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Preface

The classical monograph Introduction into the Theory of Uniform Approximation of
Functions by Polynomials [Nauka, Moscow (1977)] by V. K. Dzyadyk has never been
translated into English.  The book offered to your attention is a translation of selected
chapters of Dzyadyk’s monograph complemented by several chapters from my mono-
graph Approximation by Polynomials and Traces of Functions Continuous on a Segment
[Naukova Dumka, Kyiv (1992)].  Many facts presented in our book were included in the
excellent encyclopedic monographs Constructive Approximation [Springer (1993)] by
R. A. DeVore and G. G. Lorentz and Constructive Approximation: Advanced Problems
[Springer (1996)] by G. G. Lorentz, M. von Golitschek, Y. Makovoz.  The main attention
in our book is given to approximation in the uniform metric, which, augmented by
Dzyadyk’s masterful style of presentation, makes it still as interesting today as when the
Russian edition was published.  This book does not include the last chapter of Dzyadyk’s
monograph and the last chapter of my monograph.  Both these chapters are devoted to the
problem of the constructive characteristic of functions on closed sets of a complex do-
main.  Most results of these two chapters were included in the monograph Conformal In-
variants in Constructive Theory of Functions of Complex Variable [World Federation
Publishers (1995)] by V. V. Andrievskii, V. I. Belyi, and V. K. Dzyadyk. 

V. K. Dzyadyk, a brilliant mathematician and my teacher, passed away in 1998.  The
final preparation of this monograph for the publication has been done by me, and I bear
the entire responsibility for all shortcomings of the book. 

A few words should be said about the enumeration of formulas, theorems, lemmas,
etc.  Within each section of the book, they are numbered consecutively by double num-
bers (section and item numbers).  To refer to an item from a different chapter, we use tri-
ple numbers (chapter, section, and item numbers).  Figures are numbered consecutively
throughout the book by ordinary numbers. 

In some chapters, additional information about the contribution of different mathema-
ticians into one result or another is given in remarks at the end of the corresponding chap-
ter.  The reference marks to these remarks appear as Arabic superscripts. 

I am deeply grateful to Dr. P. V. Malyshev and Dr. D. V. Malyshev, the translators and
editors of this book, for their endless patience and firm insistence without which the book
would have never come to life.  I am also grateful to Dr. A. Prymak, who pointed out nu-
merous misprints and mistakes. 

I. A. Shevchuk
2008





Preface to
Introduction into the Theory of Uniform Approximation

of Functions by Polynomials
by V. K. Dzyadyk

In almost all fields of mathematics, an important role is played by problems of approxi-
mation of more complex objects by less complex ones.  In most cases of this sort, it is
very helpful to know the main methods, results, and problems of the theory of approxima-
tion of functions.  At present, approximation theory mainly deals with the approximation
of individual functions and classes of functions with the use of given subspaces each of
which consists of functions that are, in a certain sense, simpler than the functions being
approximated.  The role of these subspaces is most often played by the set of algebraic
polynomials or (in the periodic case) by the set of trigonometric polynomials of a given
degree  n. 

The present monograph is devoted to the problem of approximation of functions in the
uniform metric.  Investigations in other linear normed spaces are carried out, as a rule,
only in the cases where the results obtained there enable one to solve some problems in
the uniform metric or to consider these problems from a more general point of view. 

For reader’s convenience, the first several chapters contain mainly classical results;
the share of new results here is less than one third.  In the other chapters, on the contrary,
the author gives full rein to his preference. Therefore, these chapters mainly contain re-
sults obtained with active participation of the author.  For this reason, little or no attention
is given here to such problems as approximation of functions of many variables, approxi-
mation of functions defined on unbounded sets, approximation in spaces different from  C
and  L,  interpolation theory, quadrature formulas, spline theory, widths of sets, etc.  For
detailed information on these and many other important problems, we refer the reader to
the monographs (see the references at the end of the book) by de la Vallée Poussin
(1919), Bernstein (1937), Jackson [(1930), (1941)], Walsh (1961), Goncharov (1954),

Akhiezer (1965), Natanson (1949), S. Nikol’skii [(1969), (1974)], Krylov (1959), Szegő
(1959), Korovkin (1959), Timan (1960), Smirnov and Lebedev (1964), Rice [(1964),
(1969)], Cheney (1966), G. Lorentz (1966), Davis (1965), Remez (1969), Butzer and Nes-
sel (1971), Ibragimov (1971), Ahlberg, Nilson, and Walsh (1967), Krein and Nudel’man
(1973), Laurent (1972), Tikhomirov (1976), Korneichuk (1976), Stechkin and Subbotin
(1976), Karlin and Studden (1966), etc. 



viii Preface

Unfortunately, the limited size of the book did not allow the author to include topics
related to the fusion of methods and results of the theory of approximation of functions on
the one side and methods and results of the theory of ordinary differential equations and
computational mathematics on the other (see author’s works [(1970), (1973a), (1974),
(1976)] and the papers of Denisenko, Krochuk, Podlipenko, Stolyarchuk, etc.).  For the
same reason, the author did not include in this monograph results related to the best ap-
proximation of absolutely monotone functions and to the least upper bounds of the best
approximations on classes of  r  times differentiable functions (see the papers of Weyl
(1917), Bohr (1935), Hardy and Littlewood [(1928), (1932)], Favard [(1936), (1937)],

Akhiezer and Krein (1937), Szőkefalvi-Nagy (1938), Dzyadyk [(1953), (1955), (1959a),
(1961), (1974b), (1975a)], S. Nikol’skii (1946), Stechkin (1956), Sun Yun-shen [(1958),
(1959), (1961)], Korneichuk [(1961), (1971)], Babenko (1958), Taikov (1963), Dzhrba-
shyan (1966), Bushanskii [(1974), (1974a)], etc.). 

Most results of the monograph have been delivered many times in special courses
regularly given by the author at Shevchenko Kiev State University since 1961.  For this
reason, much attention in formulations and proofs has always been given to the clarity
and consistency of presentation. 

Main attention in this monograph is given to the following questions: 

(i) the Chebyshev theory of uniform approximation of functions and its develop-
ment; 

(ii) the constructive characteristic of functions of real and complex variables; 

(iii) linear methods for summation of Fourier series and their generalizations. 

Since 1961, all new results presented in this monograph have been regularly delivered
at seminars on approximation theory held at the Department of the Theory of Functions at
the Institute of Mathematics of the Ukrainian Academy of Sciences under the guidance of
the author.  For many years, an active part in these seminars has been taken by the mem-
bers of the department, namely V. T. Gavrilyuk, V. N. Konovalov, V. D. Koromysli-
chenko, Yu. I. Mel’nik, I. P. Mityuk, R. V. Polyakov, A. I. Stepanets, P. M. Tamrazov, and
I. A. Shevchuk, as well as by mathematicians from other institutes and disciples of the
author: G. A. Alibekov, M. I. Andrashko, P. E. Antonyuk, V. I. Belyi, V. A. Borodin,
V. P. Burlachenko, A. V. Bushanskii, Yu. I. Volkov, N. N. Vorob’ev, D. M. Galan,
V. B. Grishin, P. N. Denisenko, R. N . Koval’chuk, L. I. Kolesnik, V. V. Krochuk,
E. K. Krutigolova, P. D. Litvinets, V. A. Panasovich, Yu. K . Podlipenko, A. S. Prypik,
G. S. Smirnov, V. K. Stolyarchuk, T. Tugushi, L. I. Filozof, M. I . Hussein, A. I. Shvai,
L. B. Shevchuk, etc.  Most of them contributed in one way or another to the improvement
of this book, and I express my gratitude to all of them.  I am especially grateful to
I. A. Shevchuk, Yu. I. Mel’nik, and G. A. Alibekov, who thoroughly read selected chapters
of this book. 

I am deeply grateful to S. A. Telyakovskii and L. V. Taikov, who read the entire man-
uscript and made valuable remarks, which were taken into account in the final version.



Preface ix

I also want to thank I. F. Grigorchuk and É. A. Storozhenko, who made a number of re-
marks concerning the first chapters, and V. É. Gontkovskaya and S. F. Karpenko, who
helped much in the preparation of the manuscript. 

In conclusion, I express my sincere gratitude to S. M. Nikol’skii, my teacher and old
friend.  More than 20 years ago, he set me a series of important and interesting problems,
and his valuable advices, remarks, and suggestions made in our numerous subsequent dis-
cussions of my results were exceptionally helpful and cannot be overestimated. 

V. K. Dzyadyk
1977
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Chapter 1
Chebyshev theory and its development

For any two elements  x  and  y  of a linear normed space  L,  the norm of the difference
x – y  is called the distance  ρ( ; )x y   between these elements or the deviation of one of
these elements from the other.  If  �  is a subset of  L,  then the distance of an element

y ∈ L  from  �  is defined in the standard way (for metric spaces) and is denoted by
ρ( ; )x � ,  i.e., 

ρ( ; )y �   : =  inf ( ; )
x

y x
∈�

ρ .

As a rule, the role of  �   is played by a finite-dimensional linear subspace  �n

spanned over a field  P  of real or complex numbers by a properly chosen system of fi-

nitely many linearly independent elements  xi ∈ L   whose number depends on  n : 

�n   =  x x c x c Pi i i: ,= ∈{ }∑  .

Most often, the dimensionality of the subspace  �n   spanned by a certain system

xi i
n{ } =0   is equal to  n + 1 .  However, if  L  consists solely of periodic functions, then, for

convenience, we take a system  { xi }  of  2  n + 1  linearly independent elements and de-

note the corresponding subspace spanned by this system by ��n .  In both cases, the quan-

tity  ρ( );y n�   [or  ρ( );y n
�� ]  is denoted by  E yn ( )   and called the value of the best

approximation of an element  y  by the subspace  �n   (or  ��n ,  respectively).  If there

exists an element  x* ∈ �n   (or  x* ∈ ��n )  for which the equality  ρ ( y ; x* ) : = ρ( );y n�

[or  ρ( y ; x* )  : =  ρ( );y n
�� ]  is true, then this element is called either the best approxi-

mating element for the element  y  in  �n   (or in  ��n )  or the element with the least
deviation from  y.  In what follows, the role of  �n   is almost always played by the set

Pn  of algebraic polynomials of degree  ≤ n  and the role of  ��n   by the set  Tn  of trigo-

nometric polynomials of degree  ≤ n . 
By  CD  we denote the class of all possible real or complex functions  f  continuous on

a set  D .  The uniform norm of each of these functions is denoted by  f D   or, simply,
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by  f ,  i.e., 

f   =  f D   : =  sup ( )
x D

f x
∈

.

The value of the best uniform approximation for a function  f ∈ CD  by the set  Pn   of

algebraic polynomials of degree  ≤ n  is denoted by  En ( f ) D  or, simply, by  En ( f ) ,  i.e., 

En ( f )  =  En ( f ) D  : =  ρ  ( y ; Pn )  =  inf
p D

n
f p

∈
−

P
.

In the first chapter, we study the problems of existence, uniqueness, and characteriza-
tion of the best approximating elements.  Note that these problems were posed, explicitly
or implicitly, by P. Chebyshev who solved them in numerous important cases. 

1. Chebyshev theorems

In this section, we present the most important, in our opinion, Chebyshev approximation
theorems and some related results of the other mathematicians.

1.1. Existence of the element of the best approximation

Theorem 1.1 (on existence [Borel (1905)]).  If  f  is a function continuous on a segment

[ a, b ] ,  then, for any  n  =  0, 1, 2, … ,   the subspace  Pn   of polynomials  pn   of de-
gree  ≤ n  of the form

pn ( x )  =  
j

n

j
n ja x

=

−∑
0

 (1.1)

contains a polynomial (i.e., an element of Pn )   of best approximation to the func-
tion  f. 

Proof.  By the definition of infimum, for any positive integer  N ,  there exists an element
pN n∈ P   such that 

f pN a b− [ , ]   ≤  E f
N

n a b( )[ , ] + 1
. (1.2)

Since 
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E fn ( )   ≤  f − 0   =  f ,

we have 

pN   ≤  p fN −   +  f   ≤  E fn ( )   +  
1

N
  +  f   ≤  2 f   +  1  =  const , (1.3)

i.e., the sequence  pN N{ } =
∞

1   is bounded and, consequently, belongs to a closed ball in

the space  Pn . 
Since, by virtue of the compactness criterion for a finite-dimensional space  Pn ,   each

closed bounded set is compact, one can select a subsequence  pN kk{ } =
∞

1
  of  pN N{ } =

∞
1

convergent to a certain element  p* ∈ Pn .  Therefore, in view of the fact that 

f p f p p pN Nk k
− ≤ − + −* *   ≤  En ( f )  +  1

N
p p

k
N k

+ − *
 ,

we can pass to the limit in this inequality and get 

f p− *   ≤  E fn ( ) . (1.4)

This means that the element (polynomial)  p* ∈ Pn   is an element of the best approxi-
mation for the function  f. 

�

Theorem 1.1′′′′.  For any  2π -periodic continuous function  f  and any  n   =  0, 1, 2, …  ,

there exists a trigonometric polynomial  Tn
∗   of the best approximation to  f. 

The proof of this assertion coincides with the proof of Theorem 1.  Note that one must
take into account the fact that the functions  1,  cos t ,  sin t , … , cos n t ,  and  sin n t  are lin-
early independent (see Corollary 1.2 in what follows). 

Similarly, one can prove the following general result for an arbitrary linear normed
space: 

Theorem 1.1′′′′′′′′.  Assume that an arbitrary linear normed space  E  contains  n + 1  lin-

early independent elements  g g gn0 1, , ,… .  Then, for any  x ∈ E  ,  the set of all polyno-

mials  Pn ( c ; g )  of the form 

Pn ( c ; g )  =   

k

n

k kc g
=
∑

0

, (1.5)
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where  c k  are arbitrary real (or complex) numbers, contains at least one polynomial 

P c gn
∗ ∗( );   =   

k

n

k kc g
=

∗∑
0

of the best approximation to the element  x . 

1.2.  Chebyshev alternation theorem

We now proceed to the main theorem of the present section.  This theorem establishes the

necessary and sufficient conditions for a polynomial  Pn
∗

  to be a polynomial of best ap-

proximation of degree  n  to a continuous real function  f  defined on  [ a , b ] .  This the-
orem was proved by Chebyshev in 1854 and marked the onset of development of the the-
ory of approximation of functions. 

Theorem 1.2 [Chebyshev (1854)].  Assume that a continuous real function  f  is defined

on a segment  [ a , b ] .  In order that a polynomial  Pn
∗

  of degree  ≤ n  be a polynomial

of the best approximation to  f ,  it is necessary and sufficient that there exist at least one

system of  n + 2  points  x i ,  a   ≤   x 1  <  x2  < … <  x  n  +  2  ≤  b ,  such that the difference

f ( x )  –  P xn
∗( )  = :  rn ( x ) 

(i) consecutively takes alternating values at the points  xi 
,

(ii) attains its maximum absolute value on  [ a , b ]  at the points  xi ,  i.e.,

rn ( x1 )  =  – rn ( x2 )  =  rn ( x3 )  =  …  =  (– 1)n
 
+

 
1
 rn ( xn + 2 )  =  ± rn a b[ , ] . (1.6)

A system of points  x j j

n{ } =
+

1

2
  satisfying equalities (1.6) is called alternation or

Chebyshev alternation.

Example 1.1.  Let  f ( x )  =  sin x .  We show that the polynomial  P x6
∗( )  ≡  0  is a polynom-

ial of best approximation of degree six to this function on  [– 4 π , 4 π ]. 
This follows from the fact that the difference 

r6 ( x )  =  sin x  –  P x6
∗( )

satisfies the conditions of Theorem 1.2 at  8  =  6 + 2  points  x  k  =  − 7
2 π  + k π  (k  =  0, 1,
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2, … , 7 )  from  [– 4 π , 4 π ],  namely, 

r6 ( xk )  =  sin kπ π−





7
2

  =  (– 1)k  =  ( ) .−1 6
k r

Proof.  Necessity.  Since the case where the function  f  is itself a polynomial of degree
at most  n  is trivial, we omit its analysis for the sake of convenience.  Prior to proving the
theorem, we introduce the following definitions:

A point  x0  is called the point of maximum deviation for the difference  f ( x ) – P xn
∗( ) =

rn ( x )   or the  e -point provided that 

r xn ( )0   =  max ( )
a x b

nr x
≤ ≤

  =  rn . (1.7)

If, in addition, 

rn (x0)  =  rn , (1.8)

then the point  x0  is called a point of positive deviation or a  (+)-point.  Further, if 

rn ( x0 )  =  − rn , (1.9)

then  x0  is called a point of negative deviation or a  (–)-point.

Consider a polynomial  Pn
∗   of the best approximation for a function  f .  Since the

function  rn  is continuous, there exists at least one  e -point for  rn  on the segment  [ a , b ] .

Let us show that the segment [ a , b ]  contains both  (+)-  and  (–)-points .  Indeed, if the
analyzed segment contains no  (–)-points, then the least value of the continuous function

rn  on  [ a , b ]  is greater than  − rn   and, hence, there exists  h,  0 < h < rn ,   such that 

− rn   +  h  ≤  r n ( x )  =  f ( x )  –  P xn
∗( )  ≤  rn (1.10)

for all  x ∈ [ a , b ] .  We set  Qn ( x )  =  P xn
∗( )  +  h / 2.  Inequalities (1.10) now imply that 

− rn   +  h / 2  ≤  f ( x )  –  Qn ( x )  =  rn   –  h / 2,      x  ∈ [ a , b ],

i.e.,

f Qn−   =  rn   –  h / 2  =  f Pn− ∗   –  h / 2  <   f Pn− ∗ ,



6 Chebyshev theory and its development Chapter 1

which is impossible since  Pn
∗   is, by assumption, the polynomial of the best approxima-

tion for  f .

Let us show that there exists a system of  n + 2  e -points on  [ a , b ]   satisfying relations

(1.6).  For this purpose, we first demonstrate that the segment  [ a , b ]  can be split into
m + 1  subsegments 

[ a , z1 ] ,  [ z1 , z2 ] ,  [ z2 , z3 ] ,  …  ,  [ zm–1 , zm ] ,  [ zm , b ] (1.11)

alternatively containing either solely  (+)-points or solely  (–)-points.  Note that, in view of

the continuity of the function  rn  on the segment  [ a , b ] ,  the number  m + 1  of these
subsegments is finite.

a 1 zz 2 z3

(−) (−)

(+) (+) (+)

Fig. 1

The desired partition is realized as follows (see Fig. 1) : 
For the sake of definiteness, we assume that the first  e -point encountered in moving

along the segment  [ a , b ]  from  a  to  b  is a  (+)-point.  Let  z1  be the rightmost zero of

the difference  f  –  Pn
∗   =  rn  located between the point  a  and the first  (–)-point encoun-

tered after this point in the indicated direction. 

Let  z2  be the rightmost zero of the difference  f  –  Pn
∗   =  rn  located between the point

z1  and the first  (+)-point after this point.  If there are no  (+)-points on the segment

[ z1 , b ] ,  then we set  z2 = b. 

Let  z3  be the rightmost zero of the difference  f  –  Pn
∗   =  rn  located between the point

z1  and the first  (–)-point after this point.  We set  z3  =  b  if there are no  (–)-points on the

segment  [ z2 , b ],  etc.
Let  zm  be the last point in the constructed sequence of points  z j  other than  b.  Note

that each segment in the proposed sequence alternatively contains  (+)-  or  (–)-points and,
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hence, in order to prove the necessity of the condition of Theorem 1.2, it suffices to show
that  m + 1  ≥  n + 2 . 

By contradiction, we assume that  m + 1  <  n + 2 ,  i.e., that  m ≤ n .  Let us show that,
under this assumption, it is possible to construct a polynomial  Qn  deviating from  f  less

than the polynomial  Pn
∗ .  Indeed, since the segment  [ a , z1 ]  does not contain  (–)-points,

the segment  [ z1 , z2 ]  does not contain   (+)-points, etc., we conclude that, in view of the
continuity of  rn  and the fact that the number of segments (1.11) is finite, there exists a

number  h ,  0  < h  <  r xn ( ) ,   such that 

− rn   +  h  ≤  r n ( x )  ≤  rn ,     x ∈ [ a , z1 ] ,

(1.12)

− rn   ≤  r n ( x )  ≤  rn   –  h ,    x ∈ [ z1 , z2 ] ,

etc.  Thus, we set 

pm ( x )  =  δ ( x – z1 )( x – z2 ) … ( x – zm ) , (1.13)

where  δ  is chosen so that 

(i) pm   ≤  h / 2,

(1.14)

(ii) sgn pm ( x )  =  1    for   x ∈ [ a , z1 ) . 

This means that the polynomial  pm  changes its sign on passing through the points  zj

and has the same sign as the difference  rn  at all  (+)- and  (–)-points.  More precisely,

pm ( x )  >  0  for  x ∈ [ a , z1 ) ,  pm ( x )  <  0  for  x ∈ ( z1 , z2 ) ,  etc.  Therefore, by setting 

Qn ( x )  =  P xn
∗( )  +  pm ( x ) ,

we get a polynomial of degree at most  n  (since  m ≤ n )  such that 

f ( x )  –  Qn ( x )  <  rn ,       x ∈ [ a , z1 ] .

At the same time, in view of inequalities (1.12) with  x ∈ [ a , z1 ],  we find 

f ( x )  –  Qn ( x )  ≥  rn ( x )  –  pm ( x )  ≥  − rn   +  h  –  pm   ≥  − rn   +  h / 2,
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i.e., for all  x ∈ [ a , z1 ] , 

f x Q xn( ) ( )−   <  rn . (1.15)

In exactly the same way, we conclude that, for  x ∈ [ z1 , z2 ] ,

f ( x )  –  Qn ( x )  =  rn ( x )  –  pm ( x )  –  rn ,

and, at the same time, 

f ( x )  –  Qn ( x )  ≤  rn   –  h  –  p m ( x )  ≤  rn   –  h / 2 .

Therefore, 

f x Q xn( ) ( )−   <  rn

for all  x ∈ [ z1 , z2 ]  . 
Similarly, we can show that inequality (1.15) holds on all other segments of system

(1.11) , i.e., for all  x ∈ [ a , b ] .  This means that the polynomial  Qn  approximates the

function  f  better than  Pn
∗ ,  i.e., we arrive at a contradiction.  The necessity of the condi-

tion of Theorem 1.2 is proved. 

Sufficiency.  Assume that the polynomial  Pn
∗

  satisfies, for a certain system of points
a  ≤ x1  <  x2  < … <  xn  +  2  ≤  b  ,  the condition 

f ( x1 )  –  P xn
∗( )1  =  – [ f ( x2 )  –  P xn

∗( )2  ]  =  …

=  (– 1)n
 
+

 
1
 [ f (xn  +  2)  –  P xn n

∗
+( )2  ]  =  f Pn− ∗

 .

Let us show that  Pn
∗   has the least deviation from  f.  By contradiction, assume that

there exists a polynomial  Qn  approximating the function  f  better than  Pn
∗ ,  i.e., 

f Qn−   <  f Pn− ∗
 

and, specifically, 

f x Q xj n j( ) ( )−   <  f x P xj n j( ) − ( )∗   =  f Pn− ∗
 . (1.16)
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It follows from inequality (1.16) that, at all points  x j  ( j  =  1, 2, … , n + 2 ),  the differ-

ence  Qn ( x j )  –  P xn j
∗( )  =  f x P xj n j( ) − ( )[ ]∗   –  [ f ( x j )  –  Qn ( x j ) ]  has the same sign as

f x P xj n j( ) − ( )∗ ,  i.e., the difference  Qn – Pn
∗

  changes its sign on  [ a , b ]  at least  n + 1

times.  This means that the polynomial  Qn  –  Pn
∗

  has at least  n + 1  zeros on the segment

[ a , b ]  but this is impossible because  Qn  –  Pn
∗

  is a polynomial of degree  n  by virtue of

the assumption that  Qn  /≡  Pn
∗

 . 
�

Remark 1.1.  The uniqueness of the best approximating polynomial  Pn
∗   for the function

f  can, in general, be proved by analogy with the proof of sufficiency in the Chebyshev
theorem.  However, we do not present the proof here because somewhat later, in Theorem
2.6 , the problem of uniqueness is analyzed more completely. 

A similar theorem and remark also hold for the approximation of continuous  2π-peri-
odic functions by trigonometric polynomials.  The only difference is that the above-men-

tioned points  x j  must be located in a certain half interval  (a , a + 2 π ]  of length  2 π   and

the number of these points must be equal to  2 n + 2 ,  i.e., the following theorem is true: 

Theorem 1.2′′′′.  Assume that a  2π  -periodic continuous real function  f  is defined on

the real axis.  Then, in order that a trigonometric polynomial  Tn
∗

  of degree  ≤  n   be
the polynomial of the best approximation for  f ,  it is necessary and sufficient that some

(and, hence each) period  [ a , a + 2π  )  contain  2 n + 2  points  tj ,

a  ≤  t1  <  t2  <  …  <  t2 n  +  2  <  a  +  2π,

such that the difference  f ( t )  –  T tn
∗( )  = :  rn ( t ) 

(i) alternatively changes its sign at the points  tj , 

(ii) attains its maximum absolute value on  [ a , a + 2 π )  at the points  tj ,  i.e., the

following conditions are satisfied: 

rn (t1)  =  – rn (t2)  = … =  – rn ( t2 n  +  2 )  =  ± rn .

The proof of this theorem is absolutely similar to the proof of Theorem 1.2. 
However, it is necessary to take into account the following specific features of the an-

alyzed case: 
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a
z1 z2 z3 z4

a+2π

(+) (+) (+)

(−) (−)

Fig. 2

(i) the number  n  should be replaced by  2n ; 

(ii) it is reasonable to choose the left end of the half segment  [ a , a + 2 π ),  i.e., the

point  a,  at a  (+)-point; in this case, in view of the fact that the point  a + 2π
must also be a  (+)-point, the number  m  of the points  zk  cannot be odd
(Fig. 2); 

(iii) the polynomial  pm  (1.13) should be replaced by a trigonometric polynomial

tm  of degree  m / 2  ≤  n  of the form 

tm  =  δ sin
t z− 1

2
 sin

t z− 2

2
 … sin

t zm−
2

=  δ
2 2m /  cos cos

z z
t

z z2 1 2 1

2 2
− − − −











× … ×  cos cos
z z

t
z zm m m m−

− −
−











− −1 1

2 2
 ,

(iv) by virtue of Theorem 1.3 presented in what follows, if a trigonometric polynom-

ial  Tn  has more than  2n  zeros in the half interval  [ a , a + 2 π ) ,  then  Tn ( t )  ≡  0 .

1.3. On the number of zeros of trigonometric polynomials

Unlike algebraic polynomials, trigonometric polynomials of any degree may have no

zeros in  C .  Thus, e.g., this is true for the polynomials  cos n ξ  +  i sin n ξ  =  e 
in

 
ξ

 .
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Nevertheless, the numbers of zeros of algebraic and trigonometric polynomials are
closely correlated.  The following theorem establishes the indicated relationship: 

Theorem 1.3 (on the number of zeros of trigonometric polynomials).  In any vertical

strip  Rα  of width  2π : 

Rα  : =  { z ∈ C : α  ≤  Re z  <  α + 2π  },    where  α  is a real number,

the number of zeros  zj  of any trigonometric polynomial  Tn  of the form

T zn ( )   =  c ek
ikz

k n

n

=−
∑   =  e c einz

l n
ilz

l

n
−

−
=
∑

0

2

(1.17)

(counting multiplicities) is equal to the number of nonzero zeros  ξ j  of the algebraic

polynomial

P2n ( ξ )  =  
l

n

l n
lc

=
−∑

0

2

ξ  (1.18)

in  C.  Furthermore, the following equality is true: 

z j  =  – i lnα ξ j , (1.19)

where  – i lnα ξ j  is the only number from the sequence 

– ln argi i k ij jξ ξ π+ +( )2  =  – ln arg ,i kj jξ ξ π+ + 2

k  =  0, 1, – 1, 2, – 2, … , 

contained in the strip  Rα .

Proof.  The function 

ξ  =  ξ (z)  =  e 
iz (1.20)

realizes a one-to-one mapping of any line  z  =  z ( y )  =  x0 + i y,  x0 ∈  [α  , α  + 2π) ,  y  ∈
(– ∞, ∞),  (i.e., of the line  x = x0 )  from the strip  Rα  onto a half line  ξ  =  ξ  x0

 (r)  =  e  
ix0 r,
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0  <  r  =  e–
 
y  <  ∞,  and hence, bijectively maps the entire strip  Rα  from the plane  z  into

the plane  ξ  with deleted point  ξ = 0 .  Therefore, by virtue of the identity 

P2n ( ξ )  =  ei
 
nz Tn ( z ) ,     ξ  =  eiz, (1.21)

which follows from (1.17) and (1.18), there exists a one-to-one correspondence between

the different zeros  z j  =  – i lnα ξ j ∈ Rα  of the polynomial  Tn ( z )  and different zeros  ξ j  =

e 
iz

 j  ≠  0  of the polynomial  P2n ,  and vice versa. 

Thus, to complete the proof of theorem, it remains to show that each zero  ξ j  of the

polynomial  P2n  of multiplicity  r > 1  corresponds to the zero  z  j  =  – i lnα ξ j  of the poly-

nomial  T n  of the same multiplicity, and vice versa.  To this end, we differentiate identity
(1.21) and arrive at the following identities: 

i P en
iz′ ( )2 ξ   ≡  e inT z T zinz

n n( ) + ′( )[ ],

or 

i P n′ ( )2 ξ   ≡  e T z T zi n z
n n

−( ) ( ) ( ) + ′( )[ ]1
0
1α (1.21′ )

and, similarly,

i P n
2

2′′ ( )ξ   ≡  e T z T z T zi n z
n n n

−( ) ( ) ( )( ) + ′( ) + ′′( )[ ]2
0
2

1
2α α  , (1.21′′ )

………………………………………………………………

i Pr
n
r− −( )( )1

2
1 ξ

≡  e T z T z T zi n r z r
n

r
n n

r− +( ) −( ) −( ) −( )( ) + ′( ) + … + ( )[ ]1
0

1
1

1 1α α  , (1.21(r
 
-

 
1)

 )

where  ξ j = e 
iz  and  α j

k( )   are certain numbers.  Identities (1.21) , … , (1.21(r
 
-

 
1)

 ) immedi-
ately imply that if 

P n j2 ξ( )   =  ′ ( )P n j2 ξ   =  …  =  P n
r

j2
1( )− ( )ξ   =  0

at a point  ξ j  ≠  0,  then  Tn ( z j )  =  0 ,  ′T zn j( )   =  0 , … ,  Tn ( z j )  =  0  at the corresponding

point  z j  =  – i lnα ξ j ,  and vice versa.  Hence, the multiplicities of the zeros  ξ j  of the poly-

nomial  P2n ( ξ )  and the multiplicities of the corresponding zeros  z j  =  – i ln α ξ j  of the

polynomial  Tn ( z )  are identical.  This completes the proof of Theorem 1.3.
�
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Corollary 1.1.  If a trigonometric polynomial  Tn  of degree  n  of the form

Tn ( z )  =  
a0

2
  +  

k

n

k ka kz b kz
=

∑ +( )
1

cos sin (1.22)

possesses the property

an
2   +  bn

2   ≠  0, (1.23)

then it has exactly  2n  zeros (counting multiplicities) in any strip  Rα = {α  ≤  Re z  < α +

2π}.  If condition (1.23) is not true, i.e.,  an
2  + bn

2   =   0,  then  Tn ( z )  has less than  2n

zeros in  Rα .

Indeed, by applying Euler’s formulas 

cos kz  =  
e eikz ikz+ −

2
       and      sin kz  =  

e e

i

ikz ikz− −

2
,

we can represent the polynomial  Tn  as 

T zn ( )   =  c ek
ikz

k n

n

=−
∑   =  e c einz

l n
ilz

l

n
−

−
=
∑

0

2

, (1.24)

where 

c0  =  
a0

2
 ,    ck  =  

a ibk k−
2

 ,    c– k  =  
a ibk k+

2
 ,    k  =  1, 2, … , n . (1.25)

Further, since  an
2  + bn

2   =  4 cn c– n  ≠  0  by virtue of condition (1.23) , the coefficients
of the polynomial 

P 2 n ( ξ )  =  cl n
l

l

n

−
=
∑ ξ

0

2
,     ξ  =  e 

iz ,

corresponding to  l = 0  and  l = 2n  are nonzero.  Hence, the indicated polynomial pos-
sesses  2n  nonzero zeros (counting multiplicity). 

By virtue of Theorem 1.3, the number of zeros of the polynomial  Tn  in the strip  Rα

and the polynomial  P2n  is identical. 
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Corollary 1.2.  If two trigonometric polynomials  T1  and  T2  of degree  ≤  n   take iden-

tical values at more than  2n   points  zk  from the same strip  Rα   (e.g., for  Re z ∈

[0, 2π)),  then 

T2 ( z )  ≡  T1 ( z ).

Corollary 1.3 (on the trigonometric polynomial factorization).  Under the conditions of
Corollary 1.1, the polynomial  Tn  admits the following representation in terms of its

zeros  zk ,  k  =  1, 2, … , 2 n ,  from a strip  Rα : 

Tn ( z )  =  A 
k

n
kz z

=
∏

−

1

2

2
sin  ,    A  =  const . (1.26)

Indeed, if we denote the (nonzero) zeros of the polynomial  P2n  by  ξk  and the zeros

of the polynomial  Tn  satisfying the equality  ξ k  =  e 
izk   by  zk ,  then in view of (1.24), we

get 

P2n ( ξ )  =  a0 
k

n

k
=

∏ −( )
1

2

ξ ξ  ,    a0  =  const ,

Tn ( z )  =  a0 e 
–

 
inz e eiz iz

k

n
k−( )

=
∏

1

2
  =  a0 

k

n
iz

k

n
i z z i z ze e ek k k

= =

−( ) − −( )∏ ∏ −( )
1

2
2

1

2
2 2

 .

This yields the required relation (1.26) . 

2.  Chebyshev systems of functions

The Chebyshev theorem and numerous other results obtained by P. Chebyshev play an
important role in the approximation of functions by the so-called generalized Chebyshev
polynomials.  In the present section, we study this class of functions. 

2.1.  Definitions, examples 

Definition 2.1.  Consider a set  �  (containing at least  n + 1  points) in a metric
space of continuous functions.  A system of functions 

ϕ 0 ,  ϕ 1 , … ,  ϕ n , (2.1)
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defined on this set is called a Chebyshev system or a  T  -system on the set  �   if any
generalized polynomial  P xn ( )   =  P c xn k k( , ; )ϕ   of the form 

P xn ( )   =  c xk k
k

n

ϕ ( ),
=
∑

0

(2.2)

where  ck ,  k  =  0, … , n,  is a collection of numbers at least one of which is nonzero, has

at most  n  different zeros on  �. 

In what follows, the generalized polynomial (2.2) with respect to system (2.1) is
sometimes simply called a polynomial or a  T-polynomial. 

Clearly, if (2.1) is a Chebyshev system of functions on  � ,  then it is also a Cheby-

shev system on any subset of  �  containing at least  n + 1  points. 

Examples of Chebyshev systems 

1.  The collection of functions 

1,  z ,  z2, … ,  zn (2.3)

is a Chebyshev system in the entire complex plane.

2.  By virtue of Theorem 1.3, the family of functions 

1,  e 
iz

 ,  e 
–

 
iz, … ,  e 

i
 
n

 
z

 ,  e 
–

 
inz (2.4)

and, hence, the family 

1,  cos z ,  sin z , … ,  cos nz ,  sin nz (2.5)

are Chebyshev systems in any strip  α  ≤  Re z  <  α + 2 π ,  where  α  is a real number;
moreover, each of these systems is a Chebyshev system in any half segment (period)

 [α , α + 2π) .

3.  The system 

1,  cos t ,  sin t , … ,  cos nt ,  sin nt (2.5′ )

is not a Chebyshev system on the segment  [ 0 , 2π ]   because the polynomial 
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P2n ( t )  =  a0  +  a1 cos t  +  a2 sin t  + … +  a2n – 1 cos n t  +  a2n sin n t

with  a0 = a1 = … = a2n – 1 = 0  and   a2n = 1  has  2 n + 1  zeros  tk = k π / n ,  k  =  0 2, ,… n  ,

on  [ 0 , 2π ] . 

Nevertheless, system (2.5′ ) turns into a Chebyshev system on a closed set  [ 0 , 2π ]   or
even on the entire line if we “identify” the points lying at distances equal to multiples of

2π  .  It is known that, for this purpose, it suffices to identify the argument  t  of the func-

tions in (2.5′ ) with a point of the unit circle centered at the origin.  Note that this circle is
a compact set and the angle made by its radius vector with the  OX-axis is denoted by  t. 

In this connection, we introduce the following definition: 

Definition 2.2.  A system of functions  ϕk k
n{ } = 0   continuous on the entire axis and peri-

odic with period  θ  is called a Chebyshev system (or a T-system) if any generalized
polynomial

Pn ( t )  =  c tk k
k

n

ϕ ( )
=
∑

0
,

where  ck ,  k  =  0, … , n,  is a collection of numbers at least one of which is nonzero, has

at most  n  different zeros on a certain (and, hence, on each) half interval  ( a , a + θ  ]  or

a half segment  [ a , a + θ ). 

We now present several more examples: 

4.  The fact that (2.5) is a Chebyshev system on  [– π , π)  readily implies that the fam-
ily of functions 

1,  cos t ,  cos 2t , … ,  cos nt (2.6)

is a Chebyshev system on  [ 0 , π )  and the family 

sin t ,  sin 2t , … ,  sin nt (2.7)

is a Chebyshev system on  (0 , π). 

5.  If a family of functions  ϕk k
n{ } = 0   is a Chebyshev system on  �  and  p x( )   is a

positive function continuous on  � ,  then  p k k
nϕ{ } =0   is also a Chebyshev system on  � .
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6.  The set of two functions  ϕ0 ( x )  =  1  and  ϕ1 ( x )  =  x3  is a Chebyshev system on
the real axis. 

7.  The set formed by the functions  ϕ0 ( x )  =  x–
 
3  and  ϕ1 ( x )  ≡  1  is a Chebyshev sys-

tem on the semiaxis  ( 0, ∞ ). 

8.  The set of functions  ϕ0 ( x )  =  x2  –  x  ,  ϕ1 ( x )  =  x2  +  x  ,  and  ϕ2 ( x )  =  x2  +  1
forms, clearly, a Chebyshev system on the axis; at the same time neither two functions

from this set  ϕ j ,  j  =  0, 1, 2,  form a Chebyshev system on the axis. 

Note that the real  T -systems of functions  ϕk k
n{ } = 0   do not exist in the case of func-

tions of many variables on sets with interior points.  This becomes clear from the follow-
ing result by Mairhuber (1956) presented without proof: 

If it is possible to specify a T-system  ϕ j j

n
x( ){ } =0

 ,  where  n > 0,  on an abstract

compact set, then this set is homeomorphic either to a circle or to its part.

Definition 2.3.  A  T-system  ϕk k
n{ } =0   is called a Markov system if all its subsystems

ϕk k
m{ } =0  ,  0 < m < n,  are also T-systems.

It is possible to show (see, e.g., [M. Krein and Nudel’man (1973)]) that each T -system

on the segment  [ a, b ]  can be replaced by an equivalent system  ϕ j j

n∗
={ } 0

 ,  ϕ j x∗( )  =

k

n
jk kc x=∑ ( )

0
ϕ  ,  which is a Markov system on any segment  [ a1 , b1 ] ⊂ ( a, b ) . 

2.2. Basic properties of the Chebyshev systems

For numerous other properties and applications of the  T -systems, the reader is referred to
the monograph [Karlin and Studden (1976)]. 

Theorem 2.1.  In order that a collection of functions (2.1) defined on a set  �  be a
Chebyshev system on this set, it is necessary and sufficient that the determinant

D ( ϕ ; x )  =  D
x x x

n

n

ϕ ϕ ϕ0 1

0 1

…
…







 



18 Chebyshev theory and its development Chapter 1

: =  

  

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

0 0 0 1 0

1 0 1 1 1

0 1

x x x

x x x

x x x

n

n

n n n n

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

…

…

…

(2.8)

be nonzero for any family of  n + 1  different points  x j j
n{ } =0

  from the set  �. 

The assertion of this theorem follows from the fact that (2.1) is a Chebyshev system if
and only if the system of equations 

A0 ϕ0 ( x j )  +  A1 ϕ1 ( x j )  + … +  An ϕn ( x j )  =  0 ,      j  =  0, , ,… n

possesses only the trivial solution  A0  =  A1  = … =  A  n  =  0  for any system of  n + 1  dif-

ferent points  x j ∈ �,  j = 0, , .… n   It is known that this condition is equivalent to the re-

quirement that the determinant  
 
D

x x x
n

n

ϕ ϕ ϕ0 1

0 1

…
…







  of system (2.8) must dif-

fer from zero. 

Corollary 2.1.  If a collection of functions  ϕk k
n{ } = 0   is a Chebyshev system on  [  a , b ]

and  x j j
n{ } =0

  is a set of different points from  [ a , b ]  such that the distance between

any two points from this set is not smaller than  c  >  0,  i.e., 

min
,j k

j k

j kx x

≠

−   ≥  c,

then 

  
D

x x x
n

n

ϕ ϕ ϕ0 1

0 1

…
…







  ≥  r  >  0 , (2.9)

where  r  =  r (c)  does not depend on the chosen set of points.

Proof.  Indeed, if it is impossible to find a number  r > 0  for which inequality (2.9) is sat-

isfied, then there exists a sequence of systems of points  xk
j

k

n{ } = 0
 ,  j  =  1, 2, … ,  such that

(i) min
,k l

k l

k
j

l
jx x

≠

−   ≥  c,  and 
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(ii) lim
j → ∞

 

  
D

x x x

n

j j
n
j

ϕ ϕ ϕ0 1

0 1

…

…









   =  0 .

In this case, one can find a subsequence  { j r }  such that each subsequence  xk
jr{ } ,  k =

0, , ,… n   has a limit  xk
0 ∈ [ a , b ] ,  k  =  0, , ,… n   and, for the system of points  xk k

n0
0{ } = ,

we get 

min
,k l

k l

k lx x

≠

−0 0   ≥  c ,

and 

  
D

x x x
n

n

ϕ ϕ ϕ0 1

0
0

1
0 0

…

…






  =  lim
r → ∞

 

  
D

x x x

n
j j

n
jr r r

ϕ ϕ ϕ0 1

0 1

…

…







  =  0 .

This means that we arrive at a contradiction to Theorem 2.1. 

�

Theorem 2.2 (interpolation).  Assume that a Chebyshev system of functions  ϕk k
n{ } = 0

is given on a set  �  of a metric space.  Then, for any collection of  n + 1  different

points  xj ∈ � ,  j n= …0, ,  ,  and any collection of  n + 1  numbers  yj ,  j  =  0, , ,… n

there exists a unique generalized polynomial   Pn  of the form (2.2) satisfying the condi-
tions 

Pn ( xj )  =  yj ,     j  =  0, , .… n (2.10)

This polynomial is called interpolation polynomial and admits the following repre-
sentation:

Pn ( x )  =  

  

0 0 1 0 0

0 0 0 1 1 1

0 1

0 0 1 0 0

0 1 1 1 1

0 1

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

x x x

y x x x

y x x x

x x x

x x x

x x x

n

n

n n n n n

n

n

n n n n

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) (

…

…

…

…

…

… ))

 . (2.11)
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The problem of construction of a polynomial satisfying conditions (2.10) is called in-
terpolation problem. 

In fact, it follows from Theorem 2.1 that the denominator on the right-hand side of
(2.11) differs from zero, therefore, the right-hand side of (2.11) always specifies a gener-
alized polynomial of degree  n . 

Subtracting the  ( j + 1) th row from the first row in the determinant appearing in the
numerator on the right-hand side of (2.11) and setting  x  =  xj ,  we immediately conclude

that the polynomial  Pn   satisfies all  n + 1  conditions (2.10) .  The uniqueness of this

polynomial follows from the fact that  ϕk k
n{ } =0   is a Chebyshev system. 

It is easy to see that the converse assertion is also true:  If, under the conditions of

Theorem 2.2, the sole condition imposed on a system of functions  ϕk k
n{ } =0   is that the

functions  ϕk  are continuous and, at the same time, the interpolation problem (2.10) is al-

ways uniquely solvable, then  ϕk k
n{ } =0   is a Chebyshev system. 

2.3.  Chebyshev systems of real functions on an interval

In what follows, for  a < b,  we agree to use the term “interval” and write  〈 a, b 〉  to denote

any of the following four sets: the segment  [ a, b ],  the half interval  ( a, b ] ,  the half seg-

ment  [ a, b ),  or the interval  ( a, b ). 
To prove Theorem 2.3 formulated somewhat later, we need the following auxiliary

assertions: 

Definition 2.4.  Assume that  ϕk k
n{ } =0   is a Chebyshev system of real functions on an

interval  〈 a , b 〉  and  Pn   is a polynomial in this system.  A zero  x 0  ∈  ( a , b )  of this

polynomial is called odd if the polynomial  Pn   changes its sign in passing through  x0

(i.e.,  sgn Pn ( x0 – 0)  =  – sgn Pn ( x0 + 0))  and even if the polynomial  Pn  preserves its

sign (i.e.,  sgn Pn ( x 0 – 0)  =  sgn Pn ( x 0 + 0)).  If a zero  x k ∈ 〈 a , b 〉  coincides with one

of the ends of the interval  〈 a , b 〉,  i.e.,  a  or  b,  then it is always regarded as odd. 

We now establish the following auxiliary lemmas, which are also of independent in-
terest: 

Lemma 2.1.  Assume that  ϕk k
n{ } =0   is a Chebyshev system of real functions on an in-

terval  〈 a , b 〉 .  Then, for any  n  different points  xk ∈ 〈 a , b 〉,

a  ≤  x1  <  x2  <  …  <  xn  ≤  b ,

the generalized polynomial
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Pn ( x ) =  

  
D

x x x

n

n

ϕ ϕ ϕ0 1

1

…

…









   

=  

  

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

0 0 1 0

1 1 1 1

1

x x x

x x x

x x x

n

n

n n n n

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

…

…

…

 (2.12)

vanishes at all points   xk  and these points exhaust the set of its zeros.  Moreover, these

zeros are odd.  Any other polynomial   P̃n   vanishing at all points  xk  has the form  P̃n   =

CPn ,  C = const . 

Proof.  Indeed, the polynomial  Pn  vanishes at all points  x k  ,  k  =  1, ,… n  ,  and, in view
of the fact that (2.1) is a Chebyshev system, solely at these points. Therefore, the polyno-

mial  Pn  preserves its sign on each interval  (a , x1) ,  (  x1 , x2 ) , … , ( xn , b ) .  Since, for any

fixed  x,  Pn  can be regarded as a polynomial with respect to any point  xk ,  it preserves

the sign under any variations of positions of the points  x  ,  x1 ,  x2 , … , xn  provided that

their order in the sequence remains unchanged.  Thus, if we now set, e.g.,  x ′ ∈ ( xk – 1 , xk )
and  ′′x  ∈ ( xk , xk + 1 ) ,  then we get 

sgn P xn( ′) =  sgn 

  
D

x x x

n

n

ϕ ϕ ϕ0 1

1

…

…′











=  (– 1)k
 
–

 
1

 D
x x x x x x

k k k n

k k n

ϕ ϕ ϕ ϕ ϕ ϕ0 1 2 1

1 2 1

… …

… …

− −

− ′











=  (– 1)k
 
–

 
1

 D
x x x x x x

k k k n

k k n

ϕ ϕ ϕ ϕ ϕ ϕ0 1 1 1

1 2 1

… …

… …

− +

+′′











=  – sgn 

 
D

x x x

n

n

ϕ ϕ ϕ0 1

1

…

…′′









   =  – sgn P xn ′′( ) 

and, hence, 

sgn Pn ( x k – 0 )  =  – sgn Pn ( x k + 0 ).
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This means that the zero  xk  is odd.  Now assume that the conditions of Lemma 2.1

are satisfied not only by  Pn  but also by a polynomial  P̃ xn( )  /≡  P xn( ).  Let  x0 ∈  ( a, b )
be a point at which  P̃ xn 0( )  ≠  P xn( )0  .  Since, clearly,  x0 ≠ xk ,  k  =  1, ,… n  ,  we have

P̃ xn 0( )  ≠  0  and  P xn( )0   ≠  0 .  We also set 

∨

( )P xn   =  P̃ xn 0( ) P xn( )  –  P xn( )0 P̃ xn( ) ,     x ∈ [ a , b ] .

The polynomial  
∨

Pn   vanishes at  n + 1  points  x ,  x1 ,  x2 , … , xn .  Therefore,  
∨

( )P xn   ≡  0

and  P̃ xn( )   ≡  C P xn( ),  where 

C  =  
P̃ x

P x

n

n

0

0

( )
( )   =  const .

�

Lemma 2.2.  If a T-polynomial  Pn   has  m ′  odd zeros in an interval  〈  a , b 〉  and  ′′m

even zeros in the interval  ( a , b ),  then

m ′  +  2 ′′m   ≤  n . (2.13)

Proof.  Denote by  x1  <  x2  < … <  x m ′  the odd zeros of the polynomial  P xn( )  and by

y1  <  y2  < … <  ym′′   its even zeros.  Let  ( a , c )  be an interval containing neither odd zeros

xj ,  j  =  1, ,… ′m  ,  nor even zeros  yk  ,  k  =  1, ,… ′′m  .  In the interval  ( a, c ),  we choose

 n – m′  different auxiliary points  zi ,  i  =   1, ,… − ′n m  ,  and construct an auxiliary
generalized polynomial of the form 

∨

( )P xn   =  ± 

  

D
x z z z x x x

n m n m n m n

n m m

ϕ ϕ ϕ ϕ ϕ ϕ ϕ0 1 2 1 2

1 2 1 2

… …

… …

− ′ − ′ + − ′ +

− ′ ′









  . (2.14)

All zeros of this polynomial are odd according to Lemma 2.1.  Since all zeros  xj  >  a,

and  yk  of the polynomial  Pn  lie outside the interval  (  a, c )  containing the zeros  zi   of
∨

Pn   and the polynomial  Pn  changes its sign only at the points  xj ∈  (a, b),  by choosing
the proper sign  (“+”  or  “–”)   of the right-hand side of relation (2.14), we can guarantee

that the polynomial  
∨

Pn  has the same sign as  Pn  in a sufficiently small neighborhood of

each zero  x j  >  a  for  x  ≠  xj .  However, in this case, we also have  sgn 
∨

( )P xn   =  sgn P xn( )

at all points  x ∉ ( a , c )  ,  x  ≠  yk ,  k  =  1, ,… ′′m  ,  and  P yn k( )∨

  ≠  0 ,  P yn k( )   =  0  at the

points  yk  .  This means that, for sufficiently small  λ > 0,  the graph of the polynomial
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 λ
∨

Pn   crosses the graph of the polynomial  Pn   at least twice in a sufficiently small neigh-

borhood of each point  yk .  Hence, the polynomial  Pn –  λ
∨

Pn   /≡   0  vanishes at all points

 xj ,  j  =  1, ,… ′m ,  and, in addition, twice in the neighborhood of each point  yk ,  k  =

1, ,… ′′m  ,  i.e., has at least  m′ + 2 ′′m   zeros.  This yields inequality (2.13) . 
�

Theorem 2.3.  Assume that  ϕk k
n{ } = 0   is a Chebyshev system of real functions on an in-

terval  〈 a, b 〉 .  Then, for any two mutually disjoint collections of points from the interval

〈 a, b  〉,  i.e.,  xi i
k{ } =1 ⊂ 〈 a  , b  〉  and   yj j

l{ } =1
 ⊂ ( a , b ),  whose number satisfies the

equality 

n  –  ( k  +  2 l )  =  2 r ,      r  =  0, 1, 2, … ,

there exists a T-polynomial  Pn  such that the sets of its odd and even zeros on the in-

terval  〈  a , b 〉  are exhausted by the points  xi ,  i  =   1, ,… k  ,  a n d   yj  ,  j  =   1, ,… l  ,

respectively.  If   〈  a, b 〉  =  [ a, b ],  then this assertion remains true in the case where  n –

( k + 2l )  =  2r + 1,  r  =  0, 1, … ,  i.e., in all cases where  k + 2l  ≤  n .

Proof.  1. First, we consider the case  k + 2 l  =  n  and choose a positive number  ε  so small

that the neighborhoods  ( yj – ε,  yj + ε )  of different points  yj  do not intersect and contain

neither the ends  a  and  b  of the interval  〈 a , b 〉  nor the points  xi ,  i  =  1, ,… k  .  For

fixed  j  ,  by  yj
ν−   and  yj

ν+   we denote sequences of points convergent to  yj  and

contained in the intervals  ( yj  –   ε,  yj )  and  (  yj ,  y j + ε ) ,  respectively.  Consider a

sequence of generalized polynomials  Pn
ν

ν{ } =

∞

1
  of the form 

P xn
ν( )  =  c xk k

k

n
νϕ ( )

=
∑

0

  =  γ ν D
x x x x y y y y

k k k n n

k l l

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ν ν ν ν

0 1 2 1 2 1

1 2 1 1

… …

… …

+ + −

− + − +









  ,

where the numbers  γ ν  >  0  are chosen to guarantee the validity of the equalities

k

n

kc
=
∑

0

ν   =  1 (2.15)

for all  ν  =  1, 2, … .  By virtue of these equalities, one can find a subsequence  Pn i
iν{ } =

∞

1

of the sequence  Pn
ν{ }  pointwise convergent to a nontrivial polynomial  Pn  satisfying

the conditions of Theorem 2.3.
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We denote this polynomial (or one of these polynomials) as follows: 

P xn
*( )  : =  Pn

*( x ; x1 , x2 , … , xk ;  y1 , y2 , … , yl )  =  lim
i → ∞

 P xn
iν ( ), (2.16)

k  +  2 l  =  n,     x ∈ 〈 a , b 〉.

2.  If  n  –  (k + 2l )  =  2r,  where  r  is a positive integer, then we additionally fix any

two sets of  r  different points  yν
0  ∈ ( a, α ),  ν  =  1, ,… r ,  and  yν

∗ ∈ ( β, b ),  ν  =  1, ,… r , 

where  α ∈ (  a, b )  and  β ∈ ( a, b )  are chosen so that the interval  ( a , α ) ∪ ( β , b )  does
not contain  the zeros  xi   and  yj ,  i  =  1, ,… k  ,  j  =  1, ,… l .  Further, we construct
polynomials 

P xn
1( )( )  =   P x x x y y y yn k l r

* ; , , ; , , ; , ,1 1 1
0 0… … …( )  ,

(2.17)

P xn
2( )( )  =  P x x x y y y yn k l r

* ; , , ; , , ; , ,1 1 1… … …∗ ∗( )  ,

and easily show that  sgn P xn
1( )( )  =  sgn P xn

2( )( )  for almost all  x  and the polynomial 

Pn  =  Pn
1( )   +  Pn

2( ) (2.18)

satisfies the conditions of the theorem. 

3. If  〈 a, b 〉  =  [ a , b ]  and  n  –  ( k + 2l )  =  2r  +  1 ,  where  r  is a nonnegative integer,
then we again represent the polynomial  Pn   in the form (2.18) .  However, in constructing

the polynomial  Pn
1( ) ,  we supplement the collection of zeros  xi  ,  yj ,  and  yν

0
  in relation

(2.17) with the zero  x0  =  a  and, in constructing the polynomial  Pn
2( ) ,  the collection of

zeros is supplemented with the zero  xk + 1  =  b. 

�

Corollary 2.2.  For any Chebyshev system  ϕk k
n{ } = 0   on a segment  [ a , b ] ,  one can

indicate a polynomial (with respect to this system) positive for all  x  ∈  [ a , b ]  and,
hence, a polynomial  πn  such that

1  ≤  πn ( x )  ≤  M ,     M  =  const , (2.19)

for all  x ∈ [ a , b ] . 
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Note that 

(i) it is easy to see that the Chebyshev system of functions 

ϕ0 ( x )  =  x ( x – 2 )    and    ϕ1 ( x )  =  ( x – 2 ) ( x – 3 ),    x ∈ ( 0 , 2 ]

possesses the following property:  any polynomial of the form  c0 ϕ0  +  c1 ϕ1  with

c 0
2 + c 1

2  >  0  has exactly one zero on  ( 0 , 2 ] ;  therefore, the statement of Theorem

2.3 for  n  –  ( k + 2l )  =  2r + 1 ,  r  =  0, 1, 2, … ,  formulated for the segment cannot

be generalized to the interval  〈 a , b 〉  ≠  [ a , b ] ; 

(ii) even if  k  +  2l  =  n  with  l > 0 ,  the polynomial  Pn  satisfying the conditions of
Theorem 2.3 is, in general, not unique to within a constant factor. 

Indeed, consider the following system of functions on  [ – 1, 1 ] :

ϕ0 ( x )  ≡  1 ,    ϕ1 ( x )  =  
2 1 0

0 12

x x

x x

for

for

∈ −[ ]

∈[ ]







, ,

, ,
    and    ϕ2 ( x )  =  ϕ1 ( – x ) .

It is easy to see that this is a Chebyshev system of functions.  At the same time, for

y1 = 0  (i.e.,  k = 0 ,  l = 1 ,  and  n = 2 ),  the zero  y1   =  0  is even for the polynomials  ϕ1

and  ϕ2  but  ϕ2 ( x )  /≡   c ϕ1 ( x )  for any  c  =  const . 

By using Theorem 2.3, one can easily show that Theorems 1.2 and 1.2′  admit the fol-
lowing generalization: 

Theorem 2.4.  Assume that a Chebyshev system of functions  ϕk k
n{ } = 0   and a continu-

ous function  f  are given on a segment  [ a , b ] . Then, in order that  Pn
∗

  be a polynom-
ial of the best approximation for the function   f  as compared with all other polynomials

with respect to the system  ϕk k
n{ } = 0 ,  it is necessary and sufficient that there exist at

least one system of  n + 2  points  xj  (alternation)

a  ≤  x 1  <  x 2  <  …  <  x n + 2  ≤  b

such that the difference

f ( x )  –  P xn
∗( )  = :  rn ( x )

(i) alternatively changes its sign at the points  xi  
; 
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(ii) attains its maximum absolute value on  [ a, b ]  at the points  xi ,  i.e., 

rn ( x1 )  =  – rn ( x2 )  = … =  (– 1)n
 
+

 
1
 rn ( xn  +  2 )  =  ± rn a b[ , ].

The proof of this theorem, in fact, repeats the proof of the Chebyshev theorem with
the following changes: 

(i) after inequality (1.10) , the auxiliary polynomial  Qn  should be constructed in the
form

Qn  =  Pn
∗   +  h

M2
 πn ( x )

(instead of  Qn  =  Pn
∗  + h / 2;  see (2.19)) ;  this yields 

– rn   +  
h

M2
  ≤  – rn   +  

h

2
  ≤  – rn   +  h  –  

h

M2
 πn ( x )

≤  f ( x )  –  Qn ( x )  ≤  rn   –  
h

M2
 ,      x ∈ [ a , b ],

i.e.,

f Qn−   ≤  rn   –  
h

M2
  ≤  f Pn− ∗   –  

h

M2
 ;

(ii) the auxiliary polynomial  Pm   in (1.13) should be replaced by a polynomial

Pm ( x )  =  δ 

∨

( )P xn ,

where  
∨

Pn   is a polynomial for which the points  z z zm1 2, , ,…   are the odd zeros

and exhaust the set of all its zeros on  [ a , b ]  and the number  δ  is chosen in exact-
ly the same way as above. 

Note that the Chebyshev Theorem 1.2′′ can be generalized in a similar way to the case
of approximation of periodic continuous functions by polynomials with respect to period-
ic Chebyshev systems.  We leave the proof of this assertion to the reader. 

2.4.  Uniqueness of the best approximation by generalized polynomials

Theorem 2.5.  For any Chebyshev system of functions  ϕk k
n{ } =0  on a segment  [ a, b ] 

and any continuous function  f  on  [ a, b ] ,  there exists a unique generalized polynomial

Pn
∗   of the best approximation to this function. 
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This theorem is a consequence of the following (very general) Haar theorem specify-

ing the system of continuous functions  ϕk k
n{ } =0  required for the existence, for any conti-

nuous function  f ,  of a unique polynomial  Pn
∗   of its best approximation of the form 

P xn
∗( )  =  c xk k

k

n
∗

=
∑ ϕ ( )

0

 .

Theorem 2.6  [Haar (1918); Kolmogorov (1948)].  Assume that a system  ϕk k
n{ } =0 

of real or complex continuous functions is given on a closed bounded set   � ⊂  Rm  con-

taining more than  n + 1  points.  Then, in order that a unique polynomial  Pn
∗

  of the
best uniform approximation of the form

P xn
∗( )  =  c xk k

k

n
∗

=
∑ ϕ ( )

0

(2.20)

exist for an arbitrary continuous function  f  on  �,  it is necessary and sufficient that

the system of functions  ϕk k
n{ } =0  be a Chebyshev system on  �. 

Proof.1  Necessity. Without loss of generality, we can assume that the system  ϕk k
n{ } =0

is linearly independent.  Suppose that, for any continuous function  f,  there exists a
unique polynomial of the best approximation (2.20) but, contrary to the assertion of the

theorem,  ϕk k
n{ } =0  is not a Chebyshev system.  This means that there exists a polynomial

P xn
0( )  =  

k

n

k ka x
=
∑ ( )

0

0 ϕ ,      x ∈ �, (2.21)

not identically equal to zero with at least  n + 1  different zeros  x0 ,  x 1 , … ,  xn  in the set  �:

P xn
0

0( )   =  a x0
0

0 0ϕ ( )   +  a x1
0

1 0ϕ ( )  + … +  a xn n
0

0ϕ ( )   =  0 ,

P xn
0

1( )  =  a x0
0

0 1ϕ ( )  +  a x1
0

1 1ϕ ( )   + … +  a xn n
0

1ϕ ( )  =  0 ,

………………………………………………

P xn n
0( )   =  a xn0

0
0ϕ ( )   +  a xn1

0
1ϕ ( )  + … +  a xn n n

0 ϕ ( )   =  0 .

In this case, we have 
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D

x x x

n

n

ϕ ϕ ϕ0 1

0 1

…

…









   =  

  

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

0 0 1 0 0

0 1 1 1 1

0 1

x x x

x x x

x x x

n

n

n n n n

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

…

…

… … … …

…

  =  0 . (2.22)

As follows from relation (2.22), the rows of the determinant are not linearly indepen-
dent and, hence, there exists a system of nonzero, generally speaking, complex numbers
b0 ,  b1 , … ,  bn  such that 

b0 ϕk ( x0 )  +  b1 ϕk ( x1 )  + … +  bn ϕk ( xn )  =  0 ,     k  =  0, ,… n  .

These equalities imply that an arbitrary generalized polynomial of the form 

Pn ( x )  =  c xk k
k

n

ϕ ( )
=
∑

0

(2.20′ )

satisfies the equality 

b P xj n j
j

n

( )
=
∑

0

  =  c b xk
k

n

j k j
j

n

= =
∑ ∑ ( )

0 0

ϕ   =  0 . (2.23)

Let us show that, in this case, one can find a function  f  continuous on  �  for which
the polynomial of its best approximation is not unique. 

Denote by  g  a function continuous on  �  and satisfying the conditions 

g x( )   ≤  1 ,    x ∈ �,
(2.24)

g ( xj )  =  sgn bj  ,     j  =  0, ,… n  ,

where we set  sgn c  =  0  for  c = 0  and 

sgn c  =  
c

c
  =  e 

i
 
arg

 
c 

for  c ≠ 0.
† 

† To construct a function of this sort, we denote the minimum distance between the points  xj  by  2ε  and set 

g ( x )  =  sgn b
x x

j
j

1 −
−( )ε

,    x ∈ U ( xj , ε ),    x x j−   =  ρ ( x , xj ),

in the  ε -neighborhoods  U ( xj , ε )  of the points  xj  and  g ( x ) =  0  outside these neighborhoods.
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By using the indicated function  g  and the polynomial  Pn
0 ,  we construct the function

f ( x )  =  g ( x ) 1 0− ( )[ ]λ P xn ,      x ∈ �, (2.25)

where  λ  is a positive number chosen to guarantee the validity of the equality 

  
max
x ∈�

 λ P xn
0( )   =  1 .

By virtue of relations (2.24) and (2.25), we obtain  f ( xj )  =  sgn bj   and  f x( )   ≤  1,

x ∈ � .  Hence, in order that the inequality 

  
max
x ∈�

 f x P xn( ) − ( )   <  1

(this inequality implies, in particular, that there is  j n∈ …0, ,   such that  bj  Pn ( xj )  ≠  0)
be true for a polynomial  Pn ( x ) ,  it is necessary that the conditions 

arg argP x f xn j j( ) − ( )   =  arg argP x bn j j( ) −   <  π / 2

be satisfied for all  j ∈ 0, ,… n   such that  bj  Pn ( xj )  ≠  0.  (Indeed, otherwise, we get 

P x f xn j j( ) − ( )   =  P x bn j j( ) − sgn   ≥  1.)

However, by virtue of (2.23), this is impossible because the inequality 

arg argP x f xn j j( ) − ( )   <  π  / 2

implies that 

arg P x bn j j( )   =  arg argP x bn j j( ) −   <  π / 2 

for any  j   and, consequently, 

Re b P xj n j
j

n

( )
=
∑

0

  >  0 .

Therefore, 



30 Chebyshev theory and its development Chapter 1

E  n  : =  inf
Pn

  f Pn− �  =  1 .

On the other hand, for any  ε ∈ ( 0, 1 ]  and  x ∈ �,  we find 

f x P xn( ) − ( )ε λ 0  ≤  f x( )   +  ελ P xn
0( )

=  g x( )  1 0− ( )[ ]λ P xn   +  ελ P xn
0( )

≤  1  –  λ P xn
0( )   +  ελ P xn

0( )  

=  1  –  λ P xn
0( )  (1 – ε)  ≤  1.

Thus, contrary to the assumption of the theorem,  ελ Pn
0   is a polynomial of the least

deviation from the function  f   for any  ε ∈ ( 0 , 1 ]. 

Sufficiency.  Assume that  ϕk k
n{ } =0  is a Chebyshev system and  Pn

∗
  is the polynomial of

the best approximation for the function  f  on  � .  Let us show that, in this case, one can

find at least  n + 2  different points  x1 ,  x 2 , … ,  xn + 1 ∈ �  of validity of the equality 

f x P xk n k( ) − ( )∗   =  f Pn− ∗
 ,     k  =  1 2, ,… +n  . (2.26)

This follows from the fact that if the number of these points is  n1  <  n + 2,  then we
can apply Theorem 2.2 and construct a polynomial  πn   such that 

πn ( xk )  =  f x P xk n k( ) − ( )∗
 ,    k  =  1 1, ,… n  .

Thus, one can easily show that, for sufficiently small  δ > 0,  the polynomial  Pn
∗  + δπn

deviates from the function  f  less than  Pn
∗ ,  i.e., we arrive at a contradiction. 

Contrary to the assumption, we now assume that, parallel with  Pn
∗

 ,  there exists one

more polynomial  Qn
∗  of the best approximation to the function  f :

f Pn− ∗   =  f Qn− ∗   =  min
Pn

 f Pn−   =  En .

In this case, we get
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En  =  f
P Qn n− +∗ ∗

2
  ≤  

1
2

 f Pn− ∗   +  
1
2

 f Qn− ∗   =  En ,

i.e.,  
1
2

 P Qn n
∗ ∗+[ ]  is also a polynomial of the best approximation for the function  f  and,

moreover, as already proved, there exist at least  n + 2  points  x j ∈  �  of validity of the
equality 

En  =  f x
P x Q x

j
n j n j( ) −

( ) + ( )∗ ∗

2
  =  

1
2

 f x P x f x Q xj n j j n j( ) − ( ) + ( ) − ( )[ ]∗ ∗ .

However, the last equality is possible only in the case where, first, 

f x P xj n j( ) − ( )∗   =  f x Q xj n j( ) − ( )∗   =  En

and, second, the arguments of the numbers  f x P xj n j( ) − ( )∗   and  f x Q xj n j( ) − ( )∗   are

also equal, i.e.,  f x P xj n j( ) − ( )∗   =  f x Q xj n j( ) − ( )∗ .  Hence, 

P xn j
∗( )  =  Q xn j

∗( )  ,     j  =  1, 2, … , n + 2 .

In view of the fact that  ϕk k
n{ } =0  is a Chebyshev system, this situation is possible

only for  Q xn
∗( )  ≡  P xn

∗( )  .  The proof of the Haar theorem is completed. 

�

Example 2.1.  Let  ϕ0 ( x, y )  =  1 ,  ϕ1 ( x , y )  =  x  ,  ϕ2 ( x , y )  =  y  and let  �  =  {( x , y ) :  x ,

y ∈ [– 1 , 1 ]} .  Then the set  �  contains continuous functions for which a polynomial of
the best approximation is not unique. 

Remark 2.1.  The uniqueness theorem and the necessity part of Theorem 2.4 (Chebyshev)

are not true if the system  ϕk k
n{ } = 0   is defined not on a segment  [ a , b ]  but on a half in-

terval  ( a , b ]  or  [ a , b ),  or on an interval  ( a , b ). 

Thus, in particular, the family of functions  1,  cos t ,  sin t , … ,  cos n t ,  sin n t  is a Che-

byshev system in the half interval  ( – π , π ] .  Nevertheless, one can easily see that any tri-

gonometric polynomial whose plot on  ( – π , π ]  lies inside the strip bounded by the lines

 y  =  t – π  and  y  =  t + π  is the polynomial of the best approximation for a function

f ( t )  =  t  continuous on  ( – π, π  ] . 
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At the same time, if a continuous function  f  is  2π -periodic, i.e., the points  – π  and  π
can be identified, then the entire proof of Theorem 2.6 remains valid, hence, the poly-
nomial of the best approximation is unique. 

We now present a theorem which shows that if a polynomial of the best approxima-
tion is unique, then it continuously depends on the approximated function.

Theorem 2.7 [S. Nikol’skii (1947)].  If, for any continuous function  f   on a compact set

 �,  there exists a unique polynomial of its best approximation  P fn
∗ ⋅( );   with respect to

a given system  ϕk k
n{ } = 0   of linearly independent continuous functions, then this poly-

nomial continuously depends on the approximated function  f  in the sense that, for any

ε > 0,  one can find  δ  =  δ ( f ; ε )  >  0  such that 

P f P fn n C
∗ ∗

( )⋅( ) − ⋅( ); ;1 �
  <  ε

whenever  f f C− ( )1 �   <  δ . 

Proof.2   By  { } =
∞fk k 1  we denote a sequence of functions continuous on  �.  Assume that

this sequence uniformly converges to  f .  Note that, for any  k = …1 2, , ,  we can write 

P fn k
∗ ⋅( );   –  fk   ≤  P f fn k k

∗ ⋅( ) −;   ≤  fk  .

Therefore, 

P fn k
∗ ⋅( );   ≤  2 fk   ≤  A  =  const ,     k = …1 2, ,  .

As in the proof of the Borel theorem (Theorem 1.1), one can select a subsequence

P fn k jj

∗
=

∞
⋅( ){ };

1
  of the sequence  P fn k k

∗
=

∞
⋅( ){ };

1
  uniformly convergent to a polynomial 

∨

( )P xn   =  lim
j → ∞

 P f xn k j

∗( );  . (2.27)

The inequality 

f P fk n kj j
− ⋅( )∗ ;   ≤  f Pk nj

−

holds for any polynomial 
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Pn ( x )  =  c xk k
k

n

ϕ ( )
=
∑

0

by the definition of polynomials of the best approximation.  As a result of the limit transi-

tion in this inequality as  j → ∞  ,  we obtain 

f Pn−
∨

  ≤  f Pn−  ,

i.e., we see that  
∨

( )P xn   is a polynomial of the best approximation for the function  f ( x ) .

By the assumption, the polynomial of the best approximation is unique.  Hence,  
∨

( )P xn   =

P f xn
∗( );  ,  x ∈ �,  and, by virtue of (2.27), 

lim
j → ∞

 P f xn k j

∗( );   =  P f xn
∗( );  (2.28)

uniformly in  x ∈ �.  Since the sequence  P fn k
∗ ⋅( ){ };   is a compact set and the right-

hand side of (2.28) is independent of the subsequence  {k j} ,  we conclude that 

lim
k → ∞

 P f xn k
∗( );   =  P f xn

∗( );  

uniformly in  x ∈ �.  The theorem is proved. 

�

The reader can easily check the validity of Theorem 2.7 and its proof for the approxi-
mation of functions in Banach spaces (see [S. Nikol’skii (1947), p. 47]).

2.5.  De la Vallée Poussin theorem

As a rule, the Chebyshev theorems enable one only to check whether a given polynomial
is the polynomial of the best approximation for a given continuous function  f  .  At the
same time, the problem of finding these polynomials and estimation of the value of the

best approximation  En ( f )  proves to be extremely difficult.  In this connection, it seems
reasonable to analyze the possibility of approximate construction of these polynomials

and finding the upper and lower bounds of the quantity  En ( f ).  The corresponding upper
estimates are studied in Chapters 4 and 6.  For the lower bounds, we now present the fol-
lowing two theorems: 
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Theorem 2.8 [de la Vallée Poussin (1919)].  If the difference  f – Pn   between a function

 f  continuous on  [  a , b ]  and a polynomial  Pn   with respect to a Chebyshev system

ϕk k
n{ } = 0   takes alternating values at points  xj  of an ordered sequence of  n + 2  points

a  ≤  x1  <  x2  < … <  xn + 2  ≤  b ,  i.e., 

sgn { f ( xj )  –  Pn ( xj ) }  =  – sgn { f ( xj + 1 )  –  Pn ( xj + 1 ) } ,

then 

E n ( f )  ≥  min
1 2≤ ≤ +j n

 f x P xj n j( ) − ( )  . (2.29)

The proof is similar to the proof of sufficiency in the Chebyshev theorem (Theorem
1.2). 

Indeed, by contradiction, we can assume that 

E n ( f )  <  min
1 2≤ ≤ +j n

f x P xj n j( ) − ( )  .

Let  Pn
∗

  be the polynomial of degree at most  n  of the best approximation to the function
f .  Then 

f x P xj n j( ) − ( )∗   <  f x P xj n j( ) − ( ) (2.30)

at all points  xj .  Hence, the difference 

P xn j
∗( )  –  Pn ( xj )  =  [ f ( xj )  –  Pn ( xj ) ]  –  f x P xj n j( ) − ( )[ ]∗

has the same sign as  f ( xj )  –  Pn ( xj )  at all points  x j ,  j  =  1 2, ,… +n  ,  i.e., its sign

changes on the analyzed segment at least  n + 1  times. 

Therefore, the polynomial  Pn
∗  – Pn  has at least  n + 1  zeros on the segment  [ a , b ]

and, consequently,  P xn
∗( )  –  Pn ( x )  ≡  0 ,  contrary to inequality (2.30) . 

For the case of periodic functions approximated by periodic polynomials, the theorem
is formulated and proved similarly. 

Theorem 2.8′′′′ [de la Vallée Poussin (1919)].  If the difference  f  – Tn   between a 2π  -

periodic continuous function  f ( t )  and a trigonometric polynomial  Tn   of degree  n  

takes alternating values at points  t j   of an ordered sequence of  2 n + 2  points  (t1  < 

t2  < … < t2n + 2  <  t1 + 2 π) ,  then 
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En ( f )  ≥  min
1 2 2≤ ≤ +j n

 f t T tj n j( ) − ( )  . (2.29′ )

2.6. Snakes

We present some important results related to the Chebyshev Theorem 1.2. 

Definition 2.5.  For any two continuous functions  g0   and   g1   defined on a segment

[ a , b ]  and such that   g1  ( x )  <  g0 ( x ),  x ∈  [  a , b ],  and a Chebyshev system of functions

ϕ j j
n{ } = 0   given on this segment, a polynomial  Pn   ( Pn  )  of the form 

P xn( )   =  c xj j
j

n

ϕ ( )
=
∑

0
     c xj j

j

n

ϕ ( )
=
∑






0
,

is called an upper (lower) snake if it exists and satisfies the conditions: 

(a) the inequalities  g 1  ( x )  ≤  P xn( )   ≤  g0 ( x )  (  g1 ( x )  ≤  P xn( )  ≤  g0 ( x ))  hold for

all  x ∈ [ a , b ] ; 

(b) there exists at least one sequence of  n + 1  points  x j j

n{ } =
+
1

1
  x j j

n{ }( )=

+

1

1
: 

a  ≤  x1  <  x2   <  x3  < … <  xn +1  ≤  b

such that the following conditions are satisfied: 

P xn i2 1−( )  =  g x i0 2 1−( ) ,     i  =  1, 2, … ,

P xn i2( )   =  g x i1 2( )  ,    i  =  1, 2, … ,

P xn i2 1−( )(   =  g x i1 2 1−( )       and     P xn i2( )   =  g x i0 2( ) ) .

Theorem 2.9 (on snakes [Karlin (1963);  Karlin and Studden (1966)]).3  Let  g0  and  g1

be two continuous functions given on a segment  [ a, b ]   and such that  g1 ( x )  <  g0 ( x ),

x ∈ [  a , b ] ,  and let  ϕ j j
n{ } = 0   be a Chebyshev system of functions on this segment .  I f

there exists at least one polynomial 
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∨

( )P xn   =  c xj j
j

n

ϕ ( )
=
∑

0
,     x ∈ [ a , b ],

such that  g 1  ( x )  <  
∨

( )P xn   <  g0 ( x )  for all  x  ∈  [ a , b ] ,  then the functions  gν ,  ν  =

0, 1,  and the T-system  ϕ j j

n{ } =0
  possess unique upper and lower snakes. The points

of contact  x j{ }   and  x j{ }   of these snakes are alternating . 

Proof.  I.  First, we prove the theorem under assumption that  
∨

( )P xn   ≡  0  and, hence,

g1 ( x )  <  0  and  g0 ( x )  >  0,  x ∈ [ a , b ] . 
It suffices to prove the existence of a snake only for the upper snakes  Pn   because if

Pn   is an upper snake for the functions  – g1  and  – g0 ,  then  – Pn   is a lower snake for the
functions  g 0  and  g1.  For the sake of simplicity, we set  a = 0  and  b = 1 .  Consider the

set  Pn  of all possible  T-polynomials  Pn  satisfying the conditions:

(i) each polynomial  Pn ∈ Pn  has  n  zeros  xj  in the interval  ( a , b )  =  (0, 1) ; 

(ii) each polynomial  Pn ∈ Pn  satisfies the inequalities 

c  ≤  max
,x x xj j∈ [ ]+1

 P xn( )   ≤  C ,     j  =  0, 1, 2, … , n , (2.31)

where  x0  : =  0 , xn + 1  : =  1,  and c  and  C  are positive constants specified in what
follows;

(iii) Pn (0)  >  0  for all  Pn ∈ Pn . 

By  Pn
0

  we denote a polynomial given by relation (2.12) for which  x j  =  x Pj n
0( )  = 

j

n + 1
,  j  =  1, 2, …  , n  .  After this, we determine the constants  c  and  C  in inequality

(2.31) as follows: 

c0  : =  min
0 1≤ ≤ +j n

 max
,x j n j n∈ +( ) +( ) +( )[ ]1 1 1

 P xn
0( )  ,      C 0  = Pn

0
 ,

′c0   =  min { min
,x ∈[ ]0 1

 g 0 ( x ) ,  min
,x ∈[ ]0 1

 g x1( )  } ,

′C0   =  max { max
,x ∈[ ]0 1

 g 0 ( x ) ,  max
,x ∈[ ]0 1

 g x1( )  } ,



Section 2 Chebyshev systems of functions 37

c  =  min c
c

0
0

2
,

′







 ,      C  =  max { c0 , 2 0′c }.

In this case, the class    Pn  is nonempty.  Moreover, if a snake exists, then, first, this

snake and the polynomials  Pn  ,  which are almost snakes, belong to the class  Pn  and,

second, in view of the linear independence of the system of functions  ϕ j j
n{ } = 0   and the

second inequality in (2.31), the coefficients of any polynomial  Pn ∈   Pn  are bounded in
modulus by the same number  M . 

The defect  ∆ j  =  ∆ j (Pn)  of a polynomial  Pn ∈   Pn  on a segment  [ xj , xj + 1 ] ,  j  =  0,

1, … , n,  xj  =  xj ( Pn ) ,  is defined as follows: 

∆ j  =  (– 1)j
  max

,x x xj j∈ [ ]+1

 (– 1)j [ Pn ( x )  –  gν ( x ) ] ,     where    ν  : =  
1 1

2

1+ −( ) +j

 ,

and the defect on  [ a , b ]  (or simply the defect) is introduced as 

∆  =  ∆ ( Pn )  =  max
1 ≤ ≤j n

 ∆ j  .

Clearly, if a polynomial  Pn   is an upper snake, then  Pn  ∈  Pn   and  ∆ Pn( )  =  0,  and
vice versa.  Roughly speaking, the defect should be regarded as a measure of deviation of

the polynomial  Pn ∈ Pn  from the snake. 
We now prove that the upper snake exists.  Indeed, since the coefficients of all poly-

nomials  Pn ∈   Pn  are bounded, by virtue of the first inequality in (2.31), there exists at

least one polynomial  Pn
∗  ∈  Pn  with the smallest defect  ∆* .  Let us show that  ∆*  =  0

and, hence,  Pn
∗   is a snake. 

In fact, suppose, on the contrary, that  ∆*  >  0 .  Then, by Theorem 2.3, we can con-

struct a  T-polynomial  πn  with the following properties:

1. sgn π n ( x )  =  sgn ∆ j nP∗( )  for all  x ∈ ( )+x xj j, 1   and all  j = 1, … , n  such that

∆ j nP∗( )  ≠  0 ; 

2. πn   =  
1
2

 ∆*
 .

At the same time, in this case, it is easy to see that  ∆ Pn n
∗ −( )π   <  ∆ Pn

∗( )  .

This contradiction implies the existence of a snake. 
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II.  If  
∨

( )P xn   /≡   0 ,  then the functions  g0  and  g1  should be replaced by the follow-
ing functions: 

g̃ x0( )  : =  g0 ( x )  –  
∨

( )P xn   >  0,     x ∈ [ a , b ],

and 

g̃ x1( )  : =  g1 ( x )  –  
∨

( )P xn   <  0,    x ∈ [ a , b ] .

Further, we find the snakes  P̃n   and  P̃n   for these functions and set  Pn   =  P̃n   +  
∨

Pn

and  Pn   =  P̃n   +  
∨

Pn  .
Finally, it remains to note that the uniqueness of a snake and the fact that the zeros of

the upper and lower snakes are alternating follow from the evident fact that, otherwise,
the difference between the corresponding polynomials has at least  n + 1   zeros, which is
impossible. 

�

Supplement to Theorem 2.9.   If, under the conditions of Theorem 2.9, the function  g0

is a polynomial with respect to a system  { }ϕ j j
n

= 0  ,  i.e., 

g0 ( x )  =  c xj j
j

n
0

0
ϕ ( )

=
∑ ,     x ∈ [ a , b ],

then necessarily  x1 = a   and, in addition,  xn +1= b  if  n  is even.

If, under the conditions of Theorem 2.9, both functions  g0  and  g1  are polynomials

with respect to a system  { }ϕ j j
n

= 0,  then  x n +1 = b  for all odd  n  .  Similar assertions

also hold if  g0  is replaced by  g1  and the points  x1,  xn +1,  and  x n +1  are replaced

by the points  x 1,  x n +1,  and  xn +1,  respectively. 

This supplement is a consequence of the following fact:  If, e.g.,  n  is even, then every

point  x j2 1−  ,  j  =  1, 2, … , n / 2 + 1 ,  satisfying the condition  a  <  x j   <  b  is an even zero

of the nonzero polynomial  g0 – Pn   with respect to the Chebyshev system  { }ϕ j j
n

= 0.  How-

ever, if each even zero of the polynomial  g0 – Pn   is taken into account twice, then, ac-

cording to Lemma 2.2, this polynomial cannot have more than  n  zeros on  [ a , b ]. 

2.7. Representation of positive polynomials 

Theorem 2.10 [Karlin (1963)].  Every strictly positive polynomial  Pn
∗   with respect to
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a Chebyshev system of functions  { }ϕ j j
n

= 0  on a segment  [ a , b ]  admits a unique re-

presentation in the form 

Pn ( x )  =  P xn( )   +  P xn( )  ,

where  Pn   and   Pn   are polynomials with respect to a T-system  { }ϕ j j
n

=0   with the

following properties: 

(a) the polynomials  Pn   and  Pn   are nonnegative; each of these polynomials pos-

sesses exactly  n  zeros on  [ a , b ]  counting multiplicity;

(b) the zeros of the polynomials  Pn   and  Pn   are alternating.

Proof.  We set  g0 ( x )  =  Pn ( x ) ,  x ∈ [  a , b ],  and  g1 ( x )  ≡  0 .  Let  Pn   be the snake for

these functions.  By virtue of the supplement to Theorem 2.9, the snake  P xn( )   satisfies

the condition  P an( )  =  g0 ( a )  =  Pn ( a ) .  Therefore, it is easy to see that the polynomial

Pn – Pn   satisfies all conditions imposed on a lower snake and, hence, can be regarded as
Pn .  It is clear that the polynomials  Pn   and  Pn   are nonnegative and the condition
P an( )  =  0  is satisfied.  The uniqueness of these polynomials and the fact that the zeros
of  Pn   and  P n   are alternating follow from Theorem 2.9. 

�

The following theorem is a corollary  of Theorem 2.10: 

Theorem 2.11 [Markov (1906); Lukacs (1918)].  Every algebraic polynomial  Pn  o f

degree  n  positive on  [ a , b ]  admits a representation

Pn ( x )  =  A xν
2( )  +  ( b – x )( x – a ) B xν− ( )1

2

for any natural  ν  ≥  n / 2  and a representation

Pn ( x )  =  ( x – a ) C xν
2( )  +  ( b – x ) D xν

2( )

for any natural  ν  ≥  ( n – 1 ) / 2 ;  here,  Aν,   Bν−1 ,   Cν,  and   Dν   are polynomials of

degrees equal to their subscripts. 
If the zeros of the polynomials  Aν  and  Bν−1  in the first case and  Cν  and   Dν

in the second case are alternating and the polynomials  Aν  and  Bν  – 1  (  Cν  and  Dν,

respectively ) have exactly  ν  zeros on  [ a , b ] , then these representations are unique.
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Theorem 2.12 [Fejér (1915)].  Assume that a trigonometric polynomial of degree  n   o f
the form

Tn ( t )  =  
k

n

k ka kt b kt
=
∑ +( )

0

cos sin  ,    an
2   +  bn

2   ≠  0 ,    b1  : =  0 , (2.32)

or, equivalently,

Tn ( t )  =  
k n

n

k
iktc e

= −
∑  ,      ck  : =  

a ibk k−
2

 , (2.32′ )

where  ak  and  bk  are real and  ak   : =  a– k  a n d   bk   : =  b– k  for  k  < 0,  takes only

nonnegative values for all  t ∈ R.  Then

(i) this polynomial admits a (generally speaking, nonunique) representation as the
squared modulus of another trigonometric polynomial  tn   of the same degree
n  given by the formula

tn ( t )  =  γ k
ikt

k

n
e

=
∑

0

, (2.33)

i.e., 

Tn ( t )  =  t tn( ) 2 ,      t ∈ R; (2.34)

(ii) the coefficients  γ k   of the polynomial  tn   can be chosen to guarantee that all
zeros  zk  of a polynomial

Π n ( z )  : =  γ k
k

k

n

z
=
∑

0
(2.35)

of degree  n   a re located in the unit disk:  zk   ≤  1  (with  zk   <  1  for all  k  

if  Tn ( t )  is strictly positive for any  t ∈ R ); 

(iii) if the polynomial  Tn   is even, i.e., all  bk  =  0  in relation (2.32) [or, equival-

ently, all  ck   are real and  ck   =  c– k  in relation (2.32′)], then all coefficients

γ k  in relation (2.33) are real to within a common factor whose absolute value is

equal to one for any representation of  Tn   in terms of tn  by relation (2.34) .
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Proof.  (i). According to relation (2.32) , we have  an
2   +  bn

2   ≠  0 .  Thus, by virtue of Cor-
ollary 1.3, the polynomial  Tn   has  2n  zeros  ζk   (real and complex) in the strip  0  ≤
Re z  < 2π  and can be represented in terms of these zeros as follows: 

Tn( t ) =  C sin
t k

k

n −

=
∏ ζ

21

2

  =  C 

k

n
i t

it i

e
e e

i
k

k

=

− +∏ −

1

2
2

2
( )/ζ

ζ

=  cn e–
 
i

 
nt 

k

n
it ie e k

=
∏ −( )

1

2
ζ   =  

k n

n

k
kc z

= −
∑  

=  cn z–
 
n 

k

n

kz z
=

∏ −( )
1

2

  =  z–
 
n P2n ( z )  =  πn ( z ), (2.36)

z  : =  e 
–

 
i

 
t

 ,     z k  : =  e–
 
i

 
ζ

 k ,    C  : =  (– 4)n
 cn 

k

n
ie k

=
∏

1

2
2ζ   =  const ,

where

P2n ( z )  : =  
j

n

j n
jc z

=
−∑

0

2

  =  z 
n 

j

n

j n
j nc z

=
−

−∑
0

2

     and    πn ( z )  : =  
k n

n

k
kc z

= −
∑ . (2.37)

Hence, in view of the fact that 

P2n ( 0 )  =  c– n  =  
1
2

 ( a n + i b n )  ≠  0

by virtue of relation (2.32′ ) , we conclude that (see also Section 1): 

— each zero  ζk   of the polynomial  Tn   is associated with a zero  zk  =  eiζ
 k  of the

same multiplicity of the function  πn ,  and vice versa;

— each real zero of the polynomial  Tn   is associated with a zero of  πn   located on
the unit circle, and vice versa. 

Since the polynomial  Tn   is nonnegative, all its zeros are even and, therefore, each
zero of the function  πn   located on the unit circle is also even. 

By (2.32′ ) and (2.37), the function  πn ( t )  for  z  =  eit  coincides with  Tn ( t ) ,  t ∈ R,

and hence, takes only real values on the unit circle  z   =  1.  By the Riemann–Schwarz
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symmetry principle [or by the direct substitution in (2.37)], we conclude that this function
satisfies the identity

πn ( z )  =  πn z −( )1 (2.38)

for all  z ≠ 0 .  Therefore, if we denote by  z1 ,  z  2 , … ,  zr  the zeros from the collection of

2n  zeros of the polynomial  P n2   located inside the unit circle  (0  <  z j   <  1 ,  j  =  1,

2, … , r),  then, by virtue of (2.36) and (2.38), we conclude that the points  z1
1−

 , z2
1−

 , … ,

 zr
−1  are also zeros of the polynomial  P n2  .  The remaining  2n – 2r  zeros of  P n2   are,

clearly, located on the unit circle.  Moreover, as shown above, they are even and have the
form 

ξ ν  =  ei
 
tν ,     ν  =  1, 2, … , n – r ,     tν ∈ R . (2.39)

This means that the polynomial  P n2   admits a representation 

P2n ( z )  =  cn 

j

r

j jz z z z
=

−∏ −( ) −( )
1

1
 

ν

ν

=

−

∏ −( )
1

2
n r

itz e  , (2.40)

0  <  z j   <  1,     tν ∈ R .

Therefore, in view of relation (2.36) and the equalities 

e zit
j− −1   =  z j

−1
 z ej

it− −   =  z j
−1

 e zit
j− ,

we find 

Tn ( t ) =  T tn( )   =  P en
it

2 ( )

=  c e z z e en
j

r
it

j j

n r
it it

=

−

=

−

∏ ∏−( ) −( )
1

2 1

1

2

ν

ν   =  t tn( ) 2 ,     t  ∈ R,

where, for all  α ∈ R  and  ξ ν  =  ei
 
tν ,

tn ( t )  : =  A eiα 

j

r
it

j

n r
ite z e

= =

−

∏ ∏−( ) −( )
1 1ν

νξ     and    A  : =  c zn
j

r

j
=

−∏










1

1
1 2/

 . (2.41)
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(ii).  Representing  tn   in the form (2.41) , in view of relations (2.33) and (2.35), we
obtain 

Π n ( z )  =  A e 
i
 
α z z zj

j

r n r

−( ) −( )
= =

−

∏ ∏
1 1

ξν
ν

 ,

i.e., all zeros of  Πn   are indeed located in the unit disk. 

(iii).  If, in addition, the polynomial  Tn   is even, then  bk   =  0  and, hence,  c k−   =  ck  

according to (2.32).  Therefore, the function  πn   from relation (2.37) satisfies the identity

πn ( z )  =  πn (1 / z)

for for all  z ≠ 0 .  Thus, if  z j   is a zero of the function  πn ,  then z j
−1

 ,  z j
−1

 ,  and  z j   are

also its zeros and  tn   can be indeed chosen in the form 

tn  =  A ei
 
α 

j

r
it

j
it

je z e z
=

∏ −( ) −( )
1

2

 

ν

ν ν

=

−( )

∏ −( ) −( )
1

2n r
it it it ite e e e

=  A ei
 
α 

j

r
it

j
it

je z e z
=

∏ − ( ) +( )
1

2
2 2

2 Re  
ν

ν
=

−( )

∏ − +( )
1

2
2 2 1

n r
it ite t ecos ,

i.e., in the form of the product of the number  A eiα  by a polynomial of degree  n  with real
coefficients. 

�

Theorem 2.13 [Chebyshev (1859); Markov (1906); Dzyadyk (1977)].4   Let   P l ( x )  =

a 0 x 
l + a1 x 

l
 
–

 
1  + … +  al  be an arbitrary polynomial positive on  [– 1, 1] .  By using this

polynomial  Pl ,  we construct the following even trigonometric polynomial of degree  l :

T tl ( )   =  Pl (cos t)  =  �a ktk
k

l

cos
=
∑

0

.

By virtue of Theorem 2.12, this polynomial admits a representation

T tl ( )   =  t tl( )( )2
 ,       t tl ( )   =  

k

l

k
ikte

=
∑

0

γ  , (2.42)
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where  tl ( t )  is a polynomial all coefficients of which  γ k   are real and such that all

zeros of the algebraic polynomial

Π l ( z )  : =  
k

l

k
kz

=
∑

0

γ (2.43)

are located inside the unit circle  z   <  1. 

Then, for all  ν  ≥  – l / 2,  the algebraic polynomial  Pl +
∗

ν   defined as a linear com-

bination of Chebyshev polynomials  Tj  ( x )  : =  cos j arccos x ,  j  =  1, 2, … ,  

P xl +
∗ ( )ν   =  

k

l

k kT x
=

+∑ ( )
0

γ ν (2.44)

is a snake for the pair of functions  – Pl   and  + Pl  .

Proof.  For all  ν  ≥  – l / 2 ,  we set

Π l + ν ( z )  : =  zν Π l ( z ).

In view of relations (2.42) and (2.43), this yields 

(a) π ( )+l
iteν   : =  P tl cos( ) ,     t ∈ R ;

(b) Re πl  + ν ( e 
i
 
t

 )  =  
k

l

k k t
=
∑ +( )

0

γ νcos ,     t ∈ R ;

(c) on traversing the circle  z   =  1  counterclockwise, the argument of the function

πl  + ν  increases by  2π ( l + ν )  per revolution .

By virtue of property (c) , there exist  2 ( l + ν )  points  ξ j  =  ei
 
η

 j  at which 

Arg πl  + ν ( ξ j )  =  j π  =  Arg π ξνl j+ ( ) .

For the sake of definiteness, we can set  ξ 0 = 1  and, hence,  ξ ν + l  =  – 1. 
Therefore, 

Re πl  + ν ( e 
i
 
η

 j )  =  (– 1) 
j
 Pl jcosη( )  ,     j  =  0, 1, 2, … , l + ν ,
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and, at the same time, 

Reπ ( )+l
iteν   =  P tl cos( ) ,     t ∈ R .

Finally, by setting 

P xl +
∗ ( )ν   =  

k

l

k kT x
=

+∑ ( )
0

γ ν ,

we conclude that 

(a′ ) P xl +
∗ ( )ν   =  P xl ( ) ,    x ∈ [– 1 , 1] ;

(b′ ) there are  l + ν + 1  points  xj ∈ [– 1 , 1]  at which  Pl +
∗

ν   takes alternating values

equal in the absolute value to  Pl jη( )  ,  respectively. 

Thus,  Pl +
∗

ν  is indeed a snake for the pair of functions  – Pl   and  + Pl . 

�

Remark 2.2.  Theorem 2.13 enables one 

(i) to construct the polynomials  Aν  ,  Bν  ,  Cν  and  Dν  appearing in the Mar-
kov–Lukacs theorem (Theorem 2.11) in the explicit form; 

(ii) to find, in the explicit form, the polynomials of “close-to-the-best” approximation

for numerous important functions (such as  arctan x ,  ln ( 1 + x ) ,  ( 1 + x )α,  etc.)  en-
countered as solutions of linear differential equations with polynomial coefficients
(see [Dzyadyk (1974)] , etc.). 

3.  Chebyshev polynomials

The so-called polynomials least deviating from zero or the Chebyshev polynomials can be
regarded as a remarkable example of the application of Theorem 2.13 (for  Pl 

(
 
x

 
) 

 
≡

 
 1)

and the Chebyshev theorem (Theorem 1.2). 

For the function  f ( 
x

 
) = x

 

n,  by  Pn−1
*   we denote the polynomial of its best approxima-

tion of the 
 
(n – 1)

 
th degree.  Then, for any polynomial  Pn −1  of degree  n – 1,  we can al-

ways write 
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f P f Pn n− ≤ −− [− ] − [− ]1 1 1 1 1 1
*

, ,  
.

This implies that the difference  x
 

n – P xn− ( )1
* ,  i.e., an algebraic polynomial of degree

n  of the form 

x
 

n  +  a1
*xn

 

–
 

1  + … +  an
*, (3.1)

takes the least value (in norm) on the segment  [ 
–

 
1, 1

 
]  as compared with all other alge-

braic polynomials of degree  n  whose leading coefficient is equal to 
  1.  Therefore, this

polynomial is called the  n th degree polynomial least deviating from zero on 
 
[

 
–

 
1, 1

 
].  It

is possible to show that 

xn  +  a1
*

 
xn

 

–
 

1  + … +  an
*  =  

1

2 1n−  cos n arccos x,      x ∈ [
 
–

 
1, 1

 
], (3.2)

and, hence, 

En – 1 
( f )  =  f Pn− − [− ]1 1 1

*
,

  =  max
, ]x ∈[−1 1

 x a x an n
n+ + … +−

1
1* *   =  

1

2 1n − . (3.2′ )

Indeed, since 

cos nt  =  
e eint int+ −

2
  =  

cos cos cos cost t t t
n n

+ −( ) + − −( )2 21 1

2
,

by setting  cos t  
=

 
 x,  t 

 
=

 
 arccos x,  x ∈ [–

 
1, 1

 
],  we find 

1

2 1n−  cos n arccos x  =  
1

2n  x x x x
n n

+ −( ) + − −( )[ ]2 21 1 . (3.3)

Expanding the binomials, we arrive at a polynomial of degree  n  with coefficient at
the leading term equal to  1  because 

lim
cos arccos

x
n n

n x

x→∞ −2 1   =  lim
x→∞

 
1

2n  1 1 1 1 1 12 2+ −( ) + − −( )[ ]/ /x x
n n

  =  1. (3.4)

By virtue of (3.2), for all  x  ∈  [
 
–  1, 1

 
],  this polynomial takes absolute values not

greater than  1 / 2n
 

–
 

1  and, at the same time, at the  (
 
n – 1

 
) + 2  =  n + 1  points 
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x0  =  cos 0,    x1  =  
π
n

, … ,  xn  =  cos π,

the polynomial alternately takes the values  ± 1 / 2n
 
–

 

1.  This means that, among all possi-

ble algebraic polynomials of degree  n – 1,  the function  xn  is indeed best approximated

by a polynomial  Pn−1
*   such that 

xn  –  P xn− ( )1
*   =  

1

2 1n−  cos n arccos x.

According to Theorem 2.5, this polynomial is unique.

Definition 3.1.  A polynomial of the degree  n

cos n arccos x  =  
1
2

 x x x x
n n

+ −( ) + − −( )[ ]2 21 1 ,     x ∈ [–
 
1, 1], (3.5)

is called the  n th Chebyshev polynomial and denoted by  Tn 
(

 
x

 
)

 
.

Since the right-hand side of equality (3.5) is defined for all  x ∈ (
 
–

 
∞, ∞

 
)

 
,  is positive

for  x > 1,  and its parity coincides with the parity of the number  n,  in view of the identity

cosh nt  =  
e ent nt+ −

2
  =  

cosh cosh cosh cosht t t t
n n

+ −( ) + − −( )2 21 1

2
,

we conclude that the equality

Tn 
(

 
x

 
)  =  

1
2

 x x x x
n n

+ −( ) + − −( )[ ]2 21 1   =  (
 
sgn x

 
)n cosh n arccosh x (3.5′ )

holds for all values of  x  outside the segment  [–
 
1, 1].

The Chebyshev polynomials have numerous remarkable properties.  In what follows,
we present only the most significant features of these polynomials. 

1.  A drawback of the presented procedure of finding the polynomial least deviating from
zero is that we simply check the validity of equality (3.2).  To obtain this equality in a
natural way, we note that, by virtue of the Chebyshev theorem, the absolute value of
polynomial (3.1)

T xn
n
( )
−2 1   =  xn  +  a1

*
 
xn

 

–
 

1  + … +  an
*  = :  T̃ xn( ) (3. 1̃)
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must be equal to  En – 1 : = En – 1 
(

 
x

  
)  at at least  (n – 1) + 2 

 
=

 
 n + 1  different points  xj .

Since the derivative of this polynomial  ˜ ′Tn   is a polynomial of degree  n – 1  and,

hence, has at most  n – 1  zeros in the interval  (
 
– 1, 1

 
)  and  ˜ ′( )T xn j  = 0  for all  x j  ∈

(–
 
1, 1)

 
,  the collection of points  x j   contains exactly  n – 1  points located in the interval

(
 
– 1, 1

 
)  and exactly two points located at the ends 

 
–

 
1

 
 and 

 
+

 
1

 
 of the interval  [

 
–

 
1, 1

 
]

 
.

Therefore, the polynomial  ˜ ′Tn   must satisfy the identity 

– T̃ xn
2( )   +  En−1

2   =  
1
2n

 ˜ ′( )[ ]T xn
2

 (
 
–

 
x

 

2 + 1
 
)

 
, (3.6)

both sides of which are polynomials of degree  2n  with leading coefficients equal to  – 
1,

the identical zeros  – 1  and  + 1,  and  n – 1  double zeros  x j  ∈ (
 
–

 
1, 1

 
)

 
. 

We now rewrite relation (3.6) in the form

˜

˜
′( )

− ( )−

T x

E T x

n

n n1
2 2

  =  ± 
n

x1 2−
.

Integrating this equality, we obtain

arccos 
T̃ x

E
n

n

( )

−1
  =  ± arccos x  +  C,

T̃ xn( ) =  En  – 1 cos [ ± n arccos x + C ] 

=  En  – 1 [ cos C  cos n  arccos x  +  C     ∓    sin C  sin n  arccos x ] .

Since  ˜ ′Tn   is a polynomial, we conclude that  sin C  =  0†  and, hence,  cos C  =  ±  1.
On the other hand, in view of relation (3.4), we have 

lim
x→∞

 ( x–
 
n  cos n  arccos x )  =  2n

 
–

 
1.

† Since 

sin sin cos sin cosnt t kt t tk
k

n

k
k

n

= =
=

−

=

−

∑ ∑α β
0

1

0

1

,

where  αk   and  βk   are certain numbers, the expression  sin arccosn x x xk
k

k

n
= −

=

−∑1 2

0

1
β   is not a

polynomial. 
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Hence, by using relation ( . ˜)3 1  and the fact that  En  – 1 > 0,  we conclude that  cos  C  =  + 1

and  En  – 1  =  1 / 2n
 
–

 
1.

2.  (a)  Differentiating identity (3.6)  k  times  k n= … −( )1 1, , ,  we readily get 

( 1 – x2
 ) T̃ xn

k( + )( )1   –  ( 2k – 1 ) xT̃ xn
k( )( )  +  [ n2  –  ( k – 1 )2 ] T̃ xn

k( − )( )1   =  0, (3.7)

k n= … −1 1, , .

In view of the fact that these equations are uniform, the Chebyshev polynomials

Tn 
(

 
x

 
) 

 
=

 
 cos n arccos x  also satisfy these equations.  Thus, in particular, for  k = 1,

we see that the polynomials  Tn   satisfy the following differential equation: 

( 1 – x2
 ) y ′′ – x y ′ + n2

 y  =  0. (3.8)

(b) By induction, relation (3.7) yields the following equality required in our subse-
quent presentation: 

Tn
k( )( )1   =  

n n n n k

k

2 2 2 2 2 2 21 2 1

2 1

−( ) −( ) … − −( )[ ]
( − )!!

,     k 
 
=

 
 1, ,… n . (3.9)

(c) Representing, in view of relation (3.1), the polynomial  Tn   in the form 

Tn 
(

 
x

 
)  =  cos n arccos x  =  2n

 

–
 

1
 
xn  +  a

 1 
xn

 

–
 

1  +  … +  an

and substituting this expression in equality (3.8), we can specify all numbers  ak
by the method of undetermined coefficients.  As a result, after necessary transfor-

mations, we arrive at the following explicit expression for  Tn 
(

 
x

 
)

 
:

Tn 
(

 
x

 
)  =  

k

n

=

[ ]

∑
0

2/

(
 
–

 
1

 
)k n

n k−
 

n k

k

−



 2n

 

–
 

2
 

k
 

–
 

1
 
xn

 

–
 

2
 

k. (3.10)

3.  For all  k  =  0, ,… n ,  we always have 

T xn
k( )( )   ≤  Tn

k( )( )1 ,     x ∈ [
 
–

 
1, 1

 
]. (3.11)

Indeed, since  Tn 
(

 
x

 
)  =  cos nθ,  where  θ  =  arccos x,  we have 
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′( )T xn   =  n 
sin n

x

θ

1 2−
  =  n 

sin
sin

nθ
θ

  =  2n [ 
cos ( 

n – 1
 
)

 
θ  +  cos ( 

n – 3
 
)

 
θ + … ]

and, hence, by induction, 

T xn
k( )( )  =  

j

n k

=

−

∑
1

λ
 j cos j 

θ
 
,

where all  λ j   =  λ
 j 
(

 
k

 
)  ≥  0.  This implies that 

T xn
k( )( )   ≤  

j

k

=
∑

1

λ
 j  =  Tn

k( )( )1 .

4.  The following recurrent relation is true for the Chebyshev polynomials  Tn  :

Tn 
(

 
x

 
)  =  2

 
x

 
Tn – 1 

(
 
x

 
)  –  Tn – 2 

(
 
x

 
),     n  =  2, 3, … . (3.12)

Its validity immediately follows from the equality

cos n 
θ  +  cos ( 

n – 2
 
)

 
θ  =  2 cos θ cos ( 

n – 1
 
)

 
θ.

In view of the fact that  T0 
(

 
x

 
) = 1  and  T1 

(
 
x

 
) = x,  by using (3.12), we consecutively

obtain

T2 
(

 
x

 
)  =  2x2 

 
–

 
 1,    T3 

(
 
x

 
)  =  4x3 

 
–

 
 3x,    T4 

(
 
x

 
)  =  8x4 

 
–

 
 8x2 

 
+

 
 1,

T5 
(

 
x

 
)  =  16x5 

 
–

 
 20x3 

 
+

 
 5x,    T6 

(
 
x

 
)  =  32x6 

 
–

 
 48x4 

 
+

 
 18x2 

 
–

 
 1,

T7 
(

 
x

 
)  =  64x7 

 
–

 
 112x5 

 
+

 
 56x3 

 
–

 
 7x,     etc. (3.13)

5.  Since 

2
π

 

−
∫
1

1

 
T x

x

k
2

21

( )

−
 dx  =  

2
π

 

−
∫
1

1

 
cos arccos2

21

k x

x−
 dx  =  

2
π

 

0

π

∫  cos
 

2 k
 
θ d

 
θ  =  1 (3.14)

and, for  j ≠ k, 
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−
∫
1

1

 
T x T x

x

j k( ) ( )

−1 2
 dx  =  

0

π

∫  cos j
 
θ cos k

 
θ d

 
θ  =  0, (3.14′

 
)

the system 

T0 
(

 
x

 
)

 
,   T1 

(
 
x

 
)

 
,  …  ,   Tk 

(
 
x

 
) (3.14′′

 
)

is orthonormalized by the weight  2
 
(

 
1 – x

 

2
 
)–1/2

 / 
π  on the segment  [–

 
1, 1

 
].

4.  On the best uniform approximation of continuous functions
of complex variable

In the present section, we show that the principal results obtained in Sections 1 and 2 ad-
mit a generalization to the case of approximation of complex-valued continuous functions
f  defined on a closed bounded set  �  in the complex plane.  Since the existence of the

polynomial  Pn
*  of the best approximation for a given function  f  follows from Theorem

1.1′′ and the problem of uniqueness of this polynomial is completely solved by Theorem
2.6, we first prove the Kolmogorov theorem which, by analogy with the Chebyshev the-

orem 2.4, gives necessary and sufficient conditions for a polynomial  Pn
*  to be the poly-

nomial of the best approximation of degree  n  for a function  f  defined on  �.
After this, we also briefly discuss the following problems: 

1.  Lower estimates of the best approximation of a given function by polynomials of a
given degree.

2.  Determination of the minimum subset  E
 0 � �  for which the value of the best

uniform approximation is equal to the value of the best uniform approximation in the en-
tire set  � .

3.  Determination of an analog of the rule of alternation of signs of the difference  f –

Pn  at the 
 
(+)-

 
 and 

 
(–)-points (in the Chebyshev theorems, etc.) in the case of approxima-

tion of functions of complex variable. 

4.  Approximation of abstract functions on compact sets by elements of convex sets. 

Definition 4.1.  If a continuous function  f  and a (generally speaking, generalized)

polynomial  Pn  are given on a closed bounded set  �,  then any point  z 0 ∈ �
such that the following equality is satisfied: 
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f z P zn( ) − ( )0 0   =    f Pn− �  

is called an  e 
 
=

 
 e

 
(

 
Pn 

)
 
-point (for the difference  f – Pn  

). 

4.1.  Kolmogorov theorem

Theorem 4.1 [Kolmogorov (1948)].5  Let 

ϕ
 0 

,  ϕ
 1 

, … ,  ϕ
 n 

(4.1)

be  n + 1  fixed continuous functions given on a closed bounded set  �  and let  f   b e

a continuous function approximated by generalized polynomials  Pn 
(

 
z

 
) = Pn 

(
 
ϕ

 k 
; c

 k 
; z

 
),

of the form

Pn 
(

 
z

 
)  =  c zk k

k

n

ϕ ( )
=
∑

0

. (4.2)

Then, for a polynomial  Pn
* = ck kk

n *ϕ
=∑ 0

  to be the polynomial of the best uniform

approximation of the function  f  in a sense that

f Pn− *
�

  =  inf
Pn

   f Pn− �  
,

it is necessary and sufficient that the inequality

min
z E∈

 Re P z f z P zn n( ) ( ) − ( )[ ]{ }*   ≤  0 (4.3)

be true in the set  E  = E Pn( )*   of all  e  = e Pn( )* -points from  �  for any polynomial

Pn 
(

 
z

 
)  of the form (4.2).

Proof.  Necessity.  Let  Pn
*  be a polynomial of the best approximation for the function

f.  Assume the opposite, i.e., that there exists a polynomial  Pn  
  satisfying the following

inequality opposite to (4.3):  

min
z E∈

 Re P z f z P zn n( ) ( ) − ( )[ ]{ }*   >  c  >  0. (4.4)
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In this case, by virtue of the fact that the set  E  is closed and bounded, inequality

(4.4) is true, for some  δ > 0,  also in the set  Eδ  � E  of all points from  �  each of

which is located at a distance smaller than  δ  from the set  E.  Thus, clearly, the set

� \ Eδ   is closed.  We now write 

max
z∈�

 f z P zn( ) − ( )*   =  E
 n 
,     

  
max

\z E∈� δ
 f z P zn( ) − ( )*   =  ′En ,

E
 n  –  ′En   =  h, (4.5)

max
z∈�

 P zn( )   =  M,     min 
c

M

h

M2 2;



  =  λ.

Note that the numbers  h  and  λ  are, clearly, positive.  Further, we construct a poly-
nomial 

Qn  =  Pn
*  +  λ 

Pn  
(4.6)

and show that this polynomial approximates the function  f  better than the polynomial

Pn
*  in contradiction with our assumption.  Indeed, for any  z ∈ Eδ ,  in view of relations

(4.4) and (4.5) and the fact that the equality  w0 + w0   =  2 Re w0  is true for any complex

number  w0,  we find 

f z Q zn( ) − ( ) 2  =  f z P z P zn n( ) − ( ) − ( )[ ]* λ
 

f z P z P zn n( ) − ( ) − ( )[ ]* λ   

=  f z P zn( ) − ( )* 2
  –  2 

λ Re
 

P z f z P zn n( ) ( ) − ( )[ ]{ }*   +   
λ

 

2
 P zn( ) 2 

≤  En
2   –  2 

λ
 
c  +   

λ c

M2 M
 

2  =  En
2   –  λ 

c  <  En
2 ;

At the same time, if  z ∈ � \ Eδ ,  then, by virtue of relations (4.6) and (4.5), we get 

f z Q zn( ) − ( )  ≤  f z P zn( ) − ( )*   +   
λ P zn( )  

≤  ′En   +   

h

M2
M  =  E

 n  –  
h

2
  <  E

 n 
.

Hence, for all  z ∈ �,  we obtain 



54 Chebyshev theory and its development Chapter 1

f z Q zn( ) − ( )   <  E
 n  =  

 
max
z∈�

 f z P zn( ) − ( )*
 

in contradiction with the definition of the polynomial  Pn
*.

Sufficiency.  Assume that a polynomial  Pn
*  approximating the function  f  possesses a

property that inequality (4.3) is true for any polynomial  Pn  of the form (4.2).  Let us

show that  Pn
*  is the polynomial of the best approximation for the function  f.  Indeed, if

Qn  is an arbitrary polynomial of the form (4.2) and  z0  is a point from  E  for which the
following inequality is true:

Re Q z P z f z P zn n n( ) − ( )[ ] ( ) − ( )[ ]{ }0 0 0 0
* *   ≤  0

(here, the role of the polynomial  Pn  is played by the polynomial  Qn – Pn
*),  then we

conclude that, at the indicated point, 

f z Q zn( ) − ( )0 0
2  =  f z P z Q z P zn n n( ) − ( ) − ( ) − ( )[ ]0 0 0 0

2* *  

=  f z P zn( ) − ( )0 0
2*   

–  2 Re
 

Q z P z f z P zn n n( ) − ( )[ ] ( ) − ( )[ ]{ }0 0 0 0
* *  

+   
Q z P zn n( ) − ( )0 0

2*   

≥  max
z E∈

 f z P zn( ) − ( )* 2
.

This means that the polynomial  Pn
*  is the polynomial of the best approximation for

the function  f.  Theorem 4.1 is proved.

�

4.2. Examples of application of Theorem 4.1

Example 4.1.  A polynomial  P zn− ( )1 0
*  ≡ 0  gives the best approximation of the function

f ( 
z

 
) = zn  defined in the unit disk  z  ≤ 1  among all algebraic polynomials of degree

n – 1
 
.
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Indeed, note that the role of the set  E  is, in this case, played by the unit circle  E  =

{z :  z  = 1
 
}.  Hence, for any polynomial  Pn −1  of degree  n – 1,  the product 

Pn – 1 
(

 
z

 
)

 
f z P zn( ) − ( )[ ]−1

*   =  Pn – 1 
(

 
z

 
) ⋅ z

n (4.7)

possesses the following property:  On tracing the unit circle  E  by the point  z  in the posi-

tive direction, the argument of the factor  z n
  decreases by  2nπ  and the argument of the

factor  Pn – 1 (
 
z

 
)  increases by at most  2

 
(n – 1)π  (since  Pn −1  has at most  n – 1  zeros in-

side  E )  and, thus, the argument of product (4.7) decreases by at least  2π.  Therefore, by
continuity, this implies that the real part of product (4.7) is nonpositive at at least one

point  z0 ∈ E  (this happens at a point  z0 ,  where either the argument of product (4.7) is

equal to  π + 2k
 
π

 
,  k 

 
=

 
 0, 1, –

 
1, … ,  or this product is equal to zero). 

Example 4.2 [Al’per (1959)].  For a function 

f ( 
z

 
)  =  

1
z a−

,    a  > 1,

defined in the unit disk  z  ≤ 1,  we choose a polynomial  Pn
*  of degree  n  and a number

γn  such that the following equality is true: 

1
z a−

  –  P zn
*( )  =  

1 − ( − ) ( )
−

z a P z

z a
n
*

  =  γ
 n 

( − )
−

1 az z
z a

n
,      z  ≤ 1, (4.8)

and prove that the polynomial  Pn
* constructed as indicated above is the polynomial of the

best approximation for the function  1
 / 

(
 
z – a

 
)

 
.  To this end, we show that the following

inequality is true for any polynomial  Pn  of degree  n :

min
z E∈

 Re P z
z a

P zn n( )
−

− ( )













1 *   =  min
z E∈

 Re P z
az z

z an n

n
( ) ( − )

−























γ 1

  ≤  0, (4.9)

where  E  is the set of points  z  ≤ 1  at which the difference  1
 / 

(
 
z – a

 
) 

 
–

 
 P zn

*( )  takes its

maximum absolute value for  z  
 
≤

 
 1. 

Since the function  (
 
1 – a z

 
)

 / 
(

 
z – a

 
)  maps the unit circle  z  < 1  and its boundary

z  = 1  onto themselves, expression (4.8) takes its maximum value equal to  γ n   for
z  = 1,  and, hence, the role of the set  E  is again played by the unit circle  z  = 1.  In

view of the fact that the argument of the factor  ( − )1 az zn
 / (z – a)  decreases by  2 1( )n + π
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on tracing the unit circle  E  in the positive direction [since all  n + 1  zeros of the product

( − )1 az zn   lie inside the unit circle and the zero of the difference  z  – a  lies outside this
circle] and the argument of the polynomial  Pn 

(
 
z

 
)  increases by at most  2n π,  we

conclude that the argument of the expression in braces in relation (4.9) decreases by at

least  2π.  After this, in exactly the same way as in Example 4.1, we conclude that in-
equality (4.9) is true. 

Note that, as a result of the multiplication of the left- and right-hand sides of equal-

ities (4.8) by  z – a  and passing to the limit as  z → a,  we obtain  γn = [
 
an

 
(

 
1 – a

 

2
 
)

 
]–

 

1.

Hence, for the value of the best uniform approximation of the function  ( 
z – a

 
)–

 

1,  we can
write 

En
1

z a−




   =  min

Pn
 max

| |≤z 1
 

1
z a

P zn−
− ( )   =  γ n   =  

1

12a an −( ) . (4.10)

Example 4.3.  Let us show that the Chebyshev theorem (Theorem 1.2) can be fairly
simply derived from Theorem 4.1.

Necessity.  In the notation used in the proof of Theorem 1.2, we now show that the seg-

ment  [
 
a, b

 
]  contains at least one system of  n + 2  different 

 
e-points  xk   satisfying the

rule of alternation of signs, i.e., 

rn 
(

 
x

 1 
)  =  – rn 

(
 
x

 2 
)  =  …  =  (– 1)n

 

+
 

1
 
rn 

(
 
x

 n + 2 
).

Indeed, if the maximum number of 
 
e-points (i.e., points from  E  )  with alternation of

signs is equal to  m + 1,  where  m + 1 
 
<

 
 n + 2,  then we can define  Pm   by using relation

(1.13) for  m ≥ 1  and setting  P0 
(

 
x

 
) ≡ 1  or  – 1  for  m = 0  and, as a result, construct a

polynomial of degree not greater than  n  which has the same sign as the difference  f ( 
x

 
) –

P xn
*( ) for all  x ∈ E  (i.e., at all 

 
e-points) and, hence, satisfies the equality 

min
x E∈

 Re P x f x P xm n( ) ( ) − ( )[ ]{ }*   =  min
x E∈

P x f x P xm n( ) ( ) − ( )[ ]{ }*   >  0,

i.e., we arrive at a contradiction. 

Sufficiency.  Assume that the polynomial  Pn
*  is such that the difference  f – Pn

*  takes

its maximum absolute value on  [
 
a, b

 
]  with consecutive alternation of signs at  n + 2 

points  xk ∈ [
 
a, b

 
]

 
.  Then, in view of the fact that any polynomial  Pn 

(
 
x

 
) � 0  of degree
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 n  can consecutively take values of different signs on the segment  [a, b]   at at most
 n + 1  points  xk ,  we conclude that

min
x E∈

 Re P x f x P xn n( ) ( ) − ( )[ ]{ }*   ≤  min
k

P x f x P xn k k n k( ) ( ) − ( )[ ]{ }*   ≤  0.

This means that  Pn
*  is the polynomial of the best uniform approximation for the

function  f,  which completes the proof of the Chebyshev theorem (Theorem 1.2). 
Note that if we use Theorem 2.3 and its corollary, then the Kolmogorov theorem also

implies, in exactly the same way, the other Chebyshev theorem (Theorem 2.4). 

4.3.  De-la-Vallée-Poussin-type theorem

We now show that it is possible to obtain an analog of the de la Vallée Poussin theorem
(Theorem 2.8) on the lower bound of the value of the best approximation  E

 n  of a func-
tion by using the reasoning from the proof of sufficiency in Theorem 4.1.

Theorem 4.2.  If, for a function  f  continuous on  �,  a polynomial  Qn  of type (4.2)
is such that the inequality

min
z E∈

 Re
 

P z f z Q zn n( ) ( ) − ( )[ ]{ }  ≤  0 (4.11)

holds on a certain subset  E � �  for any polynomial  Pn  of type (4.2), then the value
of the best uniform approximation  En  of the function  f  on  �  by polynomials of de-
gree  n  satisfies the inequality 

En  =  min
Pn

 
 
max
z∈�

 f z P zn( ) − ( )   ≥  min
z E∈

 f z Q zn( ) − ( ) . (4.12)

Proof.  By  z0  we denote any point from  E  at which the following inequality is true:

Re
 

P z Q z f z Q zn n n
*( ) − ( )[ ] ( ) − ( )[ ]0 0 0 0   ≤  0,

where  Pn
*  is the polynomial of the best approximation for the function  f  on  �.  This

yields 

En
2  ≥  f z P zn( ) − ( )0 0

2*   =  f z Q z P z Q zn n n( ) − ( ) − ( ) − ( )[ ]0 0 0 0
2*  
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=  f z Q zn( ) − ( )0 0
2  –  2 Re P z Q z f z Q zn n n

*( ) − ( )[ ] ( ) − ( )[ ]{ }0 0 0 0   

+  P z Q zn n
*( ) − ( )0 0

2 

≥  f z Q zn( ) − ( )0 0
2  +  P z Q zn n

*( ) − ( )0 0
2 

≥  f z Q zn( ) − ( )0 0
2  ≥  min

z E∈
 f z Q zn( ) − ( ) 2 ,

as required. 

�

4.4.  Characteristic sets

The theorems presented in what follows mainly without proofs (the reader is referred to
the monograph [Smirnov and Lebedev (1964), Chapter 5, Section 3]) solve problems 2
and 3 formulated at the beginning of the present section. 

For the the sake of simplicity, in the remaining part of the section, a closed bounded
set of points of the complex plane is denoted by  �. 

Definition 4.2.  For a complex-valued function  f  continuous on  �  which is not a

polynomial with respect to a system of functions  ϕk k
n{ } = 0,  n  

 
=

 
 0, 1, 2, …  ,  continu-

ous on  � ,  a characteristic set of order  n  with respect to this system of functions is

defined as an arbitrary finite subset  E0 � � ,  E0 = E0 
(

 
n

 
),   with the following proper-

ties:

(i)  the value of the best uniform approximation of the function  f  by polynomials of
the form

Pn  =  ck k
k

n

ϕ
=
∑

0

on  E0  is equal to the value of the best uniform approximation of this function on the
entire set  �; 

(ii)  on any subset  ′E0   from  E0  that does not coincide with  E0 
,  the value of the

best uniform approximation of the function  f  is strictly smaller than its value on  E0 

and, hence, on  �.
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Remark 4.1.  The fact that, for any function  f  continuous on  �,  there exists at least one
characteristic set is established in proving the following theorem: 

Theorem 4.3 (on the existence of characteristic sets [de la Vallée Poussin (1911)]).  As-

sume that, for some integer  n ≥ 0,  a system of  n + 1  continuous functions  ϕk k
n{ } = 0  is

given on a set  � � C  formed by at least  n + 2  points.  Then, for any continuous

function  f  on  �   different from a polynomial of degree  ≤ n  of the form  
k

n

=∑ 0
ck 

ϕk :

(i) there exists at least one characteristic set  E0 = E0 
(

 
n

 
)  of order  n

 
; 

(ii) every characteristic set  E0  of order  n  is formed by a finite number m =

m
 
(

 
E0 

)  of points such that

n  +  2  ≤  m  ≤  2n  +  3, (4.13)

if  ϕk k
n{ } = 0  is a Chebyshev system or

1  ≤  m  ≤  2n  +  3, (4.13′ ),

otherwise.

To prove this theorem, we need the following well-known Helly theorem on the in-
tersection of convex sets.  Here, we present only the statement of this theorem.  A fairly
simple proof of the Helly theorem can be found, e.g., in [Krein and Nudel’man (1973),
p. 46). 

Theorem 4.4 (on the intersection of convex sets [Helly (1936)]).  For a certain natural
m,  let  Lm   be a real m-dimensional linear normed space containing a collection  K

of  convex closed sets formed by at least  m + 1  elements  Ωα .  If any  m + 1  sets

Ω ∈ K  have at least one common point and  K  contains at least one system formed by
a finite number  n  of sets  Ωi  ∈ K,  i = 1, 2, … , n,  whose intersection is bounded, then

there exists at least one point common for all sets  Ω ∈ K. 

Proof of Theorem 4.3.  We prove Theorem 4.3 only for the most important case where

ϕk k
n{ } = 0  is a Chebyshev system.  First, we note that any polynomial given by the equal-

ity 

Pn 
(

 
z

 
)  =  Pn 

( z; ϕ
 
)  =  

j

n

=
∑

0

(
 
α

 j + i
 
β

 j 
) ϕ j 

(
 
z

 
)

 
, (4.14)
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where  α j   and  β j   are real numbers, can be represented in the form 

Pn 
(

 
z

 
)  =  

j

n

=
∑

0

α
 j 
ϕ

 j 
(

 
z

 
)  +  

j

n

=
∑

0

β
 j 
ψ

 j 
(

 
z

 
)

 
,    ψ

 j 
(

 
z

 
)  : =  i

 
ϕ

 j ( 
z

 
)

 
(4.14′

 
)

and, hence, the set of all possible polynomials of type (4.14) with ordinary norm 

Pn   =  
  
max
z∈�

 P zn( )

can be regarded as a real linear normed space of dimension  m = 2n + 2  spanned by the

system of functions  ϕ0 
, ϕ1 

, … , ϕn 
, ψ0 

, ψ1 
, … , ψn ,  and vice versa. 

To prove Theorem 4.3, we assume the opposite, i.e., that, under all conditions of the

theorem, there exists a function  f  continuous on  �  for which all finite sets  {
 
z1 , z2 , … ,

zp} � �  formed by at most  2n + 3  points  ( p  ≤   2n + 3 )  are not characteristic.  To ar-

rive at a contradiction, for any  z1 , … , zp ∈ �,  we set 

En
0 ( f ; z1 , z2 , … , zp 

)  : =  inf
Pn

 max
1≤ ≤j p

 f z P zj n j( ) − ( ) ,

(4.15)

  

sup
; ;z zp1 ∈ … ∈� �

En
0

 ( f ; z1 , … , zp 
)  : =  E fn p,

* ( ).

Further, for any  p ≤ 2n + 3,  we note that, on the one hand, the inequality 

En
0 ( f ; z1 , … , zp 

)  <  En( f )  =  min
Pn

 max
z∈�

 f z P zn( ) − ( )
 
, (4.16)

is true according to the assumption and, on the other hand, every function  En
0 ( f ; z1 , … ,

zp 
)  is continuous on the compact set  

    

� � �× × … ×
p times

� ���� 	���   and, hence, reaches its upper

bound at a certain point  z zp1
* *, ,…( ), z j

* ∈ �.  This means that the following inequalities
are true: 

E fn j,
* ( )   ≤  E fn j,

*
+ ( )1 ,    j  =  1, 2, … , 2n + 2,

(4.17)

En n,
*

2 3+   : =  E fn n,
*

2 3+ ( )  =  En
0 f z z n, , ,* *

1 2 3…( )+   <  En( f ) .
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For any fixed  ξ ∈ �,  we now introduce a set  Ω ( ξ )  of all possible polynomials

Pn 
( ⋅; ϕ )  each of which deviates in the absolute value from the function  f  at the point  ξ

by at most  En n,
*

2 3+  :

Ω ( ξ )  : =  {Pn 
( z; ϕ ) :  f Pn( ) − ( )ξ ξ ϕ;   ≤  En n,

*
2 3+ }. (4.18)

By direct verification, we can show that each set  Ω ( ξ )  is nonempty, closed and con-
vex.  Moreover, by virtue of (4.15), we conclude that the intersection of any  2n + 3  sets

Ω ( ξ i ) ,  ξi ∈ �,  i  =  1, 2, … , 2n + 3,  is nonempty and contains, e.g., a polynomial  Pn
0

satisfying the equality 

max
1 2 3≤ ≤ +j n

f Pj n j( ) − ( )ξ ξ0   =  E fn
n0 1 2 2 3, , , ,ξ ξ ξ…( )+ .

The existence of this polynomial follows from the Borel theorem (Theorem 1.1). 

To apply the Helly theorem to the convex sets  Ω  ( ξ )  defined in a real  (2n + 2)-di-

mensional linear space of polynomials of the form (4.14)–(4.14′ ), it is necessary to show

that there exists at least one finite system of sets  Ω ( ξ )  whose intersection is bounded.

To do this, we take arbitrary  n + 1  different points  ξ ξ ξ1
0

2
0

1
0, , ,… +n   in  �  and consider

the intersection  Ω ξ1
0( ) � … � Ω ξn +( )1

0   =  Ω0.  Since, by virtue of (4.18), each poly-

nomial  Pn 
( ⋅; ϕ ) ∈ Ω0  is bounded at all points  ξ j

0
 ,  i.e., 

Pn jξ ϕ0,( )   ≤  P fn j jξ ϕ ξ0 0,( ) − ( )   +  f jξ0( )   <  En( f )  +  f ,

by using the interpolation formula (4.18), we conclude that each polynomial  Pn 
( ⋅; ϕ ) ∈

Ω0  and, hence, the entire set  Ω0  is indeed bounded.  Therefore, by the Helly theorem,

we conclude that there exists at least one polynomial (point)  Pn
* ,(⋅ )ϕ   contained in all sets

Ω ( ξ ),  ξ ∈ �,  such that, according to relations (4.18) and (4.17), 

f Pnξ ξ ϕ( ) − ( )* ,   ≤  En n,
*

2 3+   <  En( f )

for all  ξ ∈ �,  which is impossible. 
The indicated contradiction proves that the characteristic set exists and consists of at

most  2n + 3  elements.  The fact that the characteristic set of the  T-system  ϕ j j
n{ } = 0

  con-

tains at least  n + 2  points follows from the fact that, for any set  {ξ 1, ξ  2 , … , ξ p}  with

p  ≤ n + 1,  according to the interpolation formula (2.11), we have 
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En
0( f ; ξ 1 ,  ξ 2 , … , ξ p )  =  0  <  En( f ) .

This proves Theorem 4.3 (in the case where  ϕ j j
n{ } = 0

  is a Chebyshev system). 

Example 4.4.  In the case of approximation of the function  f ( 
z

 
) = z4

  by algebraic poly-

nomials  P3  of the third degree on the disk  �  =  {z :  z  ≤ 1},  the role of a characteristic

set can be played, e.g., by a set of eight points  E0  : =  
 k

ike= { }0

7 4∪ π / .  In this case,

P z3
0( ) ≡ 0  is the polynomial of the best approximation of the third degree for the func-

tion  z4  both on  �  and on  E0 � �  and, hence, 

inf max
P z z3 ( ) ∈�

 z P z4
3− ( )  =  

 
max
z∈�

 z P z4
3− ( )*  

   =  max
0 7≤ ≤k

e P eik ikπ π/ * /4 4
3

4( ) − ( )   =  1.

Indeed, if there exists a polynomial  P z3
*( ) ( � 0 )  of the third degree such that

  
max
z∈�

 f z P z( ) − ( )3
*   <  1  and, in particular, 

max / * /

0 7

4 4
3

4

≤ ≤
( ) − ( )

k

ik ike P eπ π   =  max * /

0 7
3

41
≤ ≤

(− ) − ( )
k

k ikP e π   <  1,

then the conditions  sgn T k3 4* /( )π  = (
 
–

 
1

 
)k,  k = 0, 1, …  , 7,  hold for the trigonometric

polynomial  T t3
*( )  : =  Re P eit

3
*( )  �  0.  This means that the polynomial  T t3

*( )  of the third

degree must have at least seven zeros on  [
 
0, 2π

 
)  but, by virtue of Theorem 1.3, this is

impossible since 

T t3
*( )  =  Re P eit

3
*( )   �  0.

At the same time, for any  k0 = 0, 1, … , 7  (for the sake of definiteness, we assume

that  k0 = 4
 
),  on the subset  ′E0  = E

 0 \ eik0 4π /{ }  � E0 
,  by setting 

P3 
(

 
k

 0, z 
)  : =  – ε

 1 ze a eik ik− + +( )0 04
2

3π πε/ ,      a  : =  
6 2

2
−

,

for sufficiently small positive  ε1  and  
 
ε2 

,  we readily conclude that 
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z P k z4
3 0− ( ),   <  1,      z ∈ ′E0 .

Similarly, we can show that, in the case of approximation of the function  f (
 
z

 
)  =  z3

by algebraic polynomials  P2   of the second degree on the set  �  =  {z :  z  ≤ 1},  the set

of seven points  E  : =  eik
k

2 7
0

6π /{ } =   is characteristic and, in addition, the polynomial

P3 
(

 
k0 

, ⋅
 
)  should be replaced (in the same notation) by a polynomial 

P2 
(

 
k0 

, z
 
)  : =  ε

 1 
ze aik− + +( )0 2 7

2
2π ε/ ,

where 

a  : =  
sin

sin

3
28

7

π

π .

E. Ya. Remez and V. K. Ivanov proposed necessary and sufficient conditions for the

polynomial  Pn
*

  of the form (4) to be the polynomial of the best approximation for a
function  f  continuous on  �  in the form different from the conditions used in the Kol-
mogorov theorem (Theorem 4.1) and sometimes more convenient for applications. 

Theorem 4.5 [Remez (1953), (1957); Ivanov (1951), (1952)].  I n order that a poly-

nomial  Pn
*

  of the form (4.2) be the polynomial of the best approximation for a function

 f  continuous on  �,  it is necessary and sufficient that there exist a set  zk
m{ }1 ,  1 ≤

m ≤ 2n + 3,  such that  f z P zk n k( ) − ( )*  = 
  

f z P zn( ) − ( )*
�

  and positive numbers  δk ,

k = 1, 2, … , m,  such that the equality

k

m

=
∑

1

δk f z P zk n k( ) − ( )[ ]*
 Pn 

(
 
zk 

)  =  0 (4.19)

holds for any polynomial  Pn  of the form (4.2). 

Remark 4.2.  Since the equality 

f (
 
zk 

)  –  P zn k
*( )   =  ρ sgn f z P zk n k( ) − ( )[ ]* ,

where  ρ  =  f Pn− *
�  

,  is true for any  k 
 
=

 
 1, 2, … , m,   condition (4.19) can be rewrit-

ten in the following equivalent form: 
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k

m

=
∑

1

δk sgn f z P zk n k( ) − ( )[ ]*
 Pn 

(
 
zk 

)  =  0,     δk > 0. (4.19′
 
)

In the case of approximation of real continuous functions  f  on the segment  [
 
a, b

 
]

by algebraic polynomials  Pn 
(

 
x

 
),  by virtue of the Chebyshev theorem (Theorem 1.2), the

characteristic set  E0 
(

 
n

 
)  consists of  n + 2  points  xk   and the following equalities hold

at these points:

sgn f x P xk n k( ) − ( )[ ]*   =  sgn f x P xk n k( ) − ( )[ ]*   =  ± (– 
1)k,    k  =  1, 2, … , n + 2.

These equalities reflect the so-called rule of alternation of signs. 
In the case of approximation of continuous functions on closed bounded sets  �   of

the complex plane, the behavior of the quantity  sgn f z P zk n k( ) − ( )[ ]*   is described by the

following theorem obtained in the process of subsequent development of Theorem 4.5: 

Theorem 4.6 [Videnskii (1956)].  In the case of approximation of a function  f  conti-

nuous on  �,  in order that numbers  δk k n k k

m
f z P zsgn *( ) − ( )[ ]{ } =1

,  where  Pn
*

  is the

algebraic polynomial of the best approximation of the function  f  of degree  n   a n d
n + 2 ≤ m ≤ 2n + 3,  satisfy conditions (4.19′

 
), it is necessary and sufficient that there

exist an algebraic polynomial  Um – n – 2 
(

 
z

 
)  of degree  m – n – 2  such that 

δk sgn f z P zk n k( ) − ( )[ ]*   =  
U z

z
m n k

k

− − ( )
′( )

2

ω
,     k = 1, 2, … , m, (4.20)

where

ω
 
(

 
z

 
)  =  

k

m

=
∏

1
(

 
z – zk 

)
 
.

5.  Approximation of functions on sets
of finitely many points 

6

5.1.  Best approximation of a system of linear equations

Theorems 1.2 and 2.4 (Chebyshev) and Theorem 4.3 (de la Vallée Poussin) show that the
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problem of approximation of a function  f ∈ C  on a closed bounded set  �  is equivalent

to the problem of approximation of the same function on a certain subset  E0 � �  of fi-
nitely many points (characteristic set).  This fact and the problem of approximate con-

struction of the polynomial  Pn
*  of the best approximation for a given continuous func-

tion solved in Section 6 reveal the importance of the problem of finding the polynomial
with least deviation from a given function at finitely many points.  In particular, it is im-
portant to be able to solve, for any given  n  =  1, 2, … ,  the following problems: 

1.  Find a  T-polynomial of the form 

Pn 
(

 
x

 
)  =  

k

n

=
∑

0
c

 k 
ϕ

 k 
(

 
x

 
)

 
,     x ∈ [ a, b ],

least deviating from a given real function at  n + 2  points. 

2.  Find a trigonometric polynomial  Tn   of degree  n  least deviating from a given
real function at  2n + 2  points.

3.  Find a  T-polynomial of the form 

Pn 
(

 
z

 
)  =  c zk k

k

n

ϕ ( )
=
∑

0

(with complex coefficients) least deviating from a given (generally speaking, complex)
function at  m  points of the complex plane, where  n + 2 ≤ m ≤ 2n + 3. 

Consider an incompatible system of equations 

a11 
z1  +  a12 

z2  + … +  a1n 
zn  =  w1 

,

a21 
z1  +  a22 

z2  + … +  a2n 
zn  =  w2 

, (5.1)

………………………………………
am1 

z1  +  am2 
z2  + … +  amn 

zn  =  wm 
,

all coefficients  aik  and free terms  wi  of which are, generally speaking, complex num-

bers.

Definition 5.1.  In the set of points  z  of the form  z = (
 
z1 , z2 , …  , zn 

),  a point  z * =

z z zn1 2
* * *, , ,…( )  is called the best approximate solution (or simply the b.a.-solution) of
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system (5.1) if it possesses the following property:

max
i

 ( ) −a z wi i, *   =  min
z

 max
i

 ( ) −a z wi i, ,     i  =  1, 2, … , m, (5.2)

where  ai  =  (
 
ai1 , ai2 

 , … , ain )  and  (  ai , z  )  =  ai1 
z1 + ai2 

z2 + … + ain 
zn 

.  The quan-

tity

ρ*  =  ρ*
 ( z* )  : =  max

i
 ( ) −a z wi i, * (5.2′ )

is called the value of the best approximation of system (5.1). 

It is easy to see that all problems of finding (generally speaking, generalized) poly-
nomials of the best approximation of functions different from polynomials on finite sets
of points are reduced to the solution of systems of the form (5.1).  Thus, e.g., the problem
of finding the polynomial 

Pn
*  =  ck k

k

n
*ϕ

=
∑

0

least deviating from a given function  f  at points  zi ,  i  =  1, 2, … , m,  is reduced to a
system of the form (5.1) if we set 

ϕk 
(

 
zi  

)  =  aik 
,     ck   =  zk ,     and     f (

 
zi  

)  =  wi  
.

Definition 5.2.  Any point  z0  equidistant from the right-hand sides of system (1) in a
sense that

( ) −a z w1
0

1,   =  ( ) −a z w2
0

2,   = … =  ( ) −a z wm m, 0 (5.4)

is called an equidistant point of system (5.1).  The common value of these quantities is
called the 

 
A-distance between the point  z0  and the point  w 

 
=

 
 (

 
w1 

, w2 
, … , wm 

)
 
.

It is easy to see that, for  m = 2,  n = 1,  and  a11 = a21 = 1,  any equidistant point  z  is
located on the perpendicular line drawn through the middle of the segment connecting the
points  w1  and  w2,  i.e., in the geometric locus of points equidistant from the points  w1
and  w2  in the ordinary sense. 

The next assertion (Theorem 5.1) gives the complete description of all equidistant
points of the simplest system (1) containing  n + 1  equations.  The importance of this
theorem is explained by the facts that the b.a.-solution of system (1) coincides with an



Section 5 Approximation of functions on sets of finitely many points 67

equidistant point of the system (or with one of its subsystems) and that the problem of
finding equidistant points of system (1) is nonlinear. 

Theorem 5.1 [Dzyadyk (1974c)].  Let

(
 
ai , z

 
)  =  wi , (5.1′ )

ai  =  (
 
ai1 , … , ain 

),    z  =  (
 
z1 , z2 , … , zn 

)
 
,    i  =  1, 2, … , n + 1,

be an incompatible system of  n + 1  equations of the form (5.1).  Assume that, as a re-
sult of the removal from this system of an arbitrary equation 

( aj , z
 
)  =  aj1 

z1  +  aj2 
z2  + … +  ajn 

zn  =  w
 j ,

the determinant  D
 

j  of the subsystem obtained as a result differs from zero.  The solu-

tion of this subsystem is denoted by  z
 

j = z z zj j
n
j

1 2, , ,…( ) ,  i.e.,  ( aν 
, zj

 ) = wν 
, ν  ≠  j.

Then 

(i)  for any  j  =  1, 2, … , n + 1,  the following equality is true:

(
 
aj 

, z
 

j
 
)  –  wj  =  

(− ) +1 1j

jD
 

ν=

+

∑
1

1n

(
 
–

 
1

 
)ν

 
wν 

Dν, (5.5)

where

D
 

j  =  

a a a

a a a

a a a

a a a

n

j j j n

j j j n

n n n n

11 12 1

11 12 1

11 12 1

11 12 1

…

…

…

…

− − −

+ + +

+ + +

 ; (5.6)

(ii)  for all real numbers  k j ,  j  =  1, 2, … , n + 1,  such that

j

n

=

+

∑
1

1

D j
 eikj  ≠  0, (5.7)

the point  z  given by the formula†  :

† It is easy to see that each component of this point for variable  kj  represents an  (n + 1) -dimensional torus.
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z  =  ρ 

j

n

=

+

∑
1

1

 
z e

a z w

j ik

j
j

j

j

( ) −,
  =  ρ 

j

n j j ik

j

n j j
j

D z e

D w

j

=
+

=
+

∑
∑ (− )

1

1

1

1
1

, (5.8)

where 

ρ  : =  
j

n ik

j
j

j

e

a z w

j

=

+ −

∑
( ) −











1

1 1

,
  =  j

n j j
j

j

n j ik

D w

D e j

=
+

=
+

∑
∑

(− )
1

1

1

1

1
, (5.9)

is  A-equidistant for system (5.1) and the quantity  ρ   is the  A-distance between the
point  z  and the point  w; 

(iii) vice versa, every  A-equidistant point  z  of system (5.1′ ) admits representation
(5.8) for some real  k j ;  specifically, the numbers  k j   can be expressed via the point  z

by the formula

k j   =  arg [( aj 
, z

 
)  –  wj]  –  arg [( aj 

, z
 

j
 
)  –  wj] (5.10)

and the number  ρ  computed by using relation (5.9) for these  k j   is positive.

Proof.  (i) Note that the coordinates  zk
j   of the solution  z

 

j  are given by the formula 

zk
j   =  

a a w a a

a a w a a

a a w a a

a a w a a

a a a

k k n

j j k j j k j n

j j k j j k j n

n n k n n k n n

k k

11 1 1 1 1 1 1

11 1 1 2 1 1 1

11 1 1 1 1 1 1

11 1 1 1 1 1 1

11 1 1 1

… …
… …
… …
… …

…

− +

− − − − − + −

+ + − + + + +

+ + − + + + +

− aa a

a a a a a

a a a a a

a a a a a

k n

j j k j k j k j n

j j k j k j k j n

n n k n k n k n n

1 1 1

11 1 1 1 1 1 1

11 1 1 1 1 1 1

11 1 1 1 1 1 1

+

− − − − − + −

+ + − + + + +

+ + − + + + +

…
… …
… …
… …

=  ν ν ν ν= ≠
+∑ 1

1

, j

n
k

j

j

w A

D
  =  

ν ν ν
ν

νν= ≠
+ +∑ (− ) ( − )

1

1
1

,
sgn

j

n k
k

j

j

w j M

D
, (5.11)

where  A k
j
ν   and  M k

j
ν   are, respectively, the cofactor and the minor of an element  a kν   in
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the determinant  D
 

j.  Hence, in view of the facts that 

M k
j
ν   =  Mj k

ν

and 

A k
j
ν   =  (

 
– 1

 
)ν 

+
 

k sgn ( j – ν
 
)M k

j
ν   =  – (

 
– 1

 
)ν 

+
 

k Aj k
ν

for any  j  =  1, 2, … , n + 1,  we find 

( aj , z
 

j
 )  –  wj =  

k

n

=
∑

1

ajk zk
j   –  wj  =  

k

n

=
∑

1

ajk
ν ν ν ν= ≠

+∑ 1

1

, j

n
k

j

j

w A

D
  –  wj 

=  
1

D j  
k

n

=
∑

1

ajk
ν ν= ≠

+

∑
1

1

, j

n

wν ( 
–

 
1

 
)ν 

+
 

j
 

+
 

1 Aj k
ν   –  wj 

=  
(− ) +1 1j

jD
 

ν ν= ≠

+

∑
1

1

, j

n

(
 
–

 
1

 
)ν

 
wν 

k

n

=
∑

1

ajk Aj k
ν   –  wj 

=  
(− ) +1 1j

jD
 

ν ν= ≠

+

∑
1

1

, j

n

(
 
–

 
1

 
)ν

 
wν D

 

ν  –  wj 

=  
(− ) +1 1j

jD
 

ν=

+

∑
1

1n

(
 
–

 
1

 
)ν

 
wν D

 

ν.

This proves equality (5.5). 

Prior to proving assertion (ii) of Theorem 5.1, we establish the validity of assertion
(iii). 

(iii)  Let  z  be an arbitrary point equidistant for system (5.1′ ).  It is necessary to show
that the point  z  admits representation (5.8) with 

kj  =  arg [( aj 
, z )  –  wj 

]  –  arg [( aj 
, z

 

j
 
)  –  wj 

]
 
. (5.12)

Indeed, since the point  z  is equidistant, according to the definition, there exists a

number  ρ > 0  [this number is positive because system (1) is incompatible by the condi-
tion of the theorem] such that the following equalities hold:
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(
 
aj 

, z
 
)  –  wj  =  ρ

 
bj 

,     j  =  1, 2, … , n + 1, (5.13)

where  bj = e
i a z wj jarg[ , ]( ) −

.  By virtue of (5.12), we can also represent the numbers  bj

in the form 

bj   =  
[ , ]

,

( ) −
( ) −

a z w e

a z w
j

j
j

ik

j
j

j

j

. (5.14)

The incompatibility of system (5.13) implies that 

a a a w b

a a a w b

n

n n n n n n

11 12 1 1 1

11 12 1 1 1

… +

… ++ + + + +

ρ

ρ
  =  0

and, therefore,

ρ  =  – 
ν

ν
ν

ν

ν
ν

ν
ν

=
+

=
+

∑
∑

(− )

(− )
1

1

1

1

1

1

n

n

w D

b D
. (5.15)

By virtue of (5.14) and (5.5), for any  j  =  1, 2, … , n + 1,  we can write 

bj  D 

j  =  Dj
 

( ) −[ ]
( ) −

a z w e

a z w

j
j

j
ik

j
j

j

j,

,
  =  (

 
–

 
1

 
)j  

+
 

1 

ν=

+

∑
1

1n

(
 
–

 
1

 
)ν

 
wν Dν 

e

a z w

ik

j
j

j

j

( ) −,
.

Thus, it follows from (5.15) that 

ρ  =  e

a z w

ik

j
j

jj

n j

( ) −











=

+ −

∑
,1

1 1

. (5.16)

Finally, to show that the point  z  admits representation (5.8), we set

z′  : =  ρ 

j

n

=

+

∑
1

1
z e

a z w

j ik

j
j

j

j

( ) −,
(5.8′ )

and prove that  z = z′.  Indeed, according to the definition of the solutions  z  
j,  in view of

the incompatibility of system (1′ ), for all  i,  j  =  1, 2, … , n + 1,  we obtain 
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( aj , zi
 ) =  wj ,     j  ≠  i,

(5.17)
( aj , z 

j
 )  –  wj  ≠  0,    j  =  1, 2, … , n + 1.

Hence, the right-hand side of (5.8′ ) is meaningful. 

By using these relations and equalities (5.16) and (5.8′ ) for all  j  =  1, 2, …  , n + 1,
we find 

( aj , z′ )  –  wj =  ρ 

ν=

+

∑
1

1n ( )
( ) −

a z e

a z w
j

ik

j

,

,

ν

ν
ν

ν

  –  ρ 

ν=

+

∑
1

1n w e

a z w
j

ikν

ν
ν

ν( ) −,
  

=  ρ 
( ) −[ ]

( ) −

a z w e

a z w

j
j

j
ik

j
j

j

j,

,
  =  ρ  bj . (5.18)

Subtracting now the left- and right-hand sides of equalities (5.18) from relation (5.13)
term by term, we get

( a j , z – z′ )  =  aj1 ( − ′)z z1 1   +  aj2 ( − ′ )z z2 2   + … +  ajn( − ′ )z zn n   =  0,

j  =  1, 2, … , n + 1.

Hence, in view of the fact that, e.g., the determinant  Dn
 
+

 
1  differs from zero, we

conclude that  zν = ′zν ,  ν = 1, 2, … , n,  and, consequently,  z  =  z′.
This proves assertion (iii) of Theorem 5.1.

(ii)  First, we note that the second equalities in relations (5.8) and (5.9) follow from
equality (5.5).  By analogy with the procedure used to deduce equalities (5.18), we can

show that, under condition (5.7) (with  ρ  < ∞  ),  the point  z  defined by equality (5.8)
satisfies the conditions

( aj , z )  –  wj  =  ρ  bj,     bj  =  
( ) −[ ]

( ) −

a z w e

a z w

j
j

j
ik

j
j

j

j,

,
, (5.18′ )

and, hence, the conditions  ( ) −a z w1 1,   =   ( ) −a z w2 2,   = … =  ( ) −+ +a z wn n1 1,  .

Therefore, this point is indeed an equidistant point of system (5.1′ ).
This proves assertion (ii). 
The proof of Theorem 5.1 is thus completed. 
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Remark 5.1.  Generally speaking, the set  �  of equidistant points is not convex for  n > 0.
Indeed, for  n = 1,  by setting

z1  =  ρ1 
z

a z w

1

1
1

1( ) −,
  +  ρ1 

z

a z w

2

2
2

2( ) −,
,

z2  =  ρ2 

z

a z w

1

1
1

1( ) −,
  +  ρ2 

z e

a z w

i2

2
2

2

π

( ) −,
  

=  ρ2 

z

a z w

1

1
1

1( ) −,
  +  ρ2 

z

a z w

2

2
2

2( ) −,
,

z*  =  
1
2

 ( z1 + z2 ) ,

ρ1  =  
1 1

1
1

1 2
2

2

1

( ) −
+

( ) −






−

a z w a z w, ,
,

ρ2  =  
1 1

1
1

1 2
2

2

1

( ) −
−

( ) −






−

a z w a z w, ,

we readily conclude that 

( ) −a z w1 1, *   =  
1
2

 ρ ρ1 2+   ≠  
1
2

 ρ ρ1 2−   =  ( ) −a z w2 2, *
 ,

i.e., we see that

z*  =  
1
2

 ( z1  +  z2 )  ∉  �,

despite the fact that, according to Theorem 5.1,  z1 ∈ �  and  z2 ∈ �. 

Remark 5.2.  Since the quantity

ρ  =  e

a z w

ik

j
j

jj

n j

( ) −=

+ −

∑
,1

1 1

takes the least value if and only if  e 
ik1  =  e 

ik2  = … =  e 
ikn + 1,  the best solution  z*  of sys-
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tem (5.1) and the corresponding  A-distance  ρ*  of this solution from the point  (  w1 ,

w2 , … , wn + 1 )  under the conditions of Theorem 5.1 are given by the formulas 

z*  =  ρ* 

j

n j

j
j

j

z

a z w=

+

∑ ( ) −1

1

,
  =  

j

n

=

+

∑
1

1 D

D

j

n

ν
ν

=
+∑ 1

1 z 
j, (5.19)

ρ* 

j

n j

j
j

j

z

a z w=

+ −

∑ ( ) −











1

1 1

,
  =  j

n j
j

j

j

n j

w D

D

=
+

=
+

∑
∑

(− )
1

1

1

1

1
. (5.20)

By using relation (5.20), we can represent the quantity  ρ  in relation (5.9) in the form

ρ  =  ρ* 
j

n j

j

n j ik

D

D e j

=
+

=
+

∑
∑

1

1

1

1 . (5.21)

5.2.  General case

Let us now establish the conditions under which the point  z*  is the b.a.-solution of sys-
tem (5.1) in the general case. 

Definition 5.1′′′′.  A point  z*  is called the point of local best approximation for system

(5.1) if there exists a number  ε > 0  such that condition (5.2) holds for this point for

any  z ∈ U z( )*; ε   : =  { z :  z z− *   ≤  ε }.

Definition 5.3.  System (5.1) is called irreducible if, for any its proper subsystem, the
value of the best approximation is smaller than for the entire system.

Theorem 5.2 (on the conditions of local best approximation of a system).  If, for an in-
compatible irreducible system of equations (in the notation of Theorem 5.1)

( ai  , z )  =  wi  ,    i  =  1, 2, … , n + 1 + k, (5.1′ )

where  1 ≤ k ≤ n,  the point

z0  =  ρ0 
j

n
j

i x

j
j

j

z e

a z w

j

=

+

∑ ( ) −1

1
0

,
  =  ρ0 

j

n

j
j i x

C z e j

=

+

∑
1

1 0

, (5.22)
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Cj  : =  1
( ) −a z wj

j
j,

,      ρ0  =  
j

n

j
i x

C e j

=

+ −

∑





1

1 10

, (5.23)

is equidistant for a subsystem

( ai, z )  –  wi  =  0,     i  =  1, 2, … , n + 1, ( )5 1. ˜

then this point is the point of the best local approximation of system ( 5.1̃) if and only if,

at the point  x 0  : = x x xn1
0

2
0

1
0, , ,…( )+  ∈ R  

n
 
+

 
1  specifying the point  z0  [according to

relation (5.22)], the function

f (
 
x

 
)  =  f (

 
x1 

, x2 
, … , xn + 1 

) 
 
: =

 
 

j k

n

, =

+

∑
1

1

Cj Ck cos (
 
xj – xk 

),     xj 
, xk ∈ [

 
0, 2π

 
)

 
, (5.24)

possesses a local conditional maximum with the following  k  constraints:

Φν 
(

 
x

 
)  =  Φν 

(
 
x1 

, x2 
, … , xn + 1 

)  : =  
j k

n

, =

+

∑
1

1

[
 
(

 
Aν j 

Aν k + Bν j 
Bν k) cos ( 

xj – xk ) 

+  (
 
A

 ν j 
B

 ν k – A
 ν k 

B
 ν j 

) sin ( 
x

 j – x
 k )]  –  1  =  0, (5.25)

where

Aν j  : =  Cj Re [ 
(

 
aν 

z
 

j
 
) – wν 

]
 
    and    Bν j  : =  Cj Im [ 

(
 
aν 

z
 

j
 
) – wν 

]
 
, (5.26)

ν  =  n + 2, … , n + k + 1;    j  =  1, 2, … , n + 1.

Remark 5.3.  Note that, according to Theorem 4.3 (on cleaning) reformulated for system

( )5.1̃ , the characteristic set of any system of the form ( )5.1̃  consists of at most  2n + 1

points and, hence, in view of the irreducibility of system ( )5.1̃  only the case of systems
of the form (5.1) with  k  ≤  n  is indeed important.

Proof of Theorem 5.2.  According to Theorem 4.1 (Kolmogorov) reformulated for sys-

tem (5.1′ ), the condition  ( ) −a z wν ν
0   =  const  must hold for all  ν  =  1, 2, … , n +1 + k.

Thus, by virtue of equalities (5.22) and (5.23) and the definition of the points  z
 

j,  we find

( ) −a z wi i
0 2

  =  ρ0 2
,     i  =  1, 2, … , n + 1,
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and, moreover,

( ) −a z wν ν
0 2

 =  ρ0 2
 

j

n j

j
j

j

a z w

a z w=

+

∑
( ) −[ ]
( ) −1

1 2
ν ν,

,
  

=  ρ0 2
 

k

n

=

+

∑
1

1

(
 
Aνk + i

 
Bνk 

)eixk
0
 

j

n

=

+

∑
1

1

(
 
Aνj - i 

Bνj  
)e ix j− 0

  

=  ρ0 2
 [

 
Φν 

(
 
x0

 
)  +  1 ]  =  ρ0 2

,    ν  =  n + 2, … , n + k + 1.

This immediately implies that the equations of constraints (5.25) hold at the point  x0 .
At the same time, in view of the fact that, according to (5.23), 

ρ0 2
 
  =  ρ0 2

( )x
 
  =  

j

n

j
i x

C e j

=

+ −

∑





1

1 2 1

  =  [ f ( 
x

 
)

 
]–

 

1,

we conclude that, in the presence of constraints (5.25), the function  ( ρ0
 )2  (and, hence,

ρ0
 )  possesses a local minimum at the point  x

 

0  if and only if the function  f  possesses
a local maximum at the same point.  This proves Theorem 5.2.

Note that 

(i) by virtue of the periodicity of the function  f  in each variable  xj 
,  its absolute max-

imum is necessarily local and it is easy to see that the total number of local maxima is fi-

nite;  therefore, the absolute minimum  ρ*  of the function  ρ  and, clearly, the b.a.-solu-

tion of system ( )5.1̃  can always be found as the solution for which the function  ρ  attains
its absolute minimum; 

(ii) if we consider solely the equations of constraints (5.25), then we obtain their so-

lution in the form of a set of points  x ∈ R
 

n
 

+
 

1  specifying, according to relation (5.22), the

set of equidistant points  z  of system ( )5.1̃ . 

Reformulating Theorem 5.1 for the case of approximation of functions by polynom-
ials with regard for relations (5.3), we arrive at the following assertions: 

Theorem 5.1′′′′.  Assume that a Chebyshev system of functions  { }ϕ j j
n

= 0  and a function  f

are given on a set  � = { z0, z1 , … , zn + 1 }  of different points  z j  .  The values of the

function  f  on the set  �  do not coincide with the corresponding values of any poly-
nomial of the form



76 Chebyshev theory and its development Chapter 1

Pn 
(

 
z

 
)  =  

 
Pn 

(
 
ϕ; z

 
)  =  

k

n

=
∑

0

ck 
ϕk 

(
 
z

 
)

 
.

Then

(i) for any  j  =  0, 1,   … , n + 1,  the (interpolation) polynomial  Pn j 
(

 
z

 
) = Pn j 

( ϕ ; z )
whose values coincide with the corresponding values of the function  f (

 
z

 
)  at  n + 1

points  zν  
,  ν  =  0, 1, … ,  j – 1,  j + 1, … , n + 1,  differs from its value  f (

 
zj  

)  at the point

z j   by the quantity 

Pn j 
(

 
zj  

)  –  f (
 
zj  

)  =  
(− ) +1 1j

jD
 

ν=

+

∑
0

1n

(
 
–

 
1

 
)ν f ( 

zν 
)

 
D

 

ν, (5.5′
 
)

where

Dν  =   

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ν ν

ν ν

ν

0 0 0

0 1 1

0 1 1

0 1 1

( ) … ( )

( ) … ( )

( ) … ( )

( ) … ( )

− −

+ +

+ +

z z

z z

z z

z z

n

n

n

n n

  =  D
ϕ ϕ ϕ

ν ν

0 1

0 1 1 1

…

… …











− + +

n

nz z z z
 ; (5.6′ )

(ii) for all real numbers  k j ,  j  =  0, 1, … , n + 1,  satisfying the inequality

j

n

=

+

∑
0

1

D j
 e

 

ikj  ≠  0, (5.7′ )

the polynomial  Pn  given by the formula

Pn 
(

 
z

 
)  =  ρ 

j

n

=

+

∑
0

1 P z e

P z f z
nj

ik

nj j j

j( )
( ) − ( )

  =  ρ 
j

n j
nj

ik

n

D P z e

D f z

j

=
+

=
+

∑
∑

( )

(− ) ( )
0

1

0

1
1ν

ν ν
ν

, (5.8′′ )

where

ρ  =  
j

n ik

nj j

e
P z f z

j

=

+ −

∑ ( ) − ( )





0

1 1

ν
  =  j

n j j
j

j

n j ik

D f z

D e j

=
+

=
+

∑
∑

(− ) ( )
0

1

0

1

1
, (5.9′ )
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satisfies the conditions

P z f zn( ) − ( )0 0   =  P z f zn( ) − ( )1 1   = … =  P z f zn n n( ) − ( )+ +1 1    (
 
=  ρ

 
)

 
; (5.4′ )

(iii) vice versa, any polynomial  Pn  satisfying conditions ( . )5 4′  can be represented

in the form (5.8′′ ) for some real numbers  k j ,  j  =   0, 1, … , n + 1;  the numbers  k j   can

be, in particular, expressed via the polynomial  Pn  by the formula

k j   =  arg
 
[

 
Pn 

(
 
zj  

) – f (
 
zj  

)
 
]  –  arg

 
[

 
Pn j 

(
 
zj  

) – f (
 
zj  

)
 
]. (5.10′

 
)

The number  ρ  computed for these  k j   by using relation ( . )5 9′  is positive.

Theorem 5.3.  Assume that a Chebyshev system of functions  { }ϕ j j
n

= 0  and a function  f

are given on the set  � = { z0, z1, … , zn + 1 }  of different points  z j  .  The values of the

function  f  on the set  �  do not coincide with the corresponding values of any poly-
nomial of the form

Pn 
(

 
z

 
)  =  Pn 

( ϕ ; z )  =  
k

n

=
∑

0

ck 
ϕk 

(
 
z

 
)

 
. (5.22)

Then

(i) the polynomial

P zn
*( )  =  

k

n

=
∑

0

ck
*

 
ϕk 

(
 
z

 
)

of the best approximation of the function  f  on the set  �  in a sense that

max
, , ,j n= …0 1

 f z P zj n j( ) − ( )*   =  min
Pn

max
, , ,j n= …0 1

 f z P zj n j( ) − ( ) ,

is defined by each of the following equalities:

P zn
*( )  =  En 

( f ) 
j

n

=

+

∑
0

1 P z

P z f z
nj

nj j j

( )
( ) − ( )

  =  
j

n

=

+

∑
0

1

 
D

D

j

n

ν
ν

=
+∑ 0

1  Pn j 
(

 
z

 
)

 
, (5.19′

 
)

where, for any  j  =  0, 1, … , n + 1,  Pn j 
(

 
z

 
) is a polynomial interpolating the function  f
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at  n + 1  points  zν 
,  ν   =  0, 1, …  ,  j – 1,  j + 1, … , n + 1,  and  E n 

( f ) is the value of

the best approximation of the function  f  by polynomials of the form (5.22);

(ii) the quantity  En 
( f )  can be found by using each of the following relations:

En 
( f ) =  min

Pn

max
j

f z P zj n j( ) − ( )   =  
j

n

nj j jP z f z=

+ −

∑ ( ) − ( )










0

1 1
1   

=  j

n j j
j

j

n j

D f z

D

=
+

=
+

∑
∑

(− ) ( )
0

1

0

1

1
  =  0

1 0

0

1

1
n j j

j n j

j

n j

D f z P z

D

+

=
+

∑
∑

(− ) ( ) − ( )[ ]
, (5.20′

 
)

where  Pn
0   is an arbitrary polynomial.

We now apply the results established above to a Chebyshev system of functions

ϕk k
n{ } = 0  on the segment  [

 
a, b

 
]

 
.  According to Lemma 2.1, for this system, the function 

D 

ϕ ϕ ϕ0 1

0 1

…

…











n

nx x x
  =  

ϕ ϕ ϕ

ϕ ϕ ϕ

0 0 0 1 0

0 1 0

( ) ( ) … ( )

( ) ( ) … ( )

x x x

x x x

n

n n n

does not change its sign under all possible changes in the locations of the points  x0 ,

x1 , … , xn  preserving the order of their appearance.  This means that if  a ≤ x0 < x1 <

… < xn < xn + 1 ≤ b  and  Dν  is given by relation (5.6′
 
), then all  Dν  have the same sign. 

By using this remark and Theorem 5.3, we arrive at the following assertion: 

Theorem 5.4.  Let  ϕk k
n{ } = 0  be a Chebyshev system of functions given on the segment

[
 
a, b

 
]  and let  f  be a function  defined at  n + 2  points  x j   of this segment such that

a ≤ x0 < x1 < … < xn < xn + 1 ≤ b.  Assume that the values of this function on the set  � =

{
 
x0 

, x1 
, … , xn + 1 

}  do not coincide with the corresponding values of any polynomial  Pn

of the form 

Pn  =  
k

n

=
∑

0

ck 
ϕk 

.

Then, in the notation of Theorem 5.3, 

(i) the polynomial 
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P xn
*( )  =  

k

n

=
∑

0

ck
*

 
ϕk 

(
 
x

 
)

of the best approximation of the function  f  on  �  is defined by each of the following
equalities: 

P xn
*( )  =  En 

( f ) 
j

n

=

+

∑
0

1 P x

P x f x
nj

nj j j

( )
( ) − ( )

  =  
j

n

=

+

∑
0

1

 
D

D

j

n

ν
ν

=
+∑ 0

1  Pn j 
( x

 
)

 
; (5.19′′

 
)

(ii) the value  En 
( f )  of the best approximation of the function  f  on  �  can be

found by using each of the following formulas 
7 : 

En 
( f )  =  

j

n

nj j jP x f x=

+ −

∑ ( ) − ( )










0

1 1
1   =  j

n j j
j

j

n j

D f x

D

=
+

=
+

∑
∑
(− ) ( )

0

1

0

1

1
. (5.20′′

 
)

6.  Algorithms of construction of polynomials
of the best approximation

In most cases, the problem of finding, for a given continuous function  f,  the polynomial

of its best approximation  P fn
* ;( ⋅)  of the form 

Pn 
(

 
⋅

 
)  =  ck k

k

n

ϕ ( )⋅
=
∑

0

(6.1)

is unsolvable.  Therefore, the problem of algorithms aimed at the construction of poly-

nomials  Pn 
( f ; ⋅ 

)  arbitrarily close to the polynomial of the best approximation  P fn
* ;( ⋅)

for a given function  f ∈  C  is of significant practical and theoretical interest.  There are
several algorithms of this sort.

In the present section, we describe the Remez algorithm,8 which proves to be especi-
ally convenient in many aspects.  This algorithm is generally accepted and used in prac-
tice for the approximate representation of continuous functions by polynomials.  In what
follows, we mainly deal with the theoretical analysis of the Remez algorithm.  Various
practical problems connected with the application of this algorithm are discussed in [Re-
mez (1969)]; see also [Meinardus (1964)] and [Laurent (1975)]. 

We now give a description of the Remez algorithm for the case of approximation of a
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function  f (
 
x

 
)  continuous on the segment  [

 
a, b

 
]  by polynomials of the form (1) con-

structed according to a Chebyshev system of functions  ϕk k
n{ } = 0 : 

Step 1.  Consider an arbitrary system† of  n + 2  different points  xk
( )1   on the segment

[ a, b ]:

a  ≤  x0
1( )  <  x1

1( )  < … <  xn
( )1   <  xn +

( )
1

1   ≤  b. (6.2)

By using Theorem 5.4, we construct the polynomial  Pn
( )1   of the best approximation

of the function  f  at the points of the system  xk k

n( )
=
+{ }1

0

1
.  Further, in view of the fact that 

f x P xk n k
( ) ( ) ( )( ) − ( )1 1 1   =  const,     k  =  0, 1, … , n + 1,

we set 

f (
 
x

 
)  –  P xn

( )( )1   =  r xn
( )( )1 ,      x ∈ [

 
a, b

 
],     r xn k

( ) ( )( )1 1   =  En
( )1 , (6.3)

rn a b
( )

[ ]
1

,
  =  max

a x b≤ ≤
f x P xn( ) − ( )( )1   =  En

( )1 .

Step 2.  First, we note that the value  En 
( f )  of the best approximation of the function  f

in the entire segment is not smaller than the value of the best approximation  En
( )1   of this

function on the system of points  xk k

n( )
=
+{ }1

0

1
  and, therefore,  En

( )1  ≤ En 
( f ).  At the same

time, if  En 
( f ) = En

( )1 ,  then  Pn
( )1   is just the polynomial of the best approximation of the

function  f  and, hence, the process of construction is completed.  Thus, we assume that

En 
( f )  <  En

( )1   and, hence, 

En
( )1   ≤  En 

( f )  <  En
( )1 . (6.4)

According to the Weierstrass theorem, there exists a point  x* ∈ [ a, b  ]  such that

r xn
( )( )1 *  = En

( )1 . 

We now replace the system of points (6.2) by a system  xk k

n( )
=
+{ }2

0

1
,

a  ≤  x0
2( )   <  x1

2( )   < … <  xn
( )2   <  xn +

( )
1

2   ≤  b, (6.2′ )

† In practice, in the case of approximation by algebraic polynomials, it is reasonable to choose the points

xk
( )1  = a b a xk+ ( − ) ( )

0 5
0

. ,  where  xk
( )0  : = 1 – cos ( k π / ( n + 1 ) ) ,  k = 0, 1, … , n + 1.
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such that the following three conditions are true for all  k  =  0, 1, … , n + 1 : 

sgn r xn k
( )

+
( )( )1

1
2   =  – sgn r xn k

( ) ( )( )1 2 ,     r xn k
( ) ( )( )1 2   ≥  En

( )1 ,     0  ≤  k  ≤  n + 1;

(6.5)

max
k

r xn k
( ) ( )( )1 2   =  En

( )1 .

To satisfy all these conditions, it suffices to replace one point in system (6.2) by the
point  x*  and preserve all other points in the system.  The system obtained as a result is

regarded as  xk k

n( )
=
+{ }2

0

1
.  The process of replacement can be realized, e.g., as follows:  If

the point  x*  is located between two points  xk
( )1   and  xk +

( )
1

1   of system (6.2), then one of

these points is replaced by  x*  (at this point, the difference  rn
( )1   must have the same sign

as at the point  x*).  If the point  x*  is located to the left of all points of system (6.2) and

sgn r xn
( )( )1 *  = sgn r xn

( ) ( )( )1
0
1 ,  then the point  x0

1( )  is replaced by  x*.  If, on the contrary,

sgn r xn
( )( )1 *  = – sgn r xn

( ) ( )( )1
0
1 ,  then the system  xk k

n( )
=
+{ }2

0

1
  is chosen as follows:  x*, x0

1( ),

x1
1( ), … , xn

( )1 .  The case where the point  x*  lies to the right of all points of system (6.2)
is studied similarly. 

Note that, in practice, it is preferable to replace more points of the system  xk k

n( )
=
+{ }1

0

1

by new points  ( x*  is one of these points) in order that, first, all conditions (6.5) be satis-

fied and, second, the quantities  r xn k
( ) ( )( )1 2   be as large as possible. 

As soon as system (6.2′ ) is obtained, we construct the polynomial  πn
( )1   of the best

approximation for the function  rn
( )1   =  f – Pn

( )1   on this system and set 

Pn
( )2   =  Pn

( )1   +  πn
( )1 ,

f  –  Pn
( )2   =  rn

( )1   –  πn
( )1   =  rn

( )2 , (6.3′ )

r xn k
( ) ( )( )2 2   =  En

( )2 ,     rn a b
( )

[ ]
2

,
  =  En

( )2 .

Step 3.  As in the second step, we assume that  E
 n 
( f ) < En

( )2   ( for  E n 
( f ) = En

( )2 ,  the

polynomial  Pn
( )2   is just the required polynomial of the best approximation for the func-

tion  f ).  Therefore, 

En
( )2   ≤  En 

( f )  <  En
( )2 . (6.4′ )

Then, as in the second step, we replace system (6.2′ ) with the system  xk k

n( )
=
+{ }3

0

1
,
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a  ≤  x0
3( )   <  x1

3( )   < … <  xn
( )3   <  xn +

( )
1

3   ≤  b, (6.2′′ )

such that 

sgn r xn k
( )

+
( )( )2

1
3   =  – sgn r xn k

( ) ( )( )2 3
,      r xn k

( ) ( )( )2 3   ≥  En
( )2 ,    0  ≤  k  ≤  n + 1,

(6.5′ )

max
0 1≤ ≤ +k n

r xn k
( ) ( )( )2 3   =  En

( )2 .

After this, we construct the polynomial  πn
( )2   of the best approximation for the func-

tion  rn
( )2   on system (2) and set 

Pn
( )3   =  Pn

( )2   +  πn
( )2 ,     f  –  Pn

( )3   =  rn
( )3 ,

(6.3′′ )

r xn k
( ) ( )( )3 3   =  En

( )3 ,    rn a b
( )

[ ]
3

,
  =  En

( )3 ,

etc.

Theorem 6.1 [Remez (1957)].  The Remez algorithm converges with the rate of a geo-

metric progression in a sense that, for any function  f  continuous on the segment  [ a,

b ],  one can find numbers  A > 0  and  0 < q < 1  such that the deviations  En
k( )  of the

polynomials  Pn
k( )   constructed by using this algorithm from the function  f  satisfy the

inequalities 

En
k( )  –  En 

( f )  =  f Pn
k

a b
− ( )

[ , ]
  –  En 

( f )  ≤  A q
k,     k  =  1, 2, … , (6.6)

where  En 
( f )  is the value of the best approximation of the function  f (

 
x

 
)  on  [  a, b  ]  by

polynomials  Pn  of the form (6.1).

To prove Theorem 6.1, we need the following lemma: 

Lemma 6.1.  Let  f ∈ C [a, b]   and let  xi i
n{ } =

+
0
1

  be a certain system of points on the

segment [a, b]
 
.  Then, for any  ε > 0,  one can find a number  δ > 0  such that if the

minimum distance between the points of the system  xi i
n{ } =

+
0
1  is smaller than  δ,  then

the best approximation of the function  f  on this system by polynomials of the form
(6.1) is smaller than  ε.
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Proof.  Assume the opposite, i.e., that the assertion of Lemma 6.1 is not true.  Then there

exists a sequence of systems  xi
k

i

n( )
=
+{ } 0

1
,  k  =  1, 2, … ,  in which the minimum distance

between the points approaches zero as  k → ∞  :

lim
k →∞

min
i j≠

x xi
k

j
k( ) ( )−{ }   =  0 (6.7)

but the best approximation of the function  f  on each of these systems is greater than  ε.

In the sequence  xi
k

i

n( )
=
+{ } 0

1
,  we choose a subsequence of systems  xi

k

i

n
j( )

=

+{ }
0

1
  such that

each of their  n + 2  components  xi
k j( )

  approaches (as  j → ∞)  a certain point  xi
0  of the

limiting system

x0
0  ≤  x1

0  ≤  x2
0  ≤ … ≤  xn +1

0 .

By virtue of condition (6.7), the system obtained as a result necessarily contains less

than  n + 2  different points  xl
0 : 

x0
0   <  x1

0   < … <  xm +1
0 ,     m < n. (6.8)

However, in this case, it follows from Theorem 2.2 that there exists a polynomial

Pn
( )0   of the form (6.1) interpolating the function  f  at all  m + 2 ≤ n + 1  points of system

(6.8).  By virtue of continuity, this polynomial differs from  f  less than by  ε  at all points

of system  xi
k

i

n
j( )

=

+{ }
0

1
  for sufficiently large  j  because each point  xi

k j( )
  is arbitrarily

close to a certain point of system (6.8) for large  j.  This contradiction implies the validity
of Lemma 6.1. 

Proof of Theorem 6.1.  By virtue of Theorem 5.4 [see (5.20′′ ) and equalities (6.5),

(6.5′ ), etc.], we find 

En
l( )  =  

1

0

1
Dl

n ν
ν=

+∑
 

j

n
j

l
jD r xn

l
j
l

=

+

∑ (− ) ( )( − ) ( )

0

1

1 1   =  
j

n

=

+

∑
0

1 D

D

l
j

l
n ν
ν=

+∑ 0

1  r xn
l

j
l( − ) ( )( )1 , (6.9)

l  =  2, 3, … ,

where 
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Dl
j   =  D 

ϕ ϕ ϕ ϕ ϕ0 1 1

0 1 1 1 1

… …

… …











+

( ) ( )
−

( )
+

( )
+

( )

j j n

l l
j
l

j
l

n
lx x x x x

  ≠  0 (6.10)

for  xk
l
+

( )
1 = xk

l( ) ,  k   =   0, 1, …  , n.  Thus, in view of the fact that, by virtue of (6.5),

(6.5′ ), …  and (6.4), (6.4′ ), … , we have 

max
j

r xn
l

j
l( ) ( + )( )1   =  En

l( )  >  En 
( f )  ≥  En

l( ),

it is possible to conclude that 

En
l( + )1   –  En

l( )  =  
j

n

=

+

∑
0

1

 
D

D

l
j

n
l

+

=
+

+∑
1

0

1
1ν

ν
 r x En

l
j
l

n
l( ) ( + ) ( )( ) −( )1  

≥  
min j l

j

n
l

D

D

+

=
+

+∑
1

0

1
1ν

ν
 E En

l
n
l( ) ( )−( )  >  0 (6.11)

and, hence, 

0  ≤  En
( )1   <  En

( )2   < … <  En 
( f )

 
. (6.12)

According to Lemma 6.1, these inequalities imply that there exists a number  c > 0

such that the following inequalities are true for all  l ≥ 2  (and  En
l( ) ≥ En

( )2  > 0): 

xk
l
+

( )
1  –  xk

l( )   >  c,     k  =  0, 1, … , n,     l  =  2, 3, … . (6.13)

Since all points  xk
( )1   of system (6.2) are different, we can choose a number  c > 0

such that inequalities (6.13) remain true for  l = 1.  By using these inequalities, the conti-
nuity of the functions  ϕk ,  and the corollary of Theorem 2.1, we conclude that there exist
positive numbers  m  and  M  such that

m  <  Dl
j   =  D

x x x x x

j j n

l l
j
l

j
l

n
l

ϕ ϕ ϕ ϕ ϕ0 1 1

0 1 1 1 1

… …

… …











+

( ) ( )
−

( )
+

( )
+

( )   <  M, (6.14)

j  =  0, 1, … , n + 1,     l  =  1, 2, … .
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It follows from inequalities (6.11) and (6.14) that 

En 
( f )  –  En

l( )  –  E f En n
l( ) −( )( + )1   =  En

l( + )1   –  En
l( )  ≥  

m

n M( + )2
 E En

l
n
l( ) ( )−( ), (6.15)

and, consequently,

En 
( f )  –  En

l( + )1   ≤  En 
( f )  –  En

l( )  –  
m

n M( + )2
 E f En n

l( ) −( )( )   =  q
 

E f En n
l( ) −( )( ) , (6.16)

where 

q  =  1  –  
m

n M( + )2
,     0  <  q  <  1. (6.17)

 
In view of relation (6.16), we consecutively find 

En 
( f )  –  En

l( )  ≤  q
 

E f En n
l( ) −( )( − )1   ≤ … ≤  q

 

l
 

–
 

1
 

E f En n( ) −( )( )1   =  aq
 

l, (6.18)

where 

a  =  
1
q

E f En n( ) −( )( )1 . (6.19)

Substituting inequality (6.18) in relation (6.15), we conclude that 

En
l( )  –  En

l( )  ≤  
( + )n M

m

2
 cq

 

l  =  Aq
 

l,

(6.20)

A  =  
( + )n M

m

2
 c,     l  =  1, 2, … .

This inequality implies the required inequality (6.6). 
The proof Theorem 6.1 is thus completed. 

Corollary 6.1.  Note that, by virtue of inequality (6.20), 

f Pn
l

a b
− ( )

[ ],
  =  En

l( )  →  En 
( f )     as    l → ∞.

Thus, in view of the uniqueness of the polynomial  P fn
* ;( ⋅)  of the best approximation for

the function  f,  we conclude that  P xk
l( )( )  → P f xn

* ;( )  as  l → ∞  for  x ∈ [
 
a, b

 
].



86 Chebyshev theory and its development Chapter 1

7.  Approximation of functions by polynomials with linear constraints
imposed on their coefficients9

7.1.  The problem of finding the polynomial least deviating from zero in the presence of
linear constraints imposed on its coefficients is one of the classical (and extremely com-
plicated) problems of the theory of approximation. 

Our aim is to find a polynomial

P xn
* ;( )ϕ   =  

k

n

=
∑

0

ak
*

 
ϕk 

(
 
x

 
)

 

with the smallest norm (in a certain space) in the family of polynomials  Pn 
(

 
ϕ

 
; ⋅

 
)  of the

form 

Pn 
(

 
ϕ

 
; x

 
)  =  

k

n

=
∑

0

ak 
ϕk 

(
 
x

 
)

 
, (7.1)

where  ϕk k
nx( ){ } = 0  is the Chebyshev system of functions on the set  �,  under the condi-

tion that the coefficients of the required polynomial satisfy  r  linear constraints 

k

n

=
∑

0

cik 
ak  =  bi  

,   i  =  1, 2, … , r, (7.2)

where  cik   and  bi   are given numbers and  r  is an arbitrary natural number. 
Constraints (7.2) are called compatible if there exists at least one polynomial

satisfying these constraints or, in other words, if the system of equations (7.2) is solvable
with respect to the unknown  ak . 

In the uniform metric, the first problem of this sort was the Chebyshev problem
(1859) of finding the polynomial least deviating from zero.  As shown in Section 3, this
problem can be formulated as follows: 

To find a polynomial  Pn
*

  with the least norm in the metric of  C −[ ]1 1,   in the fam-
ily of algebraic polynomials  Pn  of the form 

Pn 
(

 
x

 
)  =  

k

n

=
∑

0

ak 
x

 

n
 

–
 

k

with a single constraint specified by the conditions 
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c10  =  1,    c1k  =  0,     k  =  1, 2, … , n;    b1  =  1

or, in the other words, by the condition  a0 = 1.  As shown in Section 3,

P xn
*( )  =  

1

2 1n−  Tn 
(

 
x

 
)  =  

1

2 1n−  cos n arccos x 
.

In 1877, Zolotarev (published in 1912) solved this problem in terms of elliptic func-
tions under the condition that the values of the first two coefficients of the polynomial 

k

n

=
∑

0

ak 
x

 

n
 

–
 

k

are given.  Akhiezer (1928) solved a similar problem in terms of automorphic functions
under the condition that the values of the first three coefficients of the polynomial 

Pn 
(

 
x

 
)  =  

k

n

=
∑

0

ak x
 

n
 

–
 

k

are fixed.† 
In what follows, we show that the problem with constraints is fairly simply solved in

any Hilbert space  H.  More exactly, it is shown that, in the space  H,  this problem is a
consequence of some algebraic theorems. 

7.2.  We now establish a criterion for the solvability of a system of linear algebraic
equations and a criterion for the compatibility of constraints (7.2). 

To do this, we introduce the following notation:  For any matrix  C = {
 
cik 

},  i = 1,

2, … , r,  k = 0, 1, 2, … , n, 

C  =  

c c a

c c a

c c a

n

n

r r rn

10 11 1

20 21 2

0 1

…

…

…

















, (7.3)

by  C*  we denote its adjoint matrix  C* = cki
*{ } ,  where  cki

*  = cik : 

† Numerous important investigations dealing with the problem of approximation of functions by algebraic
polynomials with linear constraints imposed on their coefficients and polynomials of the form (7.1), both in
the uniform metric and in some other metrics, were carried out by Markov (1892), Remez (1969), Shokhat
(1918), Grebenyuk (1960), Geronimus, Meiman, Voronovskaya, Gol’dshtein, Rymarenko, Grigor’eva, Ko-
romyslichenko, Chernykh, and many others. 
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C*  =  

c c c

c c c

c c c

r

r

n n rn

10 20 0

11 21 1

1 2

…

…

…

















. (7.3*)

In this case, the family of column matrices  A  with the same number of elements  ak

forms a Hilbert space if we introduce a scalar product 

( A, A′ )  =  A A* ′   =  
k

n

=
∑

0

ak ′ak ,     A  =  

a

a

an

0

1






















,     A ′  =  

  

′

′

′



















a

a

an

0

1



, (7.4)

where the determinant of the one-element matrix  A*
 A′  is denoted by  A A* ′ .  Thus, the

column matrices are also called vectors and we set  A 2  = ( A, A ) .  In the next theorem,

parallel with the matrices  C  and  C*,  we also use the matrices 

X  =  

  

x

x

xn

0

1






















,     B  =  

  

b

b

br

1

2






















,     Y  =  

 

y

y

yr

1

2






















,     Cj  =  (
 
cj0 

, cj1 
,  … , cjn 

)
 
,

(7.5)

A  =  

a

a

ar

1

2






















,     bi  =  (
 
bi 

)
 
,     and     Cj

*  =  

 

c

c

c

j

j

j n

0

1






















.

Theorem 7.1.  1. In order that a system of linear equations of the form

CX  =  B (7.6)

be solvable with respect to  X,  it is necessary and sufficient that the system of equations
of the form

C
 
C*

 
Y  =  B (7.7)

be solvable with respect to  Y. 
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2. If system (7.6) is solvable, then

(i) the smallest (in norm) solution  X0  of this system can be expressed via an arbit-
rary solution  Y  of system (7.7) by the formula

X0  =  C*
 
Y; (7.8)

(ii) the norm of the solution  X0  is expressed with the help of  Y  by the formula

X0 2
  =  

k

r

=
∑

1

yk  
bk  =  ( Y, B ) ; (7.9)

(iii) the solution  X0  is unique.

Proof.  1.  First, we prove that the solvability of system (7.7) follows from the solvability
of system (7.6).  Note that if a certain solution  X  of system (7.6) can be represented in
the form 

X  =  C*
 A  =  

j

n

=
∑

1

aj  
Cj

*
 , (7.10)

then, in view of (7.6), we immediately obtain  C X  =  C C*A  =  B  .  Hence, in this case,
system (7.7) is also solvable. 

To prove, in the general case, that the solvability of system (7.7) follows from the
solvability of system (7.6), we now show that if a vector  X  is a solution of system (7.6),
i.e., 

Ci  
X  =  bi  ,     i  =  1, 2, … , r, (7.11)

but cannot be represented in the form (7.10), then the vector 

X*  =  
j

r

=
∑

1

a Cj j
* *

whose coefficients  aj
*  are determined from the condition

X X− * 2
  =  inf

a j

X a C
j

r

j j−
=
∑

1

2
* (7.12)
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[i.e.,  X*  is the vector of the best approximation for the vector  X  in the family of vectors
of the form (7.10)] is also a solution of system (7.6).  The indicated solution also has the
form (7.10) and, therefore, as shown above, this means that system (7.7) is solvable. 

Indeed, assume the opposite, i.e., that  X*  is not a solution of system (7.6).  This

means that, for some  i,  we get the inequality  Ci X
* 

 
=

 
 ′bi  

 
≠

 
 bi .  Further, by setting

Ci
* 2 = si  

,  we conclude that the vector  X* + C b b si i i i
* /− ′( )   approximates the vector

X  better than the vector  X*.  Thus, by using relation (7.11) and the equality  Ci
**  = Ci ,

we obtain 

X X
b b

s
Ci i

i
i− + − ′





* *
2

 =  X X
b b

s
C X X

b b

s
Ci i

i
i

i i

i
i− − − ′ − − − ′





* * * *,  

=  X X− * 2
  –  2 Re 

b b

s
C X Xi i

i
i

− ′ −( )







** *   +  
b b

s
i i

i

− ′ 2

2  
s

 i 

=  X X− * 2
  –  

b b

s
i i

i

− ′ 2

  <  X X− * 2
,

i.e., arrive at a contradiction with condition (7.12). 

Vice versa, if system (7.7) is solvable and a vector  Y0  satisfies equation (7.7), then

the vector  C*
 Y0  satisfies equation (7.6), i.e., system (7.6) is also solvable. 

2.  We denote a solution of system (7.7) by  Y  [by virtue of assertion 1, this solution

exists because system (7.6) is solvable] and set  X0 = C*
 Y.  Then, in view of the fact that

the scalar product of  X0  by any other solution  X  of system (7.6) satisfies the condition 

( X 
0, X )  =  ( )C Y X* *   =  Y CX*  =  Y B*   =  ( Y, B )  

  =  const  =  ( X0, X0
 )  =  X0 2

, (7.13)

we conclude that

X X− 0 2
  =  ( X – X 

0, X – X 
0

 )  

=  X0 2
  –  2 Re ( X 

0, X )  +  X0 2
  =  X 2  –  X0 2

. (7.14)

Relations (7.14) and (7.13) imply that 
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(i)  X0  computed according to relation (7.8) possesses the minimum norm as com-
pared with all other solutions  X  of system (7.6); 

(ii) by virtue of relation (7.13), the norm of  X0  is given by relation (7.9);

(iii) the solution  X0  with minimum norm is unique because, by virtue of relation

(7.14), it follows from the equality  X0
1   =  X0   that  X X0

1 0−   =   0  and, hence,

X0
1   =  X0. 

7.3.  Let us show that Theorem 7.1 enables to prove the following Fredholm theorem in a
fairly simple way: 

Theorem 7.2 (Fredholm alternative for linear systems) .  In order that a system of equa-
tions

C*Y =  D,    D  =  

d

d

dn

0

1






















(7.15)

be compatible, it is necessary and sufficient that the vector  D  be orthogonal to any so-
lution  X  of the homogeneous system

C X  =  0, (7.16)

i.e., that the condition 

D ⊥ Nx (7.17)

be satisfied, where   Nx  = { X :  C X  =  0 }  is the set of zeros of system (7.16).

Proof.  Necessity.  Assume that system (7.15) is solvable and  Y0  is a solution of this
system.  We set  C  C*

 Y0  =  CD  =  B  and denote the solution of the compatible system

CX  =  B  with minimum norm by  X0.  By virtue of relation (7.8), it follows from Theorem

7.1 that  X0  =  C*
 Y  =  D.  Since  X0  has the minimum norm among all solutions of the

equations  CX  =  B,  we conclude that 

X0   =  X0 0−   =  min
X Nx∈

 X X0 −
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and, hence (see [Akhiezer (1965), Section 13, p. 23]),  X Nx
0 ⊥   and, in addition,  D Nx⊥ .

Sufficiency.  If  D ⊥ Nx ,  then, by setting  CD = B,  we conclude that the system  C X  =  B
is compatible and, by virtue of condition (7.17), the vector  D  has the minimum norm

among all solutions of this system.  Therefore,  D  =  X0  and, hence, by virtue of state-

ment (i) in Theorem 7.1, the system  C C*
 Y  =  B  is also compatible and if  Y0  is a solu-

tion of this system, then  D = X0 = C*
 Y0 ,  which means that system (7.15) is compatible. 

�

Remark 7.1.  Let us show that, by using Theorem 7.2 (Fredholm), we can immediately
get statement (i) of Theorem 7.1. 

Indeed, the assumption that system (7.6) is solvable and  X0  is the solution of this
system with minimum norm [the existence of this solution is guaranteed by the Borel the-

orem (Theorem 1.1′)] implies that  X 
0 ⊥ Nx .  Thus, by virtue of Theorem 7.2, the equa-

tion  C*
 Y  =  X 

0  is solvable.  Hence, the equation  CC*
 Y  =  CX0  =  B  is also solvable, as

required. 

7.4.  In the present subsection, we show that the problem with constraints in the general
case is very simply solved in any Hilbert space  H.  In order to formulate the correspond-
ing theorem, we first reformulate the problem with constraints as follows: 

Consider a system of  n + 1  orthogonal vectors  e0 , e1 , e2 , … , en  and  r  linear func-

tionals  L1 , L2 , … , Lr  in a Hilbert space  H.  Also let  b1 , b2 , … , b r  be  r  given, gener-

ally speaking, complex numbers.  In the set  En +1  of elements  X  of the form 

X  =  
k

n

=
∑

0

xk ek (7.1′ )

satisfying the following  r  constraints: 

Li  ( x )  =  
k

n

=
∑

0

xk Li  ( ek )  =  bi  ,    i  =  1, 2, … , r, (7.2′′ )

it is necessary to find the element with minimum norm in  H ,  i.e., in the set of elements

X ∈ En +1  of the form (7.1′ ), it is necessary find the element (polynomial) least deviating

from zero. 

Note that if we set  Li  ( ek ) = cik  ,  then condition (7.2′′ ) immediately takes the form
(7.2).  Therefore, in exactly the same way as in Theorem 7.1, we arrive at the following
theorem on polynomials least deviating from zero in a Hilbert space: 
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Theorem 7.3.  If constraints (7.2′′ ) are compatible, then

(i) the element  X0 ∈ En +1  satisfying all these constraints with the minimum norm

in  H  is given by formula

X0  =  C*
 Y  =  

k

n

=
∑

0 j

r

j k jc y
=
∑






1

 e k , (7.8′ )

where   Y is a solution of the system  CC*Y = B ; 

(ii)  by using  Y,  the norm of the solution  X0  is given by the formula 

X0 2
  =  

k

r

=
∑

1

yk  bk  =  ( B, Y )  =  ( Y, B ) , (7.9′ )

(iii) the solution  X0  is unique.

7.5. Snakes.  In the present subsection, for fixed natural  k  and  n > k,  we consider

systems of functions  { }ϕ j j
n

= 0  continuous on the segment  [
 
–

 
1, 1

 
]  and such that both

{ }ϕ j j
n

= 0  and  { }ϕ j j
n k

=
−

0   are Chebyshev systems on  [
 
–

 
1, 1

 
].  These systems are called

T
 
M

 
(

 
k, n

 
)  systems. 

Let  g1 
(

 
x

 
)  and  g

 2 
(

 
x

 
) > g1 

(
 
x

 
)  be functions continuous on  [

 
–

 
1, 1

 
].  We consider the

following problem [Dzyadyk (1978a)]:  In the set of generalized polynomials constructed

according to a 
 
TM

 
(

 
k, n

 
)-system with fixed leading  k ≥ 1  coefficients  An , An–1 , … ,

An – k + 1  [the set of these coefficients is denoted by  A
 
(

 
k

 
)]  of the form 

Tn 
(

 
B; A

 
(
 
k

 
); c; x

 
)  : =  B 

j n k

n

= − +
∑

1

A
 j 
ϕ

 j 
(

 
x

 
)  +  

j

n k

=

−

∑
0

cj 
ϕj 

(
 
x

 
),     B  =  const  >  0, (7.18)

it is necessary to choose numbers  c0
0, c1

0, … , cn k−
0   and a constant  B0  guaranteeing (if

this is possible) the validity the following conditions: 

1. g1 
(

 
x

 
)  ≤  Tn 

(
 
B0; A

 
(

 
k

 
); c0; x

 
)  ≤  g

 2 
(

 
x

 
)     for any   x ∈ [

 
–

 
1, 1

 
], (7.19)

where  c0 
 
: = 

 c c cn k0
0

1
0 0, , ,…{ }− ;
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2.  There exist at least  n + 2 – k   points  x j ,  –  1 ≤ x1 < x2 < x3 < … < xn + 2 – k ≤ 1
such that the following equalities are true: 

Tn 
(

 
B

 

0; A
 
(

 
k

 
); c

 

0; x
 j )  =  

g x j

g x j

1

2

2 4

1 3

( ) = …

( ) = …







, , , ,

, , , ,

or

Tn 
(

 
B

 

0; A
 
(

 
k

 
); c

 

0; x
 j )  =  

g x j

g x j

1

2

1 3 5

2 4 6

( ) = …

( ) = …







, , , , ,

, , , , .
(7.20)

The polynomials with properties (7.19) and (7.20) are called  k-snakes.  The points

xj  at which the equalities  Tn 
(

 
B0; A

 
(

 
k

 
); c0; xj 

)  =  g2 
(

 
xj 

)  or  g1 
( xj )  are satisfied are called

(+)-  or  (–)-points, respectively; the  (+)-  and  (–)-points are also called  (
 
e

 
)-points. 

Definition 7.1.  An increasing (decreasing) branch of a  k-snake  y 
 
=

 
 Tn 

( B0; A
 
(

 
k

 
); c0;

x
 
)  is defined as a part of its plot connecting two consecutive  ( e )-points the first of

which is a  (–)-point [ (+)-point] and the second is a  (+)-point [(–)-point].  A semi-

branch of the  k-snake  y  =  Tn 
(

 
B0; A

 
(

 
k

 
); c0; x

 
)  is defined as a part of its plot located

either in front the first  ( e )-point or behind the last  ( e )-point.  A semibranch is called

increasing (decreasing) if it is located in front of the  (+)-point[(–)-point] or behind

the  (–)-point  [(+)-point]. 

For the case  k = 1,  the problem formulated the above was solved by Karlin (see The-
orem 2.9).  In what follows (see the first part of Theorem 7.5), it is solved for  k = 2. 

Theorem 7.4.  Let  g1 
(

 
x

 
)  and  g2 

(
 
x

 
) ≥ g1 

(
 
x

 
)  be two continuous functions given on the

segment  [–  
1, 1]  and let  { }ϕ j j

n
= 0  be a Chebyshev system of functions on the same

segment.  If, in addition, for some  l 
 
≤

 
 (n – 1)

 
/

 
2,  a polynomial  T c xn( )˜,   of the form

T c xn( )˜,   : =  
j

n

=
∑

0

c̃ j ϕ j 
(

 
x

 
) (7.21)

located between the functions  g1 
(

 
x

 
)  and  g2 

(
 
x

 
)

 
,  i.e., 

T c xn i( )˜,   =  yi 
,   i = 1, 2, … , l

 
;   ∀ x ∈ [

 
–

 
1, 1

 
]

 
:   g1 

(
 
x

 
)  ≤  T c xn( )˜,   ≤  g2 

(
 
x

 
)

 
, (7.22)
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passes through  l  points  (
 
xi , yi )  located between the same functions:

– 1  ≤  x1  <  x2  < … <  xl  ≤  1,    g1 
(

 
x

 i )  ≤  yi  ≤  g
 2 

(
 
x

 i ),    i  =  1, 2, … , 
 
l, (7.23)

then there exists at least one  (2l + 1)-snake  T c xn( )˜ ,0   which also passes through all

points  ( xi 
, yi )

 
,  i = 1, 2, … , l. 

Theorem 7.5.10 Let  g1 
( x )  and  g2 

( x ) ≥ g1 
( x )  be two continuous functions given on

the segment  [–
 
1, 1]  and let  { }ϕ j j

n
= 0   be a  T M

 
(

 
2, n

 
)-system on the same segment.

Then

(a) under the assumption that, for a fixed coefficient 
 
An

*
   and all possible changes

of a fixed coefficient 
 
An−1

* , there exists at least one polynomial of the form

Tn 
(

 
x

 
)  =  B 

i =
∑

0

1

An i−
* ϕn – i 

(
 
x

 
)  +  

j

n

=

−

∑
0

2

cj ϕ j 
(

 
x

 
)

satisfying, for all  x ∈ [
 
–

 
1, 1

 
],  the conditions

g1 
(

 
x

 
)  <  Tn 

(
 
x

 
)  <  g2 

(
 
x

 
)

 
, (7.24)

the 2-snakes  Tn 
(

 
B

 

0; A
 
(

 
2

 
)

 
; c0; x

 
)  =  Tn 

(
 
B0; An −1

*
 
; c0; x

 
)  exist for all 

 
An −1

* ;

(b) the functions 

g̃ x1( )  =  ˜ ;*g A xn1 1−( )  =  inf
*An −1

 
Tn 

(
 
B

 

0; An −1
*

 
; c0; x

 
)

 
,

g̃ x2( )   =  ˜ ;*g A xn2 1−( )  =  sup
*An −1

 
Tn 

(
 
B

 

0; An −1
*

 
; c0; x

 
)

playing the roles of, respectively, the lower and the upper envelopes of the indicated

family of 2-snakes form a “passage” in which the 2-snakes  T n 
(

 
B

 

0; An −1
*

 
; c0; x

 
)  =

Tn 
( An−1

* ; x
 
)  possess the following properties: 

1.  Exactly two 2-snakes  Tn 
( An−1

* ; x
 
)  pass through every point  (

 
x0 

, y0 
)  of the in-

dicated passage for  x0 ∈ [–
 
1, 1]  and  g̃ x1 0( )  < y0 < g̃ x2 0( ).  For one of these snakes,
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the branch (or semibranch) passing through the point  (
 
x0 

, y0 
)  is increasing and, for

the second snake, the corresponding branch is decreasing.  Exactly one 2-snake passes
through every point  ( x0 

, y0 )  at which  –1 < x0 < 1  and  y0 = g̃ x1 0( )   or  y0 = g̃ x2 0( ) 

in the case where each function in the system  { }ϕ j j
n

= 0  is twice differentiable.

2.  Increasing (and decreasing) branches and semibranches of different 2-snakes do
not intersect.11 

Remark 7.2.  Note that if  g1 
( x ) = – 1  and  g2 

( x ) = 1  for  T-systems  1,  x,  x2, … ,  xn  and

1,  cos x,  sin x, … ,  cos nx,  sin nx,  then  g̃ x1( ) = – 1  and  g̃ x2( )  = 1.  We now present an
example demonstrating that  g̃ x1( )  and  g̃ x2( ) ,  generally speaking, do not coincide with

g1 
( x )  and  g2 

( x )  even if the functions  g1 
( x )  and  g2 

( x )  are sufficiently smooth. 

Example 7.1.  Let  r
 
(

 
x

 
)  be a function continuous on  [–

 
1, 1]  and satisfying the condi-

tions 

r
 
(

 
x

 
)  =  1     for    x ∈ – ,1 5

8






,

r
 

3
4





   =  8,     r

 
(

 
x

 
)  =  1    for    x ∈ 7

8
1,





,

r
 
(

 
x

 
)  ≥  1    and    r x x( ) ( − )2 22 1   ≤  1    for    x ∈ 5

8
7
8

,




.

Then the system of functions  ϕ0  
(

 
x

 
) : = r

 
(

 
x

 
)

 
,  ϕ1 

(
 
x

 
) : = x

 
r

 
(

 
x

 
)

 
,  and  ϕ2 

(
 
x

 
) : = (

 
2x2 –

1
 
) r 

(
 
x

 
)  is a  T-system on  [–

 
1, 1]  and, at the same time,  g̃ x2( )  ≠ g2 

( x )  for  gν 
(

 
x

 
)  =

(
 
–

 
1

 
)ν,  ν = 1, 2.  This follows from the fact that the polynomial (2-snake)

T2 
(

 
x

 
)  : =  ϕ2 

(
 
x

 
)  =  (

 
2x2 – 1

 
) r 

(
 
x

 
)

has the following properties: 

T2 
(

 
–

 
1

 
)  =  g2 

(
 
–

 
1

 
)  =  1,    T2 

(
 
0

 
)  =  g2 

(
 
0

 
)  =  –

 
1,

T2 

3
4





   =  g2 

3
4





   =  T2 

(
 
1

 
)  =  g2 

(
 
1

 
)  =  1,

T2 

7
8





   =  17

32
  =  g2 

7
8





   =  1.
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By virtue of these properties, if a 2-snake   
�
T2   is such that    

�
T2 7 8( )/  > 17 / 32,  then

the difference  T2 
(

 
x

 
) –   

�
T x2( )  definitely has at least four zeros on the segment  [

 
1, 1]

[located in the intervals  (
 
– 1, 0

 
),  (

 
0, 3 / 4

 
),  (

 
3 / 4, 7 / 8

 
),  and  (

 
7 / 8, 1)], which is impossi-

ble.  Therefore, 

g̃2
7
8





   ≤  17

32
  <  g

 2 

7
8





   ⇒  g̃ x2( )   ≠  g

 2 
(

 
x

 
)

 
.

Proof of Theorem 7.4.  Since the system of functions  ϕ j j
n{ } = 0

  is linearly independent,

the set of all possible generalized polynomials  Tn 
(

 
c, ⋅

 
)  satisfying the inequalities 

g1 
(

 
x

 
)  ≤  Tn 

(
 
c, x

 
)  ≤  g2 

(
 
x

 
)

 
, (7.25)

is clearly a bounded equicontinuous and, hence, compact set. 
Let us now replace, for sufficiently large natural numbers  m ≥ m0 

,  the functions

gν  
,  ν = 1, 2,  by the functions  gν, m  as follows:  First, we assume that the inequalities

–
 
1 < x1 

,  xl < 1  take place in (7.23) and that  g1  
(

 
xj ) < yj < g2 

(
 
xj ) 

.  In order to get the

functions  g2, m  for each  j = 1, 2, … , l,  we replace the plot of the function  g2  
(

 
x

 
)  on the

segment  [xj – m–1,  xj + m–1
 
]  by a continuous curve passing through the points 

(xj – m 

–
 

1
 , g2 

(
 
xj – m–1

 
)

 
),    (xj , yj + m–1

 
),    and    (xj + m–1

 , g2 
(

 
xj + m–1

 
)

 
)

whose plot to the left and right of the point  (xj , yj + m–1
 
)  so rapidly goes up to the points

(xj – m–1
 , g 2 

(
 
xj – m–1

 
)

 
)  and  (xj – m–1

 , g 2 
(

 
xj + m–1

 
)

 
)  that, by virtue of the equiconti-

nuity of the polynomials  Tn 
(

 
c, ⋅

 
)  satisfying inequalities (7.25), each polynomial  Tn 

(
 
c, ⋅

 
)

passing through a point  (
 
xj 

, y
 
),  g̃ x j2( )  ≤ y ≤ yj + m–1  and satisfying inequalities (7.25)

can have a single common point  (x
 j , yj + 1 / m

 
)  with the constructed curve  g2, m  on the

segments  [x
 j – m–1

 , x j + m–1
 
].  The function  g1, m  is constructed similarly.  The same is

true for the functions  gν, m  in the case where  x1  =  – 1  or  xl   =  1.  If the functions  gν , m  
,

ν  =  1, 2,  m  =  m0, m0 + 1, … ,  are already constructed, then, by using Theorem 2.9 (Kar-

lin), for any  m,  we construct a 
 
1-snake  Tn 

(
 
c(m), ⋅

 
)  located between the curves  gν, m   

,  ν  = 

1, 2,  i.e.,  g1, m 
(

 
x

 
)  ≤  Tn 

(
 
c(m), x

 
)  ≤  g2, m 

(
 
x

 
).  This snake possesses, in turn,  n + 1  common

points with the indicated curves and its first  e-point is the  (+)-point.  Further, if we now

choose a convergent subsequence  {
 
Tn 

(
 
c(m k), ⋅

 
)

 
}  of the compact sequence  Tn 

(
 
c(m), ⋅

 
)

 
,

then, clearly, the function 
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T c xn( )˜ ;0   : =  lim
k →∞  

Tn 
(

 
c(mk), x

 
)

is a  (2l + 1)-snake for the functions  gν  
.  This snake passes through all points  (  xi , yi ),

i  =  1, 2, … , l,  and its first  e-point is the  (+)-point.  If, in relations (7.23), we get the sign
of equality for some  yi ,  then, instead of the functions  gν ,  it is necessary to additionally
consider the following auxiliary sequence of functions: 

g
 ν, m 

( x )  : =  g ν 
( x )  +  ( 

–
 
1

 
)ν m

–
 

1

and again apply the Arzelà theorem to the sequence of polynomials  Tn 
(

 
c; m; ⋅

 
)  obtained

as a result.  Theorem 7.4 is proved. 

�

The fact that the  l-snake satisfying the conditions of Theorem 7.4 [with  (+)-point as
the first  e-point] is, generally speaking, not unique can be illustrated by the following ex-
ample: 

Let a  T-system  ϕ0 
( x ) = 1,  ϕ1 

(
 
x

 
) = T1 

(
 
x

 
)

 
,  ϕ 2 

(
 
x

 
) = T2 

(
 
x

 
)

 
,  ϕ 3 

(
 
x

 
) = T3 

(
 
x

 
)

 
,  and

ϕ4 
(

 
x

 
) = T4 

(
 
x

 
)  be given on the segment  [– 1, 1],  let  gν  

(
 
x

 
) = (

 
–

 
1

 
)ν,  ν = 1, 2,  and let

(
 
xi 

, yi 
),  i = 1, 2, 3,  be three points of intersection of the functions  –

 
T3  and  T4  from

[– 1, 1].  Then, both polynomials  –
 
T3  and  T4,  are, clearly, 3-snakes on  the segment

[– 1, 1]  passing through the same three points  (
 
xi 

, yi 
),  i = 1, 2, … , l,  l = 3,  and the first

 e-point of each of these snakes is a  (+)-point. 

Proof of Theorem 7.5.  (a) First, we note that, in this case, according to the condition of

the theorem, the coefficient  An
*  is fixed and the coefficient  An −1

*   is variable.  Hence, as

follows from relation (7.18), the analyzed family of  2-snakes  T An n− ⋅( )1
* ;   depends on a

single parameter  α  (the ratio of coefficients  An
*  and  An −1

* ).  Therefore, every  2-snake

T An n− ⋅( )1
* ;   can be obtained as follows:  Note that, according to the conditions, for any

fixed  An
*  and  An−1

* ,  there exists a polynomial  Tn 
(

 
x

 
)  of the form (7.18) satisfying the

inequalities

g1 
(

 
x

 
)  <  

i =
∑

0

1

An i−
* ϕn – i 

( x )  +  
j

n

=

−

∑
0

2

cj ϕ j 
(

 
x

 
)  <  g2 

( x ),

or, equivalently, 
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–
 

g x g x2 1

2
( ) − ( )

  <  
g x g x1 2

2
( ) + ( )

  –  Tn 
(

 
x

 
)  <  

g x g x2 1

2
( ) − ( )

,

or (for  B = 1
 
) 

–
 
1  <  

g x g x

g x g x
1 2

2 1

( ) + ( )
( ) − ( )

  –  B 
i =
∑

0

1

An i−
* ϕ̃n i x− ( )  –  

j

n

=

−

∑
0

2

cj ϕ̃ j x( )  <  1,

(7.26)

ϕ̃ j x( )  : =  
2

2 1

ϕ j x

g x g x

( )
( ) − ( )

.

Thus, the quantity 

En – 2  =  En – 2 
(

 
B

 
)  =  min

c j

 f B x c x
j

n

j j( ) − ( )
=

−

−[ ]
∑;

,0

2

1 1

ϕ   <  1

is the best uniform approximation of the function 

f (
 
B; x

 
)  : =  

g x g x

g x g x
1 2

2 1

( ) + ( )
( ) − ( )

  –  B A x A xn n n n
* *˜ ˜ϕ ϕ( ) + ( )[ ]− −1 1

continuous on  [– 1, 1]  by generalized polynomials of the form  
j

n

=
−∑ 0

2
cj ϕ̃ j x( ).  Hence,

in view of the linear independence of the functions in the  T-system  { }ϕ j j
n

= 0  ,  the quan-
tity 

En – 2 
(

 
B

 
)  =  min * *

c
n n n n j

j

g g

g g
B A A c1 2

2 1
1 1

+
−

− +  −− −� � �ϕ ϕ ϕ jj
j

n

=

−

−
∑

0

2

1 1[ , ]
  →  ∞

as  B → ∞  and the variations of the functional 

Eν( f )  : =  min
c j

 f x c x
j

j j( ) − ( )
= −[ ]
∑

0 1 1

ν
ϕ̃

,

caused by continuous variations of the function  f  are continuous.  This enables us to

conclude that there exists a number  B0 > 0  such that, for some  c0,  we have 
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En – 2 
(

 
B0

 
)  =  min ;

[ , ]
c

j j
j

n

j
f B x c x x( ) − ( ) ( )

=

−

−
∑0

0

1

1 1

ϕ  

=  
g x g x

g x g x
B A x A x c xn n n n j j

j

n
1 2

2 1

0
1 1

0

0

2

1 1

( ) + ( )
( ) − ( )

− ( ) + ( )[ ] − ( )− −
=

−

−
∑* *

[ , ]

˜ ˜ ˜ϕ ϕ ϕ  

=  1. (7.27)

Thus, by virtue of the Chebyshev theorem on alternation, there exist at least  ( )n − +2
2 = n  points  xi , 

– 1  ≤  x1  <  x2  < … <  xn  ≤  1,

at which the following equalities are true: 

g x g x

g x g x
i i

i i

1 2

2 1

( ) + ( )
( ) − ( )

  –  B A x A xn n i n n i
0

1 1
* *˜ ˜ϕ ϕ( ) + ( )[ ]− −   –  

j

n

j j ic x
=

−

∑ ( )
0

2
0 ϕ̃   =  ±  ( – 1 )i (7.28)

or, in other words, 

B A x A xn n i n n i
0

1 1
* *˜ ˜ϕ ϕ( ) + ( )[ ]− −   –  

j

n

j j ic x
=

−

∑ ( )
0

2
0 ϕ   

=  
g x g x g x g xi i

i
i i1 2 2 11

2
( ) + ( ) ± (− ) ( ) − ( )[ ]

,     i = 1, 2, … , n.

Therefore, the polynomial

Tn B A A xn n
0

1; , ;* *
−( )   : =  B A x A xn n n n

0
1 1

* *ϕ ϕ( ) + ( )[ ]− −   +  
j

n

j jc x
=

−

∑ ( )
0

2
0 ϕ (7.29)

is a  2-snake with respect to the functions  g1  and  g2 
 
. 

This proves part (a) of Theorem 7.5.

(b) In order to establish the dependence of  2-snakes (7.29) on the ratio of the

coefficients  An
*  and  An−1

* ,  we represent these snakes in the form 
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Tα 
(

 
x

 
)  : =  

A x x T c x

A x x T c x

n n n

n n n

α

α

α ϕ α ϕ α α

α ϕ α ϕ α α

( + ) ( ) + − ( + )( ) ( )[ ] + ( ) ∈(− )

( − ) ( ) − − ( − )( ) ( )[ ] + ( ) ∈( )







− −

− −

1 1 1 2 0

1 1 1 0 2

2
1 2

0

2
1 2

0

; ; , , ,

; ; , , ,

(7.30)

where the polynomials  T c xn− ( )2
0α; ;   are chosen so that all their coefficients coincide

with the coefficients of the polynomial 

˜ ; ;T c xn− ( )2
0α   : =  

j

n

j jc x
=

−

∑ ( )
0

2
0 ϕ̃

of the best uniform approximation for the functions 

fα 
(

 
x

 
)  : =  

g x g x

g x g x
A x x

g x g x

g x g x
A x

n n

n n

1 2

2 1

2
1

1 2

2 1

2

1 1 1 2 0

1 1 1

( ) + ( )
( ) − ( )

− ( + ) ( ) + + ( + )( ) ( )[ ] ∈(− ]

( ) + ( )
( ) − ( )

− ( − ) ( ) − − ( − )( )
−

−

α

α

α ϕ α ϕ α

α ϕ α ϕ

˜ ˜ , ,

˜ ˜

for

11 0 2( )[ ] ∈( ]







 x for α , ,

in the system  ϕ̃ j x( ){ }  and a constant factor  Aα > 0  is chosen to guarantee the validity
of the condition 

f x T c xnα α( ) − ( )− −
˜ ; ; [ , ]2

0
1 1   =  1.

The proof of part (b) of Theorem 7.5 is now reduced to the analysis of the properties

of the  2-snakes  Tα 
( x )

 
.  In what follows, we additionally establish some properties of

these snakes not included in the statement of Theorem 7.5. 

1.  There are exactly two points  α0,  α1 ∈ (
 
– 2, 2]

 
,  such that, for each polynomial

Tα0
  or  Tα1

 ,  one can find at least one alternation formed by  n + 1  [alternating  (+)- and

(–)
 
-] points  xi

0,  –
 
1 ≤ x1

0 < x2
0 <  … < xn +1

0  ≤ 1,  and there is no alternation formed by

n + 2  [alternating  (+)− and  (–)-] points.  In particular, the polynomials  Tα0
  and  Tα1

are 1-snakes for the functions  g1  and  g2  
.  By virtue of the definition of the polynomials

Tα ,  this property is a consequence of Theorem 2.9 (Karlin). 

2.  For any  α ∈ (
 
–

 
2, 2

 
] \ {

 
α0, α1 

}
 
,  there exists an alternation for the polynomial

Tα 
(

 
x

 
)  formed by  n  points and there is no alternation formed by  n + 1  points. 

This property has already been established in deducing equalities (7.27)–(7.29). 
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3.  The increasing (decreasing) branches and semibranches of the curves  y = Tα 
(

 
x

 
)

and  y = Tα′ 
(

 
x

 
)  with  α′ ≠ α  cannot intersect at any point  (

 
x0, y0 

)  such that  x0 ∈
[–

 
1, 1]  and  ˜ )g x1 0(  < y0 < ˜ )g x2 0( .  In the case of a system of twice differentiable func-

tions  { }ϕ j j
n

= 0,  these branches, in addition, cannot intersect at the points  x g x0 0, ˜ν( )( ) ,

x
 0 ∈ [–

 
1, 1],  ν = 1, 2. 

Indeed, assume the opposite, i.e., that some increasing branches of two polynomials

Tα   and  T ′α ,  α  ≠ α′,  intersect.  Then we easily find that the “less steep” increasing
branch of, e.g., the polynomial  Tα   is crossed by the polynomial  T ′α   (counting double
zeros) at at least three points.  Since the polynomial  T ′α   also crosses all other  n – 2
branches of  Tα   at least once, the difference  Tα – T ′α   should have  ≥ n + 1  zeros on

[ – 1, 1 ]  (counting double zeros), which is impossible because  { }ϕ j j
n

= 0  is a  T-system. 
Let us now present an example showing that the polynomials  Tα   and  T ′α   can in-

tersect at the points  − (− )( )1 1, g̃ν   and  1 1, g̃ν( )( ),  ν = 1, 2.  Indeed, by setting  gν 
(

 
x

 
) =

(
 
–

 
1

 
)ν,  ϕ0 

(
 
x

 
) = 1,  ϕ1 

(
 
x

 
) = x,  and  ϕ2 

(
 
x

 
) = 2x2 – 1,  for  n = 2,  we conclude that

T0 
(

 
–

 
1

 
)  =  T1 

(
 
–

 
1

 
)  =  1

and, therefore, 

T0 
(

 
1

 
)  =  T1 

(
 
1

 
)  =  1.

It is easy to see that the requirement of differentiability in the second case of property
3 is indeed necessary. 

The following assertion is a consequence of the established properties: 

Corollary 7.1.  At most two 
 
2-snakes  Tα   and  T ′α  

  pass through each point  (
 
x0, y0 

)
such that  x0 ∈ [–  1, 1]  and   ˜ )g x1 0(  < y0 < ˜ )g x2 0( ;  the branch of one snake passing

through the point  (
 
x0, y0 

)  is increasing and the branch of the second snake is decreas-

ing. 

If the system of functions  { }ϕ j j
n

= 0  is twice differentiable, then at most one 2-snake

passes through each point  (
 
x0, y0 

)  such that  x
 0  ∈ (

 
–

 
1, 1

 
)  and  y 0  = ˜ )g x1 0(   or

y0 = ˜ )g x2 0( . 

4.  Exactly two  2-snakes  Tα   pass through each point  (
 
x0, y0 

)  such that 

x0 ∈ [– 1, 1]    and    ˜ )g x1 0(  < y0 < ˜ )g x2 0( ,

and at least one  2-snake  Tα   passes through each point  (
 
x

 0, y0 
)  such that 
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x0 ∈ (
 
–

 
1, 1

 
)     and     y0 = ˜ )g xν( 0 ,      ν = 1    or    ν = 2.

Moreover, if the system of functions  { }ϕ j j
n

= 0  is twice differentiable, then the indic-
ated 2-snake is unique. 

Proof.  Since, in view of relation (7.30), 

T–2 
(

 
x

 
)  : =  lim

α→0
Tα 

(
 
x

 
)  ≡  T2 

(
 
x

 
)

 
,

the family of  2-snakes  Tα 
( x )  can be continued in  α  onto the entire axis according to the

rule 

Tα + 4 
(

 
x

 
)  ≡  Tα 

(
 
x

 
)

 
. (7.31)

By the theorem on continuous dependence of the polynomial of the best approxima-

tion on the approximated function, the obtained family  T  =  { Tα },  –
 
∞ < α < ∞,  is con-

tinuous in  α  in a sense that, for any  α
 0 ∈ (

 
–

 
∞, ∞

 
), 

lim
α α→ 0

T Tα α0 11
−

−[ , ]
  =  0. (7.32)

First, we prove the second part of property 4.
Assume that, e.g., 

y0  =  ˜ )g x2 0(   =  sup
*An−1

 Tn B A xn
0

1 0; ;*
−( )  =  sup

α
Tα 

(
 
x0 

)  =  lim
ν→∞

Tαν 
(

 
x0 

)
 
,

αν ∈ (
 
–

 
2, 2

 
]

 
.

We now select a subsequence  {
 
ανj 

}  of the sequence  {
 
αν 

}  convergent to a certain
number  α0 .  Then, according to relation (7.32), we get 

lim
ν→∞

Tαν 
(

 
x

 
)  =  T xα0

( )

uniformly in all  x,  i.e., 

lim
ν→∞

T x T xα αν
( ) − ( )

[− ]0 1 1,
  =  0,    T xα0 0( )  =  y0.
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Hence,  Tα0
  is just the required polynomial.  The uniqueness in the case of a twice

differentiable system of functions follows from Corollary 7.1. 

We now consider the case where  x0 ∈ [
 
–

 
1, 1

 
]  and  ˜ )g x1 0(  < y0 < ˜ )g x2 0( .  By  α1

we denote a real number for which 

Tα1 
(

 
x

 0 
)  =  ˜ )g x1 0( .

Then, according to relation (7.30), for  α2  =  α1 + 2,  we have 

Tα2 
(

 
x

 0 
)  =  – g1 

(
 
x0 

)  =  g2 
(

 
x0 

)
 
.

Further, we set  y = y
 
(

 
α

 
) = Tα 

(
 
x

 
)

 
.  According to property 3, as  α  changes from  α1

to  α2 ,  the points of the curves  Tα  located on  g1  and  g2  move in the same direction

and, hence, the branches of the curves  Tα  participate in the corresponding motion.  In

this motion, all branches of the curves located above the point  x0  are either all increasing

or all decreasing.  Therefore, in view of the continuity of the function  y = y
 
(α)  and prop-

erty 3 of the polynomials, we conclude that the function  y = y
 
(

 
α

 
)  homeomorphically

maps the segment  [
 
α1, α2 

]  onto a certain set of numbers from the segment  ˜ )g x1 0([ ,
˜ )g x2 0( ],  the least of which is the number  ˜ )g x1 0(   and the greatest number is  ˜ )g x2 0( .

However, in this case, it is known (see, e.g., [Dieudonne (1964), p. 97)] that this mapping

is a strictly monotonic and homeomorphic mapping of the segment  [
 
α1, α2 

]  onto the

segment  ˜ ), ˜ )g x g x1 0 2 0( ([ ].  By virtue of Corollary 7.1, this yields statement (b, 1) of The-
orem 7.5. 

�

Remark 7.3.12  The definition of the functions  g̃ν   appearing in Theorem 7.5 for  k = 2
is equivalent to the following more natural definition: 

The functions  g̃1  and  g̃2  from Theorem 7.5 can be defined by the equalities 

˜ )g x2(   =  sup
T K∈

{
 
T

 
(

 
x

 
)

 
}     and     ˜ )g x1(   =  inf

T K∈
{

 
T

 
(

 
x

 
)

 
}, (7.33)

where  K  is the set of polynomials of the form 

T
 
(

 
x

 
)  =  

k

N

=
∑

0

ck ϕk 
(

 
x

 
)

satisfying the condition  g1 
(

 
x

 
)  ≤  T

 
(

 
x

 
)  ≤  g2 

(
 
x

 
)  for all  x ∈ [

 
– 1, 1

 
].
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Proof.  We set 

sup
T K∈

{
 
T

 
(

 
x

 
)

 
}  =  g x2

* )(      and     inf
T K∈

{
 
T

 
(

 
x

 
)

 
}  =  g x1

* )( . (7.33′ )

Let us show that, e.g.,  g x2
* )(   =  ˜ )g x2( .  The inequality  ˜ )g x2(   ≤   g x2

* )(   is obvious.

We now prove that the inverse inequality  ˜ )g x2(   ≥   g x2
* )(   is also true.  Indeed, assume

the contrary, i.e., that the opposite inequality  ˜ )g x2 0(  < g x2 0
* )(   holds at a certain point

x0 ∈ [
 
– 1, 1

 
] .  Then, by virtue of (7.33), there exists a polynomial  T̃ x( )  ∈ K  such that 

T̃ x( )0   >  ˜ )g x2 0( . (7.34)

It is clear that if, for the 1-snake  T 
+

 
(

 
x

 
)  the first (or the last) point  x*  of the Cheby-

shev alternation is a  (+)-point and, hence,  T 
+

 
(

 
x*

 
) = g

 2 
(

 
x*

 
)

 
,  then, for any  x ∈ [

 
–

 
1, x*

 
]

(or for any  x ∈ [
 
x*, 1

 
]),  we have 

g x2
* )(   =  T 

+
 
(

 
x

 
)  =  ˜ )g x2( .

Indeed, the assumption that, e.g., for  x′ ∈ [
 
–

 
1, x*

 
),  we have  g x2

* )( ′  > T 
+

 
( x′

 
)  or

˜ )g x2( ′  > T 
+

 
(

 
x′

 
)  implies the existence of a  T-polynomial  ˜̃T   such that  ˜̃T xn( ′ )  > T 

+
 
(

 
x′

 
),

which is impossible because, in this case, the polynomial  ˜̃T   must cross the increasing

semibranch and  n  branches of the polynomial  T 
+  (1-snake) and, consequently, the dif-

ference  T 
+ – ˜̃T   must have at least  n = 1  zeros on  [

 
–

 
1, 1

 
],  which is impossible.  The-

refore, the point  x0  must belong to an interval  (
 
α, β

 
) � (

 
–

 
1, 1

 
)  with the following

properties:

(i) ˜ )g x2(  < g2 
(

 
x

 
)

 
,

(ii) ˜ )g2(α  = g2 
(

 
α

 
)   and   ˜ )g2(β  = g2 

(
 
β

 
)

 
.

However, in this case, by virtue of the continuity of  2-snakes  Tα   with respect to  α
in  C  and property 2 (or 1) of the polynomials  Tα   for some  α*,  the polynomial  (2-
snake)  Tα*   possesses the following properties: 

(a)   ∀  x ∈ α β,( )  � (
 
α, β

 
) :   T xα0

* ( )  ≤ ˜ )g x2(  < g2 
( x

 
);

(b)   Tα α* ( ) = g2( )α ,  Tα β* ( ) = g2( )β .
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According to (7.26), this yields the inequality  T̃ x( )0  > T xα0 0* ( ),  which is impossible

because, in this case, the difference  T̃  – Tα*   must have at least  n + 1  zeros on  [–
 
1, 1]

 
. 

�

The presented definition enables us to reformulate Theorem 7.5 as follows: 

Theorem 7.5.  Let  g1 
( x )  and  g2 

( x ) ≥ g1 
( x )  be two continuous functions given on the

segment  [–  
1, 1]  and let  { }ϕ j j

n
= 0   be a  T-system given on the same segment.  If at

least one polynomial  Tn 
(

 
c; ⋅ )  such that  g1 

(
 
x

 
) < Tn 

(
 
c; x

 
) < g2 

(
 
x

 
)  passes through the

point  (
 
x0, y0 

)
 
  such that  x0 ∈ [

 
–

 
1, 1

 
]  and  g 1  

(
 
x0 

) < y0 < g2 
(

 
x0 

),  then there are

exactly two 2-snakes passing through the point  (
 
x0, y0 

)
 
.  Moreover, if  x0 ∈ (

 
–

 
1, 1

 
)

and  y0 = g1 
(

 
x0 

)  or  y0 = g2 
(

 
x0 

)  and a 2-snake exists, then this snake is unique pro-

vided that all functions  ϕj  and the functions  gν ,  ν = 1, 2,  are twice differentiable. 

Remarks to Chapter 1

1.  In the case of real variables, this theorem was established by Haar.  Kolmogorov gen-
eralized this theorem to the case of complex variables.  The proof presented in our book
is, for the most part, taken from [Akhiezer (1965), p. 80]. 

2.  The scheme of the presented proof is taken from the course of lectures by S. Nikol’skii
[S. Nikol’skii (1947), p. 47]. 

3.  This theorem is correlated with a much more general Theorem 7.5 proved by Dzyadyk
in analyzing the applied problems connected with the Dirichlet problem for a circle, ap-
proximate conformal mappings of domains in  C,  estimation of the absolute value of the

derivative of a polynomial, etc. (in this connection, the reader is referred to the works
[Dzyadyk (1973)] and [L. Shevchuk (1974)].  Since, at that time, the works by Karlin and
Studden were unavailable for the authors, the snakes appear in cited works under the

name of  ϕ-extremal polynomials (much less expressive).  For the presentation of the re-
sults obtained by Karlin and Studden, the reader is referred to the monograph [M. Krein
and Nudel’man (1973), pp. 492–504].  Note that the theory of the above-mentioned ap-
plied problems seems to be quite complicated and incomplete and, therefore, is not in-
cluded in our monograph. 

4.  Chebyshev (1859) posed and solved the following problem:

Chebyshev problem.  Let  Pl   be an arbitrary polynomial positive on  [– 1, 1].  For any

n ≥ l,  it is necessary to find a polynomial  Pn
*   of degree  n  with coefficient of the term
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xn  equal to one and such that

P

P
n

l

*

,−[ ]1 1
  =  min

Pi

 

x P x P

P x

n n
n

l

+ + … +
( )

−

−[ ]
1

1

1 1,
,

i.e., it is necessary to find, for all  n ≥ l,  the polynomial least deviating from zero in the

uniform metric with weight  1 / Pl  
. 

Chebyshev constructed the polynomial  Pn
*  in the form of the solution of an equation

of the form 

y2 – ( x2 – 1 ) [ C ( x – x1 ) ( x – x2 ) … ( x – xn )]2  =  L2 P xl
2( ),

where  x1 , x2 , … , xn ,  C  and  L  are unknown numbers. 
Since this equation possesses several solutions from which it is necessary to choose

the required solution of the posed problem, Markov (1906) proposed a quite witty but
fairly complicated direct solution of this (and even a somewhat more general) problem:

Markov problem.  Under the Chebyshev assumption imposed on the polynomial  Pl 
(

 
x

 
),

for any  n ≥ l / 2,  it is necessary to find a polynomial  P xn
*( )  such that 

P x

P x
n

l

*

,

( )
( ) −[ ]1 1

  =  min
Pi

 

x P x P

P x

n n
n

l

+ + … +
( )

−

−[ ]
1

1

1 1,
.

In exactly the same way as in the proof of Theorem 1.2 (Chebyshev), we can show

that the polynomial  Pn
*  is the solution of the Markov problem if an only if the polynom-

ial 

˜*P xn ( )  : =  
P

P
l

n

( )
( )

1

1*  P xn
*( )

constructed by using the indicated polynomial is a snake for a couple of functions

– P xl ( )   and  P xl ( ) . 
The solution of this problem obtained by Markov is given by the formula

P xn
*( )  =  P xl ( )  cos ( ϕ 1 + ϕ 2 + ϕ 2 n ) ,

where the numbers  cos ϕk  and  sin ϕk  are given by the formulas 
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cos ϕk  =  
( + ) +

+
1 2 1

1
a x

a x
k

k

/
     and     sin ϕk  =  

( − ) −
+

1 2 1
1
a x

a x
k

k

/
,

where, in turn,  – π < ϕk ≤ π  and  ak ,  k  =  1, 2, …  , 2n,  are the numbers for which the

polynomial  Pl 
(

 
x

 
)  can be represented in the form

Pl 
(

 
x

 
)  =  c ( 1 + a1 x ) ( 1 + a2 x ) … ( 1 + a2n x ) ,     c = const.

Theorem 2.13 [Dzyadyk (1977)], in addition to the Chebyshev and Markov results,
establishes that the representation 

P xn l+ ( )*   =  c1 

k

l

k n kT x
=

+∑ ( )
0

γ  ,    n  ≥  l,    c1  =  const,

takes place for all  n  ≥  – l / 2.  The coefficients  γ k   of this representation are independent

of  n  and  Tj  ( x )  =  cos j arccos x.

5.  For an important case  ϕk ( z )  =  zk,  k  =  0, 1, … , n,  this theorem was earlier established

by Tonelli (1908) and de la Vallée Poussin (1911). 

6.  The present section is based on the work [Dzyadyk (1974c)]. 

7.  The second equality is well known.  For the first time, it was deduced by Kirchberger
(1903).  Later, it was thoroughly investigated by de la Vallée Poussin (1910), (1919).

8.  The problem of efficient construction of the polynomial of the best approximation of
fixed degree  n  was apparently posed for the first time in the monograph [de la Vallée
Poussin (1919)].  In the case where the set  � =   �N  is finite and consists of  N  points
x1 < x2 < … < xN  ,  N  ≥  n + 2,  de la Vallée Poussin suggested to consider all possible

subsystems 

  
∨

�   : =  x x xk k kn0 1 1
, , ,…{ }+

  �  �N

each of which contains  n + 2   points  xki
 ∈ �  and find, for each subsystem, the poly-

nomial  P xn
*( ) = Pn

*(  
∨

�; x )  of the best approximation of a given function  f  by using
Theorem 5.4 . 

Thus, by virtue of the fact that, for the set  �N ,  the characteristic set  E0  consists of

n + 2  points (see Remark 4.2), it is possible to conclude that, in the family of  
N

n +




2

subsets  
�

� � �N ,  the characteristic set      
�

�0  is defined as the subset for which the val-
ue of the deviation 
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max ;*

x
nf x P x

∈
( ) − ( )

�
�

0
0

�

is maximum.  Moreover, the polynomial  
    
P xn

* ;
�

�0( )  is just the required polynomial of

the best approximation for the function  f  on  �N .  Since it is possible to find the poly-
nomial of the best approximation on the sets  �N ,  we can also find (with any required

accuracy) the polynomial of the best approximation on the segment  [ a, b ]. 
By using the results obtained by de la Vallée Poussin, Remez proposed a different

very efficient procedure of transition from a subset      
�

� � [ a, b ]  of  n + 2  points to a

new “worse” subset      
�

′� .  On the basis of this procedure, he created a new very efficient
algorithm of construction of the polynomial of the best approximation and proved (see
Theorem 6.1) that the proposed algorithm is rapidly convergent. 

9.  The present section is based on the works [Dzyadyk (1971)] and [Dzyadyk (1973)]. 

10.  See Remark 3.

11.  This theorem, on the one hand, generalizes some results from the monograph [Voro-

novskaya (1963), pp. 82, 102–106, 119–126, and 158–163] obtained for  TM ( n, n  ) -sys-

tems  { }x j
j
n

= 0  under the assumption that  g xν( )  =  (
 
– 1

 
)ν  and, on the other hand, gener-

alizes Theorem 2.9 (Karlin) concerning the behavior of  1-snakes to the case  k = 2,  i.e.,
to the case where the constraints are absent.  Moreover, the polynomials appearing in this
theorem are, in fact, generalized Zolotarev polynomials. 

12.  This remark was proposed by Golub and Kovtunets. 





Chapter 2

Weierstrass theorems

In the present chapter, the reader can find the Weierstrass theorems and important results
from the theory of approximation established as a result of the analysis of these theorems.

Consider a real-valued continuous function  f  defined on a segment  [ a, b ].  Our aim
is to study whether it is possible to approximate this function by algebraic polynomials

with any required accuracy, i.e., whether, for any  ε > 0,  there exists a polynomial  P
such that the inequality 

f x P x( ) − ( )   <  ε

holds for all  x ∈ [ a, b ]. 
Similarly, we can pose the problem on the possibility of approximation of periodic

continuous functions by trigonometric polynomials. 
Both these problems are positively solved by the Weierstrass theorems. 
To prove these theorems, we first present a general procedure of construction of alge-

braic and trigonometric polynomials convenient for the approximate representation of
functions and three inequalities for the function  sin t.

1.  Let 

Kn ( x )  =  
k

n

=
∑

0

 ak xk

be a polynomial of degree  n.  Then, for any function  f  integrable on  [ a, b ],  the convo-
lution 

P ( x )  =  
a

b

∫  f ( t ) Kn ( x – t ) dt

is an algebraic polynomial of degree  ≤ n.  This follows from the fact that  Kn ( x – t )  is

clearly a polynomial of degree  n  in the variable  x  of the form 
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Kn ( x – t )  =  
ν=
∑

0

n

 cν ( t ) xν.

The coefficients of this polynomial  cν ( t )  are also polynomials (of degree not greater

than  n – ν ). 
In exactly the same way, if 

Kn ( t )  =  
k

n

=
∑

0

 ( ak cos k t + bk sin k t )

is a trigonometric polynomial of degree  n,  then, for any function  f  summable on  [ 0, 2π ] ,
the integral 

0

2π

∫  f ( u ) Kn ( t – u ) du  =  Tn ( t )

is a trigonometric polynomial of degree  ≤ n.  It is customary to say that these polynomials
are obtained with the help of polynomial kernels  Kn . 

2.  The following important inequalities are true:

sinnt   ≤  n sin t      for all    t ∈ ( – ∞, ∞  ), (0.1)

sin t  ≥  
2
π

 t     for all    t ∈ 0
2

,
π





, (0.2)

sin t  ≤  t     for all    t  ≥  0. (0.3)

The first of these inequalities can readily be proved by induction and the other two in-
equalities immediately follow from Fig. 3.  It is also well known that 

tan t  ≥  t     for all    t ∈ 0
2

, π



 . (0.4)

1. First Weierstrass theorem

Theorem 1.1 [Weierstrass (1885)].1  For any function  f  continuous on the segment

[ a, b ]  and any  ε > 0,  there exists an algebraic polynomial  P  such that

max
,x a b∈[ ]

 f x P x( ) − ( )   <  ε. (1.1)



Section 1 First Weierstrass theorem 113

0

1

y

tπ 2

y =
2
π
t

y = t

y = sin t

Fig. 3

There are many different proofs of Theorem 1.1.  We present a proof of this theorem
based on the use of the polynomial kernels  Kn   obtained for the Chebyshev polynomials
Tn  .  This proof is not simpler than the other available proofs but we want the reader to get
acquainted with the polynomials kernels  Kn  

  playing an important role in various prob-
lems of the theory of approximation. 

Proof [Dzyadyk (1958)].  Let  T 2n + 1 ( x ) = cos ( 2n + 1 ) arccos x  be a Chebyshev poly-

nomial of degree  2n + 1.  Since  T2n + 1 ( 0 ) = 0,  the polynomial T2n + 1 ( x )  can be divided

by  x.  Thus, we consider a polynomial  Kn ( x )  of degree  4 n  of the form 

Kn ( x )  =  
1 2 1 2

γ n

n x

x

cos arccos( + )





, (1.2)

where 

γn  =  
−
∫ ( + )





1

1 22 1cos arccosn x

x
dx . (1.3)

This polynomial plays the role of a kernel and possesses the following properties: 

1.   
−
∫
1

1

 Kn ( x ) dx  =  1. (1.4)

This property directly follows from equalities (1.2) and (1.3). 
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2.  Since

T2n + 1 ( – x ) =  cos ( 2n + 1 ) arccos ( – x )

=  cos ( 2n + 1 ) ( π – arccos x )  =  – cos ( 2n + 1 ) arccos x  =  – T2n + 1 ( x ),

the polynomial  T2n + 1  is odd and  Kn   is an even polynomial of degree  4 n. 

3.   γ n   >  n,    n  =  1, 2, … . (1.5)

Indeed, in view of relation (1.3), property 2, and inequalities (0.2) and (0.3), we find 

γn =  2
2 1 2

0

1 2

∫ ( + )(π − )[ ]cos / arcsinn x
x

dx

=  2
2 1

0

1 2

∫ ( + )





sin arcsinn x

x
dx   =  

0

22 1 2
2 2

π

∫ ( )( + )
( )







sin /
sin /

cos
t n

t
t dt

>  
0

2 1 22 1 2
2 2

π ( + )

∫ ( )( + )
( )







/
sin /

sin /
cos

n
t n

t
t dt   >  

0

2 1 2

2

2 2 1 2
4 1

2

π ( + )

∫ ( )( π)( + )
/

/ /
n

t n

t
dt

=  2
2 1

2 1
2

2 12

2

( + )
π

π
+

= +
π

>n
n

n
n .

It is possible to show that the exact value of  γ n   is equal to 

2 2 1
1

2 1 2 2 3 21

2 1

n
n k n kk

n k

+ + (− )
( − − )( − + )







=

−

∑ / /
.

4.  For any  δ ∈ ( 0, 1 ),  n  =  1, 2, … ,  we have 

δ

1

∫ ( )K x dxn   =  1 2 11 2

γ
δn

n x
x

dx∫ ( + )[ ]cos arccos
  ≤  1 1

1

2n
dx

x n
δ

δ∫ < . (1.6)

First, we prove the Weierstrass theorem for the case  a = – 1  and  b = 1.  The function

f  is continuously extended onto the interval  [ – 2, 2 ]  by setting 
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f ( x )  =  
f x

f x

(− ) ∈[− − ]

( ) ∈[ ]







1 2 1

1 1 2

for , ,

for , .

The function  f  is continuous and, hence, uniformly continuous on  [ – 2, 2 ].  Hence,

for any  ε > 0,  one can find  δ > 0,  0 < δ < 1,  such that the following inequality is true

for any two points  x′  and  x′′  from the interval  [ – 2, 2 ]  such that  ′ − ′′x x  < δ : 

f x f x( ′) − ( ′′)   <  
ε
2

.

For any  n  =  1, 2, … ,  we define a polynomial  Pn  of degree  ≤ 4n  by setting 

Pn ( x )  =  1
3 3

2

2

−
∫ ( ) −( )f t K

t x
dtn .

By the change of variables  ( t – x ) / 3  =  η ,  we obtain 

Pn ( x )  =  
(− − )

( − )

∫
2 3

2 3

x

x

/

/

 f ( 3η + x ) Kn ( η ) dη .

Since, by virtue of equality (1.4), 

f ( x )  =  
−
∫
1

1

 f ( x ) Kn ( η ) dη,

we conclude that, for  x ∈ [ – 1, 1 ] , 

f x P xn( ) − ( )   <  
−
∫
δ

δ

/

/

3

3

 f x f x( ) − ( + )3η Kn ( η ) dη

+  
−

−

∫ ∫+






1

3

3

1δ

δ

/

/

 f x( )  Kn ( η ) dη

+  
(− − )

− ( − )

∫ ∫+






2 3

3

3

2 3

x

x

/

/

/

/δ

δ

 f x( + )3η  Kn ( η ) dη,
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whence, by using the properties of the polynomial  Kn   and denoting the maximum abso-

lute value of the function  f   on  [ – 2, 2 ]  by  M,  we obtain 

f x P xn( ) − ( )  ≤  ε
2

1

1

−
∫ Kn ( η ) dη  +  2M 

δ / 3

1

∫ Kn ( η ) dη  +  2M 

δ / 3

1

∫ Kn ( η ) dη

  ≤  ε
δ2

4 3+ M
n

.

Further, if  n  is sufficiently large, then for all  x ∈ [ – 1, 1 ],  we can write 

f x P xn( ) − ( )   <  ε.

This proves the Weierstrass theorem in the case where  a = – 1  and  b = 1.
We now prove the theorem for arbitrary  a  and  b.  To do this, we perform the change

of variables 

x  =  a  +  
b a−

2
 ( u + 1 ), (1.7)

and, hence,

u  =  
2x a b

b a

− −
−

. (1.7′ )

This enables us to construct a function 

ϕ ( u )  =  f a
b a

u+ − ( + )[ ]2
1

continuous on  [ – 1, 1 ] .  Further, as already shown, we can find a polynomial  πn  for this
function such that 

ϕ( ) − π ( )u un   <  ε. (1.8)

Thus, we set 

Pn ( x )  =  π − −
−





n

x a b

b a

2

and, by virtue of relations (1.7) and (1.7′ ), conclude that 
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f x P xn( ) − ( )   =  ϕ( ) − π ( )u un   <  ε.

This completes the proof of the Weierstrass theorem.
�

In Section 3, we present examples of different kernels very important for what fol-
lows. 

2.  Stone’s theorem

In the present section, with an aim to generalize the Weierstrass theorem to other impor-
tant cases and, in particular, to the cases of approximation of periodic functions by trigo-
nometric polynomials and approximation of functions given on bounded sets in the space

R  
n,  n  =  1, 2, … ,  we prove a very general Stone’s theorem. 

2.1.  Stone’s theorem

We introduce the following definitions: 

1.  A set  A  of functions defined on a nonempty set  E  is called an algebra if this set
is closed both with respect to the multiplication by all possible real (or complex) numbers
and with respect to the summation and multiplication of the functions.  This means that if
A  is an algebra and  f  and  g  are elements of this algebra, then 

c f ∈ A,     f + g ∈ A,     and     f g ∈ A, (2.1)

where  c  is an arbitrary constant.  In what follows, all functions of the algebra  A  are as-
sumed to be continuous. 

2.  We say that an algebra  A  defined on  E  separates points of the set  E   if, for

any pair of different points  x1 , x2 ∈ E,  there exists at least one function  f ∈ A  such that 

f ( x1 )  ≠  f ( x2 ). (2.2)

3.  We say that an algebra  A  defined on  E  does not vanish at any point of the set

E  if, for any point  x0 ∈ E,  there exists at least one function  h ∈ A  such that 

h ( x0 )  ≠  0. (2.3)
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An algebra  A  defined on a set  E  is called Stone’s algebra if it separates the points
and does not vanish at any point of the set  E.

Examples of Stone’s algebras

1.  The set of all possible trigonometric polynomials  Tn   on a half interval  [ a, b )
such that  b – a  ≤  2π.  In the case where  b – a  >  2π,  the algebra of polynomials  Tn    is

not a Stone’s algebra because it does not separate the points of the half interval  [ a, b ):  In
this case, we always have  T ( a )  =  T ( a + 2π  ),  where  a, a + 2π ∈ [ a, b ). 

2.  The set of all possible algebraic polynomials given on a bounded set in the space

R 
n,  n  =  1, 2, … . 

3.  The set of all possible algebraic polynomials of the form 

a1 x3 + a2 
x6 + … + an 

x3n,

where  n  is an arbitrary positive integer, defined on a segment  [ a, 1 ] ,  a ∈ ( 0, 1 ). 

Theorem 2.1 [Stone (1937)].  If an algebra  A  defined on a compact set  K  is Stone’s
algebra, then the set of functions from  A  is everywhere dense in the set  C   of all

functions continuous on  K ,  so that  A  = C.  Therefore, any function  F  continuous
on  K  can be arbitrarily well approximated by elements of the algebra  A. 

Stone’s theorem is proved by using geometric reasoning similar to the proof of the
Weierstrass theorem (Theorem 1.1) proposed by Lebesgue (1898).  More precisely, the
validity of Theorem 2.1 immediately follows from Lemmas 2.1, 2.3, and 2.4 established

in what follows.  Lemma 2.2 in required to prove Lemmas 2.3 and 2.4.2 

Lemma 2.1 (on the approximation of envelopes for the family of functions from  A ) .  If
a finite number of functions  f1 ,  f2 , … ,  fn  defined on a compact set  K  belongs to  A ,

then the functions

M  =  max
i

 { fi }     and     m  =  min
i

 { fi },   i  =  1, 2, … , n, (2.4)

called the upper and lower envelopes of the functions  fi  ,  respectively, can be arbitra-
rily exactly uniformly approximated by functions from the algebra  A  in the set  K.

We split the proof of the lemma into three stages. 
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1.  First, we prove the validity of the lemma in the following special case:  If  f  is an
arbitrary function from the algebra  A,  then the function 

M  =  max { f,  – f }  =  f (2.5)

can be approximated arbitrarily well by functions from the algebra  A  uniformly on  K. 

Indeed, we fix a number  ε > 0  and set  max
x K∈

 f x( )   =  a.  Further, by using the Wei-

erstrass theorem 1.1, for a function  ⋅   continuous on the segment  [ – a, a ],  we find an
algebraic polynomial  PN    of the form 

PN ( y )  =  c yi
i

i

N

=
∑

0

such that 

max
− ≤ ≤

− ( ) ≤
a y a

Ny P y
ε
2

.

Since  c0 = PN ( 0 ),  for all  y ∈ [ – a, a ],   we get

y c y
i

N

i
i−

=
∑

1

  =  y P y PN N− ( ) + ( )0   <  ε

and, hence, for  x ∈ K, 

f x c f x
i

N

i
i( ) − ( )

=
∑ [ ]

1

  <  ε.

Since the sum  
i

N
i

ic f=∑ [ ]
1

  does not contain the term  c0,  which may not belong to

A  and  A  is an algebra, the element  
i

N
i

ic f=∑ [ ]
1

 ∈ A.  Thus, Lemma 2.1 is proved in the

first case.

2.  Since 

max { f1 , f2 }  =  
f f f f1 2 1 2

2 2
+ + −

,
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min { f1 , f2 }  =  
f f f f1 2 1 2

2 2
+ − −

,

in view of the first case the assumption that  f1 ,  f2 ∈ A  implies that the function 

f f f f1 2 1 2

2 2 2
− = −

and, hence, the functions  max { f1,  f2 }  and  min { f1,  f2 }  can be approximated arbi-

trarily well by the elements of  A  uniformly on  K.  This proves Lemma 2.1 for the case
of two functions  f1  and  f2 . 

3.  In the case of an arbitrary finite number  n  of functions, Lemma 2.1 is proved by
induction. 

Lemma 2.2 (on the interpolation property of algebras).  If an algebra  A  defined on  K
separates the points of  K  and does not vanish at any point of  K,  then, for any differ-
ent points  x1 , x2 ∈ K   and any numbers  c1  and   c2 ,  one can find a function  l ∈ A

such that

l ( x1 )  =  c1     and     l ( x2 )  =  c2 . (2.6)

Proof.  Since the algebra  A  separates the points of  K,  in  A,  there exists a function  g

such that  g ( x1 )  ≠  g ( x2 ).  On the other hand, since the algebra  A  does not vanish on  K,

there exists a function  h  such that  h ( x1 ) ≠ 0.  Therefore, the function 

f1  : =  
h

h x

g x g

g x g x( )
( ) −

( ) − ( )1

2

2 1
 ∈ A (2.7)

and, clearly, is such that  f1 ( x1 ) = 1  and  f1 ( x2 ) = 0. 

Similarly, the algebra  A  contains a function  f2  such that  f2 ( x1 ) = 0  and  f2 ( x2 ) = 1.
However, this means that the function 

l  : =  c1 f1  +  c2 f2 (2.8)

also belongs to the algebra  A  and, at the same time, satisfies conditions (2.6). 
Lemma 2.2 is thus proved.

Lemma 2.3 (on the existence of dominating envelopes with junction point).  Let  F  be

an arbitrary function continuous on a compact set  K .  Then, for any point  x 0  ∈ K
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and any number  ε > 0,  one can find finitely many functions  f1 ,  f2 , … ,  fr ∈ A,  whose

upper envelope  M
x0   possesses the following properties: 

Mx0 ( x0
 )  =  F ( x0

 )     and     Mx0 ( x )  >  F ( x )  –  ε. (2.9)

The function  M
x0   is called an envelope dominating over  F   with accuracy  ε

and junction point  x0.

Proof.  According to Lemma 2.2, for the point  x0 ( ∈ K )  and any point  y ∈ K  other than

x0,  one can construct a function  ly  such that 

ly ( x0
 )  =  F ( x0

 )      and     ly ( y )  =  F ( y ). (2.10)

In view of the continuity of the function  ly,  there exists an open set  Gy  containing

the point  y  such that 

ly ( x )  >  F ( x )  –  ε     for all   x ∈ Gy ∩ K. (2.11)

Since  K  is a compact set, there are finitely many points  y1 ,  y2 , … , yr  such that the

corresponding open sets  Gy1
 ,  Gy2

 , … ,  Gyr
  cover  K :  K � Gy1

 ∪ … ∪ Gyr
 .  Therefore, if

we set  fi  =  lyi
 ,  then the upper envelope  M

x0   of the functions  f1  =  ly1
 , … ,  fr  =  lyr

  sat-

isfies all conditions of Lemma 2.3 because, by virtue of relations (2.10), 

Mx0 ( x0
 )  =  max { f1 ( x0

 ), … ,  fr ( x0
 ) }  =  max { ly

1
 ( x0

 ), … , ly
r

 ( x0
 ) }  =  F ( x0

 ),

On the other hand, any point  x ∈ K  belongs to a certain  Gyi
  and, hence, 

Mx0 ( x )  =  max { ly
1

 ( x ), … , ly
r

 ( x ) }  ≥  ly
i
 ( x )  >  F ( x )  –  ε

by virtue of inequality (2.11).  Lemma 2.3 is proved. 

Lemma 2.4 (on the approximation of continuous functions by envelopes).  Let  F  be an

arbitrary function continuous on a compact set  K.  Then, for any  ε > 0,  there exist fi-
nitely many envelopes  M x1

 , Mx2
 , … , Mxl

  dominating over  F   with junction points

xi  ;  moreover, the lower envelope  m  in this family satisfies the inequalities

F ( x )  –  ε  <  m ( x )  <  F ( x )  +  ε     for all   x ∈ K. (2.12)
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Proof.  Every function  M
x0   is clearly continuous and satisfies the equality in (2.9).

Hence, there exists an open set  D
x0   containing the point  x0  and such that 

Mx0 ( x )  <  F ( x )  +  ε    for all    x ∈ Dx0 ∩ K. (2.13)

Since  K  is a compact set, there exists a finite set of points  x1 , x2 , … , xl  such that

the corresponding open sets  Dx1
 , Dx2

 , … , Dxl
  cover  K :  K � Dx1

 ∪ Dx2
 ∪ … ∪ Dxl

 .  Let

us show that, in this case, the function 

m  =  min { Mx1
 , … , Mxl

 }

satisfies inequalities (2.12). 
Indeed, on the one hand, each function  Mxi

   satisfies inequality (2.9) and, thus, 

m ( x )  >  F ( x )  –  ε    for all    x ∈ K. (2.14)

On the other hand, every point  x ∈ K  belongs to a certain set  Dxi
  and, hence, by

virtue of inequality (2.13), 

m ( x )  =  min { Mx1
 ( x ), … , Mxl

 ( x ) }  ≤  Mxi
 ( x )  <  F ( x ) + ε. (2.15)

Inequalities (2.14) and (2.15) imply the validity of Lemma 2.4. 

Proof of Stone’s theorem.  Since each envelope  Mxi
  dominating over  F  is an upper

envelope of finitely many functions from  A,  by virtue of Lemma 2.1, each of these func-
tions can be arbitrarily exactly approximated by a certain function  f j   from  A.  However,
on the other hand, 

m  =  min { Mx1
 , Mx2

 , … , Mxl
  }

and, hence,  m  can be arbitrarily exactly approximated by envelopes  m̃   of the form

m̃ x( )  =  min { f1 ,  f2 , … ,  fl },  where  f j  ∈ A,  and consequently, in view of Lemma 2.1,

by functions  g  from  A.  Therefore, in view of (2.12), there exists a function  g ∈ A  such

that  F ( x ) – ε  <  g ( x )  <  F ( x ) + ε  or, in other words, such that  F x g x( ) − ( )   <  ε,  x ∈ K.
The proof of Stone’s theorem is thus completed. 

�
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2.2.  Corollaries of Stone’s theorem

Theorem 2.2 (first Weierstrass theorem in  R  
k ).  Let  K  be an arbitrary closed bounded

set in  R  
k.  Then, for any function  F  continuous on  K   and any  ε > 0,  one can find

a polynomial  Pn ,  where  n   =  ( n1 , n2 , … , nk )  are nonnegative integers, of the form

P xn ( )  =  Pn
1
, n

2
, … , n

k
 ( x1 , x2 , … , xk )  =  

j

n

j

n

j j j
j

k
j

j

n

c x x
k

k

k

k

1

1

2

2

1 2
1

0 0
1

0= =
…

=
∑ ∑ ∑… …, , , , (2.16)

where  x  =  ( x1 , x2 , … , xk )  is a point of  R 
k,  such that the inequality 

F x P xn( ) − ( )   <  ε (2.17)

holds for all  x ∈ K. 

For the sake of simplicity, the next theorem is formulated for  k = 2. 

Theorem 2.3 (second Weierstrass theorem in  R  
k ).  For any function  F   2π-periodic in

each variable  x j ,  j  =  1, 2,  and continuous in the entire space  R  
2  and any  ε > 0,

there exists a trigonometric polynomial  Tn ,  n  = ( n1, n2 ),  of the form 

T xn ( ) =  Tn1, n2
 ( x1 , x2 ) 

=  
j

n

j

n

1

1

2

2

0 0= =
∑ ∑  [ aj

1
, j

2 
cos j1 

x
 
 cos j2 y  +  bj

1
, j

2 
cos j1 

x
 
 sin j2 y

+  cj
1
, j

2
 sin j1 

x
 
 cos j2 

y  +  dj
1
, j

2
 sin j1 

x
 
 sin j2 

y] (2.18)

such that the inequality 

F x T xn( ) − ( )   <  ε (2.19)

holds for all  x  =  ( x1 , x2 ) ∈ R2. 

Theorem 2.4.  For any function  F  continuous on the entire real axis and such that the
following finite limits exist and are equal:
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– ∞  <  lim
x→ − ∞

 F ( x )  =  lim
x→∞

 F ( x )  <  ∞ (2.20)

and any  ε > 0,  there exists a rational polynomial  Rn  of the form 

Rn ( x )  =  
a a x a x

b b x b x
n

n

n
n

0 1

0 1

+ + … +
+ + … +

(2.21)

such that the inequality

F x R xn( ) − ( )   <  ε (2.22)

holds for all  x ∈ ( – ∞, ∞  ). 

Proofs of Theorems 2.2 –2. 4

1.  The validity of Theorem 2.2 follows from the facts that, first, any closed bounded

set  K  in a finite-dimensional space  R  
k  is compact and, second, the set of polynomials

Pn   of the form (2.16) is a Stone’s algebra on  K. 

2.  Since the set of functions  2π-periodic in each variable and continuous in the entire

space  R 
2  can be regarded as the set of continuous functions given on a torus and the to-

rus is a compact set and, moreover, the set of polynomials of the form (2.18) is a Stone’s
algebra on the torus, Theorem 2.3 also follows Stone’s theorem. 

3.  The validity of Theorem 2.4 follows from the facts that, first, the set of functions
continuous on the entire real axis and satisfying condition (2.20) is equivalent to the set of

functions continuous, e.g., on the circle  C :  ρ = 1,  ϕ ∈ [ – π, π  ],  i.e., on a compact set,
and second, the set of rational polynomials of the form (2.21) regarded on the circle  C

[by the change of variables  x  =  tan ( ϕ / 2 ),  ϕ  =  2 arctan x ]  is clearly a Stone’s algebra. 

3. Examples of polynomial kernels

In the present section, we consider examples of different polynomial kernels  Kn   defined

on a symmetric interval  [ – a, a ]  and establish their most important properties, including,
first of all, the following properties, which are of especial interest for our presentation: 

(a)  normalization of the kernel, i.e., the fact that 
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1
a

a

a

−
∫  Kn ( x ) dx  =  1.

(b)  Lebesgue constants of the kernels  Kn ( x ),  i.e., the quantities 

L ( Kn )  : =  
1
a

a

a

−
∫  K xn( )  dx.

A sequence of kernels  {Kn ( x ) }  is called  δ-shaped if the following conditions are

satisfied for any  c ∈ ( 0, a ): 

lim
n

c

c

a→∞
−
∫1

 Kn ( x ) dx  =  1,

lim
, \ ,

n
a a c c

→∞
[− ] [− ]

∫ K xn( )  dx  =  0, (3.1)

L ( Kn )  <  A  =  const.

In addition, in all cases, we indicate whether the analyzed kernel  Kn    is even, nonne-
gative, etc.

3.1.  Periodic kernels

The Dirichlet-, Fejér-, and Jackson-type kernels prove to be especially important among
trigonometric polynomial kernels. 

1. Dirichlet kernels. A function 

Dn ( t )  =  
sin

sin

2 1
2

2
2

n
t

t

+

(3.2)

is called the Dirichlet kernel of order  n. 
Let us show that this kernel is a trigonometric polynomial of the degree  n  and, in ad-

dition, 
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Dn ( t )  =  
1
2

  +  cos t  +  cos 2t  + … +  cos nt. (3.2′ )

Indeed, 

1
2

 + cos t + cos 2t + … + cos nt 

=  
sin sin cos sin cos

sin

t t t t nt

t
2

2
2

2
2

2
2

+ + … +

=  
sin sin sin sin sin

sin

t t t n t n t

t
2

3
2 2

2 1
2

2 1
2

2
2

+ −



 + … + ( + ) − ( − )





=  
sin

sin

( + )2 1
2

2
2

n t

t   =  Dn ( t ).

This kernel possesses the following properties: 

(a)   Dn ( t )  is an even trigonometric polynomial of degree  n; 

(b)   1
π

− π

π

∫ Dn ( t ) dt  =  1;

(c)   Ln  : =  L ( Dn )  =  1
π

− π

π

∫ D tn( )  dt  =  4
2π

 ln n  +  Rn 
,     n  =  1, 2, … , (3.3)

where 

Rn   ≤  3. (3.3′ )

Properties (a) and (b) are obvious.  We prove property (c) for  n > 1  [for  n = 1,  this

property readily follows from (3.2′ )].  Since 
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sin

sin

sin

sin

cos

cos

( + )

= +

( + )2 1
2

2
2

2
2

4 1
4

2
4

n t

t
nt

t

n t

t ,

we conclude that 

Ln  =  2
2 1

2

2
2

2

2
2

0 0
1π

( + )

=
π

+
π π

∫ ∫
sin

sin

sin

sin

n t

t dt
nt

t dt r ,

where, by virtue of the fact that  cos t
4

1
2

>   for all  t ∈ [ 0, π ],  we have 

r1  ≤  1 1
4

1
4

0
π ( )

+( )π

∫ cos
cos

/t
n t dt

<  2 1
4

2 2 2 2
1 4

0
π

+( ) =
π

+
+

π

∫ cos /
/

n t dt
n
n

  <  
3
π

.

Further, we have 

sin

sin

sin sin sin

sin

nt
t

nt
t

nt t t

t t2
2

2
2

2
2

= +
−





.

Thus, in view of the fact that, by virtue of (0.4), 

0 1

2
2

1 1

2
2

1

4
4

1
4 4

1
4

< − < − < 



 <

sin sin tan
tant t t t

t

for all  t ∈ ( 0, π ),  we find 

Ln  =  2

0
π

π

∫ sin nt
t

dt   +  r1  +  r2 ,

where 
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r2   ≤  2
2

2

2
2

2 1
4

1

0 0
π

−





<
π

=
π

π π

∫ ∫
sin sin

sin
sin

nt t t

t t dt nt dt .

For the integral  
0

π
∫ sin nt

t
dt ,  we get 

0 0

1 1π

=

−

π

( + )π

∫ ∑ ∫=sin sin

/

/
nt

t
dt

nt
t

dt
k

n

k n

k n

≤  
k

n

k n

k n

k

n
n

k
nt dt

t
t

dt
k

t
t

dt
=

−

π

( + )π π

=

− π

∑ ∫ ∫ ∑ ∫π
+ =

π
+

1

1 1

0 1

1

0

2 1sin
sin sin

/

/

and, similarly, 

0 0

1 1

11
2 1

π

=

−

π

( + )π

=
∫ ∑ ∫ ∑≥

( + )π
=

π
sin

sin
/

/
nt

t
dt n

k
nt dt

kk

n

k n

k n

k

n
.

Thus, 

Ln  =  4 1
2

1

1

π =

−

∑
k

n

k
  +  r1  +  r2  +  r3 ,

where 

r3   ≤  2 2
2

2 2 2
2

4

0 0 0
π

=
π

<
π

=
π

π π π

∫ ∫ ∫sin sin cos
cos

t
t

dt

t t

t
dt t dt .

Since

ln n  <  
k

n

k=

−

∑
1

1
1      and     ln n  >  

k

n

k=
∑

2

1 ,

we have 

0  <  
k

n

k
n

=
∑ −



1

1 ln   <  1.
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Therefore, 

Ln  =  4
2π

+ln n Rn ,

where 

Rn   ≤  r1  + r2  + r3  + 4 1
2

1

1

π
−





=

−

∑
k

n

k
nln   <  

3
π

 + 
1 4 4

2π
+

π
+

π
  <  3.

�

Remark 3.1.  The following result is closely related to inequality (3.3): 

It is easy to see that the polynomial  Pn ( f ; ⋅ )  of degree  n  interpolating a continuous

function  f  on the segment  [ – 1, 1 ]  at the zeros  xk = cos θk ,  θk  : =  ( 2k – 1 ) 
π
2n

,  of the

Chebyshev polynomial  Tn   has the form 

Pn ( f ; x )  =  
k

n
k

n k

n

k

f x

T

T x

x x=
∑ ( )

′( )
( )

−1 θ
  =  

1
1

1

1

n
f x

n

k

n
k

k
k

k
=

−∑ (− ) ( )
−

cos
cos cos

sin
θ

θ θ
θ ,

where  x  : =  cos θ,  and the norm  Λn  of the polynomial operator  Tn   is equal to 

Λn  =  
1

0 1n
n

k

n

k
kmax

cos
cos cos

sin
≤ ≤ π =

∑ −θ

θ
θ θ

θ .

Improving the results obtained by Bernstein (1931) and Erdős and Turan (1961), Iva-
nov (1978) established the equalities 

Λn  =  
2
π

 ln n  +  1  –  θn ,    0  ≤  θn  <  
1
4

,     n  =  1, 2, … .

Remark 3.2.  We now present (without proof) the following general theorem obtained by
Nikolaev (1948) and Lozinskii and Kharshiladze (see [Natanson (1949), pp. 642 – 676]
and [Korovkin (1959), pp., 144–150]): 

Theorem (Nikolaev–Lozinskii–Kharshiladze).  If, for some natural  n,  a linear poly-

nomial operator  Un ( f ; x )  mapping the space of  2 π -periodic continuous functions

onto the space of trigonometric polynomials of degree  n  preserves all  trigonometric
polynomials  Tn   of degree n  in a sense that  U n ( Tn ; x ) = Tn ( x ),  then the norm  A n

of the operator  Un  (Lebesgue constant) satisfies the inequality 
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Λn  ≥  
1

22
 ln n.

Remark 3.3.  For a continuous  2π-periodic function  f,  by  Tn
*   and  En ( f )  we denote the

polynomial and value of its best approximation of degree  n,  n ≥ 1,  respectively.  By

Sn ( f; t )   we denote a partial sum of the Fourier series.  Thus, by virtue of the equalities 

Sn ( f ; t )  =  
1
π

− π

π

∫  f ( t – u ) Dn ( u ) du     and     S T t T tn n n( ) ≡ ( )* *; ,

we obtain 

f t S f tn( ) − ( );  =  f t T t S f T tn n n( ) − ( ) − ( − )* *;  

≤  f t T tn( ) − ( )*  + 
1
π

− π

π

∫ f t u T t un( − ) − ( − )*  D un( )  du 

 ≤  En ( f ) + En ( f ) Ln.

Hence, the following theorem is true: 

Theorem 3.1 [Lebesgue (1909)].  For any  2π-periodic function  f  continuous on the

entire axis, the partial sums  Sn ( f ; t )  of its Fourier series approximate this function so

that the following inequality holds for any natural  n:

f t S f tn( ) − ( );   ≤  ( 1 + Ln ) En ( f )  ≤  4 4
2+

π




ln n  En ( f ), (3.4)

where  Ln  are constants specified by relations (3.3).

As follows from this inequality, the partial sums of the Fourier series of a continuous

2π-periodic function  f  deviate from this function, in fact, not greater than the polynom-

ials  T tn
* ( )  of its best uniform approximation (at most by a factor of  ln n). 

By virtue of the equality 

Sn ( f ; t )  =  
1
π

− π

π

∫  f ( t – u ) Dn ( u ) du,



Section 3 Examples of polynomial kernels 131

the Lebesgue constants 

Ln  =  L Dn( )

given by relations (3.3), where  Dn ( t )  are the Dirichlet kernels, are clearly equal to the
norms of the operators  Sn .

In what follows, we often encounter Lebesgue constants for the other types of poly-
nomial kernels. 

Note that, as a result of the change of variables  x  =  sin t
2

,  we get 

T x

x
n x

x
n2 1 2 1 2+ ( )

= ( + )(π − )cos arcsin/

=  (− ) ( + ) = (− )

( + )

1
2 1

1

2 1
2

2

n nn x
x

n t

t
sin arcsin sin

sin
.

Thus, the Dirichlet kernels are expressed via the Chebyshev polynomials  T2n + 1 ( x )  =

cos ( 2n + 1 ) arccos x  by the following identities: 

Dn ( t )  =  (− )
( )+1

2
2 1n nT x

x
,     x  =  sin 

t

2
. (3.5)

2. Fejér kernels.  A function 

Fn ( t )  =  
sin

sin

2

2

2

2
2

nt

n t (3.6)

is called the Fejér kernel of order  n  (1904). 
The Fejér kernel  Fn   is the arithmetic mean of the first  n  Dirichlet kernels and,

hence, a trigonometric polynomial of degree  n – 1.  Thus, we have 

Fn ( t )  =  
D t D t D t

n
n0 1 1( ) + ( ) + … + ( )− , (3.6′ )

Fn ( t )  = 1
2

1 1 1 2 2 1 1+ −



 + −



 + … + ( − )

n
t

n
t

n
n tcos cos cos , (3.6′′ )

where  Dk ( t )  are the Dirichlet kernels. 
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Indeed, on the one hand, according to (3.2), we find 

1 2
3
2

2 1
2

2
2

0

1

n
D t

t t n t

n t
k

n

k
=

−

∑ ( ) =
+ + … + ( − )

sin sin sin

sin

=  
( − ) + ( − ) + … + ( − ) −[ ]1 2 1

4
2

2

cos cos cos cos cos

sin

t t t n t nt

n t

=  
1

4
2

2
2

4
2

2

2
2

2

2

2

2

2

− = =cos

sin

sin

sin

sin

sin

nt

n t

nt

n t

nt

n t   =  Fn ( t ).

On the other hand, according to (3.2′ ), we can write 

1 1 2 1 2 1 2 1

0

1

n
D t

t t n t
nk

n

k
=

−

∑ ( ) = + ( + ) + … + + + … + ( − )[ ]/ / /cos cos cos

=  
1
2

1
1

1
2

2
1

1+ −



 + −



 + … + ( − )

n
t

n
t

n
n tcos cos cos .

This kernel possesses the following important properties: 

(i) Fn ( t )  is an even nonnegative trigonometric polynomial of degree  n – 1; 

(ii) 1
π

( )
− π

π

∫ F t dtn   =  1; (3.7)

(iii) for any  δ ∈ ( 0, π ),

δ
δ

π

∫ ( ) <F t dt
nn
2

. (3.8)

Properties (i) and (ii) follow from equalities (3.6) and (3.6′ ).  In order to prove (iii), it
suffices to take into account inequality (0.4): 

δ δ δ

δ
δ

π π π

∫ ∫ ∫( ) = < = <F t dt
n

nt

t dt
n

dt
t n nn

1
2

2

2

1
2

2

1
2

2
2

2 2

sin

sin sin
cot .
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The Fejér kernels are expressed via the Chebyshev polynomials by the formula

Fn ( t )  =  
1 1

4
2

2
− (− ) ( )n

nT x

nx
,     x  =  sin 

t

2
.

Indeed, 

Fn ( t )  =  
sin

sin

sin arccos2

2

2

2
2

2
2

2
2
4

nt

n t

n x

nx
=

−





π

=  
1 2

2
4

1 1

42
2

2

− −





= − (− ) ( )cos arccosn x

nx

T x

nx

n
n

π

.

Moreover, the kernels  Kn ( x )  [see (1.2)] are expressed via the Fejér kernels by the

formula

Kn ( x )  =  1
2 1

2
2

2γ

π

n

n x

x

cos arcsin

sin arcsin

( + ) −











=  1 2 12

2 2 1γ
γ

n
n n

n x

x
F t

sin arcsin

sin arcsin
˜( + ) = ( )+ , (3.9)

where  γ̃ n   =  
4 2n

n

+
γ

  and  t = 2 arcsin x.  Therefore,  cos t  =  1 – 2x2. 

We now set    
�
F xn2 1+ ( ) : = Kn ( x / 2 ).  This yields 

�
F x

n
F x

n
n

n2 1 2 1

24 2
1

2+ +( ) = + −









γ

arccos ,     x ∈ [ – 2, 2 ]. (3.9′ )

3. De la Vallée Poussin kernels (1919).  For any nonnegative integers  m   and  n  ( n > m ),
the de la Vallée Poussin kernel is defined as the arithmetic mean of the Dirichlet kernels
of orders from  m  to  n – 1 ,  i.e., as the following trigonometric polynomial: 

V t
n mm

n( ) =
−
1

 { Dm ( t ) + Dm + 1 ( t ) + … + Dn – 1 ( t ) }. (3.10)

Since  Dm + k ( t )  =  Dm ( t ) + cos ( m + 1 ) t + … + cos ( m + k ) t,  we get 
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V t D t
n

n m

k

n
ktm

n
m

k m

n

( ) = ( ) +
−

−





= +

−

∑
1

1

1 cos (3.10′ )

and, consequently, 

V tn
n + ( )1   =  Dn ( t )     and     V tn

0 ( )   =  Fn ( t ).

By using (3.10′ ) and repeating the reasoning used to deduce inequality (3.4′ ), we find 

f t V f tm
n( ) − ( );   ≤  1 + ( )[ ] ( )L V E fm

n
m . (3.10′′ )

In view of relations (3.10), (3.6′ ), and (3.6) for the Fejér kernels, we obtain 

V t
n m

nF t mF tm
n

n m( ) =
−

( ) − ( )[ ]1

=  1 2 2

2
2

1

4
2

2 2

2 2n m

nt mt

t n m
mt nt

t−

−
=

−
−sin sin

sin

cos cos

sin
. (3.11)

According to property (ii) of the Fejér kernels, this means that if  n – m  ≥   ε n,  where

ε  is an arbitrary fixed positive number, then the Lebesgue constants  L Vm
n( )  of the cor-

responding de la Vallée Poussin kernels are bounded by the number  2 / ε. 
Moreover, relation (3.11) yields the equalities 

V t
n

nt nt
tn

n2

2

1
4

2

2

( ) = −cos cos

sin
, (3.12)

V t
n

nt nt
tn

n3

2

1
8

3

2

( ) = −cos cos

sin
. (3.12′ )

In view of the fact that 

sgn ( cos t – cos 2t )  =  

1 0 2
3

1 2
3

, , ,

, , ,

for

for

t

t

∈ π





− ∈ π π













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and 

sgn ( cos t – cos 3t )  =  sgn cos t,     t ∈ ( 0, π ),

we arrive at the following expansions in Fourier series: 

sgn ( cos t – cos 2t )  ∼  
1
3

4 1 2
3

1

+
π

π

=

∞

∑
k

k

k
ktsin cos ,

sgn cos t  ∼  
4

1
2 1

2 1
0

π
(− ) ( + )

+=

∞

∑
k

k k t

k

cos

and, therefore, 

sgn cos cosV t nt ntn
n2 1

3
2 3 3 2( ) +
π

−
π

+ …�  ,

sgn cos cosV t nt ntn
n3 4 4

3
3( )

π
−

π
+ …�  .

Thus, by using relation (3.10′ ) and the orthogonality of the trigonometric system of

functions, we get the following values of the Lebesgue constants for these kernels 
3: 

1 1 1
2

2

1π
( ) =

π
+





− π

π

− π

π

=
∫ ∫ ∑V t dt ktn

n

k

n
cos   +  2 1

21

2 1
2

k n

n

n
nk

n
kt V t dt

= +

−

∑ −










( )cos sgn  

=  2
3

1
2

2 3 1
3

2 3⋅ +
π

= +
π

, (3.13)

1 3

π
( )

− π

π

∫ V t dtn
n

=  1 1
2 1π

+




− π

π

=
∫ ∑

k

n
ktcos   +  3

2
1 4

1

3 1
3

k n

n

n
nk

n
kt V t dt

= +

−

∑ −










( ) =

π
cos sgn . (3.13′ )

In conclusion, we note that, by virtue of the well-known Markov theorem (see, e.g.,

[Akhiezer (1965)]), the polynomials  V tn
n2 ( )   and  V tn

n3 ( )  are, respectively, the solutions
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of the following extreme problems of approximation of the Dirichlet kernels by the linear
combinations of  cos k t  for  n < k < 2n  and  n < k < 3n:

min cos cos
c j

n

k n

n

k
k

jt c kt dt
1 1

2 1 1

2 1

π + −
− π

π

= = +

−

∫ ∑ ∑

=  1 1
3

2 32

π
( ) = +

π
− π

π

∫ V t dtn
n , (3.14)

min cos cos
c j

n

k n

n

k
k

jt c kt dt
1 1

2 1 1

3 1

π + −
− π

π

= = +

−

∫ ∑ ∑   =  1 43

π
( ) =

π
− π

π

∫ V t dtn
n . (3.14′ )

4. Rogosinski kernels (1925).  A function 

Rn ( t )  =  Rn ( t ; γn )  =  
1
2

 [ Dn ( t – γn ) + Dn ( t + γn ) ]  =  1
2 1

+
=

∑
k

n

nk ktcos cosγ , (3.15)

where  γ n   =   O  ( 1 / n )  and  Dn   is the Dirichlet kernel of order  n ,  is called the

Rogosinski kernel  of order  n. 

A.  First, we set 

γ n   =  
π
2n

.

The kernel obtained as a result possesses the following properties:

(i) The kernel 

Rn ( t )  =  R t
nn ;

π



2

can be represented in the form

R n ( t )  =  1
2 2

2

sin
cos

cos cos

π
− πn

nt

t
n

. (3.16)

For  γ n  =  π / 2n,  this equality follows from the identity 
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Rn ( t ; γn ) =  
1
2

2 1
2

2
1
2

2 1
2

2
1
2

sin

sin

sin

sin

n
t

t

n
t

t

n

n

n

n

+ ( − )

( − )
+

+ ( + )

( + )

















γ

γ

γ

γ

=  
sin sin sin sin

sin sin

2 1
2 2

2 1
2 2

4
2 2

n
t

t n
t

t

t t

n
n

n
n

n n

+ ( − ) + + + ( + ) −

+ −

γ γ γ γ

γ γ

=  
cos cos

cos cos
[ ] [ ]− ( + ) − ( + ) −

( − )
nt n n t n

t
n n

n

1 1
4

γ γ
γ

 

+  
cos cos

cos cos
[ ] [ ]+ ( + ) − ( + ) +

( − )
nt n n t n

t
n n

n

1 1
4

γ γ
γ

=  
cos cos cos cos

cos cos
( + ) − ( + )

( − )
n t n nt n

t
n n

n

1 1
2

γ γ
γ

. (3.17)

(ii) By virtue of equality (3.15), we conclude that 

1
π

− π

π

∫  R n ( t ) dt  =  1. (3.18)

(iii) Equalities (3.15) and (3.16) imply that the kernel  Rn   is an even trigonometrical

polynomial of degree  n  whose positive zeros from the interval  ( 0, π )  are located at the
points 

ti  =  
2 1

2
i

n
+ π,    i  =  1, 2, … , n – 1.

Therefore, the derivative  ′Rn   does not vanish in the interval  ( 0, t1 ).  Note that, for

t1 ≤ t ≤ π,  we have 

R tn( )   =  1
2 2

1

2
3
2

1

4

1
2 4

sin
cos cos sin

cotπ
π − π = π < π

n
n n n

n
.

This yields 
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max
t

 R tn( )   =  Rn ( 0 )  =  1
2 2

1

1
2

1
2 4

2sin
cos

cotπ
− π = π <

πn
n

n
n . (3.19)

(iv) Note that, by virtue of relation (3.16), 

sgn R n ( t )  =  – sgn cos nt  +  e ( t ),

where

e ( t )  =  

2
2

0
2

for

for

t
n

n
t

< π

π < < π









,

,

and that as it is easy to see that 

e ( t )  ∼  1
2

2 4
21n
k

n
kt

kk

+
π

π

=

∞
∑ sin

cos
,

sgn cos t  ∼  
4

1
2 1

2 10π (− ) ( + )
+=

∞

∑
k

k k t
k

cos
.

Hence, we arrive at the following expression for the Lebesgue constant of the kernel  Rn  :

1
π

− π

π

∫ R tn( )  dt =  1 1
2 2

1
2

2 4
21

1

1

1

π
+ π







 +

π
π









− π

π

=

−

=

−

∫ ∑ ∑
k

n

k

n
k

n
kt

n
k

n
kt

k
dtcos cos sin

cos

=  1 2 1

1

1

n k
k
nk

n

+
π

π

=

−

∑ sin  

=  2 1
2

1

0

1

π
π



 + ( + )π











π

=

−

∑
k

n
k
n

k
n n

σ σ , (3.20)

where

σ ( t )  : =  
sin t

t
     for    t  ≠  0     and    σ ( 0 )  : =  1.

Since the right-hand side of (3.20) is an approximate value of the integral 
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2 2

0
π

=
π

π
π

∫ sin
Si

t
t

dt

computed by the formula of trapezoids, we arrive at the following natural assertion: 

For all natural  n,  the following equalities are true4: 

1
π

− π

π

∫ R tn( )  dt  =  
2
π

 Si π – rn , (3.21)

where

0  <  rn  <  1
3 2n

     and     2 2 1 851 1 185
π

π ≈
π

≈Si . . .

In order to prove this assertion, we represent the quantity  rn   by using relation (3.20)
in the form 

rn   =  
2 2 1

2
1

0 0

1

π
−

π
π



 + + π











ππ

=

−

∫ ∑sin t

t
dt

k

n

k

n n
k

n

σ σ

=  
2

0

1

1 1

1

π
( )









 − ( − ) ( ) + ( )

=

−

+ +∑ ∫
+

( )
k

n

t

t

k k k k

k

k

t dt t t t tσ σ σ , (3.22)

where  tk  : = k π / n.  We set 

A  : =  1
12 0

1
2

1
2 4

1

π
( − ) ( − ) ( )

=

−

+∑ ∫
+

k

n

t

t

k k

k

k

t t t t t dtσ( ) .

By using the identity 

a

b

f x dx b a f b f a∫ ( ) − ( − ) ( ) + ( )( )1
2

=  
1

24
1

12
2 2 4 2

a

b

x a x b f x dx b a f b f a∫ ( − ) ( − ) ( ) − ( − ) ′( ) − ′( )( )( )
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valid for any function  f  four times continuously differentiable on  [ a, b ],  we get 

rn  =  A
n

t t
k

n

k k−
π

π



 ′( ) − ′( )

=

−

+∑ ( )1
6

2

0

1

1σ σ

=  A
n

A
n

+ π ′( ) − ′(π) = +( )
6

0
1

62 2σ σ . (3.23)

To estimate  A,  we recall that 

σ( ) cos4
5

0

41( ) = ∫t
t

u u du
t

,

whence it follows that  σ( )4 ( )t   ≤  1 / 5  for all  t ∈ [ 0, π ]  and, therefore, 

t

t

k k
t

t

k k

k

k

k

k

t t t t t dt t t t t dt
n

+ +

∫ ∫( − ) ( − ) ( ) ≤ ( − ) ( − ) = π



+ +

1 1
2

1
2 4 2

1
2

51
5

8
75

σ( ) .

This enables us to conclude that 

A
n

n n n
≤

π
π



 < <

12
8
75

1 1
6

5

4 2 ,      n  ≠  1, 2.

Thus, for  n  ≠  1, 2,  the required assertion follows from (3.22).  For  n  =  1, 2,  it is tri-
vial. 

(v) Since, for all natural  n,  we have 

sin sin cos sin2 2 2 2

2
4

4 4
2

4
π = π π ≥ π
n n n n

,

for any  δ ∈ ( 0, π ),  n > π  / δ,  and all  t ∈ ( δ, π  )  (i.e.,  t  >  δ  >  π / n ),  we can write 

cos cos cos cost
n

t
n

− π = − + − π
2

1 1
2

=  2
2 4 2

2 2 2
2

2sin sin sin
t

n

t t− π



 > >

π
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and, hence, in view of relation (3.16), we find 

σ
δ δ

( ) sin
cos cos )/

4 1
2 2 2

( ) ( ) < π
− (π

π π

∫ ∫t R t dt
n

dt
t nn   <  π π <

∞

∫
2

22 2
sin

n
dt

t

A
n

δ
δ

, (3.24)

A  =  
π3

2
.

B.  If we take into account the geometric reasoning, then it is more natural to consider
kernels of the form [Kharshiladze (1955), (1958)] 

˜ ˜ ,( )R t R t R t
nn n n( ) = ( ) = π

+






1

2 1
  =  

1
2 2 1 2 1

D t
n

D t
nn n− π

+




 + + π

+











.

In exactly the same way as in deducing equality (3.17), we represent these kernels in the
form

˜
cos

sin

cos

sin
R t

n t

t
n

n t

t
n

n( ) =
− ( + )

− π
+







+

( + )

+ π
+

























1
2

2 1
2

2 1
2 2 1

2 1
2

2 1
2 2 1

=  sin cos
cos

cos cos

π
( + )

( + )

− π
+

2 2 1 2

2 1
2

2 1
n

t
n t

t
n

. (3.25)

In this case, outside the segment 

− π
+

π
+





2 1 2 1n n

, ,

the kernels 

Dn 
t

n
−

+






π
2 1

     and     Dn 
t

n
+

+






π
2 1

have the opposite signs and, to a significant extent, are mutually compensated.  We re-
commend the reader to construct and add the plots of these kernels.  The indicated kernels
possess the properties completely similar to the properties of the kernels  Rn   studied in
Subsection A. 
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By using the kernels  ˜ ( )Rn
1 ,  we can, in a similar way, construct the kernels 

˜ ˜ ˜( ) ( ) ( )R t R t
n

R t
nn n n

2 1 11
2 2 1 2 1

( ) = − π
+





 + + π

+












=  
1

2

2
2 1

2
2

2 12 D t
n

D t D t
nn n n− π

+




 + ( ) + + π

+












, (3.25′ )

˜ ˜ ˜( ) ( ) ( )R t R t
n

R t
nn n n

3 2 21
2 2 1 2 1

( ) = − π
+





 + + π

+












=  
1

2

3
2 1

3
2 13




− π
+





 + − π

+




D t

n
D t

nn n

+ 3
2 1

3
2 1

D t
n

D t
nn n+ π

+




 + + π

+








, (3.25′′ )

etc.  In this case, the kernels are mutually compensated outside the segments  

− π
+

π
+







3
2 1

3
2 1n n

, ,      − π
+

π
+







5
2 1

5
2 1n n

, , 

etc., respectively.  The kernels  ˜ ( )Rn
2 ,  ˜ ( )Rn

3 ,  etc. take only positive values in the intervals

− π
+

π
+







5
2 1

5
2 1n n

, ,      − π
+

π
+







7
2 1

7
2 1n n

, ,

etc., respectively. 

By using the kernels  Rn ( t )  : =  ˜ ( )R tn
1 ( )  studied in Subsection A, one can also construct

more general kernels of the form 

˜ ( )R tn
i ( )   : =  γ n

i nt t
n

t
n

t
i
n

( ) − π



 − π



 − π( − )











cos cos cos cos cos cos cos
2

3
2

2 1
2

1
, (3.26)

where the numbers  γ n
i( )   are chosen to satisfy the condition 

1
π

( )
− π

π
( )∫ R t dtn
i   =  1.
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Finally, we mention the kernels  τk, n  quite closely related to the Rogosinski kernels.

For any natural  n  and  k  ≤  n,  these kernels are given by the formula 

τk, n ( t )  =  
1

2
1

0

1
k

k

n n
k

D t D t
nν

ν
ν

ν

=

+∑ 



 ( ) + (− ) + π











=  D t
k

D t
nn k

k

n( ) + 



 (− ) + π





=

+∑1

2
1

0

1

ν

ν
ν

ν
. (3.27)

For the first time, these kernels were studied by Trigub (1965), who discovered that
they play an important role in some problems connected with the approximation
characteristics of the functions. 

Let us show that, for any  n  and  k ≤ n,  the Lebesgue constants of the kernels  τk, n

satisfy the inequalities

L k n( )τ ,   =  
1
π

− π

π

∫  τk n t, ( )  dt  <  2k. (3.27′ )

Indeed, since, for any  ν, 

D t D t
nn n( ) + (− ) + π





+1 1ν ν
  =  

j

j
n nD t

j
n

D t
j
n n=

−

∑ (− ) + π



 + + π + π











0

1

1
ν

,

by virtue of relations (3.27), (3.15), and (3.21), we obtain 

L
k

L R
k

L R kk n k

k

n n( ) ≤ 





( ) = ( ) <
=
∑τ

ν
ν

ν
,

1
2

2
2

2
0

, 

as required. 

5. Jackson kernels (1911).  A function 

Jn ( t )  =  3
2 2 1

2

2
2

4

n n

nt

t( + )















sin

sin
,    n  =  1, 2, … , (3.28)

is called the Jackson kernel of order  n. 
These kernels possess the following properties: 
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(a)  for any  n,  the kernel  Jn ( t )  is an even nonnegative trigonometric polynomial of

degree  2n – 2  of the form 

Jn ( t )  =  
1

2

1

21

2 2

2 2

2 2

+ =
=

−

=−( − )

−

∑ ∑j kt j ek
k

n

k
ikt

k n

n

cos , (3.28′ )

where 

jk   =  jk ( n )   are certain numbers such that   j0  : =  1   and   j– k  =  jk     for   k  ≥  0 ;

(b) 1
π

− π

π

∫ Jn ( t ) dt  =  1; (3.29)

(c) 1

0
π

π

∫ t Jn ( t ) dt  ≤  
5

2n
; (3.29′ )

(d) 1

0
π

π

∫ t2 Jn ( t ) dt  ≤  
π2

2n
. (3.30)

Proof.  (a) In view of the fact that that the following equalities are true for the Fejér ker-

nels  Fn ( t ):

sin
sin

cos/
/

( )
( )







= ( ) = + −















=

−

∑nt
t

nF t n k
n

ktn
k

n
2

2
2 2 1

2
1

2

1

1

[see relations (3.6) and (3.6′′ )], we find 

Jn ( t ) =  
3 2

2 12
2⋅

+
( )[ ]n

n
F tn

=  
6

2 1
1
2

1
1
2

12
1

1

1

1
n

n

j
n

jt
n

t
j

n n

+
+ −













 + −















=

−

=

−

∑ ∑cos cos
ν

ν ν

=  
j

j t
n

0

1

2 2

2
+

=

−

∑
ν

ν νcos ,

where  jν ,  ν  =  0, 1, 2, … , 2n – 2,  are certain numbers.  In particular, since the trigono-
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metric system of functions is orthogonal, we obtain 

j0  =  
1
π

− π

π

∫  Jn ( t ) dt  =  
12

2 1

1
4

1
2

12
1

1 2n

n

j

n
j

n

+
+ −















=

−

∑

=  
6

2 1

1
2

1 2 1

62 2
n

n

n n n

n+
+ ( − ) ( − )




  =  1.

This proves property (a).

(b)  Equality (3.29) follows from the equality established for  j0  . 

(c)  Since sinnt   ≤  n sin t   for any  t ∈ ( – ∞, ∞  )  and 

sin t  ≥  2
π

t      for     t ∈ 0
2

, π





[see inequalities (0.1) and (0.2)], we conclude that 

1

0
π

π

∫ t Jn ( t ) dt =  3
2 2 1

2
22

0

4

π ( + )
+









( )
( )



















π

π

π

∫ ∫n n
t

nt
t

dt
n

n

/

/

sin
sin

/
/

≤  3
4

1
3

0

4
4π

+
( π)







π

π

π

∫ ∫n
tn dt t

t
dt

n

n

/

/ /

≤  3
4 2 2

3
4

5
23

2 2 4

2π
π + π

(π )




 = π <

n

n

n n n/
.

(d) As in case (c), we find

1

0
π

π

∫ t2 Jn ( t ) dt  =  
3

4 3
4

0

2 4
2π

+ π






π

π

π

∫ ∫n
n t dt

dt

t

n

n

/

/

  ≤  
3

4 33

3
3

2

2π
π + π



 = π

n

n
n

n
,

as required. 

6. Jackson-type kernels.  A function 
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Jk, n ( t )  =  1 2

2

2

γ k n

knt

t
,

sin

sin















,      n = 1, 2, 3, … , k , (3.31)

where  k  is a natural number and 

γ k, n  =  1 2
2

2

π
( )
( )





− π

π

∫  
sin
sin

/
/

nt
t

dt
k

, (3.32)

is called the Jackson-type kernel of order  n. 
The Jackson-type kernels possess the following properties: 

(a) 1
π

− π

π

∫ Jk, n ( t ) dt  =  1. (3.33)

This property follows from equalities (3.31) and (3.32). 

(b)  For a fixed natural  k  and any  n,  the kernel  Jk, n ( t )  is an even nonnegative trigo-

nometric polynomial of degree  k ( n – 1 ). 
This property follows from equality (3.31) and the fact that, by virtue of equalities

(3.6) and (3.6′ ′ ), we have 

Jk, n ( t ) =  
1

γ k n,
 [ 2n Fn ( t ) ]k  =  

1
γ k n,

 ( 2n )k [ Fn ( t ) ]k

=  ( ) + −







 =

=

−

=

( − )

∑ ∑2 1
2 1

1

0

1
n n

n
t j t

k

k n

n k k n

γ
ν ν ν

ν ν
ν

,
cos cos , (3.34)

where  jν   =  jν ( k, n )  are certain numbers. 

(c) γk, n  �  n2k
 
–

 
1, (3.35)

i.e., there exist constants  c1 ( k ) > 0  and  c2 ( k ) > 0  such that, for all  n  =  1, 2, … , 

c1 n2k
 
–

 
1  <  γ k, n  <  c2 n2k

 
–

 
1. (3.35′ )

We now prove that 
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3
2

2 1

k
n k −   <  γk, n  <  

5
2

2 1

k
n k − ,     n  ≠  1. (3.35′′ )

For this purpose, we represent  n1
 
–

 
2k γk, n  as the sum of two integrals  ak, n  and  bk, n 

,

where 

ak, n  : =  2 2
2

0

2 2n nt
n t

dt
n k

π
( )

( )






π

∫
/

sin
sin

/
/

     and     bk, n  : =  2 2
2

2

2n nt
n t

dt
n

k

π
( )

( )






π
∫
/

sin
sin

/
/

π
.

For  bk, n,  it follows from estimate (0.2) that 

0  ≤  bk, n  <  2
2

2 2 1
2 1

1
2

1 2

2

2 2 1

2
2 2 2π





 < π( ) =

−
−

π

π − −

π

∞

−∫ ∫n t dt
n

dt

t k
k

n

k k

n
k k

/ /
π

.

To estimate  ak, n 
,  we represent this integral in the form 

ak, n  =  
4 2

0π ( )






π

∫  
sin

sin

t

n t n
dt

k
.

For any fixed  t ∈ [ 0, π ] ,  the function  f ( x )  =  x sin ( t / x )  increases for  x  ≥   2  [since

0 < t / x < π  / 2  and 

′( )f x   =  sin 
t
x

  –  t
x

 cos 
t
x

  >  0

by virtue of (0.4)].  Hence,  ak, n + 1  <  ak, n.  In addition, inequality (0.1) implies that 

n sin 
t
n

  <  t,      t ∈ [ 0, π ],

and therefore, 

4 2

0
π







π

∫ sin t
t

dt
k

  =  ak, ∞  <  ak, n  ≤  ak, 2

=  4
2

8 4
2 1

2
0

2

0

2
2

π




 =

π
( ) = ( − )

( )

π π

∫ ∫cos cos
!!

!!

/
t dt t dt

k
k

k
k ,
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where the last equality is verified by induction. 
Since

ak, 2  =  4
2 1
2

2 1 2 3
2 2

3 1
2

6k
k

k k
k k

− ( − )( − )
−

⋅ … ⋅ ⋅ < ,

a2k, 2  =  
4
4

2 1
4 2 2

3
4 2

1
2

3
2k

k
k k k

−
( − )

⋅ … ⋅
⋅

⋅ > ,

and, by virtue of relation (0.4),

sin
sin cos cos

t
t t

t t t= >2
2 2 2

2 ,      0  <  t  <  π,

we conclude that 

ak, ∞  =  4 4
2

3
2

0

2

0

4
2 2π





 >

π




 = >

π π

∫ ∫sin
cos ,

t
t

dt t dt a
k

k k
k

and 

1
k

  <  ak, ∞  <  ak, n ≤  ak, 2  ≤  n1
 
–

 
2k γ k, n  =  ak, n + bk, n

≤  ak, 2 + bk, n  <  
6
k

 + 
1

2 1
1

2
5

22 2k kk−
<−  .

Inequality (3.35′′ ) is proved. 

(d)  For any  δ > 0,  the following inequality is true: 

δ

π

∫  Jk, n ( t ) dt  <  
π





−

n

k

δ

2 1
. (3.36)

This property follows from inequalities (3.35′′ ) and equality (3.31).  Indeed,

δ

π

∫ Jk, n ( t ) dt =  1 2
2

2

γ
δk n

knt
t

dt
,

sin
sin

/
/

π

∫ ( )
( )






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<  1 2

3
1

2 1

2 2

2 1 2 1

2 1

γ
π

δ δ
δk n

k k

k k

k

t
dt

k

n k n,





 < π

( − )
< π





∞

− −

−

∫ .

(e)  For any natural  i  ≤  2k – 2, 

− π

π

∫ Jk, n ( t ) t i
 dt  �  

1

ni . (3.37)

Indeed, on the one hand, by virtue of relations (3.35 ), (0.1), and (0.2), we have 

− π

π

∫ Jk, n ( t ) t i
 dt =  2 

0

π

∫ t 
i
 Jk, n ( t ) dt  =  2 2

2
0

2

γ k n

i
k

t
nt
t

dt
,

sin
sin

/
/

π

∫ ( )
( )







≤  2 2
2

0

2 2

γ k n

n
i

k

n

i k
t

n t
t

dt t
t

dt
,

/

/

sin
sin

/
/

π

π

π

∫ ∫( )
( )





 + π















  ≤  
1
ni .

On the other hand, in view of relation (3.35) and inequalities (0.2) and (0.3), we find 

2 

0

π

∫ t 
i
 Jk, n ( t ) dt  ≥  2 2

2
2

0

2

γ πk n

n
i k

t nt
t

dt
,

/π

∫ ⋅ ⋅( )   ≥  
1
ni .

Corollary 3.1.  If, for  k ≥ 2,  the kernel  Jk, n ( t ),  in view of property (b), admits a rep-

resentation 

Jk, n ( t )  =  
ν=

( − )

∑
0

1k n

 jν cos ν t,

then the following relations are true for the coefficients  jν   =  jν ( k ; n ): 

1 – jν   �  
ν2

2n
. (3.38)

Indeed, by virtue of relations (3.33) and (3.37), we find 

1 – jν   =  
1
π

− π

π

∫  Jk, n ( t ) ( 1 – cos ν t ) dt  �  ν2 

− π

π

∫  Jk, n ( t ) t 
2 dt  �  

ν2

2n
.
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7. Poisson kernels.  Kernels of the following type are very often encountered in various
problems parallel with the polynomial kernels: 

Pn ( t ) : =  
1
2

 + r cos t + r2 cos 2t + …  =  Re 
1
2

2 2+ + + …


re r eit it

=  Re 
1
2

1

1 2 1 2

2

2 2
−

− +
+

− +








r

r t r
i

r t

r t rcos

sin

cos
 

=  
1
2

1

1 2

2

2
−

− +
r

r t rcos
. (3.39)

These kernels are called Poisson kernels. 

8.  In conclusion, we note (for our subsequent presentation) that, by using Theorem
1.2.12 (Fejér), Korovkin (see [Korovkin (1959), pp. 76–78]) introduced the following re-
markable even trigonometric kernels  Kn   of order  n: 

Kn ( t )  : =  A a e
j

n

j
ijt−

=
∑1

0

2

  =  A a a a k j t
j

n

j
k

n

j

k

j k
−

= = =

−

∑ ∑ ∑+ ( − )












1

0

2

1 0

1

2 cos , (3.40)

where

aj  : =  sin
( + )π

+
j

n

1
2

,     j  =  0, 1, … , n,

and 

A  : =  2 2
20

2

1

1
2

j

n

j
k

n

a
k

n= =

+

∑ ∑= π
+

sin .

Therefore, the kernels  Kn ( t )  have the form

Kn ( t )  =  
1
2

1

+
=

∑
k

n

k ktλ cos ,

where, in particular, 
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λ1 =  2 1

1
1A a a

k

n

k k
−

=
−∑

=  2
2 2 2 2 2

1

1

A
k

n

k

n n

k

n n
k

n
−

=
∑ π

+
π

+
π
+

+ π
+

π
+







sin sin cos cos sin

=  A
n

k
n

n
n n

k
nk

n

k

n
−

=

+

=

π
+

π
+

− +
+

π + π
+

π
+


















∑ ∑1

1

1
2 2

12
2

2
1
2 2

2
2

cos sin sin sin sin

=  cos π
+

+ −

n
A

2
1 − π

+
π
+





2
2 2

2cos sin
n n

+  1
2

2 1
2

2 1
21k

n k
n

k
n=

∑ −
+

π − +
+

π










cos cos

=  cos sin sin cos cosπ
+

+ − π
+

π
+

+ π
+

− π
+















−

n
A

n n n n2
2

2 2
1
2 2

3
2

1

=  cos π
+n 2

.

3.2.  Aperiodic kernels

First, we consider a different approach to the construction of the kernels 

Kn 
x
2





  = 

∨

+F n2 1 ( x ) 

[see (1.2)] used in proving the first Weierstrass theorem (Theorem 1.1). 
Since, for any  j,  we have

cos j t  =  
i

j

=
∑

0

 ci cosi
 t,

where  ci  are coefficients, in view of relation (3.6′ ′ ), the Fejér kernel  Fn ( t )  can be repre-

sented in the form 
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Fn ( t )  =  
k

n

=

−

∑
0

1

 dk cosk
 t.

Further, as a result of the substitution 

x  =  2 sin 
t

2
,     t ∈ [ – π, π  ],    x ∈ [ – 2, 2 ],

we obtain 

cos t  =  1 – 
x2

2
,    t  =  ± arccos 1

2

2

−





x

F x d x
n

k

n

k

k
arccos 1

2
1

2

2

0

1 2
−











= −





=

−

∑ . (3.41)

This means that, by using the periodic Fejér kernel, 

Fn ( t )  =  
sin

sin

2

2
2

2
2

nt

n t

we can now define the following algebraic kernel for all natural  n  (but not only for
odd  n )  [Dzyadyk (1958a)]: 

∨
( ) = −











F x
n

F
x

n
n

n
2

1
2

2

γ
arccos  

=  1 2
1

2

1
2

1
2

2
2

2
2γ n

n x

x

sin arccos

sin arccos

−





−





,      x ∈ [ – 2, 2 ], (3.41′ )

where  γ n   is chosen to guarantee that 

−
∫ ( )

∨

1

1

F x dxn   =  1,

i.e., 
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γ n   =  
−
∫

−





−





1

1
2

2

2
2

2
1

2

1
2

1
2

sin arccos

sin arccos

n x

x
dx . (3.41′′ )

The kernel  
∨

Fn  possesses the following properties: 

(a)  
∨

Fn  is an even nonnegative polynomial of degree  2n – 2; 

(b)  
−
∫ ( )

∨

1

1

F x dxn   =  1; (3.42)

(c)  γ n   >  n,   n  ≥  3; (3.43)

(d)  for  0  <  δ  <  1,  n  ≥  3, 

δ
δ

1 2

∫ ( ) ≤ π∨
F x dx

nn . (3.44)

Since properties (a) and (b) directly follow from the definition [see relations (3.40)

and (3.40′ )], we study only inequalities (3.43) and (3.44). 

By virtue of the substitution  x  =  2 sin ( t / 2 )  (and, hence,  1 – x2
 / 2 = cos t ),  in view

of inequalities (0.2) and (0.3), we find 

γ n   =  2
2

1
2

1
2

1
2

2 2

2
2

0

1
2

2

2
2

0

3 2

2∫ ∫
−





−





=
πsin arccos

sin arccos

sin

sin
cos

/
n x

x
dx

nt

t
t dt

>  2 1
2

2
2

2

4

0

2

2

2π

∫












=
π

>
/n nt

t
dt

n
n nπ ,     n  ≥  3,

and, moreover, 
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δ δ

1

2 2

1

∫ ∫
∨ ∨

≤
( )

F x dx F x dxn n( ) ( )
sin /

=  1 2
1

2

1
2

1
2

1 2

2
2

2 2

1
2

2

2
2

3 2

2γ
δ δn

n x

x
dx

n

nt

t
t dt

sin /

/sin arccos

sin arccos

sin

sin
cos

( )

π

∫ ∫
−





−





≤

<  1
3

2 2

2

2

n t
dt

n
dt

t n
δ δ

δ

π ∞

∫ ∫π



 < π = π

/

,

as required.

Remark 3.4.  Note that, as a rule, the analyzed substitution  x  =  2 sin ( t / 2 )  gives a possi-
bility to obtain from an even trigonometric kernel an algebraic kernel with similar proper-

ties in the neighborhood of the origin, and vice versa.5 

In order to deduce the explicit formulas for the polynomials  
∨

Fn  (which can also be
used as kernels in the proof of the first Weierstrass theorem), we now establish the recur-
rent relation for these polynomials: 

  
�
F x F xn n n( ) := ( )

∨
γ .

By virtue of (3.40′ ), for all integer  n  ≥  1,  we can write 

�
F x F xn n n( ) := ( )

∨
γ   =  

1
1
−
−

cos
cos

nt
t

,     t  =  arccos 1
2

2
−





x .

Hence, by setting    
�
F x0( ) ≡ 0,  taking into account the fact that   

�
F x1( ) ≡  1,  and using the

identity 

cos nt + cos ( n – 2 ) t  =  2 cos ( n – 1 ) t cos t

for  n ≥ 2,  we find 

  

�
F x

t
( ) =

−
1

1 cos
  [ 1  –  2 cos ( n – 1 ) t cos t  +  cos ( n – 2 ) t + 2 cos t  –  2 cos t  –  1  +  1 ]
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=  2
1 1

1
1 2

1
2cos

cos
cos

cos
cos

t
n t

t

n t

t

− ( − )
−

− − ( − )
−

+

=  2 cos t   
� �
F x F xn n− −( ) − ( )1 2  + 2.

Thus, we arrive at the following recurrent relation for the polynomials  
�
Fn :

  
� � �
F x x F x F xn n n( ) = ( − ) ( ) − ( ) +− −2 22

1 2 . (3.45)

Therefore, in view of the fact that    
�
F x0( ) ≡  0  and   

�
F x1( ) ≡  1,  by virtue of relation

(3.45), we immediately obtain 

�
F x2( )  =  ( 2 – x2

 ) 1 – 0 + 2  =  4 – x2,

  
�
F x3( )  =  ( 2 – x2

 ) ( – x2 + 4 ) – 1 + 2  =  x4 – 6x2 + 9,

etc. 

It is also possible to prove that the polynomials  
�
F xn( )2   satisfy the following differ-

ential equation: 

x2
 ( 1 – x2

 ) y ′′  –  ( 5x2 – 4 ) x y ′  +  [ 4 ( n2 – 1 ) x2 + 2 ] y  –  2n2  =  0.

Further, starting from the Jackson-type kernels (3.31), we consider the following ker-
nels [Dzyadyk (1958)]: 

�
�J x J x

k n
k n

k n
k n,

,

,
, arccos( ) = −











γ
γ

1
2

2

=  

  

1 2
1

2

1
2

1
2

2

2

2

�γ k n

kn x

x,

sin arccos

sin arccos

−











−





























,      x ∈ [ – 2, 2 ], (3.46)

where 

�γ k n

kn x

x
dx,

sin arccos

sin arccos
=

−











−





























−
∫
1

1

2

2

2

2
1

2

1
2

1
2

. (3.47)
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These kernels possess the following properties: 

(a)  For any natural  n  and  k,    
�
Jk n,   is an even nonnegative algebraic polynomial of

degree  2k ( n – 1). 
This property follows from the fact that, by virtue of equality (3.34), we have 

Jk, n ( t )  =  
ν=

( − )

∑
0

1k n

 jν cos ν t  =  
ν=

( − )

∑
0

1k n

 dν ( cos t ) 
ν.

Therefore, in view of the equality  t  =  arccos ( 1 – x2
 / 2 ),  we find 

�
�J x d

x
k n

k n

k n

k n

,
,

,
( ) = −



=

( − )

∑γ
γ ν

ν

ν
1

2

2

0

1

.

(b)  

  −
∫ ( )
1

1 �
J x dxk n,   =  1.

This property follows from equalities (3.46) and (3.47).

(c)    
�γ k n,   �  n2k – 1. (3.48)

Indeed, in view of relations (3.47) and (3.35), we conclude that 

  

�γ k n

kn x

x
dx,

sin arccos

sin arccos
=

−











−





























∫2
2

1
2

1
2

1
2

0

1

2

2

2

  =  2 2

2
2

0

3 2

2

2π

∫












/ sin

sin
cos

nt

t
t dt

k

�  
0

2

3

2

2

2

2

2

π

π

π

∫ ∫












−












sin

sin

sin

sin/

nt

t dt

nt

t dt

k k

=  γ k n

knt

t dt,
/

sin

sin
−











π

π

∫
3

2

2

2

  �  n2k – 1.
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(d)  The following inequality is true for any  0 < δ < 1:

  δ δ

2

2 1∫ ( ) ≤
( ) −

�
J x dx c

n
k n k, ,      c  =  c ( k )  =  const. (3.49)

Indeed, by using relation (3.48) and inequalities (0.2) and (0.3), for  sin t,  we find 

  
δ δ

γ

2 2

2

2

2

1 2
1

2

1
2

1
2

∫ ∫( ) =
−











−





























�
�J x dx

n x

x
dxk n

k n

k

,
,

sin arccos

sin arccos

=  1 2

2
2

1

2 2

2
2

2 1� �γ γ
π

δ δk n

k

k n

k

k

nt

t
t dt

t
dt c

n, arcsin / ,

sin

sin
cos

( )

π ∞

−∫ ∫















≤ 



 ≤ .

(e)  For any natural  i  ≤  2k – 2, 

δ

2
1∫ ( )

�
J x x dx

n
k n

i
i, � . (3.50)

Indeed, by using relations (3.48), (3.37), (0.2), and (0.3), we obtain
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1 2
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2
2∫ ∫( ) = 









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



π
x J x dx t

nt

t
t dti

k n
k n

i

k

�
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,
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γ

�  1 2

2

1

0

2

γ k n

i

k

i
t

nt

t dt
n,

sin

sin

π

∫














� .

4. Rational kernels and approximation of functions
by rational polynomials

4.1.  Newman theorem

Definition 4.1.  Any function representable as the ratio of two algebraic polynomials of
degree  n,  i.e., 
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R  n( x )  =  
a x a x a

b x b x b

k k
k

l l
l

0 1
1

0 1
1

+ + … +
+ + … +

−

− , (4.1)

where  0 ≤ k, l ≤ n,  a0 ≠ 0,  and  b0 ≠ 0,  is called a rational polynomial  Rn   of degree  n.

For the first time, the fact that there are continuous functions  f  whose best approxi-
mation by rational polynomials of degree  n  is much better than their best approximation
by algebraic polynomials was indicated by Newman.  As an example of a function of this

sort, he [Newman (1964)] studied the function  f ( x ) = x ,  x ∈ [ – 1, 1 ],  and demon-
strated that 

inf max
R x

n n
n

x R x
e

− ( ) ≤ 3
,     n  =  5, 6, 7, 8, … . (4.2)

At the same time, the following inequality is true: 

En ( x  )  =  inf max
P x

n
n

x P x
c
n

− ( ) ≥ ,     c  =  const  >  0. (4.3)

Prior to the Newman theorem, we prove two simple lemmas on the existence of poly-

nomials of degree  n  whose absolute values on the segment  [ – 1, – e n−
 ]  are much

smaller than on the segment  [ e n− , 1 ]. 

Definition 4.2.  A function

Nn ( x )  =  
k

n
kx

=

−

∏ ( + )
0

1

ξ ,     where    ξ  =  ξ ( n )  =  e n−1/ , (4.4)

is called the Newman polynomial  Nn   of degree  n. 

Lemma 4.1.  The inequality 

N

N
en

n k

n k

k
n(− )

( )
= −

+
<

−

−
=

−∏ξ
ξ

ξ
ξ

1

1
1

1

1
(4.5)

holds for all  n ≥ 5. 

Proof.  First, we note that the following inequality holds for all  t ≥ 0: 
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1
1

−
+

t

t
  ≤  e–

 
2

 
t. (4.6)

This follows from the fact that the auxiliary function 

α  ( t )  =  ( 1 – t ) e2t – ( 1 + t )

is negative for all  t > 0  since  α ( 0 )  =  0,  α′ ( 0 )  =  0,  and  α′′ ( t )  =  – 4 t e2t  <  0. 
By virtue of inequality (4.6), we obtain 

N

N
en

n k

n
k

k

n
k(− )

( )
= = −





−

−
−

= =
∏ ∑ξ

ξ
ξξ

1

1
2

1 1

2exp 


= − −
−









exp 2
1

1
ξ ξ

ξ

n

. (4.7)

Further, in view of the fact that, for  n ≥ 5, 

2ξ ( 1 – ξn
 ) =  2 1 1e en n n− −( + )−( )/ /

≥  2 2 1 1
5

1
2

1
5

1
6 5 5

21 5 6 5
2 5

e e
e

− −−( ) > − + ⋅ −
⋅







−/ /
.

  >  1

and, in addition, 

1 – ξ  =  1 – e n−1/   =  
1 1

2
1

n n n
− + … < ,

by using equality (4.6), we conclude that 

N

N
e en

n

n(− )
( )

< <
−

−
− ( − ) −ξ

ξ
ξ

1

1
1 1/ .

This proves Lemma 4.1.

Lemma 4.2.  The following inequality is true for all  x ∈ [ e n− , 1 ]  and  n ≥ 5: 

N x

N x e
n

n
n

(− )
( )

≤ 1
. (4.8)

Proof.  For the sake of definiteness, we assume that  x ∈ [ ξ 
j

 
+

 
1,  ξ 

j
 ].  Thus, in view of the

fact that 
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t a

t a

−
+







′
  >  0

for any  t > 0  and  a > 0  and Lemma 4.1, relation (4.4) implies that 

N x

N x

x

x

x

x
n

n k

j k

k
k j

n k

k
k

j k n

k n
k j

n j k

j k
(− )
( )

= −
+

−
+

≤ −
+

−
+= = +

−

= = +

−

∏ ∏ ∏ ∏
0 1

1

0 1

1ξ
ξ

ξ
ξ

ξ ξ
ξ ξ

ξ ξ
ξ ξ

=  
l n j

n l

l
l

n j l

l
l

n l

l
n

n

nN

N
e

= − =

− −

=

−

−
−∏ ∏ ∏−

+
−
+

= −
+

= (− )
( )

<1

1

1

1

1

11

1

1

1

1
ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

.

This proves Lemma 4.2. 

Theorem 4.1 [Newman (1964)].  A rational polynomial  Rn   of the form

Rn ( x )  =  x
N x N x

N x N x
n n

n n

( ) − (− )
( ) + (− )

(4.9)

whose degree is equal to  n   i f  n   is even and   n  + 1  i f  n   is odd approximates the
function  x   on the segment  [ – 1, 1 ]  so that6 

x R x en
n− ( ) ≤ −3 (4.10)

for all  n ≥ 5. 

Proof.  Since both functions  x   and  R xn( )   are even, it suffices to prove inequality
(4.10) for  x ≥ 0.

In this case, by virtue of (4.4), we have  0  ≤  Nn ( – x )  ≤   Nn ( x )  for  x  ∈  [ 0, ξn
 ]   =

[ 0, e n−
 ]  and, consequently,  0  ≤  Rn ( x )  ≤  x.  Therefore, 

x R xn− ( )   =  x – Rn ( x )  ≤  x  <  e n− .

If  x ∈ [ e n− , 1 ],  then, by using Lemma 4.2 and the inequality  n ≥ 5,  we find

    x R xn− ( )   =  2
2

1
2

1

3
x

N x

N x N x N x N x e e
n

n n n n
n n

(− )
( ) + (− )

<
( ) (− ) −

<
−

<
/

.
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Theorem 4.1 is thus proved. 

�

4.2.  Rational kernels

All polynomial kernels and, in particular, all analyzed even kernels  Kn   (algebraic and

trigonometric) are characterized by a relatively weakly pronounced  δ-shape in the neigh-
borhood of the origin in the sense that, for any natural  n,  the measure of the interval

[ – δn , δn ]  outside which, e.g., the inequality 

[− ] [− ]
∫ ( ) <

1 1

1
2

, \ ,δ δn n

K x dxn

1 1
2π

( ) <










[− π π] [− ]
∫

, \ ,δ δn n

K t dtn in the trigonometric case ,

can be true is always greater than  1 / n,  i.e.,  2δn  ≥  1 / n. 
We now show that, by using the rational polynomials (4.9) proposed by Newman, one

can readily construct the rational kernels  Kn ( x )  which are much more  δ-shaped in the
neighborhood of the origin (in the sense of concentration of singularity near the point
x = 0 )  than the polynomial kernels of the same degree. 

Theorem 4.2 [Dzyadyk (1966)].  The rational kernels  Kn ( x )  of degree  n  of the form

Kn ( x )  =  
1
2 2

d

dx

N x N x

N x N x

N x N x N x N x

N x N x
n n

n n

n n n n

n n

( ) − (− )
( ) + (− )







= ( ) ′ (− ) + (− ) ′ ( )
( ) + (− )[ ]

(4.11)

possess the following properties:

1.  Kn ( x )  are even rational polynomials of degree  4 
n
2







 ;

2.  
−
∫
1

1

 Kn ( x ) dx  =  1;

3.  

e

n
n

n

K x dx ne
−
∫ ( ) ≤ −
1

3 .
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Proof.  1. The first property is obvious. 

2.  The second property follows from the fact that, by virtue of relations (4.11) and
(4.4), we can write

−
∫
1

1

 Kn ( x ) dx  =  
1
2

1
2

1 1
1

1
N x N x

N x N x
n n

n n

( ) − (− )
( ) + (− )

= ( + )
−

  =  1.

3.  We introduce an auxiliary function  αn  by the formula 

αn ( x )  =  
N x

N x
n

n

(− )
( )

. (4.12)

The denominator of this function  Nn ( x )  is positive for all  x ≥ 0  and, according to re-

lation (4.4), its numerator  Nn ( – x )  is equal to zero at  n  points  ξ 
n

 
–

 
1,  ξ  

n
 
–

 
2, …  , ξ , 1.

Therefore, according to the Rolle theorem, the derivative

′ ( ) = ( ) ′ (− ) + (− ) ′ ( )
− ( )

αn
n n n n

n

x
N x N x N x N x

N x2 (4.13)

and, hence, its numerator 

σn ( x )  : =  N x N x N x N xn n n n( ) ′ (− ) + (− ) ′ ( )

(which is, clearly, an even polynomial of degree  2n – 2)  is equal to zero at a system of

points  ± η i ,  i  =  1, 2, … , n – 1  satisfying the conditions 

ξn
 
–

 
1  <  η n – 1  <  ξn

 
–

 
2  <  η n – 2  <  …  <  ξ  <  η 1  <  1. (4.14)

Obviously, all these zeros are simple and the function  σn ( x )  does not have any other
zeros. 

Further, in view of the fact that, by virtue of equality (4.4), the sum 

Nn ( x )  +  Nn ( – x )  ≥  
k

n k
k

n k

k

n k

x x x

x

=
−

=
−

=
−

∏ ∏

∏

( + ) − − > >

> =









0

1

0

1

0

1

0 0

2 0 0

ξ ξ

ξ

for ,

for ,

we conclude that the polynomial  Nn ( x )  +   Nn ( – x )  does not have any positive zeros.

Thus, the kernel  Kn   has the same zeros as the numerator of  σn ,  i.e., the points  ± η i , 
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and no other zeros.  All these zeros are simple.  Hence, by using equalities (4.11), (4.13),
and (4.12) and inequality (4.8), we obtain 

e

n

e

n n n n

n

n
n

n n

K x dx
N x N x N x N x

N x

N x
N x

dx
− −
∫ ∫( ) = ( ) ′ (− ) + (− ) ′ ( )

+ (− )
( )







( )

1 1

2
21

<  
1

1 2

1

( )−
′ ( )

−
−
∫

e
x dx

n
e

n
n

α  

<  
3
2

1
1

1

2

1

1
1

e

n
n

n

n

n

n

x dx
−

−

−

−

∫ ∫ ∫− + … + (− ) ′ ( )−
η

η

η

η

α

≤  
3
2

3 3
3
2

11 1α α η α η αn
n

n n n ne( ) ( ) ( )−
−+ + … + + ( ).

Since, in view of relation (4.8),  0  ≤  αn ( x )  ≤  e n−   for  x  ≥  e n− ,  we find 

e

n
n

n

K x dx ne
−
∫ ( ) ≤ −
1

3 .

The theorem is proved.
�

Remark 4.1.  A more comprehensive investigation [Dzyadyk (1966)] shows that the ker-
nel  Kn   possesses the following properties: 

e

n
n

n

K x dx e
−
∫ ( ) < −
1

3 ,

Kn ( 0 )  ∼  
n

e n

2
,

−

−

−

−

∫ ( ) ≤ +
e

e

n
n

n

n

K x dx e1 6 ,    etc.
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Remark 4.2.  By using the kernel  Kn ( x ),  one can also construct trigonometric rational
kernels of the form 

˜ cos
cosγ n nK

t t1
2 2

2−





and rational kernels on the entire axis of the form

γ 2 2 2 2

1

1 2
n n n

K x
xe n

( )
+ ( )/

     [Dzyadyk (1966)] 

with similar properties. 

In conclusion, we note that the volume and scope of the present monograph do not al-
low us to dwell upon the very deep results by Gonchar, Vitushkin, Dovzhenko, Gilewicz,
and others concerning the approximation of functions of complex variable by rational
polynomials.

Remarks to Chapter 2

1.  In proving Theorem 1.1, Weierstrass used polynomial kernels  Wn, k ( x )  of the form 

Wn, k ( x )  =  
1

1
1 2

2 2 2 2

γ n

knx nx nx

k
+ (− ) + (− ) + … + (− )







! ! !

, (4.1)

where, for given  ε > 0,  the natural number  n  and the number  c > 0  are chosen to guar-
antee that, for 

γn  : =  
−

−∫
c

c
nte dt

2
,

the “δ-shaped function”  e–
 
n

 
t2

 / γn  (see Section 3) is such that the integral

1 12 2

γ γn c

c
n x t

n x c

x c
ntf t e dt f x t e dt

−

− ( − )

−

+
−∫ ∫( ) = ( − ) (4.2)

approximates the function 
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f ( x )  =  
1 2

γ n c

c
ntf x e dt

−

−∫ ( )

for all  x ∈ [ a, b ]  with an error  < ε / 2.  After this, the natural number  n  is chosen suffi-
ciently large in order that the integral

−
∫
c

c

 f ( t ) Wn, k ( x – t ) dt

(which is obviously a polynomial of degree  2k ) differ from integral (4.2) by less than

ε / 2  for all  x ∈ [ a, b ]. 
Note that the influence of this reasoning on the subsequent development of the theory

of approximation could hardly be overestimated.  Thus, the major part of polynomial ker-
nels analyzed in the present chapter can be regarded as natural (although fairly nontrivial)

generalizations of the kernels  Wn, k ( x ). 

2.  The proof presented in the monograph is a revised version of the proof taken from
[Rudin (1966), pp. 178–186]. 

3.  Note that, as a result of the generalization of some S. Nikol’skii’s results [S. Ni-
kol’skii (1940a)], Verbitskii (1940) proved that if the number  

r  : =  n m
n m

+
−

is odd, then the following equality is true: 

1 1 2 1

1

1 2

π
( ) = +

π
π

− π

π

=

( − )

∫ ∑V t dt
r rm

n
r

ν ν
ν/

tan .

Stechkin (1951) showed that if the number 

r  =  n m
n m

+
−

is even, then 

1 4 1
2 1

2 1
21

2

π
( ) =

π −
π( − )

− π

π

=
∫ ∑V t dt

rm
n

r

ν ν
ν/

tan .
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4.  Equality (3.21) was established by Korneichuk (1959) by using a different method.
The quantity  rn  was estimated as follows: 

0  <  rn   <  
2

3 2 1( + )n
.

5.  It seems likely that this substitution was used, for the first time, by Dzyadyk
(1958). 

6.  Much more accurate estimates are available at present. 



Chapter 3
On smoothness of functions

Results of Chebyshev and Weierstrass laid the foundation for the theory of approximation
of functions and had a significant impact on its further development.  It follows from the

Weierstrass theorem that, for any continuous function  f  on  [ a, b ] ,  we have 

lim
n

nE f
→∞

( )  =  0.

The following question now naturally arises:  What properties of the function  f  do

affect the rate of convergence of the sequence  { En ( f ) }  to zero and how strong is this
influence?  It turns out that the higher the smoothness of the function, the higher the rate

of convergence of  En ( f )  to zero.  Roughly speaking, in the class of analytic functions, a

function is assumed to be smoother, e.g., on  [ – 1, 1 ] ,  if the distance from its nearest sin-

gular point to  [ – 1, 1 ]   is larger;  next to analytic functions are infinitely differentiable
ones.  If a function  f  has more derivatives than a function  g,  then  f  is assumed to be
smoother than  g. 

In what follows,  A = A ( a, b )  denotes the class of functions analytic on an interval

( a, b )  and  M W [ r, [  a, b ] ],  where  r  is natural, denotes the class of functions  f  for
which all derivatives up to the  ( r – 1 ) th order exist and are absolutely continuous on

[ a, b ]  and the derivative  f ( 
r

 
)  satisfies the condition  f xr( )( )  ≤ M  almost everywhere

on  [ a, b ] ;  if  M = 1,  then, for simplicity, we denote the corresponding class simply by

W [ r, [ a, b ] ] : 

W [ r, [ a, b ] ]  : =  1 ⋅ W [ r, [ a, b ] ].

By  W  
r

 ( [ a, b ] )  we denote the space of functions each of which belongs to the class

MW [ r, [ a, b ] ]  for some  M.  As is customary,  C = C ( [ a, b ] )  denotes the space of all

continuous functions on  [ a, b ],  and  C 
(
 
r

 
) = C 

(
 
r

 
)

 ( [ a, b ] )  denotes the space of  r  times

continuously differentiable functions on [ a, b ] . 
In this chapter, to compare the smoothness of two continuous functions  f  and  g  that

either have the same number of derivatives or do not have derivatives at all, we use spe-

cial characteristics (moduli of continuity) of these functions (or of their derivatives  f ( 
r

 
)
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and  g 
(
 
r

 
),  respectively);  we assume that, of two functions, the function whose modulus

of continuity converges to zero at higher rate is smoother. 

As a rule, we denote classes and spaces of  ω-periodic functions defined on the entire
axis by a tilde over the corresponding symbol of a class or a space and indicate the period

in brackets.  For example,  C̃  = C̃  [ 0, 2π ]  and  C̃ r( )  = C̃ r( )
 [ 0, 2π ]  are the spaces of all

2π  -periodic functions, respectively, continuous and  r  times continuously differentiable
on the entire axis.  However, we omit the tilde if this does not lead to misunderstanding. 

1. Modulus of continuity (of the first order)

1.1.  Definition.  Examples

Definition 1.1.  For a function  f  continuous on  [  a, b  ] ,  the first-order modulus of

continuity, or, simply, the modulus of continuity, is the function  ω  ( u ) = ω ( u; f ; [ a, b ] )
defined on  [ 0, b – a ]  by the equality 

ω ( u; f ; [ a, b ] ) =  sup
–a x b h

h u
≤ ≤

≤ ≤0

 f x h f x( + ) − ( )  , (1.1)

or, which is the same, 

ω ( u; f ; [ a, b ] ) =  sup
–

, ,
| | ≤

∈[ ]
x x u

x x a b
2 1

1 2

 f x f x( ) − ( )1 2  . (1.1′ )

According to this definition, the modulus of continuity  ω ( u; f ; [ a, b ] )  of a function

f  indicates, for every fixed  u ∈  [ 0, b – a ] ,  the amplitude of maximal oscillation of the
function on an arbitrary segment of length  u  contained in  [ a, b ] . 

In particular, this yields 

f x h f x( + ) − ( )   ≤  ω ( h ),      x, x + h ∈ [ a, b ] ;
(1.2)

f x f x( ) − ( )2 1   ≤  ω x x2 1−( ),      x 1, x 2 ∈ [ a, b ] .

This definition remains valid for the infinite interval  ( – ∞, ∞  ) ,  provided that the
function is uniformly continuous on it. 

Example 1.1.  Let  f ( x ) = Ax + B,  x ∈ ( – ∞, ∞  ) .  Then, for any  u ≥ 0,  we have 

ω ( u )  =  sup
–∞< <∞

≤ ≤
x

h u0

 A x h B Ax B( + ) + − −   =  sup
0≤ ≤h u

 Ah   =  A u.
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1
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3

1 2 3 4

y

x

y = f (x)

     

1

2

3

1 2 3 4

y

y = ω (u)

u

(a) (b)

Fig. 4

Example 1.2.  Let the graph of a function  f  has the form shown in Fig. 4a.  Then the

graph of the function  ω  has the form shown in Fig. 4b. 

Example 1.3.  Let  f ( x ) = sin x,  x ∈ ( – ∞, ∞  ) .  Then, for any  u ≥ 0,  we have 

ω ( u )  =  sup
–∞< <∞

≤ ≤
x

h u0

 sin sin( + ) − ( )x h x   =  2
2 2

0

sup  cos sin
–∞< <∞

≤ ≤

+( )
x

h u

x
h h

=  sup  sin
0 2≤ ≤h u

h
  =  

2
2

2

sin if   ,

if   .

u
u

u

≤

≥







π

π

Remark 1.1.  Let  t ′  and  t ′′  be two arbitrary points on the real axis.  Since, among
points of the type 

˜ ′′t   =  t ′′ + 2 k π,      k = 0, ± 1, ± 2, ± … ,

there exists at least one point  ˜ ′′t   =  t ′′ + 2 k 0 π  such that  ˜′′ − ′t t  ≤ π,  we conclude that,

for any  2π -periodic continuous function  f,  the following relation holds for any  u ≥ π  : 

ω ( u )  =  sup
–   | ′′ ′ | ≤t t u

 f t f t( ′′) − ( ′)   =  sup
˜ –   | ′′ ′ | ≤t t π

 f t f t( ′′ ) − ( ′)˜   =  ω ( π ) .

Therefore, for any function of this type,  ω ( u )  is constant for all  u ≥ π. 
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Remark 1.2.  If, for some  u ∈ [ 0, π ] ,  one has 

ω ( u )  =  sup
–
 

∞< <∞
≤ ≤

t

h u0

 f t h f t( + ) − ( )   =  f t h f t( + ) − ( )0 0 0 ,

where  0 ≤ h 0 ≤ u ≤ π,  then, by virtue of the periodicity of the function  f,  we can always

assume that  t 0 ∈ [ 0, 2π ]  and, hence,  t 0  + h 0 ∈  [ 0, 3π  ] .  Therefore, in the investigation

of the modulus of continuity of a  2π -periodic function, we can restrict ourselves to the

values of the argument of this function lying on the segment  [ 0, 3π  ]  or on some other

segment of length  3π  and forget about the periodicity of  f  .  However, as shown by Ex-
ample 1.4, if the modulus of continuity is considered for the values of the argument of a

2π  -periodic function  f  from a segment of length smaller than  3π,  then, generally speak-
ing, this modulus of continuity differs from the modulus of continuity of the function  f
on the entire axis. 

Example 1.4.  For  ε < π / 3,  we set 

ϕ ( x )  =   

–
–

for , – ,

–
for – , ,

x
x

x
x

π ε
π ε

π
ε

π ε π

2
0 2

2
2

1

∈[ ]

( )
∈[ ]

ππ ε
π π ε

ε
π π ε

–
– for , – ,

– – for – ,

( ) ∈[π ]

( ) ∈[

x x

x x

2

1
2 2 22π]

















 .

Let 

f ( x )  : =  ϕ
π

πx
x

–
2

2



( )

be the  2π -periodic extension of the function  ϕ  onto the entire axis.  If the function  f  is

considered on the segment  [ 0, 3 π – 3 ε ]  of length  3 π – 3 ε < 3 π,  so that (see Fig. 5a) 

f ( x )  =  

ϕ π

π
π ε

π π ε

( ) ∈[ ]

− −
−

∈[ ]





x x

x
x

for , ,

for , – ,

0 2

2 3 3
2

2





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y

–1

1

xπ
– 2π ε

2π – ε
3π – 3ε

(a)

1

2

y

uε 2ε π – 2ε π

π + ε

2π

y = ω(u)

(b)

Fig. 5

then one can easily see (Fig. 5b) that 

ω ( u ; f )  =   

, ,

–

–
, – ,

–

1
0

1
2

2

1

ε
ε

ε
π ε

ε π ε

π

u u

u
u

for

for

∈[ ]

∈[ ]+

+

3εε
π ε

π ε π ε
π ε

ε
π ε

–
– , –

–
,

–

–

2
2

2

1
2

2

for

for

u

u

∈





+ uu

u

∈ +





∈[ + ]







π ε
π ε

π ε

π ε π ε

–
–

, ,

, – ,

2

2

2 3 3for

















i.e., the modulus of continuity of the function  f :  [ 0, 3 π – 3 ε ] → R  does not attain its
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greatest value at the point  π  and, hence, differs from the modulus of continuity of the
function on the entire axis. 

1.2.  Properties of the modulus of continuity

The modulus of continuity possesses the following properties: 

(i) ω ( 0 )  =  0; 

(ii) ω  is a nondecreasing function; 

(iii) ω  is a continuous function; 

(iv) ω  is a semiadditive function in the sense that, for any  u 1 ≥ 0  and  u 2 ≥ 0,  one
has 

ω ( u 1 + u 2 )  ≤  ω ( u 1 )  +  ω ( u 2 ). (1.3)

Proof.  Property (i) follows from the definition of modulus of continuity.  Property (ii)
follows from the fact that, for large  u,  we must consider the supremum on a wider set of

values of  h.  Property (iv) follows from the fact that, representing a number  h ∈  [ 0,

u 1 + u 2 ] � [ 0, b – a ]  in the form  h = h 1 + h 2,  h 1 ∈ [ 0, u 1 ],  h 2 ∈ [ 0, u 2 ] ,  one obtains 

f h h f a b h(⋅ + + ) − (⋅) [ − ]1 2 ,

≤  f h h f h a b h(⋅ + + ) − (⋅ + ) [ − ]1 2 2 ,   +  sup
0 2 2≤ ≤h u

f h f a b h(⋅ + ) − (⋅) [ − ]2 ,   

≤  ω ( u 1 ) + ω ( u 2 ),

which yields inequality (1.3).  It follows from (1.3) that if  0 ≤ u 1 ≤ u 2,  then 

ω ( u 2 )  =  ω ( u 2 – u 1 + u 1 )  ≤  ω ( u 2 – u 1 )  +  ω ( u 1 ),

i.e., 

ω ( u 2 )  –  ω ( u 1 )  ≤  ω ( u 2 – u 1 ). (1.4)

Let us prove property (iii).  Since the function  f  is uniformly continuous on  [ a, b ] ,

we have  ω ( ∆ ) → 0  as  ∆ → 0  and, hence, for any  u,  u + ∆ u ∈ [ 0, b – a ],  we get 
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ω ω( + ) − ( )u u u∆   ≤  ω ∆u( )  →  0      as    ∆ u → 0,

which implies that the function  ω  is continuous. 
In conclusion, we make the following remarks: 

Remark 1.3.  Properties (i)–(iv) completely determine a modulus of continuity in the
sense that any function  f  that possesses these properties is the modulus of continuity for a
continuous function, namely for itself; thus, for such a function, we have 

ω ( u ; f, [ 0, b – a ] )  ≡  f ( u ) .

Indeed, if  f ( x ),  x ∈  [ 0, b – a ],  possesses properties (i)–(iv), then, for any  x  and

x + h ∈ [ 0, b – a ],  h > 0,  we have  f ( x + h )  ≤  f ( x ) + f ( h ),  and, for any  u ∈  [ 0, b – a ],
we get 

f ( u )  =  f ( u ) – f ( 0 )  ≤  ω ( u ; f, [ 0, b – a ] )

≤  sup
– –0

0
≤ ≤

≤ ≤
x b a h

h u

 f x h f x( + ) − ( )   ≤  sup
0≤ ≤h u

 f ( h )  =  f ( u ),

i.e., 

ω ( u ; f, [ 0, b – a ] )  =  f ( u ) .

For this reason, in what follows, any function  ω  that possesses properties (i)–(iv) is
called a modulus of continuity. 

Remark 1.4.  Property (iv) (the semiadditivity of  ω)  is not always easy to verify.  There-
fore, of interest is the following sufficient condition for the semiadditivity of a function

α  ( u ),  u > 0: 

If  
α( )u

u
  is a nonincreasing function, then the function  α  ( u )  is semiadditive. 

Indeed, if  
α( ) ↓u

u
,  then 

α( +
+

u u

u u
2 1

2 1

)
  ≤  

α( )u

u
      for    0 < u < u 1 + u 2,
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whence 

α  ( u 2 + u 1 )  =  u 2
α( +

+
u u

u u
2 1

2 1

)
  +  u 1

α( +
+

u u

u u
2 1

2 1

)

≤  u 2
α( )u

u
2

2

  +  u 1
α( )u

u
1

1

  =  α  ( u 2 ) + α  ( u 1 ),

which was to be proved. 

The remarks presented above enable one to obtain the following important examples
of a modulus of continuity: 

Example 1.5.  All functions of the form  M u 
α  (  u ≥ 0 ),  where  M = const ≥ 0  and  0 <

α ≤ 1,  are moduli of continuity. 

Example 1.6.  For  0 < α ≤ 1,  the function 

ω ( u )  =   

   ,

ln , ,

  

–

0 0

1
0

1

1

for

for

for

u

u
u

u e

e
u

=

∈( )

≥

/α α

α
ee–1/















α

is a modulus of continuity. 

Example 1.7.  For  0 ≤ α < 1,  the function 

ω ( u )  =   

           ,

         
ln

, ,

  –

/

– ( – ) – ( – )

0 0

1 0

1

1 1

1 1 1

for

for

for

u

u

u

u e

e u e

=

∈( )

( ) ≥














− ( − )

/ /

α
α

α α αα

is a modulus of continuity.

The modulus of continuity also possesses the following properties, which are conse-
quences of properties (i)–(iv): 



Section 1 Modulus of continuity (of the first order) 175

Property (v).  For any natural  n  and  nu ∈ [ 0, b – a ] ,  one has 

ω ( n u )  ≤  n ω ( u ), (1.5)

and, for any  λ > 0,  ( λ + 1 ) u ∈ [ 0, b – a ] ,  one has 

ω ( λ u )  ≤  [ λ + 1 ] ω ( u )  ≤  ( λ + 1 ) ω ( u ) . (1.6)

Indeed, for  n = 1,  inequality (1.5) is trivial.  Assuming that it is true for some  k ≥ 1,
by virtue of property (iv) we get

ω ( ( k + 1 ) u )  =  ω ( k u + u )

≤  ω ( k u ) + ω ( u )  ≤  k ω ( u ) + ω ( u )  =  ( k + 1 ) ω ( u ) .

In turn, this implies that inequality (1.5) holds for all natural  n. 

If  λ  is an arbitrary positive number, then, according to property (ii) and inequality
(1.5), we have 

ω ( λ u )  ≤  ω ( [ λ + 1 ] u )  ≤  [ λ + 1 ] ω ( u )  ≤  ( λ + 1 ) ω ( u ) .

Note that the inequality  ω ( λ u ) ≤ [ λ + 1 ] ω ( u ),  i.e., the first part of inequality (1.6), is

exact in the sense that the multiplier  [ λ + 1 ]  cannot be decreased.  To this end, we show

that, for any noninteger  λ > 0,  there exist moduli of continuity  ω ( u )  for which this in-
equality turns into an equality for a certain  u. 

For definiteness, we restrict ourselves to the case  1 < λ < 2.  We set (see Fig. 6) 

f ( x )  =   

–
– ,

– ,

–
–

1

1
0 1

1 1 1

1
1

1
1

λ
λ

λ

λ

x x

x

x

for

for

for

≤ ≤

≤ ≤

+ ( ) 11

2

≤ ≤

≥

















x

x

λ

λ

,

.for

Then, obviously,  ω ( u; f ) = f ( u ),  and, consequently, we obtain the following relation for
u = 1: 

ω ( λ u; f )  =  ω ( λ ; f )  =  f ( λ )  =  2  =  [ 1 + λ  ] f ( λ )  =  [ 1 + λ  ] ω ( u; f ).



176 On smoothness of functions Chapter 3

1

2

y

1 λλ – 1

Fig. 6

Property (vi).  For any  ω  and all  u ∈ [ 0, b – a ],  we have 

ω ( u )  ≥  
ω( )

( )
b a

b a
u

–
–2

 . (1.7)

Indeed, for any  u ∈ [ 0, b – a ],  we get 

ω ( b – a )  =  ω u
b a

u

–



   ≤  

b a

u

– +( )1 ω ( u ) 

=  
b a

u

u

b a

–
–

1 +( )ω ( u )  ≤  
b a

u
u

–
2ω( ) ,

which yields inequality (1.7). 
As is shown by the example of the function 

f ( x )  =   

, , ,

, , – ,

– , –

1
0

1 1

1
1

1 1

ε
ε

ε ε

ε
ε ε

x x

x

x x

∈[ ]

∈[ ]

+ ( + ) ∈[ ,, ,1]















the constant  
ω( )

( )
b a

b a

–
–2

  on the right hand side of (1.7) cannot be increased. 

1.3.  Concave majorant

Definition 1.2.  We say that a function  α  defined on a segment  [  a, b  ]  is concave if
the relation 
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α µ µ µα µ α( )+ ( − ) ≥ ( ) + ( − ) ( )t t t t1 2 1 21 1 (1.8)

holds for any  t 1, t 2 ∈ [ a, b ]  and  µ ∈ ( 0, 1 ) . 

Definition 1.3.  Let  ω  be an arbitrary modulus of continuity defined on a segment

[ 0, a ] .  The function  ω*  defined by the formula 

ω* ( t )  =  sup
–   –

–0≤ < < ≤

( ) ( ) + ( ) ( )
x t y a

t x y y t x
y x

ω ω
(1.9)

is called the least concave majorant of the modulus of continuity  ω. 

It is obvious that the graph of this function is a curve that bounds from above the
smallest convex figure containing the curvilinear trapezoid bounded by the curve

y = ω ( t )  from above, by the abscissa axis from below, and by the straight line  y = a
from the right.  It possesses the following property: 

Property (vii).  The function  ω*  possesses the following properties: 

(a) the function  ω*  is a modulus of continuity, so that 

ω ( 0 )  =  0,      ω* ↑,      ω * ∈ C [ 0, a ],

and 

ω * ( t 1 + t 2 )  ≤  ω* ( t 1 ) + ω * ( t 2 ),      t 1, t 2 > 0,    t 1 + t 2 ≤ a ;

(b) the modulus of continuity  ω*  is concave, and, therefore, 

ω µ µ µω µ ω* * *( )+ ( − ) ≥ ( ) + ( − ) ( )t t t t1 2 1 21 1 ,

(1.10)

ω* ( λ t )  ≤  λ  ω* ( t )    ( λ > 1,  0 < t 1, t 2 < a,  µ ∈ ( 0, 1 ) );

(c) for any  t ∈  [ 0, a ] ,  the following inequalities established by Stechkin (see [Efi-
mov (1961), p. 78]) are true: 

ω ( t )  ≤  ω* ( t )  ≤  2 ω ( t ). (1.11)

The first inequality in (1.11) is obvious.  The second inequality follows from the fact
that, by virtue of (1.9), for any  0 < x < t < y ≤ a  we have 
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ω* ( t )  ≤  sup
–

–   –
1

1
y x

t x
y
t

y t( ) +( ) + ( )



  ω ( t )

≤  sup   
–
–

ω( ) + ( )
( )







t
y t x
t y x

1   =  sup   
–

–
ω( ) +















t

x

t
x

y

1
1

1
  ≤  2 ω ( t ),

where the least upper bounds are determined under the condition that  0 ≤ x < t < y ≤ a. 

2. Classes of functions defined by the first modulus of continuity

2.1.  Hölder (Lipschitz) classes and spaces

Using the notion of modulus of continuity, we introduce several classes of functions.  Let

J ⊂ [ a, b ]  be a closed interval. 

Definition 2.1.  For any fixed  α  ∈  ( 0, 1 ] ,  the Hölder (or Lipschitz) space of order  α
is the set of all functions  f ∈  C( J ) = C ( [ a, b ] )  whose moduli of continuity satisfy the
condition 

ω ( u; f ; J )  ≤  M u 
α, (2.1)

where  M  is a positive constant that does not depend on  u  and, generally speaking, is

different for different functions.  This space is denoted by  H 
α( J )  or  Lip α ( J ). 

By  M  H [ α, J ]  or  M Lip [ α, J ]  (or  Lip α M )  we denote the class of all functions

from the Hölder (or Lipschitz) space of order  α  that satisfy condition (2.1) for the same

value  M.  It is obvious that if  f ∈ MH [ α, J ],  then necessarily  f ∈ H 
α( J ) . 

Conversely, if  f ∈ H 
α( J ),  then, for some  M  (possibly fairly large), we have  f  ∈

MH [ α, J ].  Denote  H [ α, J ] : = 1H [ α, J ] .

Remark 2.1.  By virtue of property (vi), no modulus of continuity  ω ( u ) � 0  can be an

infinitesimal of order higher than  u  as  u →  0.  Therefore, inequality (2.1) is impossible

for  α > 1.  Hence, there is no sense in considering the classes  H [ α, J ]  for  α > 1. 

The examples presented above show that, for all  0 < α ≤ 1,  the following assertions
are true: 
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(i) M x 
α ∈ MH [ α, [ 0, c ] ],  c = const,  and, hence,  M x 

α ∈ H 
α

 ( [ 0, c ] ) ; 

(ii)
x

x

α

ln
1  ∈ H 

α
 ( [ 0, c ] ) ; 

(iii) x
x

α ln
1

 ∈ H 
α

 ( [ 0, c  ] )  and, at the same time, for any  ε  ∈  ( 0, α  )  one has

x
x

α ln
1

 ∈ MH [ α – ε, [ 0, e 
–

 
1

 
/

 
α

 ] ],  where  M ≥ 
1
eε

.

In approximation theory, the modulus of continuity plays an important role only for

sufficiently small values  u.  Therefore, we assume that  u ∈  [ 0, 1 ].  Then, for any  0 <

α < β ≤ 1,  we get  u α ≥ u β. 

This implies that  H 
β

 ( J )  � H 
α

 ( J )  for  α  < β.  In other words, the less the order  α,

the broader the class  H 
α

 ( J ). 

2.2.  Class  Lip 1

Among all Hölder classes of order  α,  the most important is the class  H [ 1, J ] . This class
is often called the Lipschitz class and is denoted by  Lip 1. 

Theorem 2.1.  In order that a function  f  belong to  M H [ 1, J  ] ,  it is necessary and

sufficient that this function be absolutely continuous and such that  f ′  satisfies the fol-
lowing inequality almost everywhere on  [ a, b ] : 

′( )f x   ≤  M.

Proof.  Necessity.  Let  f ∈ MH [ 1, J ],  i.e.,  ω  ( u ) ≤ M u.  We prove that, in this case, the

function  f  is absolutely continuous.  Indeed, consider an arbitrary  ε > 0  and an arbitrary

set of disjoint elementary intervals  ( a k, bk )  such that 

k

n

=
∑

1

 ( bk – a k )  <  
ε
M

.

Since 

k

n

=
∑

1

f b f ak k( ) − ( )   ≤  
k

n

=
∑

1

 M ( bk – a k )  <  M 

ε
M

  =  ε,



180 On smoothness of functions Chapter 3

the function  f  is indeed absolutely continuous on  [  a, b ],  and, hence, it has the almost-

everywhere finite derivative  f ′,  which satisfies (at the points where it exists) the follow-
ing inequality: 

′( )f x   =  lim
 –  

h

f x h f x

h→

( + ) ( )
0

  ≤  lim
h

Mh
h→0

  =  M.

Sufficiency.  Let  f  be an absolutely continuous function and let  ′( )f x  ≤ M  a.e.  We
prove that, in this case, one has  f ∈ M [ 1, J ].  Indeed, since  f  is absolutely continuous, it

is the indefinite integral of its own derivative, and, hence, for all  x ∈  J  and  h > 0  such

that  x + h ∈ J,  we obtain 

f x h f x( + ) − ( )   =  
x

x h

f t dt
+

∫ ′( )   ≤  
x

x h+

∫  ′( )f t  d t  ≤  M dt
x

x h+

∫   =  M h.

This means that  ω ( u; f ; J ) ≤ M u,  i.e.,  f ∈ MH [ 1, J ] . 

Corollary 2.1.  For any  M > 0  and  J = [ a, b ],  one has 

MW [ 1, J ]  =  MH [ 1, J ], (2.2)

whence 

W 
1

 ( J )  =  H 
1

 ( J ). (2.3)

2.3.  Dini–Lipschitz condition

Definition 2.2.  We say that a continuous function   f  satisfies the Dini–Lipschitz condi-
tion if 

ω ( u; f ; J )  =  o
u

1

1ln ( )






      as    u → 0. (2.4)

It is easy to see that if  f ∈ H 
α

 ( J )  for some  α > 0,  then  ω ( u; f ; J )  =  o
u

1

1ln ( )






,

i.e., every function  f  that belongs to a Hölder space also necessarily satisfies the Dini–
Lipschitz condition.  The fact that the converse statement is not true can be established by
considering the function 
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f ( t )  =  
1
2ln t

,

for which 

ω ( u; f  [ 0, e 
–

 
2

 ] )  =  
1
2ln u

and which satisfies the Dini–Lipschitz condition.  Nevertheless, this function does not be-

long to any space  H 
α

 ( J )  (α > 0). 

2.4.  Classes  H [ ϕϕϕϕ, J ]

A natural generalization of the Hölder classes is provided by so called classes  H [ ϕ, J ] . 

Definition 2.3.  Let  ϕ  be a function that is a modulus of continuity and let  M   be a

constant.  Then  MH [ ϕ, J ]  denotes the class of all continuous functions  f  for which 

ω ( u; f ; J )  ≤  M ϕ ( u ), (2.5)

and  H Jϕ( )  is the set of all functions each of which belongs to  MH J[ , ]ϕ   for some  M.

In the set of all differentiable functions, an important role is played by classes of func-
tions defined as follows: 

Definition 2.4.  For any fixed natural  r,  we denote by 

W 
r

 H [ α, J ] ,    MW 
r

 H [ α, J ] ,    W 
r

 H [ ϕ, J ] ,    MW 
r

 H [ ϕ, J ] ,    etc.

the classes of functions  f  that have continuous derivatives up to the order  r  and whose
r th derivatives belong to the classes  H  [ α, J ] ,  MH [ α, J ] ,  H  [ ϕ, J ] ,  and  MH [ α, J  ] ,
respectively.  Furthermore, for  r = 0,  we set 

W 
0

 H [ α, J ]  =  H [ α, J ],      MW 
0

 H [ α, J ]  =  MH [ α, J ],

W 
0

 H [ ϕ, J ]  =  H [ ϕ, J ],      MW 
0

 MH [ ϕ, J ]  =  MH [ ϕ, J ] .

If, in addition, the functions of a given class are  2π  -periodic and we want to em-

phasize this fact, then we denote this class by  H̃  [ α ],  H̃  [ ϕ ],  etc. 
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3.  Lagrange polynomials. Divided and finite differences

Let a number  m ∈ N  and points  x i ∈ R,  i = 0, ,… m,  be given.  The points  xi   are as-

sumed to be different, i.e.,  x i ≠ x j  if  i ≠ j.  Let a function  f :  { } =xi i
m

0 → R  be defined at

points  x i,  i = 0, ,… m. 

3.1.  Lagrange polynomials

Denote  L ( x ; f ; x 0 ) : = f ( x 0 ) . 

Definition 3.1.  A Lagrange polynomial 

L ( x ; f )  : =  L ( x ; f ; x 0 , x 1, … , x m ) (3.1)

that interpolates a function  f  at points  x  0 , x 1, … , x m  (interpolation nodes) is defined

as an algebraic polynomial of at most  m th order that takes the same values at these
points as the function  f,  i.e., 

L ( x i ; f  )  =  f ( x i ),    i = 0, ,… m. (3.2)

For example, for  m = 1  we have 

L ( x ; f ; x0 
, x1 )  =  

x x

x x

–

–
1

0 1
 f ( x 0 )  +  

x x

x x

–

–
0

1 0
 f ( x 1 )

=  f ( x 0 )  +  
f x f x

x x
x x

( ) ( )
( )1 0

1 0
0

–

–
– . (3.3)

Definition 3.2.  The polynomials 

l j ( x )  : =  l j ( x  ; x 0 , … , x m )  : =  
i i j

m
i

j i

x x

x x= ≠
∏
0,

–
–

,    j = 0, ,… m, (3.4)

are called the fundamental Lagrange polynomials. 

We set  p ( x ) : = ( x – x 0 ) ( x – x 1 ) … ( x – x m )  and note that 

p ′ ( x j )  =  lim
–x x jj

p x

x x→

( )
( )

  =  lim
,x x i i j

m

j→ = ≠
∏
0

 ( x – x i )  =  
i i j

m

= ≠
∏
0,

 ( x j – x i ).
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Therefore, for any  j = 0, ,… m,  the fundamental Lagrange polynomials are represent-
able in the form 

l j ( x  ; x 0 , x 1, … , x m )  =  
p x

x x p xj j

( )
( ) ′( )–

,    x ≠ x j .

Let  δi j,   denote the Kronecker symbol, which is equal to 1 for  i = j  and to 0 other-

wise. 

It follows from the obvious equality  l  j ( x i ) = δi j, ,  i, j = 0, ,… m,  that the Lagrange

polynomial exists and is representable by the relation 

L ( x  ; f ; x0 
, x1 

, … , xm )  =  
j

m

=
∑

0

 f ( x j ) l j ( x  ; x 0 , x 1, … , x m ). (3.5)

By using the main theorem of algebra on the number of zeros of an algebraic polyno-
mial, we can prove the uniqueness of the Lagrange polynomial and the validity of the fol-
lowing identity for any algebraic polynomial  Pm   of degree  ≤ m : 

L ( x  ; Pm ; x 0 
, x 1, … , x m )  ≡  Pm ( x ). (3.6)

Also note that, considered as an operator, the Lagrange polynomial is linear.  Indeed,
if we have another function  g  defined at points  xi   along with the function  f,  then 

L ( x  ; a f + bg )  =  
j

m

=
∑

0

 l j ( x ) ( a f ( x j ) + bg ( x j )) 

=  a 

j

m

=
∑

0

 l j ( x ) f ( x j )  +  a 

j

m

=
∑

0

 l j ( x ) g ( x j )

=  a L ( x  ;  f )  +  b L ( x  ;  g ),      a, b = const. (3.7)

3.2.  Divided differences

Let us divide the difference 

f ( x )  –  L ( x  ; f ; x 0 , … , x m – 1 )
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by the product  ( x – x 0 ) … ( x – x m – 1 ).  Using (3.4) and (3.5), we represent the quotient at

the point  x = x m  as follows: 

f x L x f x x

x x

m m m

m jj

m

( ) ( … )

( )=
=∏

 – ; ; , ,

–

–0 1

0

1   =  
f x

x x

j

j ii i j

m
j

m ( )

( )= ≠= ∏
∑

–
,00

 

= :  [ x 0 , x 1, … , x m ; f ] . (3.8)

Definition 3.3.  The expression  [ x 0 , x 1, … , x m ; f ]  is called the divided difference of

order  m   for the function  f  at the points  x  0 , x 1, … , x m  (nodes of the divided differ-

ence). 

For example, 

[ x 0 
, x 1 ; f ]  =  

f x

x x

( )0

0 1–
  +  

f x

x x

( )1

1 0–
  =  

f x f x

x x

( ) ( )0 1

0 1

–

–
, (3.9)

[ x 0 
, x 1, x 2 ; f ]  =  

f x

x x x x

( )
( )( )

0

0 1 0 2– –
  +  

f x

x x x x

( )
( )( )

1

1 0 1 2– –
  +  

f x

x x x x

( )
( )( )

2

2 0 2 1– –
.

Let 

[ x 0 ; f ]  : =  f ( x 0 ). (3.10)

Note that the divided difference is symmetric with respect to the points  xi ,  i.e., the
value of the divided difference does not change if the points  xi   on the right hand side of
(3.8) are interchanged.  For example, for divided differences of order 1 we obtain the

equality  [ x 0 , x 1 ; f ] = [ x 1, x 0 ; f ] ,  for divided differences of order 2 we get 

[ x 0 
, x 1, x 2 ; f ]  =  [ x 0 

, x 2, x 1 ; f ]  =  [ x 1, x 0 , x 2 ; f ]  

=  [ x 1, x 2, x 0 ; f ]  =  [ x 2, x 0 , x 1 ; f ]  =  [ x 2, x 1, x 0 ; f ],

and so on. 

Theorem 3.1.  The Lagrange polynomial  L  ( x  ; f ; x  0 , … , x  m  )  can be represented by

the following Newton formula: 
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L ( x  ; f ; x 0 
, x 1, … , x m ) 

=  [ x 0 ; f ]  +  [ x 0 , x 1 ; f ] ( x – x 0 )

+ … + [ x 0 
, x 1, … , x m ; f  ] ( x – x 0 ) ( x – x 1 ) … ( x – x m – 1 ). (3.11)

Proof.  For  m = 1,  formula (3.11) follows from (3.3), (3.9), and (3.10).  Assume that
(3.11) is true for a number  m – 1.  By induction, let us prove that this formula is true for
the number  m,  i.e., 

L ( x  ; f ; x 0 
, … , x m )  =  L ( x  ; f ; x 0 

, … , x m – 1 )  +  [ x 0 
, … , x m ; f  ] ( x – x 0 ) … ( x – x m – 1 ).

Since both parts of this equality are polynomials of degree  ≤ m,  it suffices to prove that
this equality holds at all points  xi ,  i = 0, ,… m.  By the definition of Lagrange polyno-
mial (Definition 3.1), for all  i = 0 1, ,… −m   we have 

L ( x i  ; f ; x 0 
, … , x m – 1 )  +  [ x 0 , … , x m ; f  ] ( x i – x 0 ) … ( x i – x m – 1 )

=  f ( x i ) + 0  =  L ( x i  ; f ; x 0 
, … , x m ) ;

for  i = m,  according to (3.8) we obtain 

L ( x m  ; f ; x 0 
, … , x m – 1 )  +  [ x 0 , … , x m ; f  ] … ( x m – x 0 ) … ( x m – x m – 1 )

=  f ( x m )  =  L ( x m  ; f ; x 0 
, … , x m ).

�

Corollary 3.1.  If  x  i ∈  [ a, b ] ,  i = 0, ,… m,  and the function  f  has the  m  th deriva-

tive on  ( a, b ),  then there exists a point  θ ∈ ( a, b )  such that 

[ x 0 , … , x m ; f  ]  =  
1
m!

 f ( 
m

 
)
 ( θ ). (3.12)

Indeed, the function  f ( x ) – L ( x  ; f ; x 0 , … , x m )  vanishes at at least  m + 1  points  xi .

Therefore, according to the Rolle theorem, there exists a point  θ ∈ ( a, b )  at which 

f ( 
m

 
)
 ( θ )  –  L 

(
 
m

 
)
 ( θ  ; f ; x 0 

, … , x m )  =  0.
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On the other hand, according to (3.11), we have 

L 
(

 
m

 
)
 ( θ  ; f ; x 0 

, … , x m ) ≡ m! [ x 0 , … , x m ; f  ].

Hence, relation (3.12) is true. 

It will be shown in Section 8 that if  f ( 
m

 
)
 ( x 0 )  exists, then 

lim
, , ,x x i mi → = …0 1

 [ x 0 , … , x m ; f  ]  =  
1
m!

 f ( 
m

 
)
 ( x 0 ) ,

i.e., the divided difference of order  m  is approximately equal to the coefficient of

( x – x0 ) 
m  in the Taylor formula for the function  f . 

Corollary 3.2.  If  Pm −1  is a polynomial of degree  ≤ m – 1,  then 

[ x 0 
, … , x m ; Pm −1  ]  =  0. (3.13)

If  f ( x ) = x 
m,  then 

[ x 0 
, … , x m ; f  ]  =  1. (3.14)

Note that relation (3.13) can also be derived directly from (3.8) and (3.6), and relation
(3.14) follows from (3.8) and the obvious identity 

Pm ( x )  –  L ( x  ; Pm ; x 0 
, … , x m – 1 )  =  a 0 ( x – x 0 ) … ( x  – x m – 1 ), (3.15)

where  Pm ( x ) = a 0 x 
m + … + a m  is a polynomial of degree  m. 

Lemma 3.1.  The following identity is true: 

( x 0 – x m ) [ x 0 , … , x m ; f  ]  =  [ x 0 , … , x m – 1 ; f  ]  –  [ x 1, … , x m  ; f  ] . (3.16)

Proof.  Let  L ( x ) : = L ( x  ; f ; x 0 
, … , x m ). It follows from (3.11) that 

L 
(

 
m

 
–

 
1

 
)( x )  =  [ x 0 

, … , x m – 1 ; f  ] ( m – 1 ) !

+  [ x 0 
, … , x m ; f  ] ( m ! x – ( m – 1 ) ! )( x 0 + … + x m – 1 )).

Interchanging the points  x 0  and  x m  in (3.11), we get 
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L 
(

 
m

 
–

 
1

 
)( x )  =  [ x m, x1 , … , x m – 1 ] ( m – 1 ) !

+  [ x m, x 1 , … , x m – 1, x 0 ] ( m ! x – ( m – 1 ) !  ( x m + x 1 + … + x m  – 1 ))

=  [ x 1, … , x m ] ( m – 1 ) !  +  [ x 0, … , x m ] ( m ! x – ( m – 1 ) ! ( x 1 + … + x m  )).

Subtracting the obtained equalities, we get (3.16). 
�

Corollary 3.3.  Assume that a function  f  is defined not only at points  xi   but also at
p + 1  points  yi  ,  i = 0, ,… p,  p ≤ m,  and, moreover, all  m  + p + 2  points   xi   and
yi   are different.  Then 

[ x 0 
, … , x m ; f  ]  –  [ y 0, … , y p, x p + 1, … , x m ; f  ]

=  
i

p

=
∑

0

[ x i, … , x m, y 0, … , y i ; f  ] ( x i – y i ). (3.17)

Note that identity (3.16) is often used as a definition of divided difference. 

Let  x 0 , x 1 ∈ [ a, b ]  and let a function  f  be absolutely continuous on  [ a, b ] . Then,
according to the Lebesgue theorem, we have

f ( x 1 )  –  f ( x 0 )  =  
x

x

0

1

∫  f ′ ( t ) d t,

Performing the change of variables  t = x 0 + ( x 1 – x 0 ) t 1,  we obtain 

[ x 0 , x 1 ; f  ]  =  
1

1 0
0

1

x x
x

x

– ∫  f ′ ( t ) d t  =  
0

1

∫  f ′ ( x 0 + ( x 1 – x 0 ) t 1 ) d t 1. (3.18)

A similar representation is true for any  m  by virtue of the following theorem: 

Theorem 3.2.  Let  x  i ∈  [ a, b ]   for all  i = 0, ,… m  . If the function  f  has the abso-

lute continuous  ( m – 1 ) th derivative on  [ a, b ] ,  then 

[ x 0 
, x 1, … , x m ; f  ]

=  
0

1

0 0

1 1

∫ ∫ ∫…
t tm

  
–

 f ( 
m

 
)
 ( x 0 + ( x 1 – x 0 ) t 1 + … + ( x m – x m – 1 ) t m ) d t m … d t 1. (3.19)
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Proof.  Assume that representation (3.19) is true for a number  m – 1.  By induction, let
us prove that (3.19) is also true for the number  m.  Denote  t 0 : = 1. According to relation
(3.16) and the induction hypothesis, we have 

( x m – xm −1 ) [ x 0 , … , x m ; f ]  =  [ x 0 , … , x m – 2, x m ; f  ]  –  [ x 0 , … , x m – 1 ; f  ]

=  

  0 0

0 2t t

u

m
m

f t dt∫ ∫ ∫… ( )






( )   

– v

 d t m – 1 … d t 1,

where 

v  =  x 0  + … +  ( x m – 2 – x m – 3 ) t m – 2  +  ( x m – x m – 2 ) t m – 1,

u  =  x 0 + … +  ( x m – 1 – x m – 2 ) t m – 1.

It remains to introduce a new integration variable  tm   instead of  t  in the last integral
by using the change of variables 

t  =  x 0  +  ( x 1– x 0 ) t 1 + …  +  ( x m – 1 – x m – 2 ) t m – 1  +  ( x m – x m – 1 ) t m

and then note that this linear change of variables transforms the segment  [  0, t m  ]  into the

segment that connects the points  u  and  v. 

�

Corollary 3.4.  If, under the conditions of Theorem 3.2, one has  f xm( )( )  ≤ 1  for al-

most all  x ∈ [ a, b ] ,  then 

[ … ]x x fm0, , ;   ≤  
1
m!

, (3.20)

f x L x f x xm( ) − ( … )−; ; , ,0 1   ≤  
1

0 1m
x x x xm!

( − ) … ( − )− . (3.21)

For what follows, we need the following relations for the divided differences of func-
tions  f  and  g : 

[ x 0 
, … , x m ; a f + b g ]  =  a [ x 0 

, … , x m ; f ]  +  b [ x 0 
, … , x m ; g ], (3.22)

a, b = const;
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[ x 0 
, … , x m ; f g ]  =  

i

m

=
∑

0

 [ x 0 
, … , x i ; f ] [ x i, … , x m ; g ] ; (3.23)

if  g ( x )  =  ( x – x i ) … ( x – x m ),  i = 1, ,… m,  then 

[ x 0 , … , x m ; f g ]  =  [ x 0 , … , x i – 1 ; f ] ; (3.24)

if  g ( x )  =  ( x – x 0 ) … ( x – x m ),  then 

[ x 0 , … , x m ; f g ]  =  0 ; (3.24′ )

and 

[ x 0 , … , x m ; f ]  =  [ x i, … , x m ; fi ], (3.25)

where 

fi ( x )  =  [ x 0 , … , x i – 1 , x ; f ] .

Relation (3.22), which means that the divided difference is linear, and relations (3.24)

and (3.24′ ) follow directly from (3.8).  Relations (3.23) and (3.25) can easily be proved
by induction with the use of (3.16). 

Simple corollaries of (3.25), (3.19), and (3.18) are identifies (3.25′ ) and (3.25′′ ) pre-

sented below.  Let  j ∈ N,  j ≤ m,  and let  xi ∈ [ a, b ]  for all  i = 0, ,… m.  If a function  f

is  j  times continuously differentiable on  [ a, b  ]  or  f  has the  ( j – 1 ) th absolutely

continuous derivative on  [ a, b ],  then 

[ x 0 , … , x m ; f ]  =  
0

1

0
1

1

1∫ ∫… [ … ] …
−

…

t

j m t t j

j

j
x x f dt dt, , ; , , , (3.25′ )

where 

f x f x x x t x x t x x tt t
j

j j j j jj1 0 1 0 1 1 2 1 1, , :…
( )

− − − −( ) = + ( − ) + … + ( − ) + ( − )( );

in particular, if  j = 1,  then 

[ x 0 , … , x m ; f ]  =  
0

1

1 11∫ [ … ]x x f dtm t, , ; , (3.25′′ )
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where 

f x f x x x tt1 0 0 1( ) = ′ + ( − )( ): .

Below we establish one more representation [representation (3.26)], which we call the
Hermite preformula. 

Let  q  nonnegative integer numbers  p 1, p 2, … , p q  be given and let 

s

q

=
∑

1

 ( p s + 1 )  =  m + 1.

We fix an arbitrary one-to-one correspondence between  m + 1  numbers  i = 0, ,… m

and  m + 1  pairs  ( s, j ),  where  s = 1, ,… q   and  j = 0, ,… ps .  Denote  xs j,  : = xi   if

i ↔ ( s, j ).  We set 

A s  : =  A s ( x )  : =  
ν ν

ν

ν

= ≠ =

−∏ ∏ ( − )
1 0

1

,
,

s

q

j

p

jx x ;

f s ( x )  : =  f ( x ) A s ( x ).

Using (3.16), we establish by induction that 

[ x 0 , … , x m ; f ]  =  
s

q

=
∑

1

 [ x s, 0, … , x s, p 
s
 ; f s ] .

Taking (3.23) into account, we obtain the representation 

[ x 0 , … , x m ; f ]  =  
s

q

j

ps

= =
∑ ∑

1 1

[ x s, 0, … , x s, j ; A s ]  [ x s, j, … , x s, p 
s
 ; f  ] . (3.26)

Finally, we generalize the trivial identity 

[ x 0 , x N  ; f ]  =  
n

N

=
∑

0

1–

( x n + 1 – x n ) [ x 0 , x n + 1 ; f ] 1

0x xN –
,      N ∈ N,

to the case of divided differences of order  m ≥ 2. 
We fix  N + 1  points  y 0, y 1, … , y N,  N ≥ m ≥ 2,  among which  m + 1  points coin-

cide with the points  x 0 , x 1, … , x m,  i.e.,  y n 
0
 = x 0 , … , y n 

m
 = x m .  Then we obtain the Po-

poviciu identity [Popoviciu (1934)] (see also [Tamrazov (1975)], [De Boor (1976)], and
[Ciesielski (1979)]): 
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[ x 0 , … , x m ; f ]  =  
n

N m

=

−

∑
0

( y n + m – y n ) [ y n, … , y n + m ; f ] x x pm n m0,   ,  ; ,…[ ], (3.27)

where 

pn m,   : =  pn m,  ( x s )  : =  
j

m

=
∏

1

1–

 ( x s – y n + j ) + ,

( x s – y n + j ) +  : =  x s – y n + j  if  n s ≥ n + j,  and  ( x s – y n + j ) +  : =  0  if  n s < n + j. 

Indeed, for  m = 2,  identity (3.27) can be proved by direct verification.  By induction,
we assume that (3.27) is true for a number  m – 1.  Denote 

Fm ( x s )  : =  
n

N m

=
∑

0

–

( y n + m – y n ) [ y n, … , y n + m ; f ] pn m,  ( x s ) .

It follows from relation (3.16) and the equality 

p xN m m s+ − ( )1,   =  0

that 

F x y y f p xm s m m s( ) = − [ … ] ( )−0 1 0, , ; ,

+  
n

N m

n n m n m s n m sy y f p x p x
=

− +

+ − −∑ [ … ] ( ) − ( )( )
1

1

1 1, , ; , , .

For all  n = 1 1, ,… − +N m   and  s = 0, ,… m,  we have 

p x p x y y p xn m s n m s n m n n m s− + − −( ) − ( ) = ( − ) ( )1 1 1, , , .

Therefore, 

F x F xm s m s( ) = ( )−1  – [ … ] ( ) + ( − ) ( )− − −( )y y f p x y y p xm m s m m s0 1 0 1 0 0 1, , ; , ,

=  F x y y f x y x y x ym s m s s s m− − −( ) − [ … ]( − )( − ) ⋅ … ⋅ ( − )1 0 1 0 1 2, , ; .

It follows from the induction hypothesis and the equality 

Fm ( x s )  =  Fm – 1 ( x s )  +  Pm – 1 ( x s ),
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where  Pm −1  is an algebraic polynomial of degree  ≤ m – 1,  that 

[ x 0 , … , x m ; f ]  =  
[ … ] [ … ]x x f x x f

x x
m m

m

0 1 1

0

,   ,  ;  –  ,   ,  ;  
–

–

=  
[ … ] [ … ]x x F x x F

x x
m m m m

m

0 1 1 1 1

0

,   ,  ;  –  ,   ,  ;  
–

– – –

=  [ x 0 , … , x m ; Fm – 1 ]  =  [ x 0 , … , x m ; Fm 
 – Pm – 1 ] 

=  [ x 0 , … , x m ; Fm ] .

�

By setting  f ( x ) = x 
m  in (3.27), we obtain 

n

N m

=
∑

0

–

( y n + m – y n ) x x pm n m0,   ,  ; ,…[ ]  =  1.

Let  x 0 = y 0  and  x m = y N  in (3.27) and let the points  xi   and  yj   be enumerated in

the increasing order, i.e.,  x 0 < x 1 < … < x  m   and  y  0 < y 1 < … < y  N   (recall that each

point  xi   must coincide with a certain point  yj  ).  Then 

x x pm n m0,   ,  ; ,…[ ]  >  0,

and, therefore, the following representation holds in this case: 

[ x 0 , … , x m ; f ]  =  
n

N m

=
∑

0

–

α  n [ y n 
, … , y n + m ; f ] ,

where 

n

N m

=
∑

0

–

α  n  =  1

and  α n > 0  for all  n = 0, ,… −N m. 

Remark 3.1.  It is obvious that 
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f ( x ) – L ( x  ; f ; x 0 
, … , x m – 1 )

=  

1

1

1

0 0
1

0

1 1
1

1

1

x x f x

x x f x

x x f x

m

m m
m

m

m

  

  

  

–

– –
–

–

–

… ( )

… ( )

… ( )

 / 
1

1

0 0
1

1

x x

x x

m

m m
m

  

  

–

–

…

…
 .

Hence, by virtue of (3.8) and (3.15), we get 

[ x 0 , … , x m ; f ]  =  
1

1

0 0
1

0

1

x x f x

x x f x

m

m m
m

m

  

  

–

–

… ( )

… ( )
 / 

1

1

0 0x x

x x

m

m m
m

  

  

…

…
.

Wronicz (1984) established several properties, which are analogous to properties of
divided differences, for the expression

[ x 0 , … , x m ; f ] Φ  =  
ϕ ϕ

ϕ ϕ

0 0 1 0 0

0 1

( ) … ( ) ( )

( ) … ( ) ( )

x x f x

x x f x

m

m m m m

  

  

–

–

 / 
ϕ ϕ

ϕ ϕ

0 0 0

0

( ) … ( )

( ) … ( )

x x

x x

m

m m m

  

  
,

where  Φ = { ϕ 0( x ), … , ϕ m( x )}  is a Chebyshev system of functions. 

3.3.  Finite differences

In this subsection, we assume that the points  x i  are equidistant, i.e., for all  i = 0, ,… m,
we have 

x i  =  x 0 + i h,     h ∈ R,     h ≠ 0.

For the Lagrange interpolation polynomial 

L ( x )  =  L ( x  ; f ; x 0 , … , x m – 1 )  =  
j

m

=
∑

0

1–

 f ( x j )  l j ( x , x 0 , … , x m – 1 ),

we determine the values of the fundamental Lagrange polynomials  l j   at the point

x = xm. According to (3.4), we have 
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l j ( x  m  ,, x 0 , … , x m – 1 )  =  
i i j

m
m i

j i

x x

x x= ≠
∏ ( )

( )
0

1

,

– –
–

  =  – – –( ) 



1 m j m

j
.

We represent the difference  f ( x m ) – L ( x m )  in the form 

f ( x m ) – L ( x m )  =  
j

m
m j m

j=
∑ ( ) 





0

1– –
 f ( x 0 + j h ) . (3.28)

Definition 3.4.  The expression 

∆ h
m( f ; x 0 )  : =  

j

m
m j m

j=
∑ ( ) 





0

1– –
 f ( x 0 + j h ) (3.29)

is called the  m th difference of the function  f  at the point  x 0  with step  h. 
For example, 

∆ h
1 ( f ; x 0 )  =  – f ( x 0 )  +  f ( x 0 + h ),

∆ h
2 ( f ; x 0 )  =  f ( x 0 )  –  2 f ( x 0 + h )  +  f ( x 0 + 2 h ),

∆ h
3 ( f ; x 0 )  =  – f ( x 0 )  +  3 f ( x 0 + h )  –  3 f ( x 0 + 2 h )  +  f ( x 0 + 3 h ), … .

Denote  ∆ h
0 ( f ; x 0 ) = f ( x 0 )  and  ∆ 0

m ( f ; x 0 ) : = 0. 

The identities 

∆ h
m( f ; x 0 )  =  

i

m j
m j i

h
jm j

i=
∑ ( ) 





0

1
–

– ––
–

∆ (  f ; x 0 + i h ),    j = 0 1, ,… −m ; (3.30)

∆ hn
m ( f ; x 0 )  =  

i

n

i

n

h
m

m1 0

1

0

1

= =
∑ ∑…

– –

  ∆  ( f ; x 0 + h ( i 1 + … + i m )),    n ∈ N, (3.31)

can easily be proved by induction. 
In what follows, for definiteness, we assume that  h > 0.  Relations (3.28) and (3.8)

yield 

∆ h
m( f ; x 0 )  =  hm m ! [ x 0 , x 0 + h, … , x 0 + m h; f ]. (3.32)
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Hence, the  m th differences inherit the properties of divided differences.  In particular, the
following assertions are true: 

(i) the Newton formula (3.11) takes the form 

L ( x  ; f ; x 0 
, … , x m )  =  ∆ h

0 ( f ; x 0 )  +  
j

m
h
j

j
i

jf x

j h
x x ih

= =
∑ ∏

( )
( )

1

0

0

1

0

∆ ;

!
 – –

–

 ; (3.33)

(ii) if the function  f  has the  m th derivative on  ( x 0 , x 0 + m h ),  then 

∆ h
m ( f ; x 0 )  =  hm f ( m 

)
 ( θ ),    θ ∈ ( x 0 , x 0 + m h ); (3.34)

if  f ( x ) = x 
m,  then 

∆ h
m ( f ; x 0 )  =  hm m ! ; (3.35)

and if  f ( x ) = Pm – 1 ( x )  is a polynomial of degree  ≤ m – 1,  then 

∆ h
m ( Pm – 1 ; x 0 )  =  0; (3.36)

(iii) if the function  f  has the  j th derivative on  ( x 0 , x 0 + m h ),  j = 0, ,… m,  then 

∆ h
m ( f ; x 0 )  =  h fj

h
m j j∆ – ;( )( ) θ ,    θ ∈ ( x 0 , x 0 + ( m – j ) h ); (3.37)

indeed, denoting  g ( x ) : = ∆ h
m j f x– ,( ) ,  we establish that 

g 
(

 
j

 
)

 ( x )  =  ∆ h
m j jf x– ;( )( ) ,      x ∈ ( x 0 , x 0 + ( m – j ) h ),

and, using (3.30) and (3.34), we get 

∆ h
m ( f ; x 0 )  =  ∆ h

j g x( ), 0  h j g 
(
 
j

 
)

 ( θ )  =  h j
h
m j jf∆ – ;( )( ) θ ;

(iv) the following identity is true: 

∆ h
m f x h– ;1

0( + )  –  ∆ h
m f x– ;1

0( )  =  ∆ h
m( f ; x 0 ) ; (3.38)

for  p ∈ N,  this identity yields 

∆ h
m f x ph– ;1

0( + )  –  ∆ h
m f x– ;1

0( )  =  
i

p

h
m f x ih

=
∑ ( + )

0

1

0

–

;∆ ; (3.39)



196 On smoothness of functions Chapter 3

(v) if, along with the function  f,  a function  g  is also defined at the points  x 0 + i h,
i = 0, ,… m,  then 

∆ h
m af bg x( + ); 0   =  a ∆ h

m( f ; x 0 ) + b ∆ h
m( g ; x 0 ),      a, b = const; (3.40)

∆ h
m( f g ; x 0 )  =  

i

m

h
i

h
m im

i
f x g x ih

=
∑ 





( ) ( + )
0

0 0∆ ∆; ;– ; (3.41)

(vi) if  g ( x )  =  ( x – x i ) … ( x – x m ),  i = 1, ,… m,  then 

∆ h
m( f g ; x 0 )  =  h

m
i

f xm i
h
i+

( − )
( )1 1

01
– –!

!
;∆ ; (3.42)

in particular, if  g ( x )  =  x – x 0 ,  then 

∆ h
m( f g ; x 0 )  =  mh f x hh

m∆ – ;1
0( + ) ; (3.43)

(vii) if the function  f  has the  ( m – 1 ) th absolute continuous derivative  f ( 
m

 
–

 
1

 
)

 ( x )  on

[ x 0 , x 0 + m h ],  then 

∆ h
m( f ; x 0 )  =  h mm

tt m

!   
–

0

1

00

11

∫ ∫∫ …  f ( 
m

 
)
 ( x 0 + h ( t 1 + … + t m )) d t m … d t 1 

; (3.44)

note one more useful representation, namely, 

∆ h
m( f ; x 0 )  =    … ∫∫

00

hh

 f ( 
m

 
)
 ( x 0 + t 1 + … + t m ) d t m … d t 1, (3.45)

which can easily be proved by induction with the use of (3.38). 

Note that identity (3.31) is implied by (3.26). 

Lemma 3.2.  If a function  f  continuous on a segment  [ a, b  ]  has the nonincreasing

derivative  f ( 
m

 
)
 ( x )  ≥   0   on the half-open interval  (  a, b ],  then, for  h ≤ t ≤ ( b – a ) / m,

the following estimate holds for any  x 0 ∈ [ a, b – m h ] : 

∆ h
m( f ; x 0 )  ≤  ∆ t

m
 ( f ; a ) . (3.46)
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Proof.  By assumption, for any positive  ε < b – a  the derivative  f ( 
m

 
)
 ( x )  is bounded on

[ a + ε, b  ] .  Hence, the  ( m – 1 ) th derivative  f ( 
m

 
–

 
1

 
)

 ( x )  is absolutely continuous on

[ a + ε, b ] .  Assuming that  x 0 ≠ a,  t ≠ ( b – a ) / m,  and  ε < min { x 0 – a, b – m  t }  and
using (3.44) and (3.45), we obtain 

∆ h
m( f ; x 0 )  ≤  ∆ h

m( f ; a + ε )  ≤  ∆ t
m( f ; a + ε ).

It remains to use the fact that  ε  is arbitrary and the  m th difference  ∆ h
m( f ; x )  is continu-

ous in  x  and  h. 

�

For  x ∈ [ x 0 – h, x 0 + m h ] ,  we often use the inequality 

L x f x x xm( … )−; ; , , ,0 1 1   ≤  ( 2 
m – 1 ) max

, ,j m= … −0 1
 f x j( ) , (3.47)

which follows from the estimate 

l x x xj m( … )−; , ,0 1   ≤  l x x xj m m( … ); , ,0   =  
m

j




  ,

and the inequality 

L x f x xp
m

( )
−( … ); ; , ,0 1   ≤  c h 

–
 
p

 max
, ,j m= … −0 1

 f x j( ) ,      p ∈ N, (3.48)

where  c = c ( m ) = const . 

4.  Moduli of continuity of higher order

4.1.  Modulus of continuity of order  k

In what follows, we assume that  k ∈ N. 

Definition 4.1.  The modulus of continuity of order  k  (the  k th modulus of continuity)

of a function  f ∈ C  ([ a, b ] )  is defined as follows: 
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ω k ( t )  : =  ω k ( t ; f ; [ a, b ] )  : =  sup  ;
,

, –
h t

h
k

a b khf
∈[ ]

[ ]|| ||( ⋅)
0

∆      for   t ∈ [ 0, ( b – a ) / k ],

ω  k ( t )  : =  ω  k (( b – a ) / k )     for   t > ( b – a ) / k  .

Remark 4.1.  The modulus of continuity of order  k,  k ≥ 2,  is often called the modulus of
smoothness of order  k. 

For example, if a function  f  has the  k th derivative on  ( a, b )  and  f xk( )( )   ≤   1  for

all  x ∈ ( a, b ),  then, according to (3.34), we have 

ω k ( t ; f ; [ a, b ] )  ≤  t 
k ; (4.1)

furthermore, if  f ( x ) = Pk – 1 ( x )  is a polynomial of degree  ≤ k – 1,  then 

ω k ( t ; Pk – 1 ; [ a, b ] )  =  0, (4.2)

if  f ( x ) = x 
k,  then 

ω k ( t ; f ; [ a, b ] )  =  k ! min { t 
k, (( b – a ) / k ) 

k
 }, (4.3)

and if  f ( x ) = sin x,  then 

ω k ( t ; f ; [ 0, π / 2 ] )  =  2 
k sin 

k 
t

2
 sin k t / 2,      t ≤ π / 2 k ,

ω k ( t ; f ; [ 0, π ] )  =  2 
k sin 

k 
t

2
,      t ≤ π / k . (4.4)

Note that  ω ( t ; f ; [ a, b ] )  =  ω 1 ( t ; f ; [ a, b ] ),  i.e., the modulus of continuity and the
modulus of continuity of order 1 have the same meaning.  For convenience, we denote 

ω 0 ( t ; f ; [ a, b ] )  =  f a b[ ],  .

In what follows, if it is clear what a segment  [ a, b  ]  is considered, then we write

ω k ( t ; f  )  instead of  ω k ( t ; f ; [ a, b ] ) ;  if, in addition, it is clear what a function  f  is con-

sidered, then we write  ω k ( t )  instead of  ω k ( t ; f  ) . 

It follows immediately from (3.40), (3.41), (3.45), and (3.46) that the  k th moduli of
continuity possess the following properties: 
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ω  k ( t ; A f  )  =  A  ω k ( t ; f  ),      A = const;

(4.5)

ω k ( t ; f  + g )  ≤  ω k ( t ; f  )  +  ω k ( t ; g );

ω k ( t ; f g )  ≤  
i

k k

i=
∑ 





0

ω i ( t ; f  )ω k – i ( t ; g ); (4.6)

if the function  f  has the  ( k – 1 ) th absolutely continuous derivative and  f xk( )( )  ≤ 1  al-

most everywhere on  [ a, b ] ,  then 

ω k ( t )  ≤  t 
k ; (4.7)

and if the function  f  has the nonnegative nonincreasing  k th derivative on the half-open

interval  ( a, b ] ,  then 

ω k ( t ; f  )  =  ∆t
k f a( ); ,      t ∈ [ 0, ( b – a ) / k ] . (4.8)

Using (4.8), one can easily calculate the  k th modulus of continuity of the functions

f 0 ( x ) = x 
α,  0 < α < k ,  α  ∈  N,  and  f  j ( x ) : = x j ln x,  j = 1, ,… k ,  f  j ( 0 ) = 0.  Denote

Aj   : = | |( )∆1 0k
jf ;  = const.  Then, on the segment  [ 0, b  ] ,  we obtain the following

relations for  t ≤ b / k : 

ω k ( t ; f 0 )  =  A 0 t 
α, (4.9)

ω k ( t ; f j )  =  A j t 
j,      j = 1 1, ,… −k , (4.10)

ω k ( t ; f k )  =  A k t 
k + k ! t 

k
 ln ( 1 / t ), (4.11)

[in (4.11)  b  is sufficiently small].

In particular, for  f ( x ) = x ln x  we have 

ω 2 ( t ; f ; [ 0, b ] ) = ( 2 ln 2 ) t,      t ≤ 
b

2
. (4.10′ )

Relations (3.30), (3.31), and (3.37) mean that 

ω k ( t )  ≤   2 
k

 
–

 
j

 ω j ( t ),      j = 1, ,… k , (4.12)
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and, in particular, 

ω  k ( t )  ≤   2 
k f a b[ ],  

, (4.13)

ω k ( n t )  ≤   n 
k ω k ( t ),      n ∈ N , (4.14)

ω k ( t ; f  )  ≤  t j ω k
 
–

 
j ( t ; f ( j 

)
 ). (4.15)

Lemma 4.1.  The  k th modulus of continuity  ω k ( t ) = ω  k ( t ; f ; [ a, b ] )  is equal to zero

at the point  t = 0,  is a nondecreasing continuous function on the interval  [  0, ∞  ) ,
i.e., 

ω k ( 0 )  =  0, (4.16)

ω k ( t 1 )  ≤  ω k ( t 2 ),      0 ≤ t 1 ≤ t 2 , (4.17)

ω k  ∈  C ([ 0, ∞ ) ),

and satisfies the inequality 

t k
2
– ω k ( t 2 )  ≤  2 

k
 t k

1
– ω k ( t 1 ),      0 < t 1 ≤ t 2 . (4.18)

Proof.  Relations (4.16) and (4.17) are obvious.  Inequality (4.18) follows from (4.14).
Indeed, we have 

ω k ( t 2 )  =  ωk
t

t
t2

1
1





   ≤  ωk

t

t
t2

1
11  +









   ≤  

t

t

k
2

1
1  +





ω k ( t 1 )  ≤  
2 2

1

t

t

k



 ω k ( t 1 ).

It remains to verify the continuity of  ω  k.  To this end, we prove the inequality 

ω  k ( t 2 )  ≤  ω  k ( t 1 )  +  k 2 
k
 
–

 
1

 ω 1 ( t 2 – t 1 ),      0 ≤ t 1 ≤ t 2 . (4.19)

Since the case  t 2 > ( b – a ) / k  can be reduced to the case  t 2 = ( b – a ) / k  by using (4.17),

we assume that  t 2 ≤ ( b – a ) / k.  Let us represent an arbitrary number  h ∈  [ 0, t 2 ]  as a

sum of two terms  ( h = h 1 + h 2 )  such that  h  1 ∈  [ 0, t 1 ]  and  h  2 ∈  [ 0, t 2 – t 1 ].  It fol-
lows from the equality 

∆h
k f x( );   =  ∆h

k f x
1
( );   +  

i

k k

i=
∑ 





0

( – 1 ) 
k

 
–

 
i

 ∆ih2

1
 ( f, x + i h 1 ),      x ∈ [ a, b – k h ] ,
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that 

| |( )∆h
k f x;   ≤  ω k ( h 1 )  +  k 2 

k
 
–

 
1

 ω 1 ( h 2 )  ≤  ω k ( t 1 )  +  k 2 
k

 
–

 
1

 ω 1 ( t 2 – t 1 ).

By virtue of the arbitrariness of  h,  this yields (4.19).  Thus, for any  t ≥ 0  and  t 0 ≥ 0,
we have 

ω ωk kt t( ) − ( )0   ≤  k 2 
k

 
–

 
1

 ω1 0t t−( )   →  0      as    t t− 0   →  0,

which yields the continuity of the function  ωk  . 

�

It follows from inequality (4.18) that 

ω k ( t )  ≥   t 
k ωk

k
b a k

b a k

( )
( )

( ) /
( ) /

–

–2
,      t ≤ ( b – a ) / k , (4.20)

and if  ω k ( t 0 ) = 0  for  t 0 ≠ 0,  then  ω k ( t ) ≡ 0. 

It will be shown later that if  ω k ( t ) ≡ 0,  then  f ( x ) = Pk – 1 ( x )  is a polynomial of de-

gree  ≤ k – 1. 

If  f ( 
k

 
) ∈ C [ a, b ] ,  then, with regard for (4.1) or (4.7), we get 

ω k ( t )  ≤   t 
k f k

a b
( )

[ ],  
. (4.21)

4.2.  Approach of Stechkin

Definition 4.2.  A continuous function  ϕ  nondecreasing on   [  0, ∞  )  is called a major-

ant if  ϕ ( 0 ) = 0.  The set of all majorants is denoted by  Φ. 

Definition 4.3.  A majorant  ω  is called a function of the  k th-modulus-of-continuity

type if  t k
2
– ω ( t 2 ) ≤ 2 

k
 t k

1
– ω ( t 1 )  for  0 < t 1 ≤ t 2 . 

Definition 4.4.  A majorant  ϕ  is called a  k -majorant if the function  t  
–

 
k

 ϕ ( t )  does

not increase on  ( 0, ∞ ),  i.e., 

t k
2
– ω ( t 2 )  ≤  t k

1
– ϕ ( t 1 ),      0 < t 1 ≤ t 2 . (4.22)

The set of all  k -majorants is denoted by  Φ 
k. 



202 On smoothness of functions Chapter 3

It is clear that if  ϕ ∈ Φ  
k,  then  ϕ  is a function of the  k th-modulus-of-continuity type.

Generally speaking, the converse statement is not true.  Nevertheless, Theorem 4.1 pre-
sented below is true. 

Definition 4.5 (Stechkin; see [Efimov (1961)]).  For a function  ω   of the  k th-modu-
lus-of-continuity type, we denote 

ω * ( t )  : =  sup 
u t

k

k
t u

u>

( )ω
,      t ≥ 0. (4.23)

Theorem 4.1  (Stechkin).  The following relations are true: 

ω ( t )  ≤  ω * ( t )  ≤  2 
k ω ( t ),      ω * ∈ Φ 

k. (4.24)

Proof.  If  t = 0,  then  ω * ( 0 ) = ω ( 0 ) = 0.  If  t ≠ 0,  then 

ω ( t )  =  sup 
u t

k

k
t t

u>

( )ω
  ≤  sup 

u t

k

k
t u

u>

( )ω
  =  ω * ( t )  ≤  sup 

u t

k k
kt
t

t>

( )
2

ω
  =  2 

k ω ( t ).

It is obvious that the function  t 
–

 
k

 ω * ( t )  does not increase on  ( 0, ∞  ).  Let us prove that

the function  ω  *  is monotone.  Let  0 < t 1 < t 2 .  Consider a point  t 3 ≥ t 1  at which we
have 

sup {  u 
–

 
k

 ω ( u )  u > t 1 }  =  t k
3
– ω ( t 3 ).

If  t 3 ≥ t 2,  then 

ω
ω

*

*

( )

( )

t

t
1

2
  =  

t

t

k
1

2







  <  1.

For  t 3 < t 2,  we have 

ω * ( t 1 )  =  
t

t
t

k
1

3
3







ω( )   ≤  ω ( t 2 )  ≤  ω * ( t 2 ).

The second inequality in (4.24) implies the continuity of the function  ω *  at the point

t = 0.  Finally, the continuity of the function  ω *  at the point  t > 0  follows from the fact

that, for any pair of points  t 1  and  t 2  such that  2t ≥ t 1 > t 2 ≥ t / 2,  we have 
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0  ≤  ω * ( t 2 )  –  ω * ( t 1 )  ≤  
t

t
t

k
2

1
1







ω*( )   –  ω * ( t 1 )

=  t k
1
– ω * ( t 1 ) ( )t tk k

2 1–   ≤  
t

t t t
k

k k

2
2 2 1





 −( )

−
ω*( )   →  0 (4.25)

as  ( t 2 – t 1 )  →  0. 

�

Note that the reasoning used above means the equivalence of Definition 4.4 and the
following definition: 

Definition 4.4 ′′′′.  A function  ϕ  nondecreasing on  [  0, ∞  )  is called a  k-majorant if the

function  t 
–

 
k

 ϕ ( t )  does not increase on  ( 0, ∞ ),  ϕ ( 0 ) = 0,  and  ϕ ( t ) → 0  as  t → 0. 

4.3.  Extremal function

It was noted by S. Nikol’skii (1946b) that, in order that a majorant be the modulus of con-
tinuity of a continuous function, it is necessary and sufficient that the majorant be semi-
additive (see Remark 1.3). 

In the case  k > 1,  a necessary and sufficient condition for a majorant to be the  k th
modulus of continuity of a continuous function is not found as yet. 

Nevertheless, by using the approaches of Bari and Stechkin [Bari (1955), (1961); Bari

and Stechkin (1956); Stechkin (1961)], Geit (1972) proved that, for any majorant  ϕ ∈ Φ 
k,

there exists a function  f ∈ C ([ a, b ] )  such that 

ϕ ( t )  ≤  ω k ( t ; f ; [ a, b ] )  ≤  c ϕ ( t ), (4.26)

0 ≤ t ≤ ( b – a ) / k,   c = c ( k ) = const.

In this subsection, we introduce a so-called extremal function and, using it, prove re-
lation (4.26). 

Definition 4.6 [Shevchuk (1976)].  Let  k ∈  N  and let  ϕ  be a majorant.  The extremal

function is defined as follows: 

F ( x )  =  F ( x ; ϕ; k )  : =  
1

2
1

2

( )
( ) ( )∫k

x x u

u
u du

x k

k– !
 

– –

ϕ ,    x ≥ 0,      if    k ≠ 1,

(4.27)
F ( x )  =  F ( x ; ϕ; 1 )  : =  ϕ ( x ),    x ≥ 0,      if    k = 1.
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Lemma 4.2.  Let  k ∈ N,  ϕ ∈  Φ ,  x > 0,  h ≥ 0,  and  p = 1 2, ,… −k .  The extremal

function  F ( x ) = F ( x , ϕ, k )  possesses the following properties: 

(i) lim
x→0

 F ( x )  =  F ( 0 )  =  0, (4.28)

i.e.,  F ∈ C ([ 0, ∞ )) ; 

(ii) F 
(
 
p

 
)( x )  =  

1
1

1
1

2

( )
( ) ( ) ( )∫ ( )

k p
k x pu

x u

u
u du

x k p

k– – !
 – –

– – –

ϕ , (4.29)

F 
(
 
k

 
–

 
1

 
)( x )  =  x 

1
 
–

 
k

 ϕ ( x )  +  ( k – 1 ) 
1

x

∫  u 
–

 
k

 ϕ ( u ) d u , (4.30)

and 

F 
(
 
k

 
)( x )  =  x 

1
 
–

 
k

 ϕ ′ ( x )     for almost all   x > 0; (4.31)

(iii) ∆h
k F x( );   ≥  0; (4.32)

(iv) ∆h
k F( ); 0   =  k

h s s

s
ds ds

s s
k

k k

k

!
–

–
00

1

0

1 1
1 1

1 2 1

1∫∫ ∫…
( + + … + )

( + )
…

( )−ϕ
, (4.33)

∆h
k F( ); 0   =  kh

h s s

h s s
ds ds

h h
k

k
k k

0 0

1 1

1 1
1 1∫ ∫…

( + + … + )
( + + … + )

…−

−

ϕ
– , (4.34)

∆h
k F( ); 0   =  k h 

k
 θ 

–
 
k

 ϕ ( θ ),      h < θ < k h ; (4.35)

(v) ϕ ( h )  ≤  ∆h
k F( ); 0   ≤  ϕ ( k h ) (4.36)

and if  ϕ ∈ Φ 
k,  then 

ϕ ( h )  ≤  ∆h
k F( ); 0   ≤  k ϕ ( h ) ; (4.37)

(vi) if  0 ≤ x ≤ h,  m ∈ N,  and  m ≥ k,  then 

∆h
m F x( );   ≤  2 

m
 ϕ (( m + 1 ) h ). (4.38)
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Proof.  For  k = 1,  the lemma is trivial.  Therefore, in what follows, we assume that  k > 1.

(i)  The equality  F ( 0 ) = 0  is obvious.  The equality  F ( 0 + ) = 0  follows from the es-
timates 

( k – 2 ) ! F x k( ); ;ϕ   ≤  x 

x

1

∫  u 
–

 
2

 ϕ ( u ) d u

=  x 

x

x

x
∫ ∫+







1

 u 
–

 
2

 ϕ ( u ) d u

≤  ϕ x( )  x 

x

x

∫  u 
–

 
2 d u  +  ϕ ( 1 ) x

x

1

∫  u 
–

 
2 d u

≤  ϕ x( )   +  x ϕ ( 1 )  →  0      as    x → 0.

(ii)  Equalities (4.29)–(4.31) can be verified by simple differentiation.  In (4.31), one
should take into account that the majorant  ϕ ϕ= ( )t   is monotone. 

(iii)  Let us prove that  F 
(
 
k

 
–

 
1

 
)  does not decrease (generally speaking, the fact that

F 
(
 
k

 
)

 ( x ) ≥ 0  a.e.  does not imply that  F 
(
 
k

 
–

 
1

 
)  does not decrease).  Indeed, if  x 1 > x 2,

then, by virtue of (4.30), we get 

F 
(
 
k

 
–

 
1

 
)

 ( x 1 )  –  F 
(
 
k

 
–

 
1

 
)

 ( x 2 )  =  
ϕ ϕ( ) ( )x x

xk
1 2

1
1

–
–   +  ( ) ( ) ( )∫k

u x

u
du

x

x

k–
–

1

2

1
2ϕ ϕ

  ≥  0.

Using (3.38) and (3.45), we obtain 

∆h
k F x( );   =  ∆h

k F x h– ;1( + )  –  ∆h
k F x– ;1( )

=  
0 0

h h

∫ ∫… ( F 
(
 
k

 
–

 
1

 
)

 ( x + h + s )  –  F 
(
 
k

 
–

 
1

 
)

 ( x + s )) d s k – 1 … d s 1  ≥  0,

s  =  s 1 + … + s k – 1 .
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(iv)  Denoting  E ( x ) : = x 
–

 
1

 F ( x ),  we note that  E 
(
 
k

 
–

 
1

 
)

 ( x ) = x 
–

 
k

 ϕ ( x ).  By virtue of

(3.43), we have  ∆h
k F( ); 0  = k h ∆h

k E h– ;1( ).  Identities (4.33)–(4.35) now follow from
(3.44), (3.45), and (3.34), respectively. 

(v)  Inequalities (4.36) follow from relation (4.33), the estimate  ϕ ( h ) ≤ ϕ ( h (1 + s )) ≤
ϕ ( k h ),  0 ≤ s ≤ k – 1,  and the identity 

k

s sk

!
–

0

1

0 0

1 2

∫ ∫ ∫… ( 1 + s 1 + … + s k – 1 ) 
–

 
k
 d s k – 1 … d s 1  ≡  k ( – 1 ) 

k
 
–

 
1 ∆1

1 1k – ;( )µ   =  1,

where  µ ( y ) = 1 / y.  However, if  ϕ ∈ Φ  
k,  then 

( 1 + s ) 
–

 
k

 ϕ ( h ( 1 + s ))  =  h  
k

 ( h ( 1 + s )) 
–

 
k

 ϕ ( h ( 1 + s ))  ≤  ϕ ( h ).

(vi)  Denote 

Fh ( y )  : =  
1

2( − )k !
 

( + )
∫

m h

y

1

y ( y – u ) 
k

 
–

 
2

 u 
–

 
k

 ϕ ( u ) d u.

Note that  F ( y ) – Fh ( y )  is an algebraic polynomial of degree  ≤ k – 1  and, for  0 ≤ y ≤
( m + 1 ) h,  we have 

F yh( )   ≤  
ϕ( )( + )

( )

( + )

∫m h

k
y

y

m h
1

2

1

– !
 u 

–
 
2 d u  <  ϕ (( m + 1 ) h ).

Hence, 

∆h
m F x( );   ≡  ∆h

m
hF x( );   ≤  2 0 1

m
h m hF [ + ],( )   ≤  2 

m
 ϕ (( m + 1 ) h ).

�

Theorem 4.2 (see [S. Nikol’skii (1946b)] for  k = 1  and [Shevchuk (1976)] for  k > 1).
Let  F  ( x ) = F ( x, ϕ, k )  be the extremal function (4.27) and let  b > 0.  If  ϕ ∈  Φ  

k,  then

the following relations hold for  0 ≤ t ≤ b / k : 

ω k ( t ; F ; [ 0, b ] )  ≡  ∆t
k F( ); 0 , (4.39)

ϕ ( t )  ≤  ω k ( t ; F ; [ 0, b ] )  ≤  k ϕ ( t ). (4.40)
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Proof.  For  k = 1,  the theorem has already been proved (see Remark 1.3).  Therefore, we

assume in what follows that  k > 1.  Denote  E = E ( x ) = x 
–

 
1

 F ( x ).  Note that  E 
(
 
k

 
–

 
1

 
)

 ( x ) =

x 
–

 
k

 ϕ ( x ).  Since  ϕ ∈ Φ  
k,  we conclude that  E 

(
 
k

 
–

 
1

 
)

 ( x )  does not increase.  Reasoning by

analogy with the proof of assertion (iii) of the previous lemma, we get  ∆h
k E x( );  ≤ 0,

x > 0,  h ≥ 0.  We take  t > 0,  h ∈  [ 0, t ],  x  0 > 0,  and denote  E  0 ( x ) : = ( x – x 0 ) E ( x ).
Using (4.32), (3.44), and (4.33), we obtain 

0  ≤  ∆h
k F x( ); 0   =  ∆h

k E x( )0 0;   +  x 0 ∆h
k E x( ); 0

≤  ∆h
k E x( )0 0;   =  k h∆h

k E x h– ;1
0( + )

=  k ! h 
k
 

0

1

0 0

1 2

∫ ∫ ∫…
s sk –

 ( x 0 + h ( s + 1 )) 
–

 
kϕ (x 0 + h ( s + 1 )) d s k – 1 … d s 1

≤  k ! 
0

1

0 0

1 2

∫ ∫ ∫…
s sk –

  ( s + 1 ) 
–

 
kϕ ( h ( s + 1 )) d s k – 1 … d s 1

≤  k ! 
0

1

0 0

1 2

∫ ∫ ∫…
s sk –

  ( s + 1 ) 
–

 
kϕ ( t ( 1 + s )) d s k – 1 … d s 1  =  ∆t

k F( ); 0 ,

s  : =  s 1 + … + s m – 1,

which yields (4.39).  Inequality (4.40) follows from (4.39) and (4.37). 

�

4.4.  Smoothing of a majorant

It is sometimes convenient to assume that a majorant  ϕ  is differentiable.  This possibility
can be provided by the following statement: 

Lemma 4.3 [Shevchuk (1984a)].  Let  m ∈ N,  m ≠ 1.  If  ϕ ∈ Φ,  then the function 

ϕ m ( t )  : =  ϕ m ( t, ϕ )  =  m ! 

0

1

0 0

1 2

∫ ∫ ∫…
s sm–

  ( 1 + s ) 
–

 
mϕ ( t ( 1 + s )) d s m – 1 … d s 1 (4.41)
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where  s : = s 1 + … + s m  – 1,  possesses the following properties: 

(i) ϕ ( t )  ≤  ϕ  m  ( t )  ≤  ϕ ( m t ),  t ≥ 0; (4.42)

(ii) ϕm  ∈ Φ,  and if  ϕ ∈ Φ 
k,  then 

ϕm  ∈ Φ 
k ; (4.43)

(iii) for  j = 1 2, ,… −m ,  ϕm
j( )   belongs to  C (( 0, ∞ ))  and 

ϕm
j t( )( )   ≤  m 2 

m
 t – 

j
 ϕ ( m t ),    t > 0. (4.44)

Proof.  (i)  Inequalities (4.42) are proved in the same way as (4.36). 

(ii)  It is obvious that  ϕ m  does not decrease.  Relation (4.43) follows the identity 

t – 
k

 ϕ m ( t )  =  m ! 

0

1

0 0

1 2

∫ ∫ ∫…
s sm–

  ( t ( 1 + s )) 
–

 
kϕ ( t ( 1 + s )) ( 1 + s )) 

k
 
–

 
m

 d s m – 1 … d s 1.

(iii)  Denote 

E m  : =  E m ( x )  : =  ( 1 / ( m – 2 ) !)( x – u )  
m

 
–

 
2

 u 
–

 
m

 ϕ ( u ) d u,    E m, j  : =  x  
j ϕm

j x( )( ).

Equalities (2.33) and (3.43) yield  ϕ m ( t ) = mt E tt
m

m∆ – ;1( ).  Hence, 

ϕm
j t( )( )   =  mt E t j E tj

t
m

m j t
m

m j
1 1 1

1
– –

,
–

, –;   ;∆ ∆( ) + ( )( ).

Relation (4.44) now follows from the estimate 

∆t
m

m jE t–
, – ;1

1( )   <  2  
m

 
–

 
1

 ( j t ) 
–

 
1

 ϕ ( m t ).

�

Corollary 4.1.  Let  m  ∈  N,  m  ≥ k,  let  ϕ ∈  Φ  

m,  let  ϕ  m  – k + 2 : = ϕ  m  – k + 2 ( t, ϕ )  be de-

fined by (4.41), and let  F = F ( x ) = F ( x, ϕ  m  – k + 2, k  )  be the extremal function (4.27).

Then 

∆h
m F x( );   ≤  c ϕ ( h ),      x ≥ 0,    h ≥ 0, (4.45)
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where  c = c ( m ) = const;  in particular, for any fixed  b > 0,  one has 

ω  m  ( t ; F ; [ 0, b ] )  ≤  c ϕ ( t ),      0 ≤ t ≤ b/k . (4.46)

Indeed, if  x ≤ h,  then relation (4.45) follows from (4.38) and (4.42);  if  x > h,  then,
with regard for (4.31) and (4.44), we obtain 

∆h
m F x( );   =  h 

m F m( )( )θ   =  h 
m ( F ( 

k
 
)

 ( θ )) 
(

 
m

 
–

 
k

 
)

=  h 
m ( θ 

1
 
–

 
k

 ϕ m – k + 2 ( θ )) 
(

 
m

 
–

 
k

 
)  ≤  c h 

m
 θ 

–
 
m

 ϕ ( θ )  ≤  c ϕ ( h ),      θ > h .

4.5.  Is the relation  ωωωω k (((( t ; f ))))  =  O((((ωωωω m (((( t ; f ))))))))  true for  m > k ? 

Here and in what follows, the expressions  α  ( t ) = O(β  ( t ))  and  α  ( t ) = o(β  ( t )),  where

α  ( t ) ≥ 0  and  β  ( t ) ≥ 0,  t > 0,  mean that 

lim sup
t→0

 (α  ( t ) / β ( t ))  <  ∞      and      lim
t→0

 (α  ( t ) / β ( t ))  =  0,

respectively. 

Thus, if  f ( x ) = x 
α,  0 < α < k,  then the relation 

ω k ( t ; f )  =  O(ω m ( t ; f )) (4.47)

is true [see (4.9)].  If  f ∈ C 
k

 ( [ 0, 1 ] ),  then, according to (4.20) and (4.15), we have 

ω k ( t ; f )  ≥  ( k / 2 ) 
k ω k ( 1 / k ; f ) ω m ( t ; f ) / ω m – k ( t ; f ( k 

)
 )

i.e., relation (4.47) is not true.  If  f ( x )  =  x ln ( e / x ) ∉ C 
1

 ( [ 0, 1 ] ),  then 

ω 1 ( t ; f )  =  ( ln 4 ) ω 2 ( t ; f ) ln ( e / t ),

i.e., relation (4.47) is not true again.  D. Galan (1973) proved that, for “bad” functions
whose smoothness is “strictly less” than  k,  one has 

lim inf
t→0

 ω k ( t ; f ) / ω m ( t ; f )  <  ∞.
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At the same time, D. Galan and V. Galan [V. Galan (1991); V. Galan and D. Galan (1987)]
and Nessel and van Wickeren (1984) constructed examples of arbitrarily “bad” functions
for which relation (4.47) is not valid.  In particular, the following theorem is true: 

Theorem 4.3 [Nessel and van Wickeren (1984)].  Let  k ∈ N,  m  ∈  N,  m  > k,  and let

α  be a function positive on  ( 0, ∞ )  and such that 

lim
t→0

 α ( t )  =  ∞,      lim
t→0

 t 
r

 α ( t )  =  0,      r  : =  m – n. (4.48)

If  ϕ ∈ Φ 
k,  then there exists a function  fϕ α,  ∈ C ( [ 0, 1 ] )  such that 

ω k ( t ; f ϕ, α ;  ( [ 0, 1 ] ))  
= ( )

≠ ( )







( )

( )

O t

o t

ϕ

ϕ

,

,

( . )

( . )

4 49

4 50

ω k ( t ; f ϕ, α ;  ( [ 0, 1 ] ))  ≠  O(α  ( t )) ω m ( t ; f ϕ, α ;  ( [ 0, 1 ] )). (4.51)

Proof.  Let us construct a sequence of points  tn  → 0.  Denote  t 1 : = 1.  Assume that the
first  n  points of the sequence are chosen.  If  n  is odd, then, as  tn +1,  we take an arbi-

trary point satisfying the conditions 

0  <  2 t n + 1  <  t n ,      α ( t n + 1 ) tn
r
+1  <  tn

r .

If  n  is even, then, as  tn +1,  we take an arbitrary point satisfying the condition  ϕ  ( t n + 1 ) =

ϕ ( t n – 1 ) ( t n / t n – 1 ) 
m.  Denote  ϕ  * ( t )  =  ϕ  ( t n + 1 )  if  tn +1  ≤   t  ≤  tn   and  n  is even, and

ϕ * ( t ) : = ϕ ( t n ) ( t / t n ) 
m   if  tn +1 ≤ t ≤ tn   and  n  is odd.  It is obvious that  ϕ  * ∈  Φ  

m.

Starting from the majorant  ϕ *  and using relation (4.41), we define the majorant  ϕ
*
 =

ϕ
*

 ( t ) : = ϕ m – k + 2 ( t ; ϕ* ) .  By  F = F ( x ) : = F ( x, ϕ
*
, k )  we denote the extremal function

(4.27).  Let us show that the function  f ϕ, α = f ϕ, α ( x ) : = F ( x )  can be taken as that indi-
cated in the theorem. 

Indeed, relations (4.36) and (4.42) yield 

ω k ( t ; F )  ≥  ∆t
k F( ); 0   ≥  ϕ * ( t ).

Hence, for odd  n,  we have  ω k ( t n ; F ) ≥ ϕ * ( t n ) = ϕ ( t n ),  i.e., relation (4.50) is proved. 
Reasoning as in the previous corollary and using (4.31) and (4.44), we obtain the fol-

lowing relation for  x > h : 
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∆h
k F x( );   =  hk kθ ϕ1–

*
′ ( θ )  ≤  2r

 
+

 
2

 ( r + 2 ) h 
k

 θ 
–

 
k

 ϕ * ( θ )

≤  2r
 
+

 
2

 ( r + 2 ) h 
k

 θ 
–

 
k

 ϕ ( θ )  ≤  2r
 
+

 
2

 ( r + 2 ) 
k

 
+

 
2

 ϕ ( h ),      θ > x .

For  0 < x ≤ h,  relations (4.38) and (4.42) yield 

∆h
k F x( );   =  2k

 ϕ
*

 (( k + 1 ) h )  ≤  2k
 ( r + 2 ) 

k
 ϕ * (( k + 1 ) h )

≤  2k
 ( r + 2 ) 

k
 ϕ (( k + 1 ) h )  ≤  2k

 ( r + 2 ) 
k

 ( k + 1 ) 
k

 ϕ ( h ),

which proves (4.49). 

Finally, by virtue of (4.46), we have  ω  m  ( t ; F ) ≤ c ϕ * ( t ).  Denoting  an : = t  n / t n – 1

and using (4.40) and (4.42), we obtain the following relation for even  n : 

2 
k

 ω k ( t n  ; F )  ≥  an
k

 ω k ( t n – 1  ; F )  ≥  an
k

 ϕ ( t n – 1 )  ≥  an
r–

 ϕ * ( tn )

≥  ( 1 / c )an
r

m
– ω  ( t n  ; F )  ≥  ( 1 / c ) α ( tn ) ω m ( t n  ; F ).

This proves (4.51). 

�

The “regular” estimate for  ω k ( t ; f )  in terms of  ω  m  ( t ; f )  with  k < m  is the Mar-
chaud inequality, which is considered in the next section. 

4.6.  Gliding-hump method

Nessel and van Wickeren (1984) deduced Theorem 4.3 from a general theorem (see The-
orem 4.4 below), which is proved by the gliding-hump method.  Theorem 4.4 and its ana-
logs enabled Nessel and other authors to construct a series of counterexamples in various
parts of approximation theory, including integral metrics (see [Dickmeis and Nessel
(1982); Dickmeis, Nessel, and van Wickeren (1984); Nessel and van Wickeren (1984)]). 

We write  ϕ ∈ Φ0
k   if  ϕ ∈ Φ 

k  and  t 
–

 
k

  ϕ ( t ) → ∞  as  t → 0. 

Let  T  be a functional on  C  ([ a, b ] ).  We write  T ∈  X 
*  if  T   is a sublinear func-

tional, i.e., 

T f g( + )   ≤  Tf   +  Tg ,

T f( )λ   =  λ Tf (4.52)



212 On smoothness of functions Chapter 3

for all  f, g ∈ C ([ a, b ] )  and  λ ∈ R,  and  T  is a bounded functional, i.e., 

T X*   : =  sup { Tf  :  f a b[ ],   =  1 }  <  ∞. (4.53)

Theorem 4.4 [Nessel and van Wickeren (1984)].  Suppose that  k ∈  N,  M  = const > 0,

n ∈ N,  Tn 
, Rn 

, Vn ∈ X 
*,  h n ∈ C ([ a, b ] ),  hh a b[ ],  ≤ 1,  and  Mn = const > 0.  If 

lim sup
n→∞

T hn n   ≥  M,     lim sup
n→∞

 R hn n   ≥  M, (4.54)

and, for all  n ∈ N,  one has 

ω k ( t ; h n ;  [ a, b ] )  ≤  min { 1, ( t n ) 
k

 },      0 ≤ t ≤ 1, (4.55)

V hn n   ≤  1,      sup
p∈N

 p 
k V hp n   ≤  M n , (4.56)

then, for any majorant  ϕ ∈  Φ0
k ,  there exists a sequence  { δ i } � { 0, 1 }  (i.e.,  δ j  = 0

or  δ j  = 1)  such that the function 

f ϕ ( x )  : =  
j=

∞

∑
1

δ j ϕ ( 1 / j )  h j ( x )

possesses the following properties: 

ω k ( t ; f ϕ ;  [ a, b ] )  =  O(ϕ ( t )),      t → 0, (4.57)

T fn ϕ   ≠  o(ϕ ( 1 / n )),   R fn ϕ   ≠  o V fn ϕ( ),      n → ∞. (4.58)

Proof.  Since  ϕ ∈ Φ0
k ,  we conclude that, for any  q ∈  N,  there exists a number  N  ( q )

such that, for all  n ≥ N ( q ),  the following inequalities are true: 

ϕ ( 1 / n )  <  ( 1 / 2 ) ϕ ( 1 / q ) , (4.59)

Tq X*  ϕ ( 1 / n )  <  ( M / 16 ) ϕ ( 1 / q ) , (4.60)

Rq X*  ϕ ( 1 / n )  <  ( M / 16 ) ϕ ( 1 / q ) , (4.61)
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Vq X*  ϕ ( 1 / n )  <  ϕ ( 1 / q ) , (4.62)

q 
k

 
+

 
1

 ϕ ( 1 / q )  <  n 
k

 ϕ ( 1 / n ) , (4.63)

q max
, ,j q= …1

V hn j   ≤  q n 
– k max

, ,j q= …1
M j   <  ϕ ( 1 / n ). (4.64)

Using  N ( q ),  we construct two sequences of numbers  { n j } �  N   and  {  δ n j 
} �

{ 0, 1 }  and the sequence of functions 

g p  =  g p ( x )  : =  
j

p

=
∑

0

δ n j 
ϕ ( 1 / n j ) h n j

 ( x ).

Denote  n 1 : = 1  and  δ  n 1
 = δ 1 : = 1.  Assume that the first  p – 1  terms of these se-

quences have already been chosen and  p  is even.  Let  n  p  be an arbitrary number such

that  n p > N ( n p – 1 )  and  T hn np p
 > M / 2.  If  T gn pp −1   >  ( M / 4 ) ϕ ( 1 / n  p ) ,  then we set

δ n p
 : = 0;  if  T gn pp −1  ≤ ( M / 4 ) ϕ ( 1 / n p ),  then we set  δ n p

 : = 1.  Thus, in both cases, we

have 

T gn pp
  >  ( M / 4 ) ϕ ( 1 / n p ),      p   is even. (4.65)

Similarly, in the case of odd  p,  we denote by  n  p  any number for which  n p > N ( n  p – 1 )

and  R hn np p
 > M / 2  and choose the number  δ n p

 ∈ { 0, 1 }  from the condition 

R gn pp
  >  ( M / 4 ) ϕ ( 1 / n p ),      p   is odd. (4.66)

Let us prove that the function  f ϕ  indicated in the theorem can be defined as follows: 

f ϕ ( x )  : =  
j=

∞

∑
1

δ n j
 ϕ ( 1 / n j )  h n j

 ( x ).

Indeed, let 1 / n p + 1 < t ≤ 1 / n p.  By using (4.55), (4.59), and (4.63), we obtain 

ω k ( t ; f ϕ ;  [ a, b ] )

≤  
j

p

j p

p

j p= =

+

= +

∞

∑ ∑ ∑+ +




1

1 1

2

–

     ϕ ( 1 / n j ) ω k ( t ; h n j
  )
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≤  t 
k

  

j

p

=
∑

1

1–

 ϕ ( 1 / n j )nj
k   +  ( t n p ) 

k
 ϕ ( 1 / n p )  +  ϕ ( 1 / n p + 1 )  +  

j p= +

∞

∑
2

 ϕ ( 1 / n j )

≤  t 
k

 ( p – 1 ) np
k

–1 ϕ ( 1 / n p – 1 )  +  2 ϕ ( t )  +  ϕ ( 1 / n p + 1 )  

ν=

∞

∑
1

 2 
–

 
ν

≤  ( t n p ) 
k

 ϕ ( 1 / n p )  +  3 ϕ ( t )  =  4 ϕ ( t ). (4.67)

Furthermore, for even  p,  relations (4.53), (4.59), and (4.60) yield 

T f gn pp
( − )ϕ   ≤  

j p= +

∞

∑
1

 ϕ ( 1 / n j ) T hn np j

≤  Tn
Xp *

 

j p= +

∞

∑
1

 ϕ ( 1 / n j )  ≤  Tn
Xp *

 ϕ ( 1 / n p + 1 )  

ν=

∞

∑
1

 2 
–

 
ν

=  2 Tn
Xp *

 ϕ ( 1 / n p + 1 )   <  ( M / 8 ) ϕ ( 1 / n p ) .

Hence, according to (4.52) and (4.65), we have 

T fn ϕ   ≥  T gn p   –  T f gn pp
( − )ϕ

≥  ( M / 4 ) ϕ ( 1 / n p )  –  ( M / 8 ) ϕ ( 1 / n p )   ≥  ( M / 8 ) ϕ ( 1 / n p ) . (4.68)

By analogy, for odd  p,  relations (4.53), (4.59), (4.61), (4.52), and (4.66) yield 

R fn   ≥  ( M / 8 ) ϕ ( 1 / n p ). (4.69)

Finally, by virtue of (4.52), (4.53), (4.56), (4.62), (4.59), and (4.64), we obtain 

V fnp ω   ≤  V hn np p
 ϕ ( 1 / n p )  +  

j

p

j p= = +

∞

∑ ∑+




1

1

1

–

   V hn np j
 ϕ ( 1 / n j )

≤  ϕ ( 1 / n p )  +  ( p – 1 ) ϕ ( 1 ) max
, ,j p= … −1 1

 V hn np j
  

+  Vn
Xp *

 ϕ ( 1 / n p + 1 )  

ν=

∞

∑
0

 2 
–

 
ν
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≤  ϕ ( 1 / n  p )  +  ϕ ( 1 ) ϕ ( 1 / n  p )  

+  2 ϕ ( 1 / n  p )  +  ( 3 + ϕ ( 1 )) ϕ ( 1 / n  p ). (4.70)

Estimates (4.67)–(4.70) prove the theorem. 

�

4.7.  Remarks

Note that the behavior of moduli of continuity in integral metrics was thoroughly studied
by Besov and Stechkin (1975), Kolyada [(1975), (1988), (1989)], Konyagin (1983),
Oskolkov (1976), Radoslavova (1979), Ul’yanov [(1967), (1968)], Yudin (1979), and
others. 

5.  Marchaud inequality

In the present section, we generalize the well-known Kolmogorov-type inequality 

f j
a b

( )
[ ],

  ≤  A j, r (( b – a )
 r – j

 f r
a b

( )
[ ],

  +  ( b – a )
 – j

 f a b[ ],  ), (5.1)

where  j ∈ N,  0 < j < r,  f ∈  C 

r
 ( [ a, b ] ),  A  j, r = const,  and 0 < Aj r,  < c = c ( r ),  and the

inequality  (see [Besov (1965)]) 

f j
a b

( )
[ ],

  ≤  A j, r, k (( b – a )
 r – j

 ω k ( b – a ; f ( r 
) ;  [ a, b ] )  +  ( b – a )

 – j
 f a b[ ],  ), (5.2)

where  j ∈ N,  0 < j ≤ r,  f ∈ C 

r
 ( [ a, b ] ),  and  0 < Aj r k, ,  < c = c ( k, r ). 

In what follows,  c  and  c i   always denote various positive numbers (constants) that

can depend only on  k  and  r. 

5.1.  Marchaud inequality

Theorem 5.1 formulated below gives an upper bound for the modulus of continuity of or-
der  j < k  in terms of the  k th modulus of continuity and the norm of the function.  Recall
that the corresponding lower bound is given by inequality (4.12).  A part of the proof of
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Theorem 5.1 is presented as a separate lemma (Lemma 5.1) because this result will also
be used in other cases. 

Lemma 5.1.  Let 

k ≠ 1,      h > 0,      l ∈ N,      H = 2 
l

 h,

f ∈ C ([ x 0, x 0 + H ( k – 1 ) ] ),      ω k ( t )  =  ω  k ( t ; f ;  [ x 0, x 0 + H ( k – 1 ) ] ).

Then 

∆ ∆h
k l k

H
kf x f x– – –;  –  ;1

0
1 1

02( ) ( )( )   ≤  ( k – 1 ) 
2

 h 

k
 

–
 

1
 

h

H

∫ u 

–
 

k
 ω k ( u ) du, (5.3)

∆ ∆h
k l k

H
kf x k H h f x– – –; – –  –  ;1

0
1 1

01 2( )+ ( )( ) ( )( )

≤  ( k – 1 ) 
2

 h 

k
 

–
 

1
 

h

H

∫ u 

–
 

k
 ω k ( u ) du. (5.4)

Proof.  According to (3.31) and (3.39), we have 

∆ ∆2
1

0
1 1

02h
k k

h
kf x f x– – –;  –  ;( ) ( )

=  
ν ν

ν
=
∑ 



 ( + ) ( )( )

0

1
1

0
1

0

1k

h
k

h
kk

f x h f x
–

– ––
;  –  ;∆ ∆

=  
ν

ν

ν= =
∑ ∑





( + )
0

1

0

1

0

1k

i
h
k

k
f x ih

– ––
;∆

≤  
ν

ν

ν= =
∑ ∑



0

1

0

11k

i

k– ––
ω k ( h )  =  ( k – 1 ) 2 

k
 

–
 

2
 ω k ( h )

=  ( k – 1 ) 

2
 2 

k
 

–
 

2
 2 

k
 

–
 

1
 ( 2 

k
 

–
 

1 – 1 ) 

– 1
 h 

k
 

–
 

1
 

h

h2

∫ u 

–
 

k
 ω k ( h ) du

≤  ( k – 1 ) 

2
 2 

k
 

–
 

1
 h 

k
 

–
 

1
 

h

h2

∫ u 

–
 

k
 ω k ( u ) du.



Section 5 Marchaud inequality 217

Therefore, 

∆ ∆h
k l k

H
kf x f x– – –;  –  ;1

0
1 1

02( ) ( )( )

=  
i

l
i k k

h
k

h
k

i if x f x
=

( )∑ ( ) ( )( )
1

1 1
2

1
0 2

1
02 2 1

– – – –
– ;  –  ;∆ ∆

≤  
i

l

=
∑

1

 2 

i
 
(

 
1

 
–

 
k

 
)

 ( k – 1 ) 

2
 2 

k
 

–
 

1
 ( 2 

i
 
–

 
1

 h ) 

k
 

–
 

1

2

2

1i

i

h

h

−
∫ u 

–
 

k
 ω k ( u ) du

=  h 

k
 

–
 

1
 ( k – 1 ) 

2 

h

H

∫ u 

–
 

k
 ω k ( u ) du.

Inequality (5.3) is proved.  Inequality (5.4) can be proved by analogy. 

�

Remark 5.1.  If  ω k ( u ) ≤ u 
k,  then, under the conditions of Lemma 5.1, we have 

∆ ∆h
k l k

H
kf x f x– – –;  –  ;1

0
1 1

02( ) ( )( )   <  ( 1 / 2 ) ( k – 1 ) H h 

k
 

–
 

1. (5.5)

Indeed, since 

∆ ∆2
1

0
1 1

02h
k k

h
kf x f x– – –;  –  ;( ) ( )   ≤  ( k – 1 ) 2 

k
 

–
 

2
 h 

k
 ,

we also have 

∆ ∆h
k l k

H
kf x f x– – –;  –  ;1

0
1 1

02( ) ( )( )

≤  
i

l

=
∑

1

 2 

i
 
(

 
1

 
–

 
k

 
)

 ( k – 1 ) 2 

k
 

–
 

2
 ( 2 

i
 
–

 
1

 h ) 

k
 

–
 

1  <  ( 1 / 2 ) ( k – 1 ) H h 

k
 

–
 

1.

Theorem 5.1 (Marchaud inequality [Marchaud (1927)]).  If   f  ∈  C ( [ a, b  ] ),  then, for
all  j = 0, ,… k ,  the following inequality is true: 

ω j ( t )  ≤  A j t 
j 

t

b a
j

k
ju u du b a f

–
– – –  –∫ ( ) + ( )







|| ||1ω  , (5.6)

where  0 < t ≤ b – a,  ω j ( t ) = ω j ( t ; f ;  [ a, b ] ),  f  = f a b[ ], ,  and  0 < Aj  < c. 
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Proof.  For  j = 0  and  j = k,  inequality (5.6) is obvious.  Let us prove (5.6) for  j = k – 1.

We take a point  x 0 ∈ [ a, ( a + b ) / 2 ]  and a number  h ∈ ( 0, ( b – x 0 ) / ( k – 1 ) ]  and esti-

mate the  ( k – 1 ) th difference  ∆h
k f x– ;1

0( ).  To this end, we choose a number  ( l + 1 ) ∈  N
from the condition 

( k – 1 ) 2 

l
 h  ≤  b – x 0  <  ( k – 1 ) 2 

l
 

+
 

1
 h .

Using inequality (5.3), we obtain 

∆h
k f x– ;1

0( )   ≤  ( k – 1 ) 

2
 h 

k
 

–
 

1
 

h

hl2

∫  u 

–
 

k
 ω k ( u ) du  +  2 

l
 
(

 
1

 
–

 
k

 
)

 ∆
2

1
0l h

k f x– ;( ) .

Since 

2 

l h  ≤  ( b – x 0 ) / ( k – 1 )  ≤  ( b – a ) / ( k – 1 )  ≤  b – a,

2 

l
 
(

 
1

 
–

 
k

 
)  ≤  ( 4 ( k – 1 )) 

k
 

–
 

1
 (h / ( b – a )) 

k
 

–
 

1,

∆
2

1
0l h

k f x– ;( )   ≤  2 

k
 

–
 

1 f  ,

we get 

∆h
k f x– ;1

0( )  

≤  ( k – 1 ) 

2
 h 

k
 

–
 

1
 

h

b a–

∫  u 

–
 

k
 ω k ( u ) du  +  ( 8 ( k – 1 )) 

k
 

–
 

1
 (h / ( b – a )) 

k
 

–
 

1 f  . (5.7)

If  x 0 ∈  (( a + b ) / 2, b ),  then we obtain (5.7) by using estimate (5.4).  Thus, inequality
(5.6) is proved for  j = k – 1.  Now assume that relation (5.6) holds for a number  j + 1.
Then, by induction, we obtain the following relation for the number  j : 

ω j ( t )  ≤  j 2 t j  

t

b a–

∫  u 

–
 

j
 

–
 

1
 ω j + 1 ( u ) du  +  ( 8 j ) j (t / ( b – a ) j ) f

≤  j 2 A j + 1 t j  

t

b a–

∫  u 

–
 

j
 

–
 

1
 u d u b a f duj

u

b a
j

k
j j+ +∫ ( ) + ( )







1 2 1 1
–

– – – –  –v v vω

+  ( 8 j ) j t j  ( b – a ) 
–

 
j f
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=  j 2A j + 1 t j u u du t u u du b a t b a fj
k

t

b a
j j

k
t

b a
j– –

–
– –

–
– –– – –1 1 2 1ω ω( ) + ( ) + ( )( )






∫ ∫+

+  ( 8 j ) j t j  ( b – a ) 
–

 
j 

 f

≤  j 2 A j + 1 t j  

t

b a–

∫  u 

–
 

j
 

–
 

1
 ω k ( u ) du  +  ( j 2 A j + 1 + ( 8 j ) j ) t j  ( b – a ) 

–
 
j 

 f  .

Note that we have proved an inequality that is even stronger than (5.6), namely 

ω ω ωj
j k

j
t

b a
j

jt ct
u

u
du b a

b a

j
( ) ≤ ( ) + ( − ) −




+

−
−∫ 1 









 ,      j  ≠  0. (5.6′ )

�

Note that if  f ∈ C 

j
 ( [ a, b ] ),  then, by virtue of (3.34), we have 

f j
a b

( )
[ ],

  ≤  lim sup
t→0

 t – j ω j ( t ; f ;  [ a, b ] ).

Hence, inequality (5.2) follows from (5.6).  Inequality (5.1) follows from (5.2) and (4.13).

5.2.  Some simple but important facts for the second modulus of continuity

Let  f ∈ C ( [ a, b ] ),  ω j ( t ) = ω j ( t ; f ;  [ a, b ] ),  j = 1, 2,  and  f  = f a b[ ],  
. 

Theorem 5.1′′′′.  The following inequality is true: 

ω 1 ( t )  ≤  t 

t

b a–

∫  u 

–
 

2
 ω 2 ( u ) du  +  8 t ( b – a ) 

–
 
1 

 f . (5.8)

Theorem 5.2 [Burkill (1952)].  If  f ( a ) = f ( b ) = 0,  then 

 f   ≤  ω 2 (( b – a ) / 2 ). (5.9)

Proof.  Let  x * ∈ [ a, b ]  be an arbitrary point at which  f x( )*  = f .  For definiteness,

we assume that  x * ∈ [ a, ( a + b ) / 2 ]  and  f ( x * ) ≥ 0.  Denoting  h = x * – a,  we obtain 
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f   =  f ( x * )  ≤  2 f ( x * )  –  f ( x * + h )

=  – f ( x * + h )  +  2 f ( x * )  –  f ( x * + h )  ≤  ω 2 ( h )  ≤  ω 2 (( b – a ) / 2 ).

�

Theorem 5.3 (see, e.g., [Dzyadyk (1975c)]).  Let  x ∈ [ a, b ]  and let  h : = min { x – a,

b – x }.  Then 

f x L x f a b( ) − ( ); ; ,   ≤  9 h 

h

b a–

∫  u 

–
 

2
 ω 2 ( u ) du . (5.10)

Proof.  Denote  g ( x ) : = f ( x ) – L ( x ; f ;  a, b)  .  Note that  g  ( a ) = g ( b ) = 0.  Using (5.8)
and (5.9), we obtain 

f x L x f a b( ) − ( ); ; ,   =  g x( )   ≤  ω 1 ( h; g )

≤  h 

h

b a–

∫  u 

–
 

2
 ω 2 ( u; g ) du + 8 h 

 ( b – a ) 
–

 
1 

 g

≤  h 

h

b a–

∫  u 
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2
 ω 2 ( u; g ) du + 8 h 

 ( b – a ) 
–

 
1 

 ω 2 (( b – a ) / 2; g )

≤  9 h 

h

b a–

∫  u 

–
 

2
 ω 2 ( u; g ) du.

Relation (5.10) now follows from the equality  ω 2 ( t ; f ) = ω 2 ( t ; g ). 

�

Corollary 5.1.  The following inequality is true: 

f x L x f a b( ) − ( ); ; ,   ≤  45 ω 2 ( )( )( )x a b x– – ,    x ∈ [ a, b ] . (5.11)

Indeed, denoting 

h*  =  ( )( )x a b x– – ,      h  =  min { x – a, b – x },
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we obtain 

h  

h

b a–

∫  u 

–
 

2
 ω 2 ( u ) du
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h

h*
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2
 ω 2 ( u ) du  +  h  

h
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2
 ω 2 ( u ) du
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h
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 ω 2 ( h*

 ) du  +  h  

h

b a
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–

∫  4 ( h*
 ) 

–
 

2
 ω 2 ( h*

 ) du  <  5 ω 2 ( h*
 ).

Theorem 5.4.  If 

0

1

∫ u 

–
 

2
 ω 2 ( u ) du  <  ∞,

then  f ∈ C 
1

 ( [ a, b ] )  and 

ω 1 ( t ; f ′ ;  [ a, b ] )  ≤  2 

0

t

∫  u 

–
 

2
 ω 2 ( u ) du . (5.12)

Proof.  First, we prove that the derivative  f ′ = f ′ ( x )  exists at all points  x ∈  [ a, b  ].
Using the Cauchy criterion, for an arbitrary  ε > 0  we choose  δ > 0  from the condition

18 

0

2δ

∫  u 

–
 

2
 ω 2 ( u ) du  <  ε .

We fix arbitrary points  x 1, x 2 ∈ [ a, b ]  from the  δ-neighborhood of the point  x.  Among
the points  x,  x 1,  and  x 2,  let  y 0  denote the leftmost one,  y 2  the rightmost one, and  y 1
the middle one.  Note that 

[ x, x 1; f ] – [ x, x 2; f ]  =  ( x 1 – x 2 ) [ x, x 1, x 2; f ]

=  ( x 1 – x 2 ) [ y 0, y 1, y 2 ; f ]

=  ( x 1 – x 2 ) ( f ( y 1 ) – L ( y 1 ; f ;  y 0, y 2) ( y 1 – y 0 ) 

–
 

1
 ( y 1 – y 2 ) 

–
 

1
 ).
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Denote  h = min { y 1 – y 0, y 2 – y 1 }.  Using (5.10), we obtain 

[ ] − [ ]x x f x x f, ; , ;1 2

≤  18 x x1 2−  

h

y y2 0–

∫  u 
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2
 ω 2 ( u ) du ( y 2 – y 0 ) 

–
 

1
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y y2 0–

∫  u 

–
 

2
 ω 2 ( u ) du  ≤  18 

0

2δ

∫  u 

–
 

2
 ω 2 ( u ) du  <  ε,

According to the Cauchy criterion, this means the existence of the derivative  f ′ ( x ). 
Let us prove that the derivative  f ′ ( x )  is continuous and relation (5.12) is true.  Con-

sider two points  x 0, x 1 ∈  [ a, b ],  x  0 < x 1,  and denote  H = x 1 – x 0,  ε  l = H 2 
–

 
l,  l ∈  N.

According to Lemma 5.1, we have 
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1ε
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1 0x x–
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�

5.3.  Estimates for moduli of continuity of derivatives

Lemma 5.2.  Let  k ≠ 1.  If  f ∈ C ([ a, b ])  and 

0

b a–

∫   u 

–
 

2
 ω k ( u ; f ;  [ a, b ] ) du  <  ∞,
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then  f ∈ C 
1

 ([ a, b ])  and 

ω  k – 1 ( u ; f ′ ;  [ a, b ] )  ≤  c 

0

t
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–
 

2
 ω k ( u ; f ;  [ a, b ] ) du. (5.13)

Proof.  According to the Marchaud inequality (5.6), we have 
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1
 f a b[ ],   <  ∞.

Therefore, by virtue of Theorem 5.4, we also have  f ∈ C 
1

 ([ a, b ]).  Let us prove (5.13).

We fix a point  x  0 ∈  [ a, b ]  and a number  h ∈  ( 0, ( b – x 0 ) / ( k – 1 ) ],  and denote  x 1 =

x 0 + ( k – 1 ) h.  Using (2.12), (5.6), and (5.12), we get 

∆h
k f x– ;1
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1 0x x–

∫  u 

–
 

2
 ω k ( u ; f ;  [ x 0, x 1 ] ) du  +  2 

k 

c 1 ( x 1 – x 0 )  

–
 

1
 f x x[ ]0 1,

≤  c 2 

0

h

∫  u 

–
 

2
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1
 f x x[ ]0 1, . (5.14)

We set 

g ( x )  =  f ( x )  –  L ( x; f; x 0 
, x 0 + h, … , x 0 + ( k – 1 ) h )
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and note that  ∆h
k f x– ;1

0( ′ ) = ∆h
k g x– ;1

0( ′ )  and  ω k ( t ; f  ) ≡ ω k ( t ; g ) .  We also use the in-

equality  g x x[ ]0 1,  ≤ c 3 ω k ( h ; f ;  [ x 0, x 1 ] )  (Whitney inequality), which will be proved in

the next section.  It follows from (5.14) that 
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�

Theorem 5.5.  Let  m ∈ N,  k ≤ m,  r : = m – k,  and  f ∈ C ([ a, b ]).  If 

0

1
b a

r
mru u f du

–
– – ;∫ ( )ω   <  ∞, (5.15)

then  f  ∈  C 

r
 ([ a, b  ])  and, for every  j = 0, ,… k ,  j ≠  m,  the following inequality is

true: 
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r u f
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1 , (5.16)

where  0 ≤ t ≤ b – a,  f  = f a b[ ], ,  and  ω j  ( t ; f ( s 
)) = ω j  ( t ; f ( s 

)
 ; [ a, b ] ). 

Proof.  In the case  r = 0,  condition (5.15) is obviously satisfied, and inequality (5.16) is
the Marchaud inequality (5.6).  We assume that the theorem is valid for a number  r – 1
and prove it by induction for the number  r. Since, according to the induction hypothesis,
we have 
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it follows from Lemma 5.2 that  f ∈ C 

r
 ([ a, b ])  and relation (5.16) is true for  j = k .  For

j = 0,  taking (3.34) into account, we obtain 

ω 0 ( t ; f ( r 
))  =  f r( )   ≤  lim sup

;

t

r
r

t f
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u f

u
du
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r2

0
1

–
;∫ ( )

+
ω

  +  
c f

b a r
2

( )–
,

i.e., relation (5.16) is also true for  j = 0.  For the other  j = 1 1, ,… −k ,  it remains to use
the Marchaud inequality (5.6). 

�

Remark 5.2.  If  ω m ( t ; f ;  [ a, b ] ) ≤ t m,  then 

ω 1  ( t ; f ( m 
–

 
1

 
)

 ; [ a, b ] )  ≤  t . (5.17)

Indeed, by virtue of (5.15), we have  f ∈  C  

m
 
–

 
1

 ([ a, b ]) .  We take points  x 0 ∈  [ a, b ]
and  x 1 ∈ [ a, b ],  x  1 > x 0,  and denote  H : = ( x 1 – x 0 ) / ( m – 1 )  and  h  l = 2 

–
 
l

 H,  l ∈  N.
Using (3.34) and (5.5), we obtain 

f x f xm m( − ) ( − )( ) − ( )1
1

1
0

=  lim ; – –  –  ;– – –

l
l

m
h
m

l h
mh f x m h f x

l l→∞
( )( ) ( )1 1

1
1

01∆ ∆

≤  lim ; – –  –  ;– – – –

l
l

m
h
m

l
l m

H
mh f x m h f x

l→∞

( )( )( ) ( )1 1
1

1 1
01 2∆ ∆

+ 2 1 1
0

1
0

l m
H
m

h
kf x f x

l

( ) ( ) ( )– – –;  –  ;∆ ∆

≤  2 ( 1 / 2 ) ( m – 1 ) H  =  x 1 – x 0 
.

The results of Subsection 5.3 are contained in [Brudnyi and Gopengauz (1960)]. 

5.4.  On the exactness of Theorem 5.5

The result of Theorem 5.5 is exact because the following statement is true: 

Theorem 5.6.  Let  m : = r + k,  m ≠ 1,  ϕ ∈ Φ 
m,  and 
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F ( x ) = F ( x ; ϕ ; m)  =  
1

2
0

( ) ∫m

x

– !
x ( x – u ) 

m
 
–

 
2

 u 
–

 
m

 ϕ ( u ) d u,     x ≥ 0.

Then the following assertions are true: 

(i) if 

0

1

∫  r u 
–

 
r

 
–

 
1

 ϕ ( u ) d u  =  ∞,

then  F ∉ C 

r
 ([ 0, 1 ]) ; 

(ii) if 

0

1

∫  r u 
–

 
r

 
–

 
1

 ϕ ( u ) d u  <  ∞,

then  F  ∈  C 

r
 ([ 0, 1 ])  and, for all  j = 0, ,… k ,  the following estimate is

valid: 

ω j  ( t ; F ( r 
)

 ; [ 0, 1 ] )

≥  c 

0

t

∫  r u 
–

 
r

 
–

 
1

 ϕ ( u ) d u  +  c ( k – j ) t j 
t

1

∫  u 
–

 
r

 
–

 
1

 ϕ ( u ) d u,    0 ≤ t m ≤ 1. (5.18)

Recall that  ϕ ( t ) ≤ ω m  ( t ; F ; [ 0, 1 ] ) ≤ m ϕ ( t )  [see (4.25)]. 
Theorem 5.6 is a corollary of Lemma 5.3 and Remark 5.3 (see below). 

Lemma 5.3 [Shevchuk (1976), (1989a)].  Let  m ∈  N  and  m ≠ 1.  Assume that a func-

tion  f = f ( u )  is given that is continuous and nonnegative on the interval  (  0, ∞  )  and
such that the integral 

G( x )  : =  
1

2
1

( ) ∫m

x

– !
x ( x – u ) 

m
 
–

 
2

 f ( u ) d u (5.19)

is continuous at the point  x = 0  (i.e., it is continuous on  [  0, ∞  ) ).  Then the following
assertions are true: 
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(i) for  r = 1 2, ,… −m ,  the condition 

0

1

∫  u 
m

 
–

 
r

 
–

 
1

 f ( u ) d u  <  ∞ (5.20)

is necessary and sufficient for  G   to belong to  C  

r
 ([ 0, ∞  ]);  in the case  r =

m – 1,  the following condition is necessary and sufficient for  G   to belong

to  C 
m

 
–

 
1

 ([ 0, ∞ ]) : 

f u du

xf x
x

( ) < ∞

( ) =











∫

→∞

0

1

0

  ,

lim   ;

( . )

( . )

5 21

5 22

(ii) if  G  ∈  C 

r
 ([ 0, ∞  ]),  r  = 0 1, ,… −m ,  then the following relation holds for

j = 1, ,… −m r  : 

∆h
j rG( )( ); 0  

≥  c 

0

h

∫  r u 
m

 
–

 
r

 
–

 
1

 f ( u ) d u  +  c ( m – r – j ) h 
j 

mh

1

∫  u 
m

 
–

 
r

 
–

 
1

 
–

 
j f ( u ) d u, (5.23)

where  0 ≤ m h ≤ 1  and  c = c ( m ) = const. 

Proof.  Denote 

 Gs  ( x )  : =  ( 1 / ( s – 1 ) ! ) 

1

x

∫  ( x – u ) 
s

 
–

 
1 f ( u ) d u,      s ∈ N,

 G0 ( x )  : =  f ( x ),      k : = m – r.

Note that, for all  r = 0 1, ,… −m ,  the following identity is true: 

G 
(

 
r

 
)

 ( x )  =  x Gk – 1 ( x )  +  r Gk ( x ) . (5.24)

(i)  Necessity.  Let  G ∈ C 

r
 ([ 0, ∞ )),  r = 1 1, ,… −m .  For any  ε ∈  ( 0, 1 / m ),  using

(3.42) and (3.34), we obtain 
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∆ε
r G( ); 0   =  r Gr

mε εε∆ –
– ;1

1( )  =  r Gr
m

rε θ–
–
1
1( )( )   =  r εr

 Gk ( θ ),    θ ∈ [ ε, r ε ],

which yields 

∆ε
r G( ); 0   =  ( – 1 ) 

k
 r ε 

r
  Gk ( θ )

≥  
r

k

r

r

ε

ε
( ) ∫– !1

1

 ( u – θ ) 
k

 
–

 
1 f ( u ) d u  ≥  A ε 

r  
mε

1

∫ u 
k

 
–

 
1 f ( u ) d u,

where  A = r k l m – 
1(( k – 1 ) ! ) – 

1.  Therefore, with regard for (3.34), we get 

mε

1

∫  u 
k

 
–

 
1 f ( u ) d u  ≤  A – 

1 ε – 
r ∆ε

r G( ); 0   ≤  A – 
1

 G r( )
[ ]0 1,

,

i.e., the necessity of condition (5.20) is proved.  In the case  r = m – 1,  the necessity of
(5.22) is an immediate consequence of the identity 

G 
m

 
–

 
1

 ( x )  =  x f ( x )  +  ( m – 1 ) 

1

x

∫  f ( u ) d u .

(i)  Sufficiency.  It follows from condition (5.20) that 

x 

x

1

∫  u 
k

 
–

 
2 f ( u ) d u  =  x 

x

x

∫  u 
k

 
–

 
2 f ( u ) d u  +  x 

x

1

∫  u 
k

 
–

 
2 f ( u ) d u

≤  
0

x

∫  u 
k

 
–

 
1 f ( u ) d u  +  x

0

1

∫  u 
k

 
–

 
1 f ( u ) d u  →  0 (5.25)

as  x → 0.  In view of (5.24), this implies that  G 
(

 
r

 
)

 ( x ) → r Gk ( 0 ) = G 
(

 
r

 
)

 ( 0 ). 

(ii)  As proved above, if  G ∈ C 

r
 ([ 0, ∞ )),  then relation (5.24) holds for  x = 0.  Let us

estimate the  j th difference for the first term  i 1 ( x ) : = x Gk – 1 ( x )  in (5.24).  By virtue of
(3.42) and (3.34), we get 

∆h
j i( )1 0;   =  j h ∆h

j
kG h–

– ;1
1( )  =  jh Gj k j– ( )θ ,    θ ∈ [ h, j h ],

whence 
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( ) ( )– ;–1 01
k j

h
j i∆   =  ( ) ( )– –

–1 k j j
k jjh G θ   ≥  c k j( − )

 

mh

1

∫  u 
k

 
–

 
j f ( u ) d u.

It is clear that the second term  r Gk ( x )  in (5.24) is equal to zero for  r = 0.  In the

case where  r ≠ 0,  we denote  i 2 ( x ) : = 0  for  x > h ,

i 2 ( x )  : =  ( 1 / ( k – 1 ) ! ) 

h

x

∫  ( x – u ) 
k

 
–

 
1 f ( u ) d u     for   x ∈ [ 0, h ],

and  i 3 ( x ) = Gk ( x ) – i 2 ( x ).  As a result, we get 

( ) ( )– ;–1 02
k j

h
j i∆   =  ( – 1 ) 

k
 i 2 ( 0 )  =  ( 1 / ( k – 1 ) ! ) 

0

h

∫  u 
k

 
–

 
1 f ( u ) d u,

( ) ( )– ;–1 03
k j

h
j i∆   =  ( ) ( )( )– –1 3

k j j ji hθ ,    θ ∈ ( 0, j h ).

If  θ ∈ ( h, j h ],  then 

( ) ( )( )– –1 3
k j ji θ   =  ( – 1 ) 

k
 
–

 
j
 G k – j ( θ )  ≥  0,

and if  θ ∈ ( 0, h ] ,  then 

( ) ( )( )– –1 3
k j ji θ   =  ( ) ( ) ( )( )( )– ––

–1 2
k j

k j
jG iθ θ

=  ( – 1 ) 

k
 
–

 
j
 ( 1 / ( k – j – 1 ) ! ) 

1

h

∫  ( θ – u ) 
k

 
–

 
j

 
–

 
1 f ( u ) d u.

Thus, 

( ) ( )– ;–1 0k j
h
j

kG∆   ≥  ( ) ( )– ;–1 02
k j

h
j i∆   ≥  ( 1 / ( k – 1 ) ! ) 

0

h

∫  u 
k

 
–

 
1 f ( u ) d u.

�

Remark 5.3.  If  ϕ ∈ Φ 
m  and  f ( u ) = u 

–
 
m

 ϕ ( u ),  then 
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0

x

∫  f ( u ) d u  ≥  
0

x

∫  x 
–

 
m

 ϕ ( x ) d u  =  x f ( x ),

i.e., relation (5.22) follows in this case from (5.21). 

6.  Whitney inequality

Recall that the value of the best uniform approximation of a function  f ∈  C ([ a, b ])  by
algebraic polynomials  Pn  of degree  ≤ n  is defined as the number 

E n ( f ) [ a, b ]  =  inf
Pn

 f Pn a b− [ ], .

In the case where  [ a, b ] = [ 0, 1 ] ,  we write  E n ( f )  instead of  E  n ( f ) [ a, b ]  and  f

instead of  f a b[ ],  
. 

It follows from Theorem 5.2 that 

E 1 ( f ) [ a, b ]  ≤  ω 2 (( b – a ) / 2 ; f ;  [ a, b ] ),

and one can easily see that 

E 1 ( f ) [ a, b ]  ≤  
1
2 22ω b a

f a b
− [ ]



; ; ,  . (6.1)

A generalization of this inequality to the case  k ∈ N,  i.e., the inequality

E k – 1 ( f ) [ a, b ]  ≤  c
b a

k
f a bkω − [ ]



; ; ,  , (6.2)

is called the Whitney inequality;  it is proved in Subsection 6.1. 
Recall that we use the notation  c  for different constants that may depend only on  k

and  r  (or some of these parameters).  Also recall that  L ( x, f ; x 0 
, … , x k )  denotes the

Lagrange polynomial of degree  ≤ k  that interpolates a function  f  at the points  x 0 
, … , x k .

6.1.  Whitney inequality

First, in Lemma 6.1 and Theorem 6.1, we obtain a weak version of the Whitney inequality
(for differentiable functions). 
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Lemma 6.1 (see, e.g., [Zhuk and Natanson (1983)]).  Let  x  0 ∈  [ a, b ] ,  h  > 0,  x j  : =

x 0 + j h,  and  xk  ∈  [ a, b ] .  If  F ∈ C 1
 ([ a, b  ]),  then, for every  x  ∈  [ a, b  ] ,  the fol-

lowing inequality is true: 

F x L x F x xk( ) − ( …; ; , , )0   ≤  
( − ) … ( − ) ( )x x x x

k h
hk

k k
0

!
ω , (6.3)

where 

ωk ( t )  : =  ωk ( t; F ′;  [a, b ] ).

Proof.  For every  t1 ∈ [ 0, 1 ] ,  we set  Ft1
 ( u )  : =  F ′ ( x + ( u – x ) t1 ),  u ∈ [ a, b ].  Then re-

lations (3.25′′ ) and (3.32) yield 

[ x, x 0, … , x k 
; F ]  =  

0

1

0 1
0

1

0 11 1

1∫ ∫[ … ] = ( )x x F dt
k h

F x dtk t k h
k

t, , ;
!

;∆ .

Since 

∆ ∆h
k

t ht
k

k kF u F x u x t ht h( ) = ′ + ( − ) ≤ ( ) ≤ ( )( )
1 1 1 1; ; ω ω ,

relation (6.3) follows from (3.8). 

�

Lemma 6.1 readily yields the following statement: 

Theorem 6.1.  If  F ∈ C 1
 ([ a, b ]),  then 

E k ( F ) [ a, b ]  ≤  
b a

k
b a

k
F a bk

− − ′ [ ]



ω ; ; , . (6.4)

Remark 6.1.  It is easy to see that the factor  
b a

k

−
  in (6.4) (but not the step) can be re-

placed by  
b a
e kk

−
σ

,  σk : = 1 + … + 
1
k

. 

We are now ready to prove the main theorem of this section. 
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Theorem 6.2 [Whitney (1957), (1959)].  If  f ∈ C ([ a, b ]),  then 

E  k – 1 ( f ) [ a, b ]  ≤  W
b a

k
f a bk kω − [ ]



; ; , , (6.5)

where  Wk  = const  depends only on  k. 

Proof.  We set 

x0  : =  a,      h  : =  
b a

k

−
,      x j  : =  x 0 + j h,      F ( x )  : =  f u du

a

x

( )∫ ,

G ( x )  : =  F ( x )  –  L ( x ; F ; x 0 
, … , x k ) ,      g ( x )  : =  G′ ( x ) ,

ωk ( t )  : =  ωk ( t; f ;  [a, b ] )  ≡  ωk ( t; g;  [a, b ] ).

We fix  x  ∈ [ a, b ]  and choose  δ  for which  ( x + k δ ) ∈ [ a, b ].  As a result, we get 

∆t
k k k j

j

k

g x dt g x
k

j
g x jt dtδ δ( ) = (− ) ( ) + (− ) 





( + )∫ ∑ ∫−

=
;

0

1

1 0

1

1 1

=  (− ) ( ) + (− ) 





( + ) − ( )−

=
∑ ( )1 1

1

1

k k j

j

k

g x
k

j j
G x j G x

δ
δ , (6.6)

whence 

g x g x dt G
k

j jt
k

a b
j

k

( ) ≤ ( ) + 



∫ ∑[ ]

=
∆ δ δ

; ,
0

1

1

2 1
  ≤  ω δ

δk
k

a bG( ) + +
[ ]

1
2 1

, . (6.7)

By virtue of Lemma 6.1, we have  G a b[ ],  ≤ h ωk ( h ).  Therefore, 

E k – 1 ( f ) [ a, b ]  ≤  g a b[ ],   ≤  ω δ δ ωk
k

kh h( ) + ( )− +1 12 .

To complete the proof, note that  δ  can always be chosen so that  h ≥ δ  ≥ h / 2 . 

�

We denote the smallest possible constant in the Whitney inequality (6.5) by  W ( k )
and call it the Whitney constant. 
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6.2.  Sendov’s conjecture

For practical applications of the Whitney inequality, it is important to have good esti-

mates for the Whitney constant  W ( k ).  As mentioned above, it was first proved by Bur-

kill (1952) that  W ( 2 ) ≤ 1.  He also formulated the conjecture that  W ( k )  is finite for each

k ≥ 3  (the case  k = 1  is trivial:  W ( 1 ) = 1 / 2 ).  Burkill’s conjecture was proved by
Whitney (1957) , who also proved that 

W ( 2 )  =  
1
2

,      
8

15
  ≤  W ( 3 )  ≤  0.7,      W ( 4 )  ≤  3.3,      W ( 5 )  ≤  10.4,

and 

W ( k )  ≥  
1
2

,      k ∈ N. (6.8)

Later, Brudnyi (1964) obtained the estimate  W ( k ) = O( k 
2

 
k

 ).  Sendov (1982) proved that 

W ( 4 )  ≤  1.26,      W ( 5 )  ≤  1.31,      W ( 6 )  ≤  1.67,      W ( k )  ≤  ( k + 1 ) k 
k,

and formulated the conjecture that 

W ( k )  ≤  1. (6.9)

Ivanov and Takev (1985) proved that  W ( k ) = O( k ln k ) ,  Binev (1985) proved that

W ( k ) = O( k ),  and, finally, Sendov [(1985), (1986)] established that the Whitney constant
W ( k )  is bounded by an absolute constant, namely,  W ( k ) ≤ 6.  Kryakin (1989) modified
the method used by the authors cited above and obtained the estimate  W ( k ) ≤ 3.  This in-
equality was also announced by Brudnyi (1983) and Sendov [Sendov and Popov (1989),
p. 37].  Later, Kryakin proved a more precise estimate.  A modification of his proof al-
lows one to obtain the estimate 

W ( k )  ≤  2 + 
1
2e

. (6.10)

The monograph [Sendov and Popov (1988)] contains proofs of the inequality

E k – 1 ( f ) ≤ 6 ω k ( 1 / k )  and similar inequalities as well as applications of the Whitney in-
equality to the numerical integration, approximate solution of integral and differential
equations, etc. 

An analog of the Whitney inequality is also true in  Lp   [see Burkill (1952)  (k = 2,

p = ∞),  Whitney [(1957), (1959)]  (p = ∞),  Brudnyi (1964)  (1 ≤ p ≤ ∞),  Storozhenko
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(1977)  (0 < p < 1),  Sendov and Takev (1986)  (W1 ( k ) ≤ 30),  Kryakin (1989)  (Wp ( k ) ≤
11,  1 ≤ p < ∞),  and Kryakin and Kovalenko (Wp ( k ) < 9,  W1 ( k ) < 6.5)].  Multidimen-
sional analogs of the Whitney inequality can be found in works of Brudnyi, Jonen,
Scherer, Takev, Storozhenko, Osvald, Dahmen, DeVore, Binev, Ivanov, etc. (see [Brud-
nyi (1970); Takev (1988); Storozhenko and Oswald (1978); Dahmen, DeVore, and
Scherer (1980); Binev and Ivanov (1985)]). 

6.3.  Corollaries of the Marchaud inequality and Whitney inequality

Let  f ∈ C ([ a, b ] ),  k ∈ N,  and  ω  k ( t ) : = ω  k ( t ; f ; [ a, b ] ).  We fix a point  x 0 ∈  [ a, b ]

and a number  h > 0  such that  ( x 0 + ( k – 1 ) h) ∈ [ a, b ] .  Denote 

J  : =  [ x 0 – h, x 0 + k h ]  ∩  [ a, b ]      and      x i  : =  x 0 + i h,

and let 

L ( x, f )  : =  L ( x, f ; x 0 
, … , x k – 1 )

be the Lagrange polynomial that interpolates the function  f   at the points  xi ,  i  =

0 1, ,… −k .  We set  g ( x ) : = f ( x ) – L ( x, f ),  x ∈ [ a, b ] ,  i.e. [see (3.8)], 

g ( x )  =  [ x, x 0 
, … , x k – 1; f ] 

i

k

=
∏

0

1–

 ( x – x i ). (6.11)

Note that  ω k ( t ; g ; [ a, b ] )  ≡  ω k ( t ). 

Lemma 6.2.  The following inequalities are true: 

(i) g J   ≤  c ω k ( h ); (6.12)

(ii) ω j ( t ; g ; J )  ≤  c t j 
t

kh

∫  u – 
j

 
–

 
1

 ω k ( u ) d u,    j = 1 1, ,… −k ,  0 ≤ t ≤ h; (6.13)

(iii) g x( )   ≤  c x x k− −
0

1

h

x x| |

∫
– 0

  u – 
k ω k ( u ) d u,    x ∈ [ a, b ] \ J; (6.14)

(iv) g x( )   ≤  c ( 1 + x x− 0 / h ) 
k
 ω k ( h ) d u,    x ∈ [ a, b ] ; (6.15)
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(v) f x( )   ≤  c x x k− −
0

1
 

h

x x
k

k
u

u
du

| |

∫ ( )
– 0 ω

+ c
x x

h
f

k

k J

| | || ||– –

–
0

1

1 ,     x ∈ [ a, b ] \ J ; (6.16)

(vi) f x( )   ≤  c ( 1  +  x x− 0  / h ) 
k

×  ( ω k ( h )  +  f x x k h[ + ( − ) ]0 0 1,  ),     x ∈ [ a, b ] ; (6.17)

Proof.  By virtue of the Whitney inequality (6.5), there exists an algebraic polynomial

Pk – 1 = Pk – 1 ( x )  of degree  ≤ k – 1  for which  f Pk J
− −1  ≤ c ω k ( h ).  Taking into ac-

count that 

g ( x )  =  f ( x ) – L ( x, f )  = ( f ( x ) – Pk – 1 ( x ))  –  L ( x, f – Pk – 1 )

and using estimate (1.47), we obtain 

g J   ≤  c ω k ( h )  +  ( 2 
k – 1 ) max

, , –i k= …0 1
 f x P xi k i( ) − ( )−1   ≤  c 2 

k
 ω k ( h ),

i.e., inequality (6.12) is proved.  Inequality (6.13) follows from relation (6.12) and the
Marchaud inequality (5.6). 

Let us prove inequality (6.14).  Assume, for definiteness, that  x ≥ x 0 + k  h  .  Let  L *

denote the Lagrange polynomial that interpolates the function  f  at the points  x 0 +

i ( x – x 0 ) / ( k – 1 ),  i = 0 1, ,… −k .  We set  g * ( y ) = f ( y ) – L*
 ( y )  and note that  g  * ( x 0 ) =

g * ( x ) = 0  and  g ( x ) = – L ( x, g * ).  Estimate (6.13) yields 

∆h
j g x( )*, 0   ≤  c 1 h  

j 

h

δ

∫  u – 
j

 
–

 
1

 ω k ( u ) d u,      j = 1 1, ,… −k ,

where  δ : = x – x 0.  Using the Newton formula (3.33), we obtain 

g x( )   =  L x g( ), *   ≤  
j

k

i

j

i
h

c
j

x x
= =

∑ ∏ ∫( )
1

1
1

0

1– –

!
–

δ
 u – 

j
 
–

 
1

 ω k ( u ) d u

≤  c 2
j

k
j

h=
∑ ∫

1

1–

δ
δ

 u – 
j

 
–

 
1

 ω k ( u ) d u  ≤  ( k – 1 ) c 2 δ 
k

 
–

 
1

 

h

δ

∫  u – 
k

 ω k ( u ) d u.
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Inequality (6.14) is proved.  Inequalities (6.16) and (6.17) follow from the equality  f ( x ) =
g ( x ) + L ( x, f ),  the estimate 

L x f( ),   ≤  c ( 1  +  x x− 0  / h ) 
k

 

– 1
  ( ω k ( h )  +  f x x k h[ + ( − ) ]0 0 1,  )

and inequalities (6.14) and (6.15), respectively. 

�

Lemma 6.2 ′′′′.  If  f ∈ C 
p

 ([ a, b ] ),  p ∈ N,  p < k,  then 

g p
J

( )   ≤  c ω k – p ( h ; f ( p 
) ; [ a, b ] ). (6.18)

Proof.  Let 

L k – p – 1  : =  L k – p – 1 ( x , f ( p 
)

 )  : =  L k – p – 1 ( x , f ( p 
) ; y 0, … , y k – p – 1 )

be the Lagrange polynomial of degree  ≤ p – k – 1  that interpolates the derivative  g 
(

 
p

 
) =

g 
(

 
p

 
)

 ( x )  at the points  y i : = x 0 + i k h / ( k – p – 1 ),  i = 0 1, ,… − −k p   (L 0 ≡ g 
(

 
p

 
)

 ( x 0 )  in

the case where  k = p + 1).  We set 

� ( x )  : =  
ν ν=
∑

0

1
1

p–

!
 ( x 0 – x ) 

ν
 f ( 

p
 
)

 ( x 0 )  +  
1

1
0

( ) ∫p
x

x

– !
 ( x – u ) 

p
 

–
 
1

 L k – p – 1 ( u , f ( 
p

 
)

 ) d u

and note that 

g ( x )  ≡  f ( x )  –  L ( x, f )  =  f ( x )  –  �  ( x, f )  –  L ( x, f – � ) ,

i.e.,  g 
(

 
p

 
)

 ( x ) = f ( 
p

 
)

 ( x ) – � 
(
 
p

 
)

 ( x ) + L 
(

 
p

 
)

 ( x, f – � ) .  According to (6.12), we have

f Lp
k p J

( )
− −− 1   ≤  c 1 ω k – p ( h ; f ( p 

) ; J )  = :  c 1 ω ( h ).

Therefore, 

  f x x f( ) − ( )� ;

≡  
1

1
0

1
1( )

( ) ( ) ( )∫ ( )( ) ( )
p

x u f u L u f du
x

x
p p

k p
p

– !
 –  –  ;–

– –   ≤  c 2 h 
p

 ω ( h ).
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Hence, by virtue of (3.48), we obtain 

  
L x fp( )( − ), �   ≤  c 3 h 

–
 

p
   f J− �   ≤  c 3 c 2  ω ( h ),    x ∈ J.

Thus, 

g p
J

( )   =  f Lp p
J

( ) ( )−   ≤  
  

f p p
J

( ) ( )− �   +  c 3 c 2  ω ( h )

=  f Lp
k p J

( )
− −− 1   +  c 3 c 2  ω ( h )  ≤  c 1 ω ( h )  +  c 3 c 2  ω ( h )  =  c ω ( h ).

�

Remark 6.2.  Let  x *  denote the point closest to  x   among the points  xi ,  i  =
0 1, ,… −k .  It follows from (6.11) and (6.14) that 

[ … ]−x x x fk, , , ;0 1   ≤  
c

x x
u

u
du

h

x x
k

k– *

– *

∫ ( )ω
,      x ∈ [ a, b ] \ J. (6.19)

Relation (6.11) and inequality (6.13) applied to  j = 1  yield the following estimate: 

[ … ]−x x x fk, , , ;0 1   ≤  c h 
1

 
–

 
k

 

x x

kh

– *
∫  u – 

k
 ω k ( u ) d u,      x ∈ J,    k ≠ 1. (6.20)

6.4.  Estimate for a divided difference for arbitrary nodes

Inequalities (6.19) and (6.20) give an estimate for the  k th divided difference of a function
f  in terms of the  k th modulus of continuity in the case where  k  nodes are equidistant and
one node (the point  x )  may be arbitrary.  In the present subsection, we prove an estimate
for the  k th divided difference in the case of arbitrary location of all  k + 1  nodes of the
divided difference.  For  k = 1,  we obviously have 

[ ]x x f0 1, ;   ≤  ( x 1 – x 0) 
–

 
1

 ω 1 (( x 1 – x 0); f ; [ x 0, x 1 ]),      x 0 < x 1. (6.21)

For  k = 2,  inequality (3.10) yields 

[ ]x x x f0 1 2, , ;   ≤  
18

2 0

2 0 2
2

2 1 1 0

2 0

x x

u f x x

u
x x x x

x x

–
 

; ; ,

min – , –

–

{ }
∫ ( )[ ]ω

du,   x 0 < x 1 < x 2. (6.22)
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If  ω  k ( t ; f ; [ a, b ] ) ≤ t 
k,  k ∈ N,  then, for any different points  x i ∈  [ a, b ] ,  i = 0, ,… k ,

according to (3.17), (2.10), and (1.20) we have 

[ … ]x x x fk, , , ;0   ≤  c. (6.23)

Definition 6.1 ([Shevchuk (1984a)]).  Let a natural number  k,  a  k  -majorant  ϕ  =

ϕ ( t )  (see Definition 4.4), and  k + 1  points  x i ∈  R,  x  0 < x 1 < … < x  k ,  be given.  For

every pair of numbers  p = 0 1, ,… −k   and  q = p k+ …1, , ,  we denote 

Λ p, q ( x 0 
, … , x k ; ϕ )  : =  

ϕ( )

( ) ( )

+( ) /

{ }

= = +

+∫
∏ ∏

u

u
du

x x x x

q px x

x x x x

i

p
q i i q

k
i p

q p

q p q p

––

min – ; –

–

–

– –

12

0

1

1

1 1

, (6.24)

where  x – 1 : = x 0 – ( x k – x 0 )  and  x k + 1 : = x k + ( x k – x 0 ) .  We set 

Λ ( x 0 
, … , x k ; ϕ )  : =  max max

, , , ,p k q p k= … − = + …0 1 1
 Λ p, q ( x 0 

, … , x k ; ϕ ) . (6.25)

We write  A � B  if  c 1 ≤ A / B ≤ c 2.  One can easily verify that 

Λ ( x 0 
, x 1 ; ϕ )  �  ( x 1 – x 0) 

–
 
1

 ϕ ( x 1 – x 0) , (6.26)

Λ ( x 0 
, x 1, x 2 ; ϕ )  �  

1

2 0
2

2 1 1 0

2 0

x x

u

u
du

x x x x

x x

–
min – ; –

–

{ }
∫ ( )ϕ

, (6.27)

if  ϕ ( t ) = t k 
–

 
1,  k ≠ 1,  then 

Λ ( x 0 
, x 1, … , x k ; ϕ )  �  

1
1

0

1

1 0x x

x x

x xk

k

k–
ln

–
––

+



  , (6.28)

and if  ϕ ( t ) = t k,  then 

Λ ( x 0 
, x 1, … , x k ; ϕ )  �  1. (6.29)

Theorem 6.3 [Shevchuk (1984a)].  Suppose that  ϕ  ∈  Φ  
k  and   x  0 < x 1 < … < x  k .  I f

ω k ( t ; f ; [ a, b ] ) ≤ ϕ ( t ),  then 

[ … ]x x fk0, , ;   ≤  c Λ ( x 0 
, x 1, … , x k ; ϕ ) . (6.30)
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Theorem 6.3 is a corollary of the more general Theorem 6.4 below.

Definition 6.2 [Shevchuk (1984)].  Let a nonnegative integer number  r ,  a natural

number  k,  a  k -majorant  ϕ  = ϕ ( t ),  and   k + r + 1  points  x  i ,  x  0 < x 1 < … < x  k + r 
,

be given.  Denote  m  : = r + k ,  x  –  1 : = x 0 – ( x m – x 0 ),  and   x  m  +  1 : = x m + ( x m – x 0 ).
For every pair of numbers  p = 0 1, ,… −k   and  q = p r m+ + …1, , ,  we set 

d ( p, q )  : =  min {x q + 1 – x p ; x q – x p – 1 },

Λ p, q, r ( x 0 
, … , x m ; ϕ )  : =  

u u du

x x x x

p r q

x x

d p q

i

p
q i i q

m
i p

q p

+( )

= = +

( )

( ) ( )

∫
∏ ∏

– –

–

,

–
– –

1

0

1

1

ϕ
. (6.31)

The expression 

Λ r ( x 0 
, … , x m ; ϕ )  : =  max max

, , , ,p k q p r m= … − = + + …0 1 1
 Λ p, q, r ( x 0 

, … , x m ; ϕ ) (6.32)

is called the  r th divided majorant. 
One can easily verify that 

Λ 0 ( x 0 
, … , x k ; ϕ )  =  Λ ( x 0 

, … , x k ; ϕ ) , (6.33)

Λ r ( x 0 
, … , x r + 1 ; ϕ )  �  ( x r + 1 – x 0) 

–
 
1

 ϕ ( x r + 1 – x 0) , (6.34)

and if  ϕ ( t ) = t k,  then 

Λ r ( x 0 
, … , x m ; ϕ )  �  1. (6.35)

Theorem 6.4 [Shevchuk (1984), (1984a)] .  Let  ϕ ∈  Φ  
k,  f ∈  C 

r
 ([ x 0, x  m  ] ),  m  : = r + k,

and  x 0 < x 1 < … < x m .  If  ω k ( t ; f ( r 
) ; [ a, b ] ) ≤ ϕ ( t ),  then 

[ … ]x x fk0, , ;   ≤  c Λ r ( x 0 
, x 1, … , x m ; ϕ ) . (6.36)

Remark 6.3.  It will be proved in Section 8 that inequality (6.36) is also meaningful and
true in the case where points  x i  may “coincide” (but at most  r + 1  points at once).  In-

equality (6.36) is exact in the sense that, for any collection of nodes  x 0 , … , x m  and any

k th majorant  ϕ,  one can find a function  f ∈ C 

r
 ([ x 0, x m ])  such that 
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ω  k ( t ; f ( r 
) ; [ x 0, x m ] )  ≤  ϕ ( t ),

but 

[ … ]x x fm0, , ;   >  c 0 Λ r ( x 0,  …  x m ; ϕ ) .

This will be proved in the next chapter. 

6.5.  Proof of Theorem 6.4

For  r = 0  and  k = 1,  Theorem 6.4 is obvious [see (6.26) and (6.21)].  First, we prove

this theorem in the case where  r ∈ N  and  k = 1.  Using (6.16) and (6.19), we can repre-
sent the divided difference in the form 

[ x 0, … , x r + 1 ; f ]

=  ( x r + 1 – x 0 ) 
–

 
1

 ([ x 1, … , x r + 1; f ] )  –  ([ x 0, … , x r ; f ] )

=  ( x r + 1 – x 0 ) 
–

 
1

  … ∫∫∫
000

1 11 tt r –

 ( f ( 
r

 
)

 ( x 1 + ( x 2 – x 1 ) t 1

+ … + ( x r – x r – 1) t r – 1 + ( x r + 1 – x r) t r )

–  f ( 
r

 
)

 ( x 1 + ( x 2 – x 1 ) t 1 + … + ( x r – x r – 1) t r – 1 + ( x 0 – x r) t r ) d t r … d t 1,

whence 

[ … ]+x x fr0 1, , ;   ≤  ( 1 / r ! ) ( x r + 1 – x 0 ) 
–

 
1

 ϕ ( x r + 1 – x 0 ).

By induction, we assume that Theorem 6.4 is true for a number  k – 1  and prove it

for  k.  We set  H : = x m – x 0  and denote by  L  ( x )  the Lagrange polynomial of degree

≤ k – 1  that interpolates the  r th derivative  f ( r 
) = f ( 

r
 
)

 ( x )  at the points  x  0 + i  H / ( k – 1),
i = 0 1, ,… −k .  We set  g ( x ) : = f ( 

r
 
)

 ( x ) – L ( x ) ,  ω ( t ) : = ω k – 1 ( t ; g ; [ x 0, x m ] ),  G  ( x ) : =
g ( x )  if  r = 0,  and 

G ( x )  : =  ( 1 / ( r – 1 ) ! ) 

x

x

0

∫  ( x – t ) 
r

 
–

 
1

 g ( t ) d t
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if  r ∈ N,  i.e.,  G 

(
 
r

 
)

 ( x ) ≡ g ( x ).  Since  [ x 0, … , x m ; f ] = [ x 0, … , x m ; G ] ,  by the induc-
tion hypothesis we get 

[ … ]x x fm0, , ;   =  [ … ]x x Gm0, , ;

=  H 
–

 
1

 [ … ] − [ … ]−x x G x x Gm m0 1 1, , ; , , ;

≤  c 1 H 
–

 
1Λ r ( x 0, … , x m – 1 ; ω )  +  c 1 H 

–
 
1Λ r ( y 0, … , y m – 1 ; ω ),

where  yi  : = x i + 1.  Therefore, to prove Theorem 6.4, it suffices to prove the estimates 

Λ r ( x 0, … , x m – 1 ; ω )  ≤  c 2 H Λ r ( x 0, … , x m ; ϕ ) , (6.37)

Λ r ( y 0, … , y m – 1 ; ω )  ≤  c 2 H Λ r ( x 0, … , x m ; ϕ ) . (6.38)

We prove estimate (6.37) [estimate (6.38) can be proved by analogy].  To this end, we
fix numbers  p = 0 2, ,… −k   and  q = p r m+ + … −1 1, ,   and define integer numbers
p  s  and  q  s  for all  s = 0 1, ,… + − +m p q   as follows:  p  0 : = p ,  q  0  : = q  ;  if

min {x  q + 1 – x p ; x  q – x p – 1 } = x  q – x p – 1,  then  p  1 : = p – 1,  q  1 = q,  otherwise  p 1 = p,

q 1 = q + 1; … ;  if  min {x  q 
s
 + 1 – x ps

 ; x  q 
s
 – x ps

 – 1 } = x  q 
s
 – x ps

 – 1,  then  p  s + 1 = p  s – 1,

q  s + 1 = q  s 
,   otherwise  p  s + 1 = p  s,  q  s + 1 = q  s  + 1; … ;  p  m  + p – q = 0,  q  m  + p – q = m ;  and

p  m  + p – q + 1 = – 1,  q  m  +  p – q + 1 = m.  Denote  d  s : = x  q 
s
 – x ps 

;  in particular  d  0 = x  q – x p ,

d m + p – q = H,  and  d m + p – q + 1 = 2 H.
The proof of estimate (6.37) and Theorem 6.4 is completed by the following lemma: 

Lemma 6.3.  The following inequality is true: 

Λ p, q, r ( x 0 
, … , x m – 1 ; ω )  ≤  c 3 H 

ν
ν ν

ϕ
=

+

∑ ( … )
0

0

m p q

p q r mx x
–

, , ,  , ;Λ . (6.39)

Proof.  We use inequality (6.13) for  j = k – 1,  i.e., the inequality 

ω ( t )  ≤  c 4 t k 
–

 
1

 

t

k H k/( )

∫
–1

 u 
–

 
k
 ϕ ( u ) d u  ≤  c 4 t k 

–
 
1

 

t

H2

∫  u 
–

 
k
 ϕ ( u ) d u, (6.40)

where  0 ≤ t ≤ H.  Consider three cases. 
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1.  Let  p = 0  and  q = m – 1.  Then 

Λ  p, q, r ( x 0 
, … , x m – 1 ; ω ) 

=   

d

d

0

02

∫ u 
–

 
k
 ϕ ( u ) d u  ≤  2 

k
 
–

 
1

 ( ln 2 ) d dk
0
1

0
– ω( )  

≤    2 
k

 
–

 
1

 ( ln 2 )  c 4
d

H

0

2

∫  u 
–

 
k
 ϕ ( u ) d u

=  2 
k

 
–

 
1

 ( ln 2 )  c 4 H Λ p, q, r ( x 0, … , x m ; ϕ )  +  2 
k

 
–

 
1

 ( ln 2 )  c 4
H

H2

∫  u 
–

 
k
 ϕ ( u ) d u

<  2 
k

 
–

 
1

 ( ln 2 )  c 4 H ( Λ p, q, r ( x 0 
, … , x m ; ϕ )  +  2 Λ 0, m, r ( x 0 

, … , x m ; ϕ))

≤  c 3 H 

ν
ν ν

ϕ
=
∑ ( … )

0

1

0Λp q r mx x, , ,   , ; .

2.  Let  p ≠ 0,  q = m – 1,  and  x m – x p < x q – x p – 1,  i.e., 

d 1  =  x m – x p,   d 2  =  x m – x p – 1, … , d p + 1  =  x m – x 0  =  H,   d p + 2  =  x m – x – 1  =  2H.

Relation (6.40) yields 

d

d

0

2

∫  u 
p

 
–

 
k
 ω ( u ) d u  ≤  c 4 

d

d

0

2

∫  u 
p

 
–

 
1

 

 u

H
k d

2

∫ ( )






v v v– ϕ  d u

=  ( c 4 / p )
 

u dp

u

H
k

d

d2

0

2

∫ ( )






v v v–  ϕ   +  ( c 4 / p )
d

d

0

2

∫  u 
p

 
–

 
k
 ϕ ( u ) d u

≤  c 4 d p

d

H

2

2

2

∫  u 
–

 
k
 ϕ ( u ) d u  +  c 4 

d

d

0

2

∫  u 
p

 
–

 
k
 ϕ ( u ) d u.

Taking into account that  d p – i + 1 / 2 < x q – x i < d p – i + 1  for all  i = 0 1, ,… −p ,  we get 
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( 2 

p
 c 4 ) 

–
 
1Λ  p, q, r ( x 0, … , x m – 1 ; ω )

=  ( 2 

p
 c 4 ) 

–
 
1

i

p

q i
d

x x

x x
q p

=
∏ ∫( )

0

1

0

1– –

–
–

 u 
p

 
–

 
k
 ω ( u ) d u

≤  c d
i

p

i
d

d

4
1

2

1
1

0

2
– –

=

+

∏ ∫  u 
p

 
–

 
k
 ω ( u ) d u

≤  d dp

i

p

i
d

H

2
2

1
1

2

2=

+

∏ ∫–
 u 

–
 
k
 ϕ ( u ) d u  +  

i

p

i
d

d

d
=

+

∏ ∫
2

1
1

0

2
–

 u 
p

 
–

 
k
 ϕ ( u ) d u

=  2 H   – – –

s

P
s

i

s

i
i s

p

i
d

d

d d d

s

s

=

+

= = +

+

∑ ∏ ∏ ∫










+

2

1

2
1

2

1

1

1
1

1

 u 
p

 
–

 
k

 
–

 
s
 ϕ ( u ) d u u H dup s

2
1 2( ) ( )





− +

+  H
i

p

i
d

d
p kd u u u H du

=

+
− −∏ ∫ ( )[ ]

2

1
1 1

1

2
– /ϕ

+  H d H x x d d x x
i

p

q i
i

p

i
i

p

q i
d

d

1
1

0

1

2

1
1

1
1

0

1
1

0

1
–

–
– –

–
–– –

= =

+

=
∏ ∏ ∏ ∫( )









 ( )  u 

p
 
–

 
k
 ϕ ( u ) d u.

Taking into account that all expressions in brackets do not exceed unity, we obtain rela-

tion (6.39) with  c 3 < 2 

k
 
–

 
1

 c 4. 

3.  The other situations are contained in the case where  x q – x p – 1  ≤   x  m – x  p.  It fol-
lows from (6.40) that 

d

d

0

1

∫  u 
r

 
+

 
p

 
–

 
q

 
–

 
1

 ω ( u ) d u  ≤  c dm p q

d

H

4 1
1

2

1

+ ∫– –
 u 

–
 
k
 ϕ ( u ) d u  +  c 4 

d

d

0

1

∫  u 
r

 
+

 
p

 
–

 
q

 
–

 
1

 ϕ ( u ) d u.

By construction, we have 

x  q 
s
 – x q 

s
 

–
 

1
  ≤  x  p 

s
 

–
 

1
 – x p 

s
 

–
 

1
 – 1  <  x  q – x p 

s
 

–
 

1
,

x  p 
s
 

–
 

1
 – x p 

s
  ≤  x  q 

s
 

–
 

1
 

+
 

1
 – x q 

s
 

–
 

1
  ≤  x  q 

s
 

+
 

1
 – x p .
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Therefore, 

x  q 
s
 – x p 

s
 – 1  <  ( s + 1 ) ( x  q – x p 

s
 – 1 ),    x q 

s
 + 1 – x p 

s
  <  ( s + 1 ) ( x  q 

s
 + 1 – x p ).

Hence, 

c x xp q r m4
1

0 1
–

, , –,   , ;Λ ( … )ω

=  

c x x u u du

x x x x

m p
r p q

d

d

i

p

q i
i q

m

i p

4
1 1

0

1

1

0

1
– – –

–

–

– –

( ) ( )

( ) ( )

+

= = +

∫

∏ ∏

ω

≤  
( )

( ) ( )

( )+

= = +
∏ ∏

∫
x x d

x x x x

u

u
dum p

m p q

i

p

q i
i q

m

i p
d

H

k

–

– –

– –

–
1

1

0

1

1

2

1

ϕ
  +  ( x m – x p ) Λ p, q, r ( x 0 

, … , x m ; ϕ )

≤  
H

H

k
u

u
du

2

∫ ( )ϕ
  +  H

d

x x x x

u

u
du

s

m p q m p q s

i

p

q i
i q

m

i p
d

d

ks

s

s

s

=

+ +

= = +

∑
∏ ∏

∫
( ) ( )

( )+

1

1
1

1

0

1

1

1– – – – –

–

– –

ϕ

+  H x xp q r mΛ , , ,   , ;( … )0 ϕ

≤  2 H Λ 0, m, r ( x 0 
, … , x m ; ϕ )

+  H
s d

x x x x

u

u
du

s

m p q m p q s m p q s

i

p

q i
i q

m

i p
d

d

ks

s

s

s
s

s

=

+ + +

= = +

∑
∏ ∏

∫
( + )

( ) ( )

( )+

1

1
1

1

0

1

1

1 1– – – – – – –

–

– –

ϕ

+  H Λ p, q, r ( x 0, … , x m ; ϕ )  <  c H x x
m p q

p q r m5
0

0
ν

ν ν
ϕ

=

+

∑ ( … )
–

, ,   , ;Λ .

Lemma 6.3 and Theorem 6.4 are proved. 

�
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7. Classes and spaces of functions defined
by the  k th modulus of continuity

7.1.  Definitions

In the second section of this chapter, we have already introduced Lipschitz and Hölder
classes and spaces defined by the first modulus of continuity.  In the present section, we
extend this definition to the case where  k  is an arbitrary natural number.  The important
special case of Zygmund spaces and Zygmund classes is provided by Definition 7.1 be-
low. 

In the present section, we denote 

J  : =  [ , ]a b . (7.1)

Definition 7.1.  I.  Let  M = const > 0.  A Zygmund class  MZ [ J ]  is the set of functions

f ∈ C ( J )  satisfying the following inequality for every pair of points  x 1, x 2 ∈ J : 

f x f
x x

f x( )
+



 + ( )1

1 2
22

2
 –      ≤  

M

2
x x1 2−  . (7.2)

II.  We define 

Z [ J ]  : =  1 Z [ J ]. (7.3)

III.  A Zygmund space  Z  ( J )  is the set of functions  f ∈ C ( J )  for which there exists

a number  M = M ( f ) > 0  such that  ω 2 ( t; f; J ) ≤ M t,  i.e., 

Z ( J )  : =  UM > 0 MZ [ J ] . (7.4)

IV.  Let  r  ∈  N.  We write  f ∈  MW 
rZ [ J ] ,  f ∈  W 

rZ [ J ] ,  and   f ∈  W 
rZ ( J )  i f  f ∈

C 
r( J )  and, respectively,  f ( 

r
 
) ∈ MZ [ J ] ,  f ( 

r
 
) ∈ Z [ J ] ,  and  f ( 

r
 
) ∈ Z ( J ). 

V.  We denote  M W 
0Z [ J ] : = W Z [ J ] ,  W 

0Z [ J ] : = Z [ J ] ,  and  W 
0Z ( J ) : = Z ( J ). 

Definition 7.2.  Let  k ∈ N  and let  ϕ  be a  k -majorant. 

I.  The class  M H [ k  ; ϕ; J ] ,  M  = const > 0,  is the set of functions  f ∈  C ( J )  for
which 

ω k ( t; f; J )  ≤  M ϕ ( t ) . (7.5)
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II.  We denote  H [ k ; ϕ; J ] : = 1 H [ k ; ϕ; J ] . 

III.  The space  H Jk
ϕ( )  is the set of functions  f ∈  C ( J )  for which there exists a

number  M = M ( f )  such that  ω k ( t; f; J ) ≤ M ϕ ( t ),  i.e., 

H Jk
ϕ( )  : =  UM > 0 MH [ k ; ϕ; J ] . (7.6)

IV.  Let  r  ∈  N.  We write  f  ∈  M W 
rH [ k  ; ϕ; J ] ,  f ∈  W 

rH [ k  ; ϕ; J ] ,  a n d   f ∈
W H Jr

k
ϕ( )   i f  f ∈  C 

r
 ( J )  and, respectively,  f ( 

r
 
) ∈  MH [ k  ; ϕ; J  ] ,  f (

 
r

 
) ∈  H [ k  ; ϕ; J  ] ,

and  f ( 
r

 
) ∈ H Jk

ϕ( ). 

V.  We denote  M W 
0H [ k ; ϕ; J ] : = MH [ k ; ϕ; J ] ,  W  

0H [ k ; ϕ; J ] : = H [ k ; ϕ; J ] ,  and

W H Jk
0 ϕ( )  : = H Jk

ϕ( ). 

Note that  H [ α; J ] = H [ 1 ; ϕ; J ]  for  ϕ ( t ) = t α  and  Z [ J ] = H [ 2 ; ϕ; J ]  for  ϕ ( t ) = t.
Theorem 2.1 and relation (5.17) imply that 

W [ r; J ]  =  W 
r

 
–

 
jH [ j ; ϕ j ; J ]      for    ϕ j ( t )  =  t j,    j = 1, ,… r . (7.7)

Note that the space  W H Jr
k
ϕ( )   is an algebra by virtue of the following lemma: 

Lemma 7.1 (see, e.g., [Trigub (1960)]).  Let functions  f  and   g   be given.  If  g  ∈
M 1 H [ k ; ϕ; J ]  and  f ∈ MH [ k ; ϕ; J ] ,   then  f g ∈ M 2 H [ k ; ϕ; J ] ,  where 

M 2  ≤  c ( M 1 f  + M g )  +  c ( k – 1 ) ( M M 1 ϕ ( b – a ) + f  g  / ϕ ( b – a )).

Proof.  We fix  t ∈ ( 0, ( b – a ] ,  denote 

t *  : =  t b a tk ϕ ϕ( ) ( )/– ,

and note that  t ≤ t * ≤ b – a.  For every  j = 1 1, ,… −k ,  the following inequalities are
true: 

t

b a–

∫ u – 
j

 
–

 
1

 ϕ ( u ) d u  ≤  t – 
k

 ϕ ( t ) ( b – a ) 
k

 
–

 
j,

t

b a–

∫ u – 
j

 
–

 
1

 ϕ ( u ) d u  =  
t

t*

∫ u – 
j

 
–

 
1

 ϕ ( u ) d u  +  
t

b a

*

–

∫ u – 
j

 
–

 
1

 ϕ ( u ) d u

≤  t tk j k
*

– −
 ϕ ( t )  +  t j

*
– ϕ ( b – a )  ≤  2 t – 

j ( ϕ ( t )) j / 
k

 ( ϕ ( b – a )) 
1

 
–

 
j / 

k.
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It follows from (3.39) that 

ω  k ( t ; f g ; J )  ≤  
i

k k

i=
∑ 





0

 ω i ( t ; f ) ω k – i ( t ; g ).

Therefore, by virtue of the Marchaud inequality (5.6), we obtain 

ω k ( t ; f g ; J )

 ≤  f  M 1 ϕ ( t )  +  c 1 t k

i

k

t

b a
i iM u u du b a f

=
∑ ∫ ( ) + ( )







|| ||
1

1
1

– –
– – –  –ϕ

×  M u u du b a g
t

b a
i k i k

1
1

–
– – –  –∫ ( ) + ( )







|| ||ϕ   +  M g  ϕ ( t )

≤  ( 1 + ( k – 1 ) c 1 ) (M 1 f  + M g  ) ϕ ( t )  +  ( k – 1 ) c 1 t k ( b – a ) 
–

 
k
 f  g

+  M M 1 4( k – 1 ) c 1 ϕ ( b – a ) ϕ ( t )  ≤  M 2 ϕ ( t ).

�

7.2.  Relations between spaces of continuous functions

Numerous relations between various classes  M  W 
rH [ k ; ϕ  ; J  ]  and spaces  W H Jr

k
ϕ( )

were established by S. Nikol’skii (1946b), Stechkin [(1951a), (1952)],   Brudnyi (1959),
Brudnyi and Gopengauz (1960), Geit (1972), Guseinov and Il’yasov (1977), and others.
The most general result is given by the following theorem: 

Theorem 7.1 [Guseinov (1979)].  Let  k ∈  N,  j ∈  N,  ϕ ∈  Φ  
k,  ω  ∈  Φ j,  (  r + 1 ) ∈  N,

and  r < j.  The following assertions are true: 

1.  The inclusion 

W H Jr
k
ϕ( )   ⊂  H Jj

ω( ) (7.8)

is true if and only if the following conditions are satisfied: 
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(a) t r ϕ ( t ) = O( ω ( t ))   if   j ≥ k + r; (7.9)

(b) t j 

t

1

∫  u 
r

 
–

 
j

 
–

 
1

 ϕ ( u ) d u  =  O( ω ( t ))   if   j < k + r. (7.10)

2.  Let  r ≠ 0.  The inclusion 

H Jj
ω( )  ⊂  W H Jr

k
ϕ( ) (7.11)

is true if and only if the following conditions are satisfied: 

(a) t j 

t

1

∫  u 
–

 
r

 
–

 
k

 
–

 
1

 ω ( u ) d u  +  
0

t

∫  u 
–

 
r

 
–

 
1

 ω ( u ) d u  =  O( ϕ ( t ))   if   j > k + r; (7.12)

(b)
0

t

∫  u 
–

 
r

 
–

 
1

 ω ( u ) d u  =  O( ϕ ( t ))   if   j ≤ k + r. (7.13)

Proof.  1a.  Sufficiency.  If  f ∈ W H Jr
k
ϕ( ) ,  then, by virtue of (4.15), we can conclude

that  f ∈ H Jk r+ ( )ϕ1 ,  where  ϕ 1 = ϕ 1 ( t ) = t r ϕ ( t ) .  Therefore, according to (4.12), we have

f ∈ H Jj
ϕ1 ( ),  Hence, taking (7.9) into account, we establish that  f ∈ H Jj

ω( ). 

1a.  Necessity.  We set  f ( x ) : = 0  if  x < 0  and 

f ( x )  =  u 
2

 
k

 
+

 
r u 

–
 
3

 
k

 
–

 
r

 
–

 
1

 ϕ ( u ) ( u – x ) 
k

 
+

 
r d u      if    x ≥ 0.

For  x ∈ ( 0, 1 ] ,  we have 

f xr( )( )   ≤  c 1 ϕ ( x ),      f xr k( + )( )   ≤  c 2 u 
–

 
k

 ϕ ( x ).

Therefore,  f ∈ W Hr
k
ϕ([ ])– ,1 1 .  On the other hand, if  f ∈  Hj

ϕ([ ])– ,1 1 ,  then, for all  t ∈

( 0, 1 / j ),  we obtain 

O(ω ( t ))  =  ω j ( t ; f ; [ – 1, 1 ] )  ≥  ∆t
j f j t( ( ) ); –1   =  f ( t )  ≥  c 3 t r ϕ ( t ),

i.e., the necessity is also proved. 
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1b.  Sufficiency.  If  f ∈  W H Jr
k
ϕ( ) ,  then, by virtue of (4.15), we have  f ∈ H Jk r+ ( )ϕ1 ,

where  ϕ 1 ( t ) = t r ϕ ( t ) .  Therefore, according to the Marchaud inequality (5.6), we get 

ω k ( t ; f ; J )  =  O u u du
t

r j
1

∫ ( )






– ϕ  .

Taking (7.10) into account, we conclude that  f ∈ H Jj
ϕ( ). 

1b.  Necessity.  Let  F ( x ; ϕ ; k )  be the extremal function defined by (4.27).  We set 

f ( x )  : =  
1

1
1

( ) ∫r

x

– !
 F ( u ; ϕ ; k ) ( x – u ) 

r
 
+

 
1 d u      if    r ≠ 0

and  f ( x ) : = F ( x ; ϕ ; k )  if  r = 0.  According to (4.40), we have  f ∈ W Hr
k
ϕ([ ])0 1, .  De-

note 

ϕ 2 ( t )  =  t r ϕ ( t )  –  
0

t

∫  r u 
r

 
–

 
1

 ϕ ( u ) d u

and note that  f ( x ) = F ( x ; ϕ 2 ; r + k ) .  Therefore, by virtue of (5.18), we obtain 

ω j ( t ; f ; [ 0, 1 ] )  ≥  c 4 t j 

t

1

∫  u j 
–

 
1

 ϕ 2 ( u ) d u

=  c 4 ( t j ( 1 – r / j ) 

t

1

∫  u 
r

 
–

 
j

 
–

 
1

 ϕ ( u ) d u  +   ( 1 / j ) t j 

0

1

∫  r u 
r

 
–

 
1

 ϕ ( u ) d u

–   ( 1 / j ) 
0

t

∫  r u 
r

 
–

 
1

 ϕ ( u ) d u,

i.e., 

t j 

t

1

∫  u 
r

 
–

 
j

 
–

 
1

 ϕ ( u ) d u  ≤  c 5 ( tr ϕ ( t ) + ω j ( t ; f ; [ 0, 1 ] ))  =  O(ω ( t )) .

2a.  The necessity and the sufficiency of (7.12) for (7.11) follow from Theorems 5.6
and 5.5, respectively. 
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2b.  Sufficiency.  If  f ∈  H Jj
ω( ),  then, taking (7.13) and (5.15) into account, we es-

tablish that  f ∈ C 
r

 ( J )  and  ω  j – r  ( t ; f ( r 
)

 ; J ) = O(ϕ ( t )),  whence, according to (4.12), we

get  ω  k + r  ( t ; f ( r 
)

 ; J ) = O(ϕ ( t )),  i.e.,  f ∈ W H Jr
k
ϕ( ) . 

2b.  Necessity.  In view of Lemma 4.3, we can assume, without loss of generality,

that  ′( )ω t  ≤ ω ( t ) / t .  Denote  f ( x ) : = F ( x ; ω  ; j ) .  According to (4.40), we have  f ∈
Hj

ϕ([ ])0 1, .  We set 

i 1  : =  ( ) ( )+ ( )– ;– –1 0k r j
h
j r rf∆

and 

i 2  : =  
i

k r j
k r j i

h
j r rk r j

i
f ih

=

+
+ ( )∑ ( )

+



 ( )

1

1
–

– – ––
–

;∆

so that [see (3.30)]  ∆h
k rf( )( ); 0  = i 1 + i 2 .  By virtue of (5.18), we obtain 

i1   ≥  c 6 

0

t

∫  u 
–

 
r

 
–

 
1

 ω ( u ) d u.

According to (3.37), we get 

∆h
j r rf ih– ;( )( )   =  h  

j
 
–

 
r f r( )( )θ   =  h  

j
 
–

 
r θ 

–
 
j

 
+

 
1  ω ′ ( θ )  ≤  c 7 h 

–
 
r

 ω ( h ),    θ ≥ h,

whence 

i2   ≤  ( 2 
k

 
+

 
r

 
– j ) c 7 h 

–
 
r

 ω ( h )  =  c 8 h 
–

 
r

 ω ( h ).

Therefore, the assumption  f ∈ W Hr
k
ϕ([ ])0 1,   yields 

O(ϕ ( t ))  =  ω k ( t ; f ( r 
) ; [ 0, 1 ] )  ≥  c 6 

0

t

∫  u 
–

 
r

 
–

 
1

 ω ( u ) d u  –  c 8 t 
–

 
r

 ω ( t ) .

Finally, since  f ∈  W Hr
k
ϕ([ ])0 1, ,  we obviously have  f ∈  Hk r+ ([ ])ϕ1 0 1, ,  where  ϕ  1 =

ϕ 1 ( t ) = t r ϕ ( t ) .  Consequently, according to assertion 1a, we can conclude that  t – 
r

 ϕ ( t ) =

t – 
r

 O(ϕ 1 ( t ))  =  O(ϕ ( t )). 

�
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Remark 7.1.  If  j ≤ r,  then inclusion (7.11) is not true for any  ϕ ∈ Φ  
k  and  ω ∈ Φ j. 

The following corollary of Theorem 7.1 is true: 

Corollary 7.1.  Let  k ∈ N,  j ∈ N,  ϕ ∈  Φ  
k,  ω ∈  Φ j,  (  r + 1 ) ∈  N,  (  p + 1 ) ∈  N,  p ≤ r,

and  q := min { k, j + p – r }.  The condition 

t t t t

r p u t du k r j p t u

p r

t
q

ω ϕ

ϕ

( ) ( )

( ) ( ) + +∫

∼ ,

– – –– –1

0

qq

t

u du O t–1
1

ϕ ϕ( ) = ( )








 ∫ ( )

( . )

( . )

7 14

7 15

is necessary and sufficient for the equality 

W H Jp
j
ω( )  =  W H Jr

k
ϕ( ) . (7.16)

The notation  t  p ω ( t )  ∼   t r ϕ ( t )  means that  t p ω ( t )  =   O( t r ϕ ( t ))  and  t  r ϕ ( t )  =
O( t p ω ( t )) . 

The following corollary of Theorems 5.5 and 5.6 is true: 

Corollary 7.2.  The condition 

0

1

∫  ( p – r ) u 
r

 
–

 
p

 
–

 
1

 ϕ ( u ) d u  <  ∞ (7.17)

is necessary and sufficient for the inclusion 

W H Jr
k
ϕ( )   ⊂  C 

p
 ( J ),    ( r + 1 ) ∈ N,  ( p + 1 ) ∈ N. (7.18)

Let us formulate some corollaries of relations (7.8) – (7.18).  As above, we assume that

k ∈ N,  ϕ ∈ Φ 
k,  ( r + 1 ) ∈ N,  and  p ∈ N.  Then 

t p 
–

 
r  =  O( ϕ ( t ))   ⇔   W 

p
 ( J )  ⊂  W H Jr

k
ϕ( ) , (7.19)

0

1

∫  ( p – r ) u 
r

 
–

 
p

 
–

 
1

 ϕ ( u ) d u  <  ∞   ⇔   W H Jr
k
ϕ( )   ⊂  W 

p
 ( J ) , (7.20)

p  =  r + k,  t p 
–

 
r  ∼  ϕ ( t )   ⇔   W H Jr

k
ϕ( )   =  W 

p
 ( J ) , (7.21)
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p  ≥  r + k  ⇔  C 
p

 ( J )  ⊂  W H Jr
k
ϕ( ) . (7.22)

It follows from relations (7.17), (7.18), (7.22), and (4.22) that the equality  C 
p
 ( J ) =

W H Jr
k
ϕ( )   is impossible for any  p,  r,  k,  and  ϕ. 

Taking (7.8) – (7.22) into account and using Theorems 5.5 and 5.6 and inequalities
(4.12) and (4.15), one can easily establish various relations between different classes

MW 
rH [ k ; ϕ; J ] . 

7.3.  Space  H(( ))εε

Definition 7.3.  Let  ε  = {ε n}  be a decreasing sequence of positive numbers  εn ,

 n ∈ N.  By  H J[ ]ε   we denote the class of functions  f ∈ C ( J )  such that 

E n ( f ) J  ≤  εn ,      n ∈ N. (7.23)

In the case where  J = [ 0, 1 ] ,  we set  H[ ]ε  : = H[ ][ ]ε 0 1, .  B y  H J( )ε   we denote the

class of functions  f ∈ C ( J )  for which there exists a number  M  = M ( f )  such that
E n ( f ) J ≤ M ε n  for all  n ∈ N. 

It will be proved in Chapter 7 that the condition 

j n

r k

j

n
r k

jrj n j
= +

∞

=

( + )∑ ∑+
1

2 1 2

1

2 1– – – ε   =  O( ϕ ( 1 / n 
2

 )), (7.24)

k ∈ N,      ϕ ∈ Φ 
k,      ( r + 1 ) ∈ N,

is sufficient for the inclusion 

H J( )ε   ⊂  W H Jr
k
ϕ( ) . (7.25)

In the present subsection, we prove that condition (7.24) is also necessary for (7.25). 

Dolzhenko gave an example of a function   f ∈ H[ ]ε   such that 

ω 1 ( 1 / n 
2

 ; f ( r 
) ; [ 0, 1 ] )  ≥  c n 

–
 
2

j

n

jj
=
∑

1

ε ,      n ∈ N, (7.26)

i.e., he proved the necessity of (7.24) for (7.25) in the case where  r = 0  and  k = 1.  In the
general case, the following theorem is true: 
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Theorem 7.2 [Shevchuk (1989a)].  Let  k ∈ N  and   (  r + 1 ) ∈  N.  Then the following

assertions are true: 

(i) if 

j

r
jrj

=

∞

∑
1

2 1– ε   =  ∞, (7.27)

then there exists a function  f ∈ H[ ]ε   such that  f ∈ C 

r
 ([ 0, 1 ] ) ; 

(ii) if 

j

r
jrj

=

∞

∑
1

2 1– ε   <  ∞, (7.28)

then there exists a function  f ∈ H[ ]ε   such that  f  ∈  C 

r
 ([ 0, 1 ] ),  but, for

all  n ∈ N,  n ≥ m : = r + k,  one has 

ω k ( 1 / n 
2

 ; f ; [ 0, 1 ] )  ≥  c rj cn j
j n

r
j

k

j m

n
r k

j
= +

∞

=

( + )∑ ∑+
1

2 1 2 2 1– – – ε ε . (7.29)

Proof.  1.  Let x ∈ [ 0, 1 ] .  Note that, for  l ∈ N,  the function  sin 
2 ( l arcsin x )  is an

algebraic polynomial of degree  l.  For all  n ∈ N,  we define polynomials  T n  by the for-

mula  Tn ( x ) : =  sin arcsin2 2 2( + ) [ /( + )]( )m n m x ,  where  [ n / ( m + 2 ) ]  is the integer

part.  The polynomials  Tn  possess the following obvious properties:  Tn   is a polynomial

of degree  n,  0 ≤ Tn ( x ) ≤ 1, 

Tn ( x )  ≤  c 1 x 
m

 
+

 
2

 n 
2

 
(

 
m

 
+

 
2

 
)      if    x ≤ 1 / n 

2, (7.30)

Tn ( x )  ≥  c 2 x 
m

 
+

 
2

 n 
2

 
(

 
m

 
+

 
2

 
),      x ≤ 1 / n 

2,    n ≥ m + 2, (7.31)

Tn
j( )( )0   =  0,      j = 0 1, ,… +m . (7.32)

We define the function 

β  ( x )  : =  
j =

∞

∑
1

 j – 
3

 ε j – 2 Tj ( x )  ≡  
j m= +

∞

∑
2

 j – 
3

 ε j – 2 Tj ( x )
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and the polynomials 

P xn ( )   : =  j T xj j
j

n
–

– ( )3
2

1

ε
=
∑ .

We prove that if  n ≥ m  and  ( n + 1 ) 
–

 
2 ≤ x ≤ n 

–
 
2,  then 

β  ( x )  =  c 2 ε n x . (7.33)

Indeed, if  n ≥ m + 2,  then, according to (7.31), we have 

β  ( x )  ≥  
j m= +

∞

∑
2

 j – 
3

 ε j – 2 Tj ( x )  ≥   c 2 ε n – 2 x 
m

 
+

 
2

 

j m= +

∞

∑
2

 j – 
3 j 2 

(
 
m

 
+

 
2

 
)  =  c 3 ε n x.

If  n = m,  m + 1,  then, for all  x ≥ ( m + 2 ) 
–

 
2,  we get 

β  ( x )  ≥  ( m + 2 ) 
–

 
3

 ε m Tm + 2 ( x )  =  ( m + 2 ) 
–

 
3

 ε m x 
m

 
+

 
2  ≥  c 3 ε n x  ≥  c 3 ε m + 1 x .

We now prove the inequality 

0  ≤  β  ( x ) – Pn ( x )  ≤  c 4 x ε n – 1,    n ∈ N,  n ≠ 1. (7.34)

First, let  x > ( n + 1 ) 
–

 
2.  Then 

0  ≤  β  ( x ) – Pn ( x )  =  j T xj j
j n

–
– ( )3

2
1

ε
= +

∞

∑

≤  εn
j n

j−
= +

∞

∑1
3

1

–   <  
1

2
1

2εn n−
−   <  2 x ε n – 1.

Now let  x ≤ ( n + 1 ) 
–

 
2.  We choose a number  n  0 ∈  N  from the condition  ( n 0 + 1 ) 

–
 
2 <

x ≤ n0
2–   and note that, according to (7.30), we have 

j m

n

= +
∑

1

0

 j – 
3

 Tj ( x )  ≤   c 1 x 
m

 
+

 
2n m

0
2 1( + )   ≤  c 1 x.
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Therefore, 

0  ≤  β  ( x ) – Pn ( x )  ≤  ε  n – 1
j n

n

= +
∑

1

0

 j – 
3

 Tj ( x )  +  ε n – 1
j n= +

∞

∑
0 1

 j – 
3

 Tj ( x )

<  c 1 ε n – 1 x  +  ( 1 / 2 ) ε n – 1 n – 
2 n0

2–   <  c 4 x ε n – 1 x .

We set [cf. (5.18)] 

F ( x )  : =  (( m – 1 ) !) 
–

 
2

 

1

x

∫  u 
–

 
m

 
–

 
2

 β ( u )  x ( x – u ) 
m

 
–

 
1 d u,

f ( x )  : =  c4
1– F ( x ),

Q n ( x )  : =  (( m – 1 ) !) 
–

 
2

 

1

x

∫  u 
–

 
m

 
–

 
2

 Pn + 1 ( x )  x ( x – u ) 
m

 
–

 
1 d u.

It follows from (7.32) that  Q n  is a polynomial of degree  n.  Taking (7.34) into account,

we get 

F x Q xn( ) − ( )   ≤  c 4 ε n 

x

1

∫  u 
–

 
m

 
–

 
2

 u x ( x – u ) 
m

 
–

 
1 d u 

≤  c 4 ε n 

x

1

∫  x u 
–

 
2

  
 d u  ≤  c 4 ε n 

,

i.e., 

E n ( f ) [ 0, 1 ]  ≤   ε n 
,    n ∈ N . (7.35)

2.  Using (7.33), we obtain the following relation for all  n > m : 

1

1

2

2

/

/

∫
n

m

 u 
–

 
r

 
–

 
2

 β ( u ) d u  =  
j m

n

=
∑

–1

1 1

1

2

2

/( + )

/

∫
j

j

 u 
–

 
r

 
–

 
2

 β ( u ) d u

≥  c
j m

n

j

j

j

3

1

1 1

1

2

2

= /( + )

/

∑ ∫
–

ε  u 
–

 
r

 
–

 
1 d u  ≥  c 3

j m

n

j
r

jj
=
∑

–
–

1
2 1ε ε . (7.36)



256 On smoothness of functions Chapter 3

Therefore, relation (7.27) yields 

0

1

∫  r u 
–

 
r

 
–

 
2

 β ( u ) d u  =  ∞.

According to assertion (i) of Lemma 5.3, this means that  F ∉ C 

r
 ([ 0, 1 ] ),  i.e., 

j =

∞

∑
1

 r j 2 
r

 
–

 
1

 ε j  =  ∞   ⇒   F  ∉  C 

r
 ([ 0, 1 ] ). (7.36)

3.  By virtue of (7.30), we have 

0

1

∫  u 
–

 
r

 
–

 
2

 Tn ( u ) d u  =  
0

1

1

12

2

/

/
∫ ∫+











n

n

 u 
–

 
r

 
–

 
2

 Tn ( u ) d u

≤  c 1 n 2 
(

 
m

 
+

 
2 )

0

1 2/

∫
n

 u 
m

 
–

 
r

 
 d u  +  

1 2/

∞

∫
n

 u 
–

 
r

 
–

 
2 d u  =  c 5 n 2 

(
 
r

 
+

 
2 ).

Therefore, relation (7.28) yields 

0

1

∫  r u 
–

 
r

 
–

 
2

 β ( u ) d u  ≤  
j m= +

∞

∑
2

 r ε j – 2 j – 
3

0

1

∫  u 
–

 
r

 
–

 
2

 Tj ( u ) d u

≤  c 6
j m= +

∞

∑
2

 r ε j – 2 j 2 
r

 
–

 
1  <  ∞.

According to assertion (ii) of Lemma 5.3, this means that  F ∈ C 

r
 ([ 0, 1 ] ),  i.e.,

j =

∞

∑
1

 r j 2 
r

 
–

 
1

 ε j  <  ∞   ⇒   F  ∈  C 

r
 ([ 0, 1 ] ). (7.37)

Thus, it remains to prove inequality (7.29).  By analogy with step 2, we obtain the follow-
ing relation for all  n ≥ m : 

0

2n–

∫  r u 
–

 
r

 
–

 
2

 β ( u ) d u  ≥  c 3
j n=

∞

∑  ε j  j 
2

 
r

 
–

 
1,
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( + )
∫

n 1

1

2–

 u 
–

 
m

 
–

 
2

 β ( u ) d u  ≥   

( + )
∫

n

m

1 2

2

–

–

u 
–

 
m

 
–

 
2

 β ( u ) d u  ≥  c 3
j m

n

=
∑   ε j  j 

2
 
m

 
–

 
1.

Taking into account relation (5.23) and the fact that, for any majorant  ω  of the  k th-
modulus-of-continuity type, one has 

ω 1
2n





   ≥  

1

2

1
2ω

n





   +  c

k n
6 2

1

1
ω

( )+






,

we get 

ω k ( n 
– 2

 ; F ; [ 0, 1 ] )

≥  
1

2
 

0

2n–

∫ r u 
–

 
r

 
–

 
2

 β ( u ) d u  +  c 7 n 
–

 
2

 
k

( + )
∫

n 1

1

2–

 u 
–

 
m

 
–

 
2

 β ( u ) d u

≥  
c3

2
 

j n=

∞

∑  r ε j  j 
2

 
r

 
–

 
1  +  c 7 c 3 n 

–
 
2

 
k

 

j m=

∞

∑  ε j  j 
2

 
m

 
–

 
1,

i.e., relation (7.29) is proved with 

c  =  min ,
c

c

c c

c
3

4

7 3

42









. (7.38)

Relations (7.35) – (7.38) are equivalent to the statement of Theorem 7.2. 

Below, we present several corollaries of Theorem 7.2. 

Theorem 7.3.  If  H J[ ]ε  ⊂ C 

r
 ( J ),  then 

 

j =

∞

∑
1

 ε j  j 
2

 
r

 
–

 
1  <  ∞.

Theorem 7.4.  If  H J[ ]ε  ⊂ W 

r
 ( J ),  then 

 

j =

∞

∑
1

 ε j  j 
2

 
r

 
–

 
1  <  ∞.
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For  r = 1,  Theorems 7.3 and 7.4 follow immediately from the Dolzhenko inequality

(7.26).  For  r > 1,  under the additional assumption that  ε n n 
2

 
r  decreases, these theorems

were proved by Xie (1985) (see also [Shevchuk (1986)]) earlier than the general theorem
(Theorem 7.2) was proved;  this was a positive answer to Hasson’s conjecture [Hasson

(1982)].  It follows from fairly old results of Ibragimov (1946) that if  ε n n 
2

 
r > const > 0,

then  H J[ ]ε  ⊄ W 

r
 ( J ). 

The following corollary of relations (7.24) and (7.25) and Theorem 7.2 is true: 

Corollary 7.3.  Let  k ∈ N,  ϕ ∈ Φ 
k,  and  ( r + 1 ) ∈ N.  Then 

H J( )ε   ⊂  W H Jr
k
ϕ( )  

⇔   
j n= +

∞

∑
1

 r j 2 
r

 
–

 
1

 ε j  +  n 
–

 
2

 
k

j

n

=
∑

1

 j 2 
(r

 
+

 
k)–1

 ε j  =  O( ϕ ( 1 / n 
2

 )) ; (7.39)

in particular, 

H J( )ε   ⊂  C 

r
 ( J )   ⇔   H J( )ε   ⊂  W 

r
 ( J )

⇔   
j n= +

∞

∑
1

 j 2 
r

 
–

 
1

 ε j  <  ∞,      r ∈ N. (7.40)

7.4.  Peetre  K-functional

In approximation theory, the idea of the replacement of an arbitrary function  f  by a suffi-
ciently smooth function  g  is often used.  One of the most efficient realizations of this
idea is based on the method of the Peetre  K-functional from the theory of interpolation
spaces (see [Peetre (1968)], [Bergh and Löfström (1976)], and others). 

In the case of interpolation between  C ( J )  and  W 

r
 ( J ),  r ∈ N,  the  K-functional has

the form 

K r ( t, f, J )  : =  inf –   ess sup
g W J

J
x J

r
r

f g t g x
∈ ( ) ∈

( )+ ( )



 (7.41)

It is clear that  K r ( t, f, J )  is a function nondecreasing with respect to  t. 

Let  x ∈ J,  h > 0,  and  ( x + r h ) ∈  J .  Relation (3.44), or (3.45), implies that the fol-

lowing estimate holds for  g ∈ W 

r
 ( J ) : 
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∆h
r g x( ),   ≤  h g xr

x J

ress sup
∈

( )( ) .

Moreover, it is obvious that 

∆h
r f g x( )– ,   ≤  2 

r f g J−
 
.

Hence, 

∆h
r f x( ),   ≤  ∆h

r f g x( )– ,   +  ∆h
r g x( ),   ≤  2 

r K r ( h, f, J ),

which yields 

ω r ( t, f, J )  ≤  2 
r K r ( tr, f, J ),      t > 0. (7.42)

It will be proved in Chapter 7 (Lemma 7.3.5) that the following estimate is true for

t ∈ [ 0, 1 / r ] : 

K r ( tr, f, [ –1; 1 ] )  ≤  cω r ( t ; f ; [ –1; 1 ] ) . (7.43)

For  t ≥ 1 / r,  estimate (7.43) is a trivial consequence of the Whitney inequality (6.5).  By

the linear change of variables that transforms the segment  I = [ –1; 1 ]  into the segment

J = [ a ; b ] ,  we obtain 

K r ( tr, f, J )  ≤  c ω r ( t, f, J ).

Thus, 

 2 
–

 
r

 ω r ( t, f, J )  ≤  K r ( tr, f, J )  ≤  c ω r ( t, f, J ),      t ≥ 0. (7.44)

Freud and Popov (1972) proved relation (7.43) by using a modification of Steklov
means.  For applications of (7.44) to the polynomial approximation, see, e.g., DeVore
(1977), DeVore and Yu (1985), and Brudnyi, Krein, and Semenov (1987). 

8.  Hermite formula

8.1.  Introduction

Until now, the Lagrange interpolation polynomial  L  ( x  ; f ; x 0, … , x m )  and the divided

difference  [ x 0, … , x m ; f ]   have been considered in the case where all points  x i  are dif-
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ferent.  In the present section, we generalize this notion to the case where some (fixed)
points  x i  may coincide.  Namely, we define and study an Hermite–Lagrange interpola-
tion polynomial  L x f x( ); ;   and a generalized divided difference  [ ]x f; ,  where  x  =

( x0 , x 1, … , x m ). The corresponding definitions will be introduced so that 

L x f x( ); ;   ≡  L ( x  ; f ; x 0, … , x m )

and

[ ]x f;   ≡  [ x 0, … , x m ; f ]

in the case where all points  x i  are different.  In contrast to  L x f x( ); ;   and  [ ]x f; ,  the

expressions  L ( x  ; f ; x 0 
, … , x m )  and  [ x 0 

, … , x m ; f ]  are used in this book only in the

cases where all points  x i  are different. 

In this section, we use the following notation and assumptions:  x  : = ( x 0, … , x m )  is
a collection of points  x i ∈  R,  i = 0, ,… m  ,  and  X : = { x 0 } ∪ { x 1 } ∪ … ∪ { x m  }  is a

subset of the real axis.  The set  X  consists of  q  different points  ys 
,  s = 1, ,… q ,  i.e.,

X = { y1 } ∪ … ∪ { y q },  where  ys ≠ yν  for  s ≠ ν.  The points  x i,  i = 0, ,… m,  are called

the coordinates of the collection  x ,  and the points  ys 
,  s = 1, ,… q   are called the nodes

of the collection  x .  If the coordinates  x i  of the collection  x   are different, then we ob-

viously have  q = m + 1.  However, if, conversely, at least two coordinates of the collec-
tion  x   are equal, then, obviously,  q < m + 1.  If a node  ys  coincides with exactly

p s + 1  coordinates of the collection  x ,  then the number  p s  is called the multiplicity of

the node  ys .  If  p s = 0,  then the node  ys   is called a simple node.  If  p  s ∈  N,  then the

node  ys   is called a multiple node.  It is clear that 

( + )
=
∑ 1

1

ps
s

q

  =  m + 1.

For every  s = 1, ,… q ,  we denote 

l s ( x )  : =  l s ( x, x  )  : =  ( ) +

= ≠
∏ x y p

s

q

–
,

ν
ν ν

ν 1

1

,

which is a polynomial of degree  m – p s ,  and 

B s ( x )  : =  B s ( x, x  )  : =  
1

l x xs ( , )
 . (8.1)
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8.2.  Hermite–Lagrange polynomial

Definition 8.1.  For every  s  = 1, ,… q   and   i = 0, ,… ps ,  the fundamental Hermite–
Lagrange polynomial is defined as the polynomial of degree  m  that has the following
form: 

l s, i ( x )  : =  l s, i ( x, x  )  : =  
1 1

0i
l x x B y x ys

p i

s s s
i

s

!
,

!
–

–

( ) ( )( )
=

( ) +∑
µ

µ µ
µ

. (8.2)

Let  ν = 1, ,… q   and  j = 0, ,… pν .  It is easy to verify that  t ys i
j
,

( )( )ν  = 1  for  i = j

and  ν = s,  and  t ys i
j
,

( )( )ν  = 0  otherwise.  Therefore, for any collection of numbers  f s, i ,

the polynomial (of degree  ≤ m ) 

� ( x )  =  
s

q

i

ps

= =
∑ ∑

1 0

 f s, i l s, i ( x ) (8.3)

possesses the following property: 

� 
(
 
j

 
)( yν )  =  f ν, j  ,    ν = 1, ,… q ,  j = 0, ,… pν . (8.4)

In Subsections 8.2–8.4, the symbol  f = f ( x ) = f ( 
0

 
)( x )  always denotes a function de-

fined on  R  and having  ps  derivatives  f ( 
i

 
)( x ),  i = 1, ,… ps ,  at each multiple node  ys  

. 

Definition 8.2.  An Hermite–Lagrange polynomial 

L ( x )  : =  L ( x ; f )  : =  L ( x ; f ; x  ) (8.5)

that interpolates a function  f = f ( x )  and its derivatives at the nodes  y 1 , …  , yq  of a

collection  x   is defined as an algebraic polynomial of at most  m  th degree that satis-
fies the following equalities for all  ν = 1, ,… q   and  j = 0, ,… ps  : 

L 
(

 
j

 
)( yν )  =  f ( 

j
 
)( yν ). (8.6)

For example, if  q = m + 1,  i.e., all nodes are simple, then the Hermite–Lagrange pol-
ynomial is the Lagrange polynomial (3.1).  If  q = 1,  i.e.,  x 0 = x 1 = … = x m = y 1,  then
the Hermite–Lagrange polynomial is the Taylor polynomial, i.e., in this case, one has 

L ( x ; f ; x  )  =  
j

m
j jx x f x j

=

( )∑ ( ) ( ) /
0

0 0– !.
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In the case where  m = 2  and  x 0 = x 1 ≠ x 2,  we have 

L ( x ; f ; x  )  =  f x
x x x x

x x
′( )( )( )

( )0
0 2

0 2

– –
–

+  f ( x 0 ) x x

x x

x x x x

x x

–
–

  
– –

–
2

0 2

0 2

0 2
2+ ( )( )

( )




   +  f ( x 2 ) ( )

( )
x x

x x

–

–
2

2

0 2
2

=  f ′ ( x 0 )( x – x 2 ) B1 ( y1 )  +  f ′ ( x 0 )(( x – x 2 ) B1 ( y1 )

+ ( x – x 0 ) ( x – x 2 ) ′ ( )B y1 1 )  +  f ( x 0 )( x – x 2 ) 
2

 B ( y2 )

y1  : =  x 0,      y2  : =  x 2.

By virtue of (8.3) and (8.4), the Hermite–Lagrange polynomial exists and is repre-
sentable in the form 

L ( x ; f ; x  )  =  
s

q

i

ps

= =
∑ ∑

1 0

 f ( 
i

 
)( ys ) l i, s ( x ). (8.7)

Using the main theorem of algebra on the number of zeros of an algebraic polynomial,
one can prove that the Hermite–Lagrange polynomial is unique and 

L ( x ; Pm ; x  )  ≡  Pm ( x ) (8.8)

for any algebraic polynomial  Pm   of degree  ≤ m.
Similarly to Lagrange polynomials, Hermite–Lagrange polynomials are linear opera-

tors. 

8.3.  Generalized divided difference

Let  s*  be a number for which 

x m  =  ys * 
,      xm–1  : =  ( x 0, … , x m – 1 ),      and      L m – 1  : =  L ( x ; f ; xm–1 ).

Dividing the difference  f ( 
ps * 

)
 ( x m ) – L xm

p
m

s
–
*
1

( )( )  by  ( ps * ) ! ls * ( x m )  and using (8.7), (8.2),
and (8.1), we obtain 
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f x L x

p l x

p
m m

p
m

s s m

s s( ) ( )( ) ( )
( ) ( )

* *

* *

 –  

!
–1   =  

s

q

i

p p i
s s

i
s

s

s sf y B y

p i i= =

( ) ( )

∑ ∑ ( ) ( )
( − )1 0

–

!

=  
s

q

s
p

s sf y ps

=

( )∑ ( ) ( )/
1

!  = :  [ ]x f, , (8.9)

where 

fs ( x )  : =  f ( x ) B s ( x )  =  f ( x ) 

s

q

s
p

s s
s

q

n
pf y p x ys

=

( )

= ≠
∑ ∏( ) ( ) ( )/

1 1

1! –
,

– –

ν ν

ν .

Definition 8.3 (Hermite formula).  The expression  [ ]x f,   is called the generalized di-
vided difference of order  m  for a function  f  in a collection  x . 

For example, for  q = 1,  i.e., in the case where  x 0 = … = x m = y 1,  we have 

[ ]x f,   =  f ( 
m

 
)
 ( y 1 ) / m ! ; (8.10)

for  q = m + 1,  we have  [ ]x f,  = [ x 0, … , x m ; f ] .  In contrast to the case  q = 1,  for

q = 2, ,… m  expression (8.9) contains the values of the function  f  at all nodes, as well

as the values of all derivatives  f ( 
i

 
)

 ( y s ),  j = 1, ,… ps ,  at each multiple node  y s 
. 

Note that the generalized divided difference  [ x , f ]  is symmetric in the same sense as
the divided difference for different points defined by (3.8). 

For Hermite–Lagrange polynomials and generalized divided differences, complete
analogs of all relations (3.11)–(3.27) are valid.  Namely, the following assertions are true:

(i) L ( x ; f ; x  )  =  
i

m

i
j

i

jx f x x
= =
∑ ∏[ ] ( )

0 0

1

, –
–

, (8.11)

where  xi : = ( x 0, … , x i ) ; 

(ii) if  x i ∈ [ a, b ] ,  i = 0, ,… m,  and the function  f  has the  m th derivative  f ( 
m

 
)  on

( a, b ),  then 

[ ]x f,   =  f ( 
m

 
)
 ( θ ) / m !,      θ ∈ ( a, b ) ; (8.12)

(iii) if  Pm – 1  is a polynomial of degree  ≤ m – 1,  then 

[ ]x Pm, –1   =  0; (8.13)
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(iv) if  f ( x ) = x m,  then 

[ ]x f,   =  1; (8.14)

(v) if  Pm ( x ) = a 0 x m + … + a m  is a polynomial of degree  m,  then 

Pm ( x )  –  L ( x ; Pm ; xm–1 )  =  a 0 ( x – x 0 ) … ( x – x m – 1 ), (8.15)

where  x m – 1 = ( x 0, … , x m – 1 ) ; 

(vi) ( x 0 – x m ) [ ]x f,   =  [ ]x fm– ,1   –  [ ]x fm
0 , , (8.16)

where  xm–1 = ( x 0, … , x m – 1 )  and  xm
0  = ( x 1, … , x m ) ,  etc. 

The proofs of relations (8.11)–(8.16) are similar to those of relations (3.11)–(3.27),
respectively.  For example, let us prove (8.11).  For  m – 1,  relation (8.11) follows from
(8.10) and (3.11).  By induction, we assume that (8.11) is true for a number  m  – 1  and
prove it for the number  m,  i.e., we must prove the equality 

L ( x )  =  L m – 1 ( x )  +  [ ]x f,  Π ( x ), (8.17)

where 

L ( x )  =  L ( x ; f ; x  ),    L m – 1 ( x )  =  L ( x ; f ; xm–1 ),

xm–1  =  ( x 0, … , x m – 1 ),    Π ( x )  : =  
j

m

jx x
=

∏ ( )
0

1–

– .

Since both sides of equality (8.17) are polynomials of degree  ≤ m,  it suffices to prove
that, for all  s = 1, ,… q   and  j = 0, ,… ps ,  one has 

L 
(

 
j

 
)

 ( y s )  =  L ym
j

s–1
( ) ( )  +  [ ]x f; Π 

(
 
j

 
)( y s ) . (8.18)

Let  s*  be the number for which  x m = ys * 
. Since  Π( )( )p

m
s x*  = ( ps * ) ! ls * ( x m  ),  we

conclude that, for  s = s*  and  j = ps *,  equality (8.18) follows immediately from (8.9).

For the other  s = 1, ,… q   and  j = 0, ,… ps ,  it follows from Definition 8.2 that 
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L ym
j

s–1
( ) ( )  +  [ ] ( )( )x f yj

s, Π   =  f ( 
j

 
)

 ( y s )  +  0  =  L ym
j

s
( )( ).

Thus, equality (8.18) is proved, which proves (8.11). 

�

8.4.  Convergence

Assume the following: 

(i) R 
m

 
+

 
1  is the  ( m + 1 ) -dimensional space of points  t  = ( t 0, … , t m ) ; 

(ii) R*
m+1   is the set of points  t  ∈  R 

m
 
+

 
1  all coordinates  t i  of which are differ-

ent; 

(iii) R 
m

 
+

 
1

 ( x )  is the set of points  t  ∈  R 
m

 
+

 
1  such that each node  y s  of the col-

lection  x   coincides with at least one coordinate  t i  of the point  t ; 

(iv) R*
m+1

 ( x ) : = R*
m+1   ∩  R 

m
 
+

 
1

 ( x ) . 

We say that, in the collection x , 

(i) a generalized divided difference converges,

(ii) a divided difference converges, 

(iii) a generalized divided difference converges weakly, 

(iv) a divided difference converges weakly, 

and write, respectively, 

(i) lim ;
t x

t f
→

[ ]  =  A, (8.19)

(ii) lim
*

t x→
 [ t 0, … , t m ; f ]  =  A , (8.19*)



266 On smoothness of functions Chapter 3

(iii) lim ;0

t x
t f

→
[ ]  =  A, (8.190)

(iv) lim
*
0

t x→
 [ t 0, … , t m ; f ]  =  A (8.190

* )

if, for any  ε > 0,  there exists  δ > 0  such that  | |[ ]A t f– ;  < ε  whenever  t xi i−  < δ,
i = 0, ,… m,  t  ≠ x ,  and, respectively, 

(i) t  ∈ R 
m

 
+

 
1, 

(ii) t  ∈ R*
m+1 , 

(iii) t  ∈ R 
m

 
+

 
1

 ( x ) , 

(iv) t  ∈ R*
m+1 ( x ).

Remark 8.1.  A necessary condition for the convergence of the generalized divided dif-

ference in the collection  x   [see (i)] is the existence of the derivative  f ( 
p

 s 
)

 ( y )  not only
at each multiple node  y s  but also in a certain neighborhood of it.  For weak convergence,
this condition is not necessary because, in this case, the derivative does not appear in the

expression  y ≠ y s  for  [ ]t f; ,  and the existence of the derivatives  f ( 
j

 
)

 ( y ),  j  =

0 1, ,… −ps ,  in the neighborhood of the node  y s  is guaranteed by the assumption of the

existence of  f ( 
p

 s 
)

 ( y ).  In the case where all coordinates  x i  are different (i.e.,

q = m + 1),  and only in this case, we have  R*
m+1 ( x  ) = R 

m
 
+

 
1

 ( x ) = { x }.  Therefore, in

the case where  q = m + 1,  we set 

lim
*
0

t x→
 [ t 0, … , t m ; f ]  : =  [ x 0, … , x m ; f ]  = :  lim ;0

t x
t f

→
[ ].

Lemma 8.1.  The following relations are true: 

lim ;0

t x
t f

→
[ ]  =  [ ]x f; ; (8.20)

lim
*
0

t x→
 [ t 0, … , t m ; f ]  =  [ x 0, … , x m ; f ] . (8.21)

In particular, if  q = 1,  i.e., there exists  f ( 
m

 
)
 ( x 0 )  and  x i = x 0,  i = 1, ,… m,  then 
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lim ;0

t x
t f

→
[ ]  =  

f x

m

m( )( )0

!
, (8.22)

lim
*
0

t x→
 [ t 0, … , t m ; f ]  =  

f x

m

m( )( )0

!
. (8.23)

Proof.  Relation (8.21) is a corollary of (8.23) and (3.26).  Relation (8.20) is a corollary
of (8.22) and of an analog of (3.26) for generalized divided differences.  Moreover, it is
obvious that (8.23) is a corollary of (8.22).  Therefore, it suffices to prove (8.22). 

Since  f ( 
m

 
)
 ( x 0 )  exists, we conclude that the  ( m – 1 ) th derivative  f ( 

m
 
–

 
1

 
)  exists in a

certain neighborhood  ( x 0 – δ,  x 0 + δ )  of the point  x 0.  For every  t  = ( t 0, … , t m )  with

t i ∈ ( x 0 – δ,  x 0 + δ ),  we denote the least coordinate and the greatest coordinate among  t  i

by  t * = t t*( )   and  t * = t t*( ) ,  respectively;  thus,  t * – t * ≥ t ti j− ,  i, j = 0, ,… m.  We

set  g : = f – T,  where 

T ( x )  =  
f x x x

j

j j

j

m ( )( )( )

!
0 0

0

−

=
∑

is the Taylor polynomial, and take the equalities  g 
(

 
m

 
)
 ( x 0 ) = g 

(
 
m

 
–

 
1

 
)

 ( x 0 ) = 0  into ac-

count.  By virtue of (8.16) and (8.12), there exist points  θ  1 ∈  ( t *,  t * )  and  θ  2 ∈  ( t *,  t * )
such that 

( m – 1 )! [ ]t g;   =  
g g

t t

m m( ) ( )

*
*

( ) ( )− −−
−

1
1

1
2θ θ

.

Hence, 

( m – 1 )! [ ]t g;   ≤  
g x g

x

m m( ) ( )( ) ( )– – –  
–

1
0

1
1

0 1

θ
θ

  +  
g x g

x

m m( ) ( )( ) ( )– – –  
–

1
0

1
2

0 2

θ
θ

(if  θ  1 = x 0 ,  then the first term in this inequality should be replaced by zero;  the case

θ 2 = x 0  should be treated by analogy).  Therefore, 

( m – 1 )! lim0

t x→
 [ ]t g;   ≤  2 g xm( )( )0   =  0.

By virtue of (8.14), we get 
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lim ;0

t x
t f

→
[ ]  =  

f x

m

m( )( )0

!
  +  lim ;0

t x
t g

→
[ ].

Relation (8.22) is proved, which completes the proof of Lemma 8.1. 

�

Remark 8.2.  Generally speaking, weak convergence cannot be replaced by strong con-

vergence in (8.22).  For example, for the function  f ( x ) = x 
2 sin ( 1 / x ),  f  ( 0 ) : = 0,  we

have  f ′( 0 ) = 0,  but  lim
, ,( ) → ( )t t0 1 0 0

 [ t 0, t 1 ; f ]  does not exist.  Nevertheless, the following

lemma is true: 

Lemma 8.2.  Suppose that  q = 1,  i.e., there exists  f (
 
m

 
)
 ( x 0 )  and   x  0 = x 1 = … = x  m  

.

If the  m  th derivative  f ( 
m

 
)
 ( x )  exists and is continuous in a certain neighborhood

J δ : = ( x 0 – δ,  x 0 + δ )  of the point  x 0,  then 

lim ;
t x

t f
→

[ ]  =  
f x

m

m( )( )0

!
 ; (8.24)

in particular, 

lim
*

t x→
 [ t 0, … , t m ; f ]  =  

f x

m

m( )( )0

!
. (8.25)

Proof.  For any positive  δ 1 < δ,  we consider  t i ∈  ( x 0 – δ 1,  x  0 + δ 1 ),  i = 0, ,… m.

Using relation (8.12) and the assumption that  f ( 
m

 
)
 ( x )  is continuous, we establish that 

[ ] −t f
f x

m

m

;
( )

!

( )
0   =  

1

m !
 f f xm m( ) ( )( ) − ( )θ 0   →  0      as    δ 1 → 0,

where  θ ∈ ( x 0 – δ 1,  x 0 + δ 1 ). 

�

Definition 8.4 [Whitney (1934a)].  Suppose that a set  E ⊂ R   and a limit point  x0  of  E

are given.  We say that divided differences  [  t 0, …  , t m  ; f ]  converge at the point  x  0  if,

for any  ε > 0,  there exists  δ > 0  such that 

[ ′ … ′ ] [ ′′ … ′′ ]t t f t t fm m0 0, , ; – , , ;   <  ε (8.26)
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whenever  ′t xi – 0  < δ,  ′′t xi – 0  < δ,  i = 0, … , m,  and the coordinates  ′ti   a n d   ′′ti
in each of the collections  ′t  = ( ′ … ′ )t tm0, ,   and  ′′t  = ( ′′ … ′′ )t tm0, ,   are different. 

We say that divided differences  [  t 0, … , t m  ; f ]  converge on the set  E  if they con-

verge at every limit point of  E. 

Lemma 8.3.  If  f ∈ C 

m
 (R),  then divided differences converge on every set  E ⊂ R. 

Lemma 8.3 is a corollary of (8.25). 

8.5.  Further generalization of the Whitney inequality

Let  k ∈ N,  ( r + 1 ) ∈ N,  m = k + r,  ϕ ∈  Φ  
k,  a ≤ x 0 ≤ x 1 ≤ … ≤ x  m ≤ b,  and  p x( )  : =

max { p s  s = 1, q }.  In the case  p x( )  = 1,  the  r th divided majorant  Λ  r ( x 0, … , x m ; ϕ  )
was defined in Section 6 by formula (6.32).  If  p x( )  ≤ r,  then the right-hand side of
(6.32) is obviously a finite number;  denote it by  Λr x( ); ϕ .  Furthermore, we have

Λ  r ( t 0, … , t m ; ϕ  )  →  Λr x( ); ϕ   as  ( t 0, … , t m  ) → x .  Therefore, relations (8.21) and
(6.36) yield the following statement: 

Lemma 8.4 [V. Galan (1991)].  Let  p x( )  ≤ r.  If  f ∈ W 

r
 H ([ k ; ϕ; R]),  then 

[ ]x f;   ≤  c Λr x( ); ϕ . (8.27)

Corollary 8.1.  Let  p x( )  ≠ m.  If  f ∈ W [ m ; R ] ,  then 

[ ]x f;   ≤  c. (8.28)

Remark 8.3.  If  p x( )  = m,  i.e.,  x 0 = … = x  m  
,  then, under the assumption that  f ∈

W [ m ; R ],  representation (8.10) yields inequality (8.28) for almost all  x 0 ∈ R.

Remark 8.4.  Estimate (8.27), as well as estimate (6.36), is sharp in the sense that, for

any collection  x   with  p x( )  ≤ r,  there exists a function  g ∈  W 

r
 H [ k ; ϕ; R]  for which

[ ]x g;  ≥ c Λr x( ); ϕ   [see Lemma 4.3.1]. 

8.6.  Existence of the derivative

Let  x 0 = x 1 = … = x m .  If  f 
(

 
m

 
)
 ( x 0 )  exists, then, according to (8.23), the following limit

also exists: 
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lim
*
0

t x→
 [ t 0, … , t m ; f ]  =  

A

m!
 ;

moreover,  A = f ( 
m

 
)
 ( x 0 ) .  Generally speaking, the converse statement is not true.  For ex-

ample, for the function  f ( x ) = x 
4 sin 1/ x ,  f ( 0 ) : = 0,  we have 

lim
*

, , , ,

0

0 0 00 1 2( ) → ( )t t t

 [ t 0, t 1, t 2 ; f ]  =  0;

at the same time, the derivative  f ′( 1 / π n )  does not exist at the points  ( π n ) 
–

 
1,  n ∈  N,

and, hence, the second derivative  f ′′( 0 )  does not exist as well.  Nevertheless, one can
easily prove by using (3.17) that if a function  f  is defined in a certain neighborhood of
the point  x 0  ( = x 1 = … = x m )  and the limit 

lim
*

t x→
 [ t 0, … , t m ; f ]  =  

A

m!

exists, then the function  f  has the  m th derivative at the point  x  0  and, moreover,

f ( 
m

 
)
 ( x 0 ) = A . 

9.  DT-Moduli of smoothness

9.1.  Introduction

It will be shown later that, for any function  f ∈ H [ k; ϕ ]  and every  n ≥ k – 1,  there exists
a polynomial  Pn  that guarantees, generally speaking, the same order of uniform approx-

imation on  I  =  [ – 1, 1 ]  as the polynomial of the best approximation and “much better”
approximates the function  f  near the endpoints  ±1.  Therefore, it is natural to assume

that the class  H [ k; ϕ ]  may be “worsened” near the endpoints without worsening the or-
der of the value  f Pn−  . 

At the beginning of the 1960s, Dzyadyk and Alibekov (1968) and Volkov (1965), and
later Dyn’kin (1974) and Andrievskii (1985), described such classes on sets of the com-
plex plane by using the mapping function.  Such a description can also be applied to a
segment because a segment is a set of the complex plane.  Anyway, the investigation on a
segment reduces to the substitution  x t= cos   (see [Fuksman (1965)]).  In this direction,
the corresponding classes were constructed by Potapov (1981); one should also mention
the results of Sendov and Ivanov. 

In this section, we present the construction of Ditzian and Totik (1987) that general-

izes the spaces  B 

r
  introduced by Babenko (1985) (see also [Boikov (1987)]). 
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Definition 9.1.  Let  B  

r
,  r  ∈  N,  denote the space of functions  f  that have the locally

absolutely continuous  (  r – 1 )  th derivative on  ( – 1, 1 )  and satisfy the following in-
equality almost everywhere on  ( – 1, 1 ) : 

( − ) ( )( )1 2 2x f xr r/   ≤  M, (9.1)

where  M  =  M ( f )  =  const  <  ∞. 

Typical examples of functions  f ∈  B 

r
  are  fr ( x )  : =  (  1 + x ) 

r
 
/

 
2  for odd  r  and

fr ( x )  : =  ( 1 + x ) 
r

 
/

 
2

 ln ( 1 + x )  for even  r. 

Remark 9.1.  Bernstein (1930) and Ibragimov (1946) proved that 

En ( fr ) I  ∼  n–  r.

Without loss of generality, we can assume that a function  f ∈ B 

r
  is continuous on  I

together with its derivatives  f p( ) ,  p  <  r / 2.  Indeed, we have 

f xp( )( )   =  ( )( − − ) ( − ) ( ) + (− − − ( )
− −∫r p x t f t dt P xr p r

x

r p1 1 1

0
1! )) ,    x ∈ (–1, 1). (9.2)

Since 

( ± ) ( − )− − −∫ 1 11 2 2

0

t t dtr p r
x

/   <  ∞,      p  <  
r

2
,

the integral in (9.2) defines a function continuous on  I  for  p < r  / 2.  For  p ≥ r  / 2,  the

derivative  f p( )   of a function  f ∈ B 

r
  does not need to be bounded (and, all the more,

continuous) on  I  (e.g.,  fr  ).  Nevertheless, it is convenient to assume that the function

f p( )   is defined at the points  ±1.  For  p  ≥  r  / 2,  we set  f p( )( )±1   : =  0  if the limits

f p( )( )±1 0∓   do not exist. 

By  f ( a + )  ( f ( a – ) )  we denote the one-sided limit 

lim
,x a x a

f x
→ >

( )      lim
,x a x a

f x
→ <

( )



 ,

provided that it exists. 
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9.2.  Definition of  DT-modulus of continuity (smoothness)

We set 

w ( x )  : =  1 2− x , (9.3)

and denote by 

˙ ; :∆h
m m j

j

m

f x
m

j
f x

m
h jh( ) = (− ) 



 − +





−

=
∑ 1

20

(9.4)

the  m th symmetric difference of a function  f  at a point  x  with step  h.  Note that 

˙ ; ;∆ ∆h
m

h
mf x f x

m
h( ) = −



2

. (9.5)

Definition 9.2.  The  DT-modulus of continuity (smoothness) of order  k ∈ N  of   f  ∈

C ( I )  is defined as the function 

ωk
h t x

hw xt f f x( ) = ( )
≤ ≤

( ); : sup max ˙ ;
0

∆ ,      t  ≥  0, (9.6)

where the maximum is taken over all  x  such that 

x khw x x khw x− ( ) + ( )





1
2

1
2

;   ⊂  I. (9.7)

Note that condition (9.7) is equivalent to the inequality 

1
2

khw x( )   ≤  1  –  x ,

which yields 

1
2

kh   ≤  w ( x )  ≤  1. (9.8)

Therefore, 

1
2

2ω ω ωk k kt f t f t f( ) ≤ ( ) ≤ ( ); ; ; ,      t  ≥  0, (9.9)
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and 

ω ωk kt f
k

f( ) ≡ 



; ;

2
,      t  ≥  

2
k

. (9.10)

It will be shown below that the  DT-modulus of continuity  ωk t f( );   possesses prop-
erties similar to properties of the “ordinary” modulus of continuity  ωk t f( ); ;  in partic-

ular, for every function  f ∈ C ( I ),  there exists a  k-majorant  ϕ  (see Definition 4.4) such
that 

ϕ ( t )  ≤  ωk t f( );   ≤  c ϕ ( t ),      0  ≤  t  ≤  
2
k

. (9.11)

In Example 9.1, we prove that, conversely, for every  k-majorant  ϕ  there exists a func-

tion  f ∈ C ( I )  such that relation (9.11) is true. 

Example 9.1.  Assume that  ϕ ∈ Φk
,  ϕ( )t   : =  2ϕ( )t , 

F ( y )  : =  F y k

y k

k

x x u

u
u du

k

k

( ) =

( ) =

( − )
( − ) ( )

−; ;

if ,

!

ϕ

ϕ

ϕ

1

1

2

2

11

1
x

k∫ >










if

is the extremal function [see (4.27)], and 

f ( x )  : =  F
x +





1
2

,      x ∈ I.

Then relation (9.11) is true. 

Proof.  Taking Lemma 4.3 into account, we can assume, without loss of generality, that 

t ϕ′ ( t )  ≤  c1 ϕ ( t ),      t  ≥  0. (9.12)

We set 

w* ( y )  : =  y y( − )1 .

For  x  and  h  satisfying (9.7), we have 

w ( x )  =  2w* ( y ), (9.13)
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˙ ; ˙ ;
*

∆ ∆hw x
k

hw y
kf x F y( ) ( )( ) = ( ) , (9.14)

where  x = 2y – 1.  We set  h   : =  h w* ( y )  and  y0  : =  y – 
1
2

kh .  It follows from (9.8) and

(9.13) that 

h kh≥ 1
4

2 , (9.15)

which, together with the condition  ϕ ∈ Φk
,  yields 

θ ϕ θ ϕ− −( ) ≤ ( )k kh h/2 4 ,      θ  ≥  h . (9.16)

If  y0 ≥ h ,  then, successively using relations (9.5), (3.34), (4.31), (9.12), and (9.16)
and the estimate 

w y y y kh k y*
2

0 0
1
2

1
1
2

( ) < = + ≤ +



 ,

we get 

˙ ; ;
*

∆ ∆hw x
k

h
k k k k kF y F y h F h( )

( ) −( ) = ( ) = ( ) = ′( )0
1θ θ ϕ θ

≤  
1
2

21 1 0
2c h c h h y hk k k k kθ ϕ θ ϕ− − −( ) ≤ ( )/

≤  2 1

2

0

2

c
w y

y
h c h

k
*

/
( )



 ( ) ≤ ( )ϕ ϕ , (9.17)

where  θ  >  y0 
.  If  y0  <  h ,  then 

w y y y khw y k hw y* * *
2

0
1
2

1
1
2

( ) < = + ( ) < +



 ( ) ,

whence 

h k h≤ ( + )1
2

2 2.

Therefore, relation (4.38) yields 
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∆h
k k kF y k h k h c h( ) ≤ ( + ) ≤ ( + )



 ≤ ( )( ) +; 0

12 1 2
1
2

2ϕ ϕ ϕ . (9.18)

The estimate of  ωk t f( );    from above now follows from (9.17), (9.18), and (9.14). 

For the estimation of  ωk t f( );   from below, we fix  h  ≤  2 / k,  choose  y  from the
condition  y0  =  0,  and successively use (9.6), (9.14), (9.5), (4.37), and (9.15).  As a re-
sult, we get

ωk hw x
k

hw x
k

h
kh f f x F y F( ) ≥ ( ) = ( ) = ( )( ) ( ); ˙ ; ˙ ; ;

*
∆ ∆ ∆ 0

≥  ϕ ϕ ϕ( ) ≥ 



 ≥ ( )h

kh
h2

2
.

�

Example 9.2.  For  α  >  0,  we set 

f x
x

x x
α

α

α

α

α( ) =
( + )

( + ) ( + )







1
2

1 1
2

2

2

/

/

if is not an integer,

ln if is an integer,
(9.19)

Fα ( y )  : =  fα ( 2y – 1 ),      ϕ( )t   : =  2 2tα / .

Let  k  ≥  α.  Since  F y a y yk
k

k
α α ϕ( ) −( ) = ′( ),

1 ,  y  >  0,  ak,α   =  const  >  0,  it follows

from Example 9.1 that 

a t t f ca tk k k, ,;α
α

α α
αω≤ ( ) ≤ ,      0  ≤  t  ≤  

2
k

. (9.20)

For what follows, we also need the definition of the  DT-modulus of continuity for a
closed interval 

J  : =  [ a, b ]  ⊂  I.

Definition 9.3.  The  DT-modulus of continuity (smoothness) of order  k ∈ N  of a

function  f ∈ C ( J )  on  J  is defined as the function 

ωk
h t x

hw xt f J f x( ) = ( )
≤ ≤

( ); ; : sup max ˙ ;
0

∆ ,      t  ≥  0, (9.21)
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where the maximum is taken over all  x  such that 

x khw x x khw x− ( ) + ( )





1
2

1
2

;   ⊂  J. (9.22)

If  f ∈ C ( I ),  then, obviously, 

ω ωk kt f I t f( ) ≡ ( ); ; ; . (9.23)

Inequalities (9.8) yield 

1
2

2ω ω ωk k kt f J t f J t f J( ) ≤ ( ) ≤ ( ); ; ; ; ; ; ,      t  ≥  0, (9.24)

where  ωk   is the “ordinary” modulus of continuity. 

Denote† 

J   : =  b  –  a,      / J /  : =  
J

w a b( )( + ) / 2
. (9.25)

Note that condition (9.22) is equivalent to the inequality 

1
2 2 2

khw x
b a

x
a b( ) ≤ − − − +

.

Since  w  is a concave function, we have 

b a
x

a b− − − + ≤
2 2

1
2

 / J / w ( x ),      x ∈ J.

Therefore, 

h  ≤  
1
k

 / J / (9.26)

for  h  satisfying (9.22).  It follows from estimate (9.26) that 

ω ω ωk k kk
J f J

k
J f J J f J

1 1
; ; ; ; ; ;



 = 



 = ( )/ / / / . (9.27)

† The notation  / J /  has been introduced in recent papers of Leviatan and Shevchuk.  We use arguments

from these papers in this and the next section. 
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It follows from the Whitney inequality (6.1) and relation (9.27) that 

E f c J f Jk J k− ( ) ≤ ( )/ /1 ω ; ; , (9.28)

whence 

f L f J c J f Jk J k− (⋅ ) ≤ ( )− / /1 ; ; ; ;ω , (9.29)

where, as usual, 

L f Jk − (⋅ )1 ; ;

denotes the Lagrange polynomial of degree  ≤ k – 1  that interpolates a function  f  at  k

equidistant points of a closed interval  J,  including its endpoints, for  k ≠ 1;  L0 ( x ; f ; J )  =
f a b( )( + ) / 2 .  In the case of a divided difference for an arbitrary collection of points

xj ∈ J,  x0  <  x1  < … <  xk 
,  estimate (9.29) yields 

[ … ] ≤ ( ) −/ /
= … −

−x x f c J f J x xk k
j k

j j
k

0
1

1, , ; ; ; max
, ,

ω . (9.30)

Finally, note that 

1 2
1 1

≤ </ /
/ /

J
J

J
J

      if     J1 ⊂ J. (9.31)

9.3.  Properties of  DT-modulus of continuity

The properties of the function  ωk t( )  : =  ωk t f J( ); ;   are similar to those of the “ordi-

nary” modulus of continuity  ωk ( t )  =  ωk ( t; f ; J ) .  In particular, it follows directly from

Definition 9.3 that  ωk   does not decrease on  [ 0, ∞ ]  and  ωk( )0   =  0.  Moreover, it fol-
lows from (9.24) that  ωk   is continuous at the point  t  =  0,  i.e.,  ωk( +)0   =  0.  Now let

us prove an analog of the inequality  ωk ( n t )  ≤  nk
 ωk ( t ),  n ∈ N. 

Lemma 9.1.  If  n ∈ N,  then 

ω ωk
k

knt f J cn t f J( ) ≤ ( ); ; ; ; ,      t  ≥  0; (9.32)

in particular, 

ω ωk
k

knt f cn t f( ) ≤ ( ); ; ,      t  ≥  0. (9.33)
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Proof.  Without loss of generality, we can assume that  n  is odd.  Let 

x ∈ J,      h  >  0,      δ  : =  h w ( x ),

x0  : =  x  –  
1
2

knδ ,      x 
0  : =  x  +  

1
2

knδ ,      [ x0 
, x 

0
 ] ⊂ J.

We set 

xj  : =  

x
n

j j n

x j j n k

0
2

0

1
2 0 2

2 1 2

+ = …

+ = … ( − )

δ

δ

if , , / ,

if / , , / nn

x
n

kn j j k n kn

,

if / , , ,0
21

2 1 2− ( − ) = ( − ) …













δ

Jj  : =  [ xj , xj + k ] .

One can easily verify that 

/ Jj /  ≤  c1 h,      j  =  0 1, ,… ( − )k n . (9.34)

Therefore, relation (9.30) yields 

∆ j j j k j
k

kx x f c J c h f J: , , ; ; ;= [ … ] < ( )+
−

2 1ω . (9.35)

To use the Popoviciu identity (3.27), we introduce the notation 

Πj, k ( t )  : =  ( − )+ +
=

−

∏ t x j

k

µ
µ 1

1

,      yi  : =  xin 
,      i  =  0, ,… k ,

sj  : =  [ … ]y yk j k0, , ; ,Π  ,      A  : =  ( − )
=

∏ y y
k

ν
ν

0
1

.

Then identity (3.27), estimate (9.35), and the inequality 

sj  <  c A n Jk
j

k
3

1 1 1− − −

yield 
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˙ ; , , ;∆ ∆hw x
k

k j j j
j

k n

f x A y y f A J s( )
=

( − )
( ) = [ … ] = ∑0

0

1

  <  c c n c h f Jk
k2 3 1ω ( ); ; ,

which leads to (9.32) with  c  =  ( + )c c ck
1 2 31 . 

�

The Marchaud-type inequality 

ω ω
j

j k
j

t

J j

Jt f J ct
u f J

u
du c

t
J

f( ) ≤ ( ) + 



+

/ /

∫ / /; ;
; ;

1 ,      t  ≥  0, (9.36)

j  =  1 1, ,… −k ,

is also true.  This inequality immediately follows from Lemma 9.2 and the second in-
equality in (9.31). 

Lemma 9.2.  Let  j  =  1 1, ,… −k ,  x ∈ J,  h > 0,  and 

Jh  : =  x jhw x x jhw x− ( ) + ( )





1
2

1
2

; .

If  Jh ⊂ J,  then 

˙ ;
; ;∆hw x

j j k
j

j

t

J j

Jf x ct
u f J

u
w x

u w x
du c

hw x
J

f( ) +

/ /

( ) ≤ ( ) ( )
+ ( )





 + ( )



∫ ω

1 . (9.37)

Proof.  Denote 

ω ωk kt t f J( ) = ( ): ; ; ,

x*  : =  x w x− ( )1
4

2 ,      x*  : =  x w x+ ( )1
4

2 ,      J*  : =  J ∩ [ x* 
, x*

 ].

Estimate (9.8) yields 

1
4

1
4

1
2

2hw x jhw x J w x( ) ≤ ( ) ≤ ≤ ( )* . (9.38)
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Since 

1
2

w u( )  <  w ( x )  <  2w ( x ),      u ∈ [ x* 
, x*

 ],

we have 

ω ω ωk k ktw x f J t f J t( )( ) ≤ ( ) ≤ ( ); ; ; ;* *2 2 ,      t  ≥  0.

Taking (9.31) into account, we obtain 

J

w x
J J

*
*

2 ( )
< / / ≤ / /.

Therefore, 

( )( ) ( )
+

( )

/ /

∫w x
u f J

u
duj k

j
hw x

J
ω ; ; *

*

1

4

≤  2 21

4

1

4 1

k j k
j

hw x

J
k k

j
h

J w x

w x
u w x

u
du

u

u
du( ) ( )( ) ( ) = ( )

+
( )

+

( ( ))

∫ ∫
−

ω ω/
* *

≤  2 3 1

8
k j k

j

j

h

J
u

u
w x

u w x
du

ω ( ) ( )
+ ( )





+

/ /

∫ . (9.39)

The Marchaud inequality (5.6) and relation (9.39) yield (9.37) in the case  J  =  J*. 

If  J  ≠  J*,  then, obviously, 

1
4

1
2

2 2w x J w x( ) < ≤ ( )* ,

and the trivial inequality 

w x w x x x2
1

2
2 1 22( ) ≤ ( ) + − ,      x1 , x2 ∈ I,

yields 

w
a b

w x x
a b

J J J2 2
22

2
2

4 5
+



 ≤ ( ) + − + < + <*

 .
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In other words, 

/ / / / ≤ / /<J J J5 3 .

Hence, taking (9.24) and (9.8) into account, we get 

ωk
j

J

J
u f J

u
du

( )
+∫ ; ;

*
1   ≤  2 4 41 2 1 2 1

2

3
ω ω ωk

j
J

J
k
j

J

J
k
j

w x

J
u

u
du

u

u
du

u

u
du

( ) = ( ) ≤ ( )
+ + +

( )

/ /

∫ ∫ ∫
* * /

≤  3 4 1
4

3
j k

j j
h

J
u

u u w x
du

ω ( )
+ ( )+

/ /

( )∫
/

. (9.40)

In the case where  Jh ⊂ J*  ≠  J,  we denote  Lk – 1 ( x )  : =  Lk – 1 ( x; f ; J*
 ).  Inequalities

(5.6), (9.39), and (9.29) yield 

˙ ;∆hw x
j

kf L x( ) −( − )1

≤  c hw x
u f J

u
du c hw x

f L

J
j k

j
hw x

J
j k J( ) ( )( ) ( ) + ( )

−
+

( )

−
∫ ω ; ; *

*

*

*

1
1

≤  ch
u

u
w x

u w x
duj k

j

j

h

J
ω ( ) ( )

+ ( )




+

/ /

∫ 1

8

. (9.41)

Moreover, it follows from the Newton formulas (3.11), the Marchaud inequality (5.6),
and relation (9.40) that 

˙ ; ; ;* * *∆hw x k
j j

jx L c hw x J J f J( ) −
−

( ) ≤ ( ) ( )( )1 ω

≤  c hw x
u f J

u
du c

hw x
J

fj k
j

J

J j

J( )( ) ( ) + ( )



+∫ ω ; ;

*
1 . (9.42)

Inequality (9.37) now follows from (9.40) – (9.42) in the case under consideration. 

In the case where  Jh ⊂ J*,  we have 

1
4

jhw x J jhw x( ) ≤ < ( )* .
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Therefore, relation (9.37) follows directly from (5.6) and (9.40). 

�

By analogy with (6.15), one can prove the inequality 

f x L x f J c
J
J

J f Jk
x

k

k x( ) − ( ) ≤ 



 ( )− / /1 ; ; ; ;ω ,      x ∈ I, (9.43)

where  Jx  : =  J ∪ [ a
 
, x ]  if  x  ≥  a  and  Jx  : =  J ∪ [ a

 
, b ]  if  x  <  a. 

Indeed, reasoning as in the proof of Lemma 6.2 and using (9.36) instead of the Mar-
chaud inequality (5.6), and (9.28) instead of the Whitney inequality (6.1), we get 

f x L x f J c
J
J

J
t f J

t
dtk

x
k

k k x
k

J

J

( ) − ( ) ≤ 





( )
−

−
−

/ /

/ /

/ / ∫1

1
1

2

; ;
; ;ω

. (9.44)

Relation (9.43) now follows from (9.31). 

9.4.  Relationship between the  DT-modulus of smoothness and the space  B
r

Lemma 9.3.  If  ωr t f( );   ≤  tr,  then  f ∈ B 

r
  and 

w x f xr r( ) ( )( )   ≤  1   a.e.,      x ∈ I. (9.45)

If  f ∈ B 

r
  and relation (9.45) is true, then 

ωr t f( );   ≤  c tr. (9.46)

Proof.  Assertion (9.45) follows from relation (7.7) and the inequality 

ω ωr r
r rt f J

t
w a w b

f J w a w b t( ) ≤
( ) ( )





 ≤ ( ) ( )( ){ } { } −; ;

min ;
; ; min ; .

To prove assertion (9.46), we take  x  and  h  satisfying (9.7), set  H : = h w ( x )  and

x* : = x – k H / 2,  and use (9.4) and (3.45).  As a result, we get 

˙ ; ˙ ; * *∆ ∆H H

H H
r

r r
rf x f x w x t t dt dt ch( ) ≤ ( ) ≤ … ( + + … + ) … ≤∫ ∫ −

0 0
1 1 .

�
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10.  DTr -Modulus of smoothness

10.1.  Spaces  Cw
r

For the application of the Ditzian–Totik construction to the investigation of the smooth-

ness of differentiable functions, we need the spaces  Cw
r .  Recall that 

w ( x )  =  1 2− x .

We set 

Cw
0   =  Cw  =  C ( I ).

Definition 10.1.  By  Cw
r ,  r  ∈  N,  we denote the space of functions  f  ∈  Cr

 ( ( – 1, 1 ) )
continuous on  I  and such that 

lim
x→ −1

 wr
 ( x ) f ( 

r
 
)

 ( x )  =  0 (10.1)

and 

lim
x → − +1

 wr
 ( x ) f ( 

r
 
)

 ( x )  =  0. (10.2)

Lemmas 10.1 and 10.2 presented below reveal the close relationship between the

space  Cw
r   and the space  Cr

 ( R )  of  2π-periodic functions  r  times continuously differ-

entiable on  R.

For every function  f ∈ Cr
 ( I ),  we set 

f̃ t( )  : =  f ( cos t ). (10.3)

Lemma 10.1.  If  f̃  ∈ Cr
 ( R ),  then  f ∈ Cw

r . 

Proof.  Let  f1 ( x ) : = f ( – x ).  Then 

f̃ t1( )  =  f1 ( cos t )  =  f ( – cos t )  =  f̃ t1( − π).

Therefore, it suffices to prove only relation (10.1).  For this purpose, we subtract from the

function  f̃   its Taylor polynomial 
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˜
˜

!
T t

f
j

t
j

r j
j( ) = ( )

=

( )

∑
0

0

and set 

˜ : ˜ ˜g t f t T t( ) = ( ) − ( ) .

Since the derivative  f̃ r( )   is continuous at zero, we have

˜ ˜ ˜g t f t fr r r( ) ( ) ( )( ) = ( ) − ( )0   →  0      as    t  →  0 (10.4)

and, for each  j = 0 1, ,… −r ,

t g t
r j

gj r j r− ( ) ( )( ) =
( − )

( )˜
!

˜
1 θ   →  0      as    t  →  0, (10.5)

where  θ  < t .  We set 

T ( x )  : =  T̃  ( arccos x ),    g ( x )  : =  f ( x ) – T ( x ),      x ∈ I.

By induction, one can easily verify the identity 

g(
 
r

 
)

 ( x )  ≡  
j

r
j r j

j rt g t T t
=

− ( )∑ ( ) ( ) ( )
1

2sin ˜ ˜
, ,

where  t = arccos x,  x ∈ ( – 1, 1 ),  and  ˜
,Tj r   are fixed trigonometric polynomials that do

not depend on  g.  Therefore, by virtue of (10.4) and (10.5), we get 

lim ˜ lim sin,
x

r r

j

r

j r
t

j r jw x g x T t g t
→ −

( )

= →

− ( )( ) ( ) = ( ) ( ) ( )



∑

1 0 1 0
0   =  0.

Since  f̃   is an even function, we have  f̃ j( )( )0  = 0  for odd  j.  Hence, 

T ( x )  =  
j

r
j j

j
f x

=

[ ]
( )∑ ( )

( )( )
0

2
2 21

2
0

/

!
˜ arccos .

Note that  ( arccos x ) 
2

  is an infinitely differentiable function (unlike  arccos x ).  Hence,
the following finite limit exists: 
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lim
x→ −1 0

 T 
(

 
r

 
)

 ( x )   = :  A.

Thus, 

lim
x→ −1 0

 f ( 
r

 
)

 ( x ) w 
(
 
r

 
)

 ( x )  =  lim
x→ −1 0

 g(
 
r

 
)

 ( x ) w 
(
 
r

 
)

 ( x ) + A lim
x→ −1 0

 w 
(
 
r

 
)

 ( x )  =  0.

�

Lemma 10.2.  Let  r  be odd.  If  f ∈ Cw
r ,  then  f̃  ∈ Cr

 ( R ). 

Proof.  Lemma 10.2 follows from the relation 

lim ˜
t

rf t
→

( )( )
0

  =  0. (10.6)

Let us prove it.  For this purpose, we use the identity 

˜ sin
/

,
/

,g t g t T t g t t T tr

j

r
j

j r
j r

r
j r j

j r
( )

=

[ ]
( )

= +[ ]

( ) −( ) = ( ) ( ) + ( )( ) ( )∑ ∑
1

2

1 2

2 , (10.7)

where  g ∈ Cr
 ( ( – 1, 1 ) ),  g̃ t( )  : = g( cos t ),  x = cos t ≠ ± 1,  and  Tj, r ( t )  are fixed trigono-

metric polynomials that do not depend on  g.  We take  ε > 0  and choose a point  x0 ∈
( 0, 1 )  such that 

α  : =  sup
,x x∈[ )0 1

 w 
(
 
r

 
)

 ( x ) f x f xr r( ) ( )( ) − ( )0   <  
ε

Tj rj

r
, R=∑ 1

.

We subtract from the function  f  its Taylor polynomial 

T ( x )  =  
j

r
j j

j
f x x x

=

( )∑ ( )( − )
0

0 0
1
!

and set 

g ( x )  : =  f ( x ) – T ( x )  =  
1

1
0

( − ) ∫r
x

x

!
 ( x – u ) 

r
 
–

 
1

 ( f ( 
r

 
)

 ( u ) – f ( 
r

 
)

 ( x0 ) ) du.
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Then, for  x ∈ [ x0, 1 )  and  j = 1 1, ,… −r ,  we obtain 

g xj( )( )   ≤  
α

( − − )
( − )

( )
≤

<

( (

− −

∫r j

x u

w u
du

j r

w x

r j

r
x

x

1

1 21

0
!

if /

))) >






−r j j r2 2if / .

Therefore, by virtue of (10.6), we get 

�g t Tr
j r

j

r
( )

=
( ) ≤ <∑α ε, R

1

,      0  <  t   <  arccos x0.

Since  T̃ t( ) : = T( cos t )  is an even function, we have  T̃ r( )( )0  = 0.  Hence, there exists

δ1 > 0  such that  T̃ tr( )( )  < ε,  t  < δ1.  Taking  δ = δ ( ε ) : = min { δ1, arccos x0 },  we get

˜ ˜ ˜f t g t T tr r r( ) ( ) ( )( ) ≤ ( ) + ( )   <  2ε,    0  <  t   <  δ.

�

In exactly the same way as Lemmas 10.1 and 10.2, but a little easier, one can prove
Lemmas 10.3 and 10.4 presented below;  in their proofs, one should use Taylor polyno-
mials of degree  r – 1  instead of Taylor polynomials of degree  r. 

Lemma 10.3.  If  f̃  ∈ W 
r

 ( R ),  then  f ∈ B 
r. 

Lemma 10.4.  Let  r  be odd.  If  f ∈ B 
r,  then  f̃  ∈ W 

r
 ( R ). 

Remark 10.1.  In the case where  r  is even, the assumption that  f ∈  Cw
r   (  f ∈ B 

r ),  gen-

erally speaking, does not imply that  f̃  ∈  W 
r

 ( R ).  For example, the function  f ( x ) : =

( x + 1 ) ln/ ( + )xr 12   (  f ( x ) : = ( + ) ( + )x xr1 12/ ln   belongs to the space  Cw
r

 ( B  
r

 ),  but

f̃  ∉ Cr
 ( R )  ( f̃  ∉ W 

r
 ( R )).  The following condition is sufficient (and, in a certain sense,

necessary) for the inclusion  f̃  ∈ Cr
 ( R )  ( f̃  ∈ W 

r
 ( R ) ) : 

0

1
1∫ − ( )( )t t f dtk r

rω , ;   <  ∞,

where  ωk r
rt f, ;( )( )   is the function defined below. 
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10.2.  DTr  -modulus of smoothness

We set 

wδ  =  wδ ( x )  : =  1
1
2

1
1
2

− − ( )



 + − ( )



x w x x w xδ δ . (10.8)

Definition 10.2.  Let  k ∈ N  and   r  ∈  N.  T h e  DTr  -modulus of smoothness of the

r th derivative of a function  f ∈ Cw
r   is defined as the function 

ωk r
r

h t x
kh
r

kw x
k rt f w f x, ; : sup sup ˙ ,( ) = ( )( )

≤ ≤
( )

( )

0
∆ ,      t  >  0, (10.9)

where the inner supremum is taken over all  x  such that 

x khw x x khw x− ( ) + ( )





1
2

1
2

,   �  ( – 1, 1 ). (10.10)

Remark 10.2.  Let  f ∈ Cr
 ( – 1, 1 ).  In order that the function  ωk r

rt f, ;( )( )   defined by re-

lation (10.9) tend to zero as  t → 0 +,  it is necessary and sufficient that  f ∈ Cw
r . 

Indeed, let  f ∈ Cw
r .  We take  ε > 0  and find  δ ∈ ( 0, 1 )  such that 

wr
 ( x ) f xr( )( )   <  2–

 
k

 ε

for all  x ∈ ( – 1, 1 ) \ ( – 1 + δ, 1 – δ ).  We set 

ω ( t )  : =  ωk ( t; f ( r 
); [ – 1 + δ / 3, 1 – δ / 3 ] ).

Since the function  f ( r 
)  is continuous on the closed interval  [ – 1 + δ / 3, 1 – δ / 3 ] ,  we

conclude that  ω ( t ) → 0  as  t → 0 +.  We choose  t* > 0  for which  ω  ( t* ) < ε  and set

t 
0 : = min { t*, 2δ / 3k }.  Assume that  0 < h ≤ t 

0,  x ∈ ( – 1, 1 ),  and 

J  : =  x khw x x khw x− ( ) + ( )





1
2

1
2

,   �  ( – 1, 1 ).

If  x  ≤ 1 – 2δ / 3,  then  J � [ – 1 + δ / 3, 1 – δ / 3 ]  and, therefore, 

w x f x f xkh
r

kw x
k r

kw
k r( ) ( ) ≤ ( )( )

( ) ( )˙ ; ˙ ,∆ ∆   ≤  ω ( t* )  <  ε. (10.11)
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If  x  > 1 – 2δ / 3,  then  J � ( – 1, 1 ) \ ( – 1 + δ, 1 – δ ),  whence 

w x f xkh
r

kw x
k r( ) ( )( )

( )
∆ ;   ≤  w x fkh
r k r( ) ( )2 ( )θ  

≤  2k wr
 ( θ ) f r( )( )θ   <  ε, (10.12)

where  θ ∈ J.  Inequalities (10.11) and (10.12) yield 

ωk r
rf, ;( + )( )0   =  0. (10.13)

Now assume that relation (10.13) is satisfied.  Let us show that  f ∈  Cw
r .  We take

ε > 0  and choose  h ∈ ( 0, 1 / k )  for which  ωk r
rh f, ;( )( )  < ε.  For  x ∈ ( 1 / 2, 1 ),  we find

θ ∈ ( 0, 1 )  such that  θ + k h w ( θ ) / 2 = x  and note that, in view of (10.10), one has 

f x fr
k w
k r( ) ( )( ) − ( )˙ ;∆ θ   ≤  ( 2k – 1 ) f r( )

 [ – 1 + ( h / 2 ) 2, 1 – ( h / 2 ) 2 ]  = :  Ah.

Therefore, 

w x f x w x f w x Ar r r
kw
k r r

h( ) ( ) ≤ ( ) ( ) + ( )( ) ( )˙ ;∆ θ

=  
w x

w
w f w x A

kh

r

kh
r

kw
k r r

h
( )
( )





 ( ) ( ) + ( )( )

θ
θ θ˙ ;∆ .

Since  w ( x ) < 2wk h ( θ ),  we have 

lim sup
x→1

 wr
 ( x ) f xr( )( )   <  2r

 ε,

whence  wr
 ( x ) f xr( )( )  → 0  as  x → 1. 

By analogy, one can prove that  wr
 ( x ) f xr( )( )  → 0  as  x → – 1. 

Remark 10.3.  Let  f ∈ Cr
 ( – 1, 1 ).  By analogy, one can prove that the condition  f ∈ B 

r

is necessary and sufficient for the validity of the relation 

ωk r
rf, ;( + )( )0   <  ∞. (10.14)

Remark 10.4.  For  r = 0,  we obviously have 

ωk   ≡  ωk,0 . (10.15)
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In the next subsection, we show that, similarly to the  DT-modulus of continuity, the
DTr -modulus of continuity possesses properties analogous to properties of the “ordinary”

modulus of continuity  ωk 
. 

In Example 10.1, which is similar to Example 9.1, we show, that, for every  k-major-

ant  ϕ  and  r ∈ N,  there exists a function  f ∈ Cw
r   such that 

ϕ ( t )  ≤  ωk r
rt f, ;( )( )   ≤  c ϕ ( t ),      0  ≤  t  ≤  2 / k. (10.16)

Example 10.1.  Suppose that  r ∈ N,  k ∈ N,  ϕ ∈ Φk,  ϕ( )t  : = 2ϕ( )t ,

F ( y )  : =  
1

y

∫  ( y – u ) 

k
 

–
 

1
 u

–
 

k
 

–
 

r
 

/
 

2
 ϕ( )u  du,     y ∈ ( 0, 1 ],

and 

f ( 
r

 
)

 ( x )  : =  F ( ( x + 1 ) / 2 ),     x ∈ ( – 1, 1 ].

Then relation (10.16) is true. 

Proof.  Since  f ( 
r

 
)

 ( 1 ) = F ( 1 ) = 0  and 

yr
 

/
 

2
 F y( )   =  yr

 

/
 

2 
y

y

∫  ( u – y ) 

k
 

–
 

1
 u

–
 

k
 

–
 

r
 

/
 

2
 ϕ( )u  du

+  yr
 

/
 

2 
y

1

∫  ( u – y ) 

k
 

–
 

1
 u

–
 

k
 

–
 

r
 

/
 

2
 ϕ( )u  du

≤  ϕ( )y  yr
 

/
 

2 
y

∞

∫  u
–

 

1
 

–
 

r
 

/
 

2
 du + ϕ( )y  yr

 

/
 

4 
y

1

∫  u
–

 

1
 du  <  4ϕ( )y ,

we have  f ∈  Cw
r .  Following the notation of Example 9.1 we establish that if  y0 ≥ h ,

then 

˙ , ! /∆kw x
k r k k k k rf x h F k h( )

( ) ( ) − −( ) = ( ) = ( − ) ( )θ θ ϕ θ1 2

≤  cy h c w x hr r
kh

r
0

2 22− −( ) < ( ) ( )/ /ϕ ϕ ,

where  θ > y0 
,  and if  y0 < h ,  then 
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˙ , ; /∆ ∆k w x
k r

h
k k

y

k h
rf x F y u u du( )

( )
( + )

− −( ) = ( ) ≤ ( )∫0

1
1 22

0

ϕ

≤  2 11
0

2k r
kh

ry k h cw x h+ − −( )( + ) < ( ) ( )/ ϕ ϕ .

Thus, the second inequality in (10.16) is proved. 
To estimate  ωk r,   from below, we fix  h ≤ 2 / k  and choose  y  from the condition

y0 = h2.  As a result, we get 

∆
h
k k k k k rF h h F k h( ) = ( ) = ( − ) ( )( ) − −; ! /2 21θ θ ϕ θ

≥  ch h c w x hr
kh

r− −( ) ≥ ( ) ( )ϕ ϕ .

�

For what follows, we also need the definition of the  DTr -modulus of continuity for a

closed interval  J = [ a, b ] � I,  r  ≠ 0.  If  [ a, b ] � ( – 1, 1 ),  then we set  C Jw
r ( ) = Cr

 ( J ).
If  – 1 = a < b < 1,  then  C Jw

r ( )  denotes the set of functions  f ∈ Cr
 ( [ a, b ] )  for which

relation (10.2) is true.  If  – 1 < a < b = 1,  then  C Jw
r ( )  denotes the set of functions  f ∈

Cr
 ( [ a, b ] )  for which relation (10.1) is true.  We set  C Iw

0 ( ) : = C ( I )  and  C Jw
0 ( ) : = C ( J ).

Definition 10.3.  Let  k ∈ N,  r ∈ N,  J � I,  and  f ∈ C Jw
r ( ).  We set 

ωk r
r

h t x
kh
r

hw x
k rt f J w f x, ; ; : sup sup ˙ ,( ) = ( )( )

≤ ≤
( )

( )

0
∆ ,      t  ≥  0, (10.17)

where the inner supremum is taken over all  x  such that 

x khw x x khw x− ( ) + ( )





1
2

1
2

,   �  ( a, b ). (10.18)

Note that 

ωk r
rt f I, ; ;( )( )   ≡  ωk r, ( t; f ( r 

)
 ). (10.19)

For  J = [ a, b ],  we set 

w ( a, b )  : =  ( + )( − )1 1a b . (10.20)
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Similarly to (9.27) – (9.30), we obtain the following relations for  f ∈  C Jw
r ( )  and  J �

( – 1, 1 ) : 

ωk ( J ; f ( r 
); J )  ≤  

1

w a b
J f Jr k r

r

( )
( )( )

,
; ;, / /ω , (10.21)

Ek – 1 ( f ( 
r

 
)

 ) J  ≤  
c

w a b
J f Jr k r

r

( )
( )( )

,
; ;, / /ω , (10.22)

f L f Jk J
− (⋅ )−1 , ;   ≤  

c

w a b
J f Jr k r

r

( )
( )( )

,
; ;, / /ω , (10.23)

[ … ]( )x x fk
r

0, , ;   ≤  c
w a b

J f J x xr k r
r

j k
j j

1
1

1
( )

−( )( )
= … −

−

,
; ; max,

, ,
/ /ω kk

, (10.24)

where  a ≤ x0 < x1 < … < xk ≤ b. 

10.3.  Properties of  DTr  -modulus of continuity

With regard for Remark 10.2, we have  ωk r
rf J, ; ;( + )( )0   for  f ∈  Cw

r .  It is obvious that

ωk r,  ( t; f ( r 
); J )  is a nondecreasing function.  We also get 

ω ωk r
r k

k r
rnt f J cn t f J, ,; ; ; ;( ) ≤ ( )( ) ( ) ,    n ∈ N,    t  ≥  0; (10.25)

in particular, 

ω ωk r
r k

k r
rnt f cn t f, ,; ;( ) ≤ ( )( ) ( ) . (10.26)

To prove (10.25) we repeat the arguments of Lemma 9.1, replacing (9.30) by (10.24)
and, hence, (9.35) by the following relation: 

∆ j   ≤  c J c h f J w xj
k

k r
r

knh
r

2 1
− ( ) −( ) ( )ω , ; ; .

To establish an analog of inequality (4.25) we prove the following lemma: 

Lemma 10.5.  Let  m = k + r,  p : = 0 1, ,… −r ,  J � I,  x ∈ J,  and  h ≥ 0  be such that 

x m p hw x x m p hw x− ( − ) ( ) + ( − ) ( )





1
2

1
2

,   �  J
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and let 

Gk, p, r ( x, h )  : =  

w x w x p r

w x w x

m p h
p r

m p h

( ) ( )( ) >

( ) ( )

( − )
−

( − )

2
2if ,

ln (( ) =

<













if

if

p r

p r

2

1 2

,

.

(10.27)

If  f ∈ Cw
r ,  then 

˙ , , ; ;, , ,∆kw x
m p p

r p

p k p r k r
rf x c

h

w x
G x h h f J( )

− ( )
−

( )( ) ≤
( )

( ) ( )ω . (10.28)

Proof.  We set  H : = h w ( x ),  x* = x – ( m – p ) H / 2,  and  ω( )h  : = ωk r
rh f J, ; ;( )( ) .  By

virtue of Definition 10.3 and relation (9.31), for every  t ∈ [ x*, x* + ( r – p ) H ]  we have 

∆H
k rf x t( + )( ), *   ≤  ( 1 + x* + t ) 

–
 

r
 

/
 

2 ( 1 – x* – t – k H ) 

–
 

r
 

/
 

2
 ω( )c h1 . (10.29)

Therefore, relations (9.5), (3.44), and (10.29) yield 

˙ , , *∆ ∆H
m p p

H
m p pf x f x− ( ) − ( )( ) = ( )

=  
0 0

1

H H

H
k r

r pf x t dt dt∫ ∫… ( + ) …( )
−∆ , *

≤  ω( ) …
…

( + + ) ( − − − )∫ ∫ −c h
dt dt

x t x t kH

H H
r p

r r1

0 0

1
2 21 1*

/
*

/

≤  c hω( )  h
r

 

–
 

p
 w

–
 

p
 ( x ) Gk, p, r ( x, h ),      t  =  t1 + … + tr – p.

�

Let us verify some corollaries of Lemma 10.5. 
Since 

w
–

 

p
 ( x ) Gk, p, r ( x, h )  ≤  w xm p h

p
( − )
− ( ),

relation (10.28) yields 
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ω ωm p p
p r p

k r
rt f J ct t f J−

( ) − ( )( ) ≤ ( ), ,; ; ; ; ,    t  ≥  0. (10.30)

As usual, we denote by  L j = Lj  ( t; f ; J ) ≡ Lj  ( t; f ; [ a, b ] )  the Lagrange polynomial of de-

gree  ≤ j  that interpolates a function  f  at  j + 1  equidistant points  xi = a + ( i / j ) ( b – a ),
i = 0, ,… j ,  of a closed interval  J = [ a, b ].  Then, assuming that  J � ( – 1, 1 )  and using
Lemma 6.2, we obtain 

f L f Jp
m
p

J

( )
−

( )− (⋅ )1 ; ;   ≤  c f L f Jp
m p

p
J

( )
− −

( )− (⋅ )1 ; ; . (10.31)

Therefore, using (9.29), we get 

f L f Jp
m
p

J

( )
−

( )− (⋅ )1 ; ;   ≤  c h f Jm p
pω −

( )( ); ;

≤  c
h

w
a b h f J G J
r p

p
k r

r
p r

−
( )

+





( ) ( )

2

ω , ,
*; ; , (10.32)

where 

h  =  / J /  =  ( − ) +



b a w

a b
/

2

and 

G J

w
a b

a b

p r

p r

,
*

i

( ) =

+





( + )( − )













−

2
1 1

2

ff ,

ln if

p r

w
a b

a b
p r

>

+





( + )( − )











 =

2

2
1 1

22

1 2

,

if .p r<


















Remark 10.5.  Inequality (10.32) also holds for  p = r.  If  p < r / 2,  then relation (10.32)

holds for  J � I  (i.e., not only for  J � ( – 1, 1 )).  Note that if  b – a ≤ min { 1 + a, 1 – b },
then 

G Jp r,
* ( )  ≤  c,    p  =  0, ,… r . (10.33)
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10.4.  Classes  B Hr   and  B Hr
0

Properties of the  DTr -modulus of continuity and Theorem 4.1 lead to the following natu-
ral definition: 

Definition 10.4.  For  k  ∈  N,  r  ∈  N,  ϕ  ∈  Φk,  and   M  = const > 0,  we denote by

M B 

r
 H k[ ], ϕ   the set of functions  f ∈ Cw

r ,  such that 

ωk r
rt f, ;( )( )   ≤  M ϕ ( t ).

For  k ∈ N,  ϕ ∈ Φk,  and  M = const  we denote by 

MB H k MH k0 [ ] ≡ [ ], ,ϕ ϕ

the set of functions  f ∈ C ( I )  such that 

ωk t f( );   ≤  M ϕ ( t ) .

For  r  ∈  N  and   M  = const > 0,  we denote by  M B r   t he set of functions  f ∈  B 

r

such that 

w f xr r/2 ( )( )   ≤  M    a.e.  on  I.

We set 

B H k B H kr r[ ] = [ ], : ,ϕ ϕ1 ,     H k H k[ ] = [ ], : ,ϕ ϕ1 ,    B Br r: = 1 .

Inequality (10.30) yields 

B H cB Hr
k

p
k p

p rϕ ϕ
⊂ +

, ,     p  =  0 1, ,… −r , (10.34)

where  ϕ ∈ Φk  and  ϕp ( t ) : = tr 

–
 

p
 ϕ ( t ). 

By analogy, one can prove that 

B cB Hr p
p

p⊂ ϕ*
,     p  =  0 1, ,… −r , (10.35)

where  ϕp t* ( )  = tr 

–
 

p. 
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Conversely, if  f ∈ Cw
p   and

ωk, p ( t; f ( p 
)

 )  ≤  t 
k, (10.36)

then   f ∈ B k p+ ,  which can be proved by analogy with Lemma 9.3. 

For technical reasons, we introduce classes  M B H kr
0 [ ], ϕ .  The formal difference be-

tween the classes  M B H kr
0 [ ], ϕ   and  M B H kr [ ], ϕ   is that we replace the factor  w xkh

r ( )
in Definition 10.3 by the factor  wr

 ( x ).  This replacement plays a significant role near the
endpoints  ±1  of the closed interval  I,  and it is insignificant in the “interior” of  I. 

Definition 10.5.  For  k  ∈  N,  r  ∈  N,  ϕ  ∈  Φk,  and   M  = const > 0,  we denote by

MB H kr
0 [ ],ϕ   the set of functions  f ∈ Cr

 ( I )  such that 

w x f xr
hw x
k r( ) ( )( )

( )˙ ,∆   ≤  M ϕ ( t ) (10.37)

for all  x  and  h  such that 

x
k

hw x x
k

hw x− ( ) + ( )



2 2

,   �  I.

We set 

B H k B H kr r
0 01[ ] = [ ], : ,ϕ ϕ .

It is obvious that 

B H k B H kr r
0 [ ] ⊂ [ ]; ;ϕ ϕ .

The following statement is true: 

Lemma 10.6.  If 

0

1

1∫ ( )
+

ϕ u

u
dur   <  ∞, (10.38)

then 

B H k cB H kr r[ ] ⊂ [ ]; ;ϕ ω0 , (10.39)



296 On smoothness of functions Chapter 3

where 

ω ( t )  =  t u u dur r

0

1
1∫ − − ( )ϕ . (10.40)

Proof.  We fix  x ∈ ( – 1, 1 )  and  h > 0  for which 

x*  : =  x – 
k

2
 h w ( t )  >  – 1,     x 

*  : =  x + 
k

2
 h w ( t )  <  1;

for simplicity, we assume that  x* ≤ 1 / 2.  We set  δ : = 1 + x*  and  H  : = h w ( t ).  The
statement of the lemma follows from the inequality 

w f xr
H
k r∆ ( )( ), *   ≤  c ω ( h ). (10.41)

Let us prove this inequality. 

If  H ≤ 2δ,  then  1 + x = δ + k H / 2 ≤ ( k + 1 ) δ,  whence 

w ( x )  <  2 1 1 1k x x+ ( + )( − )*
* .

Therefore, relation (10.41) follows directly from Definitions 10.3 and 10.5 and the in-

equality  ϕ ( t ) ≤ ω ( t ).  Thus, it suffices to consider the case  H > 2δ.  Since  H > 2δ,  we

have  1 + x ≤ ( k + 1 ) H / 2,  whence 

w ( x )  <  ( k + 1 ) h,    H  <  ( k + 1 ) h
2
. (10.42)

We choose an integer  N  such that  δ 2
N

 < H / 2 ≤ δ 2
N

 

+
 

1
  and set 

xl  : =  x* + δ 2
l
,    l  =  0, ,… N ;     xN + 1  : =  x* + H, … , xN + k  : =  x* + k H,

∆l  =  [ xl, … , xl + k 
; f ( r 

)
 ],     l  =  0, ,… N .

Since 

2
–  k δ 2

l
  <  xl + 1 – xl  <  4

 δ 2
l
, (10.43)

according to (10.24) we get 

∆l   ≤  c1 ϕ δ2l( )  ( δ 2
l

 ) 

–
 

k
 

–
 

r
 

/
 

2
. (10.44)
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Using (3.32) and (3.27), we obtain

∆H
k rf x( )( ); *   =  H

 k 

k! [ x, x + H, … , x + k H ] 

=  H
 k 

k! 
l

N

=
∑

0

 ( xl + k – xl ) ∆l αl, k , (10.45)

where 

αl k,   ≤  c2 
( ) −δ2 1l k

kH
. (10.46)

Combining (10.43) – (10.46), we get 

∆H
k r

l

N
l r lf x c( ) ≤ ( ) ( )( )

=

−∑; /
3

0

22 2δ ϕ δ

≤  c d c dr
l

N

r
l

l

4 1 2
2

2

0
4 1 2

1

ϕ ϕ

δ

δ
v

v
v

v

v
v

( ) ≤
( )

+
=

+

+

∫∑ / /
δδ

H

∫

=  2 24 1 4 1c
u

u
du c

u

u
du

H

r

H

r
δ δ

ϕ ϕ∫ ∫( ) ≤ ( )
+ + ,

which, together with (10.42), yields (10.41) in the case  H > 2δ. 

�

Remark 10.6.  Note that condition (10.38) implies that  H > 2δ. 

Remark 10.7.  We use the classes  B H kr
0 [ ], ϕ   because, for  f ∈  B H kr

0 [ ], ϕ ,  we have an
inequality stronger than (10.32), namely, 

f L f Jp
m
p

J

( )
−

( )− ( ⋅ )1 ; ;   ≤  c J w
a b

J f Jr p p
k r

r/ / / /, ; ;( ) +



 ( )− − ( )

2
ω , (10.47)

where  p = 0, ,… r ,  J � I,  and 

/ J /  =  ( − ) +





−b a w
a b1

2
.
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10.5.  Relationship between  ωωk r
rf t, ;(( ))(( ))   and  ωωk

rf t(( ))(( ))�� ;

Recall [see (10.3)] that, for every function  f  continuous in  I,  we have set 

f̃ u( )  : =  f ( cos u ).

L. G. Shakh and O. Yu. Dyuzhenkova proved the following two lemmas: 

Lemma 10.7.  Let  k ∈ N  and  ( r + 1 ) ∈ N.  If  f̃  ∈ Cr
 ( R ),  then 

ω ωk r
r

k
rt f c t f, ; ; ˜( ) ≤ ( )( ) ( ) . (10.48)

Lemma 10.8.  If  f ∈ Cw
r ,  then the following relations are true: 

ωk ( t; f̃ r( )
 )  ≤  c ( ωk r,  ( t; f ( r 

)
 ) + t 

k f  ) (10.49)

if  r = 0  and  k  is odd, and if  r  and  k  are odd; 

ωk ( t; f̃ r( ))  ≤  c t
u f

u
du t fk

t

k r
r

k
k

2

1∫
( )

+










( )

+
ω , ;

,    0  ≤  t  ≤  2, (10.50)

if  r  is odd and  k  is even; 

ωk ( t; f̃ r( )
 )  ≤  c

u f

u
du t f

t
k r

r
k

0
∫

( )
+











( )ω , ;
(10.51)

if  r  is even and  k  is odd;  and 

ωk ( t; f̃ r( ))  ≤  c
u f

u
du t

u f

u
du t f

t
k r

r
k

t

k r
r

k
k

0

2

1∫ ∫
( )

+
( )

+










( ) ( )

+
ω ω, ,; ;

(10.52)

if  r  and  k  are even. 

Remark 10.8.  It is clear that, for  f ∈ C ( [ – 1, 1 ] ),  we have 

c1 ω1 ( t; f̃ )  ≤  ω1( )t f;   ≤  c2 ω1 ( t; f̃ ). (10.53)



Chapter 4
Extension

In 1934, Whitney proved that if the divided differences of order  r  for a function  f  de-

fined on a closed set  E ⊂ R  converge on  E,  then the function  f  admits an extension to

a certain function  f Cr∈ ( )R   on the entire straight line  R,  i.e., there exists a function

f Cr∈ ( )R   that coincides with  f  at points  x  ∈  E.  According to Lemma 3.8.3, if

f Cr∈ ( )R ,  then the divided differences of order  r  for a function  f   converge on  E.

Thus, Whitney, in fact, described the traces of the space  Cr (R)  on an arbitrary closed set

E ⊂ R. 

In this chapter, we prove theorems on extension for the classes  WrH [k, ϕ]  (including

the classes  Wr  ) .  Then, using these theorems, we describe the traces of the space  W Hr
k
ϕ

on an arbitrary set  E ⊂ R,  omitting the condition of the closedness of the set  E.  Let us

illustrate this by an example.  Let  E  be an arbitrary subset of the straight line  R,  let  ϕ
be a  1-majorant, and let a function  f  be given on  E  such that 

f x f x( ) − ( )1 2   ≤  ϕ x x1 2− )( )    ∀  x1 
, x2 ∈ E.

By continuity, we define the function  f  on the closure  E   of the set  E.  On each of the

intervals  ( αs  
, βs  )  that form the open set  R \ E ,  we denote by  f x( )  a linear function

equal to  f ( αs  )  at the point  αs  and to  f ( βs  )  at the point  βs.  If  βs = ∞  ( αs = –∞  ),

then we set  f x( ) = f ( αs  )  for  x > αs  ( f x( ) = f ( βs  )  for  x > βs  ).  For  x ∈ E ,  we set

f x( ) = f ( x ).  It is clear that  f  ∈ H [ 1, ϕ, R ]. 

In Section 7 of Chapter 3, the classes  MWrH [k, ϕ, J]  and spaces  W H Jr
k
ϕ ( )  were

defined for the interval  J = [a, b].  This definition can easily be carried over to the case

where  J = [a, ∞],  or  J  =  [–∞, b],  or  J  =  R.  Namely, we write  f ∈  MWrH[k, ϕ, J]  if

f ∈ MWrH[k; ϕ; [a, b]]  for any interval  [a, b] ⊂ J.  Recall that  m = k + r.  We also set 

W H J MW H k Jr
k

r

M

ϕ ϕ( ) : ; ;= [ ]
>0

∪ .
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1. Extension from intervals

Let  f ∈ Cr([a, b]) .  Let 

f x f a
f a

j
x a

j

j

r
j

1
1

( ) ( )
( )
!

( )
( )

= + −
=
∑ ,

f x f b
f b

j
x b

j

j

r
j

2
1

( ) ( )
( )
!

( )
( )

= + −
=
∑

denote the Taylor polynomials of the function  f  at the points  a  and  b.  We set  f x( ) : =

f x1( )  if  x < a,  f x( ) : = f x2( )   if  x > b,  and  f x( ) = f ( x )  if  x ∈  [  a, b ].  It is clear that

f Cr∈ ( )R . 

Let  f ∈ C  ( [ a, b ] ).  We set  f x( ) : = f ( a  )  if  x < a,  f x( ) : = f ( b  )  if  x > b ,  and

f x( ) : = f ( x )  if  x ∈ [ a, b ].  It is clear that 

ω ω1 1( ; ; ) ; ; ,t f t f a bR ≤ [ ]( ). (1.1)

Theorem 1.1 [Dzyadyk (1958), (1958b)]; Frey (1958)].  Let  f ∈ C([0, b])  and  f (0) = 0.

Denote  f x f x( ) : ( )= − −   for  x ∈ [–b, 0]  and  f x f x( ) : ( )=   for  x ∈ [0, b].  Then 

ω ω2 23 0t f b b t f b: ; , : ; ,−[ ]( ) ≤ [ ]( ). (1.2)

Proof.  If 

0  ≤  x0  <  x0  +  2h  ≤  b

or 

–b  ≤  x0  <  x0  +  2h  ≤  0,

then, obviously, 

∆h f x h f b2
0 2 0( ; ) ; ; ,≤ [ ]( )ω .

Now let 

–b  ≤  x0  <  0,      x0  +  h  ≥  0,      x0  +  2h  ≤  b.

Denoting 
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g x f x L x f x h( ) : ( ) ( ; ; , )= − +0 20   =  f x
xf x h

x h
( )

( )− +
+

0

0

2
2

,

we obtain 

∆ ∆h hf x g x2
0

2
0( ; ) ( ; )=   =  2 30 0 0 20

g x h g x g x h( ) ( ) ,+ + − ≤ +[ ].

It follows from Theorem 3.5.2 that 

∆h x hf x g2
0 0 23

0
( ; ) ,≤ +[ ]  

≤  3 2 0 22 0 0ω h x f x h+ +[ ]( )/ ; ; ,   ≤  3 02ω h f b; ; ,[ ]( ) .

The case where  x0 + h  >  0  is considered by analogy. 

�

Theorem 1.2  [Besov (1963), (1965)].  For every function  f ∈ C([0, b]) ,  there exists a

function  f C b b∈ −[ ]( ),   such that  f x f x( ) ( )=   for  x ∈ [0, b]  and 

ω ωk kt f b b c t f b; ; , ; ; ,−[ ]( ) ≤ [ ]( )0 . (1.3)

Proof.  The cases  k = 1, 2  have already been considered [see (1.1) and (1.2)].  Denote 

ϕ ω( ) : ; ; ,t t f bk= [ ]( )0 ,      J b0 0: ,= [ ],      J b: ,= −[ )0 .

We use the construction proposed by Hestenes (1941), namely, we find  k  numbers  ai  
,

i k= … −0 1, , ,  from the following system of equations: 

a

a i k j k

i
i

k

i
j j

i

k

=

−( ) = − = … −













=

−

=

−

∑

∑

1

1 1 1 1

0

1

1

1

,

( ) ( ) , , , ./

The determinant of this system is called the Vandermonde determinant, and, as is well
known, it is not equal to zero.  Note that, for all  j k= … −1 1, , ,  the following identity is
true: 
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( ) ( )/− = −( )
=

−

∑x a ix kj
i

j

i

k

1
0

1

.

Therefore, for any polynomial  Pk−1  of degree  ≤ k – 1,  we get 

P x a P ix kk i k
i

k

− −
=

−
= − −( )∑1 1

0

1

1( ) ( )/ .

We set 

f x f ix k
i

k

( ) : ( )/= − −( )
=

−

∑ 1
0

1

for  x ∈ J and  f x f x( ) : ( )=   for  x ∈ J0 
.  In this case, if  x0 ∈  J0  and  (x0+ kh) ∈  J0,

then  ∆h
k f x( ; ) ( )0 ≤ ϕ � .  If  x0 ∈ J  and  (x0+ kh) ∈ J,  then 

∆h
k

i
i

k

f x a ih k c h( ; ) ( ) ( )/0 1
0

1

1≤ −( ) ≤
=

−

∑ ϕ ϕ .

Finally, if  x J0 ∈   and  ( )x kh J0 0+ ∈ ,  then we denote 

h x kh x* : max ,= + −{ }0 0 ,

L x L x f h k h( ) : ; ; ; ( ), ,* */= −( )0 1 … ,

and 

g x f x L x( ) : ( ) ( )= − .

For  x h∈[ ]0, * ,  according to the Whitney inequality (3.6.12), we have

g x c h c h( ) ( ) ( )*≤ ≤2 3ϕ ϕ ,

g x a g ix k c h a c hi
i

k

i
i

k

( ) ( ) ( ) ( )/− = −( ) ≤ ≤
=

−

=

−

∑ ∑1
0

1

3
0

1

4ϕ ϕ ,
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whence 

g c hh h−[ ] ≤* *, ( )4ϕ .

Thus, 

∆ ∆h
k

h
k kf x g x c h( ; ) ( ; ) ( )0 0 42= ≤ ϕ .

�

Note that Besov [(1963), (1965)] proved a multidimensional analog of Theorem 1.2
(in particular, for integral metrics). 

Theorem 1.3.  I f   f H k∈ ∞[ )[ ]; ; ,ϕ 0 ,  then there exists a function  f cH k∈ [ ]; ;ϕ R

such that  f x f x( ) ( )=   for  x ∈ ∞[ )0, . 

Proof.  If we denote  J0 0: ,= ∞[ )  and  J : ,= −∞[ )0 ,  then it suffices to repeat the proof
of Theorem 1.2. 

�

The theorems presented below (Theorems 1.2′ and 1.3′ ) are simple corollaries of The-
orems 1.2 and 1.3, respectively. 

Theorem 1.2′′′′.  If  f W H k a br∈ [ ][ ]; ; ,ϕ ,  then there exists a function 

f cW H k a b a b b ar∈ − − + −[ ][ ]; ; ( ), ( )ϕ ,

such that  f x f x( ) ( )=   for  x a b∈[ ], . 

Theorem 1.3′′′′.  Let   J a= ∞[ ),   o r  J b= −∞( ], .  I f   f W H k Jr∈ [ ]; ;ϕ ,  then there

exists a function  f x cW H kr( ) ; ;∈ [ ]ϕ R   such that  f x f x( ) ( )=   for  x J∈ .

Using Theorem 1.2′, one can easily show that a function  f ∈ W H k a br ; ; ,ϕ [ ][ ]  can be
extended to the entire straight line.  To this end, we need four simple lemmas. 

Lemma 1.1.  Let 

f W H kr∈ [ ][ ]; ; ,ϕ α β ,      a b, ,[ ] ⊂ [ ]α β .

If 

f b a b aa b
r

, ( ) ( )[ ] ≤ − −ϕ ,
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then 

f c b a b ai k r i k( )
,

( ) ( )
α β

β α ϕ[ ]
+ − −≤ − ( − ) − ,      i r= …0, , . (1.4)

Proof.  Denote  h b a:= −   and  H := −β α .  By using inequalities (3.5.2), (3.6.17), and
(3.4.16), we obtain 

f c H H c H fi r i i( )

, ,( )
α β α βϕ
[ ]

− −
[ ]≤ +1 2

≤  c H H c H h h f a b fr i m i m
m a b1 3

− − −
[ ]+ [ ]( ) +( )ϕ ω( ) ; ; , ,

≤  ( ) ( )c c H h hm i k
1 32+ − − ϕ .

�

Definition 8.1.  Let  k ∈N ,  a  <  b, 

a a
b a

* := + −
3

,      and      b b
b a* := − −

3
.

The function 

S ( x )  : =  S ( x; k; a; b )  : =  

0, ,*

* *

* *

*

if x a

u a b u du

u a b u

k k

a

x

k k

<

( − ) ( − )

( − ) ( − )

∫
ddu

x a b

x b

a

b

*

*
* *

*

, ,

, ,

∫
∈[ ]

>















if

if1

(1.5)

is called the gluing function. 

A multidimensional analog of the lemma presented below can be found in [Burenkov
(1976)]. 

Lemma 1.2.  Let  f ∈ W
r

 H [ k; ϕ; [ a, b ] ]  and  G  ( x ) : = f ( x ) S ( x; m; a; b  ).  If  f a b[ ],  ≤

( b – a )r  ϕ ( b – a ),  then  G ∈ c W
r

 H [ k; ϕ; [ a, b ] ]. 

Proof.  Denote  J  : =  [ a, b ]  and  h  : =  b – a.  Let  j  =  0, ,… k   and  i  =  0, ,… r .  Ac-
cording to (3.4.16), we have 
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ω j
i j i j

J
j i jt S J t S c t h( ) ≤ ≤( ) ( + ) − −; , 1 ,

(1.6)

ω ω ϕm i
i r i

k
r r it f J t t f J t t−

( ) − ( ) −( ) ≤ ( ) ≤ ( ); , ; , .

Taking into account Lemma 1.1 and the conditions of Lemma 1.2, we get  f i
J

( )   ≤  

c h hr i
2

− ( )ϕ .  By using the Marchaud inequality (3.5.6), for  i + j  ≠  m  we obtain 

ω ωj
i j j

m i
i

t

h

t f J c t u u f J du( ) ≤ ( )( ) − −
−

( )∫; , ; ,3
1   +  c t h fj j i

J4
− ( )

≤  c t u u duj r i j

t

h

3
1− − − ( )∫ ϕ   +  2 2 4c c t h hj r i j− − ( )ϕ

≤  c t t t u duj k m i j

t

h

3
1− − − −( )∫ϕ   +  2 2 4c c t h tj k m i j− − − ( )ϕ ,

i.e., 

ω ϕj
i j k m i jt f J c t h t( ) ≤ ( )( ) − − −; , 5 . (1.7)

In the case where  i + j  =  m,  i.e., for  i  =  r  and  j  =  k,  estimate (1.7) follows directly
from the conditions of the lemma.  It now follows from (3.4.15), (3.4.16), (1.6), and (1.7)
that 

ω ωk
r

k
i r i

i

r

t G J
r
i

t f S J( ) ≤ 



 ( )( ) ( ) ( − )

=
∑; , ; ,

0

≤  
r

i

k

j
t f J t S J

i

r

j

k

j
i

k j
r i









 ( ) ( )

= =

( )
−

( − )∑ ∑
0 0

ω ω; , ; ,

≤  c c
r

i

k

j
t h t t h

i

r

j

k
j k m i j k j i j m

1 5
0 0= =

− − − − + −∑ ∑ 









 ( )ϕ

=  c c t c tr k
1 52 2 ϕ ϕ( ) = ( ) .

�
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Lemma 1.3.  Let  h  : =  b – a  and  d ∈  (  0, h ].  If  f ∈  W
r

 H [ k; ϕ; [ a – d, b + d ] ]  and

f a b[ ],  ≤ h
r

 ϕ ( h ),  then the function  f x( ) : = f ( x ) S ( x; k; a – d; a ) (1 – S ( x; k; b; b + d ) )
for  x ∈ [  a – d, b + d ] ,  f x( )  : =  0  for  x ∉  [ a  – d , b  + d ]  possesses the following
properties: 

(a) f x( )  =  f ( x )  for  x ∈ [ a, b ] ; 

(b) f  ∈ c ( h / d ) 

m
 W

r
 H [ k; ϕ; R ],   m  =  k + r.

Proof.  Property (a) is obvious.  Let us prove property (b).  For this purpose, we take

x0 ∈ R  and  δ  >  0  and show that 

∆   : =  ∆δ ϕ δk r
m

f x c h
d

( ) ≤ 



 ( )( ); 0 1 . (1.8)

We consider four cases. 

1.  Assume that  δ  >  d / 3.  By virtue of Lemma 1.1, we have

f f c f c hr
a d b d

r
a d b d

r
a b

( )
[ − + ]

( )
[ − + ]

( )
[ ]

≤ ≤ ≤ ( )
, , ,2 3ϕ .

Hence, 

∆   ≤  c h c h
d

d c h
d

k k
k

k
k

3 3 32 2 3
3

6ϕ ϕ ϕ δ( ) ≤ 









 ≤ 



 ( ).

2.  Assume that  0  <  δ  ≤  d / 3  and  x0 ∉  [ a – d, a – d  / 3 ] ∪ [  b, b + 2d / 3 ].  If  x0 ∈
( – ∞, a – d ) ∪ [ b + 2d / 3, ∞ ],  then  ∆  =  0.  If  x ∈ ( a – d / 3, b ),  then 

∆   =  ∆δ ϕ δk rf x( ) ≤ ( )( ); 0 .

3.  Assume that  x0 ∈ [ a – d, a – d / 3 ].  Denote  J  : =  [ a – d, a  ].  Note that  f x( )   =

f ( x ) S ( x; k; a – d; a )  for  x ∈ J.  By virtue of Lemma 1.1, we have 

f J   ≤  f a d b d[ − + ],   ≤  c4 
f a b[ ],   ≤  c4 h

r
 ϕ ( h )  ≤  c h

d
d d

m
r

4




 ( )ϕ .
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According to the conditions of Lemma 1.3,  f ∈ W
r

 H [ k; ϕ; J ] ⊂  (  h / d ) 

m
 W

r
 H [ k; ϕ; J  ] .

Hence, by virtue of Lemma 1.2, we get  f  ∈ c5 ( h / d ) 

m
 W

r
 H [ k; ϕ; J ] ,  which yields (1.8)

in the case under consideration. 

4.  The case where  0  <  δ  ≤  d / 3  and  x0 ∈ [ b, b + 2d / 3 ]  is analogous to the previ-
ous case. 

�

The lemma below is a simple corollary of Lemma 1.3. 

Lemma 1.4.  Let  h  : =  b – a  and  d ∈  (  0, h ].  If  f ∈  W
r

 H [ k; ϕ; [ a – d, b + d ] ],  g ∈
W

r
 H [ k; ϕ; R ],  and  f g a b− [ ],   ≤    h

r
 ϕ ( h ),  then the function  G x( )   defined by the

formulas 

G x( )   : =  G ( x; f ; g ) 

: =  g ( x )  +  ( f ( x ) – g ( x ) ) S ( x; k; a – d; a ) ( 1 – S ( x; k; b; b + d ) ) (1.9)

for  x ∈  [ a – d, b + d ]  and  G x( )   : =  g ( x )  for  x ∉  [ a – d, b + d ]  possesses the fol-
lowing properties: 

(a) G x( )   =  f x( )  for  x ∈ [ a, b ] ; 

(b) G  ∈ c ( h / d ) 

m
 W

r
 H [ k; ϕ; R ].

Theorem 1.2′′′′′′′′.  Suppose that  f  ∈  W
r

 H [ k; ϕ; [ a, b  ] ].  Then there exists a function

f  ∈ c W
r

 H [ k; ϕ; R ]  such that  f x( )  =  f ( x )  for  x ∈ [ a, b ]. 

Proof.  Let  L  denote the Lagrange polynomial (of degree  ≤ m – 1)  that interpolates the
function  f  at the equidistant points 

xi  =  a
ib

m
+

− 1
,      i  =  0 1, ,… −m .

According the Whitney inequality (3.6.12), we have 

f L a b− [ ],   ≤  c1 ωm ( b – a; f ; [ a, b ] )  ≤  c1 ( b – a ) 

r ϕ ( b – a ).
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Moreover,  ωk ( t; L
(

 

r
 

)
; R )  =  0.  By virtue of Theorem 1.2′, one can find a function  f1 ∈

c2 W
r

 H [ k; ϕ; [ a – ( b – a ), b + ( b – a ) ] ]  such that  f1 ( x )  =  f ( x )  for  x ∈ [  a, b ].  It re-
mains to use Lemma 1.4 for the case  d  =  b – a. 

2. Lemma on gluing

First, we prove four auxiliary lemmas.  Lemma 2.3 (we call it the lemma on gluing) plays
the key role in the proofs presented in the subsequent two sections. 

As before, we assume that  k ∈ N,  ϕ ∈ Φk
,  ( r + 1) ∈ N,  m = k + r ,  x0 < x1 < … < xm  ,

x– 1  : =  x0 – ( xm – x0 ),  and  xm + 1  : =  xm + ( xm – x0 ). 

Definition 2.1.  Let  ( p + 1 ) ∈  N  and   q  ∈  N.  We write  (  p, q  ) ∈  Bk r,   i f  p  + r <

q ≤ m  and  ( p, q ) ∈  B x xk r m,
* , ,( … )0   if  ( p, q ) ∈  Bk r,   and  2( xq – xp ) ≤ min { xq + 1 – xp ,

xq – xp – 1 }.  We set [cf. (3.6.32)] 

Λ Λr m
p q B x x

p q r mx x x x
k r m

*

, , ,
, ,, , ; max , , ;

,
*

( … ) = ( … )
( )∈ ( … )

0 0
0

ϕ ϕ . (2.1)

It is clear that 

Λ Λr m r mx x x x* , , ; , , ;( … ) ≤ ( … )0 0ϕ ϕ . (2.2)

Note that there exists at least one pair  ( p, q ) ∈  B x xk r m,
* , ,( … )0 ,  namely,  ( 0, m  ) ∈

B x xk r m,
* , ,( … )0 . 

Definition 2.2.  For all  ( p, q ) ∈ Bk r, ,  we denote 

˜ , , ;, ,Λ p q r mx x( … )0 ϕ   : =  
u u du x x x x

x x x x

p r q
q p

p r q
q px x

d p q

q p i pi q

m

i

p
q p

+ − − + −
( − )

( )

= +=
−

( ) + ( − ) ( − )

( − ) ( − )

∫
∏∏

1

10

1

ϕ ϕ
,

. (2.3)

We set 

˜ , , ; max ˜ , , ;
,

, ,
,

Λ Λr m
p q B

p q r mx x x x
k r

( … ) = ( … )
( )∈

0 0ϕ ϕ . (2.4)

It is clear that 

Λ Λr m r mx x x x( … ) ≤ ( … )0 0, , ; ˜ , , ;ϕ ϕ . (2.5)
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Lemma 2.1.  The following inequality is true: 

˜ , , ; , , ;*Λ Λr m r mx x c x x( … ) ≤ ( … )0 0ϕ ϕ . (2.6)

Proof.  If  ( p, q ) ∈ B x xk r m,
* , ,( … )0 ,  then 

( − ) ( − ) ≤ ( − ) ( )+ − − − −

−

( )

∫x x x x l u u duq p
p r q

q p
l l

x x

d p q

q p

ϕ ϕ1 2 1
,

≤  ( + ) ( )− −

−

( )

∫k u u dul

x x

d p q

q p

1 1ϕ
,

,

where  l  : =  q – p – r.  Hence, 

˜ , , ; ˜ , , ;, , , ,Λ Λp q r m p q r mx x k x x( … ) ≤ ( + ) ( … )0 02ϕ ϕ .

If  ( p, q ) ∉  Bk, r ( x0 , … , xm ) ,  i.e.,  d ( p, q )  <   2 ( xq – xp ) ,  then, in the case where

d ( p, q )  =  xq + 1 – xp 
,  we have  xq + 1 – xi  <  2 ( xq – xi ),  i  =  0, ,… p,  and 

u u du x x x xl
q p

l
q p

x x

d p q

q p

− − −

−

( )

( ) + ( − ) ( − )∫ 1ϕ ϕ
,

  ≤  2 1
1 1

l
q p

l
q px x x x+

+ +( − ) ( − )ϕ .

Therefore, 

˜ , , ; ˜ , , ;, , , ,Λ Λp q r m p q r mx x c x x( … ) ≤ ( … )+0 1 1 0ϕ ϕ .

In the case where  d ( p, q )  =  xq – xp – 1,  we establish by analogy that 

˜ , , ; ˜ , , ;, , , ,Λ Λp q r m p q r mx x c x x( … ) ≤ ( … )−0 1 1 0ϕ ϕ .

Thus, the lemma is proved for  c  ≤  ( + ) −k ck2 1
1.

�

Inequalities (2.2), (2.5), and (2.6) yield the estimates 
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Λ Λr m r mx x x x( … ) ≤ ( … )0 0, , ; ˜ , , ;ϕ ϕ

≤  c x x c x xr m r mΛ Λ* , , ; , , ;( … ) ≤ ( … )0 0ϕ ϕ . (2.7)

Lemma 2.2.  Let  j  =  0, ,… m.  If  f ∈  W
r

 H [ k; ϕ ; R ],  then the following inequality

holds for all  x ∈ [ xj , xj + ( xj + 1 – xj ) / 2 ] : 

[ … … ]− +x x x x x fj j m0 1 1, , , , , , ;   ≤  c x xr mΛ ( … )0, , ; ϕ . (2.8)

Proof.  Denote  tj  : =  x,  ts  : =  xs  if  s  ≠  j,  s  =  – 1, ,… m,  tm + 1  : =  xm + 1  if  j  ≠   m,  and

tm  + 1  : =  x  + ( x – x0 )  if  j   =   m .  Let  ( p, q  ) ∈  B t tk r m,
* , ,( … )0 .  We set  Λ   : =

Λ p q r mx x, , , , ;( … )0 ϕ ,  Λ *  : =  Λ p q r mt t, , , , ;( … )0 ϕ ,  d   : =  min { xq + 1 – xp , xq – xp – 1 }

( = d ( p, q ) ),  d*  : =  min { tq + 1 – tp , tq – tp – 1 }  and prove the inequality 

Λ*  ≤  c x xr m1 0Λ ( … ), , ; ϕ . (2.9)

We first consider the case where  d  =  xj – xp 
,  i.e.,  q  =  j – 1  and  xj – xp  ≤  xq – xp – 1 .

We represent  Λ*  in the form 

Λ*  =  ( − )( − )−x x x xj p p
1Λ

+  ( − ) ( − ) ( − )
= +=

−
− + − −∏∏ x x x x x x uq i i p

i q

m

i

p

p
p r q

10

1
1 11ϕ( )∫ u du

d

d*

.

Taking into account that  2 ( xq – xi )  ≥  ( xj – xi )  for all  i  =  0 1, ,… −p   and 

d*  =  min { x – xp , xq – xp – 1 }  ≤  min { xj + 1 – xp , xj – xp – 1 },

we get 

Λ*  ≤  Λ Λ Λ+ ( … ) ≤ ( … )2 0 1 0
p

p j r m r mx x c x x, , , , ; , , ;ϕ ϕ .

In the other cases, we have:  2 ( tq – ti )  ≥  xq – xi  for  i  =  0, ,… p,  2 ( ti – tq )  ≥   xi – xq

for  i  =  q m, ,… ,  and  d*   ≤  2d.  Consequently,  Λ*  ≤   c x xp q r m2 0
˜ , , ;, ,Λ ( … )ϕ ,  which,

by virtue of (2.7), implies that  Λ*  ≤   c x xr m1 0Λ ( … ), , ; ϕ .  Taking (3.6.36), (2.7), and
(2.9) into account, we obtain 
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[ … ] ≤ ( … )t t f c x xm r m0 3 0, , ; , , ;Λ ϕ

≤  c t t c c x xr m r m4 0 4 1 0Λ Λ* , , ; , , ;( … ) ≤ ( … )ϕ ϕ .

�

Remark 2.1.  It can be proved by analogy that relation (2.8) also holds on the interval

[ xj – ( xj – xj – 1 ) / 2, xj ],  i.e., that relation (2.8) holds for all points  x ∈ [ xj – ( xj – xj  – 1 ) / 2,

xj + ( xj + 1 – xj ) / 2 ]. 

Lemma 2.3  [Shevchuk (1979), (1980)].  Suppose that  ( i, j ) ∈  B x xk r m,
* , ,( … )0   and  d : =

min { xj + 1 – xj , xi – xi – 1 }.  If  f ∈  W
r

 H [ k; ϕ; R ]  and  f ( xs ) = 0  for all  s  = 0, ,… m,

s ≠ j,  then there exists a function  f   such that 

f x( )  =  f ( x )      for    x ∈ [ xi ; xj ], (2.10)

f x( )  =  0      for    x ∉ ( xi – d; xj + d ), (2.11)

f  ∈ c M W
r

 H [ k; ϕ; R ], (2.12)

where 

M  : =  
Λ

Λ
r m

i j r m

x x

x x

( … )
( … )
0

0

, , ;
, , ;, ,

ϕ
ϕ

.

Proof.  Without loss of generality, we can set  xi = 0.  Taking Lemma 3.4.4 into account,
we can assume, without loss of generality, that 

ϕ ϕν ν( ) −( ) ≤ ( )t c t t0 ,      ν  =  1 1, ,… −m . (2.13)

We carry out the proof in several steps. 

1.  First, we prove the inequalities 

f c M x u u dukx j
j i i r j

x

d

j

j

[ ]
− + − −≤ ( )∫0 1

1
2

, ϕ , (2.14)

f c Md u u dukd
j i i r j

x

d

j

[ ]
− + − −≤ ( )∫0 1

1
2

, ϕ . (2.15)
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Indeed, for all  x ∈ [ xj , xj + d / 2 ],  relation (2.9) yields 

f x x x x x x f x xj j m s
s s j

m

( ) = [ … … ] −− +
= ≠
∏0 1 1
0

, , , , , , ;
,

≤  c x x x xr m s
s s j

m

2 0
0

Λ ( … ) −
= ≠
∏, , ;

,

ϕ

=  c M x x x xi j r m s
s s j

s m

2 0
0

Λ , ,
,

, , ;( … ) −
= ≠

=

∏ϕ   ≤  c Mx u u duj i i r j

x

x d

j

j

3
1− + − −

+

( )∫ ϕ .

This and (3.6.16) imply that 

f c x u u du c fkx j
m k

x

kx

x xj

j

j

j j[ ]
− −

[ ]≤ ( ) +∫0 4
1

2
4 3 2,

/
, /ϕ

≤  c x x c c M kx u u duj
r

j j
j i i r j

x

d

j

5 4 3
1

2

ϕ ϕ( ) + ( ) ( )− + − −∫

≤  c Mx u u duj
j i i r j

x

d

j

1
1

2
− + − − ( )∫ ϕ ,

f c d u u du c fkd
m k

d

kd

x x dj j[ ]
− −

[ + ]≤ ( ) +∫0 4
1

2
4 2,

/
, /ϕ

≤  c Md u u duj i i r j

x

d

j

1
1

2
− + − − ( )∫ ϕ .

2.  Let us prove Lemma 2.3 for  k  =  1.  In this case, the pair  ( i, j ) ∈  Bk r,   is unique,

namely,  ( 0, r + 1 ) ∈ B1, r  (moreover,  ( 0, r + 1 ) ∈  B x xr r1 0 1,
* , ,( … )+ ).  Therefore,  d  =

xr + 1  and  M  =  1.  By virtue of (2.14), we have 

f c d u u du c d dkd
r

d

d
r

[ ]
+ −≤ ( ) ≤ ( )∫0 1

1 2
2

1, ϕ ϕ .

Lemma 2.3 now follows from Lemma 1.3. 
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Taking into account that Lemma 2.3 is proved for  k  =  1,  we assume in what follows
that  k  >  1. 

3.  Let us choose  m + 1  points  ys  according to the relations  ys : = xi + s  for  s  =

0, ,… r   and  ys  : = ( s – r ) xi  for  s = r m+ …1, , .  We denote  ωµ  : =  ωµ ( t ) : = ωµ ( t; f 
(
 

r
 

)
;

[ 0, k xj ] )  and  aµ  : =  [ y0 , … , yr + m ; f ]  and show that 

a c x xj jµ
µ

µω≤ ( )−
6 (2.16)

for all  µ  =  1, ,… k .  First, let  r = 0,  Then [see (3.3.32)]  aµ = x fj x j

− −( ) ( )µ µµ! ;1 0∆ ,  i.e.,

relation (2.16) is proved.  Now let  r ≠ 0.  In this case, the pair  ( p, q ) ∈ B y yk r r,
* , ,( … )+0 µ

is unique, namely,  ( 0, r + µ ) ∈ B y yk r r,
* , ,( … )+0 µ .  Therefore, by virtue of (3.6.36) and

(2.9), we get 

f c y ykd r[ ] +≤ ( … )0 7 0, , , ;Λ µ µω   ≤  c y yr r8 0Λ* , , ;( … )+µ µω

=  c y y c x xr r r j j8 0 0 6Λ , , , , ;+ +
−( … ) ≤ ( )µ µ µ

µ
µω ω .

Inequality (2.16) is proved.

4.  Let us prove the inequality 

ω ϕµ
µ µ µ

µ( ) ≤ ( ) =− −∫x c Mx u u du c Mx bj j
x

kd

j

j

9
1

9: . (2.17)

In the case where  µ  =  1, ,… − −j i r ,  inequality (2.17) follows from relations (2.14)

and (3.5.2) and the estimate  ωµ ( t )  ≤  2
0

µ f r
kx j

( )
[ ],

 ;  for  µ  =  j r k− − + … −1 1 1, , ,  this

inequality follows from relations (2.15) and (3.5.2) and the Marchaud inequality (3.5.6). 
It follows from (2.16) and (2.17) that 

a c b Mµ µ≤ 10 ,       µ  =  1 1, ,… −k . (2.18)

5.  Since, according to the conditions of the lemma,  f ( ys )  =  0  for  s  =  0, ,… r ,  we

have  [ … ]y y fs0, , ;   =  0  for  s  =   0, ,… r .  Therefore, the Newton formula for the

Lagrange interpolation polynomial  L  =  L ( x )  =  L x f y ym( … )−; ; , ,0 1   has the form 
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L ( x )  =  a p x
k

µ µ
µ

( )
=

−

∑
1

1

, (2.19)

where 

pµ ( x )  : =  ( − )
=

+ −

∏ x ys
s

r

0

1µ
.

Let us prove that 

f L c x xkx j
r

jj
− ≤ ( )[ ]0 11, ϕ . (2.20)

Indeed, if  x ∈ [ k xj , ( k + 1 / 2 ) xj ],  then, by virtue of Lemma 2.2, we have 

x y f x L x y y x fs
s

m

m− ( ) − ( ) ≡ [ … ]−

=

−

−∏ 1

0

1

0 1, , , ;

≤  c y y c x xr m j
k

j12 0 13Λ ( … ) ≤ ( )−, , ; ϕ ϕ ,

i.e.,  f x L x( ) − ( )   ≤  c x xj
r

j14 ϕ( ) .  Inequality (2.20) now follows from Lemma 3.7.1. 

6.  Denote 

gµ ( x )  : =  
a

b
u u du

x

kd
µ

µ

µ ϕ− − ( )∫ 1 ,      G ( x )  : =  g x p x
k

µ µ
µ

( ) ( )
=

−

∑
1

1

.

Let us prove that 

L G c Mx xx kx j
r

jj j
− ≤ ( )[ ], 15 ϕ , (2.21)

G c Md dx kd
r

j[ ] ≤ ( ), 16 ϕ , (2.22)

G ∈ c17 M W
r

 H [ k; ϕ; [ xj , ∞ ) ]. (2.23)

Indeed, let  x ∈ [ xj , k xj ].  Then 
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L x G x a g x p x
k

( ) − ( ) = − ( ) ( )( )
=

−

∑ µ µ µ
µ 1

1

≤  a b b u u du kx
k

x

kd

j
r

µ µ
µ

µ
µ µϕ−

=

−
− − +∑ ∫− ( ) ( )1

1

1
1

=  a b u u du kx
k

x

x

j
r

j

µ µ
µ

µ µϕ−

=

−
− − +∑ ∫ ( ) ( )1

1

1
1

≤  c Mk x x c Mx xm
j
r

j
r

j10 15ϕ ϕ( ) ≤ ( ).

Let  x ∈ [ xj , k d ].  Then 

G x a b u u du kx c Md d
k

x

kd

j
r r

j

( ) ≤ ( ) ( ) ≤ ( )−

=

−
− − +∑ ∫µ µ

µ

µ µϕ ϕ1

1

1
1

16 ,

i.e., estimates (2.21) and (2.22) are proved. 

Let  x  ≥  xj .  Then, for all  ν  =  1, ,… m,  we have 

p x c xm r m
µ

ν µ ν( − ) + − −( ) ≤ 18       ( ≡ )( )p m
µ 0 .

Taking (2.13) into account, we get 

g x a b x x c Mx xµ
ν

µ µ
µ ν µ νϕ ϕ( ) − − − ( − ) − −( ) = ( ) ≤ ( )( )1 1 1

19 ,

whence 

G x
m

g x p x c Mx xm m
mk

r( ) ( ) ( − )

==

−
( ) = 





( ) ( ) ≤ ( )∑∑ ν
ϕµ

ν
µ

ν

νµ 11

1

20 , (2.24)

G x g x p x
r

g x p x c M xr r
k

m
mk

( ) ( )

=

−
( ) ( − )

==

−
( ) − ( ) ( ) = 





( ) ( ) ≤ ( )∑ ∑∑µ µ
µ

µ
ν

µ
ν

νµ ν
ϕ

1

1

11

1

21 . (2.25)

Let us show that relations (2.24) and (2.25) yield (2.23), i.e., 
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∆h
k rG x c M h( ) ≤ ( )( ), * 17 ϕ (2.26)

for any  h  >  0  and  x*  ≥  xj .  If  x*  ≥  h,  then, according to (3.3.34), we have 

∆h
k r k m

x x kh
k kG x h G c Mh x x c M h( ) ≤ ≤ ( ) ≤ ( )( ) ( )

[ + ]
−, * , * *

* *
20 20ϕ ϕ .

If  x*  <  h,  then, denoting  Gµ ( x )  : =  g x p xr
µ µ( ) ( )( )   and using (2.25), we obtain 

∆ ∆h
k r

h
k

k
kG x G x c M x kh c M h( ) − ( ) ≤ ( + ) ≤ ( )( )

=

−

∑, ,* * *µ
µ

ϕ ϕ
1

1

21 222 .

Thus, it remains to prove the estimate 

∆h
k rG x c M h( ) ≤ ( )( ), * 23 ϕ , (2.27)

where  x j   ≤  x*  ≤  h.  For this purpose, we represent the function  Gµ   in the form 

Gµ ( x )  =  
a

b
p x u u dur

x

x kh
µ

µ
µ

µ ϕ



( ) ( )( ) − −
+

∫ 1
*

  +  p x u u dur

x kh

kd

µ
µ ϕ( ) − −

+

( ) ( )




∫ 1

*

= :  
a

b
x xµ

µ
α β( )( ) + ( ) .

Therefore, 

∆h
k k

x x kh
kx c x kh c h( ) ≤ ≤ ( + ) ≤ ( )[ + ]

−α α µ ϕ ϕ; * , ** *
2 2 18

1
24 ,

∆ ∆h
k

x kh

kd

h
k rx u u du p x( ) = ( ) ( )− −

+

( )∫β ϕµ
µ; ;* *

*

1   =  0,

i.e., estimate (2.27) [and, hence, (2.26)] is proved.  Relation (2.23) is proved. 

7.  Taking into account (2.23) and Theorem 1.3′, we find a function  G   such that

G x( )  = G  ( x )  for  x  ≥  xj  and  G  ∈  c25 M W
r

 H [ k; ϕ ; R ].  It follows from (2.20) and

(2.21) that the following relation holds for  x ∈ [ xj , k xj ] : 
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f x G x f x G x f x L x( ) − ( ) = ( ) − ( ) ≤ ( ) − ( )   +  L x G x c Mx xj
r

j( ) − ( ) ≤ ( )26 ϕ .

Hence, 

f G f G c f G
x kx x kxj j j j

− = − ≤ −[ [ [0 0 27, ] , ] , ]
  ≤  c c Mx xj

r
j27 26 ϕ( )

by virtue of Lemma 2.1. 
Denote 

f x G x f x G x S x m x S x m x xj j j1 0 1 2( ) = ( ) + ( ) − ( ) ( − ) − ( )( ) ( ): ; ; , ; ; , .

According to the Lemma 1.4,  f1 ∈ c28 M W
r

 H [ k; ϕ; R ],  f x1( ) = f ( x )  if  x ∈  [ 0, xj ],  and

f x1( )  =  G x( )   if  x ∈ [ – 2xj / 3, 5xj / 3 ].  Furthermore, by virtue of Lemma 2.1, we get 

c Md d G Gr
x kd x x dj j j16 3 5ϕ( ) ≥ ≥[ ] [ + ], / ,

=  f c f
x x d d x dj j j

1 3 5 29 1[ + ] [− + ]
≥

/ , ,
,

and the function  f   required in Lemma 2.3 can be taken in the form 

f x f x S x m d d H S x m x d H x dj j( ) = ( ) ( − − + ) − ( + − + )( ): ; ; , ; ; ,1 1 ,

where 

H  : =  
x dj + 2

3
.

�

Lemma 2.4.  Let  (  i, j ) ∈  Bk r,  ,  h  : =  xj – xi ,  and  d  : =  min { xj + 1 – xj , xi – xi – 1 }.  If

f ∈ W
r

 H [ k; ϕ; R ]  and  f ( xs )  =  0  for all  s   =   0, ,… m,  s   ≠   j,  then there exists a

function  f   =  f x( )  that possesses the following properties: 

(a) f x( )  =  f ( x )  for  x ∈ [ xi , xj ], (2.28)

(b) f x( )  =  0  for  x ∉ [ xi – d, xj + d ], (2.29)
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(c) f  ∈ c ( 1 +  ( h / d ) 

3m
 ) M W

r
 H [ k; ϕ; R ], (2.30)

where 

M  : =  
Λ

Λ
r m

i j r m

x x

x x

( … )
( … )
0

0

, , ;
, , ;, ,

ϕ
ϕ

.

Proof.  In the case where  h ≤ d,  Lemma 2.4 follows from Lemma 2.3.  Therefore, we

assume that  h > d.  For all  x ∈ [ xj , xj + h / d ],  relation (2.9) yields 

f x c M x x x xi j r m s
s s j

m

( ) = ( … ) −
= ≠
∏1 0
0

Λ , ,
,

, , ; ϕ

≤  c x x u u dui
j i i r j

h

h d

2
1( − ) ( )− + − −

+

∫ ϕ   ≤  c h h c h
d

d dr
m

r
3 3ϕ ϕ( ) ≤ 



 ( )

whence, taking Lemma 2.1 into account, we obtain 

f f c
h
d

h d dx x x x d

m
m k

i j i j[ ] [ + ]
−≤ ≤ 



 ( ), , / 2 4 ϕ   ≤  c h

d
h h

m
r

4

2



 ( )ϕ .

Lemma 2.4 now follows from Lemma 2.3.

�

3.  Interpolation problem

Consider a finite or an infinite collection of isolated points  xi  ∈ R,  xi   <  xi + 1 ,  and let

a function  f  be defined at the points  xi  .  Let  H  be some class or space of functions
defined on  R.  To solve the interpolation problem is to find a condition under which there

exists a function  f  ∈ H  that interpolates the function  f  at the points  xi  ,  i.e.,  f xi( )  = 

f ( xi )  for all  i,  and to construct the function  f . 

It is easy to see that, in the case  H  =  C ( R ),  the interpolation problem is solvable for

any collection of points  xi  and any function  f  given at the points  xi . 

De Boor (1976) showed that the corresponding condition for the class  W [ r, R ]  is the

following one: 

[ … ]+x x fi i r, , ;   ≤  c      ∀i. (3.1)
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Earlier, Subbotin (1965) established the exact value of the constant  c  in (3.1) in the
case of equidistant points  xi . 

If the function  f  is defined on an arbitrary set  E ⊂ R  (not necessarily consisting of

isolated points), then a problem analogous to the interpolation problem is called the trace
problem.  The trace problem will be considered in subsequent sections of this chapter.  In

the present section, we study the interpolation problem for the classes  W
r

 H [ k; ϕ ; R ] .

The results presented in Subsections 3.1–3.3 can be found in [Shevchuk (1979), (1980)]. 

As before, we assume that  k ∈ N,  ϕ ∈ Φk
,  ( r + 1 ) ∈ N,  and  m  : =  k + r. 

3.1.  On the exactness of Theorem 3.6.3

Theorem 3.6.3 states that if  f ∈ W
r

 H [ k; ϕ; R ],  then 

[ … ]x x fm0, , ;   ≤  c Λr ( x0 , … , xm ; ϕ ) .

The lemma presented below demonstrates the exactness of this theorem. 

Lemma 3.1.  For any choice of  m  + 1  points  x0  <  x1  < … <  xm  ,  there exists a func-

tion  g ∈ W
r

 H [ k; ϕ; R ]  such that 

[ … ]x x gm0, , ;   ≥  c x xr mΛ ( … )0, , ; ϕ . (3.2)

Proof.  We prove this lemma in several steps. 

1.  Let  i*  and  j*  denote integer numbers such that 

( i*, j* ) ∈ B x xk r m,
* , , ;( … )0 ϕ ,     Λ Λ

i j r m r mx x x x* *, ,
*, , ; , , ;( … ) = ( … )0 0ϕ ϕ .

For convenience, we assume that  min { xj* + 1 – xi* , xj* – xi* – 1 }  =  xj* + 1 – xi*  and  xi* = 0.
Also denote 

h  : =  
x

r
i r* + +

+
1

1
,      s*  =  j*  –  i*.

2.  Consider the case  s*  =  m,  i.e.,  i*  =  0  and  j*  =  m,  and, in particular, the case
k = 1.  Here, according to (3.3.7) and (3.6.31), we have 
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c x x x x c x xm
k

m r m m
k

m1 0 2
− −( ) ≤ ( … ) ≤ ( )ϕ ϕ ϕΛ , , ; .

Therefore, as the function indicated in the lemma, we can take the function  g  defined on

( – ∞, xm ]  by the equality  g (  x )  : =  c x x xm
m

k
m3

− ( )ϕ   and extended to  R  by using Theo-

rem 1.3. 
In the remaining part of the proof, we assume that  s* ≠ m   and, in particular, that

k ≠ 1. 

3.  In view of Lemma 3.4.4, we can assume, without loss of generality, that 

ϕ ϕν ν( ) −( ) ≤ ( )x c x x4 ,      x  >  0,      ν  =  1 1, ,… −m . (3.3)

We set 

p ( x )  : =  ( − )
=

+

∗

∗

∏ x xi
i i

i r

,      Φ ( x )  : =  u u x u duk k

h

x
− −( )( − )∫ ϕ 2 ,

(3.4)
g1 ( x )  : =  Φ ( x ) p ( x ),      x  >  0,      g1 ( 0 )  : =  0.

Let us show that 

g1 ∈ c5 W
r

 H [ k; ϕ; [ h, ∞ ) ], (3.5)

i.e., let us prove that the following inequality holds for any  δ  >  0  and  x*  ≥  h : 

∆δ ϕ δk rg x c( ) ≤ ( )( )
1 5; * . (3.6)

Indeed, we have  p xr( + )( )2  ≡  0,  p xr( )( )  ≤ c xr
6

1+ −ν   for  ν = 0 1, ,… +r ,  x  > h ,

Φ( − )( )k x1  = ( − ) ( )−k x xk2 ! ϕ ,  and, by virtue of (3.3),  Φ( )( )ν x   ≤   c x x7
1− − ( )ν ϕ   for  ν  = 

k m− …1, , .  Hence, for  x*  ≥  δ,  we get 

∆δ δ θk r k mg x g( ) = ( )( ) ( )
1 1; *   =  δ

ν
θ θν ν

ν

k m
r m

p






( ) ( )( ) ( − )

=

+

∑ Φ
0

1

≤  c c c cm k k m
6 7 6 72 2δ θ ϕ θ ϕ δ− ( ) ≤ ( ),

where  θ  ≥  x* 
. 
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If  x* < δ,  then we represent the function  g1  in the form 

g1 ( x )  =  p x u u x u duk k

h

x k

( ) ( )( − )− −
+

∫ ϕ
δ

2
*

  +  p x u u x u duk k

x k

x

( ) ( )( − )− −

+
∫ ϕ

δ

2

*

= :  α β( ) + ( )x x .

For all  x ∈ [ x* , x* + k δ ]  and  ν  =  0, ,… r ,  taking (3.3) into account, we obtain 

d
dx

u u x u du c x x kk k

x k

xν

ν
δ

νϕ ϕ δ− −

+

− −( )( − ) ≤ ( + )∫ 2
8

1

*

*   ≤  c x9
1− − ( )ν ϕ δ .

Therefore, 

β ϕ δ( )( ) ≤ ( )r rx c c6 92 ,

whence 

∆δ δ
β β ϕ δk r k r

x x k
mx c c( ) ≤ ≤ ( )( ) ( )

[ + ]
; * ,* *

2 26 9 .

Moreover,  ∆δ αk r x( )( ); *   ≡  0.  Inequality (3.6) is proved. 

4.  Denote  s  : =  j* – i* – r,  yi  : =  x
i r i* + +   for  i  =  0 1, ,… +s ,  and  yi  =  ( i – s  ) ys + 1

for  i  =  s k+ …2, , .  Let us prove that 

  

[ … … ] ≥ ( )+ +
− − −

+

∫x x y y g c y d
i i r k s

s k s

y

y

s

s

* *, , , , , ;1 1 10 1
1

1

v v vϕ . (3.7)

It follows from (3.3.24) that  [ … … ]+x x y y g
i r k0 1 1, , , , , ;*   =   [ … ]y ym1, , ; Φ .  Since

Φ( − )( )k x1   =  ( − ) ( )−k x xk2 ! ϕ ,  by virtue of (3.3.19) we get 

[ … ] = ( − ) … ( ) …∫ ∫∫ −
−

−

y y k u u du duk

u
k

k

uk

1
0

1 1
00

1

2
1 2

, , ; !Φ ϕ ,

where  u  : =  y y y u y y uk k k1 2 1 1 1 1+ ( − ) + … + ( − )− − . 
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Since 

u  ≤  y u k s ys s s+ ( − ) +1,

we have 

u u y u k s y y u k s yk
s s s

k
s s s

−
+

−
+( ) ≥ + ( − ) + ( − )( ) ( )ϕ ϕ1 1 .

Therefore, 

[ … ]y yk1, , ; Φ

≥  ( − ) … … ( ) …
−

−
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Inequality (3.7) is proved. 

5.  Taking into account relation (3.5) and Theorem 1.3, we can find a function  g2 ∈
c11 W

r
 H [ k; ϕ; R ]  such that  g2 ( x )  =  g1 ( x )  for  x  ≥  h. 

Let  i0  denote one of the numbers  i = i i r* *, ,… +   for which  xi0
 + 1 – xi0

 ≥ h.  We set

h0  : =  xi0
  +  h

2
.



Section 3 Interpolation problem 323

The inequality  g h h1 2[ ],   ≤  c h hr
12 ϕ( )  and Lemma 1.1 yield the following estimate: 

g g c h hx h r h
r

i
2 0 2 2 0 1 13

0
[ + ] [ ( + ) ]≤ ≤ ( ), / , ϕ .

By using Lemma 1.3, we find a function  g3 ∈ c14 W
r

 H [ k; ϕ; R ]  such that  g3 ( x ) = g2 ( x )

if  x ∉ [ – h / 2, xi0
 + h / 2 ]  and  g3 ( x )  =  0  if  x ∈ [ 0, xi0

 + h / 2 ].  In particular, 

g3 ( xi )  =  g1 ( xi )  =  0,      i  =  i i r* *, ,… + . (3.8)

6.  Denote  ti  : =  xi* + i  if  i  =  0, , *… s   and  ti  : =  ( i – s*
 ) xj* + 1  if  i  =  s m* , ,+ …1 .

Let us show that 

Λ Λ
0 0 15 0, ,* , , ; , , ;

s r m r mt t c t t( … ) ≥ ( … )ϕ ϕ . (3.9)

Indeed, assume that there is a pair  ( p, q ) ∈  B t tk r m,
* , ,( … )0 .  If  q  =  r s+ … +1 1, , * ,

then, taking into account that 

Λ
p i q i r mx x+ + ( … )* *, ,

, , ;0 ϕ   ≤  Λ
i j r mx x* *, ,

, , ;( … )0 ϕ ,

we obtain 

Λ
Λ
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t t
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≤  2 21 2m s m− − −≤ .

Since  ( p, q ) ∈ B t tk r m,
* , , ;( … )0 ϕ ,  the case  q  >   s* + 1  is possible only if  r  =  0  and

p  =  q – 1,  but then 

Λ p q r m j
k

j
t t c x x, , , , ; * *( … ) ≤ ( )

+
−

+0 16 1 1
ϕ ϕ   ≤  c t t

s r m17 0 0Λ
, ,* , , ;( … )ϕ .

Inequality (3.9) is proved. 
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Denote  g4 ( x )  : =  g3 ( x ) – L x g t t t t
s s m( … … )− +; ; , , , , ,* *3 0 1 1

.  It follows from in-

equality (3.9) and Lemma 2.3 that there exists a function  g5 ∈  c18 W
r

 H [ k; ϕ; R ]  such

that  g5 ( x )  =  g4 ( x )  if  x ∈ [ t0 , ts* ]  ≡  [ xi* , xj* ]  and  g5 ( x )  ≡  0  if  x ∉ [ xi* – 1 , xj* + 1 ]. 

7.  Let us prove that 

[ … ] ≥ ( … )x x g
c

x xm i j r m0 5
10

02
, , ; , , ;* *, ,

Λ ϕ . (3.10)

Indeed, denote 

A  : =  x x
j i

i i j

m

*
*,

−
= ≠
∏
0

,      B  : =  t t
s i

i i j

m

*
*,

−
= ≠
∏
0

.

Then 

[ … ] = ( ) = ( )− −x x g A g x A g xm j j0 5
1

5
1

4, , ; * *

=  A B t t g A B t t gm m
− −[ … ] = [ … ]1

0 3
1

0 1, , ; , , ; .

Therefore, by virtue of (3.7), we get 
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1
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=  c x x
x x
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i j r m
i i

i ji j
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j
j i m

i s
i s
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10 0
1

1
1

Λ * *
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, , ;( … )
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( − )
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− −

= +
∏ ∏ϕ

≥  
c

x x
i j r m

10
02

Λ * *, ,
, , ;( … )ϕ   ≥  c x xr m19 0Λ ( … ), , ; ϕ .

Thus, we can take the function   g ( x )  : =  c g x19
1

5
− ( )  as that indicated in the lemma. 

�
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3.2.  On extension from “minimal” sets

Theorem 3.1.  Let  m  + 1  points  x0  <  x1  < … <  xm  be given.  If a function  f  d e -

fined at the points  xi ,  i  =  0, ,… m,  satisfies the inequality 

[ … ]x x fm0, , ;   ≤  Λr mx x( … )0, , ; ϕ ,

then there exists a function  f  ∈  c W
r

 H [ k; ϕ; R ]  such that  f x( )  =  f ( x )  for  x  =  xi  ,

i  =  0, ,… m. 

Proof.  Let  g  be the function from Lemma 3.1.  We can take the function  f   indicated
in Theorem 3.1 in the form 

f x( )  : =  M g x L x g x x L x f x xm m( ( ) − ( … ) + ( … )− −); ; , , ; ; , ,0 1 0 1 ,

where 

M  : =  
[ … ]
[ … ]
x x f

x x g
m

m

0

0

, , ;
, , ;

.

Indeed, by virtue of the conditions of Theorem 3.1 and estimate (3.2), we get  M  ≤ c1 
,

whence  f  ∈ c1 W
r

 H [ k; ϕ; R ].  If  i  =  0 1, ,… −m ,  then, according to the definition of

Lagrange polynomials (Definition 3.3.1), we have  g xi( ) – L x g x xm( … )−; ; , ,0 1   =   0,

i.e.,  f xi( )  =  L x f x xm( … )−; ; , ,0 1   =  f ( xi ).  If  i  =  m,  then the equality  f xm( )  = f ( xm  )
follows from (3.3.8). 

�

3.3. Extension from an arbitrary set

Using Theorem 3.1 and Lemma 2.3, one can prove Theorem 3.2 presented below.  The
proof of this theorem is rather cumbersome, and we do not present it here. 

Definition 3.1.  Suppose that  k ∈ N,  ϕ ∈ Φk,  ( r + 1) ∈ N,  m  = k + r,  and  E ⊂  R   is

an arbitrary set.  The class  W H k Er �
[ ; ; ]ϕ   is defined as the set of functions  f  given

on  E  each of which, in any collection of  m  + 1  point  x x xm0 1< < … < ,  x Ei ∈ ,
satisfies the inequality 

x x f x xm r m0 0, , ; ( , , ; )…[ ] ≤ …Λ ϕ . (3.11)
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Theorem 3.2.  For every function  f W H k Er∈
�

[ ; ; ]ϕ ,  there exists a function  f ∈

cW H kr [ ; ; ]ϕ R   such that  f x f x( ) ( )=   for  x ∈ E. 

In the case where  r = 0  and  ϕ( )t t k= −1 ,  Theorem 3.2 was proved by Jonsson (1980).
For  r = 0  and  k = 2,  it was proved by Brudnyi and Shvartsman (1982), Shvartsman
(1982), and Dzyadyk and Shevchuk (1983).  In the other cases, this theorem was proved
in [Shevchuk (1984), (1984a)].  The idea of its proof (due to Dzyadyk) is based on the
fact that Definition 3.1 uses both Marchaud inequality and Whitney inequality.  In explicit
form, this idea was formulated by Dzyadyk (1975c).  Brudnyi and Shvartsman [Brudnyi
and Shvartsman (1982), (1985); Shvartsman (1982), (1984)] established a multidimen-
sional analog of Theorem 3.2 for  r  = 0  and  k = 2.  It appears to be of great interest to
obtain the corresponding analog for  k + r > 2. 

4. Traces.  Extension of complexes

Let  E ⊂ R.  The restriction of a function  f :  R →  R  to  E  is understood as a function

fE :  E → R  whose values coincide with the values of the function  f  on  E,  i.e.,  fE  ( x )  =

f ( x )  for  x ∈ E. 

Definition 4.1.  Let  H ( R )  be some space of functions  f :  R →  R  and let  
�

H E( )   be

a space of functions  f :  E  → R .  We say that the space  
�

H E( )   is the trace of the

space  H ( R )  on  E  and write 

�
H E( )   =  H ( R ) E , (4.1)

if the following conditions are satisfied: 

(a) the restriction  fE  of every function  f  ∈  H  ( R )  belongs to  
�

H E( ) ,  i.e.,

fE ⊂ 
�

H E( ) ; 

(b) for every function  f ∈ 
�

H E( ) ,  there exists a function  f  ∈  H ( R )  such that

f = fE . 

Using the results obtained in the previous sections, we describe the traces of various

spaces  H ( R )  on  E. 

Let  
�
C Er ( ) ,  r ∈ N,  denote the space of functions  f :  E → R  whose  r  th divided dif-

ferences converge on  E  (see Definition 3.8.4). 
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Theorem 4.1 [Whitney (1934)].  If  E  is a closed set, then 

Cr
 ( R ) E   =  

�
C Er ( ) . (4.2)

Let  k ∈ N,  ( r + 1 ) ∈ N,  and  ϕ ∈ Φk.  By  W H Er
k

� ϕ( )   we denote the space of func-

tions  f :  E → R  such that the following inequality holds for any collection of points

xi ∈ E,  x0 < x1 < … < xm ,  m = k + r : 

[ … ] ≤ ( … )x x f M x xm r m0 0, , ; , , ;Λ ϕ ,

where  Λr mx x( … )0, , ; ϕ   is the  r th divided majorant defined by formula (3.6.32) and

M = M ( f ) = const. 

In particular, let  
�

W Er ( ) ,  r ∈ N,  denote the space of functions  f :  E → R  such that

the following inequality holds for any collection of different points  xi ∈ E : 

[ … ]x x fm0, , ;   ≤  M,      M  =  M ( f )  =  const.

Theorems 3.6.4 and 3.2 yield the following statement: 

Theorem 4.2.  The space  W H Er
k

� ϕ( )   is the trace of the space  W Hr
k
ϕ( )R   on  E,  i.e.,

W H Er
k

� ϕ( )   =  W Hr
k
ϕ( )R E     (in particular,   

�
W Er ( )   =  Wr

 ( R ) E ) . (4.3)

Marrien (1966) and then V. Galan (1991) considered the case where not only the
values of a function but also its derivatives are given on  E.  In this connection, we intro-
duce the notion of a complex of functions on a nonincreasing system of sets. 

Let  �r : = { }( )
=E j

j
r

0  be a nonincreasing system of sets:  E = E(0) ⊃ E(1) ⊃  … ⊃ E(
 
r

 
).

Assume that, on each set  E(
 
j

 
),  some function  fj  is defined.  For  x ∈ E(

 
j

 
)

 \ E(
 
j

 
+

 
1

 
)  (  j =

0, , ,… r   E(
 
r

 
+

 
1

 
)  : =  ∅ ),  we set  [ f ]  : =  ( … )f f j0, ,   and say that  [ f ]  is a complex of

functions defined on the system  �r  
. 

We use the notation of Section 8 of Chapter 3.  We write  x  ∈ γ ( �r  )  if  ys ∈ E = E(0)

for all  s = 1, ,… q   and, for every  j  =  0, ,… r ,  the inclusion  ys ∈  E(
 
j

 
)

 \ E(
 
j

 
+

 
1

 
)  yields

ps  ≤  j. 
The expression 

[ ][ ] =
( ) ( )

( − )
−

( )

=

=

=
∑∑x f

f y B y

p i i
p i s s

i
s

si

i p

s

q
s

s

;
! !01

, (4.4)
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where  Bs  is defined by (3.8.1), is called the divided difference of a complex  [ f ]  with

respect to the collection  x  ∈ γ ( �r  )  [cf. (3.8.9)]. 

Definition 4.2.  Let  k ∈ N,  (  r + 1 ) ∈  N,  m  = k + r,  ϕ ∈  Φk,  and   M  = const.  The

class  MWH k r

�
[ ]; ;ϕ �   is defined as the set of complexes  [ f ]  given on the system

 � r   each of which, in any collection  x  ∈ γ ( �r  ),  satisfies the following estimate: 

[ ][ ] ≤ ( )x f M xr; ;Λ ϕ , (4.5)

where  Λr x( ); ϕ   is the divided majorant defined by (3.6.32) [with regard for (3.8.27)].

We set  W H kr
r

�
[ ]; ;ϕ �   =  1W H kr

r

�
[ ]; ;ϕ � .  The union 

W Hr
k r

� ϕ( )�   : =  MWH k r
M

�
∪ [ ]

>
; ;ϕ �

0

is called the space  W Hr
k r

� ϕ( )� . 

The following theorem is true: 

Theorem 4.3 [V. Galan (1991)].  If  [ f ] ∈  W H kr
r

�
[ ]; ;ϕ � ,  then there exists a func-

tion  f ∈ c W
r

 H [ k; ϕ; R ]  such that  f ( 
j

 
)

 ( x )  =  fj ( x )  for all  j  =  0, ,… r   and  x ∈ E(
 
j

 
).

Corollary 4.1.  If a complex  [ f ]  defined on the system  � m −1  satisfies, in any col-

lection  x  ∈ γ ( �m – 1 ),  the inequality  [ ][ ]x f;   ≤   1,  then there exists a function  f ∈

c W
r

 [ R ]  such that  f ( 
j

 
)

 ( x )  =  fj ( x )  for all  j  =  0 1, ,… −m   and  x ∈ E(
 
j

 
). 

Definition 4.3.  Let    H( )R   be a space of functions    f :R R→   and let    
�
H r( )�   be the

space of complexes  [  f ]  defined on    � r  
.  We say that the space  

�
H r( )�   is the

trace of the space  H ( R )  on    � r   and write 

�
H r( )�   =  H ( R ) � r

if the following conditions are satisfied: 

(a) the complex  [  f ]  that consists of functions  fj  each of which is the re-

striction of the derivative  f 
(

 
j

 
),  j = 0, ,… r ,  to   E (

 
j

 
)  belongs to the space

�
H r( )� ; 



Section 4 Traces.  Extension of complexes 329

(b) for every complex  [  f ] ∈  
�

H r( )� ,  there exists a function  f  ∈  H ( R )

such that  f xj( )( )  =  fj ( x )  for all  j  =  0, ,… r   and  x ∈ E(
 
j

 
). 

The theorem below is a corollary of Theorem 4.3 and Lemma 3.8.4. 

Theorem 4.4.  The space  W Hr
k r

� ϕ( )�   is the trace of the space    W Hr
k
ϕ( )R   on     � r  

,

i.e., 

W Hr
k r

� ϕ( )�   =  W Hr
k
ϕ( )R E .





Chapter 5
Direct theorems on the approximation

of periodic functions

The Weierstrass theorems establish the qualitative fact that any function continuous on a
segment can be arbitrarily exactly approximated by polynomials.  However, the following
problems remain open: 

1.  With what accuracy any given continuous function can be approximated by poly-
nomials of a given degree? 

2.  What properties of the function determine the possibility of its “good” approxima-
tion? 

A fairly complete answer to these questions for the case of periodic functions was
given by Jackson (see [Jackson (1911), (1912)]. 

It turns out that the higher the smoothness of a function, the faster the deviation of the
approximating polynomial from this function approaches zero. 

Any theorem establishing the estimates of deviations (in a certain sense) of a given
function (or a class of functions) from polynomials or any other elements onto which this
function (or the class of functions) is mapped by a sequence of operators (in the theory of
approximation, these operators are, most often, polynomial) is called a direct approxima-
tion theorem. 

In the present chapter, we analyze the dependence of these estimates on the smooth-
ness of a given function (or a class of functions) and the choice of a sequence of opera-
tors. 

In Section 2, we establish the direct Jackson theorems.  Section 1 contains some ne-
cessary preliminary information. 

1. Singular integrals and Lebesgue constants

First, we introduce the following definition: 

Definition 1.1.  For any  2π-periodic polynomial kernel  Kn  of the form
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Kn ( t )  =  1
2 1

+
=
∑γ j
j

n

jtcos (1.1)

and any  2π-periodic function  f  summable on the period  [ – π, π  ],  an operator

TKn
 ( t )  =  TKn

 ( f ; t )  : =  1
π

( ) ( − )
− π

π

∫ f u K t u dun   =  1
π

( − ) ( )
− π

π

∫ f t u K u dun , (1.2)

is called a singular  Kn-integral for the function  f.

As follows from the definition of the Fourier coefficients of a function  f,  relations
(1.2) and (1.1) imply that if 

f ( t )  ∼  
a

a jt b jtj j
j

0

12
+ ( + )

=

∞
∑ cos sin ,

then 

TKn
 ( t )  =  1

π
( ) ( − )

− π

π

∫ f u K t u dun   =  
a

a jt b jtj j j
j

0

12
+ ( + )

=

∞

∑γ cos sin (1.3)

and, for any kernel of the form (1.1), the singular integral  TK n
 ( f ; t )  is a trigonometric

polynomial of degree  n. 
Integrals of the form (1.2) are most often encountered if the kernel  Kn   is chosen in

the form of Dirichlet  Dn ,  Fejér  Fn ,  Jackson  Jn,  and other kernels.  In this case, it is
customary to say that the corresponding integrals are the n th polynomials or the n th Di-
richlet, Fejér, Jackson, etc. singular integrals. 

In particular, we note that, by using equality (1.3) and the properties of the kernels

Dn   and  Fn   [see (2.3.2′ ) and (2.3.6′ )], one can easily show that the  n th Dirichlet integral
coincides with the  n th partial sum of the Fourier series of a given function: 

TDn
 ( f ; t )  =  Sn ( f ; t )

and the  n th Fejér integral coincides with the arithmetic mean of the sums  Sk ( f ; t ) : 

TFn
 ( f ; t )  =  1

0

1

n
S f tj

j

n

( )
=

−

∑ ; .
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The quantities 

Ln ( Kn )  : =  1
π

( )
− π

π

∫ K u dun , (1.4)

i.e., the norms of operators  T
K f tnπ ( )−1 ;

  given by relation (1.2), are the Lebesgue con-

stants for the kernels  1
π

( )K tn   (see Section 3 in Chapter 2). 

According to relation (2.3.3), for the Dirichlet kernels, these constants do not exceed
4
2π

ln n  + 3.  At the same time, for the Fejér, de la Vallée Poussin, Rogosinski, Jackson,

and other kernels, according to relations (2.3.7), (2.3.13), (2.3.13′ ), (2.3.21), (2.3.29),
etc., we get 

Ln ( Fn )  =  1,     L Vn n
n( ) = +

π
2 1

3
2 3 ,     L Vn n

n( ) =
π

3 4 ,

Ln ( Rn )  =  2
π

π −si rn ,    0  <  rn  <  5
12

2n− ,     Ln ( Jn )  =  1,    etc. (1.5)

2. Direct theorems

Let  C̃   denote the space of continuous  2π-periodic functions  f  equipped with the uni-
form norm 

f f x
x

: max= ( )
∈R

let 

E f f Tn
T

n
n

( ) = −: inf

be the value of the best uniform approximation of a function  f ∈  C̃   by trigonometric
polynomials 

T t a kt b ktn k k
k

n

( ) = + ( + )
=

∑1

2 1

cos sin

of degree  ≤ n,  let 
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ω ω ωk k kf t t f t f k( ) = ( ) ≡ [ ( + ) π]( ), : , , , , ,R 0 1 2

be the modulus of continuity of order  k  for a function  f,  and let  ω( )f t,  : = ω1( )f t, . 

For each  r = 1, 2, … ,  we denote by  C̃r   the space of  r  times continuously differen-

tiable functions  f ∈ C̃   and set  C̃0  : = C̃ . 
In 1911, Jackson obtained a substantial strengthening of the Weierstrass theorems.

Actually, for the first time, he proposed procedures of construction of polynomials of suf-

ficiently good approximation for the functions from all spaces  C̃0  : = C̃ , C̃1, C̃2   and es-
tablished sufficiently good estimates of approximations by polynomials of a given degree

n  for each space  C̃r ,  r   =  0, 1, 2, … .  In the periodic case, the final results in this di-
rection (in the sense of accuracy) were obtained by Korneichuk (1970). 

Theorem 2.1 (Jackson).  If  f ∈  C̃r ,  where  r  is a nonnegative integer, then the fol-
lowing relation holds for any natural  n : 

˜ ,E f
c
n

f
nn r

r( ) ≤ 





( )ω 1
, (2.1)

where  c  is a constant dependent only on  r ,  and   ω( ⋅)( )f r ,   is the first modulus of
continuity. 

Theorem 2.1 readily follows from Lemma 2.1. 

Lemma 2.1.  If  f ∈ C̃r ,  where  r  is a nonnegative integer, then, for any natural  n ,

a trigonometric polynomial  Tn ( f ; r; t )  =  Tn ( t )  of degree  n′ = 2 [ n / 2 ] ≤ n  of the form

Tn ( t )  =  Tn ( f ; r; t )  =  
a

a kt b ktk
r

k k
k

n
0 1

12
1+ ( − )( + )+

=

′

∑ λ cos sin , (2.2)

where  ak   and  bk   are the Fourier coefficients of the function  f  and   λk   are num-
bers specified by the Jackson kernel

J t j kt j ktn k
k

n

k
k

n

[ ]+
=

[ ]

=

′
( ) = + = +∑ ∑/

/

cos cos2 1
1

2 2

1

1
2

1
2

(2.3)

according to the formula  λk   =  1 – jk ,  approximates the function  f  with an accuracy

characterized by the inequality 

f t T tn( ) − ( )   ≤  M f n
n

r
r

r( )( ); 1 , (2.4)
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where 

M f n f
n

f
nr

r r r r( ) = 



















( ) ( ) ( ); min ; ; ;12 12 1 64 1
2ω ω (2.5)

and  ω( )( )f tr ;   and   ω2( )( )f tr ;   are the first and the second moduli of continuity of

the function  f r( ),  respectively. 

Proof.  1. For  f ∈ C̃0   =  C̃ ,  i.e., if the function  f  is simply continuous, we preliminarily
need the following properties of the Jackson integral: 

If the function  f  is continuous, then the following inequalities are true for all  ν ∈ N : 

f t T tJ( ) − ( )
ν

  ≤  6 1ω
ν

f ;



 ,      f t T tJ( ) − ( )

ν
  ≤  16 1

2ω
ν

f ;



  . (2.6)

Indeed, by using properties (a) and (b) of the Jackson kernels, we obtain 

f ( t )  –  TJν
 ( t ) =  1 1

π
( ) ( ) −

π
( − ) ( )

− π

π

− π

π

∫ ∫f t J u du f t u J u duν ν

=  2 1

0

0

0
π

( ) ( ) −
π

+ ( − ) ( )












π

− π

π

∫ ∫ ∫f t J u du f t u J u duν ν

=  −
π

( − ) − ( ) + ( + ) ( )[ ]
π

∫1 2
0

f t u f t f t u J u duν ,

whence, according to the properties of the first moduli of continuity and the properties
(a)–(c) of the Jackson kernels, we find 

f t T tJ( ) − ( )
ν

 ≤  1

0
π

( + ) − ( ) + ( − ) − ( )( ) ( )
π

∫ f t u f t f t u f t J u duν

≤  2 1 1 2 1
0 0

π




 ( ) ≤ 



 π

( + ) ( )
π π

∫ ∫ω ν
ν

ω
ν

νν νu J u du u J u du

≤  ω
ν

ν
ν

ω
ν

1 2 2 5 1 6 1



 +



 = 





.

and, in view of the properties of the second moduli of continuity and the properties (b)–
(d) of the Jackson kernels, we obtain 
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f t T tJ( ) − ( )
ν

  ≤  1 1 1 1 12
0

2
2

0
π





 ( ) ≤ 



 π

( + ) ( )
π π

∫ ∫ω ν
ν

ω
ν

νν νu J u du u J u du

≤  ω
ν

ν
ν

ν
ν

ω
ν2

2
2

2 2
1 2 2 5 1

2
16 1





π + +





< 





. ,

as required. 
Further, by using relations (2.1), (2.2), and (1.3), we get 

Tn ( t ) =  
a

a kt b ktk k k
k

n
0

12
1+ ( − )( + )

=

′

∑ λ cos sin

=  
a

j a kt b kt T f tk k k
k

n

J n

0

12 1
2

+ ( + ) = ( )
=

′

∑ +





cos sin ; . (2.1′ )

Hence, by virtue of the properties of the Jackson integral (2.6) and (2.6′ ) and the facts

that  ω ( t ) ↑,  ω2 ( t ) ↑,  ω ( n t )  ≤  n ω ( t ),  and  ω2 ( n t )  ≤  n2
 ω2 ( t ),  we obtain 

f t T tn( ) − ( )   ≤  f t T t
n n

f
nJ n

( ) − ( ) ≤
[ ] +







≤ 



 ≤ 



[ ]+/ /

;
2 1

6
1
2 1

6
2

12
1ω ω ω (2.7)

and, similarly,

f t T tn( ) − ( )   ≤  16
2

64
1

2 2ω
ν

ω



 ≤ 



f

n
; . (2.7′ )

Thus, the theorem is proved for the analyzed case. 

Note that if an absolutely continuous function  ϕ  with period  2π   almost everywhere

possesses the derivative  ϕ′ ( t )  satisfying the inequality

′( )ϕ t   ≤  M, (2.8)

then, according to Theorem 3.2.1, the following estimate is true for its first modulus of
continuity: 

ω ( ϕ; t )  ≤  M t. (2.9)

Hence, in view of inequality (2.7), this function admits the estimate 

ϕ ϕ( ) − ( ) ≤
[ ]+

t T t
n

MJ n /
;

2 1

12
, (2.10)

which is valid for all  n  =  1, 2, … . 
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2. By induction, we assume that Lemma 2.1 is true for the spaces  C̃0 , C̃1, …  , C̃r ,

r  ≥  0.  Further, suppose that  f ∈ C̃r +1  and, hence,  f ′  ∈ C̃r .
Note that, in view of relation (2.1) and the formula 

f ′ ( t )  ∼  ( + ′)
=

∞

∑ a kt b ktk k
k

cos sin
1

,

we can write 

d
dt

 Tn ( f ; r; t )  =  Tn ( f ′; r; t ).

Thus, following [Natanson (1952)], by virtue of inequality (2.4), we conclude that 

( ( ) − ( ) ′)f t T f r tn ; ;  – ′( ) − ( ′ )f t T f r tn ; ;   ≤  M f n nr
r r( )( + ) −1 ; ,

whence, in view of relations (2.10) and (2.5), we get 

f t T f r t T f T f r tn J nn
( ) − ( ) − − ( ⋅)

[ ]+
[ ]; ; ; ; ;

/2 1

≤  
12 1

1
1 1

n
M f n n M f n nr

r r
r

r r( ) = ( )( + ) −
+

( + ) − −; ;

and, hence, the required inequality 

f t T f r tn( ) − ( + ); ;1   ≤  M f n nr
r r

+
( + ) − −( )1

1 1;

because, by virtue of relations (2.1) and (2.1′ ) and the formula  1 – jk  =  λk ,  one can eas-
ily see that 

T f r t T f T f r tn J nn
( ) + − ( ⋅)

[ ]=
[ ]; ; ; ; ;

/2 1

=  
a

a kt b ktk
r

k k
k

n
0 1

12
1+ ( − )( + )+
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′

∑ λ cos sin   +  
a

j a kt b ktk k k
k

n
0

12
+ ( + )

=

′

∑ cos sin

–  
a

j a kt b ktk k
r

k k
k

n
0 1

12
1+ ( − )( + )











+

=

′

∑ λ cos sin

=  
a

a kt b ktk
r

k k
k

n
0 2

12
1+ ( − )( + )+

=

′

∑ λ cos sin   =  Tn ( f ; r + 1; t ). (2.11)
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Thus, the Jackson theorem is proved for the functions from the class  C̃r +1  and, the-

refore, for all classes  C̃r ,  r  =  0, 1, 2, … . 

�

Let  MW Hr ˜ α ,  0 < α < 1,  and  MW Zr ˜   be the classes of functions  f ∈  C̃   such that

ω( )f t,   ≤   Mtα   and  ω2( )f t,   ≤   t,  respectively, and denote  MH̃α  : = MW H0 ˜ α   and

H̃α  : = 1 H̃α .

Corollary 2.1.  If  f ∈ MW Hr ˜ α ,  0  <  α  <  1,  r  =  0, 1, 2, … ,  then,

f t T f r tn( ) − ( ); ;   ≤  
cM

nr +α ,      c  =  c ( r )  =  const, (2.12)

and if  f ∈ MW Zr ˜ ,  then

f t T f r tn( ) − ( ); ;   ≤  
cM
nr +1 ,      c  =  c ( r )  =  const, (2.12′ )

where  Tn ( f ; r; t )  is the trigonometric polynomial of degree  n  given by relation (2.1).

As the second corollary of Theorem 2.1, we present the well-known Dini – Lipschitz
criterion of uniform convergence for the Fourier series:

Corollary 2.2.  If a continuous  2π-periodic function  f  belongs to the Dini – Lipschitz
class 




i.e.,    ω ( f ; t )  =  o
t

1
ln





     as   t → 0 


,

then its Fourier series uniformly converges to  f.

Indeed, the validity of this assertion follows from the facts that, first, 

f t S f tn( ) − ( );   ≤  4
4

2+
π







( )
lnn

E fn (2.13)

by virtue of Theorem 2.3.1 [Lebesgue inequality (2.3.4)] and, second, 

En ( t )  =  o
t

1
ln







in view Theorem 2.1 and the conditions of the corollary. 
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Remark 2.1.  By analogy with the proof of the second part of the Jackson theorem, one
can easily establish the following somewhat more general assertion: 

Theorem 2.2.  Let  An  be a linear polynomial operator given in the space  C̃   and as-

sociating every function  f ∈ C̃   with Fourier series of the form 

f ( t )  ∼  
a

a kt b ktk k
k

0

12
+ ( + )

=

∞

∑ cos sin (2.14)

with a polynomial of degree  n  of the form 

An ( f ; t )  =  
a

a kt b ktk k k
k

n
0

12
1+ ( − )( + )

=
∑ λ cos sin . (2.15)

Further, let

sup ;
ϕ

ϕ ϕ
∈

− ( ⋅)
H

nA   : =  �n  =  � ( An ) (2.16)

so that  ϕ ϕ( ) − ( )t A tn ;   ≤  M �n   for  ϕ ∈ MH̃1.

Then the following inequality is true for any integer  r  ≥ 0  and any function  f ∈  C̃r

with Fourier series of the form (2.14): 

f t
a

a kt b ktk
r

k k
k

n

( ) − − ( − )( + )+

=
∑0 1

12
1 λ cos sin   ≤  

  
f A fr

n
r

n
r( ) ( )− ( ⋅); � . (2.17)

Proof.  For  f ∈ C̃   =  C̃0   (i.e., for  r  =  0),  inequality (2.17) is obvious.  Thus, we as-

sume that it is true for the classes  C̃   =  C̃0 , C̃1, … , C̃r ,  where  r  ≥  0,  and prove its va-

lidity for  f ∈ C̃r +1.  Indeed, by setting 

ϕ ( t )  =  f t
a

a kt b ktk
r

k k
k

n

( ) − − ( − )( + )+

=
∑0 1

12
1 λ cos sin ,

in view of the facts that  f ′ ∈ C̃r   and the Fourier series of the function  f ′  is obtained as a
result of the term-by-term differentiation of the Fourier series of the function  f ,  by virtue
of (2.17), we find 
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′( )ϕ t  ≤  ′( ) − ( − )( + ′)+

=
∑f t a kt b ktk

r
k k

k

n

1 1

1

λ cos sin

≤  f A fr
n

r
n
r( + ) ( + )− ( ⋅)1 1 ; � ,

whence we get  ϕ ∈ MH̃1,  where 

M  =  
  

f t A f tr
n

r

C n
r( + ) ( + )( ) − ( )1 1 ; �

and, therefore, relation (2.16) implies that 

ϕ ϕ( ) − ( )t A tn ;   =  f t
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a kt b ktk
r

k k
k

n

( ) − − ( − )( + )+

=
∑0 1

12
1 λ cos sin

–  ( − ) ( + )+

=
∑ 1 1

1

λ λk k
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k k
k

n

a kt b ktcos sin

=  f t
a

a kt b ktk
r

k k
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( ) − − ( − )( + )+

=
∑0 2

12
1 λ cos sin

≤  M �n  =  
  

f A fr
n

r
n
r( + ) ( + ) +− ( ⋅)1 1 1; � .

This means that inequality (2.17) is also true in the case where  f ∈ C̃r +1.
Theorem 2.2 is thus proved. 

Note that Stechkin generalized Theorem 2.1 to the case of moduli of continuity of or-
der  k  for all  k  ≥  3. 

Theorem 2.3 [Stechkin (1951a)].   Let a natural    k   be given.  For any natural   n    and

any continuous  2π-periodic function  f,  one can always find a trigonometric polyno-
mial  Tn ( f ; ⋅ )  of degree  n  such that 

f t T f tn( ) − ( );   ≤  c f
nkω ;
1



 , (2.18)

where  c  is a constant depending only on  k. 
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Proof.  We set 

Tn ( f ; t ) : =  − (− )
π

(− )




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( + ) ( )−
′
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f t j J dτ τ τ,
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1
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( ) − (− ) ( ) ( )[ ] ′
− π

π

∫ f t f t J dk k
l n∆τ τ τ; , ,

where the natural number  l  is chosen to guarantee the validity of the inequality  k  ≤  2l – 2

and  n′  =  n
l






  +  1  is such that  Tn ( f ; t )  is a trigonometric polynomial of degree 

l ( n′ – 1 )  =  l n
l






  ≤  n.

Then 
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∫1 k
k

l nf t J d∆τ τ τ,

and

f t T f tn( ) − ( );   ≤  1
π

( ) ( )′
− π

π

∫ω τ τ τk l nf J d; , .

By using the properties of the  k th moduli of continuity and equality (2.3.37), we ob-
tain

1 1 1 1
π

( ) ( ) ≤
π

′ +( )
′





 ( )′

− π

π

− π

π
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k l nf J d n f
n

J d; ;, ,
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n

c f
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n

c f
nk k k1 1 2

1 1ω ω ω; ; ;
′





 ≤ 



 ≤ 





and, hence, 

f t T f tn( ) − ( );   ≤  c f
nkω ;
1



 .

Theorem 2.3 is thus proved. 
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In conclusion, we present two more theorems on the approximation of continuous
functions. 

Theorem 2.4 [Stechkin (1951b)].  If  f ∈ C̃ ,  then, for any  n  =  1, 2, … ,

f t R f tn( ) − ( );   ≤  c f
n

ω2
1

;



 , (2.19)

where  Rn ( f ; ⋅ )  are the Rogosinski polynomials for the case  γ n   =   π
2n

  and   c   is an

absolute constant. 

Proof.  Since 
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2π
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and, by virtue of the Jackson theorem for the polynomial  Tn
*  of the best approximation
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≤  c f
n1 2
1ω ;



   +  1

2
64 1 64 1

2 2π
( ) 



 + 





− π

π

∫ R t dt f
n

f
nn ω ω; ;

≤  c f
n

ω2
1

;



 .

Theorem 2.4 is proved.

Theorem 2.5.  If  f ∈  C̃ ,  then, for any  n  =   1, 2, …  and  n′  >  n  such that  n′ – n  ≥  

ε n, 

f t V f t E fn
n

n( ) − ( ) ≤ +



 ( )′ ; 1 2

ε
, (2.20)

f t V f t E f E fn
n

n n( ) − ( ) ≤ +
π





 ( ) < ( )2 4

3
2 3 5

2
; , (2.20′ )

and

f t V f t E fn
n

n( ) − ( ) ≤
π

+



 ( )3 4 1; , (20′′ )

where  V f tn
n′( );   are the de la Vallée Poussin polynomials formed by using the kernels

of the form (2.3.10). 

By virtue of relations (2.3.11), (2.3.13), and (2.3.13′ ), this theorem follows from in-

equality (2.3.10′′ ). 





Chapter 6
Inverse theorems on the approximation

of periodic functions

1.  Theorems on evaluation of the absolute value
of the derivative of a polynomial

1.  The problem of evaluation of the absolute value of the derivative of a polynomial via
its values plays an important role in numerous fields of mathematical analysis.  In what
follows, we present some results of evaluation of the absolute value of the derivative for
trigonometric and algebraic polynomials given on the real axis. 

Theorem 1.1 (Bernstein inequality [Bernstein (1912)]).1  If the absolute value of a trigo-
nometric polynomial  T n  of degree  n   which takes real values on the real axis is

bounded by a number  M,  then its derivative is bounded by the number  n M,  i.e.,

max
t

nT t( )   ≤  M  ⇒  max
t

nT t′( )   ≤  n M. (1.1)

This inequality is exact in a sense that the number   n  on the right-hand side of (1.1)
cannot be replaced by any other smaller number. 

Proof.  The proof is based on the comparison of the plot of the polynomial  Tn  with the

plot of an auxiliary function  T tn
*( )   =  M cos ( n t + α  )  and the evaluation of the number of

zeros of the difference  Tn  –  Tn
*.2

Assume the opposite, i.e., that the inequality  ′( )T tn 0   >  n M  holds at a certain point
t0  instead of the Bernstein inequality (1.1) and, at the same time,  T tn( )0   ≤   M.  In this

case, for any  c ∈ ( – ∞, ∞  ),  this inequality is also true for each polynomial  ± Tn ( t – c )  at

the point  t0 + c.  In view of this fact, we can assume, without loss of generality, that the

polynomial  Tn ( t )  and the point  t0  satisfy the conditions 

Tn ( t0 )  =  M cos n t0 ,     t0 ∈ − π



n

, 0 ,     ′( )T tn 0   >  n M. (1.2)
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Relations (1.2) imply that 

′( ) − [ ] =T t d
dt

M ntn n t0 0
cos   >  0.

Therefore, in view of the fact that  Tn ( t )  ≤  M,  we conclude that the plot of the function

Tn  crosses the increasing branch of the cosine curve  M cos n t  which passes through the

point  ( t0 , M cos n t0 )  at at least three points.  Moreover, it crosses each of the remaining
2n – 1  branches at least once (counting the double zeros).  Therefore, the polynomial

Tn ( t ) – M cos n t  must have at least  2n + 2  zeros in the period  ( – π, π  ]  but this is im-

possible because  Tn ( t )  �  M cos n t  by virtue of inequality (1.2).

The fact that the constant  n  on the right-hand side of inequality (1.1) cannot be made

smaller is established by analyzing an example of the polynomial  Tn ( t )  =  cos nt.
This proves Theorem 1.1. 

�

Remark 1.1 (van der Corput and Schaake).  The proof presented above shows that we ar-
rive at a contradiction not only in the case where inequality (1.2) is satisfied but also if the
following weaker inequality is true: 

′( ) > [ ] = = − ( )T t d
dt

M nt Mn nt n M T tn t n0 0
2 2

00
cos sin .

Therefore, inequality (1.1) can be replaced by a more exact inequality 

max
t

nT t( )   ≤  M  ⇒  ′( )T tn   ≤  n M T tn
2 2− ( ) . (1.1′ )

Later, the Bernstein inequality (1.1) was somewhat strengthened in a different direc-
tion:

Theorem 1.1′′′′ [Stechkin (1958)].  The inequalities

max
sin

max ;
t

n
r r

t
h
r

nT t n
nh T t( )( ) ≤ 





( )

2
2

∆ ( ˜)1.1

hold for the derivatives of any trigonometric polynomial of degree  n  with any natural

 r  and any  h ∈ 0 2, π



n

  and, in particular,

T
n

Tn
r r

n
r

n
( )

π≤ 



 ( ⋅)

2
∆ / ;  .† ( ˜ )1. ′1

† For the case  h = π / n,  this inequality was simultaneously established by Nikol’skii [Nikol’skii (1948)]. 
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Proof.  First, we consider the case  r = 1  and choose a point  t0  and a number  L  such
that the following equalities are true: 

′ = ′( )T T tn n 0   =  L. (1.3)

For the sake of definiteness, we assume that  ′( )T tn 0   =  L.  By using the same argument as
in the proof of Theorem 1.1, we conclude that the inequality 

′( + )T tn 0 τ   ≥  L cos n τ (1.4)

holds for all  τ ∈ − π π



n n

,   [in the opposite case, the difference  ′( + )T tn 0 τ  – L cos nτ  would

be a trigonometric polynomial of degree  n  not identically equal to zero with at least

2n + 1  zeros in the period: a double zero at the point  τ = 0  and  2n – 1  more zeros]. 

Integrating inequality (1.4) from  – h / 2  to  h / 2,  we get 

T t h T t h L
n

nh
nn n0 02 2

2+



 − −



 ≥ sin .

By virtue of relation (1.3), this yields 

′ = ≤ ( ) ≤ ⋅T L
n

nh T t
n

nh Tn h n h n
2

2
2

2

0
sin

˙

sin
,∆ ∆ .

We proceed by induction.  Assume that inequality ( ˜)1.1  is true for all derivatives up

to the  rth degree  ( r  ≥  1 ),  inclusive.  As a result, in the next step, we get 

∆ ∆h
r

n h
r

n nT T h T+ ⋅ = (⋅ + ) − (⋅)[ ]1 ,   ≥  
2

2
sin nh

n
T h T

r

n
r

n
r









 (⋅ + ) − (⋅)( ) ( )

=  
2

2
2

2

1

1
sin

,
sinnh

n
T

nh

n
T

r

h n

r

n
r









 ⋅ ≥











+

( + )∆ .

This means that Theorem 1.1′ remains true in the case where the  ( r + 1) th  derivative
is involved. 

This completes the proof of Theorem 1.1′. 

�

Note that, since  ∆π/n
r

nT   ≤  2r
nT ,  inequality ( ˜ )1. ′1  immediately  yields (1.1). 
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Corollary 1.1 (Bernstein inequality).  If an algebraic polynomial  Pn  of degree  n  sat-

isfies the inequality

P xn( )   ≤  M (1.5)

on the segment  [ – 1, 1 ] ,  then its derivative  ′( )P xn   satisfies the inequalities 
3

′( ) ≤ − ( )

−
≤

−
P x

n M P x

x

nM

x
n

n
2 2

2 21 1
 (1.5′ )

at any point  x ∈ ( – 1, 1 ). 

Indeed, for a given algebraic polynomial  Pn ,  we construct the trigonometric polyno-

mial  Tn ( t ) : = Pn ( cos t ).  It is clear that the degree of the polynomial  Tn  also does not ex-

ceed  n.  Thus, by virtue of inequality (1.1′ ), we get 

′( ) ≤ ′( ) ≤ − ( )T t P t t n M P tn n ncos sin cos2 2 .

Further, we set  cos t  =  x  and arrive at inequality (1.5′ ). 
In exactly the same way as in the proof of inequality (1.1), we establish the following

assertion: 

Theorem 1.2 (Chebyshev).  If an algebraic polynomial  Pn  satisfies the inequality

P xn( )   ≤  M,      x ∈ [ – 1, 1 ], (1.6)

on the segment  [– 1, 1],  then, for all  x ∉ [ – 1, 1 ], 

P xn( )   ≤  M Tn ( x )  =  M cosh n arccosh x ,      x ∉ [ – 1, 1 ]. (1.6′ )

In order to check the validity of this inequality, it suffices to take into account the fact
that, by virtue of condition (1.6), the polynomial  Pn  crosses each of the  n  branches of the

Chebyshev polynomial  M Tn  at least once on the segment  [ – 1, 1 ]  and that the number

of intersections of this sort becomes greater than  n  if inequality (1.6′ ) does hold at at

least one point  x0 ∉ [ – 1, 1 ]. 
Note that the right-hand side of inequalities (1.5′ ) behaves well at points distant from

the ends of the segment  [ – 1, 1 ]  but this is not so as  x   →   1.  In this case, the so-called
Markov inequality seems to be more useful. 
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Theorem 1.3 [A. A. Markov (1884)].  If an algebraic polynomial  Pn  of degree  n   is

bounded in the absolute value on the segment  [– 1, 1]  by a number  M ,  then its deriv-
ative  ′( )P xn   is bounded by the number  M n2  for all  x ∈ [ – 1, 1 ],  i.e., 

max
,x

nP x
∈[− ]

( )
11

  ≤  M  ⇒  ′( )P xn   ≤  M n2,      x ∈ [ – 1, 1 ]. (1.7)

Proof.  If  x ∈ − π π





cos , cos
n n

,  then inequality (1.5) implies that 

′( ) ≤
−

≤ π <P x
nM

x

nM

n

n Mn
1 2

2

sin
.

In order to check the validity of inequality (1.7) for 

x  ∈  − − π



1, cos

n
 ∪ cos ,

π



n

1 , 

we assume (by contradiction) that the inequality  ′( )P xn 0   >  M n2  holds, e.g., at a point 

x0  ∈  cos ,
π



n

1 .

In this case, we compare the plot of the polynomial  Pn  with the plot of the polynom-

ial  M Tn ( x – c )  =  M cos n arccos ( x – c ),  where  c  is chosen so that the rightmost branch

of the Chebyshev polynomial  M Tn ( x – c )  passes through the point  (x0 , Pn ( x0 )).  Then

one can easily show that the plot of the polynomial  Pn  passes through the rightmost (in-

finite) branch of the polynomial  M Tn ( x – c )  at at least two points (even at three points if

c > 0),  and for  c ≤ 0  it crosses each of the remaining  n – 1  branches at at least one
point;  for  c > 0,  it crosses  n – 2  branches of the remaining ones .   Therefore, the poly-

nomial  Pn ( x )  –  M Tn ( x – c )  of degree  n  must have at least  n + 1  zeros, which is im-
possible. 

Theorem 1.3 is thus proved. 

�

Note that if the conditions of this theorem are satisfied, then as a result of its succes-
sive application, we find 

P x Mn n n jn
j( )( ) ≤ ( − ) … ( − + )2 2 21 1 ,      j  =  1, 2, … , n,

It turns out that, for  j  >  1,  the quantity appearing on the right-hand side can be made
smaller.  The best (unimprovable) estimate was established by V. A. Markov:
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Theorem 1.3′′′′ [V. A. Markov (1892)].  The estimate

P x MTn
j

n
j( ) ( )( ) ≤ ( )1 , (1.7′ )

where  Tn ( x )  =  cos n arccos x,  is true under the conditions of Theorem 1.3.

In particular, for  j  =  n,  this estimate gives  P x M nn
n n( ) −( ) ≤ 2 1 !.

Theorem 1.4 [Dzyadyk (1971a)].  Let  D  be a convex domain and let  Pn
*

  be an alge-
braic polynomial of degree   n  all zeros of which are located in  D .  I f, for all  z  lo-
cated on the boundary  ∂D  of the set  D,  a polynomial  Pn  of degree  n  satisfies the

inequality 

P zn( )   <  P zn
* ( ) ,      z ∈ ∂D, (1.8)

then, for all  z ∈ ∂D,  the absolute value of its derivative satisfies the inequality 

′( )P zn   <  ′( )P zn
*

,      z ∈ ∂D .† (1.9)

Proof (see [Dzyadyk (1971a)] and [Meiman (1952)]).  Assume the contrary, i.e., that the
inequality 

′( )P zn 0   >  ′( )P zn
*

0 (1.10)

contradicting (1.9) is true at a certain point  z0 ∈ ∂D.  Without loss of generality, we can
assume that 

(a) the origin of coordinates  O ∈ D
 
; 

(b) the point  z0  lies on the positive side of the 
 
OX-axis; 

(c) the vector   l  with origin at the point  z0  and end at a point  z 0 + i  is located out-
side  int D. 

These conditions are satisfied as a result of transformations of the form  z̃   =  z
 
eiα + b

(rotation and translation) that do not violate the conditions of Theorem 1.4.  In addition,

 † In the case where  D  is a circle, this theorem was proved by Bernstein [Bernstein (1930)] by a different

method. 
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since, parallel with  P n ,  the polynomial  eiγ Pn  also satisfies the conditions of Theo-

rem 1.4 for any  γ ∈ [ – 1, 1 ],  we can assume that  arg ′( )P zn 0   =  0. 

If we now move along the vector  l  from the point  z0  to a sufficiently close point  z′
and take into account both the Taylor formula and relation (1.10), then we get 

∆ : =  [ ] [ ]( ′) − ( ′) − ( ) − ( )P z P z P z P zn n n n
* *

0 0

=  ( ′ − ) ′( ) − ′( ) + ′ −( )[ ]z z P z P z O z zn n0 0 0 0
2*

, (1.11)

Arg ∆ =  arg arg
*( ′ − ) + π + ′( ) − ′( ) + ( )[ ]z z P z P z on n0 0 0 1

=  π + π + + ( ) + π = π + + ( ) + π
2

1 2 3
2

1 2r o k r o k ,    k  =  0, ± 1, … , (1.12)

where  r   <  π
2

.

This means that, as a result of the transition along  l  from the point  z0  to the point

z′,  the argument of the polynomial  πn ( z )  : =  P z P zn n
* ( ) − ( )  decreases.  But this is im-

possible because, by virtue of the Rouche theorem, all zeros of the polynomial  πn  belong

to the domain  D  and, hence, in view of its convexity, the argument of the polynomial
must increase as we move along  l. 

Thus, we arrive at a contradiction with inequality (1.10).  Finally, we note that the

sign of equality in (1.9) is also impossible because, in this case, the polynomial  P̃ zn( )  : =

( 1 + ε ) Pn ( z )  would satisfy inequalities (1.8) and (1.9) for sufficiently small  ε  >  0. 
Theorem 1.4 is proved. 

�

Remark 1.1.  If the requirement of convexity of the domain is not satisfied, then the as-
sertion of Theorem 1.4 is, generally speaking, not true.  To prove this, we consider a non-
convex domain  D0  bounded by a lemniscate 

z2 1−   =  1  +  1
25

(1.13)

and the following polynomials: 

P z2
* ( )  =  z2  –  1      and      P2 ( z )  =  z

2
.
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It is easy to see that both zeros  ± 1  of the polynomial  P2
*

  are located inside the do-

main  D0  and the following inequality is true for all  ξ ∈ ∂D0 : 

P z2( )   <  P2
* ( )ξ .

At the same time, at the point  ξ 0  =  i
5

 ∈ ∂D0 ,  we have the opposite inequality 

P P2 0 2 0
1
2

2
5

* *( ) = > ′( ) =ξ ξ .

Remark 1.2.  It is easy to see that the assertion of Theorem 1.4 is true not only for poly-

nomials but also for all functions  f
*

  and  f  analytic in  D ,  continuous on  D ,  and sat-
isfying the conditions 

arg *[ ]( ) − ( ) ↑f z e f ziα      for all    α ∈ [ 0, 2π ] (1.14)

and 

f z f z( ) < ( )*      for all    z ∈ ∂D. (1.15)

Note that Theorem 1.4 yields the following assertion: 

Theorem 1.5 [Bernstein (1926)].  If an algebraic polynomial  Pn  of degree  n  satisfies

the inequality

Pn   ≤  M (1.16)

on the circle  z   ≤  1,  then its derivative satisfies the inequality 

′( )P zn   ≤  n M (1.17)

at all points of this circle. 

Indeed, the circle  K  : =  {z :  z   ≤  1}  is a convex domain and, for any  z ∈  ∂K  and

ε > 0,  we have  P zn( )   <  P zn
*

,( )ε ,  where  P zn
*

,( )ε   : =  ( 1 + ε ) M zn  and all its  n  zeros lie
in  int K.  Therefore, 
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′( ) < ′( )P z P zn n
*

,ε   =  ( 1 + ε ) n M

for any  z ∈ ∂K.  In view of the arbitrariness of  ε,  this yields inequality (1.17). 

2.  Theorem 1.6 (on the estimation of intermediate derivatives).4  If, for any natural  k,

the function  f  is absolutely continuous on a segment  [ a, b  ]  together with all its de-
rivatives up to the  order  k – 1,  inclusive, and, moreover,

max
,x a b

f x
∈[ ]

( )   : =  M0  <  ∞     and     essup
,x a b

kf x
∈[ ]

( )( )   : =  Mk  <  ∞, (1.18)

then its derivatives  f j( ) ,  j  =  1, … , k – 1,  satisfy the inequalities 

max
,x a b

j
kj

jf x A M
∈[ ]

( )( ) ≤ 0τ      and    τ  : =  max ;
/

2

0

1

b a

M

M
k

k

−














, (1.19)

where

Ak j  =  const  ≤  T
k k jk

j( )( ) +



 +

( − )
1 1 1 1

! !
.

Proof.  If  Mk  =  0,  then the function  f  is the polynomial  Pk – 1  of degree  k – 1.  Hence,

by setting  x  =  
a b b a

t
+ + −
2 2

  and 

ˆ :P t P
a b b a

tk k− −( ) = + + −



1 1 2 2

,      t ∈ [ – 1, 1 ],

we conclude that, according to Theorem 1.3′ (Markov), the inequalities 

P̂ t M Tk
j

k
j

−
( ) ( )( ) ≤ ( )1 0 1

hold for all  t ∈ [ – 1, 1 ]  and  j  =  1, … , k – 1  and, hence, the inequalities 

P x M
b a

Tk
j

j

k
j

−
( ) ( )( ) ≤

−




 ( )1 0

2 1 (1.19′ )

hold for all  x ∈ [ a, b ]  and  j  =  1, … , k – 1.  This proves that inequality (1.18) is true in

the analyzed case with constant  Tk
j( )( )1 . 
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For  Mk  >  0  and any point  x0 ∈ [ a + h,  b – h ] ,  where 

h  =  1
τ

  =  min ;
/

b a M

M k

k− 











2

0
1

,

we can represent the function  f  by using the Taylor formula with remainder  rk  as fol-
lows: 

f ( x )  =  Pk – 1 ( x; x0 )  +  rk ( x; x0 ), (1.20)

where

Pk – 1 ( x; x0 )  =  
f x

j
x x

j
j

j

k ( )

=

− ( ) ( − )∑ 0
0

0

1

!
,

(1.20′ )

rk ( x; x0 )  =  1
1

1

0
( − )

( − ) ( )− ( )∫k
x t f t dtk k

x

x

!
.

In view of relations (1.20′ ) and (1.18), equality (1.20) implies that the following in-

equality holds on the segment  [ x0 – h,  x0 + h ]  for the polynomial  Pk – 1 ( x; x0 ): 

P x xk − ( )1 0;  ≤  f x( )   +  1
1

1

0
( − )

( − ) ( )− ( )∫k
x t f t dtk k

x

x

!

≤  M
M

k
h M

k
k k

0 0 1 1+ ≤ +



! !

.

According to (1.19′ ), this yields, in particular that, for any  x0 ∈  [ a + h, b – h  ]  and

x ∈ [ x0 – h, x0 + h ],  we have 

P x x A M
h

A Mk
j

kj

j

kj
j

−
( ) ( ) ≤ 



 =1 0 0 0

2
2

; ˜ ˜ τ , (1.21)

f x P x x A Mj
k

j
kj

j( )
−

( )( ) = ( ) ≤0 1 0 0; ˜ τ , (1.21′ )

where 

˜
!

A T
kkj k

j= ( ) +





( ) 1 1 1 ,      j  =  1, 2, … , k – 1.
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In order to prove a similar inequality for all  x ∈  [  a, b ] ,  we demonstrate its validity,

e.g., for  x ∈ [ b – h,  b ].  In this case, by setting  x0  =  b – h  and taking into account in-
equality (1.21), we obtain 

f x P x x
k j

x t f t dtj
k

j k j k

x

x
( )

−
( ) − − ( )( ) = ( ) +

( − − )
( − ) ( )∫1 0

11
1

0

;
!

≤  P x x
M

k j
x xk

j k k j
−

( ) −( ) +
( − )

( − )1 0 0;
!

≤  Ã Mkj
j

0 τ   +  
M

k j
T

k k j
Mk

k j k
j j

( − )
≤ ( ) +



 +

( − )




−

( )

! ! !
1 1 1 1 1

0τ
τ .

Note that, at the points  x  located far from  a  and  b,  this inequality can be signifi-

cantly improved.  Thus, e.g., on the segment  [ – 1, 1 ] ,  for  x0  =  0  and any  x ∈ [  – h, h ] ,
we get 

P xk − ( )1 0;   ≤  M
k0 1 1+



!

 

and, hence, 

′( ) = ′ ( ) ≤ +



 ( − )−f P M

k
kk0 0 0 1 1 11 0,

!
τ

by virtue of (1.20′ ) and the Bernstein inequality (1.5′ ). 

Theorem 1.7 (Kolmogorov inequality [Kolmogorov (1938)]). Assume that f : R1 →  R1 ∈
Wr,  i.e., that the function  f  is bounded in  R1  and possesses, for some natural  r  ≥ 2, 
absolutely continuous derivatives up to the (r – 1) th order, inclusive;  the  r th deriva-

tive of the function  f  is bounded for almost all  x ∈ R1.  Moreover, let

B0  =  B0 ( f )  : =  sup
x R

f x
∈

( )
1

     and     Br  =  Br ( f )  : =  ess sup
R

rf x
1

( )( ) .

Then, for any natural  j ∈ (  0, r ),  the derivative  f j( )   is also bounded and satisfies
the inequality 

Bj  =  Bj ( f )  : =  sup /
/ /

x R

j r j

r
j r

j r
r
j rf x

M

M
B B

∈

( ) −
−

−( ) ≤
1 1 0

1 , (1.22)
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where  Mν ,  ν  =  1, 2, … ,  are constants given by the formulas 

Mν   : =  4 1
2 1

1

1
0π

(− )
( + )

( + )

+
=

∞

∑
k

k k

ν

ν . (1.23)

Inequality (1.22) is exact in a sense that the constant factor   
M

M
r j

r
j r
−

−1 /   cannot be re-

placed by a smaller quantity.4

Proof.  The unimprovability of inequality (1.22) follows from the fact that, for the func-
tion 

f x
k t r

k r
k

°
+

=

∞
( ) =

π

( + ) − π





( + )∑4
2 1

2
2 1 1

0

sin
,

we get 

f x
k t

r j

k
j

r j
k

( )°
+ −

=

∞
( ) =

π

( + ) − − π





( + )∑4
2 1

2
2 1 1

0

sin
,

f x
k t

k
r

k

( )°

=

∞
( ) ∼

π
( + )

+∑4 2 1
2 10

sin
  ∼  sgn sin t

and, according to relation (1.23),

B0  =  
4 2 1

2
2 1 1

0π

( + ) ⋅ − π





( + ) +
=

∞

∑
sin k

r

k r
k

  =  Mr  ,      Bj  =  Mr  – j ,      Br  =  M0  =  1.

Thus, it is easy to see that inequality (1.22) turns into the equality for the function  f
°
. 

We now prove inequality (1.22).  Since the function  fc ( x )  : =  C1 f ( C2 x )  belongs to

the class  Wr  together with the function  f  for any  C j   =  const,  j  =  1, 2,  and satisfies the

equality  Bj ( fc )  =  C B Cj
j

1 2 ,  the validity of inequality (1.22) for the function  f  yields

its validity for the function  fc ,  and vice versa.  For this reason, from the very beginning,
we choose constants  Cν  for which the following equalities are true: 
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B0 ( fc )  =  B f0( )°
  =  Mr  ,      Br ( fc )  =  B fr( )°

  =  M0  =  1,

and, for any  ε > 0,  one can find points  xε  such that 

f xc
j( )( )ε   =  f xc

j( )( )ε   >  Bj ( fc )  –  ε.

We now set  fc ( x )  =  f ( x ).  First, we establish the validity of inequality (1.22) under the

assumption that the function  f  is periodic with period  2π ν,  where  ν  is an arbitrary natu-
ral number, for  j  =  1.  By contradiction, we assume that inequality (1.22) is not true and

compare the function  f ( x – c )  : =  f̂ x( ) ,  where  c  is a constant, with the function  f x
° ( )

for which this inequality definitely holds.  This yields 

B f B f f x
x

1 1
0 2

( ) > ( ) = ′( )°

∈[ π]

°ˆ sup
,

.

Hence, by the proper choice of the constant  c,  one can find at least one point  x°   such
that

f̂ x f x( ) = ( )° ° °       and      ˆ ′( ) > ′( )° ° °f x f x   >  0.

In this case, since  f̂ x( )   ≤  f
°

,  the plot of the function  f̂   in a certain half inter-

val  [ a, a + 2ν π )  containing the point  x°   and  2ν  branches of the function  f°   must

cross the increasing branch of the function  f°   that passes through the point  ( )° ° °( )x f x,   at

at least three points, and each of the remaining  2ν – 1  branches of the function  f°   is

crossed at least once.  Hence, the difference  f°  – f̂   must have at least  2ν + 2  zeros in

the interval  [ a, a + 2ν π ) .  For sufficiently small  ε > 0,  this assertion is also true for the

difference  f°  – fε ,  where  fε ( x )  : =  ( − ) ( )1 ε f̂ x .  Thus, in view of of the fact that the

function  f̂  – fε  is continuous together with its derivatives up to the  (r – 1)th order, in-

clusive, and periodic with period  2νπ,  we conclude that the difference  f r( − )° 1  – f r
ε
( − )1

must have at least  2ν + 2  zeros in the interval  [ a,  a + 2νπ ]  and, hence, at least two

zeros  ξ 1  and  ξ 2  in at least one half interval  Ij  : = [ a + j π,  a + j π + π  ).  Thus, in view of

the fact that the function  f r( − )° 1
  is linear in  Ij  and  | |f xr( )° ( )   =   1  for any  x ∈  int Ij  ,

there exists at least one segment  [ ′ ′ ]ξ ξ1 2,  ⊂ ( ξ1 , ξ2 ),  ′ξ2   >  ′ξ1,  such that 
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f f fr r r
ε ξ ε ξ ξ( ) ( ) ( )( ) = ( − ) ( ) ≥ ⇒ ( ) >1 1 1  =  Br ( f ),     ξ ∈ [ ′ ′ ]ξ ξ1 2, ,

at all points  ξ  of this segment, which is impossible.  This contradiction proves that the

inequality  B1 ( f )  ≤  B f1( )°   is indeed true.  After this, in exactly the same way, we can
prove that 

B2 ( f )  ≤  B f2( )°
, … , Br – 1 ( f )  ≤  B fr−

°( )1 .

We now prove the theorem for an arbitrary function from  Wr.  To do this, we note

that, for any  δ > 0,  there exist a natural number  ν  =  ν  ( δ )  and a function  v ∈  Wr
 
+

 
1

such that  v ( x )  =  1  for  x   ≤  1,  v ( x )  =  0  for  x   ≥  π ν,    v( )x   ≤  1  for  x ∈  (  – ∞, ∞  ),
and  v( )( )j x   ≤  δ  for  x ∈ ( – ∞, ∞  )  and  j  =  1, 2, …  , r.  Thus, in view of the fact that,

according to Theorem 1.6,  Bj  ≤   3 1Tr
j( )( )   in the entire line, we find   v( ) ( )x f x   ≤   B0

and, hence, 

  

[ ]( ) ( ) = 



 ( ) ( )( ) ( ) ( − )

=
∑v vx f x

r

i
x f xr i r i

i

r

0

  ≤  B
r

i
B Br r i

i

r

r+ 



 = +−

=
∑δ ε

1

,

where  ε  =  ε ( δ )  as  δ → 0.  Therefore, if the function  v  f  is periodically extended onto

the entire line with period  2νπ,  then, by using the relation  v ( x ) f ( x )  =  1  for  x ∈ [ – 1, 1 ]
and the periodic case of Theorem 1.7 studied above, we arrive at the inequality 

  
f f x x

M

M
B Bj

x
j r j

r
j r

j r
r

j r( )
=

( ) −
−

−( ) = ( ) ( ) ≤ ( + )[ ]0 0 1 0
1v /

/ /ε ,   j  =  1, 2, … , r – 1. (1.24)

Since the numbers  δ  <  0  and, hence,  ε  =  ε ( δ )  >  0  can be made arbitrarily small, for

any  x0 ∈ (– ∞, ∞)  and any function  f ( x0 + ⋅ ) ∈  Wr,  we get  f xj( )( )0   on the left-hand

side of inequality (1.24) instead of  f j( )( )0 .  Thus, by passing to the limit as  δ  →  0,  we

establish the validity of inequality (1.22).  This completes the proof of Theorem 1.7. 

�

2.  On the estimates of errors of application of the method of grids
to the Chebyshev theory of approximation of functions

In a natural way, the results established above lead us to the analysis of the following
problem: 
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In Sections 5 and 6 of Chapter 1, we studied the algorithms of approximate construc-

tion of the polynomial  Pn
*  of the best approximation for a given function  f  on a certain

set  X.  Since, in the course of numerical calculations, it is, as a rule, impossible to take

into account the values of the function  f  at all points  x ∈ X,  the original problem is al-
most always replaced by a problem in which the values of the analyzed function are taken
into account not in the entire set  X  but at finitely many points  xk ,  k  =  1, 2, … , N,  of this

set (or, in other words, the values of  f  are taken into account on a grid).  This enables us

to find (with any desired degree of accuracy) the polynomial  P xn
0( )   = P f x xn i

N0
1( ){ }; ;

of the best uniform approximation of the function  f  only on the system of points  xk  but

not the required polynomial  Pn
*. 

Thus, it necessary to analyze the error  f Pn x
− 0   : =  E fn

( )0 ( )  of approximation of

the function  f ( x )  on  X  by the polynomial  Pn
0

  and compare it with the error  En ( f ) of ap-

proximation of this function by the polynomial  Pn
*. 

In the present section, we study the posed problem for a special choice of points  x1 ,
x2 , … , xN  in the following three cases: 

1)  f  is periodic and  X  =  [ 0, 2π ] ; 

2)  f  is given on  X  =  [ a, b ] ; 

3)  X  is the set of points of the unit circle and, generally speaking,  f  is a complex-
valued function. 

To do this, we need the following lemma:

Lemma 2.1 [Dzyadyk (1978)].  If, for some  t0 ∈ (– ∞, + ∞)  and  ∆ ∈ [ 0, ξ ),  where 

ξ  : =  min ,π π −{ }2 2N
N n

nN
    and    N  >  n,

a trigonometric polynomial  Tn   of  degree  n  satisfies  2N  inequalities of the form

T tn k( )˜   ≤  M,      k  =  0, 1, … , 2N – 1, (2.1)

where  t̃ k   =  t
k
N y0 + π + δ   and  δk   ≤  ∆,  then the following inequality is also true: 

max
cost

n nT t T
M

n
N

( ) = ≤ π +



2

∆
. (2.2)



360 Inverse theorems on the approximation of periodic functions Chapter 6

Proof.  Without loss of generality, we can assume that the polynomial  Tn    satisfies the

strict inequalities at the points  t̃ k ,  i.e., 

T tn k( )˜   <  M,      k  =  0, 1, … , 2N – 1. (2.1′ )

The validity of this assumption follows from the fact that if, for any  ε > 0,  the strict in-

equalities  T tn k( )˜   <  M + ε  yield the inequality 

T
M

n
N

n ≤ +
π +





ε

cos
2

∆
,

then inequality (2.2) is also true in view of the arbitrariness of  ε > 0. 

To prove inequality (2.2), we assume (by contradiction) that inequality (2.1′ ) is satis-
fied and, at the same time, the inequality 

T t M

n
N

n( ) > π +





*

cos
2

∆
(2.2′ )

holds at a point  t*.  Without loss of generality, we can set  t0  =  − π
2N

  and  T tn( )*   =

T tn( )* ,   t* ∈ ( )˜ , ˜t t0 1 .  Moreover, let 

α  ( t )  : =  M

n
N

nt
cos

cosπ +



2

∆
     and     ϕ ( t )  : =  α ( t )  –  Tn ( t ). (2.3)

Further, for each  ν  =  1, 2, … , 2n – 1,  let  ξ̃ν   be a point of the set  { } =
−t̃ k k

N
1

2 1  from the

interval 

Iν  : =  ν νπ − π − π + π +



n N n N2 2

∆ ∆, .

Note that 

(a)  ˜ ˜ ˜ ˜ ˜ ˜*t t t tn0 1 1 2 2 1 0 2< < < < < … < < < + π−ξ ξ ξ ;

(b)  the inequality 

(− ) ( ) > ⇒ (− ) ( ) >1 1ν ν
να α ξt M M˜ ,     ν  =  1, 2, … , 2n – 1,



Section 2 On the estimates of errors of application of the method of grids 361

holds for all  t ∈ Iν ; 

(c)  Tn( )ξ̃ν   <  M ;

(d)  t̃0, t̃1 ∈ I0  : =  − π − π +



2 2N N

∆ ∆, .

Thus,  α ( t )  >  M  for all  t ∈ I0  and we conclude that  ϕ ( t )  satisfies the inequalities 

(− ) ( ) = (− ) ( ) − ( ) > (− ) ( ) −[ ]1 1 1ν
ν

ν
ν ν

ν
νϕ ξ α ξ ξ α ξ˜ ˜ ˜ ˜T Mn   >  0

and, hence, in view of (2.1) and (2.2′), the inequalities 

ϕ( )t̃0   >  0,     ϕ( )t*   <  0,     ϕ( )t̃1   >  0,     ϕ ξ( )˜
1   <  0,

ϕ ξ( )2   >  0, … , ϕ ξ( )−
˜

2 1n   <  0,     and     ϕ( + π)t̃0 2   >  0.

In view of relations (2.3), this means that the trigonometric polynomial  ϕ ( t )  of de-

gree  n  has at least  2n + 2  zeros in the period  [˜ , ˜t t0 0 2+ π),  which is impossible. 
Lemma 2.1 is thus proved. 

Remark 2.1.  Inequality (2.2) is unimprovable in a sense that if  N  is a multiple of  n ,

i.e.,  N  =  ν0 n,  where  ν0  is a natural number,  δ νj 0
  =  – ∆,  δjν0

 + 1  =  + ∆  and, therefore, 

t̃ jν0
  =  

j

n N

π − π −
2

∆      and     t̃ jν0 1+   =  
j

n N

π + π +
2

∆ ,

then inequality (2.2) turns into the equality. 

Remark 2.2.  For  ∆  =  0,  inequality (2.2) was proved in a different way by Bernstein
[Bernstein (1931)].

In what follows, for the sake of simplicity, we present the proofs of Theorems 2.1–2.3

for the case  ∆  =  0.

Theorem 2.1.5  If, for some  2π-periodic function  f,  a polynomial  Tn
*  of degree  n

is the polynomial of its best uniform approximation on  [ 0, 2π  ]  a n d   Tn
0  is the poly-

nomial of its best uniform approximation at  2N  points 
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t k
N0 + π ,      k  =  0, 1, … , 2N – 1,     N  >  n,    t0 ∈ (– ∞, + ∞),

then the following inequalities hold: 

E f f T n
N

f Tn n n
( ) *

cos

0 0 2

2

1( ) = − ≤ π +





− (2.4)

or

E t n
N

E fn n
0 2

2

1( ) ≤ π +





( )

cos

and, for all  ν  =  n + 1, … , N – 1,

E f

N

E f

N

E fn n
0 1

2

1 3

2

( ) ≤ π ( ) + + π






( )

cos cosν ν ν . (2.4′ )

Proof.  Indeed, according to the definition of the polynomial  Tn
0,  we have 

max
k

nf t k
N

T t k
N0

0
0+ π



 − + π





≤  max *

k
n nf t k

N
T t k

N
E f0 0+ π



 − + π



 ≤ ( ) .

Hence, for all  k  =  0, 1, … , 2N – 1,

T t k
N

T t k
N

E fn n n
0

0 0 2+ π



 − + π



 ≤ ( )*

and, therefore, according to Lemma 2.1,

T T
E f

n
N

n n
n0 2

2

− ≤ ( )
π

*

cos
. (2.5)

This enables us to conclude that 

f T f T T Tn n n n− ≤ − + −0 0* *   ≤  2

2

1
cos n

N

E fnπ +





( ).
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Inequality (2.4) is thus proved. 
Finally, in view of the fact that, for all  k  =  0, 1, … , 2N – 1,

T t k
N

T t k
N

E f E fn nν ν
0

0
0

0+ π



 − + π



 ≤ ( ) + ( )

by using inequality (2.4) and Lemma 2.1, we obtain 

f T f T T Tn n− ≤ − + −0 0 0 0
ν ν

≤  2

2

1

2
cos cosν νν

ν
π +





( ) + ( ) + ( )

π
N

E f
E f E f

N

n .

This yields inequality (2.4′ ).  The proof of Theorem 2.1 is completed.

Theorem 2.2.  If, for a function  f  given on  [  – 1, 1 ] ,  Pn
*  is the algebraic polynomial

of its best uniform approximation on  [  – 1, 1 ]  and  Pn
0  is the algebraic polynomial of

its best uniform approximation at  N  points 

xk  =  cos π + π



2N

k
N

,      k  =  0, 1, … , N – 1,      N  >  n,

then 

f P n
N

f Pn n− ≤ π +





−

[− ]
0

11

2

2

1
,

*

cos
(2.6)

and

f P
E f

N N

E fn
n− ≤ ( )

π + + π






( )

[− ]
0

11

2

1
3

2
, cos cosν ν ν ,    ν  =  n + 1, … , N – 1, (2.6′ )

Proof.  We set  f̂ t( )  =  f ( cos t )  and, as in the proof of Theorem 2.1, denote by  Tn
*  and

Tν
0,  ν  =  n + 1, … , N – 1,  the polynomials of the best uniform approximation for the

constructed  2π-periodic even function  f̂   on the entire axis and at the  N  points 

π + π
2N

k
N

,      k  =  0, 1, … , N – 1,

respectively. 
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In this case, according to Theorem 2.1, we get 

T T
E f

n
N

n n
n0 2

2

− ≤ ( )
π

*
ˆ

cos
,

f T n
N

E fn n( ⋅) − ≤ π +





( )cos

cos

ˆ0 2

2

1 , (2.7)

T T

N

E f E fn n
0 0 1

2

− ≤ π ( ) + ( )[ ]ν ννcos

ˆ ˆ ,      ν  =  n + 1, … , N – 1. (2.7′ )

Since the function  f̂   is even and the points  k
N
π   are located symmetrically about the

origin, both polynomials  Tn
*  and  Tn

0 are also even.  Therefore, the functions  P xn
*( )  : =

T xn
* arccos[ ]  and  P xn

0( )   : =  T xn
0( )arccos   are algebraic polynomials of degree  n.  More-

over, by virtue the Chebyshev theorem, they are the polynomials of the best uniform ap-

proximation for the function  f ( x )  =   ˆ arccosf x( )  on the segment  [ – 1, 1 ]  and at the
points  xk  ,  respectively.  In view of relation (2.7), the following inequalities hold at the

indicated points (after the change of variables  cos t  =  x ) : 

P P
E f

n
N

n n
n0 2

2

− ≤ ( )
π

*

cos
,

f P n
N

E fn n− ≤ π +





( )

[− ]
0

11

2

2

1
, cos

, (2.8)

P P

N

E f E fn n
0 0

11

1

2

− ≤ π ( ) + ( )
[− ]

[ ]ν νν, cos
.

These inequalities immediately yield the assertion of Theorem 2.2. 

Theorem 2.3.  If, for a function  f  given on the unit circle  z  = 1,  P zn
*( )   and  P zn

0( )
are the polynomials of its best uniform approximation on  z  = 1  and at the points

zk  = eik Nπ / ,  k  =  0, 1, 2, … , 2N – 1,  N  >  n,  respectively, then 

max
cosz

n nf z P z
n
N

E f
=

( ) − ( ) ≤
π

+









( )
1

0 2

2

1 (2.9)
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and 

max
cos cosz

n nf z P z

N

E f

N

E f
=

( ) − ( ) ≤ π ( ) + + π






( )

1

0 1

2

1 3

2
ν ν ν , (2.9′ )

ν  =  n + 1, … , N – 1.

Proof.  Indeed, it is clear that, for any polynomial of the form 

Pn ( z )  =  c zk
k

k

n

=
∑

0

,

the function 

P e c c en
it

j k
i j k t

k

n

j

n
( ) = ( − )

==
∑∑2

00

is a real trigonometric polynomial of degree  n.  Now let  T tn ( )   be a trigonometric poly-
nomial of degree  n  of the form

Tn ( t )  : =  P e P en
it

n
it0 2( ) − ( )* . (2.10)

Thus, in exactly the same way as in the proof of Theorem 2.1, we obtain

P z P z E fn k n k n
0 2( ) − ( ) ≤ ( )* ,

T k
N

P e P e E fn n
ik N

n
ik N

n
π



 = ( ) − ( ) ≤ ( )π π0 2 24/ * / ,

P e P e T
E f

n
N

n
it

n
it

n
n0 2 24

2

( ) − ( ) ≤ ≤ ( )
π

*

cos
 .

Finally, by virtue of the maximum-modulus principle, this yields 

P z P z P e P e
E f

n
N

n n
t

n
it

n
it n0 0 2

2

( ) − ( ) ≤ ( ) − ( ) ≤ ( )
π

* *max
cos

, (2.11a)
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max
cost

n nf z P z
n
N

E f( ) − ( ) ≤
π

+









( )0 2

2

1 . (2.11b)

The proof of inequality (2.9) is similar to the proof of inequality (2.4′ ). 
Theorem 2.3 is thus proved.

3.  Inverse theorems

In the theory of approximation of functions, any assertion is called inverse theorem if it
establishes the degree of smoothness of a function (or a class of functions) depending on
the rate of vanishing of the difference between this function (or the class of functions) and
its approximations. 

The notion of inverse theorem was introduced by Bernstein (1912). He obtained the
first important results in this direction.  Later, his results in the periodic case were
supplemented by de la Vallée Poussin (1919), Zygmund (1945), and other researchers.  In
this field, the following inverse theorem is of principal importance 

6: 

Theorem 3.1 ([Bernstein (1912); de la Vallée Poussin (1919); Stechkin (1951)]).  As-

sume that a function  ω  satisfies the following four conditions for  r = 0 : 

(i) ω  is a continuous function;

(ii) ω  is a monotonically increasing function; 

(iii) ω ( 0 )  =  0,

(iv) for any  t  >  0, 

ω ( 2t )  ≤  C ω ( t ),      C  =  const. (3.1)

Moreover, suppose that this function satisfies the following fifth condition for r  ≥  1: 

(v)  
ω( )∫ t

t
dt

0

1

  <  ∞. (3.2)

If, for some integer  r ≥ 0  and a  2π-periodic function  f,  there exists a sequence of
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trigonometric polynomials  Tn   of degree  n  approximating the function  f  and such
that the inequalities 

f t T t
A
n nn r( ) − ( ) ≤ 



ω 1

(3.3)

are true for  n  =  1, 2, … ,  then  f ∈  C̃r ,  and, for a fixed number  k   =   1, 2, …  ,  the

k th modulus of continuity  ωk
rf t( )( );   of the derivative  f r( )  of the function  f  satis-

fies the inequality

ω

ω

ω ω
k

r

k
k

t

k
k

t

t
f t

A At
u

u
du A r

A A t
u

u
du

u
u

du r

( ) ≤

( ) = =

( ) + ( )







 ≥













( )

+

+

∫

∫ ∫
;

, const, ,

.

1 1

1

1

1 1

1

0

0

1

for

for

(3.4)

Proof.  1. First, we consider the case  r  =  0.  For any  h  >  0  and any natural  N,  we have

∆ ∆ ∆ ∆h
k

h
k

h
k

h
k

j

N
f t T t T t T t f t T tj j N( ) = ( ) + ( ) − ( ) + ( ) − ( )[ ] [ ]−

=
∑1 2 2 2

1
1 . (3.5)

Further, we choose a number  N  such that 

1
2

1
21N Nh+ < ≤ . (3.6)

For  r  =  0,  inequality (3.3) implies that 

T t T t T t f t f t T tj j j j2 2 2 21 1( ) − ( ) ≤ ( ) − ( ) + ( ) − ( )− −

≤  2 1
2

2 1
21A ACj jω ω−





 ≤ 



 (3.7)

and, hence, in view of the monotonicity of the function  ω,  that 

2 1
2

2
2

1
2
1

2

2
1

1 1

1
1

1 2

1 2 1

kj
j

k

j

j

k j

k
k
u

u
du

j

j

ω
ω ω


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




≤ ( )+

( + )( − )

+
+

−

∫
/

/

. (3.8)
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Therefore, taking into account relations (3.5)–(3.8), the inequality for the absolute
value of the derivative of a trigonometric polynomial, and inequality (3.3) for  r = 0,  we
obtain 

∆h
k k k jk

j
k

N
j

N
f t O h CAh A( ) ≤ ( ) + 



 + 





=
∑2 2 1

2
2 1

21

ω ω

≤  O h CAh
u

u
du A hk k k

k
j

N
k

j

j

( ) + ( ) + ( )+
+

=

−

∫∑2 2 22
1

1 2

1 2

1

1

ω ω
/

/

≤  O h CAh
u

u
du CA h A Ah

u

u
duk k k

k
h

k k
k

h

( ) + ( ) + ( ) ≤ ( )+
+ +∫ ∫2 22

1

1

1 1

1ω ω ω
, (3.9)

where  A1  is a constant.  This yields the validity of Theorem 3.1 for  r  =  0. 

2.  Consider the case  r  ≥  1. 
We represent the function  f  in the form of a series

f ( t )  =  T t T t T tj j

j
1 2 2

1
1( ) + ( ) − ( )[ ]−

=

∞

∑ . (3.10)

Since, by virtue of inequality (3.3),

T t T t A
k k k r k2 2 1 11 2

2
1

2
( ) − ( ) ≤ 



− ( − ) −ω ,

the Bernstein inequality implies that 

T t T t A CAk k
r r r

k
r

k2 2
1

1
1

1 2 1
2

2 1
2

( ) ( ) +
−

+( ) − ( ) ≤ 



 ≤ 









− ω ω .

By using this inequality, the fact that, for each  j  =  1, 2, … ,  the following inequality

holds in view of the fact that  ω ↑ : 

ω( )
−

∫ u
u

du
j

j

1 2

1 2 1

/

/

  ≥  ln 2 ω ( 2–
 
j

 ),

and relation (3.10), we readily conclude that  f ∈ C̃r . 
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In this case, for any  j  =  1, 2, … ,  we get

f t T t T t T tr r r r

k j
j k k

( ) ( ) ( ) ( )

=

∞
( ) − ( ) ≤ ( ) − ( )−∑2 2 2 1

≤  2 2 2 21 2

0

2
r k

k j

r jAC AC
u

u
du A

j

+ −

=

∞
+ −( ) ≤ ( ) = ( )∑ ∫

−

ω ω ˜Ω , (3.11)

where  Ã   =  2 2r AC+   and 

Ω ( t )  : =  
ω( )∫ u

u
du

t

0

. (3.12)

By virtue of inequality (3.2), the function  Ω  exists for all  t ∈ [ 0, 1 ].  Moreover, this
function satisfies the conditions: 

(a)  Ω  is a continuous function;

(b)  Ω  is a monotonically increasing function; 

(c)  Ω ( 0 )  =  0 ;

(d)  for any  t  >  0, 

Ω ( 2t )  =  
ω ω ω( ) = ( ) ≤ ( ) ≤ ( )∫ ∫ ∫u

u
du

u
u

du C
u

u
du C t

t t t

0

2

0 0

2 Ω .

Therefore, in view of relation (3.11) and case 1  ( r  =  0 ),  we get 

ω ω
k

r k
k
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k
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t

k
t

f t A At
u

u
du

A At

k
u

u

u

u
du( ) ≤ ( ) = ( ) + ( )









( )
+ +∫ ∫; ˜

˜
1 1

1
1

1
1

1
1Ω Ω

≤  A A t
u

u
du

u
u

duk
k

t

t

1 1

1

0

˜ ω ω( ) + ( )







+∫ ∫ .

The proof of Theorem 3.1 is completed. 

�

This theorem yields the following corollaries: 
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Corollary 3.1.  If  ω  is a function of the  k th-modulus-of-continuity type, then the fol-
lowing inequality is true: 

ωk
rf t+

( )( )1 ;   ≤  A1 ω ( t ),     A1  =  const, (3.13)

under the conditions of Theorem 3.1 for  r = 0  and with the following additional condi-
tion for  r  ≥  1:

ω( )∫ u
u

du
t

0

  ≤  A2 ω ( t ).

Indeed, according to the first inequality in (3.4) for  r  =  0,  we get

ω ω
k

k
k

t

f t A At
u

u
du+

+
+( ) ≤ ( )∫1 1

1
2

1

;

≤  A At u
t

t
u

du A tk
k

t
1

1
2

1

12+
+







( ) ≤ ( )∫ ω ω˜ ,    Ã1  =  const.

Corollary 3.2.  If, under the conditions of Theorem 3.1,  ω  ( t )  =  t 
α,  where  0 < α  < 1,

then  f ∈ C̃r   and, for any integer  r  ≥  0, 

ω α( ) ≤( )f t Atr ; , (3.14)

i.e.,  f ∈ W Hr ˜ α .

Corollary 3.3.  If , under the conditions of Theorem 3.1,  ω  ( t )  =  t,  then  f ∈  C̃r   and,
for any integer  r  ≥  0, 

ω2( ) ≤( )f t Atr ; , (3.15)

i.e.,  f ∈ W Zr ˜ .

4.  On the constructive characteristics of periodic functions
of the Hölder and Zygmund classes

1.  In the case where the inverse theorems for a class of functions  Φ  completely supple-
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ment the direct theorems in a sense that the collection of direct and inverse theorems es-
tablishes the conditions that are both necessary and sufficient for functions to belong to

the class  Φ,  we say that the constructive characteristic is obtained for the class  Φ. 

The Jackson theorem applied to periodic functions from the spaces  W Hr ˜ α   (0 <

α < 1)  and  W Zr ˜   and Corollaries 3.2 and 3.3 of the inverse Theorem 3.1 yield the fol-
lowing two theorems on the constructive characteristics of functions from the Hölder

spaces  W Hr ˜ α   ( 0 < α < 1 )  and Zygmund spaces  W Zr ˜ ,  respectively. 

Theorem 4.1.  In order that a function   f  belong to the space  W Hr ˜ α
  for integer  r ≥ 0

and  α  ∈  ( 0, 1 ),  it is necessary and sufficient that, for any natural  n,  one can find a
trigonometric polynomial  Tn  of degree  n  such that the inequality 

f t T tn( ) − ( )   ≤  A
nr +α , (4.1)

where  A  is a constant independent of  n,  holds for all  t ∈  [  0, 2π  ]  or, equivalently, it
is necessary and sufficient that the best approximations  En ( f )  of the function  f  satisfy

the conditions

Ẽ fn( )   ≤  A
nr +α , (4.1′ )

where  r ≥ 0  is an integer number.

Theorem 4.2.  In order that a function  f  belong to the Zygmund space  W Zr ˜   for a
nonnegative integer  r,  it is necessary and sufficient that, for any natural  n,  one can
find a trigonometric polynomial  Tn  of  degree  n  such that the inequality

f t T tn( ) − ( )   ≤  A
nr +1 , (4.2)

where  A  is a constant independent of  n,  holds for all  t ∈  [  0, 2π  ]  or, equivalently, it
is necessary and sufficient that the best approximations  En ( f )  of the function  f  satisfy

the inequalities

Ẽ fn( )   ≤  A
nr +1 , (4.2′ )

where  r ≥ 0  is an integer number. 
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2.  We draw the attention of the reader to the fact that the constructive characteristic of

functions from the Hölder classes  Wr
 Hα,  where  r  is a nonnegative integer, was obtained

solely for the case where  0 < α < 1.  For  α = 1,  the required characteristic was obtained

for somewhat broader classes  Wr
 Z  but not for the classes  Wr

 H1. 
Trigub (1965) (see also [Znamenskii (1950)]) indicated that, in order to get the char-

acteristic of functions  f  from the spaces  W Hr ˜1
  (and  W Hr ˜ ω

  )  in terms of the theory of
approximation of functions, one can use somewhat “spoiled” polynomials, instead of
“good” polynomials traditionally used for the approximation of functions from these
spaces whose behavior is so good that they approximate the functions from both classes

(W Hr ˜1  and  W Zr ˜  ⊃  W Hr ˜1)  with the same accuracy (equal to  n– r–1)  for any fixed
nonnegative integer  r ≥ 0.  The indicated “spoiled” polynomials  τn ( t ) = τn ( f ; t )  of

degree  n  should be such that  f t tn( ) − ( )τ   =  O ( n–r–1
 )  for any function  f ∈  W Hr ˜1  but

f t tn( ) − ( )τ  nr+1  →  ∞  for any function  f ∈ W Zr ˜  \ W Hr ˜1. 
We first present the results from [Dzyadyk (1975)] which are somewhat less exact

than the results obtained by Trigub (1965) but more general and be extended, unlike the
results from [Trigub (1965)] to the case of approximation of nonperiodic functions. 

Theorem 4.3.  In order that a  2π-periodic function  f  belong to the space  H̃k
ω   for a

k-majorant  ω,  it is necessary and sufficient that there exist a sequence of trigonometric
polynomials  Un  of  degrees  n  =  1, 2, …  with the following properties: 

f t U tn( ) − ( )   ≤  A
n

ω 1



 (4.3)

and

f t U tn( ) − ( )*   ≤  A
n

ω 1



 , (4.4)

where  A  is a constant independent of  n  and

U tn
*( )  : =  U t U tn n

k
n( ) − ( )π∆ / ; . (4.5)

Proof.  Necessity.  If  f ∈ H̃k
ω ,  then, according to Theorem 5.2.3, for any  n  =  1, 2, …  ,

there exists a polynomial  Un ( t )  =  Un ( f ; t )  of  degree  n  such that 

f t U tn( ) − ( )   ≤  A f
n

A
nkω ω; 1 1



 < 




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and, hence, by virtue of (4.5), 

f t U tn( ) − ( )*  ≤  f t U tn( ) − ( )   +  | |π ( − )∆ / ;n
k

nf U t   +  | |− ( )π∆ / ;n
k f t

≤  A
n

f
n

A
n

k
kω ω ω1 1 2 1 1

1




 [ + ] + 



 ≤ 



; ,

A1  =  const.

Sufficiency.  If, for the function  f,  there exist polynomials  Un  and  Un
*  connected by

relation (4.5) and satisfying inequalities (4.3) and (4.4), then, in view of equality (4.5), we
get 

∆π ( ) = − ≤ 



/

*;n
k

n n nU t U U A
n

2 1ω .

Thus, by using the Nikol’skii–Stechkin inequality ( ˜ )1. ′1  for any  M  and setting  n  =
1
h






,  we get 

∆ ∆ ∆h
k

h
k

n h
k

n
k k

n
kf f U U A

n
h U≤ ( − ) + ≤ 



 + ( )2 1ω

≤  2
1

2
k k

k

n
k

nA
n

h
n

Uω 



 + 



 ( ⋅)π∆ / ,

≤  2 1 1
2

2 1 1
1

k
k

A
n

A
n

A
n

ω ω ω



 + 









 = 



 ,     A1  =  const.

Theorem 4.3 is thus proved. 

Theorem 4.3′′′′.  In order that a  2π-periodic function  f  belong to the space  H̃k
ω   for a

k-majorant  ω,   it is necessary and sufficient that the inequalities 

f t U tn( ) − ( )*   ≤  A
n

ω 1



 ,      A  =  const, (4.6)

be true for all natural  n  with polynomials  U tn
*( )   introduced by the formula

U tn
*( )  : =  U t U tn n

k
n( ) − ( )π∆ / ; ,
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where  Un ( t )  =   U n ( f ; t )  are trigonometric polynomials (operators) of degree  n  ap-

proximating any continuous  2π-periodic function  f  so that the following inequalities
are satisfied:

f t U f tn( ) − ( );   ≤  A f
nk1 1
1ω +





; ,      A1  =  const, (4.7)

Proof.  Necessity.  If  f ∈ H̃k
ω ,  then, according to Theorem 5.2.3, for any  n  =  1, 2, …  ,

there exists a polynomial  Un ( t )  =  Un ( f ; t )  of degree  n  such that 

f t U tn( ) − ( )   ≤  A f
nk1 1
1ω +





; .

Since 

ω ω ωk kf
n

f
n n+





 ≤ 



 ≤ 



1

1
2

1
2

1
; ;

(in view of the fact that  f ∈ H̃k
ω

 ),  we proceed in exactly the same way as in the final part
of the proof of necessity in Theorem 4.3. 

Sufficiency.  If, for a given modulus of continuity  ω  of order  k,  there exists a sequence

of trigonometric polynomials  Un
*  of the form (4.5) such that 

f t U f tn( ) − ( )* ;   ≤  A
n

ω 1



 , (4.8)

then, according to Corollary 3.1,  ωk + 1 ( f ; t )  ≤  A1 ω ( t )  and, hence,

f t U f tn( ) − ( );   ≤  A f
n

A
nk2 1 3

1 1ω ω+




 ≤ 



; (4.9)

by virtue of (4.7).  In view of Theorem 4.3 and inequalities (4.8) and (4.9), we conclude

that  f ( t ) ∈ Hk  . 

This completes the proof of Theorem 4.3′. 

Note that a function  f  belongs to  W Hr ˜1,  where  r ≥ 0  is an integer, if and only if
(see [Marchaud (1927)]) 

ωr + 1 ( f ; t )  ≤  A tr+1,     A  =  const. (4.10)
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As a consequence of Theorem 4.3′, one can obtain the following result [Dzyadyk
(1975)]: 

Theorem 4.4.  In order that a  2π-periodic function  f  belong to the space  W Hr ˜1
  for

a nonnegative integer  r ,  it is necessary and sufficient that the following inequalities
hold for all  n  =  1, 2, … : 

f t U f tn( ) − ( )* ;   ≤  A n–r–1,     A  =  const, (4.11)

where  U fn
* ;( ⋅)  are polynomials determined as indicated in Theorem 4.3′ for  k  = r + 1.

3.  In conclusion, we present a result taken from [Trigub (1965)] and valid, unlike The-
orem 4.3, not only for the entire sequence of numbers  n  =  1, 2, …  but also for each fixed
number  n  separately. 

Theorem 4.5.  For any  2π-periodic continuous function  f  and any natural numbers

k  and  n,  the polynomials  τk, n  constructed by using kernels (2.3.27), i.e., 

τ
ν

ν

ν

ν
k n n k

k
k

nf t D t
k

D t
n, ;( ) = ( ) + 



 (− ) + π





=

− +∑1
2

1
0

1  

=  D t D tn k n
k

n( ) − ( )π
1

2
∆ / ; , (4.12)

where  Dn  is the Dirichlet kernel, by the formula

τ τ τk n k n k nf f t f u t u du, , ,;( ) = ( ) =
π

( ) ( − )
− π

π

∫1   =  S f t S tn k n
k

n( ) − ( )π; ;/
1
2

∆ , (4.13)

where  Sn ( f ; t )  are partial sums of the Fourier series for the function  f,  possess the

following property: 
There exist two positive constants  c1  =  c1 ( k )  and   c2  =   c2 ( k )  independent of  n

such that the inequalities

c f
n

f f c f
nk k n k1 2ω τ ω; ;,

π



 ≤ − ( ) ≤ π



 (4.14)

hold uniformly for all  n  =  1, 2, … . 

Proof.  By  Tn
*  we denote the polynomial of degree  n  of the best uniform approximation
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of the function  f.  By setting  f Tn− *   =  En  and taking into account relation (4.13) and

the fact that  Sn ( T 
*; t )  =  T tn

*( ) ,  we obtain 

f f f T T f Tk n n k n
k

n k n n− ( ) = − + − ( − )πτ τ,
*

/
*

,
*1

2
∆

=  f T f T f T fn k n n k n
k

n
k

n
k− − ( − ) − ( − ) +π

−
π

*
,

*
/

*
/τ 1

2
2∆ ∆ . (4.15)

According to relation (2.3.27′ ), we have  τk n,   ≤   2k π.  In view of equality (4.13),

this yields 

f T f T f Tn k n n
k

n
k

n− − ( − ) − ( − )−
π

*
,

*
/

*τ 2 ∆

≤  E kE E k En n
k k

n n+ + = ( + )−2 2 2 2 2 .

On the one hand, by using this inequality, identity (4.15), and the generalized Jackson
theorem (Theorem 5.2.3), we obtain 

f f k E f
nk n n

k
k− ( ) ≤ ( + ) + π





−τ ω, ;2 2 2   ≤  [ ]( + ) + π





−2 2 21k A f
n

k
kω ; .

(4.16)

On the other hand, we can write 

2 2 2 2 3−
π ≤ − ( ) + ( + ) ≤ ( + ) − ( )k

n
k

k n n k nf f f k E k f f∆ / , ,τ τ ,

whence, in view of the Nikol’skii – Stechkin inequality ( ˜ )1. ′1 , we conclude that 
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k
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n
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≤ ≤ π
π
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nf T f E∆ ∆/ /
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 + ( + )π2

2 2
k

n
k k k

nf E∆ /
˜
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≤  π ( + ) − ( ) + ( + ) ≤ − ( )k
k n

k k
n k nk f f E A f f2 3 2 2τ τ, , , (4.17)

where  A  =  πk
 ( 2k + 3 ) + 2k

 
+

 
1  =  const. 

Inequalities (4.16) and (4.17) yield the assertion of Theorem 4.5. 

Remarks to Chapter 6

1.  S. N. Bernstein established inequality (1.1) in the form presented in our book for the
case where the trigonometric polynomial  T n  is even or odd.  For trigonometric polyno-

mials of the general form, he established a somewhat less exact inequality:  ′( )T tn   ≤
2n M.  However, it turned out that the factor  2  can be removed fairly easily.  This was
done by M. Riesz (1914) and F. Riesz (1914) and, somewhat later, by Bernstein himself
and other researchers. 

2.  The idea of the proof apparently appeared, for the first time, in the monograph by
de la Vallée Poussin [de la Vallée Poussin (1919)].

3.  The Bernstein inequality [Bernstein (1912)]  ′( )P tn   ≤   
nM

t1 2−
  follows from the

inequalities established for  ′( )P tn   by Markov (1884).  However, the proof proposed by
Markov was quite complicated and the results were not presented in the compact form
convenient for subsequent applications. 

4.  The problem of the estimation of the norms of intermediate derivatives was studied
by numerous researchers.  Here, we mention only the most significant results.  The first
simplest problem of this sort was solved by Hadamard (1914): 

If  f ∈ W2
 ( – ∞, ∞  ),  then 

′( ) ≤ ( ) ′′( )f x f x f x2 ,     where    ϕ( )x   : =  ess sup
− ∞< <∞

( )
x

xϕ . 

Later, Kolmogorov (1938) established the general result (Theorem 1.7). 
For a finite segment, inequalities of the form (2.19) (with somewhat coarser con-

stants) were deduced for the first time by Gorny (1938) and Cartan (see, e.g., [Mandel-
brojt (1955)]). 

Later, similar problems were studied in the metric of  L ( – ∞, ∞  )  (see, e.g., [Taikov
(1968)]), on the semiaxis (see, e.g., [Matorin (1955)] and [Tikhomirov (1955)]), in the
case of several intermediate derivatives (see, e.g., [Rodov (1956)] and [Dzyadyk and Du-

bovik (1974), (1975)], in  R2  on the space  C  [Konovalov (1977)], etc.
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5.  This and all subsequent theorems in Section 2 were proved by Dzyadyk in a some-
what weaker form [Dzyadyk (1971a)].

Note that the results similar to these theorems (but somewhat less exact) can readily
be established by using Theorems 2.1 and 2.2 for the case of approximation of continuous

functions in  Rn  (periodic and nonperiodic functions given on a parallelepiped  [ a1 
, b1 ] ×

… × [ an 
, bn ] ). 

6.  Bernstein (1913) posed, for the first time, the problem of inverse theorems and

demonstrated, for periodic functions, that if  Ẽ fn( )   ≤   1
nr +α ,  where  r ≥ 0  is an integer

and  0 < α ≤ 1,  then  f ∈ W Hr ˜ α ε−   for arbitrarily small  ε > 0.  Under the same assump-

tions, de la Vallée Poussin (1919) proved that if  α ≠ 1,  then  f ∈  W Hr ˜ α .  Zygmund

(1945) introduced the spaces  W Hr ˜
2
ω   and established, for  ω ( t )  =  t,  the inverse theorems

for the classes  W Zr ˜ .  The inverse theorems for the spaces  H̃ω
  in the uniform metric

were first proved by Salem [(1935), (1940)].  For the spaces  W Hr
k

˜ ω ,  the inverse theo-

rems in the metric  L
p
  with  1 ≤ p < ∞  were obtained by A. Timan and M. Timan (see

[A. Timan (1950)]) and, in the uniform metric, by Stechkin (1951a). 
Later, it was shown (see [Lozinskii (1952)] and [Bari and Stechkin (1956a)]) that the

inequalities 

En ( f )  ≤  A
n3
1ω 



 ,     n  =  1, 2, … ,    A3  =  const, (A)

where  ω  is a function of the modulus-of-continuity type, imply that the  k th modulus of
continuity for a function  f  satisfies the condition 

ωk ( f ; δ )  ≤  A4 ω ( δ ) (B)

and, vice versa, it is clear that (A) follows from (B) if and only if there exists at least one
constant  A  >  1  such that 

lim sup
δ

ω δ
ω δ→

( )
( )

<
0

A
Ak .



Chapter 7
Approximation by polynomials

1.  Introduction

1.1.  Let  f  be a  2π-periodic function and let  Ẽ fn( )   be the value of its best uniform ap-
proximation by trigonometric polynomials of degree  n.  Recall that Jackson [(1912),
(1930)] proved the direct theorem according to which one has 

˜ ;E f c f
nn( ) < 



ω1

1
. (1.1)

The direct Jackson theorems [Jackson (1912), (1930)] and the inverse Bernstein
[Bernstein (1912), (1930)] and de la Vallée Poussin [de la Vallée Poussin (1919)] theo-

rems give a constructive characteristic of the Hölder spaces  H̃α   for  α ∈ ( 0; 1 ),  namely 

Ẽ f O
n

n( ) = 





1
α    ⇔   ω1 ( f ; t )  =  O ( tα ), (1.2)

and a constructive characteristic of the spaces  W Hr ˜ α   for  α ∈ ( 0; 1 ) : 

Ẽ f O
n

n r( ) = 



+

1
α    ⇔   ω1( )( )f tr ,   =  O ( tα ). (1.3)

The interesting case where  Ẽ fn( )  =  O
n
1



   does not fit these formulations because

they essentially use the fact that  α  ≠  0  and  α  ≠  1.  It is known that 

ω1
1( ) = ( ) ⇒ ( ) = 



f t O t E f O

nn, ˜  . (1.4)

However, the converse statement is not true.  Zygmund [(1945), (1959)] noted for the first
time that this case also admits a formulation in terms of equivalence if, instead of first-
order moduli of continuity, one uses a second-order modulus of continuity.  He proved
that the relations 

Ẽ f O
nn( ) = 





1      and     ω2 ( f ; t )  =  O ( t ) (1.5)
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are equivalent, and the same is also true for the relations 

Ẽ f O
n

n r( ) = 





1
     and     ω1

1( )( − )f tr ,   =  O ( t ). (1.6)

For the spaces  W Hr
k

˜ ϕ   of periodic functions, a constructive characteristic was ob-

tained by Zygmund [(1924), (1945)] (for  k = 2  and  ω2  ( f ; t ) ≤ t ),  Akhiezer (for  k = 2;

see the first edition of the book [Akhiezer (1965)] ), and Stechkin [(1949), (1951),

(1951a)] (for  k ≥ 3 ). 

1.2.  In the nonperiodic case, i.e., for  f ∈ C ( [ a, b ] ),  the estimate 

E f c
b a

n
f a bn( ) ≤ − [ ]



ω1 ; ; , (1.7)

can easily be derived from (1.1) by using the change of variables  2x  =  ( b – a  ) cos t +
b + a.  However, relations (1.2), (1.3), (1.5), and (1.6) are not true in this case (V.  Motor-
nyi; see also Theorem 3.7.2).  S. Nikol’skii, Dzyadyk, and Timan showed that, in the non-

periodic case, a constructive characteristic is realized not in terms of  En ( f )  but in terms

of a pointwise estimate for the deviation of the function  f  from the approximating poly-
nomial. 

First, S. Nikol’skii (1946a) established that if 

f x f x( ′) − ( ′′)   ≤  ′ − ′′x x ,      x′, x′′  ∈  [ – 1, 1 ]  = :  I,

then one can construct a sequence  { Pn }  of polynomials  Pn  of degree  n  for  f  such that 

f x P xn( ) − ( )   ≤  π − + 









2

1 2

2
x

n
O

n
ln ,      x ∈ I. (1.8)

Later, Timan [(1951), (1960)] proved that if  f ∈ Wr
 H [ 1; ϕ; I ],  then there exists a se-

quence  { Pn }  of polynomials  Pn  such that 

f x P xn( ) − ( )   ≤  c
n

x
n n

x
n

r
1 1 1 1
2

2

2

2

+ −





+ −





ϕ ,      x ∈ I. (1.9)

Denote 

ρn ( x )  : =  1 1
2

2

n

x
n

+ −
,      ρ0 ( x )  : ≡  1. (1.10)
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In 1956, Dzyadyk (1956) obtained the following inequality for the modulus of the de-
rivative of an algebraic polynomial: 

ρ ρn
s j

n
j

I n
s

n I
P j M P+ ( ) ≤ ! , (1.11)

where  s ∈ R,  M  =  M ( s ),  and  j ∈ N.  Using this inequality, he established the following

inverse theorem:  Let  ( r + 1 ) ∈ N  and  α ∈  ( 0; 1 ).  If there exists a sequence  { Pn }  of

polynomials  Pn  such that 

f x P xn( ) − ( )   ≤  ρ α
n
r x+ ( ),      x ∈ I, (1.12)

then  f ∈  Wr
 Hα

 ( I ).  Thus, as a result, a constructive characteristic was found for the

Hölder spaces  Wr
 Hα

 ( [ a, b ] ),  0  <  α  <  1. 

The direct theorem for the class  Wr
 H [ 2; ϕ; [ a, b ] ],  in particular, for the Zygmund

class  Wr
 Z [ [ a, b ] ],  was proved by Dzyadyk [(1958), (1958b)] and Freud (1959); for the

class  Wr
 H [ k; ϕ; [ a, b ] ],  k  >  2,  this theorem was proved by Brudnyi [(1963), (1968)]. 

The inverse theorem was proved by Dzyadyk [(1958), (1958b)] for the Zygmund

space  WrZ [ [ a, b ] ]  and by Timan (1957) ( k  =  1 ),  Lebed’ [(1957), (1975)], and Brud-

nyi (1959) for the spaces  W H a br
k
ϕ( )[ ], . 

1.3.  We formulate the indicated results on the approximation of functions by polynomials
on a segment in the form of three theorems, calling them the classical theorems of ap-
proximation without restrictions.  Recall that  c  stands everywhere for constants that may
depend only on  k  and  r.

Theorem 1.1 (direct theorem).  Suppose that  k ∈  N,  (  r + 1 ) ∈  N,  and  m   =  k + r.  If

f ∈ Cr
 ( I ),  then, for each natural  n  ≥   m – 1,  there exists an algebraic polynomial  Pn

of degree  n  for which 

f x P xn( ) − ( )   ≤  c x x f In
r

k n
rρ ω ρ( ) ( )( )( ); ; ,      x ∈ I. (1.13)

Theorem 1.2 (inverse theorem).  Suppose that  k ∈ N,  (  r + 1 ) ∈  N,  ϕ ∈  Φk,  and  m   =

k + r.  If, for a function  f  defined on  I,  for each  n  ≥   m  – 1,  there exists an alge-
braic polynomial  Pn  of degree  n  such that 

f x P xn( ) − ( )   ≤  cρ ϕ ρn
r

nx x( ) ( )( ),      x ∈ I, (1.14)
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then 

ω ϕ ϕk
r

t
k k

t

t f I c ru u du t u u du( )( ) − − −≤ ( ) + ( )




∫ ∫; ; 1

0

1
1

,      0  ≤  t  ≤  1
2

. (1.15)

We say that a function  ϕ ∈ Φ  satisfies the Zygmund – Stechkin condition and write

ϕ ∈ S ( k, r )  if 

ru u du t u u du
t

k k

t

− − −( ) + ( )∫ ∫1

0

1
1

ϕ ϕ   =  O ( ϕ ( t ) ). (1.16)

Theorem 1.3 (constructive characteristic).  Suppose that  k ∈ N,  ( r + 1 ) ∈ N,  m  = k + r,

and  ϕ ∈  S ( k, r ).  A function  f  belongs to  W H Ir
k
ϕ( )   if and only if, for each  n   ≥

m – 1,  there exists an algebraic polynomial  Pn  of degree  n  such that 

f x P xn( ) − ( )   ≤  M x xn
r

nρ ϕ ρ( ) ( )( ) , (1.17)

where  M  =  const  is independent of  n  and  x. 

1.4.  In this chapter, we use the following notation:  I  : =  [ – 1; 1 ],  ωk ( t; f )  : =  ωk ( t; f ; I ),
Wr

 H [ k; ϕ ]  : =  Wr
 H [ k; ϕ; I ],  and  W Hr

k
ϕ   : =  W H Ir

k
ϕ( ) . 

In what follows, we also write  ρ  instead of  ρn ( x ),  i.e., 

ρ  =  ρn ( x )  =  1 1
2

2

n

x
n

+ −
.

Note that if  x2  ≠  y2,  then  ρ  ≠  ρn ( y ),  and if  n1  ≠  n,  then  ρ  ≠  ρn1
 ( x ).  We also denote

α  : =  arccos y  and  β  : =  arccos x,  x, y ∈ I.  In particular, 

ρ  =  1 1
2n n

+ sinβ,

ρn ( y )  =  1 1
2n n

+ sinα .

In this chapter, we often use the following obvious estimate: 

ρ ρ ρn y x y2 4( ) < − +( ) ,      x ∈ I,    y ∈ I. (1.18)
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In particular, estimate (1.18) readily yields 

2
1
2

x y x y y x yn− +( ) > − + ( ) > − +( )ρ ρ ρ ,      x ∈ I,    y ∈ I. (1.19)

2.  Inequality for the modulus of the derivative of
an algebraic polynomial.  Inverse theorem

2.1.  The Dzyadyk inequality (1.11) is a generalization of the Markov inequality 

′ ≤P n Pn n
2 (2.1)

and the Bernstein inequality [Bernstein (1912)] 

1 2− ′( ) ≤x P x Pn n ,      x ∈ I. (2.2)

In turn, Lebed’ [(1957), (1975)] and Brudnyi (1959) generalized inequality (1.11),

namely, they proved that if  s ∈ R  and  ϕ ∈ Φk,  then 

ρ ϕ ρ ρ ϕ ρn
s

n n n
s

n nP M P+ − −( ) ′ ≤ ( )1 1 1 ,      M  =  M ( s, k )  =  const. (2.3)

In particular, 

ρ ϕ ρ ϕ ρn n n n nP c P− −( ) ′ ≤ ( )1 1 . (2.4)

We prove inequalities (2.3) and (2.4) in Subsections 2.2–2.4.  For this purpose, we use
Dzyadyk’s arguments based on the maximum-modulus principle. 

2.2.  Let 

z  =  Ψ  ( w )  : =  1
2

1w
w

+





be a Zhukovskii function that maps the exterior of the unit circle  w   =  1  conformally

and univalently onto the exterior of  I,  i.e., onto the set  C \ I,  where  C  is the complex

plane.  Let  w  =  Φ ( z )  denote the inverse mapping.  Note that  Φ( )z   =  1  for  z ∈ I. 

The image of the circle  w   =  1 + 1 / n  under the mapping  z  =  Ψ  ( w )  is called the

n th level line of the segment  I  and is denoted by  Γn ,  i.e., 
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Γn  =  z z
n

∈ ( ) = +


C: Φ 1 1 .

Note that the level line  Γn   is an ellipse.  Let  d xn( )   denote the distance from a point

x ∈ I  to  Γn  .  Since, for  x ∈ I,  one has 

Ψ n
n

e x
n
n n

x t x
n n

n n
it+



 − = +

( + )






( − ) + − + +
+







1 1 2
1

1
1 22 2

2
2

2

2
/

cos
/

,

where  t ∈ [ 0, 2π ],  we conclude that 

d x
n

n
e xn

t

it2

0 2

21( ) = +



 −

∈[ π]
min

,
Ψ

=  
n
n n

x x
n n

n n

+
( + )







( − ) + + +
+

−








1 2
1

1 0
1 2

1
2

2
2

2

2
/

max ;
/

.

Therefore, 

d x

n

n n
x x

n n

n n

x
n

n( ) =

+
+

− ≤ +
+ +

− +

1 2
1

1 2

1
1

2

2
2

2

2

/

/
,if

22

2

22 1 2
1

+
+

+ +
≤ ≤












 n

n n

n n
xif

/
,

whence 

1
6

ρn x( )   ≤  dn ( x )  ≤  ρn ( x ),      n  ≠  1. (2.5)

Lemma 2.1.  Let  ( l + 1 ) ∈  N,  n ∈ N,  x0 ∈  N,  d = dn ( x0 ),  and let  γ = { z : z x− 0  =

d}  be a circle of radius  d  centered at the point  x0 .  If 

P xn( )   ≤  ( x x− 0  + d ) 
l,      x ∈ I, (2.6)

then the following inequality holds for all  z ∈ γ : 

P zn( )   ≤  M dl,      M  =  M ( l)  =  const. (2.7)
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Proof.  Since  d  <  1,  at least one of the two points  x0 + d  and  x0 – d  belongs to  I.  As-

sume, for definiteness, that  ( x0 + d ) ∈ I.  The function 

z  =  Ψ1 ( v )  =  
  

d x d
4

1
20v

v
+



 + +

maps the exterior of the circle    v   =  1  conformally and univalently onto the exterior of

the segment  [ x0 , x0 + d ].  Let  v   =  Φ1 ( z )  denote the mapping inverse to  Ψ  ( v ).  Note

that, for all  z ∈ C,  one has 

d
z z x d d z

4
21 0 1Φ Φ( ) ≤ − + ≤ ( )  . (2.8)

Indeed, 

  

d z d d d
4 4 4

1 2 3
41Φ ( ) ≡ ≤ + + +v v

v

=  Ψ1 0 0
3
4

3
4

( ) − + = − +v x d z x d

<  z x d x d d d− + = ( ) − + = + + +0 1 0 4
1 2Ψ v v
v

≤  
  

d d
d d d z

4
3
4

2 2 1v v+ + ≤ ≡ ( )Φ .

We introduce the function  F ( z )  : =  Φ Φl n l
nz z P z− − −( ) ( ) ( )1

1   analytic in  C \ I.  Since 

lim lim
z w

z
z

w
w→∞ →∞

( ) =
( )

Φ
Ψ

  =  2,      
  
lim lim

z

z

z d→∞ →∞

( ) =
( )

=Φ
Ψ

1

1

4
v

v

v
,

we have  F ( ∞ )  =  0.  By virtue of the maximum-modulus principle, taking (2.8) into ac-

count, we obtain the following relation for all  z ∈ C : 

F z( )   ≤  max max
x I x I

n
lF x

P x

x∈ ∈
( ) =

( )
( )Φ1

  ≤  max
x I

l

l
lx x d

x
d

∈

− +( )
( )

≤ ( )0

1

2
Φ

.

In particular,  F z( )   ≤  ( 2d ) 
l  for  z ∈  γ.  Therefore, taking (2.8) into account, we obtain

the following relation for  z ∈ γ : 



386 Approximation by polynomials Chapter 7

P zn( )   ≤  ( 2d ) 
l

 Φ Φ( ) ( )+ −z zn l l1
1   ≤  ( 2d ) 

l
 Φ( ) + −z n l1

 8l.

It remains to note that  γ  lies inside the level line  Γn 
,  and, hence, the preimage of the

circle  γ  lies in the ring  1  ≤  w   =  1 + 1 / n,  so that  1  ≤  Φ( )z   =  1 + 1 / n,  i.e., 

Φ( ) + −z n l1   ≤  1 1 1
+





+

n

n
  <  4.

�

Corollary 2.1.  Under the conditions of Lemma 2.1, the following inequality is true: 

P x j Mdn
j l j( ) −( ) ≤0 ! . (2.9)

Indeed, using the Cauchy integral formula and relation (2.7), we get 

P x
j P z

z x
dz

j Md
d

j Mdn
j n

j

l

j
l j( )

+ +
−( ) =

π
( )

( − )
≤

π
=∫0

0
1 12 2

! !
mes !

γ

γ .

Lemma 2.2.  Suppose that  ( l + 1 ) ∈ N,  n ∈ N,  and  x0 ∈ I.  If 

P xn( )   ≤  ( x x− 0  + ρn ( x ) ) 
l,      x ∈ I, (2.10)

then 

′( ) ≤ ( )−P x M xn n
l

0
1

0ρ ,      M  =  M ( l)  =  const. (2.11)

Lemma 2.2 is a corollary of inequalities (2.5) and (2.9). 

2.3.  We prove inequality (2.4).  Let  P xn( )   ≤  ϕ ( ρ ),  x ∈ I.  We take a point  x0 ∈  I.  By
virtue of (1.9), we get 

ϕ ( ρ )  ≤  ϕ ( 2 x x− 0  + 2ρn ( x0 ) ) 

≤  2
k

 ( x x− 0   +  ρn ( x0 ) ) 
k

 ρn
k x− ( )0  ϕ ( ρn ( x0 ) ) 

= :  A0 ( x x− 0  + ρn ( x0 ) ) 
k.
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Therefore, by virtue of (2.11), we obtain 

′( ) ≤ ( ) ( ) = ( ) ( ) ( )− − ( )P x A M k x M k x xn n
k

n n0 0
1

0
1

0 0ρ ρ ϕ ρ ,

which proves inequality (2.4). 

2.4.  We prove inequality (2.3).  For  s ≤ 0,  inequality (2.3) is a trivial corollary of (2.4)

because  t
–

 

s
 ϕ ( t ) ∈ Φk*

,  where  k 
*  =  k – [ s ]  and  [ s ]  is the integer part of  s. 

Let us prove inequality (2.3) for  s > 0.  Denote  s* = [ s ] + 1.  Let  Pn ( x )  ≤   ρ–
 

s
 ϕ ( ρ ),

x ∈ I.  We take a point  x0 ∈ I.  By virtue of (1.19), we get 

ϕ ( ρ )  ≤  2
k

 ( x x− 0  + ρn ( x0 ) ) 
k

 ρn
k x− ( )0  ϕ ( ρn ( x0 ) ) ;

according to (1.18) and (1.19), we have 

ρ  ≥  ( 4 ( x x− 0  + ρ  ) ) 

–
 

1
 ρn x2

0( )   ≥  ( 8 ( x x− 0  + ρn ( x0 ) ) 

–
 

1
 ρn x2

0( )).

Hence, 

P xn( )   ≤  ( ) ( ) ( )− − −16 0 0
k

n
s

n
k sx xρ ρ  ( x x− 0  + ρn ( x0 ) ) 

k
 
+

 
s

 ϕ ( ρ )

≤  ( ) ( ) ( )− − −16 0 0
k

n
s

n
k sx xρ ρ *

 ( x x− 0  + ρn ( x0 ) ) 
k

 
+

 
s*

 ϕ ( ρn ( x0 ) )

= :  B0 ( x x− 0  + ρn ( x0 ) ) 
k

 
+

 
s*.

Therefore, by virtue of (2.11), we obtain 

′( )P xn 0   ≤  B M s xn
k s

0
1

0( ) ( )+ −* *ρ   =  ( ) ( ) ( ) ( )− − ( )16 1
0 0

k
n

s
nM s x x* ρ ϕ ρ .

�

2.5.  Let us prove Theorem 1.2 for  r = 0. 

Denote  ρn x( )  : =  ρ2n ( x ).  Note that  ρn x+ ( )1   ≤  ρn x( )  ≤  4 1ρn x+ ( ),  x ∈ I.  Assume,

for simplicity, that  k  ≠  1.  We choose an integer  n0  from the condition  2
n0  ≤   k – 1  <

2
n0

 

+
 

1
.  We fix a point  x0 ∈  I  and a number  h ∈  ( 0, k

–
 

3
 ]  so that  (  x0 + k h ) ∈  I  and

choose an integer  n*  from the condition  ρn x∗+ ( )1 0  ≤ k h ≤ ρn x∗ ( )0 .  For  n ≤ n* + 1  and

x ∈ [ x0 , x0 + k h ],  using (1.18), we obtain the estimates  c xn1 0ρ ( ) ≤ ρn x( ) ≤ c xn2 0ρ ( ) .

Note that  n*  ≥  n0  because  k h  ≤  k
–

 

2
.  We set 
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Q x P x P xn kn0 11 2 10+ −( ) = ( ) − ( )+:

and 

Q x P x P xn n n( ) = ( ) − ( )−:
2 2 1

for  n  >  n0 + 1.  We expand the function  f  into the Bernstein telescopic sum, i.e., we
represent it in the form 

f ( x )  =  f x P x Q x P xn n k
n n

n

( ) − ( ) + ( ) + ( )+

∗

−
= +

+

∑2 1
1

1

1

0

*
.

Since 

∆h
k k

x x kh
f P x f Pn n−( ) ≤ −+ + [ + ]2 0 21 1

0 0
2

* *
;

,

≤  2 0 1 0 3
k

nc x c hϕ ρ ϕ( )∗+ ( ) ≤ ( ) ,      ∆h
k

kP x( )−1 0;   =  0,

the problem reduces to the estimation of the  k th difference  ∆h
k

nQ x( ); 0 .  It follows from
condition (1.14) of Theorem 1.2 that, for  n  >  n0 + 1,  one has 

Q xn( )   ≤  P x f x f x P xn n2 2 1( ) − ( ) + ( ) − ( )−

≤  ϕ ρ ϕ ρ ϕ ρ( ) ( ) ( )( ) + ( ) ≤ ( )− −n n nx x x1 12 ,      x ∈ I,

Q x xn k0 1 12+ −( ) ≤ ( )( )ϕ ρ ,      x ∈ I,

whence 

Q xn( )   ≤  2 4 2 4ϕ ρ ϕ ρ( ) ( )( ) ≤ ⋅ ( )n
k

nx x ,      x ∈ I,    n  ≥  n0 + 1.

Using inequality (2.4), we get 

Q x c x xn
k

n
k

n
( ) −( ) ≤ ( ) ( )( )4ρ ϕ ρ ,      x ∈ I,    n  ≥  n0 + 1.

Therefore, for all  x ∈ [ x0 , x0 + k h ]  and  n  =  n n0 1 1+ … +∗, , ,  we have 
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Q x c x x c x c xn
k

n
k

n n
k

n
( ) − −( ) ≤ ( ) ( ) ≤ ( ) ( )( ) ( )4 4 2ρ ϕ ρ ρ ϕ ρ

≤  c x xn
k

n5 0 0ρ ϕ ρ− ( ) ( )( )

=  c x x x x dun
k

n n n
xn

5 0 0 1 0
1ρ ϕ ρ ρ ρ

ρ

−
−

−

(

( ) ( ) ( ) − ( )( )( )
00

1 0

)

( )−

∫
ρn x

≤  c x u x duk
n

k
n

k

x

x

n

n

5 1 0 1 04 2

0

1

ρ ϕ ρ
ρ

ρ

−
−

−
−

( )

(

( ) ( ) ( )
− 00 )

∫

≤  c u u duk

x

x

n

n

6
1

0

1 0
− −

( )

( )

( )
−

∫ ϕ
ρ

ρ

.

Hence, 

∆h
k k k

x

x

n n

n

f x c h c h u u du

n

n

( ) ≤ ( ) + ( )− −

( )

( )

= +

+ −

∫∑;
*

0 3 6
1

1

1

0

1 0

0

ϕ ϕ
ρ

ρ

=  c h c h u u duk k

x

x

n

n

3 6
1

1 0

0 0

ϕ ϕ
ρ

ρ

( ) + ( )− −

( )

( )

+

∫
*

≤  c h c h u u du c h u u duk k

kh

k k

h

3 6
1

4

2

7
1

1

ϕ ϕ ϕ( ) + ( ) ≤ ( )− − − −∫ ∫
/

.

Thus, Theorem 1.2 is proved for  r  =  0. 

2.6.  Let us prove Theorem 1.2 for  r ≠ 0. 

Denote  ϕ( )t   : =  t trϕ( ) .  According to the result proved above, we have 

ω ϕm
m m

t

t f c t u u du( ) ≤ ( )− −∫; 1
1

1

.

Therefore, by virtue of inequality (3.5.16), we get 



390 Approximation by polynomials Chapter 7

ω ωk
r r

m

t

t f c u u f du( ) ≤ ( )( ) − −∫; ,2
1

0

  ≤  

 

c c u d duk m

u

t

1 2
1

1
1

1

0

− − − ( )





∫∫ v v vϕ

=  k c c u u du t u u du
t

k k

t

− − − −( ) + ( )





∫ ∫1
1 2

1

0

1
1

ϕ ϕ  .

2.7.  Lemma 2.3.  Suppose that  k ∈ N,  ( r + 1 ) ∈ N,  m  =  k + r,  h  >  0,  ( x0 + k h ) ∈  I,

n0 ∈ N,  ( n0 + 1 ) 
–

 
2  <  h  ≤   n0

2− ,  and  ε  = { }εn   is a nonincreasing sequence of posi-

tive numbers  εn ,  ( n + 1 ) ∈ N.  If, for all  n,  one has 

En ( f )  ≤  εn , (2.12)

then 

∆h
k r r

j
j n

k r k
j

j

n

f x c rj cn j( ) ≤ +( ) −

= +

∞
− ( + )−

=
∑ ∑; 0

2 1

1
0

2 2 1

10

0

ε ε . (2.13)

Let us prove Lemma 2.3 for  r ≠ 0.  Denote  εn  : =  ε
2n .  Let  P2n  =  P2n  ( x )  be a

polynomial of degree  2n  for which  f P n−
2

  ≤  2 εn  and let  Qn  =  Qn ( x )  : =  P2n  ( x ) –

P2n – 1 ( x ).  We choose an integer  n*  from the condition  2n*  <  n0  ≤   2n*
 
+

 
1  and represent

f  in the form 

f ( x )  =  P x Q x Q xn
n

n

n
n n

1
1 1

( ) + ( ) + ( )
= = +

∞

∑ ∑
*

*

  : =  i1 ( x )  +  i2 ( x )  +  i3 ( x ).

Taking into account that  Q
nn   ≤  4 1εn−   and using the Markov inequality (2.1), we es-

tablish that 

Qh
r nr

n
( )

−≤ ⋅4 22
1ε       and      Qh

m( )   ≤  4 22
1⋅ −

nm
nε ,

whence 

∆h
k r k m k nm

n
n

n

i x h i h( ) ≤ ≤( ) ( )
−

=
∑2 0 2 1

1

4 4;
*

ε ,

∆h
k r k m k rn

n
n n

i x i( ) ≤ ≤ ⋅( ) ( )
−

= +

∞

∑3 0 3 1
1

2 4 2 4;
*

ε .
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Taking into account that 

4 2 1

2 1

2 1

nl l

j n

j

n

≤ −

= +

+

∑ ,      l ∈ N,

we get 

∆h
k r k nm

n
n

n
k rn

n
n n

f x h( ) ≤ + ⋅( )
−

=
−
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∞

∑ ∑;
*

*

0 1
1

1
1

4 4 4 2 4ε ε

<  4 4 40
2 1 2 1

1
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2

2 2

1
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n
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n

n

n
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−
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−

∑∑
*

  

+  4 22 1 2 1
1

2 1

2
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1

r k r
n
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j
n

n
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−

= += +

∞

−

−

∑∑ ε
*

≤  4 41
1

2 1 2 1

2 1

2

2 2

1

m k m k m
j

jn

n

h h j
n

n

+ + −

= +=
+

−
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∑∑ε ε
*

  

+  4 22 1 2 1

2 1

2

1 2

1

r k r
j

jn n

j
n

n

− −

= += +

∞

−

−

∑∑ ε
*

=  4 1
1

m kh+ ε   +  4 4 22 1 2 1

1

2
2 1 2 1

2

1

m k m
j

j

r k r
j

j

h j j

n

n

+ −

=

− −

=

∞−

∑ ∑+ε ε
*

*

≤  c rj cn jr
j

j n

k m
j

j

n
2 1

1
0

2 2 1

10

0
−

= +

∞
− −

=
∑ ∑+ε ε .

Thus, Lemma 2.3 is proved for  r ≠ 0. 
For  r = 0,  estimate (2.13) is proved in the same way as Theorem 1.2 for  r = 0;

moreover, the proof becomes even simpler because, by analogy with the arguments pre-
sented above, one should use the Markov inequality (2.1) instead of inequality (2.3). 

�
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Note that, in the case where  r  =  0  and  k  =  1,  one must add the term  cn k
0

2
0

− ε   to
(2.13). 

Lemma 2.3 means that relation (3.7.24) yields (3.7.25). 
Lemma 2.3 also yields the inverse theorem for  D Tr-moduli of continuity (see [Ditz-

ian and Totik (1987)] for  r = 0 ). 

Theorem 2.1.  Let  k ∈ N,  ( r + 1 ) ∈ N,  ϕ ∈ Φ,  and  f ∈ C ( I ).  If 

E f
n nn r( ) ≤ 





1 1ϕ ,      n  ≥  k + r – 1,

then 

ω ϕ ϕ
k r

r
t

k
k

t

t f I c
r u

u
du ct

u

u
du, ; ;( ) ≤ ( ) + ( )( )

+∫ ∫
0

1

1

,      0  ≤  t  ≤  
1
2

. (2.14)

3.  Polynomial kernels.  Direct theorem

3.1.  In this section, we study Dzyadyk-type polynomial kernels (blendings) of the form 

D ( y, x )  =  αν
ν

ν
( )

=
∑ y x
n

0

.

It turns out that the algebraic polynomials 

Pn ( x )  =  f y D y x dy( ) ( )
−
∫ ,
1

1

are a fairly universal tool for the approximation of functions  f ∈ C ( I ),  I  : =  [ – 1; 1 ]. 
Recall (see Section 1) that we write  ρ  instead of  ρn ( x ),  α   : =  arccos y,  and  β  : =

arccos x,  x, y ∈ I.  By  C   (in contrast to  c  )  we denote positive numbers whose values
may depend only on fixed natural numbers  l  and  r  and on fixed nonnegative integer
numbers  p,  q,  and  s. 

3.2.  Recall some information on trigonometric kernels.  The trigonometric polynomial

Fn ( t )  =  
sin /

sin /
cos

2

2
1

1
2

2 2
1
2

1
nt

n t n
t

n

= + −





=

−

∑ ν ν
ν

(3.1)

is called a Fejér kernel. 
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The function 

Jn, r ( t )  =  1 2
2

2 1

γ n r

rnt
t,

sin /
sin /







( + )
, (3.2)

where 

γn, r  =  
sin /
sin /

nt
t

dt
r2

2

2 1





( + )

− π

π

∫ ,

is called a Jackson-type kernel. 
The following estimates are true: 

c–
 
1

 n2r
 
+

 
1  <  γn, r  <  c n2r

 
+

 
1, (3.3)

J t t dt cnn r
j j

, ( ) ≤
π

−∫
0

,      j  =  0, … , 2r (3.4)

It follows from relation (3.1) that  Jn, r ( t )  is a trigonometric polynomial of degree

( r + 1 ) ( n – 1 ),  i.e., 

Jn, r ( t )  =  1
2

1

1

1 1

π
+

π =

( + )( − )

∑ j tn r

r n

ν
ν

ν, , cos , (3.5)

where 

j j t dt J t t dtn r n r n rν ν ν ν, , , , ,cos cos=
π

= ( )
− π

π

− π

π

∫ ∫1 2 .

3.3.  Definition 3.1.  The function 

Dl, n, r ( y, x )  =  1
1

1

( − )
∂
∂

( − ) ( )−

−

+

∫l x
x y J t dt

l

l
l

n r! ,
β α

β α

, (3.6)

where  l, n, r  ∈  N,  x, y ∈  I,  α   : =  arccos y,  and  β  : =  arccos x,  is called a Dzyadyk-

type polynomial kernel. 

It follows from representation (3.5) that the kernel  Dl, n, r ( y, x )  is a polynomial of de-

gree  ( r + 1 ) ( n – 1 ) – 1  in the variable  x,  and  Dl, 1, r ( y, x )  ≡  0. 
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3.4.  Lemma 3.1.  The following inequality is true: 

∂
∂

( + ) − ( − )





( )
p

p n r n r
x

J J1
sin , ,β

α β α β   ≤  
C x

x y x
n
r p

n
r

ρ
ρ

− − ( )
− + ( )( )

1

 . (3.7)

We divide the proof of the lemma into three parts. 

1.  We show that the Fejér kernel (3.1) satisfies the estimate 

F Fn n( + ) − ( − )α β α β   ≤  2ρ–
 
1

 sin β. (3.8)

Indeed, taking (3.3) into account, for  sin β  <  1 / n  we obtain 

F Fn n( + ) − ( − )α β α β   =  2 1
1

1

−





=

−

∑ ν να νβ
ν n

n

sin sin

≤  2 1 2
1

1
2 1−



 < <

=

−
−∑ ν ν νβ β ρ β

ν n
n

n

sin sin sin .

For  sin β  ≥  1 / n,  we have  F Fn n( + ) − ( − )α β α β   ≤  n  ≤  2ρ–
 
1 sin β.  Estimate (3.8) is

proved. 

2.  Let us prove inequality (3.7) for  p = 0.  To this end, we represent the left-hand
side of (3.7) in the form 

1
sin , ,β

α β α β( )( + ) − ( − )J Jn r n r   =  1 21 1 2 1

sin ,β
γ α β α βn r

r r
n nn F F A− + + ( )( + ) − ( − ) ,

where 

A  : =  n F Fr
n n

r
r

− −

=
( + ) ( − )∑ ν ν

ν
α β α β

0

. (3.9)

It follows from (3.2) and (3.8) that 

1 21 1 2 1 1

sin ,β
γ α β α β ρn r

r r
n nn F F c− + + −( + ) − ( − ) ≤ .
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Therefore, it remains to estimate  A.  If  x y−   ≤  ρ,  then 

A  ≤  n–
 
r

 ( r + 1 ) ( 2n ) 
–

 
r

 n2r  ≤  ( r + 1 ) 2–
 
r  ≤  ( r + 1 ) ρr

 ( x y−  + ρ  ) 
–

 
r.

If  x y−  > ρ ,  then, bringing the sum in (3.9) to the common denominator  2–
 
r

 nr
 ( x –

y ) 
2r  and using the inequalities 

sin sin sin sin2 2

2 2
2

2 2
α β α β α β α β−



 ≤ +



 ≤ +





−



   ≡  x y−   +  1  –  x2,

we get 

A  ≤  ( + ) −









 ( − )( )−r n x yr

r
r1 2

2

2
2sin

α β

≤  ( r + 1 ) 2
r

 ( x y−  + 1 – x2
 ) 

r
 ( n2

 ( x – y ) 
2

 ) 
–

 
r  ≤  ( r + 1 ) 2

r
 x y−  

–
 
r

 ρr.

The lemma is proved for  p  =  0. 

3.  Let  p ∈ N.  Denote 

D ( y, x )  : =  D1, n, r ( y, x )  =  1
sin , ,β

α β α β( )( − ) − ( + )J Jn r n r ,

D(
 
p

 
)

 ( y, x )  : =  ∂
∂

( )
p

px
D y x, .

By induction, assume that (3.7) is true for the number  p – 1,  which is equivalent to
the system of two inequalities 

D y xp( − )( )1 ,   ≤  C ρ–
 
p,      ( − ) ( )( − )x y D y xr p 1 ,   ≤  C ρr

 
–

 
p.

By virtue of (1.11), we obtain the following inequalities: 

(i) D y xp( )( )1 ,   ≤  C ρ–
 
p

 
–

 
1,

(ii) ∂
∂

( − ) ( )( )( − )
x

x y D y xr p 1 ,   ≤  C ρr
 
–

 
p

 
–

 
1.

Using inequality (ii) and the induction hypothesis, we get 
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( − ) ( )( )x y D y xr p ,   =  ∂
∂

( − ) ( ) − ( − ) ( )( )( − ) − ( − )
x

x y D y x r x y D y xr p r p1 1 1, ,

≤  C ρr
 
–

 
p

 
–

 
1 + C x y−  

–
 
1

 ρr
 
–

 
p  ≤  C ρr

 
–

 
p

 
–

 
1

 ( 1 + x y−  
–

 
1

 ρ ).

Inequality (3.7) follows from the estimate obtained and estimate (i). 

�

3.5.  Denote 

ϕl, n, r ( x, y )  : =  ( − ) ( )−

−

+

∫x y J t dtl
n r

1
,

β α

β α

. (3.10)

We define numbers  al, p, q  as follows:  if  p  >  l + q,  then  al p q, ,   =  0;  if  p  =  l + q,  then

al p q, ,   =  ( – 1 ) 

q
 ( l – 1 ) ! q !;  if  l  ≤  p  <  l + q,  then  al p q, ,   =  0;  and if  p  <  l,  then 

al p q, ,   =  
l

p
p

l q p

−



 + −

1 !
 .

We also introduce the following notation:  l   =  l  if  l  is even and  l   =  l + 1  if  l  is
odd. 

Lemma 3.2.  The function 

Al, n, p, q, r ( x )  : =  ( − ) ∂
∂

( ) − ( + )
−

+ −∫ x y
x

x y dy a xq
p

p l n r l p q
l q p

1

1

1ϕ , , , ,, (3.11)

is an algebraic polynomial of degree  ≤ l + q – p  ( if  l + q – p < 0,  then  Al, n, p, q, r ≡  0 ).
Furthermore, 

Al n p q r, , , ,   ≤  C n–
 
l*, (3.12)

where  l*  =  min { 2r + 1, l**
 }  and  l**  =  max { + − }l l q p, . 

Proof.  The lemma can easily be proved by induction on  q  with the use of the recurrence
relation 

Al, n, p, q + 1, r ( x )  =  Al + 1, n, p, q, r ( x )  –  p Al, n, p – 1, q, r ( x ).
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Therefore, only the cases  p  =  0  and  q  =  0  must be verified. 

1.  Let  p  =  0.  Integrating (3.11) by parts, we obtain 

Al + q ( x )  : =  Al, n, 0, q, r ( x )

=  −( + ) ( − ) ( + ) − ( − )− +
π

∫ ( )l q J J dl q
n r n r

1

0

cos cos , ,β α α β α β α .

Taking into account the orthogonality of the system  {  cos ν α }  on  [  0, π  ]  and the iden-
tity 

J J jn r n r n r

r n

, , , , cos cos( + ) − ( − ) =
π

+
π=

( + )( − )

∑α β α β νβ ναν
ν

2 1

1

1 1

,

which follows from (3.5), we conclude that  Al + q ( x )  is an algebraic polynomial of degree

≤ l + q.  Furthermore, representing  Al + q ( x )  in the form 

Al + q ( x )  =  − ( + ) 



 +











+ −
+ +

− π

π

∫2
2 2

1l q
l q l q

n rl q t t J dtsin sin ,β

and using (3.4), we get 

2
2

− −
+

+

− π

π
−( + )( + ) ≤ 



 <∫l q

l q

l q

n r
l ql q A t J dt Cnsin ,

for  l q+   <  2r + 1  and

A l q Cnl q I
l q

n r
r

+
+ + − − − −≤ π( + ) <2 1 1 1 2 1γ ,

for  l q+   >  2r + 1. 

2.  By virtue of the identity  Al, n, p, 0, r ( x )  =  A xl
p( )( ),  the case  q  =  0  follows from the

case  p  =  0  considered above. 

�
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3.6.  Relation (3.5), Lemmas 3.1 and 3.2, and the representation 

∂
∂

( ) = ( − )
+
−





 ( − ) ∂

∂
( )

=

−
+ −

+ −∑
p

p l n r

l
l

p l

p l n r
x

D y x l j
l p

x y
x

D y x, , , ,, ! ,
ν

ν
ν

νν1
11

yield the following statement: 

Theorem 3.1 [Shevchuk (1989), (1992)].  The polynomial kernel 

Dl, n, r ( y, x )  =  1
1

1

( − )
∂
∂

( − ) ( )−

−

+

∫l x
x y J t dt

l

l
l

n r! ,
β α

β α

is an algebraic polynomial of degree  (  r + 1 ) ( n – 1 ) – 1  in the variable  x.  Further-
more, this kernel satisfies the inequalities 

∂
∂

( ) ≤ ( ) − + ( )( )− − −
p

p l n r n
r p

n
r

x
D y x C x x y x, , , ρ ρ1 , (3.13)

1

1

1
2 1

p
y x

x
D y x dy Cnq

p

p l n r q p
r l

!
,, , ,

min ,( − ) ∂
∂

( ) − ≤
−

− { + }∫ δ , (3.14)

where  δq, p  is the Kronecker symbol.  Moreover, the integral in (3.14) is an algebraic

polynomial of degree  ≤ q – p  (for  q – p  <  0,  it is identically equal to zero). 

3.7.  The idea of the representation of the Dzyadyk kernel in the form (3.6) is based on the
application of the function 

ϕn, r ( x, y )  : =  ϕ1, n, r ( x, y )  =  J t dtn r, ( )
−

+

∫
β α

β α

used by DeVore and Yu (1985).  We set  ( − )+x y 0  : = 1  if  x ≥ y  and  ( − )+x y 0  : = 0  if
x < y. 

Theorem 3.2 [DeVore and Yu (1985)].  For all  x ∈ I  and  y ∈ I,  one has 

ϕn r x y x y, ,( ) − ( − )+
0   ≤  c n–

 
2r

if  x y−   >  1,  and 
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ϕn r x y x y, ,( ) − ( − )+
0   ≤  c ( ρn ( x ) + ρn ( y ) ) 

2r
 ( x y−  + ρn ( x ) + ρn ( y ) ) 

–
 
2r

if  x y−   ≤  1. 

Proof.  Denote  A  : =  ϕn r x y x y, ,( ) − ( − )+
0 ,  ϕ ( x, y )  : =  ϕn, r ( x, y ),  and  J ( t )  : =  Jn, r ( t ).

We take into account the estimate  β α−   ≤  β α+   ≤   2π – β α−   and the evenness

and periodicity of the Jackson-type kernel  J ( t ).  First, let  x  <  y,  i.e.,  β  >  α.  Then 

A  =  ϕ ( x, y )  =  J t dt J t dt( ) ≤ ( )
−

+

−

π

∫ ∫
β α

β α

β α

.

Let  x  >  y,  i.e.,  β  <  α.  Then 

A  =  1  –  ϕ ( x, y )  =  J t dt J t dt( ) − ( )
− π

π

−

+

∫ ∫
β α

β α

=  J t dt J t dt J t dt( ) − ( ) ≤ ( )
− π

−

+

π

−

π

∫ ∫ ∫
β α

β α α β

2 ,

i.e., for all  x  ≠  y,  we have

A  ≤  2 2
2

J t dt t J t dt
r

( ) ≤
−





 ( )

−

π

−

π

∫ ∫
α β α β

α β
.

Therefore, by virtue of (3.4), we get

A  ≤  2 2 2

0
1

2α β α β− ( ) ≤ −( )−
π

−∫r rt J t dt c n .

If  x y−   >   1,  then  β α−   >   1  and, consequently,  A  <  c1 n–
 
2r.  If  1  ≥  

x y−   ≥ ( sin α + sin β ) / n,  then  1  ≤  n tan /( − )α β 2   <  n α β− ,  whence 

1
2

1
2 1n nα β α β−

≤
( − ) +( )tan /

=  
( + )

− + ( + )
< ( ) +

− + ( ) +
sin sin /

sin sin /
α β

α β
ρ ρ

ρ ρ
n

x y n

y

x y y
n

n
.
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Finally, if  x y−   <  ( sin α + sin β ) / n,  then 

A  ≤  1  <  22r
 ( ρn ( y ) + ρ  ) 

2r
 ( x y−  + ρn ( y ) + ρ  ) 

–
 
2r.

Theorem 3.2 and inequalities (1.18) and (1.19) yield the following statement:

Corollary 3.1.  The following estimates are true: 

ϕ ρ ρn r n
r

n
rx y x y c y x y y, ,( ) − ( − ) ≤ ( ) − + ( )( )+

−0 ,

(3.15)

( − ) − ( ) ≤ − − +( )+
− − −x y x y C x y x yl

l n r
l r r1 1ϕ ρ ρ, , , .

The last estimate immediately yields the direct theorem (Theorem 1.1) for  f ∈ Wr
 [ I ].

Indeed, denoting 

Pn ( x )  =  ( ) (− )( + )− ( )

=

−

∑ ν ν ν

ν
! 1

0

1

1 1f x
r

  +  ( )( − ) ( ) ( )− ( )
+

−
∫r f y x y dyr

r n r1 1
1

1

1

! ,, ,ϕ ,

we obtain 

f x P xn( ) − ( )   =  ( ) [ ]( − ) ( ) ( − ) − ( )− ( )
+

−
+

−
∫r f y x y x y dyr r

r n r1 1 1
1

1

1

! ,, ,ϕ

≤  c r x y x y dy cr r r r( )( − ) − − +( ) ≤− − − − +

−
∫1 1 1 1 1

1

1

! ρ ρ ρ .

For the approximation of a continuous (not necessarily differentiable) function, it is con-
venient to use the kernels  Dl n r, , . 

3.8.  Prior to the proof of the direct theorem (Theorem 1.1), we prove Lemma 3.3. 

For the segment  J  : =  [ a, b ],  function  f ∈ C ( J ),  and number  m ∈  N,  we denote by

Lm  – 1 ( x; f ; J )  the Lagrange polynomial that interpolates the function at  m   equidistant

points of  J,  including its endpoints, i.e.,  L0 ( x; f  ; J  )  =   f ( a )  and  L m  – 1 ( x; f  ; J  )  =

L ( x; f ; a, a + ( b – a ) / ( m – 1 ), … , b )  for  m  ≠  1. 

Lemma 3.3.  Suppose that  l ∈ N,  m ∈ N,  l > 2m,  n ∈ N,  n ≠ 1,  ( p + 1 ) ∈  N,  ϕ ∈ Φm,

x0 ∈ I,  ρ0  : =  ρn ( x0 ),  J  : =  [ x0 – ρ0 , x0 + ρ0 ] ∩ I,  δ  >  0,  f ∈ C ( I ),  and 
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� l, m , n ( x; f )  : =  Lm  – 1 ( x; f ; I )  +  ( ( ) − ( )) ( )− +
−
∫ f y L y f I D y x dym l n l1 2 1
1

1

; ; ,, ,

is a polynomial of degree  < ( l + 1 ) ( n – 1 ).  If  f ∈ H [ m, ϕ ],  then 

� l m n
p

m
px f L x f J, , ; ; ;( )
−

( )( ) − ( )0 1 0

≤  
  
C f x x Ip

m

l m
ρ ω ρ δ δ ρ

δ
ϕ ρ0 0 0 0

0
2

0
−

−
( [ − + ] ) + ( ) ( )





; ; , ∩ . (3.16)

Proof.  Without loss of generality, we assume that  ρ0  ≤  δ  ≤  2.  Denote 

D(
 
p

 
)

 ( y, x )  : =  ∂
∂

( )+

p

p l n lx
D y x2 1, , , ,      g ( x )  : =  f ( x ) – Lm – 1 ( x; f ; I ),

and  L ( x )  : =  Lm – 1 ( x; g; J )  and note that 

  

� l m n
p

m
p px f L x f J g y L y D y x dy, , ; ; ; ,( )
−

( ) ( )

−

( ) − ( ) = ( ) − ( ) ( )( )∫1
1

1

+  L y D y x dy L xp p( ) ( ) − ( )( )

−

( )∫ ,
1

1

= :  i1 ( x )  +  i2 ( x )  –  L(
 
p

 
)

 ( x ),

∆ ∆h
m

h
mf x g x( ) ≡ ( ); , ,      x, ( x + m h ) ∈ I. (3.17)

1.  Let us estimate  i1 ( x0 ).  Denote 

Jδ  : =  [ x0 – δ, x0 + δ ] ∩ I      and      ω ( x )  : =  ωm ( t; f ; Jδ ) ≡ ωm ( t; g; Jδ ) .

Using (3.6.15), we obtain 

g x L x( ) − ( )   =  c x xm m
1 0 0 0 0ρ ρ ω ρ− − +( ) ( ),      x ∈ Jδ ,

g x L x( ) − ( )   =  c x xm m
1 0 0 0 0ρ ρ ϕ ρ− − +( ) ( ),      x ∈ I.
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Furthermore, according to (3.13), we have  D y xp( )( ), 0   ≤   C y xl p l
2 0

1
0 0ρ ρ− − −− +( ) .

Decomposing the integral  i1 ( x0 )  into two integrals (over  Iδ   and  I \ Iδ),  we get 

( )( ) − ( ) ( )( )∫ g y L y D y x dyp

J

, 0

δ

≤  c C y x dyl p m m l

J
1 2 0

1
0 0 0ρ ω ρ ρ

δ

− − − −( ) − +( )∫

≤  c C y x dy Cl p m m l p
1 2 0

1
0 0 0 3 0 0ρ ω ρ ρ ρ ω ρ− − − −

− ∞

∞
−( ) − +( ) ≤ ( )∫ ,

( )( ) − ( ) ( )( )∫ g y L y D y x dyp

I J

,
\ δ

≤  2 1 2 0
1

0 0 0c C y x dyl p m m lρ ϕ ρ ρ
δ

− − − −
∞

( ) − +( )∫

<  C Cp
l m

p
l m

4 0 0
0

1

4 0 0
0

2
ρ ϕ ρ ρ

δ
ρ ϕ ρ ρ

δ
−

− −
−

−
( ) 



 ≤ ( ) 



 .

2.  Let us estimate the difference  i2 ( x0 ) – L(
 
p

 
)

 ( x0 ).  We expand the polynomial  L ( x )
into a Taylor series: 

L ( x )  =  
( − ) ( )( )

=

−

∑ x x
q

L x
q

q

q

m
0

0
0

1

!
.

Then 

i2 ( x0 )  –  L(
 
p

 
)

 ( x0 )  =  
1

0 0
1

1

0
0

1

q
y x D y x dy L xq p

q p
q

q

m

!
, ,( − ) ( ) −







( )( )

−

( )

=

−

∫∑ δ

= :  A L xq
q

q

m
( )

=

−
( )∑ 0

0

1

.
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By virtue of the Whitney inequality (see (3.6.12)), we have  g I   ≤  c5 ϕ ( 1 ).  Therefore,

using (3.3.48), we get  L xq( )( )0   ≤   c q
6 0 1ρ ϕ− ( ).  Furthermore, by virtue of (3.14), we

obtain  Aq   ≤  c7 n–
 
2l

 
–

 

1.  Hence, 

i x L xp
2 0 0( ) − ( )( )   ≤  c c n l q

q

m

6 7
2 1

0
0

1

1− − −

=

−
( )∑ ρ ϕ

≤  mc C n Cl m l m
6 7

2 1
0 8 0

2
01− − − −( ) < ( )ρ ϕ ρ ϕ ρ

≤  C l m p p
l m p

8
2

0
0

2

02 − + −
− +



 ( )ρ ρ

δ
ϕ ρ

=  C Cp
l m p

p
l m

9 0
0

2

0 9 0
0

2

0ρ ρ
δ

ϕ ρ ρ ρ
δ

ϕ ρ−
− −

−
−



 ( ) = 



 ( ).

Thus, 

� l m n
p

m
p px f L x f J i x i x L x, , ; ; ;( )
−

( ) ( )( ) − ( ) ≤ ( ) + ( ) − ( )0 1 0 1 0 2 0 0

≤  ( + ) ( ) + ( + ) 



 ( )− −

−
c c c cp p

l m

3 8 0 0 4 9 0
0

2

0ρ ω ρ ρ ρ
δ

ϕ ρ

≤  C p
l m

ρ ω ρ ρ
δ

ϕ ρ0 0
0

2

0
−

−
( ) + 



 ( )



 .

3.9.  We now prove the direct theorem (Theorem 1.1).  More exactly, we prove Theorem
3.3, which somewhat generalizes both Theorem 1.1 and the Trigub theorem [Trigub
(1962)] on the joint approximation of a function and its derivatives and on an estimate for
the modulus of the derivative of approximating polynomials. 

Theorem 3.3.  If  f ∈  Wr
 H [ k, ϕ ],  then, for each n  ≥  k + r – 1,  there exists an alge-

braic polynomial  Pn  of degree  ≤ n  such that, for all  x ∈ I,  the following inequal-
ities are true: 

f x P x c x xp
n

p
n
r p

n
( ) ( ) −( ) − ( ) ≤ ( ) ( )( )ρ ϕ ρ ,      p  =  0, ,… r , (3.18)

P xn
p( )( )   ≤  

c
x

x x k r p f
n
p n

r
n x x x x In nρ

ρ ϕ ρ ρ ρ( )
( ) ( ) + ( + − )( ( ) )[ − ( ) + ( )], ∩ , (3.19)

p  =  0, ,… m.
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Proof.  First, assume that  m – 1  ≤  n  ≤  2m + 1.  Then  ρ ≥ c1  and we can take  Pn ( x )  : =
Lm  – 1 ( x; f ; I ).  Estimate (3.18) follows from the Whitney inequality (see (3.6.12)), and es-
timate (3.19) follows from (3.3.48). 

Let  n  >  2m + 1.  We set  n1  : =  1 + [ ( n + 1 ) / ( 2m + 2 ) ],  where  [   ]  denotes the
integer part of a number.  We also introduce the polynomial  P xn ( )   : =  � 2 1 1m m n x f+ , , ( ; )

of degree  ≤ ( 2m + 2 ) ( n1 – 1 ) – 1  ≤  n.  Taking  δ  =  2  and  x0 ∈  I,  denoting  ρ0  : =

ρn1
 ( x0 )  and  J  : =  [ x0 – ρ0 , x0 + ρ0 ] ∩ I,  and using Lemma 3.3, we get 

P x L x f J c f I f In
p

m
p p

m m
( )

−
( ) −( ) − ( ) ≤ ( ) +

+




 ( )



0 1 0 2 0 0

0

0
02

; ; ; ; ; ;ρ ω ρ ρ
ρ

ω ρ

≤  2 22 0 0 2 0 0c f I cp
m

r pρ ω ρ ρ ϕ ρ− −( ) ≤ ( ); ; .

Furthermore, by virtue of Lemma 4.3, we obtain 

f x L x f J c f I cp
m
p p

m p
p r p( )

−
( ) −

−
( ) −( ) − ( ) ≤ ( ) ≤ ( )1 0 3 0 0 3 0 0; ; ; ;ρ ω ρ ρ ϕ ρ .

By virtue of (1.48), we have 

L x f J c m p fm
p p

J−
( ) −( ) ≤ ( − )1 0 4 0; ; ρ .

Therefore,

f x P x f x L x f Jp
n

p p
m
p( ) ( ) ( )
−

( )( ) − ( ) ≤ ( ) − ( )0 0 0 1 0; ; ++ ( ) − ( )−
( ) ( )L x f J P xm

p
n

p
1 0; ;

≤  ( + ) ( )−c c r p
3 2 0 02 ρ ϕ ρ ,

P x P x L x f J L x f Jn
p

n
p

m
p

m
p( ) ( )

−
( )

−
( )( ) ≤ ( ) − ( ) + ( )0 0 1 0 1 0; ; ; ;

≤  2 2 0 0 4 0c c m p fr p p
Jρ ϕ ρ ρ− −( ) + ( − )

≤  2 2 0 0 4 0c c m p fr p p
Jρ ϕ ρ ρ− −( ) + ( − ) .

It remains to note that  n1  >  ( n + 1 ) / ( 2m + 2 ),  which implies that  ρ 0  <  c5 ρn ( x0 ),  i.e.,

ρ ϕ ρ0 0
r p− ( )  ≤  c x xm

n
r p

n5 0 0ρ ϕ ρ− ( ) ( )( ) . 

�
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Remark 3.1.  If  p  ≥  m,  then  L x f Jm
p
−

( ) ( )1 0; ;   ≡  0  and, hence, 

  
P x P x L x f J x f L x f Jn

p
n

p
m
p

m n
p

m
p( ) ( )

−
( )

+
( )

−
( )( ) ≤ ( ) − ( ) = ( ) − ( )0 0 1 0 2 1 0 1 01

; ; ; ; ;,�

≤  C C x xp
n

p
nρ ϕ ρ ρ ϕ ρ0 0 0 0

− −( ) < ( ) ( )( ),

where  C  =  C ( k, m, p, r ),  i.e., 

P x C x xn
p

n
p

n
( ) −( ) ≤ ( ) ( )( )ρ ϕ ρ ,      x ∈ I,      p  =  m n, ,… . (3.20)

Remark 3.2.  For  n  <  m – 1,  Theorem 3.3 is, generally speaking, not true.  Indeed, let
us take an arbitrary  A > 0  and consider the Chebyshev polynomial 

f ( x )  =  A cos ( m – 1 ) arccos x.

Since  ωk ( t; f ( r 
); I )  ≡  0,  we have  f ∈ Wr

 H [ k, ϕ ]  for any  ϕ ∈ Φk.  At the same time, it

is well known that, for any polynomial  Pn ( x )  of degree  n  <  m – 1,  there exists a point

x0 ∈ I  at which  f x P xn( ) − ( )0 0   ≥  A.  On the other hand, we have 

ρ ϕ ρn
r

nx x( ) ( )( )0 0   ≤  2m
 ϕ ( 2 ),

i.e., 

f x P xn( ) − ( )0 0   ≥  A x xm
n
r

n2 21
0 0

− − ( ) ( ) ( )( )ϕ ρ ϕ ρ .

3.10.  The theorem on a constructive characteristic (Theorem 1.3) is a direct corollary of
Theorems 1.1 and 1.2. 

It follows from Theorem 3.7.2 that if the condition  ϕ ∈ S ( k, r )  is not satisfied, then

Theorem 1.3 is, generally speaking, not true.  In other words, the condition  ϕ ∈ S ( k, r )  is
necessary and sufficient for the constructive characterization of functions from the space

W H Ir
k
ϕ( ) . 

Note that the necessity of the sufficient condition  ϕ ∈ S ( k, r )  for the constructive

characterization of the approximation of periodic functions of the space  W H Rr
k
ϕ( )  by

periodic polynomials was established by Bari and Stechkin [Stechkin (1949), (1951a);
Bari and Stechkin (1956)] and Lozinskii (1952). 

Lemmas 3.3 and 3.10.5 also yield the direct theorem for  D  Tr-moduli of continuity

(see [Ditzian and Totik (1987)] for  r = 0). 
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Theorem 3.4.  Let  k ∈  N,  ϕ ∈  Φk,  (  r + 1 ) ∈  N,  and  m   =  k + r.  If  f ∈  B H kr [ ], ϕ ,

then, for each  n  ≥  m – 1,  there exists an algebraic polynomial  Pn  of degree  ≤ n,
such that 

f P
c
n nn r− ≤ 



ϕ 1

,

( − ) ≤ 





( ) ( )f P
c
n n

p
n

p p
rρ ϕ 1

,      p  <  
r
2

,

( − ) ≤ 





( ) ( )
− + −





f P
c
n n

p
n

p p

n n
rρ ϕ

1 1 1 1
2 2

1
,

,      p  ≤  r,

and, for all  x ∈ I  and  p = 0, … , m, 

P x c
n

m p fn
p

x x
r p( )

[ − + ]
−( ) ≤ 



 + ( − )



ϕ ρρ ρ

1
, .

Corollary 3.2.  If  f Br∈ ,  then 

E f
c
n

w fn r
r r( ) ≤ ( ) ,

where  w ( x )  =  1 2− x . 

3.11.  Let us find an estimate for the  K-functional. 

Lemma 3.4.  If  f ∈ H [ k; ϕ; I ],  then, for every natural  n  ≥   k – 1,  there exists an al-
gebraic polynomial  Pn  of degree  ≤ n  such that 

f P c
nn I− ≤ 



ϕ 1 , (3.21)

P cn
nn

k k( ) ≤ 



ϕ 1

. (3.22)

Proof.  Using Theorem 4.1.2′, we extend the function  f  from  I  =  [ – 1, 1 ]  to the seg-

ment  [ – 2, 2 ],  i.e., we construct a function  f   such that  ωk ( t; f ; [ – 2, 2 ] )  ≤  c1 ϕ ( t )  and

f x( ) = f ( x )  for  x ∈ I.  Denote  f* ( x )  : =  f x( )2 ,  x ∈  I.  It is obvious that  ωk ( t; f* ; I )  ≡

ωk ( 2t; f ; [ – 2, 2 ] )  ≤   2k
 c1 ϕ ( t ).  By virtue of Theorem 3.3, there exists a polynomial

Qn ( x )  for which 
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f x Q xn*( ) − ( )   ≤  c2 ϕ ( ρ ),      Q xn
k( )( )   ≤  c3 ρ–

 
k

 ϕ ( ρ ),      x ∈ I. (3.23)

We set  Pn ( x )  : =  Qn ( x / 2 )  and note that, for  x ∈ −





1
2

1
2

, , 

1
2

1 3
2

1
2 2

02n n n
x

n n n≤ + = 



 ≤ 



 ≤ ( )ρ ρ ρ   =  1 1 2

2n n n
+ ≤ .

Therefore, for  x ∈ I,  relation (3.23) yields 

f x P xn( ) − ( )   =  f x Q x
n* 2 2





 − 



   ≤  c x c

n
c

nn
k

2 2 22
2 2 1ϕ ρ ϕ ϕ









 ≤ 



 ≤ 



 ,

P x Q x c x x
n

k k
n
k k

n
k

n
( ) − ( ) − −( ) = 



 ≤ 















2

2
2

2 23ρ ϕ ρ

≤  2 1
2

1
2

1
2

1
3 3 3

− − 















 ≤ 



 ≤ 





k
n

k
n

k kc c n
n

c n
n

ρ ϕ ρ ϕ ϕ .

�

Lemma 3.5.  If  f ∈ H [ k; ϕ; I ],  then 

Kk ( tk; f ; I )  ≤  c ϕ ( t ),      t ∈ 0 1,
k






. (3.24)

Proof.  Let  n  : =  [ 1 / t ]  be the integer part of  1 / t  and let  Pn ( x )  be the polynomial from
Lemma 3.4.  Taking (3.21) and (3.22) into account, we get 

Kk ( tk; f ; I )  ≤  f P n P x c
n

c tn I
k

n
k

I
− + ( ) ≤ 



 ≤ ( )− ( )

1
1ϕ ϕ .

�

4.  On the application of the method of decomposition of unity to
approximation of functions

4.1.  In this section, we follow the arguments of Kopotun, Leviatan, and Shevchuk (2005).
The method of decomposition of unity was applied to the proof of direct theorems by

Freud (1959), Brudnyi (1968), Dzyadyk and Konovalov (1973), and others.  In the last
cited paper, Dzyadyk proposed to use this method with polynomials 
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T u
u x

dun
x l

( )
−







−
∫ ˜
1

,

where  x̃   is a zero of the Chebyshev polynomial  Tn .  
In Subsection 4.2, we prove Lemma 4.1 for these polynomials.  In Subsection 4.3, we

describe the idea of the method.  In Subsection 4.4, we give a new proof of Corollary 2.1. 

4.2.  In what follows, 

ρ  =  ρn ( x ),      m  =  k + r,

and constants  c  may depend only on  k,  r,  and  m. 

We fix  n ∈ N,  n > 2.  Let  Tn ( x )  =  cos n arccos x  be the Chebyshev polynomial, let

x j  = cos
j
n
π

,  j = 0, … , n,  be extremum points of  Tn   on  I,  let  x̃ j  = cos j
n

−





π1
2

,  j =

1, … , n,  be zeros of  Tn  ,  let  Ij : = [ xj , xj – 1 ] ,  and let  I j  = xj – 1 – xj ,  j = 1, …  , n,  be
the lengths of the intervals  I j .  One can easily verify the following inequalities for each

j = 1, … , n : 

ρ ρ< <I j 5 ,      x ∈ Ij  , (4.1)

I Ij j± <1 3 , (4.2)

I x xj j j< −4 ˜ ,      I x xj j j< −−4 1 ˜ , (4.3)

1  <  n / Ij /  <  π. (4.4)

For each  j = 1, …  , n,  we consider the following algebraic polynomials of degree
n – 1: 

t x
T x
x x

Ij
n

j
j( ) = ( )

−
:

˜
,    x  ≠  xj ,      and      t x T x Ij j n j j( ) = ′( )˜ : ˜ .

It is clear that 

t x
I

x xj
j

j
( ) ≤

− ˜
,      x ∈ I I j\  . (4.5)
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Lemma 4.1.  For each  j = 1, … , n,  the following relation is true: 

4
3

4< ( ) <t xj ,       x ∈ Ij  . (4.6)

Moreover, the constants in (4.5) are exact and cannot be improved. 

Proof.  First, we note that  t xn j− + (− )1  = t xj( )   and  { }− ∈ − +x x In j 1  = Ij  .  Hence,

without loss of generality, one can assume that  j ≤ [ ( n + 1 ) / 2 ].  Note that  t j   is a poly-

nomial of degree  n – 1  having exactly  n – 1  real zeros  x̃i ,  1 ≤ i ≤ n,  i ≠ j.  Therefore,
by virtue of the Rolle theorem,  ′t j   has exactly  n – 2  different zeros.  In particular,  ′t j

has a unique zero in  [ ]+ −˜ , ˜x xj j1 1  ⊃ Ij  if  j ≥ 2,  and so  t xj( )  ≥ min t x t xj j j j( ) ( ){ }−, 1

for  x ∈ Ij  and  j ≥ 1.  Hence, for  x ∈ Ij  ,  we get 

t x t x
I

x x
I

x x
n

n
j j j

j

j j
( ) ≥ ( ) =

−
≥

−
= (π )

(π ) −
>

˜ ˜
cos /

cos /
1

1 1

2

2
4 4

4 4 1
4
3

,

which is the lower estimate in (4.6). 

Denoting  τ : = arccos x  (hence, the inclusion  x ∈ Ij  implies that  ( j – 1 ) π / n ≤ τ ≤

j π / n )  and  τj : = j
n

−





π1
2

,  for  x ∈ Ij  we get 

t x I
n n n I

j j
j

j

j

j

j

j
( ) =

( − )
( − )

( + )
( + )

≤
( + )

sin /

sin /

sin /

sin / sin /

τ τ
τ τ

τ τ
τ τ τ τ

2

2

2

2 2

≤  
n I

j n
j

jsin / /( )( − )π +1 2τ

=  
2 2 1 2

3 4
1 2
3 4

n n j n
j n

j
j

sin / sin / /
sin / /

/
/

(π ) ( − )π
( − )π

≤ π −
−

.

Therefore, if  j ≠ 1,  then  t j I j
  ≤  6π / 5  <  4. 

Finally, if  j = 1,  then, since  t1  is positive and strictly increasing on  [ ]˜ ,x2 1 ,  we have

0  <  t x t
I

x n
j

1 1
1

21
1

4
4

4( ) ≤ ( ) =
−

= π



 <

˜
cos ,      x ∈ I1 .
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Inequalities (4.6) are thus verified.  The constants in (4.6) are exact because 

t
n1

21 4
4

4( ) = π



 →cos     and    t n

n

1

2

2
1

4
4

4
4

1

4
3

( ) =

π





π



 −

→
cos

cos
    as   n → ∞.

�

4.3.  Decomposition of unity

For all  j = 1, … , n,  we set 

χ j

j
x

x x
( ) =

≥




:

if ,

otherwise,

1

0

and 

Q x
t u du

t u du
j

j
lx

j
l

( ) =
( )

( )

−

−

∫
∫

:
1

1

1 ,

where  l  is a positive even number.  Then relation (4.6) yields 

t u du t u du I Ij
l

j
l

I

l

j j

j

( ) ≥ ( ) > 



 >

−
∫ ∫
1

1
4
3

 .

Therefore, if  x ∈ [ – 1, xj ),  then it follows from (4.5) that 

Q x x Q x I
du

x u
j j j j

l

j
l

x

( ) − ( ) = ( ) <
( − )

−

−
∫χ 1

1
˜

<  
I

l x x
x x Ij

l

j
l j

l
j

l
−

−
− −

( − )( − )
< −

1

1
1 1

1 ˜
˜ . (4.7)

Similarly, if  x ∈ [ xj – 1 , 1 ],  then 
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Q x x
t u du

t u du
I

du
u x

j j
j
l

x

j
l j

l

j
l

x

( ) − ( ) =
( )

( )
<

( − )
∫
∫

∫
−

−

−

χ

1

1

1
1

1
˜

  <  x x Ij
l

j
l−

− −˜
1 1

. (4.8)

We now set  Q0 : ≡ 0, 

R Q Qj j j:= − −1,    j  =  1, … , n – 1,      and     R Qn n:= − −1 1.

Lemma 4.2.  The following relations are true: 

Rj
j

n

=
∑ ≡

1

1 (4.9)

and, for each  j = 1, … , n, 

R x C l
I

x x Ij
j

j j

l

( ) ≤ ( )
− +







−1

,      x ∈ I. (4.10)

Proof.  Identity (4.9) is obvious.  Therefore, we verify (4.10) for  j ≠ 1, n  (for  j = 1  and

j = n,  arguments are similar).  If  x ∉ Ij ∪ Ij  – 1 ,  then  χ j x( )  = χ j x− ( )1 ,  whence 

R x Q x x Q x xj j j j j( ) = ( ) − ( ) − ( ) − ( )( ) ( )− −χ χ1 1 .

Consequently, relations (4.7) and (4.5) yield 

R x x x I x x Ij j
l

j
l

j
l

j
l( ) = − + −

− −
−

−
−

−˜ ˜
1 1

1
1

1
1
  ≤  C l

I

x x I
j

j j

l

( )
− +







−1

,

where we have used (4.2) and (4.3) to obtain the last estimate.  If  x ∈ Ij ∪ Ij  – 1 ,  then 

R xj( )   ≤  Qj   +  Qj −1   =  2,

which yields (4.10) with  C ( l )  <  4l. 

�

Now let a function  f ∈ C ( I )  and a natural number  m  be given.  For each  j = 1, … , n,
we denote by  lj  the Lagrange polynomial of degree  ≤ m – 1  that interpolates  f  at  m
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equidistant points of  Ij  ,  including the endpoints of  Ij  .  By virtue of (3.6.15), for all

x ∈ Ij  we have 

f x l x c
x x I

I
I fj

j j

j

m

m j( ) − ( ) ≤
− +





( )ω ,

≤  c
x x I

I
fj j

j
m m

m

m

− +







 ( )

ρ
ω ρ

2

, . (4.11)

We set 

P x P x f m l l x R xn n j j
j

n

( ) = ( ) = ( ) ( )
=

∑: , , , :
1

and prove, that, for a properly chosen  l,  Pn  is the required polynomial in Theorem 1.1.
The following statement is true: 

Lemma 4.3.  If  f ∈ W H kr [ ], ϕ ,  then 

P x f x cn
r( ) − ( ) ≤ ( )ρ ϕ ρ .

Proof.  We set  ϕ*
 ( t ) : = tr ϕ ( t ).  Then  ωm  ( t, f ) ≤ ϕ*

 ( t ).  We take  l = 3m + 4.  Identity
(4.9) yields 

f P f l Rn j j
j

n

− = ( − )
=

∑
1

.

Hence, relations (4.10) and (4.11) imply, for  x ∈ I,  that 

f x P x c
I

x x I
n m

j
l m

j j
l m

j

n

( ) − ( ) ≤ ( )
− +( )

− −

− −
=

∑ϕ ρ
ρ

*
1

1 2
1

  = :  c ϕ*
 ( ρ ) σ.

Using (1.18), (1.19), and (4.1), we get 

I

x x I

c I

x x

c I

x x

j
l m

j j
l m

m
j

l m

j
l m

m
j

j

− −

− −

+ − −

− −

+

− +( )
≤

− +( )
=

− +( )
1

1 2

1 3 3

3 2

1

2

ρ

ρ

ρ

ρ
.
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Therefore, 

σ  ≤  

  

c
I

x x
c

du

x x
c

dj

jj

n

j

ρ
ρ

ρ
ρ

ρ
ρ− +( )

≤
− +( )

≤
( + )= −

∞

∑ ∫ ∫2
1

2
1

1

2
0

2
v

v
  =  2c.

�

Note that, for a properly chosen  l,  Pn  is the required polynomial in Theorems 3.3
and 3.4 as well. 

4.4.  We now show that Lemma 4.1 also yields Corollary 2.1. 

Lemma 4.4.  Let  x ∈ N  and  x0 ∈  I.  If a polynomial  Pn  of degree  ≤ n  satisfies the

relation 

P x x x xn n
r( ) ≤ − + ( )( )0 0ρ ,      x ∈ I,

then 

P xn
r( )( )0   ≤  c.

Proof.  First, let  r = 1.  By  j  we denote an index such that  x0 ∈  Ij  .  We introduce the

following polynomial of degree  < 2n : 

Q x P x
t x

t xn n
j

j
( ) = ( )

( )
( )

:
0

 .

Estimates (4.6), (4.5), (4.2), and (4.3) yield 

Q x x x x t x In n j j( ) ≤ − + ( )( ) ( ) ≤0 0
3
4

6ρ ,      x ∈ I.

Therefore, it follows from the Markov and Bernstein inequalities that 

′ ( ) ≤
( )

<Q x
I

x

I
n

j

n

j12 48

2ρ ρ
,      x ∈ I.

Hence, 
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′( ) ≤ ′ ( ) − ( )
′ ( )
( )

P x Q x P x
t x

t xn n n
j

j
0 0 0

0
  ≤  48

3
4

2

0
0

0

I

x
x

t

x
j

n
n

j

nρ
ρ

ρ( )
+ ( )

( )

<  48 ⋅ 5 + 6  <  250.

For  r ≥ 1,  Lemma 4.4 is proved by induction with the use of the same arguments

with  Qn  replaced by  Qn r,  = ( )( )t t x Pj j
r

n/ 0  . 

�

The following corollary is often useful: 

Corollary 4.1.  If, for some  l ≥ 0,  one has 

P x x nn
l l( ) ≤ +1 2 ,      x ∈ [ 0, 1 ],

then the following inequality holds for each  r ∈ N : 

P C l r nn
r r( )( ) < ( )0 2, .

5.  Extreme functions

Let us return to the spaces  W Hr
k
ϕ  : = W H Ir

k
ϕ( ),  k ∈ N,  ϕ ∈ Φk,  ( r + 1 ) ∈  N  (see Defi-

nition 3.7.2). 

Definition 5.1.  A function  f  is called extreme in the space  W Hr
k
ϕ   if 

ωk ( t; f ( r 
); [– 1, 1] )  = :  ωk ( t; f ( r 

)
 )  ∼  ϕ ( t ) (5.1)

and 

E f n
n

n
r( ) 





−~ 2
2

1ϕ . (5.2)

Theorem 1.1 (direct theorem) gives the following estimate for  f ∈ W Hr
k
ϕ : 

E f cn
nn

r( ) ≤ 





− ϕ 1
.
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Therefore, in terms of uniform approximations, the approximation properties of extreme

functions are substantially better than in general in the space  W Hr
k
ϕ .  Moreover, if  ϕ ∈

S ( k, r )  (see (1.16)), then, in these terms, the properties of extreme functions are the best
in order among the functions satisfying relation (5.1) because, in this case, 

lim sup
n

r
nn E f

n
→∞

( )






2

2
1ϕ

  >  0. (5.3)

Inequality (5.3) is a simple corollary of Lemma 5.1, which is proved by using the argu-
ments of Bari and Stechkin (1956). 

Lemma 5.1.  Suppose that  ϕ ∈ S ( k, r ),  i.e., 

ru u du t u u du A t
t

k k

t

− − −( ) + ( ) ≤ ( )∫ ∫1

0

1
1

ϕ ϕ ϕ , (5.4)

0  <  t  ≤  1 / 2,  A  =  const  >  0,  f ∈ C Ir( ) ,  and  ωk ( t; f ( r 
)

 )  ∼  ϕ ( t ).  If 

E f n
n

n
r( ) ≤ 





−2
2

1ϕ ,      n ∈ N, (5.5)

then 

E f n
n

n
r( ) 





−~ 2
2

1ϕ . (5.6)

Proof.  By virtue of Lemma 3.1 and the conditions of Lemma 5.1, there exists a function

α = α  ( t )  that does not decrease on  [ 0, 1 ]  and possesses the following properties: 

α 1
2n

E fn




 = ( ),      α ϕ( ) ≤ ( )t t tr ,

ϕ α α( ) ≤ ( ) + ( )






− − − −∫ ∫t A ru u du t u u dur

t
k m

t
1

1

0

1
1

,

t ∈ 0
1
2

,



 ,      A1  =  const  >  0,      m  =  k + r. (5.7)

We fix an arbitrary point  t ∈  ( 0, 1 / 2 ]  and denote  am : = α ϕ( ) ( )/t t tr
 .  Let us prove

that 
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ln :
1

4 12 1a
A AA A



 ≤ = ( + ). (5.8)

Indeed, let  t* : = t a .  According to condition (5.4), we have 

A t ru u du ru u du r at
a

t

at

t

ϕ ϕ ϕ ϕ( ) ≥ ( ) ≥ ( ) ≥ ( ) 





− −∫ ∫*

* *

ln1

0

1 1
,

A t t ru u du
t
t

t
a

a t
a

k k

t

t k
kϕ ϕ ϕ ϕ( ) ≥ ( ) ≥ 



 ( ) 



 ≥ ( ) 





− −∫* *
* /

*

ln ln1 21 1
,

whence 

ru u du t u u dur
t

m

t

− − − −( ) + ( )∫ ∫1

0

1
1

α α
*

*

*

≤  ru u du
at

− ( )∫ 1

0

ϕ   +  ru a t t dur m r

at

t
− − ( )∫ 1 ϕ

*

  

+  u a t t dum m r

t

t
− − ( )∫ 1 ϕ

*

  +  t u u duk k

t
*

− − ( )∫ 1
1

ϕ

≤  Ar at a t
t

t
a tk

r
mϕ ϕ ϕ( ) + ( ) + 



 ( )

*
  +  A

t

t
t

k
*



 ( )ϕ

≤  2
11 2 2A
a

t A a a Ak mln *
/ /− 





( ) + + +( )ϕ

≤  4
1

11A
a

t Aln *− 



 ( )( + )ϕ .

The required relation (5.8) now follows from (5.7).  Relation (5.8) means that 

n E f

n

n
n

n

A e
r

n

r

mA
2

2

2
2

2

31

1

1
2

( )






≡













≥ = −

ϕ

α

ϕ
: ,      n ∈ N,      n  ≠  1.

�
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In order to establish a theorem on the existence of extreme functions (Theorem 5.1),
we first give Definition 5.2 and prove Lemma 5.2. 

Definition 5.2.  We set 

F y
y u F u k du

rk r

r
m

y

, , :
; ;

!ϕ
ϕ

( ) =
( − ) ( )

( − )

−
+∫

1
2

0
1

,

where  m : = k  + r,  ϕm + 2   is defined by (3.4.41), and  F u km( )+; ;ϕ 2   is defined by

(3.4.27), and 

F y
y u F u k F mh k du

rk r
h

r
m m

y

, , :
; ; ; ;

!ϕ
ϕ ϕ

( ) =
( − ) ( ) − ( )

( − )

−
+ +( )

∫
1

2
2

2

0

4

1
;

f x F
x

k r k r, , , ,:ϕ ϕ( ) = +





1
2

,      x ∈ I. (5.9)

Theorem 3.4.2 and Lemma 3.4.3 yield 

ϕ ( t )  ≤  ωk k r
rt F( )( ) [ ]; ; ,, 0 1   ≤  c ϕ ( t ),

whence 

2− ( )( ) ≤ ( ) ≤ ( )k
k k r

rt t f c tϕ ω ϕϕ; , , . (5.10)

Lemma 5.2.  The following estimate is true: 

ω ϕ2
2 2

m
rt f ct t( ) ≤ ( ); ,      t  ≥  0,    m  =  k + r. (5.11)

Proof.  Taking  x ∈ I,  h ≥ 0,  ( x + 2mρ  ( h, x ) ) ∈ I,  and  y : = ( x + 1 ) / 2  and denoting 

ρ*  : =  h y y
h( − ) +1
2

2
,

we get 

∆ρ ϕ
2m

k rf x( ), , ;   =  ∆ρ ϕ
2m

k rF y( ), , ; .

Hence, if  y  ≥  h2
 / 2,  then 
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∆ρ ϕ ϕρ θ ρ θ ϕ θ
* , , * , , *;2 2 2 2 1m

k r
m

k r
m m k mF y F( ) = ( ) = ′( )( ) − ( )( )

≤  c y y c h hm m k r
1

2
2

2 2ρ ϕ ϕ*
− − ( ) ≤ ( ),      θ ∈ [ + ]y y m, *2 ρ ,

and if  y  <  h2
 / 2,  then 

∆ ∆ρ ϕ ρ ϕ ϕ ϕ
* *, , , , , , ,

; ;2 2 2
0 4 3

2 22 2
m

k r
m

k r
h m

k r
h

mh
rF y F y F c h h( ) = ( ) ≤ ≤ ( )

[ ]
.

�

It follows from Lemma 5.2 and Theorem 3.4 that 

E f cn
n

n k r
r( ) ≤ 





−
, ,ϕ ϕ2

2
1

,      n ∈ N. (5.12)

Relations (5.10) and (5.12) and Lemma 5.1 yield the following theorem: 

Theorem 5.1 [Shevchuk (1986), (1989)].  If  ϕ ∈  S ( k, r ),  then  f xk r, ,ϕ( )  is an extreme

function in the space  W Hr
k
ϕ ,  i.e., an extreme function exists in every space  W Hr

k
ϕ

with  ϕ ∈ S ( k, r ). 

Theorem 5.1 generalizes the following well-known theorem: 

Theorem 5.2 [Bernstein (1952), Ibragimov (1946)].  Let  ( r + 1 ) ∈ N  and  0 < α < 1.

The function  f ( x ) = ( + ) +1 x r α
  is an extreme function in the space  W Hr α ,  and  f ( x ) =

( + ) ( + )+1 11x xr ln   is an extreme function in the space  W Zr . 

In connection with Theorems 5.1 and 5.2, note the following example proposed by

Brudnyi (1963):  A continuous function  fα, β :  [ 0, 1 ] →  R  defined on  (  0, 1 ]  by the

relation  f xα β, ( )  =   x xα βsin( )− ,  where  α , β   >   0,  has the modulus of continuity

ωk ( t; fα, β ; [– 1, 1] )  ∼  tα β/( + )1   for  k  >  α / ( β + 1 ),  whereas  E fn( )[ ]0 1,   ∼  n− ( + )2 2 1α β/ . 

6.  Shape-preserving approximation

6.1.  The problem of the best approximation of functions by polynomials with monotonic-
ity condition was investigated for the first time by Chebyshev [(1948), p. 41].  He con-

structed a monotone polynomial  Pn ( x ) = xn + a1 xn
 
–

 
1 + … + an  that least deviates from  0

on  I. 
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Definition 6.1.  Let  q ∈ N.  By  ∆q  we denote the set of functions  f ∈  C ( I )  such that

∆h
q f x( );   ≥  0  for all  x ∈ I  and  h  >  0,  ( x + q h ) ∈ I. 

Note that  ∆1  is the set of functions nondecreasing on  I,  and  ∆2  is the set of func-
tions convex on  I. 

Definition 6.2.  The number 

E f f pn
q

p
n

n
q

( )

∈
( ) = −: inf

∆
(6.1)

is called the value of the best uniform shape-preserving approximation of a function

f ∈ ∆q  by algebraic polynomials  pn   of degree  ≤ n.  The number  E fn
( )( )1   is called

the value of the best uniform monotone approximation of the function  f.  The number

∆n f( )( )2   is called the value of the best uniform convex approximation of the function  f. 

An analog of the Weierstrass theorem is true for  E fn
q( )( ) ,  namely, if  f ∈ ∆q,  then

E fn
q( )( )  → 0  as  n → ∞  (see [G. Lorentz (1953)]). 
Indeed, let 

Bn ( x; f )  : =  2
2

1 1
0

−

=

−





−



 ( + ) ( − )∑n

j

n
n j jn

j
f

n j
n

x x

denote the Bernstein polynomial.  It is well known that  f Bn−  → 0  as  n → ∞ .  At
the same time, we have 

B x fn
q( )( );

=  2
0

−

=

−

( − )

−







∑n

j

n qn

n q

n q

j

!

!
∆2

2
1 1j n

q n j q jf
n j q

n
x x/ ;

− ( + )



 ( + ) ( − )− −   ≥  0

for  x ∈ I  if  f ∈ ∆q.

G. Lorentz and Zeller (1969) constructed a function  f ∈ ∆q  such that 

lim sup
n

n
q

n

E f

E f→∞

( )( )
( )

  =  ∞.
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Therefore, the problem of the estimation of  E fn
q( )( )   does not reduce to the problem of

the estimation of  En ( f ).  Nevertheless, G. Lorentz and Zeller (1968) proved the following

inequality for  f ∈ ∆1 : 

E f c
n

fn
( )( ) ≤ 





1
1

1ω ; ,      n ∈ N. (6.2)

Moreover, if  f ∈ ∆q,  then 

E f c
n

fn
q( )( ) ≤ 



ω2

1 ; ,      n ∈ N, (6.3)

which, in particular, implies that 

E f cn
n

fn
q( ) −( ) ≤ ′





1
1

1ω ; ,      n ∈ N, (6.4)

provided that  f ∈ ∆q ∩ C1
 ( I ).  Inequalities (6.3) and (6.4) were established by G.  Lorentz

(1972) [(6.4) for  q = 1 ],  DeVore (1976) [(6.3) for  q = 1 ],  Beatson (1978) [(6.4) for

q ∈ N ],  and Shvedov [(1979), (1980), (1981)] [(6.3) for  q ∈ N ].  Note that Shvedov also

proved (6.3) for integral metrics [Shvedov (1979), (1980), (1981)] and obtained a multi-
dimensional analog of (6.2) in [Shvedov (1981a)]. 

Later in this section, we prove Theorems 6.2 and 6.3 (due to Beatson, DeVore, Yu,
and Leviatan), which strengthen relations (6.2) – (6.4) for  q = 2. 

6.2.  The theorem presented below shows that  E fn
q( )( )   cannot be estimated from above

in terms of the modulus of continuity of arbitrary order;  for  q = 1, estimate (6.3) cannot
be obtained with a modulus of continuity of order higher than  2;  for  q = 2, estimates
(6.3) and (6.4) cannot be obtained with a modulus of continuity of order higher than  3  or
2,  respectively. 

Theorem 6.1 [Shvedov (1980), (1981)].  Let  A  >  0,  q ∈  N,  k ∈  N,  (  r + 1 ) ∈  N,  and

m = k + r.  If  r < q < m  – 1,  then, for each  n ≥ m  – 1,  n ∈  N,  there exists a function

f ∈ ∆q ∩ Cq  such that 

E f A m
m

f An
n

fn
q r

k
r r

k
r( ) − ( ) − ( )( ) ≥ ( − )

−




 ≥ 



1 1

1
1ω ω; ; . (6.5)

Proof.  We choose a number  b ∈ ( 0, 1 )  from the condition 
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( + − ) −
( + )





 = ( − )− − −q r n b b

q
A mq r q

r
r k1

1
1 22!

!
.

We set  x0  : =  b – 1, 

P ( x )  : =  
( − )

( + )

+x x

q

q
0

1

1 !
,

and 

f ( x )  : =  
( − )

( + )
+

+x x

q

q
0

1

1 !
,

i.e.,  f ( x )  =  P ( x )  if  x  ≥  x0  and  f ( x )  ≡  0  if  x  <  x0 .  Note that 

f P P b
q j

j j j
q j

( ) ( ) ( )
+ −

− = (− ) =
( + − )

1
1

1

!
      for    j  =  0, ,… q .

Let  Qn  =  Qn ( x )  be a polynomial of degree  ≤ n  such that  Qn ∈  ∆q,  i.e.,  Q xn
q( )( )  ≥   0

for  x ∈ I.  Taking into account that  Qn
q( )(− )1   ≥  0  and using the Markov inequality (2.1),

we get 

b  =  − (− ) ≤ (− ) − (− ) ≤ −( ) ( ) ( ) ( ) ( )P Q P Q Pj
n
q q

n
q q1 1 1

≤  n Q P n Q f n f Pq
n

q
n

q2 2 2− ≤ − + −

=  n f Q n b
q

q
n

q q
2

2 1

1
− +

( + )

+

!
,

whence 

f Q n b b
q

A m f Pn
q

q
r k r r− ≥ −

( + )
= ( − ) −−

+
− ( ) ( )2

1

1
1 2

!
.

On the other hand, by virtue of (2.22), we have 

ω ωk
r

k
r r k r r

m
f

m
f P f P1

1
1

1
2

−




 ≡

−
−



 ≤ −( ) ( ) ( ) ( ) ( ); ; ,
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i.e., 

f Q A m
m

fn
r

k
r− ≥ ( − )

−






− ( )1 1
1

ω ; .

�

Note that, in [Shvedov (1981)], Theorem 6.1 was proved in the case  r  = 0  for all in-

tegral metrics of  Lp ,  0  <  p  ≤  ∞.  The applicability of Shvedov’s arguments to the case

r ≠ 0  was noticed by S. Manya. 

Corollary 6.1.  Suppose that  B  >  0,  q ∈  N,  k ∈  N,  (  r + 1 ) ∈  N,  and  m   =  k + r.  If

r  <  q  <  m – 1,  then, for each  n  ≥   m – 1,  n ∈  N,  there exists a function  f ∈  ∆q ∩ Cq

such that, for any polynomial  Qn ∈  ∆q  of degree  ≤ n,  the following estimates are
true: 

ρ ϕ ρ ρ ϕ ρn
r

n n m
r

m nf Q f Q− −
−

− −
−( )( − ) ≥ ( )( − )1

1
1

1   ≥  B.

6.3.  Theorem 6.2 [DeVore and Yu (1985)].  If a function  f  does not decrease on  I

and  f ∈  H [ 2; ϕ ],  then, for each  n ∈  N,  there exists an algebraic polynomial  Pn  o f

degree  ≤ n  nondecreasing on  I  and such that 

f x P xn( ) − ( )   ≤  c ϕ ( ρn ( x ) ),     x ∈ I. (6.6)

The proof of this theorem is given in Subsections 6.4–6.8. 

6.4.  For all  j = 0, ,… n ,  we set  xj  =  cos j π / n,

χ j

j

j

x x

x x
:

,

,
=

>

≤







1

0

if

if

and 

Φj ( x )  : =  ( x – xj ) +  =  χ j

x

u du( )
−
∫
1

.

For  j  =  1, ,… n ,  we denote  Ij  : =  [ xj , xj – 1 ]  and  hj = xj – 1 – x j   and note that if  x ∈ I j ,
then 
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ρ  <  hj  <  5ρ. (6.7)

Let  L  denote a continuous broken line with nodes at the points  x j ,  j = 0, ,… n .  By

virtue of (3.9), for  x ∈ I j   we have 

f x L x( ) − ( )   ≤  ϕ ϕ ρ
hj

2
5
2

2



 < 



 ( ). (6.8)

It is easy to verify that the broken line  L  can be represented in the form 

L ( x )  =  [ ]( − ) ( )+ − − +
=

−

∑ x x x f x x xj j j j j j
j

n

1 1 1 1
1

1

, , ; Φ   +  [ ]( + ) + (− )−x x f x fn n, ;1 1 1 , (6.9)

or, which is the same, 

L ( x )  =  f x x f x xj j j j
j

n

(− ) + [ ] ( ) − ( )− −
=

( )∑1 1 1
1

, ; Φ Φ . (6.10)

Thus, the problem is reduced to the approximation of the functions  Φj . 

6.5.  We introduce the following notation:  J ( t )  =  Jn, 6 ( t )  is a Jackson-type kernel (see

Section 3),  α  =  arccos y,  β  =  arccos x,  and 

ϕ ( x, y )  : =  ϕn, r ( x, y )  =  J t dt( )
−

+

∫
β α

β α

,      r  =  6.

By virtue of (3.5),  ϕn, r ( x, y )  is a polynomial of degree  ( r + 1 ) ( n – 1 )  in  x. 

It is obvious that  ϕ ( x, 1 )  ≡  0,  ϕ ( x, – 1 )  ≡   1,  and, for every fixed  x,  the function

ϕ ( x, y )  decreases with respect to  y.  Therefore, the equation 

1  –  xj  =  ϕ( )
−
∫ x y dxj,
1

1

(6.11)

has a unique solution  yj ∈  I,  and, furthermore,  – 1  =  yn  <  yn – 1  < … <  y1  <  y0  =  1.

Let  j*  =  1, ,… n   be a number for which  yj ∈ [ xj* , xj* – 1 ),  j  =  1, ,… n ,  and let  0* : = 0.
Denote 
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Qj  ( x )  : =  ϕ( )
−
∫ u x duj

x

,
1

,      j  =  0, ,… n .

In particular,  Q0 ( x )  ≡  0  and  Qn ( x )  =  x + 1.  Using (6.11) and the monotonicity of  ϕ
with respect to  y,  we obtain the estimates 

Qj* ( 1 )  ≥  1  –  xj  ≥  Qj* – 1 ( 1 ),      j  =  1, ,… n .

Therefore, for each  j  =  1, ,… n ,  there exists a number  aj ∈ ( 0, 1 )  such that 

aj  Qj* ( 1 )  +  ( 1 – aj ) Qj* – 1 ( 1 )  =  1 – xj .

We set  R0 ( x )  : ≡  0  and  Rj ( x )  : =  aj Qj* ( 1 ) + ( 1 – aj ) Qj* – 1 ( 1 ),  j  =  1, ,… n ,  and note
that 

Rj ( 1 )  =  1  –  xj . (6.12)

We have 

′( ) ≥ ′ ( )−R x R xj j 1 ,      j  =  1, ,… n ,      x ∈ I. (6.13)

Indeed, since  yj   <  yj – 1 ,  we get  j*  ≥  ( j – 1 ) 
*.  Therefore, if  j*  >  ( j – 1 ) 

*,  then 

′ − ′ = ′ + ( − ) ′ − ′ −− − − ( − )R R a Q a Q a Qj j j j j j j j1 1 1 1
1

* * *
(( − ) ′− ( − ) −1 1 1 1

a Qj j *

=  a Q Q a Q Qj j j j j j
( ′ − ′ ) + ( − ) ′ − ′( − ) − ( − )( )

* * * *1 1 1
1

+  ( − ) ′ − ′− ( − ) ( − ) −( )1 1 1 1 1
a Q Qj j j* *

  >  0.

If  j*  =  ( j – 1 ) 
*,  then, obviously,  aj   >  aj – 1 . 

6.6.  Let us prove the inequality 

R x x c x x x xj j n j j n j( ) − ( ) ≤ ( ) − + ( )( ) −Φ ρ ρ6 1 6 . (6.14)

Using (6.11) and (3.15), we obtain 
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x y u y u y duj j j j− = ( − ) − ( )( )+
−
∫ 0

1

1

ϕ ,

≤  c y u y y du c yn
r

j j n j
r

n j1

1

1

1ρ ρ ρ( ) − + ( )( ) < ( )−

−
∫ .

Therefore, by virtue of (1.18), we have 

ρn 
( yj 

)  ≤  c2 
ρn 

( xj 
)

and, with regard for (6.7), 

x x x y h c y c xj j j j j n j n j− ≤ − + < ( + ) ( ) < ( )
* * 1 35 ρ ρ ,

x x c xj j n j
− < ( )−* *1 5ρ ,      c x x c xn j n j n j4 5ρ ρ ρ( ) < ( ) < ( )

* *
,

c x x c xn j n j n j4 1 5 1
ρ ρ ρ( ) < ( ) < ( )− −* *

. (6.15)

Inequality (3.15) means that 

′ ( ) − ( ) ≡ ( ) − ( )( )R x x a x x xj j j j j
χ ϕ χ,

* *

+  ( − ) ( ) − ( ) + ( ) − ( )( ) ( )− −1
1 1

a x x x a x xj j j j j jϕ χ χ χ,
* * *

+  ( − ) ( ) − ( )( )−1
1

a x xj j jχ χ
*

 

≤  c x x x xn j j n j1
6 6ρ ρ( ) − + ( )( )−

* * *

+  c x x x xn j j n j1
6

1 1 1
ρ ρ( ) − + ( )( )− − −* * *

+  χ χ χ χj j j j
x x x x( ) − ( ) + ( ) − ( )−* * 1

 .

Hence, by virtue of (6.15), we obtain 

′ ( ) − ( ) ≤ ( ) − + ( )( )−R x x c x x x xj j n j j n jχ ρ ρ6
6 6 .
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If  x  <  xj ,  then 

R x x R u u duj j j j

x

( ) − ( ) = ′( ) − ( )( )
−
∫Φ χ
1

  ≤  c x u x x dun j j n j

x

6
6 6ρ ρ( ) − + ( )( )−

− ∞
∫

≤  c x x x xn j j n j6
6 5ρ ρ( ) − + ( )( )− .

If  x  >  xj ,  then, using (6.12), establish, by analogy, that 

R x x R u u duj j j j

x

( ) − ( ) = ′( ) − ( )( )∫Φ χ
1

  ≤  c x x x xn j j n j6
6 5ρ ρ( ) − + ( )( )− .

Inequality (6.14) is proved. 
It follows from (6.14), (1.18), and (1.19) that 

R x x
c x

x x x

c x

x x
j j

n j

j n j

n j

j

( ) − ( ) =
( )

− + ( )( )
≤

( )
− +( )

Φ 6
6 2

5
7

6 2

3

ρ ρ
ρ

ρ ρ
ρ

. (6.16)

6.7.  Denote  Aj  : =  [ xj + 1 , xj , xj – 1 ; f ] ( xj – 1 – xj + 1 )  and 

Pn ( x )  : =  f x x f x A R xn n j j
j

n

(− ) + [ ]( + ) + ( )−
=

−

∑1 11
1

1

, ; .

Let us prove (6.6).  Indeed, with regard for (6.7), it follows from (3.5.8) that  Aj   ≤
c h x xj n j n j8

2ρ ϕ ρ− ( ) ( )( ),  which, by virtue of (1.18), yields 

Aj   ≤  c h x x xj n j j8
2 2ρ ϕ ρ ρ− ( ) − +( )( )   ≤  

2 8
2

c h x x

x
j j

n j

− +( ) ( )
( )

ρ ϕ ρ
ρ ρ

. (6.17)

Combining (6.6), (6.16), and (6.17), we get 

f x P xn( ) − ( )   ≤  f x L x( ) − ( )   +  L x P xn( ) − ( )

≤  
5
2

2

1

1




 ( ) + ( ) − ( )

=

−

∑ϕ ρ A R x xj j j
j

n

Φ

≤  
5
2

2
2

6 8
2

1

1

9




 ( ) + ( ) − +( ) < ( )−

=

−

∑ϕ ρ ρϕ ρ ρ ϕ ρc c h x x cj j
j

n

.
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6.8.  The monotonicity of the polynomial  Pn 
( x

 
)  follows from the representation 

′( ) = [ ] ′ ( ) − ′ ( )− −
=

( )∑P x x x f R x R xn j j j j
j

n

, ;1 1
1

, (6.10′ )

where  [ xj , xj – 1 ; f ]  ≥  0  by the condition of the theorem,  and  ′ ( ) − ′ ( )−R x R xj j 1   ≥   0  by
virtue of (6.13). 

�

6.9.  Remark 6.1.  Relation (6.6) yields the estimate 

f x P xn( ) − ( )   ≤  c
 
ω1 

( ρn 
( x

 
)

 
; f ) , (6.18)

which was established by Beatson (see [DeVore and Yu (1985)]). 

Remark 6.2.  DeVore and Yu (1985) proved the estimate 

f x P xn( ) − ( )   <  c
x

n
ϕ 1 2−





 , (6.19)

which is more exact than (6.6). 

Indeed, for  x ∉ I1 ∪ In  estimate (6.19) follows from (6.6) because, in this case, 

ρn 
( x

 
)  <  

3 1 2− x

n
.

If  x ∈ In,  then 

1  +  x  ≤  
π −
2

1 2x

n

and 

R x x R u u duj j j j

x

( ) − ( ) = ′( ) − ( )( )
−
∫Φ χ
1

  ≤  c x x x x xn j j n j6
6 61( + ) ( ) − + ( )( )−ρ ρ

≤  c
x x

x x
c

x

n

x

x x
n j

j

n j

j
10

2

3 10

2 2

3

1 1( + ) ( )
− +( )

≤ − ( )
− +( )

ρρ
ρ

ρρ
ρ

,
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whence 

L x P xn( ) − ( )   <  c
x

n12

21ϕ −





.

Furthermore,  L
 
( x

 
)  ≡  L

 
( x; f ; – 1, xn – 1 

)  for  x ∈ In  .  Therefore, relation (3.5.11) yields 

f x L x( ) − ( )   <  c
x

n13

21ϕ −





 .

The case  x ∈ I1  is considered by analogy with the case  x ∈ In. 
For approximation without restrictions, the corresponding improvement of an estimate

of the form (6.6) to an estimate of the form (6.19) was made by Telyakovskii (1966) (for
k = 1

 
)  and DeVore (1976) (for  k = 2

 
)  (see also [Dahlhaus (1989)]). 

6.10.  Theorem 6.3  [Leviatan (1986)].  If a function  f  is convex on  I  and  x ∈ H
 
[ 2; ϕ

 
],

then, for each  n ∈ N,  there exists an algebraic polynomial  Pn  of degree  ≤ n  con-

vex on  I  and such that 

f x P xn( ) − ( )   <  c
 
ϕ

 
( ρn 

( x
 
)

 
),      x ∈ I. (6.20)

Theorem 6.3 can be proved by analogy with  Theorem  6.2.   One  should  only  establish
(instead of the reasoning presented in Subsection 6.8) that  Pn  is convex on  I,  i.e., that

′′( )P xn  
 
≥

 
 0.  According to the conditions of the theorem, the function  f  is convex.  Hence,

[ xj + 1 , xj , xj – 1 ; f ]  ≥  0,  i.e.,  Aj   ≥  0.  In view of the representation 

′′( ) = ′′( ) = ′′ ( ) + ( −
=

−

∑ (P x A R x A a Q x an j j
j

n

j j j
1

1

1* jj j
j

n

Q x) ′′ ( )−
=

−
)∑ * 1

1

1

,

it is sufficient to establish that  ′′( )Q xj   ≥   0,  x ∈  ( – 1, 1
 
).  Indeed, we have  ′′( )Q x0   ≡   0,

′′( )Q xn   ≡  0,  and, for  j  =  1 1, ,… −n , 

′′( ) = ′( ) = − ( )
− π

+ π

∫Q x x x
d

d
J u duj j

j n

j n

ϕ
β β

β

β

,
sin

/

/
1

  =  
1

sinβ
β βJ

j

n
J

j

n
+ π



 − − π











=  
sin /

sin
sin

/
sin

/

,

14

6

14 142
2 2

( )( + π) − π



 − + π











− −n j j n j n

n

β
γ β

β β
.
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It remains to use the inequality

sin sin
α β α β+



 ≥ −



2 2

.

�

Leviatan (1986) also proved the following estimates: 

E f c
n

fn
( ) ,1

1
1( ) ≤ 



ω (6.21)

and

E f c
n

fn
( ) ,2

2
1( ) ≤ 



ω ,      n ∈ N. (6.22)

6.11.  Now let  f ∈ C Ir( ) .  DeVore (1977a) proved that if  f ∈ ∆1 ∩ Cr
 
( I

 
),  then 

E f cn
n

f In
r r( ) − ( )( ) ≤ 





1 1
; ; ,      n  =  r, r + 1, … . (6.23)

The following general theorem is true: 

Theorem 6.4 [Shevchuk (1989), (1992)].  Suppose that  r ∈ N,  k ∈  N,  and  m   =  k + r.

If a function  f  = f ( x
 
)  does not decrease on  I   and   f ∈  Wr

 
H

 
[ k; ϕ

 
],  then, for each

 n ∈ N,  n ≥ m  – 1,  there exists an algebraic polynomial  Pn  =   Pn 
( x

 
)  of degree  ≤ n

nondecreasing on  I  and such that 

f x P xn( ) − ( )   <  c x xn
r

nρ ϕ ρ( ) ( )( ),      x ∈ I. (6.24)

Unfortunately, in contrast to Theorems 6.2 and 6.3, estimates (6.23) and (6.24) are
proved by using nonlinear methods. 

Theorems 6.1, 6.2, and 6.4 give a complete answer to the question of whether the di-
rect theorem (Theorem 1.1) on approximation without restrictions remains true for the co-

monotone approximation; namely, it is true in the cases  r ∈ N,  k ∈ N  and  r = 0,  k = 1, 2
and it is not true in the case  r = 0,  k = 3, 4, … . 

A modification of the proof of Theorem 6.4 enables one to establish the following re-
sult:

Theorem 6.5 (S. Manya).  Suppose that  r  ∈  N,  r  ≠   1,  k ∈  N,  and  m  =  k + r.  If a

function  f  is convex on  I  and   f ∈  Wr
 
H

 
[ k; ϕ

 
],  then, for each  n ∈  N,  n  ≥ m  – 1,
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there exists an algebraic polynomial  Pn  of degree  ≤ n  convex on  I  and satisfying
inequality (6.24). 

Inequality (6.21) yields the following estimate for  f ∈   ∆
1 ∩ Br   and  r = 1, 2: 

E f
c
n

fn r
r r( )1 ( ) ≤ ( )ϕ ,      n ∈ N. (6.25)

For  r > 2,  this estimate was proved by Dzyubenko, Listopad, and Shevchuk (1993). 

Similarly, relation (6.22) yields the following estimate for  f ∈  ∆
2 ∩ Br   and  r = 1, 2: 

E f
c
n

fn r
r r( )2 ( ) ≤ ( )ϕ ,      n ∈ N. (6.26)

For  r > 4  and  r = 3,  this estimate was proved by Kopotun (1992). 
What was unexpected was the fact that estimate (6.26) is not true for  r = 4. 

Theorem 6.6 [Kopotun (1992)].  For every  n  ∈  N  and   M  = const > 0,  there is a

function  f ∈ ∆2 4∩ B   such that 

E f M fn
( ) IV2 4( ) > ( )ϕ  .

Proof.  Let 

g x x
x

( ) = ( + )
+

: ln1
1

1
2 ,      g ( – 1 )  : =  0.

We take a positive  b < 1,  set  y1  : =  – 1 + b,  and represent  g  in the form 

g x T x x t g t dt
y

x

( ) = ( ) + ( − ) ( )∫:
!

IV1
3

3

1

,

where  T  is the Taylor polynomial of  g  at the point  y1 .  Let us show that the function 

f x x t
dt

t
x t g t dt

y

x

y

x

( ) = ( − )
( + )

= ( − ) ( )∫ ∫:
! !

IV2
3 1

1
3

3
2

3

1 1

with suitable  b  is the required one. 
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It is clear that  f ∈ ∆( )2   and, for  x ∈ ( – 1, 1 ] , 

ϕ4 2 2
2

21
2

1
2 1 8( ) ( ) = ( − )

( + )
= ( − ) <( )x f x x

x
xIV .

Therefore, it remains to prove that, for every convex polynomial  Pn  ,  we have 

f P Mn− > 1

8
.

Assume the contrary, namely, let 

f P Mn− ≤ 1

8
.

Then, using Markov inequality, we get 

− + = ′′( ) = ′′( ) ≤ ′′( ) + ′′( ) ≤ ′′ + ′′3 2
1

1 1 1 1ln
b

f y T y T y P y T Pn n

≤  n T P n P f g n P f gn n n
2 2 2+ = − + ≤ − +( )

≤  
n M2

8
4 2+ ln ,

which is impossible for sufficiently small  b. 

�

For more recent results on the uniform polynomial shape-preserving approximation,
see the papers of the authors cited above and the papers by Bondarenko, Gilewicz, Hu,
Nissim, Pleshakov, Popov, Shatalina, Yushchenko, Zhou, etc. 

7.  On rational approximation

7.1.  Let us show that if functions of some class  Hα ,  0 < α ≤ 1,  are approximated not
by algebraic polynomials but by rational polynomials of degree  n  of the form (see Sec-
tion 2.4) 

R x
P x
Q xn

n

n
( ) = ( )

( )
, (7.1)
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then, in the sense of the order of smallness, we do not reach an accuracy better than in the
case of approximation of functions of this class by algebraic polynomials of degree  n  (it
will be shown in Subsection 7.2 that, for individual functions, this statement is, generally
speaking, not true). 

To verify this, we consider, on the segment  [ – 1, 1 ] ,  the even  2 / n-periodic function
f0   defined on the half-period by the equality 

f x x
n0

1
2

1( ) = − 





α
α

,      x ∈ 0
1

,
n






. (7.2)

This function obviously belongs to the class  Hα ;  furthermore, on the segment  [ – 1, 1 ] ,

it has  2n + 1  extrema with equal absolute values at the points  xk = 
k
n

,  k = 0, ± 1, … , ± n.

Since the polynomials  Pn  and  Qn  in (7.1) can be assumed to be irreducible, by virtue of

the fact that the polynomials  Rn   must approximate the function  f   well on  [ – 1, 1 ]  we
can assume in what follows without loss of generality that the polynomial  Qn  does not

take the zero value on  [ – 1, 1 ]  and, moreover,  Q xn( ) > 0  for all  x ∈ [ – 1, 1 ].  In this
case, the assumption that, for a certain polynomial 

R x
P x

Q x
n

n

n

0
0

0( ) = ( )
( )

,

one has 

f R f
P

Q nn
n
n0

0
0

0

0

1
2

1− = − < 





α

implies that the numerator  Pn
0  of the polynomial  Rn

0  must satisfy the following condi-
tion at all points  xk 

: 

sign signP x f xn k k
k0

0
11( ) = ( ) = (− ) − ,      k  =  0, ± 1, … , ± n.

This, in turn, implies that the algebraic polynomial  Pn
0  of degree  n  must have at least

2n > n + 1  roots on the segment  [ – 1, 1 ] ,  which is impossible.  It follows from the con-
tradiction obtained that 

sup inf inf
f H R

n
R

n
n n

f R f R
n∈

− ≥ − ≥
α α0

1
2

. (7.3)
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On the other hand, if a function  f   belongs to  Hα ,  then the function  f t( ) = f t( )cos

a fortiori belongs to  Hα ,  and, therefore, one can find an algebraic polynomial  Pn  of
degree  n  such that 

f x P x
A

n
n( ) − ( ) ≤ α . (7.4)

The required statement now follows from (7.3) and (7.4).  Also note that analogous

arguments are also true in the case of approximation of functions from the spaces  W Hr α .

7.2.  It follows from the previous subsection that, in the case of approximation of “rapidly

oscillating” functions from the spaces  W Hr α ,  rational polynomials of degree  n  do not
have any advantages over algebraic polynomials.  However, it turns out that functions  f
sufficiently smooth everywhere except one or several points may sometimes be approxi-
mated by rational polynomials much better than by algebraic polynomials. 

Indeed, in Section 2.4, we have established the Newman theorem (Theorem 2.4.1),
according to which, for the function  x  ,  one can find a rational polynomial  Rn   of de-
gree  n  such that (see (2.4.10)) 

x R en
n− ≤ −3 . (7.5)

Let us show that the following relation holds for any algebraic polynomial  Pn  of de-
gree  n ≥ 6: 

x P
nn− ≥ 1

80
1

. (7.6)

The problem of approximation of the function  x   was thoroughly studied by Bern-
stein (1912), who showed that the following, much stronger, statement is true:  The limit

lim
n

nnE x
→∞

( )   exists and is approximately equal to  0.282. 

We present the proof of inequality (7.6) given by Dzyadyk (1966).  For another sim-
ple proof of this inequality proposed by de la Vallée Poussin, see [Natanson (1949),
p. 215]. 

First, note that if a certain algebraic polynomial  P xn( )  of degree  n ≥ 6  satisfies the
condition 

max
,x

n nP x P x
∈[− ]

( ) = ( )
11

0   =  M,      x0 ∈ −





1
4

1
4

, , (7.7)

then 
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min
, /x u x n

nP x
M

∈ ( )
( ) ≥

0 1 2 3
,      u x

n
x

n
x

n
0 0 0

1

2

1

2

1

2
, ,



 = − +



 . (7.8)

Indeed, if inequality (7.8) is not true, then one can find a point 

ζ  ∈  u x
n0

1
2

1
3

1
3

, ,



 ⊂ −





such that 

′( ) ≥ − = >
−

P
M M

n
Mn

Mn
n ζ

ζ
/

/
3

1 2
4
3 1 2

,

and, hence, we arrive at a contradiction with the Bernstein inequality for the modulus of
the derivative of an algebraic polynomial. 

By contradiction, assume that inequality (7.6) does not hold for some polynomial.  In
this case, one can obviously find an even polynomial  P xn( )  that satisfies the conditions 

Pn( )0   =  0,      x P x
n

n− ( ) < 1

40
. (7.9)

This implies that the following inequality holds for all  x ∈ [ – 1, 1 ] : 

P x
x

n( )
  ≤  9. (7.10)

Indeed, assuming, by contradiction, that 

max
,x

n nP x
x

P x
x∈[− ]

( ) = ( )
11

0

0
  =  M  >  9

and taking into account that, by virtue of (7.9), one has  P xn( )  ≤ 2,  we conclude that

x0 ∈ −





1
4

1
4

,   and, hence, according to (7.8), 

min
, /x u x n

nP x
x

M
∈ ( )

( ) >
0 1 2 3

  >  3,      P x xn( ) > 3 ,      x ∈ u x
n0

1
2

,



 ,

max max
, / , /x u x n

n
x u x n

P x x x
n∈ ( ) ∈ ( )

( ) − > ≥
0 01 2 1 2

1
,

i.e., we arrive at a contradiction with (7.9), which proves inequality (7.10). 
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By virtue of inequality (7.10) and the Bernstein inequality, the following relations

hold for all  x ∈ 0
1
4

,



  : 

P x
x

n

x
n( )




′

≤
−
9

1 2
  <  10 n,

P x

x

P t

t
dtn n

x( ) = ( )





′
∫
0

  <  10 nx,      P xn( )  ≤  10 nx2.

Hence, 

max x P x
n

n
n nn− ( ) ≥ − 



 =1

20
10

1
20

1
40

12
,

which contradicts (7.9).  The required statement is proved. 
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