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Preface

Most problems in science involve many scales in time and space. An example is

turbulent flow where the important large scale quantities of lift and drag of a wing

depend on the behavior of the small vortices in the boundary layer. Another example

is chemical reactions with concentrations of the species varying over seconds and

hours while the time scale of the oscillations of the chemical bonds is of the order

of femtoseconds. A third example from structural mechanics is the stress and strain

in a solid beam which is well described by macroscopic equations but at the tip of a

crack modeling details on a microscale are needed.

A common difficulty with the simulation of these problems and many others in

physics, chemistry and biology is that an attempt to represent all scales will lead to

an enormous computational problem with unacceptably long computation times and

large memory requirements. On the other hand, if the discretization at a coarse level

ignores the fine scale information then the solution will not be physically meaningful.

The influence of the fine scales must be incorporated into the model.

This volume is the result of a Summer School on Multiscale Modeling and Sim-

ulation in Science held at Bosön, Lidingö outside Stockholm, Sweden, in June 2007.

Sixty PhD students from applied mathematics, the sciences and engineering partici-

pated in the summer school.

The purpose of the summer school was to bring together leading scientists in

computational physics, computational chemistry and computational biology and in

scientific computing with PhD students in these fields to solve problems with mul-

tiple scales of research interest. By training the students to work in teams together

with other students with a different background to solve real life problems they will

be better prepared for their future work in academia, institutes, or industry. The im-

portance of interdisciplinary science will certainly grow in the coming years.

There were lectures on computational multiscale techniques in the morning ses-

sions of the first week. Most of these lectures are found in the first, tutorial part of

this volume. The afternoons were devoted to the solution of mathematical and com-

putational exercises in small groups. The exercises are interspersed in the articles in

the first part. The speakers and the titles of their lectures were:
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• Jørg Aarnes, Department of Applied Mathematics, SINTEF, Oslo: Multiscale

Methods for Subsurface Flow

• Björn Engquist, Department of Numerical Analysis, KTH, Stockholm, and De-

partment of Mathematics, University of Texas, Austin: Introduction to Analytical

and Numerical Multiscale Modeling

• Heinz-Otto Kreiss, Department of Numerical Analysis, KTH, Stockholm: Ordi-

nary and Partial Differential Equations with Different Time Scales

•

• Olof Runborg, Department of Numerical Analysis, KTH, Stockholm: Introduc-

tion to Wavelets and Wavelet Based Homogenization

• Richard Tsai, Department of Mathematics, University of Texas, Austin: Hetero-

geneous Multiscale Method for ODEs

•

gorithms for Boundary Integral Equations

In the second week, nine realistic problems from applications in astronomy, biol-

ogy, chemistry, and physics were solved in collaborations between senior researchers

and the PhD students. The problems were presented by experts in the applications in

solutions with guidance from an expert. The week ended with oral presentations of

the results and written papers. The student papers are found at the homepage of the

summer school www.ngssc.vr.se/S2M2S2. The students received credit points at

their home university for their participation as a part of the course work for the PhD

degree. As a break from the problem solving sessions, there were three invited one

hour talks on timely topics:

• Tom Abel, Department of Physics, Stanford University: First Stars in the Uni-

verse

•

Modeling

• Yannis Kevrekidis, Department of Chemical Engineering, Princeton University:

Equation-free Computation for Complex and Multiscale Systems

These are the nine different projects with the project leaders:

• Climate Modeling

– Erland Källén, Heiner Körnich, Department of Meteorology, Stockholm Uni-

versity: Climate Dynamics and Modelling (two projects)

• Solid State Physics

–

Complex Band Structures of Spintronics Materials

–

trum Jülich, Jülich: Orbital Ordering in Transition Metal Oxides

• Astrophysics

– Garrelt Mellema, Stockholm Observatory, Stockholm University: Photo-

Ionization Dynamics Simulation

Lennart Bengtsson, Max Planck Institut für Meteorologie, Hamburg: Climate

Peter Zahn, Department of Physics, Martin-Luther-Universität,Halle-Wittenberg:

Erik Koch, Eva Pavarini, Institut für Festkörperforschung, Forschungszen-

short lectures. Groups of students with different backgrounds worked together on the

Vallée: Complex Fluids

Claude Le Bris, CERMICS, École Nationale des Ponts et Chaussées, Marne la

Lexing Ying, Department of Mathematics, University of Texas, Austin: Fast Al-
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– Axel Brandenburg, Nordita, Stockholm: Turbulent dynamo simulation

• Quantum Chemistry

– Yngve Öhrn, Erik Deumens, Department of Chemistry and Physics, Uni-

versity of Florida, Gainesville: Molecular Reaction Dynamics with Explicit

Electron Dynamics

• Molecular Biology

– Håkan Hugosson, Hans Ågren, Department of Theoretical Chemistry, KTH,

Stockholm: Quantum Mechanics - Molecular Mechanics Modeling of an En-

zyme Catalytic Reaction

• Flow in Porous Media

–

scale Modelling of Flow in Gas-Injection Processes for Enhanced Oil Recov-

ery

The projects were chosen to contain a research problem that could be at least

partly solved in a week by a group of students with guidance from a senior researcher.

The problems had multiple scales where the finest scale cannot be ignored. Part two

of this volume contains a short description of the projects mentioned above.

The summer school was organized by the Department of Numerical Analysis

and Computer Science (NADA), KTH, Stockholm, the Department of Information

Technology and the Centre for Dynamical Processes and Structure Formation (CDP)

at Uppsala University with an organizing committee consisting of Timo Eirola,

Helsinki, Björn Engquist, Stockholm, Bengt Gustafsson, Uppsala, Sverker Holm-

gren, Uppsala, Henrik Kalisch, Bergen, Per Lötstedt, Uppsala, Anna Önehag, Upp-

sala, Brynjulf Owren, Trondheim, Olof Runborg, Stockholm, Anna-Karin Tornberg,

Stockholm.

Financial support was received from the Swedish National Graduate School in

Scientific Computing (NGSSC), Swedish Foundation for Strategic Research (SSF),

Centre for Dynamical Processes and Structure Formation (CDP), Nordita, Nord-

Forsk, Research Council of Norway, and Comsol. Computing resources were pro-

vided by Uppsala Multidisciplinary Center for Advanced Computational Science

(UPPMAX).

Stockholm, Uppsala, Björn Engquist

September 2008 Per Lötstedt

Olof Runborg

James Lambers, Department of Energy Resources, Stanford University: Coarse-
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Cité Descartes – Champs sur Marne

F-77455 Marne la Vallée Cedex 2

Knut–Andreas Lie

SINTEF ICT

Dept. of Applied Mathematics

P.O. Box 124, Blindern

N-0314 Oslo, Norway

Knut-Andreas.Lie@sintef.no

Garrelt Mellema

Stockholm Observatory

AlbaNova University Centre

Stockholm University

SE-10691 Stockholm, Sweden

garrelt@astro.su.se

Yngve Öhrn
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Multiscale Methods for Subsurface Flow

Jørg E. Aarnes, Knut–Andreas Lie, Vegard Kippe, and Stein Krogstad

SINTEF ICT, Dept. of Applied Mathematics, Oslo Norway

Modelling of flow processes in the subsurface is important for many applications.

In fact, subsurface flow phenomena cover some of the most important technological

challenges of our time. To illustrate, we quote the UN’s Human Development Report

2006:

“There is a growing recognition that the world faces a water crisis that,

left unchecked, will derail the progress towards the Millennium Develop-

ment Goals and hold back human development. Some 1.4 billion people live

in river basins in which water use exceeds recharge rates. The symptoms of

overuse are disturbingly clear: rivers are drying up, groundwater tables are

falling and water-based ecosystems are being rapidly degraded. Put bluntly,

the world is running down one of its most precious natural resources and

running up an unsustainable ecological debt that will be inherited by future

generations.”

The road toward sustainable use and management of the earth’s groundwater reserves

necessarily involves modelling of groundwater hydrological systems. In particular,

modelling is used to acquire general knowledge of groundwater basins, quantify lim-

its of sustainable use, and to monitor transport of pollutants in the subsurface.

A perhaps equally important problem is how to reduce emission of greenhouse

gases, such as CO2, into the atmosphere. Indeed, the recent report from the UN In-

tergovernmental Panel on Climate Change (see e.g., www.ipcc.ch) draws a fright-

ening scenario of possible implications of human-induced emissions of greenhouse

gases. Carbon sequestration in porous media has been suggested as a possible means.

Schrag [46] claims that

“Carbon sequestration (. . . ) is an essential component of any serious

plan to avoid catastrophic impacts of human-induced climate change. Sci-

entific and economical challenges still exist, but none are serious enough to

suggest that carbon capture and storage (in underground repositories) will

not work at the scale required to offset trillions of tons of CO2 emissions

over the next century.”
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The primary concern related to storage of CO2 in subsurface repositories is related to

how fast the CO2 will escape. Repositories do not need to store CO2 forever, just long

enough to allow the natural carbon cycle to reduce the atmospheric CO2 to near pre-

industrial level. Nevertheless, making a qualified estimate of the leakage rates from

potential CO2 storage facilities is a non-trivial task, and demands interdisciplinary

research and software based on state-of-the art numerical methods for modelling

subsurface flow.

These examples illustrate that the demand for software modelling subsurface

flow will not diminish with the decline of the oil and gas era. In fact, the need for

tools that help us understand flow processes in the subsurface is probably greater

than ever, and increasing. Nevertheless, more than 50 years of prior research in this

area has led to some degree of agreement in terms of how subsurface flow processes

can be modelled adequately with numerical simulation technology. Because most

of the prior research in this area targets reservoir simulation, i.e., modelling flow in

oil and gas reservoirs, we will focus on this application in the remainder of this pa-

per. However, the general modelling framework, and the numerical methods that are

discussed, apply also to modelling flow in groundwater reservoirs and CO2 storage

facilities.

To describe the subsurface flow processes mathematically, two types of models

are needed. First, one needs a mathematical model that describes how fluids flow in

a porous medium. These models are typically given as a set of partial differential

equations describing the mass-conservation of fluid phases. In addition, one needs a

geological model that describes the given porous rock formation (the reservoir). The

geological model is used as input to the flow model, and together they make up the

reservoir simulation model.

Unfortunately, geological models are generally too large for flow simulation,

meaning that the number of grid cells exceed the capabilities of current flow simu-

lators (usually by orders of magnitude) due to limitations in memory and processing

power. The traditional, and still default, way to build a reservoir simulation model

therefore starts by converting the initial geomodel (a conceptual model of the reser-

voir rock with a plausible distribution of geological parameters) to a model with a

resolution that is suitable for simulation. This process is called upscaling. Upscal-

ing methods aim to preserve the small-scale effects in the large-scale computations

(as well as possible), but because small-scale features often have a profound impact

on flow occurring on much larger scales, devising robust upscaling techniques is a

non-trivial task.

Multiscale methods are a new and promising alternative to traditional upscal-

ing. Whereas upscaling techniques are used to derive coarse-scale equations with a

reduced set of parameters, multiscale methods attempt to incorporate fine-scale in-

formation directly into the coarse-scale equations. Multiscale methods are rapidly

growing in popularity, and have started to gain recognition as a viable alternative to

upscaling, also by industry. The primary purpose of this paper is to provide an easily

accessible introduction to multiscale methods for subsurface flow, and to clarify how

these methods relate to some standard, but widely used, upscaling methods.
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We start by giving a crash course in reservoir simulation. Next, we describe

briefly some basic discretisation techniques for computing reservoir pressure and

velocity fields. We then provide a brief introduction to upscaling, and present some

of the most commonly used methods for upscaling the pressure equation. The fi-

nal part of the paper is devoted to multiscale methods for computing pressure and

velocity fields for subsurface flow applications.

1 Introduction to Reservoir Simulation

Reservoir simulation is the means by which we use a numerical model of the petro-

physical characteristics of a hydrocarbon reservoir to analyse and predict fluid be-

haviour in the reservoir over time. For nearly half a century, reservoir simulation has

been an integrated part of oil-reservoir management. Today, simulations are used to

estimate production characteristics, calibrate reservoir parameters, visualise reser-

voir flow patterns, etc. The main purpose is to provide an information database that

can help the oil companies to position and manage wells and well trajectories in order

to maximize the oil and gas recovery. Unfortunately, obtaining an accurate prediction

of reservoir flow scenarios is a difficult task. One of the reasons is that we can never

get a complete and accurate characterisation of the rock parameters that influence the

flow pattern. And even if we did, we would not be able to run simulations that exploit

all available information, since this would require a tremendous amount of computer

resources that exceed by far the capabilities of modern multi-processor computers.

On the other hand, we do not need, nor do we seek a simultaneous description of the

flow scenario on all scales down to the pore scale. For reservoir management it is

usually sufficient to describe the general trends in the reservoir flow pattern.

In this section we attempt only to briefly summarise some aspects of the art of

modelling porous media flow and motivate a more detailed study of some of the

related topics. More details can be found in one of the general textbooks describing

modelling of flow in porous media, e.g., [10, 21, 26, 30, 41, 43, 23].

1.1 The Reservoir Description

Natural petroleum reservoirs typically consist of a subsurface body of sedimentary

rock having sufficient porosity and permeability to store and transmit fluids. Sedi-

mentary rocks are formed through deposition of sediments and typically have a lay-

ered structure with different mixtures of rock types. In its simplest form, a sedimen-

tary rock consists of a stack of sedimentary beds that extend in the lateral direction.

Due to differences in deposition and compaction, the thickness and inclination of

each bed will vary in the lateral directions. In fact, during the deposition, parts of

the beds may have been weathered down or completely eroded away. In addition,

the layered structure of the beds may have been disrupted due to geological activity,

introducing fractures and faults. Fractures are cracks or breakage in the rock, across

which there has been no movement. Faults are fractures across which the layers in

the rock have been displaced.
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Oil and gas in the subsurface stem from layers of compressed organic mate-

rial that was deposited millions of years ago, and, with time, eventually turned into

water and different hydrocarbon components. Normally the lightest hydrocarbons

(methane, ethane, etc.) escaped quickly, whilst the heavier oils moved slowly to-

wards the surface, but at certain sites geological activity had created and bent layers

of low-permeable (or non-permeable) rock, so that the migrating hydrocarbons were

trapped. It is these quantities of trapped hydrocarbons that form today’s oil and gas

reservoirs.

Rock formations found in natural petroleum reservoirs are typically heteroge-

neous at all length scales, from the micrometre scale of pore channels between sand

grains to the kilometre scale of the full reservoir. To obtain a geological description

of these reservoirs, one builds models that attempt to reproduce the true geological

heterogeneity in the reservoir rock. However, it is generally not possible to account

for all pertinent scales that impact the flow. Instead one has to create models for

studying phenomena occurring at a reduced span of scales. In reservoir engineering,

the reservoir is modelled in terms of a three-dimensional grid, in which the layered

structure of sedimentary beds (a small unit of rock distinguishable from adjacent

rock units) in the reservoir is reflected in the geometry of the grid cells. The physical

properties of the rock (porosity and permeability) are represented as constant values

inside each grid cell. The size of a grid block in a typical geological grid-model is in

the range 10–50 m in the horizontal direction and 0.1–1 m in the vertical direction.

Thus, a geological model is clearly too coarse to resolve small-scale features such as

the micro-structure of the pores.

Rock Parameters

The rock porosity, usually denoted by φ , is the void volume fraction of the medium;

i.e., 0 ≤ φ < 1. The porosity usually depends on the pressure; the rock is compress-

ible, and the rock compressibility is defined by:

cr =
1

φ

dφ

d p
,

where p is the reservoir pressure. For simplified models it is customary to neglect

the rock compressibility. If compressibility cannot be neglected, it is common to use

a linearisation so that:

φ = φ0

(
1 + cr(p − p0)

)
,

where p0 is a specified reference pressure and φ0 = φ(p0).
The (absolute) permeability, denoted by K, is a measure of the rock’s ability to

transmit a single fluid at certain conditions. Since the orientation and interconnection

of the pores are essential for flow, the permeability is not necessarily proportional to

the porosity, but K is normally strongly correlated to φ . Rock formations like sand-

stones tend to have many large or well-connected pores and therefore transmit fluids

readily. They are therefore described as permeable. Other formations, like shales,

may have smaller, fewer or less interconnected pores, e.g., due to a high content of
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Fig. 1. Examples of two permeability fields: a shallow-marine Tarbert formation (left) and a

fluvial Upper Ness formation (right).

clay. Such formations are described as impermeable. Although the SI-unit for per-

meability is m
2
, it is commonly represented in Darcy (D), or milli-Darcy (mD). The

precise definition of 1D (≈ 0.987 ·10
−12

m
2
) involves transmission of a 1cp fluid (see

below) through a homogeneous rock at a speed of 1cm/s due to a pressure gradient

of 1atm/cm. Translated to reservoir conditions, 1D is a relatively high permeability.

In general, K is a tensor, which means that the permeability in the different di-

rections depends on the permeability in the other directions. We say that the medium

is isotropic (as opposed to anisotropic) if K can be represented as a scalar function,

e.g., if the horizontal permeability is equal to the vertical permeability. Moreover,

due to transitions between different rock types, the permeability may vary rapidly

over several orders of magnitude, local variations in the range 1 mD to 10 D are not

unusual in a typical field.

The heterogeneous structure of a porous rock formation is a result of the de-

position history and will therefore vary strongly from one formation to another. In

Fig. 1 we show two permeability realisations sampled from two different forma-

tions in the Brent sequence from the North Sea. Both formations are characterised

by large permeability variations, 8–12 orders of magnitude, but are qualitatively dif-

ferent. The Tarbert formation is the result of a shallow-marine deposition and has

relatively smooth permeability variations. The Upper Ness formation is fluvial and

has been deposited by rivers or running water, leading to a spaghetti of well-sorted

high-permeable channels of long correlation length imposed on low-permeable back-

ground.

Grids

As described above, the rock parameters φ and K are usually given on a grid that

also gives the geometrical description of the underlying rock formations. The most

widespread way to model the geometry of rock layers is by so-called corner-point

grids. A corner-point grid consists of a set of hexahedral cells that are aligned in a

logical Cartesian fashion. One horizontal layer in the grid is then assigned to each

sedimentary bed to be modelled. In its simplest form, a corner-point grid is speci-

fied in terms of a set of vertical or inclined pillars defined over an areal Cartesian

2D mesh in the lateral direction. Each cell in the volumetric corner-point grid is re-

stricted by four pillars and is defined by specifying the eight corner points of the cell,

two on each pillar. Figure 2 shows a side-view of such a corner-point grid. Notice

the occurrence of degenerate cells with less than eight non-identical corners where

the beds are partially eroded away. Some cells also disappear completely and hence
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Fig. 2. Side view in the xz-plane of corner-point grid with vertical pillars modelling a stack of

sedimentary beds (each layer indicated by a different colour).

Fig. 3. Example of a geological grid model.

introduce new connections between cells that are not neighbours in the underlying

logical Cartesian grid.

The corner-point format easily allows for degeneracies in the cells and discon-

tinuities (fractures/faults) across faces. Hence, using the corner-point format it is

possible to construct very complex geological models that match the geologist’s per-

ception of the underlying rock formations, e.g., as seen in Fig. 3. Due to their many

appealing features, corner-point grids are now an industry standard and the format is

supported in most commercial software for reservoir modelling and simulation.

1.2 Flow Parameters

The void in the porous medium is assumed to be filled with different phases. The

volume fraction s occupied by each phase is the saturation of that phase. Thus,

∑
all phases

si = 1. (1)

Here only three phases are considered; aqueous (a), liquid (l), and vapour (v). Each

phase contains one or more components. A hydrocarbon component is a unique
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chemical species (methane, ethane, propane, etc). Since the number of hydrocar-

bon components can be quite large, it is common to group components into pseudo-

components, e.g., water (w), oil (o), and gas (g).

Due to the varying conditions in a reservoir, the hydrocarbon composition of the

different phases may change throughout a simulation. The mass fraction of compo-

nent α in phase j is denoted by mα , j. In each of the phases, the mass fractions should

add up to unity, so that for N different components, we have:

N

∑
α=1

mα , j = 1.

The density ρ and viscosity µ of each phase are functions of phase pressure pi (i =
a, l,v) and the component composition. That is, for vapour

ρv = ρv(pv,{mα ,v}), µv = µv(pv,{mα ,v}),

and similarly for the other phases. These dependencies are most important for the

vapour phase, and are usually ignored for the aqueous phase.

The compressibility of the phase is defined as for rock compressibility:

ci =
1

ρi

dρi

d pi
, i = a, l,v.

Compressibility effects are more important for gas than for fluids. In simplified mod-

els, the compressibility of the aqueous phase is usually neglected.

Due to interfacial tensions, the phase pressures are different, defining the capil-

lary pressure,

pc
i j = pi − p j,

for i, j = a, l,v. Although other dependencies are reported, it is usually assumed that

the capillary pressure is a function of the saturations only.

Even though phases do not really mix, we assume that all phases may be present

at the same location. The ability of one phase to move will then depend on the en-

vironment at the actual location. That is, the permeability experienced by one phase

depends on the saturation of the other phases at that specific location, as well as the

phases’ interaction with the pore walls. Thus, we introduce a property called relative

permeability, denoted by kri, i = a, l,v, which describes how one phase flows in the

presence of the two others. Thus, in general, and by the closure relation (1), we may

assume that

kri = kri(sa,sv),

where subscript r stands for relative and i denotes one of the phases a, l, or v. Thus,

the (effective) permeability experienced by phase i is Ki = Kkri. It is important to note

that the relative permeabilities are nonlinear functions of the saturations, so that the

sum of the relative permeabilities at a specific location (with a specific composition)

is not necessarily equal to one. In general, relative permeabilities may depend on

the pore-size distribution, the fluid viscosity, and the interfacial forces between the
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fluids. These features, which are carefully reviewed by Demond and Roberts [27], are

usually ignored. Of greater importance to oil recovery is probably the temperature

dependency [42], which may be significant, but very case-related.

Other parameters of importance are the bubble-point pressures for the various

components. At given temperature, the bubble-point pressures signify the pressures

where the respective phases start to boil. Below the bubble-point pressures, gas is re-

leased and we get transition of the components between the phases. For most realistic

models, even if we do not distinguish between all the components, one allows gas to

be dissolved in oil. For such models, an important pressure-dependent parameter is

the solution gas-oil ratio rl for the gas dissolved in oil at reservoir conditions. It is

also common to introduce so-called formation volume factors that model the pres-

sure dependent ratio of bulk volumes at reservoir and surface conditions. We will

introduce these parameters later when presenting the three-phase black-oil model.

1.3 Production Processes

Initially, a hydrocarbon reservoir is at equilibrium, and contains gas, oil, and water,

separated by gravity. This equilibrium has been established over millions of years

with gravitational separation and geological and geothermal processes. When a well

is drilled through the upper non-permeable layer and penetrates the upper hydro-

carbon cap, this equilibrium is immediately disturbed. The reservoir is usually con-

nected to the well and surface production facilities by a set of valves. If there were

no production valves to stop the flow, we would have a “blow out” since the reser-

voir is usually under a high pressure. As the well is ready to produce, the valves

are opened slightly, and hydrocarbons flow out of the reservoir due to over-pressure.

This in turn, sets up a flow inside the reservoir and hydrocarbons flow towards the

well, which in turn may induce gravitational instabilities. Capillary pressures will

also act as a (minor) driving mechanism, resulting in local perturbations of the sit-

uation. During this stage, perhaps 20 percent of the hydrocarbons present are pro-

duced until a new equilibrium is achieved. We call this primary production by natu-

ral drives. One should note that a sudden drop in pressure also may have numerous

other intrinsic effects. Particularly in complex, composite systems this may be the

case, as pressure-dependent parameters experience such drops. This may give non-

convective transport and phase transfers, as vapour and gaseous hydrocarbons may

suddenly condensate.

As pressure drops, less oil and gas is flowing, and eventually the production is no

longer economically sustainable. Then the operating company may start secondary

production, by engineered drives. These are processes based on injecting water or gas

into the reservoir. The reason for doing this is twofold; some of the pressure is rebuilt

or even increased, and secondly one tries to push out more profitable hydrocarbons

with the injected substance. One may perhaps produce another 20 percent of the oil

by such processes, and engineered drives are standard procedure at most locations in

the North Sea today.

In order to produce even more oil, Enhanced Oil Recovery (EOR, or tertiary

recovery) techniques may be employed. Among these are heating the reservoir or
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injection of sophisticated substances like foam, polymers or solvents. Polymers are

supposed to change the flow properties of water, and thereby to more efficiently

push out oil. Similarly, solvents change the flow properties of the hydrocarbons, for

instance by developing miscibility with an injected gas. In some sense, one tries to

wash the pore walls for most of the remaining hydrocarbons. The other technique

is based on injecting steam, which will heat the rock matrix, and thereby, hopefully,

change the flow properties of the hydrocarbons. At present, such EOR techniques

are considered too expensive for large-scale commercial use, but several studies have

been conducted and the mathematical foundations are being carefully investigated,

and at smaller scales EOR is being performed.

One should note that the terms primary, secondary, and tertiary are ambiguous.

EOR techniques may be applied during primary production, and secondary produc-

tion may be performed from the first day of production.

2 Mathematical Models

In this section we will present two mathematical models, first a simple single-phase

model that incorporates much of the complexities that arise due to heterogeneities

in the porous rock formations. Then we present the classical black-oil model, which

incorporates more complex flow physics.

2.1 Incompressible Single-Phase Flow

The simplest possible way to describe the displacement of fluids in a reservoir is by a

single-phase model. This model gives an equation for the pressure distribution in the

reservoir and is used for many early-stage and simplified flow studies. Single-phase

models are used to identify flow directions; identify connections between producers

and injectors; in flow-based upscaling; in history matching; and in preliminary model

studies.

Assume that we want to model the filtration of a fluid through a porous medium

of some kind. The basic equation describing this process is the continuity equation

which states that mass is conserved

∂ (φρ)

∂ t
+ ∇ · (ρv) = q. (2)

Here the source term q models sources and sinks, that is, outflow and inflow per

volume at designated well locations.

For low velocities v, filtration through porous media is modelled with an empiri-

cal relation called Darcy’s law after the French engineer Henri Darcy. Darcy discov-

ered in 1856, through a series of experiments, that the filtration velocity is propor-

tional to a combination of the gradient of the fluid pressure and pull-down effects

due to gravity. More precisely, the volumetric flow density v (which we henceforth

will refer to as flow velocity) is related to pressure p and gravity forces through the

following gradient law:
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v = −K

µ
(∇p + ρg∇z). (3)

Here g is the magnitude of the gravitational acceleration and z is the spatial coordi-

nate in the upward vertical direction. For brevity we write G = −g∇z for the gravita-

tional pull-down force. We note that Darcy’s law is analogous to Fourier’s law of heat

conduction (in which K is replaced with the heat conductivity tensor) and Ohm’s law

of electrical conduction (in which K is the inverse of the electrical resistance). How-

ever, whereas there is only one driving force in thermal and electrical conduction,

there are two driving forces in porous media flow: gravity and the pressure gradient.

As an illustrative example, we will now present an equation that models flow

of an incompressible fluid, say, water, through a rigid and incompressible porous

medium characterised by a permeability field K and a corresponding porosity distri-

bution φ . For an incompressible medium, the temporal derivative term in (2) vanishes

and we obtain the following elliptic equation for the water pressure:

∇ · v = ∇ ·
[
−K

µ
(∇p − ρG)

]
=

q

ρ
. (4)

To close the model, we must specify boundary conditions. Unless stated otherwise

we shall follow common practice and use no-flow boundary conditions. Hence, on

the reservoir boundary ∂Ω we impose v ·n = 0, where n is the normal vector pointing

out of the boundary ∂Ω . This gives an isolated flow system where no water can enter

or exit the reservoir.

2.2 Three-Phase Black-Oil Model

The most commonly used model in reservoir simulation is the so-called black oil

model. Here we present the three-phase black-oil model, in which there are three

components; water (w), oil (o), and gas (g), and three phases; aqueous (a), liquid (l),

and vapour (v). The aqueous phase contains only water, but oil and gas may exist

in both the liquid phase and the vapour phase. The three-phase black-oil model is

governed by mass-balance equations for each component

∑
j=a,l,v

{
∂

dt
(φmα , jρ js j)+ ∇ · (mα , jρ jv j)

}
= qα , α = w,o,g, (5)

where the Darcy velocities v j are given by

v j = −Kkr j

µ j
(∇p j − ρ jG) , j = a, l,v. (6)

Here qα is a source term and p j denotes the phase pressure.

We now introduce the volume formation factors bα = Vαs/Vα , where Vαs and Vα

are volumes occupied by a bulk of component α at surface and reservoir conditions,

respectively; the phase densities at surface conditions ρ js; rl = Vgs/Vos, the ratio of

the volumes of gas and oil in the liquid phase at surface conditions; and rv = Vos/Vgs,
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the ratio of the volumes of oil and gas in the vapour phase at surface conditions.

Recalling that water does not mix into the liquid and vapour phases, we derive

mw,aρa = bwρws, mo,a = 0, mg,a = 0,
mw,l = 0, mo,lρl = boρos, mg,lρl = rlboρgs,
mw,v = 0, mo,vρv = rvbgρos, mg,vρv = bgρgs.

Inserting these expressions into (5) gives

∂

dt
(φA[s j])+ ∇ · (A[v j]) = [qα ], (7)

where [ξ j] = (ξa,ξl,ξv)
t
, [ξα ] = (ξw,ξo,ξg)

t
, and

A =




bwρws 0 0

0 boρos rvbgρos

0 rlboρgs bgρgs


=




ρws 0 0

0 ρos 0

0 0 ρgs






1 0 0

0 1 rv

0 rl 1






bw 0 0

0 bo 0

0 0 bg


.

Premultiplying (7) with 1tA−1
, expanding ∂/∂ξ = (∂/∂ pl)(∂ pl/∂ξ ), and assuming

1t [s j] = 1, i.e., that the three phases occupy the void space completely, gives an

equation of the following form:

∂φ

∂ pl

+ φ ∑
j

c js j
∂ pl

∂ t
+ ∇ ·

(

∑
j

v j

)
+∑

j

c jv j ·∇pl = q. (8)

Exercise 1. Derive (8) from (7) and show that q and the phase compressibilities c j

are defined by

q = 1tA−1[qα ] =
qw

bwρws
+

1

1 − rvrl

((
1

bo
− rl

bg

)
qo

ρos
+

(
1

bg
− rv

bo

)
qg

ρgs

)
.

and

ca =
∂ lnbw

∂ pl

, cl =
∂ lnbo

∂ pl

+
1

bg

bo − rvbg

1 − rvrl

∂ rl

∂ pl

,

cv =
∂ lnbg

∂ pl

+
1

bo

bg − rlbo

1 − rvrl

∂ rv

∂ pl

.

3 Discretisation of Elliptic Pressure Equations

In this section we present four different numerical methods for solving elliptic pres-

sure equations on the form (4). We only consider mass-conservative methods, mean-

ing that each method provides velocity fields that satisfy the following mass-balance

equation: ∫

Ωi

∇ · v dx =

∫

∂Ωi

v ·n ds =

∫

Ωi

q

ρ
dx (9)

for each grid cell Ωi in Ω (the reservoir). Here n denotes the outward-pointing unit

normal on ∂Ωi and ds is the surface area measure. We first present the two-point

flux-approximation (TPFA) scheme, a very simple discretisation technique that is

widely used in the oil-industry.
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3.1 The Two-Point Flux-Approximation (TPFA) Scheme

In classical finite-difference methods, partial differential equations (PDEs) are ap-

proximated by replacing the partial derivatives with appropriate divided differences

between point-values on a discrete set of points in the domain. Finite-volume meth-

ods, on the other hand, have a more physical motivation and are derived from con-

servation of (physical) quantities over cell volumes. Thus, in a finite-volume method

the unknown functions are represented in terms of average values over a set of finite

volumes, over which the integrated PDE model is required to hold in an averaged

sense.

Although finite-difference and finite-volume methods have fundamentally differ-

ent interpretation and derivation, the two labels are used interchangeably in the sci-

entific literature. We therefore choose to not make a clear distinction between the two

discretisation techniques here. Instead we ask the reader to think of a finite-volume

method as a conservative finite-difference scheme that treats the grid cells as control

volumes. In fact, there exist several finite-volume and finite-difference schemes of

low order, for which the cell-centred values obtained with a finite-difference scheme

coincide with cell averages obtained with the corresponding finite-volume scheme.

To derive a set of finite-volume mass-balance equations for (4), consider Equa-

tion (9). Finite-volume methods are obtained by approximating the pressure p with a

cell-wise constant function {pw,i} and estimating the normal velocity v ·n across cell

interfaces γi j = ∂Ωi ∩ ∂Ω j from a set of neighbouring cell pressures. To formulate

the TPFA scheme it is convenient to reformulate equation (4) slightly, so that we get

an equation of the following form:

−∇ ·λ ∇u = f , (10)

where λ = K/µ . To this end, we have two options: we can either introduce a flow

potential u = p + ρgz and express our model as an equation for u

−∇ ·λ ∇u =
q

ρ
,

or we can move the gravity term ∇ · (λ ρG) to the right-hand side. Hence, we might

as well assume that we want to solve (10) for u.

As the name suggests, the TPFA scheme uses two points, the cell-averages ui

and u j, to approximate the flux Fi j = −∫γi j
(λ ∇u) · n ds. To be more specific, let us

consider a regular hexahedral grid with gridlines aligned with the principal coordi-

nate axes. Moreover, assume that γi j is an interface between adjacent cells in the

x–coordinate direction so that the interface normal ni j equals (1,0,0)T
. The gradient

∇u on γi j in the TPFA method is now replaced with

(∇u ·n)|γi j
≈ 2(u j − ui)

∆xi + ∆x j
, (11)

where ∆xi and ∆x j denote the respective cell dimensions in the x-coordinate direc-

tion. Thus, we obtain the following expression for Fi j:
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Fi j = − 2(u j − ui)

∆xi + ∆x j

∫

γi j

λ ds.

However, in most reservoir simulation models, the permeability K is cell-wise con-

stant, and hence not well-defined at the interfaces. This means that we also have to

approximate λ on γi j. In the TPFA method this is done by taking a distance-weighted

harmonic average of the respective directional cell permeabilities, λi,i j = ni j · λini j

and λ j,i j = ni j · λ jni j. To be precise, the ni j–directional permeability λi j on γi j is

computed as follows:

λi j = (∆xi + ∆x j)

(
∆xi

λi,i j
+

∆x j

λ j,i j

)−1

.

Hence, for orthogonal grids with gridlines aligned with the coordinate axes, one

approximates the flux Fi j in the TPFA method in the following way:

Fi j = −|γi j|λi j(∇u ·n)|γi j
= 2|γi j|

(
∆xi

λi,i j
+

∆x j

λ j,i j

)−1

(ui − u j). (12)

Finally, summing over all interfaces, we get an approximation to
∫

∂Ωi
v ·n ds, and the

associated TPFA method is obtained by requiring the mass-balance equation (9) to

be fulfilled for each grid cell Ωi ∈ Ω .

In the literature on finite-volume methods it is common to express the flux Fi j in

a more compact form than we have done in (12). Terms that do not involve the cell

potentials ui are usually gathered into an interface transmissibility ti j . For the current

TPFA method the transmissibilities are defined by:

ti j = 2|γi j|
(

∆xi

λi,i j
+

∆x j

λ j,i j

)−1

.

Thus by inserting the expression for ti j into (12), we see that the TPFA scheme for

equation (10), in compact form, seeks a cell-wise constant function u = {ui} that

satisfies the following system of equations:

∑
j

ti j(ui − u j) =

∫

Ωi

f dx, ∀Ωi ⊂ Ω . (13)

We have now derived a system of linear equations Au = f, where the matrix A = [aik]
is given by

aik =

{
∑ j ti j if k = i,
−tik if k 6= i.

This system is symmetric, and a solution is, as for the continuous problem, defined

up to an arbitrary constant. The system is made positive definite, and symmetry is

preserved, by forcing u1 = 0, for instance. That is, by adding a positive constant to

the first diagonal of the matrix. In [2] we present a simple, but yet efficient, MATLAB

implementation of the TPFA scheme, which we have used in the following example:



16 J. E. Aarnes, K.–A. Lie, V. Kippe, S. Krogstad

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 4. Pressure contours and streamlines for the classical quarter five-spot test case with a

homogeneous and a log-normal permeability field (top and bottom row, respectively).

Example 1. Our first example is the so-called quarter five-spot test case, which is

the most widespread test case within reservoir simulation. The reservoir is the unit

square with an injector at (0,0), a producer at (1,1), and no-flow boundary condi-

tions. Figure 4 shows pressure contours and streamlines for two different isotropic

32×32 permeability fields. The first field is homogeneous, whereas the other is sam-

pled from a log-normal distribution. The pressure and velocity field are symmetric

about both diagonals for the homogeneous field. For the heterogeneous field, the

flow field is no longer symmetric since the fluids will seek to flow in the most high-

permeable regions.

3.2 Multipoint Flux-Approximation (MPFA) Schemes

The TPFA finite-volume scheme presented above is convergent only if each grid cell

is a parallelepiped and

ni j ·Knik = 0, ∀Ωi ⊂ Ω , ni j 6= ±nik, (14)
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Fig. 5. The grid in the left plot is orthogonal with gridlines aligned with the principal coordi-

nate axes. The grid in the right plot is a K-orthogonal grid.

where ni j and nik denote normal vectors into two neighbouring grid cells. A grid

consisting of parallelepipeds satisfying (14) is said to be K-orthogonal. Orthogonal

grids are, for example, K-orthogonal with respect to diagonal permeability tensors,

but not with respect to full tensor permeabilities. Figure 5 shows a schematic of an

orthogonal grid and a K-orthogonal grid.

If the TPFA method is used to discretise (10) on grids that are not K-orthogonal,

the scheme will produce different results depending on the orientation of the grid

(so-called grid-orientation effects) and will generally converge to a wrong solution.

Despite this shortcoming of the TPFA method, it is still the dominant (and default)

method for practical reservoir simulation, owing to its simplicity and computational

speed. We now present a class of so-called multi-point flux-approximation (MPFA)

schemes that aim to amend the shortcomings of the TPFA scheme.

Consider an orthogonal grid and assume that K = [Kξ ,ζ ]ξ ,ζ=x,y,z, is a constant ten-

sor with nonzero off-diagonal terms and let γi j be an interface between two adjacent

grid cells in the x–coordinate direction. Then for a given function u, the correspond-

ing flux across γi j is given by:

∫

γi j

v ·ni j ds = −
∫

γi j

1

µ

(
Kx,x∂xu + Kx,y∂yu + Kx,z∂zu

)
ds.

This expression involves derivatives in three orthogonal coordinate directions. Evi-

dently, two point values can only be used to estimate a derivative in one direction. In

particular, the two cell averages ui and u j can not be used to estimate the derivative

of u in the y and z-directions. Hence, the TPFA scheme neglects the flux contribution

from Kx,y∂yu and Kx,z∂zu.

To obtain consistent interfacial fluxes for grids that are not K-orthogonal, one

must also estimate partial derivatives in coordinate directions parallel to the inter-

faces. For this purpose, more than two point values, or cell averages, are needed.

This leads to schemes that approximate Fi j using multiple cell averages, that is, with

a linear expression on the form:

Fi j = ∑
k

tk
i jg

k
i j(u).
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Fig. 6. The shaded region represents the interaction region for the O-method on a two-

dimensional quadrilateral grid associated with cells Ω1, Ω2, Ω3, and Ω4.

Here {tk
i j}k are the transmissibilities associated with γi j and {gk

i j(u)}k are the cor-

responding multi-point pressure or flow potential dependencies. Thus, we see that

MPFA schemes for (10) can be written on the form:

∑
j,k

tk
i jg

k
i j(u) =

∫

Ωi

f dx, ∀Ωi ⊂ Ω . (15)

MPFA schemes can, for instance, be designed by simply estimating each of the par-

tial derivatives ∂ξ u from neighbouring cell averages. However, most MPFA schemes

have a more physical motivation and are derived by imposing certain continuity re-

quirements. We will now outline very briefly one such method, called the O-method

[6, 7], for irregular, quadrilateral, matching grids in two spatial dimensions.

The O-method is constructed by defining an interaction region around each cor-

ner point in the grid. For a two-dimensional quadrilateral grid, this interaction region

is the area bounded by the lines that connect the cell-centres with the midpoints

on the cell interfaces, see Fig. 6. Thus, the interaction region consists of four sub-

quadrilaterals (Ω II

1
,Ω IV

2
,Ω III

3
, and Ω I

4
) from four neighbouring cells (Ω1, Ω2, Ω3,

and Ω4) that share a common corner point. For each interaction region, define

UIR = span{U J

i : i = 1, . . . ,4, J=I,. . . ,IV},

where {U J

i } are linear functions on the respective four sub-quadrilaterals. With this

definition, UIR has twelve degrees of freedom. Indeed, note that each U J

i can be ex-

pressed in the following non-dimensional form

U J

i (x) = ui + ∇U J

i · (x − xi),

where xi is the cell centre in Ωi. The cell-centre values ui thus account for four

degrees of freedom and the (constant) gradients ∇U J

i for additional eight.

Next we require that functions in UIR are: (i) continuous at the midpoints of the

cell interfaces, and (ii) flux-continuous across the interface segments that lie inside
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the interaction region. To obtain a globally coupled system, we first use (i) and (ii) to

express the gradients ∇U J

i , and hence also the corresponding fluxes across the inter-

face segments of the interaction region, in terms of the unknown cell-centre poten-

tials ui. This requires solution of a local system of equations. Finally, the cell-centre

potentials are determined (up to an arbitrary constant for no-flow boundary condi-

tions) by summing the fluxes across all interface segments of the interaction region

and requiring that the mass-balance equations (9) hold. In this process, transmissi-

bilities are assembled to obtain a globally coupled system for the unknown pressures

over the whole domain.

We note that this construction leads to an MPFA scheme where the flux across

an interface γi j depends on the potentials u j in a total of six neighbouring cells (eigh-

teen in three dimensions). Notice also that the transmissibilities {tk
i j} that we obtain

when eliminating the gradients of the interaction region now account for grid-cell

geometries in addition to full-tensor permeabilities.

3.3 A Mixed Finite-Element Method (FEM)

Whereas finite-volume methods treat velocities as functions of the unknown discrete

pressures, mixed FEMs [18] obtain the velocity directly. The underlying idea is to

consider both the pressure and the velocity as unknowns and express them in terms

of basis functions. To this end, we return to the original formulation and describe

how to discretise the following system of differential equations with mixed FEMs:

v = −λ (∇p − ρG), ∇ · v = q. (16)

As before we impose no-flow boundary conditions on ∂Ω . To derive the mixed for-

mulation, we first define the following Sobolev space

Hdiv

0
(Ω) = {v ∈ (L2(Ω))d

: ∇ · v ∈ L2(Ω) and v ·n = 0 on ∂Ω}.

The mixed formulation of (16) with no-flow boundary conditions now reads: find

(p,v) ∈ L2(Ω)× Hdiv

0
(Ω) such that

∫

Ω
v ·λ −1u dx −

∫

Ω
p ∇ ·u dx =

∫

Ω
ρG ·u dx, (17)

∫

Ω
l ∇ · v dx =

∫

Ω
ql dx, (18)

for all u ∈ Hdiv

0
(Ω) and l ∈ L2(Ω). We observe again that, since no-flow boundary

conditions are imposed, an extra constraint must be added to make (17)–(18) well-

posed. A common choice is to use
∫

Ω p dx = 0.

In mixed FEMs, (17)–(18) are discretised by replacing L2(Ω) and Hdiv

0
(Ω) with

finite-dimensional subspaces U and V , respectively. For instance, in the Raviart–

Thomas mixed FEM [44] of lowest order (for triangular, tetrahedral, or regular par-

allelepiped grids), L2(Ω) is replaced by

U = {p ∈ L2(Ω) : p|Ωi
is constant ∀Ωi ∈ Ω}
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and Hdiv

0
(Ω) is replaced by

V = {v ∈ Hdiv

0 (Ω) : v|Ωi
has linear components ∀Ωi ∈ Ω ,

(v ·ni j)|γi j
is constant ∀γi j ∈ Ω , and v ·ni j is continuous across γi j}.

Here ni j is the unit normal to γi j pointing from Ωi to Ω j. The corresponding Raviart–

Thomas mixed FEM thus seeks

(p,v) ∈ U ×V such that (17)–(18) hold for all u ∈ V and q ∈ U. (19)

To express (19) as a linear system, observe first that functions in V are, for admissible

grids, spanned by base functions {ψi j} that are defined by

ψi j ∈ P1(Ωi)
d ∪P1(Ω j)

d
and (ψi j ·nkl)|γkl

=

{
1, if γkl = γi j,

0, else,

where P1(B) is the set of linear functions on B. Similarly,

U = span{χm} where χm =

{
1, if x ∈ Ωm,

0, else.

Thus, writing p = ∑Ωm
pmχm and v = ∑γi j

vi jψi j, allows us to write (19) as a linear

system in p = {pm} and v = {vi j}. This system takes the form

[
B −CT

C 0

][
v

p

]
=

[
g

f

]
. (20)

Here f = [ fm], g = [gkl], B = [bi j,kl] and C = [cm,kl ], where:

gkl =
[∫

Ω
ρG ·ψkl dx

]
, fm =

[∫

Ωm

f dx
]
,

bi j,kl =
[∫

Ω
ψi j ·λ −1ψkl dx

]
, cm,kl =

[∫

Ωm

∇ ·ψkl dx
]
.

A drawback with the mixed FEM is that it produces an indefinite linear sys-

tem. These systems are in general harder to solve than the positive definite systems

that arise, e.g., from the TPFA and MPFA schemes described in Sects. 3.1 and 3.2.

However, for second-order elliptic equations of the form (4) it is common to use a

so-called hybrid formulation. This method leads to a positive definite system where

the unknowns correspond to pressures at grid-cell interfaces. The solution to the lin-

ear system arising from the mixed FEM can now easily be obtained from the solution

to the hybrid system by performing only local algebraic calculations.

3.4 A Mimetic Finite Difference Method (FDM)

The current mimetic FDM [19, 20] is based on the same principles as the above

mixed FEM, but the approximation space V ⊂ Hdiv(Ω) is replaced with a space M ⊂
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L2(∪i∂Ωi), and the L2
inner product on Hdiv(Ω) is replaced with an approximative

form m(·, ·) that acts on L2(∪i∂Ωi). Moreover, whereas functions in V represent

velocities, functions in M represent fluxes across grid cell boundaries. Thus, for the

current mimetic FDM

M = span{ψi j}, ψi j =

{
1, on γi j,

0, on γkl , kl 6= i j,

where one interprets ψi j to be a basis function that represents a quantity of flow with

unit velocity across γi j in the direction of the unit normal ni j, and zero flow across

all other interfaces. Hence, conceptually, the only difference between these basis

functions and the Raviart–Thomas basis functions is that we here do not associate a

corresponding velocity field in Ωi and Ω j.

Next, we present an inner-product m(u,v) on M that mimics or “approximates”

the L2
inner-product (u,λ −1v) on Hdiv(Ω). That is, if u,v ∈ Hdiv(Ω), then we want

to derive an inner-product m(·, ·) so that

(u,λ −1v) ≈ m(u,v) = ∑
k

∑
i, j

ukivk jm(ψki,ψk j) = ∑
k

ut
kMkvk, (21)

where uki and vki are the average velocities across γki corresponding to u and v,

respectively, and uk = [uki]i, vk = [vki]i. Furthermore, Mk is defined by

Mk =
1

|Ωk|
Ckλ −1Ct

k +
|Ωk|

2trace(λ )
(I− QkQt

k), (22)

where the matrices Ck, and Qk are defined as follows:

Nk: row i is defined by

nk,i =
1

|γki|

∫

γki

(nki)
t ds,

Ck: row i is defined by

ck,i =
∫

γki

(x − xk)
t ds,

where xk is the mass centre of Ωk,

Qk: columns form an orthonormal basis for the column space of Nk.

The discrete system that arises from this mimetic FDM is of the same form as (20).

The only difference at the discrete level is that the entries in B and g are computed

using the m(·, ·) inner-product instead of the L2
inner-product (u,λ −1v) on Hdiv(Ω).

Thus, for the mimetic FDM we have

gkl =
[
m(ρΞ ,ψkl)

]
, bi j,kl =

[
m(ψi j,ψkl)

]
,

where Ξ = ∑i j ξi jψi j and ξi j = 1

|γi j |
∫

γi j
G ·ni j ds.
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Fig. 7. Examples of deformed and degenerate hexahedral cells arising in corner-point grid

models.

3.5 General Remarks

Using geological models as input to flow simulation introduces several numerical

difficulties. First of all, typical reservoirs extend several hundred or thousand me-

tres in the lateral direction, but the zones carrying hydrocarbon may be just a few

tens of metres in the vertical direction and consist of several layers with different

rock properties. Geological models therefore have grid-cells with very high aspect

ratios and often the majority of the flow in and out of a cell occurs across the faces

with the smallest area. Similarly, the possible presence of strong heterogeneities and

anisotropies in the permeability fields typically introduces large conditions numbers

in the discretised flow equations. These difficulties are observed even for grid models

consisting of regular hexahedral cells.

The flexibility in cell geometry of the industry-standard corner-point format in-

troduces additional difficulties. First of all, since each face of a grid cell is specified

by four (arbitrary) points, the cell interfaces in the grid will generally be bilinear

surfaces and possibly be strongly curved. Secondly, corner-point cells may have zero

volume, which introduces coupling between non-neighbouring cells and gives rise to

discretisation matrices with complex sparsity patterns. Moreover, the presence of de-

generate cells, in which the corner-points collapse in pairs, means that the cells will

generally be polyhedral and possibly contain both triangular and quadrilateral faces

(see Fig. 7). Finally, non-conforming grids arise, using the corner-point format, in

fault zones where a displacement along a hyperplane has occurred, see Fig. 8. Alto-

gether, this calls for a very flexible discretisation that is not sensitive to the geometry

of each cell or the number of faces and corner points.

Having said this, it is appropriate with some brief remarks on the applicability of

the methods presented above.

TPFA: Most commercial reservoir simulators use traditional finite-difference meth-

ods like the TPFA scheme. These methods were not designed to cope with the
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Fig. 8. Two examples of fault surface in a three-dimensional model with non-matching inter-

faces across the faults. (Left) Three-dimensional view. (Right) Two-dimensional view, where

the shaded patch illustrates a “sub-interface” on the fault surface.

type of grid models that are built today using modern geomodelling tools. Hence,

if one is interested in accurate solutions, two-point schemes should be avoided.

MPFA methods amend shortcomings of two-point scheme, but are unfortunately

hard to implement for general grids, especially if the grid is non-conforming

with non-matching faces.

Mixed FEMs are more accurate than two-point schemes and generally quite robust.

However, the different cells in geological models are generally not diffeomor-

phic. One therefore needs to introduce a reference element and a corresponding

Piola transform for each topological case. This complicates the implementation

of a mixed FEM considerably. Moreover, mixed FEMs gives rise to larger linear

systems than TPFA and MPFA.

Mimetic FDMs have similar accuracy to MPFA methods and low-order mixed

FEMs. But unlike MPFA methods and mixed FEMs, mimetic FDMs are quite

easy to formulate and implement for grids with general polyhedral cells. In par-

ticular, it is relatively straightforward to handle grids with irregular cell geome-

tries and non-matching faces.

4 Upscaling for Reservoir Simulation

The basic motivation behind upscaling is to create simulation models that produce

flow scenarios that are in close correspondence with the flow scenarios that one

would obtain by running simulations directly on the geomodels. The literature on up-

scaling techniques is extensive, ranging from simple averaging techniques, e.g., [37],

via local simulation techniques [14, 28], to multiscale methods [1, 8, 9, 22, 33, 34]

and homogenisation techniques for periodic structures [15, 32, 36]. It is not within

our scope to give a complete overview over the many upscaling techniques that have

been applied in reservoir simulation. Instead, we refer the reader to the many review

papers that have been devoted to this topic, e.g., [13, 24, 45, 48]. Here we give only

a brief introduction to upscaling rock permeability for the pressure equation.
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The process of upscaling permeability for the pressure equation (4) or (8) is often

termed single-phase upscaling. Most single-phase upscaling techniques seek homo-

geneous block permeabilities that reproduce the same total flow through each coarse

grid-block as one would get if the pressure equation was solved on the underlying

fine grid with the correct fine-scale heterogeneous structures. However, designing

upscaling techniques that preserve averaged fine-scale flow-rates is in general non-

trivial because the heterogeneity at all scales have a significant effect on the large-

scale flow pattern. A proper coarse-scale reservoir model must therefore capture the

impact of heterogeneous structures at all scales that are not resolved by the coarse

grid.

To illustrate the concept behind single-phase upscaling, let p be the solution that

we obtain by solving

−∇ ·K∇p = q, in Ω (23)

on a fine grid with a suitable numerical method, e.g., a TPFA scheme of the form

(13). To reproduce the same total flow through a grid-block V we have to find a

homogenised tensor K∗
V such that

∫

V
K∇p dx = K∗

V

∫

V
∇p dx. (24)

This equation states that the net flow-rate v̄ through V is related to the average pres-

sure gradient ∇p in V through the upscaled Darcy law v̄ = −K∗∇p.

Note that for a given pressure field p, the upscaled permeability tensor K∗
V is not

uniquely defined by (24). Conversely, there does not exist a K∗
V such that (24) holds

for any pressure field. This reflects that K∗
V depends on the flow through V . Of course,

one does not know a priori what flow scenario V will be subject to. However, the aim

is not to replicate a particular flow regime, but to compute coarse-scale permeability

tensors that give reasonably accurate results for a wide range of flow scenarios. We

now review some of the most commonly used single-phase upscaling methods.

Averaging Methods

The simplest method to upscale permeability is to compute the average of the perme-

abilities inside the coarse block. To this end, power averaging is a popular technique

K
∗,p
V =

(
1

|V |

∫

V
K(x)p dx

)1/p

, −1 ≤ p ≤ 1.

Special cases include the arithmetic average (p = 1), the harmonic average (p = −1),

and the geometric average (p → 0).

The use of power averaging can be motivated by the so-called Wiener-bounds

[49], which state that for a statistically homogeneous medium, the correct upscaled

permeability will be bounded above and below by the arithmetic and harmonic mean,

respectively. This result has a more intuitive explanation. To see this, consider the

one-dimensional pressure equation:
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−∂x(K(x)p′(x)) = 0 in (0,1), p(0) = p0, p(1) = p1.

Integrating once, we see that the corresponding Darcy velocity is constant. This im-

plies that p′(x) must scale proportional to the inverse of K(x). Hence, we derive

p′(x) =
p1 − p0

K(x)

[∫
1

0

dx

K(x)

]−1

=
p1 − p0

K(x)
K

∗,−1

V .

If we insert this expression into (24) we find that the correct upscaled permeability

K∗
V is identical to the harmonic mean K

∗,−1

V .

The same argument applies to the special case of a perfectly stratified isotropic

medium; for instance, with layers perpendicular to the x–axis so that K(x, ·, ·) is

constant for each x. Now, consider a uniform flow in the x–direction:

−∇ ·K∇p = 0 in V = (0,1)3,

p(0,y,z) = p0, p(1,y,z) = p1,

(−K∇p) ·n = 0 for y,z ∈ {0,1},

(25)

where n is the outward unit normal on ∂V . This means that for each pair (y,z) ∈
(0,1)2

the one-dimensional function py,z = p(·,y,z) satisfies

−∂x

(
K p′

y,z(x)
)

= 0 in (0,1), py,z(0) = p0, py,z(1) = p1,

from which it follows that

−K(x)∇p = −(K(x)p′
y,z(x),0,0)T = −K

∗,−1

V (p1 − p0,0,0)T .

Hence, the correct upscaled permeability is equal to the harmonic mean.

Exercise 2. Show that if K instead models a stratified isotropic medium with layers

perpendicular to the y or z–axis, then the correct upscaled permeability for uniform

flow in the x–direction would be equal to the arithmetic mean.

The discussion above shows that averaging techniques can be appropriate in spe-

cial cases. However, if we consider the model problem (25) with a less idealised

heterogeneous structures, or with the same heterogeneous structures but with other

boundary conditions, then both the arithmetic and harmonic average will generally

give wrong net flow-rates. Indeed, these averages give correct upscaled permeability

only for cases with essentially one-dimensional flow. To try to model flow in more

than one direction, one could generate a diagonal permeability tensor with the fol-

lowing diagonal components:

Kx,x = µ z
a(µy

a(µx
h)), Ky,y = µ z

a(µx
a(µy

h
)), Kz,z = µx

a(µy
a(µ z

h)).

Here µξ
a and µξ

h represent the arithmetic and harmonic means, respectively, in the

ξ -coordinate direction. Thus, in this method one starts by taking a harmonic aver-

age along grid cells that are aligned in one coordinate-direction. One then computes
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Fig. 9. Logarithm of permeability: the left cube is a layered medium, whereas the right cube

is extracted from the lower part of the fluvial Upper Ness formation from Model 2 of the 10th

SPE Comparative Solution Project [25].

the corresponding diagonal by taking the arithmetic mean of all “one dimensional”

harmonic means. This average is sometimes called the harmonic-arithmetic average

and may give good results if, for instance, the reservoir is layered and the primary

direction of flow is along the layers.

Despite the fact that averaging techniques can give correct upscaling in special

cases, they tend to perform poorly in practice since the averages do not reflect the

structure or orientation of the heterogeneous structures. It is also difficult to decide

which averaging technique to use since the best average depends both on the het-

erogeneity of the media and on the flow process we want to model (flow direction,

boundary conditions, etc). To illustrate the dependence on the flow process we con-

sider an example.

Example 2 (from [2]). Consider a reservoir in the unit cube [0,1]3 with two differ-

ent geomodels that each consist of a 8 × 8 × 8 uniform grid blocks and permeability

distribution as depicted in Fig. 9. We consider three different upscaling methods: har-

monic average (H), arithmetic average (A), and harmonic-arithmetic average (HA).

The geomodels are upscaled to a single grid-block, which is then subjected to three

different boundary conditions:

BC1: p = 1 at (x,y,0), p = 0 at (x,y,1), no-flow elsewhere.

BC2: p = 1 at (0,0,z), p = 0 at (1,1,z), no-flow elsewhere.

BC3: p = 1 at (0,0,0), p = 0 at (1,1,1), no-flow elsewhere.

Table 1 compares the observed coarse-block rates with the flow-rate obtained by di-

rect simulation on the 8×8×8 grid. For the layered model, harmonic and harmonic-

arithmetic averaging correctly reproduce the vertical flow normal to the layers for

BC1. Arithmetic and harmonic-arithmetic averaging correctly reproduce the flow

along the layers for BC2. Harmonic-arithmetic averaging also performs well for

corner-to-corner flow (BC3). For model two, however, all methods produce signif-

icant errors, and none of the methods are able to produce an accurate flow-rate for

boundary conditions BC1 and BC3.

1

2

3

4

5
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Table 1. Flow-rates relative to the reference rate QR on the fine grid.

Model 1 Model 2

BC1 BC2 BC3 BC1 BC2 BC3

QH/QR 1 2.31e−04 5.52e−02 1.10e−02 3.82e−06 9.94e−04

QA/QR 4.33e+03 1 2.39e+02 2.33e+04 8.22 2.13e+03

QHA/QR 1 1 1.14 8.14e−02 1.00 1.55e−01

Flow-Based Upscaling

A popular class of methods are so-called flow-based upscaling methods as first sug-

gested by Begg et al. [14]. In this approach one solves a set of homogeneous pressure

equations on the form

−∇ ·K∇p = 0 in V,

for each grid block V with prescribed boundary conditions that induce a desired flow

pattern. Each member of this class of methods differ in the way boundary conditions

are prescribed.

A simple and popular choice is to impose a pressure drop in one of the coordinate

directions and no-flow conditions along the other faces, as in (25) for flow in the x–

direction. This gives us a set of three flow-rates for each grid block that can be used

to compute an effective diagonal permeability tensor with components

Kx,x = −QxLx/∆Px, Ky,y = −QyLy/∆Py, Kz,z = −QzLz/∆Pz.

Here Qξ , Lξ and ∆Pξ are the net flow, the length between opposite sides, and the

pressure drop in the ξ -direction inside V , respectively.

Another popular option is to choose periodic boundary conditions. That is, one

assumes that each grid block is a unit cell in a periodic medium and imposes full

correspondence between the pressures and velocities at opposite sides of the block;

that is, to compute Kx,x
, Kx,y

, and Kx,z
we impose the following boundary conditions:

p(1,y,z) = p(0,y,z)− ∆ p, p(x,1,z) = p(x,0,z), p(x,y,1) = p(x,y,0),

v(1,y,z) = v(0,y,z), v(x,1,z) = v(x,0,z), v(x,y,1) = v(x,y,0),

and define Kx,ξ = −Qξ Lξ /∆ p. This approach yields a symmetric and positive defi-

nite tensor [28], and is usually more robust than the directional flow boundary con-

ditions.

Example 3 (from [2]). We revisit the test-cases considered in Example 2, but now

we compare harmonic-arithmetic averaging (HA) with the flow-based techniques

using directional (D) and periodic (P) boundary conditions. The latter method gives

rise to full permeability tensors, but for the cases considered here the off-diagonal

terms in the upscaled permeability tensors are small, and are therefore neglected for

simplicity.
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Table 2. Flow-rates relative to the reference rate QR on the fine grid.

Model 1 Model 2

BC1 BC2 BC3 BC1 BC2 BC3

QHA/QR 1 1 1.143 0.081 1.003 0.155

QD/QR 1 1 1.143 1 1.375 1.893

QP/QR 1 1 1.143 0.986 1.321 1.867

Table 2 compares the observed coarse-block rates with the flow-rate obtained

by direct simulation on the 8 × 8 × 8 grid. For the layered model, all methods give

the same diagonal permeability tensor, and hence give exactly the same results. For

Model 2 we see that the numerical pressure computation methods give significantly

better results than the harmonic-arithmetic average. Indeed, the worst results for

the pressure computation method, which were obtained for corner-to-corner flow,

is within a factor two, whereas the harmonic-arithmetic average underestimates the

flow rates for BC1 and BC3 by almost an order of magnitude.

It should be noted that in the discrete case, the appropriate upscaling technique

depends on the underlying numerical method. For instance, if the pressure equation

is discretised by a TPFA scheme of the form (13), then grid-block permeabilities

are used only to compute interface transmissibilities at the coarse scale. Upscaling

methods for this method may therefore instead be targeted at computing coarse-scale

transmissibilities (that reproduce a fine-scale flow field in an averaged sense) directly.

Procedures for computing coarse-scale transmissibilities similar to the averaging and

numerical pressure computation techniques have been proposed in [38] and, e.g.,

[31], respectively.

5 Multiscale Methods the Pressure Equation

Subsurface flow problems represent an important application that calls for a more

mathematically rigorous treatment of the way the large span of permeability values

and correlation lengths impact the solution. Conventional methods are inadequate for

this problem because the heterogeneity in natural porous media does not have clearly

separated scales of variation, and because permeability variations occurring at small

length scales (e.g., smaller scale than the grid resolution) may have strong impact

on the flow at much larger scales. This makes subsurface flow problems a natural

target for a new class of methods called multiscale methods – methods that attempt

to model physical phenomena on coarse grids while honouring small-scale features

that impact the coarse grid solution in an appropriate way, e.g., by incorporating

subgrid information into numerical schemes for partial differential equations in a

way that is consistent with the local property of the differential operator.

A large number of multiscale methods have appeared in the literature on compu-

tational science and engineering. Among these, there are a variety of methods (e.g.,
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[1, 8, 9, 22, 33, 34]) that target solving elliptic equations of the same form as the

pressure equation for incompressible subsurface flow. Upscaling methods that de-

rive coarse-grid properties from numerical subgrid calculations may also in a certain

sense be viewed as multiscale methods, but the way the upscaled properties are incor-

porated into the coarse-scale systems is not necessarily consistent with the properties

of the differential operator.

In this section we present three selected multiscale methods. The main idea is to

show how multiscale methods are built, and how subgrid information is embedded

into the coarse-scale system. For presentational brevity and enhanced readability we

consider only elliptic (incompressible flow) equations, and disregard capillary forces

so that ∇p j = ∇p for all phases j.

Let Ω denote our reservoir. Furthermore, let B = {Bi} be a partitioning of Ω
into polyhedral grid-blocks and let {Γi j = ∂Bi ∩ ∂B j} be the corresponding set of

non-degenerate interfaces. Throughout we implicitly assume that all grid-blocks Bi

are divided into smaller grid cells that form a sub-partitioning of Ω . Without com-

pressibility and capillary forces, the pressure equation for the three-phase black-oil

model now reads:

v = −K(λ ∇p − λGG), ∇ · v = q in Ω . (26)

where we have inserted v = ∑ j v j, λ = ∑ j
kr j

µ j
, and λG = ∑ j ρ j

kr j

µ j
for brevity. We

assume that no-flow boundary conditions v ·n = 0 are imposed on ∂Ω , and that p is

uniquely determined by adding the constraint
∫

Ω pdx = 0.

5.1 The Multiscale Finite-Element Method (MsFEM) in 1D

Before we introduce multiscale methods for solving (26) in three-dimensional do-

mains, we start with an instrumental example in one spatial dimension. To this end,

we consider the following elliptic problem:

∂x

(
K(x)p′(x)

)
= f , in Ω = (0,1), p(0) = p(1) = 0, (27)

where f ,K ∈ L2(Ω) and K is bounded above and below by positive constants.

The MsFEM was first introduced by Hou and Wu [33], but the basic idea goes

back to earlier work by Babus̆ka and Osborn [12] for 1D problems and Babus̆ka,

Caloz, and Osborn [11] for special 2D problems. The method is, like standard FEMs,

based on a variational formulation. In the variational formulation of (27) we seek

p ∈ H1

0
(Ω) such that

a(p,v) = ( f ,v) for all v ∈ H1

0 (Ω), (28)

where (·, ·) is the L2
inner-product and

a(p,v) =

∫

Ω
K(x)u′(x)v′(x)dx.
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Now, let NB = {0 = x0 < x1 < .. . < xn−1 < xn = 1} be a set of nodal points and

define Bi = (xi−1,xi). For each xi, i = 1, . . . ,n−1 we associate a corresponding basis

function φ i ∈ H1

0
(Ω) defined by

a(φ i,v) = 0 for all v ∈ H1

0 (Bi ∪Bi+1), φi(x j) = δi j, (29)

where δi j is the Kronecker delta. The multiscale finite-element method seeks the

unique function p0 in

V ms = span{φi} = {u ∈ H1

0 (Ω) : a(u,v) = 0 for all v ∈ H1

0 (∪iBi)} (30)

satisfying

a(p0,v) = ( f ,v) for all v ∈ V ms. (31)

We now show that the solution p of (28) can be written as a sum of p0 and a

family of solutions to independent local subgrid problems. To this end, we first show

that p0 = pI , where pI is the unique function in V ms
with pI(x) = p(x), x ∈ NB.

Indeed, since p− pI vanishes on NB , we have p− pI ∈ H1

0
(∪iBi). Hence, it follows

from (28) and the mutual orthogonality of V ms
and H1

0
(∪iBi) with respect to a(·, ·)

that

a(pI,v) = a(p,v) = ( f ,v) for all v ∈ V ms.

Thus, in particular, by (31) and choosing v = pI − p0 we obtain

a(pI − p0, pI − p0) = 0,

which implies p0 = pI . Thus, p = p0 + ∑i>0 pi where pi ∈ H1

0
(Bi) is defined by

a(pi,v) = ( f ,v) for all v ∈ H1

0 (Bi) .

Hence, as promised, the solution of (28) is a sum of p0 and solutions to independent

local subgrid problems. This result can also be seen directly by noting that p0 is,

by definition, the orthogonal projection onto V ms
with respect to the inner-product

a(·, ·) and noting that H1

0
(Ω) = V ms ⊕ H1

0
(∪iBi).

Exercise 3. Show that

a(φi,φ j) =





K
∗,−1

i /(xi − xi−1)+ K
∗,−1

i+1
/(xi+1 − xi), if i = j,

−K
∗,−1

max(i, j)
/|xi − x j|, if |i− j| = 1,

0, if |i− j| > 1,

(32)

where K
∗,−1

i is the harmonic mean of K over the interval [xi−1,xi], i.e.,

K
∗,−1

i =
xi − xi−1∫ xi

xi−1
K(x)−1 dx

.

Consider next the standard nodal basis functions used in the linear FEM. Here the

basis functions φi are linear on each interval and satisfy φi(x j) = δi j. Show that the

corresponding coefficients for this method is obtained by replacing the harmonic

means in (32) with the associated arithmetic means.
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The multiscale finite-element method can also be extended to higher dimensions,

but does not give locally mass-conservative velocity fields. Next we present a multi-

scale finite-volume method that is essentially a control-volume finite-element version

of the MsFEM. Control-volume finite-element methods seek solutions in designated

finite-element approximation spaces (on a dual-grid), but rather than formulating the

global problem in a variational framework, they employ a finite-volume formulation

(on a primal grid) that gives mass-conservative velocity fields.

5.2 The Multiscale Finite-Volume Method (MsFVM)

The multiscale finite-volume method [34] employs numerical subgrid calculations

(analogous to those in [33]) to derive a multi-point stencil for solving (26) on a coarse

grid. The method then proceeds and reconstructs a mass-conservative velocity field

on a fine grid as a superposition of local subgrid solutions, where the weights are

obtained from the coarse-grid solution.

The derivation of the coarse-scale equations in the MsFVM is essentially an up-

scaling procedure for generating coarse-scale transmissibilities. The first step is to

solve a set of homogeneous boundary-value problems of the form

−∇ ·Kλ ∇φ k
i = 0, in R, φ k

i = νk
i , on ∂R, (33)

where R are so-called interaction regions as illustrated in Fig. 10 and νk
i are bound-

ary conditions to be specified below. Subscript i in φ k
i denotes a corner-point in the

coarse grid (xi in the figure) and the superscript k runs over all corner points of

the interaction region (xk
in the figure). Thus, for each interaction region associated

with e.g., a hexahedral grid in three dimensions we have to solve a total of eight

local boundary-value problems of the form (33). The idea behind the MsFVM is to

express the global pressure as a superposition of these local pressure solutions φ k
i .

Thus, inside each interaction region R one assumes that the pressure is a superposi-

tion of the local subgrid solutions {φ k
i }, where k ranges over all corner-points in the

interaction region (i.e., over the cell-centres of the coarse-grid blocks).

First, we define the boundary conditions νk
i in (33). These are defined by solving

a reduced-dimensional flow problem on each face F of the interaction region

−∇ ·Kλ ∇νk
i = 0 in F, (34)

with boundary conditions given by νk
i (xl) = δkl at the corner points of the interac-

tion region. (In 3D, the corner-point values are first extended to the edges of F by

linear interpolation). Once νk
i are computed, the local pressure solutions φ k

i can be

computed from (33).

The next step is to identify basis functions for the multiscale method. To this

end, we observe that the cell centers xk
constitute a corner point for four interaction

regions in 2D and for eight interaction regions in 3D (for a regular hexahedral grid).

Moreover, for all corner-points xi of the coarse grid, the corresponding boundary
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x
i

R

K
k

x
k

Fig. 10. The shaded region represents the interaction region R for the MsFVM, where xi de-

notes corner-points and xk
the midpoints of the coarse grid-blocks. The midpoints xk

are the

corner-points of the interaction region.

Fig. 11. Pressure basis function φ k
for the MsFVM in two-dimensional space.

conditions νk
i for the different pressure equations coincide on the respective faces

of the interaction regions that share the corner point xk
. This implies that the basis

function

φ k = ∑
i

φ k
i (35)

is continuous (in a discrete sense), see Fig. 11. In the following construction, the

base functions defined in (35) will serve as building blocks that are used to construct

a global “continuous” pressure solution.

Thus, define now the approximation space Ums = span{φ k} and observe that all

basis functions vanish at all but one of the grid block centres xk
. This implies that,

given a set of pressure values {pk}, there exists a unique extension {pk} → p ∈ Ums

with p(xk) = pk
. This extension is defined by

p = ∑
k

pkφ k = ∑
i,k

pkφ k
i . (36)
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A multi-point stencil can now be defined by assembling the flux contribution across

the grid-block boundaries from each basis function. Thus, let

fk,l = −
∫

∂Bl

n ·Kλ ∇φ k ds

be the local flux out of grid-block Bl induced by φ k
. The MsFVM for solving (26)

then seeks constant grid-block pressures {pk} satisfying

∑
k

pk fk,l =

∫

Bl

(
q − ∇ ·KλGG

)
dx ∀l.

To reconstruct a mass-conservative velocity field on a fine scale, notice first that

the expansion (36) produces a mass-conservative velocity field on the coarse grid.

Unfortunately, this velocity field will not preserve mass across the boundaries of the

interaction regions. Thus, to obtain a velocity field that is also mass conservative on

the fine grid we will use the subgrid fluxes obtained from p as boundary conditions

for solving a local flow problem inside each coarse block Bl to reconstruct a fine-

scale velocity vl . That is, solve

vl = −K(λ ∇pl − λGG), ∇ · vl =
1

|Bl|

∫

Bl

q dx in Bl, (37)

with boundary conditions obtained from (36), i.e.,

vl = −Kλ ∇p on ∂Bl , (38)

where p is the expanded pressure defined by (36). If these subgrid problems are

solved with a conservative scheme, then the global velocity field v = ∑Bl
vl will

be mass conservative. Note, however, that since the subgrid problems (37)–(38) are

solved independently we loose continuity of the global pressure solution, which is

now defined by p = ∑Bl
pl .

Remark 1. The present form of the MsFVM, which was developed by Jenny et

al. [34], does not model sources at the subgrid scale. Indeed, the source term in

(37) is equally distributed within the grid-block. Thus, to use the induced velocity

field to simulate the phase transport one has to treat the wells as a uniform source

within the entire well block. However, a more detailed representation of flow around

wells can be obtained by replacing (37) by

vl = −K(λ ∇pl − λGG), ∇ · vl = q in Bl (39)

in grid blocks containing a well, i.e., for all Bl in which q is nonzero.

5.3 A Multiscale Mixed Finite-Element Method (MsMFEM)

Recall that mixed finite-element discretisations of elliptic equations on the form (26)

seek a solution (p,v) to the mixed equations
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∫

Ω
u · (Kλ )−1v dx −

∫

Ω
p ∇ ·u dx =

∫

Ω
λGG ·u dx, (40)

∫

Ω
l ∇ · v dx =

∫

Ω
ql dx, (41)

in a finite-dimensional product space U ×V ⊂ L2(Ω)× H
1,div

0
(Ω). If the subspaces

U ⊂ L2(Ω) and V ⊂ H
1,div

0
(Ω) are properly balanced (see, e.g., [16, 17, 18]), then p

and v are defined (up to an additive constant for p) by requiring that (40)–(41) holds

for all (l,u) ∈ U ×V .

In MsMFEMs one constructs a special approximation space for the velocity v

that reflects the important subgrid information. For instance, instead of seeking ve-

locities in a simple approximation space spanned by basis functions with polynomial

components, one computes special multiscale basis functions Ψ in a manner anal-

ogous to the MsFVM, and defines a corresponding multiscale approximation space

by V ms = span{Ψ}. The pressure approximation space consists simply of piecewise

constant functions on the coarse grid, i.e.,

U = {p ∈ L2(Ω) : p|B is constant for all B ∈ B}.

Hence, in the MsMFEM we seek

p ∈ U, v ∈ V ms
such that (40)–(41) holds for ∀l ∈ U, ∀u ∈ V ms. (42)

The MsMFEM thus resolves subgrid-scales locally through the construction of spe-

cial multiscale basis functions, whereas the large scales are resolved by solving the

discretised equations on a coarse-grid level.

An approximation space for the pressure p that reflects subgrid structures can

be defined in a similar manner. However, whereas velocity fields for flow in porous

media may fluctuate rapidly, the pressure is usually relatively smooth. It is therefore

often sufficient to model pressure with low resolution as long as it does not signif-

icantly degrade the accuracy of the velocity solution. Thus, because the MsMFEM

treats the pressure and velocities as separate decoupled variables, it is natural to use

a high-resolution space for velocity and a low-resolution space for pressure. In other

words, the computational effort can be spent where it is most needed. Moreover,

the approximation spaces can not be chosen arbitrarily. Indeed, the convergence the-

ory for mixed finite element methods, the so-called Ladyshenskaja–Babuška–Brezzi

theory (see [16, 17, 18]) states that the approximation spaces must satisfy a relation

called the inf-sup condition, or the LBB (Ladyshenskaja–Babuška–Brezzi) condition.

Using a multiscale approximation space, also for the pressure variable, can cause the

LBB condition to be violated.

Exercise 4. Show that if the velocity solution v of (17)–(18) is contained in V ms
, then

the velocity solution of (42) coincides with v.

Approximation Space for the Darcy Velocity

Consider a coarse grid that overlays a fine (sub)grid, for instance as illustrated in

Fig. 12. For the velocity we associate one vector of basis functions with each non-
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K
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j

Fig. 12. Left: Schematic of the coarse and fine grid for the MsMFEM. The shaded region

denotes the support of the velocity basis function associated with the edge between the two

grid-blocks Bi and B j. Right: x-component of a MsMFEM basis function associated with an

interface between two rectangular (two-dimensional) grid-blocks.

degenerate interface Γi j between two neighbouring grid-blocks Bi and B j. To be pre-

cise, for each interface Γi j we define a basis function Ψi j by

Ψi j = −K∇φi j, in Bi ∪B j, (43)

where φi j is determined by

(∇ ·Ψi j)|Bi
= ℓ(x)/

∫

Bi

ℓ(x)dx, (44)

(∇ ·Ψi j)|B j
= −ℓ(x)/

∫

B j

ℓ(x)dx. (45)

with no-flow boundary conditions along the edges ∂Bi ∪∂B j\Γi j.

The function ℓ in (44)–(45) is a positive function that can be defined in various

ways. Chen and Hou [22] simply used ℓ(x) = 1, which produces mass-conservative

velocity fields at the coarse-scale level and on the fine scale for all blocks where the

source term q is zero. For blocks with nonzero source term q, the fine-scale velocity is

not conservative unless q is treated as a constant within each grid block (analogous to

the way sources are modelled in the original MsFVM [34]). In reservoir simulation,

however, this way of treating sources is inadequate. Indeed, here the source term

q represents wells that are point- or line-sources, and modelling flow correctly in

the near-well region is considered to be very important. However, since this issue is

linked specifically to the reservoir simulation application, we will discuss how ℓ can

be defined to handle wells along with other implementational issues in Sect. 6.

To obtain a mass-conservative velocity field on a subgrid scale we need to solve

the subgrid problems (43)–(45) with a mass conservative scheme. Fig. 12 displays the

x-component of a velocity basis function for the case with ℓ(x) = 1 computed using

the lowest order Raviart–Thomas mixed FEM. We clearly see strong fluctuations in

the velocity that reflect the fine-scale heterogeneity. Note also that the basis functions

Ψi j are defined to be time-independent. This implies that the computation of the
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multiscale basis functions may be made part of a preprocessing step, also for flows

with large variations in the total mobility λ . In other words, a single set of basis

functions may be used throughout the entire simulation. The reason why it is not

necessary to include the total mobility in (43) is that mobility variations within a

single block are usually small relative to the jumps in the permeability. Therefore, by

including only K we account for the dominant part of the fine-grid variability in the

coefficients Kλ . The coarse grid variability of the total mobility is taken into account

by reassembling the coarse grid system at each time step.

Remark 2. For the MsFVM one can also use a single set of basis functions throughout

entire simulations. However, to account for coarse-grid variability of the total mobil-

ity one needs to update the upscaled MsFVM transmissibilities, e.g., by multiplying

the initial transmissibilities with a factor that reflects the change in total mobility.

This implies that one can not escape from solving the local subproblems (37) or (39)

in order to obtain a mass conservative velocity field on the fine grid. This feature

generally makes the MsFVM more computationally expensive for multi-phase flows

than the MsMFEM.

5.4 Numerical Examples

Both MsMFEM and MsFVM solve a coarse-scale equation globally while trying

to resolve fine-scale variations by using special multiscale basis functions. Next, we

demonstrate that the accuracy of the generated velocity solutions is not very sensitive

to the dimension of the coarse grid.

Example 4 (from [3]). Consider a horizontal, two-dimensional reservoir with 60 ×
220 grid cells with permeability from the bottom layer of Model 2 in the 10th SPE

Comparative Solution Project [25]. We inject water in the centre of the domain and

produce oil and water at each of the four corners. The pressure equation is solved

using the MsFVM and the MsMFEM with various coarse-grid dimensions. For com-

parison, we also compute two reference solutions using the TPFA scheme, one on

the original 60 × 220 grid, and one on a grid that is refined four times in each direc-

tion. Employing the corresponding velocity fields, we solve an equation modelling

transport of an incompressible fluid using an upstream finite-volume method on the

underlying fine grid.

Fig. 13 shows the resulting saturation fields when the total volume of the water

that has been injected is equal to 30% of the total accessible pore volume. We ob-

serve that all saturation plots are quite similar to the saturation plots obtained using

the reference velocity fields. We therefore also quantify the errors in the respective

saturation fields by

δ (S) =
ε(S)

ε(Sref)
, ε(S) =

‖S −I (S4×
ref

)‖L1

‖I (S4×
ref

)‖L1

,

where I is an operator that maps the saturation solution on the refined 240 × 880

grid onto the original 60×220 grid. The results displayed in Table 3 show that there
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Table 3. Relative saturation error δ (S) for a five-spot simulation in Layer 85 of Model 2 of

the 10th SPE Comparative Solution Project for various coarse grids.

30 × 110 15 × 55 10 × 44 5 × 11

MsMFEM 1.0916 1.2957 1.6415 1.9177

MsFVM 1.0287 1.6176 2.4224 3.0583

Table 4. Runtimes for Model 2 of the 10th SPE Comparative Solution Project using a stream-

line simulator with TPFA or MsMFEM pressure solver measured on a workstation PC with a

2.4 GHz Intel Core 2 Duo processor with 4 Mb cache and 3 Gb memory.

Pressure Streamline Total

TPFA 465 sec 51 sec 516 sec

MsMFEM 91 sec 51 sec 142 sec

is some degradation of solution quality when the grid is coarsened, but the errors are

not very sensitive to coarse-grid size.

When the pressure equation (26) needs to be solved once, the multiscale methods

described above can only offer limited speed-up relative to the time spent on solving

the full problem on the fine grid using state-of-the-art linear solvers, e.g., algebraic

multigrid methods [47]. However, for two-phase flow simulations, where the pres-

sure equation needs to be solved repeatedly, it has been demonstrated that the basis

functions need to be computed only once, or updated infrequently [1, 35, 39]. This

means that the main computational task is related to solving the global coarse-grid

system, which is significantly less expensive than solving the full fine-grid system.

This is illustrated by the following example.

Example 5 (from [40]). Consider now the full SPE 10 model, which consists of 60×
220 × 85 uniform cells. The top 35 layers are from a smooth Tarbert formation,

whereas the bottom 50 layers are from a fluvial Upper Ness formation, see Fig. 1.

The reservoir is produced using a five-spot pattern of vertical wells with an injector

in the middle; see [25] for more details.

To simulate the production process we use a streamline simulator with two dif-

ferent pressure solvers: (i) TPFA with an algebraic multigrid linear solver [47], and

(ii) MsMFEM on a 5 × 11 × 17 coarse grid. Streamline solvers are known to be

very efficient compared to conventional (finite-difference) reservoir simulators, for

which computing the full 3D SPE10 model is out of bounds using a single proces-

sor and takes several hours on a parallel processor. The key to the high efficiency

of streamline solvers is underlying operator splitting used to separate the solution of

pressure/velocity from the solution of the fluid transport, which here is solved along

1D streamlines (i.e., in Lagrangian coordinates) and mapped back to the Eulerian

grid used to compute pressure and velocities.

Table 4 reports runtimes for two simulations of 2 000 days of production for

the whole model. In both runs the simulator used 5 000 streamlines and 25 times



Fig. 13. Saturation solutions computed using velocity fields obtained with MsMFEM and

MsFVM on various coarse grids (c–j), TPFA on the original fine grid (a), and TPFA on the

grid that is refined four times in each direction (b).
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steps. The time spent on the transport step includes tracing of streamlines, solving 1D

transport equations, and mapping solutions back and forth between the pressure and

the streamline grid. The time spent in the multiscale pressure solver includes initial

computation of basis functions and assembly and solution of coarse-grid system for

each time step. Using the MsMFEM pressure solver gives a speedup of 5.1 for the

pressure solution and 3.6 for the overall computation. Moreover, with a total runtime

of 2 minutes and 22 seconds, simulating a million-cell reservoir model has become

an (almost) interactive task using the the multiscale–streamline solver.

Remark 3. Note that the basis function can be computed independently, which means

that the computation of basis functions is a so-called embarrassingly parallel task.

Even further speedup should therefore be expected for parallel implementations, us-

ing e.g., the multi-core processors that are becoming available in modern PCs.

6 Implementational Issues for MsMFEM

In this section we discuss some of the implementational issues that need to be ad-

dressed when implementing the MsMFEM. We start by discussing what considera-

tions one should take into account when generating the coarse grid. Next we explain

how the coarse-grid system can be assembled efficiently, and the implications that

this has on the choice of numerical method used for computing the multiscale ve-

locity basis functions. We then discuss the role of the function ℓ in the definition of

the basis functions, and how it impacts the MsMFEM solution. Finally, we describe

briefly how to build global information into the basis functions to more accurately

resolve flow near large-scale heterogeneous structures that have a strong impact on

the flow regime.

6.1 Generation of Coarse Grids

It has been demonstrated in [4, 5] that MsMFEM is very flexible with respect to the

geometry and topology of the coarse grid. A bit simplified, the grid flexibility can

be stated as follows: given an appropriate solver for the local flow problems on a

particular type of fine grids, the MsMFEM can be formulated on any coarse grid

where each grid block consists of an arbitrary collection of connected fine-grid cells.

To illustrate, consider a small model where Ω is defined as the union of the three

blocks depicted in Fig. 14. Although these blocks are stacked on top of each other,

each pair of blocks has a common interface. Thus, in the multiscale formulation we

construct three basis functions for this set of blocks, one for each pair depicted in

Fig. 14.

Extensive tests, some of which are reported in [4, 5], show that the accuracy

of the MsMFEM is generally not very sensitive to the shape of the blocks. In fact,

accurate results are obtained for grids containing blocks with rather ’exotic’ shapes,

see e.g., [4, 5]. In the next three examples we will show some examples of coarse

grids to substantiate this claim. The reader is referred to [4, 5] for a more thorough

discussion of the numerical accuracy obtained using this kind of coarse grids.
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Fig. 14. A three-block domain and the corresponding subdomains constituting the support of

the resulting MsMFEM basis functions.

Fig. 15. A coarse grid defined on top of a structured corner-point fine grid. The cells in the

coarse grid are given by different colours.

Example 6 (Near-well grid). Figure 15 shows a vertical well penetrating a structured

corner-point grid with eroded layers. On the coarse grid, the well is confined to a

single cell consisting of all cells in the fine grid penetrated by the well. Moreover,

notice the single neighbouring block shaped like a ’cylinder’ with a hole.

Example 7 (Barriers). Figure 16 shows a subsection of the SPE10 model, in which

we have inserted a few flow barriers with very low permeability. In [4] it was shown

that MsMFEM becomes inaccurate if coarse grid-cells are cut into two (or more)

non-communicating parts by a flow barrier. Fortunately, this can be automatically

detected when generating basis functions, and the resolution can be improved by

using some form of grid refinement. The figure shows two different approaches: (i)
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Fig. 16. The upper row shows the permeability field (right), and the interior barriers (left).

The lower row shows a hierarchically refined grid (left), the barrier grid (middle), and a coarse

grid-block in the barrier grid (right).

Fig. 17. Uniform partitioning in index space of a corner-point model containing a large number

of eroded layers.

structured, hierarchical refinement, and (ii) direct incorporation of the flow barriers

as extra coarse grid-blocks intersecting a uniform 3×5×2 grid. This results in rather

exotic coarse cells, e.g., as shown in the figure, where the original rectangular cell

consisting of 10 × 16 × 5 fine cells is almost split in two by the barrier, and the re-

sulting coarse cell is only connected through a single cell in the fine grid. Although

the number of grid cells in the barrier grid is five times less than for the hierarchi-

cally refined grid, the errors in the production curves are comparable, indicating that

MsMFEM is robust with respect to the shape of the coarse cells.

Example 8 (Eroded layers). Figure 17 shows a uniform partitioning in index space of

a corner-point grid modelling a wavy depositional bed on a meter-scale. The corner-

point grid is described by vertical pillars that form a uniform 30×30 in the horizontal

plane and 100 very thin layers, out of which many collapse to a hyper-plane in some

regions. The figure also shows the shape in physical space of some of the coarse
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Fig. 18. Illustration of some of the guidelines for choosing a good coarse grid. In the left plot,

all blocks except for Block 1 violate at least one of the guidelines each. In the right plot, the

blocks have been improved at the expense of more couplings in the coarse-grid system.

blocks resulting from the uniform partitioning in index space. All blocks are used

directly in the simulation, except for the block in the lower-right corner, which has

two disconnected parts and thus can be split in two automatically.

The complex coarse blocks arising from the straightforward partitioning in index

space will in fact give more accurate results than what is obtained from more sophis-

ticated up-gridding schemes trying e.g., to make each cell be as close to a regular

hexahedral box as possible. The reason is that the flow will follow the layered struc-

ture of the medium and therefore is resolved most accurately by coarse grids that

reflect the layering.

The fact that MsMFEM is rather insensitive to the number and the shape of the

blocks in the coarse grid means that the process of generating a coarse simulation

grid from a complex geological model can be greatly simplified, especially when the

fine grid is fully unstructured or has geometrical complications due to faults, throws,

and eroded cells; e.g., as seen in Figs. 3 and 8. However, MsMFEM does have some

limitations, as identified in [4]. Here it was observed that barriers (low-permeable

obstacles) may cause inaccurate results unless the coarse grid adapts to the barrier

structures. In addition it was demonstrated that MsMFEM in its present form has

limited ability to model bidirectional flow across coarse-grid interfaces; fine-grid

fluxes at coarse-grid interfaces in the reconstructed flow field will usually go in the

same direction.

As a remedy for the limitations identified in [4], it is possible to exploit global

information (e.g., from an initial fine-scale pressure solve) when constructing the ba-

sis functions [1], see also Sect. 6.4. However, our experience indicates that accurate

results are also obtained if the coarse grid obeys certain guidelines; see the left plot

in Fig. 18 for illustrations:

1. The coarse grid should preferably minimise the occurrence of bidirectional flow

across coarse-grid interfaces. Examples of grid structures that increase the like-

lihood for bidirectional flow are:

• Coarse-grid faces with (highly) irregular shapes, like the ’saw-tooth’ faces

between Blocks 6 and 7 and Blocks 3 and 8.
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• Blocks that do not contain source terms and have only one neighbour, like

Block 4. (A simple remedy for this is to split the interface into at least two

sub-faces, and define a basis function for each sub-face.)

• Blocks having interfaces only along and not transverse to the major flow

directions, like Block 5. (To represent flow in a certain direction, there must

be at least one non-tangential face that defines a basis function in the given

flow direction.)

2. Blocks and faces in the coarse grid should follow geological layers whenever

possible. This is not fulfilled for Blocks 3 and 8.

3. Blocks in the coarse-grid should adapt to flow obstacles (shale barriers, etc.)

whenever possible; see [4].

4. For parabolic (compressible flow) problems, e.g., three-phase black-oil models,

one should model point-sources (and line-sources) at the subgrid level. For in-

stance, for reservoir simulation one should assign a separate grid block to each

cell in the original grid with an open well perforation
1
.

In addition, to enhance the efficiency of the method, one should try to keep the num-

ber of connections between coarse-grid blocks as low as possible to minimise the

bandwidth of the coarse-scale system, and avoid having too many small blocks as

this increases the dimension of the coarse-scale system, but does not necessarily im-

prove accuracy significantly.

In the right plot of Fig. 18, we have used the guidelines above to improve the

coarse grid from the left plot. In particular, we joined Blocks 2 and 4 and have have

increased the size of Block 5 to homogenise the block volumes and introduce basis

functions in the major flow direction for this block. In doing so, we increase the num-

ber of couplings from nine to twelve (by removing the coupling between Blocks 2

and 4 and introducing extra coupling among Blocks 1, 3, 5, 6, and 8). In general it

may be difficult to obtain an ’optimal’ coarse grid, since guidelines may be in conflict

with each other. On the other hand, this is seldom necessary, since the MsMFEM is

relatively robust with respect to the choice of coarse grid.

6.2 Computing Basis Functions and Assembling the Linear System

In principle, any conservative numerical method may be used to construct the basis

functions, e.g., any of the four methods discussed in Sect. 2.1. However, computing

the entries in the coarse-grid linear system requires evaluating the following inner-

products between the multiscale basis functions:

1
For reservoir simulation there is also another reason, apart from compressibility, to why it is

preferable to assign separate blocks to each cell with an open well perforation. Indeed, the

source q in reservoir simulation models is generally not known a priori, but determined by

so-called well-models that relate the well-rates to the pressure in the associated well-block.

To compute the rates “correctly” one needs to get the pressure in the well-block correct.

The MsMFEM provides a pressure value for each coarse grid-block. Thus, by assigning a

block to each cell with an open well perforation, we extract values that represent the actual

pressure in these cells. In other words, the pressure at the wells is modelled with subgrid

resolution.
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∫

Ω
Ψi j · (Kλ )−1Ψkl dx. (46)

Alternatively, one can use an approximate inner product like the one used in the

mimetic formulation discussed in Sect. 3.4.

If a finite-volume method is used, a computational routine for computing these

inner-products, either exactly or approximately, is generally not available. Thus, to

implement the MsMFEM one needs to add an extra feature in the numerical im-

plementation. When a mixed FEM or mimetic FDM is used, on the other hand, a

routine for calculating the inner-product (46) is part of the implementation of the

subgrid solver. In fact, in this case the integral (46) can be expressed as a vector-

matrix-vector product.

Let R be the matrix formed with columns ri j holding the coefficients r
i j
kl in the

following expansion:

Ψi j = ∑
γkl

r
i j
klψkl .

Furthermore, let B be the B-matrix in a system of the form (20) that stems from a

Raviart–Thomas mixed FEM or a mimetic FDM on a fine grid. Then

∫

Ω
Ψi j · (Kλ )−1Ψkl dx = rt

i jBri j. (47)

Thus, the coarse-grid system for the MsMFEM may be expressed as follows:

Bms = RtBR, gms = Rtg .

The right hand side qms
in the multiscale system is formed by integrating q over each

grid block, and the matrix Cms = [cm,kl ] is given by

cm,kl =

∫

Bm

∇ ·Ψkl dx =





1, if k = m,

−1, if l = m,

0, otherwise.

6.3 Role of the Weighting Function

The weighting function ℓ in (44)–(45) has been defined in different ways

• ℓ = 1 in [22];

• ℓ = q if
∫

Bm
q 6= 0 and ℓ = 1 elsewhere in [1]; and

• ℓ = q if
∫

Bm
q 6= 0 and ℓ = trace(K) elsewhere in [4, 5].

To understand how these definitions have come into play, recall first that the MsM-

FEM velocity solution is a linear superposition of the velocity basis functions. Hence,

(∇ · v)|Bi
= ∑

j

vi j∇ ·Ψi j =
ℓ∫

Bi
ℓdx

∑
j

vi j

=
ℓ∫

Bi
ℓdx

∫

∂Bi

v ·nds =
ℓ∫

Bi
ℓdx

∫

Bi

∇ · vdx.
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One can therefore say that the primary role of ℓ is to distribute the divergence of the

velocity field onto the fine grid in an appropriate way.

For incompressible flow problems div(v) is non-zero only in blocks with a

source. For blocks where
∫

Bi
q 6= 0, the choice ℓ = q stems from the fact that it gives

mass conservative velocity fields on the subgrid. For blocks without a source (where

the velocity is divergence free) ℓ can be chosen nearly arbitrarily. The idea of letting

the weight function scale with the trace of the mobility was introduced in [4] as a

way of avoiding unnaturally large amount of flow through low-permeable zones and

in particular through flow barriers. In general, however, using ℓ = 1 gives (almost)

equally accurate results.

For compressible flow (e.g., (8)) we may no longer choose ℓ arbitrarily. For in-

stance, defining base functions using ℓ = q would concentrate all compressibility

effects where q is nonzero. To avoid this, one has to separate the contribution to

the divergence field stemming from sources and from compressibility. This can be

achieved, as we have proposed in Sect. 6.1, by assigning one “coarse” grid block to

each cell in the fine grid with a source or sink. By doing so, we may, in principle,

choose ℓ = 1 everywhere. But, for the three-phase black-oil model (cf. Sect. 2.2), we

have

∇ · v = q − ct
∂ p

dt
−∑

j

c jv j ·∇pl. (48)

Hence, ℓ should ideally be proportional to the right hand side of (48). Although the

right hand side of (48) can be estimated from local computations, we do not propose

using this strategy to define ℓ. Indeed, the multiscale concept is not to try to replicate

fine-scale solutions by trying to account for all subgrid information. The important

thing is to account for the subgrid effects that strongly influence flow on the coarse-

grid level, and subgrid variability in the velocity divergence field is generally not

among these effects.

Our own numerical experience so far indicates that good accuracy is obtained by

taking ℓ to be the porosity φ . To motivate this choice, we note that ct is proportional

to φ when the saturations are smooth. Moreover, using ℓ = φ is in accordance with

the idea behind using ℓ = trace(λ ). Indeed, regions with very low permeability also

tend to have low porosity, so by choosing ℓ = φ one should (to some extent) avoid

forcing too much flow through low-permeable barriers, [4]. Using ℓ = trace(K), on

the other hand, will generally give velocity solutions for which div(v) oscillates too

much, i.e., is underestimated in low-permeable regions and overestimated in high-

permeable regions.

6.4 Incorporating Global Information

All multiscale methods essentially attempt to decouple the global problem into a

coarse-grid system and a set of independent local problems. In Sect. 5.1 it was shown

that in the one-dimensional case there is an exact splitting. That is, the global solution

(of the variational formulation) can be expressed as the sum of the MsFEM solution

and solutions of independent local problems. In higher dimensions, however, decou-

pling the system into a low-dimensional coarse-grid system and independent local
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subproblems is not possible in general. But it is possible to invoke global informa-

tion, e.g., from a single-phase flow solution computed at initial time, to specify better

boundary conditions for the local flow problems and thereby improve the multiscale

solutions, as was shown in [1] for MsMFEM and in [29] for MsFVM.

For many problems, invoking global information may have little effect, and will,

for multi-phase flow problems, only give an incremental improvement in accuracy.

But for certain problems, such as for models with large scale near-impermeable shale

barriers that force the flow to take a detour around the barrier, invoking global infor-

mation can improve accuracy quite significantly, and should be viewed as an alter-

native to grid refinement.

Since MsMFEM allows running entire simulations with a single set of basis func-

tions, solving the pressure equation once on a fine grid in order to improve the ac-

curacy of the multiscale solution is easily justified. To this end, one needs to split

each of the subgrid problems (43)–(45) into two independent problems in Bi and

B j, respectively, with a common Neumann boundary condition on the interface Γi j.

In particular, if v is the initial fine-scale velocity solution, the following boundary

condition should be imposed on Γi j:

Ψi j ·ni j =
v ·ni j∫

Γi j
v ·ni j ds

. (49)

The method that stems from defining the multiscale basis functions with this formu-

lation is usually referred to as the global, as opposed to local, MsMFEM.

Exercise 5. Assign one grid block to each cell with a source and let ℓ = 1. Alterna-

tively let ℓ = q if
∫

Bi
q 6= 0 and ℓ = 1 elsewhere. Show that if the multiscale basis

functions are defined by (43)–(45) and (49), then v ∈ span{Ψi j}.
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Summary. We present a general introduction to the multiscale modelling and simulation of

complex fluids. The perspective is mathematical. The level is elementary. For illustration pur-

poses, we choose the context of incompressible flows of infinitely dilute solutions of flexible

polymers, only briefly mentioning some other types of complex fluids. We describe the mod-

elling steps, compare the multiscale approach and the purely macroscopic, more traditional,

approach. We also introduce the reader with the appropriate mathematical and numerical tools.

A complete set of codes for the numerical simulation is provided, in the simple situation of a

Couette flow. This serves as a test-bed for the numerical strategies described in a more gen-

eral context throughout the text. A dedicated section of our article addresses the mathematical

challenges on the front of research.

Keywords: non-Newtonian flows, complex fluids, polymer flow, multiscale mod-

elling, Couette flow, Hookean and FENE dumbbell models, Oldroyd-B model,

Fokker-Planck equation, stochastic differential equation.

1 Introduction

This article presents a general introduction to the multiscale modelling and simu-

lation of complex fluids. The perspective is mathematical. The level is elementary.

For illustration purposes, we choose the context of incompressible flows of infinitely

dilute solutions of flexible polymers. This category of fluids is that for which the

mathematical understanding is the most comprehensive one to date. It is therefore

an adequate prototypical context for explaining the recently developed multiscale

approach for the modelling of complex fluids, and more precisely for that of fluids

with microstructures. Other types of complex fluids, also with microstructures, such

as liquid crystals, suspensions, blood, may also be modeled by such types of models.

However the modelling is either less understood mathematically, or more intricate
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and technical to describe (or both). The former case is therefore more appropriate for

an initiation.

We describe the modelling steps, compare the multiscale approach and the purely

macroscopic, more traditional, approach. We also introduce the reader to the appro-

priate mathematical and numerical tools.

The readership we wish to reach with our text consists of two categories, and our

purpose is thus twofold.

Our primary purpose is to describe to mathematics (or applied mathematics) stu-

dents, typically at undergraduate level, or in their early years of graduate studies, the

various steps involved in a modern modelling endeavor. The multiscale simulation of

complex fluids is an excellent example for this. Thinking to this audience, we con-

centrate ourselves on key issues in the modelling, assuming only the knowledge of

some basic notions of continuum mechanics (briefly recalled in Sect. 2) and elabo-

rating on those in Sect. 3 to construct the simplest multiscale models for complex

fluids. We also assume that these students are familiar with some standard notions

about partial differential equations and the discretization techniques commonly used

for their simulation. On the other hand, because we know from our teaching expe-

rience that such students often have only a limited knowledge in probability theory

and stochastic analysis, we choose to give (in Sect. 4) a crash course on the elements

of stochastic analysis needed to manipulate the stochastic versions of the models for

complex fluids. The latter are introduced in the second part of Sect. 4. To illustrate

the notions introduced on a very simple case, and to allow our readers to get into the

heart in the matter, we devote the entire Sect. 5 to several possible variants of numer-

ical approaches for the simulation of start-up Couette flows. This simple illustrative

case serves as a test-bed for the numerical strategies described in a more general

context throughout the text. A complete set of codes for the numerical simulation is

provided, which we encourage the readers to work with like in a hands-on session.

The second category of readers we would like to get interested in the present ar-

ticle consists of practitioners of the field, namely experts in complex fluids rheology

and mechanics, or chemical engineers. The present text could serve, we believe, as

an introduction to a mathematical viewpoint on their activity. Clearly, the issues we,

as mathematicians and computational scientists, emphasize, are somewhat different

from those they consider on a regular basis. The perspective also is different. We are

looking forward to their feedback on the text.

For both communities above, we are aware that an introductory text, although

useful, is not fully satisfactory. This is the reason why we devote a section of our

article, Sect. 6, to a short, however comprehensive, description of the mathematical

and numerical challenges of the field. This section is clearly more technical, and

more mathematical in nature, than the preceding ones. It is, hopefully, interesting for

advanced graduate students and researchers, professionals in mathematics, applied

mathematics or scientific computing. The other readers are of course welcome to

discover there what the exciting unsolved questions of the field are.

Finally, because we do not want our readers to believe that the modelling of

infinitely dilute solutions of flexible polymers is the only context within complex

fluids science where mathematics and multiscale simulation can bring a lot, we close
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the loop, describing in our last Sect. 7 some other types of complex fluids where the

same multiscale approach can be employed.

2 Incompressible fluid mechanics: Newtonian and

non-Newtonian fluids

2.1 Basics

To begin with, we recall here some basic elements on the modelling of incompress-

ible fluids.

It experiences external forces fff per unit mass. Denote by TTT the stress tensor.

The equation of conservation of mass for this fluid reads

∂ρ

∂ t
+ div(ρ uuu) = 0. (1)

On the other hand, the equation expressing the conservation of momentum is

∂ (ρ uuu)

∂ t
+ div(ρ uuu⊗ uuu) − divTTT = ρ fff , (2)

where ⊗ denotes the tensor product: for two vectors uuu and vvv in Rd
, uuu ⊗ vvv is a d × d

matrix with (i, j)-component uuuivvv j. For such a viscous fluid, the stress tensor reads

TTT = −pId + τττ, (3)

where p is the (hydrodynamic) pressure, and τττ is the tensor of viscous stresses. In

order to close the above set of equations, a constitutive law (or constitutive relation)

is needed, which relates the viscous stress τττ and the velocity field uuu, namely

τττ = τττ(uuu,ρ , ...). (4)

Note that (4) is symbolic. A more precise formulation could involve derivatives in

time, or in space, of the various fields τττ , uuu, ρ , . . .

Assuming that τττ linearly depends on uuu, that τττ is invariant under the change of

Galilean referential, and that the fluid has isotropic physical properties, it may be

shown that the relation between τττ and uuu necessarily takes the following form

τττ = λ (divuuu) Id + 2η ddd (5)

where λ and η are two scalar coefficients (called the Lamé coefficients). The latter

depends, in full generality, on the density ρ and the temperature. In (5), ddd denotes

the (linearized) rate of deformation tensor (or rate of strain tensor)

ddd =
1

2
(∇uuu+ ∇uuuT ). (6)

uuu.Consider a viscous fluid with volumic mass (or density) ρ , flowing at the velocity 
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When a fluid obeys the above assumptions, it is called a Newtonian fluid. The kinetic

theory of gases allows to show that

λ = −2

3
η (7)

and the common practice is to consider both coefficients λ and η constant.

The system of equations (1)-(2)-(3)-(5)-(6)-(7) allows then to describe the motion

of the fluid. When accounting for temperature effects, or for compressible effects,

the system is complemented by two additional equations, the energy equation and an

equation of state (relating p, ρ and T ). We will neglect such effects in the following

and assume the temperature is constant and the fluid is incompressible:

divuuu = 0. (8)

Then, equations (1)-(2)-(3)-(5)-(6)-(7)-(8) provide the complete description of the

evolution of the Newtonian fluid.

Let us additionally assume the fluid has constant density

ρ = ρ0.

Such a fluid is often called homogeneous. The equation of conservation of momen-

tum then rewrites

ρ

(
∂uuu

∂ t
+ (uuu ·∇)uuu

)
− η∆uuu+ ∇p = ρ fff . (9)

It is supplied with the divergence-free condition

divuuu = 0. (10)

The couple of equations (9)-(10) form is the celebrated Navier-Stokes equation for

the motion of incompressible homogeneous viscous Newtonian fluids.

2.2 Non-Newtonian fluids

Some experimental observations

Non-Newtonian fluids, and, in particular, viscoelastic fluids are ubiquitous in in-

dustry (oil industry, food industry, rubber industry, for example), as well as in

nature (blood is a viscoelastic fluid). As mentioned above, Newtonian fluids are

characterized by the fact that the stress is proportional to the rate of deformation
1

2

(
∇uuu+ ∇uuuT

)
: this is viscosity. For elastic solids, the stress is proportional to the

deformation (see the tensors (35) CCCt or (36) FFF t below for some measure of defor-

mation): this is elasticity. The characteristic feature of viscoelastic fluids is that their

behavior is both viscous and elastic. Polymeric fluids are one instance of viscoelastic

fluids.
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Fig. 1. Schematic representation of a rheometer. On an infinitesimal angular portion, seen

from the top, the flow is a simple shear flow (Couette flow) confined between two planes with

velocity profile (u(t,y),0,0).

To explore the rheological behavior of viscoelastic fluids (rheology is the sci-

ence studying why and how fluids flow), physicists study their response to so-called

simple flows (typically flows in pipes or between two cylinders) to obtain so-called

material functions (such as shear viscosity, differences of normal stress, see below).

Typically, for such flows, the velocity field is known and is not influenced by the

non-Newtonian features of the fluid. This owes to the fact that the velocity field

is homogeneous, which means that ∇uuu does not depend on the space variable. Such

flows are called homogeneous flows. Two types of simple flows are very often used in

practice: simple shear flows and elongational flows (see R.B. Bird, R.C. Armstrong

and O. Hassager [11, Chap. 3]). We focus here on simple shear flows. In practical sit-

uations (in an industrial context for example), flows are generally more complicated

than the simple flows used to characterize the rheological properties of the fluids:

such flows are called complex flows. Complex flows are typically not homogeneous:

∇uuu depends on the space variable xxx.

In a simple shear flow, the velocity uuu has the following form:

uuu(t,xxx) = (γ̇(t)y,0,0),

where xxx = (x,y,z) and γ̇ is the shear rate. The shear viscosity η :

η(t) =
τττx,y(t)

γ̇(t)
, (11)

and the first and second differences of normal stress:
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Fig. 2. Schematic representation of two unexpected, counterintuitive behaviors for some poly-

meric fluids: the rod-climbing effect (left) and the open syphon effect (right).

N1(t) = τττx,x(t)− τττy,y(t),
N2(t) = τττy,y(t)− τττ z,z(t),

(12)

may be measured experimentally. For Newtonian fluids, the shear viscosity is con-

stant, and both N1 and N2 vanish. This is not the case in general for viscoelastic

fluids. In particular, for many non-Newtonian fluids, η is a decreasing function of γ̇
(this property is called shear-thinning), goes to a constant η∞ when γ̇ goes to infinity,

and goes to some value η0 (the zero-shear rate viscosity) when γ̇ goes to zero.

In practice, such flows are studied in rheometers, the fluid being confined be-

tween two cylinders. The outer cylinder is fixed, the inner one is rotating (see Fig. 1).

On an infinitesimal portion, the flow can be approximated by a simple shear flow. We

will return to this in Sect. 5.

The simple shear flow may also be useful to study the dynamics of the fluid

using an oscillating excitation: γ̇(t) = γ0 cos(ωt). The in-phase response with the

deformation is related to the elasticity of the fluid. The out-of-phase response is

related to the viscosity of the fluid. This can be easily understood for example in the

simple Maxwell model presented below, and an analogy with electric circuits (see

Fig. 4).

Before addressing the modelling in details, let us mention some peculiar behav-

iors of some non-Newtonian fluids.

We first describe the rod-climbing effect (see Fig. 2 or R. G. Owens and T. N.

Phillips [104, Fig. 1.9]). A rod is introduced in the fluid and is rotated: for a Newto-

nian fluid, inertia causes the fluid to dip near the rod and rise at the walls. For some

non-Newtonian fluids, the fluid may actually climb the rod (this is called the Weis-

senberg effect). This phenomenon is related to non zero normal stress differences

(see A.S. Lodge [91]).

Another experiment is the open syphon effect (see Fig. 2 or R.G. Owens and

T.N. Phillips [104, Fig. 1.11]). A beaker is tilted so that a small thread of the fluid

starts to flow over the edge, and then is put straight again. For some viscoelastic

fluids, the liquid keeps on flowing out.

Another, simpler experiment, which we will be able to reproduce with a micro-

macro model and a simple numerical computation (see Sect. 5) is the start-up of

shear flow. A fluid initially at rest and confined between two plates is sheared (one
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Fig. 3. Velocity profile as a function of time for a start-up of shear flow. The velocity profile

(u as a function of y, see Fig. 1) is represented at various times in the time interval [0,1].
For polymeric fluids (on the right, case of the Hookean dumbbell micro-macro model) an

overshoot of the velocity is observed, while this is not the case for Newtonian fluid (on the

left).

plate is moving, and the other one is fixed) (see Figs. 1 and 3). For Newtonian flu-

ids, the velocity profile progressively reaches monotonically the stationary state. For

some polymeric fluids, the velocity goes beyond its stationary value: this is the over-

shoot phenomenon.

Modelling of non-Newtonian fluids

When the fluid, although viscous, incompressible and homogeneous, does not obey

the simplifying assumptions leading to (5), the following system of equations is to

be used, in lieu of (9)-(10):





ρ

(
∂uuu

∂ t
+ (uuu ·∇)uuu

)
− η∆uuu+ ∇p − divτττ p = ρ fff

divuuu = 0

(13)

where the stress τττ has been decomposed along

τττ = τττn + τττ p (14)
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giving birth to the terms −η∆uuu, and divτττ p, respectively. In (14), τττn denotes the

Newtonian contribution (expressed as in (5)) and τττ p denotes the part of the stress

(called non-Newtonian or extra stress) which cannot be modelled as in (4). Our no-

tation τττ p refers to the fact we will mainly consider in the sequel fluids for which

the non-Newtonian character owes to the presence of polymeric chains flowing in a

solvent.

For non-Newtonian fluids, many purely macroscopic models exist. All are based

upon considerations of continuum mechanics. The bottom line is to write an equa-

tion, in the vein of (4), ruling the evolution of the non-Newtonian contribution τττ p

to the stress tensor, and/or a relation between the latter and other quantities charac-

terizing the fluid dynamics, such as the deformation tensor ddd or ∇uuu itself. Such an

equation may read

Dτττ p

Dt
= F(τττ p,∇uuu), (15)

where
D•
Dt

denotes an appropriate extension (for tensorial quantities, see next sec-

tion) of the usual convected derivative for vectors

∂•
∂ t

+ (uuu ·∇) • .

A model such as (15) is called a differential model for the non-Newtonian fluid.

One famous example is the Oldroyd B model. It will be made precise in the next

section.

An alternative option is to resort to an integral model:

τττ p(t,xxx) =

∫ t

−∞
m(t − t ′)SSSt′dt ′, (16)

where m is a so-called memory kernel (typically m(s) = exp(−s)), SSSt′ denotes a

quantity depending on ∇uuu, and where the integral is considered along a fluid trajec-

tory (or pathline) ending at point xxx. We shall also return to such models in the next

section.

The major observation on both forms (15) and (16) is that, in contrast to the

Newtonian case (5), τττ p(t,xxx) does not only depend on the deformation at point xxx

and at time t (as it would be the case in (5)), but also depends on the history of the

deformation for all times t ′ ≤ t, along the fluid trajectory leading to xxx. It is particularly

explicit on the form (16), but may also be seen on (15).

The complete system of equations modelling the fluid reads






ρ

(
∂uuu

∂ t
+ (uuu ·∇)uuu

)
− η∆uuu+ ∇p − divτττ p = ρ fff ,

divuuu = 0,
Dτττ p

Dt
= F(τττ p,∇uuu).

(17)
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This system is called a three-field system. It involves the velocity uuu, the pressure p,

and the stress τττ p.

Solving this three-field problem is much more difficult and computationally de-

manding than the ’simple’ Newtonian problem (9)–(10), that is (13) where τττ p = 0

and only two fields, the velocity and the pressure, are to be determined. However, the

major scientific difficulty is neither a mathematical one nor a computational one. The

major difficulty is to derive an equation of the type (15) or (16). It requires a deep,

qualitative and quantitative, understanding of the physical properties of the fluid un-

der consideration. For many non-Newtonian fluids, complex in nature, reaching such

an understanding is a challenge. Moreover, even if such an equation is approximately

known, evaluating the impact of its possible flaws on the final result of the simulation

is not an easy matter. It can only be done a posteriori, comparing the results to actual

experimental observations, when the latter exist, and they do not always exist. The

difficulty is all the more prominent that the non-Newtonian fluids are very diverse in

nature. New materials appear on a daily basis. For traditional fluids considered under

unusual circumstances, or for recently (or even not yet) synthesized fluids, reliable

evolution equations are not necessarily available.

All this, in its own, motivates the need for alternative strategies, based on an

explicit microscopic modelling of the fluid. This will give rise to the so-called micro-

macro models, which are the main topic of this article. The lack of information at

the macroscopic level is then circumvented by a multiscale strategy consisting in

searching for the information at a finer level (where reliable models do exist, based on

general conservation equations, posed e.g. on the microstructures of the fluids). The

latter information is then inserted in the equations of conservation at the macroscopic

level. At the end of the day, because the modelling assumptions are avoided as much

as possible, a complete description is attained, based on a more reliable, however

much more computationally demanding, model. Otherwise stated, a crucial step of

the modelling is replaced by a numerical simulation. But before we turn to this, from

Sect. 3 on, let us give some more details on the purely macroscopic models (17) for

non-Newtonian fluids. They are today the most commonly used models (in particular

because they are less demanding computationally). For our explanatory survey, we

choose the context of viscoelastic fluids.

2.3 Some macroscopic models for viscoelastic fluids

Throughout this section, the stress tensor τττ is decomposed into a Newtonian part

and a non-Newtonian part, as in (14). The former, τττn, reads τττn = ηγ̇γγ where η is the

viscosity, and γ̇γγ is given by

γ̇γγ = ∇uuu+ ∇uuuT . (18)

The latter is denoted by τττ p. The stress is the combination of the two, namely:

τττ = ηγ̇γγ + τττ p. (19)
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γ̇

η E
τ

Fig. 4. One-dimensional Maxwell model. The analogy with an electric circuit is obvious, τ
and γ̇ playing the role of the current intensity and the voltage respectively, η and E that of the

capacity of a capacitor and the conductivity of a resistor respectively.

More on differential models

The basic model for viscoelastic fluids is the Maxwell model. It combines a linear

elasticity model and a linear viscosity model. In the former, the stress depends lin-

early on the deformation. It is the Hooke law. The proportionality constant is the

Young modulus E. This part of the stress is to be thought of as a linear spring. On

the other hand, the linear viscosity model assumes the stress depends linearly on the

rate (or speed) of deformation, the proportionality constant being the viscosity η .

Heuristically, this amounts to considering a piston. The one-dimensional Maxwell

model combines the Hookean spring and the piston (see Fig. 4). Then, denoting the

stress by τ and the deformation rate by γ̇ , the following ordinary differential equation

is obtained:

γ̇ =
1

E

dτ

dt
+

τ

η
, (20)

that is,

λ
dτ

dt
+ τ = ηγ̇, (21)

where λ =
η

E
denotes a characteristic relaxation time of the system.

Remark 1. The mathematically inclined reader should not be surprised by the ele-

mentary nature of the above arguments. Modelling is simplifying. Some excellent

models of fluid mechanics (and other fields of the engineering and life sciences) are

often obtained using such simple derivations. On the other hand, it is intuitively clear

that the determination of the parameters of such models is often an issue, which lim-

its their applicability, and that there is room for improvement using more advanced

descriptions of matter. This will be the purpose of the multiscale models introduced

in the present article.

Passing from the one-dimensional setting to higher dimensions requires to re-

place the time derivative in (21) by a convective derivative of a tensor. Based on

invariance arguments, the following model is derived:

λ

(
∂τττ p

∂ t
+ uuu ·∇τττ p − ∇uuuτττ p − τττ p(∇uuu)T

)
+ τττ p = ηpγ̇γγ, (22)
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where λ is a relaxation time, and ηp is an extra viscosity (due to the polymers in

our context). Then the stress tensor τττ is given by (19). When η = 0, the model is

called the Upper Convected Maxwell model (UCM). When η 6= 0, it is the Oldroyd-

B model, also called the Jeffreys model.

For future reference, let us rewrite the complete system of equations for the

Oldroyd-B model, in a non-dimensional form:





Re

(
∂uuu

∂ t
+ uuu ·∇uuu

)
= (1 − ε)∆uuu− ∇p + divτττ p,

divuuu = 0,

∂τττ p

∂ t
+ uuu ·∇τττ p − (∇uuu)τττ p − τττ p(∇uuu)T = − 1

We
τττ p +

ε

We

(
∇uuu+(∇uuu)T

)
.

(23)

The Reynolds number Re > 0, the Weissenberg number We > 0 and ε ∈ (0,1) are

the non-dimensional numbers of the system (see Equations (97) below for precise

definitions). The Weissenberg number (which is the ratio of the characteristic relax-

ation time of the microstructures in the fluid to the characteristic time of the fluid)

plays a crucial role in the stability of numerical simulations (see Sect. 4.4).

Remark 2. In (22) and throughout this article, we denote by (∇uuu)i, j =
∂ui

∂x j
. Other,

and in fact many authors in the literature of non-Newtonian fluid mechanics (see

e.g. R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager [11, 12], R.G. Owens

and T.N. Phillips [104], or H.C. Öttinger [102])), adopt the alternative convention:

(∇uuu)i, j =
∂u j

∂xi
. Our equations have to be modified correspondingly.

Remark 3. The convective derivative in (22) is called the upper-convected deriva-

tive. Other derivatives may be considered, such as the lower-convected derivative,

or the co-rotational derivative (the latter being particularly interesting for mathe-

matical purposes, see Sect. 6). All these derivatives obey the appropriate invariance

laws of mechanics, but we have chosen the upper-convected derivative because it

spontaneously arises when using the kinetic models (see Sect. 3). It is also the most

commonly used derivative in macroscopic models, such as the Phan-Thien Tanner

model, the Giesekus model or the FENE-P model. We shall return to such models

later on. A discussion of the physical relevance of convective derivatives appears in

D. Bernardin [10, Chap. 3]. See also R.B. Bird, R.C. Armstrong and O. Hassager [11,

Chap. 9].

The Oldroyd B model has several flaws, as regards its ability to reproduce exper-

imentally observed behaviors.

Refined macroscopic models for viscoelastic fluids have thus been derived, al-

lowing for a better agreement between simulation and experience. In full generality,

such models read:

λ

(
∂τττ p

∂ t
+ uuu ·∇τττ p − ∇uuuτττ p − τττ p(∇uuu)T

)
+ TTT (τττ p, γ̇γγ) = ηpγ̇γγ , (24)
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where TTT (τττ p, γ̇γγ) typically depends nonlinearly on τττ p. The most commonly used mod-

els are the following three. The Giesekus model(see H. Giesekus [51]) involves a

quadratic term:

λ

(
∂τττ p

∂ t
+ uuu ·∇τττ p − ∇uuuτττ p − τττ p(∇uuu)T

)
+ τττ p + α

λ

ηp
τττ pτττ p = ηpγ̇γγ. (25)

where α is a fixed scalar.

The Phan-Thien Tanner model (PTT) is derived from a lattice model (see

N. Phan-Thien and R.I. Tanner [106]). It writes:

λ

(
∂τττ p

∂ t
+ uuu ·∇τττ p − ∇uuuτττ p − τττ p(∇uuu)T

)
+ Z(tr(τττ p))τττ p +

ξ

2
λ (γ̇γγτττ p + τττ pγ̇γγ) = ηpγ̇γγ,

(26)

with two choices for the function Z :

Z(tr(τττ p)) =





1 + φλ
tr(τττ p)

ηp

exp

(
φλ

tr(τττ p)

ηp

) , (27)

where ξ and φ are fixed scalars.

The FENE-P model, which we will return to in Sect. 4.2, is derived from a kinetic

model (see A. Peterlin [105] and R.B. Bird, P.J. Dotson and N.L. Johnson [13] and

Sect. 4). It reads:






λ

(
∂τττ p

∂ t
+ uuu ·∇τττ p − ∇uuuτττ p − τττ p(∇uuu)T

)
+ Z(tr(τττ p))τττ p

−λ
(

τττ p +
ηp

λ
Id

)(( ∂

∂ t
+ uuu ·∇

)
ln(Z(tr(τττ p)))

)
= ηpγ̇γγ,

(28)

with

Z(tr(τττ p)) = 1 +
d

b

(
1 + λ

tr(τττ p)

d ηp

)
, (29)

where d is the dimension of the ambient space and b is a scalar that is thought of

as related to the maximal extensibility of the polymer chains embedded in the fluids

(see the FENE force below, Equation (91)).

All these nonlinear models yield much better results than the Oldroyd B model,

and satisfactorily agree with experiments on simple flows. They can be further gen-

eralized, considering several relaxation times λi and several viscosities ηp,i, but we

will not proceed further in this direction in this introductory survey.

More on integral models

Let us return to the one-dimensional Maxwell model (21). Its solution may be ex-

plicitly written in terms of the integral:
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τ(t) = τ(t0)exp

(
− t − t0

λ

)
+

∫ t

t0

η

λ
exp

(
− t − s

λ

)
γ̇(s)ds. (30)

Letting t0 go to −∞, and assuming τ bounded when γ̇ is bounded, we obtain:

τ(t) =

∫ t

−∞

η

λ
exp

(
− t − s

λ

)
γ̇(s)ds. (31)

Denoting by: 



d

dt
γ(t0,t) = γ̇(t)

γ(t0,t0) = 0

, (32)

and integrating by parts, we obtain a form equivalent to (31) :

τ(t) =
∫ t

−∞

η

λ 2
exp

(
− t − s

λ

)
γ(t,s)ds. (33)

This form explicitly shows that, as announced earlier, the constraint at time t de-

pends on the history of the deformation. The function
η
λ 2

exp
(
− t−s

λ

)
is often called

a memory function.

The one-dimensional computation performed above can be generalized to higher

dimensions and yields:

τττ p(t,xxx) = −
∫ t

−∞
M(t − s) f

(
CCC−1

t (s,xxx)
)
(Id−CCC−1

t (s,xxx))ds. (34)

where M is a memory function, f is a given real valued function, and CCC−1

t (s,xxx)
denotes the so-called Finger tensor (at time t). The latter is the inverse tensor of the

Cauchy deformation tensor:

CCCt(s,xxx) = FFFt(s,xxx)
T FFF t(s,xxx) (35)

where

FFF t(s,xxx) = ∇(χχχ t(s))(xxx) (36)

is the deformation tensor and χχχt(s) is the flow chart (mapping positions at time t to

positions at time s).

It is easily seen that the upper-convected derivative of the Finger tensor vanishes.

When M(t − s) =
ηp

λ 2
exp

(
− t − s

λ

)
and f = 1, this shows that τττ p defined by (34)

satisfies (22). The parameter λ models the time needed by the system to “forget” the

history of the deformation.

Remark 4. As in the case of differential models, there exist many generalizations and

variants for the integral models introduced above. Alternative convective derivatives

may be considered, several characteristic times λi and viscosities ηp,i can be em-

ployed. See R.B. Bird, R.C. Armstrong and O. Hassager [11] or D. Bernardin [10]

for such extensions.
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3 Multiscale modelling of polymeric fluids

There exists an incredibly large variety of non-Newtonian fluids. We have briefly

overviewed in the previous section the modelling of viscoelastic fluids. This is one

category of non-Newtonian fluids. One important class of non-Newtonian fluids is

the family of fluids with microstructures. For such fluids, the non-Newtonian charac-

ter owes to the presence of microstructures, often more at a mesoscopic scale than at

a truly microscopic one. Snow, blood, liquid concrete, etc, are examples of fluids with

microstructures. Polymeric fluids form the category we will focus on in the sequel.

Analogous scientific endeavors can be followed for other fluids with microstructures.

The bottom line for the modelling remains: write an equation at the microscopic level

that describes the evolution of the microstructures, then deduce the non-Newtonian

contribution τττ p to the stress. Thus a better quantitative understanding. Section 7 will

give some insight on other types of fluids with microstructures.

The present section is only a brief introduction to the subject. To read more on

the multiscale modelling of complex fluids, we refer to the monographs: R. Bird, Ch.

Curtiss, C. Armstrong and O. Hassager [11, 12], H.C. Öttinger [102], R. Owens and

T. Phillips [104]. Other relevant references from the physics perspective are F. De-

vreux [34]. M. Doi [35], M. Doi and S.F. Edwards [36], M.P. Allen and D.J. Tildes-

ley [1], D. Frenkel and B. Smit [47].

Before we get to the heart of the matter, let us briefly introduce the reader to the

specificities of polymeric fluids.

A polymer is, by definition, a molecular system formed by the repetition of a

large number of molecular subsystems, the monomers, all bound together by in-

tramolecular forces. If the subsystems are not all of the same chemical type, one

speaks of copolymers. Polymeric materials are ubiquitous: they may be of natural

origin, such as natural rubber, wood, leather, or artificially synthesized, such as vul-

canized rubber or plastic. They can be classified according to their polymerization

degree, that is the number N of monomers present in the chain: N = 1 to 4 for gases,

N = 5 for oils, N = 25 for brittle materials such as a candle, N > 2000 for ductile

materials such as plastic films. As N grows, the fusion temperature grows and the

polymeric properties become prominent: they are already significant for N = 100,

and obviously dominant for N = 1000. The specific mechanical properties of the

material stem from the long chains present inside. The length of the chain for in-

stance prevents the material from organizing itself regularly when solidification oc-

curs, thus the flexibility of the material (such as a tire). Likewise, the long chains

give additional viscosity to liquid polymers, such as oils. Solvents may enjoy good,

or bad, solvating properties for the polymers, depending whether the chains expand

or retract in the solvent. For example, paints are solvated differently in water and

oils.

As regards the concentration of polymers within the solvent, three cases may

schematically arise. When the concentration is low, one speaks of infinitely dilute

polymeric fluids. There, the chains basically ignore each other, interacting with one

another only through the solvent. This is the case we will mainly consider in the se-

quel. The other extreme case is the case of dense polymeric fluids, also called polymer
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melts. In-between, one finds polymeric fluids with intermediate concentrations. Of

the above three categories, polymer melts form indeed the most interesting one, tech-

nically and industrially. Their modelling has made great progress in the 1960s with

the contributions by De Gennes, and his theory of reptation. Basically, it is consid-

ered that, owing to the density of polymeric chains present, each single chain moves

in the presence of others like a snake in a dense bush, or a spaghetti in a plate of

spaghettis.

Reptation models amount, mathematically, to equations for the evolution of mi-

crostructures similar in spirit to those that will be manipulated below. There are how-

ever significant differences. Macroscopic versions also exist. In any case, models for

polymer melts are much less understood mathematically than models for infinitely

dilute polymers. For this reason, we will not proceed further in this direction in the

present mathematically biased text.

Remark 5. Let us give some details about the reptation model for polymer melts (see

for example [102, Sect. 6]). In such a model, the microscopic variables are (UUU t ,St)
(say at a fixed position in space xxx), where UUUt is a three dimensional unit vector

representing the direction of the reptating polymer chain at the curvilinear abscissa

St (St is a stochastic process with value in (0,1)). The Fokker-Planck equation ruling

the evolution of (UUU t ,St) is:

∂ψ(t,xxx,UUU ,S)

∂ t
+ uuu(t,xxx) ·∇xxxψ(t,xxx,UUU ,S)

= −divUUU

(
(∇xxx uuu(t,xxx)UUU − ∇xxx uuu(t,xxx) : (UUU ⊗UUU)UUU)ψ(t,xxx,UUU ,S)

)

+
1

λ

∂ 2ψ(t,xxx,UUU ,S)

∂S2
,

where : denotes the Frobenius inner product: for two matrices A and B, A : B =
tr(AT B). The boundary conditions for S = 0 and S = 1 supplementing the Fokker-

Planck equation are

ψ(t,xxx,UUU ,0) = ψ(t,xxx,UUU ,1) =
1

4π
δ|UUU |=1,

where δ|UUU |=1 is the Lebesgue (surface) measure on the sphere. In terms of the

stochastic process (UUUt ,St), this equation is formally equivalent to a deterministic

evolution of the process UUUt (the unit vector is rotated following the flow field) and

a stochastic evolution of the index St as dSt + uuu · ∇xxxSt dt =
√

2/λ dWt . The only

coupling between UUU t and St arises when St reaches 0 or 1, in which case UUU t is reini-

tialized randomly uniformly on the sphere. The contribution of the polymers to the

stress tensor can then be computed using a Kramers formula (similar to (48)), and

this closes the micro-macro model. An interesting open mathematical question is to

define rigorously the dynamics of the process (UUUt ,St).

Remark 6. Also for concentrated polymers, a regime different from reptation can also

be considered. When sufficiently numerous bridges are (chemically) created between
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Fig. 5. A collection of polymeric chains lies, microscopically, at each macroscopic point of

the trajectory of a fluid particle.

(θ1,ϕ1)

uuu1

uuu2

rrr

Fig. 6. A polymeric chain: uuu j denote the unit vectors between the “atoms”, each of them

corresponds to a pair of angles (θi,ϕi) and has length a. The end-to-end vector is rrr.

the entangled chains (this is exactly the purpose of the vulcanization process involved

in the production of tires), the polymeric material turns into a lattice, often called a

reticulated polymer. Its properties are intermediate between those of a fluid and those

of a solid material (owing to the -slight- rigidity provided by the lattice). A multiscale

modeling can be envisioned for such materials, but again this is not the purpose of

this article. We refer for example to H. Gao and P. Klein [48], or S. Reese [108, 109].

In the sequel of this article (with the notable exception of Sect. 7), we consider

infinitely dilute polymeric fluids.

In order to understand the contribution to the stress provided by this assembly

of long polymeric chains, we zoom out on such a chain. We now want to write an

evolution equation on this object. First we have to model the chain, then see the

forces it experiences, and finally write an appropriate evolution equation.

As regards the modelling of a polymeric chain, the point to understand is that it is

out of the question to explicitly model all the atoms of the chain. There are thousands

of them. The interactions between atoms are incredibly expensive to model. Without

even thinking to a model from quantum chemistry, the ’simple’ consideration of

a classical force-field for the molecular dynamics of an entire polymeric chain is

too a computationally demanding task. It can be performed for some sufficiently

short chains, considered alone, and not interacting with their environment. But the

simulation in situ, over time frame relevant for the fluid mechanics simulation, of

millions of long chains, is out of reach. Even if it was possible, there is no reason to
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believe that the actual motion of each single atom, and the precise description of the

dynamics of each chain significantly impacts the overall rheology of the fluid.

So the two keywords here are statistical mechanics and coarse-graining (some-

how, these terms are synonymous). The bottom line is to consider one single, hope-

fully representative chain, sitting at a macropoint of the fluid, then derive some suffi-

ciently simple description of this chain, which carries enough physics to adequately

model the impact of the chains onto the fluid, and conversely. This within the limit

of our simulation capabilities.

Let us first obtain a coarse-grained model for the chain.

3.1 Statistical mechanics of the free chain

Generalities

As said above, it is not reasonable, and it is not the point, to simulate the actual

dynamics of all atoms composing all the chains.

We first choose a representative chain. For simplicity, we assume the chain is a

linear arrangement of N beads (as opposed to the case of branched polymers, where

the chain has several branches). Each of these beads models a group of atoms, say 10

to 20 monomer units. They are milestones along the chain. They are assumed to be

connected by massless bars with length a. This is the so-called Kramers chain model

(see Fig. 6). The configuration of the chain, at time t and each macroscopic point xxx,

is described by a probability density ψ (momentarily implicitly indexed by t and xxx),

defined over the space

(θ1,ϕ1, ...,θN−1,ϕN−1)

of Euler angles of the unit vectors uuui along this representative chain. Thus

ψ(θ1,ϕ1, ...,θN−1,ϕN−1)dθ1dϕ1 . . .dθN−1dϕN−1 (37)

is the probability that the chain has angles between (θ1,ϕ1) and (θ1 +dθ1,ϕ1 +dϕ1)
between the first two beads labeled 1 and 2, etc. . .

Some coarse graining has already been performed by considering these beads

instead of the actual atoms, but we will now proceed one step further. We are going

to only keep a very limited number of these beads, say Nb, and eliminate (using a

limiting procedure) all the N − Nb beads in-between. The typical number of beads

kept is well below 100. The simplest possible case, that of Nb = 2 beads, is the

dumbbell case and we will in fact mainly concentrate on it in the sequel.

In order to reduce the description of the chain to the simple knowledge of Nb = 2

beads, we are going to consider the vector rrr linking the first bead to the last one. This

vector is called the end-to-end vector (see Fig. 6) and writes as the sum

rrr =
N−1

∑
i=1

auuui, (38)
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where uuui is the unit vector describing the i-th link. Between the extreme two beads

lies indeed a supposedly large number N − 2 of beads. The chain is free to rotate

around each of these beads: think typically to the arm of a mechanical robot. We first

describe all the possible configurations of all the N beads. In a second step, we will

pass to the limit N −→ +∞ in order to obtained a reduced model for the two extreme

beads, thereby obtaining a statistics on the end-to-end vector. The motivation for this

limit process is of course that, given the two extreme beads, the N − 2 other beads

are in extremely large number.

At equilibrium (namely for zero velocity field for the surrounding solvent and at

a fixed temperature), the probability density for the Euler angles (θi,ϕi) of the i-th

link writes

ψi(θi,ϕi) =
1

4π
sinθi,

simply by equiprobability of the orientation of this link. As the chain freely ro-

tates around each bead, the orientations of links are independent from one link to

another one, and thus the overall probability density for the sequence of angles

(θ1,ϕ1, ...,θN−1,ϕN−1) is simply the product

ψ(θ1,ϕ1, ...,θN−1,ϕN−1) =

(
1

4π

)N−1 N−1

∏
i=1

sinθi. (39)

Any statistical quantity (observable) B depending on the state of the chain thus has

average value

〈B〉 =

∫
B(θ N−1,ϕN−1)ψ(θ N−1,ϕN−1)dθ N−1 dϕN−1

(40)

where θ N−1 = (θ1, ...,θN−1) and ϕN−1 = (ϕ1, ...,ϕN−1).

For instance, it is a simple calculation that

〈|rrr|2〉 = (N − 1)a2
(41)

where a denotes the length between two beads.

It follows that the probability density for the end-to-end vector rrr reads:

P(rrr) =

∫
δ

(
rrr −

N−1

∑
i=1

auuui

)
ψ(θ N−1,ϕN−1)dθ N−1 dϕN−1, (42)

where δ is formally a Dirac mass and uuui the unit vector of Euler angles (θi,ϕi).
Using (39), a simple but somewhat tedious calculation shows that an adequate ap-

proximation formula for P, in the limit of a large number N −2 of beads eliminated,

is

P(rrr)
N large

≈
(

3

2π(N − 1)a2

)3/2

exp

(
− 3|rrr|2

2(N − 1)a2

)
. (43)

The right-hand side of (43) is now chosen to be the probability law of rrr, which is

consequently a Gaussian variable. From now on, only the end-to-end vector, and its

probability, are kept as the statistical description of the entire chain.
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Fig. 7. A polymeric chain consisting of, say, thirty beads and its phenomenological represen-

tation as a dumbbell.

Remark 7. For some dedicated applications, chains with Nb = 10 or Nb = 20 beads

are simulated. This is typically the case when one wants to model multiple relaxation

time scales in the polymer chain or understand boundary effects. Consider a pipeline

where the polymeric fluid flows. Some macroscopic model may provide good results

for the inner flow, but they need to be supplied with adequate boundary conditions

on the walls of the pipeline. Dumbbell models could be envisioned for this purpose,

but since the complexity of the chain is a key issue for rheological properties near

the boundaries, more sophisticated models with larger Nb have sometimes to be em-

ployed. Apart from such specific situations, it is considered that the dumbbell model

already gives excellent answers. But this also depends upon the force fields that will

be used. The purpose of the next section is exactly to introduce such a force. Others

will be mentioned in Sect. 4.

The Hookean model

We now have our configuration space, namely that of a single end-to-end vector rrr

equipped with a Gaussian probability at equilibrium. Let us next define the forces

this end-to-end vector experiences.

We need to equip the vector rrr with some rigidity. Such a rigidity does not express

a mechanical rigidity due to forces, of interatomic nature, holding between beads. It

will rather model an entropic rigidity, related to the variations of the configurations

of the actual entire chain when the end-to-end vector itself varies.

To understand this, let us only mention two extreme situations. If the end-to-end

vector has length exactly |rrr| = (N − 1)a, there is one and only one configuration of

the entire chain that corresponds to such an end-to-end vector, namely the chain fully

extended as a straight line. In contrast, when the end-to-end vector has, say, length

|rrr| = (N − 1)a/2, there is an enormous number of configurations, corresponding to

various shapes of a chain of total length (N − 1)a that give rise to such an end-to-

end vector. Entropy will thus favor short end-to-end vectors, rather than long ones. It

remains now to quantitatively understand this.

We know from Statistical Mechanics arguments that for a system with probability

law P(rrr) (obtained from (43)), the free energy is given by

A(rrr) = A0 − kT ln P(rrr)
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where T denotes temperature, A0
is a constant and k the Boltzmann constant. When

the end-to-end vector is modified by drrr, the resulting free energy modification reads

dA = −kT d ln P(rrr),

=
3kT

(N − 1)a2
rrr ·drrr. (44)

On the other hand, when temperature is kept constant, the free energy change is

related to the tension FFF of the chain by

dA = FFF(rrr) ·drrr. (45)

Comparing (44) and (45), we obtain the tension

FFF(rrr) =
3kT

(N − 1)a2
rrr. (46)

In other words, the entropic force FFF expressed in terms of the end-to-end vector rrr

is defined as the gradient of lnP with respect to rrr where P is the probability density of

the end-to-end vector at equilibrium (zero velocity field for the surrounding solvent,

and fixed temperature). This definition of the entropic force is consistent with the

fact that P is indeed a stationary solution for the dynamics that will be defined on the

probability density ψ of the end-to-end vector (see Equation (47) below) when the

The end-to-end vector therefore acts as a linear spring, with stiffness

H =
3kT

(N − 1)a2
.

The model obtained is called the Hookean dumbbell model.

The above derivation is the simplest possible one, based on oversimplifying as-

sumptions. Several improvements of the Hookean force (46) are indeed possible. We

prefer to postpone the presentation of such improvements until Sect. 4. Let us mo-

mentarily assume we have a force FFF(rrr) at hand, the prototypical example being the

Hookean force (46), and proceed further. On purpose, we do not make precise the

expression of FFF(rrr) in the sequel.

3.2 The multiscale model

Let us now denote ψ(t,xxx,rrr) the probability density for the end-to-end vectors of the

polymer chains at macropoint xxx and time t.

The variation of ψ in time, calculated along a fluid trajectory, that is

∂ψ

∂ t
+ uuu ·∇xxxψ , follows from three different phenomena:

1. a hydrodynamic force: the dumbbell is elongated or shortened because of the

interaction with the fluid ; Its two ends do not necessarily share the same macro-

scopic velocity, the slight difference in velocities (basically ∇uuu(t,xxx)rrr) results in

a force elongating the dumbbell ζ∇uuu(t,xxx)rrr where ζ denotes a friction coeffi-

cient;

velocity field in the solvent is zero (equilibrium situation).
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iniscent of the actual, much more complex, geometry of the entire polymeric

chain;

3. a Brownian force, modelling the permanent collisions of the polymeric chain by

solvent molecules, which (randomly) modifies its evolution.

above for the first and third phenomena (the hydrodynamic force and the Brownian

details, explaining the intimate nature of these forces and motivating their actual

mathematical form by rigorous arguments.

The overall conservation of momentum equation reads as the following evolution

equation on ψ :

∂ψ(t,xxx,rrr)

∂ t
+ uuu(t,xxx) ·∇xxxψ(t,xxx,rrr)

= −divrrr

((
∇xxx uuu(t,xxx)rrr − 2

ζ
FFF(rrr)

)
ψ(t,xxx,rrr)

)
+

2kT

ζ
∆rrrψ(t,xxx,rrr).

(47)

Equation (47) is called a Fokker-Planck equation (or also a forward Kolmogorov

equation). The three terms of the right-hand side of (47) respectively correspond to

the three phenomena listed above, in this order. A crucial point to make is that, in this

right-hand side, all differential operators acting on ψ are related to the variable rrr of

the configuration space, not of the ambient physical space. In contrast, the gradient

of the left-hand side is the usual transport term in the physical space uuu · ∇xxx. In the

absence of such a transport term (this will indeed be the case for extremely simple

geometries, such as that of a Couette flow), (47) is simply a family of Fokker-Planck

equation posed in variables (t,rrr) and parameterized in xxx. These equations only speak

to one another through the macroscopic field uuu. When the transport term is present,

(47) is a genuine partial differential equation in all variables (t,xxx,rrr). It is intuitively

clear that the latter case is much more difficult, computationally and mathematically.

Once ψ is obtained, we need to formalize its contribution to the total stress, and,

further, its impact on the macroscopic flow.

Let us return to some basics of continuum mechanics. When defining the stress

tensor, the commonly used mental image is the following: consider the material, cut

it by a planar section into two pieces, try and separate the pieces. The reaction force

experienced when separating the two pieces is τττnnn, where τττ is the stress tensor and

nnn the unit vector normal to the cut plane. Varying the orientation of the cut planes,

and thus nnn, provides all the entries of τττ . Applying the same ’methodology’ to the

polymeric fluid under consideration gives rise to two contributions (see Fig. 8): that,

usually considered, of the solvent, which contributes as the usual Newtonian stress

tensor, and that coming from all the polymeric chains reacting. The latter needs to be

evaluated quantitatively. This is the purpose of the so-called Kramers formula.

τττ p(t,xxx) = −npkT Id + np

∫
(rrr ⊗ FFF(rrr))ψ(t,xxx,rrr)drrr, (48)

force, respectively) and proceed further. In Sect. 4, we will return to this in more

force) in the previous section. We will momentarily admit the modelling proposed

2. the entropic force F issued from the coarse-graining procedure and which is rem-

We have gone into many details about the second phenomenon (the entropic
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where ⊗ denotes the tensor product (rrr ⊗ FFF(rrr) is a matrix with (i, j)-component

rrriFFF j(rrr)) and np denotes the total number of polymeric chain per unit volume. Note

that the first term only changes the pressure by an additive constant.

The complete system of equation combines the equation of conservation of mo-

mentum at the macroscopic level, the incompressibility constraint, the Kramers for-

mula, and the Fokker-Planck equation for the distribution of the end-to-end vector:





ρ

(
∂uuu

∂ t
+ (uuu ·∇)uuu

)
−η∆uuu+∇p−div τττ p = ρ fff ,

divuuu = 0,

τττ p(t,xxx) = np

∫
(rrr ⊗ FFF(rrr))ψ(t,xxx,rrr)drrr −npkT Id,

∂ψ(t,xxx,rrr)

∂ t
+uuu(t,xxx) ·∇xxxψ(t,xxx,rrr)

= −divrrr

((
∇xxx uuu(t,xxx)rrr − 2

ζ
FFF(rrr)

)
ψ(t,xxx,rrr)

)
+

2kT

ζ
∆rrrψ(t,xxx,rrr).

(49)

For future reference, let us rewrite this system of equations in a non-dimensional

form (see Sect. 4.3 and (97) for the derivation of the non-dimensional equations and

the definition of the non-dimensional numbers Re, ε and We):





Re

(
∂uuu

∂ t
+ (uuu ·∇)uuu

)
− (1− ε)∆uuu +∇p−div τττ p = fff ,

divuuu = 0,

τττ p(t,xxx) =
ε

We

(∫
(rrr ⊗ FFF(rrr))ψ(t,xxx,rrr)drrr − Id

)
,

∂ψ(t,xxx,rrr)

∂ t
+uuu(t,xxx) ·∇xxxψ(t,xxx,rrr)

= −divrrr

((
∇xxx uuu(t,xxx)rrr − 1

2We
FFF(rrr)

)
ψ(t,xxx,rrr)

)
+

1

2We
∆rrrψ(t,xxx,rrr).

(50)

The multiscale nature of this system is obvious. In the specific context of complex

fluids, such a system is called a micro-macro model. It is equally obvious on (50) that

the computational task will be demanding. Formally, system (50) couples a Navier-

Stokes type equation (that is, an equation the simulation of which is one of the major

challenges of scientific computing, and has been the topic of thousands of years of

researchers efforts), and, at each point (that is, slightly anticipating the discretization,

at each node of the mesh used for the space discretization of the macroequation), one

parabolic partial differential equation set on the space of rrr. It is thus intuitively clear

that, in nature, such a micromacro strategy will be limited to as simple as possible

test cases. We will return to this later.

With a view to generalizing the approach followed above to various other con-

texts, it is interesting to write system (50) as a particular form of a more abstract sys-

tem. A purely macroscopic description of non-Newtonian fluids, issued from equa-

tions of the type (13)–(15) typically reads:
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n

Fig. 8. Kramer Formula : the contribution of all polymeric chains to the stress is obtained

summing over all chains cut by the plane considered.






Duuu

Dt
= F (τττ p,uuu),

Dτττ p

Dt
= G (τττ p,uuu).

(51)

In contrast, a multiscale approach introduces an additional intermediate step, where

the stress tensor is calculated as an average value of a field Σ describing the mi-

crostructure. An evolution equation is written on the latter:






Duuu

Dt
= F (τττ p,uuu),

τττ p = average over Σ ,

DΣ

Dt
= Gµ(Σ ,uuu).

(52)

The structure of system (52) is a common denominator to all multiscale mod-

els for complex fluids. Beyond this, it also illustrates the nature of all multiscale

approaches, in very different contexts (see C. Le Bris [77]). A global macroscopic

equation is coupled with a local (microscopic) equation, via an averaging formula.

For instance, the reader familiar with homogenization theory for materials recognizes

in (52) the homogenized equation, the value of the homogenized tensor, and the cor-

rector equation, respectively. On the numerical front, it is also a structure shared with

multiscale algorithmic approaches: a global coarse solver coupled to a local fine one

using an averaging process (think of the Godunov scheme for solving the Riemann

problem in computational fluid dynamics).

4 The stochastic approach

We now need to complement the derivation of the previous section in three direc-

tions:

• We need to introduce a definite stochastic description of the polymeric chain that

will justify the expressions employed for the elongation force and the Brownian

force in (47).
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• We need to provide other entropic forces, alternative to the simple Hookean force

(46).

• We need to prepare for an efficient computational strategy that allows for the

practical simulation of systems of the type (50) even when the configuration

space for the chain is high-dimensional.

For all three aspects, stochastic analysis comes into play. This is why we devote

the next section to a brief introduction of the major ingredients from stochastic

analysis needed in the sequel. Such ingredients are traditionally not necessarily

well known by readers more familiar with the classical analysis of partial differ-

to Sect. 4.2. In any event, Subsection 4.1 is no more than a surrogate for a more

comprehensive course of Stochastic Analysis, as contained in the classical text-

books F. Comets and T. Meyre [26], I. Karatzas and S.E. Shreve [69], P.E. Kloeden

and E. Platen [73], B. Øksendal [101], L.C.G. Rogers and D. Williams [114, 115],

D. Revuz and M. Yor [113], D. Stroock and S.R.S. Varadhan [117]. We also refer to

D.J. Higham [58] for an attractive practical initiation.

4.1 Initiation to Stochastic Differential Equations

We assume that the reader is familiar with the following elementary notions of Prob-

ability Theory: the notion of probability space (Ω ,A ,P), where Ω is the space, A

is a σ -algebra, and P is the probability measure that equips the space; the notion of

vector-valued or scalar-valued random variables defined on this probability space;

the notion of expectation value and the notion of law.

A rather abstract notion we must define before getting to the heart of the matter

is the notion of filtration: a filtration (Ft ,t ≥ 0) is an increasing sequence, indexed

by time t ∈ R+, of subsets of the σ -algebra A . The filtration Ft is to be thought of

as the set of information available at time t.

The Monte Carlo method

The Monte Carlo method is a stochastic method to compute the expectation value of

a random variable. Let X be a random variable with finite variance:

Var(X) = E
(
(X −E(X))2

)
= E(X2)− (E(X))2 < ∞.

The principle of the Monte Carlo method is to approximate the expectation value

E(X) by the empirical mean

IK =
1

K

K

∑
k=1

X k,

where (X k)k≥0 are independent identically distributed (i.i.d.) random variables, the

law of X k
being the the law of X .

ential equations and their discretization techniques in the engineering sciences

(finite element methods, etc. . .). Of course, the reader already familiar with the 

basics of stochastic analysis may easily skip the next section and directly proceed
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The foundation of the Monte Carlo method is based on two mathematical results.

The law of large numbers states that (if E|X | < ∞)

almost surely, lim
K→∞

IK = E(X).

The central limit theorem gives the rate of convergence (if E((X)2) < ∞): ∀a > 0,

lim
K→∞

P

(
|IK −E(X)| ≤ a

√
Var(X)

K

)
=

1√
2π

∫ a

−a
exp(−x2/2)dx.

This estimate enables to build a posteriori error estimates (so-called confidence in-

tervals) by choosing typically a = 1.96 so that
1√
2π

∫ a
−a exp(−x2/2)dx

estimating the variance Var(X) by the empirical variance

VK =
1

K

K

∑
k=1

(X k)2 − (IK)2.

This estimate shows that the rate of convergence of a Monte Carlo method is of

order

√
Var(X)

K
: to reduce the error, one needs to add more replicas (increase K), or

reduce the variance of the random variable (which is the basis of variance reduction

methods, see Sect. 5.4 below).

Stochastic processes, Brownian motion and simple stochastic differential

equations

Let us now introduce the notion of a (continuous-in-time) stochastic process, as a

family of random variables (Xt)t≥0 indexed by time t ∈ R+. Given a stochastic pro-

cess Xt , we may consider the natural filtration generated by Xt , that is the filtration

Ft formed, for each t, by the smallest σ -algebra for which the maps ω −→ Xs(ω),
0 ≤ s ≤ t, are measurable functions.

Conversely, being given a filtration Ft , a stochastic process such that, for all t,

Xt is a measurable function with respect to Ft , is called a Ft -adapted stochastic

process.

A remarkable random process is the Brownian motion, which we now briefly

introduce.

The formal motivation for the introduction of the Brownian motion is the need

for modelling random trajectories. For such trajectories, the random perturbations at

time t should be independent of those at time t ′ < t, and essentially the same. By

this we mean that the two should share the same law. The mathematical manner to

formalize the above somewhat vague object is the notion of Brownian motion. There

are several ways to define a Brownian motion. One way is to take the limit of random

walks on lattices, with an adequate scaling law on the size of the lattice and time. The

definition we choose to give here is the axiomatic definition. We define a Brownian

motion as a real-valued random process enjoying the following three properties. First,

95%, and~–
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its trajectories, that is, the maps s −→ Xs(ω) are continuous, for almost all ω ∈
Ω . Second, it has independent increments, that is, when s ≤ t, the random variable

Xt − Xs is independent of the σ -algebra Fs: otherwise stated, for all A ∈ Fs, and all

bounded measurable function f , E(1A f (Xt −Xs)) = E( f (Xt −Xs))P(A). Third, it has

stationary increments, that is when s ≤ t, Xt − Xs and Xt−s − X0 share the same law.

In fact, the conjunction of these three properties implies that, necessarily, Xt − X0 is

a Gaussian variable, with mean rt (for some r) and variance σ2t (for some σ ). When

r = 0 and σ = 1, the Brownian motion is called a standard Brownian motion.

We now wish to define differential equations, typically modelling the motion

of particles, which are subject to random perturbations. The adequate mathematical

notion for this purpose is that of stochastic differential equations. Let us fix a prob-

ability space (Ω ,A ,P), where it is sometimes useful to think of Ω as the product

Ω = Ω1 × Ω2 where Ω1 models the randomness due to the initial condition sup-

plied for the differential equation, and Ω2 models the randomness associated with

the perturbations occurring at all positive times.

Let us also consider a filtration Ft and a Ft -adapted Brownian motion Bt . Let

σ > 0 denote a fixed parameter, called diffusion, and b(t,x) a fixed regular function,

called drift. As regards regularity issues, the most appropriate setting is to consider

functions b measurable with respect to time t, Lipschitz with respect to the space

variable x, and with a growth at most linear at infinity, that is | f (t,x)| ≤ C(1 + |x|)
for all t, x. For simplicity, the Lipschitz constant and the growth constant are assumed

uniform on t ∈ [0,T ]. We then define the stochastic differential equation:

dXt = b(t,Xt)dt + σ dBt , (53)

with initial condition X0(ω1). Equation (53) is formal. It is to be understood in the

following sense: Xt is said a solution to (53) when

Xt(ω1,ω2) = X0(ω1)+

∫ t

0

b(s,Xs(ω1,ω2))ds+ σ Bt(ω2), (54)

almost surely. Our setting in (53)–(54) is one dimensional, but the notion is readily

extended to the higher dimensional context (see (64) below).

Note that we do not question here the existence and the uniqueness of the solu-

tions to the above stochastic differential equations. This is beyond the scope of this

simplified presentation. Let us only say that we assume for the rest of this expository

survey that typically the Lipschitz regularity mentioned above is sufficient to define

in a unique manner the solution to (53). For less regular drifts and related questions,

we refer the interested reader to Sect. 6. The modelling of complex fluids may indeed

naturally involve non-regular drifts.

Stochastic integration

The above form (53) is actually a simple form of a stochastic differential equations.

This form is sufficient to deal with the context of flexible polymers, which is the main



Multiscale Modelling of Complex Fluids 75

topic of this presentation. However, for rigid polymers, briefly addressed in Sect. 7,

and some other types of complex fluids, it is useful to define the general form of

stochastic differential equations. This is the purpose of this short section.

In addition, the consideration of this general form of stochastic differential equa-

tion will allow us to introduce a technical lemma which will be crucially useful, even

in our simple setting.

Using a standard Brownian motion Bt , the Itô integral may be constructed.

gral, proceeding first for piecewise constant functions, and then generalizing the

notion to more general functions by approximation. Consider a decomposition

{s0 = 0, ...,s j, ...,sn = t} of the range [0,t] and a piecewise constant process

Ys(ω) =
n

∑
j=1

Ỹj−1(ω)1]s j−1,s j ](s)

˜
j (such that E(|Ỹj|)<+∞ ).

Then we define

∫ t

0

Ys dBs =
n

∑
j=1

Ỹj−1 (Bs j
− Bs j−1

). (55)

t∫ T

0

Yt(ω)2 dt < +∞, this allows, by approximation, for the definition of the stochas-

tic process ∫ t

0

Ys dBs.

In the simple case when Yt ≡ 1, this coincides with the already known notion∫ t

0

dBs = Bt . Notice that by taking the expectation of (55), we have, for all t ∈ [0,T ]

E

(∫ t

0

Ys dBs

)
= 0, (56)

which actually holds (by an approximation argument) for any arbitrary stochastic

process Yt such that E

(∫ T

0

Yt(ω)2 dt

)
< +∞.

Having defined the Itô integral, we are in position, for any regular drift b and

diffusion σ , to define the stochastic differential equation:

dXt = b(t,Xt)dt + σ(t,Xt)dBt , (57)

supplied with the initial condition X0. Mathematically:

Xt(ω1,ω2) = X0(ω1)+

∫ t

0

b(s,Xs(ω1,ω2))ds+

(∫ t

0

σ(s,Xs)dBs

)
(ω1,ω2), (58)

almost surely. In the right-hand side, the first integral is the Lebesgue integral, the

second one is a Itô integral.

FNext, for any arbitrary -adapted stochastic process Y (ω) such that, almost surely,

 is 

The construction of this notion of integral is similar to that of the Riemann inte-

Ỹj Fsand -measurableconstructed from random variables Y

t

j
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Itô calculus and Fokker-Planck equation

We now wish to relate the above stochastic differential equation (57) with a partial

differential equation. The latter is indeed the Fokker-Planck equation

∂ p

∂ t
(t,x)+

∂

∂x
(b(t,x) p(t,x))− ∂ 2

∂x2

(
σ2(t,x)

2
p(t,x)

)
= 0. (59)

In the context of deterministic equations, the reader is perhaps familiar with the

intimate link between ordinary differential equations and linear transport equations.

This is the famous method of characteristics, which we briefly recall here. Consider

the linear transport equation

∂u

∂ t
(t,x)− b(x)

∂u

∂x
(t,x) = 0 (60)

supplied with the initial condition u0 at initial time. Its solution reads

u(t,x) = u0(X(t;0,x)) (61)

where X(t;0,x) is the solution at time t of the ordinary differential equation

dX(t)

dt
= b(X(t)) (62)

starting from the initial condition X(0) = x. The proof of this fact is elementary. For

s ∈ [0,t], we have (where X(s) = X(s;0,x))

∂

∂ s
(u(t − s,X(s))) = −∂u

∂ t
(t − s,X(s))+

dX

dt
(s)

∂u

∂x
(t − s,X(s)),

= −∂u

∂ t
(t − s,X(s))+ b(X(s))

∂u

∂x
(t − s,X(s)) = 0.

By integrating this relation from s = 0 to s = t, we thus obtain (61).

A similar type of argument, based on the so-called Feynman-Kac Formula would

show the relation holding between the stochastic differential equation (57) and a

partial differential equation, called the backward Kolmogorov equation. A dual view-

point to the above one illustrates the relation between the stochastic differential equa-

tion (57) and the Fokker-Planck equation (59). We now present it.

First, we need to establish a chain rule formula in the context of stochastic pro-

cesses. This is the purpose of the celebrated Itô formula (stated here in a simple

one-dimensional setting).

Lemma 1. Itô Formula Let Xt solve

dXt = b(t,Xt)dt + σ(t,Xt)dBt ,

in the sense of (58). Then, for all C2 regular function ϕ ,
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dϕ(Xt) =

(
ϕ ′(Xt)b(t,Xt)+

1

2
ϕ ′′(Xt)σ(t,Xt)

2

)
dt + ϕ ′(Xt)σ(t,Xt)dBt

in the sense

ϕ(Xt) = ϕ(X0)+

∫ t

0

(
ϕ ′(Xs)b(s,Xs)+

1

2
ϕ ′′(Xs)σ(s,Xs)

2

)
ds

+
∫ t

0

ϕ ′(Xs)σ(s,Xs)dBs. (63)

The point is of course to compare with the deterministic setting, corresponding

to σ = 0, and for which no second derivatives of ϕ appears since

d

dt
ϕ(Xt) = ϕ ′(Xt)

dXt

dt
.

We are now in position to relate (57) and (59). Assume that all conditions of reg-

ularity are satisfied, which gives sense to the formal manipulations we now perform.

Let us assume that X0, the initial condition for (57) has law p0, where p0 is the initial

condition given to (59). Let us denote by p(t,x) the probability density (with respect

to the Lebesgue measure) of the random variable Xt .

For any arbitrary C2
function ϕ , we write

∫
ϕ(x)

∂ p

∂ t
(t,x)dx =

d

dt

∫
ϕ(x)p(t,x)dx =

d

dt
E(ϕ(Xt)) .

Now, taking the expectation of (63), we obtain

E(ϕ(Xt)) = E(ϕ(X0))+E

(∫ t

0

(
ϕ ′(Xs)b(s,Xs)+

1

2
ϕ ′′(Xs)σ(s,Xs)

2

)
ds

)

+E

(∫ t

0

ϕ ′(Xs)σ(s,Xs)dBs

)
.

Under suitable regularity assumptions, the last term vanishes for all times (see (56)).

We thus have

∫
ϕ(x)

∂ p

∂ t
(t,x)dx = E

(
ϕ ′(Xt)b(t,Xt)+

1

2
ϕ ′′(Xt)σ(t,Xt)

2

)
,

=

∫ (
ϕ ′(x)b(t,x)+

1

2
ϕ ′′(x)σ2(t,x)

)
p(t,x)dx,

=

∫
ϕ(x)

(
− ∂

∂x
(pb)(t,x)+

1

2

∂ 2

∂x2
(σ2 p)

)
dx.

This precisely shows that p is the solution to (59), which starts from p0 at initial

time.

A similar argument, based on the multi-dimensional Itô Formula (a straightfor-

ward extension of Lemma 1), allows to establish the same correspondence between,

on the one-hand, the vectorial stochastic differential equation
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dXXX t = bbb(t,XXX t)dt + σσσ(t,XXX t)dBBBt , (64)

where XXX t is a random process with values in RN
, bbb(t, ·) is a vector field on RN

for

all times, σ is N × K matrix valued function, and BBBt is a K-dimensional Brownian

motion, and, on the other hand, the Fokker-Planck equation.

∂ p

∂ t
(t,xxx)+ div ((bbb(t,xxx) p(t,xxx))− 1

2
∇2

:
(
σσσσσσT p

)
(t,xxx) = 0, (65)

where ∇2
:
(
σσσσσσT p

)
=

N

∑
i, j=1

∂ 2

∂xi∂x j

(
K

∑
k=1

σi,kσ j,k p

)
.

Under appropriate conditions of regularity (which we have omitted to make pre-

cise above), we may therefore claim that the law of any process solving the stochas-

tic differential equation solves the Fokker-Planck equation. The converse assertion is

false. Let us give the following simple illustration. Consider the stochastic differen-

tial equation

dXt = −1

2
Xt dt + dBt , (66)

with initial condition X0 normally distributed with zero mean and variance one (and

independent of Bt), and the associated Fokker-Planck equation

∂ p(t,x)

∂ t
− 1

2

∂

∂x
(x p(t,x))− 1

2

∂ 2

∂x2
p(t,x) = 0. (67)

Clearly, the solution to (66) reads

Xt = e−t/2X0 +

∫ t

0

e(s−t)/2dBs.

Therefore, for all t ≥ 0, Xt is a Gaussian random variable with zero mean and variance

one and of course, as the previous argument shows, p(t,x) = 1√
2π

exp(−x2/2) indeed

solves the Fokker-Planck equation (67). However, any random process Yt such that

its marginals in time (namely the law of Yt , for fixed t) are normally distributed with

zero mean and variance one, such as the constant process Yt = X0, does not solve

(66). The process encodes more information than the law of the time marginals, and

it is thus intuitively clear that the knowledge of the law of the time marginals is not

sufficient to know the trajectory of the process. Otherwise stated, knowing the law

of the time marginals allows to compute all expectation values of the type E(ϕ(Xt)),
but, e.g., not quantities such as E(ψ(Xt ,Xs)).

Nevertheless, for most situations of interest, and in particular for many physi-

cally relevant situations, only the knowledge of expectation values such as E(ϕ(Xt))
is sufficient. In such situations, solving the Fokker-Planck equation, when it is prac-

tically feasible, provides all the information needed. In our context of the modelling

of complex fluids, we can therefore equivalently use the stochastic differential view-

point, or the Fokker-Planck viewpoint. Efficiency considerations indicate which is

the best strategy, depending on the dimension of the problem at hand, and other pa-

rameters. We will return to this below.
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Discretization of SDEs

We now briefly give here some basic elements of numerical analysis for stochastic

differential equations. For this purpose, we assume that the reader is familiar with

the discretization techniques for ordinary differential equations and the associated

analysis (see E. Hairer, S.P. Nørsett and G. Wanner [55, 56]).

For simplicity, we argue on the one-dimensional simple case (53), that is

dXt = b(t,Xt)dt + σ dBt ,

with in addition, a constant σ . We leave aside questions related to the general case

dXt = b(t,Xt)dt + σ(t,Xt)dBt , which, owing to the dependence of σ upon the solu-

tion Xt , might be significantly more technical than the simple case considered here

(see Remark 8 below). Likewise, we assume that b is regular and that all questions

of existence and uniqueness have been settled.

The crucial point to bear in mind is that, in contrast to the deterministic setting,

there are two notions of convergence for a scheme discretizing a stochastic differen-

tial equation.

The notion of convergence analogous to the deterministic notion is:

Definition 1. The numerical scheme is said strongly convergent and is said to have

strong order of convergence α > 0 when there exists a constantC, possibly depending

on the interval of integration [0,T ], such that, for all timesteps ∆ t and for all integer

n ∈ [0,T/∆ t],
E
(∣∣Xn − Xtn

∣∣)≤ C (∆ t)α , (68)

where Xtn denotes the exact solution at time tn = n∆ t, and Xn denotes its numerical

approximation.

A weaker notion, which is a better metric to assess convergence in practical situ-

ations, is:

Definition 2. Under the same conditions as the above definition, the scheme is said

weakly convergent and is said to have weak order of convergence β > 0 when for

all integer n ∈ [0,T/∆ t],

∣∣∣∣E
(
ϕ(Xn)

)
−E(ϕ(Xtn))

∣∣∣∣≤ C (∆ t)β , (69)

for all C∞ function ϕ , with polynomial growth at infinity, and such that all its deriva-

tives also have polynomial growth at infinity.

The latter definition, specific to the stochastic setting, is motivated by the fact that

in many applications, as already mentioned above, the stochastic differential equa-

tion is simulated only to evaluate some expectation values E(ϕ(Xt)). This will be the

case for complex fluid flows simulation (see the expression (82) of the stress tensor

below). The notion of weak convergence is tailored for this purpose. In contrast to the

strong convergence, it does not measure the accuracy of the approximation of each
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realization (each “trajectory”) (note indeed that P(|Xn −Xtn | ≥ a)≤ 1

a
E(|Xn −Xtn |)),

but only the accuracy of the mean. Of course, strong convergence clearly implies

weak convergence.

Let us now mention the simplest possible scheme for the numerical integration

of (57). It is the forward (or explicit) Euler scheme:

Xn+1 = Xn + b(tn,Xn)∆ t + σ (Btn+1
− Btn). (70)

Since the increment Btn+1
−Btn is a centered Gaussian random variable with variance

tn+1 − tn = ∆ t, the scheme also writes

Xn+1 = Xn + b(tn,Xn)∆ t + σ
√

∆ t Gn, (71)

where (Gn)n≥0 denote i.i.d. standard normal random variables.

It is easy to see that the scheme (70) arises from the approximation

Xtn+1
− Xtn =

∫ tn+1

tn

b(t,Xt)dt + σ
∫ tn+1

tn

dBt ,

≈ b(tn,Xtn)∆ t + σ (Btn+1
− Btn).

The second integration in the right-hand side being exact, the precision order is ex-

actly that of the approximation of the Lebesgue integral, and is therefore α = 1. This

is the strong order of convergence, and we leave to the reader the task to check that

this is also the weak order of convergence.

Remark 8. Actually, the above argument is slightly misleading. It is specific to the

case of a constant diffusion σ as in (53) or, more appropriately stated, to a determin-

istic diffusion σ that may depend on time, but that does not depend on the solution

Xt . When the latter depends on the solution, that is

dXt = b(t,Xt)dt + σ(Xt)dBt ,

then the Euler scheme

Xn+1 = Xn + b(tn,Xn)∆ t + σ(Xn)(Btn+1
− Btn) (72)

(actually also called the Euler-Maruyama scheme) is only of strong order α = 1/2,

but it remains of weak order β = 1. The reason lies in the difference between the Itô

calculus and the usual deterministic calculus. In fact, to obtain strong convergence

with order 1, the adequate scheme to employ (at least for one-dimensional processes)

is the Euler-Milstein scheme:

Xn+1 − Xn = b(tn,Xn)∆ t + σ(Xn)(Btn+1
− Btn)

+
1

2
σ(Xn)σ

′(Xn)
(
(Btn+1

− Btn)
2 − ∆ t

)
.

(73)

It is of strong order of convergence α = 1, and of course agrees with the Euler-

Maruyama scheme when σ is independent of Xt .
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4.2 Back to the modelling

Given the notions of the previous section, we are now in position to return to some

key issues in the modelling step, briefly addressed earlier in Sect. 3. Our purpose

there was only to concentrate on the multiscale problem, and reach as soon as pos-

sible a prototypical form of such a system. This has been performed with (50) at

the price of some simplifications and shortcuts. Let us now take a more pedestrian

approach to the problem, and dwell into some issues, based on our present mathe-

matical knowledge of the stochastic formalism.

The microscopic equation of motion

Let us first concentrate on the two forces exerted by the solvent onto the chain,

namely the friction force elongating the chain and the Brownian force modeling col-

lisions.

For this purpose, we isolate one single bead, denote by m its mass, VVV t its velocity,

and write the following equation of motion, called the Langevin equation:

mdVVV t = −ζVVV t dt + DdBBBt , (74)

where BBBt denotes a standard, d-dimensional, Brownian motion and D a scalar pa-

rameter to be determined. The solution of (74) is a so-called Ornstein-Uhlenbeck

process:

VVV t = VVV 0 exp

(
− ζ

m
t

)
+

D

m

∫ t

0

exp

(
− ζ

m
(t − s)

)
dBBBs,

where VVV 0 is the initial velocity, assumed independent of BBBt . Consequently, VVV t is a

Gaussian process with mean

E(VVV t) = E(VVV 0)exp

(
− ζ

m
t

)
,

and covariance matrix

E((VVV t −E(VVV t))⊗ (VVV t −E(VVV t)))

= E((VVV 0 −E(VVV 0))⊗ (VVV 0 −E(VVV 0)))exp

(
−2ζ

m
t

)

+
D2

2ζm

(
1 − exp

(
−2ζ

m
t

))
Id. (75)

For the above derivation, we have assumed that the fluid is at rest. The process VVV t is

thus expected to be stationary, which imposes:





E(VVV t) = E(VVV 0) = 0,

E(VVV t ⊗VVV t) = E(VVV 0 ⊗VVV 0) =
D2

2ζm
Id.

(76)
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2

1

X

X

X
R

Fig. 9. The dumbbell model: the end-to-end vector XXX is the vector connecting the two beads,

while RRR gives the position of the center of mass.

Using the principle of equipartition of energy, the mean kinetic energy
1

2
mE(‖VVV t‖2)

should be equal to
d
2

kT (where d is the dimension of the ambient space) thus the

Nernst-Einstein relation:

D =
√

2kTζ . (77)

Let us next consider two beads, forming a dumbbell. We denote by XXX i
t the (ran-

dom) position of bead i, i = 1,2, and XXX t = XXX2

t −XXX1

t the end-to-end vector (see Fig. 9).

We also denote RRR = 1

2

(
XXX1 + XXX2

)
the position of the center of mass. In addition to the

above two forces experienced by each of the beads, a force FFF(XXX t) of entropic nature

is to be accounted for. We now know this well (see Sect. 3.1).

The Langevin equations for this simple two particle system reads:





md

(
dXXX1

t

dt

)
= −ζ

(
dXXX1

t

dt
− uuu(t,XXX1

t )

)
dt + FFF(XXX t)dt +

√
2kT ζ dBBB1

t ,

md

(
dXXX2

t

dt

)
= −ζ

(
dXXX2

t

dt
− uuu(t,XXX2

t )

)
dt − FFF(XXX t)dt +

√
2kT ζ dBBB2

t ,

(78)

where BBB1

t and BBB2

t are two independent, d-dimensional Brownian motions. In the limit

of a vanishing
m
ζ , (that is when the characteristic timescale of relaxation to equilib-

rium for the end-to-end vector is far larger than this value), we obtain by linear

combination of the above two Langevin equations:
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dXXX t =
(
uuu(t,XXX2

t )− uuu(t,XXX1

t )
)

dt − 2

ζ
FFF(XXX t)dt + 2

√
kT

ζ
dWWW1

t ,

dRRRt =
1

2

(
uuu(t,XXX1

t )+ uuu(t,XXX2

t )
)

dt +

√
kT

ζ
dWWW 2

t ,

(79)

where WWW 1

t = 1√
2

(
BBB2

t − BBB1

t

)
and WWW 2

t = 1√
2

(
BBB1

t + BBB2

t

)
are also two independent, d-

dimensional Brownian motions. We assume they do not depend on space.

At this stage, the following assumptions are in order:

• as the length of the polymer is in any case far smaller than the spatial variations

of the velocity of the solvent, we may perform the Taylor expansion

uuu(t,XXX i
t) ≃ uuu(t,RRRt)+ ∇uuu(t,RRRt)(XXX

i
t − RRRt)

for i = 1,2,

• as
1

2

(
uuu(t,XXX1

t )+ uuu(t,XXX2

t )
)

dt is of macroscopic size, in comparison to the micro-

scopic variation

√
kT
ζ dWWW 2

t , the noise WWW 2

t = 0 is neglected.

Denoting by WWW t = WWW 1
, we obtain:





dXXX t = ∇uuu(t,RRRt)XXX t dt − 2

ζ
FFF(XXX t)dt + 2

√
kT

ζ
dWWW t ,

dRRRt = uuu(t,RRRt)dt.

(80)

The above system is supplied with initial conditions XXX0 and RRR0. The processes XXX t and

WWW t are naturally indexed by the trajectories of fluid particles. The Eulerian descrip-

tion corresponding to the above Lagrangian description reads, for XXX t(xxx) denoting the

conformation at xxx at time t:

dXXX t(xxx)+uuu(t,xxx).∇XXX t(xxx)dt = ∇uuu(t,xxx)XXX t(xxx)dt − 2

ζ
FFF(XXX t(xxx))dt +2

√
kT

ζ
dWWW t . (81)

Equation (81) is simply the stochastic version of the model already introduced

in Sect. 3 under the form of equation (47). Indeed, the latter is the Fokker-Planck

associated to the stochastic differential (81). The function ψ solution to (47) is the

probability density of XXX t(xxx) solution to (81). We refer the reader to the previous

section for more details on the ingredient of stochastic analysis needed for the proof

of this fact (see Sect. 4.1).

The stress tensor

Using the definition of the stress tensor recalled in Sect. 3, the Kramers formula can

be shown. In the stochastic language we adopt here, it reads
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τττ p(t) = np

(
E(XXX t ⊗ FFF(XXX t))− kT Id

)
, (82)

where ⊗ denotes the tensorial product and np is the concentration of polymers.

See H.C. Öttinger [102, pp158–159], M. Doi and S.F. Edwards [36, section 3.7.4],

R.B. Bird et al [12, section 13.3]. Of course, this expression is similar, in terms of

XXX t , to the expression previously found in terms of the probability density function

ψ(t, ·) of XXX t , namely (48) in Sect. 3.

Using Itô calculus, an interesting alternative expression can be found for the

stress tensor. Indeed, introducing the so-called structure tensor XXX t(xxx)⊗ XXX t(xxx), we

have:

d(XXX t(xxx)⊗ XXX t(xxx)) = (dXXX t(xxx))⊗ XXX t(xxx)+ XXX t(xxx)⊗ (dXXX t(xxx))+
4kT

ζ
Iddt

=
(

− uuu(t,xxx).∇(XXX t(xxx)⊗ XXX t(xxx))

+∇uuu(t,xxx)(XXX t(xxx)⊗ XXX t(xxx))+ (XXXt(xxx)⊗ XXX t(xxx))(∇uuu(t,xxx))T

− 2

ζ
FFF(XXX t)⊗ XXX t −

2

ζ
XXX t ⊗ FFF(XXX t)+

4kT

ζ
Id

)
dt

+2

√
kT

ζ
((XXX t(xxx)⊗ dWWW t)+ (dWWW t ⊗ XXX t(xxx))) . (83)

The mean of the structure tensor

AAA(t,xxx) = E(XXX t(xxx)⊗ XXX t(xxx)) (84)

therefore solves, under some mathematical assumptions on XXX t ,

∂AAA

∂ t
(t,xxx)+ uuu(t,xxx).∇AAA(t,xxx)− ∇uuu(t,xxx)AAA(t,xxx)− AAA(t,xxx)(∇uuu(t,xxx))T

= − 4

ζ
E(XXX t ⊗ FFF(XXX t))+

4kT

ζ
Id. (85)

Using (82), the following expression of the stress tensor, called the Giesekus formula,

is obtained, which only explicitly depends on second moments of XXX t :

τττ p(t,xxx) =

−ζ

4
np

(
∂AAA

∂ t
(t,xxx)+ uuu(t,xxx).∇AAA(t,xxx)− ∇uuu(t,xxx)AAA(t,xxx)− AAA(t,xxx)(∇uuu(t,xxx))T

)
.

The stress τττ p is thus proportional to the upper-convected derivative of AAA.

The force

We now have to make the force FFF specific. In full generality, it is assumed that FFF is

the gradient of a convex, radially symmetric, potential Π(XXX) = π(‖XXX‖). Thus,
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FFF(XXX) = π ′(‖XXX‖)
XXX

‖XXX‖ . (86)

The convexity of Π(XXX) with respect to XXX of course amounts to that of π(l) with

respect to l, together with π ′(0) ≥ 0.

The simplest example of potential π is the quadratic potential πHook(l) = H
l2

2
,

which of course corresponds to the Hookean force introduced in (46). There are two

major pitfalls with the Hookean dumbbell model: first it is not a multiscale model

in nature, and second (and perhaps more importantly), it has a highly non physical

feature.

Let us begin by verifying that the Hookean model is actually equivalent to the

purely macroscopic Oldroyd B model introduced in (22).

More on the Hookean model

For Hookean dumbbell, we have: E(XXX ⊗ FFF(XXX)) = HE(XXX ⊗ XXX), thus the following

equation is obtained on the structure tensor AAA = E(XXX ⊗ XXX):

∂AAA

∂ t
(t,xxx)+ uuu(t,xxx).∇AAA(t,xxx)− ∇uuu(t,xxx)AAA(t,xxx)− AAA(t,xxx)(∇uuu(t,xxx))T

= −4H

ζ
AAA(t,xxx)+

4kT

ζ
Id, (87)

that is, in terms of τττ p :

ζ

4H

(
∂τττ p

∂ t
(t,xxx)+ uuu(t,xxx).∇τττ p(t,xxx)− ∇uuu(t,xxx)τττ p(t,xxx)− τττ p(t,xxx)(∇uuu(t,xxx))T

)

= −τττ p(t,xxx)+ npkT
ζ

4H

(
∇uuu(t,xxx)+ (∇uuu(t,xxx))T

)
. (88)

Introducing the relaxation time

λ =
ζ

4H
, (89)

and the viscosity

ηp = npkT λ , (90)

we recognize the macroscopic Maxwell (or Oldroyd B) model (22), that is,

λ

(
∂τττ p

∂ t
+ uuu ·∇τττ p − ∇uuuτττ p − τττ p(∇uuu)T

)
+ τττ p = ηpγ̇γγ.

A few other multiscale models have a macroscopic equivalent. This is for exam-

ple the case of the FENE-P model (see Equation (92) below), which is deliberately

built to have a macroscopic equivalent. But for most other multiscale models of real

interest (in particular those involving FENE forces, see Equation (91) below), no

macroscopic equivalent formulation is known. And it is believed that no such formu-

lation exists. In this latter sense, multiscale models are more powerful than purely

macroscopic models.
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In addition to the above, a major theoretical flaw of the dumbbell model, exem-

plified in (46), is that nothing prevents the end-to-end vector, in the Hookean model,

to reach arbitrarily large lengths |rrr|. This is of course not consistent with the actual

finite length of the chain. This indeed comes from the method of derivation where

we have taken the limit of large N, each of the link being of length a. In the limit,

the total length of the chain therefore explodes, thus the formula (46). For all the

above reasons, the Hookean dumbbell model, although a perfect test case for pre-

liminary mathematical arguments, is not a fully appropriate benchmark, physically,

mathematically and numerically representative, for multiscale models.

Accounting for the finite extensibility of the chain is an important issue, for which

adequate models exist. We now turn to two of them.

Other forces

The FENE model, where FENE is the acronym for Finite Extensible Nonlinear Elas-

tic, is perhaps the most famous force field employed in the simulation of polymeric

fluids. It corresponds to the potential (see Fig. 10):

πFENE(l) = −bkT

2
ln

(
1 − l2

bkT/H

)
. (91)

The success of this potential is well recognized. In this mathematical text, it

is not our purpose to argue on the physical validity and relevance of the models.

However, an interesting point to make is the following. The dumbbell model is a

very coarse model of the polymer chain. Taking two beads to model a thousand-atom

chain seems oversimplifying. When equipped with an appropriate entropic force, like

the FENE force, this model nevertheless yields tremendously good results. From a

general viewpoint, this shows that

• a multiscale model is much more powerful than a purely macroscopic model,

• the description of the microstructure does not need to be sophisticated to give

excellent results,

• it only has to capture the right physics (see the FENE force in contrast to the

Hookean force).

Note also that, as a counterpart to the above, the FENE model raises a huge

number of challenging mathematical and numerical questions. We will address some

of them in Sect. 6.

The FENE model cannot be rephrased under the form of a purely macroscopic

model. There is no proof of this claim, but it is strongly believed to be the case.

For some specific purposes, the idea has arisen to find a modification of the FENE

model (a so-called closure approximation) which would have a macroscopic equiv-

alent. This gives birth to the FENE-P model, where P stands for Peterlin. Following

A. Peterlin [105] and R.B. Bird, P.J. Dotson and N.L. Johnson [13], it has indeed

been proposed to replace the denominator of the FENE force (91) by a mean value

of the elongation:
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FFFFENE−P(XXX t) =
HXXX t

1 − E(‖XXXt‖2)
bkT/H

. (92)

Accordingly, the microscopic description of the fluids now reads:






τττ p = np

(
HE(XXX t ⊗ XXX t)

1 −E(‖XXXt‖2)/(bkT/H)
− kT Id

)
,

dXXX t + uuu ·∇XXX t dt =

(
∇uuuXXX t −

2H

ζ

XXX t

1 −E(‖XXX t‖2)/(bkT/H)

)
dt

+ 2

√
kT

ζ
dWWW t .

(93)

Using the expression of τττ p

∂AAA

∂ t
(t,xxx)+ uuu(t,xxx).∇AAA(t,xxx)− ∇uuu(t,xxx)AAA(t,xxx)− AAA(t,xxx)(∇uuu(t,xxx))T

= −4H

ζ

AAA(t)

1 − tr(AAA(t))/(bkt/H)
+

4kT

ζ
Id. (94)

Inserting this into:

AAA =
1

HZ(tr(τττ p))

(
τττ p

np
+ kT Id

)
,

where Z is defined by (29), the following equation is obtained for τττ p :

ζ

4H

(
∂τττ p

∂ t
(t,xxx)+ uuu(t,xxx).∇τττ p(t,xxx)− ∇uuu(t,xxx)τττ p(t,xxx)− τττ p(t,xxx)(∇uuu(t,xxx))T

)

+Z(tr(τττ p))τττ p − ζ

4H
(τττ p + npkT Id)

(
∂

∂ t
+ uuu.∇

)
ln(Z(tr(τττ p)))

= npkT
ζ

4H

(
∇uuu(t,xxx)+ (∇uuu(t,xxx))T

)
, (95)

which is exactly the FENE-P model mentioned in (28) (when λ and ηp are respec-

tively given by (89) and (90)). The FENE-P model can thus be seen as a modifica-

tion of the FENE model, in order to obtain a multiscale model that has an equivalent

purely macroscopic formulation. Other variants of the FENE model exist in the lit-

erature.

4.3 The multiscale model

We now have all the bricks for the stochastic variant of our multiscale system (49).

Collecting the material of the previous section, we obtain:

, (82) and (87), we obtain:
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π ′(l)

l

√
bkT
H

Fig. 10. Comparison of the Hookean force (continuous line) and the FENE force (dashed line).





ρ

(
∂uuu

∂ t
(t,xxx)+ uuu(t,xxx) ·∇uuu(t,xxx)

)
− η∆uuu(t,xxx)+ ∇p(t,xxx)

= div(τττ p(t,xxx))+ ρ fff (t,xxx),

div(uuu(t,xxx)) = 0,

τττ p(t,xxx) = np

(
E(XXX t(xxx)⊗ FFF(XXX t(xxx)))− kT Id

)
,

dXXX t(xxx)+ uuu(t,xxx).∇XXX t(xxx)dt

= ∇uuu(t,xxx)XXX t(xxx)dt − 2

ζ
FFF(XXX t(xxx))dt + 2

√
kT

ζ
dWWW t .

(96)

As was the case for the Fokker-Planck equation, the stochastic differential equa-

tions are to be solved at each point of the macroscopic flow. The process XXX t therefore

implicitly depends on xxx.

It is well-known that the form of equations actually used in the numerical practice

is a non-dimensional form. Because this involves the introduction of several non-

dimensional numbers that have a physical meaning and are present in the literature,

let us briefly establish now this non-dimensional form for (96) (and thus for (49), by

analogy, see (50)).

We introduce the following characteristic quantities: U the characteristic velocity,

L the characteristic length, λ =
ζ

4H
, as in (89), the characteristic relaxation time,

ηp = npkT λ , as in (90), the viscosity of polymers. Then, we consider the following

non-dimensional numbers:
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Re =
ρUL

η
, ε =

ηp

η
,

We =
λU

L
, µ =

L2H

kT

(97)

respectively the Reynolds number Re measuring the ratio of inertia over viscosity

(usually for the complex fluids under consideration, Re ≤ 10), ε measuring the ra-

tio of viscosity of the polymers over the total viscosity (usually ε ≈ 0.1), We the

laxation time of the polymers versus the characteristic time of the flow (usually

0.1 ≤ We ≤ 10), and µ measuring a ratio of lengths.

Non-dimensionalizing also the force by FFF(XXX) =
FFF(LXXX)

HL
, and taking (which is

the commonly used value) µ = 1, we obtain:





Re

(
∂uuu

∂t
+ uuu ·∇uuu

)
− (1 − ε)∆uuu+ ∇p = divτττ p + fff ,

divuuu = 0,

τττ p =
ε

We

(
E(XXX t ⊗ FFF(XXX t))− Id

)
,

dXXX t + uuu.∇XXX t dt = ∇uuuXXX t dt − 1

2We
FFF(XXX t)dt +

1√
We

dWWW t .

(98)

An important practical remark stems from the actual range of parameters men-

tioned above. In contrast to the usual setting of computational fluid mechanics where

the challenge is to deal with flows with high Reynolds numbers, the challenge here

is not the Reynolds number (kept relatively small), but the Weissenberg number.

Tremendous practical (and also, actually, theoretical) difficulties are associated with

the so-called High Weissenberg number problem (“high” meaning exceeding, say,

10).

4.4 Schematic overview of the simulation

Our focus so far has been the modelling difficulties for viscoelastic fluids. Another

question is the discretization of the models, and their numerical simulations. This

has to be performed very carefully since a model is typically validated by some

comparisons between experiments and numerical simulations on simple or complex

flows.

The present section summarizes the issues and techniques, in a language acces-

sible to readers familiar with scientific computing and numerical analysis. A much

more elementary presentation will be given in Sect. 5.

Numerical methods

Most of the numerical methods are based upon a finite element discretization in

space and Euler schemes in time, using a semi-explicit scheme: at each timestep, the

Weissenberg number (also called Deborah number) which is the ratio of the re-

,
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velocity is first solved for a given stress, and then the stress is updated, for a fixed

velocity.

In the case of micro-macro models such as (50) and (98), another discretization

step is necessary to approximate the expectation or the integral in the definition of the

stress tensor τττ p. There are basically two methods of discretization, depending on the

formulation used: stochastic methods for (98), and deterministic methods for (50).

To discretize the expectation in (98), a Monte Carlo method is employed: at each

macroscopic point xxx (i.e. at each node of the mesh once the problem is discretized)

many replicas (or realizations) (XXXk,K
t )1≤k≤K of the stochastic process XXX t are sim-

ulated, driven by independent Brownian motions (WWW k
t )k≥1, and the stress tensor is

obtained as an empirical mean over these processes:

τττK
p =

ε

We

(
1

K

K

∑
k=1

XXX
k,K
t ⊗ FFF(XXX k,K

t )− Id

)
.

In this context, this discretization method coupling a finite element method and a

Monte Carlo technique is called CONNFFESSIT for Calculation Of Non-Newtonian

Flow: Finite Elements and Stochastic SImulation Technique (see M. Laso and

H.C. Öttinger [75]). In Sect. 5, we will implement this method in a simple geom-

etry. Let us already mention that one important feature of the discretization is that, at

the discrete level, all the unknowns (uuu, p,τττ p) become random variables. The conse-

quence is that the variance of the results is typically the bottleneck for the accuracy

of the method. In particular, variance reduction methods are very important.

To discretize the Fokker-Planck equation in (50), spectral methods are typically

used (see A. Lozinski [92] or J.K.C. Suen, Y.L. Joo and R.C. Armstrong [118]). It

is not easy to find a suitable variational formulation of the Fokker-Planck equation,

and an appropriate discretization that satisfies the natural constraints on the probabil-

ity density ψ (namely non negativity, and normalization). We refer to C. Chauvière

and A. Lozinski [25, 93] for appropriate discretization in the FENE case. One ma-

jor difficulty in the discretization of Fokker-Planck equations is when the configu-

rational space is high-dimensional. In the context of polymeric fluid flow simula-

tion, when the polymer chain is modelled by a chain of N beads linked by springs,

the Fokker-Planck equation is a parabolic equation posed on a 3N-dimensional do-

main. Some numerical methods have been developed to discretize such high dimen-

sional problems. The idea is to use an appropriate Galerkin basis, whose dimen-

sion does not explode when dimension grows. We refer to P. Delaunay, A. Lozinski

and R.G. Owens [33], T. von Petersdorff and C. Schwab [120], H.-J. Bungartz and

M. Griebel [20] for the sparse-tensor product approach, to L. Machiels, Y. Maday,

and A.T. Patera [94] for the reduced basis approach and to A. Ammar, B. Mokdad,

F. Chinesta and R. Keunings [2, 3] for a method coupling a sparse-tensor product

discretization with a reduced approximation basis approach.
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Main difficulties

It actually turns out that the discretization of micro-macro models such as (50)

and (98) or that of macro-macro models such as (23) is not trivial. Let us mention

three kinds of difficulties:

1. Some inf-sup condition must be satisfied by the spaces respectively used for the

discrete velocity, pressure and stress (if one wants the discretization to be stable

for ε close to 1).

2. The advection terms need to be discretized correctly, in the conservation of mo-

mentum equations, in the equation on τττ p in (23), in the equation on ψ in (50),

on in the SDE in (98).

3. The nonlinear terms require, as always, a special care. On the one hand, some

nonlinear terms stem from the coupling: ∇uuuτττ p + τττ p(∇uuu)T
in (23), ∇uuuXXX t in (98)

or divXXX(∇uuuXXXψ(t,xxx,XXX)) in (50). On the other hand, for rheological models more

complicated than Oldroyd-B or Hookean dumbbell, some nonlinear terms come

from the model itself (see the entropic force FFF(XXX t) in (98) for FENE model for

example).

Besides, for both micro-macro models and purely macroscopic models, one central

difficulty of the simulation of viscoelastic fluids is the so-called High Weissenberg

Number Problem (HWNP). It is indeed observed that numerical simulations do not

converge when We is too large. The maximum value which can be actually cor-

rectly simulated depends on the geometry of the problem (4:1 contraction, flow past

a cylinder,...), on the model (Oldroyd-B model, FENE model, ...) and also on the

discretization method. Typically, it is observed that this maximum value decreases

with mesh refinement.

We will return to these questions in Sect. 6.

4.5 Upsides and downsides of multiscale modelling for complex fluids

Micro-macro vs macro-macro modelling

We are now in position to compare the micro-macro approach and the macro-macro

approach to simulate polymeric fluids (and more generally complex fluids). Figure 11

summarizes the main features of these approaches. Let us discuss this from two view-

points: modelling and numerics.

From the modelling viewpoint, the interest of the micro-macro approach stems

from the fact it is based on a clear understanding of the physics at play. The ki-

netic equations used to model the evolution of the polymers are well established

and the limit of the validity of these equations is known. The constants involved in

micro-macro models have a clear physical signification, and can be estimated from

some microscopic properties of the polymer chains. From this point of view, the

micro-macro approach seems more predictive, and enables an exploration of the link

between the microscopic properties of the polymer chains (or more generally the

microstructures in the fluid) and the macroscopic behavior of the complex fluid.
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Methods

of the integral

using the decreasing

 

Phenomenological modelling

Stochastic models

Microscopic models (kinetic theory)

Macroscopic simulations

Integral models Differential models

Finite Element

Discretization

memory function

FEM (fluid)

Monte Carlo (polymers)

Micro−macro simulations

using principles of fluid mechanics 

Fig. 11. Macro-macro and micro-macro models for complex fluids.

Practice confirms this. It indeed appears that simulations with micro-macro mod-

els generally compare better to experiments (see R. Keunings [71, 72]). However, for

complex flows and general non-Newtonian fluids, it is still difficult to agree quan-

titatively with the experiments. In short, it remains a lot to do from the modelling

viewpoint, but it is generally admitted that the micro-macro approach is the most

promising way to improve the models.

From the numerical point of view, the major drawback of the micro-macro ap-

proach is its computational cost. The introduction of an additional field to describe

the configuration of the microstructure in the fluid implies additional computations

and additional memory storage.

For example, for the micro-macro models introduced above in their stochastic

form (98), the discretization by a CONNFFESSIT approach requires the storage at

each node of the mesh of an ensemble of configurations (XXX i,M
t )1≤i≤M of the polymer

chains. Even though the SDEs associated to each configuration, and at various node

mains very high. The micro-macro approach is currently not sufficiently efficient to

be used in commercial codes for industrial purposes.

In view of the arguments above, it seems natural to try and design some nu-

merical methods that couple the macro-macro and the micro-macro approaches. The

macro-macro model is used where the flow is simple, and the detailed micro-macro

model is used elsewhere. The idea of adaptive modelling based on modelling error a

posteriori analysis (see J.T. Oden and K.S. Vemaganti [100], J.T. Oden and S. Prud-

homme [99] or M. Braack and A. Ern [19] has been recently adapted in this context

We mentioned above the problems raised by the discretization of macro-macro

and micro-macro models. It seems that in complex flows, numerical methods based

of the mesh can be solved in parallel on each time step, the computational cost re-

in a preliminary work by A. Ern and T. Lelièvre [40].
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HWNP still limits the range of applicability of the computations, even with micro-

macro models. The main interest of micro-macro approaches as compared to macro-

macro approaches lies at the modelling level. It may become the method of choice

for a backroom strategy. The approach allows to test and validate purely macro-

simulations for actual real-world applications, owing to its extremely computation-

Fokker-Planck vs SDE formulation

To conclude this section, we would like to discuss the advantages and drawbacks

of the two numerical approaches introduced above for the micro-macro approach:

that based on the deterministic formulation (50) and that based on the stochastic

formulation (98).

The conclusions of this comparison (see Sect. 5 and also A. Lozinski and

istic approach (discretization of the Fokker-Planck PDE), it is much more efficient

than the stochastic approach (Monte Carlo methods to approximate the expectation).

The main reason for that is that the convergence of a Monte Carlo method is slower

than that of a deterministic approximation method.

proach? As we mentioned above, designing a numerical method that satisfies the

natural requirements of non-negativity and normalization of ψ is not an easy task. In

account the boundary conditions on ψ . In practice, it is observed that the stability

of numerical schemes deteriorates when ∇uuu becomes too large. But there is another

(more fundamental) limitation to the deterministic approach. We mentioned above

that the dumbbell model may be actually too crude to describe correctly the polymer

chain configuration in some specific situations. It might be better, then, to use a chain

of beads and springs. For such a model, the stochastic approach and the associated

discretization can both be generalized straightforwardly. However, the deterministic

approach is much more problematic. The Fokker-Planck equation becomes a high-

dimensional PDE, and the discretization is very difficult. We mentioned above some

numerical methods to deal with such PDEs (the sparse-tensor product approach, the

reduced approximation basis approach) but they are still limited to a relatively small

number of springs, and are much more difficult to implement than Monte Carlo meth-

ods.

A summary of the comparison of the various approaches to model complex fluids

is given in Table 1.

The following question is then: what are the limits of the Fokker-Planck ap-

C. Chauvière [93]) are actually very general: when it is possible to use the determin-

the FENE case, proper variational formulations are to be employed, which take into

ally demanding nature.

scopic models, to supply such models with adequate and reliable boundary condi-

tions, etc. . . , even if, in the state of the art technology, it does not allow to perform

on the micro-macro approach are more robust than those based on the macro-macro

approach (see A.P.G. Van Heel [119, p.38], J.C. Bonvin [18, p.115] or C. Chauvière
[24]). However, this is not yet well understood mathematically. In addition, the  
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MACRO MICRO-MACRO

modelling capabilities low high

current utilization industry laboratories

discretization discretization

by Monte Carlo of Fokker-Planck

computational cost low high moderate

computational bottleneck HWNP variance, HWNP dimension, HWNP

Table 1. Summary of the characteristics of macro-macro and micro-macro approaches for the

simulation of complex fluids.

5 Numerical simulation of a test case: the Couette flow

5.1 Setting of the problem

We consider in this section the simple situation of a start-up Couette flow (see

Fig. 12). The fluid flows between two parallel planes. Such a model is typically

obtained considering a flow in a rheometer, between two cylinders, and taking the

limit of large radii for both the inner and the outer cylinders (see Fig. 1). At initial

time, the fluid is at rest. The lower plane (y = 0, modelling the inner cylinder of the

rheometer) is then shifted with a velocity V (t), which, for simplicity, will be set to a

constant value V (sinusoidal velocities may also be applied):

V (t) = V.

On the other hand, the upper plane (y = L, modelling the outer cylinder of the

rheometer) is kept fixed. Such a setting is called a start-up flow, and because it is

confined between two parallel plane, a Couette flow.

We denote by x and y the horizontal and vertical axes, respectively. The flow is

assumed invariant in the direction perpendicular to (x,y).

The polymeric fluid filling in the space between the planes obeys equations (13),

which we reproduce here for convenience in their nondimensional form:





Re

(
∂uuu

∂ t
+ (uuu ·∇)uuu

)
− (1 − ε)∆uuu+ ∇p − divτττ p = fff ,

divuuu = 0.
(99)

For Couette flow, we have fff = 0.

It is natural to assume that the flow is laminar, that is, the velocity writes

uuu = ux(t,x,y)eeex, where eeex is the unitary vector along the x-axis. The incompress-

ibility constraint (8) immediately implies that uuu = ux(t,y)eeex. We now denote:

uuu = u(t,y)eeex. (100)
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y=0

x

y=L

y

V

Fig. 12. Couette flow.

In the Newtonian case (τττ p = 0), it can be easily shown that a natural assumption

on the pressure leads to





Re
∂u

∂ t
(t,y) = (1 − ε)

∂ 2u

∂y2
(t,y),

u(0,y) = 0,
u(t,0) = V,
u(t,L) = 0.

(101)

Let us now consider the case of a non-Newtonian fluid modelled but the Hookean

dumbbell model. We will treat this model as a multiscale model, even if we know

from Sect. 4.2 that it is equivalent to the purely macroscopic Oldroyd-B model. Our

purpose is indeed to illustrate the numerical approach for such multiscale models,

and the Hookean dumbbell model is a nice setting for the exposition. For other mod-

els, the situation is more intricate, but at least all the difficulties of the Hookean

dumbbell model are present.

In full generality, the Fokker-Planck version of the multiscale system describing

the flow for the Hookean dumbbell model reads (again in a non-dimensional form),

we recall:





Re

(
∂uuu

∂ t
+ (uuu ·∇)uuu

)
− (1 − ε)∆uuu+ ∇p − divτττ p = 0,

divuuu = 0,

τττ p(t,x,y) =
ε

We

(∫
(rrr ⊗ rrr)ψ(t,x,y,rrr)drrr − Id

)
,

∂ψ

∂ t
(t,x,y,rrr)+ uuu(t,x,y) ·∇x,yψ(t,x,y,rrr)

= −divrrr

((
∇x,y uuu(t,x,y)rrr − 1

2We
rrr

)
ψ(t,x,y,rrr)

)
+

1

2We
rrr r

(102)

supplied with

∆ ψ(t,x,y,rr),,
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uuu(0,x,y) = 000,
uuu(t,x,y = 0) = Veeex, ∀t > 0,
uuu(t,x,y = L) = 0, ∀t > 0.

(103)

Owing to the specific Couette setting, and the assumptions that originate from it

(notably (100)), the above general system simplifies into the much simpler one:





Re
∂u

∂ t
(t,y) = (1 − ε)

∂ 2u

∂y2
(t,y)+

∂τ

∂y
(t,y),

τ(t,y) =
ε

We

∫

R2

PQψ(t,y,P,Q)dPdQ,

∂ψ

∂ t
(t,y,P,Q) = − ∂

∂P

((
∂u

∂y
(t,y)Q− 1

2We
P

)
ψ(t,y,P,Q)

)

+
∂

∂Q

(
1

2We
Q ψ(t,y,P,Q)

)
+

1

2We

(
∂ 2

∂P2
+

∂ 2

∂Q2

)
ψ(t,y,P,Q),

(104)

where P and Q are the two components of the end-to-end vector rrr, along the x and

y axes respectively. In the above system, τ(t,y) denotes the xy entry of the tensor

τττ p. Actually, the pressure field, and the other entries of the stress tensor may be then

deduced, independently.

Let us emphasize at this stage the tremendous simplifications that the Couette

model allows for. Owing to the simple geometric setting and the fact that the flow is

assumed laminar, the divergence-free constraint (8) is fulfilled by construction of the

velocity field and can be eliminated from the system. In addition, the transport terms

(uuu ·∇)uuu and (uuu ·∇)ψ cancel out, again because of geometrical considerations. This

explains the extremely simple form of the equation of conservation of momentum

in this context, which indeed reduces to a simple one-dimensional heat equation.

This set of simplifications is specific to the Couette flow. Substantial difficulties arise

otherwise.

We now describe the numerical approach for (104). To begin with, we present the

(simple) finite element discretization of the macroscopic equation. Then we turn to

the numerical approach employed for the Fokker-Planck equation. The variant using

a stochastic differential equation then follows.

5.2 Discretization of the macroscopic equation

Let us consider the stress τ(t,y) is known, and perform the variational formulation

of the equation in (104) determining the velocity

Re
∂u

∂ t
(t,y) = (1 − ε)

∂ 2u

∂y2
(t,y)+

∂τ

∂y
(t,y)

with a view, next, to discretize it using finite elements. Our formulation is
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Search for u : [0,T ] −→ H1

1
(0,L) such that

∀v ∈ H1

0
(0,L), Re

d

dt
(u(t),v)L2 = −(1 − ε)

(
∂u

∂y
(t),

∂v

∂y

)

L2

−
(

τ(t),
∂v

∂y

)

L2

,

u(0,y) = 0,
(105)

where we have denoted

H1

0 (0,L) =
{

v ∈ H1(0,L), v(0) = 0, v(L) = 0
}

and

H1

1 (0,L) =
{

v ∈ H1(0,L), v(0) = 1, v(L) = 0
}

.

As regards the discretization, we introduce the shape functions for P1 finite ele-

ments (for the velocity)

ϕi(y) =






1 wheny = i
N
,

affine on

[
i− 1

N
,

i

N

]
and

[
i

N
,

i+ 1

N

]
,

0 wheny ∈
[

0,
i− 1

N

]
∪
[

i+ 1

N
,1

]
,

(106)

(for 0 ≤ i ≤ N), with the obvious adaptations when i = 0 and i = N, and the shape

functions for P0 finite elements (for the stress)

χi(y) =





1 wheny ∈

[
i− 1

N
,

i

N

)
,

0 otherwise ,
(107)

(for 1 ≤ i ≤ N), both on a regular mesh over [0,L], with meshsize h = ∆y =
1

N
. The

approximations for τ and u then read

τh(t,y) =
N

∑
i=1

(τh)i(t)χi(y), (108)

uh(t,y) =
N−1

∑
i=1

(uh)i(t)ϕi(y) +V ϕN(y),

respectively. Note indeed, that, because of the boundary condition, we have for all

t > 0, (uh)0(t) = 0 and (uh)N(t) = V .

It remains to discretize in time, which we do using a backward Euler scheme for

the viscous term. The fully discrete formulation is thus
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Solve for (uh)n
j for j = 1, . . . ,N − 1and forn ≥ 0

such that (uh)0

j ≡ 0and ∀i = 1, . . . ,N − 1,

Re




N−1

∑
j=1

(uh)n+1

j ϕ j −
N−1

∑
j=1

(uh)n
jϕ j

∆ t
,ϕi




L2

= (1 − ε)

(
∂

∂y

(
N−1

∑
j=1

(uh)n+1

j ϕ j + VϕN

)
,

∂

∂y
ϕi

)

L2

−
(

(τh)n,
∂

∂y
ϕi

)

L2

(109)

where (τh)n
denotes the approximation of τh

at time tn
.

In algebraic terms, this writes

ReM
Un+1 −Un

∆ t
= −(1 − ε)AUn+1 − GSn + B, (110)

where

Un =
[
(uh)n

1, . . . ,(u
h)n

N−1

]T

is the unknown,

Sn =
[
(τh)n

1, . . . ,(τ
h)n

N

]T

,

and G is a matrix with (i, j)-entry

Gi, j =

∫ L

0

∂ϕi

∂y
χ j dy. (111)

The vector B = −(1−ε)V
[
0, . . . ,0,

∫ L
0

∂ϕN

∂y

∂ϕN−1

∂y
dy
]T

is associated with the Dirich-

let boundary condition. The matrices M and A respectively denote the matrices of

mass and rigidity of the P1 finite elements:

Mi, j =
∫ L

0

ϕi ϕ j dy, (112)

Ai, j =

∫ L

0

∂ϕi

∂y

∂ϕ j

∂y
dy. (113)

5.3 Microscopic problem: the deterministic approach

We now turn to the discretization of the Fokker-Planck equation in (104), that is
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∂ψ

∂ t
(t,y,P,Q) = − ∂

∂P

((
∂u

∂y
(t,y)Q− 1

2We
P

)
ψ(t,y,P,Q)

)
(114)

+
∂

∂Q

(
1

2We
Qψ(t,y,P,Q)

)
+

1

2We

(
∂ 2

∂P2
+

∂ 2

∂Q2

)
ψ(t,y,P,Q).

Since y is only a parameter, we omit to mention the explicit dependence of ψ upon

this parameter throughout this paragraph.

We introduce the equilibrium solution of (114) (i.e. the steady state solution

of (114) for u = 0), namely

ψ∞(P,Q) =
1

2π
exp

(
−P2 + Q2

2

)
. (115)

We next change the unknown function in (114) setting

ϕ =
ψ

ψ∞
(116)

and rewrite (114) as

ψ∞
∂ϕ

∂ t
(t,P,Q) = − ∂

∂P

(
∂u

∂y
Qψ∞ ϕ

)

+
1

2We

∂

∂P

(
ψ∞

∂

∂P
ϕ

)
+

1

2We

∂

∂Q

(
ψ∞

∂

∂Q
ϕ

)
(117)

which is readily semi-discretized in time as

ψ∞
ϕn+1 − ϕn

∆ t
= − ∂

∂P

(
∂u

∂y
Qψ∞ ϕn

)

+
1

2We

∂

∂P

(
ψ∞

∂

∂P
ϕn+1

)
+

1

2We

∂

∂Q

(
ψ∞

∂

∂Q
ϕn+1

)
. (118)

A variational formulation of (118) on an appropriate functional space V (see for






Solve for ϕn ∈ V for n ≥ 0 such that ∀θ ∈ V ,
∫

ϕn+1 − ϕn

∆ t
θ ψ∞ =

∫
∂u

∂y
Q

∂θ

∂P
ϕnψ∞

− 1

2We

∫
∂θ

∂P

∂ϕn+1

∂P
ψ∞ − 1

2We

∫
∂θ

∂Q

∂ϕn+1

∂Q
ψ∞,

ϕ0 = 1.

(119)

The most appropriate basis to use for the Galerkin basis in (119) is a basis con-

sisting of (tensor products of) Hermite polynomials Hi:

χi, j(P,Q) = Hi(P)H j(Q), (120)

example B. Jourdain, C. Le Bris, T. Lelièvre and F. Otto [65, Appendix B]) is then:
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where

H0(P) = 1, H1(P) = P, H2(P) =
1√
2

(P2 − 1). (121)

Indeed, since

1√
2π

∫

R

Hi(P)H j(P)exp(−P2/2)dP = δi j , (122)

and since the Gaussian function is precisely the stationary solution to the equation

under consideration, the basis of Hermite polynomials is well adapted to the prob-

lem under consideration. In particular, the mass matrix related to the discretization

of
∫ ϕn+1−ϕn

∆ t
θ ψ∞ in (119) is the identity matrix. The matrix associated with the dis-

cretization of the diffusion terms
∫ ∂θ

∂P

∂ϕn+1

∂P
ψ∞ +

∫ ∂θ
∂Q

∂ϕn+1

∂Q
ψ∞ in (119) is diagonal.

In addition, the use of such a spectral basis allows to circumvent the practical diffi-

culty related to the fact that the equation is posed on the whole space.

5.4 Microscopic problem: the stochastic approach

Instead of using the Fokker-Planck equation viewpoint, we may alternatively intro-

duce the couple of stochastic differential equations






dP(t,y) =

(
∂u

∂y
(t,y)Q(t)− 1

2We
P(t,y)

)
dt +

1√
We

dVt ,

dQ(t) = − 1

2We
Q(t)dt +

1√
We

dWt ,

(123)

where Vt and Wt are two independent one-dimensional Brownian motions, and next

evaluate the stress with

τ(t,y) =
ε

We

∫

R2

PQψ(t,y,P,Q)dPdQ =
ε

We
E(P(t,y)Q(t)). (124)

Note that in this simple geometry and for Hookean dumbbells, Q(t) does not depend

on y.

In order to solve (123), we supply it with initial conditions homogeneous in y,

and use a forward Euler scheme:





Pn+1

i = ∆ t
Un+1

i −Un+1

i−1

∆y
Qn +

(
1 − ∆ t

2We

)
Pn

i +

√
∆ t

We
∆V n

i ,

Qn+1 =

(
1 − ∆ t

2We

)
Qn +

√
∆ t

We
∆W n,

(125)

for 1 ≤ i ≤ N, where ∆V n
i and ∆W n

are standard normal random variables. The stress

is then given by

(τh)n+1

i =
ε

We
E(Pn+1

i Qn+1). (126)

Following the standard Monte Carlo method, (126) is approximated replacing the

of the random variables Pn
i and Qn

is generated: (for 1 ≤ i ≤ N)

expectation value by an empirical mean. A supposedly large number K of realizations
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Pn+1

i,k = ∆ t
Un+1

i −Un+1

i−1

∆y
Qk

n +

(
1 − ∆ t

2We

)
Pn

i,k +

√
∆ t

We
V n

i,k, (127)

Qn+1

k =

(
1 − ∆ t

2We

)
Qn

k +

√
∆ t

We
W n

k , (128)

for 1 ≤ k ≤ K, and

(τh)n+1

i =
ε

We

1

K

K

∑
k=1

Pn+1

i,k Qn+1

k (129)

is computed. For the evolution (127)–(128), the initial conditions P0

i and Q0
are

chosen as standard normal random variables, since the fluid is assumed at rest at

initial time.

This discretization is the CONNFFESSIT approach mentioned above, imple-

mented in a simple case.

A crucial remark is the following. Since the stress (τh)n+1

i is an empirical mean

(129), it is thus also a random variable. It follows that the macroscopic velocity

itself, which solves the fully discretized version of (109) is a random variable. On the

contrary, in the limit K → ∞, the stress and the velocity are deterministic quantities

(since the expectation value (126) is a deterministic quantity).

Consequently, when one speaks of computing the velocity or the stress using the

stochastic approach, it implies performing a collection of simulations, and averaging

over the results.

Immediately, this brings into the picture variance issues. Let us briefly explain in

the present context how the noise inherently present in the numerical simulation may

be somewhat reduced. This is the famous variance reduction problem.

A basic approach consists in correlating the trajectories Pi from one index i to

another one. For this purpose, we first take as initial conditions for Pi standard normal

random variables P0

i,k = P0

k that do not depend on i, and second use Brownian motions

V n
k , uniform in i: V n

i,k = V n
k . Equation (127) is thus replaced with

Pn+1

i,k = ∆ t
Un+1

i −Un+1

i−1

∆y
Qk

n +

(
1 − ∆ t

2We

)
Pn

i,k +

√
∆ t

We
V n

k . (130)

It is observed that this technique reduces the variance on the velocity u. In addition,

it provides an empirical mean that is less oscillatory w.r.t. the space variable y than

that obtained from the original approach (see Sect. 6.3 below for more details).

Another method, with a large spectrum of applications, is that of control variate.

The bottom line is to avoid computing E(PQ) directly, and to rather compute each

of the terms of the sum

E(PQ) = E(P̃Q̃)+E(PQ − P̃Q̃)

where P̃ et Q̃ are two processes such that
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• E(P̃Q̃) is easy to compute or approximate, analytically or numerically,

• P̃Q̃ is close enough to PQ so that Var(PQ − P̃Q̃) ≪ Var(PQ).

The two extreme situations are

• P̃ = Q̃ = 0, that is, E(P̃Q̃) is very easy to compute but no variance reduction is

attained,

• P̃ = P and Q̃ = Q, so that Var(PQ − P̃Q̃) = 0 but then E(P̃Q̃) is no easier to

compute than E(PQ) !

Somewhat in the style of preconditioners for the resolution of algebraic systems,

some compromise has to be found. In the specific case under consideration, an ef-

ficient choice consists in defining (P̃,Q̃)(t) as the solution to the same stochastic

differential equations (123) for zero velocity and (P̃,Q̃)(0) = (P,Q)(0) ((P̃,Q̃)(t)

dP̃(t) = − 1

2We
P̃(t)dt +

1√
We

dVt ,

dQ̃(t) = − 1

2We
Q̃(t)dt +

1√
We

dWt .

Clearly, both Q̃ and Q satisfy the same equation, and P̃ does not depend on y. On the

other hand, E(P̃Q̃) = 0 since P̃ and Q̃ are independent (since they are at initial time),

and both of zero mean (arguing on the above stochastic differential equations). In

order to simulate E(PQ − P̃Q̃), the forward Euler scheme is employed: for each n,

we set Q̃n
k = Qn

k and

P̃n+1

i,k =

(
1 − ∆ t

2We

)
P̃n

i,k +

√
∆ t

We
V n

i,k. (131)

Of course, in order for an effective variance reduction to be reached, the same Gaus-

sian variables V n
i,k are to be used for simulating both P̃ and P. If independent random

variables were used for simulating P̃ and P, P̃ and P would be independent random

variables and thus Var(P − P̃) = Var(P)+ Var(P̃) > Var(P).
The simulation of (τh)n+1

i consists in solving

(τh)n+1

i =
ε

We
E(PQ),

=
ε

We
(E(P̃Q̃)+E(PQ − P̃Q̃)),

=
ε

We
(0 +E(PQ − P̃Q̃)),

≈ ε

We

1

K

K

∑
k=1

(Pn+1

i,k Qn+1

k − P̃n+1

i,k Q̃n+1

k ),

≈ ε

We

1

K

K

∑
k=1

((Pn+1

i,k − P̃n+1

i,k )Qn+1

k ), (132)

remains at equilibrium):
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instead of (129).

n h n

h)n), in order to advance forward in time ∆ t, is:

(1) Knowing all (τh)n
i

macroscopic equation (110) to obtain the velocity values Un+1

i (1 ≤ i ≤ N − 1).

(2) On each space interval with length ∆y,

(2.1) An ensemble of K realizations of the random variables V n
i,k and W n

k (1 ≤
k ≤ K) are simulated ; If variance reduction by control variate is used, the

random variables P̃i,k are updated following (131);

(2.2) Using the values Un+1

i (1 ≤ i ≤ N −1) in the schemes (127)–(128) discretiz-

ing the SDEs (123), the values Pn+1

i,k and Qn+1

k are obtained;

(2.3) By computing the empirical mean (129) over the K realizations, the stress

(τh)n+1

i is obtained at the next timestep.

5.5 Extension to the FENE model

In the FENE model, the SDE that has to be discretized is

dXXX t + uuu.∇XXX t dt = ∇uuuXXX t dt − 1

2We

XXX t

1 −‖XXXt‖2/b
dt +

1√
We

dWWW t . (133)

In the specific geometric setting of this section, denoting XXX t = (P(t),Q(t)) and WWW t =
(Vt ,Wt), (133) writes:






dP(t,y) =

(
∂u

∂y
(t,y)Q(t,y)− 1

2We

P(t,y)

1 − (P(t,y)2 + Q(t,y)2)/b

)
dt

+
1√
We

dVt ,

dQ(t,y) = − 1

2We

Q(t,y)

1 − (P(t,y)2 + Q(t,y)2)/b
dt +

1√
We

dWt .

(134)

In contrast to the Hookean dumbbell case, notice that Q is now also depending on

the space variable y.

Let us now discuss how to discretize this SDE, and what type of control variate

Compared to the Hookean dumbbell case, an additional difficulty of the dis-

cretization of (133) is the singularity of the force when ‖XXX t‖2
goes to b. It can be

tic process XXX t does not hit the boundary of B(0,
√

b) in finite time, provided b > 2.

Notice that without the Brownian term, it would be clear that XXX t remains inside

B(0,
√

b) but this fact is not so clear in the SDE case, and actually requires an as-

erty for the discrete process XXXn
. A naı̈ve Euler scheme such as (127)–(128) does not

for all intervals indexed by i, these values are used in the

Summarizing the above, the computation performed at time t , knowing ((u ) ,
(τ

technique may be employed to reduce the variance.

shown (see B. Jourdain and T. Lelièvre [66]) that, at the continuous level, the stochas-

sumption on b. When discretizing (133), one is interested in imposing also this prop-
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satisfy this property. One option is to simply reject draws such that ‖XXXn+1‖2 > b. An

alternative option has been proposed by H.C. Öttinger [102, p. 218-221]. It consists

in treating implicitly the force term, and it can be shown that it yields a discrete pro-

cess XXXn
with actual values in B(0,

√
b). Let us write this scheme for the SDE (133)

without the advection term uuu.∇XXX t dt:





XXXn+1 = XXXn + ∇uuunXXXn∆ t − 1

2We

XXXn

1 −‖XXXn‖2/b
∆ t +

√
∆ t

We
GGGn,

(
1 +

1

4We

∆ t

1 −‖XXXn+1‖2/b

)
XXXn+1 = XXXn

+
1

2

(
∇uuunXXXn + ∇uuun+1XXXn+1 − 1

2We

XXXn

1 −‖XXXn‖2/b

)
∆ t +

√
∆ t

We
GGGn,

(135)

where GGGn
are i.i.d. Gaussian variables with covariance matrix Id.

We next consider the question of variance reduction by control variate. As men-

tioned above, the idea is to compute the stress tensor as

τττ p =
ε

We

(
E

(
XXX t ⊗ XXX t

1 −‖XXXt‖2/b
− X̃XX t ⊗ F̃FF(X̃XX t)

)
+E

(
X̃XX t ⊗ F̃FF(X̃XX t)

))
,

X̃ t F̃

F̃FF = FFF) such that the variance of the term in the first expectation,

E

(
XXX t ⊗ XXX t

X t
2

− X̃XX t ⊗ F̃FF(X̃XX t)

)
,

is as small as possible, and the computation of the second expectation E
(
X̃XX t ⊗ F̃FF(X̃XX t)

)

is easy. For the variance of the first term to be small, X̃XX t needs to be as close as pos-

sible to XXX t (in stochastic terms, X̃XX t needs to be coupled to XXX t ). In particular, one

requires that XXX0 = X̃XX0 and the Brownian motion driving XXX t is the same as the one

driving X̃XX t .

Then two types of control variate are classically used (see J. Bonvin and M. Pi-

casso [16]). As in the previous section for Hookean dumbbells, X̃XX t can be the process

“at equilibrium”. It consists in computing X̃XX t as the solution to the same SDE as XXX t

(and thus F̃FF = FFF) without the term ∇uuuXXX t dt. If XXX0 = X̃XX0 is distributed according to

the invariant law of the SDE, then the law of X̃XX t does not depend on time and thus

E

(
X̃XX t ⊗ X̃XX t

1 −‖X̃XXt‖2/b

)
= E

(
X̃XX0 ⊗ X̃XX0

1 −‖X̃XX0‖2/b

)

which can be analytically computed. This method typically works when the system

remains close to equilibrium.

When the system goes out of equilibrium, another idea is to use a closure ap-

proximation to obtain a model which is close to the FENE model, but which has a

macroscopic equivalent so that the second term E
(
X̃XX t ⊗ F̃FF(X̃XX t)

)
can be computed

by discretizing a PDE (which is very cheap compared to the Monte Carlo method).

where XX

1 −‖XX ‖ /b

is a suitable chosen stochastic process, and FF an adequate force (for ex-

ample
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For example, one can take the Hookean dumbbell model (F̃FF(X̃XX t) = X̃XX t ) and compute

E
(
X̃XX t ⊗ X̃XX t

)
by solving the PDE for the Oldroyd-B model. One can also choose the

FENE-P model (F̃FF(X̃XX t) = X̃XX t⊗X̃XXt

1−E‖X̃XXt‖2/b
) and compute E

(
X̃XX t ⊗ F̃FF(X̃XX t)

)
by solving the

associated PDE (28). Closure relations are thus important not only to obtain macro-

scopic models with microscopic interpretation, but also to build efficient variance

reduction methods. For closure relations for the FENE model, we refer to Q. Du,

C. Liu and P. Yu [37, 32].

5.6 MATLAB codes

In this section, we give the MATLAB codes
3

for the computation of the velocity and

the stress in a Couette flow for the Hookean dumbbell model (start-up of shear flow).

We recall that this model is equivalent to the Oldroyd-B model. We thus have three

formulations of the problem:

• The macro-macro formulation:





Re
∂u

∂ t
(t,y)− (1 − ε)

∂ 2u

∂y2
(t,y) =

∂τ

∂y
(t,y),

∂τ
∂ t

+ 1

We
τ = ε

We

∂u
∂y

.
(136)

• The micro-macro formulation with the SDEs:





Re
∂u

∂ t
(t,y)− (1 − ε)

∂ 2u

∂y2
(t,y) =

∂τ

∂y
(t,y),

τ(t,y) =
ε

We
E(Xt(y)Yt),

dXt(y) =
∂u

∂y
(t,y)Yt dt − 1

2We
Xt(y)dt +

1√
We

dVt ,

dYt = − 1

2We
Yt dt +

1√
We

dWt .

(137)

• The micro-macro formulation with the Fokker-Planck equation:





Re
∂u

∂ t
(t,y)− (1 − ε)

∂ 2u

∂y2
(t,y) =

∂τ

∂y
(t,y),

τ(t,y) =
ε

We

∫
XY p(t,y,X ,Y )dXdY ,

∂ p

∂ t
= −div (X ,Y )

((
(

∂u

∂y
Y,0)− (X ,Y)

1

2We

)
p

)
+

1

2We
∆(X ,Y )p.

(138)

We now insert the MATLAB source Couette Oldroyd B.m for the discretiza-

tion of (136).

3
The codes are available at the following address:

http://hal.inria.fr/inria-00165171
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clear all;

% Physical parameters

Re=0.1;Eps=0.9;We=0.5;

v=1.;

T=1.; % Maximal time

% Discretization

% Space

I=100;

dx=1/I;mesh=[0:dx:1];

% Time

N=100;

dt=T/N;

% Matrices

D1=diag(ones(1,I-1),-1);D1=D1(2:I,:);D1=[D1,zeros(I-1,1)];

D2=diag(ones(1,I-1));D2=[zeros(I-1,1),D2,zeros(I-1,1)];

D3=diag(ones(1,I-1),+1);D3=D3(1:(I-1),:);D3=[zeros(I-1,1),D3];

% Mass matrix

M=(1/6)*D1+(2/3)*D2+(1/6)*D3;

M=M.*dx;M=sparse(M);

MM=M(:,2:I);

% Stiffness matrix

A=(-1)*D1+2*D2+(-1)*D3;

A=A./dx;A=sparse(A);

AA=A(:,2:I);

BB=Re*MM./dt+(1-Eps)*AA;

% Vectors

u=zeros(I+1,1); % Initial velocity

tau=zeros(I,1); % Initial stress: \E(PQ)=0 at t=0

gradtau=zeros(I-1,1);

CLL=zeros(I+1,1);

% Time iterations

for t=dt:dt:T,

uold=u;

gradtau=tau(2:I)-tau(1:(I-1));

if ((t/T)<0.1)

CLL(1)=v*10*(t/T);

else

CLL(1)=v ;

end;

CL=(Re*M./dt+(1-Eps)*A)*CLL;

F=(Re*M./dt)*u-CL+(Eps/We)*gradtau;

u(2:I)=BB\F;

if ((t/T)<0.1)

u(1)=v*10*(t/T);

else

u(1)=v;

end;

for l=1:I

tau(l)=(1-dt/We).*tau(l)+(dt/dx)*(u(l+1)-u(l));

% tau(l)=(1-dt/We).*tau(l)+dt/dx*(uold(l+1)-uold(l));

end;

% Drawings

plot(mesh',u,mesh',[(Eps/We)*tau;(Eps/We)*tau(I)]);

axis([0 1 -1 1.2]);

drawnow;

end;

legend('velocity','stress');

Exercise 1. Compare numerically and theoretically the stability of the two time-

discretizations:
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Re

δ t
(un+1(y)− un(y))− (1 − ε)

∂ 2un+1

∂y2
(y) =

∂τn

∂y
(y),

1

δ t
(τn+1(y)− τn(y))+

1

We
τn+1(y) =

ε

We

∂un+1

∂y
,

(139)

and 




Re

δ t
(un+1(y)− un(y))− (1 − ε)

∂ 2un+1

∂y2
(y) =

∂τn

∂y
(y),

1

δ t
(τn+1(y)− τn(y))+

1

We
τn+1(y) =

ε

We

∂un

∂y
,

(140)

for zero Dirichlet boundary conditions on un.

Hint: For the numerics, choose a sufficiently large timestep. For the numerical

analysis, consider the quantity En = Re
∫

1

0
|un|2(y)dy + We

ε

∫
1

0
|τn|2(y)dy and prove

that En+1 ≤ En, for a sufficiently small timestep for the scheme (139). Can you prove

a similar result for the scheme (140) ? How to modify these schemes to obtain a

stable scheme whatever the timestep ?

Below is the MATLAB source Couette MC VarReduc.m for the discretiza-

tion of (137).

clear all;

% Physical parameters

Re=0.1;Eps=0.9;We=0.5;

v=1.;

T=1; % Maximal time

% Numerical parameters

% Space

I=100;

dx=1/I;mesh=[0:dx:1];

% Time

N=100;

dt=T/N;

% Number of polymers per cell (Monte Carlo)

J=1000;

% Matrices

D1=diag(ones(1,I-1),-1);D1=D1(2:I,:);D1=[D1,zeros(I-1,1)];

D2=diag(ones(1,I-1));D2=[zeros(I-1,1),D2,zeros(I-1,1)];

D3=diag(ones(1,I-1),+1);D3=D3(1:(I-1),:);D3=[zeros(I-1,1),D3];

% Mass matrix

M=(1/6)*D1+(2/3)*D2+(1/6)*D3;

M=M.*dx;M=sparse(M);

MM=M(:,2:I);

% Stiffness matrix

A=(-1)*D1+2*D2+(-1)*D3;

A=A./dx;A=sparse(A);

AA=A(:,2:I);

BB=Re*MM./dt+(1-Eps)*AA;

% Vectors

u=zeros(I+1,1); % Initial velocity

Y=zeros(J,1);X=zeros(J,I);

X_var_controle=zeros(J,1); % Control variate

Y=randn(size(Y));

% Initial condition not depending on the space variable
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X=randn(J,1)*ones(1,I);

X_var_controle=X(:,1);

tau=zeros(I,1);

gradtau=zeros(I-1,1);

CLL=zeros(I+1,1);

% Time iterations

for t=dt:dt:T,

for l=1:I,

tau(l)=sum(Y.*(X(:,l)-X_var_controle))/J;

end;

tau=(Eps/We)*tau;

gradtau=tau(2:I)-tau(1:(I-1));

if ((t/T)<0.1)

CLL(1)=v*10*(t/T);

else

CLL(1)=v ;

end;

CL=(Re*M./dt+(1-Eps)*A)*CLL;

F=(Re*M./dt)*u-CL+gradtau;

u(2:I)=BB\F;

if ((t/T)<0.1)

u(1)=v*10*(t/T);

else

u(1)=v;

end;

% Y, X and X_var_controle

r=randn(J,1);

for l=1:I,

X(:,l)=(1-dt/(2*We))*X(:,l)+(dt/dx)*(u(l+1)-u(l))*Y+sqrt(dt/We)*r;

end;

X_var_controle=(1-dt/(2*We))*X_var_controle+sqrt(dt/We)*r;

Y=(1-dt/(2*We))*Y+sqrt(dt/We)*randn(J,1);

% Drawings

plot(mesh',u,mesh',[tau;tau(I)]);

axis([0 1 -1 1.2]);

drawnow;

end;

legend('velocity','stress');

Exercise 2. Investigate numerically the influence of the number of dumbbells in each

cell. Compare the results with and without variance reduction. Modify the program

to use Brownian motions Vt for Xt which are independent from one cell to another

(again with and without variance reduction). Discuss the results (see Sect. 6.3 below).

Exercise 3. Modify the program to treat FENE dumbbells. You can use either an Eu-

ler scheme to discretize the SDE and a rejection step, or the scheme (135). Program

a variance reduction using the FENE-P model for the control variate.

The MATLAB source Couette FP.m for the discretization of (138) follows.

clear all;

%%%% This file contains some integrals of Hermite polynomials

run Ortho_HD_normalise_20

%%%% Physical parameters

d=2; % dimension of the ambiant space

n=1; % number of springs

% Warning: Only d=2 and n=1 are implemented here
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T=1; % Maximal time

Re=0.1;Eps=0.9;We=0.5;v=1.;

%%%% Discretization

% Space

I_esp=100; % number of spacesteps

dx=1/I_esp;mesh=0:dx:1;

% Time

N=100; % number of timesteps

dt=T/N; % timstep

l_max=2; % Maximal degree of Hermite polynomials

% Discretisation for q: FULL TENSOR PRODUCT

dim=(l_max+1)*(l_max+1);

disp('Dimension of the Galerkin basis for Fokker-Planck:');disp(dim);

% To get the tensorial index as a function of the absolute index

% 0 \leq nu(1) \leq l_max

get_nu=@(i) [ floor((i-1)/(l_max+1)), i-1-floor((i-1)/(l_max+1))*(l_max+1)];

% To get the absolute index as a function of the tensorial index

% 1 \leq i \leq dim

get_i=@(nu) 1+nu(1)*(l_max+1)+nu(2);

% Matrix S

D1=diag(ones(1,n*d),-d);D1=D1((d+1):(n+1)*d,:);

D2=diag(ones(1,n*d),d);D2=D2(1:n*d,:);

S=-D1+D2;

% Matrix D

D=S*S';

% Here, D=2 Id

%%%% Operators

disp('Computing matrices...');

%%%% Operators for Fokker-Planck

M=zeros(dim,dim);

G_de_base=zeros(dim,dim);

A=zeros(dim,dim);

% \int_X (1/dt qˆ{n+1}) r \omega

% since int_P_P= Id, this is only Id

M=eye(dim,dim);

% G = Nabla_u : \int_X ( \nabla_X r \otimes X ) q \omega

% G depends on the timestep

% G=nabla_u*G_de_base where nabla_u is the off-diagonal component

% of the matrix \nabla u

for i=1:dim % r_i

for j=1:dim % q_j

% +1 : to get the indices of Ortho_HD_normalise.m

nu_i=get_nu(i)+1;

nu_j=get_nu(j)+1;

G_de_base(i,j)=int_DP_P(nu_i(1),nu_j(1))*int_P_X_P(nu_i(2),nu_j(2));

end

end

% A = D : \int_X ( \nabla_X q \otimes \nabla_X r) \omega

% Here, D=2 Id

% D(1,1) * \int \partial_{X_1}P_{i}(x) \partial_{X_1}P_{j}(x) \omega

for i=1:dim % r_i

for j=1:dim % q_j

nu_i=get_nu(i)+1;

nu_j=get_nu(j)+1;

A(i,j)=A(i,j)+D(1,1)*int_DP_DP(nu_i(1),nu_j(1))...

*int_P_P(nu_i(2),nu_j(2));

end

end

% D(2,2) * \int \partial_{X_2}P_{i}(x) \partial_{X_2}P_{j}(x) \omega

for i=1:dim % r_i

for j=1:dim % q_j
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nu_i=get_nu(i)+1;

nu_j=get_nu(j)+1;

A(i,j)=A(i,j)+D(2,2)*int_P_P(nu_i(1),nu_j(1))...

*int_DP_DP(nu_i(2),nu_j(2));

end

end

% Computation of \int X_1 X_2 P_{i}(x) \omega

% This vector is useful to compute tau

int_X_X_q_1_2=zeros(dim,1);

for i=1:dim

nu_i=get_nu(i)+1;

int_X_X_q_1_2(i)=int_X_P(nu_i(1))*int_X_P(nu_i(2));

end;

%%%% Operators for the velocity

D1=diag(ones(1,I_esp-1),-1);D1=D1(2:I_esp,:);D1=[D1,zeros(I_esp-1,1)];

D2=diag(ones(1,I_esp-1));D2=[zeros(I_esp-1,1),D2,zeros(I_esp-1,1)];

D3=diag(ones(1,I_esp-1),+1);D3=D3(1:(I_esp-1),:);D3=[zeros(I_esp-1,1),D3];

% Mass matrix

M_esp=(1/6)*D1+(2/3)*D2+(1/6)*D3;

M_esp=M_esp.*dx;

M_esp=sparse(M_esp);

MM_esp=M_esp(:,2:I_esp);

% Stiffness matrix

A_esp=(-1)*D1+2*D2+(-1)*D3;

A_esp=A_esp./dx;

A_esp=sparse(A_esp);

AA_esp=A_esp(:,2:I_esp);

BB_esp=Re*MM_esp./dt+(1-Eps)*AA_esp;

%%%% Vectors

% initial conditions

u=zeros(I_esp+1,1); % velocity is zero

q=zeros(dim,I_esp);

q(1,:)=ones(1,I_esp); % equilibrium at each point

tau=zeros(I_esp,1);

gradtau=zeros(I_esp-1,1);

nabla_u=0;

CLL=zeros(I_esp+1,1);

%%%% Time iterations

disp('Time iterations');

for t=dt:dt:T,

q_old=q;

u_old=u;

% Computation of u

gradtau=tau(2:I_esp)-tau(1:(I_esp-1));

if ((t/T)<0.1)

CLL(1)=v*10*(t/T);

else

CLL(1)=v ;

end;

CL=(Re*M_esp./dt+(1-Eps)*A_esp)*CLL;

F=(Re*M_esp./dt)*u-CL+gradtau;

u(2:I_esp)=BB_esp\F;

if ((t/T)<0.1)

u(1)=v*10*(t/T);

else

u(1)=v;

end;

% computation of tau

for l=1:I_esp % iteration on the cells

nabla_u=(u(l+1)-u(l))/dx;

nabla_u_old=(u_old(l+1)-u_old(l))/dx;

% computation of q(:,l)

G=nabla_u*G_de_base;

G_old=nabla_u_old*G_de_base;

% Crank Nicholson

M_n_p_1=(1/dt)*M - 0.5*(G-A/(4*We));
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M_n=(1/dt)*M + 0.5*(G_old-A/(4*We));

q(:,l)=M_n_p_1\(M_n*q_old(:,l));

% Computation of tau(l)

% tau = \int_X ( X \otimes X ) q \omega

tau(l)=(Eps/We)*(q(:,l)'*int_X_X_q_1_2);

end;

% Drawings

plot(mesh',u,mesh',[tau;tau(I_esp)]);

axis([0 1 -1 1.2]);

drawnow;

end;

legend('velocity','stress');

Exercise 4. Compare the results obtained with the three formulations. Which formu-

lation is the most efficient computationally ? Discuss the applicability of these three

formulations to the following two more general settings: chain of N > 2 beads linked

with Hookean springs, FENE dumbbell model.

6 Mathematical and numerical issues

As mentioned earlier, the present section is much more elaborate mathematically

than the preceeding sections.

6.1 Overview of the main difficulties

Let us first formally summarize the difficulties raised by the mathematical analysis

of systems such as (50) and (98) (for micro-macro models) or (23) (for macro-macro

models).

These systems of equations include the Navier-Stokes equations, with the addi-

tional term divτττ p in the right-hand side. The equation on τττ p is essentially a transport

equation and, formally, τττ p has at most the regularity of ∇uuu (this fact will be clear

in the choice of appropriate functional spaces for existence results, and of the dis-

cretization spaces for numerical methods). The term divτττ p in the right-hand side in

the momentum equation is not likely to bring more regularity on uuu. It is thus expected

that the study of these coupled systems contains at least the well-known difficulties

of the Navier-Stokes equations. Recall that for the (3-dimensional) Navier-Stokes

equations, it is known that global-in-time weak solutions exist but the regularity,

and thus the uniqueness, of such solutions is an open problem. Only local-in-time

existence and uniqueness results of strong solutions are available.

In addition to the difficulties already contained in the Navier-Stokes equations

(which essentially originate from the Navier term uuu ·∇uuu), the coupling with the equa-

tion on τττ p raises other problems. First, these equations (both for macro-macro and

micro-macro models) contain a transport term (uuu · ∇τττ p, uuu · ∇ψ or uuu · ∇XXX t ) with-

out diffusion terms (in the space variable). They are hyperbolic in nature. The reg-

ularity on the velocity uuu is typically not sufficient to treat this transport term by

a characteristic method. Moreover, these equations involve a nonlinear multiplica-

tive term (∇uuu∇τττ p, divXXX (∇uuuXXX∇ψ) or ∇uuuXXX t ). Finally, except for very simple models
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(Oldroyd-B or Hookean dumbbell), the equations defining τττ p generally contain ad-

F

To summarize, the difficulties raised by mathematical analysis of these models

are related to:

•

• nonlinear terms coming either from the coupling between the equations and

(uuu, p) and τττ p τ p.

the numericals methods (choice of the discretization spaces, stability of the numer-

ical schemes, ...). Actually, the problems raised by the discretization we mentioned

in Sect. 4.4 can be seen as counterparts of the difficulties raised by the mathemat-

ical analysis. Many questions are still open, and the mathematical analysis and the

numerical analysis for viscoelastic fluids are very lively fields.

In the following, we provide more detailed results for macro-macro models, and,

next, micro-macro models. Considering the focus of the present article, more em-

phasis is laid on the latter.

6.2 Macroscopic models

We refer to M. Renardy [112] or E. Fernandez-Cara, F. Guillen and R.R. Ortega [44]

for a review of the mathematical analysis of macroscopic models. For the nu-

merical methods, we refer to R. Keunings [70] F.P.T. Baaijens [6] R. Owens and

T. Phillips [104]. We recall the prototypical macroscopic model, namely the Oldroyd-

B model:






Re

(
∂uuu

∂ t
+ uuu ·∇uuu

)
− (1 − ε)∆uuu+ ∇p = divτττ p + fff ,

divuuu = 0,

We

(
∂τττ p

∂ t
+ uuu ·∇τττ p − ∇uuuτττ p − τττ p(∇uuu)T

)
+ τττ p = ε(∇uuu + ∇uuuT ).

(141)

Mathematical results

Concerning existence results for macroscopic models, four types of results can be

found in the litterature:

• local-in-time results (perturbation of the initial condition),

• global-in-time results for small data (perturbation of the stationary solution),

• existence results for stationary solutions close to equilibrium solutions,

• existence results for stationary solutions close to Navier-Stokes stationary solu-

tions.

local-in-time existence and uniqueness results. They also have many implications on

, or inherently contained in the equations defining ττ

ditional non-linearities (for micro-macro model, the force FF is generally non-linear

transport terms,

These difficulties limit the state-of-the-art mathematical well-posedness analysis to

and typically blows up when the length of the polymer reaches a critical value).
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For illustration, let us only mention the result obtained by M. Renardy in [110].

The author considers the following coupled problem, in a bounded domain D of R3
:





ρ

(
∂uuu

∂ t
+ uuu.∇uuu

)
= divτττ p − ∇p + fff ,

divuuu = 0,(
∂

∂ t
+ uuu.∇

)
(τττ p)i, j = AAAi, j,k,l(τττ p)

∂uuuk

∂xxxl

+ gggi, j(τττ p),

(142)

with summation convention on repeated indices. The fluid is inviscid (η = 0). This

system is supplied with homogeneous Dirichlet boundary condition on the velocity uuu,

and initial conditions. The differential models introduced in Sect. 2.3 indeed enter

this framework. Introduce the fourth order tensor:

CCCi, j,k,l = AAAi, j,k,l − (τττ p)i,lδk, j, (143)

where δ is the Kronecker symbol. Assume the following strong ellipticity property

on CCC: ∀ζ ,η ∈ R3

CCCi, j,k,l(τττ p)ζiζkη jηl ≥ κ |ζ |2|η |2 (144)

where κ > 0 is a constant not depending on τττ p. Under additional assumptions of

symmetry on the tensor AAA, of regularity and compatibility on the initial conditions, it

is shown by M. Renardy in [110] that:

Theorem 1. There exists a time T ′ > 0, such that the system (142) admits a unique

solution with regularity:

uuu ∈
4⋂

k=0

C
k([0,T ′],H4−k(D), τττ p ∈

3⋂

k=0

C
k([0,T ′],H3−k(D)).

tence results for less regular solutions are obtained there for non-zero viscosity of the

solvent η > 0. In a series of works, E. Fernandez-Cara, F. Guillen and R.R. Ortega

study the local well-posedness in Sobolev spaces (see [44] and references therein).

in-time existence and uniqueness results and global-in-time existence and uniqueness

The only global-in-time existence result we are aware of is the work of P.-L. Li-

ons and N. Masmoudi [89] where an Oldroyd-like model is studied, but with the

corotational convective derivative on the stress tensor rather than the upper convected

derivative.

Besides, there exist many studies on the stability of viscoelastic flows, and the

change of mathematical nature of the equations (transition from parabolic to hyper-

bolic). We refer to M. Renardy [112], R. Owens and T. Phillips [104] and references

therein.

results for small data are proven for Oldroyd-like models.

The works of C. Guillopé and J.C. Saut [53, 54] are also to be mentioned. Exis-

We also mention the work of F.-H. Lin, C. Liu and P.W. Zhang [86] where local-
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Numerical methods

Most of the numerical methods employed in practice to simulate such models are

based upon a finite element discretization in space (see however R. Owens and

T. Phillips [104] for spectral methods) and a finite difference discretization in time

(usually Euler schemes), with a decoupled computation of (uuu, p) and τττ p. More pre-

cisely, at each timestep, the equation for (uuu, p) is first solved, given the current stress

tensor τττ p. This allows to update the velocity. Next, the equation for τττ p is solved, and

the stress is updated.

We have already mentioned in Sect. 4.4 the main three difficulties raised by

the discretization: (i) a compatibility condition is needed between the discretization

spaces for uuu and for τττ p, (ii) the transport terms need to be correctly discretized, (iii)

describe how to deal with these difficulties for macroscopic models. Notice that, as

observed in Sect. 4.4, the three difficulties mentioned above are also present for the

discretization of micro-macro models. Most of the methods described below are thus

also useful for the discretization of micro-macro models.

Concerning difficulty (i), it actually appears that an inf-sup condition is required

for the three discretization spaces for respectively the pressure, the velocity and the

stress tensor. More precisely, in addition to the usual inf-sup condition required for

the discretization spaces for the velocity and the pressure, a compatibility between

the discretization space for the velocity and that for the stress tensor is required to

obtain stable schemes when η is small as compared to ηp

These compatibility conditions have been analyzed by J.C. Bonvin M. Picasso and

R. Sternberg in [18, 17] on the three-field Stokes system:






−η∆uuu+ ∇p − divτττ p = fff ,
divuuu = 0,
τττ p − ηpγ̇γγ = ggg.

(145)

Many methods have been proposed in the literature to treat the problem:

• Use discretization spaces that satisfy an inf-sup condition. These are usually dif-

ficult to implement (see for example J.M. Marchal and M.J. Crochet [96]),

• Introduce an additional unknown to avoid this compatibility condition (see the

EVSS method in R. Guénette and M. Fortin [52]),

• Use stabilization methods, like the Galerkin Least Square (GLS) method, which

enables to use the same discretization space for the three unknown fields (see

J.C. Bonvin M. Picasso and R. Sternberg in [18, 17]).

The second difficulty (ii) is raised by the discretization of the advection terms

both in the equation for uuu and for τττ p. It is well known that naı̈ve discretization

by a finite element method leads to unstable schemes. Many techniques have been

used to circumvent this problem: stabilization techniques like Streamline Upwind

Petrov-Galerkin (SUPG) or GLS, Discontinuous Galerkin methods (see M. Fortin

and A. Fortin [46]), or numerical characteristic method (see J.C. Bonvin [18] or the

Backward-tracking Lagrangian Particle Method of P. Wapperom, R. Keunings and

the discretization of the nonlinear terms requires special attention. Let us now briefly

(i.e. when ε is close to 1).
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V. Legat [121]). We refer to R. Owens and T. Phillips [104, Chap. 7] or to R. Ke-

unings [71] for references about these methods in the context of viscoelastic fluid

simulations (see also T. Min, J.Y. Yoo and H. Choi [98] for a comparison between

various numerical schemes). These difficulties are prominent for high Reynolds num-

ber (which is not practically relevant in the context of viscoelastic fluid simulations)

or for high Weissenberg number (which is relevant).

The third difficulty (iii) we mentioned concerns the discretization of the nonlinear

terms. Consider the term ∇uuuτττ p + τττ p(∇uuu)T
in the convective derivative of τττ p. In

most of the numerical methods, this term is treated explicitly by taking its value at

the former timestep. Linearizing this term by treating the velocity explicitly and the

stress implicitly leads to an ill-posed problem if the Weissenberg problem is too high.

We mentioned that two of these difficulties are prominent for large Weissenberg

number. It indeed appears that numerical methods become unstable in this latter

regime. This is the so-called High Weissenberg Number Problem (HWNP) we al-

ready mentioned in Sect. 4.4. Many works are related to the HWNP (we refer for

example to R. Owens and T. Phillips [104, Chap. 7]). The HWNP is certainly not

only related to the discretization scheme. It has indeed been observed that for some

geometries, the critical Weissenberg number (above which the scheme is unstable)

decreases with the mesh step size (see R. Keunings [71]), which could indicate a loss

of regularity for the continuous solution itself (see D. Sandri [116]). It is still an open

problem to precisely characterize the HWNP, and to distinguish between instability

coming from the model itself, or its discretization. For the theoretical study of the

limit We → ∞, we refer to M. Renardy [112, Chap. 6].

We would like to mention the recent works [42, 43, 60] where R. Fattal, R. Kupfer-

man and M.A. Hulsen propose a new formulation for macroscopic models based on

a change of variable: instead of using (uuu, p,τττ p) as unknowns, they set the problem

in terms of (uuu, p,φφφ), where

φφφ = lnAAA

and AAA is the conformation tensor defined by:

AAA =
We

ε
τττ p + Id. (146)

better understand the problem.

6.3 Multiscale models

Let us recall the micro-macro model we are interested in:

numerical methods. In this alternate formulation, the numerical instability arises only

[43, 60] and Y. Kwon [74] for various models, various geometric settings, and various

This new formulation was implemented in R. Fattal, R. Kupferman and M.A. Hulsen

for much higher a Weissenberg number. It thus seems to be a promising method to
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Re

(
∂uuu

∂ t
+ uuu ·∇uuu

)
− (1 − ε)∆uuu+ ∇p = divτττ p + fff ,

divuuu = 0,

τττ p =
ε

We
(E(XXX t ⊗ FFF(XXX t))− Id),

dXXX t + uuu.∇XXX t dt = ∇uuuXXX t dt − 1

2We
FFF(XXX t)dt +

1√
We

W t

(147)

with FFF(XXX t) = XXX t for Hookean dumbbells, FFF(XXX t) = XXX t

1−‖XXXt‖2/b
for FENE dumbbells,

or FFF(XXX t) = XXX t

1−E(‖XXXt‖2)/b
for FENE-P dumbbells. The space variable xxx varies in a

bounded domain D ⊂ Rd
. This system is supplied with boundary conditions on the

velocity, and initial conditions on the velocity and the stochastic processes. In the

following, we suppose ε ∈ (0,1).
We recall the Fokker-Planck version of (147):





Re

(
∂uuu

∂ t
(t,xxx)+ uuu(t,xxx) ·∇uuu(t,xxx)

)
− (1 − ε)∆uuu(t,xxx)+ ∇p(t,xxx)

= div(τττ p(t,xxx)),
div(uuu(t,xxx)) = 0,

τττ p(t,xxx) =
ε

We

(∫

XXX
(XXX ⊗ FFF(XXX))ψ(t,xxx,XXX)dXXX − Id

)
,

∂ψ

∂ t
(t,xxx,XXX)+ uuu.∇xxxψ(t,xxx,XXX)

= −divXXX

((
∇uuu(t,xxx)XXX − 1

2We
FFF(XXX)

)
ψ(t,xxx,XXX)

)
+

1

2We
∆XXX ψ(t,xxx,XXX).

(148)

There is a growing literature on the analysis of micro-macro models for poly-

meric fluids. The first work we are aware of is M. Renardy [111], where the micro-

macro model in its Fokker-Planck formulation (50) is studied. Since this early work,

many groups have studied these models, perhaps because they are prototypical for a

class of multiscale models, where some parameters needed in the macroscopic equa-

tions are computed by some microscopic models (see the general formulation (52)).

Let us recall the two main difficulties we already mentioned in Sect. 6.1,

• transport terms (uuu ·∇uuu, uuu ·∇XXX t and uuu.∇ψ),

• nonlinear terms coming either from the coupling between the equations and

(uuu, p) and τττ p (∇uuuXXX t or divXXX (∇uuuXXXψ)), or inherently contained in the equations

defining τττ p F

In the next sections, we explain how these difficulties have been addressed both from

and T. Li and P.W. Zhang [85]).

Simplifications of the equations

The system (147) is quite difficult to study as such. Two simplifications of this gen-

eral setting are usually considered for preliminary arguments: homogeneous flows

and shear flows.

dWW ,

the mathematical viewpoint and the numerical viewpoint (see also T. Lelièvre [82],

(due to the non-linear entropic force FF).
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To specifically study the microscopic equations, one can consider homogeneous

flows. We recall that in such flows, ∇uuu does not depend on the space variable, and

therefore XXX t τ p) does not depend on the space variable either. A solution

to (147) is then obtained by solving the SDE without the advective term. For a ve-

locity field uuu(t,x) = κκκ(t)xxx, (147) becomes:






τττ p =
ε

We
(E(XXX t ⊗ FFF(XXX t))− Id),

dXXX t = κκκ(t)XXX t dt − 1

2We
FFF(XXX t)dt +

1√
We

dWWW t .
(149)

and the microscopic equations but to eliminate the difficulties related to transport

terms, many authors (see M. Laso and H.C. Öttinger [75], J.C. Bonvin and M. Pi-

or W. E, T. Li and P.W. Zhang [38]) consider shear flows (see Fig. 1). In this geome-

try, (147) writes:






Re
∂u

∂ t
(t,y)− (1 − ε)

∂ 2u

∂y2
(t,y) =

∂τ

∂y
(t,y)+ f (t,y),

τ(t,y) =
ε

We
E(Xt(y)FY (XXX t(y))),

dXt(y) =
∂u

∂y
(t,y)Yt(y)dt − 1

2We
FX(XXX t(y))dt +

1√
We

dVt ,

dYt(y) = − 1

2We
FY (XXX t(y))dt +

1√
We

dWt ,

(150)

where (Xt(y),Yt(y)) are the two components of the stochastic process XXX t(y), (Vt ,Wt)
are two independent Brownian motions and (FX(XXX t),FY (XXX t)) are the two compo-

nents of the force FFF(XXX t). In this case, y ∈ (0,1), and Dirichlet boundary conditions

are assumed on the velocity at y = 0 and y = 1. The initial conditions (X0,Y0) are

assumed to be independent from one another and independent from the Brownian

motions.

Mathematical Analysis

A fundamental energy estimate

In order to understand the mathematical structure of the system (147), we first derive

an energy estimate. Such an estimate is called an a priori estimate, since it is formally

derived assuming sufficient regularity on the solutions for all the manipulations to

hold true. These estimates are then used to prove existence and uniqueness results,

and, possibly, study longtime properties of the solutions.

Multiplying the momentum equation by uuu and integrating in space and time, one

obtains on the one hand

Re

2

∫

D

|uuu|2(t,xxx)+ (1 − ε)

∫ t

0

∫

D

|∇uuu|2(s,xxx) (151)

=
Re

2

∫

D

|uuu|2(0,xxx)− ε

We

∫ t

0

∫

D

E(XXX s(xxx)⊗ FFF(XXX s(xxx))) : ∇uuu(s,xxx),

(and thus ττ

casso [16], C. Guillopé and J.C. Saut [54], B. Jourdain, C. Le Bris and T. Lelièvre [68]

To keep the difficulty related to the coupling between the macroscopic equation



118 C. Le Bris, T. Lelièvre

assuming homogeneous Dirichlet boundary conditions on uuu.

On the other hand, using Itô calculus on Π(XXX t) (where Π is the potential of the

force FFF of the spring), integrating in space, time and taking the expectation value, it

is seen that

∫

D

E(Π(XXX t(xxx)))+
1

2We

∫ t

0

∫

D

E(‖FFF(XXX s(xxx))‖2) (152)

=

∫

D

E(Π(XXX0(xxx)))+

∫ t

0

∫

D

E(FFF(XXX s(xxx)) ·∇uuu(s,xxx)XXX s(xxx))

+
1

2We

∫ t

0

∫

D

∆Π(XXX s(xxx)).

Summing up the two equalities (151) and (152), and using

E(XXX s(xxx)⊗ FFF(XXX s(xxx))) : ∇uuu(s,xxx) = E(FFF(XXX s(xxx)) ·∇uuu(s,xxx)XXX s(xxx)), (153)

the following energy estimate is obtained:

Re

2

d

dt

∫

D

|uuu|2(t,xxx)+ (1 − ε)

∫

D

|∇uuu|2(t,xxx)+
ε

We

d

dt

∫

D

E(Π(XXX t(xxx)))

+
ε

2We 2

∫

D

E(‖FFF(XXX t(xxx))‖2) =
ε

2We 2

∫

D

∆Π(XXX t(xxx)). (154)

Notice that this energy estimate does not help in the study of the longtime be-

havior since the term in the right-hand side (which comes form Itô calculus and is

non-negative since Π is convex) brings energy to the system. We will return to this

question below.

As said above, this energy estimate is a first step towards an existence and unique-

ness result. For example, in the case of Hookean dumbbells in a shear flow, it allows

to prove the following global-in-time existence and uniqueness result (see B. Jour-

Theorem 2. Assuming u0 ∈ L2
y and fext ∈ L1

t (L
2
y), the system (150) for Hookean

dumbbells admits a unique solution (u,X) on (0,T ), ∀T > 0. In addition, the fol-

lowing estimate holds:

‖u‖2

L∞
t (L2

y) +‖u‖2

L2
t (H

1

0,y)
+‖Xt‖2

L∞
t (L2

y(L2
ω ))

+‖Xt‖2

L2
t (L2

y(L2
ω ))

≤ C
(
‖X0‖2

L2
y(L

2
ω )

+‖u0‖2

L2
y
+ T +‖ fext‖2

L1
t (L2

y)

)
.

Notice that in this case, Yt = Y0 e−t/2 +
∫ t

0
e

s−t
2 dWs is analytically known, so that the

existence and uniqueness result only concerns (u,X). The notion of solution em-

ployed is: the equation on u is satisfied in the distribution sense and the SDE holds

for almost every (y,ω). The proof relies on a variational formulation of the PDE,

and follows a very classical line. It consists in (i) building a sequence of approximate

solutions (by a Galerkin procedure), (ii) using the energy estimate (which indeed

has then a rigorous, better than formal, meaning) to derive some bounds on this se-

quence from which one deduces the existence of a limit (up to the extraction of a

dain, C. Le Bris and T. Lelièvre [67]):
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subsequence), (iii) passing to the limit in the variational formulation of the PDE.

This approach is interesting since, as is well known, it is also useful to prove the

convergence of numerical methods based on variational formulations (such as finite

element methods).

This setting (Hookean dumbbell in a shear flow) is actually extremely specific.

A global-in-time existence and uniqueness result is obtained since the coupling term

∇uuuXXX t of the original problem (147) simplifies to
∂u
∂y

Yt in (150), where Yt is known

independently of (u,X). In other words, this coupling term is no more nonlinear.

For FENE dumbbell, two new difficulties have to be addressed: first, the SDE

contains an explosive drift term and second, even in a shear flow, the coupling term

∇uuuXXX t is genuinely nonlinear.

The FENE SDE

In this paragraph, we consider the FENE SDE in a given homogeneous flow. As we

mentioned earlier, the FENE force has been introduced to prevent the length of the

dumbbell from exceeding the maximal length of the polymer. What can be actually

Proposition 1. Let us consider the SDE in (149) for FENE force: FFF(XXX) = XXX
1−‖XXX‖2/b

.

• For κκκ ∈ L1

loc
(R+) and b > 0, this SDE admits a strong solution with values in B =

B(0,
√

b), which is unique in the class of solutions with values in B = B(0,
√

b).
• Assume κκκ ∈ L2 (R+). If b ≥ 2, then the solution does not touch the boundary of B

in finite time. If 0 < b < 2, The solution touches (a.s.) the boundary of B in finite

time.

• Take κκκ ≡ 0 (for simplicity) and 0 < b < 2. It is possible to build two different

stochastic processes satisfying the SDE.

In practice, b is typically larger than 10, so that the SDE has indeed a unique strong

solution.

The FENE model in a Couette flow

As mentioned above, for the FENE model in the Couette flow, the coupling term
∂u
∂y

Yt is indeed nonlinear since Yt depends on Xt (through the force term FY (XXX t)) and

thus on u. This nonlinearity implies additional difficulties in the existence result, and

the a priori estimate we derived above does not provide enough regularity on the

velocity to pass to the limit in the nonlinear term
∂u
∂y

(t,y)Yt .

The question is then: for a given regularity of u (say u ∈ L∞
t (L2

y)∩L2
t (H1

0,y) if we

consider the first energy estimate), what is the regularity of τ ? Formally, owing to the

presence of the nonlinear term ∇uuuXXX t in the SDE, τ has the regularity of exp(
∫ t

0

∂u
∂y

)

which may be very irregular if one only assumes u ∈∈ L∞
t (L2

y)∩L2
t (H

1

0,y).
One way to address this difficulty is to derive additional a priori regularity on the

velocity. This can be performed by multiplying the equation for u in (150) by − ∂ 2u
∂y2

and using Girsanov theorem to explicitly obtain the dependency of τ in terms of u:

proven is the following (see B. Jourdain and T. Lelièvre [66]):
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τ(t,y) = E

(
Xt(y)Yt(y)

1 − (Xt(y))2+(Yt(y))2

b

)
,

= E

((
X̃tỸt

1 − X̃2
t +Ỹ 2

t
b

)
E

(
1√
We

∫ •

0

∂u

∂y
(y)Ỹs dVs

)

T

)
, (155)

where X̃XX t = (X̃t ,Ỹt) is the stochastic process satisfying the FENE SDE with
∂u
∂y

= 0 :

dX̃XX t = − 1

2We

X̃XX t

1 −‖X̃XXt‖2/b
dt +

1√
We

dWWW t ,

and E is the exponential martingale:

E

(
1√
We

∫ •

0

∂u

∂y
Ỹs dVs

)

t

= exp

(
1√
We

∫ t

0

∂u

∂y
Ỹs dVs − 1

2We

∫ t

0

(
∂u

∂y
Ỹs

)2

ds

)
.

Owing to the exponential dependency of τ on u in (155), this additional a priori

estimate yields bounds on u in L∞
t (H1

0,y)∩L2
t (H

2
y )-norm but only locally in time.

The following local-in-time existence and uniqueness result can then be proven

Theorem 3. Under the assumptions b > 6, fext ∈ L2
t (L

2
y) and u0 ∈ H1

y , ∃T > 0 (de-

pending on the data) s.t. the system admits a unique solution (u,X ,Y ) on [0,T ). This

solution is such that u ∈ L∞
t (H1

0,y)∩L2
t (H

2
y ). In addition, we have:

• P(∃t > 0,((X y
t )2 +(Y y

t )2) = b) = 0,

• (X y
t ,Y y

t ) is adapted with respect to the filtration F
V,W
t associated with the Brow-

nian motions.

For a similar result in a more general setting (3-dimensional flow) and forces

with polynomial growth, we refer to W. E, T. Li and P.W. Zhang [39]. The authors

prove a local-in-time existence and uniqueness result in high Sobolev spaces. We

Hookean dumbbells, neglecting the advection terms. When the velocity field is not

regular enough, it is difficult to give a sense to the transport term in the SDE (which

is actually a Stochastic Partial Differential Equation). We refer to C. Le Bris and

P.-L. Lions [78, 79].

Longtime behavior

ε
2We2

∫
D

∆Π(XXX t(xxx))
in the right-hand side. It actually appears that eliminating this term requires to add an

entropy term to the energy. To study the longtime behavior, the appropriate viewpoint

is to consider the free energy rather than the energy.

To introduce the entropy, one needs to consider the probability density functional

of the stochastic process XXX t , and thus the system (148) coupling the momentum

longtime behavior of the system because of the non-negative term

(see B. Jourdain, C. Le Bris and T. Lelièvre [68]):

also refer to A. Bonito, Ph. Clément and M. Picasso [15] for existence results for

As we mentioned above, the a priori estimate (154) cannot be used to understand the
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equation with the Fokker-Planck equation introduced in Sect. 3.2. Let us assume

zero Dirichlet boundary condition on the velocity uuu. The expected stationary state

(equilibrium) is

uuu(∞,xxx) = 0,

ψ(∞,xxx,XXX) = ψeq(XXX) = C exp(−Π(XXX)),

where C is a normalization factor. Using entropy estimates (see C. Ané et al. [4],

F. Malrieu [95], A. Arnold, P. Markowich, G. Toscani and A. Unterreiter [5]), ex-

ponential convergence to equilibrium may be shown (see B. Jourdain, C. Le Bris,

The first derivative of the kinetic energy

E(t) =
Re

2

∫

D

|uuu|2(t,xxx) (156)

writes (as in (151))

dE

dt
= −(1 − ε)

∫

D

|∇uuu|2(t,xxx)− ε

We

∫

D

∫

Rd
(XXX ⊗ ∇Π(XXX)) : ∇uuu(t,xxx)ψ(t,xxx,XXX).

The entropy

H(t) =

∫

D

∫

Rd
Π(XXX)ψ(t,xxx,XXX)+

∫

D

∫

Rd
ψ(t,xxx,XXX) ln(ψ(t,xxx,XXX))−|D | lnC,

=
∫

D

∫

Rd
ψ(t,xxx,XXX) ln

(
ψ(t,xxx,XXX)

ψeq(XXX)

)
(157)

is next introduced. Notice that H(t) ≥ 0 (since x ln(x) ≥ x − 1). Using (153) and

divuuu = 0, a simple computation shows:

dH

dt
= − 1

2We

∫

D

∫

Rd
ψ(t,xxx,XXX)

∣∣∣∣∇XXX ln

(
ψ(t,xxx,XXX)

ψeq(XXX)

)∣∣∣∣
2

+

∫

D

∫

Rd
(XXX ⊗ ∇Π(XXX)) : ∇uuu(t,xxx)ψ(t,xxx,XXX).

Thus, the free energy F(t) = E(t)+
ε

We
H(t) (a non-negative quantity) satisfies:

dF

dt
= −(1 − ε)

∫

D

|∇uuu|2(t,xxx)− ε

2We 2

∫

D

∫

Rd
ψ(t,xxx,XXX)

∣∣∣∣∇XXX ln

(
ψ(t,xxx,XXX)

ψeq(XXX)

)∣∣∣∣
2

.

(158)

Comparing with (154), we observe that the introduction of the entropy allows to

eliminate the right-hand side. In particular, (158) shows that the only stationary state

is uuu = 0 et ψ = ψeq u 1

0

∫
|uuu|2 ≤ C

∫
|∇uuu|2

and the Logarithmic Sobolev inequality: for all probability density functional ψ ,

T. Lelièvre and F. Otto [64, 65]). Let us explain this with more details.

. Moreover, using a Poincaré inequality: for all uu ∈ H (D),
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∫
ψ ln

(
ψ

ψeq

)
≤ C

∫
ψ

∣∣∣∣∇ ln

(
ψ

ψeq

)∣∣∣∣
2

, (159)

exponential convergence to zero for F u 2
xxx

eq(XXX)=Cexp(−Π(XXX))
if Π is α-convex for example (which is the case for Hookean and FENE dumbbells).

The Csiszar-Kullback inequality (see C. Ané et al. [4]) then shows that ψ converges

to ψeq exponentially fast in L2
xxx(L

1

XXX )-norm.

For generalizations of these computations to non-homogeneous boundary condi-

u u x 6
F. Otto [65].

We would like also to mention that these estimates on the micro-macro system

can be used as a guideline to derive new estimates on related macro-macro models

Remark 9 (On the choice of the entropy). If one considers the Fokker-Planck equa-

tion with uuu = 0, it is well-known (see A. Arnold, P. Markowich, G. Toscani and

A. Unterreiter [5]) that exponential convergence to equilibrium can be obtained us-

ing more general entropy functions of the form

H(t) =
∫

D

∫

Rd
h

(
ψ

ψeq

)
ψeq

where h : R → R∗
+ is a convex C 2

function, such that h(1) = 0. However, it seems

that to derive the entropy estimate (158) on the coupled system (150), it is necessary

to choose the “physical entropy” corresponding to the choice h(x) = x ln(x)−(x−1).

Remark 10 (On the assumptions on the force FFF). Recall that we assumed that FFF =
∇Π , where Π is a radial convex function. Let us briefly discuss the assumptions on

FFF we used so far.

• The fact that FFF can be written as the gradient of a potential Π is important to

obtain a simple analytical expression for ψeq.

• The fact that Π is radial is a very important assumption to ensure the symmetry

of the stress tensor.

• The convexity assumption on Π is important in the analysis of the SDEs (in

particular for uniqueness of strong solutions).

• The α-convexity of the potential Π has been used to obtain the Logarithmic

Sobolev inequality (159).

Existence results on the coupled problem with the Fokker-Planck PDE

Many authors have obtained existence and uniqueness results for the micro-macro

problem (148), that is the coupled model involving the Fokker-Planck equation.

For local existence and uniqueness results, we refer to M. Renardy [111],

T. Li, H. Zhang and P.W. Zhang [83] (polynomial forces) and to H. Zhang and

P.W. Zhang [123] (FENE force with b > 76). In a recent work by N. Masmoudi [97],

from (158). The Logarithmic Sobolev inequality (159) holds for ψ
(and thus for uu in L -norm) is obtained 

tions on uu (and thus uu(∞,xx) = 0), we refer to B. Jourdain, C. Le Bris, T. Lelièvre and

(see D. Hu and T. Lelièvre [59]).
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a local in time existence result is obtained for the FENE model without any assump-

tion on b (using reflecting boundary conditions). The author also shows global in

time existence result for initial data close to equilibrium (see also F.-H. Lin, C. Liu

and P.W. Zhang [87] for a similar result under the assumption b > 12).

Global existence results have also been obtained for closely related problems:

• Existence results for a regularized version: In J.W. Barrett, C. Schwab and

E. Süli [7, 8], a global existence result is obtained for (148) (Hookean and FENE

force) using a regularization of some terms, which allows for more regular so-

lutions. More precisely, the velocity uuu in the Fokker Planck equation is replaced

by a smoothed velocity, and the same smoothing operator is used on the stress

tensor τττ p in the right-hand side of the momentum equations. See also L. Zhang,

H. Zhang and P.W. Zhang [124].

• Existence results with a corotational derivative: In J.W. Barrett, C. Schwab and

E. Süli [7, 8] (again with some regularizations) and P.-L. Lions and N. Mas-

moudi [90, 97] (without any regularizations), the authors obtain global-in-time

existence results replacing ∇uuu in the Fokker-Planck equation by
∇uuu−∇uuuT

2
(which

is similar to considering the corotational derivative of τττ p instead of the upper con-

vected derivative in differential macro-macro models). More precisely, in [90], a

global-in-time existence result of weak solutions is obtained in dimension 2 and

3, while in [97], it is proved that in dimension 2, there exists a unique global-in-

time strong solution. A related recent result by F.-H. Lin, P. Zhang and Z. Zhang

is [88].

We would like also to mention the related works [27, 28, 31] (existence results

for coupled Navier-Stokes Fokker-Planck micro-macro models) by P. Constantin,

C. Fefferman, N. Masmoudi and E.S. Titi, and also the work of C. Le Bris and P.-

L. Lions [78, 79] about existence and uniqueness of solutions to Fokker-Planck type

equations with irregular coefficients.

Numerical methods

In this section, we review the literature for the numerical analysis of methods to

discretize (98). For the discretization of the micro-macro problem in the Fokker-

Planck version, we refer to Sect. 4.4.

The idea of coupling a Finite Element Method for discretization in space and a

stochastic method (Monte Carlo to approximate the expectation and Euler scheme

on the SDE) has been first proposed by M. Laso and H.C. Öttinger [75]. Such a

method is called Calculation Of Non-Newtonian Flow: Finite Elements and Stochas-

tic SImulation Technique (CONNFFESSIT). At first, Lagrangian methods were used

on the SDE, and independent Brownian motions on each trajectories (see M. Laso

and H.C. Öttinger [76]). The algorithm then consists in: (i) computing (uuu, p), (ii)

computing the trajectories of the fluid particles carrying the dumbbells (character-

istic method), (iii) integrating the SDEs along these trajectories and (iv) computing

the stress tensor τττ p by local empirical means in each finite element. This Lagrangian

approach is the most natural one since it is naturally obtained from the derivation
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of the model (see Sect. 4.2). However, owing to the term divτττ p, numerical results

are very noisy in space when using independent Brownian motions on each trajec-

tory. Moreover, such an approach requires to maintain a sufficiently large number of

dumbbells per cell of the mesh, which is not easy to satisfy (there is a need to add

some dumbbells and to destroy others during the simulation).

The idea then came up to use the Eulerian version of the SDE, and introduc-

ing fields of end-to-end vectors: XXX t(xxx). This is the concept of Brownian Configu-

ration Field introduced by M.A. Hulsen, A.P.G. van Heel and B.H.A.A. van den

Brule in [61]. In this Eulerian description, the most natural and simple choice is to

use the same Brownian motion at each position in space. This reduces the noise in

space and the variance of the velocity (but not the variance of the stress, see below

the transport term can then be done using a Discontinuous Galerkin method (see

M.A. Hulsen, A.P.G. van Heel and B.H.A.A. van den Brule [61]), the characteris-

tic methods (see J.C. Bonvin [18] or the Backward-Tracking Lagrangian Particle

Method of P. Wapperom, R. Keunings and V. Legat [121]), or classical finite element

methods with stabilization.

Let us recall how the CONNFFESSIT method writes in a shear flow (see

Sect. 5.4). In this special case, both the Lagrangian and the Eulerian approaches

lead to the same discretization: for given un
h, X k

h,n and Y k
h,n, compute un+1

h ∈ Vh such

that for all v ∈ Vh,





Re

δ t

∫

y
(un+1

h − un
h)v = −(1 − ε)

∫

y

∂un+1

h

∂y

∂v

∂y
−
∫

y
τh,n

∂v

∂y
+
∫

y
f v,

τh,n =
ε

We

1

K

K

∑
k=1

X k
h,nFY (X k

h,n,Y
k
h,n),

X k
h,n+1

− X k
h,n =

(
∂un+1

h

∂y
Y k

h,n − 1

2We
FX(X k

h,n,Y
k
h,n)

)
δ t

+
1√
We

(
V k

h,tn+1
−V k

h,tn

)
,

Y k
h,n+1

−Y k
h,n = − 1

2We
FY (X k

h,n,Y
k
h,n)δ t +

1√
We

(
W k

h,tn+1
−W k

h,tn

)
.

(160)

The index n is the timestep and the index k is the realization number in the SDE

(1 ≤ k ≤ K where K is the number of dumbbells in each cell). Finally, Vh is a finite

element space. We suppose in the following that Vh = P1 is the finite element space

of continuous piecewise linear functions so that Xh,n, Yh,n and τh,n are piecewise

constant functions in space (they belong to the functional space P0). We refer to

Fig. 13.

Convergence of the CONNFFESSIT method

In the CONNFFESSIT method, three numerical parameters are to be chosen: the

timestep δ t, the spacestep h and the number of dumbbells (or realizations) K. It is

expected that the method converges in the limit δ t → 0, h → 0 and K → ∞.

and the work [63] by B. Jourdain, C. Le Bris and T. Lelièvre). The discretization of
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τ
U0 = 1

u

u : P1

τ : P0

yI = 1

y0 = 0

UI = 0

h
τh,n = ε

We

1

K ∑K
k=1

(X k
h,nFY (X k

h,n,Y
k

h,n))

Fig. 13. The CONNFFESSIT method in a shear flow.

T. Li and P.W. Zhang [38] for Hookean dumbbells in a shear flow.

Theorem 4. Assuming u0 ∈ H2
y , fext ∈ L1

t (H
1
y ), ∂ fext

∂ t
∈ L1

t (L
2
y) and δ t < 1

2
, we have

(for Vh = P1): ∀n < T
δ t

,

∣∣∣∣

∣∣∣∣u(tn)− un
h

∣∣∣∣

∣∣∣∣
L2

y(L2
ω )

+

∣∣∣∣

∣∣∣∣E(XtnYtn)− 1

K

K

∑
k=1

X
k
h,nY

k
n

∣∣∣∣

∣∣∣∣
L1

y(L1
ω )

≤ C

(
h + δ t +

1√
K

)
.

∣∣∣∣

∣∣∣∣u(tn)− un
h

∣∣∣∣

∣∣∣∣
L2

y(L2
ω )

≤ C

(
h2 + δ t +

1√
K

)
.

The main difficulties in the proof of Theorem 4 originate from the following

facts:

• The velocity un
h is a random variable. The energy estimate at the continuous level

cannot be directly translated into an energy estimate at the discrete level (which

would yield the stability of the scheme).

• The end-to-end vectors (X
k
h,n,Y

k
n)1≤k≤K are coupled random variables (even

though the driving Brownian motions (V k
h,t ,W

k
h,t)1≤k≤K are independent).

This has been proven in B. Jourdain, C. Le Bris and T. Lelièvre [67] and W. E,

Lelièvre [81]):
Remark 11. It can be shown that the convergence in space is optimal (see T. 
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• The stability of the numerical scheme requires an almost sure bound on the Y k
n :

δ t
1

K

K

∑
k=1

(Y k
n )2 < 1.

To prove convergence, a cut-off procedure on Y k
n is employed:

Y
k
n+1 = max(−A,min(A,Y k

n+1)) (161)

with 0 < A <
√

3

5δ t
. In Theorem 4, un

h, X
k
n Y

k
n denotes random variables obtained by

the CONNFFESSIT scheme (160) with the cutoff procedure (161). It can be checked

that for sufficiently small δ t or sufficiently large K, this cut-off procedure is not used.

For a result without cut-off, we refer to B. Jourdain, C. Le Bris and

discretization by a finite difference scheme, we refer to T. Li and P.W. Zhang [84].

M. Picasso [14].

Variance of the results and dependency of the Brownian motions in space

of the result. If the variance is too large, the numerical method is basically useless.

We already mentioned above (see Sect. 5.5) variance reduction methods. It is also

interesting to investigate how the variance of the results depends upon the numerical

parameters. In the framework of the CONNFFESSIT method, this variance is partic-

ularly sensitive to the dependency of the Brownian motion on the space variable.

One can check (at least for regular solutions) that the dependency of the Brow-

nian motion on the space variable does not influence the macroscopic quantities

(uuu, p,τττ p) at the continuous level. This can be rigorously proved for Hookean dumb-

bells in a shear flow. It can also be checked that the convergence result of Theorem 4

is insensitive to the dependency of the Brownian motion on the space variable. How-

ever, at the discrete level, this dependency strongly influences the variance of the

results. It is observed that using Brownian motions independent from one cell of

the mesh to another rather than Brownian motions not depending on space increases

the variance of the velocity, but reduces the variance on the stress (see P. Halin,

G. Lielens, R. Keunings, and V. Legat [57], J.C. Bonvin and M. Picasso [16] and

This can be precisely analyzed for the case of Hookean dumbbells in a shear flow.

a) The variance on the velocity is minimal for a Brownian motion not depending on

space.

b) Using Brownian motions independent from one cell to another is not the best

method to reduce the variance on τ .

c) It is possible to reduce the variance on τ with the same computational cost as

when using a Brownian motion not depending on space. It consists in using a

Brownian motion alternatively multiplied by +1 or −1 on nearest-neighbour

cells.

T. Lelièvre [67]. For an extension of these results to a more general geometry and

One important practical quantity when using Monte Carlo methods is the variance

B. Jourdain, C. Le Bris and T. Lelièvre [63]).

It can be shown that (see B. Jourdain, C. Le Bris and T. Lelièvre [63]):

For a convergence result in space and time, we refer to A. Bonito, Ph. Clément and
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7 Other types of complex fluids

7.1 Liquid crystals

So far, we have only considered dilute solutions of flexible polymers. Some other

polymers behave more like rigid rods. This introduces anisotropy in the system. So-

lutions of such rigid polymers are called polymeric liquid crystals. One of the major

aspect to account for in the modelling of solutions of rod-like polymers is that the

interaction of the polymers becomes important at much a lower concentration than

with flexible polymers.

Modelling of liquid crystals, along with mathematical and numerical studies, is

today a very lively and active field of research. The present short section does not

reflect the variety of scientific enterprises dealing with liquid crystals. It is just a brief

incursion in this world to see, once, the basic models. One adequate model is the Doi

model (see M. Doi and S.F. Edwards [36] and H.C. Öttinger [102]). It describes the

evolution for a configuration vector RRRt by a stochastic differential equation:

dRRRt + uuu ·∇RRRt dt

=

(
Id− RRRt ⊗ RRRt

‖RRRt‖2

)((
∇uuuRRRt −

1

2
B2∇V (RRRt)

)
dt + BdWWW t

)

−d − 1

2
B2

RRRt

‖RRRt‖2
dt, (162)

where B is a positive constant and d = 2 or 3 is the dimension of the ambient space.

Notice that B may also be a function B(RRRt) in some models (with then an additional

term involving ∇(B2) in the drift term). Notice also that we assume that all the ini-

tial conditions RRR0(xxx) have a fixed length L so that ∀(t,xxx), ||RRRt(xxx)|| = ||RRR0(xxx)|| = L.

The potential V accounts for the mean-field interaction between the polymers. For

example, the Maier-Saupe potential is:

V (RRR) = − 1

L4
E(RRRt ⊗ RRRt) : RRR ⊗ RRR. (163)

The stress tensor is then given by:

τττ p(t) = E(uuut ⊗ uuut)+E

(
uuut ⊗

(
(Id− uuut ⊗ uuut)∇V (uuut)

))
− Id (164)

where uuut =
RRRt

L
is the rod orientation. We have neglected the viscous contribution

in (164). The fully coupled system then consists in the first two equations of (49)

with (162)–(164). Notice that the main differences with the equations seen so far in

this article are the nonlinearity in the sense of MacKean due to the presence of the

expectation value in the potential V and the fact that the diffusion term depends on

the process RRRt .

For an analysis of the coupled system with the Fokker-Planck version of (162)–

(164) in the special case of shear flow, we refer to H. Zhang and P.W. Zhang [122].
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The longtime behavior of the Fokker-Planck equation has been studied by P. Con-

stantin, I. Kevrekidis and E.S. Titi in [30] (see also [29]). A thorough analysis of the

variety of possible steady states and their stability is studied by G. Forest, Q. Wang

and R. Zhou in [45]. Some numerical methods to solve the stochastic differential

equation (162) are proposed by H.C. Öttinger in [102]. On the other hand, we are not

aware of any rigorous numerical analysis of numerical methods to solve this system

without closure approximation.

7.2 Suspensions

We now slightly change the context. Multiscale modelling of complex fluids is very

advanced for polymer flows. It is a well established scientific activity. However, it is

also a growing activity for some other types of fluids, far from polymer flows. We

give here the illustrative example of civil engineering fluids, with muds and clays. It

is not forbidden to believe that other materials of civil engineering, like cement, will

benefit a lot from multiscale modelling approaches in a near future.

For concentrated suspensions (such as muds or clays), one model available in

the literature is the Hebraud-Lequeux model [62]. This model describes the rheology

of the fluid in terms of a Fokker-Planck equation ruling the evolution in time of

the probability of finding, at each point, the fluid in a given state of stress. To date,

although current research is directed toward constructing multidimensional variants,

the model is restricted to the one-dimensional setting, that is, the Couette flow. The

stress at the point y and at time t is thus determined by one scalar variable σ :






∂ p

∂ t
(t,y,σ) = −∂u

∂y
(t,y)

∂ p

∂σ
(t,y,σ)+ D(p)

∂ 2 p

∂σ2
(t,y,σ)

−H(|σ |− 1)p(t,y,σ)+ D(p)δ0,

D(p) =

∫

|σ |≥1

p(t,y,σ)dσ .

(165)

In the above system, where we have on purpose omitted all physical constants, the

function H denotes the Heaviside function. It aims at modelling the presence of a

threshold constraint (here set to one): when the constraint is above the threshold, the

stress relaxes to zero, which translates into the two last terms of the Fokker-Planck

equation. The diffusion in the stress space is also influenced nonlinearly by the com-

plete state of stress, as indicated by the definition of D(p). On the other hand, the

function
∂u

∂y
(t,y) accounts for a shear rate term, here provided by the macroscopic

flow. The contribution to the stress at the point y under consideration is then given

by the average

τ(t,y) =

∫

R

σ p(t,y,σ)dσ . (166)

The fully coupled system consisting of the Fokker-Planck equation (165), the

expression (166) of the stress tensor, and the macroscopic equation for the Couette

flow (first line of (104)) has been studied mathematically in a series of work by

E. Cancès, I. Catto, Y. Gati and C. Le Bris [21, 22, 23].
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Alternately to a direct attack of the Fokker-Planck equation (165), one might

wish to simulate the associated stochastic differential equation with jumps that reads

dσt =
∂u

∂y
dt +

√
2P(|σt | ≥ 1) dWt − 1{|σ

t− |≥1}σt− dNt , (167)

where Wt is a Brownian motion and Nt is an independent Poisson process with unit

intensity. Note that, in addition to the jumps, equation (167) is nonlinear in the sense

of MacKean, as the diffusion coefficient depends on the marginal law of the solution

at time t.

The coupled system to simulate then reads





∂u

∂ t
(t,u)− ∂ 2u

∂y2
(t,y) =

∂τ

∂y
(t,y)

∀y,






τ(t,y) = E(σt(y))

dσt(y) =
∂u

∂y
dt +

√
2P(|σt(y)| ≥ 1) dWt − 1{|σt− (y)|≥1}σt−(y)dNt ,

(168)

where one should note that the stochastic differential equation has jumps.

Numerical simulations of this system have been carried out successfully (see

Y. Gati [49]). For the numerical analysis of the particle approximation, we refer to

M. Ben Alaya and B. Jourdain [9].

7.3 Blood flows

Blood is a complex fluid consisting of a suspension of cells in plasma. These cells are

mainly red blood cells or erythrocytes, white blood cells or leucocytes, and platelets.

Red blood cells constitute 98% of the cells in suspension. These microstructures

are mostly responsible for the non-Newtonian behavior of blood. A red blood cell

is a biconcave disk of diameter 8.5µm and thickness 2.5µm. It consists of a highly

flexible membrane which is filled with a solution (haemoglobin). The ambient flow

modifies the shape of the membrane. This phenomenon allows storage and release of

energy in the microstructures, like for polymeric fluids. At low shear rates, red blood

cells agglomerate into long structures called rouleaux.

It is observed that at high shear rates (like for pulsatile flow in healthy arteries,

see for example J.F. Gerbeau, M. Vidrascu and P. Frey [50] or A. Quarteroni and

L. Formaggia [107]), blood behaves essentially as a Newtonian fluid. At low shear

rates (in arterioles, venules, recirculatory regions in aneurysms and stenoses), blood

is a non-Newtonian fluid: it exhibits shear-thining, viscoelastic and thixotropic ef-

fects. This can be interpreted as follows: in flows with high shear rates, red blood

cells cannot agglomerate, and the rheology is not influenced by the microstructures,

while in flows with low shear rates, red blood cells agglomerate and this influences

the rheology. Notice that we here discuss simple mechanical properties, neglecting

important biochemical factors (like in clot formation for example).

In [41, 103], R.G. Owens and J. Fang propose a micro-macro model for blood,

which is very similar to the model presented in Sect. 4. This model applies in some
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sufficiently large flow domains, so that statistics on the configurations of red blood

cells at each macroscopic point make sense. In other context, it may be important to

consider each red blood cell as a separated entity like in the work [80] by A. Lefebvre

and B. Maury.

Let us first suppose that the velocity field is given and homogeneous. The micro-

scopic variables used to describe the microstructure (namely the red blood cells) are

a vector XXX (similar to the end-to-end vector for polymeric fluids) and an integer k ≥ 1

which measures the size of the aggregate the red blood cell belongs to. Consider then

the non-negative function ψk(t,XXX) such that ψk(t,XXX)dXXX is the number of red blood

cells (per unit volume of fluid) belonging to an aggregate of size k having end-to-end

vector between XXX and XXX + dXXX . We denote by N j = 1

j

∫
ψ j(t,XXX)dXXX the number of

aggregates of k red blood cells per unit volume.

The following Fokker-Planck equation rules the evolution of (ψk(t,XXX))k≥1:

∂ψk

∂ t
= −divXXX

((
∇uuuXXX − 2

ζk

FFF(XXX)

)
ψk

)
+

2kT

ζk

∆XXX ψk

+ hk(γ̇)ψeq
k − gk(γ̇)ψk. (169)

In Equation (169),

hk(γ̇) =
a(γ̇)

2N
eq
k

k−1

∑
i=1

NiNk−i +
b(γ̇)

N
eq
k

∞

∑
j=1

Nk+ j

is an aggregation rate coefficient and

gk(γ̇) =
b(γ̇)

2
(k − 1)+ a(γ̇)

∞

∑
j=1

N j

is a fragmentation rate coefficient. Both depend on the shear rate γ̇ =
√

1

2
γ̇γγ : γ̇γγ with

γ̇γγ = ∇uuu+∇uuuT
. At equilibrium (namely for zero shear rate: γ̇ = 0), the number of ag-

gregates of k red blood cells per unit volume is N
eq
k . An analytical expression for N

eq
k

can be derived, in terms of a(0), b(0) and the total number of red blood cells per unit

volume N0 (which is a conserved quantity). The function ψeq
k = Z−1

exp(−Π)kN
eq
k

describes the statistics of the red blood cells at equilibrium (Π is the potential of the

force FFF). Notice that by integrating (169) with respect to XXX (and dividing by k), the

following Smoluchowski equation on (Nk(t))k≥1 is obtained:

dNk

dt
= hk(γ̇)Neq

k − gk(γ̇)Nk.

The parameters of the model are N0, the friction coefficient ζk (which is typically

chosen as ζk = kζ1) and the functions a and b which can be calibrated using experi-

ments (see R.G. Owens and J. Fang [103, 41]).

In complex flows (for which ∇uuu depends on the space variable xxx), the functions

ψk also depend on xxx and the derivative
∂
∂ t

in (169) is replaced by a convective deriva-

tive
∂
∂ t

+ uuu ·∇. The micro model is coupled to the momentum equations through the

Kramers expression for the extra stress tensor:
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τττ =
∞

∑
k=1

τττk,

τττk(t,xxx) =

∫
FFF(XXX)⊗ XXXψk(t,xxx,XXX)dXXX − kNk(t,xxx)kBT Id.

Let us mention one modelling challenge: it is observed that the distribution of red

blood cells is not uniform across a vessel (cell-depleted region near the vessel walls),

and it is not clear how to account for this phenomenon in the micro-macro model. In

the case of a Hookean force, it is possible to derive a macro-macro version of this

model, which can then be further simplified (see R.G. Owens and J. Fang [41, 103]).

Only this macro-macro version has been used so far in simulations for comparisons

with experimental data (see again R.G. Owens and J. Fang [41, 103]).
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4. C. Ané, S. Blachère, D. Chafaı̈, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, and
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66. B. Jourdain and T. Lelièvre. Mathematical analysis of a stochastic differential equation

arising in the micro-macro modelling of polymeric fluids. In I.M. Davies, N. Jacob,

A. Truman, O. Hassan, K. Morgan, and N.P. Weatherill, editors, Probabilistic Methods

in Fluids Proceedings of the Swansea 2002 Workshop, pages 205–223. World Scientific,

2003.
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1 Outline

Many physical problems can be formulated as partial differential equations (PDEs)

on certain geometric domains. For some of them, the PDEs can be reformulated using

the so-called boundary integral equations (BIEs). These are integral equations which

only involve quantities on the domain boundary. Some advantages of working with

the BIEs are automatic treatments of boundary condition at infinity, better condition

numbers, and fewer numbers of unknowns in the numerical solution. On the other

hand, one of the major difficulties of the BIEs is that the resulting linear systems are

dense, which is in direct contrast to the sparse systems of the PDEs. For large scale

problems, direct solution of these dense linear systems becomes extremely time-

consuming. Hence, how to solve these dense linear systems efficiently has become

one of the central questions. Many methods have been developed in the last twenty

years to address this question. In this article, we review some of these results.

We start in Sect. 2 with a brief introduction of the boundary integral formulation

with the Laplace and Helmholtz equations as our examples. A major difference be-

tween these two equations is that the kernel of the Laplace equation is non-oscillatory

while the one of the Helmholtz equation is oscillatory. For the non-oscillatory ker-

nels, we discuss the fast multipole method (FMM) in Sect. 3 and its kernel indepen-
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dent variant in Sect. 4, the hierarchical matrices frame in Sect. 5, and the wavelet

based methods in Sect. 6. For the oscillatory kernels, we review the high frequency

fast multipole method (HF-FMM) in Sect. 7 and the recently developed multidirec-

tional method in Sect. 8.

The purpose of this article is to provide an introduction to these methods for

advanced undergraduate and graduate students. Therefore, our discussion mainly fo-

cuses on algorithmic ideas rather than theoretical estimates. For the same reason, we

mostly refer only to the original papers of these methods and keep the size of the

reference list to a minimum. Many important results are not discussed here due to

various limitations and we apologize for that.

2 Boundary Integral Formulation

Many linear partial differential equation problems have boundary integral equation

formulations. In this section, we focus on two of the most important examples and

demonstrate how to transform the PDE formulations into the BIE formulations. Our

discussion mostly follows the presentation in [11, 18, 20]. We denote
√

−1 with i

2.1 Laplace equation

Let D be a bounded domain with smooth boundary in Rd(d = 2,3). n is the exterior

normal to D. The Laplace equation on D with Dirichlet boundary condition is

−∆u = 0 in D (1)

u = f on ∂D (2)

where f is defined on ∂D. The geometry of the problem is shown in Fig. 1. We seek

to represent u(x) for x ∈ D in an integral form which uses only quantities on the

boundary ∂D.

The Green’s function for the Laplace equation is

G(x,y) =

{
1

2π ln
1

|x−y| (d = 2)
1

4π
1

|x−y| (d = 3)
(3)

Some of the important properties of G(x,y) are

• G(x,y) is symmetric in x and y,

• G(x,y) is non-oscillatory, and

• −∆xG(x,y) = δy(x) and −∆yG(x,y) = δx(y)

where ∆x and ∆y take the derivatives with respect x and y, respectively, and δx is

the Dirac function located at x. The following theorem is a simple consequence of

Stokes’ theorem.

and assume that all functions are sufficiently smooth.
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Fig. 1. Domain of the Dirichlet boundary value problem of the Laplace equation.

Theorem 1. Let u and v to be two sufficiently smooth functions on D̄. Then

∫

D
(u∆v − v∆u)dx =

∫

∂D

(
u

∂v(y)

∂n(y)
− v

∂u(y)

∂n(y)

)
ds(y).

A simple application of the previous theorem gives the following result.

Theorem 2. Let u be a sufficiently smooth function on D̄ such that −∆u = 0 in D.

For any x in D,

u(x) =

∫

∂D

(
∂u(y)

∂n(y)
G(x,y)− u(y)

∂G(x,y)

∂n(y)

)
ds(y).

Proof. Pick a small ball B at x that is contained in D (see Fig. 2). From the last

theorem, we have

∫
D\B(u(y)∆G(x,y)− G(x,y)∆u(y))ds(y) =
∫

∂ (D\B)

(
u(y) ∂G(x,y)

∂n(y) − G(x,y) ∂u(y)
∂n(y)

)
ds(y).

Since −∆u(y) = 0 and −∆G(x,y) = 0 for y ∈ D \ B, the left hand side is equal to

zero. Therefore, ∫
∂D

(
u(y) ∂G(x,y)

∂n(y)
− G(x,y) ∂u(y)

∂n(y)

)
ds(y) =

−∫∂B

(
u(y) ∂G(x,y)

∂n(y) − G(x,y) ∂u(y)
∂n(y)

)
ds(y)

where n points towards x on ∂B. Now let the radius of the ball B go to zero. The first

term of the right hand side goes to −u(x) while the second term approaches 0.

From the last theorem, we see that u(x) for x in D can be represented as a sum of

two boundary integrals. In the boundary integral formulation, we seek to represent

u(x) using only one of them. This degree of freedom gives rise to the following two

approaches.
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Fig. 2. Proof of Theorem 2.

Method 1

We represent u(x) for x ∈ D using the integral that contains G(x,y)

u(x) =

∫

∂D
ϕ(y)G(x,y)ds(y) (4)

where ϕ is an unknown density on ∂D. This formulation is called the single layer

form and ϕ is often called the single layer density. One can show that any sufficiently

nice u(x) can be represented using the single layer form (see [20] for details). Letting

x approach z ∈ ∂D, we get

f (z) = u(z) =

∫

∂D
ϕ(y)G(z,y)ds(y),

which is an integral equation that involves only boundary quantities ϕ and f . There-

fore, the steps to solve the Laplace equation using the single layer form are:

1. Find ϕ(z) on ∂D such that

f (z) =

∫

∂D
ϕ(y)G(z,y)ds(y). (5)

This equation is a Fredholm equation of the first kind (see [20]).

2. For x in D, compute u(x) by

u(x) =

∫

∂D
ϕ(y)G(x,y)ds(y). (6)
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Method 2

We can also represent u(x) for x ∈ D using the integral that contains
∂G(x,y)
∂n(y)

u(x) = −
∫

∂D
ϕ(y)

∂G(x,y)

∂n(y)
ds(y) (7)

where ϕ is again an unknown density on ∂D. This formulation is called the double

layer form and ϕ is the double layer density. In fact, the double layer form is capable

of representing any sufficiently nice u(x) in D [20]. If we now let x approach z ∈ ∂D,

we obtain the following equation on the boundary:

f (z) = u(z) =
1

2
ϕ(z)−

∫

∂D

∂G(z,y)

∂n(y)
ϕ(y)ds(y).

The extra
1

2
ϕ(z) term comes up because the integral (7) is not uniformly integrable

near z ∈ ∂D. Hence, one cannot simply exchange the limit and integral signs. Since

the boundary ∂D is smooth, the integral operator with the kernel
∂G(z,y)
∂n(y) is a compact

operator. The steps to solve the Laplace equation using the double layer form are:

1. Find ϕ(z) on ∂D such that

f (z) =
1

2
ϕ(z)−

∫

∂D

∂G(z,y)

∂n(y)
ϕ(y)ds(y). (8)

This equation is a Fredholm equation of the second kind.

2. For x in D, compute u(x) with

u(x) = −
∫

∂D

∂G(x,y)

∂n(y)
ϕ(y)ds(y). (9)

Between these two approaches, we often prefer to work with the double layer

form (Method 2). The main reason is that the Fredholm equation of the second kind

has a much better condition number, thus dramatically reducing the number of itera-

tions required in a typical iterative solver.

2.2 Helmholtz equation

We now turn to the Helmholtz equation. Let D be a bounded domain with smooth

boundary in Rd(d = 2,3) and n be the exterior normal to D. The unbounded

Helmholtz equation on Rd \ D̄ (d = 2,3) with Dirichlet boundary condition describes

the scattering field of a sound soft object:

−∆u − k2u = 0 in R
d \ D̄ (10)

u(x) = −uinc(x) for x ∈ ∂D (11)
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Fig. 3. Domain of the Dirichlet boundary value problem of the Helmholtz equation.

lim
r→∞

r

(
∂u

∂ r
− iku

)
= 0 (12)

where k is the wave number, uinc
is the incoming field and u is the scattering field.

the scattering field propagates to infinity. The geometry of the problem is described

in Fig. 3. Our goal is again to represent u(x) for x ∈ Rd \ D̄ in an integral form which

uses quantities defined on the boundary ∂D.

The Green’s function of the Helmholtz equation is

G(x,y) =

{
i

4
H1

0
(k|x − y|) (d = 2)

1

4π
exp(ik|x−y|)

|x−y| (d = 3)
(13)

Some of the important properties of G(x,y) are

• G(x,y) is symmetric,

• G(x,y) is oscillatory,

• (−∆x − k2)G(x,y) = δy(x) and (−∆y − k2)G(x,y) = δx(y).

Theorem 3. Let C be a bounded domain with smooth boundary. Suppose that u is

sufficiently smooth in C̄ and satisfies (−∆ − k2)u = 0 in C. Then for any x in C

u(x) =

∫

∂C

(
∂u(y)

∂n(y)
G(x,y)− u(y)

∂G(x,y)

∂n(y)

)
ds(y).

Proof. Pick a small ball B centered at x. Then we have

∫
C\B(u(y)∆G(x,y)− G(x,y)∆u(y))dy =
∫

∂ (C\B)

(
u(y) ∂G(x,y)

∂n(y)
− G(x,y) ∂u(y)

∂n(y)

)
ds(y).

The left hand side is equal to

∫

C\B
(u · (∆G+ k2G)− G(∆u + k2u))dy = 0.

The rest of the proof is the same as the one of Theorem 2.

2

The last equation is called the Sommerfeld radiation condition which guarantees that

d–1
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Fig. 4. Proof of Theorem 4.

The above theorem addresses a bounded domain C. However, what we are really

interested in is the unbounded domain Rd \ D̄.

Theorem 4. Suppose that u is sufficiently smooth and satisfies (−∆ − k2)u = 0 in

Rd \ D. Then for any x in Rd \ D,

u(x) =

∫

∂D

(
∂u(y)

∂n(y)
G(x,y)− u(y)

∂G(x,y)

∂n(y)

)
ds(y).

Proof. Pick a large ball Γ that contains D. Consider the domain Γ \ D̄ (see Fig. 4).

Let t be the exterior normal direction of Γ \ D̄. From the previous theorem, we have

u(x) =

∫

∂Γ

(
∂u(y)

∂ t
G(x,y)− u(y)

∂G(x,y)

∂ t

)
ds(y)+

∫

∂D

(
∂u(y)

∂ t
G(x,y)− u(y)

∂G(x,y)

∂ t

)
ds(y).

Using the Sommerfeld condition at infinity, one can show that the integral over ∂Γ

we have

u(x) =

∫

∂D

(
u(y)

∂G(x,y)

∂n(y)
− ∂u(y)

∂n(y)
G(x,y)

)
ds(y).

From the last theorem, we see that u(x) for x in Rd \ D̄ can be represented as a

sum of two integrals. In the boundary integral formulation of the Helmholtz equation,

one option is to represent u(x) by the double layer form:

u(x) =
∫

∂D

∂G(x,y)

∂n(y)
ϕ(y)ds(y)

goes to zero as one pushes the radius of Γ to infinity [11]. Noting that t = −n on

∂D,
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Different from the double layer form of the Laplace equation, the double layer form

of the Helmholtz equation is not capable of representing arbitrary field u(x) for x ∈
Rd \ D̄. If k is one of the internal resonant numbers such that the internal Neumann

problem with zero boundary condition has non-trivial solution, then this double layer

form is singular (see [11]). In practice, we use

u(x) =

∫

∂D

(
∂G(x,y)

∂n(y)
− iηG(x,y)

)
ϕ(y)ds(y).

where η is a real number (for example, η = k). As we let x approach z on ∂D, we

get

−uinc(z) = u(z) =
1

2
ϕ(z)+

∫

∂D

(
∂G(z,y)

∂n(y)
− iηG(z,y)

)
ϕ(y)ds(y)

where the extra term
1

2
ϕ(z) is due to the fact that the integral is improper at z ∈ ∂D.

The steps to solve the Helmholtz equation using this double layer form are:

1. Find a function ϕ(z) on ∂D such that

−uinc(z) =
1

2
ϕ(z)+

∫

∂D

(
∂G(z,y)

∂n(y)
− iηG(z,y)

)
ϕ(y)ds(y). (14)

2. For point x in R3 \ D, compute u(x) with

u(x) =
∫

∂D

(
∂G(x,y)

∂n(y)
− iηG(x,y)

)
ϕ(y)ds(y). (15)

We have seen the derivations of the BIEs for the interior Laplace Dirichlet bound-

ary value problem and the exterior Helmholtz Dirichlet boundary value problem.

Though both cases use the Green’s functions of the underlying equation and the

Stokes’ theorem, the derivation for the Helmholtz equation is complicated by the ex-

istence of the internal resonant numbers. For other elliptic boundary value problems,

the derivations of the BIE formulations often differ from case to case.

2.3 Discretization

In both BIEs discussed so far, we need to solve a problem of the following form: find

ϕ(x) on ∂D such that

f (x) = ϕ(x)+

∫

∂D
K(x,y)ϕ(y)ds(y), i.e., f = (I + K)ϕ

or

f (x) =
∫

∂D
K(x,y)ϕ(y)ds(y), i.e., f = Kϕ .

where K(x,y) is either the Green’s function or its derivative of the underlying PDE.

In order to solve these equations numerically, we often use one of the following

three discretization methods: the Nyström method, the collocation method, and the

Galerkin method. Let us discuss these methods briefly using the Fredholm equation

of the second kind.
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Fig. 5. Nyström method

Nyström method

The idea of the Nyström method is to approximate integral operators with quadrature

operators. The steps are:

1. Approximate the integral operator (Kϕ)(x) :=
∫

K(x,y)ϕ(y)dy with the quadra-

ture operator

(KNϕ)(x) :=
N

∑
j=1

K(x,x j)λ jϕ(x j)

where {x j} are the quadrature points and {λ j} are the quadrature weights (see

Fig. 5). Here we make the assumption that {λ j} are independent of x. In practice,

{λ j} often depend on x when x j is in the neighborhood of x if the kernel K(x,y)
has a singularity at x = y.

2. Find ϕ(x) such that ϕ + KNϕ = f . We write down the equation at {xi}:

ϕi +
n

∑
j=1

K(xi,x j)λ jϕ j = fi, i = 1, · · · ,N (16)

and solve for {ϕi}. Here fi = f (xi).
3. The value of ϕ(x) at x ∈ ∂D is computed using

ϕ(x) = f (x)−
n

∑
j=1

K(x,x j)λ jϕ j. (17)

Collocation method

The idea of the collocation method is to use subspace approximation. The steps are:

1. Approximate ϕ(x) by ∑N
j=1

c jϕ j(x) where {ϕ j(x)} are basis functions on ∂D.

j j is often the center of

supp(ϕ j).

xLet {x } be a set of points on ∂ D (see Fig. 6), where
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Fig. 6. Collocation and Galerkin methods

2. Find {c j} such that ϕ + Kϕ = f is satisfied at {x j}, i.e.,

N

∑
j=1

c jϕ j(xi)+ (K(
N

∑
j=1

c jϕ j))(xi) = f (xi), i = 1, · · · ,N (18)

Galerkin method

The idea of the Galerkin method is to use space approximation with orthogonaliza-

tion. The steps are:

1. Approximate ϕ(x) by ∑N
j=1

c jϕ j(x) where {ϕ j(x)} are often localized basis

functions on ∂D.

j

j

〈ϕi,
N

∑
j=1

c jϕ j + K(
N

∑
j=1

c jϕ j)− f 〉 = 0, i = 1, · · · ,N (19)

2.4 Iterative solution

The following discussion is in the setting of the Nyström method. The situations for

the other methods are similar. In the matrix form, the linear system that one needs to

solve is

(III + KKKΛΛΛ )ϕϕϕ = fff

where III is the identity matrix, KKK is the matrix with entries K(xi,x j), ΛΛΛ is the diagonal

matrix with the diagonal entries equal to {λ j}, ϕϕϕ is the vector of {ϕ j}, and fff is the

vector of { f j}.

2. Find {c } such that ϕ + Kϕ − f is orthogonal to all the subspace generated by
ϕ (x).
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Since KKK is a dense matrix, the direct solution of this equation takes O(N3) steps.

For large N, this becomes extremely time-consuming and solving this system directly

is not feasible. Therefore, we need to resort to iterative solvers.

Since the integral operator K is compact, its eigenvalues decay to zero. This is

also true for the discretized version, the matrix KKK. Therefore, the condition number of

III + KKKΛΛΛ is small and independent of the number of quadrature points N. As a result,

the number of iterations is also independent of N. In each iteration, one computes

KKKψψψ for a given vector ψψψ . Since KKK is dense, a naive implementation of this matrix-

vector multiplication takes O(N2) steps, which can be still quite expensive for large

values of N. How to compute the product KKKψψψ is the question that we will address in

the following sections.

Before we move on, let us compare the PDE and BIE formulations. For the

PDE formulations, a numerical solution often requires O((1/h)d) unknowns for a

given discretization size h. Special care is necessary for unbounded exterior prob-

lems. Since the resulting linear system is sparse, each iteration of the iterative solver

is quite fast though the number of iterations might be large. Finally, the PDE for-

mulations work for domains with arbitrary geometry and problems with variable

coefficients.

For the BIE formulations, a numerical solution involves only O((1/h)d−1) un-

knowns on the domain boundary for a given discretization size h. No special care

is needed for exterior domains. The resulting system is always dense, so fast algo-

rithms are necessary for efficient iterative solutions of the BIE formulations. As we

have seen already, the Green’s functions are fundamental in deriving the integral

equations. Since the Green’s functions are often unknown for problems with vari-

able coefficients, most applications of the BIE formulations are for problems with

constant coefficient.

3 Fast Multipole Method

In each step of the iterative solution of a BIE formulation, we face the following

problem. Given a set of charges { fi,1 ≤ i ≤ N} located at points {pi,1 ≤ i ≤ N}
(see Fig. 7) and the Green’s function G(x,y) of the underlying equation, we want to

compute at each pi the potential

ui =
N

∑
j=1

G(pi, p j) f j. (20)

As we pointed earlier, a naive algorithm takes O(N2) steps, which can be quite ex-

pensive for large values of N. In this section, we introduce the fast multipole method

by Greengard and Rokhlin [15, 16] for the Green’s function of the Laplace equation.

This remarkable algorithm reduces the complexity from O(N2) to O(N) for any fixed

accuracy ε .
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Fig. 7. Distribution of quadrature points {pi} on the boundary of the domain D.

3.1 Geometric part

Two sets A and B are said to be well-separated if the distance between A and B are

greater than their diameters. Let us consider the interaction from a set of points {y j}
in B to a set of points {xi} in A, where both {y j} and {xi} are subsets of {pi}. The

geometry is shown in Fig. 8.

Fig. 8. Two boxes A and B are well-separated. Direct computation takes O(N2) steps.

Suppose that { f j} are the charges at {y j}. Let us consider the following approx-

imation for the potential ui at each xi

ui ≈ u(cA) = ∑
j

G(cA,y j) f j ≈ G(cA,cB)∑
j

f j. (21)

This approximation is quite accurate when A and B are far away from each other and

is in fact used quite often in computational astrophysics to compute the interaction

between distant galaxies. However, for two sets A and B which are merely well-

separated (the distance between them is comparable to their diameters), this approx-

imation introduces significant error. Let us not worry too much about the accuracy
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Fig. 9. The three steps of the approximate procedure. The total number operations is O(N).

at this moment and we will come back to this point later. A geometric description of

this approximation is given in Fig. 9.

We have introduced two representations in this simple approximation:

• fB, the far field representation of B that allows one to approximately reproduce

in the far field of B the potential generated by the source charges inside B.

• uA, the local field representation of A that allows one to approximately reproduce

inside A the potential generated by the source charges in the far field of A.

The computation of uA from fB

uA = G(cA,cB) fB

j i

points, the naive direct computation of the interaction takes O(n2) steps. The pro-

posed approximation is much more efficient:

• fB = ∑ j f j takes O(n) steps.

• uA = G(cA,cB) fB takes O(1) steps.

• ui = uA for all xi ∈ A takes O(n) steps as well.

Hence, the complexity of this three step procedure is O(n). Viewing the interaction

between A and B in a matrix form, we see that this interaction is approximately low

rank if A and B are well-separated. In fact, in the above approximation, a rank-1

approximation is used.

However, in the problem we want to address, all the points {pi} are mixed to-

gether and each pi is both a source and a target. Therefore, one cannot apply the

above procedure directly. The solution is to use an adaptive tree structure, namely

the octree in 3D or the quadtree in 2D (see Fig. 10). We first choose a box that con-

tains all the points {pi}. Starting from this top level box, each box of the quadtree is

recursively partitioned unless the number of points inside it is less than a prescribed

constant (in practice this number can vary from 50 to 200). Assuming that the points

{pi} are distributed quite uniformly on ∂D, the number of levels of the quadtree is

is called a far-to-local translation. Assuming both {y } and {x } contain O(n)
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Fig. 10. The quadtree generated from the domain in Fig. 7. Different levels of the quadtree are

shown from left to right.

O(logN). For a given box B in the quadtree, all the adjacent boxes are said to be in

the near field while the rest are in the far field. The interaction list of B contains the

boxes on the same level that are in B’s far field but not the far field of B’s parent. It

is not difficult to see that the size of the interaction list is always O(1).
No computation is necessary at the zeroth and the first levels. At the second level

(see Fig. 11), each box B has O(1) well-separated boxes (e.g. A). These boxes are

colored in gray and in B’s interaction list. The interaction between B and each box

in its interaction list can be approximated using the three step procedure described

above. The same computation is repeated over all the boxes on this level.

To address the interaction between B and its adjacent boxes, we go to the next

level (see Fig. 12). Suppose that B′
is a child of B. Since the interaction between B′

and B’s far field has already been taken care of in the previous level, we only need

Fig. 11. Computation at the second level.
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Fig. 12. Computation at the third level.

to address the interaction between B′
and the boxes in B′

’s interaction list (e.g. A′
).

These boxes are also colored in gray and the interaction between B′
and each one of

them can be approximated again using the three step procedure described above.

To address the interaction between B′
and its adjacent boxes, we again go to

the next level (see Fig. 13). B′′
(a child of B′

) has O(1) boxes in its interaction list.

The interaction between B′′
and each one of them (e.g. A′′

) is once again computed

using the three step procedure described above. Suppose now that B′′
is also a leaf

box. We then need to address the interaction between B′′
and its adjacent boxes.

Since the number of points in each leaf box is quite small, we simply use the direct

computation for this.

Fig. 13. Computation at the fourth (last) level.
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The algorithm is summarized as follows:

1. At each level, for each box B, compute fB = ∑p j∈B f j.

A,cB) f

to uA. This is the far-to-local translation.

3. At each level, for each box A, add uA to u j for each p j ∈ A.

4. At the final level, for each leaf box B, compute the interaction with its adjacent

boxes directly.

The complexity of this algorithm is O(N logN) based on the following considera-

tions.

1. Each point belongs to one box in each of O(logN) levels. The complexity of the

first step is O(N logN).
2. There are O(N) boxes in the octree. Each box has O(1) boxes in the interaction

list. Since each far-to-local translation takes O(1) operations, the complexity of

the second step is O(N).
3. Each point belongs to one box in each of O(logN) levels. The complexity is

O(N logN).
4. There are O(N) leaf boxes in total. Each one has O(1) neighbors. Since each leaf

box contains only O(1) points, the direct computation costs O(N) steps.

As we have mentioned earlier, the goal is O(N). Can we do better? The answer is

yes. Let us take a look at a box B and its children B1, · · · ,B4. Based on the definition

of fB, we have

fB = ∑
p j∈B

f j = ∑
p j∈B1

f j + ∑
p j∈B2

f j + ∑
p j∈B3

f j + ∑
p j∈B4

f j = fB1
+ fB2

+ fB3
+ fB4

.

Therefore, once { fBi
} are all known, fB can be computed using only O(1) operations.

This step is called a far-to-far translation. The dependence between fB and { fBi
}

suggests that we traverse the quadtree bottom-up during the construction of the far

field representations.

Similarly, instead of putting uA to each of its points, it is sufficient to add uA

to {uAi
} where {Ai} are the children of A. The reason is that uAi

will eventually

be added to the individual points. This step of adding uA to {uAi
} obviously takes

O(1) operations as well and it is called a local-to-local translation. Since {uAi
} now

depend on uA, we need to traverse the octree top-down during the computation of the

local field representations.

Combining the far-to-far and local-to-local translations with the above algorithm,

we have the complete the description of the geometric structure of the FMM.

1. Bottom-up traversal of the octree. At each level, for each box B,

• if leaf, compute fB from the points in B,

• if non-leaf, compute fB from the far field representations of its children.

A,cB) fB

to uA.

3. Top-down traversal of the octree. At each level, for each box A,

B2. At each level, for each pair A and B in each other’s interaction list, add G(c

2. At each level, for each pair A and B in each other’s interaction list, add G(c
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• if leaf, add uA to u j for each point p j in A,

• if non-leaf, add uA to the local field representations of its children.

4. At the final level, for each leaf box B, compute the interaction with its adjacent

boxes directly.

Compared with the previous version, the only changes are made in the first and the

third steps, while the second and the fourth steps remain the same. Let us estimate its

complexity. It is obvious that we perform one far-to-far translation and one local-to-

local translation to each of the O(N) boxes in the octree. Since each of the far-to-far

and local-to-local translations takes only O(1) operations, the complexity of the first

and the third steps is clearly O(N). Therefore, the overall complexity of the algorithm

is O(N).

3.2 Analytic part

In the discussion of the geometric part of the FMM, we did not worry too much

about the accuracy. In fact, simply taking the far field representation fB = ∑p j∈B f j

and the local field representation uA = G(cA,cB) fB gives very low accuracy. Next,

we discuss the analytic part of the FMM, which provides efficient representations

and translations that achieve any prescribed accuracy ε . In fact one can view the

fB = ∑p j∈B f j to be the zeroth moment of the charge distribution { f j} at {p j} in B.

The idea behind the analytic part of the FMM is simply to utilize the higher order

moments and represent them compactly using the property of the underlying PDE.

2D case

In the two dimensional case, we can regard {pi} to be points in the complex plane.

Up to a constant,

G(x,y) = ln |x − y| = Re(ln(x − y))

for x,y ∈ C. Therefore, we will regard the kernel to be G(x,y) = ln(x − y) and throw

away the imaginary part at the end of the computation.

Far field representation

Suppose that {y j} are source points inside a box (see Fig. 14) and { f j} are charges

located at {y j}.

Since

G(x,y) = ln(x − y) = lnx + ln

(
1 − y

x

)
= lnx +

∞

∑
k=1

(
−1

k

)
yk

xk
,

we have for any x in the far field of this box

u(x) = ∑
j

G(x,y j) f j =

(

∑
j

f j

)
lnx +

p

∑
k=1

(
−1

k
∑

j

yk
j f j

)
1

xk
+ O(ε)
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Fig. 14. Far field representation.

where p = O(log(1/ε)) because |y j/x| <
√

2/3. We define the far field representa-

tion to be the coefficients {ak,0 ≤ k ≤ p} given by

a0 = ∑
j

f j and ak = −1

k
∑

j

yk
j f j (1 ≤ k ≤ p). (22)

It is obvious that from {ak} we can approximate the potential for any point x in the

far field efficiently within accuracy O(ε). This representation clearly has complexity

O(log(1/ε)) and is also named the multipole expansion.

Local field representation

Suppose that {y j} are source points in the far field of a box (see Fig. 15) and { f j}
are charges located at {y j}.

From the Taylor expansion of the kernel

G(x,y) = ln(x − y) = ln(−y)+ ln

(
1 − x

y

)
= ln(−y)+

∞

∑
k=1

(
−1

k

)
xk

yk
,

we have, for any x inside the box,

u(x) = ∑
j

G(x,y j) f j = ∑
j

ln(−y j) f j +
p

∑
k=1

(
−1

k
∑

j

f j

yk
j

)
xk + O(ε)

where p = O(log(1/ε)) because |x/y j| <
√

2/3. We define the local field represen-

tation to be the coefficient {ak,0 ≤ k ≤ p} given by

a0 = ∑
j

ln(−y j) f j and ak = −1

k
∑

j

f j

yk
j

(1 ≤ k ≤ p). (23)

Based on {ak}, we can approximate the potential for any point x inside the box

efficiently within accuracy O(ε). This representation has complexity O(log(1/ε))
and is also named the local expansion.
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Fig. 15. Local field representation.

Far-to-far translation

Let us now consider the far-to-far translation which transforms the far field represen-

tation of a child box B′
to the far field representation of its parent box B (see Fig. 16).

We assume that B′
is centered at a point z0 while B is centered the origin. Suppose

that the far field representation of child B′
is {ak,0 ≤ k ≤ p}, i.e.,

u(z) = a0 ln(z− z0)+
p

∑
k=1

ak

1

(z− z0)k
+ O(ε)

for any z in the far field of B′
. The far field representation {bl,0 ≤ l ≤ p} of B is

given by

b0 = a0 and bl = −a0zl
0

l
+

l

∑
k=1

akzl−k
0

(
l − 1

k − 1

)
(1 ≤ l ≤ p) (24)

and for any z in the far field of B

u(z) = b0 lnz+
p

∑
l=1

bl

1

zl
+ O(ε).

From the definition of {bl}, it is clear that each far-to-far translation takes O(p2) =
O(log

2(1/ε)) operations.

Fig. 16. Far-to-far translation.
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Far-to-local translation

The far-to-local translation transforms the far field representation of a box B to the

local field representation of a box A in B’s interaction list. We assume that B is

centered at z0 while A is centered at the origin (see Fig. 17). Suppose that the far

Fig. 17. Far-to-local translation.

field representation of B is {ak,0 ≤ k ≤ p}, i.e.,

u(z) = a0 ln(z− z0)+
p

∑
k=1

ak

1

(z− z0)k
+ O(ε)

for any z in the far field of B. The local field representation {bl,0 ≤ l ≤ p} of A is

given by

b0 = a0 ln(−z0)+ ∑
p
k=1

(−1)k ak

zk
0

and

bl = − a0

lzl
0

+ 1

zl
0

∑
p
k=1

ak

zk
0

(
l+k−1

k−1

)
(−1)k (1 ≤ l ≤ p).

and for any z in A

u(z) =
p

∑
l=0

blz
l + O(ε).

It is clear that each far-to-local translation takes O(p2) = O(log
2(1/ε)) operations

as well.

Local-to-local translation

The local-to-local translation transforms the local field representation of a parent

box A to the local field representation of its child A′
. We assume that the center of

A is z0 while the center of A′
is the origin (see Fig. 18). Suppose that the local field

representation of A is {ak,0 ≤ k ≤ p}, i.e.,

u(z) =
p

∑
k=0

ak(z− z0)
k + O(ε)

for any z in A. Then the local field representation {bl,0 ≤ l ≤ p} at A′
is given by
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Fig. 18. Local-to-local translation.

bl =
n

∑
k=l

ak

(
k

l

)
(−z0)

k−l (0 ≤ l ≤ p)

and for any z in A′

u(z) =
p

∑
l=0

blz
l + O(ε).

The complexity of a local-to-local translation is again O(p2) = O(log
2(1/ε)). To

summarize the 2D case, both the far and local field representations are of size O(p) =
O(log(1/ε)) for a prescribed accuracy ε . All three translations are of complexity

O(p2) = O(log
2(1/ε)). Therefore, the complexity of the FMM algorithm based on

these representations and translations is O(N) where the constant depends on ε in a

logarithmic way.

3D case

Up to a constant, the 3D Green’s function of the Laplace equation is

G(x,y) =
1

|x − y| .

For two points x = (r,θ ,ϕ) and x′ = (r′,θ ′,ϕ ′) in spherical coordinates, we have an

important identity

1

|x − x′| =
∞

∑
n=0

n

∑
m=−n

(r′)nY−m
n (θ ′,ϕ ′)

1

rn+1
Y m

n (θ ,ϕ)

for r ≥ r′
.

Far field representation

Suppose that {y j = (r j,θ j,ϕ j)} are source points with charges { f j} inside a box

centered at the origin. Let us consider the potential generated by {y j} at a point

x = (r,θ ,ϕ) in the far field (see Fig. 14). Using the given identity, we get
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u(x) = ∑
j

G(x,y j) f j =
p

∑
n=0

n

∑
m=−n

(

∑
j

f jr
n
jY

−m
n (θ j,ϕ j)

)
1

rn+1
Y m

n (θ ,ϕ)+ O(ε)

where p = log(1/ε) because |y j/x| <
√

3/3. We define the far field representation to

be the coefficients {αm
n ,0 ≤ n ≤ p,−n ≤ m ≤ n} given by

αm
n = ∑

j

f jr
n
jY

−m
n (s j).

From these coefficients {αm
n }, one can approximate u(x) for any x in the far field

efficiently.

Local field representation

Suppose that {y j = (r j,θ j,ϕ j)} are source points with charges { f j} in the far field

of a box. Let us consider the potential generated by {y j} at a point x inside the box.

We assume that the box is centered at the origin (see Fig. 15). Following the above

identity, we have at x

u(x) = ∑
j

G(x,y j) =
p

∑
n=0

n

∑
m=−n

(

∑
j

f j
1

rn+1

k

Y m
n (θ j,ϕ j)

)
rnY m

n (θ ,ϕ)+ O(ε)

where p = log(1/ε) because |x/y j| <
√

3/3. We define the local field representation

to be the coefficients {β m
n ,0 ≤ n ≤ p,−n ≤ m ≤ n} given by

β m
n = ∑

j

f j
1

rn+1

k

Y m
n (s j).

It is clear that, from these coefficients {β m
n }, one can approximate u(x) for any x

inside the box efficiently.

Far-to-far, far-to-local and local-to-local translations

Similar to the 2D case, we have explicit formulas for the three translations. The

derivation of these formulas depend heavily on special function theories. We point

to [16] for the details.

Since both the far field and local field representations have O(p2) coefficients, a

naive implementation of these translations requires O(p4) operations, which is quite

large even for moderate values of p. If we take a look at the FMM closely, we dis-

cover that the most time-consuming step is to perform the far-to-local translations.

This is due to the fact that for each box B there can be as many as 6
3 −3

3 = 189 boxes

in its interaction list. For each of these boxes, a far-to-local translation is required.

Therefore, computing the far-to-local translations with a much lower complexity is

imperative for the success of a 3D FMM implementation.

In [9], Cheng et al. introduce highly efficient ways for computing these transla-

tions. For the far-to-far and local-to-local translations, a “point and shoot” method is
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used to reduce the complexity from O(p4) to O(p3). Let us consider for example the

far-to-far translation between a child box B′
and its parent B. The main idea is that

if the z axes of the spherical coordinate systems at B′
and B coincided, the transfor-

mation from the far field representation of B′
to the ones of B would be computed in

O(p3) steps. Therefore, the far-to-far translation is partitioned into three steps:

• “Rotate” the coordinate system at B′
so that the z axis points to the center of

B. The far field representation at B′
is transformed accordingly. This step takes

O(p3) operations.

• Perform the far-to-far translation from B′
to B in the rotated coordinate system.

This step takes O(p3) operation as well.

• Finally, “rotate” the coordinate system at B back to the original configuration

and transform the far field representation at B accordingly. This step takes O(p3)
operations as well.

For the far-to-local translation, the main idea is to use the plane wave (expo-

nential) expansion, which diagonalizes the far-to-local translation. Given two well-

separated boxes A and B, the steps are

• Transform the far field representation to six plane wave expansions, one for each

of the six directions ±x,±y,±z. This step has O(p3) complexity.

• Depending on the location of A, use one of the six plane wave expansions to

compute the far-to-local translation from B to A. After this step, the local field

representation at A is stored in the plane wave form. Since the plane wave ex-

pansion diagonalizes the far-to-local translation, the complexity of this step is

O(p2).
• Transform the plane wave expansions at A back to the local field representation.

Notice that at A there are also six plane wave expansions for six different direc-

tions. This step takes O(p3) operations as well.

Since the first step is independent of the target box A, one only needs to perform it

once for each box B. The same is true for the last step as it is independent of the

source box B. On the other hand, the second step, which can be called as many as

189 times for each box, is relatively cheap as its complexity is O(p2).

4 Kernel Independent Fast Multipole Method

The FMM introduced in the previous section is highly efficient yet quite technical. As

we have seen, both the representations and translations in the 3D case depend heavily

on the results from special functions and their derivations are far from trivial. The

Laplace equation is only one of the elliptic PDEs with non-oscillatory kernels: other

examples include the Stokes equations, the Navier equation, the Yukawa equation

and so on. Deriving expansions and translations for the kernels of these equations

one by one can be a tedious task. In this section, we introduce the kernel independent

fast multipole method which addresses all these kernels in a unified framework [27].

Some of the ideas in this framework appeared earlier in [1, 4].
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The geometric part of the kernel independent fast multipole method is exactly

the same as the standard FMM. Hence, our discussion focuses only on the analytic

part. We will start with the 2D case and then comment on the difference for the 3D

case.

4.1 2D case

Far field representation

Let us consider a simple physics experiment first (see Fig. 19). Suppose that B is

a box with radius r and that we have a set of charges { f j} at {y j} inside B. These

charges generate a non-zero potential in the far field. Let us now put a metal circle

of radius
√

2r around these charges and connect this metal circle to the ground.

As a result, a charge distribution would appear on this metal circle to cancel out

the potential field generated by the charges inside the box. Due to the linearity of

the problem, we see that the potential field due to the charges inside the box can be

reproduced by the charge distribution on the circle if we flip its sign. This experiment

shows that the volume charges inside the box can be replaced with an equivalent

surface charge distribution on the circle if one is only interested in the potential in

the far field.

Fig. 19. The existence of an equivalent charge distribution.

A natural question to ask is, given a prescribed accuracy ε , how many degrees

of freedom one needs to describe the equivalent charge distribution. Let us recall

that the far field representation is only needed for the far field. It is well-known that

the potential generated by the high frequency modes of the charge distribution on

the circle dies out very quickly in the far field: it decays like (
√

2/3)n
for the nth

mode. As a result, we only need to capture the low frequency modes of the charge

distribution. Our solution is to place O(log1/ε) equally spaced points {y
B,F
k }k on the

circle. The equivalent charges { f
B,F
k }k supported at these points are used as the far

field representation (see Fig. 20).



Fast Algorithms 163

Fig. 20. The equivalent charges { f
B,F
k

}k of the box B.

The next question is how to construct the equivalent charges { f
B,F
k }k. One of the

solutions is to pick a large circle of radius (4 −
√

2)r, the exterior of which contains

the far field of B. If the potential fields generated by the source charges and { f
B,F
k }k

are identical on this circle, then they have to match in the far field as well due to the

uniqueness of the exterior problem of the Laplace equation. Based on this observa-

tion, the procedure of constructing { f
B,F
k }k consists of two steps (see Fig. 21).

• Pick O(log(1/ε)) equally spaced locations {x
B,F
k }k on the large circle. Use kernel

evaluation to compute the potentials {u
B,F
k }k at these locations generated by the

charges inside B.

• Invert the interaction matrix between {y
B,F
k }k and {x

B,F
k }k to find { f

B,F
k }k so that

they generate the potentials {u
B,F
k }k. This inversion problem might be ill-posed,

so one might need to regularize it with Tikhonov regularization [20].

Fig. 21. The construction of the equivalent charges { f
B,F
k }k .
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Local field representation

Suppose that A is a box with radius r and that we have a set of charges { f j} located

at points {y j} in the far field of A. To represent the potential field generated by these

charges inside A, we first put a circle of radius
√

2r around A (see the following

figure). Let us call the potential on the circle the check potential field. From the

uniqueness property of the interior problem of the Laplace equation, we know that,

if we are able to capture the check potential field, we then can construct the potential

everywhere in the box.

Similar to the case of the equivalent charge distribution, the next question is how

many degrees of freedom we need to represent the check potential field. Since the

potential is generated by points in the far field, it is quite smooth on the circle as the

high frequency modes die out very quickly. Therefore, we only need a few samples to

capture the check potential field. We put O(log(1/ε)) samples {x
A,L
k }k on the circle.

The potentials {u
A,L
k }k at these locations are taken to be the local field representation.

Fig. 22. The check potentials {u
A,L
k }k of the box B.

In order to reconstruct the potential inside the box A from the check potentials

{u
A,L
k k

circle of radius (4−
√

2)r around the box A and connect it to the ground. As a result,

a charge distribution will appear on the large circle to cancel the potential field gen-

erated by the far field charges inside A. Again due to the linearity of the problem, we

the charge distribution on the large circle if we flip the sign of the surface charge dis-

tribution. This experiment shows that, if one can find the appropriate surface charge

distribution on the large circle, the potential inside the box A can then be recon-

structed.

Motivated by this example, we propose the following procedure to compute the

potential inside A given the check potentials {u
A,L
k }k (see Fig. 24).

example in Fig. 23. As before, the charges in} , we first take a look at the

the far field of A produce a potential field inside A. Let us now put a large metal

conclude that the potential due to the charges in the far field can be reproduced by
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Fig. 23. The existence of equivalent charges for the local field representation.

• Pick O(log(1/ε)) points {y
A,L
k }k on the large ring. Invert the interaction matrix

between {y
A,L
k }k and {x

A,L
k }k to find the charges { f

A,L
k }k that produce {uA,L}k.

This inversion might be ill-posed, so one might need to regularize it with

Tikhonov regularization.

• Use the kernel evaluation to compute the potential inside A using the charges

{ f
A,L
k }k.

To summarize, we have used the equivalent charges as the far field representation

and the check potentials as the local field representation. Now let us consider the

three translations of the kernel independent FMM.

Fig. 24. The evaluation of the local field from the check potentials {u
A,L
k }k.
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Far-to-far translation

Given the equivalent charges of a child box B′
, the far-to-far translation computes the

equivalent charges of the parent box B. The situation is similar to the construction

of the equivalent charges that is described before if one is willing to consider the

equivalent charges of B′
as the source charges inside B. The steps of this translation

are:

• Use the equivalent charges { f
B′,F
k }k as source charges to evaluate the potential

{u
B,F
k }k at {x

B,F
k }k (see Fig. 25).

• Invert the interaction between {y
B,F
k }k and {x

B,F
k }k to find the equivalent charges

{ f
B,F
k }k. This step might again be ill-posed, so Tikhonov regularization might be

needed.

Fig. 25. Far-to-far translation.

Far-to-local translation

Given the equivalent charges of a box B, the far-to-local translation transforms them

to the check potentials of a box A in B’s interaction list (see the following figure).

This translation is particularly simple for the kernel independent FMM. It consists of

only a single step:

• Evaluate the potential {u
A,L
k }k using the equivalent charges { f

B,F
k }k (see Fig. 26).

Local-to-local translation

Given the check potentials of a parent box A, the local-to-local translation trans-

forms them to the check potentials of its child box A′
. The steps of the local-to-local

translation are:

• Invert the interaction between {y
A,L
k }k and {x

A,L
k }k to find the equivalent charges

{ f
A,L
k }k that produce the check potentials {u

A,L
k }k (see Fig. 27). Tikhonov regu-

larization is invoked whenever necessary.
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Fig. 26. Far-to-local translation.

• Check potentials {u
A′,L
k }k are then computed using kernel evaluation with { f

A,L
k }k

as the source charges.

Since the matrices used in the far-to-far and local-to-local translations only de-

pend on the size of the boxes, their inversions can be precomputed and stored. There-

fore, the kernel independent FMM algorithm only uses matrix vector multiplications

and kernel evaluations. This general framework works well not only for PDE ker-

nels such as the Green’s functions of the Laplace equation, the Stokes equations,

the Navier equation and Yukawa equation, but also for various radial basis functions

after a slight modification.

4.2 3D case

In 3D, we need O(p2) = O(log
2

1/ε) points to represent the equivalent charge dis-

tribution and the check potential field. If we put these points on a sphere, the three

translations would require O(p4) operations. This poses the same problem we faced

in the discussion of the 3D FMM algorithm.

In order to reduce this complexity, we choose to replace the sphere with the

boundary of a box. This box is further discretized with a Cartesian grid and both

Fig. 27. Local-to-local translation.
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the equivalent charges and the check potentials are located at the boundary points

of the Cartesian grid. The main advantage of choosing the Cartesian grid is that the

far-to-local translation, which is the most frequently used step, becomes a discrete

convolution operator since the Green’s function of the underlying PDE is transla-

tion invariant. This discrete convolution can be accelerated using the standard FFT

techniques, and the resulting complexity of these translation operators are reduced

to O(p3
log p).

5 Hierarchical Matrices

Let us recall the computational problem that we face in each step of the iterative

solution. Given a set of charges { fi,1 ≤ i ≤ N} located at points {pi,1 ≤ i ≤ N}
(see Fig. 28) and the Green’s function G(x,y) of the Laplace equation, we want to

compute at each pi the potential

ui =
N

∑
j=1

G(pi, p j) f j.

From the discussion above, we know that, if two sets A and B are well-separated, the

interaction interaction G(x,y) for x ∈ A and y ∈ B is approximately low rank. The

hierarchical matrix framework puts this observation into an algebraic form. Our pre-

sentation in this section is far from complete, and we refer to [6] for a comprehensive

treatment.

Fig. 28. Distribution of quadrature points {pi} on the boundary of the domain D.

5.1 Construction

Let us consider the following simple example where the domain D is a 2D disk. The

boundary ∂D is subdivided into a hierarchical structure such that each internal node

has two children and each leaf contains O(1) points in {pi}.
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At the beginning level, ∂D is partitioned into with 4 large segments (see the fol-

lowing figure). Some pairs (e.g., A and B) are well-separated. Suppose the points

{pi} are ordered according to their positions on the circle. As a result, the in-

teraction from B to A corresponds to a subblock of the full interaction matrix

GGG = (G(pi, p j))1≤i, j≤N . Since the interaction between B and A is approximately low

rank, this subblock can be represented in a low rank compressed form. All the sub-

blocks on this level which have low rank compressed forms are colored in gray (see

Fig. 29).

Fig. 29. Left: two well-separated parts on the second level of the hierarchical partition. In the

matrix form, the interaction between them corresponds to a off-diagonal subblock. Right: all

the blocks that correspond to well-separated parts on this level.

In order to consider the interaction between B and its neighbors, we go down

to the next level. Suppose B′
is a child of B. Similar to the case of the FMM, the

interaction between B′
and B’s far field has already been taken care of in the previous

level. We now need to consider the interaction between B′
and the segments that are

in the far field of B′
but not the far field of B. There are only O(1) segments in this

region (colored in gray as well) and A′
is one of them. As B′

and A′
are now well-

separated, the interaction from B′
to A′

is approximately low rank. Therefore, the

subblock that corresponds to this interaction can be stored in a low rank compressed

form. All the subblocks on this level which have low rank compressed forms are

again colored in gray (see Fig. 30).

We go down one level further to address the interaction between B′
and its neigh-

bors. For the same reason, B′′
(a child of B′

) has only O(1) segments in its far field

but not in B′
’s far field. The subblocks that correspond to the interaction between

B′′
and these segments can be stored in low rank compressed forms (see Fig. 31).

Suppose now that B′′
is also a leaf segment. Since the interaction between B′′

and

its adjacent segments are not necessarily low rank, the subblocks corresponding to

these interactions are stored densely. Noticing that each leaf segment contains only

O(1) points, the part of GGG that requires dense storage is O(N).



170 L. Ying

Fig. 30. At the third level.

From this simple example, we see that the hierarchical matrix framework is a

way to partition the full interaction matrix into subblocks based on a hierarchical

subdivision of the points. The off-diagonal blocks of a hierarchical matrix are com-

pressed in low rank forms, while the diagonal and the next-to-diagonal blocks are

stored densely.

A natural question at this point is which low rank compressed form one should

use to represent the off-diagonal blocks. A first answer is to construct of these off-

diagonal blocks first and then perform the truncated singular value decomposition

(SVD) to compress them. The resulting form gives the best compression for a pre-

scribed accuracy ε as the singular value decomposition is optimal in compressing

matrices. However, there are two major disadvantages. First, the SVD usually re-

quires one to construct the off-diagonal blocks first, which costs at least O(N2) op-

erations. Second, since the singular vectors resulted from the SVD are not directly

related to the vectors of the subblocks of GGG, storing these vectors requires a lot of

memory space. To overcome these two problems, we resort to several other methods.

Fig. 31. At the fourth level.
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Fig. 32. Taylor expansion approach for constructing the low rank representations between two

separated parts A and B.

Taylor expansion

Suppose that cA and cB are to be the center of segments A and B respectively (see

Fig. 32). From the truncated Taylor expansion, we have

G(x,y) = ∑
|α |<p

1

α!
∂ α

x G(cA,y)(x − cA)α + O(ε) (25)

where α is the multi-index and p = O(log(1/ε)). In this derivation, we used the facts

that

∂α G(cA,y) ≈ 1

|y − cA||α | and
|x − cA|
|y − cA| ≤

√
2/3.

This factorization provides us with a compressed form of rank O(pd).
There are two disadvantages of this approach. First, for complicated kernels,

∂ α
x G(x,y) is not easy to obtain. Even for the fundamental solution of the Laplace

equation, this is far from trivial for large α . Second, Taylor expansion does not ex-

ploit the special structure of the kernel. Therefore, the resulting expansion has O(pd)
terms where d = 2,3 is the dimension of the problem. This is quite wasteful compar-

ing to the O(pd−1) coefficients used in the FMM.

Tensor-product interpolation

In this approach, we pick a Cartesian grid to cover one of the domain (say A). The

Cartesian grid is a tensor product of d one dimensional grids, each of which contains

pth order Chebyshev points on an closed interval where p = O(log(1/ε)). Suppose

that {ai} are these grid points. Since G(x,y) is smooth for x ∈ A and y ∈ B when A

and B are well-separated, we have

G(x,y) = ∑
i

G(ai,y)L
A
i (x)+ O(ε) (26)

where {LA
i (x)} are d-dimensional Lagrange interpolants of the grid {ai} over A.

Similarly, we pick a grid to cover B instead of A. Let {b j} be the grid points. For the

same reason, we have

G(x,y) = ∑
j

G(x,b j)L
B
j (y)+ O(ε) (27)
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where {LB
j (y)} are d-dimensional Lagrange interpolants of the grid {b j} over B. One

can also choose to cover both A and B with Cartesian grids. In this case, we have

G(x,y) = ∑
i

∑
j

LA
i (x)G(ai,b j)L

B
j (y)+ O(ε). (28)

This tensor-product interpolation approach (illustrated in Fig. 33) is quite general

since it only utilizes the kernel evaluation. However, similar to the Taylor expansion

approach, it uses O(pd) terms, which is more than necessary.

Fig. 33. Tensor-product interpolation approach for constructing the low rank representations

between two separated parts A and B.

Pseudo-skeleton or cross approximation

Suppose {xi, i ∈ I} and {y j, j ∈ J} to be the point sets in A and B respectively. In our

setting, they are subsets of {pi}. We will use GGGI,J to denote the subblock of GGG that

corresponds to the interaction from B to A. Since the matrix GGGI,J is approximately

low rank, there exist a few columns of GGGI,J which span its column space. Similarly,

there exist a few rows of G which span its row space as well. The idea behind pseudo-

skeleton approximation (or cross approximation) is to find these columns and rows

and use them in the compressed representation. Suppose these columns correspond

to the points {y j, j ∈ L ⊂ J} while these rows correspond to the points {xi, i ∈ K ⊂ I}.

The pseudo-skeleton approximation [14] is a factorization of the matrix GGGI,J in the

following form:

GGGI,J = GGGI,LMMMGGGK,J + O(ε) (29)

where GGGI,L is the submatrix of GGGI,J that contains the columns of points {y j, j ∈ L}
while GGGK,J is the submatrix of GGGI,J that contains the rows of points {xi, i ∈ K} (see

Fig. 34).

Several methods have been proposed to construct such a pseudo-skeleton approx-

imation for GGGI,J . Approaches for selecting the sets {xi, i ∈ K} and {y j, j ∈ L} include

greedy methods, adaptive methods, and random sampling techniques (see [6] for

details). The middle matrix MMM is often computed using least square techniques.



Fast Algorithms 173

Fig. 34. Pseudo-skeleton approach for constructing the low rank representations between two

separated parts A and B.

5.2 Hierarchical matrix arithmetics

Since the hierarchical matrix framework is an algebraic approach, it is possible to de-

fine a matrix arithmetics (addition, multiplication and inversion) for the hierarchical

matrices. Here, we discuss these operations briefly.

Addition

Given two hierarchical matrices A and B with the same hierarchical structure, we

seek a hierarchical matrix C such that C ≈ A + B. Since both A and B have the same

structure, we can perform the addition block by block. Suppose that P, Q and R are

the blocks of A, B and C at the same location. There are two cases to consider. In

the first case, P and Q are both dense blocks. Then R is simply the sum of P and Q.

In the second case, both P and Q are stored in the compressed form. Let us further

assume that P = P1Pt
2

and Q = Q1Qt
2

where P1, P2, Q1 and Q2 are tall matrices. Then

we have

R =
(
P1 Q1

)(
P2 Q2

)t
.

The matrices
(
P1 Q1

)
and

(
P2 Q2

)t
are further compressed using the pivoted QR

factorization and the SVD.

Multiplication

Given two hierarchical matrices A and B with the same hierarchical structure, we

hierarchical matrices is similar to the one for block matrices. The basic step is to

multiply two block matrices P and Q. There are four different cases to consider. In

the first case, both P and Q are stored in the low rank compressed form, say P = P1Pt
2

and Q = Q1Qt
2
. Then

PQ = P1(P
t
2Q1)Q

t
2.

In the second case, P is in the low rank form P = P1Pt
2

while Q is still in a

hierarchical form. Without loss of generality, we assume

seek a hierarchical matrix C such that C ≈ AB. The multiplication algorithm for
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Q =

(
Q1 Q2

Q3 Q4

)
.

By splitting Pt
2

into

Pt
2 =

(
Pt

2,1 Pt
2,2

)
,

we can compute PQ as

PQ = P1

((
Pt

2,1 Pt
2,2

)(Q1 Q2

Q3 Q4

))
.

where the multiplication in the parentheses is carried out recursively.

In the third case, P is in the hierarchical form while Q is in the low rank form

Q = Q1Qt
2
. Let us assume that

P =

(
P1 P2

P3 P4

)
.

By splitting Q1 into

Q1 =

(
Q1,1

Q1,2

)
,

we can compute PQ as

PQ =

((
P1 P2

P3 P4

)(
Q1,1

Q1,2

))
Qt

2.

where the multiplication in the parentheses is carried out recursively.

In the last case, both P and Q is in the hierarchical form. We then resort to the

block matrix multiplication algorithm and reduce its multiplication to the first three

cases.

Inversion

Given a hierarchical matrix A, we want to compute a hierarchical matrix C such

that C ≈ A−1
. The solution is simply to apply the block matrix version of the LU

factorization. Regular matrix addition and multiplication operations are now replaced

with the ones of the hierarchical matrices described above.

6 Wavelet Based Methods

In this section, we consider yet another approach to the same problem discussed

in the previous sections. Given a set of charges { f j,1 ≤ i ≤ N} located at points

{pi,1 ≤ i ≤ N} (see the following figure) and the Green’s function G(x,y) of the

Laplace equation, we want to compute at each pi

ui =
N

∑
j=1

G(pi, p j) f j.
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Our discussion in this section focuses on the 2D case. Suppose that the boundary ∂D

is parameterized by a periodic function g(s) for s ∈ [0,1]. The matrix GGG with entries

G(pi, p j) can be viewed as an adequately sampled image of the continuous periodic

2D function G(g(s),g(t)). This image is smooth except at the diagonal where s = t

(see Fig. 35).

Fig. 35. Left: distribution of quadrature points {pi} on the boundary of the domain D. Right:

a qualitative description of the 2D function G(g(s),g(t)).

Our plan is to find the best way to compress this matrix and then see whether the

compression can help our computational problem. The presentation of this section

follows [3].

6.1 Wavelet compression

One good way to compress such an image is to use 2D wavelets. Let us start our

discussion with 1D wavelets on a unit periodic interval. The following discussion

about the wavelets are quite brief and we refer the readers to [12, 21] for detailed

exposition. Suppose that j is the index of the level and k is the spatial index. The

scaling functions of the wavelet analysis are scaled and shifted copies of a mother

scaling function ϕ(x):

{ϕ j,k(x) := 2
− j/2ϕ(2− jx − k)}−∞< j≤0,0≤k<2− j

Similarly, the wavelet functions are scaled and shifted versions of a mother wavelet

function ψ(x):

{ψ j,k(x) := 2
− j/2ψ(2− jx − k)}−∞< j≤0,0≤k<2− j.

Let us assume that our wavelets are orthogonal and compactly supported. Therefore,

a wavelet or a scaling function on the jth scale has a support of size O(2 j). Due to

the orthogonality condition, the scaling function at the 0th level ϕ0,0 and the wavelets
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{ψ j,k}−∞< j≤0,0≤k<2− j form an orthogonal basis of L2([0,1]). We further assume that

our wavelets have M vanishing moments, i.e.,

∫
ψ(x)xmdx = 0, m = 0,1, · · · ,M − 1

The 2D wavelets are built from the 1D wavelets using the tensor-product construc-

tion. The 2D wavelet orthobasis contains the following functions

ϕ0,(0,0)(s,t) := ϕ0,0(s)ϕ0,0(t),

{ψ1

j,(k1,k2)(s,t) := ϕ j,k1(s)ψ j,k2(t)}−∞< j<0,0≤k1,k2<2− j ,

{ψ2

j,(k1,k2)(s,t) := ψ j,k1(s)ϕ j,k2(t)}−∞< j<0,0≤k1,k2<2− j ,

{ψ3

j,(k1,k2)
(s,t) := ψ j,k1(s)ψ j,k2(t)}−∞< j<0,0≤k1,k2<2− j .

We now commit the wavelet crime: instead of studying how the discrete image

GGG is compressed by the discrete 2D wavelet transform, we study wavelet coefficients

of the continuous function G(g(s),g(t)) associated with the first N2
elements of the

orthobasis:

ϕ0,(0,0),

{ψ1

j,(k1,k2)}− log2 N+1≤ j≤0,0≤k<2− j ,

{ψ2

j,(k1,k2)
}− log2 N+1≤ j≤0,0≤k<2− j ,

{ψ3

j,(k1,k2)
}− log2 N+1≤ j≤0,0≤k<2− j

Since the singularity is only on the diagonal, we only need to focus on its neigh-

G(g(s),g(t)) to be ln |s− t|.
Let us first estimate the coefficients of the first kind of wavelets {ψ1

j,(k1,k2)
}. Sup-

pose ψ1

j,(k1,k2)
= ϕ j,k1(s)ψ j,k2(t) and the two components ϕ j,k1(·) and ψ j,k2(·) have

∫∫
ψ1

j,(k1,k2)(s,t) ln |s− t|dsdt

=
∫ ∫

ϕ j,k1(s)ψ j,k2(t) ln |s− t|dsdt

≤
∫

|ϕ j,k1(s)|
(∫

ψ j,k2(t) ln |s− t|dt

)
ds

≤
∫

|ϕ j,k1(s)|
(

max
s∈supp(ϕ

j,k1),t∈supp(ψ
j,k2 )

2
jM

|s− t|M ·
∫

ψ j,k2(t)dt

)
ds

≤ C · max
s∈supp(ϕ

j,k1),t∈supp(ψ
j,k2)

2
j(M+1)

|s− t|M

≤ C · max
s∈supp(ϕ

j,k1),t∈supp(ψ
j,k2)

2
jM

|s− t|M

borhood. Near the diagonal, the kernel G(g(s),g(t)) = ln |g(s)− g(t)| has the same

singularity behavior as ln |s − t|. Therefore, we can simply take the 2D function

non-overlapping supports. Since our wavelets have M vanishing moments, we get
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for some constant C. Here we use the fact that j ≤ 0. For a given accuracy ε , we set

B to be (1/ε)1/M
. Suppose that the support of ϕ j,k1(s) and ψ j,k2(t) are separated so

that mins∈supp(ϕ
j,k1),t∈supp(ψ

j,k2) |s− t| ≥ B ·2
j
, then

∫∫
ψ1

j,(k1,k2)(s,t) ln(|s− t|)dsdt = O(B−M) = O(ε),

which is negligible.

Now let us count the number of non-negligible coefficients. For a fix level j and

a fixed index k2
, the number of indices k1

such that

min
s∈supp(ϕ

j,k1),t∈supp(ψ
j,k2 )

|s− t| ≤ B ·2
j

is O(B). Therefore, for a fixed j and a fixed k2
, there are at most O(B) wavelets

{ψ1

j,(k1,k2)
(s,t)} whose inner products with the kernel are greater than ε . The same ar-

gument works for the other two kinds of wavelets {ψ2

j,(k1,k2)
(s,t)} and {ψ3

j,(k1,k2)
(s,t)}

because they all contain 1D wavelets (either in the variable s or in t). As a result, there

are O(3 · 2
− j · B) non-negligible coefficients on each level j. Summing this over all

log2 N levels, we have in total

0

∑
j=− log2 N+1

O(3 ·2
− j ·B) = O(B ·N) = O(N)

non-negligible coefficients.

In order to compute the O(N) non-negligible coefficients, we first notice that

each wavelet or scaling function can be represented as the sum of a small number

of scaling functions of the next level. Therefore, all we need to compute is the inner

product of a function with a scaling function. Let us consider the 1D case to illustrate

the idea.

∫
f (x)ϕ j,k(x)dx = 2

− j/2

∫
f (x)ϕ(2− jx − k + 1)dx

= 2
− j/2

∫
f (x + 2

j(k − 1))ϕ(2− jx)dx

Let us assume that, for some τM , our scaling functions satisfy

∫
ϕ(x + τM)xmdx = 0, m = 1, · · · ,M − 1 and

∫
ϕ(x)dx = 1.

Scaling functions with these properties have been constructed in [3]. With the help

of these properties, we have

2
− j/2

∫
f (x + 2

j(k − 1))ϕ(2− jx)dx ≈ 2
j/2 f (2 j(k − 1 + τM))+ O(2 j(M+1/2))

where the last equation uses only one point quadrature of f .
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To summarize, we now have the following approximation

G(g(s),g(t)) =
O(N)

∑
i=1

ciηi(s,t)+ O(ε) (30)

where ηi(s,t) = η1

i (s)η2

i (t) is a 2D wavelet with non-negligible coefficient ci for

each i. This approximation is called the non-standard form of Beylkin, Coifman and

Rokhlin. If we plot the supports of the wavelets with non-negligible coefficients, the

figure looks very much like the one of the hierarchical matrices (see Fig. 36).

Fig. 36. The supports of the non-negligible terms in the non-standard form.

6.2 Fast matrix vector multiplication

We have so far focused on the compression the kernel matrix with the 2D wavelet

basis. Let us discuss why this gives us a fast matrix vector multiplication algorithm.

Using the non-standard form of the kernel matrix, we have

∫
G(g(s),g(t)) f (t)dt ≈

O(N)

∑
i=1

∫
ciηi(s,t) f (t)dt

=
O(N)

∑
i=1

∫
ciη

1

i (s)η2

i (t) f (t)dt

=
O(N)

∑
i=1

η1

i (s) ·
(

ci

∫
η2

i (t) f (t)dt

)

where {η1

i (s)} and {η1

i (t)} are either wavelets or scaling functions in 1D. We recall

that a fast wavelet transform produces in its intermediate steps the inner products of
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the input function with all the scaling functions and wavelets. Therefore, the terms

{∫ η2

i (t) f (t)dt} for all i can be computed using a single fast wavelet transform by

keeping all intermediate results.

Based on this simple observation, the wavelet based fast matrix multiplication

algorithm has the following steps:

• Compute {αi =
∫

η2

i (t) f (t)dt} using a fast wavelet transform by keeping all

intermediate results. The complexity of this step is O(N) .

• Compute {βi = ciαi}. This step takes only O(N) operations.

• Synthesize ∑i η1

i (s)βi using an extended fast wavelet transform. This transform

is extended in the sense that it includes not only the wavelet coefficients but also

the scaling function coefficients since some of {η1

i (s)} are scaling functions. The

complexity of this step is again O(N).

As a result, the total complexity is O(N), which is the same as the FMM. Before we

end this section, let us summarize the main ideas behind the wavelet based method

• View the interaction matrix as an image. Since the singularity is only along

the diagonal, a good compression with O(N) non-negligible coefficients can be

achieved using 2D wavelets.

• The tensor-product construction of the 2D wavelets allows one to use 1D fast

wavelet transform to compute matrix vector multiplication in optimal time O(N).

7 High Frequency FMM for the Helmholtz Kernel

In the rest two sections of this article, we discuss the computation of the oscillatory

kernel of the Helmholtz equation in the 3D case.

−∆u − k2u = 0 in R
d \ D̄.

Let us first rescale the geometry so that k is equal to 1. The equation then becomes

−∆u − u = 0 in R
d \ D̄.

We face the following problem in each step of the iterative solver. Given a set of

charges { fi,1 ≤ i ≤ N} located at points {pi,1 ≤ i ≤ N} and the Green’s function

G(x,y) = h0(|x − y|) =
exp(i|x − y|)

i|x − y|

of the Helmholtz kernel (up to a constant factor), we want to compute at each pi

ui = ∑
j

G(pi, p j) f j (31)

(see Fig. 37).

In this section, we present the high frequency FMM (HF-FMM) by Rokhlin et

al. [25, 26, 8] that calculates all {ui} in O(N logN) time. Suppose that the size of
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Fig. 37. Distribution of quadrature points {pi} on the boundary of the domain D.

the object is K wavelengths. Since one usually uses a constant number of points per

wavelength in most of the scattering applications, N = O(K2).
For two points x = (r,θ ,ϕ) and x′ = (r′,θ ′,ϕ ′) in spherical coordinates, we have

the following important identity:

G(x,x′) = h0(|x − x′|) =
∞

∑
n=0

n

∑
m=−n

Y −m
n (θ ′,ϕ ′) jn(r

′)Y m
n (θ ,ϕ)hn(r)

when r > r′
.

Far field representation

Suppose that a set of charges { f j} are located at {y j = (r j,θ j,ϕ j)} inside a box

centered at the origin. Let us consider the potential generated by {y j} at a point

x = (r,θ ,ϕ) in the far field (see Fig. 38). Using the identity just mentioned, we have

u(x) = ∑
j

G(x,y j) f j =
p

∑
n=0

n

∑
m=−n

(

∑
j

f jY
−m
n (θ j,ϕ j) jn(r j)

)
Y m

n (θ ,ϕ)hn(r)+ · · ·

where p controls the number of terms to keep in the expansion and we will come

back to it later. The far field representation is defined to be the coefficients {αm
n }

given by

αm
n = ∑

j

f jY
−m
n (θ j,ϕ j) jn(r j). (32)

This representation is also called the h-expansion (see [8]).

Local field representation

Suppose that a set of charges { f j} are located at {y j = (r j,θ j,ϕ j)} in the far field of

a box. Let us consider the potential generated by {y j} at a point x = (r,θ ,ϕ) inside
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Fig. 38. Far field representation.

the box (see Fig. 39). We assume again that the center of the box is at the origin.

From the identity given above, we have

u(x) = ∑
j

G(x,y j) f j =
p

∑
n=0

n

∑
m=−n

(

∑
j

f jY
m
n (θ j,ϕ j)hn(r j)

)
Y −m

n (θ ,ϕ) jn(r)+ · · · .

The local field representation is defined to be {β m
n } given by

β m
n = ∑

j

f jY
m
n (θ j,ϕ j)hn(r j). (33)

This representation is called the j-expansion.

The first question we need to address is what is the value of p, i.e., how many

terms to keep in these two expansions for a prescribed accuracy ε . For a box with

u(x) =
∞

∑
n=0

n

∑
m=−n

(

∑
j

f jY
−m
n (θ j,ϕ j) jn(r j)

)
Y m

n (θ ,ϕ)hn(r)

Fig. 39. Local field representation.

radius R, the n-th term of the h-expansion
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behaves like hn(3R) jn(
√

3R). This product only decays when n ≥ 3R. In order to

get an accurate expansion, we are forced to choose p = O(R) and keep all terms for

n = 0,1, · · · , p,−n ≤ m ≤ n. Therefore, the number of coefficients in h-expansion

is O(R2). The same is also true for the j-expansion. Let us recall that the point set

{pi} is distributed on the boundary surface ∂D. It is not difficult to see that there are

O(R2) points in a box with radius R as well. This means that, from the information

theoretical point of view, there is no compression at all when one transforms the

charges { f j} to the h-expansion coefficients {αm
n }.

When the radius of the box R is O(1), the h-expansion and the j-expansion both

have complexity O(1). Therefore, it is still reasonable to use them as the far field and

local field representations. The far-to-far, far-to-local, and local-to-local translations

are very similar to the case of the 3D Laplace kernel:

• Far-to-far and local-to-local translations. The “point and shoot” approach is used.

The complexity is cut down from O(p4) to O(p3) if the number of terms in the

h-expansion is O(p2).
• Far-to-local translation. The plane wave (exponential) expansion is used to diag-

onalize the far-to-local translation. The translation between the h-expansion (or

the j-expansion) and the plane wave expansion takes O(p3) operations, while
2

For large boxes, for example when R = O(K), the situation is drastically different.

The number of terms in the h-expansion or the j-expansion is equal to O(R2) =
O(K2). As a result, the complexity of the three translations are O(R3) = O(K3) =
O(N3/2), which is already higher than the O(N logN) complexity that we aim for.

The solution to this problem, the so-called high frequency fast multipole method

(HF-FMM), is to represent the h expansion and j expansion in a form such that the

far-to-far, far-to-local, and local-to-local translations are all diagonalized.

Far field signature

For the h-expansion, we transform its coefficients {αm
n } to

f (θ ,ϕ) :=
p

∑
n=0

n

∑
m=−n

αm
n (−1)n+1Y m

n (θ ,ϕ).

This function is in fact the far field signature of the potential of

u(x) =
p

∑
n=0

n

∑
m=−n

αm
n Y m

n (θ ,ϕ)hn(r)

where x = (r,θ ,ϕ). Similar, for j-expansion, we transform its coefficients {β m
n } to

g(θ ,ϕ) :=
p

∑
n=0

n

∑
m=−n

β m
n (−1)n+1Y m

n (θ ,ϕ).

This function, which is also called the far field signature, can be viewed as a source

distribution on a unit sphere which reproduces the potential inside the box if one

each far-to-local translation in the plane wave expansion uses only O(p ) steps.
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and g(θ ,ϕ). We refer to [8, 10, 24] for the formulas of these translations.

In the HF-FMM algorithm, the octree is divided into the low and high frequency

radius < 1, while the boxes in the high frequency regime have radius ≥ 1. The h-

expansion and the j-expansion serve as the far field and local field representations in

the low frequency regime while the far field signatures f (θ ,ϕ) and g(θ ,ϕ) are the

representations in the high frequency regime. A switch of the representations appears

at the boxes with radius ≈ 1.

We would like to comment that the far field signatures f (θ ,ϕ) and g(θ ,ϕ) cannot

be used for the low frequency box with radius r < 1. The reason is that the far-to-

local translation of the far field signatures involves extremely large numbers when the

box is too small. Therefore, given a fixed precision of calculation and a prescribed

accuracy ε , one can only use the far field signatures on sufficiently large boxes in

order to avoid numerical instability. The overall structure of the HF-FMM algorithm

is shown in Fig. 40.

Fig. 40. The overall structure of the HF-FMM algorithm.

Most of the computation of HF-FMM is devoted to the high frequency regime,

while the computation in the low frequency regime is similar to the one of the 3D

Laplace kernel. Since the point set {pi} is sampled from the two-dimensional bound-

ary ∂D, there are O((K/r)2) boxes with a fixed radius r. For each of them, the com-

putation involves the far-to-far, far-to-local and local-to-local translations. Since all

these translations are diagonalized, each of them has complexity O(r2). Therefore,

the number of operations spent on the boxes with radius r is O((K/r)2) · O(r2) =
O(K2). Summing this over all logK level, we conclude that the complexity of the

HF-FMM is

O(K2
logK) = O(N logN).

pushes the radius of the sphere to infinity and rescales the source distribution appro-

regimes. In a typical case, the low frequency regime contains all the boxes with

priately. All three translations are diagonalized in the far field signatures f (θ ,ϕ )
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8 Multidirectional Method

Through our discussion of the fast algorithms for the Laplace equation, we see that

the interaction between a domain B and its far field has a low separation rank which is

almost independent of the size of B. This low rank property has played a fundamental

role in the fast multipole method, its kernel independent variant, and the hierarchical

matrix framework.

As we have seen from the previous section, the situation is quite opposite for the

Helmholtz equation. Suppose that B is a domain such that its radius is much larger

than the wavelength. The interaction between B and its far field (see Fig. 41) through

the Helmholtz kernel

G(x,y) = h0(|x − y|) =
exp(i|x − y|)

i|x − y|

is not low rank anymore. In fact, the rank is proportional to the square of the radius

of B. A natural question to ask is that whether it is possible to recover the low rank

Fig. 41. The interaction between B and its far field FB
is not low rank for the Helmholtz kernel.

motivation behind a multidirectional algorithm developed recently in [13].

Directional parabolic separation

2r

8.1 Analysis

Let us start by considering the geometric configuration in Fig. 42. Suppose B is a

domain with radius r. The wedge A, which has an opening angle O(1/r), is at a dis-

property in the setting of the Helmholtz kernel. The answer is positive and it is the

tance or greater from B. Whenever two sets A and B follow this geometric con-

figuration, we say that they satisfy the directional parabolic separation condition.
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Fig. 42. Directional parabolic separated condition.

Theorem 5. Suppose that B and A satisfy the directional parabolic separation condi-

tion. Then there exist an integer T (ε) and two sets of functions {αi(x),1 ≤ i ≤ T (ε)}
and {βi(y),1 ≤ i ≤ T (ε)} such that, for any x ∈ A and y ∈ B

∣∣∣∣∣
exp(i|x − y|)

i|x − y| −
T(ε)

∑
i=1

αi(x)βi(y)

∣∣∣∣∣< ε

where the number of terms T (ε) of the expansion is independent of the radius of B.

The main idea behind this theorem is quite simple and it is not difficult to see why it

can work. In the wedge A, the radiation generated by the points in B looks almost like

a plane wave since the opening angle of the wedge A is inversely proportional to the

radius of B. After one factors out the plane wave (which itself has a rank-1 separated

representation), the rest of the interaction is smooth and hence has an approximate

low rank separated representation.

The construction of {αi(x)} and {βi(y)} is similar to the pseudo-skeleton ap-

proach discussed in the hierarchical matrix framework. In practice, the following

randomized procedure works quite well.

• Randomly sample the set B to find positions {bq} such that the functions

{G(x,bq)}q span the space of the functions {G(x,y)}y within a prescribed ac-

curacy ε .

• Randomly sample the set A to find positions {ap} such that the functions

{G(ap,y)}p span the space of the functions {G(x,y)}x within a prescribed ac-

curacy ε .

• Find the matrix D = (dqp) such that

∣∣∣∣∣
ei|x−y|

i|x − y| −∑
q

ei|x−bq|

i|x − bq| ∑p

dqp
ei|ap−y|

i|ap − y|

∣∣∣∣∣= O(ε).

The first two steps use the pivoted QR factorizations, while the last step can be

viewed as a least square problem.
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Fig. 43. Directional equivalent charges.

Directional equivalent charges

Suppose that B and A satisfy the directional parabolic separation condition. Let {y j}
be a set of points in B. We consider the potential at x ∈ A generated by the charges

{ f j} at {y j} (see Fig. 43).

Using the low rank representation generated above, we have

∣∣∣∣∣∑
i

ei|x−yi|

i|x − yi|
fi −∑

q

ei|x−bq|

i|x − bq| ∑p

dqp ∑
i

ei|ap−yi|

i|ap − yi|
fi

∣∣∣∣∣= O(ε).

This equation suggests that, by placing charges

{

∑
p

dqp ∑
i

ei|ap−yi|

i|ap − yi|
fi

}

at the points {bq}, one can reproduce the potential at x accurately. We call these

charges the directional equivalent charges of B in the direction of A. The above

formula also provides a way to compute the directional equivalent charges from the

source charges { f j}:

• p j

• Multiply the potentials with the matrix D = (dqp) to obtain the directional equiv-

alent charges.

Directional check potentials

Now let us reverse the roles of B and A (see Fig. 44). Suppose that {y j} are a set of

points in the B. We consider the potential at x ∈ A generated by the charges { f j} at

{y j}. Using the low rank representation of the kernel, we have

∣∣∣∣∣∑
i

ei|x−yi|

i|x − yi|
fi −∑

q

ei|x−bq|

i|x − bq| ∑p

dqp ∑
i

ei|ap−yi|

i|ap − yi|
fi

∣∣∣∣∣= O(ε).

Evaluate the potentials at {a } generated by { f }.
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Fig. 44. Directional check potentials.

This equation shows that from the potentials

{

∑
i

ei|ap−yi|

i|ap − yi|
fi

}

at {ap} we can reconstruct the potential at any point x ∈ A efficiently and accurately.

The steps are:

• Multiply these potentials with the matrix D = (dqp)
• Use the result as the charges at {bq} to compute the potential at x.

We call these potentials the directional check potentials of A in the direction of B.

8.2 Algorithmic description

Geometric part

Similar to the HF-FMM, the octree is divided into the low frequency regime (where

the width of the box is < 1) and the high frequency regime (where the width of the

box is ≥ 1). However, the definition of the far field region is much more complicated:

• For a box B with width r < 1 in the low frequency regime, the far field FB
con-

tains all the well-separated boxes.

• For a box B with width r ≥ 1 in the high frequency regime, the far field FB

contains the boxes which are at least r2
away. The interaction list of B contains

the boxes which are in the far field of B but not in the far field of the parent

of B. All these boxes belong to a shell with radius from r2
to 4r2

. The far field

is further partitioned into O(r2) wedges {W B,ℓ} indexed by {ℓ}, each with an

opening angle of size O(1/r) (see Fig. 45).

.
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Fig. 45. The far field of B is partitioned into multiple wedges, each with an opening angle of

size O(1/r).

Far field and local field representations

For a box B with width r < 1 in the low frequency regime, the far field representation

is the (non-directional) equivalent charges { f
B,F
k }k of the kernel independent FMM.

From the previous discussion, we know that its complexity is O(1).
For a box B with width r ≥ 1 in the high frequency regime, the far field repre-

sentation consists of the directional equivalent charges { f
B,F,ℓ
k }k of all O(r2) wedges

{W B,ℓ}. In order to compute the potential at a point x in the far field, we need to use

the charges { f
B,F,ℓ
k }k associated with the wedge W B,ℓ

that x belongs to. As we use

O(1) directional equivalent charges for each direction, the complexity of the far field

representation is O(r2).
For a box A with width r < 1 in the low frequency regime, the local field repre-

sentation is the (non-directional) check potentials {u
A,L
k }k of the kernel independent

FMM. Its complexity is O(1).
For a box A with width r ≥ 1 in the high frequency regime, the local field rep-

A,L,ℓ
k }k of all O(r2) wedges

{W A,ℓ}. For a point x in A, in order to compute the potential at x generated by the

source charges in wedge W A,ℓ
, we need to use the check potentials {u

A,L,ℓ
k }k. Since

the directional check potentials for each direction contain O(1) coefficients, the com-

plexity of the local field representation is O(r2).

Far-to-far, far-to-local, and local-to-local translations

The translations in the low frequency regime are exactly the same as the ones of the

kernel independent FMM. Therefore, we only discuss these translations in the high

frequency regime.

{uresentation consists of the directional check potentials
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The far-to-local translation is quite simple. Consider two boxes A and B in each

other’s interaction list. Suppose A is in W B,ℓ
and B is in W A,ℓ′

. The far-to-local trans-

lation from B to A simply evaluates {u
A,L,ℓ′
k }k using { f

B,F,ℓ
k }k.

For the far-to-far translation, we construct the directional equivalent charges of a

parent box B from its child box B′
. Let us consider the wedges {W B,ℓ} one by one.

An important observation, which is clear from the following figure, is that W B,ℓ
is

contained in a wedge W B′,ℓ′
of its child B′

. Therefore, to construct { f
B,F,ℓ
k }k at B, we

can simply regard { f
B′,F,ℓ′
k }k as the source charges (see Fig. 46).

Fig. 46. Far-to-local translation between B and B′
.

As a result, the steps of a far-to-local translation in the high frequency regime

are:

• Use the directional equivalent charges { f
B′,F,ℓ′
k }k of B′

as the source charges to

compute the potentials at locations {ap} of the box B.

• Multiplication with the matrix (dqp) to obtain { f
B,F,ℓ
k }k.

The local-to-local translation is implemented in a similar way. The main components

of this algorithm is illustrated in Fig. 47.

Let us now discuss the computational complexity of this multidirectional algo-

rithm. For a box of width r, most of the computation is devoted to the three transla-

tions.

• There are O(r2) far-to-far translations, one for each wedge. Since each far-to-far

translation takes O(1) operations, the complexity is O(r2).
• There are O(r2) local-to-local translations, again one for each wedge. Since

each local-to-local translation takes also O(1) operation, the complexity is again

O(r2).
• Let us count the number of far-to-local translations for a box B. All the boxes in

B’s interaction list belong to a shell with radius between r2
and 4r2

. It is clear

that there are O(r2) boxes in this shell since the points are sampled from the
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Fig. 47. The overall structure of the multidirectional algorithm.

surface boundary ∂D. Since each far-to-local translation takes O(1) operations,

the complexity is also O(r2).

For a given size r, there are O(K2/r2) boxes of this size. Therefore, the number of

steps spent on each level is O(K2/r2) · O(r2) = O(K2). Finally, summing over all

O(logK) levels, we conclude that the complexity of this multidirectional algorithm

is

O(K2
logK) = O(N logN),

which is the same as the complexity of the HF-FMM algorithm.

9 Concluding Remarks

This paper discussed several fast algorithms for boundary integral equations. In the

case of non-oscillatory kernels, we reviewed the fast multipole method (FMM) and

its kernel independent variant, the hierarchical matrix framework, and the wavelet-

based method. In each of these methods, we exploit the fact that the interaction

between two well-separated regions is approximately low rank. For the oscillatory

kernels, we discussed the high frequency fast multipole method (HF-FMM) and the

recently proposed multidirectional algorithm. The HF-FMM used the far field sig-

nature to diagonalize the well-separated interaction, while the multidirectional algo-

rithm decomposes the interaction in a directional way using the so-called directional

parabolic separation condition.
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Our choice of the methods is quite personal. Many other efficient algorithms

were left out, such as the panel-clustering method [19], the FFT-based methods

[4, 5, 7, 23], the local Fourier basis method [2], and the direct solver method [22].

often provide efficient ways to solve linear parabolic and hyperbolic PDEs. We point

the readers to [10, 17] for fast algorithms for these boundary integral equations.
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10 Exercises

Exercise 1. Solve the Laplace equation

−∆u = 0 in D

u = f on ∂D

on the domain D = {(x1,x2) : x2

1
+ 4x2

2
< 1} using the second kind integral equation

f (z) =
1

2
ϕ(z)−

∫

∂D

∂G(z,y)

∂n(y)
ϕ(y)ds(y).

Let us parameterize the boundary ∂D as

x1 = cos(θ ) x2 = 0.5sin(θ ), θ ∈ [0,2π ].

∫
∂D

∂G(z,y)
∂n(y)

ϕ(y)dy. For this problem, limy→z
∂G(z,y)
∂n(y)

• Solve for ϕ(z) when the boundary condition is f (θ ) = cos(4θ ) in the angular

parameterization. Let the number of quadrature points N be 128.

• Please plot the solution u(x) for x in {(x1,x2) : x2

1
+ 4x2

2
< 0.92}.

Exercise 2. Solve the Helmholtz equation

−∆u − k2u = 0 in R
d \ D̄

u(x) = −uinc(x) for x ∈ ∂D

lim
r→∞

r

(
∂u

∂ r
− iku

)
= 0

use the trapezoidal to the integralapproximatenumericallyYou can rule

terms of the curvature of ∂D at z.

exists and can be expressed in

Furthermore, we omitted the important field of time-domain integral equations, which

2

d–1
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on the domain R2 \ D̄ where D = {(x1,x2) : x2

1
+ 4x2

2
< 1} using the second kind

integral equation

−uinc(z) =
1

2
ϕ(z)+

∫

∂D

(
∂G(z,y)

∂n(y)

)
ϕ(y)ds(y).

where η is set to be zero. Let us use the same parameterization for ∂D as the previ-

ous problem and again the trapezoidal rule to discretize the integral. The following

formula will be useful for the computation of
∂G(z,y)
∂n(y)

d

dr
Hn

0 (r) =
nH1

n (r)

r
− H1

n+1(r).

The limit limy→z
∂G(z,y)
∂n(y)

exists as well in this case and is equal to the one of the

previous example.

• Choose k = 64 and N = 8k. Given uinc(x) = exp(ik(x ·d)) with d = (1,0), please

solve for ϕ(z).
• Pleases plot the scattering field u(x) for x in {(x1,x2) : x2

1
+ 4x2

2
> 1.12}.

Exercise 3. Let us consider the wavelet based method. The boundary is a circle pa-

rameterized by g(s) = (cos(2πs),sin(2πs)) for s ∈ [0,1]. Take the kernel to be the

Green’s function of the Laplace equation:

ln |g(s)− g(t)|.

• Please discretize the kernel with N points. For the diagonal, simply put 0. This

gives you an N × N image.

• Compress this image with 2D Daubechies wavelets.

• Compare, for different values of N and ε , how many wavelet coefficients are

greater than ε .
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1 Introduction

Wavelets is a tool for describing functions on different scales or level of detail. In

mathematical terms, wavelets are functions that form a basis for L2(R) with spe-

cial properties; the basis functions are spatially localized and correspond to different

scale levels. Finding the representation of a function in this basis amounts to mak-

ing a multiresolution decomposition of the function. Such a wavelet representation

lends itself naturally to analyzing the fine and coarse scales as well as the localization

properties of a function. Wavelets have been used in many applications, from image

and signal analysis to numerical methods for partial differential equations (PDEs).

In this tutorial we first go through the basic wavelet theory and then show a more

specific application where wavelets are used for numerical homogenization. We will

mostly give references to the original sources of ideas presented. There are also a

large number of books and review articles that cover the topic of wavelets, where the

mention a few.

2 Wavelets

Wavelet bases decompose a function into parts that describe it on different scales.

Starting from an example, we show in this section how such bases can be constructed

in a systematic way via multiresolution analysis; in particular we present in a little

more detail the construction of Daubechies’s famous compactly supported wavelets.

We also discuss wavelets’ approximation properties and time frequency localization,

as well as the fast wavelet transform. The focus is on the basic theory and ideas of

first generation wavelets. Later extensions will be mentioned but not elaborated on.

2.1 An example

We begin by discussing multiresolution decomposition of a function in an informal

way via an example illustrated in Fig. 1. The starting point is the function at the top

interested reader can find further information, e.g. [25, 51, 48, 7, 39, 26, 23], just to
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Fig. 1. Multiscale decomposition of a function.

left in Fig. 1 plotted in the interval [0,1]. It is a piecewise constant function where

each piece has the same length. We call this function u3(x) with 3 indicating that the

length of the pieces is 1/8 = 2
−3

. We can now construct a new piecewise constant

function by taking the average of adjacent pieces in u3(x). This is the function in

the second subfigure. We call it u2(x) since the length of the pieces is now doubled,

1/4 = 2
−2

. Below in the second row is the difference between u3(x) and u2(x) which

we call d2(x). Hence,

u3(x) = u2(x)+ d2(x).

Clearly, this process can be continued iteratively, as indicated in the figure. We con-

struct u1(x) by taking local averages of u2(x) and let d1(x) = u2(x)− u1(x), etc. In

the end we only have u0(x), the total average of u3(x), and the differences such that

u3(x) = u0(x)+ d0(x)+ d1(x)+ d2(x).

The differences can be interpreted precisely as the information contents of the func-

tion on different scale levels.

This kind of multiresolution decomposition is useful in many applications, and

at the heart of the theory of wavelets. Some of the advantages of decomposing a

function in this way is:

• The approximations u j(x) give an explicit description of how the original func-

tion looks like if viewed on different scales. The larger j, the more details of

the function are present. The differences d j(x) contain the parts of the function

that belong to the different scales. This is often of great use in understanding and

analyzing phenomena.
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• The size of the d j(x) functions rapidly go to zero as j increases, if the original

function is smooth. One can therefore approximate the function with just a few

of the d j(x).
• j

used in many applications from edge detection in image analysis to mesh refine-

ment algorithms in the numerical solution of PDEs.

2.2 The Haar wavelet and scaling spaces

We will now discuss the example above and put it in a systematic framework by

considering the spaces that u j(x) and d j(x) belong to, and the basis functions that

span those spaces. We note first that the initial function u3(x) can be written as a

linear combination of piecewise constant functions {φ3,k} indicated in the top left

frame of Fig. 2,

u3(x) = ∑
k

u3,kφ3,k(x)

for some coefficients {u3,k}. The functions φ3,k(x) are the basis functions for the

space of all piecewise constant functions with pieces of length 2
−3

. We call this space

V3. Reasoning in the same way for the other u j functions, we have that u j(x) ∈ V j,

the space of piecewise constant functions with piece length 2
− j

, spanned by φ j,k(x)
as shown in the first row of Fig. 2. The spaces V j are called scaling spaces and

in general they contain the functions ”viewed on scale j”, where more detailed
1

functions belong to spaces with larger j. For practical and technical reasons we will

henceforth restrict ourselves to piecewise constant functions that are also in L2(R),
the space of square integrable functions.

The difference functions d j(x) can be treated in a similar fashion, but with dif-

ferent basis functions ψ j,k(x). These are indicated in the second row of Fig. 2. Thus

d j(x) = ∑
k

d j,kψ j,k(x),

for some coefficients {d j,k}. The space spanned by {ψ j,k} will be called Wj. The

functions {ψ j,k} are called wavelets and Wj are the wavelet spaces or detail spaces.

We can now make a number of observations about these spaces and basis func-

tions.

First, the basis functions for the V j spaces are actually all translated and dilated

versions of one function. The same is true for the Wj spaces. In fact, we can write

φ j,k(x) = 2
j/2φ(2 jx − k), ψ j,k(x) = 2

j/2ψ(2 jx − k),

where

φ(x) =

{
1, if 0 ≤ x ≤ 1,

0, otherwise,
ψ(x) =






1, if 0 ≤ x ≤ 1/2,

−1, if 1/2 < x ≤ 1,

0, otherwise.

(1)

1
Note that this is the opposite convention compared to the tutorial by Lexing Ying in this

volume, where more detailed functions belong to spaces with smaller j.

The differences d (x) indicate where the original function is non-smooth. This is

,
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Fig. 2. Basis functions for V j (above) and Wj (below).

The prefactor 2
j/2

is somewhat arbitrary and chosen here to normalize the L2
norm

of the functions to unity. In wavelet theory φ(x) is called the shape function and ψ(x)
is called the mother wavelet of the wavelet system. They are shown in the top left

frame of Fig. 3. We thus have that

{φ j,k; k ∈ Z} is an orthonormal basis for V j, (2)

{ψ j,k; k ∈ Z} is an orthonormal basis for Wj. (3)

The second observation is that each function u j+1 in V j+1 can be uniquely de-

composed as a sum u j + d j where u j ∈ V j and d j ∈ Wj. What is more, u j and d j are

orthogonal in L2(R). This follows since the basis functions φ j,k and ψ j,k are orthog-

onal in L2(R) for fixed j; it is easily verified that

〈φ j,k,ψ j,k′〉 =
∫

φ j,k(x)ψ j,k′(x) = 0, ∀ j,k,k′.

This means that V j+1 j and Wj, which are also orthogonal. Hence

V j+1 = V j ⊕Wj, V j ⊥ Wj. (4)

The wavelet space Wj is thus the “difference” between two successive scaling spaces

V j ⊂ V j+1. More precisely Wj is the orthogonal complement of V j in V j+1 and in the

decomposition of u j+1 above, u j and d j are the orthogonal projections of u j+1 onto

V j and Wj respectively.

is a direct sum of V
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We can draw a couple of conclusions from these observations. From (2), (3) and

(4) it follows that

{ψ j,k}k∈Z ∪{φ j,k}k∈Z is an orthonormal basis for V j+1.

Furthermore, iterating on (4), we see that, for any j0 < j,

V j+1 = Wj ⊕Wj−1 ⊕·· ·⊕Wj0+1 ⊕Wj0 ⊕V j0 .

If we formally let j tend to infinity in this sum it will contain functions with increas-

ingly fine scales, and if we also let j0 go to minus infinity it will be a sum over all

wavelet spaces. In fact, one can show rigorously that

⊕

j∈Z

Wj = L2(R). (5)

Moreover,

{ψ j,k; j,k ∈ Z} is an orthonormal basis for L2(R). (6)

Hence, if we interpret each Wj as a space containing functions that only have one

specific scale, L2(R), containing functions with all scales, is an infinite sum of the

Wj spaces.

A third observation is that the scaling function has integral one,

∫
φ(x)dx = 1, (7)

and the mother wavelet has zero mean,
∫

ψ(x)dx = 0. (8)

This turns out to be important basic requirements for all scaling and wavelet func-

tions to guarantee basic regularity and approximation properties.

The construction above was introduced by Alfred Haar in the early 20th century

[34], and it is now known as the Haar wavelet system. From a numerical point of

view it has some nice properties, like the compact support and orthogonality of the

basis functions, but also some drawbacks, mainly the fact that the basis functions

are discontinuous. It took until the 1980s before a practical generalization of Haar’s

construction was made. Smoother wavelets with better numerical properties were

then discovered. This was the start of the modern treatment of wavelets.

2.3 Multiresolution analysis

In the previous section we identified some of the core properties of the Haar wavelet

system and described them in terms of functions spaces and orthonormal basis sets.

We can now generalize the ideas illustrated in the initial example above. These gen-

eralizations will lead up to new types of wavelets with better properties than the

simple Haar wavelets. To do this we use the concept of an (orthogonal) Multiresolu-

tion Analysis (MRA), first introduced by Meyer [47] and Mallat [45]. An MRA is a

family of closed function spaces V j and a real valued shape function φ(x) with the

following properties:
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(a) · · · ⊂ V j ⊂ V j+1 ⊂ ·· · ⊂ L2(R),

(b) f (x) ∈ V j ⇔ f (2x) ∈ V j+1,

(c) {φ(x − k)}k∈Z is an orthonormal basis for V0,

(d) ∪V j = L2(R) and ∩V j = {0}.

In general, it follows from (a) and (b) that V j contains functions with finer and finer

details when j increases. Property (c) provides the basis functions and (d) is a tech-

nical requirement to ensure completeness of the system.

These four properties are in fact all that is needed to form a wavelet system of

the same type as in Sect. 2.2; the remaining parts of the wavelet systems can be

constructed from φ(x) and the V j spaces in the MRA as follows.

Like in the Haar case, we define φ j,k(x) := 2
j/2φ(2 jx− k). Together (b) and (c)

implies (2), that{φ j,k}k∈Z is an orthonormal basis forV j

show that φ (or −φ ) satisfy (7). The wavelet spaces Wj are defined as the orthogonal

complement of V j in V j+1

exists a mother wavelet ψ(x) and it can be constructed in a fairly explicit way. Since

V0 ⊂ V1 and {φ1,k} is a basis for V1 we can write

φ(x) = ∑
k

hkφ1,k(x) =
√

2∑
k

hkφ(2x − k), (9)

for some {hk} values. The scaling function thus satisfies a refinement equation. The

{hk} values are called the (low pass) filter coefficients for the wavelet system. From

these we compute the (high pass) filter coefficients {gk} by the alternating flip rule,

gk = (−1)kh1−k, (10)

and define the mother wavelet as

ψ(x) := ∑
k

gkφ1,k(x) =
√

2∑
k

(−1)kh1−kφ(2x − k). (11)

(Justification of this choice is given in Exercises 2 and 3 below.) Then (8) holds.

Setting ψ j,k := 2
j/2ψ(2 jx−k) also (3) holds and by (d) we also get (6). For a detailed

description of MRA we refer the reader to the book by Daubechies [25].

The simplest MRA is the one built on the Haar basis that was introduced in

the example above. In that case (a) is satisfied since the piecewise constant functions

with piece length 2
− j

is a subset of the piecewise constant functions with piece length

2
−( j+1)

. Moreover, (b) is true by construction and the shape function in (1) clearly

satisfies (c). Finally, (d) holds since piecewise constant functions are dense in L2(R).
The filter coefficients for Haar are

{hk} =

{
1√
2
,

1√
2

}
, {gk} =

{
1√
2
,

−1√
2

}
.

. Then (4) and (5) follow using (d). Furthermore, there

(see Exercise 1). One can also
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(a) Haar (b) Daubechies 4

(c) Daubechies 6 (d) Daubechies 8

Fig. 3. Scaling functions φ(x) (left) and mother wavelets ψ(x) (right) for the first families of

Daubechies orthogonal compactly supported wavelets [24].

There are, however, many other examples. In fact, most wavelet systems fit into

the MRA framework and it provides a good basis for constructing new wavelets. Al-

by Meyer [46], Battle [5] and Lemarié [43], it was with the introduction of MRA that

the construction of wavelets took off. New wavelets were designed to have desirable

properties like orthogonality, compact support, smoothness, symmetry and vanish-

ing moments (see Sect. 2.5). Not all those properties can be obtained at the same

time, but it is for instance possible to have smooth orthonormal compactly supported

wavelets, as shown by Daubechies [24]. These wavelets, pictured in Fig. 3, are the

natural generalizations of the Haar wavelets; their shapes are, however, rather more

unconventional. In Sect. 2.7 we will show how they can be derived. A multitude of

other wavelets have been constructed since. We refer to [7] for more details and ex-

amples. Let us furthermore mention the early work on continuous wavelet transforms

by Grossman and Morlet [33] who also coined the term “wavelet.” Filter coefficients

{hk} and {gk} for many wavelets are available in MATLAB packages like WAVELET

TOOLBOX, WAVELAB and WAVEKIT; see also the classic book [25] for the coeffi-

cients of the earlier wavelets.

The basic wavelet theory that we focus on in this tutorial can be generalized in

many ways. The orthogonality restriction in the MRA can be relaxed and wavelet

systems where the basis functions are not orthogonal can be built. One important

example is bi-orthogonal wavelets [18] in which some orthogonality properties are

though the first smooth wavelets were constructed earlier by Strömberg [52] and later
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maintained but not all. This gives more freedom in the construction and it is for ex-

ample possible to build compactly supported symmetric wavelets in this way, which

is not possible for strictly orthogonal systems. In semiorthogonal wavelets [16]

even more orthogonality properties are kept. Wavelet packages have an improved

frequency localization compared to standard wavelets, obtained by tiling the time-

frequency plane (see Sect. 2.6) in a way better adapted to the function at hand [21].

In multiwavelets several scaling functions and mother wavelets are used to build a

wavelet system [1, 31]. For higher dimensions a number of wavelet like systems

has been constructed where, the basis functions are indexed not just by localization

and scale, but also orientation; curvelets [13] and ridgelets [12] are examples of this

approach. A significant generalization of the basic wavelet theory are the second

generation wavelets put forth by Sweldens [53]. The core ideas of multiresolution

analysis are kept but the dilation/translation structure and the corresponding dyadic

intervals, are replaced by general nested subsets that partition the space. This allows

for the construction of wavelets in a broader range of settings, for instance on irreg-

ular grids (e.g. triangulations) and on surfaces in 3D. Wavelets of this type (and also

first generation wavelets) can be built naturally using Swelden’s systematic lifting

algorithm.

Remark 1. In more than one dimension, the MRA is extended by considering tensor

product spaces. In two dimensions, we set

VVV j = V j ⊗V j, . . . ⊂ VVV j ⊂ VVV j+1 ⊂ . . . ⊂ L2(R2) j ∈ Z,

with V j being the one-dimensional spaces introduced above. As before, we let the

wavelet spaces WWW j be the orthogonal complements of VVV j in VVV j+1, so that VVV j+1 =
VVV j ⊕WWW j and VVV j ⊥ WWW j. In this case WWW j is composed of three parts,

WWW j = (Wj ⊗Wj)⊕ (V j ⊗Wj)⊕ (Wj ⊗V j),

where, the Wj spaces are those of the one-dimensional case, given by (4). Similar

tensor product extensions can be made also for higher dimensions.

Exercise 1. Suppose that V j and φ(x) are the scaling spaces and scaling function for

a MRA. Use property (b) and (c) of the MRA to show that {φ j,k(x) = 2
j/2φ(2 jx−k)}

with k ∈ Z is an orthonormal basis for V j.

2.4 Filter coefficients

The filter coefficients encode and generalize the idea of taking local averages (via

{hk}) and differences, (via {gk}) in each refinement step, described for the case

of Haar wavelets in the introduction. The {hk} coefficients can actually be used to

directly characterize the wavelet system. In principle they define the shape function

via (9) and then the mother wavelet via (10) and (11). Not every {hk} sequence is

allowed, however. By (9) a basic requirement is that {hk} is square summable, i.e.

belong to ℓ2
. In fact ∑k |hk|2 = 1 since ||φ ||L2 = 1. In order to define reasonable shape
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functions and mother wavelets one needs to restrict {hk} further. Here we assume that

|hk| decays sufficiently fast as |k| → ∞ to allow the manipulations we do. We then

derive two necessary conditions. First, after integrating (9) we get that

∫
φ(x)dx =

√
2∑

k

hk

∫
φ(2x − k)dx =

1√
2

∫
φ(x)dx∑

k

hk,

and that

∫
φ(x)φ(x − k)dx = 2 ∑

m,n

hmhn

∫
φ(2x − m)φ(2x − 2k − n)dx

= ∑
m,n

hmhn

∫
φ(x)φ(x + m− 2k − n)dx.

Together with (2) and (7) we get the necessary conditions on {hk}

∑
k

hk =
√

2, (12)

∑
n

hn+2khn = δk. (13)

An alternative characterization of the filter coefficients is given by introducing

the Fourier transform of {hk}, in this context also known as the generating function

of {hk},

ĥ(ξ ) :=
1√
2

∑
k

hkeikξ . (14)

The requirement (12) is then simply written as

ĥ(0) = 1. (15)

To translate the requirement (13) we note that

|ĥ(ξ )|2 + |ĥ(ξ + π)|2 =
1

2
∑
n,k

(
hneinξ hke−ikξ + hnein(ξ+π)hke−ik(ξ+π)

)

=
1

2
∑
n,k

hnhkei(n−k)ξ
(

1 + ei(n−k)π
)

=
1

2
∑
n,k

hnhn+ke−ikξ
(

1 +(−1)k
)

= ∑
n,k

hnhn+2ke−i2kξ = ∑
k

e−i2kξ

(
∑
n

hnhn+2k

)
.

It follows that (13) is equivalent to

|ĥ(ξ )|2 + |ĥ(ξ + π)|2 = 1. (16)
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Thus to find new orthogonal wavelet systems one must first find {hk} sequences sat-

isfying (12) and (13), or alternatively find a 2π-periodic function ĥ(ξ ) ∈ L2([0,2π ])
satisfying (15) and (16). To define an MRA {hk} also need to satisfy some technical

requirements that guarantees convergence. For instance, a sufficient condition is that

there exist ε > 0 such that

∑
k

|hk||k|ε < ∞, and ĥ(ξ ) 6= 0, ∀|ξ | ≤ π

2
. (17)

In this case we can construct an MRA from {hk}, defining φ(x) from (9) and V j as

the closure of the linear span of the corresponding {φ j,k}, see [24, 45]. As before,

the {gk} coefficients are defined by (10) and ψ(x) by (11).

Exercise 2. Show that if ψ j,k(x) is orthogonal to φ j,k′(x) for all j,k,k′
a necessary

condition for the {gk} coefficients is that

∑
n

hn+2kgn = 0, ∀k.

Also show that with the choice gn = (−1)nh1−n this condition is satisfied. (Hint: Let

an = hn+2kgn and note that then a1−n−2k = −an.)

Exercise 3. Show that (7) and (8) implies that

∑
k

gk = 0.

Moreover, show that this is satisfied if (10) holds and if {hk} satisfy (12) and (13).

(Hint: Define ĝ(ξ ) from {gk} in the same was as ĥ(ξ ) was defined from {hk}. Relate

ĝ(ξ ) to ĥ(ξ ). Then use (15) and (16).)

2.5 Approximation properties

We have already mentioned the good approximation properties of wavelets. Let us

now explain this in more detail and make the statement more precise. The basic ap-

This is a generalization of (8) defined as follows.

Definition 1. The mother wavelet ψ has M vanishing moments if

∫
ψ(x)xmdx = 0, m = 0, . . . ,M − 1. (18)

We note that this implies that also ψ j,k(x) has M vanishing moments (see Exercise

4).

Another important property is the space localization of the wavelets. By this we

mean that most of the energy of the wavelet concentrates in a small domain. This

follows automatically from the construction if the mother wavelet decays rapidly at

infinity, |ψ(x)| → 0 as |x| → ∞. For instance, if ψ(x) has compact support in [−a,a]

proximation mechanism relies on the mother wavelet having vanishing moments.
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1

(a) ψ(x)

2
−j

k2
−j

(b) ψ j,k(x)

Fig. 4. Examples of translations and dilations of the Daubechies 8 mother wavelet ψ(x). For

ψ j,k(x) the localization in space changes to around k2
− j

and the support narrows to size 2
− j

.

then from the translation and dilation, ψ j,k = 2
j/2ψ(2 jx − k) has compact support

in [k2
− j − 2

− ja, k2
− j + 2

− ja]; see Fig. 4. We note here that compactly supported

wavelet systems with arbitrary many vanishing moments do indeed exist [24]. We

will sketch how these can be derived below in Sect. 2.7.

To see the importance of the vanishing moment and space localization properties

we start from a function u(x) which has the wavelet expansion

u(x) = ∑
j,k

u j,kψ j,k(x),

where we suppose that the mother wavelet has compact support in [−a,a]. Let us

focus on an individual coefficient u j,k. We denote by Ω the (compact) support of

ψ j,k. Then,

u j,k =
∫

Ω
u(x)ψ j,k(x)dx.

Suppose the restriction of u(x) to Ω is in Cp(Ω), i.e. in the support of ψ j,k(x) we

assume that u(x) is smooth with p continuous derivatives. We can then Taylor expand

u(x) around a point x0 ∈ Ω . Let M̃ = min(p,M). We get

u j,k =

∫

Ω

M̃−1

∑
m=0

u(m)(x0)
(x − x0)

m

m!
ψ j,k(x)dx +

∫

Ω
R(x)

(x − x0)
M̃

M̃!
ψ j,k(x)dx,

where R(x) is the Taylor remainder term, satisfying

sup

x∈Ω
|R(x)| ≤ sup

x∈Ω
|u(M̃)(x)|.

Since M̃ ≤ M the first term is zero because of the vanishing moments of ψ j,k(x).
Moreover, noting that by the Cauchy-Schwarz inequality,
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∫

Ω
|ψ j,k(x)|dx ≤

(∫

Ω
1

2dx ×
∫

Ω
|ψ j,k(x)|2dx

)1/2

= |Ω |1/2,

we obtain

|u j,k| ≤
|Ω |M̃
M̃!

sup

x∈Ω

∣∣∣u(M̃)(x)
∣∣∣
∫

Ω
|ψ j,k(x)|dx ≤ |Ω |M̃+1/2

M̃!
sup

x∈Ω

∣∣∣u(M̃)(x)
∣∣∣ .

From the discussion above we see that |Ω | = 2
− j+1a and we finally have

|u j,k| ≤ c2 sup

x∈Ω

∣∣∣u(min(p,M))(x)
∣∣∣ ,

for some constant c that is independent of j.

From this we can conclude that as long as u(x) is smooth in the support of ψ j,k,

i.e. p is large, then the wavelet coefficients u j,k decay rapidly with j when the number

of vanishing moments is large. The coefficients u j,k may, however, be large when p is

small, hence at the points where u(x) is non-smooth. For piecewise smooth functions

this only happens in a few places. Thus most fine-scale coefficients are very small

and can be neglected. One only needs to keep those where u(x) changes sharply or

is discontinuous. In this sense wavelets are good at approximating also piecewise

smooth functions, in contrast to Fourier bases which exhibit large Gibbs type errors

when the approximated function is non-smooth. This a reason for the success of

wavelets in compression of e.g. images which can be modeled as two-dimensional

piecewise smooth functions.

Exercise 4. Show that if the mother wavelet ψ(x) has M vanishing moments sat-

isfying (18), then the same is true for every wavelet basis function ψ j,k(x) =

2
j/2ψ(2 jx − k).

2.6 Time-frequency analysis

We will here discuss another particular property of wavelet bases, namely their local-

ization in time and frequency. We are interested in what parts of the time-frequency

(t,ω)-plane
2

that is covered by the basis functions, hence the essential support of

|v(t)v̂(ω)| for the function v. Let us consider a function

u(t) = ∑
n

unvn(t),

and compare representations with three different types of basis functions {vn(t)}.

The basis functions and their essential time-frequency localizations are illustrated in

Fig. 6.

2
Since we interpret the independent variable as time here, we denote it by t instead of x.

− (j +1/2)min(p,M)
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1. Time representation

In this case the basis functions are the set of translated (approximate) delta func-

tions, vn(t) ≈ δ (t − tn) with Fourier transform v̂n(ω) ≈ e−iωtn . Thus the support

of |vn(t)v̂n(ω)| is concentrated around t = tn and essentially spread out over all

frequencies. We can interpret this as total localization in space and no localiza-

tion in frequency, cf. the left frames of Fig. 6.

2. Frequency representation

In this case we use Fourier basis, vn(t) = eiωnt
, with Fourier transform v̂n(ω) =

δ (ω −ωn). This is the opposite situation to the time representation case, and the

support of |vn(t)v̂n(ω)| is concentrated around ω = ωn and essentially spread

out over all time, i.e. total localization in frequency and no localization in time,

as indicated by the middle frames of Fig. 6.

3. Wavelet representation

Here we have vn(t) = ψ j,k(t). As already discussed in Sect. 2.5 the support of

the wavelet function ψ j,k(t) is centered around k2
− j

and has width proportional

to 2
− j

. The Fourier transform of the wavelets is

ψ̂ j,k(ω) =

∫
2

j/2ψ(2 jt − k)e−iωtdt = 2
− j/2e−i2− jωkψ̂

(
2

− jω
)
.

We note furthermore that ψ̂(p) p̂

vanishing moments, then

ψ̂(p)(0) =
∫

(it)pψ(t)dt = 0, p = 0, . . . ,M − 1. (19)

Hence, ψ̂(ω) thus has an M-th order zero at ω = 0. Together this means that the

support of |ψ̂ j,k(ω)| is essentially centered around |ω | = 2
j
in an interval of size

2
j
, see Fig. 5. The wavelets are thus localized both in time and frequency, with

the essential support of |ψ j,k(t)ψ̂ j,k(ω)| centered at (t,ω) ∼ (k2
− j,2 j); see the

right frames of Fig. 6.

The three different representations thus divide the time-frequency plane in quite

different ways. One way to interpret wavelets is as a limited musical score, where

each basis function, like a musical note, corresponds to a particular localization both

different representations. The localized wave package at the left is reflected in the

size of the wavelet coefficients.

2.7 Orthogonal compactly supported wavelets

In this section we show how smooth orthogonal compactly supported wavelets

with many vanishing moments can be constructed. These were first discovered by

Daubechies [24]. We essentially follow her derivation, which is done directly from

the generating function (14) that characterizes the wavelet system. We are thus look-

ing for a ĥ(ξ ) that satisfies (15) and (16), as well as (17).

(ω) = (it) ψ(t) and if the mother wavelet has M

in time and space. Figure 7 shows an example decomposition of a function using the
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1

(a) |ψ̂(ω)|

2j

2j

(b) |ψ̂ j,k(ω)|

Fig. 5. Examples of the effect of translations and dilations on the Fourier transform of the

Daubechies 8 mother wavelet ψ̂(ω). For ψ̂ j,k(ω) the localization in frequency changes to

around 2
j

and the support increases to size 2
j
.

(a) Time basis function (b) Frequency basis function (c) Wavelet basis function

Time

F
re

q
u
e
n
cy

Time

F
re

q
u
e
n
cy

Time

F
re

q
u
e
n
cy

(d) Localization

Fig. 6. Basis functions and time-frequency localizations
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(a) Example signal (b) Time representation

(c) Fourier representation (d) Wavelet representation

Fig. 7. Different representations of the example signal in (a): Localization in time (b), fre-

quency (c), time and frequency (d). Gray levels indicate the size of the corresponding coeffi-

cient.

Compactly supported wavelets are equivalent to finite length or finite impulse

response (FIR) filters, where all but a finite number of {gk} and {hk} coefficients are

zero. Moreover, we note that if ĥ(ξ ) satisfies (15) and (16), then so does eimξ ĥ(ξ ),
for any real m. This means that we need to find ĥ(ξ ) of the form

ĥ(ξ ) =
1√
2

N

∑
k=0

hkeikξ =
1√
2

N

∑
k=0

hkzk =: P(z) , z = z(ξ ) = eiξ ,

where P(z) is a polynomial of degree N (to be determined) with real coefficients.

By taking the Fourier transform of (11) we obtain

ψ̂(2ξ ) =
1√
2

∑
k

(−1)kh1−keikξ φ̂ (ξ ) = e−i(ξ+π)ĥ(ξ + π)φ̂(ξ ) = −P(−z)φ̂(ξ )

z
.

(20)

When ψ(x) has M vanishing moments (19) holds. It follows (see Exercise 5) that

P(z) has an M-th order zero at z = −1 and we can write
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P(z) =

(
1 + z

2

)M

Q(z), (21)

for some polynomial Q(z) of degree N − M with real coefficients. Conditions (15)

and (16) for ĥ(ξ ) is then equivalent to the following conditions for Q(z):

Q(1) = 1, (22)

∣∣∣∣
1 + z

2

∣∣∣∣
2M

|Q(z)|2 +

∣∣∣∣
1 − z

2

∣∣∣∣
2M

|Q(−z)|2 = 1, ∀|z| = 1. (23)

Let ck,n be the binomial coefficients

(
n

k

)
and define the n-th degree real polyno-

mial Tn(y) as follows:

1 = (y + 1 − y)2n+1 =
2n+1

∑
k=0

ck,2n+1y2n+1−k(1 − y)k

= yn+1

n

∑
k=0

ck,2n+1yn−k(1 − y)k +(1 − y)n+1

n

∑
k=0

ck+n+1,2n+1yn−k(1 − y)k

= yn+1

n

∑
k=0

ck,2n+1yn−k(1 − y)k +(1 − y)n+1

n

∑
k=0

ck,2n+1(1 − y)n−kyk

=: yn+1Tn(1 − y)+ (1 − y)n+1Tn(y).

Here we used the symmetry ck,2n+1 = c2n+1−k,2n+1. We note that

Tn(0) = c0,2n+1 = 1, and Tn(y) > 0, y ∈ [0,1], (24)

since all coefficients ck,n are positive. Moreover,

∣∣∣∣
1 + z

2

∣∣∣∣
2

+

∣∣∣∣
1 − z

2

∣∣∣∣
2

= 1, ∀|z| = 1.

Therefore, if we can find a polynomial Q(z) with real coefficients such that

|Q(z)|2 = TM−1

(∣∣∣∣
1 − z

2

∣∣∣∣
2
)

, ∀|z| = 1,

it will satisfy (22) and (23) above. Let us now prove that this is always possible.

Denote by Sn(z) the n-th Chebyshev polynomial, which satisfies the trigonometric

identity Sn(cosθ ) = cos(nθ ). Since {Sk(z)} are linearly independent, there are coef-

ficients {αk} such that

Tn

(∣∣∣∣
1 − z

2

∣∣∣∣
2
)

= Tn

(
1 − cosξ

2

)
=

n

∑
k=0

αkSk(cosξ ) =
n

∑
k=0

αk cos(kξ )

=
1

2

n

∑
k=0

αk

(
eikξ + e−ikξ

)
=

e−inξ

2

n

∑
k=0

αk

(
zn+k + zn−k

)
=: e−inξ T̃n(z),
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when |z| = 1. This defines the 2n-th degree polynomial T̃n(z) with real coefficients.

A key property of T̃n(z) follows from (24),

Tn

(∣∣∣∣
1 − z

2

∣∣∣∣
2
)

=

∣∣∣∣∣Tn

(∣∣∣∣
1 − z

2

∣∣∣∣
2
)∣∣∣∣∣= |T̃n(z)|, ∀|z| = 1. (25)

We thus need to find a Q(z) that is essentially the square root of T̃M−1(z).
Whenever z 6= 0 we have the identity

T̃n(1/z) =
1

2

n

∑
k=0

αk

(
z−n−k + z−n+k

)
=

z−2n

2

n

∑
k=0

αk

(
zn−k + zn+k

)
= z−2nT̃n(z).

There is no root at the origin
3

and therefore, if z∗ is a root of T̃n, then so is 1/z∗.

Moreover, since {αk} are real, T̃n(z̄) = T̃n(z), so that if z∗ is a root, then also z̄∗ is a

root. Thus, roots come in groups of four, {z∗, 1/z∗, z̄∗, 1/z̄∗} if z∗ is complex, and

in pairs {z∗, 1/z∗} if z∗ is real. Let {zk} define the nc groups of complex roots and

{rk} the nr pairs of real roots, with 4nc + 2nr = 2n. Then

T̃n(z) =
αn

2

(
nr

∏
k=1

(z− rk)(z− 1/rk)

)(
nc

∏
k=1

(z− zk)(z− z̄k)(z− 1/zk)(z− 1/z̄k)

)
.

We now observe that when |z| = 1, then |z− 1/z̄∗| = |z− z∗|/|z∗|. Using (25) we get

Tn

(∣∣∣∣
1 − z

2

∣∣∣∣
2
)

=
|αn|

2

(
nr

∏
k=1

|z− rk|2
|rk|

)(
nc

∏
k=1

|z− zk|2|z− z̄k|2
|zk|2

)
= |Q(z)|2,

for all |z| = 1, where

Q(z) = q0

(
nr

∏
k=1

(z− rk)

)(
nc

∏
k=1

(z− zk)(z− z̄k)

)
,

and

q0 = ±
[

|αn|
2

(
nr

∏
k=1

1

|rk|

)]1/2(
nc

∏
k=1

1

|zk|

)
,

with the sign chosen such that Q(1) = +1. Finally, since

(z− zk)(z− z̄k) = z2 − 2z ℜzk + |zk|2,

the coefficients of Q(z) are real. The degree is nr + 2nc = n. Applying the construc-

tion to T̃M−1(z) we get the desired Q(z). The degree of the polynomial P(z) in (21)

is N = 2M − 1, and thus the number of non-zero filter coefficients is 2M.

3
It can be verified that Tn(y) is indeed of precisely degree n, and not less. Furthermore, since

the degree of Sk(z) is precisely k it follows from the construction that 0 6= αn = 2T̃n(0).
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It remains to verify the technical condition (17). The left sum is trivially bounded

since there are only N non-zero hk. The right condition translates to P(z) 6= 0 for

|z| = 1 and ℜz ≥ 0. By (21) it is enough that this holds for |Q(z)|2. This in turn

means that we need TM−1(y) 6= 0 for y ∈ [0,1/2] which is ensured by (24).

In conclusion, for any M we can explicitly construct a Q(z) satisfying (22) and

(23) by following the steps above. This gives us the desired P(z) and then ĥ(ξ ).
In fact, there are many possible Q(z) since the choice of zk and rk within the root

groups is arbitrary. These lead to different wavelet systems. We end this section with

a couple of examples.

Example 1. When M = 1 we have simply that T0 = T̃0 = Q ≡ 1. Then

ĥ(ξ ) =
1 + eiξ

2
⇒ h0 = h1 = 1/

√
2,

which gives the Haar wavelets.

Example 2. When M = 2 we get T1(y) = 1 + 2y and

T̃1(z) = z

(
2 − z+ 1/z

2

)
= −1

2
+ 2z− 1

2
z2 = −1

2
(z− 2 −

√
3)(z− 2 +

√
3).

Setting Q(z) = q0(z− 2 −
√

3) =: a + bz, we find that

a = −q0(2 +
√

3) =
1 +

√
3

2
, b = q0 =

1 −
√

3

2
, q0 =

−1√
2(2 +

√
3)

.

This leads to

ĥ(ξ ) =

(
1 + eiξ

2

)(
a + beiξ

)
=

a

4
+

2a + b

4
eiξ +

2b + a

4
ei2ξ +

b

4
ei3ξ ,

or

h0 =
a

2
√

2
, h1 =

2a + b

2
√

2
, h2 =

2b + a

2
√

2
, h3 =

b

2
√

2
.

These are the filter coefficients for the Daubechies 4 wavelets pictured in the top

right frame of Fig. 3.

Exercise 5. Show that (19) and (20) implies (21).

Hint: First show that (19) and (20) implies ĥ(p)(π) = 0 for p = 0, . . . ,M − 1. Then

verify that when p > 0,

ĥ(p)(ξ ) = ip
p

∑
k=1

dk,pzkP(k)(z),

for some coefficients dk,p with dp,p 6= 0. Conclude from this that (21) must hold.
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2.8 Wavelet transforms

We now go through how the decomposition of a function is done in the discrete case

using the filter coefficients. In numerical computations we would like to avoid having

to evaluate the complicated functions φ j,k(x) and ψ j,k(x). This is very often possible.

For sufficiently fine detail level we can approximate the scaling coefficients by

sample values. In fact, if u(x) ∈ C1(R) and φ(x) has compact support, then one can

show from (7) that

u j,k =

∫
u(x)φ j,k(x)dx = 2

− j/2u
(
k2

− j
)
+ O

(
2

−3 j/2

)
. (26)

In applications one typically identifies 2
j/2u j,k precisely with the sample values.

Suppose now that we have approximated a function in this way and have

u(x) = ∑
k

u j+1,kφ j+1,k(x) ∈ V j+1.

We want to decompose u into its coarse scale part in V j and its fine scale part in Wj,

u(x) = ∑
k

uc

j,kφ j,k(x)

︸ ︷︷ ︸
∈V j

+∑
k

uf

j,kψ j,k(x)

︸ ︷︷ ︸
∈Wj

. (27)

We thus want to find the coefficients {uc

j,k} and {uf

j,k}, where the superscripts signify

”coarse” and ”fine” scale, respectively. We have

uc

j,k =
∫

u(x)φ j,k(x)dx = 2
j/2

∫
u(x)φ(2 jx − k)dx

= ∑
ℓ

hℓ2
( j+1)/2

∫
u(x)φ(2 j+1x − 2k − ℓ)dx

= ∑
ℓ

hℓ〈u,φ j+1,ℓ+2k〉 = ∑
ℓ

hℓu ℓ+2k = ∑
ℓ

hℓ−2ku ℓ.

We get a similar expression for uf

j,k with hk replaced by gk,

uc

j,k = ∑
ℓ

hℓ−2ku j+1,ℓ, uf

j,k = ∑
ℓ

gℓ−2ku j+1,ℓ. (28)

Hence, the transform {u j+1,k} → {uc

j,k} ∪ {uf

j,k}, i.e. the decomposition (27), can

be done by only using the filter coefficients hk and gk. We do not need to involve

the functions φ j,k(x) and ψ j,k

there are only a finite number of non-zero {hk} and {gk} coefficients so the transform

can be done very quickly with just a few multiplications and additions per coefficient,

the number being independent of j.

Numerically we can only consider a finite description. The standard setting is

that we assume u(x) ∈ V j+1 and that we have N = 2
j+1

scaling coefficients that

correspond to sample values in a compact interval, say [0,1]. From this we want

(x). Moreover, if the wavelets are compactly supported,

j+1, j+1,



214 O. Runborg

to decompose u(x) into N −1 wavelet coefficients for Wj and one scaling coefficient

for V0, still corresponding to the interval [0,1]. We consider the Haar case as an

example. Let U j+1 = {u j+1,k} be the vector of length 2
j+1

containing the scaling

coefficients for V j+1. Similarly, we set U f

j = {uf

j,k} and Uc

j = {uc

j,k}. With a slight

abuse of notation we will write that the coefficient vector U j+1 j+1, etc.

noting that in this restricted setting, in fact, both V j and Wj are isomorphic to R j
. We

can then write (28) in matrix form,

W jU j+1 =

(
U f

j

Uc

j

)
, U j+1 ∈ V j+1 U f

j ∈ Wj, Uc

j ∈ V j, (29)

where

W j =
1√
2




1 −1 0 · · ·
0 0 1 −1 0 · · ·
.
.
.

.

.

.
. . .

. . .

0 0 · · · 0 1 −1

1 1 0 · · ·
0 0 1 1 0 · · ·
.
.
.

.

.

.
. . .

. . .

0 0 · · · 0 1 1




∈ R2
j+1×2

j+1

. (30)

With a simple matrix vector multiplication we can thus extract the coarse and fine

part of u(x). The matrix W j is called the wavelet transform for level j. We note that

it is sparse and orthonormal, W T
j W j = I. The multiplication is therefore stable and

j+1) operations.

From this starting point we can now decompose u(x) into a full wavelet repre-

sentation similar to the example in Sect. 2.1,

u(x) = u0(x)︸ ︷︷ ︸
∈V0

+
j

∑
j′=0

d j′(x)︸ ︷︷ ︸
∈Wj′

= ∑
k

uc

0,kφ0,k(x)

︸ ︷︷ ︸
∈V0

+
j

∑
j′=0

∑
k

uf

j′,kψ j′,k(x)

︸ ︷︷ ︸
∈Wj′

.

After having extracted Uc

j and U f

j from U j+1 using W j we can continue hierarchi-

cally to extract U f

j−1
= {uf

j−1,k} and Uc

j−1
= {uc

j−1,k} from Uc

j using W j−1, etc. The

computational cost of this operation is O(2 j). Iterating on this we have

U j+1 → U f

j

ց Uc

j → U f

j−1

ց Uc

j−1
→ U f

j−2

ց Uc

j−2
→ ···
ց ·· · → U f

0

ց Uc

0

O(2 j+1) + O(2 j) + O(2 j−1) + · · · + O(1)

(31)

Vbelongs to

O(2costs
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The total cost for this decomposition is given by the last line, which sums up to O(N)
operations where N = 2

j+1
is the length of the transformed vector. The decomposi-

tion is called the fast wavelet transform and it has optimal complexity. (With N coef-

ficients to compute, the complexity cannot be better.) This should be compared with

the fast Fourier transform which computes Fourier coefficients from sample values

at a cost of O(N logN).
There is a corresponding fast inverse wavelet transform that reconstructs the orig-

inal {u j+1,k
−1

j = W T
j this amounts

W T
j instead of W j, and in the opposite order. It has the same O(N) complexity.

For higher order wavelets the general form of W j is

W j =




g̃0 g̃1 g̃2 · · ·
0 0 g0 g1 g2 · · ·
.
.
.

.

.

.
. . .

. . .

0 0 · · · gn−2 gn−1 gn

h̃0 h̃1 h̃2 · · ·
0 0 h0 h1 h2 · · ·
.
.
.

.

.

.
. . .

. . .

0 0 · · · hn−2 hn−1 hn




∈ R
2

j+1×2
j+1

. (32)

The filter coefficients {hk} and {gk} are longer sequences, which creates a problem

when computing the coefficients that correspond to locations close to the boundaries

of the interval where u(x) is given. In principle, one needs to know about u(x) outside

the interval in order to compute them, but u(x) is by assumption only given inside

the interval. There are several ways to deal with this dilemma. One can for instance

set u(x) to zero outside, continue u(x) periodically (u(x+1) = u(x)) or by mirroring

(u(−x) = u(x) and u(x+2) = u(x)). One can also directly modify {hk} and {gk} for

boundary coefficients [19]. In the end, for all the methods this means that the first

and middle few lines of W j change, indicated by the modification gk,hk → g̃k, h̃k in

the equation above. The wavelet transforms (29) and (31) work in the same way with

the modified W j as before. When the wavelets and scaling functions are compactly

supported the filter coefficients are of finite length and W j is a sparse matrix; the

cost to perform the matrix vector multiplication is therefore still O(2 j+1) and the

complexity of the forward and inverse wavelet transform is O(N).

Remark 2. The two-dimensional wavelet transform corresponding to the two-dimen-

sional scaling and wavelet spaces in Remark 1 can be written as a tensor product of

one-dimensional transforms,

W j ⊗W j. (33)

The fast wavelet transform generalizes easily to higher dimensions based on this.

Exercise 6. Write a MATLAB program based on the cascade algorithm to approxi-

mate and plot the scaling function and mother wavelet for the Daubechies 4 system

to performing the same matrix multiplications as in the forward transform, but with

} values from the wavelet coefficients. Since W
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with two vanishing moments. This algorithm is simply the fast inverse wavelet trans-

form applied to uc

0,k = δk, uf

j,k = 0 for the scaling function and to uc

0,k = 0, uf

j,k = δ jδk

for the mother wavelet. Since

φ(x) = ∑
k

δkφ0,k(x), ψ(x) = ∑
j
∑
k

δkδ jψ j,k(x),

by (26), an inverse transform to fine enough scale J gives the good approximation

φ(k2
−J) ≈ 2

J/2uc

J,k,

and similarly for ψ(x). Use the filter coefficients derived in Example 2 of Sect. 2.7.

3 Wavelet based numerical homogenization

Wavelets have been used in several ways for the numerical solution of partial differ-

ential and integral equations. Many of these problems involve Calderon-Zygmund

or pseudo differential operators, which can be well compressed when projected on

wavelet spaces; properties of the operator kernel allow compression by arguments

similar to those in Sect. 2.5. This is the basis for many fast algorithms for integral

equations and boundary integral formulations of PDEs [10, 23]; for more details,

see the contribution by Lexing Ying in this volume. It will also play a role in the

wavelet based numerical homogenization discussed here. For the discretization of

PDEs wavelet Galerkin methods are often used, in which the approximate finite el-

ement spaces and basis functions are taken to be fine scaling spaces and wavelets,

regions is obtained by using finer scale level of the wavelets there. This can be seen

as space refinement rather than the usual mesh refinement. See e.g. [35, 20] for hy-

perbolic problems and [17] for elliptic problems.

In this final section we will be interested in using wavelets to simplify numerical

simulation of PDEs where the existence of subgrid scale phenomena poses consid-

erable difficulties. With subgrid scale phenomena, we mean those processes which

could influence the solution on the computational grid but which have length scales

shorter than the grid size. Highly oscillatory initial data may, for example, interact

with fine scales in the material properties and produce coarse scale contributions to

the solution.

We consider the general problem where Lε is a linear differential operator for

which ε indicates small scales in the coefficients. The solution uε of the differential

equation

Lε uε = fε , (34)

will typically inherit the small scales from the operator Lε or the data fε . A concrete

example could be the simple model problem

[57]. The ability of wavelets to detect local regularity and singularities have made

them particularly useful in adaptive schemes, where better resolution in non-smooth
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Lε uε = − d

dx

(
gε(x)

d

dx

)
uε(x) = fε (x), 0 < x < 1, (35)

uε(0) = uε(1) = 0,

where the coefficient gε(x) and right hand side fε (x) have a fine scale structure; it

may for instance be highly oscillatory, or have a localized sharp transition. Numerical

difficulties originate from the small scales in Lε and fε . Let

Lεhuεh = fεh. (36)

be a discretization of (34), with the typical element size or step size h. If ε denotes

a typical wave length in uε then h must be substantially smaller than ε in order to

resolve the ε-scale in the numerical approximation. This can be costly if ε is small

compared to the overall size of the computational domain.

There are a number of traditional ways to deal with this multiple scale problem.

Several methods are based on physical considerations for a specific application, such

as turbulence models in computational fluid dynamics, [56], and analytically derived

local subcell models in computational electromagnetics, [54]. Geometrical optics or

geometrical theory of diffraction approximations of high frequency wave propaga-

tion are other classical techniques to overcome the difficulty of highly oscillatory

solutions, [40]. All these techniques result in new sets of approximative equations

that do not contain the small scales, but which anyway attempt to take the effect of

these scales into account. A more general analytical technique for achieving this goal

is classical homogenization, discussed below.

If the small scales are localized, there are some direct numerical procedures

which are applicable. Local mesh refinement is quite common but could be costly

if the small scales are very small or distributed. There are also problems with ar-

tificial reflections in mesh size discontinuities and time step limitations for explicit

techniques. Numerical shock tracking or shock fitting can also be seen as subgrid

models, [2].

In the remainder of this paper we will present a wavelet based procedure for

constructing subgrid models to be used on a coarse grid where the smallest scales

are not resolved. The objective is to find a finite dimensional approximation of (34),

L̄ε h̄ūε h̄ = f̄ε h̄,

that accurately reproduces the effect of subgrid scales and that in some sense is simi-

lar to a discretization of a differential equation. The discrete operator L̄ε h̄ should thus

resemble a discretized differential operator, and it should be designed such that ūε h̄ is

a good approximation of uε even if h̄ is not small compared to ε . This goal resembles

that of classical analytical homogenization, which we will now briefly discuss.

3.1 Classical homogenization

Homogenization is a well established analytical technique to approximate the effect

of smaller scales onto larger scales in multiscale differential equations. The problem
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is often formulated as follows. Consider a set of operators Lε indexed by the small

parameter ε . Find the limit solution ū and the homogenized operator L̄ defined by

Lε uε = f , lim
ε→0

uε = ū, L̄ū = f , (37)

for all f in some function class. In certain cases the convergence above and existence

of the homogenized operator can be proved, [6].

For simple model problems, with coefficients that are periodic on the fine scale,

exact closed form solutions can be obtained. For instance, with g(x,y) positive, 1-

periodic in y and bounded away from zero, we have for the one-dimensional elliptic

example (35),

Lε = − d

dx

(
g(x,x/ε)

d

dx

)
, L̄ = − d

dx

(
ĝ(x)

d

dx

)
, ĝ(x)=

(∫
1

0

dy

g(x,y)

)−1

.

(38)

With the same ĝ we get for the hyperbolic operators,

Lε =
∂

∂ t
+ g(x,x/ε)

∂

∂x
, L̄ =

∂

∂ t
+ ĝ(x)

∂

∂x
. (39)

In higher dimensions, the solution to (37) is more complicated. For (39), even

the type of the homogenized equation depends strongly on the properties of the co-

efficients, see [28, 37]. For the multidimensional elliptic case (35) the structure of

the homogenized operator can still be written down, as long as the coefficients are

periodic or stochastic. Let G(y) : Rd 7→ Rd×d

each of its arguments. Let Id denote the unit square in d dimensions. It can then be

shown, [6], that

Lε = −∇ ·
(

G
( x

ε

)
∇
)

, L̄ = −∇ · (Ĝ∇), Ĝ =

∫

Id

G(y)− G(y)
dχ(y)

dy
dy, (40)

where dχ/dy is the jacobian of the function χ(y) : Rd 7→ Rd
, given by solving the so

called cell problem,

∇ ·G(y)
dχ(y)

dy
= ∇ ·G(y), y ∈ Id ,

with periodic boundary conditions for χ .

3.2 Numerical homogenization

Classical homogenization is very useful when it is applicable. The original problem

with small scales is reduced to a homogenized problem that is much easier to ap-

proximate numerically. See the left path in Fig. 8. The final discretization L̄h̄ūh̄ = f̄h̄

satisfies the criteria we set up at the end of the introduction to Sect. 3; since there

¯

independently of ε and ū ≈ uε for small ε .

be uniformly elliptic and 1-periodic in

are no small scales in the homogenized equation (37) the size of h can be chosen
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Lε uε = fε
HHHHHj

������
A
A
A
A
A
A
A
AU

L̄ū = f̄

?

Lεhuεh = fεh

?
L̄h̄ūh̄ = f̄h̄ L̄ε h̄ūε h̄ = f̄ε h̄

Fig. 8. Schematic steps in homogenization.

If analytical homogenization is not possible, one can instead numerically com-

pute a suitable discrete operator L̄ε h̄ which has the desired properties. We call such

a procedure numerical homogenization. The numerical homogenization can be done

directly as indicated by the middle path in Fig. 8, or by first discretizing the original

problem and then compressing the operator Lεh and the data fεh as indicated by the

right path. In this paper we follow the latter strategy, and present wavelet based meth-

ods in order to achieve numerical homogenization. There are other similar methods

based on coarsening techniques from algebraic multigrid [41, 49]. In the finite ele-

ment setting the effect of the microstructure can be incorporated in a Galerkin frame-

work [38, 36]. The great advantage of these procedures in deriving subgrid models is

their generality. They can be used on any system of differential equations and do not

require separation into distinct O(ε) and O(1) scales or periodic coefficients. They

can also be used to test if it is physically reasonable to represent the effect of fine

scales on a coarse scale grid with a local operator.

The original ideas for wavelet based numerical homogenization are from Beylkin

and Brewster, [8]. See also [27, 32, 3, 15]. The technique has been applied to several

problems. We refer the reader to [50] for a waveguide filter containing a fine scale

structure, with examples of how to use the numerical homogenization technique to

construct subgrid models, in particular 1d models from 2d models. In [44, 29] the

numerically homogenized operator was used as a coarse grid operator in multigrid

methods. Applications to porous media flow were considered in [55]. Extension of

the procedure to nonlinear problems can be found in [9, 42]. For a survey of wavelet

based numerical homogenization see [30].

3.3 Deriving the numerically homogenized operator

Let us consider a discrete approximation of a PDE in the space V j+1,

L j+1U = F, U,F ∈ V j+1, L j+1 ∈ L (V j+1). (41)

Here L (V j+1) denotes the space of bounded linear operators from V j+1 to itself,

which in our case is isomorphic to matrices in R2
j+1×2

j+1

. The equation may origi-
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nate from a finite difference, finite element or finite volume discretization of a given

differential equation. In the Haar case U can be identified as a piecewise constant

approximation of u(x), the solution to the continuous problem. We seek an opera-

tor defined on a coarser grid that extracts only the coarse part of the solution. For a

function in the space V j+1 this amounts to the part in V j.

We start by applying the wavelet transform matrix W j in (30) or (32) to (41) from

the left and use the relation W T
j W j = I. We get

W jL j+1W
T
j (W jU) = W jF.

If we decompose W jL j+1W
T
j in four equal size blocks we have

(
A j B j

C j L j

)(
U f

Uc

)
=

(
F f

Fc

)
, U f,F f ∈ Wj, Uc,Fc ∈ V j. (42)

As before, “f” means projection onto the fine scale subspace Wj, and “c” stands for

projection onto the coarse scale subspace V j. For simplicity we shall assume that F

is a discretization of a smooth function such that F f = 0. After eliminating U f
in (42)

via block Gaussian elimination we then obtain

(L j −C jA
−1

j B j)U
c = Fc. (43)

In this equation we let

L̄ j := L j −C jA
−1

j B j, L̄ j ∈ L (V j). (44)

This operator is half the size of the original L j+1, defined on twice as coarse grid.

Moreover, given L̄ j and Fc
we can solve (43) to get the coarse part of the solution,

Uc
, taking the influence of fine scales not present in V j into account. For these reasons

we call L̄ j the numerically homogenized operator.

We note that the block in (42) called L j can be written L j = PjL j+1Pj where Pj is

the orthogonal projection on V j. It can therefore be interpreted as one type of direct

discretization on the coarse scale. We can then see C jA
−1

j B j as a correction term to

this discretization, which includes subgrid phenomena in L̄ j. In the elliptic case, there

is a striking similarity between the classical homogenized operator in (40) and L̄ j in

(44). Both are written as the average of the original operator minus the correction

term, which is computed in a similar way for both operators. For the analytical case,

a local elliptic cell problem is solved to get G∂yχ , while in (44), a positive operator

A j defined on a subspace Wj ⊂ V j+1 is inverted to obtain C jA
−1

j B j. The average over

the terms is obtained by integration in the analytical case, and by applying Pj in the

wavelet case.

The procedure to obtain L̄ j can be applied recursively on L̄ j itself to get L̄ j−1 and

so on,

L̄ j → L̄ j−1 → L̄ j−2 → . . . , L̄ j ∈ L (V j). (45)

That this is possible can easily be verified when L j+1 is symmetric positive defi-

nite (see Exercise 7). Moreover, an improvement in the condition number κ is often

obtained. Typically for standard discretizations
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κ(L̄k) < κ(L j+1),

when k ≤ j.

Higher dimensional problems can be treated in a similar way. Suppose

L j+1U = F, U,F ∈ VVV j+1, L j+1 ∈ L (VVV j+1)

where VVV j+1 is the two-dimensional scaling space in Remark 1. By using the two-

dimensional wavelet transform (33) one obtains the same numerically homogenized

operator (44) with V j replaced by VVV j. For this case the fine scale part of U can be

decomposed as

U f =




U ff

Ucf

U fc


, U ff ∈ Wj ⊗Wj, Ucf ∈ V j ⊗Wj, U fc ∈ Wj ⊗V j.

In some cases, the homogenized operator keeps important properties of the orig-

inal operator. Let the forward and backward undivided differences be defined as

∆+ui = ui+1 − ui, ∆−ui = ui − ui−1.

In [27] it was shown that the one-dimensional elliptic model equation −(gu′)′ = f

discretized as

L j+1U = − 1

h2
∆+diag(g)∆−U = F (46)

will preserve its divergence form during homogenization. That is, we will get

L̄ j = − 1

(2h)2
∆+H j∆−, (47)

where H j is a strongly diagonal dominant matrix which can be interpreted as the

effective material coefficient related to g. Analogously, for the first order differential

operator g(x) ∂
∂x

the discretized form diag(g)∆−/h is preserved during homogeniza-

tion,

L̄ j =
1

2h
H j∆−. (48)

In two dimensions, the elliptic model equation −∇(g(x,y)∇u) = f can be discretized

as

L j+1 = − 1

h2

(
∆ x

+G∆ x
− + ∆ y

+G∆ y
−
)
, L j+1U = F.

Then L̄ j is no longer on exactly the same form as L j+1. The cross-derivatives must

also be included. We get

L̄ j = − 1

(2h)2

(
∆ x

+Hxx∆ x
− + ∆ y

+Hyx∆ x
− + ∆ x

+Hxy∆ y
− + ∆ y

+Hyy∆ y
−
)
, (49)

for some matrices Hxx
, Hyx

, Hxy
, and Hyy

.
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j+1 is symmetric positive definite then so is L̄ j. Conclude

from this that the iterated homogenization (45) is possible.

W T
j L j+1W j is positive definite if and only

if L j+1

(
vT wT

)
W

T
j L j+1W j

(
v

w

)
> 0, ∀v,w 6= 0.

−1

j exists and then take v = −A−1

j B jw.

3.4 Compact representation of projected operators

When the operator L j+1 is derived from a finite difference, finite element or finite

volume discretization, it is sparse and of a certain structure. In one dimension it

might, for instance, be tridiagonal. However, in general L̄ j will not be represented by

a sparse matrix even if L j+1 is, because A−1

j would typically be dense. Computing

all components of L̄ j would be inefficient. Fortunately, L̄ j will be diagonal dominant

in many important cases and we can then find a sparse matrix that is a close approxi-

mation of L̄ j. If this sparse matrix is of banded form, it can be seen as a discretization

of a local differential operator acting on the coarse space.

Diagonal dominance of L̄ j

We now consider some cases where L̄ j will be strongly diagonal dominant. This is

related to the corresponding properties of A j.

In some simple cases the matrix A j is in fact diagonal. Examples include integral

operators L of the form

Lu =
∫ x

0

a(t)u(t)dt + b(x)u(x). (50)

As before, let Pj be the orthogonal projection on V j. Suppose L is discretized in V j+1

as L j+1 = Pj+1LPj+1 with a in (50) replaced by Pj+1aPj+1, and similar for b. When

the Haar system is used, A j is diagonal and L̄ j is of the same form as L j+1. Let Āk

be related to L̄k+1 via (42) in the same way as A j relates to L j+1. By induction, Āk is

also diagonal for k < j. The operators in (50) turn up for instance in problems with

systems of ordinary differential equations and one-dimensional elliptic equations,

see [8, 32]. In these cases, an explicit recurrence relation between scale levels can be

established, which permits the computation of L̄k on any fixed level k as the starting

level, j + 1, tends to infinity.

For more general problems one must instead rely on the rapid decay of elements

in A j and L̄ j off the diagonal, which is a consequence of the wavelet spaces’ good

approximation properties discussed in Sect. 2.5. The decay rate of A j for Calderon–

Zygmund and pseudo-differential operators were given by Beylkin, Coifman and

Rokhlin in [10]. Letting L j+1 = Pj+1LPj+1, A j = {a
j
kℓ}, B j = {b

j
kℓ} and C j = {c

j
kℓ},

they show that

Exercise 7. Show that if L

is. Then

Explain why A

Hint for the positivity: The matrix
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|a j
kℓ|+ |b j

kℓ|+ |c j
kℓ| ≤ 2

−λ jCM

1 + |k − ℓ|M+1
, |k − ℓ| ≥ ν, (51)

when the wavelet system has M vanishing moments. For Calderon–Zygmund oper-

ators λ = 0 and ν = 2M. For a pseudo-differential operator ν = 0 and the symbol

σ(x,ξ ) and its adjoint should both belong to the symbol class Sλ
1,1, i.e. they should

satisfy the estimate

|∂ α
ξ ∂ β

x σ(x,ξ )| ≤ Cα ,β (1 + |ξ |)λ−α+β ,

for some constants Cα ,β . For instance, in the second order elliptic case λ = 2. More-

over, Beylkin and Coult, [11], showed that if (51) holds with λ = 0 for A j, B j and

C j given by L j+1 in (42), then the same estimate also holds for Ā j′ , B̄ j′ and C̄ j′ , here

given by Pj′ L̄k+1Pj′ for j′ ≤ k < j with j+1 being the starting homogenization level.

Hence, the decay rate is preserved after homogenization.

The decay estimate in [11] for Ā j′ is uniform in k and may not be sharp for a

fixed k. There is, for example, a general result by Concus, Golub and Meurant, [22],

for diagonal dominant, symmetric and tridiagonal matrices. For those cases, which

include A j corresponding to the discretization in (46) of the one-dimensional elliptic

operator, the inverse has exponential decay,

∣∣∣
(

A−1

j

)
kℓ

∣∣∣≤ Cρ |k−ℓ|, 0 < ρ < 1.

This holds also when the elliptic operator has a lower order term of type b(x)∂x

discretized with upwinding, [44].

Approximating L̄ j

We now discuss different approximation strategies for L̄ j. A simple approach is the

basic thresholding method used in [10], where small elements of L̄ j are set to zero.

This is, however, not practical here since the location of the non-zero elements can-

not be controlled, and we want to obtain a banded approximation of L̄ j, which cor-

responds to a discretization of a local differential operator.

The first, and simplest, approximation method that we use is instead to set all

components outside a prescribed bandwidth ν equal to zero. This is motivated by the

decay of elements off the diagonal in L̄ j. Let us define

trunc(M,ν)i j =

{
Mi j, if 2|i− j| ≤ ν − 1

0, otherwise.
(52)

For ν = 1 the matrix is diagonal. For ν = 3 it is a tridiagonal and so on. We refer to

it as truncation.

In the second approximation method, the matrix L̄ j is projected onto banded

form in a more effective manner. The aim is that the projected matrix should give the

same result as the original matrix on a given subspace, e.g. when applied to vectors
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representing smooth functions. Let {v j}ν
j=1

be a set of linearly independent vectors

in RN
. Denote by Tν the subspace of RN×N

with matrices essentially
4

of bandwidth

ν . Moreover, let

Lν = {M ∈ R
N×N

: span{v1,v2, . . . ,vν} ⊂ N(M)},

where N(M) represents the null space of M. Then

R
N×N = Tν ⊕Lν

and we define the band projection of a matrix M ∈ RN×N
as the projection of M onto

Tν along Lν , with the notation

band(M,ν) = ProjTν
M. (53)

As a consequence,

Mx = band(M,ν)x, ∀x ∈ span{v1,v2, . . . ,vν}.

In our setting M will usually operate on vectors representing smooth functions, for

instance solutions to elliptic equations, and a natural choice for v j vectors are thus

the first ν polynomials,

v j = {1
j−1,2 j−1, . . . ,N j−1}T , j = 1, . . . ,ν.

Smooth solutions to the homogenized problem should be well approximated by these

vectors. For the case ν = 1 we get the standard “masslumping” of a matrix, often used

in the context of finite element methods.

This technique is similar to the probing technique used by Chan et al., [14]. In

that case the vectors v j are sums of unit vectors. Other probing techniques have been

suggested by Axelsson, Pohlman and Wittum; see [4, Chap. 8]. The choice of v j

vectors could be optimized if there is some a priori knowledge of the homogenized

solution.

The two truncation methods described above are even more efficient when ap-

plied to H j, the effective coefficient, instead of directly to the homogenized operator

L̄ j. For (46, 47) we could for instance approximate

L̄ j ≈ − 1

(2h)2
∆+ trunc(H,ν)∆−.

The following proposition shows that when the solution to the homogenized problem

belongs to the Sobolev space H1(R), the accuracy of this approach is one order

higher.

4
We must require that each row of the matrices in Tν has the same number of elements.

Therefore, the first and last ν −1 rows will have additional elements located immediately

to the right and left of the band, respectively.
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Proposition 1. Suppose L = ∆+H∆− and LU = h2 f . Consider the perturbed prob-

lems

(L+ δL)(U + δUL) = h2 f , ∆+(H + δH)∆−(U + δUH) = h2 f .

For small enough perturbations, and the same constant C,

||δUL|| ≤ C
||δL||
||L|| ||U ||, ||δUH || ≤ h

2
C

||δH||
||H|| ||u||H1 ,

where || · || denotes the discrete L2-norm and u is any H1-function such that U j =
u( jh).

See [3] for a proof.

Another approach proposed by Chertock and Levy [15] is to only approximate

A−1

j , the high frequency part of the projected operator. In this case we would approx-

imate

L̄ j ≈ L j −C j trunc(A−1

j ,ν)B j.

Numerical evidence in [15] strongly suggests that this gives a better approximation

than truncating the full operator. In particular the strategy works better when trunca-

tion is done in each homogenization step, instead of only in the final step. It is also

simpler than approximating H j in higher dimensions.

Computing the full inverse of A j is expensive, and to reduce computational cost

one can compute the truncation trunc(L̄ j,ν) directly. By capitalizing on the nearly

sparse structure of the matrices involved, it was shown in [11] that the cost can be

reduced to O(N) operations for N unknowns and fixed accuracy. Moreover, the same

homogenized operator will typically be reused multiple times, for instance with dif-

ferent right hand sides, or in different places of the geometry as a subgrid model.

The computation of band(L̄ j,ν) can be based on trunc(L̄ j,µ), µ > ν . The additional

computational cost is proportional to (ν3 + µν)N. The ν3N term corresponds to

solving N ν × ν systems and µνN to computing the right hand sides, see also [4].

In two dimensions truncation to simple banded form is in general not adequate,

since the full operator will typically be block banded. However, both the crude trun-

cation and the band projection generalize easily to treat block banded form instead

of just banded. Let M be the tensor product of two N × N matrices. Then we define

truncation as

trunc2(M,ν)i j =

{
Mi j, if 2|i− j − rN| ≤ ν − 1 −|2r|,
0, otherwise,

|2r|+ 1 ≤ ν. (54)

This mimics the typical block structure of a discretized differential operator. For the

band projection, the space Tν of banded matrices in the one-dimensional definition,

is simply replaced by the space of matrices with the block banded sparsity pattern

defined in (54).

In two dimensions, untangling the various H components of (49) from L̄ j is more

complicated than finding the H in (47) and (48) for one-dimensional problems. Al-

though, in principle, this can still be done, it may be easier to truncate A−1

j than the

H components for two-dimensional problems, as suggested in [15].
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Fig. 9. Result for the elliptic model problem, g(x) random, when the homogenized operator

is approximated in different ways. The “exact” solution refers to the solution with the full

32×32 homogenized operator

4 Numerical examples

In this section we present numerical results for the algorithms described above. We

first consider elliptic problems in one dimension and the Helmholtz equation in one

and two dimensions. Uniform, central, finite volume discretization are used in the

numerical experiments. The homogenization steps are done in the standard Haar

basis. The computational domain is the unit interval (square in 2D). The grid size is

denoted n, and the cell size h = 1/n. For many more numerical examples, see [30]

and, for the approximation strategy involving A−1

j , [15].

4.1 The 1D elliptic model equation

We approximate

−∂xg(x)∂xu = 1, u(0) = ux(1) = 0,

where the coefficient g(x) has a uniform random distribution in the interval [0.5,1].
We take n = 256 grid points and make three homogenization steps. The coarsest level

then contains 32 grid points.
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Fig. 10. Result for the elliptic model problem, g(x) a slit, when the homogenized operator

is approximated in different ways. The “exact” solution refers to the solution with the full

32×32 homogenized operator

In Fig. 9 different truncation strategies are compared. The exact reference solu-

tion is given by the numerically homogenized operator at the coarsest level without

any truncation. This is equivalent to the projection onto the coarse scale of the solu-

tion on the finest scale. In the top two subplots we use truncation (52). In the bottom

two subplots we use the band projection described in Sect. 3.4. The approximation

is performed on H, see (47), and on L̄ after all three homogenizations. We see that

band projection gives a better approximation. We also see that it is more efficient to

truncate H than to truncate L̄.

Next, the coefficient in the differential equation is changed to

g(x) =

{
1/6, 0.45 < x < 0.55,

1, otherwise.
(55)

All other characteristics are kept. The result is given in Fig. 10 and it shows that the

relative merits of the different methods are more or less the same. The structures of

the untruncated L̄ and H matrices are shown in Fig. 11. It should be noted that the

local inhomogeneity of the full operator has spread out over a larger area, but it is

still essentially local.
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Fig. 11. Structure of the untruncated homogenized operators L̄ (left) and H (right) for the

elliptic model problem, g(x) a slit. Gray level indicates absolute value of elements

4.2 The 1D Helmholtz equation

In this section we solve the Helmholtz equation

∂xg(x)∂xu + ω2u = 0, u(0) = 1, ux(1) = 0.

We use ω = 2π and the same g(x) as in (55) and again we take n = 256 and use three

homogenizations. We get

L̄u = (L̃− ω2I)u = 0.

Truncation is performed on L̃ (or H̃) and not on L̄. The result is in Fig. 12. We see that

Helmholtz equation gives results similar to those of the model equation. Again band

projection is more efficient than truncation and approximating H is more efficient

than approximating L̄.

4.3 The 2D Helmholtz equation

We consider the two-dimensional version of Helmholtz equation,

∇ ·g(x,y)∇u + ω2u = 0, (x,y) ∈ (0,1)2,

with periodic boundary conditions in the y-direction, and at the left and right bound-

aries, u(0,y) = 1, ux(1,y) = 0 respectively. This is a simple model of a plane time-

harmonic wave of amplitude one entering the computational domain at the line x = 0,

passing through a medium defined by the coefficent g(x,y) and flowing out at x = 1.

As an example we choose the g(x,y) shown in Fig. 13, which represents a wall with

a small hole where the incoming wave can pass through. With ω = 3π and n = 48,

we obtained the results presented in Fig. 14.

The operator is homogenized following the theory for two-dimensional problems

in Sect. 3.3. After one homogenization step is truncated according to (54). We show

the results of truncation in Fig. 15, for various values of ν . The case ν = 9 corre-

sponds to a compression to approximately 7% of the original size. The structure of

this operator is shown in Fig. 16.
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Fig. 12. Result for the Helmholtz equation, g(x) a slit, when the homogenized operator is

approximated in different ways. The “exact” solution refers to the solution with the full 32×32

homogenized operator
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230 O. Runborg

0

0.5

1 0
0.5

1

−2

−1

0

1

2

Original

0

0.5

1 0
0.5

1

−2

−1

0

1

2

1 homogenization

0

0.5

1 0
0.5

1

−2

−1

0

1

2

2 homogenizations

0

0.5

1 0
0.5

1

−2

−1

0

1

2

3 homogenizations

Fig. 14. Result for the 2D Helmholtz example. Solution shown for 0, . . . ,3 homogenization

steps

0

0.5

1 0
0.5

1

−2

0

2

Untruncated operator

x y

0

0.5

1 0
0.5

1

−10

0

10

ν=5

x y

0

0.5

1 0
0.5

1

−2

0

2

ν=7

x y

0

0.5

1 0
0.5

1

−2

0

2

ν=9

x y

Fig. 15. Results for the 2D Helmholtz example, using the one step homogenized operator,

truncated with different ν



Wavelets and Numerical Homogenization 231

0 100 200 300 400 500

0

100

200

300

400

500

nz = 19026

Fig. 16. Structure of the homogenized operator L̄, after one homogenization step, for the 2D

Helmholtz example. Elements larger than 0.1% of max value shown

Computer exercise

We end this tutorial with a suggested computer exercise which can be done e.g. in

MATLAB. Consider the model elliptic boundary value problem in one dimension

− ∂xgε(x)∂xu = f , u(0) = ux(1) = 0. (56)

Introduce the grid {xk}N−1

k=0
where xk = (k +1/2)h and h = 1/N. Let uk approximate

u(xk) and set U = (u0, . . . ,uN−1)
T ∈ RN

, F = ( f (x0), . . . , f (xN−1))
T ∈ RN

. Then use

standard central differences,

1

h2
∆+G∆−U = F. (57)

Here G is a diagonal matrix sampling gε(x) in x = kh, k = 0, . . . ,N − 1 and ∆±
are the forward/backward difference operators. When approximating the boundary

conditions by u−1 + u0 = 0 and uN = uN−1 the difference operators have the matrix

representations

∆+ =




−1 1

−1 1

. . .
. . .

−1 1

−1




∆− =




2

−1 1

. . .
. . .

−1 1

−1 1




.

Then (57) is a second order method for (56).

For the numerical homogenization we will only use Haar wavelets. Also, we will

not be concerned with computational costs, but rather with the approximation prop-

erties of the numerically homogenized operator. Let N = 2
n

for some n, sufficiently
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large to resolve the ε-scale in (56). In the Haar case, functions u ∈ Vn are piecewise

constant and their scaling coefficients un,k satisfy un,k = 2
−n/2u(xk) ≈ 2

−n/2uk. After

appropriate rescaling we can therefore interpret (57) as a discretization in Vn,

LnUn = Fn, Un,Fn ∈ Vn, Ln := 2
2n∆+G∆−,

where Un and Fn contain the scaling coefficients of u(x) and f (x) in Vn.

1. Let g(x,y)= 0.55+0.45sin(2πy)b(x−0.5), with b(x)= exp(−20x2) and f (x)=
sin(2πx)+ 1/2. Use gε(x) = g(x,x/ε) for some small ε . Simulate the detailed

equation and compare it with a) the constant coefficient equation using the arith-

metic mean of gε(x), i.e. ḡ ≡ 0.55, and b) the homogenized equation (38). (De-

termine, at least numerically, the homogenized coefficient ĝ(x) using the formula

in (38).)

2. Compute the numerically homogenized operator L̄m using (44, 45) based on (30).

Let m < n be chosen so that the ε-scale averages out, i.e. 2
−m ≥ ε . (Make sure

n is large enough though, 2
−n ≪ ε .) Examine the structure of L̄m and verify

that it its elements decay quickly away from the diagonal. Approximate L̄m by

truncation (52) to ν diagonals. Check how many diagonals you must keep to get

an acceptable solution.

3. By (47) we can write the numerically homogenized operator on the same form

as the original,

L̄m = 2
2m∆+H∆−, (58)

for some matrix H, which corresponds to the “effective material coefficient” at

scale m. Compute H and verify that it is strongly diagonal dominant. Approxi-

mate H by truncation (52) and rebuild an approximation of L̄m from the formula

(58). How many diagonals do you need to keep now? Approximate H by band

projection (53) to a single diagonal, i.e. “mass lumping,” H ≈ band(H,1) =
diag(H1), where 1 is the constant vector. How good is the corresponding solu-

tion? How does band(H,1) compare with the original coefficient gε(x) and with

the homogenized coefficient ĝ(x)?
4. Test a few other types of coefficients:

a) A three-scale system, e.g.

gε(x) =
1

2
(g(x − 0.1,x/ε1)+ g(x + 0.1,x/ε2)) , ε1 ≪ ε2 ≪ 1.

Use different m = m1,m2 to capture the behavior at different scales, i.e.

2
−m1 ≥ ε2 ≫ 2

−m2 ≥ ε1.

b) A random coefficient,

gε(x) = 0.1 + b(x − 0.5)U(x),

where b(x) is as above, and U(x) are uniformly distributed random numbers

in the interval [0,1] for each x. (Use MATLAB’s rand command.)

c) A localized coefficient,

gε(x) =

{
0, |x − 0.5| ≥ ε,
1

ε , |x − 0.5| < ε.
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Summary. We review a selection of essential techniques for constructing computational mul-

tiscale methods for highly oscillatory ODEs. Contrary to the typical approaches that attempt

to enlarge the stability region for specialized problems, these lecture notes emphasize how

multiscale properties of highly oscillatory systems can be characterized and approximated in

a truly multiscale fashion similar to the settings of averaging and homogenization. Essential

concepts such as resonance, fast-slow scale interactions, averaging, and techniques for trans-

formations to non-stiff forms are discussed in an elementary manner so that the materials can

be easily accessible to beginning graduate students in applied mathematics or computational

sciences.

1 Introduction

Oscillatory systems constitute a broad and active field of scientific computations.

One of the typical numerical challenges arises when the frequency of the oscillations

is high compared to either the time or the spatial scale of interest. In this case, the

of sampling oscillations adequately by numerical discretizations over a relatively

large domain. Several general strategies for dealing with oscillations can be found

in literature, for example, asymptotic analysis [5, 22, 23], averaging [20, 29], enve-

tions, which are not oscillatory in the domain of interests. For example, the center

or frequency of oscillators may vary slowly in time. Indeed, it is often the case that

the quantities of interest are related to these non-oscillatory structures. Reduction in

the computational costs is thus possible by avoiding direct resolution of the oscilla-

the wave equation of the form A(x,t)exp(S(x,t)/ε) is computed via solutions of an

eikonal equation for the phase S and transport equations for the amplitude A. Since

eikonal and transport equations do not depend on the ε-scale oscillations, the cost of

Multiscale Computations for Highly Oscillatory

Problems

lope tracking [27, 28], explicit solutions to nearby oscillatory problems [25, 30, 31].

These strategies typically utilize some underlying structures, related to the oscilla-

cost for computations can typically become exceedingly expensive due to the need

tions. Take geometrical optics [13, 21] for instance. The high frequency solution of
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computation is formally independent of the fast scale as well. These current lecture

notes focus on building efficient multiscale numerical methods that only sample the

fast oscillations. The sampled information is used to describe an effective time evo-

lution for the system at longer time scales. The general approach underlying these

methods come from the theory of averaging.

In these notes, we consider systems of ordinary differential equations (ODEs)

which evolve on two widely separated time scales. Common examples are

1. Perturbed linear oscillations:

εx′ = Ax + εg(x), (1)

where A is diagonalizable and has purely imaginary eigenvalues. The class of

examples include Newton’s equation of motion for perturbed harmonic oscilla-

tors

εx′′ = −Ω 2x + εg(x),

which are found in many applications. Here, the parameter ε , 0 < ε ≪ 1, char-

acterizes the separation of time scales in the system.

2. Fully nonlinear oscillations induced from dissipation in the systems. Examples

include Van der Pol oscillators and other relaxation oscillators.

3. Weakly coupled nonlinear oscillators that are close to a slowly varying periodic

orbits. Examples include Van der Pol (with small damping) and Volterra-Lotka

oscillators.

Efficient and accurate computations of oscillatory problems require significant

knowledge about the underlying fast oscillations. Using either analytical or numer-

ical methods, our general underlying principle is to model oscillations and sample

their interactions. Very often, analytical methods do not yield explicit solutions, and

suitable numerical methods need to be applied.

One of the current major thrusts is in developing numerical methods which allow

long time computation of oscillatory solutions to Hamiltonian systems. The interest

in such systems comes from molecular dynamics which attempts to simulate some

underlying physics on a time scale of interest. These methods typically attempt to

approximately preserve some analytical invariance of the solutions; e.g. the total

energy of the system, symplectic structures, or the reversibility of the flow. Detailed

reviews and further references on this active field of “geometric integration” can be

found in [18] and [26].

The Verlet method and other similar geometric integrators are the methods of

choice for many highly oscillatory simulations. They require, however, time steps

that are shorter than the oscillatory wavelength ε and therefore cannot be used when

ε is very small.

wavelength ε but they apply only to restricted classes of differential equations [18].

In a way that resembles the discussion of geometrical optics above since these meth-

ods explicitly use the exponential function to represent the leading terms in the os-

cillations. They work well for problems that are smooth perturbations of problems

with constant coefficients.

Exponential integrators allow for time steps that are longer than the oscillatory
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Another general approach for dealing with multiscale phenomena computation-

ally can be referred to as boosting [33]. The general idea is to artificially “twig” or

“boost” the small parameter ε so that the stiffness of the problem is reduced. Known

methods that fall into this category are Chorin’s artificial compressibility [7] and the

Car-Parrinello method used in molecular dynamics [6].

This tutorial deviates from previous texts in that we do not rely or assume some

specific properties or a special class of ODEs such as harmonic oscillations or Hamil-

tonian dynamics. Instead, the multiscale methods discussed here compute the effec-

tive behavior of the oscillatory system by integrating the oscillations numerically in

short time windows and sampling their interactions by suitable averaging. Indeed,

one of the main goals of this text is to make the ideas discussed above mathemat-

ically meaningful. Subsequent sections will define what we mean by the effective

behavior of a given highly oscillatory system, describe the theory of averaging, the

structure of our multiscale algorithms and its computational complexity.

The objectives of multiscale computations

One of the major challenges in problems involving multiple scales is that an accurate

computations, attempting to resolve the finest scales involved in the dynamics may be

computationally infeasible. In the classical numerical analysis for ODEs, the impor-

tant elements are stability, consistency and ultimately convergence. In the standard

size goes to zero. The errors depend on powers of the eigenvalues of the Jacobian

of the ODE’s right hand side and the step size. However, in our multiscale setting,

consider the asymptotic cases when the frequency of the fastest oscillations, which

need to rethink what consistency and convergence means in the multiscale setting.

One possibility is the following: let E(t;△,ε) denote the error of the numerical ap-

proximation at time t, using step size △ and for problems with ε−1
oscillations, we

consider the convergence of E for 0 < ε < ε△

lim
△−→0

(
sup

0<ε<ε△
E(t;△,ε)

)
.

In other words, with a prescribed error tolerance E , the same step size ∆ can be used

for small enough ε . While this notion of convergence may not be possible for the

solutions of many problems, we may ask for the convergence of some functions or

functionals of the solutions. Throughout the notes we discuss results from the pre-

spective of a few key questions: what is the motivation for constructing a multiscale

A first example, suggested by Germund Dahlquist, is the drift path of a mechan-

ical alarm clock, moving due to fast vibrations when it is set off on a hard surface. If

the drift path depends only locally in time on the fast oscillations, then it is reasonable

is proportional to 1/ 

similar to the high frequency wave propagation or homogenization, we would like to

ε, tends to infinity, before the step size is sent to zero. Hence, we

theory, any stable consistent method converges to the analytical solution as the step

from traditional numerical computations?

algorithm? What is being approximated? How does our multiscale approach differ
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to design a scheme that evolves the slowly changing averaged drift path by measur-

ing the effects of the fast solutions only locally in time. Herein lies the possibility of

reducing the computational complexity.

A second example is Kapitza’s pendulum — a rigid pendulum whose pivot is

attached to a strong periodic forcing is vibrating vertically with amplitude ε and fre-

quency 1/ε . When the oscillations are sufficiently fast, the pendulum swings slowly

back and forth, pointing upwards, with a slow period that is practically independent

of ε . Obviously, in the absence of the oscillatory forcing, the pendulum is only sta-

ble pointing downwards. Pyotr Kapitza (physics Nobel Laureate in 1978) used this

example to illustrate a general stabilization mechanisms [17]. This, and similar sim-

ple dynamical systems are often used as example benchmark problems to study how

different methods approximates highly oscillatory problems.

The following assumptions are made throughout these notes: in the fastest scale,

the given system exhibits oscillations with amplitudes independent of ε , and that at a

larger time scale, some slowly changing quantities can be defined by the oscillatory

solutions of the system. To facilitate our discussion, we now present our model sce-

nario described by the following two coupled systems. Consider a highly oscillatory

system in Rd1 coupled with a slow system in Rd2 :

εx′ = f (x,v,t)+ εg(x,v,t), (2)

v′ = h(v,x,t), x(0) = x0 ∈ R
d1 , v(0) = v0 ∈ R

d2 . (3)

We assume that x is highly oscillatory, and v is the slow quantity of interest. However,

without proper information about x, v cannot be found. We are also interested in some

slowly varying quantity that is being defined along the trajectories of x:

β ′ = ψ(β ,t;x( · )). (4)

In a following section, we shall see that for very special initial conditions, the so-

lutions of (2) may be very smooth and exhibit no oscillations. The problem of ini-

tialization, i.e. finding the suitable initial data so that the slowly varying solutions

can be computed appear in meteorology. We refer the readers to the paper of Kreiss

and Lorenz [25] for further reading on the theory for the slow manifolds. However,

in many autonomous equations, e.g. linear equations, the only slowly varying solu-

tions in the system are the equilibria of the system. For problems like the inverted

pendulum, it is clear that the slowly varying solutions are not of interest. Then some

complicated interactions between the oscillations must take place, and one must look

into different strategies in order to characterize the effective influence of the oscilla-

tions in x in the evolution of v.

Our objective is to accurately compute the slowly changing quantity v in a long

time scale (i.e. 0 ≤ t ≤ T, for some constant T independent of ε). Furthermore, we

wish to compute it with a cost that is at least sublinear to (ideally independent of ) the

cost for resolving all the fast oscillations in this time scale. In general, our objective

may be achieved if fast oscillations are computed only in very short time intervals and

yet the dynamics for those slowly changing quantities is consistently evolved. Figure

1 depicts two possible schematic structures for such an algorithm. In this section, we
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give a few examples of where such type of slowly changing quantities occur; these

consist of systems with resonant modes and weakly perturbed Hamiltonians systems

so that invariances are changing slowly. Furthermore, we shall see in the next section

that these slowly changing quantities may be evaluated conveniently by short time

averaging with suitable kernels.

h
x(0)

x

ξ

η

micro−solver

Macro−solverH

{ δt
*

T=tn
t +ηn

Fig. 1.

Let us briefly comment on the relation of these notes to the standard stiff ODE

solvers for multiscale problems with transient solutions, [8, 19]. A typical example

possible as in the macro-solver in Fig. 1. Special properties of stiff ODE methods

modes are present for all times and may interact to give contributions to the slower

modes.

1.1 Example oscillatory problems

Linear systems with imaginary eigenvalues

x′ = iλ x, λ ∈ R.

The solution is readily given by x(t) = x(0)eiλ t
. Note that this system is equivalent

to the system in R2
: (

x

y

)′
=

(
0 λ

−λ 0

)(
x

y

)
.

suppress the fast modes and only the slower modes need to be well approximated.

of such stiff problems is equation (1) where the eigenvalues of A are either negative or

the type of the micro-solver in Fig. 1. After the transient, much longer time steps are

Problems with highly oscillatory solutions are much harder to simulate since the fast

zero. The initial time steps are generally small enough to resolve the transient and of
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Hamiltonian systems

Hamiltonian dynamics are defined by the partial derivatives of a Hamiltonian func-

tion H(q, p) which represent the total energy of the system. Here, q is a generalized

coordinate system and p the associated momentum. The equations of motion are

given by

q′ = Hp(q, p),

p′
q (5)

where Hp and Hq denote partial derivatives of H with respect to p and q, respectively.

In Hamiltonian mechanics, H(p,q) = 1

2
p2 +V (q) and the dynamics defined in (5)

yield Newton’s equation of motion q′′
q

then the solutions of this equation are typically oscillatory. An important class of

equations of this type appear in molecular dynamics with pairwise potentials

H(p,q) =
1

2

N

∑
i=1

1

mi
pT

i pi +
1

2

N

∑
i, j=1

Vi j i j

Notable examples are

Vi j(r) =
−Gmim j

r
(electric or gravitational potential)

and

Vi j(r) = 4εi j

((σi j

r

)12

−
(σi j

r

)6
)

, (Lennard-Jones potential)

for all i 6= j, etc.

Volterra–Lotka

This is a simplified model for the predator-prey problem in population dynamics.

In this model, x denotes the population of a predator species while y denotes the

population of a prey species

x′ = x
(

1 − y

ν

)
, (6)

′ =
y

ν
(x − 1).

An example trajectory is depicted in Fig. 2.

Relaxation oscillators

The Van der Pol oscillator is another typical example of nonlinear oscillators. One

version of the equation for a Van der Pol oscillator takes the form

= −∇ V (q). If V (x) is a convex function

where pi and qi are components of the vectors p and q.

y

= −H (q, p),

(|q − q |),
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Fig. 2. The trajectory of the Volterra–Lotka oscillator (6) with ν = 0.01, x(0) = 0.5 and y(0) =
1.

x′ = y − (x2 − 1)x,

y′ = −x.

resistor, inductor, and a capacitor; the state variable x corresponds to the current in

the inductor and y the voltage in the capacitor. It can be shown that there is a unique

periodic solution of this equation and other non-equilibrium solutions approach it

as time increases. This periodic solution is called the limit cycle or the invariant

manifold of the system. A general result for detecting periodic solutions for such

periodic trajectory of a solution.

x′ = −1 − x + 8y3, (7)

y′ =
1

ν

(
−x + y − y3

)
,

where 0 < ν ≪ 1. For small ν , trajectories quickly come close to the limit cycle

defined by −x + y − y3 = 0. The upper and lower branches of this cubic polynomial

are stable up to the turning points at which dx/dy = 0. For any initial condition, the

solution of (7) is rapidly attracted to one of the stable branches on an O(ν) time

scale. The trajectory then moves closely along the branch until it becomes unstable.

At this point the solution is quickly attracted to the other stable branch. The trajectory

is depicted in Fig. 3.

type of systems on a plane is the Poincaré–Bendixson theorem, which says that if a

As a second example, consider [9]

This equation can be interpreted as a model of a basic RLC circuit, consisting of a

compact limit set in the plane contains no equilibria, it is a closed orbit; i.e. it is a
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Fig. 3. The trajectory and slow manifold of the relaxation oscillator (7)

1.2 Invariance

Hamiltonian systems:

is the energy H(p,q)

d

dt
H(p(t),q(t)) = Hp p′ + Hqq′ = 0

=⇒ H(p(t),q(t)) = H(p0,q0) = const.

Let us prove Liouville’s theorem on volume preservation of Hamiltonian systems.

Consider a smooth Hamiltonian H(p,q). Let

ϕt(p0,q0) =

(
p(t; p0,q0)
q(t; p0,q0)

)
.

Hence,

d

dt

∂ϕt

∂ (p0,q0)
=

(
−Hpq Hqq

Hpp Hqp

)( ∂ϕt

∂ (p,q)

(p(t),q(t))

)
, q, p ∈ R

=⇒ d

dt
det

∂ϕt

∂ (p0,q0)
= 0. (8)

Consider t as a parameter for the family of coordinate changes (diffeomorphisms)

φt : (p0,q0) 7→ (p(t; p0,q0),q(t, p0,q0)). Then we have the following change of co-

ordinates formula, for any fixed t,

∫

V
f (p,q)dqd p =

∫

U
f (φt (p0,q0))Jd p0dq0,

The Hamiltonian equations of motion (5) admit several invariances. First and foremost
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where V = φt(U) and

J := det
∂φt

∂ (p0,q0)
.

Thus, (8) implies that

dJ

dt
≡ 0

In particular, taking f ≡ 1 implies that U and V have the same volume in the phase

(p,q)-space.

Volterra-Lotka oscillators

Let I(u,v) = logu−u+2logv−v. Substituting (6) yields (d/dt)I(u(t),v(t)) = 0 for

t > 0.

Let u(t) = (cos(t),sin(t)) and v(t) = (cos(t + φ0),sin(t + φ0)) be the solutions of

some oscillators. Then

ξ (t) = u(t) · v(t) = cosφ0

measures the phase difference between u(t) and v(t) and remains constant in time.

In view of the above examples, the following questions naturally appear:

• Can one design numerical schemes so that the important invariances are pre-

served?

What is the computational cost or benefit?

How well do common numerical approximations preserve known invariances of

interest and for what time scale?

• What is the importance of preserving invariances? How can this notion be quan-

tified?

• How do small perturbations affect the invariances? For example, in the following

linear system which conserves energy for ε = 0: x′′ = −ω2x + ε cos(λ t). How

does weak periodic forcing affect the energy? At what time scale does the forcing

become important? Can these effects be computed efficiently?

1.3 Resonance

Resonances among oscillations appear in many situations. For example, in pushing

a child on a playground swing. It is intuitively clear that unless the swing is pushed

at a frequency which is close to the natural oscillation frequency of the swing, the

child will be annoyed. However, when the swing is pushed at the right frequency, the

amplitude of the swing is gradually increasing. In this subsection, we review a few

basic examples of resonance.

Relative phase between two linear oscillators

Some aspects of these issues and others are discussed in [18] and [26].
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Resonance in a forced linear spring

We start with a linear spring under periodic forcing,

x′′ = −ω2x + cosλ t.

d

dt

(
x

x′

)
=

(
0 1

−ω2
0

)(
x

x′

)
+

(
0

cosλ t

)
,

with initial condition

(
x0

x′
0

)
. One can show that the solution operator for the homo-

geneous problem is

St =

(
cosωt ω−1

sinωt

−ω sinωt cosωt

)

so that the solution for the inhomogeneous problem is

(
x

x′

)
= St

(
x0

x′
0

)
+

∫ t

0

St−s

(
0

cosλ s

)
ds

=⇒
(

x

x′

)
= St

(
x0

x′
0

)
+

∫ t

0

(
ω−1

sin(ωt − ωs) cosλ s

cos(ωt − ωs) cosλ s

)
ds.

When λ = ω , resonance happens. More precisely, we see that

x(t) = x0 cosωt +
x′

0

ω
sin ωt +

1

ω

∫ t

0

sin(ωt − ωs) cosωsds

=⇒ x(t) = x0 cosωt +
x′

0

ω
sinωt +

t

2
sinωt.

In addition,

∫ t

0

sin(ωt − ωs)cosωsds =

∫ t

0

(sinωt cosωs− sinωscosωt)cosωsds

= sin(ωt)

∫ t

0

cos
2(ωs)ds − cos(ωt)

∫ t

0

sin(ωs)cos(ωs)ds

= sin(ωt)
∫ t

0

1

2
(1 + cos2ωs)ds− cos(ωt)

∫ t 1

2
sin(2ωs)ds

=
t

2
sinωt

︸ ︷︷ ︸
result of resonance

+
1

2

∫ t

0

=
t

2
sinωt

︸ ︷︷ ︸
+

1

2

∫ t

0

sin(ωt − 2ωs)ds

︸ ︷︷ ︸
.

If λ 2 6= ω2,we have

x =

(
x0 − 1

ω2 − λ 2

)
cosωt +

x′
0

ω
sin ωt +

1

ω2 − λ 2
cosλ t.

Rewriting into a first order system, we obtain

(sin ωt cos(2ωs  −cos ωt sin 2ωs ds)( ) ) ( () )

result of resonance

0

= 0
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Exercise 1. Compute the solution of the forced oscillation under friction: for µ > 0

x′′ = −2µx′ − ω2x + cosλ t.

Show that if λ = ω , the amplitude of the oscillations remains bounded and is largest

when λ =
√

ω2 − 2µ2.

Resonance in first order systems

Consider,

x′ =
i

ε
Λx + f

(
x,

t

ε

)
, x(0,ε) = x0,

where Λ is a diagonal matrix. We make the substitution:

x(t) = e
i
ε Λt w(t), w(0) = x0,

and obtain the corresponding equation for w:

w′ = e− i
ε Λt f

(
e

i
ε Λtw,

t

ε

)
, w(0) = x0.

The simplest type of resonance can be obtained by taking f (x,t/ε) = x, i.e., w′ = w.

We see that the resonance occurs due to the linearity of f in x, and that it results in |x|
changing at a rate independent of ε . If f (x,t/ε) = fI(x)+ exp(it/ε) and one of the

diagonal elements of Λ is 1, then similar to the resonance in the forced linear spring,

the resonance with the forcing term contributes a linear in time growth of |x|.
Resonances may occur due to nonlinear interaction. Following the above exam-

ple, take

Λ =

( )
and f (x,t) =

(
0

−x4

1
x−1

2

)
.

Hence,

x =

(
eit/ε w1

e2it/ε w2

)
=⇒

w′ =

(
e−it/ε

e−2it/ε

)(
0

−e4it/ε e−2it/ε w4

1
w−1

2

)
=

(
0

−w4

1
w−1

2

)
.

Again, due to the resonance in the system, |x2| is changing at a rate that is indepen-

dent of ε .

2 Slowly varying functions of the solutions

In this section we shall study the effect of non-linear interactions. We excerpt impor-

tant results from [24] and [1, 2, 14].

1 0

0 2

0

0
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2.1 Problems with dominant fast linear oscillations and nonlinear interactions

We start with a number of examples.

x′ =
iλ

ε
x + x2, x(0) = x0. (9)

The solution of (9) can be obtained explicitly. Introducing a new variable x by

x = e
iλ
ε tw

gives us a new equation whose right hand side is bounded independent of ε

w′ = e
iλ
ε tw2, w(0) = w0 = x0.

w(t) =
1

1

w0
+ iε

λ (e
iλ
ε t − 1)

=
w0

1 + iε
λ w0(e

iλ
ε t − 1)

.

As a result,

w(t) = w0

(
1 − iε

λ
w0(e

iλ
ε t − 1)

)
+O(ε2). (10)

Thus, the nonlinear term changes the solution only by O(ε) in arbitrarily long time

w̄′ = f̄ (w), f̄ (w) =

∫
1

0

eitw2dt = 0.

Hence, w̄(t) = w0. Indeed, we see that |w(t)− w̄(t)| = |w(t)−w0| ≤ C0ε for 0 ≤ t ≤
T1.

An alternative solution method involves a procedure which is easier to generalize.

From (9) we have,

w(t)− w0 =

∫ t

0

e
iλ
ε sw2ds = − iε

λ
e

iλ
ε sw2|t0 +

2iε

λ

∫ t

0

e
iλ
ε sww′ds

= − iε

λ

(
e

iλ
ε tw2(t)− w2

0

)
+

2iε

λ

∫ t

0

ei 2λ
ε sw3ds. (11)

Integrating by parts again yields an integral equation for w(t)

w(t)+
iε

λ
e

iλ
ε tw2(t)− 4ε2

λ 2
ei 2λ

ε w3(t) = w0 +
iε

λ
w2

0 − 4ε2

λ 2
w3

0 +
4ε2

λ 2

∫ t

0

ei 3λ
ε sw4(s)ds.

The solution w(t) can then be constructed using fixed point iterations

w(k+1)(t) = F(w(k),w0,t)+
4ε2

λ 2

∫ t

0

ei 3λ
ε sw4

(k)(s)ds, k = 0,1,2, · · · , (12)

averaging:

The solution is readily given by

intervals. In Sect. 3.2, we will show that w(t) is close to an effective equation from
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where w(0) = w0 and

F(w,w0,t) = w0 − iε

λ
e

iλ
ε tw2(t)+

iε

λ
w2

0 +
4ε2

λ 2
ei 2λ

ε w3(t)− 4ε2

λ 2
w3

0.

By induction, one can show that the iterations converge for t ≥ 0, 0 ≤ ε ≤ ε0 and

w(t)+
iε

λ
e

iλ
ε tw2(t) = w0 +

iε

λ
w2

0 +O(ε2).

From (11), we have w(t) = w0 +O(ε). Hence,

w(t) = w0

(
1 − iε

λ
w0

(
e

iλ
ε t − 1

))
+O(ε2). (13)

Now, consider

x′ =
iλ1

ε
x + y, y′ =

iλ2

ε
y + y2.

Changing variables to

x = e
iλ1
ε tu,

iλ2
ε tw

yields

u′ = , w′ = e
iλ2
ε tw2.

w = w0 +
∞

∑
j=1

ε jβ jei
jλ2
ε t .

u = e
i
ε (λ2−λ1)t

0 +
∞

∑
j=1

ε jβ je
i
ε (( j+1)λ2−λ1)t .

If νλ2 − λ1 6= 0 for all ν = 1,2, . . ., then

u(t) = u0 +O(ε).

However, if νλ2 = λ1, then resonance occurs and

u(t) =

{
u0 + εν−1β ν−1t, if ν > 1,
u0 + tw0, if ν = 1.

Thus, the solution is not bounded for all time.

As a generalization, consider the system

x′ =
i

ε
Λx + P(x), x(0) = x0, (14)

where

Therefore:

′ w

e i ( w1

y = e

2−λ + λ )t+ ε

From (10), we can obtain an asymptotic expansion for w:
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Λ =




λ1

λ2

. . .

λd


 , λ1, · · · ,λd ∈ R,

and P = (p1(x), · · · , pd(x)) is a vector of polynomials in x = (x1, · · · ,xd). Let

x = e
i
ε Λtw.

We then have

w′ = e− i
ε ΛtP

(
e

i
ε Λt w

)
, w(0) = w0 = x0. (15)

The right hand side of (15) consists of expressions of the form

e
i
ε (∑m jλ j)t p(w), (16)

where the m j are integers and p is a polynomial in w. There are two possibilities.

1. τ = ∑m jλ j = 0 for some terms. We call these terms the resonant modes. In this

case (15) has the form

w′ = Q0(w)+ Qε

( t

ε
,w
)

, (17)

where Q0 contains the terms corresponding to resonant modes, and Qε the re-

maining terms involving oscillatory exponentials. One can show that the solution

of

w̄′ = Q0(w̄), w̄(0) = w0 = x0, (18)

is very close to w for a long time; i.e.

|w(t)− w̄(t)| ≤ C0ε, 0 ≤ t ≤ T1, (19)

and in general w(t) does not stay close to the initial value w0.
2. τ = ∑m jλ j 6= 0 for all terms. No resonance occurs in the system. The solution

stays close to the initial value:

w(t) = w0 +O(ε). (20)

We remark here that the term

f
( t

ε
,w
)

= e− i
ε Λt P

(
e

i
ε Λtw

)

is in general not strictly periodic, even though it is composed of many highly oscilla-

tory terms. Nonetheless, the self averaging effect of the highly oscillatory terms can

be observed using integration by parts:
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w(t) = w0 +∑
τ

∫ t

0

e
iτ
ε ξ pτ(w)dξ

= w0 − iε ∑
τ

1

τ
e

iτ
ε ξ pτ(w)|t0 + iε ∑

τ

1

τ

∫ t

0

e
iτ
ε ξ ∂ pτ

∂ p
w′dξ

= w0 − iε ∑
τ

1

τ
e

iτ
ε ξ pτ(w)|t0 + iε ∑

τ

1

τ

∫ t

0

e
iτ
ε ξ p̃τ(w)′dξ . (21)

The integrals in (21) are over terms of type (16) and we can therefore repeat the

above arguments. If some of the terms are not of exponential type, then they will, in

general, be of order O(εt). For εt ≪ 1 we can replace (21) by

w̃(t) = w0 − iε ∑
τ

1

τ
e

iτ
ε ξ pτ(w̃)|t0,

i.e.,

w̃(t) = w0 +O(ε) forεt ≪ 1.

A more accurate result is

w̃(t) = w0 − iε ∑
τ

1

τ

(
e

iτ
ε ξ − 1

)
pτ(y0)+ iε p̃0(y0)t +O(ε2t2).

If all the terms are of exponential type, then we can use integration by parts to reduce

them at least to order O(ε2t). We obtain the following theorem.

Theorem 1. Assume that for all integers α j the linear combinations

∑α jλ j 6= 0.

Then

w̃ = w0 +O(ε)

in time intervals 0 ≤ t ≤ T. T = O(ε−p) for any p.

There are no difficulties in generalizing the result and techniques to more general

equations

x′ =
1

ε
Λ(t)x + P(x,t).

Here Λ(t) is slowly varying and P(x,t) is a polynomial in x with slowly varying

coefficients in time.

Remark 1. We see that without the presence of resonance, the highly oscillatory so-

lution x of system (14) stays closely to

ei Λ
ε tx0,

for a very long time. Regarding to our ultimate goal of developing efficient algo-

rithms, we may conclude that if no resonance occurs in the system, no computation

is needed, since ei Λ
ε tx0 is already a good approximation to the solution.
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However, if resonance occurs, then the “envelop” of the oscillations in the solu-

tion, x(t) changes non-trivially. In this case, efficient algorithms can be devised from

solving the initial value problem of equation (17):

w′ = Q0(w)+ Qε

( t

ε
,w
)

, w(0) = x0.

As we showed above, one may even simply drop the oscillatory term and solve an

equation that is completely independent of the fast scale:

w′ = Q0(w), w(0) = x0

and still obtain accurate approximations. We refer the readers to the paper of Scheid

side. In a later part of these notes, we shall first show that the term Qε can be easily

“averaged” out without even using its explicit form. This may prove to be very useful

for designing our multiscale algorithms for more complicated systems.

trary time intervals. Follow the steps:

1. For 0 ≤ t < T, the difference ek(t) := w(k)(t) − w(k−1)(t) converge to 0 as k

approaches infinity.

(k) is uniformly bounded for k = 1,2, . . . .
3. Establish the estimate in (13).

4. Arguments in the previous steps can be repeated to extend the solution to larger

time intervals.

2.2 Slowly varying solutions

Consider

εx′ = (A(t)+ εB(x,t))x + F(t), (22)

x(0) = x0,

where 0 < ε ≪ 1 and A(t), F(t) satisfy the same conditions as in the linear case, i.e.

A,A−1,F and their derivatives are of order one. Also, for x of order one, B and its

derivatives with respect to x and t are of order one, and

|B| ≤ C|x|,

for some constant C > 0. Formally, taking ε = 0, yields the leading order equation

Ax + f = 0. Denoting the solution Φ0 = −A−1F we substitute

x = Φ0(t)+ x1,

and obtain by Taylor expansion

Exercise 2. Show that the fixed-point iterations defined in (12) converge for arbi-

[31] for an interesting algorithm that explores this special structure of the right hand

2. Show that w
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εx′
1 = (A(t)+ εB(x1 + Φ0,t)) (x1 + Φ0)+ F(t)− εΦ ′

0

= (A1(t)+ εB1(x1,t))x1 + εF1(t),

where B1 has the same properties as B and

A1(t) = A(t)+O(ε), F1 = B(Φ0,t)Φ0 − Φ ′
0.

Thus the new system is of the same form as the original one with the forcing function

reduced to O(ε). Repeat the process p times yields

x =
p−1

∑
ν=0

εν Φν + xp,

εx′
p = (Ap(t)+ εBp(xp,t))xp + ε pFp, Ap = A +O(ε), (23)

xp(0) = x(0)−
p−1

∑
ν=0

εν Φν(0).

Therefore, we have

Theorem 2. The solution of (22) has p derivatives bounded independently of ε if and

only if

x(0) =
p−1

∑
ν=0

εν Φν(0)+O(ε p),

i.e. x(0) is, except for terms of order O(ε p), uniquely determined.

x(0) = 0

εv′
p = Ap(t)v,

is bounded, then xp = O(ε p− j) in time intervals of length O(ε− j).
Generalizing (22), consider

εx′ = (A(t)+ εC(v,t)+ εB(v,x,t))x + F(t), (24)

v′ = D(v,x,t)x + G(v,t).

Here A,A−1, B,C,D,F,G and their derivatives with respect to x,v,t are of order O(1),
if x,v,t are of order O(1). Following the same reasoning as before, substitute

−1(t)F(v,t)+ x1

If F and all its derivates vanish at t = 0, then the initial condition

provided we can extend F smoothly to negative t. If the solution operator of the line-

defines a solution for which any number of derivatives are bounded independent of ε .

arized problem,

x = –A

We can construct such a solution even if F and its derivatives do not vanish at t=0,
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1

εx′
p = (A(t)+ εCp(v,t)+ εBp(v,xp,t))xp + ε pFp(t),

v′ = Dp(v,xp,t)xp + Gp(v,t). (25)

We conclude the following:

dently of ε if we choose

xp(0) = O(ε p),

i.e., x(0) is, except for terms of order O(ε p), uniquely determined by v(0).

Generalizations. More generally, we can consider systems

εw′ = h(w,t).

If there is a solution w(t) with w′(t) = O(1), then h(w(t),t) = O(ε). This suggests

the existence of a C∞
-function φ(t) with

h(φ(t),t) = 0, t ≥ 0.

Introducing the new variable

w̃ = w− φ ,

one obtains

εw̃′ = h(w̃+ φ ,t)− h(φ ,t)− εφ ′(t)

= (M(t)+ N(w̃,t)) w̃− εφ ′(t)

where

M(t) = hw(φ(t),t), |N(w̃,t)| ≤ const. |w̃|.
If we further assume that

w̃(0) = w(0)− φ(0) = εz0, z0 = O(1),

then we can rescale the equation for w̃ by introducing a new variable, z = ε−1w̃. One

obtains for z(t)
εz′ = (M(t)+ εZ(z,t))z− φ ′(t).

Since we are interested in highly oscillatory problems, assume that M(t) has m purely

imaginary eigenvalues which are independent of t. Denote

κ j = iµ j, |µ j| ≥ δ > 0, j = 1, . . . ,m,

and n eigenvalues

κm+1 = . . . = κm+n = 0.

to obtain a system of the same form with F replaced by εF . Repeating the process

p

Theorem 3. The solution of (24) has p time derivative which are bounded indepen-

 times yields
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Without loss of generality, assume

M =

(
A 0

0 0

)
, |A−1| = O(1),

where A is an m × m matrix with eigenvalues κ j, j = 1, . . . ,m. If we partition z

accordingly,

z =

(
x

v

)
,

then we obtain

εx′ =
(
A + εZI(v,x,t)

)
x −
(
φ ′)I

,

v′ = ZII(v,x,t)− 1

ε

(
φ ′)II

.

If (φ ′)II = O(ε), then the resulting system has the form (24).

εx′ = (A(t)+ εC(v,t)+ εB(v,x,t))x,

v′ = D(v,x,t)x + G(v,t), (26)

x(0) = x0, v(0) = v0.

We obtain the slow solution vs, if we set x0 = 0, i.e.,

v′
S = G(vS,t), vS(0) = v0, x ≡ 0. (27)

Let us make the following assumption.

Assumption 1. The solution operators S ,S2 of

v′
L =

∂G

∂v
(vS)vL

and

εx′
L = (A(t)+ εC(vS,t))xL,

respectively, are uniformly bounded.

If x0 6= 0, then the slow solution will be perturbed and we want to estimate v − vS.
We start with a rather crude estimate. We assume that x0

S 0
2

0

in time intervals 0 ≤ t ≤ T with T ≪ |x0|−1. We linearize (26) around v = vs and

x = 0. Let v = vS + vL, x = xL, then the linearized equations have the form

2.3 Interaction between the fast and the slow scales

Continuing our discussion and ignoring the terms that are higher order in ε , we con-

sider the following model equation:

1

|v − v | = O(|x | t + ε|x |)

Here, the solution operator S1(t, s) for t > s maps VL(s) to VL(t), and S2 (t, s) acts the 

is small and want to show

same way for XL.
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εx′
L = (A(t)+ εC(vS,t))xL,

v′
L = D̃(vS,t)xL +

∂G

∂v
(vS)vL, D̃ = D(vS,0,t),

xL(0) = x0, vL(0) = v0.

By assumption

|xL| ≤ const.|x0|.
Duhamel’s principle and integration by parts gives us

vL(t) =
∫ t

0

S1(t,ξ )D̃xLdξ

= ε
∫ t

0

S1(t,ξ )D̃(A + εC)−1x′
Ldξ

= εS1(t,ξ )D̃(A + εC)−1xL|t0 − ε
∫ t

0

∂

∂ξ
(S1(t,ξ )D̃(A + εC)−1)x′

Ldξ .

The last integral can be treated in the same way. Therefore, Assumption 1 gives us,

for any p,
|vL(t)| ≤ const.(ε|x0|+O(ε pt)) .

Assume now that A is constant, has distinct purely imaginary eigenvalues and

that B,D are polynomials in x. Our goal is to give conditions such that our estimate

will be improved to

|v − vS| = O(εx0) in time intervals 0 ≤ t ≤ T,T ≪ (ε|x0|)−1. (28)

Without restriction we can assume that the system has the simplified form

εx′ = (iΛ + εΛ1(t)+ εB(x,t))x, (29)

v′ = D(x,t)x + G(v,t), (30)

where Λ ,Λ1 are diagonal matrices and Λ1 +Λ∗
1

≤ 0. We introduce new variables

x = e
i
ε Λt z.

Then (29) becomes

z′ = Λ1(t)z+ B̃z, (31)

where

B̃ = e− i
ε ΛtB

(
e

i
ε Λtz,t

)
e

i
ε Λt .

We split

B̃ = B1 + B2,

where B1 is a polynomial in z without exponentials, and all terms of B2 contain

exponentials. B2 produces a O(ε|x0|2t)-change of z and, therefore, we neglect it.

Thus, we can simplify (31) to
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z′ = Λ1z+ B1(z,t)z.

If B1 6= 0, then we can in general not expect that |z| ≤ K|x0| holds in time intervals

T ≫ |x0|−1. We proved that the solution of (29) is of the form

x(t) = e
i
ε Λt z(t), (32)

where z(t) is varying slowly. We introduce (32) into (30). We can also split

D(x,t)x = D1 + Dε , (33)

where D1 does not contain any exponentials and all terms of Dε contain exponen-

tials. Observe that D1 is quadratic in z, i.e. D1 = O(|x0|2). We can further deduce

that
d
dt

D1(x(t),t) is independent of ε , while
d
dt

Dε ∼ O(ε−1). We have the following

important conclusion:

• If D1 6= 0, then in general

|v − vS| = O(|x0|2t).

• If D1 = 0, then

|v − vS| = O(ε|x0|),
and (28) holds.

We should look at the above result together with what we obtained in Sect. 2.1, in

particular, the estimate (19) for the case when resonance occurs in the equation for

x, and (20) for the case without resonance in the system.

2.4 Slow variables and slow observables

Consider the following ODE system

x′ = −ε−1y + x, x(0) = 1,
y′ = ε−1x + y, y(0) = 0.

(34)

The solution of this linear system is (x(t),y(t)) = (et
cosε−1t,et

sinε−1t) whose

t

be decomposed into “fast and slow constituents”: a fast rotational phase and a slowly

changing amplitude. Denoting ξ = x2 2

ξ ′ =
d

dt
ξ (x(t),y(t)) = 2xx′ + 2yy′ = 2x2 + 2y2 = 2ξ .

Three important points call attention:

• ξ ′
is bounded independent of ε . Accordingly, we refer to the function ξ (x,y) as

a slow variable for (34).

trajectory forms a slowly expanding spiral: i.e. the solution rotates around

time by e . Although both x(t) and y(t) change on the ε time scale, the system can

+ y , we have

the origin with a fast frequency 2π/ε and the distance to the origin grows in
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• ξ ′
can be written into a function of the slow variable ξ only. Accordingly, we say

that the equation for the slow variable ξ is closed.

• Suppose that there is another (slow) function ζ (x,y) such that
d
dt

ζ (x(t),y(t)) =
ζxx′ + ζyy′

is bounded independent of ε . Then, away from the origin, ∇ζ (x,y)
is parallel to ∇ξ (x,y). Otherwise, at every point away from the origin, ∇ζ and

∇ξ form a local basis for the two dimensional vector space. Consequently, the

velocity field Φ(x,y;ε) := (−ε−1y+ x,ε−1x+ y) can be written as a linear com-

bination of ∇ζ and ∇ξ ; we write Φ = a∇ξ + b∇ζ . From the hypotheses on the

slowness of ξ and ζ , Φ ·∇ξ and φ ·∇ζ are both bounded independent of ε , im-

plying that the coefficients a and b are also bounded. However, this leads to Φ
being bounded which contradicts with the given equation (34).

The three observations described above are essential for building the multiscale nu-

merical methods introduced in the next section.

More generally, consider the ODE systems

x′ = ε−1 f (x)+ g(x), x(0) = x0, (35)

where x ∈ Rd
. We assume that for 0 < ε < ε0, and for any x0 in a region A ⊂ Rd

,

0

0 whenever it is clear from context.

Definition 1. Let U be a nonempty open subset of A . A smooth function ξ : Rd 7→ R

is said to be slow with respect to (35) in U, if there exists a constant C such that

max
x0∈U, t∈[0,T ]

∣∣∣∣
d

dt
ξ (x(t;ε,x0))

∣∣∣∣≤ C.

Otherwise, ξ (x) is said to be fast. Similarly, we say that a quantity or constant is of

order one if it is bounded independent of ε . It is also no problem generalizing this

notion to time dependent slow variables ξ (x,t).
Loosely speaking, ξ (x) being slow means that, to leading order in ε , the quantity

from a macroscopic domain (radius does not shrink with ε).

x = f
( t

ε
,x
)

, f bounded,

each scalar component of the state variables x is considered a slow variable. In-

previous discussion that x(t) stays very close to its initial value for all 0 ≤ t ≤ T .

Furthermore, in the case of resonance discussed in Sect. 1.3, x(t) drifts away from

1

the unique solution of (35), denoted x(t;ε ,x ), exists in t ∈ [0,T ] and stays in some 

ε and x

bounded region D. For brevity, we will omit the explicit dependence of the solution on

′

As another example, in Sect. 2.3 function D (y,t) may be considered as a slow

variable for (29).

deed, for those functions f that are periodic in the first argument, we know from our

Following Definition 1, for systems of the form

Hamiltonian systems, the action variables are the slow variables for the systems.

the initial value in an average distance that is growing linearly in time. For integrable

ξ (x(t)) is evolving on a time scale that is ε independent for all trajectories emanating
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At this point, it is natural to ask how many slow variables exist for a given highly

oscillatory system? The obvious answer is infinitely many, since any constant multi-

plication of a found slow variable yield another new one. A more reasonable ques-

tion is to ask what the dimension of the set of all slow variables is. In preparation

to answering this question, we need to make concrete a few more concepts. In the

following sections this question is answered for some specific cases.

Definition 2. Let α1, · · · ,αk:A ⊂Rn 7→R be k smooth functions, k ≤ n. α1(x), . . . ,αk(x)
are called functionally independent if the Jacobian has full rank; i.e.

rank

(
∂ (α1, · · · ,αk)

∂x

)
= k.

Let α(x) = (α1(x), . . . ,αk(x))
T be a vector containing k functionally independent

components.

When coupled with system (35), α(x) is called a maximal vector of functionally

independent slow variables if, for any other vector of size ν whose components are

functionally independent, then k ≥ ν .

Our objective is to use an appropriate set of slow variables together with some other

smooth functions to provide a new coordinate system for a subset of the state space

of system (35). Such a coordinate system separates the slow behavior from the fast

oscillations and provides a way to approximate a large class of slow behavior of (35).

See Fig. 4 for an illustration; locally near the trajectory, the space is decomposed into

three special directions, ∇φ defines the fast direction, and the two slow variables ξ1

and ξ2 help gauging the slow behavior of a highly oscillatory system.

ξ1

ξ2

φ

Fig. 4. Illustration of a slow chart. The slow variables ξ1 and ξ2 provide a local coordinate

system near a trajectory.
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Definition 3. Let ξ = (ξ1(x), . . . ,ξk(x)) denote a maximal vector of functionally in-

dependent slow variables with respect to (35) in A , and φ : A ⊂ Rd 7→ Rd−k be

some smooth functions. If the Jacobian matrix ∂ (ξ , )/∂x is nonsingular in A , one

obtains a local coordinate systems, i.e., a chart of the states space. We refer to such

a chart as a slow chart for A with respect to the ODE (35).

In other words, a slow chart is a local coordinate system in which a maximal
number of coordinates are slow with respect to (35).

Lemma 1. Let (ξ , ) denote a slow chart for A ⊂ Rd and α(x) : A → R a slow

variable. Then, there exists a function α̃(ξ ) : Rk → R such that α(x) = α̃(ξ (x)).

Proof. Otherwise, α(x) is a new slow variable that is functionally independent of the

coordinates of ξ , in contradiction to the maximal assumption.

Another type of slow behavior can be observed through integrals of the trajectory,

referred to as slow observables.

Definition 4. A bounded functional β : C1(A × [0,T ]) ∩ L1(A × [0,T ]) 7→ R is

called a (global) slow observable if

β (t) =

∫ t

0

β̃(x(τ;ε,x0),τ)dτ.

Differentiation with respect to time shows that global observables are slow.

From the discussion in Sect. 4.2, we deduce that with an appropriate choice of kernel

β (t) =

∫ +∞

∞

1

η
K

(
t − τ

η

)
β̃ (x(τ;ε,x0),τ)dτ,

can also be slow. We refer to these as local observables.

We observe that along the trajectory passing through y0, a slow variable defines

a slow changing quantity ϑ . We first consider the unperturbed equation

εy′ = f (y,t),

and a slow variable α .

d

dt
α(y(t)) = ∇α|y(t) · y′(t) =

1

ε
∇α|y(t) · f =: φα , f (t;y0). (36)

f 0 1

0

ε ỹ′ = fε (ỹ,t)+ εg(ỹ,t).

d

dt
ϑ = φα , fε (t;y0), ϑ(0) = ϑ0.

We may directly consider integrating a slow observable ϑ(t) satisfying

and η , local averages of the form

|φ
0 < ε ≤ ε , then ∇α · f = 0

,α

for a neighborhood of y(t). Now consider

φ

Notice that since  is  a slow variable,

φ

α (t;y )| ≤ C . If this bound is valid for
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Notice that

φ fε =
1

ε
∇α|ỹ(t) · f (ỹ(t),t)+ ∇α|y(t) ·g(ỹ(t),t) = ∇α|y(t) ·g(ỹ(t),t).

So ϑ(t) is slowly varying in O(1) time scale.

2.5 Building slow variables by parametrizing time

The time variable may be used to create slow variables that couple different oscil-

lators if we can locally use the coordinates of the state space to parametrize time

so that time is treated as a dependent variable. Consider the equations of the form

εy′ = f (y,t) and assume that there exists a function τ , independent of ε , such that

ετ(y(t)) = t. The function τ by its definition is not slow since

d

dt
τ(y(t)) =

t

ε
.

However, if we have ετ̃(z(t)) = t for the solutions, z(t), of another oscillatory prob-

˜

d

dt
θ (y(t),z(t)) ≡ 0.

hold globally. In many problems, even though the inverse function τ does not exist

integrate a slow quantity. For example, the derivative of arctan(z) is defined on the

whole real line. Similarly, on the complex plane, the derivative of the arg function

defining a continuous θ (t) on the Riemann sheet.

One advantage of using time as a slow variable is in defining relative phase be-

tween two planar oscillators. Consider

εz′
k = iλkzk, k = 1,2.

We formally define

α(z1,z2) := arg(z1)− arg(z2)

and obtain the equation for the slow observable. Through this approach, we can de-

fine and integrate the slowly changing relative phase between two oscillators.

2.6 Effective closure

Let U(t) ∈ Rn
and V (t) ∈ Rm

be two smooth functions. Assume that, for all 0 ≤ t ≤
T , both U(t) and V (t) are bounded above by C0 and that

The existence of inverse functions depend on the monotonicity in time of any

is defined everywhere except at the origin. In the latter case, (36) can be regarded

lem, then the function θ (y,z) := τ(y)− τ(z) is a slow variable since

coordinate of the trajectories. For oscillatory problems, the monotonicity cannot

globally, its derivative can be defined globally. In this case, we may employ (36) to



262 G. Ariel, B. Engquist, H.-O. Kreiss and R. Tsai

dU

dt
= G(U)+ εH(U,V,t),

for some bounded smooth function H : Rn ×Rm ×R+ 7→ [−C1,C1]. We say that the

dynamics of U is effectively closed. This means that for 0 ≤ t ≤ T and ε sufficiently

small, one can ignore the influence of V (t) and compute instead

dŨ

dt
= G(Ũ), Ũ(0) = U(0),

as an approximation of U(t); i.e.

|U(t)−Ũ(t)| ≤ C1ε.

In the spiral example (34), the equation for the single slow variable ξ = x2 +y2
is

effectively closed. The following gives an example of slow variables whose dynamics

along the trajectories are not effectively closed. In the complex plane, consider the

system

x′ =
i

ε
x + x∗y,

y′ =
2i

ε
y. (37)

Here the x∗
denotes the complex conjugate of x. Evidently, ξ1 := xx∗

and ξ2 := yy∗

are two slow variables. However, the differential equation for ξ1 along the non-

equilibrium trajectories of (37) is given by ξ ′
1

= 2Re((x∗)2y), which cannot be de-

scribed in terms of ξ1 and ξ2 alone. Hence, the equation for ξ1 is not effectively

closed. In fact, it is easily verified that ξ3 = (x∗)2y is also a slow variable and that

1 2 2

Later, we will see that in many oscillatory systems, the effective equations for

the slow coordinates in a slow chart are effectively closed.

3 Averaging

One of the most important analytic tools for studying highly oscillatory systems are

averaging methods, see e.g. [5, 20, 29] . In this section we present a few key results

and discuss them using simplified examples.

3.1 Time averaging and integration by parts

1

I(t) =

∫ t

0

cos

( s

ε

)
a(s)ds = ε sin

( t

ε

)
a(t)− ε

∫ t

0

sin

( s

ε

)
a′(s)ds.

function whose derivative is boun-

(ξ ,ξ ,ξ ,argx) is a slow chart.

ded on the real line. Consider the integral

We start with a simple example. Let a(t) be a C
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Then |I(t)| ≤ C0(1 + t)ε for some constant C0 coming from the maximum value

of a and a′
in [0,t]. Let a(t) be a λ -periodic function in Cp

, p ≥ 1; and let a∞ :=

max0≤t≤λ |a(t)|. If a(t) has zero average,
∫ λ

0
a(s)ds = 0, then for all T ≥ 0,

∣∣∣∣
∫ T

0

a(t)dt

∣∣∣∣≤ λ a∞.

We define a particular anti-derivatives of a(t) as follows

a[0](t) = a(t) and a[k](t) =

∫ t

0

a[k−1](s)ds+ ck, k = 1,2,3, . . . (38)

where the constant ck is chosen such that
∫ λ

0
a[k](s)ds = 0. As a result, a[k](t) are also

λ -periodic since

a[k+1](t +λ )−a[k+1](t) =

∫ t+λ

t
a[k](s)ds =

∫ λ

0

a[k](s)ds = 0, k = 1,2,3, · · · . (39)

Consequently, all anti-derivatives are uniformly bounded:

|a[k](t)| ≤ λ a∞, ∀t. (40)

∫ T

0

a
( s

ε

)
f (s)ds =

[
εa[1]

( s

ε

)
f (s)
]T

s=0

− ε
∫ T

0

a[1]
( s

ε

)
f (1)

• If f (T ) = f (0) = 0, and f ∈ C , then

∣∣∣∣
∫ T

0

a
( s

ε

)
f (s)ds

∣∣∣∣ ≤ sup

0≤t≤T

| f (p)(t)|a∞ · ε p.

• If f is in C∞, we can further obtain a formal asymptotic expansion approximation

for the integral

∫ T

0

a
( s

ε

)
f (s)ds = ∑

k

[
(−1)k−1εka[k]

( s

ε

)
f (k−1)(s)

]T

s=0

.

• If ā :=
∫ λ

0
a(ξ )dξ 6= 0, then

Iε :=

∫ T

0

a
( s

ε

)
f (s)ds −→ Ī := ā

(∫ T

0

f (s)ds

)
as ε → 0. (41)

• Similar averaging results can be obtained for functions a(t) which are not neces-

sarily periodic but whose anti-derivatives are nonetheless bounded.

Exercise 3. Prove (41).

(s)ds,

p

If f is differentiable, we can perform integration by parts

where f
(k)

 is the k-th derivative of f .  The process can be repeated depending on the

differentiability of f .
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3.2 How does averaging in an oscillatory system appear?

Consider

x′ = f
( t

ε
,x
)

, x(0) = x0, (42)

where f (t,x) is Lipschitz in both t and x with constant L and is λ -periodic, f (t +
λ ,x) = f (t,x). In addition, consider

y′ = f̄ (y), y(0) = y0, where f̄ (x) =
1

λ

∫ λ

0

f (t,x)dt. (43)

We call (43) the averaged, or effective equation derived from (42). The following

ε 1

Observe that

x(t)− x0 =

∫ t

0

f
(τ

ε
,x(τ)

)
dτ

=

∫ t

tM

f
(τ

ε
,x(τ)

)
dτ +

M−1

∑
j=0

∫ ( j+1)ελ

jελ
f
(τ

ε
,x(τ)

)
dτ,

where t − tM < ελ . In each interval t j = jελ ≤ t ≤ t j+1 = ( j + 1)ελ ,

∫ ( j+1)ελ
f
(τ

ε
,x(τ)

)
dτ =

∫ ( j+1)ελ

jε p
f
(τ

ε
,x(t j)

)
+O(ε)dτ

=

∫ ( j+1)ελ

jελ
f
(τ

ε
,x(t j)

)
dτ +O(ε2)

= ε p · 1

λ

∫ λ

0

f (s,x j)ds+O(ε2)

= ελ f (x j)+O(ε2).

Hence,

x(t)− x0 =

∫ t

0

f
(τ

ε
,x(τ)

)
dτ

=

∫ t

tM

f
(τ

ε
,x(τ)

)
dτ +

M−1

∑
j=0

∫ ( j+1)ελ

jελ
f
(τ

ε
,x(τ)

)
dτ

=

∫ t

0

f (x(τ))dτ +O(ε).

Now, since

y(t)− x0 =

∫ t

0

f̄ (y(τ))dτ,

∫ t

0

|x(τ)− y(τ)|dτ +Cε.

by Gronwall's lemma we have

|x(t)− y(t)| ≤ L

jελ

|x (t)− y(t)|≤ C ε for a long time which is independent of ε .calculation shows that
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This result can be generalized as follows. Let

x′ =
M

∑
j=1

f j

( t

ε
,x
)

, x(0) = x0,

where f j is λ j-periodic in the time. Then, a calculation similar to the above shows

that the solution of

y′ = f̄ (y), y(0) = x0,

with

f̄ (x) = ∑
j

1

λ j

∫ λ j

0

f j(τ,x)dτ,

is close to x(t) on a time segment.

Theorem 4. For t ∈ [0,T ], T < ∞ and independent of ε (assume x(t),y(t) exist in

such interval)

|x (t)− y(t)| ≤ C1ε.

Note that y′ = f (y) is independent of ε . While xε (t) is highly oscillatory, there are

no ε-scale oscillations in y(t). We conclude that the cost of integrating the averaged

equation is independent of ε and is in general much more efficient than computing

xε . If we just pick an arbitrary t∗, z′ = f (t∗,z), z(0) = x0 in general we can not expect

that x(t) = z(t)+O(ε).
Averaging over oscillations may appear in many different ways and should be

which harmonic averages are derived as parameters for an effective equation.

Exercise 4. In the following problem, high frequency oscillations in aε interact with

those in
d
dx

uε and creates low frequency behavior of uε(x):






d
dx

(
aε(x)

d
dx

uε
)

= f (x), 0 < x < 1,

uε(0) = uε(1) = 0,

aε(x) = a( x
ε ) > 0.

We derive an effective equation for uε(x) by performing the following steps.

1. Integrate the equation with respect to x and show that

{
aε

duε
dx

=
∫ x

0
f (ξ )dξ +C,

uε(x) =
∫ x

0
(aε(ξ ))−1F(ξ )dξ , where F(ξ ) =

∫ ξ
0

f (η)dη +C.

Determine C from boundary conditions.

2. Show that

lim
ε→0

∫ x

0

a

(
ξ

ε

)−1

F(ξ )dξ =

∫
1

0

a(y)−1dy

∫ x

0

F(ξ )dξ , F ∈ C[0,1].

handled with caution. The following problem presents a case in homogenization, in
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3. Show that

uε −→ ū = A−1

∫ x

0

(∫ ξ

0

F(η)dη +C

)
dξ as ε −→ 0,

where

A =
1

∫
1

0
a(y)−1dy

A
d2ū

dx2
= f (x), 0 < x < 1, ū(0) = ū(1) = 0

In summary, we present the following facts about averaging, whose proof can be

found, for example, in [20] and [29].

Theorem 5. Let x,y,x0 ∈ D ⊂ Rn, ε ∈ (0,ε0]. Suppose

1. f ,g, and |∇ f | are bounded by M which is independent of ε .

3. f (t,x) is λ -periodic in t, λ independent of ε .

Then, the solution of

x′ = f
( t

ε
,x
)

+ εg
( t

ε
,x,ε

)
, x(0) = x0 (44)

is close to the solution of the averaged equation

y′ = f̄ (x), y(0) = x0, f (y) =
1

λ

∫ λ

0

f (t,y)dt

on a time scale of order one. More precisely, for all t ∈ [0,T ], T < ∞ independent of

ε ,

|x(t)− y(t)| ≤ CεTeεLt ,

where C > 0 and L denotes a Lipschitz constant for f̄ .

Moreover, equation (44) can be written in the form [20]

x′ = f̄ (x)+ ε f1

( t

ε
,x,ε

)
, x(0) = x0, (45)

where f1(t,x,ε) is λ -periodic in t and f1 → 0 as ε → 0.

We conclude that ū(x) satisfies the effective equation:

2. g is Lipschitz in a bounded domain D.
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3.3 Effective closure in coupled oscillators

Given the system (35), and in a neighborhood of the trajectory starting from x0, let

(ξ ,φ) be a slow chart in which φ is a fast angular coordinate on the unit circle S1
,

i.e., 0 < C1/ε < φ ′
2

ξ ′ = gI(ξ ,φ),
φ ′ = ε−1gII(ξ ,φ),

(46)

where C1 < gII(ξ ,φ) < C2. Applying the averaging result (45), Equation (46) can be

rewritten as

ξ ′ =
∫

gI(ξ ,φ)dφ + εgIII(ξ ,φ) = ḡI(ξ )+ εgIII(ξ ,φ),
φ ′ = ε−1gII(ξ ,φ).

Hence, the equation for ξ is effectively closed.

4 Computational considerations

In this section we will describe a few computational methods which gain efficiency

by taking into account some of the special properties of the system discussed in

previous sections. We will mostly be concerned with equations of the form

x′
ε = g

( t

ε
,xε

)
, x(0) = x0,

where g(t,x) is λ -periodic, and its averaged form

x̄′ = ḡ(x̄), x̄(0) = x0.

By the averaging principle, we have that

|xε(t)− ¯x(t)| ≤ Cε, 0 ≤ t ≤ T.

4.1 Stability and efficiency

Suppose uniform time stepping is used in the computations.
4

The typical local trun-

cation error of a p’th-order method is O((△tL)p), where L is a uniform bound for

the p + 1 derivative of the right hand side. Applied to the two equations above, the

error varies tremendously. For xε , the error term is

E1 = O

([△t

ε

]p)
,

4
With oscillatory systems, variable time step algorithms are not as advantageous in improv-

ing efficiency as in stiff, dissipative systems.

< C /ε . Then, by these hypotheses, we know that
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while for x̄, the truncation error is

E2 = O(△t p).

Thus, in order for the solution to be reasonably accurate, the step size △t has to be

small compared to ε . In addition, typical explicit non-multiscale numerical schemes

suffer from linear instabilities when using step sizes that are too large compared to

the Lipschitz constant of the right hand size. This constraint restricts the step size of

ε. On the other hand, the efficiency of solving an ODE

more efficient to solve the averaged equation for x̄ than the original one for xε .

to construct a multiscale algorithm that solves the averaged equation without actually

deriving it. Instead, the idea of the Heterogenous Multiscale Method is to approxi-

mate the averaged equation on the fly using short time integration of the equation for

xε .

4.2 Averaging kernels

In many numerical calculations involving oscillations with different frequencies, the

right hand side may not be strictly periodic. As an example see (15). For this reason,

as well as for efficiency considerations, it is convenient to average using some general

purpose kernels. In the previous section, we see the need to compute the average of

f (t,x) over a period in t

f̄ (x) :=
1

λ

∫ λ

0

f (τ,x)dτ.

In this section, we show that f̄ (x) can be accurately and efficiently approximated by

averaging with respect to a compactly supported kernel whose support is larger, but

independent of λ . For simplicity, we shall ignore the x dependence in f .

We will use Kp,q
to denote the function space for kernels discussed in this paper.

Definition 5. Let K p,q(I) denote the space of normalized functions with support in I,

q continuous derivatives and p vanishing moments, i.e., K ∈ Kp,q(I) if K ∈ C
q
c (R),

supp(K) = I , and
∫

R

K(t)trdt =

{
1, r = 0;

0, 1 ≤ r ≤ p.

Furthermore, we will use Kη (t) to denote a scaling of K as

Kη (t) :=
1

η
K

(
t

η

)
.

For shorthand, we will also use K p,q to denote a function in Kp,q([−1,1]) .

Kexp ∈ K1,∞([−1,1]) :

such a method to be of order

In the following we will develop and discuss some of the tools and ideas required

to time T using step size △t is O(T/△t). Hence, it is clear that it is usually much

tial kernel
Most of the numerical examples in this manuscript are obtained using the exponen-
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For convenience, we write f (t) = f̄ + g(t) where

f̄ =
1

λ

∫ λ

0

f (s)ds.

Hence, g(t) is λ -periodic with zero average.
The following analysis shows that the convolution Kη ∗ f well approximates the

¯

∫

R

1

η
K

(
t − s

η

)
f (

s

ε
)ds =

∫ t+η

t−η

1

η
K

(
t − s

η

)(
f̄ + g

( s

ε

))
ds

= f̄

∫ t+η

t−η

1
K

(
t − s

η

)
ds+

1

η

∫ t+η

t−η
K

(
t − s

η

)
g
( s

ε

)
ds

= f̄ +
1

η

∫ t+η

t−η
K

(
t − s

η

)
g
( s

ε

)
ds.

Integrating by parts, we have

1

η

∫ t+η

t−η
K

(
t − s

η

)
g
( s

ε

)
ds

=
ε

η
K

(
t − s

η

)
G
( s

ε

)
|t+η
s=t−η − ε

η2

∫ t+η

t−η
K′
(

t − s

η

)
G
( s

ε

)
ds

= − ε

η2

∫ t+η

t−η
K′
(

t − s

η

)
G
( s

ε

)
ds,

where G is the anti-derivative of g given by (38). Hence,

∣∣∣∣
1

η

∫ t+η

t−η
K

(
t − s

η

)
g
( s

ε

)
ds

∣∣∣∣≤
ε

η
||K′||∞||G||∞.

Since g is periodic and bounded, its anti-derivative is also a bounded function. For

example, taking η =
√

ε , f̄ is approximated to order
√

ε . Repeating this process q

times yields ∣∣∣∣
∫

η (t − s) f (s)ds− f̄

∣∣∣∣≤ CK,g

(
ε

η

)q

. (48)

f ,average

η

K

For convenience, we shall denote byKη ∗ f (t) f (t)< >η

Kexp(t) = C0χ[−1,1](t)exp(5/(t2
(47)

exp||L1(R)

Kcos(t) =
1

2
χ[−1,1](t)(1 + cos(πt)) ∈ K1,1(I).

χ[−1,1] 0C

normalization constant such that ||K =1. A second commonly used kernel is 
Here,             is  the characteristic function of the interval [–1, 1] and        is a

−1)).
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4.3 What does a multiscale algorithm approximate?

Loosely speaking, our goal is to construct an algorithm that approximates the slow

behaviour of a highly oscillatory ODE system. An important observation is that the

slow behavior of a system can be a result of internal mutual cancellation of the os-

cillations. This, for example, is the case with resonances. Hence, it may not be clear

what these slow aspects are. For this reason, we take a wide approach and require

that our algorithm approximates all variables and observables which are slow with

respect to the ODE.

How is this possible? We now prove that an algorithm which approximates the

slow coordinates in a slow chart (ξ ,φ) approximates all slow variables and observ-

ables.

Slow variables: Let α(x) denote a slow variable. From Lemma 1 we have that

α(x) = α̃(ξ (x)) for some function α̃ . Therefore, values of α(x) depend only on ξ .

Furthermore, it is not necessary to know α̃ , for suppose ξ = ξ (x(t)) at some time t.

Then, α(x(t)) = α̃(ξ ) = α̃(ξ (x(t)))). In other words, all points x which correspond

Slow observables – global time averages: We observe that for any smooth

functions α(x,t), we have that ᾱ(t) =
∫ t

0
α(x(s),s)ds is slow since |(d/dt)ᾱ(t)| =

|α(x(t),t)|, which is bounded independent of ε . In ODE form, we have

ᾱ ′ = α(x,t)

which complies to the form required by the averaging theorem. Therefore, ᾱ can be

integrated as a passive variable at the macroscopic level. In other words, it can be

approximated by

ᾱ(t) =

∫ t

0

< α(x(s),s) >η ds

Slow observables – local time averages: Consider time averages of the form

< α(x(s)) >η . Since (ξ ,φ) is a chart, we have that α(x(s)) = α̃(ξ ,φ) for some

function α̃ . However, as proven in Sect. 4.2, convolution with kernels approximates

averaging with respect to the fast angular phase φ . Here,

< α(x(s)) >η=< α̃(ξ ,φ) >η=

∫
α̃(ξ ,φ)dφ + error = ᾱ(ξ (t))+ error,

where the error is evaluated in Sect. 4.2. Hence, a consistent approximation of ξ
implies a consistent approximation of < α(x(s)) >η . Moreover, in Sect. 5 we will

show that the explicit form of α̃ or ᾱ are not required since all local time averages

4.4 Boosting methods

In the context of averaging, the idea of boosting is particularly simple. Consider, for

example, the averaging Theorem 5 which states that, with functions f (t,x), which

are 1-periodic in time, the solution of

to the same ξ yield the same value for α(x).

can be calculated as a by product of micro-solver steps in the algorithm.

< α(x(s)) >η

d

ds
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x′ = f
( t

ε
,x
)

, x(0) = x0 (49)

and

y′ = f̄ (y), y(0) = x0, f̄ (y) =

∫
1

0

f (s,y)ds, (50)

are close to order ε:

|x(t)− y(t)| < Cε,

on a time scale of order one. Suppose we are interested in solving (49) with a pre-

scribed accuracy ∆ which is small, but not as small than ε , i.e., ε ≪ ∆ ≪ 1. Consider

the modified equation

z′ = f
( t

∆
,z
)

, z(0) = x0. (51)

Following the same averaging argument, z(t) is close, to order ∆ , to the averaged

equation (50). Hence, by the triangle inequality

|z(t)− x(t)| ≤ |z(t)− y(t)|+ |y(t)− x(t)| < C(ε + ∆) < 2C∆ . (52)

which is of order ∆ . On the other hand, the stiffness of the equation is much reduced.

The discussion in Sect. 4.1 shows that the efficiency of solving the boosted equation

(51) is O(∆−1), which can be a considerable improvement over the O(ε−1) required

to solve (49). Moreover, (51) has the exact same form as (49) and preserves the

same invariance. For example, if the original system is Hamiltonian, that the boosted

version is also Hamiltonian.

Despite their simplicity, boosting suffers from two major drawbacks. The first is

related to the nature of the asymptotic expansion used to obtain the averaged equa-

tion. Similar to expanding functions in power series, the asymptotic expansion in the

averaging Theorem 5 has a “radius of convergence”. This implies that the averaged

equation may provide a poor approximation for (49) if ε is not small enough. In

0

is usually unknown. Hence, the error estimate (52) fails if ∆ > ε0.
−1),

no matter what the order of the integrator is. This is not the case with HMM, as will

benchmark to test and evaluate the efficiency of our algorithm.

5 Heterogeneous Multiscale Methods

other words, the proximity between x(t) and y(t) “kicks in” at some value ε , which

Solving the boosted equation (51) instead of the original one, (49) introduces an error

Another drawback is that the efficiency of the method is bound to be O(∆

be discussed in the following section. Nonetheless, boosting serves as an important

The Heterogeneous Multiscale Method (HMM) is a general framework for systems

averaged equation, and a micro-solver, approximating the averaged equation using

HMM consists of two components: a macro-solver, integrating a generally unknown

evolving on multiple, well separated time scales. We will focus on problems with

short time integration of the full ODE system.

two time scales which are referred to as slow/fast, or macro/micro scales. An 
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5.1 A vanilla HMM example

Consider, for example, equations of the form

x′ = f
( t

ε
,x
)

, x(0) = x0,

where x ∈ Rd
and f (t,x) is a smooth function which is 1-periodic in t. We rewrite

the system as an homogeneous equation on Rd × [0,1],

x′ = f (φ ,x), x(0) = x0,
φ ′ = ε−1, s(φ) = 0,

(53)

1

in x are slow with respect to (53) while φ is fast. Hence, (x,φ) is a slow chart for

(53). Furthermore, from Sect. 3, the solution for x is close (to order ε) to an effective

equation which is effectively closed:

x̄′ = f̄ (x̄), x̄(0) = x0,

where

f̄ (z) =

∫
1

0

f (τ,z)dτ.

the averaged forcing f̄ (·) is usually unknown. For this reason, following Sect. 4.2

we approximate f̄ (·) as 〈 f (t,x(t)〉η . Applying a forward Euler scheme for x with a

macroscopic step size H implies taking xn+1 = xn + H 〈 f (t,x(t)〉η
rized in the following algorithm. Let xn denote our approximation of (53) at time

tn = nH.

1. n = 0

n η,

tn
n

3. Force evaluation: calculate Fn = 〈 xn 〉η .

4. Macro-step (forward Euler example): take xn+1 = xn + HFn.
5. n = n + 1. Repeat steps 2–4 to time T .

The efficiency of the algorithm is O(Tη/Hh). It is further analyzed in Sect. 5.4.

5.2 Systematically constructing heterogeneous multiscale methods

du

dt
= fε (u,t), (54)

where u : (0,T ) 7→ Rd
, and a subset of the eigenvalues of ∂ fε/∂u are inversely pro-

portional to a small positive parameter ε . When ε is very small, the complexity of

Earlier we saw that it is much favorable to solve for x̄ rather than for x. However,

is isomorphic to the unit circle S . By Definition 1, it is clear that all the coordinates

. This is summa-

Consider stiff ordinary differential equations (ODEs) of the form

Denote the solution x (t).+ η ] with step size h and    xn0x replaced by

f
.
ε( ),, (·)

where φ is an angular variable defined on the quotient space R/[0,1]. The latter space

2. Micro-simulation: approximate (53) numerically in a reduced time segment [t −
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numerically solving such systems becomes prohibitively high. However, in many

situations, one is interested only in a set of quantities U that are derived from the

solution of the given stiff system (54), and typically, these quantities change slowly

in time; i.e. both U and dU/dt are bounded independent of ε . For example, U could

be the averaged kinetic energy of a particle system u.

Our objective is to construct and analyze ODE solvers that integrate the system

d

dt
U = F(U,D), (55)

where D is the data that can be computed by local solution of (54). U is called

the slow (macroscopic) variable that is also some function or functional of u; i.e.

U = U(u,t).

strategy involves setting up a formal numerical discretization for (55), and evaluates

F from short time history of u with properly chosen initial condition.

Φ(U,D) = 0, (M) (56)

which may not be explicitly given, but can be evaluated from a given microscopic

model,

ϕ(u,d) = 0, u ∈ Ω(m) (57)

where u are the microscopic variables. D = D(u) and d = d(U) denote the set of

data or auxiliary conditions that further couple the macro- and microscopic models.

Model (56) is formally discretized at a macroscopic scale, and the adopted numerical

scheme dictates when the necessary information D(u) should be acquired from solv-

ing (57), locally on the microscopic scale with auxiliary conditions d(U). As part of

d(U) and D(u), the macro- and microscopic variables are related by reconstruction

and compression operators:

R(U,DR) = u, Q(u) = U, Q(R(U,DR)) = U,

where DR are the needed data that can be evaluated from u. Errors of this type of

schemes generally take the structure [10, 14]

Error = EH + Eh,

where EH is the error of the macroscopic model (56), and Eh contains the errors

from solving (57) and the passing of information through R and Q. This approach

has been used in a number of applications, such as contact line problems, epitaxial

growth, thermal expansions, and combustion. See the review article [12].

Figure 1 shows two typical structures of such ODE solvers. An ODE solver for U

lies on the upper axis and constructs approximations of U at the grid points depicted

If F is well-defined and has a convenient explicit mathematical expression, then

U ∈ Ω

many situations, the dependence of F on U is not explicitly available. Our proposed

multiscale methods. In this framework, one assumes a macroscopic model

there is no need to solve the stiff system (5 4) — one only needs to solve (55). In

We will follow the framework of E and Engquist [11] in constructing efficient



274 G. Ariel, B. Engquist, H.-O. Kreiss and R. Tsai

there. The fine meshes on the lower axis depict the very short evolutions of (54)

with initial values determined by R(U(tn)). The reconstruction operator then takes

each time evolution of u and evaluates F and U . The algorithms in [10, 16, 15], and

[28] are also of a similar structure. As a simple example, the forward Euler scheme

applied to (55) would appear to be

Un+1 = Un + H · F̃(Un), (58)

where F̃ contains the passage of QΦtR(Un) — reconstruction R, evolution Φt , and

• With the system for u, and a choice of U(u), is F well-defined by the procedure

defined above? If not, how can it be properly defined?

• What are R and Q?

• How long should each evolution be computed?

• What does consistency mean?

• What about stability and convergence?

For a fixed given ε > 0, all well known methods will converge as the step-size H → 0,

and there is no difference between stiff and non-stiff problems. In [11], convergence

for stiff problems (ε ≪ H) is defined by the following error:

E(H) = max
0≤tn≤T

( sup

0<ε<ε0(H)

|U(tn)−Un|). (59)

Here, ε0(H) is a positive function of H, serving as an upper bound for the range of ε ,

and U(tn) and Un denote respectively the analytical solution and the discrete solution

at tn
varying property of U and generate accurate approximation with a complexity that is

sublinear in ε−1.
The problems we are interested in can be described as follows. A full scale sys-

tem (54) written in the unknown variable u is given, and the oscillations in u have

frequency of order ε−1

assumed that the fine scale system describes the full behavior of the problem. We

want to compute the effective behavior of the given full scale system using a number

functionals of u, and their governing equations may have no

explicit analytical for

use numerical solutions of u to extract the missing information

needed to evaluate the formal discretization of the governing equations.

Notation 1. Let u(t;α) denote the solution of the initial value problem:

du

dt
= fε (u,t), u(t∗) = α, (60)

Essential questions that need to be resolved for such a scheme include:

mula. Our approach is to discretize the effective equations for

(U,V ) formally and

of slowly changing quantities, (U,V ). These slowly changing quantities generally

defined as functions or

compression Q, and H is the step size. If each evolution of the full scale system (54)

is reasonably short, the overall complexity of such type of solvers would be smaller

R5.1 uses the identity operator for both  and      .Q

than solving the stiff system (54) for all time. The vanilla HMM presented in Sect. 

= nH. With this notion, it is clear that a sensible method has to utilize the slowly

. We shall also call this system the fine scale system. It is
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for some arbitrary initial condition at time t∗.

The notation u(t) or u will be reserved for the solution of the same ODE, Equa-

tion (60), for t > 0 with the given initial condition u0.

Definition 6. Let G (·,t) be a functional of u. The initial data α is said to be consis-

tent with u under G if G (u( · ;α),t) = G (u,t)+O(εr), for some r > 0.

In Kapitza’s pendulum problem, the pivot of a rigid pendulum with length l is at-

tached to a strong periodic forcing, vibrating vertically with period ε . The system

has one degree of freedom, and can be described by the angle, θ , between the pen-

dulum arm and the upward vertical direction:

lθ ′′ =

(
g +

1

ε
sin

(
2π

t

ε

))
sin(θ ), (61)

with initial conditions θ (0) = θ0,θ ′(0) = ω0. With large ε , the only stable equilibria

are θ0 = nπ , corresponding to the pendulum pointing downward. When ε is suffi-

ciently small and both θ0 and ω0 are close to 0, the pendulum will oscillate slowly

back and forth, pointing upward, with displacement θ < θmax. The set up of the

pendulum and an example solution are depicted in Fig. 5. The period of the slow

oscillation is, to leading order in ε , bounded independent of the forcing period ε .

On top of the slow motion around the stable θ = 0 configuration, the trajectory of θ
exhibits fast oscillations with amplitude and period proportional to ε .

In [32], the second order equation is written as a first order system using u =
(θ ,ω), where ω is the derivative of θ . The slow variable U = (Θ ,Ω) consists of

the weak limit of the angle θ and its derivative θ̇ , and the effective force for U can

be adequately approximated by the time averaging of the right hand side of (61).

However, the reconstruction operator R can no longer be the identity operator. The

initial values of u at tn for each fine scale evolution should be carefully constructed

such that the averages of θ matches with Θ in order to keep the correct resonance

between the terms sin(2πt/ε) and sin(θ ). To this end, the reconstruction operator

must carry a correction term when setting up ω at tn :

ω0

n = Ωn − 1

ε

∫ tn+ε/2

tn−ε/2

∫ t

tn

aε

( s

ε

)
sin(θn(s))dsdt.

Consistency of the described multiscale solver to this type of system is thus estab-

lished.

d ×Rs
, whose

the solution U(t) of the ODE

d

dt
U =

d

dt

(
V

W

)
= F (U,t)+O(ε), (62)

is equivalent to its evaluation using the whole scale solution u, i.e,

 
7

Problem 1 (Closure). Given V which consists of a set of slow variables or functionals
U = (V,W ) : [0,T ] → Rof u, determine the set of extended variables

dent of   such that

components are functions or functionals of u, so that there exists a function F indepen-

ε
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Fig. 5. (a) Kapitza’s pendulum; (b) The slow scale solutions to equation (61); Three orders

of magnitude (ε = 10
−6) separate the period of the slow oscillation apparent in the graphs

from the fast oscillation.

U(t) = U(u,t) =

(
V (u,t)
W (u,t)

)
,

where U(t) denotes the ODE solution, and U(u,t) the functional evaluation using

u(t), and similarly for V and W .

When these functions are composed of u(t) and viewed as functions of time,

αε (t) = α(u(t)) and ψε(t) = ψ(u(t)), they should satisfy the following conditions:

1. α and ψ are linear combinations of some simple functions of u;

2. dαε/dt is bounded independent of ε;

3. dν 〈ψε〉/dtν > > 0 for some 0 ≤ ν and for some independent of ε;

4. αε (t) converges pointwise to a smooth function ᾱ(t), and ψε weakly to a con-

tinuous function Ψ .

Here, 〈ψε〉 denotes a moving average with respect to a kernel, as described in

Sect.4.2. These approaches are motivated by the analysis of resonance, the averaging

methods, see e.g. [25, 5, 1, 3], and our previous work on Kapitza’s pendulum and a

few other model problems. Another interesting point of view makes use of the idea

of Young measures [4].

In practice, we do not have u(t), since we do not solve the stiff equation for a

long time interval independent of ε . However, the solution U to the closure problem

defines an equivalence class for the initial conditions for u. As long as an initial data

is selected such that it is consistent to u(t) with respect to U(t), U(t) is properly

evolved. Instead, our strategy is to compute the solution u(·;a) for a duration that

vanishes with ε , starting from a specified time and using some initial values a. Once

U(t) is approximated, we can approximate dU/dt numerically without explicitly

W (u,t).
One of our strategies is to look for algebraic functions α and ψ when constructing

δ δ

(a)

0 5 10 15

−0.4

−0.2

0

0.2

0.4

0.6

t
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to the functional U(u,t):

Un at tn that specifies a set of constraints.

Find an ∈ R
d

such that U(u(·;an),tn) = Un +O(ε p) for some p > 0.

Note that unlike the common constraints of conserved integrals in the computations

j) is

known at t = t j,

1. Find a j that solves U(u(·;a j),t ) ≃ U(t j) (Reinitialization);

2. Solve the given stiff equation and obtain u(t;a j) for t j ≤ t ≤ t j +ηε (Microscale

solution);

3. Evaluate F (t j) = dU/dt at t j using u(t;a j);
4. Use F (t j) and U(t j) to get U at t j + ∆ t. (Macroscale solution)

Note that ∆ t should be independent of ε and ηε vanish with ε.
In the following examples the slow behavior is approximated using functions

only (the slow chart) and not functionals.

5.3 Example: an expanding spiral

Consider the system (34) describing the expanding spiral

x′ = −ε−1y + x, x(0) = 1,
y′ = ε−1x + y, y(0) = 0.

(63)

Previously, in Sect. 2.4, it was shown that (ξ ,φ) = (x2 + y2, tan
−1(y/x)) is a slow

chart for (63). The time evolution of the only slow variable ξ takes the form

ξ ′ =
〈
ξ ′〉

η +O(ε) =
〈
2xx′ + 2yy′〉

η . (64)

This motivates the following multiscale algorithm for approximating ξ ′(t). For sim-

We denote tn = nH and by

xn, yn and ξn our n n n n

and yn do not have n n

The algorithm is depicted in Fig. 6.

1. Initial conditions: (x(0),y(0)) = (x0,y0), n = 0.

2. Micro-simulation: Solve (63) in [tn − η/2,tn + η/2] with initial conditions

(x(tn),y(tn)) = (xn,yn).

evaluating F . Naturally, this initial value α should be consistent with u with respect

by the

components of U , that can be slowly varying in time.

Problem 2 (Reintialization/reconstruction). Given a functionalU(u,t) and its value

In summary, our multiscale method is outlined as follow: Assuming U(t

j

sistent and stable integrator can be used as micro-solver.

plicity, we apply a macroscopic forward Euler solver with step size H. Any con-

approximation for x(t ), y(t ) and ξ (t ), respectively. Note that x

to be close to x(t ) and y(t ). We only require that the slow vari-

able is approximated.

of Hamiltonian systems, we consider constraints, such as those specified
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micro−solver

micro−solver

H

H

x1

x2

Fig. 6. Two macroscopic steps for the HMM algorithm in the expanding spiral example (63).

3. Force estimation: Approximate ξ ′
by ∆ξn = 〈2xx′ + 2yy′〉η . The step involves

convoluting 2xx′ + 2yy′
with an averaging kernel as discussed in Sect. 4.2.

4. Macro-step (forward Euler): ξn+1 = ξn + H∆ξn.

5. Reconstruction (second order accurate): (xn+1,yn+1) = (xn,yn)+HFn, where Fn

is the least squares solution of the linear system

Fn ·∇ξ (xn,yn) = ∆ξn

6. n = n + 1. Repeat steps 2–5 to time T .

5.4 HMM using slow charts

Suppose an ODE system of the form (35) admits a slow chart (ξ ,φ), where ξ =
(ξ 1, . . . ,ξ k) ∈ Rk

are slow and φ ∈ S1
is fast. In the next section we will see that

many highly oscillatory systems indeed admit a slow chart of that form. Then, the

algorithm suggested in the previous section can be easily generalized as follows.

As before, for simplicity we concentrate on the forward Euler case. Higher order

methods are considered in [1]. Approximated quantities at the n‘th macroscopic time

step are denoted by a subscript n.

1. Initial conditions: x(0) = x0, n = 0.

2. Micro-simulation: Solve (35) in [tn − η/2,tn + η/2] with initial conditions

x(tn) = xn

3. Force estimation: Approximate ξ ′
by ∆ξn = 〈∇ξ · x′〉η using convolution with

an averaging kernel.

4. Macro-step (forward Euler): ξn+1 = ξn + H∆ξn.
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5. Reconstruction (second order accurate): xn+1 = xn + HFn, where Fn is the least

squares solution of the linear system

Fn ·∇ξ (xn) = ∆ξn. (65)

6. n = n + 1. Repeat steps 2–5 to time T .

Complexity

In this section we analyze the accuracy of the suggested method outlined above.

Each step of the approximations preformed in our algorithm introduces a numerical

error. In order to optimize performance, the different sources of errors are balanced

to a fixed prescribed accuracy ∆ . We show how the different parameters: ε , η , h

and H scale with ∆ in order to have a global accuracy of order ∆ . Note that the

maximal possible accuracy is ∆ = ε , since this is the error introduced by simulating

the averaged equation rather than the original one. We also study the ∆ dependence

of the complexity of the algorithm.

We begin with estimating the error in our evaluation of the averaged force ∆ξn.

There are several sources of errors:

• Global error in each micro-simulation. Using an m’th order method with step size

h the global error is ηhm/εm+1
.

• Quadrature error in K′
η ∗ ξ : Using a quadrature formula of degree r the error is

ηhm/ε(m + 1). However, due to the regularity of the kernel used K ∈ Cq
, the

integrand is smooth and periodic. Hence, the coefficients of its Fourier decompo-

sition decay very fast. As a result, it is advantageous to use the trapezoidal rule,

which is exact for e2π ikx
, k ∈ N. This implies that the quadrature error is typically

very small and can be neglected.

• Approximating ∆ξn by 〈∇ξ · x′〉η : Using a kernel K ∈ Kp,q
the error is the larger

between η p q

(48) since ∆ξn is found through integration by parts (cf. Sect. 5.4). The above two

bounds to the averaging error are equal if η p+q+1 = εq
, where, for large η , the

term η p
dominates, while for small η the other. Since we would like to optimize

our complexity, it is always preferable to work in the latter regime. Hence, we

can take the averaging error to be (ε/η)q/η .

Balancing all terms yields the optimal scaling of the simulation parameters with ∆ .

The global accuracy of integrating the original full ODE to time T = O(1) using

a macro-solver of order s with step size H is, assuming errors are accumulative,

E ≤ Dmax

{
Hs,

ηhm

εm+1
,

εq

ηq+1

}
, (66)

For some D > 0. For short hand we drop the constant in all following expressions.

Balancing the different sources of errors to a prescribed accuracy ∆ yields

and (ε/η) /η . Note that we are losing one order of η compared to
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η = ε
q

q+1 ∆− 1

q+1 ,

H = ∆
1

s ,

h = ε
1+ 1

m(q+1) ∆
s+1

sm + 1

m(q+1) .

(67)

The complexity is then

C =
η

h

T

H
= ε

− m+1

m(q+1) ∆
− 1

s − s+1

sm − m+1

m(q+1) . (68)

With a smooth kernel we can consider the q → ∞ limit. In this case the complexity

estimate is reduced to

C(q → ∞) = ∆− 1

s − s+1

sm . (69)

Figure 7 depicts the relative error of the HMM approximation compared to the

analytical solution of the expanding spiral example (34). The kernel was constructed

from polynomials to have exactly two continuous derivatives and a single vanish-

ing moments, i.e., q = 2 and p = 1. Fourth order Runge–Kutta schemes were used

for both the micro- and the macro-solvers. The simulation parameters are chosen to

balance all errors as discussed above.
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Fig. 7. A log-log plot of the relative error of the HMM approximation to a linear ODE com-

pared to the exact solution: E = maxtn∈[0,T ] 100 × |ξHMM(tn) − ξexact(tn)|/|ξexact(tn)|, as a

function of ∆ .

From the parameter scaling (67) it is clear that the step size of the macro-solver,

H, does not depend on the stiffness ε , but only on the prescribed accuracy ∆ . Our

0

[11]. More precisely, denote the sample times of the macro-solver by t0 = 0, . . . ,tN =
T and the corresponding numerical approximations for x by x0, . . . ,xN . The exact

solution is denoted x(t). We have that, for any variable α(x) that is slow with respect

to x(t)
lim
H→0

sup

k=0,...,N
sup
ε<ε0

|α(x(tk))− α(xk)| → 0. (70)

algorithm is therefore multiscale is the sense that it converges uniformly for all ε < ε
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Note that the order of the limits is important.

5.5 Almost linear oscillators in resonance

Consider an ODE system of the form

x′ =
1

ε
Ax + f (x), (71)

where, x ∈ Rd

1 r

i j and ni j, such that mi jωi =
ni jω j.

Theorem 6. There exists a slow chart (ξ ,φ) in Rd \ {ξi 6= 0,∀i} for (71) such that

all the coordinates of ξ are polynomial in x and φ ∈ S1.

The theorem is proven in [1]. As an example, consider (71) with

Changing variables so that A is diagonalized yields the complex system

where z = (z1,z
∗
1
,z2,z

∗
2
)T

and z∗
denotes the complex conjugate of z. It is easily

verified that the following are slow variables

ξ1 = z1z∗
1
,

ξ2 = z2z∗
2
,

ξ3 = z2

1
z∗

2
.

Transforming back to the original coordinates x = (x1,v1,x2,v2) the slow variables

become the real polynomials

ξ1 = x2

1
+ v2

1
,

ξ2 = x2

2
+ v2

2
,

ξ3 = x1x2

2
+ 2v1x2v2 − x1v2

2
.

1 and ξ2 correspond to the square of the amplitude of the

1 1 2 2

ξ3, corresponds to the relative propagation of phase in the two oscillators.

(x2,v2) increases twice as fast

1 1

ξThe first two variables,

(x ,v ) and (x ,v ), respectively. The thirdtwo harmonic oscillators described by

variable,

It is slow because, to leading order in ε , the phase of

(x ,v ).as that of

z 0 = z + ~f(x) :

and A is an d × d real diagonalizable matrix with purely imaginary

eigenvalues ±iω , . . . ,±iω , 2r = d. In addition, we assume that all oscillatory

modes are in resonance. This implies that the ratio of every pair of frequencies is 

rational, i.e., for all i, j = 1 . . .r, there exist integers m

A =




1

−1

2

−2


.

0 0 0
0 0 0

0 0 0
0 0 0

1

ε




i

−i

2i

−2i




0 0 0
0 0 0
0 0 0
0 0 0
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Exercise 5. Verify that ∇ξ1, ∇ξ2, and ∇ξ3 are not linearly dependent in any region

in R4 \ Q where Q is the zeros of ξ1, ξ2, and ξ3.

Fully nonlinear oscillators

Dealing with non-linear oscillators is more complicated than linear ones. However,

the slow behavior of weakly coupled systems of oscillators such as Van der Pol,

relaxation and Volterra-Lotka can still be described using some generalization of

amplitude and relative phase. This is beyond the scope of these notes. We refer to [2]

for further reading.

6 Computational exercises

Computer exercise 1. Let u = (x,y,z) and

fε (x,y,z) =




a 1

ε 0

− 1

ε b 0

0 0 − 1

10






x

y

z


+




0

0

x2 + cy2


 . (72)

The equation for u is

u′ = fε (u), u(0) = (1,0,1).

Take ε = 10
−4

, a = b = 0 and c = 1. Find approximations for z(t) in 0 < t ≤ 1 using

the following schemes and compare with the analytical solution. Plot the trajectories

of your approximations of x(t) and y(t) on the xy-plane, and the graph z(t) as a

function of time. Explain what you observe in each case.

(a) Forward Euler using △t = ε/50.
(b) Backward Euler for x and y and Forward Euler for z, using △t = 0.1.
(c) Verlet method or Midpoint rule for x and y, and Forward Euler for z, using △t =

ε/50.
(d) Solve this problem by the HMM–FE–fe method (see below), with Q = R = I

(see Sect. 5.2). h = ε/50, H = 0.1, and hM = 2 ·10
−3.

(e) Derive linear stability criteria on H for HMM–FE–fe, assuming that h = c0ε .

(f) Let a = b = 1 in the system defined above. Solve it by the same HMM–FE–fe

scheme with the same parameters as in (d). Does this scheme correctly approxi-

mate the behavior of z in the time interval 0 < t ≤ 1? Explain.

HMM–FE–fe scheme for u′ = fε (u).

• Macroscale with Forward Euler (FE)

Un+1 = Un + HFn, U0 = Q(u0)
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• Microscale with Forward Euler (fe)

un
k+1

= un
k + h fε(u

n
k), k = 0,±1, · · · ,±M,

un
0 = R(Un).

• Averaging

Fn
:=

1

2M

M

∑
k=−M

Kcos

(
k

2M

)
fε (u

n
k),

Kcos(t) =
1

2
χ[−1,1](t)(1 + cos(πt)) ,

χ[−1,1](x) =

{
1, −1 ≤ x ≤ 1,

0, otherwise.

Computer exercise 2. Following the previous problem, define the slow variable

ξ (x,y) = x2 + y2
and ξ (t) := x2(t)+ y2(t),

where x(t) and y(t) are defined in (72).

(a) Show that dξ/dt can be approximated by averaging:

∣∣∣∣
dξ

dt
(tn)−

∫ ∞

−∞
− d

dt
Kcos

(
tn − t

2Mh

)(
x2(t)+ y2(t)

)
dt

∣∣∣∣≤ Cη p.

Find p.

(b) Modify your previous HMM–FE–fe code to HMM–FE–rk4 (see below) as fol-

lows and determine if the dynamics of z is accurately approximated by this new

scheme. Plot your approximations as in the previous problem. Explain your find-

ings.

(c) Do the same thing as in the previous problem, but with c = 0. Does your multi-

scale algorithm work? Why?

Constrained HMM–FE–rk4 scheme for u′ = fε (u).

• Macroscale with Forward Euler

Un+1 = Un + HFn, U0 = Q(u0).

• Microscale with Runge–Kutta 4 (rk4)

un
k+1

= rk4(un
k ,h), k = 0,±1, · · · ,±M,

un
0 = R(Un).

Here rk4 is an explicit Runge–Kutta 4 routine using step size h.

rk4(y,h) = y +
1

6
(k1 + 2k2 + 2k3 + k4),

k1 = h fε(y), k2 = h fε(y +
1

2
k1), k3 = h fε(y +

1

2
k2), k4 = h fε (y + k3).
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• Averaging

dzn
:=

1

2M

M

∑
k=−M

Kcos

(
k

2M

)(
xn

k · xn
k + cyn

k · yn
k − zn

k

10

)
.

dξ n
:=

1

2M

M

∑
k=−M

G

(
k

2M

)
(xn

k · xn
k + yn

k · yn
k) ,

where G( k
2M

) := −1

2Mh
d
dt

Kcos( t
2Mh

).
• Evaluate effective force

Find a unit vector dXn
such that

dξ n = ∇x,yξ |xn
k
,yn

k
·dXn.

Fn
:=

(
dXn

dzn

)
.

Computer exercise 3. Consider the inverted pendulum equation:

lθ ′′ =

(
g +

1

ε
sin

(
2π

t

ε

))
sin(θ ). (73)

Let ω = θ ′
, rewrite it into a system of first order equations for (θ ,ω). Let Ω

n+ 1

2

denote the averaged macroscopic angular momentum at time (n + 1

2
)H and Θn be

the averaged macroscopic angle. Compute the inverted pendulum solutions by using

the parameters ε = 10
−6

, (Θ0,Ω0) = (0.0,−0.4), g = 0.1, l = 0.05. Experiment with

η = 10ε and 30ε.
This problem is analyzed in [32].

HMM for the inverted pendulum problem.

• Macroscale with Verlet

Given Un = (Θ n,Ω n), for n = 0,1,2, ldots

Ω n+ 1

2 = Ω n +
H

2
· F̃n,

Θ n+1 = Θ n + H ·Ω n+ 1

2 ,

Ω n+1 = Ω n+ 1

2 +
H

2
· F̃n+1,

Here, F̃[θ n,ωn] denotes the averaged force using the solutions whose values at

tn = nH are (θ n,ωn).
• Microscale evolution

Solve lθ ′′ = (g+ 1

ε sin(2π t
ε ))sin(θ ) for tn−η ≤ t ≤ tn+η with the “reconstructed

initial”
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θ (tn) = Θ n,

ω(tn) = θ ′(tn) = R(Θ n,Ω n) := Ω n − sin(Θ n)
cos
(
2π tn

ε

)

2π l
.

(
ω(tn) ≈ Ω n −

〈∫ t

tn

aε

( s

ε

)
sin(θ (s))ds

〉)

• Average

Using the solution computed in the microscale evolutions around tn. Evaluate

F̃n =

〈
(g +

1

ε
sin

(
2π

t

ε

)
)sin(θ )

〉

η

= Kη ∗ f (tn),

where

Kη (t) =
422.11

η
exp

[
5

(
4t2

η2
− 1

)−1
]

,

and

f (t) =

(
g +

1

ε
sin

(
2π

t

ε

))
sin(θ (t)).

Use the Trapezoidal rule to approximate the above convolutions.

Computer exercise 4. The following is a well studied system taken from the theory

of stellar orbits in a galaxy

r′′
1
+ a2r1 = εr2

2

r′′
2
+ b2r2 = 2εr1r2

.

Rewrite the above equation into the standard form (35).

(a) To see how resonances occur, change into polar coordinates and take a = ±2b.

(b) Let a = 2 and b = 1. Find a maximal slow chart.

(c) Apply the HMM algorithm described in Sect. 5.4 to approximate the slow be-

haviour of the system.
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1

The objective of the project was to give an overview and hands-on insight into

modern biotechnological modeling in and across several scales (and dimensions),

from Quantum Mechanics to Classical Mechanics, from Molecular Mechanics to

Molecular Dynamics, and from Single Molecules to Biological Systems. Here we

give a starting tour of using the classical Molecular Dynamics software package

www.

cpmd.org) [2]. Introductions to some useful visualization software software spe-

cialised for biological systems was also given (Visual Molecular Dynamics) [3].

The main focus of this project is to apply multi-scale, here the so-called QM/MM

molecular dynamics, methods to a biological system. In current biophysical model-

ing two main branches exist; classical force-field MD and static QM calculations.

Though both methods are regularly and successfully applied to biological systems,

many intrinsic restrictions exist, some of which are greatly reduced or solved by us-

ing multi-scale QM/MM MD. In classical MD, the by-far most common approach,

the potential energy surface is parametrized through a fitting to empirical and/or

theoretical data. They are therefore intrinsically restricted to situations where no sig-

nificant changes of the electronic structure occur, but for example chemical reactions

can only be treated adequately by a quantum mechanical description. Further restric-

tions include that the force field parameters are pre-defined and do not change when

the system changes, either from conformational changes or from changes in the local

environment. Secondly, if one wishes to model e.g. metallic centers or more uncom-

mon organic molecules, no parameters may be available and a sometimes arduous

and non-trivial parametrization is necessary.

The investigation of our physical surroundings by making quantum mechanical

electronic structure calculations is a rapidly growing field of research. Lately elec-

tronic structure calculations have breached into biology, the science of life itself.

This approach has proven to be very powerful and has modeled chemical reaction

Technology, SE-100 44 Stockholm, Sweden,

hakan@theochem.kth.se,

AMBER [1], and the quantum mechanical Car-Parrinello package CPMD (

Quantum Mechanics/Classical Mechanics Modeling

From Waves to Particles, from Static to Dynamic and from

Single Molecules to Biological Systems
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pathways also in complicated enzymes. The reach of QM calculations is further en-

hanced in first-principles molecular dynamics (FP-MD). Here a MD sampling of the

conformational space is made, giving the system studied more degrees of freedom,

thereby making the simulations less biased upon choices of e.g. initial conditions

and reaction coordinates. Since crystal structures are inherently not the natural bi-

ological conditions/environment, and like NMR structures, are time averages over

structures, this increased independence can be vital for a correct investigation. Also,

in contrast to calculations which provide a map of the potential surface at the zero

temperature limit, FP-MD allows inclusion of finite temperature effects. Finally, a

multi-scale QM/MM method allows the accurate modeling of systems larger than

100-200 atoms. Since this is the case for virtually all biological systems, especially

if one includes the solvent, this extension is vital in biophysics/biochemistry.

Fig. 1. A graphical illustration of how the dipeptide is modeled first in a classical force-

field (MM) description (ball and springs), then in a quantum mechanical (wave function)

workshop by the students.

2.1 From Quantum Mechanics to Molecular Dynamics

In the first part of the project, simulations for a single small dipeptide using either

quantum mechanics or classical (force field - ff) mechanics to describe the intra and

inter molecular interactions, were set up . The simulations are performed at 0K and

in vacuum, using either the AMBER suite of programs (classical mechanics) or the

CPMD suite of programs (for the QM simulations). The dipeptide was chosen since

water [4]

picture and, finally, in a QM/MM fashion, with the QM dipeptide interacting with MM

2 The Exercises

pleted over 3 days of studies. The students were supplied with a written instruction

The excercises were divided into four separate but joined parts, which were com-

manual, reference literature and sample input files. Finally, a project report in the

form of a group presentation and a 10 page report was made and presented at the
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it is small enough to allow for full QM modeling (very computer resource intensive),

while also retaining some of the main characteristics of biological systems, e.g. high

flexibility and some protein functional groups.

To illustrate the versatility of the AMBER suite, the module ”ANTECHAM-

BER” and the so-called Generalized Amber Force Field (GAFF) parameters were

used. Starting from a .pdb (Protein Data Base) file of the dipeptide (alanine-glycine),

the .pdb-format being the standard for reported biological structures, and using the

AMBER ”LEAP” program, all the necessary input files for the AMBER minimisa-

tion and dynamics program ”Sander” (the MD driver) can be created in a near-to au-

molecules, and even if less well parameterized than the specialized force field param-

eters available for proteins and nucleic acids, they are often well performing. Using

Sander we then performed a simple geometry optimization of the system. From the

ulation using the CPMD software package. To illustrate the difficulty in finding the

minimal energy structure, we suggested the students to also perform the geometry

optimization using an annealing algorithm, i.e. a short molecular dynamics run was

total energy of the annealed structure is lower).

The second part introduced the dimension of time (in the form of temperature

and movement) into the simulations. Into the Sander input files for the geometry op-

at 300K, still in vacuum. The energy optimized structure, and restart files, from Part

1 were used as starting points. Into the CPMD input file we also added the necessary

thermostat MD. We began with a “Quench-Annealing” run (i.e. calculating the op-

2.2 From Single Molecules to Biological Systems

to equilibrate the surrounding water system first using classical MD. Returning to the

were once again visualized using VMD, noting the evolution of geometries (as in

the previous section), also the difference when performing the MD with an initial

restraint on the solute molecule.

In a summation of prior experiences and skills from this project; multi-scale

quantum mechanics/molecular mechanics (QM/MM) simulations were setup and ex-

and a more expedient handling of the (less critical) molecular water solvent. Using

performed where the temperature of the system was gradually reduced to zero (the

timization we now added keywords to perform molecular dynamics (MD) simulations

timized wave function for the starting geometry and then also reducing the beginning

tomated fashion. Using GAFF will generate force field parameters for most organic

our system.

same .pdb file of the dipeptide we also created the necessary input for a QM sim-

temperature of the system to zero), to relax bonds and remove excess energy from

In the third part a more biologically realistic system was modeled by immersing the

prior section - for reasons of available computer resources and accessible time spans,

ecuted. This allowed a reliable quantum mechanical simulation of a solute dipeptide

dipeptide in a water solution. Here it was necessary, as seen from the analysis of the

keywords to perform first temperature scaling MD (at 300K) but also Nose-Hoover

LEAP program the dipeptide was setup with a surrounding water box. The dynamics

the equilibrated systems from the previous part we transported the resulting structures
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into a QM/MM addition to the CPMD software package. As an extension, possibly

system into a QM and a MM region using so-called linker atoms may be given.

3 Conclusion

The objective of the project was to give an overview and hands-on insight into mod-

ern biotechnological modeling in and across several scales (and dimensions), from

Quantum Mechanics to Classical Mechanics, from Molecular Mechanics to Molec-

ular Dynamics, and from Single Molecules to Biological Systems. A very step-wise

approach to teaching these methods was taken. This had the advantage that the stu-

dents, coming from very diverse backgrounds in computational science, could start

at the level most appropriate for each one and then progress onwards from there.
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The quest for an accurate simulations of the physical world, most vividly expressed

in the vision of Laplace’s daemon [1], is almost as old as quantitative science. Natu-

rally, such a simulation requires the knowledge of all the relevant physical laws, i.e., a

Theory of Everything. For the phenomena involving scales larger than an atomic nu-

cleus and smaller than a star, or, equivalently, for processes at ordinary energies, it is

known. This Theory of almost Everything is the combination of Newtonian gravity,

Schrödinger equation, Dirac remarked that the theory behind atomic and solid-state

physics, as well as chemistry are completely known [4]. The fundamental equation

to be solved for describing the properties of atoms, molecules, or solids is the inno-

cently looking eigenvalue problem

H|Ψ〉 = E|Ψ〉 (1)

where the Hamiltonian for a set of atomic nuclei and their electrons is given by

H = − 1

2m
∑

j

∇2

j −∑
α

1

2Mα
∇2

α −∑
α , j

Zα e2

|r j − Rα | + ∑
j<k

e2

|r j − rk|
+ ∑

α<β

Zα Zβ e2

|Rα − Rβ

Here Zα and Mα are the atomic number and mass of the α th
nucleus, Rα is its lo-

cation, e and m are the charge and mass of the electron, and r j is the location of

the jth

phenomena of our everyday experience. In addition it accounts for quite counterin-

tuitive phenomena, the most spectacular perhaps being macroscopic quantum states

ply specify the types of atoms in the system, write down the Hamiltonian for the

corresponding nuclear charges and electrons and find the ground-state of the system

by finding the lowest eigenvalue of the Schrödinger equation (1). While simple in

Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany,

Maxwell’s theory of electrodynamics, Boltzmann’s statistical mechanics, and quan-

electron. This equation, augmented by gravitational potentials, and includ-

|

like superconductivity, or the entangled states that enable quantum computing.

tum mechanics [2, 3]. Consequently, already shortly after the formulation of the

.

The recipe for simulating, e.g., a superconductor is then straightforward: Sim-

ing relativistic corrections as the microscopic basis of magnetism, account for the
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principle, in practice such an approach is not feasible. To understand why, let us con-

sider a single atom of iron. Having 26 electrons, its wavefunction Ψ(r1,r2, . . . ,r26)
is a function of 78 coordinates. What does it take to store such a wave function?

If we are content with recording Ψ at merely ten values for each coordinate, we

would have to store 10
78

values. Storing these on DVDs with a capacity of 10 GB,

we would need more than 10
68

DVDs. With a weight of 10 grammes per DVD, this

would correspond to 10
66

kg of DVDs – more than the mass of the visible universe.

Just for comparison, the mass of the earth is a minute 5 · 10
24

kg. Thus there is not

enough matter in the visible universe for storing even the crudest of representations

of the wave function of a single iron-atom. This complexity of the wave function is

the essence of the many-body problem.

But would it really be desirable to know the full wave function of a solid, even if it

was possible? On the one hand, yes, because from the wave function we could readily

calculate all expectation values. Thus we would be able to make reliable predictions

of material properties. The physics would, however, be buried in the masses of data.

In some sense the situation would be like that of the cartographers in Lois Borges’

ON EXACTITUDE IN SCIENCE . . . In that empire, the craft of cartography attained

such perfection that the map of a single province covered the space of an entire city,

and the map of the empire itself an entire province. In the course of time, these exten-

sive maps were found somehow wanting, and so the college of cartographers evolved

a map of the empire that was of the same scale as the empire and that coincided with

it point for point. Less attentive to the study of cartography, succeeding generations

came to judge a map of such magnitude cumbersome, and, not without irreverence,

they abandoned it to the rigours of sun and rain. In the western deserts, tattered frag-

ments of the map are still to be found, sheltering an occasional beast or beggar; in

the whole nation, no other relic is left of the discipline of geography.

From Travels of Praiseworthy Men (1658) by J.A. Suarez Miranda

What we really expect from a good simulation, besides reliability, is insights,

e.g., into the mechanism of giant magneto-resistance. Only such understanding will

give guidance when we try to optimize materials, e.g., when we try to find materials

with ever higher magneto-resistance, which can be used in the reading heads of hard-

disks of increasing capacity.

Only by discovering such mechanism, we can understand nature without always

having to start from first principles. This approach is based on the concept of emer-

gence, which views science as a hierarchy of structures [6]: high energy physics deals

with the interactions among elementary particles, at lower energies they condense

into bound states, the subject of nuclear physics. At the energy-scales of everyday-

life we enter the realm of chemical bonds, studied in chemistry and condensed matter

physics. At even lower energy scales we finally encounter bizarre macroscopic quan-

tum effects, like superconductivity, studied in low-temperature physics. At each level

in this hierarchy entirely new properties emerge, which are largely independent of the

details on the previous level: The chemical bond, e.g., is a concept that can hardly

be understood as a subtle consequence of the field equations of particle physics. In-

short story [5]:
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deed, for studying the chemical bond, the arrangement of the quarks in the atomic

nuclei is largely irrelevant. This is why we can base our investigations of solids on

the effective Theory of Everything (1).

A practical approach to approximately solve equation (1) without having to deal

with the full complexity of the many-body problem is density-functional theory [7].

Actual simulations are based on the picture of individual electrons filling atomic- or

molecular-orbitals, or extended states in solids. The approach has proved extremely

successful in describing chemical bonding, recognized with the 1999 Nobel Prize in

chemistry.

By the nature of the approximations used, density-functional calculations are,

however, largely confined to materials, where the picture of individual electrons is

adequate. This model of weakly interacting quasi-particles is Fermi-liquid theory.

There is, however, a remarkable variety of strongly correlated materials for which

this standard model of electronic structure theory breaks down. The hallmark of

these materials is that some of their electrons are neither perfectly localized, nor fully

itinerant. These electrons, because of Coulomb repulsion, can no longer be consid-

ered individually. The resulting behavior presents some of the deepest intellectual

challenges in physics. At the same time interest in these materials is fuelled by as-

tounding possibilities for technological applications. Prominent examples of strongly

correlated materials are the transition-metal oxides, including the high-temperature

superconductors, and molecular crystals, including low-dimensional organic conduc-

tors and superconductors [8].

When dealing with strongly correlated electrons we have to face the many-body

problem. As we have seen this presents enormous practical problems, so only ap-

proximate solutions, like dynamical mean-field theory [9], that maps the infinite lat-

tice to an impurity problem which has to be solved self-consistently, are possible.

While enormously reducing the cost of the simulation, such non-perturbative cal-

culations are still limited to quite simple model-Hamiltonians [10]. It is therefore

crucial to construct models that are as small as possible, while still capturing the

essential chemistry of the real material.

The practical approach to studying the intriguing interplay of lattice structure,

spin-, charge-, and orbital-ordering as well as superconductivity and magnetism in

strongly correlated materials works in two steps. In the first step, ab-initio calcula-

tions, based on density-functional theory, are used to obtain the kinetic-energy (one-

electron) part of the Hamiltonian. Next, the high-energy states are integrated out,

only the low-energy partially filled (d or f ) bands are retained, and a basis of first-

principles Wannier functions is constructed. These Wannier functions (Fig. 1), by

construction, carry the information on the lattice and the chemistry; furthermore, they

are localized, so that the Coulomb repulsion is very short range in this basis. In the

second step, the material-specific few-bands many-body Hamiltonians constructed

by means of these Wannier functions are solved by many-body methods, such as the

dynamical mean-field approximation. This two steps approach has been used very

successfully, e.g. to account for the metal-insulator transition in 3d
n

transition-metal

oxides [11]. Still, even low-energy few-bands models can be solved nowadays only

thanks to high performance computers [12]. The task of solving the full many-body
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Fig. 1. Wannier functions and orbital order in monoclinic LaVO3.

problem in a realistic setting will remain the main challenge in condensed matter for

years to come. Bridging the high and low energy electronic degrees of freedom is not

only one of the deepest problem in contemporary physics but should also provide a

wealth of exciting materials for novel technologies.
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1 The climate system and its modeling

The climate system covers a large span of spatial and temporal time-scales, which

range from molecular length scale and fractions of a second to global extension and

thousands of years. The former are displayed in the micro physics of a cloud drop,

while the latter can be found in the deep circulation of the ocean. The scale inter-

action gives rise to the complexity of the climate system. In the presented projects,

two important aspects of the climate system are explored: its sensitivity to external

forcing and its internal variability.

The climate system is regarded to consist of several components, i.e. the atmo-

sphere, the hydrosphere (oceans), the cryosphere (ice sheets), the lithosphere (soil,

rocks), and the biosphere. Owing to Earth’s shape the incoming solar radiation cre-

ates an equator-to-pole temperature gradient which drives the so-called general cir-

estimates show that this is mainly accomplished by the atmospheric eddies [3]. The

largest contribution comes from the midlatitudinal high and low pressure system

which describe our daily weather. These eddies arise from the baroclinic instability

of the atmosphere, which is directly related to the latitudinal temperature gradient.

Since the climate system combines multiple scales as well as different fields of

science, the system is usually explored using numerical models, i.e. global climate

models (GCM). Therein, a central problem is to compromise between resolved pro-

cesses and computational time. As our interest lies on global spatial scales and cli-

matological time scales of at least several decades, many processes of small and fast

number of parameters. The choice of the right value leaves some freedom to the

model designer. However, it might affect the internal dynamics and the sensitivity to

external forces greatly.

In order to achieve a quantitative understanding of the climate system, Earth’s

global energy balance [1] is reconsidered, where absorbed solar radiation and outgo-

ing terrestrial radiation are balanced:

Department of Meteorology, Stockholm University, SE-106 91 Stockholm, Sweden,

the induced temperature gradient by setting up a poleward heat transport. Latest

scales cannot be resolved in the model, but are parameterized, giving rise to a large

culation of the ocean and the atmosphere. The aim of this circulation is to diminish

in a Global Climate Model

Climate Sensitivity and Variability Examined
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S0

4
(1 − αp) = εσT 4

s . (1)

The solar constant S0 measures the incoming solar radiation in Wm
−2

, which is dis-

tributed over Earth’s surface, thus divided by four. The planetary albedo αp describes

how much solar radiation is reflected into space by clouds, ice or others. The terres-

trial temperature seen from space relates to a mid-atmospheric level owing to the

radiative properties of the atmosphere. The usage of the global surface temperature

Ts

the effective emissivity temperature of the climate system. The direct relation follows

from the vertical heat exchange controlled by convection and latent heat release.

The model used in the presented studies is the Planet Simulator [2] which is

developed by the Department of Meteorology at the University of Hamburg. The

Planet Simulator belongs to the family of Earth system models with intermediate

complexity. The atmospheric component solves the primitive equations in terms of

spherical harmonics, where, in the presented results, a triangular truncation is applied

at a total wave number of 21. Vertically, the model applies finite differences on 10

levels from the surface to about 16 kilometers. In order to model Earth’s climate, a

realistic representation of the weather systems is vital. Thus, the focus of the Planet

Simulator lies on the atmosphere, while the other components of ocean, land, ice and

vegetation are strongly simplified. The model package is freely available, portable,

parallel, and provides a graphical user interface. The students installed the package

either on their own laptop, workstations at their home institutions, or on a Linux

cluster at the National Supercomputer Centre (NSC) in Linköping.

2 Project: Climate sensitivity

The first project assessed the climate sensitivity to prescribed changes of the atmo-

spheric carbon dioxide (CO2) concentration. This problem relates to the topic of

temperature response while simulating numerically smaller-scale feedback processes

of the climate system, e.g. clouds or ice cover.

ranging from half of today’s concentration to 4.5 times it. The model was integrated

50 years in order to reach a stable climate state. The last 20 years were then aver-

temperature increase which is comparable to the results of the latest IPCC report.

The left panel of Fig. 1 shows the effect of the CO2-content on the albedo. The

largest impact stems here from the surface albedo, and thus from the ice-albedo

concentrations amplifies the temperature increase. The change in the atmospheric

albedo due to clouds is of minor importance.

Due to the uncertainty of future economic scenarios, Paul Constantine suggested

to describe the future CO2 concentration as β -distributed between 200 and 1000 ppm

in (1) requires the parameter ε which relates the surface temperature directly to

anthropogenically induced climate change. Here, the focus lay on the global-scale

The students conducted 9 climate scenarios with different CO2 concentrations

feedback (not shown). According to (1), the reduced albedo at higher CO2-

aged as the response to the given forcing. The model produces for increasing CO2 a
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Fig. 1. Left: Planetary (solid), atmospheric (dashed) surface (dash-dotted) albedo as a function

of CO2 concentration. Reproduced by courtesy of Oscar Björnham, Emanuel Rubensson, Sara

Zahedi. Right: Variance of the temperature response for the β -distributed CO2-concentration

as function of geographical longitude and latitude. Reproduced by courtesy of Paul Constan-

tine.

(parts per million volume). The respective temperature response is then treated as a

random variable. Here, we will examine only one case, where the maximum of the

CO2-distribution lies at 600 ppm. The right panel of Fig. 1 shows the variance of

the temperature response. The largest variances are seen in high latitudes, probably

related to the sea-ice cover. All in all, the model simulations stress a strong impact

of sea-ice on the model climate.

3 Project: Climate variability

The second project studied the issue of internal climate variability. It was examined

how an external change of the incoming solar radiation affects the ability of the

climate system to reduce the equator-to-pole temperature difference.

Five model simulations were prepared by the students. Besides the control exper-

iment with the present-day value of the solar constant of 1365 Wm
−2

, the following

fractions of the current solar constant were chosen: 25%, 50%, 75%, and 125%. Each

simulation was integrated for 100 years, but the last one stopped after 33 years for

unknown reasons. The state of the climate system was saved every 6 hours yielding

a total of 200 gigabyte raw data.

The left panel of Fig. 3 shows the normalized net radiation for all experiments.

Interestingly, the relative amount of poleward transported energy decreases with de-

creasing solar constant. The spectrum of the wind speed at an arbitrary point in mid-

latitudes (right panel of Fig. 3) yields a better understanding. Only the experiments

with at least 100% of present-day’s solar constant yield a local maximum at time-

scales of a few days. This maximum is related to the weather systems which con-

tribute crucially to the poleward heat transport. Due to scale interactions the weather

systems also induce higher variance on lower frequencies in the climate system. For

too low solar constant values, the baroclinic instability seems to be absent from the

atmosphere. Therefore, the latitudinal bands nearly fulfill a local radiative balance.
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Fig. 2. Left: Difference between absorbed solar radiation and outgoing terrestrial radiation as

a function of geographical latitude. Values are normalized by the global mean of the absorbed

solar radiation. Right: Power spectral density of the horizontal wind speed at Austin, Texas as

−1 present-

day solar constant.

The experiments demonstrate that the baroclinic instability plays an essential role for

the global temperature distribution.
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Coarse-scale Modeling of Flow in Gas-injection

Processes for Enhanced Oil Recovery

James V. Lambers
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1 Introduction

Subsurface formations that arise in the simulation of gas-injection processes for en-

hanced oil recovery may exhibit geometrically complex features with complicated

large-scale connectivity. They must be included in simulations of flow and trans-

port because they can fundamentally impact simulation results. However, to reduce

computational costs, simulations are generally performed on grids that are coarse

compared to the given geocellular grids, so accurate upscaling is required.

In this work we are concerned with transmissibility upscaling. In the presence

of full-tensor effects, multi-point flux approximations (MPFA) are desirable for the

sake of accuracy, as opposed to two-point flux approximations (TPFA). However,

MPFA methods add computational costs and may suffer from non-monotonicity (see

[5]).

In [4], Variable Compact Multi-Point (VCMP) upscaling was introduced. This

method constructs a local MPFA that accommodates full-tensor anisotropy, and guar-

antees a monotone pressure solution (see [3]). While it has been demonstrated that

VCMP performs quite well, compared to other upscaling methods, it does not per-

form as well for highly channelized domains that are likely to arise in the simulation

of gas injection processes.

In this paper, we consider some modifications to VCMP in order to improve its

accuracy for such cases. The general design of the VCMP methods is summarized in

Sect. 2. In Sect. 3, we present strategies for improving the accuracy and/or efficiency

of VCMP. We discuss the results and future directions in Sect. 4.

2 Variable Compact Multi-Point (VCMP) Upscaling

In this section, we briefly review VCMP upscaling. We consider single phase, steady

and incompressible flow in a heterogeneous reservoir. The governing dimensionless

pressure equation, at the fine and coarse scales, is

94305-2220, USA,

lambers@stanford.edu
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∇ · (k ·∇p) = 0. (1)

by appropriate reference values.

For simplicity, we consider a two-dimensional reservoir, and describe how VCMP

upscales transmissibility to a Cartesian coarse grid. To create a MPFA, we allow the

stencil to vary per cell face. Our MPFA uses a subset of the six pressure values p j,

correspond to the points that would be used in a TPFA. For each j, we let t j denote

the weight that will be assigned to point j in the flux approximation, which has the

general form f = −tT p, where t =
[

t1 · · · t6
]T

, p =
[

p1 · · · p6

]T
.

We solve the pressure equation on a local region of the fine grid containing the

six points with two sets of generic boundary conditions. We let p1(x,y) and p2(x,y)
be the solutions of these local problems, and pi

j denote the value of pi(x,y) at point

j. For i = 1,2, we let fi denote the coarse-scale flux across the face obtained from the

local solution pi(x,y). To compute the weights t j, we solve the general optimization

problem

min
t

2

∑
i=1

α2

i |tT pi − fi|2 +
6

∑
j=3

β 2

j t2

j , (2)

subject to the essential linear constraints to maximize robustness. Extension to quasi-

Cartesian adapted grids is discussed in [4].

3 Modifications to VCMP

In this section, we consider three strategies for improving the accuracy and efficiency

of VCMP, particularly for channelized domains.

3.1 Combination with MLLG Upscaling

Local-global (LG) upscaling, introduced in [1], offers improved accuracy for per-

meability fields that exhibit strong global connectivity. Combined with local grid

adaptation strategies, LG helps to reduce process dependency and leads to improved

efficiency. This combination is known as Multi-Level Local-global upscaling, intro-

duced in [2].

The distinction between local-global methods and local methods, such as VCMP,

is that local-global methods compute global solutions of the pressure equation (1) on

the coarse grid. Then, these global solutions are interpolated at points on the bound-

ary of each extended local region. These boundary values serve as Dirichlet data

for the local fine-scale solves that are used to compute upscaled transmissibilities.

An iteration is used to ensure consistency between the fine and coarse scales, and

because the boundary data for the local solves can account for global connectivity,

greater accuracy is achieved for highly channelized domains than for local methods,

including VCMP.

Here p is the pressure and k the permeability tensor, all of which are non-dimensionalized

j = 1, · · · ,6, at the six coarse cell centers nearest the face, where j = 1 and j = 2
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Like any other local method, VCMP is easily modified to use a local-global ap-

proach. However, the interpolation of the global coarse-scale solutions to the fine

grid is a crucial step that must be performed carefully to ensure the same accuracy

and robustness that VCMP can deliver for other domains. Whereas MLLG only uses

linear interpolation, we consider both quadratic and cubic spline interpolation. Pre-

liminary results clearly demonstrate substantial (up to 50%) improvement in the ac-

curacy of the coarse-scale resolution of the fine-scale velocity field for channelized

domains, compared to using the original, local VCMP method or MLLG with linear

interpolation.

3.2 Criteria for Adaptive Mesh Refinement

MLLG includes a scheme for adaptive mesh refinement in which cells in high-flow

regions are refined isotropically (for details see [2]). In addition to this criteria, a

local-global version of VCMP will refine around faces for which it is unable to com-

pute weights ti with the proper sign based on local flow, or the computed MPFA

causes the matrix for the global pressure solve to have an off-diagonal element with

an incorrect sign. To determine which cells lie in high-flow regions, we compute the

fluxes across each face in the coarse grid from global pressure fields, and compare

them to the total flow. If the magnitude of the flux across the face is considered to be

too high, then cells surrounding the face are refined.

However, this refinement may not be necessary if the high flow occurs within

a channel that is nearly orthogonal to the face. We therefore use a simple channel-

detection scheme in which refinement is not performed when flow across a face is

nearly equal to flow across neighboring faces with the same orientation, and flow

across neighboring faces with other orientations is negligible. Experimentation has

demonstrated that such a channel detection scheme allows for the same accuracy to

be achieved with a modest (∼8%) reduction in the number of cells.

3.3 Anisotropic Refinement

In the interest of reducing the number of cells in the coarse grid, we consider whether

it is possible, in at least some cases, to refine anisotropically without sacrificing accu-

racy or robustness. Initial experimentation has shown that at least a small reduction

in the number of cells can be achieved, without loss of accuracy, provided that

• The aspect ratio of newly created cells is limited,

• Cells in high-flow regions are still refined isotropically,

• Cells in low-flow regions, that are only refined to improve robustness, are refined

anisotropically, parallel to faces that are flagged for refinement.

4 Conclusions

We have explored three avenues of improvement in the accuracy and efficiency of a

proposed combination of two new methods, VCMP and MLLG, of transmissibility
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upscaling for coarse-scale modeling of single-phase flow in highly heterogeneous

subsurface formations. In experiments with various channelized domains, all three

strategies, to varying extents, yielded improved accuracy and/or efficiency in terms

of reduction of the number of cells in the coarse grid or more accurate resolution

of the fine-scale velocity field. In combination, these modifications should enhance

performance even further.

In future work, we will consider the use of essentially non-oscillatory (ENO)

interpolation schemes in computing Dirichlet boundary data for local solves, so that

the monotonicity of the pressure field is not lost in the transition from the coarse scale

to the fine scale. In addition, we will develop more sophisticated tests for detecting

the presence and orientation of channels in order to guide adaptivity. Finally, the

various adaptivity criteria include parameters that must be tuned in order to achieve

optimal performance for a given permeability field; methods for automatically setting

these parameters need to be developed.

In conclusion, it can be seen that substantial progress is being made toward cre-

ating a method for automatically generating coarse-scale models for gas-injection

processes that are both accurate and robust for a wide variety of permeability fields

and boundary conditions.
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1 Introduction

The radiation produced by stars (and some other objects such as accreting black

holes) interacts with the gaseous matter in the universe. Since most matter is hydro-

gen (90% by number), often found in atomic form, the amount of radiation above

13.6 eV (1 Rydberg, the ionization energy of H) is an important property of stars.

Such radiation, called extreme ultra-violet (EUV) radiation, is mostly produced by

massive stars (more than ∼10 solar masses). The first stars in the universe were most

likely such very massive stars.

EUV radiation does two things to the gas.

+
+

e
−

).

Now obviously, there are also other elements in astrophysical gases, the next most

abundant being helium (10% by number), and then C, N, O, etc.. (all at the level of ∼
10

−4
or lower). Because of its relatively high concentration, helium does also absorb

some amount of photons, but this we will neglect here. The other elements have

too low a concentration to absorb many photons, but are important for the radiative

cooling.

The phase change in the gas due to photo-ionization of H feeds back into the

dynamics because it changes the pressure. The pressure of an ideal gas is given by

p = nkBT (1)

where n is the total number of particles, kB is the Boltzmann constant (1.381×10
−16

erg/K), and T is the temperature. Photo-ionization raises the total number of particles

by adding electrons to the gas (so for pure H gas the number of particles is doubled

for total ionization), and by raising the temperature. The increase in pressure triggers

a dynamical response from the gas, and photo-ionization leads to interesting flow

patterns, see e.g. [2].

1. It ionizes the H atoms turning the gas into a plasma of charged particles (H

2. It heats the gas using the excess photon energy above 1 Ry.

,
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The fluid dynamic equations for photo-ionization are

∂ρ

∂ t
+ ∇ · (ρv) = 0 (2)

∂ρv

∂ t
+ ∇∇∇ · (ρv ⊗ v) = −∇∇∇p (3)

∂e

∂ t
+ ∇ · ((e + p)v) = H −C (4)

where ρ is the mass density, v is the velocity, e = 1

2
ρv2 + p/(γ −1) is the total energy

(kinetic plus internal, γ is the adiabatic index, 5/3 in this problem), and H and C

are the heating and cooling rate. Photo-ionization effects come in through H and p.

The number density of ionized hydrogen in the gas n[H+] is given by

dn[H+]

dt
= n[H0]Γ − n[H+]neα(T )+ n[H0]neC(T ) (5)

where Γ is the photo-ionization rate (number of ionizing photons per second), ne

is the electron (number) density, α(T ) is the temperature dependent recombination

rate, and C(T ) is the temperature dependent collisional ionization rate.

The photo-ionization rate follows from the radiative transfer equation

∂ Iν

c∂ t
+ ∇∇∇ · (ΩΩΩ Iν) = −κνIν + jν (6)

where Iν is the intensity of radiation in a solid angle ΩΩΩ and κν and jν are the ab-

sorption and emission rates. We will simplify this equation by disregarding jν (no

ionizing photons are produced outside of the star), and assuming that the star has a

constant luminosity, and the size of the ionized domain is small enough that the finite

speed of light does not play a role (
∂ Iν
c∂ t

=0). Then along one ray the photo-ionization

rate can be written as

Γ =
1

4πr2

∫ ∞

ν0

Lν

hν
aνe−τν (r)

dν , (7)

where r is the distance along the ray, Lν is the stellar luminosity and τν is the so-

called optical depth characterizing the amount of absorption between the star and the

current position

τν (r) =

∫ r

0

aνn[H0]dr , (8)

where aν is the photo-ionization cross section of hydrogen.

Similarly the photo-ionization heating rate becomes

H =
n[H0]

4πr2

∫ ∞

ν0

h(ν − ν0)
Lν

hν
aνe−τν (r)

dν (9)

The cooling rate C is generally a complicated function of temperature, depending on

the concentrations of various atoms and ions in the gas. We will consider it given (in

the form of a table). More in depth descriptions of the photo-ionization physics can

be found in for example [4, 1].
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2 Multi-scale Problem

Let us consider the evolution of the ionized hydrogen density. This is a stiff ODE, and

physically n[H
+

] has to lie between 0 and n[H] (so numerical under- and overshoots

can produce unphysical solutions). For constant ne (for the sake of argument), this

ODE has the solution

n[H+](t) = n[H+]eq +(n[H+](0)− n[H+]eq)exp(−t/ti) (10)

with

n[H+]eq = n[H] Γ +neC(T )
Γ +neC(T )+neα(T )

(11)

ti = 1

Γ +neC(T )+neα(T) (12)

i.e., it converges to an equilibrium solution n[H+]eq in a typical time ti. This time

is completely unrelated to the intrinsic time scale for the flow equations, thydro =
∆r/(v+vs), where v2

s = γ p/ρ is the sound speed. This is the first multi-scale problem

for photo-ionization hydrodynamics. Since we are interested in the dynamics, we

want to evolve our system on a time scale thydro. If ti ≫ thydro this is not a problem,

but for the more typical case of ti ≪ thydro we have to take special measures.

This type of multi-scale problem is quite general when dealing with reactive

flows, i.e. it is similar to that when chemical reactions are happening in the flow.

This is typically solved with an iterative/implicit method. However, in the case of

photo-ionization, the problem is more complicated. The reason is that Γ at position

r depends on the optical depth τ , which in turn depends on the density of neutral

hydrogen between the source and position r. Equation (8) can be rewritten as

τν (r) = aν

∫ r

0

n[H0]dr = aνN[H0](r) (13)

where N[H0](r) is known as the column density of neutral hydrogen between the

source and point r. If during thydro, N[H0](r) changes considerably, the rate of pho-

tons arriving at position r is not constant, so Γ will be changing. This is why the

photo-ionization case is more complicated than the chemical reaction case: it is a

non-local effect.

There is a second multi-scale effect, this time having to do with length scales.

We are solving our problem on a discretized grid with cell size ∆r. This means that

a cell with central position r has an optical depth

∆τν (r) = aν

∫ r+ 1

2
∆ r

r− 1

2
∆ r

n[H0](r)dr = aνn[H0](r)∆r (14)

If this ∆τ is large, Γ will differ considerably between the point where the ray enters

the cell, and where it leaves the cell. Using one value of Γ for the entire cell will give

the wrong answer.

Our ultimate goal is to find solution(s) for these two multi-scale problems, the

first having the do with the time scale, the second with the length scale.



310 G. Mellema

3 Project

A method for dealing with multiscale problems was presented in [3]. The time scale

problem was dealt with by using time-averaged values of the optical depth, and the

length scale problem by taking a finite-volume type approach for cells. This method

works well for calculating the ionization fraction, but has some problems getting

the photo-ionization heating right. The reason is that a time-averaged optical depth

implies the use of one value for the heating per photo-ionization reaction. In reality

To study possible fixes for this problem, we will first try to modify the method

from [3] to use a time-averaged value of exp(−τ) instead of τ , since it is exp(−τ)
that enters (7) and (9).

be used instead of the time-averaged optical depth method from [3]. Efficiency is

of the utmost importance since this problem has to be solved for every grid point,

combined have to cover the interval ∆ thydro. This approach is an implementation of

the idea of micro time steps within macro time steps, as taught during the summer

school.
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Secondly we will develop an explicit, but efficient integrator for (5) that can

at every hydrodynamic time step. This integrator can use its own time steps, which

the efficiency of the heating changes, a process known as ‘photon hardening’ [4].
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1 Introduction

Chemical reactions in bulk can be analyzed in terms of elementary steps that on the

molecular level simply consist of molecular encounters. At the very basic level such

events are described by the dynamics of participating electrons and atomic nuclei.

It is generally accepted that the theory of such dynamics is contained in the time-

dependent Schrödinger equation for the total reacting molecular system,

HΨ = ih̄
∂Ψ

∂ t
, (1)

where H is the quantum mechanical Hamiltonian, t the time parameter, and Ψ the

wave function that describes the evolving state of the reacting system.

Because the electron dynamics is fast with typical cycle times of 10
−17

sec-

onds
1
, and the nuclear rovibrational cycle times are orders of magnitude slower,

i.e. 10
−13 −10

−14
seconds, it is common to effectively separate the electron dynam-

ics from that of the atomic nuclei. In practice this is achieved by first solving the

electronic Schrödinger equation

HelΦk(x;X) = Uk(X)Φk(x;X), (2)

solutions of which are sought for fixed nuclear positions X . When electronic structure

calculations are carried out for a large enough set of nuclear geometries so-called

Born-Oppenheimer potential energy surfaces (PES’s) Uk(X) are obtained. A PES

defines the average forces on the atomic nuclei and one can use classical mechanics,

semiclassical methods or quantum mechanics to study the nuclear dynamics on such

potential energy surfaces and when the electronic state changes during the reaction

it can be depicted as as surface hopping.

clear degrees of freedom become important, such as may be the case in electron

1
The atomic unit of time is 2.41888 × 10

−17
seconds, which is the revolution time for the

electron in the Bohr model as well as the quantum theory of atomic hydrogen

For chemical reactions where the electron dynamics and its coupling to the nu-

Gainesville, FL 32611-8435, USA,

ohrn@qtp.ufl.edu,
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transfer processes, there are alternative theoretical and computational approaches.

Our project in this Summer School on Multiscale Modeling and Simulations in Sci-

ence employed such a methodology called Electron Nuclear Dynamics (END) theory

[10, 2].

The starting point is the action

A =

∫ t2

t1

L(ψ ,ψ∗)dt, (3)

in terms of the quantum mechanical Lagrangian (h̄ = 1)

L = 〈ψ |H − i
∂

∂ t
|ψ〉/〈ψ |ψ〉. (4)

The time-dependence is carried by a number of wave function parameters q(t), such

as average nuclear positions and momenta, and molecular orbital coefficients, etc.

The principle of least action or the time-dependent variational principle δA = 0

yields the Euler-Lagrange equations

d

dt

∂L

∂ q̇
=

∂L

∂q
. (5)

Should the wave function be so general that its variations can reach all parts of

Hilbert space, then the Euler-Lagrange equations would become the time-dependent

Schrödinger equation. However, for all problems of chemical interest the, necessar-

ily, approximate wave function form for the molecular system will yield a set of

coupled first-order differential equations in the time parameter t, which in a varia-

tional sense optimally approximates the time-dependent Schrödinger equation. The

wave function parameters q(t) that carry the time-dependence play the role of dy-

namical variables and it becomes important to choose a form of evolving state vector

with parameters that are continuous and differentiable. Generalized coherent states

are useful in this context [8, 2].

2 Minimal END

END theory can be viewed as a hierarchical approach to molecular processes. The

various possible choices of families of molecular wave functions representing the

participating electrons and atomic nuclei can be arranged in an array of increasing

complexity ranging from a single determinantal description of the electrons and clas-

sical nuclei to a multi-configurational quantum representation of both electrons and

nuclei [5]. The simplest level of END theory is implemented in a program package

[3] that includes efficient molecular integral routines and well tested propagation

algorithms to solve the system of coupled END equations.

This minimal END employs a wave function

|ψ(t)〉 = |R(t),P(t)〉|z(t),R(t),P(t)〉 (6),
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where

〈X |R(t),P(t)〉 = ∏
k

exp[−1

2
(

Xk − Rk

b
)2 + iPk · (Xk − Rk)] (7)

and

〈x|z(t),R(t),P(t)〉 = detχi(x j) (8)

with the spin orbitals

χi = ui +
K

∑
j=N+1

u jz ji(t) (9)

expanded in terms of atomic spin orbitals

{ui}K
1 (10)

which in turn are expanded in a basis of traveling Gaussians,

(x − Rx)
l(y − Ry)

m(z− Rz)
n

exp [−a(x − R)2 − i

h̄M
P · (x − R)] (11)

centered on the average nuclear positions R and moving with velocity P/M.

In the narrow nuclear wave packet limit, a → 0, the Lagrangian may be expressed

as

L = ∑
i, j

{[Pjl +
i

2
(

∂ lnS

∂R jl

− ∂ lnS

∂R′
jl

)]Ṙ jl +
i

2
(

∂ lnS

∂Pjl

− ∂ lnS

∂P′
jl

)Ṗjl}

+
i

2
∑
p,h

(
∂ lnS

∂ zph

żph − ∂ lnS

∂ z∗
ph

ż∗
ph)− E (12)

with S = 〈z,R′,P′|z,R,P〉 and

E = ∑
jl

P2

jl/2Ml + 〈z,R′,P′|Hel |z,R,P〉/〈z,R′,P′|z,R,P〉. (13)

Here Hel is the electronic Hamiltonian including the nuclear-nuclear repulsion terms,

Pjl is a Cartesian component of the momentum and Ml the mass of nucleus l. One

should note that the bra depends on z∗
while the ket depends on z and that the primed

R and P equal their unprimed counterparts and the prime simply denotes that they

belong to the bra.

The Euler-Lagrange equations

d

dt

∂L

∂ q̇
=

∂L

∂q
(14)

can now be formed for the dynamical variables

,

,

,

,

,

,

,
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q = R jl ,Pjl,zph,z
∗
ph (15)

and collected into a matrix equation:




iC 0 iCR iCP

0 −iC∗ −iC∗
R −iC∗

P

iC
†

R −iCT
R CRR −I+ CRP

iC
†

P −iCT
P I+ CPR CPP







ż

ż∗

Ṙ

Ṗ


=




∂E/∂z∗

∂E/∂z

∂E/∂R

∂E/∂P


 , (16)

where the dynamical metric contains the elements

(CXY )ik; jl = −2Im
∂ 2

lnS

∂Xik∂Yjl

∣∣
R′=R,P′=P

, (17)

(CXik
)ph = (CX)ph;ik =

∂ 2
lnS

∂ z∗
ik∂Xik

∣∣
R′=R,P′=P

, (18)

which are the nonadiabatic coupling terms, and

Cph;qg =
∂ 2

lnS

∂ z∗
ph∂ zqg

∣∣
R′=R,P′=P

. (19)

In this minimal END approximation the electronic basis functions are centered on

the average nuclear positions, which are dynamical variables. In the limit of classical

nuclei these are conventional basis functions used in molecular electronic structure

theory, and they follow the dynamically changing nuclear positions. As can be seen

from the equations of motion discussed above the evolution of the nuclear positions

and momenta is governed by Newton-like equations with Hellman-Feynman forces,

while the electronic dynamical variables are complex molecular orbital coefficients

which follow equations that look like those of the Time-Dependent-Hartree-Fock

(TDHF) approximation [4]. The coupling terms in the dynamical metric are the well-

known nonadiabatic terms due to the fact that the basis moves with the dynamically

changing nuclear positions.

The time evolution of molecular processes in the END formalism employs a

Cartesian laboratory frame of coordinates. This means that in addition to the internal

dynamics overall translation and rotation of the molecular system are treated. The six

extra degrees of freedom add work, but become a smaller part of the total effort as

the complexity of the system grows. The advantage is that the kinetic energy terms

are simple. This means that the effect of small kinetic energy terms, such as mass

polarization, often neglected using internal coordinates, is included. Furthermore, the

complications of having to choose different internal coordinates for product channels

exhibiting different fragmentations are not present. One can treat all product channels

,
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on an equal footing in the same laboratory frame. Since the fundamental invariance

laws with respect to overall translation and rotation are satisfied within END [2] it is

straightforward to extract the internal dynamics at any time during the evolution.

3 Cross Sections

One of the reactant moieties is considered the target and placed stationary at the ori-

the ground electronic state of the entire system. The projectile is given an impact

states. The final evolved state |ψ〉 may be projected against a number of possible final

stationary electronic states | f 〉 expressed in the same basis as that of the initial state

to yield a transition probability Pf o(b,E,ϕ) = |〈 f |ψ〉|2, which is a function of the

collision energy E , the relative initial orientations, and the scattering angles (θ ,ϕ)
or impact parameter and angle (b,ϕ).

The classical differential cross section for a particular product channel with prob-

ability Pf o is

dσ f o(E,θ ,ϕ)

dΩ
= ∑

j

Pf o(b j,E,ϕ)
b j

sin θ |dΘ/db j|
(20)

where the sum runs over all impact parameters b j leading to the same scattering

direction (θ ,ϕ) for the fragment going to the detector. In this expression Θ(b) is

the deflection function, which, for the first branch of the scattering region, satisfies

|Θ | = θ .

For randomly oriented reactants, as is the case in gas phase reactions, trajectories

for a sufficient number of initial relative orientations are used to produce an angular

dσ f (E,θ ,ϕ)

dΩ
= 〈dσ f o

dΩ
〉o (21)

small angle scattering and at so-called rainbow angles, where
dθ
db j

= 0, as well as

the lack of interference effects between the various trajectories in the sum, can be

removed with semiclassical corrections such as the uniform Airy [6, 9] or the Schiff

approximations [11].

get is negligible. A Thouless determinant in a suitable basis is constructed for, say,

END trajectories for a molecular process are obtained by integrating (16) from

suitable initial conditions for the reactants to a time where the products are well

gin of the laboratory Cartesian coordinate system while the other collision partner,

separated or no further change occurs in the system. In the case of a binary mole-

Each set of initial conditions leads to a particular set of product fragments and

cular reactive collision, minimal END, which uses classical nuclei, requires

considered the projectile, is placed sufficiently distant so the interaction with the tar-

that for each trajectory the reactants are given some initial relative orientation.

parameter b and a momentum commensurate with the chosen collision energy E .

,

,

grid to calculate orientationally averaged cross sections [7, 1]

The well-known deficiencies of the classical cross section in (20) that occur for
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The students in this project completed END trajectories for proton collisions with

atomic and molecular hydrogen and obtained orientationally averaged cross sections.

They also made movies in color of selected trajectories showing the dynamical elec-

trons as an evolving cloud around the participating nuclei.

Acknowledgement. This work was completed with support of NSF grant 00057476.
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1 Introduction

magnetoresistance in 1988. Exploiting the spin of electrons it led to new device prin-

ciples for information processing, transmission and storage [7]. The pioneers of the

field, the Frenchman Albert Fert and the German Peter Grünberg were honored with

the Nobel Prize in 2007. It requires a detailed knowledge of the material properties

to design new devices working on the basis of novel effects comprising the spin and

charge degree of freedom. The spin dependent tunneling probability between two

electrodes is determined by the properties of the states in the band gap of the insu-

lator. These states can be described by a complex wave vector and for that they are

forbidden in a bulk material. In contrast, they determine the electronic structure at in-

terfaces and surfaces, in general in systems with broken translational invariance [2].

In experiments on various electrode materials with epitaxial MgO barriers one has

observed oscillations of the transmission probability [8, 4]. First, we consider a one-

dimensional model to account for the oscillations observed. Secondly, the complex

bandstructures of the insulators MgO and ZnO are compared.

A one-dimensional model with two metallic regions connected by the central barrier

region with the corresponding wave functions is considered as sketched in Fig. 1. We

demand that the wavefunction of the system is continuously differentiable, which

t =
e−ikd

cos(κd)− i k2+κ2

2kκ sin(κd)
. (1)

Germany, peter.zahn@physik.uni-halle.de

Department of Mathematics, Uppsala University, P O Box 480, 751 06 Uppsala, Sweden,

751 21 Uppsala, Sweden, patrik.thunstrom@fysik.uu.se

The launch of spintronics research was sparked by the discovery of the effect of Giant

2 Oscillating Tunneling Probability: 1-dimensional Model

yields, after some calculations, the transmission coefficient
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- z

E

κ = κ1 + iκ2k2 = E k2 = E

BarrierMetal Metal

Fig. 1. 1-dimensional model system. The wave vector of the wavefunction is a real value k in

the metallic electrodes, but takes complex values κ inside the barrier.

The imaginary part κ2

wavefunction while the real part κ1 gives an oscillatory behaviour as can be seen

increases. The simple 1D-model can not reproduce the experimentally found oscil-

lations.

ZnO is a promising candidate to obtain magnetic semiconductors by alloying with

magnetic impurities [1]. Another goal is to engineer the band gap by alloying MgO

provides a high efficiency of the symmetry selection in the tunneling process. The

resulting spin filter causes a large magnetoresistance [3]. The calculations of the

complex bandstructure are based on density functional theory in the framework of

a Korringa-Kohn-Rostoker multiple scattering Greens function formalism [9]. MgO

and ZnO are considered in rocksalt structure with lattice constants of 4.052 Å and

4.216 Å, respectively. The considered cubic phase of ZnO might be stabilized in

layered heterostructures like tunnel junctions. The width of the band gap is under-
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Fig. 2. Oscillatory behaviour of the transmission probability |t|2 2
(left)

2
2

κ1 = 8 and ℑ(κ) = κ2 = 1

in Fig. 2. The oscillations described by (1) are damped exponentially when d

of the wave vector gives rise to an exponential decay of the

3 Materials and Electronic Structure Calculation

and ZnO [5]. Fe/MgO/Fe tunnel junctions show a good epitaxial growth [8, 6]. This

in the 1D model: |t|
and |t| exp(2dκ ) (right) are plotted as function of barrier thickness d for k = 20,ℜ(κ) =
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Fig. 3. Complex bandstructure of MgO and ZnO. Tetragonal symmetry is adapted to the (001)

interface geometry. The bands for real wave vectors k are shown in the central panel. The

points M and R correspond to the X and L point in fcc symmetry, respectively. The corre-

sponding bands with imaginary wavevector κz are shown in the left and right panel.

estimated in the local density approximation with respect to the experiment, but the

topology of the band structure is correctly reproduced.

4 Complex Band Structures

from Fig. 3. MgO shows a direct band gap, whereas in ZnO the band gap is indi-

rect. The imaginary part of the states available in the energy gap are responsible for

the decay of the tunneling current with the barrier thickness as shown in Fig. 2, left

wave vectors occur in different parts of the Brillouin zone depending on the energy of

the tunneling electrons. The imaginary part in dependence on the wave vector along

the (100) direction and the energy in the band gap are given in Fig. 4. As expected it
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Fig. 4. Complex bandstructure of MgO (left) and ZnO (right). The smallest imaginary part κ1

is shown in dependence on k‖ along the Γ̄ − X̄ line and the energy E relative to the valence

band edge EV .

The bandstructures are analysed with respect to the wave vector along the (001) direc-

panel. As can be seen from the left and right panels in Fig. 3, the smallest imaginary

tion. Inspecting the band structure along a line in k-space connecting the minimum

and maximum of the energy gap, a striking difference of MgO and ZnO is obvious
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is found that in MgO for energies in the bandgap the ∆1 symmetry state dominates

the transport. However, in ZnO ∆1 states dominate only close to the band gap max-

imum. At lower energies the contribution around the X̄ point grows and outweighs

the ∆1 contribution around Γ̄ , to completely dominate the transport near the bandgap

minimum.

In summary, we have shown that the complex band structure of insulators domi-

nates the behavior of the tunneling current. For ZnO in rocksalt structure it is found,

that the position of the states carrying the tunneling current change their position in

the surface Brillouin zone depending on energy inside the band gap.
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