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Preface

The classical monograph Introduction into the Theory of Uniform Approximation of
Functions by Polynomials [Nauka, Moscow (1977)] by V. K.Dzyadyk has never been
translated into English. The book offered to your attention is a translation of selected
chapters of Dzyadyk’s monograph complemented by several chapters from my mono-
graph Approximation by Polynomials and Traces of Functions Continuous on a Segment
[Naukova Dumka, Kyiv (1992)]. Many facts presented in our book were included in the
excellent encyclopedic monographs Constructive Approximation [Springer (1993)] by
R. A.DeVore and G. G. Lorentz and Constructive Approximation: Advanced Problems
[Springer (1996)] by G. G. Lorentz, M. von Golitschek, Y. Makovoz. The main attention
in our book is given to approximation in the uniform metric, which, augmented by
Dzyadyk’s masterful style of presentation, makes it still as interesting today as when the
Russian edition was published. This book does not include the last chapter of Dzyadyk’s
monograph and the last chapter of my monograph. Both these chapters are devoted to the
problem of the constructive characteristic of functions on closed sets of a complex do-
main. Most results of these two chapters were included in the monograph Conformal In-
variants in Constructive Theory of Functions of Complex Variable [World Federation
Publishers (1995)] by V. V. Andrievskii, V.1.Belyi, and V. K. Dzyadyk.

V. K. Dzyadyk, a brilliant mathematician and my teacher, passed away in 1998. The
final preparation of this monograph for the publication has been done by me, and I bear
the entire responsibility for all shortcomings of the book.

A few words should be said about the enumeration of formulas, theorems, lemmas,
etc. Within each section of the book, they are numbered consecutively by double num-
bers (section and item numbers). To refer to an item from a different chapter, we use tri-
ple numbers (chapter, section, and item numbers). Figures are numbered consecutively
throughout the book by ordinary numbers.

In some chapters, additional information about the contribution of different mathema-
ticians into one result or another is given in remarks at the end of the corresponding chap-
ter. The reference marks to these remarks appear as Arabic superscripts.

I am deeply grateful to Dr. P. V. Malyshev and Dr. D. V. Malysheyv, the translators and
editors of this book, for their endless patience and firm insistence without which the book
would have never come to life. I am also grateful to Dr. A. Prymak, who pointed out nu-
merous misprints and mistakes.

1. A. Shevchuk
2008






Preface to
Introduction into the Theory of Uniform Approximation
of Functions by Polynomials
by V. K. Dzyadyk

In almost all fields of mathematics, an important role is played by problems of approxi-
mation of more complex objects by less complex ones. In most cases of this sort, it is
very helpful to know the main methods, results, and problems of the theory of approxima-
tion of functions. At present, approximation theory mainly deals with the approximation
of individual functions and classes of functions with the use of given subspaces each of
which consists of functions that are, in a certain sense, simpler than the functions being
approximated. The role of these subspaces is most often played by the set of algebraic
polynomials or (in the periodic case) by the set of trigonometric polynomials of a given
degree n.

The present monograph is devoted to the problem of approximation of functionsin the
uniform metric. Investigations in other linear normed spaces are carried out, as a rule,
only in the cases where the results obtained there enable one to solve some problemsin
the uniform metric or to consider these problems from a more general point of view.

For reader’s convenience, the first several chapters contain mainly classical results;
the share of new results here is less than one third. In the other chapters, on the contrary,
the author gives full rein to his preference. Therefore, these chapters mainly contain re-
sults obtained with active participation of the author. For this reason, little or no attention
is given here to such problems as approximation of functions of many variables, approxi-
mation of functions defined on unbounded sets, approximation in spaces different from C
and L, interpolation theory, quadrature formulas, spline theory, widths of sets, etc. For
detailed information on these and many other important problems, we refer the reader to
the monographs (see the references at the end of the book) by de la Vallée Poussin
(1919), Bernstein (1937), Jackson [(1930), (1941)], Walsh (1961), Goncharov (1954),
Akhiezer (1965), Natanson (1949), S. Nikol’skii [(1969), (1974)], Krylov (1959), Szegb
(1959), Korovkin (1959), Timan (1960), Smirnov and Lebedev (1964), Rice [(1964),
(1969)], Cheney (1966), G. Lorentz (1966), Davis (1965), Remez (1969), Butzer and Nes-
sel (1971), Ibragimov (1971), Ahlberg, Nilson, and Walsh (1967), Krein and Nudel’man
(1973), Laurent (1972), Tikhomirov (1976), Korneichuk (1976), Stechkin and Subbotin
(1976), Karlin and Studden (1966), €tc.
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Unfortunately, the limited size of the book did not allow the author to include topics
related to the fusion of methods and results of the theory of approximation of functions on
the one side and methods and results of the theory of ordinary differential equations and
computational mathematics on the other (see author’s works [(1970), (1973a), (1974),
(1976)] and the papers of Denisenko, Krochuk, Podlipenko, Stolyarchuk, etc.). For the
same reason, the author did not include in this monograph results related to the best ap-
proximation of absolutely monotone functions and to the least upper bounds of the best
approximations on classes of r times differentiable functions (see the papers of Weyl
(1917), Bohr (1935), Hardy and Littlewood [(1928), (1932)], Favard [(1936), (1937)],
Akhiezer and Krein (1937), Sz6kefalvi-Nagy (1938), Dzyadyk [(1953), (1955), (1959a),
(1961), (1974b), (19758)], S. Nikol’skii (1946), Stechkin (1956), Sun Y un-shen [(1958),
(1959), (1961)], Korneichuk [(1961), (1971)], Babenko (1958), Taikov (1963), Dzhrba-
shyan (1966), Bushanskii [(1974), (19744)], etc.).

Most results of the monograph have been delivered many times in special courses
regularly given by the author at Shevchenko Kiev State University since 1961. For this
reason, much attention in formulations and proofs has always been given to the clarity
and consistency of presentation.

Main attention in this monograph is given to the following questions:

(i) the Chebyshev theory of uniform approximation of functions and its develop-
ment;

(if) the constructive characteristic of functions of real and complex variables;
(iii) linear methods for summation of Fourier series and their generalizations.

Since 1961, all new results presented in this monograph have been regularly delivered
at seminars on approximation theory held at the Department of the Theory of Functions at
the Institute of Mathematics of the Ukrainian Academy of Sciences under the guidance of
the author. For many years, an active part in these seminars has been taken by the mem-
bers of the department, namely V. T. Gavrilyuk, V.N.Konovaov, V.D. Koromysli-
chenko, Yu. l.Méel’nik, I. P. Mityuk, R. V. Polyakov, A. . Stepanets, P. M. Tamrazov, and
I. A. Shevchuk, as well as by mathematicians from other institutes and disciples of the
author: G. A. Alibekov, M. I.Andrashko, P. E. Antonyuk, V.I.Belyi, V.A.Borodin,
V. P.Burlachenko, A.V.Bushanskii, Yu.l.Volkov, N.N.Vorob’ev, D.M.Gadan,
V.B. Grishin, P.N.Denisenko, R.N.Koval’chuk, L.I.Kolesnik, V.V.Krochuk,
E. K.Krutigolova, P.D. Litvinets, V.A.Panasovich, Yu. K .Podlipenko, A.S.Prypik,
G. S. Smirnov, V.K. Stolyarchuk, T. Tugushi, L.I.Filozof, M. 1.Hussein, A.l.Shvai,
L. B. Shevchuk, etc. Most of them contributed in one way or another to the improvement
of this book, and | express my gratitude to all of them. | am especialy grateful to
I. A. Shevchuk, Yu.l.Mel’nik, and G. A. Alibekov, who thoroughly read selected chapters
of this book.

| am deeply grateful to S. A. Telyakovskii and L. V. Taikov, who read the entire man-
uscript and made valuable remarks, which were taken into account in the final version.
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| also want to thank |. F. Grigorchuk and E. A. Storozhenko, who made a number of re-
marks concerning the first chapters, and V. E. Gontkovskaya and S. F.Karpenko, who
helped much in the preparation of the manuscript.

In conclusion, | express my sincere gratitude to S. M. Nikol’skii, my teacher and old
friend. Morethan 20 years ago, he set me a series of important and interesting problems,
and his valuable advices, remarks, and suggestions made in our humerous subsequent dis-
cussions of my results were exceptionally helpful and cannot be overestimated.

V. K. Dzyadyk
1977
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Chapter 1
Chebyshev theory and its development

For any two elements x and y of alinear normed space L, the norm of the difference
x—y iscaled the distance p(x;y) between these elements or the deviation of one of
these elements from the other. If ¢ isasubset of L, then the distance of an element
ye L from I isdefined in the standard way (for metric spaces) and is denoted by
p(x; M), i.e,

p(y; M) 1= inf p(y; x).
xet

Asarule, therole of I is played by a finite-dimensional linear subspace ),
spanned over afield P of real or complex numbers by a properly chosen system of fi-
nitely many linearly independent elements x; € L whose number dependson n:

M, = {x: x = ZC,»xi, cieP}.

Most often, the dimensionality of the subspace )¢, spanned by a certain system
{x }?:0 isequal to n + 1. However, if L consists solely of periodic functions, then, for
convenience, wetakeasystem {x;} of 2n+ 1 linearly independent elements and de-
note the corresponding subspace spanned by this system by Sﬁén . In both cases, the quan-
tity p(y;M,) [or p(y;9,)] isdenoted by E,(y) and called the value of the best
approximation of an element y by thesubspace 9, (or 9%, respectively). If there
existsan element x* € M, (or x* € M,) for which the equality p(y;x):= p(y;M,)
[or p(y;x*) 1= p(y;M,)] istrue, then this element is called either the besr approxi-
mating element for the element y in 9, (orin 9,) or the element with the least
deviation from y. Inwhat follows, therole of ), isamost aways played by the set
P, of agebraic polynomials of degree <n and therole of ﬂjén by the set 7, of trigo-
nometric polynomials of degree <n.

By Cp we denotethe class of al possible real or complex functions f continuous on
aset D. Theuniform norm of each of these functions is denoted by | /|, or, simply,
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by [£1]. i.e.

171 =151y = supl sl

The value of the best uniform approximation for afunction fe Cp by theset B, of
algebraic polynomials of degree <n isdenoted by E,(f)p or, simply, by E.(f), i.e,

En(f) = En(f)D = P()’;'—Pn) = plgj;, "f_p"D'

In the first chapter, we study the problems of existence, uniqueness, and characteriza-
tion of the best approximating elements. Note that these problems were posed, explicitly
or implicitly, by P. Chebyshev who solved them in numerous important cases.

1. Chebyshev theorems
In this section, we present the most important, in our opinion, Chebyshev approximation
theorems and some related results of the other mathematicians.
1.1. Existence of the element of the best approximation
Theorem 1.1 (on existence [Borel (1905)]). If f is a function continuous on a segment

[a, b], then, for any n = 0,1, 2, ..., the subspace P, of polynomials p, of de-
gree <n of the form

pa(x) = Y ajx" (1.1)
j=0

contains a polynomial (i.e., an element of P,) of best approximation to the func-
tion f.

Proof. By the definition of infimum, for any positiveinteger N, there exists an element
PN € Tn SUCh that

1
1f=pnlusy < EnlPian + N (1.2

Since
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E,(f) < [f=0 = [£].

we have
1
Ipnl < Ipw=fI+ 171 < E(f) + o + 1F] < 2 f] + 1 = const, (1.3)

i.e, the sequence {py };:1 is bounded and, consequently, belongs to a closed ball in
the space 2,.
Since, by virtue of the compactness criterion for afinite-dimensional space ?,, each

closed bounded set is compact, one can select a subsequence { py, }:=1 of {pniya

convergent to acertain element p* € B,. Therefore, in view of the fact that

*
l

|r-»

< Hf—l’zvk H + Hka _P*H < E(f) + Nik + Hka -P

we can pass to the limit in thisinequality and get

|r=p| < E). (14)
This means that the element (polynomial) p* € P, isanelement of the best approxi-
mation for the function f.

Theorem 1.1°. For any 2n-periodic continuous function f and any n =0, 1, 2,...,

there exists a trigonometric polynomial T, of the best approximation to f.

The proof of this assertion coincides with the proof of Theorem 1. Note that one must
take into account the fact that the functions 1, cost, sint, ..., cosnt, and sinnt arelin-
early independent (see Corollary 1.2 in what follows).

Similarly, one can prove the following general result for an arbitrary linear normed
space:

Theorem 1.1”7. Assume that an arbitrary linear normed space E contains n + 1 lin-
early independent elements gg, 81, ..., 8,. Then, for any x € E, the set of all polyno-
mials P,(c; g) of the form

Py(c;g) = chgk, (1.5
k=0
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where cy are arbitrary real (or complex) numbers, contains at least one polynomial
n
Pi(cig) = X s
k=0
of the best approximation to the element x.

1.2. Chebysheyv alternation theorem

We now proceed to the main theorem of the present section. This theorem establishes the
necessary and sufficient conditions for a polynomial P, to be a polynomial of best ap-

proximation of degree n to a continuous real function f defined on [a, b]. This the-
orem was proved by Chebyshev in 1854 and marked the onset of development of the the-
ory of approximation of functions.

Theorem 1.2 [Chebyshev (1854)]. Assume that a continuous real function f is defined
on a segment [a, b]. In order that a polynomial P: of degree <n be a polynomial
of the best approximation to f, it is necessary and sufficient that there exist at least one

system of n+2 points x;, a < x1<x2<...<Xx,+2< b, such that the difference

f@) = Py(x) =2 ()
(i) consecutively takes alternating values at the points x;,

(ii) attains its maximum absolute value on [a, b] at the points x;, i.e.,
ra(x1) = =ra(x2) = ru(x3) = ... = (- 1)”+lrn(xn+ 2) = |n, "[a,h] . (1.6)

A system of points {x; } 2

n
j:

satisfying equalities (1.6) is called alternation or

Chebyshev alternation.

Example 1.1. Let f(x) = sinx. We show that the polynomial Pg(x) = 0 isapolynom-

ia of best approximation of degree six to thisfunction on [-4r, 47 ].
Thisfollows from the fact that the difference

rg(x) = sinx — Pg(x)

satisfies the conditions of Theorem 1.2 at 8 = 6+ 2 points x; = —%n +kn (k=0,1,
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2,...,7) from [-4xr, 4], namely,

re(x) = sin(kn - 2x) = Dt = 0¥

Proof. Necessity. Since the case where the function f isitself a polynomia of degree
at most n istrivia, we omit its analysis for the sake of convenience. Prior to proving the
theorem, we introduce the following definitions:

A point xq is called the point of maximum deviation for the difference f(x) — P, (x) =
ro(x) orthe e-point provided that

o)l = max [5(] = . w7
If, in addition,
ra(x0) = [, 19

then the point xg iscaled apoint of positive deviation or a (+)-point. Further, if

ra(x0) = =|nl, (1.9
then xg iscaled apoint of negative deviation or a (-)-point.
Consider a polynomial P, of the best approximation for a function f. Since the

function r, iscontinuous, there exists at least one e-point for r,, onthe segment [a, b].

L et us show that the segment [a, b] contains both (+)- and (-)-points. Indeed, if the
analyzed segment contains no (-)-points, then the least value of the continuous function

r, on [a, b] isgreater than —|r, | and, hence, thereexists h, 0<h < |r,|, suchthat
_"rn” +h < rp(x) = f(x) - P;:(x) < "rn" (1.10)
foral xe [a, b]. Weset Q,(x) = P,(x) + h/2. Inequdlities (1.10) now imply that

—[lmll + hl2 < f(x) = Qu(x) = |5 - h12, xe€la,b],

—hi2 < |f-P;

If=Qull = Il = hi2 = |f-P;
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whichisimpossiblesince P, is, by assumption, the polynomial of the best approxima-
tionfor f.

Let us show that there existsasystem of n + 2 e-pointson [a, b] satisfying relations
(1.6). For this purpose, we first demonstrate that the segment [a, b] can be split into
m + 1 subsegments

[a, z1], [z1, 221, [22, 23], o\ [zt 2]y [z, D] (1.11)

alternatively containing either solely (+)-points or solely (-)-points. Note that, in view of
the continuity of the function r, on the segment [a, b], the number m + 1 of these
subsegmentsis finite.

Fig. 1

The desired partition is realized as follows (see Fig. 1):

For the sake of definiteness, we assume that the first e-point encountered in moving
along the segment [a, b] from a to b isa (+)-point. Let z; be the rightmost zero of
the difference f — P,f = r, located between the point « and the first (-)-point encoun-
tered after this point in the indicated direction.

Let z» betherightmost zero of the difference f — Pn* = r, located between the point
z1 and the first (+)-point after this point. If there are no (+)-points on the segment
[z1, b], thenweset 75 = b.

Let z3 betherightmost zero of the difference f — P”* = r, located between the point
71 and thefirst (-)-point after this point. We set z3 = b if thereare no (-)-points on the
segment [z, b], efc.

Let z,, bethelast point in the constructed sequence of points z; other than ». Note
that each segment in the proposed sequence alternatively contains (+)- or (-)-points and,
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hence, in order to prove the necessity of the condition of Theorem 1.2, it suffices to show
that m+12>n+2.

By contradiction, we assumethat m +1 <n+2, i.e,that m <n. Let us show that,
under this assumption, it is possible to construct a polynomial Q, deviating from f less

than the polynomial P,. Indeed, since the segment [a, z;] doesnot contain (-)-points,

the segment [z1, zo] doesnot contain (+)-points, etc., we conclude that, in view of the
continuity of r, and the fact that the number of segments (1.11) is finite, there exists a

number h, 0 <h < |r,(x)|, suchthat

Il + k< ra@) < sl xela al,
(1.12)
[l < ra) < Il =y xela 2],
etc. Thus, we set
pm(x) = 8(x—z1)(x-22) ... (x—2m), (113
where § is chosen so that
() llpmll < nl2,
(1.14)

(i) sgnp,,(x) =1 for xe[a, z1).

This means that the polynomial p,, changesits sign on passing through the points z;
and has the same sign as the difference r, at al (+)- and (-)-points. More precisely,

pm(x)>0 for xe [a, z1), pm(x) <0 for xe (z1, z2), etc. Therefore, by setting
0,(x) = P,(x) + pu(x),
we get a polynomial of degree at most n (since m < n) such that
f) = 0,(0) < ], xela zl
At the sametime, in view of inequalities (1.12) with x € [a, z;], wefind

f(x) - Qn(x) 2 Vn(x) _pm(x) 2 _”rn" +h - ”pm" 2 _”rn" + h/21
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i.e,foral xe[a,z],
|f() = 0u ()| <[] (1.15)
In exactly the same way, we conclude that, for x € [z1, z2],

f(x) = 0u(x) = ra(x) = pm(®) = [,

and, at the sametime,
f) = Qu(x) < |l = h = pu) < 1] = hl2.
Therefore,

[f@)=Qu)] < [

foral xe [z1, 2] .
Similarly, we can show that inequality (1.15) holds on all other segments of system

(1.11), i.e, for al x € [a, b]. This means that the polynomial Q, approximates the

function f better than P,,*, i.e., we arrive at acontradiction. The necessity of the condi-
tion of Theorem 1.2 is proved.

Sufficiency. Assume that the polynomial P,f satisfies, for a certain system of points
a<x1<xy<..<x,42< b, thecondition

f() = B(x) = -1f0) - Bi(x)] = ...

D" f s = By (xu02)] = | £ =B

L et us show that Pn* has the least deviation from f. By contradiction, assume that
there exists apolynomial Q, approximating the function f better than P, i.e.,

lf=0ull < |F-8

and, specifically,

|G = 0| < [ £(x;) = Bi(x)| = | £ - B

(1.16)
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It follows from inequality (1.16) that, at all points x; (j = 1,2,...,n +2), the differ-
ence Q,(x)) - B(x;) = [f(xj) - Pn*(xj)] — [£(xj) = Q,(x;)] has the same sign as
f(x;) - B(x;), i.e, the difference Q, — P, changesitssignon [a, b] at least n+1
times. This meansthat the polynomial Q, — P, hasat least n + 1 zeros on the segment

[a, b] but thisisimpossible because Q, — P,

n

is a polynomial of degree n by virtue of

the assumption that Q,, # P, .
|

Remark 1.1. The uniqueness of the best approximating polynomial P,f for the function
f can, in general, be proved by analogy with the proof of sufficiency in the Chebyshev
theorem. However, we do not present the proof here because somewhat later, in Theorem
2.6, the problem of uniqueness is analyzed more completely.

A similar theorem and remark also hold for the approximation of continuous 2rw-peri-
odic functions by trigonometric polynomials. The only difference is that the above-men-

tioned points x; must be located in a certain half interval (a, a + 2] of length 2n and
the number of these points must be equal to 2n + 2, i.e., the following theorem istrue:

Theorem 1.2°. Assume that a 2n-periodic continuous real function f is defined on

the real axis. Then, in order that a trigonometric polynomial Tn* of degree < n be
the polynomial of the best approximation for f, it is necessary and sufficient that some

(and, hence each) period [a, a + 2n) contain 2n + 2 points t;,
a<t1<th<..<tfyu+2<a+2m
such that the difference f(t) - Zl*(t) = (1)

(i) alternatively changes its sign at the points t;,

(ii) attains its maximum absolute value on [a, a +21) at the points tj, ie., the
following conditions are satisfied:

}’,,(tl) = —Fn(tz) =...= —rn(t2n+2) = i"}"n".

The proof of thistheorem is absolutely similar to the proof of Theorem 1.2.
However, it is necessary to take into account the following specific features of the an-
alyzed case:
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() (+) (+)

I
|
|
4 I a+2m

|
\
L
\\| |
|
)

|
I
| |

| \Zl <2 | 1<3 4
a A

Fig. 2
(i) thenumber n should be replaced by 2n;

(ii) itisreasonableto choose the left end of the half segment [a, a + 2n), i.e, the
point a, at a (+)-point; in this case, in view of the fact that the point a + 2r
must also be a (+)-point, the number m of the points z; cannot be odd

(Fig. 2);

(iii) the polynomial p,, (1.13) should be replaced by a trigonometric polynomial
t,, of degree m/2 < n of theform

"4 gnlz22  gpl=im
= 5

- % [Cosﬂ _ COS(, _ u)]
2" 2 2

Ty — Zyy Zn — Zm-1
X ... X [cosmzml—cos(t—mm)],

t, = dsin

2

(iv) by virtue of Theorem 1.3 presented in what follows, if a trigonometric polynom-
ia T, hasmorethan 2n zerosinthe haf interval [a, a + 2w), then T,(¢) = 0.

1.3. On the number of zeros of trigonometric polynomials

Unlike algebraic polynomials, trigonometric polynomials of any degree may have no
zerosin C. Thus, e.g., thisistruefor the polynomials cosn& + isinné = ™5,
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Nevertheless, the numbers of zeros of algebraic and trigonometric polynomials are
closely correlated. The following theorem establishes the indicated relationship:

Theorem 1.3 (on the number of zeros of trigonometric polynomials). In any vertical
strip Ry of width 2m:

Ry :={ze C:a £ Rez< a+2n}, where o isa real number,

the number of zeros z; of any trigonometric polynomial Ty of the form

n 2n
T,(z) = Z cpe® = e_"’zz Clne'™ (1.17)
k=-n =0

(counting multiplicities) is equal to the number of nonzero zeros & of the algebraic
polynomial

2n
Po(8) = Y ¢, & (1.18)

=0
in C. Furthermore, the following equality is true:
zj = —ilng&;, (1.19)
where —ilngE; is the only number from the sequence
—~i(In|€;|+iagE; +2kni) = ~iln|&;| + ag&; + 2k,
k=01-1,2-2,...,
contained in the strip Ry.

Proof. The function
€ =C8(z) = e~ (1.20)

realizes a one-to-one mapping of any line z = z(y) = xg+ iy, xp€ [, . +2m), y €
(— oo, ), (i.e, of theline x =xp) fromthestrip R, onto ahalf line & = &,,(r) = e™0r,



12 Chebyshev theory and its devel opment Chapter 1

0 < r = ¢ < e, and hence, bijectively maps the entire strip R,, from the plane z into
the plane & with deleted point & = 0. Therefore, by virtue of theidentity

P (&) = e Ty(z), & = €&, (1.21)

which follows from (1.17) and (1.18), there exists a one-to-one correspondence between
the different zeros z; = —iln,&j € Ry, of the polynomia T,(z) and differentzeros &; =
e # 0 of the polynomia P,, and vice versa

Thus, to complete the proof of theorem, it remains to show that each zero &; of the
polynomial P, of multiplicity »> 1 correspondsto the zero z; = —iln,&; of the poly-
nomial T, of the same multiplicity, and vice versa. To this end, we differentiate identity
(1.21) and arrive at the following identities:

iR, (&) e = " [inT,(2) + Ty(2)],

or
iP,(8) = " g T (2) + T(2)] (1.20)
and, similarly,
2Py (&) = " o T, (2) + 0 T(2) + T(2)], (1.217)
)
= MY ag () + o V() + o+ TV V()] (2107Y)
where &= ¢ and o are certain numbers. Identities (1.21), ... , (1.21""Y) immedi-

ately imply that if
B, (&) = B,(&) = ... = ByYg) =0

atapoint &; # 0, then T,,(z;) =0, T,(z;) =0, ..., T,(z;) = 0 at the corresponding
point z; = —iln,&;, and vice versa. Hence, the multiplicities of the zeros &; of the poly-
nomial P2,(&) and the multiplicities of the corresponding zeros z; = —iln.&; of the

polynomial T,(z) areidentical. Thiscompletesthe proof of Theorem 1.3.
|
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Corollary 1.1. If a trigonometric polynomial T, of degree n of the form

120 + i(ukcoskz + by sinkz) (1.22)
k=1

Tu(z) =

possesses the property

a? + b2 # 0, (1.23)

then it has exactly 2n zeros (counting multiplicities) in any strip Rq, = {0 < Rez <o +
2n}. If condition (1.23) is not true, i.e., a,% + bs = 0, then T,(z) has less than 2n

zeros in Ry,.
Indeed, by applying Euler’s formulas

ikz —ikz ikz —ikz
e +e . e —e
coskz = ——— and Sinkg= ——,
2 2i

we can represent the polynomia T, as

n 2n
T,(z) = 2 cke’kZ = e_mzz cl_nellz, (1.24)
k=—n =0
where
ao ak_lbk ak +lbk
= -, = —, = ——, k=1,2,...,n. 1.25
€0 2 Ck 2 C_k 2 n ( )

Further, since a2 + b2 = 4c,c_, # 0 by virtue of condition (1.23), the coefficients

of the polynomial
2n ! )
PZn(&) = zcl—n& ’ é: e,
1=0

corresponding to / =0 and [ = 2n are nonzero. Hence, the indicated polynomial pos-
sesses 2n nonzero zeros (counting multiplicity).

By virtue of Theorem 1.3, the number of zeros of the polynomia 7,, in the strip R
and the polynomia P, isidentical.
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Corollary 1.2. If two trigonometric polynomials Ty and T2 of degree < n take iden-
tical values at more than 2n points z; from the same strip Ry (e.g., for Rez e

[0, 2n)), then
T2(z) = T1(2).

Corollary 1.3 (on the trigonometric polynomial factorization). Under the conditions of
Corollary 1.1, the polynomial T, admits the following representation in terms of its

zeros zi, k=1,2,...,2n, froma strip Ry:
2n
Tu(z) = A ] sin’ 5 "%k A = congt. (1.26)
k=1

Indeed, if we denote the (nonzero) zeros of the polynomial Po, by &; and the zeros
of the polynomial 7, satisfying the equality &; = e« by z;, theninview of (1.24), we
get

2n
P2,(§) = ag H(é—ék)v ap = const,

k=1
2n . . 2n 2n
T.(z) = ap e~z H (elz —e’zk) = Zk/ H ( i(z=2; ) —i(z—z )/2)
k=1 k:l k=1

Thisyields the required relation (1.26).

2. Chebyshev systems of functions
The Chebyshev theorem and numerous other results obtained by P. Chebyshev play an

important role in the approximation of functions by the so-called generalized Chebyshev
polynomials. In the present section, we study this class of functions.

2.1. Definitions, examples

Definition 2.1. Consider a set I (containing at least n + 1 points) in a metric
space of continuous functions. A system of functions

(p01 (pli ey (pny (21)
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defined on this set is called a Chebyshev system or a T -system on the set I if any
generalized polynomial P,(x) = P,(Qy,cr;x) of the form

n
P(x) = Y cxpp(x), (22
k=0
where ¢, k =0,...,n, is a collection of numbers at least one of which is nonzero, has

at most n different zeros on .
In what follows, the generalized polynomial (2.2) with respect to system (2.1) is

sometimes simply called a polynomial or a T-polynomial.
Clearly, if (2.1) is a Chebyshev system of functions on I, then it is aso a Cheby-

shev system on any subset of )¢ containing at least n + 1 points.
Examples of Chebyshev systems
1. Thecollection of functions
1,z 22,..., 7" (2.3
is a Chebyshev system in the entire complex plane.
2. By virtue of Theorem 1.3, the family of functions
1, e, e~z ..., ez e=im (2.9
and, hence, the family
1, cosz, sinz,..., coSnz, Sinng (2.5)
are Chebyshev systems in any strip oo < Rez < a+2n, where o is a real number;
moreover, each of these systems is a Chebyshev system in any half segment (period)
[o, oo+ 2m).
3. The system

1, cost, sint, ..., cosnt, Sinnt (2.5)

is not a Chebyshev system on the segment [0, 2r] because the polynomial
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Po,(t) = ag + a1COSt + apSiNt + ... + ap,_1C0Snt + ay,Sinnt

with ag=a1=...=az,.1=0 and ay,=1 has 2n+1 zeros y,=kmn/n, k= 0,...,2n,
on [0, 2r].

Nevertheless, system (2.5") turnsinto a Chebyshev system on aclosed set [0, 2] or
even on theentireline if we “identify” the points lying at distances equal to multiples of
2n. Itisknown that, for this purpose, it suffices to identify the argument ¢ of the func-
tionsin (2.5”) with apoint of the unit circle centered at the origin. Note that this circleis
acompact set and the angle made by its radius vector with the OX-axis is denoted by r.

In this connection, we introduce the following definition:

Definition 2.2. A system of functions {(pk}Z:o continuous on the entire axis and peri-

odic with period 0 is called a Chebyshev system (or a T-system) if any generalized
polynomial

n

Py(t) = Y cxpi(t),

k=0

where ¢y, k =0,...,n, is a collection of numbers at least one of which is nonzero, has
at most n different zeros on a certain (and, hence, on each) half interval (a, a + 0] or

a half segment [a, a +0).
We now present several more examples:

4. Thefact that (2.5) is a Chebyshev systemon [-=, ©) readily implies that the fam-
ily of functions

1, cost, cos2¢, ..., cosnt (2.6)
isa Chebyshev systemon [0, ) and the family
sint, sin2¢, ..., sinnt (2.7)
is a Chebyshev system on (O, ).

5. If afamily of functions {g,};_, isaChebyshev systemon It and p(x) isa
positive function continuous on ¢, then { pe, };_, isalsoaChebyshev systemon .
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6. The set of two functions @q(x) =1 and @;(x) = x° is a Chebyshev system on
thereal axis.

7. The set formed by the functions @q(x) = x 3 and ¢,(x) = 1 isa Chebyshev sys-
tem on the semiaxis (0, «).

8. The set of functions @q(x) = x2 — x, @1(x) = x2+ x, and @,(x) = x*+ 1
forms, clearly, a Chebyshev system on the axis; at the same time neither two functions
fromthisset ¢;, j =0, 1, 2, form aChebyshev system on the axis.

Note that the real T-systems of functions {g,},_, do not exist in the case of func-

tions of many variables on sets with interior points. This becomes clear from the follow-
ing result by Mairhuber (1956) presented without proof:

If it is possible to specify a T-system {(pj (x)}’;zo , where n >0, on an abstract

compact set, then this set is homeomorphic either to a circle or to its part.

Definition 2.3. A T-system {@; }Z=0 is called a Markov system if all its subsystems

{oc iy, 0<m<n, arealso T-systems.

It is possible to show (see, e.g., [M. Krein and Nudel’man (1973)]) that each T-system
on the segment [a, b] can be replaced by an equivalent system {(pj- }’;:0 , (p;(x) =

ZZ:O ¢jk @x(x), whichisaMarkov system on any segment [ay, b11 < (a, b).

2.2. Basic properties of the Chebyshev systems

For numerous other properties and applications of the T-systems, the reader is referred to
the monograph [Karlin and Studden (1976)].

Theorem 2.1. In order that a collection of functions (2.1) defined on a set I be a
Chebyshev system on this set, it is necessary and sufficient that the determinant

D((p.x)zD[% 01 . %]

X0 X1 Xp
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(Po(xo) (Po(xl) (Po(xn)
1= oy(xo)  @i(x1) o 0i(x,) (2.8)
Ou(x0)  @u(x1) o @u(x)

be nonzero for any family of n+ 1 different points { x; };’: o from the set .

The assertion of this theorem follows from the fact that (2.1) is a Chebyshev system if
and only if the system of equations

Ag@o(xj) + A1 1(x)) +...+ A,04(x;)) =0, j=0,...,n,

possesses only the trivial solution Ag=A;=...=A,=0 for any system of n+1 dif-
ferent points x;e ¢, j=0,...,n. Itisknown that this condition is equivalent to the re-
Po ?1 ¢y

quirement that the determinant D (
X0 X1 e Xn

J of system (2.8) must dif-

fer from zero.

Corollary 2.1. If a collection of functions {(pk}zzo is a Chebyshev system on [a, b]
and {x; };;0 is a set of different points from [a, b] such that the distance between

any two points from this set is not smaller than ¢ > 0, ie.,

min|x; = x| 2 ¢
Jik

j#k
then

> >0, (2.9)

D((Po P (Pn]
)CO xl .Xn

where r = r(c) does not depend on the chosen set of points.

Proof. Indeed, if itisimpossible to find anumber »> 0 for which inequality (2.9) is sat-

isfied, then there exists a sequence of systems of points {x,{ }Z—o’ j=212,..., suchthat

i) min|x/ —x/| > ¢, and
ninjxj = X;
k%l
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o [(Po Q1 - (Pn]
(i) lim D| ) | =0.

i — oo J J J
J Xp X ... X

In this case, one can find asubsequence {j,} such that each subsequence {x,{’ } k=
0,...,n, hasalimit x,?e [a, b], k= 0,...,n, and, for the system of points {x,?}zzo,
we get

1.0 .0
T,Iln|xk —X] | 2 c,
k#l

and

¢ ¢ D, ) Do D1 D,
D[ 0 o xo) = lim D[ i ir jr] = 0.

xQ Xq n F— oo Xg X1 Xy,

This means that we arrive at a contradiction to Theorem 2.1.

Theorem 2.2 (interpolation). Assume that a Chebyshev system of functions {@; };_,
is given on a set I of a metric space. Then, for any collection of n + 1 different
points x;€ MM, j=0,...,n, and any collection of n + 1 numbers Yj, J = 0,...,n,
there exists a unique generalized polynomial P, of the form (2.2) satisfying the condi-
tions

Py(xj) =y, j=0..,n (2.10)

This polynomial is called interpolation polynomial and admits the following repre-
sentation:

0 ®o(x) <P1(xo) P, xo)
Yo o xo) ?1 xl) ?n xl)
Yn Po xn) P4 xn) PnlXn

(2.11)
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The problem of construction of a polynomial satisfying conditions (2.10) is called in-
terpolation problem.

In fact, it follows from Theorem 2.1 that the denominator on the right-hand side of
(2.11) differs from zero, therefore, the right-hand side of (2.11) always specifies a gener-
alized polynomial of degree n.

Subtracting the (j + 1)th row from the first row in the determinant appearing in the
numerator on the right-hand side of (2.11) and setting x = x;, we immediately conclude
that the polynomial P, satisfies all n+ 1 conditions (2.10). The uniqueness of this

polynomial follows from thefact that { ¢, };_, isaChebyshev system.

It is easy to see that the converse assertion is also true: If, under the conditions of
Theorem 2.2, the sole condition imposed on a system of functions { ¢ };_, isthat the
functions ¢, are continuous and, at the same time, the interpolation problem (2.10) is al-

ways uniquely solvable, then {¢, };_, isaChebyshev system.

2.3. Chebyshev systems of real functions on an interval

In what follows, for a < b, we agree to use the term “interval” and write (a, b) to denote
any of the following four sets: the segment [q, b], the half interval (q, 5], the half seg-
ment [a, b), or theinterva (a, b).

To prove Theorem 2.3 formulated somewhat later, we need the following auxiliary
assertions:

Definition 2.4. Assume that {Q; }Z:O is a Chebyshev system of real functions on an
interval {a, b) and P, is a polynomial in this system. A zero xg € (a, b) of this
polynomial is called odd if the polynomial P, changes its sign in passing through xg
(i.e, sgnP,(xo—0) = —sgnP,(xp+ 0)) and even if the polynomial P, preserves its
sign (i.e., sgnP,(xg—0) = sgnP,(xo+ 0)). If a zero x, € {a, b) coincides with one

of the ends of the interval {a, b), i.e., a or b, then it is always regarded as odd.

We now establish the following auxiliary lemmas, which are also of independent in-
terest:

Lemma 2.1. Assume that {@; }Z=O is a Chebyshev system of real functions on an in-
terval {a, b). Then, for any n different points x; € {a, b),
a<x<xp<..<ux,<0b,

n

the generalized polynomial
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¢ O1 ... O,

D
X X ... X,

9o(x) (Po(x

Pp(x)

(Po(xn)

[N
~—

(2.12)

N
~—

¢1(x) (Pl(xl) (Pl(x

vanishes at all points x; and these points exhaust the set of its zeros. Moreover, these

zeros are odd. Any other polynomial ]~’n vanishing at all points xy has the form 13n =
CP,,, C=const.

Proof. Indeed, the polynomial P, vanishesat all points x;, k = 1,...,n, and, inview
of the fact that (2.1) is a Chebyshev system, solely at these points. Therefore, the polyno-

mial P, preservesitssignoneachinterval (a, x1), (x1,x2),..., (x, b). Since, for any
fixed x, P, canberegarded as a polynomial with respect to any point xi, it preserves
the sign under any variations of positions of the points x, x1, x2,...,x, provided that

their order in the sequence remains unchanged. Thus, if we now set, e.g., x" € (xi_1, xx)
and x” € (xg, xx+1), thenwe get

(pO (pl (Pn
sgnP,(x’) = sgn D
X xl .xn
®o @1 - Op2 Op_1 P --- Oy
= (-1“ip
.xl XZ xk—l X’ .xk .xn
Po 1 - Op-1 Pr Pry1 -+ @y
=)o
xl XZ Xk x” xk+1 xn
P ¢1 .. Oy
= —-sgn D = —sgn P,(x”)
X ox .. x,
and, hence,

sgn Pn(xk_o) = _$nPn(xk+ O)
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Thismeansthat the zero x; isodd. Now assume that the conditions of Lemma 2.1
are satisfied not only by P, but also by a polynomial P,(x) # P,(x). Let xoe (a, b)
be a point at which P,(xqg) # P,(xo). Since, clearly, xo#xz, k = 1...,n, we have

P(xg) #0 and P,(xy) # 0. Wealso set
P,(x) = B,(x0) B(x) = P(x0) B,(x), x€ [a,b].

The polynomial P,, vanishesat n +1 points x, x1, x2, ..., x,. Therefore, f’,,(x) =0
and P,(x) = CP,(x), where

i

C = n(xo)

-~ Bifxo)

= const.

)

Lemma 2.2. If a T-polynomial P, has m’ odd zeros in an interval {a, b) and m”
even zeros in the interval (a, b), then

m’ + 2m” < n. (2.13)

Proof. Denote by x; <xp <...<x, the odd zeros of the polynomial P,(x) and by
y1<yp<..<y,~ itsevenzeros. Let (a, c) beaninterval containing neither odd zeros
xj, j=1...,m", norevenzeros y,, k=1,...,m”. Intheinterval (q, c¢), we choose
n—m’ different auxiliary points z, i = 1,...,n—m’, and construct an auxiliary
generalized polynomial of the form

M P 1 @2 ... (pn—m' (pn—m'Jrl (pn—m'+2 e Oy
P(x)=%D . (219
X Zl ZZ oo 2 ’ xl XZ oo X7

n—m m

All zeros of this polynomial are odd according to Lemma2.1. Since all zeros x; > a,
and y; of the polynomial P, lieoutsidetheinterval (a, ¢) containing the zeros z; of
f’,, and the polynomial P, changesitssign only at the points x; € (a, b), by choosing
the proper sign (“+” or “-”) of the right-hand side of relation (2.14), we can guarantee
that the polynomial 15n hasthe samesignas P, in asufficiently small neighborhood of
each zero x; > a for x # x;. However, in this case, we also have sgn B, (x) = sgnP,(x)
at all points x ¢ (a,¢), x #yn, k=1...,m”, and B(y) #0, B(y) =0 atthe
points y,. This means that, for sufficiently small A > 0, the graph of the polynomial
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Kf’n crosses the graph of the polynomial P, at least twice in a sufficiently small neigh-

borhood of each point y,. Hence, the polynomia P, — Mﬁv’n # 0 vanishes at al points
xj, j=1...,m’, and, in addition, twice in the neighborhood of each point y;, k =
1..,m", i.e, hasatleast m"+2m” zeros. Thisyieldsinequaity (2.13).

|

Theorem 2.3. Assume that {(pk}zzo is a Chebyshev system of real functions on an in-

terval {a, b). Then, for any two mutually disjoint collections of points from the interval

!
{a, b), Il.e., {xi}f:l c{a, b) and {yj}]__lc (a, b), whose number satisfies the

equality
n-(k+2)=2r, r=012...,

there exists a T-polynomial P, such that the sets of its odd and even zeros on the in-
terval {a, b) are exhausted by the points x;, i = 1,...,k, and Vi j=1..,1,
respectively. If {a, b) = [a, b], then this assertion remains true in the case where n —

(k+2D)=2r+1, r=0,1,..., ie, inall cases where k + 2] < n.

Proof. 1. First, we consider the case k + 2/ = n and choose a positive number £ so small
that the neighborhoods (y;—¢, y; + €) of different points y; do not intersect and contain
neither theends a and b of theinterval (a, b) nor the points x;, i = 1,..., k. For
fixed j, by y;~ and y;* we denote sequences of points convergent to y; and
contained in the intervals (y;— €, y;) and (y;, yj+¢€), respectively. Consider a

sequence of generalized polynomials {an}jzl of theform

BI(x) = Y, ¢/ @p(x) =D

((Po Pr @2 o P Oy Ppin o Py (PnJ
k=0 ’

v_ ' v_ Vi
XX X Y N Yoo Y
where the numbers y, > 0 are chosen to guarantee the validity of the equalities

n

Y ler| =1 (2.15)
k=0
foral v =1,2,.... By virtue of these equalities, one can find a subsequence {P,,V" }:

of the sequence {an} pointwise convergent to a nontrivial polynomial P, satisfying
the conditions of Theorem 2.3.
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We denote this polynomial (or one of these polynomials) as follows:

Pr(x) 1= Pr(X;X1,X2, v s Xk V1, V20 e h V1) = lim PYi(x), (2.16)

i—> o0
k+2l=n, xe/{a,b).

2. If n—-(k+2l)=2r, where r is a positive integer, then we additionally fix any
two setsof # different points Y0 e (¢, o), v=1....r, and yoe (B, b), v=1 .., r,

where o€ (a, b) and B e (a, b) are chosen so that the interval (a, o) U (B, b) does
not contain the zeros x; and y;, i = 1...,k,j =1...,1. Further, we construct
polynomials

1 — *( . . . .0 0
Pn( )(x) = Pn(x, Xyeeoy Xy Yoo Yo VL ,...,y,),
(2.17)
2 *( L . L *
Pn( )(x) = Pn(x, Xseeoy X3 Yoo V1 yl,...,y,),

and easily show that sgn Pn(l)(x) =N P,fz)(x) for aimost all x and the polynomial
p, = pY + p? (2.18)
satisfies the conditions of the theorem.

3.1f {(a,b)=[a,b] and n - (k+2]) = 2r + 1, where r isanonnegative integer,
then we again represent the polynomia P, intheform (2.18). However, in constructing

the polynomial Pn(l), we supplement the collection of zeros x;, y;, and ys in relation

(2.17) with the zero xg = a and, in constructing the polynomial P,fz), the collection of
zeros is supplemented with the zero x;+1 = b.

]
Corollary 2.2. For any Chebyshev system {(Pk}Z:o on a segment [a, b], one can
indicate a polynomial (with respect to this system) positive for all x € [a, b] and,
hence, a polynomial w, such that

1< m,(x) <M, M= congt, (2.19)

forall x € [a, b].
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Note that

(i) it iseasy to see that the Chebyshev system of functions
Qo(x) = x(x-2) and @1(x) = (x-2)(x-3), xe (0,2]

possesses the following property: any polynomial of the form co@g + c1¢1 with
¢+ ¢5 >0 hasexactly onezeroon (0, 2]; therefore, the statement of Theorem
23for n—(k+2))=2r+1, r=0,1,2,..., formulated for the segment cannot
be generalized to theinterval (a, b) # [a, b];

(if) evenif k + 2 = n with />0, the polynomia P, satisfying the conditions of
Theorem 2.3 is, in general, not unique to within a constant factor.

Indeed, consider the following system of functionson [-1, 1]:

2|x|  for xe[-1,0],

Go(x) =1, ¢1(x) = { ) and  @(x) = @1(—x).
X for x€[0,1],

Itis easy to see that this is a Chebyshev system of functions. At the same time, for
y1=0 (i.e, k=0, I=1, and n=2), thezero y; = O iseven for the polynomials ¢,
and @, but @,(x) # c@(x) forany ¢ = const.

By using Theorem 2.3, one can easily show that Theorems 1.2 and 1.2" admit the fol-
lowing generalization:

Theorem 2.4. Assume that a Chebyshev system of functions {(pk};:=o and a continu-

ous function f are given on a segment [a, b]. Then, in order that Pn* be a polynom-
ial of the best approximation for the function f as compared with all other polynomials
with respect to the system {(Pk}Z:O* it is necessary and sufficient that there exist at

least one system of n + 2 points x; (alternation)
a<x1<x3< ...<x,42%Db
such that the difference

f(x) = Pi(x) =1 ry(x)

(i) alternatively changes its sign at the points x;,
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(ii) attains its maximum absolute value on [a, b] at the points x;, i.e.,

rn(xl) = _rn(x2) == (_1)n+1rn(xn+ 2) =z HrnH[a,b]'

The proof of this theorem, in fact, repeats the proof of the Chebyshev theorem with
the following changes:

(i) after inequality (1.10), the auxiliary polynomial Q, should be constructed in the
form

* h
O,=F + ﬁnn(x)

(instead of Q, = P, + h/2; see(2.19)); thisyields

h h h
o R Y R T e
< F) = 0n) < [nl - 2 xela b,
" 2M
ie.,
h ko
Ir-0ul = Il - A < |r-p] - o

(ii) theauxiliary polynomial P, in (1.13) should be replaced by a polynomial
Pn(x) = 8 By(x),

where P, is a polynomial for which the points z;, zo,...,z, are the odd zeros
and exhaust the set of all its zeroson [a, b] and the number 6 is chosen in exact-
ly the same way as above.

Note that the Chebyshev Theorem 1.2” can be generalized in asimilar way to the case
of approximation of periodic continuous functions by polynomials with respect to period-
ic Chebyshev systems. We leave the proof of this assertion to the reader.

2.4. Uniqueness of the best approximation by generalized polynomials

Theorem 2.5. For any Chebyshev system of functions {(pk}zzo on a segment [a, b]

and any continuous function f on [a, b], there exists a unique generalized polynomial

Rj of the best approximation to this function.
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This theorem is a consequence of the following (very general) Haar theorem specify-
ing the system of continuous functions {¢, },_, required for the existence, for any conti-

nuous function f, of aunique polynomial P,,* of its best approximation of the form
Bi(x) = Y cipr(x) .
k=0

Theorem 2.6 [Haar (1918); Kolmogorov (1948)]. Assume that a system {@;}; _o
of real or complex continuous functions is given on a closed bounded set M < R™ con-

taining more than n + 1 points. Then, in order that a unique polynomial P: of the
best uniform approximation of the form

P(x) = Y, cior(x) (2.20)
k=0

exist for an arbitrary continuous function f on I, it is necessary and sufficient that

the system of functions {@y }Z: o be a Chebyshev system on .

Proof.! Necessity. Without loss of generality, we can assume that the system {¢,}/_,

is linearly independent. Suppose that, for any continuous function f, there exists a
unique polynomial of the best approximation (2.20) but, contrary to the assertion of the

theorem, {¢;};_, isnotaChebyshev system. This meansthat there exists a polynomial
P(x) = D a,?(pk(x), xe M, (2.22)
k=0

not identically equal to zero with at least n + 1 different zeros xq, x1, ..., x,inthe set It
0 0 0 0
By (xg) = ag@o(xo) + ar @1(xg) +...+ a,9,(x0) = O,

0 0 0 0
B (x1) = ag@o(x1) + a7 @1(x) +...+ a,9,(x) = 0,
PX(x,) = ag@o(x,) + at ¢y(x,) + ...+ ayg,(x,) = 0.

In this case, we have
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®o(x0) @1(x0) .- 9u(x0)

[(Po Q1 ... @n] Oo(x1) 01(x1) - 9,(x1)
D - = 0. (2.22)

X0 X1 ... X,

(PO(xn ) (Pl(xn ) (pn(xn)
Asfollows from relation (2.22), the rows of the determinant are not linearly indepen-

dent and, hence, there exists a system of nonzero, generally speaking, complex numbers
bo, b1, ..., b, suchthat

bo(pk(xo) + bl(pk(xl) +...+ bn(Pk(xn) =0, k=0,..,n.

These equalities imply that an arbitrary generalized polynomial of the form

Py(x) = Y cx@r () (2.20°)
k=0
satisfies the equality
D biB(x;) = e D biei(x;) = 0. (2.23)
j=0 k=0 j=0

Let us show that, in this case, one can find a function f continuous on ¢ for which
the polynomial of its best approximation is not unique.
Dencte by g afunction continuouson ¢ and satisfying the conditions

lg(x)] <1, xe i,
(2.24)
g(x) =sonb;, j=0,..,n,

wherewe set sgnc =0 for ¢ =0 and

< _ R
|c|

sgnc =

for c#0"

T To construct a function of this sort, we denote the minimum distance between the points x; by 2e and set

g(x)= Sgnl;j(l - x_exj), xe U(x;,¢€), |x—x_,-| =p(x,x),

in the e-neighborhoods U (x; €) of the pointsx; and g (x)= 0 outside these neighborhoods.
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By using the indicated function g and the polynomial P,,O, we construct the function

P(x)

f0) = goL-2 | xem (2.25)
where A isapositive number chosen to guarantee the validity of the equality

max A
xeM

P,?(x)‘ = 1.

By virtue of relations (2.24) and (2.25), we obtain f(x;) = sgnb; and |[f(x)| <1,
x € JN. Hence, in order that the inequality

max |f(x) - P,(x)| < 1
xe

(thisinequality implies, in particular, that thereis j €0,...,n suchthat b;P,(x;) # 0)
be true for apolynomial P,(x), itisnecessary that the conditions

\aran(xj)—argf(xj)‘ = ‘argP,,(xj)—angj‘ <n/2

be satisfied for al je O,...,n such that lng,,()q,) # 0. (Indeed, otherwise, we get

B = fxp)| = [Px)) —sonby| 2 1)

However, by virtue of (2.23), thisisimpossible because the inequality
|larg B, (x;) — &g f(x)| < /2
implies that
‘aran(xj)bj‘ = ‘aran(xj)—argEj‘ <7/2

forany j and, consequently,
n
j=0

Therefore,
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E,:= ilrjf I f =P llg = 1.

n

On the other hand, for any €< (0, 1] and x e I, wefind

IN

|f(x) = eAB)(x)| < | f(0)] + €h

B(x)

g0 [1- 2

PX(x)|] + er

B(x)

IN

1-A

BY(x)] + e

B(x)|

1-2A

e?(x)\(l-s) <1

Thus, contrary to the assumption of the theorem, e\ Pno is a polynomial of the least
deviation from the function f for any €€ (0O, 1].

Sufficiency. Assumethat {¢,};_, isaChebyshev system and P, is the polynomial of
the best approximation for the function f on J¢. Let us show that, in this case, one can
find at least n + 2 different points x1, xo, ..., x,+1 € I of validity of the equality

‘f(xk)_ Pn*(xk)‘ = Hf— B

L k=1..n+2. (2.26)

This follows from the fact that if the number of these pointsis n; < n+ 2, then we
can apply Theorem 2.2 and construct apolynomia m, such that

t(x) = f(x) = Bi(x), k=1..m.

Thus, one can easily show that, for sufficiently small &> 0, the polynomial Pn* +0m,
deviates from the function f lessthan P, , i.e., we arrive at a contradiction.

Contrary to the assumption, we now assume that, parallel with P.’, there exists one
more polynomial Qf: of the best approximation to the function f:

|r -8

=|r-a

= nllin Hf_PnH = En'

In this case, we get
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b +0,

E, = >

f -

e, %[Pn + Q,’:] is also a polynomial of the best approximation for the function f and,

moreover, as aready proved, there exist at least n + 2 points x;e W of validity of the
equality

= 215t) - B )]+ () - @)

However, the last equality is possible only in the case where, first,
1£(x;) = B ()] = |- 0nixp)] = E,

and, second, the arguments of the numbers f(xj) B/(x;) and f(x;) - Q,(x;) are
dsoequal,ie, f(x;)—B(x;) = f(x;) — Qn(x;). Hence,

Bi(x;) = 0i(x;), j=L2..,n+2.

In view of the fact that {g,},_, isa Chebyshev system, this situation is possible
only for Q,(x) = P, (x). Theproof of the Haar theorem is completed.

Example 2.1. Let ¢g(x,y) =1, @1(x,y)=x, @y(x,y)=y andlet M= {(x,y): x,

ye [-1,1]}. Thentheset )¢ contains continuous functions for which a polynomia of
the best approximation is not unique.

Remark 2.1. The unigueness theorem and the necessity part of Theorem 2.4 (Chebyshev)
arenot trueif the system {o, };_,, isdefined not on asegment [a, b] but on a half in-
terval (a, b] or [a, b), oronaninterval (a, b).

Thus, in particular, the family of functions 1, cost, sint, ..., cosnt, sinnt isaChe
byshev system in the half interval (—mt, m]. Nevertheless, one can easily see that any tri-
gonometric polynomial whose plot on (-7, ®] lies inside the strip bounded by the lines
y=t-m and y =t + 1 isthe polynomial of the best approximation for a function
f(t) =t continuouson (-m, m].



32 Chebyshev theory and its devel opment Chapter 1

At the sametime, if a continuous function f is 2r-periodic, i.e., the points - and =«
can be identified, then the entire proof of Theorem 2.6 remains valid, hence, the poly-
nomial of the best approximation is unique.

We now present a theorem which shows that if a polynomial of the best approxima-
tion is unique, then it continuously depends on the approximated function.

Theorem 2.7 [S. Nikol’skii (1947)]. If, for any continuous function f on a compact set
IR, there exists a unique polynomial of its best approximation Pn*( ) with respect to

a given system {<Pk}Z:o of linearly independent continuous functions, then this poly-

nomial continuously depends on the approximated function f in the sense that, for any
£>0, one canfind & = 8(f;€)> 0 such that

whenever | f — lec(%))?) <8.

P = B oy < €

Proof.> By {f,};-1 We denote asequence of functions continuouson . Assume that
this sequence uniformly convergesto f. Notethat, forany k=1, 2,..., we canwrite

P (S| - 14l <

P (fi) = K| < 1AL

Therefore,

As in the proof of the Borel theorem (Theorem 1.1), one can select a subsequence

P;(fk;-)H <2|fl €A =congt, k=12....

oo

{ P;‘( fi: .)};":1 of the sequence { B (fi: ~)}k: , uniformly convergent to a polynomial

v

B(x) = Jim B(fi:x). (227)

Theinequality

kaj - P:(fkj;')H = ka.i - b

holds for any polynomial
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n

Pu(x) = Y ci@i(x)

k=0

by the definition of polynomials of the best approximation. Asaresult of the limit transi-
tioninthisinequality as j — «, we abtain

If =Bl < |f-Rl.

i.e., we seethat ]v)”(x) is a polynomial of the best approximation for the function f(x).
By the assumption, the polynomial of the best approximation is unique. Hence, ﬁn(x) =
P (f;x), xe M, and, by virtue of (2.27),

Jlim B(fiix) = BI(fi0) (2.28)

uniformly in x € J¢. Since the sequence {P,f(fk ; -)} is a compact set and the right-
hand side of (2.28) isindependent of the subsequence {k;}, we conclude that

lim P'(f;x) = P'(f;x)

k— oo

uniformly in x e M. Thetheorem is proved.
|

The reader can easily check the validity of Theorem 2.7 and its proof for the approxi-
mation of functionsin Banach spaces (see [S. Nikol’skii (1947), p. 47]).

2.5. De la Vallée Poussin theorem

Asarule, the Chebyshev theorems enable one only to check whether a given polynomial

is the polynomial of the best approximation for a given continuous function f. At the
same time, the problem of finding these polynomials and estimation of the value of the
best approximation E,(f) proves to be extremely difficult. In this connection, it seems
reasonable to analyze the possibility of approximate construction of these polynomials

and finding the upper and lower bounds of the quantity E,(f). The corresponding upper
estimates are studied in Chapters 4 and 6. For the lower bounds, we now present the fol-
lowing two theorems:
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Theorem 2.8 [delaVallée Poussin (1919)]. If the difference f— P, between a function
f continuous on [a, b] and a polynomial P, with respect to a Chebyshev system
{(Pk}zzo takes alternating values at points x; of an ordered sequence of n + 2 points

a<x;<xp<..<Xp250D, ie,

sgn{f(x;) — Pu(x) } = —sgn{ f(xj+1) — Pu(xj+1) },
then

Ef) 2 min [ 10)= )], (229)

<

The proof is similar to the proof of sufficiency in the Chebyshev theorem (Theorem
1.2).
Indeed, by contradiction, we can assume that

En(f) <
1

min | f(x;) = B,(xp)|
<j<n+2

Let Pn* be the polynomial of degree at most n of the best approximation to the function
f- Then

&

(%) = BI(x)] < [ £ = Butx) (2.30)

at all points x;. Hence, the difference
B/ (x;) - Pu(x)) = [f(x)) = Pu(x;)] - [f(xj) - P:(xj)]

has the same sign as f(x;) — P,(x;) at al points x;, j =1,...,n+2, ie,itssign
changes on the analyzed segment at least n + 1 times.

Therefore, the polynomial Pn* — P, hasat least n+ 1 zeros on the segment [a, b]
and, consequently, P, (x) — P,(x) = 0, contrary to inequality (2.30).

For the case of periodic functions approximated by periodic polynomials, the theorem
isformulated and proved similarly.

Theorem 2.8’ [de la Vallée Poussin (1919)]. If the difference f — T, between a 2m-
periodic continuous function f(t) and a trigonometric polynomial T, of degree n
takes alternating values at points t; of an ordered sequence of 2n+2 points (11 <
tr <...<fpu42 <11 *+2T), then
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E.(f) = min
1

<j<2n+2 ‘

£t) =Tl (2.29)

2.6. Snakes

We present some important results related to the Chebyshev Theorem 1.2.

Definition 2.5. For any two continuous functions gq and g, defined on a segment
[a, b] and such that g1(x) < go(x), x € [a, b], and a Chebyshev system of functions

{(pj}';: o &iven on this segment, a polynomial P, (P,) of the form

P (x) = zEj(Pj(x) (Z()Qj@j(x)}
=

is called an upper (lower) snake if it exists and satisfies the conditions:

(a) the inequalities g1 (x) < P,(x) < go(x) (g1(x) < P,(x) < go(x)) hold for
all xe [a, b];

. . _ 1n+l n+1\ .
(b) there exists at least one sequence of n+ 1 points {xj }j=1 ({zj}j=l)'

aS)?l<)?2<)?3 <...< )T,H_le

such that the following conditions are satisfied:

Pn(XZi—l) = go(EZi_l), i=1,2, ...,
P(%y) = &alxy), i=12..,
(B"(lzl'*l) = 31(521'*1) and  P,(xy) = go(xz) )

Theorem 2.9 (on snakes [Karlin (1963); Karlin and Studden (1966)]).2 Let gy and g,
be two continuous functions given on a segment [a, b] and such that gq(x) < gg(x),

x € [a, b], and let {(pj }?:0 be a Chebyshev system of functions on this segment. If

there exists at least one polynomial
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n

é,(x) = ZC,'(P,'(X), x € [a, b],
j=0

such that gq(x) < IBn(x) < ggo(x) for all x € [a, b], then the functions g,, vV =

0,1, and the T-system {(pj} o Possess unique upper and lower snakes. The points

n
j:

of contact {)? j} and { X j} of these snakes are alternating.

Proof. |. First, we prove the theorem under assumption that f’n(x) = 0 and, hence,
g1(x) <0 and go(x) >0, x€ [a, b].

It suffices to prove the existence of a snake only for the upper snakes P, because if
P, isan upper snake for the functions — g, and - g, then — P, isalower snake for the
functions go and gq. For the sake of smplicity, weset a =0 and » = 1. Consider the
set P, of al possible T-polynomias P, satisfying the conditions:

(i) eachpolynomia P, € P, has n zeros x; intheinterval (a, b) = (0, 1);
(ii) each polynomia P, € P, satisfiestheinequalities

¢ < max ‘Pn(x)‘ <C, j=0,12,...,n, (2.31)

xe[xj,xﬁl

where xg:=0,x,,1:=1, andc and C are positive constants specified in what
follows;

(iii) P,(0) >0 foral P, P,

By Pn0 we denote a polynomial given by relation (2.12) for which x; = xj(Pno) =

ﬁ, j=1,2,...,n. After this, we determine the constants ¢ and C in inequality
n

(2.31) asfollows:

co I= min P,lo(x) Pn0

max
0<j<n+l xe[j/(n+)),(j+1)/(n+1)]

, Co=

cp = min{ min x), min x)| },

o = min{ min go(x), min (0]}

Cp = max{ max go(x), max [g(x)|},
x€[0,1] x€[0,1]
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o o _ ,
c = miny ¢, S0 C = max{co, 2¢} }.

Inthiscase, the class P, is nonempty. Moreover, if a snake exists, then, first, this
snake and the polynomials P,, which are aimost snakes, belong to the class P, and,

second, in view of the linear independence of the system of functions {(pj }’;:0 and the

second inequality in (2.31), the coefficients of any polynomial P, € P, are bounded in
modulus by the same number M.

Thedefect Aj = Aj(P,) of apolynomial P, € %, onasegment [x;, xj+1], j =0,
1,...,n, x; = xj(P,), isdefined asfollows:

j+1
Aj=(-1y max (-1Y[Pu(x) - gy(x)], where v ::ﬂ,

XE | Xj X4 2
and the defect on [a, b] (or Ssmply the defect) isintroduced as

A = A(P,) = max

1<j<n

A

il

Clearly, if apolynomial P, isan upper snake, then P, e 2, and A(F,) = 0, and
vice versa. Roughly speaking, the defect should be regarded as a measure of deviation of

the polynomial P, € ®, from the snake.
We now prove that the upper snake exists. Indeed, since the coefficients of all poly-

nomials P, € P, are bounded, by virtue of the first inequality in (2.31), there exists at
least one polynomial P, € P, with the smallest defect A*. Let us show that A* = 0
and, hence, P, isasnake.

In fact, suppose, on the contrary, that A* > 0. Then, by Theorem 2.3, we can con-
struct a T-polynomial =, with the following properties:

1 sgnm,(x) = sgnAj(P,f) foral xe (x;,x;,1) andal j=1,...,n such that
Aj(P:) # 0

1.
2. HTan = EA .

£

At the sametime, in this case, it is easy to see that A(Rf—n,,) < A(P,,').
This contradiction implies the existence of a snake.
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. If I5n(x) # 0, thenthefunctions go and g1 should be replaced by the follow-
ing functions:

8o(x) :=go(x) — P(x) >0, xe[a, bl
and

&1(x) 1= g1(x) - Pn(x) <0, xe€]la,b].

v

Further, we find the snakes P, and P, for these functionsand set P, = P, + P,
ad P, = P, + B,

Finally, it remains to note that the uniqueness of a snake and the fact that the zeros of
the upper and lower snakes are alternating follow from the evident fact that, otherwise,
the difference between the corresponding polynomials has at least n + 1 zeros, which is
impossible.

|

Supplement to Theorem 2.9. [f, under the conditions of Theorem 2.9, the function gg

is a polynomial with respect to a system {@ j}7:0 , Le.,

golx) = Z c?(pj(x), x € [a, b],
j=0

then necessarily X, =a and, in addition, X,,1=b if n is even.

If, under the conditions of Theorem 2.9, both functions gq and g1 are polynomials
with respect to a system {(pj};?zo, then x,. = b for all odd n. Similar assertions
also hold if gq is replaced by g1 and the points Xxi, X,,,, and X, 1 are replaced

by the points xq, X,,1, and X,_q, respectively.

This supplement is a consequence of the following fact: If, e.g., n iseven, then every
point ¥,;_1, j=1,2,...,n/2+1, satisfying the condition a < X; < b isan even zero
of the nonzero polynomial g, — P, with respect to the Chebyshev system {¢ 1}7:0- How-
ever, if each even zero of the polynomial gy — P, is taken into account twice, then, ac-

n

cording to Lemma 2.2, this polynomial cannot have morethan n zeroson [a, b].

2.7. Representation of positive polynomials

Theorem 2.10 [Karlin (1963)]. Every strictly positive polynomial Pn* With respect to
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a Chebyshev system of functions {(pj};lzo on a segment [a, b] admits a unique re-
presentation in the form

Py(x) = B(x) + P,(x),

where P, and P, are polynomials with respect to a T-system {(Pj}7:0 with the

following properties:

(a) the polynomials P, and P, are nonnegative; each of these polynomials pos-
sesses exactly n zeros on [a, b] counting multiplicity,

(b) the zeros of the polynomials P, and P, are alternating.

Proof. We set go(x) = Py(x), x € [a, b], and g;(x) = 0. Let P, be the snake for
these functions. By virtue of the supplement to Theorem 2.9, the snake P,(x) satisfies
the condition P,(a) = go(a) = P,(a). Therefore, it is easy to see that the polynomial
P, - P, satisfiesall conditionsimposed on alower snake and, hence, can be regarded as
P,. Itisclear that the polynomials P, and P, are nonnegative and the condition
P (a) = 0 issatisfied. The unigqueness of these polynomials and the fact that the zeros
of P, and P, arealternating follow from Theorem 2.9.

The following theorem is acorollary of Theorem 2.10:

Theorem 2.11 [Markov (1906); Lukacs (1918)]. Every algebraic polynomial P, of
degree n positive on [a, b] admits a representation

Py(x) = A2(x) + (b-x)(x—a) B2 ;(x)
for any natural v > n/2 and a representation
Py(x) = (x—a)C3(x) + (b-x)DZ(x)

for any natural v 2 (n-1)[2; here, A,, B,_1, C,, and D, are polynomials of
degrees equal to their subscripts.
If the zeros of the polynomials A, and B, _y in the first case and C,, and D,

in the second case are alternating and the polynomials A, and By_1 ( C, and D,,

respectively) have exactly v zeros on [a, b], then these representations are unique.
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Theorem 2.12 [Fejér (1915)]. Assume that a trigonometric polynomial of degree n of
the form

n
Tu(1) = Y (ajcoskr + bysinkt), a; + b; #0, by:=0, (2.32)
k=0

or, equivalently,

< ikt ay —iby ,
Tu(t) = Y, cpe™, 1= — (2.32)
k=-n

where ay and by are real and a, :=a_y and b, :=b_y for k <0, takes only

nonnegative values for all t € R. Then

(i) this polynomial admits a (generally speaking, nonunique) representation as the
squared modulus of another trigonometric polynomial t, of the same degree
n given by the formula

() = Y yee, (2.33)
k=0

2

T, (1) = |t,(0) te R; (2.34)

(ii) the coefficients 7, of the polynomial t, can be chosen to guarantee that all
zeros zi of a polynomial

M,(z) 1= Y vi2F (2.35)
k=0

of degree n are located in the unit disk: |z;| < 1 (with |z,| < 1 for all k
if T,(t) is strictly positive for any t € R);

(iii) if the polynomial T, is even, i.e., all b,= 0 in relation (2.32) [or, equival-
ently, all ¢, are real and ¢, = c_y in relation (2.32°)], then all coefficients
Yk in relation (2.33) are real to within a common factor whose absolute value is

equal to one for any representation of T, in terms of t, by relation (2.34) .
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Proof. (i). According to relation (2.32), we have af + bf # 0. Thus, by virtue of Cor-
ollary 1.3, the polynomial 7, has 2n zeros {, (real and complex) in the strip 0 <
Rez <2r and can be represented in terms of these zeros as follows:

2n t_c 2n . /2 eit _eiCk
T, (1) = C[[snt=2% = c[[e 02—
k=1 2 k=1 2i
) 2n ) ) n
= cpe H (e” —elc") = 2 Ci z*
k=1 k=-n
2n
= ez " [[(z2-2x) = 27" Pau(2) = ma(2), (2.36)
k=1
) ] 2n )
2=, izt Ci=(-4"c¢, [] ¢S 2 = congt,
k=1
where
2n ) 2n . n
Pu(z) i = zcj,,,zj = z" ch,nzrn and m,(z) 1= )Y 2k (237)
j=0 j=0 k=-n

Hence, in view of the fact that
1 .
Py, (0) =c_, = > (ap+ib,) =0

by virtue of relation (2.32"), we conclude that (see also Section 1):

— eachzero {, of the polynomial 7, is associated with a zero z; = e+ of the
same multiplicity of the function w,, and vice verss;

— eachreal zero of the polynomial 7, is associated with a zero of =, located on
the unit circle, and vice versa

Since the polynomial 7, is nonnegative, all its zeros areeven and, therefore, each
zero of thefunction m,, located on the unit circleis also even.

By (2.32") and (2.37), the function =, (t) for z = e coincides with T,(t), t € R,
and hence, takes only real values on the unit circle |z| = 1. By the Riemann-Schwarz
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symmetry principle [or by the direct substitution in (2.37)], we conclude that this function
satisfies the identity

ma(z) = m,(27) (2.38)

foral z#0. Therefore, if wedenoteby z1, z2,..., z- the zeros from the collection of
2n zeros of the polynomial P, located inside the unit circle (0< |z;| <1, j =1,
2,...,r), then, by virtue of (2.36) and (2.38), we conclude that the points Zfl, 22’1, e

Z, ! are also zeros of the polynomial P,. Theremaining 2n — 2r zeros of P, are,

clearly, located on the unit circle. Moreover, as shown above, they are even and have the
form

E,=élv, v=1,2..,n-r, tyeR. (2.39)

This means that the polynomial P, admits arepresentation

N
|

r r

Pon(2) = cn H (Z - Zj)(Z_ 2]_1) (Z —eilv )2 ) (2.40)

j=1 1

<
1]

0< ‘z.,-‘ <1 tekR.
Therefore, in view of relation (2.36) and the equalities

— |z71 | it
- ‘ZJ He Zj

it 7—1‘ 7—1‘ ‘7 —it
ijp —e€

wefind
Tu(1) = |T,(0)| = | Pay(e”)
= T (i 2 Ay i i\ 2
= c,,H(e —z‘,-) Z; (e —e ) = |0, reR,
j=1 v=1

where, foral ooe R and &, = ¢i*v,

r n—r r 1/2
In(1) ::Aei“H(eit—zj)H(eit—év) and A := (c,,sz _1] . (241
v=1 j=1

j=1
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(ii). Representing ¢, intheform (2.41), in view of relations (2.33) and (2.35), we
obtain

n—

M,(z) = Ae® H(z—zj)l'[(z—ﬁv),

j=1 v=1
i.e, dl zerosof II, areindeed located in the unit disk.

(iii). If, in addition, the polynomial 7, iseven, then b, = 0 and, hence, c_;, = ¢
according to (2.32). Therefore, thefunction =, from relation (2.37) satisfies the identity

T,(z) = nn(llz)

forforall z=0. Thus,if z; isazeroof thefunction ,, then zj‘l, Zj_l, and z; are
alsoitszerosand r, can beindeed chosenintheform
r/2 r)/2 . .
t, = Ael® (e”— )( ) H ( —e V)( ”—E”V)
j=1 v=1
r/2 ) r)/2 )
= Ael® (62” — 2Re(z;)e" + |z ) H (e?" - 2cost, e’ + 1),
j=1 v=1

i.e., in the form of the product of the number A ¢® by apolynomial of degree n with real
coefficients.
|

Theorem 2.13 [Chebyshev (1859); Markov (1906); Dzyadyk (1977)].* Let P(x) =
aox'+ a1x=1 + ...+ a; be an arbitrary polynomial positive on [-1,1]. By using this

polynomial P, we construct the following even trigonometric polynomial of degree 1 :

I
T)(r) = Pi(cost) = . a coskt.
k=0

By virtue of Theorem 2.12, this polynomial admits a representation

l .
Te) = (I, a0 = Y vee™, (2.42)
k=0
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where t(t) is a polynomial all coefficients of which 7y, are real and such that all
zeros of the algebraic polynomial

l
m(z) 1= Y, 152" (2.43)
k=0

are located inside the unit circle |z| < 1.
Then, for all v > —1/2, the algebraic polynomial Plj-v defined as a linear com-
bination of Chebyshev polynomials T;(x) := cosj arccosx, j = 1,2, ...,

!
Fay(x) = X ¥ Tya (%) (2.44)
k=0

is a snake for the pair of functions _\/Fl and +\/?l .
Proof. Foral v >-1/2, weset
+y(2) 2= 2V i(2).

In view of relations (2.42) and (2.43), thisyields

:= 4 P(cost), teR;

@ |m (e

I
(b) Remysy(e) = Y yicos(v+k)t, teR;
k=0

(c) on traversing the circle |z| = 1 counterclockwise, the argument of the function
T +y iNCreasesby 2w (1 +v) per revolution.

By virtue of property (c), thereexist 2(/ +v) points &; = ¢/ a which

Argﬂ[+v(§j) = jn = Arg nl+v(gj)'

For the sake of definiteness, wecanset £,=1 and, hence, &,+; = -1.
Therefore,

Remy(e™M) = (1) | B(cosn;), j=0,1,2..,1+v,
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and, at the same time,

Rem, ,(€")] = JR(cost), teR.

Finally, by setting
. [
Riv(x) = z Yk Tvak (%),
k=0

we conclude that
@) |RL0] = VR, xe [-1,1];

(b') thereare | +v + 1 points xje [-1,1] at which R, takes alternating values
equal in the absolute valueto /R(n; ), respectively.

Thus, R, isindeed asnake for the pair of functions —/R and ++/R.

Remark 2.2. Theorem 2.13 enables one

(i) to construct the polynomials A,, B,, C, and D, appearing in the Mar-
kov-L ukacs theorem (Theorem 2.11) in the explicit form;

(it) tofind, in the explicit form, the polynomials of “close-to-the-best” approximation

for numerous important functions (such as arctanx, In(1 + x), (1 +x)*, etc.) en-
countered as solutions of linear differential equations with polynomial coefficients
(see [Dzyadyk (1974)] , etc.).

3. Chebyshev polynomials

The so-called polynomials least deviating from zero or the Chebyshev polynomials can be
regarded as a remarkable example of the application of Theorem 2.13 (for P,(x) = 1)
and the Chebyshev theorem (Theorem 1.2).

For the function f(x)=x" by P,:_l we denote the polynomial of its best approxima-
tion of the (n— 1)th degree. Then, for any polynomial B,_; of degree n—1, we can al-
ways write
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H f- Pftle[—n] < H f - Pnle[—Ll]'

Thisimpliesthat the difference x"— P;,l(x), i.e., an algebraic polynomial of degree
n of theform

X"+ axvl+ o+ &, (3.1)

takes the least value (in norm) on the segment [-1, 1] as compared with all other alge-
braic polynomials of degree n whose leading coefficient is equal to 1. Therefore, this

polynomial is called the nth degree polynomial least deviating from zero on [-1, 1]. It
is possible to show that

X+ a4 oa = ZTl—l cosnarccosx, Xxe [-1,1], (3.2
and, hence,
E (D)= [f=RLyf ,, = max |[x"+ax" "+ +ay| = L @)
n-1 =111 7 xerLy on-1
Indeed, since
n n
gnt | g-int (cost+\/coszt—1) + (cost—\/coszt—l)
cosnt = = ,
2 2
by setting cost = x, t = arccosx, xe [-1, 1], wefind
! n ! n
%cosnarccosx: 2—1n[(x+\5x2—1) +(x—\s“x2—1) ] (3.3)

Expanding the binomials, we arrive at a polynomial of degree n with coefficient at
the leading term equal to 1 because

jjm COSnarccosx -y, 1 [(1+\/1—1/x2)n +(1—\§1—1/x2)n] =1 (34

xoeo  207LxD X—>o0

By virtue of (3.2), for al x e [-1, 1], this polynomial takes absolute values not
greater than 1/2" 1 and, at the sametime, at the (n—1)+2 = n+1 points
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T
Xg = €os0, x; = PARRE Xn = COST,

the polynomial alternately takesthe values +1/2"1. This means that, anong all possi-
ble algebraic polynomials of degree n— 1, the function x" isindeed best approximated
by apolynomial P, ; suchthat

1
X' = Pg(X) = -1 GOSN arccosX.

According to Theorem 2.5, this polynomial is unique.

Definition 3.1. A polynomial of the degree n
_1 2 n 2 n
COSN arccosx = 5 [(X+\5X —1) + (X—\sX —1) ] xe [-1,1], (3.5)

is called the nth Chebyshev polynomial and denoted by Tn(X).

Since the right-hand side of equality (3.5) isdefined for all x e (-, =), is positive
for x> 1, andits parity coincides with the parity of the number n, in view of the identity

a2t 1) a2t 1)
et g nt (cosht+\scosh t—l) + (cosht—\scosh t—l)
coshnt = > = > ,

we conclude that the equality

T (X) = % [(x+\s’x2 —1)n + (x—\fxz—l)n] = (sgnx)"coshnarccosh |x| (3.5)

holdsfor al values of x outside the segment [-1, 1].
The Chebyshev polynomials have numerous remarkabl e properties. In what follows,
we present only the most significant features of these polynomials.

1. A drawback of the presented procedure of finding the polynomial least deviating from
zero is that we simply check the validity of equality (3.2). To obtain this equality in a
natural way, we note that, by virtue of the Chebyshev theorem, the absolute value of
polynomia (3.1)

Th(¥) = x" + aIxn_l +oo+a = T (31)

2n—l
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must beequal to E ; :=E_ _ ;(X) aatleast (n—1)+2=n+1 different points x.
Since the derivative of this polynomial 'fn’ is a polynomial of degree n — 1 and,
hence, has at most n—1 zerosintheinterval (-1,1) and Ti(x;) =0 foral x;e
(-1,1), thecollection of points x; containsexactly n—1 pointslocated in the interval
(-1,1) and exactly two points located at the ends -1 and +1 of the interval [-1, 1].

Therefore, the polynomial 'I:r{ must satisfy the identity
=2 2 _ Yz 92, 2
~TA(x) + EXq = > [Ta(0)] " (-x*+1), (3.6)

both sides of which are polynomials of degree 2n with leading coefficients equal to -1,
theidentical zeros —1 and +1, and n- 1 double zeros Xje (-1, 1).
We now rewrite relation (3.6) in the form
T S L
VERL TR0 J1-x2

Integrating this equality, we obtain

T.(X
arccosM = tarccosx + C,

n-1
T,(x) = E,_jcos[£narccosx + C]
= E,_,[cosC cosn arccosx + C ¥ sinC sinn arccosx].

Since 'f,{ is a polynomial, we conclude that sinC = 0" and, hence, cosC =+ 1.
On the other hand, in view of relation (3.4), we have

lim (x"cosn arccosx) = 2" 1,
X—>o00

T Since

n-1 n-1
snnt = sintZockcoskt = sintZBkcost,
k=0 k=0

. . . / n-1 .
where o, and B, arecertain numbers, the expression sinnarccosx = V1- xzz‘kioﬁkxk isnot a

polynomial.
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Hence, by using relation (3.1) and thefact that E,_; >0, weconcludethat cosC = +1
and E, ;, = 1/2"1,

2. (a) Differentiating identity (3.6) k times (k=1,...,n-1), wereadily get

(1) T,V - (2k-xT0 + [ - (k-12]T* V) =0, (37

In view of the fact that these equations are uniform, the Chebyshev polynomials
Tn(X) = cosnarccosx also satisfy these equations. Thus, in particular, for k=1,
we see that the polynomials T, satisfy the following differential equation:

(1-x3)y”—xy’+ 2y = 0. (3.8)

(b) By induction, relation (3.7) yields the following equality required in our subse-
guent presentation:

2(n2 ~12)(n2 - 22)...[n2 - (k- 1)?
T = n?(n )(n (Zk_)l)”[n ( )]’ K=1..n 39

(c) Representing, in view of relation (3.1), the polynomial T, intheform
Tn(x) = cosnarccosx = 272X+ a,x 1+ .+ a,

and substituting this expression in equality (3.8), we can specify all numbers a,
by the method of undetermined coefficients. Asaresult, after necessary transfor-
mations, we arrive at the following explicit expression for T,(X):

(n/2] « N M=K\ o 0ok
Ta¥) = Y (-1) ﬂ( k )2 o o
k=0

3. Fordl k=0,...,n, weaways have
\T,ﬁ‘”(x)\ < T, xe[-1,1] (3.12)

Indeed, since T,(x) = cosn6, where 6 = arccosx, we have
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T/(x) = n?ninez = nSNN® = 2n[cos(n-1)0 + cos(n-3)0+...]
y1-X sin®

and, hence, by induction,

n-k
T = Y A, cosje,
=1

whereall A; =A;(k) > 0. Thisimpliesthat
k

TR| < Y= TO.
j=1

4. Thefollowing recurrent relation istrue for the Chebyshev polynomials T, :
To(X) = 2XT,_1(X) = T_2(X), n=23.... (3.12)
Its validity immediately follows from the equality
cosnB + cos(n—2)0 = 2cosO cos(n-1)6.

Inview of thefact that T,(x)=1 and T,(x)=X, by using (3.12), we consecutively
obtain

T,(x) = 2¢ -1, Ty(x) = 4x3-3x, T,(x) = 8*-8x%+1,
To(X) = 16x° — 20x3 + Bx, Tg(x) = 32x% — 48x* + 18x% - 1,
T,(X) = 64x7 — 112x° + 56x3 — 7x,  efc. (3.13)

5. Since

2] T00 g - 2 ] oo karcoosx

T
dx = gj cos?kede =1 (3.14)
T T 0

/ 2 2
1 vl=x Ty Vv1-x

and, for j #Kk,
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} TOOT) o T s _ ,
——————dx = f cosj6 cosk6do = 0, (3.14)
-1 V1- X2 0
the system

To(X), T(X), ..., T(X) (3.247)

is orthonormalized by the weight 2(1 - x?)"¥?/n onthe segment [-1, 1].

4. On the best uniform approximation of continuous functions
of complex variable

In the present section, we show that the principal results obtained in Sections 1 and 2 ad-
mit a generalization to the case of approximation of complex-valued continuous functions
f defined on aclosed bounded set ¢ in the complex plane. Since the existence of the
polynomial P,f of the best approximation for agiven function f follows from Theorem
1.1” and the problem of uniqueness of this polynomial is completely solved by Theorem

2.6, wefirst prove the Kolmogorov theorem which, by analogy with the Chebyshev the-

orem 2.4, gives necessary and sufficient conditions for a polynomial Prf to be the poly-
nomial of the best approximation of degree n for afunction f defined on .

After this, we also briefly discuss the following problems:

1. Lower estimates of the best approximation of a given function by polynomials of a
given degree.

2. Determination of the minimum subset Ey C ¢ for which the value of the best
uniform approximation is equal to the value of the best uniform approximation in the en-
tireset .

3. Determination of an analog of the rule of alternation of signs of the difference f -
R, atthe (+)- and (—)-points (in the Chebyshev theorems, etc.) in the case of approxima-
tion of functions of complex variable.

4. Approximation of abstract functions on compact sets by elements of convex sets.

Definition 4.1. If a continuous function f and a (generally speaking, generalized)
polynomial B, are given on a closed bounded set M, thenany point zje I
such that the following equality is satisfied:



52 Chebyshev theory and its devel opment Chapter 1
| f(z0) - Pu(z0)| = || f - PnHﬂ))e

iscalled an e = e(P,)-point (for the difference - B,).

4.1. Kolmogorov theorem
Theorem 4.1 [Kolmogorov (1948)].5 Let

®g, P1,---, Pp 4.1
be n+ 1 fixed continuous functions given on a closed bounded set ¢ and let f be

a continuous function approximated by generalized polynomials P,(z) = P,(¢}; Ci; Z),
of the form

Py(2) = Y, ckok(2). (4.2)
k=0

Then, for a polynomial Pr: = ZE:O Ckpk to be the polynomial of the best uniform
approximation of the function f in a sense that

|f-P

m - ian I = Pl

it is necessary and sufficient that the inequality

min Re{Pn(z)[f(z)— P,f(z)]} <0 (4.3)
zeE

betrueintheset E = E(P,:) of all e = e(P;)-points from M for any polynomial
P,(z) of theform (4.2).

Proof. Necessity. Let P,: be a polynomial of the best approximation for the function
f. Assume the opposite, i.e., that there exists a polynomial B, satisfying the following
inequality opposite to (4.3):

rzr;ig Re{Pn(z)[f(z) - Pr:(z)]} >c>0. (4.9)
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In this case, by virtue of the fact that the set E is closed and bounded, inequality
(4.4) istrue, for some & >0, asointheset Es D E of al points from ¢ each of
which is located at a distance smaller than & from the set E. Thus, clearly, the set
WM\ Es isclosed. We now write

max [f(2) - Pi(@| = E,,  max |f(@ - R(2| = E,
ze Il zeM\ E;

E,— E, = h, (4.5)

. c h }
max |P(2)l = M, miny— — 3 = A.
P IFa(2)] {MZ; 2M

Note that the numbers h and A are, clearly, positive. Further, we construct a poly-
nomial

Q,= R + AR, (4.6)

and show that this polynomial approximates the function f better than the polynomial
R, in contradiction with our assumption. Indeed, for any ze Eg, in view of relations
(4.4) and (4.5) and the fact that the equality w, + Wy = 2 Rew, is true for any complex
number w,, wefind

1@ - Qaf = [t@-R@-AR@][f@-R@-1RO]

1@ - R - 22Re[R@[f@ - R @]} + 22|P@f

IN

E§—2kc+k%M2: E2 - Ac < E%;

Atthesametime, if ze I\ E5, then, by virtue of relations (4.6) and (4.5), we get
12 - Q@] < |[f@-R@|+ LR

h h

sEr’,+mM:En—§<En.

Hence, for dl ze I, weobtain
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1@~ Qi@ < Eq = max |12~ R(2)

in contradiction with the definition of the polynomial P,: .

Sufficiency. Assume that a polynomial P,: approximating the function f possesses a
property that inequality (4.3) is true for any polynomial B, of the form (4.2). Let us
show that Prf isthe polynomial of the best approximation for the function f. Indeed, if

Q, isan arbitrary polynomial of theform (4.2) and z, isapoint from E for which the
following inequality istrue:

Re {[@u20) - B (@) ][ f(z0) - R (z0)]} < 0

(here, the role of the polynomial B, is played by the polynomial Q- R)), then we
conclude that, at the indicated point,

| f(20) - Quz)f = | F(20) — B (20) - [ Qu(zo) - B (20) ]|

| f(z0) - Fi(20)[
- 2Re{[Quz) - R @) || f(2) - R (20|}

+ | Quz) - Rz

[\

N
max ‘ f(2) - Pn(z)‘ .
zeE

This means that the polynomial Pn* is the polynomial of the best approximation for
the function f. Theorem 4.1 is proved.

4.2. Examples of application of Theorem 4.1

Example4.1. A polynomial Pr:_l(zo) =0 gives the best approximation of the function
f(z)=2" defined in the unit disk |z| <1 among all algebraic polynomials of degree
n-1.
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Indeed, note that therole of theset E is, in this case, played by the unit circle E =
{z: |z| = 1}. Hence, for any polynomial B,_; of degree n—1, the product

P2 f@-R..@| =P, (22" (4.7)

possesses the following property: On tracing the unit circle E by the point z in the posi-
tive direction, the argument of the factor z" decreases by 2nt and the argument of the
factor P,_1(z) increasesby at most 2(n— 1) (since B,_; has at most n—1 zerosin-
side E) and, thus, the argument of product (4.7) decreases by at least 2n. Therefore, by
continuity, this implies that the real part of product (4.7) is nonpositive at at least one
point zy € E (this happens at a point z,, where either the argument of product (4.7) is

equal to m+2kn, k=0,1,-1,..., orthisproduct is equa to zero).

Example 4.2 [Al’per (1959)]. For afunction

f(z) = i, la| > 1,
Z—a

defined in the unit disk |z| < 1, we chooseapolynomial B, of degree n and a number
Y such that the following equality istrue:

_(7— * _maoN
1 Pr:(z) _ 1-(z-a)R, (2 _ Yn(l az)z 7 <1, (4.9)
z-a z-a z—-a

and prove that the polynomial Pr: constructed as indicated above is the polynomial of the
best approximation for the function 1/(z—a). To this end, we show that the following
inequality istrue for any polynomial B, of degree n:

min Re{Pn(z)[la— Pr:(z)” = min Re{Pn(z)[yn(l_Zaz)zn” <0, (49
zeE -

zeE Z— a

where E isthe set of points |z| <1 at which the difference 1/(z-a) - P, (2) takesits
maximum absolute value for |z| < 1.

Since the function (1- az)/(z—a) mapstheunit circle |z| <1 and its boundary
|z| =1 onto themselves, expression (4.8) takes its maximum value equal to |y,| for
|z| =1, and, hence, therole of the set E is again played by the unit circle |z| =1. In

view of the fact that the argument of the factor (1-az)z" /(z- a) decreases by 2(n+1)r
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on tracing the unit circle E in the positive direction [since all n+ 1 zeros of the product

(1-az)Z" lieinsidethe unit circle and the zero of the difference z — a lies outside this
circle] and the argument of the polynomial P,(z) increases by at most 2nm, we
conclude that the argument of the expression in braces in relation (4.9) decreases by at
least 2r. After this, in exactly the same way as in Example 4.1, we conclude that in-
equality (4.9) istrue.

Note that, as a result of the multiplication of the left- and right-hand sides of equal-

ities (4.8) by z—a and passing to thelimit as z— a, weobtain y, = [a"(1-a[?)]" ™.
Hence, for the value of the best uniform approximation of the function (z-a)~1, we can
write

1 1
—-R(® e
" lal"(Jaf® -1)

En(i) = min max - = |y,] = (4.10)

z-a R, |7<1

Example 4.3. Let us show that the Chebyshev theorem (Theorem 1.2) can be fairly
simply derived from Theorem 4.1.

Necessity. In the notation used in the proof of Theorem 1.2, we now show that the seg-

ment [a, b] contains at least one system of n+ 2 different e-points X, satisfying the
rule of alternation of signs, i.e.,

ra(Xy) = =h(Xo) = oo = (D)™ (X00)-

Indeed, if the maximum number of e-points (i.e., points from E) with aternation of
signsisequal to m+ 1, where m+ 1 < n+ 2, then we can define B, by using relation
(1.13) for m>1 and setting Py(x)=1 or -1 for m=0 and, as a result, construct a
polynomial of degree not greater than n which has the same sign as the difference f (x) -
Pn*(x) foradl xe E (i.e, at al e-points) and, hence, satisfies the equality

min Re{Pm(x)[ f(x)—Pg(x)]} = min {R,0[f0 - R 0]} >0,
XeE xeE
i.e., wearrive at acontradiction.
Sufficiency. Assume that the polynomial P, is such that the difference f— P, takes

its maximum absolute value on [ a, b] with consecutive alternation of signs at n+ 2
points x e [a, b]. Then, in view of the fact that any polynomial P.(x) # 0 of degree
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n can consecutively take values of different signs on the segment [a, b] at at most
n+1 points X, we conclude that

min Re{Pn(x)[ f(x) - P,j(x)]} < mkin{Pn(xk)[f(xk)— R(x)]} <o.

This means that P,: is the polynomial of the best uniform approximation for the
function f, which completes the proof of the Chebyshev theorem (Theorem 1.2).

Note that if we use Theorem 2.3 and its corollary, then the Kolmogorov theorem also
implies, in exactly the same way, the other Chebyshev theorem (Theorem 2.4).

4.3. De-la-Vallée-Poussin-type theorem

We now show that it is possible to obtain an analog of the de la Vallée Poussin theorem
(Theorem 2.8) on the lower bound of the value of the best approximation E, of afunc-
tion by using the reasoning from the proof of sufficiency in Theorem 4.1.

Theorem 4.2. If, for a function f continuouson ¢, a polynomial Q, of type (4.2)
is such that the inegquality

mig Re{R@|f(®-Q@]} <0 (4.12)

holdson a certain subset E C 9t for any polynomial B, of type (4.2), then the value
of the best uniformapproximation E,, of the function f on ¢ by polynomials of de-
gree n satisfiesthe inequality

E, = min max | f(2) - P,(2)| = min|f(2)- Q,(2|. (4.12)
B, zeM zeE

Proof. By z, we denote any point from E at which the following inequality is true:
Re[ Py (20) - Qv(20) ][ () - Qu(@0) | < O,

where Pr: isthe polynomial of the best approximation for the function f on & This
yields

B> | f(z)- B (@)|” = |(20)~ Qu20) [ Pa(20) ~ Qa2 ||?
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| (20) - Qu(20)|? - 2Re{[ R (20) - Qu(20) |[ FZ0) - Qu(20) |}

+ |Pr(z0) - Qu(@)|

> | f(z0) - Q@) |? + | R (z0) - Qu(2)[*
> | f(zg) - Quzo)|? 2 min 1f(2) - Q@ F,

as required.

4.4. Characteristic sets

The theorems presented in what follows mainly without proofs (the reader is referred to
the monograph [Smirnov and Lebedev (1964), Chapter 5, Section 3]) solve problems 2
and 3 formulated at the beginning of the present section.

For the the sake of simplicity, in the remaining part of the section, a closed bounded
set of points of the complex planeis denoted by .

Definition 4.2. For a complex-valued function f continuous on ¢ which is not a
polynomial with respect to a system of functions {(pk}Ezo, n=2012..., continu-
ous on Ik, acharacteristic set of order n with respect to this system of functions is
defined as an arbitrary finite subset Ey C I, Eq=Ey(n), with the following proper-
ties:

(i) the value of the best uniform approximation of the function f by polynomials of
the form

n
P = Y, ok
k=0

on E, isequal to the value of the best uniform approximation of this function on the
entire set I;

(i) onany subset E; from E, that does not coincide with E,, the value of the
best uniform approximation of the function f is strictly smaller than its value on Eg,
and, hence, on k.
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Remark 4.1. The fact that, for any function f continuouson )¢, there exists at least one
characteristic set is established in proving the following theorem:

Theorem 4.3 (on the existence of characteristic sets [de laVallée Poussin (1911)]). As-
sume that, for some integer n>0, a systemof n+ 1 continuous functions {(pk}ﬂzo is

given on a set ¢ C C formed by at least n + 2 points. Then, for any continuous

function f on ¢ different from a polynomial of degree <n of theform Z::o CPy:

(i) there exists at least one characteristic set Ej = Ej(n) of order n;

(i) every characteristic set E, of order n is formed by a finite number m=
m(Egy) of points such that

nN+2<m<c<2n+ 3, (4.13)
if {x}p_o isaChebyshev systemor

1<m<2n+ 3 (4.13),
otherwise.

To prove this theorem, we need the following well-known Helly theorem on the in-
tersection of convex sets. Here, we present only the statement of this theorem. A fairly
simple proof of the Helly theorem can be found, e.g., in [Krein and Nudel’man (1973),
p. 46).

Theorem 4.4 (on the intersection of convex sets [Helly (1936)]). For a certain natural
m, let L, be areal m-dimensional linear normed space containing a collection K
of convex closed sets formed by at least m+1 elements Q,. If any m+1 sets

Q e K have at least one common point and K contains at least one system formed by
afinitenumber n of sets Q; € K, i =1, 2,..., n, whose intersection is bounded, then

there exists at least one point common for all sets Q € K.

Proof of Theorem 4.3. We prove Theorem 4.3 only for the most important case where
{‘Pk}E:o isa Chebyshev system. First, we note that any polynomial given by the equal-
ity

Ph(2z) = Py(z o) = z ((Xj + iBj)(Pj(Z), (4.14)
j=0
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where o; and B; arereal numbers, can be represented in the form
n n
Po(2) = 3, a;0;(2) + 3 Bjwj(2), (@) := i0(2) (4.14)
j=0 j=0

and, hence, the set of all possible polynomials of type (4.14) with ordinary norm

[Pall = max [Ry(2)]
ze

can be regarded as areal linear normed space of dimension m = 2n+2 spanned by the
system of functions @g, @1, ..., ¢, Vg, Yy, ---» V,,, and viceversa

To prove Theorem 4.3, we assume the opposite, i.e., that, under al conditions of the
theorem, there existsafunction f continuouson 9¢ for which al finitesets {z, z,, ...,
zp} C M formed by at most 2n + 3 points (p < 2n+ 3) are not characteristic. To ar-
riveat acontradiction, forany z,, ..., z,e M, weset

E,?(f;zl,zz,... 1 Zy) 1= inf  max ‘f(zj)—Pn(zj)

B, 1<j<p
(4.15)
sup En(f:7,....2) 1= Eq p(f).
zle‘lR;...;zpeilTE
Further, for any p <2n+ 3, we note that, on the one hand, the inequality
En(fiz,....2) < E(f) = min max |f(2) - P2, (4.16)
P

m
Y zeM

is true according to the assumption and, on the other hand, every function EX(f; Z,...,

z,) is continuous on the compact set N x W x...x P and, hence, reaches its upper
p times

), z’j* e I¢. Thismeans that the following inequalities

*

bound at a certain point (7, ..., Z,
aretrue:

En(f) < Epjaa(f), j=12..,20+2,
(4.17)
Er*1,2n+3 = E;,2n+3(f) = Er?(fa211~~~125n+3) < En(f)-
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For any fixed & e I, we now introduce aset Q(&) of al possible polynomials
P.(; ¢) each of which deviates in the absolute value from the function f at the point &

by at most En,2n+3:

QE) = {Pu(z ¢): | &)= P& 0)| € Eponsal- (4.18)

By direct verification, we can show that each set Q (&) is nonempty, closed and con-
vex. Moreover, by virtue of (4.15), we conclude that the intersection of any 2n + 3 sets
QE, &e M, i=12,..,2n+3, isnonempty and contains, e.g., a polynomial R?
satisfying the equality

max ‘f(E.»j)—Prg)@j)‘ = Eg(f,81 &2, Eanea)-

1<j<2n+3
The existence of this polynomial follows from the Borel theorem (Theorem 1.1).
To apply the Helly theorem to the convex sets Q (&) defined in area (2n + 2)-di-

mensional linear space of polynomials of the form (4.14)—(4.14"), it is necessary to show

that there exists at least one finite system of sets Q(&) whose intersection is bounded.

To do this, wetake arbitrary n+ 1 different points £2,&9,...,£0,; in 9 and consider

the intersection  Q(E9) N ... N Q(&,4) = Q% Since, by virtue of (4.18), each poly-
nomia P,(-; ¢)e Q° isbounded at all points &?, ie,

R(E) )| < [Ru(E) o) - F(ED)| + | F(E7)] < BTy + | f

by using the interpolation formula (4.18), we conclude that each polynomia P, (-; ¢)e€
Q0 and, hence, theentire set Q° isindeed bounded. Therefore, by the Helly theorem,
we conclude that there exists at least one polynomial (point) P (-, @) containedin all sets
Q(&), & e M, suchthat, according to relations (4.18) and (4.17),

‘f(‘t:) - Pr:(&,(P)\ < E;,2n+3 < En(f)

foral & e M, whichisimpossible.
Theindicated contradiction proves that the characteristic set exists and consists of at

most 2n + 3 elements. The fact that the characteristic set of the T-system {o; }?z o Ccon-

tainsat least n+ 2 points follows from the fact that, for any set {£,, €5, ..., ip} with
p <n+ 1, according to the interpolation formula (2.11), we have
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EN(fi&;, &0, 08p) = 0 < Eq(F).

This proves Theorem 4.3 (in the case where {g; }?: is a Chebyshev system).

0

Example 4.4. Inthe case of approximation of the function f(z)=z* by algebraic poly-
nomials P5 of the third degree on thedisk It = {z: |z| <1}, therole of acharacteristic
set can be played, e.g., by a set of eight points E, : = Uzzo{e”"”“}. In this case,

I33°(z) =0 isthe polynomial of the best approximation of the third degree for the func-
tion z* bothon I andon E, C A and, hence,

inf max ‘z"’ - P3(z)‘ max ‘24 - Pg(z)‘
P;(2) zeM ze

max

max. (eikn/4)4_P§(eikn/4)‘ -1

Indeed, if there exists a polynomial P3*(z) (#0) of the third degree such that
m% ‘ f(2) - Pg(z)‘ < 1 and, in particular,
ze)

max DX = P} (eikn/4)| <1

0<k<7

ikn/4\4 * ( jkn/a | _
(eln ) _P3(eln )‘ = max
then the conditions sgn T§(kn/4) =(-1 k=0, 1,..., 7, hold for the trigonometric
polynomial T (t) : = Re B (€") # 0. Thismeansthat the polynomial T, (t) of the third

degree must have at least seven zeros on [0, 2rt) but, by virtue of Theorem 1.3, thisis
impossible since

T, (t) = ReR(e") = 0.

At the sametime, for any k;=0, 1,...,7 (for the sake of definiteness, we assume
that ky=4), onthesubset Ej = Eq\ {€*0™'*} C By, by setting

| | -2
Ps(ko 2) = —81(ze"k0“/4+a+82)3e"‘0“, a:= T\

for sufficiently small positive €, and €,, we readily conclude that
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‘24 — Py(ko, z)‘ <1 ze E.

Similarly, we can show that, in the case of approximation of the function f(z) = z3
by algebraic polynomials P, of the second degree on the set I = {z: |z| <1}, the set

ik211:/7}6

of seven points E : = {e KeO is characteristic and, in addition, the polynomial

P5(Kko, -) should be replaced (in the same notation) by a polynomial

- 2
Py(ky 2) := &4 (ze ™% 1 azte,),
where

i 31
snsg
a:= —2&,
sn?®
E.Ya Remez and V. K.lvanov proposed necessary and sufficient conditions for the

polynomial P,: of the form (4) to be the polynomial of the best approximation for a
function f continuouson Mt in the form different from the conditions used in the Kol-
mogorov theorem (Theorem 4.1) and sometimes more convenient for applications.

Theorem 4.5 [Remez (1953), (1957); Ivanov (1951), (1952)]. I n order that a poly-
nomial Prf of the form (4.2) be the polynomial of the best approximation for a function
f continuous on ¢, it is necessary and sufficient that there exist a set {z}", 1 <
m<2n+3, suchthat |f(z)-Pr(z)|=] @ - P
k=1, 2,..., m suchthat the equality

and positive numbers  §,,

M

>, 8] (@0~ Ri(@0 | Py(@0 = 0 (419
k=1

holds for any polynomial B, of the form (4.2).
Remark 4.2. Since the equality
f(z) - Rz = pson| f(z0- R0,

where p = Hf - P;: H\m istrueforany k=1,2,..., m condition (4.19) can be rewrit-
ten in the following equivalent form:
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Y. Seson| 120 - Fi(@0 |Py(z0 = 08>0, (419)
k=1

In the case of approximation of real continuous functions f on the segment [a, b]
by algebraic polynomials P,(x), by virtue of the Chebyshev theorem (Theorem 1.2), the

characteristic set Eg(n) consistsof n+ 2 points X, and the following equalities hold
at these points:

g f(xk)—Pn*(xk)] = sn[f(x)-Ri(x)] = +(1% k=12..,n+2

These equalities reflect the so-called rule of alternation of signs.
In the case of approximation of continuous functions on closed bounded sets ¢ of

the complex plane, the behavior of the quantity sgn [ f(z)- P, (zk)] is described by the
following theorem obtained in the process of subsequent development of Theorem 4.5:

Theorem 4.6 [Videnskii (1956)]. In the case of approximation of a function f conti-
nuous on A, in order that numbers {Sksgn[ f(z) - P,f(zk)]}rknzl, where P, is the

algebraic polynomial of the best approximation of the function f of degree n and
n+2<m< 2n+ 3, satisfy conditions (4.197), it is necessary and sufficient that there
exist an algebraic polynomial U,,_,_»(z) of degree m—n -2 such that

Um—n—z(zk)

" k=1,2,...,m, (4.20)
0'(%)

§cson| (20 - Ri(@0] =
where
m
0@ = [] (z-20.
k=1

5. Approximation of functions on sets
of finitely many points®

5.1. Best approximation of a system of linear equations

Theorems 1.2 and 2.4 (Chebyshev) and Theorem 4.3 (de la Vallée Poussin) show that the
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problem of approximation of afunction fe C on aclosed bounded set ¢ is equivalent

to the problem of approximation of the same function on a certain subset E, C ¢t of fi-
nitely many points (characteristic set). This fact and the problem of approximate con-

struction of the polynomial P,: of the best approximation for a given continuous func-
tion solved in Section 6 reveal the importance of the problem of finding the polynomial
with least deviation from a given function at finitely many points. In particular, it isim-
portant to be able to solve, for any given n=1, 2, ..., thefollowing problems:

1. Find a T-polynomial of the form

n

PaX) = Y coi(X), xe [abl],
k=0

least deviating from agiven real functionat n+ 2 points.

2. Find atrigonometric polynomial T, of degree n least deviating from a given
real functionat 2n+ 2 points.

3. Find a T-polynomial of the form

Pn(z) = 2 Ck(Pk(Z)
k=0

(with complex coefficients) least deviating from a given (generaly speaking, complex)
function at m points of the complex plane, where n+2<m<2n+ 3.

Consider an incompatible system of equations
g taps ..t a4z, = wp,

12y t At 7, = W,, (5.1

A2y + Ay * oot B2, = Wiy

all coefficients a,, and freeterms w, of which are, generally speaking, complex num-
bers.

Definition 5.1. In the set of points z of the form z=(z, z,, ..., 2z,), apoint z* =

(#,2,...,7,) iscalled the best approximate solution (or simply the b.a.-solution) of
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system (5.1) if it possesses the following property:

max ‘(a,-,z*)—wl‘ = mnmax |[(&,2-wW| i=12..,m (5.2)
[ z
where a = (&;,8,,...,a,) and (&,2) = a;z +a,2z + ... + &,z,. The quan-
tity
p* = p'(Z) = max |(@, Z) - w| (5.2)
I

is called the value of the best approximation of system (5.1).

It is easy to see that all problems of finding (generally speaking, generalized) poly-
nomials of the best approximation of functions different from polynomials on finite sets
of points are reduced to the solution of systems of the form (5.1). Thus, e.g., the problem
of finding the polynomial

n
P, = Y, Ckok
k=0

least deviating from a given function f at points z, i = 1,2,..., m, isreduced to a
system of the form (5.1) if we set

0(Z) = & & =3 ad f(3) = w.

Definition 5.2. Any point 22 equidistant from the right-hand sides of system (1) in a
sense that

‘(ai, ZO)—W_L‘ = ‘(az, ZO)—WZ‘ =...= ‘(am, z°)—wm‘ (5.4

is called an equidistant point of system (5.1). The common value of these quantities is
called the A-distance between the point 20 and the point w = (W, W,, ..., W,).

Itiseasy toseethat, for m=2, n=1, and a;; =a,; =1, any equidistant point z is
located on the perpendicular line drawn through the middle of the segment connecting the
points w; and w,, i.e, inthe geometric locus of points equidistant from the points  w;
and w, intheordinary sense.

The next assertion (Theorem 5.1) gives the complete description of all equidistant
points of the simplest system (1) containing n+1 equations. The importance of this
theorem is explained by the facts that the b.a.-solution of system (1) coincides with an
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equidistant point of the system (or with one of its subsystems) and that the problem of
finding equidistant points of system (1) is honlinear.

Theorem 5.1 [Dzyadyk (1974c)]. Let
(8,2) = W, (5.1)
& = (s ) Z2=(4,2,...,%), 1=12,...,n+1,

be an incompatible system of n+ 1 equations of the form (5.1). Assume that, asa re-
sult of the removal from this system of an arbitrary equation

(aj,z) = a4+ .t Az, =W,

the determinant D! of the subsystem obtained as a result differs from zero. The solu-
tion of this subsystemis denoted by 2/ = (4, 2},....2}), i.e, (a,,2)=w,, v =].
Then

(i) forany j = 1,2,...,n+1, thefollowing equality istrue:

(_1)j+1 n+1

(@,2) - w = =2 3 (-1'w,D", (55)
v=1
where
%1 & ... &
_ 11 12 - Gan
D! = ; (5.6)
Q11 12 - Gjyan
8n+11 @n+12 -+ ngan

(ii) for all real numbers k;, j = 1,2,...,n+1, suchthat
n+1 S
Y |Di[ € # o, (5.7)

j=1

the point z given by the formular:

it is easy to see that each component of this point for variable k; representsan (n + 1) -dimensiona torus.
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n+l ik: n+1 J J Ik
7 " 2,|D|Ze
zZ = 58
P 2 1@ 2 -w, ‘ZM( 1)'D‘W‘ 58)
where
n+1 ok ‘2””( 1 Dlw; ‘
, 5.9
z(a’z) W‘ znﬂ‘DJ‘ ( )

is A-equidistant for system (5.1) and the quantity |p| is the A-distance between the
point z and the point w;

(iii) vice versa, every A-equidistant point z of system (5.1”) admits representation

(5.8) for somereal k;; specifically, the numbers k; can be expressed via the point z
by the formula

kj = agl(a,2) - w] - agl(y,2) - w] (5.10)
and the number p computed by using relation (5.9) for these k; is positive.

Proof. (i) Note that the coordinates zﬂ( of the solution Z are given by the formula

&1 - Bgk-1 Wy Y1 - n
11 - Foak-1 Wj2 Fogk+r - Goan
At - Faak-1 Wjer o Gpak+r o Gaan
_ 11 - Gniak-1 Wnir o Snsik+l - Bnsin
z =
&1 - Bgk1 S TS R 8n
Q11 - Foak-1 ik ks oo Gjan
Q11 oo Aaik-1 etk Fiik+lr - Gjian
811 o Bnpik-1 Bntik Gnslk+l -- 8ngan

nel j n+1 vk i i
_ zvzl,v#-jWVA/k _ zv=lv#—] Wy(=1) sgn(J = V)M (5.11)
= Dl = D! ’ '

where Nk and M‘k are, respectively, the cofactor and the minor of an element &, in
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the determinant DJ. Hence, in view of the facts that
= N
M\Jik - Mj k

and

Ay = (1) sgn(j-v)M) = (=1 TkAY

forany j=1,2,...,n+1, wefind

n+1 i
i J—w = i Zvms e WA w
klajkzk‘j‘klaik DJ -W

(@,7) - w

n+1

19 -
= o XZak X w, (1" TTAY - w
k=1  v=1v#]

(_1)j+1 n+1 n
\% \
ol > CL'w, Y AAK — W

v=1 v#]j k=1

(_1)j+1 n+1
\% v
o Y (-1)'w,DY - w,

v=L Vv#j

_ )t E

= =0 Y (1w, D"
v=1

This proves equality (5.5).

Prior to proving assertion (ii) of Theorem 5.1, we establish the validity of assertion

(iii).

(ili) Let z bean arbitrary point equidistant for system (5.1"). It is necessary to show
that the point z admits representation (5.8) with

k = argl(a,2) - w] - agl(a, 2) - w]. (5.12)

Indeed, since the point z is equidistant, according to the definition, there exists a

number p >0 [this number is positive because system (1) is incompatible by the condi-
tion of the theorem] such that the following equalities hold:
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(8,2) -w, =pb;, j=12..,n+1, (5.13)

where b, = g @2 -l

in theform

. By virtue of (5.12), we can also represent the numbers b;

o = [@:72)- wle® (5.14)
: ‘(aj,zj)—Wj‘ . .

The incompatibility of system (5.13) implies that
&1 & ... & Wy +phy
Gn+11 Gnt12 - Gngan Wn+1+pbh+1
and, therefore,

zn+1( 1) w, DY

- 5.15
PRI o

By virtue of (5.14) and (5.5), forany j =1, 2,...,n+ 1, wecanwrite

i [(aJ,ZJ Wj]eikj _ o n+1 y ikj
bD! = \(a,,z’)— ‘ = (-1) Vzl( 1)"w,D 7\(51,,2’)— ‘

Thus, it follows from (5.15) that

i kg -1
-y | (5.16)
o Eahw)

Finally, to show that the point z admits representation (5.8), we set

n+1 Zj ei Kj
Z:=p (5.8)

I .
- 1‘(&1 z)—wj‘

and provethat z=Z. Indeed, according to the definition of the solutions zj, in view of
theincompatibility of system (1), forall i,j =1,2,...,n+1, weobtain
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(a,2)=w, =i,
_ (5.17)
(8,Z)—-w#0, j=12,..,n+1

Hence, the right-hand side of (5.8") is meaningful.
By using these relations and equalities (5.16) and (5.8") foral j=1,2,...,n+ 1
we find

n+1 Vi LK n+1 ik

(8,27 )€™ w; e
(aJ"Z')_WJ':pZJvi_p Jvi
mleh-wl G ez -w

[(aj,zj) - Wj]eikj _

‘(aj,zj)—wj‘ phy. (5.18)

Subtracting now the left- and right-hand sides of equalities (5.18) from relation (5.13)
term by term, we get

(8,2-7) = 8,(~Z) + 8,(z-2) +...+ a,(Z,~ %) = 0,

Hence, in view of the fact that, e.g., the determinant D"** differs from zero, we
concludethat z,= z,, v=1,2,...,n, and, consequently, z = Z.
This proves assertion (iii) of Theorem 5.1.

(ii) First, we note that the second equalities in relations (5.8) and (5.9) follow from
equality (5.5). By analogy with the procedure used to deduce equalities (5.18), we can
show that, under condition (5.7) (with |p| <), the point z defined by equality (5.8)
satisfies the conditions

S IRV ALY
(8,2) -w, = pb, b = [(aj,z) W,]e

o 2w (5.18)

and, hence, the conditions [(a,2)—w| = [(&, 2)—-W,| = ... = ‘(aml, 2) - Wn+1‘-
Therefore, this point isindeed an equidistant point of system (5.1°).

This proves assertion (ii).

The proof of Theorem 5.1 is thus compl eted.
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Remark 5.1. Generally speaking, the set € of equidistant pointsis not convex for n> 0.
Indeed, for n=1, by setting

ZZ

a7 P 2w P @ ) w,|

ZZ el T

2P w2 A w

Z2

) pz‘(alyzl)—wl‘ * pz‘(azvzz)—wz"

N 1
z = E(Zl+22)a

e )
V@ -w] o @D -w|)

, :( 1 B 1 )‘l
2 @D -w| @) -w

we readily conclude that

. _1 1 _ .
‘(aiaz)_mﬁ_‘ = E‘Pl"‘Pz‘ # E‘Pl—Pz‘ = ‘(az’z)—Wz

i.e., we seethat

z = %(21+zz)e €,
despite the fact that, according to Theorem5.1, z € € and z, € €.
Remark 5.2. Since the quantity

n+1 ik

> o

[
=@y 2h - w |

-1
p:

takes the least valueif and only if e = e = .. = e'*n+1, the best solution z* of sys-
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tem (5.1) and the corresponding A-distance p* of this solution from the point ( wy,
W,, ..., Wy 1) under the conditions of Theorem 5.1 are given by the formulas

7 =p* NP ril D! 7, (5.19)
j= 1‘(8‘ ZJ) Wj‘ j= 1Zn+l .

(5.20)

[ 2w
" [z(aj’zj)—wj} Lo

j=1
By using relation (5.20), we can represent the quantity p inrelation (5.9) in the form

2n+1‘DJ‘
EErD

(5.21)

5.2. General case

L et us now establish the conditions under which the point z* isthe b.a.-solution of sys-
tem (5.1) in the general case.

Definition 5.1°. A point Z* is called the point of local best approximation for system
(5.2) if there exists a number € > 0 such that condition (5.2) holds for this point for

any ze U(Z';¢e) :={z

Definition 5.3. System (5.1) is called irreducible if, for any its proper subsystem, the
value of the best approximation is smaller than for the entire system.

Theorem 5.2 (on the conditions of local best approximation of a system). If, for an in-
compatible irreducible system of equations (in the notation of Theorem 5.1)

(&,z2)=w, i=12..,n+1+k (5.1)
where 1<k<n, thepoint

n+1 Z e' Xl n+1 e

2 = po 2‘(61 = p° ZCZJei, (5.22)
J!

j
Z)- WJ‘ j=1
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1 o n+1 ix0 -1
Cj'_i p :[chej) , (5.23)

ERCEET
is equidistant for a subsystem

(8,2) -w, =0, i=12..,n+1, (5.1)

then this point is the point of the best local approximation of system (5.1) if and only if,
at the point x° := (x{,x3,.... x0,1) € R™ " specifying the point 2 [according to

relation (5.22)], the function
n+1
FOO = F0q %, o %) 1= D, G CC0S(X-%), X, %€ [0,2n), (5.24)
jk=1
possesses a local conditional maximum with the following k constraints:
n+1

D, (X) = Dy (Xy, Xy o Xne1) 1= D, [(AA+ By;By ) cOS(%—X)
ik=1

+ (A ka—AkaVj)sin(xj—xk)] -1=0, (525
where
A =G Re[(a,Z)-w,] and B, :=G Im[(a,2)-w,], (5.26)
v=n+2,..,n+k+1 j=12..,n+1

Remark 5.3. Note that, according to Theorem 4.3 (on cleaning) reformulated for system
(5.1), the characteristic set of any system of the form (5.1) consists of at most 2n+ 1
points and, hence, in view of the irreducibility of system (5.1) only the case of systems
of theform (5.1) with k < n isindeed important.

Proof of Theorem 5.2. According to Theorem 4.1 (Kolmogorov) reformulated for sys-
tem (5.1"), the condition ‘(avzo) - w\,‘ = const mustholdforal v=1,2,...,n+1+k
Thus, by virtue of equalities (5.22) and (5.23) and the definition of the points Z, wefind

2 =12, .n+1

(@2 -w[* = |p°
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and, moreover,

ril[(av- Zj)_Wv] ?

|(aj,2)) - w|

(@ -w[ = |p°f

j=1

n+1 n+1

2 S (Ay+ B Y (A, -iB e
k=1 j=1

2

0% [0,00) + 1] = |p°

, v=n+2,...,n+k+1

Thisimmediately implies that the equations of constraints (5.25) hold at the point x°.
At the sametime, in view of the fact that, according to (5.23),

0|2 0\ |2 A -1
0°F = o000) ( j - Too1

n+1 ix:
z C] e’
i=1

we conclude that, in the presence of constraints (5.25), the function (po)2 (and, hence,

\po\) possesses alocal minimum at the point x° if and only if the function f possesses
alocal maximum at the same point. This proves Theorem 5.2.
Note that

(i) by virtue of the periodicity of the function f in each variable x;, its absolute max-
imum is necessarily local and it is easy to see that the total number of local maximais fi-
nite; therefore, the absolute minimum p* of the function p and, clearly, the b.a.-solu-

tion of system (5.1) can always be found as the solution for which the function p attains
its absolute minimum;

(ii) if we consider solely the equations of constraints (5.25), then we obtain their so-
lution in the form of a set of points x e R™?! specifying, according to relation (5.22), the
set of equidistant points z of system (5.1).

Reformulating Theorem 5.1 for the case of approximation of functions by polynom-
ialswith regard for relations (5.3), we arrive at the following assertions:

Theorem 5.1”. Assume that a Chebyshev system of functions {¢ j}?:o and a function f
aregivenonaset M=1{z,2,...,z,, of different points z;. The values of the
function f on the set ¢ do not coincide with the corresponding values of any poly-

nomial of the form
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n
Pn(z) = Py9;2) = z C 9. (2).
k=0

Then

() forany j = 0,1, ...,n+ 1, the(interpolation) polynomial Pnj(z) = Pnj((p; 2)
whose values coincide with the corresponding values of the function f(z) at n + 1
points z,, v=0,1,...,j-1,j+1,..,n+1 differsfromits value f(z) at the point

z; by the quantity
( )J+1 n+1
Py (z) - f(z) = 2( 1)'f(z,)D", (55)
where
(PO(ZO) (Pn(ZO)
®o(zy_1) .. On(zy-1) P 01 - Pn
DV = =D ; (56,)
Po(Zy+1) - Pn(Zy41) Lo o L1 Lyy1 o D
00(Zys1) - On(Zy41)

(i) for all real numbers k;, j =0, 1,...,n+ 1, satisfying the inequality
n+1 ) )
> |pi|es = o, (5.7)

the polynomial P, given by the formula

_ o R@e” >0 [Ry@e” .
n(Z) p 2 n+1 (58 )
< [Ry(z)—-1z)] ‘2 (-1'D" f(zv)‘
where
n+l ik; -1 z”*l( 1) DJf(z)
S LA
o [Py - f(z)] \2 *|Dl[e"
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satisfies the conditions

P20 - f(@)] = |R@ - @) =...= ‘Pn(zn+1)_ f(2n+1)‘ (=1lpD;  B4)

(iii) vice versa, any polynomial B, satisfying conditions (5.4") can be represented
inthe form (5.8”) for somereal numbers k;, j = 0,1,...,n+1; the numbers k; can
be, in particular, expressed via the polynomial B, by the formula

ki = ag[Py(z)-f(z)] - arg[P;(z)-f(z)]. (5.10)

The number p computed for these k; by using relation (5.9°) is positive.

Theorem 5.3. Assume that a Chebyshev system of functions {¢ j}?:o and a function f
aregivenontheset M =1{z),z,...,z,,} of different points z;. The values of the
function f on the set It do not coincide with the corresponding values of any poly-

nomial of the form
n
Pi(2) = P(9:2) = Y (D). (5.22)
k=0
Then
(i) the polynomial
. n
R = D o2

k=0

of the best approximation of the function f ontheset U in a sense that

e |tz)-R@)| = min, max | f(z) - Ruz)

is defined by each of the following equalities:

n+1 Pnj(z) _ n+1 ‘ Dj ‘

Ri(@ = E(H Y, Y

SR -tz S YD

Py(2), (519)

where, for any j =0,1,...,n+1, P () isa polynomial interpolating the function f
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atn+1 points z,, v=0,1,...,j-1 j+1,..,n+1 and E(f)isthe value of
the best approximation of the function f by polynomials of the form (5.22);

(i) the quantity E(f) can be found by using each of the following relations:

n+l 1
| B 1

n j=0

CE e i) St ey o[t - R

1 i 1 j
pE] 35[0

. (5.20)

where R isan arbitrary polynomial.

We now apply the results established above to a Chebyshev system of functions
{(pk}Ezo on the segment [a, b]. According to Lemma 2.1, for this system, the function

P @1 - O
D =

Xo X .- X
does not change its sign under al possible changes in the locations of the points X,
X, .- » Xn Preserving the order of their appearance. This means that if a < x,< x; <

0o(Xp) Po(X1) ..o ©o(Xn)

Pn(X0) @n(X) - Pn(Xo)

. <X< X1 < b and DY isgiven by relation (5.6"), thenal D" have the samesign.
By using thisremark and Theorem 5.3, we arrive at the following assertion:

Theorem 5.4. Let {¢,}y_, bea Chebyshev system of functions given on the segment

[a b] andlet f beafunction definedat n+2 points x; of this segment such that

as Xy <X <...<X;< X1 < b. Assumethat the values of this function on the set It =

{Xg: X4, -+ Xne 1+ do not coincide with the corresponding values of any polynomial R,
of the form

n
P, = 2 C Oy
k=0

Then, in the notation of Theorem 5.3,

(i) the polynomial
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Pr¥) = D Gry(x)

k=0

of the best approximation of the function f on )¢ is defined by each of the following
equalities:

. n+1 P (X) n+1 ‘Dj ‘
PX) =E(HY — 2 =Y ———Pix); (519)
" ZE) | Ry (X)) = (%)) EE) Zzzt DY | J

(ii) the value E(f) of the best approximation of the function f on ¢ can be
found by using each of the following formulas’:

n+1

n+l -1 D! DY f(x)
j=0 ‘PHJ(XJ) (XJ)‘ 2j=0 D ‘

6. Algorithms of construction of polynomials
of the best approximation

In most cases, the problem of finding, for a given continuous function f, the polynomial
of its best approximation P,f(f;-) of theform

P.() = Y, ckok() (6.)
k=0

is unsolvable. Therefore, the problem of algorithms aimed at the construction of poly-
nomials P (f;-) arbitrarily close to the polynomial of the best approximation Pn*(f; )

for agiven function fe C isof significant practical and theoretical interest. There are
several algorithms of this sort.

In the present section, we describe the Remez algorithm,8 which proves to be especi-
aly convenient in many aspects. This agorithm is generally accepted and used in prac-
tice for the approximate representation of continuous functions by polynomials. In what
follows, we mainly deal with the theoretical analysis of the Remez algorithm. Various
practical problems connected with the application of this algorithm are discussed in [Re-
mez (1969)]; see also [Meinardus (1964)] and [Laurent (1975)].

We now give a description of the Remez algorithm for the case of approximation of a
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function f(x) continuous on the segment [a, b] by polynomials of the form (1) con-
structed according to a Chebyshev system of functions {‘Pk}ﬂzo:

Step 1. Consider an arbitrary system’ of n+ 2 different points x(” on the segment
[a b]:

a< xP < xP << xP<xB <h (6.2)

By using Theorem 5.4, we construct the polynomial Prﬁl) of the best approximation

(1)}n+l

of the function f at the points of the system {xk k=0 Further, in view of the fact that

‘ f(xf(l))— P,fl)(xf}))‘ =const, k=0,1,...,n+1,

we set
t00 - BP0 = P, xelabl, [rP(xP) = &Y, (6.3)
Hrrsl)H[a,b] = arg)?;(b‘f(x)— Prgl)(x)‘ = EV.

Sep 2. First, we note that the value E(f) of the best approximation of the function f
in the entire segment is not smaller than the value of the best approximation EY of this
function on the system of points {xf(l)}:; and, therefore, EY <E.(f). At the same

time, if E,(f)= EY, then RY isjust the polynomial of the best approximation of the
function f and, hence, the process of construction is completed. Thus, we assume that
E.(f) < E and, hence,

EP < Eqy(f) < E. (6.4)

According to the Weierstrass theorem, there exists a point x* € [a, b] such that

PN
1000)|= E0.
. 2) n+1
We now replace the system of points (6.2) by asystem {x{ }k:O’
a< xP < x? <. < x? < x? <b (6.2)

Tin practice, in the case of approximation by algebraic polynomials, it is reasonable to choose the points

X|((1) =a+ 0.5(b—a)xf<0), where XLO) :=1-cos(kn/(n+1), k=0,1,...,n+1
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such that the following three conditionsaretruefor all k=0,1,...,n+ 1:

o) = ), ()| > ER o< k< ned
(6.5)
max (42| = EF

To satisfy all these conditions, it suffices to replace one point in system (6.2) by the
point X* and preserve al other pointsin the system. The system obtained as aresult is

regarded as {xﬁz)}::). The process of replacement can be redlized, e.g., as follows: If

the point X' islocated between two points x° and x(”, of system (6.2), then one of
these pointsisreplaced by x* (at this point, the difference r,ﬁl) must have the same sign
asat thepoint X). If thepoint X" islocated to the left of all points of system (6.2) and
sgn iV (x") = son r{P(x?), thenthe point x is replaced by x". If, on the contrary,

sgn riP(x*) =—sgn i19(x§"), then the system {XI((z)}E:(l) is chosen asfollows: x", x§,
XY, ..., xY. The case wherethe point x* liesto the right of all points of system (6.2)
is studied similarly.
n+1l
k=0
by new points (X" isone of these points) in order that, first, all conditions (6.5) be satis-
fied and, second, the quantities |r{"(x?))| beaslarge as possible.

As soon as system (6.2’) is obtained, we construct the polynomial =¥ of the best
approximation for the function r{Y = f— P on this system and set

Note that, in practice, it is preferable to replace more points of the system {x}

P@ = pO 4+ 7@
fop@ = (@ _ @ = (@ (6.3)

D) (2 = @ (2) - E@
r” (Xk ) = Ev Hr” H[a,b] = B
Sep 3. Asin the second step, we assume that E (f)< E? (for E(f)= E{?, the

polynomia Prﬁz) isjust the required polynomial of the best approximation for the func-
tion f). Therefore,

E? < E(f) < E®?. (6.4)

n+1

Then, asin the second step, we replace system (6.2) with the system {x,(f)}kzo,
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as< xP < x¥ <. < xP < x3 <b (6.27)

such that

on 7(%) = - 080, [00)] 2 B 0= ks nel

(6.5)

(3| = E@
o [m2(x7)] = &2,

After this, we construct the polynomial n(? of the best approximation for the func-
tion r{? on system (2) and set

PO = B® + 2@, f_ RO = 1,

(6.3")
) = ER 1) =

etc.

Theorem 6.1 [Remez (1957)]. The Remez algorithm converges with the rate of a geo-
metric progression in a sense that, for any function f continuous on the segment | a,
b], onecan find numbers A >0 and 0<q<1 such that the deviations E* of the

polynomials Prﬁk) constructed by using this algorithm from the function f satisfy the
inequalities

BV - () = [f =R, - ED <Al k=12, (6.6)

where E/(f) isthe value of the best approximation of the function f(x) on [a, b] by
polynomials B, of theform (6.1).

To prove Theorem 6.1, we need the following lemma:

Lemma 6.1. Let fe C[a, b] and let {x}"s be a certain system of points on the

segment [a, b]. Then, for any € >0, one can find a number & >0 such that if the

minimum distance between the points of the system {xi}{‘:g is smaller than §, then

the best approximation of the function f on this system by polynomials of the form
(6.1) issmaller than «.
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Proof. Assume the opposite, i.e., that the assertion of Lemma 6.1 is not true. Then there

exists a sequence of systems {xi(k)}in:ol, k=12, ..., inwhichthe minimum distance

between the points approaches zero as k —

lim min {|x* - x|} =0 (6.7)

K—oo i#]j

but the best approximation of the function f on each of these systems is greater than e.
(k) n+1 (ki) n+1
In the sequence {xi }i:O’ we choose a subseguence of systems {xi ! }i—o such that

each of their n+2 components xi(kj) approaches (as | — =) acertain point x,-0 of the
limiting system

0 0 0 0
x )< < @ << X8,

By virtue of condition (6.7), the system obtained as a result necessarily contains less

than n+ 2 different points X°:

%< % <..< x0.,, m<n (6.8)

However, in this case, it follows from Theorem 2.2 that there exists a polynomial
PO of the form (6.1) interpolating the function f atall m+2<n+ 1 points of system
(6.8). By virtue of continuity, this polynomial differsfrom f lessthanby e at all points

(kj)n+1 - . . k) . .
of system {xi ! }i—o for sufficiently large j because each point x; ' is arbitrarily

close to acertain point of system (6.8) for large j. This contradiction implies the validity
of Lemma®6.1.

Proof of Theorem 6.1. By virtue of Theorem 5.4 [see (5.20”) and equalities (6.5),
(6.5), etc.], wefind

-1 ril(—l)j D! [P (x")| = ril L “(x")]. (6.9
=) 2::; D|V| o i ry Zn+l|D| | j

where
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j P ¢1 - @) OQjy1 - Op
D =D £ 0 (6.10)

h o | | |

xo) o) L X

for x);=x{, k=0,1,...,n. Thus, in view of the fact that, by virtue of (6.5),
(6.5),... and(6.4), (6.4),...,wehave

max | (x{*P)| = E{’ > Ey(f) = EY,
i
it is possible to conclude that

14D g - S D/, O (+DY[_ £
En En 2 ~n+l, v (‘rn (XJ )‘ En)
i=0 v= O‘DI+1‘

min; | D]
> %(E(') EP) >0 (6.11)
2 ‘DI+1‘
and, hence,
0< ED < E@ <. < E (f). (6.12)

According to Lemma 6.1, these inequalities imply that there exists a number ¢ > 0
such that the following inequalities are truefor dl 1>2 (and E{) > E@ > 0):

xDo—xP >¢ k=01,..,n 1=23... (6.13)

Since al points xl((l) of system (6.2) are different, we can choose a number ¢ >0
such that inequalities (6.13) remain true for | = 1. By using these inequalities, the conti-
nuity of the functions ¢, and the corollary of Theorem 2.1, we conclude that there exist
positive numbers m and M such that

P @1 -~ @5 Ojy1 - Op
D

I I 0 I( D]
D  x L x,

m< |D}| = < M, (6.14)
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It follows from inequalities (6.11) and (6.14) that
En(f) - ED - (Ey(f)-E(*) = ED _ gD > M (EV -ED). (6.15)

and, consequently,

m
En(f) - EG™ < Ey(f) - EY) - e (En(H)-EY) = a(En(f) - EY), (6.16)
where
_ m
q_l_(7n+2)M’ 0<qg<1 (6.17)

In view of relation (6.16), we consecutively find
Enx(f) - EY < q(Ey(H-Ef™) <...< q"H(Ey(H-EY) = ad',  (6.18)

where

a= é(En(f)—gﬁ)). (6.19)

Substituting inequality (6.18) in relation (6.15), we conclude that

= Aqu

SIS

(6.20)

Thisinequality implies the required inequality (6.6).
The proof Theorem 6.1 is thus completed.

Corollary 6.1. Note that, by virtue of inequality (6.20),

Hf—PrE')H[a’b] = E" 5 E(f) as |-,

Thus, in view of the uniqueness of the polynomial Prf (f;-) of the best approximation for
the function f, we concludethat R"(x) — Py (f;x) as | > for xe [a,b].
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7. Approximation of functions by polynomialswith linear constraints
imposed on their coefficients®

7.1. The problem of finding the polynomial least deviating from zero in the presence of
linear constraints imposed on its coefficients is one of the classical (and extremely com-
plicated) problems of the theory of approximation.

Our am isto find a polynomial

P x) = Y, aou(X)
k=0

with the smallest norm (in a certain space) in the family of polynomials P (¢;-) of the
form

Po(0:X) = Y agu(X), (7.1)

k=0

where {@(X)};_, isthe Chebyshev system of functions on the set 9%, under the condi-
tion that the coefficients of the required polynomial satisfy r linear constraints

zn: Ch = b, i =12, (7.2
k=0

where ¢, and Iy aregiven numbersand r isan arbitrary natural number.

Constraints (7.2) are called compatible if there exists at least one polynomial
satisfying these constraints or, in other words, if the system of equations (7.2) is solvable
with respect to the unknown a.

In the uniform metric, the first problem of this sort was the Chebyshev problem
(1859) of finding the polynomial least deviating from zero. As shown in Section 3, this
problem can be formulated as follows:

Tofind apolynomial R, with theleast normin the metric of C[-1,1] in the fam-
ily of algebraic polynomials B, of theform

P(x) = > ax™X
k=0

with a single constraint specified by the conditions
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Cp=1L1 ¢, =0 k=12..,n b =1

or, in the other words, by the condition aj=1. Asshownin Section 3,

P(x) = Zn—l_lTn(x) = an_l COSN arccosX.

In 1877, Zolotarev (published in 1912) solved this problem in terms of elliptic func-
tions under the condition that the values of the first two coefficients of the polynomial

n
Z akxn—k
k=0

are given. Akhiezer (1928) solved a similar problem in terms of automorphic functions
under the condition that the values of the first three coefficients of the polynomial

P,(X) = Zn: aer”‘

k=0

arefixed.”

In what follows, we show that the problem with constraints is fairly simply solved in
any Hilbert space H. More exactly, it is shown that, in the space H, this problemisa
conseguence of some algebraic theorems.

7.2. We now establish a criterion for the solvabhility of a system of linear algebraic
eguations and a criterion for the compatibility of constraints (7.2).

To do this, we introduce the following notation: For any matrix C={c}, i =1,
2,...,1, k=0,1,2,...,n,

CGo G1 --- @i
C=1Co Cy - @} (7.3)
Go G1 -+ @mn

by C* wedenoteitsadjoint matrix C* = {cg}, where ¢ = Gy:

T Numerousi mportant investigations dealing with the problem of approximation of functions by algebraic

polynomials with linear constraints imposed on their coefficients and polynomials of the form (7.1), both in

the uniform metric and in some other metrics, were carried out by Markov (1892), Remez (1969), Shokhat

(1918), Grebenyuk (1960), Geronimus, Meiman, V oronovskaya, Gol’dshtein, Rymarenko, Grigor’eva, Ko-
romyslichenko, Chernykh, and many others.
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Co Co0 - Go
C=|ty S - Gal (7.37)
Cn Cn -+ G

In this case, the family of column matrices A with the same number of elements a,
forms aHilbert space if we introduce a scalar product

2 2
n a "
(AA) = |AN| = z a.a, A= _l , A= él , (7.4)
k=0 . :
ay an

. Thus, the

where the determinant of the one-element matrix A*A’ is denoted by ‘A*A’

column matrices are also called vectorsand we set || A? = (A, A). In the next theorem,
parallel with the matrices C and C”", we also use the matrices

Xo by Y
x=|" =% v={2| G = (Go:Cyr e G
Xn by Yr
) (7.5)
] jo
A=|Z| b= ad C = 7fl
g Cin
Theorem 7.1. 1. Inorder that a system of linear equations of the form
CX =8B (7.6)

be solvable with respect to X, it is necessary and sufficient that the system of equations
of the form

cCcC'Y=8B (7.7)

be solvable with respect to .
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2. If system (7.6) is solvable, then

(i) the smallest (in norm) solution X° of this system can be expressed via an arbit-
rary solution Y of system (7.7) by the formula

X0 =cC: (7.8)

(ii) the norm of the solution X° is expressed with the help of Y by the formula
0 r
X" = Y Wb = (Y. B); (7.9)

(iii) the solution X° is unique.

Proof. 1. First, we prove that the solvability of system (7.7) follows from the solvability
of system (7.6). Notethat if a certain solution X of system (7.6) can be represented in
the form

n
X=CA=YacC, (7.10)
j=1

then, in view of (7.6), we immediately obtain CX = CC'A = B. Hence, in this case,
system (7.7) isalso solvable.

To prove, in the general case, that the solvability of system (7.7) follows from the
solvability of system (7.6), we now show that if a vector X is a solution of system (7.6),
i.e,

CiX: biv i 21,2,...,r, (711)
but cannot be represented in the form (7.10), then the vector
r *
X = z aj Cj
j=1
whose coefficients a; are determined from the condition

1

2

[x - x| = inf (7.12)
g

X—iqd
j=1
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[i.e, X' isthevector of the best approximation for the vector X in the family of vectors
of the form (7.10)] is also asolution of system (7.6). The indicated solution aso has the
form (7.10) and, therefore, as shown above, this means that system (7.7) is solvable.
Indeed, assume the opposite, i.e., that X* is not a solution of system (7.6). This
means that, for some i, we get the inequality CiX* = b # b. Further, by setting

HCi* 2= s;, we conclude that the vector X' + (o} (q - h’)/ S approximates the vector

X better than the vector X*. Thus, by using relation (7.11) and the equality G~ = G,
we obtain

[y h—h)
x-(x +23%e

= | x-x" -21Ac", x-X -1
( S|CI S|CI

[x-x

2 _ ZRG{Q ;Q'q**(x_ X*)} + ‘h _Ztﬂzs_

2 _ ‘h_tﬂz < Hx_x*
S

2

Hx—x*

i.e., arrive at a contradiction with condition (7.12).
Vice versa, if system (7.7) is solvable and a vector YO satisfies equation (7.7), then
the vector C"Y? satisfies equation (7.6), i.e., system (7.6) is also solvable.

2. We denote a solution of system (7.7) by Y [by virtue of assertion 1, this solution
exists because system (7.6) is solvable] and set XO=C"Y. Then, in view of the fact that
the scalar product of X° by any other solution X of system (7.6) satisfies the condition

(X% X) = [CYyX| =

Y*CX \

Y'B| = (Y,B)

2
H

const = (X%, X%) = | x° (7.13)

we conclude that

[x = X°F = (x=Xx% X=X

= [X°f" - 2Re(x% %) + | X° = |X[? - [X°[.  (7.4)

Relations (7.14) and (7.13) imply that



Section 7 Approximation of functions by polynomials 91

(i) X° computed according to relation (7.8) possesses the minimum norm as com-
pared with al other solutions X of system (7.6);

(ii) by virtue of relation (7.13), the norm of X° is given by relation (7.9);

(iii) the solution X° with minimum norm is unique because, by virtue of relation
(7.14), it follows from the equality HX%H = HXOH that HX%— XOH = 0 and, hence,

X5 = XC.

7.3. Let us show that Theorem 7.1 enables to prove the following Fredholm theorem in a
fairly simple way:

Theorem 7.2 (Fredholm alternative for linear systems). In order that a system of equa-
tions

do
c'Y=D, D= d1 (7.15)
dy

be compatible, it is necessary and sufficient that the vector D be orthogonal to any so-
lution X of the homogeneous system

CX =0, (7.16)
i.e., that the condition

D LN, (7.17)

be satisfied, where N, = {X: CX =0} isthe set of zeros of system (7.16).

Proof. Necessity. Assume that system (7.15) is solvable and Y, is a solution of this
system. Weset CC"Y, = CD = B and denote the solution of the compatible system
CX = B with minimum norm by X° By virtue of relation (7.8), it follows from Theorem
7.1that X° = C*Y = D. Since X° has the minimum norm among all solutions of the
equations CX = B, we conclude that

[¥° = 1x°~0f = min |x°- ]|
XeNy
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and, hence (see [Akhiezer (1965), Section 13, p. 23]), X°L N, and, inaddition, D_LN,.

Sufficiency. If D L N, then, by setting CD = B, we conclude that the system CX =B
is compatible and, by virtue of condition (7.17), the vector D has the minimum norm
among all solutions of this system. Therefore, D = X° and, hence, by virtue of state-
ment (i) in Theorem 7.1, the system CC"Y = B is also compatible and if Y, isa solu-
tion of this system, then D = X°=C"Y,, which meansthat system (7.15) is compatible.
|

Remark 7.1. Let us show that, by using Theorem 7.2 (Fredholm), we can immediately
get statement (i) of Theorem 7.1.

Indeed, the assumption that system (7.6) is solvable and X9 is the solution of this
system with minimum norm [the existence of this solution is guaranteed by the Borel the-
orem (Theorem 1.1')] impliesthat X° L N,. Thus, by virtue of Theorem 7.2, the equa-
tion C'Y = X issolvable. Hence, the equation CC"Y = CX° = B is also solvable, as
required.

7.4. Inthe present subsection, we show that the problem with constraints in the general
caseisvery simply solved in any Hilbert space H. In order to formulate the correspond-
ing theorem, we first reformulate the problem with constraints as follows:

Consider asystem of n+ 1 orthogonal vectors ey, €, €, ...,€,and r linear func-
tionals Ly, Ly, ..., L, inaHilbert space H. Alsolet by, b,, ..., b, be r given, gener-
ally speaking, complex numbers. Intheset E,,; of elements X of theform

n
X = Y xe (7.1)
k=0
satisfying the following r constraints:

Li(X) = z XkLi(Q<) = bi' i = 1,2,...,r, (72”)
k=0

it is necessary to find the element with minimum normin H, i.e, in the set of elements
Xe E,,q of theform (7.1"), it is necessary find the element (polynomial) least deviating
from zero.

Note that if we set L;(€) = G, then condition (7.2”) immediately takes the form

(7.2). Therefore, in exactly the same way asin Theorem 7.1, we arrive at the following
theorem on polynomials least deviating from zero in a Hilbert space:
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Theorem 7.3. If constraints (7.2”) are compatible, then

(i) the element X°e E,.1 satisfying all these constraints with the minimum norm
in H isgiven by formula

n r
XO =C'Y= Z (ZCJ kijek, (78’)
k=0 \j=1

where Y isa solution of the syssem CC'Y = B;

(i) byusing Y, the normof the solution X° isgiven by the formula
0|2 :
[X°[ = ¥ wbe= (B.Y) = (V,B), 79)
k=1

(iii) the solution X° isunique.

7.5. Snakes. In the present subsection, for fixed natural k and n >k, we consider
systems of functions {¢ j}T:o continuous on the segment [-1, 1] and such that both
{p}]-o and {(pj}T;g are Chebyshev systemson [—1, 1]. These systems are called
TM(k, n) systems.

Let g,(x) and g,(x)>g,(x) befunctions continuouson [-1,1]. We consider the
following problem [Dzyadyk (19783)]: In the set of generalized polynomials constructed
according to a TM(k, n)-system with fixed leading k=1 coefficients A,, A, 1,-..,
A, _«+1 [the set of these coefficientsis denoted by A(k)] of theform

n n-k
To(B AK) G x) :=B Y Ajo;(x) + Y ¢@(x), B =const >0, (7.18)
j=n—-k+1 j=0

it is necessary to choose numbers ¢J, c?, ..., ¢2 , and aconstant B® guaranteeing (if
thisis possible) the validity the following conditions:

1 g, (x) < To(B% A(k); % x) < g,(x) forany xe [-1,1], (7.19)

where 0 : = {cg,cf,...,cg_k};
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2. Thereexistat least n+2-k points Xj, —1 <X <X <X3<...<Xpo k<1
such that the following equalities are true:

ax), j=24...,

To(B% A(k); % x)) = { .
%), j=13...,

or

g]_(X), J = 1,3,5,...,
Ta(BY Ak ;) = (7.20)
G(X), | =246.....

The polynomials with properties (7.19) and (7.20) are called k-snakes. The points
¥ at which the equalities T,(B% A(k); c©; %) = 9,(%) or g,(x) aresatisfied are called
(+)- or (-)-points, respectively; the (+)- and (-)-points are also called (e)-points.

Definition 7.1. An increasing (decreasing) branch of a k-snake y = T ( B% A(k); c;
X) is defined as a part of its plot connecting two consecutive (e)-points the first of
which is a (-)-point [ (+)-point] and the second is a (+)-point [(-)-point]. A semi-
branch of the k-snake y = T,(B% A(k); c% x) is defined as a part of its plot located
either in front the first (e)-point or behind the last (e)-point. A semibranch is called
increasing (decreasing) if it is located in front of the (+)-point[(-)-point] or behind
the (-)-point [(+)-point].

For the case k=1, the problem formulated the above was solved by Karlin (see The-
orem 2.9). Inwhat follows (see the first part of Theorem 7.5), itis solved for k= 2.

Theorem 7.4. Let g,(x) and g,(X) = g, (X) be two continuous functions given on the
segment [-1, 1] and let {o j}?:o be a Chebyshev system of functions on the same
segment. If, in addition, for some | < (n—1)/2, apolynomial T,(€, x) of theform

T(€ %) 1= Y &o;(x) (7.21)
=0

located between the functions g, (x) and g,(x), i.e,

T€x) =Yy, i=12,...,1; Vxe[-11]: g;(X) < TH€ X) < g,(x), (7.22)
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passes through | points (x;, y;) located between the same functions:
1S x <% <..<x<L g(X) Sy <O,(X), 1=1,2...,1, (723

then there exists at least one (21 + 1)-snake T,(&,, X) which also passes through all
points (X,V), i=1,2,...,1.

Theorem 7.5.10 Let g,(x) and g,(x) = g,(x) be two continuous functions given on
the segment [-1, 1] and let {(PJ}T:O be a TM(2, n)-system on the same segment.
Then

(@) under the assumption that, for a fixed coefficient A, and all possible changes

of a fixed coefficient A,_;, there exists at least one polynomial of the form

1 n-2
Ta(¥) = B, Ai@ni() + Y, G0;(X)
i=0 j=0
satisfying, for all xe [-1, 1], the conditions
9 (X) < Tp(X) < g,(X), (7.24)

the 2-snakes T,(B% A(2); ¢% x) = T,(B% A,_;; c® x) existfor all A, ;;
(b) the functions

600 = G(A3ix) = Inf To(B% ALy ),

) = BB %) = 2 T(E Ay )
A

playing the roles of, respectively, the lower and the upper envelopes of the indicated
family of 2-snakes form a “passage” in which the 2-snakes T n(BO; A’:,l; cY% x) =
Th( A;_l; X) possess the following properties:

1. Exactly two 2-snakes T, ( A:_l; X) pass through every point (X, yy) of the in-
dicated passage for x,€ [-1, 1] and @ (Xy) < Yo < G,(Xo). For one of these snakes,
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the branch (or semibranch) passing through the point (xy, o) is increasing and, for
the second snake, the corresponding branch is decreasing. Exactly one 2-snake passes
through every point (Xg, o) at which -1 < x5 <1 and yg= Gi(Xg) Or Yo = 0,(Xg)
in the case where each function in the system {(pj}T:O istwice differentiable.

2. Increasing (and decreasing) branches and semibranches of different 2-snakes do
not intersect.11

Remark 7.2. Notethat if g,(x)=-1 and g,(x)=1 for T-systems 1, x, X4 ..., x" and
1, cosx, sinx, ..., cosnx, sSinnx, then §(x)=-1 and §,(x) =1. We now present an
example demonstrating that §;(x) and §,(x), generally spesking, do not coincide with
g;(x) and g,(x) evenif thefunctions g, (x) and g,(x) aresufficiently smooth.

Example7.1. Let r(x) be afunction continuous on [-1, 1] and satisfying the condi-
tions

r(x)y =1 for xe [—1, g]

r(§) =8 r(x)=1 for xe [%1]

r(xy>1 and ‘r(x)2(2x2—1)‘ <1 for xe [g%]

Then the system of functions ¢, (X):=r(X), ¢,(X):=xr(x), and (pz(x)::(2x2—
1)r(x) isa T-systemon [-1, 1] and, at the same time, §,(X) #g,(x) for g, (x) =
(-1), v=1, 2. Thisfollowsfrom the fact that the polynomial (2-snake)

T,(X) 1= 0p(X) = (23 =1)r(x)

has the following properties:

T,(-1) = gy(-1) = 1, T,(0) = g,(0) = 1,
3) _ 3) _ _ _
TZ(Z) - gz(z) = T,(1) = gy(1) = 1,

7 17 7
T(L)= 2 =g, L) = 1.
2(8) 32 92(8)
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By virtue of these properties, if a2-snake T, issuchthat T,(7/8) > 17/32, then
the difference T,(x) - T,(x) definitely has at least four zeros on the segment [1, 1]

[located intheintervals (-1, 0), (0, 3/4), (3/4,7/8), and (7/8, 1)], which isimpossi-
ble. Therefore,

o L)< 2 <oy(L) = B0 = gy00.

Proof of Theorem 7.4. Since the system of functions {(pj}T: is linearly independent,

0
the set of all possible generalized polynomials T,(c, -) satisfying the inequalities

9;(X) £ Th(c, X) £ gy (X), (7.25)

is clearly a bounded equicontinuous and, hence, compact set.

Let us now replace, for sufficiently large natural numbers m=m,, the functions
gy, v=1,2, bythefunctions g, . asfollows: First, we assume that the inequalities
-1<xg, <1 takeplacein (7.23) and that g, (X)) <Yj<0,(Xj). In order to get the
functions g, ,, foreach j=1,2,..., 1, wereplace the plot of the function g, (x) on the

segment [xj -ml, X + m1] by acontinuous curve passing through the points
(x-m L g(x-mb), (x,y+m?), and (4+ml, g,(x+nml))

whose plot to the left and right of the point (xj Yt m1) so rapidly goes up to the points
(-mt,g,0¢-m?)) and (x;—mt, g,(x+m?)) that, by virtue of the equiconti-
nuity of the polynomials T,(c, -) satisfying inequalities (7.25), each polynomia T,(c, -)
passing through apoint (xj,y), Gx(X;) Sy< y+ m1 and satisfying inequalities (7.25)
can have a single common point (xj Yt 1/m) with the constructed curve g, m onthe
segments [xj—rrrl,xj +m1]. Thefunction 9;  isconstructed similarly. The sameis
true for the functions g, ., inthecasewhere x, = -1 or x = 1. If thefunctions g, .
v=12 m=m,m,+1,..., aeaready constructed, then, by using Theorem 2.9 (Kar-
lin), for any m, we construct a 1-snake T,(c'™, -) located between the curves g, ., v =
1,2, i, g n00 < T, (<™, x) < g, ,,(x). This snake possesses, inturn, n+1 common
points with the indicated curves and itsfirst e-point is the (+)-point. Further, if we now
choose a convergent subsequence { T, (™), )} of the compact sequence T,(c™, -),
then, clearly, the function
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T X) = k|I_>rTl T, (c™, x)

isa (2| + 1)-snake for the functions g, . This snake passes through all points (X;, ¥;),

i=12,...,1, anditsfirst e-point isthe (+)-point. If, inrelations (7.23), we get the sign
of equality for some y;, then, instead of the functions g,, itisnecessary to additionally
consider the following auxiliary sequence of functions:

9y m) 1= g,(x) + (-1)Vm?

and again apply the Arzela theorem to the sequence of polynomials T,(c; m; -) obtained
asaresult. Theorem 7.4 isproved.

The fact that the 1-snake satisfying the conditions of Theorem 7.4 [with (+)-point as
thefirst e-point] is, generally speaking, not unique can beillustrated by the following ex-
ample:

Let a T-system @u(x)=1, @;(X)=T,(X), 9,(X)=T,(X), @5(X)=Tz(X), and
04(x)=T,4(x) be given on the segment [-1, 1], let g, (X)=(-1)", v=1, 2, and let
(%,¥;), i=1, 2,3, be three points of intersection of the functions —-T; and T, from
[-1, 1]. Then, both polynomials —-T; and T,, are, clearly, 3-snakes on the segment
[-1, 1] passing through the samethree points (x;,Y;), i=1,2,...,1, | =3, and the first
e-point of each of these snakesis a (+)-point.

Proof of Theorem 7.5. (a) First, we note that, in this case, according to the condition of
the theorem, the coefficient A, isfixed and the coefficient A, ; isvariable. Hence, as

follows from relation (7.18), the analyzed family of 2-snakes Tn(A’;_l; ) depends on a
single parameter o. (theratio of coefficients A, and A, ;). Therefore, every 2-snake
Tn(A{;_l; ) can be obtained as follows: Note that, according to the conditions, for any
fixed A; and Af,_l, there exists a polynomial T, (x) of the form (7.18) satisfying the
inequalities

1 n-2
900 < Y Aifn () + Y Goj(X) < gy(x),
i=0 i=0

or, equivaently,
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_ 2 -a() o G(X)+G(X)

G (X) — (X
2 2 '

2

- Ta(¥) <

or (for B=1)

1 n-2
1< AXFHX g Y An_i Pn_i(X) — > ¢ o <1,
i=0

% (X) = Gu(X) -0
(7.26)
§j(x) 1= gz(i)%—(;i(m'
Thus, the quantity
n-2

<1
[-11]

f(B ) - D¢ ;X

E,, = E, »,(B) = min
Cj j=0

is the best uniform approximation of the function

MBI = =gy B P00+ o)

continuous on [-1, 1] by generalized polynomials of the form 2?;5 G 0;(X). Hence,

in view of the linear independence of the functions in the T-system {¢ j}?zo, the quan-
tity

E, ,(B) = min — oo

Cj

BEL B[ A+ Anins | - S e,
n -1Pn-
02— j=0 Ak

[-1,1]

as B — « and the variations of the functional

fO0 - .6 90

i=0

E,(f) := min
G

[-11]

caused by continuous variations of the function f are continuous. This enables us to
conclude that there exists anumber B% >0 such that, for some ¢, we have
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n-1
f(B%x) — X ¢j(09;(x)
J

=0

E, ,(BY) r‘rcujn

[71| 1]

[-11

G(X) + G(X) _ 0[ p* x RS
w00—o00 ° [ABn (0 + A1 §n-1(0)] Zoc, $;(%)

=1 (7.27)

Thus, by virtue of the Chebyshev theorem on alternation, there exist at least (n—2)+
2=n points X,

“1<x <X <...<x, <]

at which the following equalities are true:

GO TGO _ gorps (x o : _n_2.0~..:+_1i 7.28
(0= a(0) [ AP (%) + A 1Pn106)] Eoc,w,(m +(-1) (7.29)
or, in other words,
. . n-2
B[ Andn(%) + An-a®n_1(x)] — D67 0;(%)
j=0
900+ %00 = EV[ReD-G00] oy, o

2

Therefore, the polynomial

n-2
To(B% Av A X) := B [Ay0n(0 + Ao (0] + 00,00 (7.29)
j=0

isa 2-snake with respect to the functions g; and g, .
This proves part (a) of Theorem 7.5.

(b) In order to establish the dependence of 2-snakes (7.29) on the ratio of the
coefficients A, and A, ;, we represent these snakesin the form
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A0+ @) 0n(0) + (1= 1+ 0)2) 91 (0] + Ty €% %), o€ (-2,0),
Ty (X) 1=

A= @) @n () = (1= A= 0)?) @1 (0] + Ty o0 €% %), e (0,2),

(7.30)

where the polynomials T,,_,(c; c%; x) are chosen so that all their coefficients coincide
with the coefficients of the polynomial

n-2
T, % x) = ZC?(I)J'(X)
i=0

of the best uniform approximation for the functions

50+ B
£ 0= 120 - a0
9100+ 600

6200~ ()

[(@+ @) §n(x) + (1+ @+ 0)?)§r_a(0)] for ae(-2,0],

[(A= 0§ = (1= A= 0)?)Fpa(x)] for ae(0,2],

in the system {(p i (x)} and a constant factor A, > 0 is chosen to guarantee the validity
of the condition

H f,(x) = T_o(c; c; X)H[—l,ll =1

The proof of part (b) of Theorem 7.5 is nhow reduced to the analysis of the properties
of the 2-snakes T, (x). In what follows, we additionally establish some properties of
these snakes not included in the statement of Theorem 7.5.

1. There are exactly two points o, o4 € (-2, 2], such that, for each polynomial

Tay OF Ty one can find at least one alternation formed by n+ 1 [alternating (+)- and

(0)-] points x°, —1< x? < x < ... < x%, <1, and thereis no alternation formed by

n+2 [dternating (+)- and (-)-] points. In particular, the polynomials T, and T,

are 1-snakes for the functions g, and g,. By virtue of the definition of the polynomials
T, thisproperty is aconsequence of Theorem 2.9 (Karlin).

2. Forany o€ (-2,2]\{0g o, }, thereexists an aternation for the polynomial
T, (x) formed by n points and there is no aternation formed by n+ 1 points.
This property has already been established in deducing equalities (7.27)—(7.29).
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3. Theincreasing (decreasing) branches and semibranches of the curves y =T, (x)
and y =Ty (x) with o’# o cannot intersect at any point (X, Y,) such that x,e
[-1,1] and Gi(Xp) <Yy < 02(Xp). Inthe case of a system of twice differentiable func-
tions {(pj}T:O, these branches, in addition, cannot intersect at the points (Xg, G, (X))
Xg€ [-1,1], v=1,2.

Indeed, assume the opposite, i.e., that some increasing branches of two polynomials
T, and T,, a=a’, intersect. Then we easily find that the “less steep” increasing
branch of, e.g., the polynomial T, is crossed by the polynomial T,. (counting double
zeros) at at least three points. Since the polynomial T, also crosses all other n-2
branches of T, at least once, the difference T,— T, should have >n+ 1 zeros on
[-1, 1] (counting double zeros), which isimpossible because {¢ J-}T:O isa T-system.

Let us now present an example showing that the polynomials T, and T, canin-
tersect at the points (-1, §,(-1) and (1, 8,(1), v=1, 2. Indeed, by setting g,(x)=
(=1), 9p(x)=1, ¢;(X)=x, and @,(X)=2x?-1, for n=2, we conclude that

To(-1) =T (-1) =1
and, therefore,
To(1) = Ty (D) = 1.
It is easy to see that the requirement of differentiability in the second case of property

3 isindeed necessary.
The following assertion is a consequence of the established properties:

Corollary 7.1. At most two 2-snakes T, and T, pass through each point (X, Y,)
suchthat xge [-1, 1] and G(X) <Y, < Gp(Xp); the branch of one snake passing
through the point (X, ;) isincreasing and the branch of the second snake is decreas-
ing.

If the system of functions {o@ j}?:() is twice differentiable, then at most one 2-snake
passes through each point (X, Y,) such that xge (-1, 1) and y,= Gi(X) or
Yo~ GZ(XO)

4. Exactly two 2-snakes T, pass through each point (X, Y,) such that
Xo€ [-1,1] and  Gi(X) <Yp< G(Xo),

and at least one 2-snake T, passes through each point (X, Y,) such that
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e (-1,1) and y,=0,(%), v=1 o v=2

Moreover, if the system of functions {¢ j}?:o is twice differentiable, then the indic-
ated 2-snake is unique.

Proof. Since, in view of relation (7.30),

T o(X) 1= lim T, (X) = Ta(X),
oa—0

the family of 2-snakes T, (x) can be continuedin o onto the entire axis according to the
rule

To+4(X) = Ty (X). (7.31)

By the theorem on continuous dependence of the polynomial of the best approxima-
tion on the approximated function, the obtained family T = {T,}, —e <a <o, iscon-
tinuousin o inasensethat, for any oge (—oo, ),

Jim [Tao = Tecl g = © (7.32)

First, we prove the second part of property 4.
Assume that, e.q.,

Yo = G(%) = supT,(B% A1 %) = supTo(xp) = lim Ty, (%),
Ay o Voo

o, € (-2 2].

We now select asubsequence { o, } of thesequence { o, } convergent to acertain
number ©. Then, according to relation (7.32), we get

lim To, (X) = Tg (%)
V—oo
uniformly inall x, i.e.,

Vli_)anTav(x)—Tao(x)H =0 Tg(0) = Yo

[-11]
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Hence, Tg, is just the required polynomial. The uniqueness in the case of atwice
differentiable system of functions follows from Corollary 7.1.

We now consider the casewhere xge [-1,1] and (%) <Y< G2(Xp). By oy
we denote areal number for which

To, (Xg) = Gi(Xo)-
Then, according to relation (7.30), for o, = o4 + 2, we have
To,(Xg) = =95 (X9) = Gp(Xp).

Further, weset y=y(a) =T, (x). According to property 3, as o changes from oy
to oy, the pointsof the curves T, located on g; and g, move in the same direction
and, hence, the branches of the curves T, participate in the corresponding motion. In
this motion, all branches of the curves located above the point x, are either all increasing
or al decreasing. Therefore, in view of the continuity of the function y=y(o) and prop-
erty 3 of the polynomials, we conclude that the function y=y(a) homeomorphically

maps the segment [ o4, o] onto a certain set of numbers from the segment [ §;(Xo),
Gp(Xg)], theleast of which isthe number @ (X%,) and the greatest number is &y(Xp)-
However, in this case, it is known (seg, e.g., [Dieudonne (1964), p. 97)] that this mapping
is a strictly monotonic and homeomorphic mapping of the segment [o.;, o, ] onto the
segment [&(Xo), 8p(Xg)]. By virtue of Corollary 7.1, thisyields statement (b, 1) of The-
orem 7.5.

|

Remark 7.3.12 The definition of the functions §, appearing in Theorem 7.5 for k=2

is equivaent to the following more natural definition:
Thefunctions § and §, from Theorem 7.5 can be defined by the equalities

%) = sup{T(x)} ad G(x) = inf {T(X)}, (7.33)
TeK TeK

where K isthe set of polynomials of the form

N
TX) = Y, 6o
k=0

satisfying the condition g, (x) < T(x) < g,(x) forall xe [-1,1].
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Proof. We set

sp{T0} = g() ad inf {TOO} = g (x). (7.33)
TeK TeK

Let usshow that, e.g., g>(X) = §,(X). Theinequality §,(X) < gy(X) is obvious.
We now prove that the inverse inequality §,(x) > g>(X) isalso true. Indeed, assume
the contrary, i.e., that the opposite inequality @,(xg) < g5(Xg) holds at a certain point
%o € [-1,1]. Then, by virtue of (7.33), there exists a polynomial T(x) € K such that

T(x0) > (%) (7.34)

Itisclear that if, for the 1-snake T*(x) thefirst (or the last) point x* of the Cheby-
shev dlternation isa (+)-point and, hence, T*(X") =g,(X"), then, for any xe [-1,X"]
(orforany xe [X,1]), wehave

BX) = TT(X) = Go(X).

Indeed, the assumption that, e.g., for X' e [-1, X*), wehave gy(x’)>T"(x) or
G,(x’) > T (X) impliesthe existence of a T-polynomial 'I:' such that 'I:'n(x’) >TH(x),

which is impossible because, in this case, the polynomial T must cross the increasing
semibranch and n branches of the polynomial T* (1-snake) and, consequently, the dif-

ference T*— T must haveat least n=1 zeroson [-1, 1], which isimpossible. The-

refore, the point X, must belong to an interval (o, ) C (-1, 1) with the following
properties:

(i) G2(X) <gy(x),
(i) Go(a) =gy(ar) and Go(B) =g, (B).
However, in this case, by virtue of the continuity of 2-snakes T, with respect to o

in C and property 2 (or 1) of the polynomials T, for some o, the polynomia (2-
snake) Ta* possesses the following properties:

@ Vxe (&B)C (0B Tu ()< GoX) < Gy(X);

(b) T (%) = gp(@), To (B) = G2(B)-
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According to (7.26), this yields the inequality T(xg) > Tog (Xo), whichisimpossible
because, in this case, the difference T - Ta* must have at least n+ 1 zeroson [-1, 1].
|

The presented definition enables us to reformulate Theorem 7.5 as follows:

Theorem 7.5. Let g,(x) and g,(x) = g, (X) be two continuous functions given on the
segment [-1, 1] and let {(pj}?zo be a T-system given on the same segment. If at
least one polynomial T,(c; -) suchthat g, (x)<T,(c; X)<g,(x) passes through the
point (X, Y,) suchthat x;e [-1,1] and g, (X)) <Y,<0,(X)), then there are
exactly two 2-snakes passing through the point (x, y,). Moreover, if x,e (-1, 1)
and y,=0;(Xy) or y,=0,(X,) and a 2-snake exists, then this snake is unique pro-
vided that all functions ¢; and the functions g,, v =1, 2, aretwice differentiable.

Remarksto Chapter 1

1. Inthe case of real variables, this theorem was established by Haar. Kolmogorov gen-
eralized this theorem to the case of complex variables. The proof presented in our book
is, for the most part, taken from [Akhiezer (1965), p. 80].

2. The scheme of the presented proof is taken from the course of lectures by S. Nikol’ skii
[S. Nikol’skii (1947), p. 47].

3. Thistheorem is correlated with a much more general Theorem 7.5 proved by Dzyadyk
in analyzing the applied problems connected with the Dirichlet problem for a circle, ap-
proximate conformal mappings of domainsin C, estimation of the absolute value of the
derivative of a polynomial, etc. (in this connection, the reader is referred to the works
[Dzyadyk (1973)] and [L. Shevchuk (1974)]. Since, at that time, the works by Karlin and
Studden were unavailable for the authors, the snakes appear in cited works under the
name of @-extremal polynomials (much less expressive). For the presentation of the re-
sults obtained by Karlin and Studden, the reader is referred to the monograph [M. Krein
and Nudel’man (1973), pp. 492-504]. Note that the theory of the above-mentioned ap-
plied problems seems to be quite complicated and incomplete and, therefore, is not in-
cluded in our monograph.

4. Chebyshev (1859) posed and solved the following problem:

Chebyshev problem. Let R be an arbitrary polynomial positive on [-1, 1]. For any
n=1, itisnecessary to find a polynomial Pr: of degree n with coefficient of the term
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x" equal to one and such that

i.e, itisnecessarytofind, for all n> I, the polynomial least deviating from zero in the
uniform metric with weight 1/R.

*

B
R

X"+ BRx" 1+ 4P,

R()

1] R =r)

Chebyshev constructed the polynomial P,f in the form of the solution of an equation
of theform

Y- (=D [Cx=x) (X=%p) ... (x=x)]* = LR?(),

where Xq, X5, ..., %, C and L are unknown numbers.

Since this equation possesses several solutions from which it is necessary to choose
the required solution of the posed problem, Markov (1906) proposed a quite witty but
fairly complicated direct solution of this (and even a somewhat more general) problem:

Markov problem. Under the Chebyshev assumption imposed on the polynomial P, (x),
for any n>1/2, itisnecessary to find a polynomial P,f (X) such that

P (%)
\/ R(x)

X"+ RxX" 4+ 4+ PR,

VRX)

1y R 1y’
In exactly the same way as in the proof of Theorem 1.2 (Chebyshev), we can show

that the polynomial P,: isthe solution of the Markov problem if an only if the polynom-
ia

5y o= VAD o
P9 1= R0

constructed by using the indicated polynomial is a snake for a couple of functions

-y R() and R(x).
The solution of this problem obtained by Markov is given by the formula

Rl (X) = /R(X) COS(@1+ 0p+ @2y,

where the numbers cos¢, and sing, aregiven by the formulas
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cos @, = \s’(l+sak)/2\s‘1+x and  sing, = V(A= a)/2y1-x
vitacx 1+ a3 x
where, inturn, —-t<@,<n and &, k=1,2,...,2n, arethe numbers for which the

polynomial P;(x) can be represented in the form
P(x) = c(l+aX)(1+ayX)...(1+ay,Xx), c=const.

Theorem 2.13 [Dzyadyk (1977)], in addition to the Chebyshev and Markov resuilts,
establishes that the representation

|
Rt () = € X2 N, n>1, ¢ = cong,
k=0

takesplacefor al n > —1/2. Thecoefficients vy, of this representation are independent
of n and T;(x) = coSj arccosx.

5. For animportant case ¢,(z) = Z, k=0, 1,..., n, thistheorem was earlier established
by Tonelli (1908) and de laVallée Poussin (1911).

6. The present section is based on the work [Dzyadyk (1974c)].

7. The second equality iswell known. For the first time, it was deduced by Kirchberger
(1903). Later, it was thoroughly investigated by de la Vallée Poussin (1910), (1919).

8. The problem of efficient construction of the polynomial of the best approximation of
fixed degree n was apparently posed for the first time in the monograph [de la Vallée
Poussin (1919)]. Inthe case wheretheset ¢ = iy isfinite and consists of N points
X; <X <...<Xy, N =n+2 delaValée Poussin suggested to consider all possible
subsystems

M := {Xko’xkl""'xkn+1} C My

each of which contains n+2 points x, € W and find, for each subsystem, the poly-

nomial P;(x) = Prf(EUvE; x) of the best approximation of a given function f by using
Theorem 5.4.
Thus, by virtue of the fact that, for the set )¢y, the characteristicset E, consists of

N
n+2 points (see Remark 4.2), it is possible to conclude that, in the family of (n+2)

subsets I C My, the characteristic set 5)5?0 is defined as the subset for which the val-
ue of the deviation



Remarks to Chapter 1 109

mex f00 - By (V; )|
ismaximum. Moreover, the polynomia P} (5)5?0; x) is just the required polynomial of

the best approximation for the function f on D¢y . Sinceit is possible to find the poly-
nomial of the best approximation on the sets ¢y, we can aso find (with any required

accuracy) the polynomial of the best approximation on the segment [a, b].
By using the results obtained by de la Vallée Poussin, Remez proposed a different

very efficient procedure of transition from a subset Mmc [a,b] of n+2 pointsto a

new “worse” subset 0V, On the basis of this procedure, he created a new very efficient
algorithm of construction of the polynomial of the best approximation and proved (see
Theorem 6.1) that the proposed algorithm is rapidly convergent.

9. The present section is based on the works [Dzyadyk (1971)] and [Dzyadyk (1973)].
10. See Remark 3.

11. Thistheorem, on the one hand, generalizes some results from the monograph [V oro-
novskaya (1963), pp. 82, 102-106, 119-126, and 158-163] obtained for TM(n, n)-sys-
tems {xj}Tzo under the assumption that g,(x) = (-1)" and, on the other hand, gener-
alizes Theorem 2.9 (Karlin) concerning the behavior of 1-snakesto the case k =2, i.e,

to the case where the constraints are absent. Moreover, the polynomials appearing in this
theorem are, in fact, generalized Zolotarev polynomials.

12. Thisremark was proposed by Golub and Kovtunets.






Chapter 2
Weierstrass theorems

In the present chapter, the reader can find the Weierstrass theorems and important results
from the theory of approximation established as aresult of the analysis of these theorems.

Consider areal-valued continuous function f defined on a segment [a, b]. Our am
is to study whether it is possible to approximate this function by algebraic polynomias

with any required accuracy, i.e., whether, for any € >0, there exists a polynomial P
such that the inequality

[ f(x)-P(x)| < ¢

holdsfor al xe [a, b].

Similarly, we can pose the problem on the possibility of approximation of periodic
continuous functions by trigonometric polynomials.

Both these problems are positively solved by the Weierstrass theorems.

To prove these theorems, we first present a general procedure of construction of alge-
braic and trigonometric polynomials convenient for the approximate representation of
functions and three inequalities for the function sint.

1. Let
n
Kh(x) = z aka
k=0

be apolynomial of degree n. Then, for any function f integrable on [a, b], the convo-
lution

b
P(x) = J’ f (DK (x—t)dt

a

is an algebraic polynomial of degree <n. This follows from the fact that K (x—-t) is
clearly apolynomial of degree n inthevariable x of theform
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n
Kn(x=1) = Y, c,(Hx".
v=0
The coefficients of this polynomial c, (t) are aso polynomials (of degree not greater

than n-v).
In exactly the same way, if

n
Kn(t) = Y, (acoskt+bysinkt)
k=0

is atrigonometric polynomia of degree n, then, for any function f summable on [0, 2r],
the integral

2n
j f(U)K,(t—u)du = T, (1)
0

isatrigonometric polynomial of degree <n. It iscustomary to say that these polynomials
are obtained with the help of polynomial kernels K.

2. The following important inequalities are true:

|sinnt| < n|sint| foral te (—o,), (0.2)
. 2 T
snt> 2t foral te [o, f], 0.2)
T 2
snt<t foral t=>0. (0.3

Thefirst of these inequalities can readily be proved by induction and the other two in-
equalities immediately follow from Fig. 3. It isalso well known that

tant >t foral te |0, L) (0.4)
2

1. First Weierstrass theorem

Theorem 1.1 [Weierstrass (1885)].1 For any function f continuous on the segment
[a,b] andany & >0, there exists an algebraic polynomial P such that

max | f(x) - P(x)| < e. (1.2)

xel[a,b]
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Ya /\
Aj/y:sint
1 _____ _Z4 _ =
A
N
0 n/2 t
Fig. 3

There are many different proofs of Theorem 1.1. We present a proof of this theorem
based on the use of the polynomial kernels K, obtained for the Chebyshev polynomials
T,. Thisproof isnot simpler than the other available proofs but we want the reader to get
acquainted with the polynomialskernels K,, playing an important role in various prob-
lems of the theory of approximation.

Proof [Dzyadyk (1958)]. Let T,,,1(X)=cos(2n+ 1)arccosx be a Chebyshev poly-
nomial of degree 2n+ 1. Since T,,,,(0)=0, thepolynomial T, ,,(x) can be divided
by x. Thus, we consider apolynomial K,(x) of degree 4n of theform

1 [ cos(2n + 1) arccosx 2
Kn(X) = —[ ( ) ] , (1.2
Yn X
where
1 2
cos(2n + 1) arccosx
— [ ( X) ] ox. (1.3)

-1

This polynomial playsthe role of akernel and possesses the following properties:

1
1. j Ko(x)dx = 1. (1.4)
-1

This property directly follows from equalities (1.2) and (1.3).
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2. Since
Ton+1(—=X) = cos(2n+ 1) arccos(—X)
= cos(2n+ 1)(m—arccosx) = —cos(2n+ 1)arccosx = —T,, ;1 (X),
the polynomial T,,,, isoddand K, isaneven polynomial of degree 4n.
3 yn>n n=12... (1.5)

Indeed, in view of relation (1.3), property 2, and inequalities (0.2) and (0.3), we find

2J1- [cos(Zn +1)(m/2 - arcsinx)]zd

T = X

0

2Jl‘ [sn(2n+1)arcsmx] T sm(t(2n+l)/2) cost dt
) 5 sin(t/2) 2

n/(2n+1) 2
costdt > (t@2/my(2n +1)/2)

> 2 4 dt

\

@D (si n(t(2n + 1)/2) )2

0 sin(t/2)

n.

2n+1> = 2n+1
2 =2
2 2n+1 T

It is possible to show that the exact value of vy, isequal to

Z{Zn +1+ % =D }
@2n-k-1/2)(2n-k +3/2)

k=1
4, Forany 6e (0,1), n=1,2,..., wehave

a1
X nodé

IN

(1.6)

>
O —y

1 1
,[ K, ()dx = J- [cos(Zn + 1)arccosx] dx
3 5

1
Vn

First, we prove the Welerstrass theorem for thecase a=-1 and b=1. The function
f iscontinuously extended onto theinterval [-2, 2] by setting
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f(-1) for xe[-2,-1],
f(x) = {
f(d) for xel[q 2].

Thefunction f is continuous and, hence, uniformly continuous on [-2, 2]. Hence,
forany € >0, onecanfind 6>0, 0<06<1, such that the following inequality is true
for any two points X' and x” fromtheinterval [-2, 2] suchthat |x' — x”| < §:

’ _ 7" E
| f(x) = f(x)| < >

Forany n=1,2,..., wedefineapolynomial B, of degree <4n by setting
12 t—X
P(x) = & ftK(—)dt.
A () 3_12 OKn ([

By the change of variables (t—x)/3 =1, weobtain

(2-x)/3
PA) = [ f@n+xK(m)dn.
(-2-x)/3

Since, by virtue of equaity (1.4),

1
100 = [ f00Kym)d,

-1
we conclude that, for x e [-1, 1],

8/3
[f00=R0l < [ [0 = f@n+x)|Ky(n)an

-3/3

-8/3 1
+ [ J o+ )f(x)Kn(n)dn

-1 5/3

-3/3 (2-%)/3
+( [+ ] Jf(3n+X)Kn(n)dn,

(-2-x)/3 5/3
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whence, by using the properties of the polynomial K,, and denoting the maximum abso-

lute value of the function | f| on [-2,2] by M, we obtain

1 1 1
(00 =Rl < 5] Ka(nydn + 2M [ Ky(mydn +2M [ Ky(n)ydn
-1 6/3 5/3

Further, if n issufficiently large, thenfor all xe [-1, 1], we can write
[f00 = R < &

This proves the Weierstrass theorem in the case where a=-1 and b=1.
We now prove the theorem for arbitrary a and b. To do this, we perform the change
of variables

X=a+ b_a(u+1), (1.7)
and, hence,
u= 2x-2-b (1.7)
b-a
This enables us to construct a function
e(u) = fla+ b;a(u+1)

continuouson [-1, 1]. Further, as already shown, we can find a polynomia =, for this
function such that

() — ()| < e (18)
Thus, we set

2x—a—b)

P.(x) = nn( b_a

and, by virtue of relations (1.7) and (1.7"), conclude that
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(100 =B = o) - ma(u)]| < e

This completes the proof of the Weierstrass theorem.
|

In Section 3, we present examples of different kernels very important for what fol-
lows.

2. Stone’stheorem
In the present section, with an aim to generalize the Weierstrass theorem to other impor-

tant cases and, in particular, to the cases of approximation of periodic functions by trigo-
nometric polynomials and approximation of functions given on bounded sets in the space

R" n=1,2 ..., weproveavery general Stone’s theorem.
2.1. Stone’stheorem
We introduce the following definitions:

1. A set A of functions defined on a nonempty set E iscalled analgebra if this set
is closed both with respect to the multiplication by all possible real (or complex) numbers
and with respect to the summation and multiplication of the functions. This means that if
A isanagebraand f and g are elements of this algebra, then

cfe A, f+ge A and fgeA, (2.1

where c isan arbitrary constant. Inwhat follows, all functions of the algebra A are as-
sumed to be continuous.

2. We say that an algebra A defined on E separates points of the set E if, for
any pair of different points x,, x, € E, thereexists at least one function fe A such that

f(x) # (X)) (2.2

3. Wesay that an algebra A defined on E does not vanish at any point of the set
E if, for any point x,€ E, thereexistsat least onefunction he A such that

h(xy) # 0. 2.3)
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Analgebra A definedonaset E is caled Sone’s algebra if it separates the points
and does not vanish at any point of the set E.

Examples of Sone’s algebras

1. The set of all possible trigonometric polynomials T,, on a half interval [a, b)
suchthat b—a < 2r. Inthe casewhere b—a > 2r, the algebra of polynomials T, is
not a Stone’s algebra because it does not separate the points of the half interval [a, b): In
this case, we dlwayshave T(a) = T(a+2r), where a,a+ 2t € [a,b).

2. Theset of al possible algebraic polynomials given on a bounded set in the space
R'n=1,2...

3. The set of al possible algebraic polynomials of the form
axC+a+ . +ax™
where n isan arbitrary positive integer, defined on asegment [a, 1], a< (0, 1).

Theorem 2.1 [Stone (1937)]. If an algebra A defined on a compact set K is Stone’s
algebra, then the set of functions from A is everywhere dense in the set C of all

functions continuous on K, so that A = C. Therefore, any function F continuous
on K can be arbitrarily well approximated by elements of the algebra A.

Stone’s theorem is proved by using geometric reasoning similar to the proof of the
Weierstrass theorem (Theorem 1.1) proposed by Lebesgue (1898). More precisely, the
validity of Theorem 2.1 immediately follows from Lemmas 2.1, 2.3, and 2.4 established

in what follows. Lemma 2.2 in required to prove Lemmas 2.3 and 2.4.2

Lemma 2.1 (on the approximation of envelopes for the family of functions from A). If
a finite number of functions f,, f,, ..., f defined on a compact set K belongs to A,

then the functions

M=max{f} and m=mn{f}, i=12..,n, (2.9

called the upper and lower envelopes of the functions f;, respectively, can be arbitra-
rily exactly uniformly approximated by functions fromthe algebra A intheset K.

We gplit the proof of the lemmainto three stages.
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1. First, we prove the validity of the lemmain the following special case: If f isan
arbitrary function from the algebra A, then the function

M= max{f —-f} =|f] (25)

can be approximated arbitrarily well by functions from the algebra A uniformly on K.
Indeed, we fix anumber ¢ >0 andset max | f(x)| = a. Further, by using the Wei-
xeK

erstrass theorem 1.1, for afunction H continuous on the segment [-a, a], we find an
algebraic polynomial By of theform

N .
Py(y) = Xy
i=0

such that

NI

max ||y|- Py(y)| <
—a<y<a

Since ¢, =Py(0), foral ye [-a,a], weget

= |lyl- Puy) + Py(O)| < &

N
yl- > qy

i=1

and, hence, for x e K,

f(x)| - Zq[f(x)]'

Since the sum ZiN:lci[f]i does not contain the term ¢, which may not belong to

A and A isan algebra, the element ZiN:lq[f]i e A. Thus, Lemma2.1is proved in the
first case.

2. Since

fi+f + | f, = 15

max { f,f,} = 5 >
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fi+f | f = T

min{f, f,} = > 5

inview of the first case the assumptionthat f,, f,e A impliesthat the function

[fi—fo| _ ﬁ_k‘
2 2 2

and, hence, the functions max { f;, f,} and min{f;, f,} can be approximated arbi-
trarily well by the elementsof A uniformly on K. This proves Lemma 2.1 for the case
of two functions f; and f,.

3. Inthe case of an arbitrary finite number n of functions, Lemma 2.1 is proved by
induction.

Lemma 2.2 (on the interpolation property of algebras). If an algebra A defined on K
separates the points of K and does not vanish at any point of K, then, for any differ-
ent points x;, X, € K and any numbers c¢; and c,, one can find a function | € A
such that

[(x)) = ¢ and (X)) = C,. (2.6)

Proof. Sincethealgebra A separatesthepoints of K, in A, there exists a function g
suchthat g(x;) # g(x,). On the other hand, since the algebra A does not vanish on K,
there existsafunction h suchthat h(x;)# 0. Therefore, the function

gz _9X2)=0 2.7)
h(x) 9(X2) — 9(%1)
and, clearly, issuch that f,(x;)=1 and f;(x,) =0.
Similarly, the algebra A containsafunction f, suchthat f,(x;) =0 and f,(x,)=1.
However, this means that the function

l:=c¢f; + cf, (2.8)

also belongsto theagebra A and, at the same time, satisfies conditions (2.6).
Lemma 2.2 is thus proved.

Lemma 2.3 (on the existence of dominating envelopes with junction point). Let F be
an arbitrary function continuous on a compact set K. Then, for any point x° e K
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and any number € >0, one can find finitely many functions f,, f,, ..., f.e A, whose
upper envelope MXo possesses the following properties:

Mo (X®) = F(X%) and My (x) > F(X) — &. (2.9)

The function Mo is called an envelope dominating over F with accuracy ¢
and junction point x°.

Proof. According to Lemma 2.2, for the point x? (e K) and any point y e K other than
x0, one can construct a function l, such that

@) = F(XO) and Iy(y) = F(y). (2.10)

Inview of the continuity of the function Iy, there exists an open set G, containing
the point y such that

ly(x) > F(x) —¢ foral xe GyNK. (211

Since K isacompact set, there are finitely many points y,, V,, ..., Y, such that the
corresponding open sets Gy,: Gy,..... G, cover K: K CGy, U...UGy,. Therefore, if
weset f = Iyi , then the upper envelope MX0 of thefunctions f; =1y, ..., f, =1y sat-
isfies all conditions of Lemma 2.3 because, by virtue of relations (2.10),

Mo (x0) = max {f (), ..., f,(x0)} = max{lyl(xo),...,lyr(xo)} = F(X0),
On the other hand, any point xe K belongsto acertain G, and, hence,

Mo (x) = max {ly (x), ..., ly ()} = Iy(x) > F(X) - &
by virtue of inequality (2.11). Lemma 2.3 is proved.
Lemma 2.4 (on the approximation of continuous functions by envelopes). Let F be an
arbitrary function continuous on a compact set K. Then, for any € >0, there exist fi-
nitely many envelopes M, , M, , ..., M, dominating over F with junction points

X; ; moreover, the lower envelope m in this family satisfies the inequalities

F(xX)—e <m(x) < F(x) + & foral xe K. (2.12)
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Proof. Every function M. is clearly continuous and satisfies the equality in (2.9).
Hence, there existsan openset D, containing the point x® and such that

My(x) < F(x) + ¢ foral xe D,NK. (2.13)

Since K is acompact set, there exists a finite set of points x;, X,, ..., X, such that
the corresponding open sets Dy, Dx,, ..., Dx cover K: K CDy U Dx, U...uU Dy. Let
us show that, in this case, the function

m = min{My, ..., My}

satisfies inequalities (2.12).
Indeed, on the one hand, each function M, satisfies inequality (2.9) and, thus,

m(x) > F(x) — e foral xe K (2.14)

On the other hand, every point x € K belongs to a certain set Dy, and, hence, by
virtue of inequality (2.13),

m(x) = min{My (X), ..., M (X)} < Mx(x) < F(x)+e. (2.15)
Inequalities (2.14) and (2.15) imply the validity of Lemma 2.4.

Proof of Stone’stheorem. Since each envelope M, dominating over F isan upper
envelope of finitely many functionsfrom A, by virtue of Lemma 2.1, each of these func-
tions can be arbitrarily exactly approximated by acertain function f; from A. However,
on the other hand,

m = min{My , My, ..., My }

and, hence, m can be arbitrarily exactly approximated by envelopes m of the form
m(x) = min{fy, f,,..., i}, where f; e A, and consequently, in view of Lemma 2.1,
by functions g from A. Therefore, in view of (2.12), there existsafunction ge A such

that F(x)-¢ < g(x) < F(x)+¢ or, in other words, such that |F(x) — g(x)| < ¢, xe K.
The proof of Stone’s theorem is thus completed.
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2.2. Corollaries of Stone’stheorem
Theorem 2.2 (first Weierstrasstheorem in R¥). Let K be an arbitrary closed bounded

setin R¥ Then, for any function F continuous on K and any & >0, one can find
apolynomial R, where n =(n;,n,,...,n) arenonnegative integers, of the form

N M Ny . .
i) = Pop (X%, X0 = Y Y G i, (216)
1=0 j2=0  [x=0

where X = (X, X, ..., X) isapoint of RK such that the inequality
|[F(x) — Py(x)| < ¢ (2.17)
holdsfor all xe K.
For the sake of simplicity, the next theorem is formulated for k= 2.
Theorem 2.3 (second Welerstrass theorem in Rk). For any function F 2r-periodicin

each variable x;, j = 1,2, and continuous in the entire space R? and any € > 0,
there exists a trigonometric polynomial T;, n =(ny, n,), of theform

Ta(X) = Ta,n, (X, %)

L Ny
> > la,,cosjyxcosj,y + by j cosj;xsinjy
j1=0 j,=0

+ G j,Sinjx cosj,y + dj j sinj;xsinjyl - (2.18)
such that the inequality

[F(0) - Ta()| < & (2.19)
holdsfor all x = (x,,%,) € R

Theorem 2.4. For any function F continuous on the entire real axis and such that the
following finite limits exist and are equal:
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—o0 < lim F(x) = lim F(X) < (2.20)

X—>—oco X—>00

and any € >0, thereexistsarational polynomial R, of theform

A+ yX+...+ax"

by + by X + ...+ b, x"

Ru(x) = (221)

such that the inequality

[FOo- Ry < ¢ (2.22)
holdsfor all xe& (—oo, ).

Proofsof Theorems2.2-2.4

1. Thevalidity of Theorem 2.2 follows from the facts that, first, any closed bounded
set K in afinite-dimensional space RK is compact and, second, the set of polynomials
P; of theform (2.16) isa Stone’sagebraon K.

2. Sincethe set of functions 2rt-periodic in each variable and continuous in the entire

space R? can be regarded as the set of continuous functions given on a torus and the to-
rusisacompact set and, moreover, the set of polynomials of the form (2.18) is a Stone’s
algebra on the torus, Theorem 2.3 also follows Stone’ s theorem.

3. Thevalidity of Theorem 2.4 follows from the facts that, first, the set of functions
continuous on the entire real axis and satisfying condition (2.20) is equivalent to the set of
functions continuous, e.g., on thecircle C: p=1, ¢ e [-&, ], i.e, on a compact set,
and second, the set of rationa polynomias of the form (2.21) regarded on the circle C
[by the change of variables x = tan(¢/2), ¢ = 2arctanx] isclearly a Stone’s algebra.

3. Examples of polynomial kernels
In the present section, we consider examples of different polynomia kernels K,, defined
on asymmetric interval [—a, a] and establish their most important properties, including,

first of all, the following properties, which are of especial interest for our presentation:

(&) normalization of the kerndl, i.e., the fact that
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1 a
3 '[ K,(x)dx = 1.

—a

(b) Lebesgue constants of the kernels K, (x), i.e., the quantities

1 a
L(Ky) = 2 [ [Kn(0] dx

—-a

A sequence of kernels {K,(x)} is caled &-shaped if the following conditions are
satisfied for any ce (0, a):

1C
Iim = | K,(x)dx = 1,
lim = [ Ky

—-C

lim [ IKy0ldx =0, (31)
n—oo
[-a,a]\[-c,c]

L(K,) < A = const.

In addition, in all cases, we indicate whether the analyzed kernel K|, is even, nonne-
gative, etc.

3.1. Periodic kernels

The Dirichlet-, Fejér-, and Jackson-type kernels prove to be especialy important among
trigonometric polynomial kernels.

1. Dirichlet kernels. A function

2n+1
ni

S t

Dn(t) = (3.2

Zéni
2

iscalled the Dirichlet kernel of order n.
Let us show that this kernel is atrigonometric polynomial of the degree n and, in ad-
dition,



126 Weierstrass theorems Chapter 2

D, (1) = % + cost + cos2t + ... + cosnt. (3.2)
Indeed,

% + cost + cos2t + ... + cosnt

sin1 + Zsinlcost +...+ 23in£cosnt
2 2 2

Zgnl
2

snt+ (sing - sini) +ot (sin(2n Dt gn@n _1)t)
2 2 "2 2 >

2sint

2

Sin(2n+1)t

_7%[ = D,(t).
2sin—
2

Thiskernel possesses the following properties:

(8 Dgy(t) isan even trigonometric polynomial of degree n;

) %] Dp(tyt = 1,
T x

© Lp:=L(Dy) == | [Doldt = 4 inn+R, n=12.., 33)
T '

-
where
IR,| < 3. (3.3)

Properties (a) and (b) are obvious. We prove property (c) for n> 1 [for n=1, this
property readily followsfrom (3.2°)]. Since
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. (2n+ Dt (4n+ Dt
sn-———— : coOS———
2 _ Ssnnt + 4
2sint 2sint 2cost
2 4

we conclude that

. Sin(2n+1)t
L= 2]|—2—|ar = 2]| S0t gy,
T 2sin— T 2sint
2 2

where, by virtue of the fact that cos% > % foral te [0, ], wehave

T
In| < 1 1 ‘cos(n+1)t‘dt
U cos(t/4) 4

J22n++2/2 .3

T n+l4 T

\/n»]; cos(n+ ) ‘dt

Further, we have

sinnt(t—Zsinl)
2 .

sinnt sinnt
T - + 1
2sin— t 2tsin—
2 2

Thus, in view of the fact that, by virtue of (0.4),

0< 1t_;<%_%<1tan(£)<1
2sin— U 2dn- 4t~ 4 \4 4
2 4
foral te (0,m), wefind
2 Fsinnt
an—H ‘dt+r1+r2,

where
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n|sinnt|t —2sin—

‘smnt

For the integral J ‘dt, we get

1 |(k+D)m/n .

kr/n

"Hsir:nt‘dt _ i

0 k=0

(k+D)=w/n
J sinntdt
krt/n

n-1

g

0

IN
i) M

n
1 kn
and, similarly,

(k+)m/n

T‘ant‘dt>r§ n
ot S k+Dm

Thus,
n-1
4 1
L= — Q) = +r,+r,+rg,
n? oy K
where
2% gint o Zsmtcosi 2
gl < £ Tt = £[—2 24t < jcos dt =
b1 t T t
0 0
Since
n-1 1 n
Inn< Y = and Inn> Y
k=1
we have

PR
=> =+
nkzlk -([

W\H

(1-25n7)
T
1y < ZJ 2/ dt < glJ'\sinnt\dt =1
0 - T4y T

Chapter 2

—

t
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Therefore,

L, = izlnn + Ry,
T

where

4 (%1 3.1 4 4
< I+l + i+ =—=Inn| < =+=+—-+— <3
Rl < [l + o] + 1] (kzk ) SR

Remark 3.1. Thefollowing result is closely related to inequality (3.3):
Itiseasy to seethat the polynomial P (f;-) of degree n interpolating a continuous

function f onthesegment [-1,1] at the zeros x,=cosOy, Ok:= (2k—1)%, of the
Chebyshev polynomia T, hastheform

n
Pn(f,x) = i MM = 1 z (_l)kflf(xk)Lnes'nek,

o1 Ta(8) X = X, cos® — cosf
where x := cos0, andthenorm A, of thepolynomial operator T, isequal to

cosné
C0s6 — cos0,

_1 4
An = fomx 2

Improving the results obtained by Bernstein (1931) and Erdés and Turan (1961), Iva
nov (1978) established the equalities

An:glnn+1—6n, 0<6,< -, n=12...
T

1
4

Remark 3.2. We now present (without proof) the following general theorem obtained by
Nikolaev (1948) and Lozinskii and Kharshiladze (see [Natanson (1949), pp. 642—-676]
and [Korovkin (1959), pp., 144-150]):

Theorem (Nikolaev-Lozinskii—K harshiladze). If, for some natural n, a linear poly-
nomial operator U, (f;x) mapping the space of 2w-periodic continuous functions
onto the space of trigonometric polynomials of degree n preserves all trigonometric
polynomials T,, of degreen in a sense that U ,(T,; X) = Ty(X), then the norm A,
of the operator U,, (Lebesgue constant) satisfies the inequality
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Ap 2 1 Inn.
22

Remark 3.3. For acontinuous 2r-periodic function f, by Ty and E.(f) we denote the
polynomial and value of its best approximation of degree n, n>1, respectively. By
S,(f; 1) wedenote apartial sum of the Fourier series. Thus, by virtue of the equalities

S(fit) = % j f(t-uwD (udu and Sy(Ti;t) = T (D),

—T

we obtain

[0 = S(Fi 0] = [0 = Ta ) - Si(F =T D)

IN

[fo-Tao]+ = [ [fe-u-Tae - w] [Dyw] du

< Eo(f)+E(f)Ly,
Hence, the following theorem istrue:
Theorem 3.1 [Lebesgue (1909)]. For any 2m-periodic function f continuous on the

entire axis, the partial sums S, (f; t) of its Fourier series approximate this function so
that the following inequality holds for any natural n:

| f(t)— Sy(F; 1)) < (L+L,)E(f) < (4 + nizlnn) E(f), (3.4)

where L, are constants specified by relations (3.3).

Asfollows from this inequality, the partial sums of the Fourier series of a continuous
2n-periodic function f deviate from this function, in fact, not greater than the polynom-

ials T (t) of itsbest uniform approximation (at most by afactor of Inn).
By virtue of the equality

S,(fit) = 1 jf(t—u)Dn(u)du,
n —T
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the L ebesgue constants

L, = L(Dy)

given by relations (3.3), where D, (t) are the Dirichlet kernels, are clearly equal to the
norms of the operators S, .

In what follows, we often encounter Lebesgue constants for the other types of poly-
nomial kernels.

Note that, as aresult of the change of variables x = sin%, we get

Ton1(¥) _ cos(2n +1)(n/2 — arcsinx)

X X
. (2n+ Dt
. . sin——_——+
- (_1)nsm(2n+1)arcsmx _ (_1),1.7%
sin—
2

Thus, the Dirichlet kernels are expressed via the Chebyshev polynomials T, 1(X) =
cos(2n + 1) arccosx by the following identities:

Ton+1(X) .t
D, (t) = ()" 212 x = sin—. 35
n(h) = (=D % > (3.9)
2. Fgjér kernels. A function
SianLt
Fa(t) = 72»[ (36)
2nsm2E

iscalled the Fgjér kernel of order n (1904).
The Fejér kernel F, is the arithmetic mean of the first n Dirichlet kernels and,
hence, atrigonometric polynomial of degree n— 1. Thus, we have

Do(t) + Dy(t) + ... + Dy_q(1)

Fn(t) = .

(36)

Fa(t) = 1 + (1— 1)cost + (1— g)cosZt +...+ 1cos(n—l)t, (3.6”)
2 n n n

where D (t) arethe Dirichlet kernels.
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Indeed, on the one hand, according to (3.2), we find

L= sin%+sin% +.+ sinM
N=o 2nsmE

_ (L—cost) + (cost — cos2t) +... + [cos(n — 1)t — cosnt]

ansin2 L
2
2Nt 2 nt
_ l-cosnt _ 2sin 2 _ S 2 - F (1),
4nsin2 = 4nsin? = 2nsin % "

On the other hand, according to (3.2”), we can write

n-1
%2 Dy(t) = 12 + (12 +cost) +...+ [1n/2+cost+...+cos(n—1)t]
k=0

1
2

+ (1—1)cost + (1—g)0052t + ...+ 1cos(n—l)t.
n n n

This kernel possesses the following important properties:
(1) F,(t) isaneven nonnegative trigonometric polynomial of degree n—1;
1 T
(i) =] R@d =1 (3.7)
T
-7
(iii) forany o€ (0O, m),
nd

| Rd < 2, (38)
)

Properties (i) and (ii) follow from equalities (3.6) and (3.6"). In order to prove (iii), it
suffices to take into account inequality (0.4):

. o nt
b n Sin?— b
[Rma = =] 2.t < Lpa 1,82
5 2ny gn2t 2ny gn2t  n2

2



Section 3 Examples of polynomial kernels 133

The Fejér kernels are expressed via the Chebyshev polynomials by the formula

1- D", (X .t
Fut) = 22D 20 4r)1x22n( ) x=snl.
Indeed,
sin? %t 2sin? n(g - arccosx)
F (1) = =
oV 2nsin2% 4nx?

1- cos2n( T - arccosx)
_ (2 S G U PES)
anx® 4nx2

Moreover, the kernels K (x) [see (1.2)] are expressed via the Fejér kernels by the
formula

cos? [(Zn + 1)(% —arcsin x)]

1
Kn(X) = — ) -
Tn sincarcsinx
1 sin?(2n+Darcsinx _ -
= — ( P ) = YnFona®, (3.9
Yn  sin?arcsinx
where 7, = AN*2 ond t=2arcsinx Therefore, cost = 1- 2.
n
Wenow set F,p,,1(X) 1 =K, (X/2). Thisyields
_ 2
Fonii(X) = an+2 F2n+1[arccos(1 - in xe [-2,2]. (3.9)
Tn

3. Dela Vallée Poussin kernels (1919). For any nonnegative integers m and n (n > m),
the dela Vallée Poussin kernel is defined as the arithmetic mean of the Dirichlet kernels
of ordersfrom m to n-1, i.e., asthefollowing trigonometric polynomial:

Vin(t) = ﬁ {D,()+ Dy (H+...+D, (D} (3.10)

Since Dy(t) = Dy(t) +cos(m+ 1)t + ... +cos(m+Kk)t, we get
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V() = Do (t) + ¥ (1— f)coskt (3.10)
n=m, m n

and, consequently,

Vit = D(t) and  VJ(t) = F.(b).

By using (3.10") and repeating the reasoning used to deduce inequality (3.4"), we find

[ O = Vin(F: 0] < [1+ L] Em(D). (310”)
In view of relations (3.10), (3.6”), and (3.6) for the Fejér kernels, we obtain
n 1

Vm(t) = n_m[nFn(t)_ mFm(t)]
2 Mt _ g2 mt

-1 sin 2 sn 2 _ 1 cosmt— cosnt (3.11)

n-m g2t n-m ggn2t '
2 2

According to property (ii) of the Fejér kernels, this means that if n—m > en, where
e isan arbitrary fixed positive number, then the Lebesgue constants  L(Vj) of the cor-
responding de la Vallée Poussin kernels are bounded by the number 2/«.

Moreover, relation (3.11) yields the equalities

1 cosnt - cos2nt (3.12)

4n Sinzl '
2

Vnzn(t) =

cosnt — cos3nt . (3.12)

3n 1
Vn O ==
8n Sinzl
2

In view of the fact that

1, for te (0, z—n)
3

sgn (cost — cos2t) =
-1, for te (Z—Rn)
3
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and

sgn (cost — cos3t) = sgncost, te (0, m),

we arrive at the following expansionsin Fourier series:

1 43 1. 2kn
n(cost—cos2t) ~ = + — —sin—— coskt,
son( ) 3 n Z‘l k 3
cos(2k + it
ncost ~ | P A
< 2( ) 2k +1

and, therefore,
sgnVv2"(t) ~ 12 3cosnt - ﬁcoszm +...,
3 =n T
4
sgnV "(t) ~ cosnt — —cos3nt + .

Thus, by using relation (3.10") and the orthogonality of the trigonometric system of
functions, we get the following values of the L ebesgue constants for these kernelss:

1 b 1 2n-1 K
;j \Vnzn(t)\dt J' { + 2 coskt + 2 Y (1— 2)coskt}sgnvnz”(t)dt
-n

-n k=n+1

23
+ — =

I

+ 208 (3.13)
T

wIN
N
Wl

17 |30
= AR
TC—TE

_ 17
‘EJ

-7

SRES

(3.13)
k=n+1

19 3% k
{2 + ) coskt + > D (1— n)coskt}sgnvrfn(t)dt =
k=1

In conclusion, we note that, by virtue of the well-known Markov theorem (see, e.g.,
[Akhiezer (1965)]), the polynomials V2'(t) and V3"(t) are, respectively, the solutions
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of the following extreme problems of approximation of the Dirichlet kernels by the linear
combinations of coskt for n<k<2n and n<k<3n:

T 2n-1
minf = + 2 cosjt — Y, G coskt|dt
j k=n+1
T
= L[ |v®wldt = 1+ 28 (31
me 3 T
mlnf RE zn“ cosjt — 3nil ¢ coskt |dt = 1? Ve dt = 2 @w)
& T 2 =1 k=n+1 [ T

4. Rogosinski kernels (1925). A function

n
+ Y cosky,coskt, (3.15)
k=1

N[

1
Ra(D) = Ryt ) = 5 [Dn(t_'Yn)"' Dn(t+Yn)] =
where y, = O(1/n) and D, is the Dirichlet kernel of order n, is caled the
Rogosinski kernel of order n.

A. First, we set

=T
Tn on’
The kernel obtained as a result possesses the following properties:

(i) Thekernel
T
t) = t, —
R = Ryt 1)
can be represented in the form

R (t) = Lgnt__cosnt (3.16)

2 2n gost — cos ™
2n

For v, = m/2n, thisequality follows from the identity
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. 2n+1 . 2n+1
1 sin (t_Yn) sin (t+7n)
Ro(ti ) = = 2 +—2
nthn) = 5 1 1
2sin=(t—-vp) 2sin=(t+vp,)
2 2
sinszrl(t—yn)sinH-Yn + sin2n+1(t+yn)sin7t_7”
- 2 2 2
4sint Yo gnt=Tn
2 2

_ cos[nt — (n+Dy,] — cos[(n+Dt — ny,]
4(cosy,, — cost)

N cos[nt + (n+1)y,] — cos[(n+1)t + ny,]
4(cosy,, — cost)

cos(n + 1)t cosny,, — cosnt cos(n + 1)y,

= 3.1
2(cost — cosyy,) (317)
(ii) By virtue of equality (3.15), we conclude that
1 Y
= j R,(t)dt = 1. (3.18)

-7

(iii) Equalities (3.15) and (3.16) imply that the kernel R, is an even trigonometrical
polynomial of degree n whose positive zeros from theinterval (0, ) are located at the
points

Therefore, the derivative R, does not vanish in the interval (0, t;). Note that, for
ty <t<m, wehave

LA S R .
2n cos -~ Cos_ 4sn™ 2 4n
n

n

[Ry(®) = Zsin

Thisyields
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1 1 o 2n
max t)| = 0) = fsm—iz =cot— < —. 3.19
[Ri(®[ = Ry(0) = g e® 2% < (3.19)
2n

(iv) Notethat, by virtue of relation (3.16),

sgn Ry(t) = —sgncosnt + e(t),

where

2 for |t] < I
2n
e(t) =

0 for = <|t|< T,
2n

and that asit is easy to see that

12 4 . km coskt
e(t) ~ == + 2 ) sin=—
® 2n nkzl 2n k

2 “ 1)|< cos(2k + 1t

sgn cost ~ ka1

Hence, we arrive at the following expression for the Lebesgue constant of thekernel R, :

f n-1
%_[ |Ry(D)] dt —_[ [ + Z COSnCOSktHn +dy §nkt coskt]dt

T 2n Kk

n-1
- 25 Afg(kn) oGt bmy) @20)
T 2 n n n
where
o) := stnt for t0 and o(0):=

Since the right-hand side of (3.20) is an approximate value of the integral
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T .
2fdnty _ 2y,
no t T

computed by the formula of trapezoids, we arrive at the following natural assertion:
For all natural n, thefollowing equalities are true*:

LT Rwldt = 2Sin-r, (3.21)
U T

where

0<r,<-1 and 2Sin~ 21851~ 1185.
3n? T T

In order to prove this assertion, we represent the quantity r, by using relation (3.20)
in theform

T . n-1
pe 2] 2 S o), okl
U T 2 n n n
2 n-1 tk+1
= = J otdt |- (tes — (06 + 0ltys1), (322)
T =0\ g
where t, :=kn/n. We set
n-1 tk+1
= (t — )2 (t =t )2 @ (1) dt.
12n &, t{ ’

By using the identity

b
[fo0dx - %(b —a)(f(b) + f(a))
a

b
-1 a2y 25 (D) I Y VPR
24£(x a)2(x — b)2 F W (x)dx > (b - a)’(f'(b) - (@)
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valid for any function f four times continuously differentiable on [a, b], we get

2n-1

= A= (%) PICMELEY

+ L (3.23)

= A+ 7(6 0 -o'(m) = o2

To estimate A, werecall that

t
o) = i‘[ u* cosudu,
2

whence it follows that ‘0(4)(0‘ < 1/5 foral te [0, ®] and, therefore,

tk+1
[ - 1% - t.*c“yat

t

tk+1
8 (m\°
<f t—t)°(t-t dt=—(—).
j( Ot = tisn) =&

tk

This enables us to conclude that

ns()<i<6i n=12.

T 12n 75 n’ n®’

Thus, for n # 1, 2, therequired assertion followsfrom (3.22). For n =1, 2, itistri-
vial.

(v) Since, for al natural n, we have
in? ™ = 4502 o2 * > 262 X,
2n 4n 4n 4n

forany 6 (0, ), n>m/d, anddl te (o, m) (i.e., t >8> m/n), wecanwrite

‘cost - cosl‘ ‘cost -1+1- cosl‘
2n 2n

= Z(Sin2£ - sinzl) > sin®- > —
2 4n T
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and, hence, in view of relation (3.16), we find

‘0(4)(t)‘_T\R1(t)\dt<fsm—J. dt < g LTQ A (329
5 \cost—cos(n/Zn)\ 2 2ng 2 nd

3

A=L.

2

B. If we take into account the geometric reasoning, then it is more natural to consider
kernels of the form [Kharshiladze (1955), (1958)]

R = RPt = &(t, Zn“+1) = ;[Dn(t—zil) +D (”z n+1)]

In exactly the same way as in deducing equality (3.17), we represent these kernels in the
form

(2n+ Dt (2n+ Dt
_ 0S-—————— coS—————=
S b A R T o
2sn=|t - T 2¢n=|t+ T
2 2n+1 2 2n+1

2n + Dt

L 2 . (325

cos
n t
2(2n+1) 2 cost - cos

n+1

In this case, outside the segment

T T
2n+1" 2n+1]

the kernels

Dn(t—L) and Dn(t+L)
2n+1 2n+1

have the opposite signs and, to a significant extent, are mutually compensated. We re-
commend the reader to construct and add the plots of these kernels. The indicated kernels
possess the properties completely similar to the properties of the kernels R, studied in
Subsection A.
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By using the kernels R, we can, in asimilar way, construct the kernels

(Dty = = | pD (1) T
R“ ® = [ ( 2n+1)+R(1 (t+2n+1)]
[ ( ) + 2D, (t) + Dn(t + Zlf’fr 1” (3.25)
(2)(t— & )+ ~(2)(t+ & ):l
2n+1 2n+1
= 13[Dn(t— 3n )+3Dn(t— T )
2 2n+1 2n+1

+ 3Dn(t + 2nn+1) + Dn(t + 2:1 1)] (3.25")

etc. Inthiscase, the kernels are mutually compensated outside the segments

__3n 3n __5¢n 5n
on+1' 2n+1] 2n+1" 2n+1]

etc., respectively. Thekernds R?, R, etc. take only positive valuesin the intervals

__5n om __In n
2n+1" 2n+1) 2n+1' 2n+1)

Il
NI =
—

2

RY®

etc., respectively.
By using the kernels Ry(t) := R®(t) studied in Subsection A, one can also construct
more general kernels of the form

201y = D s _ %( T2 = ))]
Rﬁ ® = vh cosnt[(cost COSZn)(COSt COSZn) cost — cos on , (3.26)

where the numbers ) are chosen to satisfy the condition

1 [ RVt = 1.
T —T
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Finally, we mention the kernels T, , quite closely related to the Rogosinski kernels.
For any natural n and k < n, thesekernels are given by the formula

T (D) = ik i ( )[Dn(t) + (-1)"*'D, (Hvﬁn)]

Da(®) + 5% 2( )( 1)V*1p, (t+%). (3.27)

For the first time, these kernels were studied by Trigub (1965), who discovered that
they play an important role in some problems connected with the approximation
characteristics of the functions.

Let usshow that, for any n and k<n, the Lebesgue constants of the kernels 1, ,
satisfy the inequalities

T
L(Ty ) % [ [mn®] dt < 2 (3.27)

-T

Indeed, since, for any v,

D, () + (-DV** Dn(t + %)

S oo (i) oo 5]

by virtue of relations (3.27), (3.15), and (3.21), we obtain

k
L(ten) < ik 2( )2vL(F~>n> - gL(F?n) < %,

asrequired.

5. Jackson kernels (1911). A function

nt \4
I bl 2 (3.28)
J (1) = , h=12 .., .
() 2n(2n? +1)| gnl
2

is called the Jackson kernel of order n.
These kernel s possess the following properties:
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(8 forany n, thekernel J,(t) isan even nonnegative trigonometric polynomial of
degree 2n-2 of theform

2n-2 2n-2

+ Y jkcoskt = 1 Yk, (3.28)

k=1 k=-(2n-2)

I =

I\)IH

where

jk = (n) arecertainnumberssuchthat j,:=1 and j , = ji for k>0;

(b) lf J(hdt = 1; (3.29)
n—n
1 5. ,
© j t(hdt < > (3.29')
TEZ
(d) fj 2J(t)dt < > (3.30)

Proof. (a) Inview of the fact that that the following equalities are true for the Fejér ker-
nels F,(t):

snnt/2)\* _ _ o (4 Kk
(sin(t/Z)) = 2nF,(t) = 2n { 2:: (1 )coskt}
[seerelations (3.6) and (3.6”)], we find

3-2n

J (b = F (0]
(D) o +1[ n(h)]
n-1 : n-1
= 623n 1, Y (1—i)cosjt 1, Y (1—X)cosvt
2n“+1| 2 < n 2 = n
j=1 v=1
: 2n-2
= do, Y jycosvt,
2 v=1

where j,, v=0,1,2,...,2n-2, arecertain numbers. In particular, since the trigono-
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metric system of functionsis orthogonal, we obtain

Co12n |1 1, )
J””dt 241 [4+2j21(1‘n)]

_6n [1 (n—l)n(2n—1)] _
= — -+ 5 =1
2n° +1L2 6n

This proves property (a).
(b) Equality (3.29) follows from the equality established for jg .

(©) Since |sinnt| < n|sint| forany te (—eo, ) and

sint > gt for te [0, E]
o 2

[seeinequalities (0.1) and (0.2)], we conclude that

b n/n T .
1 3 sin(nt/2) )4
=1 tJ (t)dt e a— t|———=| dt
n'([ () 2nn(2n’ + 1) {[ ~('; " Jn) ( sin(t/2) }

IN

n/n
3 4
pne (J’ tndt + j t(t/n)“dtj

n/n

IN

2.2 4
3(nn+ T ):3n<5

4n3\ 2 2(n/n)? 4n " 2n

(d) Asin case(c), wefind

T n/n T 3 )
_ 3 |42 4 Gt 3 (n°n 3 T

as required.

6. Jackson-type kernels. A function
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nt \2k
1
I (t) = —2.| | =123,
Tk,n smE

where k isanatural number and
_ ET [sm(nt/Z)] d&t
n’ Lsn(t/2) '

is called the Jackson-type kernel of order n.
The Jackson-type kernels possess the following properties:

1 Y
@ ;Jﬂ Johdt = 1.

This property follows from equalities (3.31) and (3.32).

Chapter 2

K, (3.31)

(3.32)

(3.33)

(b) For afixed natural k andany n, thekernel Jy (t) isan even nonnegative trigo-

nometric polynomial of degree k(n-1).

This property follows from equality (3.31) and the fact that, by virtue of egqualities

(3.6) and (3.6”"), we have

1 1
I = — [2nF (0] = —— @) [F 1]
Tk,n Yk,n
k n-1 kK k(n-1)
= (2”)[1 +Y n- Vcosvt] = Y jycosvt, (3.34)
Yk,n 2 v=1 n v=0

where j, = j,(k, n) are certain numbers.

(C) ’Yk'n - n2k—l,

(3.35)

i.e., there exist constants ¢, (k)>0 and c,(k)>0 suchthat, foral n=1,2,...,

2%-1 2%-1
c,n < Yo < &N

We now prove that

(3.35)
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3 2k-1 5 2 "
n < < —n , h=1 3.35
2\/k Yk,n 2\/k ( )

For this purpose, we represent nl‘zkykvn as the sum of two integrals a, , and by,
where

8y p 1= 2r‘zm(3”(””2))2k01t and b, =2 | (Sjn(nt/z))det
R nsin(t/2) kn = o \nsin(t/2) '

For by , it follows from estimate (0.2) that

oo

a 1 1

2 1ok Fo(t2Yy m\2k-1

T 2n/n 2mn n 2n/n

To estimate a, ,, we represent thisintegral in the form

2k
_—j( sint )dt.
nsin(t/n)

For any fixed te [0, n], thefunction f(x) = xsin(t/x) increasesfor x > 2 [since
0<t/x<m/2 and

t

f'(x) = sn- - t t
X

—cos— >0
X X

by virtue of (0.4)]. Hence, & .1 < &, Inaddition, inequality (0.1) implies that

nsin% <t te]Omr],

and therefore,
47T (sint
AEM o = ae < a2 a,
no t ’

/2

n
AJ‘ (COSL)ZK dt = § J‘ (COSt)Zk dt = 4M,
" ’ § (2k!
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where the last equality is verified by induction.
Since
a . = 4\s“‘Zk—l\J“““(Zk—l)(Zk—S) . J3-1 < 6
k2 2k 2k -2 2 NS
k2 = g Jak(2k-2) T J4-2 V2 T 2V’
and, by virtue of relation (0.4),
Snt _ 2gntensl o col, o<t<m,
t t 2 2 2
we conclude that
4”(sint)2k 4”( t)4k 3
= —|[=—] dt > =|[cos=| dt = a > —
B n!; t n-([ 2 22 7 5 0k
and
1 -2k —
T < a‘k,oo B ak,n < ak,2 < nl Yk,n - ak,n-'-bk,n
/6 1 1 5
< +h < S <
B2 B S T T %7 < o0k
Inequality (3.35”) is proved.
(d) Forany 6 >0, thefollowing inequality is true:
T  \2k-1
[EROLE: (na) . (3.36)

3

This property follows from inequalities (3.35”) and equality (3.31). Indeed,

T _ 17 sin(nt/Z))2k
J (dt = —=— [ [ IR g
i o) vk,ns(sna/Z)
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oo

2k 2k 2k-1
< .[(E) dt < 2@&1 L 21 < (n) :
Yin 50t 3n (2k-18 nd

(e) For any natural i < 2k-2,

T ) 1
j IOt dt = g (3.37)

|
-7

Indeed, on the one hand, by virtue of relations (3.35), (0.1), and (0.2), we have

[ 3] ot

—T

T T : 2k
2 [ty (tydt = 2 t'(w) it
{ en(® yk'n-([ sin(t/2)

IN

n/n _ . 2k T
2 jt'(nfqn(tlz)) dt+ | t'(“)ZKdt} <1

n/n

On the other hand, in view of relation (3.35) and inequalities (0.2) and (0.3), we find

n/n

T

i 2 i(2 nt 2\ 1

2|ty (Hdt > = t(—«—-f) dt > =
'([ kn ’ka”.([ T 2t nl

Corollary 3.1. If, for k=2, thekernel J, (t), in view of property (b), admits a rep-
resentation

k(n-1)

Jen(H =Y j,cosvt,
v=0

then the following relations are true for the coefficients j, =j, (k; n).

2
. A%
-y = (3.38)

Indeed, by virtue of relations (3.33) and (3.37), we find

T n 2
1-j, = % [ 3O(@-cosvtydt = v2 [ J (Dt2dt = 2—2

- -
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7. Poisson kernels. Kernels of the following type are very often encountered in various
problems parallel with the polynomial kernels:

P (t) := 1+rcost+r2<:052t+... = Re 1+re”+r262”+...
n 2 2

1 1-r? rsint
CRE 5+ >
21— 2rcost +r 1-2rcost+r

1 1-r? (3.39)
21-2rcost+r2’ '

These kernels are called Poisson kernels.

8. In conclusion, we note (for our subsequent presentation) that, by using Theorem
1.2.12 (Fejér), Korovkin (see [Korovkin (1959), pp. 76-78]) introduced the following re-
markable even trigonometric kernels K, of order n:

n B 2 n n k-1
Ky := A1 Y aelt| = A‘l{z a? +2Y Y ajaccosk- )| (340)
j=0 j=0 k=1 j=0
where
a]': n(JJrl)Tc! _0111 1n1
n+2
and
n n+1
_ 2 kn
A:= ZZE)aJ = 2k215|n2nJr2
j= =

Therefore, the kernels K, (t) havetheform

Kn(D) =

1 n
= + A coskt,

where, in particular,
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-1 n
A= 2A zak—lak
k=1
n
= 2A'Y sin kn [sin KT os KT T :l
kel n+2 n+2 n+2 n+2 n+2
n+1 n
= ANcos— 2 Y sin? Kt gnen*ly | gn @ Y sin 2kn
n+2 |2 n+2 n+2 n+2>= n+2
= cos— " + At 2c0s " _gn2_T
n+2 n+2 n+2
n J—
+ 12(0052k 1 052k+1n)
25 n+2 n+2
= cos—* + A Y _sin 2n LU 1(005 T_ _cos 3 )
n+2 n+2 n+2 2 n+2 n+2
= cos .
n+2

3.2. Aperiodic kernels

First, we consider a different approach to the construction of the kernels

Kn (g) = 'é2n+1(x)

[see (1.2)] used in proving the first Weierstrass theorem (Theorem 1.1).
Since, for any j, we have

i )
cosjt = Y ccost,
i=0

where ¢; are coefficients, in view of relation (3.6""), the Fejér kernel F (t) can be repre-

sented in the form
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n-1
Fo(t) = Y dcos‘t.
k=0
Further, as aresult of the substitution

X = Zsin%, te[-m, ], xe[-2 2],

we obtain

2
cost = 1—X—, t = tarccos 1—X—
2 2

F, [arccos(l - X;)] = :g; dy (1 _% )k. (341)

This means that, by using the periodic Fejér kernel,

sinz%t

Fo(t) = —=+
onsin2 L

2

we can now define the following algebraic kernel for all natural n (but not only for
odd n) [Dzyadyk (1958a)]:

v 2
Fa(X) = 2n Fn[arccos(l— Xz)

n

2
N X
sin? > arccos(l -2

= . xe[-2 2], (3.41)
Tn g2 1 ( 2
sn

—arccos| 1— X2
2 2

where vy, ischosen to guarantee that

1
j F,(x)dx = 1,
-1
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2
;S nzg arccos(l - X)
dx.

'Yn = j 2
%1 sin? L arecos 1- X5
2 2

The kernel Ién possesses the following properties:
@ Ién is an even nonnegative polynomial of degree 2n- 2;

1
(b) [ Fa(odx = 1;
-1

© yn,>n n=3

(d for 0<d<1, n>3,

2
v T
F.(x)dx < —.
n(X) pvs

) —y

153

(3.41”)

(3.42)

(3.43)

(3.44)

Since properties (a) and (b) directly follow from the definition [see relations (3.40)

and (3.40')], we study only inequalities (3.43) and (3.44).

By virtue of the substitution x = 2sin(t/2) (and, hence, 1- x2/2= cost), inview

of inequalities (0.2) and (0.3), wefind

2
1 sinznarccos(l—x) w3 gin2 Mt t
_ _ 2 19
yn—ZJ‘_ 1 2 dx ZJ .Ztcoszdt
0 sin®=arccos| 1 - 2— o SIn%,
2 2

and, moreover,

v
w
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1
Fa)dx < [ Fa(xdx

o e—

2sin(8/2)
. sin? arccos( XZ) w3 gin2 M
=1 1'[ _zfcos%dt
n26n(s/2) sin2 = arccos( Xz) N5 sn 5
13 o
< fj (&)Zdt cmja_w
ny \t nyt? nd’

asrequired.
Remark 3.4. Notethat, asarule, the analyzed substitution x = 2sin(t/2) gives a possi-

bility to obtain from an even trigonometric kernel an algebraic kernel with similar proper-
ties in the neighborhood of the origin, and vice versa.®

In order to deduce the explicit formulas for the polynomials Ién (which can also be
used as kernelsin the proof of the first Weierstrass theorem), we now establish the recur-

rent relation for these polynomials:
'En(x) = Yn'én(x)-

By virtue of (3.40"), for all integer n > 1, we can write

= v 1- cosnt X2
() = yFa(0) = — = = arccos(l—j).

Hence, by setting lfo(x) =0, taking into account the fact that Ifl(x) = 1, and using the
identity

cosnt + cos(n-2)t = 2cos(n- 1)t cost
for n>2, wefind

F(x) = 1ost [1 - 2cos(n-1)tcost + cos(n—2)t+2cost — 2cost — 1 + 1]
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1-cos(n—1t 1-—cos(n—2)t N
1 - cost 1- cost

2

2cost

2c0st By 4(X) — Fyo(X) +2.
Thus, we arrive at the following recurrent relation for the polynomials lfn:
FaX) = (2= X2)F\(%) — Fyp(X) + 2. (3.45)

Therefore, in view of the fact that Ifo(x) =0 and lfl(x) = 1, by virtue of relation
(3.45), we immediately obtain

F(X) = (2-x3)1-0+2 = 4-%,
R0 = (2-3)(-x%+4)-1+2 = X'~ 62 +9,
etc.
It isalso possible to prove that the polynomials Ifn(2x) satisfy the following differ-
ential equation:
XR(1=X2)y” — (52— d)xy’ + [4(NP—1)x2+2]y — 2 =

Further, starting from the Jackson-type kernels (3.31), we consider the following ker-
nels [Dzyadyk (1958)]:

- i X2
Jn(X) = ——kn arccos(l—zj]

xe [-2 2], (3.46)

where

X. (3.47)
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These kernel's possess the following properties:

(@) Forany natural n and Kk, jk'n is an even nonnegative algebraic polynomial of
degree 2k(n-1).
This property follows from the fact that, by virtue of equality (3.34), we have

k(n-1) k(n-1)
Jen() = jycosvt = d(cost)”.
v=0 v=0

Therefore, in view of the equality t = arccos (1 - x?/2), we find

1
®) [ Jn00dx = 1.
-1

This property follows from equalities (3.46) and (3.47).
(© Tin = 0L (348)

Indeed, in view of relations (3.47) and (3.35), we conclude that

2 2k
1 sin[;arccos(l—x)] w3 ( 5in2 Mtk
?k’n=2‘[ 1 5 dx:ZJ _2% cos%dt
0 |sin| Zarccos{1- X~ o (SN
2 2 2
(gt §n )2k
= [|- % dt - [ |- f dt
sin— sin—
0 2 n/3 2
T Sinrlt 2k
= Ykn j : ? dt = n*t
/3| SN2
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(d) Thefollowinginequality istrueforany 0<6 < 1:

n(x)dx < W ¢ = c(k) = const. (3.49)

O’);.l\)

Indeed, by using relation (3.48) and inequalities (0.2) and (0.3), for sint, wefind

2\ 2k
2 sin[garccos(l - XZH
Jin(0dX = 1 _[ dx

2
T sin 1arccos(l— X—)
2 2

N N
[

1 T Smllt 2k o0 c
= — J' : ? cos dt < '[( ) 21
Yk 2arcsins/2) Smi ns

(e) Forany natural i < 2k- 2,

1

Jen(OX dx = = (3.50)
n

N =N

Indeed, by using relations (3.48), (3.37), (0.2), and (0.3), we obtain

nt \2k
. 17 ey "% t
jx' Jen()dx = J(Zsin—) % cos— dt
5 Ykn 2/ | sin— 2
2
. nt2k
n | SIN—
=~ 1 jtl ? dt = 1
Yk,no SII’]E n

4. Rational kernels and approximation of functions
by rational polynomials

4.1. Newman theorem

Definition 4.1. Any function representable as the ratio of two algebraic polynomials of
degree n, i.e,
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aoxk + alxk_l +.+ 8y

boxI + blx'_1+...+q '

R(X) = (4.1)

where 0<k,1<n, ay#0, and by # 0, iscalled arational polynomial R,of degree n.

For the first time, the fact that there are continuous functions f whose best approxi-
mation by rational polynomials of degree n is much better than their best approximation
by algebraic polynomials was indicated by Newman. Asan example of a function of this
sort, he [Newman (1964)] studied the function f(x)=|x|, x e [-1, 1], and demon-

strated that
inf max || x| - R,(x)| < 3 , N=50678,... 4.2
Rn X e\‘n
At the same time, the following inequality is true:
E.(|x]) = igf max || X| - P,(x)| = E c = const > 0. 4.3
X

n

Prior to the Newman theorem, we prove two simple lemmas on the existence of poly-
nomials of degree n whose absolute values on the segment [-1,-¢€ J”] are much
smaller than on the segment [e ", 1].

Definition 4.2. A function
n-1
Na¥) = T (x+&%, where & =¢g(n) = e, (4.4)
k=0

is called the Newman polynomial N,, of degree n.

Lemma4.1. Theinequality

N80 =8 e (45)

holdsfor all n>5.

Proof. First, we note that the following inequality holdsfor all t> 0:
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-t _ g2t (4.6)

Thisfollows from the fact that the auxiliary function

a(t) = (1-t)e®—(1+1)

isnegativefor all t>0 since a(0) =0, o/ (0) =0, and o”’(t) = —4te? < 0.
By virtue of inequality (4.6), we obtain

Np(-&™h

_n_zgk_ _nk_ _1_&n
NaE ™ | [ = exp{ Zgla }_ exp{ - } “7

k=1

Further, in view of the fact that, for n>5,

Za(l_in) — Z(ef]./\““ﬁ _ e—(n+1)/\’ﬁ)
> ofe U5 _gbv5)y S ofq_ L 11 1 )_2 >1
( ) V5 25 6.5/5) 25
and, in addition,
1g=1-evn-t L1, 1
An o 2n ~n

by using equality (4.6), we conclude that

Ny(-&™ < gUaY _ g

Np (&™)

This provesLemma4.1.

Lemma 4.2. Thefollowing inequality istruefor all xe [e *",1] and n>5:

< 1 48)

Nn(_x) o+
— < e*/”.

Np(X)

Proof. For the sake of definiteness, we assumethat x e [&j 1 &j]. Thus, inview of the
fact that
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(t—a) >0
t+a

forany t>0 and a>0 and Lemma4.1, relation (4.4) implies that

Nax) | _ 8 -x T ox-g _ fpe-gt e g
oo |~ e I = o 1o
n 1_&| n-j-1 1_(v;7| n 1_§| Nn(_é—l) _Jn
= = = < e .
lzll.ug' |1:11 1+8 1+ N,(E™)
This provesLemma4.2.
Theorem 4.1 [Newman (1964)]. Arational polynomial R, of theform
Rn(X) = X Nn(X) - Nn(—X) (49)

Np(X) + Np(=X)

whose degree isequal to n if n isevenand n + 1 if n is odd approximates the
function |x| onthesegment [-1,1] so that®

|[x] = Ryx)| < 3e" (4.10)
for all n>5.
Proof. Since both functions |x| and |R,(x)| are even, it suffices to prove inequality
(4.10) for x=0.

Inthis case, by virtue of (4.4), wehave 0 < N (-x) < N(x) for x € [0,&"] =
[0, e "] and, consequently, 0 < R,(x) < x. Therefore,

[[X] = Ry)| = x=Ry(x) < x < e
If xe [e’*m, 1], then, by using Lemma4.2 and the inequality n>5, wefind

Nn(_x)
Nn(X) + Np(=X)

2 .2 3
ING OO/ Np(=X)[ =1~ eN 1 "

x|= RO9| = 2x
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Theorem 4.1 is thus proved.

4.2. Rational kernels

All polynomial kernels and, in particular, all analyzed even kernels K,, (algebraic and
trigonometric) are characterized by arelatively weakly pronounced 8-shape in the neigh-
borhood of the origin in the sense that, for any natural n, the measure of the interval

[-8,, 8,] outsidewhich, e.g., theinequality

J oIkl < 2
[-11]\ [-8,.6,]

1 j |Kn()]dt < % in the trigonometric case |,

T
[-m,®\[-8,,0,]

can be true isalways greater than 1/n, i.e, 25,2 1/n.

We now show that, by using the rational polynomials (4.9) proposed by Newman, one
can readily construct the rational kernels K,(x) which are much more 3-shaped in the
neighborhood of the origin (in the sense of concentration of singularity near the point
x =0) than the polynomial kernels of the same degree.

Theorem 4.2 [Dzyadyk (1966)]. Therational kernels K,(x) of degree n of theform

Kn(X) - 1 d [Nn(x)_ Nn(_x):l — Nn(X)NIf](_X)—i_ Nn(_X)NI;(X) (411)

2 dx | Np(x) + Np(=%) [N () + Ny (=2

possess the following properties:

1. K,(x) areeven rational polynomials of degree 4[2};

1
2. _[ K,(x)dx = 1,
-1

1
3 [ [Ky00ldx < 3ne /",

e ¥n
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Proof. 1. Thefirst property is obvious.

2. The second property follows from the fact that, by virtue of relations (4.11) and
(4.4), we can write

1 Ny(x) = No(=x) |1

= 1(1+ ) =1
2 Np(X) + Npy(=%x) |_4 2

1
J Ka(x)dx =
-1

3. Weintroduce an auxiliary function o, by the formula

N, (=X)

ap(X) = N, (%) .

(4.12)

The denominator of thisfunction N,(x) ispositivefor al x>0 and, according to re-

lation (4.4), its numerator N,(—x) is equal to zero at n points ™1 £™2 .. €, 1.
Therefore, according to the Rolle theorem, the derivative

Na()NAG=X) + Ny(=X)NA(X)

0(;1()() = —NZ(X)
n

(4.13)

and, hence, its numerator
On(X) 1= Np(¥) Np(=X) + Np(=X) Np(x)

(whichis, clearly, an even polynomial of degree 2n-2) is equal to zero at a system of
points +m;, i =1, 2,...,n-1 satisfying the conditions

gt < <E << i< <L (4.14)

Obviously, al these zeros are simple and the function c,(x) does not have any other
zeros.
Further, in view of the fact that, by virtue of equality (4.4), the sum

1 1
::O(x+§k)—H::0\x—§k\>O for x > 0,
Np(X) + Ny(=x) 2 L
21,8 >0 for x = 0,

we conclude that the polynomial N,(x) + N,(—x) does not have any positive zeros.
Thus, the kernel K, has the same zeros as the numerator of o, i.e, the points £n;,
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and no other zeros. All these zeros are simple. Hence, by using equalities (4.11), (4.13),
and (4.12) and inequality (4.8), we obtain

1 1 , ,
[ IKyolax = | [ NaOINAEX) + Na= NG|

—n ~n Nn(—X) 2 2
e e |:1+ Nn(X):| Np (X)

. }
< —= [ Jenldx
—\VNn\2 o n
1-eM e

Nn-1 Mn-2 1
j - j + ..+ (=t j o (X) dx
Nn-1

-+/n M1

N w

e

IN

3 _ 3
5 ‘an(e n)‘ + S‘O‘n(nn—l)‘ +...t 3‘an(n1)‘ + Ean(l)-

vn

Since, in view of relation (4.8), 0 < op(X) < e/ for x> e , wefind

1
J |K,(x)|dx < 3ne™".
e—\/n

The theorem is proved.
|

Remark 4.1. A more comprehensive investigation [Dzyadyk (1966)] shows that the ker-
nel K, possessesthe following properties:

1 _
J' |Kp(x)|dx < 3",

e n

Kn(0) ~ 7”e

e n

j |[Kp(x)|dx < 1+ 6", etc.

_ -+</n

e
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Remark 4.2. By using the kernel K, (x), one can aso construct trigonometric rational
kernels of the form

- 1 — cost t
ynKn( > )cosz2

and rational kernels on the entire axis of the form

1
YornKon(X) —— = [Dzyadyk (1966)]
2nan 1+ (xe' 2" /2n)?

with similar properties.

In conclusion, we note that the volume and scope of the present monograph do not al-
low usto dwell upon the very deep results by Gonchar, Vitushkin, Dovzhenko, Gilewicz,
and others concerning the approximation of functions of complex variable by rational
polynomials.

Remarksto Chapter 2

1. Inproving Theorem 1.1, Weierstrass used polynomia kernels W, (x) of the form

2 2\2 2.k
W, (%) = 1{1+ (‘;X ) 4 (‘”ZXI) Fot (‘”;")} (4.)

where, for given € > 0, the natural number n and the number c¢>0 are chosen to guar-
antee that, for

the “d-shaped function” e ”tz/yn (see Section 3) is such that the integral

Cc X+C
1 j fye v g = L j f(x—tye ™ dt (4.2)
Tn ° Yn Yec

C

approximates the function
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Cc
f(x) = 1 j Fooe ™ dt

n _c

foral xe [a, b] withanerror <e/2. After this, the natural number n is chosen suffi-
ciently largein order that the integral

j f ()W (X — t)dlt

—-C

(which is obviously a polynomial of degree 2k) differ from integral (4.2) by less than
e/2 foral xe [a, b].

Note that the influence of this reasoning on the subsequent development of the theory
of approximation could hardly be overestimated. Thus, the major part of polynomial ker-
nels analyzed in the present chapter can be regarded as natural (although fairly nontrivial)
generalizations of the kernels W,  (X).

2. The proof presented in the monograph is arevised version of the proof taken from
[Rudin (1966), pp. 178-186].

3. Note that, as aresult of the generalization of some S. Nikol’skii’s results [S. Ni-
kol’skii (19408)], Verbitskii (1940) proved that if the number

(.= h+m
© n-m
is odd, then the following equality is true:
T (r=1/2
lj V)|t = 1,2 3 Tian™,
T r-m i3 v r

Stechkin (1951) showed that if the number

n+m
n—m

r =

iseven, then

1% 0 4B 1 n@v-1
E_jn\vm(t)\dt = Evz::l VBT Ll
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4. Equality (3.21) was established by Korneichuk (1959) by using a different method.
The quantity r,, was estimated as follows:

2

0<r, < ———.
" J3@2n+1)

5. It seems likely that this substitution was used, for the first time, by Dzyadyk
(1958).

6. Much more accurate estimates are available at present.



Chapter 3
On smoothness of functions

Results of Chebyshev and Weierstrass laid the foundation for the theory of approximation
of functions and had a significant impact on its further development. It follows from the

Welerstrass theorem that, for any continuous function f on [a, b], we have
lim E,(f) = 0.
n—oo

The following question now naturally arises; What properties of the function f do
affect the rate of convergence of the sequence { E(f)} to zero and how strong is this
influence? It turns out that the higher the smoothness of the function, the higher the rate
of convergence of E,(f) to zero. Roughly speaking, in the class of analytic functions, a
function is assumed to be smoother, e.g., on [-1, 1], if the distance from its nearest sin-
gular point to [-1, 1] islarger; next to anaytic functions are infinitely differentiable
ones. If afunction f has more derivatives than afunction g, then f isassumed to be
smoother than g.

In what follows, A =A(a, b) denotes the class of functions analytic on an interval
(a,b) and MWI[r, [a, b]], where r is natural, denotes the class of functions f for
which al derivatives up to the (r — 1)th order exist and are absolutely continuous on
[a, b] and the derivative f (") satisfies the condition ‘f(”(x)‘ <M amost everywhere
on [a, b]; if M=1, then, for simplicity, we denote the corresponding class simply by
WIr, [a b]]:

WI[r,[a b]] := 1-W[r, [a b]].

By W'([a, b]) we denote the space of functions each of which belongs to the class
MWI[r, [a, b]] for some M. Asiscustomary, C=C([a, b]) denotes the space of all
continuous functionson [a, b], and C(”:C(”([a, b]) denotes the space of r times
continuously differentiable functions on [a, b].

In this chapter, to compare the smoothness of two continuous functions f and g that
either have the same number of derivatives or do not have derivatives at all, we use spe-

cial characteristics (moduli of continuity) of these functions (or of their derivatives f (")
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and g‘"), respectively); we assume that, of two functions, the function whose modulus
of continuity convergesto zero at higher rate is smoother.

Asarule, we denote classes and spaces of w-periodic functions defined on the entire
axis by atilde over the corresponding symbol of a class or a space and indicate the period
in brackets. For example, € = €[0,2r] and € = €V [0, 2r] are the spaces of all
2 -periodic functions, respectively, continuous and r times continuously differentiable
on the entire axis. However, we omit the tilde if this does not lead to misunderstanding.

1. Modulus of continuity (of thefirst order)

1.1. Definition. Examples

Definition 1.1. For a function f continuous on [ a, b], the first-order modulus of

continuity, or, simply, the modulus of continuity, is the function ®(u)=w(u;f; [a, b])
defined on [0, b—a] by the equality

o(uf;[abl)= sup |[f(x+h) - f(x)
as<x<b-h
0<h<u

: (1.1)

or, which isthe same,

o(ufilabl)=  sup [foQ - f(x). (11)
[Xo—xq|<U
X1, Xo€[a, b]

According to this definition, the modulus of continuity w(u; f; [a, b]) of afunction
f indicates, for every fixed ue [0, b—a], the amplitude of maximal oscillation of the
function on an arbitrary segment of length u containedin [a, b].

In particular, thisyields

| f(x+h)— f(x)] < o(h), x,x+he[a b];
(1.2)

[ f(x) — fOx)| € o(|% — %), X1, X,€ [a b].

This definition remains valid for the infinite interval (—oo, ), provided that the
function is uniformly continuous on it.

Example1l.1. Let f(X)=Ax+ B, X€ (-, ). Then, forany u>0, wehave

oUu) = sup |Ax+h+B-Ax-B| = sup |Ah| = |Alu
—co< X<o0 0<h<u
0<h<u
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3 1
2 1
y=o()

14
> ————+—— >
X 1 2 3 4 u

(@ (b)

Fig. 4

Example 1.2. Let the graph of afunction f hasthe form shown in Fig. 4a. Then the
graph of the function ® hasthe form shown in Fig. 4b.

Example 1.3. Let f(X)=sinX, Xe€ (-, ). Then, forany u>0, we have

o) = sup |sin(x+h)—sin(x)| = 2 sup ‘cos(x+b)sinb‘
—co< X< o0 —c0< X< o0 2 2
0<h<u 0<h<u

h 2sinY if u<m,
= sup smf‘ = 2
oshsul 20 o if u>n.

Remark 1.1. Let t” and t”” be two arbitrary points on the real axis. Since, among
points of the type

7 = t” + 2Kk, k=0,+1,+2, ...,

there exists at least one point 7 = t”+ 2kon suchthat |{” —t'| <=, we conclude that,
for any 2r-periodic continuous function f, thefollowing relation holdsfor any u>m:

o = sup [ft)-fth] = sup [fE)-f(t)| = om).

[t"-t] < u [f-t| < n

Therefore, for any function of thistype, w(u) isconstant for al u=> m.



170 On smoothness of functions Chapter 3

Remark 1.2. If, for some ue [0, ], onehas

o) = sup [fit+h) - fO)] = [f(to+hy) - f(ty)
—co<t<oo
0<h<u

where 0< hg<u<r, then, by virtue of the periodicity of the function f, we can aways
assumethat tge [0, 2r] and, hence, tg + hge [0, 3n]. Therefore, in the investigation
of the modulus of continuity of a 2r-periodic function, we can restrict ourselves to the
values of the argument of this function lying on the segment [0, 3n] or on some other
segment of length 3r and forget about the periodicity of f. However, as shown by Ex-

ample 1.4, if the modulus of continuity is considered for the values of the argument of a
2n -periodic function f from a segment of length smaller than 3r, then, generally spesak-
ing, this modulus of continuity differs from the modulus of continuity of the function f
on the entire axis.

Example1.4. For e<m/3, weset

X

- for xe[0, - 2¢],
T —2¢€

for xe[m-2¢,m],
o(x) = L
——(x-m) for xelm 2n-¢],

—}(X—ZTI:) for xe[2r -¢,2mn].
Ll €

Let

e ofs-[ 2o

be the 2rt-periodic extension of the function ¢ onto the entire axis. If the function f is
considered on the segment [0, 3n — 3¢] of length 3r — 3¢ < 3, so that (see Fig. 5a)

o(X) for xe[0,2n],

fe) = X—271

for xe[2rm, 3w - 3],
T —2¢
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(@
y A
y=o(u)
m+e >
T 2n u
(b)
Fig.5
then one can easily see (Fig. 5b) that
}u for uel0e¢],
€
1+ 978 for uele, m-2¢],
T —2¢
o(u;f) = T -3¢ g?
! 1+ for ue[n—Ze,n— ]
T —2¢ T —2¢
2
1+u_28 for uel:n— € ,n+£],
T—¢ T —2¢
| 2 for ue[rm+e, 3n- 3],

i.e., the modulus of continuity of the function f: [0, 3t —-3e]— R does not attain its
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greatest value at the point © and, hence, differs from the modulus of continuity of the
function on the entire axis.
1.2. Properties of the modulus of continuity
The modulus of continuity possesses the following properties:
(i) ©©) =0;
(i) o isanondecreasing function;
(iii) o isacontinuous function;

(iv) o isasemiadditive function in the sense that, for any u; =0 and u,=0, one
has

o(ug+Uuy) £ o(ug) + ou,y). (2.3)

Proof. Property (i) follows from the definition of modulus of continuity. Property (ii)
follows from the fact that, for large u, we must consider the supremum on awider set of
values of h. Property (iv) follows from the fact that, representing a number h e [0,
u, +u,]c[0,b-a] intheform h=h; +h,, h; e [0,u;], h, € [0, u,], oneobtains

H f(' + hl + h2) - f(')H[a,b_h]

S fC+h ) = fCm)lapn + s [FC+M) = FOlapon

0<h, <u,
< o(ug) + o(uy),
which yieldsinequality (1.3). It followsfrom (1.3) that if 0<uq < u,, then

®(up) = o(Uy—-U;+uUg) < ©(Upy—Ug) + ©(Uyp),

®(Up) — ©(Ug) < o(uy-Uuyq). (1.4)

Let us prove property (iii). Sincethe function f is uniformly continuous on [a, b],
wehave o(A)— 0 as A— 0 and, hence, forany u, u+Aue [0, b-a], weget
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lou + Au) — oU)| < o(/Au]) - 0 a Au—0,

which implies that the function ® is continuous.
In conclusion, we make the following remarks:

Remark 1.3. Properties (i)-(iv) completely determine a modulus of continuity in the
sense that any function f that possesses these properties is the modulus of continuity for a
continuous function, namely for itself; thus, for such afunction, we have

o(u;f, [0,b—al) = f(u).

Indeed, if f(x), xe [0, b-a], possesses properties (i)—(iv), then, for any x and
Xx+he [0,b-a], h>0, wehave f(x+h) < f(x)+f(h), and, forany ue [0,b-a],
we get

f(u) = f(u)-f(0) < w(u;f,[0,b-a])

IN

sup  |[f(x+h) = f(x)| < sup f(h) = f(u),
0<x<b-a-h 0<hs<u
0<h<u

o(u;f, [0,b—al) = f(u).

For this reason, in what follows, any function ® that possesses properties (i)—(iv) is
called amodulus of continuity.

Remark 1.4. Property (iv) (the semiadditivity of ®) isnot always easy to verify. There-
fore, of interest is the following sufficient condition for the semiadditivity of a function

a(u), u>0:

If % isa nonincreasing function, then the function o(u) issemiadditive.

indeed, if ““ | then
u

Uy +ly) o o(u)
U+l U

for O<u<uy+u,



174 On smoothness of functions Chapter 3

whence

o(Uy+Ug) = uZu(uerLh) + U1a(u2+ul)
Uy + Uy U+
< UZOC(Uz) + Ula(ul) = a(u2)+oc(ul),
Uy Y

which was to be proved.

The remarks presented above enable one to obtain the following important examples
of amodulus of continuity:

Example 1.5. All functions of the form M u® (u>0), where M =const>0 and 0<
o <1, are moduli of continuity.

Example 1.6. For 0<a <1, thefunction

0 for u=0,
wind for ue(0,e e,
o(u) = u
1 for u>e v
oe
isamodulus of continuity.
Example1.7. For 0< o <1, thefunction
0 for u=0,
o(u) = Ll for ue (0, &)
In% 1 L

1-o)e @ for yz>e Ve
isamodulus of continuity.

The modulus of continuity also possesses the following properties, which are conse-
quences of properties (i)—(iv):
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Property (v). Forany natural n and nue [0, b—a], onehas
o(nu) < no(u), (1.5)
and, forany A >0, (A+1)ue [0,b-a], onehas
o(lu) < [A+1lo(u) £ (A +1)o). (1.6)

Indeed, for n=1, inequality (1.5) istrivial. Assuming that it is true for some k> 1,
by virtue of property (iv) we get

o((k+1)u)

o(ku+u)

IN

oku)+o(u) £ ko) +o(u) = (k+1)o(u).

In turn, thisimplies that inequality (1.5) holds for all natural n.
If A isan arbitrary positive number, then, according to property (ii) and inequality
(1.5), we have

oAu) € o([A+1]u) € [A+1]ou) £ (A+1D)o(u).

Note that the inequality w(Au)<[A+1]w(u), i.e, thefirst part of inequality (1.6), is
exact in the sense that the multiplier [A + 1] cannot be decreased. To this end, we show
that, for any noninteger A >0, there exist moduli of continuity w(u) for which thisin-
equality turnsinto an equality for acertain u.

For definiteness, we restrict ourselvestothecase 1 <A <2. We set (see Fig. 6)

ix for 0<x<A-1,
A-1
1 for A-1<x<1],
f(x) =
1+i(x—1) for 1< x<A,
A-1
| 2 for x>A.

Then, obviously, w(u; f)="f(u), and, consequently, we obtain the following relation for
u=1

oAy f) = o) =f(A) =2 = [1+A]f(A) = [1+A]o(y; ).
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Property (vi). Forany o

Indeed, forany ue [0, b—

o(b-a) =

Fig. 6

andadl ue [0,b-a], wehave

which yields inequality (1.7).
Asis shown by the example of the function

=X, x e€[0,¢€],
€

f(x) = <1, xelg,1-¢],

w((b-a)
2(b—a)

the constant on

1.3. Concave majorant

1+ l(x—1+ €), Xel[l-g1],
L €

the right hand side of (1.7) cannot be increased.

Chapter 3

(1.7)

Definition 1.2. We say that a function o defined on a segment [a, b] is concave if

therelation
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aut + (1-Wip) = poty) + (1 - podty) (1.8)
holdsfor any t4,t,€ [a b] and pe (O, 1).

Definition 1.3. Let o be an arbitrary modulus of continuity defined on a segment
[0,a]. Thefunction w. defined by the formula

oy = sp  LEX00) + ¥-hoe) 19

O<x<t<y<a y—-X

is called the least concave majorant of the modulus of continuity .
It is obvious that the graph of this function is a curve that bounds from above the

smallest convex figure containing the curvilinear trapezoid bounded by the curve

y=w(t) from above, by the abscissa axis from below, and by the straight line y=a
from theright. It possesses the following property:

Property (vii). Thefunction o« possessesthe following properties:
(@) thefunction . isamodulus of continuity, so that
w©0) =0, T, o.eC[0a]
and
Ox(t; 1) < @ (t)) + 0« (ty), t,1,>0, t;+t,<a;
(b) the modulus of continuity - isconcave, and, therefore,
o.(uy + 1-ty) = pou(ty) + - wo.ty),
(1.10)

o« (At) < Ao (t) (A>1, O<ty,t,<a, pe (0,1));

(c) forany te [0, a], the following inequalities established by Stechkin (see [Efi-
mov (1961), p. 78]) aretrue:

o(t) < o (t) £ 2m(t). (2.1

Thefirst inequality in (1.11) is obvious. The second inequality follows from the fact
that, by virtue of (1.9), forany 0<x<t<y<a wehave
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1 Y _
o () < supy_x((t—x)(t+l) by t))m(t)
X
yit—x) -
< supm(t)(1+ ) = supo)| 1+ B 2m(1),
t(y - X) 1-%
y

where the least upper bounds are determined under the conditionthat 0<x<t<y<a.

2. Classes of functions defined by the first modulus of continuity
2.1. Holder (Lipschitz) classes and spaces

Using the notion of modulus of continuity, we introduce several classes of functions. Let
Jc[a, b] beaclosedinterval.

Definition 2.1. For any fixed o € (0, 1], the Holder (or Lipschitz) space of order o

is the set of all functions f € C(J)=C([a, b]) whose moduli of continuity satisfy the
condition

o(u; f;J) < Mu¢, (2.0

where M is a positive constant that does not depend on u and, generally speaking, is
different for different functions. This spaceis denoted by H%(J) or Lipo(J).

By MH[a,J] or MLip[a,J] (or Lip,M) we denote the class of all functions
from the Holder (or Lipschitz) space of order o that satisfy condition (2.1) for the same
value M. Itisobviousthatif fe MH[o, J], then necessarily fe H%(J).

Conversely, if fe H%J), then, for some M (possibly fairly large), we have f e
MHJa, J]. Denote H[o, J]:=1H[a, J].

Remark 2.1. By virtue of property (vi), no modulus of continuity ®(u) # 0 can be an
infinitesimal of order higher than u as u — 0. Therefore, inequality (2.1) isimpossible
for o > 1. Hence, thereisno sensein considering the classes H[a, J] for o > 1.

The examples presented above show that, for all 0<o <1, the following assertions
aretrue:
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(i) Mx%e MH [, [0, c]], c=const, and, hence, Mx*e H*([0, c]);

XO(
(i) — e H™(10,c]);
In;

(iii) x“ln% € H%([0, c]) and, at the same time, for any € e (0, o.) one has

x“ln% e MH [0 —¢, [0, e %]], where M > é

In approximation theory, the modulus of continuity plays an important role only for
sufficiently small values u. Therefore, we assume that ue [0, 1]. Then, forany 0<
o <B<1, weget u®>ub,

Thisimpliesthat HP(J3) c H*(J) for o <. In other words, the less the order o,
the broader the class H*(J).

2.2. Class Lip1

Among all Holder classes of order o, the most important isthe class H[1, J]. Thisclass
is often called the Lipschitz class and is denoted by Lip 1.

Theorem 2.1. In order that a function f belong to M H[1, J], it is necessary and
sufficient that this function be absolutely continuous and such that f” satisfies the fol-
lowing inequality almost everywhereon [a, b]:

| /(%) < M.

Proof. Necessity. Let fe MH[1,J], i.e, ®(u)<Mu. We prove that, in this case, the
function f isabsolutely continuous. Indeed, consider an arbitrary € >0 and an arbitrary
set of digoint elementary intervals (a,, by) such that

z”: €

(by—ay) < —.
k=1 M

Since

n n
D, [fho-f@)l < X Mib-ag < M =,

k=1 k=1
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the function f isindeed absolutely continuous on [a, b], and, hence, it has the almost-

everywhere finite derivative f’, which satisfies (at the points where it exists) the follow-
ing inequality:

f(x+h) - f(x)

f’ =11
| (%) lim .

< lim ‘M—h‘ = M.
h—0l h

Qufficiency. Let f be an absolutely continuous function and let | f/(x)| <M ae. We

provethat, in this case, one has fe M[1, J]. Indeed, since f is absolutely continuous, it

isthe indefinite integral of its own derivative, and, hence, for all xe J and h>0 such

that x+he J, weobtain

x+h x+h
< [ [fmldt< ™ [ dt = Mh
X

X

x+h

[fx+h-fx] = | [ fmat

Thismeansthat w(u; f; )< Mu, i.e, fe MH[1, J].
Corollary 2.1. Forany M>0 and J=[a, b], onehas

MWI[1,J] = MH[1, J], (2.2
whence

wh(d) = H(). (2.3)

2.3. Dini-Lipschitz condition

Definition 2.2. We say that a continuous function f satisfies the Dini—Lipschitz condi-
tion if

oy f;J) = o( ) as u—0. (2.9

Itiseasy to seethat if fe H*(J) for some o >0, then w(y;f;J) = O(—In(i/u))'
i.e., every function f that belongs to a Holder space also necessarily satisfies the Dini—
Lipschitz condition. The fact that the converse statement is not true can be established by
considering the function
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1
f(t) = —,
® In’t

for which

1

o(u; f[0,e2]) = 7o

and which satisfies the Dini—Lipschitz condition. Nevertheless, this function does not be-
long to any space H*(J) (o > 0).

2.4, Classes H[g, J]

A natural generalization of the Holder classesis provided by so called classes H[ o, J].

Definition 2.3. Let ¢ be a function that is a modulus of continuity and let M be a
constant. Then MH [¢, J] denotes the class of all continuous functions f for which

o(u; f;J) < Me(u), (25)
and H®(J) isthe set of all functions each of which belongsto MH[¢,J] for some M.

In the set of all differentiable functions, an important role is played by classes of func-
tions defined as follows:

Definition 2.4. For any fixed natural r, we denote by
W'H[a,J], MW'H[a,J], W'H[g,J]l, MW'H[o,J], etc.
the classes of functions f that have continuous derivatives up to the order r and whose
r th derivatives belong to the classes H [a, J], MH[a, J], H[¢,J], and MH[o, J],
respectively. Furthermore, for r =0, we set
WOH[a, J] = H[a,J], MWOH[a, J] = MH[a, J],

WOH[@,J] = H[9,J], MW°MH[g,J] = MH[g, J].

If, in addition, the functions of a given class are 2rn -periodic and we want to em-
phasize this fact, then we denote thisclassby H [a], H [o], etc.
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3. Lagrange polynomials. Divided and finite differences

Letanumber me N and points x;€ R, i =0,..., m, begiven. Thepoints x, are as-
sumed to be different, i.e., x;#x; if i#]j. Letafunction f: {xi}i”;O—>R be defined at
points x;, i =0,..., m.

3.1. Lagrange polynomials
Denote L(X;f; Xg) :=f(Xg).
Definition 3.1. A Lagrange polynomial

L(x;f) = L(X;f;Xg Xqs «vn s Xp) (3.1
that interpolates a function f at points Xg, Xy, ... , X, (interpolation nodes) is defined
as an algebraic polynomial of at most mth order that takes the same values at these
points as the function f, i.e,

L(x;;f) = f(xp), i=0,...,m. (3.2

For example, for m=1 we have

-Xq X - Xg

LOX; X Xq) = f + f
(X; 15 X0 Xg) P~ (Xo) X~ Xg (X1)
f(x)) - f(Xp)
= f(Xg) + ———2 (X=Xq). (3.3)
X1—Xo
Definition 3.2. The polynomials
m
X=%X .
HESEERNC S SR | | Xj=o0,...,m, (3.4)
i=0,i%] Xj =X

are called the fundamental Lagrange polynomials.

Weset p(x):=(X—Xg)(X—Xq)... (X—X,) and note that

pr(x) = lim —PX_ = jim ]m[ (X=x;) = ﬁ (X = X).
X=X (X=Xj) X=X g i=0,i%]
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Therefore, for any j=0,..., m, the fundamental Lagrange polynomials are represent-
ableintheform

X# X

(X5 Xgs Xqs oe s Xp) = P(X) )

S (x=xpP(x)’
Let & ; denotethe Kronecker symbol, which is equal to 1 for i =j and to O other-
wise.

It follows from the obvious equality 1;(x;)= &;j, i,j=0,..., m, that the Lagrange
polynomial exists and is representable by the relation

LOG 5 X0 Xgo oo X)) = D TG 106 Xg, X o0y Xy (35)
j=0

By using the main theorem of algebra on the number of zeros of an agebraic polyno-
mial, we can prove the uniqueness of the Lagrange polynomial and the validity of the fol-
lowing identity for any algebraic polynomial R, of degree <m:

L(X; Py Xgo X1, -+« s X)) = P(X). (3.6

Also note that, considered as an operator, the Lagrange polynomial is linear. Indeed,
if we have another function g defined at points x, aong with the function f, then

L(x;af+bg) = Y 1;(x)(af(x) +bg(x)))
j=0

m m
:a2uumm+a%hwmw
]=

j=0

= aL(x; f) + bL(x; g), a b=const. (3.7)

3.2. Divided differences

Let us divide the difference

f(x) = L(X; T Xgy -ov s Xme1)
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by the product (X—Xg) ... (X —X1)- Using (3.4) and (3.5), we represent the quotient at
the point x =x,, asfollows:

f(Xm) = LXms 3 X0-oos X1) < f(x))
m=1 - 2 m
120 m=%) i=0 [ Tig, (5 = %)

= [Xge Xqy oo s X T 1L (3.8

Definition 3.3. The expression [Xg, X1, ... , X;,; f]11is called the divided difference of

order m for the function f at the points xg, X4, ... , X, (nodes of the divided differ-

ence).

For example,

[Xo, Xy f] = f(Xo) N f(xp) _ f(XO)_f(Xl)’ (3.9)
Xo— X1 X1—Xg Xo — X1

e f(Xo) f(x1) f(x)
[X01X15 X21f] - + + .
(X=X (Xg=X2) (X —=Xp)(Xg—X2) (X2 = Xg)(Xg — Xq)
Let

[Xg; 1 1= f(Xg)- (3.10)

Note that the divided difference is symmetric with respect to the points x;, i.e, the
value of the divided difference does not change if the points %, on the right hand side of
(3.8) areinterchanged. For example, for divided differences of order 1 we obtain the

equality [Xgq, Xq; f1=[X4, Xq; f1, for divided differences of order 2 we get

[ Xg, X1, X2; 1 = [Xq, X, X15 F1 = [Xq, Xg, Xp; f]

[ X1, X2, Xg; F1 = [Xo, Xq, Xq1; F1 = [Xo, Xq, Xg; T1,

and so on.

Theorem 3.1. The Lagrange polynomial L (Xx; f; Xgq, ..., X;,) €can be represented by
the following Newton formula:
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L(X; 5 Xy X5 +ev s Xpy)
= [xg; f1 + [ X0, X5 F1(X=Xo)
o H [ X Xqy oo s X TI(X=X) (X=Xq) ... (X=X pp1)- (311

Proof. For m=1, formula (3.11) follows from (3.3), (3.9), and (3.10). Assume that
(3.11) istruefor anumber m— 1. By induction, let us prove that this formulais true for
the number m, i.e,

L(X;f; Xy oo s Xm) = L(OX5F5 Xgy ooe s Xme1) + [Xgy oo s Xy T1(X=Xg) - (X=Xp_1)-

Since both parts of this equality are polynomials of degree <m, it suffices to prove that
this equality holds at all points x;, i = 0,..., m. By the definition of Lagrange polyno-
mial (Definition 3.1), foral i=0,..., m—1 wehave

L(X ;T Xgr oev s Xme1) + [Xgs oev s Xy T10X = Xg) <o (Xj = Xme1)
= f(x)+0 = L(X;;f; Xgo oo s X

for i =m, according to (3.8) we obtain

L(Xms T35 Xgs oo s Xme1) + [Xgs oo s X F1ooc (X—Xg) -+- (X = Xma)
= fXm) = LXmi T3 Xgp oev s Xpm)-
[ |
Corollary 3.1. If x;e€ [a,b], i =0,..., m, and the function f has the mth deriva-
tiveon (a, b), thenthereexistsa point 6 € (a, b) such that
[Xgr ... X £] = = £(M)(g) (3.12)
[ LEEREIEIAY ¢4 E} m! . .

Indeed, the function f(x)-L(X;f; Xq, ..., X) vanishesat at least m+ 1 points X.
Therefore, according to the Rolle theorem, there existsapoint 6 € (a, b) at which

f(M@) - LM(@;f;Xg, ..., Xy) = 0.
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On the other hand, according to (3.11), we have
LMO;f; Xg, ..., X)= M [Xg, -.. » X 1.

Hence, relation (3.12) istrue.
It will be shown in Section 8 that if f(M)(x,) exists, then

. 1
lim Xy oo X 1 = — £ (M(x,),
xi—>x0,i:1,...,m[ 0 mi T m! (Xo)

i.e., the divided difference of order m is approximately equal to the coefficient of
(X—%o)™ inthe Taylor formulafor the function f.

Corollary 3.2. If R,_; isapolynomial of degree <m-1, then
[Xgs - s Xms Pne11 = 0. (3.13)

If f(x)=xM then

[Xgy oo X F1 = L (3.14)

Note that relation (3.13) can also be derived directly from (3.8) and (3.6), and relation
(3.14) follows from (3.8) and the obvious identity

Pm(X) = L(X; Py Xgy o+ s Xz1) = 8g(X=Xg) ... (X = Xp_1)s (3.15)
where P, (x) =agx™+ ... +a,, isapolynomial of degree m.
Lemma 3.1. Thefollowing identity istrue:
Xo=Xm[Xgs -+ s Xm F1 = [Xgy oo o Xty 1 = [Xq ooy Xs T 11 (3.16)
Proof. Let L(X):=L(X;f;Xg, ..., X;y)- It follows from (3.11) that
LMD(x) = [Xg, ..., Xpy_q; T 1(M=1)!
+ [Xgy ooe s Xy F1(MIX=(M=1))(Xp+ ... + Xp_1))-

Interchanging the points xg and X, in (3.11), we get
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L(m—l)(x)

[ Xi Xg5 «v s Xmg J(M=1)!

+ [ Xy X1y o+ s Xty Xl (MEX= (M=) (X +Xq + ... + X11))

[Xg, ooe s X d(M=1)! + [Xg, ...y XpJ(MEX = (M= 1)1 (Xq + ... + X))

Subtracting the obtained equalities, we get (3.16).
|

Corollary 3.3. Assume that a function f is defined not only at points x; but also at
p+1 points ¥, i=0,...,p, p<m, and, moreover, all m+p+2 points x and
y, aredifferent. Then

[Xgs - X T1 = [Yq - ' Yp Xpt1r oo 0 X f]
P
= Y [ X X Yo o Vi F10G =Y. (3.17)
i=0

Note that identity (3.16) is often used as a definition of divided difference.

Let Xq, X1 € [a, b] and let afunction f be absolutely continuous on [a, b]. Then,
according to the L ebesgue theorem, we have

X1
f(xp) = f(xo) = [ f/(0ydt,
Xo
Performing the change of variables t =Xy + (X1 —Xg)t;, weobtain
1 ¢
[0, X3 f1 = —=— [ £/()dt = [ F/(xo+ (Xg—Xo)ty) dty. (3.18)
X1 —Xo % 0

A similar representation istrue for any m by virtue of the following theorem:

Theorem 3.2. Let x;€ [a,b] for all i =0,..., m.If the function f has the abso-
lute continuous (m- 1)th derivativeon [a, b], then

[Xgs Xqs oev s Xpys ]

tm—l
_ff(m)(x0+(x1—x0)t1+...+(xm—xm,1)tm)dtm...dtl. (3.19)
0

O —r
O 5



188 On smoothness of functions Chapter 3
Proof. Assumethat representation (3.19) is true for a number m- 1. By induction, let

us prove that (3.19) is also true for the number m. Denote ty: = 1. According to relation
(3.16) and the induction hypothesis, we have

X = Xm_1) [Xgs -+ » X T1= [ Xgy «++ s X2y Xs F1 = [Xgy o s Xyt T 1

tg thoo v
= j j (Jf(m)(t)dt)dtm_l...dt1,
0 0

u

where
v = Xg Feoot Koz = Xmez)tmez + Xm—Xm2)tm-1s
U= Xg+...+* Xpo1 = Xm-2)tm_1-

It remains to introduce a new integration variable t,, instead of t in the last integral
by using the change of variables

t =X+ (X=Xt + ... + (X1 —Xme2)tmog + (X=Xt

and then note that this linear change of variables transformsthe segment [ 0, t,,,] into the
segment that connects the points u and v.

Corollary 3.4. If, under the conditions of Theorem 3.2, one has ‘ f(m)(x)‘ <1 for al-
most all x e [a, b], then

il, (3.20)

[[Xgs +++» X F1] < -

‘f(x)— L(x; f;xo,...,xm_l)‘ < %(x—xo)...(x—xm_l). (3.21)

For what follows, we need the following relations for the divided differences of func-
tions f and g:

[Xg, ..., Xmy @af+bg ] = a[Xq, ..., X 1+ b[Xq, ..., Xy 91 (322

a, b =congt;
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m
[Xgy oo s Xms F91= Y [Xgw oo o X5 T 10X, o0y X G5 (3.23)
i=0

if g(x) = (X=X%j)...(X=Xmy) i=1...,m, then
[Xgs oo s X Q1= [Xgy -y Xj_s T 15 (3.24)
if g(X) = (X=Xg) ... (X=Xpy) then
[Xg, --- » Xm: Ol = 0; (3.24)
and
[Xgs oo s Xy 1= [ Xy -on s X il (3.25)
where
fi(X) = [Xg, -+ » Xj_1, X F1.
Relation (3.22), which means that the divided differenceislinear, and relations (3.24)

and (3.24") follow directly from (3.8). Relations (3.23) and (3.25) can easily be proved
by induction with the use of (3.16).

Simple corollaries of (3.25), (3.19), and (3.18) are identifies (3.25") and (3.25”) pre-
sented below. Let je N, j<m, andlet x; € [a,b] forall i=0,...,m. If afunction f
is j times continuously differentiable on [a, b] or f hasthe (j — 1)th absolutely
continuous derivativeon [a, b], then

1t
[Xgy e s Xy F1= I I[xj,...,xm; fo.... tj]dtj ... dty, (3.25")
0o o0

where

in particular, if j =1, then

1
[Xgy ey Xy F1= j[xl, ey X Ty 1dty, (3.257)
0
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where
f, (00 1= (%0 + (X = Xo)ty).

Below we establish one more representation [representation (3.26)], which we call the
Hermite preformula.
Let g nonnegative integer numbers py, po, ..., Pq begiven and let

q
Y, (ps+1) = m+1.
=1

We fix an arbitrary one-to-one correspondence between m + 1 numbers i =0,..., m
and m+1 pairs (s,j), where s=1,...,q and j=0,..., p;. Denote Xg;:=% Iif
i (sj). Weset

Y
As:= A0 = I TTx-xp™h

v=1v#s j=0
fs(X) 1= FOX)A(X).
Using (3.16), we establish by induction that
q
[Xgs o Xmi F1= ), [Xg 00 -v 0 Xg i fs ]
s=1
Taking (3.23) into account, we obtain the representation
q Ps
[Xor o Xmi 12 ) D [ X001 Xg 3 Agl [Xgjo oo v Xg pif 1 (3.26)
s=1 j=1
Finaly, we generalize the trivial identity
N-1 1

[XO'XN;f] = ngz) (Xn+1_xn)[XOaXn+1;f] XN—XO,

Ne N,

to the case of divided differences of order m= 2.

Wefix N+1 points yo, Yy, ..., Yo N2 M2 2, among which m+ 1 points coin-
cidewith the points Xg, Xy, ... , X, 1.€, Y, =Xq, ... , Y = Xp. Then we obtain the Po-
poviciu identity [Popoviciu (1934)] (see aso [Tamrazov (1975)], [De Boor (1976)], and
[Ciesielski (1979)]):
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N—-m
[Xos s Xmi F1= D) Yrem=Y Y oo s Yoemi F1[ %00 -0y XmiPom], (327
n=0

where
m-1
Phm = pn,m(xs) -= H (Xs_yn+j)+u
=1

(Xs=Ynej)+ - = Xg=Ynej If NgZNn+j, and (Xg=Ypej)s 1= 0 if ng<n+j.
Indeed, for m= 2, identity (3.27) can be proved by direct verification. By induction,
we assume that (3.27) istrue for anumber m- 1. Denote

N-m
Fmn(Xs) ©= 2 Yrem=Y Yo - Yoems F 1P m (Xs)-
n=0

It follows from relation (3.16) and the equality
pN+m—1,m(Xs) =0
that

Fn(%) = = [Yor s Ym-1; F1Po,m(Xs)

N-m+1
+ 2 [yna <o Ynem-1 f](pn—Lm(Xs) - pn,m(xs))-
n=1

Foral n=1,...,N-m+1 and s=0,..., m, wehave

pn—],m(xs) - pn,m(xs) = (Yn+m—1 - yn)pn,m—l(xs)'

Therefore,

Fm(xs) = Fm—l(xs) - [yOr v Ym-ns f](po,m(xs) + (ym—l - yO)pO, m—l(Xs))

Fm—l(xs) - [yO- v Ym-1s f](xs - yo)(Xs - Y1) Teee” (Xs - Ym—z)-

It follows from the induction hypothesis and the equality

Fin(Xs) = Fm_1(Xs) + Prm_1(Xs),
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where B,_; isan algebraic polynomial of degree <m-1, that

[Xg) ooy Xmets F1— [ X ooy Xy T

[Xgs - Xy T1= S—
_ [Xg) - v Xt Fnal = [X0 oo Xpw Fna ]
X0 — Xm
= [Xgy oo s Xmy Fmnal = [Xgy - s Xmi Frn = Prma
= [Xgs oo s Xy Frd

By setting f(x)=x™M in (3.27), we obtain

N-m
D> Yrem= Y [X0r - s XmiPoaml = L.
n=0

Let Xg=Yo and X, =Yy in(3.27) and let the points % and y; be enumerated in
the increasing order, i.e,, Xg<X;<...<X, and yo<y;<...<yy (recal that each
point x; must coincide with acertain point y; ). Then

[X0: -+ XmiPaml > O,

and, therefore, the following representation holds in this case:

N-m
[Xor - Xmi F1= Y, 0nl Vi ooy Yiems
n=0
where
N-m
z o, =1
n=0
and o,>0 foral n=0,...,N-m.

Remark 3.1. It isobvious that



Section 3 Lagrange polynomials. Divided and finite differences 193

FO)—L(X;f5 X -ev s Xppt)

Hence, by virtue of (3.8) and (3.15), we get

m-1

1 Xy ...Xg fx)| |1 X ... XQ
[Xgy oo s Xms F1= /
1 Xy XM x| (1 Xy . XD

Wronicz (1984) established several properties, which are analogous to properties of
divided differences, for the expression

Po(Xg) - Om_1(X)  F(Xo) Po(Xg) --- Pm(Xo)

[Xgs v s X Flgp = /

(PO(Xm) (Pm—l(xm) f(xm)

(PO(Xm) (Pm(xm)

where @ ={ @y(X), ..., 9(X)} isaChebyshev system of functions.

3.3. Finitedifferences

In this subsection, we assume that the points x; are equidistant, i.e,, for al i =0,..., m,
we have

Xj = Xg+tih, heR, h=0.
For the Lagrange interpolation polynomial

m-1

L) = LX;fiXg, oo Xma) = F) 1j(X, Xgu o s X 1),
j=0
we determine the values of the fundamental Lagrange polynomials |; at the point

X = Xy,. According to (3.4), we have
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m-1
— (Xm_xi) — mj(m)
I (X X0y e s Xm1) = ~—m—1° = (-1 .
i (Xms Xo Xm-1) izol'Lj X %) =D J

We represent the difference f(X,)— L (X,,) intheform

m m
fX) - L) = 3, ()™ ( | )f(xmh). (3.2

j=0

Definition 3.4. The expression
m U m-j (M ;
Mtixg 2= 3 (0™ (T foro+in) (3.29)
j=0

is called the mth difference of the function f at the point x, with step h.
For example,

Alh(f;xo) = —f(xg) + f(xg+h),
A2 (f;xg) = F(Xg) — 2f(Xg+ h) + f(xo+ 2h),
A3 (fixg) = —f(Xg) + 3f(xg+h) — 3f(xg+2h) + f(xg+3h),....

Denote A9 (f;xg) =f(xg) and AJ(f; xp):=0.
Theidentities

m-j . AN
AP(f; %) = Z(—l)"”'(mi J)Alh(f;xo+ih), j=0,...,m-1; (3.30
i=0

n-1 n-1
AT (fixg) = Y, o D AT (fixp+h(ig+...+ip), neN, (3.31)
i,=0  i,=0

can easily be proved by induction.
In what follows, for definiteness, we assume that h > 0. Relations (3.28) and (3.8)
yield

AP(f;xg) = h"'mI[xg, Xg+h, ..., X+ mh; f]. (3.32)
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Hence, the mth differences inherit the properties of divided differences. In particular, the
following assertions are true:

(i) the Newton formula (3.11) takes the form

m Al f: Xo) j-1 _
L(X; 5 Xg, oy Xm) = A(Fixg) + D "J(Ihjxo [T x-%-ih; (333)
j=1 : i=0

(i) if thefunction f hasthe mth derivativeon (Xg, Xg+ mh), then
AR(f;%xg) = h"FM™(B), 6 e (xq, Xo+ mh); (3.34)
if f(x)=x™, then
AR(f; %o = h"'mi; (3.35)
and if f(x)=P,_1(x) isapolynomia of degree <m-1, then
AR(Pr_1iX) = 0; (3.36)
(iii) if thefunction f hasthe jth derivativeon (xq, Xg+mh), j=0,..., m, then
AT(f;xg) = AT I(£U);0), Be (X, Xo+ (M=])h); (3.37)
indeed, denoting g(x):= AT (f, x), we establish that
gV 00 = AR50, xe (xg, %0+ (M=),
and, using (3.30) and (3.34), we get
AR(Fixg) = Al(@ %) g?(6) = AT (1D 0);
(iv) thefollowing identity istrue:
AR xg+h) — ARN(Fr %) = AT(F; x); (3.38)
for pe N, thisidentity yields

p-1
AT (E X+ ph) — AT (fixg) = X AT(F; X +ih); (3:39)
i=0
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(v) if, along with the function f, afunction g is also defined at the points xq + ih,
i=0,...,m, then

AT(af +bg; Xg) = aAT(f; xg) +bAT(g; Xg), a b=congt; (3.40)
m i m i m-i .
ARCFiX) = X | AR x0) AR (G X +ih); (341)
i=0

(vi) if g(xX) = (X=X%;)...(X=Xmy) i=1...,m, then

Mg xg) = ™ ”‘” AT Xo); (342)
in particular, if g(x) = Xx—Xg, then
AT(fg;xg = mhAT2(f; %y +h); (3.43)

(vii) if thefunction f hasthe (m- 1)th absolute continuous derivative f (M1 (x) on
[ Xg, Xg+ mh], then

tmo1

AT(Fixg) = W™ [ [ o [ f™ (g +h(ty+ o+ ) dty.. dty; (3.44)
0

O —
O s

note one more useful representation, namely,

AT(F;xg) = fM(xg+ty+ ... +ty)dty, ... dty, (3.45)

o —=
o —=

which can easily be proved by induction with the use of (3.38).

Note that identity (3.31) isimplied by (3.26).
Lemma 3.2. If afunction f continuous on a segment [a, b] has the nonincreasing
derivative f (M(x) > 0 on the half-open interval (a, b], then, for h<t<(b-a)/m,

the following estimate holds for any xge [a, b—mh]:

AP(f;xg) < AT(f; a). (3.46)
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Proof. By assumption, for any positive € <b—a the derivative f(™)(x) is bounded on
[a+e, b]. Hence, the (m- 1)th derivative f (MY (x) is absolutely continuous on

[a+eg,b]. Assumingthat xgza, t#(b-a)/m, and € <min{xy—a, b-mt} and
using (3.44) and (3.45), we obtain

AR(fixg) < AR(f;a+e) < AT(f; a+e).

It remains to use the fact that € isarbitrary and the mth difference A’,?(f; X) is continu-
ousin x and h.

|
For xe [Xg-h, Xg+ mh], we often use the inequality
‘L(x; f; Xoy X4, - Xm—l)‘ < (2M- 1)j=m??<m_1 ‘ f(x))|, (3.47)
which follows from the estimate
1% xo,...,xm_l)‘ < ‘Ij(xm; X0 ,xm)‘ = (rjn)
and the inequality
‘L(p)(x; £ Xgr .0 xm_l)‘ < ch™® max ‘f(x]-) , peN, (3.48)

j=0,..,m-1

where ¢ =c¢(m) = const.

4. Moduli of continuity of higher order
4.1. Modulusof continuity of order k
In what follows, we assumethat ke N.

Definition 4.1. The modulus of continuity of order k (the kth modulus of continuity)
of afunction fe C ([a, b]) isdefined as follows:
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oK) 1= ok(t;fifabl) := sup [|AR(F)|| apim  Tor te [0 (b-a)/k],
he[0,t]

ort) 1= o((b—a)/k) for t>(b-a)/k.

Remark 4.1. The modulus of continuity of order k, k> 2, isoften caled the modulus of
smoothness of order k.

For example, if afunction f hasthe kth derivativeon (a, b) and ‘f(k)(x)‘ < 1 for
al xe (a b), then, according to (3.34), we have

ok(t; f; [a b]) < tk (4.1)
furthermore, if f(X)=Py,_;(X) isapolynomial of degree <k-1, then
ok(t; Pq;[abl) =0, (4.2)
if f(x)=xk then
ok(t; ;[ b]) = kImin{tk (b—a)/k)*}, (4.3)
andif f(x)=snx, then

ok(t; f;[0,m/2]) = stink%sinkt/Z, t<m/2Kk,
o(t:F: [0, 7)) = 2ksink;, t<m/k. (4.4)

Notethat w(t;f;[a b]) = wi(t;f;[a bl), i.e., the modulus of continuity and the
modulus of continuity of order 1 have the same meaning. For convenience, we denote

wo(t; f; (@ bl) = [ fap-

In what follows, if it is clear what a segment [a, b] is considered, then we write
ok(t; f) instead of wi(t;f;[a b]); if, inaddition, itisclear what afunction f is con-
sidered, then we write wy(t) instead of wy(t;f).

It follows immediately from (3.40), (3.41), (3.45), and (3.46) that the kth moduli of
continuity possess the following properties:
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ok(t;Af) = |Alok(t;f), A=cont;

(45)
ok(t;f+9) < ok(t;f) + ok(t; g);
k rk
otite) = ¥ (| Joutti Doci(ti o) (46)
i=0

if the function f hasthe (k- 1)th absolutely continuous derivative and ‘ f(k)(x)‘ <1 a-
most everywhereon [a, b], then

ok(t) < tk; (4.7

and if the function f has the nonnegative nonincreasing kth derivative on the half-open
interval (a, b], then

ow(t;f) = A¥(f;a), te[0,(b-a)/k]. (4.8)

Using (4.8), one can easily calculate the kth modulus of continuity of the functions
fo(x)=x® 0<a<k, aeN, and fj(x):=xlInx, j=1...,k, f;(0)=0. Denote
A = |A'{(fj;0)| =const. Then, on the segment [0, b], we obtain the following
relationsfor t<b/k:

or(t; f) = At j=1...,k-1, (4.10)
ok(t; ) = A+ k!tkin(d/1), (4.11)

[in(4.11) b issufficiently small].
In particular, for f(x)=xInx wehave

wy(t;f;[0,b])=(2In2)t, t<

I\J_\ o

(4.10')

Relations (3.30), (3.31), and (3.37) mean that

okt < 2t), j=1..,k (4.12)
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and, in particular,

oK) < 2y (4.13)
ok(nt) < nkoy(t), neN, (4.14)
ok(t; ) < oy j(t; FD). (4.15)

Lemma 4.1. The kth modulus of continuity mt)= wy(t;f; [a, b]) is equal to zero

at the point t =0, isa nondecreasing continuous function on the interval [ 0, =),
i.e,

ok(0) = 0, (4.16)
ok(t1) < ok(tr), 0Zt<ty, (4.17)

ok € C([0,=)),
and satisfies the inequality
to(ty) < 2%t7Km(ty), 0<t;<t,. (4.18)

Proof. Relations (4.16) and (4.17) are obvious. Inequality (4.18) follows from (4.14).
Indeed, we have

k k
wk(to) = wk(tt—ztl) < ‘Dk([% + 1}t1) < |:i—2 + 1:| wk(ty) < (%] 0k(ty).
1 1 1 1

It remainsto verify the continuity of oy To thisend, we prove the inequality
oKt) < oty + k2K 0 (to—t1), 0<ti<t,. (4.19)

Sincethecase t, > (b-a)/k can bereduced tothecase t, = (b-a)/k by using (4.17),
we assume that t,< (b-a)/k. Let usrepresent an arbitrary number he [0,t5] asa

sum of twoterms (h=h;+h;) suchthat h; e [0,t1] and hoe [0, to—t1]. It fol-
lows from the equality

k
ARCE %) = Af (F;) + 2(‘f)(—l)k-‘A%m(f.xﬂm), xe [a b-kh],
i=0
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that
kK, g. k-1 k-1
|AR(F; )| < ok(hy) + k2 @1(h2) < ok(ty) + kK2 @1(t2—t1).

By virtue of the arbitrariness of h, thisyields (4.19). Thus, forany t>0 and tp=>0,
we have

|0 () — o (ty)] < kK2 Tay(jt—t5]) > 0 as |t—-ty| > O,

which yields the continuity of the function .

It follows from inequality (4.18) that

k Oy ((b—a)/k)

Ol = T b aykk

t<(b-a)/k, (4.20)

andif wy(tg) =0 for tg=0, then wy(t)=0.
It will be shown later that if oy(t)=0, then f(x)=P,_,(x) isapolynomia of de-
gree <k-1.

If X e C[a, b], then, with regard for (4.1) or (4.7), we get

oi(t) <t 9] (4.21)

[ab]’

4.2. Approach of Stechkin

Definition 4.2. A continuous function ¢ nondecreasing on [0, «) is called a major-
antif ¢(0)=0. Theset of all majorantsis denoted by ®.

Definition 4.3. A majorant o is called a function of the kth-modulus-of-continuity
typeif t;¥m(to) <2Xt;Xo(ty) for 0<ty<t,.

Definition 4.4. A majorant ¢ is called a k-majorant if the function t’k(p(t) does
not increaseon (0, «), i.e,

t>¥m(to) < ti5e(ty), 0<ti<ts. (4.22)

The set of all k-majorants is denoted by ®.
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Itisclearthatif ¢ e @K then ¢ isafunction of the kth-modulus-of-continuity type.
Generally speaking, the converse statement is not true. Nevertheless, Theorem 4.1 pre-
sented below istrue.

Definition 4.5 (Stechkin; see [Efimov (1961)]). For a function o of the kth-modu-
lus-of-continuity type, we denote

k
o* () = supt cok(u), t>0. (4.23)

u>t u

Theorem 4.1 (Stechkin). The following relations aretrue:
o) < o' ) < 2ko@t), o*ec ok (4.24)
Proof. If t=0, then ®*(0)=w(0)=0. If t=0, then

k k
o) = sp 00 < gp W =y < suptk2k$ = 2ka(t).

u>t ust U u>t
It is obvious that the function t " m*(t) does not increase on (0, ). Let us prove that
thefunction m* ismonotone. Let 0<t;<t,. Consider apoint t3>t; at which we
have

sp{ u koW [u>t1} = 3 o(ts).

If t3>t,, then

ot (5] <o
o*(ty) t

For t3<t,, wehave

k
o*(ty) = [:—1) o(t3) < o(ty) < o*(t).
3

The second inequality in (4.24) implies the continuity of the function ®* at the point
t = 0. Finally, the continuity of the function w* at thepoint t >0 follows from the fact
that, for any pair of points t; and t, suchthat 2t>t;>t,>t/2, wehave
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o
IN

k
0* (1) - 0*(ty) < (i—z) o (t) - o (ty)

1

K
0" (1) @5 —th) < (%) o @)(t5-tf) > 0 (4.25)

as (to—-t7) —» 0.
|

Note that the reasoning used above means the equivalence of Definition 4.4 and the
following definition:

Definition 4.4’. A function ¢ nondecreasing on [0, «) is called a k-majorant if the
function t‘k(p(t) doesnot increaseon (0, ), ¢(0)=0, and ¢(t)—> 0 as t— 0.

4.3. Extremal function

It was noted by S. Nikol’skii (1946b) that, in order that a majorant be the modulus of con-
tinuity of a continuous function, it is necessary and sufficient that the majorant be semi-
additive (see Remark 1.3).

Inthe case k > 1, anecessary and sufficient condition for a majorant to be the kth
modulus of continuity of a continuous function is not found as yet.

Nevertheless, by using the approaches of Bari and Stechkin [Bari (1955), (1961); Bari

and Stechkin (1956); Stechkin (1961)], Geit (1972) proved that, for any majorant ¢ oK
there existsafunction fe C([ a, b]) such that

(1) < ok(t;f;[a b]) < co(t), (4.26)

0<t<(b-a)/k, c=c(k)=const.

In this subsection, we introduce a so-called extremal function and, using it, prove re-
lation (4.26).

Definition 4.6 [Shevchuk (1976)]. Let ke N and let ¢ be a majorant. The extremal
function is defined as follows:

1 T x(x—u)"‘2

F(x) = F(x; 9;k) : = *_2) K o(uydu, x=0, if k=1,

1
(4.27)

F(x) = F(X;@;1) := o(x), x>0, if k=1
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Lemma 4.2. Let ke N, o &, x>0, h20, and p=1,...,

function F(x)=F (X, @, k) possesses the following properties:

(i) lim F(x) = F(0) = 0,
Xx—0

i.e, Fe C([0,~));

iy FPoo= — j(( ~Dx- pu)%

(k- p-1)

Chapter 3

k — 2. The extremal

¢(u) du,

FEDix) = xlko(x) + (k-1) [ u*gu)du,

1

and

F®(x) = x1-kg’(x) for almostall x>0

(iii) AK(Fix) = 0;

181 .2
K(F:0) = k!“‘ o(hl+s +... + 5_1)

00 0 1+9
AX(F;0) = kh.? Jh oh+s+...+ Sc) ds._;...ds
e oy (s s e

AK(F;0) = kh*e p(8), h<6<kh;

(v) o(h) < AX(F;0) < @(kh)
andif @ e ®X then
¢(h) < AR(F;0) < ko(h);
(vi) if 0<x<h, meN, and m>k, then

[AR(F 0| < 2Mo((m+ 1)h).

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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Proof. For k=1, thelemmaistrivia. Therefore, in what follows, we assume that k > 1.

(i) Theequality F(0)=0 isobvious. Theequality F(0+)=0 follows from the es-
timates

1
(k=2)!|F(x; @; k)| < xJ u—2¢@(u)du

X

x(\jx + } ] u=2¢(u)du

VX

A X 1
< @y x) X J u—2du + (p(l)xj u=2du
X X

IN

(v x) + Yx0(1) > 0 a x—0.

(if) Equalities (4.29)-(4.31) can be verified by simple differentiation. In (4.31), one
should take into account that the majorant ¢ = @(t) ismonotone.

(iii) Let us prove that F 1 does not decrease (generaly speaking, the fact that

F(k)(x)zo a.e. does not imply that F®& 1 does not decrease). Indeed, if X1> Xy,
then, by virtue of (4.30), we get

X1
F(kfl)(xl) B F(k—l)(xz) - (P(Xl);_(lp(xz) + (k1) J’ (P(U)—k(P(Xz) du > 0.
X

u
1 Xo

Using (3.38) and (3.45), we obtain

AR x) = AR x+h) - ASYE )

(F D x+h+s) - F*D(x+s))dscyq...ds; > 0,

1
O —=
O —=

S=S1+...+SK 1.
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(iv) Denoting E(x):=x"1F(x), we note that E(k‘l)(x):x—k(p(x). By virtue of
(3.43), we have A';(F; 0)=kh A‘f{l(E; h). ldentities (4.33)—(4.35) now follow from
(3.44), (3.45), and (3.34), respectively.

(v) Inequalities (4.36) follow from relation (4.33), the estimate ¢(h) < @(h(1 +s)) <
¢(kh), 0<s<k-1, andtheidentity

151 Sk

2
K[ [ (+si+. +sc1) dscr .. dsy = k=D af D) = 1,
00 0

where [1(y)=1/y. However, if ¢ e ®K then

(1+s) “p(h(1+s)) = h¥(h(1+3)) “g(h(1+s)) < o(h).
(vi) Denote

y

- 1 _ink-2, k
Fiy) = gy | yy-wPukewdu
(m+Dh

Note that F(y)- F(y) isan algebraic polynomial of degree <k-1 and, for 0<y<
(m+1)h, we have

(m+1)h

7(P((m+1)h)y j u=2du < @((m+1)h).
y

[Fy(y)| < k_2)]

Hence,
[ARF )| = [ARRy )| < 27| Ryl mepny < 27 @M+ 1)h).
|

Theorem 4.2 (see [S. Nikol’skii (1946b)] for k=1 and [Shevchuk (1976)] for k > 1).
Let F(x)=F(x, @, k) be the extremal function (4.27) and let b>0. If ¢ € ®¥ then
the following relations hold for 0<t <b/k:

oK(t; F;[0,b]) = A{(F;0), (4.39)

o(t) < ok(t; F;[0,b]) < ko(t). (4.40)
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Proof. For k=1, thetheorem has already been proved (see Remark 1.3). Therefore, we
assume in what followsthat k> 1. Denote E=E(x)=x"1F(x). Notethat E (k’l)(x) =

x~kp(x). Since ¢ € ®¥ we concludethat E* ) (x) does not increase. Reasoning by
analogy with the proof of assertion (iii) of the previous lemma, we get A',ﬁ(E; X) <0,
x>0, h>0. Wetake t>0, he [0, t], Xg>0, and denote Eg(X):= (X-Xg)E(X).
Using (4.32), (3.44), and (4.33), we abtain

AX(Egi Xg) + XoAK(E; o)

0 < AK(F; o)

IN

AK(Eg; Xg) = KhARHE; X +h)

15

k'hkjf j (xo+h(s+1))” (p(x0+h(s+1))d3k 1...ds;

1% s
<Ko ] (s+ 1) %o (h(s+ 1)) dsy_1 ... ds;
00 0
181 s
<k [ ] s+ ¥pt+s)dscy...dsg = Af(F;0),
00 0

SI=S1+...+Sh_1,

which yields (4.39). Inequality (4.40) follows from (4.39) and (4.37).

4.4. Smoothing of a majorant

It is sometimes convenient to assume that amajorant ¢ isdifferentiable. This possibility
can be provided by the following statement:

Lemma 4.3 [Shevchuk (1984d)]. Let me N, m=1. If ¢ € @, then the function

151 Sy
Om®) 1= @t @) = m! H j (1+s) Mp(t(1+5s)) dSm_1...ds;  (4.41)
00 0
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where s:=s; +... +Sy_1, possessesthe following properties:
) o) < opt) £ e(mt), t=0; (4.42)
(i) one @, andif ¢ e ®X then
o € O (4.43)
(i) for j=1,...,m-2, ¢!} belongsto C((0, «)) and
oD ()] < m2"tTo(mt), t>0. (4.44)
Proof. (i) Inequalities (4.42) are proved in the same way as (4.36).

(ii) Itisobviousthat ¢,, doesnot decrease. Relation (4.43) follows theidentity

181 Sy
tNom® = m [ [ [ (ta+9) Fp(ta+9)(1+5)  Mdspy ... dsy.
00 0

(iii) Denote
Em = En(X) := (1/(m—2)!)(x—u)m_ZU‘mq)(u)du, Emj := x/ (p(r%)(x).
Equalities (2.33) and (3.43) yield ¢@,¢) = mtA"(E,,;t). Hence,
oP® = mI(ATHEL 1t + AT En D).
Relation (4.44) now follows from the estimate
AT B 0| < 2™ Te(m).
|

Corollary 4.1. Let me N, m=>k, let 9 € ®™, let @ py_ys2:= @ mis2(t, @) be de-
fined by (4.41), and let F =F(X)=F (X, @ x+2 K) be the extremal function (4.27).
Then

|AR(F; x)| < co(h), x>0, h>0, (4.45)
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where ¢ =c(m) =const; in particular, for any fixed b >0, one has
on(t;F;[0,b]) < co(t), 0<t<bk. (4.46)

Indeed, if x<h, thenrelation (4.45) follows from (4.38) and (4.42); if x>h, then,
with regard for (4.31) and (4.44), we obtain

|ARF; )| = h™|[F™(9)] = h™(F ®(9)) (M

h™ (02 @ 142(8) ™™ < ch™0™p(@®) < co(h), ©>h.

4.5, Istherelation @y(t;f) = O(om(t;f)) truefor m>k?

Here and in what follows, the expressions o (t) = O(B(t)) and o (t) = o(B(t)), where
a(t)=0 and B(t)=0, t>0, meanthat

limsup (au(t)/B(t)) < e and lim (a(t)/B (1) = O,
t—0

t—0

respectively.
Thus, if f(x)=x% 0<a <k, thentherelation

ok(t;f) = O(wm(t; ) (4.47)
istrue[see (4.9)]. If fe Ck([O, 1]), then, according to (4.20) and (4.15), we have
ok(t; f) 2 (k/2) ok(1/k; f)om(t; f)/ omi(t; F®)
i.e, relation (4.47) isnot true. If f(x) = xIn(e/x)e C([0,1]), then

01(t;f) = (Ind)owa(t;f)In(e/t),

i.e., relation (4.47) is not true again. D. Galan (1973) proved that, for “bad” functions
whose smoothnessis “strictly less” than k, one has

liminf ok(t;f)/om(t;f) < o.
t—0
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At the sametime, D. Galan and V. Galan [V.Galan (1991); V.Galan and D. Galan (1987)]

and Nessel and van Wickeren (1984) constructed examples of arbitrarily “bad” functions
for which relation (4.47) isnot vaid. In particular, the following theorem is true:

Theorem 4.3 [Nessel and van Wickeren (1984)]. Let ke N, me N, m >k, and let
o be afunction positiveon (0, «) and such that

limo(t) = e, limt'o(t) =0, r :=m-n. (4.48)
t—0 t—0

If @ e @ thenthere existsa function foe € C([0,1]) such that

= O(e(), (4.49)
(Dk(t ; fq),oc; ([0! 1]))
= o(e(t)), (4.50)
Ot g (10,11)) # O(a(t) @i(t: T g (10, 11). (451)

Proof. Let usconstruct a sequence of points t, — 0. Denote t;:=1. Assume that the
first n points of the sequence are chosen. If n isodd, then, as t,,;, we take an arbi-
trary point satisfying the conditions

0 < 2ther < tn,  O(tns)tng < to.

If n iseven,then, as t,,;, wetake an arbitrary point satisfying the condition ¢ (tnr1) =
O(th-1)(tn/th-1)™ Denote @*(t) = @ (tp+1) if t,,; <t < t, and n iseven, and
() :=o(t)(t/tn)™ if t,,1<t<t, and n isodd. Itisobvioustha ¢*e @M.
Starting from the majorant ¢* and using relation (4.41), we define the majorant ¢, =
0, (1) =0m ks2(t;90%). By F=F(X):=F(x, ¢,, k) we denote the extremal function

(4.27). Let us show that the function qu = qu(x) :=F(x) can be taken as that indi-
cated in the theorem.
Indeed, relations (4.36) and (4.42) yield

o(t; F) = AF;0) 2 ¢*(t).

Hence, for odd n, we have ok(th; F)= 0* (th) = @(ty), i.e, relation (4.50) is proved.
Reasoning as in the previous corollary and using (4.31) and (4.44), we obtain the fol-
lowing relation for x> h:
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1A (F; )| = h*eM ez (0) < 27*2(r + 2)hke o ()
< 2" 2(r +2)hf oK (8) < 2" 2(r + 2)K2¢(h), B>x.
For 0<x<h, relations (4.38) and (4.42) yield

A% (F; )| = 2%, ((k+ 1)h) < 2%(r + 2)%@* ((k+ 1)h)

IN

2(r + 2)%o((k+ 1)h) < 25(r + 2)%(k+ 1)¥p(h),

which proves (4.49).
Finaly, by virtue of (4.46), we have @wm(t; F)< co*(t). Denoting a,:=tn/th 1
and using (4.40) and (4.42), we obtain the following relation for even n:

2%0(th; F) 2 akop(tn1: F) = a¥o(tn1) = a7 ¢* (tn)

> (1/c)ay om (th; F) 2 (1/¢)0(th) Om(tn; F).
This proves (4.51).

The “regular” estimate for wy(t;f) intermsof wm(t;f) with k<m isthe Mar-
chaud inequality, which is considered in the next section.

4.6. Gliding-hump method

Nessel and van Wickeren (1984) deduced Theorem 4.3 from a general theorem (see The-

orem 4.4 below), which is proved by the gliding-hump method. Theorem 4.4 and its ana-

logs enabled Nessel and other authors to construct a series of counterexamples in various

parts of approximation theory, including integral metrics (see [Dickmeis and Nessel

(1982); Dickmeis, Nessel, and van Wickeren (1984); Nessel and van Wickeren (1984)]).
Wewrite g e @ if ¢ e ®X and tKp(t)— o as t— 0.

Let T beafunctional on C([a b]). Wewrite Te X" if T isasublinear func-
tiondl, i.e,,

IT(f+9)| < [Tf| + [Tg

[TAH| = [A][TF (4.52)
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foral f,ge C([a,b]) and A€ R, and T isabounded functional, i.e.,
[Tl == sup{ITf[: [ o0 =1} < = (453)

Theorem 4.4 [Nessel and van Wickeren (1984)]. Suppose that k e N, M =const >0,
ne N, Ty, R, Vhe X, hpe C((a,b]), [[hy[ap <1 and M, =const>0. If

limsup [T,h,| = M, limsup [R)h,| = M, (4.54)

N— o0 N—c0

and, for all ne N, one has

ok(t;hy[abl) < min{1, (tn)*}, 0<t<1, (4.55)
Vool < 1, sup pX|Vha| < My, (4.56)
peN

then, for any majorant ¢ e d)S, there exists a sequence {d;} c {0, 1} (i.e, ;=0
or §; =1) suchthat the function

fo(0 1= Y 8;0(1/j)hj(x)
j=1

possesses the following properties:

COk(t;f(P;[a, b]) = O(e(t)), t—0, (4.57)

Tofo| # 0(@(@/M), |Rfy| # o(|Vaf,]). n— e (4.58)

Proof. Since ¢ € <I>(k), we conclude that, for any g e N, there exists a number N(Q)
such that, for all n>N(q), thefollowing inequalities are true:

®(1/n) < (1/2)p(1/q), (4.59)

[Tl 01/ < (M/16)9(L/ ), (4.60)

H%Hxﬂp(l/n) < (M/16)0(1/q), (4.61)
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Vol @2/m) < 0(1/0), (4.62)

ak*le(1/q) < nke(1/n), (4.63)

g max ‘Vnhj‘ < qn—k_max ‘Mj‘ < @(1/n). (4.64)
i=L...q i=1...q

Using N(q), we construct two sequences of numbers {n;} c N and {Snj} C

{0, 1} and the sequence of functions

p
9p = Gp00) 1= D 8 @(1/nhy (X).
j=0

Denote ny:=1 and &, =68;:=1 Assumethat thefirst p—1 terms of these se-
quences have already been chosenand p iseven. Let n, bean arbitrary number such

that ny>N(ny 1) and [T, Ry [>M/21F [T, g0 > (M/4)e(1/ny), then we set
8= 0; if Tnpgp,l\ <(M/4)¢(1/np), thenweset 3, :=1. Thus, in both cases, we
have

Tnpgp‘ > (M/4)o(1/ng), p iseven. (4.65)

Similarly, in the case of odd p, we denoteby n, any number for which n,>N(n, ;)
and ‘R”ph”p

> M/ 2 and choose the number Bnp € {0,1} from the condition

‘Rnpgp‘ > (M/4)e(1/ny), p isodd. (4.66)

Let us prove that the function f, indicated in the theorem can be defined as follows:

fo00 1= Y 8n, @(1/0j) hn, (X).
j=1

Indeed, let 1/n,, 1 <t<1/n, By using (4.55), (4.59), and (4.63), we obtain

o(t; fy:la bl)

p-1 p+1 oo
< ( + >+ Y J(p(l/nj)(ok(t;hnj)
i=p

j=1 j=p+2
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p-1 00
<Y o(@/npnf + (tnp*e(l/ny) + o(1/Npy) + Y, o(L/n)
j=1 j=p+2
< thp-1)n519(1/n, 1) + 20(1) + @(1/Npyq) > 27"
v=1
< (tnp¥e(1/ny) + 3(t) = 4¢(1). (4.67)

Furthermore, for even p, relations (4.53), (4.59), and (4.60) yield

Tnp(f(p_gp)‘ < z (p(l/nj) Tnphnj
j=p+l
< ol 2 @@/ < Ty | 0(@/npey) 3 27
j=p+l v=1
=2 Tnp <" (P(l/np+1) < (M/S)(p(l/np).

Hence, according to (4.52) and (4.65), we have

Y

Tofo| 2 [Tagp| -

Tnp( f(p - gp)‘

v

(M/4)p(1/ny) — (M/8)e(1/ny) 2 (M/8)p(1/ny). (4.68)
By analogy, for odd p, relations (4.53), (4.59), (4.61), (4.52), and (4.66) yield

IR = (M/8)¢(1/np). (4.69)

Finally, by virtue of (4.52), (4.53), (4.56), (4.62), (4.59), and (4.64), we obtain

p-1 -
Vnpfm‘ < Vnphnp ®(1/np) + [21 + ZJJ Vnphnj ¢(1/ny)
=1 j=p+
< o1 + (p-1o(1 V, h
p(1/ny) + (p-Do(d) mac_ [V,

+

Vnp

L 0(L/ng) Y2
v=0
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< (p(l/np) + (p(l)(p(l/np)

+29(1/ny + (3+ (1) e(1/ny). (4.70)

Estimates (4.67)—(4.70) prove the theorem.

47. Remarks

Note that the behavior of moduli of continuity in integral metrics was thoroughly studied
by Besov and Stechkin (1975), Kolyada [(1975), (1988), (1989)], Konyagin (1983),
Oskolkov (1976), Radoslavova (1979), Ul’yanov [(1967), (1968)], Yudin (1979), and
others.

5. Marchaud inequality

In the present section, we generalize the well-known Kolmogorov-type inequality

[10] . < A ((b-a)] [#0] o (b-a) 7 o). (5.1)

where je N, 0<j<r, fe C'([a b]), A =cong, and0< A;, <c=c(r), andthe
inequality (see[Besov (1965)])
[19]

T Airk((-a) Tob-a;f";[a,b]) + (b-a) [ f],y). (52

where je N, 0<j<r, fe C'([a b]), and 0< A, <c=c(k,).
Inwhat follows, ¢ and c; aways denote various positive numbers (constants) that
candependonly on k and r.

5.1. Marchaud inequality

Theorem 5.1 formulated bel ow gives an upper bound for the modulus of continuity of or-
der j <k interms of the kth modulus of continuity and the norm of the function. Recall
that the corresponding lower bound is given by inequality (4.12). A part of the proof of
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Theorem 5.1 is presented as a separate lemma (Lemma 5.1) because this result will also
be used in other cases.

Lemmabs.l. Let

k#1, h>0, leN, H=2'h

fe C([xg Xg+H(k=1)]), wt) = ok(t;f;[Xg Xg+ H(k-1)]).

Then

H
| A2 %) = 20A £ %0)| < (k—l)zhk‘lj U ouydu,  (5.3)
h

| A %o+ (k=D(H —hy) — 2'E0A(; xg)

H
< (k—l)zhk’lj u ¥ ok(u) du. (5.4)
h

Proof. According to (3.31) and (3.39), we have

|ASECFi xg) — 2K TAKTL(F; %)

ST AT k-1
2( . )(Ah (f; %o+ vh) — AFH(F; x0)
v=0

k-1

k-1 v-1
Z( ]z A (f; %o +ih)
v=0\ V Ji=0

IN

k-1 (k-1)v-1 o
2( Jka(h) = (k-1)2 “okh)
v=0

vV Ji=0

2h
(k-1)?2 22 2oy [ u M ok(h)du
h

2h
< (k=12 Th [ u ™ ok(u)du.
h
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Therefore,

A5 (Fx0) = 2'OAR )|

Lo
>, 202 TATE (Fix0) - AT X))

I _ 2'h
Y 2 0k-1)224 2 )T [ i eku)du
i=1 2i-1h

IN

H
= hk’l(k—l)2 _[ u’k(ok(u)du.
h

Inequality (5.3) is proved. Inequality (5.4) can be proved by analogy.

|
Remark 5.1. If oy(u)< uk, then, under the conditions of Lemma 5.1, we have
Ak (fi %) — 24 RAT(F x0)| < (1/2)(k—-1)HR (55)
Indeed, since
A5 %) = 2T (i xg)| < (k=1)2°72h",
we also have

A5 x0) = 2N x)|
|

< ¥ 2" W(k-1)2" 22" Ty T < (1/2)(k-1)HR

Theorem 5.1 (Marchaud inequality [Marchaud (1927)]). If fe C([a, b]), then, for
all j=0,...,k, thefollowing inequality istrue:

b-a
oj(t) < Ajtj( ju—J—lwk(u)du + (b—a)’) ||f||), (5.6)
t

where 0<t<b-a, oj(t)=o;(t;f;[a b]),

=l and 0< A <c.
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Proof. For j =0 and j =k, inequality (5.6) isobvious. Let us prove (5.6) for j =k-1.
Wetakeapoint xpe [a, (a+b)/2] andanumber he (0, (b-xg)/(k-1)] and esti-
mate the (k- 1)th difference A'?{l(f; Xg). Tothisend, we chooseanumber (I +1)e N
from the condition

(k-1)2'h < b-xy < (k-1)2""*h.
Using inequality (5.3), we obtain
2'h

(k—1)2pk? j u KoK(u)du + 2'<1*'<>\Ak27ﬁ(f;x0)\.
h

IN

| Af3(F; x0) |

Since
2'h < (b-xg)/(k-1) < (b-a)/(k-1) < b-a,

2'0 < (4k-1)L(h/(b-a)*?,

’

‘Akz,‘ﬁ(f; xo)‘ < 2k’lH f
we get

| AH(E; %0)|

b-a
< (k=1)2p*? | u ™ oKu)du + (8(k=1)(h/(b-a) | f]. 7
h

If xge ((a+b)/2,b), then we obtain (5.7) by using estimate (5.4). Thus, inequality
(5.6) is proved for j =k—1. Now assume that relation (5.6) holds for a number j + 1.
Then, by induction, we obtain the following relation for the number j:

b-a . )
oj() < 2t [ uT  auydu + 8 (t/(b-a))| f|
t

b-a ~ ba ) .
PPAat u-J-l(u'”I v o w)do + u“1<b—a>-“1f)du
t u

IN

+ (8))t) (b—a) | |
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b- b

a —a
- jZA,-+1tJ'[ [ v o udu+ 7 [ u e udu+ (b-a-tb-a) ) f ]
t t

+(8))t! (b—a) ) | f|
b-a

<At [ uTreuydu + (A5 + (8 H (b-a)T | £,
t

Note that we have proved an inequality that is even stronger than (5.6), namely

(P o) - b-a
ojt) < ctl[j K du + (b-a)—lmj(Tn, j#0  (56)

) i

|
Notethat if fe Cj([a, b]), then, by virtue of (3.34), we have
H f(j)H[a,b] < Iir:w_)s(l)Jp t7 o (t;f;[a b]).

Hence, inequality (5.2) follows from (5.6). Inequality (5.1) follows from (5.2) and (4.13).

5.2. Some simple but important factsfor the second modulus of continuity
Let fe C([a bl), mj()=wj(t;f;[abl), j=1,2 and |[f]=]f],y-

Theorem 5.1”. Thefollowing inequality istrue:
b-a
o1(t) <t j u2@a(u)du + 8t(b—a)~ 1| f|. (5.8)

t

Theorem 5.2 [Burkill (1952)]. If f(a)="f(b)=0, then
[ ] < w2((b-a)/2). (5.9)

= | f|. For definiteness,

Proof. Let x* € [a, b] bean arbitrary point at which |f(x*)

we assumethat x* € [a, (a+b)/2] and f(x*)>0. Denoting h=x* —a, we obtain
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A

| f] = f(x*) < 2f(x*) — f(x* +h)

—f(x*+h) + 2f(x*) - f(x* +h) < wa(h) < w2((b-a)/2).
|

Theorem 5.3 (seg, e.g., [Dzyadyk (1975c)]). Let xe [a,b] and let h:= min{x-a,

b—x}. Then

b-a

| f(x) - L(x; f; & b)| < 9h I u2wo(u)du. (5.10)
h

Proof. Denote g(x):=f(x)-L(x;f;a, b). Notethat g(a)=g(b)=0. Using (5.8)
and (5.9), we obtain

| f(x) - L(x; f; a b)|

lgx)| < o1(h; g)

b-a
h J u%ma(u; g)du+8h(b—a)~*|g|
h

IN

b-a
<h | u?wy(u; g)du+8h(b-a)  wa((b-2a)/2 g)
h

N

b-a
9h _[ u’zmz(u; g)du.
h

IA

Relation (5.10) now follows from the equality wa(t; f)=w2(t; g).

Coroallary 5.1. The following inequality istrue:
[f(x)— L(x f;a,b)| < 4502(1/(x-a)(b-x)), xe[ab]. (5.12)

Indeed, denoting

h" = J(x-a)(b-x), h=min{x-a b-x},
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we obtain

b-a
h j u_zwz(u)du
h

h" b-a
h J. u’zmz(u)du +h f u’zmg(u)du
h h

=3 b-a
hj u2wp(h")du + h j 4(h") 20y(h")du < Swy(hY).
h h*

IA

Theorem 5.4. If

1
_[u‘zoog(u)du < oo,
0

then fe CY([a, b]) and

t
w1(t;f";[ab]) < 2J' u2wy(u)du. (5.12)
0

Proof. First, we prove that the derivative f'=f"(x) exists at all points x e [a, b].
Using the Cauchy criterion, for an arbitrary € >0 wechoose 6> 0 from the condition

25
18_[ u‘zwz(u)du <eg.
0
Wefix arbitrary points x1, X € [a, b] from the 8-neighborhood of the point x. Among

the points x, x1, and Xy, let y, denotethe leftmost one, y, the rightmost one, and y,
the middle one. Note that

[% X35 F]1=[% X2 ] = (X1 —X2)[X, X1, X2; T]

(X1-%2)[Yo Y1, Y2: f]

= (x1-x2)(F(yD) - L (y1: F5¥o Y2) (Y1-Yo) " (Y1-Y2) ).
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Denote h=min{y; -V Y2—VY1}. Using (5.10), we obtain

[0, % 1] = (1% %3 ]

Y2—Yo ) 1
< 18[x - %| [ uos(u)duy,-yo)
h
Y2—Yo 2%
< 18 j u20y(u)du < 18j u20o(u)du < &,
h 0

According to the Cauchy criterion, this means the existence of the derivative f’(x).

Let us prove that the derivative f’(x) is continuous and relation (5.12) is true. Con-
sider two points Xg, X1 € [a, b], Xg<X1, and denote H =x;-Xp, €= H2", | e N.
According to Lemma 5.1, we have

AL (Fix0) — A% (Fix—g)))|

IN

AL (Fixg) = 27 A (fixg)| + AL (fixg—g) — 27 A (fi X))

H
2¢, J u?w (u; f5[xo x1]) dy,

€|

IN

whence

1
| £(xg) — F/(x)| = lim o | A% (Fi%0) = A% (% -g))

| =00

X1 —Xg
2 J u_zooz(U; f;[Xo, x11) du.
0

IN

5.3. Estimatesfor moduli of continuity of derivatives

Lemmab.2. Let k=1. If fe C([a,b]) and

b-a
J u’zmk(u;f;[a, b])du < e,
0
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then fe C1([a b]) and
t
o1(u;f’;[ab]) < c_[ u"2ok(u; f;[a b])du. (5.13)
0
Proof. According to the Marchaud inequality (5.6), we have
b

—-a
j u_zmz(u; f;[a, b])du
0

b-a b-a
<cy '[ uz[u2 .[v*3cok(v; fila b)dv + u?(b-a)2 ||f||[a’b]]
0 u
b-a
< ) "y -1
<y '[ u “ok(u;f;[ab])du + c;(b-a) HfH[a‘b] < oo,
0

Therefore, by virtue of Theorem 5.4, we also have fe C([a, b]). Let us prove (5.13).
Wefix apoint xg e [a, b] and anumber he (0, (b-xg)/(k-1)], and denote x;=
Xg+ (k= 1)h. Using (2.12), (5.6), and (5.12), we get

| ALY %) < orca(hi 5 [Xg Xq1)

h
2531 (h; 75 [xg X1]) < ZKJ u_zwz(u;f;[xo, X1]) du

<
0
X1—Xo ) 1
< 2%¢; I U2 ok(u; F31Xg, Xq1) du + 254 (X, —Xg) R o
0
" 1
< czf u2ok(u; f;[Xg x41) du + coh ™| f H[xo,xll' (5.14)
0

We set

g(x) = f(x) = L(x f; Xg, Xg+ h, ..., Xg+ (k=1)h)
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andnotethat AS(f7 x0) = ASH; %) and ok(t; f)= w(t; g). Wealso usethein-
equality [ g, xoq] S €3@k(h; T3 X0, x1]) (Whitney inequality), which will be proved in
the next section. It follows from (5.14) that

470 = (8 o)
h 1

Co [ u?wk(U; g:[Xg X,1) du + coh” 19l
0

IN

IN

ok(h; f;[Xg X11)

h s
¢, oy (U; f,z[a, bD 4y + Czhos

0 u

h . £
C4J- M’z[a'b])du

<
u
|
Theorem 55. Let me N, k<m, r:=m-Xk, and fe C([a, b]). If
b-a
j ru™ o, U f)du < o, (5.15)
0

then fe C'([a, b]) and, for every j = 0,...,k, j #m, the following inequality is
true:

t _ /ba
coy (1;10) < [t Dg, +(k_j)tl(j°’m(” Dau + 1 ) (5.16)
o U t U

r+1 j+r+1 ( j+|’

= | f ,and o; (t;f®) =@ (t;19);[a b]).
[a,b] J J

Proof. Inthecase r =0, condition (5.15) is obvioudly satisfied, and inequality (5.16) is
the Marchaud inequality (5.6). We assume that the theorem is valid for anumber r -1
and prove it by induction for the number r. Since, according to the induction hypothesis,
we have

t L £(r=1
'[Mdu < le u’zf v om@; f)dy < clf (rlilf)du < oo,
0 0 0
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it follows from Lemma5.2that fe C"([a, b]) and relation (5.16) is true for j=k. For
j =0, taking (3.34) into account, we obtain

® (t f zbjamm(u; D gy + o

wo(t; f(")) = Hf(r)H < I|msup UL (b-a )r’

0

i.e, relation (5.16) isalso truefor j=0. Fortheother j=1,..., k-1, it remainsto use
the Marchaud inequality (5.6).

Remark 5.2. If opn(t;f;[a b])<t™ then
o, (t; f™D:1ab]) < t. (5.17)
Indeed, by virtue of (5.15), wehave fe C™™([a, b]). We take points X e [a, b]
and x4 € [a,b], x;>Xg anddenote H:=(x;-Xg)/(m-1) and h|=2"H, l e N.

Using (3.34) and (5.5), we obtain

100 — 1M )|

I|m hi=™ AR (Fi % - (m=Dhy) — AR (F5 %) |

< lim b AR (f g — (m=Dhy) = 2' ™A xg) |
| 5o
+ [ 2 AT xg) - A %) |
< 2(1/2)(m-1)H = X1 —Xp.

The results of Subsection 5.3 are contained in [Brudnyi and Gopengauz (1960)].

5.4. On the exactness of Theorem 5.5
Theresult of Theorem 5.5 is exact because the following statement is true:

Theorem5.6. Let m:=r+k m=1, ¢ ®", and
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X

FOX)=F(X 0;m = Flz)lj‘x(x—u)m‘zu—m(p(u)du, x> 0.
‘0

Then the following assertions are true:
@) if

1
J ru-r-le(u)du = o,
0

then F¢ C'([0,1));
Gy if

1
J ru--le(u)du < o,
0

then F € C"([0, 1]) and, for all j = 0,...,k, the following estimate is
valid:

o (t; F©;10,1])

t 1
> c_[ ru-r-lo(u)du + c(k—j)tij u--le(u)du, 0<tm<1. (5.18)
0 t

Recal that ¢(t)< o, (t; F; [0, 1]) < mo(t) [see (4.25)].
Theorem 5.6 isacorollary of Lemma 5.3 and Remark 5.3 (see below).

Lemma 5.3 [Shevchuk (1976), (1989a)]. Let me N and m= 1. Assume that a func-

tion f=f(u) isgiven that is continuous and nonnegative on the interval (0, «) and
such that the integral

j X(X— W)™ 2f (u)du (5.19)
1

G(x) := (m_2)

is continuous at the point x=0 (i.e, itiscontinuouson [ 0, «)). Then the following
assertions aretrue:
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(i) for r=1,..., m-2, thecondition
1

[ um-r-1f(u)du < - (5.20)
0

is necessary and sufficient for G to belong to C"([0, «]); in the case r =
m-1, the following condition is necessary and sufficient for G to belong
to C™H([0, e ]):

1

J f(u)du < oo, (5.21)
0
lim xf(x)=0; (5.22)

(i) if Ge C'([0,e]), r=0,...,m—1, then the following relation holds for
j=1...,m-r:

‘Ajh(G(r);O)‘
h 1
> c‘[ rum-r-1fwydu + c(m-r —j)h! J um-r-1-if(u)du, (5.23)
0 mh
where 0<mh<1 and c=c(m) = const.

Proof. Denote

Gs(X) = (1/(s—1)!)j (x—uw)*1f(u)ydu, seN,
1

Go(x) := f(x), k:=m-r.
Notethat, foral r=0,..., m-1, thefollowing identity istrue:
G (x) = XG_1(X) + rGy(X). (5.24)

(i) Necessity. Let Ge C'([0,)), r=1,...,m—1. Forany € (0, 1/m), using
(3.42) and (3.34), we obtain
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A(G;0) = reATH G pie) = re'GUN®) = re' G (o), 0¢elerel,
which yields

|AL(G;0)| = (1) re" G (8)

1 1
> (krgrl)lj (-8 fwdu 2 Ae" [uf)dy,

re me

where A=rk'm-1((k—1)!)~1. Therefore, with regard for (3.34), we get

1
Juttwdu < ATeT AL GI0)| < AT GO
me

i.e., the necessity of condition (5.20) is proved. Inthecase r =m-1, the necessity of
(5.22) is an immediate consequence of the identity

G™Lx) = xf(x) + (m—l)j f(u)du.
1

(i) Sufficiency. It followsfrom condition (5.20) that

1 NE% 1
x_[ uk2f(u)du = x J uk2f(u)du + x_f uk=2f(u)du
X X Jx
NES 1
< _[ u1fu)du + foJ' uk-1f(u)du - 0 (5.25)
0 0

as x— 0. Inview of (5.24), thisimpliesthat G(")(x) — r G,(0) = G(")(0).

(i) Asproved above, if Ge C'([0, «)), thenrelation (5.24) holdsfor x=0. Let us
estimate the jth difference for the first term i(X):=xG,_1(X) in (5.24). By virtue of
(3.42) and (3.34), we get

Al 0) = jhal i(G ;0 = jhiG ;8), 6e[h,jh],

whence
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1
(DAL 0) = (D*TjhiG_ ;@) = kD j ukI f (u)du.

mh

It is clear that the second term r Gy (x) in (5.24) is equal to zero for r =0. In the
casewhere r # 0, wedenote i,(x):=0 for x>h,

ir(x) 1= (1/(k—1)!)_[ (x—wk1fuydu for xe [0, h],
h

and i3(x) =Gy (X)—i,(x). Asaresult, we get

h
(D*TAL20) = (-1)i(0) = (1/ (k-1 [ U Fwyduy,
0

D TALG300 = )i @), 6 (0 jh).
If 8 (h,jh], then
i) = (-1 6, 0) 2 0,
andif 0 (0, h], then

D Ti©) = ¥ (G015 ®)

11/ (k=j-1)) [ (0-w*IHu)du
1

Thus,

h
) IAL G 0) = (—D*TALG,;0) = (1/(k—1)!)j uk-1f(u)du.
0

Remark 5.3. If ¢ ®™ and f(u)=u""¢(u), then
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J f(uydu > J x Mex)du = xf(x),
0 0

i.e., relation (5.22) follows in this case from (5.21).

6. Whitney inequality

Recall that the value of the best uniform approximation of afunction fe C([a, b]) by
algebraic polynomials P, of degree <n isdefined as the number

En(f)[a,b] = igf H f- PnH[a,b]-

Inthe casewhere [a, b]=[0, 1], wewrite E,(f) instead of E,(f)4 and | f]|
instead of | | ,p,-
It follows from Theorem 5.2 that

E1(f)[ap < w2((b-2a)/2;f;[a b]),

and one can easily see that

1 b-a
E1()jap < Emz( 2 fila b]). 6.1)

A generalization of thisinequality to thecase ke N, i.e, theinequality

b-a
Er 1(F){ap < O (T; fila b]), 62)
is called the Whitney inequality; it isproved in Subsection 6.1.
Recall that we use the notation ¢ for different constants that may depend only on k
and r (or some of these parameters). Also recall that L(x, f; Xg, ..., X)) denotes the

Lagrange polynomial of degree <k that interpolatesafunction f at the points X, ..., Xy

6.1. Whitney inequality

First, in Lemma 6.1 and Theorem 6.1, we obtain aweak version of the Whitney inequality
(for differentiable functions).
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Lemma 6.1 (see, eg., [Zhuk and Natanson (1983)]). Let xge [a,b], h >0, X;:=

Xg+jh, and x. e [a,b]. If Fe Cl([a, b]), then, for every x € [a, b], the fol-
lowing inequality is true:

[F(X) = L(X F; X, X)| < [(x = XO)k;'h'k(X ~ %] oy (h), (6.3)

where

o (t) 1= o(t; F5 [a b]).

Proof. Forevery t; € [0, 1], weset Fe (U) 1= F'(x+(u-x)t;), ue [a,b]. Thenre
lations (3.25”) and (3.32) yield

1
[X Xg ... s Xs F1 = J[xo, e X Ry ldty =
0

1

1
P J.Alﬁm(':tl; Xo)dty.
0

Since

IN

AR ) = |Af (F5x+ U= 0)| < oty < ogh),

relation (6.3) follows from (3.8).

[
Lemma 6.1 readily yields the following statement:
Theorem 6.1. If Fe CY([a, b]), then
b— b-a._,
Ex(F)an < 7 awk( > A Fna, b]). (6.4)

Remark 6.1. It iseasy to seethat the factor b;ka in (6.4) (but not the step) can be re-

b-a 1
laced by ——, =14+ =
Py ok ' O K

We are now ready to prove the main theorem of this section.
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Theorem 6.2 [Whitney (1957), (1959)]. If fe C([a, b]), then

Exc1(ian = W (22 fila.bl), (65)
where W, = const dependsonly on k.

Proof. We set

X
Xg = 4, h::g, xj::x0+jh, F(x)::jf(u)du,

a

G(X) := F(X) = L(X; F; Xg - » X)), 9(X) := G'(x),
o (t) = ot f; la bl) = ot g; [ bl).

Wefix x € [a, b] and choose 6 for which (x+kd) € [a, b]. Asaresult, we get

1 k -k 1
jA‘iS(g; xdt = (D g0 + Y (~D*] (j)jg(x+ jtd)dt
0 0

j=1

k (k
= (-D*gx) + X (=D (j)jls(e<x+ j8) - G(x)), (6.6)

i=1

whence

0] < ﬂAm@ |t + Se[ablz( ) < 018 + 221Gy (67)

By virtue of Lemma6.1, we have [|G||, p, < hoy(h). Therefore,
Eie1(F)ap < [9lap S ok(8]) + |87 t2 o, (h).

To complete the proof, note that 6 can aways be chosensothat h> |8]| > h/2.

We denote the smallest possible constant in the Whitney inequality (6.5) by W(K)
and call it the Whitney constant.
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6.2. Sendov’s conjecture

For practical applications of the Whitney inequality, it is important to have good esti-
mates for the Whitney constant W(k). As mentioned above, it was first proved by Bur-
kill (1952) that W(2) < 1. He also formulated the conjecture that W(k) isfinite for each
k>3 (thecase k=1 istrivia: W(1)=1/2). Burkill’s conjecture was proved by
Whitney (1957), who also proved that

18

W(2) = > 18 < W(3) <07 W(4) <33 W(5) < 104,
and
1
W(k) = > ke N. (6.8)

Later, Brudnyi (1964) obtained the estimate W(k) = O(k2k). Sendov (1982) proved that
W(4) < 1.26, W(5) < 1.31, W(6) < 167, W(Kk) < (k+ 1)k
and formulated the conjecture that
W(k) < 1. (6.9)

Ivanov and Takev (1985) proved that W(k)= O(klInk), Binev (1985) proved that
W(k)=0(k), and, finally, Sendov [(1985), (1986)] established that the Whitney constant
W(k) isbounded by an absolute constant, namely, W(k)< 6. Kryakin (1989) modified
the method used by the authors cited above and obtained the estimate W(k)< 3. Thisin-
equality was also announced by Brudnyi (1983) and Sendov [Sendov and Popov (1989),
p. 37]. Later, Kryakin proved a more precise estimate. A modification of his proof al-
lows one to obtain the estimate

W(k) < 2+ 312 (6.10)

The monograph [Sendov and Popov (1988)] contains proofs of the inequality

Ei_1(f)<60m,(1/k) and similar inequalities as well as applications of the Whitney in-
equality to the numerical integration, approximate solution of integral and differential
equations, etc.

An analog of the Whitney inequality is aso truein L, [see Burkill (1952) (k= 2,

p =<0), Whitney [(1957), (1959)] (p =), Brudnyi (1964) (1< p< ), Storozhenko
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(1977) (0<p<1), Sendov and Takev (1986) (W (k)< 30), Kryakin (1989) (Wj(k)<
11, 1< p<e), and Kryakin and Kovaenko (W,(k) <9, W;(k)<6.5)]. Multidimen-
sional analogs of the Whitney inequality can be found in works of Brudnyi, Jonen,
Scherer, Takev, Storozhenko, Osvald, Dahmen, DeVore, Binev, Ivanov, etc. (see [Brud-
nyi (1970); Takev (1988); Storozhenko and Oswald (1978); Dahmen, DeVore, and
Scherer (1980); Binev and lvanov (1985)]).

6.3. Corollariesof the Marchaud inequality and Whitney inequality

Let fe C([a b]), ke N, and o (t):=w.(t; f;[a b]). Wefix apoint x5 [a, b]
and anumber h>0 suchthat (xo+ (k—1)h) e [a, b]. Denote

J:=[xg-hXxg+tkhl N [ab] and x;:=Xxg+ih,
and let
L(x,f) = L(Xf;Xg .- Xpe1)

be the Lagrange polynomial that interpolates the function f at the points x, i =
0,....,k=1 Weset g(x):=f(x)-L(xf), xe [a b], i.e [see(3.8)],

k-1
g(x) = [% Xg, oo X; T (x=x)). (6.11)
i=0
Notethat ®,(t;g;[a b]) = @, (t).

Lemma 6.2. The following inequalities are true:

0] lall; < cayhy (6.12)

kh
(i) o(t;g;d) < ctl j u-i-loudu, j=1..,k-1 0<t<h,  (6.13)
t

[X=Xo

(iii) 99| < c[x=x [ [ ukouudu, xelab]\J; (6.14)
h

(iv) 19| < c(1+ |x—x|/h)*o(h)du, xe[a, bl; (6.15)
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|X—X0|m )
() [Te0] < elx=x[Th [ FE=du
h
k-1
+cl§%é§47”f”3, xe [a b\ J; (6.16)
W) [FO0 < e+ [x= x| /)"

x (o) + [ ] xe [a,bl; (6.17)

X0 %o +(k=Dh] ),

Proof. By virtue of the Whitney inequality (6.5), there exists an algebraic polynomial
P_1 = P 1(x) of degree <k-1 for which H f- F1<,1HJ <cwh). Taking into ac-
count that

g(x) = f)-L(xf) =(F(X)=Pe_1(x)) = L% f-Py1)
and using estimate (1.47), we obtain

lal; < couthy + (2*~1) max [104) =~ Rax)| < c2o(h),

i.e., inequality (6.12) is proved. Inequality (6.13) follows from relation (6.12) and the
Marchaud inequality (5.6).

Let us prove inequality (6.14). Assume, for definiteness, that x>xq+kh. Let L”
denote the Lagrange polynomial that interpolates the function f at the points xg+
i(X=Xg)/(k=1),i=0,...,k—1. Weset g*(y)=f(y)-L"(y) and notethat g* (xq) =
g*(x)=0 and g(x)= —L(x,g ). Estimate (6.13) yields

8
| ALY, %) | < c,h! J ul-teudy, j=1,.., k-1,
h

where 8 :=Xx-Xq Using the Newton formula (3.33), we obtain

k-1 o j-1 )
g0 = < X ATl -0 ] ui-toyudy
j=lJ i=0 h
k-1 5
<cy), 6"[ ui-loudu < (k—l)c28k’1.[ u o, (u)du.

=1 h h



236 On smoothness of functions Chapter 3

Inequality (6.14) is proved. Inequalities (6.16) and (6.17) follow from the equality f(x)=
g(xX)+ L(x f), theestimate

L D < (L + [x=x0]/0) " (@) + | f [

and inequalities (6.14) and (6.15), respectively.

Lemma6.2”. If fe C’([a b]), pe N, p<k, then
[gP]; < coplh; t®;1ab]). (6.18)

Proof. Let

Licp1 0= Licp 1 OGF®) i= Ly p 0 OGPy oy Viepo1)

be the Lagrange polynomial of degree <p—k-1 that interpolates the derivative gP =
gP(x) atthepoints y;:=xg+ikh/(k—p-1), i=0,...,k—=p-1 (Lo=gP(xp) in
the casewhere k=p+1). Weset

1 1
LX) =Y j(Xo—X)Vf(p)(Xo) +

X
VI (p-1)! J o=wP Ly p (U, f®) du
v=

Xo

and note that
g(x) = f(x) - L(x,f) = f(X) - L& f) - L(x,f-2L),
ie, gPx)=fPx)-LPx)+LP(x f- L) According to (6.12), we have
H (P _ Lk,p,lHJ < crop p(h; F®53) =: ci0(h).
Therefore,
1100 - L(x )]

_ 1
~ (p-D!

X
J'(X—u)pfl(f(p)(u) - L pa@ FP)) du| < cohPo(h).

Xo
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Hence, by virtue of (3.48), we obtain
ILP(x, £ = D)| < csh™P[f - £L; < cacp0(h), xed.

Thus,

Hg(p)HJ H £P _ (P HJ < H (P _ (P HJ + czc,m(h)

| £ - Lk_p_lHJ + cac,0(h) < cyo(h) + ez, m(h) = co(h).
m

Remark 6.2. Let x* denote the point closest to x among the points X, i =
0,..., k-1 Itfollowsfrom (6.11) and (6.14) that

C
—X*‘

|x-X|
[ 2W®g, xerabna (619
u

‘[x, xo,...,xk_l;f]‘ < X J

Relation (6.11) and inequality (6.13) appliedto j = 1 yield the following estimate:

kh
‘[x, Xgr e s X1 f]‘ < chl-k J uko(u)du, xeJ, kzl  (6.20)

[ x=x|

6.4. Estimatefor adivided differencefor arbitrary nodes

Inequalities (6.19) and (6.20) give an estimate for the kth divided difference of a function
f in terms of the kth modulus of continuity in the case where k nodes are equidistant and
one node (the point x) may be arbitrary. In the present subsection, we prove an estimate
for the kth divided differencein the case of arbitrary location of all k + 1 nodes of the
divided difference. For k=1, we obviously have

(X0 % 1] < (Xg=X0) r01((X1=Xo); f5 [Xo X11),  Xo< Xy (6.21)
For k=2, inequality (3.10) yields

X2—Xp

| Wdu’ Xg< X1 <X, (6.22)

18
Xo—

(X, X1, %o f1] <

min {Xp—Xg, X —Xo }
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If o(t;f;[a b])<tk ke N, then, for any different points x;e [a, b], i =0,...,k,
according to (3.17), (2.10), and (1.20) we have

(X Xg,---» X% f1] < c (6.23)
Definition 6.1 ([Shevchuk (19844)]). Let a natural number k, a k-majorant ¢ =

©(t) (see Definition 4.4), and k+1 points Xje R, Xg<X;<...<X begiven. For
every pair of numbers p=10,..., k-1 and q= p+1,..., k, wedenote

Jmin{xqﬂ—xp;xqfxp_l} o(u) du
(Xq—Xp)/2 uqu+1

Apg(Xgs- i X @) 1= T K , (6.24)
i=o(xq_Xi)l_li:o|+1(xi ~Xp)
where X_q :=Xg— (Xg—Xg) and Xpyq1: =X+ (X—Xg). We set
A(Xgyeen s Xi; = max max  Apg(Xgy-.o s Xgi @) - 6.25
(Xo K ®) A X na(Xp K 0) (6.25)
Wewrite A= B if c;<A/B<c, Onecaneasly verify that
A(Xg, X1 @) = (X1—Xo) L@ (X1 —Xg), (6.26)
Xo—Xg
A(Xo. X1, X' ) = — o g, (6.27)
Xo—Xg . _ u
min {Xo—Xq; X —Xg }
if o(t)=tk1 k=1, then
. 1 X—%
A(Xgy X, oee s X @) = ( In +1), (6.28)
X — Xo Xk-1—Xo
andif @(t)=1tX then
A(Xg, Xq5 -3 X3 @) = 1. (6.29)

Theorem 6.3 [Shevchuk (1984a)]. Suppose that ¢ € ®X and X <x;<...<Xy. If
o (t; f; [a b]) < (1), then

1[Xgy -+ s X F1| € CA(Xgy X105 Xih @)- (6.30)
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Theorem 6.3 isacorollary of the more general Theorem 6.4 below.

Definition 6.2 [Shevchuk (1984)]. Let a nonnegative integer number r, a natural
number k, a k-majorant ¢ = @(t), and k +r+1 points X;, Xg<X;<...<Xyr,
be given. Denote m :=r+Kk, X_1:=Xg— (Xn—Xo, and Xpm41:=Xm +(Xm—XQ-
For every pair of numbers p=0,..., k-1 and q= p+r +1...,m, weset

d(p, @) := min{Xg1—Xp; Xg=Xp_1

d(p,
J'X(p P uP*=4-Zo(u) du

~Xa~%p - . (6.31)
0 0= Ty 05 = Xp)

—-X

Apgr(Xgseeo s Xm: @) 1=

The expression
Ar(Xgy ooy Xms ©) 1= max max  Apqr(Xg,-eo s Xm; @) (6.32)
p=0,....k-1q=p+r+1...,.m

is called the rth divided majorant.
One can easily verify that

Ag(Xgs -y X ©) = A(Xgy-ev s Xy 9), (6.33)
A Xy Xpa13 ©) = (Xp1—X) O (Xps1 —X0), (6.34)

andif ¢(t)=tk then
Ar(Xgs oo s X ©) = L. (6.35)

Theorem 6.4 [Shevchuk (1984), (1984a)]. Let ¢ € ®X fe C'([Xg X;y]), M:=r +k,
and Xg<X;<...<Xy. If ot;f0);[a b])<e(t), then

[[X0s -+ » X F1| < €A (Xgy Xy 00 s Xy ©)- (6.36)

Remark 6.3. It will be proved in Section 8 that inequality (6.36) is also meaningful and
true in the case where points x; may “coincide” (but at most r + 1 points at once). In-
equality (6.36) is exact in the sense that, for any collection of nodes xg, ..., X,, and any

kth majorant ¢, onecan find afunction fe C"([ xo, X,,]) such that
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O (t; O [X, Xm]) < @(1),
but
(X0 -+ s X F1| > CoAL(Xgy - Xpns ©)

Thiswill be proved in the next chapter.

6.5. Proof of Theorem 6.4
For r=0 and k=1, Theorem 6.4 is obvious [see (6.26) and (6.21)]. First, we prove

thistheoreminthe casewhere r e N and k=1. Using (6.16) and (6.19), we can repre-
sent the divided difference in the form

[Xgr e s Xpa1; ]

= Xpe1=X0) H([Xgy o X1 £1) = ([Xgy s X5 F1)
1t1 tr—l

= (Xre1—%0) _” f (F(D(xg+ (Xp =Xty
00 0

oot (X =Xl Xpr 1= X))

— FO (X + (Xo= Xty + oo+ (X = X_ D1 + (Xo—Xp)t,) dt, ... dty,
whence

[Xor v s X110 f]‘ < (171D (Xpe1=X0) 9 (Xp 41— Xo).

By induction, we assume that Theorem 6.4 is true for a number k-1 and prove it
for k. Weset H:=x,,—Xg and denote by L (x) the Lagrange polynomial of degree

< k-1 that interpolatesthe rth derivative f (") =f(")(x) at the points xq + i H/(k-1),
i=0,.., k-1 Weset g(x):=f((x)-L(x), ot):=0_1(t; 9; [Xe Xml), G(X):=
g(x) if r=0, and

G(x) 1= (1/(r=1)) j (x—t)Lg(t)dt

Xo
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if reN, ie, GM(x)=g(x). Since [Xg ..., Xm; F1=[Xg, --- » Xm; Gl, by the induc-
tion hypothesis we get

[[Xgs -+ » X 1| = [[Xgs ---+ X G

= H™ (X, .. X Gl = X ..., %y G|

IN

CiH A (Xgr oy Xy 15 @) + CIHTMA (Yo, oo Yin 15 ©),
where v :=X;,1. Therefore, to prove Theorem 6.4, it suffices to prove the estimates
A (Xgy oo s Xpe1 3 ®) £ CoHA L (Xgy -+ s Xy @), (6.37)

Ao oo s Yme1: ®) £ CoHA L (Xgs o+ s Xy @) (6.38)

We prove estimate (6.37) [estimate (6.38) can be proved by analogy]. To thisend, we
fix numbers p=0,...,k—2 and q= p+r+1...,m—1 and define integer numbers
ps and g¢ for al s=0,...,m+p-q+1 asfollows: pgy:=p, qg:=q; if

Min {Xqi1—Xp Xq=Xp-11 = Xq—Xp-1, then py:=p-1, q,=q, otherwise p,=p,

dr=a+1 ...; if min{Xq+1—Xp; Xg—Xp_1} =Xq,—Xp-1. then pg=ps-1,
Os+1=0s Otherwise pgi1=Pgy Qsr1=0s +1; ... Pm+pq=0 Um+pq=mM; and
Pm+pqt1=—1 Om+pge1=M Denote ds:=xqs—xp$; in particular dg=Xq— X,
mepg=H, ad dyip ge1=2H.

The proof of estimate (6.37) and Theorem 6.4 is completed by the following lemma:

Lemma 6.3. Thefollowing inequality istrue:
MH-p—q
Apgr(Xo, - Xmo1: ©) € CgH D0 Ay g (X0, e s Xy 9). (6.39)
v=0
Proof. We useineguality (6.13) for j =k-1, i.e., theinequality
kH/(k-1) 2H
o(t) < ¢, tht '[ uke(u)du < c, th? j u—Xe(u)du, (6.40)
t

t

where 0<t<H. Consider three cases.



242 On smoothness of functions Chapter 3

1. Let p=0 and g=m-1. Then

Apqr(Xgs ooy X1 ©)

J ukeu)du < 251(In2)di *w(dy)
do

2H
2¥Y(n2)c, j u=Xe(u)du
do

IN

2H
= 2X1(In2)¢HAgr (Xo - Xmi 0) + 2 (IN2) ¢, [ uKo(u)du
H

N

25 1(IN2)CH(A g (Xgs o s Xms @) + 2A0m(Xgs o s X ©)

IN

1
cgH 2 Apv,q\,,r(xo’ ooy Xy ).
v=0

2. Let p£0, g=m-1, and Xy, —Xp< Xg—Xp-1, i.€,
dl = Xm—Xp dZ = Xm—Xp_l,...,dp+l = Xm—XO = H, dp+2 = Xm—X71 = 2H

Relation (6.40) yields

dy dy 2H
j uPKe(u)du < c4_[ u“l( Jv‘k(p(v)dv)du

d0 d0 u

d;

d;
+(cy/p) | uP-ko(u)du
do dO

2H
-t werwoa)

u

2H dy
< c4d§J uKe(u)du + c4j uP-Ke(u)du.
d do

Taking into account that dp_j+1/2<Xq—Xj<dp_j+1 foral i=0,..., p-1, weget



Section 6 Whitney inequality 243

(2p04)71qur(Xoy cooy X1 ©)
1p—1 Xq=Xp-1
= (2%) ' [T 0g-x) [ uP-ko(uydu
i=0 do
p+1 dy
< Cglndi’l_[ uP-Ke(u)du
i=2 do
p+1 2H p+1 d2
< dEHdi’lj uKe(u)du + Hdi_l_[ uP-Ke(u)du
=2 d, =2 d,
P+1 S p+1 dsi1 L
=2H Y [d;lndil] dt | uFH‘*S(p(u)[(dz/u)p_S'Jr (u/2H)]du
s=2 i=2 i=s+1 ds
p+1 d,
+ HIT o7 [uP™*pwylu/ Hldu
i=2 d;

p-1 p+1 p-1 d;
+ H{ dH ] (xq—xi)Hdil]dlll—[ (xq—xi)’lj uP-kKe(uydu.
i=0 i—2

i=0 do

Taking into account that all expressions in brackets do not exceed unity, we obtain rela-
tion (6.39) with c,< 2 *c,.

3. Theother situations are contained in the case where Xq—Xp1 < Xm— Xp It fol-
lows from (6.40) that

d; 2H d;
j u"tP-a-lep(u)du < c4d£“+p‘q‘lj uKe(u)du + C4'[ u"*P-a41p(u)du.
do dg do

By construction, we have
— < — —
qu X%il et Xp571 Xp571_]_ < Xq Xp571,

_ < _ < _
Xps-1 Xpg = qu_1+1 qu_1 = qu+1 Xp:



244 On smoothness of functions Chapter 3

Therefore,

Xg,—Xp-1 < (St 1)(Xg—Xp-1), Xg+1—Xp, < (S+1)(Xg+1—Xp).

Hence,
cjllAp’q,r(xo, o s Xy ©)
d1
s (Xm — Xp) ju’*p‘q‘lm(u)du
_ do
= 5T
(Xg = Xi) H (% = Xp
i=0 i=q+1
(X _x )dm+p q-1
< o1 P j (U )du + (Xm=XpApqr(Xgs -ov s Xm; @)
(Xq— X)H (% = %p) %
i=0 i=q+1
2H m+p-g-1 m+p-g-s-1
o) d o)
SIUU+HZpsl _[udu
H =t H(xq x)]‘[(x.—xp)d
i=gs+1
+ HAp|q,,(x0, cee s Xy ©)
< 2HAgm(Xgs - s Xms @)

m+p-g-1 m+p-g-sym+p-g-s-1
(s+1) dy cp(U)
+H Y oo K du
= 1‘[(xq - X;) H (% -
i=0s+1

m+p-q

+ HALgr (X - s Xmi @)< CsH D) Ap g (X oo s X3 ©).
v=0

Lemma 6.3 and Theorem 6.4 are proved.
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7. Classes and spaces of functions defined
by the kth modulus of continuity

7.1. Definitions

In the second section of this chapter, we have already introduced Lipschitz and Holder
classes and spaces defined by the first modulus of continuity. In the present section, we
extend this definition to the case where k is an arbitrary natural number. The important
specia case of Zygmund spaces and Zygmund classes is provided by Definition 7.1 be-
low.

In the present section, we denote

J:=[ab]. (7.1)

Definition 7.1. 1. Let M =const > 0. A Zygmund class MZ[J] is the set of functions
fe C(J) satisfying the following inequality for every pair of points X, X, € J:

X1+ X
‘f(xl)— Zf( > )+ f(X5)

< %\xl—xz\. (7.2
Il. We define
Z[J] := 1Z[J]. (7.3)

1. AZygmund space Z(J) is the set of functions f e C(J) for which there exists
anumber M=M(f)>0 suchthat w,(t; f; J)< Mt, i.e,

Z(J) := UpysoMZ[J]. (7.4)

IV. Let r € N. We write fe MW'Z[J], fe W'Z[J], and fe WZQ) if fe
C'(J) and, respectively, f(Me MZ[J], e Z[J], and f( e Z(J).

V. Wedenote MWPZ [J]:=WZ[J], WOZ[J]:=Z[J], and WOZ(J):=Z(J).
Definition 7.2. Let ke N andlet ¢ bea k-majorant.

I. Theclass MH [k; ¢; J], M =const >0, is the set of functions fe C(J) for
which

oKt £, J) < Mo(t). (7.5)
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I1. Wedenote H[K; ¢; J]:=1H[k; ¢; J].

[1l. The space HY(J) is the set of functions f e C(J) for which there exists a
number M =M(f) suchthat w,(t;f; J)<Mo(t), i.e,

HY(J) := UpysoMH [K; @; J]. (7.6)

IV. Let r e N. We write fe MWH[k; ¢;J], fe WHI[k; ¢;J], and fe
W'H?(J) if fe C'(J) and, respectively, f(D e MH[k; @; J], f (e H[k; ¢; ],
and f(De H2(J).

V. Wedenote MWPH [k; @; J]:=MH [k; @; J], WOH [k; @; J]:=H [k; ¢; J], and
WOH?(J) := HZ(J).

Notethat H[o; J]=H[1;;J] for @(t)=t* and Z[J]=H[2; ¢;J] for @(t)=t.
Theorem 2.1 and relation (5.17) imply that

Wr;dl = WH ;9531 for @ =t), j=1..,r. (7.7)
Note that the space W'H,2(J) isan algebra by virtue of the following lemma:

Lemma 7.1 (see, eg., [Trigub (1960)]). Let functions f and g be given. If g e
M1HI[K; @; J] and fe MH [k; @; J], then fge M,H [k; ¢; J], where

Mz < c(My|f]+M]g]) + ck-1)(MMp(b-a)+ | f[ [gll/p(b-a)).
Proof. Wefix te (0, (b-a], denote

t. 1= tX gb-a)/ew),

and notethat t<t.<b-a. Forevery j=1,...,k-1, the following inequalities are
true:

b-a
[ uTi-tew)du < t=*gt)(b-a)*,
t

b-a

_ t, b-a
j u-i-leu)du = ‘[U‘j‘lcp(u)du +
t t

j u-i-le(u)du
t,

INA

itk o) + trleb-a) < 2t (o) *(ob-a) 'k
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It follows from (3.39) that
k (k

i=0

Therefore, by virtue of the Marchaud inequality (5.6), we obtain

o (t;fg; J)
k-1 b-a )
< [ f[Mpo(t) + etk (M J u"puydu + (b-a)™ ||f||)
i=1 t
b-a ) )
. Ml[ [ i tpwdu + <b—a>'-k||g||] + Mgl ot
t
< (1+(k=De)(My | F]+M [g])e) + (k-Dycstib—a)™ | ] g

+ MM4(k-1)c9(b-a)p(t) < Maop(t).

7.2. Relations between spaces of continuous functions

Numerous relations between various classes M W'H [k ; ¢;J] and spaces Werf(J)
were established by S. Nikol’skii (1946b), Stechkin [(1951a), (1952)], Brudnyi (1959),
Brudnyi and Gopengauz (1960), Geit (1972), Guseinov and II’yasov (1977), and others.
The most general result is given by the following theorem:

Theorem 7.1 [Guseinov (1979)]. Let ke N, je N, e ® 0w e @), (r+1)e N,
and r <j. Thefollowing assertions are true:

1. Theinclusion
W'HS(J) < HP(J) (7.8)

istrueif and only if the following conditions are satisfied:
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(@ tTo(t)=0(m(t) if j2k+r; (7.9)
1

() ti]ui-teu)du = O(w(t) if j<k+r, (7.10)
t

2. Let r #0. Theinclusion
HJ‘”(J) c Werf(J) (7.12)

istrueif and only if the following conditions are satisfied:

1 t
@ tfur lowdu+ [ utoudu = O(e) if j>k+r; (712
t 0

t
(b) ju—r—lm(u)du = O((t) if j<k+r. (7.13)
0

Proof. la Sufficiency. If fe W'HQ(J), then, by virtue of (4.15), we can conclude
that fe HZL (J), where ¢,=0,(t)=t"e(t). Therefore, according to (4.12), we have
fe Hj"l(‘]), Hence, taking (7.9) into account, we establish that f e Hj"(J).
la. Necessity. Weset f(x):=0 if x<0 and
f(x) = u2k+ry=3k-r-lou)(u-x)**rdu if x=0.
For xe (0, 1], wehave

[ 1000] < c1000, [T < cuko .

Therefore, fe W'H? ([-1 1]). Onthe other hand, if fe HJ?P([—L 1]), then, for al te
(0,1/)), weobtain

O(o() = o;(t;f;[-1,1]) = [Al(f;@- D] = f(1) 2 catTe(),

i.e., the necessity is also proved.
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1b. Sufficiency. If fe W'HS(J), then, by virtue of (4.15), we have fe H (J),
where ¢ ,(t)=t"@(t). Therefore, according to the Marchaud inequality (5.6), we get

1
ot f; )= O(_[urj(p(u)du).
t

Taking (7.10) into account, we conclude that f e H}p(J).

1b. Necessity. Let F(x; ¢; k) bethe extremal function defined by (4.27). We set

- 1 f C r+1 P
f(x) := 7(r_1)!{F(u,(p,k)(X—u) du if r=0

and f(x):=F(x; @; k) if r =0. According to (4.40), we have fe W'H?([0,1]). De-
note

t
0o(1) = tTo(t) — [ ruLle(u)du
0
and notethat f(x)=F(X; ¢,; r+Kk). Therefore, by virtue of (5.18), we obtain

1
o;(t;f;[0,1]) = c4tjj ul=1¢,(uydu
t

1 1
= ¢, (tH@-r/)) [ ui-te(uydu + 1/t | rur-te(u)du
t 0

t
- (/) [ ru-teduy,
0

1
tjj uI-louydu < cg(tro(t) + o (t; f; [0,1])) = O(m(1)).
t

2a. The necessity and the sufficiency of (7.12) for (7.11) follow from Theorems 5.6
and 5.5, respectively.
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2b. Sufficiency. If fe HJ‘”(J), then, taking (7.13) and (5.15) into account, we es-
tablishthat fe C'(J) and o;_, (t; f;J)=O(g(t)), whence, according to (4.12), we
get ., (t;£0);3)=0(p(1)), ie, fe WHI).

2b. Necessity. In view of Lemma 4.3, we can assume, without loss of generality,
that |w’(t)| < w(t)/t. Denote f(x):=F(x; o; ). According to (4.40), we have fe
HP([0,1]). We set

i, 1= (FDMTIALT (£ 0)

and

K+r—j
. k+r—j—i(k+r—]

i,:= Y (D | )Ajh‘r(f(r);ih)
i=1

so that [see (3.30)] A% (f";0) =i, +i,. By virtueof (5.18), we obtain

t
| = cs| u " lo(u)du
1 6

0

According to (3.37), we get
AT (5| = W7 £0@)] = hi-TeT*! 0/(8) < c;hTw(h), 6>h,
whence
lio] < (2" Hesh " och) = cgh™ o(h).

Therefore, the assumption fe W'H?([0,1]) yields
t
O(o(t) = m(t;f0);[0,1]) > cﬁj U lo(u)du - cgt " o(t).
0

Finaly, since f e W'H?([0,1]), we obviously have fe H/% ([0,1]), where ¢, =
¢4 (t)=t"(t). Consequently, according to assertion 1a, we can conclude that t~" ¢ (t) =

t=10(¢4(1)) = O(p(1)).
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Remark 7.1. If j<r, theninclusion (7.11) isnot truefor any ¢ € oKand me @,
The following corollary of Theorem 7.1 istrue:

Corollary 7.1. Let ke N, je N, g e @K we @), (r+1)e N, (p+1)e N, p<r,
and g:=min{k,j+p-r}. Thecondition

tPo(t) ~ t (1), (7.14)

t 1
j(r - puTet)du + [k+r—j— p|tq‘[u*q’l(p(u)du = O(p(t))  (7.15)
0 t

is necessary and sufficient for the equality
WPHP(J) = W'H?(J). (7.16)
The notation tPw(t) ~ t"e(t) meansthat tPw(t) = O(t"e(t)) and t'e(t) =
O(tPw(t)).

The following corollary of Theorems 5.5 and 5.6 istrue:

Corollary 7.2. The condition

1
[ (p-nu=rtow)du < = (7.17)
0

is necessary and sufficient for the inclusion
WHP(J) < CcPQ), (r+1)eN, (p+1)eN. (7.18)

Let us formulate some corollaries of relations (7.8)—(7.18). As above, we assume that
keN, e ®X (r+1)e N, and pe N. Then

tP" = O(e(t) = WPI) c WHP), (7.19)

1
j (P—Nu~Plopuydu < = < WHPJI) c WP, (7.20)
0

p=r+k tP ~ @(t) & WHJ) = WPQ), (7.21)
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p>r+k e CPJ) c WHZ). (7.22)

It follows from relations (7.17), (7.18), (7.22), and (4.22) that the equality C p(J) =
W'H? (J) isimpossibleforany p, r, k, and ¢.

Taking (7.8)—(7.22) into account and using Theorems 5.5 and 5.6 and inequalities
(4.12) and (4.15), one can easily establish various relations between different classes

MW'H[K; ¢; J].

7.3. Space H(¥)

Definition 7.3. Let € ={e,} be a decreasing sequence of positive numbers ¢,
ne N. By H[g]; wedenote the class of functions fe C(J) such that

En(f); < &, neN. (7.23)

In the case where J=[0, 1], we set H[€]:= H[€]py. By H(E); we denote the
class of functions f e C(J) for which there exists a number M = M(f) such that
En(f);< Mg, foral ne N.

It will be proved in Chapter 7 that the condition
= n
X Y Ay = 0(e(1/n?), (7.24)
j=n+1 j=1
keN, ¢e®X (r+l)eN,

is sufficient for the inclusion

HE); c WHP (). (7.25)
In the present subsection, we prove that condition (7.24) is also necessary for (7.25).
Dolzhenko gave an example of afunction fe H[€] such that
n
®;(1/n%f0;[0,1]) 2 cn"2) je;, neN, (7.26)
j=1

i.e., he proved the necessity of (7.24) for (7.25) inthe casewhere r =0 and k=1. Inthe
general case, the following theorem is true:
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Theorem 7.2 [Shevchuk (1989a)]. Let ke N and (r+1) e N. Then the following
assertionsaretrue:

() if

¥ = (7.27)
j=1

then there exists a function fe H[€] suchthat f € C' ([0, 1]);
(i) if

Sri? e < oo, (7.28)
j=1

then there exists a function fe H[g] such that fe C"([0, 1]), but, for
all ne N, n>m:=r +k, onehas

oo n
o (1/n%£,[0,1]) > ¢ Y rj¥ e+ en 2K Y jAHO e (7.29)

j=n+1 j=m

Proof. 1. Letxe [0, 1]. Notethat, for | € N, the function sin?(larcsin+/ x) isan
algebraic polynomial of degree |. For dl ne N, wedefine polynomials T, by the for-
mula Tn(x):= sin™3([n/(m+2)]arcsiny x ), where [n/(m+2)] is the integer
part. The polynomials T, possessthe following obvious properties: T, is apolynomia
of degree n, 0< T(X) <1,

Tn(X) < ¢ xM*2n2(M*+2) jf x<1/n? (7.30)
Ta(X) = co,xM*2n2(M*2) 1 x<1/n2 n>m+2, (7.31)
TP0) =0, j=0.. m+1 (7.32)

We define the function

oo

BOO 1= D 3T = Y 73 ,Ti(%)

j=1 j=m+2
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and the polynomials
- 3
Pa(¥) 1= Y, i 7% 0T (X).
j=1

We provethat if n>m and (n+1)2<x<n-2, then
B(X) = CcoeX. (7.33)

Indeed, if n>m+ 2, then, according to (7.31), we have

=3

BOO = Y, (73 ,Tj(0) 2 cpen oxM2 Y j78jAMD = cae x.
j=m+2 j=m+2

If n=m, m+1, then, foral x>(m+2)"?, weget
B(X) = (M+2)3e T .o(X) = (M+2) 3, X™2> Cge X 2 Cg8ps1X.
We now prove the inequality
0 < B(X)—Pu(X) < CyXepq1, NeN, N1 (7.34)

First, let x>(n+1)~2 Then

oo

Y 7% 2Ti(%)

j=n+1

0 < B(X)-Py(x)

- .3 1 -2
€n-1 z ] < Een—ln < 2Xgq_j.
j=n+1

IN

Now let x<(n+1)"2. Wechooseanumber nye N from the condition (ng+1)2 <
X< n52 and note that, according to (7.30), we have

Mo
- 2(m+1
> 3T (%) < cpx™2ng™Y < ¢y

j=m+l
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Therefore,

No oo
0<BX)-P¥)<enq 2 i3 0+en1 3 73T

j=n+1 j=ng+1

< Cien 1X + (1/2)en 1N"2Ng> < CyXeqn 1 X.

We st [cf. (5.18)]

F(¥) := ((m—l)!)fzj‘ u=m2B(u) x(x—u)™1du,
1

f(x) := ¢ F(X),

Q. (x) := ((m—l)!)‘zj u=m-2P_, 1 (X) X(x—u)™1du.
1

It follows from (7.32) that Q,, isapolynomial of degree n. Taking (7.34) into account,

we get
1
|F(x) — Qu(x)| < c4en_|' u"™2ux(x—u)™1du
X
1
< c4snj xu=2 du < cye,,
X
i.e,
En(f)jo1] € €n NeN. (7.35)
2. Using (7.33), we obtain the following relation for all n>m:
1/m? 1 Vj?
j u"2B(u)du = ) J u-"-2B(u)du
1/n? j=m1/(j+1)?
n-1 vj? n-1
> Y ¢ j uTTdu > cg Y ¥ ey (7.36)
j=m  1(j+1)? j=m
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Therefore, relation (7.27) yields
1
J ru—"-2g(u)du =
0

According to assertion (i) of Lemmab5.3, thismeansthat F¢ C'([0, 1]), i.e,
2 j2r-1lgj =« = F ¢ C'([0,1]). (7.36)

3. By virtue of (7.30), we have

1 1/n 1
j u="-2T (u)ydu = [ _[ + J JU‘r‘zTn(u)du

0 0 1/n?

1/n?
< n2(m+2) J' u™r du + J‘ u-r-2du = Cs n2(r+2)
0 1/n?

Therefore, relation (7.28) yields

=

1 1
j ru2g(uydu < Y rsj_zj—3'[ u—r‘sz (u)du
0 j=m+2 0

i2r-1
< C6 Z I’ijzj < oo,
j=m+2

According to assertion (ii) of Lemma5.3, thismeansthat F e C'([0,1]), i.e,
2 j2r-lgj < oo = F e C'([0,1]). (7.37)

Thus, it remains to prove inequality (7.29). By analogy with step 2, we obtain the follow-
ing relation for all n>m:

n—2

J ru"-2p(uydu = ¢y, g j2 1
0 j=n
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1 m~2

j u"m2B(u)du > _[ u=™2B(u)du > cq Zn: g j2mL,

(n+1)2 (h+1)~2 j=m

257

Taking into account relation (5.23) and the fact that, for any majorant « of the kth-

modulus-of-continuity type, one has

ofe) 2 3o%) * ot )

we get

o (n2; F;[0,1])

2 l
l n
> > J'ru*f*ZB(u)du + c,n=2K _[ u=™-28(u)du
0 (n+l)‘2
G ¥ f2ro1 KN . i2m-1
> 3 % rg; j2 L+ coegn2k Y gy j2M

2

j=n j=m

i.e, relation (7.29) is proved with

. ] c3 csC
c = min{ =2 7= {
2c, ¢4

Relations (7.35)—(7.38) are equivaent to the statement of Theorem 7.2.

Below, we present several corollaries of Theorem 7.2.

Theorem 7.3. If H[g]; c C"(J), then
z gi j2r71 < oo,
j=1

Theorem 7.4. If H[E]; c W'(J), then

z 8]- j2r—1 < oo,
j=1

(7.39)
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For r =1, Theorems 7.3 and 7.4 follow immediately from the Dolzhenko inequality
(7.26). For r>1, under the additional assumption that €,n?" decreases, these theorems
were proved by Xie (1985) (see also [Shevchuk (1986)]) earlier than the general theorem
(Theorem 7.2) was proved; this was a positive answer to Hasson’s conjecture [Hasson

(1982)]. It follows from fairly old results of lbragimov (1946) that if €,n2" > const > 0,

then H[E]; ¢ W' (J).
The following corollary of relations (7.24) and (7.25) and Theorem 7.2 istrue:

Corollary 7.3. Let ke N, ¢ e ®X and (r+1) e N. Then

H(€); ¢ WH?(J)

oo n
e Y, rj2le + n72kY j20+K-le = O(@(1/n?)); (7.39)
j=n+l j=1

in particular,

H(g); c C'(J) & H(g); c W(J)

& Y j¥lg <o, reNl (7.40)

j=n+1

7.4. Peetre K-functional

In approximation theory, the idea of the replacement of an arbitrary function f by a suffi-
ciently smooth function g is often used. One of the most efficient realizations of this
idea is based on the method of the Peetre K-functional from the theory of interpolation
spaces (see [Peetre (1968)], [Bergh and L6fstrom (1976)], and others).

In the case of interpolation between C(J) and W'(J), r € N, the K-functional has
the form

K,(t,f,3):= inf (f—gJ + t&sssupg(”(x)) (7.42)
geW' (9) xed

Itisclear that K, (t,f,J) isafunction nondecreasing with respect to t.
Let xe J, h>0, and (x+rh)e J. Relation (3.44), or (3.45), implies that the fol-
lowing estimate holdsfor ge W' (J):
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| &g, 0| < h"esssup|g®(x)].
xeld

Moreover, it is obvious that
|A(f-g. 0| <27 f-g];.
Hence,
| A(F0| < [A(F-g,x)| + [Ah(@. 0] < 27K, (h,1,3),
which yields
o,(t,f,J) < 2"K, (', f,J), t>0. (7.42)

It will be proved in Chapter 7 (Lemma 7.3.5) that the following estimate is true for
te[0,1/r]:

K,(t,f,[-11]) < co,(t;f; -1 1]). (7.43)

For t>1/r, estimate (7.43) isatrivial consequence of the Whitney inequality (6.5). By
the linear change of variables that transforms the segment | =[-1; 1] into the segment
J=1a; b], weobtain

K, (t,f,J) < co(tfJ)
Thus,
270, (4, f,J) < K, (1,,J) < co,(t,fJ), t=0. (7.44)
Freud and Popov (1972) proved relation (7.43) by using a modification of Steklov
means. For applications of (7.44) to the polynomial approximation, see, e.g., DeVore
(1977), DeVoreand Yu (1985), and Brudnyi, Krein, and Semenov (1987).
8. Hermiteformula

8.1. Introduction

Until now, the Lagrange interpolation polynomial L(X; f; Xg ..., X;,) and the divided
difference [Xg, ... , X,y f1 have been considered in the case where all points x; are dif-
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ferent. In the present section, we generalize this notion to the case where some (fixed)
points x; may coincide. Namely, we define and study an Hermite-L agrange interpola-
tion polynomial L(x; f; X) and a generalized divided difference [X; f], where X =
(Xg, X1, --- » Xy The corresponding definitions will be introduced so that

Lix; ;%) = L(X;f; Xg oo s Xin)
and

[X; ]

[Xg - s X 1

inthe case where all points x; aredifferent. In contrastto L(x; f;X) and [X; f], the
expressions L(x;f; Xg, ..., Xy and [Xq, ..., Xy f1 are used in this book only in the
cases where all points x; are different.

In this section, we use the following notation and assumptions. X :=(Xq, ... , X;,) IS
acollection of points xje R, i =0,...,m, and X:={x}U{x;3U...U{xy} isa
subset of thereal axis. The set X consists of q different points y,, s=1...,q, i.e,
X={y1}U...U{yq}, where ys=y, for s=v. Thepoints x;, i =0,..., m, are called
the coordinates of the collection X, and thepoints y., s=1...,q are caled the nodes

of the callection X. If the coordinates x; of the collection x are different, then we ob-
viously have q=m+ 1. However, if, conversely, at least two coordinates of the collec-
tion X areequal, then, obviously, g<m+1. If anode y, coincides with exactly

ps+ 1 coordinates of the collection X, thenthe number pg is called the multiplicity of
thenode y,. If ps=0, thenthenode y, is caled asimple node. If pie N, then the
node Yy, iscalled amultiple node. Itisclear that

q
Y (d+pg) = m+1
1

Forevery s=1,...,q, wedenote

q
ls(x) 1= 1s(x, %) 1= J] (x=y)™*,

v=1, v#S

which is a polynomial of degree m-pg, and

Bs(X) := Bg(X X) =

5L (8.1)
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8.2. Hermite-L agrange polynomial
Definition 8.1. For every s=1,...,q and i = 0,..., p, the fundamental Hermite-

Lagrange polynomial is defined as the polynomial of degree m that has the following
form:

ps—i i
Iwuw:uﬂxxw:%QMX)Ziﬁﬁ%kw—ﬁwﬂ (82)
. &

Let v=1...,9 and j=0,..., p,. Itiseasy to verify that t;ji)(yv) =1 for i =j
and v=s, and t{)(y,) =0 otherwise. Therefore, for any collection of numbers fs;,
the polynomial (of degree <m)

q Ps
EX) = DY fsilgi(x) (8.3)

s=1i=0
possesses the following property:
FI(yy) = fyj, v=21..,4,i=0..., p,. (8.4)

In Subsections 8.2-8.4, the symbol f =f(x) = f (*)(x) always denotes a function de-
finedon R and having p derivatives f{)(x), i=1..., ps, a each multiplenode ys.

Definition 8.2. An Hermite-Lagrange polynomial
L(x) := L(x;f):=L(x;f;X) (8.5

that interpolates a function f=f(x) and its derivatives at the nodes vy, ... +Yq of a

collection X is defined as an algebraic polynomial of at most mth degree that satis-
fies the following equalitiesfor all v=1,...,q and j=0,..., ps:

LDy, = £y, (8.6)
For example, if g=m+ 1, i.e, al nodes are simple, then the Hermite-L agrange pol-

ynomial is the Lagrange polynomial (3.1). If q=1, i.e, Xg=X;=...=X,, =Yy, then
the Hermite-L agrange polynomial isthe Taylor polynomial, i.e., in this case, one has

umﬁxw:§0uwﬂﬂW%ww
j=0
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Inthe casewhere m=2 and Xy =Xy # X,, we have

L(x;f;X)

po (X = X) (X = Xp)
f/(Xy)———————<<
o) (X0~ X2)

X— Xy
+ 2
Xp — X2 (Xg — %2)

(%—mu—@q+fx (x=%)*
( 2)(Xo - %)

+ f(Xo)(

f/(Xg)(X=X2)By(y1) + £/ (X0)((X—X2)By(y1)

+(X=Xg)(X=X2) Bi(Y1)) + f(Xg)(X—X2)?B(Y>)
Y1 = Xor Y2 1= Xp

By virtue of (8.3) and (8.4), the Hermite-L agrange polynomial exists and is repre-
sentable in the form

q Ps .
LoGTx) = 3 3 £Oye) 1 s(x). (8.7)

s=1i=0

Using the main theorem of algebra on the number of zeros of an algebraic polynomial,
one can prove that the Hermite-L agrange polynomial is unique and

L(X; Py X) = Pp(X) (8.8)

for any algebraic polynomia R, of degree <m.
Similarly to Lagrange polynomials, Hermite-Lagrange polynomials are linear opera-
tors.
8.3. Generalized divided difference
Let s* beanumber for which

Xm = Yseo Xme1 = (Xgy -o s Xpe1)y and Lygq 1= LX) X )-

Dividing the difference f ™) (x,)— L'P*)(xy) by (ps.)!ls. (Xm) and using (8.7), (8.2),
and (8.1), we obtain
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PP () = L) _ Y $ P (y9)BO(ys)

(Ps)! s (Xm) S5 (ps—li
q
=Y 1Py /(pe)! =2 [ f1, (8.9)
s=1

where
q q 1
fs(x) 1= F(0Bg(x) = T Y, 1Py /(p)!t [ x=y) ™™
s=1 v=1 v#S

Definition 8.3 (Hermite formula). The expression [X, f] is called the generalized di-
vided difference of order m for a function f inacollection X.

For example, for q=1, i.e, inthe casewhere xy=... = X, =Y, Wehave
[, f1 = f(M(yy)/ml; (8.10)
for g=m+1, wehave [X, f]=[Xq, ..., Xy f]. Incontrast to the case q=1, for

g=2,..., m expression (8.9) containsthe values of the function f at all nodes, as well
asthevalues of all derivatives f()(y,), j=1,..., ps, at each multiple node ..

Note that the generalized divided difference [ x, f] is symmetric in the same sense as
the divided difference for different points defined by (3.8).

For Hermite-Lagrange polynomials and generalized divided differences, complete
analogs of al relations (3.11)—(3.27) are valid. Namely, the following assertions are true:

m i-1
(i) Lox;fix) = Y%, 1] (x=xp), (8.11)
i=0 =

o

where X :=(Xg, ..., Xj);

(i) if x;e [a,b], i=0,...,m, andthefunction f hasthe mth derivative f(™ on
(a, b), then

(%, f] = fM@)/m!, 6¢€(ab); (8.12)
(iii) if P,,_; isapolynomia of degree <m-1, then

[X, mel] = 01 (813)
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(iv) if f(x)=xM then

(%, f] =1 (8.14)

(v) if Pp(X)=agx™+ ... +a,, isapolynomia of degree m, then

Pm(X) = L(X; Prys X21) = @g(X—=Xg) ... (X—X_1)s (8.15)
where X 1= (Xg, -+ » Xm1);
(vi) Xo= X)X 1 = [Xpg, 1 = [X8, 1, (8.16)
where X, 1= (Xg, -+ » Xm_1) and X9 =(Xy, ..., X)), €tC.

The proofs of relations (8.11)—(8.16) are similar to those of relations (3.11)—(3.27),
respectively. For example, let usprove (8.11). For m-1, relation (8.11) follows from
(8.10) and (3.11). By induction, we assume that (8.11) is true for anumber m —1 and
proveit for the number m, i.e.,, we must prove the equality

L(X) = Ly (x) + [X, f]1TI(x), (8.17)

where

—
—~
X
~

1

LX), Lypoa(X) = LG T Xng ),

m-1
Xm1 = (Xor oo Xmea)y TIOO 1= [T (x=x).
=0

Since both sides of equality (8.17) are polynomials of degree <m, it suffices to prove
that, foral s=1,...,q and j=0,..., p;, onehas

LD (yg = LW 1y + [% FI19(yg). (8.18)

Let s+ be the number for which x, =ys.. Since TP (xy,) = (ps)! ls (Xm) We
conclude that, for s=s* and j =ps., equality (8.18) follows immediately from (8.9).
Fortheother s=1,...,q and j=0,..., ps, it followsfrom Definition 8.2 that
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LRaye) + 1% TP (yg) = £0(y9 + 0 = LRy,

Thus, equality (8.18) is proved, which proves (8.11).

8.4. Convergence

Assume the following:
() R™? isthe (m+ 1)-dimensional space of points t = (tg, ..., t,);

(i) R™? isthesetof points £ € R™" ! all coordinates t; of which are differ-
ent;

(i) R™(x) isthesetof points £ € R™" ! such that each node y, of the col-
lection X coincideswith at least one coordinate t; of the point t;

(v) R™M(x):=R™ N R™(x).
We say that, in the collection X,
(i) ageneralized divided difference converges,
(if) adivided difference converges,
(ili) ageneralized divided difference converges weakly,
(iv) adivided difference converges weakly,

and write, respectively,

(i) lim[f;f] = A (8.19)
ft—>Xx
(ii) lim_[to, ..., ty: 1= A, (8.19.)

foX
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(iii) imO[E; f] = A (8.199)
fox
(iv) im0 [tg, ...t f1= A (8.199)
fox

if, forany € >0, there exists §>0 suchthat |A-[f; f]| <& whenever [t —x|<3,
i=0,...,m, t# X, and, respectively,

() teR™?
(i) fe RM™,
(i) feR™Yx),
(iv) fe R™(x).

Remark 8.1. A necessary condition for the convergence of the generalized divided dif-

ferencein the collection X [see(i)] isthe existence of the derivative fP9(y) not only
at esch multiple node y¢ but also in a certain neighborhood of it. For weak convergence,
this condition is not necessary because, in this case, the derivative does not appear in the

expression y=y, for [f;f], and the existence of the derivatives fU)(y), | =
0,..., ps — 1, inthe neighborhood of the node y is guaranteed by the assumption of the

existence of fPY(y). In the case where all coordinates x; are different (i.e,

g=m+ 1), and only in thiscase, we have R™!(x)=R™" %) ={x}. Therefore, in
thecasewhere q=m+ 1, weset

MmO [tg, ..., ty: f1:= [Xgy .. » Xy F1 =1 1iMO[E; 1.
[ t—-x

Lemma8.1. Thefollowing relationsaretrue:

limO[f; f] = [ f1; (8.20)

t—->X

im0 [tg, ..., tp 1= [Xg o s X F1- (8.21)

t—>Xx

In particular, if q=1, i.e, thereexists f(™(x,) and x;=Xq, i=1,..., m, then
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(m)
mO1t; 1] = %, (8.22)
(m)
im0 [ty ... t: f]= ~—0), (8.23)

! I
fox m:

Proof. Relation (8.21) is a corollary of (8.23) and (3.26). Relation (8.20) is a corollary
of (8.22) and of an analog of (3.26) for generalized divided differences. Moreover, it is
obviousthat (8.23) isacorollary of (8.22). Therefore, it sufficesto prove (8.22).

Since f(M(x,) exists, we conclude that the (m— 1)th derivative f (™) existsin a
certain neighborhood (xg- 8, Xg+ d) of the point xo. For every t =(tg, ..., t,) with
tie (Xg— 9, Xp+ &), we denote the least coordinate and the greatest coordinate among t;
by t. = t.() and t* = t*(f), respectively; thus, t* —t. > [t —t
set g:=f-T, where

, ,j=0,...,m. We

m () —x.)]
T(x) = ), f! (XO)j(lx Xo)!
j=0 '

is the Taylor polynomial, and take the equalities g‘™(x) = g™ (xg) = 0 into ac-
count. By virtue of (8.16) and (8.12), there exist points 0, € (t., t*) and 0, € (t,, t*)
such that

g™ (09) - g™ (8,) _

-DI[t; 9] =
(m-1)![t; 9] Sy

Hence,

g™ P(xg) - g™ Y(6,)
Xo — 02

g™ P (x) - g™ Y6y

(m-D![[E;g]| <
X0 — 01

+

(if 84 =Xq, then the first term in this inequality should be replaced by zero; the case
6, = X should be treated by analogy). Therefore,

(m-1t im® [, 1| < 2[g™0)| = 0.
—X

By virtue of (8.14), we get
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(m)
imOE: £] = — 9 4 lim0[f: g].
m! f

f-x f—X
Relation (8.22) is proved, which completes the proof of Lemma8.1.

Remark 8.2. Generally speaking, weak convergence cannot be replaced by strong con-
vergence in (8.22). For example, for the function f(x)=x2sin(1/x), f(0):=0, we

have f’(0)=0, but lim [t t1; f] does not exist. Nevertheless, the following
(to.t) = (0,0)

lemmaistrue:

Lemma 8.2. Supposethat q=1, i.e, there exists f (™(xg) and Xg=X;=...=Xp,.

If the mth derivative f (M)(x) exists and is continuous in a certain neighborhood
Js:=(Xg— 9, Xg+ ) of thepoint xq, then

(m)
limif £ = — %), (8.24)
f-x m!
in particular,
(m)
M, [ty ...ty 1= ——C0), (8.25)
f-x m!
Proof. For any positive &, <9, we consider tje (Xg—01, Xg+984), i =0,...,m.

Using relation (8.12) and the assumption that f (™(x) is continuous, we establish that

(m)
m!

= %\fm(e)— fMx)| -0 as 8,0,

where 6 € (Xg— 81, Xg+ 91).
|
Definition 8.4 [Whitney (1934a)]. Suppose that a set E c R and a limit point x, of E

are given. We say that divided differences [t ..., t,,; f]converge at the point xg if,
for any € >0, thereexists 6 >0 such that

[t ths f1 — [t8,....th 1| < & (8.26)
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whenever |t/ —Xxg| <9, [t'—Xy|<9d, i=0,...,m, and the coordinates t/ and t/”
in each of the callections t” = (tg,...,t5,) and t” = (tg,...,ty) aredifferent.

We say that divided differences [tg, ..., t,,; f]1converge on the set E if they con-
verge at every limit point of E.

Lemma8.3. If fe C"(R), then divided differences converge on every set E c R.

Lemma8.3isacorollary of (8.25).

8.5. Further generalization of the Whitney inequality

Let ke N, (r+1)e N, m=k+r, o€ d)", as<Xg<X;<...$X,<b, and p(X) :=

max {ps|s=1,q}. Inthecase p(X) =1, the rth divided majorant A, (Xg, ... , Xm: ©)
was defined in Section 6 by formula (6.32). If p(X) <r, then the right-hand side of
(6.32) is obviously a finite number; denote it by A,(X;¢). Furthermore, we have

Aty .o, t; @) > A(X @) 8s (tg ..., t,,)— X. Therefore, relations (8.21) and
(6.36) yield the following statement:

Lemma8.4[V.Gaan (1991)]. Let p(x) <r. If fe W H([k; ¢; R]), then
[ F1] < cALX 9). (8.27)
Corollary 8.1. Let p(X) #m. If fe W[m; R], then
I[x f]] <c (8.28)

Remark 83. If p(X)=m, i.e, Xg=...=Xp,, then, under the assumption that fe
W[m; R], representation (8.10) yields inequality (8.28) for aimost all xye R.

Remark 8.4. Estimate (8.27), as well as estimate (6.36), is sharp in the sense that, for

any collection X with p(X) <r, thereexistsafunction ge W' H[k; ¢; R] for which
I[X; 91| = cA,(X; 9) [seeLemmad4.3.1].

8.6. Existence of thederivative

Let Xg=X;=... = Xy. If £{M(x,) exists, then, according to (8.23), the following limit
also exists:
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Himo[tg, ... ty fl1= —;
f—>x

moreover, A=f(M(x,). Generally speaking, the converse statement is not true. For ex-
ample, for the function f(x)=x*sin|1/x|, f(0):=0, we have

lim? [ttt f1=0;
(to.t1.t) = (0,0,0)

at the same time, the derivative f’(1/mn) does not exist at the points (rtn)~1, ne N,
and, hence, the second derivative f’(0) does not exist as well. Nevertheless, one can
easily prove by using (3.17) that if afunction f isdefined in a certain neighborhood of
the point Xy (=X1=... = X,,) andthelimit

lim [to, ..., ty; f]= A

_ |
t—>Xx m

exists, then the function f has the mth derivative at the point x, and, moreover,
f(M(xy) = A.

9. DT-Moduli of smoothness

9.1. Introduction

It will be shown later that, for any function fe H[k; ¢] andevery n> k-1, there exists
apolynomia P,, that guarantees, generally speaking, the same order of uniform approx-
imationon | = [-1,1] asthe polynomial of the best approximation and “much better”
approximates the function f near the endpoints +1. Therefore, it is natural to assume
that the class H[k; ¢] may be “worsened” near the endpoints without worsening the or-
der of thevalue | f - P,|.

At the beginning of the 1960s, Dzyadyk and Alibekov (1968) and Volkov (1965), and
later Dyn’kin (1974) and Andrievskii (1985), described such classes on sets of the com-
plex plane by using the mapping function. Such a description can also be applied to a
segment because a segment is a set of the complex plane. Anyway, the investigation on a
segment reduces to the substitution x = cost (see[Fuksman (1965)]). In thisdirection,
the corresponding classes were constructed by Potapov (1981); one should also mention
the results of Sendov and Ivanov.

In this section, we present the construction of Ditzian and Totik (1987) that general-

izes the spaces B" introduced by Babenko (1985) (see also [Boikov (1987)]).
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Definition 9.1. Let B, r e N, denote the space of functions f that have the locally

absolutely continuous (r — 1)th derivative on (-1, 1) and satisfy the following in-
equality almost everywhereon (-1, 1):

A- 33210 < M, 9.1)
where M = M(f) = const < oo,

Typical examples of functions f e B' are f(x):= (1+ x)”2 for odd r and

f.(x) 1= (1+%)""?In(1+x) foreven r.

Remark 9.1. Bernstein (1930) and Ibragimov (1946) proved that
E (f), ~ n".

Without loss of generality, we can assume that afunction f e B' is continuous on |
together with its derivatives f(P), p < r/2. Indeed, we have

X
f(P(x) = ((r—p—1)!)—lj(x—t)f—P—lf“)(t)dt+ P_pa(®, xe(-11). (9.2
0
Since
T r
JastPra-dt < -, p< 2,
2
0
theintegral in (9.2) defines afunction continuouson | for p<r/2. For p>r/2, the
derivative f(P) of afunction fe B" does not need to be bounded (and, all the more,
continuous) on | (e.g., f,). Nevertheless, it is convenient to assume that the function
f(P) is defined at the points +1. For p > r/2, weset f(P(+1) := 0 if the limits
f(P)(+150) do not exist.
By f(a+) (f(a-)) wedenotethe one-sided limit

lim f(x) ( lim f(X)),

X—a, x>a X—a, X<a

provided that it exists.
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9.2. Definition of DT-modulus of continuity (smoothness)

We set
W(X) := 41— X2, (9.3)

and denote by
. m m
AT(F; x) 2 —ym l( ) (x—§h+ jh) (9.4)
the mth symmetric difference of afunction f at apoint x with step h. Note that
AT(F; %) = Aﬂ(f;x—%h). (9.5)

Definition 9.2. The DT-modulus of continuity (smoothness) of order ke N of f e
C(l) isdefined asthe function

ot f) = sup max t>0, (9.6)
0<hs
where the maximum s taken over all x such that
1 . 1
[x - 2 kwoo; X+ 5 khw(x)] cl. ©.7)
Note that condition (9.7) is equivalent to the inequality
1
=khw(x) < 1 -
> (X)
which yields
1
> kh < w(x) < 1. (9.8)
Therefore,

%mk(tz; f) < Bt f) < ot f), t>0, ©.9)
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and

= ey _ o= (2 2
(,l)k(t, f) = (,l)k(k, f), t > k (910)

It will be shown below that the DT-modulus of continuity o (t; f) possesses prop-
erties similar to properties of the “ordinary” modulus of continuity w,(t; f); in partic-
ular, for every function fe C(l), thereexistsa k-majorant ¢ (see Definition 4.4) such
that

o) < Ot f) < cot), 0<t< (9.11)

~IN

In Example 9.1, we prove that, conversely, for every k-majorant ¢ there exists a func-
tion fe C(l) such that relation (9.11) istrue.

Example9.1. Assumethat @ € @, @(t) := 2p(\1),

o(y) if k=1,
F(y) := Ry, 9, k) = 1 Xxx—u)k2
(k—z)!J uk

1

o(u)du if k>1

isthe extremal function [see (4.27)], and

Xx+1

f(x) := F(?) xe l.
Then relation (9.11) istrue.
Proof. Taking Lemma4.3 into account, we can assume, without loss of generality, that
te'(t) < cpo(t), t=0. (9.12)
We set
we (y) i= Jyd-y).

For x and h satisfying (9.7), we have

W(X) = 2wk (Y), (9.13)
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Moo %) = A ) (F1 y), (9.14)

where x=2y—1. Weset h := hw(y) and yg := y—%kﬁ. It follows from (9.8) and
(9.13) that

kh?, (9.15)

which, together with the condition ¢ d)k, yields
07%%5) < ah ™ g(h), 6 > h. (9.16)

If yo=> h, then, successively using relations (9.5), (3.34), (4.31), (9.12), and (9.16)
and the estimate

WA(y) < y = y0+%kﬁ < (1+%k)y0,
we get

AR yo)| = RF90)| = h*ege)

| o (Fi 9|

IN

%qﬁ"@"‘@(e) < 26k 5 2p(h)

IN

V\I*Z(y) k/2
26 o o(h) < co(h), (9.17)
0
where 6 > y,. If yp < h, then
1 1
WEY) < Y = yo + 5 Kw(y) < (1+§ k) hwi(y),

whence
h < %(k+2)hz.

Therefore, relation (4.38) yields
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1

A5y < 29k + D) < 2 (S

(k+2)h) < coh).  (9.18)

The estimate of o, (t; f) from above now follows from (9.17), (9.18), and (9.14).

For the estimation of ®,(t; f) from below, we fix h < 2/k, choose y from the
condition y, = O, and successively use (9.6), (9.14), (9.5), (4.37), and (9.15). Asare-
sult, we get

o ) > [Myo(Fi 0| = | M Fi v = |A(F; 0

o(h) > 2@(@) > o(h).

I\

|
Example9.2. For o > 0, we set
(X + 1%/ if £ isnot an integer,
f(X) = ; 2 (9.19)
X+D*%In(x+1) if > is an integer,

Fo(y) i= f,(2y-1), @) := 2%2,

Let k > o. Since F(y)=a, Y ¢'(y), y > 0, a,, = const > 0, it follows
from Example 9.1 that

Bl < Byt f,) < cal®, 0<t< % (9.20)

For what follows, we also need the definition of the DT-modulus of continuity for a
closed interval

J:=[ab] c I

Definition 9.3. The DT-modulus of continuity (smoothness) of order ke N of a
function fe C(J) on J isdefined asthe function

ot f;J) = sup max‘AhW(X)(f;x)
O<hst X

. t>0, (9.21)
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where the maximum is taken over all x such that
1 . 1
[x - 2 koo X+ 2 khw(x)] c 9.22)
If fe C(l), then, obviously,

Bt 1) = ot ). (9.23)

Inequalities (9.8) yield

%mk(tz; £3) < ot £ < ot 3, t=0 (9.24)
where ®, isthe “ordinary” modulus of continuity.
Denote’
J] :=b-a, /J/:= ¢ (9.25)
w((a+ b)/2)
Note that condition (9.22) is equivalent to the inequality
1 b-a a+b
= kh < - |x= .
o W) = =3 ‘X 2 ‘
Since w isaconcave function, we have
b%a —‘ —a%b < %/J/W(x), xe J.
Therefore,
1
h< 73/ (9.26)
for h satisfying (9.22). It follows from estimate (9.26) that
1. ¢ — (1, . — . £
Oy (E ‘J " f, \]) = Mg (R/J/, f, J) = (Dk(/s]/, f, J) (927)

T The notation /J/ has been introduced in recent papers of Leviatan and Shevchuk. We use arguments
from these papersin this and the next section.
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It follows from the Whitney inequality (6.1) and relation (9.27) that

Ee_1(f); < con(/3/; £; ), (9.28)
whence
| f = Lt £ J)HJ < cay(/J/; £; ), (9.29)
where, as usual,
Lia(5 £59)

denotes the Lagrange polynomial of degree <k — 1 that interpolates a function f at k
equidistant points of aclosed interval J, including its endpoints, for k=1; Ly(x; f;J) =
f((a+b)/2). Inthe case of a divided difference for an arbitrary collection of points
X €J, X < X <...< X, estimate (9.29) yields

[[X0, ..., X; 1] < coy (//; f;J)jzrqg?gk|xj —xj[%. (9.30)

Finally, note that

131
< — < 22— if J,cJd 9.31
3 < %l 1 (.31)

9.3. Propertiesof DT-modulus of continuity

The properties of the function w,(t) := . (t; f; J) are similar to those of the “ordi-
nary” modulus of continuity o, (t) = w(t; f; J). In particular, it follows directly from

Definition 9.3 that o, does not decreaseon [0, =] and ®,(0) = 0. Moreover, it fol-
lowsfrom (9.24) that w, iscontinuousat thepoint t = 0, i.e, ®(0+) = 0. Now let
us prove an analog of the inequality w,(nt) < nkwk(t), ne N,

Lemma9.l. If ne N, then
o (nt; £, 3) < enf@(t; £;3), t =0 (9.32)
in particular,

o((nt; f) < cnkak(t; fy, t=0. (9.33)
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Proof. Without loss of generality, we can assumethat n isodd. Let

xeldJ, h>0 & :=hw(x),

XOZ:X—%kHS, xO::x+%kn6, [Xg, X0 < J.
We set
[ 1, o
x0+5281 if j=0,...,n/2,
X 1= X+ if j=n/2,...,(k=12)n,

_xo—%26(kn—j)2 it j=(k=12)n,...,kn,

Jp 1= 1%, X
One can easily verify that
13/ <chy j=0,..,kn-1). (9.34)
Therefore, relation (9.30) yields
A;] = | X T < &3 Beah; f; ). (9.35)

To use the Popoviciu identity (3.27), we introduce the notation

k-1
0t = [Ta-x.00 ¥i= % 120k
n=1
K
S = Yoo Yo Tyd[ A= TTOw - yo)-
v=1

Then identity (3.27), estimate (9.35), and the inequality

s < %A_lnk_l\\]j \k_l

yield
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k(n-1)

| Moo 0] = Alyo, . v fIl = Al X [311a5 | < ceanogh f;J),
j=0

which leads to (9.32) with ¢ = (g + 1)¥c,C,.

The Marchaud-type inequality

N i c)(ufJ)
(Dj(t, f,J) < ct! Ide +C(/J/)

t >0, (9.36)

i=1.., k-1,

is also true. This inequality immediately follows from Lemma 9.2 and the second in-
equality in (9.31).

Lemma9.2. Let j=1...,k-1, xeJ, h>0, and
. 1. . 1.
Iy = [X—E jhw(x); x+§ th(X)].

If JycJ, then

j j
Bhyoo(f 0] < ot j"’k(“ L J)( W) ) du + c(h""(x)) [£],. (9.37)

j+1 U+ W(X) 1J]

Proof. Denote
ot) = o f;J),
. 1 - P 1 - * . *
X 1= X — =w(x), X := X+ZW(X), J = IN[%,X ]

Estimate (9.8) yields

%hw(x) < %jhw(x) <3 < Twlx. (9.38)

N |
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Since
%W(U) < W(X) < 2W(X), Ue [%,X ],
we have
o (tw(x); £;37) < @2t f;J) < @ (2t), t = 0.

Taking (9.31) into account, we obtain

J .
-—L J/ < /3],
W) < /J/ /d/
Therefore,
43" R
(wooy | KU gy
hw(x)
43| _ 43" |(woo)™t
i o (u/W(x o, (u
< 2%(w(x))! j O(u/W)) j+1( D gy = 2 'J?Erl) du
hw(x) h u
) 8/J/6 ) W(X) i
< 2K31 k() du. 9.39

h

The Marchaud inequality (5.6) and relation (9.39) yield (9.37) inthecase J = J'.
If J = J°, then, obviously,

*

J

1 1

= < =
4WZ(X) < < 2\/\/2(X),
and thetrivial inequality

WA(x) < WA(X) + 2[% — %o

, X1,X2€ I,

yields

Wz(ib) < WA(Xp) + Z‘X—%b < 43| +1]3| <93

2
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In other words,

JI1J] < A513/ < 3/7/.

Hence, taking (9.24) and (9.8) into account, we get

131 —

191 N 3/
o, f;J) wk(f u) o (U) 0y (U)
| T du < 2j i du 4 Sidu< 4 | e
|3°) |37 MRy W(X)/2
3J/ Be(U)
< 34 [ 22 du. (9.40)
hL WU+ woeo)!

Inthe casewhere J,, c J° # J, wedenote L, ;(x) := L,_;(x; f; J°). Inequalities
(5.6), (9.39), and (9.29) yield

‘Ajhw(x)(f - L X)‘

Il g
< C(hW(X))J J %j]’-‘” du + C(hW(X))J H k 1H
hw(x)
e W( wx )
<o’ uIJ$+1 (u+w(x)) du. (9.42)

Moreover, it follows from the Newton formulas (3.11), the Marchaud inequality (5.6),
and relation (9.40) that

‘Ahw(x)(x; Lk—l)‘ < C(I’]W(X))J J J(Dj( J : *)
j
< o) f Wd (hW(X)) I £1;- (9.42)

7]

Inequality (9.37) now follows from (9.40) —(9.42) in the case under consideration.
In the case where J,c J°, we have

%jhw(x) < |3 < jhw(x).
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Therefore, relation (9.37) follows directly from (5.6) and (9.40).

|
By anaogy with (6.15), one can prove the inequality
130~
‘f(x)— Li_1(x f; J)‘ < C(JX) o/3/ £,3,),  xel, (9.43)

where J, :=JUJ[a,x] if x>a and J,:=JU[a,b] if x <a
Indeed, reasoning asin the proof of Lemma 6.2 and using (9.36) instead of the Mar-
chaud inequality (5.6), and (9.28) instead of the Whitney inequality (6.1), we get

k=1 2/J/ g
[ 10 - Leax £9)] < c(JJX) jaft [bEA) g g
13/

Relation (9.43) now follows from (9.31).

9.4. Relationship between the DT-modulus of smoothness and the space B'
Lemma9.3. If o, (t f) < t', then fe B and

WfOx| <1 ae, xel (9.45)
If fe B" and relation (9.45) istrue, then

ot f) < ct'. (9.46)

Proof. Assertion (9.45) follows from relation (7.7) and the inequality

. £ — t . s : . —r.r
ot f;J) < wr(min{w(a); WO f,J) < (min{w(a); w(b)})"'t".

To prove assertion (9.46), we take x and h satisfying (9.7), set H :=hw(x) and
X+ 1 =X-kH/2, and use (9.4) and (3.45). Asaresult, we get

H H
|Au(f;x)| < [Ap(F; %) < f...jw‘r(n +t+...+t)dt ...dy < ch'.
0 0
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10. DT,-Modulus of smoothness

10.1. Spaces C;,

For the application of the Ditzian-Totik construction to the investigation of the smooth-
ness of differentiable functions, we need the spaces C;,. Recall that

W(X) = \/1—x2.
We set
C) = C, = C(I.

Definition 10.1. By CJ,, r € N, we denote the space of functions f e C'((-1,1))
continuous on | and such that

Iin11 wx)fPx) =0 (10.1)
X—1-
and
lim w7 x) = 0. (10.2)
X— -1+

Lemmas 10.1 and 10.2 presented below reveal the close relationship between the
space C|, andthespace C'(R) of 2r-periodic functions r times continuously differ-
entiableon R.

For every function fe C'(I), we set

f(t) := f(cost). (10.3)
Lemma10.1. If f e C'(R), then fe CJ,.
Proof. Let fi(x):=f(-x). Then
fi(t) = fy(cost) = f(—cost) = fi(t - m).

Therefore, it sufficesto prove only relation (10.1). For this purpose, we subtract from the
function f itsTaylor polynomial
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) rF0)
W = O Jj l(O)t,

j=0
and set
g = o) - T).
Sincethe derivative " iscontinuous at zero, we have
gt = fOty - fP0) -0 a t—0 (10.4)

and, foreach j=0,..., r-1,

g = (r—lj)lg“)(e) -0 a t—0 (10.5)

where 8| < |t|. Weset
T(x) := 'f(arccosx), gx) = f(xX)-T(x), xel.

By induction, one can easily verify the identity

r . .
g = Y @nt g PmT o,
j=1

where t = arccosx, xe (-1,1), and fj,r are fixed trigonometric polynomials that do
not depend on g. Therefore, by virtue of (10.4) and (10.5), we get

r . .
Tim W (09" (0 = ]_Zﬂﬂ,r(0>(glrrg(ént)l‘rg(”(t)) - 0.

Since f isanevenfunction,wehave f’(0)=0 forodd j. Hence,

T(x) = [”22] L D (0)(arccosx)?!
2 2j) |

Note that (arccosx)? isan infinitely differentiable function (unlike arccosx). Hence,
the following finite limit exists:
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im Tx) =: A

x—1-0

Thus,

im fP00ow”x) = lim g”oow”x)+A lim wx) = o.
x—1-0

Xx—1-0 Xx—1-0
[ |
Lemma10.2. Let r beodd. If fe CJ,, then f e C'(R).
Proof. Lemma 10.2 follows from the relation
lim fOt) = 0. (10.6)
t—0
Let us proveit. For this purpose, we use the identity
[r/iz2] r . 2i
"0 = Y Vo1 ,0+ Y dPiEnd AT ), (10.7)
j=1 j=1+[r/2]

where ge C'((-1,1)), &(t) :=g(cost), x=cost+1, and Tj’r(t) are fixed trigono-
metric polynomiasthat do not depend on g. Wetake &€ >0 and choose apoint X,e
(0, 1) suchthat

o= sup W(')(x)‘f(r)(x)— f(r)(xo)‘ < &

X€[Xg,1) ZE=1”TJ'J "R .

We subtract from the function f its Taylor polynomial

To=Y %fm(xO)(x—xO)j
j=0 I

and set

1

T TP - 1000) du

Xo

g(x) 1= f)-T(x) =
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Then, for xe [, 1) and j=1,...,r —1, weobtain

_ X ool 1 if j<r/2
gD < ( ° X=W 7 Gy < {

r=1-pty  whw W) A i j>r/2.

Therefore, by virtue of (10.6), we get
r
|g(”(t)| < oY [T, ||]R < e, 0< |t| < arccosx,
j=1

Since T(t) :=T(cost) isan even function, we have T((0) =0. Hence, there exists
3, >0 suchthat [TV <e,

t| <8,. Taking 8 =238(¢):=min{3,, arccosx,}, we get
1TOm] < [6”m ]+ [T < 2¢, 0<|t] <.

In exactly the same way as Lemmas 10.1 and 10.2, but a little easier, one can prove
Lemmas 10.3 and 10.4 presented below; in their proofs, one should use Taylor polyno-
mials of degree r — 1 instead of Taylor polynomials of degree r.

Lemma10.3. If f € W (R), then fe B".

Lemma10.4. Let r beodd. If fe B, then f e W' (R).

Remark 10.1. Inthe casewhere r iseven, theassumptionthat fe C, (fe B"), gen-
erally speaking, does not imply that f € W'(R). For example, the function f(x):=
(x+1)"ZInx+ 1| (f(x):=(x+2"2In(x+1) belongs to the space CJ, (B"), but
fe C(R) (feW (R)). Thefollowing condition is sufficient (and, in a certain sense,
necessary) for theinclusion f € C'(R) ( f € W' (R)):

1

J‘t_lak’r(t; f)dt < oo,
0

where @, (t; ) isthe function defined below.
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10.2. DT,-modulus of smoothness

We set
Wy = Ws(X) := \f(l— x—%é}w(x)) (1+ X—%SW(X)). (10.8)

Definition 10.2. Let ke N and r € N. The DT, -modulus of smoothness of the
r th derivative of a function fe Cj, isdefined as the function

O (6 T 1= sup sup [ Wiy Ay (T, 0], t>0, (10.9)
0<hst x
where theinner supremumistaken over all x such that
1 1
[x -5 khw(x), x + ékhw(x)] C (-1,1). (10.10)

Remark 10.2. Let fe C'(-1,1). Inorder that the function @, (t; ) defined by re-
lation (10.9) tend to zero as t — 0+, it is necessary and sufficient that fe C,.

Indeed, let fe C,. Wetake £¢>0 andfind §e (0, 1) such that
w (X) ‘ f(r)(x)‘ < 27k
forall xe (-1, 1)\(-1+3,1-3). Weset
o) 1= ot [-1+8/3,1-58/3)).

Since the function " is continuous on the closed interval [-1+6/3,1-08/3], we
conclude that m(t)— 0 as t— 0+. We choose t" >0 for which o(t")<e and set
t%: =min{t", 28/3k}. Assumethat 0<h<t° xe (-1, 1), and

1 1
J:= [x—ékhw(x), x+§khw(x)] C (-1,1).
If [x|<1-28/3, then JC[-1+8/3,1-8/3] and, therefore,

| Wiy (A0 (F75 )| < AT, %] < o) < & (10.11)
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If [x]|>1-28/3, then JC (-1, 1)\(-1+8, 1-38), whence

IN

|Win(0A Koo (FV 0| < Win(x) 2% 10(9))|

IN

2W ()| 10| < e, (10.12)
where 0 € J. Inequalities (10.11) and (10.12) yield
o0+ Ty = 0. (10.13)

Now assume that relation (10.13) is satisfied. Let us show that fe Cj,. We take
>0 and choose he (0, 1/k) forwhich @ (h; f) <e. For xe (1/2,1), we find
0 e (0,1) suchthat 6 + khw(0)/2=x and note that, in view of (10.10), one has

1000 = (0] < - D 10 L1vwazi-maz =1 Ay
Therefore,

W () FO00] < W) (FT: )] + W (A,

=(Mm

th(e)) W (@A (FD; )] + W (A,

Since w(X) < 2w,(0), we have
lim sup V\f(X)‘ f(”(x)‘ < 2'g,
x—1

whence W (x) ‘ f(”(x)‘ —0as X—1.

By analogy, one can prove that wr(x)\ f(')(x)‘ —>0a x—-1

Remark 10.3. Let fe C'(-1,1). By analogy, one can prove that the condition fe B'
is necessary and sufficient for the validity of the relation

O, (04 1) < oo, (10.14)

Remark 10.4. For r =0, we obviousy have

ﬁk = ('Ok,O' (1015)
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In the next subsection, we show that, similarly to the DT-modulus of continuity, the
DT, -modulus of continuity possesses properties analogous to properties of the “ordinary”
modulus of continuity w,.

In Example 10.1, which issimilar to Example 9.1, we show, that, for every k-major-
ant ¢ and r e N, thereexistsafunction fe Cj, such that

et < @y, (1 ) < cot), 0<t<2/k (10.16)
Example 10.1. Supposethat re N, ke N, ¢ e o~ o(t) 1= 2p(1),

y
Foy) = [ (y-w " gudu, ye (0,1,
1

and

fO(x) 1= F((x+1)/2), xe(-1,1].

Then relation (10.16) istrue.

Proof. Since f"(1)=F(1)=0 and

VY
Y2 IFyl =y | w-y) i G du
y

1
+ yr/2 J‘ (u—y)k_lu_k_r/26(u)du
NY

oo 1
oY [ Pdus gy [ udu < dp(y),
y VY

IN

we have fe C,. Following the notation of Example 9.1 we establish that if Yo 2 h,
then

‘Aiw(x)(f(r),x)‘ = Hk\F(k)(e)\ = (k—l)!ﬁke‘k‘”zﬁ(e)
< oy Po(h) < 2" %cwg (x)g(h),

where 6 >y,, andif y,< h, then
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(k+Dh
AK K . k 1r/2—
| Ao (FO0] = [ASF )l < 2 [ u?Zguydu
Yo

< 2k+ly6r/2¢((k+1)ﬁ) < CWEhr(X)(P(h)'

Thus, the second inequality in (10.16) is proved.
To estimate @y , from below, we fix h<2/k and choose y from the condition

Yo= h%. Asaresult, we get

|AC(Fh?)| = RMFR@)] = (k—Drh*e ™ "?5(e)

\

ch™ o(h) = cwi, (Xe(h).

For what follows, we also need the definition of the DT,-modulus of continuity for a
closedinterval J=[a,b]C 1, r 20. If [a,b]C(-1,1), thenweset C,(J)=C"(J).
If —1=a<b<1, then C|(J) denotes the set of functions fe C'([a, b]) for which
relation (10.2) istrue. If —1<a<b=1, then C[(J) denotes the set of functions fe
C'([a, b]) for which relation (10.1) istrue. We set Q?V(I) :=C(l) and Q?,(J) =C(J).

Definition 10.3. Let ke N, re N, JCI, and fe Cj,(J). Weset

Bt £ 1= sup sup Wi Ao (FP X)), €20, (10.17)
' O<hs<t  x
where the inner supremum s taken over all x such that
1 1
[x— ékhw(x), X +§khw(x):| C (ab). (10.18)
Note that
B, (& 051 = @, (517, (10.19)

For J=[a, b], weset

w(a,b) := @A+ a)l-b). (10.20)
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Similarly to (9.27)-(9.30), we obtain the following relationsfor fe C,(J) and J C
(-1 1):

o (1317 3) < W,(i oy O (131 F0; 3), (10.21)
E_,(f7); < mak"(”/; £ 3), (10.22)
|- L 9 < mam(u/; £0; ), (10.23)

‘[xo,...,xk; f(”]‘ <c rl

@ (13 £ 3) max |x —xi4[ %, (1024
w(a,b) k,r( )jzl,..,,kl j j 1| ( )

where a<x;<x; <...<x <h.

10.3. Propertiesof DT,-modulus of continuity

With regard for Remark 10.2, we have @, ,(0+; f; J) for fe Cj,. Itisobvious that

o (L ) J) isanondecreasing function. We also get
@, (nt; £ 0) < en*®y (4 F; ), neN, t20 (10.25)
in particular,
@y (nt; £7) < enfey (g £T). (10.26)

To prove (10.25) we repeat the arguments of Lemma 9.1, replacing (9.30) by (10.24)
and, hence, (9.35) by the following relation:

—k— _
‘Aj‘ < 02“]]‘ mk,r(clh; f(r); J)Wknrh(X).
To establish an analog of inequality (4.25) we prove the following lemma:

Lemma10.5. Let m=k+r, p:=0,...,r -1, JCI, xe J, and h>0 besuch that

1 1
[x—é(m— p)hw(x), x+§(m— p)hw(x)] cJ
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and let
2p-r
(W) / Wi pyh(X)) Uit p>r)2,
Gy pr(x h) 1= IN(W(X)/W(_pyn(X)) if p=r/2, (10.27)
1 if p<r/2.
If fe CT, then
AP (10 1 < ¢ 0 g hyay  (h; £; 3 10.28
‘ kW(X)( ,X)\ = CWT(X) k,p,r(xa )wk,r(! ) ) ( . )

Proof. Weset H:=hw(x), x. =x—(m-p)H/2, and @(h) : =& (h; 17;J). By
virtue of Definition 10.3 and relation (9.31), for every te [x., X + (r —p)H] we have

2y, (10.29)

A PO, % + D] < (L +0) P (1-x —t—kH)
Therefore, relations (9.5), (3.44), and (10.29) yield

‘ATE—P(f(p), X)‘ — ‘AT'—P(f(p), X*)‘

H H
= j jA‘L(f(”,x*+t)o|t,_p...o|tl

o o

H H
dt,_,...dt

< oh [ ... i

(cl)g -([(l+x*+t)”2(1—x*—t—kH)”2
< co(h) hr_pw_p(x)Gk’m(x, h), t=t+..+t_

Let us verify some corollaries of Lemma 10.5.
Since

W P0G o (% ) < WP (%0,

relation (10.28) yields
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BOm_ppt TP5 ) < ot Py (t; 1), t=0. (10.30)
Asusual, we denote by Lj = Lj (t; f; D)= Lj (t; f; [a, b]) the Lagrange polynomial of de-
gree <j thatinterpolatesafunction f at j+ 1 equidistant points x,=a+ (i/j)(b-a),
i=0,...,], ofaclosedinterval J=[a, b]. Then, assuming that J C(-1,1) and using
Lemma 6.2, we obtain
RN CLHEE AN NE E LR SNCE (LA ) 8 (10.31)
Therefore, using (9.29), we get

[P =L 1)) < comph; 15 9)

h'~P

< cv\mwk,r(h; ;G (), (10.32)
2
where
h=/J/= (b—a)/w(%’)
and

( ) |
w 5
if p>r/2,

JA+a)ad-b)

G;,r(\]) = W(a+b]
2 :
—_— f p=r/2,
n Jad+a)d-b) top=r/
11 if p<r/2.

Remark 10.5. Inequality (10.32) also holdsfor p=r. If p<r/2, then relation (10.32)

holdsfor JC 1 (i.e, notonly for JC (-1, 1)). Notethat if b—a<min{l1+a,1-b},
then

Gp (D) <c p=0..,r. (10.33)
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10.4. Classes B'H and B{H

Properties of the DT,-modulus of continuity and Theorem 4.1 lead to the following natu-
ral definition:

Definition 10.4. For ke N, r e N, ¢ € d)k, and M =const>0, we denote by
MB' H[k, @] the set of functions fe Cl,, such that

O, (G F) < Mo(b).
For ke N, 9e @ and M = const we denote by
MB°H[k, 0] = MHI[k, o]
the set of functions f e C(l) such that

O (t; ) < Mo(t).

For r € N and M =const>0, we denote by MB' the set of functions f e B

such that
(W2t0x)| < M ae on I.

We set

B'H[k, ¢] := 1B"H[k @], HIk @] := 1H[k, ¢], B" := 1B".

Inequality (10.30) yields
B'HY < cBPH, p=0...,r-1, (10.34)

where ¢ € @ and op() 1=t Po(t).
By analogy, one can prove that

B ¢ chﬁg’*p, p

I
o
=
[
L

(10.35)

where @p(t) =t P,
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Conversely, if fe CP and
(P < 18 (10.36)

then fe B¥*P, which can be proved by analogy with Lemma9.3.
For technical reasons, we introduce classes M B{)ﬁ[k, ¢]. The forma difference be-
tween the classes MB{H[k, @] and MB"HIk, @] isthat we replace the factor wy,(x)

in Definition 10.3 by the factor W' (x). This replacement plays a significant role near the
endpoints £1 of theclosed interva |, anditisinsignificant in the “interior” of 1.

Definition 10.5. For ke N, re N, ¢ € ®* and M = const > 0, we denote by
MB{H [k, @] the set of functions fe C' (1) such that

W 00 w0 (F7, %] < Mo(t) (10.37)
for all x and h such that
[x - g hw(x), x + g hw(x)] C
We set

BoH[k @] := 1BGH[K @].
It is obvious that

ByHIK; 9] = B'HIk; ¢].
The following statement istrue:

Lemma 10.6. If

M) Gy < oo, (10.38)

r+1

O —r
c

then

B"H[k; ¢] = cByHI[k; o], (10.39)
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where

1
o) = t' j u™" "Lp(u)du. (10.40)
0

Proof. Wefix xe (-1,1) and h>0 for which

*

Xe 1= x—ghw(t) >-1, X :=x+ghw(t) < 1

for simplicity, we assume that x, <1/2. Weset 6:=1+x, and H :=hw(t). The
statement of the lemmafollows from the inequality

WA (17, x)| < cah). (10.41)

Let us prove thisinequality.
If H<20, then 1+x=98+kH/2<(k+1)9, whence

W(x) < 2k + 1@+ x)(L- x).

Therefore, relation (10.41) follows directly from Definitions 10.3 and 10.5 and the in-
equality ¢(t) < w(t). Thus, it sufficesto consider the case H >25. Since H > 25, we
have 1 +x<(k+1)H/2, whence

w(x) < (k+1)h, H < (k+1)h% (10.42)

N+1

We choose an integer N such that 62V <H/2<82 and set

X = x +82, 1=0..,N; Xne1 o= Xt H, o X g 0= X%+ KH,
A= X X TP 1= 0,00, N.
Since
2762 < x,,-x < 482, (10.43)

according to (10.24) we get

I —k-r/2

A] < ¢ p(V82')(52) (10.44)
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Using (3.32) and (3.27), we abtain

A(FD %) = HK X x+H, ..., x+kH]

N
k
= HK Y (= X)A % (10.45)
=0
where
I\k-1
‘OCLk‘ <c (82H)k . (1046)

Combining (10.43)-(10.46), we get

IN

N —
cs Y, (821" 2p(v82')

=0

A% (FO; %)

IN
(@]
—_—

3
N
o
<
IN
o
R
one—T
e
N
o
<

which, together with (10.42), yields (10.41) in the case H > 23.

Remark 10.6. Note that condition (10.38) impliesthat H > 28.

Remark 10.7. Weusetheclasses BjHI[k, 9] because, for fe B{HI[k, @], we have an
inequality stronger than (10.32), namely,

|13 6], < 190 7ur o252 o, (131 1743), e

where p=0,...,r, JCI, and

13/ = (b- a)w—l(a;b)
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10.5. Relationship between @, (f;1) and @, (f;1)
Recall [see (10.3)] that, for every function f continuousin I, we have set
fu) := f(cosu).
L. G. Shakh and O. Y u. Dyuzhenkova proved the following two lemmas:
Lemmal10.7. Let ke N and (r+1)e N. If f e C'(R), then
O (6 ) < ca(t; T,

Lemma10.8. If fe C,, thenthefollowing relations are true:

o (t F0) < c(@, (6 17)+ 4] 1))
if r=0 and k isodd, andif r and k areodd;

f B (5 £7)

ot f7) < c(tk o du tkf], 0<t<2

t
if r isoddand k iseven;
y o, (u £
ot ) < c[j Mdu + ) f

0

if r isevenand k isodd; and

to— L£(n) 2 = - £(1)
- o, (u; f o, (u; f
ot f7) < c[j %du + tkj %du + tkf]
u

0 t

if r and k areeven.
Remark 10.8. Itisclear that, for fe C([-1, 1]), we have

co,(t f) < @yt ) < 0.t ).

Chapter 3
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Chapter 4
Extension

In 1934, Whitney proved that if the divided differences of order r for afunction f de-
fined onaclosed set E — R convergeon E, then thefunction f admits an extension to
acertain function f e C"(R) on the entire straight line R, i.e., there exists a function

feC'(R) that coincides with f at points x € E. According to Lemma 3.8.3, if
f e C'(R), thenthe divided differences of order r for afunction f convergeon E.
Thus, Whitney, in fact, described the traces of the space C'(R) on an arbitrary closed set
EcR.

In this chapter, we prove theorems on extension for the classes WH[Kk, ¢] (including
the classes W'). Then, using these theorems, we describe the traces of the space W' HY
on an arbitrary set E c R, omitting the condition of the closedness of theset E. Let us
illustrate thisby an example. Let E bean arbitrary subset of the straight line R, let ¢
bea 1-mgjorant, and let afunction f be given on E such that

[f0) - fR)| < 0% — X)) ¥V X, %€ E

By continuity, we define the function f ontheclosure E of theset E. On each of the
intervals (o, Bs) that formtheopenset R \ E, wedenote by f(x) alinear function
equal to f(og) at the point og andto f(Bg) at thepoint Be. If Bg= oo (0g=—o0),
thenweset f(x) =f(og) for x>ag ( f(x) =f(Bs) for x>B;). For xe E, we set
f(x) =f(x). Itisclearthat f e H[1, ¢, R].

In Section 7 of Chapter 3, the classes MW'H [k, @, J] and spaces W'H(J) were
defined for theinterval J=[a, b]. This definition can easily be carried over to the case
where J=[a, ], or J = [, b], or J = R. Namely, wewrite f € MWH[k, ¢, J] if
fe MWHIK; ¢; [a b]] forany interval [a, b] c J. Recall that m=k+r. Wealso set

WHRQ) = [J MW'H [k ¢;J].
M>0
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1. Extension from intervals

Let fe C'([a,b]). Let

r (i) )
h0 = f@+ Y fj!‘a’(x—a)',

j=1

) .
) = fo)+ ¥ — O 'j '(b) (x—b)l
=1

denote the Taylor polynomials of the function f at thepoints a and b. Weset f(x) :=
f(x) if x<a, f(x):= f,(x) if x>b, and f(x) =f(x) if xe [a, b]. Itisclear that
f eC'(R).

Let fe C([a b]). Weset f(x):=f(a) if x<a, f(x):=f(b) if x>b, and
f(x) :=f(x) if xe [a b]. Itisclear that

oq(t; F;R) < oy(t; f;[a b). (11

Theorem 1.1 [Dzyadyk (1958), (1958b)]; Frey (1958)]. Let fe C([0, b]) and f(0) = 0.
Denote f(x):=- f(-x) for xe [-b,0] and f(x):=f(x) for xe [0, b]. Then

oy(t: f;[-b, b]) < 3m,(t: f;[0,b]). (12

Proof. If

A
o

0< X <X+2h<

or

A\

-b < x5 < % +2h <0,
then, obviously,
‘Azh(f; xo)‘ < ay,(h; f;[0, b]).
Now let
b <x <0 XxX+h=20 xy+2h<h

Denoting
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xf (xg + 2h)

g(x) := f(x) — L(x; f;0,xg+2h) = f(x) - %o+ 2h

we obtain
|85 (Fix0)| = |AR(G%0)| = [200% +h) + 9(-%0)| < Fljg 0

It follows from Theorem 3.5.2 that

IN

|45 %0))| 3190, g+ 2n]

INA

30,(h+% 1 2; 1;]0, Xo+2h]) < 3w, (h; f;[0, b]).

The case where x5+ h > 0 isconsidered by analogy.

Theorem 1.2 [Besov (1963), (1965)]. For every function fe C([0, b]), there exists a
function feC([-b,b]) suchthat f(x)=f(x) for xe [0, b] and

o (t; f;[-b, b]) < coy(t; f;[0, b]). (1.3)
Proof. Thecases k=1, 2 have already been considered [see (1.1) and (1.2)]. Denote
o(t) == oy(t; f;[0,b]), I :=[0b], J:=[-b0).

We use the construction proposed by Hestenes (1941), namely, we find k numbers &,
i=0,..., k=1, fromthefollowing system of equations:

|MZ
B
Il

Z i/(k-1) =D}, j=1..., k-1

i=1

The determinant of this system is called the Vandermonde determinant, and, as is well
known, it is not equal to zero. Notethat, foral j=1,..., k-1, thefollowing identity is
true:
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k-1 )
)l = Y alix/k-1).

i=0
Therefore, for any polynomial RB,_; of degree < k-1, weget
k-1
Rea(®) = Y aRy(-ix/(k-D).
i=0
We set

k-1
f(x) = Y f(-ix/(k-1)
i=0

for xe Jand f(x) := f(x) for xe Jy. Inthiscase, if xge Jy and (Xy*+ kh) € Jp,
then |AS(f; Xo)| < o(h). 1f xye J and (xg+ kh) € J, then

|A(Fs x0)| < _kZ:a(p(ih/(k—l)) < ().
iz
Finally, if x5 e€J and (xg+kh) e Jy, then we denote
h* := max{x, +kh, - X},
L(x) = L(x f;0;h" [ (k=1),...,1"),

and
g(x) = f(x) = L(x).

For xe [0, h ] according to the Whitney inequality (3.6.12), we have

19| < cp(h") < cyp(h),

19(=X)| =

k-1
> adix/ (k1)
i=0

k-1
< cgo(h) Yla | < cup(h),
i=0
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whence
9l ) < canth).
Thus,
|A5(F;x0)| = [ x0)| < 2can(h).
|

Note that Besov [(1963), (1965)] proved a multidimensional analog of Theorem 1.2
(in particular, for integral metrics).

Theorem 1.3. If feH[k ¢;[0,)], then there exists a function fecH[k; ¢;R]
suchthat f(x) = f(x) for xe[0, ).

Proof. If wedenote Jy :=[0,e°) and J := [—, 0), thenit sufficesto repeat the proof
of Theorem 1.2.

The theorems presented below (Theorems 1.2" and 1.3") are simple corollaries of The-
orems 1.2 and 1.3, respectively.

Theorem 1.2°. If feW'H[k; ¢;[a b]], then there exists a function
fecW'H[k ¢;[a-(b-a), b+(b-a)]],
suchthat f(x) = f(x) for xe[a b].

Theorem 1.3". Let J=[a,«) or J=(-,b]. If feWH[ke;J], then there
existsa function f(x)e cW'H[k; ¢; R] suchthat f(x) = f(x) for xeJ.

Using Theorem 1.2’, one can easily show that afunction fe W'H[k; ¢;[a, b]] can be
extended to the entire straight line. To this end, we need four simple lemmas.

Lemmall. Let

feWH[k ¢;[o. B]].  [a b]=[o, B].

|y < (b-2)"0(b-2a),
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then

[£O], 5 < B0 0= 0b-a), i=0...r. (1.4)

Proof. Denote h:=b—a and H := B—a. By usinginequaities(3.5.2), (3.6.17), and
(3.4.16), we obtain

0] r—i -
K HM] < H™o(H) + eH™ [ |, 5
< (¢ +2c3)H™ ' 4g(h).
|
Definition 8.1. Let keN, a < b,
a=a+2-2 ad b o=b-222
3 3
The function
[0, if x<a,
X *\ K k
J‘*(u—a)(b -u)du .
S(x) 1= S(x; k;a;b):= =2 if xe[a",b"], (1.5

j: (u—-a“)*o* - ukdu

11, if x>b",
is called the gluing function.

A multidimensional analog of the lemma presented below can be found in [Burenkov
(1976)].

Lemma1.2. Let fe WH[k; ¢;[a, b]] and G(x):=f(x)S(x; m a; b). If |f H[a’b] <
(b—a) @(b-a), then Ge cW HI[k; ¢; [a, b]].

Proof. Denote J :=[a,b] and h:=b-a. Let j = 0,...,k and i = O,...,r. Ac-
cording to (3.4.16), we have
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08", 9 < UV < qthh™,
(L6)
om-i(t 19, 3) < oyt 17, 3) < o).

Taking into account Lemma 1.1 and the conditions of Lemma1.2, weget || f© HJ <
c,h"'g(h). By using the Marchaud inequality (3.5.6), for i +j # m we obtain
h

o 19, 9) < ct! [ul o i £, Jdu + cut’h | f(i)"J
t

IN

h
C3t"[ur_'_1_l(p(u)du + 2C,CatTh I g(h)
t

IN

h
et It o) [u™ 1 du + 20,1 A o),
t

ot 0, 3) < et ™). (1.7)

Inthecasewhere i +j = m, i.e,for i = r and j = k, estimate (1.7) follows directly
from the conditions of the lemma. It now follows from (3.4.15), (3.4.16), (1.6), and (1.7)
that

o t;G",J) <

M

(:)wk(t; FOr, g

i=0

IN

k rk ) )
Z(T) 2( j)"%‘(t; 0, Dot 87, )
j=0

i—o\!

IN

rook ky . S Lo
B (1))
i=0j=

52 2() = co(t).
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Lemmal3. Let h:=b-a and de (0,h]. If fe WH[k ¢;[a-d, b+d]] and
| f H[a‘b] <h @(h), thenthefunction f(x) :=f(x)S(x; k; a—d; a)(1-S(x; k; b; b +d))
for xe [a—d,b+d], f(x) := 0 for xe [a—d, b +d] possesses the following
properties:

(@ f(x) =f(x) for xe [a,b];

() fecth/d™WH[k ¢:R], m=k+r.

Proof. Property (a) is obvious. Let us prove property (b). For this purpose, we take
Xp€ R and & > 0 and show that

h m
Al := |45V 0] < (B o). (19)
We consider four cases.
1. Assumethat & > d/3. By virtue of Lemma 1.1, we have

1T kg 1y = ol =

Hence,

Al < c2forh) < 2t (f;‘)kcp(g) < 6" (2)kcp<6>.

2. Assumethat 0 < 8 < d/3 and x5 ¢ [a—-d,a-d/3]U[b,b+2d/3]. If x5e
(—=,a-d)U[b+2d/3, ], then A = 0. If xe (a-d/3,b), then

A = [A5(F7 x0)] < 9(d).

3. Assumethat xye [a—d,a—d/3]. Denote J :=[a-d,a]. Notethat f(x) =
f(xX)S(x; k; a—d; a) for xe J. By virtue of Lemma 1.1, we have

h m
115 % 1 fllacapre < Gl Tlias < callom < e (1) doca).
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According to the conditions of Lemma 1.3, fe W' H[k; ¢; J]c (h/d)"WH[k; ¢; J].

Hence, by virtue of Lemma 1.2, weget f e c5(h/d)mW H[k; ¢; J], which yields (1.8)
in the case under consideration.

4. Thecasewhere 0 < § < d/3 and xge [b, b + 2d/3] is analogous to the previ-
Ous case.

The lemmabelow isasimple corollary of Lemma1.3.

Lemmal4. Let h:=b—-a and de (0,h]. If fe V\IrH[k; o;[a-d,b+d]], ge
WH[K; @; R], and |f - Iap < h'@(h), then the function G(x) defined by the
formulas

G(x) 1= G(xf;9)

g(x) + (F(X)-g(x))S(x; k; a—d; a)(1-S(x; k; b; b+d)) 1.9

for xe [a—-d,b+d] and G(x) := g(x) for x¢ [a—d, b+ d] possesses the fol-
lowing properties:

(@ G(x) = f(x) for xe [a,bl;

(b) G e c(h/d)"WHI[k; ¢; R].

Theorem 1.2”. Suppose that f e WrH[k; ¢; [a, b]]. Then there exists a function
f e cWHI[k ¢; R] suchthat f(x) = f(x) for xe [a, b].

Proof. Let L denotethe Lagrange polynomial (of degree < m- 1) that interpolates the
function f at the equidistant points

According the Whitney inequality (3.6.12), we have

[ f = Llap S Ciom(b—afi[a,bl) < ¢y (b-a) ¢(b-a).
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Moreover, m(t; L(r); R) = 0. By virtue of Theorem 1.2°, one can find a function f; €

o, WHI[k ¢;[a-(b—a), b+ (b—a)]] suchthat f;(x) = f(x) for xe [a,b]. Itre
mainsto use Lemma 1.4 for thecase d = b-a.

2. Lemmaon gluing

First, we prove four auxiliary lemmas. Lemma 2.3 (we call it the lemma on gluing) plays
the key role in the proofs presented in the subsequent two sections.

Asbefore, weassumethat ke N, ¢ e CDk, (r+l)e N, m=Kk+r, Xg<X; <...<Xq,

X_1 1= Xg— (X —Xg), @nd X1 = X + (X — Xo)-

Definition 2.1. Let (p+1)e N and qe N. We write (p,q)e B, if p+r<

g<mand (p,g)€ B (X, ..., Xm) if (p,a)€ By, and 2(xq— Xp) < min{Xg 1 — Xp,
Xq—Xp-1}. Weset [cf. (3.6.32)]

Ay (Xgs ovv s Xy @) = max Apar(Xo .- s Xmi ©). (2.1
(P.A)EBy  (Xo,-- -+ Xm)

Itisclear that
Ar(Xs -+ X ©) S Ar(Xg, - s Xy ©). 2.2)

Note that there exists at least one pair (p, q) € B ;(Xo, ..., Xy), namely, (0, m)e
Bir (X0s -+ s Xm)-

Definition 2.2. For all (p,q)e By, wedenote

d(p.9) —g- -
) uP* 9 Uy du + (xg — Xp) P Ye(xg — Xp)
(Xq_xp)

A (Xgs - s X @) = - . (23
p,a.r m p-1 m
200 = %) [TiZq0006 =)
We set
Ar(Xgs oo s Xl @) = MaX Ap g (Xgy ... Xoo 0). 2.4
r(Xo m: @ (PaeBy p.a,r(Xo m @ (24)
Itisclear that

Ar(Xgs s X @) < Ap(Xgs oo s X ©).- (2.5)
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Lemma 2.1. Thefollowinginequality istrue:

Ar(Xgs s Xy @) < CAL(Xgs --- s X ©). (2.6)

Proof. If (p,a)e B (X, ..., Xy), then

_ p+r—q _ _ ol . —1-1
(Xq — Xp) P(xg — Xp) < 1@-27" j u™' Yp(u)du

Xq=Xp

d(p.a)
(k+1 j u"‘l(p(u)du,

X

IN

—-X

q P

where | :=q-p-r. Hence,
Ap’q,r(xo,...,xm; 0) < (k+2)1~\p’q’r(x0,...,xm; ).

If (P, )& By(Xp, .-, Xm), i€, d(p, ) < 2(Xg— Xp), then, in the case where
d(p, Q) = Xgr1— X5 Wehave Xq1-% < 2(X4—%), i = 0,..., p, and

d(p,a)
[ ewydu+ (xg = xp) 00 = Xp) < 2 Xgu1 = Xp) @01 = Xp)-

Xq=Xp
Therefore,

;\p,q,r(XOi ceon Xy (P) < Clj\p,q+],r(X0- e Xy (P)-

In the case where d(p, ) = X3—X,_1, weestablish by analogy that

/N\p,q,r(xoi s Xmi @) < Clj\p—J,q,r(XOv coos Xy @)

Thus, thelemmais proved for ¢ < (k + 2)01“1.

Inequalities (2.2), (2.5), and (2.6) yield the estimates
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Ar(Xgs oo X, @) S Ap(Xgy-oe s X @)
< CAL(Xgs e s X @) S CAL(Xgy -+ s Xyt ©)- (2.7

Lemma 2.2. Let j = 0,...,m. If fe WH[k; ¢; R], then the following inequality
holdsfor all xe [%,% + (X+1-%)/2]:
(2.8)

1[X0: s Xj 1 %0 Xj 1 oo Xims F1] S CAL(Xgs - s Xni ).

Proof. Denote tj := X, ts =X if s#j, s=-1...,m, ty,1 1= Xpy4q if j # m, and

tne1 = X+ (X=X) if | = m. Let (p,q)e B (t....ty). Weset A :=
Apgr(Xo, -y Xm} 9), A = Apgr(tor -ty @), d:= min{xq+1—xp, Xq— Xp-11}
(=d(p,q)), d := min{tg1 -ty tq—tp-1} and provetheinequality

(2.9

A < A (Xgs -+ s Xms ©).

Wefirst consider the casewhere d = X — X, i.e, = -1 and X—X, < Xq— Xp_1-

We represent A" intheform
A= (X = Xp)(X— xp)‘lA

p-1

m d
(g =) TT (6 = xp) [ (x=xp) ™ uP = p(uydu.

+
i=0 i=g+1 d

Taking into account that 2(X,— ;) = (X —%) foral i = 0,..., p—1 and

d MiN{X—Xg Xg=Xp-1} < MIN{X 41— X5 X = X511

we get

IN

A< A+ 2P A e (X0s -1 Xmi ©) S CLAL(Xgs -+ X @)

In the other cases, wehave: 2(tq—t) =2 X— for i = 0,..., p, 2(t —tg) = X —Xq
fori =gq,...,m, and d < 2d. Consequently, A< ozf\p‘q’r(xo,...,xm; ¢), which,
by virtue of (2.7), implies that A < A (Xg, -+, X ©). Taking (3.6.36), (2.7), and

(2.9) into account, we obtain
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[ty -+ st 1| < CAL(Xgy -+ s Xy @)

N

< A (g, vt @) < CACAL(Xgy - s Xys ©)-

|
Remark 2.1. It can be proved by analogy that relation (2.8) aso holds on the interval
[xj—(xj—xj_l)/z, x|, i.e., that relation (2.8) holds for al points x e [xj—(xj—xj_l)/z,
X+ (%4+1-%)/2].
Lemma 2.3 [Shevchuk (1979), (1980)]. Suppose that (i, ])e B[;,r(xo,...,xm) and d:=
min{X.1-%,%-X_1}. If fe WH[k ¢;R] and f(x) =0 for all s=0,...,m,

s#], thenthereexistsafunction f such that

f) = f(x)  for xe [x;x%], (2.10)
fx) =0 for xe (x—d;x+d), (2.11)
f e cMWHI[k ¢; R], (2.12)
where
Ar(Xg, -5 Xm: @)

Ajjr(Xgs oo s Xmi ©)

Proof. Without loss of generality, we can set x; = 0. Taking Lemma 3.4.4 into account,
we can assume, without loss of generality, that

oMt < ct Vo), v =1..,m-1 (2.13)
We carry out the proof in several steps.

1. First, we prove the inequalities

2d
| lhoie) < aMx] ™ [ U1 pwdu, (2.14)

Xj

IN

2d
| flioka < aMd™ [u*= 1 puydu. (2.15)

Xj
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Indeed, for al xe [x, x+d/2], relation (2.9) yields

m
|[X0 - Xj—ts X Xz X F1| T 1% = X
s=0,5#]

| f(X)]

m
CoA(Xgs -+ 5 Xm: @) H [ X = Xs]

<
s=0,5#]
s=m X;+d
= MA; [ (Xgs - Xm: @) H |X = x| € cgMxI™! ju'””’lcp(u)du.
s=0,5#] X
Thisand (3.6.16) imply that
k]
[ flhosgy < cax™™ [ u™ o@du + ¢l Fliy a2
< exX]o0x)) + cagMiio) ™! [ U () du
Xj
< gMx/™ ju'”"’l(p(u)du,
Xj
o
[ fliokar < cd™ [ u ™ ouydu + call iy varz
d/2
< gMd!™ j u 1"y du.

Xj
2. LetusproveLemma2.3for k = 1. Inthiscase, the pair (i,j)e By, isunique,
namely, (0,r+1)e By, (moreover, (O,r+1)e B[;(Xy, ..., X1)). Therefore, d =
X +1 and M = 1. By virtue of (2.14), we have

2d
| fliokg < @d™™ [u?euydu < cd'e(d).
d

Lemma 2.3 now follows from Lemma 1.3.
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Taking into account that Lemma 2.3 isproved for k = 1, we assume in what follows
that k > 1.

3. Letuschoose m+ 1 points ys according to the relations yg:=Xx;,¢ for s =
0,....,r and ys:=(s-r)x for s=r+1,..., m. Wedenote o, = mu(t)::wu(t;f(r);
[O, kxj]) and a, 1= [Yo, - Yr+m: f] and show that

la, | < XMoo, (x) (2.16)

foral w=1...,k Firs,let r=0, Then[see(3.3.32)] a, = xj‘“(u!)‘lAt‘(j(f;O), ie,
relation (2.16) is proved. Now let r= 0. Inthis case, the pair (p, q) € B{;r(yo, oo Yrap)

isunique, namely, (O, r + ) e B‘ﬁ’r(yo, -oos Yr+p)- Therefore, by virtue of (3.6.36) and
(2.9), we get

IN

I H[O,kd] C7A(Yo, --- s Yr+us (’)p) = CBA*r(y01 oo Yras (Dp)

= CaAg iy r (Yo oo Ve @) < CoXjHa (%))
Inequality (2.16) is proved.

4. Let us prove theinequality

kd
oy (X)) < CoMxY! Ju‘“‘lcp(u)du =1 cgMx{'b,. (2.17)

Xj

Inthe casewhere n = 1,..., j—i—r, inequality (2.17) follows from relations (2.14)
and (35.2) and the estimate o, (t) < 2[[ £ | for p= j-1-r+1... k-1, this
|

inequality follows from relations (2.15) and (3.5.2) and the Marchaud inequality (3.5.6).
It follows from (2.16) and (2.17) that

la,| < Go,M,  m=1. k-1 (2.18)

5. Since, according to the conditions of thelemma, f(ys) = 0 for s = O,...,r, we
have [yg,....Y¥s f1 = 0 for s = 0,...,r. Therefore, the Newton formula for the
Lagrangeinterpolation polynomial L = L(x) = L(X; f; ¥gp,--., Ym_1) hastheform
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k-1

L) = Y a,p(x), (219)

p=1
where

p+r-1

P = [T x-vye)
s=0
Let us prove that
(2.20)

If- LH[O,kxj] < CpXj (X))

Indeed, if xe [kxj, (k+ 1/2)xj], then, by virtue of Lemma 2.2, we have

m-1
TT %= vs 1 f00 - Lo

s=0

‘[yOl'“ ’ ym—lv X f]‘

IN

CioAr (Yor - Y @) < 13X @(X)),

f(x) - L(x)| < cl4xjr(p(xj). Inequality (2.20) now follows from Lemma 3.7.1.

i.e.,

6. Denote

au kd k-1
9,00 := X Ju* lodu, G(X) := Y g, (0 (X).
ql X u=1

Let us prove that

IL =Gl o1 < GsMXj@(X)), (2.21)
[Gll, k) < GeMd"0(d), (2.22)
(2.23)

Indeed, let x e [, kxj]. Then
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k-1

> (a, — G, (0))p, (%)
n=1

[LO) = G(X¥)|

IN

kd
b, - ju‘“‘lq)(u)du (lox 1

k-1 1
> [abr
nu=1

k-1 X
= 3 [au bt Ju towdugoq) !
p=l Xi

J

IN

cloMK™X[O(X) < CgMX[O(X;).

Let xe [X, kd]. Then

k-1 kd
1G(x)| < zl\au\qjl ju‘”‘l(p(u)du(kxj)“” < ceMdg(d),

]

i.e., estimates (2.21) and (2.22) are proved.
Let X 2 x. Then,foral v =1...,m, wehave

‘@FFVRX” < ClSXu+r—m—v (qfn = 0)
Taking (2.13) into account, we get
19| = |3, B (xH o)V V| < cigMxH Vo),

whence

G| = < CuMX'p(x), (2.24)

k-1 m m
21 Zl(v) g 0PV (%)
p=lv=

< cuMo(X). (2.25)

k-1 m r
>y (V) g 0p™ Y (%)
pu=1lv=1

k-1
G - Y, 9,00 (0
n=1

Let us show that relations (2.24) and (2.25) yield (2.23), i.e,,
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|AG, x| < cyMo(h) (2.26)

forany h >0 and x 2 x. If x. > h, then, according to (3.3.34), we have

IA

ASGD, x| < h¥c™| < cMhCKR(x) < crMah).

[ X, X« +kh]

If x. < h, then, denoting G,,(x) := g,(x)p{”(x) and using (2.25), we obtain

k-1
ARG, x) = Y ARG, )| < 2XcuMo(x. +kh) < cMep(h).
nu=1

Thus, it remains to prove the estimate
|ARGD, x)| < ciaMe(h), (2.27)

where x; < x. < h. For this purpose, we represent the function G, intheform

X« +kh
Gy (x) a”( A0 j ™ ewdu + pl(x) j U™ p(u)du

b,

X +kh
= l;i(oc(x)+[3(><))-
u

Therefore,

| A0 x| < 2Nl o S 2¥Cigh o0 + KN) < cp0(h),

kd
A B x) = j u ™ty duA(p; x) = 0,
X« +kh

i.e., estimate (2.27) [and, hence, (2.26)] is proved. Relation (2.23) is proved.

7. Taking into account (2.23) and Theorem 1.3’, we find afunction G such that
G(x) =G(x) for x > X and G e cz5M\A/H[k; ¢; R]. It follows from (2.20) and
(2.21) that the following relation holds for x e [, kx]:
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1100 =G| = [f(0 G| < [F()— LO| + |LOO ~ G| < CrMXIp(x)).
Hence,
£~ Gligs) = 1 ~Clopg < Carllf =Gl ) < CorcasMifotsy

by virtue of Lemma2.1.
Denote

i) = G0 + (F(0) = G())Sx; M —x;, 0)(1— S(X; M X;, 2X))).

According tothe Lemma 1.4, f, e c,gMW H[k; ¢; R], f(x) =f(x) if xe [0, x;1, and
f(x) = G(x) if x€ [-2x/3, 5%/3]. Furthermore, by virtue of Lemma2.1, we get

Y

M’ e(d) 2 [[Gliy 1) = 1G]y, /5%, +al

= H f71H[3xj/5,><,-+d] Z ngH lel*dWﬁd]'

and thefunction f requiredin Lemma 2.3 can be taken in the form
f0) = f00Sx m—d, —d + H)A- S my x; +d - H, X + d)),

where

xj+2d
3

LemmaZ24. Let (i,j)e B, h:i=x-X, and d := min{X,q - X, X —=Xj_1}. If

fe WH[K; @;R] and f(xy) = 0 forall s = 0,...,m, s # j, then there exists a

function f = f(x) that possesses the following properties:

@ fx) =fx) for xe [x,x], (2.28)

(b) f(x) =0 for xe [x—d,x +d], (2.29)
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© fec(1+h/d)>™MWHIK ¢; R], (2.30)

where

Ar(Xgs -5 Xy @) )
A j (X ooy Xy @)

Proof. In the case where h <d, Lemma 2.4 follows from Lemma 2.3. Therefore, we
assumethat h>d. Foral xe [X, X +h/d], relation (2.9) yields

m
ClMAi,j,r(X01 cooy Xy (P) H ‘X - Xs‘

s=0,5#]

[ (]

h+d
cax =) [ U pdu < ooy < o (1) o
h

IN

whence, taking Lemma 2.1 into account, we obtain

h\™ m -
¥ hgt < 1l ey < €3 () A8 0(@)

IN

e (g)zmhr(p(h).

Lemma 2.4 now follows from Lemma 2.3.

3. Interpolation problem

Consider afinite or an infinite collection of isolated points X, € R, X < X471, and let
afunction f be defined at the points x;. Let H be some class or space of functions
defined on R. To solvetheinterpolation problem isto find a condition under which there
existsafunction f e H that interpolatesthe function f at the points x;, i.e, f(x) =
f(x) foral i, and to construct the function f.

Itiseasy to seethat, inthecase H = C(R), theinterpolation problem is solvable for
any collection of points x, and any function f given at the points x;.

De Boor (1976) showed that the corresponding condition for the class W[r, R] isthe
following one:

D6, ... Xieps f1] S ¢ VL (3.1)
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Earlier, Subbotin (1965) established the exact value of the constant ¢ in (3.1) in the
case of equidistant points ;.
If thefunction f isdefined on an arbitrary set E < R (not necessarily consisting of

isolated points), then a problem analogous to the interpolation problem is called the trace
problem. The trace problem will be considered in subsequent sections of this chapter. In

the present section, we study the interpolation problem for the classes W H[k; o; R].
The results presented in Subsections 3.1-3.3 can be found in [Shevchuk (1979), (1980)].
Asbefore, we assumethat ke N, ¢ e d)k, (r+1)e N, and m:= k+r.

3.1. On the exactness of Theorem 3.6.3

Theorem 3.6.3 states that if fe W H[k; ¢; R], then

[[Xgs s Xy T1| < €A (Xgy -+ s X3 ©)-
The lemma presented bel ow demonstrates the exactness of this theorem.

Lemma3.1. For any choice of m + 1 points Xy < X; <...< X, there exists a func-
tion ge W H[k; ¢; R] such that

[[Xgy s X Q1| 2 CA;(Xgy vy Xmi ). (3.2
Proof. We prove thislemmain several steps.

1. Let i" and |° denoteinteger numbers such that
(") e Ber(Xor ey X ), Ao o (00 X ©) = A (X0, Xini 9).

For convenience, we assumethat min {Xs .1 — X+, X =X+ _1} = X411 - %+ and X = 0.
Also denote

Xi*+r+1 * * *
h:=———=, s =j —-i.
r+1

2. Considerthecase s* = m, i.e,, i =0 and j° = m, and, in particular, the case
k =1. Here, according to (3.3.7) and (3.6.31), we have
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X D) < Ar(Xg, ooy X @) S CoXin“P(Xy).

Therefore, as the function indicated in the lemma, we can take the function g defined on
(=0, X] by theequality g(x) 1= cax™x-X@(x,,) and extended to R by using Theo-
rem1.3.

In the remaining part of the proof, we assume that s* = m and, in particular, that
k=1

3. Inview of Lemma 3.4.4, we can assume, without loss of generality, that

0V < ex Vo0, x>0, v=1..m-L (3.3)
We set
i*4r X
p(x) := H(X—Xi), D(x) := Iu‘kcp(u)(x—u)k‘zdu,
: h (3.4
g1 (X) := d(X)p(x), x>0, g(0):=0.
Let us show that
g € csWH[k ; [h, )], (35)
i.e., let us prove that the following inequality holdsforany & > 0 and x. > h:
456" %) < cs0(8). (36)

Indeed, we have p"*?(x) = 0, ‘p(”(x)‘ < XY for v=0,...,r+1, x >h,

o*D(x) = (k - 2)!x Xp(x), and, by virtue of (3.3), ®V(x) < c;x ' lp(x) for v =
k-1...,m. Hence for x > 9, weget

r+1

> (rvn) p™©) D™V (6)

v=0

A5 x| = 8¢|gM @) = 8

IN

CeCr2"3 07 0(0) < cxcr2M9(d),

where 6 > X..
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If x« <9, thenwerepresent thefunction g; intheform

X« + k& X
0100 = p0 [ ueW(x—w*Pdu + px) [ ueu)x-w*du
h X« +Kkd
= oUX)+PB(X).

Foral xe [%,x +kd] and v = 0O,..., r, taking (3.3) into account, we obtain

IN

v X
37 '[ u~Ko(u)(x — w2 du X ok + kd) < cox ¥V lp(d).
X + k3

*

Therefore,

IA

BT00| < coce2"0(3),
whence
4565 x)| < 2B, < GeCa2"0(3).

X, Xe +K3]

Moreover, A%"; x,)

0. Inequality (3.6) is proved.

4. Denote s:=j —i'—r,y = x fori=0,...,5+1 and y, = (i — S)yss1

i" 1 +i
for i = s+2,...,k. Letusprovethat
Ys+1
X s X Yoo Yia G| 2 Coyent [ o5 ) dv. (37)
Ys

It follows from (3.3.24) that [Xo, ..., X. s Yo+ Yio Gl = [Ya, - Yms @1 Since
q)(k—l)(x) = (k—2)!X_k(p(X), by virtue of (3.3.19) we get

1w Uk-2
Y0 Yo @1 = (k—2)!JI... I up(uydu,_; ... duy,
00 0

where u =y + (Yo — YU + ..+ (Ve = Yee)Uk-1-
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Since
U< Y+ Us(K=9)¥sy1,
we have
U o) 2 (Y5 + Us(k = 9)Ys.1) O (¥s + Us(K = 9Ys,1)-
Therefore,
[Vis--s Vi @]
1 1-Uk 1-(s-2)/k 1-(s-1)/k Ug Uy_p
> (k-2)! j j j _[ '[ j u"‘<p(u)duk_1...du1
1-Uk 1-2/k 1-(s=)k O 0O O
> (k-2)! } LTk”%%7aMl{TDmLk”ET2¢0@+”4k_$yH9du L. duy

k — k-
LUk 12k 1onk o o o (YstUs(K=9)ys)

(k _ 2)' 1-(s-1/k

kS(k — s—1)!

(Y5 + Us(K = 9)Ysy1) -1 qu
0 (ys + us(k - S)Ys+l)k ° °

Ys+(1-(s-1)/K)(k—S)Ys,
_ (k=2)! ° Sl(P(U) k-s-1 (v—VYs
= = Ug ug

kS(k—s-1)! 5 v ysr(k—9)®

k—s-1
)

Ysi1

Coyert | v e(w)dv.
Ys

Inequality (3.7) is proved.

5. Taking into account relation (3.5) and Theorem 1.3, we can find a function g, e
ch\/H[k; ¢; R] suchthat g,(x) = g,(x) for x = h.

Let iy denote one of the numbers i =i",...,i" +r forwhich x_,;—X_ >h. Weset
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Theinequality | g | (h,2h] < ¢ph"@(h) and Lemma 1.1 yield the following estimate:

19200, +nr2r < 1%liosnm < Gish’ @t

By using Lemma 1.3, wefind afunction g; € c14V\/H[k; ¢; R] suchthat g;(x) =g,(x)
if xg [-h/2, Xio + h/2] and g;(x) = 0 if xe [0, X, * h/2]. Inparticular,

O3(X) = 91(%) =0, i=i...,i"+r. (3.8)

6. Denote t; := X+, if i = 0,...,8 and t; := (i-8")x,p if i = S+1...,m
Let us show that

05 r(to,...,tm; ®) = CsA (g, ..., t @) (3.9

Indeed, assume that thereisapair (p,q)e B (tg,....t). If g = r+1..,s +1,
then, taking into account that

Ap+i*,q+i*,r(xo""’xm; ¢) < Ai*’j*’r(xo,...,xm; 0),
we obtain

Apgr(tos---s ts @)
Nge rCorotmi @)

) m

H (Xv - Xp+i*)

X)vs+2 (X _y)

_ Ap+i*’q+i*’r(xo ..... Xm; @) H (yy - yO)H
Ape o Korees Xni @) 2o (W — (x _

2m—s—l < 2m—2

IN

Since (p, Q) € Bf;,(to,...,tm; ¢), thecase q > s + 1 ispossibleonly if r = 0 and
p = q-1, butthen

Ap,q,r(th m ;) < C.I.6 i +1 o(x J'*+1) = QIJAO,S*,r(tO""’tm; P).

Inequality (3.9) is proved.
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Denote g,(X) := g3(X) — L(X; Os; [\ ERERS S ts*+1""’tm)' It follows from in-

equality (3.9) and Lemma 2.3 that there exists a function gs e clBV\fH[k; ¢; R] such
that gs(X) = g4(X) if X€ [tg, tg ] = [%, %] and gs(X) = 0 if X& [X_1, %111

7. Let us prove that

[[Xgs -+ » Xm; G51| = ?Ai*’j*’r(xo,...,xm; 9). (3.10)
Indeed, denote
m m
A= ] \xj =%, B:= I It -t
i=0,i%j" i=0,i%j"
Then

X0 -+ Xmi Gs] = AT'g5(X,.) = AT'gy(x,.)

= A Bltg, ... ty; O] = A 'Bltg, ..., ty; Gyl

Therefore, by virtue of (3.7), we get

|[X0r -+ s Xmi Gs]|
Xj*+1 .k .k
> X0, -oos X 1| 2 [ATBleoxl T [T ey
ij
1 i"-1
= Cio| ATBA o (X0 X X ] ’“H(x - 11 4 = X.)
i=j"+1
u 4 xJ =i’-m
= Cohp (X0, m,tp)]_[(x_x)J+1 H(t
i=j"+1 i=s"+1
> Qo

> Ai*‘j*’r(xo,...,xm;(p) 2 CoAr(Xgy oy Xmi @)

Thus, we can take the function g(x) := cl‘glg5(x) asthat indicated in the lemma.
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3.2. On extension from “minimal’ sets

Theorem 3.1. Let m+ 1 points Xg < X; <...< X, be given. If a function f de-
fined at the points x,, i = 0,..., m, satisfiesthe inequality

[(X0s - Xms F1] < A (X, oy Xmi ©),

then there existsa function f e cW H[k; ¢; R] such that f(x) = f(x) for x = x,
i=0..,m

Proof. Let g bethe function from Lemma3.1. We can take the function f indicated
in Theorem 3.1 in the form

f(X) 1= M@(X) = L(X; G Xgy -+ s Xme1)) + LOG 5 Xgy -+ s Xme1) s
where

M = [Xgs -+ s Xms f].
(X0, -+ Xm; 9]

Indeed, by virtue of the conditions of Theorem 3.1 and estimate (3.2), we get |M| < c;,
whence f e clV\/H[k; ¢o;R]. If i =0,...,m-1, then, according to the definition of
Lagrange polynomials (Definition 3.3.1), we have g(x) — L(X; G Xg, .- s Xm-1) = O,
ie, f(x) = L% f;Xgs..vs Xmog) = F(X). If i = m, thentheequaity f(xy,) =f(Xy)
followsfrom (3.3.8).

3.3. Extension from an arbitrary set

Using Theorem 3.1 and Lemma 2.3, one can prove Theorem 3.2 presented below. The
proof of thistheorem is rather cumbersome, and we do not present it here.

Definition 3.1. Supposethat ke N, e ® (r+1)e N, m=k+r, and EcCR is

an arbitrary set. The class W'H[k; ¢; E] is defined as the set of functions f given
on E each of which, in any collection of m + 1 point Xg <X <...<Xy, X €E,
satisfies the inequality

[ X0r-s Xmi 1] < Ar (X X ). (3.12)
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Theorem 3.2. For every function f e W"H[k; ¢;E], there exists a function T e
cW'H[k; ¢;R] suchthat f(x)= f(x) for xe E.

Inthe casewhere r =0 and o(t) = %=1, Theorem 3.2 was proved by Jonsson (1980).
For r =0 and k = 2, it was proved by Brudnyi and Shvartsman (1982), Shvartsman
(1982), and Dzyadyk and Shevchuk (1983). In the other cases, this theorem was proved
in [Shevchuk (1984), (19844)]. The idea of its proof (due to Dzyadyk) is based on the
fact that Definition 3.1 uses both Marchaud inequality and Whitney inequality. In explicit
form, thisidea was formulated by Dzyadyk (1975c¢). Brudnyi and Shvartsman [Brudnyi
and Shvartsman (1982), (1985); Shvartsman (1982), (1984)] established a multidimen-
sional analog of Theorem 3.2for r =0 and k = 2. It appears to be of great interest to
obtain the corresponding analog for k+r > 2.

4. Traces. Extension of complexes

Let Ec R. Therestriction of afunction f: R— R to E isunderstood as a function
fe: E >R whose values coincide with the values of the function f on E, i.e, fg(xX) =
f(x) for xe E.

Definition 4.1. Let H(R) be some space of functions f: R— R and let H(E) be
a space of functions f: E — R. We say that the space H(E) is the trace of the
space H(R) on E and write

H(E) = H(R)

- 4.1
if the following conditions are satisfied:

(a) therestriction fz of every function f € H(R) belongs to H(E), i.e.,
fec H(E);

(b) for every function fe H(E), there exists a function f € H(R) such that
f= fe.
Using the results obtained in the previous sections, we describe the traces of various
spaces H(R) on E.

Let C"(E), r e N, denote the space of functions f: E —R whose rth divided dif-
ferences convergeon E (see Definition 3.8.4).



Section 4 Traces. Extension of complexes 327

Theorem 4.1 [Whitney (1934)]. If E isaclosed set, then
C'(R) | = C'(E). 4.2)

Let ke N, (r+1)e N, and ¢ € ®* By W'H?(E) we denote the space of func-
tions f: E—> R such that the following inequality holds for any collection of points
X €E Xg<X; <...<Xp, m=K+r:

X0, - s Xy F1| < MA; (X, -0\ X3 @),

where A, (Xg, ..., Xm; @) isthe rth divided majorant defined by formula (3.6.32) and
M = M(f)= const.

In particular, let W'(E), r e N, denote the space of functions f: E — R such that
the following inequality holds for any collection of different points x; € E:

X0, --- s Xy f1] < M, M = M(f) = const.

Theorems 3.6.4 and 3.2 yield the following statement:
Theorem 4.2. Thespace W'H P(E) isthetrace of the space W'H/? ¢(R) on E, i.e,
HY(E) = WHJ®R) |z (inparticular, W'(E) = W(R) [z). (43

Marrien (1966) and then V. Galan (1991) considered the case where not only the
values of afunction but also its derivatives are given on E. In this connection, we intro-
duce the notion of acomplex of functions on a nonincreasing system of sets.

Let W, := {EV}'_, beanonincreasing system of sets E=E® 5 EY 5 . 5E".
Assume that, on each set EY), some function fi isdefined. For xe EO\gU*D (j=
0..r E™V =) weset [f]:= (f..., f;) and say that [f] isacomplex of
functions defined on the system ¢, .

We use the notation of Section 8 of Chapter 3. Wewrite X € y(I%,) if yse E= E@
foral s=1,...,q and, forevery j = O,...,r, theinclusion yge ED\EOHD) yields

Ps < J.
The expression

(% [f]] = 2 2 ps_.(ys)Bs (ys), (4.4)

— it
10 P!
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where B is defined by (3.8.1), is called the divided difference of a complex [f] with
respect to the collection X e y(I,) [cf. (3.8.9)].

Definition 4.2. Let ke N, (r+1)e N, m=k+r, ¢ € CD", and M = const. The

class MWH[k; @; ] is defined as the set of complexes [f] given on the system
M, each of which, in any collection X € y(M,), satisfiesthe following estimate:

[T < MAL(X @), (4.5)

where A, (X; ¢) isthe divided majorant defined by (3.6.32) [with regard for (3.8.27)].
Weset W HIK; @; 0,1 = IW"H[K; @; 9, ]. Theunion

M>0

is called the space W H (¢ ,).

The following theorem is true:

Theorem 4.3 [V. Galan (1991)]. If [fle W'H[k; ;2 ,], then there exists a func-
tion fe cWH[k; ¢; R] suchthat f¥(x) = f(x) forall j = 0,...,r and xe E).

Corollary 4.1. If a complex [f] defined on the system ¢, ; satisfies, in any col-
lection X € y(Mym_1), theinequality |[X;[f]]| < 1, then there exists a function f e
cW [R] such that f(j)(x) =fi(x) foral j =0,...,m-1 and xe D,

Definition 4.3. Let H(R) be a space of functions f:R—>R and let I:l(ﬂ)%r) be the
space of complexes [ f] defined on 9, . We say that the space H(2t,) is the
trace of the space H(R) on I, and write

H) = H(R) ly,

if the following conditions are satisfied:

(@ thecomplex [f] that consists of functions f; each of which is the re-

striction of the derivative f(j), j=0,..,r, to gd belongs to the space
H(wer);
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(b) for every complex [fle H(I,), there exists a function f e H(R)
suchthat fP(x) = f;(x) forall j = 0,...,r and xe EV.

The theorem below is a corollary of Theorem 4.3 and Lemma 3.8.4.

Theorem 4.4. The space W'H? (%) is the trace of the space W'HZ(R) on ¢,
i.e,

WHPM,) = WHRR) [






Chapter 5
Direct theorems on the approximation
of periodic functions

The Weierstrass theorems establish the qualitative fact that any function continuous on a
segment can be arbitrarily exactly approximated by polynomias. However, the following
problems remain open:

1. With what accuracy any given continuous function can be approximated by poly-
nomials of agiven degree?

2. What properties of the function determine the possibility of its “good” approxima
tion?

A fairly complete answer to these questions for the case of periodic functions was
given by Jackson (see [Jackson (1911), (1912)].

It turns out that the higher the smoothness of a function, the faster the deviation of the
approximating polynomial from this function approaches zero.

Any theorem establishing the estimates of deviations (in a certain sense) of a given
function (or a class of functions) from polynomials or any other elements onto which this
function (or the class of functions) is mapped by a sequence of operators (in the theory of
approximation, these operators are, most often, polynomial) is called a direct approxima-
tion theorem.

In the present chapter, we analyze the dependence of these estimates on the smooth-
ness of a given function (or a class of functions) and the choice of a sequence of opera-
tors.

In Section 2, we establish the direct Jackson theorems. Section 1 contains some ne-
cessary preliminary information.

1. Singular integrals and L ebesgue constants

First, we introduce the following definition:

Definition 1.1. For any 2n-periodic polynomial kernel K|, of theform
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Kn(t) =

N =

n

+ Y yjcosjt (1.2)
j=1

and any 2n-periodic function f summable on the period [-m, ], an operator

T () = T (F;1) 1= % [ fKqt - wdu = % [fe-uK@du, (12

iscalled asingular K,-integral for the function f.

As follows from the definition of the Fourier coefficients of a function f, relations
(1.2) and (1.1) imply that if

f(t) ~ % + Y (aj cosit + bysinj,
j=1

then

N &

Ms

+ . Yj(a; cosjt + bysinjt) (1.3

Te (D) = % [ fWKyt - uydu =
- j=1

and, for any kernel of the form (1.1), the singular integral Ty (f;t) is a trigonometric
polynomial of degree n.

Integrals of the form (1.2) are most often encountered if the kernel K, is chosenin
theform of Dirichlet D,, Feér F,, Jackson J,, and other kernels. In this casg, it is
customary to say that the corresponding integrals are the nth polynomials or the nth Di-
richlet, Fejér, Jackson, etc. singular integrals.

In particular, we note that, by using equality (1.3) and the properties of the kernels
D, and F, [see(2.3.2") and (2.3.6")], one can easily show that the nth Dirichlet integral
coincides with the nth partial sum of the Fourier series of a given function:

Tp,(f;t) = S(f; 1)

and the nth Fejér integral coincides with the arithmetic mean of the sums S (f; t):

1n—l
Te (0 = = 3 S(fin.

i=0
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The quantities

Ln(Ke) = = [ |Kn(w)]lu, (14)

i.e., the norms of operators T (f:1) given by relation (1.2), are the Lebesgue con-

stants for the kernels 1 K () (see Section 3in Chapter 2).
T
According to relation (2.3.3), for the Dirichlet kernels, these constants do not exceed
izlnn + 3. At the same time, for the Fejér, de la Vallée Poussin, Rogosinski, Jackson,
T

and other kernels, according to relations (2.3.7), (2.3.13), (2.3.13"), (2.3.21), (2.3.29),
etc., we get

1 23 4
La(Fo) = 1, Ly(V2") = 3t 22 L = 2
T I
L(R)= 2sn—r, O0<ry< 2n2 LJ)=1 etc (15)
n p n» n 12 ’ nYn ’ - .

2. Direct theorems

Let C denote the space of continuous 2n-periodic functions f equipped with the uni-
form norm

(A

max | f(x)|
xeR

(1) = inf [T,

be the value of the best uniform approximation of a function f e c by trigonometric
polynomials

Tn(t) =

N

n
+ Y, (ay coskt + by sinkt)
k=1

of degree <n, let
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og(f,t) == o, f,R) = oy, f,[0,(k+12n])

be the modulus of continuity of order k for afunction f, andlet o(f,t) := wy(f,1).
Foreach r=1,2,..., wedenoteby C" thespaceof r times continuously differen-

tiable functions fe C andset C°:=C.
In 1911, Jackson obtained a substantial strengthening of the Welerstrass theorems.
Actualy, for the first time, he proposed procedures of construction of polynomials of suf-

ficiently good approximation for the functions from all spaces C° := C, C*, C? and es-
tablished sufficiently good estimates of approximations by polynomials of a given degree

n foreachspace C", r = 0,1, 2,.... Inthe periodic case, the final results in this di-
rection (in the sense of accuracy) were obtained by Korneichuk (1970).

Theorem 2.1 (Jackson). If fe C', where r is a nonnegative integer, then the fol-
lowing relation holds for any natural n:

= c n 1
E (f) < ; u)(f ,n), (2.1)

where c is a constant dependent only on r, and o(f®,) is the first modulus of
continuity.

Theorem 2.1 readily follows from Lemma 2.1.

Lemma 2.1. If fe C", where r is a nonnegative integer, then, for any natural n,
atrigonometric polynomial T,(f; r;t) = T,(t) of degree n"=2[n/2]<n of theform

To(t) = To(fint) = % + Y @- N (ay coskt + b sinkt), (2.2)
k=1

where g, and b, arethe Fourier coefficients of the function f and A, are num-
bers specified by the Jackson kernel

1 2[n/2] 1 n’
Jnizia® = 5+ > jkcoskt = >+ Y jx coskt (2.3)
k=1 k=1

according to the formula A, = 1 -j,, approximates the function f with an accuracy
characterized by the inequality

Hm—nm\Swa%mﬁ, (2.4)
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where
M (f0:;n) = 127 min{lZw(f(r); %) 64w, (f“); i)} (2.5)

and o(f";t) and w,(f™;t) are the first and the second moduli of continuity of
thefunction ), respectively.

Proof. 1.For fe C° = C, i.e, if thefunction f issimply continuous, we preliminarily

need the following properties of the Jackson integral:
If the function f is continuous, then the following inequalities are truefor al v e N:

[fO - Ty )] < Gm(f; %) [t -Ty,0)] < 16032(f; %) (2.6)

Indeed, by using properties (a) and (b) of the Jackson kernels, we obtain

L [twma,@du - & [re-wawau
T T

-7 -7

f(t) - Ty (1)

215 1 0 T
= E'c[f(t)\]v(u)du - n[j +jf(t— u)Jv(u)du]

-t 0
= % [Ife—u-2f®) + f(t+ Wl Wdu,
0

whence, according to the properties of the first moduli of continuity and the properties
(a)—(c) of the Jackson kernels, we find

IN

[fO-To, 0 < 2 [(TE+u=fO1+]1t-0- 0D
0

IN

% _Iw (vu %) J,(Wdu £ ® (%) % I(vu +1)J,(uydu

(B2 - (2

and, in view of the properties of the second moduli of continuity and the properties (b)—
(d) of the Jackson kernels, we obtain

IN
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[t - T, ()] < J(;wz (vu )J (Uydu < wz(v) j(vu+1) J,(Uydu

2
< mz(l)( 2 2+2v25+1) < 16(02(1),
v v 2 v
asrequired.

Further, by using relations (2.1), (2.2), and (1.3), we get

\3’

Ta(t) z 1— Ay )(a coskt + by, sinkt)

NS

= 204 ZJk(akcoskt+bksmkt) (f;1). (2.1)

k=1 [2]

Hence, by virtue of the properties of the Jackson integral (2.6) and (2.6”) and the facts
that o(t)T, 0,(t)T, m(nt) < no(t), and o,(nt) < nN2w,(t), we obtain

1 2 1
| () - T,0)| < \f(t)—TJ[n/M(t)\ < 6w ([nT]H) < 6w (H) < 12a)(f, n) (2.7

and, similarly,
2 . l 4
| f(t) - T, < 16w, (;) < 64032(1‘, E)' 27)

Thus, the theorem is proved for the analyzed case.
Note that if an absolutely continuous function ¢ with period 2r amost everywhere
possesses the derivative ¢’ (t) satisfying the inequality

)] < M, (2.8)

then, according to Theorem 3.2.1, the following estimate is true for its first modulus of
continuity:

o(g;t) < Mt. (2.9
Hence, in view of inequality (2.7), this function admits the estimate

12
|01 = Ty, (@1 O] < M, (2.10)

whichisvaidforal n=1,2,....
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2. By induction, we assume that Lemma 2.1 is true for the spaces C°, C, ..., C',

r > 0. Further, supposethat fe C'*! and, hence, f’ e C'.
Note that, in view of relation (2.1) and the formula

f/(t) ~ ) (acoskt + b sinkty’,
k=1

we can write

d —
aTn(f; rt)y = T(f5r; ).

Thus, following [Natanson (1952)], by virtue of inequality (2.4), we conclude that
() = To(F; 0| = [f0) = T.(F5 0] < MY mn™,
whence, in view of relations (2.10) and (2.5), we get
[0 - To(firt) = Ty, L LF = To(firs s
< %Mr(f(rﬂ);n)n—r — Mr+1(f(r+1); n)n—r—l
and, hence, the required inequality
[f(t) = To(F;r+2 )] < My (FC Y, mnt

because, by virtue of relations (2.1) and (2.1") and the formula 1 —j, = Ay, one can eas-
ily seethat

Tt + Ty L = Ta(firs i t]

n’ n’
= % + Z(l—krk*l)(akcoskt+ b sinkt) + % + ) jk(a coskt + by sinkt)
k=1 k=1

»
_ % + D i@ = X (ay coskt + bksinkt):|
k=1

&

o
= 7+ X=X )@ coskt + besinkt) = To(fir+1;0) (2.11)
k=1
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Thus, the Jackson theorem is proved for the functions from the class C' ™! and, the-
refore, for all classes C', r = 0,1, 2, ....

Let MW'H®, O<a <1, and MW'Z bethe classes of functions fe C such that
o(f,t) < Mt* and w,(f,t) <t, respectively, and denote MH* := MW°H* and
H :=1H*.

Corollary 2.1. If fe MW'H*, 0<oa <1, r=0,12,..., then,

| f(t) — To(f;r;t)] < % c = c(r) = congt, (2.12)
n
andif fe MW'Z, then
[ f(t) — T(f;r;t)| < Cr—'\fl c = c¢(r) = congt, (2.12)
n

where T,(f;r; t) isthetrigonometric polynomial of degree n given by relation (2.1).

As the second corollary of Theorem 2.1, we present the well-known Dini—Lipschitz
criterion of uniform convergence for the Fourier series:

Corollary 2.2. If a continuous 2r-periodic function f belongs to the Dini—Lipschitz
class

[i.e., o(f;t)= o(i) as tao},
[Int|

then its Fourier series uniformly convergesto f.
Indeed, the validity of this assertion follows from the facts that, first,
4
| f(t) — Sy(f; ) < (4+2) E.(f) (2.13)
n“ Inn

by virtue of Theorem 2.3.1 [Lebesgue inequality (2.3.4)] and, second,

_ 1
En(t) = °(Im)

inview Theorem 2.1 and the conditions of the corollary.
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Remark 2.1. By analogy with the proof of the second part of the Jackson theorem, one
can easily establish the following somewhat more general assertion:

Theorem 2.2. Let A, be a linear polynomial operator given in the space C and as-
sociating every function fe C with Fourier series of the form

f(t) ~ % + i(ak coskt + by, sinkt) (2.14)
k=1

with a polynomial of degree n of theform

A(fit) = % + ) (L M) (8 coskt + by sinkt). (2.15)
k=1
Further, let
SUE lo = An@; ) :=€n = €(AY (2.16)
o€

sothat |(t) — A(g;t)| < M€, for e MH.

Then the following inequality istrue for any integer r > 0 and any function f e c'
with Fourier series of the form (2.14):

0 -2 - Y@= M accoskt + besinkp| < [ 10— A e. @217)
k=1

Proof. For fe € = C° (i.e, for r = 0), inequality (2.17) is obvious. Thus, we as-
sumethat it istrue for theclasses C = C°, €, ..., C", where r > 0, and prove its va-
lidity for fe C"*1. Indeed, by setting

o) = f(t) - % - i(l—ﬂk”)(akcoskt + b sinkt),
k=1

inview of thefactsthat f’e C" and the Fourier series of the function f” isobtained asa
result of the term-by-term differentiation of the Fourier series of the function f, by virtue
of (2.17), wefind
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o] < | f® - Y @a- A (e coskt + b sinkty
k=1

o 1t
whenceweget ¢ € MH!, where
M= £ - AT

and, therefore, relation (2.16) implies that

n
lo(t) — Ax@; D] = ‘ f(t) - % - 3 (- MM)(a coskt + by sinkt)
k=1
n
— Y @ Mo (ay coskt + by sin kt)‘

k=1
n

= | f(t) - % - Y- A 2)(ay coskt + b sinkt)
k=1

< M%n - H f(r+l) _ An(f(r+l); .)H%rnﬂ.

This means that inequality (2.17) is also truein the case where fe C' 2.
Theorem 2.2 is thus proved.

Note that Stechkin generalized Theorem 2.1 to the case of moduli of continuity of or-
der k foral k> 3.

Theorem 2.3 [Stechkin (1951a)]. Let anatural k be given. For any natural n and
any continuous 2r-periodic function f, one can always find a trigonometric polyno-
mial T,(f;-) of degree n such that

1f®) ~T,(f: )] < cmk(f; %) (2.18)

where ¢ isa constant depending only on k.
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Proof. We set

koK (kK
T ) := _% [ Y (J) f(t+ j1)d (1) e

-n j=1
= 1 [0 - D A 0 podr,

where the natural number | is chosen to guarantee the validity of the inequality k <2l — 2

and n” = [Iﬂ] + 1 issuchthat T,(f;t) isatrigonometric polynomial of degree

I(n"=1) = I[ID] <n
Then

f(t) - T,(f;t) = D" }Akf(t)J (t)dt
nlh - T T I,n’

and

[f(t) - Ty(f; 0] < %ka(f;\r\)‘],’n,(r)dr.

By using the properties of the kth moduli of continuity and equality (2.3.37), we ob-
tain

IN

% _ank(f; D3 (D i_jn(n’r 1o, (f; ni) 30t

1 | 1
°l°’k(f; R) < qu(f; ﬁ) < %“’k(f? H)

IN

and, hence,
10 -T(Fi 0] < oo (1 2)

Theorem 2.3 isthus proved.
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In conclusion, we present two more theorems on the approximation of continuous
functions.

Theorem 2.4 [Stechkin (1951b)]. If fe C, then,forany n = 1,2, ...,
. .1
10 - R(f:0] < cwy(1; 1), (2.19)

where R{f; -) are the Rogosinski polynomials for the case vy, = % and c is an

absolute constant.

Proof. Since

Ra(f; t) 2

ARCEPARICES)

and, by virtue of the Jackson theorem for the polynomial T, of the best approximation
of the function f,

n Dn(u—£)+Dn(u+£)
Ite-uw 2n 20/ gy
TC_T[

1 - Tio| < 640, (£ 2),

we get

| f(t) — Ry(f; 1)

ro-3[s(r-3) ()]
o= g[s(r-mi-F)es(r-mie 3
“oml-a) w3
fo-glt(-g)s ()] 2R -mool
3l (=)l 2l )5
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IN

I UHE ZlTE_TmUdthz(f;i) + 8oy ( 1: 1)

cmz(f; %)

Theorem 2.4 is proved.

IA

Theorem 2.5. If fe C, then, for any n=1,2,... and n”> n such that n’—n >
en,

-V (F: )] < (1+§) E.(f), (2.20)
€
e, 4 243 5 !
[ft) = V"(f; 0] < (3+ . )En(f) < 2En(f), (2.20)
and
() = V(1) < (f+1) E.(f), 20)
T

where Vn”'(f; t) are the de la Vallée Poussin polynomials formed by using the kernels
of the form (2.3.10).

By virtue of relations (2.3.11), (2.3.13), and (2.3.13"), this theorem follows from in-
equality (2.3.107).






Chapter 6
Inverse theorems on the approximation
of periodic functions

1. Theoremson evaluation of the absolute value
of thederivative of a polynomial

1. The problem of evaluation of the absolute value of the derivative of a polynomial via
its values plays an important role in numerous fields of mathematical analysis. In what
follows, we present some results of evaluation of the absolute value of the derivative for
trigonometric and algebraic polynomials given on the real axis.

Theorem 1.1 (Bernstein inequality [Bernstein (1912)]).1 If the absolute value of a trigo-
nometric polynomial T, of degree n which takes real values on the real axis is
bounded by a number M, then its derivative is bounded by the number nM, i.e,

max| T,(t)| < M = max|Tt)| < nM. (11
t t

Thisinequality is exact in a sense that the number n on the right-hand side of (1.1)
cannot be replaced by any other smaller number.

Proof. The proof is based on the comparison of the plot of the polynomia T,, with the
plot of an auxiliary function T, (t) = Mcos(nt+a) and the evaluation of the number of
zeros of the difference T,,— T;.2

Assume the opposite, i.e., that theinequality |T;(tg)| > nM holds at a certain point
to instead of the Bernstein inequality (1.1) and, at the sametime, |T,(ty)| < M. Inthis
case, forany ce (—oo, 00), thisinequality isalso true for each polynomial £ T, (t-c) at
the point ty+ c. Inview of this fact, we can assume, without loss of generality, that the
polynomial T, (t) andthe point t, satisfy the conditions

T (t) = Mcosnty, toe (—% o), T(te) > NM. (L.2)
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'(to) - *d [M COSI’]t] —t > 0.
. dt "=t

Therefore, in view of the fact that T,(t) < M, we conclude that the plot of the function
T,, crosses the increasing branch of the cosine curve M cosnt which passes through the
point (ty, Mcosnty) at at least three points. Moreover, it crosses each of the remaining
2n — 1 branches at least once (counting the double zeros). Therefore, the polynomial
T,(t)—Mcosnt must haveat least 2n + 2 zeros in the period (—=, m] but thisisim-
possible because T,,(t) #= Mcosnt by virtue of inequality (1.2).

The fact that the constant n on the right-hand side of inequality (1.1) cannot be made
smaller is established by analyzing an example of the polynomial T, (t) = cosnt.

This proves Theorem 1.1.

Remark 1.1 (van der Corput and Schaake). The proof presented above shows that we ar-
rive at a contradiction not only in the case where inequality (1.2) is satisfied but also if the
following weaker inequality istrue:

Ta(to) > %[Mcosnt]to = Mn[sinnty| = nyM? = T2(ty) .
Therefore, inequality (1.1) can be replaced by a more exact inequality
max| T,®)] < M = |Tib)] < nyM2 - T2@). (11)
t

Later, the Bernstein inequality (1.1) was somewhat strengthened in a different direc-
tion:

Theorem 1.1" [Stechkin (1958)]. The inequalities

2sn—

mEax‘Trﬁr)(t)‘ < ( nthr mtax‘Arh(Tn;t)‘ (L.7)
2

hold for the derivatives of any trigonometric polynomial of degree n with any natural

r andany he (O, 2—::) and, in particular,

7] < (3) | Han(ria] D)

T For the case h = it/ n, thisinequality was simultaneously established by Nikol’skii [Nikol’skii (1948)].
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Proof. First, we consider thecase r = 1 and choose a point t; and a number L such
that the following equalities are true:

ITall = [Tatto)| = L. (1.3)

For the sake of definiteness, we assumethat T,(t;) = L. By using the same argument as
in the proof of Theorem 1.1, we conclude that the inequality

T (ty + 1) = Lcosnt (1.9)

holdsfor al te (—% %) [in the opposite case, the difference T,(ty+ 1) — L cosnt would

be a trigonometric polynomial of degree n not identically equal to zero with at least
2n+ 1 zerosin the period: adouble zero at the point t=0 and 2n- 1 more zerog].
Integrating inequality (1.4) from —h/2 to h/2, we get

h) ( h) 2L . _nh
Tlto+=|-T., [th—=| = =—sin—.
”(0 2 n{0 2 n n

By virtue of relation (1.3), thisyields

‘Ath’ :

, n n
2sin— 2sin—

We proceed by induction. Assume that inequality (1.1) is true for all derivatives up
tothe rth degree (r > 1), inclusive. Asaresult, inthe next step, we get

H Arh+lTn= .

25n™MY
= [ahlTe+ -0l = (2] [T+ -T00)|

r
Zsin%h
= HAth’ ’
n

This means that Theorem 1.1" remains true in the case where the (r + 1)th derivative
isinvolved.

This completes the proof of Theorem 1.1".

\Y;
VR
N
v
5
=
'\"3
~—
+
A
s
:
e

Note that, since | A7 T, | < 27| T, inequality (1.1') immediately yields (1.1).
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Coroallary 1.1 (Bernstein inequality). If an algebraic polynomial P, of degree n sat-
isfies the inequality

P, < M (1.5)

on the segment [-1, 1], thenitsderivative Pj(x) satisfiestheinequalities®

[nn2 2
IRx)| < © vl_i“” SJ;MZ (15)
- X - X

at any point xe (-1, 1).

Indeed, for agiven algebraic polynomia P,, we construct the trigonometric polyno-
mial T,(t):=Py(cost). Itisclear that the degree of the polynomia T, also does not ex-
ceed n. Thus, by virtue of inequality (1.1"), we get

Th(®)| < |By(cost)||sint| < nyM? — P?(cost).

Further, we set cost = x and arrive at inegquality (1.5").
In exactly the same way as in the proof of inequality (1.1), we establish the following
assertion:

Theorem 1.2 (Chebyshev). If an algebraic polynomial P,, satisfies the inequality
[P < M, xe[-1,1], (16)
onthesegment [-1, 1], then, for all x¢ [-1, 1],

|P,(X)| £ MT,(x) = M coshnarccosh |x

. xe[-1,1]. (1.6)

In order to check the validity of thisinequality, it suffices to take into account the fact
that, by virtue of condition (1.6), the polynomia P,, crosses each of the n branches of the
Chebyshev polynomial M T, at least once on the segment [-1, 1] and that the number
of intersections of this sort becomes greater than n if inequality (1.6") does hold at at
least one point xg & [-1, 1].

Note that the right-hand side of inequalities (1.5") behaves well at points distant from

the ends of the segment [-1, 1] but thisisnot soas |x| — 1. In this case, the so-called
Markov inequality seems to be more useful.
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Theorem 1.3 [A. A. Markov (1884)]. If an algebraic polynomial P, of degree n is

bounded in the absolute value on the segment [-1, 1] by a number M, then its deriv-
ative P;(x) isbounded by the number Mn? for all xe [-1,1], i.e,

max |P,(x)| < M = |[P{(x)| < Mn?,  xe [-1,1]. (L.7)
xe[-11]

Proof. If xe [—cos%, cos%], then inequality (1.5) implies that

R0 < M > < ”—'Vjt < n2M.
1-x sinE

In order to check the validity of inequality (1.7) for
X € [—1, —cosE) U (cosE, 1],
n n
we assume (by contradiction) that the inequality P;(xo) > Mn? holds, e.g., at apoint
T
=, 1]
Xo € (cosn, ]

In this case, we compare the plot of the polynomia P, with the plot of the polynom-
ial MT,(x—c) = Mcosnarccos(x— c), where ¢ ischosen so that the rightmost branch
of the Chebyshev polynomial MT,(x - c) passes through the point (Xy, P(Xp)). Then
one can easily show that the plot of the polynomial P,, passes through the rightmost (in-
finite) branch of the polynomial MT, (X c) at at least two points (even at three points if

c>0), andfor c <0 it crosses each of the remaining n - 1 branches at at least one
point; for ¢>0, itcrosses n—2 branches of the remaining ones. Therefore, the poly-
nomial P,(x) — MT,(x-c) of degree n must have at least n + 1 zeros, which isim-
possible.

Theorem 1.3 is thus proved.

Note that if the conditions of this theorem are satisfied, then as a result of its succes-
sive application, we find

\Pg“(x)\ < MP?(n-12...(n-j+1% j=12..,n

It turns out that, for j > 1, the quantity appearing on the right-hand side can be made
smaller. The best (unimprovable) estimate was established by V. A. Markov:
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Theorem 1.3"[V. A. Markov (1892)]. The estimate

R < M@, L.7)
where T,(X) = cosnarccos, istrue under the conditions of Theorem 1.3.

In particular, for j = n, this estimate gives ‘P,ﬁ”)(x)‘ < M2" .

Theorem 1.4 [Dzyadyk (1971a)]. Let D be a convex domain and let an be an alge-
braic polynomial of degree n all zeros of which are located in D. If, for all z lo-
cated on the boundary oD of the set D, a polynomial P, of degree n satisfies the
inequality

@ < [P@

, ze dD, (1.8)
then, for all ze 9D, the absolute value of its derivative satisfies the inequality

Pi@| < |Pi@|, zeaD ! (1.9)

Proof (see [Dzyadyk (1971a)] and [Meiman (1952)]). Assume the contrary, i.e., that the
inequality

|Pizo)| > \ F*’n'(ZO)\ (1.10)

contradicting (1.9) istrue at a certain point 7z, € dD. Without loss of generality, we can
assume that

(a) theorigin of coordinates O e D;
(b) thepoint z, lieson the positive side of the OX-axis;

(c) thevector | with origin at the point z, and end at apoint zy + i islocated out-
side intD.

These conditions are satisfied as aresult of transformations of theform z = ze®* + b
(rotation and trandlation) that do not violate the conditions of Theorem 1.4. In addition,

T In the case where D isacircle, this theorem was proved by Bernstein [Bernstein (1930)] by a different
method.
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since, parallel with P, the polynomial e P, also satisfies the conditions of Theo-
rem1.4forany ye [-1, 1], wecanassumethat arg R (z) = 0.

If we now move along the vector | from the point z, to a sufficiently close point Z
and take into account both the Taylor formula and relation (1.10), then we get

A= [Pn(z’) - Pn(z,)] - [Pn(ZO) - Pn(ZO)]

= (2 - zp)[Pi(zo) — Pi(zo)] + |2 — 29 \2), (1.12)

ArgA = arg(z’' - zp) + m + ag[P(z) - Pi(zo)] + o)
= g+n+r+o(1)+2kn = gn+r +01 + 2kn, k=0,£1,..., (112

where |r]| < g

This means that, as aresult of the transition along | from the point z, to the point
Z, theargument of the polynomial m,(z) : = an(2)— P,(z) decreases. But thisisim-
possible because, by virtue of the Rouche theorem, all zeros of the polynomia m,, belong
to the domain D and, hence, in view of its convexity, the argument of the polynomial

must increase aswe move aong |.
Thus, we arrive at a contradiction with inequality (1.10). Finally, we note that the

sign of equality in (1.9) is also impossible because, in this case, the polynomial I5n(z) i=
(1 +¢)P,(z) would satisfy inequalities (1.8) and (1.9) for sufficiently small € > 0.
Theorem 1.4 is proved.

Remark 1.1. If the requirement of convexity of the domain is not satisfied, then the as-
sertion of Theorem 1.4 is, generally speaking, not true. To prove this, we consider a non-
convex domain D, bounded by alemniscate

21 =1+ 2i5 (1.13)

and the following polynomials:

F§2(2) =Z2 -1 and Py2) = %
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It is easy to see that both zeros + 1 of the polynomial I52 are located inside the do-
main D, and the following inequality istruefor al & e dDy:

P2 < |Py@)].

At the sametime, at the point &, = IE € dDg, we have the opposite inequality

PaGo)| = 3 > [Piceo)| = £.

Remark 1.2. Itiseasy to seethat the assertion of Theorem 1.4 is true not only for poly-

nomials but also for al functions f and f analyticin D, continuous on D, and sa-
isfying the conditions

arg[f(z)—ei“f(z)]T foral o e [0, 2nr] (1.14)
and
1f(2)| < |f(| fordl zeoD. (1.15)
Note that Theorem 1.4 yields the following assertion:

Theorem 1.5 [Bernstein (1926)]. If an algebraic polynomial P, of degree n satisfies
the inequality

[Pl <M (1.16)
onthecircle |z| < 1, thenitsderivative satisfies the inequality
Pi@)| < nM (1.17)
at all points of thiscircle.

Indeed, thecircle K := {z: |z| < 1} isaconvex domain and, for any ze oK and

£>0, wehave |P,(2)| < F*>n(e, z), where an(3, Z) :=(1+¢)MZ" and all its n zeros lie
in intK. Therefore,



Section 1 Theorems on eval uation of the absolute value of the derivative of a polynomial 353
Pi@)| < |Pie.2)| = (1+e)nMm
forany ze oK. Inview of the arbitrariness of €, thisyieldsinequality (1.17).

2. Theorem 1.6 (on the estimation of intermediate derivatives).* If, for any natural k,

the function f is absolutely continuouson a segment [a, b] together with all its de-
rivatives up to the order k-1, inclusive, and, moreover,

max [f(x)] := My <  and asup‘f(k)(x)‘ 1= My < oo, (1.18)
xela,b] xela,bl

thenitsderivatives f), j = 1,..., k-1, satisfytheinequalities

IN

max ‘f (j)(x)‘

xe[a,b]

) 2 M. K
AjMot  and t:=max{b_a;(k) } (1.19)

where

Q) 1
const < T, (1)(1+ k!) +

1
(k=i

A

Proof. If M, =0, thenthefunction f isthe polynomial P,_; of degree k — 1. Hence,
a+b b- a4 and

by setting x = + >

a+b b-a
2

Rea(® = Pkfl( t), te [-1,1]
we conclude that, according to Theorem 1.3" (Markov), the inequalities
PO ®| < MT @

holdforal te [-1,1] and j = 1,..., k-1 and, hence, the inequalities

2
b—

. P
RI0| < MO( a) TV (119)

holdforal xe [a,b] and j = 1,...,k-1. This proves that inequality (1.18) istruein
the analyzed case with constant Tk(j )(1).
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For M, > 0 and any point xge [a+h, b—h], where

1/k
h=1= min b—a;(Mo) :
T 2 M

we can represent the function f by using the Taylor formula with remainder r, as fol-
lows:

f(X) = Pe_1(X Xg) + re(X Xo), (1.20)
where
k=1¢ () .
Pea(6x) = 30 e xg)
j=0
(1.20')

1
(k -

"WO6%0) = G Joc =01 Oyt

In view of relations (1.20") and (1.18), equality (1.20) implies that the following in-
equality holds on the segment [X,— h, g+ h] for the polynomia Py_4(X; X):

IN

[ f(0] +

‘ Re-1(% Xo)‘ K El)!

j(x — )% O t)qt
Xo

Mg + Mk pk < M0(1+l).
K K

IN

According to (1.19'), this yields, in particular that, for any xye [a+h,b-h] and
X € [Xy—h, Xg + h], we have

. i oy - .
‘Plfj_)l(x;xo)‘ < Ag My (%) = Ay Mot , (1.21)
Do) = [RINxx0)| < AgMoT (1.21°)

where

A = Tk(n(l)(“%), j=12.. k-1
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In order to prove asimilar inequality for all x € [a, b], we demonstrate its validity,
eg., for xe [b-h, b]. Inthiscase, by setting x; = b—h and taking into account in-
equality (1.21), we obtain

(1) _ 1 p() /y- 1 T k—j-1¢(K)
‘f (X)‘ = R<—1(X,Xo)+mj(>(—t) o (t)dt

Xo

IN

D) (x x)| + K (x = xg)<]
AL 0| + G500 %0)

X M) M, 1 |:(i) 1 1 ] j
Ag Mot * ST S T, (1)(1+k!)+(k_j)! Mgt .

IN

Note that, at the points x located far from a and b, thisinequality can be signifi-
cantly improved. Thus, e.g., onthesegment [-1, 1], for X, =0 andany xe [-h, h],
we get

16 0)] < Mg (1+%)

and, hence,

(0] = |R_10.0)] < M0(1+%)(k—1)1

by virtue of (1.20") and the Bernstein inequality (1.5").

Theorem 1.7 (Kolmogorov inequality [Kolmogorov (1938)]). Assume that f: R* — R! e

W, i.e, that the function f is bounded in R* and possesses, for some natural r > 2,
absolutely continuous derivatives up to the (r — 1)th order, inclusive; the rth deriva-

tive of the function f is bounded for almost all x e R'. Moreover, let

By = By(f) := supl\f(x)\ and B, = B,(f):= ess?up‘f(”(x)‘.
R

XeR

Then, for any natural j € (0, r), the derivative f() is also bounded and satisfies
the inequality

. M. . . .
— .- J) r- 1-j/rpjlr
B = By(f):= supl\f j (x)\ < B BT, (1.22)
XeR r
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where M,, v = 1,2,..., areconstants given by the formulas

oo ak(v+1)
=4y DT (1.23)

Vom &k + vt

M. .
Inequality (1.22) is exact in a sense that the constant factor ﬁ cannot be re-
r

placed by a smaller quantity.

Proof. The unimprovability of inequality (1.22) follows from the fact that, for the func-
tion

« Sin (2k+1)t—r—7E
f(X):ﬂZ [ r+12:|'
T o 2k +1

we get

sin |:(2k - r%’ n]

Py = 4% 2 "l
® =z g() 2k + 1) 1

° o Sin(2k + Nt .

fOx) ~ 23 SNCKHDE oo gnt
) Z‘O 2k+1 %

and, according to relation (1.23),
4 sin[(2k+1)-—%t]
Bp = = Y, =M, B =M_, B =My=1

TlrnE @kt

Thus, it is easy to see that inequality (1.22) turnsinto the equality for the function f.

We now prove inequality (1.22). Since the function fy(x) : = C;f(C,x) belongs to
theclass W together with the function f for any C; =congt, j =1, 2, and satisfies the
equality Bj(f;) = [C,|Bj|C, I thevalidity of inequality (1.22) for the function f yields
itsvalidity for the function f;, and viceversa. For this reason, from the very beginning,
we choose constants C,, for which the following equalities are true:




Section 1 Theorems on eval uation of the absolute value of the derivative of a polynomial 357

Bo(fo) = Bo(f) = M,, B (f) = B,(f) = Mg =1,
and, for any € >0, onecan find points x, such that
fPxe) = [FPxe)| > Bi(f) - &.

Wenow set f.(x) = f(x). First, we establish the validity of inequality (1.22) under the

assumption that the function f is periodic with period 2rv, where v is an arbitrary natu-
ral number, for j = 1. By contradiction, we assume that inequality (1.22) is not true and

compare the function f(x-c) := fA(x), where ¢ is a constant, with the function fo(x)
for which thisinequality definitely holds. Thisyields

By(f) > By(f) = sup

f '(x)\.
xe[0,2m]

Hence, by the proper choice of the constant ¢, one can find at least one point X such
that

fx) = fx) and f'% > f/(% > 0.

, the plot of the function f inacertain half inter-

Inthis case, since | f(x)| < Hf

o

val [a,a+2vrm) containing the point X and 2v branches of the function f must

cross the increasing branch of the function f that passes through the point (X, F(ﬁ’()) at

o

at least three points, and each of the remaining 2v — 1 branches of the function f is

crossed at least once. Hence, the difference f — f musthaveat least 2v + 2 zerosin
theinterval [a, a+ 2vm) . For sufficiently small € >0, thisassertion is also true for the

difference f — f., where f(x):= (1-¢) f(x). Thus, in view of of the fact that the

function f — f. is continuous together with its derivatives up to the (r — 1)th order, in-

clusive, and periodic with period 2vrr, we conclude that the difference 2 — 0D
must have at least 2v + 2 zerosintheinterval [a, a+ 2vr] and, hence, at least two
zeros &, and &, inatleast onehaf interval Ij :=[a+ =, a+jn+m). Thus,inview of

the fact that the function £~ islinearin I; and | V(x| = 1 for any x e intl;,
there exists at least one segment [E7, E5] < (&1, &), &5 > &7, suchthat
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@] = A-9|f P©| 2 1= [{0E@] > 1=B(f), Ee & &l

at al points & of this segment, which is impossible. This contradiction proves that the

inequality B;(f) < By( f) isindeed true. After this, in exactly the same way, we can
prove that

By(f) < By(f),....B_1(f) < B,_y(f).

We now prove the theorem for an arbitrary function from W. To do this, we note
that, for any & > 0, there exist a natural number v = v(8) and a function v e W *?!
suchthat v(x) =1 for |x| <1, v(x) =0 for |x| 27V, |[u(X)| <1 for xe (=0, ),
and ‘u(j)(x)‘ < § for xe (—oo,0) and j = 1,2,...,r. Thus, in view of the fact that,
according to Theorem 1.6, B; < 3T.0)()) in the entire line, we find [v(x)f(x)| < By
and, hence,

o f 17| =

)y (:)v(‘kx) ARIeY)
i=0

< g +5§(:)Bri - B+,

where € =€(0) as 6 — 0. Therefore, if the function v f is periodically extended onto
the entire line with period 2vr, then, by using therelation v (x)f(x) = 1 for xe [-1, 1]
and the periodic case of Theorem 1.7 studied above, we arrive at the inequality

1100 = [[Fowe0l,| < N'\l/lf_‘j}r BB +e) =12, r-1 (124)

Since the numbers 6 < 0 and, hence, € =€(8) > 0 can be made arbitrarily small, for
any Xp€ (oo, ) and any function f(x,+-)e W', we get ‘f (j)(xo)‘ on the left-hand
side of inequality (1.24) instead of ‘f U )(0)‘. Thus, by passing to the limit as 6 — 0, we
establish the validity of inequality (1.22). This completes the proof of Theorem 1.7.

2. On the estimates of errorsof application of the method of grids
to the Chebyshev theory of approximation of functions

In a natural way, the results established above lead us to the analysis of the following
problem:
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In Sections 5 and 6 of Chapter 1, we studied the algorithms of approximate construc-

tion of the polynomial P, of the best approximation for a given function f on a certain
set X. Since, in the course of numerical calculations, it is, as arule, impossible to take
into account the values of the function f at all points x € X, the original problem is al-
most always replaced by a problem in which the values of the analyzed function are taken
into account not in the entire set X but at finitely many points %, k=1, 2, ..., N, of this
set (or, in other words, the values of f are taken into account on a grid). This enables us
to find (with any desired degree of accuracy) the polynomial PO(x) = PO(f; x; {x; ')
of the best uniform approximation of the function f only on the system of points x, but
not the required polynomia P;.

Thus, it necessary to analyze the error | f — RY HX = EQ) of approximation of
the function f(x) on X by the polynomial Pn0 and compare it with the error E,(f) of ap-

proximation of this function by the polynomial P.
In the present section, we study the posed problem for a special choice of points x4,
Xo, ..., Xy iNnthefollowing three cases:

1) f isperiodicand X = [0, 2r];
2) f isgivenon X = [a, b];

3) X isthe set of points of the unit circle and, generally speaking, f is a complex-
valued function.

To do this, we need the following lemma:

Lemma 2.1 [Dzyadyk (1978)]. If, for some tye (—, +) and A€ [0, &), where

é:=min{i,nN —N

} and N > n,
2N 2nN

atrigonometric polynomial T, of degree n satisfies 2N inequalities of the form
I Tu@)| <M, k=01,..,2N-1, (2.1)
where f, =ty + % + 8, and [3,| < A, then thefollowing inequality is also true:

M

cosn(MA)
2N

mex|Ta(®)] = [ Ta < (22)
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Proof. Without loss of generality, we can assume that the polynomial T, satisfiesthe
strict inequalities at the points t,, i.e,

T <M, k=01, ,2N-1. (2.1)

The validity of this assumption follows from the fact that if, for any € >0, the strict in-
equalities |T,(,)| < M+ yield theinequality

M +¢

cosn (i + A)
2N

ITall <
then inequality (2.2) isalso true in view of the arbitrariness of € > 0.

To prove inequality (2.2), we assume (by contradiction) that inequality (2.1") is satis-
fied and, at the same time, the inequality

Tt > — 22)
cosn (— + A)
2N

holds at apoint t*. Without loss of generality, we can set ty = —% and ‘Tn(t*) =

T,(t), t e (i, t;). Moreover, let

- M .
o(t):= ———cosnt and () :=o(t) — T,(1). (2.3
cosn (i + A)

Further, foreach v =1,2,...,2n-1, let &, beapoint of theset {f,}2";* from the
interval

I, 1= (E—L—A, E+L+A).
Note that

@ Gy <t <fi<f <& <..< <&y <iy+2n;

(b) theinequality

“DVat) > M = Do) > M, v=12..,2n-1,
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holdsforal te I,;

© [Ta&y)

< M;

Q) 66 el ;:(_L_A,L+A)_
(d) tg, ty € I 2N N

Thus, a(t) > M foral te I, andweconcludethat ¢(t) satisfiestheinequalities

0V0E&y) = D[aE,) - Tl > D'aE,) - M >0

and, hence, inview of (2.1) and (2.2), the inequalities
o) >0, ot <0, of) >0 &) <0,

0z > 0,...,0E,n1) <0, and ¢ +2m) > 0.

In view of relations (2.3), this means that the trigonometric polynomial ¢(t) of de-

gree n hasatleast 2n+ 2 zerosin the period [ty, f + 2m), whichisimpossible.
Lemma 2.1 isthus proved.

Remark 2.1. Inequality (2.2) is unimprovable in a sense that if N isamultiple of n,
i.e, N =vgn, where vq isanatural number, ;, = -A, 51v0+1 = +A and, therefore,

~ _j‘lt T ~
vo = TN A A T =TSN

—+

then inequality (2.2) turnsinto the equality.

Remark 2.2. For A = 0, inequality (2.2) was proved in a different way by Bernstein
[Bernstein (1931)].

In what follows, for the sake of simplicity, we present the proofs of Theorems 2.1-2.3
forthecase A = 0.

Theorem 2.1.5 If, for some 2n-periodic function f, a polynomial T, of degree n

is the polynomial of its best uniform approximation on [0, 2r] and T,? is the poly-
nomial of its best uniform approximation at 2N points
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=, k=01..,2N-1, N>n, tye (-oo, +00),

then the following inequalities hold:

2 *
EOf) = [1-T2 < ( — +1Jf—Tn (2.4)
Cos ——
2N
or
EOt) < ( Zrm +1] E, (f)
COS ——
2N
and, forall v=n+1,...,N-1,
1 3
EXf) < ——E(f) + [1+ E (). (2.4)
" cos Y& " cos VE | Y
2N 2N
Proof. Indeed, according to the definition of the polynomial T,?, we have
kn 0 kn
max | f (t +—)—T (t +—)‘
k ‘ °TN 9N
kr * krt
< maxf(t +—)—T (t +—) < Eq(f).
5 ‘ 0ot n (to n(f)
Hence, foral k=0,1,...,2N-1,
kr * kr
‘Tr? (to+ﬁ)—Tn (t0+ﬁ) < 2E,(F)
and, therefore, according to Lemma 2.1,
. 2E.(f)
|79 -Ta < i (2.5)
2N

This enables us to conclude that

[t-wl=<]i-m

b s( Szrm+1]En(f).

2N
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Inequality (2.4) isthus proved.
Finaly, in view of thefact that, forall k =0,1,...,2N-1,

km kr
TVO (to + W) - Tr? (to + W)

by using inequality (2.4) and Lemma 2.1, we obtain

< Ey(f) + Eq(f)

[t-w < -]+ w-7]

< 2 _ L 1)E,f) + Ev(f) + Eq(f)
COS —

Thisyieldsinequality (2.47). The proof of Theorem 2.1 is completed.

*

Theorem 2.2. If, for a function f given on [-1,1], B, isthe algebraic polynomial

of its best uniform approximation on [-1, 1] and Pr? is the algebraic polynomial of
its best uniform approximation at N points

xk:cos(i+@), k=0,1,...,N-1 N>n,
2N N
then
fop < (—2_i1)|f-F 26
H nHl*l.ll [COS;’T\CI"' ] n ( )
and

s YR

[t R0, = En() +(1+
2N

JEV(f), v=n+l.. ,N-1 (26)

Proof. Weset f(t) = f(cost) and, asin the proof of Theorem 2.1, denoteby T, and

TVO, v =n+1,..,N-1, the polynomials of the best uniform approximation for the
constructed 2r-periodic even function f ontheentireaxisand at the N points

respectively.
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In this case, according to Theorem 2.1, we get

|72 -T7] < LGg,
2N
Hf(cos-)—Tr?H < ( 2nn +1J E.(f), (2.7)
OSZN
[10-10) < —E_[E(D+E(D], v=n+l.. N-1  (27)
2N

Sincethe function f iseven and the points % are located symmetrically about the

origin, both polynomials T, and T, arealso even. Therefore, the functions P;(x) : =
Trf [arccosx] and Pr?(x) = T,?(arccosx) are algebraic polynomials of degree n. More-
over, by virtue the Chebyshev theorem, they are the polynomials of the best uniform ap-
proximation for the function f(x) = fA(arccosx) on the segment [-1, 1] and at the
points X, respectively. In view of relation (2.7), the following inegualities hold at the
indicated points (after the change of variables cost = x):

|R? - Ry < Zigt)
2N
[t - R0,y < (zm ¥ 1) En(F), 2.8)
%N
[P0 = POl 1y < — S Ea(h) + Ey(DI.
2N

These inequalitiesimmediately yield the assertion of Theorem 2.2.

Theorem 2.3. If, for afunction f given on the unit circle |z| =1, P;(z) and P2(2)
are the polynomials of its best uniform approximation on |z| =1 and at the points
z,=e¥N k=0,1,2..,2N-1, N>n, respectively, then

2

max | 1(2) - RA(2)| < [ + 1] E.(f) 2.9)
‘z‘:l mn
. COS*ZN
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and

1

max‘f(z)—Pr?(z)‘ < — 3
|z|=1 !

E.(f) + |1+ ——
" {\/cosvn

2N

v=n+1..,N-1

Proof. Indeed, itisclear that, for any polynomial of the form
n
Pa(2) = Y o,
k=0

the function

. n Lo
‘Pn(e”)‘z - 2 chckel(kk)t

j=0 k=0

365

J Ef),  (29)

isareal trigonometric polynomial of degree n. Now let T,(t) be atrigonometric poly-

nomia of degree n of theform
To(h) 1= |RYEY) - B[,

Thus, in exactly the same way asin the proof of Theorem 2.1, we obtain
B30 - Ri(@0)] < 2E4(f),

T (1) = PR - Rhe ™ < agZ ),

4E(f)
T
2N

R - B[ < Tl <

Finally, by virtue of the maximum-modulus principle, thisyields

2E,(F)
lcos 1.
\ 2N

PY@ - P@)| < max|Re") - Pe")| <

(2.10)

(2.11a)
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2

max| f(2) - PY(2)| < [ —5=+1|Ey(). (2.11b)
t /cosg—ﬁ

The proof of inequality (2.9) is similar to the proof of inequality (2.4").
Theorem 2.3 is thus proved.
3. Inversetheorems

In the theory of approximation of functions, any assertion is called inverse theoremiif it
establishes the degree of smoothness of a function (or a class of functions) depending on
the rate of vanishing of the difference between this function (or the class of functions) and
its approximations.

The notion of inverse theorem was introduced by Bernstein (1912). He obtained the
first important results in this direction. Later, his results in the periodic case were
supplemented by de laVallée Poussin (1919), Zygmund (1945), and other researchers. In
thisfield, the following inverse theorem is of principal importance®:

Theorem 3.1 ([Bernstein (1912); de la Vallée Poussin (1919); Stechkin (1951)]). As-
sume that a function o satisfies the following four conditionsfor r = 0:

(i) o isa continuous function;
(il) o isamonotonically increasing function;
(iii) ®(0) = 0,
(iv) forany t > 0,
o(2t) £ Co(t), C = const. 3D

Moreover, suppose that this function satisfies the following fifth condition for r > 1:
fo)

W | =< e (3.2)
0

If, for some integer r > 0 and a 2w-periodic function f, there exists a sequence of
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trigonometric polynomials T,, of degree n approximating the function f and such
that the inequalities

A 1
(1) - Ty < 77(5) (33)
aretruefor n=1,2,..., then fe ér, and, for a fixed number k = 1, 2,..., the

kth modulus of continuity w, (f";t) of the derivative f() of the function f satis-
fiesthe inequality

o(u)

AlAtk_[ I(Jrld A =const, for r =0,
o (f7; 1) < (3.4)
o(U) t w(u)
j |(Jrldu+_[ . duf for r >1
0

Proof. 1. First, we consider thecase r = 0. For any h > 0 and any natural N, we have

N
AT = AT + Y AT, 0 - Tam] + A Lf) - Tu®l.  (35)
j=1

Further, we choose anumber N such that

1 1
v <h <oy (3.6)

For r = 0, inequality (3.3) impliesthat

IN

T, O-FO]+[f©) - T, 10

2A0)(21 ) 2AC(1)(21]) 3.7)

T, =T, )

IN

and, hence, in view of the monatonicity of the function w, that

K+1 (,O(i) /2j -1
i 1 2 J o
24 w(—) - <2 [ S, (38)
2k+D( =D 1/2)
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Therefore, taking into account relations (3.5)—(3.8), the inequality for the absolute
value of the derivative of atrigonometric polynomial, and inequality (3.3) for r = 0, we
obtain

N .
1 1
AR f()] < Oh*) + 2cAn® zlzlkm(zj) + 2kAm(27N)
j=

N v2lt
o) + 2<2canky [ Sy + 2An(h)
j=1 12!

IN

o(u)
uk+1

o(u)
uk+l

IN

1 l
O(h*) + 2*2can [R5 du + 2“CAn(h) < AARK [Sdu,  (39)
h h

where A; isaconstant. Thisyieldsthe validity of Theorem 3.1 for r = 0.

2. Consider thecase r > 1.
We represent the function f in the form of a series

f) = T® + DT, O - T, .01 (3.10)
j=1
Since, by virtue of inequality (3.3),
A 1
T T0] = 280 0 (),
the Bernstein inequality implies that

1 1
Tz(k”(t)—Tz(k”_l(t) < 2"1Ap (F) < 2"*1ca (m(zk)).

By using thisinequality, the fact that, for each j = 1, 2, ..., the following inequality
holdsin view of thefact that ®7:

y2 -t _
[ 2@ > n202h),
v Y

and relation (3.10), we readily concludethat fe C'.
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Inthiscase, forany j =1, 2,..., weget

1Om - THO| < X TRO - TR
k=]

o 27
2*ACY (27 < 2'*2AC j %du = AQ(27)), (3.11)
k=] 0

IN

where A = 2"*2AC and
: u
o := [2W gy, (3.12)
0 u

By virtue of inequality (3.2), the function Q existsforal te [0, 1]. Moreover, this
function satisfies the conditions:

(8 Q isacontinuous function;
(b) Q isamonotonicaly increasing function;
() Q(0) = 0;
(d) forany t > 0,
4 u ; 2u too(u)
a@ = [®Way = [9 g, < ¢ [2MWay < cap.
o U o U o U

Therefore, in view of relation (3.11) and case 1 (r = 0), we get

1 itk
ot i) < AAK T i - A |:Q(U)Ji<
u u
t

t 1
+ _[ o(u) du]
1 ¢

uk+1

1

AA{th'm(u) du +j'w du]
ik uk+l u :
t 0

IN

The proof of Theorem 3.1 is completed.

This theorem yields the following corollaries:



370 Inverse theorems on the approximation of periodic functions Chapter 6

Corollary 3.1. If o is a function of the kth-modulus-of-continuity type, then the fol-
lowing inequality istrue:

o (F751) < Ajo(t), A, = congt, (3.13)

under the conditions of Theorem 3.1 for r = 0 and with the following additional condi-
tionfor r > 1:

t

[2Wau < Ao
0 u

Indeed, according to the first inequality in (3.4) for r = 0, we get

1
o (fit) < AlAtk”J'% du
t

IN

1
AAH (2%) oy du < Aw(t), A = const
u
t

Corollary 3.2. If, under the conditions of Theorem 3.1, w(t) = t* where O <o < 1,
then fe C" and, for anyinteger r > 0,

of M:t) < AtY, (3.14)
ie, fe WH

Corollary 3.3. If , under the conditions of Theorem 3.1, w(t) = t, then f C" and,
for any integer r > 0,

o,(f ;1) < At, (3.15)
ie, fe WZ.
4. On the constructive characteristics of periodic functions

of the Holder and Zygmund classes

1. Inthe case where the inverse theorems for a class of functions ® completely supple-
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ment the direct theoremsin a sense that the collection of direct and inverse theorems es-
tablishes the conditions that are both necessary and sufficient for functions to belong to

the class @, we say that the constructive characteristic is obtained for the class ®.
The Jackson theorem applied to periodic functions from the spaces W'H® (0 <

a<1) and W'Z and Corollaries 3.2 and 3.3 of the inverse Theorem 3.1 yield the fol-
lowing two theorems on the constructive characteristics of functions from the Holder

spaces W'H* (0< o < 1) and Zygmund spaces W'Z, respectively.

Theorem 4.1. Inorder that a function f belong to the space W'H® for integer r > 0

and o € (0, 1), it is necessary and sufficient that, for any natural n, one can find a
trigonometric polynomial T,, of degree n such that the inequality

A

r+o’
n

[ f(t) = Ty(t)| <

4.2)

where A is a constant independent of n, holds for all t e [0, 2r] or, equivalently, it
is necessary and sufficient that the best approximations E( ) of the function f satisfy
the conditions

A

r+o’
n

E (f) < (4.1)

where r >0 isan integer number.

Theorem 4.2. In order that a function f belong to the Zygmund space W'Z for a
nonnegative integer r, it is necessary and sufficient that, for any natural n, one can
find a trigonometric polynomial T, of degree n such that the inequality

A
nr+1'

| f(t) - To®)] < (4.2)

where A is a constant independent of n, holds for all te [0, 2r] or, equivalently, it
is necessary and sufficient that the best approximations E4 f) of the function f satisfy
the inequalities

A

r+1-

E (f) < -

4.2)

where r >0 isan integer number.
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2. We draw the attention of the reader to the fact that the constructive characteristic of
functions from the Holder classes W H%, where r is a nonnegative integer, was obtained
solely for thecasewhere O< o < 1. For o =1, therequired characteristic was obtained
for somewhat broader classes W Z but not for the classes W H?.

Trigub (1965) (see also [Znamenskii (1950)]) indicated that, in order to get the char-

acteristic of functions f from the spaces W'H! (and W'H® ) in terms of the theory of
approximation of functions, one can use somewhat “spoiled” polynomials, instead of
“good” polynomials traditionally used for the approximation of functions from these
spaces whose behavior is so good that they approximate the functions from both classes
(W'R! and W'Z > W'A?Y) with the same accuracy (equal to n—"-1) for any fixed
nonnegative integer r > 0. The indicated “spoiled” polynomials t,(t) = t,(f;t) of
degree n should besuch that | f(t) — t,(t)| = O(n"-1) for any function fe W'H* but
| £(t) — T,(t)| N — oo for any function fe W'Z \ WA,

We first present the results from [Dzyadyk (1975)] which are somewhat less exact
than the results obtained by Trigub (1965) but more general and be extended, unlike the
results from [Trigub (1965)] to the case of approximation of nonperiodic functions.

Theorem 4.3. In order that a 2r-periodic function f belong to the space I-||‘(” for a

k-majorant o, itis necessary and sufficient that there exist a sequence of trigonometric
polynomials U,, of degrees n =1, 2, ... with the following properties:

1ft) - U, )] < Aw(l) (4.3)

and

[ ft) - U < Aco(%), (4.4)
where A isa constant independent of n and
Un(t) = Up(t) — A% U b). (4.5)

Proof. Necessity. If fe I:||‘(”, then, according to Theorem 5.2.3, forany n =1, 2,...,
there existsapolynomial U, (t) = U,(f;t) of degree n such that

- = (13) < 2
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and, hence, by virtue of (4.5),

[ 1O -Unp®] < [FO) = Up®] + |4 (f =Upi D] + =A%)

Am(%)[1+ X + wk(f; %) < Alm(l),

n

IN

A; = const.

Sufficiency. If, for the function f, there exist polynomials U, and Uy, connected by
relation (4.5) and satisfying inequalities (4.3) and (4.4), then, in view of equality (4.5), we
get
k . * 1
| ALnUni D] = U, = Uy < ZA(D(H).
Thus, by using the Nikol’skii—Stechkin inequality (1.1') for any M and setting n =

1
=, at
[h:| weg

|45t

IN

| At = U + || AU, < 2"%(%) + |

INA

20 1)+ (5] o)

ro(2) (3 (2) - Anf2). 2 oms

IN

Theorem 4.3 is thus proved.

Theorem 4.3". In order that a 2r-periodic function f belong to the space I:||‘(" for a
k-majorant o, itisnecessary and sufficient that the inequalities

[0 - U < Aco(%), A = const, (4.6)

betrue for all natural n with polynomials U} (t) introduced by the formula

Unt) := Upt) — A0 Uni 1),
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where Up(t) = U,(f; t) aretrigonometric polynomials (operators) of degree n ap-

proximating any continuous 2r-periodic function f so that the following inequalities
are satisfied:

FO-Un(fi0] < Ao (f2), A = cons, (@7)

Proof. Necessity. If fe |—~||‘<”, then, according to Theorem 5.2.3, forany n =1, 2,... ,
there existsapolynomial U,(t) = U,(f; t) of degree n such that

10 -Un0)] < Ao (1 2)

Since

o(12) s (1)< (2

(inview of thefact that fe Hﬁ’ ), we proceed in exactly the same way asin the final part
of the proof of necessity in Theorem 4.3.

SQufficiency. If, for a given modulus of continuity o of order k, there exists a sequence
of trigonometric polynomials Uy, of the form (4.5) such that

[t - Un(F 1] < Aw(%), (4.9)

then, according to Corollary 3.1, w1 (f;t) < Ajo(t) and, hence,

10 -Un(£:0)] £ Aoa( 2] < Agw(2) (49)

by virtue of (4.7). In view of Theorem 4.3 and inequalities (4.8) and (4.9), we conclude
that f(t)e H,.
This compl etes the proof of Theorem 4.3'.

Note that a function f belongs to W'AY, where r >0 isan integer, if and only if
(see[Marchaud (1927)])

o . (f; 1) < At™L A = const. (4.10)
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As a consequence of Theorem 4.3, one can obtain the following result [Dzyadyk
(2975)]:

Theorem 4.4. In order that a 2r-periodic function f belong to the space W'A? for
a nonnegative integer r, it is necessary and sufficient that the following inequalities
holdforall n=1,2,...:

[ -Un(f;n| < An, A = congt, (4.11)

where Uy (f; ) arepolynomials determined asindicated in Theorem 4.3’ for k =r + 1.
3. In conclusion, we present a result taken from [Trigub (1965)] and valid, unlike The-
orem 4.3, not only for the entire sequence of numbers n = 1, 2, ... but also for each fixed

number n separately.

Theorem 4.5. For any 2n-periodic continuous function f and any natural numbers
k and n, the polynomials 7y, constructed by using kernels (2.3.27), i.e,

k k
. _ i  nk-v+l ViU
Ten(F; 1) = Dpt) + ZKZO(V)( 1) Dn(t+ n)

= D,(t) - 2—1|(A';,n(Dn; B, (4.12)

where D, isthe Dirichlet kernel, by the formula

T
1 1
Ten(H) = Ten(FiD) = = [Tt -wdu = (D = S A4S0, (413)
-7
where S(f; t) are partial sums of the Fourier series for the function f, possess the
following property:
There exist two positive constants ¢; = ¢q(k) and ¢, = c,(k) independent of n
such that the inequalities

oo (1 %) < [t =men(] < coo(£: ) (4.14)
hold uniformlyfor all n=1,2,....

Proof. By T, we denote the polynomial of degree n of the best uniform approximation
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of thefunction f. By setting || f — T, || = E,, and taking into account relation (4.13) and
thefact that S,(T*;t) = T, (), weobtan

* 1 * *
f—tn(f)=f-T) + ?A';,nTn ~ Ten(f =Th)

f T = ten(f—T2) - zikA';,n(f ST+ 27KAK f (4.15)

n/n

According to relation (2.3.27’), we have Htk,nH < 2km. Inview of equality (4.13),
thisyields

[ f = T0 = men(f = To) = 2744 o(F = T)

< E, + 2kE, + 27%2E, = (2k+ 2)E,.

On the one hand, by using this inequality, identity (4.15), and the generalized Jackson
theorem (Theorem 5.2.3), we obtain

[t = tn(D] < @+ 2B + 2%y (1 5] < [@k+2A+2 oy (1 1),

(4.16)

On the other hand, we can write

24 A% nf | < [ f = Tn(D]| + @k+ 2B, < @+ 3T = 1en(D)

whence, in view of the Nikol’skii —Stechkin inequality (1.1"), we conclude that

o 5) = s [Maf] < sp (AT ]+ dnr - T
0<h<mn/n he[0,nt/n]

)

IA

sup (t|
he[0,m/n]

B PN .
) 22 = (1) (0

K=
+ 2°E,

IN

(2 (] + [Tz - ) + 26,

IN

k ~
(2] [ ant | + @+ 29E,
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< @k +3) f - (D + @ +29E, < Alf - 1a(h)

. 417

where A = ¥(2k + 3) + 21 = congt.
Inequalities (4.16) and (4.17) yield the assertion of Theorem 4.5.

Remarksto Chapter 6

1. S N.Bernstein established inequality (1.1) in the form presented in our book for the
case where the trigonometric polynomial T, is even or odd. For trigonometric polyno-
mials of the general form, he established a somewhat less exact inequality: |T;(t)| <
2nM. However, it turned out that the factor 2 can be removed fairly easily. This was
done by M. Riesz (1914) and F. Riesz (1914) and, somewhat later, by Bernstein himself
and other researchers.

2. Theideaof the proof apparently appeared, for the first time, in the monograph by
delaVallée Poussin [de laVallée Poussin (1919)].

nM
V1-t?
inequalities established for |P;(t)| by Markov (1884). However, the proof proposed by
Markov was quite complicated and the results were not presented in the compact form
convenient for subsequent applications.

follows from the

3. TheBernstein inequaity [Bernstein (1912)] |R;(t)| <

4. The problem of the estimation of the norms of intermediate derivatives was studied
by numerous researchers. Here, we mention only the most significant results. The first
simplest problem of this sort was solved by Hadamard (1914):

If fe WP(—co, ), then

100l < V2[ FOlll 700l where  [lo(x)]| := esssup [(x)].

—co< X< o0

Later, Kolmogorov (1938) established the general result (Theorem 1.7).

For a finite segment, inequalities of the form (2.19) (with somewhat coarser con-
stants) were deduced for the first time by Gorny (1938) and Cartan (see, e.g., [Mandel-
brojt (1955)]).

Later, similar problems were studied in the metric of L (-, =) (see, e.g., [Taikov
(1968)]), on the semiaxis (see, e.g., [Matorin (1955)] and [Tikhomirov (1955)]), in the
case of several intermediate derivatives (see, e.g., [Rodov (1956)] and [Dzyadyk and Du-

bovik (1974), (1975)], in R? onthe space C [Konovalov (1977)], etc.
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5. Thisand all subsequent theoremsin Section 2 were proved by Dzyadyk in a some-
what weaker form [Dzyadyk (1971a)].

Note that the results similar to these theorems (but somewhat less exact) can readily
be established by using Theorems 2.1 and 2.2 for the case of approximation of continuous

functionsin R" (periodic and nonperiodic functions given on a parallelepiped [a;, by ] x
... X [ay byl).

6. Bernstein (1913) posed, for the first time, the problem of inverse theorems and

demonstrated, for periodic functions, that if En(f) < where r > 0 is an integer

nl‘+0€ !
and 0<a <1, then fe WH*™® for arbitrarily small & >0. Under the same assump-
tions, de la Vallée Poussin (1919) proved that if o # 1, then fe W'H*. Zygmund
(1945) introduced the spaces W'H and established, for (t) = t, theinverse theorems
for the classes W'Z. The inverse theorems for the spaces H® in the uniform metric
were first proved by Salem [(1935), (1940)]. For the spaces erfll?, the inverse theo-

remsin the metric LP with 1< p < wereobtained by A. Timan and M. Timan (see
[A. Timan (1950)]) and, in the uniform metric, by Stechkin (1951a).

Later, it was shown (see[Lozinskii (1952)] and [Bari and Stechkin (1956a)]) that the
inequalities

E(f) < Asw(%), n=12.., A= cons, (A)

where ® isafunction of the modulus-of-continuity type, imply that the kth modulus of
continuity for afunction f satisfiesthe condition

o (f; ) £ Ayo(d) (B)

and, vice versa, it is clear that (A) follows from (B) if and only if there exists at least one
constant A > 1 such that

lim supLAS) < AX,

50 ()



Chapter 7
Approximation by polynomials

1. Introduction

1.1. Let f bea 2r-periodic function and let En(f) be the value of its best uniform ap-
proximation by trigonometric polynomials of degree n. Recall that Jackson [(1912),
(1930)] proved the direct theorem according to which one has

E (f) < cml(f; %) (1.2)

The direct Jackson theorems [Jackson (1912), (1930)] and the inverse Bernstein
[Bernstein (1912), (1930)] and de la Vallée Poussin [de la Vallée Poussin (1919)] theo-

rems give a constructive characteristic of the Holder spaces H* for o € (0; 1), namely

1
n®

E.(f) = o( ) & o (f;t) = OtY), (1.2)

and a constructive characteristic of the spaces W'H* for o. e (0; 1):

En(f) = O(%a) e o(f7 1 = o(*. (13)
n
The interesting case where én(f) = O(%) does not fit these formulations because

they essentially usethefactthat oo # 0 and a # 1. Itisknown that

o(f,t) = Ot) = E(f) = o(%). (L4)

However, the converse statement is not true. Zygmund [(1945), (1959)] noted for the first
time that this case also admits a formulation in terms of equivalence if, instead of first-
order moduli of continuity, one uses a second-order modulus of continuity. He proved
that the relations

E (f) = o(%) and  a,(f:t) = O(t) (L5)
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are equivalent, and the same is also true for the relations

E(f) = o(nlr) and o (f" D t) = Ot). (1.6)

For the spaces W'H of periodic functions, a constructive characteristic was ob-
tained by Zygmund [(1924), (1945)] (for k=2 and o, (f; t)<t), Akhiezer (for k = 2;
see the first edition of the book [Akhiezer (1965)]), and Stechkin [(1949), (1951),
(19514)] (for k= 3).

1.2. Inthe nonperiodic casg, i.e., for fe C([a, b]), the estimate

Enf) < ooy (°-2: 11 (a1 (L7

can easily be derived from (1.1) by using the change of variables 2x = (b — a) cost +
b+ a. However, relations (1.2), (1.3), (1.5), and (1.6) are not true in this case (V. Mator-
nyi; see also Theorem 3.7.2). S. Nikol’skii, Dzyadyk, and Timan showed that, in the non-

periodic case, a constructive characteristic isrealized not intermsof E(f) but in terms

of a pointwise estimate for the deviation of the function f from the approximating poly-
nomial.
First, S. Nikol’skii (1946a) established that if

[ f(x)— f(X")| < [X - X"

, X, X" e [-1,1] =: 1,

then one can construct asequence { P,} of polynomials P, of degree n for f such that

/ 2
| f(x) - P,(x)| < ;(Nlnx +O(r|]g)) xel. (1.8)

Later, Timan [(1951), (1960)] proved that if fe W H[1; ¢; 1], then there exists a se-
quence {P,} of polynomials B, such that

2\ 2
| f(x) - P,(¥)| < C(:ﬁ 1-x ) (p(12+ 1-x ) xe l. (1.9)

Denote

Pr(X) 1= n—lz + =2 po(x) = L (1.10)
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In 1956, Dzyadyk (1956) obtained the following inequality for the modulus of the de-
rivative of an algebraic polynomial:

[ R, < itM] e3Py

. (1.11)
where se R, M = M(s), and j € N. Using thisinequality, he established the following
inversetheorem: Let (r+1)e N and o € (0; 1). If there exists a sequence {P,} of
polynomials B, such that

[fO0 = R)| < pn™ "0,  xel, (112)

then fe WH®(l). Thus, as a result, a constructive characteristic was found for the
Holder spaces W H*([a, b]), 0 < o < 1.

The direct theorem for the class W H[2; ¢; [a, b]], in particular, for the Zygmund
class W Z[[a, b]], was proved by Dzyadyk [(1958), (1958b)] and Freud (1959); for the

class W HI[k; ¢; [a, b]], k > 2, thistheorem was proved by Brudnyi [(1963), (1968)].
The inverse theorem was proved by Dzyadyk [(1958), (1958b)] for the Zygmund

space WZ[[a, b]] and by Timan (1957) (k = 1), Lebed’ [(1957), (1975)], and Brud-
nyi (1959) for the spaces W'H?([a, b]).

1.3. Weformulate the indicated results on the approximation of functions by polynomials
on a segment in the form of three theorems, calling them the classical theorems of ap-
proximation without restrictions. Recall that ¢ stands everywhere for constants that may
depend only on k and r.

Theorem 1.1 (direct theorem). Supposethat ke N, (r+1)e N, and m = k+r. If

fe C'(1), then, for each natural n > m-— 1, there exists an algebraic polynomial P,
of degree n for which

[ f(x) - P,0)| < 0o (pr(; £7; 1),  xel. (1.13)
Theorem 1.2 (inverse theorem). Supposethat ke N, (r+1)e N, ¢ € CDk, and m =

k +r. If, for a function f defined on I, for each n > m -1, there exists an alge-
braic polynomial B, of degree n such that

[100 = Ru®)] < cpn(p(pa(x),  x€ 1, (114)
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then

t 1
ot f7;1) < C(Jru‘l(p(u)du+tk '[u‘k‘l(p(u)duj, 0<t< % (1.15)
0 t

We say that afunction ¢ € @ satisfies the Zygmund- Stechkin condition and write
oe Skr) if

t 1

jru‘%(u)du + t J.u‘k‘l(p(u)du = O(o(1)). (1.16)
0 t

Theorem 1.3 (constructive characteristic). Supposethat ke N, (r+1)e N, m=k +r,

and ¢ € S(k, r). A function f belongs to W'H?(I) if and only if, for each n >
m-—1, thereexistsan algebraic polynomial B, of degree n such that

[0 = P < Mpr()9(pq(x)).,

(2.17)
where M = const isindependent of n and x.
1.4. Inthis chapter, we use the following notation: | := [-1; 1], o (t; ) : = @\ (t; f; 1),
WHIK 0] := WHIk ; 1], and WH? := WH2(I).

In what follows, we also write p instead of p,(X), i.e,

_ 1 J1-x2
p—pn(X)—¥+\ P

Notethat if x* = y2 then p # p,(y), andif ny # n, then p # p, (x). We also denote
o 1= arccosy and P := arccosx, X, ye l. Inparticular,

= + sinp,
p= 7+ snp

_ 1 1.
pn(y) = 2 + 65'”0(-

In this chapter, we often use the following obvious estimate:

pa(y) < dp(x-y|+p), xel, yel (1.18)
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In particular, estimate (1.18) readily yields

1
2x=yl+p) > [x=yl+pay) > J(x=yl+p), xel yel (119
2. Inequality for the modulus of the derivative of
an algebraic polynomial. Inversetheorem
2.1. The Dzyadyk inequality (1.11) isageneralization of the Markov inequality
IRl < n?IRi] (23)
and the Bernstein inequality [Bernstein (1912)]

V1I- X3P < R, xel. (2.2)

In turn, Lebed’ [(1957), (1975)] and Brudnyi (1959) generalized inequality (1.11),
namely, they proved that if se R and ¢ e @ then

pr‘fl(p_l(pn)P,{ < MHprS](p_l(pn)Pn , M = M(s k) = const. (2.3

In particular,

a0~ )R] < o7 PnIR]- (2.4)

We proveinequalities (2.3) and (2.4) in Subsections 2.2-2.4. For this purpose, we use
Dzyadyk’s arguments based on the maximum-modulus principle.

2.2. Let

z=%¥YWw) := %(WJrvlv)

be aZhukovskii function that maps the exterior of the unit circle |w| = 1 conformally
and univalently onto the exterior of 1, i.e., onto the set C\I, where C is the complex
plane. Let w = ®(z) denote the inverse mapping. Notethat |®(z)| = 1 for ze I.

Theimage of thecircle |w| = 1+ 1/n under the mapping z = ¥ (w) is called the
nth level line of the segment | and isdenoted by T',,, i.e,



384 Approximation by polynomials Chapter 7
— . 1
r,= zeC.\CD(z)\=1+H :

Notethat thelevel line T,, isanédllipse. Let d,(X) denote the distance from a point
xel to I,,. Since for xe I, onehas

o[

n

2 2 2 2
_ n+1/2 1- x2) N cost—xn +2n+1/2 ,
n(n+1) n“+n

where t e [0, 2r], we conclude that

) 2
d?(x) = min ‘P(Mét)—x‘
te[0,2n] n
2 5 2
= [n+12 (1—x2)+(max{0; Xn+2n+1/2_1}).
nn+1 n“+n
Therefore,
2
V2T i x et
n“+n n“+n+12
dn(x) = ,
1 . n“+n
1-|x|+ if <|x| <1,
ll 2n% +2n n?+n+1/2 ll
whence
1
gpn(X) < d(X) € pp(x), n= 1l (2.5)

Lemma 2.1. Let (I +1)e N, ne N, Xge N, d=d, (%), and let y ={z: |z x| =
d} beacircleof radius d centered at the point x,. If

ROl < (Ix=x|+d)|,  xel, (2.6)
then the following inequality holds for all ze ¥:

IP(2)| < Md, M = M(l) = const. 2.7)
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Proof. Since d < 1, at least one of thetwo points X, + d and x,—d belongsto |. As-
sume, for definiteness, that (xg+ d) € 1. Thefunction

z=Y(v) = %(v+;)+ X0 +%
v

maps the exterior of thecircle |v| = 1 conformally and univalently onto the exterior of
the segment [Xg, Xg+d]. Let v = ®,(z) denote the mapping inverseto ¥ (v). Note
that, for all ze C, onehas

%\d)l(z)\ < |z %| + d < 2d|@y(2)]. 2.9)

Indeed,
d - di, ;1 ad
Z\le(z)\ = ‘v+u+2‘ * 7

#0) - 0| + 3 = 2| + &

< z=%| +d = [#0) - x|+ d =

v+ = +2‘+d

o] + % +d < 2du| = 2d|dy2)].

Weintroduce the function F(z) : (Dl_n_l(Z)CDIl(Z)Pn(Z) analyticin C\I. Since

2@ _ iy v _ 4

lim @ _ lim WV = 2, lim = -,
zoe Z w—eo P(W) zoeo  Z v—e P1(V) d

we have F(«) = 0. By virtue of the maximum-modulus principle, taking (2.8) into ac-
count, we obtain the following relation for all ze C:

|
IF@)| < max|Foo| = max ROl )‘ maxw < (2d).
xel ‘q)l(x)‘ xel | Dy(x)|

In particular, < (2d)I for ze . Therefore, taking (2.8) into account, we obtain
the following relation for z € v:
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@ < (20)' [0 o2 < (20)' |02 8.

It remains to note that y liesinside the level line T',, and, hence, the preimage of the
circle y liesinthering 1 < |w| = 1+1/n, sothat 1 < |®(z)| = 1+1/n, i.e,

n+1
)" < (1+ %) <4

|
Corollary 2.1. Under the conditions of Lemma 2.1, the following inequality is true:
BP0 < jrmd' ). (2.9)
Indeed, using the Cauchy integral formulaand relation (2.7), we get
() _d i h@ gt md! _ oamdl-
‘Pn (xo)‘ = o {(z—nxo)j*l S op gl mesy = jIMd .
Lemma?2.2. Supposethat (I+1)e N, ne N, and Xy e I. If
ROO| < (Ix= x| +pn(x)!,  xel, (2.10)
then
[Ri(x0)| < Mph (%), M = M(l) = const. (211)

Lemma2.2 isacorollary of inequalities (2.5) and (2.9).

2.3. Weproveinequality (2.4). Let |P,(x)| < @(p), xe |. Wetakeapoint xy e I. By
virtue of (1.9), we get

IN

9(p) < @(2|x—Xg| +2pn(%g))

2(1x = %o| + Pn(%0))*PrK(X0) @ (Pn(X0))

IN

L Al X = Xo| + pn(¥0)) "
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Therefore, by virtue of (2.11), we obtain

|RI00)| < AgM(k)p (%) = M(I9p, (%)@ (Pn(X0)),
which provesinequality (2.4).

2.4. We proveinequality (2.3). For s< 0, inequality (2.3) isatrivia corollary of (2.4)
because t_s(p(t)e d)kk, where k™ = k—[s] and [s] istheinteger part of s.

Let us prove inequality (2.3) for s>0. Denote s" =[s] + 1. Let P(x) < p_s(p(p),
xe |. Wetakeapoint X, € |. By virtue of (1.19), we get

0(p) < 2°(|x = %o| + pn(%0)) P (%) @ (Pn(X0));

according to (1.18) and (1.19), we have

p > (4(x=%| +p)) T p20x0) = (B(|X=X| +pn(%)) " p2(X))-

Hence,

IP0] £ (16)*pnS(X0)Pn (%) (|X = Xo| + pn(%0)) "0 (p)

k+s*

IN

(16)Pr>(X0)Pn % (%) (X = Xo| + Pn(%)) ™ @(pn(%0))

k+s*

} Bo([x = %[ + pn(x0))

Therefore, by virtue of (2.11), we obtain

IRI(%0)| < BoM(S)pE™S " L(x0) = (16)*M(S)ppS 2(%0)0(Pn(Xo))-

2.5. Letusprove Theorem 1.2 for r = 0.

Denote p,(X) := pon(X). Notethat ppi1(X) £ pr(X) £ 4p1(X), X |. Assume,
for simplicity, that k # 1. Wechoose aninteger ny from the condition P <k-1<
2™ Wefix apoint xye | and anumber he (0,K°] sothat (x,+ kh)e | and
choose an integer n. from the condition py, 1(Xg) <kh< pp (X). For n<n. +1 and
X € [Xg, Xo + kh], using (1.18), we obtain the estimates c;p,(Xg) < Pr(X) < Cpp(Xg)-

Notethat n. > ny because kh < K°. Weset
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Quo+1() 1= Pyga(X) — Rea(0)
and
QX 1= Pp(X) = Pya(¥)

for n > ng + 1. We expand the function f into the Bernstein telescopic sum, i.e., we
represent it in the form

n.+1
fx) = () = Pyna(X) + Y Qu(X) + Rca(X).
n=ng+1
Since
k ) k
‘Ah( f - P2n*+1’ Xo)‘ <2 || f— P2n*+1 [0, Xo--Kh]

N

< 2%0(copn,+1(X0)) < c30(h), ARy %) = 0,

the problem reduces to the estimation of the kth difference A';(Qn; Xg). It follows from
condition (1.14) of Theorem 1.2 that, for n > ny + 1, onehas

Q)| < [P0 = FOO] + | F(X) = Bna (0]
< @(Pn(0) + 0(Pn_1() < 20(Pr_1(0),  Xxel,
|Que+1(®)| < 20(p-1(x),  xel,
whence

1Qu0)| £ 20(4p,(x) < 2:4%0(Py(¥), Xel, n>ny+1.

Using inequality (2.4), we get
QM) < e “00(Pa(x),  xel, nzng+1l

Therefore, for al xe [Xg, Xg+ kh] and n = ng+1,...,n. +1, wehave
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QA0

Hence,

‘Alﬁ(f;xo)‘

IN

IN

IN

IN

IN

P “(00(Pa()) < 4P K (OP(CPA(X))

CsPr ¥(%0) O(Pn(X0))

Pn-1(Xp)
s [ Pn* %) 9(Pn(X0)(Prs(X0) — pn(x) du
ﬁn(xo)

Pn-1(Xo) ek i
Cs _[ 47pp1(Xo) ¢(W)2pp 1 (Xo)du
ﬁn(xo)

Pn-1(X0)
Ce f u*Lp(uydu.
Pn(Xo)

n+1 Pn-1(X0)
o) + e Y, [ i owyd

n=no+1 p,(xo)

Eno(XO)
caoh) + ch [ u ™ touydu

Prw +1(X0)

2 1
c0(h) + cghX j u ™ tpuydu < c;h* ju"“%p(u)du.

kh/4 h

Thus, Theorem 1.2 isproved for r = 0.

2.6. Let usprove Theorem 1.2 for r # 0.

Denote ¢(t) : = t"@(t). According to the result proved above, we have

1
oyt f) < cltmju‘m‘lﬁ(u)du.
t

Therefore, by virtue of inequality (3.5.16), we get

389
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A

t t 1
ot f) < ¢ ju‘r‘lwm(u, fydu < ¢, _[uk‘l(_]‘u;m‘lcp(u)du} du
0 0 u

t 1
Ko\, ( Ju oydu+t* [u™ o) duJ .
0 t

2.7. Lemma23. Supposethat ke N, (r+1)e N, m=k+r, h > 0, (xg+ kh)e I,
Nge N, (n0+1)_2 <h< naz, and € = {e,} isa nonincreasing sequence of posi-
tive numbers ¢,, (n+1)e N. If, for all n, onehas

E () < e, (2.12)
then

oo Ny
[A(ED x| < ¢ Y ¥ ey +ong PN AT (2.13)

j=ng+1 j=1
Let us prove Lemma2.3for r # 0. Denote &, := €,,. Let Py = Px(x) bea
polynomial of degree 2" for which H f - P2n < 2g, andlet Q, = Qn(X) := Pon(X) —
Pn-1(X). We choose an integer n. from the condition 2™ < ny < 2™ "' and represent

f intheform

N« oo
fX) = RO+ DQ) + Y, QuX) 1= i3(X) + ip(X) + iz(x).

n=1 n=n.+1

Taking into account that H Qp

< 4g,_, and using the Markov inequality (2.1), we es-

tablish that
[Q] < 42276, and QM| < 425,
whence
| ARG x0)| < i < 4hki4”m§n71,
n—1

A0 x| < 2igm| < 42¢ 3 4, .

n=n.+1
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Taking into account that

we get

o

A (FD: x) < 4nK 24”"‘5”_ +42¢ Y 4Mg

n=1 n=n.+1
Ne 2n 1
< 4hk4m€ + 42m+1hk 2 z s 2m-— lgn 1
n= 2] 2n 2
i 2n 1
2r-1~k S2r—1=
+ 4277 Y 2 €1
n=n. +1j=2""24
Ne 2n—1
< 4m+lhk81 + 42m+1hk Z Z j2m—18]_
n=2 j=2""241
o Zn—l
2r-15k s 2r—1
+ 42NN
n=n+1j=2""241
m -1
- 4m+1hk£ + 42m+1hk EJZm 1. + 42r 12k ZJZr lj
i=1 j=2"
oo o Ny
22r—1 — +2m-1
< c YT 4+ e ™Y [P e

j=ng+1 j=1

Thus, Lemma 2.3 isproved for r # 0.

For r =0, estimate (2.13) is proved in the same way as Theorem 1.2 for r = O;
moreover, the proof becomes even simpler because, by analogy with the arguments pre-
sented above, one should use the Markov inequality (2.1) instead of inequality (2.3).
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Note that, in the casewhere r = 0 and k = 1, one must add the term cna2k
(2.13).

Lemma 2.3 means that relation (3.7.24) yields (3.7.25).

Lemma 2.3 also yields the inverse theorem for DT,-moduli of continuity (see [Ditz-
ian and Totik (1987)] for r = 0).

€ to

Theorem 2.1. Let ke N, (r+1)e N, ¢e @, and fe C(l). If

E(f) < lr(p(;), n>kK+r-1,
n "\n
then
Frou) T o) 1
o € F ) < o[ du + ok du, 0<tg< =, 214
(’)k,r( ) '([ u _!‘uk+]_ 2 ( )

3. Polynomial kernels. Direct theorem

3.1. Inthissection, we study Dzyadyk-type polynomial kernels (blendings) of the form

D(y,X) = Y o, (yx".
v=0

It turns out that the algebraic polynomials

1

PA(¥) = [ (y)D(y, dy
-1

are afairly universal tool for the approximation of functions fe C(l), | :=[-1; 1].

Recall (see Section 1) that we write p instead of p,(x), o := arccosy, and B : =
arccosx, X,yel. By C (incontrast to c) we denote positive numbers whose values
may depend only on fixed natural numbers | and r and on fixed nonnegative integer
numbers p, g, and s

3.2. Recall someinformation on trigonometric kernels. The trigonometric polynomial

.2 n-1

sin“nt/2 1 ( v)
F.(t)= ———— = = + 1- — | cosvt 31
D= nentiz ~ 2 szl n D

is called a Fejér kernel.
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The function

3., () = 1(9””“2)2(”1) (3.2)
n Yor \ sint/2 ’ ‘
where
T : 2r+1)
sinnt/2
Tnr = J( : ) dt,
Y \sint/2
is called a Jackson-type kernel.
The following estimates are true:
Cfln2r+l < Yn,r < Cn2r+1’ (33)
TE . .
[dn,@tidt < ol j=o0.. 2 (3.4)
0

It follows from relation (3.1) that J,, () is atrigonometric polynomial of degree
(r+1)(n-=-12), i.e,

1 1 (r+1(n-1)
=+ = Y jynrCOSVt, (35)
2n o

Jnr(t) =
where

Y Y
[ [ivnrcos?vtdt = [ 3, (®cosvtdt.
nr =g L :

-T

3.3. Definition 3.1. The function

1 al 1 B+o
- XY Bf aJn,r(t) dt, (3.6)

Dl,nr(yr X) =
where I,n,r e N, x,ye |, a := arccosy, and B := arccosx, is called a Dzyadyk-
type polynomial kernel.

It follows from representation (3.5) that the kernel D (Y, X) isapolynomial of de-
gree (r+1)(n-1)-1 inthevariable x, and D, 1 (Y, X) = 0.
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3.4. Lemma 3.1. Thefollowing inequality istrue:

o [ (I (@4 B) = Iy B))] Pn (¥ (37)
_— o+ o— —n_ .
oxPlsing ™ Inr (\x y\+pn(x))r
We divide the proof of the lemma into three parts.
1. We show that the Fejér kernel (3.1) satisfies the estimate
| oo+ B) — Fy(@—B)| < 2p*sinp. (39)

Indeed, taking (3.3) into account, for sin3 < 1/n we obtain

2(1— —) sinvosinvp

|Fa(ou+ B) — Fy(a = B)|

n-1
22(1—%)vsinv[3 < n?sinp < 2p~tsing.

v=1

IN

For sinp > 1/n, wehave |F,(o.+B)— Fy(a.—B)| < n < 2p~1sinB. Estimate (3.8) is
proved.

2. Let us prove inequality (3.7) for p = 0. To this end, we represent the left-hand
sideof (3.7) intheform

iB(Jn,AmB) Jnr(@—B) = —anrz”l n? YRy + B) — Fa(a — B)A,

where

r

Z y (o + PRy V(e = P). (39

It follows from (3.2) and (3.8) that

s—nﬁvmzr” N2 YRy + B) - Fy(a - B)| < ¢
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Therefore, it remainsto estimate A. If |x—y| < p, then

2r

A<+ 'n" < r+1)2" < (r+D)p'(|x-y|+p)".

If [x—y|>p, then, bringing the sum in (3.9) to the common denominator 2~ "n'(x —
y)?" and using the inequalities

sinz(aT_B) < sinz(aTJrB) < Zsin(azﬁ)sin(agﬁ) = |x—y| +1-%

we get

A< (r+12 (sin (a ; B))Zr (n(x —y))™%

< (r+ D2 (Ix-y[+ 1) (n"Px-9) " < (r+ 12 [x-y[ ",
Thelemmais proved for p = 0.

3. Let pe N. Denote

D(Y,X) 1= Dy (¥, X) = s—iﬁ (I s (0= B) = o (00 + B)),

) _ 0P
D*™(y,x) := ﬁ D(y, x).

By induction, assume that (3.7) istrue for thenumber p -1, which is equivaent to
the system of two inequalities

[DP By, x| < Cp ™ |(x-y DP(y, x| < Cp P
By virtue of (1.11), we obtain the following inequalities:

(i) D™y, )| < CpPH,

(ii) \%((x—y)fD(P‘”(y, x)| < Cp Pt

Using inequality (ii) and the induction hypothesis, we get
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[(x—y)'DP(y, x)| =

a% ((x - y)" DPD(y, %)) — r(x — y) DP-D(y, x)

< Cp P heCIx—y[ T P < Cp P (L [x -y ).

Inequality (3.7) follows from the estimate obtained and estimate (i).

3.5. Denote

B+o
Par(xy) = (x=y'" [ Iy bt (3.10)
B-o

We define numbers &  asfollows: if p > 1+q, then g ,, =0; if p=1+gq, then
apq = DY -Dql if | <p<l+q, then g ,, = 0; andif p <1, then

-1 I
= P
o ( p)l+q—p'

We also introduce the following notation: | = | if | isevenand | =1 +1 if | is
odd.

Lemma 3.2. The function
1 ap
Anpar() = JO=T =500 (0N dy - 8 pq(x+ DR (341
-1

isan algebraic polynomial of degree <1+q-p (if  +q-p <0, then A 4,=0).
Furthermore,

| Anpar] < Cn ', (3.12)

where I = min{2r+1,1" } and I = max {I, [+ q— p}.

Proof. Thelemma can easily be proved by induction on g with the use of the recurrence
relation

AI,an+1,r(X) = A|+1,n,pqr(x) - pAI,np—l,qr(X)-
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Therefore, only thecases p = 0 and q = 0 must be verified.

1. Let p = 0. Integrating (3.11) by parts, we obtain

A+ gX) 1= A ogr(X)

_(I + Q)_l J(COSB - COSO(.)Hq(Jn’r(OL + B) - ‘]n,r(OC - B)) dor.
0

Taking into account the orthogonality of the system { cosva} on [0, ] and the iden-
tity
(r+1)(n-1)

: 1
Jnr@+PB)=Jp (@=PB) = = D j,nrcOSVBCOSVOL + =
v=1

which follows from (3.5), we conclude that A, 4(X) isan algebraic polynomial of degree
<1 +q. Furthermore, representing Ay, 4(X) in theform

Argx) = =279+ gt jf (sin ;)Hq (sin (B + ;))Hq Jnp it

-7

and using (3.4), we get

271791 + [ (snt)™ ~(+q)
D[ Aq < j(sm 2) Jnrdt < Cn
-7

for | +g<2r+1and

HA+qH| < 2|+q+lﬂ:(| +q)_1YH,]i: < Cn_zr_l

for | +q>2r+1

2. By virtue of theidentity A ,,0,(X) = AP(x), thecase g = 0 follows from the
case p = 0 considered above.
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3.6. Relation (3.5), Lemmas 3.1 and 3.2, and the representation

i

) IVap+|v
oxP

Dy (%0 = z(l—n'( =9 D Dun (90

v=1
yield the following statement:
Theorem 3.1 [Shevchuk (1989), (1992)]. The polynomial kernel
B+ol

( x=y)' ™ [ It
B-o

1

Dl,nr(yax) = ( 1)|

is an algebraic polynomial of degree (r + 1)(n-1) -1 in the variable x. Further-
more, this kernel satisfiesthe inequalities

P PO (X =yl + pn(¥) " (313

ap
P Dinr (Vs X)

% j(y— X ap D (%, X)dy = 8 p| < Cn-MEHLL (3.14)

where 8 , is the Kronecker symbol. Moreover, the integral in (3.14) is an algebraic
polynomial of degree < q-p (for g—p < O, itisidentically equal to zero).

3.7. Theidea of the representation of the Dzyadyk kernel in the form (3.6) is based on the
application of the function

B+o
On (X Y) 1= @1 (XY) = J Jn,r(t)dt
B-o

used by DeVore and Yu (1985). We set (x—y)g =1 if x2y and (x—y)?r =0 if
X<y.

Theorem 3.2 [DeVoreand Yu (1985)]. For all xe | and ye I, onehas

[0nr )= (x=y)?| < en®

if [x—y|>1, and
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|0nr (% V) = (X = V2| < c(pa®)+Pa(Y)Z (|X = Y[+ pa(X) +pa(y))

if [ x—y| <1

Proof. Denote A : = ‘(pn’,(x, y) — (X — y)?r‘, O(XY) 1= @n (X y) and J(t) 1= J, (D).

Wetake into account the estimate [B—o| < |B+ o] < 2rn - [B— | and the evenness
and periodicity of the Jackson-type kernel J(t). First,let x <y, i.e, B > a. Then

B+o T
A= o(xYy) = j Jhdt < j Jtdt.
B-o B-o
Let x >y, i.e, B < a. Then
T B+o
A=1-0¢Xy) = j Jbdt — j Jtat
- B-o
B-oa T T
= '[J(t)dt - '[J(t)dt <2 '[J(t)dt,
- B+o o—B

i.e, foral x #y, wehave

T T 2r
As<2 [Imd < 2 j( t ) J)dt.

oy jo—p [~ Bl

Therefore, by virtue of (3.4), we get

A< 2a-pB[? [Pamd < c(no—B?.
0

2r

If |x—y| > 1, then [B—a| > 1 and, consequently, A < c,n “. If 1 >

|x—y| = (sina+sinB)/n, then 1 < n|tan(a. — B)/2| < n|o - B|, whence

1 . 1
2nja—-B|  ntan((e-B)/2)|+1

_ _ (Sno+snB)/n _  pnWHp
[X=y[+@na+snB)/n - [Xx=y[+pn(¥)+p
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Finaly, if |[x—y| < (sina+sinB)/n, then

A<1<2Z(pay)+p) (Ix=yl+pa(M+p) ™.
Theorem 3.2 and inequalities (1.18) and (1.19) yield the following statement:

Corallary 3.1. The following estimates are true:

|0nr (% V) = (x=y)2| < con(X=yl+pay) ",
(3.15)
[X= Y = @ 6 Y| < Clx=y[H(Ix=yl+p)"p".

The last estimate immediately yields the direct theorem (Theorem 1.1) for fe WI].
Indeed, denoting

r-1 1
Pa() = SO THIED+DY + (=D [FOW0r 0% V)Y,
v=0 -1

we obtain

1
1100 = R0l = (=) | [HOWIK = W5 = @p (X Wdy
-1

A

1
< o =) [Ix—y[Hx—yl+p) "y < o
-1

For the approximation of a continuous (not necessarily differentiable) function, it is con-
venient to usethe kernels D .

3.8. Prior to the proof of the direct theorem (Theorem 1.1), we prove Lemma 3.3.

For the segment J : = [a, b], function fe C(J), and number me N, we denote by
Lm_1(X; f; J) the Lagrange polynomial that interpolates the function a¢ m  equidistant
points of J, including its endpoints, i.e., Lo(x;f;J)= f(a) and L,,_1(x;f;J) =
L(x;f;a,a+(b-a)/(m-1),...,b) for m# 1.

Lemma3.3. Supposethat le N, me N, I>2m, ne N, nz1, (p+1)e N, g ®",
X € l, po i= pn(X), J 1= [Xo—pPo. X+ polNI, 8 >0, fe C(l), and
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1
Dymd %) 2= Lt OGF D)+ J(FY) = Lg% 5 1)t (3 X)dly
-1

isa polynomial of degree < (I +1)(n-1). If fe H[m, ¢], then

| P n0%0; ) = LEL1(0%os £ )|

P |-2m
< Cp5p(wm(po; f3[Xp = 8, %o + 81N I)+(§°) (P(Po))- (3.16)

Proof. Without loss of generality, we assumethat py < § < 2. Denote

) = 0" oty f
DP(y,%) 1= 25 Doai¥% 0, 900 1= 100~ Ly 1 (X 31,

and L(x) := Ly_1(X g; J) and note that

1
P06 ) = LR106 £:9) = [(9y) - Ly)DP(y, x)dly
-1

1
+ LyDPy, 0dy - LPx0

-1

=1 iy(x) + ip(x) = LP (),

AR(f;x) = ARG, %), X (x+mh)e . (3.17)
1. Letusestimate i;(%y). Denote
Js 1= [X%-98,%+3]NI and o) 1= oyt f; Is)= oyt g; Js).
Using (3.6.15), we obtain

1900 — LO)| = cpg™ (X = Xo| + po)"0(pg), X € Js,

|9¥) = L[ = " (|X = Xo| + po)"0(pg), X € I
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Furthermore, according to (3.13), we have |DP(y, xp)| < Cypp P H(|y - Xo| + po)”
Decomposing theintegral i;(xXy) into two integrals (over |5 and 1\ 15), we get

[ (ay) - LDy, xp)dy
Js

cCopg P lpo) [ (Iy - Xo|+ po)™ ' dy

Js

IN

aCopp P 0(po) ,[ |y =% |+po)™ " dy < CypgPipo),

—oo

IN

[(aty) - LyND Py, 0 dy

AN

< 26Cpp "™ 0(po) [(1y — %ol +po)™ ' dy
)

< Cypy @(po)(g’)l i < Cypg @(po)(g’)l o

2. Let usestimate the difference i,(Xg) — L(p)(xo). We expand the polynomia L (x)
into a Taylor series:

L(x) = 2( XO) L(q)(Xo)

Then

m-1 1
ir(Xg) — L(p)(XO) = (;‘ J(y XO)CID(D)(y Xo) dy — qu] L(q)(XO)

I
M
>

s
5
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By virtue of the Whitney inequality (see (3.6.12)), wehave |g|| < cs¢(1). Therefore,
using (3.3.48), we get ‘L(q)(xo)‘ < cppe(). Furthermore, by virtue of (3.14), we
obtain |A,| < c;n? 1. Hence,

INA

m-1
lia(x0) = LP(x0)| < 3 ceen pgto®
q=0

IN

meeCon~2 oy Me(D) < Copl2Mo(po)

IN

|—2mip —p pio 1-2m+p
Cg2 Po" |75 o(po)

|-2m

Cgpap(‘g))l_zm_pw(po) = 5" (%) 7 otpo)

Thus,

A

D) 0 (Xi ) = LR (%03 T3 )] < [06)] + [i2060) = LP0xg)]

IA

p |-2m
(C3 + Ga)pg P(pg) + (C4 + Co)pg P (go) ®(Po)

IN

| -2m
Cpo® (w(po) + (%) (P(Po))-

3.9. We now prove the direct theorem (Theorem 1.1). More exactly, we prove Theorem

3.3, which somewhat generalizes both Theorem 1.1 and the Trigub theorem [Trigub
(1962)] on the joint approximation of afunction and its derivatives and on an estimate for
the modulus of the derivative of approximating polynomials.

Theorem 3.3. If fe WHI[k, @], then, for eachn > k +r — 1, there exists an alge-
braic polynomial P, of degree <n such that, for all x e I, the following inequal-

itiesaretrue:

[ FP00 - BP0 < cpp P09(Pn(0), P = 0,....r, (318
PP < —pp(zx)(pi,(x)cp(pn(X))+ K+ 1 =PIl 004 pa0o1n) (3.19)

p=20..,m
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Proof. First, assumethat m—-1 < n < 2m+1. Then p>c; andwecantake P,(x) : =
Lm_1(x; f; 1). Estimate (3.18) follows from the Whitney inequality (see (3.6.12)), and es-
timate (3.19) follows from (3.3.48).

Let n>2m+1 Weset ny := 1+[(n+1)/(2m+ 2)], where [ ] denotes the
integer part of anumber. We also introduce the polynomial By (X) = 9D omiqmn, (X T)
of degree <(2m+2)(n;—1)-1< n. Taking & = 2 and Xge |, denoting pg : =
P, (Xo) and J 1= [Xg—pg, X+ Pol N1, and using Lemma 3.3, we get

[RP0) = L a(%; £ 9)] < %Pop((’)m(Pm fi I)+(p0"i 2)mm<po; f I))

< 26p0 0mPo; Ti D) < 2605 Po(po)-
Furthermore, by virtue of Lemma 4.3, we obtain
[ FP00 = L 10x03 T3 )| < cappPom_p(o; TP51) < cappy Poipo).-
By virtue of (1.48), we have

LR 1% £ )] < cam— pipg”l -

Therefore,

IN

1P (x0) = PP (x0)| < | 1P 0x0) = LB 0%: 59| + | LBl x: 5. 9) = P ()

IN

(C3+2C2)pgy P9(Po).

[RPOQ)| < [RP00) = LRL106: 5 9)] + [ LR 03 3 D)

IN

2,06 P9(po) + cam— Ppo Pl F 1

IN

26,05 P0(Po) + Ccam = P)po Il f ;-

It remainsto notethat n; > (n+1)/(2m+ 2), whichimpliesthat pg < C5py(Xg), i.€,
Po "9(Po) < c5ipn P(X0)9(Pn(X0))-
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Remark 3.1. If p > m, then L'?(xy; f; J) = 0 and, hence,
[RPO0)| < [RPO) = L3 T )] = |10, 00 F) = LR 40%: £ 9)

< CpoPo(pg) < CpyP(X0)e(Pn(Xo)),

where C = C(k, m,p,r), i.e,
IRP(x0)| < CppP0e(Pn(¥),  Xxel, p=m..,n (3.20)

Remark 3.2. For n < m-1, Theorem 3.3 is, generally speaking, not true. Indeed, let
ustake an arbitrary A>0 and consider the Chebyshev polynomial

f(x) = Acos(m- 1) arccosx.

Since o (t; £ 1) = 0, wehave fe WH[k, ¢] for any ¢ € @ At the same time, it
iswell known that, for any polynomial P,(x) of degree n < m - 1, there exists a point
Xp€ | awhich |f(xg) — Py(Xg)| = A. Onthe other hand, we have

PR(X)P(Pn(X) < 2" (2),

| f(X0) = Pa(X0)| = A2 ™o H(2)ph(X0)9(Pn(X0))-

3.10. Thetheorem on a constructive characteristic (Theorem 1.3) is a direct corollary of
Theorems 1.1 and 1.2.

It follows from Theorem 3.7.2 that if the condition ¢ € S(k, r) is not satisfied, then
Theorem 1.3 is, generally speaking, not true. In other words, the condition ¢ € S(k, r) is
necessary and sufficient for the constructive characterization of functions from the space
WHL(1).

Note that the necessity of the sufficient condition ¢ € S(k, r) for the constructive
characterization of the approximation of periodic functions of the space W'H?(R) by
periodic polynomials was established by Bari and Stechkin [Stechkin (1949), (1951a);
Bari and Stechkin (1956)] and Lozinskii (1952).

Lemmas 3.3 and 3.10.5 also yield the direct theorem for D T,-moduli of continuity
(see [Ditzian and Totik (1987)] for r = 0).
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Theorem3.4. Let ke N, g e ® (r+1)e N, and m = k+r. If fe B'HIK o],

then, for each n > m -1, there exists an algebraic polynomial B, of degree <n,
such that

c 1
It-Rl < So2),

H(f(P)_prgP))pPH < n%(p(l), p < %’

£
r

P _ pp)
=R 2] <

S
/N
Sl
v

©

AN
=

and, for all xel and p=0,...,m,
(P) 1 _ r-p
PP < C(cp(n)+(m p)HfH[X_,,,Hp])p :
Corollary 3.2. If feB", then

E (f) < n%Hw’f(”

where w(x) = {1- x2.
3.11. Letusfind an estimate for the K-functional.

Lemma 3.4. If fe H[k; ¢; I], then, for every natural n > k-1, there exists an al-
gebraic polynomial B, of degree <n such that

If =Rl < C(P(%) (3.21)
[R¥] < cnk(p(%). (322)

Proof. Using Theorem 4.1.2", we extend the function f from | = [-1, 1] to the seg-
ment [-2,2], i.e., weconstruct afunction f suchthat my(t; f;[-2,2]) < ¢;@(t) and
f(x) =f(x) for xe I. Denote f.(x) := f(2x), xe I. Itisobviousthat w(t;f.; 1) =
o2t f;[-2,2]) < 2kc1<p(t). By virtue of Theorem 3.3, there exists a polynomial
Qn(x) for which
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[0 - Q0| < o), [QPX| < cipfep), xel. (329

Weset P,(x) := Q,(x/2) and note that, for x e [—% %]

1 1 3 1 X 1 1 _2
= < S+ = = =l < 21 <pp0) = = += < =,
2n = n®  2n p”(z) p”(z) Pn(®) n? n

Therefore, for x e I, relation (3.23) yields

2 1
c(3)-@(3)] = e (on(3)) = oo (F) = 2o )
[Rio00] = 27| Qi (%)

e (2)o(n(2) < o) < ro(3)

(100 = R(x)| =

IN

Lemma3.5. If fe H[k; ¢; 1], then

Kt f: 1) < cot)  te [o, %] (3.24)

Proof. Let n :=[1/t] betheinteger part of 1/t andlet P, (x) be the polynomial from
Lemma3.4. Taking (3.21) and (3.22) into account, we get

Kk(tk;fJ ) < H f- I:’nH| + n_kHPék)(X)H| s Q0 (%) < o).

4. On theapplication of the method of decomposition of unity to
approximation of functions

4.1. Inthis section, we follow the arguments of Kopotun, Leviatan, and Shevchuk (2005).

The method of decomposition of unity was applied to the proof of direct theorems by
Freud (1959), Brudnyi (1968), Dzyadyk and Konovalov (1973), and others. In the last
cited paper, Dzyadyk proposed to use this method with polynomials
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X |
J‘(Tn(u)) du
u-X '

-1

where X isazero of the Chebyshev polynomial T,,.
In Subsection 4.2, we prove Lemma4.1 for these polynomials. In Subsection 4.3, we
describe the idea of the method. In Subsection 4.4, we give anew proof of Corollary 2.1.

4.2. Inwhat follows,

p = pp(x), m=Kk+r,

and constants ¢ may depend only on k, r, and m.

Wefix ne N, n>2. Let T,(x) = cosnarccosx be the Chebyshev polynomial, let
Xj = cos%, j=0,...,n, beextremum pointsof T, on I, let X; = cos(j —%)% j=
1,...,n, bezerosof T,, let |;:=[x,%_41, andlet |I;|=x_;-x, j=1,..,n, be
thelengths of theintervals |;. One can easily verify the following inequalities for each
i=1,...,n:

p < |lj] <5p, xel, (4.1)

[Haa| < 3151, (4.2)

< alx =5 5] < 4x20 =%, (4.3)
1<n/lj/ <m (4.4)

Foreach j=1,...,n, we consider the following algebraic polynomials of degree
n-1:

and  tj(%) = Thx)|[ .

t(x) = , X E X

Th(¥) Ir
)~(j J I

X_

It isclear that

In
ti(x)| < —, Xe l\l;. (4.5)
‘J ‘ \x—xj i
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Lemma4.l. Foreach j=1,...,n, thefollowing relationistrue:
4 t 4 I 4.6
§ < ‘ ](X)‘ < , Xe g ( X )

Moreover, the constants in (4.5) are exact and cannot be improved.

Proof. First, we notethat |t,_;,1(-X)| = [t;()| and {-x|xel, 3} =1;. Hence,

without loss of generality, one can assumethat j<[(n+1)/2]. Notethat t; isa poly-
nomial of degree n—1 having exactly n—1 real zeros X, 1<i<n, i #]j. Therefore,

’

by virtue of the Rolle theorem, t; has exactly n -2 different zeros. In particular, t]

hasaunique zero in [Xj,1, X; 412 I; if j=2, andso [t;(x)] = min {|t;(x))].|t;(x;_p|}
for xe lj and j>1. Hence, for xe I;, weget
|-
‘t](x)‘ > ‘tJ(XJ)‘ — ~‘ J‘ > ,,“]" _ 4C032(TE/4n) S ﬂ,
Xj-X  %-%  4cosf(n/4n)-1 3

which isthe lower estimate in (4.6).

Denoting 7 := arccosx (hence, theinclusion x e I; impliesthat (j - 1)n/n<t<

. —(: )=
jrm/n) and T .—(] _E)H’ for xe I; weget

o] = 1] sinn(t — 7)/2 sinn(t +1))/2| _ nlt; |
PV P dn(r—1)/2 sin(t+1))/2 |~ sin(t+1)/2
1]

~sn((j-Dr/n+1)/2

2nsin(n/2n)sin(j —1/2)x/n < j—1/2
sin(j — 3/4n/n T =34

Therefore, if j=1, then Ht < 6n/5 < 4.

i H|j
Finally, if j =1, then, since t; ispositive and strictly increasing on [X,, 1], we have

n T
0< t(x) < () = ! =4cosz(—) 4, xel,.
1(X) 1D 1-% an < €y
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Inequalities (4.6) are thus verified. The constantsin (4.6) are exact because

o[ 4.cos’ (%)
t() = 4co (—) -4 ad {41 = ——F——~— >
4n 4cos (L)—l
4n
4.3. Decomposition of unity
Fordl j=1,...,n, weset
1 if x=xj,
Xj(X) = .
0 otherwise,
and
J_ t'j(u)du
Qj(x) = 1 |
J 1tj(u)du

where | isapositive even number. Then relation (4.6) yields

1 [
Jlt}(u)du > jt}(u)du > (%) NN

|
J

Therefore, if xe [-1, ), thenit follows from (4.5) that

du
(X - uy

X
Q- 100 = o < 17 ]

-1

<

Similarly, if xe [%-1,1], then

Chapter 7

as N—> oo,

(4.7)
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L
ti(u)d X
M < "j‘l_lj du ‘x—f(j f_l‘lj‘l_l- (4.8)

‘Qj(X) - Xj(x)\ = flt',-(u)du d - )~(j)|

Wenow set Qy:=0,

R =Q -Q. j=1..,n-1 ad R, :=1-Q_

Lemma4.2. Thefollowing relations aretrue:

ZRJ- =1 (4.9

=1

and, for each j=1,...,n,

-1
|
IRi(x)| < C(I)[x—ijHjJ . xel. (4.10)

Proof. ldentity (4.9) isobvious. Therefore, we verify (4.10) for j#1,n (for j=1 and
j =n, arguments are similar). If x ¢ |, U lj_1, then x;(X) = xj_1(X), whence

Ri(%) = (Q;(%) = %j(x) — (Qj_1(X) — xj-1(X).

Consequently, relations (4.7) and (4.5) yield

-1
_ ol -1 - 1-1 -1 ‘I‘
R() = [x=%[ [1;[ 7+ ‘X_Xj_l‘ | 7 < C(l)(x—le+lj) :

where we have used (4.2) and (4.3) to obtain the |ast estimate. If X € [, U lj_1, then
Ri0| < Q] + Q] =2

which yidds (4.10) with C(l) < 4'.

Now let afunction fe C(l) and anatural number m begiven. Foreach j=1,...,n,
wedenote by |; the Lagrange polynomial of degree <m -1 that interpolates f at m
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equidistant points of 1;, including the endpoints of |

j- By virtue of (3.6.15), for all
xe I; wehave

x—x: [+ "
x =+l
< C W (Dm(p, f) (411)
]

We set

n
P(X) = By(x, foml) == D 10R|(X)
i=1

and prove, that, for a properly chosen |, B, isthe required polynomial in Theorem 1.1.
The following statement is true:

Lemma4.3. If fe WHIk, ¢], then

IR = ()| < cpo(p).

Proof. Weset ¢ (t):=t'¢(t). Then o, f)< @ (t). Wetake | = 3m+ 4. Identity
(4.9) yields

n
f-PB =D (f-1)R.
j=1

Hence, relations (4.10) and (4.11) imply, for x € I, that

o) v [y .
[ f() = P(X)| < ¢+ ! —m = € (p)o.
PTia(x=x]+[ 15 )
Using (1.18), (1.19), and (4.1), we get
I ‘|-1-m| oo™ 1, ‘I—I3m—3 o™y
-1-2m — -3m-2 2°
(| = x;[+]15]) (|x=x;[+p) (|x=x;[+p)
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Therefore,

pI pf

(|x- x\+p (U+P)
|

Note that, for a properly chosen |, B, isthe reguired polynomial in Theorems 3.3
and 3.4 aswell.

4.4. We now show that Lemma 4.1 also yields Corollary 2.1.

Lemma 4.4. Let xe N and xg € I|. If a polynomial B, of degree <n satisfies the
relation

[P < (1x=X%o|+palx0))',  xel,
then
PP < ¢

Proof. First,let r=1. By j we denote an index such that x, € I;. We introduce the
following polynomial of degree <2n:

t;(X)
t(X)

Q¥ = B(X)

Estimates (4.6), (4.5), (4.2), and (4.3) yield

Xel.

Q| < (‘X—XO“"Pn(Xo))g‘tj(X)‘ < 6|1,

Therefore, it follows from the Markov and Bernstein inequalities that

‘Q'(X)‘ < 12‘ Ii ‘ < 48‘ Ij ‘
¥ P2n(X) P

, Xel.

Hence,
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tj(x) n 32|
S —__n _J u
T 0x0) on) PO LT o)

IPi(x0)| < | Q%) — Pu(Xo

< 48-5+6 < 250.

For r > 1, Lemma4.4 is proved by induction with the use of the same arguments
with Q, replacedby Q, = (t;/t;(X))'F,.

The following corollary is often useful:

Corollary 4.1. If, for some | >0, one has
P <1+ x'n?, xel01]

then the following inequality holds for each r € N:

IR O] < cd, nn?.

5. Extremefunctions

Let usreturn to the spaces W'HY := W'HZ(1), ke N, ¢ e @ (r+1)e N (see Defi-
nition 3.7.2).

Definition 5.1. Afunction f iscalled extremein the space W'HY if

ot =1,10) = ot ) ~ o) (5.1)

and
_2r 1
E,(f) ~ n (p(F) (5.2
Theorem 1.1 (direct theorem) gives the following estimate for fe W'HY?:

E,(f) < cnfo (%)



Section 5 Extreme functions 415

Therefore, in terms of uniform approximations, the approximation properties of extreme

functions are substantially better than in general in the space W'H{. Moreover, if ¢ €

S(k, r) (see(1.16)), then, in these terms, the properties of extreme functions are the best
in order among the functions satisfying relation (5.1) because, in this case,

2r
lim sup "B 5 ¢ (5.3)
=E6
n

Inequality (5.3) is a simple corollary of Lemma 5.1, which is proved by using the argu-
ments of Bari and Stechkin (1956).

Lemmab5.1. Supposethat ¢ € S(k, r), i.e,
t 1
J.ru’lcp(u)du + tK _[u’k’l(p(u)du < Ag(t), (5.4)
0 t

0<t<1/2 A=const >0, fe C'(1), and a(t; f") ~ @(t). If

E () < n‘%(n—lz), ne N, (5.5)
then
E.(f) ~ n‘zrq)(n—lz). (5.6)

Proof. By virtue of Lemma 3.1 and the conditions of Lemma 5.1, there exists a function
o = o(t) that does not decrease on [0, 1] and possesses the following properties:

oc(nlz) = Ex(f), o) < to),
t 1
o) < Al['[ru‘r‘loz(u)du + tkfu_m_la(u)duJ,
0 t

te (o, %} A =congt >0, m=k+r, 5.7)

We fix an arbitrary point te (0, 1/2] and denote a™ :=out)/t g(t). Let us prove
that
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In(i) < A = 4AAAQ+ A). (5.8)

Indeed, let t. := tva. According to condition (5.4), we have

t. t.
_ _ 1
Apt) = [rulpuydu > [ruTeydu > re@t)in| == |,

t k
K [ e —k-1 15 1 k/2 1
Ap(t) = t! t‘!ru p(u)du > (t) @(t)ln(@) > 4 (p(t)ln(@),

whence

e 1
_[ru’r’loc(u)du + h_[u’””a(u)du
0 &

IN

at t«
'[ru‘l(p(u)du + jru‘r‘lamtrq)(t)du
0 at

t 1
+ J-u‘m‘lamtr(p(t)du + tl‘_[u‘k‘lcp(u)du
e t

IN

r k
ArgGat) + alo(t) + (tl) a"p(t) + A(%] o(t)

*

IN

2Aln‘1(§)cp(t*)(A+ ak2+a™m? 4 )

N

< 4Aln’1(§) o)A+ A).

The required relation (5.8) now follows from (5.7). Relation (5.8) means that

ool

ole)  oli)

n

Ag=e™ neN, n=lLl
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In order to establish a theorem on the existence of extreme functions (Theorem 5.1),
we first give Definition 5.2 and prove Lemma5.2.

Definition 5.2. We set

Y =W TR @y K)du
Fk,r,(p(y) = f r 1)

o

where m:=Kk +r, ¢, isdefined by (3.4.41), and F(U; ¢, 0; K) is defined by
(3.4.27), and

Yy = U YU @y 2 K) = F(AMNZ @p, 2 K))du
h . m+ m+ .
R oY) = { D :
o) = g (2] xel (5.9

Theorem 3.4.2 and Lemma 3.4.3 yield
o(t) < ot Y 10,1) < cot),
whence
27Kt < @yt £5,) < coh). (5.10)
Lemma5.2. The following estimate istrue:
Oom(t ) < ct¥ot?), t=0, m=Kk+r. (5.11)

Proof. Taking xe |, h>0, (x+2mp(h,x)) e |, and y:=(x+1)/2 and dencting

2

h
p+ 1= hyl-y) + o
we get

A (1 ¥) = A (Rp i Y).

Hence, if y > h?/2, then
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| Ao )| = 27| RO = p2"

(6" o'@)™|

2m, —~m-k

< apfMy " Ko(y) < oh*e(h?),  Be [y, y+2mp.,

andif y < h?/2, then

57 P V| = |57 RG g5 9] < 2R g ey < o 0(H?).

[ |
It follows from Lemma 5.2 and Theorem 3.4 that
—2r 1
En(fkre) < €N (p(—z), ne N. (5.12)
n

Relations (5.10) and (5.12) and Lemma 5.1 yield the following theorem:

Theorem 5.1 [Shevchuk (1986), (1989)]. If ¢ € S(k, r), then fi; ,(X) is an extreme
function in the space  W'HY, i.e., an extreme function exists in every space W'H)}
with @ e S(k, ).

Theorem 5.1 generalizes the following well-known theorem:

Theorem 5.2 [Bernstein (1952), Ibragimov (1946)]. Let (r + 1)e N and O<a < 1.

The function f(x) = (1+x)'** is an extreme function in the space W'H®*, and f(x) =
@+ %) n@+ x) isan extreme function in the space W'Z.

In connection with Theorems 5.1 and 5.2, note the following example proposed by
Brudnyi (1963): A continuous function f, g: [0, 1] —» R defined on (0, 1] by the
relation  f, g(x) = x*sin(x P), where o, > 0, has the modulus of continuity
o (6 Ty pi [-1,2]) ~ t¥P*D for k > o/ (B +1), whereas Ey(f)py ~ n 2@+,

6. Shape-preserving approximation

6.1. The problem of the best approximation of functions by polynomials with monotonic-
ity condition was investigated for the first time by Chebyshev [(1948), p. 41]. He con-

structed amonotone polynomial P(x)= x"+a; X" 1 + ... +a, that least deviates from 0
on I.
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Definition 6.1. Let ge N. By A% we denote the set of functions f e C(l) such that
Al(f;x) =0 forall xel and h >0, (x+gh)e I.

Notethat Al isthe set of functions nondecreasi ngon I, and A? isthe set of func-
tionsconvex on 1.

Definition 6.2. The number

ENP(f) := nf I F = ol (62)

is called the value of the best uniform shape-preserving approximation of a function
fe A% by algebraic polynomials p, of degree <n. The number E,ﬂl)(f) is called
the value of the best uniform monotone approximation of the function f. The number
A?(f) iscalled the value of the best uniform convex approximation of the function f.

An analog of the Welerstrass theorem is true for E%(f), namely, if fe A9 then

E9(f) >0 as n— o (see[G. Lorentz (1953)]).
Indeed, let

CEN - -n - (N n-2j n-j j
B,(xf):= 2 Sl —E Ja+x"a- %!
(x) JZO(J) ("= )a+rxmia-x

denote the Bernstein polynomial. Itiswell knownthat ||f —B,| -0 as n— . At
the same time, we have

B¥(x; f)

n-q(n-q i . .
= o M Z[ JA%j,n(f; 7”"2;”(”)(“ X" I91- ! > 0

for xe | if fe Al
G. Lorentz and Zeller (1969) constructed a function f e A9 such that

()
lim sup En(D) _ oo,
nse En(f)
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Therefore, the problem of the estimation of E,(E)(f) does not reduce to the problem of
the estimation of E,(f). Nevertheless, G. Lorentz and Zeller (1968) proved the following

inequality for fe AL

ED(f) < cml(%; f), ne N. 6.2)
Moreover, if fe A9 then
EO(f) < co, (% f), neN, 6.3)
which, in particular, implies that
EP(f) < enloy (% f’), ne N, (6.4)

provided that fe AN Cl(l ). Inequalities (6.3) and (6.4) were established by G. Lorentz
(1972) [(6.4) for g =1], DeVore (1976) [(6.3) for g = 1], Beatson (1978) [(6.4) for
g e NJ], and Shvedov [(1979), (1980), (1981)] [(6.3) for g€ N]. Note that Shvedov also
proved (6.3) for integral metrics [Shvedov (1979), (1980), (1981)] and obtained a multi-
dimensional analog of (6.2) in [Shvedov (19814)].

Later in this section, we prove Theorems 6.2 and 6.3 (due to Beatson, DeVore, Yu,
and Leviatan), which strengthen relations (6.2)—(6.4) for q= 2.

6.2. The theorem presented below showsthat E?(f) cannot be estimated from above
in terms of the modulus of continuity of arbitrary order; for g = 1, estimate (6.3) cannot
be obtained with a modulus of continuity of order higher than 2; for q = 2, estimates
(6.3) and (6.4) cannot be obtained with a modulus of continuity of order higher than 3 or
2, respectively.

Theorem 6.1 [Shvedov (1980), (1981)]. Let A> 0, ge N, ke N, (r+1)e N, and
m=k+r. If r<g<m-1, then, for each n>m -1, ne N, there exists a function
fe A9 CY such that

EQ(f) > Am-1 "oy (mll f(”) > An" oy (% f(”)- (65)

Proof. We chooseanumber be (0, 1) from the condition
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br

— | n~2ap -9 _
(q+1 r).(n b D)

) = Am-1"2%

Weset x5 :=b-1,

1
px) = X=X
(q+ 1!

and

+1
f(X) = (X_XO)-?—
g+

i.e, f(x) = P(x) if x 2 Xy and f(x) = 0 if x < Xy. Notethat

G _ph| _ [ph_p| - b -
Hfl pJH_‘pJ( 1)‘_ Qi) for j=0,..,q.

Let Q, = Q,(x) beapolynomial of degree <n suchthat Q,ec A% ie, QPx) > 0

for x e |. Taking into account that Q,(f‘)(—l) > 0 and using the Markov inequality (2.1),
we get

b = _p(j)(_l) < Ql(1CI)(_1) _ p(CI)(_l) < HQ&Q) _ p(CI)H

< n?Qy - P| < n?9|Q, - || + n®Y f - P|

20,0+1

= 2 f-Qpf + D

(g+ D

whence

_ 2q DT C=ToK[ ) _ b0
|f-Quf = n"%b Qi - Am-1~" 2 £ - PO,

On the other hand, by virtue of (2.22), we have

™ (m%l f<r>) = o, (mi_l FO _ pm) < K[+ - PO,
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- 1
f- > - (7; f(r)).
If-Qul > Am-17o (L
|

Note that, in [Shvedov (1981)], Theorem 6.1 was proved inthecase r = 0 for al in-
tegral metricsof L,, 0 < p < . The applicability of Shvedov’s arguments to the case
r # 0 wasnoticed by S. Manya.

Corollary 6.1. Supposethat B >0, gqe N, ke N, (r+1)e N, and m = k+r. If
r<q<m-1, then foreach n > m—-1, ne N, there exists a function fe A9 CY

such that, for any polynomial Q, e A% of degree <n, the following estimates are
true:

lon o om (f = Q|| = [Prrs0 Xom-p)(f - Q)| = B.

6.3. Theorem 6.2 [DeVore and Yu (1985)]. If a function f does not decrease on |
and fe H[2; ¢], then, for each ne N, there exists an algebraic polynomial B, of

degree <n nondecreasing on | and such that

[£00 = PiX)| < co(pp(x)), xel. (6.6)

The proof of thistheorem is given in Subsections 6.4-6.8.

6.4. Foral j=0,...,n, weset X, = cosjm/n,

1 if x>x;,
Xi = .
0 |if X< X,
and
X
O (%) 1= (x-%), = [x;Wadu.
-1
For j = 1,..., n, wedenote Ij 1= 0%, %21 and hj:xj_l— X; and note that if xe Ij,

then
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p < h; < 5p. (6.7)

Let L denote acontinuous broken line with nodes at the points X;, j= 0,...,n. By
virtue of (3.9), for xe I; wehave

[f00— L0 < @(2) < (g)ch(p)- (6.8)

It is easy to verify that the broken line L can be represented in the form
n-1
L(x) = 2[xj+1,xj,xj_l; fI(Xj_1 = Xj4) @) + [Xn, Xpgy FI(X+D) + £(=1), (6.9)
j=1
or, which is the same,

n
LOO = FD + X%, X FI(@00 — @ _1(x). (6.10)
j=1

Thus, the problem is reduced to the approximation of the functions @;.

6.5. We introduce the following notation: J(t) = J,(t) isa Jackson-type kernel (see
Section 3), o = arccosy, B = arccosx, and

B+o
(X Y) i= Op (X Y) = jJ(t)dt, r =6.
B-oa

By virtue of (3.5), ¢ (X, y) isapolynomial of degree (r +1)(n—-1) in x.
Itisobviousthat @(x,1) = 0, ¢(x,-1) = 1, and, for every fixed X, the function
¢ (X, y) decreases with respect to y. Therefore, the equation

1
1-x= J(p(x, yj)dx (6.11)
-1

has aunique solution y; € I, and, furthermore, -1 =y, <y, <..<y; <y, =1
Let j" = 1...,n beanumber for which y, € [X-,X. 1), j = 1...,n, andlet 0" :=0.
Denote
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Qj(x) := f(p(u, x)du, j=0,..,n.
-1

In particular, Qu(x) = 0 and Q,(x) = x + 1. Using (6.11) and the monotonicity of ¢
with respect to y, we obtain the estimates

Q1) 21-x2Q-4(1), j=1..,n
Therefore, foreach j = 1,..., n, thereexistsanumber g € (0, 1) such that
3Qq (1) + (1-a)Qq _1(1) = 1-x.

Weset Ry(x) :=0 and R(X) := Q- (1) +(1-3)Q-_1(1), j = ..., n, and note
that

R(1)=1-x. (6.12)
We have
R 2 R_4(x), j=1..,n, xel. (6.13)
Indeed, since y; <y;_;, weget j’ > (j—1)". Therefore,if j* > (j—1)", then

Ri-Ri_1 = an}* + (1-4 )Q}*_1 - aj_4 (,j—1)* -(1- aj—l)Q(,j_l)*_l

Q. — Q4 + Q-a)(Q._; — Q)

+ (1=3)(Q Ly ~ Qg ) > O
If i = (j-1)", then, obviously, a; > a_;.
6.6. Let us provetheinequality

IR0 - @;()] < ep§(x)(|x = X; |+ pn(x;))*°. (6.14)

Using (6.11) and (3.15), we obtain
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1
Jlu=y? - o(u, y)du
-1

1% =

1
o [PhO)(Ju=y; |+ pa(y) ™ du < epn(y))-
-1

IA

Therefore, by virtue of (1.18), we have
Pn(Y)) < C2pn(X)
and, with regard for (6.7),

X =% | < Ix = yj |+ e < (@ +5Pa(y) < Capn(X)),
% =Xy | < ePn(x)s Capn(Xi) < Pa(X)) < CsPa(X;.),
CaPn(Xj. 1) < Pn(X)) < CsPn(X;._,)- (6.15)
Inequality (3.15) means that
[RIO0 =% (0] = 3j(e(x X;.) = %, (X)

+ (1-a)(e(x, Xje )~ xj*_l(x)) + & (X,—*(X) — % (%)

* @=a3)(,00 =)

qpﬁ(xj* )(|x - X.. |+ Pn(X,. ))—6
+ Pk (X=X [+Pn(X. )
%0 =%, 0] + |25 00 = %0, (0)].
Hence, by virtue of (6.15), we obtain

IR0 = ;00| < S (Ix =% |+ pn(x))) .
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If x <X, then
X

J(R @) - % (w)du

-1

< cpp0q) [(lu=x; |+ pn(x;) *du

—oo

(R0 = @00 =

<GPS (X)) (| X = Xj [+ pn(x)) .

If x > x, then, using (6.12), establish, by analogy, that

[R(X) —®;(%)| = < cepa(x)(|X = X [+ pa(x))) .

1
[(R ) - x;j(u)du

Inequality (6.14) is proved.
It follows from (6.14), (1.18), and (1.19) that

CPn(X)P°  _  Cpa(xp

R(X)—®;(X)| = <
% i (\X—Xj\Jan(Xj))s (Ix=xj[+p)

. (6.16)

6.7. Denote A = [%41,%,%_1; F1(X_1—-%+1) and

n-1
Pa(X) 1= (=1 + [X, X_1; FIX+D + D AR (X).
j=1
Let us prove (6.6). Indeed, with regard for (6.7), it follows from (35.8) that |A| <
Cghjpgz(xj )9(pn(x;)), which, by virtue of (1.18), yields

_ 2ch (| X = x; |+ (p)
(A < cahipn?0)0(2/p( X=X [+p)) < e pz(x{)p P)eP) (6.17)
n{Xj

Combining (6.6), (6.16), and (6.17), we get

[ F(X) = PaX¥)| < | f(X) = L(X)| + [L(X) = By(X)]

IN

5 2 n-1
(5) o) + YA IR0 - @j(x)|
-1
n-1

5\2 B
= (é) o(p) + 265Cep(p) X hi(Ix—x;[+p) 2 < co0(p).
j=1
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6.8. The monotonicity of the polynomial P, (x) followsfrom the representation
n
Ri¥) = Y Ix, X1 FIR(0) — R _4(x)), (6.10)
j=1

where [x;,%_1;f] > O by the condition of the theorem, and R/(x) - Ri_1(X) =2 0 by
virtue of (6.13).

|
6.9. Remark 6.1. Relation (6.6) yields the estimate
[ 1) = Ru®)| < coy(pn(x); ), (6.18)
which was established by Beatson (see [DeVore and Y u (1985)]).
Remark 6.2. DeVoreand Yu (1985) proved the estimate
/ 2
[f00 = Py < c«p(\lnx ) (6.19)

which is more exact than (6.6).

Indeed, for x¢ I, U I, estimate (6.19) follows from (6.6) because, in this case,

3\51—x2
pa(x) < S
If xe I,, then
1+x< i\‘/l_ X
B \ﬁ n
and
(RO = @;00] = | [(R(U)=-xjW)du| < ce(x+Dpaxy) (1x =X |+ pn(x))°
-1

(X +Dppa(x) _ N V1-x%  pPa(X))
0 - 0 H
(Ix=x;[+p)’ N (Ix-xl+p)?
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whence

1-x2
L) - By < sz(\ nx )

Furthermore, L(X) = L(x; f; -1, X, 1) for xe I,. Therefore, relation (3.5.11) yields

2
[0 - L) < 013@(\1;)( )

Thecase x € |; isconsidered by analogy with thecase x e I,

For approximation without restrictions, the corresponding improvement of an estimate
of the form (6.6) to an estimate of the form (6.19) was made by Telyakovskii (1966) (for
k=1) and DeVore (1976) (for k=2) (seeaso [Dahlhaus (1989)]).

6.10. Theorem 6.3 [Leviatan (1986)]. If a function f is convex on | and x e H[2; @],
then, for each n e N, there exists an algebraic polynomial B, of degree <n con-

vex on | and such that

[ £00 = P()| < co(pp(x),  xel. (6.20)

Theorem 6.3 can be proved by analogy with Theorem 6.2. One should only edablish
(instead of the reasoning presented in Subsection 6.8) that P, is convex on 1, i.e, that
BY(x) = 0. According to the conditions of the theorem, the function f isconvex. Hence,
[xj+1,xj,xj71;f] >0, ie, A 2 0. In view of the representation

n-1 n-1
Pix) = 2 AR = X Aj(@Q)L () + (1~ 2))Q}._4(¥)),
j=1 j=1
itissufficient to establishthat Qj(x) = 0, x e (-1, 1). Indeed, we have Qj(x) = O,

Qi(x) =0, and, for j = 1,...,n-1,

jt/n

Q) Siiﬁ(fﬁmf Jwdu = giB(J(“j:)‘J(B‘j:))

(P'(Xy X) = -
B—-jn/n

_ Sinl4((n|3+iﬂ)/z)(s-n—m(ﬁ—jﬂ/n)_sin—14(|3+jﬂ/”))
'Yn’6sin[_)) 2 2 '
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It remains to use the inequality

sm((“-B) > sin(a_B)‘.
2 2
|
Leviatan (1986) a so proved the following estimates:
EQfy < co [ L 6.21
n( ) = C(ol n1 ( . )
and
EQ(f) < 062(%, f), ne N. (6.22)
6.11. Now let fe C'(l). DeVore (1977a) proved that if fe AlﬂCr(I), then
ED(f) < en” (% £(0: I), n=rr+1, ... (6.23)

The following general theorem is true:

Theorem 6.4 [Shevchuk (1989), (1992)]. Supposethat re N, ke N, and m = Kk +r.

If a function f =f(x) does not decrease on | and fe WHI[k; @], then, for each
ne N, n>2m-1, there exists an algebraic polynomial B, = P,(x) of degree <n
nondecreasing on | and such that

[ f(X) = P,(¥)| < cpp(X)e(pn(x), xel. (6.24)

Unfortunately, in contrast to Theorems 6.2 and 6.3, estimates (6.23) and (6.24) are
proved by using nonlinear methods.

Theorems 6.1, 6.2, and 6.4 give a complete answer to the question of whether the di-
rect theorem (Theorem 1.1) on approximation without restrictions remains true for the co-
monotone approximation; namely, itistrueinthecasesre N, ke N and r=0, k=1,2
anditisnottrueinthecase r =0, k=3,4,....

A modification of the proof of Theorem 6.4 enables one to establish the following re-
sult:

Theorem 6.5 (S. Manya). Supposethat re N, r # 1, ke N, and m = k+r. If a
function f isconvex on | and fe WHIk; ¢], then, for each ne N, n 2m -1,
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there exists an algebraic polynomial B, of degree <n convex on | and satisfying
inequality (6.24).

Inequality (6.21) yields the following estimate for f e ANB adr=1 2
EQ(H) < St nen. (6.25)
n

For r > 2, thisestimate was proved by Dzyubenko, Listopad, and Shevchuk (1993).
Similarly, relation (6.22) yields the following estimate for f e AMNB adr=12

EQ(f) < <ot neN. (6.26)

nl‘

For r >4 and r = 3, thisestimate was proved by Kopotun (1992).
What was unexpected was the fact that estimate (6.26) is not truefor r = 4.

Theorem 6.6 [Kopotun (1992)]. For every ne€ N and M = const > 0, there is a

function fe A? (N B* such that
EQ(f) > M|e*t™].

Proof. Let

" 2, 1 1y =
gx) = (x+1 Inx+1, g(-1) := 0.

Wetakeapositive b<1, set y; :=-1+b, andrepresent g intheform

. 17
90 = T + 3 J(X - °gV(tydt,
1

where T isthe Taylor polynomial of g at thepoint y;. Let usshow that the function

f(x) = %j(x—t)3 ad__ 1 -3V
1 i1

a+rt? 3

with suitable b isthe required one.
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Itisclear that fe A? and, for xe (-1, 1],

2
o) fMx) = @-x3)? e 2(1- x)? < 8.

Therefore, it remains to prove that, for every convex polynomial B,, we have
1
[f-PR > §M'
Assume the contrary, namely, let

[f=P € =M.

©|F

Then, using Markov inequality, we get

1 ” ” ” 4 ” 4
-3+ 2|n6 = f7(y) = T"(w) < T"(W) + Py < [T+ R

IN

[T+ Ry = n?[R— f +gl < n’(|R, — f]+]gl)

2
M + 4In2,
8

IN

which isimpossible for sufficiently small b.

For more recent results on the uniform polynomial shape-preserving approximation,
see the papers of the authors cited above and the papers by Bondarenko, Gilewicz, Hu,
Nissim, Pleshakov, Popov, Shatalina, Y ushchenko, Zhou, etc.

7. On rational approximation

7.1. Let us show that if functions of someclass H*, 0 < o <1, are approximated not
by algebraic polynomials but by rational polynomials of degree n of the form (see Sec-
tion 2.4)

Pa(X)
Q)

Ri(X) = (7.2



432 Approximation by polynomials Chapter 7

then, in the sense of the order of smallness, we do not reach an accuracy better than in the
case of approximation of functions of this class by algebraic polynomials of degree n (it
will be shown in Subsection 7.2 that, for individual functions, this statement is, generally
speaking, not true).

To verify this, we consider, on the segment [-1, 1], the even 2/n-periodic function
fo defined on the half-period by the equality

fo(x) = x* — %(%)a Xe [O, %] (7.2)

This function obviously belongsto the class H®; furthermore, on the segment [-1, 1],

ithas 2n + 1 extremawith equal absolute values at the points x, = % k=0,%1,...,+n.

Sincethe polynomials B, and Q, in(7.1) can be assumed to be irreducible, by virtue of
the fact that the polynomials R, must approximate the function f well on [-1,1] we
can assume in what follows without loss of generality that the polynomial Q, does not
takethezerovalueon [-1, 1] and, moreover, Q,(x) >0 for all xe [-1,1]. In this
case, the assumption that, for a certain polynomial

0 RY(x)
X) = 5,
09 Q)

one has

Ry

f,—- RO =
o Rl = | -

fo—

;)
< —_— —
2\n

implies that the numerator P® of the polynomial RS must satisfy the following condi-
tion at all points x:

signPd(x) = signfo(x) = -D*Y  k=0,%1,.., %n

This, in turn, implies that the algebraic polynomial P,? of degree n must have at least

2n>n+1 rootsonthe segment [-1, 1], whichisimpossible. It follows from the con-
tradiction obtained that

_ . 1
sup inf|| f — > inf| fy — > . (7.3)
s iRyl > infl o= R\l >
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On the other hand, if afunction f belongsto H*, thenthefunction f(t) = f(cost)

afortiori belongsto H*, and, therefore, one can find an algebraic polynomial P, of
degree n such that

A
T

| f(x) = By(x)| <
n

(7.4)

The required statement now follows from (7.3) and (7.4). Also note that analogous
arguments are also true in the case of approximation of functions from the spaces W'H.

7.2. 1t follows from the previous subsection that, in the case of approximation of “rapidly

oscillating” functions from the spaces W'H®, rational polynomials of degree n do not
have any advantages over algebraic polynomials. However, it turns out that functions  f
sufficiently smooth everywhere except one or several points may sometimes be approxi-
mated by rational polynomials much better than by algebraic polynomials.

Indeed, in Section 2.4, we have established the Newman theorem (Theorem 2.4.1),
according to which, for the function |x|, one can find arational polynomial R, of de-
gree n such that (see (2.4.10))

x| =R < 3. (7.5)

Let us show that the following relation holds for any algebraic polynomial B, of de-
gree n=6:

11
R = == 7.6
lix- Rl > 51 79)

The problem of approximation of the function |x| was thoroughly studied by Bern-
stein (1912), who showed that the following, much stronger, statement istrue: The limit

lim nE, (|x|) existsand isapproximately equal to 0.282.
n—oo

We present the proof of inequality (7.6) given by Dzyadyk (1966). For another sim-
ple proof of this inequality proposed by de la Vallée Poussin, see [Natanson (1949),
p. 215].

First, note that if a certain algebraic polynomial B,(x) of degree n > 6 satisfies the
condition

) _ 11
max [P0l = (R0l =M, oe |50 g .7

then
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. M 1 1 1
min P.(X)| = —, u ,— | = -, Xg+— . 7.8
XEU(XO,l/ZH)‘ ()| 3 (XO 2n) (XO on’ 0 2n) (7.8)

Indeed, if inequality (7.8) is not true, then one can find a point

ce o0 5)<[-53)

such that

M-M/3 4 Mn
PO > ——2 = 2 M ,

and, hence, we arrive at a contradiction with the Bernstein inequality for the modulus of
the derivative of an algebraic polynomial.

By contradiction, assume that inequality (7.6) does not hold for some polynomial. In
this case, one can obviously find an even polynomial B,(x) that satisfies the conditions

_ _ 1
PO =0, [|x|-P| < o (7.9

Thisimpliesthat the following inequality holdsfor al xe [-1, 1]:

M‘ <o (7.10)
X
Indeed, assuming, by contradiction, that

Pi(Xo)
X0

max =M>9

P.(X) ‘ _
xel-111 | X

and taking into account that, by virtue of (7.9), one has |P,(x)| < 2, we conclude that

Xg € [—% %] and, hence, according to (7.8),

. Pn(x)‘ M ,( 1 )
mn |% > X 53 |p 3x|, )
XEU(X(I),l/Zn) x |~ 3 R[> 3 Xe U 5,
max  [ROO—|x|]| > max |x| > I,
XeU(Xg,1/2n) XeU(Xg,1/2n) n

i.e., we arrive at a contradiction with (7.9), which proves inequality (7.10).
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By virtue of inequality (7.10) and the Bernstein inequality, the following relations

hold for all x e [o, ﬂ:

Hence,

2
max |[x| = B,o9| > —L- _10n(i) _ 11
20n 20n

which contradicts (7.9). The required statement is proved.






References

Ahlberg, J. H., Nilson, E. N., and Walsh, J. L.
(1967)  The Theory of Splines and Their Applications, Academic Press, New Y ork (1967).
Ahlfors, L. V.

(1966)  Lectures on Quasiconformal Mappings, Nostrand, Toronto (1966).

Akhiezer, N. |.

(1928)  “Uber einige Funktionen die in gegebenen Intervallen am wenigsten von Null ab-
weichen,” lzv. Kaz. Fiz-Mat. Obshch., 3, 1-69 (1928).

(1965)  Lectures on Approximation Theory, Nauka, Moscow (1965) [in Russian].

Akhiezer,N. ., and Krein, M. G.

(1937)  “On the best approximation of differentiable periodic functions by trigonometric
sums,” Dokl. Akad. Nauk SSSR, 15, 107-111 (1937).

Alexits, G.

(1952)  “Sur I’ordre de grandeur de I’approximation d’une fonction périodique par les
sommes de Fejér,” Math. Hung., 3, 29-42 (1952).

Alibekov, G. A., and Kurbanov, A. A.

(1978)  “Refinement of one S. N. Mergelyan’s theorem on the approximation of functions
of a complex variable in domains with smooth boundary,” in: Investigations in
the Theory of Approximation of Functions and Their Applications, Institute of
Mathematics, Ukrainian Academy of Sciences, Kiev (1978), pp. 3-15 [in Russian].

Al’pert, S. Ya.

(1955)  “On uniform approximation of functions of a complex variable in a closed do-
main,” lzv. Akad. Nauk SSSR, Ser. Mat., 19, No. 3, 423-444 (1955).

(1959)  “On asymptotic values of the best approximation of analytic functionsin a complex
domain,” Usp. Mat. Nauk, 16, No. 1 (85), 131-134 (1959).



438 References
Andrashko, M. I.
(1964)  “Inequalities for a derivative of an arbitrary polynomial in the metric of L,

(p=1) inadomainwith corners,” Ukr. Mat. Zh., 16, 431-444 (1964).

Andrievskii, V. V.

(1981)

(1985)

“Geometric properties of Dzyadyk domains,” Ukr. Mat. Zh., 33, No. 6, 723-727
(2981).

“Geometric structure of domains and direct theorems of the constructive theory of
functions,” Mat. Sb., 126, No. 1, 41-58 (1985).

Andrievskii, V. V., and German, S. P.

(1982)

“Approximation of functions defined by smoothnesses of the kth order in domains
with piecewise-quasiconformal boundary,” Ukr. Mat. zZh., 34, No. 3, 273-278
(1982).

Antonyuk, P. E.

(1968)

(1971)

“Inverse theorems on uniform approximation of functions continuous on closed sets
with corners,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No.9, 771- 773 (1968).

“On uniform approximation of functions continuous on closed sets with corners,”
Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 6, 487-489 (1971).

Babenko, K. I.

(1958)

(1985)

Bari, N. K.

(1955)

(1961)

“On the best approximations of one class of analytic functions,” Izv. Akad. Nauk
SSSR, Ser. Mat., 22, No. 5, 631-640 (1958).

“On some problems of approximation theory and numerical analysis,” Usp. Mat.
Nauk, 40, No. 1, 3-28 (1985).

“On the best approximation of two conjugate functions by trigonometric polyno-
mials,” lzv. Akad. Nauk SSSR, Ser. Mat., 19, No. 5, 285-302 (1955).

Trigonometric Series, Fizmatgiz, Moscow (1961) [in Russian].

Bari, N. K., and Stechkin, S. B.

(1956) “Best approximation and differential properties of two conjugate functions,” Tr.
Mosk. Mat. Obshch., 5, 483-522 (1956).
Beatson, R. K.
(1978) “The degree of monotone approximation,” Pacific J. Math., 74, No. 1, 5-14

(1978).



References 439
Belinskii, P. P.

(1954) Quasiconformal Mappings, Author’s Abstract of the Candidate-Degree Thesis,
Lvov University (1954) [in Russian].

Belyi, V. 1.

(1965)  “Problems of approximation of functions of certain classes in a complex domain.
I, Ukr. Mat. zh., 17, No. 1, 3-17 (1965).

(1969) “On approximation of quasismooth functions of complex variables,” 1zv. Akad.
Nauk Arm. SSR, Ser. Mat, 5, No. 4, 356-393 (1969).

(1977)  “Conformal mappings and approximation of analytic functions in domains with
quasiconformal boundary,” Mat. Sb., 102 (144), No. 3, 331-361 (1977).

(1977a) “Asymptotic behavior of a conformal mapping near the boundary and conditions

for a domain to belong to a class of sets (B),” Dokl. Akad. Nauk Ukr. SSR,
Ser. A, No.4, 291-294 (1977).

(1979)  “Approximation of functions of the classes A (G) in finite domains with quasi-
conformal boundary,” in: Theory of Functions and Mappings, Naukova Dumka,
Kiev (1979), pp. 37-62 [in Russian].

Belyi, V. 1., and Miklyukov, V.M.

(1974)  “Some properties of conformal and quasiconformal mappings and direct theorems
of constructive theory of functions,” |zv. Akad. Nauk SSSR, Ser. Mat., 38, No. 6,
1343-1361 (1974).

Bergh, J., and Léfstrom, J.
(1976)  Interpolation Spaces. An Introduction, Springer, Berlin (1976).

Bernstein, S. N.

(1912)  “On the best approximation of continuous functions by polynomials of given de-
gree” (1912), in: S. N. Bernstein, Collected Works, Vol. 1, Academy of Sciences of
the USSR, Moscow (1952), pp. 11-104 [in Russian].

(1926) Leconssur les Propriétés Extrémales et la Meilleure Approximation des Fonctions
Analytiques d’une Variable Réelle, Gauthier-Villars, Paris (1926).

(1928)  “Absolutely monotone functions” (1928), in: S. N. Bernstein, Collected Works,
Vol.1, Academy of Sciences of the USSR, Moscow (1952), pp. 370-425 [in Rus-
sian].

(1930) “On estimates for derivatives of polynomials” (1930), in: S.N. Bernstein, Col-
lected Works, Vol.1, Academy of Sciences of the USSR, Moscow (1952),
pp. 497-499 [in Russian].



440

(1931)

(19314)

(1935)

(1937)

(1938)

Besov, O. V.

(1962)

(1963)

(1965)

Besov, O. V.,

(1975)

Besov, O. V.,

(1975)

Bijvoets, L.,

(1980)

Binev, P.

(1985)

References

“On the restriction of values of a polynomial P,(x) of degree n on the entire
segment on the basis of itsvaluesat n+ 1 points” (1931), in: S. N.Bernstein, Col-
lected Works, Vol.2, Academy of Sciences of the USSR, Moscow (1954),
pp. 107-126 [in Russian].

“On one class of interpolation formulas” (1931), in: S. N. Bernstein, Collected
Works, Vol. 2, Academy of Sciences of the USSR, Moscow (1954), pp. 146-154
[in Russian].

“On some extremal properties of successive integrals” (1935), in: S. N. Bernstein,
Collected Works, Vol. 2, Academy of Sciences of the USSR, Moscow (1954),
pp. 107-172 [in Russian].

Extremal Properties of Polynomials and the Best Approximation of Continuous
Functions of One Real Variable, Part 1, ONTI, Moscow (1937) [in Russian].

“On the best approximation of |x—c¢|P,” Dokl. Akad. Nauk SSSR, 18, 379-384
(1938).

“On the extension of afunction with preservation of properties of the integra mod-
ulus of smoothness of the second order,” Mat. Sb., 58, No. 2, 673-684 (1962).

“Extension of functions with preservation of differential-difference properties in
L,,” Dokl. Akad. Nauk SSSR, 150, No. 3, 963-966 (1963).

“Extension of functions outside the limits of the domain with preservation of the
differential-difference propertiesin Ly, Mat. ., 66, No. 1, 80-96 (1965).

[I’in, V. P., and Nikol’skii, S. M.

Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow
(1975) [in Russian].

and Stechkin, S. B.

“Description of moduli of continuity in - L,” Tr. Mat. Inst. Steklov., 134, 23-25
(1975).

Hogeveen, W., and Korevaar, J.

Inverse Approximation Theorems of Lebedev and Tamrasov, Preprint 1, No. 6,
University of Amsterdam (1980).

“O(n) bounds of Whitney constants,” C. R. Acad. Bul. &ci., 38, No. 10, 1303
1305 (1985).



References 441

Binev, P. G., and lvanov, K. G.

(1985)  “On arepresentation of mixed finite differences,” SERDICA Bul. Math. Publ., 11,

259-268 (1985).
Bohr, H.

(1935)  “Unthéoreme général sur I’intégration d’un polyndéme trigonométrique,” Comptes

Rendus, 200, 1276-1277 (1935).
Boikov, 1. V.

(1987)  “Algorithmsfor calculation of integrals with optimal accuracy,” in: Optimal Cal-
culation Methods and Their Application, Penza Polytechnic Institute, Penza
(1987), pp. 4-22 [in Russian].

Bordl, E.
(1905)  Legons sur les Fonctions de Variables Réelles, Gauthier-Villars, Paris (1905).
Borodin, V. A.

(1974)  “Local moduli of continuity and properties of harmonic functions in domains with
corners,” in: Theory of Approximation of Functions and Its Applications, Institute
of Mathematics, Ukrainian Academy of Sciences, Kiev (1974), pp. 4-14 [in Rus-
sian].

Brudnyi, Yu. A.

(1959) “Approximation by entire functions in the exterior of a segment and a half axis,”
Dokl. Akad. Nauk SSSR, 124, No. 4, 739-742 (1959).

(1963) “Generaization of one theorem of A. F. Timan,” Dokl. Akad. Nauk SSSR, 188,
No. 6, 1237-1240 (1963).

(1964)  “On one theorem of the theory of local approximation,” Uch. Zap. Kazan. Univ.,
124, Book 6, 43-49 (1964).

(1965)  “On one method for approximation of bounded functions defined on a segment,”
in: Investigation of the Contemporary Problems in the Constructive Theory of
Functions, Baku (1965), pp. 40-45 [in Russian].

(1968) “Approximation of functions by algebraic polynomials,” lzv. Akad. Nauk SSSR,
Ser. Mat., 32, No. 4, 780-787 (1968).

(1970)  “Approximation of functions of n variables by quasipolynomials,” Izv. Akad.
Nauk SSSR, Ser. Mat., 34, No. 6, 564-583 (1970).

(1983)  “Whitney constants,” in: Abstracts of the Conference on Contemporary Problems
in the Theory of Functions (1983), p. 24 [in Russian].

Brudnyi, Yu. A., and Gopengauz, |. E.
(1960)  “On the measure of the set of points of normal deviation,” lzv. Akad. Nauk SSSR,

Ser. Mat., 24, No. 1, 129-144 (1960).



442 References

Brudnyi, Yu. A., Krein, S. G., and Semenov, E. M.

(1987) Interpolation of Linear Operators, VINITI Series in Mathematical Analysis,
Vol. 24, VINITI, Moscow (1987) [in Russian].

Brudnyi, Yu. A., and Shvartsman, P. A.

(1982)  “Description of the trace of afunction from a generalized Lipschitz space on an ar-
bitrary compact set,” in: Investigations in the Theory of Functions of Many Real
Variables, Yarosavl University, Yarosavl (1982), pp. 16— 24 [in Russian].

(1985)  “Linear operator of extension for a space of smooth functions defined on a closed
subset of R",” Dokl. Akad. Nauk SSSR, 280, No. 2, 268-272 (1985).

Brui, I. N.

(1975)  Linear Summation Methods for Series in Faber Polynomials, Candidate-Degree
Thesis, Minsk Pedagogic Institute (1975) [in Russian].

Bugaets, P. T.

(1951) “Approximation of continuous periodic functions of two variables that satisfy the
Lipschitz condition by interpolation trigonometric polynomials,” Dokl. Akad.
Nauk SSSR, 79, No. 3, 381-384 (1951).

(19518) “Asymptotic estimate for the remainder in the case of approximation of functions of
two variables by Fourier sums,” Dokl. Akad. Nauk SSSR, 79, No. 4, 557-560
(1951).

Bugaets, V. P., and Martynyuk, V. T.

(1974)  “Exact constants of approximation of continuous periodic functions by Jackson in-
tegrals,” Ukr. Mat. Zh., 26, No. 4, 435-444 (1974).

Burenkov, V. 1.

(1976)  “On the extension of functions with preservation of a seminorm,” Dokl. Akad.
Nauk SSSR, 228, No. 4, 779-782 (1976).

Burkill, H.
(1952)  “Cesaro-Perron absolute periodic functions,” Proc. London Math. Soc., 3, 160~
174 (1952).
Bushanskii, A. V.

(1974)  “On the problem of the best uniform approximation by entire functions on classes
of functions represented in the form of sources on the real axis,” lzv. Severo-Kav-
kazsk. Nauchn. Tsentra Viyssh. Shk., Ser. Estestv. Nauk, No. 4, 54-60 (1974).

(19748) “On the best uniform approximation by entire functions for some classes of func-
tions represented in the form of sources on the real axis,” in: Theory of Approxi-
mation of Functions and Its Applications, Institute of Mathematics, Ukrainian
Academy of Sciences, Kiev (1974), pp. 28-40 [in Russian].



References 443

Butzer, P. L.

(1956)  “Sur lathéorie des demi-groupes et classes de saturation de certaines intégrales sin-
gulieres,” Comptes Rendus Acad. <ci., 243, No. 20, 1473-1475 (1956).

Butzer, P. L., and Nessdl, R. J.

(1971)  Fourier Analysis and Approximation, Birkhiuser, Basel (1971).

Cartan, H.

(1940)  “Sur les classes de fonctions définies par des inégalités portant sur leurs dérivées
successives,” Actualités Scient. Industr., No. 867 (1940).

Chebyshev, P. L.

(1854) “Theory of mechanisms known as parallelograms” (1854), in: P. L. Chebyshev,
Complete Works, Vol. 2, Academy of Sciences of the USSR, Moscow (1948),
pp. 23-51 [in Russian].

(1859)  “Problems of the least quantities related to approximate representation of functions”
(1859), in: P. L. Chebyshev, Complete Works, Vol. 2, Academy of Sciences of the
USSR, Moscow (1948), pp. 151-235 [in Russian].

(1859a) “Sur les questions des minima” (1859), in: P.L. Chebyshev, Complete Works,
Vol.2, Academy of Sciences of the USSR, Moscow (1948), pp. 146-250 [in Rus-

sian].
(1948) Complete Works, Vol. 3, Academy of Sciences of the USSR, Moscow (1948) [in
Russian].
Cheney, E. W.

(1966)  Introduction to Approximation Theory, McGraw-Hill, New Y ork (1966).
Chirka, E. M.

(1975)  “Analytic representation of CR-functions,” Mat. Sh., 98, No. 4, 591-623 (1975).
Ciesielski, Z.

(1979)  Lectures on Spline Functions, Gdansk University, Gdansk (1979) [in Polish].
Curtiss, J. H.

(2947)  “A note on the degree of polynomia approximation,” Bull. Amer. Math. Soc., 42,
29-30 (1947).

Dahlhaus, R.

(1989)  “Pointwise approximation by algebraic polynomials,” J. Approxim. Theory, 57,
No. 3, 274-277 (1989).



444 References

Dahmen, W., DeVore, R. A., and Scherer, K.

(1980)  “Multi-dimensional spline approximation,” SIAM J. Numer. Anal., 17, 308-402
(1980).

Daugavet, |. K.

(1963)  “On one property of completely continuous operators in the space C,” Usp. Mat.
Nauk, 18, No. 5, 157-158 (1963).

Davis, P. J.

(1965)  Interpolation and Approximation, Blaisdell, New Y ork (1965).
DeBoor, C.

(1976)  “Splines as linear combinations of B-splines,” in: G. G.Lorentz, C.K. Chui, and
L. L. Schumaker (editors), Approximation Theory, |1, Academic Press, New Y ork
(1976), pp. 1-47.

Denisenko, P. N.

(1974)  “On the numerical solution of ordinary differential equations according to the
Dzyadyk’s scheme,” Ukr. Mat. Zh., 26, No. 3, 377-383 (1974).

DeVore R. A.

(1976)  “Degree of approximation,” in: G.G. Lorentz, C.K. Chui, and L. L. Schumaker
(editors), Approximation Theory, II, Academic Press, New York (1976),
pp. 117-162.

(1977)  “Pointwise approximation by splines,” in: Theory of Approximation of Functions,
Nauka, Moscow (1977), pp. 132-141 [in Russian].

(1977a8) “Monotone approximation by polynomials,” SIAM J. Math. Anal., 8, No.5,
905-921 (1977).

DeVore R. A., and Yu., X. M.

(1985)  “Pointwise estimates for monotone polynomial approximation,” Constr. Approx-
im.,, 1, No. 4, 323-331 (1985).

Dickmeis, W., and Nessdl, R. J.

(1982)  Quantitative Prinzipien gleichmdgiger Beschrénktheit und Schérfe von Fehler-
abschdtzungen, Westdt. Verlag, Opladen (1982).

Dickmeis, W., Nessal, R. J., and Wickeren, E. van

(1984)  “A general approach to counterexamples in numerical analysis,” Numer. Math.,
43, 249-263 (1984).



References 445

Dieudonné, J.

(1960)  Foundations of Modern Analysis, Academic Press, New Y ork (1960).
Ditzian, Z., and Tolik, V.

(1987)  Moduli of Smoothness, Springer, New Y ork (1987).
Dolzhenko, E. P.

(1965)  “Smoothness of analytic functions at boundary points of a domain,” lzv. Akad.
Nauk SSSR, Ser. Mat., 29, No. 5, 1069-1084 (1965).

Dolzhenko, E. P., and Sevast’yanov, E. A.

(1978)  “On the dependence of properties of functions on the rate of their approximation by
polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 42, No. 2, 272-304 (1978).

Dunford, N., and Schwartz, J. T.
(1958)  Linear Operators. Part I: General Theory, Interscience, New Y ork (1958).
Dyn’kin, E. M.

(1974)  “On the uniform approximation by polynomials in a complex domain,” in: Inves-
tigation of Linear Operators in the Theory of Functions, Vol. 5, Nauka, Leningrad
(1974), pp. 164-165 [in Russian].

Dzhrbashyan, M. M.

(1966) Integral Transformations and Representations of Functions in a Complex Domain,
Nauka, Moscow (1966) [in Russian].

Dzyadyk, V. K.

(1951)  “On the best approximation of periodic functions with singularities in the mean,”
Dokl. Akad. Nauk SSSR, 77, No. 6, 949-952 (1951).

(1953)  “On the best approximation on the class of periodic functions with bounded sth de-
rivative (0<s<1),” lzv. Akad. Nauk SSSR, Ser. Mat., 17, No. 2, 135-162
(1953).

(1953a) “On the best approximation of periodic functions with singularities in the mean,”
Nauk. Zap. Luts’k. Pedagog. Inst., Ser. Fiz-Mat., 1, 51-65 (1953).

(1955) “On specific features of fractional differentiation and integration of functions,”
Nauk. Zap. Luts’k. Pedagog. Inst., Ser. Fiz-Mat., 2, 19-28 (1955).

(1956) “On the constructive characteristic of functions satisfying the condition Lipo
(O<a<1) onafinite ssgment of the real axis,” lzv. Akad. Nauk SSSR, Ser.
Mat., 20, No. 2, 623-642 (1956).



446

(19563)

(1958)

(1958a)

(1958b)

(1959)

(1959%)

(1959h)

(1961)

(1962)

(1963)

(1963a)

(1965)

(1966)

(19664)

(1966b)

References

“On the extension of functions that satisfy the Lipschitz condition in the metric of
Lp 7 Mat. Sb., 40 (82), No. 2, 239-242 (1956).

“On the approximation of functions by ordinary polynomials on a finite segment of
thereal axis,” lzv. Akad. Nauk SSSR, Ser. Mat., 22, No. 3, 337-354 (1958).

“On one new proof of the Weierstrass theorem on the approximation of continuous
functions by polynomials,” in: Proceedings of the Conference of Lecturers in
Physics and Mathematics of Pedagogic Institutes of Ukr. SSR, Ukrainian Ministry
of Education, Kiev State Pedagogic Institute, Kiev (1958) [in Ukrainian].

“Further improvement of the Jackson theorem on approximation of continuous
functions by ordinary polynomials,” Dokl. Akad. Nauk SSSR, 121, No. 3, 403-406
(1958).

“On S. M. Nikol’skii’s problem in acomplex domain,” 1zv. Akad. Nauk SSSR, Ser.
Mat., 23, No. 5, 697-736 (1959).

“On the best approximation on classes of periodic functions defined by kernels that
areintegrals of absolutely monotone functions,” 1zv. Akad. Nauk SSSR, Ser. Mat.,
23, No. 6, 933-950 (1959).

On the best trigonometric approximation of some functions in the metric of L,”
Dokl. Akad. Nauk SSSR, 129, No. 1, 19-22 (1959).

“On the problem of the best approximation of absolutely monotone and some other
functions in the metric of L using trigonometric polynomials,” |zv. Akad. Nauk
SSSR, Ser. Mat., 25, No. 2, 173-238 (1961).

“On the problem of approximation of continuous functions in closed domains with
corners and on S. M. Nikol’skii’s problem. 1,” 1zv. Akad. Nauk SSSR, Ser. Mat.,
26, No. 6, 796-824 (1962).

“Inverse theorems of the theory of approximation of functions in complex do-
mains,” Ukr. Mat. Zh., 15, No. 4, 365-375 (1963).

“On the theory of approximation of analytic functions continuous in closed do-
mains and on S. M. Nikol’skii’s problem. 11,” |zv. Akad. Nauk SSSR, Ser. Mat., 27,
No. 5, 1135-1164 (1963).

“On the approximation of analytic functions in domains with smooth and piece-
wise-smooth boundary,” in: Proceedings of the Third Summer Mathematical
School, Naukova Dumka, Kiev (1965), pp. 29-82 [in Russian].

“Approximation of functions of the classes H® by polynomials on closed do-
mains,” in: Investigation of Contemporary Problems of Constructive Theory of
Functions, Baku (1966), pp. 273-283 [in Russian]; “On the constructive charac-
teristic of functions of Holder classes,” in: Contemporary Problems of Construc-
tive Theory of Analytic Functions, Nauka, Moscow (1966), pp. 137-141 [in Rus-
sian).

“On a new method for approximation of functions,” Ukr. Mat. zh., 18, No.1,
36-47 (1966).

“On approximation of functions by linear positive operators and singular integrals,”
Mat. Sb., 70 (112), No. 4, 508-517 (1966).



(1967)

(1968)

(1969)

(1970)

(1971)

(1971a)

(1972)

(1973)

(19733)

(1974)

(1974a)

(1974b)

(1974c)

(1975)

(1975a)

References 447

“On analytic and harmonic transformations of functions and approximation of har-
monic functions,” Ukr. Mat. Zh., 19, No. 5, 33-57 (1967).

“On the constructive characteristic of functions of Holder classes on closed sets
with piecewise-smooth boundary admitting zero angles,” Ukr. Mat. zZh., 20, No. 5,
603-619 (1968).

“Investigations in the theory of approximation of analytic functions carried out at
the Institute of Mathematics of the Ukrainian Academy of Sciences,” Ukr. Mat.
Zh., 21, No. 2, 173-192 (1969).

“On the application of linear methods to the approximation of solutions of ordinary
differential equations and Hammerstein integral equations by polynomials,” lzv.
Akad. Nauk SSSR, Ser. Mat., 34, No. 4, 827-848 (1970).

“On one method for the construction of normal solutions in Tikhonov’s sense for
systems of linear equations,” Ukr. Mat. Zh., 23, No. 2, 235-239 (1971).

“On error estimates for the grid method in the theory of Chebyshev approximation
of functions,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 6, 500- 504 (1971).

“On the application of generalized Faber polynomials to the approximation of
Cauchy-type integrals and functions of the classes A" in domains with smooth
and piecewise-smooth boundary,” Ukr. Mat. Zh., 24, No. 1, 3-19 (1972).

“On one extremal problem,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No.4, 299-300
(1973).

“On the efficient construction of polynomials that realize an approximation of func-
tions eX, sinx, etc., closeto the best one,” Ukr. Mat. Zh., 25, No. 4, 435-453
(1973).

“Interpolation method for the approximation of solutions of linear differential equa-
tions by algebraic polynomials,” lzv. Akad. Nauk SSSR, Ser. Mat., 33, No. 4,
937-967 (1974).

“On conditions for the convergence of Dirichlet series in closed polygons,” Mat.
., 95 (137), No. 4 (12), 475-493 (1974).

“On the best approximation on classes of periodic functions defined by integrals of
a linear combination of absolutely monotone kernels,” Mat. Zametki, 16, No. 5,
691-701 (1974).

“On the approximation of functions on sets that consist of finitely many points,”
in: Theory of Approximation of Functions and Its Applications, Institute of Mathe-
matics, Ukrainian Academy of Sciences, Kiev (1974), pp. 69-80 [in Russian].

“Approximation characteristic of the Lipschitz classes W'H r=o01,..,
Analysis Math., No. 1, 19-30 (1975).

“On the least upper bounds for the best approximations on certain classes of contin-
uous functions defined on the entire real axis,” Dokl. Akad. Nauk Ukr. SSR, Ser.
A, No.7, 589-593 (1975).



448

(1975b)

(1975¢)

(1976)

(1977)

(1977a)

(1977b)

(1978)

(1979)

(1988)

References

“Application of methods of the theory of quasiconformal mappings to the proof of
direct theorems on approximation of functions,” Dokl. Akad. Nauk SSSR, 225,
No. 3, 491-494 (1975).

“On the theory of approximation of functions on closed sets of the complex plane,”
Tr. Seklov Mat. Inst., 134, 63-114 (1975).

“On the application of linear operators to the approximate solution of ordinary dif-
ferential equations,” in: Problems of the Theory of Approximation of Functions
and Its Applications, Institute of Mathematics, Ukrainian Academy of Sciences,
Kiev (1976), pp. 61-96 [in Russian].

“On the approximation of functions of complex variables on arcs,” Ukr. Mat. Zh.,
29, No. 2, 254-258 (1977).

“On a problem of Chebyshev and Markov,” Analysis Math., No. 3 (3), 174-175
(1977).

“On the constructive theory of functions on closed sets of the complex plane,” in:
Proceedings of the International Conference on the Theory of Approximation of
Functions, Nauka, Moscow (1977), pp. 157-172 [in Russian].

“On the behavior of the set of extremal polynomials on the basisin the T-system in
the presence of constraints,” in: Investigations in the Theory of Functions and Its
Applications, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev
(1978), pp. 56-60.

“On an error estimate for the polynomial approximation of solutions of ordinary
differential equations,” Ukr. Mat. Zh., 31, No. 1, 83-89 (1979).

Approximation Methods for the Solution of Differential and Integral Equations,
Naukova Dumka, Kiev (1988) [in Russian].

Dzyadyk, V. K., and Alibekov, G. A.

(1968)

“On the uniform approximation of functions of complex variables on closed sets
with corners,” Mat. Sb., 75 (117), No. 4, 502-557 (1968).

Dzyadyk, V. K., and Dubovik, V. A.

(1974)

(1975)

“On the Kolmogorov problem of dependences between upper bounds of derivatives
of real functions defined on the entire axis,” Ukr. Mat. Zh., 26, No. 3, 300-317
(1974).

“On the Kolmogorov problem of dependences between upper bounds of derivatives
of real functions defined on the entire axis. 11, Ukr. Mat. Zh., 27, No. 3, 291-299
(1975).

Dzyadyk, V. K., and Galan, D. M.

(1965)

“On the approximation of analytic functions in domains with smooth boundary,”
Ukr. Mat. Zh., 17, No. 1, 26-38 (1965).



Dzyadyk, V.

(1969)

(1970)

Dzyadyk, V.

(1973)

Dzyadyk, V.

(1973)

Dzyadyk, V.

(1972)

(1983)

Dzyadyk, V.

(1967)

(1971)

Dzyadyk, V.

(1971)

(1972)

References 449
K., Gavrilyuk, V. T., and Stepanets, A. .

“On the approximation of functions of Holder classes by Rogosinski polynomials,”
Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 3, 203-206 (1969).

“On the least upper bound for approximations on classes of differentiable periodic
functions using Rogosinski polynomials,” Ukr. Mat. Zh., 22, No. 2, 481-493
(1970).

K., and Konovalov, V. N.

“A method for the partition of unity in domains with piecewise-smooth boundary
into a sum of algebraic polynomials of two variables possessing some properties of
kernels,” Ukr. Mat. Zh., 25, No. 2, 179-192 (1973).

K., and Krutigolova, E. K.

“On the representation of analytic functions by Dirichlet series on the boundary of
the domain of convergence,” Mat. Zametki, 14, No. 6, 769-780 (1973).

K., and Shevchuk,|. A.

“On the limit values of a Cauchy-type integral for functions of Zygmund classes,”
Ukr. Mat. Zh., 24, No. 5, 601-617 (1972).

“Extension of functions that are traces of functions with given second modulus of
continuity on an arbitrary set of a straight line,” |zv. Akad. Nauk SSSR, Ser. Mat.,
47, No. 2, 248-267 (1983).

K., and Shvai, A. 1.

“On the constructive characteristic of functions of Holder classes in domains with
piecewise-smooth boundary and arbitrary positive external angles,” Dokl. Akad.
Nauk Ukr. SSR, Ser. A, 11, 1012-1015 (1967).

“On the approximation of functions of Holder classes on closed sets with acute
external angles,” in: Metric Problems in the Theory of Functions and Mappings,
Issue 2, Naukova Dumka, Kiev (1971), pp. 74-164 [in Russian].

K., and Stepanets, A. 1.

“On the sequence of zeros of the integral sine,” in: Metric Problems in the Theory
of Functions and Mappings, Issue 2, Naukova Dumka, Kiev (1971), pp. 64-73 [in
Russian].

“Asymptotic equalities for least upper bounds of approximations of functions of
Holder classes by using Rogosinski polynomials,” Ukr. Mat. zZh., 24, No.4,
476-487 (1972).



450

References

Dzyubenko, G. A., Listopad, V. V., and Shevchuk, I. A.

(1993)  “Uniform estimates for a monotone polynomial approximation,” Ukr. Mat. Zh.,

Efimov, A. V.

(1959)
(1960)
(1960a)
(1960b)

(1961)

Elliot, M. H.

(1951)

45, No. 1, 38-43 (1993).

“On approximation of periodic functions by de la Vallée Poussin sums. |,” lzv.
Akad. Nauk SSSR, Ser. Mat., 23, No. 5, 737-770 (1959).

“On linear summation methods for Fourier series,” |zv. Akad. Nauk SSSR, Ser.
Mat., 24, No. 5, 743-756 (1960).

“Approximation of continuous periodic functions by Fourier sums,” lzv. Akad.
Nauk SSSR, Ser. Mat., 24, No. 2, 243-296 (1960).

“On approximation of periodic functions by de la Vallée Poussin sums. 11, lzv.
Akad. Nauk SSSR, Ser. Mat., 24, No. 3, 431-468 (1960).

“Linear methods for approximation of some classes of continuous periodic func-
tions,” Mat. Sb., 54 (96 : 1), 51-90 (1961).

“On approximation to functions satisfying a generalized continuity condition,”
Trans. Amer. Math. Soc., 71, No. 1, 1-23 (1951).

Erdés, P., and Turan, P.

(1961)

Faber, G.

(1903)
(1907)

Favard, J.

(1936)

(1937)
(1949)

(1957)

“An extremal problem in the theory of interpolation,” Acta Math. Acad. ci.
Hung., 12, Fas. 1-2, 221-234 (1961).

“Uber polynomische Entwicklungen,” Math. Ann., 57, 389-408 (1903).
“Uber polynomische Entwicklungen I1,” Math. Ann., 64, 116-135 (1907).

“Application de la formule sommatoire d’Euler a la démonstration de quelques
propriétés extrémales des intégrale des fonctions périodiques ou presquepério-
diques,” Mat. Tidsskr. B, 4, 81-94 (1936).

“Sur les meilleurs procédés d’approximation de certaines classes de fonctions par
des polynomes trigopnométriques,” Bull. Sci. Math., 61, 209-224, 243-256 (1937).

“Sur |’approximation dans les espaces vectoriels,” Ann. Math., 24, No.4,
259-291 (1949).
“Sur la saturation des procédés de sommation,” J. Math. Pures Appl., 36, No.9,
359-372 (1957).



References 451
Fejér, L.
(1904)  “Untersuchungen iiber Fouriersche Reihen,” Math. Ann., 58, 501-569 (1904).
Freud, G.

(1959)  Uber die Approximation reeller stetigen Funktionen durch gewshnliche Polynome,
Math. Ann., 137, No. 1, 17-25 (1959).

Freud, G., and Popov, V.

(1972)  “On approximation by spline functions,” in: Proceedings of the Conference on the
Constructive Theory of Functions (Budapest, 1969), Acad. Kiado, Budapest
(1972), pp. 163-172.

Frey, T.

(1958) “A legjobb polinom approximacié lokalizaldsiazoe, I, MTA, 111,” Oszt. Koz.,
VIII/L, 89-112 (1958).

Fuksman, A. L.

(1965)  “Structural characteristic of functions for which E,(f;-11) < Mn~ (k) » Usp.
Mat. Nauk, 20, No. 4, 187-190 (1965).

Gaier, D.
(1980)  Vorlesungen iiber Approximation im Komplexen, Birkhiuser, Basel (1980).
Galan, D. M.

(1973)  “On the problem of classification of continuous functions,” Dopov. Akad. Nauk
Ukr. RSR, No. 1, 8-11 (1973).

(1975)  “On one hypothesis of V. K. Dzyadyk,” Ukr. Mat. Zh., 27, No. 5, 579-589 (1975).

Galan, V. D.

(1991)  Smooth Functions and Estimates for Derivatives, Author’s Abstract of the Candi-
date-Degree Thesis, Kiev (1991) [in Russian].

Galan, V.D., and Galan,D. M.

(1987)  “On the degree of smoothness and moduli of continuity in the classification of con-
tinuous functions,” in: Tr. Mat. Inst. Akad. Nauk SSSR, 180, No. 3, 30-50 (1987).

Garkavi, A. L.

(1964)  “On acriterion for an element of the best approximation,” Sb. Mat. Zh., 5, No. 2,
472-476 (1964).



452 References

Gavrilyuk, V. T.

(1973)  “Approximation of continuous periodic functions of one and two variables by Ro-
gosinski polynomials of the interpolation type,” Ukr. Mat. zZh., 25, No.5,
637-648 (1973).

(1974)  “On the approximation of continuous periodic functions of many variables by trig-
onometric polynomials,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 11, 966-969
(1974).

Gavrilyuk, V. T., and Stepanets, A. 1.

(1973)  “Approximation of differentiable functions by Rogosinski polynomials,” Ukr.
Mat. Zh., 25, No. 1, 3-13 (1973).

(1973a) “Onthe least upper bounds of the deviations of Bernstein sums from functions of
Holder classes,” Ukr. Mat. zh., 25, No. 2, 158-169 (1973).

Gehring, F. W., Heyman, W. K., and Hinkkanen, A.

(1982)  “Analytic functions, satisfying Holder conditions on the boundary,” J. Approxim.
Theory, 35, No. 3, 243-249 (1982).

Geit, V. E.

(1972)  “Imbedding theorems for some classes of periodic functions,” 1zv. Vyssh. Uchebn.
Zaved., Ser. Mat., No. 4, 67-77 (1972).

Gel’fond, A. O.
(1969)  Calculus of Finite Differences, Fizmatgiz, Moscow (1969) [in Russian].
Goluzin, G. M.

(1966)  Geometric Theory of Functions of Complex Variables, Nauka, Moscow (1966) [in
Russian].

Gonchar, A. A., and Mergelyan, S. N.

(1970)  “Theory of approximation of functions of complex variables,” in: History of Do-
mestic Mathematics, Vol. 4, Book 1, Naukova Dumka, Kiev (1970), pp. 112-152
[in Russian].

Goncharov, L. V.

(1954)  Theory of Interpolation and Approximation of Functions, GTTL, Moscow (1954)
[in Russian].

Gorny, A.

(1939) “Contribution a I’etude des fonctions dérivables d’une variable réelle,” Acta
Math., 76, 317-358 (1939).



References 453

Grebenyuk, D. G.

(1960)

Polynomials of Best Approximation with Linearly Related Coefficients, Academy
of Sciences of Uzb. SSR, Tashkent (1960) [in Russian].

Guseinov, E. G.

(1979)

“Imbedding theorems for classes of continuous functions,” lzv. Akad. Nauk
Azerb. SSR, Ser. Mat., No. 2, 57-60 (1979).

Guseinov, E. G., and Il’yasov, N. A.

(1977)

Haar, A.

(1918)

“Differential and smoothness properties of continuous functions,” Mat. Zametki,
22, No. 6, 785-794 (1977).

“Die Minkowskische Geometrie und die Annidherung an stetige Funktionen,”
Math. Ann., 78, 293-311 (1918).

Hadamard, J.

(1914)

“Sur le module maximum d’une fonction et de ses dérivées,” C. R. S¥anses Soc.
Math. Fr., 42 (1914).

Hardy, G. H., and Littlewood, J. E.

(1928)  “Some properties of fractional integrals. I,” Math. Zeitschr., 27, No. 1, 565-606
(1928).
(1932)  “Some properties of fractiona integrals. I1,” Math. Zeitschr., 34, No. 1, 403-439
(1932).
Harshiladze, F. 1.
(1955)  “Gibbs phenomenon in the summation of Fourier series by the Bernstein-Rogosin-
ski method,” Dokl. Akad. Nauk SSSR, 101, No. 3, 425-428 (1955).
(1958)  “Classes of saturation for some summation processes,” Dokl. Akad. Nauk SSSR,
122, No. 3, 352-355 (1958).
Hasson, M.
(1982)  “The sharpness of Timan’s theorem on differentiable functions,” J. Approxim.
Theory, 35, No. 3, 264-274 (1982).
Helly, E.
(1923)  “Uber Mengen konvexer Korper mit gemeinschaftlichen Punkten,” Jahresber.

Dtsch. Math.—Ver., 32, 175-176 (1923).



454

Hermite, G.

(1878)

Hestenes, M.

(1941)

Heuser, P.
(1939)
Ibragimov, 1.

(1946)

(1971)

References

“Sur laformule d’interpolation de Lagrange,” J. Reine Angew. Math., 84, 70-79
(1879).

“Extension of the range of differentiable functions,” Duke Math. J., 8, 183-192
(1941).

“Zur Theorie der Faberschen Polynomreihen,” Dtsch. Math., 4, 451-454 (1939).
l.

“On the asymptotic value of the best approximation of functions having areal sin-
gular point,” Izv. Akad. Nauk SSSR, Ser. Mat., 10, No. 5, 429-460 (1946).

Methods for Interpolation of Functions and Their Applications, Nauka, Moscow
(2971) [in Russian].

Ivanov, K., and Takev, M. O.

(1985)

Ivanov, V. K.

(1951)

(1952)

lvanov, V. V.

(1958)

Jackson, D.

(1911)

(1912)

(1924)

“O(nInn) bounds of Whitney constants,” C. R. Acad. Bul. <i., 38, No.9,
1129-1131 (1985).

“Minimax problem for a system of linear functions,” Mat. Sb., 28 (70), No. 3,
685-706 (1951).

“On uniform approximation of continuous functions,” Mat. Sb., 30 (72), No. 3,
543-558 (1952).

“Some properties of singular integrals,” 1zv. Akad. Nauk SSSR, Ser. Mat., 4, No. 5,
89-95 (1958).

Uber die Genauigkeit der Anndherung stetiger Funktionen durch ganze rationale
Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung,
Dissertation, Gottingen (1911).

“On approximation by trigonometric sums and polynomials,” Trans. Amer. Math.
Soc., 13, 491-515 (1912).

“A general class of problems in approximation,” Amer. J. Math., 46, 215- 234
(1924).



References 455

(1930)  The Theory of Approximation, American Mathematical Society, New Y ork (1930).

(1941) Fourier Series and Orthogonal Polynomials, Carus Mathematical Monographs,
No. 6, New York (1941).

Jonsson, A.

(1980) “Thetrace of the Zygmund class A to closed sets and interpolating polynomials,”
Univ. Umea, Dept. Math., No. 7 (1980).

Jonsson, A., and Wallin, H.

(1977)  “The trace on closed sets of functions with Second difference of order O(h),”
Univ. Umea, Dept. Math., No. 7 (1977).

Karlin, S.

(1963) “Representation theorems for positive functions,” J. Math. Mech., 12, No.4,
599-618 (1963).

Karlin, S., and Studden, W. J.

(1966)  Tchebycheff Systems: With Applications in Analysis and Statistics, Interscience,
New York (1966).

Keldysh, M. V.

(1945)  “Determination of functions of complex variables by series of polynomials in
closed domains,” Mat. Sb., 16 (58), 249-258 (1945).

Kirchberger, P.

(1903)  “Uber Tchebycheffsche Anniaherungsmethoden,” Math. Ann., 57, 509-540 (1903).
Kolesnik, L. 1.

(1969)  “Inversion of aKellogg-type theorem,” Ukr. Mat. Zh., 21, No. 1, 104-108 (1969).
Kolmogorov, A. N.

(1923)  “Sur I’ordre de grandeur des coefficients de la série de Fourier—Lebesgue,”

B. A. P., 83-86 (1923).

(1935)  “Zur Grossenordnung des Restgliedes Fourierscher Reihen differenzierbarer Funk-
tionen,” Ann. Math., 36, No. 2, 521-526 (1935).

(1938)  “Une généralisation de I’inégalité de M. J. Hadamard entre les bornes supérieures
des dérivées successives d’une fonction,” C. R. Acad. i, 207, 764-765 (1938).

(1938a) “On inequalities between upper bounds of successive derivatives of an arbitrary
function on an infinite interval,” Uch. Zap. Moscow Univ., Ser. Mat., Issue 30,
3-16 (1938).

(1948)  “A remarks on Chebyshev polynomials least deviating from a given function,”
Usp. Mat. Nauk, 3, Issue 1, 216-221 (1948).



456

References

Kolyada, V. 1.

(1975)

(1988)

(1989)

“On imbedding into the classes ¢(L),” lzv. Akad. Nauk SSSR, Ser. Mat., 39,
No. 2, 418-437 (1975).

“On relations between moduli of continuity in different metrics,” Tr. Mat. Inst.
Akad. Nauk SSSR, 181, 117-136 (1988).

“Rearrangement of functions and imbedding theorems,” Usp. Mat. Nauk, 44,
No. 5 (269), 61-95 (1989).

Konovalov, V. N.

(1972)  “Constructive characteristic of the classes W'H® of functions of many real vari-
ables,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 10, 882-884 (1972).
(1973)  On Constructive Characteristics of Some Classes of Functions of Many Real Vari-
ables, Candidate-Degree Thesis, Kiev (1973) [in Russian].
(1978)  “Exact inequalities for norms of functions, third partial derivatives, second mixed
derivatives, and oblique derivatives,” Mat. Zametki, 23, No. 1, 67-78 (1978).
(1984) Description of Traces of Some Classes of Functions of Many Variables, Preprint
No. 84.21, Ingtitute of Mathematics, Ukrainian Academy of Sciences, Kiev (1984)
[in Russian].
Konyagin, S. V.
(1983)  “Onthemoduli of continuity of functions,” in: Abstracts of the All-Union School
on the Theory of Approximation of Functions Dedicated to the Centenary of
Acad. N. N. Luzin (September 10-19, 1983), Kemerovo (1983), p. 59 [in Russian].
Kopotun, K. A.
(1992)  “Uniform estimates for the coconvex approximation of functions by polynomials,”

Mat. Zametki, 51, No. 3, 24-33 (1992).

Kopotun, K. A., Leviatan, D., and Shevchuk, I. A.

(2005)

“Convex polynomial approximation in the uniform norm: Conclusion,” Canad. J.
Math., 57, 1224-1248 (2005).

Korkin, A.1., and Zolotarev, E. I.

(1873)

“Sur un certain minimum” (1873), in: E. I. Zolotarev, Complete Works, Issue 2,
Academy of Sciences of the USSR, Leningrad (1932), pp. 138-154.

Korneichuk, N. P.

(1959)

“On the approximation of periodic functions satisfying the Lipschitz condition by
Bernstein-Rogosinski sums,” Dokl. Akad. Nauk SSSR, 125, No. 4, 258-261
(1959).



(1959a)

(1961)

(1962)

(1971)

(1976)

Korovkin, P.

(1959)

References 457

Some Problems of Approximation of Periodic Functions by Trigonometric Polyno-
mials, Candidate-Degree Thesis, Dnepropetrovsk (1959) [in Russian].

“On an estimate for approximations of functions of theclass H* by trigonometric
polynomials,” in: Investigation of Contemporary Problems of Constructive The-
ory of Functions, Moscow (1961), pp. 148-154 [in Russian].

“Exact constant in the Jackson theorem on the best uniform approximation of conti-
nuous periodic functions,” Dokl. Akad. Nauk SSSR, 145, No. 3, 514-515 (1962).

“Extremal values of functionals and the best approximation on classes of periodic
functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 35, No. 1, 93-124 (1971).

Extremal Problems of Approximation Theory, Nauka, Moscow (1976) [in Rus-
sian].

P.

Linear Operators and Approximation Theory, Nauka, Moscow (1959) [in Rus-
sian].

Koval’chuk, R. N.

(1965)

(1965a)

“Direct theorems on approximation of analytic functions of many complex vari-
ables in polycylindric domains,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No.2,
170-174 (1965).
“On one generalization of the Kellogg theorem,” Ukr. Mat. Zh., 17, No.4,
104-108 (1965).

Krasnosel’skii, M. A., and Lifshits, E. A.

(1968)  “On the problem of convergence of a sequence of positive operators in linear topo-
logical spaces,” Usp. Mat. Nauk, 23, No. 2, 213-214 (1968).
Krein, M. G.
(1959)  “L-problem in an abstract linear normed space,” in: On Some Problems in the
Theory of Moments, DNTVU (1959), pp. 171-199 [in Russian].
Krein, M. G., and Nudel’man, A. A.
(1973)  Problem of Markov Moments and Extremal Problems, Nauka, Moscow (1973) [in
Russian].
Krochuk, V. V.
(1969)  “On the polynomial approximation of solutions of ordinary differential equations,”
in: Proceedings of the Seminar on Differential and Integral Equations, Issue 1, In-
stitute of Mathematics, Ukrainian Academy of Sciences, Kiev (1969), pp. 254-261
[in Russian].
(1970)  On the Polynomial Approximation of Solutions of Differential and Integral Equa-

tions, Candidate-Degree Thesis, Kiev (1970) [in Russian].



458 References

Kryakin, Yu. V.

(1989)  “On Whitney constants,” Mat. Zametki, 46, No. 2, 155-157 (1989).

Krylov, V. 1.

(1959)  Approximate Calculation of Integrals, Fizmatgiz, Moscow (1959) [in Russian].

Kudryavtsev, L. D.

(1963)  “Interpolation and approximation of functions,” in: Elements of the Theory of
Functions, Fizmatgiz, Moscow (1963), pp. 106-198 [in Russian].

Laurent, P.-J.
(1972)  Approximation et Optimisation, Hermann, Paris (1972).

Lavrent’ev, M. A.
(1934)  “On the theory of conformal mappings,” Tr. Seklov. Fiz.-Mat. Inst., 159- 246
(1934).
(1935)  “Sur une classe de représentations continues,” Mat. Sb., 42, 407-424 (1935).

(1936)  “On some boundary-value problems in the theory of univalent functions,” Mat.
S, 1, No. 6, 815-844 (1936).

Lebed’, G. K.

(1957)  “Inequalities for polynomials and their derivatives,” Dokl. Akad. Nauk SSSR, 117,
No. 4, 570-572 (1957).

(1975)  “Some inequalities for trigonometric algebraic polynomials and their derivatives,”
Tr. Mat. Inst. Akad. Nauk SSSR, 134, 142-160 (1975).

Lebedev, N. A.

(1966)  “On inverse theorems on uniform approximation,” Dokl. Akad. Nauk SSSR, 171,
No. 4, 788-790 (1966).

Lebedev, N. A., and Shirokov, N. A.

(1971)  “On the uniform approximation of functions on closed sets that have finitely many
corner points with nonzero exterior angles,” |zv. Akad. Nauk Arm. SSR, 6, No. 4,
311-341 (1971).

Lebedev, N. A., and Tamrazov, P. M.

(1970)  “Inverse theorems on approximation on regular compact sets of the complex
plane,” 1zv. Akad. Nauk SSSR, Ser. Mat., 34, No. 6, 1340-1390 (1970).



References 459
L ebesgue, H.

(1898)  “Sur I’approximation des fonctions,” Bull. Sci. Math., Ser. 2, 22, 278-287 (1898).
(1909)  “sur lesintégrales singulieres,” Ann. Toulouse, 1, 25-117 (1909).

Leviatan, D.

(1986)  “Pointwise estimates for corner polynomia approximation,” Proc. Amer. Math.
Soc., 98, No. 3, 471-474 (1986).

Lichtenstein, L.

(1909)  “Zur Theorie der linearen partiellen Differentialgleichungen zweiter Ordnung des
elliptischen Typus,” Math. Ann., 67, 559-575 (1909).

Lorentz, G. G.

(1953)  Bernstein Polynomials, Toronto University, Toronto (1953).
(1966)  Approximation of Functions, Holt, Rinehart, and Watson, New Y ork (1966).

(1972)  “Monotone approximation,” in: O. Shisha (editor), Inequalities, Vol. 3, Academic
Press, New York (1972), pp. 201-215.

Lorentz, G. G., and Zédller, K. L.

(1968)  “Degree of approximation by monotone polynomials. 1,” J. Approxim. Theory, 1,
No. 4, 501-504 (1968).

(1969)  “Degree of approximation by monotone polynomials. 11,” J. Approxim. Theory, 2,
No. 3, 265-269 (1969).

Lorentz, R. A.
(1971)  “Uniqueness of best approximation by monotone polynomials,” J. Approxim.
Theory, 4, 401-418 (1971).
Lozinskii, S. M.

(1944)  “On convergence and summability of Fourier series and interpolation processes,”
Mat. Sb., 14 (56), Issue 3, 175-268 (1944).

(1952)  “Inversion of the Jackson theorem,” Dokl. Akad. Nauk SSSR, 83, No. 5, 645-657
(1952).

Lukacs, F.

(1918)  “Verschirfung des ersten Mittelwertsatzes der Integralrechnung fiir rationale Poly-
nome,” Math. Zeitschr., 2, 295-305 (1918).



460 References

Mairhuber, J.

(1956) “On Haar’s theorems concerning Chebysheff approximation problems having
unique solutions,” PAMS, 7, No. 4, 609-615 (1956).

Mandelbrojt, S.

(1952) Sries Adhérentes. Régularisation des Suites. Applications, Gauthier-Villars, Paris
(1952).

Marchaud, A.

(1927)  “Sur les dérivées et sur les différences des fonctions de variables réelles,” J. Math.
Pures Appl., 6, 337-425 (1927).

Markov, A. A.
(1884)  On Some Applications of Algebraic Continued Fractions, Thesis, St.Petersburg
(1884).

(1889)  “On one Mendeleev Problem” (1889), in: A. A. Markov, Selected Works, GITTL,
Moscow (1948), pp. 51-75 [in Russian].

(1898)  “On the limit values of integrals in connection with interpolation,” Zap. Akad.
Nauk, Ser. VIII, 1V (1898).

(1906)  “Lectures on functions least deviating from zero” (1906), in: A. A. Markov, Se-
lected Works, GITTL, Moscow (1948), pp. 244-291 [in Russian].

(1948)  Sdected Works, GITTL, Moscow (1948) [in Russian].
Markov, V. A.

(1892)  On the Functions Least Deviating from Zero on a Given Segment, St.Petersburg
(1892).

Markushevich, A. I.

(1936)  “Sur lareprésentation conforme des domaines a frontieres variables,” Mat. Sb., 1
(43), No. 6, 863-864 (1936).

(1967)  Theory of Analytic Functions, Nauka, Moscow (1967-1968) [in Russian].
Matorin, A. P.

(1955)  “On inequalities between the maximum values of the moduli of functions and their
derivativeson ahalf line,” Ukr. Mat. Zh., 7, No. 3, 262-266 (1955).

Meiman, N. N.

(1952) “Differentia inegualities and some problems of distribution of zeros of entire and
single-valued analytic functions,” Usp. Mat. Nauk, 7, No. 3, 3-62 (1952).



References 461

Meinardus, G.

(1964)  Approximation von Funktionen und ihre numerische Behandlung, Springer, Berlin
(1964).
Mergelyan, S. N.

(1951) “Onsome problems in the constructive theory of functions,” Tr. Mat. Inst. Akad.
Nauk SSSR, 37, 1-92 (1951).

(1952)  “Uniform approximation of functions of complex variables,” Usp. Mat. Nauk, 7,
No. 2(48), 31-122 (1952).

Merrien, J.

(1966)  “Prolongateurs de fonctions différentiables d’une variable réelle,” J. Math. Pures
Appl., 45, No. 3, 291-309 (1966).

Natanson, |. P.

(1949)  Constructive Theory of Functions, GITTL, Moscow (1949) [in Russian].

(1952)  “On the approximation of multiply differentiable periodic functions by using singu-
lar integrals,” Dokl. Akad. Nauk SSSR, 82, No. 2, 337-339 (1952).

(1974)  Theory of Functions of Real Variables, Nauka, Moscow (1974) [in Russian].
Nessel, R. J., and Wickeren, E. van

(1984)  “Some negative results in connection with Marchaud-type inequalities,” in: Inter-
national Series of Numerical Mathematics, 71, Birkhiuser, Basel (1984),
pp. 221-238.

Newman, D. J.

(1964)  “Rational approximationto |x|,” Mich. Math. J., 11, No. 1, 11-14 (1964).
(1974)  “Jackson’stheorem on complex arcs,” J. Approxim. Theory, 10, 206-217 (1974).
Nikolaev, V. F.

(1948)  “On the problem of approximation of continuous functions by polynomials,”
Dokl. Akad. Nauk SSSR, 61, No. 2, 201-204 (1948).

Nikol’skii, S. M.

(1940)  “Onthe asymptotic behavior of a remainder in the case of approximation of func-
tions satisfying the Lipschitz condition by Fejér sums,” lzv. Akad. Nauk SSSR,
Ser. Mat., 4, No. 6, 501-508 (1940).



462

References

(1940a) “On some methods of approximation by trigonometric sums,” lzv. Akad. Nauk
SSSR, Ser. Mat., 4, No. 6, 509-520 (1940).

(1941) “Asymptotic estimate for a remainder in the case of approximation by Fourier
sums,” Dokl. Akad. Nauk SSSR, 32, No. 6, 386-389 (1941).

(1945)  “Approximation of periodic functions by trigonometric polynomials,” Tr. Mat.
Inst. Seklov., 15, 1-58 (1945).

(1946)  “Approximation of functions by trigonometric polynomials in the mean,” lzv.
Akad. Nauk SSSR, Ser. Mat., 10, No. 3, 207-256 (1946).

(19468) “On the best approximation of functions satisfying the Lipschitz condition by poly-
nomias,” lzv. Akad. Nauk SSSR, Ser. Mat., 10, No. 4, 295-317 (1946).

(1946b) “Fourier series with given modulus of continuity,” Dokl. Akad. Nauk SSSR, 52,
No. 3, 191-194 (1946).

(1947)  Theory of Approximation of Functions. Part. 1. Functional Analysis, Dnepro-
petrovsk University, Dnepropetrovsk (1947) [in Russian].

(1947a)  “On the best polynomial approximation of functions with singularities of the form
|a—x|® inthemean,” Dokl. Akad. Nauk SSSR, 55, No. 3, 195- 198 (1947).

(1948)  “On linear methods for summation of Fourier series,” lzv. Akad. Nauk SSSR, Ser.
Mat., 12, No. 3, 259-278 (1948).

(1948a) “Generalization of one Bernstein inequality,” Dokl. Akad. Nauk SSSR, 60, No.9,
1507-1510 (1948).

(1958)  “Approximation of functions of many variables by polynomials,” in: Proceedings
of the Third All-Union Mathematical Congress (Moscow, 1956), Vol. 4, Academy
of Sciences of the USSR, Moscow (1958), pp. 226-231 [in Russian].

(1966)  “On one method for covering adomain and an inequality for polynomials of many
variables,” Mathematica (Cluj), 8, No. 2, 345-356 (1966).

(1969)  Approximation of Functions of Many Variables and Imbedding Theorems, Nauka,
Moscow (1969) [in Russian].

(1974)  Quadrature Formulas, Nauka, Moscow (1974) [in Russian].

Nikol’skii, V. N.

(1963)  “The best approximations of elements of convex sets in linear normed spaces,”

Uch. Zap. Kalininsk. Pedagog. Inst., 29, 85-119 (1963).
Norlund, N. E.
(1926)  Differenzenrechnung, Springer, Berlin (1926).

Osgood, W. F., and Taylor, E. H.

(1913)

“Conformal transformations on the boundaries of their regions of definition,”
Trans. Amer. Math. Soc., 14, 277-298 (1913).



References 463

Oskolkov, K. I.

(2976)  “Uniform modulus of continuity of summable functions on sets of positive meas-
ure,” Dokl. Akad. Nauk SSSR, 229, No. 2, 304-306 (1976).

Peetre, J. A.

(1968) A Theory of Interpolation of Normed Spaces, Instituto de Matemética Pura e Apli-
cada, Rio de Janeiro, Brasil (1968).

Pinkevich, V. T.

(1940)  “On the order of the remainder of the Fourier series of functions differentiable in
the Weyl sense,” 1zv. Akad. Nauk SSSR, 4, No. 6, 521-528 (1940).

Podlipenko, Yu. K.

(21977)  Application of the Approximation Method to the Solution of Cauchy and Goursat
Problems for Differential Equations, Candidate-Degree Thesis, Kiev (1977) [in
Russian].

Pokalo, A. K.

(1962) “On one class of linear methods of summation,” Vests. Akad. Nauk Belorus. SSR,
Ser. Fiz-Tekhn. Navuk, No. 1, 24-27 (1962).

Polyakov, R. V.

(1969)  On the Approximation of Continuous Functions Defined on Bounded Closed Sets,
Candidate-Degree Thesis, Kiev (1969) [in Russian].

(1972)  “Approximation of continuous (analytic interior) functions in domains with a
smooth boundary,” Ukr. Mat. zZh., 24, No. 1, 57-68 (1972).

Popoviciu, T.

(1934)  “Sur quelques propriétés des fonctions d’une ou de deux variables réelles,” Math-
ematica, 8, 1-85 (1934).

(1934a) “Sur I’approximation des fonctions convexes d’ordre supérieur,” Mathematica,

10, 49-54 (1934).
Potapov, M. K.
(1981) “Polynomia approximation on a finite interval of the real axis,” in: Constructive
Theory of Functions, Varna (1981), pp. 134-138 [in Russian].
Privalov, A. A.

(1990) Theory of Interpolation of Functions, Saratov University, Saratov (1990) [in Rus-
sian].



464

Prypik, A. S.

(1974)

(1976)

References

“On the application of generalized Faber polynomials to the approximation of func-
tions analytic on closed sets,” in: Theory of Approximation of Functions and Its
Applications, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev
(1974), pp. 114-118 [in Russian].

“On the inverse theorems of functions on regular compact sets,” Ukr. Mat. Zh.,
28, No. 1, 43-52 (1976).

Radodavova, T. V.

(1979)  “Decrease orders of the moduli of continuity,” Analysis Math., 5, No. 3, 219-234
(2979).
Remez, E. Ya.
(1935)  On Methods for the Best (in the Chebyshev Sense) Approximate Representation of
Functions, Ukrainian Academy of Sciences, Kiev (1935) [in Ukrainian].
(1953)  “Some problems of Chebyshev approximation in the complex plane,” Ukr. Mat.
Zh., 5, No. 1, 3-49 (1953).
(1957)  “On Chebyshev approximation in the complex plane,” Dokl. Akad. Nauk SSSR,
77, No. 6, 965-968 (1957).
(1957)  General Computational Methods of Chebyshev Approximation, Ukrainian Acad-
emy of Sciences, Kiev (1957) [in Russian].
(1969) Foundations of Numerical Methods of Chebyshev Approximation, Naukova
Dumka, Kiev (1969) [in Russian].
Rice, J. R.
(1964) The Approximation of Functions, Vol. I: Linear Theory, Addison-Wesley, Read-
ing, MA (1964).
(1969) The Approximation of Functions, Vol.Il: Nonlinear Theory, Addison-Wesley,
Reading, MA (1969).
Riesz, F.
(1914)  “Sur les polynomes trigonométriques,” Comptes R., 158, No. 23, 1657- 1661
(1914).
(1925)  “Uber die Randwerte einer analytischen Funktion,” Math. Zeitschr., 18, 87-95
(1925).
Riesz, M.
(1914)  “Eine trigonometrische Interpolationsformel und einige Ungleichungen fiir Poly-

nome,” Jahresber. Dtsch. Math.—Ver., 23, 354-368 (1914).



References 465

Rodov, A. M.
(1946)  “Dependences between upper bounds of derivatives of functions of real variables,”
Izv. Akad. Nauk SSSR, Ser. Mat., 10, No. 2, 257-270 (1946).
Rogosinski, W.
(1925)  “Uber die Abschnitte trigonometrischer Reihen,” Math. Annal., 95, 110- 135
(1925).
Rubel, L. A., Shields, A. L., and Taylor, B. A.
(1975) “Mergelyan sets and modulus of continuity of analytic functions,” J. Approxim.
Theory, 15, No. 1, 23-40 (1975).
Rudin, W.
(1964)  Principles of Mathematical Analysis, McGraw-Hill, New Y ork (1964).

Runge, C.
(1885)  “Zur Theorie der eindeutigen analytischen Funktionen,” Acta Math., 6, 229-244
(1885).
Salem, R.

(1935)  “Sur certaines fonctions continues et les propriétés de leur séries de Fourier,”
Comptes R,, 201, No. 17, 703-705 (1935).

(1940) “Essais sur les séries trigonométriques,” Actualités Sci. Industr., No. 862, 1-85

(1940).
Sendov, B.

(1982)  “On the constants of H. Whitney,” C. R. Acad. Bul. <., 35, No. 4, 431-434
(1982).

(1985)  “The constants of H. Whitney are bounded,” C. R. Acad. Bul. <i., 38, No. 10,
1299-1302 (1985).

(1986)  “On one H. Whitney theorem,” Dokl. Akad. Nauk SSSR, 291, No. 6, 1296-1300
(1986).

Sendov, B., and Popov, V.

(1988) The Averaged Moduli of Smoothness, Mir, Moscow (1988) [Russian translation].
(1989)  The Averaged Moduli of Smoothness, Wiley, New Y ork (1989).

Sendov, B., and Takev, M.

(1986)  “The theorem of Whitney for integral norm,” C. R. Acad. Bul. Sci., 39, No. 10,
35-38 (1986).



466 References
Sewell, W. E.

(1937)  “Degree of approximation by polynomialsin complex domain. Generalized deriv-
atives and approximation by polynomials,” Trans. Amer. Math. Soc., 41, No. 1,
84-121 (1937).

(1939)  “Jackson summation of the Faber development,” Bull. Amer. Math. Soc., 45,
187-189 (1939).

(1942)  Degree of Approximation by Polynomials in the Complex Domain, Princeton Uni-
versity Press, Princeton (1942).

Shchekhorskii, A. I.

(1977)  “Contour-solid theorems for holomorphic functions,” in: Finite-Difference
Smoothnesses in Problems of the Theory of Functions, Preprint No. 77.10, Institute
of Mathematics, Ukrainian Academy of Sciences, Kiev (1977), pp. 23-27 [in Rus-
sian).

(1982) Majorant Properties of Holomorphic Functions of the Hdlder Class, Preprint
No. 82.41, Ingtitute of Mathematics, Ukrainian Academy of Sciences, Kiev (1982)
[in Russian].

Shevchuk, |. A.

(1973)  “On the constructive characteristic of functions of the classes D"H ©2) on closed
sets with piecewise-smooth boundary,” Ukr. Mat. Zh., 25, No. 1, 81-90 (1973).

(2976)  “Some remarks on functions of the modulus-of-continuity type of order k>2," in:
Problems of the Theory of Approximation of Functions and Its Applications, In-
stitute of Mathematics, Ukrainian Academy of Sciences, Kiev (1976), pp. 194-199
[in Russian].

(1976a) “Solid and contour properties of analytic functions in terms of the second modulus
of continuity,” in: Problems of the Theory of Approximation of Functions and Its
Applications, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev
(1976), pp. 202-204 [in Russian].

(1977)  “On the classes of functions H,f(tm) on sets M of the complex plane,” in: Pro-
ceedings of the International Conference on the Theory of Approximation of Func-
tions (Kaluga, 1977), Nauka, Moscow (1977), pp. 409-412 [in Russian].

(1979)  “Constructive characteristic of functions continuousonaset 9t < C for the kth
modulus of continuity,” Mat. Zametki, 25, No. 2, 225-247 (1979).

(1980)  “Contour-solid theorems for Holder classes,” in: Problems of the Theory of Ap-
proximation of Functions, Institute of Mathematics, Ukrainian Academy of Sci-
ences, Kiev (1980), pp. 186-189 [in Russian].

(1984)  Constructive Description of Traces of Differentiable Functions of Real Variables,

Preprint No. 83.19, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev
(1984) [in Russian].



(1984a)

References 467

“Extension of functions which are traces of functions belonging to H? on ar-
bitrary subset of the line,” Analysis Math., No. 3, 249-273 (1984).

(1986)  “On the uniform approximation of functions on a segment,” Mat. Zametki, 40,
No. 1, 36-48 (1986).
(1989)  “On coapproximation of monotone functions,” Dokl. Akad. Nauk SSSR, 308,
No. 3, 537-541 (1989).
(1989a) “On the sharpness of an approximation criterion of smoothness for functions on a
segment,” in: Approximation and Function Spaces, Vol. 22, Banach Center Publ.,
PWN-Polish Scientific Publishers, Warsaw (1989), pp. 401-411.
(1992) “Approximation of monotone functions by monotone polynomials,” Mat. Sb.,
183, No. 5, 63-78 (1992).
Shevchuk, L. B.
(1974)  Algorithm and Software for the Numerical Construction of ®-Extremal Polyno-
mials on a Computer, Preprint, Kiev (1974), pp. 1-38 [in Russian].
Shirokov, N. A.
(1972)  “On the uniform approximation of functions on closed sets having finitely many
corner points with nonzero exterior angles,” Dokl. Akad. Nauk SSSR, 205, No. 4,
798-800 (1972).
Shokhat, Ya. A.
(1918)  Investigation of One Class of Polynomials Least Deviating from Zero, Ural Mining
Institute, Ekaterinburg (1918) [in Russian].
Shvai, A. 1.
(1967)  On the Approximation of Functions of the Classes W'H® Defined on Closed
Sets with Arbitrary Angles Different from 2n, Candidate-Degree Thesis, Kiev
(1967) [in Russian].
Shvartsman, P. A.
(1982)  “On the traces of functions of two variables that satisfy the Zygmund condition,”
in: Investigations in the Theory of Functions of Many Real Variables, Yaroslavl
University, Yarosavl (1982), pp. 145-168 [in Russian].
(1984)  “Lipschitz sections of many-valued mappings and traces of functions of the Zyg-
mund class on an arbitrary compact set,” Dokl. Akad. Nauk SSSR, 276, No. 3,
559-562 (1984).
Shvedov, A. S.
(1979)  “Jacksontheoremin L,, 0<p <1, for algebraic polynomials and order of co-

monotone approximation,” Mat. Zametki, 25, No. 1, 107-117 (1979).



468 References
(1980) “Comonotone approximation of functions by polynomials,” Dokl. Akad. Nauk
SSSR, 250, No. 1, 39-42 (1980).
(1981)  “Order of coapproximation of functions by algebraic polynomias,” Mat. Zametki,
29, No. 1, 117-130 (1981).
(1981a) “Coconvex approximation of functions of many variables by polynomials,” Mat.
., 115, No. 4, 577-589 (1981).
Singer, |.
(21957)  “Sur la meilleure approximation des fonctions abstraites continues a valeurs dans
un espace de Banach,” Rev. Math. Pures Appl., 2, 245-262 (1957).
Smirnov, G. S.
(1973)  On a Criterion for an Element of the Best Approximation of an Abstract Function

with Values in a Banach Space, Preprint No. 73-8, Institute of Mathematics,
Ukrainian Academy of Sciences, Kiev (1973) [in Russian].

Smirnov, V. 1., and Lebedev, N. A.

(1964)  Constructive Theory of Functions of Complex Variables, Nauka, Moscow (1964)

[in Russian].
Stechkin, S. B.

(1948) “Generalization of some Bernstein inequalities,” Dokl. Akad. Nauk SSSR, 60,
No.9, 1511-1514 (1948).

(1949)  “On the order of the best approximation of continuous functions,” Dokl. Akad.
Nauk SSSR, 65, No. 2, 135-138 (1949).

(1951) “On delaVallée Poussin sums,” Dokl. Akad. Nauk SSSR, 80, No. 4, 545- 548
(1951).

(1951a) “On the order of the best approximations of continuous functions,” 1zv. Akad.
Nauk SSSR, Ser. Mat., 15, No. 3, 219-242 (1951).

(1951b) “Bernstein and Rogosinski summation methods,” in: G.H. Hardy, Divergent Se-
ries, Inostrannaya Literatura, Moscow (1951), pp. 479-492 [Russian transl ation].

(1952)  “On the best approximation of periodic functions by trigonometric polynomials,”
Dokl. Akad. Nauk SSSR, 83, No. 5, 651-654 (1952).

(1953) “Estimate for the remainder of a Taylor series for some classes of analytic func-
tions,” lzv. Akad. Nauk SSSR, Ser. Mat., 17, No. 6, 461-472 (1953).

(1955)  “On the absolute convergence of Fourier series. I1,” 1zv. Akad. Nauk SSSR, Ser.
Mat., 19, 221-246 (1955).

(1956)  “Some remarks on trigonometric polynomials,” Usp. Mat. Nauk, 10, Issue 1,
159-166 (1956).

(1956a) “On the best approximation of some classes of periodic functions by trigonometric

polynomias,” 1zv. Akad. Nauk SSSR, 20, No. 5, 643-648 (1956).



References 469

(1961)  “On the approximation of periodic functions by Fejér sums,” Tr. Mat. Inst. Akad.
Nauk SSSR, 62, 48-60 (1961).

(1971)  “On the approximation of continuous periodic functions by Favard sums,” Tr.
Mat. Inst. Seklov., 109, 26-39 (1971).

Stechkin, S. B., and Subbotin, Yu. N.
(1976)  Splinesin Computational Mathematics, Nauka, Moscow (1976) [in Russian].
Stein, E. M.

(1970) Singular Integrals and Differential Properties of Functions, Princeton University,
Princeton (1970).

Stepanets, A. I.
(1972)  “On one Kolmogorov problem in the case of functions of two variables,” Ukr.

Mat. Zh., 24, No. 5, 653-655 (1972).

(1972a) “Approximation of functions satisfying the Lipschitz conditions by Fourier sums,”
Ukr. Mat. Zh., 24, No. 6, 781-799 (1972).

(21973)  “Approximation of some classes of periodic functions of two variables by Fourier
sums,” Ukr. Mat. Zh., 25, No. 5, 599-609 (1973).

(1974)  “Approximation of continuous periodic functions of many variables by Riesz
spherical means,” Mat. Zametki, 15, Issue 5, 831-832 (1974).

(1974a) Approximation of Periodic Functions by Riesz Sums, Preprint No. 74-2, Institute of
Mathematics, Ukrainian Academy of Sciences, Kiev (1974), pp. 3-47 [in Russian].

(1974b) Investigation of Extremal Problems in the Theory of Summation of Fourier Series,
Doctoral-Degree Thesis, Kiev (1974) [in Russian].

Stolyar chuk, V. K.

(1974)  “On the construction of polynomials that realize a nearly-best approximation of the
1 X
functions six and ®(x) =2—_[e"t2dt ” Ukr. Mat. Zh., 26, No. 2, 215-224
i
0

(1974).

(1974a) “On the uniform approximation of Bessel functions with entire index by polyno-
mials,” Ukr. Mat. Zh., 26, No. 5, 670-674 (1974).

Stone, M.

(1937)  “Applications of the theory of Boolean rings to general topology,” Trans. Amer.
Math. Soc., 41, 375-481 (1937).

Storozhenko, E. A.

(2977)  “Approximation of functions of the class Lp(Rk), 0< p<1, by agebraic poly-
nomials,” lzv. Akad. Nauk SSSR, Ser. Mat., 41, 652-662 (1977).



470 References
Storozhenko, E. A., and P. Oswald

(1978)  “Jackson theorem in the spaces LP(R¥), 0< p<1,,” Sib. Mat. zh., 19, No. 4,
888-901 (1978).

Stovbun, A. V.

(1969)  “On the uniform approximation in a closed domain with the use of generalized
Faber polynomials,” Ukr. Mat. Zh., 21, No. 6, 849-857 (1969).

Subbotin, Yu. N.

(1965)  “On the relationship between finite differences and the corresponding derivatives,”
Tr. Steklov Mat. Inst., 78, 24-43 (1965).

Sun Yun-shen

(1958)  “On the best approximation of functions represented in the form of convolution,”
Dokl. Akad. Nauk SSSR, 118, No. 2, 247-250 (1958).

(1959)  “On the best approximation of periodic differentiable functions by trigonometric
polynomials,” lzv. Akad. Nauk SSSR, Ser. Mat., 23, No. 1, 67-92 (1959).

(1961)  “On the best approximation of periodic differentiable functions by trigonometric
polynomias,” lzv. Akad. Nauk SSSR, Ser. Mat., 25, No. 1, 143-152 (1961).

Szego, G.
(1921)  “Uber orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene
gehoren,” Math. Zeitschr., 9, 218-270 (1921).

(1925)  “Uber einen Satz von A. Markoff,” Math. Zeitschr., 23, 45-61 (1925).
(1959)  Orthogonal Polynomials, American Mathematical Society, New Y ork (1959).

Szegd, G., and Zygmund, A.
(1954)  “On certain mean vaues of polynomials,” J. Analyse Math., 3, 225-244 (1954).
Szokefalvi-Nagy, B.

(1938)  “Uber gewisse Extremalfragen bei transformierten trigonometrischen Entwick-
lungen. I. Periodischer Fall,” Ber. Math.-Phys. Kl. Sichs. Akad. Wiss. Lpz., 90,
103-134 (1938).

(1948)  “Sur une classe générale de procédés de sommation pour les séries de Fourier,”
Hungaria Acta Math., 1, No. 3, 14-52 (1948).

(1949)  “Méthodes de sommation des séries de Fourier. 11,” Casopis Pést. Mat. Fys., 74,
210-219 (1949).

(1950)  “Méthodes de sommation des séries de Fourier. 1,” Acta Sci. Math. Szeged, 12,
Pars 13, 204-210 (1950).

(1950a) “Méthodes de sommation des séries de Fourier. 111,” Acta Sci. Math. Szeged, 13,
247-351 (1950).



References 471

Taikov, L. V.

(1963)  “On best linear methods for approximation of functions of the classes B’ and

H",” Usp. Mat. Nauk, 18, No. 4, 183-189 (1963).

(1967)  “On the best approximation in the mean for some classes of analytic functions,”
Mat. Zametki, 1, No. 2, 155-162 (1967).

(1968)  “Inequalities of Kolmogorov type and best formulas of numerical differentiation,”
Mat. Zametki, 4, No. 2, 233-238 (1968).

Takev, M. D.

(1988)  “Theorem of Whitney typein R? in: Proceedings of the International Confer-
ence on Constructive Theory of Functions (Varna, May 24-31, 1988), Bulgarian
Academy of Sciences, Sofia (1988).

Tamrazov, P. M.

(1971) “Solid inverse theorems of polynomial approximation for regular compact sets of
the complex plane,” Dokl. Akad. Nauk SSSR, 198, No. 3, 540-542 (1971).

(1973)  “Contour and solid structural properties of holomorphic functions of complex vari-
ables,” Usp. Mat. Nauk, 28, Issue 1 (169), 131-161 (1973).

(1975)  Smoothnesses and Polynomial Approximations, Naukova Dumka, Kiev (1975) [in
Russian].

(1978)  “Finite-difference smoothness and approximation theory,” in: Colloquia Mathe-
matica Societatis Jdnos Bolyai “Fourier Analysis and Approximation Theory"
(Hungary, 1976), Budapest (1978), 19, pp. 827-843.

(1983)  “Contour-solid properties of holomorphic functions and mappings with bilogarith-
mic majorants,” Dokl. Akad. Nauk SSSR, 270, No. 4, 791-795 (1983).

Tamrazov, P. M., and Belyi, V. 1.

(1980)  “Polynomial approximations and moduli of smoothness of functions with quasicon-
formal boundary,” Sb. Mat. Zh., 21, No. 3, 162-176 (1980).

TelyakovsKii, S, A.

(1958) “Approximation of differentiable functions by de la Vallée Poussin sums,” Dokl.
Akad. Nauk SSSR, 121, No. 3, 426-429 (1958).

(1960) “Approximation of functions differentiable in the Weyl sense by de la Vallée
Poussin sums,” Dokl. Akad. Nauk SSSR, 131, No. 2, 259-262 (1960).

(1960a) “On the approximation of differentiable functions by linear means of their Fourier
series,” |zv. Akad. Nauk SSSR, Ser. Mat., 24, No. 2, 213-242 (1960).

(1961)  “On the norms of trigonometric polynomials and approximation of differentiable
functions by linear means of their Fourier series. 1,” Tr. Mat. Inst. Akad. Nauk
SSSR, 62, 61-97 (1961).



472

(1963)

(1964)

(1966)

References

“On the norms of trigonometric polynomials and approximation of differentiable
functions by linear means of their Fourier series. I1,” |zv. Akad. Nauk SSSR, Ser.
Mat., 27, No. 2, 253-272 (1963).

“Integrability conditions for trigonometric series and their application to the study
of linear methods of summation of Fourier series,” lzv. Akad. Nauk SSSR, Ser.
Mat., 28, No. 6, 1209-1236 (1964).

“Two theorems on approximation of functions by algebraic polynomials,” Mat.
., 79, No. 2, 252-265 (1966).

Tikhomirov, V. M.

(1976)

Timan, A. F.

(1951)

(1953)
(1957)

(1960)

Some Problems of Approximation Theory, Moscow University, Moscow (1976) [in
Russian].

“Improvement of the Jackson theorem on the best approximation of continuous
functions by polynomials on a finite segment of the real axis,” Dokl. Akad. Nauk
SSSR, 78, No. 1, 17-20 (1951).

“Approximation properties of linear methods of summation of Fourier series,” |zv.
Akad. Nauk SSSR, Ser. Mat., 17, No. 2, 99-134 (1953).

“Inverse theorems of the constructive theory of functions defined on a finite seg-
ment of thereal axis,” Dokl. Akad. Nauk SSSR, 116, No. 5, 762-765 (1957).
Theory of Approximation of Functions of Real Variables, Fizmatgiz, Moscow
(1960) [in Russian].

Titchmarsh, E. C.

(1937)
Tondlli, L.

(1908)

Introduction to the Theory of Fourier Integrals, Clarendon, Oxford (1937).

“] polinomi d’approssimazione di Tchebychev,” Ann. Mat., 15, No. 3, 47-119
(1908).

Trigub, R. M.

(1960)
(1962)
(1965)

(1973)

“Approximation of functions with given modulus of smoothnessin the exterior of a
segment and a half-axis,” Dokl. Akad. Nauk SSSR, 132, No. 2, 303-306 (1960).

“Approximation of functions by polynomials with integer coefficients,” lzv. Akad.
Nauk SSSR, Ser. Mat., 26, No. 2, 261-280 (1962).

“Constructive characteristic of some classes of functions,” 1zv. Akad. Nauk SSSR,
Ser. Mat., 29, No. 3, 615-630 (1965).

“Characteristic of the Lipschitz classes of integer order on a segment on the basis of
the rate of polynomial approximation,” in: Theory of Functions, Functional Anal-
ysis, and Their Applications, Issue 18, Kharkov (1973), pp. 63-70 [in Russian].



(1974)

References 473

“Relationship between the summability and the absolute convergence of series and
the Fourier transforms,” Dokl. Akad. Nauk SSSR, 217, No. 1, 34-37 (1974).

Trokhimchuk, Yu. Yu.

(1979) “On differential properties of real and complex functions,” Ukr. Mat. zh., 31,
No. 4, 465-469 (1979).
Turan, P.
(1952)  “Onatrigonometric sum,” Ann. Soc. Polon. Math., 25, 155-161 (1952).
Turetskii, A. Kh.
(1960)  “On classes of saturation for some methods of summation of Fourier series of con-
tinuous periodic functions,” Usp. Mat. Nauk, 15, Issue 6, 149-156 (1960).
Ul’yanov, P. L.
(1967)  “On the absolute and uniform convergence of the Fourier series,” Mat. Sb., 72,
No. 2, 193-225 (1967).
(1968)  “Imbedding of some classes of functions,” lzv. Akad. Nauk SSSR, Ser. Mat., 32,

No. 3, 649-686 (1968).

Vallée Poussin, C.-J. dela

(1910)
(1911)

(1919)

Verbitskii, L.

(1940)

Videnskii, V.

(1956)

(1960)

“Sur les polynomes d’approximation et la représentation approchée d’un angle,”
Bull. Acad. R. Belg., No. 12, 808-844 (1910).

“Sur les polynémes d’approximation a une variable complexe,” Bull. Acad. R.
Belg., 199-211 (1911).

Lecons sur |’Approximation des Fonctions d’une Variable Réelle, Gauthier-
Villars, Paris (1919).

L.

“On one method for summation of interpolation polynomials,” Nauch. Zap. Dnep-
ropetrovsk. Univ., 113-119 (1940).

S.

“On uniform approximation in the complex plane,” Usp. Mat. Nauk, 11,
No.5(71), 169-175 (1956).

“Qualitative problems in the theory of the best approximation of functions of com-
plex variables,” in: Investigations of Contemporary Problems in the Theory of
Functions of Complex Variables, Fizmatgiz, Moscow (1960), pp.258-272 [in
Russian].



474
Vitushkin, A

(1966)

References

.G.

“Conditions on a set that are necessary and sufficient for any continuous function
analytic at its interior points to admit a uniform approximation by rational frac-
tions,” Dokl. Akad. Nauk SSSR, 171, No. 6, 1255-1258 (1966).

Volkov, Yu. I.

(1965)

(1965a)

Vorob’ev, N.

(1966)

(1967)

(1968)

Vorob’ev, N.

(1968)

“Some problems of approximation of functions of complex variables in domains
with corners,” in: Proceedings of the First Republican Mathematical Conference
of Young Researchers, Issue 2, Institute of Mathematics, Ukrainian Academy of
Sciences, Kiev (1965), pp. 130-134 [in Russian].

“On the constructive characteristic of functions of complex variables in domains
with piecewise-smooth boundary,” Ukr. Mat. Zh., 17, No. 3, 115-119 (1965).

N.

“On approximation of analytic functions by partial sums of Faber series,” Dokl.
Akad. Nauk Ukr. SSR, Ser. A, No. 2, 138-141 (1966).

“A remark on the Dzyadyk theorem on approximation of functions of the class
W'H® ” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 1, 6-9 (1967).

“On simultaneous approximation of functions and their derivatives in the complex
plane,” Ukr. Mat. Zh., 20, No. 1, 113-131 (1968).

N., and Polyakov, R. V.

“On the constructive characteristic of continuous functions defined on smooth
arcs,” Ukr. Mat. zh., 20, No. 2, 750-758 (1968).

Voronovskaya, E. V.

(1932)

(1963)

Wallin, H.

(1979)

Walsh, J. L.

(1926)

“Determination of the asymptotic form of the approximation of functions by Bern-
stein polynomials,” Dokl. Akad. Nauk SSSR, Ser. A, No. 4, 74-85 (1932).

Method of Functionals and Its Applications, Leningrad Institute of Electrical Engi-
neering and Communications, Leningrad (1963) [in Russian].

“Extensions of functions preserving moduli of smoothness,” Univ. Umea, Dept.
Math., No. 2 (1979).

“Uber die Entwicklung einer analytischen Funktion nach Polynomen,” Math.
Ann., 96, 430-436 (1926).



References 475

(1926a) “Uber den Grad der Approximation einer analytischen Funktion,” Miinchener
Berichte, 223-229 (1926).

(1961) Interpolation and Approximation by Rational Functions in the Complex Domain,
American Mathematical Society, Providence, RI (1961).

Walsh, J. L., and Elliott, H. M.

(1950)  “Polynomial approximation to harmonic and analytic functions: generalized conti-
nuity conditions,” Trans. Amer. Math. Soc., 68, No. 2, 183-203 (1950).

Walsh, J. L., and Sewell, W.

(1940)  “sufficient condition for various degrees of approximation by polynomials,” Duke
Math. J., 6, No. 3, 658-705 (1940).

Wang Xing-hua

(1964) “The exact constant of approximation of continuous functions by the Jackson sin-
gular integral,” Acta Math. Snica, 14, No. 2, 231-237 (1964).

War schawski, S.

(1932)  “Uber das Randverhalten der Ableitung der Abbildungsfunktion bei konformer Ab-
bildung,” Math. Zeitschr., 35, 321-456 (1932).

(1934)  “Bemerkung zu meiner Arbeit: Uber das Randverhalten der Ableitung der Abbild-
ungsfunktion bei konformer Abbildung,” Math. Zeitschr., 38, No. 5, 669-683

(1934).
(1942)  “On conformal mapping of infinite strips,” Trans. Amer. Math. Soc., 51, 280-335
(1942).
Weierstrass, K.

(1885)  “Uber die analytische Darstellbarkeit sogenannter willkiirlicher Funktionen einer
reellen Verinderlichen,” Stzungsberichte Konig. Pr. Akad. Wiss. Berlin, 633-
639, 789-805 (1885).

Western, P. W.

(1948)  “Inequalities of the Markoff and Bernstein type for integral norms,” Duke
Math. J., 15, No. 3, 839-870 (1948).

Weyl, H.

(1917)  “Bemerkungen zum Begriff der Differentialquotienten gebrochener Ordnung,”
Vier. Natur. Gesellschaft, 62, 296-302 (1917).



476
Whitney, H.

(1934)

(19343)

(1957)

(1959)

References

“Analytic extensions of differential functions defined in closed sets,” Trans.
Amer. Math. Soc., 36, No. 1, 63-89 (1934).

“Differential functions defined in closed sets,” Trans. Amer. Math. Soc., 36,
No. 2, 369-386 (1934).

“On functions with bounded nth differences,” J. Math. Pures Appl., IX Ser., 36,
67-95 (1957).

“On bounded functions with bounded nth differences,” Proc. Amer. Math. Soc.,
10, No. 3, 480-481 (1959).

Whittaker, E. T., and Watson, G. N.

(1927)

Wronicz, Z.

(1984)

Xie T.

(1985)

Yudin, V. A.

(1979)

A Course of Modern Analysis. An Introduction to the General Theory of Infinite
Processes and of Analytic Functions; with an Account of the Principal Transcen-
dental Functions, Cambridge University, Cambridge (1927).

“Moduli of smoothness associated with Chebyshev systems and approximation by
L-splines,” Constr. Theory Funct. 84, Sofia, 906-916 (1984).

“On two problems of Hasson,” Approxim. Theory Appl., 1, No. 2, 137- 144
(1985).

“On the modulus of continuity in L,,” Sb. Mat. Zh., 20, No. 2, 449-450 (1979).

Zamanski, M.

(1949)

(1950)

“Classes de saturation de certains procédés d’approximation des séries de Fourier
des fonctions continues périodiques et application a quelques problemes d’approxi-
mation,” Ann. Sci. Ecole Norm Sup. (3), 66, No. 1, 19-93 (1949).

“Classes de saturation des procédés de sommation des séries de Fourier et applica
tions des séries trigonométriques,” Ann. Sci. Ecole Norm Sup. (3), 67, No. 1,
161-198 (1950).

Zaritskaya, Z. V.

(1967)

“On approximation of functions by linear positive operators in the metric of L ,”
Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 1, 14-17 (1967).



References 477

Zhuk, V. V., and Natanson, G. 1.

(1983)  Trigonometric Fourier Series and Elements of Approximation Theory, Leningrad
State University, Leningrad (1983) [in Russian].

Zolotarev, E. I.

(1877)  “Applications of eliptic functions to problems of functions least and most deviating
from zero,” Zap. S.Peterburg. Akad. Nauk, 30, No. 5 (1877), in: E. |. Zolotarev,
Complete Works, Issue 2, Academy of Sciences of the USSR, Leningrad (1932),
pp. 1-59 [in Russian].

Zukhovitskii, S. 1., and Krein, M. G.

(1950)  “A remark on one possible generalization of the Haar and Kolmogorov theorems,”
Usp. Mat. Nauk, 5, No. 1, 217-229 (1950).

Zukhovitskii, S. 1., and Stechkin, S. B.

(1956)  “On the approximation of abstract functionsin a Hilbert space,” Dokl. Akad. Nauk
SSSR, 106, No. 3, 385-388 (1956).

Zygmund, A.

(1924)  “O module ciggtosci sumy szeregu sprzezonego z szeregiem Fouriera,” Prace
Mat.-Fiz., 33, 25-132 (1924).

(1945)  “Smooth functions,” Duke Math. J., 12, No. 1, 46-76 (1945).
(1959)  Trigonometric Series, Cambridge University, Cambridge (1959).






Subject index

A-distance, 66

Characteristic set of order n, 58
Chebyshev dternation, 4
Classes of functions

A, 167

Cp, 1
H o], 181
H[E],, 252
Hle] 181
MH[a, J], 178
MH ¢, J], 181
MH [k; @; J], 245
MLip[a, J], 178
MWIr, [a, b]], 167
MWH [k; @; ¢, 1, 328
MW" H[a, J], 181
MW H[¢, J], 181
MZ[J], 245
W'H[a, J], 181
W'H[g,J], 181
W'H[k; ¢; E], 325
Criterion
for the compatibility of
constraints, 87

for the solvability of a system of
linear algebraic equations, 87

Dini-Lipschitz condition, 180

Interval, 20

Kernel

delaVallée Poussin, 133
Dirichlet, 125

Fejér, 131, 392

Jackson, 143

Poisson, 150
polynomial, 112
Rogosinski, 136

Lebesgue constants, 125
for delaVallée Poussin
kernels, 134
for Dirichlet kernels, 131
for Rogosinski kernels, 138

Modulus of continuity
least concave majorant of, 177
of order k, 197
of thefirst order, 168

Point
equidistant, of an incompatible
system of equations, 66
of maximum deviation, 5
of negative deviation, 5
of positive deviation, 5
Polynomial
generaized, 15
Hermite-Lagrange, 261
Newman, 158
rational, of degree n, 158

Remez algorithm, 79



480

Singular Kq-integral, 332
Snake
k-snake, 94
increasing (decreasing)
branch of, 94
lower, 35
upper, 35
Stone’s algebra, 118
System of equations
incompatible, 65
irreducible, 73

T-system of functions, 15, 16
Markov, 17

Theorem
Bernstein, 345, 352
Besov, 301
Borel, 2
Burkill, 219
Chebyshev, 4, 348
delaVallée Poussin, 34, 59
DeVore-Yu, 398, 399, 422
Fejér, 40
Guseinov, 247
Haar-K olmogorov, 27
Helly, on the intersection of

convex sets, 59

interpolation, 19
Jackson, 334
Karlin, 38, 39

Theorem

Karlin-Studden, on snakes, 35

Kolmogorov, 52, 355

Lebesgue, 130

Leviatan, 428

Manya, 429, 430

Marchaud, 217

Markov, 349, 350

Markov—-Lukacs, 39

Nessel-van Wickeren, 210, 212

Newman, 160

Nikol’skii, 32

on conditions of local best
approximation of a system, 73

on the estimation of
intermediate derivatives, 353

on the number of roots of
trigonometric polynomials, 11

Remez, 82

Remez-lvanov, 63

Shvedov, 420

Stechkin, 202, 340, 342

Stone’s, 118

Videnskii, 64

Weierstrass, 112, 113, 123

Whitney, 232, 327

Value of the best approximation, 1

Zero of ageneralized polynomial, 20



	Frontmatter

	Contents
	Chapter 1. Chebyshev theory and its development
	Chapter 2. Weierstrass theorems
	Chapter 3. On smoothness of functions
	Chapter 4. Extension
	Chapter 5. Direct theorems on the approximation of periodic functions
	Chapter 6. Inverse theorems on the approximation of periodic functions
	Chapter 7. Approximation by polynomials
	Backmatter




