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tion for these topics was the difficulty faced (both conceptually and in technical
execution) in any attempt to combine elements of combinatorial and numerical
algorithms. Mesh generation is a topic in which a meaningful combination of
these different approaches to problem solving is inevitable. The book develops
methods from both areas that are amenable to combination and explains recent
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Preface

The title of this book promises a discussion of topics in geometry and topology
applied to grid or mesh generation. To generate meshes we need algorithms,
the subject that provides the glue for our various investigations. However, I
make no attempt to cover the breadth of computational geometry. Quite to the
contrary, I seek out the subarea relevant to mesh generation, and I enrich that
material with concepts from combinatorial topology and a modest amount of
numerical analysis. To preserve the focus, I limit attention to meshes composed
of triangles and tetrahedra. The economy in breadth permits a coherent and
locally self-contained treatment of all topics. My choices are guided by stylistic
concerns aimed at exposing ideas and limiting the amount of technical detail.
This book is based on notes I developed while teaching graduate courses
at the University of Illinois at Urbana-Champaign and Duke University. The
organization into chapters, sections, exercises, and open problems reflects the
teaching style I practiced in these courses. Each chapter but the last develops
a major topic and is worth about 2 weeks of teaching. Some of the topics
are closely related and others are independent. The chapters are divided into
sections; each section corresponds to a lecture of about 75 minutes. I believe
in an approach to research that complements knowing what is known with
knowing what is not known. I therefore recommend spending time in each
lecture to discuss one of the open problems collected in the last chapter.
Chapter 1 is devoted to Delaunay triangulations in the plane. We learn what
they are and how we can write algorithms to construct them. Although trian-
gulations are inherently combinatorial concepts, we need to answer numerical
questions about the relative position of data points. The apparent conflict be-
tween logical consistency and numerical approximation is resolved with the
help of exact arithmetic and symbolic perturbation. Chapter 2 studies trian-
gle meshes, and in particular, the most popular type, which are Delaunay
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xii Preface

triangulations. The reasons for this popularity are fast algorithms and nice
structural properties. In the mesh generation context, Delaunay triangulations
are used to represent pieces of a continuous space in a way that supports nu-
merical algorithms computing properties of that space. Such representations
are obtained by complementing combinatorial algorithms with numerical point
placement mechanisms.

The move from two to three and possibly higher dimensions greatly ben-
efits from precise and concise language. Chapter 3 introduces such language
developed within the area of combinatorial topology. This relatively old field
of mathematics studies the topology of spaces constructed of linear pieces.
Chapter 4 puts the language of combinatorial topology to use in our study of
surface simplification. Given a finely triangulated surface in space, we ask for
a coarser triangulation that represents, more or less, the same surface. The need
to suppress and compress information through simplification is universal and
every bit as strong in the visual arts as in our general quest for understanding.

Chapter 5 generalizes two-dimensional Delaunay triangulations to three-
dimensional Delaunay tetrahedrizations. Many of the nice properties that hold
in two dimensions extend to three dimensions, but some do not. In general,
things are more complicated, and a disciplined and formal way of thinking
is more important than it is in the plane, where our intuition is often cor-
rect. Chapter 6 studies tetrahedron meshes, and in particular, the most popular
type, which are Delaunay tetrahedrizations. As in two dimensions, the popular-
ity is based on fast algorithms and nice structural properties. While in a sense
the shape of Delaunay triangles is as good as it can be for given data points,
we need additional methods to eliminate flat tetrahedra and thus improve the
quality of the Delaunay tetrahedrization.

Chapter 7 collects 23 problems or questions that, to the best of my knowledge,
are open at this time. There is one open problem per section. I make an effort
to state each problem in a concise and unambiguous manner and to mention
interesting partial results along with general background and motivation.

Herbert Edelsbrunner
Durham, North Carolina, May 2000
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Delaunay triangulations

The four sections in this chapter focus on Delaunay triangulations for finite
point sets in the plane. Section 1.1 introduces the Delaunay triangulation as
the dual of the Voronoi diagram. Section 1.2 describes an algorithm that con-
structs the Delaunay triangulation as a sequence of edge flips. Although the
running time of the algorithm is not the best possible, the fact that it halts and
is correct allows us to deduce nontrivial structural properties about Delaunay
triangulations in the plane. Section 1.3 gives an incremental algorithm whose
randomized running time is the best possible. The implementation of a geomet-
ric algorithm is generally a challenging task, and the algorithms in Sections 1.2
and 1.3 are no exceptions. Section 1.4 discusses the use of exact arithmetic and
symbolic perturbation to implement the numerical aspects with algebraic tools.

1.1 Voronoi and Delaunay

This section introduces Delaunay triangulations as duals of Voronoi diagrams.
It discusses the role of general position in the definition and explains some of
the basic properties of Delaunay triangulations.

Voronoi diagrams

Given a finite set of points in the plane, the idea is to assign to each point a
region of influence in such a way that the regions decompose the plane. To
describe a specific way to do that, let S € R? be a set of n points and define the
Voronoi region of p € S as the set of points x € R? that are at least as close to
p as to any other point in S; that is,

V,={x eR*||lx — pll < llx —qll, Yq € S}

1



2 1. Delaunay triangulations

Figure 1.1. Seven points define the same number of Voronoi regions. One of the regions
is bounded because the defining point is completely surrounded by the others.

This definition is illustrated in Figure 1.1. Consider the half-plane of points
at least as close to p as to g2 H,, = {x € R? | lx — pll < Ilx —q]}. The
Voronoi region of p is the intersection of half-planes H,,,, forall ¢ € § — {p}.
It follows that V), is a convex polygonal region, possibly unbounded, with at
most n — 1 edges.

Each point x € R2 has at least one nearest pointin S, so it lies in at least one
Voronoi region. It follows that the Voronoi regions cover the entire plane. Two
Voronoi regions lie on opposite sides of the perpendicular bisector separating
the two generating points. It follows that Voronoi regions do not share interior
points, and if a point x belongs to two Voronoi regions, then it lies on the
bisector of the two generators. The Voronoi regions together with their shared
edges and vertices form the Voronoi diagram of S.

Delaunay triangulation

We get a dual diagram if we draw a straight Delaunay edge connecting points
p,q €S if and only if their Voronoi regions intersect along a common line
segment; see Figure 1.2. In general, the Delaunay edges decompose the convex
hull of S into triangular regions, which are referred to as Delaunay triangles.
To count the Delaunay edges we use some results on planar graphs, defined
by the property that their edges can be drawn in the plane without crossing. It
is true that no two Delaunay edges cross each other, but to avoid an argument,
we draw each Delaunay edge from one endpoint straight to the midpoint of the
shared Voronoi edge and then straight to the other endpoint. Now it is obvious
that no two of these edges cross. With the use of Euler’s relation, it can be
shown that a planar graph with n > 3 vertices has at most 3n — 6 edges and at
most 2n — 4 faces. The same bounds hold for the number of Delaunay edges
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Figure 1.2. The Voronoi edges are dotted and the dual Delaunay edges are solid.

and triangles. There is a bijection between the Voronoi edges and the Delaunay
edges, so 3n — 6 is also an upper bound on the number of Voronoi edges.
Similarly, 2n — 4 is an upper bound on the number of Voronoi vertices.

Degeneracy

There is an ambiguity in the definition of Delaunay triangulation if four or
more Voronoi regions meet at a common point #. One such case is shown in
Figure 1.3. The points generating the four or more regions all have the same
distance from u: they lie on a common circle around u. Probabilistically, the
chance of picking even just four points on a circle is zero because the circle
defined by the first three points has zero measure in R?. A common way to say
the same thing is that four points on a common circle form a degeneracy or a
special case. An arbitrarily small perturbation suffices to remove the degeneracy
and to reduce the special case to the general case.

Figure 1.3. To the left, four dotted Voronoi edges meet at a common vertex and the dual
Delaunay edges bound a quadrilateral. To the right, we have the general case, where
only three Voronoi edges meet at a common vertex and the Delaunay edges bound a
triangle.
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We will often assume general position, which is the absence of any degen-
eracy. This really means that we delay the treatment of degenerate cases to
later. The treatment is eventually done by perturbation, which can be actual or
conceptual, or by exhaustive case analysis.

Circles and power

For now we assume general position. For a Delaunay triangle, abc, consider
the circumcircle, which is the unique circle passing through a, b, and c. Its
center is the corresponding Voronoi vertex, u = V, NV, N V,, and its radius is
o= |lu—all =|lu—>b| =|u-—c|; see Figure 1.3. We call the circle empty
because it encloses no point of S. It turns out that empty circles characterize
Delaunay triangles.

Circumcircle Claim. Let S C R? be finite and in general position, and let
a,b,c € S be three points. Then abc is a Delaunay triangle if and only if
the circumcircle of abc is empty.

Itis not entirely straightforward to see that this is true, at least not at the moment.
Instead of proving the Circumcircle Claim, we focus our attention on a new
concept of distance from a circle. The power of a point x € R? from a circle U
with center u and radius o is

Ty () = |lx —ul® — o

If x lies outside the circle, then 7y (x) is the square length of a tangent line
segment connecting x with U. In any case, the power is positive outside the
circle, zero on the circle, and negative inside the circle. We sometimes think
of a circle as a weighted point and of the power as a weighted distance to that
point. Given two circles, the set of points with equal power from both is a line.
Figure 1.4 illustrates three different arrangements of two circles and their bi-
sectors of points with equal power from both.

Acyclicity

We use the notion of power to prove an acyclicity result for Delaunay triangles.
Letx € R?be an arbitrary but fixed viewpoint. We say a triangle abc lies in front
of another triangle def if there is a half-line starting at x that first passes through
abc and then through def; see Figure 1.6. We write abc < def if abc lies in
front of def. The set of Delaunay triangles together with < forms a relation.
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Figure 1.4. Three times two circles with bisector. From left to right: two disjoint and
nonnested circles; two intersecting circles; and two nested circles.

General relations have cycles, which are sequences 19 < 7] < -+ < T; < Tp.
Such cycles can also occur in general triangulations, as illustrated in Figure 1.5,
but they cannot occur if the triangles are defined by empty circumcircles.

Acyclicity Lemma. Thein-frontrelation for the set of Delaunay triangles defined
by a finite set § € R? is acyclic.

Proof. We show that abc < def implies that the power of x from the circumcir-
cle of abc is less than the power from the circumcircle of def. Define abc = 1
and write my(x) for the power of x from the circumcircle of abc. Similarly
define def = t; and i (x). Because S is finite, we can choose a half-line that
starts at x, passes through abc and def, and contains no point of S. It intersects
a sequence of Delaunay triangles:

abc =1 <1 <+ < T = def.

For any two consecutive triangles, the bisector of the two circumcircles contains
the common edge. Because the third point of 7;; lies outside the circumcircle
of 7;, we have 7; (x) < iy 1(x) for0 <i <k — 1. Hence my(x) < mr(x). The

Figure 1.5. From the viewpoint in the middle, the three skinny triangles form a cycle in
the in-front relation.
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Figure 1.6. Triangle abc lies in front of triangle def . If abc and def belong to a Delaunay
triangulation, then there is a sequence of triangles between them that all intersect the
half-line.

acyclicity of the relation follows because real numbers cannot increase along a
cycle. O

Bibliographic notes

Voronoi diagrams are named after the Ukrainian mathematician Georges
Voronoi, who published two seminal papers at the beginning of the twenti-
eth century [5]. The same concept was discussed about half a century earlier
by P. G. L. Dirichlet, and there are unpublished notes by René Descartes sug-
gesting that he was using Voronoi diagrams in the first half of the seventeenth
century. Delaunay triangulations are named after the Russian mathematician
Boris Delaunay (also Delone), who dedicated his paper on empty spheres [2] to
Georges Voronoi. The article by Franz Aurenhammer [1] offers a nice survey of
Voronoi diagrams and their algorithmic applications. The acyclicity of Delau-
nay triangulations in arbitrary dimensions was proved by Edelsbrunner [3] and
subsequently applied in computer graphics. In particular, the three-dimensional
case has been exploited for the visualization of diffuse volumes [4, 6].

[1] F. Aurenhammer. Voronoi diagrams — a study of a fundamental geometric data
structure. ACM Comput. Surveys 23 (1991), 345-405.

[2] B. Delaunay. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii
i Estestvennyka Nauk 7 (1934), 793-800.

[3] H. Edelsbrunner. An acyclicity theorem for cell complexes in d dimensions.
Combinatorica 10 (1990), 251-260.

[4] N.Max, P. Hanrahan, and R. Crawfis. Area and volume coherence for efficient
visualization of 3D scalar functions. Comput. Graphics 24 (1990), 27-33.

[5] G. Voronoi. Nouvelles applications des parametres continus a la théorie des formes
quadratiques. J. Reine Angew. Math. 133 (1907), 97-178, and 134 (1908),
198-287.

[6] P.L. Williams. Visibility ordering meshed polyhedra. ACM Trans. Graphics 11
(1992), 103-126.
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Figure 1.7. The Voronoi edge is the dashed line segment of centers of circles passing
through the endpoints of ab.

1.2 Edge flipping

This section introduces a local condition for edges, shows it implies that a
triangulation is Delaunay, and derives an algorithm based on edge flipping. The
correctness of the algorithm implies that, among all triangulations of a given
point set, the Delaunay triangulation maximizes the smallest angle.

Empty circles

Recall the Circumcircle Claim, which says that three points a, b, c € S are
vertices of a Delaunay triangle if and only if the circle that passes through
a, b, cisempty. A Delaunay edge, ab, belongs to one or two Delaunay triangles.
In either case, there is a pencil of empty circles passing through a and b.
The centers of these circles are the points on the Voronoi edge V, N V,; see
Figure 1.7. What the Circumcircle Claim is for triangles, the Supporting Circle
Claim is for edges.

Supporting Circle Claim. Let S C R? be finite and in general position and let
a, b € S. Then ab is a Delaunay edge if and only if there is an empty circle that
passes through a and b.

Delaunay lemma

By a triangulation we mean a collection of triangles together with their edges
and vertices. A triangulation K triangulates S if the triangles decompose the
convex hull of S and the set of vertices is S. Anedge ab € K is locally Delaunay
if

(1) it belongs to only one triangle and therefore bounds the convex hull, or
(i1) it belongs to two triangles, abc and abd, and d lies outside the circumcircle
of abc.
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d

a

Figure 1.8. To the left ab is locally Delaunay and to the right it is not.

The definition is illustrated in Figure 1.8. A locally Delaunay edge is not nec-
essarily an edge of the Delaunay triangulation, and it is fairly easy to construct
such an example. However, if every edge is locally Delaunay, then we can show
that all are Delaunay edges.

Delaunay Lemma. If every edge of K is locally Delaunay, then K is the De-
launay triangulation of S.

Proof. Consider a triangle abc € K and a vertex p € K different from a, b, c.
We show that p lies outside the circumcircle of abc. Because this is then true
for every p, the circumcircle of abc is empty, and because this is then true
for every triangle abc, K is the Delaunay triangulation of S. Choose a point x
inside abc such that the line segment from x to p contains no vertex other
than p. Let abc = 1y, 71, ..., T be the sequence of triangles that intersect
xp, as in Figure 1.9. We write m;(p) for the power of p to the circumcircle
of t;, as before. Since the edges along xp are all locally Delaunay, we have
mo(p) > m(p) > --- > m(p). Since p is one of the vertices of the last triangle,
we have m;(p) = 0. Therefore my(p) > 0, which is equivalent to p’s lying
outside the circumcircle of abc. O

c
a

Figure 1.9. Sequence of triangles in K that intersect xp.
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Edge-flip algorithm

If ab belongs to two triangles, abc and abd, whose union is a convex quadran-
gle, then we can flip ab to cd. Formally, this means we remove ab, abc, abd
from the triangulation and we add cd, acd, bcd to the triangulation, as in
Figure 1.10. The picture of a flip looks like a tetrahedron with the front and
back superimposed. We can use edge flips as elementary operations to convert
an arbitrary triangulation K to the Delaunay triangulation. The algorithm uses
a stack and maintains the invariant that unless an edge is locally Delaunay, it
resides on the stack. To avoid duplicates, we mark edges stored on the stack.
Initially, all edges are marked and pushed on the stack.

while stack is non-empty do
pop ab from stack and unmark it;
if ab not locally Delaunay then
flip ab to cd;
for xy € {ac, cb, bd, da} do
if xy not marked then
mark xy and push it on stack
endif
endfor
endif
endwhile.

Let n be the number of points. The amount of memory used by the algorithm
is O(n) because there are at most 3n — 6 edges, and the stack contains at most
one copy of each edge. At the time the algorithm terminates, every edge is
locally Delaunay. By the Delaunay Lemma, the triangulation is therefore the
Delaunay triangulation of the point set.

Figure 1.10. Flipping ab to cd. If ab is not locally Delaunay, then the union of the two
triangles is convex and cd is locally Delaunay.
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Figure 1.11. Points a, b, ¢ lie on the dashed circle in the x;x,-plane and d lies inside
that circle. The dotted curve is the intersection of the paraboloid with the plane that
passes through a, b, ¢. It is an ellipse whose projection is the dashed circle.

Circle and plane

Before proving the algorithm terminates, we interpret a flip as a tetrahedron
in three-dimensional space. Let @, b, &, d be the vertical projections of points
a,b,c,d in the x;x,-plane onto the paraboloid defined as the graph of II:
x3 = x7 + x3; see Figure 1.11.

Lifted Circle Claim. Point d lies inside the circumcircle of abc if and only if
point d lies vertically below the plane passing through a, b, é.

Proof. Let U be the circumcircle of abc and H the plane passing through
a, b, &. We first show that U is the vertical projection of H N gf I1. Transform
the entire space by mapping every point (xj, X2, x3) t0 (X1, X2, X3 — x3 — x3).
Points a, E, ¢, d are mapped back to a, b, ¢, d, and the paraboloid IT becomes
the xx,-plane. The plane H becomes a paraboloid that passes through a, b, c.
It intersects the x| x;-plane in the circumcircle of abc. Plane H partitions gf I1
into a patch below H, a curve in H, and a patch above H. The curve in H is
projected onto the circumcircle of abc, and the patch below H is projected onto
the open disk inside the circle. It follows that d belongs to the patch below H
if and only if d lies inside the circumcircle of abc. O

Running time

Flipping ab to cd is like gluing the tetrahedron @béd from below to abé and
abd. The algorithm can be understood as gluing a sequence of tetrahedra.
Once we glue abéd, we cannot glue another tetrahedron right below ab. In
other words, once we flip ab we cannot introduce ab again by some other
flip. This implies there are at most as many flips as there are edges connecting
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Figure 1.12. To the left we see about one third of the edges in the initial triangulation,
and to the right we see the same number of edges in the final Delaunay triangulation.

n points, namely (;) Each flip takes constant time; hence the total running time
is O(n?).

There are cases in which the algorithm takes ® (n?) flips to change an initial
triangulation to the Delaunay triangulation, and one such case is illustrated
in Figure 1.12. Take a convex upper and a concave lower curve and place m
points on each, such that the upper points lie to the left of the lower points. The
edges connecting the two curves in the initial and the Delaunay triangulation
are shown in Figure 1.12. For each point, count the positions it is away from the
middle, and for each edge charge the minimum of the two numbers obtained for
its endpoints. In the initial triangulation, the total charge is about m?, and in the
Delaunay triangulation, the total charge is zero. Each flip moves an endpoint
by at most one position and therefore decreases the charge by at most one. A
lower bound of about m? for the number of flips follows.

MaxMin angle property

A flip substitutes two new triangles for two old triangles. It therefore changes
six of the angles. In Figure 1.10, the new angles are yy, &1, 81 + B2, ¥2, 82, and
o] + oy, and the old angles are oy, B1, y1 + ¥2, o2, B2, and §; + §,. We claim
that for each of the six new angles there is an old angle that is at least as small.
Indeed, y; > o, because both angles are opposite the same edge, namely bd,
and a lies outside the circle passing through b, ¢, d. Similarly, §; > a1, y» > Bs,
and §, > B, and for trivial reasons 8; 4+ B, > B and @ + @ > «;. It follows
that a flip does not decrease the smallest angle in a triangulation. Since we can
go from any triangulation K of S to the Delaunay triangulation, this implies
that the smallest angle in K is no larger than the smallest angle in the Delaunay
triangulation.

MaxMin Angle Lemma. Among all triangulations of a finite set S C R2, the
Delaunay triangulation maximizes the minimum angle.

Figure 1.13 illustrates the above proof of the MaxMin Angle Lemma by sketch-
ing what we call the flip graph of S. Each triangulation is a node, and there is a
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Figure 1.13. Sketch of flip graph. The sink is the Delaunay triangulation. There is a
directed path from every node to the Delaunay triangulation.

directed arc from node p to node v if there is a flip that changes the triangula-
tion u to v. The direction of the arc corresponds to our requirement that the flip
substitutes a locally Delaunay edge for one that is not locally Delaunay. The
running time analysis implies that the flip graph is acyclic and that its undirected
version is connected. If we allow flips in either direction, we can go from any
triangulation of S to any other triangulation in less than n? flips.

Bibliographic notes

A proof of the Delaunay Lemma and its generalization to arbitrary finite dimen-
sions is contained in the original paper by Boris Delaunay [1]. The edge-flip
algorithm is from Charles Lawson [3]. The algorithm does not generalize to
three or higher dimensions. For planar triangulations, the edge-flip operation is
widely used to improve local quality measures; see, for example, Schumaker
[4]. Unfortunately, the algorithms get caught in local optima for almost all
interesting measures. The observation that the Delaunay triangulation maxi-
mizes the smallest angle was first made by Robin Sibson [5]. Minimizing the
largest angle seems more difficult, and the only known polynomial time al-
gorithm uses edge insertions, which are somewhat more powerful than edge
flips [2].

[1] B. Delaunay. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii
i Estestvennyka Nauk 7 (1934), 793-800.

[2] H. Edelsbrunner, T. S. Tan, and R. Waupotitsch. An O(n? log ) time algorithm for
the minmax angle triangulation. SIAM J. Sci. Stat. Comput. 13 (1992), 994-1008.

[3] C.L.Lawson. Software for C' surface interpolation. In Mathematical Software III,
Academic Press, New York, 1977, 161-194.

[4] L. L. Schumaker. Triangulation methods. In Topics in Multivariate Approximation,
C. K. Choi, L. L. Schumaker, and F. 1. Utreras (eds.), Academic Press, New York,
1987, 219-232.

[5] R. Sibson. Locally equiangular triangulations. Comput. J. 21 (1978), 243-245.
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1.3 Randomized construction

The algorithm in this section constructs Delaunay triangulations incrementally,
using edge flips and randomization. After explaining the algorithm, we present
a detailed analysis of the expected amount of resources it requires.

Incremental algorithm

We obtain a fast algorithm for constructing Delaunay triangulations if we in-
terleave flipping edges with adding points. Denote the points in S € R? as
P1, P2, - - -, py and assume general position. When we add a point to the tri-
angulation, it can either lie inside or outside the convex hull of the preceding
points. To reduce the outside case to the inside case, we start with a triangu-
lation Dy that consists of a single and sufficiently large triangle xyz. Define
Si ={x,y,z p1, p2, ..., pi}, and let D; be the Delaunay triangulation of S;.
The algorithm is a for-loop adding the points in sequence. After adding a
point, it uses edge flips to satisfy the Delaunay Lemma before the next point is
added.

for i=1to ndo
find 7;_; € D;_; containing p;;
add p; by splitting t;_ into three;
while Jab not locally Delaunay do
flip ab to other diagonal cd
endwhile
endfor.

The two elementary operations used by the algorithm are shown in Figure 1.14.
Both pictures can be interpreted as the projection of a tetrahedron, though from
different angles. For this reason, the addition of a point inside a triangle is
sometimes called a 1-to-3 flip, while an edge flip is sometimes also called a
2-to-2 flip.

Figure 1.14. To the left, the hollow vertex splits the triangle into three. To the right, the
dashed diagonal replaces the solid diagonal.
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Figure 1.15. The star of the solid vertex is shown on the left and the link of the same
vertex is shown on the right.

Growing star

Note that every new triangle in D; has p; as one of its vertices. Indeed, abc
is a triangle in D; if and only if a, b, ¢ € S; and the circumcircle is empty of
points in S;. But if p; is not one of the vertices, then a, b, ¢ € S;_|, and if the
circumcircle is empty of points in S;, then it is also empty of points in S;_;. So
abc is also a triangle in D;_;. This implies that all flips during the insertion of
p; occur right around p;.

We need some definitions. The star of p; consists of all triangles that contain
pi. The link of p; consists of all edges of triangles in the star that are disjoint
from p;. Both concepts are illustrated in Figure 1.15. Right after p; is added,
the link consists of three edges, namely the edges of the triangle that contains
pi. These edges are marked and pushed on the stack to start the edge-flipping
while-loop. Each flip replaces a link edge by an edge with endpoint p;. At
the same time, it removes one triangle in the star and one outside the star and it
adds the two triangles that cover the same quadrangle to the star. The net effect
is one more triangle in the star. The number of edge flips is therefore three less
than the number of edges in the final link, which is the same as three less than
the degree of p; in D;.

Number of flips

We temporarily ignore the time needed to find the triangles t;_;. The rest of the
time is proportional to the number of flips needed to add p; to p,. We assume
D1, P2, - - -, Pn is a randomly chosen input sequence. Random does not mean
arbitrary but rather that every permutation of n points is equally likely. The
expected number of flips is the total number of flips needed to construct the
Delaunay triangulation for all n! input permutations divided by n!.

Consider inserting the last point, p,. The sum of degrees of all possible last
points is the same as the sum of degrees of all points p; in D,,. The latter is
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equal to twice the number of edges and therefore
Z deg p; < 6n.
i=1

The number of flips needed to add all last points is therefore at most 6n — 3n =
3n.Each last point is added (n — 1)! times. The total number of flips is therefore

F(n)

IA

n-Fn—1)+3n!

<3n-nl.
Indeed, if we assume F(n — 1) <3(n—1)-(n—1)!,wegetn- Fn — 1) +
3n! <3(m — 1) -n!+43n! = 3n - n!. The expected number of edge flips needed
for n points is therefore at most 3n.
There is a simple way to say the same thing. The expected number of flips
for the last point is at most three, and therefore the expected number of flips to
add any point is at most three.

The history

We use the evolution of the Delaunay triangulation to find the triangle 7;_
that contains point p;. Instead of deleting a triangle when it is split or flipped
away, we just make it the parent of the new triangles. Figure 1.16 shows the
two operations to the left and the corresponding parent—child relations to the
right. Each time we split or flip, we add triangles or nodes to the growing data

c (&
a b a b
c b b
¢ ><
a d a d
Figure 1.16. Splitting a triangle generates a parent with three children. Flipping an edge
generates two parents sharing the same two children.
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structure that records the history of the construction. The evolution from Dy to
D,, consists of n splits and an expected number of at most 3n flips. The resulting
directed acyclic graph, or DAG for short, therefore has an expected size of at
most 1 + 3n + 2 - 3n = 9n + 1 nodes. It has a unique source, the triangle xyz,
and its sinks are the triangles in D,,.

Searching and charging

Consider adding the point p;. To find the triangle 7,_; € D;_;, we search a
path of triangles in the history DAG that all contain p;. The path begins as
xyz and ends at 7;_;. The history DAG of D;_; consists of i layers. Layers
0 to j represent the DAG of D;. Its sinks are the triangles in D;, and we let
o; € Dj bethe triangle that contains p;. Triangles o to o'; form a not necessarily
contiguous subsequence of nodes along the search path. It is quite possible that
some of the triangles o are the same. Let G; be the set of triangles removed
from D; during the insertion of p;;, and let H; be the set of triangles removed
from D; during the hypothetical and independent insertion of p; into D;. The
two sets are schematically sketched as intervals along the real line representing
the Delaunay triangulation in Figure 1.17. We have 0; = 041 if G; and H; are
disjoint. Suppose 6; # 0j4+1. Then X; = G; N H; # (J, and all triangles on the
portion of the path from o; to o4 are generated by flips that remove triangles
in X ;. The cost for searching with p; is therefore at most proportional to the
sum of card X ;, for j fromOtoi — 2.

We write X; in terms of other sets. These sets represent what happens if
we again hypothetically first insert p; into D; and then insert p;,; into the
Delaunay triangulation of S; U {p;}. Let Y; be the set of triangles removed
during the insertion of p;,, and let Z; C Y; be the subset of triangles that do
not belong to D;. Each triangle in Z; is created during the insertion of p;, so
pi; must be one of its vertices. We have

Xj:Gj_(Yj_Zj)~

G, X; i
i fo ,
O/ \\O/
p]+1 Di

Figure 1.17. The intervals represent sets of triangles removed or added when we insert
pj+1 and/or p; to D;.
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Expectations

We bound the expected search time by bounding the expected total size of
the X ;. Write cardinalities by using corresponding lower-case letters. Because
Z;CYjandY; — Z; C Gj, we have

Xj=gj—yj+z;.

The expected values of g; and y;_; are the same, because both count triangles
removed by inserting a random jth point. Because the expectation of a sum is
the sum of expectations, we have

i—2

i—2
ij] = Elg;1— Ely;1+ Elz;]
Jj=0

Jj=0

E

i-2
= Elgo— gi-11+)_ Elz;].
j=0

To compute the expected value of z;, we use the fact that among j + 2 points,
every pair is equally likely to be p;;; and p;. For example, if p;,; and p; are
not connected by an edge in the Delaunay triangulation of S; U {p;41, p;}, then
Z; ={. In general, a triangle in the Delaunay triangulation of S; U {p;} has
probability at most 3/(j + 1) of being in the star of p;. The expected number
of triangles removed by inserting p; is at most four. Because the expectation
of a product is the product of expectations, we have E[z;] < (4-3)/(j + 1).
The expected length of the search path for p; is

i—2 i-2 12

] < - < ] —
Z:;E[xj] _§j~|—1 <1412InG —1).

The expected total time spent on searching in the history DAG is
> 2. Elxj] < c-nlogn.

To summarize, the randomized incremental algorithm constructs the
Delaunay triangulation of 7 points in R? in the expected time O(n log ) and
with the expected amount of memory O(n).

Bibliographic notes

The randomized incremental algorithm of this section is from Guibas, Knuth,
and Sharir [3]. It has been generalized to three and higher dimensions by
Edelsbrunner and Shah [2]. All this is based on earlier work on randomized algo-
rithms and in particular on the methods developed by Clarkson and Shor [1]. The
arguments used to bound the expected number of flips and the expected search
time are examples of the backwards analysis introduced by Raimund Seidel [4].
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1.4 Symbolic perturbation

The computational technique of symbolically perturbing a geometric input justi-
fies the mathematically convenient assumption of general position. This section
describes a particular perturbation known as SoS, or Simulation of Simplicity.

Orientation test

Let a = (a1, a2), b = (B1, B2), and ¢ = (y1, y2) be three points in the plane.
We consider a, b, ¢ degenerate if they lie on a common line. This includes the
case in which two or all three points are the same. In the degenerate case, point
c is an affine combination of a and b; thatis, ¢ = Aja + A,b with A; + A, = 1.
Such Aj, A, exist if and only if the determinant of

1 (02 %)
A=1|1 B B
L n »

vanishes. In the nondegenerate case, the sequence a, b, ¢ either forms a left or
a right turn. We can again use the determinant of A to decide which it is.

Orientation Claim. The sequence a, b, ¢ forms a left turn if and only if det A >
0, and it forms a right turn if and only if det A < 0.

Proof. We first check the claim for ag = (0, 0), by = (1, 0), and ¢y = (0, 1). It
is geometrically obvious that ag, by, co form a left turn, and indeed

1 00
det{1 1 O =1
1 0 1

We can continuously move ay, by, ¢y to any other left-turn a, b, ¢ without
ever having three collinear points. Since the determinant changes continu-
ously with the coordinates, it remains positive during the entire motion and is
therefore positive at a, b, c. Symmetry implies that all right turns have negative
determinants. O
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In-circle test

The in-circle test is formulated for four points a, b, ¢, d in the plane. We con-
sider a, b, ¢, d degenerate if a, b, ¢ lie on a common line or a, b, ¢, d lie on
a common circle. We already know how to test for points on a common line.
To test for points on a common circle, we recall the definition of lifted points,
a = (ay, oz, a3) with az = a% + a%, and so on. Points a, b, ¢, d lie on a com-
mon circle if and only if &, b, &, d lie on a common plane in R3; see Figure 1.11.
In other words, d is an affine combination of &, b, ¢, which is equivalent to

1 o oy o3
r— L B B B
L 1 » »
1 & 6, 83

having zero determinant. In the nondegenerate case, d either lies inside or out-
side the circle defined by a, b, c. We can use the determinants of A and I" to
decide which itis. Note that permuting a, b, ¢ can change the sign of det I" with-
out changing the geometric configuration. Since the signs of detI" and det A
change simultaneously, we can counteract by multiplying the two.

In-circle Claim. Pointd lies inside the circle passing through a, b, c if and only
ifdet A - detI" < 0, and d lies outside the circle if and only if det A - detI" > 0.

Proof. We first check the claim for dy = (!5, '2) and ag = (0, 0), by = (1, 0),
and ¢y = (0, 1) as before. Point dj lies at the center and therefore inside the
circle passing through ag, by, cp. The determinant of A is 1, and that of T is

det

HHH,_
V= —= O O

= O = O

so their product is negative. As in the proof of the Orientation Claim, we derive
the general result from the special one by continuity. Specifically, every config-
uration a, b, ¢, d, where d lies inside the circle of a, b, ¢, can be obtained from
ay, by, co, dy by continuous motion, avoiding all degeneracies. The signs of the
two determinants remain the same throughout the motion, and so does their
product. This implies the claim for negative products, and symmetry implies
the claim for positive products. O
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Figure 1.18. Schematic picture of the union of (2n — 1)-dimensional manifolds in 2n-
dimensional space. The marked point lies on two manifolds and thus has two degenerate
subconfigurations. The dotted circle bounds a neighbourhood, and most points in that
neighbourhood are non-degenerate.

Algebraic framework

Let us now take a more abstract and algebraic view of degeneracy as a geometric
phenomenon. For expository reasons, we restrict ourselves to orientation tests
in the plane. Let S be a collection of n points, denoted as p; = (¢;,1, ¢;.2), for
1 <i < n. By listing the 2n coordinates in a single sequence, we think of S
as a single point in 2n-dimensional space. Specifically, S is mapped to Z =
(¢1, 82, 83, .., 2n) € R?", where £y = ¢y1 and o = ¢y, for 1 <i <n.
Point Z is degenerate if and only if

1 Gic1 Cu
det [1 &1 & |=0
I Cop—1 G

forsome 1 <i < j < k < n. The equation identifies a differentiable (2n — 1)-
dimensional manifold in R?". There are (g’) such manifolds, M,, and Z is
degenerate if and only if Z € | J, M, as sketched in Figure 1.18. Each manifold
has dimension one less than the ambient space and hence measure zero in R".
We have a finite union of measure zero sets, which still has measure zero.
In other words, most points in an open neighborhood of Z € R*" are non-
degenerate. A point nearby Z is often called a perturbation of Z or S. The result
on neighborhoods thus implies that there are arbitrarily close nondegenerate

perturbations of S.

Perturbation

We construct a nondegenerate perturbation of § by using positive parameters
€1, &2, - . ., &24. These parameters will be chosen anywhere between arbitrarily
and sufficiently small, and we may think of them as infinitesimals. They will
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also be chosen sufficiently different, and we will see shortly what this means.
Let Z € R?", and for every & > 0 define

Ze)=(1+e, L+ e, ..., Lon + E20),

where ¢; = f;(¢) with f; : R — R continuous and f;(0) = 0. If the ¢; are suf-
ficiently different, we get the following three properties provided ¢ > 0 is suf-
ficiently small.

I. Z(¢) is nondegenerate.
II. Z(e) retains all nondegenerate properties of Z.
III. The computational overhead for simulating Z(¢) is negligible.

For example, if &; = &% then £, > &,>> --- > &, and we can do all compu-
tations simply by comparing indices without ever computing a feasible ¢. We
demonstrate this by explicitly computing the orientation of the points p;, p;, px
after perturbation. By definition, that orientation is the sign of the determinant of

1 Qi1+ e G+ &
Al)=|1 &j1+e51 bj+ey
1 Cop—1 +&op—1 Cox +ex

Note that A(e) is a polynomial in ¢. The terms with smaller power are more
significant than those with larger power. We assume i < j < k and list the terms
of A(e) in the order of decreasing significance; that is,

det A(e) = det A — det A, - e
+detA, -2 +detAy- &2

2j—1 2
—1-8¥7 2 +...,

where
(1 i1 &
A= 11 &1 &,
L1 k-1
A= ! 521},
RS
(1 é“zw}
Ay = J ,
? e
(1 Czl}
A; = .
’ R
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Property 1 is satisfied because the fifth term is nonzero, and its influence on the
sign of the determinant cannot be canceled by subsequent terms. Property II is
satisfied because the sign of the perturbed determinant is the same as that of
the unperturbed one, unless the latter vanishes.

Implementation

In order to show Property III, we give an implementation of the test for Z(e).
First we sort the indices such that i < j <k, and we count the number of trans-
positions. Then we determine whether the three perturbed points form a left or
a right turn by computing determinants of the four submatrices listed above.

boolean LEFTTURN(integer i, j, k):
asserti < j <k;
case det A # 0: return det A > 0;
casedet A} # 0: returndet Ay < 0;
case det A, # 0: return det A, > 0;
case det A # 0: return det Az > 0;
otherwise: return FALSE.

If the number of transpositions needed to sort i, j, k is odd, then the sorting
reverses the sign, and we correct the reversal by reversing the result of the
Function LEFTTURN.

As an important detail, we note that signs of determinants have to be com-
puted exactly. With normal floating point arithmetic, this is generally not possi-
ble. We must therefore resort to exact arithmetic methods using long integer or
other representations of coordinates. These methods are typically more costly
than floating point arithmetic, but differences vary widely among different com-
puter hardware. A pragmatic compromise uses floating point arithmetic together
with error analysis. After computing the determinant with floating point arith-
metic, we check whether the absolute value is large enough for its sign to be
guaranteed. Only if that guarantee cannot be obtained do we repeat the compu-
tation in exact arithmetic.

Bibliographic notes

The idea of using symbolic perturbation for computational reasons is already
present in the work of George Danzig on linear programming [1]. It reappeared
in computational geometry with the work of four independent groups of authors.
Edelsbrunner and Miicke [2] develop SoS, which is the method described in
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this section. Yap [7] studies the class of perturbations obtained with different
orderings of infinitesimals. Emiris and Canny [3] introduce perturbations along
straight lines. Michelucci [5] exploits randomness in the design of perturbations.
Symbolic perturbations as a general computational technique within com-
putational geometry remains a controversial subject. It succeeds in extending
partially to completely correct software for some but not all geometric problems.
Seidel [6] addresses this issue, offers a unified view of symbolic perturbation,
and discusses limitations of the method. Fortune and Van Wyk [4] describe a
floating point filter that reduces the overhead needed for exact computation.
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Exercise collection

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered by using knowledge of the material combined with
some thought and analysis.

1. Section of triangulation (two credits). Let K be a triangulation of a set
of n points in the plane. Let £ be a line that avoids all points. Prove that £
intersects at most 2n — 4 edges of K and that this upper bound is tight for
every n > 3.

2. Minimum spanning tree (one credit). The notion of a minimum spanning
tree can be extended from weighted graphs to a geometric setting in which the
nodes are points in the plane. Take the complete graph of the set of nodes and
define the length of an edge as the Euclidean distance between its endpoints.
A minimum spanning tree of that graph is a Euclidean minimum spanning
tree of the point set. Prove that all edges of every Euclidean minimum
spanning tree belong to the Delaunay triangulation of the same point set.
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. Sorted angle vector (one credit). Let K be a triangulation of a finite set in

the plane. Let ¢ be the number of triangles and consider the sorted vector of
angles,

V(IK) = (a1 <ap <+ < a3).

Prove that v(K) = v(D) or v(K) is lexicographically smaller than v(D),
where D is the Delaunay triangulation of the points.

. Minmax circumcircle (two credits). Let K be a triangulation of a finite set

in the plane and let o(K) be the radius of the largest circumcircle of any
triangle in K. Prove o(K) > o(D), where D is the Delaunay triangulation
of the set.

. Random permutation (one credit). Show that the following algorithm con-

structs a random permutation of the integers 1 to n.

for i =1to ndo
Z[i] = i; choose random index 1 < j <i;
swap Z[i] and Z[j]

endfor.

. Furthest-point Voronoi diagram (one credit). Let S € R? be finite. The

furthest-point Voronoi region of a point p € S consists of all points at least
as far from p as from any other point in S,

F,={xeR*||x—pl >Ilx —ql,Vq € S}.

(i) Prove F), # (if and only if p lies on the boundary of the convex hull
of S.

(ii) Draw the furthest-point Voronoi regions of about ten points in the plane,
together with the dual furthest-point Delaunay triangulation.

. Line segment intersection (two credits). Leta, b, x, y be points in R?. They

are in general position if no three are collinear.

(1) Assume general position and write a boolean function that decides
whether the line segments ab and xy cross or are disjoint.

(ii)) What are the degenerate cases, and how does your function deal with
them?

. Enumerating degeneracies (one credit). Let a, b, ¢, d be points in R3. The

orientation of the sequence is the sign of

1 o oy o3
det I B B B
L i » »
1 6 &6 83
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Simulation of simplicity expands the determinant into a polynomial P (¢),

and the orientation is decided by finding the sign of P for sufficiently small

e > 0.

(i) List the terms of the polynomial in the order of decreasing significance.

(i) The perturbation classifies and disambiguates the various degenerate
cases that occur. Each class corresponds to a prefix of the polynomial
that is identically zero. Describe each class in words or figures.
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Triangle meshes

The three sections in this chapter apply what we learned in Chapter 1 to the
construction of triangle meshes in the plane. In mesh generation, the vertices
are no longer part of the input but have to be placed by the algorithm itself. A
typical instance of the meshing problem is given as a region, and the algorithm is
expected to decompose that region into cells or elements. This chapter focuses
on constructing meshes with triangle elements, and it pays attention to quality
criteria, such as angle size and length variation. Section 2.1 shows how Delaunay
triangulations can be adapted to constraints given as line segments that are
required to be part of the mesh. Section 2.2 and 2.3 describe and analyze the
Delaunay refinement method that adds new vertices at circumcenters of already
existing Delaunay triangles.

2.1 Constrained triangulations

This section studies triangulations in the plane constrained by edges specified
as part of the input. We show that there is a unique constrained triangulation
that is closest, in some sense, to the (unconstrained) Delaunay triangulation.

Constraining line segments

The preceding sections constructed triangulations for a given set of points.
The input now consists of a finite set of points, S C R?, together with a finite
set of line segments, L, each connecting two points in S. We require that any
two line segments are either disjoint or meet at most in a common endpoint.
A constrained triangulation of S and L is a triangulation of § that contains
all line segments of L as edges. Figure 2.1 illustrates that we can construct a
constrained triangulation by adding straight edges connecting points in S as
long as they have no interior points in common with previous edges.

26
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Figure 2.1. Given the points and solid edges, we form a constrained triangulation by
adding as many dotted edges as possible without creating improper intersections.

Plane-sweep algorithm

The idea of organizing the actions of the algorithm around a line sweeping over
the plane leads to an efficient way of constructing constrained triangulations.
We use a vertical line that sweeps over the plane from left to right, as shown
in Figure 2.2. The algorithm uses two data structures. The schedule, X, orders
events in time. The cross-section, Y, stores the line segments in L that currently
intersect the sweep line. The algorithm is defined by the following invariant.

Invariant (I) At any moment in time, the partial triangulation contains all edges
in L, a maximal number of edges connecting points to the left of the sweep
line, and no other edges.

Figure 2.2. Snapshot of plane-sweep construction of a constrained triangulation.
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Invariant (I) implies that between the left endpoints of two constraining line
segments adjacent along the sweep line, we have a convex chain of edges in the
partial triangulation. To ensure that new edges can each be added in constant
time, the algorithm remembers the rightmost vertex in each chain. If the point
p encountered next by the sweep line falls inside one of the intervals along the
sweep line, the algorithm connects p to the corresponding rightmost vertex. It
then proceeds in a clockwise and anticlockwise order along the convex chain.
Each step either adds a new edge or it ends the walk. If p is the right endpoint
of a line segment, then it separates two intervals along the sweep line, and the
algorithm does the same kind of walking twice, once for each interval.

The schedule is constructed by sorting the points in § from left to right,
which can be done in time O(n log n), where n = card S. The cross-section is
maintained as a dictionary, which supports search, insertion, and deletion all in
time O(log n). There is a search for each point in S and an insertion—deletion pair
for each line segment in L, taking total time O(n log n). Fewer than 3 edges are
added to the triangulation, each in constant time. The plane-sweep algorithm
thus constructs a constrained triangulation of S and L in time O(n log n).

Constrained Delaunay triangulations

The triangulations constructed by a plane sweep usually have many small and
large angles. We use a notion of visibility between points to introduce a con-
strained triangulation that avoids small angles to the extent possible.

Points x, y € R? are visible from each other if xy contains no point of S in its
interior and it shares no interior point with a constraining line segment. Formally,
intxy NS =@andintxy Nuv = Pforalluv € L. Assume general position. An
edge ab, with a, b € S, belongs to the constrained Delaunay triangulation of S
and L if

(i) abeL,or

(ii) a and b are visible from each other and there is a circle passing through a
and b such that each point inside this circle is invisible from every point
x €intab.

We say the circle in (ii) witnesses the membership of ab in the constrained
Delaunay triangulation. Figure 2.3 illustrates this definition. Note if L = @ then
the constrained Delaunay triangulation of S and L is the Delaunay triangulation
of S. More generally, it is, however, unclear that what we defined is indeed a
triangulation. For example, why is it true that no two edges satisfying (i) or (ii)
cross?
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Figure 2.3. Constrained Delaunay triangulation for seven points and one constraining
line segment. The circumcircle of abc encloses only points that are invisible from all
points of intab.

Edge flipping

We introduce a generalized concept of being locally Delaunay, and we use
it to prove that the above definition makes sense. Let K be any constrained
triangulation of S and L. An edge ab € K is locally Delaunay if ab € L, or
ab is a convex hull edge, or d lies outside the circumcircle of abc, where
abc,abd e K.

Constrained Delaunay Lemma. If every edge of K is locally Delaunay, then K
is the constrained Delaunay triangulation of S and L.

Proof. We show that every edge in K satisfies (i) or (ii) and therefore belongs
to the constrained Delaunay triangulation. The claim follows because every
additional edge crosses at least one edge of K and therefore of the constrained
Delaunay triangulation.

Let ab be an edge and p a vertex in K. Assume ab ¢ L, for else ab belongs
to the constrained Delaunay triangulation for trivial reasons. Assume also that
ab is not a convex hull edge, for else we can easily find a circle passing through
a and b such that p lies outside the circle. Hence, ab belongs to two triangles,
and we let abc be the one separated from p by the line passing through ab. We
need to prove that if p is visible from a point x € intab, then it lies outside the
circumcircle of abc. Consider the sequence of edges in K crossing xp. Since x
and p are visible from each other, all these edges are not in L. We can therefore
apply the argument of the proof of the original Delaunay Lemma, which is
illustrated in Figure 1.9. O

This result suggests we use the edge-flipping algorithm to construct the
constrained Delaunay triangulation. The only difference to the original
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edge-flipping algorithm is that edges in L are not flipped, since they are lo-
cally Delaunay by definition. As before, the algorithm halts in time O(n?) after
fewer than () flips. The analysis of angle changes during an edge flip pre-
sented in Section 1.2 implies that the MaxMin Angle Lemma also holds in the
constrained case.

Constrained MaxMin Angle Lemma. Among all constrained triangulations of S
and L, the constrained Delaunay triangulation maximizes the minimum angle.

Extended Voronoi diagrams

Just as for ordinary Delaunay triangulations, every constrained Delaunay trian-
gulation has a dual Voronoi diagram, but in a surface that is more complicated
than the Euclidean plane. Imagine R? is a sheet of paper, X, with the points
of S and the line segments in L drawn on it. For each ¢; € L, we cut ¥, open
along ¢; and glue another sheet ¥;, which is also cut open along ¢;. The gluing
is done around ¢; such that every traveler who crosses ¢; switches from ¥, to
¥; and vice versa. A cross-section of the particular gluing necessary to achieve
that effect is illustrated in Figure 2.4. It is not possible to do this without self-
intersections in R3, but in R* there is already sufficient space to embed the
resulting surface. Call ¥, the primary sheet, and after the gluing is done we
have m = card L secondary sheets ¥; for 1 <i < m. Each secondary sheet is
attached to X, but not connected to any of the other secondary sheets. For each
point x € R2, we now have m + 1 copies x; € X;, one on each sheet.

We know what it means for two points on the primary sheet to be visible from
each other. For other pairs we need a more general definition. For i # 0, points
X0 € Xp and y; € X; are visible if xy crosses ¢;, and ¢; is the first constraining
line segment crossed if we traverse xy in the direction from x to y. The distance
between points xp and y; is

lx — y|l, ifxo, y; are visible,
d(xo, v;) = :
(xo. 1) {OO, otherwise.

The new distance function is used to define the extended Voronoi diagram,
which is illustrated in Figure 2.5. A circle that witnesses the membership of

%

Zo

Figure 2.4. The gap in X, represents the cut along ¢;. The secondary sheet X; is glued
to X so that each path crossing ¢; switches sheets.
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Figure 2.5. Extended Voronoi diagram dual to the constrained Delaunay triangulation
in Figure 2.3. There is only one secondary sheet glued to the primary one. The solid
Voronoi edges lie in the primary sheet and the dotted ones in the secondary sheet.

an edge ab in the constrained Delaunay triangulation has its center on the
primary or on a secondary sheet. In either case, that center is closer to a and
b than to any other point in S. This implies that the Voronoi regions of a
and b meet along a nonempty common portion of their boundary. Conversely,
every point on an edge of the extended Voronoi diagram is the center of a
circle witnessing the membership of the corresponding edge in the constrained
Delaunay triangulation.

Bibliographic notes
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2.2 Delaunay refinement

This section demonstrates the use of Delaunay triangulations in constructing tri-
angle meshes in the plane. The idea is to add new vertices until the triangulation
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Figure 2.6. The solid vertices and edges define the input graph, and together with the
hollow vertices and dotted edges they define the output triangulation.

forms a satisfying mesh. Constraining edges are covered by Delaunay edges,
although forcing them into the triangulation as we did in Section 2.1 would also
be possible.

The meshing problem

The general objective in mesh generation is to decompose a geometric space
into elements. The elements are restricted in type and shape, and the number
of elements should not be too big. We discuss a concrete version of the two-
dimensional mesh generation problem.

Input. This is a polygonal region in the plane, possibly with holes and with
constraining edges and vertices inside the region.

Output. This is a triangulation of the region whose edges cover all input edges
and whose vertices cover all input vertices.

The graph of input vertices and edges is denoted by G, and the output trian-
gulation is denoted by K. It is convenient to enclose G in a bounding box and
to triangulate everything inside that box. A triangulation of the input region is
obtained by taking a subset of the triangles. Figure 2.6 shows input and output
for a particular mesh generation problem.

Triangle quality

The quality of a triangle abc is measured by its smallest angle, 6. Two alternative
choices would be the largest angle and the aspect ratio. We argue that a good
lower bound for the smallest angle implies good bounds for the other two
expressions of quality. The largest angle is at most 7 — 26, so if the smallest
angle is bounded away from zero then the largest angle is bounded away from 7.
The converse is not true. The aspect ratio is the length of the longest edge, which
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b

|
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I
!
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a X c

Figure 2.7. Triangle with base ac, height bx, and minimum angle 6.

we assume is ac, divided by the distance of b from ac; see Figure 2.7. Suppose
the smallest angle occurs at a. Then ||b — x| = ||b — a|| - sin 8, where x is the
orthogonal projection of b onto ac. The edge ab is at least as long as cb, and
therefore ||b — a|| > ||c — a||/2. It follows that

1 llc — all 2
. < < .
sinf ~ ||b—x]| ~ sin6

In words, the aspect ratio is linearly related to one over the smallest angle. If
6 is bounded away from zero, then the aspect ratio is bounded from above by
some constant, and vice versa.

The goal is to construct K so its smallest angle is no less than some constant,
and the number of triangles in K is at most some constant times the minimum.
We see from the example in Figure 2.6 that a small angle between two input
edges cannot possibly be resolved. A reasonable way to deal with this difficulty
is to accept sharp input features as unavoidable and to isolate them so they cause
no deterioration of the triangulation nearby. In this section, we assume that there
are no sharp input features, and in particular that all input angles are at least " /5.

Delaunay refinement

We construct K as the Delaunay triangulation of a set of points that includes
all input points. Other points are added one by one to resolve input edges that
are not covered and triangles that have too small an angle.

(1) Suppose ab is a segment of an edge in G that is not covered by edges of
the current Delaunay triangulation. This can only be because some of the
vertices lie inside the diameter circle of ab, as in Figure 2.8. We say these
vertices encroach upon ab, and we use function SPLIT; to add the midpoint
of ab and to repair the Delaunay triangulation with a series of edge flips.

(2) Suppose a triangle abc in the current Delaunay triangulation K is skinny;
that is, it has an angle less than the required lower bound. We use function
SPLIT; to add the circumcenter as a new vertex, such as point x in Figure 2.9.
Since its circumcircle is no longer empty, triangle abc is guaranteed to be
removed by one of the edge flips used to repair the Delaunay triangulation.
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Figure 2.8. Vertex p encroaches upon segment ab. After adding the midpoint, we have
two smaller diameter circles, both contained in the diameter circle of ab.

Algorithm

The first priority of the algorithm is to cover input edges, and its second priority
is to resolve skinny triangles. Before starting the algorithm, we place G inside a
rectangular box B. The purpose of the box is to contain the points added by the
algorithm and thus prevent the perpetual growth of the meshed region. To be
specific, we take B three times the size of the minimum enclosing rectangle of
G. Box B has space for nine copies of the rectangle, and we place G inside the
center copy. Each side of B is decomposed into three equally long edges. Refer
to Figure 2.6, where for aesthetic reasons the box is drawn smaller than required
but with the right combinatorics. Initially, K is the Delaunay triangulation of
the input points, which includes the 12 vertices along the boundary of B.

loop
while 3 encroached segment ab do SPLIT|(ab) endwhile;
if no skinny triangle left then exit endif;
let abc € K be skinny and x its circumcentre;

X encroaches upon segments sy, 52, .. . , Sk;
if k > 1 then SPLIT;(s;) for alli else SPLIT,(abc) endif
forever.

b
Figure 2.9. The angle Zaxb is twice the angle Zacb.
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The choice of B implies that no circumcenter x will ever lie outside the box.
This is because the initial 12 or fewer triangles next to the box boundary
have nonobtuse angles opposite to boundary edges. Since the circumcircles of
Delaunay triangles are empty, this implies that all circumcenters lie inside B.
The algorithm maintains the nonobtuseness of angles opposing input edges and
thus limits circumcenters to lie inside B.

Preliminary analysis

The behavior of the algorithm is expressed by the points it adds as vertices to the
mesh. We already know that all points lie on the boundary or inside the box B,
which has finite area. If we can prove that no two points are less than a positive
constant 2¢ apart, then this implies that the algorithm halts after adding finitely
many points. To be specific, let w be the width and & the height of B. The area
of the box obtained by extending B by € on each sideis A = (w + 2¢)(h + 2¢).
The number of points inside the box isn < A/ g27. This is because the disks
with radius ¢ centred at the vertices of the mesh have pairwise disjoint interiors,
and they are all contained in the extended box. This type of area argument is
common in meshing and related to packing, as illustrated in Figure 2.10. The
existence of a positive ¢ will be established in Section 2.3. The analysis there
will refine the area argument by varying the sizes of disks with their location
inside the meshing region.

In terms of running time, the most expensive activity is edge flipping used
to repair the Delaunay triangulation. The expected linear bound on the number
proved in Section 1.3 does not apply because points are not added in a random
order. The total number of flips is less than (%). This implies an upper bound
of O(n?) on the running time, as long as the cost for adding a new vertex is at
most O(n).

Figure 2.10. The centers of the disk are contained in the inner box, and the disks are
contained in the box enlarged by the disk radius in all four directions.
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2.3 Analysis

This section analyses the Delaunay refinement algorithm of Section 2.2. It
proves an upper bound on the number of triangles generated by the algorithm
and an asymptotically matching lower bound on the number of triangles that
must be generated.

Local feature size

We understand the Delaunay refinement algorithm by relating its actions to the
local feature size, defined as amap f : R?> — R. For a point x € R?, f(x) is the
smallest radius  such that the closed disk with center x and radius r

(i) contains two vertices of G,
(i1) intersects one edge of G and contains one vertex of G thatis not an endpoint
of that edge, or
(iii) intersects two vertex disjoint edges of G.

The three cases are illustrated in Figure 2.11. Because of (i) we have f(a) <
lla — b|| for all vertices a # b in G. The local feature size satisfies a one-sided
Lipschitz inequality, which implies continuity.

Lipschitz Condition. | f(x) — f(y)| < llx = yll.

Proof. To geta contradiction, assume there are points x, y with f(x) < f(y) —
llx — y|l. The disk with radius f(x) around x is contained in the interior of
the disk with radius f(y) around y. We can thus shrink the disk of y while
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N

Figure 2.11. In each case, the radius of the circle is the local feature size at x.

maintaining its nonempty intersection with two disjoint vertices or edges of G.
This contradicts the definition of f(y). O

Constants

The analysis of the algorithm uses two carefully chosen positive constants C
and C; such that

1 ++2C, < C < [(C, — 1)/2sinal,

where « is the lower bound on angles enforced by the Delaunay refinement
algorithm. The constraints that correspond to the two inequalities are bounded
by lines, and we have a solution if and only if the slope of the first line is
greater than that of the second, 1/+/2 > 2sin . Figure 2.12 illustrates the two
constraints for a < arcsin(1/2+4/2) = 20.7...°. The two lines intersect at a
point in the positive quadrant, and the coordinates of that point are the smallest
constants C; and C, that satisfy the inequalities.

Invariants

The algorithm starts with the vertices of G and generates all other vertices in
sequence. We show that, when a new vertex is added, its distance to already
present vertices is not much smaller than the local feature size.

Invariants. Let p and x be two vertices such that x was added after p. If x was
added by

(A) spLIT; then ||x — p|| > f(x)/Cy,
(B) SPLIT, then |[x — p| = f(x)/Cs.

&

—»
1 C

Figure 2.12. Each line bounds a half-plane of points (C, C,) that satisfy one inequality.
The shaded wedge contains all points that satisfy both inequalities.
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Proof. We first prove (B). In this case, point x is the circumcenter of a skinny
triangle abc. Let 0 < « at ¢ be the smallest angle in abc, as in Figure 2.9.
Assume that either a and b both belong to G or that a was added after b. We
distinguish three cases, depending on how a became to be a vertex. Let L be
the length of ab.

Case 1. Herea is a vertex of G. Then b is also a vertex of G and f(a) < L.

Case 2. Herea was added as the circumcenter of a circle with radius r’. Prior
to the addition of a, this circle was empty, and hence r’ < L. By
induction, we have f(a) < r’ - C, and therefore f(a) < L - C>.

Case 3. Herea was added as the midpoint of a segment. Then f(a) < L - Cy,
again by induction.

Since | < C, < Cj,wehave f(a) < L - Cjinall three cases. Letr = ||x — a|
be the radius of the circumcircle of abc. Using the Lipschitz Condition and
L = 2r sin 6 from Figure 2.9, we get

&) = fla@)+r
<L-Ci+r
<2r-sinf-C|+r.

Since § < o and C; > 1 + 2C - sinw, we get
r> f(x)/(1+2C; -sina) > f(x)/C,

as required.

We use a similar argument to prove (A). In this case, x is the midpoint of
a segment ab. Letr = ||x — a|| = ||x — b|| be the radius of the smallest circle
passing through a and b, and let p be a vertex that encroaches upon ab, as
in Figure 2.8. Consider first the case in which p lies on an input edge that
shares no endpoint with the input edge of ab. Then f(x) <r by condition
(iii) of the definition of local feature size. Consider second the case in which
the splitting of ab is triggered by rejecting the addition of a circumcenter. Let p
be this circumcenter and let r’ be the radius of its circle. Since p lies inside the
diameter circle of ab, we have r' < /2r. Using the Lipschitz Condition and
induction, we get

fx) =< f(p)+r
<r' - Cy+r
< 2r~C2+r.
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Using Cy > 1 + «/§C2, we get
r> fx)/(1++2C) > f(x)/C,

as required. O

Upper bound

Invariants (A) and (B) guarantee that vertices added to the triangulation can-
not get arbitrarily close to preceding vertices. We show that this implies that
they cannot get close to succeeding vertices either. Recall that K is the final
triangulation generated by the Delaunay refinement algorithm.

Smallest Gap Lemma. ||a — b|| > f(a)/(1 + Cy) for all vertices a, b€ K.

Proof. If b precedes a then ||a — b|| > f(a)/C, = f(a)/(1 + C}). Otherwise,
we have ||b — a|| > f(b)/C, and therefore

fla) = fb)+lla=>bll <lla=>bl-(14Cy),

as claimed. |

Since vertices cannot get arbitrarily close to each other, we can use an area
argument to show that the algorithm halts after adding a finite number of ver-
tices. We relate the number of vertices to the integral of 1/f2(x). Recall that B
is the bounding box used in the construction of K.

Upper Bound Lemma. The number of vertices in K is at most some constant
times [, dx/f?(x).

Proof. For each vertex a of K, let D, be the disk with center a and radius
r, = f(a)/(2+ 2C;). By the Smallest Gap Lemma, the disks are pairwise
disjoint. At least one quarter of each disk lies inside B. Therefore,

dx Z/ dx
7 /D fz(x)

s
g f2(x) —
_ Z rln
(f(a) +r4)?

a

T
02 Gy

a

Bl= A=

v

S o=

This is a constant times the number of vertices. O
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Two geometric results

We prepare the lower bound argument with two geometric results on triangles
with angles no smaller than some constant « > 0. Two edges of such a triangle
abc cannot be too different in length, and specifically, la — c||/|la — b|| < 0 =
1/sinw. If we have a chain of triangles connected through shared edges, the
length ratio cannot exceed o', where ¢ is the number of triangles. Two edges
sharing a common vertex are connected by the chain of triangles around that
vertex. That chain cannot be longer than 27 /&, simply because we cannot pack
more angles into 2.

Length Ratio Lemma. The length ratio between two edges sharing a common
vertex is at most 0>7/%.

The second result concerns covering a triangle with four disks, one each around
the three vertices and the circumcenter. For each vertex we take a disk with
radius c( times the length of the shortest edge. For the circumcenter we take a
disk with radius 1 — ¢, times the circumradius. For a general triangle, we can
keep c¢ fixed and force ¢, as close to zero as we like, just by decreasing the
angle. If angles cannot be arbitrarily small, then ¢, can also be bounded away
from zero.

Triangle Cover Lemma. For each constant ¢y > 0 there is a constant ¢, > 0 such
that the four disks cover the triangle.

Proof. Refer to Figure 2.13. Let R be the circumradius and ab be the short-
est of the three edges. Its length is |j@ — b|| > 2R - sin«. The disk around a

Figure 2.13. The disks constructed for a triangle and its three vertices cover the triangle.
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covers all points at distance at most cg - ||a — b|| from a, and we assume with-
out loss of generality that ¢y < 1/2. The distance between the circumcenter, z,
and the point y € ab at distance ¢ - ||la — b|| from a is

ly —zll < \/R* = cglla — b))?
< R (1 -4} -sin’a)

<R-(1-2c-sin*a).

All other points on triangle edges not covered by disks around a, b, ¢ are at most
that distance from z. Since ¢y and « are positive constants, ¢, = 2c(2) -sin® & is
also a positive constant. m]

Lower bound

The reason for picking the disk of radius (1—c;) R around the circumcenter is
that for a point x inside this disk, the local feature size cannot be arbitrarily small.
In particular, it cannot be smaller than the distance from the circumcircle times
the cosine of half the smallest angle, f(x) > ¢, R - cos(«/2). To get a similar
result for disks around vertices, let L be the length of the shortest edge incident
to a vertex a. The local feature size of a is at least L - sinc. By choosing
co = sina /2 we get f(a) > 2coL, and therefore f(x) > f(a) — |la — x| >
coL for every point x inside the disk with radius c¢oL around a.

We use these observations to show that any algorithm that constructs trian-
gles with angles no smaller than some constant « > 0 generates at least some
constant times the integral of 1/f2(x) many vertices. It follows that the algo-
rithm in Section 2.2 constructs meshes with asymptotically minimum size.

Lower Bound Lemma. If K is a triangle mesh of G with all angles larger than
«, then the number of vertices is at least some constant times || pdx/f 2(x).

Proof. Around each vertex a € K draw a disk with radius equal to sina /2
times the length of the shortest incident edge. Let ¢y = sina - 0™/ /2 and use
the Triangle Cover Lemma to pick a matching constant ¢; > 0. For each trian-
gle abc € K, draw the disk with radius 1 — ¢, times the circumradius around
the circumcenter. Each triangle is covered by its four disks, which implies that
the mesh is covered by the collection of disks.

For each disk D; in the collection, let f; be the minimum local feature size
at any point x € D;. By what we said earlier, that minimum is at least some
constant fraction of the radius of D;, f; > r;/C. Given that the disks cover the
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mesh, we have

/fz(x)_z/ 2

§ZC271

The number of triangles is less than twice the number of vertices, which we
denote as n. Hence,

dx
> _ "
n Z 3C2 B f2(x) ’
as claimed. O
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Exercise collection

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered by using knowledge of the material combined with
some thought and analysis.

1. Acute triangles (one credit). An acute triangle has all three angles less than
7 /2. Note that a Delaunay triangle abc is acute if and only if the dual Voronoi
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vertex is contained in the interior of abc. Show that a triangulation K all
of whose triangles are acute is necessarily the Delaunay triangulation of its
vertex set.

. Gabriel graph (one credit). Let S be a finite set in the plane. Let a,be S
and consider the smallest circle Cy;, that passes through a and b. The edge
ab belongs to the Gabriel graph G of S if C,y, is empty and a, b are the only
two points of S that lie on the circle.

(i) Show thatab € G if and only if ab belongs to the Delaunay triangulation
and the opposite angles in the one or two triangles that share ab are less
than 7 /2.

(i1) Show that ab e G if and only if ab crosses the dual Voronoi edge
V. N V.

. Voronoi diagram for line segments (three credits). Consider a set L of n
pairwise disjoint line segments in the plane. The distance of a point x € R?
from ab € L is the minimum Euclidean distance from any point on ab. The
Voronoi region of ab is then the set of points x for which ab is no further
than any other line segment in L.

(i) Prove that the Voronoi region of every line segment in L is connected.

(ii)) Show that the edges of the Voronoi regions are pieces of lines and

parabolas.
(iii) Prove that the number of Voronoi edges is at most some constant
times 7.
. Noncrossing edges (two credits). Let S be a finite set of points in R? such
that no three lie on a common line and no four lie on a common circle.
We say two edges ab and cd cross if they share a common interior point,
intab Nintced # (. Let L be a set of pairwise noncrossing line segments
with endpoints in S.

(i) Prove that no two edges of the Delaunay triangulation of S cross.

(ii) Prove that no two edges of the constrained Delaunay triangulation of S

and L cross.

. Surrounded Voronoi vertices (three credits). Consider the Delaunay trian-
gulation of a finite set of points in R2. Let D be a subset of the Delaunay
triangles, with boundary B consisting of all edges that belong to exactly
one triangle in D. We call D protected if abc € D and ab € B implies the
angle at ¢ is nonobtuse. Prove that all Voronoi vertices dual to triangles in a
protected subset of triangles, D, lie in the regions covered by D.
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Combinatorial topology

The primary purpose of this chapter is the introduction of standard topological
language to streamline our discussions on triangulations and meshes. We will
spend most of the effort to develop a better understanding of space, how it is
connected, and how we can decompose it. The secondary purpose is the con-
struction of a bridge between continuous and discrete concepts in geometry.
The idea of a continuous and possibly even differential world is close to our
intuitive understanding of physical phenomena, while the discrete setting is
natural for computation. Section 3.1 introduces simplicial complexes as a fun-
damental discrete representation of continuous space. Section 3.2 talks about
refining complexes by decomposing simplices into smaller pieces. Section 3.3
describes the topological notion of space and the important special case of mani-
folds. Section 3.4 discusses the Euler characteristic of a triangulated space.

3.1 Simplicial complexes

We use simplicial complexes as the fundamental tool to model geometric shapes
and spaces. They generalize and formalize the somewhat loose geometric no-
tions of a triangulation. Because of their combinatorial nature, simplicial com-
plexes are perfect data structures for geometric modeling algorithms.

Simplices

A finite collection of points is affinely independent if no affine space of di-
mension i contains more than i + 1 of the points, and this is true for every i.
A k-simplex is the convex hull of a collection of k + 1 affinely independent
points, o = conv S. The dimension of o isdimo =k. In R4, the largest number
of affinely independent points is d + 1, and we have simplices of dimension
—1,0,...,d. The (—1)-simplex is the empty set. Figure 3.1 shows the four

44
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]
0 1 2 3

Figure 3.1. A O-simplex is a point or vertex, a 1-simplex is an edge, a 2-simplex is a
triangle, and a 3-simplex is a tetrahedron.

types of nonempty simplices in R>. The convex hull of any subset T C S is
again a simplex. It is a subset of conv S and called a face of o, which is denoted
as T < o.Ifdimt = £ then 7 is called an {-face. T =) and T = o are improper
faces, and all others are proper faces of o. The number of £ faces of o is equal
to the number of ways we can choose £ + 1 from k + 1 points, which is (Z‘ii ).
The total number of faces is

Ek: <k+ 1) et

£+ 1

t=—1

Simplicial complexes

A simplicial complex is the collection of faces of a finite number of simplices,
any two of which are either disjoint or meet in a common face. More formally,
itis a collection K such that

(i) oeKAT<o=—71€K,and
(i) o,veK =0 Nuv <o,v.

Note that @ is a face of every simplex and thus belongs to K by Condition (i).
Condition (ii) therefore allows for the possibility that o and v be disjoint.
Figure 3.2 shows three sets of simplices that each violate one of the two con-
ditions and therefore do not form complexes. A subcomplex is a subset that is
a simplicial complex itself. Observe that every subset of a simplicial complex

Figure 3.2. To the left, we are missing an edge and two vertices. In the middle, the
triangles meet along a segment that is not an edge of either triangle. To the right, the
edge crosses the triangle at an interior point.
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Figure 3.3. Star and link of a vertex. To the left, the solid edges and shaded triangles
belong to the star of the solid vertex. To the right, the solid edges and vertices belong to
the link of the hollow vertex.

satisfies Condition (ii). To enforce Condition (i), we may add faces and sim-
plices to the subset. Formally, the closure of a subset L C K is the smallest
subcomplex that contains L,

ClL={reK |t<0€l}.

A particular subcomplex is the i-skeleton that consists of all simplices o € K
whose dimension is i or less. The vertex set is Vert K={o € K|dim o =0},
which is the 0-skeleton minus the (—1)-simplex. The dimension of K is the
largest dimension of any simplex, dim K = max{dimo|oc € K}. If k =dim K
then K is a k-complex.

Stars and links

We use special subsets to talk about the local structure of a simplicial complex.
These subsets may or may not be closed. The star of a simplex t consists of
all simplices that contain t, and the link consists of all faces of simplices in the
star that do not intersect T,

Stt={oceK |t <0},
Lkt ={oc€CIStt |o Nt =0}.
Figure 3.3 illustrates this definition by showing the star and the link of a vertex in

a 2-complex. The star is generally not closed, but the link is always a simplicial
complex.

Abstract simplicial complexes

By substituting the set of vertices for each simplex, we get a system of subsets
of the vertex set. In doing so, we throw away the geometry of the simplices
and focus on the combinatorial structure. Formally, a finite system A of finite
sets is an abstract simplicial complex if o« € A and  C o implies B € A. This
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O Vert A

T~

A

J 0

Figure 3.4. The onion is the power set of Vert A. The area below the waterline is an
abstract simplicial complex.

requirement is similar to Condition (i) for geometric simplicial complexes. A
set o € A is an (abstract) simplex and its dimension is dim« = carda — 1. The
vertex set of Ais Vert A =JA =, 4.

Observe that A is a subsystem of the power set of Vert A. We can therefore
think of it as a subcomplex of an n-simplex, where n + 1 = card Vert A. This
view is expressed in the picture of an abstract simplicial complex shown as
Figure 3.4. The concepts of face, subcomplex, closure, star, and link extend
straightforwardly from geometric to abstract simplicial complexes.

Posets

The set system together with the inclusion relation forms a partially ordered
set, or poset, denoted as (A, C). Posets are commonly drawn by using Hasse
diagrams, where sets are nodes, smaller sets are below larger sets, and inclusions
are edges. Figure 3.5 shows the Hasse diagrams of simplices with dimensions
0 to 3. Implied inclusions are usually not drawn.

Here is a recursive way to construct the Hasse diagram of a k-simplex «.
First draw the Hasse diagrams for two (k — 1)-simplices. One is the diagram
of a (k — 1)-face B of o, and the other is the diagram for the star of the vertex

o @

Figure 3.5. From left to right, the poset of a vertex, an edge, a triangle, and a tetrahedron.
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u € @ — B. Finally, connect every simplex y in the star of u with the simplex
y — {u} in the closure of 8.

Geometric realization

We can think of an abstract simplicial complex as an abstract version of a
geometric simplicial complex. To formalize this idea, we define a geometric
realization of an abstract simplicial complex A as a simplicial complex K
together with a bijection ¢ : Vert A — Vert K such that « € A if and only if
conv p(a) € K. A is sometimes called an abstraction of K.

Given A, we can ask for the smallest number of dimensions that allow a geo-
metric realization. For example, graphs are one-dimensional abstract simplicial
complexes and can always be realized in R. Two dimensions are sometimes but
not always sufficient. This result generalized to k-dimensional abstract simpli-
cial complexes. They can always be realized in R**! and sometimes R?* does
not suffice. To prove the sufficiency of the claim, we show that the k-skeleton
of every n-simplex can be realized in R%**+!, Map the n + 1 vertices to points in
general position in R**! Specifically, we require that any 2k + 2 of the points
are affinely independent. Two simplices o and v of the k-skeleton have a total
of at most 2(k + 1) vertices, which are therefore affinely independent. In other
words, o and v are faces of a common simplex of dimension at most 2k + 1.
Hence, o0 N v is a common face of both.

Nerves

A convenient way to construct abstract simplicial complexes starts from an
arbitrary finite set. The nerve of such a set C is the system of subsets with
nonempty intersection,

ercz{agmﬂa;é@}.

If B« then (o € () B. Hence o € Nrv C implies 8 € Nrv C, which shows
that the nerve is an abstract simplicial complex. Consider, for example, the case
where C covers some geometric space, such as the union of elliptic regions in
Figure 3.6. Every set in the covering corresponds to a vertex, and k 4 1 sets
with nonempty intersection define a k-simplex.

We have seen an example of such a construction earlier. The Voronoi regions
of a finite set S C R? define a covering C = {V, | a € S} of the plane. When
general position is assumed, the Voronoi regions meet in pairs and in triplets, but
not in quadruplets. The nerve contains abstract vertices, edges, and triangles, but
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Figure 3.6. A covering with eight sets to the left and a geometric realization of its nerve
to the right. The sets meet in triplets but not in quadruplets, which implies that the nerve
is two dimensional.

no abstract tetrahedra. Consider the function ¢ : C — R? that maps a Voronoi
region to its generator, ¢(V,) = a. This function defines a geometric realization
of Nrv C, namely

D = {conv p(a)|a € Nrv C}.

This is the Delaunay triangulation of S. What happens if the points in S are not
in general position? If kK + 1 > 4 Voronoi regions have a nonempty common
intersection, then Nrv C contains the corresponding abstract k-simplex. So in-
stead of making a choice among the possible triangulations of the (k + 1)-gon,
the nerve takes all possible triangulations together and interprets them as sub-
complexes of a k-simplex. The disadvantage of this method is of course that a
k-simplex for k > 3 cannot be realized in R.

Bibliographic notes

The concept of a nerve was introduced to combinatorial topology in 1928 by
Alexandrov [1]. During the first half of the twentieth century, combinatorial
topology was a flourishing field within mathematics. We refer to the work of
Paul Alexandrov [2] as a comprehensive text originally published as a series
of three books. This text roughly coincides with a fundamental reorganization
of the field triggered by a variety of technical results in topology. One of the
successors of combinatorial topology is modern algebraic topology, where the
emphasis shifts from combinatorial to algebraic structures.

We have seen that every k-complex can be geometrically realized in R%**+!.
Examples of k-complexes that require 2k 4+ 1 dimensions are provided by
Flores [3] and independently by van Kampen [4]. One such example is the
k-skeleton of the (2k + 2)-simplex. For k = 1, this is the complete graph of five
vertices, which is one of the two obstructions of graph planarity identified by
Kuratowski [5].
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3.2 Subdivision

Subdividing or refining a simplicial complex means decomposing its simplices
into pieces. This section discusses two ways to subdivide systematically. Both
ways are based on describing points by using barycentric coordinates, which
are introduced first.

Barycentric coordinates

Let S be a finite set of points p; in R?. An affine combination is a point
x= Y, vipi with >, y; = 1. The affine hull is the set of affine combinations
and is denoted as aff S. It is the smallest affine subspace that contains S. A
convex combination is an affine combination with y; > 0 for all i. The convex
hull is the set of convex combinations and is denoted as conv S. In general, the
y; are not unique, but if the p; are affinely independent then they are. Indeed,
if the k 4+ 1 = card § points are affinely independent, then the affine hull has
dimension k. There are k 4 1 coefficients, and the requirement they sum to 1
reduces the degree of freedom to k, just enough for k dimensions.

Assume the points in S are affinely independent; hence o =conv § is a
k-simplex. The barycentric coordinates of apoint x € conv S are the coefficients
¥i such that x = ", y; p;. They are all nonnegative and they add to 1. For a
particular realization of o = conv § in R the barycentric coordinates are
exactly the Cartesian coordinates. This realization is the standard k-simplex,
which is the convex hull of the endpoints of the k 4 1 unit vectors, as illustrated
in Figure 3.7. It is also the intersection of the hyperplane ), y;x; = 1 with

A3

X1 X2

Figure 3.7. The standard triangle connects points (1, 0, 0), (0, 1, 0), and (0, 0, 1).
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the orthant of points with nonnegative coordinates. The boundary consists of
points that have at least one barycentric coordinate equal to 0. The interior is
the rest of the simplex, into = o — bd o. The barycenter is the point with all
k + 1 barycentric coordinates the same, namely equal to 1/(k + 1). It is also
known as the centroid and the center of mass.

Barycentric subdivision

A subdivision of a complex K is a complex L such that every simplex 7 € L
is contained in a simplex o € K. In other words, every o € K is the union
of simplices in L. We describe a particular subdivision obtained by connect-
ing the barycenters of simplices. Consider first a k-simplex, o, and take the
collection of barycenters of all faces. We connect every subset of barycen-
ters that come from a sequence of proper faces. Figure 3.8 illustrates the
construction for k =2. A k-simplex is decomposed into smaller k-simplices,
each the set of points with barycentric coordinates y;, < y;, <--- <y, for
some fixed permutation of the k + 1 indices. It follows there are (k 4 1)!
k-simplices in the decomposition. The implied subdivision of each face is
the barycentric subdivision of that face. We can therefore define the barycen-
tric subdivision of K as the one obtained by subdividing every simplex as
described.

There is a refreshingly different abstract description of the same construc-
tion. Let A be the abstraction of K viewed as a partially ordered set. A chainis a
properly nested sequence of nonempty abstract simplices, g C ) C --- C o;.
The order complex is obtained by taking the nonempty abstract simplices of
A as vertices and the chains of A as abstract simplices. Every subchain of
a chain is again a chain, which implies that the order complex is an ab-
stract simplicial complex. It is the abstraction of the barycentric subdivision
of K.

1

Figure 3.8. Barycentric subdivision of a triangle. Each barycenter is labeled with the
dimension of the corresponding face of the triangle.
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Figure 3.9. Three generic 3-divisions.

Dividing an interval

The barycentric subdivision has nice structural properties but terrible numerical
behavior. We prepare the introduction of a subdivision that preserves angles
to the extent this is possible. Let x = Zf:o yipi. Since Y, y; = 1, we can
associate x with the division of [0, 1] into k + 1 pieces of lengths yo, 1, ..., Vk.
We call this a (k 4 1)-division. The map between points of ¢ and (k + 1)-
divisions of [0, 1] is a bijection. We use this observation and subdivide o by
distinguishing different ways to divide [0, 1].

As an example, consider the case in which o is a triangle. Suppose we
cut [0, 1] into two halves, and we distinguish divisions depending on which
halves contain their dividing points. The three generic possibilities are shown in
Figure 3.9. The first case is defined by y» > !. There is a bijection to the
3-divisions of [0, !/4], and therefore to the points of a triangle. Similarly, the
second case is defined by yy > '/, and again we get a bijection to the points of a
triangle. The third case defined by yy, y» < '/ is more interesting. We have two
independent 2-divisions corresponding to a 1-simplex or edge each. The set of
all pairs of 2-divisions corresponds to the Cartesian product of the two edges,
which is a rhombus. To subdivide the rhombus, we stack the two intervals and
distinguish the case in which the upper divider precedes the lower divider from
the one in which is succeeds it. Both cases are illustrated in Figure 3.10. We
make the stack into a single interval by extending the dividers over both rows.

Yo | Vi 2 ;
| T2 0 ]
Yo | T
[ T

Figure 3.10. Two pairs of generic 2-divisions.
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In each case, we get a bijection to the set of 3-divisions and hence to the points
of a triangle. The subdivision we just described starts by cutting [0, 1] into two
halves. In general, we cut it into j > 1 equal intervals, which are all stacked.

Edgewise subdivision

The method of subdividing a triangle can be generalized to d-simplices in a
fairly straightforward manner. Keep in mind that the (k + 1)-divisions of [0, 1]
form a k-simplex, and the independent division of intervals corresponds to
taking the Cartesian product.

Take a (k + 1)-division of [0, 1]. Cut [0, 1] into j equally long intervals and
stack them up, one on top of the next. At this moment, we have each interval
divided into pieces, and each piece has a color, which is the index of the
corresponding vertex. Extend the dividers through the entire stack. Assuming
all dividers are different, we now have each interval divided into k + 1 pieces,
and each piece still has its original color. This state of the construction is
illustrated in Figure 3.11. To remove the length information, we transform the
stack to a matrix of colors, and we refer to it as a color scheme. For example,
the color scheme of the stack in Figure 3.11 is

N = O
NN O
w N o
W N =

If we read a color scheme read row by row like text, we get a nondecreasing
sequence of colors. The other defining property is that no two columns are the
same. In the generic case, there are k + 1 columns, and two contiguous columns
differ by one color. In general, the matrix corresponds to a simplex whose
dimension is the number of columns minus one. Each column corresponds to a
vertex of that simplex. Specifically, the vertex that corresponds to the column
with colors i <i, <--- <i; is the average of the corresponding vertices,
namely Z'g:, pi,/j. Forafixed j > 1, the edgewise subdivision consists of all
simplices that correspond to color schemes with j rows and k£ + 1 colors.

0 0 0
2 2
2 2 3 3

Figure 3.11. Stack of 4-division, cut into three equal intervals.



54 3. Combinatorial topology

I
2
0
1
Figure 3.12. 8-division of a tetrahedron with shape vectors indicated by arrowheads.

Example

Consider the edgewise subdivision of a tetrahedron for j = 2. There are eight
generic color schemes, namely

1
01 2 3 2 3 3
00 1 2 01 1 1
2 3 37|11 2 3
01 2 2 01 2 3

2 2 2 3]7|3 3 3 3]
They divide the tetrahedron into four tetrahedra near the vertices and four
tetrahedra dividing the remaining octahedron, as shown in Figure 3.12. Note

that the way the tetrahedron is subdivided depends on the ordering of the four
original vertices. The distinguishing feature is the diagonal of the octahedron

{0000][000
1

w
—
o O
[N I
W =
[USI \)
[

used in the subdivision. It corresponds to the two-by-two color scheme with
colors 0, 1, 2, 3. The diagonal is therefore the edge connecting the midpoints

of pop2 and p; p;3.

Shape vectors

In Figure 3.12, the four tetrahedra next to the original vertices are just scaled-
down copies of the original tetrahedron. They are congruent, but the four
tetrahedra subdividing the octahedron have usually different shape. The key
to understanding the types of simplices that arise are the vectors connect-
ing contiguous vertices of the original tetrahedron. Let py, pi, ..., pr be an
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ordering of the vertices of a k-simplex o. We have k shape vectors, namely
pi — pi—1 for 1 <i <k, which form a path from pg to py.

Consider the shape vectors of one of the k-simplices in the subdivision. We
get the ordering of its vertices by reading the columns of the corresponding
color scheme from left to right. Two contiguous columns differ in one row,
and in that row the color increases by one. The corresponding shape vector is
therefore just a scaled-down copy of one of the original shape vectors. After
rescaling, the shape vectors of the k-simplex in the subdivision and the original
k-simplex are the same, but they may come in a different order. There are
k-shape vectors and thus k! possible orderings. Reversing the ordering is the
same as centrally reflecting the simplex. Recall that two simplices are congruent
if one is obtained from the other by translation and possibly central reflection.
It follows that the number of congruence classes among the k-simplices in the
subdivision is at most k!/2, no matter how large j is. In the generic case, the
number of congruence classes is exactly k!/2.

Bibliographic notes

The barycentric subdivision is a popular tool in applications in which numerical
behavior is not important. The corresponding abstract order complex is a notion
that goes back to Alexandrov [1]. The edgewise subdivision combines elegant
combinatorial structure with good numerical behavior. It was independently
discovered several times in the literature, and possibly the oldest reference
is the paper by Freudenthal [3]. The three-dimensional case is particularly
relevant in mesh generation [4]. The exposition in this section is based on the
recent paper by Edelsbrunner and Grayson [2], which introduces the elementary
framework of interval division and proves a variety of symmetry properties of
the subdivision.

[1] P.S. Alexandrov. Diskrete Raume. Mat. Sb. 2 (1937), 501-518.

[2] H. Edelsbrunner and D. R. Grayson. Edgewise subdivision of a simplex. Discrete
Comput. Geom. 24 (2000), 707-719.

[3] H. Freudenthal. Simplizialzerlegung von beschrinkter Flachheit. Ann. Math. 43
(1942), 580-582.

[4] A.Liu and B. Joe. Quality local refinement of tetrahedral meshes based on
8-subtetrahedron subdivision. Math. Comput. 65 (1996), 1183—-1200.

3.3 Topological spaces

The topological notions in this book are predominantly combinatorial. To un-
derstand the connection to continuous phenomena, we need but a few basic
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concepts from point set topology. This section introduces topological spaces,
homeomorphisms, triangulations, and manifolds.

Topology

The most fundamental concept in point set topology is a topological space,
which is a point set X together with a system X of subsets A C X that satisfies

() 9,XeX,
(ii) Z € X implies |J Z € X, and
(ili) Z € X and Z finite implies () Z € X.

The system X is a topology and its sets are the open sets in X. This definition is
exceedingly general and rather nonintuitive, but with time we will get a better
feeling for what a topological space really is. The most important example for
us is the d-dimensional Euclidean space, denoted as R4. We use the Euclidean
distance function to define an open ball as the set of all points closer than some
given distance from a given point. The topology of R¢ is the system of open
sets, where each open set is a union of open balls.

All other topological spaces in this book are subsets of R?. A topological
subspace of the pair X, X isasubset Y C X together with the subspace topology
consisting of all intersections between Y and open sets, Y = {Y N A | A € X}.
An example is the d-ball, defined as the set of points at distance 1 or less from
the origin,

B! = {xeR? | |Ix| < 1}.

Its open sets are the intersections of B¢ with open sets in R?. Note that an open
set in B? is not necessarily open in RY.

Homeomorphisms

Topological spaces are considered the same or of the same type if they are
connected the same way. What it means to be connected the same way still
has to be defined. There are several possibilities, and the most important one is
based on homeomorphisms, which are functions between topological spaces.
Such a function is continuous if the preimage of every open set is open, and
if it is continuous it is referred to as a map. A homeomorphism is a function
f: X — Y that is bijective, continuous, and has a continuous inverse. If a
homeomorphism exists then X and Y are homeomorphic, and this is denoted
as X &~ Y. If we want to stress that & is an equivalence relation, we say that
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—OL

Figure 3.13. From left to right, the open interval, the closed interval, the half-open
interval, the circle, a bifurcation.

Xand Y are topologically equivalent or that they have the same topological
type. Figure 3.13 shows five examples of one-dimensional spaces with pairwise
different topological types. For another example, consider the open unit disk,
which is the set of points in R? at distance less than one from the origin. This
disk can be stretched over the entire plane. Define f(x) = x/(1 — ||x||), which
maps x to the point on the same radiating half-line at the original distance times
1/(1 — ||x|]) from the origin. Function f is bijective and continuous, and its
inverse is continuous. It follows that the open disk is homeomorphic to R.
More generally, every open k-dimensional ball is homeomorphic to R.

Triangulation

The meaning of the term changes from one area to another. In geometry, there is
no generally agreed upon definition, but it usually means a simplicial complex.
In topology, a triangulation has a precise meaning, and that meaning is similar
to the idea of a mesh that gives combinatorial structure to space.

Let K be a simplicial complex in R?. Its underlying space is the union of its
simplices together with the subspace topology inherited from R¢,

K| ={xeR? | xeco €K}

A polyhedron is the underlying space of a simplicial complex. We can think
of K as a combinatorial structure imposed on |K|. There are others. Using
homeomorphisms, we can impose the same structure on spaces that are not
polyhedra. A triangulation of a topological space X is a simplicial complex
K whose underlying space is homeomorphic to X, |K| ~ X. The space X is
triangulable if it has a triangulation. An example is the triangulation of the
closed disk B? with nine triangles shown in Figure 3.14.

Manifolds

Manifolds are particularly nice topological spaces. They are defined locally.
A neighborhood of a point x € X is an open set that contains x. There are
many neighborhoods, and usually it suffices to take one that is sufficiently
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Figure 3.14. Triangulation of the closed disk. The homeomorphism maps each vertex,
edge, and triangle to a homeomorphic subset of the disk.

small. A topological space X is a k-manifold if every x € X has a neighborhood
homeomorphic to R¥. It is probably more intuitive to mentally substitute a
small open k-ball for R¥, but this makes no difference because the two are
homeomorphic.

A simple example of a k-manifold is the k-sphere, which is the set of points
at unit distance from the origin in the (k + 1)-dimensional Euclidean space,

Sk = {x e R | x|l = 1}.

Examples are shown in Figure 3.15. The smallest triangulation of S is the
boundary complex of a (k + 1)-simplex o. To construct a homeomorphism, we
place o so it contains the origin in its interior, and we centrally project every
point of o’s boundary onto the sphere.

Manifolds with boundary

All points of a manifold have the same neighborhood. We get a more general
class of spaces if we allow two types of neighborhoods. The second type is half
an open ball. Again we can stretch that space, this time over half the Euclidean
space of the same dimension. Formally, the k-dimensional half-space is

H* = {x = (x1, x2, ..., x) €RF | x; > 0}.

A space X is a k-manifold with boundary if every point x € X has a neighbor-
hood homeomorphic to R or to H¥. The boundary is the set of points with a

Figure 3.15. The O-sphere is a pair of points, the 1-sphere is a circle, and the 2-sphere
is what we usually call a sphere.
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Figure 3.16. The 0-ball is a point, the 1-ball is a closed interval, and the 2-ball is a
closed disk.

neighborhood homeomorphic to H¥, and it is denoted as bd X. The boundary
is always either empty or a (k — 1)-manifold (without boundary). Why is that
true? Note the slight awkwardness of language: a manifold with boundary is
in general not a manifold, but a manifold is always a manifold with boundary,
namely with an empty boundary. An example of a k-manifold with a (nonempty)
boundary is the k-ball; see Figure 3.16. Its boundary is the (k — 1)-sphere,
bd B* =Sk

Orientability

Manifolds with or without boundary can be either orientable or nonorientable.
The distinction is a global property that cannot be observed locally. Intuitively,
we can imagine a (k + 1)-dimensional ant walking on the k-manifold. At any
moment, the ant is on one side of the local neighborhood with which it is in
contact. The manifold is nonorientable if there is a walk that brings the ant
back to the same neighborhood but now on the other side, and it is orientable
if no such path exists. Examples of nonorientable manifolds, one with and one
without a boundary, are the Mobius strip and the Klein bottle, both illustrated
in Figure 3.17.

Imagine the boundary of a solid shape in our everyday three-dimensional
space. This boundary is a 2-manifold, and it bounds the interior of the shape
on one side and the exterior on the other. The 2-manifold must therefore be

/

Figure 3.17. The Mobius strip to the left is bounded by a single circle. The Klein mug

to the right is drawn with a cutaway view to show a piece of the handle after it passes
through the surface of the mug.
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orientable. At it turns out, every 2-manifold embedded in R? separates inside
from outside and is therefore orientable. The Klein bottle is nonorientable and
can therefore not exist in R?. More precisely, the Klein bottle has no embedding
in IR3; that is, there is no map from the Klein bottle to R* whose restriction
to the image is a homeomorphism. Any attempt to embed it produces self-
intersections, such as the handle that passes through the side of the mug in
Figure 3.17. On the other hand, there are obviously 2-manifolds with boundary
that can be embedded in R?, and the Mbius strip is one example.

Bibliographic notes

Point set topology or general topology is an old and well-established branch of
mathematics. A classic text on the topic is the book by John Kelley [3]. Man-
ifolds are studied primarily in the context of differential structures. The topo-
logical aspects of such structures are emphasized in the text by Guillemin and
Pollack [2]. The difference between orientable and nonorientable 2-manifolds
is discussed in some length in the popular novel about life in a flat land by
Edwin Abbott [1]. The same issue for 3-manifolds is addressed from a more
mathematical viewpoint in the book by Jeffrey Weeks [4].

[1] E. A. Abbott. Flatland. Sixth edition, Dover, New York, 1952.

[2] V. Guillemin and A. Pollack. Differential Topology. Prentice Hall, Englewood
Cliffs, New Jersey, 1974.

[3] J. L. Kelley. General Topology. Springer-Verlag, New York, 1955.

[4] J. R. Weeks. The Shape of Space. Marcel Dekker, New York, 1985.

3.4 Euler characteristic

A topological invariant that predated the creation of topology as a field within
mathematics is the Euler characteristic of a space. This section introduces the
Euler characteristic, talks about shelling, and proves the shellability of triangu-
lations of the disk.

Alternating sums

The Euler characteristic of a simplicial complex K is the alternating sum of
the number of simplices,

X(K) = 50— 81 +52— -+ (=1)%sq,

where d = dim K and s; is the number of i-simplices in K. It is common to
omit the (—1)-simplex from the sum. A simplex of even dimension contributes 1
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and a simplex of odd dimension contributes —1; therefore
x(K)= Y (=D
W+oekK

As an example consider the complex B = Cl o, which consists of ¢ and all its
faces. Assuming d = dim o, we have

d d 41
x(B) = (—1)’(. )
; i+1

o pdtl 1[4+
=0-1 (1)<0)

=1.
The boundary complex of B is S = B — {0}, and its Euler characteristic is

x(S) = x(B) — (=1)dime
— 1 _ (_1)dim(7.

This is zero if the dimension of o is even and two if the dimension is odd.

Shelling

Consider the case in which K is a triangulation of the closed disk, B2. We draw
K in the plane and get a triangulated polygon like the one shown in Figure 3.18.
Our goal is to prove x (K) = 1. Since K can be any triangulation of B2, this
amounts to proving that every triangulation of the closed disk has Euler char-
acteristic equal to one. We use the concept of shelling to prove this claim.

A shelling of K is an ordering of the triangles such that each prefix defines
a triangulation of B2. K is shellable if it has a shelling. A shelling constructs

Figure 3.18. The numbers specity a shelling of the triangulation.
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M (m)

Figure 3.19. The 13 ways a triangle can intersect with the complex of its predecessors.
Only cases (a), (b), and (c) occur in a shelling.

K without every creating pinch points, disconnected pieces, or holes along
the way. Suppose 11, 12, ..., 7, is a shelling. When we add t;, for i > 2, its
intersection with the complex of its predecessors either consists of a single
edge together with its two vertices, or of two edges together with their three
vertices; see cases (b) and (c) in Figure 3.19. Case (a) occurs only for 7;. Cases
(d) to (m) cannot occur in a shelling because the union of either the first i — 1
or the first i triangles is not homeomorphic to B2.

Let K; be the closure of the set of first i triangles in the shelling. At the
beginning we have x (K;) = 1. If 7; shares one edge with its predecessors, then
we effectively add one triangle, two edges, and one vertex. If 7; shares two edges,
we add one triangle and one edge. In either case we have x (K;) = x(K;_1).
In other words, the Euler characteristic remains the same during the entire
construction, and therefore x(K) = x(K,) = 1. Modulo the existence of a
shelling we thus proved that every triangulation of the closed disk has Euler
characteristic equal to one. Although we cannot prove it here, we state that if
K and L are triangulations of the same topological space, then y (K) = x (L).
This result is the reason the Euler characteristic can be considered a property
of the topological space, rather than of a triangulation of that space.
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Shellability

To complete the proof that x (K) = 1 for every triangulation K of the closed
disk, we still need to find a shelling.

Disk Shelling Lemma. Every triangulation of B? is shellable.

Proof. We construct a shelling backwards. Specifically, we prove that every
triangulation K of n > 2 triangles has a triangle 7, that meets the rest in one of
the two allowable configurations shown as cases (b) and (c) in Figure 3.19.

Case 1. K contains no interior vertex. We consider the dual graph, whose
nodes are the triangles in K and whose arcs connect two nodes if they
share a common edge. The dual graph is a tree and therefore contains
atleasttwo leaves. A leaf triangle is connected to only one other node,
which it meets in one edge as shown in case (b) of Figure 3.19.

Case 2. K contains no leaf. Then K contains at least one interior vertex. Let
ab be an edge on the boundary and abc the triangle next to ab. Either
abc intersects the rest of K as in case (c) of Figure 3.19, or c is also
a boundary vertex, as in case (i) of Figure 3.19. Assuming the latter,
we consider the boundary path from a to ¢ that does not pass through
b. Let ax and zc be the first and last edges on that path. We are done
if one of the two triangles next to ax and zc satisfies the requirements
for 7,,. Otherwise, both triangles meet the rest as in case (i), and one
of these two triangles shares ac with abc. We continue the search by
substituting that triangle for abc. The search cannot continue indef-
initely because K has only finite size. Eventually, we find a triangle
7, that meets the rest in two edges as in case (c) of Figure 3.19.

By induction we may assume that the complex defined by the remaining n — 1
triangles has a shelling. We append 7, and have a shelling of K. O

Cell complexes

The Euler characteristic in not restricted to simplicial complexes and can be
computed as the alternating sum of the number of cells in more general com-
plexes. If two complexes have homeomorphic underlying spaces, we require
them to have the same Euler characteristic. For a large class of complexes this is
true. Without exploring the most general setting that satisfies this requirement,
we consider finite cell complexes. Its cells are pairwise disjoint open balls, the
boundary of a cell is the closure minus the cell, and the boundary of each cell
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Figure 3.20. The dunce cap to the left consists of one 2-cell, one edge, and one vertex.
Its triangulation to the right consists of 27 triangles, 39 edges, and 13 vertices.

is the union of other cells in the complex. An example is the dunce cap con-
structed from a triangular piece of paper by gluing the three edges, as indicated in
Figure 3.20.

Let Z be a finite cell complex. For technical reasons we assume there is
a simplicial complex K and a homeomorphism f : |Z| — |K| such that the
image of the closure of each cell is the underlying space of a subcomplex of K.
K triangulates | Z| as well as the closure of every cellinze Z.Let S € B C K
be subcomplexes that triangulate the boundary and the closure of z. We think
of B — § as a triangulation of the interior, which is the cell itself. Since gluing
along the boundary does not affect the interior, we can pretend that S triangulates
a sphere. The Euler characteristic of B — S is therefore

X(B—8) = x(B) = x(5)
=1-[1—- (=D
= (_1)d7

where d is the dimension of z. We see that the contribution of B — S to x (K)
is the same as the contribution of z to x (Z). It follows that the Euler character-
istics are the same, x (Z) = x (K). This observation greatly simplifies the hand
computation of the Euler characteristic for many spaces.

2-manifolds

A two-dimensional manifold can be constructed from a piece of paper by gluing
edges along its boundary. As an example consider the torus, T, which can
be constructed from a square by gluing edges in opposite pairs as shown in
Figure 3.21. The square, together with its two edges and one vertex, forms a
cell complex for the torus, with Euler characteristic

(M) =1-2+1=0.
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a

Figure 3.21. Edges with the same label are glued so their arrows agree. After gluing we
have two edges and one vertex.

The straightforward treatment of the torus can be extended to general
2-manifolds by using the complete characterization of 2-manifolds, which was
one of the major achievements in nineteenth-century mathematics. The list of
orientable 2-manifolds consists of the 2-sphere, the torus with one hole, the
torus with two holes, and so on. The number of holes is the genus of the
2-manifold. The torus with g holes can be constructed from its polygonal
schema, which is a regular 4g-gon with edges

ajaxa; a, azasas d, - - 'azg_lazgaz_g_laz_g,

where an edge without minus sign is directed in anticlockwise and one with
minus is directed in clockwise order around the 4g-gon; see Figure 3.22. The
g-holed torus is constructed by gluing edges in pairs as indicated by the labels.
After gluing we are left with 2g edges and one vertex. The Euler characteristic
is therefore x (T,) =2 — 2g. Given a triangulated orientable 2-manifold, we
can therefore use the Euler characteristic to compute the genus and decide the
topological type of the 2-manifold.

Bibliographic notes

The history of the Euler characteristic is described in an entertaining book
by Imre Lakatos, who studies progress in mathematics from a philosophical
perspective [3]. The final word on the subject is contained in a seminal paper by
Henri Poincaré. He proves that the Euler characteristic is equal to the alternating

Figure 3.22. The polygonal schema of the double torus.
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sum of Betti numbers, which are ranks of homology groups [4]. The Euler
characteristic has been developed and applied in a number of directions; see,
for example, [5]. An algorithm for constructing a shelling of a triangulated disk
is described in a paper by Danaraj and Klee [1]. A treatment of the classification
of 2-manifolds and their polygonal schemas can be found in the text by Peter
Giblin [2].

[1] G. Danaraj and V. Klee. A representation of 2-dimensional pseudomanifolds and
its use in the design of a linear time shelling algorithm. Ann. Discrete Math. 2
(1978), 53-63.

[2] P.J. Giblin. Graphs, Surfaces and Homology. Second edition, Chapman and Hall,
London, 1981.

[3] L. Lakatos. Proofs and Refutations. Cambridge Univ. Press, Cambridge, England,
1976.

[4] H. Poincaré. Complément a I’analysis situs. Rendiconti del Circolo Matematico
di Palermo 13 (1899), 285-343.

[5] Yu. A. Shashkin. The Euler Characteristic. Little Math. Library, Mir Publ.,
Moscow, 1989.

Exercise collection

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered by using knowledge of the material combined with
some thought and analysis.

1. Union of intervals (three credits). Let  be a set of n closed intervals on
the real line. The union of the intervals is a collection of m < n pairwise
disjoint intervals. Prove that

m=> (=1 -n,

i>0

where n; counts the (i + 1)-tuples of intervals with nonempty common
intersection.

2. Regular tetrahedron (one credit). To prove that the regular tetrahedron
does not tile R3, show that the dihedral angle between two of its triangles is
not an integer fraction of 277. What exactly is that dihedral angle?

3. Counting simplices (two credits). Consider the edgewise subdivision of a
k-simplex, where each edge is cut into j > 1 shorter edges. Prove that the
number of k-simplices in that subdivision is j.

4. Union of simplices (two credits). The union of a finite collection of triangles
in R? is a polyhedron because we can find another set of triangles with the
same union whose closure is a simplicial complex. Show that the natural
extension of this statement to R is true.
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. Extendable shelling (three credits). Let K be a triangulation of the closed
disk, let n be the number of triangles, and let ty, 15, ..., 7; be an ordering
of i < n triangles so every prefix defines another triangulation of B>. For
obvious reasons, the sequence from 1, to t; is called a partial shelling of K .
Prove that every partial shelling can be extended to a complete shelling,

T, T2 oo ey Tis Tl o ooy Ty

. Shelling algorithm (two credits). Let K be a 2-complex that triangulates

B? with n triangles. Describe an algorithm that constructs a shelling of K

in time O(n). You may assume that K is given in a data structure that is

convenient for your algorithm.

. Classifying manifolds (two credits). Let K be a triangulation of a 2-manifold.

(1) Give a linear time algorithm that decides whether or not the 2-manifold
is orientable.

(i) Assuming it is orientable, give a linear time algorithm that computes
the genus of the 2-manifold.

. Euler characteristic (two credits). Compute the Euler characteristic of the

following topological spaces:

(i) the cylinder,

(ii) the Mobius strip,

(iii) the Klein bottle, and

(iv) the solid torus,

. Embedding the dunce cap (three credits). Recall that the dunce cap can

be construction from a triangular sheet of paper by gluing all three edges

to one. Does the dunce cap have a triangulation that can be geometrically

realized in R3?
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Surface simplification

This chapter describes an algorithm for simplifying a given triangulated sur-
face. We assume this surface represents a shape in three-dimensional space,
and the goal is to represent approximately the same shape with fewer triangles.
The particular algorithm combines topological and numerical computations
and provides an opportunity to discuss combinatorial topology concepts in an
applied situation. Section 4.1 describes the algorithm, which greedily contracts
edges until the number of triangles that remain is as small as desired. Section 4.2
studies topological implications and characterizes edge contractions that pre-
serve the topological type of the surface. Section 4.3 interprets the algorithm as
constructing a simplicial map and establishes connections between the original
and the simplified surfaces. Section 4.4 explains the numerical component of
the algorithm used to prioritize edges for contraction.

4.1 Edge contraction algorithm

A triangulated surface is simplified by reducing the number of vertices. This
section presents an algorithm that simplifies by repeated edge contraction. We
discuss the operation, describe the algorithm, and introduce the error measure
that controls which edges are contracted and in what sequence.

Edge contraction

Let K be a 2-complex, and assume for the moment that | K| is a 2-manifold.
The contraction of an edge ab € K removes ab together with the two triangles
abx, aby, and it mends the hole by gluing xa to xb and ya to yb, as shown in
Figure 4.1. Vertices a and b are glued to form a new vertex c. All simplices in
the star of ¢ are new, and the rest of the complex stays the same. To express this
more formally, we define the cone from a point x to a simplex t as the union of

68
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Figure 4.1. The contraction of edge ab. Vertices a and b are glued to a new vertex c.

line segments connecting x to points p € 7, x - T = conv ({x} U 7). Itis defined
only if x is not an affine combination of the vertices of t. With this restriction,
x - T is a simplex of one higher dimension, dim (x - t) = 1 + dim . For a set
of simplices, the cone is defined if it is defined for each simplex, and in this
case x - T = {x -t | T € T}. We also need generalizations of the star and the
link from a single simplex to a set of simplices. Denote the closure without the
(—1)-simplex as T = CI T — {#}. The star and link of T are

StT ={ceK|o>1€T},
LkT = CIStT —StT.

For closed sets T, the link is simply the boundary of the closed star. For example,
in Figure 4.1 the link of the set ab = {ab, a, b} is the cycle of dashed edges and
hollow vertices bounding the closed star of ab. The contraction of the edge ab
is the operation that changes K to L = K — Stab U ¢ - Lk ab. This definition
applies generally and does not assume that K is a manifold.

Algorithm

The surface represented by K is simplified by performing a sequence of edge
contractions. To get a meaningful result, we prioritize the contractions by the
numerical error they introduce. Contractions that change the topological type of
the surface are rejected. Initially, all edges are evaluated and stored in a priority
queue. The process continues until the number of vertices shrinks to the target
number m. Let n > m be the number of vertices in K.

while n > m and priority queue non-empty do
remove top edge ab from priority queue;
if contracting ab preserves topology then
contract ab; n—--
endif

endwhile.
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The priority queue takes time O(logn) per operation. Besides extracting the
edge whose contraction causes the minimum error, we remove edges that no
longer belong to the surface and we add new edges. The number of edges
removed and added during a single contraction is usually bounded by a small
constant, but in the worst case it can be as large as n — 1. Before performing
an edge contraction, we test whether or not it preserves the topological type of
the surface. This is done by checking all edges and vertices in the link of ab.
Precise conditions to recognize edge contractions that preserve the type will be
discussed in Section 4.2.

Hierarchy

We visualize the actions of the algorithm by drawing the vertices as the nodes
of an upside-down forest. The contraction of the edge ab maps vertices a and b
to a new vertex c. In the forest this is reflected by introducing ¢ as a new node
and declaring it the parent of a and b. The leaves of the forest are the vertices
of K, and the roots are the vertices of the simplified complex L. The forest is
illustrated in Figure 4.2. We define a function g : Vert K — Vert L that maps
each vertex a € K to the root u = g(a) of the tree in which a is a leaf. The
preimage of u € L is the set of leaves g 7! (u) C K of the tree with root u. The
preimages of the roots partition the set of leaves,

Vert K = U g ).

uel

Letabbeanedgein K and setu = g(a), v = g(b).lf u # v then ab still exists
in L, or rather it corresponds to an edge, namely to uv € L. Else, ab contracts
to vertex u = v € L. Similarly, a triangle abd € K corresponds to uvw € L if
u=g(a),v=gb),w= g(d) are pairwise different. If two of u, v, w are the
same, then abd contracts to an edge, and if u = v = w, then abd contracts to
this vertex in L.

Figure 4.2. Vertices of K are shown as square nodes, intermediate vertices as circle
nodes, and vertices of the final complex L as double circle nodes.
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Figure 4.3. Vertex u and its star to the left and the corresponding piece of K to the right.
The solid vertices on the right are preimages of u# and the hollow vertices are preimages
of the neighbors of u.

Numerical error

As mentioned above, a vertex u € Vert L represents a subset g’1 (u) C VertK.
It makes sense to measure the numerical error at # by comparing u to the part of
the original surface it represents. Specifically, we define the error as the sum of
square distances of u from the planes spanned by triangles in the star of g~! ().
Figure 4.3 illustrates this idea by showing a vertex u € L and the triangles in
the star of g~!(u). The preimage of u is the collection of seven solid vertices
in the right half of the figure. The star of the preimage contains the five shaded
triangles and the ring of white triangles around them. The shaded triangles
have all their vertices in g" (u), and the white triangles have either one or two
vertices in the preimage.

Let H, be the set of planes spanned by triangles in St g~!(«). The sum of
square distances is defined for every point in R?, so we can think of the error
measure as a function E, :R?® — R. This function has a unique minimum,
unless the normals to the planes in H, span less than R3. We can therefore
choose u at the point in space where E, attains its minimum. If the linear
subspace spanned by the normals is two-dimensional, then there is a line of
minima, and if it is one dimensional, then there is a plane of minima. In both
cases we add constraints to pin down u.

Inclusion-exclusion

We will see in Section 4.4 that E,, can be represented by a single symmetric
four-by-four matrix Q,, no matter how many planes there are in H,. Define
H, =H,UH, Wehave E, = E, + E, — E,,, where E,,, :R> > R maps a
point in R? to the sum of square distances from planes in H,, = H, N H,. We
also have

Qw = Qu +Qv _qu~
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Figure 4.4. Effect of edge contraction on sets of planes used in computing the error.

Itis generally not possible to construct Q,,, directly from Q,, and Q,. Construct-
ing H,, and computing Q,,, from this set can be expensive. Instead, we maintain
matrices Q for all vertices, edges, and triangles such that Q,, = Q, N Q; and
Qura = Q, NQp NQy for all edges ab and all triangles abd. We revisit the
contraction of the edge ab. The error function of the new vertex c is given by
the matrix Q. = Q, + Q, — Q.. For every vertex x € Lkab there is a new
edge xc with error function represented by Q.. = Qs + Qup — Qrap, as illus-
trated in Figure 4.4. We will see later that the matrices for edges are not just
useful for correctly computing the matrices for vertices; they also represent
meaningful geometric information about edges and their relation to the original
surface triangulation.

Bibliographic notes

The problem of simplifying a triangulated surface has its origin in computer
graphics, where rendering speed depends on the number of triangles used to
represent a shape. The idea of using edge contractions for surface simplifica-
tion appeared first in a paper by Hoppe et al. [5]. Edge contractions are used
together with other local surface modification operations in an attempt to op-
timize a measure of distance between the original and the simplified surface.
Hoppe [3] revisits the idea and shows how to use a given sequence of contrac-
tions for efficiently adjusting the level of detail of the surface representation.
The idea of measuring error as the sum of square distances from gradually
accumulating planes is from Garland and Heckbert [1]. The good quality of
the resulting simplifications has intensified the experimental research and has
led to variations, such as error measures that account for color and texture of
triangulated surfaces [2, 4].
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4.2 Preserving topology

The surface simplification algorithm of the last section works by contracting
edges. We preserve the topological type by rejecting the contraction of edges
that would change it. This section describes local conditions that characterize
type-preserving edge contractions. We first study manifolds, then manifolds
with boundary, and finally general 2-complexes.

Manifolds

Suppose K is a 2-complex that triangulates a 2-manifold. Then every point
x € |K| has a neighborhood homeomorphic to an open disk. To avoid lengthy
sentences, we just say the neighborhood is an open disk. This implies that
in particular the star of every vertex u is an open disk. Strictly speaking, this
statement makes sense only if we replace the star by its underlying space, which
we define as the union of simplex interiors, which is the set difference between
the underlying spaces of two complexes:

|Stu| = U intt

IC1Stu| — |C1Stu — Stul.

The condition on vertex stars is also sufficient. In other words, |K| is a
2-manifold if and only if |St K| ~ R? for every vertex u € K.

Now consider the contraction of an edge ab of K. Whether or not the con-
traction preserves the topological type depends on how the links of a and b
meet. On a 2-manifold, the link of each vertex is a circle. In Figure 4.5, to the
left, the two circles intersect in two points and the contraction preserves the
topological type. To the right, the circles intersect in a point and an edge, and
in this case the contraction pinches the manifold along a newly formed edge,
which forms the base of a fin similar to the one in Figure 4.9.
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Figure 4.5. The edges of the link of a are solid, and those of the link of b are dashed.

Link condition

The condition that distinguishes topology-preserving edge contractions from
others is that the vertex links intersect in the link of the edge.

Link Condition Lemma A. Let K be the triangulation of a 2-manifold. The con-
traction of ab € K preserves the topological type if and only if Lka NLkb =
Lkab.

Proof. We prove only the more difficult direction, which is from the link con-
ditionto |K| ~ |L|. Since |K | is a 2-manifold, the link of ab consists of exactly
two vertices x and y, as shown in the left picture of Figure 4.5. The links of @ and
of b are two circles that meet at x and y. The outer pieces of the two circles glued
at x and y form another circle, which is the link of ab in K and also the link of ¢
in L. We construct isomorphic subdivisions of K and L by mapping the common
link to the boundary of a regular n-gon in the plane, as shown in Figure 4.6.
The stars of ab and of ¢ are mapped to two triangulations of the n-gon. We

Figure 4.6. The superposition of the images of the stars of ab in K and ¢ in L.
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superimpose the triangulations and get a decomposition into convex polygonal
regions, which we further refine to another triangulation. This triangulation is
mapped back to form subdivisions of the stars of ab and of c. The link has not
been changed, so we can combine the subdivided star of ab with the unsubdi-
vided rest of K, and similarly for the star of ¢ and L. The resulting subdivisions
of K and L are isomorphic. We can now map corresponding triangles to each
other and thus obtain a homeomorphism between | K| and |L]|. m]

A more formal description of how to create the homeomorphism from the
isomorphic subdivisions requires simplicial maps, which will be introduced in
Section 4.3.

Manifolds with boundary

A triangulation K of a manifold with a nonempty boundary also has vertices
whose stars are open half-disks, |St | ~ H?. To keep the number of cases small,
we add a dummy vertex @ and the cone from w to each boundary circle. This
idea is illustrated in Figure 4.7. The boundary of | K| consists of £ > 1 circles
triangulated by cycles C; C K. We fill the holes by adding the cone from w to
every cycle,

4
K°=KU (w UC,-).
i=1

In K, every vertex star is an open disk except possibly the star of w. We denote
the link of a vertex u in K® as Lk“u. The condition that distinguishes topology-
preserving edge contractions from others is now the same as for manifolds.

Link Condition Lemma B. Let K be the triangulation of a 2-manifold with
boundary. The contraction of ab € K preserves the topological type if and only
if Lk“a N Lk*b = Lk®ab.

The proof is only mildly more complicated than that of the weaker Lemma A.

®

Figure 4.7. The two holes in the manifold are filled by adding the cone from w to the
circles bounding the holes.
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() (b) (© (C))

Figure 4.8. The underlying space of the vertex star in (a) is an open disk, in (b) is an
open half-disk, in (c) is an open book with four pages, and in (d) is not an open book.
The corresponding order of the vertex is zero in (a), one in (b), one in (c), and two in (d).

Open books

To attack the problem for general 2-complexes, we need a better understanding
of the different types of neighborhoods that are possible. We classify stars by
using a new type of space. The open book with p pages is the topological space
Kf, homeomorphic to the union of p copies of H? glued along the common
boundary line. For example, the open book with one page is the open half-disk
and the open book with two pages is the open disk. The order of a simplex
tekKis

0, if|Str|~ R?,
ordt =< 1, if|Str|%Ki, p #2,
2, otherwise.

Figure 4.8 illustrates the definition with sketches of four different types of vertex
stars. The order of an edge in a 2-complex can only be zero or one, and the
order of a triangle is always zero.

Boundary

We generalize the notion of boundary in such a way that only triangulations
of 2-manifolds have no boundary. At the same time we use the order informa-
tion to distinguish between different types of boundaries. Specifically, the jth
boundary of a 2-complex K is the collection of all simplices with order j or
higher,

Bd;K = {oc €K |ordo > j}.

As an example, consider the shark fin complex shown in Figure 4.9. It is con-
structed by gluing two closed disks along a simple path. This path is a contiguous
piece of the boundary of one disk (the fin), and it lies in the interior of the other
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Figure 4.9. The shark fin 2-complex. A few of the vertices are highlighted and marked
with their order.

disk. Note that |K| is a 2-manifold if and only if Bd| K = Bd,K = . The
second boundary of a 2-manifold with boundary is empty, but there are other
spaces with this property. For example, the sphere together with its equator
disk has an empty second boundary. Its first boundary is a circle of edges and
vertices (the equator) whose stars are open books of three pages each.

2-complexes

We are now ready to study conditions under which an edge contraction in a
general 2-complex preserves the topological type of that complex. As it turns
out, there does not exist a local condition that is sufficient and necessary, but
there is a characterizing local condition for a more restrictive notion of type
preservation. Let L be the 2-complex obtained from K by contracting an edge
ab € K. A local unfolding is ahomeomorphism f : |K| — |L| that differs from
the identity only outside the star of ab; that is, f(x) = x forallx € |[K — Stab|.
The condition refers to links Lkg 7 in K = K U (w - Bd; K) and to links Lk}t
inBdYK = Bd| K U (w - Bd2K).

Link Condition Lemma C. Let K be a 2-complex, ab an edge of K, and L the
complex obtained by contracting ab. There is a local unfolding |K| — |L| if
and only if

(i) Lkga NLk§b = Lkab and
(i) Lk%a NLkSb = 0.

The proof that conditions (i) and (ii) suffice for the existence of a local un-
folding is similar to proof of sufficiency in Lemma A, only more involved.
The necessity of conditions (i) and (ii) requires a somewhat tedious case
analysis.
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b . c
|
Y M z Y M Z
Figure 4.10. The folding chair complex. Each bold edge belongs to three triangles.

Nonlocal homeomorphism

Instead of proving Lemma C, we show that there cannot be a similar condition
that recognizes the existence of a general homeomorphism |K| — |L|. The
example we use is the folding chair complex displayed in Figure 4.10. Before
the contraction of ab, it consists of five triangles in the star of x and four disks
U, V.Y, Z glued to the link of x. Vertices a and b belong to the first boundary,
but ab does not. It follows that w violates condition (i) of Lemma C. Hence,
there is no local unfolding from | K| to | L|. After the contraction there is one less
triangle in the star of x; U loses two triangles; and V, Y, Z are unchanged. The
contraction of ab exchanges left and right in the asymmetry of the complex. We
can find a homeomorphism | K| — |L| that acts like a mirror and maps U to V/,
VtoU,Y toZ, Z toY. The homeomorphism is necessarily global. To detect
that homeomorphism, we can force any algorithm to look at every triangle of K.

Bibliographic notes

The material of this section is taken from a paper by Dey et al. [1], which studies
edge contractions in general simplicial complexes and proves results for 2- and
for 3-complexes. The order of a simplex has already been defined in 1960 by
Whittlesey [4], although in different words and notation. He uses the concept
to study the topological classification of 2-complexes. O’Dunlaing et al. [2]
use his results to show that deciding whether or not two 2-complexes have the
same topological type is as hard as deciding whether or not two graphs are
isomorphic. No polynomial time algorithm is known, but it is also not known
whether the graph isomorphism problem is NP-complete [3].

[1] T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev. Topology preserving
edge contraction. Publ. Inst. Math. (Beograd) (N.S.) 66 (1999), 23-45.

[2] C. O’Dunlaing, C. Watt, and D. Wilkins. Homeomorphism of 2-complexes is
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4.3 Simplicial maps

Simplicial maps are piecewise linear (continuous) maps between simplicial
complexes. They are used to illuminate the relation between the original surface
and the simplified surface generated by the algorithm described in Section 4.1.

Vertex and simplicial maps

We use barycentric coordinates to extend a function between vertex sets to a
function between underlying spaces. It is convenient to modify the notation
for barycentric coordinates. Each point x € |K| lies in the interior of exactly
one simplex o € K, and we suppose that pg, pi, ..., px are the vertices of o.
Hence x = Zf;o Aip; with >~ A; = 1 and A; > 0 for all i. For each u € Vert K
we define

b (x) = Ais 1fu=p,for0§l§k,
T 0, if uis not a vertex of o.

Instead of fixing x and varying u we now fix u, and vary x. From this point of
view we have amap b, : |K| — [0, 1], which is zero outside the star of u. It has
the shape of a hat that peaks at u, as illustrated in Figure 4.11. In numerical
analysis, b, would be called a base function.

A vertex map from K to another simplicial complex L is a function g :
Vert K — Vert L that sends the vertices of a simplex in K to the vertices of a
simplex in L. Strictly speaking, g is not a map, but it is called a map because the
condition on the images is similar to that required by continuity. The simplicial

Figure 4.11. We have b, (#) = 1 and b, (x) = 0 for all points x outside the star of u.
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map that extends g is ¢ : |K| — |L| defined by

YE) = Y bu(x)-g).

ueVert K

Indeed, ¥ (1) = g(u) for every vertex u € K. The map ¢ is continuous because
each b, is continuous.

Simplicial and PL equivalence

A general simplicial map has little predictable structure other than continuity,
because the defining vertex map is neither necessarily injective nor necessarily
surjective. Even if g is bijective, it is possible that i does not reach all points
of |L|. However, if we assume in addition that its inverse is also a vertex map,
then vertices ug, u1, .. ., Uy span a k-simplex o € K if and only if their images
g(up), g(uy), ..., g(uy) span a k-simplex t € L. The corresponding simplicial
map ¥ sends every point x € o to a unique point ¥ (x) € t and vice versa. In
other words, ¥ : |K| — |L| is a simplicial homeomorphism. If K and L have
a connecting simplicial homeomorphism, then they are abstractly the same
complexes. Formally, they are said to be isomorphic or simplicially equivalent,
and this is denoted as K = L.

We now have an equivalence relation for the class of simplicial complexes.
A related equivalence relation for topological spaces requires that they have a
common triangulation. If we start with the underlying spaces of two simplicial
complexes, we can sometimes generate common triangulations by subdivision.
Simplicial complexes K and L are PL equivalent if there are isomorphic sub-
divisions K’ of K and L’ of L. If K and L are PL equivalent then by definition
|K| and |L| are homeomorphic. As it turns out, the other direction is not true
in general.

Edge contractions

Suppose K is obtained from Ky = K by contracting an edge ab. The contrac-
tion can be interpreted as a simplicial map v : |Ko| — | K|, defined by the
vertex map

_Ju, ifu¢la,b},
g‘(”)‘{c, if uela,b).

Both g and | are surjective. Another special property of v/ is that the preimage
of every point y € | K| is a connected subset of | K¢|. More specifically, ¥~ (y)
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is either a point or a closed line segment in | K |. This is not true for general
edge contractions, but it is for the ones that preserve the topological type of the
surface.

The simplification algorithm constructs a sequence of surjective simpli-
cial maps, ¥; : |K;_1| — |K;| for 1 <i <n — m. The composition of these
maps is

U =Ynmo---oyYnoy:|K[—[L],

where L = K,,_,,. It is the simplicial map extending the vertex map g = g,—m
o---0gpo g;. Recall that g maps a vertex u € K to the root of the tree in the
hierarchy that contains u as a leaf. The map i extends this vertex map to all
points of |K|. It inherits the property that the preimage of every point in |L]|
is a connected subset of |K|. By continuity, the preimage of every connected
subset of |L| is a connected subset of | K |. Similarly, the preimage of every open
subset in |L| is an open subset of | K |. For example, the preimage of the star of
v € L is the star of g~!(v),

Yv(IStu]) = [Stg ' (v)].

Both the underlying space of Stv and that of Stg~!(v) are connected and
open.

Preimages of vertex stars

Consider a collection of k + 1 vertices in L. The common intersection of their
stars is either empty or the k-simplex spanned by the vertices in the collection.
This implies that the nerve of the vertex stars is isomorphic to the complex,

Nrv{Stv |veL} = L.

The common intersection of a collection of vertex stars is nonempty if and only
if the common intersection of their preimages is nonempty. Hence, also the
nerve of stars of the preimages is isomorphic to the complex,

Nrv{Stg~'(v) |[veL} = L.

In other words, the covering of L by vertex stars corresponds to a covering of
K by open sets, which are stars of preimages of vertices. Figure 4.12 illustrates
that the sets in this covering form the same overlap pattern as do the vertex
stars.



82 4. Surface simplification

Figure 4.12. The solid curves bound the preimages of the three vertices, and the dashed
curves bound the preimages of their stars.

Bibliographic notes
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tung (German for main conjecture). It was verified for 2-complexes and for
3-complexes; see the book by Moise [2]. In 1961 the conjecture was dis-
proved for general simplicial complexes by John Milnor, who used two seven-
dimensional simplicial complexes for the counterexample [1].
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4.4 Error measure

The surface simplification algorithm measures the error of an edge contraction
as the sum of square distances of a point from a collection of planes. This
section develops the details of this error measure.

Signed distance

A plane with unit normal vector v; and offset §; contains all points p whose
orthogonal projection onto the line defined by v; is —§; - v;,

hi = {peR®| p" . v; = -5},
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\ i
0/
Figure 4.13. We use the unit normal vector to define the signed distance from /; such
that v; points from the negative to the positive side.

as illustrated in Figure 4.13. The signed distance of a point x € R? from the
plane A; is

dx,hi)=(x—p)" v
=xT~v,~ +(S,

=x!.v;,

where x” = (x7, 1) and v/ = (v], §;). In other words, the signed distance in

R3 can be expressed as a scalar product in R*, as illustrated in Figure 4.14.

Fundamental quadric

The sum of square distances of a point x from a collection of planes H is

Ex(x)= > d*(x, h)

hieH
T T
= Z(x vi) - (v - x)
hieH
:xT-<ZV,--V,-T>-X,
hieH
h Vi =1
N X
0

Figure 4.14. The three-dimensional space x4 = 1 is represented by the horizontal line.
It contains point x and plane /;, which in the one-dimensional representation are both
points.
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where

A
Q:ZV,wviT: g
D

QMM W™
~ T w0
~~Q0

is a symmetric four-by-four matrix referred to as the fundamental quadric of
the map Ey : R* — R. The sum of square distances is nonnegative, so Q is
positive semidefinite. The error of an edge contraction is obtained from an error
function such as E = Ep. Let x = (x1, X2, x3, 1) and note that

Ex)=x"-Q-x
= Ax? + Ex3 + Hxj
+2(Bx1xy + Cx1x3 + Fxpx3)
+2(Dx; + Gxy + Ix3)
+ J.

We see that E is a quadratic map that is nonnegative and unbounded. Its graph
can only be an elliptic paraboloid, as illustrated in Figure 4.15. In other words,
the preimage of a constant error value €, E ~I(e), is an ellipsoid. Degenerate
ellipsoids are possible, such as cylinders with elliptic cross-sections and pairs
of planes.

Error

The error of the edge contraction ab — c is the minimum value of E(x) =
Epy(x) over all x € R®, where H is the set of planes spanned by triangles in

Figure 4.15. [llustration of E = Ey in one lower dimension. The cross-section at a fixed
height € is an ellipse.
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the preimage of the star of the new vertex ¢. The geometric location of ¢ is the
point x that minimizes E. In the nondegenerate case, this point is unique and
can be computed by setting the gradient VE = (0E/dx;, 0E/dx,, 0E/dx3)to
zero. The derivative with respect to x; is

E ox” r ox
8x,-(x)_8x,- QX+X .Q.ax,»
= QlT X+XT Qz
= 2’Q1T - X,

where Q! is the ith row of Q. The point ¢ € R* that minimizes E(x) is the
solution to the system of three linear equations Q - x + g = 0, where

A B C D
o=|B E F|, g¢=|G
C F H I

Hence ¢ = Q7! - (—¢), and the sum of square distances of ¢ from the planes
in H is E(c). The equation for ¢ sheds light on the possible degeneracies. The
nondegenerate case corresponds to rank Q = 3; the case of an elliptic cylinder
corresponds to rank Q = 2; and the case of two parallel planes corresponds
to rank Q = 1. Rank zero is not possible because Q is the nonempty sum of
products of unit vectors.

Eigenvalues and eigenvectors

We may translate the planes by —c such that E attains its minimum at the origin.
In this case D = G = I = 0 and J = E(0). The shape of the ellipsoid E~!(¢)
can be described by the eigenvalues and eigenvectors of Q. By definition, the
eigenvectors are unit vectors x that satisfy Q - x = A - x. The value of A is the
corresponding eigenvalue. The eigenvalues are the roots of the characteristic
polynomial of Q, which is

A—A B c
PO)=det| B E-A F
c F  H-—»x

=detQ —A-dtrQ +A%-tr Q — 23,
where det Q is the determinant, dtr Q is the sum of cofactors of the three

diagonal elements, and tr Q is the trace of Q. For symmetric positive semi-
definite matrices, the characteristic polynomial has three nonnegative roots,
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Figure 4.16. The ellipsoid is indicated by drawing the elliptic cross-sections along the
three symmetry planes spanned by the eigenvectors.

A1 > X2 > A3z > 0. Once we have an eigenvalue, we can compute the corre-
sponding eigenvector to span the null space of the underconstrained system
(Q—2)-x=0.

What is the geometric meaning of eigenvectors and eigenvalues? For sym-
metric matrices, the eigenvectors are pairwise orthogonal, or if there are multiple
eigenvalues the eigenvectors can be chosen pairwise orthogonal. They can thus
be viewed as defining another coordinate system for R>. The three symmetry
planes of the ellipsoid E£~!(¢) coincide with the coordinate planes of this new
system; see Figure 4.16. We can write the error function as

A
A
E(x) =x'. 2 " X

J
= Mixi 4+ Aax3 + Asxg + J.

Since E(x) > 0 for every x € R?, this proves that the three eigenvalues are
indeed real and nonnegative. The preimage for a fixed error € > J is the ellipsoid
with axes of half-lengths /(¢ — J)/A; fori = 1,2, 3.

Bibliographic notes

The idea of using the sum of square distances from face planes for surface
simplification is from Garland and Heckbert [1]. Eigenvalues and eigenvectors
of matrices are topics in linear algebra. A very readable introductory text is the
book by Gilbert Strang [2].

[1] M. Garland and P. S. Heckbert. Surface simplification using quadratic error
metrics. Computer Graphics, Proc. SIGGRAPH, 1997, 209-216.

[2] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley,
Massachusetts, 1993.
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Exercise collection

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered by using knowledge of the material combined with
some thought and analysis.

1.

Stars and links (one credit). Let K be a 2-complex that triangulates the
closed disk, B2. Let a and b be interior vertices; u, v, w boundary vertices;
ab, au, uv interior edges; and vw a boundary edge. Draw K such that it
contains (among others) five vertices and four edges as specified. Further-
more, draw the star and the link of each of the following subsets of K: {a},
{u}, {ab}, {ab, a, b}, {au, a, u}, {uv, u, v}, {vw}, and {vw, v, w}.
Subdivision and nerve (two credits). Let K be a simplicial complex and
Sd K its barycentric subdivision. For each vertex # € K consider the star of
1 in Sd K and the closure of that star.

(i) What is the nerve of the collection of vertex stars?

(ii) What is the nerve of the collection of closed vertex stars?
Irreducibility (three credits). A 2-complex K is irreducible if the contrac-
tion of ab changes the topological type of K for every edge ab € K. Prove
that the only irreducible triangulation of the 2-sphere is the boundary com-
plex of the tetrahedron.

Necessity of the link condition (three credits). Let K be the triangulation
of a 2-manifold. Recall the Link Condition Lemma A, which says that the
contraction of an edge ab € K preserves the topological type if and only
if Lka N Lkb = Lkab. We proved the sufficiency of the condition in Sec-
tion 4.3. Prove the necessity of the condition. In other words, prove that
Lka NLkb # Lkab implies that the contraction of ab changes the topo-
logical type of the 2-manifold.

Simplicial map (two credits). Let ¢ : |K| — |L|, ¥ : |[L| — |M]| be sim-
plicial maps, and suppose they both are injective and have the property that
the preimage of a point is either empty or connected. Prove that ¥ o ¢ :
|K| — |M]| has the same property, namely it is injective and the preimage
of every point in M is either empty or connected.

Square distance minimization (three credits). Let S be a finite set of points
in R?. Let f : R? — R map each point x in the plane to the sum of square
distances,

f) =" llx = pl.

peSsS

(i) Show that f is a quadratic function and that it has a unique minimum.
(i) At which point does f attain its minimum?
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(iii) Given two disjoint finite sets S;, S € R?2 together with their maps
f1, f>, show how to compute the map f for S = S; U S, in constant
time.

7. Points, lines, and planes (two credits). Let S be a finite set of points in R.

(i) Construct a finite set H of lines such that the sum of square distances

to points in S is the same as the sum of square distances to lines in H.
Formally,

Y lx=pl> =) dx,hy,

peS heH

where d(x, h) = min{||x — y|| | y € h}.

(ii) Are the lines solving question (i) unique?

(iii) Generalize your solution to the case in which § is a finite set of lines
and H is a finite set of planes in R>.
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Delaunay tetrahedrizations

This chapter extends what we have learned about Delaunay triangulations from
two to three dimensions. Almost everything that will be said generalizes readily
to four and higher dimensions. It is therefore tempting to introduce a positive
integer d and write the entire chapter for the more general d-dimensional case.
We resist the temptation in the interest of specificity and focus our attention
on the three-dimensional case. Section 5.1 introduces Voronoi diagrams and
Delaunay tetrahedrizations and explains their relation to boundary complexes of
convex polyhedra in R*. Section 5.2 generalizes all constructions to points with
real weights. Section 5.3 extends the flip operation for Delaunay triangulations
to three and higher dimensions by using classic theorems in convex geometry.
Section 5.4 describes and analyzes a randomized algorithm that constructs a
Delaunay tetrahedrization by adding one point at a time.

5.1 Lifting and polarity

The Delaunay tetrahedrization of a finite set of points in R? is dual to the Voronoi
diagram of the same set. This section introduces both concepts and shows how
they can be obtained as projections of the boundary of convex polyhedra.

Voronoi diagrams

The Voronoi region of a point p in a finite collection S C R? is the set of points
at least as close to p as to any other point in S:

V, ={x eR*||lx — pll < llx —qll, Vg € S}.

Each inequality defines a closed half-space, and V), is the intersection of a
finite collection of such half-spaces. In other words, V), is a convex polyhedron,

89
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Figure 5.1. The Voronoi polyhedron of a point in a body-centered cube lattice. The
relevant neighbors of the cube center p are the eight corners of the cube and the centers
of the six adjacent cubes.

maybe like the one shown in Figure 5.1. In the generic case, every vertex of V,,
belongs to only three facets and three edges of the polyhedron. If V), is bounded
then it is the convex hull of its vertices. It is also possible that V), is unbounded.
This is the case if and only if there is a plane through p with all points of S on
or on one side of the plane.

The Voronoi regions together with their shared facets, edges, and vertices
form the Voronoi diagram of S. A point x that belongs to k Voronoi regions
is equally far from the k generating points. It follows that the k points lie on
a common sphere. If the points are in general position, then k < 4. A Voronoi
vertex x belongs to at least four Voronoi regions, and assuming the general
position, it belongs to exactly four regions.

Delaunay tetrahedrization

We obtain the Delaunay tetrahedrization by taking the dual of the Voronoi
diagram. The Delaunay vertices are the points in S. The Delaunay edges connect
generators of Voronoi regions that share a common facet. The Delaunay facets
connect generators of Voronoi regions that share a common edge. Assuming a
general position, each edge is shared by three Voronoi regions and the Delaunay
facets are triangles. The Delaunay polyhedra connect generators of Voronoi
regions that share a common vertex. Assuming a general position, each vertex
is shared by four Voronoi regions and the Delaunay polyhedra are tetrahedra.
Consider point p in Figure 5.1. Its Voronoi polyhedron has 14 facets, 36 edges,
and 24 vertices. It follows that p belongs to 14 Delaunay edges, 36 Delaunay
triangles, and 24 Delaunay tetrahedra, as illustrated in Figure 5.2.

Assuming a general position of the points in S, the Delaunay tetrahedrization
is a collection of simplices. To prove that it is a simplicial complex, we still
need to show that the simplices avoid improper intersections. We do this by
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Figure 5.2. The Delaunay neighborhood of a point in a body-centered cube lattice.

introducing geometric transformations that relate Voronoi diagrams and Delau-
nay tetrahedrizations in R with boundary complexes of convex polyhedrain R*.

Distance maps

The square distance from p € S is the map 7, : R3 — R defined by Tp(x) =
|lx — p|%. Its graph is a paraboloid of revolution in R*. We simplify notation
by suppressing the difference between a function and its graph. Figure 5.3
illustrates this idea in one lower dimension. Take the collection of all square
distance functions defined by points in S. The pointwise minimum is the map
s : R — R defined by

ws(x) = min{m,(x) | p € S}.

Its graph is the lower envelope of the collection of paraboloids. By definition
of the Voronoi region, mg(x) = 7,(x) if and only if x € V,,. We can therefore

Figure 5.3. The graph of the square distance function of point p in the plane.
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think of V,, as the projection of the portion of the lower envelope contributed
by the paraboloid 7.

Linearization

All square distance functions have the same quadratic term, which is || x||%. If
we subtract that term we get linear functions, namely

7p(x) — [Ix|1?

fp(x)

x=—p)(x—p)—x"-x
—2p" - x +pl*.

The graph of f, is a hyperplane in R*. The same transformation warps the
hyperplane x4 = 0 to the upside-down paraboloid I1, defined as the graph of
the map defined by IT(x) = —||x||>. Figure 5.4 shows the result of the trans-
formation applied to the plane and paraboloid in Figure 5.3. We can apply the
transformation to the entire collection of paraboloids at once. Each point in R*
travels vertically, that is, parallel to the x4-axis. The traveled distance is the
square distance to the x4-axis. Paraboloids go to hyperplanes, intersections of
paraboloids go to intersections of hyperplanes, and the lower envelope of the
paraboloids goes to the lower envelope of the hyperplanes.

Replace each hyperplane by the closed half-space bounded from above by
the hyperplane. The intersection of the half-spaces is a convex polyhedron F'
in R*, and the lower envelope of the hyperplanes is the boundary of F. It is
a complex of convex faces of dimension 3, 2, 1, 0. Since the transformation
moves points vertically, the projection onto x4 = 0 of the lower envelope of
paraboloids and the lower envelope of hyperplanes are the same. In particular,
the projection of each three-dimensional face of F' is a Voronoi region, and the
projection of the entire boundary complex is the Voronoi diagram.

Figure 5.4. The plane in Figure 5.3 becomes an upside-down paraboloid, and the
paraboloid becomes a plane.
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Polarity

We still need to describe what all this has to do with the Delaunay tetrahedriza-
tion of S. Instead of addressing this question directly, we first study the rela-
tionship between nonvertical hyperplanes and their polar points in R*.

Anonvertical hyperplane is the graph of a linear function f : R* — R, which
can generally be defined by a point p € R? and a scalar ¢ € R; that is,

fx)==2p" -x+|pl*—ec.

The hyperplane parallel to f and tangent to IT is defined by the equation
—2pT - x + ||p||*>. The vertical distance between the two hyperplanes is |c|.
The polar point of f is g = f* = (p, —||pl* + ¢). The vertical distance be-
tween g and f is 2|c|, and the parallel tangent hyperplane lies right in the middle
between g and f. Furthermore, the vertical line through g also passes through
the point where the tangent hyperplane touches IT. It follows that g € IT if and
only if f is tangent to IT. Figure 5.5 shows a few examples of hyperplanes and
their polar points in R2. For nonvertical hyperplanes, the points lying above, on,
below are unambiguously defined. Let f;, f> be two nonvertical hyperplanes
and g;, g» their polar points.

Order Reversal Claim. Point g; lies above, on, below hyperplane f, if and only
if point g, lies above, on, below hyperplane f;.

Proof. Let g; = (p;, —||pill*> + ¢i) for i = 1,2. The algebraic expression for
g1 above f; is

—lpil* +c1 > =2p7 - p1 + lIp2ll* — ca.

We move terms left and right and use the fact that scalar products are commu-
tative to get

—lp2ll* +c2 > =2p{ - pa+ lIp1ll* —ci.

Figure 5.5. Points g;, g,, g are polar to the lines (hyperplanes) fi, f>, f. Lines fi, f»
are warped images of the distance square functions of the points p;, p, on the real line.
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This is the algebraic expression for g, above f|. The arguments for point g;
lying on and below hyperplane f, are the same. O

Polar polyhedron

We are now ready to construct the Delaunay tetrahedrization as the projection
of the boundary complex of a convex polyhedron in R*. For each point p € S,
let g, = (p, =l p1I?) be the polar point of the corresponding hyperplane. All
points g, lie on the upside-down paraboloid I, as shown in Figure 5.6. For
a nonvertical hyperplane f, we consider the closed half-space bounded from
above by f. Let G be the intersection of all such half-spaces that contain all
points g,. G is a convex polyhedron in R*. Its boundary consists of the upper
portion of the convex hull boundary plus the silhouette extended to infinity in the
—x4 direction. The Order Reversal Claim implies the following correspondence
between G and F. A hyperplane supports G if it has nonempty intersection with
the boundary and empty intersection with the interior.

Support Claim. Ahyperplane f supports G if and only if the polar point g = f*
lies in the boundary of F.

Imagine exploring G by rolling the supporting hyperplane along its boundary.
The dual image of this picture is the polar point moving inside the boundary
of F. For each k-dimensional face of G we get a (3 — k)-dimensional face
of F and vice versa. An exception is the set of vertical faces of G, which do
not correspond to any faces of F, except possibly to faces stipulated at infin-
ity. The relationship between the two boundary complexes is the same as that
between the Delaunay tetrahedrization and the Voronoi diagram. The isomor-
phism between the boundary complex of F and the Voronoi diagram implies
the isomorphism between the boundary complex of G (excluding vertical faces)
and the Delaunay tetrahedrization. Since the vertices of G project onto points
in S, it follows that the boundary complex of G projects onto the Delaunay

II

Figure 5.6. The boundary complex of the shaded polyhedron projects onto the Delaunay
tetrahedrization of the set of solid points.



5.2. Weighted distance 95

tetrahedrization of S. This finally implies that there are no improper intersec-
tions between Delaunay simplices. The Delaunay tetrahedrization of a set S of
finitely many points in general position is indeed a simplicial complex.
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5.2 Weighted distance

The correspondence between Voronoi diagrams and convex polyhedra hints
at a generalization of Voronoi and Delaunay diagrams forming a richer class
of objects. This section describes this generalization by using points with real
weights. Within this larger class of diagrams, we find a symmetry between
Voronoi and Delaunay diagrams absent in the smaller class of unweighted
diagrams.

Commuting diagram

Figure 5.7 illustrates the correspondence between Voronoi diagrams and
Delaunay tetrahedrizations in R and convex polyhedra in R*, as worked out
in Section 5.1. V and D are dual to each other; F' is obtained from V through
linearization of distance functions; and V is formed by the projections of the
boundary complex of F. F and G are polar to each other; G is the convex hull
of the points projected onto IT (extended to infinity along the —x,-direction);
and D is the projection of the boundary complex of G.
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Figure 5.7. Relationship between Voronoi diagram, V, Delaunay tetrahedrization, D,
and convex polyhedra, F and G.

We call G an inscribed polyhedron because each vertex lies on the upside-
down paraboloid I1. Similarly, we call F' a circumscribed polyhedron because
each hyperplane spanned by a 3-face is tangent to I1. Being inscribed or circum-
scribed is a rather special property. We use weights to generalize the concepts
of Voronoi diagrams and Delaunay tetrahedrizations in a way that effectively
frees the polyhedra from being inscribed or circumscribed. For technical rea-
sons, we still require that every vertical line intersects F in a half-line and G
either in a half-line or the empty set. This is an insubstantial although sometimes

inconvenient restriction.

Weighted points

We prepare the definition of weighted Delaunay tetrahedrization by introducing
points with real weights. It is convenient to write the weight of a point as the
square of a nonnegative real or a nonnegative multiple of the imaginary unit. We
think of the weighted point p = (p, P?) € R® x R as the sphere with center
p € R? and radius P. The power or weighted distance function of p is the map
5 : R® — R defined by

7 (x) = [lx — plI* — P*.

It is positive for points x outside the sphere, zero for points on the sphere,
and negative for points inside the sphere. The various cases permit intuitive
geometric interpretations of weighted distance. For example, for positive P>
and x outside the sphere, it is the square length of a tangent line segment
connecting x with a point on the sphere. This is illustrated in Figure 5.8. What
is it if x lies inside the sphere? In Section 1.1, we saw that the set of points
with equal weighted distance from two circles is a line. Similarly, the set of
points with equal weighted distance from two spheres in R? is a plane. If the
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Figure 5.8. The segment px, the tangent segment from x to the circle, and the connecting
radius form a right-angled triangle.

two spheres intersect then the plane passes through the intersection circle, and
if the two spheres are disjoint and lie side by side then the plane separates the
two spheres.

Orthogonality

Given two spheres or weighted points p = (p, P?) and ¢ = (¢, Q?), we gen-
eralize weighted distance to the symmetric form:

754 = llp —qlI* = P* — Q*.

For Q% = 0, this is the weighted distance from ¢ to p, and for P?> = 0, this is
the weighted distance from p to §g. We call p and § orthogonal if m; ;5 = 0.
Indeed, if P?, Q% > 0 then 7p4 = 0 if and only if the two spheres meet in
a circle and the two tangent planes at every point of this circle form a right
angle. Orthogonality is the key concept in generalizing Delaunay to weighted
Delaunay tetrahedrizations. We call p and § further than orthogonalif s 4 > 0.

Let us contemplate for a brief moment how weights affect the lifting pro-
cess. The graph of the weighted distance function is a paraboloid whose zero
set, 7T, 1(0), is the sphere p. We can linearize as before and get a hyperplane
defined by

Fp(0) = m5(0) = IIxII?
=-2p" -x+|pl* - P
We can also polarize and get
g = (p.—lpl* + P?).
Orthogonality between two spheres now translates to a point-hyperplane

incidence.

Orthogonality Claim. Spheres p and ¢ are orthogonal if and only if point g;
lies on the hyperplane f;.
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Proof. The algebraic expression for g5 € f; is
=2¢" - p+llql* = 0> = —lpI* + P*.
This is equivalent to
p—9" - (p—q)—P*- 0> =0,

which is equivalent to 775 5 = 0. |

Weighted Delaunay tetrahedrization

Let S be a finite set of spheres. Depending on the application, we think of an
element of S as a point in R* or a weighted point in R? x R. The weighted dis-
tance can be used to construct the weighted Voronoi diagram, and the weighted
Delaunay tetrahedrization is dual to that diagram, as usual. Instead of going
through the technical formalism of the construction, which is pretty much the
same as for unweighted points, we illustrate the concept in Figure 5.9. For
unweighted points, a tetrahedron belongs to the Delaunay tetrahedrization if
and only if the circumsphere passing through the four vertices is empty. For
weighted points, the circumsphere is replaced by the orthosphere, which is the
unique sphere orthogonal to all four spheres whose centers are the vertices of
the tetrahedron. Its center is the Voronoi vertex shared by the four Voronoi
regions, and its weight is the common weighted distance of that vertex from
the four spheres. We summarize by generalizing the Circumcircle Claim of
Section 1.1 to three dimensions and to the weighted case.

Figure 5.9. Dashed weighted Voronoi diagram and solid weighted Delaunay triangula-
tion of five weighted points in the plane. Each Voronoi vertex is the center of a circle
orthogonal to the generating circles of the regions that meet at that vertex. Only one
such circle is shown.
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Orthosphere Claim. A tetrahedron belongs to the weighted Delaunay tetra-
hedrization if and only if the orthosphere of the four spheres is further than
orthogonal from all other spheres in the set.

A sphere in S is redundant if its Voronoi region is empty. By definition, the
center of a sphere is a vertex of the weighted Delaunay triangulation if and only
if it is nonredundant. All extreme points are nonredundant, which implies that
the underlying space is the convex hull of S, as in the unweighted case.

Local convexity

Recall the Delaunay Lemma of Section 1.2, which states that a triangulation
of a finite set in R? is the Delaunay triangulation if and only if every one
of its edges is locally Delaunay. This result generalizes to three (and higher)
dimensions and to the weighted case. For the purpose of this discussion, we
define a tetrahedrization of S as a simplicial complex K whose underlying
space is conv S and whose vertex set is a subset of S. A triangle abc in K is
locally convex if

(i) it belongs to only one tetrahedron and therefore bounds the convex hull of
S, or

(i1) it belongs to two tetrahedra, abcd and abce, and é is further than orthogonal
from the orthosphere of abcd.

If all triangles in K are locally convex, then after lifting we get the boundary
complex of a convex polyhedron. This is consistent with the right side of the
commuting diagram in Figure 5.7. However, to be sure this polyhedron is G,
we also require that no lifted point lies vertically below the boundary.

Local Convexity Lemma. If Vert K contains all nonredundant weighted points
and every triangle is locally convex, then K is the weighted Delaunay tetra-
hedrization of S.

The proof is rather similar to that of the Delaunay Lemma in Section 1.2 and
does not have to be repeated. Similarly, we can extend the Acyclicity Lemma of
Section 1.1 to three (and higher) dimensions and to the weighted case. Details
should be clear and are omitted.
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Bibliographic notes

Weighted Voronoi diagrams are possibly as old as unweighted ones. Some of
the earliest references appear in the context of quadratic forms, which arise in
the study of the geometry of numbers [4]. These forms are naturally related to
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papers by Dirichlet [2] and Voronoi [5]. Weighted Delaunay triangulations and
their generalizations to three and higher dimensions seem less natural and have
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besides the one used in this book.
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5.3 Flipping

The goal of this section is to generalize the idea of edge flipping to three and
higher dimensions. We begin with two classic theorems in convex geometry.
Helly’s Theorem talks about the intersection structure of convex sets. It can be
proved by using Radon’s Theorem, which talks about partitions of finite point
sets and is directly related to flips in d dimensions. We then define flips and
discuss structural issues that arise in R>.

Radon’s theorem

This is a result on n > d + 2 points in R?. The case of n = 4 points in R? is
related to edge flipping in the plane.

Radon’s Theorem. Every collection S of n > d + 2 points in R? has a partition
S = AU B with conv A Nconv B # (.

Proof. Since there are more than d + 1 points, they are affinely dependent.
Hence there are coefficients A;, not all zero, with > A;p; =0 and }_ A; = 0.
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Let I be the set of indices i with A; > 0, and let J contain all other indices.
Note thatc =, ., A; = — >, 4; > 0, and also

x = %'Zlipi = —%'lepjv

iel jeJ

iel

Let A be the collection of points p; withi € I and let B contain all other points.
Point x is a convex combination of the points in A as well as of the points in
B. Equivalently, x € conv A N conv B. O

A (d + 1)-dimensional simplex has d + 2 vertices and a face for every subset
of the vertices. If we project its boundary complex onto R¢ we get a simplex
for every subset of at most d + 1 vertices. By Radon’s Theorem, at least two
of these simplices have an improper intersection. This intersection comes from
projecting the two sides of the simplex boundary on top of each other.

Helly’s theorem

This is a result on n > d + 2 convex sets in R?. For d = 1 it states that if every
pair of a collection of n > 2 closed intervals has a nonempty intersection, then
the entire collection has a nonempty common intersection. This is true because
the premise implies that the rightmost left endpoint is to the left or equal to the
leftmost right endpoint. The interval between these two endpoints belongs to
every interval in the collection.

Helly’s Theorem. 1f every d + 1 setsinacollection of n > d + 2 closed convex
sets in RY have a nonempty common intersection, then the entire collection has
a nonempty intersection.

Proof. Assume inductively that the claim holds for n — 1 closed convex sets.
For each C; in the collection of n sets, let p; be a point in the common inter-
section of the other n — 1 sets. Let S be the collection of points p;. By Radon’s
Theorem, there is a partition S = A U B and a point x € conv A N conv B. By
construction, conv A is contained in all sets C; with p; € B, and symmetrically,
conv B is contained in all sets C; with p; € A. Hence, x is contained in every
set of the collection. O

Flipside of a simplex

Consider the case d = 2. The projection of a 3-simplex (tetrahedron) onto R?
is either a convex quadrangle or a triangle. In the former case the two diagonals
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Figure 5.10. The two generic projections of a tetrahedron onto the plane.

cross, and in the latter case one vertex lies in the triangle spanned by the other
three. Both cases are illustrated in Figure 5.10. The direction of projection
defines an upper and a lower side of the tetrahedron boundary, and the two
sides meet along the silhouette. Let « = conv A and 8 = conv B be the two
faces whose projections have an improper intersection. They lie on opposite
sides, and we assume that « belongs to the upper and 8 to the lower side. The
quadrangle case defines an edge flip, which replaces the projection of the upper
by the projection of the lower side, or vice versa. We also call this a two-to-two
flip because it replaces two old by two new triangles. The triangle case defines
a new type of flip, which we refer to as a one-to-three or a three-to-one flip,
depending on whether a new vertex is added or an old vertex is removed.

How do these considerations generalize to the case d = 3? As illustrated in
Figure 5.11, the projection of a 4-simplex onto IR? is either a double pyramid or
atetrahedron. In the double pyramid case, « is an edge and f is a triangle. There
are three tetrahedra that share «, and they form the upper side of the 4-simplex.
The remaining two tetrahedra share g and form the lower side. The three-to-two
flip replaces the projection of the upper side by the projection of the lower side,
and the two-to-three flip does it the other way round. In the tetrahedron case,
« is one vertex and B is the tetrahedron spanned by the other four vertices.
The one-to-four flip adds «, effectively replacing 8 by four tetrahedra, and the
four-to-one flip removes «.

Figure 5.11. The two generic projections of a 4-simplex onto three-dimensional space.
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c d

Figure 5.12. The edge ae does not pass through the triangle bcd but rather behind the
edge bd.

Transformability

In using flips to construct a Delaunay tetrahedrization in R?, we encounter
cases where we would like to flip but we cannot. This happens only for two-
to-three flips. Let abcd and bcede share the triangle bed. If the edge ae crosses
bcd, we can replace abcd, bede by baec, caed, daeb, which is a two-to-three
flip. However, if the edge ae misses bcd, as illustrated in Figure 5.12 where
ae passes behind bd, we cannot add ae because it might cross other triangles
in the current tetrahedrization. In this case, the union of the two tetrahedra is
nonconvex. Assume without loss of generality that bd is the nonconvex edge.
There are two cases. If bd belongs to only three tetrahedra then the third one is
abde, and we can replace abdc, cbde, ebda by bace, aced. This is a three-to-two
flip. However, if bd belongs to four or more tetrahedra, then we are stuck and
cannot remove the triangle bcd. This is the nontransformable case.

The reason for studying flips is of course the interest in an algorithm that
constructs a weighted Delaunay tetrahedrization by flipping. The occurrence
of nontransformable cases does not imply that all hope is lost. It might still
be possible to flip elsewhere in a way that resolves nontransformable cases by
changing their local neighborhood. However, this requires further analysis.

Bibliographic notes

Radon’s Theorem is a byproduct of the effort by Johann Radon [4] to prove
Helly’s Theorem, communicated to him by Eduard Helly [1]. The two theorems
are equivalent and form a cornerstone of modern convex geometry. Helly was
missing as a prisoner of war in Russia, so Radon published his theorem and
proof. After returning from Russia, Helly published his theorem and his own
proof, which is inductive in the size of the collection and the dimension. Years
later, Helly generalized his theorem to a topological setting where convexity is
replaced by requirements of connectivity [2]. The concept of an edge flip was
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generalized to three and higher dimensions by Lawson [3], without, however,
realizing the connection to Radon’s Theorem.
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5.4 Incremental algorithm

This section generalizes the algorithm of Section 1.3 to three dimensions and to
the weighted case. The algorithm is incremental and adds a point in a sequence
of flips. We describe the algorithm, prove its correctness, and discuss its running
time.

Algorithm

Let S be afinite set of weighted points in R?. We denote the points by p;, ps, . . .,
P, and assume they are in general position. To reduce the number of cases,
we let wxyz be a sufficiently large tetrahedron. In particular, we assume wxyz
contains all points of S in its interior. Define S; = {w, x, y, z, Py, P2, - ., D;}
for 0 < i < n, and let D; be the weighted Delaunay tetrahedrization of S;. The
algorithm starts with Dy and adds the weighted points in order. Adding p; is
done in a sequence of flips.

fori =1tondo
find pgrs € D;_, that contains p;;
if p; is non-redundant among p, g, 7, § then
add p; with a 1-to-4 flip
endif;
while 3 triangle bed not locally convex do
flip bed
endwhile
endfor.

The algorithm maintains a tetrahedrization, which we denote as K. Sometimes,
K is a weighted Delaunay tetrahedrization of a subset of the points, but often
it is not. Consider flipping the triangle bcd in K. Let abed and bede be the two
tetrahedra that share bcd. If their union is convex, then flipping bcd means a two-
to-three flip that replaces bcd by edge ae together with triangles aeb, aec, aed.
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Figure 5.13. To the left, a one-to-four or a four-to-one flip depending on whether the
hollow vertex is added or removed. To the right, a two-to-three or a three-to-two flip
depending on whether the dotted edge is added or removed.

Otherwise, we consider the subcomplex induced by a, b, ¢, d, e. It consists of the
simplices in K spanned by subsets of the five points. If the underlying space
of the induced subcomplex is nonconvex, then bcd cannot be flipped. If the
underlying space is convex, then it is either a double pyramid or a tetrahedron.
In the former case, flipping means a three-to-two flip. In the latter case, flipping
means a four-to-one flip, which effectively removes a vertex. The various types
of flips are illustrated in Figure 5.13.

Stack of triangles

Flipping is done in a sequence controlled by a stack. At any moment, the stack
contains all triangles in the link of p; that are not locally convex. It may also
contain other triangles in the link, but it contains each triangle at most once.
Initially, the stack consists of the four triangles of pgrs. Flipping continues until
the stack is empty.

while stack is non-empty do
pop bed from stack;
if bed € K and bced is not locally convex
and bcd is transformable then
apply a 2-to-3, 3-to-2, or 4-to-1 flip;
push new link triangles on stack
endif

endwhile.

Why can we restrict our attention to triangles in the link of p;? Outside the link,
K is equal to D;_;; hence all triangles are locally convex. A triangle inside
the link connects p; with an edge cd in the link. Let xp;cd and p;cdy be the
two tetrahedra sharing p;cd. If their union is convex, we can remove p;cd by a
two-to-three flip. This creates a new tetrahedron acde not incident to p;, which
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Figure 5.14. The bold edges belong to the link of p; and the shaded triangles belong to L.

contradicts that D;_; is a weighted Delaunay tetrahedrization. If their union is
nonconvex, the triangles xcd and cdy in the link are also not locally convex.

Correctness

Let K be the tetrahedrization at some moment in time after adding p; when it
is not yet the weighted Delaunay tetrahedrization of S;. It suffices to show that
K has at least one link triangle that is not locally convex and transformable.
To get a contradiction, we suppose all triangles that are not locally convex
are nontransformable. Let L be the set of tetrahedra in K — St p; that have
at least one triangle in the link. These tetrahedra form a spiky sphere around
pi, not unlike the spiky circle in Figure 5.14. Let L’ C L contain all tetrahe-
dra whose triangles in the link are not locally convex. By assumption, L’ # .
For each tetrahedron in L, consider the orthosphere Z and the weighted dis-
tance 7, ;. Let abed € L be the tetrahedron whose orthosphere minimizes
that function. We have abcd € L', or equivalently mp. : < 0, for else the tri-
angle bcd in the link would be locally convex, and so would every other link
triangle.

We argue that bcd is transformable. To get a contradiction, assume it is not.
Let bd be a nonconvex edge of the union of abcd and bcdp;, and let abdx
be the tetrahedron on the other side of abd. If bd is the only nonconvex edge
then x # p;, for else bed would be transformable. Otherwise, there is another
nonconvex edge, say bc. Let abcy be the tetrahedron on the other side of abc.
If x = y = p; we again have a contradiction because this would imply that bed
is transformable. We may therefore assume that x # p;. Equivalently, abd is
not in the link of p;. Consider a half-line that starts at p; and passes through
an interior point of abd. After crossing the link, the half-line goes through a
tetrahedron of L before it encounters abcd. This is illustrated in Figure 5.14.
Outside the link, we have a genuine weighted Delaunay tetrahedrization, namely
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aportion of D;_;. For tetrahedra in D;_;, the weighted distance of p; from their
orthospheres increases along the half-line, which contradicts the minimality
assumption in the choice of abcd. This finally proves that flipping continues
until D; is reached.

Number of flips

To upper-bound the number of flips in the worst case, we interpret the algorithm
as gluing 4-simplices to a three-dimensional surface consisting of tetrahedra in
R*. Each flip corresponds to a 4-simplex. It either removes or introduces one
or four edges. Once an edge is removed it cannot be introduced again. This
implies that the total number of flips is less than 2(}) < n®. We thus have an
algorithm that constructs the Delaunay tetrahedrization of n points in R? in
O(n?) time. The size of the final Delaunay tetrahedrization is therefore at most
some constant times n”.

There are sets of n points in R? with at least some constant times n” Delaunay
tetrahedra. Take, for example, two skew lines and place n/2 unweighted points
on each line, as shown in Figure 5.15. Consider two contiguous points on one
line together with two contiguous points on the other line. The sphere passing
through the four points is empty, which implies that the four points span a
Delaunay tetrahedron. The total number of such tetrahedra is roughly n”/4.
However, for point sets that seem to occur in practice, the number of Delaunay
tetrahedra is typically less than some constant times n. Examples of such sets
are dense packing of spheres common in molecular modeling, and well-spaced
sets as produced by three-dimensional mesh generation software.

Expected running time

It is a good idea to first compute a random permutation of the points so that
the construction proceeds in a random order. However, because the size of the

Figure 5.15. A tetrahedral mesh whose edge skeleton contains a complete bipartite
graph.
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tetrahedrization can vary between linearly and quadratically many simplices,
the analysis is more involved than in two dimensions. We cannot even claim
that the expected running time is at most log, n times the size of the final
tetrahedrization. Indeed, this is false because there exist point sets with lin-
ear size Delaunay tetrahedrizations that reach quadratic intermediate size with
positive constant probability. Nevertheless, such a claim holds if we further
relativize the statement by drawing points from a fixed distribution. Suppose
the expected size of the Delaunay tetrahedrization of k points chosen ran-
domly from the distribution is O( £ (k)). If f(k) = Q(k'**), for some constant
& > 0, then the expected running time is O( f (n)); otherwise itis O( f (n) logn).
The argument is similar to the one presented in Section 1.3, and details are
omitted.

Bibliographic notes

Algorithms that construct a Delaunay tetrahedrization in R? through flips were
first considered by Barry Joe. In [2] he gives an example in which the non-
transformable cases form a deadlock situation and flipping does not lead to
the Delaunay tetrahedrization. In [3] he shows that flipping succeeds if the
points are added one at a time. The proof of Joe’s result in this section is taken
from [1], where the same is shown for weighted Delaunay tetrahedrization
in RY,
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[2] B.Joe. Three-dimensional triangulations from local transformations. SIAM J. Sci.
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Exercise collection

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered by using knowledge of the material combined with
some thought and analysis.

1. Inscribed polytopes (three credits). A 3-polytope inscribed in the two-
dimensional sphere has all its vertices on the sphere. Prove that the cube
with one corner cut off cannot be inscribed. We permit geometric distortions
of the cube, but edges and facets must be straight and the combinatorial
structure must be the same as that in Figure 5.16.
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Figure 5.16. Cube with one corner cut off and its net.

. Helly for rectangles (two credits). Define a rectangle in R? as the set of

points x = (x1, x2), with ¢; < x; < r; for some real numbers ¢;, r; and i =

1, 2. Let R be a finite collection of rectangles.

(1) Prove if every pair of rectangles has a nonempty intersection then
R #0.

(i) Generalize rectangles and the claim in (i) from two to three and higher
dimensions.

. Jung’s theorem (two credits). A theorem by Jung states that if every three

of a finite set of points in the plane are contained in a unit disk, then the

entire set is contained in a unit disk.

(i) Use the two-dimensional version of Helly’s Theorem to prove Jung’s
Theorem.

(ii)) What is the generalization of Jung’s Theorem to d > 3 dimensions?

. Degenerate Delaunay complex (two credits). The face-centered cube

(FCC) lattice consists of all integer points (i, j, k) witheven sumi + j + k.

(i) The Delaunay complex of the FCC lattice is degenerate because there
are empty spheres that pass through six points. Which six points?

(ii)) The Delaunay complex of the FCC lattice has only two types of three-
dimensional cells. What are they?

. Non-Delaunay complex (one credit). Exhibit a three-dimensional simplicial

complex K with vertex set S C R* whose edges all belong to the Delaunay

tetrahedrization D of S and whose underlying space is the convex hull of S,

but still K # D.

. Induced subcomplex (three credits). Let S be a finite set of points in R* and

D the Delaunay tetrahedrization of S. The subcomplex K € D induced by a

subset 7 € § consists of all simplices in D whose vertices all belong to T'.

(1) Show that K is also a subcomplex of the Delaunay tetrahedrization of T'.

(i1) Use (i) to show that if there is a Delaunay tetrahedrization that has an
edge crossing a triangle, then there is such a Delaunay tetrahedrization
for only five points.
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7. Moment curve (three credits). The moment curve in R? consists of all points
(¢, 12, 1%) with t € R. Let py, pa, ... p, be a sequence of points along the
moment curve.

(i) Show that for all 1 <i < j < n the sphere passing through points
Pi—1, Pi» Pj, Pj+11isempty. In other words, all other points p, lie outside
that sphere.

(i) Count the tetrahedra, triangles, edges of the Delaunay tetrahedrization
of p1, p2, ..., Pn.

8. Local convexity (two credits). Let ab be an edge in a tetrahedrization K of
S C R3. Prove that if ab belongs to a triangle that is not locally convex, then
it belongs to at least three such triangles.
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Tetrahedron meshes

This chapter studies the problem of constructing meshes of tetrahedra in R3.
Such meshes are three-dimensional simplicial complexes, the same as what
we called tetrahedrizations in Chapter 5. The new aspects are the attention to
boundary conditions and the focus on the shape of the tetrahedra. The primary
purpose of meshes is to provide a discrete representation of continuous space.
The tetrahedra themselves and their arrangement within the mesh are not as im-
portant as how well they represent space. Unfortunately, there is no universal
measure that distinguishes good from bad space representations. As a general
guideline, we avoid very small and very large angles because of their usually
negative influence on the performance of numerical methods based on meshes.
Section 6.1 studies the problem of tetrahedrizing possibly nonconvex polyhe-
dra. Section 6.2 measures tetrahedral shape and introduces the ratio property for
Delaunay tetrahedrizations. Section 6.3 extends the Delaunay refinement algo-
rithm from two to three dimensions. Section 6.4 studies a particularly annoying
type of tetrahedron and ways to remove it from Delaunay meshes.

6.1 Meshing polyhedra

In this book, meshing a spatial domain means decomposing a polyhedron into
tetrahedra that form a simplicial complex. This section introduces polyhedra
and studies the problem of how many tetrahedra are needed to mesh them.

Polyhedra and faces

A polyhedron is the union of convex polyhedra, P = J,, (| H;, where I is a
finite index set and each H; is a finite set of closed half-spaces. For example, the
polyhedron in Figure 6.1 can be specified as the union of four convex polyhedra.

111
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Figure 6.1. A nonconvex polyhedron.

As we can see, faces are not necessarily simply connected. We use a definition
that permits faces even to be disconnected.

Let b be the open ball with unit radius centered at the origin of R*. For a point
x we consider a sufficiently small neighborhood, N.(x) = (x + ¢ - b) N P.The
face figure of x is the enlarged version of this neighborhood within the poly-
hedron, x + Ux>o A (Ne(x) —x). A face of P is the closure of a maximal
collection of points with identical face figures. To distinguish the faces of P
from the edges and triangles of the Delaunay tetrahedrization to be constructed,
we call 1- and 2-faces of P segments and facets. Observe that the polyhedron
in Figure 6.1 has 24 vertices, 30 segments, 11 facets, and two 3-faces, namely
the inside with face figure R* and the outside with an empty face figure. Six of
the segments and three of the facets are non-connected. Two of the facets are
connected but not simply connected, namely the front and the back facets.

Tetrahedrizations

A tetrahedrization of P is a simplicial complex K whose underlying space is
P, |K| = P. Since simplicial complexes are finite by definition, only bounded
polyhedra have tetrahedrizations. A tetrahedrization of P triangulates every
facet and every segment by a subcomplex each. Every vertex of P is necessarily
also a vertex of K.

We will see shortly that every bounded polyhedron has a tetrahedrization.
Interestingly, there are polyhedra whose tetrahedrizations have necessarily more
vertices than the polyhedra. The smallest such example is the Schonhardt poly-
hedron shown in Figure 6.2. It can be obtained from a triangular prism by a
slight rotation of one triangular facet relative to the other. The six vertices of
the polyhedron span (Z) = 15 tetrahedra, which we classify into three types
exemplified by abcA, abAB, bcCA. All three tetrahedra share bA as an edge.
But this edge lies outside the Schonhardt polyhedron, which implies that none
of the 15 tetrahedra is contained in the polyhedron. The Schonhardt polyhedron
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b
Figure 6.2. The Schonhardt polyhedron. The edges aB, bC, cA are non-convex.

can therefore not be tetrahedrized by using tetrahedra spanned by its vertices.
There are, of course, other tetrahedrizations. The simplest uses a vertex z in the
center and cones from z to the six vertices, 12 edges, and eight triangles in the
boundary.

Fencing off

We give a constructive proof that every polyhedron P has a tetrahedrization. For
simplicity we assume that P is everywhere three-dimensional. Equivalently, P
is the closure of its interior, P = clint P.Itisconvenient to place P in space such
that no facet lies in a vertical plane and no segment is contained in a vertical line.
Call two points x, y € P vertically visible if x, y lie on a common vertical line
and the edge xy is contained in P. The fence of a segment consists of all points
x € P vertically visible from some point y of the segment. The tetrahedrization
is constructed in three steps, the first of which is illustrated in Figure 6.3.

Step 1. Erect the fence of each segment. The fences decompose P into ver-
tical cylinders, each bounded by a top and a bottom facet and a circle
of fence pieces called walls.

Figure 6.3. The fence of the segment ab consists of five walls, each a triangle or a
quadrangle.
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Step 2. Triangulate the bottom facet of every cylinder and erect fences from
the new segments, effectively decomposing P into triangular cylin-
ders.

Step 3. Decompose each wall into triangles and finally tetrahedrize each
cylinder by constructing cones from an interior point to the boundary.

Upper bound

We analyze the tetrahedrization obtained by erecting fences and prove that the
final number of tetrahedra is at most some constant times the square of the
number of segments.

Upper Bound Claim. The three steps tetrahedrize a bounded polyhedron with
m segments by using fewer than 28m? tetrahedra.

Proof. Fences erected in Step 1 may meet in vertical edges. Each intersection
corresponds to a crossing between vertical projections of segments. The total
number of crossings is at most ("2“). Each segment creates a fence, and each
crossing involving this segment may cut one wall of the fence into two. The total
number of walls is therefore no more than m + 2( 'g y=m? A cylinder bounded
by k walls is decomposed into k — 2 triangular cylinders separated from each
other by k — 3 new walls. Step 2 thus increases the total number of walls to less
than 3m?. The total number of cylinders at this stage is less than 2m?. Each wall
is a triangle or a quadrangle, and it may be divided into two by the piece of the
segment that defines it. Step 3 therefore triangulates each wall by using four
or fewer triangles, and it tetrahedrizes each cylinder by using 14 or fewer tetra-
hedra. The final tetrahedrization thus contains fewer than 28m? tetrahedra. O

Saddle surface

We prepare a matching lower bound by studying the hyperbolic paraboloid
specified by the equation x3 = x; - x,. Figure 6.4 illustrates the paraboloid by
showing its intersection with the vertical planes £x; +x, = 1. A general line in
the x;x-plane is specified by ax; + bx, + ¢ = 0. To determine the intersection
of the paraboloid with the vertical plane through that line, we can either express
x1 in terms of x, or vice versa:

X3 = ——x% — — X,
a a
a , c
X3 = ——.Xl — —X1.
b b
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X2

Figure 6.4. Hyperbolic paraboloid indicated through its intersection with vertical walls.

For a - b # 0 we get a parabola. For a = 0 we get a line for every value of
c/b, and we sample this family at integer values. Similarly, we sample the
1-parameter family of lines we get for b = 0 at integer values of ¢/a. Figure 6.5
shows a small portion of the two families in top view. If two points x and y lie on
the paraboloid, then the segment between them lies on the surface if and only if
the vertical projections of x, y onto the x;x,-plane line on a common horizontal
or vertical line. If the line has positive slope then the segment lies above the
surface, and if the line has negative slope then it lies below the surface.

Lower bound construction

We build a polyhedron Q out of a cube by cutting deep wedges, each close to
a line of the two ruling families. The construction is illustrated in Figure 6.6.
Assuming we have n cuts from the top and n from the bottom, we have m =
14n 4 8 segments forming the polyhedron.

Lower Bound Claim. Every tetrahedrization of Q consists of at least (n + 1)?
tetrahedra.

Xy

Figure 6.5. View from below of hyperbolic paraboloid. We see samples of the two ruling
families of lines and dotted edges connecting points sampled on the surface.
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Figure 6.6. Polyhedron Q with two families of cuts almost meeting along the
saddle surface.

Proof. Consider the checkerboard produced by the 2n + 4 lines on the saddle
surface that mark the ends of the 2n cuts and the intersection with the bound-
ary of the cube. Choose a point in each square of the checkerboard produc-
ing the slightly tilted square grid pattern of Figure 6.5. The edges connecting
any two points intersect at least one of the wedges, provided the sharp ends
of the wedges reach sufficiently close to the saddle surface. It follows that
in any tetrahedrization of Q, the (n + 1)? points lie inside pairwise different
tetrahedra. O
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6.2 Tetrahedral shape

This section looks at the various shapes tetrahedra can assume. For the time
being, good shape quality is defined as having a small circumradius over the
shortest edge length ratio. We will see later that meshes of tetrahedra with small
ratios also have nice combinatorial properties, such as constant size vertex stars.

Classifying tetrahedra

The classification of tetrahedra into shape types is a fuzzy undertaking. We
normalize by scaling tetrahedra to unit diameter. A normalized tetrahedron has
small volume either because its vertices are close to a line, or, if that is not the
case, its vertices are close to a plane. In the first case, the tetrahedron is skinny,
and we distinguish five types depending on how its vertices cluster along the
line. Up to symmetry, the possibilities are 1-1-1-1, 1-1-2, 1-2-1, 1-3, 2-2, as
shown from left to right in Figure 6.7. A flat tetrahedron has small volume but
is not skinny. We have four types depending on whether two vertices are close
to each other, three vertices lie close to a line, the orthogonal projection of the
tetrahedron onto the close plane is a triangle, or the projection is a quadrangle.
All four types are shown from left to right in Figure 6.8.

Circumradius over the shortest edge length

A tetrahedron abcd has a unique circumsphere. Let R = R(abcd) be that radius
and L = L(abcd) the length of the shortest edge. We measure the quality of the

Figure 6.7. Five fuzzy types of skinny tetrahedra.
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Figure 6.8. Four fuzzy types of flat tetrahedra, the fourth is the sliver.

tetrahedron shape by taking the ratio, that is,
o = o(abcd)=R/L.

We also define o for triangles, taking the radius of the circumcircle over the
length of the shortest edge. Observe that the ratio of a tetrahedron is always
larger than or equal to the ratio of each of its triangles.

A triangle abc minimizes the ratio if and only if it is equilateral, in which
case the circumcenter is also the barycenter,

y=1/3-(a+b+c)=2/3-x+1/3-c,

where x = 1/2 - (a + b). Normalization implies that the three edges have
length 1. The ratio is therefore equal to the circumradius, which is

le=yll=2/3-llc =x[l=2/3-y/1-1/4

=+/3/3=0.577....

A tetrahedron abcd minimizes the ratio if and only if it is regular, in which case
the circumcenter is again the barycenter:

z=1/4-(@+b+c+d) =3/4-y+1/4-d.

Normalization implies that the six edges have length 1. The ratio is therefore
equal to the circumradius, which is

ld =zl =3/4-|ld = yll=3/4-1-3/9

=6/4=0612....

Both calculations are illustrated in Figure 6.9.

A skinny triangle has small area. It either has a short edge or a large circumra-
dius. In either case, its ratio is large. A skinny tetrahedron has skinny triangles;
hence its ratio is large. A flat triangle that is not a sliver has either a short edge
or a large circumradius and thus a large ratio. The only remaining small volume
tetrahedron is the sliver, and it can have o as small as «/5/2 =0.707..., or
even a tiny amount smaller.
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Figure 6.9. A regular tetrahedron and the barycenters of an edge, a triangle, the
tetrahedron.
Ratio property

A mesh of tetrahedra has the ratio property for oy if 0 < g for all tetrahedra.
We assume that every triangle in the mesh is the face of a tetrahedron in the
mesh. It follows that o < gy also for every triangle. We prove two elementary
facts about edge lengths in a mesh K that has the ratio property for a constant gg.

Claim A. If abc is a triangle in K then
1/200 - lla = bl < lla —cll < 2¢0 - lla — bl
Proof. The length of an edge is at most twice the circumradius, |la — b|| < 2Y.

By assumption, |la — b|| > Y/0o. The same inequalities hold for |a — c|[,
which implies the claim. O

Next we show that, if K has the ratio property and it is a Delaunay tetra-
hedrization, then edges that share a common endpoint and form a small angle
cannot have very different lengths. For this to hold, it is not necessary that the
two edges belong to a common triangle. Define

no = arctanZ(go - \/Q(Z) — 1/4).

Since g is a constant, So is 7.

Claim B. If the angle between ab and ap is less than 7 then
lla =bll/2<lla—pll<2-lla—Dbl.
Proof. Consider the circumsphere of a tetrahedron that contains ab as an edge,

and let $ = (y, Y?) be the circle in which the plane passing through a, b, p
intersects the sphere. We use Figure 6.10 as an illustration throughout the proof.
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Figure 6.10. Section through a circumsphere of a Delaunay tetrahedron with edge ab.

Let v be the midpoint of ab, and let x be the point on the circle such that y, v, x lie
in this sequence on a common line. We have Y < g - ||a — b|| by assumption.
The distance between x and v is

e —vll = ¥ = \/¥2 — la — b /4
> (00— \/e3 = 1/4) - la = bl

because the difference between Y and /Y2 — C decreases with increasing Y.
The angle between ab and ax is

/bax = arctan(2]x — v||/]la — bl))

> arctanZ(Qo —y/o - 1/4)

= To.

The claimed lower bound follows because the circle forces ap to be at least
as long as ax, which is longer than half of ab. The claimed upper bound on
the length of ap follows by a symmetric argument that reverses the roles of
b and p. O

Length variation

We use Claims A and B to show that the length variation of edges with a
common endpoint a in K is bounded by some constant. As before, we as-
sume K has the ratio property and is a Delaunay tetrahedrization. Define
mo = 2/(1 —cos(™/y)) and vy = 22mo—1 . Q(’)””_l. Since ¢ and 7 are constants,
so are mg and vy.

Length Variation Lemma. If ab, ap are edges in K then

lla —bll/vo < lla— pll <vo-lla—Dbl.
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Proof. Let ¥ be the sphere of directions around a. We form a maximal pack-
ing of circular caps, each with angle ny/4. This means if y is the center
and x a boundary point of a cap then 4/xay = ny. The area of each cap is
(1 — cos(™/4))/2 times the area of X, which implies that there are at most m
caps.

By increasing the caps to radius 7y/2 we change the maximal packing into
a covering of X. For each edge ab in the star of a, let b’ € ¥ be the radial
projection of b. Similarly, for each triangle abc consider the arc on X that is
the radial projection of bc. The points and arcs form a planar graph. Let ab
be the longest and ap the shortest edge in the star of a. We walk in the graph
from b’ to p’. This path leads from cap to cap, and we record the sequence
ignoring detours that return to previously visited caps. The sequence consists
of at most m caps. Let us track the edge length during the walk. As long as we
stay within a cap, Claim B implies the length decreases by less than a factor !/5.
If we step from one cap to the next, Claim A implies the length decreases by at
most a factor 1/20¢. Hence ||la — p|| > |la — b||/vo. The upper bound follows
by a symmetric argument that exchanges b and p. O

Constant degree

A straightforward volume argument together with the Length Variation Lemma
implies that each vertex in K belongs to at most some constant number of edges.
Define ¢ = (2v§ + 1)3, which is a constant.

Degree Lemma. Every vertex a in K belongs to at most § edges.

Proof. Let ab be the longest and ap the shortest edge in the star of a. Assume
without loss of generality that ||la — p|| = 1. Let ¢ be a neighbor of a and let d
be a neighbor of ¢. We have ||a — c¢|| > 1 by assumption and ||c — d|| > 1/vp
by the Length Variation Lemma. For each neighbor ¢ of a let I'. be the open
ball with center ¢ and radius 1/2vy. The balls are pairwise disjoint and fit inside
the ball I" with center a and radius ||a — b|| 4+ 1/2vy. The volume of T is

= (apr+ 1Y
VO = — a — —
3 2\)0

4 (20} + 1 }
<
-3 2\)0

= (21}5 + 1)3 . VO] FC'

In words, at most 8y = (2v3 + 1)* neighbor balls fit into I". This implies that
8¢ is an upper bound on the number of neighbors of a. O
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The constant §y in the Degree Lemma is miserably large. The main reason is
that the constant vy in the Length Variation Lemma is miserably large. It would
be nice to find a possibly more direct proof of that lemma and bring the constant
down to a reasonable size.
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6.3 Delaunay refinement

This section generalizes the Delaunay refinement algorithm of Section 2.2
from two to three dimensions. The additional dimension complicates mat-
ters. In particular, special care must be taken to avoid infinite loops bounc-
ing back and forth between refining segments and facets of the input
polyhedron.

Refinement algorithm

For technical reasons, we restrict ourselves to bounded polyhedra P without
interior angles smaller than 7/,. The condition applies to angles between two
segments, between a segment and a facet, and between two facets. The polyhe-
dron in Figure 6.1 satisfies the condition, but the polyhedron in Figure 6.2 does
not. The goal is to construct a Delaunay tetrahedrization D with a subcomplex
K C D that subdivides P and has the ratio property for a constant oy. The first
step of the algorithm computes D as the Delaunay tetrahedrization of the set of
vertices of P. Unless we are lucky, there will be segments that are not covered
by edges of D, and there will be facets that are not covered by triangles of D. To
recover these segments and facets, we add new points and update the Delaunay
tetrahedrization using the incremental algorithm of Section 5.4. The points are
added using the three rules given below.
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We need some definitions. A segment of P is decomposed into subsegments
by vertices of the Delaunay tetrahedrization that lie on the segment, and a facet
is decomposed into (triangular) subfacets by the Delaunay triangulation of the
vertices on the facet and its boundary. A vertex encroaches upon a subsegment if
itis enclosed by the diameter sphere of that subsegment, and it encroaches upon
a subfacet if it is enclosed by the equator sphere of that subfacet. Both spheres
are the smallest that pass through all vertices of the subsegment and the subfacet.

Rule 1. Ifasubsegmentisencroached upon, we splititby adding the midpoint
as a new vertex to the Delaunay tetrahedrization. The new subseg-
ments may or may not be encroached upon, and splitting continues
until none of the subsegments is encroached upon.

Rule 2. If a subfacet is encroached upon, we split it by adding the circum-
center x as a new vertex to the Delaunay tetrahedrization. However,
if x encroaches upon one or more subsegments then we do not add
x and instead split the subsegments.

Rule 3. If a tetrahedron inside P has a circumradius over the shortest edge
length ratio R/L > gy, then we split the tetrahedron by adding the
circumcenter x as a new vertex to the Delaunay tetrahedrization.
However, if x encroaches upon any subsegments or subfacets, we do
not add x and instead split the subsegments and subfacets.

Rule 1 takes priority over Rule 2, and Rule 2 takes priority over Rule 3. Atthe
time we add a point on a facet, the prioritization guarantees that the boundary
segments of the facet are subdivided by edges of the Delaunay tetrahedrization.
Similarly, at the time we add a point in the interior of P, the boundary of P
is subdivided by triangles in the Delaunay tetrahedrization. A point considered
for addition to the Delaunay tetrahedrization has a type, which is the number
of the rule that considers it or equivalently the dimension of the simplex it
splits. Points of type 1 split subsegments and are always added once they are
considered. Points of type 2 and 3 may be added or rejected.

Local density

Just as in two dimensions, the local feature size is crucial to understanding
the Delaunay refinement algorithm. It is the function f : R® — R with f(x)
the radius of the smallest closed ball with center x that intersects at least two
disjoint faces of P. Note that f is bounded away from zero by some positive
constant. It is easy to show that f satisfies the Lipschitz condition

J@) = f+lx=yl.
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This implies that f is continuous over R3, but more than that, the condition
says that f varies only slowly with x.

The local feature size is related to the insertion radius r, of a point x, which
is the length of the shortest Delaunay edge with endpoint x immediately after
adding x. If x is a vertex of P then r, is the distance to the nearest other vertex of
P .If x has type 1 or 2 then r, is the distance to the nearest encroaching vertex. If
that encroaching vertex does not exist because it was rejected, then r, is either
half the length of the subsegment if x has type 1, or it is the circumradius of
the subfacet if x has type 2. Finally, r, is the circumradius of the tetrahedron
it splits, if x has type 3. We also define the insertion radius for a point that is
considered for addition but rejected, because it encroaches upon subsegments
or subfacets. This is done by hypothetically adding the point and taking the
length of the shortest edge in the hypothetical star.

Radii and parents

Points are added in a sequence, and for each new point there are predecessors
that we can make responsible for the addition. If x has type 1 or 2 then we define
the responsible parent p = p, as the encroaching point that triggers the event.
The point p may be a Delaunay vertex or a rejected circumcenter. If there are
several encroaching points then p is the one closest to x. If x has type 3 then
p is the most recently added endpoint of the shortest edge of the tetrahedron
x splits.

Radius Claim. Let x be avertex of D and p its parent, if itexists. Thenr, > f(x)
orry > c-r,, wherec = 1/+/2 if x has type 1 or 2 and ¢ = gy if x has type 3.

Proof. If x is a vertex of P then f(x) is less than or equal to the distance to the
nearest other vertex. This distance is r, > f(x). For the rest of the proof assume
x is not a vertex of P. It therefore has a parent p = p,. First consider the case
where p is a vertex of P. If x has type 1 or 2, it lies in a segment or facet of P,
and p is not contained in that segment or facet. Hence r, = ||[x — p|| > f(x).
If x has type 3 then the tetrahedron split by x has at least two vertices in P.
Hence r, = ||x — p|| = f(x) as before. Second consider the case where p is
not a vertex of P. If x has type 1 or 2 then p was rejected for triggering the
insertion of x. Since p encroaches upon the subsegment or subfacet split by
x, its distance to the closest vertex of that subsegment or subfacet is at most
/2 times the distance of x from that same vertex. Hence Ty =71,/ V2. Finally,
if x has type 3 then r, < L, where L is the length of the shortest edge of the
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Figure 6.11. The directed arcs indicate possible parent—child relations, and their labels
give the worst-case factors relating insertion radii.

tetrahedron split by x. The algorithm splits that tetrahedron only if R > Lgy.
Hence ry = R > Loo = 0ot p. O

Termination

The Radius Claim limits how quickly the insertion radius can decrease. We aim
at choosing the only independent constant, which is gg, such that the insertion
radii are bounded from below by a positive constant. Once this is achieved, we
can prove termination of the algorithm by using a standard packing argument.
Figure 6.11 illustrates the possible parent—child relations between the three
types of points added by the algorithm. We follow an arc of the digraph whenever
the insertion radius of a point x is less than f(x). The arc is labeled by the
smallest possible factor relating the insertion radius of x to that of its parent.
Note that there is no arc from type 1 to type 2 and there are no loops from
type 1 back to type 1 and from type 2 back to type 2. This is because the angle
constraint on the input polyhedron prevents parent—child relations for points on
segments and facets with a nonempty intersection. If there is a relation between
points on segments and facets with an empty intersection, then r, > f(x) and
there is no need to follow an arc in the digraph.

Observe that every cycle in the digraph contains the arc labeled g leading
into type 3. We choose gy > 2 to guarantee that the products of arc labels
for all cycles are 1 or larger. The smallest product of any path in the digraph
is therefore !/,. In cases where r, is not at least f(x), there exist ancestors
q with r, > r,/2 and r, > f(q). Since f(g) is bounded away from zero by
some positive constant, we conclude that the insertion radii cannot get arbitrarily
small. It follows that the Delaunay refinement algorithm terminates. For o < 2
there are cases where the algorithm does not terminate.



126 6. Tetrahedron meshes

Graded meshes

With little additional effort we can show that for gq strictly larger than 2,
insertion radii are directly related to local feature size, and not just indirectly
through chains of ancestors. We begin with a relation between the local feature
size over insertion radius ratio of a vertex and of its parent.

Ratio Claim. Let x be a Delaunay vertex with parent p and assume r, > ¢ - 7).
Then

J@)/re < 14 f(p)/(c-rp).

Proof. We have r, = ||x — p|| if p is a Delaunay vertex and r, > |x — p|| if
p is a rejected midpoint or circumcenter. Starting with the Lipschitz condition,
we get

fx) = fp)+llx —pll
S(f(P)/C"’p)'rx‘f"’x,

and the result follows after dividing by r,. O

To prepare the next step we assume oy > 2 and define constants

(B++/2)- 00
Ci=—"7-—7—,
00— 2
C, — (1++/2) 00+ 2
2 o2 ,
00+ 142
C3 = ——— —.
0o —2

Note that C; > C; > C3 > 1.

Invariant. If x is a type i vertex in the Delaunay tetrahedrization, for 1 <i < 3,
thenr, > f(x)/C;.

Proof. Ifthe parent p of x is a vertex of the input polyhedron P thenr, > f(x)
and we are done. Otherwise, assume inductively that the claimed inequality
holds for vertex p. We finish the proof by case analysis. If x has type 3 then
¢ =goandr, > g - r, by the Radius Claim. By induction we get f (p) < Cirp,
no matter what type p has. Using the Ratio Claim we get

fx)/ry <14 Ci/oo = Cs.
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If x has type 2 then ¢ = 1/4/2. We have r, > f(x) unless p has type 3,
and therefore f(p) < Csr), by inductive assumption. Thenr, > r,/ V2 by the
Radius Claim, and

F@)/re<14++2-C3=C,

by the Ratio Claim. If x has type 1 then ¢ = 1/+/2. We have r, > f(x) unless
p has type 2 or 3, and therefore f(p) < C,r, by inductive assumption. Then
ry > r,/+/2 by the Radius Claim, and

fX)/re <14V2-Co=C

by the Ratio Claim. O

Because C; is the largest of the three constants, we can simplify the Invariant
tor, > f(x)/C; for every Delaunay vertex x. From this we conclude

lx =yl = f@x)/(A+Ch)

for any two vertices x, y in the Delaunay tetrahedrization, using the argument
in the proof of the Smallest Gap Lemma in Section 2.3.

Bibliographic notes

The bulk of the material in this section is taken from a paper by Jonathan
Shewchuk [2]. In that paper, the assumed input is a so-called piecewise linear
complex as defined by Miller et al. [1]. This is a 3-face of a polyhedron to-
gether with its faces, which is slightly more general than a three-dimensional
polyhedron.

[1] G.L. Miller, D. Talmor, S.-H. Teng, N. Walkington, and H. Wang. Control
volume meshes using sphere packing: generation, refinement and coarsening. In
“Proc. 5th Internat. Meshing Roundtable,” 1996, 47-61.

[2] J. R. Shewchuk. Tetrahedral mesh generation by Delaunay refinement. In “Proc.
14th Ann. Sympos. Comput. Geom.,” 1998, 86-95.

6.4 Sliver exudation

The sliver is the only type of small volume tetrahedron whose circumradius
over the shortest edge length ratio does not grow with decreasing volume.
Experimental studies indicate that slivers frequently exist right between other
well-shaped tetrahedra inside Delaunay tetrahedrizations. This section explains
how point weights can be used to remove slivers.
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Periodic meshes

Suppose S is a finite set of points in R? whose Delaunay tetrahedrization has
the ratio property for a constant gy. The goal is to prove that there are weights
we can assign to the points such that the weighted Delaunay tetrahedrization is
free of slivers. This cannot be true in full generality, for if S consists of only
four points forming a sliver then no weight assignment can make that sliver
disappear. We avoid this and similar boundary effects by replacing the finite by
a periodic set S = P + Z>, where P is a finite set of points in the half-open
unit cube [0, 1)® and Z? is the three-dimensional integer grid. The periodic set
S contains all points p + v, where p € P and v is an integer vector. Like S, the
Delaunay tetrahedrization D of S is periodic. Specifically, for every tetrahedron
T € D, the shifted copies T + Z* are also in D. This idea is illustrated for a pe-
riodic set generated by three points in the half-open unit square in Figure 6.12.

Weight assignment

A weight assignment is a function @ : P — R. The resulting set of spheres is
denoted as S, = {(a, w(p)) | p € P,a € p + Z?*}. Depending on w, a point p
may or may not be a vertex of the weighted Delaunay triangulation of S,,, which
we denote as D,,. Let N(p) be the minimum distance to any other point in S.
To prevent points from becoming redundant, we limit ourselves to mild weight
assignments that satisfy 0 < w(p) < N(p)/3 for all p € P. Every sphere in

N\
L
I

<K

O O

Figure 6.12. Periodic tiling of the plane. The shaded triangles form a domain whose
shifted copies tile the entire plane.
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S,, has areal radius and every pair is disjoint and not nested. It follows that none
of the points is redundant. Another benefit of a mild weight assignment is that it
does not drastically change the shape of triangles and tetrahedra. In particular,
D,, has the ratio property for a constant g that only depends on . It follows
that the area of each triangle is bounded from below by some constant times
the square of its circumcircle. The same is not true for volumes of tetrahedra,
which is why eliminating slivers is difficult.

A crucial step toward eliminating slivers is a generalization of the Degree
Lemma of Section 6.2. Let K be the set of simplices that occur in weighted
Delaunay tetrahedrizations for mild weight assignments of S. In other words,
K =J,D., which is a three-dimensional simplicial complex but not neces-
sarily geometrically realized in R>. The vertex set of K is Vert K = S, and the
degree of a vertex is the number of edges in K that share the vertex.

Weighted Degree Lemma. There exists a constant §; depending only on gy such
that the degree of every vertex in K is at most §;.

The proof is fairly tedious and partially a repeat of the proofs of the Length
Variation and Degree Lemmas of Section 6.2. It is therefore omitted.

Slicing orthogonal spheres

We need an elementary fact about spheres (a, A?) and (z, Z?) that are orthog-
onal; that is, [la — z||> = A2+ Z%. A plane intersects the two spheres in two
circles, which may have real or imaginary radii.

Slicing Lemma. A plane passing through a intersects the two spheres in two
orthogonal circles.

Proof. Let (x, X?), (y, Y?) be the circles where the plane intersects the two
spheres. We have x = a, X> = A%, and Y?> = Z% — ||z — y||*>. Hence
lx = ylII> = llx —zI> = llz = ¥
= A+ 72— (2 -Y?
=X? 472
In words, the two circles are also orthogonal. O

As an application of the Slicing Lemma consider three spheres and the plane
that passes through their centers, as in Figure 6.13. The plane intersects the
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Figure 6.13. Slice through three spheres and another sphere orthogonal to the first three.

three spheres in three circles, and there is a unique circle orthogonal to all
three. The Slicing Lemma implies that every sphere orthogonal to all three
spheres intersects the plane in this same circle.

Variation of orthoradius

Another crucial step toward eliminating slivers is the stability analysis of their
orthospheres. We will see that a small weight change can increase the size of the
orthosphere dramatically. This is useful because a tetrahedron in D,, cannot have
a large orthosphere, for else that orthosphere would be closer than orthogonal
to some weighted point. We later exploit this observation and change weights
to increase orthospheres of slivers.

Let us analyze how the radius of the orthosphere of four spheres changes
as we manipulate the weight of one of the sphere. Let (y, Y?) be the smallest
sphere orthogonal to the first three spheres, let (p, P?) be the fourth sphere, and
let (z, Z*) be the orthosphere of all four spheres, as illustrated in Figure 6.14.

Figure 6.14. The orthocenter z moves downward as the weight of p increases.
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Let ¢ and ¢ be the distances of z and p from the plane / that passes through the
centers of the first three spheres. With varying P2, the center of the orthosphere
moves along the line that meets & orthogonally at y. The distance of z from A
is a function of the weight of p, ¢ : R — R.

Distance Variation Lemma. ¢(P?) = ¢(0) — P2/2¢.

Proof. Let A be the distance from p to the line along which z moves. We
have Z24 P2 = (¢(P?) — ¢)> + A% The weight of the orthosphere is
Z%* = ¢(P??* + Y2 Hence

C(Pz)z —72_y?
= ((PH — )2+ 12— P2 —Y2
After canceling ¢ (P?)?, we get
C(P?) = (¢* + 1% — Y /2¢ — P?/2¢.

The first term on the right-hand side is £ (0). O

The term P?/2¢ is the displacement of the orthocenter that occurs as we
change the weight of p from 0 to P2. For slivers, the value of ¢ is small, which
implies that the displacement is large.

Sliver theorem

We finally show that there is a mild weight assignment that removes all slivers.
The proof is constructive and assigns weights in sequence to the points in P.
To quantify the property of being a sliver, we define £ = V/L, where V is
the volume and L is the length of the shortest edge of the tetrahedron. Only
slivers can have bounded R/L as well as small £. Note that the volume of the
tetrahedron indicated in Figure 6.14 is one-third the area of the base triangle
times ¢. As mentioned above, the area of the base triangle is some positive
constant fraction of Y?2. Similarly, L is some positive constant fraction of Y,
which implies that £ is some positive constant fraction of Y ¢.

Sliver Theorem. There are constants 01, § > 0 and a mild weight assignment
w, such that the weighted Delaunay tetrahedrization has the ratio property for
o1 and £ > &, for all its tetrahedra.

Proof. We focus on proving & > & for all tetrahedra in D,,. Assume without
loss of generality that the distance from a point p to its nearest neighbor in §
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is N(p) = 1. The weight assigned to p can be anywhere in the interval [0, !/3].
According to the Weighted Degree Lemma, there is only a constant number of
tetrahedra that can possibly be in the star of p. Each such tetrahedron can exist
in D, only if its orthosphere is not too big. In other words, the tetrahedron can
only exist if w(p) is chosen inside some subinterval of [0, !/3]. The Distance
Variation Lemma implies that the length of this subinterval decreases linearly
with ¢ and therefore linearly with £. We can choose &, small enough such
that the constant number of subintervals cannot possibly cover [0, !/3]. By the
pigeonhole principle, there is a value w(p) € [0, !/3] that excludes all slivers
from the star of p. O

Removing slivers

The proof of the Sliver Theorem suggests an algorithm that assigns weights
to individual points in an arbitrary sequence. For each point p € P, the algo-
rithm considers the interval of possible weights and the subintervals in which
tetrahedra in K can occur in the weighted Delaunay tetrahedrization. We could
consider all tetrahedra in the star of p in K, but it is more convenient to consider
only the subset in the 1-parameter family of weighted Delaunay tetrahedriza-
tions generated by continuously increasing the weight of p from 0 to N(p)/3.
For each such tetrahedron, we get the £ value and a subinterval during which it
exists in D,,. Figure 6.15 draws each tetrahedron as a horizontal line segment
in the wé-plane. The lower envelope of the line segments is the function that
maps the weight of p to the worst £ value of any tetrahedron in its star. The
algorithm finds the weight where that function has a maximum and assigns it to
p. Since there is only a constant number of tetrahedra to be considered, this can
be accomplished in constant time. The overall running time of the algorithm is
therefore O(n), where n = card P.

o(p)

0 1/3

Figure 6.15. Each tetrahedron in the star is represented by a horizontal line segment.
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A source of possible worry is that, after we have fixed the weight of p, we
may modify the weight of a neighbor ¢ of p. Modifying the weight of ¢ may
change the star of p. However, all new tetrahedra in the star of p also belong
to the star of g and thus cannot have arbitrarily small £ values. We thus do
not have to reconsider p, and O(n) time indeed suffices. The Sliver Theorem
guarantees the algorithm is successful as quantified by the positive constant &.
While the algorithm does not find the globally optimum weight assignment, it
finds the optimum for each point individually assuming fixed weights of other
points. It might therefore achieve a minimum & value that is much better than
the rather pessimistic estimate for &, guaranteed by the Sliver Theorem.

Bibliographic notes

The material of this section is taken from the sliver exudation paper by Cheng
et al. [2]. The occurrence of slivers as a menace in three-dimensional Delaunay
tetrahedrizations was reported by Cavendish, Field and Frey [1]. Besides the
sliver exudation method described in this section, there are two other methods
that provably remove slivers. The first, by Chew [3], adds points and uses
randomness to avoid creating new slivers. The second, by Edelsbrunner et al. [4],
moves points and relies on the ratio property of the Delaunay tetrahedrization,
as in the weight assignment method of this section.

[1] J. C. Cavendish, D. A. Field, and W. H. Frey. An approach to automatic
three-dimensional finite element mesh generation. Internat. J. Numer. Methods
Engrg. 21 (1985), 329-347.

[2] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng. Sliver
exudation. J. Assoc. Comput. Mach. 47 (2000), 883-904.

[3] L.P. Chew. Guaranteed-quality Delaunay meshing in 3D. Short paper in “Proc.
13th Ann. Sympos. Comput. Geom.,” 1997, 391-393.
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Exercise collection

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered by using knowledge of the material combined with
some thought and analysis.

1. Removing vertices (two credits). Let P be a convex polytope with n vertices
in R3. Tetrahedrize P by selecting a vertex u, reducing P to the convex hull
of the remaining vertices, and forming tetrahedra as cones from u to new
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triangles in the boundary. This step is repeated until P is a tetrahedron. Prove
that there is an ordering of the vertices such that the algorithm constructs at
most 3n — 11 tetrahedra.

2. Interior edges (two credits). Let P be a convex polytope with n vertices
in R and K a tetrahedrization whose only vertices are the ones of P. An
interior edge of K passes through the interior of P.

(1) Show if K contains no interior edge then the number of tetrahedra is
n—3.
(i) What is the number of tetrahedra if K contains 7 interior edges?

3. Tetrahedrizing the cube (two credits). Consider the unit cube, [0, 17%, and
let K be a tetrahedrization whose only vertices are the eight corners of the
cube.

(i) Prove that K either contains five or six tetrahedra.
(ii) Draw all nonisomorphic such tetrahedrizations K of the cube, and their
dual graphs.

4. BCC tetrahedron (one credit). The body-centered cube (BCC) lattice con-
sists of the integer points (i, j, k), where all three coordinates are either even
or all three are odd. All Delaunay tetrahedra of the BCC lattice are congru-
ent to a single tetrahedron, which we call the BCC tetrahedron. What is the
circumradius to the shortest edge length ratio of that tetrahedron?

5. Packing (three credits). A collection of closed unit balls in R3 forms a
packing if their interiors are pairwise disjoint. The packing is maximal if no
unit ball can be added without overlapping the interior of other balls. Let
S € R3 such that the set of unit balls § + B? is a maximal packing.

(1) Show that increasing the balls to twice the size produces a covering of
space; that is,

s +28%) = R°.

(i1) Prove that an edge in the Delaunay tetrahedrization of S has length at
most 4.

(iii) Prove that there is a constant ¢ such that each vertex in the Delaunay
tetrahedrization of S belongs to at most ¢ edges.

6. Faces of a polyhedron (one credit). Count the segments and facets of
the polyhedron in Figure 6.16 by using the definition in Section 6.1. How
many of the segments and facets consist of more than one connected
component?

7. Angles of a tetrahedron (three credits). Let abed be a tetrahedron in R3,
let S? be the unit sphere centered at the origin, and let ¢ > 0 be sufficiently
small. Recall that 47 is the area of S.
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Figure 6.16. A nonconvex polyhedron.

/

(i) The solid angle at a is 4w times the fraction of a + &S? inside the
tetrahedron. Prove that the sum of solid angles at a, b, ¢, d is a real
number between zero and 2.

(ii) The dihedral angle at ab is 27 times the fraction of x + £S? inside
abcd, where x is an interior point of ab. Prove that the sum of dihedral
angles at ab, ac, ad, bc, bd, cd is between 27 and 37.

(iii) Show that twice the sum of six dihedral angles exceeds the sum of four
solid angles by 4.
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Open problems

This chapter collects open problems that in one way or the other relate to the
material discussed in this book. They represent the complement of the material,
in the sense that they attempt to describe what we do not know. We should keep
in mind that it is most likely the case that only a tiny fraction of the knowable is
known. Hence, there is a vast variety of questions that can be asked but not yet
answered. The author of this book exercised subjective taste and judgment to
collect a small subset of such questions, in the hope that they can give a glimpse
of what is conceivable. Most of the problems are elementary in nature and have
been stated elsewhere in the literature.

Two of the twenty-three problems have been solved since this book first
appeared in 2001. These are P.8 Union of disks and P.9 Intersection of disks,
both solved in [1]. Since the described approaches to the two problems are dif-
ferent from the eventual solution and perhaps useful to understand generalized
versions of the problem, we decided to leave Sections P.8 and P.9 unchanged.

[1] K. Bezdek and R. Connelly. Pushing disks apart—the Kneser-Poulsen conjecture
in the plane. J. Reine Angew. Math. 553 (2002), 221-236.

P.1 Empty convex hexagons

Let S be a set of n points in R? and assume no three points are collinear. A
convex k-gon is a subset of k points in convex position. We call a convex k-gon
empty if every point of S either belongs to the subset or lies outside the convex
hull of the subset; see Figure 7.1. Erd6s and Szekeres proved in 1935 that there
exists ny such thatcard S > ny implies that S contains at least one convex k-gon
[1]. Their lower bound is 2¥=2 + 1 < ny and this is conjectured to be tight. Their
upper bound has only been improved marginally, and the current best bound is

ni < (%7;) + 2, proved by Téth and Valtr [5].

136
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Figure 7.1. There are nine points; the dashed edges show a convex 6-gon that is
nonempty, and the solid edges show a convex 6-gon that is empty.

Let my be the corresponding number that guarantees the existence of an
empty convex k-gon. We have m3 = 3 and m4 = 5. A version of the following
argument bounding ms appears in a survey paper by Paul Erdés and is attributed
to Andrzej Ehrenfeucht.

Claim. ms < 37.

Proof. Let Sbeasetofatleast37 points. Sinceng < 37 = (266_35) + 2, there ex-

ist convex 6-gons. Take the one with fewest points inside, and let this number be
i.Ifi = 0 we have an empty convex 6-gon and are done. If i = 1, 2 we can find
an empty convex 5-gon directly, as shown in Figure 7.2(a) and 7.2(b). If i > 3
we take the convex hull of the i points and consider the line defined by one of the
convex hull edges. Either there is an empty convex 5-gon on the other side of that
line, as in Figure 7.2(c), or we get another convex 6-gon with only i — 2 points
inside, as in Figure 7.2(d), which contradicts the minimality assumption. O

Heiko Harborth proves ms = 10, which is larger than ns = 9 [2]. Joe Horton
proves that m; does not exist [3]. Overmars, Scholten, and Vincent use the
computer to construct a set of 28 points without an empty convex hexagon [4].

Question. Does mg exist?

[1] P. Erd6s and G. Szekeres. A combinatorial problem in geometry. Compositio
Math. 2 (1935), 463—470.

(@) (b)

Figure 7.2. Different configurations of i points inside a convex hexagon.
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[2] H. Harborth. Konvexe Fiinfecke in ebenen Punktmengen. Elem. Math. 33 (1978),
116-118.

[3] J. D. Horton. Sets with no empty convex 7-gon. Canad. Math. Bull. 26 (1983),
482-484.

[4] M. H. Overmars, B. Scholten, and I. Vincent. Sets without empty convex 6-gons.
Bulletin EATCS 37 (1989), 160.

[5] G. Téth and P. Valtr. Note on the Erds-Szekeres theorem. Discrete Comput.
Geom. 19 (1998), 457-495.

P.2 Unit distances in the plane

Let S be a set of n points in R2. How many of the (;) pairs can be exactly
one unit of distance apart? To state partial answers, let f(S) be the number of
unit-distance pairs and define

f(n) = max{f(S)| S € R? card S = n}.

Paul Erd6s [2] studied this question in a paper published in 1946, where he
proved there exist constants ¢ and ¢’ such that

n' e < f(n) < ¢ -2

The geometric construction for the lower bound is simple, namely a square
grid of points in the plane. The analysis of this example, however, is involved
and requires nontrivial number theoretic results. To prove the upper bound,
consider the graph whose vertices are the points in S and whose edges all have
unit length. Since two circles meet in at most two points, this graph contains no
complete bipartite subgraph of two plus three vertices; see Figure 7.3. Assume
vertex p; has d; unit distance neighbors. There are (g) pairs, and if we count
neighbor pairs over all p; € S then each pair is counted at most twice. Hence

> (5)=20)

To maximize ) d; we may assume that all d; are about the same, namely (’é’) ~
2 (;) /n, or equivalently, d; ~ +/2n. The upper bound follows. The ¢’ - n%/?

Figure 7.3. At most two points can have distance 1 from two other points.
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bound has since been improved to constant times n*/3 by Spencer, Szemerédi,
and Trotter [3].

Question. Is it true that for every ¢ > 0 there is a constant ¢ = c(¢) such that
f(n) <c-n't?

Two points a and b form a unit distance pair if and only if a lies on the unit circle
around b, and conversely b lies on the unit circle around a. We can therefore think
of the unit distance problem as a special case of counting the incidences between
n points and » unit circles. What happens if we drop the constraint that all circles
be the same size? Then the lower bound goes up to constant times n*/3, and the
current best upper bound given by Clarkson et al. [1] is constant times n”/>.

[1] K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir, and E. Welzl.
Combinatorial complexity bounds for arrangements of curves and spheres.
Discrete Comput. Geom. 5 (1990), 99-160.

[2] P. Erdés. On sets of distances of n points. Amer. Math. Monthly 53 (1946),
248-250.

[3] J. Spencer, E. Szemerédi, and W. Trotter, Jr. Unit distances in the Euclidean plane.
In Graph Theory and Combinatorics, B. Bollobds (ed.), Academic Press, New
York, 1984, 293-303.

P.3 Convex unit distances

Let S be a set of n points in the plane. Assume the points are in convex position,
by which we mean that they are the vertices of a convex polygon. We disallow
collinear vertex triplets by requiring that the angle at each vertex be strictly less
than . Let u(S) be the number of point pairs at unit distance,

u(S) = card {{x, y} € (3) | llx — vl = 1},

and let u (n) be the maximum number of unit distance pairs over all sets S C R?
of n points in convex position.

The problem of determining u(n) was stated in a paper by Erd6s and Moser
[2] together with a lower bound of roughly 5n/3 < u(n). The currently best
lower bound of 2n — 7 given by Edelsbrunner and Hajnal [1] is illustrated
in Figure 7.4. Start the construction with an equilateral Reuleaux triangle
ABC. Points A, B, C are auxiliary points of the construction. Let a, b, ¢ be
the midpoints of the circular arcs. Choose a point a; at unit distance from a
and use it as the starting point of a chain ay, by, ¢y, az, b, ¢2, a3, and so on.
Consecutive points in this chain are at unit distance from each other, and also
la —a;ll = ||b — b;|| = |lc — ¢;|| = 1foreveryi.The chaincontainsn — 4 unit
distance pairs and we get an additional n — 3 pairs from a, b, ¢ to points in the
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Figure 7.4. The solid edges have unit length and connect a to the a;, b to the b;, ¢ to the
¢i, and the indexed points in a sequence.

chain. The construction works because the a; monotonically approach a from
one side as i goes to infinity, and similarly for the b; and the c;.

To get an upper bound, note that at most two points can be at unit distance
from two given points. The graph of unit distance pairs thus contains no com-
plete bipartite subgraph of 2 plus 3 nodes. In other words, the adjacency matrix
contains no two-by-three submatrix full of ones. Using the convexity condition,
Zoltan Fiiredi [3] further shows that the adjacency matrix contains no submatrix
of the form

where % can be either 0 or 1. He proves that every such matrix has at most some
constant time n log, n ones, which implies the same upper bound for u(n).

Question. Is there a constant ¢ such that u(n) < c-n?

[1] H. Edelsbrunner and P. Hajnal. A lower bound on the number of unit distances
between the vertices of a convex polygon. J. Combin. Theory, Ser. A 56 (1991),
312-316.

[2] P. Erd6s and L. Moser. Problem 11. Canad. Math. Bull. 2 (1959), 43.

[3] Z. Fiiredi. The maximum number of unit distances in a convex n-gon. J. Combin.
Theory, Ser. A 55 (1990), 316-320.

P.4 Bichromatic minimum distances

Let W be a set of n white and B a set of n black points. Assume the minimum
distance between a white and a black pointis 1. A bichromatic minimum distance
pairisanedge wb € W x Boflength ||[w — b|| = 1.Let (W, B) be the number
of bichromatic minimum distance pairs, and let 8,(n) be the maximum over all
sets W and B of n points in RY each.
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Figure 7.5. Diagonals and edges of a convex quadrangle. The shorter dashed edge is
shorter than the longer diagonal.

In R? we have 8,(n) < 4n — 4. To prove the upper bound, note first that the
edges we count are pairwise noncrossing. Indeed, if wb and va cross then

minf{llw —all, [lv —b[l} < 1,

as illustrated in Figure 7.5. This contradicts the assumption that one is the
distance between W and B. The graph whose vertices are the 2n points and
whose edges are the bichromatic minimum distance pairs is therefore planar.
The graph is also bipartite, which implies that each face has an even number
of edges. We can add edges until the graph is connected and each face is a
quadrangle. The Euler relation for such a graph is 2n — e + f = 2, where e
is the number of edges and f is the number of faces. We combine this with
4f =2eandgete =4n — 4.

In R* we can choose n white points on the circle x? + x5 = 1, x3 = x4 = 0,
and n black points on the circle x; = x = 0, x3 + x = 1. Then |w — b|| = 1
for every wb € W x B. This implies B, (n) = n® for all d > 4.

The only difficult case is in R? where the current best upper bound is a
constant times n*/3 proved by Edelsbrunner and Sharir [1]. No superlinear
lower bound is known.

Question. Is there a constant ¢ such that 83(n) <c-n?

For the monochromatic case we can use a packing argument to show that such
a constant exists. The problem is the same as arranging n equal spheres in R?
so that no two overlap and we have as many touching pairs as possible. A single
sphere cannot touch more than 12 others, which implies that the number of
touching pairs is at most 6n. The packing argument fails in the bichromatic
case because points of the same color can be arbitrarily close to each other.

[1] H. Edelsbrunner and M. Sharir. A hyperplane incidence problem with applications
to counting distances. In Applied Geometry and Discrete Mathematics. The Victor
Klee Festschrift, P. Gritzmann and B. Sturmfels (eds.), AMS and ACM, 1991,
253-263.
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P.5 MinMax area triangulation

Let S be a set of n points in the plane, and consider the collection of all possible
triangulations of S. Among these, the Delaunay triangulation maximizes the
smallest angle, and it minimizes the largest circumcircle. Rajan [3] proves that
the Delaunay triangulation also minimizes the largest minidisk, which for a
triangle is the smallest disk that contains it.

The general problem of computing an optimal triangulation under some mea-
sure is, however, difficult. There are usually exponentially many triangulations,
and enumerating all is not practical, unless n is very small. A class of optimiza-
tion problems with polynomial time algorithms has been identified by Bern,
et al. [1]. They generalize the O(n? logn) time algorithm for minimizing the
maximum angle given in [2] and formulate an abstract condition for measures
under which the algorithm succeeds to find the optimum. We need definitions
to explain the condition.

A measure maps a triangle to a real number. We consider MinMax problems,
in which the measure of a triangulation K is u(K) = max{u(xyz) | xyz € K}.
The worst triangles in K are the ones with measure equal to ;(K). A triangula-
tion K of S breaks a triangle xyz € (‘39) at y if it contains an edge yt that crosses
xz. Vertex y is anchor of xyz if every triangulation K with pu(K) < pu(xyz)
either contains xyz or breaks xyz at y.

Anchor Condition. The worst triangles of every triangulation have anchors.

If w satisfies the Anchor Condition, and if the anchor of a triangle can be
computed in constant time, then the algorithm in [1] constructs an optimum
triangulation of S in time O(n?). If all triangles in every triangulation have
anchors, and not just the worst ones, then the running time can be improved to
O(n?logn).

The maximum angle inside a triangle obviously satisfies the stronger form
of the Anchor Condition. The distance between a triangle and its circumcenter
satisfies the Anchor Condition, but not its stronger form, and thus can be min-
imized in time O(n*®). The negative height of a triangle satisfies the stronger
form of the Anchor Condition, so height can be maximized in time O(n? log n).
A quality measure that does not satisfy the Anchor Condition is triangle area.

Question. Is there a polynomial time algorithm for computing a triangulation
that minimizes the largest triangle area?

Maybe the Anchor Condition can be relaxed to cover the area measure with-
out sacrificing the polynomial time bound. The MinMax area question has a
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Figure 7.6. The Delaunay triangle has large area and does not belong to the MinMax
area triangulation.

practical motivation. Points often come with measurements, which can be
heights within a landscape, depths within a river, and so on. In most land
or water surveys, the points are nowhere near a random distribution but rather
reflect characteristic patterns implied by the data collection mechanism. For
example, if the depth of a river is measured from two boats, we are likely to
get two wavy lines of points such as the ones in Figure 7.6. The triangulation is
used to extend the measurements to a piecewise linear function over the convex
hull. The measurements usually have errors, and the goal is to avoid spreading
the error of any one measurement over a large region.

[1] M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell, and T. S. Tan. Edge insertion
for optimal triangulations. Discrete Comput. Geom. 10 (1993), 47-65.

[2] H.Edelsbrunner, T. S. Tan, and R. Waupotitsch. An o(n? log n) time algorithm for
the MinMax angle triangulation. SIAM J. Statist. Sci. Comput. 13 (1992), 66-104.

[3] V. T.Rajan. Optimality of the Delaunay triangulation in R?. Discrete Comput.
Geom. 12 (1994), 189-202.

P.6 Counting triangulations

Let S be a set of n points in the plane. By a triangulation of S we mean as usual
an edge-to-edge decomposition of the convex hull into triangles whose vertices
are the points in S. If the n points are in convex position, then the number of
different ways to triangulate S is

H(S) = 2n — 4 1
9= (=) fu-

which is at most 2"73. There is an elegant argument that establishes this
equation.

A triangulation of a convex (k 4 2)-gon has a dual tree with k interior nodes,
each of degree 3. We define a root by removing one edge of the (k + 2)-gon,
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/
AN

Figure 7.7. Triangulation of a convex (k + 2)-gon, for k + 2 = 8, and the dual binary
tree with k interior nodes. The corresponding well-formed string is LLLRRLRLR
RLR.

as illustrated in Figure 7.7. Orient the edges away from the root and use the
layout to distinguish between left and right outgoing edges. We traverse the tree,
always first visiting the left and then the right subtree. The traversal defines a
string, where L records a left edge down and R records a right edge down.
There is one left and one right edge per interior node, which implies the string
consists of k Ls and k Rs. Because the left edge of each node precedes its
right edge, each prefix of the string contains at least as many Ls as Rs. We call
such a string well formed and note that there is a bijection between binary trees
with k interior nodes and well-formed strings of length 2k.

Claim. The number of well formed strings of length 2k is

()0

Proof. The total number of strings formed by k Ls and k Rs is (Zkk) If a string
is not well formed, we invert the smallest prefix that has more Rs than Ls.
For example, we change LLRRR-LLR to RRLLL-LLR. The new string has

k 4+ 1 Lsand k — 1 Rs, and the operation is reversible. So there are (kz_kl) strings
of k Ls and k Rs that are not well formed.
2k 2k 0\ ! k 2k
k k—1) k41 k
1 2k
k+1 \k)
O

The claimed number of triangulations follows by setting n = k — 2. In gen-
eral, the number of triangulations does not only depend on n but also on S. It
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is known that the number is at most 7(S§) < ¢", for some constant ¢ > 0. This
bound is a shared consequence of different combinatorial results by Tutte [3]
and by Ajtai et al. [2]. Even to compute a random triangulations of a given
set S seems difficult. Related to picking a random element is counting the
possibilities.

Question. Is there a polynomial time algorithm for counting the triangulations
of a set of n points in the plane?

An algorithm that counts in time sublinear in the number of triangulations has
recently been found by Aichholzer [1].

[1] O. Aichholzer. The path of a triangulation. In “Proc. 15th Ann. Sympos. Comput.
Geom.,” 1999, 14-23.

[2] M. Ajtai, V. Chvdtal, M. M. Newborn, and E. Szemerédi. Crossing-free
subgraphs. Ann. Discrete Math. 12 (1982), 9-12.

[3] W.T. Tutte. A census of planar triangulations. Canad. J. Math. (1962), 21-38.

P.7 Sorting X + Y

Let M be an n-by-n matrix of real numbers. We can sort the n> numbers in
O(n?logn) time by using heapsort or any one of a number of other asymp-
totically optimal sorting algorithms. Since there are n?! possible permutations,
every comparison-based algorithm takes at least log, n?! or about 2n* log, n
comparisons and time. As shown in [3], the lower bound even applies if the
rows and columns of M are already sorted.

Now suppose that X = (x1, x3,...,x,) and ¥ = (y1, 2, ..., yp) are two
vectors each, and M = X + Y. By this we mean that the element in the ith
row and the jth column is m;; = x; + y;, as illustrated in Figure 7.8. We may

L[]

X mij

Figure 7.8. The rows of M are translates of ¥ and the columns are translates of X.
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assume that X and Y are sorted, for to sort them takes only O(n logn) time.
Then the rows and columns of M are already sorted, and we ask how much more
reordering work is necessary until the entire matrix is sorted. The lower bound
argument breaks down because the special structure of the matrix permits only
rather few permutations.

Claim. The matrices M = X + Y define fewer than n®" permutations.

Proof. For simplicity, consider only matrices with pairwise different entries;
that is, x; + y; — xx — y¢ # 0 whenever ij # k{. Two pairs of vectors X, Y
lead to different permutations if and only if the signs of x; + y; — xx — y, are
different for at least one choice of four indices. Think of X, Y as a point in
R?". Then this condition is equivalent to saying that the two pairs correspond
to two points on opposite sides of the hyperplane x; + y; — x; — y, = 0. There
are fewer than n* quadruplets of indices to be considered. They correspond to
fewer than n* hyperplanes that cut up R?* into fewer than

" + g ot N <
2n 2n —1 0
chambers; see, for example, [1]. Each chamber corresponds to a permutation.
O

Michael Fredman [2] showed that there exists a binary decision tree that
sorts M in O(n?) comparisons. However, it is not clear how to construct a path
along this tree in O(n?) time.

Question. Does there exist a comparison-based algorithm that sorts M =
X + Y in O(n?) time?

Steiger and Streinu show that on? log n) time suffices to find own?) compar-
isons for sorting X + Y.

[1] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,
Heidelberg, Germany, 1987.

[2] M. L. Fredman. How good is the information theory bound on sorting? Theoret.
Comput. Sci. 1 (1976), 355-361.

[3] L. H. Harper, T. H. Payne, J. E. Savage, and E. Straus. Sorting X + Y. Comm.
ACM 18 (1975), 347-349.

[4] W. Steiger and I. Streinu. A pseudo-algorithmic separation of lines from
pseudo-lines. Inform. Process. Lett. 53 (1995), 295-299.
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P.8 Union of disks

Let A and B be two sets of n unit disks in the plane. Let ay, as, ..., a, be
the centers of the disks in A and by, b,, ..., b, the centers of the disks in B.
We call B a contraction of A if every pair of disks in B is at least as close as
the corresponding pair in A,

b — bl < lla; — ajll,

for all i and j. More than 40 years ago Thue Poulsen [6] and independently
Kneser [5] asked whether the area shrinks if the disks move closer together.

Question. Is it true that area| ] B < area| J A?

It is tempting to conjecture that | B is indeed smaller or at least not larger than
|J A, but no proof is currently available. Bollobds [2] proves the conjecture in
the special case where there are continuous maps f; : [0, 1] — R? with

(1) fi(0) =a; and f;(1) = b;, and
1) [1fi() = fi@l < 1 fi() = fi O]l

foralli and j and all 0 < ¢ < u < 1. In this case we say there is a deformation
contraction from A to B. The trouble is that there are contractions B for which
there is no deformation contraction, and Figure 7.9 shows a minimal example
to that effect. The proof proceeds in two steps. The first step establishes the
relation for the perimeter of the union, per|J B < per|J A. The second step
observes that the area is the integral of the perimeter over all radii,

areaL_JA:/1

per| JA(r)dr
r=0

1
B(r)d
/:0 per U (r)dr

r

= areaU B,

v

Figure 7.9. Center a, moves from outside to inside the equilateral triangle of the other
three centers. Its distance to at least one other center increases during a portion of the
motion.
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Figure 7.10. From left to right the centers move closer together, which implies that the
arcs of the dual perimeter get shorter.

where A(r) is the set of disks with centers a; and radius r, and similar for B(r).
We present a new argument for the first step.

Claim. If there is a deformation contraction from A to B then per|JB <
per | A.

Proof. Imagine we trace the perimeter of | ] A with a compass that draws at both
tips. We alternate between drawing a circular arc of the boundary and a circular
arc connecting two disk centers. If the boundary is connected, as in Figure 7.10,
we can draw both curves from beginning to end without lifting either tip. Call
the second set of arcs the dual boundary and denote its length by dper | J A. The
compass turns in a anticlockwise and a clockwise order depending on whether
it draws the boundary or its dual. In total it turns 360° relative to its original
position, which implies

perUA —dperUA = 2m.

During the deformation contraction, the centers move closer together and the
arcs of the dual boundary can only get shorter. The length difference is constant,
which implies that both perimeters can only decrease, and in particular

perUB < perUA.

The above argument applies only in the case where the boundary is a single
curve and the sequence of disks contributing arcs remains the same during the
entire deformation contraction.

In general, the boundary consists of one or more curves, namely one per
component of the union and one per hole. For each component, the length of
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the curve minus the length of its dual is 277, and for each hole it is —2m. The total
length difference is 2w (8yp — B1), where B is the number of components and S,
is the number of holes. Again the difference is constant so the earlier argument
applies. Finally, we remove the restriction to deformation contractions that
keep the sequences of disks contributing arcs invariant. We do this by cutting
the time interval into discrete segments. Within each segment the sequences
are unchanged and the argument applies. Points in time that separate segments
correspond to degenerate sets of disks, where either two circles touch or three
or more circles pass through a common point. The claim follows because the
transition from one segment to the next takes zero time and does not allow for
any change in perimeter. O

We note that the proved relation for the perimeter fails for general contrac-
tions. An example by Habicht with per | B > per | A is described in the open
problem book by Klee and Wagon [4] and is illustrated in Figure 7.11. The
centers of the disks in A lie on three cocentric circles with radii R — 1, R,
R + 1. The disk centers are fairly dense on the outer circle. For each center on
the outer circle there is a corresponding center on the same radiating half-line
on the inner circle. The disk centers on the middle circle are fairly sparse, just
dense enough to cover the circle. The contraction moves every disk centered
on the outer circle straight to its corresponding disk on the inner circle. The
perimeter of A consists of two components. The inner component approximates
the circle with radius R — 2, and the outer component approximates the circle
with radius R + 2. The perimeter of B consists of the same inner component,
but the outer component is now a bumpy approximation of the circle with radius

Figure 7.11. The centers of the disks lie on the two dashed and the one dotted circle.
Only the disks with centers on the dotted circle are shown.
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R + 1. We have per|J B > per|J A because the bumpiness adds more to the
perimeter than we lose by decreasing the radius of the approximated circle.

Csikds [3] and independently Bern and Sahai [ 1] prove that under assumption
of a deformation contraction, the area relation holds even for unions of disks
that are not all the same size. Their arguments are not based on the perimeter,
which indeed no longer changes in a monotonous fashion.

[1] M. Bern and A. Sahai. Pushing disks together — the continuous-motion case.
Discrete Comput. Geom. 20 (1998), 499-514.

[2] B. Bollobas. Area of the union of disks. Elem. Math. 23 (1968), 60-61.

[3] B. Csik6s. On the Poulsen-Kneser-Hadwiger conjecture. In Intuitive Geometry,
Bolyai Mathematical Studies 6, Bolyai Society, Budapest, 1997, 291-300.

[4] V.Klee and S. Wagon. Old and New Unsolved Problems in Plane Geometry and
Number Theory. Math. Assoc. Amer., Dolcini Math. Exp. 11, 1991.

[5S] M. Kneser. Einige Bemerkungen tiber das Minkowskische Flichenmass. Arch.
Math. 6 (1955), 382-390.

[6] E. Thue Poulsen. Problem 10. Math. Scand. 2 (1954), 346.

P.9 Intersection of disks

Let A and B be two sets of n unit disks in the plane. As before, we call B a
contraction of A if every pair of disks in B is at least as close as the corresponding
pairin A, ||b; — b;|| < |la; — a;||, for all i and j. We are interested in the case
where the disks have a nonempty common intersection, as in Figure 7.12. The
area of the intersection of two disks increases as the disks move closer together.
Can we make a similar statement for any number of disks?

Question. Is it true that area[| B > area[ | A?

It is generally conjectured that the answer to the question is affirmative, but
currently no proof is available. Gromov [2] proves the conjecture for three unit

Figure 7.12. Set of four disks, the intersection of the four disks, and the intersection of
the dual disks drawn on top of everything else.
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disks and its generalization for d + 1 unit d-balls in R“. Capoyleas [1] proves
the conjecture in the special case where A and B are connected by a deformation
contraction. As for the union, it suffices to prove the inequality for the perimeter.
The inequality for the area follows by integrating the perimeter over all radii
from O to 1.

Claim. If there is a deformation contraction from A to B then per(|B >
per() A.

Proof. Let Z be the set of unit disks with centers in () A. Each disk z € Z
contains all centers of disks in A. As illustrated in Figure 7.12, the boundaries
of (1A and of () Z consist of circular arcs. After central reflection of ) Z,
we can merge the two sets of arcs to form a unit circle. The length of the
circle is

perﬂA—i—perﬂZ =2m.

Consider a period of time during which the deformation contraction keeps the
sequence of disks contributing arcs invariant. The arcs of (] Z can only get
shorter. Since the sum of the two perimeters is constant, this implies that the
perimeter of (] A can only increase. O

[1] V. Capoyleas. On the area of the intersection of disks in the plane. Comput. Geom.
Theory Appl. 6 (1996), 393-396.

[2] M. Gromov. Monotonicity of the volume of intersection of balls. In Geometrical
Aspects of Functional Analysis, Lecture Notes in Mathematics 1267, Springer-
Verlag, Berlin, 1987, 1-4.

P.10 Space-filling tetrahedra

Given any arbitrary one triangle, we can cover the plane with congruent and
nonoverlapping copies of that triangle. We can even lay out the copies such that
any two are either disjoint or meet along a common edge or vertex. Such alayout
is called a tiling, and the triangle is said to tile the plane. The situation in R is
different; namely, we cannot do the same even with the regular tetrahedron.

We need a few definitions to continue. Two tetrahedra are congruent if one
can be obtained from the other by an orthogonal transformation, or equivalently
by a sequence of translations, rotations, and reflections. A tetrahedron 7 tiles R3
if we can cover R3 with copies of 7 such that the intersection of any two copies
is either empty or a common triangle, edge, or vertex. Although the regular
tetrahedron does not tile R?, there are other tetrahedra that do. A space-filling
tetrahedron is one that tiles R>.
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Figure 7.13. Three equally long shape vectors whose endpoints are equally spaced along
their circle.

To construct a space-filling tetrahedron t, we recall the definition of the
edgewise subdivision discussed in Section 3.2; see also [1]. Let vy, va, v3
be the shape vectors of 7. The tetrahedra in the subdivision of t all have the same
three shape vectors, but they may come in different orders. These tetrahedra are
all congruent if for each permutation (i, j, k) of (1, 2, 3) there is an orthogonal
transformation that maps v to v;, v, to v;, v3 to vi. These orthogonal transfor-
mations exist if and only if ||v{|| = ||v2|| = ||v3]| and the angles between pairs
of vectors are the same. A configuration that satisfies this condition is shown
in Figure 7.13. There is a one-parameter family of pairwise noncongruent such
configurations, and they are parametrized by the angle between the vectors.

A particularly symmetric tetrahedron in this one-parametric family is de-
fined by |vi + vy +v3]| = |vi|l. It is the tetrahedron that arises in the
Delaunay triangulation of the body-centered cube (BCC) lattice. As illustrated
in Figure 7.14, this lattice is 273 U273 + (1, 1, 1)], and each Delaunay tetra-
hedron has two vertex disjoint edges of length 2 and the four remaining edges
of length /3.

Constructions of one-parameter families of space-filling tetrahedra that are
different from the one above can be found in Sommerville [3]. However, there
is still the open question of characterizing all space-filling tetrahedra [2].

O

Figure 7.14. Small portion of BCC lattice and its Delaunay triangulation.
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Question. Is there a finite collection of rules that characterizes all space-filling
tetrahedra?

[1] H. Edelsbrunner and D. R. Grayson. Edgewise subdivision of a simplex. Discrete
Comput. Gemo. 24 (2000), 707-719.

[2] M. Senechal. Which tetrahedra fill space? Math. Mag. 54 (1981), 227-243.

[3] D. M. Y. Sommerville. Space-filling tetrahedra in Euclidean space. Proc.
Edinburgh Math. Soc. 41 (1923), 49-57.

P.11 Connecting contours

Surfaces are often reconstructed from contour data, which consist of polygons
in a sequence of parallel planes in R3. If we are able to connect polygons in
contiguous planes, we can glue the pieces together to form a larger surface
representing the data. Meyers, Skinner and Sloan [2] survey algorithms that
reconstruct surfaces this way. Let us take a closer look at the problem of con-
necting two contours.

Let P and Q be polygons in parallel planes in R3. Connecting P with Q
means constructing a triangulated cylinder glued to P on one side and to Q
on the other, as illustrated in Figure 7.15. In topological language, the cylinder
is a homotopy between P and Q. Each triangle connects an edge of P with a
vertex of Q, or vice versa. In either case, it has two edges that lie in neither
plane. Along these two edges, the triangle is connected to the predecessor and
to the successor around the cylinder.

Let the vertices of P be labelled from O to m — 1 and those of Q from O to
n — 1. We use a directed graph laid out on a torus to understand the structure
of all possible triangulated cylinders connecting P with Q. The nodes are
the pairs (i, j) € Vert P x Vert Q. From each (i, j) there are directed arcs to
(i+1,j)and (i, j + 1), where i + 1 is the successor of i in a ccw order around
P, and j 4 1 is the successor of j in the same order around Q. The graph is

e/

Figure 7.15. Cylindrical connection between two contours.
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N

i

Figure 7.16. Portion of graph representing cylindrical connections between two
contours.

illustrated in Figure 7.16. Each edge is a node, each triangle is an arc, and a
triangulated cylinder is a directed cycle that winds around once in each of the
two torus directions. Following Fuchs, Kedem, and Uselton [1], we search for
area minimizing cylinders. The minimum area cylinder among all cylinders
that contain a fixed edge can be computed in time O(mn) by using dynamic
programming. We let (0, 0) = (m, n) be the fixed edge. For each node (i, j), the
algorithm finds the minimum total area of a path/partial cylinder from (0, 0) to
(i, j). That area is denoted as A; ;. Assume A; ; = 0.0 and area (7, j, k) = 0.0
whenever one of the indices is negative.

fori =0tomdo
for j =0tondo
Ai,]‘ = min{A,-_l,j + area(i — 1, i, J),
Ajj-1t+area(, j—1, j)}
endfor
endfor.

The minimum area of a cylinder containing (0, 0) is A,, ,. To compute the
minimum area without any restricting edge/node, we construct m cycles, one
each for (i, 0) for i from 0 to m — 1. The resulting running time is O(m’n),
which can be improved to O(mn log m) by using the fact that the area minimum
cylinder/cycle for (i, 0) lies between those for (i — 1,0) and (i + 1, 0).

Question. Can the area minimal cylinder connecting P with Q be constructed
in time O(mn)?
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[1] H. Fuchs, Z. M. Kedem, and S. P. Uselton. Optimal surface reconstruction from
planar contours. Commun. ACM 20 (1977), 693-702.

[2] D. Meyers, S. Skinner, and K. Sloan. Surfaces from contours. ACM Trans.
Graphics 11 (1992), 228-258.

P.12 Shellability of 3-balls

Let K be a triangulation of B*. A shelling is an ordering of the d-simplices such
that every prefix defines a d-ball. K is shellable if it has a shelling. We proved
in Section 3.4 that every triangulation of B? is shellable. Danaraj and Klee [2]
show that such a shelling can be found in time proportional to the number of
triangles. The algorithm starts with an arbitrary triangle and adds other triangles
greedily. This works because every partial shelling of B> can be extended to a
complete shelling.

Question. Is there a polynomial time algorithm that decides whether or not a
given triangulation of B> has a shelling?

For this question to be meaningful, it must be the case that not all triangulations
of B? are shellable. We describe a nonshellable example shortly. If we use the
greedy algorithm, we either succeed in constructing a shelling or we get stuck
because none of the remaining tetrahedra can be added to our current ordering.
Ziegler [3] shows that this is not an indication for the nonshellability of the
3-complex. Indeed, even three-dimensional Delaunay complexes, which are
known to be shellable, can have partial shellings that are not extendable.

The house with two rooms is a nonshellable triangulation of the 3-ball. It is
described in the survey paper by Bing [1] and is sketched in Figure 7.17. There
are two rooms, one above the other. The lower room is accessible through a

Al
P

Figure 7.17. House with two rooms. We can construct it from a solid block of clay
without tearing or breaking.
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chimney passing through the upper room. To avoid a noncontractible cycle in
the upper room, we connect the chimney with a screen to the wall. The upper
room is accessible through a chimney passing through the lower room. Again
we use a screen to avoid a noncontractible cycle. Each wall, floor, ceiling,
chimney, and screen is thickened to one layer of cubic bricks. All vertices of a
cube belong to the boundary of the house, but edges and squares may belong
to the boundary or the interior. We refer to the connected components of faces
that belong to the boundary as exposures of the cube. For example, a cube in
the middle of a wall has two exposures, each consisting of a square and its four
edges and four vertices. By construction, every cube in the complex has at least
two exposures. In other words, no cubic brick can be last in a shelling of the
house. The complex of cubes is not shellable.

To extend the construction from cubic to tetrahedral bricks, we decompose
each cube into six tetrahedra. The decomposition has to be consistent at shared
squares. This is achieved by using a global ordering of the vertices. Each square
has four vertices, and we connect the first vertex in the ordering to the opposite
two edges. Each cube has eight vertices, and we connect the first vertex in the
ordering to the opposite six triangles. The ordering is constructed by distin-
guishing three types of vertices. Each vertex belongs to an exposure for each of
its cubes, and its fype is the minimum dimension of any of these exposures. In
the ordering, vertices of type O precede vertices of type 1, and vertices of type
1 precede vertices of type 2. Because of this rule, every tetrahedron has at least
two exposures. Hence the complex of tetrahedra is not shellable either.

[1] R. H. Bing. Some aspects of the topology of 3-manifolds related to the Poincaré
conjecture. In Lectures on Modern Mathematics I1, T. L. Saaty (ed.), Wiley, New
York, 1964, 93-128.

[2] G. Danaraj and V. Klee. Which spheres are shellable? In Algorithmic Aspects of
Combinatorics, B. Alspach et al. (eds.), Ann. Discrete Math. 2 (1978), 33-52.

[3] G. M. Ziegler. Shelling polyhedral 3-balls and 4-polytopes. Discrete Comput.
Geom. 19 (1998), 159-174.

P.13 Counting halving edges

Let S be a set of n points in the plane. For simplicity assume »n is even and
no three points are collinear. A halving edge is an edge uv (‘;) such that the
line passing through u and v partitions the remaining n — 2 points into equally
large sets on both sides of the line. Figure 7.18 illustrates the idea by showing
all halving edges of a set of eight points. Let #(S) be the number of halving
edges, and define

h(n) = max{h(S) | card S = n}
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Figure 7.18. Eight points with five halving edges. The dashed line intersects three
of them.

for even numbers n. It is clear that 2(n) < (), but to improve this trivial
bound is not entirely straightforward. The first nontrivial upper bound of ¢ - n*/2
was proved 1971 by Laszlo Lovész [3]. In the early 1990s the bound was
improved every so slightly by Pach, Steiger, and Szemerédi [4]. The currently
best upper bound of ¢ - n*/3 is from Tamal Dey [1]. We reconstruct Lovdsz’
proof of the ¢ - n4/n bound, which can also be found in [2]. It is based on the
following fundamental lemma, which is also used in the proofs of the improved
bounds.

Lemma. A line crosses at most (n + 2)/2 halving edges.

Proof. Let ab, xy be halving edges crossing a vertical line L, as in Figure
7.18. Assume the slope of xy exceeds that of ab. Then we claim that to the
left of L there are fewer points above the line ab than above the line xy. If the
intersection point of the two lines is to the right of L, as in Figure 7.18, then
this is obvious. Otherwise, the reverse is obvious for the points to the right of
L, and by the property of halving edges our claim is true to the left of L. Hence,
each halving edge crossing L is associated with a different number of points to
the left of L and above the line of the edge. We may assume that at most half
of the points lie to the left of L, which implies the claimed bound. O

Draw n — 1 vertical lines decomposing R? into 7 strips, each containing one
of the points. The number of edges that cross /n or fewer of the lines is at most
n+/n. The total number of intersections between halving edges and lines is less
than n2. Tt follows that the number of halving edges that cross \/z or more of
the lines is at most n4/n. This implies h(n) < 2n./n.

Even though a lot of time and effort was invested in proving upper bounds,
it is generally believed that even n*? is far beyond A (n). The lower bound
of h(n) > c - nlog, n proved in 1973 by Erdds et al. [2] has been improved

to h(n) > n -2V<&" by Géza Téth [5]. This bound is asymptotically less
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than nlte

=n - 2°1°22" and asymptotically more than nlog, n = n - 2'°&0en,
Because of the apparent difficulty of the problem, we replace the quest for the

asymptotic order of 2 (n) by a more modest goal.

Question. Is it true that for every ¢ > 0 there is a constant ¢ = c(¢) such that
h(n) < c - n'*® for every even n?

[1] T. K. Dey. Improved bounds on planar k-sets and related problems. Discrete
Comput. Geom. 19 (1998), 373-383.

[2] P. Erd6s, L. Lovdsz, A. Simmons, and E. G. Straus. Dissection graphs of planar
point sets. In A Survey of Combinatorial Theory, J. N. Srivastava et al. (eds.),
North-Holland, Amsterdam (1973), 139-149.

[3] L. Lovész. On the number of halving lines. Ann. Univ. Sci. Budapest E6tvds Sect.
Math. 14 (1971), 107-108.

[4] J. Pach, W. Steiger, and E. Szemerédi. An upper bound on the number of k-sets.
Discrete Comput. Geom. 7 (1992), 109-123.

[5] G. Téth. Point sets with many k-sets. Discrete Comput. Geom. 26 (2004), 187-194.

P.14 Counting crossing triangles

Suppose S is a set of n points in R?, and assume for convenience that no three
lie on a common line. Two edges of the complete graph defined by § cross if
they share a point that is interior to both. Ajtai et al. [1] show that if we pick
t of the (;) edges, then the number of crossing pairs is at least some constant
times 73 /n?, provided ¢ > 4n. The lower bound is asymptotically tight. Indeed,
we can pick the vertices of a regular n-gon and the ¢ shortest edges connecting
the points, as indicated in Figure 7.19. The number of crossing pairs is roughly
n> i withi from 1 to L J , which is roughly 73 /n?, as in the lower bound. We

t
n

Figure 7.19. Straight edges are drawn as circular arcs to improve the display of crossings.
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£

Figure 7.20. Two triangles cross if either one pierces the other or if their boundaries
are linked.

extend the counting problem to R3, where the known lower and upper bounds
no longer match asymptotically.

Let now S be a set of n points in general position in R*, and assume for con-
venience that no four lie on acommon plane. A subset U C S of three points de-
fines the triangle oy = conv U. The collection of (g) triangles is denoted as (§ ) .
Two triangles cross if they intersect without sharing any vertices, oy N oy #
@ and U NV = @, as shown in Figure 7.20. For a subset of triangles T < (g),
let x (S, T') denote the number of crossing pairs in 7" and consider the minimum

over all sets of n points and ¢ triangles,
x(n,t) =min{x(S,T) | card S = n,card T = t}.

With the use of the Euler characteristic for triangulations of the 3-sphere, itis not
difficult to prove that the number of crossing-free triangles defined by n points
in R3 cannot exceed n(n — 3). There is an example with exactly that many
pairwise noncrossing triangles, hence x(n, ) > 0 if and only if t > n(n — 3).
Using ideas from [1], Dey and Edelsbrunner prove there are positive constants
c1, ¢ such that

cy- t4/n6 <x(n,t)<c,- t3/n3

whenever ¢ > 2n2.
Question. What is the asymptotic order of x(n, t)?

The motivation for counting crossing triangle pairs is the problem of counting
halving triangles, which are defined by the property that their planes partition
S into three points on the plane and the rest in equal halves on each side. It
can be shown that a single line cannot cross more than n?/8 halving triangles.
Whenever there is a crossing triangle pair, there is an edge of one triangle that
crosses the other triangle. Therefore the number of halving triangles cannot
exceed the largest ¢ for which

c1-t*/n® .3/t < n?/8.
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This value of ¢ is some constant times n%/3. It would be nice to increase the lower
bound on the number of crossing triangle pairs to a constant times ¢3/n3. This
would improve the upper bound on the number of halving triangles to a constant
times n3/2. That bound was recently established by Sharir, Smorodinsky, and
Tardos [3]; however, it did not further our knowledge about x(n, t).

[1] M. Ajtai, V. Chvital, M. M. Newborn, and E. Szemerédi. Crossing-free
subgraphs. Ann. Discrete Math. 12 (1982), 9-12.

[2] T. K. Dey and H. Edelsbrunner. Counting triangle crossings and halving planes.
Discrete Comput. Geom. 12 (1994), 281-289.

[3] M. Sharir, S. Smorodinsky, and G. Tardos. An improved bound for k-sets in three
dimensions. In “16th Ann. Sympos. Comput. Geom.,” 2000, 43—49.

P.15 Collinear points

Let S be a set of n points in the plane. For each j > 2, let C;(S) be the number
of collinear j-tuplets. Let C; (n) be the maximum C; (S) over all sets of n points
without collinear (j 4 1)-tuplet,

Cj(n) = max{C;(S) | card § = n, C;;((S) = 0}.

For j = 2, we can take any set of n points in general position and count C,(n) =
(g) pairs. Determining C3(n) is known as the orchard problem. Burr, Griinbaum,
and Sloane [2] show that

n(n —3)

CGn) > 14+ | ——1,
6

which they prove with a fairly involved construction. Fiiredi and Palésti [3]

give a simple example for the same lower bound. The bound almost matches

the straightforward upper bound of

n Jj _n(n—l)
€ = <2)/<2) S

which we get by observing that j collinear points account for (}) of the (})
pairs formed by the n points. For j > 4, the best lower bounds have for a long
time been from Branko Griinbaum [4], who shows that

1
Cin) >c- n' T,
for some positive constant ¢ that depends on j. It is convenient to describe the
lower bound example in the dual plane where each point in S becomes a line.
Three points are collinear if and only if the three dual lines meet in a common
point.The goal is to construct n lines so that the number of points that belong

to j lines is a maximum while at the same time no point belongs to j + 1 lines.
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Figure 7.21. Corresponding points of two skew lines are connected by lines, which
intersect a plane between the two skew lines in collinear points.

The construction proceeds by induction over j. The solution to the orchard
problem is our starting point. For the general step, let A be a set of k lines
with

p=Citk)=c ki

points on j lines each. Put A into the plane x3 = 1 in R>. Let B be a copy of
A in the plane x3 = £, but rotated by an angle o. We connect corresponding
points in A and B, and intersect the p lines with planes x3 =i for 1 <i < ¢,
as illustrated in Figure 7.21. Collinear points in x3 = 1 correspond to the same
number of collinear points in any plane x3 = i. Why? In each plane x3 =i we
draw k lines such that each intersection point lies in j of these lines. We have a
totalofn = p 4+ £ - klinesand £ - p points on j + 1 lines each. Project the lines
into a plane and choose « such thatno j + 2 lines pass through a common point.
Finally, choose ¢ = k77 and getn=c- k"7 lines and ¢ - k't 72 points on
J + 1 lines each. The number of such points is some constant times n't e

A slight improvement of the lower bound for C;(n) to ¢ - n'°®U+4/1082J for
4 < j<18,andtoc-n't1/U=359 for 18 < j, is described in [5], but see also
[1]. Both in Griinbaum’s and in Ismailescu’s construction the exponent goes to
one as j goes to infinity. Still, there is no upper bound known that for constant

j is asymptotically less than n>.

Question. For constant j > 4, are there positive constants ¢ and ¢ such that
Cin) <c- n%-e9

[1] P. Braf. On point sets with no k collinear points. In Discrete Geometry: in Honor
of W. Kuperberg’s 60th Birthday, A. Bezdek (ed.), Marcel Dekker, New York,
2003, 185-192.

[2] S. A. Burr, B. Griinbaum, and N. J. A. Sloane. The orchard problem. Geom.
Dedicata 2 (1974), 397-424.

[3] Z.Fiiredi and I. Paldsti. Arrangements of lines with a large number of triangles.
Proc. Amer. Math. Soc. 92 (1984), 561-566.
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[4] B. Griinbaum. New views of some old questions of combinatorial geometry. Atti
Accad. Naz. Lincei 17: Theorie Combinatorie (1976), 451-468.

[5] D.Ismailescu. Restricted point configurations with many collinear k-tuples.
Discrete Comput. Geom., to appear.

P.16 Developing polytopes

A 3-polytope is the convex hull of a finite set of points in R? that do not
all lie in a common plane. It is a convex polytope whose boundary complex
consists of facets, edges, and vertices connected like a 2-sphere. Each facet
is a convex polygon. After cutting along a spanning tree of the 1-skeleton, the
boundary is still connected and can be laid out flat. We call the result a net of the
3-polytope. Figure 7.22 illustrates that even rather simple convex polytopes have
more than one net. The concept of a net was described hundreds of years ago by
the German artist Albrecht Diirer [4]. Of course, when we develop a boundary
complex into a net, it might happen that some of the faces overlap. If the net
is nonoverlapping, we can construct the polytope from paper by essentially
following the inverse procedure: cutting the net out of paper, folding at the
edges, and gluing along matching edges of the boundary. The question whether
or not every 3-polytope can be made of paper this way is mentioned in the open
problem collection by Croft, Falconer, and Guy [3, B21].

Question. Does every 3-polytope have a nonoverlapping net?

Nets of more complicated polytopes than the cube can be found in the design
book by Critchlow [2]. Aronov and O’Rourke consider a similar but different
question. They study the star unfolding of a convex polytope, which is obtained
by cutting the boundary along edges of the shortest path tree that connects an
arbitrary point on the boundary with all polytope vertices. As proved in [1], the
star unfolding does not overlap. The problem is different because shortest paths

= ofF

Figure 7.22. We cut along the solid cube edges, which become boundary edges of the net.
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generally pass through facets and are therefore not necessarily contained in the
1-skeleton.

Various heuristics for finding nonoverlapping nets have been studied, includ-
ing minimum spanning trees and shortest path trees restricted to the 1-skeleton.
However, for both heuristics there are convex polytopes that lead to overlap-
ping nets.

[1] B. Aronov and J. O’Rourke. Nonoverlap of the star unfolding. Discrete Comput.
Geom. 3 (1992), 219-250.

[2] K. Critchlow. Order in Space. A Design Source Book. Thames and Hudson, New
York, 1987.

[3] H.T. Croft, L. J. Falconer, and R. K. Guy. Unsolved Problems in Geometry.
Springer-Verlag, New York, 1991.

[4] A. Diirer. Unterweysung der Messung mit Zyrkel und Rychtscheydt. 1525.

P.17 Inverting unfoldings

An unfolding of (the boundary of) a three-dimensional convex polytope is
similar to a net, except cuts can also go through facets and the unfolding is
assumed to be nonoverlapping. Examples are the star unfoldings mentioned
in the preceding open problem on nets, which exist for all 3-polytopes. We
consider the problem of inverting the process by forming creases along interior
edges of the polygon and gluing matching boundary edges. We assume we have
a complete description of the gluing pattern but no information on where the
crease edges ought to be. As an example, consider the two rectangular polygons
in Figure 7.23, which both can be glued to form a tetrahedron. Because of the
different aspect ratios, the layout of the crease edges is different in the two
cases. The basic result on folding polygons into 3-polytopes is the possibly
surprising theorem by A. D. Alexandrov [1].

Theorem. Let P be a polygon with boundary gluing such that

(1) the angle at every point is at most 2w,
(2) after gluing, P is homeomorphic to S%.

Then P is the unfolding of the boundary of a unique 3-polytope.

B B
B B
cC C D D
c C D D

Figure 7.23. Only the hollow vertices have angles less than 27r. The dotted lines are not
given but rather implied by the gluing pattern along the boundary.
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Using this theorem, we can easily check whether or not a polygon with gluing
pattern is the unfolding of a 3-polytope. Assuming it is, Nikolai Dolbilin asked
in 1995 how the unique 3-polytope can be reconstructed.

Question. Isthere an algorithm that constructs a 3-polytope from its unfolding?

To be specific, there are numerical approximation algorithms [3], but it is not
known whether or not the reconstruction can be done exactly. The difficulty
is not the lack of knowledge where the crease edges are. Indeed, they are a
subset of the graph of shortest paths between vertex pairs [4]. This graph is
finite and all possible choices of crease edges can be enumerated in finite time.
The difficulty in finding an algorithm is making Cauchy’s Rigidity Theorem
constructive. It states that up to congruence a 3-polytope is determined by its
facets and the adjacencies between them [2]. A deformation of a 3-polytope
thus necessarily deforms at least one of the facets.

[1] A.D. Alexandrov. Konvexe Polyeder. Akademie Verlag, 1958.

[2] P.R. Cromwell. Polyhedra. Cambridge Univ. Press, England, 1997.

[3] J. O’Rourke. Folding and unfolding in computational geometry. In “Proc. Japan
Conf. Discrete Comput. Geom.,” Lecture Notes in Comput. Sci., Springer-Verlag,
1998.

[4] E. Demaine, M. Demaine, A. Lubiw, J. O’Rourke, and I. Pashchenko.
Metamorphosis of the cube. In “Proc. 15th Ann. Sympos. Comput. Geom.,” 1999,
409-410.

P.18 Flip graph connectivity

In the plane, every triangulation of a finite point set can be transformed into the
Delaunay triangulation by a sequence of edges flips. There is an algorithm that
finds a sequence of edge flips whose length is at most quadratic in the number of
points. It follows that every triangulation p of the point set can be transformed
into every other triangulation v by a sequence of quadratically many edge flips:
move from p to the Delaunay triangulation and then to v.

The situation is more complicated in R*. We introduce definitions needed
to formalize the problem. Let S be a finite set of points in R®. We let N be the
collection of simplicial complexes K with vertex set Vert K = S and underlying
space |K| = conv S. The complexes in N are the nodes of the flip graph of S
and there is an arc between nodes w and v if there is a two-to-three flip or a
three-to-two flip that takes p to v. Such a flip is illustrated in Figure 7.24. In the
plane, the arcs correspond to two-to-two flips. What we said above can now be
rephrased. The flip graph of a point set in the plane is connected and its diameter
is at most quadratic in the number of points. Barry Joe [3] and independently
Edelsbrunner, Preparata, and West [2] ask whether a similar claim can be made
in three dimensions.
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2-to-3

3-to-2

Figure 7.24. A two-to-three flip and its inverse correspond to the two directions we can
traverse an arc in the flip graph.

Question. s the flip graph of a finite set § € R? connected if no four points in
S are coplanar?

The restriction to generic point sets is necessary. Take, for example, the set of
six vertices of the regular octahedron. As illustrated in Figure 7.25, each tetra-
hedrization consists of four tetrahedra surrounding one of the three space diago-
nals. None of the three tetrahedrizations permits the application of a two-to-three
or a three-to-two flip. The flip graph thus consists of three isolated nodes.

The current knowledge for generic point sets is rather modest. The answer to
the above question is known to be affirmative if the number of points is at most
seven. For sets larger than that, it is not even known whether or not the flip graph
can have isolated nodes. Such nodes would correspond to tetrahedrizations that
do not permit any flip. If we permit tetrahedrizations that use only subsets of the
points as vertices, and among these we restrict ourselves to weighted Delaunay
tetrahedrizations, then the answer to the question is affirmative. The flip graph
they define is the 1-skeleton of a high-dimensional convex polytope known as
the fiber and also the secondary polytope [1].

[1] L.J. Billera and B. Sturmfels. Fiber polytopes. Ann. of Math. 135 (1992),
527-549.

[2] H. Edelsbrunner, F. P. Preparata, and D. B. West. Tetrahedrizing point sets in three
dimensions. J. Symbolic Comput. 10 (1990), 335-347.

[3] B.Joe. Three-dimensional triangulations from local transformations. SIAM J. Sci.
Statist. Comput. 10 (1989), 718-741.

Figure 7.25. The three isolated tetrahedrizations of the six vertices of the regular
octahedron.
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P.19 Average size tetrahedrization

Consider a cell complex in R* whose underlying space is contractible. We
naturally assume that each cell is contractible, and we let s; denote the number
of k-dimensional cells. The Euler characteristic of this complex is
X =S50 —s +s—s53=1.

If the complex is simplicial, we have 4s3 < 2s, because each tetrahedron has
four triangles and each triangle belongs to at most two tetrahedra. Write s = n
and substitute the inequality into the equation for x to get 2s; — s, > 2n — 2.
There are s; < (;) edges, because there are only that many point pairs. This
implies

S1

IA

nn—1)/2,
<m-=2n-1,
53 < (n—2)(n—1)/2.

A

52

In summary, a simplicial complex with z vertices in R? has size at most quadratic
in n. This bound applies also to Delaunay tetrahedrizations. In many cases, the
number of Delaunay simplices is much less than quadratic. For example, Rex
Dwyer [2] proves that if the n points are chosen randomly from the uniform
distribution in the unit cube then the expected number of edges, triangles,
tetrahedra is in O(n). Less is known about other distributions. A rather special
open question considers points on a saddle surface as illustrated in Figure 7.26.

Question. What is the expected number of edges in the Delaunay tetrahedriza-
tion of n points randomly chosen from the uniform distribution on the hyperbolic
paraboloid z = x> — y? inside [—1, +1]3?

Attali, Boissonnat and Lieutier prove that under some reasonable assumptions,
the Delaunay tetrahedrization of a set of n points on a smooth surface has at

Figure 7.26. The saddle surface is indicated by the four parabolas in which it meets the
boundary of the cube.
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most some constant times n log, n simplices [1]. The proof requires the surface
be generic and the points be more or less evenly sampled. Specifically, there is a
constant ¢ > 0 such that for every ball of radius ¢ around a point of the surface
the number of sampled points inside the ball is at least one and at most some con-
stant. This bound is perhaps the yet strongest piece of evidence that constructing
Delaunay tetrahedrizations for the purpose of reconstructing a surface from a
finite point sample is not as impractical as the quadratic bound may suggest.

Instead of asking the size question for randomly chosen points, we can im-
pose restrictions on the distribution. For a finite set S € R3, let d and D be the
minimum distance and the maximum distance between any two points in S. We
call A = D/d the spread of S. For n points in R?, the smallest possible spread
is a constant times /7, and if the lower bound is obtained then the Delaunay
tetrahedrization has at most O(n) simplices. Furthermore, all known examples
of quadratic size Delaunay tetrahedrizations have points lined up along curves,
and such sets have spread at least some constant times n. Two-dimensional
distributions, such as the one on the saddle surface, have spread at least some
constant times +/n. Jeff Erickson proves that for all n there is a set of n points
with spread A < n whose Delaunay tetrahedrization has more than some con-
stant times n A simplices [3]. He also proves that the number of simplices is less
than some constant times A3, provided A < /n [4]. It would be interesting to
close the remaining gap.

[1] D. Attali, J.-D. Boissonnat and A. Lieutier. Complexity of the Delaunay
triangulation of points on surfaces: the smooth case. In “Proc. 19th Ann. Sympos.
Comput. Geom.,” 2003, 201-210.

[2] R. A. Dwyer. Average-case analysis of algorithms for convex hulls and Voronoi
diagrams. Ph.D. thesis, Report CMU-CS-88-132, Carnegie-Mellon Univ.,
Pittsburgh, Pennsylvania, 1988.

[3] J. Erickson. Nice point sets can have nasty Delaunay triangulations. In “Proc. 17th
Ann. Sympos. Comput. Geom.,” 2001, 96-105.

[4] J. Erickson. Dense point sets have sparse Delaunay triangulations. In “Proc. 13th
Ann. ACM-SIAM Sympos. Discrete Alg.,” 2002, 125-134.

P.20 Equipartition in four dimensions

Let S be a set of n points in the plane. There exist two lines 4, and &, so each
quadrant defined by the lines contains 7 /4 or fewer points in its interior. To illus-
trate such a 4-partition, Figure 7.27 draws the finite set as a region in the plane.
Here is the sketch of a constructive proof that such two lines indeed exist. First,
construct & so it cuts S in half. To be precise, let S_, Sy, and S be the subsets
of points on the negative side, on, and on the positive side of ;. We require that
S_ and S each contain at most half the points in S. Points on /; are not counted.
Note that we can prescribe the direction of /. Second, construct a line %, that
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S

Figure 7.27. Every set in the plane can be cut by two straight lines into four pieces, each
at most a quarter of the original size.

cuts S_ in half. If we are lucky then %, also cuts S, in half and we are done. Oth-
erwise, we rotate /1, while making sure it always cuts S_ in half. The rotation piv-
ots about points on the side of S_, so the line sweeps over S without backtrack-
ing. This implies that there is a moment in time where %, cuts both sets in half.
We generalize the partition problem to d dimensions. Let S be a set of n points
inR?, and let hy, hy, ..., hybe d hyperplanes. In the nondegenerate case, the
hyperplanes meet at a unique point and decompose R? into 2¢ orthants. The
hyperplanes form an equipartition if each orthant contains n /2% or fewer points
inits interior. As argued above, every setin R? has an equipartition. In fact, there
is one degree of freedom left in the construction, which we can use to prescribe
the direction of the first line, or to enforce that the two lines are perpendicular.
In 1966, Hugo Hadwiger extended this result to three dimensions by proving
that every set in R? has an equipartition [2]. There are two leftover degrees of
freedom, which he uses to prescribe the normal direction of the first plane.
The situation is different in five and higher dimensions. Avis shows that there
are sets in R that do not have equipartitions [1]. We count degrees of freedom
to see that this negative result is plausible. A hyperplane in R? has d degrees of
freedom, and since we have d hyperplanes, we have a total of d> degrees at our
disposal. If we specify the hyperplanes in sequence, we use a degree of freedom
for each set we cut in half. The total number of consumed degrees is 1 +2 +
-+ 42971 =24 _ 1. The smallest number of dimensions where we consume
more degrees of freedom than we have is d = 5. For d = 4 we have 16 degrees
and need 15. This suggests that an equipartition exists, but no proof is known.

Question. Does every finite set in R* have an equipartition?

A host of related results can be found in a paper by Edgar Ramos [3]. He
generalizes the Borsuk—Ulam Theorem from topology and proves among other
things that every finite set S € R* has an equipartition by four 3-spheres.

[1] D. Avis. Non-partitionable point sets. Inform. Process. Lett. 19 (1984), 125-129.
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[2] H. Hadwiger. Simultane Vierteilung zweier Korper. Arch. Math. (Basel) 17 (1966),
274-278.

[3] E. A. Ramos. Equipartition of mass distributions by hyperplanes. Discrete
Comput. Geom. 15 (1996), 147-167.

P.21 Embedding in space

Planar graphs are one-dimensional complexes that can be drawn in the plane
without crossing. Kuratowski [3] proves that a graph is planar if and only if
it contains no subgraph homeomorphic to K5 or to K3 3. Fary [1] shows that
every planar graph has a straight-line embedding in R?. Hopcroft and Tarjan
[2] demonstrate that time proportional to the number of vertices is sufficient
to decide planarity on a conventional random access machine. None of these
nice results seems to generalize even to three dimensions. We begin with some
definitions. An embedding of atopological space X in another such space Y is an
injection j : X — Y whose restriction to the image j (X) is a homeomorphism.
A planar graph is a 1-complex K with an embedding j : |K| — R2.

Every 1-complex has an embedding in R3, but not every 2-complex does.
Even simple 2-complexes such as the Klein bottle cannot be embedded in R?,
but if we cut out one disk it could. Similarly, cutting out a disk from any nonori-
entable 2-manifold changes the status from nonembeddable to embeddable.
There is an infinite sequence of different such 2-manifolds, which implies that
there is no finite collection of obstructions that could play the role of K5 and
K, 3 for 2-complexes. Fary’s theorem also does not generalize. The construc-
tion of a 2-complex that can be embedded but not geometrically realized in R?
uses a trefoil knot, like the one illustrated in Figure 7.28. Any view of the knot
has at least three cross-over points. A polygonal cycle forming a trefoil knot in
R3 certainly consists of more than three edges. To get the 2-complex, we tetra-
hedrize a box and remove from this tetrahedrization a tunnel in the shape of a
trefoil knot. Then we insert a cycle of three (curved) edges and repair the tetra-
hedrization by connecting the cycle to the tunnel boundary. The 2-skeleton of

Figure 7.28. A tube in the shape of a trefoil knot in space.
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this tetrahedrization has a combinatorially unique embedding but no geometric
realization in R3.

The question of recognizing 2-complexes K with embeddings in R* seems
difficult. We can construct a system of polynomial inequalities such that K
has a geometric realization in R? if and only if the system is satisfiable by
reals. Tarski’s quantifier elimination method effectively determines the satis-
fiability of such systems. It follows that the recognition of 2-complexes with
geometric realizations in R? is decidable. Can this result be generalized to
embeddings?

Question. Is the recognition of 2-complexes that have embeddings in R? de-
cidable?

[1] I Fary. On straight line representation of planar graphs. Acta Sci. Math. (Szeged)
11 (1948), 229-233.

[2] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM 21 (1974),
549-568.

[3] K. Kuratowski. Sur le probleme des courbes en topologie. Fund. Math. 15 (1930),
271-283.

[4] A. Tarski. A Decision Method for Elementary Algebra and Geometry. Second
edition, Univ. California Press, 1951.

P.22 Conforming tetrahedrization

Let K be a l1-complex in R?. A conforming Delaunay triangulation is a
Delaunay triangulation D that contains a subdivision of K as a subcomplex. In
other words, every vertex of K is a vertex of D and every edge of K is either an
edge in D or cut into two or more edges in D. Examples similar to the one in
Figure 7.29 can be used to show that the smallest conforming Delaunay trian-
gulation sometimes has at least some constant times n? vertices, where 7 is the
number of edges and vertices in K. Edelsbrunner and Tan [1] prove that some
constant times n> vertices are always sufficient. It is not known whether any of
the two bounds is tight or the answer lies somewhere in between.

We generalize the problem to three dimensions and ask two questions, one
for 1- and the other for 2-complexes. Let K be a simplicial complex in R3.

Figure 7.29. A subdivision of the solid 1-complex is subcomplex of the partially dotted
Delaunay triangulation.
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A conforming Delaunay tetrahedrization is a Delaunay tetrahedrization that
contains a subdivision of K as a subcomplex.

Question. Does there exist a polynomial function f(n) such that every
I-complex K with n vertices and edges in R has a conforming Delaunay
tetrahedrization with f(n) or fewer vertices?

The author remembers proving an exponential upper bound for f(n) years
ago. The proof of the existence of f(n) does not extend to 2-complexes. It is
conceivable that there are 2-complexes in R?® for which the number of vertices
necessary for a conforming Delaunay tetrahedrization is a function not only of
size but also of relative distance between the simplices.

Question. Does there exist a function g(n) such that every 2-complex K with
n vertices, edges, and triangles in R? has a conforming Delaunay triangulation
with g(n) or fewer vertices?

Call an edge strongly Delaunay if there is a sphere that passes through the
endpoints and all other vertices lie strictly outside that sphere. Shewchuk [2]
proves that if every edge of a 2-complex is strongly Delaunay, then there exists
a constrained Delaunay tetrahedrization for that 2-complex. The definition of
that tetrahedrization is a generalization of the two-dimensional notion of a con-
strained Delaunay triangulation discussed in Section 2.1. This result suggests
that an affirmative answer to the first question could be a useful tool in mesh
generation, even if the answer to the second question turns out to be negative.

[1] H. Edelsbrunner and T. S. Tan. An upper bound for conforming Delaunay
triangulations. Discrete Comput. Geom. 10 (1993), 197-213.

[2] J. R. Shewchuk. A condition guaranteeing the existence of higher-dimensional
constrained Delaunay triangulations. In ““ Proc. 14th Ann. Sympos. Comput.
Geom.,” 1998, 76-85.

P.23 Hexahedral mesh size

The number of tetrahedra in a tetrahedral mesh can be as big as quadratic in
the number of vertices. For a simple example of this kind, choose n points
each on two skew lines and construct (n — 1)? tetrahedra by connecting every
contiguous pair on one with every contiguous pair on the other line, as illustrated
in Figure 5.15. Other types of meshes do not permit such disproportionally large
numbers of three-dimensional cells. Possibly the most popular because most
regular type is the structured mesh, which is isomorphic to a subcomplex of the
regular cube tiling of R3. Every three-dimensional cells is a hexahedron with
face structure isomorphic to that of a three-dimensional cube. Every hexahedron
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Figure 7.30. Subdivision of a tetrahedron into four hexahedra.

has eight vertices, and every vertex belongs to eight or fewer hexahedra. It
follows that the number of hexahedra is at most the number of vertices.

Marshall Bern and David Eppstein ask whether a similarly small upper
bound on the number of hexahedra holds independent of the regularity of their
connections. A hexahedral mesh is a complex in R? whose three-dimensional
cells are hexahedra. It is no longer required that the hexahedra meet in four
around interior edges and in eight around interior vertices. Structured meshes
are rather rigid, but hexahedral meshes are just as flexible as tetrahedral meshes.
In particular, every tetrahedron can be cut into four hexahedra, as shown in
Figure 7.30. Similarly, every tetrahedral mesh can be subdivided into a hexahe-
dral mesh of four times as many hexahedra as there are tetrahedra. At the same
time, the number of vertices increases beyond the original number of tetrahe-
dra. In the resulting hexahedral mesh, the number of hexahedra is at most some
constant times the number of vertices.

Question. What is the asymptotic order of the maximum number of hexahedra
in a hexahedral mesh with n vertices?

The question makes sense in a geometric setting, where each hexahedron is
required to be a convex polyhedron, as well as in a topological setting, where
each hexahedron is a three-dimensional cell with specific pattern of neighbor-
ing cells. The answer to the question might be different in the two settings.
Joswig and Ziegler [1] establish a lower bound of a constant times n log, n
that applies in both settings. They prove that for large enough d, there are
convex 4-polytopes whose 1-skeletons are isomorphic to the 1-skeleton of the
d-dimensional cube. The 1-skeleton has 2¢ = n vertices and d - 247! = n/2
log, n edges. The Schlegel diagram of such a 4-polytope is a hexahedral mesh
with at least as many hexahedra as there are edges.

[1] M. Joswig and G. M. Ziegler. Neighborly cubical polytopes. Discrete Comput.
Geom. 24 (2000), 325-344.
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