
1

15
 

5 2 3

2
0 2 7 3

3 0 2 1

3

2+ −
+ × − +

−�

�
�

( . )
( . ) ( . )

( . )

!

( . ) (5. ) ( . ) ( . )

!
(8. )

− + + −�

��
	


�
�

�
�
�

2 3 9

2

4 0 2 2 0 2

4
2

3

 f ′(93) = 
1

15
 

2 7

2
1

168

3 2

3 0716

4

.
( .46)

.

!

.

!
+ − − 3

×
−

�

�
�

�

�
�

= 
1

15
 (1.35 – 1.46 – 0.26400 – 0.1257)

f  ′(93) = – 0.3331. Ans.

Example 7. Find f ′(6) from the following table:

x 0 1 3 4 5 7 9

f(x) 150 108 0 – 54 – 100 – 144 – 84

Solution. In this case the values of the arguments are not equally spaced. So we shall use
Newton’s divided difference formula. The divided difference table is given below.
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x f(x) ∆| f(x) ∆| 2f(x) ∆| 3f(x) ∆| 4f(x)

0 150
108 150

1 0

−
−

 = – 42

1 108
− +

−
54 42

3 0
 = – 4

0 4

4 0

+
−

 = 1

0 108

3 1

−
−

 = – 54
− +

−
54 54

4 1
 = 0

1 1

5 0

−
−

 = 0

3 0
4 0

5 1

−
−

 = 1

− −
−

54 0

4 3
 = – 54

4 – 54
− +

−
46 54

5 3
 = + 4

1 1

7 1

−
−

 = 0

− +
−

100 54

5 4
 = – 46

8 4

7 3

−
−

 = 1

5 – 100
− +

−
22 46

7 4
 = 8

1 1

9 3

−
−

 = 0

− +
−

144 100

7 5
 = – 22

13 8

9 4

−
−

 = 1

7 – 144
30 22

9 5

+
−

 = 13

− +
−

84 144

9 7
 = 30

9 – 84

By Newton’s divided difference formula, we have

f(x) = f(x0) + (x – x0)�f(x0) + (x – x0)(x – x1) �2f(x) + (x – x0)(x – x1)(x – x2)�3f(x) + ......

...(i)

Differentiating (i) w.r.t. x, we get

  f′(x) = � f(x0) + [(x – x1) + (x – x0)] �2f(x) + [(x – x1) (x – x2) + (x – x0) (x – x2)

 + (x – x0) (x – x1)] × �3f(x) + ......

Here x = 6, x0 = 0, x1 = 1, x2 = 3, x3 = 4 ...... putting in above, we get

f  ′(6) = – 42 + [(6 – 1) + (6 – 0)] (– 4) + [(6 – 1) (6 – 3) + (6 – 0) (6 – 3) + (6 – 0)
(6 – 1)]1

 = – 42 + 11 × (– 4) + (15 + 18 + 30) × 1

 = – 42 – 44 + 63 = – 23

 f ′(6) = – 23. Ans.
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Example 8. From the following table, find f ′(10).

x 3 5 11 27 34

f(x) – 13 23 899 17315 35606

Solution. In this case the values of the argument are not equally spaced. So we shall use Newton’s
divided difference formula. The divided difference table is given below.

x f(x) � f(x) �2f(x) �3f(x) �4f(x)

3 – 13
23 13

5 3

− −
−
( )

 = 18

146 18

11 3

−
−

 = 16

5 23
899 23

11 5

−
−

 = 146
40 16

27 3

−
−

 = 1

1026 146

27 5

−
−

 = 40
1 1

34 3

−
−

 = 0

11 899
17315 899

27 11

−
−

 = 1026
69 40

34 5

−
−

 = 1

2613 1026

34 11

−
−

 = 69

27 17315
35606 17315

34 27

−
−

 = 2613

34 35606

By Newton’s divided difference formula, we have

f(x) = f(x0) + (x – x0) � f(x0) + (x – x0) (x – x1) �2f(x0) + (x – x0) (x – x1) (x – x2) �2f(x0) + ......

...(i)

Differentiating (i) w.r.t. x, we get

f ′(x) = �f (x0) + ((x – x1) + (x – x0) �2f (x0) + [(x – x1) (x – x2) + (x – x0) (x – x2) + (x – x0)(x – x1)]

× �2f (x0) + ......

Here   x = 10, x0 = 3, x1 = 5, x2 = 11, x3 = 27, x4 = 34.

 f ′(10) = 18 + ((10 – 5) + (10 – 3)) 16 + [(10 – 5) (10 – 11) + [(10 – 3) (10 – 11)

+ (10 – 3) (10 – 5)] × 1

= 18 + 12 × 16 + [(– 5) + (– 7) + 35)] × 1

= 18 + 192 + 23

 f ′(10) = 233. Ans.



88 ADVANCED MATHEMATICS
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1. Find f ′(1) for f (x) = 1

1 2+ x
 using the following data:

x 1.0 1.1 1.2 1.3 1.4

f(x) 0.2500 0.2268 0.2066 0.1890 0.1736

2. Find the first, second and third derivatives of the function tabulated below, at the point x = 1.5

x 1.5 2.0 2.5 3.0 3.5 4.0

f(x) 3.375 7.000 13.625 24.000 38.875 59.000

3. Find y′(0) and y″(0) from the following table:

x 0 1 2 3 4 5

y 4 8 15 7 6 2

4. Find the derivative of f(x) at x = 0.4 from the following table:

x 0.1 0.2 0.3 0.4

y = f(x) 1.10517 1.22140 1.34986 1.49182

5. Find f ′(1.1) and f″(1.1) from the following table:

x 1 1.1 1.2 1.3 1.4 1.5 1.6

y 7.989 8.403 8.781 9.129 9.451 9.750 10.031

6. Find f ′(1.5) from the following table:

x 0.0 0.5 1.0 1.5 2.0

f(x) 0.3989 0.3521 0.2420 0.1295 0.0540

7. Find f ′(0.6) and f ″(0.6) from the following table:

x 0.4 0.5 0.6 0.7 0.8

f(x) 1.5836 1.7974 2.0442 2.3275 2.6510

8. Find f ′(0.04) from the following table:

x 0.01 0.02 0.03 0.04 0.05 0.06

f(x) 0.1023 0.1047 0.1071 0.1096 0.1122 0.1148
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9. Find f ′(7.50) from the following table:

x 7.47 7.48 7.49 7.50 7.51 7.52 7.53

y = f(x) 0.193 0.195 0.198 0.201 0.203 0.206 0.208

10. From the following table, find the first derivative at x = 4:

x 1 2 4 8 10

y 0 1 5 21 27

11. Find f ′(5) from the following table:

x 0 2 3 4 7 9

f(x) 4 26 58 112 466 922

�������

1. – 0.24833 2. 4.75, 9, 6 3. – 27.9 and 117.67 4. 1.49133

5. 3.9435 and – 3.545 6. – 0.1868 7. 2.6445 and 3.64833

8. 0.2561 9. 0.223 10. 2.8826 11. 84856



90

������������

Numerical integration is the process of obtaining the value of a definite integral from a set of numerical

values of the integrand. The process to finding the value of the definite integral I = 
a

b

�  f (x) dx of a

function of a single variable, is called as numerical quadrature. If we apply this for function of two
variables it is called mechanical cubature.

The problem of numerical integration is solved by first approximating the function f (x) by a
interpolating polynomial and then integrating it between the desired limit.

Thus  f (x) ≈ Pn (x)

a

b

�  f  (x) dx = 
a

b

�  Pn (x) dx.

	
�
 �����������������������������������������

���������

Let  I = 
a

b

�  f (x) dx

Further let y = f (x), consider the values y0, y1, y2, ....., yn for x = x0, x0 + h, x0 + 2h, ....., x0 + nh.

Let us divide the interval (a, b) into n sub-intervals of equal width h i.e., 
b a

n

−
 = h

Let x0 = a, x1 = x0+ h = a + h, x2 = x0 + 2h = a + 2h, ......, xn = x0 + nh = b

Then I = 
a

b

x

x nh
f x dx f x dx� �=

+
( ) ( )

0

0

...(2.1)

CCCCCHAPTERHAPTERHAPTERHAPTERHAPTER     22222

Numerical Integration
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Now by Newton’s forward interpolation formula

 y = f (x) = y0 + u ∆y0 + 
u u

y
u u u( )

!

( )( )

!

− + − −1

2

1 2

3
2

0∆ ∆3y0 + .......

where u = 
x x

h

− 0

∴  du = 
dx

h
⇒ dx = h du

Putting above relation in (2.1), we get

 I = h 
0

0 0
2

0
3

0
1

2

1 2

3

n
y u y

u u
y

u u u
y du� + + − + − −�

�
�

�

�
�∆ ∆ ∆

( )

!

( )( )

!
.......

= h ny
n

y
n n y n

n n
y

n0

2

0

3 2 2
0

4
3 2

3
0

2 3 2 2 4 3
1+ + −

�

	

�

�
+ − +
�

	

�

�
+ +

�

�
�
�

�

�
�
�

∆
∆ ∆

! !
...... ( )up to terms

∴
x

x nh
f x dx h

0

0 +

� =( )  ny
n

y
n n y n

n n
y

0

2

0

3 2 2
0

4
3 2

3
0

2 3 2 2 4 3
+ + −

�

	

�

�
+ − +
�

	

�

�
�

�
�
�

∆
∆ ∆

! !
 ......

 + up to (n + 1) terms ...(2.2)

This is the general quadrature formula.

	
	
������������������

Putting n = 1 in general quadrature formula (2.2) and neglecting all differences higher then first, we get

x

x h
f x dx h y y h y y y h

y y

0

0

0 0 0 1 0
0 11

2

1

2 2

+

� = +�
��

�
��

= + −�
��

�
��

=
+

( ) ( )
( )

∆

Similarly
x h

x h
f x dx h

y y

0

0 2
1 2

2+

+

� =
+

( )
( )

: :
: :

x n h

x nh
n nf x dx h

y y

0

0

1

1

2+ −

+
−� =

+
( )

( )
( )

Adding these n integrals, we get

 
x

x nh

n nf x dx h y y y y y
0

0 1

2 0 1 2 1

+

−� = + + +�
��

�
��

( ) ( ) ( ...... )

This rule is called the Trapezoidal rule.
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�
 ����������������������

Putting n = 2 in general quadrature formula (2.2) and neglecting all differences higher then second, we
get

 
x

x h
f x dx h y y

y

0

0 2

0

2

0

3 2 2
02

2

2

2

3

2

2 2

+

� = + + −
�

	

�

�
�

�
�
�

�

�
�
�

( )
!

∆ ∆

= h y y y y y y2 2
1

3
20 1 0 2 1 0+ − + − +�

��
�
��

( ) � �

= 
h

3
 [y0 + 4y1 + y2]

Similarly f x dx
h

x h

x h
( )

0

0

2

4

3+

+

� =  [ y2 + 4y3 + y4 ]

� �

 f x dx
h

x n h

x nh
( )

( )0

0

1 3+ −

+

� = ( yn – 2 + 4yn – 1 + yn)

Adding all these integrals, we get

f x dx
h

x

x nh
( )

0

0

3

+

� =  [y0 + 2(y2 + y4 + y6 ...... 4n – 2) + 4 (y1 + y3 + y5 ...... yn – 1) + yn]

This is known as Simpson’s 
1

3
 rule.

	
�
 �������������������������

Putting n = 3 in general quadrature formula (2.2) and neglecting all differences higher then third, we
get

f x dx h y y
y y

x

x h
( )

! !0

0 3

0 0

3 2 2
0

4
3 2

3
03

9

2

3

3

3

2 2

3

4
3 3

3

+

� = + + −
�

	

�

�
+ − +
�

	

�

�
�

�
�
�

�

�
�
�

∆
∆ ∆

= h y y y y y y y y y y3
9

2

9

4
2

3

8
3 30 1 0 2 1 0 3 2 1 0+ − + − + + − + −�

��
�
��

( ) ( ) ( )

= 3

8

h [y0 + 3y1 + 3y2 + y3]

Similarly f x dx
h

x h

x h
( )

0

0

3

6 3

8+

+

� = [ y3 + 3y4 + 3y5 + y6]

� �
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   f x dx
h

x n h

x nh
( )

( )0

0

3

3

8+ −

+

� = [yn – 3 + 3yn – 2 + 3yn – 1 + yn]

Adding all these integrals, we get

f x dx
h

x

x nh
( )

0

0 3

8

+

� =  [y0 + 3 (y1 + y2 + y4 + y5 + ...... + yn–1) + 2 (y3 + y0 + ..... + yn–3) + yn]

This formula is known as Simpson’s three-eight’s rule.

��������������

Example 1. Use Trapezoidal rule to evaluate x dx3

0

1

�  considering five sub-intervals.

Solution. Divide the interval [0, 1] into five parts each of width h = 
1 0

5

−
 = 0.2 and compute

the value of y = x3 at each points of sub-interval. These values are given below:

x 0 0.2 0.4 0.6 0.8 1

y = x3 0 0.008 0.064 0.216 0.512 1

By Trapezoidal rule, we have

0

1

�  x3 dx = h

2
[y0  + 2 (y1 + y2 + y3 + y4) + y5]

= 
0 2

2

.
 [0 + 2 (0.008 + 0.064 + 0.216 + 0.512) + 1]

= 
0 2

2

.
 [2 × 0.8 + 1] = 0.26. Ans.

Example 2. Evaluate e dxsin x

0

2π /

�  correct to four decimal places by Simpson’s one-third and

three-eighth rule, dividing the interval 0,
2

π�
	

�
�

 into three equal parts.

Solution. Divide the interval 0
2

,
π�

	

�
�

 into three parts each of width h = 
( / )π π2 0

3 6

− =  and

compute the value of y = esin x at each point of sub-interval. These values are given below:

x 0
π
6

π
3

π
2

y = esin x 1 1.64872 2.45960 2.71828
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By Simpson’s one-third rule, we have e dx
hxsin

/

0

2

3

π

� =  [ y0 + 4( y1) + 2( y2) + y3]

= 
π /6

3
 [1 + 4 × 1.64872 + 2 × 2.45960 + 2.71828]

= 
π
18

[15.23236] = 2.6596. Ans.

By Simpson’s three-eighth rule, we have

 
0

2 3

8

π/
sin� =e dx

hx [y0 + 3(y1 + y2) + y3]

= 
3

8 6

π
 [1 + 3 (1. 64872 + 2.45960) + 2.71828]

= 
3

8 6

π
 (16.04324) = 3.1513. Ans.

Example 3. Find the value of loge 2 from 
0

1 2

3

x

1 x
dx� +

, using Simpson’s one-third rule, by

dividing the range into four equal parts.

Solution. Divide the interval [0, 1] into four equal parts each of width h = 
1 0

4

−
 = 0.25 and

compute the value of f (x) = 
x

x

2

31 +
 at each point of sub-interval. These values are given below:

x x2 x3 1 + x3 f (x) = x2/1 + x3

0 0 0 1 0

0.25 0.0625 0.015625 1.015625 0.061538

0.50 0.25 0.125 1.125 0.222222

0.75 0.5625 0.421875 1.421875 0.395604

1 1 1 2 0.5

By Simpson’s one-third rule, we have

0

1 2

31 3� +
=x

x
dx

h
[y0 + 4 (y1 + y3) + 2y2 + y4]
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= 
0 25

3

.
[0 + 4(0.061538 + 0.395604) + 2(0.222222) + 0.5]

= 
0 25

3

.
 [2.773015] = 0.231084. Ans.

Again  
0

1 2

3 0

1 2

3
3

0

1

1

1

3

3

1

1

3
1

1

3� �+
=

+
= +
�

�
�

�

�
� =x

x
dx

x

x
dx xlog ( )  log 2

= 
1

3
 × (0.693147) = 0.231049

Therefore the error = 0.231084 – 0.231049 = 0.000034. Ans.

Example 4. Evaluate 
0

6

2

dx

1 x� +
by using Trapezoidal, Simpson’s one-third and three-eighth rule.

Solution. Divide the interval (0, 6) into six parts each of width h = 1 and compute the value of

y = 
1

1 2+ x
 at each point of sub-interval. These values are given below

x y = 
1

1 2+ x

0 1

1 0.5

2 0.2

3 0.1

4 0.0588

5 0.0385

6 0.027

By Trapezoidal rule, we have

 
0

6

21 2� +
=dx

x

h
 [y0 + 2(y1 + y2 + y3 + y4 + y5) + y6]

= 
1

2
 [1 + 2 (0.5 + 0.2 + 0.1 + 0.0588 + 0.0385) + 0.027]

= 
1

2
[2.8216] = 1.4108. Ans.
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By Simpson’s one-third rule, we have

 
0

6

21 3� +
=dx

x

h  [y0 + 4 (y1 + y3 + y5) + 2(y2 + y4) + y6]

= 
1

3
 [ 1 + 4(0.5 + 0.1 + 0.0385) + 2(0.2 + 0.0588) + 0.027]

= 1

3
 [1.027 + 4 × 0.6385 + 2 × 0.2588]

= 
1

3
 [4.0986] = 1. 3662. Ans.

By Simpson’s three-eight rule, we have

 
0

6

21

3

8� +
=dx

x

h
 [ y0 + 3(y1 + y2 + y4 + y5) + 2(y3) + y6]

  = 
3

8
 [1 + 3 (0.5 + 0.2 + 0.0588 + 0.0385) + 2(0.1) + 0.027]

= 
3

8
(3.6189) = 1.3570. Ans.

Example 5. Calculate the approximate value of x4

3

3

−� dx by using Trapezoidal rule, Simpson’s

one-third  and three eight rule, by dividing the range in six equal parts.

Solution. Divide the range (– 3, 3) into six equal parts each of width h = 
3 3

6

− −( )
 = 1 and

compute the value of y = x4 at each point of sub-interval. These values are given as below:

x – 3 – 2 – 1 0 1 2 3

y = x4 81 16 1 0 1 16 81

By Trapezoidal rule, we have

−� =
3

3
4

2
x dx

h
[y0 + 2(y1 + y2 + y3 + y4 + y5) + y6]

= 
1

2
 [81 + 2 (16 + 1 + 0 + 1 + 16) + 81]

= 
1

2
 [ 162 + 68] = 115. Ans.
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By Simpson’s one-third rule, we have

−� =
3

3
4

3
x dx

h  [ y0 + 4 (y1 + y3 + y5) + 2(y2 + y4) + y6]

= 
1

3
[81 + 4(16 + 0 + 16) + 2 (1 + 1) + 81]

= 
1

3
 [162 + 4 × 32 + 2 × 2] = 

1

3
 (294) = 98. Ans.

By Simpson’s three-eighth rule, we have

−� =
3

3
4 3

8
x dx

h
[y0 + 3(y1 + y2 + y4 + y5) + 2(y3) + y6]

= 
3

8
[81 + 3 (16 + 1 + 1 + 16) + 2.0 + 81]

= 
3

8
[162 + 3 × 34] = 99

But the exact value of

  
−� �= =

�

�
�
�

�
� =

3

3
4

0

3
4

5

0

3
52 2

5

2

5
3x dx x dx

x
( )

= 
2

5
 × 243 = 97.2. Ans.

Example 6. Use Simpson’s rule dividing the range into ten equal parts, to show that

log 1 x

1 x

3

20

1 ( )+
+�  = 0.1730.

Solution. Dividing the interval (0, 1) into ten equal parts of width h = 
1 0

10

−
 = 0.1 and compute

the value of f (x) = 
log 1

1

3

2

( )+
+

x

x
 at each points of sub-interval. These values are given below
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x x2 1 + x2 log (1 + x2)
log x

x

(1 )

1

2

2
+

+

0 0 1.0 0 0

0.1 0.01 1.01 0.009950 0.009851

0.2 0.04 1.04 0.039220 0.037712

0.3 0.09 1.09 0.086177 0.079062

0.4 0.16 1.16 0.14842 0.127948

0.5 0.25 1.25 0.223143 0.178514

0.6 0.36 1.36 0.307484 0.226091

0.7 0.49 1.49 0.398776 0.267634

0.8 0.64 1.64 0.494696 0.301644

0.9 0.81 1.81 0.593326 0.327804

1.0 1.0 2.0 0.693147 0.346573

By Simpson’s one-third rule, we have

 
0

1

3�
+

+
=log (1 )

1

2

2

x

x
dx

h [y0 + 4(y1 + y3 + y5 + y7 + y9) + 2(y2 + y4 + y6 + y8) + y10]

= 
0.1

3
 [0 + 4(0.009851 + 0.079062 + 0.178514 + 0.267634 + 0.327804)

+ 2(0.037712 + 0.127948 + 0.226091 + 0.301644) + 0.346573]

= 
0.1

3
 [5.184839] = 0.17282793. Ans.

Example 7. Evaluate 
4

5.2

elog x dx� by Simpson’s one-third and three-eighth rule.

Solution. Dividing the interval (4, 5.2) into six equal parts of width h = 
52 4

6

. −
 = 0.2 and

compute the value of f (x) = loge x at each point of sub-interval. These values are given below:

x 4 4.2 4.4 4.6 4.8 5.0 5.2

f(x) 1.386294 1.435084 1.481604 1.526056 1.568615 1.609437 1.648658

By Simpson’s one-third rule, we have

  
4

5 2

3

.
log� =e x dx

h
[y0 + 4(y1 + y3 + y5) + 2 (y2 + y4) + y6]

= 
0.2

3
 [1.386294 + 4(1.435084 + 1.526056 + 1.609437)

+ 2(1.481604 + 1.568615) + 1.648658]
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= 
0.2

3
 (27.417698) = 1.827847

By Simpson’s three-eighth rule, we have

4

5.2

� loge x dx  = 
3

8

h
 [y0 + 3(y1 + y2 + y4 + y5) + 2(y3) + y6]

= 
3 0 2

8

( . )
 [1.386294 + 3(1.435084 + 1.481604 + 1.568615 + 1.609437)

+ 2(1.526056) + 1.648658]

= 
0.6

8
 × (24.371294) = 1.827847. Ans.

Example 8. Evaluate 
0.5

0.7
1 2 xx e dx� −/ .

Solution. Dividing the interval (0.5, 0.7) into four equal parts of width h = 
0.7 .5

4

− 0
 = 0.05 and

compute the value of f (x) = x1/2e–x  at each point of sub-interval. These values are given below:

x x1/2 e– x f (x) = x1/2 e–x

0.50 0.707106 0.606530 0.428881

0.55 0.741619 0.576949 0.427876

0.60 0.774596 0.548811 0.425107

0.65 0.806225 0.522045 0.420886

0.70 0.836660 0.496585 0.415473

By Trapezoidal rule, we have

 
0.5

0.7

� − =x e dx
hx1 2

2
/ [y0 + 2(y1 + y2 + y3) + y4]

= 
0.05

2
 [0.428881 + 2 (0.427876 + 0.425107 + 0.420886) + 0.415473]

= 
0.05

2
 (3.392092) = 0.0848023. Ans.

By Simpson’s 
1

3
 rule, we have

 
0.5

0 7
1 2

3

.
/� − =x e dx

hx [ y0 + 4 (y1 + y3) + 2y2 + y4]

= 
0.05

3
[0.428881 + 4(0.427876 + 0.420886) + 2(0.425107) + 0.415473]

= 
0.05

3
 [5.089616] = 0.0848269. Ans.
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��������	
�

1. Evaluate 
0

1

21� +
dx

x
 by using Simpson’s one-third and three-eighth rule. Hence obtain the approximate

value of π in each case.

2. A curve is drawn to pass through the points given by the following table:

x 1 1.5 2 2.5 3 3.5 4

y 2.0 2.4 2.7 2.8 3.0 2.6 2.1

Estimate the area bounded by the curve, the x-axis and the lines x = 1, x = 4 by Simpson’s rule.

3. Evaluate 
2

10

1� +
dx

x
 by dividing  the range into eight equal parts by Simpson’s one-third rule.

4. Show that 
0

1

1� +
dx

x
 = log 2 = 0.69315 by using Simpson’s one-third rule.

5. Calculate the value of the integral 
4

5 2.
log� x dx by using Trapezoidal rule, Simpson’s  one-third and

three-eighth  rule.

6. Use Simpson’s one-third rule to find the approximate area of the cross-section of a river 80 meter wide,
the depth y at a distance x from one bank being given by the following table:

x 0 10 20 30 40 50 60 70 80

y 0 4 7 9 12 15 14 8 3

7. Evaluate 
0

4

� e dxx
, by Simpson’s  rule using the data.

x 0 1 2 3 4

ex 1 2.72 7.39 20.39 54.60

and compare it with the actual value.

8. Calculate an approximate value of the integral 
0

2π/

sin� x dx  by (i) Trapezoidal rule (ii) Simpson’s one-

third rule (iii) Simpson’s three-eighth rule.
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9. Use Simpson’s one-third rule to prove that loge 7 is approximately 1.9587 using 
1

7

� dx

x
.

10. Use Simpson’s one-third rule to find the value of 
1

5

� f x dx( ) given.

x 1 2 3 4 5

f (x) 10 50 70 80 100

�������

1. 0.785397 and 0.785395, π = 3.141588 2. 15.5667

3. 1.29962 5. 1.827648, 1.827847, 1.827847

6. 710 sq. me. 7. 53.873

8. 0.99795, 1.0006, 1.1003 10. 256.66667.
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In this chapter, we will discuss the important methods of solving ordinary differential equation of first
order having numerical coefficients and given boundary or initial conditions

i e
dy

dx
f x y y x y. ., ( , ) ( )= =�

�
�
�

given 0 0  numerically.

These method also useful to solve those types of problem related to first order differential equa-
tion which cannot be integrated analytically.

For example, 
dy

dx
 = x2 + y2 – c2

Some important methods are:

1. Euler’s method

2. Euler’s Modified method

3. Picard’s method of successive approximation

4. Runge-Kutta method

5. Milne’s series method.

	
�
������������

This is simplest and oldest method was devised by Euler. It illustrates, the basic idea of those numerical
methods which seek to determine the change ∆y in y corresponding to a small increase in the argu-
ments x.

Consider the differential equation

y′ = 
dy

dx
 = f (x, y) ...(3.1)

with initial condition y = y0 when x = x0, i.e., y(x0) = y0

CCCCCHAPTERHAPTERHAPTERHAPTERHAPTER     33333

Ordinary Differential Equations
of First Order
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We wish to solve (3.1), for the values of y at x = xi

where xi = x0 + ih, i = 1, 2, 3, ......

Now integrate (3.1), we have

 y1 = y0 + 
x

x

0
�  f (x, y) dx

Let  f(x, y) = f(x0, y0) where x0 ≤ x ≤ x1 ...(3.2)

Now  y1 = y0 + 
x

x
f x y dx

0

1

0 0� ( , )

= y0 + (x1 – x0) f (x0, y0)

= y0 + h f (x0, y0) [� h = x1 – x0]

Similarly for x1 ≤ x ≤ x2, we have

 y2 = y1 + h f(x1, y1)

Proceeding in the same way, we have finally

yn+1 = yn + h f(xn, yn) ...(3.3)

Thus, starting from x0 when y = y0 we can construct a table of y for given steps of h in x.

The process of Euler’s method is very slow and to obtain desired accuracy with Euler’s method,
h should be taken small.

	
�
��������������������

Instead of approximating f(x, y) by f(x0, y0) in (3.2), the integral in (3.3) is approximated by Trapezoidal
rule to obtain

y1 = y0 + 
h

2
 [ f (x0, y0) + f(x1, y1)] ...(3.4)

Thus we obtain the formula

y1
(n + 1) = y0 + 

h

2
 [ f(x0, y0) + f(x1, y1

(n))] (n = 0, 1, 2 ...) ...(3.5)

This is the nth approximation of y1. The formula (3.3) uses the initial value y1
(0) from Euler’s

method.

y1
(0) = y0 + h f(x0, y0).

	
	
�����������������������������������������

Consider the differential equation

y′ = 
dy

dx
 = f(x, y) ...(3.6)
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with the initial condition y = y0 for x = x0 i.e., y(x0) = y0

Integrating the differential equation (3.6), we have

y = y0 + 
x

x
f x y dx

0
� ( , ) ...(3.7)

Equation (3.7) in which the unknown function y appears under the integral sign, is called an
integral equation. In this method, the first approximation y(1) is obtained by replacing y by y0 in f(x, y) in
R.H.S. of (3.7) and integrating w.r.t. x, we get

i.e.,   y(1) = y0 + 
x

x
f x y dx

0
0� ( , ) ...(3.8)

The second approximation y(2) is obtained by replacing y by y(1) in f(x, y) in R.H.S. of (3.7) and
integrating  w.r.t. x, we get

y(2) = y0 + 
x

x
f x y dx

0

1� ( , )( )
...(3.9)

Proceeding in the same way we obtain y(3), y(4), .....,  yn–1 and yn where

  y(n) = y0 + 
x

x
nf x y dx

0

1� −( , )( ) ...(3.10)

with   y(0) = y0

we repeat the steps till the two value of y becomes same to the desired degree of accuracy.

	
�
�����������������

This method is most commonly used method and most suitable when computation of higher derivatives
is complicated.

Consider the following differential equation

dy

dx
 = f(x, y) with y(x0) = y0

Runge-Kutta method of order four is given by

yn+1 = yn + k for x = x0 + h

where x = 
h

k
k k

k
6

4

21
1 2

3+ + +�
��

	

�

[ ]
 = 

h

6
 [k1 + 2(k1 + k2) + k3]

where   k1 = f (x0, y0)

k2 = f x
h

y k
h

0 0 12 2
+ +�

�
�
�

,

k3 = f x
h

y k
h

0 0 22 2
+ +�

�
�
�

,

k4 = f(x0 + h, y0 + k3h)
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�
������������������

If we solve the differential equation 
dy

dx
 = f(x, y) with y(x0) = y0 by this method, we first obtain the

approximate value of yn+1 by predictor formula and then improve this value by means of a corrector
formula.

The predicted value of the solution is given by

yn+1 = yn–3 + 
4

3

h
 (2y′n–2 – y′n–1 + 2y′)

The predicted value is substituted in corrector formula

y y
h

y y yn n n n n+ − − += + ′ + ′ + ′1
1

1 1 13
4( ) � 

to improve that predicted value.

������������

Example 1. Given 
dy

dx

y x

y x
= −

+
 with the initial condition y = 1 when x = 0 find y for x = 0.1 in 4

steps by Euler’s method.

Solution. We have 
dy

dx

y x

y x
= −

+
 = f(x, y), x0 = 0, y0 = 1 and h = 

01

4

.
 = 0.025

We know that yn+1 = yn + hf(xn, yn)

By putting n = 1, 2, 3, we get

  y1 = y0 + hf(x0, y0) = y0 + h 
y x

y x
0 0

0 0

−
+

= 1 + (0.025) × 
1 0

1 0

−
+

 = 1.025

y1 = 1.025

Again y2 = y1 + hf(x1, y1) = y1 + h 
y x

y x
1 1

1 1

−
+

= 1.025 + (0.025) × 
1 025 0 025

1 025 0 025

. .

. .

−
+

 = 1.025 + 0.025 × 
1

1 05.

y2 = 1.0488

Now again y3 = y2 + hf(x2, y2) = y2 + h 
y x

y x
2 2

2 2

−
+

= 1.0488 + (0.025) × 
1 0488 0 05

1 0488 0 05

. .

. .

−
+
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= 1.0488 + 0.025 × 
1 0438

1 0988

.

.
y3 = 1.07152

Again   y4 = y3 + hf(x3, y3) = y3 + h 
y x

y x
3 3

3 3

−
+

= 1.07152 + 0.025 × 
1 07152 0 075

107152 0 075

. .

. .

−
+

y4 = 1.09324

Hence y(0.1) = 1.09324 Ans.

Example 2. Use Euler’s method compute y(0.5) for differential equation 
dy

dx
 = y2 – x2 with y = 1

when x = 0.

Solution. We have 
dy

dx
 = y2 – x2 = f(x, y), x0 = 0, y0 = 1

and let  h = 
0 5

5

.
 = 0.1

We known that  yn + 1 = yn + h f (xn, yn)

By putting n = 0, 1, 2, 3, 4, we get

y1 = y0 + hf (x0, y0) = y0 + h( )y x0
2

0
2−

= 1 + (0.1) (12 – 0) = 1.1

y2 = y1 + hf (x1,  y1) = y1 + h( )y x1
2

1
2−

= 1.1 + (0.1) [(1.1)2 – (0.1)2] = 1.1 + (0.1) (1.21 – 0.01)

= 1.220 [� x1 = x0 + h]

 y3 = y2 + hf(x2, y2) = y2 + h ( )y x2
2

2
2−

= 1.22 + (0.1) [(1.22)2 – (0.2)2] [� x2 = x1 + h]

= 1.22 + (0.1) (1.4484) = 1.36484

 y4 = y3 + hf (x3, y3) = y3 + h( )y x3
2

3
2−

= 1.36484 + (0.1) [(1.36484)2 – (0.3)2]

= 1.36484 + (0.1) (1.7728) = 1.54212

 y5 = y4 + hf(x4, y4) = y4 + h( )y x4
2

4
2−

= 1.54212 + (0.1) [(1.54212)2 – (0.4)2] = 1.7639

Hence  y(0.5) = 1.7639 Ans.
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Example 3. Using Euler’s modified method, solve numerically the equation 
dy

dx
x y= + | |  with

y(0) = 1 for 0 ≤ x ≤ 0.6 in the steps of 0.2.

Solution. Here f(x, y) = x + | |y , x0 = 0,   y0 = 1 and h = 0.2

By Euler’s method, we have

y1 = y0 + hf(x0, y0) = 1 + (0.2) (0 + 1 ) = 1.2

y1 = 1.2

The value of y1, thus obtained is improved by Euler’s modified method

y y
h

f x y f x yn n
1

1
0 0 0 1 12

( ) ( )[ ( , ) ( , )+ = + + ]

Put n = 0, we get

 y y
h

f x y f x y1
1

0 0 0 1 1
0

2
( ) ( )[ ( , ) ( , )]= + +

= 1 + 
0 2

2
0 1 0 2 1 2

.
[( ) ( . . )]+ + +

= 1 + 0.2295 = 1.2295

Put n = 1, we get

y y
h

f x y f x y1
2

0 0 0 1 1
1

2
( ) ( )[ ( , ) ( , )]= + +

= 1 + 
0 2

2
0 1 0 2 1 2295

.
[( ) ( . . )]+ + +

= 1 + 0.2309 = 1.2309

Put n = 2, we get

y y
h

f x y f x y1
3

0 0 0 1 1
2

2
( ) ( )[ ( , ) ( , )]= + +

= 1 + 
0 2

2
0 1 0 2 1 2309

.
[( ) ( . . )]+ + +

= 1 + 0.2309 = 1.2309 [ ]( ) ( )
� y y1

2
1

3=

Hence we take  y1 = 1.2309 at x = 0.2

Now, we proceed to compute y at x = 0.4

Applying Euler’s method, we have

y2 = y1 + hf(x1, y1)

= y1 + h(x1 + | |y1 )

= 1.2309 + 0.2 (0.2 + 12309. )

= 1.2309 + 0.2(1.30945) =1.49279
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The value of y2, thus obtained is improved by Euler’s modified method

y y
h

f x y f x yn n
2

1
1 1 1 2 22

( ) ( )[ ( , ) ( , )]+ = + +

Put n = 0,    y2
(1) = y1 + 

h

2
 [ f (x1, y1) + f (x2, y2

0( ) )]

= 1.2309 + 
0 2

2
0 2 1 2309 0 1

.
[( . . ) ( .4 .49279)]+ + +  = 1.52402

Put n = 1, we get   y y
h

f x y f x y2
2

1 1 1 2 2
1

2
( ) ( )[ ( , ) ( , )]= + +

= 1.2309 + 
0 2

2
0 2 1 2309 0 1 52402

.
[( . . ) ( .4 . )]+ + +  = 1.525297

Put n = 2, we get  y y
h

f x y f x y2
3

1 1 1 2 2
2

2
( ) ( )[ ( , ) ( , )]= + +

= 1.2309 + 
0 2

2
0 2 1 2309 0 1 525297

.
[( . . ) ( .4 . )]+ + +  = 1.52535

Put n = 3, we get y y
h

f x y f x y2
4

1 1 1 2 2
3

2
( ) ( )[ ( , ) ( , )]= + +

= 1.2309 + 
0 2

2
0 2 1 2309 0 1 52535

.
[( . . ) ( .4 . )]+ + +  = 1.52535

�  y2
3( )  =  y2

4( )

Hence, we take   y2 = 1.52535 at x = 0.4

Again, we proceed to compute y at x = 0.6

Applying Euler’s method, we have

  y3 = y2 + hf(x2, y2) = y2 + h( | | )x y2 2+

= 1.52535 + 0.2(0.4 + 1 52535. ) = 1.85236

The value of y3, thus obtained is improved by Euler’s  modified method

 y y
h

f x y f x yn n
3

1
2 2 2 3 32

( ) ( )[ ( , ) ( , )]+ = + +

Put n = 0  y y
h

f x y f x y3
1

2 2 2 3 3
0

2
( ) ( )[ ( , ) ( , )]= + +

= 1.52535 + 
0.2

2
[(0.4 1.52535) (0.6 1.85236 )]+ + +  = 1.88496

Put n = 1 y y
h

f x y f x y3
2

2 2 2 3 3
1

2
( ) ( )[ ( , ) ( , )]= + +

= 1.52535 + 
0 2

2
0 1 52535 0 6 1 88496

.
[( .4 . ) ( . . )]+ + +  = 1.88615
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Put n = 2  y y
h

f x y f x y3
3

2 2 2 3 3
2

2
( ) ( )[ ( , ) ( , )]= + +

= 1.52535 + 
0.2

2
[(0.4 1.52535) (0.6 1.88615)]+ + +  = 1.88619

Put n = 3 y y
h

f x y f x y3
4

2 2 2 3 3
3

2
( ) ( )[ ( , ) ( , )]= + +

= 1.52535 + 
0.2

2
[(0.4 1.52535) (0.6 1.88619)]+ + +  = 1.88619

�  y3
(3) = y3

(4)

Hence, we take y3 = 1.88619 at x = 0.6

⇒  y(0.2) = 1.2309, y(0.4) = 1.52535, y(0.6) = 1.88619. Ans.

Example 4. Using Euler’s modified method, compute y(0.1) correct to six decimal figures where
dy

dx
 = x2 + y with y(0) = 0.94.

Solution. Here f (x, y) = x2 + y, x0 = 0, y0 = 0.94, h = 0.1

By Euler’s method, we have

y1 = y0 + hf (x0, y0) = y0 +h [ ]x y0
2

0+

= 0.94 + (0.1) [0 + 0.94] = 1.034

The value of y1, thus obtained is improved by Euler’s modified method

  y y
h

f x y f x yn n
1

1
0 0 0 1 12

( ) ( )[ ( , ) ( , )]+ = + +

Put n = 0  y y
h

f x y f x y1
1

0 0 0 1 1
0

2
( ) ( )[ ( , ) ( , )]= + +

= 0.94 + 
0 1

2

.
 [(0 + 0.94) + ((0.1)2 + 1.034)] = 1.0392

Put n = 1 y y
h

f x y f x y1
2

0 0 0 1 1
1

2
( ) ( )[ ( , ) ( , )]= + +

= 0.94 + 
0 1

2

.
 [(0 + 0.94) + ((0.1)2 + (1.0392))] = 1.03946

Put n = 2   y1
(3) = y0 + 

h
f x y f x y

2 0 0 1 1
2[ ( , ) ( , )]( )+

= 0.94 + 
0 1

2

.
 [(0 + 0.94) + ((0.1)2 + 1.03946)] = 1.039473

Put n = 3 y y
h

f x y f x y1
4

0 0 0 1 1
3

2
( ) ( )[ ( , ) ( , )]= + +

= 0.94 + 
0 1

2

.
 [(0 + 0.94) + ((0.1)2 + 1.039473)] = 1.039473
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Here y y1
3

1
4( ) ( )=

Hence y1 = 1.039473

⇒  y(.1) = 1.039473. Ans.

Example 5. Use Picard’s method to solve 
dy

dx
 = x – y for x = 0.1 and 0.2 given that y = 1 when

x = 0.

Solution. We have f (x, y) = x – y and x0 = 0, y0 = 1

Now first approximation

  y(1) = y0 + 
x

x

x

x
f x y dx y x y dx

0 0
0 0 0� �= + −( , ) ( )

= 1 + 
0

1
x

x dx� −( )  = 1 + 
x

x
x

x

x2

0

2

2 2
1−

�

�
�

	



� = − +

Second approximation

  y(2) = y0 + 
x

x

x

x
f x y dx y x y dx

0 0

1
0

1� �= + −( , ) ( )( ) ( )

= 1 + 
0

2

0

2

2
1 1 2

2
1

x x
x

x
x dx x

x
dx� �− − +

�

��
�

��
�

�
�
�

	



�
�

= + − −
�

��
�

��

= 1 + x
x

x x
x

x

x

2
3

0

2
3

6
1

6
− −

�

�
�

	



� = + − −

= – 
x

x x
3

2

6
1+ − +

Third approximation

  y(3) = y0 + 
x

x

x

x
f x y dx y x y dx

0 0

2
0

2� �= + −( , ) ( )( ) ( )

= 1 + 
0

3
2 2

4 3

0
6

1 1
24 3

x
x

x
x

x x dx x
x x

x� + − + −
�

��
�

��
= + + − −

�

��
�

��

= 
x x

x x
4 3

2

24 3
1− + − +

Fourth approximation

 y(4) = y0 + 
x

x

x

x
f x y dx y x y dx

0 0

3
0

3� �= + −( , ) ( )( ) ( )

= 1 + 
0

4 3
2

24 3
1

x
x

x x
x x dx� − − + − +

�

��
�

��
�

��
�

��
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= 1 2
24 3

1
0

4 3
2+ − + − −

�

��
�

���
x

x
x x

x dx

= 1 + x
x x x

x

x

2
5 4 3

0
120 12 3

− + − −
�

�
�

	



�  = – 

x x x
x x

5 4 3

120 3
+ − + − +

12
12

Fifth approximation

y(5) = y0 + 
x

x

x

x
f x y dx y x y dx

0 0

4
0

4� �= + −( , ) ( )( ) ( )

= 1 + 
0

5 4 3
2

120 12 3
1

x
x

x x x
x x dx� − − + − + − +

�

��
�

��
�

�
�

�

�
�

= 1 + 
0

5 4 3
22

120 12 3
1

x
x

x x x
x dx� + − + − −

�

��
�

��
�

�
�
�

	



�
�

= 1 + x
x x x x

x

x

2
6 5 4 3

0
720 60 12 3

+ − + − −
�

��
�

��

= 
x x x x

x x
6 5 4 3

2

720 60 12 3
1− + − + − +

When x = 0.1, we have

y0 = 1, y(1) = 0.905, y(2) = 0.9098, y(3) = 0.90967, y(4) = 0.90967

i.e.,  y = 0.90967 at x = 0.1

When x = 0.2, we have

y0 = 1, y(1) = 0.82, y(2) = 0.83867, y(3) = 0.83740, y(4) = 0.83746

y(5) = 0.83746

i.e., y = 0.83746 at x = 0.2. Ans.

Example 6. Apply Picard’s method to solve 
dy

dx
 = x + y2 given that when x0 = 0, y0 = 0 up to

third order of approximation.

Solution. We have f(x, y) = x + y2 and x0 = 0, y0 = 0

Now first approximation

 y(1) = y0 + 
x

x

x

x x
f x y dx y x y dx x dx

0 0
0 0 0

2

0
0 0� � �= + + = + +( , ) ( ) ( )

= 
x x

x2

0

2

2 2

�

�
�
	



� =
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Second approximation

y(2) = y0 + 
x

x

x

x
f x y dx y x y dx

0 0

1
0

1 2� �= + +( , ) ( ( ) )( ) ( )

y(2) = 0 + 
0

2 2

0

4 2 5

0

2 5

2 4 2 20 2 20

x x
x

x
x

dx x
x

dx
x x x x

� �+
�

��
�

��
�

�
�

�

�
� = +

�

��
�

��
= +
�

��
�

��
= +

Third approximation

 y(3) = y0 + 
x

x

x

x
f x y dx y x y dx

0 0

2
0

2 2� �= + +( , ) [ ( ) ]( ) ( )

= 0 + 
0

2 5 2

0

4 10 7

2 20 4 400 20

x x
x

x x
dx x

x x x
dx� �+ +

�

��
�

��
�

�
��

�

�
��

= + + +
�

��
�

��

= x x x x
x2 5 8 11

0
2 20 160 4400

+ + +
�

��
�

��

= 
x x x x2 5 8 11

2 20 160 4400
+ + + . Ans.

Example 7. Use Runge-Kutta method to solve 
dy

dx
 = xy for x = 1.2, 1.4, initially x = 1, y = 2.

Solution. Here x0 = 1,   y0 = 2, f(x, y) = xy

⇒ f(x0, y0) = 1 × 2 = 2

Let  h = 0.2 then k1 = f(x0, y0) = 2

  k2 = f  x
h

y k
h

x
h

y k
h

0 0 1 0 0 12 2 2 2
1

0 2

2
2 2

0 2

2
+ +�

�
�
�

= +�
�

�
�

+�
�

�
�

= +�
�

�
�

+ ×�
�

�
�

,
. .

= (1.1)(2.2) = 2.42

 k3 = f x
h

y k
h

x
h

y k
h

0 0 2 0 0 22 2 2 2
1

0 2

2
2 2

0 2

2
+ +�

�
�
�

= +�
�

�
�

+�
�

�
�

= +�
�

�
�

+ ×�
�

�
�

,
.

.42
.

= (1.1) (2.242) = 2.4662

 k4 = f(x0 + h, y0 + k3h) = (x0 + h) (y0 + k3h) = (1 + 0.2)(2 + 2.4662 × 0.2)

= (1.2)(2.49324) = 2.9918

∴ k = 
h

6
 [k1 + 2(k2 + k3) + k4] = 

0 2

6

.
 [2 + 2 (2.42 + 2.4662) + 2.9918]

= 
0 2

6

.
 [2 + 9.7724 + 2.9918]

 k = 0.49214

This show that x1 = x0 + h = 1 + 0.2 = 1.2

and y1 = y0 + k = 2 + 0.49214 = 2.4921

Therefore  y(1.2) = 2.4921. Ans.



ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER 113

Now for the second interval

x1 = 1.2, y1 = 2.4921, f(x, y) = xy

⇒ f(x1, y1) = x1y1 = 1.2 × 2.4921 = 2.99052

Let h = 0.2 then k1 = f(x1, y1) = 2.99052

k2 = f x
h

y k
h

x
h

y k
h

1 1 1 1 1 12 2 2 2
+ +�

�
�
�

= +�
�

�
�

+�
�

�
�

,

= (1.2 + 0.1) 2 2 9905
0 2

2
.4921 .

.+ ×�
�

�
�

= (1.3) (2.79105) = 3.6283

  k3 = f x
h

y k
h

x
h

y k
h

1 1 2 1 1 22 2 2 2
+ +�

�
�
�

= +�
�

�
�

+�
�

�
�

,

= 1 2
0 2

2
.

.+�
�

�
�  2 3 6283

0 2

2
.4921 .

.+ ×�
�

�
�

= (1.3) (2.8548) = 3.71143

 k4 = f(x1 + h, y1 + k3h) = (x1 + h) (y1 + k3h) = (1.2 + 0.2) (2.4921 + 3.71128 × 0.2)

= (1.4)(3.2343) = 4.5281

∴  k = 
h

6
 [(k1 + 2)k2 + k3) + k4]

= 
0 2

6

.
 [2.9905 + 2 (3.6283 + 3.7112) + 4.5281] = 0.73992

This show that  x2 = x1 + h = 1.2 + 0.2 = 1.4

y2 = y1 + k = 2.4921 + 0.73992 = 3.2330

Therefore y(1.4) = 3.2321. Ans.

Example 8. Solve the equation 
dy

dx
 = – 2xy2 with initial condition y(0) = 1 by Runge-Kutta’s

method for x = 0.2 and 0.4 with h = 0.2.

Solution. Here x0 = 0, y0 = 1, f(x, y) = – 2xy2

⇒ f(x0, y0) = – 2x0y0
2 0=

Let h = 0.2 then k1 = f(x0, y0) = 0

k2 = f x
h

y k
h

x
h

y k
h

0 0 1 0 0 1

2

2 2
2

2 2
+ +�

�
�
�

= − +�
�

�
�

+�
�

�
�

,

= – 2 0
0 2

2
1 0

0 2

2
+�

�
�
�

+ ×�
�

�
�

. .
 = – 2 (0.1)(1) = – 0.2

k3 = f  x
h

y k
h

x
h

y k
h

0 0 2 0 0 2

2

2 2
2

2 2
+ +�

�
�
�

= − +�
�

�
�

+�
�

�
�

,

= – 2 0
0 2

2
1 0 2

0 2

2

2

+�
�

�
�

+ − ×�
�

�
�

.
( . )

.
 = – 2(0.1)(0.98)2 = – 0.1920
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k4 = f(x0 + h, y0 + k3h) = – 2 (x0 + h) (y0 + k3h)2

= – 2(0 + 0.2)[1 + (– 0.1920)(0.2)]2 = – 0.36986

∴  k = 
h

6
 [k1 + 2(k2 + k3) + k4]

= 
0 2

6

.
 [0 + 2((– 0.2) + (– 0.1920)) + (– 0.36986)]

= 
0 2

6

.
 (– 1.15386) = – 0.03846

This show that x1 = x0 + h = 0 + 0.2 = 0.2

and y1 = y0 + k = 1 + (– 0.03846) = 0.96154

Therefore y(0.2) = 0.96154. Ans.

Now for the second interval
x1 = 0.2, y1 = 0.9615

f(x, y) = – 2xy2

⇒   f(x1, y1) = – 2x1 y1
2  = – 2 × 0.2 × (0.9615)2 = – 0.36979

Let h = 0.2 then k1 = f(x1, y1) = – 0.36979

 k2 = f x
h

y k
h

x
h

y k
h

1 1 1 1 1 1

2

2 2
2

2 2
+ +�

�
�
�

= − +�
�

�
�

+�
�

�
�

,

= – 2 0 2
0 2

2
0 9615 0 36979

0 2

2

2

.
.

. .
.+�

��
�
��

+ − ×�
��

�
��

�
��

�
��

= – 2 (0.3) (0.85473) = – 0.51284

 k3 = f x
h

y k
h

x
h

y k
h

1 1 2 1 1 2

2

2 2
2

2 2
+ +�

�
�
�

= − +�
�

�
�

+�
�

�
�

,

= – 2 0 2
0 2

2
0 9615 0 51284

0 2

2

2

.
.

. .
.+�

�
�
�

+ − ×�
�

�
�

�
��

�
��

= – 2 (0.3) (0.82849) = – 0.49709

k4 = f(x1 + h, y1 + k3h) = – 2 (x1 + h)(y1 + k3h)2

= – 2 (0.2 + 0.2) (0.9615 + (– 0.49709) × 0.2)2

= – 2 (0.4)(0.7431) = – 0.59454

∴  k = 
h

6
 [k1 + 2 (k2 + k3) + k4]

= 
0 2

6

.
 (– 0.36979 + 2 (– 0.51284 – 0.49709) – 0.59454) = – 0.099473

This show that x2 = x1 + h = 0.2 + 0.2 = 0.4

y2 = y1 + k = 0.9615 – 0.099473 = 0.86202

Therefore   y(0.4) = 0.86202. Ans.
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Example 9. Compute y(2) if y(x) is the solution of 
dy

dx

1

2
=  (x + y) assuming y(0) = 2,

y(0.5) = 2.636, y(1) = 3.595, y(1.5) = 4.968.

Solution. Here f(x, y) = 
1

2
 (x + y) then we have

x0 = 0 y0 = 2 ′ = + =y0
1

2
0 2 1( )

x1 = 0.5 y1 = 2.636 ′ = + =y0
1

2
0 5 2 636 1568( . . ) .

x2 = 1 y2 = 3.595 ′ = + =y2
1

2
1 3 595 2 2975( . ) .

x3 = 1.5 y3 = 4.968 ′ = + =y3
1

2
1 5 4 968 3 234( . . ) .

By the predictor formula, we have

 y4 = y0 + 
4

3
2 21 2 3

h
y y y[ ]′ − ′ + ′

= 2 + 
4

3
 (0.5) [ 2 × 1.568 – 2.2975 + 2 × 3.234]

= 2 + 
2

3
 [7.3065) = 6.871

Now  ′ = + = + =y x y4 4 4
1

2

1

2
2 6 871 4( ) ( . ) .4355

Now by corrector formula

 y4 = y2 + 
h

y y y
3

42 3 4[ ]′ + ′ + ′

= 3.595 + 
0.5

3
 [2.2975 + 4 × 3.234 + 4.4355]

= 3.595 + 
0.5

3
 [19.669] = 6.873166 −~  6.8732

Corrected  ′ = + =y x y4 4 4
1

2

1

2
( )  (2 + 6.8732) = 4.4366

Again using corrector formula, we get

 y4 = y2 + 
h

y y y
3

42 3 4[ ]′ + ′ + ′
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= 3.595 + 
0 5

3

.
 [2.2975 + 4 × 3.234 + 4.4366]

= 3.595 + 
0 5

3

.
 [19.6701] = 6.87335 −~  6.8734

Hence y(2) = 6.8734. Ans.

Example 10. Solve initial value problem 
dy

dx
 = 1 + xy2, y(0) = 1, h = 0.1 for x = 0.4 by using

Milne’s method when it is given

x 0.1 0.2 0.3

y 1.105 1.223 1.355

Solution. Here f(x, y) = 1 + xy2 then, we have

x0 = 0 y0 = 1 ′y0  = 1 + 0 × 12 = 1

x1 = 0.1 y1 = 1.105 ′y1  = 1 + (0.1)(1.105)2 = 1.1221

x2 = 0.2 y2 = 1.223 ′y2  = 1 + (0.2)(1.223)2 = 1.2991

x3 = 0.3 y3 = 1.355 ′y3  = 1 + (0.3) (1.355)2 = 1.5508

By the predictor formula, we have

y4 = y0 + 
4

3
2 21 2 3

h
y y y[ ]′ − ′ + ′

= 1 + 
4 0 1

3

× ( . )
 [2 × 1.1221 – 1.2991 + 2 × 1.5508]

= 1 + 
0

3

.4
 [4.0467] = 1.53956 −~  1.539

Now  ′ = + = + =y x y4 4 4
2 21 1 0 1539 1 9474( .4) ( . ) .

Now by corrector formula

y4 = y2 + 
h

y y y
3

42 3 4[ ]′ + ′ + ′

= 1.223 + 
0 1

3

.
 [1.2991 + 4 × 1.5508 + 1.9474]

= 1.223 + 
0 1

3

.
 [9.4497] = 1.53799

Corrected  ′ = + = +y x y4 4 4
2 21 1 0 1 538( .4) ( . )  = 1.9461
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Again using corrector formula

y4 = y2 + 
h

y y y
3

42 3 4[ ]′ + ′ + ′

= 1.223 + 
0 1

3

.
 [1.2991 + 4 × 1.5508 + 1.9474]

= 1.223 + 
0 1

3

.
 [9.4497] = 1.53799

Hence  y(0.4) = 1.53799 ~=  1.538. Ans.

������	
�

1. Use Picard’s method to solve 
dy

dx
 = 1 + xy with y(2) = 0.

2. Use Picard’s method to solve 
dy

dx
 = x + y for x = 0.1 and x = 0.2 with x0 = 0, y0 = 1.

3. Use Picard’s method to solve 
dy

dx
 = y – x with y = 2 when x = 0 up to third order of approximation.

4. Find the solution of 
dy

dx
 = 1 + xy with y(0) = 1 in the interval [0, 0.5] by using Picard’s method such that

the value of y is correct to three decimal place. (Take h = 0.1)
5. Use Picard’s method to approximation the value of y when x = 0.1 given that y = 1 when x = 0,

dy

dx
= 3x + y3.

6. Use Euler’s method compute y(0.04) for the differential equation 
dy

dx
 = – y with y = 1 at x = 0.

7. Use Euler’s method with h = 0.1 to find the solution of the differential equation 
dy

dx
 = x2 + y2 with

y(0) = 0 in the range 0 ≤ x ≤ 0.5.

8. Given 
dy

dx
 = x + y, find the value of y in the range 0 ≤ x ≤ 1 with h = 0.1 given that y(0) = 1 using Euler’s

method.

9. Find y(2.2) for 
dy

dx
 = – xy2 where y(2) = 1 by Euler’s modified method.

10. Using Euler’s modified method, compute y(2) in steps of  0.2 given that 
dy

dx
 = 2 + xy  with y(1) = 1.

11. Given that 
dy

dx
 = log10 (x + y) with the initial condition y(0) = 1, find y at x = 0.2, 0.3, 0.4 and 0.5 in steps

of 0.1.

12. Using  Runge-Kutta’s method, find the approximate value of x = 0.1 and x = 0.2 if 
dy

dx
 = x + y2 given that

at x = 0, y = 1.
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13. Solve 
dy

dx x y
=

+
1

 for x = 0.5, 1.0, 1.5, 2 [h = 0.5] by using Runge-Kutta’s method with x0 = 0, y0 = 1.

14. Solve the equation 
dy

dx
 = x + y with initial condition y(0) = 1 by Runge-Kutta’s  rule from x = 0 to x = 0.4

with h = 0.1.

15. Use Runge-Kutta’s method to calculate the approximate value of x = 0.8 if 
dy

dx
x y= +  given that

y (0.4) = 0.41 and h = 0.2.

16. Solve the equation 
dy

dx
 = x – y2 for x = 0.8 given that y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762

by Milne’s method.

17. Use Milne’s method to solve 
dy

dx
 = x + y with initial condition y(0) = 1 from x = 0.20 to x = 0.30

18. Use Milne’s method to solve the equation 
dy

dx
 = 2ex – y at x = 0.4 given that y(0) = 2,  y(0.1) = 2.01,

y(0.2) = 2.04, y(.3) = 2.09.

19. Solve the equation 
dy

dx
 = 1 + y2 for x = 0.8 and 1.0 given  that y(0) = 0, y(0.2) = .2027, y(0.4) = 0.4228,

y(0.6) = 0.6841.

������

1. y
x x x x

x( )3
5 4 3 2

15 4 3 2

22

15
= − + − + − 2. ( y)x= 0.1 = 1.1103 and ( y)x=0. 2 = 1.2427

3. y(3) = – 
x x x

x
4 3 2

24 6 2
2 2+ + + +

( y)x=0.4 = 1.505, ( y)x=0.5 = 1.677

4. ( y)0 = 1, ( y)0.1 = 1.105, ( y)x=0.2 = 1.203, ( y)x=0.3 = 1.355

5. ( y)x=0.1 = 1.127

6. – 0.6705 7. y(0.5) = 0.03002

8. y(1) = 3.1874 9. 0.7018

10. y(2) = 5.0516

11. y(0.2) = 1.0083, y(0.3) = 1.0184

y(0.4) = 1.0322, y(0.5) = 1.0

12. y(0.1) = 1.1165, y(0.2) = 1.2736

13. y(0.5) = 1.3571, y(1) = 1.5837

y(1.5) = 1.7555, y(2) = 1.8957

14. y(0.1) = 1.1103, y(0.2) = 1.2428

y(0.3) = 1.3997, y(0.4) = 1.5836

15. y(0.6) = 0.61035, y(0.8) = 0.84899 16. ( y)x=0.8 = 0.3046

17. ( y)x=0.20 = 1.2428 and ( y)x=0.30 = 1.3997 18. y(0.4) = 2.1621

19. ( y)0.8 = 1.0294 and ( y)1 = 1.5557.
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In this chapter, we shall discuss basic concepts of difference equation, homogeneous and non-homoge-
neous linear difference equation with constant coefficient.

	
�
�������������������

An equation which contain independent variable, dependent variable and the successive differences of
the dependent variable is called the difference equation.

Examples

(1) yn+2 – 6yn+1 + 9yn= 0

(2) ( )E E yn
n2 6 9 2+ + = i.e., y y yn n n

n
+ ++ + =2 16 2

(3)  (∆2 + 3∆ + 2)yn = 1 or ∆2yn + 3∆yn + 2yn = 1

or  ( ) ( )y y y y y yn n n n n n+ + +− + + − + =2 1 12 3 2 1

or y yn n+ ++ =2 1 1.

	
�
��������������������������

The order of the difference equation is the difference between the largest and smallest arguments occur-
ring in the difference equation divided by the unit of argument.

Thus, the order of the difference equation

= 
Largest argument Smallest argument

Unit of argument

−

The order of the difference equation y yn n+ − =2 7 5 is

 
( )n n+ −2

1
 = 2.

CCCCCHAPTERHAPTERHAPTERHAPTERHAPTER     44444

Difference Equations
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The highest degree of yn’s in the difference equation is called the degree of the difference equation.

Example 1. The order and degree of yn+2 + 4yn+1 + 4yn = 2n are 
n n+ −2

1
 = 2 and 1 respectively.

Example 2. The order and degree of y y y yn n n n+ + ++ + +3 2
2

13 3  = 0 are 
n n+ −3

1
 = 3 and 2

respectively.

	
	
�����������������������������

Any function which satisfies the given difference equation is called the solution of the difference equa-
tion.

A solution in which the number of arbitrary constants is equal to the order of the difference
equation is called general solution of the difference equation.

A solution which is obtained from the general solution by assigning particular values is called
particular solution.

	
�
�����������������������������

Example 1. Write the difference equation ∆3yn + ∆2yn + ∆yn + yn = 0 in the subscript notation.

Solution. We have  ∆yn = yn+1 – yn

 ∆2yn = yn+2 – 2yn+1 + yn

 ∆3yn = y y y yn n n n+ + +− + −3 2 13 3

Putting in given difference equation

( y y y yn n n n+ + +− + −3 2 13 3 ) + (y y y y y yn n n n n n+ + +− + + − + =2 1 12 0) ( )

or  yn+3 – 2yn+2 + 2yn+1 = 0

or E3yn – 2E2yn + 2Eyn = 0

or   (E3 – 2E2 + 2E)yn = 0.

Example 2. Form the difference equation from the equation y = Ax2 – Bx.

Solution. We have ∆y = ∆(Ax2 – Bx) = A∆x2 – B∆x

= A{(x + 1)2 – x2} – B {(x + 1) – x}

∆y = A(2x + 1) – B ...(i)

and  ∆2y = ∆ {A(2x + 1) – B} = A ∆ (2x + 1) – B∆
= A{2(x + 1) + 1 – (2x + 1)}
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 ∆2y = 2A ...(ii)

By (ii) A = 
1

2
 ∆2y

Put in (i), we get B = 
1

2
 ∆2y (2x + 1) – ∆y

or B = 
1

2
 (2x + 1)∆2y – ∆y

Putting these values in given equation, we get

 y = 
1

2

1

2
2 12 2 2∆ ∆ ∆y x x y y�

��
�
��

− + −�
��

�
��

( )  x

= 
1

2

1

2
2 12 2x x x y x y− +�

��
�
��

+( ) ∆ ∆

 2y = [– x2 – x] ∆2y + 2x ∆y

or   (x2 + x)∆2y – x ∆y + 2y = 0

or  (x2 + x)( ) ( )y y y x y y yn n n n n n+ + +− + − − + =2 1 12 2 2 0

or (x2 + x)yn+2 – (2x2 + 4x)yn+1 + (x2 + 3x + 2)yn = 0. Ans.

Example 3. Form by yn = A2n + B(– 2)n a difference equation by eliminating the constants
A and B.

Solution. We have  yn = A2n + B(– 2)n ⇒ yn – A2n – B(– 2)n

 yn+1 = 2A2n – 2B(– 2)n ⇒ yn+1 – 2A2n + 2B(– 2)n

 yn+2 = 4A2n + 4B(– 2)n ⇒ yn+2 – 4A2n – 4B(– 2)n

Eliminate A and B, we get

y
y
y

n

n

n

− −
−
− −

+

+

1 1
2 2
4 4

1

2

 = 0 or yn+2 – 4yn = 0. Ans.

	
�
�������������������������

A difference equation in which yn, yn+1, yn+2 ...... occur to the first degree only and are not multiplied
together is called the linear difference equation.

A linear difference equations of order k is

a0 yk+n + a y a y a y R nk n k n k n1 1 2 2+ − + −+ + + =...... ( ) ...(4.1)

If R(n) = 0 then the equation (4.1) is called the linear homogeneous difference equation other-
wise it is called non-homogeneous difference equation.
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���������

An equation of the form

 ( ...... )a E a E a I yk k
n n0 1

1 0+ + + =− ...(4.2)

or φ(E)yn = 0

where a0, a1, ....... an are all constants, is known as homogeneous linear difference equation with
constant coefficient

Let yn = mn be the solution of the difference equation (4.2), then we have

 a m a m a mn k n k
n

n
0 1

1 0+ + −+ + + =......

⇒  ( ...... )a m a m a mk k
n

n
0 1

1 0+ + + =− ...(4.3)

which show that mn is the solution of (4.3) if m satisfies

  a m a m ak k
n0 1

1+ + +− ......  = 0 ...(4.4)

Equation (4.4) is known as auxiliary equation. This equation has k roots which we take m1,
m2,...,mk. Here some cases arise.

Case I. When roots are all real and distinct

If m1, m2 ..... mk are real and distinct roots of auxiliary equation (4.4), then the solution is

  yn = c1(m1)
n + c2(m2)

n ...... + ck(mk)
n.

Case II. When some of the roots are equal

If two roots be equal i.e., m1 = m2, then the solution is yn = (c1 + c2n) (m1)
n + c3(m3)

n + ...... +
ck(mk)

n.

If three  roots be equal i.e., m1 = m2 = m3, then the solution is

  yn = (c1 + c2n + c3n2) (m1)n + c4(m4)n +......+ ck(mk)
n

If k roots be equal  i.e., m1 = m2 = m3 ...... = mk , then the solution is

yn = [c1 + c2n + c3n
2 +.....+ ck n

k–1] (m1)
n.

Case III. When the roots are complex number

We know that if complex roots occur then they must be conjugate complex number

i.e., if (α + iβ) is the root then (α – iβ) is also a root where α and β are real. Then the solution is

yn = c1(α + iβ)n + c2(α – iβ)n

which can be written as

yn = γ n (A1 cos nθ + A2 sin nθ)

where  γ = α β2 2+ and A1 = c1 + c2, A2 = i(c1 – c2)

 θ = tan–1 (β/α).

Case IV. When some of the complex roots are equal

Let the root (α ± i β) becomes twice then the solution.
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yn = γn [(A1 + A2n) cos nθ + (A3 + A4n) sin nθ]

where  γ = α β2 2+ and θ = tan–1 (β/α).

	
�
 ���������������� ����������������������������������

���������������

The equation of the form

(a0E k + a E a I y R nk
n n1

1− + + =...... ) ( ) ...(4.5)

or φ(E)yn = R(n)

where a0, a1, a2, ..... an are all constants is known as non-homogeneous linear difference equation
with constant coefficient.

The general solution of (4.5) consists of two parts, complementary function and particular integral

Complementary function is the general solution of the homogeneous equation i.e., left hand side

of (4.5) and particular integral = 
1

φ( )E
 R(n).

Rules for Obtaining the Particular Integral

The particular integral (P.I.) = 
1

φ( )E
 R(n).

Case  I. When R(n) = an

∴  P.I. = 
1

φ( )E
 an = 

1

φ( )a
 an provided φ(a) ≠ 0

If φ (a) = 0, then for the equation

(E – a)k yn = an ; k is positive integer.

 P.I. = 
1 1 2 1

( )

( )( ) ...... ( ( ))

!E a
a

n n n n k

k
ak

n n k

−
= − − − − −

Particular case: When k = 1

 P.I. = 
1

E a−
 an = nan–1

When k = 2

 P.I. = 
1

2( )E a−
 an = n(n – 1)an–2.

Case II. When R(n) = sin an or cos an

∴  P.I. = 
1 1

2φ φ( )
sin

( )E
an

E

e e

i

ian ian

= − −
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= 
1

2

1 1

i E
e

E
eia n ia n

φ φ( )
( )

( )
( )−

�
�
	



�
�

−

= 
1

2

1 1

i e
e

e
eia

ian
ia

ian

φ φ( ) ( )
−

�
�
	



�
�−

−

Similarly  P.I. = 
1 1

2

1 1

φ φ φ( )
cos

( ) ( )E
an

e
e

e
eia

ian
ia

ian= +
�
�
	



�
�−

−

Provided φ (eia) ≠ 0 and φ (e–ia) ≠ 0.

Case III. When R(n) = nk

∴  P.I. = 
1 1

1φ φ( ) ( )E
n nk k=

+ ∆
[� E = 1 + ∆]

= [φ (1 + ∆)]–1 nk.

First, we expand [φ(1 + ∆)]–1 in ascending power of ∆ by the Binomial theorem as far as the term
in ∆k, then express nk in the factorial notation and distribute it each term of the expansion.

Case IV. When R(n) = an F(n), where F(n) being a polynomial in n.

∴   P.I. = 
1 1

φ φ( )
( )

( )
( )

E
a F n a

aE
F nn n= .

����������� ���

Example 1. Solve the difference equation yn+2
 – 2yn+1 – 8yn = 0.

Solution. The given equation can be written as

 (E2 – 2E – 8) yn = 0

The auxiliary equation is m2 – 2m – 8 = 0

The roots are m = – 2, 4

Hence, the solution is yn = c1 (– 2)n + c24
n. Ans.

Example 2. Solve the difference equation yn+3 – 2yn+2 – 5yn+1 + 6yn = 0.

Solution. The given difference equation can be written as

(E3 – 2E2 – 5E + 6)yn = 0

The auxiliary equation is m3 – 2m2 – 5m + 6 = 0

The roots are m = 1, – 2, 3

Hence, the solution is yn = c1(1)n + c2(– 2)n + c33
n. Ans.

Example 3. Solve yn+3 + yn+2 – 8yn+1 – 12yn = 0.

Solution. The given difference equation can be written as

(E3 + E2 – 8E – 12)yn = 0

The auxiliary equation is  m3 + m2 – 8m – 12 = 0
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The roots are m = – 2, – 2, 3

Hence, the solution is yn = (c1 + c2n)(– 2)n + c33n. Ans.

Example 4. Solve the difference equation 9yn+2 – 6yn+1 + yn = 0.

Solution. The given difference equation can be written as

(9E2 – 6E + 1)yn = 0

The auxiliary equation is  9m2 – 6m + 1 = 0

The roots are m = 
1

3
, 

1

3

Hence, the solution is yn = (c1 + c2n) 1

3

�
�
�

n
.

Example 5. Solve yn+2 + 16yn = 0.

Solution. The given difference equation can be written as

  (E2 + 16)yn = 0

The auxiliary equation is m2 + 16 = 0

The roots are m = ± 4i

Hence, the solution is  yn = c1(4i)n + c2(– 4i)n

yn = 4n {c1(i)
n + c2(– i)n}

= 4n c i c i
n n

1 22 2 2 2
cos sin cos sin

π π π π+
�

�
� + −

�
�
�

�
�
	



�
�

= 4n c
n

i
n

c
n

i
n

1 22 2 2 2
cos sin cos sin

π π π π+
�

�
� + −

�
�
�

�
�
	



�
�

= 4n ( ) cos ( ) sinc c
n

i c c
n

1 2 1 22 2
+ + −��	


��
π π

= 4n A
n

B
n

cos sin
π π
2 2

+�
��

�
��
.

Example 6. Solve yn+2 – 4yn+1 + 13yn = 0.

Solution. The given difference equation can be written as

(E2 – 4E + 13)yn = 0

The auxiliary equation is m2 – 4m + 13 = 0

The roots are m = 
4 16 4 13

2

4 6

2

± − ×
=

± i
 = 2 ± 3i

Let 2 + 3i = r (cos θ + i sin θ) ⇒ r = (13)1/2 and θ = tan–1 
3

2

�
�
�

Therefore solution is

yn = (13)n/2 {c1 cos nθ + c2 sin nθ} where θ = tan–1 3

2

�
�
�

.
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Example 7. Solve yn+2 – yn+1 + yn = 0 given that y0 = 1, y1 = 1 3

2

+ .

Solution. The given difference equation can be written as (E2 – E + 1) yn = 0

The auxiliary equation is m2 – m + 1 = 0

The roots are m = 
1 1 4

2

1 3

2

± −
=

± i

Hence the solution is yn = c1 
1 3

2

1 3

22
+

��
�
��

+ −
��

�
��

i
c

i
n n

= c1 cos sin cos sin
π π π π
3 3 3 32+

�
�
� + −

�
�
�i c i

n n

= c1 cos sin cos sin
n

i
n

c
n

i
nπ π π π

3 3 3 32+
�

�
� + −

�
�
�

= (c1 + c2) cos
nπ
3

 + i (c1 – c2) sin 
nπ
3

yn = A cos 
nπ
3

 + B sin 
nπ
3

...(i)

But y0 = 1 and y1 = 
1 3

2

+

∴  1 = A cos 0 + B sin 0 ⇒ A = 1

and  
1 3

2
+

 = A cos 
π
3

 + B sin 
π
3

 
1 3

2
+

 = 1. 1
2

3
2

+ B . ⇒ B = 1

Put A = 1 and B = 1 in (i), we get

 yn = cos 
nπ
3

 + sin 
nπ
3

.

Example 8. Solve the difference equation yn+2 – 2yn+1 + 5yn = 2 . 3n – 4 . 7n.

Solution. The given difference equation can be written as

(E2 – 2E + 5)yn = 2 . 3n – 4 . 7n

The auxiliary equation is m2 – 2m + 5 = 0

The roots are m = 
2 4 4 5

2 1

± − ×
⋅

 = 1 ± 2i

Let  1 + 2i = r (cos θ + i sin θ) ⇒ r = 5  and θ = tan–1 2

Therefore complementary solution is

= (5)n/2 (c1 cos nθ + c2 sin nθ) where θ = tan–1 2
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The particular solution is given by

  P.I. = 
1

2 52E E− +
 2 . 3n – 4 . 7n

= 2 
1

2 5
3 4

1

2 52 2E E E E
n

− +
−

− +
 7n

= 2 
1

8
3 4

1

40
7n n−  = 

1

4
3

1

10
7n n−

Hence solution is yn = C.F. + P.I.

= (5)n/2 {c1 cos nθ + c2 sin nθ} + 
1

4
3

1

10
7n n− . Ans.

Example 9. Solve the difference equation (E2 – 3E – 4)yn = 3n.

Solution. The auxiliary equation of given difference equation is m2 – 3m – 4 = 0

The roots are m = – 1, + 4.

Therefore complementary solution is c1 (– 1)n + c2 4n.

The particular solution is given by

 P.I. = 
1

3 4
3

1

9 9 4
3

1

4
32E E

n n n

− −
=

− −
= −

Hence solution is yn = C.F. + P.I. = c1(– 1)n + c24
n – 

1

4
 3n. Ans.

Example 10. Solve the difference equation

y(n + 2) – 3y(n + 1) + 2y(n) = 6 .2n

or yn+2 – 3yn+1 + 2yn = 6 .2n.

Solution. The given difference equation can be written as

(E2 – 3E + 2)yn = 6 .2n

The auxiliary equation is m2 – 3m + 2 = 0

The roots are m = 1, 2.

Therefore the complementary solution is c1(1)n + c2(2)n.

The particular solution is given by

 P.I. = 
1

3 22E E− +
 6 . 2n [� F(2) = 0]

= 
1

1 2( )( )E E− −
 6 . 2n = 

1

2 1 2( )( )− −E
 6 . 2n = 6 

1

2( )E −  2n

= 6. n 2n–1 = 3n2n.

Hence solution is yn = C.F. + P.I.

yn = c1 + c22n + 3n2n. Ans.
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Aliter : P.I. = 
1

3 22E E− +
 6 . 2n

= 6 
1

3 22E E− +
 2n . 1 [� F (2) = 0]

= 6 . 2n 
1

2 3 2 22( ) ( )E E− +
 .1 = 6 . 2n 

1

4 6 22E E− +
 .1

= 6 . 2n 
1

4(1 6 1 22+ − + +∆ ∆) ( )
 .1

= 6 . 2n 
1

4(1 2 6 1 22+ + − + +∆ ∆ ∆) ( )
 1 = 6.2n 1

4 22∆ ∆+
 .1

= 3 . 2n 
1

1 2∆ ∆( )+
 .1 = 3 . 2n 

1

∆  (1 + 2∆)–1 .1

= 3 . 2n 
1

∆  (1 – 2∆ + 4∆2 ......) . 1 = 3 . 2n 
1

∆  (1 – 0 + 0...)

P.I. = 3 . 2n n.

Example 11. Solve yn+2 + a2yn = cos an.

Solution. The given difference equation can be written as

(E2 + a2)yn = cos an

The auxiliary equation is m2 + a2 = 0

The roots are m = ± ia.

Therefore the complementary solution is

c1(ia)n + c2(– ia)n = an {c1(i)
n + c2(– i)n)

= an c i c i
n n

1 22 2 2 2
cos sin cos sin

π π π π+
�

�
� + −

�
�
�

�
�
	



�
�

= an c
n

i
n

c
n

i
n

1 22 2 2 2
cos sin cos sin

π π π π+
�

�
� + −

�
�
�

�
�
	



�
�

= an ( ) cos ( ) sinc c
n

i c c
n

1 2 1 22 2
+ + −��	


��
π π

 = an A
n

B
n

cos sin
π π
2 2

+��	

��

.

The particular solution is given by

 P.I. = 
1 1

22 2 2E a
an

E a

e eian ian

+
=

+
+

2

−

cos
( )

= 
1

2

1 1
2 2 2 2E a

e
E a

eia n ia n

+
+

+
�
�
	



�
�

−( )
( )

( )

= 
1

2

1 1
2 2 2 2e a

e
e a

eia
ian

ia
ian

+
+

+
�
�
	



�
�−

−
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= 
1

2

2 2 2 2

2 2 2 2

e e a e e a

e a e a

ian ia ian ia

ia ia

( ) ( )

( ) ( )

− −

−
+ + +
+ +

�
�
	



�
�

= 
1

2 1

2 2 2

2 2 2 4

e e a e e

a e e a

ia n ia n ian ian

ia ia

( ) ( ) ( )

( )

− − − −

−
+ + +

+ + +
�
�
	



�
�

= 
1

2

2 2 2

1 2 2

2

2 4

cos ( ) cos

cos

a n a an

a a a

− +
+ +

 = 
cos ( ) cos

cos

a n a an

a a a

− +
+ +

2

1 2 2

2

2 4

Hence solution  yn = C.F. + P.I.

yn = an A
n

B
n

cos sin
π π
2 2

+��	

��  + 

cos ( ) cos

cos

a n a an

a a a

− +
+ +

2

1 2 2

2

2 4

Aliter: P.I. = 
1

2 2E a+
 cos an

= Real part of 
1

2 2E a+
 (cos an + i sin an)

= Real part of 
1

2 2E a+
 eian

= Real part of 
1

2 2E a+
 (eia)n

= Real part of 
1

2 2e aia +  eian

= Real part of 
e a

e a e a
e

ia

ia ia
ian

−

−
+

+ +

2 2

2 2 2 2( ) ( )

= Real part of  
e a e

a e e a

ia n ian

ia ia

( )

( )

−

−
+

+ + +

2 2

2 2 2 41

= Real part of  
cos ( ) sin ( ) (cos sin )

cos

a n i a n a an i an

a a a

− + − + +
+ +

2 2

1 2 2

2

2 4

= Real part of 
cos ( ) cos (sin ( ) sin )

cos

a n a an i a n a an

a a a

− + + − +
+ +

2 2

1 2 2

2 2

2 4

= 
cos ( ) cos

cos

a n a an

a a a

− +
+ +

2

1 2 2

2

2 4
.

Example 12. Solve yn+2 – 2 cos α yn+1 + yn = cos αn.

Solution. The given difference equation can be written as

(E2 – 2 cos α E + 1)yn = cos α n
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The auxiliary equation is m2 – 2 cos α m + 1 = 0

The roots are   m = 
2 4 42cos cosα α± −

2.1
 = (cos α ± i sin α)

Therefore complementary solution is

c1 (cos α + i sin α)n + c2 (cos α – i sin α)n

= c1 (cos nα + i sin nα) + c2 (cos nα – i sin nα)

= (c1 + c2) cos nα + i(c1 – c2) sin nα
= A cos nα + B sin nα

The particular solution is given by

 P.I. = 
1

2 12E E− +cos α
 cos nα

= 1

2
2

1
22E

e e
E

e e
i i

in in

− + +

+
−

−

( )α α

α α

= 
1

1 22E e e E

e e
i i

in in

− + +
+

−

−

( )α α

α α

= 1

2

1

( )( )
{( ) ( ) }

E e E e
e ei i

i n i n

− −
+−

−
α α

α α

= 
1

2

1 1

( )( )
( )

( )( )
( )

E e E e
e

E e E e
ei i

i n
i i

i n

− −
+

− −
�
�
	



�
�− −

−
α α

α
α α

α

= 
1

2

1 1

( )( )
( )

( )( )
( )

E e e e
e

e e E e
ei i i

i n
i i i

i n

− −
+

− −
�
�
	



�
�− − −

−
α α α

α
α α α

α

= 
1

2

1

2

1

2( ) sin
( )

( sin ) ( )
( )

E e i
e

i E e
ei

i n
i

i n

−
+

− −
�
�
	



�
�−

−
α

α
α

α

α α

= 
1

4

1 1

i E e
e

E e
ei

i n
i

i n

sin
( ) ( )

α α
α

α
α

−
−

−
�
�
	



�
�−

−

= 
1

4
1 1

i
n e n ei n i n

sin
( ) ( )

α
α α− − −−� �  = 

n

i
e ei n i n

4
1 1

sin
( )( ) ( )

α
α α− − −−

= 
n

i
i n

4
2 1

sin
sin ( )

α
α−  = 

n nsin ( )

sin

− 1

2

α
α

Hence solution   yn = C.F. + P.I.

  yn = A n B n
n n

cos sin
sin ( )

sin
α α α

α
+ + − 1

2
. Ans.
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Example 13. Solve 8yn+2 – 6yn+1 + yn = 5 sin 
n

2

π
�
�
� .

Solution. The given difference equation can be written as

(8E2 – 6E + 1)yn = 5 sin 
nπ
2

�
�
�

The auxiliary equation is 8m2 – 6m + 1 = 0

The roots are m = 
1

4

1

2
,

Therefore complementary solution is c1 
1

4

1

22

�
�
� + 

�
�
�

n n

c

The particular solution is given by

 P.I. = 
1

8 6 1
5

22E E

n

− +

�
�
�sin

π

= 
1

8 6 1
5

22

2 2

E E

e e

i

i
n

i
n

− +
−



�

�
�
�

�

�

�
�
�


�
�
� − �

�
�

π π

= 
5

2

1

8 6 12
2 2

i E E
e e

i n i n

− +



��
�

��
−


��
�

��


�
��

�

�
��

−π π

 = 
5

2

1

8 6 12i E E
i in n

− +
− −( ( ) )

= 
5

2

1

8 6 1

1

8 6 12 2i E E
i

E E
in n

− +
−

− +
−

�
�
�

�
�
�( )

= 
5

2

1

8 6 1

1

8 6( 12 2i i i
i

i i
in n

− +
−

− − − +
−

�
�
�

�
�
�( ) )

( )

= 
5

2

1

7 6

1

7 6i i
i

i
in n−

+
+

−
−

�
�
�

�
�
�( )

= 
5

2

7 6
2 2

7 6
2 2

7 6 7 6i

i i i i

i i

n n

− − +
�

�
� + + −

�
�
�

+ −

�

�

�
�
�
�

�

�

�
�
�
�

( ) cos sin ( ) cos sin

( )( )

π π π π

= 
5

2

7 6
2 2

7 6
2 2

49 36i

i
n

i
n

i
n

i
n− − +

�
�
� + + −

�
�
�

+

�

�

�
�
�
�

�

�

�
�
�
�

( ) cos sin ( ) cos sin
π π π π
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= 
1

34
7

2
7

2
6

2
6

2
7

2i

n
i

n
i

n n n− − + − +�
��

cos sin cos sin cos
π π π π π

− + + �
��

7
2

6
2

6
2

i
n

i
n n

sin cos sin
π π π

= – 
i

i
n

i
n

34
14

2
12

2
− +��	


��
sin cos

π π
 = 

1

17
6

2
7

2
cos sin

n nπ π−��	

��

Hence solution is

 yn = c1 
1

4

1

2

1

17
6

2
7

22

�
�
� + 

�
�
� + −��	


��

n n

c
n n

cos sin
π π

. Ans.

Example 14. Solve the difference equation

yn+2 – 6yn+1 + 8yn = 3n2 + 2.

Solution. The given difference equation can be written as

 (E2 – 6E + 8)yn = 3n2 + 2

The auxiliary equation is m2 – 6m + 8 = 0

The roots are m = 2, 4

Therefore the complementary solution is c12
n + c24n

The particular solution is given by

P.I. = 
1

6 82E E− +
 (3n2 + 2) = 

1

1 6 1 8
3 22

2

( ) ( )
( )

+ − + +
+

∆ ∆
n

= 
1

1 2 6 6 82+ + − − +∆ ∆ ∆
 (3n2 + 2)

= 
1

4 32∆ ∆− +
 (3n2 + 2) = 

1

3

1

1
4

3

3 2
2

2

− −
��

�
��

+
∆ ∆

( )n

= 
1

3
1

4

3
3 2

2 1
2− −

��
�
��

+
−

∆ ∆
( )n

= 
1

3
1

4

3

4

9

2 2 2

+ − + − +

��

�
��

∆ ∆ ∆ ∆( )
......  (3n(2) + 3n(1) + 2)

= 
1

3
3 3 2

4 6 3 6

3

16 6

9
2 1( )

( )( ) ( )n n
n+ + + + − + ×

= 
1

3
3 1 3 2 8 2

48

3
n n n n( )− + + + + +  = n2 + 

8

3
 n + 

44

9

Hence solution  yn = C.F. + P.I. = c12
n + c24n + n2 + 

8

3

44

9

n + .
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Example 15. Solve the difference equation

yn+2 – 4yn = n2 + n – 1.

Solution. The given difference equation can be written as

(E2 – 4)yn = n2 + n – 1

The auxiliary equation is m2 – 4 = 0

The roots are m = 2, – 2

Therefore the complementary solution is c1(2)n + c2(– 2)n

The particular solution is given by

  
1

4
12

2

E
n n

−
+ −( )  = 1

1 4
12

2

( )
( )

+ −
+ −

∆
n n

= 
1

2 3
12

2

∆ ∆+ −
+ −( )n n

= 
1

3 1
2

3

1
2

2

− − +
��

�
��

+ −
∆ ∆

( )n n

= 
− − +
��

�
��

+ −
−

1

3
1

2

3
1

2 1
2∆ ∆

( )n n

= − + + + +
��

�
��

+


�
�

�

�
� + −1

3
1

2

3

2

3
2 1

2 2 2
2 1∆ ∆ ∆ ∆

...... ( )( ) ( )n n

[� n2 + n – 1 = n(2) + 2n(1) – 1]

= 
−

+ − +
+ +

+

��

1

3
2 1

2 2 2 2

3 9
2 1

1

n n
n( ) ( )

( )( ) 4 . 2

= − − + − + +
�

�
�

1

3
1 2 1

4

3

8

9
n n n n( )

= – 
n n2

3
7
9

17
27

− −

Hence solution  yn = C.F. + P.I.

 yn = c12
n + c2(– 2)n – 

n n2

3

7

9

17

27
− − .
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Solve the following homogeneous difference equations

1. (E2 – 2E – 8)yn = 0 2. 2yn+2 – 5yn+1 + 2yn = 0

3. f(n + 2) + f(n + 1) – 56 f(n) = 0 4. (∆ – 2)2 (∆ – 5)yn = 0

5. (∆2 – 5∆ + 4)yn = 0 6. y y y yn n n n+ + ++ − − =3 2 1 0

7. 4 y yn n+ + =2 25 0 8. y y y y yn n n n n+ + + +− + − + =4 3 2 14 6 4 0

9. y y yn n n+ ++ + =2 12 4 0 10. y y yn n n+ +− + =2 12 5 0
11. Solve the difference equation y y yn n n+ +− + =2 14 4 0  and find the particular solution satisfying the initial

conditions y0 = 1 and y1 = 3

12. Solve 2 y y yn n n+ +− + =2 15 2 0  with y0 = 0, y1 = 1

Solve the following non-homogeneous difference equations

13. y y yn n n
n

+ +− + =2 14 3 4 . 14. y yn n+ −2 4  = 5 . 3n.

15. y yn n
n

+ + =2 5 2.  with y0 = 1, y1 = 0 16. f(n + 2) – 3f(n + 1) + 2f(n) = 4n

17. y y yn n n
n

+ +− + =2 14 4 2 18. y y y nn n n+ +− + =2 17 12 cos

19. y y nn n+ − =2 16 2cos ( / ) 20. y y nn n+ + =2 4 2cos

21. y a y ann n+ + =2
2 sin 22. yn+2 + yn+1 + yn = n2 + n + 1

�������

1. y c cn
n n= + + −1 22 4( ) ( ) 2. y c cn

n
n= 

�
�
� +1 2

1

2
2( )

3. f(n) = c1(7)n + c2(– 8)n 4. yn = (c1 + c2n) 3n + c36
n

5. yn = c12
n + c25

n 6. yn = (c1 + c2n)(– 1)n + c3

7. yn
 = 

5

2 2 21 2

�
�
� +�
��

�
��

n

c
n

c
n

cos sin
π π

8. yn = (c1 + c2n + c3n
2 + c4n

3)(1)n

9. yn = 2n c1 cos −�
�
�

π
3

 n + c2 sin −�
�
�

π
3

 n 10. yn = 5n (c1 cos nθ + c2 sin nθ) where θ = tan–1 2

11. yn = (c1 + c2n) 2n and yn = (n + 2)2n–1 12. yn = c1

1

2

�
�
�

n

 + c22
n and yn = – 

2

3

1

2

2

3
2

�
�
� +

n
n( )

13. yn = c1 + c23
n + 

1

3
 4n 14. yn = c12

n + c2(– 2)n + 3n

15. yn = cos 
πn

2
 + 2n 16. f(n) = c1 + c22

n + 
1

6
 4n
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17. yn = (c1 + c2n)2n + n(n – 1) 2n–3 18. yn = c13
n + c24

n + 
1

170
 (18 cos n – 77 sin n)

19. yn = c14n + c2 (– 4)n + 
cos cos

( cos )

n n

2
1 16

2
257 32 1

−
�

�
� −

−

20. yn = c1 cos 
n

c
n n nπ π

2 2

2 2 4 2

1 42+ +
− +

+
sin

[cos ( ) cos ]

cos

21. an c
n

c
n a n a an

a a a
1 2

2

2 42 2

2

1 2 2
cos sin

sin ( ) sin

cos

π π+
�

�
� + − +

+ +

22. yn = c1 cos 
2

3

2

3

1

3

1

32
2n

c
n

n n
π π

�
�
� + 

�
�
� + − +

�
�
�sin
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Exponential, Logarithmic, trigonometric, hyperbolic, etc., are the elementary func-
tions. While Bessel’s functions, Legendre’s polynomial, Laguerre polynomial, Hermite
polynomial. Chebyshev polynomial, Beta function, Gamma function, Error function,
etc., are the special functions.

In this unit we shall discuss only two types of special functions, Bessel’s and
Legendre’s.

Chapter first deals with the Bessel’s function of first and second kind, orthogonal
property of Bessel’s function recurrence relations and generating functions.

Chapter second deals with the Legendre’s function of first kind, orthogonal prop-
erty of Legendre’s function recurrence relations, and generating function.

UUUUUNITNITNITNITNIT III III III III III

SPECIAL FUNCTIONSPECIAL FUNCTIONSPECIAL FUNCTIONSPECIAL FUNCTIONSPECIAL FUNCTION
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The differential equation of the form x2 d y

dx

2

2  + x
dy

dx
 + (x2 – n2) y = 0 is called the Bessel’s differential

equation. The solution of Bessel’s equation is called Bessel’s function. It is also known as cylindrical
and spherical function.

Bessel’s functions are appear in

(1) the elasticity (2) the fluid motion (3) planetary motion

(4) the oscillatory motion of a hanging chain (5) dynamical astronomy

(6) electrical fields (7) potential theory

(8) Euler’s theory of circular membrane.

��������
���������������������
������

To find the solution of Bessel’s differential equation

x2 d y

dx

2

2  + x
dy

dx
 + (x2 – n2) y = 0 ...(1.1)

Let y = 
r

r
m ra x

=

∞
+∑

0

 be the series solution of (1.1)

so that
dy

dx
 = 

r

r
m rm r a x

=

∞
+ −∑ +

0

1( ) ...(1.2)

and  
d y

dx

2

2  = 
r

r
m rm r m r a x

=

∞
+ −∑ + + −

0

21( ) ( ) ...(1.3)

CCCCCHAPTERHAPTERHAPTERHAPTERHAPTER     11111

Bessel’s Functions
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Substituting these values in (1.1), we get

x2 

r

r
m rm r m r a x

=

∞
+ −∑ + + −

0

21( ) ( )  + x m r a x x n
r

r
m r

=

∞
+ −∑ + + −

0

1 2 2( ) ( ) 
r

r
m ra x

=

∞
+∑

0
 = 0

or
r

r
m ra m r m r x

=

∞
+∑ + + −

0

1[( ) ( )  + (m + r) xm+r + xm+r+2 – n2xm+r ] = 0

or     
r

r
m r m ra m r m r m r n x x

=

∞
+ + +∑ + + − + + − −

0

2 21[( ) ( ) ( ) ) ]  = 0

or
r

r
m r m ra m r n x x

=

∞
+ + +∑ + − −

0

2 2 2[( ) ) ] = 0 ...(1.4)

Since the equation (1.4) is an identity, therefore the coefficients of various powers of x must be
zero.

∴ Equating to zero the coefficients of the lowest power of x (i.e. xm) in (1.4), we get

 a0 [m
2 – n2] = 0

But  a0 ≠ 0

∴  m2 – n2 = 0 or m = ± n ...(1.5)

Now equating to zero the coefficients of the next lowest degree term of x (i.e. xm+1) in (1.4), we
have

a1[(m + 1)2– n2] = 0

But (m + 1)2 – n2 ≠ 0 for m = ± n given by (1.5)

∴  a1 = 0

Again equating to zero the coefficient of the general term (i.e. xk+r+2) in (1.4), we get

ar+2 [(m + r + 2)2 – n2] + ar = 0

or ar+2 = – 
1

2 2 2( )m r n+ + −
 ar

or ar+2 = – 
1

2 2( ) ( )m r n m r n+ + + + + −
 ar ...(1.6)

Putting r = 1 in (1.6), we get

 a3 = – 
1

3 3( ) ( )m n m n+ + − +
 a1 = 0 (� a1 = 0)

Similarly putting r = 3, 5, 7, ......, in (1.6), we get each a1 = a3 = a5 ...... = 0

Now two cases arise here

Case I. When m = n, from (1.6), we have

ar+2 = – 
1

2 2 2( ) ( )n r r+ + +
 ar
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Putting r = 0, 2, 4, ...... etc.

 a2 = – 
1

2 2 2( ) ( )n +
 a0 = – 1

2 1 12 0! ( )n
a

+

 a4 = – 
1

2 4 4( ) ( )n +
 a2 = – 

1

2 2 22 2⋅ +( )n
a  = 

1

2 2 1 24 0! ( ) ( )n n
a

+ +

∴  y = 
r

r
m ra x

=

∞
+∑

0

 = 
r

r
n ra x

=

∞
+∑

0

= a0x
n + a1x

n+1 + a2x
n+2 + a3x

n+3 + a4x
n+4 ......

= a0xn – 
1

2 1 1

1

2 2 1 22 0
2

4 0
4

! ( ) ! ( ) ( )n
a x

n n
a xn n

+
+

+ +
+ +  ......

= a0 x
x

n

x

n n
n

n n

−
+

+
+ +

�
�
�

+ +2

2

4

42 1 1 2 2 1 2! ( ) ! ( ) ( )
 ......

= a0xn 1
2 1 1 2 2 1 2

2

2

4

4−
+

+
+ +

�

�
�

�

�
	

x

n

x

n n! ( ) ! ( ) ( )
......

If  a0 = 1

2 1n nΓ( )+
The above solution is called Bessel’s function of the first kind of order n and denoted by Jn(x)

∴  Jn(x) = 
x

n

x

n

x

n n

n

n2 1
1

2 1 1 2 2 1 2

2

2

4

4Γ( ) ! ( ) ! ( ) ( )
......

+
−

+
+

+ +
�

�
�

�

�
	

= x

n

n

n2 1Γ( )+
 

r

r
r

r

x

r n n n r=

∞

∑ −
+ + +0

2

21
2 1 2

( )
! ( ) ( ) ...... ( )

 Jn(x) = 
r

r
n rx

r n r=

∞ +

∑ − 

�
�
 + +0

2

1
2

1

1
( )

! ( )Γ
...(1.7)

Case II. When m = – n

The series solution is obtained by replacing n by – n in the (1.7)

∴ J–n(x) = 
r

r
n rx

r n r=

∞ +

∑ − 

�
�
 + +

0

2

1
2

1

1
( )

! ( )Γ

����������������
�����������������	
����

The solution of the Bessel’s differential equation of the type y(x) = A Jn(x) + BJ–n(x) where A and B are
arbitrary constants is called general solution.
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For n = 0 the Bessel’s differential equation is

d y

dx x

dy

dx
y

2

2

1
+ +  = 0 ...(1.8)

Let us assume that the solution of (1) be

 y = 
r

r
m ra x

=

∞
+∑

0

∴  
dy

dx
 = 

r
r

m ra m r x
=

∞
+ −∑ +

0

1( )

and  
d y

dx

2

2  = 
r

ra
=

∞

∑
0

 (m + r) (m + r – 1) xm+r–2

Substituting these values in (1.8), we get

r

ra
=

∞

∑
0

 (m + r) (m + r – 1) xm + r – 2 + 1

x
 

r =

∞

∑
0

ar (m + r) xm+r – 1 + 
r

r
m ra x

=

∞
+∑

0

 = 0

or
r

ra
=

∞

∑
0

 ( )( ) ( )m r m r x m r x xm r m r m r+ + − + + ++ − + − +1 2 2  = 0

or
r

ra
=

∞

∑
0

 ( )m r x xm r m r+ ++ − +2 2  = 0 ...(1.9)

which is an identity. Equating to zero the coefficient of the lowest power of x(i.e. xm–2), we have

 a0m2 = 0

But a0 ≠ 0 therefore   m2 = 0, ∴ m = 0 ...(1.10)

Now equating to zero the coefficient of the next lowest power of x give (i.e. xm–1), we have

a1(m + 1)2 = 0

But (m + 1) ≠ 0 for m = 0 given by (1.10)

Now equating to zero the coefficient of the general term (i.e. xm+r), we have

 ar+2 (m + r + 2)2 + ar = 0

∴  ar+2 = – 
a

m r
r

( )+ + 2 2

When m = 0, we have ar+2 = – a

r
r

( )+ 2 2

Putting r = 1, 3, 5 ...... etc., we have a1 = a3 = a5 ...... = 0

Again putting r = 0, 2, 4 etc., we have

 a2 = – 
a0

22
, a4 = – 

a2
24

 = 
a0
2 22 4

 etc.
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Since  y = 
r

r
m ra x

=

∞
+∑

0

When m = 0

 y = 
r

r
ra x

=

∞

∑
0

 = a0 + a1x + a2x2 + a3x
3 + a4x4 ......

= a0 – a0
22

x2 + 
a0
2 22 4

 x4 ......

= a0 1
2 2 4 2 4 6

2

2

4

2 2

6

2 2 2− + −
�

�
�

�

�
	

x x x
......

If a0 = 1 then y = J0(x)

∴  J0(x) = 1 – x x x2

2

4

2 2

6

2 2 22 2 4 2 4 6
+ −  ......

J0(x) is also known as Bessel’s function of order zero.

����������������
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Prove that Jn(x) is the coefficient of zn in the expansion of e
x
2

z
1
z

−
�
�


Proof. We have  e
x

z
z2
1−
�
�
  = e e

xz x

z2 2.
−

= 1
2

1

2 2

1

3 2

1

2

2 3

+ + 

�
�
 + 


�
�
 + + 


�
�


�

�
�

xz xz xz

n

xz n

! !
......

!
+ 

1

1( ) !n +
 

xz n

2

1


�
�


+

+ 
1

2 2

2

( ) !
......

n

xz n

+


�
�


�

�
	

+

 × 1
2

1

2
− +
�

�
�

x

z !
 

x

z2

2


�
�


 + ...... + 
( )

!

− 

�
�


1

2

n n

n

x

z

+ ( )

( ) !

−
+

+1

1

1n

n
 

x

z

n

2

1


�
�


+
 + 

( )

( ) !
......

−
+



�
�
 +

�

�
	

+ +1

2 2

2 2n n

n

x

z

Now coefficient of zn in this expansion

= 
1

2

1

1 2 2

1

n

x

n

x xn n

! ( ) !


�
�
 −

+


�
�



�
�


+

 + 
1

2

1

2 2 2

2 2

( ) ! !n

x x n

+


�
�



�
�


+

 + ......

= 1

2

1

1 2

2

n

x

n

xn n

! ( ) !


�
�
 −

+


�
�


+
 + 1

2 2! ( ) !n +
 x n

2

4


�
�


+
 + ......

=  
( )

( )

( )

! ( )

( )

! ( )

−
+


�
�
 + −

+


�
�
 + −

+

+1

1 2

1

1 2 2

1

2 3

0 1 2 2

Γ Γ Γn

x

n

x

n

n n

 
x n

2

4


�
�


+

+ ......
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= 
r

r

r n r=

∞

∑ −
+ +0

1
1

1
( )

! ( )Γ
 

x n r

2

2


�
�


+

 = Jn(x)

Similarly, the coefficient of z–n in the above expansion

= ( )

!

( )

( ) !

− 

�
�
 + −

+

+1

2

1

1 2

1n n n

n

x

n

x x n

2

1


�
�


+
 + 

( )

( ) ! !
......

−
+



�
�



�
�
 +

+ +1

2

1

2 2 2

2 2 2n n

n

x x

= (– 1)n 
( )

( )

( )

( )

( )

! ( )
......

−
+


�
�
 + −

+


�
�
 + −

+


�
�


�

�
�

�

�
	

+ +1

1 2

1

2 2

1

2 3 2

0 1 2 2 4

Γ Γ Γn

x

n

x

n

xn n n

= (– 1)n Jn(x)

Hence we obtained e
x

z
z2
1−
�
�
  = 

n

n
nz J x

=−∞

∞

∑ ( ) .

��������
���������������������
 
���

(I) xJn′′′′′(x) = nJn(x) – xJn+1(x)

Proof. We know that

 Jn(x) = 
r

r n r

r n r

x

=

∞ +

∑ −
+ +



�
�


0

21

1 2

( )

! ( )Γ

Differentiating w.r.t x, we get

Jn′(x) = 
r

r n rn r

r n r

x

=

∞ + −

∑ − +
+ +



�
�


0

2 11 2

1 2

1

2

( ) ( )

! ( )
.

Γ

∴ xJn′(x) = 
r

r n rn r

r n r

x

=

∞ +

∑ − +
+ +



�
�


0

21 2

1 2

( ) ( )

! ( )Γ

= 
r

r n rn

r n r

x

=

∞ +

∑ −
+ +



�
�


0

21

1 2

( )

! ( )Γ
 + 

r

r n rr

r n r

x x

=

∞ + −

∑ −
+ +



�
�


0

2 11 2

1 2 2

( )

! ( )Γ

= nJn(x) + x 
r =

∞

∑
0

 ( )

( ) ! ( )

−
− + +

1

1 1

r

r n rΓ
 

x n r

2

2 1


�
�


+ −

= nJn(x) – x 
r

r

r n r=

∞ −

∑ −
− + + − +0

11

1 1 1 1

( )

( ) ! [( ) ( ) ]Γ
 x n r

2

1 2 1


�
�


+ + −( ) ( )

= nJn(x) – x 
s

s n s

s n s

x

=

∞ + +

∑ −
+ + +



�
�


0

1 21

1 1 2

( )

! [( ) ]

( )

Γ
[� Putting r – 1 = s]

xJn′(x) = nJn(x) – xJn+1(x). Hence proved.
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(II) xJn′′′′′(x) = – nJn(x) + xJn–1 (x)

Proof. We know that

 Jn(x) = 
r

r n r

r n r

x

=

∞ +

∑ −
+ +



�
�


0

21

1 2

( )

! ( )Γ

Differentiating (I) w.r.t “x”, we get

 J′n (x) = 
r

r n rn r

r n r

x

=

∞ + −

∑ − +
+ +



�
�


0

2 11 2

1 2

( ) ( )

! ( )Γ
 . 

1

2

or xJn′(x) = 
r

r n rn r

r n r

x

=

∞ +

∑ − +
+ +



�
�


0

21 2

1 2

( ) ( )

! ( )Γ
 = 

r

r n rn r n

r n r

x

=

∞ +

∑ − + −
+ +



�
�


0

21 2 2

1 2

( ) ( )

! ( )Γ

= 
r

r n rn r

r n r

x

=

∞ +

∑ − +
+ +



�
�


0

21 2

1 2

( ) ( )

! ( )Γ
 + 

r

r n rn

r n r

x

=

∞ +

∑ − −
+ +



�
�


0

21

1 2

( )

! ( )Γ

= – n 
r

r n r

r n r

x

=

∞ +

∑ −
+ +



�
�


0

21

1 2

( )

! ( )Γ
 + 

r

r n rn r

r n r n r

x x

=

∞ + −

∑ − +
+ +



�
�


0

2 11 2

2 2

( ) ( )

! ( ) . ( )Γ

= – n Jn(x) + x 
r

r n r r

r n r

x

=

∞ + −

∑ −
+


��
�
�

0

2 11

2

( )

! ( )Γ

= – nJn(x) + x 
r

r n r

r n r

x

=

∞ − +

∑ −
− + +



�
�


0

1 21

1 1 2

( )

! [( ) ]

( )

Γ

= – nJn(x) + xJn–1(x)

  xJn′(x) = – nJn(x) + xJn–1(x). Hence proved.

(III) 2Jn′′′′′(x) = Jn–1(x) – Jn+1(x)

Proof. By recurrence relation (I) and (II), we have

xJn′(x) = nJn(x) – xJn+1(x) ...(i)

xJn′(x) = – nJn(x) + xJn–1(x) ...(ii)

On adding, we get

2xJn′(x) = x [Jn–1(x) – Jn+1(x)]

or 2Jn′(x) = Jn–1(x) – Jn+1(x). Hence proved.

(IV)     2nJn(x) = x [Jn–1(x) + Jn+1(x)]

Proof. By recurrence relation (I) and (II), we have

xJn′(x) = nJn(x) – xJn+1 (x) ...(i)

xJn′(x) = – nJn(x) + xJn–1 (x) ...(ii)

On subtracting, we get

 0 = 2nJn(x) – xJn+1(x) – xJn–1(x)
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or  2nJn(x) = x[Jn+1(x) + Jn–1(x)]. Hence proved.

(V) 
d

dx
 [x–n Jn(x)] = – x–n Jn+1(x)

Proof. We have d

dx
 [x–n Jn(x)] = – nx–n–1 Jn(x) + x–n Jn′(x)

= x–n–1 [– nJn(x) + xJn′(x)]

= x–n–1 [– n Jn(x) + nJn(x) – xJn+1(x)]

By recurrence relation (I)

= x–n–1 [– xJn+1(x)]

d

dx
 [x–n Jn(x)] = –x–n Jn+1(x). Hence proved.

(VI)  d
dx

 [ xn Jn(x)] = xn Jn–1 (x)

Proof. We have 
d

dx
 [xn Jn(x)] = nxn–1 Jn(x) + xnJn′(x) = xn–1 [nJn(x) + xJn′(x)]

 = xn–1 [nJn(x) – nJn(x) + xJn–1(x)] [By recurrence relation (II)]

d

dx
 [ xn Jn(x) ] = xnJn–1

 (x). Hence proved.

��!�������������"��"���#��������������
������

 
0

1

� x Jn(α x) Jn (βx) dx = 
0

1

2 1
2

if

if

α β

α α β

≠

=
�
�
�

�� +[ ( )]Jn

where α, β are the roots of Jn(x) = 0.

Proof. We know that

x2 d y

dx

2

2  + x 
dy

dx
 + (α2x2 – n2) y = 0 ...(1.11)

 x2 d z

dx

2

2  + x
dz

dx
 + (β2x2

 – n2) z = 0 ...(1.12)

Solution of (1.11) and (1.12) equations are y = Jn(α x), z = Jn(βx) respectively. Multiplying

(1.11) by 
z

x
 and (1.12) by 

y

x
 and subtracting, we get

  x z
d y

dx
y

d z

dx

2

2

2

2−


��

�
�

 + z
dy

dx
y

dz

dx
−


�
�
  + (α2 – β2) xyz = 0
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or  d

dx
 x z

dy

dx
y

dz

dx
−


�
�


�
��

�
�	

 + (α2 – β2) xyz = 0 ...(1.13)

Integrating w.r.t. x, both sides of (1.13) from 0 to 1, we get

 x z
dy

dx
y

dz

dx
xyzdz−


�
�


�
��

�
�	

+ − �
0

1
2 2

0

1
( )α β  = 0

or (β2 – α2) 
0

1

� xyz dx  = x z
dy

dx
y

dz

dx
−


�
�


�
��

�
�	0

1

= z
dy

dx
y

dz

dx x

−

�

�
 =1

...(1.14)

Putting the values of   y = Jn(α x) ⇒ dy

dx
 = αJn′(α x)

and  z = Jn(βx) ⇒ dz

dx
 = βJn′(βx) in (1.14), we get

(β2 – α2) 
0

1

� x Jn(α x) Jn(βx) dx = [αJn′(α x) Jn(βx) – βJn′ (βx) Jn (α x)]x=1

= αJn′(α) Jn(β) – βJn′(β) Jn(α) ...(1.15)

Since α, β are the roots of Jn(x) = 0 therefore Jn(α) = 0, Jn(β) = 0

Then by (1.15) (β2 – α2) 
0

1

� x J x J x dxn n( ) ( )α β  = 0

or
0

1

� x J x J x dxn n( ) ( )α β  = 0 Hence proved.

By (1.15), we have

(β2 – α2) 
0

1

� x J x J x dxn n( ) ( )α β  = α Jn′ (α) Jn(β) – βJn′(β) Jn(α) ...(1.16)

When α = β
We also know that Jn(α) = 0 and β as a variable approaching α then from (1.16), we have

lim ( ) ( )
β α

α β
→ �0

1
x J x J x dxn n  = lim

β α→
 
α α β

β α
J Jn n′

−
( ) ( )

2 2
0

0
form

Now apply L’Hospitals Rule

0

1
2� x J x dxn( ( ))α  = lim

β α→
 

α α β
β

′ ′J Jn n( ) ( )

2

= 
1

2
 (Jn′(α))2 = 

1

α
 (Jn+1(α))2

Hence 
0

1

� x J x J x dxn n( ) ( )α β  = 
0

1

2 1
2

if

if

α β

α α β

≠

=
�
�
�

�� +( ( ))Jn
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���$�%����&"���

Example 1. Prove that J–n(x) = (– 1)n Jn(x)

Solution. We have J–n(x) = 

r

r
n rx

r n r=

∞ − +

∑ − 

�
�
 − + +0

2

1
2

1

1
( )

! ( )Γ

= 
r

n
r

n r

r n

r
n rx

r n r

x

r n r=

− − +

=

∞ − +

∑ ∑− 

�
�
 − + +

+ − 

�
�
 − + +0

1 2 2

1
2

1

1
1

2

1

1
( )

! ( )
( )

! ( )Γ Γ

= 0 + 
r n

r
n rx

r n r=

∞ − +

∑ − 

�
�
 − + +

( )
! ( )

1
2

1

1

2

Γ

[� – ve integer = ∞]

On putting r = n + k, we have

  J–n(x) = 
r

n k

=

∞
+∑ −

0

1( )  
x n k

2

2


�
�


+

 
1

1( ) ! ( )n k k+ +Γ

= (– 1)n 
x

k
n kx

k n k=

∞ +

∑ − 

�
�
 + +0

2

1
2

1

1
( )

! ( )Γ

J–n(x) = (– 1)n Jn(x). Hence proved.

Example 2. Prove that

(i) J1/2 (x) = 
2

xπ


�
�


 sin x (ii) J–1/2 (x) = 
2

xπ


�
�


 cos x

Solution. We have

 Jn(x) = x

n

n

n2 1Γ( )+
 1

2 1 1 2 2 1 2

2

2

4

4−
+

+
+ +

+
�

�
�

�

�
	

x

n

x

n n! ( ) ! ( ) ( )
...... ...(i)

(I) Substituting n = 1/2 in equation (i)

 J1/2(x) = 
x1 2

1 22
1
2

1

/

/ +
 1

2 1
1
2

1 2 2
1
2

1
1
2

2

2

2

4

4
−

+

�

�


+
+


�
�
 +

�

�


�

�

�
�
�
�

�

�

	
	
	
	

x x

! !
......

= 
x

2
1
2

π
 1

2 3 2 3 4 5

2 4

− +
�

�
�

�

�
	

x x

. . . .
......

= 2 . x

π
 . 1

x
 x

x x
− +

�

�
�

�

�
	

3 5

13 15
......
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= 
2

πx
�
�
�
�  sin x. Hence proved.

(II) Now substituting n = – 1/2 in (i) we have

J–1/2 (x) = 
x −

− − +

1 2

1 22
1

2
1

/

/

 1
2 1

2
1 2 2

1
2

1
1
2

2

2

2

4

4
−

− 1 +�
�

�
�

+
− +�
�

�
� − +�
�

�
�

+

�

�

�
�
�
�

�

	










x x

! !
......

= 
2

πx
 1

2 4

− + +
�

�
�

�

	



x x

1. 2 1 . 2 . 3 . 4
......

 J–1/2(x) = 2

πx
 cos x. Hence proved.

Example 3. Prove that (i) J3/2 (x) = 
2

xπ
 

1

x
sin x cos x−�

�
�
�

.

(ii) J5/2(x) = 
2

xπ
 

3 x

x
x

3

x
x

2

2

−�

��
�

��
−

�

�
�
�

�

	





sin cos .

Solution. By recurrence relation (IV), we have

2nJn(x) = x [Jn–1 (x) + Jn+1(x)]

or Jn+1(x) = 
2n

x
 Jn(x) – Jn–1(x) ...(i)

(I) Putting n = 1/2 in (i), we get

J3/2 (x) = 
1

x
 J1/2 (x) – J–1/2(x)

= 
1

x
 

2

πx
 sin x – 

2

πx
 cos x

= 
2

πx
 

1

x
x xsin cos−�

�
�
� . Hence proved.

(II) Again putting n = 3/2 in (i), we get

 J5/2(x) = 
3

x
 J3/2(x) – J1/2(x)

= 
3

x
 

2

πx
 

1

x
x xsin cos−�

�
�
�

 – 
2

πx
 sin x
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= 
2

πx

3 1

x x
x x x− −�

�
�
�

−�
��

�
��

sin cos sin

= 
2

πx
 3 32

2

−�
��

�

��
−

�

��
�

��
x

x
x

x
xsin cos . Hence proved.

Example 4. Prove that x2Jn″(x) = (n2 – n – x2) Jn(x) + xJn+1(x).

Solution. We have the Bessel’s equation is

x2 d y

dx

2

2
 + x

dy

dx
 + (x2 – n2) y = 0 ...(i)

Since Jn(x) is the solution of eqn. (i) so

x2Jn″ (x) + x Jn′(x) + (x2 – n2) Jn(x) = 0

By the recurrence relation (I) we have

 x Jn′(x) = nJn(x) – x Jn+1(x) ...(ii)

On putting the value of xJn′(x) from (ii) in (i), we get

x2Jn″ (x) + nJn(x) – xJn+1(x) + (x2 – n2) Jn (x) = 0

or x2Jn″ (x) = (n2 – n – x2) Jn(x) + x Jn+1(x). Hence proved.

Example 5. Prove that 4Jn″(x) = Jn–2 (x) – 2Jn(x) + Jn+2(x).

Solution. By recurrence relation (III) we have

2Jn′(x) = Jn–1(x) – Jn+1(x) ...(i)

Differentiating both sides, we have

 2Jn″ (x) = J′n–1 (x) – J′n+1 (x)

or  4J″n (x) = 2J′n–1
 (x) – 2J′n+1(x) ...(ii)

 Now putting n = n – 1 and n + 1 in (i)

 2 J′n–1(x) = Jn–2(x) – Jn(x)

 2 J′n+1 (x) = Jn (x) – Jn+2(x)

Substituting these in (ii), we get

4Jn″ (x) = Jn–2(x) – Jn(x) – Jn(x) + Jn+2 (x)

 4Jn″(x) = Jn–2(x) – 2Jn(x) + Jn+2(x). Hence proved.

Example 6. Prove that 
d

dx
 (x Jn Jn+1) = x (Jn

2 – Jn 1
2
+ )

Solution. We have 
d

dx
 (x Jn Jn+1) = Jn Jn+1 + xJ′n Jn+1 + x Jn ′+Jn 1 ...(i)

By the recurrence formula (I) and (II), we have

xJn′(x) = nJn(x) – xJn+1(x) ...(ii)

and xJn′(x) = – nJn(x) + xJn–1(x) ...(iii)
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Putting n = n + 1, in (iii), we get

x ′+Jn 1(x) = – (n + 1) Jn+1(x) + xJn(x) ...(iv)

On putting the value of xJn′(x) and xJ′n+1 (x) in equation (i), we get

9  d

dx
 (xJnJn+1) = JnJn+1 + [nJn(x) – xJn+1(x)] Jn+1 + Jn[– (n + 1) Jn+1(x) + xJn(x)]

= JnJn+1 + n Jn Jn+1 – x Jn+1
2  – (n + 1) Jn+1 Jn + xJn

2(x)

 
d

dx
 (x JnJn+1) = x(Jn

2 – Jn+1
2 ). Hence proved.

Example 7. Prove that Jn–1 = 
2

x
 [ n Jn – (n + 2) Jn+2 + (n + 4) Jn+4 ......]

and hence deduce that 
1

2
 xJn = (n + 1) Jn+1 – (n + 3) Jn+3 + (n + 5) Jn+5 ....... .

Solution. By the recurrence formula IV

 2nJn(x) = x[Jn–1(x) + Jn+1(x)]

or  Jn–1 = 
2n

x
 Jn(x) – Jn+1(x) ...(i)

Putting n = n + 2 in (i), we get

 Jn+1 = 
2 2( )n

x

+
 Jn+2(x) – Jn+3 (x)

Putting the value of Jn+1(x) in (i), we get

Jn–1 = 
2 2 2

2
n

x
J x

n

x
J xn n( )

( )
( )− +

+  + Jn+3(x) ...(ii)

Again putting n = n + 4 in (i), we get

 Jn+3 = 
2 4( )n

x

+
 Jn+4(x) – Jn+5(x)

Putting the value of Jn+3 in (ii), we get

 Jn–1 = 
2n

x
 Jn(x) – 

2 2( )n

x

+
 Jn+2(x) + 

2 4( )n

x

+
 Jn+4(x) – Jn+5(x)

Proceeding in the same way and take Jn → 0 as n → ∞, we have

 Jn–1 = 
2

x
 nJn – 

2

x
 (n + 2) Jn+2 + 2

x
 (n + 4) Jn+4 ......

= 
2

x
 [ nJn – (n + 2) Jn+2 + (n + 4) Jn+4 ...... ]. ...(iii)

Hence proved.
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Deduction: On putting n = n + 1 in (iii), we get

 
1

2
x Jn = (n + 1) Jn+1 – (n + 3) Jn+3 + (n + 5) Jn+5 ...... .

Example 8. Prove that J3(x) + 3J0′ (x) + 4J0′″(x) = 0.

Solution. We have   2Jn′ = Jn–1 – Jn+1

Differentiating w.r.t. x, we get

2Jn″ = ′−Jn 1 – ′+Jn 1

or  22Jn″ = 2 ′−Jn 1 – 2 ′+Jn 1 = (Jn–2 – Jn) – (Jn – Jn+2) = Jn–2 – 2Jn + Jn+2

Differentiating again w.r.t. x, we get

  22Jn′″ = ′−Jn 2 – 2 Jn′ + ′+Jn 2

or  23J″′n = 2J′n–2 – 2.2J′n + 2J′n+2

= (Jn–3 – Jn–1) – 2(Jn–1 – Jn+1) + Jn+1 – Jn+3

= Jn–3 – 3Jn–1 + 3Jn+1 – Jn+3

Putting n = 0, we get

23J0′″ = J–3 – 3J–1 + 3J1 – J3

= (– 1)3 J3 – 3(– 1) J1 + 3J1 – J3 = – 2J3 + 6J1

 4J0′″ = – J3 + 3J1 = – J3 + 3(– J0′) (� J0′ = – J1)

   J3 + 3J0′ + 4J0′″ = 0

 J3(x) + 3J0′(x) + 4J0′″(x) = 0. Hence proved.

Example 9. Prove that 
0

2
x

π
π

/

  J1/2(2x) dx = 1.

Solution. We have J1/2(x) = 
2

πx
 sin x

On replacing x by 2x, we get

J1/2 (2x) = 
2

2π x
 sin 2x or πx  J1/2(2x) = sin 2x

Now integrating w.r.t. ‘‘x’’ from 0 to π/2, we get

 
0

2π
π

/

 x  J1/2(2x) dx = 
0

2
2

π/
sin x dx  = −�

��
�
	


cos /2

2 0

2x π

= – 
1

2
 [cos π – cos 0) = 1. Hence proved.



BESSEL’S FUNCTIONS 153

Example 10. Prove that if n > – 1, 
0

x
n

n 1 n
n

nx J (x) dx
1

2 n 1
x J (x) −

+
−=

+
−

Solution. We know that

 
d

dx
 (x–nJn(x)) = – x–n Jn+1(x)

Integrating w.r.t. x from 0 to x, we get

 + 
0

x d

dx  (x–nJn(x) dx = – 
0

1

x
n

nx J x dx −
+ ( )

or  x J xn
n

x– ( )
0

 = – 
0

1

x
n

nx J x dx −
+ ( )

or  
0

1
0

x
n

n
n

n
x

n
nx J x dx x J x

J x

x −
+

−

→
= −�
��

�
	


( ) – ( ) lim
( )

= – x–n Jn(x) + 
1

2 1n n +
 . Hence proved.

� lim
( )

x

n
n n

J x

x n→
=

+
�

�
�
�

�

	



0

1

2 1

Example 11. Form the following using Generating function for Jn(x)

(i) cos (x sin θ) = J0 + 2J2 cos 2θ + 2J4 cos 4θ + ......

(ii) sin (x sin θ) = 2J1 sin θ + 2J3 sin 3θ  + ......
(iii) cos (x cos θ) = J0 – 2J2 cos 2θ + 2J4 cos 4θ  + ......

(iv) sin (x cos θ) = 2J1 cos θ – 2J3 cos 3θ + ......

(v) cos x = J0 – 2J2 + 2J4 – ......

(vi) sin x = 2J1 – 2J3 + 2J5 – ......

Solution. We know that e
x

z
z2

1−�
�

�
�  = 

n

n
nz J x

= ∞

∞

∑
–

( )

= J0 + z
z

−�
�

�
�

1
 J1 + z

z
2

2

1+�
�

�
�  J2 + z

z
3

3

1+�
�

�
�  J3 ...(i)

Putting z = eiθ ⇒ zn = einθ = cos nθ + i sin nθ
and   z–n = e–inθ = cos nθ – i sin nθ

∴  z
z

n
n+�

�
�
�

1
 = 2 cos nθ and z

z
n

n−�
�

�
�

1
 = 2i sin nθ, n = 1, 2, 3, ......
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From (i), we have

 ei(x sin θ) = J0 + (2i sin θ) J1 + (2 cos 2θ) J2 + (2i sin 3θ) J3 + ......

or   cos (x sin θ) + i sin (x sin θ) = (J0 + 2J2 cos 2θ + 2J4 cos 4θ ......)

+ i(2J1 sin θ + 2J3 sin 3θ + ......) ...(ii)

(i) Equating the real parts on both sides of (ii), we get

 cos (x sin θ) = J0 + 2J2cos 2θ + 2J4 cos 4θ + ...... ...(iii)

(ii) Equating the imaginary parts on both sides of (ii), we get

 sin (x sin θ) = 2J1 sin θ + 2J3 sin 3θ + 2J5 sin 5θ + ...... ...(iv)

(iii) Putting θ = π/2 – θ in (iii), we get

 cos x sin
π θ
2

−�
�

�
�

�
��

�
��

 = J0 + 2J2 cos 2
π θ
2

−�
�

�
�

 + 2J4 cos 4 
π θ
2

−�
�

�
�

 + ......

or cos (x cos θ) = J0 – 2J2 cos 2θ + 2J4 cos 4θ – ...... ...(v)

(iv) Putting θ = 
π
2

 – θ in (iv), we get

  sin x sin
π θ
2

−�
�

�
�

�
��

�
��

 = 2J1 sin 
π θ
2

−�
�

�
�

 + 2J3 sin 3 
π θ
2

−�
�

�
�  + 2J5 sin 5 

π θ
2

−�
�

�
�  + ......

or sin (x cos θ) = 2J1 cos θ – 2J3 cos 3θ + 2J5 cos 5θ + ...... ...(vi)

(v) Putting θ = π/2 in (iii), we get

cos x = J0 – 2J2 + 2J4 – 2J6 + ......

(vi) Putting θ = π/2 in (iv), we get

 sin x = 2J1 – 2J3 + 2J5 – 2J7 + ......

����������	�

1. Prove that [J1/2(x)]2 + [J–1/2(x)]2 = 
2

πx
.

2. Prove that (i) J–3/2(x) = – 2

πx
 

1

x
x xcos sin+�

�
�
�

(ii) J–5/2(x) = 
2

πx
 

3 32

2
− +

�

��
�

��
x

x
x

x
xcos sin .

3. Prove that Jn(x) is even and odd function for even n and for odd n respectively.

4. Prove that Jn+3 + Jn+5 = 
2

x
 (n + 4) Jn+4.
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5. Prove that 
d

dx
 [Jn

2 + Jn+1
2 ] = 2 

n

x
J

n

x
Jn n

2
1

21−
+�

�
�
�+ .

6. Prove that 
d

dx
 [J0(x)] = – J1(x).

7. Prove that (i) J2(x) = J0″(x) – 
1

x
 J0′(x) (ii) J2(x) – J0(x) = 2J0″(x).

8. Prove that Jn′ = 
2

x
 

n
J n J n Jn n n2

2 42 4− + + +�
��

�
	
+ +( ) ( ) ...... .

9. Prove that J0
2 + 2 (J1

2 + J2
2 + J3

2 + ......) = 1

Deduce that | J0(x) | ≤ 1, | Jn(x) | ≤ 2–1/2, n ≥ 1.

10. Prove that x = 2J0J1 + 6J1J2 + ...... 2(2n + 1) JnJn+1 ...... .

11. Prove that lim
x → 0

 
J x

x
n

n
( )

 = 
1

2 12 n +
.

12. Prove that  Jn+1 (x) dx =  −Jn 1(x) dx – 2Jn(x) + A.

13. Prove that (i) 
0

x

  xn Jn–1(x) dx = xnJn(x) (ii)
0

1
x

n
nx J x dx + ( )  = xn+1 Jn+1(x).

14. Show that when n is integer

(i) π Jn = 
0

π
θ θ θ −cos ( sin )n x d (ii) π J0 = 

0

π
φ φ cos ( cos )x d

(iii) π J0 = 
0

π
φ φ cos ( sin )x d .

15. Using generating function prove that

Jn(x + y) = 
r

r n rJ x J y
=−∞

∞

−∑ ( ) ( ) .

16. Prove that 
0

0 2 2

1∞
− =

+
e J bx dx

a b

ax ( ) , a > 0.
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The differential equation

(1 – x2) d y

dx

2

2
 – 2x

dy

dx
 + n(n + 1)y = 0

is known as Legendre’s equation. The above equation can also be written as

     
d

dx
x

dy

dx
( )1 2−�
�
�

�
�
�

 + n(n + 1) y = 0; where n is an integer.

�����	����	��	�������
����������	�

The Legendre’s differential equation is

(1 – x2)
d y

dx

2

2
 – 2x 

dy

dx
 + n(n + 1) y = 0 ...(2.1)

Let y = 
r

r
m ra x

=

∞
−∑

0

, a0 ≠ 0 be the series solution of (2.1) so that

dy

dx
a m r x

r

r
m r= −

=

∞
− −∑

0

1( ) ...(2.2)

and
d y

dx

2

2
 = 

r

r
m ra m r m r x

=

∞
− −∑ − − −

0

21( ) ( ) ...(2.3)

CCCCCHAPTERHAPTERHAPTERHAPTERHAPTER     22222

Legendre’s Functions
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Substituting these values in (2.1), we get

(1 – x2) 
r

ra
=

∞

∑
0

(m – r) (m – r – 1) xm – r – 2 – 2x 
r

ra
=

∞

∑
0

 (m – r) xm – r – 1

+ n(n + 1) 
r

ra
=

∞

∑
0

 (xm – r ) = 0

or
r

ra
=

∞

∑
0

 [(1 – x2) (m – r) (m – r – 1) xm – r – 2 – 2x (m – r) xm – r – 1 + n(n + 1)xm – r] = 0

or
r

ra
=

∞

∑
0

 [ (m – r) (m – r – 1) xm – r – 2 + {n (n + 1) – (m – r) (m – r – 1) – 2(m – r)}xm – r] = 0

or
r

ra
=

∞

∑
0

 [(m – r) (m – r – 1) mx – r – 2 + {n(n + 1) – (m – r) (m – r + 1)} xm – r] = 0

or
r

ra
=

∞

∑
0

 [(m – r) (m – r – 1) xm – r – 2 + {(n2 – (m – r)2 + n – (m – r)} xm – r] = 0

r
ra

=

∞

∑
0

 [(m – r) (m – r – 1)xm – r– 2 + {n – (m – r)} (n + m – r + 1) xm – r] = 0 ...(2.4)

Since the equaiton (2.4) is an identity, therefore the coefficients of various powers of x must be
zero.

∴ Equating to zero the coefficient of the highest power of x (i.e., xm), we have

a0 (n – m) (n + m + 1) = 0

But a0 ≠ 0 ∴ m = n or m = – (n + 1) ...(2.5)

Now equating to zero the coefficient of the next lower power of x (i.e., x m – 1), we have

a1(n – m + 1) (n + m) = 0

But neither (n – m + 1) nor (n + m) is zero for m = n or – (n + 1) given by (2.5)

∴ a1 = 0

Again equating to zero the coefficient of the general term (i.e., xm – r), we have

ar – 2 (m – r + 2) (m – r + 1) + ar(n – m + r) (n + m – r + 1) = 0

∴  ar = – ( ) ( )

( ) ( )

m r m r

n m r n m r

− + − +
− + + − +

2 1

1
 ar – 2, r ≥ 2 ...(2.6)

Putting r = 3, a3 = – 
( ) ( )

( ) ( )

m m

n m n m

− −
− + + −

1 2

3 2
 a1 = 0
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Similarly putting r = 5, 7, 9 etc. in (2.6), we get each a1 = a3 = a5 ..... = 0

Now two cases arise here

Case I. When m = n then from (2.6), we have

 ar = – 
( ) ( )

( )

n r n r

r n r

− + − +
− +

2 1

2 1
 ar – 2, r ≥ 2

Putting r = 2, 4 ...... etc.

 a2 = – n n

n

( )

( )

−
−
1

2 2 1
 a0

 a4 = – 
( ) ( )

( )

n n

n

− −
−

2 3

4 2 3
a2 = 

n n n n

n n

( ) ( ) ( )

( ) ( )

− − −
− −

1 2 3

2 1 2 32 . 4
 a0 ...... and so on

∴  y = a x a xr
m r

r

r
n r

r

−

=

∞
−

=

∞

∑ ∑=
0 0

= a0 xn + a1x
n – 1  + a2 x

n – 2 + a3x
n – 3 + a4 xn – 4 .....

= a0 x
n – 

n n

n

( )

( )

−
−
1

2 2 1
a0 x

n – 2 + 
n n n n

n n

( ) ( ) ( )

( ) ( )

− − −
− −

1 2 3

2 1 2 32 . 4
 a0xn – 4  .....

= a0 x
n n

n
x

n n n n

n n
xn n n− −

−
+ − − −

− −
�

�
	




�
�

− −( )

( )

( ) ( ) ( )

. ( ) ( )
.....

1

2 2 1

1 2 3

2 4 2 1 2 3
2 4 ...(2.7)

which is solution of (2.1) in a series of descending power of x.

Case II. When m = – (n + 1) then from (2.6), we have

ar = – 
( ) ( )

( )

n r n r

r n r

+ − +
+ +
1

2 1
 ar – 2

Putting   r = 2, 4, ..... etc.

 a2 = – 
( ) ( )

( )

n n

n

+ +
+

1 2

2 2 3
 a0

 a4 = – 
( ) ( )

( )

n n

n

+ +
+

3 4

4 2 5
 a2 = 

( ) ( ) ( ) ( )

( ) ( )

n n n n

n n

+ + + +
+ +

1 2 3 4

2 3 2 52 . 4
a0 ...... and so on.

∴ y = 
r

r
m ra x

=

∞
−∑

0

 = 
r

r
n ra x

=

∞
− + −∑

0

1( )

= a0 x– (n + 1)  + a1 x – (n + 2) + a2 x
– (n + 3) + a3 x

– (x + 4) + a4 x– (n + 5) ......

= a0 x– (n + 1) – 
( ) ( )

( )

n n

n

+ +
+

1 2

2 2 3
a0 x

– (n + 3)

+ 
( ) ( ) ( ) ( )

( ) ( )

n n n n

n n

+ + + +
+ +

1 2 3 4

2 3 2 52 . 4
 a0 x

– (n+5) ......
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= a0 x
n n

n
x

n n n n

n n
xn n n− + − + − +− + +

+
+ + + + +

+ +
�

�
	




�
�

( ) ( ) ( )( ) ( )

( )

( ) ( ) ( ) ( )

) ( )
.. .. . . .1 3 51 2

2 2 3

1 2 3 4

3 2 52 . 4 (2
...(2.8)

which is another solution of (2.1) in a series of descending power of x.

Legendre’s Polynomial Pn(x)

If n is a positive integer and a0 = 
1 . 3 . 5 ....... ( )

!

2 1n

n

−
 the solution (2.7) is Pn(x) and called

Legendre’s function of the first kind so that

   Pn (x) = 
1 . 3 .5 ....... ( )

!

2 1n

n

−
 = x

n n

n
x

n n n n

n n
xn n n−

−
−

+
− − −

− −
�

�
	




�
�

− −( )

( )

( ) ( ) ( )

. ( ) ( )
......

1

2 2 1

1 2 3

2 4 2 1 2 3
2 4

Legendre’s Polynomial Qn(x)

If n is a positive integer and a0 = 
n

n

!

. . ..... ( )1 3 5 2 1+
 the solution (2.8) is Qn (x) and called

Legendre’s function of the second kind so that

Qn (x) = 
n

n
x

n n

n
xn n!

. . ..... ( )

) ( )

( )
......( ) ( )

1 3 5 2 1

1 2

2 2 3
1 3

+
− ( + +

+
+

�

�
	




�
�

− + − + .

���� ��������	����	��	�������
����������	�

The solution of the Legendre’s differential equation of the type

y(x) = APn (x) + BQn (x)

where A and B are arbitrary constant is called general solution.

���� �����������������	��	�������
�����	���	������
�
���

To show that Pn (x) is the coefficient of hn in the expansion of (1– 2xh + h2)–1/2 in ascending powers
of h

We have (1 – 2xh + h2)–1/2 = {1– h (2x – h)}–1/2

= 1 + 
1

2
h (2x – h) + 

1 3

2 4

.

.
 h2 (2x – h)2 + .......

+ 
1 3 2 3

2 4 2 2

. ...... ( )

. ...... ( )

n

n

−
−

 hn–1 (2x – h)n – 1 + 
1 3 2 1

2 4 2

. ...... ( )

. ......

n

n

−
hn (2x – h)n + ......
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Now the coefficient of hn in above expansion is

= 
1 3 2 1

2 4 2

. ...... ( )

. ......

n

n

−
(2x)n – 

1 3 2 3

2 4 2 2

. ...... ( )

. ...... ( )

n

n

−
−

 n – 1C1 (2x)n – 2

+ 
1 3 2 5

2 4 2 4

. ...... ( )

. ...... ( )

n

n

−
−

 n – 2C2 (2x)n – 4 .........

= 
1 3 2 1

2 4 2

. ...... ( )

. ......

n

n

−
2n x

n

n
n

x n n

n n

n n xn
n n

−
−

− + −
− −

× − −�

�
	

− −2

2 1
1

2

2 2 2

2 1 2 3

2 3

2 2

2

2

4

4( )
( )

( ) ( )

( ) ( )

!
 ......

= 
1 . 3 ....... ( )

!

2 1n

n

−
 x

n

n
n

x n n

n n

n n xn
n n

−
−

− + −
− −

− −�

�
	

− −2

2 1
1

2

2 2 2

2 1 2 3

2 3

2 2

2

2

4

4( )
( ) ( )

( ) ( )

( ) ( )

!
 ......

= 
1 3 2 1 1

2 2 1

1 2 3

2 1 2 3
2 4. ...... ( )

!

( )

. ( )

( ) ( ) ( )

( ) ( )
......

n

n
x

n n

n
x

n n n n

n n
xn n n−

−
−

−
+

− − −
− −

+
�

�
	




�
�

− −

2 . 4

= Pn(x). Hence proved.

Hence, we obtained

 
n

n
nh P x

=

∞

∑
0

( )  = (1 – 2xh + h2)–1/2.

�����	���	�	������	�������	�������
�����	���	����

(i)
− 1

1
P x P x dxn m( ) ( )  = 0 if m ≠ n

(ii)
− =

+1

1
2 2

2 1
( ( ) )P x dx

nn

Proof. (i) We have Legendre’s equation

  (1 – x2) 
d y

dx
x

dy

dx

2

2
2−  + n(n + 1) y = 0 ...(2.1)

This equation can also be written as

d

dx
x

dy

dx
( )1 2−�
�
�

�
�
�

 + n (n + 1) y  = 0 ...(2.9)

Since Pn (x) is a solution of (2.1) therefore

d

dx
x

d P x

dx
n( )
( )

1 2−�
�
�

�
�
�

 + n(n + 1) Pn (x) = 0 ...(2.10)
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Similarly d

dx
x

dP x

dx
m( )

( )
1 2−�
�
�

�
�
�

 + m(m + 1) Pm (x) = 0 ...(2.11)

Now multiplying (2.10) by Pm(x) and (2.11) by Pn(x) and then subtract, we get

Pm (x) d

dx
x

dP x

dx
n( )
( )

1 2−�
�
�

�
�
�

 – Pn (x) d

dx
x

dP x

dx
m( )

( )
1 2−�
�
�

�
�
�

+ {n(n + 1) – m (m + 1)} Pn(x) Pm(x) = 0 ...(2.12)

Integrating (2.12) w.r.t. x from – 1 to 1, we get

− − −�
�
�

�
�
�

− −�
�
�

�
�
�1

1
2

1

1
21 1P x

d

dx
x

dP x

dx
dx P x

d

dx
x

dP x

dx
dx dxm

n
n

m( ) ( )
( )

( ) ( )
( )

+ {n(n + 1) – m(m + 1)}
− 1

1
P x P x dxn m( ) ( )  = 0

After integrating, we get

P x x
dP x

dx

dP x

dx
x

dP x

dx
dx P x x

dP x

dxm
n m n

n
m( ) ( )

( ) ( )
( )

( )
( ) ( )

( )
1 1 12

1

1
2

1

1
2

1

1

−�
�	



��

− −�
�
�

�
�
�

− −�
�	



��− − −



+ 
dP x

dx
x

dP x

dx
dxn m( )

( )
( )

1 2

1

1
−�

�
�

�
�
�− + {n(n + 1) – m(m + 1)} P x P x dxn m( ) ( )

− 1

1
 = 0

or {n (n + 1) – m (m + 1)} P x P x dxn m( ) ( )
− 1

1
 = 0

Hence P x P x dxn m( ) ( )
− 1

1
 = 0 if m ≠ n.

(ii) We have by generating function

h P xn
n

n

( )
=

∞

∑
0

 = (1 – 2xh + h2)–1/2

Squaring both sides, we get

[P0(x) + hP1(x) + h2 P2(x) + ...... hn Pn(x) + ......]2 = (1 – 2xh + h2)–1

or (P0(x))2 + (hP1(x))2 + (h2 P2(x))2 + ...... (hn Pn (x))2 + ......

+ 2 [ P0 (x) hP1(x) + P0(x) h2P2 (x) + ...... P0 (x)hn Pn(x) ......

+ hP1(x) h2P2(x) + hP1(x)h3P3(x) + ....... ] = (1 – 2xh + h2)–1

or
h P x h P x P x

xh h
n

n
n m n

m n

m n
n m

2 2

0 0
2

2
1

1 2
( ( )) ( ) ( )

,=

∞

=
≠

∞
+∑ ∑+ =

− +
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Integrating both sides w.r.t. x from – 1 to 1, we get

−
=

∞

−
=

≠

∞
+

− ∑  ∑ + =
− +1

1
2 2

0
1

1

0
1

1

22
1 2

h P x dx h P x P x dx
dx

x h h
n

n
n m n

m n

m n
n m( ( )) ( ) ( )

,

or
h P x dx h P x P x dx

dx

x h h
n

n
n

m n
m n

m n
n m

2

0
1

1
2

0
1

1

1

1

22
1 2=

∞

−
=

≠

∞
+

− −∑  ∑  + =
− +

( ( )) ( ) ( )
,

or h P x dx
h

xh hn

n

n
2

0
1

1
2 2

1

1
1

2
1 2

=

∞

−
−

∑  = − − +
�

�
	




�
�( ( )) log ( )

= – 
1

2h
[log (1 – 2h + h2) – log (1 + 2h + h2)]

= – 
1

2h
 [log (1 – h)2 – log (1 + h)2]

h P x dx
h

h

h
n

n

n
2

0
1

1
2

2

2

1

2

1

1=

∞

−
∑  = +

−
( ( )) log

( )

( )
 = 

1

2

1

1

2

h

h

h
log

+
−

�
��

�
��

= 
1 1

1h

h

h
log

+
−

 = 
1

2
3 5

3 5

h
h

h h
+ + +

�
�
�

�
�
�

......

= 2 1
3 5 2 1

2 4 2

+ +
+

�
�
�

�
�
�

h h h

n

n

...... .....

Equating the coefficients of h2n, we have

   
− =

+1

1
2 2

2 1
( ( ))P x dx

nn
.

���� ������������������������	���
�
���

Pn (x) = 1
1

0

2

π
θ θ

π

 ± −[ ( ) cos ] ,x x dn  where n is a positive integer.

Proof. We know that

 
0 2 2

π θ
θ

π
 ±

=
−

d

a b a bcos
where a2 > b2 ...(2.13)

Let us taking a = 1 – hx and b = h ( )x2 1−

and putting in (2.13), we get
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π θ

θ

π

( ) ( ) ( ) cos1 1 1 12 2 2 0 2− − −
=

− ± −
hx h x

d

hx h x

or  π θ

θ

π

1 2 1 12 2 2 2 2 0 2+ − − +
=

− ± −
h x hx h x h

d

h x x[ ( ) cos ]

or    π (1 – 2hx + h2)–1/2 = 
0 1

π θ
 −

d

ht
 where t = x x± −( ) cos2 1 θ

 = 
0

11
π

θ − −( )ht d

  π h P xn
n

n

( )
=

∞

∑
0

 = 
0

2 21
π

θ + + + +( ...... .....)ht h t h t dn n

 = 
0

0

π
θ ∑

=

∞

h t dn n

n

Equating the coefficient of hn on both sides, we get

  πPn (x) = 
0

π
θ t dn

 Pn(x) = 
1

1
0

2

π
θ θ

π

 ± −[ ( ) cos ]x x dn

 = 
1

1
0

2

π
θ θ

π

 ± −[ ( ) cos ]x x dn .

����������������	�
�����������	���
�
���

  Pn(x) = 
1

1
0 2

1π
θ

θ

π


± −

+
d

x x
n

cos
 where n is a positive integer

Proof. We know that 
0 2 2

π θ
θ

π
 ±

=
−

d

a b a bcos
, a2 > b2 ...(2.14)

Let us taking a = xh – 1 and b = h x2 1−  on putting in (2.14), we get

π θ

θ

π

( ) ( ) ( ) cosx h h x

d

xh h x− − −
=

− ± −
1 1 1 12 2 2 0 2

π θ

θ

π

x h xh h x h

d

h x x2 2 2 2 2 0 21 2 1 1+ − − +
=

− + ± −


( ) cos
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   π (1– 2xh + h2)–1/2 = 
0 1

π θ
 − +

d

ht
where t = x x± −2 1 cos θ

π
h

x
h h

1 2
1 1

2

1 2

− +�
��

�
��

− /

 = 
0

11
1

1π

 −�
��

�
��

−

ht ht
 dθ

 π 
n

n n n nh
P x

t ht h t h t
d

=

∞

∑ = + +�
�

�
�

0
0 2 2

1 1
1

1 1 1
( ) ...... .....

π
θ = 

0
0

1

1π
θ ∑

=

∞

+
n

n nh t
d

Equating the coefficient of 
1

hn  on both sides, we have

 π Pn(x) = 
0 1 0 2 11

π πθ θ

θ + +
=

± −

d

t

d

x x
n n[ cos ]

 Pn (x) = 
1

10 2 1π
θ

θ

π

 ± − +

d

x x n[ cos ]( )
.

�� ���	
��������	�����

To prove that   Pn(x) = 
1

2n

n

nn

d

dx!
 (x2 – 1)n

Proof. Let  y = (x2 – 1)n ...(2.15)

Differentiating w.r.t. x, we get

 y1 = n(x2 – 1)n – 1  2x

or  (x2 – 1) y1 = 2nx(x2 – 1)n

or  (x2 – 1)y1 = 2nxy

Again differentiating w.r.t. x, we get

(x2 – 1) y2 + 2xy1 = 2nxy1 + 2ny

or (x2 – 1)y2 + 2(1 – n)xy1 – 2ny = 0

Differentiating both sides n times by Leibnitz’s theorem, we get

  (x2 – 1)yn + 2 + n2x yn + 1 + 
n n( )

!

− 1

2
 2yn + 2(1 – n) [x yn + 1 + nyn] – 2nyn = 0

or   (x2 – 1)yn + 2 + 2x[n + (1– n)]yn + 1 + [n (n – 1) + 2 (1 – n)n – 2n]yn = 0

or (x2 – 1)yn + 2 + 2x yn + 1 – n(n + 1) yn = 0

or (1 – x2) 
d y

dx
x

d y

dx

n

n

n

n

+

+

+

+−
2

2

1

1
2  + n(n + 1) 

d y

dx

n

n
 = 0 ...(2.16)
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Let
d y

dx

n

n
 = v put in (2.16), we get

(1 – x2) 
d v

dx

2

2
 – 2x 

dv

dx
 + n(n + 1) v = 0

This show that v = 
d y

dx

n

n
 is a solution of legendre’s equation

Therefore C 
d y

dx

n

n
 = Pn (x) ...(2.17)

Putting x = 1, we get C 
d y

dx

n

n
x

�

��
�

�� =1

 = Pn(1) = 1 [� Pn(1) = 1] ...(2.18)

Now  y = (x2 – 1)n = (x + 1)n (x – 1)n

Differentiating w.r.t. x n times by Leibnitz’s theorem, we get

d y

dx

n

n  = (x + 1)n d

dx

n

n
(x – 1)n + nC1 n(x + 1)n – 1

d

dx

n

n

−

−

1

1  (x – 1)n

+ nC2 n(n – 1) (x + 1)n – 2 
d

dx

n

n

−

−

2

2  (x – 1)n

+ nC3 n(n – 1) (n – 2) (x + 1)n – 3 d

dx

n

n

−

−

3

3
 (x – 1)n + ......

+ ...... nCn 
d

dx
x

n

n
n( )+

�

��
�

��
1 (x – 1)n

= (x + 1)n n ! + nC1 n(x + 1)n – 1 n !

!1
 (x – 1)1 + nC2 n(n – 1) (x + 1)n – 2. n !

!2
 (x – 1)n – 3 + ......

+ . n ! (x – 1)n

Put x = 1, we get

 
d y

dx

n

n
x

�

��
�

�� = 1

 = 2n n !

Put in (2.18) C = 
1

2n n !

Substituting the value of C in (2.17), we get

 Pn (x) = 
1

2n

n

nn

d y

dx!

  Pn (x) = 
1

2

12

n

n n

nn

d x

dx!

( )−
. [� y = (x2 – 1)n]
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��!� �����������������	�

(I) (2n + 1) x Pn (x) = (n + 1) Pn+1 (x) + nPn – 1(x)

Proof. By the generating function, we have

 (1 – 2xh + h2)–1/2  = 
n

n
nh P x

=

∞

∑
0

( ) ...(i)

Differentiating (i) both sides w.r.t. h, we get

– 
1

2
 (1 – 2xh + h2)–3/2 (– 2x + 2h) = 

n

n
nnh P x

=

∞
−∑

0

1 ( )

or (x – h) (1 – 2xh + h2)–1/2 = (1 – 2xh + h2) 
n

n
nnh P x

=

∞
−∑

0

1 ( )

or (x – h) 
n

n
nh P x

=

∞

∑
0

( )  = (1 – 2xh + h2) 
n

n
nnh P x

=

∞
−∑

0

1 ( )

or x
n

n
n

n

n
nh P x h P x

=

∞

=

∞
+∑ ∑−

0 0

1( ) ( )

= 
n

n
n

n

n
n

n

n
nnh P x x nh P x nh P x

=

∞
−

=

∞

=

∞
+∑ ∑ ∑− +

0

1

0 0

12( ) ( ) ( ) ...(ii)

Equating the coefficients of hn on both sides of (ii), we get

xPn (x) – Pn – 1(x) = (n + 1) Pn + 1 (x) – n2xPn(x) + (n – 1) Pn – 1(x)

or  (2n +1) x Pn (x) = (n + 1) Pn + 1 (x) + nPn–1 (x).

(II) nPn(x) = xP′′′′′n(x) – P′′′′′n – 1(x)

Proof. By the generating function, we have

(1 – 2xh + h2)–1/2 = 
n

n
nh P x

=

∞

∑
0

( ) ...(i)

Differentiating (i) both sides w.r.t. h, we get

– 
1

2
(1 – 2xh + h2)–3/2 (– 2x + 2h) = 

n

n
nnh P x

=

∞
−∑

0

1 ( )

or (x – h) (1 – 2xh + h2)– 3/2 = 
n

n
nnh P x

=

∞
−∑

0

1 ( ) ...(ii)
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Again differentiating (i) both sides w.r.t. x, we get

– 
1

2
 (1 – 2 xh + h2)– 3/2 (– 2h) = 

n

n
nh P x

=

∞

∑ ′
0

( )

or h (1 – 2xh + h2)–3/2 = 
n

n
nh P x

=

∞

∑ ′
0

( ) ...(iii)

Multiplying (ii) by h and (iii) by (x – h) then subtract, we get

 0 = h nh P x x h h P x
n

n
n

n

n
n

=

∞
−

=

∞

∑ ∑− − ′
0

1

0

( ) ( ) ( )

or
n

n
n

n

n
n

n

n
nnh P x x h P x h P x

=

∞

=

∞

=

∞
+∑ ∑ ∑= ′ − ′

0 0 0

1( ) ( ) ( ) . ...(iv)

Equating the coefficient of hn on both sides of (iv), we get

 nPn (x) = xP′n (x) – P′n – 1 (x).

(III) P′′′′′n + 1(x) – P′′′′′n – 1(x) = (2n + 1) Pn(x)

Proof. By recurrence relation I, we have

 x(2n + 1) Pn (x) = (n + 1) Pn + 1 (x) + n Pn – 1 (x) ...(i)

Differentiating (i) w.r.t. x, we get

x(2n + 1) P′n (x) + (2n + 1) Pn (x) = (n + 1) P′n + 1 (x) + n P′n – 1 (x) ...(ii)

By recurrence relation II, we have

 x P′n (x) = nPn (x) + P′n –1 (x)

Putting x P′n (x) in (ii), we get

(2n + 1) (nPn (x) + P′n – 1 (x)) + (2n + 1) Pn (x) = (n + 1) P′n +1 (x) + nP′n – 1 (x)

or (2n + 1) (n + 1) Pn (x)  = (n + 1) P′n + 1 (x) + [n – (2n + 1)] P′n – 1 (x)

or  (2n + 1) (n + 1) Pn (x) = (n + 1) P′n +1 (x) – (n + 1) P′n – 1 (x)

or (2n + 1) Pn (x) = P′n + 1 (x) – P′n – 1 (x).

(IV) (n + 1) Pn(x) = P′′′′′n +1 (x) – xP′′′′′n (x)

Proof. By recurrence relation (II) and (III), we have.

nPn(x) = xP′n (x) – P′n – 1 (x) ...(i)

and  (2n + 1) Pn (x) = P′n + 1 (x) – P′n –1 (x) ...(ii)

Subtract (i) from (ii), we get

  (2n + 1) Pn (x) – nPn (x) = P′n + 1 (x) – P′n – 1 (x) – xP′n (x) + P′n – 1 (x)

 (n + 1) Pn (x) = P′n  + 1 (x) – xP′n (x).
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(V) (1 – x2) P′′′′′n (x) = n(Pn – 1 – xPn)

Proof. By recurrence relation (II) and (IV), we have

 nPn (x) = xP′n (x) – P′n – 1 (x) ...(i)

and  (n + 1) Pn(x) = P′n+1 (x) – xP′n (x) ...(ii)

Putting (n – 1) in place of n in (ii), we get

 n Pn – 1 (x) = P′n (x) – xP′n – 1 (x) ...(iii)

Now multiplying (i) by x and subtract from (iii), we get

 nPn –1(x) – nxPn (x) = P′n (x) – xP′n – 1 (x) – x2 P′n (x) – xP′n –1 (x)

 (1 – x2) P′n (x) = n[Pn – 1(x) – xPn (x)].

(VI)  (1 – x2) P′′′′′n (x) = (n + 1) (xPn (x) – Pn + 1(x))

Proof. By recurrence relation (I) and (V), we have

 (2n + 1) x Pn (x) = (n + 1) Pn+1 (x) + nPn – 1 (x) ...(i)

and  (1 – x2) P′n (x) = n [Pn – 1 (x1) – xPn (x)] ...(ii)

By (i)  nPn – 1(x) = (2n + 1) x Pn(x) – (n + 1) Pn + 1(x)

Putting in (ii), we get

 (1 – x2) P′n (x) = (2n + 1) x Pn(x) – (n + 1) Pn + 1 (x) – nx Pn (x)

 (1 – x2) P′n (x) = (n + 1) [x Pn (x) – Pn + 1 (x)].

	�"�
��#�����

Example 1. Show that  P0 (x) = 1,  P1 (x) = x,  P2 (x) = 
3x 1

2

2 −
,  P3 (x) = 

5x 3x

5

3 −
   and

P4 (x) = 35x 30x 3

8

4 2− + .

Solution. By the Rodrigue’s formula, we have

Pn(x) = 
1

2n

d

dxn

n

n!
 (x2 – 1)n ...(i)

Put n = 0 in (i), we have

P0(x) = 
1

0 20

0

0!

d

dx
 (x2 – 1)0 = 1

⇒  P0 (x) = 1
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Put n = 1 in (i), we have

P1(x) = 
1

1 2
1

1

21

1

1
2 1

!
( )

d

dx
x − =  2x = x

⇒ P1(x) = x

Put n = 2 in (i), we have

 P2 (x) = 
1

2 2
12

2

2
2 2

!
( )

d

dx
x

d

dx
− = 1

2 . 4
2(x2 – 1) 2x = 

1

2

d

dx
(x3 – x)

= 
1

2
 (3x2 – 1)

⇒  P2 (x) = 
1

2
 (3x2 – 1)

Put n = 3 in (i), we have

 P3 (x) = 
1

3 23

3

3!

d

dx
 (x2 – 1)3 = 

1

6 . 8

d

dx

2

2
 3(x2 – 1)2 2x = 

1

8

2

2

d

dx
(x2 – 1)2 x

= 
1

8

d

dx
(5x4 – 6x2 + 1) = 

1

8
(20 x3 – 12x) = 

1

2
(5x3 – 3x)

Put n = 4 in (i), we have

P4 (x) = 
1

4 !24

d

dx

4

4
(x2 – 1)4 = 

1

24 .16

d

dx

3

3
4(x2 – 1)3 2x = 1

3 .16

d

dx

2

2
[(x2 – 1)2 (7x2 – 1)]

= 1

3 .16

d

dx
(x2 – 1) (42x3 – 18x) = 

1

3 .16
(210x4 – 180x2 + 18) = 

1

8
(35x4 – 30x2 + 3).

Example 2. Express 3 + 4x – x2 in term of Legendre polynomials.

Solution. We have

  P0 (x) = 1 ⇒ 1 = P0 (x), P1 (x) = x ⇒  x = P1 (x),

⇒     P2(x) = 
3 1

2

2x −
⇒ x2 = 

2 1

3

P x2 ( ) +

On putting these values in the given equation, we have

3 + 4x – x2 = 3P0 (x) + 4 P1(x) – 
2

3

P x P x P x P x P x P x2 0 0 1 2 09 12 2

3

( ) ( ) ( ) ( ) ( ) ( )+
=

+ − −

= 
1

3
[8P0 (x) + 12 P1(x) – 2P2(x)].

Example 3. Show that  (i) Pn (1) = 1, (ii) Pn (– x) = (– 1)nPn (x), (iii) Pn(– 1) = (– 1)n.

Solution. (i) We have
n

nh
=

∞

∑
0

Pn (x) = (1 – 2xh + h2)–1/2 ...(i)
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Putting x = 1 in (i) on both sides, we have

 
n

nh
=

∞

∑
0

Pn (1) = (1 – 2h + h2)–1/2 = (1 – h)–1 = 1 + h + h2 + ...... + hn + .......

n

nh
=

∞

∑
0

Pn(1) = 
n

nh
=

∞

∑
0

Equating the coefficients of hn on both sides, we have

Pn(1) = 1 ...(ii)

(ii) Putting – h in place of h on both sides of (i), we have

  ( )−
=

∞

∑
n

n
nh P

0

 = (1 + 2xh + h2)–1/2 ...(iii)

Again putting – x in place of x on both sides of (i), we have

  
n

n
nh P

=

∞

∑
0

 (– x) = (1 + 2xh + h2)– 1/2 ...(iv)

By (ii) and (iii), we have

 ( ) ( ) ( )− = −
=

∞

=

∞

∑ ∑1
0 0

n

n

n
n

n

n
nh P x h P x

Equating the coefficient of hn on both sides, we have

(– 1)n Pn (x) = Pn (– x)

or Pn (– x) = (– 1)n Pn (x) ...(v)

(iii) Putting x = 1 in (v), we have

 Pn (– 1) = (– 1)n Pn (1) = (– 1)n. Since Pn (1) = 1 By (ii)

Example 4. Prove that (1 – 2xz + z2)–1/2 is a solution of the equation

z 
∂

∂
∂
∂

∂
∂

2

2
2(zv)

z x
1 x

v

x
+ −�

�
�

�
�
�

( )  = 0.

Solution. Let v = (1 – 2xz + z2)– 1/2

v = 
n

n
nz P x

=

∞

∑
0

( ) ...(i)

Then  zv = 
n

n
nz P x

=

∞
+∑

0

1 ( )
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Differentiating partially both sides w.r.t. z two times, we have

∂
∂

2

2z
(zv) = 

n

nn nz
=

∞
−∑ +

0

11( )  Pn (x)

or z 
∂
∂

2

2z
(zv) = n n z

n

n

=

∞

∑ +
0

1( )  Pn (x) ...(ii)

Now differentiating partially (i) both sides w.r.t. x, we have

 
∂
∂
v

x
z P xn

n

n= ′
=

∞

∑
0

( )

or (1 – x2)
∂
∂
v

x
 = (1 – x2) z P xn

n

n
=

∞

∑ ′
0

( )

Again differentiating partially both sides w.r.t. x, we have

∂
∂

∂
∂x

x
dv

dx x
x z P x

n

n
n( ) ( ) ( )1 12 2

0

−�
�
�

�
�
�

= − ′
�
�
�

��

�
�
�

��=

∞

∑

= (1 – x2) 
n

n
n

n

n
nz P x x z P x

=

∞

=

∞

∑ ∑′′ − ′
0 0

2( ) ( ) ...(iii)

On adding (ii) and (iii), we get

z
∂
∂

2

2z
(zv) + 

∂
∂x

x
dv

dx
n n

n

( ) ( )1 12

0

−�
�
�

�
�
�

= +
=

∞

∑ zn Pn (x) + (1 – x2) 
n

n
n

n

n
nz P x x z P x

=

∞

=

∞

∑ ∑′′ − ′
0 0

2( ) ( )

= 
n

n n nx P x x P x n n P x
=

∞

∑ − ′′ − ′ + +
0

21 2 1[( ) ( ) ( ) ( ) ( )] zn

= 
n =

∞

∑
0

0  zn = 0 [� Pn (x) is the solution of Legendre’s equation]

This shows that v = (1 – 2xz + z2)–1/2  is the solution of the given equation.

Example 5. Prove that 
1 z

(1 2xz z )
(2n 1) P (x)z

2

2 3/2
n 0

n
n−

− +
= +

=

∞

∑ .

Solution. We have (1 – 2xz + z2)–1/2 = 
n

n
nz P x

=

∞

∑
0

( ) ...(i)
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Differentiating on both sides w.r.t. z, we have

– 
1

2
 (1 – 2xz + z2)–3/2 (– 2x + 2z) = nz P xn

n

n
−

=

∞

∑ 1

0

( )

or  (x – z) (1 – 2xz + z2)– 3/2 = nz P xn

n

n
−

=

∞

∑ 1

0

( )

or 2z (x – z) (1 – 2xz + z2)–3/2 = 2
0

nz P xn

n

n

=

∞

∑ ( ) ...(ii)

Adding (i) and (ii)

  (1 – 2xz + z2 )–1/2 + 2z (x – z) (1 – 2xz + z2)–3/2 = z P x nz P xn

n

n
n

n

n
=

∞

=

∞

∑ ∑+
0 0

2( ) ( )

or
1 2 2

1 2
1 2

2

3 2
0

− + + −
− +

= +2
=

∞

∑xz z z x z

xz z
z n P xn

n
n

( )

( )
( ) ( )/

or  1

1 2
2 1

2

3 2
0

−
− +

= +2
=

∞

∑z

xz z
n z P xn

n
n( )

( ) ( )/
.

Example 6. Show that P′n + 1 (x) + P′n (x) = P0 + 3P1 + 5P2 + ...... + (2n + 1) Pn = (2r 1)P (x)r
r 0

n

+
=
∑ .

Solution. By the recurrence relation III, we have

 (2n + 1) Pn = P′n + 1 – P′n – 1 ...(i)

Putting n = 1, 2, 3, 4, 5 ,......, n in (i), we get

3P1 = P′2 – P′0
5P2 = P′3 – P′1
7P3 = P′4 – P′2

�

(2n – 3) Pn – 2 = P′n – 1 – P′n – 3

(2n – 1) Pn – 1 = P′n – P′n – 2

(2n + 1) Pn = P′n +1 – P′n – 1

Adding above results, we get

3P1 + 5P2 + 7P3 + ....... (2n + 1) Pn = P′n + P′n + 1 – P′0 – P′1 ...(ii)

But P0 = 1, and P1 = x

∴   P′0 = 0 and P′1 = 1 = P0

Put in (ii)

3P1 + 5P2 + 7P3 + ..... (2n + 1) Pn = P′n
 + P′n + 1 – 0 – P0
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Hence P′n + 1 (x) + P′n (x) = P0 + 3P1 + 5P2 + 7P3 + ..... + (2n + 1) Pn

= (2 1)
0

r Pr

r

n

+
=
∑ Proved.

Example 7. Prove that

 P′2n + 1 (x) = (2n + 1) P2n (x) + 2nx P2n – 1 (x) + (2n – 1) x2 P2n – 2 (x) + ..... + 2x2n–1
 p1 + x2n.

Solution. By the recurrence relation IV, we have

  P′n = nPn – 1 + xP′n – 1 ...(i)

Putting n = 2, 3, ....... (2n – 1), 2n, (2n + 1), we have

  P′2 = 2P1 ...... xP′1
P′3 = 3P2 ..... xP′2

�

P′2n – 1 = (2n – 1) P2n – 2 + x P′2n – 2

 P′2n  = 2n P2n – 1 + xP′2n –1

   P′2n + 1 = (2n + 1) P2n + xP′2n

Multiplying the equation in above x2n – 1, x2n – 2, ..., x2, x, 1 respectively and adding, we get

P′2n + 1 = (2n + 1) P2n + 2nx P2n–1 + (2n – 1) x2 P2n – 2 + ....... + 2x 2n – 1 P1 + x2n where P′1 = 1.

Example  8. Show that

(i) P (x) dx
1

2n 1n� =
+

 [Pn + 1 (x) – Pn – 1 ( x)] + C

(ii) P (x) dx
1

2n 1n
x

1

� =
+

 [Pn – 1 (x) – Pn +1 (x)].

Solution. By the recurrence relation III, we have

 (2n + 1) Pn (x) = P′n + 1 (x) – P′n – 1 (x)

or Pn(x) = 
1

2 1n +
 [P′n + 1 (x) – P′n – 1(x)] ...(i)

(i) Integrating, both sides of (i) w.r.t. x, we have

 P x dx
nn ( )� =

+
1

2 1
 [Pn + 1 (x) – Pn – 1 (x)] + c

(ii) Integrating both sides of (i) w.r.t. x from x to 1, we get

  
x

n n n

x

P x dx
n

P x P x
1

1 1

1

� =
+

−
	



�
�

�


�
�

+ −( ) ( ) ( )
1

2 1
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= 
1

(2 1)n +
[ Pn + 1 (1) – Pn – 1 (1) – Pn + 1(x) + Pn – 1 (x)]

[�� Pn + 1 (x) = 1 = Pn – 1 (x)]

∴  
x

nP x dx
n

1

� =
+

( )
1

(2 1)
 [ Pn – 1 (x) – Pn + 1 (x)].

Example 9. Prove that 
−

+� − ′ =
+

+ +1

1
2

n 1 n(x 1) P P dx
2n(n 1)

(2n 1) (2n 3)
.

Solution. From recurrence relation (V), we have

 (x2 – 1) P′n = n (x Pn – Pn – 1)

or  (x2 – 1) Pn + 1 P′n = n (x Pn  – Pn – 1) Pn + 1 ...(i)

Integrating both sides of (i) w.r.t. x from – 1 to 1, we get

−
+

−
− +� �− ′ = −

1

1
2

1( 1)x P P dx n xP P P dxn n n n n
1

1

1 1( )

= n
−

+
−

− +� �−
1

1

1xP P dx n P P dxn n n n
1

1

1 1

= n
−

+� 1

1

1xP P dxn n � P x P x dx m nn m( ) ( )
−� = ≠	


�
�

�1

1
0 if

= n
n P nP

n
P dx

n n
n

−

+ −
+�

+ +
+1

1 1 1
1

1

2 1

( )
(By recurrence formula I)

= 
n n

n
P dx

n

n
P P dxn n n
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+

+
+−

+
−

− +� �
1

2 1 2 11

1

1
2

2

1

1

1 1
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+
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1

2 1
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1

1
0
2

2 1
P x P x dx

m n

n
m nn m( ) ( )

if

if

= 
2 1

2 1 2 3

n n

n n

( )

( ) ( )

+
+ +

.

Example 10. Prove that 
−� − ′ ′ = +

+1

1
2

m n(1 x ) P P dx
2m(m 1)

(2m 1)
 δmn where δmn is Kronecker delta

i.e., δmn  = 
0 m n
1 m 1

≠
=

�
�
�

.

Solution.  We have ( )1 2

1

1
− ′ ′

−� x P P dxm n
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= ( ) {( ) }1 12

1

1

1

1
2− ′

	



�

�


� − − ′	


�
�

�−
−�x P P P

d

dx
x P dxm n n m

= – 
−� − ′

1

1
21P

d

dx
x P dxn m{( ) } ...(i)

Since Pm is a solution of the Legendre’s equation therefore

(1 – x2) Pm″ – 2xP′m + m(m + 1) Pm = 0

or
d

dx
 {(1 – x2)P′m} = – m (m + 1) Pm

Put in (i), we get

  
− −� �− ′ ′ = − − +

1

1
2

1

1
1 1( ) { ( ) }x P P dx P m m P dxm n n m

= m(m + 1) 
−� 1

1
P P dxn m = m (m + 1)

2

2 1m +
 δmn = 

2 1

2 1

m m

m

( )

( )

+
+

δmn

where δmn is Kronecker  delta.
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1. Express f (x) = x4 + 2x3 + 2x2 – x – 3 in term of Legendre’s polynomials.

2. Prove that Pn(x) is an even or odd function of x according as n is even or odd respectively.

3. Show that

(i) Pn(0) = 0, if n is odd (ii) Pn (0) = 
( ) !

( / !)

/− 1

2 2

2

2

n

n
n

n
, if n is even.

4. Prove that 
1

1 2

1
2

0

1
+

− +
− = +

=

∞

+∑z

z xz z z
P x P x z

n

n n
n[ ( ) ( )] .

5. Prove that

(i) P′n (1) = 
1

2
n(n + 1) (ii) P′n (– 1) = (– 1)n – 1 

n n( )+ 1

2
.

6. Prove that (n + 1) [Pn P′n + 1 – Pn + 1 P′n] = (n +1 )2 Pn
2 – (x2 – 1) P′n

2.

7. Prove that 
−

−� =
−1

1

1 2

2

4 1
xP P dx

n

n
n n

.

8.
−� − +

=
+1

1

21 2

2

2 1

P x dx

xh h

h

n
n

n( ) , prove it.
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9. Prove that 
−

+ −� = +
− + +1

1
2

1 1
2 1

2 1 2 1 2 3
x P P dx

n n

n n nn n
( )

( ) ( ) ( )
.

10. Prove that

(i)
−� − ′ = +

+1

1
2 21

2 1

2 1
( ) ( )

( )
x P dx

n n

nn , if m = n. (ii)
−� − ′ ′

1

1
21( )x P P dxm n = 0, if m ≠ n.

11. Prove that

(i)
−� 1

1
P x dxn ( )  = 0, n ≠ 0 (ii)

−� 1

1

0P x dx( ) = 2.

12. Prove that if m is an integer less than n,
−� 1

1
x P x dxm

n ( ) = 0, 
−

+

� =
+1

1 1 22

2 1
x P x dx

n

n
n

n

n

( )
( !)

( ) !
.

13. Evaluate 
−� 1

1
4

6x P x dx( ) . 14.  Prove that 
n

nP x
x

=

∞

∑ =
−

0

1

2 2
( ) .

15. Show that P2n (0) = (– 1)n 1 3 5 2 1

2

. . ....... ( )n − .

16. Prove that [Pn(x)] < 1 when – 1 < x < 1.

17. Let Pn (x) be the Legendre polynomial of degree n, show that for any function f (x) for which the nth
derivative is continuous.

�����

13. 0.



Probability theory is used in many situation which involve an element of uncer-
tainty. It is used to make important decision on business, to determine premiums on
insurance policies, to determine demand in inventory control. Apart from it is used in
Engineering. Science, Social Science, Genetics etc. Probability theory is also used
in medical sciences.

In this unit, we shall discuss some basic idea of probability, addition and
multiplication theorems of probability, Baye’s theorem with simple applications.
Expected value, Theoretical probability distributions—Binomial, Poisson and normal
distributions and applications of probability in many area of human activities. Lines
of regression, correlation and rank-correlation are also discussed.

Chapter 1 deals with basic idea of probability, theorems of probability and Baye’s
theorem with their applications.

Chapter 2 deals with random variable, probability distribution: Binomial, Poisson
and Normal distributions.

In chapter 3, the lines of regression, concept of simple correlation and rank-cor-
relation will be discussed.

In the 16 Century an italian mathematician Jerome Cardon (1501–1576) wrote
the first book on the subject of probability theory ‘‘Book on Games of Chance’. Besides
Cardon, Pascal (1623–1662). Fermat (1601–1665), J. Bernoulli (1654–1705). De
Moiure (1667–1754), Chebychev (1821–1894), A.A. Markov (1856–1922) and
A.N.Kolmogorov (1903 ......) gives outstanding contributions in probability theory.

Probability theory is designed to estimate the degree of uncertainty regarding the
happening of a given phenomenon. The word probable itself indicates such a situa-
tion. Its dictionary meaning is ‘‘likely though not certain to occur’’. Hence, when a
coin is tossed a tail is likely to occur but may not occur. When a die is thrown, it may
or may not show the number 6.
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Before we discuss formal definition of probability, first we shall define certain terminologies and nota-
tions, which are used in defining probability.
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1. Random experiment: Any experiment whose outcomes cannot be predicted or determined in advance
is a random experiment.

OR

A random experiment is an experiment whose outcomes or result is not unique and therefore
cannot be predicted with certainty.

Tossing of a coin, head or tail may occur, throwing a die, 1, 2, 3, 4, 5 or 6 may appear and
drawing a card from a well shuffled pack of cards are examples of random experiments.

2. Sample space and sample point: The set of all possible outcomes of a random experiment is
called the sample space and each element of a sample space is called a sample point.

If a die is thrown, it will land with anyone of its 6 faces pointing upward, resulting in anyone of
the numbers 1, 2, 3, 4, 5, 6 appearing on the top face. Hence, the number of each face is a possible
result. We write

   S = {1, 2, 3, 4, 5, 6}

The set S is a sample space of throwing a die and 1, 2, 3, 4, 5, 6 are called sample point.

When two dice is thrown, then the sample space consists of the following 36 points:

S = 

( , ), ( , ), ( , ), ( , ), ( , ), ( , )
( , ), ( , ), ( , ), ( , ), ( , ), ( , )
( , ), ( , ), ( , ), ( , ), ( , ), ( , )
( , ), ( , ), ( , ), ( , ), ( , ), ( , )
( , ), ( , ), ( , ), ( , ), ( , ), ( , )
( , ), ( , ), ( , ), ( , ), ( , ), ( ,

1 1 1 2 1 3 1 4 1 5 1 6
2 1 2 2 2 3 2 4 2 5 2 6
3 1 3 2 3 3 3 4 3 5 3 6
4 1 4 2 4 3 4 4 4 5 4 6
5 1 5 2 5 3 5 4 5 5 5 6
6 1 6 2 6 3 6 4 6 5 6 6)

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�
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Note. The set of all possible outcomes of a single performance of a random experiment is exhaustive
events or sample space.

3. Event: Any subset A of a sample space S is called an event.

Consider the experiment of tossing of a coin, we have

S = {H, T}

Here are 4 subsets of S, φ, {H}, {T}, {H, T}. Each subset of S is an event.

4. Simple event: An event is said to be simple event, if it has only one sample point. In tossing
of a coin, the events {H} and {T} are simple events.

5. Compound event: An event is said to be compound event, if it has more than one sample
point. When two coins are tossed once then sample space (S) = {HH, HT, TH, T T}. Each event of S is
compound event.

6. Complement of an event: The complement of an event A
with respect to the sample space S is the set of all elements of S
which are not in A.

 A  = S – A

7. Favourable events:The number of cases favourable to an
event in a trial is the number of  outcomes which entail the happening
of the event. For example, in throwing of two dice, the number of cases favourable to getting the sum 6
is (1, 5), (2, 4), (3, 3), (3, 3), (4, 2), (5, 1), i.e. 6.

8. Equally likely events: Events are said to be equally likely, if there is no reason to expect any
one in preference to any other. For example, In throwing a die, all the six faces are equally likely to
come.

9. Mutually exclusive events: Two events A and B are said to be mutually exclusive events iff
A ∩ B = φ.

If a die is thrown, we will get either an ‘even number’ or an ‘odd number’. The event A ‘‘getting
an even number’’ and event B “getting an odd number’’. We say that A and B are mutually exclusive
events because both the events cannot occur at the same time. We have

A = {2, 4, 6} and B = {1, 3, 5}

Then, A ∩ B = φ
In tossing of a coin, we will get either a head or tail. The event A ‘‘getting a head’’ and event B

‘‘getting a tail’’. We say that A and B are mutually exclusive events because both the events cannot
occur at the same time.

We have A = {H} and B = {T}

Then,  A ∩ B = φ
Note. 1. Simple events of a sample space are always mutually exclusive.

2. The events, which ensure the required happening is called favourable events.

10. Odd in favour of an event and odd against an event: Let there are m outcomes favourable
to a certain event and n outcomes are not favourable to the event in a sample space, then

S
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odd in favour of the event = 
m

n

and odd against the event = 
n

m
.

11. Permutation: A permutation is an arrangement of objects in a definite order.

The number of permutations of n objects used r at a time, denoted by nPr is

 nPr = 
n

n r

!

( ) !−

12. Combination: A combination is a selection of objects without regard to order.

The number of combinations of n distinct objects selected r at a time, denoted by nCr is

 nCr = n

r n r

!

! ( ) !−

	
�
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The chance of happening of an event when expressed quantitatively is called probability. However, we
give three definitions of probability:

(1) Classical or Mathematical definition of probability.

(2) Statistical or Empirical definition of probability.

(3) Axiomatic definition of probability.

1. Classical or Mathematical definition of probability: If an event A can happen m ways out
of possible n mutually exclusive and equally likely outcomes of a random experiment then probability
of A is

 P(A) = 
Number of favourable cases

Total numbers of possible cases
 = 

m

n

The probability of not happening of A is

P(A ) = 1 – 
m

n
 = 

n m

n

−

Thus, P(A) + P(A ) = 1, 0 ≤ P(A) ≤ 1 and 0 ≤ P( A ) ≤ 1.

Note. 1. If P(A) = 1, then A is called certain event.

2. If P(A) = 0, then A is called impossible event.
3. This definition is fail when outcomes are not equally likely and number of outcomes is infinite.

4. The probability of an event is a number between 0 and 1. If occurrence is certain, its probability
is 1. If the event cannot occur, its probability is 0.
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2. Statistical or Empirical definition of probability: If trial be repeated for a large number of
times, say n, under the same conditions, and a certain event A happen on m times then the probability of
the event A is

 P(A) = lim
n → ∞

 
m

n

where, the limit is unique and finite.

3. Axiomatic definition of probability: Let S be a finite sample space and A be any event in S,
then probability of A is defined by following three conditions.

(i) For every event A in S, 0 ≤ P(A) ≤ 1

(ii) P(S) = 1.

(iii) If A and B are mutually exclusive events in S, then

P(A ∪ B) = P(A) + P(B).

	
�
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Theorem 1: The probability of the impossible event is zero i.e. P(φ) = 0.

Proof: Since, impossible event contains no sample point, therefore, the certain event S and the
impossible event φ are mutually exclusive

⇒  S ∪ φ = S

⇒ P(S ∪ φ) = P(S)

⇒ P(S) + P(φ) = P(S)

⇒  P(φ) = 0.

Theorem 2: The probability of the complementary event A  of A is given by

P(A ) = 1 – P(A).

Proof: Since, A and A  are mutually disjoint events, so that

 A ∪ A  = S

⇒ P(A ∪ A ) = P(S)

⇒  P(A) + P(A ) = P(S) [� P(S) = 1]

= 1

⇒ P(A ) = 1 – P(A)

Note. 1. If φ is the impossible event and S is the sample space then S  = φ

⇒ P(S ) = P(φ)
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and P(S ) = 1 – P(S)

= 1 – 1 = 0

i.e.,  P(φ) = 0

Theorem 3: For any two events  A and B.

(i) P(A ∩ B ) = P(A) – P(A ∩ B) (ii) P( A  ∩ B) = P(B) – P(A ∩ B)

Proof: (i) From the Venn diagram, we have

A = (A ∩ B) ∪ (A ∩ B )

where, A ∩ B and A ∩ B  are disjoint events.

⇒  P(A) = P(A ∩ B) + P(A ∩ B )

⇒ P(A ∩ B ) = P(A) – P(A ∩ B).

(ii) From the Venn diagram, we have

B = (A ∩ B) ∪ ( A  ∩ B)

where, A ∩ B and A  ∩ B are disjoint events.

⇒  P(B) = P(A ∩ Β) + P(A  ∩ B)

⇒ P( A  ∩ B) = P(B) – P(A ∩ B)

Theorem 4: If B ⊂ A, then

(i) P(A ∩ B ) = P(A) – P(B) (ii) P(B) ≤ P(A)

(iii) P(A ∩ B) ≤ P(A) and P(A ∩ B) ≤ P(B).

Proof: (i) If B ⊂ A, then B and A ∩ B  are mutually exclusive
events, so that

A = B ∪ (A ∩ B )

⇒  P(A) = P(B) + P(A ∩ B )

⇒ P(A ∩ B ) = P(A) – P(B) ...(1)

(ii) If B ⊂ A, then by (1), we have

P(A ∩ B ) = P(A) – P(B)

⇒ P(A ∩ B ) ≥ 0

⇒  P(A) – P(B) ≥ 0

⇒  P(A) ≥ P(B)

or  P(B) ≤ P(A) ...(2)

(iii) If B ⊂ A, then by (2), we have

 P(B) ≤ P(A)

A B
S

A B�

A
B

� A B�

A
S

A B�

B
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Since, A ∩ B ⊂ A and A ∩ B ⊂ B

⇒ P(A ∩ B) ≤ P(A) and P(A ∩ B) ≤ P(B).

	
�
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Theorem 1: If A and B are two events, then

P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

Proof: From the Venn diagram, we have

 A ∪ B = A ∪ ( A  ∩ B)

where, A and A  ∩ B are mutually disjoint events.

⇒  P(A ∪ B) = P(A) + P( A  ∩ B)

= P(A) + P(B) – P(A ∩ B) [� P( A B∩ ) = P(B) – P(A ∩ B)] ...(1)

Note. 1. If A and B are disjoint events, then

 P(A ∩ B) = P(φ) = 0

Then by (1), we have

 P(A ∪ B) = P(A) + P(B)

2. P(A ∪ B) is also written as P(A + B) and P(A ∩ B) is also written as P(AB).

Theorem 2: If A, B and C are any three events, then

P(A ∪ B ∪ C ) = P(A) + P(B) + P(C ) – P(A ∩ B) – P(B ∩ C ) – P(C ∩ A) + P(A ∩ B ∩ C).

Proof: Using the above theorem 1 for two events, we have

 P(A ∪ B ∪ C ) = P[A ∪ (B ∪ C )]

= P(A) + P(B ∪ C ) – P[A ∩ (B ∪ C )]

= P(A) + [P(B) + P(C ) – P(B ∩ C )] – P[(A ∩ B) ∪ (A ∩ C )]

= P(A) + P(B) + P(C ) – P(B ∩ C ) – [P(A ∩ B) + P(A ∩ C ) – P(A ∩ B ∩ C )]

= P(A) + P(B) + P(C ) – P(A ∩ B) – P(B ∩ C) – P(C ∩ A) + P(A ∩ B ∩ C )

Theorem 3: If A1, A2, A3, ......, An are n mutually exclusive events, then the probability of the
happening of one of them is

P(A1 ∪ A2 ∪ A3 ∪ ...... ∪ An) = P(A1) + P(A2) + P(A3) + ...... + P(An).

Proof: Let N be the total number of mutually exclusive, exhaustive and equally likely cases of
which m1 are favourable to A1, m2 are favourable to A2, m3 are favourable to A3 and so on.

Probability of happening of event A1 = P(A1) = m

N
1 .

A B
S

A B�

A
B

� A B�
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Probability of happening of event A2 = P(A2) = 
m

N
2 .

.................................................................................

.................................................................................

.................................................................................

Probability of happening of event An = P(An) = 
m

N
n

∴ Probability of happening of one of the events A1, A2, A3, ......, An is

P(A1 ∪ A2 ∪ A3 ∪ ...... ∪ An) = 
m

N

m

N

m

N
1 2 3+ +  + ...... + 

m

N
n

 = P(A1) + P(A2) + P(A3) + ...... + P(An).

��������������

Example 1: What is the chance that a leap year, selected at random, will contain 53 Sundays?

Solution: We know that a leap year consists of 366 days and contains 52 complete weeks and 2
days over.

Combinations of these two days are as follows:

(1) Monday, Tuesday (2) Tuesday, Wednesday

(3) Wednesday, Thursday (4) Thursday, Friday

(5) Friday, Saturday (6) Saturday, Sunday

(7) Sunday, Monday

Of these seven P(S) = 7 are likely cases only and last two are favourable i.e. n(A) = 2.

The required probability = 
n A

n S

( )

( )
 = 

2

7
.

Example 2: From a pack of 52 cards, one is drawn at random. Find the probability of getting a
king.

Solution: From a pack of 52 cards 1 card can be drawn in 52 ways, i.e. n(S) = 52.

Number of ways in which a card can be king = 4

i.e. n(A) = 4

The required probability = 
n A

n S

( )

( )
 = 

4

52
 = 

1

13
.
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Example 3: What is the probability of throwing a number greater than 3 with an ordinary die
whose faces are numbered from 1 to 6.

Solution: There are 6 possible ways in which the die can fall, and all of these there (4, 5, 6) are
favourable to the event required

i.e. n(S) = 6 and n(A) = 3

⇒ P(> 3) = 
n A

n S

( )

( )
 = 

3

6
 = 

1

2
.

Example 4: A coin is tossed. If it shows head, we draw a ball from a bag consisting of 3 blue and
4 white balls; if it shows tail, we throw a die. Describe the sample space of the experiment.

Solution: Let us denote the blue balls by B1, B2, B3 and white balls by W1, W2, W3, W4.

The sample space of the experiment is

S = {HB1, HB2, HB3, HW1, HW2, HW3, HW4, T1, T2, T3, T4, T5, T6}

Example 5: From a pack of 52 cards there are drawn at random. Find the chance that they are
a king, a queen and a knave.

Solution: From a pack of 52 cards a draw of 3 can be made in 52C3 ways.

Thus, n(S) = 52C3

In a pack of 52 cards are 4 kings, 4 queens and 4 knaves. A king can be drawn in 4C1 ways, a
queen in 4C1 ways and a knave in 4C1 ways. Each of these ways be withdrawn in 4C1 × 4C1 × 4C1 ways.

Thus,    n(A) = 4C1 × 4C1 × 4C1

The required probability   P(A) = 
n A

n S

( )

( )
 = 

4
1

4
1

4
1

52
3

C C C

C

× ×

= 4 4 4 1 2 3

52 51 50

× × × × ×
× ×

 = 16

5525
.

Example 6: In a given race the odds in favour of four horses, A, B, C, D are 1 : 3, 1 : 4, 1 : 5,
1 : 6 respectively. Assuming that a dead heat is impossible, find the chance that one of them wins the
race.

Solution: Let p1, p2, p3 and p4 be the probabilities of winning of the horses A, B, C and D
respectively, then

 P(A) = p1 = 
1

4
, P(B) = p2 = 

1

5

 P(C) = p3 = 
1

6
, P(D) = p4 = 

1

7
.

Since, these are mutually exclusive events the chance that one of them wins

= P(A) + P(B) + P(C) + P(D)

= p1 + p2 + p3 + p4

= 
1

4
 + 

1

5
 + 

1

6
 + 

1

7
 = 

319

420
.
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Example 7: If from a lottery of 30 tickets, marked 1, 2, 3, ...... four tickets be drawn, what is the
chance that marked 1 and 2 are among them.

Solution: We have, n(S) = 30C4 (four tickets can be selected)

When 2 tickets are to be included always, remaining two can be selected in 28C2 ways, i.e.
n(A) = 28C2

The required chance  P(A) = n A

n S

C

C

( )

( )
= =

28
2

30
2

2

145
.

Example 8: A manufacturer supplies cheap quarter horse power motors in a hot of 25. A buyer
before taking a lot, tests a random sample of 5 motors and accepts the lot if they are all good, otherwise
he rejects the lot. Find the probability that

(i) he will accept a lot containing 5 defective motors.

(ii) he will reject a lot containing only one defective motor.

Solution: The buyer can choose a random sample of 5 motors out of 25 in 25C5 ways.

(i) The buyer will accept a lot, if in his sample all the motors are good. That means his sample
consists of 5 motors from 20 nondefective motors. So the number of ways of selecting the sample for
acceptance of the lot, will be 20C5

The required probability = 
20

5
25

5

20
5 15
25

5 20

C

C
=

!
! !

!
! !

= 
20 19 18 17 16

25 24 23 22 21

× × × ×
× × × ×

 = 
2584

8855
 = 0.292

(ii) When he is rejecting a lot containing one defective motor, so his sample will contain the only
defective motor and 4 others which are chosen from the 24 non-defective motors. So number of ways of
selecting this sample is

= 24C4 × 1C1

The required probability = 
24

4
25

5

C

C
 = 

24
4 20

25
5 20

!
! !

!
! !

 = 
5

25
 = 

1

5
 = 0.2

���������	
	

1. What is the chance of throwing a 3 with an ordinary die?

2. What is the chance of that a non-leap year should have fifty three Sundays?

3. An integer is chosen at random from the first two hundred digits. What is the probability that the integer
chosen is divisible by 6 or 8.
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4. In a class of 66 students 13 are boys and the rest are girls. Find the probability that a student selected will
be a girl.

5. A bag contains 7 white and 12 black balls. Find the probability of drawing a white ball.

6. A card is drawn from an ordinary pack and a gambler bets that it is a spade or an ace. What are the odds
against his winning this bet?

7. From a set of 17 cards, number 1, 2, 3, ...... 16, 17, one is drawn at random. Show that the chance that its

number is divisible by 3 or 5 or 7 is 
9

17
.

8. A bag contains 9 discs of which 4 are red, 3 are blue and 2 are yellow. A disc drawn at random from the
bag. Calculate the probability that it will be (i) red (ii) yellow (iii) blue (iv) not blue.

9. In the odds in favour of an event are 4 to 5, find the probability that it will occur.

10. In a single throw of two dice, find the probability of getting a total of 9 or 11.

11. Find the probability of drawing either an ace or a spade or both from a pack of cards.

12. Probability that a boy will pass an examination is 
2

5
 and that for a girl it is 

2

5
. What is the probability

that at least one of them passes examination?

�������

1.
1
6

2.
1

7
3.

1

4
4.

53

66

5.
7

19
6. 9 to 4 8.

4

9

2

9

1

3

2

3
, , , 9.

4

9

10.
1

6
11.

4

13
12.

19

25
.

	
�
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Two events are said to be independent events, if the occurrence of one does not effect the occurrence of
the other.

OR

Two events A and B are said to be independent events iff P(A ∩ B) = P(A) . P(B).

When a die is thrown, let A be the event ‘‘number appearing is a multiple of 3’’ and B be the
event ‘‘number appearing is even’’. We have

A = {3, 6}, B = {2, 4, 6}

and  P(A) = 
2

6

1

3
=
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 P(B) = 
3

6
 = 

1

2

 A ∩ B = {6}

 P(A ∩ B) = 
1

6

Using, P(A ∩ B) = P(A) . P(B)

 
1

6
 = 

1

3

1

2
×

Hence, A and B are independent events.

	
�
 �����������������������

Let A and B be events such that P(B) ≠ 0. The conditional probability of A given B, denoted by P(A/B),
is defined by

 P(A/B) = 
P A B

P B

( )

( )

∩

where, P(A/B) is the probability of occurrence of A given that B has already happened.

Theorem: If the two events A and B are independent events, then

  P(A/B) = P(A) and P(B/A) = P(B)

Proof: We know that if A and B are given to be independent events, then

P(A ∩ B) = P(A) . P(B)

we have,  P(A/B) = 
P A B

P B

( )

( )

∩
 = 

P A P B

P B

( ) . ( )

( )
 = P(A)

and  P(B/A) = 
P A B

P A

( )

( )

∩
 = 

P A P B

P A

( ) . ( )

( )
 = P(B).

	
�
 ������������������������������������������������

�������������������

If there are two events, the respective probability of which are known then the probability that both will
happen simultaneously is the product of the probability of one and the conditional probability of the
other, given that the first has occurred, i.e.

P(A ∩ B) = P(A) P(B/A)

or P(B ∩ A) = P(B) . P(A/B)
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Proof: Let out of n outcomes, m1 be the number of cases favourable to the happening of A.

∴ Probability of happening of the event A = P(A) = 
m

n
1 .

Let m2 be the number of cases favourable to the happening of B.

∴ Conditional probability of B, given that A has happened = P(B/A) = m

m
2

1

Thus, the number of cases favourable to the happening of both A and B are m2 out of n.

∴  P(A ∩ B) = 
m

n
2  = 

m

n

m

m
1 2

1

×  = P(A) . P(B/A).

Note. 1. If A and B are independent events, then

 P(B/A) = P(B)
∴   P(A ∩ B) = P(A) . P(B)

2. P(A ∩ B) is also written as P(A and B) or P(AB).

3. P(A ∪ B) is also written as P(A or B).

4. Term ‘independent’ is defined in terms of ‘‘probability of events’’ whereas mutually exclusive is de-
fined in terms of ‘‘events’’. Moreover, mutually exclusive events never have an outcome common, but independ-
ent events do have an outcome common, provided each event is non-empty. Clearly ‘independent’ and ‘mutually
exclusive’ do not have the same meaning.

5. If two events  A and B are independent, then

(i) A and B  are independent event.

(ii) A  and B are independent event.

(iii) A  and B  are independent event.

��������������

Example 1: A die is thrown twice and the sum of the numbers appearing is observed to be 6.
What is the conditional probability that the number 4 has appeared at least once?

Solution: Let A = number 4 appears at least once

B = the sum of the numbers appearing is 6

then,

   A = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (1, 4), (2, 4), (3, 4), (5, 4), (6, 4)}

and B = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}

The required probability   P(A/B) = 
P A B

P B

( )

( )

∩
 = 

2

5

Example 2: A die is rolled twice and the sum of the numbers appearing on them is observed to
be 7. What is the conditional probability that the number 2 has appeared at least once?

Solution: Let A = getting the number 2 at least once

B = getting 7 as the sum of the numbers on two dice.
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Then, A = {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (1, 2), (3, 2), (4, 2), (5, 2), (6, 2)}

and B = {(2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (1, 6)}

The required probability P(A/B) = 
P A B

P B

( )

( )

∩
 = 

2

6
 = 

1

3
.

Example 3: A family has two children. What is the conditional probability that both are boys
given that at least one of them is a boy?

Solution: Let the sample space S is given by

 S = {(b, b), (b, g), (g, b), (g, g)}

Let A denote the event that both children are boys, B the event that at least one of them is a boy
and all outcomes are equally likely, then the desired probability is

 P(A/B) = 
P A B

P B

( )

( )

∩
 = 

1
4
3
4

 = 
1

3
.

Example 4: Ajeet can either take a course in computers or in maths. If Ajeet takes the computer

course, then he will receive an A grade with probability 1

2
; if he takes the maths course then he will

receive an A grade with probability 1

3
. Ajeet decides to base his decision on the flip of a fair coin. What

is the probability that Ajeet will get an A in maths?

Solution: Let C be the event that Ajeet takes maths and A denote the event that he receives on
A in whatever course he takes, then the desired probability is

 P(A ∩ C ) = P(C ) P(A/C )

= 
1

2
 × 

1

3
 = 1

6

Example 5: Ashu and Ankit appear in an interview for two vacancies in the same post. The

probability of Ashu’s selection is 
1

7
 and that of Ankit’s selection is 

1

5
. What is the probability that

(i) both of them will be selected? (ii) none of them will be selected?

(iii) only one of them is selected?

Solution: Let A denote the Ashu is selected and B denote the Ankit is selected then A and B are
independent.

1. P(both of them will be selected)

= P(A ∩ B) = P(A) P(B) = 
1

7

1

5
×  = 

1

35
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2. P(none of them will be selected)

= P(not A and not B)

= P(not A) . P(not B)

= [1 – P(A)] [1 – P(B)]

= 1
1

7
−�

�
�
�

 1
1

5
−��
�
�  = 

6

7

4

5
×  = 

24

35
.

3. P(only one of them will be selected)

= P(‘A and not B’ or ‘B and not A’)

= P(A and not B) + P(B and not A)

= P(A) P (not B) + P(B) P(not A)

= P(A) [1 – P(B)] + P(B)[1 – P(A)]

= 
1

7
 × 1

1

5
−�

�
�
�  + 

1

5
 × 1

1

7
−�

�
�
�  = 

1

7
 × 

4

5
 + 

1

5
 × 

6

7
 = 

10

35
 = 

2

7
.

Example 6: The probability that a teacher will give an unannounced test during any class meet-

ing is 
1

5
. If a student is absent twice, what is the probability that he will miss at least one test?

Solution: Let T1 be the event of I test held on his first day of absence and T2 be the event of II
test held on second day of his absence. Since, T1 and T2 are independent, then the required probability

P(probability that he will miss at least one test)

 P(T1 ∪ T2) = P(T1) + P(T2) – P(T1 ∩ T2)

= P(T1) + P(T2) – P(T1) P(T2)

= 
1

5

1

5

1

5

1

5
+ − ×  = 

2

5

1

25
−  = 

9

25
.

Example 7: Three groups of children contain 3 girl and 1 boy; 2 girls and 2 boys; 1 girl and 3
boys respectively. One child is selected at random from each group. Find the chance that there selected
comprise 1 girl and 2 boys.

Solution: Let A, B and C be the three groups. Given that

A B C

Boys 1 2 3

Girls 3 2 1

Let B1, B2, B3 be the events of selecting a boy from A, B and C group respectively and let G1, G2,
G3 be the events of selecting a girl from A, B and C group respectively. Then B1, B2, B3, G1, G2, G3 are
independent events such that
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P(B1) = 
1

4
, P(B2) = 

2

4

1

2
= , P(B3) = 

3

4
,

P(G1) = 
3

4
, P(G2) = 

2

4
 = 

1

2
, P(G3) = 

1

4
.

Now one girl and 2 boys can be chosen in the following three mutually exclusive ways.

Groups A B C

(I) Girl Boy Boy

(II) Boy Girl Boy

(III) Boy Boy Girl

The required probability = P(I) + P(II) + P(III)

= P(G1 ∩ B2 ∩ B3) + P(B1 ∩ G2 ∩ B3) + P(B1 ∩ B2 ∩ G3)

= P(G1) P(B2) P(B3) + P(B1) P(G2) P(B3) + P(B1) P(B2) P(G3)

= 
3

4
 × 

1

2
 × 

3

4
 + 

1

4
 × 

1

2
 × 

3

4
 + 

1

4
 × 

1

2
 × 

1

4

= 
13

32
.

Example 8: A and B are two independent witness in a case. The probability that A will speak the
truth is x and the probability that B will speak the truth is y. A and B agree in a certain statement. Show

that the probability that this statement is true: 
xy

1 x y 2xy− − +
.

Solution: Let E1 be the event that A and B agree in a statement and E2 be the event that their
statement is correct.

Then, P(E1) = xy + (1 – x) (1 – y)

 = 1 – x – y + 2xy

and  P(E1 ∪ E2) = xy

We know that

P(E1 ∪ E2) = P(E1) P(E2/E1) = P(E2) P(E1/E2)

∴ P(E2/E1) = 
P E E

P E

( )

( )
1 2

1

∪

 = 
xy

x y xy1 2− − +
.



194 ADVANCED MATHEMATICS
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1. If P(A) = 
3

5
 and P(B) = 

1

3
, find

(i) P(A ∪ B), if A and B are mutually exclusive events.

(ii) P(A ∩ B), if A and B are independent events.

2. In the two dice experiment, if A is the event of getting the sum of numbers on dice as 11 and B is the
event of getting a number other than 5 on the first die, find P(A ∩ B). Are A and B independent events?

3. If A and B are independent events, then show that

(i) A B, (ii) A B,  and

(iii) A B,  are also independent events.

4. A problem of statistics is given to three students A, B and C whose chances of solving it are 1/2, 3/4 and
1/4 respectively. What is the probability that the problem will be solved?

5. A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn
from each bag. Find the probability that

(i) both are red, (ii) both are black,

(iii) one is red and one is black.

6. A bag contains 19 tickets, numbered from 1 to 19. A ticket is drawn and then another ticket is drawn
without replacement. Find the probability that both the tickets will show an even number.

7. A bag contains 5 white, 7 red and 8 black balls. If four balls are drawn one by one without replacement,
find the probability of getting all white balls.

8. An article manufactured by a company consists of two parts A and B. In the process of manufacture of
part A, 9 out of 100 are likely to be defective. Similarly, 5 out of 100 are likely to be defective in the
manufacture of part B. Find the probability (i) that the assembled part will not be defective (ii) that the
assembled part will be defective.

9. A bag contains 4 white and 6 black balls. If two balls are drawn in succession, what is the probability that
one is white and other is black?

10. A bag contain 10 white and 15 black balls. Two balls are drawn in succession. What is the probability
that first is white and second is black?

������

1.  (i) 
14

25
(ii)

1

5
2. 1

36
, Not. 4.

29

32
.

5. (i) 
9

40
(ii)

1

4
(iii) 21

40
6.

4

19
7.

1

969
.

8. (i) 0.8645 (ii) 0.1355 9.
8

15
10. 1

4
.
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Theorem: Let B1, B2, B3, ......, Bn be subsets of a sample space S such that

(i) Each Bi is a proper subset of S i.e.,

Bi ⊂ S, i = 1, 2, ...... n and Bi ≠ S.

(ii) B1 ∪ B2 ∪ ...... ∪ Bn = S and

 Bi ∩ Bj = φ , i, j = 1, 2, ...... n, i ≠ j.

Then, for any event A of S

 P(A) = 
i

n

iP B A
=
∑ ∩

1

( )  = 
i

n

i iP B P A B
=
∑

1

( ) ( / ) with P(Bi) ≠ 0, i = 1, 2, ...... n.

Proof: It is given that

 S = B1 ∪ B2 ∪ ...... ∪ Bn = ∪
=i

n

iB
1

and Bi ∩ Bj = φ for any i and j

i.e., their union is S and Bi’s are mutually disjoint sets.

Therefore, A = A ∩ S = A ∩ ∪��
�
�=i

n

iB
1

= A ∩ (B1 ∪ B2 ∪ ...... ∪ Bn)

= (A ∩ B1) ∪ (A ∩ B2) ∪ ...... ∪ (A ∩ Bn)

The sets A ∩ B1, A ∩ B2, ......, A ∩ Bn are all mutually disjoint sets. We have

 P(A) = P[(A ∩ B1) ∪ (A ∩ B2) ∪ ...... ∪ P(A ∩ Bn)]

= P(A ∩ B1) + P(A ∩ B2) + ...... + P(A ∩ Bn)

= P(B1 ∩ A) + P(B2 ∩ A) + ...... + P(Bn ∩ A)

= 
i

n

iP B A
=
∑ ∩

1

( )

= 
i

n

i iP B P A B
=
∑

1

( ) ( / ) (Using by multiple theorem)

�	�	���������������

Let B1, B2, B3, ......, Bn are mutually exclusive events with P(Bi) ≠ 0 (i = 1, 2, ...... n). For any arbitrary
event A in sample space S with P(A) ≠ 0 and for 1 ≤ k ≤ n.
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P(Bk/A) = 
P B P A B

P B P A B

k k

i

n

i i

( ) ( / )

( ) ( / )
=
∑

1

Proof: By the definition of conditional probability

P(Bk/A) = 
P B A

P A
k( )

( )

∩
...(1)

By the theorem of total probability

 P(A) = 
i

n

iP B A
=
∑ ∩

1

( )  = 
i

n

i iP B P A B
=
∑

1

( ) ( / ) ...(2)

Also from the theory of multiplication

P(Bk ∩ A) = P(Bk) P (A/Bk) ...(3)

Putting the values of P(A) and P(Bk ∩ A) from (2) and (3) in equation (1), we get

P(Bk/A) = 
P B P A B

P B P A B

k k

i

n

i i

( ) ( / )

( ) ( / )
=
∑

1

.

���������������

Example 1: In 1888 there will be three candidates for the position of Director—Dr. Singhal,
Dr. Mehra and Dr. Chatterji—whose chances of getting the appointment are in the proportion 4 : 2 : 3
respectively. The probability that Dr. Singhal, if selected, will abolish co-education in the college is 0.3.
The probability of Dr. Mehra and Dr. Chatterji doing the same are respectively 0.5 and 0.8. What is the
probability that co-education will be abolished in the college?

Solution: Let B1, B2 and B3 be the probability of being appointed of Dr. Singhal, Dr. Mehra and
Dr. Chatterji respectively. Let the probability of co-education being abolished be A. Then, by the theorem
of total probability, we have

P(A) = P(B1) P(A/B1) + P(B2) P(A/B2) + P(B3) P(A/B3)

= 
4

9
 × (0.3) + 

2

9
 × (0.5) + 

3

9
 × (0.8)

= 
2

15
 + 

1

9
 + 

4

15
 = 

23

45
.

Example 2: An urn I contains 3 white and 4 red balls and an urn II contains 5 white and 6 red
balls. One ball is drawn at random from one of the urn and is found to be white, find the probability that
it was drawn from urn I.

Solution: Let B1: the ball is drawn from urn I

B2: the ball is drawn from urn II

 A: the ball is white
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To find P(B1/A).

By Baye’s theorem

P(B1/A) = 
P B P A B

P B P A B P B P A B

( ) ( / )

( ) ( / ) ( ) ( / )
1 1

1 1 2 2+
...(1)

Since, two urn are equally likely to be selected,

P(B1) = P(B2) = 
1

2

P(A/B1) = Probability of a white ball is drawn from urn I = 3

7

P(A/B2) = Probability of a white ball is drawn from urn II = 5

11
By (1), we have

P(B1/A) = 

1
2

3
7

1
2

3
7

1
2

5
11

×

× + ×
 = 

33

68
.

Example 3: The probability that a person can hit a target is 
3

5
 and the probability that another

person can hit the same target is 2

5
 . But the first person can fire 8 shoots in the time the second person

fires 10 shoots. They fire together, what is the probability that the second person shoots the target.

Solution: Let A denote the event of shooting the target and B1 denote the event that the first
person shoots the target and B2 denote the event that the second person shoots the target. Therefore,
P(B2/A) is the probability that the second person shoots the targets.

Now, we have P(A/B1) = 
3

5
, P(A/B2) = 

2

5

It is given that the ratio of the shoots of the first person to those of the second person in the same

time is 
8

10
 i.e. 

4

5
.

Thus, we have P(B1) = 4

5
 P(B2)

By Baye’s theorem, we have

 P(B2/A) = 
P B P A B

P B P A B P B P A B

( ) ( / )

( ) ( / ) ( ) ( / )
2 2

1 1 2 2+

= 
P B

P B P B

( ) .

( ) . ( ) .

2

2 2

2
5

4
5

3
5

2
5

+
 = 

2
5

3
5

4
5

2
5

× +
 = 

5

11
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Example 4: The contents of urns I, II and III are as follows:

1 White, 2 black and 3 red balls,

2 White, 1 black and 1 red balls,

and 4 white, 5 black and 3 red balls.

One urn is chosen at random and two balls drawn. They happen to be white and red. What is the
probability that they come from urns I, II or III?

Solution: Let B1: Urn I is chosen;

B2: Urn II is chosen;

B3: Urn III is chosen

and  A: the two balls are white and red.

To find P(B1/A), P(B2/A) and P(B3/A).

Now,  P(B1) = P(B2) = P(B3) = 
1

3
. Since, three urns are equally likely to be selected.

 P(A/B1) = Probability of a white and a red ball are drawn from urn I

= 
1

1
3

1
6

2

C C

C

×  = 
1

5

 P(A/B2) = Probability of a white and a red ball are drawn from urn II

= 
2

1
1

1
4

2

C C

C

×  = 
1

3

P(A/B3) = Probability of a white and a red ball are drawn from urn III

= 
4

1
3

1
12

2

C C

C

×
 = 

2

11

By Baye’s theorem, we have

 P(B1/A) = 
P B P A B

P B P A B P B P A B P B P A B

( ) ( / )

( ) ( / ) ( ) ( / ) ( ) ( / )
1 1

1 1 2 2 3 3+ +

= 

1
3

1
5

1
3

1
5

1
3

1
3

1
3

2
11

×

× + × + ×
 = 

33

118

Similarly, P(B2/A) = 
55

118
and P(B3/A) = 

15

59
.

Example 5: A bag contains 3 black and 4 red balls. Two balls are drawn at random one at a time
without replacement. What is the probability that the first ball selected is black if the second ball is
known to be red.

Solution: Let B1 be the event of the first ball being black (bb, br)

Let B2 be the event of the first ball being red (rb, rr)
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Let A be the event of second ball being red (br, rr)

To find P(B1/A).

We have A = (A ∩ B1) ∩ (A ∩ B2) ...(1)

∴ By theorem of multiplication or compound probability

  P(A ∩ B1) = P(B1) P(A/B1)

= 
3

7
 × 

4

6
 = 

2

7
.

P(A ∩ B2) = P(B2) P(A/B2)

= 
4

7
 × 

3

6
 = 

2

7
.

By (1), we have  P(A) = P(A ∩ B1) + P(A ∩ B2)

= 
2

7

2

7
+  = 

4

7
The required probability

P(B1/A) = 
P A B

P A

( )

( )

∩ 1  = 

2
7
4
7

 = 
1

2

Example 6: In a bolt factory, machines M1, M2 and M3 manufacture respectively 25%, 35% and
40% of the total of their output 5, 4 and 2 percent are defective bolts. A bolt is drawn at random from the
product and is found to be defective. What is the probability that it was manufactured by machine M1,
M2 and M3?

Solution: Let A, B, C denote the events that the bolt was manufactured by machines M1, M2 and
M3 respectively and let D denote the event of its being defective. Then

 P(A) = 0.25, P(B) = 0.35, P(C) = 0.40

The probability that a defective bolt is drawn from those manufactured by M1 is

 P(D/A) = 
5

100
 = 0.05

Similarly,  P(D/B) = 
4

100
 = 0.04, P(D/C) = 

2

100
 = 0.02

By Baye’s theorem, we have

 P(A/D) = 
P A P D A

P A P D A P B P D B P C P D C

( ) ( / )

( ) ( / ) ( ) ( / ) ( ) ( / )+ +

= 
0 25 0 05

0 25 0 05 0 35 0 04 0 40 0 02

. .

. . . . . .

×
× + × + ×
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= 
0 0125

0 0345

.

.
 = 

125

345
 = 

25

69

Similarly,  P(B/D) = 
140

345
and P(C/D) = 

80

345
.

Example 7: In a certain college 25% of boys and 10% of girls are studying mathematics. The
girls constitute 60% of the student body (a) what is the probability that mathematics is being studied?
(b) If a student is selected at random and is found to be studying mathematics, find the probability that
student is a girl? (c) a boy?

Solution: Given that probability of a boy P(B)

= 
40

100
 = 

2

5
and Probability of a girl P(G)

= 
60

100
 = 

3

5
Probability that maths is studied given that the student is a boy

= P(M/B) = 
25

100
 = 

1

4

Similarly, P(M/G) = 
10

100
 = 

1

10
(a) Probability that math is studied

P(M) = P(G) P(M/G) + P(B) P(M/B) (by theorem on total probability)

= 
3

5

1

10

2

5

1

4
. .+  = 4

25
.

(b) By Baye’s theorem, we have

Probability that a math student is a girl

P(G/M) = 
P G P M G

P M

( ) ( / )

( )

= 

3
5

1
10

4
25

.
 = 

3

8

(c) Probability that a maths student is a boy

 P(B/M) = 
P B P M B

P M

( ) ( / )

( )

= 

2
5

1
4

4
25

.
 = 

5

8
.
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1. A bag X contains 2 white and 3 red balls and a bag Y contains 4 white and 5 red balls. One ball is drawn
at random from one of the bags and is found to be red. Find the probability that it was drawn from bag Y.

2. Three urns contain 6 red, 4 black; 4 red 6 black; 5 red, 5 black balls respectively. One of the urns is
selected at random and a ball is drawn from it. If the ball drawn is red, find the probability that it drawn
from the first urn.

3. A businessman goes to hotels H1, H2, H3, 20%, 50%, 30% of the time, respectively. It is known that 5%,
4%, 8% of the rooms in H1, H2, H3 hotels have faulty plumbing (i) Determine the probability that the
businessman goes to hotel with faulty plumbing (ii) what is the probability that business’s room having
faulty plumbing is assigned to hotel H3?

4. There are three boxes containing respectively 1 white, 2 red, 3 black balls; 2 white, 3 red, 1 black balls;
3 white, 1 red, 2 black balls. A box is chosen at random and from it two balls are drawn at random. The
two  balls  are  one  red  and  one  white.  What  is  the  probability that they come from the (i) first box,
(ii) second box (iii) third box.

5. An urn contains 10 white, 9 black, 8 red and 3 blue balls. Balls are drawn one by one at random from the
urn until 2 blue balls are obtained at the 11th draw. Find the probability of drawing 2 blue balls upto 11th
draw.

6. Suppose the supply of transistors is produced by three systems S1, S2 and S3. Further, suppose that S1
produces 20%, S2 produces 30% and S3 produces 50% of the supply and that the defective (D) rates for
three systems S1, S2, S3 are respectively 0.01, 0.02 and 0.05. If a transistor is randomly selected from the
supply and is found to be defective, find (i) P(S1/D) (ii) P(S2/D) (iii) P(S3/D).

7. The chance that a doctor will diagnose a disease correctly is 70%. The chance that a patient dies by his
treatment after correct diagonals is 35% and the chance of death by wrong diagnosis is 80%. If a patient
dies after taking his treatment, what is the chance that the disease was diagnosed correctly.

8. Companies B1, B2, B3 produce 30%, 45% and 25% of the cars respectively. It is known that 2%, 3% and
2% of the cars produced from B1, B2 and B3 are defective.

(i) What is the probability that a car purchased is defective?

(ii) If  a  car  purchased  is  found  to be defective,  what  is  the  probability  that  this  car  is  produced
by company B3 ?

������

1.
25

52
2.

2

5
3. (i) 0.054 (ii)

4

9

4. (i) 
2

11
(ii)

6

11
(iii)

3

11
5.

19

406

6. (i) 0.061 (ii) 0.182 (iii) 0.757 7.
49

97

8. (i) 0.0245 (ii)
10

49
.
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Let the probability of the happening of an event in one trial is p and q = 1 – p be the probability that the
event fails in one trial. Let us find out the probability of exactly r successes in n trails.

The chance that an event happens at least r times in n trials is given

P = pn + nC1 pn–1q + nC2pn–2q2 + ... + nCr prqn–r

Hence, the probability that the event will happen exactly r times in n trails is the (n + 1)th term in
the expansion of (q + p)n.

�	��	��������������������

If a dice has f faces marked with 1, 2, 3, ...... f, the probability of throwing a total p with n dice is given
by

= Coefficient of in the expansion ofx x x x x

f

p f n

n

( ...... )1 2 3+ + + +

= 

Coeff. of inx
x

x x

f

p
f n

n n

n

( )
( )

1
1
−
−

= Coeff. of inx x x

f

p n f n n

n

− −− −( ) ( )1 1

Note. If n dice are different with faces f1, f2, f3, ......, fn, then the required chance is

= 
Coeff. of inx x x x x x x x x x

f f f f

p f f f

n

n( ...... ) ( ...... ) ...... ( ...... )

......

1 2 1 2 1 2

1 2 3

1 2+ + + + + + + + +

�	�
	����������������

A variable, which takes a definite set of values with a definite probability associated with each value is
called a random variable.

Hence, if a variable x takes the values x1, x2, x3, ......, xn with respective probability

p1, p2, p3, ......, pn so that 
i

n

ip
=
∑ =

1

1. Then a discrete probability distribution is defined. The function

P(x), which has respective probabilities p1, p2, p3, ......, pn for x1, x2, x3, ......, xn is known as the probabil-
ity function of x. The variable x in such a case is called the random variable.
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When X is a discrete variable, which may take n mutually exclusive values xi (i = 1, 2, 3, ......, n) and no
other, with respective probabilities pi (i = 1, 2, 3, ......, n) the expectation of X is

 E(X) = p1x1 + p2x2 + p3x3 + ...... + pnxn = 
i

n

i ip x
=
∑

1

when X is a continuous variable, the expectation of x is given by

 E(X) = 
−∞

∞

� x x dxφ( )

where, φ(x) is the probability density defining the function

Note 1. If X and Y are random variables, then

E(X + Y) = E(X) + E(Y)
2. If X and Y are independent random variables, then

E(XY) = E(X) E(Y)

3. The expected value of a random variable X, denoted by E(X) or µ, is defined as

E(X) or µ = i

i ix f x X

x f x dx X

∑
�−∞
∞

�

�
��

	
�
�

( ) ( )

( ) ( )

if is discrete

if is continuous

4. Mean ( X ) = E(X) = µ1′

5. µ2′ = E(X2)

6. Variance σ2 = E(X2) – [E(X)]2 = µ2′ – µ1′
2

7. µr′ = E(Xr)

8. E(aX + b) = aE(X) + b

9. E{a φ(x)} = a E{φ(x)}

10. V(aX + b) = a2V(X), where V(X) is the variance of X.

���������������

Example 1: In a single throws, with a pair of dice, what is the chance of throwing doublets or
not.

Solution: When throw a pair of dice, we get only 6 doublets namely (1, 1); (2, 2); (3, 3); (4, 4);
(5, 5); (6, 6).

The chance of throwing a doublet in one throw = 
6

6

1

62 =

And the chance of not throwing a doublet = 1 – 
1

6
 = 

5

6
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Example 2: A dice is thrown five times. Find the probability of 3 coming up (i) exactly 3 times
(ii) at least 3 times.

Solution: The probability of 3 coming up = 
1

6
.

Let p = 1/6 and q = 5/6.

The probability of 3 successes in 5 trails is 5C3 
1

6

3
�
�
�
�  

5

6

2
�
�
�
� .

Probability of at least 3 successes = Probability of 3 or 4 or 5 successes

= 5C3 
1

6

3
�
�
�
�  

5

6

2
�
�
�
�  + 5C4 

1

6

4
�
�
�
�  

5

6
�
�
�
�  + 5C5 

1

6

5
�
�
�
� .

Example 3: Four dice are thrown, what is the probability that the sum of the number appearing
on the dice is 18?

Solution: The probability that the sum of the number appearing on the dice is 18

= Coeff. of inx x x x18 2 6 4

46

( ...... )+ + +

= 
Coeff. of inx x x14 5 4

4

1

6

( ...... )+ + +

= Coeff. of inx x x14 6 4 4

4

1 1

6

( ) ( )− − −

= 

Coeff. of inx x x x x x

x

14 6 12 2 8

14

4

1 4 6 1 4 10 16
680

6

( ......) ( ......
...... ......)

− + × + + + +
+ + +

= 
680 660 60

64

− +
 = 

80

64
 = 

5

81
Example 4: A person throws two dice, one the common cube, and the other regular tetrahedron,

the number in the lowest face being taken in the case of a tetrahedron. What is the chance that the sum
of the numbers thrown is not less than 5.

Solution: We know that the common cube has 6 faces and the regular tetrahedron has 4 faces.
Hence, 6 × 4 is the total number of ways in which the cube and the tetrahedron can fall.

The favourable ways of getting a sum not less than 5

= the sum of the coeff. of x5, x6, ......, x10 in (x + x2 + ...... + x6) (x + x2 + x3 + x4)

= the sum of the coeff. of x5, x6, ......, x10 in (x2 + 2x3 + 3x4 + 4x5 + 4x6 + 4x7 + 3x8 + 2x9 + x10)

= 4 + 4 + 4 + 3 + 2 + 1

∴ The required chance = 
18

6 4×
 = 

3

4
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Example 5: Four tickets marked 00, 01, 10, 11 respectively are placed in a bag. A ticket is
drawn at random five times, being replaced each time. Find the probability that the sum of the numbers
on tickets thus drawn is 23.

Solution: Given that four tickets marked 00, 01, 10, 11 respectively are placed in a bag.

The four tickets can be drawn five times in 45 ways.

The favourable number of ways for obtaining a sum

= Coeff. of x23 in (x0 + x1 + x10 + x11)5

= Coeff. of x23 in (1 + x)5 (1 + x10)5 (on factorization)

= Coeff. of  x23 in (1 + 5x + 10x2 + 10x3 + 5x4 + x5) (1 + 5x10 + 10x20 + ......)

= 100

Hence, the required probability = 
100

45
 = 

25

256
.

Example 6: If m things are distributed among a men and b women, show that the chance that the

number of things received by men is odd, is 1

2

(b a) (b a)

(a b)

m m

m

+ − −
+

.

Solution: Given that m things are distributed among a men and b women. The probability that

men may get a thing is 
a

a b+
.

The probability that a women may get a thing is 
b

a b+
.

If out of m things ‘a’ men get only one thing and other things go to the women, then the probabil-
ity for men is

= mC1 
a

a b+
�
��

�
��

 
b

a b

m

+
�
��

�
��

−1

Similarly, the probability that ‘a’ men may get three things, five things, ...... are respectively

mC3 
a

a b+
�
��

�
��

3

 b

a b

m

+
�
��

�
��

−3

, mC5 a

a b+
�
��

�
��

5

 b

a b

m

+
�
��

�
��

−5

, ......

Let A be the event the number of things got by men is odd and Ai denotes the event
‘men get ith thing’

 i = 1, 3, 5, 7, ......

Thus, the probability that the number of things received by men is odd is,

P(A) = P(A1) + P(A3) + P(A5) + ......

= mC1 
a

a b

b

a b

m

+
�
��

�
�� +
�
��

�
��

−1

 + mC3 
a

a b+
�
��

�
��

3

 b

a b

m

+
�
��

�
��

−3

 + mC5
a

a b+
�
��

�
��

5

 b

a b

m

+
�
��

�
��

−5

 + ......
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= 1

( )a b m+
 m m m m m mC ab C a b C a b1

1
3

3 3
5

5 5− − −+ + + ......

= 
1

( )a b m+
 1

2

1

2
( ) ( )b a b am m+ − −�

�	


��

= 
1

2
.

( ) ( )

( )

b a b a

a b

m m

m

+ − −
+

.

Example 7: From a bag containing 5 one rupee coins and 3 coins of 20 paisa each, a person is
allowed to draw 2 coins indiscriminately. Find the value of his expectation.

Solution: Given that a bag containing 5 one rupee coins and 3 coins of 20 paisa each.

Probability of drawing 2 rupees = 
5

2
8

2

5

14

C

C
=

Probability of drawing 1 rupee and one 20 paisa coin

= 
5

1
3

1
8

2

C C

C

×
 = 

15

28

Probability of drawing two 20 paisa coins = 
3

2
8

2

C

C
 = 

3

28
.

The values of draws in three cases are Rs 2, 1.20 and 0.40 rupees respectively.

∴ Expected value = 
5

14
 × 2 + 

15

28
 × 1.20 + 

3

28
 × 0.40

= 
10

14
 + 

180

280
 + 

12

280

= 
200 180 12

280

+ +

= 
392

280
 = 

7

5
 = Rs. 1.40.

Example 8: A person draws cards one by one from a pack until he draws all the aces. How many
cards he may be expected to draw?

Solution: Let a person has to make n draws for all aces. It means that in n – 1 draws, three aces
and in nth, one ace. The probability of such an occurrence

= 
4

3
48

4
52

1

C C

C
n

n

× −

−
 × 

1

52 1− −( )n
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= 
4 48 1 52 1

4 52 52

× − − +
− −
! ( ) ! ( ) !

( ) ! ( ) ! !

n n

n n
 × 

1

52 1− +n

= 
4( 1 2 3

49 50 51 52

n n n− − −
× × ×

) ( ) ( )
.

The least square number of draws he has to make is 4 and the maximum number 52. Hence,
n range 4 to 52.

The expected number of draws

= 
n=
∑

1

52

 n . 4 
( ) ( ) ( )n n n− − −

× × ×
1 2 3

49 50 51 52

= 
4

49 50 51 52× × ×
 

n n n n

n n n n
= = = =
∑ ∑ ∑ ∑− − −
�

�
	
	




�
�
�1

52
4

1

52
3

1

52
2

1

52

6 11 6  .

Example 9: A makes a bet with B of 5S to 2S that in a single throw with two dice he will throw
seven before B throws four. Each has a pair of dice and they throw simultaneously until one of them
wins, equal throws being disregarded. Find B’s expectation.

Solution: The chance of 7 throwing with two dice

= Coeff. of inx x x x x7 2 3 6 2

26

( ...... )+ + + +

= Coeff. of inx x x5 6 2 21 1
36
( ) ( )− − −

 = 
6

36
 = 

1

6

Similarly, the chance of throwing 4 is 
1

12
.

Hence, A’s chance in each trail is double of B’s.

Now let

 x = B’s chance on the supposition

then, 2x = A’s chance clearly and

A’s chance + B’s chance = 1

i.e.  2x + x = 1

i.e.  3x = 1

i.e.  x = 
1

3

∴ B’s expectation = 
1

3
 of 5S – 

2

3
 of 2S = 4d.
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Example 10: An urn contains n tickets numbered from 1 to n and m tickets are drawn one by one
without replacements from the urn. What is the mathematical expectation of the sum of the numbers
drawn?

Solution: Suppose the variable associated with the jth ticket be x

j = 1, 2, 3, ...... n.

Now,   E(xj) = Σpjxj = 
1

n
 Σxj

= 
1

n
 
n n( )+ 1

2
 = 

n + 1

2

Let S be the sum, then the expected value of the sum

 E(S) = Σ E(xj) = m Σ E(xj)

= m
( )n + 1

2
.

Example 11: What is the expectation of the number of failures preceding the first success in an
infinite series of independent trails with constant probability of successes.

Solution: The probabilities of success in first, second, third, ...... trails respectively are

p, qp, q2p, q3p, ......

Let X be the no. of failures

Then, the expected number of failures preceding the first success

 E(X ) = 0 . p + 1 . qp + 2q2p + ......

= qp [1 + 2q + 3q2 + ...... ∞], q < 1

= qp

q( )1 2−
[� p = 1 – q]

= 
q

p
 = 

1− p

p
.

����������	


1. If on average 1 vessel in every 10 is wrecked find the probability that out of 5 vessels expected to arrive,
4 at least will arrive safely.

2. A teacher claims that he could often tell while his students were still in their first year whether they will
obtain I, II, III divisions or fail in their final examinations. To demonstrate his claim, he forecasts the
fates of 8 students. Find the probability of his being correct in 5 cases.

3. Five coins whose faces are marked, 2, 3 are thrown; what is the chance of obtaining a total of 12?

4. Determine the probability of throwing more than 8 with 3, perfectly symmetrical dice.

5. If three symmetrical dice are thrown, calculate the probability that the sum of numbers is 12.
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6. A and B in turns toss an ordinary die for a prize of Rs. 44. The first to toss a ‘six’ wins. If A has first
throw, what is his expectation?

7. A bag contains 2 white and 3 black balls. Four persons A, B, C and D in the order named each draw one
ball and do not replace it. The person to draw a white ball receives Rs. 200. Determine their expecta-
tions.

8. A box containing 2n tickets among which nCi bear the number i, (i = 0, 1, 2, ...... n). A group of m tickets
is drawn, what is the expectation of the sum of numbers?

9. A person draws 2 balls from a bag containing 3 white and 5 black balls. If he is to receive Rs. 10 for
every white ball which he  draws and Rs. 1 for every black ball. What is his expectation?

10. Two players of equal skill A and B play a set of games; they leave off playing when A wants 3 points and
B wants 2. If the stake is Rs. 16, what share ought each to take?

������

1.
45927

50000
2.

189

8192
3.

5

6
4.

7

27
, 

20

27

5.
25

216
6. 24 7. 80, 60, 40, 20 8.

mn

2

9. 8.75 10. 5, 11
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In this chapter, we shall discuss some probability distribution such as Binomial, Poisson, Normal
distribution with their applications. In theoretical distribution, normal distribution is most important
distribution. Binomial and Poisson distributions are discrete probability distribution and Normal
distribution is continuous probability distribution.

Before we discuss formal theoretical probability distribution, first we shall define certain
terminologies and notations, which are used in defining theoretical distributions.

���������	
������
��
����	�
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1. Random variable: A variable, which takes a definite set of values with a definite probability
associated with each value is called a random variable.

2. Continuous random variable: A random variable X is said to be a continuous random variable,
if it takes all possible values between its limits. For example, height of a tree, weight of a school
children etc.

3. Discrete random variable: A random variable X is said to be a discrete random variable, if it
takes only finite values between its limits, for example, the number of student appearing in a
festival consisting of 400 students is a discrete random variable which can assume values other
than 0, 1, 2, ......, 400.

4. Continuous probability distribution: Let X be a random variable which assume values in the
interval [– ∞, ∞], then the probability in (a, b) is defined by

P(a ≤ x ≤ b) = 
a

b
f x dx� ( )

where, f (x) is called probability density function which satisfies the following conditions:

(i) f (x) ≥ 0 ∀ x ∈ (– ∞, ∞) (ii)
− ∞

∞

� f x( )  = 1

5. Discrete probability distribution: Let X be a random variable which assume values x1, x2, ......, xn
with probability p1, p2, ......., pn respectively, then the probability is

CCCCCHAPTERHAPTERHAPTERHAPTERHAPTER     22222

Theoretical Distributions
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 P(X = xi) = p(xi) or f (xi) for i = 1, 2, ......, n

where, p(xi) is called the probability mass function which satisfies the following conditions:

(i) f (x) ≥ 0 (ii)
i

n

f x
=
∑ =

1

1( )

6. Mean and variance of random variables: Let X be a random variable which assume values
x1, x2, ......., xn  with probability p1, p2, ......., pn respectively.

We denote mean (average or expected value) by µ ( x  or m)

or E(X ) = 
Σ
Σ
p x

p
i i

i

 = Σ pi xi [� Σ pi = 1]

And we denote variance by (σ2 or µ2 or µ′2 – µ′1
2 or E(X2) – [E(X )]2)

= 
i

i ip x x∑ −( )2 or
i

i ip x m∑ −( )2

Standard deviation (σ) = + variance .

������	
��	����	���	���	�


Binomial distribution is the extension of the theorem of probability. Binomial distribution was discov-
ered by James-Bernoulli in 1700. Let X  be the random variable denote the number of successes in these
n trials. Let p and q be the probabilities of success and failure one any one trial.Then in the n independ-
ent trails the probability that there will be r successes and n – r failures is given by

  P(X = r) = nCr p
r qn – r , r = 0, 1, 2, ......, n

The probability distribution of the random variable X is therefore given by

X 0 1 2 .......r .........n

P(X) nC0 p
0 qn nC1 p

1 qn–1 nC2 p
2 qn–2 nCr p

r qn–r nCn p
n qn-n

Hence, the probability distribution is called the binomial distribution because for r = 0, 1, 2, ......, n,
are the probabilities of the successive terms of the binomial expansion of (q + p)n.

Note. 1. The constant n, p, q are called parameters of the distribution.

2. Also denoted b(r ; n, p) = nCr p
r  qn – r, r = 0, 1, 2, ......, n

3. For N set of n trial the successes 0, 1, 2, .....r, ....., n are given by N(q +  p)n, which is called binomial
distribution.
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For the binomial distribution

   P(X = r) = nCr p
r qn – r,   r = 0, 1, 2, ......, n ...(1)

, p + q = 1.

Taking out origin at 0 successes, we have

   µ′1 = E(X) = 
r

n

r
=
∑

0

nCr p
r qn – r

= 0. qn + 1. nC1 p qn– 1 + 2.nC2 p
2 qn– 2 + 3. nC3 p

3 qn– 3 + ........ + npn

= 0 + npqn – 1 + 
1

2
n(n – 1) 2p2 qn – 2 + 

1

6
n(n – 1) (n – 2) 3p3 qn – 3 + ....... + npn

= np[qn – 1 + n–1C1 pqn – 2 + n – 1C2 p2 qn – 3 + ...... + pn –1]

= np (q + p)n – 1 , since q + p = 1

= np

∴  Mean ( X ) = np

 µ′2 = E (X2) = 
r

n

r
=
∑

0

2 nCr p
r qn – r

= 
r

n

r r r
=
∑ + −

0

1[ ( )]nCr p
r qn – r

= r
r

n

=
∑

0

nCr p
r qn – r + r r

r

n

=
∑ −

0

1( ) nCr p
r qn – r

= np + r r
n n

r r
r

n

=
∑ − −

−0

1
1

1
( )

( )

( )  n – 2Cr–2 pr qn – r

= np + n(n – 1) p2 
r

n

=
∑

0

n–2Cr–2 p
r–2 qn – r

= np + n(n – 1)p2 (q + p)n – 2, since q + p = 1

= np + n(n – 1) p2

= np [ 1 + (n – 1) p]

= np [1 + np – p]

= np [q + np]

= npq + n2p2

∴  Variance (µ2) = µ′2 – µ′1
2 or E(X2) – [E(X)]2
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= npq + n2 p2 – n2p2

= npq

 Variance (µ2 or σ2) = npq

and Standard deviation (σ) = npq

 µ′3 = E(X 3) = 
r

n

r
=
∑

0

3 nCr  p
r qn–r

= 
r

n

=
∑

0

[r(r – 1) (r – 2) + 3r (r – 1) + r] nCr p
r qn – r

On simplification in above similar manner, we have

 = n(n – 1) (n – 2) p3 (q + p)n – 3 + 3n(n – 1)p2 (q + p)n – 2 + np (q + p)n – 1

 = n(n – 1) (n – 2) p3 + 3n (n – 1)p2 + np

  µ3 = µ′3 – 3µ′2 µ′1 + 2µ′1
3 = npq(q – p)

 µ′4 = E(X4) = 
r

n

r
=
∑

0

4 nCr p
r qn – r

= 
r

n

=
∑

0

{r(r – 1) (r – 2) (r – 3) + 6r (r – 1) (r – 2) + 7r (r – 1) + r} nCr p
r qn – r

On simplification in above similar manner, we have

= n (n – 1) (n – 2) (n – 3)p4 + 6n(n –1) (n – 2) p3 + 7n(n – 1) p2 + np

µ4 = µ′4 – 4µ′3µ′1 + 6µ′2 µ′1
2 – 3µ′1

4 = npq [ 1 + 3(n – 2) pq]

Now, β1 = 
µ
µ

3
2

2
3

2

3

2

= − = −[ ( )]

( )

( )npq q p

npq

q p

npq

β2 = 
µ
µ

4

2
2

2 2 2

2 2 2

3 1 6=
+ −n p q npq pq

n p q

( )
 = 3 + 

1 6− pq

npq
 (Kurtosis)

 γ1 = β1 = −q p

npq
(Skewness)

γ2 = β2 – 3 = 
1 6− pq

npq
.

Note. 1. The mean of binomial distribution is greater than the variance, since 0 < q < 1.

2. If skewness is zero i.e.,  β1 = 0 so p = q = 
1

2
.

3. If  p < 
1

2
, skewness is positive, if  p > 

1

2
, negative.
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Example 1:  Show that for the binomial distribution (q + p)n, µr + 1 = pq nr
d

dp
r 1

rµ µ
− +

�
��

�
��

where, µr is the rth moment about the mean. Hence, obtain µ2 , µ3 and µ4.

Solution: Using the definition of rth moment about mean, we have

µr = E [X – E(X)]r

= 
x

n
rx np

=
∑ −

0

( ) nCx
 px qn – x

Differentiating with respect to p both sides, we get

 
d

dp
nrr

x

nµ = −
=

∑
0

(x – np)r – 1 nCx p
x qn – x

+ 
x

n
rx np

=
∑ −

0

( ) nCx [x px – 1 qn – x – (n – x) px qn – x – 1]

= – nr ( )x np r

x

n

− −

=
∑ 1

0

 nCx p
x qn – x

+ ( )x np r

x

n

−
=

∑
0

 nCx 
1

pq

�
��
�
��

 [xq – np + xp] px q n – x

= – nr µr – 1  + 
1

pq
 ( )x np r

x

n

−
=

∑
0

nCx [x (p + q) – np] pxqn–x

= – nr µr–1 + 
1

pq
 ( )x np C p qr n

x
x n x

x

n

− + −

=
∑ 1

0

= – nr µr–1 + 
1

pq
 µr +1

⇒  µr + 1 = pq nr
d

dp
r

rµ µ
− +

�
��

�
��1 ...(1)

Putting r = 1, 2, 3 in (1), we get

 µ2 = pq 
d

dp
n

µ µ1
01+

�
��

�
��

. .

= pq (0 + n), since µ1 = 0, µ0 = 1
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= npq

µ3 = pq 
d

dp
n

µ µ2
12+

�
��

�
��

.

= pq (nq – np + 2n . 0) = npq (q – p)

µ4 = pq d

dp
n

µ
µ3

23+
�
��

�
��

.

= pq 
d

dp
np p p n npq( ) ( ) .1 1 2 3− − +

�
	



�
�
� �

= pq 
d

dp
np np np n pq− + +

�
	



�
�
3 2 32 3 2� �

= pq [n – 6np + 6np2 + 3n2pq]

= npq – 6np2q + 6np3q + 3n2p2q2

= 3n2p2q2 + npq + 6npq (p2 – p)

= 3n2p2q2 + npq + 6np2q ( p – 1)

= 3n2p2q2 + npq – 6np2q2

= 3n2p2q2 + npq (1 – 6pq).

Example 2: A die is tossed thrice. Getting an even number is considered as success. What is
variance of the binomial distribution ?

Solution: Let p be the probability of getting an even number

i.e., p = 3

6

1

2
=  then q = 1 – 

1

2

1

2
= , n = 3

The variance of binomial distribution = npq, where q = 1 – p

= 3 × 
1

2

1

2
×  = 

3

4
.

Example 3: The mean and variance of a binomial distribution are 4 and 3 respectively. Find the
probability of getting exactly six successes in this distribution.

Solution: The mean of binomial distribution = np = 4 (given) ...(1)

and the variance of binomial distribution = npq = 3 (given) ...(2)

Using (1) and (2), we have

 npq = 3 ⇒   4 . q = 3 ⇒ q = 
3

4

and  p = 1 – q = 1 – 
3

4
 = 

1

4

by (1),  np = 4 ⇒ n × 
1

4
 = 4 ⇒ n = 16
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The probability of 6 success = 16C6 
1

4

3

4

6 10�
��
�
��
�
��
�
��

 = 
8008 3

4

10

16

×
.

Example 4: In 256 sets of 12 tosses of a coin, in how many cases one can expect 8 heads and
4 tails.

Solution: Let p be the probability of head i.e., p = 
1

2
 and q be the probability of tail i.e., q = 

1

2
.

 n = 12, N = 256.

The binomial distribution is N(q + p)n = 256 
1

2

1

2

12

+�
��

�
��

The probability of 8 heads and 4 tails in 12 trial is

12C8 
1

2

1

2

495

4096

8 4�
��
�
��
�
��
�
�� =

The expected number of such cases in 256 sets

= 256 × 
495

4096
 = 30.9 ≈ 31 (nearly).

Example 5: During war, 1 ship out of 9 was sunk on an average in making a voyage. What was
the probability that exactly 3 out of a convoy of 6 ships would arrive safely ?

Solution: Let p be the probability of a ship arriving safely i.e.,

 p = 1 – 
1

9

8

9
= then q = 1 – p = 

1

9

 n = 6, N = 1

The binomial distribution is

N (q + p)n = 
1

9

8

9

6

+�
��

�
��

The probability that exactly 3 ship arrive safely

= 6C3 
8

9
�
��
�
��

3

 
1

9

3�
��
�
��  = 20 × 

512

96  = 
10240

96 .

Example 6: The probability that a pen manufactured by a company will be defective is 
1

10
. If

12 such pens are manufactured, find the probability that

(i) exactly two will be defective.

(ii) at least one will be defective.

(iii) none will be defective.
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Solution: Given that the probability of a defective pen = 
1

10
 = 0.1

Then the probability of a non-defective pen is = 1 – 0.1 = 0.9

(i) The probability that exactly two pen will be defective

= 12C2 (0.1)2 (0.9)10 = 0.2301

(ii) The probability that at least two will be defective

= 1 – {Probability that either none or one is non-defective}

= 1 – {12C0 (0.9)12 + 12C1 (0.1) (0.9)11}

= 1 – 0.6588 = 0.3412

(iii) The probability that none will be defective

= 12C12 (0.9)12 = 0.2833.

Example 7: Six dice are thrown 729 times. How many times do you expect at least three dice to
show a five or six ?

Solution: Let p be the chance of getting 5 or 6 with one die

then p = 
1

3
,  q = 1 – 

1

3
= 2

3

n = 6, N = 729

Since, dice are in sets of 6 and there are 729 sets.

The binomial distribution is

 N(q + p)n = 729 
2

3

6

+�
��

�
��

1

3

The required number is

= 729 6
3

3 3
6

4

4 2
6

5

5
6

6

61

3

2

3

1

3

2

3

1

3

2

3

1

3
C C C C�
�
�
�
�
�
�
� + �

�
�
�
�
�
�
� + �

�
�
�
�
�
�
� + �

�
�
�

�
�
�

�
�
�

= 
729

36  {160 + 60 + 12 + 1} = 233.

Example 8: A perfect cubical die is thrown a large number of times in set of 8. The occurrence
of 5 or 6 is called a success. In what proportion of sets do you expect 3 successes.

Solution: Let p = the chance of occurrence 5 or 6 with one die = 
2

6

1

3
=

 q = 1 – p = 1 – 
1

3

2

3
= , n = 8
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The binomial distribution is given by

 N(q + p)n = N 
2

3

1

3

8

+�
��

�
��

The number of sets in which 3 successes are expected

 N 8
3

3 51

3

2

3
C
�
��
�
��
�
��
�
��

�
�
�

��

�
�
�

��
 = N 

8

3 5

2

3

5

8

!

! !
.

= N . 
8 7 6 5 2

3 2 5 3

56 32

243 27

1792

6591

5

8

× × × ×
× × ×

= ×
×

=!

!
N N

The percentage is = N 
1792

6591

100×
N

 = 27.3%.

Example 9: In 800 families with 4 children each how many families would be expected to have
(i) 2 boys and 2 girls (ii) at least one boy (iii) no girl (iv) at least two girls ? Assuming that equal
probabilities for boys and girls.

Solutioin: Since, the probabilities for boys and girls are equal

Then let p = probability of having a boy = 
1

2

and q = probability of having a girl = 
1

2

Here n = 4, N = 800

The binomial  distribution is N (q + p)n  = 800
1

2

1

2

4

+�
��

�
��

.

(i) The expected number of families having 2 boys and 2 girls

= 800 4C2 
1

2

1

2

800 6

16

2 2�
��
�
��
�
��
�
�� = ×

 = 300.

(ii) The expected number of families having at least one boy

= 800 4
1

3
4

2

2 2
4

3

3
4

4

41

2

1

2

1

2

1

2

1

2

1

2

1

2
C C C C
�
��
�
��
�
��
�
�� + �

��
�
��
�
��
�
�� + �

��
�
��
�
��
�
�� + �

��
�
��

�
�
�

��

�
�
�

��

= 
800

24  [4 + 6 + 4 + 1] = 750.

(iii) The expected number of families having no girl

= 800 4C4 
1

2

800

16

4�
��
�
�� =  = 50.
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(iv) The expected number of families having at most two girls

= 800 4
2

2 2
4

3

3
4

4

41

2

1

2

1

2

1

2

1

2
C C C
�
��
�
��
�
��
�
�� + �

��
�
��
�
��
�
�� + �

��
�
��

�
�
�

��

�
�
�

��

= 
800

24  [6 + 4 + 1] = 550.

Example 10: The probability that a men aged 60 years will live up to 70 years is 0.65. What is
the probability that out of ten men now 60 years, at least 7 would live up to 70 years ?

Solution: Given that the probability of a men aged 60 years will live up to 70 years is = 0.65

Then p = 0.65, q = 1 – p = 1 – 0.65 = 0.35

 n = 10

Let X be the number of men who live up to 70 years.

The probability that out of 10 men, r men will up to 70 years is

 P (X = r) = nCr p
r qn – r = 10Cr (0.65)r (0.35)10 – r

The probability of at least 7 men would live up to 70 years.

P(X ≥ 7) = P(X = 7) + P(X = 8) + P (X = 9) + P (X = 10)

= 10C7 (0.65)7 (0.35)3 + 10C8 (0.65)8 (0.35)2 + 10C9 (0.65)9 (0.35)1 + 10C10 (0.65)10

= 0.2523 + 0.1756 + 0.0725 + 0.0135 = 0.5140.

Example 11: Assuming that on the average one telephone number out of 15 called between
2 p.m. and 3 p.m. on week days is busy. What is the probability that if 6 randomly selected telephone
numbers are called (i) not more than three, (ii) at least three of them will be busy ?

Solution: Let p be the probability of a telephone number out of 15 called between 2 p.m. and
3 p.m. on week days is busy,

i.e., p = 
1

15
 then q = 1 – 

1

15

14

15
= , n = 6, N = 1

The binomial distribution is N (q + p)n = 
14

15

1

15

6

+�
��

�
��

(i) The probability that not more than three will be busy

  P(X ≤ 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

= 6C0 
14

15

6�
��
�
��

 + 6C1 
14

15

1

15

5�
��
�
��
�
��
�
��  + 6C2 

14

15

1

15

4 2�
��
�
��
�
��
�
��

+ 6C3 
14

15

1

15

3 3�
��
�
��
�
��
�
��

= 
( )

( )

14

15

3

6
[2744 + 1176 + 210 + 20]

= 
2744 4150

15 6

×
( )

 = 0.9997
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(ii) The probability that at least three of them will be busy

P(X ≥ 3) = P (X = 3 ) + P(X = 4) + P (X = 5) + P (X  = 6)

= 6C3 
14

15

1

15

3 3�
��
�
��
�
��
�
��

 + 6C4 
14

15

1

15

2 4�
��
�
��
�
��
�
��

+ 6C5 
14

15

1

15

5�
��
�
��
�
��
�
��

 + 6C5 
1

15

6�
��
�
��

= 0.005.

Example 12: The following data are the number of seeds germinating out of 10 on damp filter
for 80 sets of seeds. Fit a binomial distribution to these data:

x 0 1 2 3 4 5 6 7 8 9 10 Total

f 6 20 28 12 8 6 0 0 0 0 0 80

Solution: Given that n = 10, N = 80 and Σf = 80.

The arithmetic mean = 
Σ
Σ

fx

f

= 
1 20 2 28 3 12 4 8 5 6 6 0 7 0 8 0 9 0 10 0

80

× + × + × + × + × + × + × + × + × + ×

= 
174

80

The mean of a binomial distribution = np

∴  np = 
174

80
⇒ p = 

174

80 10×
 = 0.2175

Then  q = 1 – p = 0.7825.

Hence, the binomial distribution to be fitted to the data is

 N(q + p)n = 80 (0.7825 + 0.2175)10

Thus, the theoretical frequencies are

x 0 1 2 3 4 5 6 7 8 9 10

f 6.9 19.1 24.0 17.8 8.6 2.9 0.7 0.1 0 0 0

�����	������

1. The mean and variance of  binomial distribution are 4 and 
4

3
 respectively. Find P(X  ≥ 1).

2. The items produced by a firm are supposed to contain 5% defective items. What is the probability that a
sample of 8 items will contain less than 2 defective items ?
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3. Find the binomial distribution for which the mean is 4 and variance is 3.

4. Bring out the fallcy in the statement:

The mean of a binomial distribution is 3 and variance is 4.

5. If 10% bolts produced by a machine are defective, determine the probability that out of 10 bolts chosen
at random (i) 1 (ii) none (iii) at least one (iv) at most two bolts, will be defective.

6. An irregular six-faced die is thrown, and the expectation that in 100 throws it will give five even num-
bers is twice the expectation that it will give four even numbers. How many times in 10,000 sets of 10
throws would you expect it to give no even number ?

7. The incidence of occupational disease in an industry is such that the workmen have a 25% chance of
suffering from it. What is the probability that out of six workmen 4 or more will contact the disease ?

8. A box contains ‘a’ red and ‘b’ black balls, ‘n’ balls are drawn. Find the expected number of red balls
drawn.

9. Assuming that half the population are consumers of rice so that the chance of an individual being a

consumer is 
1

2
 and assuming that 100 investigators, each take ten individuals to see whether they are

consumers, how many investigators do you except to report that three people or less are consumers ?

10. Find the most probable number of heads in 99 tossing of a biased coin, given that the probability of a

head in a single tossing is 
3

5
.

11. In litters of 4 mice the number of litters which contained 0, 1, 2, 3, 4 females were noted. The figures are
given in the table below:

Number of female mice 0 1 2 3 4 Total

Number of litters 8 32 34 24 5 103

In the chance of obtaining a female in a single trial is assumed constant, estimate this constant of un-
known probability.

12. The probability of a man hitting a target in 
1

4
. He fires 7 times. What is the probability of his hitting the

target at least twice. How many times must he fires so that the probability of his hitting at least one is

greater than 
2

3
 ?

13. Eight coins are tossed at a time, 256 times. Number of heads observed at each throw are recorded and the
results are as given below. Find the expected frequency and fit a binomial distribution. What are the
theoretical values of the mean and standard deviation ? Calculate also the mean and standard deviation
of  the observed frequencies.

14. The probability that a bomb droped from a plane strike the target is 
1

5
. If six such bombs are droped find

the probability that at least two will strike the target, and exactly two will strike the target.
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15. In a precision bombing attack there is a 50% chance that anyone bomb will strike the target. Two direct
hits are required  to destroy the target completely. How many bombs must be dropped to give a 99%
chance or better of completely destroying the target ?

16. If a coin is tossed N times, where N is very large even number. Show that the probability of getting

exactly 
1

2
 N – p heads and 

1

2
 N + p tails is approximately 

2
1 2

πN
�
��

�
��

/

 e–2 p2/N.

�
�����

1. 0.99863 2. 8C0 (0.05)0 (0.95)8 + 8C1 (0.05)1 (0.95)7

3. P(X = r) = 16Cr 
1

4
�
��
�
��

r

 3

4

16�
��
�
��

− r

, r = 0, 1, 2, 3 ,....., 16. 4. np > npq, since q < 1

5. (i) 0.03874 (ii) 0.3487 (iii) 0.6513

(iv) 0.58114 6. 1 (approximately) 7. 0.0376

8.
na

a b+ 9. 17 (approximately) 10. 59 and 60

11. 103 (0.534 + 0.466)4 12. n > 3.8, so the least value of n is 4.

13. .5, 4.0, 1.41, 4.0, 1.44 14. 0.345, 0.246 15. 11.

�������	���
����	���	���	�


Poisson distribution was discovered by a french mathematician Simeon Denis Poisson in 1837. Poisson
distribution is also a discrete probability distribution of a discrete random variable, which has no upper
bound. Poisson distribution is a limiting form of the binomial distribution (q + p)n under the following
conditions:

(i) n → ∞, i.e., the number of trials is indefinitely large.

(ii) p → 0, i.e., the constant probability of success for each trial is indefinitely small.

(iii) np is a finite quantity, say m.

Thus, p = 
m

n
, q = 1 – 

m

n
, where m is a positive real number.

Poisson distribution deals with situations explained below:

(i) Number of suicides or deaths by heart attack in 1 minute.

(ii) Number of accidents that take place on a busy road in time t.

(iii) Number of printing mistakes at each unit of the book.

(iv) Number of cars passing a certain street in time t.

(v) Emission of radioactive particles.

(vi) Number of faulty blades in a packet of 1000.

(vii) Number of person born blind per year in a certain village.

(viii) Number of telephone calls received at a particular switch board in 1 minute.
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The probability distribution of a random variable X is said to be a Poisson distribution, if the
random variable assumes only non-negative values and its probability distribution is given by

 P(X = r) = 
m e

r

r m−

!
, r = 0, 1, 2, .......

where, m is called the parameter of the distribution and m > 0

The probability of r successes in a binomial distribution

  P(X = r) = nCr p
r qn – r

= 
n

r n r

!

! ( ) !−
 pr qn – r = 

n n n n r

r

( ) ( ) ........ ( )

!

− − − +1 2 1
 pr (1 – p)n – r

= 

1 1
1

1
2

1
1

1−���
�
�� −���

�
�� − −�

��
�
�� − −

n n

r

n
p p n

r

r n r r........ ( )

!

= 

1
1

1
2

1
1

1−���
�
�� −���

�
�� − −�

��
�
�� − −

n n

r

n
np p

r

r n r........ ( ) ( )

!

Taking limit n → ∞, p → 0 such that np = m

= lim
........

!n

n n

r

n
r→ ∞

−���
�
�� −���

�
�� − −�

��
�
��1

1
1

2
1

1

 mr 1 −���
�
��

−
m

n

n r

= 
m

r

m

n

r

n

n r

!
lim
→ ∞

−

−���
�
��1   = 

m

r

m

n

m

n

r

n

n r

!
lim
→ ∞

−

−���
�
�� −���

�
��1 1

= 
m

r

r

!
 e– m.1 � lim

n

n
m

n

r

m

n
e

m

n

→ ∞

−

→ ∞

−

−���
�
�� =

�

	





−���
�
�� =

�

�



1

1 1and lim

= 
m e

r

r m−

!
, r = 0, 1, 2, ......

The probability of 0, 1, 2, ....... r, ........ successes are

e– m, e e m e mm m m− − −

1 2 3

2 3

!
,

!
,

!
, ....... e m

r

m r−

!
, ...... respectively.

Note.  It should be noted that 
r r

r m
m

r

r

P X r
m e

r
e

m

r
=

∞

=

∞ −
−

=

∞

∑ ∑ ∑= = =
0 0 0

( )
! !

 = e–m em = 1.
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���������	
�	��������������	���	��

 µ′1 = E(X ) = r P X r
r

. ( )
=

∞

∑ =
0

= r
e m

r
r

m r

.
!=

∞ −

∑
0

= e–m 
r

rm

r=

∞

∑ −0
1( ) !

 = e– m m
m m

+ + +
�

��
�

��
2 3

1 2! !
.....

= m e–m 1
1 2

2

+ + +
�

��
�

��
m m

! !
.....  = me–m . em = m

∴ Mean ( )X  = m

 µ′2 = E(X 2) = r P X r
r

2

0

. ( )
=

∞

∑ =

= 
r

m r

r r r
e m

r=

∞ −

∑ − +
0

1{ ( ) }
!

= 
r

m r

r

m rr r e m

r

r e m

r=

∞ −

=

∞ −

∑ ∑− +
0 0

1( )

!

.

!

= e–m m

r

r

r
( ) !−=

∞

∑ 2
0

 + m

= e– m m
m m2

3 4

1 2
+ + +

�

��
�

��! !
.....  + m

= m2e–m 1
1 2

2

+ + +
�

��
�

��
m m

! !
.....  + m

= m2 e– m.em + m = m2 + m

∴ Variance (µ2) = µ′2  – µ′1
2 or E(X 2) – [E(X)]2

= m2 + m – m2 = m

  Variance (µ2 or σ2) = m

Hence, mean of Poisson distribution = Variance of Poisson distribution

Standard deviation  (σ) = m

 µ′3 = E(X3) = 
r

r P X r
=

∞

∑ =
0

3 ( )
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= 
r

m r

r r r r r r
e m

r=

∞ −

∑ − − + − +
0

1 2 3 1{ ( ) ( ) ( ) }
!

= 
r

m r

r

m rr r r e m

r

r r e m

r=

∞ −

=

∞ −

∑ ∑− − + −

0 0

1 2
3

1( ) ( )

!

( )

!
 + 

r

m rr e m

r=

∞ −

∑
0

!

= e–m m3 
m

r

r

r

−

=

∞

−∑
3

0
3( ) !

 + 3 e– mm2 m

r

r

r

−

=

∞

−∑
2

0
2( ) !

 + e–m . m 
m

r

r

r

−

=

∞

−∑
1

0
1( ) !

= m3 + 3m2 + m.

  µ3 = µ′3 – 3µ′2 µ′1 + 2µ′1
3

= m

 µ′4 = E(X4) = r P X r
r

4

0

( )=
=

∞

∑

= 
r

m r

r r r r r r r r r r
e m

r=

∞ −

∑ − − − + − − + − +
0

1 2 3 6 1 2 7 1( ) ( ) ( ) ( )( ) ( )
!

� �

= e–m m4

r

rm

r=

∞ −

∑ −0

4

4( ) !
 + 6 e– m

 m
3

r

rm

r=

∞ −

∑ −0

3

3( ) !
 + 7 e– m m2

r

rm

r=

∞ −

∑ −0

2

2( ) !

+ e– m . m
r

rm

r=

∞ −

∑ −0

1

1( ) !

= m4 + 6m3 + 7m2 + m.

  µ4 = µ′4 – 4µ′3 µ′1 + 6µ′2µ′1
2 – 3µ′1

4

= (m4 + 6m3 + 7m2 + m) – 4(m3 + 3m2 + m) (m) + 6 (m2 + m) m – 3 m4

= 3m2 + m

Now β1 = 
µ
µ

3
2

2
3

2

3

1= =m

m m

 β2 = 
µ
µ

4

2
2

2

2

3
3

1= + = +m m

m m

  γ1 = β1
1=
m

γ2 = β2 – 3 = 
1

m

When m → ∞, β1 = 0 and β2 = 3

Hence, Poisson distribution is always positively skewed.
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Note. µ1 = µ′1 – µ′0 m = m – m = 0, since

µn = µ′n – nC1 µ′n–1 . m + nC2 µ′n–2
 m2 – ......

����������������������
��������������	���	��

Poisson distribution for r successes, we have

P(X = r) = 
m e

r

r m−

!
, r = 0, 1, 2, 3 ....... ...(1)

where m is the mean of successes.

Also  P(X = r + 1) = 
m e

r

r m+ −

+

1

1( ) !
, r = 0, 1, 2, ...... ...(2)

divide (2) by (1), we get

P r

P r

m

r

( )

( )

+
=

+
1

1

⇒ P(r + 1) = 
m

r + 1
 P(r)

This is the recurrence formula for Poisson distribution.

�������������	������������	���	��

The value of r which gives the greatest probability is the mode of the Poisson distribution. Thus

 
m e

r

m e

r

m e

r

r m r m r m− − − + −

−
≤ ≥

+

1 1

1 1( ) ! ( ) ! ( ) !

Where, m > r > m – 1

i.e., m – 1 < r < m

Thus, if m is an integer then there are two modes m – 1 and m. If m is not an integer then the
mode is the integral value between m – 1 and m.

���������
�����

Example 1: Show that for the Poisson distribution with mean m

µr + 1 = r m µr – 1 + m
d

dm
rµ

, where µr = 
x 0

r
m x

(x m)
e m

x !=

∞ −

∑ − .
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Solution: Given that µr  = 
x

r m
x

x m e
m

x=

∞
−∑ −

0

( )
!

Differentiating with respect to m both sides, we get

d

dm
r x m

e m

x
r

x

r
m xµ = − −

=

∞
−

−

∑
0

1( ) ( )
!

 + 
x

rx m
x=

∞

∑ −
0

1
( ) .

!  {e– m . x mx – 1 – mx e– m}

= – r 
x

r
m x

x m
e m

x=

∞
−

−

∑ −
0

1( )
!

 + 
x

rx m

x=

∞

∑ −

0

( )

!
e– m mx – 1 {x – m}

= – r µr–1 + 
x

r
m x

x m
e m

x=

∞
+

− −

∑ −
0

1
1

( )
!

= – r µr – 1 + 
1

0

1

m
x m

e m

x
x

r
m x

=

∞
+

−

∑ −( )
!

= – r µ r – 1 + 
1

m
µr + 1

⇒   µr +1 = rm µr–1 + m
d

dm
rµ

Example 2: Six coins are tossed 6400 times. Using the Poisson distribution, what is approxi-
mate probability of getting six heads x times.

Solution: Let p be the probability of getting all the six head in a throw of six coins. i.e.,

p = 
1

2

1

646
= .

Here, n = 6400

The mean of Poisson distribution = np = 6400 × 
1

64
 = 100

The probability of getting all six heads x times according to Poisson distribution is 
e

x

x− 100 100( )

!
.

Example 3: Show that for a Poisson’s distribution γ1 γ2 σ m = 1, when σ and m are the standard
deviation and mean respectively.

Solution: In Poisson distribution γ1 = 
1

m
and γ2 = 

1

m

The standard deviation (σ) = m
and the mean = m

Now, we have γ1 γ2 σ m = 
1 1

m m
m× ×  × m  = 1
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Example 4: If X is a Poisson variate such that P(X = 2) = 9P (X = 4)  + 90 P (X = 6). Find the
mean and variance of X.

Solution: The Poisson distribution is

P(X = r) = 
m e

r

r m−

!
. r = 0, 1, 2, ......, m > 0

Given that  P(X = 2) = 9 P(X = 4) + 90P (X = 6)

⇒ m e m2

2

−

!
 = 9 

m e m4

4

−

!
 + 90 

m e m6

6

−

!

⇒ m m m2 4 6

2

3

8 8
= +

⇒  4 = 3m2 + m4 ⇒ m4 + 3m2 – 4 = 0

⇒ (m2 – 1) (m2 + 4) = 0 ⇒ (m2 – 1) = 0 ⇒ m = 1 (Taking only real values)

Hence, the mean and variance of X are each equal to 1.

Example 5: In a Poisson distribution P(x) for x = 0 is 0.1. Find the mean given that
loge 10 = 2.3026.

Solution: The Poisson distribution is

P(x) = 
m e

x

x m−

!
, x = 0, 1, 2, ....... , m > 0 ...(1)

Given that for x = 0  P(x) = 0.1

Then by (1), we have

 0.1 = 
m e m0

0

−

!
⇒ e–m = 0.1 ⇒ em = 10

⇒ m = loge 10 = 2.3026.

Example 6: If 2% electric bulbs manufactured by a company be defective, find the probability of
(i) 0 (ii) 1 (iii) 2 (iv) 3 defectives in a lot of 100 bulbs.

Solution: Let p be the probability of electric bulbs manufactured by a company be defective.

i.e., p = 
2

100
.

Given that, n = 100

we have, np = 100 × 
2

100
 = 2 = m (mean)

Let X be the number of electric bulbs manufactured by a company be defective.

Then, P(X = r) = 
m e

r

e

r

r m r− −

=
! !

2 2

, r = 0, 1, 2, 3, .....
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(i) P(X = 0) = 
2

0

10 2

2

e

e

−

= =
!

1

(2.718)2  = 0.135

(ii) P(X = 1) = 
2

1

21 2

2

e

e

−
= =

!

2

(2.718)2  = 2 × (0.135) = 0.2706

(iii) P (X  = 2) = 
2

2

23 2

2

e

e

−

= =
!

2

(2.718)2
 = 2 × (0.135) = 0.2706

(iv) P (X = 3) = 
2

3

4

3

1 4

3

3 2

2

e

e

−

= × = ×
!

1

(2.718)2  = (1.33) × (0.135) = 0.18.

Example 7: A Poisson distribution has a double mode at x = 4 and x = 5. Find the probability
that x will have either of these values P(x = 4) = P(x = 5).

Solution: The Poisson distribution is

  P(X = r) = 
m e

r

r m−

!
, r = 0, 1, 2, .......

Given that  P (x = 4) = P (x = 5)

⇒
m e m em m4 5

4 5

− −

=
! !

⇒ m = 5

We know that, e–5 = 0.006738

Then  P(x = 4) = 
5 0.006738

4 !

4 ×

The required probability is

 P (x = 4) + P(x = 5) = 2P(x = 4)

= 2 × 
5 0.006738

4 !

4 ×
 = 0.35.

Hence, it is easy to show that P(4) > P(3) and also greater than P(6).

Example 8: Fit a Poisson’s distribution to the following data and calculate theoretical frequencies:

Deaths 0 1 2 3 4

Frequencies 122 60 15 2 1

Solution: The Poisson distribution is

P(X = r) = 
m e

r

r m−

!
, r = 0, 1, 2, 3, ...... ...(1)
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Here, mean  = 
Σ

Σ
f x

f

( )
=

× + × + × + × + ×
+ + + +

0 122 1 60 2 15 3 2 4 1

122 60 15 2 1
 = 

100

200
 = 0.5 = m

Now, e– 0.5 = 0.61 (approximately)

By equation (1), the number of r deaths is given by

= 200 × 
( )

!

0.5 0.5r e

r

−

, r = 0, 1, 2, 3, 4.

for r = 0, 1, 2, 3, 4 the theoretical frequencies are 121, 61, 15, 2 and 0.

Example 9: If the variance of the Poisson distribution is 2, find the probabilities for r = 1, 2, 3,4
from the reccurrence relation of the Poisson distribution. Also find P(r ≥ 4).

Solution: We know that for Poisson’s distribution mean and variance both are equal.

i.e., mean = variance = 2.

Recurrence relation for Poisson distribution

 P(r + 1) = 
m

r + 1
P(r)

⇒  P(r + 1) = 
2

1r +
 P(r) ...(1)

The Poisson’s distribution is P(r) = 
e m

r

m r−

!
, r = 0, 1, 2, 3, ......

P(0) = e–m = e–2 = 0.1353

By (1), if r = 0,   P(1) = 
2

0 1+
 P(0) = 2 × (0.1353) = 0.2706

  if r = 1, P(2) = 
2

1 1+
 P(1) = 0.2706

  if r = 2,  P(3) = 
2

2 1+
 P(2) = 

2

3
 × (0.2706) = 0.1804

if r = 3,  P(4) = 
2

3 1+
 P (3) = 

1

3
 × (0.1804) = 0.0902

Now, we have P(r ≥ 4) = P(4) + P(5) + P(6) + .......

= 1 – [P(0) + P(1) + P(2) + P(3)]

= 1 – [ 0.1353 + 0.2706 + 0.2706 + 0.1804]

= 1 – 0.8569 = 0.1431.

Example 10: If the probability that an individual suffers a bad reaction from injection of a given
serum is 0.001. Determine the probability that out of 2000 individual (i) exactly 3, (ii) more than
2 individuals suffer from bad reaction, (iii) none.
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Solution: Let p be the probability that an individual suffers a bad reaction from injection of a
given serum

i.e.,   p = 0.001

Since, p is very small so we used Poisson’s distribution.

Given that n = 2000

we have  np = 0.001 × 2000 = 2

Let X be the number of individuals who suffer from bad reaction.

Then P(X = r) = 
m e

r

e

r

r m r− −
=

! !

2 2

(i) The probability for exactly 3

P(X = 3) = 
2

3

4

3

4

3 2 718

3 2

2 2

e

e

−

= =
×! ( . )

 = 0.18

(ii) The probability for more than 2 individuals suffer from bad reaction

P(X > 2) = 1 – [P(X = 0) + P (X = 1) + P(X = 2)]

= 1 – 
2

0

2

1

2

2

0 2 1 2 2 2e e e− − −

+ +
	



�

�


�

! ! !

= 1 – 
1 2 2
2 2 2e e e

+ +	

�

�
�

 = 1 – 
5
2e

 = 1 – 
5

2 718 2( . )
 = 0.323

(iii) The probability for none

P(X = 0) = 
2

0

0 2e−

!
 = e–2 = 

1
2e

= 1

(2.718)2
 = 0.135.

Example 11: In  a certain factory turning Lexi blades, there is a small chance, 0.002 for any
blade to be defective. The blades are in packets of 10. Use Poisson distribution to calculate the approxi-
mate number of packet containing no defective, one defective and two defective blades respectively in a
consignment of 10,000 packets.

Solution: Let p be the probability that a blade is defective

i.e.,  p = 0.002

Since, p is very small so Poisson’s distribution is used. Here, n = 10 then

m = np = 10 × 0.002 = 0.02.

Let X denote the number of defective blades in a packet of 10. Then

P(X = r) = 
m e

r

e

r

r m r− −

=
!

( . )

!

.0 02 0 2

, r = 0, 1, 2, .......

e– 0.02 = 1 – (0.2) + 
1

2
 (0.02)2 + ....... = 0.9802 (nearly)
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Now the number of packets containing no defective blade is

= 10,000 × 0.9802 = 9802

The number of packets containing one defective blade

= 10,000 × m e– m

= 10,000 × (0.2) e– 0.2

= 10,000 × (0.2) (.9802)

= 196

The number of packets containing two defective blades

= 10,000 × m2 e–m

= 10,000 × (0.2)2 e– 0.2

= 10,000 × (0.2)2 (0.9802)

= 2 (nearly).

Example 12: If X and Y be independent Poisson variates, show that the conditional distribution
of X, given X + Y = n, is binomial.

Solution:  Let X and Y be independent Poisson variates with parameters m1 and m2.

We have, P X
r

X Y n

P X r X Y n

P X Y n
=

+ =
	



�

�


� = = + =

+ =
( , )

( )

= 
P X r P Y n r

P X Y n

( ) ( )

( )

= × = −
+ =

= 

m e

r

m e

n r

m m e

n

r m n r m

n m m

1 2

1 2

1 2

1 2

− − −

− +

×
−

+
! ( ) !

( )
!

( )
 = 

n

r n r

m m

m m

r n r

n

!

! ( ) ! ( )−
×

+

−
1 2

1 2

Letting  p = 
m

m m
1

1 2+
 and q = 

m

m m
2

1 2+
 then

= nCr p
r qn – r (0 ≤ r ≤ n)

Hence, the conditional distribution of X, given X + Y, is binomial.

�����������

1. If X be a Poisson variate such that 3P(X = 3) = 4P(X = 4), find P (X  = 7 ).

2. Criticise the following statement:

The mean of a Poisson distribution is 7, while the standard deviation is 6.

3. The probability that a man aged 50 years will die within a year is 0.01125. What is the probability that of
12 such men at least 11 will reach their fifty first birthday ?



THEORETICAL DISTRIBUTIONS 233

4. A car-hire-firm has two cars, which if hires, out day by day. The number of demands for a car on each
day is distributed as Poisson distribution with mean 1.5. Calculate the proportion of days on which
neither car is used and the proportion of days on which some demand is refused {e–1.5 = 0.2231}.

5. If m is the parameter of a Poisson variate, show that the probabilities that the value of the variate taken
at random is even or odd are e– m cosh m and e–m sinh m.

6. Letters were received in an office on each of 100 days.  Assuming the following data to form a random
sample from a Poisson’s distribution. Fit the distribution and calculate the expected frequencies taking
e– 4 = 0.183.

Number of letters 0 1 2 3 4 5 6 7 8 9 10

Frequencies 1 4 15 22 21 20 8 6 2 0 1

7. The frequency of accidents per shift in a factory is given in the following table. Calculate the mean
number of accidents per shift. Find the corresponding Poisson distribution and compare with actual
observations.

Accidents per shift 0 1 2 3 4 Total

Frequencies 192 100 24 3 1 320

8. A manufacturer of  coffer pins knows that 5 per cent of his product is defective. If he sells coffer pins in
boxes of 100 and guarantees that not more than 4 pins will be defective, what is the approximate prob-
ability that a box will fail to meet the guaranteed quality ? (e–5 = 0.0067).

9. A telephone switch board handles 600 calls on the average during a rush hour. The board can make a
maximum of 20 connections per minute. Use Poisson distribution to estimate the probability that the
board will be over during any given minute [e–10  = 0.00004539].

10. Suppose that a book of 600 pages contains 40 printing mistakes. Assume that these errors are randomly
distributed throughout the book and x, the number of errors per page has a Poisson distribution. What is
the probability that 10 pages selected at random will be free of errors ?

11. Find the probability that at most defective fuses will be found in a box of 200 fuses, if experience show
that 2 per cent of such fuses are defective.

12. An insurance company found that only 0.01% of the population is involved in a certain type of accident
each year. If its 1000 policy holders were randomly selected from the population. What is the probability
that not more than two of its clients are involved in such an accident next year ? {e–0.1 = 0.9048}.

13. Red blood cell deficiency may be determined by examining a specimen of the blood under a microscope.
Suppose a certain small fixed volume contains on the average 20 red cells for normal persons. Using
Poisson distribution, obtain the probability that a specimen from a normal person will contain less than
15 red cells.

14. Show how the Poisson distribution

m e

r

r m−

!
, (r = 0, 1, 2, 3, ......)

can be regarded as the limiting case of the binomial distribution. Hence or otherwise obtain the mean and
the variance of the Poisson distribution, assuming the variance of the binomial distribution.
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������

1. 3

7

7 3e−

!
. 2. Wrong , because σ = m . 3. 0.9916.

4. 0.1912625.

6. 1.83, 7.32, 14.64, 9.22, 19.52, 15.62, 10.41, 5.95, 2.975, 1.322 and 5.99.

7. 194, 97, 24, 4, 1. 8. 0.5620. 9. 1 – 0.00004539 
r

r

r
=
∑

0

20
10

!
.

10. 0.51. 11. 0.785. 12. 0.9998.

13.
r

re

r
=

−

∑
0

14 20 20( )

!
.

���������
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Normal distribution was discovered by a English mathematician De-Moivre in 1733. Normal distribu-
tion is a continuous probability distribution. Normal distribution has got wide application in the theory
of statistics. The normal distribution also known as error function. Normal distribution as the limiting
case of binomial distribution (q + p)n as n → ∞, neither p nor q being very small, it is given by

N (m, σ2) = f (x) = y(x) = 
1

2

1

2
2 2

σ π

σ
e

x m− −( ) /
; – ∞ < x < ∞, – ∞ < m < ∞, σ > 0 ...(1)

where m = Arithmetic mean (µ)

   σ = Standard deviation are two parameters of the continuous distribution. Equation (1) is also
 called the normal curve. It is also denoted by X ~ N (m, σ2).

���������	
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About the origin, we have

 µ′n = 
− ∞

∞ −�
1

2

2 22

π σ
σe x dxx n/ ...(1)

= 
1

2

2 22

π σ

σ

− ∞

∞ −

�
x e

dx
n x /

Put
x

σ
 = t ⇒ dx

σ
 = dt = 

1

2

2 2

π
σ

− ∞

∞ −� n n tt e dt/
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= 
σ

π

n
n t

t e dt
2

1

2
2

− ∞

∞ −

�
= 0, when n is odd {property of definite integrals}

Hence, all odd moment about the origin is vanish.

i.e.,    µ′1 = µ′3 = µ′5 = ..... = 0

If n is even, by equation (1), we have

 µ′n = 
2

2

1
0

22 2

π σ
σ∞ −� x e dxn x /

Putting,
x 2

22σ
 = u ⇒ x

σ2
dx = du

= 
2

2
2 2 1 2

0

2

π σ
σ σ( )( )/u e dun u−∞ −�

= 
σ

π

n n
n uu e du

2 2
1 2

0

/
( )/−∞ −�

= 
σ

π

n n n2 1

2

2/

Γ
+�

�
�
� d � Γn x e dxn x=	


�
�
�

− −∞

� 1

0

When n = 2

 µ′2 = 
σ

π

2 2 22
3 2

/

/Γ  = 
σ

π
π

2 2 1

2

.
.  = σ2

When n = 4

 µ′4 = 
σ

π

2 22 5

2
. Γ  = 

σ
π

π
4 4 3

2

1

2

.
. .  = 3σ4

When n = 0

 µ′0 = 
σ

π

0 02 1

2
Γ  = 

1 1.

π
π  = 1

Here mean is at the origin itself, these are also undashed

µ′s i.e., µ2 = µ′2 , µ3 = µ′3 etc.

Now,  β1 = 
µ
µ

3
2

2
3  = 0 ; β2 = 

µ
µ

σ
σ

4

2
2

4

4

3=  = 3

γ1 = β1  = 0 ; γ2 = 0

Hence, the normal curve has zero kurtosis.
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 µ2n + 1 = ( )x m e dxn

x m

− +

− ∞

∞ −
−�

��
�
��� 2 1

1

21

2

2

π σ
σ

= 
σ

π σ σ

σ2 1 2 1
1

2

2

2

n n
x m

x m e
dx

+ + −
−�

��
�
��

− ∞

∞ −�
��

�
���

Putting
x m−

σ
 = t ⇒ dx

σ
 = dt

= 
σ

π

2 1

2

n+

 = t e dtn t2 1
1

2
2

+ −

− ∞

∞

�
= 0, since it is integral of an odd function of t.

Now we have µ2n = ( )x m e dxn

x m

−
−

−�
��

�
��

− ∞

∞

� 2
1

21

2

2

π σ
σ

= 
σ

π σ σ

σ2 2
1

2

2

2

n n
x m

x m e
dx

−�
��

�
��

−
−�

��
�
��

− ∞

∞

�

Putting
x m−

σ
 = t ⇒ dx

σ
 = dt

= 
σ

π

2
2

1

2

2

2n
n t

t e dt
−

− ∞

∞

�

= 
σ

π

2

2
2

2

n
n TT e

dT

T
( ) −

− ∞

∞

�
Putting

or

t T t T

t dt dT

dt
dT

T

2 2 2

2 2

2

= =

⇒ =

=

,

= 
2 1 2n n

n TT e dT
−

−

− ∞

∞

�
σ
π

= 
2 2

0

n n
n TT e dT

σ
π

−∞

�

⇒   µ2n = 
2 1

2

2n n

n
σ
π

Γ +�
��

�
��

...(1)
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Putting n = n – 1 in (1), we get

 µ2n – 2 = 
2 1

2

1 2 2n n

n
− −

−�
�

�
�

σ
π

Γ ...(2)

Now equation (1) divide by (2), we get

µ
µ

σ
2

2 2

22
1
2

1
2

n

n

n

n−
=

+�
��

�
��

−�
��

�
��

Γ

Γ
[� Γn = (n – 1) Γ(n – 1)]

= 2σ2 n −�
��

�
��

1

2

⇒ µ2n = σ2 (2n – 1) µ2n – 2

which is the recurrence relation for the moments of normal distribution.

������
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The probability density function of the normal distribution is given by

 f (x) = 
1

2

1

2

2

π σ
σe

x m− −�
�

�
� , – ∞ < x < ∞.

If x is a normal random variable with mean m and

standard deviation σ, then the random variable z = 
x m−�
��

�
��σ

has the normal distribution with mean 0 and the standard
deviation 1. The random variable z is called the  standard
normal random variable.

The probability density function of standard nor-
mal random variable z is given by

 f (z) = 
1

2

1

2
2

π
e

z−
, – ∞ < z < ∞

Note 1. The graph of f (z) is famous ‘bell shaped’ curve.

2. If f(z) is the probability density function for the normal distribution, then

 P(z1 ≤ z ≤  z2) = f z dz
z

z
( )

1

2

�  = 
1

2

1

2
2

1

2

π
e dz

z

z

z −

�

f(z)

O Z
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The normal probability curve is

 f (x) = 
1

2

1

2

2

π σ
σe

x m
−

−�
��

�
�� , – ∞ < x < ∞

–� m – 3� m – 2� m – � x = m m + � m + 2� m + 3� �

0–1–2–3 1 2 3 Z

(1) Mean, Meadian and Mode of the Normal distribution coincide.
(2) Area under the normal curve is unity.
(3) The probability of the continuous random variable X (X1 ≤ X ≤ X2) is denoted by

 P (X1 ≤ X ≤ X2) = 1

2

1
2

2

1

2

π σ
σe dx

x m

X

X − −�
�

�
��

Where m is the mean and σ is standard deviation.

(4) The curve is bell-shaped and symmetry about the line x = m i.e.,  y-axis.
(5) As x increases then f(x) decreases rapidly, the maximum probability at point x = µ is given by

f (x) or [P(x)]max = 
1

2π σ
(6) Since, f (x) is probability density function, so it never be negative, i.e., no portion of the curve

lies below the x-axis.
(7) x-axis is an asymptote of the curve.
(8) The point of inflexion of the normal curve are x = ± σ  when the origin is taken at the mean.

(9) Mean deviation about mean = 
2

π
 σ ~−  4

5
 σ (approximate).

(10) Area under the normal curve is distributed as following 68.27% area lies between m – σ to m + σ
or ( x – σ to x  + σ) i.e., between – 1 ≤ z ≤ 1

94.45% area lies between m – 2σ to m + 2σ, i.e., between – 2 ≤ z ≤ 2

99.73% area lies between m – 3σ to m + 3σ, i.e., between – 3 ≤ z ≤ 3

50% area lies in between – 0.745 ≤ z ≤ 0.745

99% area lies in between – 2.58 ≤ z ≤ 2.58.
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Example 1: Prove that for normal distribution the mean deviation from the mean equal to 
4

5
 of

standard deviation nearly.

Solution: Let m and σ be the mean and standard deviation of the normal distribution respec-
tively.

By definition of mean deviation

= 
− ∞

∞

� −| | ( )x m f x dx

= 
1

2

1

2

2

π σ
σ

− ∞

∞ −
−�

��
�
��� −| |x m e dx

x m

= 
1

2

1

2
2

π σ
σ σ

− ∞

∞ −

� | |z e dz
z

Putting z = 
x m−

σ
⇒ dz

dx=
σ

= σ
π
2

0

1

2
2∞ −

� z e dz
z

= σ
π
2

2

2

0

−
	



�
�

�


�
�

−
∞

e
z

= σ
π
2

. 1 = 0.7979 σ ≈ 0.8 σ

= 
8

10
 σ = 

4

5
σ.

Example 2: If X is a normal variate with mean12 and standard deviation 4. Find

(i) P(X ≥ 20) (ii) P(X ≤ 20) (iii) P (0 ≤ X ≤ 12).

Solution: Given that m = 12 and σ = 4

Let Z = 
X m X− = −

σ
12

4

(i) When X = 20,   Z = 
20 12

4

−
 = 2

P(X ≥ 20) = P (Z ≥ 2)

= 0.5 – P(0 ≤  Z ≤ 2)

= 0.5 – 0.4772 [� P(0 ≤ Z ≤ 2) + P(Z ≥ 2) = 0.5]

= 0.0228. (Using table)

z = 0 z = 2–� �
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(ii) P (X ≤ 20) = P(Z ≤ 2)

= 0.5 + P(0 ≤ Z ≤ 2)

= 0.5 + 0.4772

= 0.9772

(iii) When X = 0, Z = 
− 12

4
 = – 3 and for X = 12, Z = 0

∴ P(0 ≤ X ≤ 12) = P(– 3 ≤ Z ≤ 0) = P(0 ≤ Z ≤ 3) = 0.4987.

Example 3: Assume the mean height of soldiers to be 68.22 inches with a variance of
10.8 (inches)2. How many soldiers in a regiment of 1000 would you expect to be over 6 feet tall? Given
that the area under the standard normal curve between Z = 0 and Z = 0.35 is 0.1368; and between
Z = 0 and Z = 1.15 is 0.3746.

Solution: Given that mean (m) = 68.22, variance (σ2) = 10.8

and standard deviation (σ) = 10 8.

We have Z = 
X m−

σ

⇒ Z = 
X − 68.22

10.8

⇒ Z = 
X − 68.22

3.286

When X = 72, Z = 
72 − 68.22

3.286
 = 1.15

Now  P (X  ≥ 72) = P (Z ≥ 1.15) = 0.5 – 0.3749 = 0.1251

The probability of getting a soldier above six feet is 0.1251. Hence, the number of soldiers who
are over 6 feet tall.

= 1000 × 0.1251 = 125.1

= 125 (nearly).

Example 4: Assuming the resistance of the resistors to be normally distributed with mean
100 ohms and standard deviation 2 ohms, what percentage of resistors will have resistance between
98 ohms to 102 ohms.

Solution: Given that mean (m) = 100 ohms

standard deviation (σ) = 2 ohms

We have  Z = 
X m−

σ
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⇒  Z = 
X − 100

2

When X = 102,  Z = 
102 100

2

−
 = 1

When X = 98,  Z = 
98 100

2

−
= – 1

Now, P(98 ≤ X ≤ 102) = P(– 1 ≤ Z ≤ 1)

= 2P(0 ≤ Z ≤ 1)

= 2 × (0.3413) = 0.6826

Hence, 68.26% of resistors will have resistance between 98 ohms to 102 ohms.

Example 5: In a Normal distribution 31% items are under 45 and 8% are over 64. Find the
mean and standard deviation of the distribution.

Solution: Let m and σ be the mean and standard
deviation respectively.

If x = 45, Z = 
45 − m

σ

If x = 64, Z = 
64 − m

σ

The area between 0 and 
45 − m

σ
 = 0.50 – 0.31 = 0.19

From the table, for the area 0.19,

 Z = 0.496

45 − m

σ
 = – 0.496 ...(1)

Area between Z = 0 and Z = 
64 − m

σ
 = 0.5 – 0.08 = 0.42

From the table, for the area 0.42, Z = 1.405

64 − m

σ
 = 1.405 ...(2)

Solving equation (1) and (2), we get

m = 50 and σ = 10.

Example 6: The distribution of weekly wages for 500 workers in a factory is approximately
normal with the mean and students derivation of Rs. 75 and Rs. 15. Find the number of workers who
receive weekly wages:

(i) more than Rs. 90 (ii) less than Rs. 45.

–0.496

31%
19% 42%

8%

–� �0 +1
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Solution: The normal distribution is

f (x) = 
1

2

1

2

2

π σ
σe

x m
−

−�
��

�
�� , – ∞ < x < ∞ ...(1)

Given that N = 500,  m = 75 and σ = 15.

we have  Z = 
X m X− = −

σ
75

15

(i) when X = 90,  Z = 
90 75

15

−
 = 1

 P(X > 90) = P(Z > 1) = 0.5 – P(0 < Z < 1)

= 0.5 – 0.3413 = 0.1587

The number of workers who receive weekly wages more than Rs. 90

= 0.1587 × 500

= 79.35 = 79 (nearly) workers.

(ii) When X = 45, Z = 
45 75

15

−
 = – 2

P(X < 45) = P(Z < – 2) = 0.5 – P (– 2 < Z < 0)

= 0.5 – P(0 < Z < 2)

= 0.5 – 0.4772 = 0.0228

Hence, the number of workers who receive weekly wages more than Rs. 45

= 0.0228 × 500 = 11.4 i.e., 11 (nearly) workers.

Example 7: The life of army shoes is ‘normally’ distributed with mean 8 months and standard
deviation 2 months. If 5000 pairs are issued how many pair would be expected to need replacement

after12 months? Given that P Z and Z
x m

( ) .≥ = = −�
�

�
�

�
�
	



�
�

2 0 0288
σ

Solution: Given that

 Mean (m) = 8,

Standard deviation  (σ) = 2

Number of pairs of shoes = 5000

Total month (x) = 12

We have  Z = 
x m− = −

σ
12 8

2
 = 2

 Area (Z ≥ 2) = 0.0228

The number of pairs whose life is more than 12 months (Z > 2)

x1 = 45–� m = 75 x2 = 90 +�

� = 15

z = 0 2
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= 5000 × 0.0228 = 114

Replacement after 12 months

= 5000 – 114 = 4886 pairs of shoes.

Example 8: If the height of 300 students are normally distributed with mean 64.5 inches and
standard deviation 3.3 inches, how many students have height

(i) less than 5 feet

(ii) between 5 feet and 5 feet 9 inches.

Also, find the height below which 99% of the students lie.

Solution: Given that  m = 64.5, σ = 3.3 and N = 300.

We have  Z = 
X m X− = −

σ
64.5

3.3

(i) For X = 60,  Z = 
60 64.5

3.3

4.5

3.3

− = −  = – 1.36

P(X < 60) = P(Z < – 1.36) = 0.5 – (– 1.36 < Z < 0)

= 0.5 – ( 0 < Z < 1.36)

= 0.5 – 0.4131 (Using table)

= 0.0869.

The number of student having height less than 5 feet

= 0.0869 × 300

= 26.07 i.e., 26 students.

(ii)  P(60 < X < 69) = P(– 1.36 < Z < 1.36)

= 2P (0 < Z < 1.36) = 2(0.4131) = 0.8262

The number of student having heights lie between 60 inches and 69 inches = 0.8262 × 300
= 247.86 i.e., 248 students.

Now let  P(X < X1) = 0.99

⇒  P(Z < Z1) = 0.99

where  Z1 = 
X m1 −

σ
⇒  P(0 < Z < Z1) = 0.99 – 0.5 = 0.49

Using the table giving areas under normal curve Z1 = 2.33

∴  Z1 = 
X m X1 1− = −

σ
64.5

3.3

⇒  X1 = 64.5 + 3.3 × 2.33

⇒  X1 = 72.18

Hence,  99% of the students have height below 72.18 inches.
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Example 9: A coin is tossed 12 times. Find the probability, both exactly and by fitting a normal
distribution of getting

(i) 4 heads, (ii) atmost 4 heads.

Solution: The binomial distribution is

P(X = r) = nCr  p
r qn – r, r = 0, 1, 2, ...... ...(1)

Here, p = 
1

2
, q = 1 – 

1

2

1

12
=  and n = 12. Let X denote  the probability of head occurrence.

The probability of 4 heads

   P(X = 4) = 12C4 
1

2

1

2

4 8
�
��
�
��
�
��
�
��

 = 
( ) !

! !

12

4 8 2 2× × 1  = 
11 5 9

212

× ×
 = 0.121

Now,  P(X ≤ 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X =3) + P(X = 4)

= 12C0 1

2

1

2

0 12
�
��
�
��
�
��
�
��

 + 12C1 
1

2

1

2

1 11
�
��
�
��
�
��
�
��

 + 12C2 1

2

1

2

2 10
�
��
�
��
�
��
�
��

 + 12C3 
1

2

1

2

3 9
�
��
�
��
�
��
�
��

+ 12C4 
1

2

1

2

4 8
�
��
�
��
�
��
�
��

= 
1

212
[12C0 + 12C1 + 12C2 + 12C3 + 12C4]

= 
1

212
 [1 + 12 + 66 + 220 + 495]

= 
794

212
= 0.194

The normal distribution is

  N(m, σ2) = 
1

2

1

2

2

π σ
σe

x m
−

−�
��

�
�� , – ∞ < x < ∞,  – ∞ < m < ∞,  σ > 0 ...(2)

 Mean (m) = np = 12 × 
1

2
 = 6

 Variance (σ2) = npq  = 12 × 
1

2

1

2
×  = 3

For n ≤ 4

Z = 
X m−

σ
 = 

4.5 6

3

1.5

3

−
=

−
 = – 0.5 × 3  = – 0.5 × 1.732 = – 0.866
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The probability

P(– ∞ < Z < – 0.866) = 0.5 – P (0 < Z < 0.866)

Probability number of heads ≤ 4 = 0.5 – 0.3068

= 0.1932

Probability of 4 heads by normal distribution

= P(3.5 < x < 4.5)

= P
3.5 6

3

4.5 6

3

− < < −�
��

�
��

Z

= P (– 1.231 < Z < – 0.7385)

= P(0 < Z < 1.231) – P(0 < Z < 0.7385)

= 0.3907 – 0.2700 = 0.120.

Example 10: Fit a normal curve to the following data:

Length of the 8.60 8.59 8.58 8.57 8.56 8.55 8.54 8.53 8.52

 line (in Cms.)

Frequencies 2 3 4 9 10 8 4 1 1

Solution: Here a = 8.56

x f d = (x – a) fd fd2

8.60 2 0.04 0.08 0.0032

8.59 3 0.03 0.09 0.0027

8.58 4 0.02 0.08 0.0016

8.57 9 0.01 0.09 0.0009

8.56 10 0 0 0
8.55 8 – 0.01 – 0.08 0.0008

8.54 4 – 0.02 – 0.08 0.0016

8.53 1 – 0.03 – 0.03 0.0009

8.52 1 – 0.04 – 0.04 0.0016

Σ f = 42 Σ fd = 0.11 Σ fd2 = 0.0133

 Mean (m) = a + 
Σ
Σ
fd

f
 = 8.56  + 

011

42

.
 = 8.56262

 Standard deviation (σ) = Σ
Σ

Σ
Σ

fd

f

fd

f

2 2 20 0133

42

011

42
−
�
��

�
��

= − �
��

�
��

. .
 = 0.0176.

–� m = 6 x = 4 �
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The equation of the normal curve fitted to the given data is

P(x) = 
1

2

1

2

2

π σ
σe

x m
−

−�
��

�
�� , –  ∞ ≤ x ≤ ∞

where m = 8.56262, σ = 0.0176.

Example 11: For – ∞  < x < ∞, and probability density

 f(x) = 
1

2
e

1

2

x m 2

π σ
σ

−
−�

��
�
��

Show that the total probability is 1.

Solution: The total probability

=  f x dx e dx
x m

( )
− ∞

∞

− ∞

∞ −
−�

��
�
�� = 1

2π σ
σ

1

2

2

Let
x m−

2 σ
 = t

⇒ dx = 2 σ dt

= 
σ

π σ
2

2 − ∞

∞ − e dtt 2

= 
1

π − ∞

∞ − e dtt2

= 
2

0π

∞ − e dtt 2

{As f (– t) = f (t)}

Now let t2 = y or t = y

⇒  2t dt = dy

= 
2

20π

∞ − e
dy

y
y

= 
1

0

1 2

π

∞ − − y e dyy/

= 
1

0

1

2
1

π

∞ − − y e dyy By Gamma integral

0

1
∞

− − =

�

�
�
�

�

�
�
�e x dx nx n Γ

= 
1

π
Γ(1/2) = 

1

π
π×  = 1
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1. Let X be a normal variate with mean 30 and standard deviation 5, find the probabilities that

(i) 26 ≤ X ≤ 40, (ii) X ≥ 45 and (iii) | X – 30 | > 5

2. Students of a class were given anaptitute test. Their marks were found to be normally distributed with
mean 60 and standard deviation 5. What percentage of students scored more than 60 marks?

3. 1000 light bulbs with a mean life of 120 days are installed in a new factory, their length of life is
normally distributed with standard deviation 20 days. How many bulbs will expire in less than 90 days?

4. On a final examination in mathematics, the mean was 72, and the standard deviation  was 15. Determine
the standard scores of students receiving grades.

(i) 60 (ii) 72 (iii) 93.

5. In a male population of 1000, the mean height is 68.16 inches and standard deviation is 3.2 inches. How
many men may be more than 6 feet (72 inches)?

6. For a certain normal distribution the first moment about 10 is 40 and the fourth moment about 50 is 48.
What is the arithmetic mean and variance of the normal distribution.

7. In a normal distribution whose mean is 2 and standard deviation 3, find a value of the variate such that
the probability of the interval from the mean to the value is 0.4115. Find another value such that the
probability for the interval from x = 3.5 to that value is 0.2307.

8. A random variable x is normally distributed with m = 12 and standard deviation 2. Find  P(9.6 < x < 13.8)

given that for 
x

σ
 = 0.9, A = 0.3159 and for 

x

σ
 = 1.2, A = 0.3849.

9. There are six hundred students in P.G. class and the probability for any student to need a particular book
on statistics from the University Library on one day is 0.05. How many copies of the book should be
kept in the University Library, so that the probability may be greater than 0.90 that none of the student
needing a copy from the Library has to come back disappointed.

10. If shells are classified as A, B, C according as the length breadth index as under 75, between 75 and 80,
or over 80, find approximately (assuming that distribution is normal) the mean and standard deviation of
a series in which A are 58%, B are 38%, and C are 4% being given that

f (t) = 
1

2 0

1

2
2

π

t x
e dx

−
then  f (0.20) = 0.08 and f (1.75) = 0.46.

11. Prove that for the normal distribution, the quartile deviation, the mean deviation and the standard devia-
tion are approximately in the ratio 10 : 12 : 15.

������

1. (i) 0.7653 (ii) 0.0014 (iii) 0.3174. 2. 50%. 3. 67.

4. (i) – 0.8 (ii) 0 (iii) 1.4. 5. 115. 6. 6.05, 6.26.

7. 0.7008. 8. 37. 9. 74.3, 3.23.
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Modern age is an age of planning. Economic planning means direction and control of economic resources
both current and potential to meet the social and economic objectives of the state. In absence of statistics
planning cannot be imagined. All economic plans of a country are based on statistical data of economic
activity of that country. Statistics is the branch of scientific method which deals with data obtained by
counting or measuring  the properties of population of natural phenomena.

Statistics is a branch of science which deals with the collection of data. Classification and tabulation
of numerical facts as the basis for explanation, description and comparison of phenomena. Modern
statistics takes into consideration however, biological, astronomical and physical as well as social
phenomena. Statistics methods are used in every department of human activity. Psychology, education,
public health, agriculture, business, economics and administration.

Statistics methods are also useful to stock-exchange brokers, bankers, speculators and public
utility. Concerns like water works, electric supply companies, railways etc. Statistics analysis of railway
working is very important in their expansion programmes. The records on the basis of demand in
several parts of the year, railways authorities make adequate provision for services by increasing the
length of trains providing special trains such as Jammu, Banglore, Goa, Mumbai etc. in summer.
Therefore, in every business (big or small) used of statistical data in any form.
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Frequency distribution is a way to represent the large amount of data according to quantitative charac-
teristics frequency distribution helps the management of the bank for announcing new saving policies
for the benefit to its customers.
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The study of relationship between two or more variables is one of the most important problems in life.
In a bivariate distribution, we find the relationship between the two variables. For example, if we find
the heights and weights of 10th class of student, we shall get a bivariate  distribution. Here,  one variable
is related to height and other variable is related to weight.

CCCCCHAPTERHAPTERHAPTERHAPTERHAPTER     33333

Correlation and Regression
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Let the pairs (x1, y1), (x2, y2), ......., (xn, yn) of two variable x and y with frequencies f1, f2, ......, fn,

i

n

if N∑ = , then it define a frequency distribution which is called a bivariate frequency distribution.

���������������


The relationship between two variables such that a change in one is accompanied by change in the other
in such a way that an increase in one is accompanied by an increase or decrease in the other, is called a
correlation. For example, the number of policemen and the number of crimes, the number of trains and
the number of passengers.

If there is no relationship indicated between two variables then they are said to uncorrelated or
statistically independent. For example, marks  in statistics of a child and weights of her mother.

It is not necessary that one unit of change in one variable is followed by one unit of change in
other variable. It is also not essential that the ratio should be the same in all cases.
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If an increase or decrease in the values of one variable corresponds to an increase or decrease in other
variable respectively, then the correlation is said to be positive correlation. For example, age of husbands
and wives are known to have a positive correlation.

If an increase or decrease in the values of one variable is always followed by a corresponding
and proportional increase or decrease in other variable, then the correlation is said to be perfect positive
correlation.
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If an increase or decrease in the values of one variable corresponds to a decrease or increase in other
variable respectively, then the correlation is said to be negative correlation. For example, the number of
fourth class workers in a college and the number of duty room in a college.

If an increase or decrease in the values of one variable is always followed by a corresponding
and proportional decrease or increase in other variable, then the correlation is said to be perfect positive
correlation.

�������
�������
�
���
��������������


When the variations in the values of two variables are in a constant ratio, then correlation is said to be
linear correlation. This type of relationship represented by a linear equation of the form Y = aX + b.
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Otherwise, if the ratio of variation in the values of two variables are not constant, then correlation
is said to be non-linear correlation. This type of relationship represented by y = a + bx + cx2 etc.

Note: If the change in one variable has a very little effect in the other variable then there is no correlation.
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The coefficient of correlation measures the degree of relationship between two or more variable. The
coefficient of correlation varies between –1 to +1. If the coefficient of correlation reaches unity then it
is perfect. The +1 indicates perfect positive correlation and –1 indicates perfect negative correlation.
Whenever the value of coefficient of correlation is zero then there is no correlation.
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Correlation in two or more variables can be studied by the following methods :

(i) Karl Pearson’s coefficients of correlation.

(ii) Rank correlation or Spearman’s coefficient of rank correlation.

(iii) Scatter diagram or dot diagram.

(iv) Correlation table.

(v) Graphic method.

(vi) Concurrent deviations method.

In this chapter, we shall discuss Karl Pearson’s coefficient of correlation, Rank correlation and
Scatter diagram method only.
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Karl Pearson (1867–1936), a great statistician and biologist, developed a formula for the calculation of
coefficient of correlation. The correlation coefficient between two variables X and Y denoted by γ,
defined as

γ (X, Y ) = 
Cov ( , )X Y

X Yσ σ
...(1)

If (xi, yi) ; i = 1, 2, 3,  ..... n be the set of n pairs of values of variable X and Y then

Cov (X, Y ) = E[(X – X Y Y) ( )− ]

= 
1

1
n

x X y Y
i

n

i i
=
∑ − −( ) ( )
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where,  X
n

X Y
n

Y
i

n

i
i

n

i= =
= =
∑ ∑1 1

1 1

,

 σ X E X E X2 2= −[ ( )]  = E[X – X ]2

= 
1

1

2

n
x X

i

n

i
=
∑ −( )

 σY E Y E Y2 2= −[ ( )]  = E Y Y[ ]− 2

= 
1

1

2

n
y Y

i

n

i

=
∑ −( )

Putting these values of Cov (X, Y ), σX and σY in (1), we get

γ (X, Y ) = 

1

1 1

1

1

2

1 2

1

2

1 2

n
x X y Y

n
x X

n
y Y

i

n

i i

i

n

i
i

n

i

=

= =

∑

∑ ∑

− −

−
�

�
�
�

�

�
�
�

−
�

�
�
�

�

�
�
�

( ) ( )

( ) ( )

/ / ...(2)

⇒ γ (X, Y ) = i

n

i i

i

n

i
i

n

i

x X y Y

x X y Y

=

= =

∑

∑ ∑

− −

−
�

�
�
�

�

�
�
�

−
�

�
�
�

�

�
�
�

1

1

2

1 2

1

2

1 2

( ) ( )

( ) ( )

/ / ...(3)

where X Yand  are the means of X and Y respectively.

Note. 1. Cov (X, Y ) = σXY (also write)

2. Karl Pearson’s coefficient of correlation is also called product moment correlation coefficient, because

Cov (X, Y ) = E[{X – E (X )} {Y – E(Y )}]

3. Simplifying equation (2), we have

1

1
n

x X y Y
i

n

i i

=
∑ − −( ) ( )  = 

1

1
n

i

n

=
∑ { }x y x Y Xy XYi i i i− − +

= 
1 1 1

1 1 1
n

x y Y
n

x X
n

y XY
i

n

i i

i

n

i

i

n

i

= = =
∑ ∑ ∑− − +

= 
1

1
n

x y XY
i

n

i i
=
∑ −
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and  
1

1

2

n
x X

i

n

i
=
∑ −( ) = 

1 2 2

n
x Xi∑ −

 
1

1

2

n
y Y

i

n

i

=
∑ −( )  = 

1 2 2

n
y Yi∑ −

Now by (2), we get

γ (X, Y ) = 

1

1 1

1

2 2 2 2

n
x y XY

n
x X

n
y Y

i

n

i i

i i

=
∑

∑ ∑

−

−�
�
	



�
�

−�
�
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.

Theorem 1: Prove that the coefficient of correlation | γ | ≤ 1 i.e., – 1 < γ < 1.

Proof: We know that by schwartz inequality, if ai, bi, i = 1, 2, 3, ......, n are real quantities then
we have

i

n

i i

i

n

i

i

n

ia b a b
= = =
∑ ∑ ∑


�
�

�

�
� ≤


�
�

�

�
�


�
�

�

�
�

1

2

1

2

1

2 ...(1)

the sign of equality is satisfied iff  
a

b

a

b

a

b

a

b
n

n

1

1

2

2

3

3

= = = =......

Put ai = X – X  and bi = Y – Y

where, X and Y are two variables and X  and Y  are their means. By (1), we have

 
i

n

i

n

i

n

X X Y Y X X Y Y
= = =
∑ ∑ ∑− −
�

�
�
�

�

�
�
�

≤ − −
1

2

1

2

1

2( )( ) ( ) ( )

or
i

n

i

n

i

n

X X Y Y

X X Y Y

=

= =

∑

∑ ∑

− −
�

�
�
�

�

�
�
�

− −

1

2

1

2

1

2

( )( )

( ) ( )

 ≤ 1

or  γ2(X, Y ) ≤ 1

⇒  | γ | ≤ 1

⇒ – 1 ≤ γ ≤ 1.

Note: 1. If γ = – 1, then perfect negative correlation.
2. If γ = 1, then perfect positive correlation.
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Theorem 2: If X and Y are independent variable, then they are uncorrelated but converse is not
true.

Proof: We know that the covariance between two variable X and Y is

Cov (X, Y ) = E[{X – E(X )} {Y – E(Y )}]

= E[( ) ( )]X X Y Y− −

= E(XY ) – E(X ) . E(Y )

Since, it is given X and Y are independent variables then

E(XY ) = E(X ) E(Y )

∴  Cov (XY ) = 0

The coefficient of correlation

 γ (X, Y) = Cov

variance variance

. ( )

.

XY

X Y
 = 0

Hence, two variables X and Y are uncorrelated.

Now let two random variables X and Y with probability density function

f (x) = 
1

4
2 2

0

,

,

− < <�
�
�

	�

x

otherwise
 and Y = X 2

Now, E(X ) = 
− −

−
� �= =

�

�
�
�

�
� = − =

2

2

2

2 2

2

2
1

4

1

4 2

1

8
4 4 0x f x dx x dx

x
( ) [ ]

and E(XY ) = E(X 3) = 
− −� �=

2

2
3

2

2
21

4
x f x dx x dx( )

= 
1

4 4

1

16
16 16 0

4

2

2
x�

�
�
�

�
� = − =

−

[ ]

∴  Cov (XY ) = E(XY ) – E(X ) . E(Y ) = 0

i.e., the correlation coefficient is zero but the variables are dependent, by the relation Y = X2.

Theorem 3: The correlation coefficient is independent of change of origin and scale.

Proof: The correlation coefficient, between two variables X and Y is

 γ (X, Y ) = 
Cov ( , )X Y

X Yσ σ
...(1)
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Let  X = a + h U and Y = b + kV, where a, b, h, k are constants; n > 0, k > 0.

To show that γ (X, Y ) = γ (U, V )

Since, X = a + hU ⇒ E(X ) = a + hE(U )

and  Y = b + kV  ⇒ E(Y ) = b + k E(V )

∴  X – E(X ) = h[U – E(U )]

and Y – E(Y ) = k[V – E(V )].

Now,  Cov (X, Y ) = E[{X – E(X )} {Y – E(Y )}]

= E[h{U – E(U )} k {V – E(V )}]

= hk E[{U – E(U )} {V – E(V )}] = hk Cov (UV ) ...(2)

σ X
2  = E[{X – E(X )}2] = E[h2{U – E(U )}2]

= h2 E[U – E(U )] = h2 σU
2 ...(3)

and σY
2  = E[{Y – E (Y )}2] = E[k2{V – E(V )}2]

= k2 E[V – E(V )] = k2σV
2 ...(4)

Using equation (1), (2), (3) and (4), we have

γ (X, Y) = 
Cov ( , )X Y

X Yσ σ
 = 

hk U V

h kU V

Cov ( , )

σ σ
 = 

Cov ( , )U V

U Vσ σ
 = γ(U, V ).
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The coefficient of correlation also has a probable error. It is that amount when added to and subtracted
from the coefficient of correlation would give such limits within which we can reasonably expect the
values of coefficient of correlation to vary. The formula for probable error is

P.E. = (0.6745) × 
1 2− γ

n
.

The following rules are observed for probable error:

(i) If γ < 0.30, then it is insignificant.

(ii) If γ < P.E, then it is not at all significant.

(iii) If 0.4 < γ < 0.6, then correlation cofficient is normal.

(iv) If γ > 0.9, then it is highly significant.

(v) If γ > 6 P.E, then it is significant i.e., correlation is certain.
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For a bivariate frequency distribution

 γ = 

Σ Σ Σ
Σ

Σ Σ
Σ

Σ Σ
Σ

f UV
f U f V

f

f U
f U

f
f V

f V

f

−

−
�
�
	



�
�

−
�
�
	



�
�

�

�
�
�

�

�
�
�

2
2

2
2 1 2

( ) ( )
/

where, f is the frequency of a particular rectangle in the correlation table, and

 U = 
X X

h

−
, V = Y Y

k

− .

�������$������

Example 1: Calculate the coefficient of correlation between X and Y using the following data.

X – 10 – 5 0 5 10

Y 5 9 7 11 13

Solution:

X Y X2 Y2 XY

– 10 5 100 25 – 50

– 5 9 25 81 – 45

0 7 0 49 0

5 11 25 121 55

10 13 100 169 130

ΣX = 0 ΣY = 45 ΣX 2 = 250 ΣY 2 = 445 ΣXY = 90

We have, X
n

X= =1
0Σ ,

Y
n

Y= = × =1 1

5
45 9Σ

The correlation coefficient

 γ (X, Y) = 

1

1 12 2 2 2

n
XY XY

n
X X

n
Y Y

Σ

Σ Σ

−

−�
�
	



�
�

−�
�
	



�
�
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= 

1
5

90 0 9

1
5

250 0
1
5

445 92 2

× − ×

× −�
�
	



�
�

× −�
�
	



�
�

( ) ( )

= 
18

50 8

18

20×
=  = 0.9.

Example 2: Calculate the correlation coefficient for the following heights (in inches) of fathers
(X) and their sons (Y).

X 65 66 67 67 68 69 70 72

Y 67 68 65 68 72 72 69 71

Solution:

X Y X 2 Y 2 XY

65 67 4225 4489 4355

66 68 4356 4624 4488

67 65 4489 4225 4355

67 68 4489 4624 4556

68 72 4624 5184 4896

69 72 4761 5184 4968

70 69 4900 4761 4830

72 71 5184 5041 5112

ΣX = 544 ΣY = 552 ΣX 2 = 37028 ΣY 2 = 38132 ΣXY = 37560

We have X
n

X= =1 544

8
Σ  = 68.

Y
n

Y= =1 552

8
Σ  = 69.

The correlation coefficient

 γ(X, Y) = 

1

1 12 2 2 2

n
XY XY

n
X X

n
Y Y

Σ

Σ Σ

−

−�
�
	



�
�

−�
�
	



�
�

= 

1
8

37560 68 69

1
8

37028 68
1
8

38132 692 2

× − ×

× −�
�
	



�
�

× −�
�
	



�
�

( ) ( )

 = 
4695 4692

4 5 5 5

−
×. .

 = 0.603.
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Example 3: Calculate the coefficient of correlation between X and Y using the following data.

X 1 2 3 4 5 6 7 8 9

Y 9 8 10 12 11 13 14 16 15

Solution: Let us assume mean for X be 5 and for Y be 12

X Y U = X – X V = Y – Y U2 V2 UV

1 9 – 4 – 3 16 9 12

2 8 – 3 – 4 9 16 12

3 10 – 2 – 2 4 4 4

4 12 – 1 0 1 0 0

5 11 0 – 1 0 1 0

6 13 1 1 1 1 1

7 14 2 2 4 4 4

8 16 3 4 9 16 12

9 15 4 3 16 9 12

n = 9 0 0 ΣU2 = 60 ΣV2 = 60 ΣUV = 57

 U
n

U V
n

V= = = =1
0

1
0Σ Σ,

Cov (U, V ) = 
1 1

9
57 0

57

9
6 33

n
UV UVΣ − = × − = = .

σ
V 2  = − = × −1 1

9
60 02 2

n
U UΣ  = 

60

9
 = 6.66

σ
V 2  = − = × −1 1

9
60 02 2

n
V VΣ  = 

60

9
 = 6.66

The correlation coefficient

γ (U, V ) = 
Cov ( , ) .

. .

.

.

U V

U Vσ σ
=

×
=6 33

6 66 6 66

6 33

6 66
 = 0.950.

Example 4: Calculate the coefficient of correlation from the following data.

X 1 3 5 7 8 10

Y 8 12 15 17 18 20
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Solution: Let us assume mean for X be 7 and for Y be 15

X Y U = X – X V = Y – Y U 2 V 2 UV

1 8 – 6 – 7 36 49 42

3 12 – 4 – 3 16 9 12

5 15 – 2 0 4 0 0

7 17 0 2 0 4 0

8 18 1 3 1 9 3

10 20 3 5 9 25 15

n = 6 – 8 0 ΣU2 = 66 ΣV2 = 96 ΣUV = 72

 U
n

U= = −1 8

6
Σ  = – 1.33, V

n
V= = × =1 1

6
0 0Σ

 Cov (U, V ) = 
1 1

6
72 133 0

n
UV UVΣ − = × − − ×( . )  = 12

σ
U2  = 1 1

6
662 2

n
U UΣ − = ×  – (– 1.33)2

= 11 – 1.77 = 9.23

  σV 2 = 
1 1

6
96 0 162 2 2

n
V VΣ − = × − =( )

The correlation coefficient

γ (U, V) = 
Cov ( , )

. .

U V

U Vσ σ
=

×
=12

9 23 16

12

1215
 = 0.9876.

Example 5: Calculate the value of the Pearson’s coefficient of correlation for the following
table.

Y 16–18 18–20 20–22 22–24

X

10–20 2 1 1 –

20–30 3 2 3 2

30–40 3 4 5 6

40–50 2 2 3 4

50–60 – 1 2 2

60–70 – 1 2 1

Solution: Let us assume X  = 30–40, and    Y  = 18–20,

And we have   U = 
X − −( )30 40

10
 and V = 

Y − −( )18 20

2
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Y 16–18 18–20 20–22 22–24 f U fU f U2 Σ f V UΣ f V
X

10–20 2 1 1 4 – 2 – 8 16 – 1 2

20–30 3 2 3 2 10 – 1 – 10 10 4 – 4

30–40 3 4 5 6 18 0 0 0 14 0

40–50 2 2 3 4 11 1 11 11 9 9

50–60 1 2 2 5 2 10 20 6 12

60–70 1 2 1 4 3 12 36 4 12

f 10 11 16 15 52 Total 15 93 36 31

V – 1 0 1 2 Total

f V – 10 0 16 30 36

f V2 10 0 16 60 86

Σ f U – 5 3 8 9 15

VΣ f U 5 0 8 18 31

From the table,

  Σf V = 36

ΣfV 2 = 86

 Σf U = 15

 Σf U2 = 93

  Σf = 52

ΣfUV = 31.

The Pearson coefficient of correlation is

 γ = 
Σ Σ Σ

Σ

Σ Σ
Σ

Σ Σ
Σ

f UV
f U f V

f

f U
f U

f
f V

f V

f

− ×

−
�
�
	



�
�

−
�
�
	



�
�

2
2

2
2( ) ( )

= 
31

15 36
52

93
15
52

86
36
52

2 2

− ×

−

��

�
��

−

��

�
��

 = 
31 52 15 36

93 52 225 86 52 1296

× − ×
× − × −( ) ( )

= 
1072

14644536

1072

3826 8
=

.
 = 0.28.



��� 	��	�����	
���	
���

����� ��
!�����������
���� �������
"�� ���������
����� ��
!

����������


Charles Edward Spearman (1906) a great psychologist and statistician, developed a formula for the
calculation of coefficient of correlation, which is called the ‘‘Rank correlation coefficient or Spearman’s
correlation coefficient.

Let us suppose that sometimes the condition is such type which cannot be measured quantita-
tively, but can be ranked among themselves. For example, it is possible for a class-teacher to arrange his
students in ascending or descending order of intelligence, even though intelligence cannot be measured
quantitatively. There are so many attributes which are incapable of quantitative measurement such as
honesty, character, morality etc.

Suppose (xi, yi), i = 1, 2, 3, ......, n be the ranks of n individuals of a group corresponding to two
characteristics A and B. Assuming that no two individuals are equal in either classification, each indi-
vidual takes the values 1, 2, 3, .... n.

Now,  X
n

n
n

Y= + + + + = + =1
1 2 3

1

2
( ...... )

σ X
2  = 

1 2 2

n
x XiΣ −  = 

1
1 2 3

1

2
2 2 2 2

2

n
n

n
( ...... )+ + + + −

+
�

�
�

= 
( )( ) ( )n n n+ + − +1 2 1

6
1

4

2

 = 
n

Y

2
21

12
− = σ

Let   di = xi – yi = ( ) ( )x X y Yi i− − −

 
1 12 2

n
d

n
x X y Yi i iΣ Σ= − − −{( ) ( )}

= 
1

22 2

n
x X y Y x X y Yi i i i{ ( ) ( ) ( ) ( )}Σ Σ Σ− + − − − − −

= σ σx y X Y2 2 2+ − Cov ( , )

or Cov (X, Y ) = 
1

2

12 2 2σ σx y in
d+ −�

��
�
��

Σ  = 
1

2

1

12

1

12

12 2
2n n

n
di

− + − −
�

�
�

�

�
�Σ

= 
1

12
1

1

2
2 2( )n

n
di− − Σ

The correlation coefficient, between two variable X and Y is

γ (X, Y ) = 
Cov ( , )X Y

X Yσ σ
 = 

1
12

1
1

2

1
12

1
12

2 2

2 2

( )n
n

d

n n

i− −

− −

Σ
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= 

( )n
n

d

n

i

2
2

2

1
12

1
2
1

12

− −

−

Σ

or  γ = 1 – 
σΣ d

n n
i
2

2 1( )−

The method of measuring association between two sets of ranks is known as the rank correlation
method.
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Suppose given the following data:

X 68 64 75 50 64 80 75 40 55 64

Y 62 58 68 45 81 60 68 48 50 70

Here, we see that in X-series, 75 occurs 2 times. 64 occurs 3 times and in Y-series, 68 occurs
2 times. If any two or more individuals have same value with respect to characteristics X and Y, then
Spearman’s rank formula is fails. For these common ranking the correct formula for γ, to Σ d 2 we add

m m( )2 1

12

−
 for each value repeated, where m is the number of times a value occurs. As in given above

example,

For the X-series = 
2 2 1

12
3 3 1

12

2 2( ) ( )− + −
 = 

1

2
2

5

2
+ =

For the Y-series = 
2 2 1

12

2( )−
 = 

1

2

and  γ = 1 – 
6

5
2

1
2

1

2

2

Σ d

n n

+ +
�

�
�

−( )
.
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In this method the values of two variables (series) are plotted on a graph, taking one on X-axis and the
other along Y-axis. There is one dot for one pair of series, there being as many dots on the graph as there
pairs. This collection of dots is called a scatter diagram or dot diagram.
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Y

XO
Positive correlation

Y

XO
Negative correlation

Y

XO
Perfect positive (+1)

Y

XO
Perfect negative (–1)

Y

XO
No correlation

Example 6: The marks secured by students in mathematics and statistics are given below:

Mathematics (X) 10 15 12 17 13 16 25 14 22

Statistics (Y) 30 42 45 46 33 34 40 35 39

Calculate the rank correlation coefficient.

Solution: Calculation of the coefficient of rank correlation

X Rank of X Y Rank of Y R1 – R2 = d (R1 – R2)
2 = d2

R1 R2

10 9 30 9 0 0

15 5 42 3 2 4

12 8 45 2 6 36

17 3 46 1 2 4

13 7 33 8 – 1 1

16 4 34 7 – 3 9

25 1 40 4 – 3 9

14 6 35 6 0 0

22 2 39 5 – 3 9

n = 9 n = 9 Σd = 10 Σd2 = 72
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The coefficient of rank correlation

  γ = 1 – 
6

1
1

6 72

9 9 1

2

2 2

Σ d

n n( ) ( )−
= − ×

−
 = 1 – 

432

720
 = 0.4.

Example 7: Ten competitors in beauty contest are ranked by three judges in the following order:

First Judge by R1 1 6 5 10 3 2 4 9 7 8

Second Judge by R2 3 5 8 4 7 10 2 1 6 9

Third Judge by R3 6 4 9 8 1 2 3 10 5 7

Use the rank correlation method to discuss which pair of judges have the nearest approach to
common tastes in beauty.

Solution: Calculation of the coefficient of rank correlation between the ranking of first, second
and third Judges.

R1 R2 R3 R1 – R2 = d1 R1 – R3 = d2 R2 – R3 = d3 d1
2 d2

2 d3
2

1 3 6 – 2 – 5 – 3 4 25 9

6 5 4 1 2 1 1 4 1

5 8 9 – 3 – 4 – 1 9 16 1

10 4 8 6 2 – 4 36 4 16

3 7 1 – 4 2 6 16 4 36

2 10 2 – 8 0 8 64 0 64

4 2 3 2 1 – 1 4 1 1

9 1 10 8 – 1 – 9 64 1 81

7 6 5 1 2 1 1 4 1

8 9 7 – 1 1 2 1 1 4

Σd1 = 0 Σd2 = 0 Σd3 = 0 Σd1
2  = 200 Σd2

2  = 60 Σd3
2  = 214

Here, n = 10.

γ (1, 2) = 1 – 
6

1
1

6 200

10 99
1

40

33

7

33
1
2

2

Σd

n n( )−
= − ×

×
= − = −  = – 0.212

γ (1, 3) = 1 – 
6

1
1

6 60

10 90
1

4

11

7

11
2
2

2

Σd

n n( )−
= − ×

×
= − =  = 0.636

γ (2, 3) = 1 – 
6

1
1

6 214

10 90
1

214

165

49

165
3
2

2

Σd

n n( )−
= − ×

×
= − = −  = – 0.297

Here, we see that the first and third Judges have the nearest approach to their tastes for beauty.
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Example 8: Calculate the coefficient of rank correlation from the following data.

X 48 33 40 9 16 16 65 24 16 57

Y 13 13 24 6 15 4 20 9 6 19

Solution: Calculation of the coefficient of rank correlation

X Rank of X Y Rank of Y R1 – R2 = d R1 – R2 = d2

R1 R2

48 3 13 5.5 – 2.5 6.25

33 5 13 5.5 – 0.5 0.25

40 4 24 1 3 9.00

9 10 6 8.5 1.5 2.25

16 8 15 4 4 16.00

16 8 4 10 – 2 4.00

65 1 20 2 – 1 1.00

24 6 9 7 – 1 1.00

16 8 6 8.5 – 0.5 0.25

57 2 19 3 – 1 1.00

n = 10 n = 10 Σd = 0 Σd2 = 41.00

Here, we see that in X-series, 16 occurs 3 times and in Y-series 13 occurs 2 times and 6 occurs
2 times.

The total correlation for X-series is

= 
3 3 1

12

2( )−
 = 2

The total correlation for Y-series is

= 
2 2 1

12

2 2 1

12

1

2

1

2

2 2( ) ( )− + − = +  = 1

The coefficient of rank  correlation

 γ = 1 – 
6 2

1
2

1
2

10 10 1

2

2

Σ d + + +�
��

�
��

−( )
 = 1 – 

6 41 3

990
1

264

990

[ ]+ = −

= 1 – 0.2666 = 0.7334.

Example 9: Calculate the coefficient of rank correlation from the following data.

X 68 64 75 50 64 80 75 40 55 64

Y 62 58 68 45 81 60 68 48 50 74
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Solution: Calculation of the coefficient of rank correlation.

X Rank of X Y Rank of Y R1 – R2 = d R1 – R2 = d2

R1 R2

68 4 62 5 – 1 1

64 6 58 7 – 1 1

75 2.5 68 3.5 – 1 1

50 9 45 10 – 1 1

64 6 81 1 5 25

80 1 60 6 – 5 25

75 2.5 68 3.5 – 1 1

40 10 48 9 1 1

55 8 50 8 0 0

64 6 74 2 4 16

n = 10 n = 10 Σ d = 0 Σ d2 = 72

Here, we see that in X-series, 75 occurs 2 times, 64 occurs 3 times and in Y-series, 68 occurs
2 times.

The total correlation for X-series is

= 
2 2 1

12
3 3 1

12
1
2

2
5
2

2 2( ) ( )− + − = + =

The total correlation for Y-series is

= 
2 2 1

12

2( )−
 = 

1

2

The rank correlation coefficient

 γ = 1 – 
6

5
2

1
2

1
1

6 72 3

10 90

2

2

Σ d

n n

+ +�
��

�
��

−
= − +

×( )

[ ]
 = 1 – 

450

900
 = 0.5.

Example 10: If Xi + Yi = n + 1, show that γ = – 1.

Solution: Given  Xi + Yi = n + 1

Let Xi – Yi = di

⇒ di = 2Xi – (n + 1)

∴  Σd 2 = 4ΣX 2 – 4(n + 1) ΣX+ n(n + 1)2

= 4 
n n n

n
n n

n n
( )( )

( ) .
( )

( )
+ + − + + + +1 2 1

6
4 1

1

2
1 2

= 
1

3
 n(n2 – 1)
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∴      γ = 1 – 
6

1
3

1

1

2

2

. ( )

( )

n n

n n

−

−
 = 1 – 2 = – 1.

Example 11: If X and Y are uncorrelated random variables, find the coefficient of correlation
between X + Y and X – Y.

Solution: Let U = X + Y and V = X – Y

Then correlation coefficient is

 γ = 
Σ( )( )U U V V

n U V

− −
σ σ

...(1)

Let  U X Y V X Y= + = −,

and X – X  = x, Y – Y  = y

We have Σ ( ) ( )U U V V− −  = Σ [{( ) ( )}{( ) ( )}]X Y X Y X Y X Y+ − + − − −

= Σ[(x + y) (x – y)] = Σx2 – Σy2 = nσ σx yn2 2−

Also we have,  σU
2  = 

1 12 2

n
U U

n
X Y X YΣ Σ( ) [( ) ( )]− = + − +

= 
1 2

n
x yΣ( )+  = 

1
22 2

n
x y xy[ ]Σ Σ Σ+ +

= σ σx y
2 2+

Here, we have Σxy = 0, becuase X and Y are not correlated

Similarly,  σ σ σV x y
2 2 2= +

from equation (1), we have

 γ = 
n

n n

x y

x y x y

( )

{ ( )}{ ( )}

σ σ

σ σ σ σ

2 2

2 2 2 2

−

+ +

 γ = 
σ σ
σ σ

x y

x y

2 2

2 2

−
+

.

Example 12: Establish the formula σ σ σ γσ σX Y
2

X
2

Y
2

X Y2− = + − , where γ is the correlation

coefficient between X and Y.

Solution: The correlation coefficient between X and Y is

γ (X, Y ) = 
Cov ( , )X Y

x yσ σ
...(1)

We know that,   σ X
2  = E(X2) and Cov (X, Y ) = E (X, Y )
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⇒ σX Y E X Y− = −2 2( )  = E(X2) + E(Y 2) – 2E(X, Y )

= σ σX Y X Y2 2 2+ − Cov ( , )

⇒ Cov (X, Y ) = 
1

2
2[ ]σ σ σX Y

2
X Y
2+ − −

from equation (1), we have

 γ = 

1
2

2[ ]σ σ σ

σ σ

X Y
2

X Y
2

X y

+ − −

⇒  γ = 
σ σ σ

σ σ
X Y

2
X Y
2

X Y

2

2

+ − −

⇒ σ σ σ γσ σX Y X Y X Y− = + −2 2 2 2 .

����������	


1. Calculate the coefficient of correlation between X and Y from the table of their values:

X 1 3 4 6 8 9 11 14

Y 1 2 4 4 5 7 8 9

2. Calculate the coefficient of correlation between the values of X and Y given below:

X 78 89 97 69 59 79 68 61

Y 125 137 156 112 107 136 123 108

3. Calculate the coefficient of correlation for the following ages of husband and wife:

Husband’s age 23 27 28 29 30 31 33 35 36 39

Wife’s age 18 22 23 24 25 26 28 29 30 32

4. Calculate of coefficient of correlation for X and Y from the following data:

X 45 55 56 58 60 65 68 70 75 80 85

Y 56 50 48 60 62 64 65 70 74 82 90
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5. From the following data calculate the coefficient of correlation and find its probable error:

Mean Annual birth

rate per 1000 35.3 33.5 31.4 30.5 29.3 28.2 26.3 23.6 20.1 19.9 16.7
of population

Mean Annual death

rate per 1000 30.8 19.4 18.9 18.7 17.7 16.0 14.7 14.3 14.4 12.2 12.1

of population

6. Find the value of the Pearson’s coefficient of correlation for the following table:

Y 0–5 5–10 10–15 15–20 20–25

X

0–4 1 2 — — —

4–8 — 4 5 8 —

8–12 — — 3 4 —

12–16 — — — 2 1

7. Find Pearson’s coefficient of correlation from the following table :

Y 94.5 96.5 98.5 100.5 102.5 104.5 106.5 108.5 110.5

X

29.5 — — 4 3 4 1 — 1

59.5 1 3 6 18 6 9 2 3 1

89.5 7 3 16 16 4 4 1 — 1

119.5 5 9 10 9 2 — 1 2 —

149.5 3 5 8 1 — 1 — — —

179.5 4 2 3 1 — — — — —

209.5 4 4 — 1 — — — — —

239.5 1 1 — — — — — — —

8. Ten students got the following percentage of marks in mathematics and statistics:

S.No. of

students 1 2 3 4 5 6 7 8 9 10

Marks in

mathematic 78 36 98 25 75 82 90 62 65 39

Marks in

statistics 84 51 91 60 68 62 86 58 53 47

Find the coefficient of correlation and rank correlation of the above.
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9. The figures in the following table give the number of criminal convictions and the number unemployed
(in millions) for the years 1998–2007. Find the coefficient of rank correlation.

Years 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Number convicted

of crime 7.88 8.12 7.86 7.25 7.44 7.22 8.28 8.83 10.54 9.46

Number of

unemployed 1.26 1.24 1.43 1.19 1.33 1.34 2.50 2.67 2.78 2.26

10. Calculate the coefficient of correlation from the following data by the method of rank differences:

X 81 78 73 73 69 68 62 58

Y 10 12 18 18 18 22 20 24

11. The following are the numbers of hours which 10 students studied for an examination and the scores they
obtained:

No. of hour

studied (X) 8 5 11 13 10 5 18 15 2 8

Scores (Y) 56 44 79 72 70 54 94 85 33 65

Calculate the rank correlation coefficient.

12. A sample of 12 fathers and their eldest sons gave the following data about their height in inches:

Father 65 63 67 64 68 62 70 66 68 67 69 71

Son 68 66 68 65 69 66 68 65 71 67 68 70

Calculate the coefficient of rank correlation.

������

1. 0.977. 2. 0.957. 3. 0.95. 4. 0.92. 5. 0.98, 0.0805.

6. 0.6. 7. – 0.49. 8. 0.78, 0.818. 9. 0.09. 10. – 0.928.

11. 0.975. 12. 0.722.

�	
�	�����������

The study of regression has a great importance in physical sciences, where the data are generally in
functional relationship. The word ‘Regression’ was used by sir Francis Galton (1822–1911) in a paper
entitled ‘Regression towards Mediocrity in Hereditary stature’ in his studies connected with the relation
between the heights of fathers and heights of sons. Knowledge of regression analysis comes in handy in
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finding the probable value of one variable for a given value of the other, when the two variables are
known to be correlated. Thus, if we know that two series is relating to supply and price are correlated
we can find out what would be the effect on price, if the supply of commodity is increased or decreased
to a particular level.

�	
�	�������������������

Regression is the estimation for prediction of unknown values of one variable from known values of
another variable. The line which describes the average relationship between two variables is known as
line of regression. The equations describing the regression lines are called regression equations. A
regression equation is the algebric expression of regression line.

A regression line is one which shows that the best mean values of one variable corresponding to
mean values of the other variable. With two series x and y, if the two regression lines range themselves
along two straight lines, the correlation between x and y is linear. If the two straight lines of regression
coincide, correlation is perfect. If the two lines cut each other at right angles, correlation is zero.

Let Y = aX + b be the equation of the line of the best fit of x. Changing the origin to ( X Y, ),

where X  is the mean of x-series and Y  is the mean of y-series. Let x, y be the deviations from the

respective means X Yand .

∴  x = X – X , y = Y Y−

Then, equation Y = aX + b is changed in the form

 y = ax + b

where,  x = X – X and y = Y – Y

Let (xc, yc) be any point. Then the difference between  this point and the above line is

yc – axc – b

Hence U, the sum of the squares of such distance is

U = Σ ( y – ax – b)2, for all values of c.

Now for U is minimum, we choose a and b such that

  
∂
∂
U

a
 = – 2 Σ x(y – ax – b) = 0

and
∂
∂
U

b
 = – 2Σ(y – ax – b) = 0

⇒    Σxy – aΣx2 – bΣx = 0

and Σy – aΣx – nb = 0

Since,  Σx = 0 = Σy, we get

⇒  b = 0 and a = 
�

�

xy

x 2
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⇒  a = 
�

�

xy

x 2  = 
Cov ( , )x y

xσ2  = γ 
σ
σ

y

x

where, γ is the coefficient of correlation between x and y.

Hence, the equation to the line of regression

 y = γ 
σ
σ

y

x

 x.

⇒ Y – Y X X
y

x

= −γ
σ
σ

( ) where, x = X – X y Y Yand � � ,

which is called the regression line of Y on X.

Similarly, the regression line of X on Y is

 X X Y Yx

y

− = −γ
σ
σ

( )

Therefore, if the straight line is so chosen that the sum of squares of deviation parallel to the axis
of x is minimum, it is called the line of regression of x on y.

�	
�	���������������������������

The standard error measures the accuracy of estimate.

It is given by Eyx = 
Σ( )y y

n
c− 2

where, y is the observed value, yc is the estimated value and n is the number of pairs of items.

Note.

1. The coefficient γ
σ
σ

γ σ
σ

y

x

x

y

and  are called the regression coefficient of y on x, and of x on y respectively.

2. If the two lines of regression coincide, the correlation between the variables is perfect i.e.,

γ
σ
σ γ

σ
σ

y

x

y

x

= 1

⇒ γ2 = 1

⇒   γ = ± 1.

3. If the variables x and y are independent i.e., the coefficient of correlation between them is zero.

4. Some diagrams for differents values of γ.
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Y

XO r = + 1

Y

XO r = – 1

Y

XO
r = 0

Y

XO
r > 0

Y

XO
r < 0

5. Also denotes γ 
σ
σ

y

x

 = byx and γ 
σ
σ

x

y

 = bxy.

���������������

Example 1: If θ be the angle between the lines of regression, show that

 tan θ = 
( )1

.
2

x y

x
2

y
2

−
+

γ
γ

σ σ
σ σ

.

Explain the significance of the formula, when γ = 0, γ = ± 1.

Solution: The regression line of y on x

 y – y  = γ 
σ
σ

y

x

x x( )− ...(1)

Here slope  m1 = γ 
σ
σ

y

x

...(2)

The regression line of x on y

  x – x y yx

y

= −γ σ
σ

( ) ...(3)
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The slope m2 = 
1

γ
σ
σ

y

x

If m1 and m2 are the slops of the lines and θ is the angle between them, we have

 tan θ = 
m m

m m
2 1

1 21

−
+

 = 

1

1
1

γ
σ
σ

γ
σ
σ

γ
σ
σ γ

σ
σ

y

x

y

x

y

x

y

x

−

+ .

= 

σ
σ

γ
γ

σ
σ

y

x

y

x

1

1

2

2

2

−�

�	



��

+
 = 

1 2−�

�	



�� +
γ

γ
σ σ

σ σ
. x y

x
2

y
2 .

when γ = 0, tan θ = ∞, θ = 
π
2

 i.e., the two lines of regression are perpendicular to each other or variables

are uncorrelated.

When γ = ± 1, tan θ = 0, θ = 0 or π i.e., the lines coincide and therefore is a perfect correlation
between the two variables x and y. The estimated value of y is the same for all values of x or vice-versa.

Example 2: For two variables x and y with the same mean, the two regression equations are

y = ax + b and x = αy + β. Show that 
b 1 a

1β α
=

−
−

. Find also the common mean.

Solution: Suppose the common mean is m.

The given two regression equations are y = ax + b ...(1)

and  x = αy + β ...(2)

 y – m = a(x – m) ...(3)

and x – m = α(y – m) ...(4)

Comparing equation (3) and (4) with (1) and (2), we get

 b = m (1 – a) ...(5)

and  β = m(1 – α) ...(6)

Dividing (5) by (6), we get

 
b a

β α
=

−
−

1

1

Also (5) and (6), we have

m = 
b

a1 1−
=

−
β

α
.
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Example 3: Prove that the Pearson’s coefficient of correlation γ lies between – 1 and + 1.

Solution: Let   U = Σ(y – ax – b)2 ...(1)

For U is minimum when 
∂
∂
U

a
 = 0 and 

∂
∂
U

b
 = 0

differentiate partially (1) with respect to a and b respectively, we get

  
∂
∂
U

a
 = – 2 Σ x (y – ax – b) = 0

and   
∂
∂
U

b
 = – 2 Σ( y – ax – b) = 0.

Since, Σx = 0 = Σy, then we get

 b = 0 and a = 
Σ
Σ

xy

x 2

Now by (1), we have

U = Σ(y – ax)2 = Σy2 – 2aΣ xy + a2Σ x2

= Σy2 – 2 
Σ
Σ

Σ
Σ
Σ

Σ
xy

x
xy

xy

x
x2 2

2
2. +

�
�	



��

= Σ Σ
Σ

Σ
Σ

y
xy

x

xy

x
2

2

2

2

22− +( ) ( )
 = Σy2 – 

( )Σ
Σ

xy

x

2

2

= Σ
Σ

Σ Σ
y

xy

x y
2

2

2 21 −
�

�
�

�

�
�

( )

= Σ Σ

Σ Σ
y

xy

x y

2 2

2 2
1[ ] ,− =γ γwhere

= (1 – γ)2 Σ y2

Since, U be the sum of squares then Σ y2 will not be negative.

⇒  1 – γ 2 ≥ 0 or γ2 ≤ 1

Hence, γ lies between – 1 and + 1.

Example 4: Show that the coefficient of correlation is the geometric mean between the two
regression coefficients.

Solution: The regression coefficient of y on x = γ 
σ
σ

y

x

The regression coefficient of x on y = γ 
σ
σ

x

y

Geometric mean = γ
σ
σ

γ σ
σ

y

x

x

y

.
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= γ = coefficient of correlation.

Example 5: For a bivariate distribution

n = 18, ΣX2 = 60, ΣY 2 = 96, ΣX = 12, ΣY = 18, ΣXY = 48,

find the equation of the lines of regression and γ.

Solution: We have,

  X
n

X= = =1 12

18

2

3
Σ ...(1)

 Y
n

Y= = =1 18

18
1Σ ...(2)

 σ X
2  = 

1 60

18

4

9

26

9
2 2

n
X XΣ − = − = ...(3)

σY
2  = 

1 96

18
1

13

3
2 2

n
Y YΣ − = − = ...(4)

 Cov (X, Y ) = 1

n
XY XYΣ −

= 
48

18

2

3
1

48 12

18

36

18
2− �

�	


��

=
−

= =( )

Now γ (X, Y ) = 
Cov ( , )X Y

X Yσ σ2 2

2

26
9

13
3

6

13

3

2
=

×
=

The regression line of Y on X is

 Y – Y X XY

X

= −γ
σ
σ

( )

Y – 1 = 
6

13

3

2

3

2

2

3
X −�
�



�

Y – 1 = (0.692) (X – 0.666)

Y = 0.692X – 0.461 + 1

Y = 0.692X + 0.538

The regression line of X on Y is

  (X – X ) = γ
σ
σ

X

Y

Y Y( )−

⇒ X – 
2

3
= 

6

13

3

2

2

3
1× −( )Y

⇒ X – 2

3

6

13
=  (Y – 1)
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⇒ X = 0.46 Y – 0.46 + 0.66

⇒ X = 0.46Y + 0.20.

Example 6: Two random variables have the least square regression lines with equations

3x + 2y – 26 = 0 and 6x + y – 31 = 0,

find the mean values and the coefficient of correlation between x and y.

Solution: Given equations are

3x + 2y – 26 = 0 ...(1)

and 6x + y – 31 = 0 ...(2)

Since, the two lines of regression pass through the point ( , )x y , we have

3 2 26x y+ = ...(3)

and  6 31x y+ = ...(4)

Solving (3) and (4), we get

 x  = 4 and y  = 7

From (1), we have y = – 
3

2
13x +

∴ byx = – 
3

2
...(5)

Now from (2), we have

 x = – 
1

6

31

6
y +

∴ bxy = – 
1

6
...(6)

Multiplying (5) and (6), we get

byx . bxy = −�
�



�

× −�
�


�

3

2

1

6
� b byx

y

x
xy

x

y

= =
�

�
�
�

�

�
�
�

γ
σ
σ

γ
σ
σ

and

γ 2 = 
1

4

⇒ γ = ± 
1

2
 = ± 0.5

Since, both regression coefficient byx and bxy are negative.

Then γ = – 0.5.
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Example 7: Calculate the coefficient of correlation and obtain the line of regression for the
following data.

X 1 2 3 4 5 6 7 8 9

Y 9 8 10 12 11 13 14 16 15

find also an estimate for Y which would correspond to X = 6.2.

Solution: Let X  = 4 and Y  = 13.

X Y U = X – X V = Y – Y U2 V2 UV

1 9 – 3 – 4 9 16 12

2 8 – 2 – 5 4 25 10

3 10 – 1 – 3 1 9 3

4 12 0 – 1 0 1 0

5 11 1 – 2 1 4 – 2

6 13 2 0 4 0 0

7 14 3 1 9 1 3

8 16 4 3 16 9 12

9 15 5 2 25 4 10

ΣU = 9 ΣV = – 9 ΣU2 = 69 ΣV2 = 69 ΣUV = 48

Hence, U  = 
1 1

9
9 1

n
UΣ = × = ,

V  = 
1 1

9
9 1

n
VΣ = × − = −( )

Cov (U, V ) = 
1 1

9
48 1 1

n
UV UVΣ − = × − −( )  = 5.33 + 1 = 6.33

 σU
2  = 

1 1

9
69 12 2

n
U UΣ − = × −  = 

60

9
6 66= .

 σV
2  = 

1 1

9
69 12 2

n
V VΣ − = × −  = 

60

9
 = 6.66

 γ = 
Cov ( ) .

. .

.

.

UV

U Vσ σ2 2

6 33

6 66 6 66

6 33

6 66
=

×
=  = 0.95.
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So X  = 4, Y  = 13,

 σX = σY = 
60

9

The regression line of Y on X is

 Y – Y X XY

X

= −γ σ
σ

( )

⇒ Y – 13 = (0.95) 
60 9/

/
( )

60 9
4X −

⇒ Y – 13 = (0.95) (X – 4)

⇒ Y = 0.95X – 3.80 + 13

⇒ Y = 0.95X + 9.20.

Example 8: Show that the A.M. of the coefficient of regression is greater than the coefficient of
correlation.

Solution: The regression line of Y on X is

 Y – Y X XY

X

= −γ
σ
σ

( ) ...(1)

The regression line of X on Y is

 X – X Y YX

Y

= −γ σ
σ

( ) ...(2)

Now to show that, we have

γ σ
σ

γ σ
σ

Y

X

X

Y

+

2
 > γ

⇒  
σ σ

σ σ
Y X

X Y

2 2

2

+
 > 0 ⇒ σY

2 + σX
2 – 2σX σY > 0

⇒ (σY – σX)2 > 0
Which is true.

����������	�

1. Find the correlation coefficient and the equation of regression lines for the following values of X and Y:

X 1 2 3 4 5

Y 2 5 3 8 7

2. Find Cov (X, Y ), when ΣX = 50, ΣY = – 30, ΣXY = – 115, n = 10.
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3. Given the following data:

X Y

Arithmetic
36 85

mean

Standard
11 8

deviation

Correlation coefficient between X and Y is 0.66.

(a) Find two regression lines.

(b) Estimate value of X, when Y = 75.

4. Find the coefficient of correlation for X and Y from the following data:

X 45 55 56 58 60 65 68 70 75 80 85

Y 56 50 48 60 62 64 65 70 74 82 90

Also find the equation of the lines of regression.

5. The lines of regression for a data are given as under:

2y – x – 50 = 0, 3y – 2x – 10 = 0.

Show that the regression estimate of y for x = 150 is 100, whereas the regression estimate of x corre-
sponding to y = 100 is 145. Explain the difference.

6. The variables x and y are connected by the equations ax + by + c = 0, show that the correlation between
them is – 1, if the sign of a and b are like, and + 1 if they are different.

7. A study of prices of a certain commodity at Hapur and Kanpur yield the following data:

Hapur Kanpur

Rs Rs

Average price per kilo 2.463 2.797

Standard deviation 0.326 0.207

γ between prices at 0.774
Hapur and Kanpur

Estimate from the above data the most likely price

(i) At Kanpur corresponding to the price of Rs. 3.052 per kilo at Hapur.
(ii) At Hapur corresponding to the price of Rs. 2.334 per kilo at Kanpur.

8. Heights of fathers and sons are given in the inches

Height of Father (X) 65 66 67 67 68 69 71 73

Height of Son (Y) 67 68 64 68 72 70 69 70

From the two lines of regression and calculate the expected average height of the son when the height of
the father is 67.5 inches.
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9. The equations of two regression lines obtained in a correlation analysis of 60 observations are 5x = 6y +
24 and 1000 y = 768x – 3608. What is the correlation coefficient and what is its probable error ?

Show that the ratio of the coefficient of variability of x to that of y is 
5

24
. What is the ration of variances

of x and y?

10. In a partially destroyed laboratory record of an analysis correlation data, the following results only are
legible:

variance of x = 9. Regression equations:

8x – 10y + 66 = 0, 40x – 18y = 214.

(i) What are the mean values of x and y,

(ii) The standard deviation of y,

(iii) The coefficient of correlation between x and y?

11. A student has obtained the following answers to certain problems. Discuss the criticise them

(i) Mean = 3, variance = 5 for a binomial distribution.

(ii) Mean = 4, variance = 3 for a poisson distribution.

(iii) Coefficient of regression of y on x = 3.2.

Coefficient of regression of x on y = 0.8 for a bivarate distribution.

12. Prove that:

(a) Eyx = σy (1 – γ2)1/2 (b) Exy = σx (1 – γ2)1/2.

������

1. 0.81, X = 0.5Y + 0.5, Y = 1.3X + 1.1

2. 3.5

3. (a) X = 0.9075Y – 41.1375, Y = 0.48X + 67.72, (b) 26.925

4. 0.92, Y = 0.99X + 1.02, X = 0.85 Y + 9.47

7. (i) 3.086 (ii) 1.899

8. X = 0.524 Y + 32.29, Y = 0.421X + 39.77, 68.19.

9. γ = ± 0.96, 0.0068, 5/4

10. (i) 13,17 (ii) 4 (iii) 0.6

11. (i) Wrong, because here q = 
5

3
 > 1

(ii) Mean = variance (in Poisson distribution) wrong

(iii) Contradiction; because γ 2 = 2.56 > 1, which is never greater than unity.
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A real valued function f whose domain is the set of real functions is
called a functional. Let us consider the problem to determine a curve
y = y(x) through two points P(x1, y1) and Q(x2, y2) for which
y(x1) = y1, y(x2) = y2 such that

x

x dy

dx
dx

1

2
1

2

� + �
�
�
�

...(1.1)

is a minimum.

In general terms, to determine the curve y = y(x), where y(x1) = y1 and y(x2) = y2 such that for

a given function f x y
dy

dx
, ,�

�
�
�

or f (x, y, y′),

x

x
f x y y dx

1

2

� ′( , , )  is maximum or minimum ...(1.2)

Hence, an integral such as (1.1) and (1.2), which assumes a definite value for functions of the
type y = y(x) is known as functional.

Note. A function y = y(x), which extremizes a functional is known as extremal or extremizing function.

�����������������	
�

A necessary condition for

 I = 
x

x
f x y y dx

1

2

� ′( , , ) with y(x1) = y1 and y (x2) = y2

to be an extremum (maximum or minimum) is that

∂
∂

∂
∂

f

y

d

dx

f

y
−

′
�
��
�
��

 = 0, where y′ = 
dy

dx

This is called Euler’s equation.

CCCCCHAPTERHAPTERHAPTERHAPTERHAPTER     11111

Calculus of Variations
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P(x , y )11

Q(x , y )22
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Proof: Given that I = 
x

x
f x y y dx

1

2

� ′( , , ) ...(1.3)

Let y = y(x) be the curve joining two points P(x1, y1) and Q(x2, y2)
which makes the given function I an extremum.

Let  Y = y(x) + αg(x) ...(1.4)

be a neighbouring curve joining these point P and Q, where α is a small
parameter but independent of x and g(x) is an arbitrary differentiable
function.

At the end point P and Q, g (x1) = 0 = g (x2) ...(1.5)

When α = 0,     neighbouring curve (1.4) becomes

Y = y(x), which is extremal

If we replace y by Y in equation (1.3) then, we get

 f x Y Y dx
x

x
( , , )′�

1

2

 = f x y x g x y x g x dx
x

x
{( , ( ) ( ), ( ) ( )}+ ′ + ′� α α

1

2

= I(α) which is a function of α

Hence,  I (α) = f x Y Y dx
x

x
( , , )′�

1

2
...(1.6)

The functional I (function of α) is a maximum or minimum for α = 0, when

 I′(α) = 0 ...(1.7)

Differentiating equation (1.6) under the integral sign by Leibnitz’s rule, we have

 I′ (α) = 
∂
∂

∂
∂α

∂
∂

∂
∂α

∂
∂

∂
∂α

f

x

x f

Y

Y f

Y

Y
dx

x

x
+ +

′
′�

��
�
���

1

2

Since α is independent of x, so 
∂
∂α

x
 = 0, we have

 I′(α) = 
∂
∂

∂
∂α

∂
∂

∂
∂α

f

Y

Y f

Y

Y
dx

x

x
+

′
′�

��
�
���

1

2

...(1.8)

Differentiating (1.4) with respect to x, we get

 Y′ = y′(x) + αg′(x) ...(1.9)

Again differentiating (1.9) with respect to α, we get

∂
∂α

′Y
 = g′(x) ...(1.10)

Now differentiating (1.4) with respect to α, we have

 
∂
∂α
Y

 = g(x) ...(1.11)

Using equation (1.8), we have

I′ (α) = 
x

x f

Y
g x

f

Y
g x dx

1

2

� +
′

′�
	


�
�

∂
∂

∂
∂

( ) ( )

Y

XO

P(x , y )11

Q(x , y )22

Y = y(x) + g(x)�

y = y(x)

y2y1
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Integrating the second term on the right by parts, we have

= 
x

x

x

x

x

xf

Y
g x dx

f

Y
g x

d

dx

f

Y
g x dx

1

2

1

2

1

2

� �+
′

�
�
�

�
�
�

−
′

�
��

�
��

�

	





�

�



∂
∂

∂
∂

∂
∂

( ) ( ) ( )

= 
x

x

x

xf

Y
g x dx

f

Y
g x

f

Y
g x

d

dx

f

Y
g x dx

1

2

1

2

2 1� �+
′

−
′

�
	


�
�

−
′

�
��

�
��

∂
∂

∂
∂

∂
∂

∂
∂

( ) ( ) ( ) ( )

= 
x

x f

Y
g x dx

1

2

�
∂
∂

( )  + 0 – 
d

dx

f

Y
g x dx

x

x ∂
∂ ′
�
��

�
��� ( )

1

2

(Using 1.5)

= 
∂
∂

∂
∂

f

Y

d

dx

f

Y
g x dx

x

x
−

′
�
��

�
��

�
�
�

�
�
�� ( )

1

2

For extremum value, we have

 I′ (α) = 0

⇒  0 = 
∂
∂

∂
∂

f

Y

d

dx

f

Y
g x dx

x

x
−

′
�
��

�
��

�
�
�

�
�
�� ( )

1

2

Since, g(x) is an arbitrary differentiable function then, we have

 
∂
∂

∂
∂

f

Y

d

dx

f

Y
−

′
�
��

�
��

 = 0 ...(1.12)

which is the required Euler’s equation.
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1. Let  I = f x y y dx
x

x
( , , )′�

1

2

Here f  is a function of x, y and y′
Differentiating f with respect to x, we get

  
df

dx

f

x

f

y

dy

dx

f

y

dy

dx
= + +

′
′∂

∂
∂
∂

∂
∂

or
df

dx

f

x

f

y
y

f

y
y= + ′ +

′
′′

∂
∂

∂
∂

∂
∂ ...(1.13)

 Now consider d

dx
y

f

y
y

d

dx

f

y
y

f

y
′

′
�
��

�
��

= ′
′

�
��
�
��

+ ′′
′

∂
∂

∂
∂

∂
∂

...(1.14)

Subtracting (1.14) from (1.13), we get

df

dx

d

dx
y

f

y

f

x

f

y
y y

d

dx

f

y
− ′

′
�
��

�
��

= + ′ − ′
′

�
��
�
��

∂
∂

∂
∂

∂
∂

∂
∂
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d

dx
f y

f

y

f

x
y

f

y

d

dx

f

y
− ′

′
�
��

�
��

− = ′ −
′

�
��
�
��

�
�
�

�
�
�

∂
∂

∂
∂

∂
∂

∂
∂

 
d

dx
f y

f

y

f

x
− ′

′
�
��

�
��

−∂
∂

∂
∂  = 0 (Using Euler’s equation)

Hence
d

dx
f y

f

y

f

x
− ′

′
�

	



�

�
 −∂

∂
∂
∂

 = 0 ...(1.15)

2. Since 
∂
∂

f

y ′
 is also a function of x, y, y′.

Let
∂
∂

f

y ′
 = h (x, y, y′) ...(1.16)

Then  
d

dx

f

y

dh

dx

∂
∂ ′
�
��
�
��

=  = 
∂
∂

∂
∂

h

x

h

y

dy

dx

dh

dy

dy

dx
+ +

′
′

= 
∂

∂
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂x

f

y y

f

y
y

y

f

y
y

′
�
��
�
��

+
′

�
��
�
��

′ +
′ ′
�
��
�
��

′′

= ∂
∂ ∂

∂
∂ ∂

∂
∂

2 2 2

2

f

x y

f

y y
y

f

y
y

′
+

′
′ +

′
′′ ...(1.17)

Using (1.12) and (1.17), we get

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

f

y

f

x y

f

y y
y

f

y
y−

′
+

′
′ +

′
′′

�
�
�

�
�
�

2 2 2

2  = 0

or ′′
′

+ ′
′

+
′

−y
f

y
y

f

y y

f

x y

f

y

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

2

2

2 2

 = 0 ...(1.18)
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���	
��
���������������	
��

There are several situations in which we can easily be obtain the solution of Euler’s equation in follow-
ing cases:

Case I: When f is  independent of x then
∂
∂

f

x
 = 0.

By equation (1.15), we have

d

dx
f y

f

y
− ′

′
�
��

�
��

∂
∂

 = 0
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Integrating, we get f – y′ ∂
∂

f

y ′
 = Constant ...(1.19)

Case II: When f is independent of y then 
∂
∂
f

y
 = 0

By equation (1.12), we have
d

dx

f

y

∂
∂ ′
�
��
�
��

 = 0

Integrating, we get
∂
∂

f

y ′
 = Constant ...(1.20)

Case III: When f is independent of y′ then
∂
∂

f

y ′
 = 0. By equation (1.21), we have

  
∂
∂

f

y  = 0 ...(1.21)

Case IV: When f is independent of x and y then 
∂
∂

f

x
 = 0 and 

∂
∂
f

y
 = 0

 ∂
∂ ∂

2 f

x y′
 = 0 and ∂

∂ ∂

2 f

y y′
 = 0

By equation (18), we have

y″ 
∂
∂

2

2

f

y′
 = 0 ...(1.22)

If
∂
∂

2

2

f

y′
 ≠ 0 then y″ = 0

which gives a solution of the form

 y = ax + b. ...(1.23)

Note:  Any function which satisfies Euler’s equation is called a Extremal. Extremal is obtained by solving
the Euler’s equation.

��������
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Suppose y = f (x) is a curve passing through P(x1, y1) and Q (x2, y2). Let  another curve y = f1(x) through
P and Q be obtained by displacing points on y = f (x) parallel to y-axis, the displacement of P and Q ,
being zero, then variation δy of y is defined as

 δy = f (x) – f 1(x)

and variation is defined as δy′ = f ′ (x) – f′1(x)
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where  δy = 
d

dx
 (δy′)

Here, if δy is small then the variation is called strong variation and if δy′ is small, then the
variation is called weak variation.

����� 	�
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�����

The problem of maximum or minimum with constraints, it is required to determine the maximum or
minimum of a function of several variable g (x1, x2, ......, xn) where the variables x1, x2, ......., xn are
connected by some given condition or relation called a constraints. In calculus of variations, in some
problems, it is necessary to determine extremum  of an integral while one or more integrals involving
the same variables and the same limits are to be kept constant. Such type problems are called isoperimetric
problems and mostly solved by the method of Lagrange’s multipliers. For example, to determine the
shape of the closed curve of the given perimeter enclosing maximum area.

Let the isoperimetric problem consists of determine a function f (x) which extremizes the functional

 I = 
x

x
f x y y dx

1

2

� ′( , , ) ...(1.24)

Subject to the condition that the another integral

 J = 
x

x
g x y y dx

1

2

� ′( , , )  = C ...(1.25)

To solve this type of problem, we use the method of Lagrange’s multipliers and consider an
integral

H = 
x

x
h x y y dx

1

2

� ′( , , ) ...(1.26)

where h = f + λg and λ is the Lagrange’s multiplier.

For H is extremum, if I is extremum because J  is constant. Then, the modified Euler’s equation
is given by

∂
∂

∂
∂

h

y

d

dx

h

y
−

′
�
��
�
��

 = 0

���� ���	��	
���� ��
������ 	��
��	��� �������� ���������

���	�����

Let us consider the functional

 I = 
x

x

n nf x y y y y y y dx
1

2

1 2 1 2� ′ ′ ′( , , , ...... , , , , ......, ) ...(1.27)

involving n functions y1, y2, ......, yn of x.
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The necessary condition for this integral (1.27) to be extremum is

 
∂
∂

∂
∂

f

y

d

dx

f

yi i

−
′

�

��
�

��  = 0, i = 1, 2, 3, ......., n

These are Euler’s equations for the n functions.

�� �������	
�����	��
��	������
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Let the extremum of a functional

 I = f x y y y dx
x

x
( , , , )′ ′′�

1

2

A necessary condition for above functional to be extremum is

∂
∂

∂
∂

∂
∂

f

y

d

dx

f

y

d

dx

f

y
−

′
�
��
�
��

+
′′

�
��

�
��

2

2  = 0

Proof: Given that

I = f x y y y dx
x

x
( , , , )′ ′′�

1

2

...(1.28)

Let y(x) be the function which makes (1.28) extremum and satisfies the boundary conditions

 y(x1) = y1, y(x2) = y2, y′(x1) = y′1 and y′(x2) = y′2
Now consider a differentiable function g(x) such that

g x g x
g x g x

( ) ( )
( ) ( )

1 2

1 2

0
0

= =
′ = = ′

�
�
�and ...(1.29)

Putting  y + αg in place of y in (1.28), we get

I(α) = f x y g y g y g dx
x

x
( , , , )+ ′ + ′ ′′ + ′′� α α α

1

2

 = F dx
x

x

1

2

� ...(1.30)

Differentiating (1.30) under the integral sign, we get

 
dI

d

dF

d
dx

F

y

y F

y

y F

y

y
dx

x

x

x

x

α α
∂
∂

∂
∂α

∂
∂

∂
∂α

∂
∂

∂
∂α

= = +
′

′ +
′′

′′�
��

�
����

1

2

1

2

= 
∂
∂

∂
∂

∂
∂

F

y
g

F

y
g

F

y
g dx

x

x
+

′
′ +

′′
′′

�
��

�
���

1

2

For extremum value of (1.28), we have

dI

dα
 = 0 when α = 0

⇒
∂
∂

∂
∂

∂
∂

F

y
g

F

y
g

F

y
g dx

x

x
+

′
′ +

′′
′′

�
��

�
���

1

2

 = 0
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⇒
∂
∂

∂
∂

∂
∂

F

y
g dx

F

y
g dx

F

y
g dx

x

x

x

x

x

x
+

′
′ +

′′
′′� ��

1

2

1

2

1

2

 = 0

Integrating by parts with respect to x, we have

x

x

x

x

x

x

x

x

x

xf

y
g dx

f

y
g

d

dx

f

y
g dx

f

y
g

d

dx

f

y
g dx

1

2

1

2

1

2

1

2

1

2

� � �+
′

�

	



�

�
 −

′
�
��
�
��

+
′′

′
�

	



�

�
 −

′′
�
��

�
��

′∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

 = 0

or
x

x

x

x

x

x

x

x
f

y
g dx

f

y
g

d

dx

f

y
g dx

f

y
g

1

2

1

2

1

2

1

2

� �+
′

�

	



�

�
 −

′
�
��
�
��

+
′′

′
�

	



�

�


∂
∂

∂
∂

∂
∂

∂
∂

– 
d

dx

f

y
g

d

dx

f

y
g dx

x

x

x

x∂
∂

∂
∂′′

�
��

�
��

�

	



�

�
 +

′′
�
��

�
���

1

2

1

2
2

2  = 0

Using equation (1.29), we get

or
x

x

x

x

x

xf

y
g dx

d

dx

f

y
g dx

d

dx

f

y
g dx

1

2

1

2

1

2
2

2� � �−
′

�
��
�
��

+
′′

�
��

�
��

∂
∂

∂
∂

∂
∂

 = 0

or  
x

x f

y

d

dx

f

y

d

dx

f

y
g dx

1

2
2

2� −
′

�
��
�
��

+
′′

�
��

�
��

�

	



�

�


∂
∂

∂
∂

∂
∂

 = 0

This equation must hold good for all values of g(x), we get

∂
∂

∂
∂

∂
∂

f

y

d

dx

f

y

d

dx

f

y
−

′
�
��
�
��

+
′′

�
��

�
��

2

2  = 0 ...(1.31)

Hence in general, a necessary condition for the functional I = 
x

x
nf x y y y y dx

1

2

� ′ ′′( , , , ......, )( )  to be

extremum is

∂
∂

∂
∂

∂
∂

f

y

d

dx

f

y

d

dx

f

y
−

′
�
��
�
��

+
′′

�
��

�
��

−
2

2
 ....... + (– 1)n 

d

dx

f

y

n

n n

∂
∂ ( )

�
��

�
��

 = 0 ...(1.32)

This equation is called the Euler-Poisson equation and its solutions are called extremals.

�
������!������

Example 1: Find the curves on which the functional 
0

1
2[(y ) 12xy] dx� ′ +  with y (0) = 0 and

y (1) = 1 can be extremized.

Solution: The Euler’s equation is

∂
∂

∂
∂

f

y

d

dx

f

y
−

′
�
��
�
��

 = 0 ...(i)
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Given that  I = 
0

1
2 12� ′ +( )y xy dx ...(ii)

with y (0) = 0 , y (1) = 1

Here f = y′2 + 12xy

Then  
∂
∂
f

y
 = 12x and

∂
∂

f

y ′
 = 2y′

Putting these values of 
∂
∂

f

y
 and 

∂
∂

f

y ′
 in (i), we get

12x – 
d

dx
(2y′) = 0 or 12x – 2y″ = 0

or  y″ – 6x = 0 or  y″ = 6x

or y′ = 3x2 + c1 or y = x3 + c1x + c2 ...(iii)

Applying the given boundary condition in (iii), we get

  y(0) = 0 = 0 + c1. 0 + c2 ⇒  c2 = 0

y(1) = 1 = 13 + c1 . 1 + c2 ⇒ c1 + c2 = 0

Solving these equations, we get c1= c2 = 0

Hence, the required equation from (iii) is

 y = x3.

Example 2:  Test for an extremum the functional

I [y(x)] = 
0

1
2 2(xy y 2y y ) dx� + − ′ , y (0) = 1, y (1) = 2.

Solution: The Euler’s equation is

 
∂
∂

∂
∂

f

y

d

dx

f

y
−

′
�
��
�
��  = 0 ...(i)

Given that  I = 
0

1
2 22� + − ′( )xy y y y dx ...(ii)

with  y(0) = 1,  y(1) = 2

Here  f = xy + y2 – 2y2 y′

Then
∂
∂
f

y
 = x + 2y – 4yy′

and   
∂
∂

f

y ′
 =  – 2y2

Putting these values of 
∂
∂
f

y
 and 

∂
∂

f

y ′
 in (i), we get

x + 2y – 4yy′ – 
d

dx
(– 2y2) = 0
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or x + 2y – 4yy′ + 4yy′ = 0

or x + 2y = 0 or y = – 
x

2
...(iii)

Applying the given boundary condition in (iii), we get

y (0) = 1 = 0, which is not possible

y(1) = 2 = – 
1

2
, again contradiction.

Hence, these are no extremal because it is not satisfy the boundary condition.

Example 3:  Prove that the shortest distance between two points in a plane is a straight line.

Solution: Let P(x1, y1) and Q(x2, y2) be the two given points and s is the length of the arc joining
these points.

Then  S = 
x

x

x

x
ds

dy

dx
dx

1

2

1

2
1

2

� �= + ��
�
�  = 

x

x
y dx

1

2
1 2� + ′ ...(i)

with  y(x1) = y1, y(x2) = y2.

If S satisfies the Euler’s equation then it will be minimum.

The Euler’s equation is
∂
∂

∂
∂

f

y

d

dx

f

y
−

′
�
��
�
��

 = 0 ...(ii)

In equation (i), f = 1 2+ ′y

Then
∂
∂

f

y
 = 0,

∂
∂

f

y′
= 1

2
 (1 + y′2)–1/2 (2y′)

Putting these values of 
∂
∂
f

y
 and 

∂
∂

f

y ′
 in (ii), we get

0 – 
d

dx

y

y

′

+ ′

�

�
��

�

�
��1 2

 = 0 or
d

dx

y

y

′

+ ′

�

�
��

�

�
��1 2

 = 0

Integrating both sides, we get

 
′

+ ′

y

y1 2
 = a (Constant)

Squaring both sides, we get

 y′2 = a2 (1 + y′2) or y′2 (1 – a2) = a2

or  y′2 = a

a

2

21 −
 = m2 (Let) or y′2 = m2

or y′ = m on integrating, we get

or  y = mx + c ...(iii)

which is a straight line.

Y

X
O

P(x , y )11

Q(x , y )22

s
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Now  y(x1) = y1 and y (x2) = y2

By (iii), we have

mx c y
mx c y

1 1

2 2

+ =
+ =

�
�
�and

...(iv)

On subtracting, we get

  y2 – y1 = m(x2 – x1) or m = 
y y

x x
2 1

2 1

−
−

Subtracting (iv) from (iii), we get

 y – y1 = m(x – x1) or y – y1 = 
y y

x x
2 1

2 1

−
−

 (x – x1).

Example 4: Find the path on which a particle in a absence of friction, will slide from one point
to another in the shortest time under the action of gravity.

Solution: Suppose the particle start sliding on the curve OA from O with zero velocity. Let
OP = S and t be the time taken from O to P. Using the principle of work and energy, we have

K.E. at P – K.E. at O = Work done in moving the particle from O to P.

⇒ 1

2
 mv2 – 0 = mgy

or  v2 = 2gy

or
ds

dt
�
�
�
�

2

 = 2gy

or   
ds

dt
 = 2gy

Let T be the time taken by the particle from O to A. Then

T = 
0 0

1T x
dt

dt

ds
ds� �=

= 
0 0

1 1

2

1

2

x xds

gy g

ds

y� �=

= 
1

2

1
0

2
1

g

y

y
dx

x

�
+ ′

...(i)

Here f = 
1 2+ ′y

y
 {which independent of x}

Then  
∂
∂
f

x
 = 0 and

∂
∂

f

y y

y

y

y

y y′
= ′

+ ′
= ′

+ ′

1

2

2

1 12 2

Y

XO

P(x, y)

A(x , y )11
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Since, f is independent of x then Euler’s equation reduces to

 f – y′ ∂
∂

f

y′
�
��
�
��

 = c (Constant) ...(ii)

Putting the value of f and 
∂
∂

f

y′
 in (ii), we get

1

1

2

2

+ ′
− ′ ′

+ ′

y

y
y

y

y y
 = c

⇒
1

1

2 2

2

+ ′ − ′

+ ′

y y

y y
 = c

⇒  1 = c y y1 2+ ′
Squaring both sides, we get

1 = c2y (1 + y′2) or 1 + 
dy

dx c y
�
�
�
� =

2

2

1

or
dy

dx

yc

c y
c

y

y
= − =

−1
1

2

2

2
or

dy

dx

a y

y
= −

Let
c

a
1
2 =�

�
�

�
�
�

or  dx = 
y

a y−  dy

Integrating both sides, we get

0 0

x y
dx

y

a y
dy� �=

−

Putting y = a sin2 θ ...(iii)

⇒  dy = 2a sin θ cos θ dθ

 x = 
0

2

2 2
θ θ

θ
θ θ θ� −

a

a a
a d

sin

sin
. sin cos

= 
0

22
θ

θ θ� a dsin  = a 
0

1 2
θ

θ θ� −( cos ) d

= a θ θ θ

−��
�
�

sin 2

2 0

 x = 
a

2
 (2θ – sin 2θ) ...(iv)
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Putting 
a

2
 = b and 2θ = φ. Then by equations (iii) and (iv), we get

 x = b (φ – sin φ)

and  y = b (1 – cos φ)

which is a cycloid.

Example 5: Show that the geodesics on a sphere of radius a are its great circles.

Solution: We know that in spherical coordinates (r, θ, φ),

x = r sin θ, cos φ, y = r sin θ sin φ, z = r cos θ ...(i)

The arc element on a sphere of radius a is given by

ds2 = dr2 + (rdθ)2 + (r sin θ dφ)2

= a2 dθ2 + (a sin θ)2 dφ2 � r a
dr

=
=

�
	


�
�then 0

or  ds = a 1 2
2

+ �
�
�
�

sin .θ φ
θ

θd

d
d

 s = a d
θ

θ
θ φ θ

1

2
1 2 2� + ′sin . ...(ii)

Now the geodesic on the sphere r = a is the curve for which s is minimum. From (ii), we have

f  = a 1 2 2+ ′sin .θ φ

Which is a function of θ and φ′ while φ is absent. Then the Euler’s equation reduces to

∂
∂φ

f

′
 = c1 (Constant)

a

a

sin .

( sin . )

2

2 21

θ φ

θ φ

′

+ ′
 = c1

Squaring both sides, we get

or  sin4θ . φ′2 = c1
2 (1 + sin2 θ . φ′2)

or sin2 θ . (sin2 θ – c1
2) φ′2 = c1

2

or  d

d

c

c

φ
θ θ θ

=
−

1

2 2sin sin

or d

d

c

c

φ
θ

θ

θ
=

−
1

2 21

cosec

cosec

2

( )

Integrating both sides, we get

 � �=
−

d
c

c
dφ θ

θ
θ1

1
2 21

cosec

cosec

2

( )
 + c2

∴ =

= −

= −

�

	










�

�






y a

y
a

b

sin

( cos )

( cos )

2

2
1 2

1

θ

θ

φ
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 φ = � − −

c d

c c

1

1
2 21

cosec

cot

2 θ θ

θ( ) ( ) ]
 + c2

= – sin–1 
c

c

1

1
21

cot

[( )]

θ

−

�
�
�

��

�
�
�

��
 + c2

or   sin (φ + c2) = 
c

c

1

1
21

cot

[( )]

θ

−

sin φ cos c2 + cos φ sin c2  = 
c

c

1

1
21

cot

( )

θ

−

 cot θ = 
cos ( )c c

c
2 1

2

1

1 −
 sin φ + 

sin ( )c c

c
2 1

2

1

1 −
 cos φ

 cot θ = A sin φ + B cos φ
or  a cos θ = Aa sin θ sin φ + B a cos φ sin θ
or Z = A y + Bx [� r = a]

which is the required geodesics arcs of the great circles.

Example 6: Find the plane curve of fixed perimeter and maximum area.

Solution: Let l be the perimeter of the closed curve, then

 l = 
x

x
y dx

1

2
1 2� + ′ ...(i)

The area enclosed by the curve, x-axis and two perpendicular lines is

A = 
x

x
y dx

1

2

� ...(ii)

Now we have to find maximum value of (ii) subject to constraint
(i). Using Lagrange’s multipliers, we have

 f = y + λ 1 2+ ′y

For maximum or minimum value of A, f must satisfy the Euler’s
equation

∂
∂

∂
∂

f

y

d

dx

f

y
−

′
�
��
�
��

 = 0

⇒  1 – λ 
d

dx
y y

1

2
1 22 1 2( ) ( )/+ ′ ′�

�
�

�
�
�

−  = 0

⇒  1 – λ 
d

dx

y

y

′

+ ′

�

�
��

�

�
��1 2

 = 0

Y

X
O

P

Q

l

x1
x2
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Integrating with respect to x, we get

 x – 
λ ′

+ ′

y

y1 2
 = c1

⇒  
λ ′

+ ′

y

y1 2
 = x – c1

Squaring both sides, we get

⇒ λ2 y′2 = (x – c1)2 (1 + y′2)
⇒  {λ2 – (x – c1)2}y′2 = (x – c1)2

⇒  y′2 = 
( )

{ ( ) }

x c

x c

−
− −

1
2

2
1

2λ

  y′ = 
( )

{ ( ) } /

x c

x c

−
− −

1
2

1
2 1 2λ

Integrating with respect to x both sides, we get

 y = – {λ2 – (x – c1)2}1/2 + c2

or   y – c2 = – {λ2 – (x – c1)
2}1/2

Squaring both sides, we get

 ( y – c2)
2 = + {λ2 – (x – c1)2} or (x – c1)2 + ( y – c2)

2 = λ2

This is the equation of a circle whose centre is (c1, c2) and radius is λ.

Example 7: Prove that the sphere is the solid figure of revolution which, for a given surface
area, has maximum volume.

Solution: Let us consider the arc OPA of the curve which rotates
about the x-axis.

Then the surface

 S = 
0

2
a

y ds� π  = 
0

22 1
a

y y dx� + ′π ...(i)

and volume V = πy dx
a

2

0� ...(ii)

Now we have to maximize V  with the given surface S.

Let  f = πy2, g = 2πy 1 2+ ′y

and  h = f + λg = πy2 + λ2πy 1 2+ ′y

Since, h is independent of x i.e., h does not contain x. Then the Euler equation reduce to

  h – y′
∂
∂

h

y′
�
��
�
��

 = c1  (Constant) ...(iii)

Y

XO

A

P(x, y)

x

y
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or πy2 + λ2π y 1 2+ ′y  – y′ 1

2
 
2 2

1 2

π λy y

y

( )′

+ ′
 = c1

or πy2 + 2πy λ 1 2+ ′y  – 
2

1

2

2

πλ y y

y

′

+ ′
 = c1

or πy2 + 
2 1 2

1

2 2

2

π λ π λy y y y

y

( )+ ′ − ′

+ ′
 = c1

or  πy2 + 
2

1 2

π λy

y+ ′
 = c1

Since, the curve passes through the origin O and A for which y = 0, so c1 = 0

  πy2 + 
2

1 2

π λy

y+ ′
 = 0 or y + 

2

1 2

λ

+ ′y
 = 0

or   y 1 2+ ′y  = – 2λ

squaring both sides, we get

 1 + 
dy

dx y
�
�
�
� =

2 2

2

4λ
or

dy

dx

y

y
= −4 2 2

2

λ

or
y dy

y4 2 2λ −
 = dx

Integrating both sides, we get

 – 4 2 2λ − y  = x + c2

or   4 2 2λ − y  = – (x + c2) ...(iv)

At 0, from (iv), we get  c2 = – 2 λ

Then by (iv), we have 4 2 2λ − y  = – (x – 2λ)

Squaring both sides, we get 4λ2 – y2 = (x – 2λ)2 or (x – 2λ)2 + y2 = 4λ2

which is a circle

Hence, on revolving the circle about x-axis, the solid formed is a sphere.

Example 8: Show that the functional 
0

/2 2 2

2xy
dx

dt

dy

dt
dt

π

� + ��
�
� + ��

�
�

�
	



�
�


 such that x(0) = 0,

x(π /2) = – 1, y(0) = 0, y(π /2) = 1 is extremum for x = – sin t, y = sin t.
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Solution: The Euler’s equations are

∂
∂

∂
∂

f

x

d

dt

f

x
−

′
�
��
�
��

 = 0 ...(i)

∂
∂

∂
∂

f

y

d

dt

f

y
−

′
�
��
�
��

 = 0 ...(ii)

Given that
0

2 22

2
π/

� + ��
�
� + ��

�
�

�
	



�
�


xy
dx

dt

dy

dt
dt

Here f  = 2xy + x′2 + y′2

Then
∂
∂
f

x
 = 2y,

∂
∂

f

x ′
 = 2x′, ∂

∂
f

y
 = 2x and 

∂
∂

f

y′
 = 2y′

Putting these values of ∂
∂
f

x
 and 

∂
∂

f

x ′
 in (i), we get

2y – 
d

dt
(2x′) = 0 ⇒

d x

dt

2

2  – y = 0

⇒  
d x

dt

2

2  = y ...(iii)

Also putting the values of 
∂
∂
f

y
 and 

∂
∂

f

y′
 in (ii), we get

 2x – 
d

dt
 (2y′) = 0 ⇒

d y

dt

2

2  – x = 0

⇒  
d y

dt

2

2  = x ...(iv)

From (iii) and (iv), we have

 
d x

dt

d y

dt

4

2

2

2=  = x or (D4 – 1)x = 0

Its solution is

 x(t) = c1e
t + c2e

–t + c3 cos t + c4 sin t ...(v)

Now from (iii), we have

 y(t) = x″
= c1 et + c2 e

–t – c3 cos t – c4 sin t [using (v)] ...(vi)

Applying the given boundary conditions in (v) and (vi), we have

x(0) = 0 = c1 + c2 + c3

 x(π/2) = – 1 = c1 e
π /2 + c2 e

– π / 2 + c4

  y(0) = 0 = c1 + c2 – c3
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 y (π/2) = 1 = c1 eπ /2 + c2 e
–π / 2 – c4

Solving these equations, we get

 c1 = c2 = c3 = 0 and c4 = – 1

Hence, the required solution from (v) and (vi) is

 x = – sin t and y = sin t.

Example 9: Show that the curve which extremizes the functional I = 
0

/4
2 2 2(y y x ) dx

π

� ′′ − +

under the conditions y (0) = 0, y′(0) = 1, y(π/4) = y′(π/4) = 
1

2
 is y = sin x.

Solution: The Euler’s equation for second order derivatives is

∂
∂

∂
∂

∂
∂

f

y

d

dx

f

y

d

dx

f

y
−

′
�
��
�
��

+
′′

�
��

�
��

2

2  = 0 ...(i)

Given that  I = 
0

4
2 2 2

π /
( )� ′′ − +y y x dx ...(ii)

Here  f = y″2 – y2  + x2

Then  
∂
∂
f

y
 = – 2y,

∂
∂

f

y′
 = 0 and

∂
∂

f

y′′
 = 2y″

Putting these values in (i), we get

– 2y – 
d

dx
 (0) + 

d

dx

2

2 (2y″) = 0 or – 2y + 2y(4) = 0

or   y(4) – y = 0 or (D4 – 1) y = 0

Its solution is

  y(x) = c1e
x + c2 e

–x + c3 cos x + c4 sin x ...(iii)

∴  y′(x) = c1 e
x  – c2 e–x – c3 sin x + c4 cos x ...(iv)

Applying the given boundary condition in (iii) and (iv), we get

y(0) = 0 = c1 + c2 + c3

 y′(0) = 1 = c1 – c2 + c4

 y (π/4) = 
1

2
 = c1 e

π/4 + c2 e– π/4 + 
1

2
 c3 + 

1

2
 c4

 y′ (π/4) = 
1

2
 = c1 e

π/4 – c2 e
–π/4 – 

1

2
 c3 + 

1

2
 c4

Solving these equations, we get

c1 = c2 = c3 = 0 and c4 = 1

Hence, the required solution from (iii) is y = sin x.
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1. On which curve the functional 
0

2
2 2 2

π/
( )� ′ − +y y xy dy  with y (0) = 0 and y (π/2) = 0, be extremized?

2. Find a complete solution of the Euler’s equation for 
x

x
y y y h x dx

1

2 2 2 2� − ′ −( cos ) .

3. Find the extremal of the functional I = 
x

x y

y
dx

1

2 1 2

2� +
′

.

4. Find the extremals of the functional 
x

x y

x
dx

1

2
2

3� ′
.

5. Solve the Euler’s equation for 
x

x
x y y dx

1

2

� + ′ ′( ) .

6. Solve the Euler’s equation for  
x

x
x y y dx

1

2
1 2� + ′ ′( ) .

7. Find the extremal of the function and extremum value of the

0

2
2 2

π/
( )� ′ −y y dx

subject to y(0) = 0,  y(π/2) = 1.

8. Solve the variational problem

1

2
2 2 2� ′ + +[ ( )]x y y x y dx  = 0, given y(1) = y(2) = 0.

9. Find the geodesics on a right circular cylinder of radius a.

10. Find the extremal of the function I = 
0

2 2
π

� ′ −( )y y dx  with boundary conditions y(0) = 0,  y(π) = 1 and

subject to the constraint 
0

π

� y dx = 1.

11. Find a function y(x) for which 
0

1
2 2� + ′( )x y dx  is extremum, given that 

0

1
2� y dx  = 2, y(0) = 0, y(1) = 0.

12. Show that the functional 
0

1 2 2

2� + �
�
�
�

+ �
�
�
�

�
	
�


�

�
�
�

�
x

dx

dt

dy

dt
dt ,  such that x(0) = 1,  y(0) = 1, x(1) = 1.5,  y(1) = 1

is extremum for x = 
1

2

2+ t
, y = t.

13. Find the extremals of the functionals 
0

2
2 2 2

π/
( )� ′′ − +y y x dx  that satisfies the conditions y(0) = 1,

 y′(0) = 0, y(π/2) = 0, y′(π/2) = – 1.

14. Find the extremal of 
x

x
y y x dx

1

2
16 2 2 2� − ′′ +( ) .

15. Find the extremal of 
x

x
xy y dx

1

2
2 2� − ′′′( ) .
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16. Find the curve passing through the points (x1, y1) and (x2, y2) which when rotated about the x-axis gives
a minimum surface area.


������

1. y = x – 
π
2

 sin x. 2. y = c1 cos x + c2 sin x + 
1

2
 cosh x.

3. y = sinh (c1 x + c2). 4. y = c1 x
4 + c2.

5. y = 
− x4

4
 + c1 x + c2. 6. y = c1 x

–1 + c2.

7. y = sin x, value = 0. 8. y = 
1

21
{8 log 2 (x–2 – x) + 7x log x}.

9. z = c1 φ + c2. 10. y = – 
1

2
 cos x + 

1

2 4
−�

�
�
�

π
 sin x + 

1

2
.

11. y = ± 2 sin mπx, where m is an integer. 12. y = (c1 + c2x) cos x + (c3 + c4 x) sin x.

13. y = cos x. 14. y = c1e
2x + c2e

–2x + c3cos 2x + c4 sin 2x.

15. y = 
x7

7 !
 + c1x

5 + c2 x
4 + c3 x

3 + c4 x
2 + c5 x + c6.

16. y = c cosh 
x a

c

+�
�

�
�

.
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In this chapter, we shall discuss a new type of transform, Z-transform. The progress of communication
engineering is based on discrete analysis. Z-transform plays an important role in solving difference
equation which represent a discrete system. Thus, the study of Z-transform is necessary part for engineers
and scientists. Z-transform has many properties like Laplace transform but Z-transform operates on a
sequences {un} of discrete integer-(½) valued arguments (n = 0, ± 1, ± 2, .....) and Laplace transform
operates on a continuous function that is the main difference between these transforms.

	
�
�����������

Let {un} be a sequence defined for discrete values n = 0, 1, 2, 3, ...... then, the Z-transform of sequence
{un} is denoted by Z(un) and defined as

Z(un) = u zn
n

n

−

= − ∞

∞

∑  = U(z) ...(2.1)

Provided the infinite series (2.1) is convergent and U is a function of complex number z.

For n < 0, un = 0

The  Z-transform is defined as

Z(un) = u zn
n

n

−

=

∞

∑
0

	
	
���������������������

Let {un} and {vn} be discrete sequences then

  Z (aun + bvn) = a Z(un) + bZ(vn)

where a and b are constants.

CCCCCHAPTERHAPTERHAPTERHAPTERHAPTER     22222

Z-Transform
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Proof: By the definition, we have

Z(aun + bvn) = 
n

n n
nau bv z

=

∞
−∑ +

0

( )  = 
n

n
n

n
n

na u z b v z
=

∞
−

=

∞
−∑ ∑+

0 0

= a u z b v z
n

n
n

n

n
n

=

∞
−

=

∞
−∑ ∑+

0 0

 = a Z(un) + b Z(vn). Hence proved.

	
�
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If {un} be any discrete sequence and Z(un) = U(z) then

(i) Z(a–n un) = U(az) (ii) Z(an un) = U 
z

a
�
�
�
�

Proof: (i) By the definition, we have

 Z(a–n un) = 
n

n
n

na u z
=

∞
− −∑

0

( )  = 
n

n
nu az

=

∞
−∑

0

( )  = U (az).  Hence proved.

(ii) By the definition, we have

 Z(anun) = 
n

n
n

na u z
=

∞
−∑

0

( )  = 
n

n

n

u
z

a=

∞ −

∑ �
�
�
�

0

 = U 
z

a
�
�
�
� . Hence proved.

	
�
��������������������������

(i) Z (an) = 
z

z a−
, n ≥ 0

Proof: By the definition, we have

Z(an) = a zn n

n

−

=

∞

∑
0

= 
a

z

a

z

a

z

a

z

n

n

�
�
�
� = + + ��

�
� + ��

�
�

=

∞

∑ 1
2 3

0

......

=  
1

1 − ��
�
�

a
z

[The sum of infinite term of G.P.]

= 
z

z a−
. Hence proved.

Some Particular Cases

(1)  Z(1) = 
z

z − 1



����������� ���

Proof: We have  Z (1) = 
n

nz
=

∞
−∑

0

1

= 
n

nz z z z=

∞

∑ = + + +
0

2 3

1
1

1 1 1
 ......

= 
1

1
1−
z

 = 
z

z − 1
. Hence proved.

(2) Z(k) = 
kz

z − 1
, where k is constant

Proof: We have   Z(k) = 
n

nk z
=

∞
−∑

0

 = k z
n

n

=

∞
−∑

0

= 
kz

z − 1
 (By above case). Hence proved.

(3) Z[(– 1)n] = 
z

z + 1

Proof: Taking a = – 1 in Z(an) = 
z

z a−

We get   Z(– 1)n = 
z

z + 1
.

(ii) Z(np) = – z 
d

dz
[Z(np –1)], p ∈ N

Proof: By the definition, we have

Z(np) = 
n

p nn z
=

∞
−∑

0

...(2.2)

and Z(np – 1) = 
n

p nn z
=

∞
− −∑

0

1 (on replacing p by p – 1) ...(2.3)

Differentiating (2.3) w.r.t. z, we get

 
d

dz
[Z(np –1)] = d

dz
n zp n

n

− −

=

∞

∑
�

�
�
�

�

	





1

0

 = n n zp n

n

− − −

=

∞

−∑ 1 1

0

( )

= – z– 1 n zp n

n

−

=

∞

∑
0

 = – z–1 [Z(np)] [By  (2.2)]
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Thus Z [np] = – z 
d

dz
 [Z(np – 1)]. Hence proved. ...(2.4)

Some Particular Cases

(1)  Z(n) = 
z

z( )− 1 2

Proof: Taking p = 1 in (2.4), we get

 Z(n) = – z
d

dz
Z[ ( )]1  = – z 

d

dz

z

z −
�
�
�

�
	

1

= – z 
( )

( )

z z

z

− −
−
1

1 2  = 
z

z( )− 1 2
. Hence proved.

(2) taking p = 2 in (2.4), we get

 Z (n2) = – z
d

dz
[Z (n)] = – z 

d

dz

z

z( )−
�
�
�

�
	

1 2

= – z 
1 1 2 1

1

2

4

( ) ( )

( )

z z z

z

− − −
−

 = 
z z

z

2

31

+
−( )

. Hence proved.

Similarly,

(3) Z(n3) = 
z z z

z

3 2

4

4

1

+ +
−( )

.

(4) Z(n4) = 
z z z z

z

4 3 2

5

71 11

1

+ + +
−( )

.
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If Z(un) = U (z) then Z(un–r) = z –r U (z), r > 0

Proof: By the definition, we have

Z(un – r) = 
n

n r
nu z

=

∞

−
−∑

0

 = 
n

n r
n r ru z

=

∞

−
− − −∑

0

( )
 = z–r 

n

n r
n ru z

=

∞

−
− −∑

0

( )

= z–r 
k r

k
ku z

= −

∞
−∑ [take n – r = k]

= z–r 
k

k
ku z

=

∞
−∑

0

[� un = 0 if n < 0]

Z(un – r) = z –r U(z). Hence proved.



����������� ���

	
�
�����������
�
������������

If Z(un) = U (z) then Z(un + r) = zr[U (z) – u0 – u1z–1 – u2z–2...... ur – 1 z–(r – 1)]

Proof: By the definition, we have

Z(un + r) = 
n

n r
n

n r
n r r

n

u z u z
=

∞

+
−

+
− + +

=

∞

∑ ∑=
0 0

( )

= zr u zn r
n r

n
+

− +

=

∞

∑ ( )

0

 = zr u zk
k

k r

−

=

∞

∑ (take n + r = k)

= zr 
k

k
k

k
k

k

r

u z u z
=

∞
− −

=

−

∑ ∑−
�

�
�
�

�

	



0 0

1

 Z(un + r) = zr[U (z) – u0 – u1z
–1 – u2z

–2 ...... ur–1 z
–(r – 1)]. Hence proved.

Particular Case

(1) Z(un + 1) = z [U (z) – u0].

(2) Z(un + 2) = z2 [U (z) – u0 – z–1u1].

	
�
��������������������

If Z(un) = U (z)

Then   Z(nun) = – z
d

dz
U (z)

Proof: By the definition, we have

  Z(nun) = nu z
n

n
n

=

∞
−∑

0

 = – z 
n

n
nu n z

=

∞
− −∑ −

0

1( )

= – z 
n

n
nu

d

dz
z

=

∞
−∑

0

( )  = – z 
d

dz
u z

n

n
n

=

∞
−∑

0

  Z(nun) = – z 
d

dz
U (z). Hence proved.

Particular case

(1) Z(n2un) = (– z)2 
d

dz

2

2  U (z)

(2) Z(nk un) = ( – z)k 
d

dz

k

k  U (z)
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If Z(un) = U(z). Then Z 
u

n

U z

z
dzn

n�
�
�
� = − � ( )

.

Proof: By the definition, we have

 Z 
u

n

u

n
zn

n

n n�
��
�
� =

=

∞
−∑

0

 = u
n

z u z dzn
n

n

n

n
n

n

1

0
0

1

0

−

=

∞
− −

=

∞

= − ∑ �∑

= – 
n

n
n

n

n
n

n

n

u z dz z u z dz� � ∑∑ − − −

=

∞
−

=

∞

= −1 1

00

 = – 
n U z

z
dz� ( )

 Z 
u

n

U z

z
dzn

n�
��
�
� = − � ( )

. Hence Proved.

	
!
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If Z(un) = U (z) then u0 = lim
z → ∞

 U (z).

Proof: By the definition, we have

Z(un) = U (z) = 
n

n
nu z

=

∞
−∑

0

or  U (z) = u0 + 
u

z

u

z
1 2

2+  + ......

taking limit on both sides as z → ∞,  we get

 lim
z → ∞

 U (z) = lim ......
z

u
u

z

u

z→
+ + +�

��
�
	
0

0
1 2

2
 = u0

Hence  u0 = lim
z → ∞

 U (z). Hence proved.

Some Particular Cases

(1) u1 = lim
z → ∞

 z [U (z) – u0]

(2) u2 = lim
z → ∞

 z2 [U (z) – u0 – u1(z)]
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If Z(un) = U (z), then lim
n → ∞

 un = lim
z → 1

 (z – 1) U(z)

Proof: By the definition, we have

 Z(un +1 – un) = 
n

n n
nu u z

=

∞

+
−∑ −

0
1( )

or Z(un + 1) – Z(un) = 
n

n n
nu u z

=

∞

+
−∑ −

0
1( )

 z[U (z) – u0] – U(z) = 
n

n n
nu u z

=

∞

+
−∑ −

0
1( )

or (z– 1) U(z) – zu0 = 
n

n n
nu u z

=

∞

+
−∑ −

0
1( )

Taking limit on both sides as z → 1, we get

  lim
z → 1

 [(z – 1) U (z) – zu0] = lim ( )
z

n

n n
nu u z

→
=

∞

+
−∑ −

1
0

1

lim
z → 1

 (z – 1) U (z) – u0 = 
n

n nu u
=

∞

+∑ −
0

1( )

= lim
n → ∞

 [(u1 – u0) + (u2 – u1) + ...... + (un + 1 – un)] = u∞ – u0

or  u∞ = lim
z → 1

 (z – 1) U (z)

lim
n → ∞

 un = lim
z → 1

 (z – 1) U (z). Hence proved.
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Example 1: Find the Z-transform of the following sequence:

(i) {15, 10, 7, 4, 1
�

, – 1, 0, 3, 6} (ii)
1

2n

�
�
�
�
�
�

 – 2 ≤ n < 4

(iii)
1

3n

�
��
�
��

.
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Solution: (i) We have

 Z{un} = 
n

n
nu z

= − ∞

∞
−∑

= 15z4 + 10z3 + 7z2 + 4z + 1 – 
1 0 3 6

2 3 4z z z z
+ + + . Ans.

(ii) We have  Z{un} = 
n

n
nz

= −

−∑
2

4 1

2
 = 4z2 + 2z + 1 + 

1

2z
 + 

1

4

1

8

1

162 3 4z z z
+ + . Ans.

(iii) We have  Z{un} = 
− ∞

∞

∑ 1

3n  = ...... + 9z2 + 3z + 1 + 
1

3

1

9

1

272 3z z z
+ +  + ...... Ans.

Example 2: Find the Z-transform of 
a

n !

n�
�
�

�
�
�

, n ≥ 0.

Solution: We have

 Z
a

n

a

n
z

n

n

n
n

! !

�
�
�
�
�
�

=
=

∞
−∑

0

 = 
n

n n

n

a

z=

∞

∑ �
�
�
�

0

1

!

= 1 + 
a

z

a

z

a

z
+ �
�
�
� + �

�
�
�

1

2

1

3

2 3

! !
 ..... = e

a

z . Ans.

Example 3: Find the Z-transform of  
a

n

n�
�
�

�
�
�

, n ≥ 1.

Solution: We have

 Z 
a

n

n�
�
�

�
�
�

 = 
n

n
n

n

na

n
z

n

a

=

∞
−

=

∞

∑ ∑= �
�
�
�

1 1

1

2
 = 

a

z

a

z

a

z
+ �
�
�
� + �

�
�
�

1

2

1

3

2 3

 ......

= – log 1 −��
�
�

a

z
. Ans.

Example 4: Find the Z-transform of 2n + 5 sin n

4

π  – 3a4.

Solution: We know that

Z 2 5
4

3 4n
n

a+ −�
��

�
�sin

π
 = 2Z(n) + 5Z sin

nπ
4

�
��

�
�  – 3a4 Z(1)

= 2
1

5 4

2
4

1
3

12
2

4z

z

z

z z
a

z

z( )

. sin

cos−
+

− +
−

−

π

π
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= 
2

1

5
1

2

2
1

2
1

3
12

2

4z

z

z

z z
a

z

z( )

.

−
+

− +
−

−

= 
2

1

5

2 2 1

3

12 2

4z

z

z

z z

a z

z( ) ( )−
+

− +
−

−
. Ans.

Example 5: Find the Z-transform of (n – 1)2.

Solution: We know that

Z[(n – 1)2] = Z(n2 – 2n + 1) = Z(n2) – 2Z(n) + Z(1)

= 
z z

z

z

z

z

z

2

3 21
2

1 1

+
−

−
−

+
−( ) ( ) ( )

= 
z z z z z z

z

2 2

3

2 1 1

1

+ − − + −
−

( ) ( )

( )
 = 

z z z

z

3 2

3

3 4

1

− +
−( )

. Ans.

Example 6: Find the Z-transform of sin (an + b), where a and b are constants.

Solution: We know that

 Z [sin (an + b)] = Z(sin an cos b + cos an sin b)

= cos b Z (sin an) + sin b Z (cos an)

= cos b . 
z a

z z a

sin

cos2 2 1− +
 + sin b 

z z a

z z a

2

2 2 1

−
− +

cos

cos

= 
z a b z b a b

z z a

(sin cos sin cos sin )

cos

+ −
− +2 2 1

Thus Z [sin (an + b)] = 
z a b z b

z z a

[sin ( ) sin ]

cos

− +
− +2 2 1

. Ans.

Example 7: Find the Z-transform of the following:

(i) 2n (ii) sin 2n (iii) an + 3

Solution: (i) We have Z(an) = 
z

z a−

Then Z(2n) = 
z

z − 2

Aliter: We have  Z(an) = 
n

n na z
=

∞
−∑

0

 = 
n

n

n

a

z=

∞

∑
0

∴ Z(2n) = 
n

n

nz z z z=

∞

∑ = + + ��
�
� + ��

�
�

0

2 32
1

2 2 2
...
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= 
1

1
2−
z

= 
z

z − 2
. Ans.

(ii) We have  Z(sin nθ) = 
z

z z

sin

cos

θ
θ2 2 1− +

Then Z(sin 2n) = 
z

z z

sin

cos

2

2 2 12 − +
. Ans.

(iii) We have   Z(an + 3) = z (ana3) = a3 z (an)

= 
a z

z a

3

−

Thus, z (an + 3) = 
a z

z a

3

−
. Ans.

Example 8: Find the Z-transform of the following:

(i) nan (ii) n2 an.

Solution: (i) We have Z(n) = U(z) = 
z

z( )− 1 2

Using damping rule, we get

Z(nan) = U 
z

a
�
�
�
�  = 

z a

z

a

/

−�
�

�
�1

2
 = 

az

z a( )− 2 . Ans.

(ii) We have Z(n2) = U (z) = 
z z

z

2

31

+
−( )

Using damping rule, we get

Z(n2 an) = U z

a
�
�
�
�  = 

z
a

z
a

z
a

�
�
�
� + ��

�
�

−�
�

�
�

3

2

1

 = 
az a z

z a

2 2

3

+
−( )

. Ans.

Example 9: Find the Z-transform of the following:

(i) cos nθ (ii) an cos nθ

Solution: (i) We have  Z(1) = U (z) = 
z

z − 1

Then   Z(e–in θ) = Z ei nθ� �
−�

��
�
	


.1  = U (eiθ z) (by damping rule)

= 
e z

e z

i

i

θ

θ − 1
 = 

z

z e i− − θ  = 
z z e

z e z e

i

i i

( )

( ) ( )

−
− −−

θ

θ θ



����������� ���

= 
z ze

z z e e

i

i i

2

2 1

−
− + +−

θ

θ θ( )

or  Z(cos nθ – i sin nθ) = 
z z i

z z

2

2 2 1

− +
− +
(cos sin )

cos

θ θ
θ

Compair on both sides real parts, we get

Z(cos nθ) = 
z z

z z

2

2 2 1

−
− +

cos

cos

θ
θ

. Ans.

(ii) Let Z (cos nθ) = U(z)

Then  Z(an cos nθ) = U 
z

a
�
�
�
� [by damping rule]

= 

z
a

z
a

z
a

z
a

�
�
�
� − ��

�
�

�
�
�
� − ��

�
� +

2

2

2 1

cos

cos

θ

θ

  Z(an cos nθ) = 
z az

z az a

2

2 22

−
− +

cos

cos

θ
θ

. Ans.

Example 10: Find the Z-transform of

(i) sinh nθ (ii) an sinh nθ
Solution: (i) We have

 Z(sinh nθ) = Z 
e e

Z e Z e
n n

n n
θ θ

θ θ−�
��

�
�

= −
−

−

2

1

2
[ ( ) ( ) ]

= 
1

2

z

z e

z

z e−
−

−
�
�
�

�
	

−θ θ  = 

1

2

z z e z z e

z e z e

( ) ( )

( )( )

− − −
− −

−

−

θ θ

θ θ

= 
1

2 12

z e e

z z e e

( )

( )

θ θ

θ θ
−

− + +

−

−  = 
1

2

2

2 12

z h

z z h

sin

cos

θ
θ− +

= 
z h

z z h

sin

cos

θ
θ2 2 1− +

. Ans.

(ii) We have  Z(an sinh nθ) = Z[(a–1)–n sinh nθ] = U (a–1z) (By damping rule)

where U(z) = Z(sinh nθ)

∴  Z(an sinh nθ) = a z h

a z a z h

−

− −− +

1

1 2 12 1

sin

( ) ( ) cos

θ
θ
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 (an sinh nθ) = 
za h

z az a

sin

cos

θ
θ2 22− +

. Ans.

Example 11: Show that Z 
1

n !

�
��
�
�  = e1/z.

Hence, evaluate (i) Z 
1

n 1 !+
�
��

�
�

(ii) Z 
1

n 2 !+
�
��

�
�

.

Solution: We have

Z 
1 1

0
n n

z
n

n

! !

�
��
�
�

=
=

∞
−∑  = 1 + 

1

1

1 1

2

1 1

3

1
2 3! ! !z z z

+ +  ....

 = e1/z . Hence proved.

(i) Shifting 1

n !
 one unit to the left, we get

Z 
1

1( ) !n +
�
��

�
�

 = z Z
n

1
1

!

�
��
�
�

−
�

�
�

�

	

  = z e z( )/1 1−

(ii) Shifting 
1

1( ) !n +
 one unit to the left, we get

 Z 
1

2

1

1
1

( ) ! ( ) !n
z Z

n+
�
��

�
�

=
+

�
��

�
�

−
�

�
�

�

	

  = z [z(e1/z – 1) – 1]

= z2 [e1/z – 1 – z–1]. Ans.

Example 12: If U(z) = 
2z 3z 4

(z 3)

2

3

+ +
−

 then find u1 , u2 and u3.

Solution: We have U (z) = 
2 3 4

( 3)

2

3

z z

z

+ +
−

 = 
1 1 2

1z

z z

z

(2 + 3 4

(1 3 )3

− −

−
+

−
)

Then by initial value theorem

  u0 = lim ( ) lim
z z

U z
z

z z

z→ ∞ →

− −

−= +
−0

1 2

1

1 2 + 3 4

(1 3 )3
 = 0

 u1 = lim
z → ∞

 z[U(z) – u0] = lim
z

z
z

z z

z→

− −

−
+

−0

1 2

1

1 2 + 3 4

(1 3 )
 = 2

u2 = lim
z → ∞

 z2[U(z) – u0 – u1 z
–1]

= lim
z

z
z

z z

z z→ ∞

− −

−×
+

−
− −

�
�
�

�
	

2

1 2

1

1
0

22 + 3 4

(1 3 )3  = 21



����������� ���

 u3 = lim
z → ∞

 z3 [U (z)  – u0 – u1z–1 – u2z –2]

= lim
z

z
z

z z

z z z→ ∞

− −

−× +
−

− − −
�
�
�

�
	

3

1 2

1 2

1
0

2 212 + 3 4

(1 3 )3
 = 139.

�#�������	
�

1. Find the Z-transform of the following:

(i) 5n (ii) sin 3n (iii) (n + 1)2

(iv) (cos θ + i sin θ)n (v) 3n – 4 sin 
nπ
4

 + 5a (vi)
a e

n

n a−

!

(vii) sin (n + 1) θ (viii) sinh nπ
2
�
�
�
�

(ix) cos 
kπ π
2 4

+�
�

�
� .

2. Find the Z-transform of the following:

(i) ean (ii) nean (iii) n2ean.

3. Find the Z-transform of (i) sin nθ (ii) an sin nθ
4. Find the Z-transform of (i) cosh nθ (ii) an cosh nθ.

5. Find the Z-transform of (i) cos 
nπ π
2 4

+�
�

�
� (ii) cosh 

nπ
θ

2
+�

�
�
� .

6. Find the Z-transform of n sin nθ.

7. If U(z) = 
2 5 14

1

2

4
z z

z

+ +
−( )

, find u0, u1, u2 and u3.

8. Find the Z-transform of et sin 2t.

9. Using Z(n) = 
z

z( )− 1 2 , show that Z(n cos nθ) = 
( ) cos

( cos )

z z z

z z

3 2

2 2
2

2 1

+ −
− +

θ
θ

.

10. Using Z(n2) = 
( )

( )

z z

z

2

2 31

+
−

, show that Z[(n + 1)2] = 
( )

( )

z z

z

3 2

31

+
−

.

11. Find Z (– e–an sin nθ).

12. If Z{un}= 
z

z

z

z−
+

+1 12 , then find Z{un + 2}.

13. Find the Z-transform of unit impulse function which is given by

δn = 
1 0
0 0

if
if

n
n

=
≠

���
 .
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14. Find the Z -transform  of {un} where

{un} = 
4 0
3 0

n

n
n
n

if
if

<
≥

�
�
�

.

15. Find the Z-transform of the discrete unit step function given by

un = 
1 0
0 0

if
if

n
n

≥
<

���
.

���$���

1. (i)
z

z − 5
(ii)

z

z z

sin

cos

3

2 3 12 − +
(iii)

z z

z

2

3
2 1

1

( )

( )

+
−

(iv)
z

z ei− θ (v)
( )

( )

3 5 5

1

2

2
− +

−
a z az

z
 – 

2 2

2 12
z

z z− +
(vi) ea z( )− −1 1

(vii) z

z z

2

2 2 1

sin

cos

θ
θ− +

(viii)
z h

z z h

sin /

cos /

π
π
2

2 2 12 − +
(ix)

z z

z

2 −
+2 12( )

.

2. (i)
z

z ea−
(ii)

e z

z e

a

a( )− 2 (iii)
ze z e

z e

a a

a
( )

( )

+
− 3

3. (i)
z

z z

sin

cos

θ
θ2 2 1− +

(ii)
az

z az

sin

cos

θ
θ2 2 1− +

.

4. (i) z z h

z z h

2

2 2 1

−
− +

cos

cos

θ
θ

(ii)
z z a h

z az h a

( cos )

cos

−
− +

θ
θ2 22

.

5. (i)
z z

z

( )

( )

−

+

1

2 12 (ii)
z h z h

z z h

2

2

2

2
2

1

cos cos

cos

θ π θ

π

− −�
�

�
�

− �
�
�
� +

.

6.
z z

z z

( ) sin

( cos )

2

2 2
1

2 1

−
− +

θ
θ

7. u0 = 0, u1 = 0, u2 = 2 and u3 = 13.

8.
ez

z ez e

sin 2

22 2− +
11.

e z

e z e z

a

a a
sin

cos

θ
θ2 2 2 1− +

.

12.
z z z

z z

( )

( ) ( )

2

2
2

1 1

− +
− +

13. 1

14.
−

− +
z

z z2 7 12
.
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It is denoted by z–1U (z) = un and defined as un = Z–1 [U(z)] = Z–1 
n

n
nu z

=

∞
−∑

�

�
�
�

�

�
�
�0

.

����������������������	��

If Z–1[U (z)] = un and Z–1 [V(z)] = vn then Z–1[U (z). V(z)] = 
m

m n mu v
=

∞

−∑
0

 = un ∗ vn

Where, the symbol ∗ denotes the convolution operation.

Proof: We have  Z (un) = U (z) = 
n

n
nu z

=

∞
−∑

0

and Z(vn) = V(z) = 
m

n
nv z

=

∞
−∑

0

∴  U (z) V(z) = 
n

n
n

n

n
nu z v z

=

∞
−

=

∞
−∑ ∑

0 0

.

= (u0 + u1z
–1 + u2z–2 + ...... + un z–n ......)

× (v0 + v1z
–1 + v2z

–2 + ...... + vnz–n ......)

= 
n

n n n n
nu v u v u v u v z

=

∞

− −
−∑ + + + +

0
0 1 1 1 1 0( ....... )

= Z(u0vn + u1vn–1 + ...... + un – 1 v1 + unv0) = Z 
m

n

m n mu v
=

−∑
�

�
	
	




�
�
�

0

Hence  Z–1 [U(z) V(z)] = 
m

n

m n mu v
=

−∑
0

. Hence proved.


������������


Example 1: Find Z–1 
z

(z 2)

2

2−
�

�
�

�

�
�  by convolution theorem.

Solution: We have Z–1 
z

z

2

2−
�

�
�

�

�
� = 2n

∴ Z–1 
z

z
Z

z

z

z

z

2

2( 2)−
�

�
�

�

�
� =

−
�
�	



�� −
�
�	



��

�

�
�

�

�
�−1

2 2



��� ���������
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�����

= 
m

n
m n m

=

−∑
0

2 2 (By Convolution theorem)

= 2n 
n

n
m m

=

−∑
0

2 2  = 2n 
n

n

=
∑

0

1 = 2n (n + 1). Ans.

Example 2: Using convolution theorem evaluate Z
z

(z a) (z b)
1

2
−

− −
�

�
�

�

�
� .

Solution: We have Z–1 z

z a−
�

�
�

�

�
�  = an and Z–1 

z

z b−
�

�
�

�

�
�  = bn

∴     Z–1 
z

z a z b
Z

z

z a

z

z b

2
1

( )( )− −
�

�
�

�

�
� =

−
×

−
�

�
�

�

�
�

−

= 
m

n
m n ma b

=

−∑
0

(By Convolution theorem)

= bn 
m

n ma

b=
∑ �
�


�

0

 = bn 1
2

+ + ��


� + + ��



�

�

�
�

�

�
�

a

b

a

b

a

b

n

...

= bn 

a
b

a

b

b
a b

b a b

n

n
n n

n

�
�


� −

−



�
��

�
�
�

�

�
��

�
�
�

= −
−


�
�

�
�
�

+

+ +

1

1 11

1 ( )

    Z–1 
z

z a z b

2

( )( )− −
�

�
�

�

�
�  = 

a b

a b

n n+ +−
−

1 1

. Ans.

Example 3: Find  Z–1 
2z(2z 1)

z 5z 8z 43 2

−
− + −

�

�
�

�

�
� .

Solution: We have

  
2 2 1

5 8 4

2 2 1

1 23 2 2

z z

z z z

z z

z z

( ) ( )

( ) ( )

−
− + −

= −
− −

= 
2

1

2

2

6

2 2

z

z

z

z

z

z( ) ( ) ( )−
−

−
+

−
(By partial fraction)

Then, Z–1 2 2 1

5 8 43 2

z z

z z z

( )−
− + −

�

�
�

�

�
�  =  Z–1 

2

1

2

2

6

2 2

z

z

z

z

z

z−
−

−
+

−
�

�
�

�

�
�( )

= 2Z–1 
z

z −
�

�
�

�

�
�1

 – 2Z–1 z

z −
�

�
�

�

�
�2
 + 3Z–1

2

2 2

z

z( )−
�

�
�

�

�
�

= 2 . 1n – 2.2n + 3n . 2n. Ans.
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Examples 4: Find the inverse Z-transform of 
2z 3z

(z 2) (z 4)

2 +
+ −

.

Solution: We have 2 3

2 4

1

6 2

11

6 4

2z z

z z

z

z

z

z

+
+ −

=
+

+
−

�
�	



��( ) ( ) ( )

Then Z–1 
2 3

2 4

2z z

z z

+
+ −

�

�
�

�

�
�( ) ( )

 = Z–1 
1

6 2

11

6 4

z

z

z

z+
+

−
�

�
�

�

�
�

= 
1

6
(–2)n + 

11

6
 (4)n. Ans.

Example 5: Find the inverse Z-transform of log 
z

z 1+
�
�	



��

 by power series method.

Solution: We have U(z) = log 
z

z
z

z+
�
�	



��

=
+��


�

= − +��


�1

1

1
1

1
1

log log

= – 
1 1

2

1

32 3z z z
− +�

��
�
��

....

= – 
1 1

2

1

3

1
2 3

0
z z z n

z
n

n
n+ − = −

=

∞
−∑....

( )

∴  Z–1 [U(z)] = Z–1 
n

n
n

n
z

=

∞
−∑ −�

�
�
�

�

�
�
�0

1( )

⇒  un = 
( )− 1 n

n
 if n ≥ 1. Ans.

Example 6: Find Z–1 
z

(z 1) (z 2)− −
�

�
�

�

�
�  for | z | > 2.

Solution: We have   U(z) = 
z

z z z z( ) ( )− −
=

−
−

−1 2

2

2

1

1

Since, | z | > 2 ⇒ | z | > 1 and
2

z
 < 1 ⇒

1

z
 < 1

Now  U (z) = 
2

1
2

1

1
1

z
z

z
z

−��


�

−
−��


�

 = 
2

1
2 1

1
11 1

z z z z
−��


� − −��



�

− −

= 
2

1
2 2 22

2

1

1z z z z

n

n+ + + +
�

�
�

�

�
�

−

−......  – 
1

1
1 1 1

2 1z z z zn+ + + +�
��

�
��−...... .....
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Now coefficient Z–n = 2n–1 – 1 n ≥ 1

∴ Z–1 [U(z)] = {2n–1– 1)}. Ans.

���	��
�����

1. Use convolution theorem, to evaluate inverse Z-transform of the following:

(i)
z

z a−
�
�	



��

2

(ii)
z

z z

2

( ) ( )− −α β
.

2. Prove that 
1 1 2

n n n

n

!
*

! !
= .

3. Find the inverse Z-transform of the following:

(i)
z z

z z

3

3
20

2 4

−
− −( ) ( )

(ii)
z

z( )− 1 2 (iii)
z

z z( ) ( )+ −3 22 .

4. Find the inverse Z-transform of 
z

z z2 11 24+ +
.

5. Find Z–1 
1

2 3( ) ( )z z− −
�

�
�

�

�
�  for (i) | z | < 2 (ii) 2 < | z | 3 (iii) | z | > 3.

6. Find the Z–1 
z

z( )+
�

�
�

�

�
�

2 2 . 7. Evaluate Z–1 
z

z z( ) ( )2 2 1− −
�

�
�

�

�
� .

8. Find the inverse Z-transform of U(z) = 
z

z z

2

1

4

1

5
−��


� −��



�

(i)
1

5
 < | z | < 

1

4
(ii) | z | < 

1

5
.

9. Obtain Z–1 
2

2 2
z

z( )−
�

�
�

�

�
�  , | z | > 2.

�
��	


1. (i) an (n + 1) (ii)
α β

α β

n n+ +−
−

1 1

3. (i)
1

2
(2n + 2 . n2 2n) – 4n (ii) {n} {iii) – 

1

25
 (– 3)n – 

1

5
 n (– 3)n + 

1

25
 2n

4.
1

5
[(– 3)n – (– 8)n]



��������	�
 ���

5. (i) – 
1

3 3 3 3

1

2 2 2 22

2

3 4 2

2

3

3

4+ + +
�

�	



��
+ + + +
�

�	



��
3z z z z z z

..... ......

(ii) (– 2n–1) n > 0 (iii)
( )3 2 1

0 0

1 1n n n
n

− −− ≥
<


�
�

.

6. n n
n

n( )− ≠
=


�
�

−2 0
0 0

1 if
if

7. – 
1

3
(2)n + 

1

3

1

2
�
�


�

n

8. (i) – 5 
1

4
�
�


�

n

 –  4 1

5
�
�


�

n

(ii) 4 
1

5
�
�


�

n

 – 5 1

4
�
�


�

n

9. {n.2n}.

������
����������������	�������������������	�
��	�

Example 1: Using the Z-transform, Solve yn +2 – 5yn + 1 + 6yn = un with y0 = 0, y1 = 1 and un = 1 for
n = 0, 1, 2,..... .

Solution: We have yn + 2 – 5yn + 1 + 6yn = un ...(2.5)

with y0 = 0, y1 = 1 and un = 1 for n = 0, 1, 2, .......

Taking the Z-transform on both sides of (2.5), we have

 Z(yn + 2 – 5yn +1+ 6yn) = Z(un)

or  Z(yn + 2) – 5Z(yn + 1) – 6Z(yn) = Z(1)

or  z2[Y(z) – y0 – y1z–1] – 5z[Y(z) – y0] – 6Y(z) = 
z

z − 1
[� Z(yn) = Y(z)]

or (z2 – 5z + 6) Y(z) = 
z

z − 1
 + z [� y0 = 0, y1 = 1]

or   Y(z) = 
z

z z z

2

21 5 6( ) ( )− − +

Z(yn) = 
z

z z z

2

1 2 3( ) ( ) ( )− − −
Taking inverse Z-transform, on both sides, we get

 yn = Z–1 
z

z z z

2

1 2 3( ) ( ) ( )− − −
�

�
�

�

�
�

= Z–1 
1

2 1
2

2

3

2 3

z

z

z

z

z

z( ) ( ) ( )−
−

−
+

−
�

�
�

�

�
�
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= 
1

2
 z–1 

z

z −
�

�
�

�

�
�1  – 2z–1

z

z −
�

�
�

�

�
�2
 + 

3

2 3
1z

z

z
−

−
�

�
�

�

�
�

 yn
 = 

1

2
 . 1 – 2(2)n + 

3

2
 (3)n. Ans.

Example  2: Solve yn + 2 – 3yn + 1 – 4yn = 3n by Z-transform.

Solution: We have yn + 2 – 3yn + 1 – 4yn = 3n ...(2.6)

Taking the Z-transform on both sides of (2.6), we get

Z[yn + 2 – 3yn +1 – 4yn] = Z[3n]

or Z[yn + 2] – 3Z[yn +1] – 4Z[yn] = 
z

z − 3
[� Z(yn) = y(Z)]

or Z2[Y(z) – y0 – y1z
–1] – 3z[Y(z) – y0] – 4Y(z) = 

z

z − 3
[� Z(yn) = Y(z)]

or (z2 – 3z – 4) Y(z) = 
z

z − 3
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Example 3: Solve yn+2 + 2yn+1 + yn = n with y0 = 0 = y1 .

Solution: We have yn + 2 + 2yn + 1 + yn = n ...(2.7)

with y0 = 0, y1 = 1

Taking the Z-transform on both sides of (2.7), we get

 Z[yn + 2+ 2yn +1 + yn] = Z[n]

or Z[yn + 2] + 2Z[yn + 1] + Z[yn] = 
z

z( )− 1 2
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Taking inverse Z-transform on both sides, we get

yn = 
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4
 [ – (1)n + n + (– 1)n – n(– 1)n] = 

1

4
 (n – 1) [1 – (– 1)n]. Ans.
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Solving the following difference equation:

1. yn + 1 + 
1

4
 yn = 

1

4
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n

n ≥ 0 with y = 0. 2. 6yn + 2 – yn + 1 – yn = 0 given y0 = 0, y1 = 1.

3. yn + 2 – 4yn + 1 + 3yn = 5n. 4. yn + 2 + 6yn + 1 + 9yn = 2n with y0 = 0 = y1.

5. yn +2 – 4yn = n – 1. 6. yn + 2 + 4yn + 1+ 3yn = 3n with y0 = 0, y1 = 1.

7. yn + 2 – 2 yn + 1 + yn = n2 2n.
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24
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7. yn = c1 + nc2 + (n2 – 8n + 20)2n.



Table 1
(Area under standard normal curve from 0 to Z)

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596  .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987  .1026 .1064 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368  .1406 .1443 .1480 .1517
0.4 .1554 .1591 .1628 .1664 .1700 .1736  .1772 .1808 .1844 .1879

0.5 .1915 .1950 .1985 .2019 .2054 .2088  .2123 .2157 .2190 .2224
0.6 .2257 .2291 .2324 .2357 .2389 .2422  .2454 .2486 .2517 .2549
0.7 .2580 .2611 .2642 .2673 .2704 .2734  .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023  .3051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 .3238 .3264 .3289  .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531  .3554 .3577 .3599 .3621
1.1 .3643 .3665 .3686 .3708 .3729 .3749  .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944  .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115  .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265  .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394  .4406 .4418 .4429 .4441
1.6 .4452 .4463 .4474 .4484 .4495 .4505  .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599  .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678  .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744  .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798  .4803 .4808 .4812 .4817
2.1 .4821 .4826 .4830 .4834 .4838 .4842  .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878  .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906  .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929  .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946  .4948 .4949 .4951 .4952
2.6 .4953 .4955 .4956 .4957 .4959 .4960  .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970  .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978  .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984  .4985 .4985 .4986 .4986

3.0 .4987 .4987 .4987 .4988 .4988 .4989  .4989 .4989 .4990 .4990
3.1 .4990 .4991 .4991 .4991 .4992 .4992  .4992 .4992 .4993 .4993
3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995
3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997
3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998

3.6 .4998 .4998 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999
3.9 .5000
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