

An Introduction to Scientific Computing

Ionut Danaila
Pascal Joly
Sidi Mahmoud Kaber
Marie Postel

An Introduction to Scientific Computing

Twelve Computational Projects Solved
with MATLAB

Ionut Danaila
Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie
Paris 75252
FRANCE
danaila@ann.jussieu.fr

Sidi Mahmoud Kaber
Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie
Paris 75252
FRANCE
kaber@ann.jussieu.fr

Pascal Joly
Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie
Paris 75252
FRANCE
joly@ann.jussieu.fr

Marie Postel
Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie
Paris 75252
FRANCE
postel@ann.jussieu.fr

Library of Congress Control Number: 2006931780

ISBN-10: 0-387-30889-X
ISBN-13: 978-0-387-30889-0

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC
MATLAB® is a trademark of The Math Works, Inc. and is used with permission. The Math
Works does not warrant the accuracy of the text or exercises in this book. This book’s use or
discussion of MATLAB® software or related products does not constitute endorsement or
sponsorship by The Math Works of a particular pedagogical approach or particular use of the
MATLAB® software.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

Ionut Danaila
Pascal Joly
Sidi Mahmoud Kaber
Marie Postel

An Introduction to Scientific
Computing: Twelve
Computational Projects Solved
with MATLAB
SPIN Springer’s internal project number, if known

– Monograph –

October 13, 2006

Springer
Berlin Heidelberg NewYork
Hong Kong London
Milan Paris Tokyo

To Alice, Luminita
Romain, Sylvain
Sarah, Thomas
Camille, Paul

Preface

Teaching or learning numerical methods in applied mathematics cannot be
conceived nowadays without numerical experimentation on computers. There
is a vast literature devoted either to theoretical numerical methods or nu-
merical programming of basic algorithms, but there are few texts offering a
complete discussion of numerical issues involved in the solution of concrete
and relatively complex problems. This book is an attempt to fill this need.
It is our belief that advantages and drawbacks of a numerical method cannot
be accounted for without one’s experiencing all the steps of scientific comput-
ing, from physical and mathematical description of the problem to numerical
formulation and programming and, finally, to critical discussion of numerical
results.

The book provides twelve computational projects aimed at numerically
solving problems selected to cover a broad spectrum of applications, from
fluid mechanics, chemistry, elasticity, thermal science, computer-aided design,
signal and image processing, etc. Even though the main volume of this text
concerns the numerical analysis of computational methods and their imple-
mentation, we have tried to start, when possible, from realistic problems of
practical interest for researchers and engineers.

For each project, an introductory record card summarizes the mathemat-
ical and numerical topics explained and the fields of application of the ap-
proach. A level of difficulty, scaling from 1 to 3, is assigned to each project.
Most of the projects are of level 1 or 2 and can be easily tackled; the reader
will no doubt realize that projects of level 3 require a solid background in
both numerical analysis and computational techniques.

Excepting projects 1 and 3, which are more theoretical, all projects follow
the typical steps of scientific computing: physical and mathematical modeling
of the problem, numerical discretization, construction of a numerical algo-
rithm, and, finally, programming. We have placed considerable emphasis on
practical issues of computational methods that are not usually available in
basic textbooks. Numerical checking of accuracy or stability, the choice of
boundary conditions, the effective solving of linear systems, and comparison
to exact solutions when available are only a few examples of problems en-

VIII Preface

countered in the application of numerical methods. The last section of each
project contains solutions of all proposed exercises and guides the reader in
using the MATLAB scripts that can be accessed via the publisher’s web site
www.springer.com. Programming techniques such as vectorial programming
and memory storage optimization are also addressed. We finally discuss the
physical meaning of the obtained results. The complementary references given
at the end of each chapter form a guide for further, more specialized, reading.

The text offers two levels of interest. The mathematical framework pro-
vides a basic grounding in the subject of numerical analysis of partial differ-
ential equations and main discretization techniques (finite differences, finite
elements, spectral methods, wavelets). Meanwhile, we hope that the informa-
tion contained herein and the wide range of topics covered by the book will
allow the reader to select the appropriate numerical method to solve his or
her particular problem.

The book is based on material offered by the authors in courses at Univer-
sité Pierre et Marie Curie (Paris, France) and different engineering schools.
It is primarily intended as a graduate-level text in applied mathematics, but
it may also be used by students in engineering or physical sciences. It will also
be a useful reference for researchers and practicing engineers. Since different
possible developments of the projects are suggested, the text can be used to
propose assignments at different graduate levels.

Despite our efforts to avoid typing, spelling, or other errors, the reader
will no doubt find some remaining. We shall appreciate all feedback notifying
us of any mistakes, as well as comments and suggestions that will help us to
improve the text. Please use the e-mail addresses given below for this purpose.

We conclude by saying a few words about the programs provided with
this book. They are written in MATLAB, a widely used software environment
for scientific computing produced by The MathWorks Inc. We consider that
an interpreted language (such as MATLAB, SCILAB, OCTAVE) is the ideal
framework to start a scientific programming activity. Debugging is very simple
and the wide variety of available numerical tools (for solving linear systems,
integrating ordinary differential equations, etc.) allows one to concentrate on
the main features of the resolution algorithm. The highly versatile graphical
interface is also very important to easy visualization of the obtained results.

Our programs are written with a general concern for simplicity and effi-
ciency on ordinary personal computers; program lines are commented in what
we hope is sufficient detail for the reader to follow mathematical develop-
ments. Programming tricks are discussed in the text when they seem to be of
general interest. Projects 11 and 12 are also provided with more elaborate ver-
sions of the programs, using interactive graphical user interfaces. The reader
should try to modify these programs to test different suggested run cases or
extensions of the projects. We believe that experience with these simple pro-
grams will be valuable in writing numerical codes using compiled languages
(such as Fortran, C, or C++) to solve real industrial problems on mainframe
computers.

Preface IX

Paris, October 2005

Ionut Danaila (danaila@ann.jussieu.fr)
Pascal Joly (joly@ann.jussieu.fr)
Sidi Mahmoud Kaber (kaber@ann.jussieu.fr)
Marie Postel (postel@ann.jussieu.fr)

Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie (Paris 6) and
Centre National de la Recherche Scientifique (CNRS)

Contents

1 Numerical Approximation of Model Partial Differential
Equations . 1
1.1 Discrete Integration Methods for Ordinary Differential

Equations . 1
1.1.1 Construction of Numerical Integration Schemes 2
1.1.2 General Form of Numerical Schemes 6
1.1.3 Application to the Absorption Equation 8
1.1.4 Stability of a Numerical Scheme . 9

1.2 Model Partial Differential Equations . 11
1.2.1 The Convection Equation . 11
1.2.2 The Wave Equation . 14
1.2.3 The Heat Equation . 17

1.3 Solutions and Programs . 19
Chapter References . 30

2 Nonlinear Differential Equations: Application to Chemical
Kinetics . 33
2.1 Physical Problem and Mathematical Modeling 33
2.2 Stability of the System . 34
2.3 Model for the Maintained Reaction . 36

2.3.1 Existence of a Critical Point and Stability 36
2.3.2 Numerical Solution . 37

2.4 Model of Reaction with a Delay Term . 37
2.5 Solutions and Programs . 41
Chapter References . 48

3 Polynomial Approximation . 49
3.1 Introduction . 49
3.2 Polynomial Interpolation . 50

3.2.1 Lagrange Interpolation . 51
3.2.2 Hermite Interpolation . 57

XII Contents

3.3 Best Polynomial Approximation . 59
3.3.1 Best Uniform Approximation . 59
3.3.2 Best Hilbertian Approximation . 61
3.3.3 Discrete Least Squares Approximation 64

3.4 Piecewise Polynomial Approximation . 65
3.4.1 Piecewise Constant Approximation 66
3.4.2 Piecewise Affine Approximation . 67
3.4.3 Piecewise Cubic Approximation . 68

3.5 Further Reading . 69
3.6 Solutions and Programs . 70
Chapter References . 83

4 Solving an Advection–Diffusion Equation by a Finite
Element Method . 85
4.1 Variational Formulation of the Problem . 85
4.2 A P1 Finite Element Method . 87
4.3 A P2 Finite Element Method . 90
4.4 A Stabilization Method . 93

4.4.1 Computation of the Solution at the Endpoints of the
Intervals . 93

4.4.2 Analysis of the Stabilized Method 95
4.5 The Case of a Variable Source Term . 97
4.6 Solutions and Programs . 97
Chapter References . 108

5 Solving a Differential Equation by a Spectral Method 111
5.1 Some Properties of the Legendre Polynomials 112
5.2 Gauss–Legendre Quadrature . 113
5.3 Legendre Expansions . 115
5.4 A Spectral Discretization . 117
5.5 Possible Extensions . 119
5.6 Solutions and Programs . 120
Chapter References . 125

6 Signal Processing: Multiresolution Analysis 127
6.1 Introduction . 127
6.2 Approximation of a Function: Theoretical Aspect 127

6.2.1 Piecewise Constant Functions . 127
6.2.2 Decomposition of the Space VJ . 129
6.2.3 Decomposition and Reconstruction Algorithms 132
6.2.4 Importance of Multiresolution Analysis 133

6.3 Multiresolution Analysis: Practical Aspect 134
6.4 Multiresolution Analysis: Implementation 135
6.5 Introduction to Wavelet Theory . 137

6.5.1 Scaling Functions and Wavelets . 137

Contents XIII

6.5.2 The Schauder Wavelet . 139
6.5.3 Implementation of the Schauder Wavelet 141
6.5.4 The Daubechies Wavelet . 142
6.5.5 Implementation of the Daubechies Wavelet D4 144

6.6 Generalization: Image Processing . 146
6.6.1 Image Processing: Implementation 147

6.7 Solutions and Programs . 148
Chapter References . 150

7 Elasticity: Elastic Deformation of a Thin Plate 151
7.1 Introduction . 151
7.2 Modeling Elastic Deformations (Linear Problem) 152
7.3 Modeling Electrostatic Forces (Nonlinear Problem) 153
7.4 Numerical Discretization of the Problem. 154
7.5 Programming Tips . 157

7.5.1 Modular Programming . 157
7.5.2 Program Validation . 158

7.6 Solving the Linear Problem . 159
7.7 Solving the Nonlinear Problem . 159

7.7.1 A Fixed-Point Algorithm . 159
7.7.2 Numerical Solution . 160

7.8 Solutions and Programs . 162
7.8.1 Further Comments . 162

Chapter References . 164

8 Domain Decomposition Using a Schwarz Method 165
8.1 Principle and Application Field of Domain Decomposition 165
8.2 One-Dimensional Finite Difference Solution 166
8.3 Schwarz Method in One Dimension . 167

8.3.1 Discretization . 168
8.4 Extension to the Two-Dimensional Case . 171

8.4.1 Finite Difference Solution . 171
8.4.2 Domain Decomposition in the Two-Dimensional Case . . 175
8.4.3 Implementation of Realistic Boundary Conditions 178
8.4.4 Possible Extensions . 180

8.5 Solutions and Programs . 181
Chapter References . 190

9 Geometrical Design: Bézier Curves and Surfaces 193
9.1 Introduction . 193
9.2 Bézier Curves . 193
9.3 Basic Properties of Bézier Curves . 195

9.3.1 Convex Hull of the Control Points 195
9.3.2 Multiple Control Points . 196
9.3.3 Tangent Vector to a Bézier Curve 197

XIV Contents

9.3.4 Junction of Bézier Curves . 197
9.3.5 Generation of the Point P (t) . 198

9.4 Generation of Bézier Curves . 200
9.5 Splitting Bézier Curves . 201
9.6 Intersection of Bézier Curves . 203

9.6.1 Implementation . 205
9.7 Bézier Surfaces . 206
9.8 Basic properties of Bézier Surfaces . 206

9.8.1 Convex Hull . 206
9.8.2 Tangent Vector . 207
9.8.3 Junction of Bézier Patches . 207
9.8.4 Construction of the Point P (t) . 208

9.9 Construction of Bézier Surfaces . 209
9.10 Solutions and Programs . 210
Chapter References . 212

10 Gas Dynamics: The Riemann Problem and Discontinuous
Solutions: Application to the Shock Tube Problem 213
10.1 Physical Description of the Shock Tube Problem 213
10.2 Euler Equations of Gas Dynamics . 215

10.2.1 Dimensionless Equations . 218
10.2.2 Exact Solution . 218

10.3 Numerical Solution . 222
10.3.1 Lax–Wendroff and MacCormack Centered Schemes 222
10.3.2 Upwind Schemes (Roe’s Approximate Solver) 227

10.4 Solutions and Programs . 232
Chapter References . 233

11 Thermal Engineering: Optimization of an Industrial
Furnace . 235
11.1 Introduction . 235
11.2 Formulation of the Problem . 236
11.3 Finite Element Discretization . 237
11.4 Implementation . 239
11.5 Boundary Conditions . 241

11.5.1 Modular Implementation . 242
11.5.2 Numerical Solution of the Problem 242

11.6 Inverse Problem Formulation . 244
11.7 Implementation of the Inverse Problem . 245
11.8 Solutions and Programs . 248

11.8.1 Further Comments . 249
Chapter References . 250

Contents XV

12 Fluid Dynamics: Solving the Two-Dimensional
Navier–Stokes Equations . 251
12.1 Introduction . 251
12.2 The Incompressible Navier–Stokes Equations 252
12.3 Numerical Algorithm . 253
12.4 Computational Domain, Staggered Grids, and Boundary

Conditions . 255
12.5 Finite Difference Discretization . 256
12.6 Flow Visualization . 264
12.7 Initial Condition . 265
12.8 Step-by-Step Implementation . 268

12.8.1 Solving a Linear System with Tridiagonal, Periodic
Matrix . 268

12.8.2 Solving the Unsteady Heat Equation 271
12.8.3 Solving the Steady Heat Equation Using FFTs 275
12.8.4 Solving the 2D Navier–Stokes Equations 275

12.9 Solutions and Programs . 277
Chapter References . 284
Bibliography . 285
Index . 289
Index of Programs . 293

1

Numerical Approximation of Model Partial
Differential Equations

Project Summary

Level of difficulty: 1

Keywords: Linear differential equations; numerical integration
methods; finite difference schemes: Euler schemes,
Runge–Kutta schemes

Application fields: Transport phenomena, diffusion, wave propagation

This first chapter is intended as a quick introduction to basic discretization
techniques of time-dependent partial differential equations (PDEs). We con-
sider it important that the reader, before tackling the complex problems of
the next chapters, have some understanding of the mathematical and phys-
ical properties of the following model PDEs: the convection equation, the
wave equation, and the heat equation. This chapter is therefore organized as
a collection of several short exercises in which model PDEs are theoretically
analyzed and numerically solved using the simplest discretization methods.
The essential features of numerical methods are presented, with emphasis on
fundamental ideas of accuracy, stability, convergence, and numerical dissipa-
tion. Particular care is devoted to the validation of numerical procedures by
comparing to exact solutions available for these simple cases.

1.1 Discrete Integration Methods for Ordinary
Differential Equations

We generally define a partial differential equation (PDE) as a relation between
a function of several variables and its partial derivatives. In this section, we
consider the simplest case of ordinary differential equations (ODE), which
depend on a single independent variable (time variable here) and present
discrete methods for their numerical integration. These methods (or numerical

2 1 Numerical Approximation of Model Partial Differential Equations

schemes) will prove useful in the following sections when we discuss PDEs
depending both on time and space variables.

Let us consider the following problem: find a differentiable function u :
[0, T] �→ R

m that is a solution of the ODE

u′(t) = f(t, u(t)), (1.1)

where T is a nonnegative scalar and f : [0, T] × R
m �→ R

m a continuous
function. This problem is not completely specified by its equation: for its
integration we need to know the initial value (at t = 0) of the unknown
function.

Definition 1.1. A Cauchy (or initial value) problem is the coupling of the
ODE (1.1) with an initial condition

u(0) = u0, (1.2)

where u0 is a given vector in R
m.

Theoretical results on existence and uniqueness of the solution of the prob-
lem (1.1)–(1.2) go back to Cauchy in 1824. The reader interested in a more
mathematical approach to the problem will want to refer to many existing
books on ODEs (see, for instance, the references at the end of this chapter).
We adopt here a more practical point of view, and we start directly by pre-
senting simple numerical methods to compute approximations of the solution
in the scalar case, or one-dimensional case, m = 1.

Since the computer can deal only with a finite number of discrete values,
the numerical algorithm to solve the Cauchy problem (1.1)–(1.2) starts by
setting the points t0, t1, . . . , tN at which the solution will be computed. The
points tn, n = 0, . . . , N , define a discretization (or a grid) of the interval
I = [0, T]. The equidistant or regular distribution of the grid points is the
simplest and will be used in this chapter. We set (see Fig. 1.1) tn = nh, with
h = T/N the constant discretization step (or time step if t is regarded as a
time variable) and define the subintervals In = [tn, tn+1], n = 0, . . . , N − 1
(notice that t0 = 0 and tN = T).

The numerical approximation of the Cauchy problem consists in building
a sequence of numbers (depending on N) u

(N)
0 , . . . , u

(N)
N that approximate

the values u(t0), . . . , u(tN) of the exact solution u(t) at the same computa-
tion points. We always start with u

(N)
0 = u0 in order to satisfy the initial

value condition u(t0) = u0. In order to simplify notation, we will refer, when
possible, to u

(N)
n by un.

1.1.1 Construction of Numerical Integration Schemes

Having discretized the definition interval I, we must find a formula to compute
values un, for n = 1, . . . , N . Such a formula, which is usually called a numerical

1.1 Discrete Integration Methods for Ordinary Differential Equations 3

exact solution

t tn+1n

u
un+1

n

t
T0

h

tu()n
u()tn+1

u0

u

t1

u1

numerical solution

Fig. 1.1. Regular grid and numerical approximation of an ODE.

scheme, is obtained by discretizing the differential operator in the ODE. We
present here two types of methods that can be used to build numerical schemes
for the ODE (1.1). Remember that any integration scheme will start from the
value u0 imposed by the initial condition.

Methods Based on Finite Differences

This type of method consists in writing the equation (1.1) at time t = tn and
replacing u′(tn) by a finite difference approximation. For this purpose we use
a Taylor series expansion to approximate the values of the unknown u for t
close to tn. We consider, for instance, the example of the first derivative.

Definition 1.2. The discretization step h being fixed, we define the following
finite difference operators:

• forward or progressive

D+u(t) =
u(t + h) − u(t)

h
, (1.3)

• backward or regressive

D−u(t) =
u(t) − u(t − h)

h
, (1.4)

• central

D0u(t) =
u(t + h) − u(t − h)

2h
. (1.5)

4 1 Numerical Approximation of Model Partial Differential Equations

Let us assume that the function u is twice continuously differentiable. Then
there exists θ+

n ∈ [0, h] such that

u(tn+1) = u(tn) + hu′(tn) +
h2

2
u′′(tn + θ+

n). (1.6)

We can derive from this expansion an approximation of u′(tn):

u′(tn) =
u(tn+1) − u(tn)

h
− h

2
u′′(tn + θ+

n) ≈ D+u(tn), (1.7)

and calculate the approximation (or truncation) error

εn =
∣∣u′(tn) − D+u(tn)

∣∣ ≤ h

2
max
t∈In

|u′′(t)|. (1.8)

Assuming that |u′′| is bounded, we infer that the truncation error decays to 0
with h. We conventionally denote the approximation error by O(h) and write:
u′(tn) = D+u(tn) + O(h).

Definition 1.3. We say that D+u(tn) is a first-order approximation of u′(tn).
We generally define the order of accuracy of the difference approximation as
the power of h with which the approximation error tends to zero.

It is easy to see that D−u(tn) = [u(tn) − u(tn−1)]/h is also a first-order
approximation of u′(tn), while D0u(tn) = [u(tn+1)−u(tn−1)]/(2h) is a second-
order (i.e., the order of accuracy is two) approximation of u′(tn).

More generally, it is possible to use linear combinations of several finite
difference operators to find approximations of u′(tn). For instance, we can
approach

u′(tn) ≈ αD−u(tn) + βD0u(tn) + γD+u(tn), (1.9)

with parameters α, β, and γ chosen such that the approximation has the
highest possible order of accuracy.

Taylor series expansion remains the basic tool for building approximations
of higher-order derivatives. For the second derivative, for instance, the simplest
recipe is the following: continue the expansion (1.6) to the fourth-order, write
a similar expansion for u(tn−1), and sum the two relationships. A centered
second-order approximation of the second derivative is thus obtained:

u′′(tn) ≈ D−D+u(tn) =
u(tn+1) − 2u(tn) + u(tn−1)

h2 . (1.10)

We address now the problem of building numerical schemes for the ODE
(1.1) using the previous finite difference approximations. Considering the ODE
at time tn and replacing u′(tn) by D+u(tn), we obtain the scheme

un+1 = un + hf(tn, un). (1.11)

1.1 Discrete Integration Methods for Ordinary Differential Equations 5

We recall that un+1, respectively un, are numerical approximations of u(tn+1),
respectively u(tn).

The scheme (1.11) is called the explicit Euler scheme, or simply the Euler
scheme. This method is said to be explicit because un+1 depends explicitly
on tn and the old value un. More generally, a numerical scheme is explicit if
un+1 can be calculated explicitly from quantities that are already known (i.e.,
values of the solution at previous times).

Consider now the ODE (1.1) at time tn+1 and replace u′(tn+1) by D−u(tn+1);
we obtain the implicit Euler scheme

un+1 = un + hf(tn+1, un+1). (1.12)

This time, un+1 is computed as the solution (if it exists!) of an implicit equa-
tion. This requires more work, in particular when the function u �→ f(t, u) is
nonlinear with respect to u.

The approximation u′(tn) ≈ D0u(tn) in (1.1), written at time tn, leads to
the scheme

un+1 = un−1 + 2hf(tn, un), (1.13)

called the leapfrog (or midpoint) scheme.

Methods Based on Quadrature Formulas

Another way to build a numerical scheme is based on quadrature formulas
(numerical integration is also called quadrature). Integrating the ODE (1.1)
on the interval In = [tn, tn+1], we obtain

u(tn+1) − u(tn) =
∫ tn+1

tn

f(s, u(s))ds = In. (1.14)

We can hence compute u(tn+1) starting from the old value u(tn) if we are able
to approximate the integral In. We go back to a quadrature problem.

Several quadrature rules can be used to estimate the integral in (1.14):

• the left endpoint rule
In ≈ hf(tn, un), (1.15)

leading to the explicit Euler scheme (1.11);
• the right endpoint rule

In ≈ hf(tn+1, un+1), (1.16)

defining the implicit Euler scheme (1.12);
• the midpoint (or rectangle) rule

In ≈ hf(tn + h/2, u(tn + h/2)), (1.17)

leading, using the approximation

6 1 Numerical Approximation of Model Partial Differential Equations

u(tn + h/2) ≈ u(tn) +
h

2
u′(tn) = u(tn) +

h

2
f(tn, u(tn)), (1.18)

to the modified explicit Euler scheme:

un+1 − un = hf

(
tn +

h

2
, un +

h

2
f(tn, un)

)
. (1.19)

• the trapezoid rule

In ≈ h

2
[f(tn, un) + f(tn+1, un+1)] , (1.20)

yielding the semi-implicit Crank–Nicolson scheme.

1.1.2 General Form of Numerical Schemes

The general form of a numerical scheme for the ODE (1.1) is

un+1 = F (h; tn+1, un+1; tn, un; . . .). (1.21)

If F depends on q previous values un−j , j = 0, . . . , q −1, the scheme is said to
be a q-step scheme. For instance, the leapfrog scheme is a two-step scheme. If
F does not depend on the solution at time level tn+1, the scheme is said to
be explicit. Otherwise, the scheme is implicit.

Remark 1.1. To start a one-step scheme, a single value is needed; this is u0,
which is always set by the initial condition u(0). It goes differently in the case
of a (q > 1)-step scheme; this scheme can be used to compute values un for
n ≥ q, once the first q values u0, . . . , uq−1 are known. Since only the initial
condition u0 is provided, the missing intermediate values can be computed
using lower-step schemes. For example, a one-step scheme can be used to
compute u1, a two-step scheme to compute u2, and a (q − 1)-step scheme to
compute uq−1.

Definition 1.4. For the numerical scheme (1.21) we define the formal local
truncation error as

en = u(tn+1) − F (h; tn+1, u(tn+1); tn, u(tn); . . .) , (1.22)

where u(t) is the solution of the ODE (1.1). The scheme has order of accuracy
p if en = O(hp+1) as h → 0. The scheme is said consistent if it has order of
accuracy p ≥ 1.

The idea behind this definition is that the discretized equation should tend
to the exact ODE when h → 0. In other words, when applying the numerical
scheme to the exact solution function u(t) one should recover (by Taylor series
expansions) the original ODE plus a reminder representing the truncation
error. Let us illustrate this by the example of the leapfrog scheme (1.13), for

1.1 Discrete Integration Methods for Ordinary Differential Equations 7

Explicit Euler un+1 = un + hf(tn, un)
(first order)

Implicit Euler un+1 = un + hf(tn+1, un+1)
(first order)

leapfrog un+1 = un−1 + 2hf(tn, un)
(second order)

Modified Euler un+1 = un + hf(tn + h
2 , un + h

2 f(tn, un))
(second order)

Crank–Nicolson un+1 = un + h
2 [f(tn, un) + f(tn+1, un+1)]

(second order)

Adams–Bashforth un+1 = un + h[32f(tn, un) − 1
2f(tn−1, un−1)]

(second order)

Adams–Bashforth un+1 = un + h[2312f(tn, un) − 16
12f(tn−1, un−1) + 5

12f(tn−2, un−2)]
(third order)

Adams–Moulton un+1 = un + h[5
12f(tn+1, un+1) + 8

12f(tn, un) − 1
12f(tn−1, un−1)]

(third order)

Runge–Kutta (Heun)
(second order)

⎧⎨
⎩

k1 = hf(tn, un),
k2 = hf(tn + h, un + k1),

un+1 = un + 1
2 (k1 + k2)

Runge–Kutta
(fourth order)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k1 = hf(tn, un),
k2 = hf(tn + h/2, un + k1/2),
k3 = hf(tn + h/2, un + k2/2),
k4 = hf(tn + h, un + k3),

un+1 = un + 1
6 (k1 + 2k2 + 2k3 + k4)

Table 1.1. Numerical schemes for the ODE u′(t) = f(t, u).

which F = un−1 + 2hf(tn, un). Using Taylor series expansions about t = tn,
we obtain for the truncation error (1.22) the expression

en = 2h [u′(tn) − f(tn, u(tn))] +
h3

3
u′′(tn) + · · · . (1.23)

Since u′(tn) = f(tn, u(tn)), we conclude that the leap-frog scheme is a second-
order scheme, i.e., the order of accuracy is two. Some numerical schemes com-
monly used in practice are summarized in Table 1.1.

8 1 Numerical Approximation of Model Partial Differential Equations

1.1.3 Application to the Absorption Equation

The model equation that describes an absorption (or production) phenomenon
is the following: find a function u : R

+ → R that is a solution of the Cauchy
problem {

u′(t) + αu(t) = f(t), ∀t > 0,

u(0) = u0,
(1.24)

where α ∈ R is a given physical constant and the source term f takes into
account the production in time of the quantity u.

Example 1.1. The intensity of the radiation emitted by a radioactive body is
estimated by measuring the concentration u(t) of an unstable isotope. This
concentration decays by a factor of two during a time interval T (called the
half-life) according to the law

u′(t) = αu(t), with α = − ln 2
T

.

Exercise 1.1. Consider the Cauchy problem (1.24).

1. We set u(t) = e−αtv(t). Write the ordinary differential equation satisfied
by v. Solve analytically this equation and verify that

u(t) = e−αt

(
u0 +

∫ t

0
eαsf(s)ds

)
. (1.25)

2. Derive the exact solution in the case of α depending on t.
3. Assuming that α and f are constants, derive an expression for u and

calculate limt→+∞ u(t).
4. Consider f = 0, and a more general coefficient α ∈ C, with real part

αr > 0. Show that limt→+∞ u(t) = 0.
5. Write a MATLAB function to implement the explicit Euler scheme (1.11).

The definition header of the function will be as follows

function u=PDE_EulerExp(fun,u0,t0,t1,n)
% Input arguments:
% fun the name of the right-hand-side EDO function
% t0 the initial time
% u0 the initial condition at t0
% t1 the final time
% n the number of time steps between t0 and t1
% Output arguments:
% u the dimension (n+1) vector containing the numerical
% solution at times t0+i*h, with h=(t1-t0)/n

1.1 Discrete Integration Methods for Ordinary Differential Equations 9

Hint: use the MATLAB built-in function feval to evaluate the parameter
function fun within the PDE EulerExp function.
In a MATLAB program (or script), call the PDE EulerExp function to
solve the ODE u′(t) + 4u(t) = 0 with the initial condition u(0) = 1.
Set t0 = 0, t1 = 3, and n = 24 (h = 1/8). Plot the results, both exact
and numerical solutions superimposed on a single graph, and comment on
them. Perform the same computation for n = 6 (h = 1/2). Comment on
the results.

6. Use instead of the explicit Euler scheme the fourth-order Runge–Kutta
scheme (write a function PDE RKutta4 using as model PDE EulerExp).
Comment on the results obtained for h = 1/2.

A solution of this exercise is proposed in Sect. 1.3 at page 19.

1.1.4 Stability of a Numerical Scheme

We consider here the absorption equation for f = 0 and α ∈ R
+. The exact

solution is then u(t) = e−αtu0 with the property limt→+∞ u(t) = 0. Assume
that we want to compute this solution using the explicit Euler scheme (1.11).
We obtain a sequence of values un = (1 − αh)nu0. It is easy to see that

• if h > 2/α, then 1 − αh ≤ −1 and the sequence (un) diverges;
• if 0 < h < 2/α, then |1 − αh| < 1 and the sequence (un) decays to 0 as

t → ∞, reproducing the behavior of the exact solution.

Let us assume at this point that the reader, pushed by curiosity, has already
answered question 5 of Exercise 1.1. The above analysis explains the strange
behavior of the numerical solution obtained for a discretization step h = 1/2
and α = 4 (the solution takes alternatively the values +1 and −1, see Fig.
1.3). The real question behind this observation is how to be sure that the
numerical scheme gives the right solution. Part of the answer is related to
the accuracy of the scheme: if the scheme is consistent (see Definition 1.4),
we know that the discrete scheme commits local (at a given time) errors
that vanish when h → 0. Unfortunately, as can be seen from our example,
consistency is not sufficient to achieve convergence to the exact solution. The
stability of the numerical scheme is also required for a successful numerical
computation. Intuitively, we can say that a numerical scheme will be stable if
it does not magnify the errors appearing during the computation.

The fundamental concept of stability can be mathematically addressed in
several ways (see, for example, Richtmyer and Morton, 1967; LeVeque, 1992;
Hirsch, 1988; Trefethen, 1996). The widely used definition of the stability (also
known as zero-stability, or Lax–Richtmyer stability for PDEs) requires that the
computed values remain bounded when h → 0 for a fixed integration interval
[0, T]. This is an important concept since, as stated from the well-known
equivalence theorem (due to Dahlquist for ODEs and to Lax and Richtmyer
for PDEs, see Trefethen (1996)), the zero-stability is a necessary and sufficient
condition for a consistent scheme to be convergent.

10 1 Numerical Approximation of Model Partial Differential Equations

In some practical applications, it is not always possible to take h small
enough for the zero-stability to apply. This is the case of stiff ODEs, i.e.,
involving different varying time scales (see Chap. 2). For this type of ODEs,
we generally use the concept of absolute stability which considers the behavior
of the numerical scheme when the time step h is held fixed and t → ∞.

We illustrate in the following the concept of absolute stability by the ex-
ample of the absorption equation (u′(t) = −αu).1 We consider the simplest
case of one-step schemes in Table 1.1. We can recast these numerical schemes
into the general form

un+1 = G(−αh)un = . . . = [G(−αh)]n+1
u0. (1.26)

G is called the amplification function2 and is supposed to reflect the behavior
of the exact solution, since this satisfies the relationship

u(tn+1) = e−αhu(tn). (1.27)

The reader is invited to derive the following expressions for the amplification
function (we denote z = −αh):

Explicit Euler: G(z) = 1 + z,
Implicit Euler: G(z) = 1/(1 − z),
Modified Euler: G(z) = (2 + z)/(2 − z),
Runge–Kutta (second order): G(z) = 1 + z + z2/2,
Runge–Kutta (fourth order): G(z) = 1 + z + z2/2 + z3/6 + z4/24.

A sufficient condition for stability is now |G(−αh)| < 1. This stability condi-
tion ensures that the numerical solution has the same behavior as the exact
solution when t → ∞, since

lim
n→+∞

|un| ≤ lim
n→+∞

|u0| |G(−αh)|n = 0.

Definition 1.5. The locus S of points z ∈ C for which |G(z)| < 1 is called
the (absolute) stability region of the scheme.

For example, the stability region S of the explicit Euler scheme is the open
disk of radius 1, centered at the point (−1, 0). The scheme will hence be
absolutely stable if the discretization step h is chosen such that |1 − αh| < 1.

1 The linear ODE u′(t) = au(t) for some constant a ∈ C is generally used as
model equation to investigate the absolute stability of a numerical scheme. For
nonlinear systems of ODEs, a similar analysis can be applied after linearization
and diagonalization (see Chap. 2) – this type of stability is often reffered to as
the eigenvalue stability.

2 For multistep schemes, G becomes a matrix; for the analysis of the absolute
stability of multistep schemes, see, for instance, Trefethen (1996).

1.2 Model Partial Differential Equations 11

Remark 1.2. According to Definition 1.5, the absolute stability region S con-
tains the points for which |un| → 0 as t → ∞. It is interesting to note that in
some textbooks (e.g. Trefethen (1996)) the absolute stability region is defined
as the locus S̄ of points z ∈ C for which |G(z)| ≤ 1, i.e., we ask that the
numerical solution un be bounded as t → ∞. In general, if S is not empty, S̄
is the closure of S. But there are some special cases, as the leapfrog scheme
for which S is empty and S̄ = [−i, i].

This second definition of the absolute stability is important since it makes
the link with the zero-stability: a numerical scheme is zero-stable if and only
if the origin z = 0 belongs to S̄ (see Trefethen, 1996, for more details).

Exercise 1.2. Plot in the same figure the bounds of the stability regions of
the following schemes: explicit Euler, second-order Runge–Kutta, and fourth-
order Runge–Kutta. Hint: define a complex variable z = (x, y) covering the
rectangle [−4, 1]× [−4, 4] (use the MATLAB built-in function meshgrid) and
plot the contour line corresponding to |G(z)| = 1 (function contour).
A solution of this exercise is proposed in Sect. 1.3 at page 19.

1.2 Model Partial Differential Equations

The PDEs presented in this chapter model elementary physical phenomena:
convection, wave propagation, and diffusion. For each of these problems, we
present one or several model equations, derive an exact solution in partic-
ular cases, and compute approximate solutions using appropriate numerical
schemes. We consider in this section the following PDEs:

• the convection equation: ∂tu(x, t) + c∂xu(x, t) = f(x, t),
• the wave equation: ∂2

ttu(x, t) − c2∂2
xxu(x, t) = 0,

• the heat equation: ∂tu(x, t) − κ∂2
xxu(x, t) = f(x, t).

1.2.1 The Convection Equation

The PDE describing the convection (or transport) of a quantity u(x, t) at
velocity c (assumed constant in the following) is

∂tu(x, t) + c∂xu(x, t) = f(x, t), ∀x ∈ R, ∀t > 0, (1.28)

with the initial condition

u(x, 0) = u0(x), ∀x ∈ R. (1.29)

The source term f(x, t) generally models the production in time of u.

Example 1.2. The transport of a pollutant in the atmosphere is modeled by
the PDE ∂tu + ∂x(cu) = 0, where u(x, t) is the concentration of the pollutant
and c the wind velocity. If c is assumed constant, we retrieve the form (1.28)
of the PDE. Note that f = 0 corresponds to the case that there is no further
production of pollutant at times t > 0.

12 1 Numerical Approximation of Model Partial Differential Equations

Exercise 1.3. We consider the convection equation (1.28) with the initial
condition (1.29) in the case f(x, t) = 0 (no sources).

1. In order to compute the exact solution we introduce the change of variables

X = αx + βt, T = γx + µt (α, β, γ, µ ∈ R), (1.30)

and define the function U by U(X, T) = u(x, t). Is this change of variables
a bijection? Write the PDE satisfied by U . What happens to this equation
if β = −cα ? Solve this last equation analytically. Deduce that the solution
is constant along the lines (Cξ) defined in the (x, t) plane by

x = ξ + ct, ξ ∈ R. (1.31)

Definition 1.6. The lines (1.31) are called characteristic curves of the
convection equation (1.28).

2. We now want to find the exact solution of (1.28)–(1.29) on a finite real
interval [a, b]. We assume that c > 0 and proceed geometrically. After
drawing in the (x, t) plane the characteristic curves Cξ for ξ ∈ [a, b], show
that the solution u(x, t) for all x ∈ [a, b] and all t > 0 is completely deter-
mined by the initial condition u0 and an additional boundary condition

u(a, t) = ϕ(t), ∀t > 0. (1.32)

Show that for a given T the exact solution is

u(x, t) =

⎧⎪⎨⎪⎩
u0(x − cT) if x − cT > a,

ϕ

(
T − x − a

c

)
if x − cT < a.

(1.33)

Note that in the case u0(a) 	= ϕ(0), the solution is discontinuous along
the characteristic curve x − cT = a. Find the value of T after which the
initial condition u0 has completely left the interval [a, b], i.e., u(x, t) can
be written as a function of ϕ(t) only. Determine the boundary condition
necessary to calculate u in the case of c < 0.

3. For the numerical solution of the convection equation (1.28) we define a
regular space discretization

xj = a + jδx, δx =
b − a

J
, j = 0, 1, . . . , J ≥ 2, (1.34)

and a time discretization (T > 0 is fixed)

tn = nδt, δt =
T

N
, n = 0, 1, . . . , N ≥ 2. (1.35)

Write a MATLAB function to compute the exact solution (1.33) following
the model:

1.2 Model Partial Differential Equations 13

function uex=PDE_conv_exact_sol(a,b,x,T,fun_ci,fun_cl)
% Input arguments:
% a,b the interval [a,b]
% c>0 the convection speed
% x the vector x(j)=a+j*delta x, j=0,1,...,J
% T the time at which the solution is computed
% fun in(x) the initial condition for t=0
% fun bc(x) the boundary condition for x=a
% Output argument:
% uex the vector of length J+1 containing the
% exact solution

4. We assume that c > 0 and denote by un
j an approximation of u(xj , tn).

The following numerical scheme is proposed to compute un
j :

• For n = 0 the initial condition is imposed: u0
j = u0(xj), j = 0, 1, . . . , J .

• For n = 0, . . . , N − 1 (loop in time to compute un+1):
• For j = 1, . . . , J (the interior of the domain)

un+1
j = un

j − cδt

δx
(un

j − un
j−1). (1.36)

• Set boundary value: un+1
0 = ϕ(tn+1).

(a) Justify geometrically (draw the characteristic starting from point
un+1

j) that the previous algorithm is well defined if

σ =
cδt

δx
≤ 1. (1.37)

Definition 1.7. The inequality (1.37) gives a sufficient condition for
the stability of the upwind scheme (1.36) for the convection equation
and is called the CFL (Courant–Friedrichs–Lewy) condition.

(b) Write a program using this algorithm to solve the convection equation
for the following data:

a = 0, b = 1, c = 4, f = 0,

u0(x) = x, ϕ(t) = sin(10πt).

Choose J = 40 and compute δt from (1.37) with σ = 0.8.
Plot the solutions obtained after n = 10, 20, 30, 40, 50 time steps. Com-
pare to the exact solution.
What happens if σ = 1, or σ = 1.1 ? Comment on the influence of the
value of σ on the stability of the scheme.

A solution of this exercise is proposed in Sect. 1.3 at page 21.

14 1 Numerical Approximation of Model Partial Differential Equations

1.2.2 The Wave Equation

Acoustic (or elastic, or seismic) wave propagation is modeled by the following
second-order PDE:

∂2
ttu(x, t) − c2∂2

xxu(x, t) = 0, t > 0, (1.38)

where c is the wave propagation velocity. The corresponding Cauchy problem
requires two initial conditions:

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x). (1.39)

Example 1.3. The oscillations of an elastic string are described by the equation
(1.38), where the function u(x, t) represents the displacement of the string in
the vertical plane. The propagation speed depends on the tension τ in the
string and on its linear density ρ according to the law c =

√
τ/ρ. Relations

(1.39) provide the initial position and velocity of the string.

If the string is considered infinite, the equation is defined on the whole set
R. For a string of finite length �, boundary conditions must be imposed in
addition. For instance, if the string is fixed at both ends, the corresponding
boundary conditions will be

u(0, t) = u(�, t) = 0, ∀t > 0. (1.40)

Definition 1.8. The boundary conditions (1.40) are called Dirichlet condi-
tions (the values of the solution are imposed at the boundary of the compu-
tational domain). When the imposed values are null, the boundary conditions
are said to be homogeneous.

Infinite string. We first consider the case of an infinite vibrating string.

Exercise 1.4. Exact solution for the infinite string. Using the change of vari-
ables (1.30), we define the function U(X, T) = u(x, t) and attempt to derive
the exact solution:

• Write ∂2
ttv and ∂2

xxu as functions of the derivatives of U . Derive the PDE
satisfied by U .

• Write this PDE for µ = cγ and β = −cα. Show that there exist two
functions F (X) and G(T) such that U(X, T) = F (X) + G(T).

• Conclude that the general solution of the wave equation can be written as

u(x, t) = f(x − ct) + g(x + ct). (1.41)

• Using the initial conditions (1.39) show that

u(x, t) =
u0(x − ct) + u0(x + ct)

2
+

1
2c

∫ x+ct

x−ct

u1(s)ds. (1.42)

1.2 Model Partial Differential Equations 15

A solution of this exercise is proposed in Sect. 1.3 at page 25.

Domain of dependence, CFL condition. The expression (1.42) shows that the
value of u(x, t) depends only on the initial values u0 and u1 restricted to the
interval [x − ct, x + ct] (see Fig. 1.2).

Definition 1.9. The lines of equations x − ct = ξ and x + ct = ξ, with ξ ∈ R

a given constant, are the characteristic curves of the wave equation (1.38).

We now intend to use a numerical scheme to solve the wave equation.
At time tn+1 = (n + 1)δt, the value of the solution un+1

j at point xj = jδx
is defined by the information transported from the level tn along the two
characteristics starting from the point (xj , tn+1) (see Fig. 1.2). The region
located between the two characteristics is called the domain of dependence of
the wave equation.

• • •

• • • � x

�
t

tn+1

t = 0

tn

xj−1 xj xj+1 xj + ctn+1
•

xj − ctn+1
•

Fig. 1.2. Domain of dependence for the wave equation.

Exercise 1.5. Justify the following numerical scheme for the wave equation:

un+1
j − 2un

j + un−1
j

δt2
= c2 un

j+1 − 2un
j + un

j−1

δx2 . (1.43)

Show that this scheme is second-order accurate in time and space (use (1.10))
and that the stability (CFL) condition is the same as that found for the
convection equation:

σ = |c| δt

δx
≤ 1. (1.44)

A solution of this exercise is proposed in Sect. 1.3 at page 26.

16 1 Numerical Approximation of Model Partial Differential Equations

Exercise 1.6. Periodic initial conditions. Let us now assume that the initial
conditions u0(x) and u1(x) are periodic (with the same period τ). Show that
the solution u(x, t) of the wave equation is periodic in space (with period τ)
and in time (with period τ/c).

1. Justify the following algorithm:
• for given initial conditions u0(xj) and u1(xj), compute u0

j , u
1
j as

u0
j = u0(xj), u1

j = u0
j + δt u1(xj), (1.45)

• for n ≥ 1, compute

un+1
j = 2(1 − σ2)un

j + σ2(un
j−1 + un

j+1) − un−1
j . (1.46)

2. Write a program to implement this algorithm.
3. Test the program for a string of length � = 1 and wave velocity c =

2. The initial data are u0(x) = sin(2πx) + sin(10πx)/4 and u1(x) = 0,
corresponding to a string initially at rest. What is the time period of the
solution?

4. Using nx = 50 points for the space discretization and nt = 50 points
to discretize one period of time, superimpose on a single graph the exact
and numerical solutions corresponding to one and two time periods. Verify
that the numerical scheme preserves the periodicity of the solution. Same
question for nx = 51. Comment on the results.

A solution of this exercise is proposed in Sect. 1.3 at page 26.

Finite-length vibrating string. Consider the wave equation (1.38) with
initial conditions (1.39) and boundary conditions (1.40). We seek a solution
of the following form (also called the Fourier or elementary waves expansion):

u(x, t) =
∑
k∈N∗

ûk(t)φk(x), φk(x) = sin
(

kπ

�
x

)
. (1.47)

For each wave φk, k is the wave number and ûk the wave amplitude.

Exercise 1.7.

1. Derive and solve the PDE satisfied by a function ûk.
2. Show that the exact solution for the finite-length vibrating string is

u(x, t) =
∑
k∈N∗

[
Ak cos

(
kπ

�
ct

)
+ Bk sin

(
kπ

�
ct

)]
φk(x), (1.48)

with

Ak =
2
�

∫ �

0
u0(x)φk(x)dx, Bk =

2
kπc

∫ �

0
u1(x)φk(x)dx. (1.49)

Find the time and space periods of the solution.

1.2 Model Partial Differential Equations 17

3. Write a program to solve the finite-length vibrating string problem, us-
ing the centered scheme (1.43). Hint: start from the program previously
implemented and modify the boundary conditions.
Find the exact solution corresponding to the following initial conditions:

u0(x) = sin
(π

�
x
)

+
1
4

sin
(
10

π

�
x
)

, u1(x) = 0. (1.50)

Plot the exact and numerical solutions at several times over one spatial
period. Use the following numerical values: c = 2, � = 1, nx = 50, nt =
125.

A solution of this exercise is proposed in Sect. 1.3 at page 27.

1.2.3 The Heat Equation

Diffusion phenomena such as molecular and heat diffusion can be described
mathematically using the heat equation model

∂tu − κ∂2
xxu = f(x, t), ∀t > 0, (1.51)

with the initial condition
u(x, 0) = u0(x). (1.52)

Example 1.4. The temperature θ of a heated body is a solution of the equation

∂tθ − ∂x(κ∂xθ) = f(x, t), (1.53)

where κ is the thermal diffusivity of the material and the function f models
the heat source. In a homogeneous medium, κ does not depend on the space
position x and we retrieve the model equation (1.51).

Consider the problem of a wall of thickness �, initially at uniform temper-
ature θ0 (the room temperature). At time t = 0, the outside temperature (at
x = 0) suddenly rises to the value θs > θ0, which is afterwards maintained
constant by an external heat source. The temperature at x = � is kept at
its initial value θ0. The heat propagation within the wall is described by the
heat equation (1.51), with the unknown u(x, t) = θ(x, t) − θ0, f(x, t) = 0, the
initial condition u0(x) = 0, and Dirichlet boundary conditions

u(0, t) = θs − θ0 = us, u(�, t) = 0, ∀t > 0. (1.54)

Infinite domain. For an infinitely thick wall (� → ∞) we look for a solution
of the form

u(x, t) = f(η), with η =
x

2
√

κt
. (1.55)

18 1 Numerical Approximation of Model Partial Differential Equations

Exercise 1.8. Show that the function f defined above satisfies the following
PDE:

d2f

dη2 + 2η
df

dη
= 0. (1.56)

We introduce the following function, called the error function:

erf(z) =
2√
π

∫ z

0
e−ζ2

dζ, (1.57)

which satisfies erf(0) = 0 and erf(∞) = 1. Find that the solution of the heat
equation for � → ∞ is

u(x, t) =
[
1 − erf

(
x

2
√

κt

)]
u(0, t). (1.58)

A solution of this exercise is proposed in Sect. 1.3 at page 28.

Remark 1.3. A change in the value of the initial condition at point x = 0 has
as consequence the modification of the solution everywhere in the domain. In
other words, the perturbation introduced at x = 0 is instantaneously prop-
agated in the computation domain (u(x, t) > 0,∀x in formula (1.58)). The
propagation speed is said to be infinite. We can also prove that the solution
at any point depends on all initial values u0(x). This implies that the domain
of dependence for the heat equation is the whole domain of definition. We re-
call, for comparison, that for the wave equation the domain of dependence is
restricted to the area bounded by the characteristics and that the propagation
speed of the solution is finite.

Finite domain. For a wall of finite thickness �, the elementary waves expan-
sion (1.47) is used.

Exercise 1.9. Write and solve the equation satisfied by the functions ûk in
the case of the heat equation. Verify that the solution of the heat equation
with boundary conditions (1.54) is

u(x, t) =
(
1 − x

�

)
us +

∑
k∈N∗

Ak exp

(
−

(
kπ

�

)2

κt

)
φk(x). (1.59)

Show that Ak = −2us/(kπ).
A solution of this exercise is proposed in Sect. 1.3 at page 29.

Remark 1.4. Let us compare the exact solution (1.59) to the exact solution of
the wave equation (1.48). The wave equation describes the transport in time of
the initial condition. The amplitude of each spatial wave φk(x) oscillates over
one time period without damping. The diffusion phenomenon described by
the heat equation is characterized by a fast decrease in time of the amplitude
of each wave φk(x) due to the presence of the exponential factor in (1.59).
This smoothing effect of the heat operator increases as the wave number k
becomes larger.

1.3 Solutions and Programs 19

Exercise 1.10. Numerical solution. Consider first the following explicit cen-
tered scheme for the heat equation:

un+1
j − un

j

δt
− κ

un
j+1 − 2un

j + un
j−1

δx2 = 0. (1.60)

The stability condition for this scheme is:

κ
δt

δx2 ≤ 1
2
. (1.61)

1. Write a program to solve the problem of the heat propagation in a finite
thickness wall. Set κ = 1, � = 1, us = 1, and take nx = 50 discretiza-
tion points in space. The time step δt is calculated using (1.61). Plot the
numerical solution for different times and compare to the exact solution
(1.59). Compare also to the solution obtained for an infinite domain (1.58).
Comment on the results for small t and then for large t.
Hint: the exact solution is computed to a fair degree of approximation by
considering the first 20 wave numbers k in the expansion (1.59).

2. Smoothing effect. Run the previous program for us = 0 and the initial
condition defined by

u0(x) = u(x, 0) = sin
(π

�
x
)

+
1
4

sin
(
10

π

�
x
)

. (1.62)

Compare the numerical solution to the exact solution (1.59). Comment
on the results by comparing to those obtained for the wave equation with
the same initial condition. Describe the damping of the waves defining the
initial condition.

A solution of this exercise is proposed in Sect. 1.3 at page 29.

1.3 Solutions and Programs

Solution of Exercises 1.1 and 1.2 (the Absorption Equation)

1. Inserting u(t) = e−αtv(t) in (1.24) gives the differential equation v′(t) =
eαtf(t) with the initial condition v(0) = u(0) = u0. It is easy to integrate
this ODE to obtain the solution (1.25).

2. If α = α(t) we obtain

u(t) = e−
∫ t
0 α(s)ds

[
u0 +

∫ t

0
e−

∫ z
0 α(s)dsf(z)dz

]
.

3. Let us assume that the function f(t) = f is constant. The expression
(1.25) becomes

u(t) =
f

α
+ e−αt

(
u0 − f

α

)
.

20 1 Numerical Approximation of Model Partial Differential Equations

If u0 = f/α, the solution is constant: u(t) = u0, ∀t.
For α > 0, u(t) → f/α for t → ∞.
For α < 0, u(t) → +∞ × sign(u0 − f/α).

4. If α = αr + iαi, we obtain

|u(t)| = |e−αtu0| = |e−(αr+iαi)tu0| = |e−αrtu0| → 0.

5. The script PDE EulerExp.m (respectively PDE RKutta4.m) implements
the explicit Euler scheme (respectively the fourth-order Runge–Kutta
scheme) to integrate the ODE u′(t) = f(t, u). The right-hand side f(t, u)
is identified by the generic name fun inside these functions; the real name
of this function is specified by the user when the functions are called. The
two functions return a vector holding the numerical values uk, computed
at discrete times uniformly distributed between t0 and t1.

The MATLAB program PDE absorption.m calls the functions PDE EulerExp
and PDE RKutta4, sending as input argument the name PDE absorption source
which represents the function implementing the right-hand side of the absorp-
tion equation. The results are displayed in two separate figures (Fig. 1.3). The
program also plots (Fig. 1.4) the bounds of the stability regions for the con-
sidered numerical schemes (Exercise 1.2).

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

u

Explicit Euler

Euler h=1/8
Euler h=1/2
Exact sol.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

time

u

Runge−Kutta 4

RKutta4 h=1/8
RKutta4 h=1/2
Exact sol.

Fig. 1.3. Numerical solution of the ODE u′(t) + 4u(t) = 0, obtained using the
explicit Euler scheme (left) and the fourth-order Runge–Kutta scheme (right). Solid
line represents the exact solution.

Let us comment on the results displayed in Fig. 1.3. Everything goes well
for h = 1

8 < 2
α = 1

2 : the numerical solution approaches the exact solution
with a better approximation for the Runge–Kutta scheme (in this last case
the exact and numerical solutions are not distinguishable in the graph). On
the other hand, for h = 1

2 = 2
α the stability limit of the explicit Euler scheme

is reached. The numerical solution remains bounded (which is no longer true
when h > 1

2 , a case to be tested) but does not converge.

1.3 Solutions and Programs 21

−4 −2 0
−4

−2

0

2

4

x

y Euler exp.

RKutta 4

RKutta 2

Fig. 1.4. stability region for different numerical schemes.

The fourth-order Runge–Kutta (RKutta4) scheme has a wider stability
region and remains stable for the two values of the discretization step h con-
sidered in this computation. Figure 1.4 shows that the stability region of the
RKutta4 scheme includes both regions of stability of the explicit Euler scheme
and RKutta2.

In light of these results, the RKutta4 scheme seems to be the best choice,
offering the best stability and accuracy. In fact, the choice of one scheme or
another for a practical application is motivated by a compromise between its
characteristics (accuracy, stability) and its computational costs (the RKutta4
scheme is approximately four times as expensive as the explicit Euler scheme
for the same discretization step).

Solution of Exercise 1.3 (the Convection Equation)

1. The change of variables can be written as(
X
T

)
=

(
α β
γ µ

)(
x
t

)
,

and it is one-to-one and onto (i.e. bijective) if αµ 	= βγ. Differentiation with
respect to the new variables gives

∂tu = β∂XU + µ∂T U, ∂xu = α∂XU + γ∂T U, (1.63)

and we find that U is the solution of the PDE:

(β + cα) ∂XU + (µ + cγ) ∂T U = 0.

For β = −cα, we get (µ + cγ) ∂T U = 0, and, consequently, ∂T U = 0. This last
equation has U(X, T) = F (X) as a solution, where F is an arbitrary smooth

22 1 Numerical Approximation of Model Partial Differential Equations

function. Therefore we can put u(x, t) = F (X) = F (αx+βt) = F (αx−αct) =
G(x−ct), where G is again an arbitrary function. Finally, imposing the initial
condition (1.29) we get u(x, t) = u0(x − ct). This implies in particular that
the solution remains unchanged along the characteristic lines, that is

if (x, t) ∈ Cξ =⇒ u(x, t) = u0(ξ), ξ = x − ct.

In the plane (x, t), the characteristic curves Cξ are straight lines of positive
slopes 1/c (see Fig. 1.5).
2. To derive the solution u(x, T) for x ∈ [a, b] and T < T ∗ = (b − a)/c, we
draw the characteristics through the points (x, T) and use the fact that the
solution u(x, t) is constant along a characteristic line. Two cases are possible
(see Fig. 1.5):

• the characteristic (Cξ in the figure) crosses the segment [a, b]; this is the
case for points located at x ≥ xT , with xT = a + cT . The solution will be
therefore determined by the initial condition:

u(x, T) = u0(ξ) = u0(x − cT).

• the characteristic (Cµ in the figure) does not cross the segment [a, b]; in
this case a boundary condition is needed. If we impose u(a, t) = ϕ(t), since
the information will be searched through the characteristics back to this
boundary condition, the solution is calculated as

u(x, T) = ϕ(tµ) = ϕ

(
T − x − a

c

)
.

Note that the initial condition u0 is completely “evacuated” from the do-
main [a, b] after a time value T ∗ = (b − a)/c.

�x

�
t

T ∗

T

xT

tµ

Cµ Ca Cξ Cb

�
�

�
�

�
�

�
�

�
�

�
�

��

µ
�

�
�

�
�

�
�

�
�

�
�

�
��

a
�

�
�

�
�

�
�

�
�

�
�

�
��

ξ
�

�
�

�
�

�
�

�
�

�
�

�
��

b

Fig. 1.5. Using characteristics to calculate the solution of the convection equation.

1.3 Solutions and Programs 23

For c < 0, the boundary condition must be imposed on the right-hand side
of the domain by setting u(b, t) = ϕ(t).
3. The function PDE conv exact sol.m computes the exact solution for a given
time T . Note in particular the use of the MATLAB command find to imple-
ment the formula (1.33).
4. We recognize a discretization of equation (1.28) where the time derivative
∂tu is approximated by D+u(tn) and the space derivative ∂xu by D−u(xj).
The choice of the upwind approximation for ∂xu is imposed by the fact that
c > 0 and therefore the information comes from the left.

• • •

• • •

• • •

•P
� �

δx− cδt� �

cδt

� x

�
t

tn+1

tn

xj−1 xj xj+1

(c < 0)(c > 0)

Fig. 1.6. Geometrical interpretation of the CFL condition for the upwind scheme.

The characteristic going through the point un+1
j is drawn in Fig. 1.6. This

line cuts the horizontal line t = tn at a point P located between xj−1 and
xj , at a distance cδt from xj and δx − cδt from xj−1. Since the solution is
constant along a characteristic, necessarily un+1

j = un
P .

It is interesting to note from these geometrical considerations that the
scheme (1.36) is nothing else but a linear interpolation between the values of
the solution at points xj−1 and xj :

un+1
j =

δx − cδt

δx
un

j +
cδt

δx
un

j−1.

The CFL condition cδt ≤ δx can be thus regarded as a criterion imposing the
positivity of the interpolation coefficients; in other words, the point P must
lie within the interval [xj−1, xj].

Some computing tips may be useful at this point. First of all, we must be
careful and make all array indices start from 1 (and not 0 as in mathematical
expressions). Then, the solution at time tn+1 will be computed according to

un+1
j = (1 − σ)un

j + σun
j−1, σ =

cδt

δx
.

24 1 Numerical Approximation of Model Partial Differential Equations

Since we seek a solution for n = N , we save storage memory by using a single
array u for the calculation. If the solution is needed at intermediate times, it
will be either written to a file or graphically displayed. With this programming
trick, the previous relation becomes

u(j) = (1 − σ)u(j) + σu(j − 1),

and the values at time tn will be replaced by new values at time tn+1. We also
must be careful to use in the numerical scheme the values uj−1 before they
are modified (i.e., at previous time tn). This is achieved by using an inverse
loop (j = J + 1, J, . . . , 2); for j = 1 the boundary condition is imposed.

This algorithm is implemented in the program PDE convection.m. This
program calls the functions PDE conv bound cond and PDE conv init cond,
which define, in separate files, the initial condition and, respectively, the
boundary condition.

The solution for chosen intermediate times is represented in Fig. 1.7 and
compared to the exact solution (computed by the function PDE conv exact).
Note that starting from time T ∗ = 1

4 , the initial data leaves the computation
domain, and the solution depends only on the boundary condition.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
time=0.05

Exact sol
Num. sol

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
time=0.1

Exact sol
Num sol

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
time=0.2

Exact sol
Num sol

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
time=0.25

Exact sol
Num sol

Fig. 1.7. Computation of the solution of the convection equation using the upwind
scheme (CFL= 0.8). Solid line represents the exact solution.

1.3 Solutions and Programs 25

An interesting phenomenon can be observed when one looks closer at the
solution in the region where the derivative of the exact solution is discontin-
uous (i.e., where the part of the solution depending on the initial condition
is connected to that depending on the boundary condition). There is a nu-
merical smoothing of this sharp transition. What is interesting here is that
this observed dissipation has no physical meaning and is exclusively due to
the numerical scheme. The upwind scheme is therefore said to be dissipative.
We shall discuss in detail dissipation effects, in a more physical context, when
analyzing the heat equation.

A computation performed for σ = 1 (or CFL = 1) gives results that are
perfectly superimposed on the exact solution. This is not surprising, since
the upwind scheme becomes in this case an exact relation: un+1

j = un
j−1.

In practice, the convection speed c and the space discretization step δx are
generally not constant, making impossible a computation with σ = 1.

The computation for σ = 1.1 illustrates the loss of stability of the upwind
scheme when σ > 1.

Solution of Exercise 1.4 (the Wave Equation)

Starting from (1.63), we obtain for the second derivatives{
∂2

ttu = β2∂2
XXU + µ2∂2

TT U + 2βµ∂2
TXU,

∂2
xxu = α2∂2

XXU + γ2∂2
TT U + 2αγ∂2

TXU,

and conclude that U is solution of the PDE:(
µ2 − c2γ2) ∂2

TT U +
(
β2 − c2α2) ∂2

XXU + 2
(
βµ − c2αγ

)
∂2

XT U = 0.

For µ = cγ and β = −cα, the equation becomes −4c2αγ∂2
XT U = 0,

which implies that ∂2
XT U = 0, or again ∂T (∂XU) = 0. From the previous

relationship we infer that there exist two functions F (X) and G(T) such that
U(X, T) = F (X) + G(T). Since X = α(x − ct) and T = γ(x + ct), we can
choose α = γ = 1, and the solution becomes

u(x, t) = f(x − ct) + g(x + ct).

Imposing initial conditions for u(x, t) and ∂tu(x, t) = −cf ′(x−ct)+cg′(x+
ct), we obtain the system of equations{

f ′(x) + g′(x) = u′
0(x),

−f ′(x) + g′(x) = (1/c)u1(x),

giving expressions for f ′ and g′ and finally the formula (1.42) for u.

26 1 Numerical Approximation of Model Partial Differential Equations

Solution of Exercise 1.5

In the discretization proposed for the wave equation, the second partial deriva-
tives ∂2

xxu and ∂2
ttu are approximated by centered finite differences (see equa-

tion (1.10)). One can easily show that the scheme (1.43) is of second order in
space and also in time.

The stability condition (1.44) expresses that the domain of dependence (see
Fig. 1.2) bounded by the two characteristics starting from the point (xj , tn+1)
must lie inside the triangle {(xj , tn+1), (xj−1, tn), (xj+1, tn)} defined by the
three-point stencil used by the numerical scheme. In other words, if the time
step is larger that the critical value δx/c, the information searched for by
the characteristics will be found outside the interval [xj−1, xj+1] used by the
scheme. This is not in accord with the physical phenomenon described by the
wave equation and therefore results in instability of the numerical scheme.

From the formula (1.42), it can be easily checked that u(x + τ, t) = u(x, t)
and u(x, t + τ/c) = u(x, t). The solution u(x, t) is hence periodic in time and
space, with period τ in space and τ/c in time.

Solution of Exercise 1.6

In the proposed algorithm, the scheme (1.43) is used together with the com-
putation of the solution for the first time step based on the approximation
∂tu(x, t) ≈ u1(x).

This algorithm is implemented in the program PDE wave infstring.m
and the initial conditions in files PDE wave infstring u0.m and, respectively,
PDE wave infstring u1.m.

It is worth explaining some programming tricks used in this program. The
periodicity condition (also satisfied by the initial condition u0(x) = u0(x + τ)
with τ = 1!) is translated in discrete form by unx+1 = u1, since the spatial
discretization is built such that x1 = 0 and xnx+1 = 1. In order to fully exploit
the capabilities of MATLAB in terms of vectorial programming, we define the
arrays jp and jm corresponding to indices j + 1, respectively j − 1, for all
discretization points. The periodicity is expressed then by setting jp(nx) = 1,
jm(1) = nx, and the numerical scheme (1.46) is written within a single line
of code:

u2=-u0+coeff*u1+sigma2*(u1(jm)+u1(jp)).
Here u2 corresponds to the array (un+1)j , u1 to (un)j , and u0 to (un−1)j .
The advantage of this compact programming is to avoid loops interrupted by
specific treatments of the points on the boundaries. We shall use this simple
programming tip in a more complicated project (Chap. 12).

The numerical results are displayed in Fig. 1.8. The period of the solution
in time is 1/c = 0.5. For nx = nt = 50, the CFL number is σ = 1. The
numerical scheme propagates the initial condition correctly and preserves the
periodicity in time. The solution after one time period coincides with the exact
solution (which is in fact the initial condition u0). Unlike the upwind scheme

1.3 Solutions and Programs 27

used for the convection equation, this centered scheme does not generate any
numerical diffusion (even for smaller nx corresponding to CFL < 1). For
nx = 51 the scheme becomes unstable because CFL > 1. It is also interesting
to note that the instability of the scheme appears only after some time (here
after one time period).

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
time=0.5 CFL=1

x

u

Exact sol.
Num. sol.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
time=1 CFL=1

x

u

Exact sol.
Num. sol.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
time=0.5 CFL=1.02

x

u

Exact sol.
Num. sol.

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10
time=1 CFL=1.02

x

u

Exact sol.
Num. sol.

Fig. 1.8. Numerical solution of the wave equation for the infinite vibrating string
(periodicity conditions). Initial condition: u(x, 0) = sin(2πx) + sin(10πx)/4 and
∂tu(x, 0) = 0. Comparison with the exact solution for CFL = 1 (top) and CFL
> 1 (bottom) after one period in time (left) and two periods in time (right).

Solution of Exercise 1.7

The amplitude ûk satisfies the PDE

d2

dt2
ûk + c2

(
kπ

�

)2

ûk = 0, (1.64)

which is often encountered in physics. It models in particular the oscillations
of a pendulum. The general solution of this PDE being

ûk(t) = Ak cos
(

kπ

�
ct

)
+ Bk sin

(
kπ

�
ct

)
, (1.65)

28 1 Numerical Approximation of Model Partial Differential Equations

the expression (1.48) is straightforward. The coefficients Ak, Bk are computed
using the orthogonality of the trigonometric functions φk on [0, �].

We observe that the solution is periodic, of period 2� in space and 2�/c in
time. The initial condition (1.50) corresponds to a decomposition in elemen-
tary waves with

k = {1, 10}, Ak = {1, 1/4}, Bk = {0, 0}.

The exact solution is given by (1.48) with these values.
The program PDE wave fstring.m computes the solution for the finite-

length string. The initial condition is computed in PDE wave fstring in.m
and the exact solution in PDE wave fstring exact.m.

Note that once again, we use vector notation (avoiding for loops) for the
centered scheme. The computation points corresponding to the boundaries are
not modified during the loop in time, and preserve their initial values (which
respect the imposed boundary conditions). Figure 1.9 displays a comparison
between the exact solution and the numerical solution for two different time
instants.

0 0.2 0.4 0.6 0.8 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
time=0.6 CFL=0.8

x

u

Exact sol.
Num. sol.

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5
time=1 CFL=0.8

x

u

Exact sol.
Num. Sol.

Fig. 1.9. Numerical solution of the wave equation for the finite-length string. Initial
condition: u(x, 0) = sin(πx) + sin(10πx)/4 and ∂tu(x, 0) = 0. Comparison with the
exact solution (one time period corresponds to t = 1).

Solution of Exercise 1.8

The partial derivatives can be written in terms of f as

∂u

∂t
= − η

2t

df

dη
,

∂2u

∂x2 =
1

4kt

d2f

dη2 ;

hence the PDE (1.56) is satisfied by f . After integration, we obtain

df

dη
= Ae−η2

=⇒ u(x, t) = f(η) = B + A erf(η).

1.3 Solutions and Programs 29

Taking into account the properties of the function erf when imposing bound-
ary conditions, we can easily obtain the formula (1.58).

Solution of Exercise 1.9

The amplitude ûk is solution of the ODE:

dûk

dt
+ κ

(
kπ

�

)2

ûk = 0,

and has the analytical form

ûk(t) = Ak exp

(
−

(
kπ

�

)2

κt

)
.

We can easily check that any elementary wave ûk(t)φk(x) is a solution of the
heat equation, but it does not satisfy the boundary conditions (1.54). This is
the reason why a linear function of x (which is a also a solution of the heat
equation) has been added to obtain the final form of the exact solution (1.59).
We note that this is allowed by the linearity of the heat equation.

Finally, the coefficients Ak are calculated using the orthogonality of φk

functions:

Ak = −2us

�

∫ l

0

(
1 − x

�

)
sin

(
kπ

�
x

)
dx = −2us

kπ
.

Solution of Exercise 1.10

The MATLAB program PDE heat.m answers questions 1 and 2. The ini-
tial condition is computed in PDE heat u0.m and the exact solution in
PDE heat uex.m (the erf function is already available in the standard MAT-
LAB package). Numerical results (see Fig. 1.10) confirm the fact that the
erf-solution (1.58) obtained for an infinite domain is a good approximation
for small times t (this is the main reason why it is often used in practice by
engineers). For longer times t, the exact solution (and hopefully the numerical
one as well) converges to the steady-state solution (i.e., independent of time)
u(x) = (1 − x

�)us.
The diffusion phenomenon described by the heat equation is characterized

by a time scale t0 = �2/κ (see the expression of η in (1.55)). Consequently,
the effective speed of propagation c0 = �/t0 = κ/� of a thermal perturbation
decreases with the distance to the source. This accounts for the poor efficiency
of diffusion systems to propagate heat for large distances or time!

Let us imagine a domestic heating system based on diffusion only. The
thermal diffusivity of air being κ ≈ 20 [mm2/s], the heating effect will be felt
at a distance of 1 cm after 5 seconds and at 1 meter after 5·104 s ≈ 14 hours!

30 1 Numerical Approximation of Model Partial Differential Equations

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

time=0.02 CFL=0.5

x

u
Exact sol.
Num. sol.
erf−sol

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

time=0.04 CFL=0.5

x

u

Exact sol.
Num. sol.
erf−sol

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

time=0.12 CFL=0.5

x

u

Exact sol.
Num sol.
erf−sol

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

time=0.24 CFL=0.5

x

u

Exact sol.
Num sol.
erf−sol

Fig. 1.10. Numerical solution of the heat equation for x ∈ [0, �], κ = 1, and bound-
ary conditions u(0, t) = 1, u(�, t) = 0. Initial condition u(0, 0) = 1, u(x, 0) = 0, x > 0.
Comparison with the exact solution (1.59) and the erf-solution (1.58) for an infinite
domain.

Fortunately, real heating systems are more efficient due to other phenomena
(such as air convection and radiation).

For the next question, it is easy to return to the previous program
(PDE heat.m) to implement the new initial condition (1.62). The lines to
modify are written as comments. The results (see Fig. 1.11) clearly show that
the wave of highest wave number, equivalent to highest frequency (k = 10
in our case), is first damped. The solution tends to the constant steady-state
solution u(x) = 0. Recall, for comparison, the behavior of the wave equation,
for which the same initial condition was transported without damping of the
wave amplitudes (see Fig. 1.9).

Chapter References

Extensive analysis of numerical methods for solving ODEs or PDEs can be
found in a large number of books, ranging from the classic text by Richtmyer
and Morton (1967), to Lambert (1973), John (1978), Mitchell and Griffiths
(1980), Butcher (1987), and more recently Trefethen (1996). Introductions to

Chapter References 31

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time=0.0004 CFL=0.5

x

u

Exact sol.
Num. sol.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time=0.0016 CFL=0.5

x

u

Exact sol.
Num. sol.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time=0.0024 CFL=0.5

x

u

Exact sol.
Num. sol.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time=0.016 CFL=0.5

x

u

Exact sol.
Num. sol.

Fig. 1.11. Numerical solution of the heat equation for x ∈ [0, �], κ = 1, and
boundary conditions u(0, t) = 0, u(�, t) = 0. Initial condition: u(x, 0) = sin(πx) +
sin(10πx)/4. Comparison to the exact solution (1.59). Note the early damping of
high frequency waves.

finite difference methods can be found in Strikwerda (1989) or several texts
on computational fluid dynamics, such as Hirsch (1988), LeVeque (1992).

The reader acquainted with French literature may refer to Crouzeix and
Mignot (1989), Delabrière and Postel (2004), Demailly (1996) for the numer-
ical analysis of ODEs and Lucquin (2004), Mohammadi and Säıac (2003) for
PDEs; the implementation of numerical schemes using object-oriented pro-
gramming is discussed in Danaila, Hecht, and Pironneau (2003).

J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations,
Wiley, 1987.

M. Crouzeix and A. Mignot, Analyse numérique des équations différen-
tielles, Masson, Paris, 1989.

I. Danaila, F. Hecht and O. Pironneau, Simulation numérique en C++,
Dunod, Paris, 2003.

S. Delabrière and M. Postel, Méthodes d’approximation, Equations
différentielles, Applications Scilab, Ellipses, Paris, 2004.

J. P. Demailly, Analyse numérique et équations différentielles, Presses Uni-
versitaires de Grenoble, 1996.

32 1 Numerical Approximation of Model Partial Differential Equations

C. Hirsch, Numerical Computation of Internal and External Flows, John
Wiley & Sons, 1988.

F. John, Partial Differential Equations, SpringerVerlag, 1978.
J. D. Lambert, Computational Methods in Ordinary Differential Equations,

Wiley, 1973.
R. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, 1992.
B. Lucquin, Équations aux dérivées partielles et leurs approximations, El-

lipses, Paris, 2004.
A. R. Mitchell and D. F. Griffiths, Computational Methods in Partial

Differential Equations, Wiley, 1980.
B. Mohammadi and J.-H. Säıac, Pratique de la simulation numérique,

Dunod, 2003.
R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value

Problems, 2nd ed., WileyInterscience, 1967.
J. C. Strikwerda, Finite Difference schemes and Partial Differential Equa-

tions, Wadsworth and Brooks/Cole, 1989.
L. N. Trefethen, Finite Difference and Spectral Methods for Ordi-

nary and Partial Differential Equations, unpublished text, available at
http//web.comlab.ox.ac.uk/oucl/work/nick.trefethen/pdetext.html, 1996.

2

Nonlinear Differential Equations: Application
to Chemical Kinetics

Project Summary

Level of difficulty: 1

Keywords: Nonlinear system of differential equations, stability,
integration schemes, Euler explicit scheme, Runge–
Kutta scheme, delayed differential equation

Application fields: Chemical kinetics, biology

2.1 Physical Problem and Mathematical Modeling

The laws governing chemical kinetics can be written as systems of ordinary
differential equations. In the case of complex reactions with several different
participating molecules, these equations are nonlinear and present interesting
mathematical properties (stability, periodicity, bifurcation, etc.). The numer-
ical solution of this type of system is a domain of study in itself with a flour-
ishing literature. Very efficient numerical methods to solve systems of ODEs
are implemented in MATLAB, as in most such software. The first model of
reaction that we shall study in this chapter can be completely solved using
such a standard package. We will therefore use the ode solvers provided by
MATLAB , assuming that the user masters the underlying theory and the
basic concepts such as convergence, stability, and precision (see Chap. 1).

The other model includes a delay term. We choose here not to use the delay
equation solver dde23 and describe a specific numerical treatment. Both are
examples of models presented in Hairer, Norsett, and Wanner (1987).

We first study the so-called Brusselator model, which involves six reactants
and products A, B, D, E, X, and Y :

34 2 Nonlinear Differential Equations: Application to Chemical Kinetics⎧⎪⎪⎪⎨⎪⎪⎪⎩
A

v1−→ X,

B + X
v2−→ Y + D, bimolecular reaction,

2X + Y
v3−→ 3X, trimolecular autocatalytic reaction,

X
v4−→ E,

(2.1)

where vi are the constant chemical reaction rates. The concentrations of the
species as functions of time t are denoted by A(t), B(t), D(t), E(t), X(t),
and Y (t). Mass conservation in the chemical reactions leads to the following
differential equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A′ = −v1A,
B′ = −v2BX,
D′ = v2BX,
E′ = v4X,
X ′ = v1A − v2BX + v3X

2Y − v4X,
Y ′ = v2BX − v3X

2Y.

We start by eliminating the two equations governing the production of species
D and E, since they are independent of the four others:⎧⎪⎪⎨⎪⎪⎩

A′ = −v1A,
B′ = −v2BX,
X ′ = v1A − v2BX + v3X

2Y − v4X,
Y ′ = v2BX − v3X

2Y.

The system can be furthermore simplified by assuming that A and B are kept
constant and by taking all reactions rates equal to 1. The resulting system of
two equations with two unknowns can be written as the initial value problem{

U ′(t) = F (U(t)),
U(0) = U0 = (X0, Y0)T ,

(2.2)

where U(t) = (X(t), Y (t))T is the vector modeling the variations of concen-
tration of substances X and Y , and

F (U) =
(

A − (B + 1)X + X2Y
BX − X2Y

)
.

2.2 Stability of the System

The stability of the system is its propensity to evolve toward a constant or
steady solution. This steady solution U(t) = Uc, if it exists, satisfies U ′(t) = 0,
and can therefore be calculated by solving F (Uc) = 0. The solution Uc is called
a critical point. In the above example it is easy to compute: Uc = (A, B/A)T .
The stability of the system can also be regarded as its ability to relax in finite

2.2 Stability of the System 35

time to the steady state when a perturbation ∆(t) = U(t) − Uc is applied
to the solution. In order to study the influence of variations ∆(t), the right-
hand side of the system is linearized around the critical point using a Taylor
expansion:

U ′(t) = F (U) = F (Uc) + ∇FU=Uc(U − Uc) + O(||U − Uc||2),

where

∇F =

⎛⎜⎝ ∂F1

∂X

∂F1

∂Y
∂F2

∂X

∂F2

∂Y

⎞⎟⎠ =
(

2XY − (B + 1) X2

B − 2XY −X2

)
.

Assuming small variations ∆(t), the term O(||U − Uc||2) can be neglected,
leading to the linear differential system{

∆′(t) = J∆(t),
∆(0) = ∆0,

(2.3)

where the Jacobian matrix J = ∇FU=Uc is in this case

J =
(

B − 1 A2

−B −A2

)
.

In the case that J is diagonalizable, it can be decomposed as J = MDM−1,
where Dij = λiδij and its integer powers are Jn= MDnM−1 for n > 0. We
recall the definition of the exponential of a matrix J (see for instance Allaire
and Kaber (2006)):

eJ =
∞∑

n=0

1
n!

Jn =
∞∑

n=0

1
n!

MDnM−1 = M

(∞∑
n=0

1
n!

Dn

)
M−1 = MeDM−1,

where eD is the diagonal matrix (eD)ij = δije
λi , formed out of the exponential

of the eigenvalues of the matrix J . With this definition, the differential system
(2.3) can be directly integrated:

∆(t) = etJ∆0. (2.4)

The long-time behavior is obtained by making t −→ +∞ in the exact solution
(2.4) of the linearized system (2.3). If all eigenvalues λ of J have negative real
part, then eλt → 0 as t → +∞. Therefore the matrix eJt = MeDtM−1 → 0
as t → +∞ and the solution ∆(t) goes to 0. The Taylor expansion around the
critical point is valid in this case, and the solution of the nonlinear system
(2.2) tends toward the critical point.

In this very simple example, the eigenvalues of the matrix J can be explic-
itly calculated as the roots of the characteristic polynomial. The reader can
easily verify that they are

36 2 Nonlinear Differential Equations: Application to Chemical Kinetics

λ± =
B − A2 − 1 ±

√
∆

2
, with ∆ = (A2 − B + 1)2 − 4A2,

and that their real part is negative if B < A2 + 1.
The numerical method described in the following exercise can also be used to
provide a stability criterion. This can be useful in a more general case when
the eigenvalues cannot be calculated explicitly.

Exercise 2.1. Write a program to display, as a function of B, the maximum
of the real part of the eigenvalues of the matrix J . The parameter A is kept
constant. Mark out the value of the stability criterion, which is the abscissa
at which the curve crosses the horizontal axis.
A solution of this exercise is proposed in Sect. 2.5 at page 41.

In order to solve the system of differential equations (2.2), we could imple-
ment one of the numerical integration schemes proposed in Table 1.1, Chap.
1. Another possibility is to use already available programs, for instance one
of the ODE solvers proposed in MATLAB.

Exercise 2.2. Compute the approximated solutions for different choices of
parameter A corresponding to stability and instability. In each case display
graphically the solutions X and Y as a function of time and in another figure,
Y as a function of X, that is, the parametric curve (X(t), Y (t))t.
A solution of this exercise is proposed in Sect. 2.5 at page 42.

2.3 Model for the Maintained Reaction

Consider now the system (2.1) with the hypothesis that component B is in-
jected in the mixture at rate v. The concentration of B as a function of time
is denoted by Z(t). The system of chemical reactions reduces to a new system
of three equations: ⎧⎨⎩

X ′ = A − (Z + 1)X + X2Y,
Y ′ = XZ − X2Y,
Z ′ = −XZ + v.

(2.5)

2.3.1 Existence of a Critical Point and Stability

The problem (2.5) now admits a steady solution corresponding to the criti-
cal point Uc = (A, v/A2, v/A)T . The Jacobian matrix of the right-hand-side
function of the system (2.5) is

∇F =

⎛⎝−(Z + 1) + 2XY Z − 2XY −Z
X2 −X2 0
−X X −X

⎞⎠ .

2.4 Model of Reaction with a Delay Term 37

In order to study the stability of the system, this matrix is evaluated at the
critical point

J =

⎛⎝ v/A − 1 1 −1
−v −1 1
−v 0 −1

⎞⎠ .

Exercise 2.3. Find numerical values of v corresponding to stable or unstable
behavior of the system. Hint: the numerical method proposed in Exercise (2.1)
can be used again.
A solution of this exercise is proposed in Sect. 2.5 at page 43.

2.3.2 Numerical Solution

Exercise 2.4. Solve the system (2.5) numerically for the following values of
v: 0.9, 1.3, and 1.52.
For each case, display in separate figures the three concentrations versus time
and concentrations Y and Z versus X.
A solution of this exercise is proposed in Sect. 2.5 at page 44.

2.4 Model of Reaction with a Delay Term

An example of a more complicated chemical reaction is proposed in Hairer,
Norsett, and Wanner (1987). An additional component I is introduced at a
constant rate into the system, initiating a chain reaction.

I Y Y Y1 2 3 4z k 2 k 3 k 4
Y

The quantity of final product Y4 slows down the first step of the reaction
Y1 → Y2. A fine modeling of this process, taking into account the transport
time and diffusion properties of molecules, leads to a delayed ODE system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y′
1(t) = I − z(t)y1(t),

y′
2(t) = z(t)y1(t) − y2(t),

y′
3(t) = y2(t) − y3(t),

y′
4(t) = y3(t) − 0.5y4(t),

z(t) =
1

1 + αy4(t − td)3
,

(2.6)

where td is the time delay parameter. This system has a critical point Yc,
which is, once again, determined by solving y′(t) = 0:

38 2 Nonlinear Differential Equations: Application to Chemical Kinetics

Yc =

⎛⎜⎝
I(1 + 8αI3)

I
I
2I

⎞⎟⎠ . (2.7)

As in the previous section, the system can be linearized around this point.
The stability of the resulting system can then be studied by introducing a
fifth variable y5(t) = y4(t − td). The Jacobian of the right-hand-side function

F (y) =

⎛⎜⎜⎜⎜⎝
I − y1

1 + αy3
5

y1

1 + αy3
5

− y2

y2 − y3
y3 − 0.5y4

⎞⎟⎟⎟⎟⎠
can then be easily calculated at the critical point

∇F (Yc) =

⎛⎜⎝
−z̄ 0 0 0 12αI3z̄
z̄ −1 0 0 −12αI3z̄
0 1 −1 0 0
0 0 1 −0.5 0

⎞⎟⎠ ,

where

z̄ =
1

1 + 8αI3 .

The small variations ∆(t) around the critical point Yc satisfy to a first-order
approximation the linear system of ODEs

∆′
1(t) = −z̄∆1(t) + 12αI3z̄∆4(t − td),

∆′
2(t) = z̄∆1(t) − ∆2(t) − 12αI3z̄∆4(t − td),

∆′
3(t) = ∆2(t) − ∆3(t),

∆′
4(t) = ∆3(t) − 0.5∆4(t).

(2.8)

An expression for ∆(t) is sought of the form ∆(t) = V ext, where V is a
constant vector of R

4. Plugging this ansatz into (2.8) leads to the characteristic
equation

(x + 1)2(x + 0.5)(x + z̄) + 12αz̄I3xe−xtd = 0. (2.9)

The corresponding system is stable if all roots have a negative real part.

Exercise 2.5. Set α = 0.0005, td = 4, and solve numerically the characteris-
tic equation for x ∈ C for different values of I between 0 and 20. Estimate a
minimum value of the parameter I beyond which unstable equilibrium solu-
tions can be obtained.
A solution of this exercise is proposed in Sect. 2.5 at page 45.

2.4 Model of Reaction with a Delay Term 39

In order to illustrate numerically the instability phenomenon, the full system
(2.6) has to be integrated. Standard solvers for ODE cannot be used, since
they assume the generic form{

y′(t) = F (t, y(t)),
y(0) = u0,

(2.10)

whereas in our case the right-hand side depends on the solution at a previous
time, {

y′(t) = G(t, y(t), y(t − td)),
y(t) = u0, for t ≤ 0.

(2.11)

In this example the function G is the vector function

G : R × R
4 × R

4 −→ R
4,

(t, u, v) �−→ G(t, u, v) =

⎛⎜⎜⎜⎜⎝
I − u1

1 + αv3
4

u1

1 + αv3
4

− u2

u2 − u3
u3 − 0.5u4

⎞⎟⎟⎟⎟⎠ . (2.12)

Numerical schemes well adapted to systems of standard type (2.10) have to
be modified to handle the time delay. We start with the simplest case of the
explicit Euler scheme: ∥∥∥∥∥∥∥∥∥

initialization : y0 = u0

for i = 0, 1, . . . , n − 1 do
yi+1 = yi + hF (ti, yi)

end

(2.13)

This scheme provides a first-order approximation yn ≈ y(tn), with tn = nh
for h sufficiently small (see Butcher (1987)). It can be easily adapted to the
system with delay term (2.11) if the time delay td (here td = 4) is an integer
multiple of the time step h, i.e., td = dh with d ∈ N,∥∥∥∥∥∥∥∥∥∥∥∥∥∥

initialization : y0 = u0

for i = 0, 1, . . . , n − 1 do

γi =
{

u0 if i < d
yi−d elsewhere

yi+1 = yi + hG(ti, yi, γi)
end

(2.14)

Exercise 2.6. 1. The solution is supposed to be constant and equal to y0
for all t ≤ 0. Write a function ODE DelayEnzyme(t,Y,h,y0) returning
the value G(t, y(t), y(t − td)) given by (2.12). Hints: the values of y are
discretized with the time step h = tmax/n and stored in an array Y . The
delay parameter td is a global variable set equal to 4 in the calling script.

40 2 Nonlinear Differential Equations: Application to Chemical Kinetics

2. Write a function ODE EulerDelay(fdelay,tmax,nmax,y0) implementing
the algorithm (2.14) to compute an approximation of the solution at
time tmax in nmax time steps. The name of the right-hand-side function
ODE DelayEnzyme is passed as input argument fdelay.

3. Write a main script to integrate the system using the algorithm (2.14)
up to tmax = 160. The value of α is fixed at 0.0005 and I is chosen in
the range corresponding to instability. The initial condition u0 should be
chosen close to the equilibrium solution Yc. Display graphically the four
components of the solution versus time in one figure and the components
yi, i = 2, . . . , 4, versus the component y1 in another figure.
A solution of this exercise is proposed in Sect. 2.5 at page 46.

In the case of a Runge–Kutta-type scheme, intermediate values needed for
the computation of yi+1 must be stored. The standard fourth-order Runge–
Kutta scheme presented in Chap. 1 will be adapted to our problem. We start
by rewriting the scheme such as to compute explicitly the intermediate pa-
rameters of the right-hand-side function instead of the values of the function
itself: ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

initialization: y0 = u0

for i = 0, 1, . . . , n − 1 do

g1 = yi,

g2 = yi +
h

2
F (ti, g1),

g3 = yi +
h

2
F (ti, g2),

g4 = yi + hF (ti, g3),

yi+1 = yi +
h

6

(
F (ti, g1) + 2F

(
ti +

h

2
, g2

)
+ 2F

(
ti +

h

2
, g3

)
+ F

(
ti + h, g4)) .

end

(2.15)

To adapt this algorithm to the case (2.11) the values gk, k = 1, . . . , 4, should
be stored as functions of time. They are needed to compute the intermediate
values for the third input argument of the system function G, which holds the
values of the solution at the delayed time t − td. This leads to the following
algorithm:

2.5 Solutions and Programs 41∥∥

initialization: y0 = u0

for i = 0, 1, . . . , n − 1 do

g1
i = yi,

g2
i = yi +

h

2
G(ti, g1

i , γ1
i),

g3
i = yi +

h

2
G(ti, g2

i , γ2
i),

g4
i = yi + hG(ti, g3

i , γ3
i),

yi+1 = yi +
h

6

(
G(ti, g1

i , γ1
i) + 2G

(
ti +

h

2
, g2

i , γ2
i

)
+2G

(
ti +

h

2
, g3

i , γ3
i

)
+ G(ti + h, g4

i , γ4
i)
)

,

where γk
i =

{
u0 if i + ck ≤ d,
gk

i−d otherwise,

with c = (0 0.5 0.5 1)T
.

end

(2.16)

Exercise 2.7. 1. Write a function ODE DelayRungeKutta with input argu-
ments fdelay,tmax,nmax, and y0 implementing the algorithm (2.16) to
compute an approximation of the solution at time tmax in nmax time steps.

2. Compare graphically the solutions obtained using respectively the Euler
and Runge–Kutta schemes. For tmax = 16, plot the two solutions obtained
using nmax = 100 and nmax = 1000. Compute the solution for nmax = 5000
and store it as reference solution. Compute the error in L∞ norm, as a
function of h, by performing several calculations for different values of
nmax varying between 100 and 2000.

3. Study the influence of the initial condition: plot the trajectories yi,
i = 2, . . . , 4, as functions of y1 with different colors for different initial
conditions.
A solution of this exercise is proposed in Sect. 2.5 at page 46.

2.5 Solutions and Programs

Solution of Exercise 2.1
To illustrate graphically the stability criterion, the script ODE stab2comp.m
computes the eigenvalues of the Jacobian matrix of F at the critical point,
using the MATLAB built-in function eigen. The maximum value of the real
part of these eigenvalues is computed and stored for different values of the
parameter B, the parameter A remaining fixed. An approximation of the
stability criterion is the abscissa where the maximum value of the real part

42 2 Nonlinear Differential Equations: Application to Chemical Kinetics

changes sign.

Solution of Exercise 2.2
The script ODE Chemistry2.m uses the ODE solver ode45 available in MAT-
LAB main distribution to integrate numerically the system of ODEs (2.2):

global A
global B
fun=’ODE fun2’ ;
A=1;
B=0.9;
%
U0=[2;1]; % Initial condition
t0=0; % initial time
t1=10; % final time
[timeS1,solS1]=ode45(fun,[t0,t1],U0);

The above example corresponds to a stable case. The MATLAB function
ode45 requires as input the following parameters:

• the right-hand-side vector function of the differential system (written in
ODE fun2.m),

• the time interval [t0,t1] over which the system is integrated,
• the solution U0 at initial time t0.

It returns as output the array timeS1 of discrete intermediate times at which
the solver has computed the corresponding solution solS1.
The A and B parameters of the differential system are declared as global in the
main script and in the right-hand-side function ODE fun2. Therefore they do
not need to be included in the list of input parameters of fun2 when calling
ode45. We first run the script with parameters corresponding to stability
(A = 1 and B = 0.9), then with parameters corresponding to instability
(A = 1 and B = 3.2). In the first run case, the concentrations tend, for
large times, to a constant value, which is the critical point. This behavior
is illustrated in Fig. 2.1. In the left figure, (a), the trend of concentrations
versus time is represented, showing that they rapidly stabilize to their critical
values. The right figure, (b), shows the behavior of component Y versus the
component X for two different initial conditions. The two trajectories converge
toward the same critical point of coordinates (A, B/A) = (1, 0.9).

The second choice of parameters, corresponding to instability, is illustrated
in Fig. 2.2. In the left figure (a) the concentrations are displayed as functions
of time. They remain bounded but exhibit periodic behavior. If the simulation
is run over a long enough time, the graph of Y versus X represents the limit
cycle. Figure 2.2 (b) numerically illustrates that this cycle does not depend
on initial conditions but only on the parameters A and B. As they get closer
to the instability limit (B = A2 + 1), the limit cycle becomes smaller and
eventually collapses into the critical point. This phenomenon is called Hopf

2.5 Solutions and Programs 43

bifurcation (see Hairer, Norsett, and Wanner (1987) for details).

0 5 10
0

1

2

t

y(
t)

, x
(t

)

X and Y versus time

X
Y

(a)
1 2

0.5

1

Y versus X − stable case

x(t)

y(
t)

[2;1]
[0.5,0.5]

(b)

Fig. 2.1. Simplified Brusselator model, stable case A = 1, B = 0.9. (a) Concentra-
tions X and Y as a function of time. (b) Parametric curves (X, Y)t for two different
initial conditions, (2, 1)T and (0.5, 0.5)T .

0 10 20 30
0

2

4

6

t

y(
t)

, x
(t

)

Concentrations X and Y − unstable case

X
Y

(a)
0 2 4

0.5

2.5

4.5

Y versus X unstable case

x(t)

y(
t)

[2;1]
[2;3]

(b)

Fig. 2.2. Simplified Brusselator model, unstable case A = 1, B = 3.2. (a) Con-
centrations X and Y as a function of time. (b) Parametric curves (X, Y)t for two
different initial conditions, (2, 1)T and (2, 3)T .

Solution of Exercise 2.3
The script ODE stab2comp.m that was written to answer Exercise 2.1 is mod-
ified in order to find the values of the parameter v for which all eigenvalues
of the Jacobian matrix J have a negative real part. From the figure displayed
by the script ODE stab3comp.m we find that only the first value v = 0.9 pro-
posed in Exercise 2.4 corresponds to a stable case. For the values v = 1.3 and
1.52 some of the eigenvalues have a positive real part.

44 2 Nonlinear Differential Equations: Application to Chemical Kinetics

Solution of Exercise 2.4
The integration of the full system with three equations is performed in
the script ODE Chemistry3.m. The right-hand-side function is defined in
ODE fun3.m. For v = 0.9, the system is stable; therefore all three concen-
trations tend toward their equilibrium value (Uc = (1, 0.9, 0.9)T) as shown in
Fig. 2.3 (a). The right figure (b), which shows the variations of Y as a function
of X, also points out the convergence toward the critical point, starting from
several different initial conditions.

For v = 1.3, the system is unstable, but the concentrations remain
bounded. Their variation as a function of time is periodic and tends toward
a limit cycle as displayed in Fig. 2.4.

0 10 20 30
0

1

2

t

y(
t)

, x
(t

),
z(

t)

X Y and Z stable case

X
Y
Z

(a) 0.5 1.5 2.5
0

1

2
Y versus X for v=0.9

x(t)

y(
t)

[1;2;1]
[2;1;1;]
[1;1/3;1]

(b)

Fig. 2.3. Brusselator model, stable case v = 0.9. (a) Concentrations X, Y , and Z as
a function of time. (b) Parametric curves (X, Y)t for two different initial conditions,
(1, 2, 1)T and (2, 2, 2)T .

0 10 20 30
0

1

2

t

y(
t)

, x
(t

),
z(

t)

X Y and Z unstable periodic case

X
Y
Z

(a) 1 2 3
0

1

2

3
Y versus X for v=1.3

x(t)

y(
t)

[1;2;1]
[2;2;2]

(b)

Fig. 2.4. Brusselator model, unstable periodic case v = 1.3. (a) Concentrations
X, Y , and Z as a function of time. (b) Parametric curves (X, Y)t for two different
initial conditions, (1, 2, 1)T and (2, 2, 2)T .

2.5 Solutions and Programs 45

0 20 40 60
0

20

40

t

y(
t)

, x
(t

),
z(

t)

X Y and Z unstable divergent case

X
Y
Z

(a) 0 4 8
0

20

40

Y versus X for v=1.52

x(t)

y(
t)

[1;2;1]
[2;2;2]

(b)

Fig. 2.5. Brusselator model, unstable divergent case v = 1.52. (a) Concentrations
X, Y , and Z as a function of time. (b) Parametric curves (X, Y)t for two different
initial conditions, (1, 2, 1)T and (2, 2, 2)T .

Eventually, for v > 1.5, the system is unstable and divergent and the val-
ues of the concentrations y and z are unbounded for large times while the
concentration x goes to 0. The global behavior is completely different from
the previous case. In particular, there is no limit cycle of y as a function of x
or of z as a function of x.

Solution of Exercise 2.5
This nonlinear equation can be solved numerically using the MATLAB built-
in function fsolve, as proposed in the script ODE StabDelay.m displayed
below:

clear %important to reinitialize the Matlab square root of (-1)
td=4;
alpha=0.0005;
for I=0:20
bz=1/(1+8*alpha*Iˆ3);
funtext=’(x+1)ˆ2*(x+0.5)*(x+bz)+12 *alpha*Iˆ3*bz*x*exp(-td*x)’;
funequi=inline(funtext,’x’,’bz’,’I’,’alpha’,’td’);
guess=i/2;
x0=fsolve(funequi,guess,optimset(’Display’,’off’),bz,I,alpha,td);
fprintf(’I=%f x0=%f+i%f n’,I,real(x0),imag(x0))
end

Running the script with a real value as initial guess for the fsolve function
(guess=2 for instance) will provide a negative real solution. This corresponds
to a stable equilibrium, since deviations from the critical point decay expo-
nentially to zero. Conversely, if we run the script with a pure imaginary initial
guess, the root found by the solver is complex, with a nonzero imaginary part.
Choose guess=i/2 as in the above example, and let I vary to obtain a solution
with a real part that will be positive for values of I > 9. The equilibrium for
this parameter choice is unstable, since the deviations increase exponentially.

46 2 Nonlinear Differential Equations: Application to Chemical Kinetics

On the other hand, stability is not ensured for I < 9, since not all the roots
of equation (2.9) necessarily have a negative real part.

Solution of Exercise 2.6
The main script ODE Enzyme.m calls the function ODE EulerDelay, which
implements the Euler scheme (2.14) adapted to the delayed equation. The
right-hand-side function G(t, y, γ) is programmed in the file ODE DelayEn-
zyme.m. The selected value I=10 corresponds to an instability. The initial
condition is fixed by adding a small deviation to the unstable equilibrium
solution (2.7). In Fig. 2.6 (b) the trajectories are superimposed, which indi-
cates the periodic character of the solution. The length of the period can be
graphically estimated in Fig. 2.6 (a) to a value close to 13, which roughly cor-
responds to one of the phases obtained in solving the characteristic equation
(2.9).

In contrast, setting I=5, which is a value for which no unstable linear equi-
librium could be found by running the script ODE StabDelay, we observe that
the solutions tend to equilibrium.

0 50 100 150
0

50

100
Solution

t

y(
t)

y
1

y
2

y
3

y
4

(a)
0 50 100

0

25

50
Trajectories

y
1

y i y
2

y
3

y
4

(b)

Fig. 2.6. Solutions of the system (2.6) obtained using the Euler scheme. (a) y(t)
versus t. (b) Trajectories yi, i = 2, . . . , 4, versus y1.

Solution of Exercise 2.7
The delayed system of equations is now integrated with the fourth-order
Runge–Kutta scheme programmed in the function ODE RungeKuttaDelay.
Calls to ODE EulerDelay should be replaced by ODE RungeKuttaDelay in the
script ODE Enzyme.m. This is done by changing the assigment of the vari-
able scheme. In order to implement the Runge–Kutta scheme for delayed
ODEs (2.16), we introduce a triple-index array g(:,n,k) for k = 1, . . . , 4. It
is used to store the four intermediate values (gk)4k=1 as a function of time,
so that it can be passed as input parameter to the right-hand-side function
ODE DelayEnzyme.

2.5 Solutions and Programs 47

A more detailed study of the convergence order of the two schemes is pro-
posed in the script ODE ErrorEnzyme.m. Reference solutions for each scheme
are computed with a very fine discretization, here nmax=5000. They are used as
exact solutions to evaluate the error on the solution at the final time tmax = 50
when coarser discretizations are used. In Fig. 2.7, the variations of the error
with the discretization parameter h are represented in logarithmic scale, along
with the theoretical convergence orders O(h) and O(h4) for comparison.

10
−4

10
−3

10
−210

−10

10
−5

10
0

10
5

h

E
(h

)

Convergence order

RK4
Euler
h4

h

Fig. 2.7. Error in L∞ norm as a function of the time step at time t = 50 for Euler
and fourth-order Runge–Kutta schemes.

Finally, the influence of the initial condition is investigated by the script
ODE EnzymeCondIni. We display in the same figure the trajectories starting
from different initial conditions, randomly chosen in the vicinity of the un-
stable equilibrium. Figure 2.8 shows that after an initial phase (of different
lengths), they all converge to the same periodic trajectory.

0 50 100 150
0

50

y
1
(t)

Component y
2
(t)

y 2(t
)

(a) 0 50 100 150
0

50

y
1
(t)

Component y
3
(t)

y 3(t
)

(b)

Fig. 2.8. Solutions of system (2.6) obtained for four different initial conditions using
the Runge–Kutta scheme. (a) Trajectories y2 versus y1. (b) y3 versus y1.

48 2 Nonlinear Differential Equations: Application to Chemical Kinetics

Chapter References

Numerous references for solving ODEs have already been cited in the previous
chapter. The numerical examples treated in this project are directly selected
from Hairer, Norsett, and Wanner (1987) and we also recommand the book
by Bellen and Zennaro (2003) for advanced reading on delay equations.

G. Allaire and S. M. Kaber, Numerical Linear Algebra, Springer, New
York, forthcoming, 2007.

A. Bellen and M. Zennaro, Numerical Methods for Delay Differen-
tial Equations, Numerical Mathematics and Scientific Computation, The
Clarendon Press, Oxford University Press, New York, 2003.

J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations,
Wiley, 1987.

E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential
Equations I, Nonstiff Problems, Springer series in computational mathemat-
ics, 8, Springer-Verlag, 1987.

A. Iserles, A First Course in the Numerical Analysis of Differential Equa-
tions, Cambridge Texts in Applied Mathematics, Cambridge University
Press, Cambridge, 1996.

L. N. Trefethen and D. Bau III, Numerical Linear Algebra, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, 1997.

3

Polynomial Approximation

Project Summary

Level of difficulty: 1

Keywords: Polynomial approximation, splines, best approxima-
tions, interpolation

Application fields: Approximation of functions

This chapter is devoted to the approximation of a given real function by
a simpler one that belongs, for example, to Pn, the set of polynomials of
degree less than or equal to n. We also consider approximation by piecewise
polynomial functions, that is, functions whose restrictions to some prescribed
intervals are polynomials. The definitions and results of this chapter, given
without proofs, are widely used in the rest of the book. We refer the reader to
books on polynomial approximation theory, for instance Crouzeix and Mignot
(1989), DeVore and Lorentz (1993), and Rivlin (1981).

3.1 Introduction

The approximation of a given function by a polynomial is an efficient tool in
many problems arising in applied mathematics. In the following examples, f
is the function to be approximated by a polynomial pn. The precise meaning
of the word “approximated” will be explained later.

1. Visualization of some computational results. Given the values of a function
f and some points xi, we want to draw this function on the interval [a, b].
This is the interpolation problem if [a, b] ⊂ [mini xi, maxi xi]; otherwise, it
is an extrapolation problem. The following approximation is often made:

∀x ∈ [a, b] , f(x) ≈ pn(x).

50 3 Polynomial Approximation

2. Numerical quadrature: to compute an integral involving the function f ,
the following approximation is used:∫ b

a

f(x)dx ≈
∫ b

a

pn(x)dx,

since the computation of the last integral is easy.
3. Differential equations: in spectral methods, the solution of an ordinary or

partial differential equation is approximated by a polynomial. See Chap.
5.

To approximate f by pn ∈ Pn means:

1. Interpolation. The polynomial pn and the function f coincide at n + 1
points x0, . . . , xn of the interval [a, b]. These points can be prescribed or
be some unknowns of the problem.

2. Best approximation. The polynomial pn is the element (or one element)
of Pn (if it exists) that is closest to f with respect to some given norm
‖.‖. More precisely,

‖f − pn‖ = inf
q∈Pn

‖f − q‖.

If the norm is

‖ϕ‖2 =

√∫ b

a

|ϕ(x)|2dx,

the approximation is called least squares approximation or approximation
in the L2 sense or Hilbertian approximation. The norm of the uniform
convergence (the supremum norm), which we denote by

‖ϕ‖∞ = sup
x∈[a,b]

|ϕ(x)|,

leads to the approximation in the uniform sense or approximation in the
L∞ sense or Chebyshev approximation.

3.2 Polynomial Interpolation

In this section f : [a, b] −→ R is a continuous function, (xi)
k
i=0 a set of k + 1

distinct points in the interval [a, b], and (αi)
k
i=0 a set of (k + 1) integers. We

define n = k + α0 + · · · + αk. We are interested in the following problem: find
a polynomial p that coincides with f and possibly with some derivatives of
f at the points xi. The integers αi indicate the highest derivative of f to be
interpolated at the point xi.

3.2 Polynomial Interpolation 51

3.2.1 Lagrange Interpolation

Lagrange polynomials correspond to the case that only the function f is in-
terpolated and not its derivatives. In such a case αi = 0 for all i and thus
k = n. We know from the theory of approximation the following important
result.

Theorem 3.1. Given (n + 1) distinct points x0, x1, . . . , xn and a continuous
function f , there exists a unique polynomial pn ∈ Pn such that for all i =
0, . . . , n,

pn(xi) = f(xi). (3.1)

The polynomial pn is called the Lagrange polynomial interpolant of f with
respect to the points xi. We denote it by In(f ; x0, . . . , xn) or simply Inf . We
define the characteristic Lagrange polynomials associated with the points xi

as the n + 1 polynomials (�i)n
i=0:

�i ∈ Pn and �i(xj) = δi,j for j = 0, . . . , n.

The Lagrange polynomials form a basis of Pn and are explicitly given by

�i(x) =
n∏

j=0,j �=i

x − xj

xi − xj
. (3.2)

The four Lagrange polynomials associated with the four points −1, 0, 1, and
3 are displayed in Fig. 3.1. The Lagrange basis is mainly used to write in a

−2 0 2 4
−2

−1

0

1

2

3

Fig. 3.1. Lagrange polynomials associated with the points −1, 0, 1, and 3.

very simple way the Lagrange polynomial interpolant:

52 3 Polynomial Approximation

Inf =
n∑

i=0

f(xi)�i. (3.3)

A question arises naturally: what is the most appropriate basis of Pn for the
computation of Inf? We compare three bases.

• Basis 1. The canonical basis of the monomials 1, x, . . . , xn.
• Basis 2. The basis given by the Lagrange polynomials.
• Basis 3. The basis given by the polynomials

1, (x − x0), (x − x0)(x − x1), . . . , (x − x0)(x − x1) · · · (x − xn−1). (3.4)

Exercise 3.1. Computations in the canonical basis.
Let (ak)n

k=0 be the coefficients of Inf in the canonical basis,

Inf =
n∑

k=0

akxk,

and a = (a0, . . . , an)T ∈ R
n+1.

1. Prove that the interpolation conditions (3.1) are equivalent to a linear
system Aa = b, with matrix A ∈ R

(n+1)×(n+1) and right-hand side b ∈
R

n+1 to be determined.
2. For n = 10 (and 20) define an array x of n + 1 random numbers sorted

in increasing order between 0 and 1. Write a program that computes the
matrix A.

3. For f(x) = sin(10 x cos x), compute the coefficients of Inf by solving the
linear system Aa = b. Plot on the same figure Inf and f evaluated at the
points xi. Use the MATLAB function polyval (warning: handle carefully
the ordering of the coefficients αi).

4. For n = 10, compute ‖Aa − b‖2, then the condition number of the matrix
A (use the function cond) and its rank (use the function rank). Same
questions for n = 20. Comment.

A solution of this exercise is proposed in Sect. 3.6 at page 70.

Exercise 3.2. For n going from 2 to 20 in steps of 2, compute the logarithm
of the condition number of the matrix A (see the previous exercise) for n +
1 points xi uniformly chosen between 0 and 1. Plot the logarithm of the
condition number of the matrix as a function of n. Comment.
A solution of this exercise is proposed in Sect. 3.6 at page 71.

Exercise 3.3. Computations in the Lagrange basis.
For n ∈ {5, 10, 20}, define the points xi = i/n for i = 0, . . . , n. Write a program
(using n and k as input data) that computes the coefficients of the Lagrange
polynomial �k. Use the function polyfit. Evaluate �[n/2] at 0. Comment.
A solution of this exercise is proposed in Sect. 3.6 at page 72.

3.2 Polynomial Interpolation 53

Let us now consider Basis 3. This basis is related to what is called the divided
difference. The divided difference of order k of the function f with respect to
k + 1 distinct points x0, . . . , xk is the real number denoted by f [x0, . . . , xk]
and defined for k = 0 by f [xi] = f(xi) and for k ≥ 1 by

f [x0, . . . , xk] =
f [x1, . . . , xk] − f [x0, . . . , xk−1]

xk − x0
.

The evaluation of the divided differences is computed by Newton’s algorithm,
described by the following “tree”:

f [x0] = f(x0)
↘
↗ f [x0, x1] = f(x1)−f(x0)

x1−x0

f [x1] = f(x1)
↘
↗ f [x0, x1, x2] = f [x1,x2]−f [x0,x1]

x2−x0
. . .

↘
↗ f [x1, x2] = f(x2)−f(x1)

x2−x1

...

f [x2] = f(x2)
...

...
...

...
...

The first column of the tree contains the divided differences of order 0, the
second column contains the divided differences of order 1, and so on. The
following proposition shows that the divided differences are the coefficients of
Inf in Basis 3:

Proposition 3.1.

Inf(x)=f [x0] +
n∑

k=1

f [x0, . . . , xk](x − x0)(x − x1) · · · (x − xk−1). (3.5)

Let c be an array that contains the divided differences ci = f [x0, . . . , xi]. To
evaluate the polynomial Inf at a point x, we write

Inf(x) = c0 + (x − x0){c1 + (x − x1) {c2 + c3 (x − x2) + · · · .

This way of writing Inf(x) is called the Horner form of the polynomial. It is a
very efficient method since the computation of Inf(x) in this form requires n
multiplications, n subtractions, and n additions, while the form (3.5) requires
n(n + 1)/2 multiplications, n(n + 1)/2 subtractions, and n additions. Here is
Horner’s algorithm for the evaluation of Inf(x):

y = cn

for k = n − 1 ↘ 0
y = (x − xk)y + cku

end

54 3 Polynomial Approximation

Exercise 3.4. Divided differences.

1. Write a program that computes the divided differences of order n of a
function. Start from an array c that contains the (n + 1) values f [xi] =
f(xi). In the first step, c0 = f [x0] is unchanged and all the other values
ck (k ≥ 1) are replaced by the divided differences of order 1. In the second
step, c1 = f [x0, x1] is unchanged and the values ck (k ≥ 2) are replaced
by new ones, and so on. Here is the algorithm to implement:

for k = 0 ↗ n
ck ← f (xk)

end
for p = 1 ↗ n

for k = n ↘ p
ck ← (ck − ck−1)/(xk − xk−p)

end
end

2. Use Horner’s algorithm to evaluate Inf on a fine grid of points in [0, 1].
Draw Inf and f on the same figure. In the same figures, mark the inter-
polation points xi.

A solution of this exercise is proposed in Sect. 3.6 at page 72.

We consider now the problem of the control of the Lagrange interpolation
error. Given x ∈ [a, b], the goal is to evaluate the local error or pointwise
error

en(x) = f(x) − Inf(x). (3.6)

Of course, if x is an interpolation point, there is no error, and en(x) = 0.
Actually, the error is precisely known through the following result.

Proposition 3.2. Assume f ∈ Cn+1([a, b]). For all x ∈ [a, b], there exists
ξx ∈ [a, b] such that

en(x) =
1

(n + 1)!
Πn(x)f (n+1)(ξx), (3.7)

with Πn(x) =
∏n

i=0(x − xi).

For all x ∈ [a, b], we deduce from (3.7) the upper bound

|en(x)| ≤ 1
(n + 1)!

‖Πn‖∞ ‖f (n+1)‖∞.

This suggests that a good way to choose the interpolation points consists in
minimizing ‖Πn‖∞, since the term ‖f (n+1)‖∞ depends only on the function
and not at all on the interpolation points. Suppose the interpolation points
to be equidistant in the interval [a, b]:

3.2 Polynomial Interpolation 55

xi = a + i
b − a

n
, 0 ≤ i ≤ n.

In this case, there exists a constant c independent of n such that for n large
enough,

max
a≤x≤b

|Πn(x)| ≥ c(b − a)n+1e−nn−5/2. (3.8)

Consider now the Chebyshev points. These are the n zeros of the Chebyshev
polynomial Tn defined on the interval [−1, 1] by

Tn(t) = cos nθ, with cos θ = t. (3.9)

Hence the Chebyshev points are

ti = cos(θi), θi =
π

2n
+ i

π

n
, 0 ≤ i ≤ n − 1.

On an interval [a, b], the Chebyshev points (see Fig. 3.2) are defined as the
image of the previous points by the affine transformation ϕ that maps [−1, 1]
onto [a, b]:

xi = ϕ(ti) =
a + b

2
+

b − a

2
cos(θi), 0 ≤ i ≤ n − 1.

Whatever the points x′
i in [a, b], the following lower bound holds:

a b

θ0

θ1

θ2

θ3

θ4θ5
θ6

θ7

θ8

θ9

x0x1x2x3x4x5x6x7x8x9

Fig. 3.2. The Chebyshev points on [a, b], n = 10.

max
x∈[a,b]

∣∣∣∣∣
n−1∏
i=0

(x − x′
i)

∣∣∣∣∣ ≥ max
x∈[a,b]

∣∣∣∣∣
n−1∏
i=0

(x − xi)

∣∣∣∣∣ =
(b − a)n

22n−1 . (3.10)

56 3 Polynomial Approximation

Comparing the bounds in (3.8) and (3.10) favors the Chebyshev points. We
will see in the next paragraph another reason to prefer these points to the
equidistant points.

We introduce the Lebesgue constantassociated with the points (xn
i)n

i=0; it
is the real number Λn defined by

Λn = max
x∈[a,b]

n∑
i=0

|�i(x)|. (3.11)

It is important to notice that Λn does not depend on any function, but only
on the points xi. Let us suppose an error εi for each value f(xi). Let p̃n be
the polynomial that interpolates the values f̃i = fi + εi. The interpolation
error at the point x is Inf(x)− p̃n(x) = −

∑n
i=0 εi�i(x). If ε = maxi |εi| is the

maximal error on the values f(xi), we derive the upper bound

‖Inf − p̃n‖∞ ≤ εΛn,

which shows that the constant Λn is a measure of the amplification of the
error in the Lagrange interpolation process. In other words, it is the stability
measure of the Lagrange interpolation. The following negative result holds.

Proposition 3.3. Whatever the interpolation points,

lim
n→+∞

Λn = +∞. (3.12)

Hence small perturbations on the data (small ε) can lead to very big variations
in the solution (Inf). This is the typical case of an ill-conditioned problem.

Exercise 3.5. Computation of the Lebesgue constant.

1. Write a function that computes the Lebesgue constant associated with
an array x of n real numbers (see (3.11)). Use the MATLAB functions
polyval and polyfit to evaluate �i. Compute the maximum in (3.11) on
a uniform grid of 100 points between mini xi and maxi xi.

2. The uniform case. Compute for n going from 10 to 30 in steps of 5 the
Lebesgue constant ΛU (n) associated with n + 1 equidistant points in the
interval [−1, 1]. Draw the curve n �→ ln(ΛU (n)). Comment.

3. The Chebyshev points case. Compute for n going from 10 to 20 in steps
of 5 the Lebesgue constant ΛT (n) associated with n+1 Chebyshev points
on [−1, 1]. Draw the curve lnn �→ ΛT (n). Comment.

A solution of this exercise is proposed in Sect. 3.6 at page 73.

Concerning a uniform bound of the error (3.6), we have the following result.

Proposition 3.4. For any continuous function f defined on [a, b],

‖en‖∞ ≤ (1 + Λn)En(f),

with En(f) = infq∈Pn ‖f −q‖∞ the error of best approximation of the function
f by polynomials in Pn, in the uniform norm.

3.2 Polynomial Interpolation 57

Remark 3.1. Hence the global error ‖f − Inf‖∞ is bounded by the product
of two terms. One of them is Λn which always goes to +∞; the other is
En(f), whose rate of convergence toward 0 increases with the smoothness
of f . Hence the Lagrange interpolation process converges uniformly if the
product ΛnEn(f) goes to 0.

Exercise 3.6. Compute and draw (on a uniform grid of 100 points) the La-
grange polynomial interpolation of the function f1 : x �→ | sin(πx)| at n Cheby-
shev points of the interval [−1, 1]. Take n = 20, 30, then 40. Do the same for
the function f2 : x �→ xf1(x). Comment on the results.
A solution of this exercise is proposed in Sect. 3.6 at page 75.

Exercise 3.7. Runge phenomenon.
Compute and draw on a uniform grid of 100 points the Lagrange polynomial
interpolation of the function f : x �→ 1/(x2 + a2) at the n + 1 points xi =
−1 + 2i/n (i = 0, . . . , n). Take a = 2/5 and n = 5, 10, then 15. Note that the
function to be interpolated is very regular on R, in contrast to the functions
considered in the previous exercise. Comment on the results.
A solution of this exercise is proposed in Sect. 3.6 at page 76.

3.2.2 Hermite Interpolation

We assume in this section that the function f has derivatives of order αi at
the point xi. In this case there exists a unique polynomial pn ∈ Pn such that
for all i = 0, . . . , k and j = 0, . . . , αi,

p(j)
n (xi) = f (j)(xi). (3.13)

The polynomial pn, which we denote by In(f ; x0, . . . , xk; α0, . . . , αk), or sim-
ply IH

n f , is called the Hermite polynomial interpolation of f at the points xi

with respect to the indices αi.

Theorem 3.2. Suppose the function f is in Cn+1([a, b]). For all x ∈ [a, b],
there exists ξx ∈ [mini xi, maxi xi] such that

eH
n (x) = f(x) − IH

n f(x) =
1

(n + 1)!
ΠH

n (x)f (n+1)(ξx), (3.14)

with ΠH
n (x) =

∏k
i=0 (x − xi)

1+αi .

Since the function f is of class Cn+1 on the interval [a, b], for all n+1 distinct
points x0, . . . , xn in the interval [a, b], there exists ξ ∈ [a, b] such that

f (n) (ξ) = n!f [x0, . . . , xn] .

This relation defines a link between the divided differences and the derivatives.
More precisely, we make the following remark.

58 3 Polynomial Approximation

Remark 3.2. Letting each xi go to x, we get an approximation of the nth
derivative of f at x:

1
n!

f (n) (x) = lim
xi→x

f [x0, . . . , xn] .

This remark combined with the Newton algorithm allows the evaluation of
the Hermite polynomial interpolation, as in the following example.

Example 3.1. Compute the polynomial interpolant p of minimal degree satis-
fying

p(0) = −1, p(1) = 0, p′(1) = α ∈ R. (3.15)

Answer: compute the divided differences

x0 =0 f [x0]= −1
↘
↗ f [x0, x1]= 1

x1 =1 f [x1]=0
↘
↗ f [x0, x1, x2]= α−1

1−0 = α − 1

↘
↗ f ′(1) =α

x2 =1 f [x1]=0

We get
p(x) = −1 + 1 x + (α − 1) x(x − 1).

In these calculations, we wrote

x2 = 1 + ε, f [x1, x2] = (f(1 + ε) − f(1))/(1 + ε − 1),

and used the fact that f [x1, x2] goes to f ′(1) as ε goes to 0.

Exercise 3.8. In this exercise, f(x) = e−x cos(3πx).

1. Write a function based on the divided differences (as in Example 3.1) that
computes the Hermite polynomial interpolant of a function (including
the Lagrange case). The input data of this function are the interpolation
points xi, and for each point, the maximal derivative αi to be interpolated
at this point and the values f (�)(xi) for � = 0, . . . , αi.

2. Compute the Lagrange interpolation of f at the points 0, 1
4 , 3

4 , and 1.
Draw f and its polynomial interpolant on the interval [0, 1].

3. Compute the Hermite interpolant of f at the same points (with αi = 1).
Draw f and its Hermite polynomial on the interval [0, 1]. Compare to the
previous results.

4. Answer the same questions in the case that f and f ′ are interpolated at
the previous points and, in addition, the point 1

2 .

A solution of this exercise is proposed in Sect. 3.6 at page 76.

3.3 Best Polynomial Approximation 59

Exercise 3.9. Draw on [0, 1], and for several values of m, the polynomial of
minimal degree p such that

p(0) = 0, p(1) = 1, and p(�)(0) = p(�)(1) = 0, for � = 1, . . . , m.

A solution of this exercise is proposed in Sect. 3.6 at page 77.

3.3 Best Polynomial Approximation

In this section, we look for a polynomial that is nearest to f for a prescribed
norm ‖.‖X , X being a linear space that includes the polynomials. For f ∈ X ,
we call a polynomial pn ∈ Pn such that

‖f − pn‖X = inf
q∈Pn

‖f − q‖X (3.16)

a best polynomial approximation of f in Pn. The real number infq∈Pn
‖f −q‖X

is called the best approximation error of f in Pn, in the norm ‖ . ‖X . We
consider two spaces X .

• Case 1. I = [a, b] ,X = C(I), the space of continuous functions equipped
with the uniform norm, which we denote by ‖.‖∞. The best uniform ap-
proximation error is denoted by

En(f) = inf
q∈Pn

‖f − q‖∞ .

• Case 2. I =]a, b[,X = L2(I), the space of measurable functions defined on
I such that the integral

∫ b

a
|f(x)|2dx is finite. L2(I) is equipped with the

inner product and the norm

〈f, g〉 =
∫ 1

−1
f(t)g(t)dt, ‖f‖ =

√
〈f, f〉.

3.3.1 Best Uniform Approximation

Here I = [a, b] and f ∈ X = C(I). We seek a polynomial pn ∈ Pn, solution of
the problem

‖f − pn‖∞ = En(f) = inf
q∈Pn

‖f − q‖∞ .

The following definition enables the characterization of the polynomial of best
uniform approximation.

Definition 3.1. A continuous function ϕ is said to be equioscillatory on n+1
points of a real interval [a, b] if ϕ takes alternately the values ±‖ϕ‖∞ at (n+1)
points x0 < x1 < · · · < xn of [a, b] (see Fig. 3.3).

The following theorem is known as the alternation theorem.

60 3 Polynomial Approximation

x0 x2 x4

x3x1

Fig. 3.3. Example of an equioscillatory function.

Theorem 3.3. Let f be a continuous function defined on I = [a, b]. The
polynomial pn of best uniform approximation of f in Pn is the only polynomial
in Pn for which the function f−pn is equioscillatory on (at least) n+2 distinct
points of I.

For example, the best uniform approximation of a continuous function f on
[a, b] by constants is

p0 =
1
2

{
min

x∈[a,b]
f(x) + max

x∈[a,b]
f(x)

}
,

and there exist (at least) two points where the function f − p0 equioscillates.
These points are the two points where the continuous function reaches its
extremal values on [a, b].

Hence, to determine the best uniform approximation of a function f , it
is sufficient to find a polynomial p ∈ Pn and n + 2 points such that f − p
equioscillates at these points. This is what the following algorithm (called the
Remez algorithm) does.

The Remez algorithm

1. Initialization. Choose any n + 2 distinct points x0
0 < x0

1 < · · · < x0
n+1.

2. Step k. Suppose the n + 2 points xk
0 < xk

1 < · · · < xk
n+1 are known.

Compute a polynomial pk ∈ Pn (see Exercise 3.10) such that

f(xk
i) − pk(xk

i) = (−1)i{f(xk
0) − pk(xk

0)}, i = 1, . . . , n + 1.

(a) If

‖f − pk‖∞ = |f(xk
i) − pk(xk

i)|, i = 0, . . . , n + 1, (3.17)

3.3 Best Polynomial Approximation 61

the algorithm stops, since the function f − pk equioscillates at these
points. Hence pk is the polynomial of best uniform approximation of
f .

(b) Otherwise, there exists y ∈ [a, b] such that for all i = 0, . . . , n + 1,

‖f − pk‖∞ = |f(y) − pk(y)| > |f(xk
i) − pk(xk

i)|. (3.18)

Design a new set of points xk+1
0 < xk+1

1 < · · · < xk+1
n+1 by replacing

one of the points xk
i by y in such a way that(

f(xk+1
j) − pk(xk+1

j)
) (

f(xk+1
j−1) − pk(xk+1

j−1)
)

≤ 0, j = 1, . . . , n + 1.

Exercise 3.10. Prove the existence of a unique polynomial pk ∈ Pn defined
in step k of the Remez algorithm. Program a function that computes this
polynomial (the input data are the n + 2 points xi and a function f).

Hint: write pk(t) =
∑n

j=0 ajt
j and use MATLAB to solve the linear system

whose solution is (a0, . . . , an)T .
A solution of this exercise is proposed in Sect. 3.6 at page 78.

Exercise 3.11. Remez algorithm.
The goal is to compute the best uniform approximation of the function x �→
sin(2π cos(πx)) on [0, 1] by the Remez algorithm. Discuss all the possible cases
in point (b) (see the algorithm): y < mini xi, y > maxi xi, y ∈

]
xk

i , xk
i+1

[
, and

(f(xk
i) − pk(xk

i))(f(y) − pk(y)) ≥ 0 or (f(xk
i) − pk(xk

i))(f(y) − pk(y)) < 0. To
check the inequality (3.18):

• compute ‖f − pk‖∞ on a uniform grid of 100 points in the interval [0, 1],
• The equality (3.17) of the algorithm is supposed true if the absolute value

of the difference between the two quantities is larger than a prescribed
tolerance (10−8 for example).

Compare the results (in terms of the number of iterations required for the
convergence of the algorithm) for the three choices of initialization points:

• equidistant points: xi = i
n+1 , i = 0, . . . , n + 1;

• Chebyshev points: xi = 1
2 (1 − cos(i π

n+1), i = 0, . . . , n + 1;
• random points: the xi are n + 1 points given by the function rand then

sorted out.

A solution of this exercise is proposed in Sect. 3.6 at page 79.

3.3.2 Best Hilbertian Approximation

Here I =]−1, 1[since every interval]a, b[can be mapped to I by a sim-
ple affine transformation. The Hilbertian structure of X = L2(I) extends
to this infinite-dimensional space some very usual notions such as basis and
orthogonal projection. See, for example, Schwartz (1980) for the definitions
and results of this section. We are interested in the determination of the best
approximation of a function in L2(I) by polynomials of a prescribed degree.

62 3 Polynomial Approximation

Hilbertian Basis

The Legendre polynomials are defined by the recurrence relation (see also
Chap. 5)

(n + 1)Ln+1(x) = (2n + 1)xLn(x) − nLn−1(x) (∀n ≥ 1)

with L0(x) = 1 and L1(x) = x. The degree of Ln is n, and for all integers n
and m,

〈Ln, Lm〉 =
{

0 if n 	= m,
1/(n + 1/2) if n = m.

These polynomials are said to be orthogonal. We display in Fig. 3.4 some
Legendre polynomials. The family L∗

n = Ln/‖Ln‖ forms a Hilbertian basis of

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

L
1

L
2

L
3

L
4

Fig. 3.4. Example of orthogonal polynomials: the Legendre polynomials.

L2(I), that is, (L∗
n)n≥0 is orthonormal and the set of all finite linear combina-

tions of the L∗
n is dense in L2(I). As in finite dimension, we can expand every

function in L2(I) in the (infinite) Legendre basis.

Theorem 3.4. Let f ∈ L2(I) and n ∈ N.

1. f has a Legendre expansion: i.e., there exist real numbers f̂k such that

f =
∞∑

k=0

f̂kLk. (3.19)

2. There exists a unique polynomial in Pn (which we denote by πnf) of best
Hilbertian approximation of f in Pn, i.e.,

3.3 Best Polynomial Approximation 63

��������

��������

f×

πnf
Pn

(f − πnf ⊥ Pn)

Fig. 3.5. The best Hilbertian approximation of f is its orthogonal projection on
Pn.

‖f − πnf‖ = inf
q∈Pn

‖f − q‖.

Moreover, πnf is characterized by the orthogonality relations (see Fig.
3.5)

〈f − πnf, p〉 = 0, ∀p ∈ Pn, (3.20)

which means that πnf is the orthogonal projection of f on Pn.

The real numbers f̂k in (3.19) are called the Legendre (or Fourier–Legendre)
coefficients of the function f . We deduce from the orthogonality of the Leg-
endre polynomials that

f̂k =
〈f, Lk〉
‖Lk‖2 = (k +

1
2
)
∫ 1

−1
f(t)Lk(t)dt, (3.21)

and πnf is the Legendre series of f , truncated to the order n:

πnf =
n∑

k=0

f̂kLk. (3.22)

The computation of the best approximation of a function consists mainly in
computing its Legendre coefficients. Since the integral in (3.21) can rarely be
evaluated exactly, a numerical quadrature is required. See Chap. 5, where the
Legendre polynomials are also used to solve a differential equation.

The convergence of the best Hilbertian approximation is stated in the
following proposition.

Proposition 3.5. For all f ∈ L2(I),

lim
n→+∞

‖f − πnf‖ = 0. (3.23)

64 3 Polynomial Approximation

3.3.3 Discrete Least Squares Approximation

In this section, we seek the best polynomial approximation of a function f
with respect to a discrete norm. Given m distinct points (xi)m

i=1 and m values
(yi)m

i=1, the goal is to determine a polynomial p =
∑n−1

j=0 ajx
j ∈ Pn−1 that

minimizes the expression

E =
m∑

i=1

|yi − p(xi)|2, (3.24)

with m, in general, much larger than n. From a geometrical point of view,
the problem is to find p such that its graph is as close as possible (in the
Euclidean norm sense) to the points (xi, yi). The function E defined by (3.24)
is a function of n variables (a0, a1, . . . , an−1). To determine its minimum, we
compute the partial derivatives

∂E

∂aj
= 0 ⇐⇒ −2

m∑
i=1

(yi − p(xi)) xj
i = 0 ⇐⇒

n−1∑
k=0

(
m∑

i=1

xk+j
i

)
ak =

m∑
i=1

xj
iyi.

Hence the vector a = (a0, . . . , an−1)T whose components are the coefficients
of the polynomial where the minimum of E is reached is a solution of the
linear system

Ãa = b̃, (3.25)

with the matrix Ã and the right-hand side b̃ defined by

Ã =

⎛⎜⎜⎜⎝
∑

i 1
∑

i xi · · ·
∑

i xn−1
i∑

i xi

∑
i x2

i · · ·
∑

i xn
i

...
...

...
...∑

i xn−1
i

∑
i xn

i · · ·
∑

i x2n−1
i

⎞⎟⎟⎟⎠ ∈ R
n×n, b̃ =

⎛⎜⎜⎜⎝
∑

i yi∑
i xiyi

...∑
i xn−1

i yi

⎞⎟⎟⎟⎠ .

First of all, consider the case n = 2, corresponding to the determination
of a straight line called the regression line. In this case the matrix Ã and the
vector b̃ are

Ã =
(

m
∑

i xi∑
i xi

∑
i x2

i

)
, b̃ =

(∑
i yi∑

i xiyi

)
. (3.26)

The determinant of Ã,

∆ = m

(
m∑

i=1

x2
i

)
−

(
m∑

i=1

xi

)2

= m

m∑
i=1

⎛⎝xi − 1
m

m∑
j=1

xj

⎞⎠2

vanishes only if all the points xi are identical. Hence the matrix Ã is invertible
and the system (3.26) has a unique solution.
Let us go back to the general case. Noticing that the Vandermonde matrix

3.4 Piecewise Polynomial Approximation 65

A =

⎛⎜⎝ 1 x1 . . . xn−1
1

...
...

...
1 xm . . . xn−1

m

⎞⎟⎠ ∈ R
m×n

is such that Ã = AT A and b̃ = AT b with b = (y1, . . . , ym)T , we can write the
system (3.25) as

AT Aa = AT b. (3.27)

These equations are called normal equations. The following theorem tells us
that the solutions of (3.27) are the solutions of the minimization problem: find
a ∈ R

n such that
‖Aa − b‖ = inf

x∈Rn
‖Ax − b‖. (3.28)

Theorem 3.5. A vector a ∈ R
n is solution of the normal equations (3.27) if

and only if a is solution of the minimization problem (3.28).

Hence to solve the least squares problem, one can either solve the problem
(3.28) by some optimization algorithms, or solve the problem (3.27) by some
linear system solvers. See Allaire and Kaber (2006), for instance.

To compute a polynomial least squares approximation with MATLAB, use
the instruction polyfit(x,y,n) with x a vector that contains the values xi, y
a vector that contains the yi, and n the degree of the least squares polynomial.

Exercise 3.12. Compute the least squares approximation of the function
f(x) = sin(2π cos(πx)) defined in Exercise 3.11. The optimal degree n could
be determined in the following way. Starting from n = 0, one increases n in
steps of 1 until the relative error |en − en−1|/en−1 becomes smaller than a
prescribed value (1

2 for example). Here we set en = ‖x − pn(x)‖2.
A solution of this exercise is proposed in Sect. 3.6 at page 80.

3.4 Piecewise Polynomial Approximation

We display in Fig. 3.6 some Lagrange polynomial interpolants of the function
f , defined on [0, 1] by

f(x) =

⎧⎨⎩
1 for 0 ≤ x ≤ 0.25,
2 − 4x for 0.25 ≤ x ≤ 0.5,
0 for 0.5 ≤ x ≤ 1,

at respectively 4, 6, 8, and 10 points. Obviously, there is a problem due to
the lack of global regularity of f over the interval I = [0, 1]. However, this
function has a very simple structure; it is affine on each interval [0, 1

4], [14 , 1
2]

and [1/2, 1].
Let f be a continuous function defined on the interval [0, 1]. The goal is to

approximate f by a piecewise polynomial function S. Such a function is called

66 3 Polynomial Approximation

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3.6. Polynomial interpolation of a piecewise polynomial function.

a spline. The use of piecewise polynomials is a way to control the problems
related to the lack of global regularity of f . Another practical reason is the
stability of the numerical computations: it is better to use several polynomials
of low degree than one polynomial with high degree.

The interval I = [0, 1] is divided into subintervals Ii = [xi, xi+1] for i =
1, . . . , n − 1. On each subinterval Ii, the function f is approximated by a
polynomial pk,i of degree k. We denote by Sk the piecewise polynomial that
coincides with pk,i on each interval Ii and satisfies some global regularity
condition on the internal I: continuity, differentiability up to some order, etc.

3.4.1 Piecewise Constant Approximation

Let S0 be a function that is constant on each interval Ii and interpolates f at
the points xi+1/2 = (xi + xi+1)/2:

S0|Ii
(x) = f(xi+1/2).

Suppose the function f is in C1(I). According to Proposition 3.2, for all x ∈ Ii,
there exists ξx,i ∈ Ii such that

f(x) − S0(x) = (x − xi+1/2)f ′(ξx,i).

We deduce from this that if the points xi are equidistant (xi+1−xi = h = 1/n)
then

‖f − S0‖∞ ≤ h

2
M1, (3.29)

with M1 an upper bound of f ′ on I. Hence, as h goes to 0, S0 converges
uniformly toward f .

3.4 Piecewise Polynomial Approximation 67

0 0.5 1
0

0.5

1

1.5

0 0.5 1
0

0.5

1

1.5

0 0.5 1
0

0.5

1

1.5

Fig. 3.7. From top to bottom: examples of piecewise constant, affine, and cubic
approximations.

Remark 3.3. The power of h in (3.29) indicates that if the discretization pa-
rameter h is divided by a constant c > 0, the bound on the error ‖f − S0‖∞
is divided by the same constant c.

Exercise 3.13. Let f : [0, 1] �→ f(x) = sin(4πx). Draw the curve lnn �→
ln ‖f − S0‖∞ and check (an approximation of) the estimate (3.29). Take the
values n = 10 k with k = 1, . . . , 10.
A solution of this exercise is proposed in Sect. 3.6 at page 80.

3.4.2 Piecewise Affine Approximation

This time, the approximation S1 is affine on each interval Ii and coincides
with f at the points xi and xi+1:

68 3 Polynomial Approximation

S1|Ii
(x) =

f(xi+1) − f(xi)
h

(x − xi) + f(xi).

First of all, suppose the function f is in C2(I). According to Proposition 3.2,
for all x ∈ Ii, there exists ξx,i ∈ Ii such that

f(x) − S1(x) =
(x − xi)(x − xi+1)

2
f ′′(ξx,i).

We deduce from this

‖f − S1‖∞ ≤ h2

8
M2, (3.30)

with M2 an upper bound of f ′′ on I. Hence the uniform convergence of S1
toward f .

Remark 3.4. The power of h in (3.30) indicates that if the discretization pa-
rameter h is divided by a constant c > 0, the bound on the error ‖f − S1‖∞
is divided by c2. For example, changing h into h/2 divides the bound on the
error by 4.

Exercise 3.14. Same questions as in the previous exercise to check the esti-
mate (3.30).
A solution of this exercise is proposed in Sect. 3.6 at page 82.

If the function f is only in C1, convergence holds too. To prove it, write f(x)
as an integral,

f(x) = f(xi) +
∫ x

xi

f ′(t)dt, and S1(x) = f(xi) +
x − xi

h

∫ xi+1

xi

f ′(t)dt,

and use the assumed bound on f ′,

‖f − S1‖∞ ≤ 2hM1.

That implies the convergence. Note that this estimate is less accurate than
(3.30), but it requires less regularity on the function f .

3.4.3 Piecewise Cubic Approximation

Now we seek an approximation S3 in C2(I) that is cubic on each interval Ii

and coincides with f at the points xi and xi+1. Let pi be the restriction of S3
to the interval Ii, for i = 0, . . . , n − 1:

pi(x) = ai(x − xi)3 + bi(x − xi)2 + ci(x − xi) + di.

Obviously di = f(xi). The unknowns ai, bi, and ci can be expressed in terms
of the values of f and its second derivative at the points xi. Setting αi =
p′′

i (xi) and using the continuity of the first and second derivatives of the
approximation at the points xi, we get for i = 0, . . . , n − 1,

3.5 Further Reading 69

bi =
1
2
αi, ai =

αi+1 − αi

6h
, ci =

fi+1 − fi

h
− 2αi + αi+1

6
h

and a recurrence relation between the values αi−1, αi, and αi+1:

h(αi−1 + 4αi + αi+1) =
6
h

(fi−1 − 2fi + fi+1).

We have to add to these n− 1 equations two other equations in order to close
the system and compute the n + 1 unknowns αi. Several choices of these two
equations exist. If α0 and αn are fixed, say

α0 = αn = 0, (3.31)

the vector α = (α1, . . . , αn−1)T is a solution of the linear tridiagonal system
Ax = b, with

A = h

⎛⎜⎜⎜⎜⎜⎜⎜⎝

4 1 0 . . . 0

1 4 1
...

0
. 0

... 1 4 1
0 . . . 0 1 4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and b =

6
h

⎛⎜⎜⎜⎜⎜⎝
f0 − 2f1 + f2

...
fi−1 − 2fi + fi+1

...
fn−2 − 2fn−1 + fn

⎞⎟⎟⎟⎟⎟⎠ . (3.32)

The matrix A is invertible since its diagonal is strictly dominant.

Exercise 3.15. Write a program that computes the cubic spline with the
conditions (3.31) and the n + 1 points (i/n)n

i=0. Test your program with the
function f(x) = sin(4πx). Take n = 5, then n = 10. Draw on the same plot the
function f and the spline. In order to see the behavior of the spline between
two interpolation points, add ten or twenty points of representation in each
interval Ii to get a very fine plot.
A solution of this exercise is proposed in Sect. 3.6 at page 82.

3.5 Further Reading

For the general theory of polynomial approximation, we refer the reader to
Rivlin (1981) and DeVore and Lorentz (1993).

The Legendre polynomials are used in Chap. 5 to solve a differential equa-
tion. We refer the reader to Bernardi and Maday (1997) for the use of spectral
methods in numerical analysis.

Related to the splines are the Bézier curves, which have many applications
in computer-aided geometric design; see Chap. 9.

Wavelets are used in Chap. 6 for image processing purposes. See Cohen
(2003) for the numerical analysis of wavelets.

We did not consider in this chapter trigonometric approximation. Of
course, all the results stated here are valid with very minor modifications

70 3 Polynomial Approximation

to the approximation of periodic functions: existence and uniqueness of a best
polynomial approximation, interpolation, etc. There exists a very efficient al-
gorithm to compute the Fourier coefficients of a function from its pointwise
values or the reverse; it is the famous fast Fourier transform. In Chap. 12, the
trigonometric approximation is used to solve the Navier–Stokes equations.

3.6 Solutions and Programs

Solution of Exercise 3.1

1. b = (f(x0), . . . , f(xn))T and A =

⎛⎜⎜⎝
1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1
...

...
...

...
1 xn x2

n . . . xn
n

⎞⎟⎟⎠.

2. n=10;x=sort(rand(n+1,1));
A=ones(length(x),1);
for k=1:length(x)-1

A=[A x.ˆk];
end;

3.

cf=A\test1(x);
%reordering of the coefficients
cf=cf(end:-1:1);
y=polyval(cf,x);
plot(x,test1(x),x,y,’r+’);

the function test1 is defined by

test1=inline(’sin(10.*x.*cos(x))’);

4. A is a Vandermonde matrix, it is invertible if all the points are distinct.
That is the case in this experiment. However, for MATLAB, Aα − b is
not zero. This is due to the very bad condition number of the matrix
A. For large values of n (say n = 20), the matrix A becomes a singular
matrix for MATLAB: the numerical rank of the matrix A computed by
MATLAB is 18, while the right one is n + 1. Recall that the condition
number of a matrix A measures the sensitivity of linear system Ax = b to
perturbations of the data A or b.

See the script in the file APP ApproxScript1.m.

3.6 Solutions and Programs 71

Solution of Exercise 3.2

The following script is written in the file APP ApproxScript2.m. It uses the
function APP condVanderMonde defined below:

%Condition number of a Vandermonde matrix
N=2:2:20;cd=[];
for n=N

cd=[cd APP condVanderMonde(n)];
end;
plot(N,log(cd),’+-’)

The function APP condVanderMonde is defined as below:

function y=APP condVanderMonde(n)
%compute the condition number of a Vandermonde matrix
%The n+1 points are uniformly chosen between 0 and 1.
x=(0:n)’/n;
A=ones(length(x),1);
for k=1:length(x)-1

A=[A x.ˆk];
end;
y=cond(A);

We deduce from Fig. 3.8 that ln(cond(A)), as a function of n, is a straight
line. Hence cond(A) grows exponentially with n.

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

Fig. 3.8. Logarithm of the condition number of a Vandermonde matrix.

The reader is asked to compare the function APP condVanderMonde to the
following function in terms of numerical complexity

function c=APP condVanderMondeBis(n)

72 3 Polynomial Approximation

%compute the condition number of a Vandermonde matrix
%The n+1 points are uniformly chosen between 0 and 1.
x=(0:n)’/n;
A=ones(length(x),1);y=x;
for k=1:length(x)-1

A=[A y];y=y.*x;
end;
c=cond(A);

Solution of Exercise 3.3

%The Lagrange basis
n=10;x=(0:n)’/n;i=round(n/2);
twon=n;g=(0:twon)’/twon;
y=zeros(size(x));y(i)=1;cf=polyfit(x,y,n);
y0=polyval(cf,0);

For n = 5 or 10 everything goes well, since the program computes a value
for �n/2(x0) close to the exact value 0. But for n = 20, the computation of
�n/2(x0) gives −1.0460. This is again a consequence of the ill conditioning of
the matrix. Note that in that case, MATLAB displays a warning message. See
the script in APP ApproxScript3.m.

Solution of Exercise 3.4

1. The function APP dd defined below computes the divided differences.

function c=APP dd(x)
% x contains the points xi
% c contains the divided differences
c=test1(x); %warning: "test1" is defined

%either in another file or "inline"
n=length(x);
for p=1:n-1

for k=n:-1:p+1
c(k)=(c(k)-c(k-1))/(x(k)-x(k-p));

end;
end;

It is sometimes useful to send the name of a function as an input parameter
of APP dd. This is possible up to a slight modification of the first two lines:
see also section 5.6 of Chap. 5.

function c=APP dd(x,f)
c=feval(f,x);

3.6 Solutions and Programs 73

2. Running the script below produces Fig. 3.9. This script is available un-
der the name APP ApproxScript4.m as well as the functions APP dd and
APP interpol:

function y=APP interpol(c,x,g)
%compute the interpolation of the function f on the grid g
%knowing the divided differences c computed at the points x
n=length(c);
y=c(n)*ones(size(g));
for k=n-1:-1:1

y=c(k)+y.*(g-x(k));
end;

n=20;x=(0:n)’/n;g=0:0.01:1;
c=APP dd(x);y=APP interpol(c,x,g);
yg=test1(g);plot(g,yg,g,y,’r+’)
hold on;yx=test1(x);plot(x,yx,’O’);hold off

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
u
I
n
 u

interpolation points

Fig. 3.9. Computation of a Lagrange interpolant.

Solution of Exercise 3.5

The script of this exercise is available under the name APP ApproxScript5.m
as well as the function APP Lebesgue.

1. Computation of the Lebesgue constant:

function leb=APP Lebesgue(x)
%Computation of the Lebesgue constant related
%to the points in the array x
n=length(x)-1;

74 3 Polynomial Approximation

xx=linspace(min(x),max(x),100);
%fine grid of 100 points
y=zeros(size(xx));
for i=1:n+1;

%computation of � i(x)
l=zeros(size(x));l(i)=1;cf=polyfit(x,l,n);
y=y+abs(polyval(cf,xx));

end;
leb=max(y);

2. The uniform case:

ind=[];lebE=[];
for n=10:5:30

x=(-n/2:n/2)/n*2; %equidistant points
l=APP lebesgue(x)
ind=[ind;n];lebE=[lebE;l];

end;
figure(1);plot(ind,log(lebE),’+-’)

10 14 18 22 26 30
2

4

6

8

10

12

14

16
Lebesgue constant (uniform case)

Fig. 3.10. The Lebesgue constant associated with equidistant points: n �→ ln(Λ(n)).

We note in Fig. 3.10 that ln(Λ(n)), as a function of n, is a straight line
with slope (approximately) 1

2 . Hence Λ(n) ≈ en/2.
3. The Chebyshev case:

ind=[];lebT=[];
for n=10:5:30

x=cos(pi*(.5+n:-1:0)/(n+1)); %Chebyshev points
l=APP lebesgue(x);
ind=[ind;n];lebT=[lebT;l];

3.6 Solutions and Programs 75

end;
figure(2);plot(log(ind),lebT,’+-’)

2 2.5 3 3.5
2

2.2

2.4

2.6

2.8
Lebesgue constant (Chebyshev points)

Fig. 3.11. The Lebesgue constant associated with the Chebyshev points: ln n �→
Λ(n).

We note in Fig. 3.11 that eΛT (n), as a function of n, is a straight line with
slope (approximately) 0.6, hence ΛT (n) ≈ 0.6 ln(n). Indeed, one can prove
rigorously that ΛT (n) ≈ 2

π lnn.

Solution of Exercise 3.6

For the function f1, the results with n = 30 and n = 40 are shown in Fig. 3.12:
the method converges slowly. For the function f2, the results with n = 10 and

−1 −0.6 −0.2 0.2 0.6 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u
I
n
 u

interpolation points

−1 −0.6 −0.2 0.2 0.6 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u
I
n
 u

interpolation points

(a) (b)

Fig. 3.12. Interpolation at the Chebyshev points: (a) n = 30 and (b) n = 40.

n = 30 are displayed in Fig. 3.13. It seems that the method converges, and

76 3 Polynomial Approximation

in fact it does. One can prove that the interpolation at the Chebyshev points
converges for functions of class C1. This is the case for f2, but not for f1. See
the script in APP Interpolation.m.

−1 −0.6 −0.2 0.2 0.6 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

u
I
n
 u

interpolation points

−1 −0.6 −0.2 0.2 0.6 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

u
I
n
 u

interpolation points

(a) (b)

Fig. 3.13. Interpolation at the Chebyshev points: (a) n = 10 and (b) n = 30.

Solution of Exercise 3.7

See the script in APP Runge.m. The results for n = 10, n = 20, and n = 30
are shown in Fig. 3.14: the method diverges at the boundaries. Note that in
this case the function to be interpolated is very smooth, but its Lebesgue
constant “explodes” (see Remark 3.1).

−1 −0.6 −0.2 0.2 0.6 1
0

1

2

3

4

5

6

7
Runge phenomenon, n = 10

u
I
n
 u

−1 −0.6 −0.2 0.2 0.6 1
−4

−2

0

2

4

6

8
Runge phenomenon, n = 20

u
I
n
 u

−1 −0.6 −0.2 0.2 0.6 1
0

2

4

6

8

10

12

14
Runge phenomenon, n = 30

u
I
n
 u

Fig. 3.14. Runge phenomenon. From left to right: interpolation at 11, 21, and 31
equidistant points.

Solution of Exercise 3.8

1. Computation of the Hermite interpolant using divided differences. See the
function APP ddHermite. The input data of this function is an array Tab
whose first column contains the points xi, and for each i:

3.6 Solutions and Programs 77

• Tab(i,1) contains the points xi.
• Tab(i,2) contains an integer αi: the function and its derivatives up

to αi are interpolated.
• Tab(i,3:Tab(i,2)+3) contains the values of the function at point xi

and its derivatives up to order αi.
The call [xx,dd]=APP ddHermite(Tab) returns two vectors:
• the first vector contains the points xi taking into account their “mul-

tiplicity”: if the function and its αi derivatives have to be interpolated
at the point xi, this point is copied αi + 1 times in xx.

• the vector dd contains the divided differences.
With the help of these two vectors, we can implement the Horner algo-
rithm (see page 53) to evaluate IH

n f(x).
2. This is done vectorwise as follows:

f=inline(’cos(3*pi*x).*exp(-x)’);
coll=[0 1/4 3/4 1]’;
T=[coll zeros(size(coll)) f(coll)];
[xx,dd]=ddHermite(T);
%plot the function on a fine grid
x=linspace(0,1,100);n=length(dd);
y=dd(n)*ones(size(x));
for k=n-1:-1:1

y=dd(k)+y.*(x-xx(k));
end;
plot(x,y,x,f(x),’r’);hold on;plot(coll,f(coll),’+’)

See the script in APP ApproxScript8.m. We see in Fig. 3.15 (a) that the
curves intersect at only four points; they do not match at all, except at
these points.

3. Imposing the matching of the derivatives forces the polynomial to fit the
function more closely (see Fig. 3.15(b)). However, there is still a region of
the interval [0, 1] where the two curves are not close to each other.

4. By adding another interpolation point in this region, the approximation
is much sharper, as shown in Fig. 3.15(b).

Solution of Exercise 3.9

The implementation is done in the script in APP scriptHermite.m. For several
values m = 5(m′ − 1) with m′ ∈ {1, 2, 3, 4, 5}, we compute the corresponding
polynomial pm with the help of the function APP ddHermite. The column m′

of the matrix Y contains the values of pm on a uniform fine grid of 100 points
in [0, 1]. Figure 3.16 is generated by the script.

78 3 Polynomial Approximation

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
x→ e−x cos(3π x)
x→ p

3
(x)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
x→ e−x cos(3π x)
x→ p

7
(x)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
x→ e−x cos(3π x)
x→ p

9
(x)

(a) (b) (c)

Fig. 3.15. (a) The Lagrange interpolation polynomial p3 at the points 0, 1
4 , 3

4 , and 1,
(b) the Hermite interpolation polynomial p7 at the same points and (c) the Hermite
interpolation polynomial p9 at the points 0, 1

4 , 1
2 , 3

4 , and 1. The interpolation points
are marked by circles.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Hermite Interpolation

← m=0

m=20 ↓ ← m=5

Fig. 3.16. Hermite polynomial interpolants.

Solution of Exercise 3.10

The equations form a linear system of n + 1 equations and n + 1 unknowns
(the coefficients of the polynomial). This system has a unique solution if and
only if the unique solution of the homogeneous problem (i.e., f = 0) is the
null polynomial. This is the case since:

• The null polynomial is a trivial solution.
• If p ∈ Pn is a solution of the problem and if p(x0) = 0, we deduce that

p(xi) = 0 for all i = 1, . . . , n. Hence p is the null polynomial (a polynomial
of Pn cannot have more than n distinct zeros). If p(x0) 	= 0 then p has
alternating signs between two successive xi; hence it vanishes at n + 1
distinct points and is again the null polynomial.

Writing p(t) =
∑n

j=0 pjt
j , the equations become

3.6 Solutions and Programs 79

p(xi) − (−1)ip(x0) = f(xi) − (−1)if(x0)}, i = 1, . . . , n + 1.

The vector a = (p0, . . . , pn)T solves the system Aa = b with

Ai,j = xj
i − (−1)ixj

0, bi = f(xi)− (−1)if(x0) (1 ≤ i ≤ n+1, 0 ≤ j ≤ n).

The implementation is done in the function APP equiosc. The input data of
this function is a vector containing the values xi. The function computes the
matrix A and the vector b defined above and returns the coefficients pj of the
polynomial.

Solution of Exercise 3.11

The function APP Remez computes for a given integer n the polynomial of best
uniform approximation of a function f . Three cases are considered for the
initialization of the algorithm: the Chebyshev points, equidistant points, and
randomly chosen points. The parameter tol relaxes the equality constraint
in step k of the algorithm (that is, a test of the form a = b is replaced by
the test |a − b| < Tol). For n = 5, n = 10, and n = 15, the best uniform
approximations on [0, 1] of the function x �→ sin(2π cos(πx)) are displayed in
Fig. 3.17.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Fig. 3.17. Best uniform approximation in Pn of f(x) = sin(2π cos(πx)). From left
to right: n = 5, n = 10, and n = 15. The function f is plotted with solid lines.

For n = 15, the algorithm initialized with the Chebyshev points converges in
21 iterations. Initialized with equidistant points, it converges in 28 iterations.
Initialized with random points, it does not converge (in general) after 100
iterations.

The good result obtained with the Chebyshev points can be explained:
since the function f has a Chebyshev expansion, analogous to the Legendre
series in (3.19),

f =
∞∑

k=0

f̂kTk,

80 3 Polynomial Approximation

we can use the approximation

f −
n∑

k=0

f̂kTk ≈ f̂n+1Tn+1

by neglecting the remainder of the expansion. We remark that Tn+1 equioscil-
lates over [−1, 1] at the n + 2 points ti = cos(i π

n+1), (i = 0, . . . , n + 1) since
Tn+1(ti) = cos(iπ) = (−1)i. Hence

∑n
k=0 f̂kTk is close to the best uniform

approximation of f in Pn (see Theorem 3.3). This is the reason why the
Chebyshev points are good candidates for the initialization of the Remez al-
gorithm.

Solution of Exercise 3.12

The script in APP ls.m computes the least squares approximation on [0, 1]
of a given function. The instruction p=polyfit(x,y,n) returns an array p
containing the coefficients of the polynomial with degree less than or equal to
n that interpolates the values y(i) at the points x(i). In order to evaluate
this polynomial on a grid of points, we use the MATLAB function polyval.
Running the script in APP ls.m returns the value n = 10. The polynomial is
displayed in Fig. 3.18 with the points (xi, yi) marked by the symbol +.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
p

n
f

Fig. 3.18. Least squares approximation in P10: polynomial approximation (solid
line) and the points (xi, f(xi)) (+).

Solution of Exercise 3.13

We give only the results obtained with the piecewise constant spline, which
can be found in APP spline0.m:

3.6 Solutions and Programs 81

% script spline0.m
n0=10;E=[];N=[];
for i=1:10,

n=i*n0;E=[E;APP errorS0(n)];N=[N;n];
end;
loglog(N,E,’-+’);xlabel(’log n’);ylabel(’log Error’);
fprintf(’slope of the straight line = %g ’,...
log(E(end)/(E(1)))/log(N(end)/N(1)));
function y=APP errorS0(n)
x=(0:n)’/n;h=1/n;fx=f(x);
%Evaluation of p_i on each interval $[x_i,x_i+1]$
y=[];
for i=1:n

Ii=linspace(x(i),x(i+1),20);
fi=f(Ii);
Si=f(.5*(x(i)+x(i+1)));
y=[y norm(Si-fi,’inf’)];

end
y=max(y);
function y=f(x)
y=sin(4*pi*x);

Running this script produces Fig. 3.19. The slope of the straight line is
about −0.971325, which is a good approximation of the exact value −1 given
by (3.29).

10
1

10
210

−2

10
−1

10
0

Fig. 3.19. Piecewise constant spline: curve ln n �→ ln ‖f − S0‖∞.

82 3 Polynomial Approximation

Solution of Exercise 3.14

The script in APP spline1.m produces Fig. 3.20. The slope of the straight line
is about −1.965, which is a good approximation of the exact value −2 given
by (3.30).

10
1

10
210

−3

10
−2

10
−1

10
0

Fig. 3.20. Piecewise affine spline: curve ln n �→ ln ‖f − S1‖∞.

Solution of Exercise 3.15

See the script APP spline3.m. The results obtained with n = 5 and n = 10
are displayed in Fig. 3.21.

0 0.5 1
−1

−0.5

0

0.5

1

0 0.5 1
−1

−0.5

0

0.5

1

(a) (b)

Fig. 3.21. Cubic splines: (a) n = 5 and (b) n = 10.

Chapter References 83

Chapter References

G. Allaire and S.M. Kaber, Numerical Linear Algebra, Springer, New
York, forthcoming, 2007.

C. Bernardi and Y. Maday, Spectral Methods, in Handbook of numerical
analysis, Vol. V, North-Holland, Amsterdam, 1997.

A. Cohen, Numerical Analysis of Wavelet Methods, Studies in mathematics
and its applications, North-Holland, Amsterdam, 2003.

M. Crouzeix and A. Mignot, Analyse numérique des équations
différentielles, Masson, Paris, 1989.

R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-
Verlag, Berlin, 1993.

T. J. Rivlin, An Introduction to the Approximation of Functions, Dover
Publications Inc., New York, 1981.

L. Schwartz, Analyse, topologie générale et analyse fonctionnelle, Hermann,
Paris, 1980.

4

Solving an Advection–Diffusion Equation by a
Finite Element Method

Project Summary

Level of difficulty: 1

Keywords: Convection–diffusion equation, finite element method,
stabilization of a numerical scheme.

Application fields: Convection and diffusion phenomena.

In this project we seek a numerical approximation of the solution u : [0, 1] −→
R of the following problem:⎧⎨⎩

−εu′′(x) + λu′(x) = f(x), x ∈]0, 1[,
u(0) = 0,
u(1) = 0.

(4.1)

The function f and the real numbers ε > 0 and λ are given in such a way
that there exists a unique continuous solution of this problem. Our aim is to
approximate the solution with a continuous piecewise polynomial function.

The differential equation in the problem (4.1) is an advection–diffusion
equation. It models several phenomena, as, for example, the concentration
of some chemical species transported in a fluid with speed λ; the parameter
ε is the diffusivity of the chemical species. The ratio θ = λ/ε measures the
importance of the advection compared to the diffusion. For large values of this
ratio, the numerical solution of the problem (4.1) is delicate. The production
and the vanishing of the chemical species are modeled by the function f , which
in the general case depends on the unknown u. In this problem, we assume
that f depends only on the position x and we consider λ and ε as constants.

4.1 Variational Formulation of the Problem

A solution u of the boundary value problem (4.1) is also a solution of the
following problem:

86 4 Solving an Advection–Diffusion Equation by a Finite Element Method⎧⎨⎩
Find u ∈ H1

0 (0, 1) such that

for all v ∈ V : a(u, v) =
∫ 1

0
f(x)v(x)dx.

(4.2)

Here V denotes H1
0 (0, 1), the space of functions v : [0, 1] → R such that the

integrals
∫ 1
0 |v|2 and

∫ 1
0 |v′|2 are bounded and v(0) = v(1) = 0. The bilinear

form a is defined on V × V by

a(u, v) = ε

∫ 1

0
u′(x)v′(x)dx + λ

∫ 1

0
u′(x)v(x)dx. (4.3)

Conversely, every regular solution of (4.2) is also a solution of (4.1). The prob-
lem (4.2) is a “variational formulation” of (4.1). The finite element method is
based on the computation of the solution of the variational problem (4.2)
rather than a direct discretization of equation (4.1) by a finite difference
method (see Chaps. 1 and 2).

For a strictly positive integer n, we divide the interval [0, 1] into n + 1
subintervals Ii. For a positive integer �, we denote by P�(Ii) the set of algebraic
polynomials of degree less than or equal to � on Ii and Vh

� the set of the
continuous functions defined on [0, 1] whose restriction to each interval Ii

belongs to P�(Ii). Figure 4.1 displays two examples of functions of Vh
� .

x0 xN+1

vh ∈ Vh
1

�
�
�
�
�
�
��

������
�
�
��	

		

x0 xN+1

vh ∈ Vh
2

(a) (b)

Fig. 4.1. Examples of functions of (a) Vh
1 and (b) Vh

2 .

The finite element method consists in searching for an approximation uh ∈
Vh

� of the function u, a solution of the following problem (compare to (4.2)):⎧⎨⎩
Find uh ∈ Vh

� such that

for all vh ∈ Vh
� : a(uh, vh) =

∫ 1

0
f(x)vh(x)dx.

(4.4)

The integrals in the left-hand side of (4.4) are easily computed since they
involve products of polynomials. More difficult is the computation of the inte-
gral

∫ 1
0 f(x)vh(x)dx, whose explicit calculation is rarely possible. In this case

some quadrature rules are necessary. We will make use of two rules:

• the trapezoidal quadrature rule

4.2 A P1 Finite Element Method 87∫ β

α

g(x)dx ≈ (β − α)
g(α) + g(β)

2
.

This method is of order 1, that is, it is exact for all g ∈ P1([α, β]).
• the Simpson quadrature rule∫ β

α

g(x)dx ≈ β − α

6

(
g(α) + 4g(

α + β

2
) + g(β)

)
. (4.5)

This method is of order 3, i.e., it is exact for all g ∈ P3([α, β]).

Using one of these basic quadrature formulas on each subinterval Ii, we get a
quadrature formula on the whole interval [0, 1].

In this project, we compare two finite element methods (FEM) to solve
the advection–diffusion problem. The first method is called P1 since it uses
functions in Vh

1 ; the second method is a P2 method since the approximation
space for this method is Vh

2 .
To validate the computations, we have to compare the computed solution

to the exact one. Generally, this can be done only in some special simple cases.
The aim of the first exercise is to compute the exact solution of (4.1) in the
case of constant source terms.

Exercise 4.1. The exact solution in the case of constant nonzero f .

1. Derive explicit formulas for the solution u of the problem (4.1).
2. Prove the existence of xθ ∈]0, 1[depending only on the ratio θ = λ/ε

such that the function λ
f u is strictly increasing (respectively decreasing)

over]0, xθ[(respectively]xθ, 1[). Calculate lim|θ|→+∞ xθ.
3. For λ > 0 fixed, we are interested in the behavior of the solution u for

ε going to 0+ (and thus θ → +∞). Calculate u(xθ) and limε→0+u(xθ).
Show that

lim
ε→0+

lim
x→1

u(x) 	= lim
x→1

lim
ε→0+

u(x).

Try to explain the meaning of the sentence, for small values of ε, the
solution of the differential problem (4.1) contains a thin boundary layer
in a neighborhood of the point x = 1’.

4. Write a program that computes the values of the solution u on a given
set of points (an array). Plot u for f = 1, λ ∈ {−1, 1}, and ε ∈{
1, 1

2 , 10−1, 10−2
}
. Comment the results.

A solution of this exercise is proposed in Sect. 4.6 at page 97.

4.2 A P1 Finite Element Method

For n ∈ N
∗, we define the points

x
(1)
k = kh, k = 0, . . . , n + 1,

88 4 Solving an Advection–Diffusion Equation by a Finite Element Method

and the intervals

Ik =
]
x

(1)
k , x

(1)
k+1

[
, k = 0, . . . , n,

with grid size h = 1/(n + 1). We also define k “hat functions” ϕ
(1)
h,k (k =

1, . . . , n,) (see Fig. 4.2), such that

ϕ
(1)
h,k ∈ Vh

1 and ϕ
(1)
h,k(x(1)

j) = δj,k, ∀j = 1, . . . , n,

with δj,k the Kronecker symbol. Note that the support of the function ϕ
(1)
h,k is

the union of two intervals Ik−1 and Ik.

x
(1)
0 x

(1)
k−1 x

(1)
k x

(1)
k+1 x

(1)
N+1

ϕ
(1)
h,k

�
�
�
�
�
�

�
�

�
�

�
�

Fig. 4.2. A hat function ϕ
(1)
h,k of Vh

1 .

In the finite element methods, the points x
(1)
k are called nodes and the

intervals Ik cells. We seek an approximation u
(1)
h ∈ Vh

1 of the function u, a
solution of the problem (4.4) with � = 1:⎧⎨⎩Find u

(1)
h ∈ Vh

1 such that

for all vh ∈ Vh
1 : a

(
u

(1)
h , vh

)
=
∫ 1

0
f(x)vh(x)dx.

(4.6)

Exercise 4.2.

1. Prove that the functions (ϕ(1)
h,k)n

k=1 form a basis of Vh
1 .

2. Deduce that problem (4.6) is equivalent to the following problem:⎧⎨⎩Find u
(1)
h ∈ Vh

1 such that

for all k = 1, . . . , n : a
(
u

(1)
h , ϕ

(1)
h,k

)
=

∫ 1

0
f(x)ϕ(1)

h,k(x)dx.
(4.7)

3. By expanding u
(1)
h in the basis

(
ϕ

(1)
h,k

)n

k=1
,

u
(1)
h =

n∑
m=1

αmϕ
(1)
h,m,

4.2 A P1 Finite Element Method 89

show that αk = uh

(
x

(1)
k

)
and that the vector ũ

(1)
h =

(
u

(1)
h (x(1)

1), . . . , u(1)
h (x(1)

n)
)T

is a solution of the linear system

A
(1)
h ũ

(1)
h = b

(1)
h , (4.8)

where A
(1)
h is the real matrix of size n × n defined by

(A(1)
h)k,m = a

(
ϕ

(1)
h,m, ϕ

(1)
h,k

)
, 1 ≤ m, k ≤ n,

and b
(1)
h is the vector of R

n

(
b
(1)
h

)
k

=
∫ 1

0
f(x)ϕ(1)

h,k(x)dx, 1 ≤ k ≤ n.

Show that A
(1)
h = εB

(1)
h + λC

(1)
h , where B

(1)
h is a tridiagonal symmetric

matrix and C
(1)
h a tridiagonal antisymmetric matrix.

4. Prove that the symmetric matrix B
(1)
h is positive definite, i.e., for all

x ∈ R
n, 〈B(1)

h x, x〉 ≥ 0, with equality if and only if x is the null vector
(〈., .〉 denotes the Euler inner product). This property is very useful in the
numerical analysis of linear problems. It implies, in particular, that the
matrix is invertible.

5. Show that 〈A(1)
h x, x〉 = 〈B(1)

h x, x〉. Conclude that A
(1)
h is invertible.

A solution of this exercise is proposed in Sect. 4.6 at page 99.

Consequently, the system (4.7) has a unique solution that will be computed
by solving the linear system (4.8).

Exercise 4.3. Computation of the P1 solution by solving (4.8).

1. Derive the following explicit formulas for B
(1)
h and C

(1)
h :

B
(1)
h =

1
h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0

−1 2 −1 0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

... 0 −1 2 −1
0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C
(1)
h =

1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

−1 0 1 0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

... 0 −1 0 1
0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2. Write a program that computes the matrix A
(1)
h (with input data n, ε,

and λ).
3. Write a program that computes the right-hand side b

(1)
h (input data: n,

and f). Use the trapezoidal rule to compute the components of the vector
b
(1)
h .

90 4 Solving an Advection–Diffusion Equation by a Finite Element Method

4. For ε = 0.1, λ = 1, f = 1, and n ∈ {10, 20}, compute the solution ũh of
(4.8) and compare it to the exact solution.

5. Error analysis. Fix the parameters ε = 0.1, λ = 1 and f = 1. For n going
from 10 to 100 in steps of 10, draw the curves log n �→ log ‖e

(1)
n ‖∞, with

e
(1)
n ∈ R

n the error vector defined by (e(1)
n)k = ũ

(1)
h (k) − u(x(1)

k). Deduce
a decreasing law for ‖e

(1)
n ‖∞ of the form

‖e(1)
n ‖∞ ≈ constant/ns1 for n → +∞,

with s1 > 0 to be determined.

A solution of this exercise is proposed in Sect. 4.6 at page 100.

The P1 finite element method seems to be well suited to solve the advection–
diffusion problem. Unfortunately, things are not so simple. For λ = 1, f =
1, ε = 0.01, and n = 10 we obtain the results displayed in Fig. 4.3. The
oscillatory behavior of u

(1)
h shows that it is clearly not a good approximation of

u, especially in the boundary layer. We investigate in the next section whether
a high–order finite element method is able to suppress these oscillations.

The next exercise answers the following question: for a fixed ε, what is the
minimum number of subintervals required to resolve the boundary layer?

Exercise 4.4. Fix λ = 1 and f = 1. For various “small” values of ε (for ex-
ample in the range [0.005, 0.02]) determine the integer n ≡ n(ε) from which
the numerical solution seems to be a reasonable approximation of the exact
solution in the boundary layer (i.e., the numerical approximation is not oscil-
lating and is close to the exact solution in the boundary layer).
Hint: Use the following strategy: for fixed ε, run the program for n = 10, 20, 30,
etc. For each value of n, plot the exact solution and the numerical approxima-
tion. From these graphs, decide whether the approximation is good. For each
value of n, compute P = |λ|h

2ε , the Peclet number of the grid. What conclusion
can be drawn from this?
A solution of this exercise is proposed in Sect. 4.6 at page 102.

4.3 A P2 Finite Element Method

For n ∈ N
∗, we set h = 1/(n + 1) and define the points x

(2)
k = kh/2 (k =

0, . . . , 2(n + 1)). Notice that x
(2)
2k = x

(1)
k and the intervals Ik =

]
x

(2)
2k , x

(2)
2k+2

[
(k = 0, . . . , n) are those used in the previous section. In other words, we keep
the same number of intervals and add to each interval a new node, namely
the center of the element. To get a better approximation, we shall associate to
each node of the mesh a piecewise quadratic function rather than a piecewise
affine one.

4.3 A P2 Finite Element Method 91

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 4.3. Approximation of the solution of the advection–diffusion problem by a
P1 finite element method, ε = 0.01, λ = 1, and n = 10.

We seek an approximation uh ∈ Vh
2 of the function u, a solution of problem

(4.4) with � = 2:⎧⎨⎩Find u
(2)
h ∈ Vh

2 such that

for all vh ∈ Vh
2 : a(u(2)

h , vh) =
∫ 1

0
f(x)vh(x)dx.

(4.9)

As in the previous section, we begin by building a simple basis of Vh
2 . On each

interval Ik, we define three quadratic Lagrange polynomials associated with
the points x

(2)
2k , x

(2)
2k+1, and x

(2)
2k+2:⎧⎪⎨⎪⎩

ψ
(−)
h,k (x) = 2(x − x

(2)
2k+1)(x − x

(2)
2k+2)/h2,

ψ
(0)
h,k(x) = −4(x − x

(2)
2k)(x − x

(2)
2k+2)/h2,

ψ
(+)
h,k (x) = 2(x − x

(2)
2k)(x − x

(2)
2k+1)/h2.

To each node x
(2)
k of the mesh we associate the function ϕ

(2)
h,k ∈ Vh

2 defined by
(see also Fig. 4.4)

ϕ
(2)
h,2k+1(x) =

{
ψ

(0)
h,k(x) for x ∈ Ik,

0 otherwise,
and ϕ

(2)
h,2k(x) =

⎧⎪⎨⎪⎩
ψ

(−)
h,k (x) for x ∈ Ik,

ψ
(+)
h,k−1(x) for x ∈ Ik−1,

0 otherwise.

Notice that the support of the function ϕ
(2)
h,k is either the interval Ik or

the union of the two intervals Ik−1 and Ik, according to the parity of k. Since
the functions (ϕ(2)

h,k)2n+1
k=1 form a basis of Vh

2 , problem (4.9) is equivalent to the
problem⎧⎨⎩Find u

(2)
h ∈ Vh

2 such that

for all k = 1, . . . , 2n + 1 : a(u(2)
h , ϕ

(2)
h,k) =

∫ 1

0
f(x)ϕ(2)

h,k(x)dx.
(4.10)

92 4 Solving an Advection–Diffusion Equation by a Finite Element Method

x
(2)
2k−2 x

(2)
2k−1 x

(2)
2k x

(2)
2k+1 x

(2)
2k+2

ϕ
(2)
h,2k−1 ϕ

(2)
h,2k

Fig. 4.4. Generic functions forming a basis of Vh
2 .

Expanding u
(2)
h in the basis ϕ

(2)
h,k

u
(2)
h =

2n+1∑
m=1

αmϕh,m,

we prove, as in the P1 case, that αm = u
(2)
h (x(2)

m) and the vector ũ
(2)
h =

(α1, . . . , α2n+1)T solves a linear system

A
(2)
h ũ

(2)
h = b

(2)
h , (4.11)

with A
(2)
h the (2n + 1) × (2n + 1) matrix defined by

(A(2)
h)k,m = a(ϕ(2)

h,m, ϕ
(2)
h,k) 1 ≤ m, k ≤ 2n + 1

and bh the vector of R
2n+1 defined by

(b(2)
h)k =

∫ 1

0
f(x)ϕ(2)

h,k(x)dx 1 ≤ k ≤ 2n + 1.

Exercise 4.5. Put A
(2)
h = εB

(2)
h +λC

(2)
h . Is the matrix B

(2)
h symmetric? tridi-

agonal? Is the matrix C
(2)
h antisymmetric? tridiagonal? Prove the invertibility

of the matrix A
(2)
h .

A solution of this exercise is proposed in Sect. 4.6 at page 103.

System (4.10) has thus a unique solution, which we compute by solving the
linear system (4.11).

Exercise 4.6. Computation of the P2 solution.

1. Prove that B
(2)
h and C

(2)
h have the following pattern (given here for n = 3):

B
(2)
h = 1

3h

⎛
⎜⎜⎜⎜⎜⎜⎝

16 −8 0 0 0 0 0
−8 14 −8 1 0 0 0
0 −8 16 −8 0 0 0
0 1 −8 14 −8 1 0
0 0 0 −8 16 −8 0
0 0 0 1 −8 14 −8
0 0 0 0 0 −8 16

⎞
⎟⎟⎟⎟⎟⎟⎠

,

4.4 A Stabilization Method 93

C
(2)
h = 1

6

⎛
⎜⎜⎜⎜⎜⎜⎝

0 4 0 0 0 0 0
−4 0 4 −1 0 0 0
0 −4 0 4 0 0 0
0 1 −4 0 4 −1 0
0 0 0 −4 0 4 0
0 0 0 1 −4 0 4
0 0 0 0 0 −4 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

2. Write a program to compute the matrix A
(2)
h (input data: n, ε, and λ).

3. Write a program to compute the right-hand side b
(2)
h (input data: n and

f). Use Simpson’s rule to compute the components of the vector b
(2)
h .

4. Error analysis. Fix ε = 0.1, λ = 1, and f = 1. For n going from 10 to
100 in steps of 10, draw the curves log n �→ log ‖e

(2)
n ‖∞, with e

(2)
n ∈ R

2n+1

the error vector defined by (e(2)
n)k = ũ

(2)
h (k) − u(x(2)

k). Deduce that the
decreasing law for ‖e

(2)
n ‖∞ is of the form

e(2)
n ≈ constant/ns2 , for n → +∞

with s2 > 0 to be computed.

A solution of this exercise is proposed in Sect. 4.6 at page 103.

4.4 A Stabilization Method

In this section we propose a method for removing the oscillations that we have
observed in Fig. 4.3. Running the P2 program with the same parameters
(λ = 1, f = 1, ε = 0.01, and n = 10) we obtain Fig. 4.5. At first glance,
the oscillations persist. However, if one is interested only in the values of
the solution at the endpoints of the intervals (the points x

(2)
2k), one gets a

nonoscillatory approximation of the exact solution. We propose to check this
assertion and explain it. First of all, we define a way to compute the values
of u

(2)
h at the endpoints of the intervals, without computing the values at

midpoints.

4.4.1 Computation of the Solution at the Endpoints of the
Intervals

Let Â
(2)
h denote the matrix obtained after permutation of the rows of the

matrix A
(2)
h in order to put in the first places the rows with even indices (the

same operation is performed for the columns). In the same way, we define the
vector b̂

(2)
h from the vector b

(2)
h . We also define the vector û

(2)
h from the vector

of unknowns ũ
(2)
h . The system (4.11) is equivalent to the system

Â
(2)
h û

(2)
h = b̂

(2)
h ,

94 4 Solving an Advection–Diffusion Equation by a Finite Element Method

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 4.5. Approximation of the solution of the advection–diffusion problem for
ε = 0.01, λ = 1, and n = 10. (a) P2 finite element solution, (b) the same solution
displayed only at the endpoints of the intervals.

which one could have obtained directly from the variational formulation by
changing the numbering of the unknowns. Finally, we split Â

(2)
h , b̂

(2)
h , and û

(2)
h

as

Â
(2)
h =

[
A B
C D

]
, b̂

(2)
h =

[
c
d

]
, û

(2)
h =

[
v
w

]
,

where A ∈ R
n×n, B ∈ R

n×(n+1), C ∈ R
(n+1)×n, D ∈ R

(n+1)×(n+1), c ∈ R
n,

d ∈ R
n+1, v ∈ R

n, w ∈ R
n+1, and

Ai,j = a(ϕ(2)
h,2j , ϕ

(2)
h,2i), Bi,j = a(ϕ(2)

h,2j , ϕ
(2)
h,2i−1),

Ci,j = a(ϕ(2)
h,2j−1, ϕ

(2)
h,2i), Di,j = a(ϕ(2)

h,2j−1, ϕ
(2)
h,2i−1),

ci =
∫ 1
0 f(x)ϕ(2)

h,2i(x)dx, di =
∫ 1
0 f(x)ϕ(2)

h,2i−1(x)dx,

vi = u
(2)
h (x(2)

h,2i), wi = u
(2)
h (x(2)

h,2i−1).

It is easy to check that

• the matrix A is tridiagonal,
• the matrix B is upper triangular and bidiagonal,
• the matrix C is lower triangular and bidiagonal,
• the matrix D is diagonal.

The unknowns v and w are solutions of the linear system{
Av + Bw = c,
Cv + Dw = d.

(4.12)

The diagonal components of the matrix D are

Dk,k = a(ϕ(2)
h,2k−1, ϕ

(2)
h,2k−1) = ε

∫ x
(2)
h,2k

x
(2)
h,2k−2

[ϕ(2)
h,2k−1

′
(x)]2dx > 0,

4.4 A Stabilization Method 95

and consequently the matrix is invertible. From the second equation of the
system (4.12), we get w = D−1(d − Cv). Plugging this expression for w into
the first equation, we obtain

(A − BD−1C)v = c − BD−1d. (4.13)

This equation allows us to compute the vector v (i.e., the components of the
P2 solution at the endpoints of the subintervals). Let us note that the ma-
trix A − BD−1C is tridiagonal, whereas the matrix A

(2)
h is pentadiagonal.

This method, which consists in isolating, in a linear system, some of the un-
knowns that solve another simpler system, is called condensation. It is simply
a Gaussian elimination of the unknowns associated with the centers of the
subintervals.

Exercise 4.7.

1. Show that the matrix A − BD−1C is invertible.
2. Compute the matrices A, B, C, and D by extraction of rows and columns

of the matrix A
(2)
h computed in Exercise 4.6.

3. Fix λ = 1, f = 1, and ε = 0.01. For n = 10 and n = 20, solve the problem
(4.13). In the same figure:
• plot as a solid line the exact solution computed for 100 points in [0, 1],
• plot using some symbols the numerical solution, i.e., the components

of the vector v.
4. For n = 20, compare to the P1 method. What is the minimum value n0

starting from which the P1 method gives the same quality of approxima-
tion (a visual appreciation is enough)?

A solution of this exercise is proposed in Sect. 4.6 at page 105.

In conclusion, the P2 method, used only for the endpoints of the subintervals,
provides good results. In the next section, we justify these observations.

4.4.2 Analysis of the Stabilized Method

Let us consider only the values u
(2)
h (x(2)

h,2k), i.e., the values of u
(2)
h on the grid

of the P1 method. We prove that these values can be computed by a slightly
modified P1 scheme. More precisely, setting

A
(1S)
h = A − BD−1C,

the following result holds.

Proposition 4.1. The matrix A
(1S)
h equals the matrix A

(1)
h in which ε is re-

placed by ε′ = ε + λ2h2/(12ε).

96 4 Solving an Advection–Diffusion Equation by a Finite Element Method

One could understand this result as an addition of a viscosity term to the origi-
nal scheme that makes the solution smoother (less oscillatory). The remainder
of the section is devoted to proving Proposition 4.1. In order to compute the
matrix A

(1S)
h , we denote by X = Tridiag(a, b, c; n, m) the tridiagonal n × m

matrix X defined by

Xi−1,i = a, Xi,i = b, Xi,i+1 = c, if these indices are defined.

Notice that Tridiag(a, b, c; n, m) is not necessarily a square matrix. The reader
who enjoys long calculations will prove that

A =
ε

3h
Tridiag(1, 14, 1; n, n) +

λ

6
Tridiag(1, 0,−1;n, n),

B = − 8ε

3h
Tridiag(0, 1, 1; n, n + 1) − 2λ

3
Tridiag(0, 1,−1;n, n + 1),

C = − 8ε

3h
Tridiag(1, 1, 0; n + 1, n) +

2λ

3
Tridiag(−1, 1, 0; n + 1, n),

D =
16ε

3h
Tridiag(0, 1, 0; n + 1, n + 1),

and that

BC =
σ2

4
Tridiag(1, 2, 1; n, n) +

λσ

3
Tridiag(2, 0,−2;n, n),

−4
9
λ2 Tridiag(−1, 2,−1;n, n),

where σ = 16ε
3h . The reader may also calculate

A
(1S)
h = A − 1

σ
BC = Tridiag(α, β, γ; n, n),

where

α = − ε

h
− λ

2
− λ2h

12ε
= − 1

h
ε′ − λ

2
,

β = 2
ε

h
+

λ2h

6ε
=

2
h

ε′,

γ = − ε

h
+

λ

2
− λ2h

12ε
= − 1

h
ε′ +

λ

2
.

Finally

A
(1S)
h =

ε′

h
Tridiag(−1, 2,−1;n, n) +

λ

2
Tridiag(−1, 0, 1; n, n),

and the proposition follows since (see Exercise 4.3)

A
(1)
h =

ε

h
Tridiag(−1, 2,−1;n, n) +

λ

2
Tridiag(−1, 0, 1; n, n).

4.6 Solutions and Programs 97

4.5 The Case of a Variable Source Term

We consider in this last section the advection–diffusion equation (4.1) with a
nonconstant source term f in order to understand the effect of this term on
the existence of a boundary layer.

Exercise 4.8.

1. Fix ε = 0, 01, λ = 1, and f(x) = cos(aπx), a ∈ R. For a = 0, we already
know the existence of a boundary layer near the endpoint x = 1. We
assume in this exercise that a > 0. For several values of a = 1, 2, 3, . . . ,
compute (by any of the previous schemes) the solution of the equation
(4.1). (Hint: take n large enough to avoid oscillations in the numerical
solution.) Comment on the results. Same questions for a = 3

2 .
2. Calculation of the exact solution. Define for x ∈ [0, 1],

Fθ(x) =
∫ x

0
eθz

[∫ z

0
f(y)e−θydy

]
dz.

(a) Show that for all real numbers α and β, the function α + βeθx − 1
εFθ

is a solution of the differential equation (4.1).
(b) Determine α and β such that u = α+βeθx − 1

εFθ is a solution of prob-
lem (4.1) i.e., it satisfies the differential equation and the boundary
conditions.

(c) For f(x) = cos(aπx) with a ∈ R
∗, prove that

lim
ε→0+

u(x) =
1

λaπ
sin(aπx).

3. Explain the results obtained in question 1.

A solution of this exercise is proposed in Sect. 4.6 at page 106.

4.6 Solutions and Programs

Solution of Exercise 4.1

Computation of the exact solution.

1. For a constant function f , the solution of problem (4.1) is

u(x) =
f

λ

(
x − eλx/ε − 1

eλ/ε − 1

)
.

2. With θ = λ
ε , we rewrite u as

u(x) =
f

λ

(
x − eθx − 1

eθ − 1

)
.

98 4 Solving an Advection–Diffusion Equation by a Finite Element Method

Hence

λ

f
u′(x) = 0 ⇐⇒ 1 − θeθx

eθ − 1
= 0 ⇐⇒ θeθx = eθ − 1 ⇐⇒ x =

1
θ

ln
eθ − 1

θ
.

From this we deduce that xθ = 1
θ ln eθ−1

θ = 1 + 1
θ ln 1−e−θ

θ ∈]0, 1[and

u′(x) > 0 ⇐⇒ eθ − 1 − θeθx > 0 ⇐⇒ θeθx < θeθxθ ⇐⇒ x < xθ.

The limits are limθ→+∞ xθ = 1 and limθ→−∞ xθ = 0.
3. It is easy to check that

lim
ε→0+

u(xθ) =
f

λ
, lim

ε→0+
lim
x→1

u(x) = 0, and lim
x→1

lim
ε→0+

u(x) =
f

λ
.

The “boundary layer” is due to the strong variation of the solution (from
f/λ to 0) over a small interval [xθ, 1] whose length 1 − xθ = 1

θ ln 1−e−θ

θ
goes to 0 as θ goes to +∞.

4. The following function FEM ConvecDiffSolExa computes the exact solu-
tion of the problem:

function y=FEM ConvecDiffSolExa(e,lambda,fc,x)
% solution of the convection--diffusion problem
% case ε, λ, and f constant
y=fc/lambda*(x-(1-exp(lambda*x/e))./(1-exp(lambda/e)));

We display in Fig. 4.6 the solutions for f = 1, ε ∈ {1, 1/2, 10−1, 10−2},
and (a) λ = −1 and (b) λ = 1. For small values of ε, we observe a
small interval near x = 1 or x = 0 (according to the sign of λ) in which
the solution suddenly changes from a value close to 1 to zero; this is the
boundary layer.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ε=0.01

ε=0.5

ε=0.1

ε=1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ε=0.01

ε=0.5

ε=0.1

ε=1

(a) (b)

Fig. 4.6. Solution of the convection–diffusion problem for (a) λ = −1 and (b) λ = 1.

4.6 Solutions and Programs 99

Solution of Exercise 4.2

1. The linear space Vh
1 is of dimension n since there is an obvious isomor-

phism from this space onto R
n: to each u = (u1, . . . , un)T ∈ R

n cor-
responds a function v ∈ Vh

1 defined by v(xi) = ui. From the identities
ϕ

(1)
h,k(xj) = δj,k, we deduce that the functions (ϕ(1)

h,k)n
k=1 are linearly inde-

pendent:(
n∑

k=1

ckϕ
(1)
h,k(x) = 0,∀x

)
=⇒

(
n∑

k=1

ckϕ
(1)
h,k(xj) = 0,∀j

)
=⇒ (cj = 0,∀j) .

Since Vh
1 is of dimension n, the (ϕ(1)

h,k)n
k=1 form a basis. Here are analytical

expressions for ϕ
(1)
h,k and its derivative

• for x /∈ Ik−1 ∪ Ik, ϕ
(1)
h,k(x) = ϕ

(1)
h,k

′
(x) = 0,

• for x ∈ Ik−1, ϕ
(1)
h,k(x) = (x − xk−1)/h and ϕ

(1)
h,k

′
(x) = 1/h,

• for x ∈ Ik, ϕ
(1)
h,k(x) = (xk+1 − x)/h and ϕ

(1)
h,k

′
(x) = −1/h.

2. Since (ϕ(1)
h,j)

n
j=1 form a basis of Vh

1 , we can replace in (4.6) vh ∈ Vh
1 by vh

any element of the basis (ϕ(1)
h,j)

n
j=1.

3. Using again the identities ϕ
(1)
h,k(xj) = δj,k, we get

u
(1)
h (xj) =

n∑
k=1

αfkϕ
(1)
h,k(xj) = αj .

Replacing in (4.7) uh by its expansion in the basis ϕ
(1)
h,k, we get

n∑
k=1

a(ϕ(1)
h,k, ϕ

(1)
h,j)αk =

∫ 1

0
fϕh,jdx, ∀j = 1, . . . , n.

Let A
(1)
h be the n × n matrix and b

(1)
h the vector of R

n defined by

(A(1)
h)j,k = a(ϕ(1)

h,k, ϕ
(1)
h,j), (b(1)

h)j =
∫ 1

0
fϕ

(1)
h,jdx.

The vector ũh = (α1, . . . , αn)T solves the linear system A
(1)
h ũ

(1)
h = b

(1)
h .

The matrix of this system can be split as A
(1)
h = εB

(1)
h + λC

(1)
h , where

(B(1)
h)j,k =

∫ 1

0
ϕ

(1)
h,k

′
ϕ

(1)
h,j

′
dx, and (C(1)

h)j,k =
∫ 1

0
ϕ

(1)
h,k

′
ϕ

(1)
h,jdx.

Note the symmetry of the first matrix (B(1)
h)j,k = (B(1)

h)k,j . Using an
integration by parts and the fact that the basis functions are null for x = 0
and x = 1 yields (C(1)

h)j,k = −(C(1)
h)k,j . The matrices are tridiagonal since

the supports of any two functions ϕ
(1)
h,j and ϕ

(1)
h,k are disjoint for |j−k| > 1.

100 4 Solving an Advection–Diffusion Equation by a Finite Element Method

4. Consider x ∈ R
n with components (xk)n

k=1. We get

〈B(1)
h x, x〉 =

n∑
k=1

(B(1)
h x)kxk =

n∑
k=1

n∑
j=1

(B(1)
h)k,jxjxk

=
n∑

k=1

xk

n∑
j=1

xj

∫ 1

0
ϕ

(1)
h,k

′
(x)ϕ(1)

h,j

′
(x)dx

=
∫ 1

0

(
n∑

k=1

xkϕ
(1)
h,k

′
(x)

)2

dx ≥ 0.

Moreover, 〈B(1)
h x, x〉 = 0 implies that

n∑
k=1

xkϕ
(1)
h,k

′
(x) = 0

for all x ∈ [0, 1]; thus the xk are all zero. Consequently, the symmetric
matrix B

(1)
h is positive definite.

5. From the antisymmetry of the matrix C
(1)
h , we get〈

C
(1)
h x, x

〉
=

〈
x, C

(1)
h

T
x

〉
= −

〈
x, C

(1)
h x

〉
= −

〈
C

(1)
h x, x

〉
,

that is, 〈C(1)
h x, x〉 = 0, and the result follows.

Solution of Exercise 4.3

Numerical computation of the P1 solution.

1. Computation of Ah. Recall that the supports of two sufficiently distant
basis functions ϕ

(1)
h,j and ϕ

(1)
h,k are disjoint. More precisely, defining bk,j =∫ 1

0 ϕ
(1)
h,k

′
ϕ

(1)
h,j

′
and cj,k =

∫ 1
0 ϕ

(1)
h,k

′
ϕh,j , we get

• for |k − j| > 1, bk,j = ck,j = 0,
• for k = j,

bk,k =
∫ 1

0
(ϕ(1)

h,k

′
)2 =

∫
Ik−1

(ϕ(1)
h,k

′
)2 +

∫
Ik

(ϕ(1)
h,k

′
)2 =

2
h

,

ck,k =
∫ 1

0
ϕ

(1)
h,k

′
ϕh,k =

∫
Ik−1

ϕ
(1)
h,k

′
ϕh,k +

∫
Ik

ϕ
(1)
h,k

′
ϕh,k = 0,

• for k = j + 1,

bj+1,j = bj,j+1 =
∫ 1

0
ϕ

(1)
h,j+1

′
ϕ

(1)
h,j

′
= − 1

h
,

cj+1,j = −cj,j+1 =
∫ 1

0
ϕ

(1)
h,j+1

′
ϕh,j = −1

2
.

4.6 Solutions and Programs 101

2. See the function FEM ConvecDiffAP1.
3. Using the trapezoidal rule, we get

(b(1)
h)k =

∫ 1

0
fϕ

(1)
h,kdx =

∫ x
(1)
k

x
(1)
k−1

fϕ
(1)
h,kdx +

∫ x
(1)
k+1

x
(1)
k

fϕ
(1)
h,kdx

≈ h

2

[
f(x(1)

k−1)ϕ
(1)
h,k(x(1)

k−1) + 2f(x(1)
k)ϕ(1)

h,k(x(1)
k) + f(x(1)

k+1)ϕ
(1)
h,k(x(1)

k+1)
]

= hf(x(1)
k).

See the function FEM ConvecDiffbP1.
4. The following MATLAB script returns the results displayed in Fig. 4.7:

eps=0.1;lambda=1; %physical parameters
f = inline(’ones(size(x))’);%right-hand side of the equation
n=10;
A=FEM ConvecDiffAP1(eps,lambda,n); %matrix of the linear system
b=FEM ConvecDiffbP1(n,f); %right-hand side of the linear system
u=A\b; %FEM solution
u=[0;u;0]; %add to u the boundary values
x=(0:n+1)/(n+1); %mesh
uexa=FEM ConvecDiffSolExa(eps,lambda,1,x);%exact solution computed on x
plot(x,uexa,x,u,’+-r’)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

(a) (b)

Fig. 4.7. Approximation of the convection–diffusion problem (P1 FEM), ε = 0.1,
λ = 1, (a) n = 10 and (b) n = 20.

For the tested values of λ and ε, we get a good approximation. This script
is written in the file FEM ConvecDiffscript1.m.

5. Analysis of the error. Figure 4.8 is generated by the following script

error=[];N=[];
for n=10:10:100

102 4 Solving an Advection–Diffusion Equation by a Finite Element Method

A=FEM ConvecDiffAP1(eps,lambda,n);
b=FEM ConvecDiffbP1(n,f);
u=A\b;
u=[0;u;0];
x=(0:n+1)’/(n+1);
uexa=FEM ConvecDiffSolExa(eps,lambda,1,x);
N=[N;n];error=[error; norm(uexa-u,’inf’)];
end
plot(log(N),log(error),’+-’);

We see in Fig. 4.8 a straight line of slope approximately −2. We deduce
that s1 = 2. If we refine the mesh twice, by changing h into h/2, the error
is divided by 2s1 = 4.
See the script FEM ConvecDiffscript2.m.

2 2.5 3 3.5 4 4.5 5

−8.5

−7.5

−6.5

−5.5

−4.5

−3.5

Fig. 4.8. Approximation of the convection–diffusion problem (P1 FEM). Logarithm
of the error versus the logarithm of n (ε = 0.1, λ = 1).

Solution of Exercise 4.4

See the script FEM ConvecDiffscript3.m.

eps=0.01;lambda=1;
f = inline(’ones(size(x))’);
yes=1;
while yes

n=input(’enter n : ’);
A=FEM ConvecDiffAP1(eps,lambda,n);
b=FEM ConvecDiffbP1(n,f);

4.6 Solutions and Programs 103

u=A\b;
u=[0;u;0];
x=(0:n+1)/(n+1);
uexa=FEM ConvecDiffSolExa(eps,lambda,1,x);
plot(x,uexa,x,u,’+-r’)
Peclet=abs(lambda)/2/eps/(n+1)
yes=input(’more ? yes=1, no=0 ’)

end

Note that the approximation is good for a Peclet number Pe < 1.

Solution of Exercise 4.5

In the P1 method, the matrices B
(1)
h and C

(1)
h are tridiagonal. In the P2

method the supports of the basis functions are larger and the matrices B
(2)
h

and C
(2)
h are pentadiagonal. As in the P1 case, we can prove that the matrix

B
(2)
h is symmetric, positive definite; the matrix C

(2)
h is antisymmetric; and the

matrix A
(2)
h is invertible.

Solution of Exercise 4.6

The derivatives of the basis functions are

ϕ
(2)
h,2k+1

′
(x) =

{
−8(x − x

(2)
2k+1)/h2 for x ∈ Ik,

0 otherwise,

and

ϕ
(2)
h,2k

′
(x) =

⎧⎪⎨⎪⎩
4(x − x

(2)
2k+3/2)/h2 for x ∈ Ik,

4(x − x
(2)
2k−1/2)/h2 for x ∈ Ik−1,

0 otherwise.

1. (a) Computation of B
(2)
h . Since the matrix is symmetric, only its upper

triangular part is computed.
• Rows with odd indices.

• (B(2)
h)2k+1,2k+1 =

∫ 1
0 [ϕ(2)

h,2k+1

′
(x)]2dx =

∫ x
(2)
2k+2

x
(2)
2k

[8
h2 (x−x

(2)
2k+1)]

2dx =
16
3

1
h ,

• (B(2)
h)2k+1,2k+2 = − 8

3
1
h ,

• (B(2)
h)2k+1,m = 0, ∀m ≥ 2k + 3.

• Rows with even indices.
• (B(2)

h)2k,2k = 14
3

1
h ,

• (B(2)
h)2k,2k+1 = − 8

3
1
h ,

• (B(2)
h)2k,2k+2 = 1

3
1
h ,

• (B(2)
h)2k,m = 0, ∀m ≥ 2k + 3.

104 4 Solving an Advection–Diffusion Equation by a Finite Element Method

Thus, the upper triangular part of the matrix B
(2)
h is

1
3h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

16 −8 0 0 0 0 0
14 −8 1 0 0 0

16 −8 0 0 0
14 −8 1 0

. . .
. . .

. . .
. . .

. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(b) Computation of C
(2)
h . The matrix being antisymmetric, only its upper

triangular part is computed.
• Rows with odd indices.

• (C(2)
h)2k+1,2k+1 = 0,

• (C(2)
h)2k+1,2k+2 = 2

3 ,
• (C(2)

h)2k+1,m = 0, ∀m ≥ 2k + 3.
• Rows with even indices.

• (C(2)
h)2k,2k = 0,

• (C(2)
h)2k,2k+1 = 2

3 ,
• (C(2)

h)2k,2k+2 = − 1
6 ,

• (C(2)
h)2k,m = 0, ∀m ≥ 2k + 3.

Thus, the upper triangular part of the matrix C
(2)
h is

1
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 4 0 0 0 0 0
0 4 −1 0 0 0

0 4 0 0 0
0 4 −1 0

. . .
. . .

. . .
. . .

. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2. See the function FEM ConvecDiffAP2 .

3. (b(2)
h)2k+1 =

∫ 1

0
fϕ

(2)
h,2k+1dx =

∫ x
(2)
2k+1

x
(2)
2k

fϕ
(2)
h,2k+1dx +

∫ x
(2)
2k+2

x
(2)
2k+1

fϕ
(2)
h,2k+1dx.

Using Simpson’s formula on each interval, we obtain(
b
(2)
h

)
2k+1

≈ 2
3
hf

(
x

(2)
2k+1

)
.

In the same way,
(
b
(2)
h

)
2k

≈ 1
3hf

(
x

(2)
2k

)
. See the functionFEM ConvecDiffbP2.

4. As for Exercise 4.3, we plot in Fig. 4.9 the logarithm of the error versus
the logarithm of n. The curve is a straight line of slope approximately
−3.3. The error decreases faster than in the P1 case.
Remark. For a more relevant comparison of the methods P1 and P2,
consider the following quantity:

4.6 Solutions and Programs 105∫ 1

0
|u′

h(x) − u′(x)|2dx =
∑

intervals Ik

∫
Ik

|u′
h(x) − u′(x)|2dx.

We refer the reader to the references at the end of this chapter.

2 2.5 3 3.5 4 4.5 5
−16

−14

−12

−10

−8

−6

Fig. 4.9. Approximation of the convection–diffusion problem (P2 FEM). Logarithm
of the error versus the logarithm of n (ε = 0.1, λ = 1).

Solution of Exercise 4.7

1. Let x ∈ R
n be a nonnull vector such that (A−BD−1C)x = 0. The nonnull

vector y = (xT ,−(D−1Cx)T)T ∈ R
2n+1 is such that Â

(2)
h y = 0. However,

the matrix Â(2) is invertible. This leads to a contradiction. Hence the
square matrix A − BD−1C is injective and consequently invertible.

2.

A=FEM ConvecDiffAP2(eps,lambda,n);
a=A(2:2:2*n+1,2:2:2*n+1);b=A(2:2:2*n+1,1:2:2*n+1);
c=A(1:2:2*n+1,2:2:2*n+1);d=A(1:2:2*n+1,1:2:2*n+1);

3. The following script is written in the file FEM ConvecDiffscript4.m:

n=10;eps=0.01;lambda=1;
f = inline(ones(size(x))’);
sm=FEM ConvecDiffbP2(n,f);
nsm=sm(2:2:2*n+1)-b*inv(d)*sm(1:2:2*n+1);
u=(a-b*inv(d)*c)\nsm; %computation of v
x=linspace(0,1,100);
uexa=FEM ConvecDiffSolExa(eps,lambda,1,x);

106 4 Solving an Advection–Diffusion Equation by a Finite Element Method

plot(x,uexa);hold on
plot((1:n)/(n+1),u,’+’);hold off;

For n = 10 and n = 20, see Fig. 4.10.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 4.10. Stabilized solution of the convection–diffusion problem: λ = 1, ε = 0.01,
and (a) n = 10 and (b) n = 20.

4. Figure 4.11 displays the stabilized solutions for n = 20 and the P1 solu-
tions for n ∈ {20, 40, 60, 80}.

Solution of Exercise 4.8

1. With the same set of parameters and a constant f , we have observed a
boundary layer. This is no longer true. We present some results in Fig.
4.12: the source term f transfers its oscillations to the solution u. Here
is the script that produces Fig. 4.12. This script is written in the file
FEM ConvecDiffscript5.m.:

n=100;lambda=1;eps=0.01;
x=(0:(n+1))’/(n+1);
A=FEM ConvecDiffAP1(eps,lambda,n);
X=[];Y=[];
h=1/(n+1);tab=(1:n)’*h;
for af=1:5

b=h*cos(af*pi*tab);
y=A\b;y=[0; y; 0];
X=[X x];Y=[Y y];

end;
plot(X,Y);

For a = 3
2 , we observe a boundary layer; see Fig. 4.12. This observation

is discussed in the next question.

4.6 Solutions and Programs 107

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
P1 solution(o) and stabilized P2 solution (+)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
P1 solution(o) and stabilized P2 solution (+)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
P1 solution(o) and stabilized P2 solution (+)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
P1 solution(o) and stabilized P2 solution (+)

Fig. 4.11. Stabilized solution for n = 20 and the P1 solutions with n = 20 (top
left), n = 30 (top right), n = 40 (bottom left), n = 60 (bottom right).

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

a=1

a=2

a=3

a=4

a=5

0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(a) (b)

Fig. 4.12. Solution of the convection–diffusion equation: (a) f(x) = cos(aπx), for
a ∈ {1, 2, 3, 4, 5}, (b) f(x) = cos(3

2πx).

2. Computation of the exact solution.
(a) It is easy to check that α + βeθx − 1

εFθ is a solution of the differential
equation (4.1).

(b) The boundary conditions u(0) = 0 and u(1) = 0 allow the determina-
tion of α and β,

α = −β =
1
ε

Fθ(1)
1 − eθ

,

108 4 Solving an Advection–Diffusion Equation by a Finite Element Method

and the solution is

u(x) =
1

ε(1 − eθ)
[(1 − eθx)Fθ(1) − (1 − eθ)Fθ(x)]. (4.14)

(c) f(x) = cos(aπx). Define I =
∫ z

0 cos(aπy)e−θydy and J =
∫ z

0 sin(aπy)e−θydy.
Computing the real part of I + iJ , we get∫ z

0
f(y)e−θydy =

aπe−θz sin(aπz) + θ − θe−θz cos(aπz)
θ2 + π2a2

and deduce the identity

(θ2 + π2a2)Fθ(x) = eθx − cos(aπx) − θ sin(aπx)
aπ

.

The solution of the problem (4.1) is the sum of the two terms − 1
εFθ(x)

and α + βeθx.
• The first one can be split into three parts:

• 1
ε

θ

(θ2 + π2a2)
sin(aπx)

aπ
, whose limit is

λ

aπ
sin(aπx) for ε going

to 0,

• 1
ε

cos(aπx)
(θ2 + π2a2)

, whose limit is 0,

• and γ1 = −1
ε

eθx

θ2 + π2a2 .

• The only term in α + βeθx that does not go to 0 is

γ2 =
1
ε

eθ

θ2 + π2a2

1 − eθx

1 − eθ
.

Since the sum γ1 + γ2 goes to 0, we deduce that

lim
ε→0+

u(x) =
1

λaπ
sin(aπx).

3. The function u is continuous and satisfies the boundary condition u(1) =
0; hence

lim
ε→0+

lim
x→1

u(x) = lim
ε→0+

u(1) = 0.

In addition, limx→1 limε→0+ u(x) = 1
λaπ sin(aπ). Consequently, for an

integer a, there is no boundary layer in the vicinity of x = 1 since
limx→1 limε→0+ u(x) = limε→0+ limx→1 u(x) = 0. Conversely, for a nonin-
teger value of a, there exists a boundary layer since limx→1 limε→0+ u(x) 	=
0.

Chapter References

K. Atkinson and W. Han, Theoretical Numerical Analysis, Springer, New
York, 2001.

Chapter References 109

C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles
de problèmes aux limites elliptiques, collection S.M.A.I. Mathématiques et
Applications, vol. 45, Springer, Paris, 2004.

F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems,
Math. Models and Meth. in Appl. Sci., vol. 4, no. 4, 1994.

I. Danaila, F. Hecht and O. Pironneau, Simulation numérique en C++,
Dunod, Paris, 2003.

P. Joly, Mise en œuvre de la méthode des éléments finis, collection S.M.A.I.
Mathématiques et Applications, Ellipses, Paris, 1990.

B. Lucquin and O. Pironneau, Introduction to Scientific Computing, Wil-
ley, Chichester, 1998.

5

Solving a Differential Equation by a Spectral
Method

Project Summary

Level of difficulty: 2

Keywords: Spectral method, polynomial approximation, Gauss
quadrature, orthogonal polynomials, Legendre polyno-
mials, variational formulation

Application fields: Whenever high accuracy is required to compute
smooth solutions of PDEs

Introduction

Spectral methods are approximation techniques for the computation of the
solutions to ordinary and partial differential equations. They are based on
a polynomial expansion of the solution. The precision of these methods is
limited only by the regularity of the solution, in contrast to the finite difference
method and the finite element methods. The approximation is based primarily
on the variational formulation of the continuous problem. The test functions
are polynomials and the integrals involved in the formulation are computed by
suitable quadrature formulas. This project proposes to implement a spectral
method to solve the following boundary value problem defined on the interval
Ω = (−1, 1): ⎧⎨⎩

−u′′ + cu = f,
u(−1) = 0,
u(1) = 0,

(5.1)

with f ∈ L2(Ω) and c a positive real number.
The first part of the project consists in pointing out some properties of the

Legendre polynomials. These polynomials will be used to design a basis of the

112 5 Solving a Differential Equation by a Spectral Method

approximation space. In the second part, we define the Legendre expansion of
a function and compute the truncated Legendre expansion. To this end, we
introduce a method to compute the integrals accurately, namely the Gauss
quadrature formula. Finally, in the third part of the project, we implement
the approximation of the differential equation (5.1) by a spectral method.

5.1 Some Properties of the Legendre Polynomials

Let Pn denote the set of all polynomials with degree less than or equal to a
positive integer n and (Ln)0≤n the family of Legendre polynomials. Note that
these polynomials form an orthogonal basis on]−1, 1[since for all integers n
and m, ∫ 1

−1
Ln(x)Lm(x)dx =

2
2n + 1

δn,m. (5.2)

The Legendre polynomials are solutions of the differential equations

[(1 − x2)L′
n(x)]′ + n(n + 1)Ln(x) = 0, n ≥ 0, (5.3)

and they satisfy the following three-term recurrence formula⎧⎨⎩
L0(x) = 1,
L1(x) = x,
(n + 1)Ln+1(x) = (2n + 1)xLn(x) − nLn−1(x), for n ≥ 1,

(5.4)

from which we deduce the special values Ln(±1) = (±1)n.

Exercise 5.1. 1. Write a function y=SPE LegLinComb(x,c) that plots a lin-
ear combination of the Legendre polynomials of the form

y(x) =
p∑

k=1

ckLk−1(x). (5.5)

The inputs of the program are:
• an array (a vector) c that contains the coefficients ck,
• an array x that contains the points of the grid.

2. Write a script using y=SPE LegLinComb(x,c) with x corresponding to
a fine discretization of the interval [−1, 1] and c corresponding to the
combination L0 − 2L1 + 3L5. Plot y as a function of x as in Fig. 5.1.
A solution of this exercise is proposed in Sect. 5.6. at page 120.

5.2 Gauss–Legendre Quadrature 113

−1 −0.5 0 0.5 1
−2

−1

0

1

2

3

4

Fig. 5.1. Linear combination L0 − 2L1 + 3L5.

5.2 Gauss–Legendre Quadrature

Numerical quadratures (or rules) are efficient tools for computing an approx-
imation of an integral (see Krommer and Ueberhuber (1994)). In the general
case, no antiderivative of the integrand is available, but the values of the
integrand itself can be easily computed. Gauss quadrature is based on the
following result, holding for smooth functions ϕ:∫ 1

−1
ϕ(x)dx =

s∑
i=1

ϕ(xi)ωi + Rs(ϕ), (5.6)

where

1. the points xi (called the nodes of the formula) are the zeros of the Legendre
polynomial Ls,

2. the real numbers ωi (called the weights of the formula) are given by

ωi =
2

(1 − x2
i)[L′

s(xi)]2
. (5.7)

3. The remainder is Rs(ϕ) =
22s+1(s!)4

(2s + 1)[(2s)!]3
ϕ(2s)(ξ), for ξ ∈ (−1, 1).

The Gauss–Legendre quadrature formula is the approximation∫ 1

−1
ϕ(x)dx ≈

s∑
i=1

ϕ(xi)ωi. (5.8)

This formula is exact for ϕ ∈ P2s−1, since in such a case the remainder Rs(ϕ)
is null.

In order to use the Gauss quadrature formula, we explain an efficient way
to compute its weights and nodes. For all x, the recurrence relations (5.4) for
j = 0, . . . , s can be written in a compact matrix form,

114 5 Solving a Differential Equation by a Spectral Method

Mu = xu + v, (5.9)

where

M =

⎛⎜⎜⎜⎜⎝
0 1
a1 0 b1

.
as−2 0 bs−2

as−1 0

⎞⎟⎟⎟⎟⎠ , (5.10)

with aj = j/(2j + 1), bj = (j + 1)/(2j + 1),

v = bs−1Ls(x)

⎛⎜⎜⎝
0
...
0
1

⎞⎟⎟⎠ , and u =

⎛⎜⎝ L0(x)
...

Ls−1(x)

⎞⎟⎠ . (5.11)

Now let x be a zero of Ls; then v = 0 and the linear system (5.9) becomes

Mu = xu, (5.12)

which means that the zeros of Ls are the eigenvalues of the s × s tridiago-
nal matrix M . To compute the weight ωi with formula (5.7), the recurrence
formula (5.4) can be combined with the following relation:

(1 − x2)L′
s(x) = −sxLs(x) + sLs−1(x), s ≥ 1. (5.13)

Since Ls(xi) = 0, we get finally

ωi =
2(1 − x2

i)
(sLs−1(xi))2

,

where Ls−1(xi) is computed by the recurrence formula (5.4).

Exercise 5.2.

1. Write a function SPE xwGauss that computes the weights and nodes of a
Gauss–Legendre quadrature formula. Compare your results for s = 8 with
the table below:

xi wi

±0.18343464249565 0.36268378337836
±0.52553240991633 0.31370664587789
±0.79666647741363 0.22238103445337
±0.96028985649754 0.10122853629036

2. Write a script to validate your function: test the quadrature formula on
various integrals whose exact values are known. In particular, check the
exactness of the formula for polynomials in P2s−1 and compare the exact
and approximate values of the integral of ex on (−1, 1).

A solution of this exercise is proposed in Sect. 5.6. at page 121.

5.3 Legendre Expansions 115

5.3 Legendre Expansions

We now associate to a function f ∈ L2(−1, 1) its Legendre expansion

L(f) =
∞∑

j=0

f̂jLj ,

with the Legendre coefficients f̂j defined by

f̂j =
2j + 1

2

∫ 1

−1
f(x)Lj(x)dx. (5.14)

We also define the truncated expansion (see Sect. 3.3 page 63)

Lp(f) =
p∑

j=0

f̂jLj .

This is an approximation of the function f , which is exact for polynomials in
Pp since (Lj)

p
j=0 is an orthogonal basis of Pp. The calculation of the coefficients

f̂j is done by a quadrature formula. The error induced by this approximation
of f̂j must be of the same order or negligible compared to the total error of
the spectral method. Thus, it is necessary to use a high-order quadrature, and
for this reason, the Gauss–Legendre quadrature is very suitable.

Exercise 5.3.

1. Write a script that computes the truncated Legendre expansion Lp(f) of
a function f . The script includes the following steps:
• Compute the nodes and weights of the Gauss–Legendre quadrature for

a given s.
• Compute the Legendre coefficients (f̂k)p

k=0 (5.14) by the quadrature
formula (5.8).

• Plot the function and its truncated Legendre expansion Lp(f) on
[−1, 1].

2. Compare with the example in Fig. 5.2.
3. Justify the choice of the Gauss quadrature parameter s as a function of

the degree p of the truncated series.
4. Test the script with less-regular functions, namely the functions abs(x)

and sign(x).
5. Plot the error (computed in the supremum norm) between f and Lp(f)

as a function of the truncation parameter p.

A solution of this exercise is proposed in Sect. 5.6. at page 122.

The choice of the number s of Gauss nodes is related to the degree p of
the truncated expansion. The quadrature formula (5.8) with s nodes is exact

116 5 Solving a Differential Equation by a Spectral Method

−1 −0.5 0 0.5 1
−2

−1

0

1

2

3
function
L

6
L

9

Fig. 5.2. Function f(x) = sin(6x) exp(−x), L6(f), and L9(f).

on P2s−1. In addition, every polynomial f ∈ Pp is its own Legendre series
f = Lp(f). In order to make the computation of the Legendre coefficients
exact for f ∈ Pp, it is necessary to take s such that 2s − 1 ≥ 2p, that is,
s ≥ p + 1. The reader will verify that for a very smooth function, let us say
f ∈ C∞(−1, 1), the error f −Lp(f) decreases to zero as p goes to infinity. This
decreasing is faster than any power of 1/p, as shown in Fig. 5.3. In this figure,
the error stops decreasing from p ≈ 20, since the computer accuracy is then
reached. In contrast, running the same script for the nonsmooth function |x|

0 15 30
−30

−15

0

p

log||f−L
p
(f)||∞

Fig. 5.3. Error ||f − Lpf ||∞ for f(x) = sin(6x) exp(−x).

exhibits a very slow convergence, displayed in Fig. 5.4. For the discontinuous
function sign, the expansion does not converge to f in the norm L∞, although
it does converge in the L2 norm. The truncated series Lpf has oscillations.
As p increases, the size of the oscillations decreases slowly, except near the
discontinuity x = 0, where the oscillations remain. This problem is known as
the Gibbs phenomenon. The results for functions |x| and sign(x) are displayed
in Fig. 5.5.

5.4 A Spectral Discretization 117

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

1/p

||f−L
p
(f)||∞

Fig. 5.4. Error ||f − Lpf ||∞ for f(x) = |x|.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

x

abs
L

30
(abs)

(a) −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

sign
L

30
(sign)

(b)

Fig. 5.5. Comparison of f with L30f . (a) f(x) = |x|; (b) f(x) =sign(x).

5.4 A Spectral Discretization

We consider a variational formulation of the problem (5.1) (see Chap. 4):⎧⎨⎩
Find u ∈ H1

0 (−1, 1) such that for all v ∈ H1
0 (−1, 1) :∫ 1

−1
u′(x)v′(x)dx + c

∫ 1

−1
u(x)v(x)dx =

∫ 1

−1
f(x)v(x)dx.

(5.15)

Every regular solution of (5.15) is a solution to the problem (5.1). The space
of test functions for this spectral method is the subset of Pm defined by

P
0
m(Ω) = {p ∈ Pm, p(−1) = p(1) = 0}.

This linear space has dimension m − 1 and can be rewritten as

P
0
m(Ω) = {p = (1 − x2)q, q ∈ Pm−2}.

Since P
0
m(Ω) is included in H1

0 (Ω), we can easily define the variational ap-
proximation called the spectral Galerkin method :⎧⎨⎩

Find um ∈ P
0
m(Ω) such that for all vm ∈ P

0
m(Ω) :∫ 1

−1
u′

m(x)v′
m(x)dx + c

∫ 1

−1
um(x)vm(x)dx =

∫ 1

−1
f(x)vm(x)dx.

(5.16)

118 5 Solving a Differential Equation by a Spectral Method

The functions Fi = (1−x2)L′
i for i = 1, . . . , m− 1 form a basis of P

0
m(Ω). We

denote this basis by Fm. By linearity, the problem (5.16) is equivalent to the
problem⎧⎨⎩

Find um ∈ P
0
m(Ω) such that for all Fi ∈ Fm :∫ 1

−1
u′

m(x)F ′
i (x)dx + c

∫ 1

−1
um(x)Fi(x)dx =

∫ 1

−1
f(x)Fi(x)dx.

(5.17)

Let ūm = (um,1, . . . , um,m−1)T be the vector whose entries are the coefficients
of um in the basis Fm:

ūm =
m−1∑
i=1

um,iFi. (5.18)

By plugging this expansion into (5.17), we get a linear system for ūm, which
we write in matrix form as

Amūm = bm, (5.19)

where the (m−1)× (m−1) matrix Am and the vector bm ∈ R
m−1 are defined

by

(Am)i,j =
[i(i + 1)]2

i + 1/2
δi,j

+ c
i(i + 1)
(2i + 1)

j(j + 1)
(2j + 1)

(
4(2i + 1)δi,j

(2i − 1)(2i + 3)
− 2δi,j−2

2i + 3
− 2δi,j+2

2i − 1

)
,

(bm)i =
∫ 1

−1
f(x)Fi(x)dx =

2i(i + 1)
2i + 1

(
1

2i − 1
f̂i−1 − 1

2i + 3
f̂i+1

)
.

The terms f̂i in the previous definition are the Legendre coefficients of the
right-hand-side function f defined by (5.14).

Once the linear system is solved (i.e., the coefficients of um in the basis Fm

are known), the coefficients of um in the Legendre basis (Lj)m
j=0 are computed

using the identities

(1 − x2)L′
i =

i(i + 1)
2i + 1

(Li−1 − Li+1) . (5.20)

Exercise 5.4.

1. Write a program including the following steps:
• Compute the matrix Am and the vector bm. This step includes the

computation of the Legendre coefficients f̂k of the source term of the
differential equation.

• Solve the linear system (5.19).
• Compute the Legendre coefficients ûmk

of the numerical solution um

using (5.20).

5.5 Possible Extensions 119

• Plot on the same figure the function u and the numerical approxima-
tion um on [−1, 1].

2. Construction of an exact solution: take any reasonable function ue(x) such
that ue(−1) = ue(1) = 0 and compute f(x) in such a way that ue solves
the problem (5.1) with a constant c. Program the two functions ue(x)
and f(x). The function ue will be used as a benchmark to compare the
spectral solution and the exact solution.

3. Advantages of the method: compare the spectral solution to a solution
computed by a finite difference scheme leading to a linear system of iden-
tical dimension (see Section 8.2). Do you obtain the same precision? Com-
pute the error between the exact solution and the spectral one. Increase
the number of points in the finite difference discretization to get the same
precision. Draw some conclusion on the respective advantages of the two
methods.

A solution of this exercise is proposed in Sect. 5.6. at page 122.

5.5 Possible Extensions

The paragraph on the quadrature rules has several extensions. One can use
a similar method to compute the nodes and weights of Gauss quadrature
corresponding to other families of orthogonal polynomials. For example, the
analogous formula to (5.6) for integrals on the real line R is∫ +∞

−∞
f(x)e−x2

dx =
n∑

i=1

ωif(xi) + Rn(f). (5.21)

Here the nodes xi are the zeros of the Hermite polynomials (see below), the
weights ωi are given by (see (Davis, 1975; Szegő, 1975))

ωi =
2n−1n!

√
π

(nHn−1(xi))
2 ,

and the remainder is

Rn(f) =
n!

√
π

2n(2n)!
f (2n)(ξ).

The Hermite polynomials are defined by⎧⎨⎩
H0(x) = 1,
H1(x) = 2x,
2xHn(x) = Hn+1(x) + 2nHn−1(x).

They are orthogonal for the inner product

〈f, g〉 =
∫

R

f(x)g(x)e−x2
dx.

120 5 Solving a Differential Equation by a Spectral Method

Regarding the application of spectral methods to PDEs, one can think to
generalize the example studied here in higher dimensions. Up to dimension
two or three, the main feature of spectral methods is still the approximation
by high-degree polynomials, using this time tensor products of polynomial
bases. These objects have a high precision and turn out to be very efficient for
simple geometries: rectangular prism or cylinder, for instance. The treatment
of the Laplace equation in a square or cubic domain is thoroughly detailed in
Bernardi, Dauge, and Maday (1999) and in the recent work by Bernardi, Ma-
day, and Rapetti (2004) (in French), with several possible types of boundary
conditions (Dirichlet, Neumann, and Fourier). For complicated geometries,
a domain decomposition technique is required (see for instance Wohlmuth
(2001)). Detailed problems are also proposed in Bernardi and Maday (1997)
and Bernardi, Maday, and Rapetti (2004), which can be handled starting from
the case treated in this project, such as for instance the spectral discretization
of the Dirichlet problem in an axisymmetric domain or the heat equation in
one dimension.

5.6 Solutions and Programs

Solution of Exercise 5.1
The computation of the linear combination (5.5) is performed by the function
SPE LegLinComb. In order to compute the values of the Legendre polynomial
of degree p at points x1, . . . , xn, there is no need to store all the values of the
polynomials of degree less than p. Only the values corresponding to degrees
p − 1 and p − 2, which come into play in the recurrence relation (5.4), must
be stored in two arrays pol1 and pol2, along with the current values that are
stored in pol. The values of the linear combination are stored in an array y
to which the terms cipi(x) are added as they are computed.

The graphical display of L0−2L1+3L5 on the interval [−1, 1] (see Fig. 5.1)
is done in the script SPE PlotLegPol.m. The function SPE LegLinComb re-
ceives in its input argument the array [0;−2; 0; 0; 0; 3] containing the coefficient
values of the linear combination along with the points xi = −1 + (i − 1)/250
for i = 1, . . . , 501 at which this function must be displayed.

The MATLAB built-in function L=legendre(n,x) computes an array L
with n+1 rows, whose (m+1)th row holds the values of the Legendre function
Lm

n defined by

Lm
n (x) = (−1)m(1 − x2)m/2 dm

dxm
Ln(x), (5.22)

at points specified by the vector x. Therefore it is possible to compute the
values of the Legendre polynomial with this function using only the first row
of the computed array. Another method to compute the linear combination
is to call the function legendre for all degrees from 0 up to p, to extract

5.6 Solutions and Programs 121

for each degree the first row of the output array, and to multiply it by the
corresponding coefficient.

The script SPE PlotLegPol compares the computing times required by the
two methods, by calling the function tic before the function SPE LegLinComb
and the function toc right afterward. The value returned by toc contains the
computing time in seconds. The same thing is done again before and after the
group of commands for the method using the legendre function. In order to
get meaningful computing time estimates, it is best to increase the number of
computing points to 500 points evenly spaced on the interval [−1, 1] and to
increase simultaneously the degree of the linear combination to 50. The ratio
between the computing times is then higher than 100, which is unquestion-
ably in favor of the script SPE LegLinComb.m. Using the function legendre
in this context implies a great number of redundant or useless computations.

Solution of Exercise 5.2
The computation of Gauss abscissas and integration weights is done by the
function SPE xwGauss. The abscissas are the eigenvalues of the matrix M de-
fined by (5.10); the function therefore starts by building the matrix and using
the MATLAB built-in function eig to compute its spectrum.

Once the abscissas and weights are computed and stored in two column
vectors x and w, the quadrature formula (5.8) is encoded with a single MAT-
LAB command. It consists in computing the scalar product of the vector w
with the vector holding the values of the function at the integration abscissas
x: I=w’*f(x);
The script SPE TestIntGauss.m tests the quadrature formula on a smooth
function, here the function ex, and also compares this integration method
with the method proposed by MATLAB, which is programmed in the built-in
function quad.
The calling syntax is: q = quad(@fun,a,b). This command returns the value
of the integral of the function defined in fun.m between the bounds a and b
to a default precision of 10−6. The algorithm used in quad is the adaptive ver-
sion of Simpson’s rule (see (4.5) in Chap. 4), and one can specify the required
precision by adding a fourth input argument q = quad(@fun,a,b,preci). It
is also possible to get in the output the number of calls to the integrand that
were performed: [q,nb] = quad(@fun,a,b,preci).

In order to compare the computing time performances of the function quad
with the Gauss method, we use for the latter a number of points large enough
to obtain the value of the integral with six significant digits. Four points are
sufficient in the case of the function ex, for instance. The respective com-
puting times are estimated using functions tic and toc as in the previous
exercise. Simpson’s method being less accurate than the Gauss quadrature
on four points, it requires more evaluations of the integrand and is therefore
slower. Hence in the context of our project, where a great number of integrals
must be performed, using Gauss quadrature is more suitable.

122 5 Solving a Differential Equation by a Spectral Method

Solution of Exercise 5.3
The comparison of the function with its truncated Legendre expansion is
performed in the script SPE AppLegExp.m. It produces Fig. 5.2, where the
function f(x) = sin(6x) exp(−x) is displayed along with L6(f) and L9(f).
Slight modification produces Fig. 5.5 (a), where the function f(x) = |x| is
compared with its truncated series Lpf to order p = 30, and Fig. 5.5 (b), for
f(x) = sign(x).

This script calls the function SPE CalcLegExp, which receives in its input
arguments:

• s: the degree of the Gauss quadrature to be used to compute the coefficients
of the expansion (5.14),

• P: the degree of the truncated expansion,
• npt: the number of points in the interval [−1, 1] where the expansion is

computed,
• test: the name of the function whose expansion is computed, which should

be defined either by an inline function or in a file.

The function returns the output arguments:

• x: the npt abscissas,
• y: the values of the expansion at abscissas x,
• err: the error in the supremum norm between the function and its expan-

sion, estimated on the values at abscissas x.

This function is also used in the script SPE LegExpLoop.m to answer ques-
tion 5 of the exercise, illustrated in Figs. 5.3 and 5.4. The Legendre expan-
sion of a test function and the error with the function itself is computed
for different degrees, varying here between 2 and 30 with an increment of
2. The error in the norm L∞ is then displayed as a function of the de-
gree of the truncated expansion. For a smooth function we expect exponen-
tial behavior for the error, which is actually what we obtain numerically for
the function f(x) = sin(6x) exp(−x). For less-smooth functions, for instance
f(x) = abs(x), the error decreases proportionally with 1/P . Eventually, for
a discontinuous function, such as f(x) = sign(x), the error does not go to 0
when the degree of the expansion increases, due to the Gibbs phenomenon
(see Fig. 5.5).

Solution of Exercise 5.4
We select here as a test case the function u(x) = sin(πx) cos(10x), which sat-
isfies the homogeneous Dirichlet boundary conditions u(−1) = u(1) = 0, and
we program it in SPE special.m. By setting the right-hand side to

f(x) = (π2 + 130) sin(πx) cos(10x) + 20π cos(πx) sin(10x)

and the constant c = 30, the function u is a solution of problem (5.1). The
right-hand side is programmed in the file SPE fbe.m, using the second deriva-
tive of the solution function, which is programmed in SPE specsec.m. The

5.6 Solutions and Programs 123

following script SPE SpecMeth.m computes the numerical solution using the
spectral Galerkin method. It then compares it with the solution computed
using the finite difference solution:

m=16; % degree of Legendre approximation
s=m+1; % degree of Gauss quadrature for the right-hand side.
global c
c=30.;
% Construction of the matrix
A=zeros(m,m);
for i=1:m
A(i,i)=(i*(i+1))ˆ2*(1./(0.5+i)+...

4.*c/((2.*i+1.)*(2*i-1)*(2*i+3))) ;
end
for i=1:m-2
A(i,i+2)=-2*c*i*(i+1)*(i+2)*(i+3)/((2*i+1)*(2*i+3)*(2*i+5));
end
for i=3:m
A(i,i-2)=-2*c*i*(i+1)*(i-2)*(i-1)/((2*i-1)*(2*i-3)*(2*i+1));
end
% Construction of the right-hand-side vector
[absc,weights]=SPE_xwGauss(s);
t=SPE_fbe(absc); u=t.*weights;
LX0=ones(s,1);
LX1=absc;
C=zeros(m+2,1);
C(1)=t’*weights/2; C(2)=3*u’*LX1/2;
for k=2:m+1
% computes f_k in c(k+1)
% computes values of L_k at integration abscissa
% kL_k=(2k-1)xL_k-1 -(k-1)L_k-2
LX2=((2*k-1)*absc.*LX1-(k-1)*LX0)/k;
C(k+1)=(2*k+1)*u’*LX2/2;
LX0=LX1;
LX1=LX2;

end
B=zeros(m,1);
for i=1:m
B(i)=2*i*(i+1)*(C(i)/(2*i-1)-C(i+2)/(2*i+3))/(2*i+1);

end
% Solves the linear system
U=linsolve(A,B);
%
% Change of basis

124 5 Solving a Differential Equation by a Spectral Method

% (1-xˆ2)L_i’=(i(i+1)/(2i+1)).(L_i-1 - L_i+1
UN=zeros(1,m+2);
for k=1:m
CC=(k+1)*k*U(k)/(2*k+1);
UN(k)=UN(k)+CC;
UN(k+2)=UN(k+2)-CC;

end
%
% Computes approximate solution and error
%
n=100;
xa=linspace(-1,1,n);
y=SPE_LegLinComb(xa,UN);
es=norm(y-SPE_special(xa),inf);
%
% Computes finite difference solution
mdf=50; h=2/mdf;
xdf=linspace(-1+h,1-h,mdf-1)’;
A=toeplitz([2,-1,zeros(1,mdf-3)])/hˆ2+c*eye(mdf-1,mdf-1);
B=SPE_fbe(xdf); ydf=linsolve(A,B);
%
% Graphical display
%
plot (xa,SPE_special(xa),xa,y,’--’,xdf,ydf,’x’)
legend(’exact’,’spectral’,’Finite diff.’)
fprintf(’erreur spectral= %e finite diff.= %e ’,...

es,norm(ydf-SPE_special(xdf),inf));

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5
exact
spectral
finite diff.

Fig. 5.6. Comparison of the exact, spectral, and finite difference solutions.

Chapter References 125

Figure 5.6 is obtained with the script SPE SpecMeth.m. It displays the
exact solution, the spectral solution in P

0
21, and the finite difference solution

on 20 points (set m=21 and mdf=20 in the script).
It is clear that in this example, the spectral method is much more accurate

than the finite difference one, since the approximate solution in P
0
21 cannot be

distinguished from the exact one. The error in the supremum norm is 5.10−5

when it is equal to 6.10−2 for the finite difference solution. Furthermore, a
finite difference computation using about 800 points would be necessary to
obtain the same order of error as with the spectral method.

On the other hand, as soon as the solution of the continuous problem
is not regular enough, the performance of the spectral method in terms of
accuracy drops and becomes comparable, and even in some cases worse than,
the performance of the finite difference method. The reader can easily verify
this fact by building another test case, where the right-hand side f of equation
(5.1) corresponds to a solution whose second derivative is a step function.

Chapter References

C. Bernardi, M. Dauge, and Y. Maday, Spectral methods for axisym-
metric domains. Numerical algorithms and tests due to Mejdi Azaiez, Series
in Applied Mathematics, 3. Gauthier-Villars, North-Holland, Amsterdam,
1999.

C. Bernardi and Y. Maday, Spectral Methods in Handbook of numerical
analysis, Vol. V, North-Holland, Amsterdam, 1997.

C. Bernardi, Y. Maday, and F. Rapetti, Discrétisations variationnelles
de problèmes aux limites elliptiques, Mathématiques & Applications, Vol.
45, Springer-Verlag, Mai 2004.

P. J. Davis, Interpolation and Approximation, Dover Publications, Inc., New
York, 1975.

A. R. Krommer and C. W. Ueberhuber, Numerical Integration on
Advanced Computer Systems, Lecture Notes in Computer Science, 848,
Springer-Verlag, Berlin, 1994.

G. Szegő, Orthogonal Polynomials, fourth edition, American Mathematical
Society, Colloquium Publications, Vol. XXIII, Providence, R.I., 1975.

B. I. Wohlmuth, Discretization Methods and Iterative Solvers Based on
Domain Decomposition, Lecture Notes in Computational Science and En-
gineering, 17, Springer-Verlag, Berlin, 2001.

6

Signal Processing: Multiresolution Analysis

Project Summary

Level of difficulty: 1

Keywords: Approximation, multiresolution analysis, wavelets

Application fields: Signal processing, image processing

6.1 Introduction

This chapter is devoted to a short introduction to multiresolution analysis
(MRA). This is a very promising field in mathematics, with numerous theo-
retical and practical developments in engineering applications. Over the past
two decades, wavelet functions have proven to be a very efficient tool for
dealing with problems arising from data compression, and signal and image
processing. Famous examples of applications are the FBI fingerprint database,
and the new image coding standard MPEG3.

6.2 Approximation of a Function: Theoretical Aspect

6.2.1 Piecewise Constant Functions

In this section we introduce the basic ideas of multiresolution analysis. Let
Ω be the interval [0, 1[, and consider a function f ∈ L1(Ω). For any arbitary
fixed integer j ≥ 0 we define the intervals Ωk

j = [2−jk, 2−j(k + 1)[for k =
0, 1, . . . , 2j − 1. We then approximate the function f by its projection Pjf
onto the family of functions constant on intervals Ωk

j (see Fig. 6.2). The value
of Pjf on Ωk

j is computed as

128 6 Signal Processing: Multiresolution Analysis

P k
j f = 2j

∫
Ωk

j

f(t) dt, for k = 0, 1, . . . , 2j − 1.

We also introduce φ = χ[0,1[, the characteristic function1 of Ω, and note first
that φ satisfies the following property, known as the two-scale relation:

∀x ∈ Ω, φ(x) = φ(2x) + φ(2x − 1). (6.1)

This relation is “plotted” in Fig. 6.1.

1/2 10

1

φ

x2x−1 2x

Fig. 6.1. The two-scale relation (Haar basis).

We remark that x �→ φ(2jx−k) is the characteristic function of the interval
Ωk

j =
[
2−jk, 2−j(k + 1)

[
, and we redefine Pjf as

∀x ∈ Ω, Pjf(x) =
2j−1∑
k=0

P k
j fφ(2jx − k).

Since Ω is a bounded domain, f ∈ L1(Ω) whenever f ∈ L2(Ω), and Pjf is
then an element of the vector space

Vj =
{

f ∈ L2(Ω), f|Ωk
j

is constant, for k = 0, 1, . . . , 2j − 1
}

.

The space Vj has finite dimension dim Vj = 2j . For k = 0, 1, . . . , 2j − 1,
we define the functions φk

j as

∀x ∈ Ω, φk
j (x) = 2j/2φ(2jx − k). (6.2)

1 In the following, χ[a,b[is the characteristic function of the interval [a, b[.

6.2 Approximation of a Function: Theoretical Aspect 129

The 2j functions φk
j span Vj , and are orthonormal relative to the L2 scalar

product: 〈f, g〉 =
∫

Ω
f(t)g(t) dt. Using this orthonormal basis, we can write

∀x ∈ Ω, Pjf(x) =
2j−1∑
k=0

〈f, φk
j 〉φk

j (x) =
2j−1∑
k=0

ck
j φk

j (x),

where the coefficients ck
j are the components of Pjf in the {φk

j }k,j basis; they
are computed according to

ck
j = 〈f, φk

j 〉 =
∫

f(t)φk
j (t) dt = 2j/2

∫
Ωk

j

f(t) dt. (6.3)

The application Pj is then the orthogonal projection onto Vj relative to the
L2(Ω) scalar product. Consider now two arbitrary integers j′ > j ≥ 0, and
define as previously two spaces Vj′ and Vj . The basis functions {φk′

j′ }k′,j′

of the space Vj′ are constant on intervals Ωk′
j′ of length 2−j′

, while the Vj

basis functions {φk
j }k,j are constant on intervals Ωk

j of length 2−j > 2−j′
.

Because Vj′ ⊂ Vj , the function Pj′f is a more accurate approximation of f
than Pjf , in the sense that ‖Pj′f − f‖2 < ‖Pjf − f‖2. It can be proven that
this approximation Pjf converges to f in L2(Ω) as j goes to infinity (see
Fig. 6.2). Furthermore, when f ∈ C0(Ω), the approximation Pjf converges
to f according to the uniform norm: limj→+∞ ‖f − Pjf‖∞ = 0.

For an arbitrary fixed integer j ≥ 0, we consider now the two spaces Vj and
Vj+1. From (6.1) we may write, for any f ∈ L2(Ω) and for k = 0, 1, . . . , 2j −1,

√
2

∫
f(t)φk

j (t) dt =
∫

f(t)φ2k
j+1(t) dt +

∫
f(t)φ2k+1

j+1 (t) dt.

This leads to a first relation connecting the coefficients ck
j and ck′

j+1:

ck
j = (c2k

j+1 + c2k+1
j+1)/

√
2, for k = 0, 1, . . . , 2j − 1. (6.4)

Remark 6.1. In the case of an unbounded domain (Ω = R for example), we
may change the definition of the space Vj to

Vj =
{

f ∈ L2(R), f|Ωk
j

is constant, k ∈ Z

}
.

6.2.2 Decomposition of the Space VJ

Consider now an arbitrary fixed integer J ≥ 0. Then for any integer j satis-
fying J > j ≥ 0, we define successive functional spaces Vj , Vj+1, . . . , VJ , that
satisfy Vj ⊂ Vj+1 ⊂ · · · ⊂ VJ . For any given function f ∈ L2(Ω), a standard
way to write the orthogonal projection of f on the subspace Vj+1 is to con-
sider Pj+1f as the orthogonal projection of f onto Vj along with a correction
term:

130 6 Signal Processing: Multiresolution Analysis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 6.2. Approximating a function using mean values: (a) j = 6; (b) j = 8.

Pj+1f = Pjf + (Pj+1f − Pjf) = Pjf + Qjf. (6.5)

This relation introduces the new operator Qj = Pj+1−Pj , which is actually
the orthogonal projection operator onto Wj , the orthogonal complement of Vj

in Vj+1: Vj+1 = Vj ⊕ Wj . It is easy to check that the function ψ = χ[0,1/2[−
χ[1/2,1[satisfies

ψ(x) = φ(2x) − φ(2x − 1). (6.6)

Now we consider the functions ψk
j defined by

∀x ∈ Ω, ψk
j (x) = 2j/2ψ(2jx − k), for k = 0, 1, . . . , 2j − 1. (6.7)

The 2j functions ψk
j span Wj and are orthonormal relative to the L2 scalar

product. Then for an arbitrary function f ∈ L2(Ω), we compute the coeffi-
cients dk

j according to

dk
j = 〈f, ψk

j 〉 =
∫

f(t)ψk
j (t) dt

= 2j/2
∫

Ω2k
j+1

f(t) dt − 2j/2
∫

Ω2k+1
j

f(t) dt.

(6.8)

The coefficient dk
j is the fluctuation of f on the interval Ωk

j . Using (6.3), we
write first

dk
j = (c2k

j+1 − c2k+1
j+1)/

√
2 (6.9)

and then, by adding (6.9) to (6.4), we get
√

2 c2k
j+1 = ck

j + dk
j , for k = 0, 1, . . . , 2j − 1, (6.10)

while subtracting (6.9) from (6.4) leads to

6.2 Approximation of a Function: Theoretical Aspect 131
√

2 c2k+1
j+1 = ck

j − dk
j , for k = 0, 1, . . . , 2j − 1. (6.11)

These relations are connected to the space decomposition Vj+1 = Vj ⊕Wj .
We gather these results in the useful relations (6.12) and (6.13), basic elements
of the decomposition and reconstruction algorithms:⎧⎨⎩ ck

j = (c2k
j+1 + c2k+1

j+1)/
√

2,

dk
j = (c2k

j+1 − c2k+1
j+1)/

√
2, for k = 0, 1, . . . , 2j − 1;

(6.12)

⎧⎨⎩ c2k
j+1 = (ck

j + dk
j)/

√
2,

c2k+1
j+1 = (ck

j − dk
j)/

√
2, for k = 0, 1, . . . , 2j − 1.

(6.13)

Before going any further, we remark that it is possible to iterate the space
decomposition process according to

VJ = VJ−1 ⊕ WJ−1 = VJ−2 ⊕ WJ−2 ⊕ WJ−1 = · · ·

= V0 ⊕ W0 ⊕ · · · ⊕ WJ−2 ⊕ WJ−1.
(6.14)

Since the functions φk
j (respectively ψk

j) span an orthonormal basis of Vj

(respectively Wj), we are now able to define many orthonormal bases of VJ .
Among all possibilities, the emphasis is put on two particular bases: the canon-
ical basis, generated by functions φk

J ,

PJf =
2J−1∑
k=0

ck
Jφk

J , (6.15)

and the so-called Haar basis, spanned by φ0
0 and all functions ψk

j , for j =
0, 1, 2, . . . , J − 1 and k = 0, 1, . . . , 2j − 1:

PJf = c0
0φ

0
0 +

J−1∑
j=0

2j−1∑
k=0

dk
j ψk

j . (6.16)

Remark 6.2. Since φ0
0 = φ = χ[0,1[is the characteristic function of the

whole domain Ω, the coefficient c0
0 is simply the mean value of f on Ω:

c0
0 =

∫
Ω

f(t) dt.

Remark 6.3. It is worth noting that the family of functions {φk
J}2J−1

k=0 , which
form an orthonormal basis of the finite-dimensional space VJ , converges to an
orthonormal basis of the infinite-dimensional space L2(Ω) as J goes to infin-
ity. So the coefficients ck

J are also the components of f in the corresponding
basis of L2(Ω). Note also that the family of functions {φ}∪{ψk

j }k=2j−1,j=J−1
k=0,j=0 ,

an orthonormal basis of the finite-dimensional space VJ , converges to an or-
thonormal basis of the infinite-dimensional space L2(Ω) as J goes to infinity.
The coefficients c0

0 and dk
j are the components of f in the corresponding basis

of L2(Ω).

132 6 Signal Processing: Multiresolution Analysis

6.2.3 Decomposition and Reconstruction Algorithms

In this section, we look at the standard operations required to switch from
the expression of a function in the canonical basis of VJ to its expression in
the Haar basis, and conversely.

A. Let f be a function in L2(Ω) and J an arbitrary fixed integer. We
compute the 2J coefficients ck

J , either exactly if we have an expression for
f , or approximately using a sampling of the 2J values of f on intervals ΩJ

k .
Starting from these 2J coefficients ck

J , we successively compute the coefficients
ck
j and dk

j according to the following algorithm:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

for j = J − 1, . . . , 1, 0 compute

for k = 0, 1, . . . , 2j − 1 compute

ck
j = (c2k

j+1 + c2k+1
j+1)/

√
2

dk
j = (c2k

j+1 − c2k+1
j+1)/

√
2

end

end

(6.17)

Decomposition algorithm.

This calculation is referred to as the analysis or decomposition algorithm
of f . We may represent step j of this algorithm by the symbolic scheme

ck
j

(0 ≤ k < 2j)
↙ ↘

ck
j−1 dk

j−1
(0 ≤ k < 2j−1) (0 ≤ k < 2j−1)

Once computed, the 2j coefficients dk
j are not used in the next steps of

the decomposition algorithm; only the 2j values of the coefficients {ck
j }k are

required in order to compute the coefficients {ck
j−1}k and {dk

j−1}k. The com-
putational cost of step j in algorithm (6.17) is that of computing 2 × 2j−1

coefficients, that is, exactly 2j+1 operations. The computational cost of the
decomposition algorithm, required to obtain the values of the 2J coefficients,
is then

2J+1 + · · · + 2j + · · · + 22 + 1 = 2J+2 = 4 × 2J operations.

This may be considered as an optimal value, since we are computing 2J

outputs from 2J inputs for a cost of O(2J) operations.

B. Conversely, assume that we know c0
0, the mean value of f on Ω, and all

other coefficients dk
j for j = 0, . . . , J − 1. Then we retrieve all the coefficients

ck
j using the following algorithm:

6.2 Approximation of a Function: Theoretical Aspect 133

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

for j = 0, . . . , J − 1 compute

for k = 0, 1, . . . , 2j − 1 compute

c2k
j+1 = (ck

j + dk
j)/

√
2

c2k+1
j+1 = (ck

j − dk
j)/

√
2

end

end

(6.18)

Reconstruction algorithm.

This calculation is referred to as the synthesis or the reconstruction algo-
rithm of f . We represent step j of this algorithm by the symbolic scheme

ck
j−1 dk

j−1
(0 ≤ k < 2j−1) (0 ≤ k < 2j−1)

↘ ↙
ck
j

(0 ≤ k < 2j)

We remark again that the computational cost of step j of this algorithm
is that of computing 2 × 2j−1 coefficients, that is, 2j+1 operations. The total
computational cost of the reconstruction algorithm is also O(2J) operations.

Both algorithms (6.17) and (6.18) are efficient tools for obtaining the com-
ponents of a function in the Haar basis from its components in the canonical
basis, and conversely. There exist many other orthonormal bases of the space
VJ and as many corresponding algorithms; we shall see two further examples
of such algorithms, which have strong similarity to (6.17) and (6.18). This
calculation is referred as a multiscale analysis or multiresolution analysis.

6.2.4 Importance of Multiresolution Analysis

We now look more closely at the data compression aspect included in the
multiresolution analysis formulation. We assume first that the function f is
constant (f = C 	= 0) on Ω, and compare two expressions for PJf . The
first is the representation of f in the canonical basis. According to (6.3), all
the 2J coefficients ck

J are equal to C, and are thus different from zero. To
represent PJf in this basis, an array of 2J components is required. From
another point of view, the expression for PJf in the Haar basis needs to
compute coefficients ck′

J−1 and dk′
J−1 from the ck

J ’s according to (6.17). We
obtain immediately ck′

J−1 = C and dk′
J−1 = 0 for k′ = 0, . . . , 2J−1 − 1. Going

further in the computation, we see that ck
j = C and dk

j = 0 for j = J−1, . . . , 0.
Finally, there is only one nonzero coefficient in the Haar basis: c0

0 = C.

134 6 Signal Processing: Multiresolution Analysis

In information processing, attention is focused on the most condensed
expression of a signal, in order to compute information, store it in memory, or
send it through a network. Many algorithms are dedicated to the compression
or decompression of data without any loss. We understand with the previous
example how useful multiresolution may be in that case. In a more general
case, when a function f is no longer constant, the coefficient ck

j stands for
the mean value of f on Ωk

j , while the coefficient dk
j represents the variation

of f at the scale j. For any slowly varying function f , many coefficients dk
j

have a small value and may be neglected. Then the number of significant
coefficients in the Haar basis representation is far smaller than the number of
coefficients ck

J present in the canonical basis. Conversely, a large coefficient dk
j

is associated with a fast variation of the function f within Ωk
j . This property

is of great interest when one wants to look automatically for the singularities
of a function. As an illustration we just mention that special events in the sky
are automatically detected by computers analyzing thousands of photographs
of stars captured daily by telescopes.

Remark 6.4. Fourier analysis is known to be useful for dealing with oscillat-
ing signals. It is a very accurate way to capture the frequencies hidden in a
signal, but its important drawback is the lack of spatial localization of these
oscillations, due to the use of cosine or sine functions oscillating on the whole
domain. This drawback is not present in multiresolution analysis, where the
basis functions have supports limited to the Ωj

k. Unfortunately, the frequency
localization is then less accurate than with the Fourier basis.

6.3 Multiresolution Analysis: Practical Aspect

In this section we deal with a very simple example in order to understand the
practical efficiency of the multiresolution analysis theory. But before doing
this, it remains to clarify the way we shall store the different coefficients arising
from the previous algorithms. Let Ω ⊂ R be a bounded interval, f a function
defined on Ω, and J > 0 an arbitrary fixed integer. Using the formulas of
algorithm (6.17), we compute for j = J − 1, . . . , 0 coefficients ck

j and dk
j , for

k = 0, 1, . . . , 2j −1. These coefficients are stored in the following way: We first
compute coefficients ck

J according to (6.3) and store them in an array [cJ] of
2J components. Then we compute c0

0 and {{dk
j }k}j using (6.17), and store

them in an array [dJ] of 2J components. We begin at step J of algorithm
(6.17) by imposing [dJ] = [cJ]. Then at step J − 1 the 2J−1 coefficients ck′

J−1
are stored in the first half of array [dJ] (components 1 up to 2J−1), while the
2J−1 coefficients dk′

J−1 are stored in the second half of array [dJ] (components
2J−1 + 1 up to 2J). At step J − 2 the 2J−2 coefficients ck′′

J−2 are stored in
the first quarter of the array (components 1 up to 2J−2), thus erasing the
now useless values of coefficients ck′

J−1 for k′ = 1, 2, . . . , 2J−2. Then the 2J−2

coefficients dk′′
J−2 are stored in the second quarter of the array (components

6.4 Multiresolution Analysis: Implementation 135

2J−2 + 1 up to 2J−1), thus erasing the remaining useless values of coefficients
ck′
J−1 for k′ = 2J−2 + 1, 2, . . . , 2J−1. Note that during this operation the [dJ]

components from 2J−1 + 1 up to 2J , which correspond to coefficients dk′
J−1,

are not modified. Proceeding in this way until step j = 0, we finally get the
following array [dJ]:

[dJ] = [c0
0, d

0
0, d

0
1, d

1
1, . . . , d

0
j , d

1
j , . . . , d

2j−1
j , . . . , d0

J−1, . . . , d
2J−1−1
J−1]. (6.19)

This storage is related to the decomposition of the space VJ according to
the scheme

VJ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WJ−1

VJ−1 →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

WJ−2

VJ−2 →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
· · ·

· · · →

⎧⎨⎩
W0

V0

6.4 Multiresolution Analysis: Implementation

Let f be the function defined on Ω = [0, 1] by f(x) = exp(−x) sin 4πx. We
choose J = 10 and compute the arrays [cJ] and [dJ] associated with PJf .

Exercise 6.1. 1. Write a program that computes all coefficients ck
J accord-

ing to (6.17). Store these coefficients in an array [cJ] with 2J components.
2. Using the decomposition algorithm (6.17), compute for j = J − 1, . . . , 0

all coefficients ck
j and dk

j , for k = 0, 1, . . . , 2j − 1. Store these coefficients
in an array [dJ] with 2J components, as detailed in the previous section.

3. Write a program that computes all coefficients ck
J from the [dJ] compo-

nents, according to the reconstruction algorithm (6.18). Check the results.

A solution of this exercise is proposed in Sect. 6.7 at page 148. Using these
direct and inverse transformation programs, one can perform some numerical
experiments. We shall deal now with an example of a compression algorithm.

Exercise 6.2. 1. Calculate the number of coefficients in an array [dJ] whose
absolute values are greater than ε = 2−J/2 × 10−3.

2. Copy array [dJ] into a new array [dε
J] and set to zero every component of

[dε
J] whose absolute value is less than ε (dε,k

j = 0 when |dk
j | < ε).

3. Compute the array [cε
J] from [dε

J] using the reconstruction algorithm
(6.18).

4. Visualize the resulting signal and compare both curves representing PJf
and P ε

Jf .

136 6 Signal Processing: Multiresolution Analysis

5. Study the variations of ‖P ε
Jf − PJf‖2 and the number of nonzero coeffi-

cients in [dε
J] as ε varies.

A solution of this exercise is proposed in Sect. 6.7 at page 148. Table 6.1
displays results of this experiment (with f(x) = exp(−x) sin 4πx and J = 10).
The number of nonzero coefficients is reported in front of the threshold value,
with the corresponding relative error ‖P ε

Jf−PJf‖2/‖PJf‖2. Fig. 6.3 plots two
signals reconstructed after thresholding. We emphasize here the compression
capability of the method: using only 352 coefficients instead of the 1024 sample
values, we obtain 0.8% relative error.

Threshold Coefficients Relative error

0.1000 78 0.0402
0.0500 121 0.0258
0.0100 352 0.0080
0.0050 563 0.0042
0.0010 947 0.0003
0.0005 987 0.0001
0.0001 1015 0.00001

Table 6.1. Thresholding (Haar wavelet).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Haar wavelet

Original Signal
Reconstructed Signal

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Haar wavelet

Original Signal
Reconstructed Signal

(b)

Fig. 6.3. Reconstruction after thresholding: J = 10. (a) ε = 0.10; (b) ε = 0.01.

6.5 Introduction to Wavelet Theory 137

6.5 Introduction to Wavelet Theory

6.5.1 Scaling Functions and Wavelets

If you have correctly performed the previous numerical experiments, you de-
serve our warmest congratulations for your first steps in the fabulous world
of wavelets! When Haar proposed (in 1910!) the construction of an orthonor-
mal basis of the space L2(Ω) like the one discussed previously, he was in fact
far from imagining the practical importance of his discovery. Wavelet the-
ory was founded in the sixties, arising from an idea of a petroleum engineer
named Morlet, who was looking for algorithms well suited to seismic signal
processing, and more accurate than Fourier analysis (see Meyer, 1990).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Haar wavelet

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Haar wavelets

(b)

Fig. 6.4. Haar wavelets (J = 10). (a) Single wavelet; (b) shifted wavelets.

The Haar basis construction is the foundation of multiresolution analysis.
In the associated terminology, functions φk

j are the called scaling functions,
while functions ψk

j are wavelet functions, or wavelets, for short. What is the
appearance of a wavelet? Have a look at the previous numerical experiments:
for J = 10 we begin by setting to zero all components of the [dJ] and give
the value 1 to only one of the coefficients dk

j ; 2 then using the reconstruction
algorithm (6.18), we obtain the associated wavelet ψk

j , as plotted in Fig. 6.4(a).
Note that the integers k and j have to satisfy the following conditions: 0 < j <
J and 0 ≤ k < 2j . Choose now another integer k′ 	= k such that 0 ≤ k < 2j

and repeat the experiment. This leads to a wavelet ψk′
j , which appears (see

Fig. 6.4(b)) to be shifted from wavelet ψk
j by an offset of 2−j(k′ − k). Both

wavelets belong to the subspace Wj and are hence called level-j wavelets. All
level-j wavelets (they are altogether 2j in level j) are obtained from any one
of them by a p 2−j shift (p an integer).

2 The level j coefficient dk
j is stored in the (2j + k + 1)th component of [dJ] (see

(6.19)).

138 6 Signal Processing: Multiresolution Analysis

Now, if we choose two integers j′ and k′′ such that 0 < j′ 	= j < J
and 0 ≤ k′′ < 2j′

, the corresponding wavelet ψk′′
j′ has features similar to the

previous wavelets: same global shape but different size (amplitude has been
multiplied by 2j′−j , while the length has been divided by the same factor (see
Fig. 6.4(b)).

The whole space VJ ⊂ L2(Ω) is then generated by direct summation of
the subspace V0 and all orthogonal subspaces Wj , each of which is spanned
by 2j wavelet functions. When J goes to infinity, we retrieve the structure
introduced by Haar (see Remark 6.2): L2(Ω) is a direct summation of finite-
dimensional orthogonal subspaces. Moreover, for any f ∈ L2(Ω), the multires-
olution analysis can be summarized in

PJf = 〈f, φ0
0〉φ0

0 +
j=J−1∑

j=0

2j−1∑
k=0

〈f, ψk
j 〉ψk

j ,

f = 〈f, φ0
0〉φ0

0 +
∑
j≥0

2j−1∑
k=0

〈f, ψk
j 〉ψk

j ,

f = PJf +
∑
j≥J

2j−1∑
k=0

〈f, ψk
j 〉ψk

j .

(6.20)

Hence the coefficients c0
0 and dk

j are the components of f in the correspond-
ing basis of L2(Ω). From that point of view, the wavelet theory appears to be
a powerful tool for approximating functions. Since the relation Vj+1 = Vj ⊕Wj

holds at any level j < J , we may consider the subspace Wj as a set of detail
functions, that is, the functions we have to add to the functions of Vj , in order
to retrieve all Vj+1 functions.

By fixing an integer J < +∞, we restrain the space description to the scale
2−J , and consequently we are unable to capture the variation |f(x) − f(x′)|
when |x − x′| < 2−J . On the other hand, we may write ‖PJf − f‖2 < C 2−J

for any function f in L2(Ω) with bounded variation. This means we know
exactly the accuracy of an approximation PJf of a given f ; moreover, we also
know the price to pay to improve this result: we have to compute at least 2J

new coefficients.
In the previous example, all scaling functions are derived from the same

function φ by the relation φk
j (x) = φ(2jx − k). Likewise, the relation ψk

j (x) =
ψ(2jx − k) shows that all wavelet functions are derived from the same func-
tion ψ, sometimes called the mother wavelet function. In this first study, both
φ and ψ are discontinuous functions; it follows that the approximating func-
tion PJf is also discontinuous, even when f is continuous. How is one to
get a more regular approximation? Much work has been done to answer the
question; there exist abstract necessary conditions on the pair (φ, ψ) in order
to generate a general framework for multiresolution analysis. In short, it is

6.5 Introduction to Wavelet Theory 139

possible to build continuous wavelet approximations for a given continuous
function; however, these aspects of wavelet theory are beyond our scope. We
refer to Cohen and Ryan (1995), Cohen (2000, 2003), Daubechies (1992), and
Mallat (1997) for further details. In the following sections, we introduce two
examples of continuous wavelets: the Schauder and the Daubechies wavelets.

For the sake of simplicity we shall limit our study to periodic continuous
functions on Ω. Although wavelet theory is able to address the general case,
it needs some technical modifications that we want to skip here.

6.5.2 The Schauder Wavelet

We follow here the outline of the previous section and introduce a new VJ

space definition:

Vj =
{

f ∈ C0(Ω), f|Ωk
j

is affine, for k = 0, 1, . . . , 2j − 1
}

⊂ L2(Ω).

We are now dealing with piecewise linear functions continuous on Ω. We
consider first the function φ defined by

φ(x) = max (0, 1 − |x|). (6.21)

The function φ satisfies the two-scale relation (see Fig. 6.5)

φ(x) =
1
2
φ(2x − 1) + φ(2x) +

1
2
φ(2x + 1). (6.22)

Then we define the functions φk
j by scaling and shift:

φk
j (x) = 2j/2φ(2jx − k), for k = 0, 1, . . . , 2j − 1. (6.23)

The functions φk
j are known as hat functions in the finite element method;

though they do not span an orthogonal basis of Vj , we shall admit that
they provide the Schauder wavelets by the definition ψk

j = φk
2j−1, for k =

0, 1, . . . , 2j − 1. It is not the only eligible choice in that case, but this is the
simplest one (for more details see Mallat (1997)). Fig. 6.6 displays a set of
Schauder wavelets when J = 3. For any function f we consider again the two
representations

PJf =
2J−1∑
k=0

ck
Jφk

J and PJf = c0
0φ

0
0 +

J−1∑
j=0

2j−1∑
k=0

dk
j ψk

j . (6.24)

This definition leads to the decomposition formulas⎧⎪⎨⎪⎩
ck
j =

√
2 c2k

j+1,

dk
j =

√
2

[
c2k+1
j+1 − 1

2
(c2k

j+1 + c2k+2
j+1)

]
, for k = 0, 1, . . . , 2j − 1,

(6.25)

140 6 Signal Processing: Multiresolution Analysis

10−1

φ

φ

(x)

(2x−1) φ (2x+1)

φ (2x)

Fig. 6.5. The two-scale relation (Schauder basis).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Schauder wavelets

Fig. 6.6. Some Schauder wavelets (J = 3).

as well as the reconstruction formulas⎧⎪⎪⎪⎨⎪⎪⎪⎩
c2k
j+1 =

√
2

2
ck
j ,

c2k+1
j+1 =

√
2

2

[
dk

j +
1
2
(ck

j + ck+1
j)

]
, for k = 0, 1, . . . , 2j − 1.

(6.26)

Any coefficient ck
j stands here for the (normalized) value of f at the point

xk
j = 2jx − k, and a usual interpretation of (6.25) is that the decomposition

algorithm proceeds by elimination, keeping only point values of even indices
when going from level j + 1 to level j. Similarly, the coefficient dk

j appears to
be the difference between the (normalized) odd-index point value c2k+1

j+1 and
the linear interpolation of the adjacent (normalized) even-index point values
c2k
j+1 and c2k+2

j+1 ; it is known as the detail, that is, the value to be added to the

6.5 Introduction to Wavelet Theory 141

current level-j values ck
j and ck+1

j , in order to obtain the level-(j + 1) value
c2k+1
j+1 , as can be seen in the reconstruction algorithm (6.26). This process is

similar to the multiresolution idea introduced in (6.5) and (6.20). Fig. 6.7
shows a graphical interpretation of this computation.

x

k
j

f(x)

c

c j
k+1

c
2k+1
j+1

d
k
j

Fig. 6.7. Values and details.

A computer implementation of the relations (6.25–6.26) is easily obtained
from the previous algorithms (6.17–6.18). This is a very attractive property of
wavelet theory. All decomposition and reconstruction algorithms are similar
to (6.17) and (6.18); switching from a particular wavelet basis to another one
results from a slight change in the formulas. Moreover, this change arises only
from the corresponding two-scale relations. Consequently, both [cJ] and [dJ]
share the same structure of 2J -component arrays. The general computation,
common to all decomposition and reconstruction algorithms, is known as the
Mallat transform (see Mallat, 1997).

6.5.3 Implementation of the Schauder Wavelet

Let f be the function defined on Ω = [0, 1] by f(x) = exp(−x) sin 4πx. We
choose J = 10 and compute the arrays [cJ] and [dJ] associated with PJf .

Exercise 6.3. 1. Write a program that computes all coefficients ck
J accord-

ing to (6.25). Store these coefficients in an array [cJ] with 2J components.

142 6 Signal Processing: Multiresolution Analysis

2. Using the decomposition algorithm (6.25), compute for j = J − 1, . . . , 0
all coefficients ck

j and dk
j , for k = 0, 1, . . . , 2j − 1. Store these coefficients

in an array [dJ] with 2J components, as detailed in the previous section.
3. Write a program that computes all coefficients ck

J from the [dJ] compo-
nents, according to the reconstruction algorithm (6.26). Check the results.

Remark 6.5. The use of periodic functions requires a particular treatment at
both edges of the domain. More precisely, formulas (6.25) and (6.26) use the
relation c2j

j+1 = c0
j+1 for j = 1, 2, . . . , J − 1.

A solution of this exercise is proposed in Sect. 6.7 at page 148. We deal
again with an example of the compression algorithm.

Exercise 6.4. 1. Calculate the number of coefficients in the array [dJ] whose
absolute values are greater than ε = 2−J/2 × 10−3.

2. Copy array [dJ] in a new array [dε
J] and set to zero each component of

[dε
J] whose absolute value is less than ε (dε

j = 0 when |dj | < ε).
3. Compute the array [cε

J] from [dε
J] using the reconstruction algorithm

(6.26).
4. Visualize the resulting signal and compare both curves representing PJf

and P ε
Jf .

5. Study the variations of ‖P ε
Jf − PJf‖2 and the number of nonzero coeffi-

cients in [dε
J] as ε varies.

A solution of this exercise is proposed in Sect. 6.7 at page 149. Table 6.2
displays results of this experiment (with f(x) = exp(−x) sin 4πx and J = 10).
The number of nonzero coefficients is reported in front of the threshold value,
with the corresponding relative error ‖P ε

Jf − PJf‖2/‖PJf‖2. Fig. 6.8 plots
two signals reconstructed after thresholding. We emphasize the spectacular
compression capacity of the method: using only 77 coefficients arising from
1024 values, we obtain a 0.2% relative error. We see that for a smaller number
of significant components in array [dJ], we get a better approximation with
the Schauder wavelet than with the Haar wavelet. This is not a big surprise
because PJf is now a continuous approximation of the same continuous func-
tion f . Note that there is a small increase of the computational cost, due to
the use of more coefficients in formulas (6.25) and (6.26).

6.5.4 The Daubechies Wavelet

Is it possible to improve these results? Cohen (2003) has proven that a mul-
tiresolution analysis is available as soon as there exists a generalized two-scale
relation such as

φ(x) =
∑
k∈Z

hkφ(2x − k). (6.27)

In signal-processing theory, the hk’s are the components of an array h,
called a filter. Knowledge of a filter is a necessary and sufficient condition to

6.5 Introduction to Wavelet Theory 143

Threshold Coefficients Relative error

0.1000 25 0.0155
0.0500 41 0.0072
0.0100 77 0.0020
0.0050 102 0.0010
0.0010 205 0.0003
0.0005 246 0.0002
0.0001 459 0.00005

Table 6.2. Thresholding (Schauder wavelet).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Schauder wavelet

Original Signal
Reconstructed Signal

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Schauder wavelet

Original Signal
Reconstructed Signal

(b)

Fig. 6.8. Reconstruction after thresholding: J = 10. (a) ε = 0.10; (b) ε = 0.01.

build a multiresolution analysis. From (6.27) one may write the complemen-
tary relation

ψ(x) =
∑
k∈Z

h̃kψ(2x − k). (6.28)

Both relations are related to decomposition and reconstruction algorithms,
as previously established in (6.17–6.18) for the Haar wavelet, or (6.25–6.26) for
the Schauder wavelet. Daubechies (1992) has proven that the mother wavelet
regularity depends on the filter length, that is, the number of nonzero co-
efficients hk used in relation (6.27). A general method for defining compact-
support wavelets with arbitrary regularity has been proposed, introducing the
Daubechies wavelets family. To put it in a nutshell, the more nonzero coeffi-
cients appear in the two-scale relation (6.27), the more accurate is the wavelet
approximation. To end with this study, we shall deal now with the Daubechies
wavelet D4, which is defined by the following formulas:

144 6 Signal Processing: Multiresolution Analysis

Decomposition:⎧⎨⎩ ck
j = C0 c2k−1

j+1 + C1 c2k
j+1 + C2 c2k+1

j+1 + C3 c2k+2
j+1 ,

dk
j = C3 c2k−1

j+1 − C2 c2k
j+1 + C1 c2k+1

j+1 − C0 c2k+2
j+1 .

(6.29)

Reconstruction:⎧⎨⎩ c2k
j+1 = C3 ck−1

j − C0 dk−1
j + C1 ck

j − C2 dk
j ,

c2k+1
j+1 = C2 ck

j + C1 dk
j + C0 ck+1

j + C3 dk+1
j .

(6.30)

According to Daubechies (1992), the values of Ck are respectively⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C0 =

1 +
√

3
4
√

2
, C1 =

3 +
√

3
4
√

2
,

C2 =
3 −

√
3

4
√

2
, C3 =

1 −
√

3
4
√

2
.

(6.31)

6.5.5 Implementation of the Daubechies Wavelet D4

Let f be the function defined on Ω = [0, 1] by f(x) = exp(−x) sin 4πx. We
choose J = 10 and compute the arrays [cJ] and [dJ] associated with PJf .

Exercise 6.5. 1. Write a program that computes all coefficients ck
J accord-

ing to (6.29). Store these coefficients in an array [cJ] with 2J components.
2. Using the decomposition algorithm (6.25), compute for j = J − 1, . . . , 0

all coefficients ck
j and dk

j , for k = 0, 1, . . . , 2j − 1. Store these coefficients
in an array [dJ] with 2J components, as detailed in the previous sections.

3. Write a program that computes all coefficients ck
J from the [dJ] compo-

nents, according to the reconstruction algorithm (6.30). Check the results.
4. Visualize a Daubechies wavelet (see Fig. 6.9; what a surprise!).

Remark 6.6. As previously noticed, we consider here periodic functions, and
special formulas are required to treat the domain edges.

A solution of this exercise is proposed in Sect. 6.7 at page 149. We deal
again with an example of a compression algorithm.

Exercise 6.6. 1. Calculate the number of coefficients in array [dJ] whose
absolute values are greater than ε = 2−J/2 × 10−3.

2. Copy array [dJ] in a new array [dε
J] and set to zero each component of

[dε
J] whose absolute value is less than ε (dε

j = 0 when |dj | < ε).
3. Compute the array [cε

J] from [dε
J] using the reconstruction algorithm

(6.26).
4. Visualize the resulting signal and compare both curves representing PJf

and P ε
Jf .

6.5 Introduction to Wavelet Theory 145

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Daubechies Wavelet

Fig. 6.9. The Daubechies wavelet D4.

5. Study the variations of ‖P ε
Jf − PJf‖2 and the number of nonzero coeffi-

cients in [dε
J] as ε varies.

A solution of this exercise is proposed in Sect. 6.7 at page 149. Table 6.3
displays results of this experiment (with f(x) = exp(−x) sin 4πx and J =
10). The number of nonzero coefficients is reported in front of the threshold
value, with the corresponding relative error ‖P ε

Jf − PJf‖2/‖PJf‖2. Fig. 6.10
plots two signals reconstructed after thresholding. We emphasize again the
spectacular compression capacity of the method: by using only 78 coefficients
arising from 1024 values, we obtain a 0.3% relative error.

Threshold Coefficients Relative error

0.1000 30 0.0200
0.0500 43 0.0108
0.0100 78 0.0031
0.0050 108 0.0015
0.0010 207 0.0003
0.0005 233 0.0002
0.0001 454 0.00007

Table 6.3. Thresholding (Daubechies wavelet D4).

146 6 Signal Processing: Multiresolution Analysis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Daubechies wavelet

Original Signal

Reconstructed Signal

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Daubechies wavelet

Original Signal
Reconstructed Signal

(b)

Fig. 6.10. Reconstruction after thresholding: J = 10. (a) ε = 0.10; (b) ε = 0.01.

6.6 Generalization: Image Processing

Generalization of the previous results to image processing is straightforward.
We might define a wavelet function of two variables ψ2(x, y); meanwhile, the
tensor product is easier to deal with. We then consider a mother wavelet of the
form ψ2(x, y) = ψ(x)ψ(y). This choice introduces a two-dimensional Mallat
transform, where the image to treat is a matrix [cJ]: we begin to proceed
to a row-by-row decomposition. The resulting transformed rows are stored
in a matrix [c̃J]; we proceed then to a decomposition of the [c̃J] columns,
and the final results are stored (column by column) in a matrix [dJ]. This
matrix contains all the components of the image in the wavelet basis. It is
then possible to compress this object using a thresholding algorithm, and the
compressed data are stored in a matrix [dε

J]. The use of a column-by-column
reconstruction algorithm followed by a row-by-row reconstruction algorithm
provides a new image [cε

J] from [dε
J]. From a practical point of view, some

operations may be performed using the [dJ] representation directly rather
than the [cJ] initial one:

• Two distinct images may be compared in the (compressed) wavelet format;
this is very helpful for saving computing time. As an example of such
utilization, we cite the research of suspected fingerprints in a criminal
fingerprints database. As the information is more condensed into wavelet
storage, comparisons go very fast.

• Storage in [dJ] format is also useful to detect singularities because they
are associated with large values of coefficients [dJ]k,l. So the presence (or
absence) of such coefficients may reveal special features of the original
image [cJ] very quickly.

6.6 Generalization: Image Processing 147

6.6.1 Image Processing: Implementation

We assume here that F is an image defined as a two-dimensional pixel array
[cJ].

Exercise 6.7. 1. Write a procedure performing decomposition and recon-
struction of a given image [cJ] for all three wavelet functions described in
the previous sections.

2. Check the thresholding compression algorithm.
3. Compare and visualize all results.

A solution of this exercise is proposed in Sect. 6.7 at page 149. Fig. 6.11
and Fig. 6.12 display original and reconstructed images. For a threshold value
ε = 10−3 × (2J)2, the numbers of nonzero components in [dε

J] are respec-
tively nbcε

H = 2298 using the Haar wavelet, nbcε
S = 11295 using the Schauder

wavelet, and nbcε
D = 1887 using the D4 Daubechies wavelet. The original doc-

ument is a 256 × 256 pixel image, corresponding to a 65536 coefficient matrix
[cJ].

50 100 150 200 250

50

100

150

200

250

(a)
50 100 150 200 250

50

100

150

200

250

(b)

Fig. 6.11. Images. (a) Original; (b) reconstructed (Haar wavelet).

Multiresolution analysis is rich in theoretical and practical developments.
Numerous projects are progressing all around the world, making it one of the
most active areas of research in the mathematical sciences. Readers will find
a large literature on this subject. Among many papers of interest, we cite
Cohen (2000, 2003), Daubechies (1992), Mallat (1997), and Meyer (1990).

148 6 Signal Processing: Multiresolution Analysis

50 100 150 200 250

50

100

150

200

250

(a) 50 100 150 200 250

50

100

150

200

250

(b)

Fig. 6.12. Reconstructed images. (a) Schauder wavelet; (b) Daubechies wavelet.

6.7 Solutions and Programs

Solution of Exercise 6.1

The file MRA haar.m provides the procedure related to decomposition and
reconstruction algorithm (6.17) and (6.18). A flag parameter allows one to
switch from decomposition ([cJ] −→ [dJ]) to reconstruction ([dJ] −→ [cJ])
formulas.
The file MRA haar ex1.m provides the procedure that generates a sampling
of a function on the interval [0, 1] (for this particular example, the function
contained in the file MRA function.m is defined by f(x) = exp(−x) sin 4πx).
This sampling is then used to define a piecewise constant function with the
help of the procedure MRA pwcte. Decomposition and reconstruction compu-
tations are then performed by the procedure MRA haar.

Solution of Exercise 6.2

The file MRA haar ex2.m provides the procedure for performing the same
computations as MRA haar ex1, with the difference that all coefficients whose
absolute values are smaller than the threshold are set to zero. This procedure
is used for the compression tests of Table 6.1 and Fig. 6.3.

Solution of Exercise 6.3

The file MRA schauder.m provides the procedure related to decomposition
and reconstruction algorithm (6.25) and (6.26). A flag parameter allows one
to switch from decomposition ([cJ] −→ [dJ]) to reconstruction ([dJ] −→ [cJ])
formulas.

6.7 Solutions and Programs 149

The file MRA schauder ex1.m provides the procedure that generates a sam-
pling of a function on the interval [0, 1] (for this particular example, the func-
tion contained in the file MRA function.m is defined by f(x) = exp(−x) sin 4πx).
This sampling is then used to define a piecewise constant function with the
help of the procedure MRA pwcte. Decomposition and reconstruction compu-
tations are then performed by the procedure MRA schauder.

Solution of Exercise 6.4

The file MRA schauder ex2.m provides the procedure for performing the same
computations as MRA schauder ex1, with the difference that all coefficients
whose absolute values are smaller than the threshold are set to zero. This
procedure is used for the compression tests of Table 6.2 and Fig. 6.8.

Solution of Exercise 6.5

The file MRA daube4.m provides the procedure related to decomposition and
reconstruction algorithm (6.29) and (6.30). A flag parameter allows one to
switch from decomposition ([cJ] −→ [dJ]) to reconstruction ([dJ] −→ [cJ])
formulas.
The file MRA daube4 ex1.m provides the procedure that generates a sampling
of a function on the interval [0, 1] (for this particular example, the function
contained in file MRA function.m is defined by f(x) = exp(−x) sin 4πx). This
sampling is then used to define a piecewise constant function with the help
of the procedure MRA pwcte. Decomposition and reconstruction computations
are then performed by the procedure MRA daube4.

Solution of Exercise 6.6

The file MRA daube4 ex2.m provides the procedure for performing the same
computations as MRA daube4 ex1, with the difference that all coefficients
whose absolute values are smaller than the threshold are set to zero. This
procedure is used for the compression tests of Table 6.3 and Fig. 6.10.

Solution of Exercise 6.7

The files MRA haar ex3.m, MRA schauder ex3.m, and MRA daube4 ex3.m
provide procedures that read an image in the file lenna.jpg and then per-
form decomposition, compression, and reconstruction steps with the Haar
wavelet (respectively Schauder and Daubechies wavelets). Figs. 6.11 and 6.12
were obtained in this way. Note that in these procedures, decomposition and
reconstruction are performed by successive uses of one-dimensional decompo-
sition and the reconstruction algorithm.

150 6 Signal Processing: Multiresolution Analysis

Chapter References

A. Cohen, Wavelet Methods in Numerical Analysis, Handbook of Numer-
ical Analysis, vol. VII, P.G. Ciarlet and J.L. Lions eds., North-Holland,
Amsterdam, 2000.

A. Cohen, Numerical Analysis of Wavelet Methods, Studies in Mathematics
and its Applications, North-Holland, Amsterdam, 2003.

A. Cohen and R. Ryan, Wavelets and Multiscale Signal Processing, Chap-
man and Hall, London, 1995.

I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied
Mathematics, Philadelphia, Pennsylvania, 1992.

S.G. Mallat, A Wavelet Tour of Signal Processing, Academic Press, New
York, 1997.

Y. Meyer, Ondelettes et Opérateurs. Tomes I à III, Hermann, Paris, 1990.

7

Elasticity: Elastic Deformation of a Thin Plate

Project Summary

Level of difficulty: 2

Keywords: Finite difference method, Laplacian, bilaplacian

Application fields: Linear elasticity: deformation of a membrane or plate

7.1 Introduction

We study in this chapter the deformation of a thin plate. In our example,
the plate is part of a condenser microphone, such as one may find inside a
telephone (or a cellular phone). When the user speaks, the plate (which is
in fact a metalized plastic diaphragm) moves in response to changes in the
acoustic pressure induced by sound waves. Since the plate is also the side of
an electric capacitor, its dynamic deformations infer variations of the electric
potential, which is amplified to generate a measurable signal. For the sake
of simplicity, we shall consider here a thin rectangular plate in the device
displayed in Fig. 7.1.

thin plate (or membrane)

������

holebottom plate
air

side support

Fig. 7.1. Sketch of the pressure sensor (side view).

152 7 Elasticity: Elastic Deformation of a Thin Plate

7.2 Modeling Elastic Deformations (Linear Problem)

As a first stage of approximation, we shall neglect electrostatic forces in the
device and consider that the plate bends exclusively because of the difference
between the inside and outside values of the acoustic pressure (see Fig. 7.2).
The pressure is assumed constant inside the device, and we take into account
only variations of the outside acoustic pressure. There are two physical models
relating the deformation fa to the pressure value Pa:

• for a high-strained plate,

−c1∆fa = Pa, (7.1)

• and for a low-strained plate (the term “membrane” is then more appro-
priate than “plate”),

c2∆
2fa = Pa. (7.2)

The coefficients c1 and c2 are physical constants depending on the material
and defined as

c1 = T and c2 =
Ee3

12(1 − ν)
,

where e is the thickness of the plate, T the mechanical stress, E the Young
modulus, and ν the Poisson coefficient.

d

������

Pa

h = d−f(x,y)

Fig. 7.2. Deformation of the plate.

In previous equations the symbol ∆ denotes the Laplacian, a differential
operator defined in two dimensions as

∆fa =
∂2fa

∂x2 +
∂2fa

∂y2 .

The bilaplacian (or biharmonic operator) ∆2 is defined accordingly as ∆2fa =
∆(∆fa).

7.3 Modeling Electrostatic Forces (Nonlinear Problem) 153

In order to have a general formulation of the problem we shall consider in
the following the “mixed” equation

c2∆
2fa − c1∆fa = Pa. (7.3)

This is a partial differential equation (PDE) of fourth order. For any physically
acceptable value of Pa, there exists a solution fa to equation (7.3) (for math-
ematical details see Ciarlet (1978, 2000)). In fact, the solution is not unique,
since for any harmonic function fh (i.e., a function such that ∆fh = 0), fa+fh

is also a solution. This is a direct consequence of the linearity of the Laplacian
and bilaplacian. 1

To ensure uniqueness (which is a crucial feature for the success of a nu-
merical computation) we shall prescribe appropriate boundary conditions. We
want the solution satisfying a realistic condition: the plate is assumed to be
fastened along the four sides of the rectangle. This means that the deformation
fa is null all along the rim:

fa|∂Ω = 0, (7.4)

where ∂Ω denotes the boundary of the domain Ω covered by the plate. This
is called a Dirichlet homogeneous boundary condition and is a sufficient con-
dition to obtain the uniqueness of the solution of equation (7.1), because
the Laplacian is a second-order differential operator (for the proof, see, for
example, Ciarlet (2000)). When considering equation (7.2) or (7.3), a supple-
mentary boundary condition is required, since the bilaplacian is a fourth-order
differential operator. Denoting by n the outward normal vector2 to ∂Ω, this
supplementary condition simulates the elastic “clamping” of the plate along
all the boundary:

∂fa

∂n

∣∣∣∣
∂Ω

= 0. (7.5)

The boundary condition (7.5) is referred to mathematically as a Neumann
condition.

7.3 Modeling Electrostatic Forces (Nonlinear Problem)

Relax the pressure for a while, and have a new look at Fig. 7.1. The plate
and the bottom of the cavity are both made of metallic material and form
the two parts of a capacitor whose dielectric is the air within the cavity. A
dielectric material is a substance that is poor conductor of electricity, but

1 ∆(fa + fh) = ∆fa + ∆fh and consequently ∆2(fa + fh) = ∆2fa + ∆2fh.
2 The normal vector, often simply called the “normal”, to a surface is a vector

perpendicular to it.

154 7 Elasticity: Elastic Deformation of a Thin Plate

an efficient support of electrostatic fields. So, when both parts of the capaci-
tor have different electric potential values, there exists a force bringing them
closer.

We start with basic relationships expressing the electrostatic energy W
and force F :

W =
1
2
CU2 =

εSU2

2h
, F = −dW

dh
=

εSU2

2h2 ,

as functions of the capacitance C, the potential difference U , the air permit-
tivity ε, the surface S of the plate, and the capacitor thickness h (i.e., the
distance between the top and bottom plates; see Fig. 7.2). The electrostatic
pressure acting on the plate is then obtained as

Pe =
F

S
=

εU2

2h2 .

As with the acoustic pressure, the effect of the electrostatic pressure is to
bend the plate. Consequently, the resulting deformation fe is the solution of
an equation similar to (7.3), with modified right-hand side Pe. The difference
between the two cases is that the electrostatic pressure Pe is no longer a
constant, like Pa, but depends on the position (x, y) since (see Fig. 7.2) h =
d − fe(x, y).

In conclusion, the mathematical model taking into account the electro-
static forces consists of the following nonlinear PDE:

c2∆
2fe − c1∆fe = Pe(fe) =

εU2

2(d − fe(x, y))2
, (7.6)

with Dirichlet and Neumann boundary conditions (which make the solution
unique)

fe = 0 and
∂fe

∂n
= 0 on ∂Ω. (7.7)

7.4 Numerical Discretization of the Problem

In this section we shall not worry about the right-hand side of the model
equation (7.3) or (7.6) and discuss only the discretization of the differential
operators (Laplacian and bilaplacian). We consider, for example, the equation
(7.3) with boundary conditions (7.7).

Since it is not generally possible to obtain an exact (analytical) form of
the solution fa, we shall compute an approximate solution on a regular mesh
representing the rectangular plate Ω = [0, Lx] × [0, Ly] (see Fig. 7.3). We use
the notation Mi,j for the grid point of coordinates (xi, yj), with

xi = i · hx, i = 0, . . . , mx + 1, hx = Lx/(mx + 1), (7.8)
yj = j · hy, j = 0, . . . , my + 1, hy = Ly/(my + 1). (7.9)

7.4 Numerical Discretization of the Problem 155

Note that we have to compute only mx · my discrete values fi,j (i =
1, . . . , mx, j = 1, . . . , my), approximating the values fa(Mi,j) = fa(xi, yj)
of the exact solution, because the values on the boundaries are known (i.e.,
f0,j = fmx+1,j = fi,0 = fi,my+1 = 0). These values are obtained by approx-
imating the differential operators in (7.3) using the finite difference method
(see Chap. 1, or for more details Strikwerda (1989)).

 i,j

1 2 i

my

0 mx
0
1
2

j
M

Fig. 7.3. A regular mesh (or grid).

To begin with, we address the case of the Laplacian. The easiest way to
approximate second derivatives in this differential operator is to use centered
differences, leading to the well-known 5-point (difference) scheme:

−(∆5f)i,j =
1
h2

x

(−fi+1,j + 2fi,j − fi−1,j)

+
1
h2

y

(−fi,j+1 + 2fi,j − fi,j−1).
(7.10)

This scheme is second-order accurate at any point of the grid, that is,

−(∆5f)i,j = −(∆f)i,j + O(h2
m), with hm = max(hx, hy).

We proceed in the same manner to discretize the bilaplacian ∆2. We first
substitute in equation (7.10) all fi,j by −(∆5f)i,j :

(∆2
13f)i,j =

1
h2

x

(−(∆5f)i+1,j + 2(∆5f)i,j − (∆5f)i−1,j)

+
1
h2

y

(−(∆5f)i,j+1 + 2(∆5f)i,j − (∆5f)i,j−1).

156 7 Elasticity: Elastic Deformation of a Thin Plate

(i−1,j) (i,j) (i+1,j)

(i,j−1)

(i,j+1)

hx

hy

Fig. 7.4. Discretization of the two-dimensional Laplacian with a 5-point scheme.

Then, by inserting the expression of −(∆5f)i,j according to (7.10), we obtain
the so-called 13-point scheme (see Fig. 7.5), which is also an approximation
of second order:

(∆2
13f)i,j =

1
h4

y

fi,j−2

+
2

h2
xh2

y

fi−1,j−1 −
(

4
h2

xh2
y

+
4
h4

y

)
fi,j−1 +

2
h2

xh2
y

fi+1,j−1

+
1
h4

x

fi−2,j −
(

4
h2

xh2
y

+
4
h4

x

)
fi−1,j

+
(

8
h2

xh2
y

+
6
h4

x

+
6
h4

y

)
fi,j

−
(

4
h2

xh2
y

+
4
h4

x

)
fi+1,j +

1
h4

x

fi+2,j

+
2

h2
xh2

y

fi−1,j+1 −
(

4
h2

xh2
y

+
4
h4

y

)
fi,j+1 +

2
h2

xh2
y

fi+1,j+1

+
1
h4

y

fi,j+2.

(7.11)

Finally, the discrete form of our PDE reads

c2(∆2
13f)i,j − c1(∆5f)i,j = P (Mi,j) = Pi,j , (7.12)

where P stands for either acoustic or electrostatic pressure. These equations,
written for any grid point Mi,j , with i = 1, 2, . . . , mx and j = 1, 2, . . . , my,
form a linear system whose unknowns are the mx · my values fi,j . It is not
difficult to observe that the discretization (7.11) is not well posed for grid

7.5 Programming Tips 157

(i,j)(i−1,j) (i+1,j)

(i−1,j+1) (i,j+1) (i+1,j+1)

(i−1,j−1) (i,j−1)

(i,j+2)

(i,j−2)

(i+2,j)(i−2,j)

(i+1,j−1)

Fig. 7.5. Discretization of the two-dimensional bilaplacian with a 13-point scheme.

points near the boundaries, since it involves “ghost” points that do not exist
(for example, the equation for i = 1 and any j requires the value of f−1,j ,
which is not defined). We are fortunately rescued from this critical situation
by the (Neumann) boundary condition on the normal derivative (7.5), which
allows us to define such ghost points. Indeed, the derivative ∂f/∂n can be
discretized by the first-order backward finite differences

(fi,j − fi−1,j)/hx = 0 and (fi,j − fi,j−1)/hy = 0,

for any point Mi,j located on the boundary (i.e., i = 0 or mx + 1 and j = 0
or my + 1). Keeping in mind that fi,j = 0 in any point Mi,j , following the
(Dirichlet) boundary condition (7.5), we deduce that fi,j = 0 for any ghost
point.

Remark 7.1. We can use a simple programming trick when computing the
(mx · my)2 matrix of the linear system (7.12). For the rows corresponding to
i = 1 or j = 1 (and similarly, for i = mx or j = my), we simply set the
nonexistent (ghost) values to zero (i.e., if i < 1 or j < 1 and similarly for
i > mx or j > my). The right-hand side of the system is thus not affected.

Remark 7.2. Since one should expect from the discussion on the uniqueness
of the solution of the continuous PDE (7.3), implementing discrete boundary
conditions results in rendering the matrix of the linear system (7.12) invertible.

7.5 Programming Tips

7.5.1 Modular Programming

In the previous section, different logical steps have been pointed out when
implementing the finite difference method:

1. definition of the coordinates (xi, yj) of any mesh point,

158 7 Elasticity: Elastic Deformation of a Thin Plate

2. construction of the linear system (7.12),
3. introduction of the boundary conditions,
4. solving the linear system,
5. visualization of the results.

Any scientific package has to deal separately with each item of this list by
associating a specialized computing procedure. These procedures are called
modules. Results (outputs) of a given step module are data (inputs) for the
next step module. Several modules may exist for the same logical step; in
this case they all have to share similar formatted input and provide similar
formatted output.

For the present study, we shall also proceed step by step, by setting up
progressively the numerical operators. First, we neglect the effect of the elec-
trostatic pressure in order to check the programs required to solve the linear
problem (7.12). Then we shall deal with the nonlinear problem by iterating
on successive linear problems.

7.5.2 Program Validation

Some questions can be asked when one uses a numerical approximation to
solve a problem such as (7.3). Are we sure the good solution is computed
with an effective procedure? How many points are required in order to get an
accurate numerical solution? There is a simple way to answer these questions:
it consists in solving a problem for which an exact solution is known, and then
comparing the computed result to the exact one.

Let us consider, for example, the Laplace equation (7.1). We may choose
a more or less complicated solution of the PDE, as for example

f̃a(x, y) = 100 sin(3.7πx) sin(5.4πy) + (3.7x − 5.4y), (7.13)

and calculate the corresponding right-hand side (considering c1 = 1):

P̃a(x, y) = −∆f̃a(x, y) = 100(3.72 + 5.42)π2 sin(3.7πx) sin(5.4πy).(7.14)

A program solving the PDE −∆fa = Pa, with boundary conditions
fa|∂Ω = g(x, y), needs two inputs: Pa(x, y) and g(x, y). Inserting in the pro-
gram (as discrete input data) the expression (7.14) for Pa(x, y) and (7.13)
for g(x, y), we should obtain numerical values fi,j close to the exact values
f̃a(xi, yj) at the same grid points (xi, yj). We are now able to compare the
two solutions (exact and numerical) qualitatively by plotting the results in
the same graphical window and quantitatively by computing, for example,
the following relative approximation error:

Error =

∑
i,j |f̃a(xi, yj) − fi,j |1/2∑

i,j |f̃a(xi, yj)|1/2
. (7.15)

This error has to be “reasonably” small and to diminish when the number of
grid points is increased. If this is not the case, the program must be checked.

The same validation procedure can be used for the PDEs (7.2) and (7.3).

7.7 Solving the Nonlinear Problem 159

7.6 Solving the Linear Problem

In order to solve the linear problem (7.12) we note that

1. n = mx · my, is the total number of grid points,
2. Ah5 is the matrix associated with the 5-point scheme (including boundary

conditions),
3. Ah13 is the matrix associated with the 13-point scheme (including bound-

ary conditions),
4. b5, b13 are the corresponding right-hand sides.

Exercise 7.1. 1. Write a program generating all the coordinates (xi, yj) of
the grid points Mi,j , for i = 1, 2, . . . , mx and j = 1, 2, . . . , my.

2. Write a program computing the matrix Ah5 and the corresponding right-
hand side b5, in order to solve equation (7.1).

3. Write a program computing the matrix Ah13 and the corresponding right-
hand side b13, in order to solve equation (7.2).

4. Write a program computing the matrix Ah and the corresponding right-
hand side b, in order to solve the complete problem (7.3), including the
boundary conditions. Solve this problem for a given value of the pressure.

5. Visualize the results.
N.B. All the programs must be checked using the validation procedure

described above.

A solution of this exercise and related procedures are described in Sect.
7.8 at page 162. We show here (see Fig. 7.6) a plot of the numerical solution
obtained from validating the program solving the linear problem (7.3). The
right-hand side of the PDE was calculated such that (7.13) becomes the exact
solution. Even though a coarse mesh was used (nx = 20 and ny = 30), the
numerical solution is very close to the exact one. The relative error (7.15) for
this numerical experiment has the value Error = 0.0375. This error diminishes
as the number of grid points increases (Error = 0.0095 for nx = 40 and
ny = 60), but the computing time is considerably larger for this last run!

7.7 Solving the Nonlinear Problem

We now address the nonlinear problem, corresponding to a more realistic case
when the plate is part of a microphone and subject to both acoustic and
electrostatic pressures.

7.7.1 A Fixed-Point Algorithm

The resulting nonlinear problem is

c2∆
2f − c1∆f = Pa + Pe(f), (7.16)

160 7 Elasticity: Elastic Deformation of a Thin Plate

0

0.5

1

0

0.5

1
−300

−200

−100

0

100

200

Computed solution

Fig. 7.6. Numerical solution obtained in validating the program solving the linear
problem (7.3) by “imposing” the exact solution (7.13).

with Dirichlet and Neumann boundary conditions

f = 0 and
∂f

∂n
= 0 on ∂Ω. (7.17)

To solve this problem we use a fixed-point algorithm. We start by solving
the linear problem (7.3) corresponding to Pe = 0; we denote by f0 this so-
lution. We define then the sequence {fk}k∈N of solutions of successive linear
problems:

c2∆
2fk+1 − c1∆fk+1 = Pa + Pe(fk). (7.18)

Since the fixed-point algorithm is an iterative method, we have to choose a
stopping criterion to decide whether a solution fk is accurate enough to be
a good approximation of the exact solution. A classical criterion is based on
the relative variation of the approximate solution fk:

max
x,y

|fk+1(x, y) − fk(x, y)| < ε max
x,y

|fk(x, y)|, (7.19)

where ε is the convergence threshold.

7.7.2 Numerical Solution

Once again, we shall first consider a test problem before solving (7.16) in order
to validate the procedures. We choose the same test solution f as previously
(7.13) and compute the corresponding right-hand side. For this case, we also
have to impose the expression of the nonlinear term Pe(f), depending on the
solution. For example, we can use the function defined by

Pe(f) =
100

(200 − f)2
.

7.7 Solving the Nonlinear Problem 161

For this choice and for the same grid (nx = 20 and ny = 30), the solution
converges after only two iterations of the fixed-point algorithm (the conver-
gence threshold is fixed to ε = 0.001). We check that the plot of the solution is
similar to that displayed in Fig. 7.6. More details on the solution procedures
can be found in Sect. 7.8 at page 162.

We consider now a more realistic choice of the values of the physical pa-
rameters3 appearing in problem (7.16). The atmospheric pressure value is set
to 105 [Pa] or [N/m2], the acoustic pressure Pa then goes from 10−3 [Pa] to
10 [Pa]. It is established that the human ear can perceive pressure variations
from 2×10−5 [Pa] up to 2 [Pa]. We may choose, without any damage to one’s
hearing or numerical procedures, the value of 1 [Pa] for the acoustic pressure
variation.

We assume that the plate is made of silicon; for such a material the Young
modulus is E = 1.3 · 1011 [Pa] and the Poisson coefficient is ν = 0.25. The
device displayed in Fig. 7.1 has the following characteristic dimensions: length
1 [mm], width 1 [mm], and thickness e = 1 [µm]. The mechanical stress of
the plate is T = 100 [N/m]. Concerning the capacitor, the thickness (without
pressure variations) is d = 5 [µm]. The dry-air permittivity is ε = 8.85 · 10−12

[F/m], and the polarization potential is V = 25 [V]. The mesh of the plate,
as displayed in Fig. 7.3, has nx = 20 and ny = 30 grid points, resulting in a
total number of 600 discretization points, and the same number of unknowns.

Exercise 7.2. 1. Modify the procedure used to solve Exercise 7.1 in order
to use the above realistic data for the linear problem (7.3).

2. Write a program implementing the fixed-point algorithm.
3. Solve the nonlinear problem (7.16).
4. Visualize the results.

A solution of this exercise is proposed in Sect. 7.8 at page 162.

Hint: We first solve the acoustic problem (7.3) with boundary conditions
(7.7) and obtain a deformation as plotted in Fig. 7.7. The maximum defor-
mation value is located at the center of the plate (max fa = 0.080 [µm]).

In the next step, we consider the complete problem (7.16) including bound-
ary conditions (7.17). The fixed-point algorithm will converge within three
iterations when we use the stopping criterion (7.19) with ε = 0.001. The max-
imum deformation of the plate (see Fig. 7.7) is reached again at the center of
the plate (max fe = 0.077 [µm]).

Remark 7.3. It is important to note that relative values of the acoustic pres-
sure Pa and the polarization potential V were chosen in order to respect the
constraint max fa < d (see Fig. 7.2).

3 As physical units, we use [Pa] = Pascal, [N] = Newton, [m] = meter, [mm] =
millimeter, [µm] = micrometer [F] = Faraday, [V] = Volt.

162 7 Elasticity: Elastic Deformation of a Thin Plate

0

0.5

1

x 10
−3

0

0.5

1

x 10
−3

4.92

4.94

4.96

4.98

5

x 10
−6

Solution for the plate problem

(a)
0

0.5

1

x 10
−3

0

0.5

1

x 10
−3

4.92

4.94

4.96

4.98

5

x 10
−6

Solution for the microphone problem

(b)

Fig. 7.7. Numerical solution of the realistic problem. (a) linear; (b) nonlinear.

7.8 Solutions and Programs

Solution of Exercise 7.1

The file ELAS plate ex.m contains the procedure that solves the problem (7.3)
and computes the test solution defined in ELAS solution.m. This procedure
calls the functions written in the files ELAS lap matrix.m and ELAS lap rhs.m,
which compute the linear system obtained from the discretization of the
equation (7.1). Similarly, procedures in the files ELAS bilap matrix.m and
ELAS bilap rhs.m compute the linear system corresponding to equation (7.2).
The computed test solution is plotted in Fig. 7.6.

Solution of Exercise 7.2

The main program solving the nonlinear problem (7.6) with realistic coeffi-
cients is written in the file ELAS microphone ex.m. It also contains the fixed-
point algorithm. Functions in the files ELAS lap matrix.m and ELAS lap rhs.m
(for the Laplacian part of the PDE) and in the files ELAS bilap matrix.m and
ELAS bilap rhs.m (for the bilaplacian part of the PDE) are used as previously.
The new procedure ELAS pressure defines the nonlinear term. The obtained

numerical solutions are displayed in Fig. 7.7.

7.8.1 Further Comments

In this section we address the important point of the construction of the
matrices arising from the approximation of the operators. The use of the rect-
angular mesh (displayed in Fig. 7.3), with a lexical ordering of the nodes, 4

added to the 5-point scheme approximation of the Laplacian (see Fig. 7.4),
4 We order the nodes starting from the bottom line, from left to right 1, 2, . . . , mx;

then we continue with the line just above, from left to right mx + 1, mx +
2, . . . , 2mx, and so on.

7.8 Solutions and Programs 163

lead altogether to a very particular pattern of the matrix Ah5, displayed in
Fig. 7.8. Such a matrix is called banded, of bandwidth 2mx + 1, because its
coefficients satisfy the relationship (Ah5)i j = 0 if |i− j| > mx. Note that this
matrix is sparse because it contains only 5mx · my nonzero coefficients. For
the same reasons, the matrix associated with the bilaplacian (see Fig. 7.9) is
banded of bandwidth 4mx+1, and sparse with 13mx·my nonzero coefficients.
These properties are useful for reducing storage, because increasing the num-
ber of unknowns leads to huge use of memory. Scientific programs have to deal
carefully with these properties; thankfully MATLAB is a user-friendly envi-
ronment and provides very simple ways to build such matrices. For example,
the following procedure (ELAS lap matrix) computes the matrix Ah5:

n=nx*ny;
h2x=hx*hx;h2y=hy*hy;
Ah5=sparse(n,n);
Dx=toeplitz([2.d0 -1.d0 zeros(1,nx-2)]) ;
Dx = Dx / h2x ;
Dy=eye(nx,nx) ;
Dy = - Dy / h2y ;
Dx = Dx - 2.d0 * Dy ;
for k=1:(ny-1)

i=(k-1)*nx ; j=k*nx ;
Ah5((i+1) : (i+nx) , (i+1) : (i+nx)) = Dx ;
Ah5((j+1) : (j+nx) , (i+1) : (i+nx)) = Dy ;
Ah5((i+1) : (i+nx) , (j+1) : (j+nx)) = Dy ;

end ;
i=(ny-1)*nx ;
Ah5((i+1) : (i+nx) , (i+1) : (i+nx)) = Dx ;

This program calls MATLAB built-in functions:

1. sparse is used to declare a low-storage sparse matrix;
2. toeplitz is used to define a Toeplitz matrix; here Dx is an nx×nx sym-

metric tridiagonal matrix whose entries are (Dx)i i = 2 and (Dx)i i−1 =
−1;

3. eye is used to define the nx × nx identity matrix;
4. then, the nonzero coefficients of Ah5 are defined “block by block”, using

Dx to set diagonal blocks, respectively Dy for off-diagonal blocks.

Unfortunately, such a structure occurs in a very particular case, strongly
depending on the geometry: for a nonrectangular mesh or with a random
ordering of the nodes, the resulting matrix has a less-regular pattern (see for
instance Chap. 11). Nevertheless, it remains sparse because this property is
related only to the approximation scheme.

164 7 Elasticity: Elastic Deformation of a Thin Plate

0 100 200 300 400 500 600

0

100

200

300

400

500

600

nz = 2900

Matrix Ah: 5−point scheme

Fig. 7.8. Matrix Ah5.

0 100 200 300 400 500 600

0

100

200

300

400

500

600

nz = 7304

Matrix Ah: 13−point scheme

Fig. 7.9. Matrix Ah13.

Chapter References

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North
Holland, Amsterdam, 1978.

P. G. Ciarlet, Mathematical Elasticity, Volumes I, II, III, North Holland,
Amsterdam, 2000.

J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equa-
tions, Wadsworth and Brooks/Cole, 1989.

8

Domain Decomposition Using a Schwarz
Method

Project Summary

Level of difficulty: 2

Keywords: Domain decomposition, Schwarz method with overlap-
ping, Laplacian discretization, 1D and 2D finite differ-
ence

Application fields: Thermal analysis, steady heat equation

8.1 Principle and Application Field of Domain
Decomposition

Realistic modeling of physical problems often involves systems of partial dif-
ferential equations (PDE), usually nonlinear, and defined on domains that
can have both large size and complex shape. In most cases, the selected nu-
merical method requires that one discretize the domain, and the number of
degrees of freedom can easily be more than what the available computer will
handle. Modeling of the air flow around an aircraft with 3D finite elements
requires, for instance, the discretization of the surrounding domain with a
few million points, with several unknowns to determine at each point. The
numerical scheme can furthermore be implicit and hence involve a linear-
systems solution with this impressive number of unknowns. If we do not have
a supercomputer at hand, which only very specialized research centers do, the
matrix of such a system cannot even fit within the memory of the computer.

A simple answer to this technological lock is to subdivide the problem
into smaller ones, that is, to compute the solution piecewise, as the solution
of problems defined on subdomains of the initial one. Eventually, the global
solution is the patch of all the solutions of partial problems.

166 8 Domain Decomposition Using a Schwarz Method

This method can also simplify the solution of problems set originally on
complexly shaped domains, by selecting a decomposition in which each sub-
domain has a simpler, elementary shape, making the local solution simpler
to compute. Another possible extension is the coupling of equations in order
to treat interactions between two different physical phenomena defined on
neighboring domains, fluid structure interaction, for instance.

The main difficulty arising in adopting this method is the definition of
boundary conditions on each subdomain. Actually, the internal boundaries,
in contrast to boundaries of the global domain, are fictitious, and the physics
of the problem doesn’t provide boundary conditions. Two strategies, both iter-
ative, can be adopted: The first one consists in doing a domain decomposition
with partial overlapping of the subdomains, and using the previous iteration
solution on neighboring subdomains to define the boundary conditions on the
current subdomain. The second strategy consists in partitioning the global
domain into nonoverlapping subdomains and imposing continuity conditions
at the interfaces.

Once the decomposition strategy is selected, the solution method on each
subdomain is the same as on the global domain, with now a reasonably small
number of unknowns. To fix the ideas, consider the simple example of a scalar
equation solved by finite differences on a structured mesh that can be decom-
posed into P subdomains of the same size N . The numerical treatment will
require solving P linear systems costing O(N2) on each subdomain, that is, a
total cost of O(PN2) per iteration, instead of O(P 2N2) for the global prob-
lem. The added cost of the new method comes from the iterative nature of
the algorithm, and therefore the size and the number of the subdomains must
be carefully selected in order to ensure the competitiveness of the algorithm.

In any case, even if the computing time increases compared to the initial
global scheme, we always gain the crucial advantage of being able to fit the
problem in the computer’s memory.

Last but not least, even though this advantage cannot be illustrated within
the scope of a MATLAB project, domain decomposition methods have really
found their full worthiness with the development of parallel computing (see
for instance Smith, Bjørstad, and Gropp (1996)). The solution of problems set
on the subdomains can be distributed to different processors, with a serious
hope of computing-time speedup as well as memory savings.

To illustrate the principles of the method, this project proposes an imple-
mentation of the Schwarz method with overlapping on model problems of the
1D and 2D Laplacian{

−∆u(x) + c(x)u(x) = f(x), for x ∈ Ω ⊂ R
n,

u = g, on ∂Ω.
(8.1)

8.2 One-Dimensional Finite Difference Solution

In one dimension, the above problem becomes

8.3 Schwarz Method in One Dimension 167⎧⎨⎩
−u′′(x) + c(x)u(x) = f(x), for x ∈ (a, b),
u(a) = ua,
u(b) = ub.

(8.2)

This problem models, for instance, the bending of a beam of length b − a, of
constant section and of stiffness coefficient c(x), pulled across its longitudinal
axis and submitted to a transverse charge f(x)dx. The finite difference method
for second-order boundary value problems such as the one above is described
in detail in Lucquin and Pironneau (1996), and we just summarize the main
features here. We discretize the interval [a, b] on n + 2 points xi = a + ih for
i = 0, . . . , n + 1 with a uniform step h = b−a

n+1 . We denote by U the vector
formed by the approximation of the solution u(x) at points xi. We set U0 = ua

and Un+1 = ub to ensure that the numerical solution satisfies the boundary
conditions. The finite difference discretization of the second derivative (as
described, for instance, in Chap. 1) leads to the linear system

(S) AhU = Bh,

where Ah is the n × n tridiagonal matrix

Ah =
1
h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 + h2c1 −1 0 0

−1 2 + h2c2
.

...

0
. . . 2 + h2c3

.
...

...
. 0

...
. 2 + h2cn−1 −1

0 0 −1 2 + h2cn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where ci = c(xi) and Bh is the following vector in R
n:

Bh =

⎛⎜⎜⎜⎜⎜⎝
f(a + h) +

ua

h2

f(a + 2h)
.
.

f(b − h) +
ub

h2

⎞⎟⎟⎟⎟⎟⎠ .

8.3 Schwarz Method in One Dimension

For simplicity, we first decompose the computational domain [a, b] into two
subdomains with overlapping: we choose an odd value n and two integer values
il and ir symmetric with respect to n+1

2 such that il < n+1
2 < ir. We set

xl = ilh and xr = irh, thus defining two intervals]a, xr[and]xl, b[with a
nonempty overlap [a, xr] ∩ [xl, b] = [xl, xr] 	= ∅. We now plan to compute the
solution u of the problem (8.2) by solving two problems set on the subintervals
[a, xr] and [xl, b]:

168 8 Domain Decomposition Using a Schwarz Method

(P1)

⎧⎨⎩
−u′′

1(x) + c(x)u1(x) = f(x), for x ∈]a, xr[,
u1(a) = ua,
u1(xr) = α;

and (P2)

⎧⎨⎩
−u′′

2(x) + c(x)u2(x) = f(x), for x ∈]xl, b[,
u2(xl) = β,
u2(b) = ub.

The solution u1 (respectively u2) is expected to be the restriction on the
interval [a, xr] (respectively [xl, b]) of the solution u of the problem set on the
full interval [a, b]. The two solutions u1 and u2 must therefore be identical
within the overlapping region [xl, xr], which allows us to define the boundary
conditions in xl and xr:

u1(xr) = α = u2(xr) and u2(xl) = β = u1(xl).

Since we do not know a priori the values of α and β, we solve the two problems
iteratively: α is fixed arbitrarily, at first, for instance, by linear interpolation
of the global boundary conditions

α =
1

b − a
(ua(b − xr) + ub(xr − a)).

Then we set u0
2(xr) = α and we compute for k = 1, 2, . . . the solutions uk

1 and
uk

2 of the following problems:

(P1)

⎧⎨⎩
−u′′

1(x) + c(x)u1(x) = f(x), for x ∈ (a, xr),
u1(a) = ua,

u1(xr) = uk−1
2 (xr);

then

(P2)

⎧⎨⎩
−u′′

2(x) + c(x)u2(x) = f(x), for x ∈ (xl, b),
u2(xl) = uk

1(xl),
u2(b) = ub.

We claim that when the overlap region is nonempty, this algorithm converges
to the solution u of the global problem (8.2) as k −→ ∞. This result was first
proved using fixed point theorem by Schwarz (1870), in the case c(x) = 0. It
was rediscovered one century later using a variational formulation approach
by Lions (1988). More efficient methods from the algorithmic point of view
have been developped since then, which do not require overlap but impose ad-
ditionnal transfer conditions between subdomains. The following paragraphs
will illustrate numerically the convergence, after discretization of (P1) and
(P2) by finite difference.

8.3.1 Discretization

The problems P1 and P2 are solved using finite differences, in the same manner
as used for the global problem (8.2) in the previous section. The bounds xl and

8.3 Schwarz Method in One Dimension 169

xr have been set so that the two subdomains are of the same size. Denoting
by V k (respectively W k) the vector of the approximate discrete solution on
the subdomain [a, xr] (respectively [xl, b]) the algorithm for the kth iteration
is as follows: ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

initialization : W 0
ir

= α

for k = 1, 2, . . . , do

Ah,lV
k = Bh,l +

1
h2 [ua, 0, . . . , 0, W k−1

ir
]T ,

Ah,rW
k = Bh,r +

1
h2 [V k

il
, 0, . . . , 0, ub]T ,

end

(8.3)

where Ah,l (respectively Ah,r) is the discretization matrix for the operator
−∆ + cI on]a, xr[(respectively]xl, b[) in R

ir−1 × R
ir−1:

Ah,l =
1
h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 + h2c1 −1 0 0

−1 2 + h2c2 −1 0
. . .

...

0
.

...
...

. 0
...

. . . 0 −1 2 + h2cir−2 −1
0 0 −1 2 + h2cir−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

Ah,r =
1
h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 + h2cil+1 −1 0 0

−1 2 + h2cil+2 −1 0
. . .

...

0
.

...
...

. 0
...

. . . 0 −1 2 + h2cn−1 −1
0 0 −1 2 + h2cn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The vectors Bl and Br contain the values of the right-hand-side term f eval-
uated at the discretization points

(Bh,l)i = f(xi), for i = 1, . . . , ir − 1,

(Bh,r)i = f(xi+il
), for i = 1, . . . , n − il.

The stopping criterion in the iteration loop is obtained by measuring the gap
between the two solutions within the overlap region [xl, xr], where they should
coincide in the limit:

||ek|| ≤ ε, with ek
i−il

= V k
i − W k

i−il
, for i = il + 1, . . . , ir − 1.

In order to test the performance of the method, we can also compare the
results with the solution U obtained in Sect. 8.2 using the classical method
on the whole domain.

170 8 Domain Decomposition Using a Schwarz Method

We accordingly compute two vectors ek
l and ek

r of components

(ek
l)i = Ui − V k

i , for i = 1, . . . , ir − 1,

(ek
r)i−il

= Ui − W k
i−il

, for i = il + 1, . . . , n,

and we observe the decay of their norm with iteration along with the ek norm
decay.

Exercise 8.1. Write a program to implement Algorithm 8.3. Display in the
same graphics window but with different colors the solutions V k, W k, and U ,
refreshing the graphics at each iteration k. One should obtain a sequence of
graphs as in Fig. 8.2. Represent the evolution of the three errors ||ek||, ||ek

l ||,
and ||ek

r || as functions of k in another graphics window as in Fig. 8.1.
A solution of this exercise is proposed in Sect. 8.5 at page 181.

Exercise 8.2. Modify the program of Exercise 8.1 and turn it into a function
receiving as input argument the number of points no = ir−il−1 in the overlap
region. This function computes and returns as output arguments the number
of iterations necessary to reach the tolerance error and the computing time.
Write a program that calls this function for varying values of no and analyze
the influence of the size of the overlap region on the algorithm’s convergence.
A solution of this exercise is proposed in Sect. 8.5 at page 182.

Figures 8.1 and 8.2 illustrate the results for a beam of length 1 meter, with
a constant stiffness coefficient c = 10. The left end of the beam is fixed equal
to 10 cm higher than the right end. The beam is subject to its own weight of
1 N/m as well as to an overload of 9 N/m on a 40 cm portion, starting 20 cm
from its left end.

0 5 10

−6

−2

2
Error evolution

iter

Lo
g(

E
rr

)

Eover
El
Er

Fig. 8.1. Logarithm of the L2 norm of the error versus the number of iterations.

8.4 Extension to the Two-Dimensional Case 171

0 0.5 1

−10

−5

0
Right hand side

x
0 0.5 1

−0.25

0

0.25

x

Iteration number 1

U
Ul
Ur

0 0.5 1

−0.25

0

0.25

x

Iteration number 3

U
Ul
Ur

0 0.5 1

−0.25

0

0.25

x

Iteration number 5

U
Ul
Ur

0 0.5 1

−0.25

0

0.25

x

Iteration number 7

U
Ul
Ur

0 0.5 1

−0.25

0

0.25

x

Iteration number 10

U
Ul
Ur

Fig. 8.2. Right-hand side f(x), global, and local solutions for varying numbers of
iterations.

8.4 Extension to the Two-Dimensional Case

We now focus on the 2D problem (8.1) set on a rectangle. We restrict ourselves
to the case c = 0, thus modeling a steady heat conduction 3D problem in a
metallic piece where one dimension is much larger than the two others (see
Fig. 8.3). Variations in the temperature will be neglected in this direction. In
the first case, we impose on the boundary inhomogeneous Dirichlet conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆u(x1, x2) = F (x1, x2), for (x1, x2) ∈]a1, b1[×]a2, b2[,
u(a1, x2) = f2(x2), for x2 ∈]a2, b2[,
u(b1, x2) = g2(x2), for x2 ∈]a2, b2[,
u(x1, a2) = f1(x1), for x1 ∈]a1, b1[,
u(x1, b2) = g1(x1), for x1 ∈]a1, b1[.

(8.4)

From a practical point of view this computation models, for instance, a ther-
mal shock test on a metallic beam. An experimental setup can consist,
for instance, of a null temperature on faces x1 = a1 and x1 = b1, that is,
f2(x2) = g2(x2) = 0, a temperature of 50◦C on the face x2 = a2, that
is, f1(x1) = 50, and a temperature of 100◦C on the face x2 = b2, that is,
g1(x1) = 100. Furthermore, since no internal heat sources are present, the
right-hand side is null: F (x1, x2) = 0.

8.4.1 Finite Difference Solution

We restrict ourselves to the case in which the domain dimensions are such that
it is possible to use the same discretization step in both directions x1 and x2.

172 8 Domain Decomposition Using a Schwarz Method

a1 b1

x1
a 2

b
2

x
2 f

g

g
1

2

2

f
1

Fig. 8.3. Sketch of the metallic piece subject to a thermal shock.

We therefore define h = b1−a1
n1

= b2−a2
n2

. On this regular grid (see Fig. 8.4), we
denote by ui,j = u(a1 + ih, a2 + jh) (respectively fi,j) the discretized value
of the solution u(x1, x2) (respectively F (x1, x2)) at the discretization points.
In that case, using Taylor expansions in x1 and in x2 in order to approximate

x1

x2

0 1 n1 n +1

1

n2

n1

n 2

1
dof

do
f

Fig. 8.4. Discretization of the domain interior Ω using n1 × n2 points.

partial derivatives in both directions, we obtain the Laplacian discretization
with a five-point scheme,

∆ui,j ≈ 4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2 ,

which is an O(h2) approximation if u is smooth enough (i.e., u ∈ C4). The
finite difference solution W is hence a solution of the following linear system:

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2 = fi,j , (8.5)

8.4 Extension to the Two-Dimensional Case 173

where the unknowns are the ui,j for i = 1, . . . , n1 and j = 1, . . . , n2. In fact,
the values of the solution on the boundaries, corresponding to indices i = 0
or i = n1 + 1 and j = 0 or j = n2 + 1, are set by the boundary conditions

u0,j = f2(a2 + jh), un+1,j = g2(a2 + jh),
ui,0 = f1(a1 + ih), ui,n+1 = g1(a1 + ih).

Each row of the linear system (8.5) has at most five nonzero terms: the diag-
onal term coefficient is 4

h2 , and for the off-diagonal terms, corresponding to
the neighbors with indices

(i + 1, j), (i − 1, j), (i, j − 1), and (i, j + 1),

which do not belong to the boundary, the coefficients are equal to −1
h2 . These

nodes are represented by squares in Fig. 8.4.
We can build the matrix using block matrix symbolism: the degrees of freedom
(i, j), (i+1, j), and (i− 1, j) are neighbors in the grid and also consecutive in
the global numbering of the degrees of freedom. The coefficients of the linear
system that link nodes belonging to a given row j, for j = 1, . . . , n2, can
therefore be rewritten as a tridiagonal matrix

T =
1
h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 0 0

−1 4 −1
.

...

0
. . . 4

.
...

...
. 0

...
. 4 −1

0 0 −1 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.6)

The two other neighbors of the node (i, j) in the grid are the nodes (i, j −
1), (i, j + 1), which are n1 nodes away on each side of the central node in the
global numbering, and their connection is ensured through a diagonal matrix
D = −1

h2 In1×n1 on each side of the matrix T . The matrix of the global linear
system A U = B is hence a tridiagonal block matrix of size n2×n2, each block
being of size n1 × n1:

A =

⎛⎜⎜⎜⎜⎜⎝
T D 0 . . . 0

D T D
. . .

...

0
. 0

...
. . . D T D

0 . . . 0 D T

⎞⎟⎟⎟⎟⎟⎠ . (8.7)

The right-hand side B of the linear system is a vector of size n1 ·n2, which can
be built as a matrix to benefit from the numbering of the degrees of freedom
associated with the grid. We start by initializing the right-hand-side vector
using the right-hand-side function F (x1, x2) at the grid nodes:

174 8 Domain Decomposition Using a Schwarz Method

Bi,j = fi,j , for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. (8.8)

If the node (i, j) has a neighbor on the grid boundary (represented by a
gray circle in Fig. 8.4), the contribution ui′,j′

h2 of this neighbor (i′, j′) in the
Laplacian discretization at point (i, j) must be added to the (i, j) right-hand
side coefficient, the value of ui′,j′ being set by the boundary condition. The
boundary condition contributions are therefore added to all terms B1,i, Bn1,i

for i = 1, . . . , n2 and Bi,1, Bi,n2 for i = 1, . . . , n1. Beware of the special case
occuring at the four corners!⎧⎪⎨⎪⎩

B1,i = B1,i +
f2(a2 + ih)

h2 ,

Bn1,i = Bn1,i +
g2(a2 + ih)

h2 ,
for 1 ≤ i ≤ n1,

⎧⎪⎨⎪⎩
Bi,1 = Bi,1 +

f1(a1 + ih)
h2 ,

Bi,n2 = Bi,n2 +
g1(a1 + ih)

h2 ,
for 1 ≤ j ≤ n2. (8.9)

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Finite difference 2D Laplacian solution

(a)
0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

x 10
−4

Error between exact and finite differences solutions

(b)

Fig. 8.5. (a) Global solution and (b) error between exact solution and finite differ-
ence approximation.

Exercise 8.3. 1. Write a function DDM LaplaceDirichlet to compute the
matrix A of size n1n2 × n1n2 of the global linear system. The function
computes and returns the matrix A. It receives in its input arguments
the lower bounds of the domain, a1 and a2; the number of points in each
direction, n1 and n2; and the discretization step h. The matrix A will be
built by blocks using a tridiagonal matrix T and the identity matrix, both
of size n1 × n1.

2. Write a function DDM RightHandSide2d to compute the right-hand-side
vector of the linear system. The function returns the vector B. It receives
in its input arguments the lower bounds of the domain, a1 and a2; the
number of points in each direction, n1 and n2; and the discretization step

8.4 Extension to the Two-Dimensional Case 175

h. It calls the function rhs2d(x1,x2), which computes the value of the
right-hand-side function F (x1, x2).

3. Write a function DDM FinDif2d to compute the finite difference solution.
The calling sequence should be

function [n2,b2,Solm]=DDM FinDif2d(n1,a1,a2,b1,b2, rhs2d,...
f1,g1,f2,g2,RightHandSide2d,Laplace),

where f1,g1,f2,g2 are the names of the functions defining the boundary
conditions.

4. We select a function u(x1, x2) = sin(x1 + x2) that is the exact solution
of the problem −∆u = f with the right-hand-side function F (x1, x2) =
2 sin(x1 + x2) and with boundary conditions equal to the restrictions of
the exact solution on the boundaries:

f1(x1) = sin(x1 + a2), g1(x1) = sin(x1 + b2),
f2(x2) = sin(a1 + x2), g2(x2) = sin(b2 + x2).

Program the functions DDM rhs2dExact(x1,x2), DDM f1Exact(x1),
DDM g1Exact(x1), DDM f2Exact(x2), DDM g2Exact(x2) corresponding to
this test case, along with the function DDM u2dExact(x1,x2), which will
be used to compute the exact solution at the grid discretization points.

5. Write a program DDM TestFinDif2d to test the previously defined func-
tions: the size of the domain must be carefully chosen to ensure that the
discretization step is the same in both directions. The solution computed
with the parameters a1 = a2 = 0, b1 = 1, b2 = 2, n1 = 20, is represented
in Fig. 8.5(a). Check the computation by displaying the error, that is, the
difference between the exact solution u(x1, x2) = sin(x1 + x2) and the
finite difference solution, as in Fig. 8.5(b).

6. Modify the previous program and adapt it to the thermal shock case (8.4)
defined in Sect. 8.4, to obtain the solution displayed in Fig. 8.6. Use first
a square domain of size b1 − a1 = b2 − a2 = 6, then a rectangular one of
dimensions b1 − a1 = 6 and b2 − a2 = 20.
A solution of this exercise is proposed in Sect. 8.5 at page 182.

8.4.2 Domain Decomposition in the Two-Dimensional Case

We will now apply the technique described in Sect. 8.3 in the 2D case. The
global domain is decomposed into ns subdomains with an overlap in the di-
rection x2. Here again, in order to simplify the implementation, we assume
that the domain can be discretized with the same step h in both directions.
Furthermore, we also impose that all subdomains have the same size (n2 +1)h
and that all overlap regions have the same number of grid cells no. Figure 8.7
shows an example of a decomposition satisfying these constraints. Note that
they are very restrictive and might not be satisfied for an arbitrary domain

176 8 Domain Decomposition Using a Schwarz Method

0
5

10
15

20
25

0

1

2

3

4

5

6
0

20

40

60

80

100

Fig. 8.6. Solution of the thermal shock problem.

x2

x

a

1

a2 b2

n

n
n

n

n

1

2+1
+1

2

+1
2

+12

+11

1

b

n

n

n
o

o

o

Fig. 8.7. Decomposition into four identical subdomains with constant overlap.

[a1, b1] × [a2, b2]. It might be necessary to adjust the total length b2 − a2.
We denote by us,k the solution on the sth subdomain [a1, b1] × [as

2, b
s
2], for

s = 1, . . . , ns, at iteration number k, for k = 0, 1, The bounds of the sub-
domain, as

2 and bs
2, are equal to a1

2 = a2 and as
2 = as−1

2 + (n2 + 1 − no)h for
k > 1 and bs

2 = as
2 + (n2 + 1)h.

With this notation, us,k is solution of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆us,k(x1, x2) = F (x1, x2), for (x1, x2) ∈ (a1, b1) × (as
2, b

s
2),

uk,s(a1, x2) = f2(x2), for x2 ∈ (as
2, b

s
2),

us,k(b1, x2) = g2(x2), for x2 ∈ (as
2, b

s
2),

us,k(x1, a
s
2) =

{
f1(x1), for s = 1,
us−1,k(x1, a

s
2), for s = 2, . . . , ns,

for x1 ∈ (a1, b1),

us,k(x1, b
s
2) =

{
g1(x1), for s = ns,
us+1,k−1(x1, b

s
2), for s = 1, . . . , ns − 1,

for x1 ∈ (a1, b1).

At the first iteration, the boundary condition on the right end of the subdo-
main is not defined, except for the last one, where it is the global boundary
condition. For all others it must therefore be arbitrarily fixed, for instance by

8.4 Extension to the Two-Dimensional Case 177

linear interpolation of the global boundary conditions f1 and g1:

us+1,0(x1, b
s
2) = ((b2 − bs

2)f1(x1) + (bs
2 − a2)g1(x1))/(b2 − a2).

The iterations stop whenever the sum (or the maximum) of the error norm
on each overlap region is below a given tolerance.

We denote by X1 the vector of the abscissa a1+jh, for j = 1, . . . , n1, and by
Xs

2 the vector of the ordinates in the sth subdomain a2+jh+(s−1)(n2+1−no),
for j = 1, . . . , n2. The Schwarz algorithm in two dimensions can be written as∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Initialization:
Ua2l = f1(X1), Ub2r = g1(X1),
Us,0

.,no
= ((b2 − bs

2)Ub2r + (bs
2 − a2)Ua2l)/(b2 − a2)), for s = 2, . . . , ns,

Us
a1

= f1(Xs
2), Us

b1
= g1(Xs

2), Bs
.,. = F (X1, X

s
2),

Bs
1,. = Bs

1,. + Us
a1

/h2, Bs
n1,. = Bs

n1,. + Us
b1

/h2,
for k = 1, 2, . . . do

for s = 1, . . . , ns do
if s = 1, Us

a2
= Ua2l else Us

a2
= Us−1,k

.,n2+1−no

if s = ns, Us
b2

= Ub2r else Us
b2

= Us+1,k−1
.,no

Bs,k = Bs, Bs,k
.,1 = Bs,k

.,1 + Us
a2

/h2 Bs,k
.,n2

= Bs,k
.,n2

+ Us
b2

/h2

solve AUs,k = Bs,k

if s > 1, Rs
.,j = Us,k

.,j − Us−1,k
.,n2−no+1+j , for j = 1, . . . , no − 1

end
Ek = sup

s=2,...,ns

||Rs||

if Ek < ε end

(8.10)

In this algorithm, A is the matrix resulting from the discretization of the
operator −∆, defined by (8.7). It is here the same matrix for all subdomains.

Exercise 8.4. 1. Write a function DDM Schwarz2d to implement the above
algorithm. The calling syntax should be

function [conviter,cpu,mem,n2,b2]=DDM_Schwarz2d(n1,ns,no,...
a1,a2,b1,b2,rhs2d,f1,g1,f2,g2,RightHandSide2d,Laplace,n11),

where the input parameters are
• n1, the number of cells in direction x1,
• n11, the number of degrees of freedom in direction x1,
• ns, the number of subdomains,
• no, the number of cells in the overlap regions in direction x2,
• Laplace, the name of the function to compute the Laplacian discretiza-

tion matrix,
• RightHandSide2d, the name of the function to compute the right-hand

side,
• rhs2d, the name of the function F (x1, x2),
• f1, the name of the function f1(x1) defining the boundary condition

on the edge x2 = a2,

178 8 Domain Decomposition Using a Schwarz Method

• g1, the name of the function g1(x1) defining the boundary condition
on the edge x2 = b2,

• f2, the name of the function f2(x2) defining the boundary condition
on the edge x1 = a1,

• g2, the name of the function g2(x2) defining the boundary condition
on the edge x1 = b1.

The function returns as output arguments
• conviter, the number of iterations necessary to have a maximum error

in the overlap regions below the specified tolerance tol,
• cpu, the computing time,
• mem, the necessary memory.

2. Write a program DDM TestSchwarz2d to test the algorithm with the same
function f as in the global case for the following parameter values: a1 =
a2 = 0, b1 = 1, n1 = 9, b2 = 30, no = 10, ns = 20.
A solution of this exercise is proposed in Sect. 8.5 at page 184.

Study of the method’s performance: we now study the influence of the sub-
domain size on the convergence speed. We therefore need to estimate, for a
given subdomain decomposition, the computing time necessary to achieve the
specified accuracy. Computing time is measured within MATLAB using the
commands tic and toc at the beginning and end of the script, or part of the
script, that is to be monitored. Since it is the elapsed time that is actually
measured, this is best done on a single-user computer. Furthermore, in order
to be able to compare several configurations, only one parameter should vary.
We keep constant the dimensions of the global domain, which imposes con-
straints on the number of subdomains, their size, and the size of the overlap
region.

Exercise 8.5. Fix the parameters b1 = 1, b2 = 50, n1 = 9, and the overlap
size no = 4. We assume that realistic values for the number s of subdomains
will run from 5 to 60. For each value of ns within this range, check whether the
decomposition is possible, and if it is, compute the solution using the function
DDM Schwarz2. Display the performance in computing time, memory, number
of iterations, as a function of parameters no and ns. Analyze the influence of
the overlap size on the algorithm’s convergence.
A solution of this exercise is proposed in Sect. 8.5 at page 187.

8.4.3 Implementation of Realistic Boundary Conditions

More realistic heat conduction test cases require the implementation of ad-
ditional boundary conditions besides the Dirichlet one that we have used so
far. Let us consider, for instance, the temperature field within a bus bar like
the one sketched in Fig. 8.8. The electric field produces heat at the uniform
rate F (x1, x2) = q = 106 W/m3. The following temperatures are imposed on
the electrodes: 40◦C on the left end and 10◦C on the right end, thanks to

8.4 Extension to the Two-Dimensional Case 179

0°

10°

40°

x 1

x2

 liquid
Cooling

Cooling

 liquid

Electric
current

Transfer

Insulation

Fig. 8.8. Bus bar sketch.

a cooling liquid circulation device. The two lateral faces of the bar as well
as the bottom face are insulated, meaning that a Neumann boundary condi-
tion has to be imposed. On the upper face, we impose a Fourier, or Robin,
boundary condition in order to model the natural convection-driven cooling
phenomenon. The thermal transfer coefficient is equal to cth = 75 W/m2 and
the outside temperature is 0◦C. The thermal diffusivity coefficient of the alloy
is equal to k = 20 W/m K. Solving for ũ = u − uext, problem (8.1) becomes
in this particular case⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−k∆u(x1, x2) = q, for x ∈ Ω,
u = 40, on x2 = a2,
u = 10, on x2 = b2,
∂u

∂n
= 0, on x1 = b1,

∂u

∂n
+ cthu = 0, on x1 = a1.

(8.11)

Here ∂
∂n denotes the derivative with respect to the normal vector to the sur-

face. In order to discretize these Neumann and Fourier boundary conditions
we introduce in the system the degrees of freedom corresponding to these
nodes on the faces x1 = a1 and x1 = b1. There are now n1 + 2 nodes in the
x1 direction instead of the n1 in the Dirichlet case. For the nodes where the
Neumann condition applies, we write

un1+1,j = un1+2,j ,

which eliminates the outside node reference un1+2,j in the Laplacian dis-
cretization at nodes of indices (n1 + 1, j), giving eventually

3un1+1,j − un1,j − un1+1,j−1 − un1+1,j+1

h2 = fn1+1,j =
q

k
,

On the other hand, the Fourier condition is discretized as

u0,j − u−1,j + hcthu0,j = 0,

180 8 Domain Decomposition Using a Schwarz Method

which eliminates the reference to nodes (−1, j) in the Laplacian discretization
at nodes of indices (0, j), leading eventually to

3u0,j − hcthu0,j − u1,j − u0,j−1 − u0,j+1

h2 = f0,j .

Exercise 8.6. 1. Modify Algorithm (8.10) to take into account the Fourier
and Neumann boundary conditions.

2. Implement a function DDM LaplaceFourier that builds the linear system
tridiagonal block matrix.

3. Implement functions DDM RightHandSide2dFourier, DDM f1BB, DDM g1BB,
and DDM rhs2dBB for the bus bar problem.

4. Modify function DDM FinDif2d and script DDM TestFinDif2d in order to
treat this problem with the global finite difference algorithm.

5. Modify function DDM Schwarz2d and script DDM TestSchwarz2d in order
to treat this problem with the Schwarz algorithm.
Solutions of this exercise are proposed in Sect. 8.5 at page 183 for the

global solution and at page 188 for the domain decomposition solution.

The global treatment provides the solution displayed in Fig. 8.9. The influence
of the Fourier condition is clearly seen on the boundary at x1 = 0, where the
solution decreases toward the outside temperature value.

0

5

10

15

20

0

1

2

3

4

5

6
0

5

10

15

20

25

30

35

40

Finite difference 2D Laplacian solution

Fig. 8.9. Temperature in the bus bar.

8.4.4 Possible Extensions

The first extension from the point of view of the domain decomposition is
of course to adapt the implementation to a decomposition on subdomains of
different sizes. The degrees of freedom bookkeeping is then more complicated,
and each subdomain requires the computation of a specific matrix. Should

8.5 Solutions and Programs 181

these matrices be computed once and for all and stored in memory, or com-
puted again at each iteration? What is the influence of this strategic issue on
the computing time?

Another extension of the project can be the domain decomposition in both
directions, which will enable the treatment of problems set on domains with
complex geometry. The storage of the solution and the connection of the de-
grees of freedom in the overlapping regions requires a rigorous implementation.

8.5 Solutions and Programs

Solution of Exercises 8.1 and 8.2
The function DDM FunSchwarz1d implements the Schwarz algorithm in the
case of two subdomains of the same size. This constraint greatly simplifies
the implementation, since the matrices of the local linear systems have the
same dimensions for both subdomains. In the case that the coefficient c(x) is
constant, the matrix is exactly the same in both subdomains. The enforcement
of the constraint requires a careful translation of the mathematical indices
into MATLAB (once again, keep in mind that the indices of an array in
MATLAB start from 1). One method consists in setting the number of space
steps in the global domain to an even number, and therefore the number of
discretization points, including the edges at x = a and b, to an odd number
nx. The space step is denoted by h = (b−a)/(nx−1). Then the (even) number
of space steps within the overlap is fixed to 2no, with the parameter no sent
as input to the function. From these data the position xl of the left side of
the right-hand-side subdomain is computed:

xl = 0.5(a + b) − noh,

along with the position xr of the right edge of the left-hand-side subdomain:

xr = 0.5(a + b) + noh.

Eventually, the number of space steps in each subdomain is equal to

il = ir = (nx + 1)/2 + no − 1.

Once these parameters are set, the finite difference matrix for the subdomains,
of size ig − 1 × ig − 1, can be computed. Two right-hand-side vectors are also
defined. The influence of the boundary conditions at points xr and xl is not
included at this stage since they vary at each iteration.

The function DDM FunSchwarz1d uses the function DDM rhs1d to compute
the right-hand side.

The output parameters of the function are the number of iterations re-
quired to reach the convergence tolerance, and the computing time, estimated
using the tic and toc MATLAB commands.

182 8 Domain Decomposition Using a Schwarz Method

To answer Exercise 8.1, the function is called once with no = 10 from
the script DDM CallSchwarz1d. The parameter detail is set to 1 so that the
solution is displayed at each iteration, and the evolution of the error as a
function of the iterations is also displayed once convergence has been reached.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18
CPU versus overlapping size

Fig. 8.10. Computing time performance of the decomposition versus the size of the
overlapping region.

The script DDM PerfSchwarz1d does the performance study required in
Exercise 8.2. It calls the function DDM FunSchwarz1d for all values no between
1 and nx/10, and stores the corresponding number of iterations and computing
time in arrays. A graph of the computing time as a function of the overlap size
is displayed in Fig. 8.10. The method converges faster as the overlap increases,
and the computing time for each iteration does not vary that much; therefore
the overall computing time decreases as the size of the overlap region increases.

Solution of Exercise 8.3
To implement the 2D problem, it is interesting to preserve the double num-
bering of the discretization nodes associated with the Cartesian grid for the
graphical representation of the solution, the boundary conditions, and the
right-hand-side implementation. The global numbering of the degrees of free-
dom in a column vector can be used only to solve the linear systems. MAT-
LAB can easily convert an n1 × n2 array containing the unknowns ui,j into
an array uk with k = 1, . . . , n1 ×n2, and conversely, as in the following script:

% If size(tab)=[n1,n2]

8.5 Solutions and Programs 183

col=tab(:); % size(col)=[n1*n2,1] and col((j-1)*n1+i)=tab(i,j)
% inversely if size(col)=[n1*n2,1]
tab=zeros(n1,n2);
tab(:)=col;

We first give MATLAB programming solutions for the functions: the finite dif-
ference matrix for the 2D Laplacian operator in the case of Dirichlet boundary
conditions is built by the function DDM LaplaceDirichlet.

In the test case proposed in question 5, the boundary conditions compat-
ible with the exact solution

u(x1, x2) = sin(x1 + x2)

are programmed in files DDM f1Exact.m, DDM g1Exact.m, DDM f2Exact.m,
DDM g2Exact.m. The right-hand-side function

f(x1, x2) = −∇u(x1, x2) = 2 sin(x1 + x2)

is programmed in the function DDM rhs2dExact.m. The right-hand side of
the linear system in the case of Dirichlet boundary conditions is assembled
by the function DDM RightHandSide2dDirichlet. It uses the right-hand-
side function as specified in (8.8) and the boundary conditions as speci-
fied in (8.9). The computation of the finite difference solution is performed
by the function DDM FinDif2dDirichlet. It receives in its input arguments
the functions DDM f1Exact, DDM g1Exact, DDM f2Exact, DDM g2Exact, and
DDM rhs2dExact, whose local names are respectively f1, g1, f2, g2, rhs2d. It
is able to treat other test cases and other boundary conditions. In the present
case of inhomogeneous Dirichlet boundary conditions on all the boundaries,
the number of degrees of freedom in the x1 (respectively x2) direction is equal
to n1 (respectively n2), that is, the number of inside nodes in this direction.

The test case proposed in question 5 of Exercise 8.3 is treated in the
first part of the calling script DDM TestFinDif2d. The finite difference solu-
tion is compared with the exact solution by displaying their difference. The
solution of the thermal shock described in Fig. 8.3, for which the exact solu-
tion is not known, is treated by calling the function DDM FinDif2dDirichlet
with the functions DDM rhs2dCT, DDM f1CT, DDM g1CT, and DDM f2CT as in-
put arguments in order to compute the right-hand side. Eventually, the last
computation performed in the script DDM TestFinDif2d.m corresponds to
the bus bar problem of Exercise 8.6. It is actually done by the function
DDM FinDif2dFourier. The Laplacian matrix is computed by DDM Laplace-
Fourier, where Neumann boundary conditions on the edge x1 = a1 and
Fourier boundary conditions on the edge x1 = b1 are handled. Different func-
tions DDM RightHandSideFourier and DDM rhs2dBB are used to compute the
right-hand side. The inhomogeneous Dirichlet conditions, defined on edges
parallel to x1, are taken into account using functions DDM f1BB and DDM g1BB.

184 8 Domain Decomposition Using a Schwarz Method

Solution of Exercise 8.4
Algorithm (8.10) corresponding to the Schwarz method in the case of Dirich-
let boundary conditions on all four edges is programmed in the function
DDM Schwarz2dDirichlet below and is tested in the script DDM TestSchwarz2d
for the two examples treated in the previous exercise:

function [conviter,cpu,mem,n2,b2]=DDM_Schwarz2dDirichlet(n1,...
ns,no,a1, a2,b1,b2,f,f1,g1,f2,g2,detailed)

%%%
%% function [conviter,cpu,mem,n2,b2]=DDM_Schwarz2dDirichlet(n1,...
%% ns,no,a1, a2,b1,b2,f1,f1,g1,f2,g2,detailed)
%% Exercise 8.4
%% Schwarz method of domain decomposition with overlap
%% for the finite difference solution of the boundary conditions
%% problem
%% -nabla u=f on [a1,b1]x[a2,b2]
%% + Dirichlet b. c.
%% u(a1,x2)=f2(x2) u(x1,a2)=f1(x1)
%% u(b1,x2)=g2(x2) u(x1,b2)=g1(x1)
%%
%% Input parameters:
%% n1 : number of cells on [a1,b1]
%% ns : number of subdomains in the x2 direction
%% no : number of cells in overlapping region
%% a1, a2, b1, b2: minimal and maximal abscissa and
%% ordinates of the rectangular domain
%% f : right-hand-side function of the problem
%% f1, g1,f2,g2 : functions defining the inhomogeneous
%% Dirichlet boundary condition on the four edges of the domain
%% detailed: nonzero to have intermediate graphical displays.
%%
%% Output parameters:
%% conviter: number of iterations
%% cpu : computing time
%% mem : memory needed to store the solution and the matrix
%% n2 : number of points per subdomain in the x2 direction
%% b2 : total size of domain in the x2 direction
%%
tic % computing time counter start
h=(b1-a1)/(n1+1);
n2tot=round(b2/h); % there are n2tot cells in total domain,
n2=round((n2tot-no*(1-ns))/ns)-1; % and n2+1 cells in each subdomain
n2tot= ns*(n2+1)+no*(1-ns);
b2=a2+h*n2tot; % final global size
% memory needed to store the solution and the matrix

8.5 Solutions and Programs 185

mem=(n1*n2)ˆ2+ns*n1*n2;
%
% the size of each subdomain is n1 x n2
%
a11=a1-h; % Dirichlet condition on the edge // to X2
%
% Boundary conditions independent of iterations are set in arrays
Ua2l=feval(f1,a1+h*[1:n1])’ ; % boundary condition on edge x2=a2
Ub2r=feval(g1,a1+h*[1:n1])’; % boundary condition on edge x2=b2
% The right-hand side on each subdomain is an array to which the
% contribution of internal edges will be added at each iteration
RHS=zeros(n1*n2,ns);
starts=0; % starting index of subdomain s
Rhsm=zeros(n1,n2);
Solm=zeros(n1,n2);
for s=1:ns
RHS(:,s)=DDM_RightHandSide2dDirichlet(f,h,n1,n2,a1,a2+starts*h);
% Dirichlet boundary condition on edge x1=a1
Ua1(s,:)=feval(f2,a2+starts*h+[1:n2]*h);
% Dirichlet boundary condition on edge x1=b1
Ub1(s,:)=feval(g2,a2+starts*h+[1:n2]*h);
Rhsm(1,:)=Ua1(s,:)/hˆ2;
Rhsm(n1,:)=Ub1(s,:)/hˆ2;
RHS(:,s)= RHS(:,s)+Rhsm(:);
Solm(:,no)=(i*Ub2r+(ns-s)*Ua2l)/ns;
Solcol(:,s)=Solm(:);
starts=starts+n2+1-no;

end
Rhsm=zeros(n1,n2);
Lapl=-DDM_LaplaceDirichlet(h,n1,n2);
maxiter=100; conviter=1; err=1; epsilon=0.001;
Solcol=zeros(n1*n2,ns);
ERR=[];
while err>epsilon & conviter<maxiter
starts=0;
err=0;
Ua2=Ua2l; %left edge in x2 contains n1+2 row
for s=1:ns
if s<ns
% The boundary condition on the right edge is obtained
% from the solution at previous iteration on the right-hand-side
% neighboring subdomain
Solmr=zeros(n1,n2);Solmr(:)=Solcol(:,s+1);
Ub2=Solmr(:,no);

else

186 8 Domain Decomposition Using a Schwarz Method

Ub2=Ub2r; % the exact boundary condition is used on the right edge.
end
%
Rhsm(:,1)= Ua2/hˆ2;
Rhsm(:,n2)= Ub2/hˆ2;
Rhscol=RHS(:,s)+Rhsm(:);
Solcol(:,s)=Lapl Rhscol;
Solm=zeros(n1,n2);Solm(:)=Solcol(:,s);

% The boundary condition on the left edge is obtained for the
% next subdomain on the right
Ua2=Solm(:,n2-no+1);
if s>1 % the overlapping region is extracted
OVER=Solml(:,n2-no+2:n2)-Solm(:,1:no-1);
err=max(err,norm(OVER(:),inf));

end
Solml=Solm;
if detailed,
surf(a2+h*starts+h*[1:n2],a11+h*[1:n1],Solm);
title(strcat(’iteration ’,int2str(conviter)))
if s==1
hold on

end
end
starts=starts+n2+1-no;

end
ERR=[ERR,err];
conviter=conviter+1;

end
cpu=toc; % computing time counter starts here
if detailed, % Visualization after convergence
Ua2l=[feval(f1,a1); Ua2l;feval(f1,b1)] ;
Ub2r=[feval(g1,a1); Ub2r;feval(g1,b1)] ;
figure; hold on ;
Solmr=zeros(n1,n2);Solmr(:)=Solcol(:,1);
% In the case of Dirichlet bc on edges // to x2 two rows
% corresponding to the boundary conditions on x1=a1 and x1=b1
% are added to the solution on each subdomain
starts=0;
Solmr= [Ua1(1,:);Solmr;Ub1(1,:)]; % Dirichlet bc
Solmr=[Ua2l,Solmr]; % exact boundary condition on left edge
surf(a2+h*starts+h*[0:n2],a1+h*[0:n1+1],Solmr);
starts =starts+n2+1-no;
for s=2:ns-1
Solmr=zeros(n1,n2);Solmr(:)=Solcol(:,s);
Solmr= [Ua1(s,:);Solmr;Ub1(s,:)];

8.5 Solutions and Programs 187

surf(a2+h*starts+h*[1:n2],a1+h*[0:n1+1],Solmr);
starts=starts+n2+1-no;

end
Solmr=zeros(n1,n2);Solmr(:)=Solcol(:,ns);
Solmr= [Ua1(ns,:);Solmr;Ub1(ns,:)];
Solmr=[Solmr,Ub2r]; %exact boundary condition on right edge
surf(a2+h*starts+h*[1:n2+1],a1+h*[0:n1+1],Solmr);
title(’Final solution’)

end

An interesting programming feature is the array RHS indexed by the subdo-
main, which contains the right-hand side of the linear system for the cor-
responding subdomain. This array is initialized with the contribution of the
right-hand-side function f(x1, x2) as well as the Dirichlet boundary conditions
on the global domain edges. The array is used in the subsequent iterations, in
the loop on subdomains, to initialize the right-hand-side vector Rhsm of the
local linear system. The contribution of the Dirichlet boundary condition on
internal edges, which depends on the solution on neighboring subdomains, is
then added before the linear system is solved.
The matrix Lapl of the linear system is the same for all subdomains and does
not depend on the solution; it is therefore computed once and for all outside
the loop on iterations.

Figure 8.11 displays the solutions after 1 and 4 iterations for the first test
case, where the exact solution is known.

0 10 20 30 0

0.5

1

−1

−0.5

0

0.5

1

iteration1

(a) 0 10 20 30 0

0.5

1

−1

−0.5

0

0.5

1

iteration4

(b)

Fig. 8.11. Solutions computed on 20 subdomains, after (a) 1 and (b) 4 iterations.

Solution of Exercise 8.5
To analyze the convergence, we propose the script DDM Perf.m, which also
calls the function DDM Schwarz2dDirichlet. The first test case is considered,
with this time a larger domain in the x2 direction: b2 − a2 = 50. The width
of the domain remains equal to 1 and is discretized with 11 cells, leading to
n1 = 10 degrees of freedom in the x1 direction. The size of the overlap region is

188 8 Domain Decomposition Using a Schwarz Method

fixed to 10 cells in the x2 direction. All “reasonable” values for the number of
subdomains are tried in a loop, from ns = 5 subdomains (which corresponds
to 117 degrees of freedom per subdomain in the x2 direction) to ns = 60 sub-
domains (which corresponds to 18 degrees of freedom per subdomain). Since
the discretization step must be the same in both directions x1 and x2, some
configurations are impossible: the step h is fixed by the number of points in
the x1 direction, n1 = 10, that is, h = (b1−a1)/(n1+1). Therefore the number
of internal points in the x2 direction is also fixed to ntotal

2 = (b2 − a2)/h, with
the constraint that n2 must be an integer. Furthermore, the number of points
in the x2 direction in one subdomain, n2, taking into account the overlap re-
gion, must satisfy ns(n2 +1) = ntotal

2 −no(1−ns), while being also an integer.
Only the decomposition configurations leading to a total length of 50 with a
0.2% tolerance are considered.

For these allowable configurations, the function DDM Schwarz2dDirichlet
is called, with this time the input argument detailed set equal to 0 to in-
hibit some of the intermediate graphical outputs. On the other hand, output
parameters return the number of iterations, the computing time, the memory
size, and the number of points per subdomain n2. Figure 8.12 shows the results
obtained for two different sizes of the overlap regions: no = 4 and no = 10
cells in the x2 direction. A comparison of the computing time curve with the
number of iterations curve is particularly interesting. One would expect that
the number of iterations should increase with the number of subdomains, but
since the computing time necessary for each subdomain decreases along with
their size, the evolution of the global computing time is less predictable. The
simulations indicate that the optimal number of subdomains might depend
on the size of the overlap.

For comparison, the direct computation of the global solution on 9 × 499
degrees of freedom would require 35 seconds of computing time, which is more
than the decomposition method requirement in the worst configuration case.
The memory necessary to store the matrix of a global linear system on the
order of 2.107 is also prohibitive.

Solution of Exercise 8.6

We now denote by X1 the vector containing the n1 + 2 abscissa a1 + jh,
j = 0, . . . , n1 +1, including a1 and b1. The vectors Xi

2 of Algorithm (8.10) are
unchanged. The Laplacian matrix is modified in order to take into account
the Neumann and Fourier boundary conditions, using the block representa-
tion (8.7). The T and D matrices are now of dimension (n1 + 2) × (n1 + 2),
and the matrix T is different from the previous one (8.6) in the first and last
rows

8.5 Solutions and Programs 189

a) # s.d.
0 20 40 60 80

4

4.5

5

5.5

6

6.5

7

ite
ra

tio
ns

r=4
r=10

b) # s.d.
0 20 40 60 80

0

5

10

15
x 10

5

M
em

or
y

r=4
r=10

0 20 40 60 80
0

5

10

15

20

c) # s.d.

C
P

U

r=4
r=10

0 20 40 60 80
0

20

40

60

80

100

120

d) # s.d.

su
bd

om
ai

n
si

ze

r=4
r=10

Fig. 8.12. Performances of the decomposition versus the number of subdomains for
two different sizes of the overlap.

T =
1
h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 − hcth −1 0 0

−1 4 −1
.

...

0
. . . 4

.
...

...
.

...
...

. 4 −1
0 0 −1 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since the outside temperature is equal to 0◦C, there is no contribution of the
Fourier boundary condition on the right-hand side. The Schwarz algorithm is
now as follows:

190 8 Domain Decomposition Using a Schwarz Method∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

initialization :
Ua2l = f2(X1), Ub2r = g2(X1)
U i,0

.,no
= (iUb2r + (ns − s)Ua2l)/ns, for s = 2, . . . , ns

Bs
.,. = F (X1, X

s
2), for s = 1, . . . , ns

for k = 1, 2, . . . , do
for s = 1, . . . , ns do

if s = 1, Us
a2

= Ua2l else Us
a2

= Us−1,k
.,n2+1−no

ifs = ns, Us
b2

= Ub2r else Us
b2

= Us+1,k−1
.,no

Bs,k = Bs, Bs,k
.,1 = Bs,k

.,1 + Us
a2

/h2 Bs,k
.,n2

= Bs,k
.,n2

+ Us
b2

/h2

solve AUs,k = Bs,k

if s > 1, Rs
.,j = Us,k

.,j − Us−1,k
.,n2−no+1+j , for j = 1, . . . , no − 1

end of s
Ek = sup

s=2,...,ns

||Rs||

if Ek < ε end of k

(8.12)

This algorithm is programmed in the function DDM Schwarz2dFourier and
tested in the third example of the script DDM TestSchwarz2d.m.

Chapter References

This project has provided the general idea of domain decomposition, which is
to decompose a global problem into suitable subproblems of smaller complex-
ity. In practice, however, domain decomposition methods are mostly imple-
mented for complex shapes discretized with finite element schemes. Nonover-
lapping algorithms as in Quarteroni and Valli (1999) are then preferable, and a
large number of such techniques makes use of the so-called mortar formulation
(see Wohlmuth (2001)).

P. L. Lions, On the alternating Schwarz method I . In R. Gowinski, G. H.
Golub, G. A. Meurant and J. Périaux, editors. First International Sympo-
sium on Domain Decomposition Methods for Partial Differential Equations,
pp. 1–42, SIAM, Philadelphia, 1988.

B. Lucquin and O. Pironneau, Introduction to Scientific Computing, Wil-
ley, Chichester, 1998.

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial
Differential Equations, Numerical Mathematics and Scientific Computation,
The Clarendon Press Oxford University Press, New York, 1999.

H. A. Schwarz, Gesammelte Mathematische Abhandlungen. Volume 2.
Springer, Berlin, 1890. First published in Vierteljahrsschrift Naturforsch.
Ges. Zurich, 1870.

B. F. Smith, P. E. Bjørstad, and W. D. Gropp, Domain Decomposi-
tion, Parallel Multilevel Methods for Elliptic Partial Differential Equations,
Cambridge University Press, Cambridge, 1996.

Chapter References 191

B. I. Wohlmuth, Discretization Methods and Iterative Solvers Based on
Domain Decomposition, Lecture Notes in Computational Science and En-
gineering, 17, Springer-Verlag, Berlin, 2001.

9

Geometrical Design: Bézier Curves and
Surfaces

Project Summary

Level of difficulty: 2

Keywords: Bézier curves, Bézier surfaces

Application fields: Computer-aided geometric design, geometric model-
ing, computational graphics

9.1 Introduction

Many fields in the computational science area need descriptions of complex ob-
jects: virtual reality, computational graphics, geometric modeling, computer-
aided geometric design (CAGD). These descriptions are commonly obtained
using basic elements: points, curves, surfaces, and volumes. Elementary tools
used to handle these elements are mathematical functions such as polynomi-
als and rational functions, which allow easy graphical representation in many
situations: union of objects, intersection, complement.

The very first studies in geometrical design go back to the sixties and were
related to industrial projects. For example, J. Ferguson (Boeing) and S. Coons
(Ford) in the United States, P. de Casteljau (Citroën) and P. Bézier (Renault)
in France, were pioneers in the discipline. This chapter gives an introduction to
geometrical design by studying some properties of the so-called Bézier curves
and surfaces.

9.2 Bézier Curves

Let n ≥ 2 be an integer and t ∈ [0, 1] a parameter; consider m + 1 points in
R

n: P0, P1, . . . , Pm (distinct or not) and define the point P (t) by

194 9 Geometrical Design: Bézier Curves and Surfaces

P (t) =
m∑

k=0

Ck
mtk(1 − t)m−kPk, (9.1)

where Ck
m = m!

k!(m−k)! is the binomial coefficient. The Bézier curve Bm with
control points P0, P1, . . . , Pm is the trajectory described by P (t) as t goes
from 0 to 1. The polynomials Bk

m(t) = Ck
mtk(1 − t)m−k are the Bernstein

polynomials of degree m, with the following properties:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∀t ∈ [0, 1], 0 < Bk

m(t) < 1,

m∑
k=0

Bk
m(t) = 1,

Bk
m(0) = 0, for 0 < k ≤ m, B0

m(0) = 1,

Bk
m(1) = 0, for 0 ≤ k < m, Bm

m(1) = 1.

(9.2)

It follows from (9.1) and (9.2) that P (0) = P0 and P (1) = Pm. Generally,
P0 and Pm are the only control points on the curve Bm. Definition (9.1) allows
one to represent, exactly and in a condensed form, a great diversity of curves
in R

n. Fig. 9.1(a) displays an example of a Bézier curve defined in R
2 with five

control points. Note that the order in which the control points are considered
in (9.1) will dictate the shape of the curve: for example, in Figs. 9.1(a) and
(b) the same control points are used, but P0 and P4 have been interchanged.
More generally, attempting to change any control point will result in the entire
curve being modified.

Since Bernstein polynomials are linearly independent functions, two Bézier
curves coincide for the same value of m when they share the same control
points. Nevertheless, it is important to note that the same Bézier curve admits
different representations of type (9.1), corresponding to different values of m.
For example, consider two points P0 and P1 and define Q1 to be the midpoint
of P0P1; the line segment P0P1 is defined by either

P (t) =
1∑

k=0

Ck
1 tk(1 − t)1−kPk (m = 1)

or

Q(t) =
2∑

k=0

Ck
2 tk(1 − t)2−kQk (m = 2)

with t ∈ [0, 1], Q0 = P0, and Q2 = P1. If we introduce the new control
points R0 = P0, R1 = (2P0 + P1)/3, R2 = (P0 + 2P1)/3, and R3 = P1, the
Bézier curve corresponding to the definition

R(t) =
3∑

k=0

Ck
3 tk(1 − t)3−kRk (m = 3)

with t ∈ [0, 1] is still the line segment P0P1 ! (check that P (t) = Q(t) = R(t)).

9.3 Basic Properties of Bézier Curves 195

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

P0

P1

P2

P3

P4

Bézier curve

a)
−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

P0

P1

P2

P3

P4

Bézier curve

b)

Fig. 9.1. Two Bézier curves.

Remark 9.1. The control point Pk, for any 1 < k < m, does not generally
belong to the Bézier curve; it is, however, possible to introduce another type of
Bézier curve, called a Bézier interpolation curve; which contains all its control
points. Both kinds of curves belong to the family of spline curves. Spline
curves are generated using the general definition (9.3), in which functions fk

are polynomials of degree m:

P (t) =
m∑

k=0

fk(t)Pk. (9.3)

Many other curves (B-splines, NURBS) are defined by way of such a for-
mula (Coons (1974), Hoschek and Lasser (1997), or Piegl and Tiller (1995)).
In (9.3) the blending functions fk may be polynomials (of degree p 	= m),
rational functions, etc. All the corresponding curves are entirely defined by
setting the control points and choosing the associated functions. Note that a
curve may be also defined “piecewise”, as the union of distinct curves sharing
the same endpoints. In this chapter we shall limit our study to Bézier defined
by formula (9.1).

9.3 Basic Properties of Bézier Curves

In this section we study some properties of Bézier curves, which are relevant
for practical applications.

9.3.1 Convex Hull of the Control Points

According to (9.1), the point P (t) is defined as the barycenter of the m + 1
control points Pk, with corresponding weights Bk

m(t). If follows from the first
relationship in (9.2) that P (t) belongs to the convex hull of the control points.

196 9 Geometrical Design: Bézier Curves and Surfaces

We may see in Fig. 9.2(a) that a Bézier curve lies entirely within the convex
hull of the control points. Note that this convex hull contains the polygon
P0P1 . . . PmP0, which is commonly referred as the control polygon. From a
more general point of view, it is worth noting that in many situations the
control polygon is not convex (as can be seen from Fig. 9.2(b)).

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

P0

P1

P2

P3

P4

Bézier curve with control polygon

(a)
−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

P0

P1

P2

P3

P4

Bézier curve with control polygon

(b)

Fig. 9.2. Control polygon. (a) convex; (b) nonconvex.

9.3.2 Multiple Control Points

When defining a Bézier curve, it is not necessary to use distinct control points.
This allows us to create more or less complicated shapes, closed or open curves,
as displayed in Figs. 9.3 and 9.4.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

P0

P1

P2

P3

P4

P5

Bézier curve with multiple control points

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

P0

P1

P2

P3

P4
P5

P6

Bézier curve with multiple control points

Fig. 9.3. Multiple control points (1).

9.3 Basic Properties of Bézier Curves 197

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

P0

P1

P2

P3

P4
P5

P6

P7

P8

P9

Bézier curve with multiple control points

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

P0

P1

P2

P3

P4
P5

P6

P7

P8

P9

P10

Bézier curve with multiple control points

Fig. 9.4. Multiple control points (2).

9.3.3 Tangent Vector to a Bézier Curve

Let P (t) be the point of the Bézier curve Bm corresponding to the value t of
the parameter. The tangent vector to Bm at P (t) is defined by

τ (t) =
d

dt
P (t) =

m∑
k=0

d

dt
Bk

m(t)Pk. (9.4)

It follows from definition (9.3) that

d

dt
Bk

m(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− m(1 − t)m−1, if k = 0,

m(1 − mt)(1 − t)m−2, if k = 1,

Ck
m(k − mt)tk−1(1 − t)m−k−1, if 1 < k < m − 1,

mtm−2(m − 1 − mt), if k = m − 1,

mtm−1, if k = m.

Consequently, when P0 	= P1, the tangent vector at P0 is τ (0) = mP0P1.
The Bézier curve Bm is tangent at P0 to the edge P0P1 of the control polygon.
Similarly, if Pm−1 	= Pm, then τ (1) = mPm−1Pm and the curve is tangent at
Pm to the edge Pm−1Pm. This property is illustrated in the previous figures.

Remark 9.2. More generally, it can be proved that

d

dt
Bk

m(t) = m(Bk−1
m−1(t) − Bk

m−1(t)).

This formula may be useful to compute the tangent vector τ (t) .

9.3.4 Junction of Bézier Curves

We address now the problem of linking two Bézier curves. Consider the Bézier
curve defined with m+1 control points P0, P1, . . . , Pm and another curve de-
fined with m′ +1 control points P ′

0, P
′
1, . . . , P

′
m′ . We are interested in studying

198 9 Geometrical Design: Bézier Curves and Surfaces

how these two curves connect, and more particularly how this junction looks
on a display. This is an important problem in CAGD, where maximum quality
in the rendering of pictures is expected.

In order to get a C0 connection (that is, a continuous junction of the two
curves) we have to lay down a basic condition: Pm = P ′

0. Then, since the
first curve Bm is tangent to the line segment Pm−1Pm at Pm and the second
curve B′

m′ is tangent to P ′
0P

′
1 at P ′

0, a tangential connection of the curves
is obtained if and only if the three points Pm−1, Pm (or P ′

0), and P ′
1 lie on

a straight line. This condition, which is called the G1 continuity condition,
is generally sufficient to get a satisfactory layout. Nevertheless, for a better
rendering, it is natural to ask for more, namely a C1 continuity condition. This
will be satisfied if the tangent vector τ passes continuously from the first curve
to the second one. We know that the tangent vector to Bm at Pm is m

−−−−−−→
Pm−1Pm,

while for B′
m the tangent vector at P ′

0 is m
−−−→
P ′

0P
′
1. The C1 continuity condition

is then satisfied when −−−−−−→
Pm−1Pm =

−−−→
P ′

0P
′
1. This is equivalent to saying that

Pm = P ′
0 is the midpoint of the line segment Pm−1P

′
1.

Figure 9.5 shows an example of a G1 junction (left), together with an
example of a C1 junction (right). The actual difference is not visible here;
but it is clear from Fig. 9.5(b) that P4 (point P4 ≡ P ′

0) is the midpoint of the
line segment P3P

′
1, while this is not true in Fig. 9.5(a). Distinguishing between

these two kinds of junction is important when one has to handle evenly spaced
points on the curve B = Bm ∪ B′

m.

0 1 2 3 4 5 6

−4

−3

−2

−1

0

1

2

3

P0

P1

P2

P3

P4P’0

P’1

P’2

P’3

G1 continuity connection

(a)
0 1 2 3 4 5 6

−4

−3

−2

−1

0

1

2

3

P0

P1

P2

P3

P4P’0

P’1

P’2

P’3

C1 continuity connection

(b)

Fig. 9.5. Junction of curves. (a) G1 continuity; (b) C1 continuity.

9.3.5 Generation of the Point P (t)

Although the point P (t) is exactly defined from (9.1), the effective construc-
tion of P (t) for a given value of the parameter t ∈ [0, 1] in this way is time-
consuming. Furthermore, since the calculation of high degree polynomials val-

9.3 Basic Properties of Bézier Curves 199

ues is not an accurate process, the point resulting from (9.1) will be generally
different from the actual P (t). Fortunately, there is another way, cheap and
accurate, to obtain P (t) using the recurrence between Bernstein polynomials:

Bk
m+1(t) = tBk−1

m (t) + (1 − t)Bk
m(t). (9.5)

This result is proved by writing

t Bk−1
m (t) + (1 − t)Bk

m(t) = t Ck−1
m tk−1(1 − t)m−k+1 + (1 − t)Ck

mtk(1 − t)m−k

= (Ck−1
m + Ck

m)tk(1 − t)m−k+1

= Ck
m+1t

k(1 − t)m+1−k = Bk
m+1(t).

This property is useful for displaying Bézier curves: for a chosen value
of t ∈ [0, 1], the points P p

q , for p = 0, 1, . . . , m and q = p, p + 1, . . . , m, are
successively defined by∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

initialization: for p = 0, do

for q = 0, 1, . . . , m, do

P 0
q = Pq

end do

end do

construction: for p = 1, 2, . . . , m, do

for q = p, p + 1, . . . , m, do

P p
q = tP p−1

q−1 + (1 − t)P p−1
q .

end do

end do

(9.6)

We shall prove now that Pm
m = P (t). We first note that in (9.6), at step

p, any of the m − p points P p
q is defined as the barycenter of P p−1

q−1 and P p−1
q ,

which are the two points obtained in the previous step. Using mathematical
induction on p, we prove that P p

q satisfies, for p = 0, 1, . . . , m and q = p, p +
1, . . . , m, the relationship

P p
q =

m∑
j=0

Bj
pPj .

This is trivial when p = 0 because of the definition of the points P 0
q

(q = 0, 1, . . . , m). We then assume the property to be satisfied to rank p − 1
(included) and prove it for rank p. For q = p, p + 1, . . . , m, we write

P p
q = tP p−1

q−1 + (1 − t)P p−1
q =

m∑
j=0

(tBj
q−1 + (1 − t)Bj

q)Pj =
m∑

j=0

Bj
qPj .

200 9 Geometrical Design: Bézier Curves and Surfaces

The relation is also satisfied for rank p, and then for any value of p ≤ m.
When p = m, this relation leads to

Pm
m =

m∑
j=0

Bj
mPj = P (t).

It follows that any point P (t) of the Bézier curve Bm with control points
P0, P1, . . . , Pm can be built by means of algorithm (9.6), which is called de
Casteljau’s algorithm. The computational cost to generate P (t) in this way
is equivalent to performing m + · · · + 1 = m(m + 1)/2 linear combinations;
this is much cheaper (and more accurate) than the use of formula (9.1). The
construction process is displayed in Fig. 9.6.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

P0

P1

P2

P3

P4

P(t)

x

De Casteljau algorithm

Fig. 9.6. De Casteljau’s algorithm.

9.4 Generation of Bézier Curves

It is now time to deal with a few examples. We shall see how easy it is to
construct Bézier curves using de Casteljau’s algorithm.

Exercise 9.1. 1. Choose m + 1 points P0, P1, . . . , Pm in R
2.

2. Write a general procedure generating a point P (t) of the Bézier curve
with control points P0, P1, . . . , Pm, using de Casteljau’s algorithm (9.6),
for any value t ∈ [0, 1].

3. Compute and display the corresponding Bézier curve.
4. Repeat the experiment for different values of m and different sets of control

points.
5. Check the different continuity conditions.

A solution of this exercise is proposed in Sect. 9.10 at page 210.

9.5 Splitting Bézier Curves 201

Remark 9.3. One may want to construct the curve displayed in Fig. 9.1(a). In
this particular case, m = 4 and the control points are P0 = (0, 0), P1 = (1, 2.5),
P2 = (2, 3), P3 = (3, 1.5), P4 = (3.5, 0).

9.5 Splitting Bézier Curves

Let Bm be the Bézier curve defined by m+1 control points P0, P1, . . . , Pm. Let
θ be a given value in [0, 1]. The point P (θ) of Bm is associated with θ by the
algorithm (9.6). We successively construct the points P p

q , for p = 0, 1, . . . , m
and q = p, p + 1, . . . , m, and finally set P (θ) = Pm

m . Consider now the Bézier
curve B̃m defined by the m+1 control points P 0

0 , P 1
1 , . . . , Pm

m . The point P̃ (t̃)
on this curve is defined by

P̃ (t̃) =
m∑

k=0

Ck
mt̃k(1 − t̃)m−kP k

k , (9.7)

where the parameter t̃ belongs to the interval [0, 1]. Note that P̃ (0) = P0 and
P (θ) = Pm

m . We are going to prove now that the Bézier curve B̃m, with ending
points P0 and P (θ), is the part of the curve Bm obtained when the parameter
t covers the interval [0, θ]. We first check that the points P p

q generated by the
algorithm (9.6) satisfy, for 1 ≤ p ≤ m and p ≤ q ≤ m,

P p
q =

p∑
k=0

Ck
p θk(1 − θ)p−kPq−k. (9.8)

This result is obtained by mathematical induction on p. Using definition
(9.6) we obtain, when p = 1 and 1 ≤ q ≤ m,

P 1
q = θP 0

q−1 + (1 − θ)P 0
q =

1∑
k=0

Ck
1 θk(1 − θ)1−kPq−k.

We assume that the property is true up to the value p− 1. Then we write,
for p ≤ q ≤ m,

P p
q =θP p−1

q−1 + (1 − θ)P p−1
q

=
p−1∑
k=0

Ck
p−1θ

k+1(1 − θ)p−1−kPq−1−k +
p−1∑
k=0

Ck
p−1θ

k(1 − θ)p−kPq−k

=
p−2∑
k=0

Cp−1−k
p−1 θk+1(1 − θ)p−1−kPq−1−k + θpPq−p

+ (1 − θ)pPq +
p−1∑
k=1

Ck
p−1θ

k(1 − θ)p−kPq−k.

202 9 Geometrical Design: Bézier Curves and Surfaces

We obtain

P p
q =

p−1∑
k=1

Cp−k
p−1 θk(1 − θ)p−kPq−k + θpPq−p

+ (1 − θ)pPq +
p−1∑
k=1

Ck
p−1θ

k(1 − θ)p−kPq−k

= θpPq−p +
p−1∑
k=1

(Cp−1−(k−1)
p−1 + Ck

p−1)θ
k(1 − θ)p−kPq−k + (1 − θ)pPq.

Finally,

P p
q =

p∑
k=0

Ck
p θk(1 − θ)p−kPq−k.

The point P̃ (t̃) of B̃m, defined by the m + 1 control points P 0
0 , P 1

1 , . . . , Pm
m ,

satisfies

P̃ (t̃) =
m∑

k=0

Ck
mt̃k(1 − t̃)m−kP k

k

=
m∑

k=0

Ck
mt̃k(1 − t̃)m−k

k∑
l=0

Cl
kθl(1 − θ)k−lPk−l.

(9.9)

Let p an integer (0 ≤ p ≤ m). By gathering in this sum all the terms
related to Pp, we obtain

P̃ (t̃) =
m∑

p=0

m−p∑
l=0

Cp+l
m Cp

p+lθ
p+l(1 − θ)m−p−lt̃p(1 − t̃)lPp.

Then we recall that Cp+l
m Cp

p+l = Cp
mCl

m−p, and note that

θp+l(1 − θ)m−p−lt̃p(1 − t̃)l = (θt̃)p(θ − θt̃)l(1 − θ)m−p−l.

The formula (9.9) is then written as

P̃ (t̃) =
m∑

p=0

Cp
m(θt̃)p

m−p∑
l=0

Cl
m−p(θ − θt̃)l(1 − θ)m−p−lPp

=
m∑

p=0

Cp
m(θt̃)p(1 − θt̃)m−pPp.

(9.10)

For any given value of θ in [0, 1], the product θt̃ lies in [0, θ] when the
parameter t̃ covers [0, 1]. When t̃ ∈ [0, 1] the point P̃ (t̃) defined by (9.9) or
(9.10) covers the Bézier curve with ending points P0 and P (θ).

9.6 Intersection of Bézier Curves 203

How do we get the complementary part of the curve? By a reverse ordering
of the control points and by changing θ into 1 − θ. Actually, the point P (θ)
of the Bézier curve with control points P0, P1 . . . , Pm is defined according to

P (θ) =
m∑

k=0

Ck
mθk(1 − θ)m−kPk =

m∑
k=0

Ck
m(1 − θ)kθm−kPm−k.

Then P (θ) is the same point as the point Q(1 − θ) of the Bézier curve with
control points Pm, Pm−1, . . . , P0. In order to obtain the part of the curve
with ending points P (θ) and Pm, we first generate the points Q0

0, Q
1
1, . . . , Q

m
m

associated with the Bézier curve with control points Pm, Pm−1, . . . , P0. Then
we set

Q̃(t) =
m∑

k=0

Ck
mtk(1 − t)m−kQk

k.

Remark 9.4. This result may be generalized to B-spline curves for which more
properties can be established in relation to basic operations such as moving,
removing and inserting a control point.

9.6 Intersection of Bézier Curves

We address now the problem of finding the intersection of two Bézier curves
Bm and B′

m′ defined in R
2 by their control points. We describe the two curves

by their generic points

P (t) =
m∑

k=0

Ck
mtk(1 − t)m−kPk,

P ′(t′) =
m′∑

k′=0

Ck′
m′(t′)k′

(1 − t′)m′−k′
P ′

k′ .

(9.11)

Now, is it possible to find two values t and t′ such that P (t) = P ′(t′)? How
do we compute them when they exist? According to the theory of algebraic
geometry, one can deduce implicit representations f(x, y) and f ′(x, y) of both
curves Bm and B′

m′ . But within the corresponding formulation, searching for
a possible common point is equivalent to finding the roots of a polynomial of
degree m + m′. This is a too complicated and time-consuming way to get the
solution. We propose here a method based on particular properties of Bézier
curves. We proceed as follows: Since any Bézier curve Bm is entirely contained
in the convex hull Em of its control points, we know that the intersection set
Bm ∩ B′

m′ is empty when the convex hulls Em and E ′
m′ do not intersect.

Conversely, both curves Bm and B′
m′ may intersect when the convex hulls

intersect; in order to obtain a more accurate view of the problem in this case,

204 9 Geometrical Design: Bézier Curves and Surfaces

we can split both curves into two parts and check the intersection of the
corresponding convex hulls. Splitting a Bézier curve Bm into two subcurves
B1

m and B2
m with their associated control points sends us back to the previous

section. We denote by B1
m the curve corresponding to the part of the curve

Bm obtained for t ∈ [0, 0.5], while B2
m corresponds to the part of the curve

Bm obtained for t ∈ [0.5, 1]. The control points of both curves B1
m and B2

m are
defined by (9.8). We proceed then by successive iterations as long as there exist
two intersecting convex hulls. The corresponding algorithm is the following:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

initialization :

E1 = Em, E ′
1 = E ′

m′

iterations: while Ek ∩ E ′
k 	= ∅ , do

split: Bk = Bk1 ∪ Bk2

associate: Ek1 , Ek2

split: B′
k′ = B′

k′
1
∪ B′

k′
2

associate: E ′
k′
1
, E ′

k′
2

check: Eki
∩ E ′

k′
j

(∗)

end do

(9.12)

The intersection of two bounded convex sets is a bounded convex set, so
Eki

∩ E ′
k′

j
is convex and contained in both Eki

and E ′
k′

j
; thus its “size” is

decreasing as the algorithm (9.12) evolves. This algorithm converges in the
following way: Either all intersections are empty and then curves Bm and
B′

m′ do not intersect, or there exists at least one intersection whose size is
vanishing as (9.12) proceeds; then the convex intersection is shrinking to a
point common to both curves. Note that algorithm (9.12) is able to cope with
multiple intersections.

In order to check automatically whether sets Ek and E ′
k intersect, we need

to compute the convex hull of m+1 given points in R
2. Since Ek is bounded by

a convex polygon Pk, its computer representation is a mesh of Pk. This mesh
Mk may be any set of triangles whose union is equal to Pk. Their vertices
are the control points and they satisfy the classical rule that the intersection
of two distinct triangles is either empty or reduced to a common vertex or a
common edge. We can then check whether Ek and E ′

k intersect by testing the
intersection of all pairs of triangles (Tk,i, T

′
k,j) ∈ Mk × M′

k.
Although this method is correct, it is too tedious for our purpose. For the

sake of simplicity, we proceed as follows: Each convex hull Ek is embedded in
a rectangle Rk = [xk

m, xk
M] × [yk

m, yk
M] defined by the extreme values of the

coordinates of the control points. Then we replace in (9.12) the line quoted
by (∗) by check Rki ∩ Rk′

j
. Since Ek ⊂ Rk, this may slow down the conver-

gence of (9.12), but the modified algorithm is very simple to implement (the

9.6 Intersection of Bézier Curves 205

intersection of two rectangles, when it exists, is a rectangle that is easy to
compute).

Stopping criterion: it is necessary to stop the iterations in algorithm (9.12).
An efficient way to check the accuracy of the result is to set an acceptable
smallest size σ of the rectangle R = Rk ∩ Rk′ . When the length (or the
width) of R is smaller than σ, we define the common point S = Bm ∩ B′

m′ as
the intersection of both diagonals of R. Finally, once S has been spotted, it
remains to set it on the Bézier curve Bm; in other words, we have to compute
the corresponding value of the parameter t such that

S = S(t) =
m∑

k=0

Ck
mtk(1 − t)m−kPk.

This value is obtained by a linear approximation:

t ≈ t(M2)
x(S) − x(M1)

x(M2) − x(M1)
+ t(M1)

x(M2) − x(S)
x(M2) − x(M1)

. (9.13)

We proceed in the same way to compute the value of t′:

S = S′(t′) =
m′∑

k′=0

Ck′
m′(t′)k′

(1 − t′)m′−k′
P ′

k′ ,

t′ ≈ t′(M ′
2)

x(S) − x(M ′
1)

x(M ′
2) − x(M ′

1)
+ t′(M ′

1)
x(M ′

2) − x(S)
x(M ′

2) − x(M ′
1)

.

(9.14)

Remark 9.5. We use ordinates y(M1) and y(M2) in (9.13) when x(M1) =
x(M2).

Remark 9.6. The stopping criterion may be modified by computing the dis-
tance between the curve and the straight line M1M2, instead of the size of
the rectangle R. This is obtained via an approximation of the curvature. For
example, if (xk, yk) are the coordinates of sampling points of Bm, we may use
a value of h, defined by

h = max
k

(|xk−1 − 2xk + xk+1|, |yk−1 − 2yk + yk+1|).

9.6.1 Implementation

Exercise 9.2. 1. Compute and display two Bézier curves Bm and B′
m′ de-

fined in R
2.

2. Implement the algorithm (9.12) in its simplified formulation. Check the
intersection of the curves.

3. Compute the values of t and t′ according to (9.13) and (9.14). Display the
corresponding points S(t) and S′(t′). Compare to the values obtained by
(9.12).

A solution of this exercise is proposed in Sect. 9.10 at page 211.

206 9 Geometrical Design: Bézier Curves and Surfaces

−0.5 0 0.5 1 1.5 2 2.5

−2

−1

0

1

2

3

P0

P1

P2

Q0

Q1

Q2

Intersection of two curves : global view

Fig. 9.7. Intersection of Bézier curves.

9.7 Bézier Surfaces

Similar to Bézier curves, a pleasant and easy-to-handle representation of sur-
faces is obtained using two parameters t1 and t2. Let m1 and m2 be two
positive integers, and consider (m1 +1)× (m2 +1) control points Pk1,k2 ∈ R

3.
For all (t1, t2) ∈ [0, 1] × [0, 1], we define the point P (t1, t2) by the relation

P (t1, t2) =
m1∑

k1=0

m2∑
k2=0

Ck1
m1

Ck2
m2

tk1
1 (1 − t1)m1−k1tk2

2 (1 − t2)m2−k2Pk1,k2 . (9.15)

As (t1, t2) ranges in [0, 1] × [0, 1], the corresponding point P (t1, t2) covers
a surface, referred to as a Bézier patch by CAGD specialists (see Fig. 9.8). A
Bézier surface is then the union of the Bézier patches (see Fig. 9.9).

Remark 9.7. There is no assumption made on the layout of the points Pk1,k2

in using definition (9.15). Nevertheless, this layout has a significant influence
on the final rendering of the generated surface. In order to modify the surface
by moving some control points, it is easier to use points Pk1,k2 situated on a
rectangular grid. The resulting surface is called a rectangular patch, opposed
to a triangular patch, whose control points are situated on a triangular grid
and the generating point is defined by

P (t1, t2, t3) =
∑

k1+k2+k3=m

m!
k1!k2!k3!

tk1
1 tk2

2 tk3
3 Pk1,k2,k3 . (9.16)

9.8 Basic properties of Bézier Surfaces

9.8.1 Convex Hull

The point P (t) is the barycenter of the (m1 + 1) × (m2 + 1) control points
Pk1,k2 with the corresponding weights Bk1

m1
(t1)Bk2

m2
(t2). It follows from (9.2)

9.8 Basic properties of Bézier Surfaces 207

0
0.5

1
1.5

2

0

1

2

3

4

1

2

3

4

5

P30

P31

P32

P33

P20

P34

P21

P10

P22

Example of Bézier patch

P11

P23

P00

P12

P24

P01

P13

P02

P14

P03

P04

Fig. 9.8. Bézier patch.

0 1 2 3 4 5

0

2

4

1

2

3

4

5

6

Q30

Q31

Q32

Q20

Q33

Q21

Q10

Q11

Q34

Q22

Q12

Q23

Q13

Q24

Q00P30

Q14

Q01P31

C0 continuity connection

Q02P32

P20

Q03P33

P21

P10

Q04P34

P22

P11

P00

P23

P12

P01

P24

P13

P02

P14

P03

P04

Fig. 9.9. C0 continuity.

that P (t) lies in the convex hull of the points Pk1,k2 , which is a volume with
polygonal faces.

9.8.2 Tangent Vector

The tangent plane to the Bézier surface at the point P (t1, t2) is defined by
the two tangent vectors τ 1(t1, t2) = d

dt1
P (t1, t2) and τ 2(t1, t2) = d

dt2
P (t1, t2).

Consequently, when P0,0 	= P1,0 and P0,0 	= P0,1, the Bézier surface is tangent
to the triangle P1,0P0,0P0,1 at point P0,0. The same property holds for vertices
Pm1,0, P0,m2 and Pm1,m2 .

9.8.3 Junction of Bézier Patches

Let Sm1,m2 be the Bézier patch defined by the (m1 + 1) × (m2 + 1) control
points Pk1,k2 (1 ≤ k1 ≤ m1, 1 ≤ k2 ≤ m2), and S ′

m1,m2
the Bézier patch

defined by the (m′
1 + 1) × (m′

2 + 1) control points P ′
k′
1,k′

2
(1 ≤ k′

1 ≤ m′
1,

1 ≤ k′
2 ≤ m′

2). We address now the problem of connecting these two patches.
The simplest junction corresponds to so-called C0 continuity, supposing

that there exists a common curve located on the rim of the surfaces. Such a
curve corresponds to an extreme value of t1 or t2 (namely 0 or 1). According
to definition (9.15) and properties (9.2), such a curve is a Bézier curve. The
C0 continuity is then satisfied when the corresponding Bézier curves fit; this
is true, for example, when the control points are identical on both curves.

Now we look further for a better rendering of the junction, and suppose
that Pm1,k2 = P0,k2 for k2 = 0, 1, . . . , m2. A G1 connection is obtained when
vectors τ 1(1, t2) = d

dt1
P (1, t2) and τ ′

1(0, t′2) = d
dt′

1
P ′(0, t′2) are collinear at any

common point. This condition is equivalent to saying that Pm1,k2 = P ′
0,k2

is
the midpoint of Pm1−1,k2P

′
1,k2

for k2 = 0, 1, . . . , m2. Furthermore, when the
tangent vectors τ 2(1, t2) = d

dt2
P (1, t2) and τ ′

2(0, t′2) = d
dt′

2
P ′(0, t′2) are iden-

tical at any common point, a C1 connection is realized. Examples illustrating
the different connections are displayed in Figs. 9.9 and 9.10.

208 9 Geometrical Design: Bézier Curves and Surfaces

0 1 2 3 4 5
0

2

4

1

2

3

4

5

6

Q30

Q31

Q32

Q33

Q20

Q34

Q21

Q10

Q22

Q23

Q12

Q24

Q13

Q14

Q00P30

G1 continuity connection

Q01P31

Q02P32

P20

Q03P33

Q04P34

P21

P10

P22

P11

P00

P23

P12

P24

P01

P13

P02

P14

P03

P04

(a)

0 1 2 3 4 5

0

2

4

1

2

3

4

5

6

Q30

Q31

Q32

Q20

Q33

Q21

Q34

Q22

Q10

Q23

Q11

Q12

Q24

Q00P30

Q13

Q01P31

C1 continuity connection

Q14

Q02P32

P20

Q03P33

P21

P10

Q04P34

P22

P11

P00

P23

P12

P01

P24

P13

P02

P14

P03

P04

(b)

Fig. 9.10. Junction of patches. (a) G1 continuity; (b) C1 continuity.

9.8.4 Construction of the Point P (t)

According to definition (9.15), any point P (t1, t2) may be computed by an
algorithm similar to (9.6). We write

P (t1, t2) =
m1∑

k1=0

Ck1
m1

tk1
1 (1 − t1)m1−k1Pk1 , (9.17)

with

Pk1 =
m2∑

k2=0

Ck2
m2

tk2
2 (1 − t2)m2−k2Pk1,k2 . (9.18)

Let k1 be a given integer. According to (9.17-9.18) the point Pk1 appears
to be the point Pk1(t2) of the Bézier curve defined by the m2 + 1 control
points Pk1,0, Pk1,1, . . . , Pk1,m2 . It is then possible to calculate its coordinates
by means of de Casteljau’s algorithm (9.6). Once the m1 + 1 points Pk1 are
computed, a new application of (9.6) generates the point P (t1, t2) on the
Bézier patch. The whole patch is then defined as the union of all rectangular
faces generated by vertices P (t1, t2), P (t1+∆t1, t2), P (t1+∆t1, t2+∆t2), and
P (t1, t2 + ∆t2) (here ∆t1 and ∆t2 are the sampling step sizes for t1 and t2).
The corresponding construction algorithm (9.19) is called the de Boor–Coox
algorithm:

9.9 Construction of Bézier Surfaces 209∥∥∥

for p1 = 0, initialization:

for q1 = 0, 1, . . . , m1, do∥∥

construction of point Pq1 by (9.6)

for p2 = 0, initialization:

for q2 = 0, 1, . . . , m2, do

P 0
q1,q2

= Pq1,q2

end do

end do

for p2 = 1, 2, . . . , m2, do

for q2 = p2, p2 + 1, . . . , m2, do

P p2
q1,q2

= t2P
p2−1
q1,q2−1 + (1 − t2)P p2−1

q1,q2
.

end do

end do: set Pq1 = Pq1,m2

end of computation of Pq1 , set: P 0
q1

= Pq1

end do

for p1 = 1, 2, . . . , m1, do

for q1 = p1, p1 + 1, . . . , m1, do

P p1
q1

= t1P
p1−1
q1−1 + (1 − t1)P p1−1

q1
.

end do

end do: set P (t1, t2) = Pm1
m1

(9.19)

9.9 Construction of Bézier Surfaces

Exercise 9.3. 1. Choose (m1 + 1) × (m2 + 1) points P0,0, P1,0, . . . , Pm1,m2

in R
3.

2. Write a general procedure generating the point P (t1, t2) of the Bézier
patch with control points P0,0, P1,0, . . . , Pm1,m2 , using the de Boor–Coox
algorithm for any value (t1, t2) ∈ [0, 1] × [0, 1].

3. Compute and display the corresponding Bézier patch.
4. Repeat the computation for different values of (m1, m2) and different sets

of control points.

210 9 Geometrical Design: Bézier Curves and Surfaces

5. Check the different continuity conditions.

A solution of this exercise is proposed in Sect. 9.10 at page 211.

Exercise 9.4. (for the brave) Extend the method for computing the intersec-
tion of two curves to compute the intersection of Bézier surfaces. Write and
check the corresponding procedure.

9.10 Solutions and Programs

Solution of Exercise 9.1

The file CAGD ex1.m contains the procedure CAGD ex1, which defines a set of
control points, and builds and displays the resulting Bézier curve, as shown in
Fig. 9.1(a). This procedure calls the function CAGD cbezier, which computes
a set of sampling points, and the function CAGD casteljau, which builds a
point according to the de Casteljau’s algorithm (9.6).

Listing 9.1 (CAGD casteljau.m)

function [x,y]=CAGD_casteljau(t,XP,YP)
%%
%% Construction of a point of a Bezier curve
%% according to de Casteljau’s algorithm
%%
m=size(XP,2)-1;
xx=XP;yy=YP;
for kk=1:m
xxx=xx; yyy=yy;
for k=kk:m
xx(k+1)=(1-t)*xxx(k)+t*xxx(k+1);
yy(k+1)=(1-t)*yyy(k)+t*yyy(k+1);
end
end
x=xx(m+1);y=yy(m+1);

The procedure CAGD ex1 then calls the function CAGD tbezier, which dis-
plays the Bézier curve and its control points. The control polygon, as shown
in Fig. 9.2, is available for calling procedures CAGD ex1b and CAGD pbezier.
Exchanging the points P1 and P3 will have as result the generation of a dif-
ferent curve, with a nonconvex control polygon (see procedure CAGD ex1c).

Procedures CAGD connectCC0, CAGD connectCG1, and CAGD connectCC1
plot examples of C0, G1, and C1 continuity.

9.10 Solutions and Programs 211

Solution of Exercise 9.2

The procedure CAGD ex2 defines two sets of control points, and builds and dis-
plays both corresponding Bézier curves. Each curve is then located within a
rectangle by the function CAGD drectan. A possible intersection of these rect-
angles is then tested by the procedure CAGD rbezier. When this is successful,
the function CAGD dbezier is used; this procedure is an implementation of al-
gorithm (9.12), seeking iteratively the intersection of both curves. When the
rectangular intersection is small enough, the coordinates of the intersection
point are computed; then an approximation of the corresponding value of the
parameter t is obtained from (9.13) and (9.14).

Finally, the procedure calls the function CAGD cbezier, which computes a
sampling of points of a Bézier curve, using the functions CAGD casteljau and
CAGD tbezier. The resulting curve and control points are then displayed.

Solution of Exercise 9.3

The procedure CAGD ex3 defines a set of control points, and builds and displays
the corresponding Bézier patch, as represented in Fig. 9.8 (you can use the
“Rotate 3D” button to obtain a global view of the surface). This procedure
calls the functions CAGD sbezier, which gives a sampling of points of a Bézier
surface; CAGD coox; and CAGD ubezier, which finally displays both the surface
and its control points. The procedure CAGD coox builds one point of a Bézier
surface according to the de Boor–Coox algorithm (9.19).

Listing 9.2 (CAGD coox.m)

function [x,y,z]=CAGD_coox(t1,t2,XP,YP,ZP)
%%
%% Construction of a point on a Bzier surface
%% according to the de Boor--Coox algorithm
%%
np1=size(XP,1);np2=size(XP,2);
xx1=zeros(np1,1);yy1=zeros(np1,1);zz1=zeros(np1,1);
for k1=1:np1
xx2=zeros(np2,1);yy2=zeros(np2,1);zz2=zeros(np2,1);
for k2=1:np2
xx2(k2)=XP(k1,k2);yy2(k2)=YP(k1,k2);zz2(k2)=ZP(k1,k2);
end
[x,y,z]=CAGD_cast3d(t2,xx2,yy2,zz2);
xx1(k1)=x;yy1(k1)=y;zz1(k1)=z;
end
[x,y,z]=CAGD_cast3d(t1,xx1,yy1,zz1);

212 9 Geometrical Design: Bézier Curves and Surfaces

The procedures CAGD connectSC0, CAGD connectSG1, and CAGD connectSC1
display examples of C0 (respectively G1 and C1) and to 9.10. The obtained re-
sults correspond to Figs. 9.9 and 9.10.

Chapter References

P. Bézier, Courbes et Surfaces, Mathématiques et CAO, vol 4, Hermes, Paris,
1986.

P. de Casteljau, Formes à Pôles, Mathématiques et CAO, vol 2, Hermes,
Paris, 1985.

S.A. Coons, Surface Patches and B-splines Curves, CAGD, 1974.
G. Farin and D. Hansford, The Essentials of CAGD, AK Peters, 2000.
G. Farin, Curves and Surfaces for CAGD: A Practical Guide, Academic

Press 4th ed. New York, 1996.
J. Ferguson, Multivariable Curve Interpolation, Journal of the Association

for Computing Machinery, 1964.
J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric

Design, Peters, Massachusetts, 1997.
L. Piegl and W. Tiller, The NURBS Book, Springer, Berlin, 1995.

10

Gas Dynamics: The Riemann Problem and
Discontinuous Solutions: Application to the
Shock Tube Problem

Project Summary

Level of difficulty: 3

Keywords: Nonlinear hyperbolic systems, Euler equations for gas
dynamics, centered schemes: Lax–Wendroff, MacCor-
mack; upwind schemes: Godunov, Roe

Application fields: Shock tube, supersonic flows

The interest in studying the shock tube problem is threefold. From a fun-
damental point of view, it offers an interesting framework to introduce some
basic notions about nonlinear hyperbolic systems of partial differential equa-
tions (PDEs). From a numerical point of view, this problem constitutes, since
the exact solution is known, an inevitable and difficult test case for any numer-
ical method dealing with discontinuous solutions. Finally, there is a practical
interest, since this model is used to describe real shock tube experimental
devices.1

10.1 Physical Description of the Shock Tube Problem

The fundamental idea of the shock tube is the following: consider a long
one-dimensional (1D) tube, closed at its ends and divided into two equal
regions by a thin diaphragm (see Fig. 10.1). Each region is filled with the
same gas, but with different thermodynamic parameters (pressure, density,
and temperature). The region with the highest pressure is called the driven
1 The first shock tube facility was built in 1899 by Paul Vieille to study the defla-

gration of explosive charges. Nowadays, shock tubes are currently used as low-cost
high-speed wind tunnels, in which a wide variety of aerodynamic or aeroballistic
topics are studied: supersonic aircraft flight, gun performance, asteroid impacts,
shuttle atmospheric entry, etc.

214 10 Riemann problem and discontinuities: the shock tube problem

section of the tube, while the low-pressure part is the working section. The
gas being initially at rest, the sudden breakdown of the diaphragm generates
a high-speed flow, which propagates in the working section (this is the place
where the model of a free-flying object, such as a supersonic aircraft, will be
placed).

T

L R

shock waveexpansion wave

contact discontinuity

(R)(1)(2)(L)

working sectiondriven section

(E)

t = 0

t > 0

R R RU = 0p Tp
L L LU = 0

p > p

Fig. 10.1. Sketch of the initial configuration of the shock tube (t = 0) and waves
propagating in the tube after the diaphragm breakdown (t > 0).

Let us get into a more detailed analysis of the problem. Consider (Fig. 10.1)
that the left part of the tube is the driven section, defined by the pressure pL,
the density ρL, the temperature TL, and the initial velocity UL = 0. Similarly,
the parameters of the (right part) working section are pR < pL, ρR, TR, and
UR = 0.

At time t = 0 the diaphragm breaks, generating a process that naturally
tends to equalize the pressure in the tube. The gas at high pressure expands
through an expansion (or rarefaction) wave and flows into the working section,
pushing the gas of this part. The rarefaction is a continuous process and takes
place inside a well-defined region (the expansion fan) that propagates to the
left (region (E) in Fig. 10.1); the width of the expansion fan grows in time.

The compression of the low-pressure gas generates a shock wave propagat-
ing to the right. The expanded gas is separated from the compressed gas by a
contact discontinuity, which can be regarded as a fictitious membrane travel-
ing to the right at constant speed. At this point of our simplified description,
we just note that some of the physical functions defining the flow in the tube
(p(x), ρ(x), T (x), and U(x)) are discontinuous across the shock wave and the
contact discontinuity. These discontinuities, which cause the difficulty of the
problem, will be described in greater detail in the following sections.

10.2 Euler Equations of Gas Dynamics 215

10.2 Euler Equations of Gas Dynamics

To simplify the mathematical description of the shock tube problem we con-
sider an infinitely long tube (to avoid reflections at the tube ends) and neglect
viscous effects in the flow. We also suppose that the diaphragm is completely
removed from the flow at t = 0. Under these simplifying hypotheses, the
compressible flow in the shock tube is described by the one-dimensional (1D)
Euler system of PDEs (see, for instance, Hirsch, 1988; LeVeque, 1992)

∂

∂t

⎛⎝ ρ
ρU
E

⎞⎠
︸ ︷︷ ︸
W (x,t)

+
∂

∂x

⎛⎝ ρU
ρU2 + p
(E + p)U

⎞⎠
︸ ︷︷ ︸

F (W)

= 0, (10.1)

where ρ is the density of the gas and E the total energy:

E =
p

γ − 1
+

ρ

2
U2. (10.2)

To close this system of equations, we need to write the constitutive law of the
gas (or equation of state). Considering the perfect gas model, the equation of
state is

p = ρRT. (10.3)

The constants R and γ characterize the thermodynamic properties of the gas
(R is the universal gas constant divided by the molecular mass and γ is the
ratio of specific heat coefficients). It is also useful to define the local speed of
sound a, the Mach number M , and the total enthalpy H:

a =
√

γRT =
√

γ
p

ρ
, M =

U

a
, H =

E + p

ρ
=

a2

γ − 1
+

1
2
U2. (10.4)

Considering the column vector of unknowns W = (ρ, ρU,E)t, the Euler
system of equations (10.1) can be written in the following conservative form:

∂W

∂t
+

∂

∂x
F (W) = 0, (10.5)

with the initial condition (we denote by x0 the abscissa of the diaphragm):

W (x, 0) =

{
(ρL, ρLUL, EL), x ≤ x0,

(ρR, ρRUR, ER), x > x0.
(10.6)

The vector W contains the conserved variables and F (W) the conserved fluxes.
Note that with this choice of the vector of unknowns W , the pressure is not
an unknown, since it can be derived from (10.2) using the components of W .

216 10 Riemann problem and discontinuities: the shock tube problem

The mathematical analysis of the Euler system of PDEs usually considers
its quasilinear form:2

∂W

∂t
+ A

∂W

∂x
= 0, (10.7)

with the Jacobian matrix

A =
∂F

∂W
=

⎛⎝ 0 1 0
1
2 (γ − 3)U2 (3 − γ)U γ − 1

1
2 (γ − 1)U3 − UH H − (γ − 1)U2 γU

⎞⎠ . (10.8)

It is interesting to note that the matrix A satisfies the following remarkable
relationship:

AW = F (W). (10.9)

Furthermore, we can easily calculate its eigenvalues

λ0 = U, λ+ = U + a, λ− = U − a, (10.10)

and the corresponding eigenvectors

v0 =

⎛⎝ 1
U

1
2U2

⎞⎠ , v+ =

⎛⎝ 1
U + a

H + aU

⎞⎠ , v− =

⎛⎝ 1
U − a

H − aU

⎞⎠ . (10.11)

We conclude that the Jacobian matrix A is diagonalizable, i.e., it can be
decomposed as A = PΛP−1, where

Λ =

⎛⎝U − a 0 0
0 U 0
0 0 U + a

⎞⎠ , P =

⎛⎝ 1 1 1
U − a U U + a

H − aU 1
2U2 H + aU

⎞⎠ . (10.12)

We can easily verify that

P−1 =

⎛⎝ 1
2

(
α1 + U

a

)
− 1

2

(
α2U + 1

a

)
α2
2

1 − α1 α2U −α2
1
2

(
α1 − U

a

)
− 1

2

(
α2U − 1

a

)
α2
2

⎞⎠ , (10.13)

where α1 = (γ − 1)U2/(2a2) and α2 = (γ − 1)/a2.

Definition 10.1. The system (10.7) with the matrix A diagonalizable with
real eigenvalues is called hyperbolic.

The hyperbolic character of the system (10.7) has important consequences
on the propagation of the information in the flow field. Certain quantities,

2 The reader who has already explored Chap. 1 of this book may notice that this
form is similar to that of the convection equation. The underlying idea is here to
generalize the analysis of characteristics in the case of a system of PDEs.

10.2 Euler Equations of Gas Dynamics 217

called invariants,3 are transported along particular curves in the plane (x, t),
called characteristics. From a numerical point of view, this suggests a simple
way to calculate the solution in any point P (x, t) by gathering all the in-
formation transported through the characteristics starting from P and going
back to regions where the solution is already known (imposed by the initial
condition, for example).

The general form of the equation defining a characteristic is dx/dt = λ,
where λ is an eigenvalue of the Jacobian matrix A. Since the corresponding
invariant r is constant along the characteristic, it satisfies

dr

dt
=

∂r

∂t
+

∂r

∂x

dx

dt
= 0, or

∂r

∂t
+ λ

∂r

∂x
= 0. (10.14)

In the simplest case of the convection equation ∂u/∂t + c ∂u/∂x = 0, with
constant transport velocity c, there exists a single characteristic curve, which
is the line x = c t, and the corresponding invariant is the solution itself, r = u
(see also Chap. 1). From (10.10) we infer that the system (10.7) has three
distinct characteristics:

C0 :
dx

dt
= U, C+ :

dx

dt
= U + a, C− :

dx

dt
= U − a. (10.15)

The invariants can be generally expressed as differential relations (see, for
instance, Hirsch (1988); Godlewski and Raviart (1996) for details)

dr0 = dp − a2 dρ = 0, dr+ = dp + ρa dU = 0, dr− = dp − ρa dU = 0,

which have to be integrated along the corresponding characteristic curves. In
the case of an isentropic flow4 we obtain

r0 = p/ργ , r+ = U +
2a

γ − 1
, r− = U − 2a

γ − 1
. (10.16)

The above relations will be used in the following to derive the exact solution
of the shock tube problem.

Definition 10.2. The nonlinear hyperbolic system of PDEs (10.5) and piece-
wise constant initial condition (10.6) define the Riemann problem.

3 For a rigorous analysis of hyperbolic systems of PDEs and related definitions (in
particular the definition of Riemann invariants), the reader can refer to Hirsch
(1988); LeVeque (1992); Godlewski and Raviart (1996).

4 The entropy variation of a perfect gas during its evolution starting from a ref-
erence state A is s − sA = Cv ln

(
p/pA

(ρ/ρA)γ

)
, where Cv = R/(γ − 1) is the heat

coefficient under constant volume. For an isentropic flow, since the entropy re-
mains unchanged (s = sA), we deduce that the ratio p/ργ is constant.

218 10 Riemann problem and discontinuities: the shock tube problem

10.2.1 Dimensionless Equations

When building numerical applications we usually prefer to remove physical
units from equations and work with dimensionless variables. This simplifies the
problem formulation and may reduce computational round-off errors. Physical
variables in previous equations are nondimensionalized (or scaled) using a
reference state defined by the parameters of the working section:

ρ∗ = ρ/ρR, U∗ = U/aR, a∗ = a/aR, T ∗ = T/(γTR),
p∗ = p/(ρRa2

R) = p/(γpR), E∗ = E/(ρRa2
R), H∗ = H/a2

R. (10.17)

We also nondimensionalize space and time variables as x∗ = x/L, t∗ =
t/(L/aR), where L is the length of the tube.

The Euler equations for the dimensionless variables (denoted by the star
superscript) keep the same differential form as previously:

∂

∂t∗

⎛⎝ ρ∗

ρ∗U∗

E∗

⎞⎠
︸ ︷︷ ︸
W ∗(x∗,t∗)

+
∂

∂x∗

⎛⎝ ρ∗U∗

ρ∗U∗2 + p∗

(E∗ + p∗)U∗

⎞⎠
︸ ︷︷ ︸

F ∗(W ∗)

= 0. (10.18)

Dimensionless total energy E∗ and total enthalpy H∗ become

E∗ =
p∗

γ − 1
+

ρ∗

2
U∗2, H∗ =

(a∗)2

γ − 1
+

1
2
U∗2. (10.19)

Differences with respect to previous physical equations appear in the equation
of state

p∗ = ρ∗T ∗, (10.20)

and in the definition of the speed of sound

a∗ =
√

γ
p∗

ρ∗ =
√

γT ∗. (10.21)

In the interests of simplicity, we drop the star superscript in subsequent equa-
tions; only dimensionless variables will be considered in the following sections.

10.2.2 Exact Solution

The exact solution of the shock tube problem follows the physical and math-
ematical descriptions given in previous sections. The tube is separated (see
Fig. 10.1) into four uniform regions, i.e., with constant parameters (pressure,
density, temperature, and velocity): the left (L) and right (R) regions (which
keep the parameters imposed by the initial condition) and two intermediate
regions, denoted by subscripts 1 and 2.

10.2 Euler Equations of Gas Dynamics 219

It is important to identify these regions in the (x, t) plane (see Fig. 10.2).
All the waves are centered at the initial position of the diaphragm (t = 0, x =
x0). Since the shock and the contact discontinuity propagate in uniform zones,
they have constant velocities and hence are displayed as lines in the (x, t) di-
agram. The expansion wave extends through the new zone (E), the expansion
fan, in which the flow parameters vary continuously (see below). We remem-
ber that the shock wave and the contact discontinuity propagate to the right,
while the expansion fan moves to the left.

C+

C+

C+

C−

C−

C− C0

C0

C0

x x x x x0 4321

x

(L) (2) (1)

x

t

P

expansion
fan

contact
discontinuity

shock
wave

(R)

O A

Q

O B

t

(E)

Fig. 10.2. Diagram in the (x, t) plane of the exact solution of the shock tube
problem (left). Characteristics used to calculate the exact solution (right).

We start the calculation of the exact solution by writing the dimensionless
parameters of the (L) and (R) regions (which are in fact the input parameters
for a computer program):

Region (R): ρR = 1, pR = 1/γ, TR = 1/γ, aR = 1, UR = 0, (10.22)
Region (L): ρL, pL, TL, aL, UL = 0 (given quantities). (10.23)

We then use the jump relations across the discontinuities and take into account
the propagation of the information along the characteristics, as follows:

1. The shock wave implies the discontinuity of all the parameters of the
flow. The jump between regions (1) and (R) is described by the Rankine–
Hugoniot relations (see, for example, Hirsch (1988)):

p1

pR
=

2γ

γ + 1
M2

s − γ − 1
γ + 1

, (10.24)

ρR

ρ1
=

2
γ + 1

1
M2

s

+
γ − 1
γ + 1

, (10.25)

U1 =
2

γ + 1

(
Ms − 1

Ms

)
, (10.26)

where Ms is the Mach number of the shock, defined in physical units as
Ms = Uphys

s /aphys
R . We note that using our scaling, Ms = Us, where Us is

the dimensionless propagation speed of the shock. We remember that Us

is constant.

220 10 Riemann problem and discontinuities: the shock tube problem

2. The contact discontinuity is in fact a discontinuity of the density function,
the pressure and the velocity being continuous. Hence

U2 = U1, p2 = p1. (10.27)

3. We now link the parameters of region (2) to those of region (L). For
this purpose, we consider a point P inside the region (2) and draw the
characteristics passing through this point (see Fig. 10.2). We notice that
only C0 and C+ characteristics will cross the expansion fan to search the
information in region (L). Using the expressions (10.15) for the invariants
r0 and r+ and taking into account that UL = 0, we obtain

ρ2

ρL
=

(
p2

pL

)1/γ

, U2 =
2

γ − 1
(aL − a2). (10.28)

4. Finally, we combine the previous relations to obtain an implicit equation
for the unknown Ms. The detailed calculation follows:

Ms − 1
Ms

(10.26)
=

γ + 1
2

U1

(10.27)
=

γ + 1
2

U2

(10.28)
= aL

γ + 1
γ − 1

(
1 − a2

aL

)
.

Since

a2

aL

(10.21)
=

(
p2

pL

ρL

ρ2

)1/2 (10.28)
=

(
p2

pL

) γ−1
2γ (10.27)

=
(

p1

pL

) γ−1
2γ

,

we replace p1/pL from (10.24) and finally get the following compatibility
equation:

Ms − 1
Ms

= aL
γ + 1
γ − 1

{
1 −

[
pR

pL

(
2γ

γ + 1
M2

s − γ − 1
γ + 1

)] γ−1
2γ

}
. (10.29)

Once this implicit nonlinear equation is solved (using an iterative Newton
method, for example), the value of Ms will be used in previous relations
to determine all the parameters of uniform regions (1) and (2).

To complete the exact solution, we need to determine the extent of each region
(i.e., calculate the values of the abscissas x1, x2, x3, x4 in Fig. 10.2) for a given
time value t. We proceed as follows:

• The expansion fan (E) is left-bounded by the C− characteristic starting
from the point B, considered to belong to region (L), i.e., the line of
slope dx/dt = −aL. The right bound of the expansion fan is the C−

characteristic starting from the same point B, but considered this time to
belong to region (2), i.e., the line of slope dx/dt = U2 − a2. The values of
x1 and x2 are consequently

x1 = x0 − aLt, x2 = x0 + (U2 − a2)t. (10.30)

10.2 Euler Equations of Gas Dynamics 221

Consider now a point (x, t) inside the region (E), i.e., x1 ≤ x ≤ x2. Since
this point belongs to a C− characteristic starting from B, necessarily (x−
x0)/t = U − a. Using the C+ characteristic coming from region (L), we
also get that a + (γ − 1)U/2 = aL. Combining these two relations and
remembering that the flow is isentropic, we can conclude that the exact
solution inside the expansion fan is

U =
2

γ + 1

(
aL +

x − x0

t

)
, a = aL − (γ − 1)

U

2
, p = pL

(
a

aL

) 2γ
γ−1

.

(10.31)
• The contact discontinuity is transported at constant velocity U2 = U1, so

x3 = x0 + U2t. (10.32)

• Since the shock wave also propagates at constant dimensionless velocity
Us = Ms, we finally obtain

x4 = x0 + Mst. (10.33)

Remark 10.1. The exact solution W (x, t) of the shock tube problem depends
only on the ratio x/t, as one would have expected from the characteristics
analysis of the Euler system of PDEs.

Exercise 10.1. Write a MATLAB function to compute the exact solution
of the shock tube problem. The definition header of the function will be as
follows:

function uex=HYP shock_exact(x,x0,t)
% Input arguments:
% x vector of abscissas of dimension M
% x0 the initial position of the diaphragm
% t time at which the solution is calculated
% Output arguments:
% uex vector of dimensions (3,n) containing the solution as
% uex(1,1:M) the density
% uex(2,1:M) the velocity
% uex(3,1:M) the pressure

Plot the dimensionless exact solution (ρ(x), U(x) and p(x)) at time t = 0.2.
Consider x ∈ [0, 1], x0 = 0.5, and a regular (equidistant) grid with M = 81
computational points. The physical parameters correspond to those used by
Sod (see also Hirsch, 1988): γ = 1.4, ρL = 8, pL = 10/γ.
Hint: define all the physical parameters as global variables; use the MAT-
LAB built-in function fzero to solve the compatibility equation (10.29).

The expected result is displayed in Fig. 10.3. This solution was obtained
using the MATLAB program presented in Sect. 10.4 at page 232.

222 10 Riemann problem and discontinuities: the shock tube problem

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Density (t=0.2)

x

ρ

(L) (R)(E) (2) (1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Velocity (t=0.2)

x

U

(L) (E) (R)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
Pressure (t=0.2)

x

p

(L) (E) (R)

Fig. 10.3. Exact solution of the shock tube problem (Sod’s data) at time t = 0.2.

10.3 Numerical Solution

The first idea one would have in mind when attempting to numerically solve
the Euler system of PDEs (10.18) is to use elementary discretization methods
discussed in Chap. 1 for scalar PDEs, for example, an Euler or a Runge–Kutta
method for the time integration and centered finite differences for the space
discretization. We shall see, however, that such methods are not appropriate
to compute discontinuous solutions, since they generate nonphysical oscilla-
tions. This drawback of the space-centered schemes for computing the shock
tube problem will be illustrated using the more sophisticated Lax–Wendroff
and MacCormack schemes. We shall also give a quick description of upwind
schemes that take into account the hyperbolic character of the system and
allow a better numerical solution. Results using Roe’s upwind scheme will be
discussed at the end.

10.3.1 Lax–Wendroff and MacCormack Centered Schemes

The space-centered schemes were historically the first to be derived to solve
hyperbolic systems. The two most popular schemes, the Lax and Wendroff
scheme and the MacCormack scheme, are still used in some industrial numer-
ical codes. We shall apply these schemes to solve the Euler system (10.18)
written in the conservative form

∂W

∂t
+

∂

∂x
F (W) = 0. (10.34)

We use a regular (or equidistant) discretization of the domain of definition of
the problem (x, t) ∈ [0, 1] × [0, T]:

• in space

xj = (j − 1)δx, δx =
1

M − 1
, j = 1, 2, . . . , M, (10.35)

• and in time

tn = (n − 1)δt, δt =
T

N − 1
, n = 1, 2, . . . , N. (10.36)

10.3 Numerical Solution 223

For both schemes, the numerical solution Wn+1
j (at time tn+1 and space posi-

tion xj) is computed in two steps (a predictor and a corrector step) following
the formulas displayed in Fig. 10.4.

Lax–Wendroff

W̃j+1/2 =
W n

j + W n
j+1

2
− δt

2δx

[
F (W n

j+1) − F (W n
j)

]

W n+1
j = W n

j − δt

δx

[
F (W̃j+1/2) − F (W̃j−1/2)

]

M−2n n

W
n+1

W , F(W)
n n

W
n+1

1 2 3

W, F(W)
~~

1 2 3

W, F(W)
~~

2

Lax−Wendroff

M

M−1

M−1
W , F(W)

MacCormack

W̃j = W n
j − δt

δx

[
F (W n

j+1) − F (W n
j)

]

W n+1
j =

W n
j + W̃ n

j

2
− δt

2δx

[
F (W̃j) − F (W̃j−1)

]

M−2n n

W
n+1

W
n+1

MacCormack

W, F(W)
~~

W, F(W)
~~

1 2 3

M−12

MM−1
W , F(W)

Fig. 10.4. Formulas of Lax–Wendroff and MacCormack space-centered schemes.
Schematic representation of their predictor and corrector steps.

We discuss in the following some remarkable features of these schemes.
1. (Boundary values.) From the schematic representation of the predictor

and corrector steps in Fig. 10.4, we notice that only the components j =
2, . . . , (M − 1) of the solution are calculated. The remaining components for
j = 1 and j = M need to be prescribed by appropriate boundary conditions.

224 10 Riemann problem and discontinuities: the shock tube problem

Since the tube is assumed infinite, we impose Wn
1 = WL and Wn

M = WR at
any time level tn. Practically, this is equivalent to leaving unchanged the first
and last components of the solution vector. Meanwhile, it is obvious that the
computation must stop before one of the waves (expansion or shock) hits the
boundary.

2. (Propagation of information.) The predictor step of the Lax–Wendroff
scheme computes an intermediate solution at interfaces

(
j + 1

2

)
and

(
j − 1

2

)
using forward finite differences. These intermediate values are then used in
the centered finite difference scheme of the corrector step.

The MacCormack scheme combines backward differences for the predictor
step with forward differences for the corrector step. We can show in fact that
the idea behind this scheme is the following Taylor expansion:

Wn+1
j = Wn

j +
(

∂W

∂t

)
j

δt, (10.37)

where(
∂W

∂t

)
j

=
1
2

⎡⎣(∂W

∂t

)n

j

+

(
∂W̃

∂t

)
j

⎤⎦ =
1
2

[
W̃j − Wn

j

δt
− F (W̃j) − F (W̃j−1)

δx

]

is an approximation of the first derivative in time.
In conclusion, the information is searched on both sides of the computed

point j. The information propagation along characteristics is not taken into
account, since no distinction is made between upstream and downstream in-
fluences. We shall see that this lack of physics in the numerical schemes will
generate unwanted (nonphysical) oscillations of the solution.

3. (Accuracy.) Both schemes use a three-point stencil (j − 1, j, j + 1) to
reach second-order accuracy in time and space.

4. (Stability.) Both schemes are explicit and consequently subject to sta-
bility conditions. Similar to the (scalar) convection equation (see Chap. 1),
we can write the stability (or CFL5) condition in the general form

max
i

{|λi|}· δt

δx
≤ 1,

where λi, i = 1, 2, 3, are the eigenvalues of the Jacobian matrix ∂F/∂W ,
regarded here as propagation speeds of the corresponding characteristic waves
(dx/dt = λ). Using (10.15), we obtain the stability condition

(|U | + a)
δt

δx
≤ 1. (10.38)

For numerical applications, this condition is used to compute the time step

δt = cfl· δx

|U | + a
, with cfl < 1. (10.39)

5 Courant–Friedrichs–Lewy

10.3 Numerical Solution 225

Exercise 10.2. For the same physical and numerical parameters as in the
previous exercise, compute the numerical solution of the shock tube problem
at t = 0.2 using Lax–Wendroff and MacCormack centered schemes. Compare
to the exact solution and comment on the results. Hints:
• set an array w(1:3,1:M) to store the discrete values of the vector W =
(ρ, ρU,E)t of conservative variables;
• using (10.39) with cfl = 0.95, compute the time step in a separate function
function dt = HYP calc dt(w,dx,cfl);
• write a function to compute F (W);
• use vectorial programming to translate the formulas in Fig. 10.4 into MAT-
LAB program lines (avoid loops!); for example, the predictor step of the Lax–
Wendroff scheme will be coded in a single line:

wtilde=0.5*(w(:,1:M-1)+w(:,2:M))-0.5*dt/dx*(F(:,2:M)-F(:,1:M-1));

• for each scheme, superimpose numerical and exact solutions for (ρ, U, p) as
in Fig. 10.5.
A solution of this exercise is proposed in Sect. 10.4 at page 232.

The numerical results of both schemes, displayed in Fig. 10.5, show good
accuracy in smooth regions, whereas unwanted oscillations appear at the in-
terfaces between different regions of the solution. The contact discontinuity is
also poorly captured. The MacCormack scheme seems to capture the shock
discontinuity better, but introduces higher-amplitude oscillations at the end
of the expansion wave where the flow is strongly accelerated.

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8
t=0.20164

x

ρ

Exact sol.
Lax−Wendroff (D=0)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
t=0.20164

x

U

Exact sol.
Lax−Wendroff (D=0)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
t=0.20164

x

p

Exact sol.
Lax−Wendroff (D=0)

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8
t=0.20052

x

ρ

Exact sol.
MacCormack (D=0)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
t=0.20052

x

U

Exact sol.
MacCormack (D=0)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
t=0.20052

x

p

Exact sol.
MacCormack (D=0)

Fig. 10.5. Numerical results for the shock tube problem (Sod’s parameters) using
centered schemes. Lax–Wendroff scheme (up) and MacCormack scheme (down).

226 10 Riemann problem and discontinuities: the shock tube problem

Artificial Dissipation

The oscillations generated by the centered schemes around discontinuities can
be damped by adding a supplementary term to the initial equation (10.34):

∂W

∂t
+

∂

∂x
F (W) − δx2 ∂

∂x

(
D(x)

∂W

∂x

)
= 0. (10.40)

The mathematical form of this term is inspired by the heat equation (dis-
cussed in Chap. 1). The idea is to simulate the effects of a physical dissipation
(or diffusion) process which is well known to have a smoothing effect6 on the
solution. Since the dissipation term is proportional to the gradient ∂W/∂x
of the solution, the smoothing will be important in regions with sharp gradi-
ents (as the shock discontinuity) where numerical oscillations are expected to
disappear.

The coefficient D(x), also called artificial viscosity by analogy with Navier–
Stokes equations (see Chap. 12), has to be positive to ensure a stabilizing
effect7 on the numerical solution. Moreover, its value has to be chosen such
that the influence of the artificial term is negligible (i.e., of an order greater
than or equal to the truncation error) in the smooth regions of the solution.

Several methods have been proposed to prescribe the artificial viscosity
D(x) and to modify classical centered schemes accordingly (see, for instance,
Hirsch (1988), Fletcher (1991)). We illustrate the simplest technique, which
considers a constant coefficient D(x) = D and writes (10.40) in the conserva-
tive form (10.34) with a modified flux F ∗(W):

∂W

∂t
+

∂

∂x
F ∗(W) = 0, where F ∗(W) = F (W) − Dδx2 ∂W

∂x
. (10.41)

In order to use the same three-points stencil to define the schemes, the new
vector F ∗(W) will be discretized

• using backward differences in the predictor step

F ∗(Wj) = F (Wj) − (Dδx)(Wj − Wj−1), (10.42)

• and forward differences in the corrector step

F ∗(W̃j) = F (W̃j) − (Dδx)(W̃j+1 − W̃j). (10.43)

Exercise 10.3. Modify the previous program by adding an artificial dissi-
pation term to both Lax–Wendroff and MacCormack schemes. Use (10.42)–
(10.43) to modify the flux F (W). Discuss the effect of the value of the artificial
viscosity D (take 0 ≤ D ≤ 10). What is the influence of D on the value of the
time step?
6 This smoothing effect is nicely illustrated for the heat equation in Chap. 1, Ex-

ercise 1.10.
7 The heat equation with negative diffusivity has physically unstable solutions!

10.3 Numerical Solution 227

The results obtained with an artificial dissipation term are displayed in
Fig. 10.6. Numerical oscillations are reduced near the shock and expansion
waves, but large dissipation is also introduced in other regions of the solution.
In particular, the contact discontinuity (see the graph for ρ(x)) is consider-
ably smeared. Increasing the value of D allows one to completely remove the
oscillations, but the overall accuracy is not satisfactory. More sophisticated
methods have been proposed (see the references at the end of the chapter) to
render the dissipation more selective with respect to the nature of disconti-
nuities, but the general tradeoff between damping the oscillations and overall
accuracy suggests that the artificial dissipation does not bring a real solution
to the problem. A different approach, including more physics in the numerical
approximation, is presented in the next section.

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8
t=0.20089

x

ρ

Exact sol.
Lax−Wendroff (D=8)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
t=0.20089

x

U Exact sol.
Lax−Wendroff (D=8)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
t=0.20089

x

p

Exact sol.
Lax−Wendroff (D=8)

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8
t=0.2006

x

ρ

Exact sol.
MacCormack (D=8)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
t=0.2006

x

U Exact sol.
MacCormack (D=8)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
t=0.2006

x

p

Exact sol.
MacCormack (D=8)

Fig. 10.6. Numerical results for the shock tube problem (Sod’s parameters) using
centered schemes with artificial dissipation. Lax–Wendroff scheme (up) and Mac-
Cormack scheme (down).

10.3.2 Upwind Schemes (Roe’s Approximate Solver)

The origin of the numerical oscillations generated by the centered schemes
discussed in the previous section comes from complete ignorance of the hy-
perbolic character of the Euler system of PDEs, in particular the propagation
of the information along characteristics. These important (physical) features
will be considered in deriving upwind schemes.

Physical information can be introduced at different levels of the numerical
approximation. We distinguish between:

228 10 Riemann problem and discontinuities: the shock tube problem

1. flux splitting upwind schemes, which use different directional discretiza-
tion of the flux F (W), depending on the sign of the eigenvalues λ of the
Jacobian matrix (10.8); since λ corresponds to the propagation speed of
the associated characteristic, these schemes include only the information
on the direction of propagation of waves (up- or downstream);

2. Godunov-type schemes, which introduce a higher level of physical approx-
imation by considering a discretization based on the exact solution of the
Riemann problem at each interface between computational points; when
the local Riemann problem is solved approximatively, we talk about Rie-
mann solvers.

The following sections present the basic principle of Godunov schemes and
the Riemann approximate solver of Roe.

Godunov-Type Schemes

The basic principle of a Godunov-type scheme is the following: the solution
Wn is considered to be piecewise constant over each grid cell defined as the
interval

]
xj−1/2, xj+1/2

[
; this allows us to define locally a Riemann problem

at each interface between the cells; each local Riemann problem is solved
exactly to calculate the solution Wn+1 at the next time level.

n+1

j−1 j+1jx

t

W
W

W

n
n

n
j

j+1
j−1

j−1 j+1j

~

x

W

Godunov

W(x)

Fig. 10.7. Principle of a Godunov-type scheme.

More precisely, the numerical solution is advanced from time level tn = nδt
to tn+1 = tn + δt in three steps (see Fig. 10.7):

Step 1. Using the known values Wn
j , define the piecewise constant function

Wn(x) = Wn
j , x ∈](j − 1/2)δx, (j + 1/2)δx[. (10.44)

10.3 Numerical Solution 229

Step 2. Calculate the solution function W̃n+1(x), x ∈](j − 1/2)δx, (j +
1/2)δx [by gathering the exact solutions of the two Riemann problems
defined at interfaces

(
j − 1

2

)
and

(
j + 1

2

)
. This step requires that the waves

issued from the two neighboring Riemann problems not intersect. This
implies that the time step should be limited such that

max
j

(|U | + a)n
j+1/2

δt

δx
≤ 1

2
. (10.45)

Step 3. Obtain the solution Wn+1(x), which is also a piecewise constant
function, by averaging W̃n+1(x) over each cell:

Wn+1
j =

1
δx

∫ (j+1/2)δx

(j−1/2)δx

W̃n+1(x)dx. (10.46)

We can show that the Godunov scheme can be written in the following
conservative form:

Wn+1
j − Wn

j

δt
+

Φ(Wn
j , Wn

j+1) − Φ(Wn
j , Wn

j−1)
δx

= 0, (10.47)

where the flux vector is generally defined as

Φ(Wn
j , Wn

j+1) = F (W̃n+1
j+1/2). (10.48)

The advantage of the conservative form is that it is valid over the entire domain
of definition of the problem, even though the solution is discontinuous. This
form is also used to derive approximate Riemann solvers. The exact form of
the flux vector will be presented in the next section for the Roe solver.

Roe’s Approximate Solver

The approximate solver of Roe is based on a simple and ingenious idea: the
Riemann problem (10.7) at interface

(
j + 1

2

)
is replaced by the linear Riemann

problem

∂W̃

∂t
+ Aj+1/2

∂W̃

∂x
= 0, W̃ (x, nδt) =

{
Wn

j , x ≤
(
j + 1

2

)
δx

Wn
j+1, x >

(
j + 1

2

)
δx

(10.49)

The first question raised by this approach is how to properly define the matrix
Aj+1/2, which depends on Wn

j and Wn
j+1. This matrix is a priori chosen such

that:

1. The hyperbolic character of the initial equation is conserved by the linear
problem; hence Aj+1/2 admits a decomposition similar to (10.12):

Aj+1/2 = Pj+1/2 Λj+1/2 P−1
j+1/2. (10.50)

In order to take into account the sign of the propagation speed of charac-
teristic waves, it is useful to define the matrices following:

230 10 Riemann problem and discontinuities: the shock tube problem

• sign(Aj+1/2) = Pj+1/2 (sign(Λ)) P−1
j+1/2, where sign(Λ) is the di-

agonal matrix defined by the signs of the eigenvalues λl: sign(Λ) =
diag(signλl).
• |Aj+1/2| = Pj+1/2|Λ|P−1

j+1/2, where |Λ| = diag(|λl|).
2. The linear Riemann problem is consistent with the initial problem, i.e.,

for all variables u,
Aj+1/2(u, u) = A(u, u). (10.51)

3. The numerical scheme is conservative, i.e., for all variables u and v,

F (u) − F (v) = Aj+1/2(u, v)(u − v). (10.52)

For the practical calculation of the matrix Aj+1/2, the original idea of Roe
was to express the conservative variables W and conservative fluxes F (W)
in (10.18) as quadratic forms of the components of the column vector Z =√

ρ(1, U, H)t = (z1, z2, z3)t:

W =

⎛⎝ z2
1

z1z2
1
γ z1z3 + γ−1

2γ z2
2

⎞⎠ , F (W) =

⎛⎝ z1z2
γ−1

γ z1z3 + γ−1
2γ z2

2
z2z3

⎞⎠ . (10.53)

Using the following identity, valid for arbitrary quadratic functions f, g,

(fg)j+1 − (fg)j = f̄(gj+1 − gj) + ḡ(fj+1 − fj), where f̄ =
fj+1 + fj

2
,

we can find two matrices B̄ and C̄ such that{
Wj+1 − Wj = B̄(Zj+1 − Zj),
F (Wj+1) − F (Wj) = C̄(Zj+1 − Zj).

(10.54)

This implies that

F (Wj+1) − F (Wj) = (C̄ B̄−1)(Wj+1 − Wj), (10.55)

which corresponds exactly to (10.52). Consequently, a natural choice for the
matrix Aj+1/2 will be

Aj+1/2 = C̄ B̄−1. (10.56)

A remarkable property of this matrix (the reader is invited to derive it as an
exercise!) is that it can be calculated from (10.8) by replacing the variables
(ρ, U, H) with the corresponding Roe’s averages

ρ̄j+1/2 = Rj+1/2ρj , Ūj+1/2 =
Rj+1/2Uj+1 + Uj

1 + Rj+1/2
, H̄j+1/2 =

Rj+1/2Hj+1 + Hj

1 + Rj+1/2
,

ā2
j+1/2 = (γ − 1)

(
H̄j+1/2 −

Ū2
j+1/2

2

)
, where Rj+1/2 =

√
ρj+1

ρj
. (10.57)

10.3 Numerical Solution 231

It is also remarkable that eigenvalue and eigenvector formulas (10.10) and
(10.11) still apply to Aj+1/2 if one uses the corresponding Roe’s averaged
variables. This considerably simplifies the calculation of matrices sign(Aj+1/2)
and |Aj+1/2|, which accounts for the popularity of Roe’s approximate solver.

Once the matrix Aj+1/2 is defined, the upwinding in Roe’s scheme follows
the general principle of first-order upwind schemes applied to linear systems
(see, for instance, Hirsch (1988) for more details). The flux in the general
conservative form (10.47) becomes for Roe’s solver

Φ(Wn
j , Wn

j+1) =
1
2
{
F (Wn

j) + F (Wn
j+1) − sign(Aj+1/2)[F (Wn

j+1) − F (Wn
j)]

}
,

(10.58)
or, if we use (10.52),

Φ(Wn
j , Wn

j+1) =
1
2
{
F (Wn

j) + F (Wn
j+1) − |A|j+1/2[Wn

j+1 − Wn
j]

}
. (10.59)

To summarize, Roe’s scheme will be used in the form

Wn+1
j = Wn

j − δt

δx

[
Φ(Wn

j , Wn
j+1) − Φ(Wn

j , Wn
j−1)

]
, (10.60)

with the flux Φ given by (10.59); the matrix |Aj+1/2| = Pj+1/2|Λ|P−1
j+1/2 will

be calculated using Roe’s averages (10.57) in (10.12) and (10.13).

Remark 10.2. Roe’s scheme is first-order accurate in time and space.

Exercise 10.4. Use Roe’s scheme (10.60) to solve numerically the shock tube
problem (Sod’s parameters). Compare to the numerical results previously ob-
tained using centered schemes.

The results obtained using Roe’s scheme are displayed in Fig. 10.8. Com-
pared to centered schemes, the numerical solution is smooth, without oscilla-
tions. The shock wave is accurately and sharply captured, but the scheme
proves too dissipative around the contact discontinuity, which is strongly
smeared.

More accurate Riemann solvers can be derived in the framework of
Godunov-type schemes by increasing the space accuracy. For example, we
can use piecewise linear functions in steps 1 and 3 of the Godunov scheme to
obtain solvers of second order in space. Several other approaches have been
proposed in the literature to include more physics in the numerical discretiza-
tion, leading to other classes of numerical methods, including TVD (total
variation diminishing) and ENO (essentially nonoscillatory) schemes, which
are now currently used to solve hyperbolic systems of PDEs. The reader who
wishes to pursue the study of upwind schemes beyond this introductory pre-
sentation is referred to more specialized texts such as Fletcher (1991); Hirsch
(1988); LeVeque (1992); Saad (1998).

232 10 Riemann problem and discontinuities: the shock tube problem

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8
t=0.20022

x

ρ
Exact sol.
Roe

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
t=0.20022

x

U

Exact sol.
Roe

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
t=0.20022

x

p

Exact sol.
Roe

Fig. 10.8. Numerical computation of the shock tube problem (Sod’s parameters)
using Roe’s approximate solver.

10.4 Solutions and Programs

The exact solution of the shock tube problem for a given time value t is
computed in the script HYP shock tube exact.m. The compatibility relation
(10.29) is implemented as an implicit function (i.e., f(x) = 0) in the script
HYP mach compat.m; this function is used as the first argument of the MAT-
LAB built-in function fzero to compute the root corresponding to the value of
Ms. The final solution, containing the discrete values for (ρ, U, p), is computed
according to relations in Sect. 10.2.2. Note the use of the MATLAB built-in
function find to compute the abscissas x separating the different regions of
the solution.

The main program resulting from successively solving all the exercises of
this project is HYP shock tube.m. After defining the input data (which are the
parameters of regions (L) and (R)) as global variables, the space discretization
is built and the solution is initialized using Sod’s parameters. Three main
arrays are used for the computation:

usol(1:3,1:M) to store the nonconservative variables (ρ, U, p)t,
w(1:3,1:M) for the conservative vector W = (ρ, ρU,E)t,
and F(1:3,1:M) for the conservative fluxes F (W).

The program allows one to choose among three numerical schemes: Lax–
Wendroff, MacCormack, and Roe. When a centered scheme is selected, the
value of the artificial dissipation is requested. The numerical solution is su-
perimposed on the exact solution using the function HYP plot graph imple-
mented in the script HYP plot graph.m. The most important functions called
from the main program are:

• HYP trans usol w: computes W = (ρ, ρU,E)t from usol = (ρ, U, p)t;
• HYP trans w usol: computes usol = (ρ, U, p)t from W = (ρ, ρU,E)t;
• HYP trans w f: computes F = (ρU, ρU2 + p, (E + p)U)t from W =

(ρ, ρU,E)t;
• HYP calc dt: computes δt = cfl·δx/(|U | + a) from W = (ρ, ρU,E)t.

All these functions are written with a concern for transparency with respect
to the mathematical formulas. For this purpose, the vectorial programming

Chapter References 233

capabilities of MATLAB were used. Let us explain in detail this technique for
the predictor step of the Lax–Wendroff scheme (see Fig. 10.4):
• the flux F (W) is computed from W values for all j = 1, . . . , M components

F = HYP trans_w_f(w);

• the artificial dissipation vector is added following (10.42); we use the MAT-
LAB built-in function diff to compute differences Wj − Wj−1; these differ-
ences are computed along the rows of the array w and only for j ≥ 2; according
to the left-boundary conditions, the artificial dissipation vector will be com-
pleted by zeros for j = 1:

F = F-Ddx*[zeros(3,1) diff(w,1,2)];

• the intermediate solution W̃ is computed only for the components j =
1, . . . , M − 1:

wtilde=0.5*(w(:,1:M-1)+w(:,2:M))-0.5*dt/dx*(F(:,2:M)-F(:,1:M-1));

A similar MATLAB code will be written for the corrector step, having in
mind that for this step, right-boundary conditions apply, and consequently,
only the components j = 2, . . . M − 1 of Wn+1 are computed:

Ftilde = HYP trans_w_f(wtilde);
Ftilde=Ftilde-Ddx*[diff(wtilde,1,2) zeros(3,1)];
w(:,2:M-1)=w(:,2:M-1)-dt/dx*(Ftilde(:,2:M-1)-Ftilde(:,1:M-2));

Particular attention was devoted to the implementation of Roe’s scheme,
which requires a separate function HYP flux roe to compute the conservative
flux Φ. In order to reduce memory storage, the flux at the interface

(
j + 1

2

)
is computed using this once (and once is not habit!) a for loop and several
local variables that can be easily identified from mathematical relations. Note
also that the analytical form (10.13) for P−1

j+1/2 was used instead of the (time-
consuming) MATLAB built-in function inv, which calculates the inverse of a
matrix.

Chapter References

C. A. J. Fletcher, Computational Techniques for Fluid Dynamics,
Springer-Verlag, 1991.

E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic
Systems of Conservation Laws, Springer-Verlag, 1996.

C. Hirsch, Numerical Computation of Internal and External Flows, John
Wiley & Sons, 1988.

R. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, 1992.
M. Saad, Compressible Fluid Flow, Pearson Education, 1998.

11

Thermal Engineering: Optimization of an
Industrial Furnace

Project Summary

Level of difficulty: 2

Keywords: Finite element method, Laplace differential operator,
direct problem, inverse problem

Application fields: Thermal engineering, optimization

11.1 Introduction

In this chapter we deal with a simple but realistic optimization problem. We
have to find the optimal temperature of an industrial furnace in which are
made resin pieces, such as car bumpers. The heating system is based on elec-
tric resistances, and the first part of this study is to compute the temperature
field inside the oven when the values of the resistances are known. This work
is called the direct problem: the resistances’ values are known and the temper-
ature field is unknown. It is important here to emphasize that the mechanical
properties of the bumper depend on the temperature during the cooking; so
the second part of the study is devoted to computing the resistances’ values
in order to maintain the bumper temperature at the “good” value. This op-
timization problem is called an inverse problem: the temperature is an input
and the resistances values are outputs.

The computation of the temperature field is performed with the finite
element method. Only the main features of this method are recalled here; for
further details we refer to Ciarlet (1978), Norrie and de Vries (1973), and
Zienkiewicz (1971).

236 11 Thermal Engineering: Optimization of an Industrial Furnace

11.2 Formulation of the Problem

For the sake of simplicity we limit the geometry of the problem to elementary
shapes: the bumper is a rectangle placed in a rectangular domain Ω repre-
senting the oven; the edges are referred to as the boundary ∂Ω (see Fig. 11.1).
This boundary is the union of three nonempty parts: ∂ΩD, ∂ΩN , and ∂ΩF ,
satisfying the following conditions:

∂Ω = ∂ΩD ∪ ∂ΩN ∪ ∂ΩF and ∂ΩD ∩ ∂ΩN = ∂ΩD ∩ ∂ΩF = ∂ΩF ∩ ∂ΩN = ∅.

The partial differential equation arising from the heat diffusion phe-
nomenon in the oven can be written as{

Find T ∈ V such that
div

[
−K

−−→grad T
]

= F in Ω.
(11.1)

For physical and mathematical reasons, the temperature field has to satisfy
some conditions on the wall of the oven. First we impose T = TD on ∂ΩD; this
is commonly referred to as a Dirichlet boundary condition. Another condition
rules the thermal flux across ∂ΩN . This is referred to as a Neumann boundary
condition. A last condition is devoted to the temperature balance between the
inside and the outside of the oven. This Fourier boundary condition states
that the heat transfer through ∂ΩF is proportional to T − TF , the difference
between internal and external temperatures.

All these arguments are translated into mathematical terms, and we add
them to the formulation of problem (11.1). They are summarized in⎧⎪⎪⎪⎨⎪⎪⎪⎩

T = TD on ∂ΩD,∑
i,j K i,j

∂T

∂xj
νi = f on ∂ΩN ,∑

i,j K i,j
∂T

∂xj
νi = g(T − TF) on ∂ΩF .

(11.2)

We have employed here the following notations:

1. T is the temperature in the domain Ω.
2. V is the set of all feasible temperatures.
3. K ∈ R

2×2 is the thermal conductivity tensor. In a homogeneous isotropic
medium, we have K = cI2, where c is the heat conductivity coefficient,
and I2 is the identity matrix.

4. The volume and surface heat sources are denoted by F and f .
5. The ambient temperature (inside the oven) is set to the value TD on ∂ΩD.
6. The outside temperature is set to the value TF on ∂ΩF .
7. g is the heat transfer coefficient on ∂ΩF .
8. ν = (ν1, ν2)t is the outward normal vector on ∂Ω.

11.3 Finite Element Discretization 237

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

−1

−1

1

1

−0.2

0.2

−0.5 0.5

Fig. 11.1. Object and oven.

For the sake of simplicity we assume here perfect thermal insulation, that
is, f = 0 and g = 0. All data necessary to deal with the problem are now
determined, and we use a Green formula,

∀T, T ′ ∈ V,

∫
Ω

div
[
−K

−−→grad T
]

T ′dx

=
∑
i,j

∫
Ω

K i,j
∂T

∂xj

∂T ′

∂xi
dx −

∑
i,j

∫
∂Ω

K i,j
∂T

∂xj
T ′ νi ds.

Let us introduce now the subspace V 0 ⊂ V by V 0 = {T ′ ∈ V, T ′ |∂ΩD
= 0},

and write the variational formulation of problem (11.1):⎧⎨⎩
Find T ∈ V 0 + TD such that

∀T ′ ∈ V 0
∑

K∈Th

∫
K

(−−→grad T ′)t
K

−−→grad T dx =
∑

K∈Th

∫
K

T ′ F dx. (11.3)

It has been proved that problem (11.3) is equivalent to problem (11.1)+(11.2)
and has a unique solution T (see Ciarlet, 1978).

11.3 Finite Element Discretization

In a real case, the physical data of problem (11.3) are provided by experimen-
tal measures; they are not trivial and neither is the geometry of the domain
Ω. Consequently, it is not possible to write an explicit solution T (x, y) of
problem (11.1)+(11.2). This solution is estimated by the way of an approxi-
mation method such as the finite element method. This method uses piece-
wise polynomial functions defined on triangles or rectangles in 2D formulation

238 11 Thermal Engineering: Optimization of an Industrial Furnace

(tetrahedra, hexahedra in 3D). In this study we first split the domain Ω into
triangular elements, gathered in a triangulation. In the finite element theory
a triangulation Th (or mesh) of the domain Ω is a set of triangles satisfying
the following properties:

Ω =
⋃

K∈Th

K,

∀K, K ′ ∈ Th K ∩ K ′ =

⎧⎨⎩
∅,
or a vertex common to K and K ′,
or an edge common to K and K ′.

Then a finite-dimensional vector subspace Vh ⊂ V is introduced. A sim-
ple example of such a subspace is provided by the so-called “Lagrange finite
element” of degree 1. For an arbitrary triangle K in Th, with vertices A1, A2,
and A3, an element T ′

h of Vh is defined by

T ′
h(M) = T ′

h(A1)λ1 + T ′
h(A2) λ2 + T ′

h(A3)λ3, (11.4)

where T ′
h(Ai) is the temperature value at Ai, one of the three vertices of

triangle K, while λ1, λ2, and λ3 are the barycentric coordinates of the point
M in triangle K.

Remark 11.1. Let K be an arbitrary triangle with vertices A1, A2, and A3.
The barycentric coordinates of point M are three real numbers λ1, λ2, and
λ3 such that λ1 + λ2 + λ3 = 1 and

−−→
OM = λ1

−→
OA1 + λ2

−→
OA2 + λ3

−→
OA3.

If x, y are the Cartesian coordinates of M , then the barycentric coordinates
λ1, λ2 are a solution of the linear system{

x = x(A3) + [x(A1) − x(A3)]λ1 + [x(A2) − x(A3)]λ2,

y = y(A3) + [y(A1) − y(A3)]λ1 + [y(A2) − y(A3)]λ2,
(11.5)

where (x(Ai), y(Ai)) are the Cartesian coordinates of vertex Ai. The unique-
ness of these values is guaranteed if and only if A1, A2, and A3 are not on a
straight line.

The definition (11.4) of the approximate temperature T ′
h leads to the new

relation

T ′
h(M) = T ′

h(A3) + [T ′
h(A1) − T ′

h(A3)]λ1 + [T ′
h(A2) − T ′

h(A3)]λ2.

We introduce then the subspace V 0
h ⊂ Vh by

V 0
h = {T ′ ∈ Vh, T ′ |∂ΩD

= 0}.

Let TD be the element of Vh whose components are all zero, except for TD(Ai),
with point Ai located on the boundary ∂ΩD, whose values come from (11.2).
The discrete variational formulation of problem (11.3) is then

11.4 Implementation 239⎧⎨⎩
Find Th ∈ TD + V 0

h such that

∀T ′
h ∈ V 0

h

∑
K∈Th

∫
K

(−−→grad T ′
h)t

K
−−→grad Th dx =

∑
K∈Th

∫
K

T ′
h F dx. (11.6)

11.4 Implementation

Formulation (11.6) uses integral calculation on triangles of Th. Before going
further into the details, we examine these terms when K is an arbitrary tri-
angle. One has to compute the value of∫

K

(−−→grad T ′
h)t

K
−−→grad Th dx and

∫
K

T ′
h F dx.

Matrix Computation

The vector −−→grad T ′
h has to be calculated for each T ′

h in Vh and each K in Th.
We first write

∂T ′
h

∂λi
=

∂T ′
h

∂x
× ∂x

∂λi
+

∂T ′
h

∂y
× ∂y

∂λi
for i = 1, 2. (11.7)

Then, using (11.4) and (11.5), we get∣∣∣∣∣∣∣∣∣
∂T ′

h

∂λ1
= T ′

h(A1) − T ′
h(A3),

∂T ′
h

∂λ2
= T ′

h(A2) − T ′
h(A3),

∣∣∣∣∣∣∣∣∣
∂x

∂λ1
= x(A1) − x(A3),

∂x

∂λ2
= x(A2) − x(A3),

∣∣∣∣∣∣∣∣∣
∂y

∂λ1
= y(A1) − y(A3),

∂y

∂λ2
= y(A2) − y(A3).

(11.8)
So a new formulation of (11.7) is

⎡⎣T ′
h(A1) − T ′

h(A3)

T ′
h(A2) − T ′

h(A3)

⎤⎦ =
[

x(A1) − x(A3) y(A1) − y(A3)
x(A2) − x(A3) y(A2) − y(A3)

]⎡⎢⎢⎣
∂T ′

h

∂x

∂T ′
h

∂y

⎤⎥⎥⎦ . (11.9)

The matrix determinant in (11.9) is

∆K = (x(A1) − x(A3)) (y(A2) − y(A3)) − (x(A2) − x(A3)) (y(A1) − y(A3)) .

Since |∆K | is twice the area of triangle K, matrix (11.9) is invertible when
K is not a flat triangle (i.e., the three vertices are not on a straight line). We
introduce then an array [dl T ′

h]K and a matrix BK by

[dl T ′
h]K =

⎡⎣T ′
h(A1)

T ′
h(A2)

T ′
h(A3)

⎤⎦

240 11 Thermal Engineering: Optimization of an Industrial Furnace

and

BK =
1

∆K

[
y(A2) − y(A3) y(A3) − y(A1) y(A1) − y(A2)
x(A3) − x(A2) x(A1) − x(A3) x(A2) − x(A1)

]
and write ∫

K

(−−→grad T ′
h)t

K
−−→grad Th dx = [dl T ′

h]tK [AK][dl Th]K .

Matrix [AK] is the element matrix, and is computed by

[AK] =
1
2
cK∆KBt

KBK .

Remark 11.2. The value of cK , the thermal conductivity coefficient, is different
in the air and in the resin, and so depends on K.

Right-Hand Side Computation

We assume in the following that the heat source function Fr associated with
an electrical resistance located at point Pr(xr, yr) has the form

Fr(x, y) =
F0

2
exp [−d2(x, y)], with d2(x, y) =

1
2R2

r

(
(x − xr)2 + (y − yr)2

)
,

so using the previous notation we may write

πR2
r

∫
Ω

Fr dx = F0 and
∫

K

T ′
hFr dx = [dl T ′

h]tK [bK],

where the array [bK] is the element right-hand side, computed by means of
the numerical integration formula

[bK] =
∆K

24

⎡⎣ 2 1 1
1 2 1
1 1 2

⎤⎦⎡⎣Fr(A1)
Fr(A2)
Fr(A3)

⎤⎦ .

The Linear System

Gathering all these results, we rewrite problem (11.6) in the new form⎧⎨⎩
Find Th ∈ TD + V 0

h such that
∀T ′

h ∈ V 0
h

∑
K∈Th

[dl T ′
h]tK [AK][dl Th]K =

∑
K∈Th

[dl T ′
h]tK [bK]. (11.10)

In this formulation, the array [dl T ′
h]K represents the temperature values

of an arbitrary function T ′
h in Vh. It is an array whose three components are

the temperature values at the vertices of K, an arbitrary triangle of Th. When

11.5 Boundary Conditions 241

we compute the summation in (11.10), element K replaces all triangles of Th,
so all functions T ′

h in Vh are taken into account. We then rewrite (11.10) as{
Find Th ∈ TD + V 0

h such that
∀T ′

h ∈ V 0
h [dl T ′

h]t [A] [dl Th] = [dl T ′
h]t [b]. (11.11)

Let nv be the number of vertices in triangulation Th; then [A] is a square
matrix of R

nv×nv and [b] is an array of Rnv. Note that

[dl T ′
h]t = [T ′

h(A1), T ′
h(A2), . . . , T ′

h(Anv)]t

and
[dl Th]t = [Th(A1), Th(A2), . . . , Th(Anv)]t

are arrays whose nv components are the temperature values at the vertices of
Th. To end, we remark that (11.6) is a linear system with nv equations and
nv unknowns:

[A] [dl Th] = [b]. (11.12)

11.5 Boundary Conditions

It is time now to take the boundary conditions into account. The condi-
tion T ′

h = 0 on ΩD, specified in the definition of the space V 0
h , involves

important modifications of the linear system (11.12). For the sake of sim-
plicity, we shall assume in the following lines that the vertices located on
ΩD have the largest numbers when the points of triangulation Th are or-
dered. More precisely, the numbers of these nvD vertices are supposed to be
nv − nvD + 1, nv − nvD + 2, . . . , nv. Any element of the finite-dimensional
space Vh is then an array of nv real components, and any element of the
subspace V 0

h is an array whose nvD last components are null. So the linear
system (11.12) arising from (11.11) seems to have only (nv − nvD) rows but
nv unknowns! Fortunately, since the solution Th of problem (11.11) belongs to
the space TD +V 0

h , its nvD last components are well known and determined by
the data TD associated with the Dirichlet boundary condition Th |∂ΩD

= TD.
Finally, the linear system (11.12) has (nv−nvD) unknowns for the same num-
ber of equations! Nevertheless, this treatment has heavy consequences for the
computer formulation of (11.12). We write first[

A1 A2
At

2 A3

]
×

[
Th

ThD

]
=

[
b
c

]
.

The square matrix A1 is of order (nv − nvD), A2 has (nv − nvD) rows
and nvD columns, and A3 is a square matrix of order nvD. When we take
the condition T ′

h |∂ΩD
= 0 into account, we see that the nvD last rows of the

242 11 Thermal Engineering: Optimization of an Industrial Furnace

linear system vanish. These rows are replaced by the nvD relations Th |∂ΩD
=

ThD = TD, so the linear system is now[
A1 A2
0 I

]
×

[
Th

ThD

]
=

[
b

TD

]
,

where I is the identity matrix of order nvD. For matrix storage reasons it is
important to preserve the symmetry of the initial problem. A final modifica-
tion is then necessary: the matrix A2 is eliminated in order to obtain[

A1 0
0 I

]
×

[
Th

ThD

]
=

[
b − A2TD

TD

]
,

which is the symmetric linear system solved by the computer.

11.5.1 Modular Implementation

When implementing the finite element method, different logical steps have to
be taken into account:

1. definition of the triangulation Th,
2. construction of the linear system (11.12),
3. introduction of the boundary conditions,
4. solution of the modified linear system,
5. visualization of the results.

Any scientific package has to deal with all elements of this list: there exists
a distinct procedure corresponding to each step encountered during the im-
plementation. These procedures are called modules. Results (output) of the
kth-step module are data (input) for (k + 1)th-step module. Several modules
may exist for the same logical step, in which case they have to share similar
formatted input and provide similar formatted output.

11.5.2 Numerical Solution of the Problem

In solving problem (11.11), the very first step is the mesh construction. Nu-
merous packages are devoted to this work, and 2D meshes are easily created.
See, for example the mesh displayed in Fig. 11.2(a) obtained with the INRIA
code emc2. 1 There are altogether 304 triangles and 173 vertices. Another
mesh, displayed in Fig. 11.2(b), was computed by the MATLAB “toolbox”
PDE-tool, with 1392 triangles and 732 vertices.

The mesh description, as provided by the code emc2, is summarized in the
following list

1. Nbpt, Nbtri (two integers): number of vertices (points), number of trian-
gles

1 http://www-rocq1.inria.fr/gamma/cdrom/www/emc2/eng.htm.

11.5 Boundary Conditions 243

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Finite element (coarse) mesh

(a)
−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Finite element (fine) mesh

(b)

Fig. 11.2. Mesh of the domain. (a) coarse; (b) fine.

2. List of all vertices: for Ns=1,Nbpt
• Ns, Coorpt[Ns,1], Coorpt[Ns,2] ,Refpt[Ns] (one integer, two reals, one

integer): vertex number, coordinates, and boundary reference;
3. List of all triangles: for Nt=1,Nbtri,

• Nt, Numtri[Nt,1:3], Reftri[N] (five integers): triangle number, three
vertex numbers, and medium reference (air or resin).

Exercise 11.1. 1. Create a mesh (or read one of the data files provided with
the procedures). Check contents of arrays Coorpt and Numtri.

2. Compute element matrix and right-hand side for each triangle.
3. Write a procedure that assembles the linear system from element data.
4. Modify the linear system in order to take the boundary conditions into

account. 2

5. Solve the resulting linear system.
6. Visualize the results, plot the isotherm curves.

Hint: Use the following algorithm to assemble A and b:

for K=1:Nbtri
(a) read data for triangle K

XY = coordinates of triangle K vertices
NUM = triangle K vertices numbers

(b) Compute element matrix AK(3,3) and right-hand side bK(3)
(c) Build global matrix A(Nbpt,Nbpt)

for i=1:3
for j=1:3

A(Num(i),Num(j))=A(Num(i),Num(j))+AK(i,j)

2 For this experiment ∂ΩD is the union of the lines y = −1 and y = 1, ∂ΩN is is
the union of the lines x = −1 and x = 1, and ∂ΩF = ∅.

244 11 Thermal Engineering: Optimization of an Industrial Furnace

end
end

(d) Build global right-hand side b(Nbpt)
for i=1:3

b(Num(i))=b(Num(i))+bK(i)
end

end

A solution of this exercise is proposed in Sect. 11.8 at page 248. A com-
puted temperature field is displayed in Fig. 11.3(a), representing the varia-
tions of temperature within the domain Ω. It corresponds to the following
data: TD = 50◦ Celsius on the upper part of the oven (y = 1), TD = 100◦

on the lower part (y = −1), and no heating sources (F = 0, f = 0). Another
temperature field is displayed in Fig. 11.3(b): plotting the temperature vari-
ations according to the previous boundary conditions but with four heating
resistances (common value is 25 000). It is obvious in Fig. 11.3 that the tem-
perature value in the bumper is far from 250◦, which is supposed to be the
ideal one in our study. To fix this problem we have to increase the resistance
values. Yes, but by how much? In the previous computation we have used
the resistance values as data and obtained the temperature field inside the
oven as result; this is referred to as the direct formulation of the problem. But
what we are interested in is the resistance values that produce the optimal
temperature inside the bumper; this is called the inverse problem. We shall
address the inverse problem in the following section.

−1
−0.5

0
0.5

1

−1

0

1

40

60

80

100

120

Temperature field without resistance

(a)

−1
−0.5

0
0.5

1

−1

0

1

0

100

200

300

400

Global temperature field

(b)

Fig. 11.3. Temperature fields. (a) without resistance; (b) with four resistances.

11.6 Inverse Problem Formulation

We emphasize now an important property of (11.1)–(11.2): the problem is
linear. This means that if T ′ is the unique solution of problem (11.1)–(11.2)

11.7 Implementation of the Inverse Problem 245

corresponding to data {F ′, T ′
D, f ′}, and T ′′ is the unique solution correspond-

ing to data {F ′′, T ′′
D, f ′′}, then αT ′+βT ′′ is the unique solution corresponding

to data {αF ′ +βF ′′, αT ′
D +βT ′′

D, αf ′ +βf ′′} for any real numbers α and β. In
order to determine the values of the resistances that lead to a correct heating
of the object, this propriety is of great interest. Assume that there are nwr
heating resistances and that the boundary conditions are temperature value
TD imposed on ∂ΩD and heat flux f imposed on ∂ΩN . Then the corresponding
temperature field T is written as

T = T0 +
nwr∑
k=1

αkTk,

where αk is the kth resistance value and Tk represents the temperature field
when resistance k is the unique resistance heating the oven. These coefficients
αk are the unknowns of the inverse problem, and we are going to compute the
values corresponding the desired temperature Topt by minimizing the quantity

J(α) =
∫

S

[
Topt(x) − T0(x) −

nwr∑
k=1

αk Tk(x)

]2

dx.

Here α = (α1, . . . , αnwr)t and S stands for the bumper. The quadratic
functional J is a strictly convex function of the variable α, and its unique
minimum is reached when ∇J(α) = 0. For k = 1, 2, . . . , nwr, the gradient kth
component is

∂J

∂αk
= 2

∫
S

(
Topt(x) − T0(x) −

nwr∑
k′=1

αk′ Tk′(x)

)
Tk(x)dx,

and the minimum is reached when
nwr∑
k′=1

αk′

∫
S

Tk′(x) Tk(x)dx =
∫

S

(Topt(x) − T0(x)) Tk(x)dx,

for k = 1, 2, . . . , nwr. We introduce now the matrix Ã ∈ R
nwr×nwr and the

array b̃ ∈ R
nwr by

Ãk,k′ =
∫

S

Tk(x) Tk′(x)dx and b̃k =
∫

S

(Topt(x) − T0(x)) Tk(x)dx.

The optimal α̃ = (α̃1, . . . , α̃nwr)t is the unique solution of the linear system

Ãα̃ = b̃. (11.13)

11.7 Implementation of the Inverse Problem

Exercise 11.2. 1. Compute and solve the linear system (11.13) arising from
the optimization problem.

246 11 Thermal Engineering: Optimization of an Industrial Furnace

2. Compute and plot the temperature field corresponding to the optimal
value. Comment on the results.

A solution of this exercise is proposed in Sect. 11.8 at page 249. We have
first to solve the nwr+1 direct problems in order to compute the temperature
fields T0, T1, . . . , Tnwr. They are obtained by the use of nwr + 1 calls of the
program written to solve the direct problem. Each computation corresponds
to a distinct value of the data TD, f , and F (note that the localization of
the resistances in the oven is a geometrical datum of great importance). The
corresponding temperature fields are then stored in nwr + 1 distinct arrays.

Now we solve problem (11.1)–(11.2) without any heating term (F = 0),
but with a temperature TD 	= 0 and thermal flux f = 0 given on the boundary.
The solution of this problem is denoted by T0, and displayed in Fig. 11.3(a).
We can see that the boundary conditions are well respected: temperature
value is T = 100 when y = −1 and T = 50 when y = 1. The heat conductivity
coefficient is set to the value c = 1 within the air and c = 10 within the object
(air is a good insulation medium). The vanishing thermal flux on the other
parts of the boundary corresponds to isotherm lines parallel to the normal
vector when x = −1 and x = 1.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

2

4

6

x 10
−3

Temperature field for resistance n2

(a) −1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

100

200

300

400

500

Optimized temperature field

(b)

Fig. 11.4. Temperature fields. (a) T2 field; (b) optimized field.

Then we solve nwr successive problems (11.1)–(11.2) (one problem by
resistance). Each case consists in computing the temperature field when only
one resistance is heating the oven. The boundary conditions are temperature
TD = 0 on ∂ΩD and thermal flux f = 0 on ∂ΩN for all cases. The nv
components of array Tk represent the temperature field related to the kth

resistance. Figure 11.4(a) displays the temperature field associated with a
single heating resistance. Note the tiny values of the temperature.

We notice again that the boundary conditions are well satisfied: the tem-
perature vanishes when y = −1 and y = 1 (Dirichlet condition), and the
Neumann condition (null flux condition) leads to isotherm lines perpendicu-
lar to lines x = −1 and x = 1.

11.7 Implementation of the Inverse Problem 247

To solve the inverse problem, we have now to construct the linear system
(11.13) and then compute the terms∫

S

Tk(x) Tk′(x)dx

from the temperature fields Tk and Tk′ computed in the previous step. This
computation is performed in the same way as before: we first write the integral
term on the complete object as summation of integral terms on all triangles
of the object: ∫

S

Tk(x) Tk′(x)dx =
∑
K⊂S

∫
K

Tk(x) Tk′(x)dx.

Then any integral on K is evaluated using the expression for Tk(x) and
Tk′(x) in triangle K

Tk(x) = Tk(A3) + [Tk(A1) − Tk(A3)]λ1 + [Tk(A2) − Tk(A3)]λ2.

In this formula λi is the ith barycentric coordinate of the point M(x, y) in K,
and Ai is one of the vertices of triangle K. So we may write∫

K

Tk(x) Tk′(x)dx = [dl Tk,K]t [MK] [dlTk′,K].

This leads us to introduce the matrix [MK], the so-called element mass ma-
trix. The element mass matrix associated with the Lagrange finite triangular
element of degree 1 is

[MK] =
∆K

24

⎡⎣2 1 1
1 2 1
1 1 2

⎤⎦ .

So in computing the linear system (11.13), the matrix coefficient Ãk,k′

is obtained by summation over all triangles laying inside the objects of the
terms [dl Tk,K]t [MK][dlTk′,K]. The right-hand side b̃ is computed in the same
way. An example of calculation, corresponding to the case of four heating
resistances, is displayed in Fig. 11.5(a). We may see there the optimized tem-
perature field obtained after computation of coefficients αk. Figure 11.5(b)
displays the solution corresponding to six heating resistances. The value of
the temperature within the rectangle [−0.5, 0.5] × [−0.2, 0.2] is very near to
the target value (250◦).

It is very important to notice that the optimal value of coefficients αk

depends on the number of resistances but also on the position of these resis-
tances in relation to the object. An interesting development of this study is to
try to optimize the layout of the resistances inside the oven. The practical aim
of such an additional study should be the optimization of the thermal power
dissipated by the resistances. In this particular case, we want to optimize the

248 11 Thermal Engineering: Optimization of an Industrial Furnace

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

100

200

300

400

500

Optimized temperature field

(a)
−1

−0.5
0

0.5
1

−1
−0.5

0
0.5

1
0

100

200

300

400

Optimized temperature field

(b)

Fig. 11.5. Optimized temperature fields. (a) four resistances; (b) six resistances.

temperature value in the object and the thermal (or electric) energy used to
warm the oven. This is modeled by adding a special term to the functional

J(α) =
∫

S

(
Topt(x) − T0(x) −

nwr∑
k=1

αk Tk(x)

)2

dx + C

nwr∑
k=1

α2
k.

Remark 11.3. You may get very small values (even negative) for the coeffi-
cients αk. This means that the corresponding resistances are located too close
to the object and then have to cool it instead of heating it.

It may be seen in Fig. 11.6(a) that a device with six heating resistances
produces a larger “well heated” area than with four resistances. Note also
that this computing is performed with a rather coarse mesh (173 vertices
and 304 triangles). The results are satisfying; they prove the efficiency of the
finite element method to solve this problem, and provide a validation of all
the procedures, and of the whole process. Nevertheless, in order to get more
realistic and more accurate results, it is necessary to solve the problem on a
“finer” mesh. We have proceeded to a second computation on a mesh with
732 vertices and 1392 triangles (and still six resistances). The final result is
plotted in Fig. 11.6(b), showing a true improvement, especially around the
object and the resistances. This improvement, predicted by the finite element
method (the smaller the element size, the better is the result) leads to an
increase of the computational time.

11.8 Solutions and Programs

Solution of Exercise 11.1

The file THER oven ex1.m contains the procedure THER oven ex1, which re-
alizes the numerical experiment by defining the physical parameters of the

11.8 Solutions and Programs 249

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

100

200

300

400

Optimized temperature field

(a)

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

100

200

300

400

Optimized temperature field

(b)

Fig. 11.6. Optimized temperature fields. (a) coarse mesh; (b) fine mesh.

problem (localization of the resistances, heat conductivity coefficients, bound-
ary temperature values). It calls the procedure of the file THER oven.m, which
computes the corresponding temperature field.

The file THER matrix dir.m contains a procedure that builds the linear
system arising from the heat equation problem. We notice that the right-hand
side vanishes outside those elements that contain a resistance. The procedure
of the file THER local.m builds the right-hand side for given resistances co-
ordinates. The procedure contained in file THER elim.m takes the boundary
conditions into account.

Solution of Exercise 11.2

The file THER oven ex2.m contains the procedure THER oven ex2, which
computes the resistances’ values corresponding to the optimal temperature
field. It calls the procedure of the file THER matrix inv.m computing matrix
and right-hand side of the optimization problem.

Remark 11.4. We also provide an interactive version of the solution of this
project, allowing one to realize numerous numerical experiments by changing
data through a graphical user interface. To launch the interface, just run the
script Main from the subdirectory interactive.

11.8.1 Further Comments

In this last section we address the important point of the structure of matrix A.
The matrix is sparse because this property is related only to the approximation
scheme and the differential operator, which is here similar to the Laplacian
operator. 3 The shape of A (see Fig. 11.7(a)) is not as regular as the one

3 The value of the heat conductivity coefficient c is not relevant for the matrix
structure.

250 11 Thermal Engineering: Optimization of an Industrial Furnace

displayed in Chap. 7 (compare to Fig. 7.3). This difference results from the
use of a finite element mesh with triangles, instead of a rectangular grid.
Furthermore, the structure of A is strongly depending on the nodes ordering
as can be seen by comparing the matrices obtained on the coarse mesh (Fig.
11.7(a)) and on a finer mesh (Fig. 11.7(b)). The obvious difference is due to
a reordering of the nodes for the coarse-mesh calculation.

0 50 100 150

0

20

40

60

80

100

120

140

160

nz = 1007

Matrix A (coarse mesh)

(a)

0 200 400 600

0

100

200

300

400

500

600

700

nz = 4739

Matrix A (fine mesh)

(b)

Fig. 11.7. Associated matrix. (a) coarse mesh; (b) fine mesh.

Chapter References

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North
Holland, Amsterdam, 1978.

D. N. Norrie and G. de Vries, The Finite Element Method, Academic
Press, New York 1973.

J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equa-
tions, Wadsworth and Brooks/Cole, 1989.

O. C. Zienkiewicz, The Finite Element Method in Engineering Science,
McGraw-Hill, London 1971.

12

Fluid Dynamics: Solving the Two-Dimensional
Navier–Stokes Equations

Project Summary

Level of difficulty: 3

Keywords: Navier–Stokes equations, Helmholtz equation, Poisson
equation, projection method, ADI factorization, FFT
Fourier transform

Application fields: Incompressible flows, jet flow, Kelvin–Helmholtz insta-
bility, vortex dipole

12.1 Introduction

The Navier–Stokes system of partial differential equations (PDEs) contains
the main conservation laws that universally describe the evolution of a fluid
(i.e., liquid or gaseous) flow. Even though these laws have been well estab-
lished since the nineteenth century, the complete description of their intrinsic
properties remains one of the challenging topics of modern physics and math-
ematics.

In this chapter, we consider some simplifying hypotheses that make the
Navier–Stokes equations tractable with relatively simple numerical methods:

• the density of the fluid is assumed constant (ρ = ρ0), i.e., the fluid is
incompressible;

• the flow parameters depend on only two space variables (x and y), i.e., the
flow is two-dimensional or 2D;

• all the variables are considered as periodic functions of both x and y, i.e.,
we impose periodic boundary conditions.

This model allows the study of simple, but fascinating, phenomena that turn
out to give us an understanding of more complicated flows too. In this project,
we shall numerically simulate:

252 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

• the Kelvin–Helmholtz instability of a mixing layer, and
• the evolution of a particular vortex structure, the vortex dipole.

From a numerical point of view, this computational project introduces the
following algorithms or numerical schemes of more general interest:

• the space discretization using a staggered grid and 2D finite difference
schemes;

• the combined Adams–Bashforth and Crank–Nicolson schemes for the time
integration;

• an alternating direction implicit, or ADI, method for solving the Helmholtz
equation;

• a solver for the periodic Poisson equation based on fast Fourier transforms,
or FFTs;

• the Thomas algorithm for solving a tridiagonal linear system.

12.2 The Incompressible Navier–Stokes Equations

The 2D flow-field of an incompressible fluid is completely described by the
velocity vector q = (u(x, y), v(x, y)) ∈ R

2 and the pressure p(x, y) ∈ R. These
functions are a solution of the following conservation laws (see, for instance,
Hirsch, 1988):

• mass conservation:
div(q) = 0, (12.1)

or, written using the explicit form of the divergence1 operator,

∂u

∂x
+

∂v

∂y
= 0. (12.2)

• the momentum conservation equations in the compact form2

∂q

∂t
+ div(q ⊗ q) = −Gp +

1
Re

∆q, (12.3)

or, in explicit form,⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u

∂t
+

∂u2

∂x
+

∂uv

∂y
= −∂p

∂x
+

1
Re

(
∂2u

∂x2 +
∂2u

∂y2

)
,

∂v

∂t
+

∂uv

∂x
+

∂v2

∂y
= −∂p

∂y
+

1
Re

(
∂2v

∂x2 +
∂2v

∂y2

)
.

(12.4)

1 We recall the definitions of the differential operators divergence, gradient, and
Laplacian for a 2D field: if v = (vx, vy) : R

2 �→ R
2 and ϕ : R

2 �→ R, then

div(v) =
∂vx

∂x
+

∂vy

∂y
, Gϕ =

(
∂ϕ

∂x
,
∂ϕ

∂y

)
, ∆ϕ = div(Gϕ) =

∂2ϕ

∂x2 +
∂2ϕ

∂y2 ,

and ∆v = (∆vx, ∆vy).
2 We denote by ⊗ the tensor product.

12.3 Numerical Algorithm 253

The previous equations are written in the dimensionless form, using the
following scaled variables:

x =
x∗

L
, y =

y∗

L
, u =

u∗

V0
, v =

v∗

V0
, t =

t∗

L/V0
, p =

p∗

ρ0V 2
0

, (12.5)

where the superscript (∗) denotes variables measured in physical units. The
constants L, V0 are, respectively, the reference length and velocity that charac-
terize the simulated flow. The dimensionless number Re is called the Reynolds
number and quantifies the relative importance of inertial (or convective) terms
and viscous (or diffusion)3 terms in the flow:

Re =
V0L

ν
, (12.6)

where ν is the kinematic viscosity of the flow.
To summarize, the Navier–Stokes system of PDEs that will be numerically

solved in this project is defined by (12.2) and (12.4); the initial condition (at
t = 0) and the boundary conditions will be discussed in the following sections.

12.3 Numerical Algorithm

We start by presenting the fractional-step method (Kim and Moin, 1985; Or-
landi, 1999; Ferziger and Perić, 2002) as a general algorithm to solve the
Navier–Stokes equations. This algorithm belongs to the class of so-called pro-
jection methods and has become rather popular in computational fluid dy-
namics. An extensive presentation of this method in a more general framework
can be found in the recent book by Orlandi (1999).

We use a fractional-step method that consists of two steps:

1. The predictor step: we solve the momentum equations (12.3) written in
the compact form

∂q

∂t
= −Gp + H +

1
Re

∆q, for q = (u, v) ∈ R
2, (12.7)

where H is the vector containing the convective terms

−H =
(

∂u2

∂x
+

∂uv

∂y
,

∂uv

∂x
+

∂v2

∂y

)
, (12.8)

and Gp the pressure gradient vector. Time discretization of (12.7) com-
bines the explicit Adams–Bashforth scheme (for the convective terms H)
with the semi-implicit Crank–Nicolson scheme (for the diffusion terms

3 The model scalar equations describing the convection and diffusion phenomena
are discussed in Chap. 1.

254 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

∆q). If δt denotes the calculation time step (supposed constant), the time
advancement of the solution from tn = nδt to tn+1 = (n+1)δt follows the
scheme

q∗ − qn

δt
= −Gpn +

3
2
Hn − 1

2
Hn−1︸ ︷︷ ︸

Adams–Bashforth

+
1

Re
∆

(
q∗ + qn

2

)
.︸ ︷︷ ︸

Crank–Nicolson

(12.9)

In the previous equation, the pressure is treated as an explicit term (com-
puted at time tn). As a consequence, the velocity vector q∗ does not satisfy
the mass conservation equation (12.1).

2. The corrector (or projection) step: the velocity q∗ is corrected such that
the velocity field qn+1 is divergence-free (or solenoidal). We use the fol-
lowing correction equation:4

qn+1 − q∗ = −δt Gφ. (12.10)

The variable φ (related to the pressure, but without any physical meaning)
is calculated by taking the divergence of (12.10); using that div(qn+1) = 0
and div(Gφ) = ∆φ, we obtain a Poisson equation

∆φ =
1
δt

div(q∗). (12.11)

To close the algorithm, the pressure for the next time step is updated
using5

pn+1 = pn + φ − δt

2Re
∆φ. (12.12)

To summarize, the numerical algorithm consists of the following steps,
rearranged below in the form that will be used in computer programs:

Algorithm 12.1. To solve the Navier–Stokes equations (12.2)–(12.4). Given
the field (un, vn, pn), compute:

4 The idea behind this equation comes from the observation that q∗ and qn+1

have the same curl. Indeed, the pressure in the Navier–Stokes equation can be
eliminated by taking the curl of the momentum equations. We recall that for the
vector field v = (vx, vy), curl(v) = ∂vy/∂x − ∂vx/∂y measures the amount of
rotation or the angular momentum of the field.

5 This equation is obtained as follows: we write (12.9) with an implicit discretization
of the pressure term

qn+1 − qn

δt
= −Gpn+1 +

3
2
Hn − 1

2
Hn−1 +

1
Re

∆

(
qn+1 + qn

2

)

and subtract this equation from (12.9). After replacing q∗ from (12.10), we get
(12.12), up to an additive constant. Note that this constant is discarded by taking
the gradient of the pressure in the momentum equations.

12.4 Computational Domain, Staggered Grids, and Boundary Conditions 255

(A) the explicit terms Hn:

Hn
u = −

(
∂u2

∂x
+

∂uv

∂y

)
, (12.13)

Hn
v = −

(
∂uv

∂x
+

∂v2

∂y

)
; (12.14)

(B) the nonsolenoidal field q∗ = (u∗, v∗) by solving the Helmholtz equations(
I − δt

2Re
∆

)
u∗ = un + δt

[
−∂pn

∂x
+

3
2
Hn

u − 1
2
Hn−1

u +
1

2Re
∆un

]
,

(12.15)(
I − δt

2Re
∆

)
v∗ = vn + δt

[
−∂pn

∂y
+

3
2
Hn

v − 1
2
Hn−1

v +
1

2Re
∆vn

]
;

(12.16)
(C) the variable φ by solving the Poisson equation

∆φ =
1
δt

(
∂u∗

∂x
+

∂v∗

∂y

)
; (12.17)

(D) the solenoidal field qn+1 = (un+1, vn+1), with

un+1 = u∗ − δt
∂φ

∂x
, (12.18)

vn+1 = v∗ − δt
∂φ

∂y
; (12.19)

(E) the new pressure:

pn+1 = pn + φ − δt

2Re
∆φ. (12.20)

Steps (A)–(E) are repeated for each time step.

12.4 Computational Domain, Staggered Grids, and
Boundary Conditions

Numerically solving the Navier–Stokes equations is considerably simplified
by considering a rectangular domain Lx × Ly (see Fig. 12.1) with periodic
boundary conditions everywhere. The periodicity of the velocity q(x, y) and
pressure p(x, y) fields is mathematically expressed as

q(0, y) = q(Lx, y), p(0, y) = p(Lx, y), ∀y ∈ [0, Ly], (12.21)
q(x, 0) = q(x, Ly), p(x, 0) = p(x, Ly), ∀x ∈ [0, Lx]. (12.22)

The points at which the solution will be computed are distributed in the
domain following a rectangular and uniform 2D grid. Since not all the vari-
ables share the same grid in our approach, we first define a primary grid (see

256 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

Fig. 12.1) generated by taking nx computational points along x and, respec-
tively, ny points along y:

xc(i) = (i − 1)δx, δx =
Lx

nx − 1
, i = 1, . . . , nx, (12.23)

yc(j) = (j − 1)δy, δy =
Ly

ny − 1
, j = 1, . . . , ny. (12.24)

X

Y

00

Ly

Lx
periodicity

periodicity

periodicityperiodicity

0 X
0

Y

Ly

Lx

ym(j)

v(i,j)

u(i,j) p(i,j)
yc(j+1)

yc(j)

x c(
i)

x c(
i+

1)

x m
(i)

Fig. 12.1. Computational domain, staggered grids, and boundary conditions.

A secondary grid is defined by the centers of the primary grid cells:

xm(i) = (i − 1/2)δx, i = 1, . . . , nxm, (12.25)
ym(j) = (j − 1/2)δy, j = 1, . . . , nym, (12.26)

where we have used the shorthand notation nxm = nx−1, nym = ny−1. Inside
a computational cell defined as the rectangle [xc(i), xc(i + 1)] × [yc(j), yc(j +
1)], the unknown variables u, v, p will be computed as approximations of the
solution at different space locations:

• u(i, j) ≈ u(xc(i), ym(j)) (west face of the cell),
• v(i, j) ≈ v(xm(i), yc(j)) (south face of the cell),
• p(i, j) ≈ p(xm(i), ym(j)) (center of the cell).

This staggered arrangement of the variables has the advantage of a strong
coupling between pressure and velocity. It also helps (see the references at the
end of the chapter) to avoid some problems of stability and convergence ex-
perienced with collocated arrangements (where all the variables are computed
at the same grid points).

12.5 Finite Difference Discretization

In this section, Algorithm 12.1 will be written in a discrete form that will be
used in the computer programs of this project. We start by noticing that the

12.5 Finite Difference Discretization 257

periodic boundary conditions take the following discrete form:

u(1, j) = u(nx, j), ∀j = 1, . . . , ny,
u(i, 1) = u(i, ny), ∀i = 1, . . . , nx,

(12.27)

and similar relations for v and p. As a consequence, the unknowns of the
problem are only the nxm × nym values

u(i, j), v(i, j), p(i, j), for i = 1, . . . , nxm, j = 1, . . . , nym.

A very useful programming trick (see also Chap. 1) in implementing dis-
crete periodic boundary conditions (12.27) consists in defining the supplemen-
tary arrays{

ip(i) = i + 1, i = 1, . . . , (nxm − 1),
ip(nxm) = 1,

{
jp(j) = j + 1, j = 1, . . . , (nym − 1),
jp(nym) = 1,

(12.28){
im(i) = i − 1, i = 2, . . . , nxm,
im(1) = nxm,

{
jm(j) = j − 1, j = 2, . . . , nym,
jm(1) = nym,

(12.29)
and using the vectorial capabilities of MATLAB to write the finite difference
discretization of the differential operators in a very compact form. For ex-
ample, to compute (∂ψ/∂x) (i, j) for a fixed j and all i = 1, . . . , nxm, the
second-order centered finite difference scheme is explicitly written as

∂ψ

∂x
(i, j) ≈ ψ(i + 1, j) − ψ(i − 1, j)

2δx
, i = 2, . . . , (nxm − 1),

with a particular treatment of indices i = 1 and i = nxm:

∂ψ

∂x
(1, j) ≈ ψ(2, j) − ψ(nxm, j)

2δx
,

∂ψ

∂x
(nxm, j) ≈ ψ(1, j) − ψ(nxm − 1, j)

2δx
.

Using the vectors im and ip from (12.28) and (12.29) we can compress the
previous relations into a single one:

∂ψ

∂x
(i, j) ≈ ψ(ip(i), j) − ψ(im(i), j)

2δx
, i = 1, . . . , nxm. (12.30)

Remark 12.1. As a general programming rule, in a finite difference scheme
with periodic boundary conditions, we shall replace indices (i + 1) by ip(i)
and (i − 1) by im(i) (and similarly for j indices).

We are now equipped to present in detail the full discrete form of each
step of Algorithm 12.1.

258 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

(A) Computation of Explicit Terms

The two components Hn
u (12.13) and Hn

v (12.14) of the explicit term Hn

are computed at the same points of the grid as the corresponding velocities.
To follow the logic of the discretization below, the reader is invited to add
to Fig. 12.1 the adjacent cells (i, j ± 1), (i ± 1, j). Using the centered finite
difference scheme (12.30) we easily obtain:
• for the computation of the velocity u (located at (xc(i), ym(j))):
for i = 1, . . . , nxm, j = 1, . . . , nym,

∂u2

∂x
(i, j) ≈ 1

δx

[(
u(i, j) + u(ip(i), j)

2

)2

−
(

u(i, j) + u(im(i), j)
2

)2
]

,

∂uv

∂y
(i, j) ≈ 1

δy

[(
u(i, j) + u(i, jp(j))

2

) (
v(i, jp(j)) + v(im(i), jp(j))

2

)
−

(
u(i, j) + u(i, jm(j))

2

) (
v(i, j) + v(im(i), j)

2

)]
,

Hn
u(i, j) = −∂u2

∂x
(i, j) − ∂uv

∂y
(i, j); (12.31)

• and similarly for the velocity v (located at (xm(i), yc(j))):
for i = 1, . . . , nxm, j = 1, . . . , nym,

∂v2

∂y
(i, j) ≈ 1

δy

[(
v(i, j) + v(i, jp(j))

2

)2

−
(

v(i, j) + u(i, jm(j))
2

)2
]

,

∂uv

∂x
(i, j) ≈ 1

δx

[(
u(ip(i), j) + u(ip(i), jm(j))

2

) (
v(i, j) + v(ip(i), j)

2

)
−

(
u(i, j) + u(i, jm(j))

2

) (
v(i, j) + v(im(i), j)

2

)]
,

Hn
v (i, j) = −∂uv

∂x
(i, j) − ∂v2

∂y
(i, j). (12.32)

(B) Computation of the Nonsolenoidal Velocity Field

We first notice that (12.15) and (12.16) can be written in the compact form
of a Helmholtz equation:(

I − δt

2Re
∆

)
︸ ︷︷ ︸

Helmholtz operator

δq∗ = δt

[
−Gpn +

3
2
Hn − 1

2
Hn−1 +

1
Re

∆qn

]
︸ ︷︷ ︸

RHSn

, (12.33)

where we have introduced the notation δq∗ = q∗ − qn. When periodic bound-
ary conditions are imposed, this equation is usually solved using fast Fourier

12.5 Finite Difference Discretization 259

transforms (or FFT).6 We present in the following a different method, the al-
ternating direction implicit (or ADI) method, which is easier to implement and
has the advantage that it easily takes into account other types of boundary
conditions. The Helmholtz operator is approximated since the terms O(δt2)
are neglected:(

I − δt

2Re
∆

)
δq∗ ≈

(
I − δt

2Re

∂2

∂x2

)(
I − δt

2Re

∂2

∂y2

)
δq∗. (12.34)

This second-order accurate factorization7 is use to solve (12.33) in two steps:(
I − δt

2Re

∂2

∂x2

)
δq∗ =RHSn (+ periodicity along x), (12.35)(

I − δt

2Re

∂2

∂y2

)
δq∗ = δq∗ (+ periodicity along y). (12.36)

It is important to note that we also impose periodic boundary conditions for
the field δq∗, which is physically meaningless. This choice, which seems to
be natural for our periodic problem, becomes more difficult for other types of
boundary conditions (Dirichlet type, for example) and needs further analytical
development.

For the discretization of second derivatives in (12.35) and (12.36) we use
a second-order centered finite difference scheme, written here in the general
form (see also Chap. 1)

∂2ψ

∂x2 (i, j) ≈ ψ(i + 1, j) − 2ψ(i, j) + ψ(i − 1, j)
δx2 , (12.37)

∂2ψ

∂y2 (i, j) ≈ ψ(i, j + 1) − 2ψ(i, j) + ψ(i, j − 1)
δy2 .

Finally, the algorithm used in the programs of this chapter is the following:

Algorithm 12.2. (computes u∗ using an ADI method):

• First step of ADI: for all j = 1, . . . , nym solve the linear system

−βx(δu∗)(i − 1, j) + (1 + 2βx)(δu∗)(i, j) − βx(δu∗)(i + 1, j) = RHSn
u(i, j),
(12.38)

where i = 1, . . . , nxm and βx = δt
2Re

1
δx2 . In the previous relation, we take

into account the periodicity by imposing

(δu∗)(0, j) = (δu∗)(nxm, j), (δu∗)(nxm + 1, j) = (δu∗)(1, j).

6 This is the subject of an exercise of this chapter.
7 The methods based on this idea are also known as approximate factorization or

splitting methods.

260 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

More precisely, we have to solve nym linear systems with the following
matrix of size nxm × nxm:

Mx =

⎛⎜⎜⎜⎜⎝
1 + 2βx −βx 0 . . 0 0 −βx

−βx 1 + 2βx −βx . . 0 0 0
.
0 0 0 . . −βx 1 + 2βx −βx

−βx 0 0 . . 0 −βx 1 + 2βx

⎞⎟⎟⎟⎟⎠ . (12.39)

This particular matrix pattern will be referred to in the following as a
tridiagonal periodic matrix.
An efficient method to solve such systems will be derived later, based on
the well-known Thomas algorithm (Algorithm 12.5).
At the end of this step we obtain (δu∗)(i, j).

• Second step of ADI: for all i = 1, . . . , nxm solve the linear system

−βy(δu∗)(i, j − 1) + (1 + 2βy)(δu∗)(i, j) − βy(δu∗)(i, j + 1) = (δu∗)(i, j),
(12.40)

where j = 1, . . . , nym and βy = δt
2Re

1
δy2 . The periodicity requires that

(δu∗)(i, 0) = −(δu∗)(i, nxm), (δu∗)(i, nym + 1) = (δu∗)(i, 1).

We obtain this time nxm linear systems with tridiagonal and periodic ma-
trices of size nym × nym:

My =

⎛⎜⎜⎜⎜⎝
1 + 2βy −βy 0 . . 0 0 −βy

−βy 1 + 2βy −βy . . 0 0 0
.
0 0 0 . . −βy 1 + 2βy −βy

−βy 0 0 . . 0 −βy 1 + 2βy

⎞⎟⎟⎟⎟⎠ . (12.41)

At the end of this step we get (δu∗)(i, j) and immediately

u∗(i, j) = u(i, j) + (δu∗)(i, j).

The computation procedure is similar for the other component of the ve-
locity. Considering that it could be helpful to correctly program the algorithm,
we present here the details of the computation:

Algorithm 12.3. (computes v∗ using an ADI method):

• First step of ADI: for all j = 1, . . . , nym solve the linear system

Mx (δv∗)(i, j) = RHSn
v (i, j), (12.42)

where i = 1, . . . , nxm and the matrix Mx is given by (12.39).
At the end of this step we obtain (δv∗)(i, j).

12.5 Finite Difference Discretization 261

• Second step of ADI: for all i = 1, . . . , nxm, solve the linear system

My (δv∗)(i, j) = (δv∗)(i, j), (12.43)

where j = 1, . . . , nym and the matrix My is given by (12.41).
We obtain (δv∗)(i, j) and immediately

v∗(i, j) = u(i, j) + (δv∗)(i, j).

(C) Solving the Poisson Equation

The Poisson equation (12.11) is discretized as

∆φ(i, j) =
(

∂2φ

∂x2 +
∂2φ

∂y2

)
(i, j) = Q(i, j), (12.44)

where i = 1, . . . , nxm, j = 1, . . . , nym, and

Q(i, j) =
1
δt

div(q∗)(i, j) =
1
δt

(
∂u∗

∂x
+

∂v∗

∂y

)
(i, j).

To solve this equation, we first use the periodicity along the x direction and
expand the variable φ in a discrete Fourier series:

φ(i, j) =
nxm∑
l=1

φ̂l(j)ei 2π
nxm

(i−1)(l−1), ∀ i = 1, . . . , nxm, (12.45)

where i =
√

−1 is the imaginary unit. The advantage of using a Fourier series
expansion is to diagonalize the Laplace operator and thus reduce the initial
2D problem (12.44) to a 1D problem. Indeed, considering an approximation
of ∂2φ/∂x2 by second-order centered differences, we obtain

∂2φ

∂x2 (i, j) ≈ φ(i + 1, j) − 2φ(i, j) + φ(i − 1, j)
∆x2

=
1

∆x2

nxm∑
l=1

φ̂l(j)ei 2π
nxm

(i−1)(l−1)
(
ei 2π

nxm
(l−1) − 2 + e−i 2π

nxm
(l−1)

)
=

nxm∑
l=1

φ̂l(j)ei 2π
nxm

(i−1)(l−1) 2
∆x2

[
cos

(
2π

nxm
(l − 1)

)
− 1

]
︸ ︷︷ ︸

kl

. (12.46)

Using a similar Fourier series expansion for the right-hand-side function
Q (which is also periodic),

Q(i, j) =
nxm∑
l=1

Q̂l(j)ei 2π
nxm

(i−1)(l−1),

262 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

we find that solving the initial problem (12.44) is equivalent to solving nxm

1D equations
∂2

∂y2 φ̂l(j) + klφ̂l(j) = Q̂l(j), (12.47)

where l = 1, . . . , nxm is the wave number of the Fourier expansion.
At this point of our numerical algorithm, equations (12.47) can be solved

using either a similar Fourier expansion along y or a finite difference scheme
to discretize the second derivative. Since the first method can be applied only
for periodic boundary conditions, we choose the second one, which can be
easily adapted to more general cases required by further development of this
project (a wall boundary condition, for example). With this choice, (12.47)
becomes, for j = 1, . . . , nym,

1
δy2 φ̂l(j − 1) +

(
− 2

δy2 + kl

)
φ̂l(j) +

1
δy2 φ̂l(j + 1) = Q̂l(j). (12.48)

This equation must be supplemented with discrete boundary conditions for
j = 1 and j = nym. In our case, we naturally use the periodicity of the
function φ̂.

It is important to note that special treatment is required for the wave
number l = 1 for which kl = 0. For this value, it is easy to see that the matrix
of the system (12.48) is singular and our formulation is not well-posed! Indeed,
the solution of the Poisson equation with periodic boundary conditions is de-
termined up to an additive constant. This constant is exactly the first term
(or the average value) of the discrete Fourier expansion (12.45). Since the ab-
solute value of the pressure is of no significance for an incompressible flow (we
saw that only the gradient of the pressure appears in the equations), we shall
not worry about this constant, which will be freely fixed! Nevertheless, a rea-
sonable choice would be to impose φ̂0(j) = 0, for j = 1, . . . , nym, which yields
zero average solutions φ̂l. The final algorithm to solve the Poisson equation is
presented in great detail in the following.

Algorithm 12.4. To compute the pressure correction φ at points of coordi-
nates (xm(i), ym(j)):

• Compute the array Q(i, j), for i = 1, . . . , nxm and j = 1, . . . , nym, by

Q(i, j) =
1
δt

(
u∗(ip(i), j) − u∗(i, j)

δx
+

v∗(i, jp(i)) − v∗(i, j)
δy

)
. (12.49)

• Apply a fast Fourier transform FFT to each column of the array Q:

Q̂(l, j) = FFT (Q(i, j)), l = 1, . . . , nxm, j = 1, . . . , nym. (12.50)

The reader is of course aware that the values Q̂ are complex!
• For l = 1 impose φ̂1(j) = 0, for j = 1, . . . , nym.

12.5 Finite Difference Discretization 263

• For each l = 2, . . . , nxm, solve the linear system Mlφ̂l = Q̂(l, j)T of a
tridiagonal matrix of size (nym × nym):

Ml =
1

δy2

⎡⎢⎢⎢⎢⎣
−2 + δy2 kl 1 0 . . 0 0 1

1 −2 + δy2 kl 1 . . 0 0
.
0 0 0 . . 1 −2 + δy2 kl 1
1 0 0 . . 0 1 −2 + δy2 kl

⎤⎥⎥⎥⎥⎦ ,

(12.51)
where

kl =
2

∆x2

[
cos

(
2π

nxm
(l − 1)

)
− 1

]
.

• Build the array Φ̂(l, j), whose rows are the already computed vectors φ̂l.
• Apply an inverse Fourier transform (IFFT) to obtain the final solution

φ(i, j) = IFFT (Φ̂(l, j)), i = 1, . . . , nxm, j = 1, . . . , nym. (12.52)

(D) Computation of the Solenoidal Field

After solving the Poisson equation for the pressure correction, it is easy to
correct the velocity field:

• for i = 1, . . . , nxm, j = 1, . . . , nym,

un+1(i, j) = u∗(i, j) − δt
φ(i, j) − φ(im(i), j)

δx
, (12.53)

• for i = 1, . . . , nxm, j = 1, . . . , nym,

vn+1(i, j) = v∗(i, j) − δt
φ(i, j) − φ(i, jm(j))

δy
. (12.54)

(E) Computation of the Pressure Field

Using (12.20), the new pressure field is computed as

• for i = 1, . . . , nxm, j = 1, . . . , nym,

pn+1(i, j) = pn(i, j) + φ(i, j) − δt

2Re

[
φ(ip(i), j) − 2φ(i, j) + φ(im(i), j)

δx2

+
φ(i, jp(j)) − 2φ(i, j) + φ(i, jm(j))

δy2

]
. (12.55)

Finally, the pressure gradient is updated for the next time step:

264 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

• for i = 1, . . . , nxm, j = 1, . . . , nym,

∂pn+1

∂x
(i, j) =

pn+1(i, j) − pn+1(im(i), j)
δx

, (12.56)

• for i = 1, . . . , nxm, j = 1, . . . , nym,

∂pn+1

∂y
(i, j) =

pn+1(i, j) − pn+1(i, jm(j))
δy

. (12.57)

Calculation of the Time Step

The last point to discuss for our numerical algorithm is how to compute the
value of the time step δt. Since we use a semi-implicit scheme, the time step
value will be bounded through an inequality called the CFL8 condition. This
condition comes from a stability analysis of the scheme, which is far from
a trivial matter when one is dealing with Navier–Stokes equations.9 For the
applications considered in this project, a fair CFL condition would be

dt =
cfl

max
(∣∣∣ u

δx

∣∣∣ +
∣∣∣∣ v

δy

∣∣∣∣) , (12.58)

where cfl < 1 is a constant that controls the time step value. In practice, we
shall use, when possible, a constant time step, computed from the condition
(12.58) applied to the initial flow field.

12.6 Flow Visualization

An important point for numerically solving the Navier–Stokes equations is the
postprocessing of the obtained data. Various interesting physical information
can be extracted from a numerical field. For the unsteady flows considered in
this project, we use visualization techniques offering an intuitive picture (even
for a nonspecialist user) of the flow evolution.

A simple way to visualize the simulated flow is to calculate the vorticity
vector field ω by taking the curl of the velocity. As we shall see, this is an
effective visualization mean for flows dominated by large vortices (the reader
can find nice illustrations of vortex flows in the remarkable Album of Fluid
Motion by Van Dyke (1982)). For 2D flows, the vorticity vector has a single
nonzero component, perpendicular to the flow evolution plane:

8 Courant–Friedrichs–Lewy
9 Exact CFL conditions are derived for scalar convection and wave equations in

Chap. 1. The CFL condition is also discussed for the Navier–Stokes equations
with zero viscosity (i.e., the Euler equations) in Chap. 10.

12.7 Initial Condition 265

ω =
∂v

∂x
− ∂u

∂y
. (12.59)

The discrete values of ω are computed at points (xc(i), yc(j)) by

ω(i, j) =
v(i, j) − v(im(i), j)

δx
− u(i, j) − u(i, jm(j))

δy
. (12.60)

The isocontours of vorticity (i.e., the lines of points at which the variable takes
the same given value)10 allow one to identify vortical structures in the flow.

A second visualization method consists in following the evolution of a
passive tracer (or scalar) in the flow. This numerical technique is equivalent
to experimental visualizations using smoke (for gases) or dye (for liquids).
As suggested by its name, the passive scalar does not affect the flow field
evolution; it is just transported by the velocity field, following a convection-
diffusion equation

∂χ

∂t
+

∂χu

∂x
+

∂χv

∂y
=

1
Pe

∆χ, (12.61)

where the dimensionless number Pe (Peclet number) quantifies the diffusion
properties of the passive tracer χ. The values χ(i, j) are computed at the cell
centers (xm(i), ym(j)) following the same numerical scheme as for momentum
equations; this calculation is done at the end of each time step, allowing one
to use the velocity values of the updated (solenoidal) field.

12.7 Initial Condition

At this point, we are able to advance the numerical solution in time, but
we still have to make precise the starting point of the computation, or the
initial condition. We shall see that the initial field will be constructed so as
to trigger the unsteady flow that we wish to simulate. In principle, the initial
condition must be compatible with the Navier–Stokes equations; in practice,
we prescribe only the initial velocity field and set the pressure to zero values
everywhere. The correct pressure field will be established by the calculation
after the first time step.

In this project we shall simulate two classes of relatively simple flows that
illustrate basic mechanisms found in more general and complex real flows.

Dynamics of a 2D Jet: The Kelvin–Helmholtz Instability

The Kelvin–Helmholtz instability generally occurs in flows where shear is
present. The basic example for this instability is the flow of two parallel

10 MATLAB built-in functions contour or pcolor draw isocontours for a given 2D
solution field.

266 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

streams of different velocities and, eventually, densities. This flow can be ob-
tained in a simple experiment: put in a long rectangular transparent box two
immiscible liquids with large density difference and start to slowly incline the
box. The denser liquid will start to flow in the lower part of the box, pushing
the lightest liquid into the upper part. Very nice patterns, called Kelvin cat
eyes, form at the interface between the two liquids (see Fig. 12.2 for a sketch
and Fig. 12.5 for a numerical simulation).

Y

X

Fig. 12.2. Evolution of the Kelvin–Helmholtz instability in a 2D jet: perturbation
of the shear layer forming the contour of the jet (left) and roll-up of Kelvin (cat
eyes) vortices (right).

This phenomenon also occurs in jet flows that are generated by the injec-
tion of fluid into a quiescent environment. The instability develops in the shear
layer between the injected fluid and the fluid at rest. Our numerical simulation
will start from an initial condition setting the velocity profile corresponding
to the shear layers forming the contour of the jet:

v(x, y) = 0, u(x, y) = u1(y)(1 + u2(x)), (12.62)

where u1 is the mean velocity profile

u1(y) =
U0

2

(
1 + tanh

(
1
2
Pj

(
1 − |Ly/2 − y|

Rj

)))
, (12.63)

and u2 the perturbation that triggers the Kelvin–Helmholtz instability

u2(x) = Ax sin
(

2π
x

λx

)
. (12.64)

Note that both velocity profiles respect the periodicity condition at the bound-
aries. The parameters U0, Pj , Rj , Ax, λx will be specified later for numerical
applications.

12.7 Initial Condition 267

Evolution of a Vortex Dipole

Vortices generated by the Kelvin–Helmholtz instability all rotate in the same
sense, i.e., they have vorticities of the same sign. A vortex dipole is a pair
of vortices of opposite signs. This configuration is encountered in many areas
of practical interest (meteorological and coastal flows, trailing vortices from
aircraft, 2D turbulence, swirled injection in stratified charge engines). We con-
sider here symmetric dipoles for which the two vortices have the same vorticity
magnitude; this is a stable structure that propagates along its axis of sym-
metry with a quasiconstant translation velocity generated by a self-induction
mechanism. The reader interested in studying vortex motion is referred to
Batchelor (1988) and Saffman (1992).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

x

y

Fig. 12.3. Velocity field of a single vortex (left) and of a vortex dipole (right).

We shall numerically construct a vortex dipole by superimposing the ve-
locity fields of two individual vortices (see Fig. 12.3). Each vortex, defined by
its center (xv, yv), size lv, and intensity ψ0, is analytically described by the
following stream-function:

ψ(x, y) = ψ0 exp

(
− (x − xv)2 + (y − yv)2

l2v

)
. (12.65)

The stream-function is used to derive the velocity components as⎧⎪⎪⎨⎪⎪⎩
u =

∂ψ

∂y
= − 2

(y − yv)
l2v

ψ(x, y),

v = − ∂ψ

∂x
= 2

(x − xv)
l2v

ψ(x, y).
(12.66)

The dipole is now assembled by taking two vortices of the same size lv but
opposite intensities ±ψ0 and placing them symmetrically about a chosen line,
which will be the propagation direction. For example, a dipole propagating to

268 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

the right along the x axis will be defined by (see Fig. 12.3)
vortex 1 : +ψ0, lv, xv, yv = Ly + a,
vortex 2 : −ψ0, lv, xv, yv = Ly − a,
where a is the distance separating the vortex centers.

It is important to note that this is not a rigorous method to construct a vor-
tex dipole, since the initial condition is not compatible with the Navier–Stokes
equations.11 However, the velocity and pressure fields will be automatically
adjusted to satisfy the equations after the first time step of the numerical
simulation.

12.8 Step-by-Step Implementation

The survivors of previous lengthy theoretical developments may now start to
implement the numerical algorithm to simulate some physical flows. Since this
is a delicate process, we shall proceed step by step to construct our Navier–
Stokes code. We adopt the programming strategy of building specialized pro-
gram modules that will be first validated on simpler problems for which an
exact solution is known. We start with some preliminary questions.

12.8.1 Solving a Linear System with Tridiagonal, Periodic Matrix

Since there exist different MATLAB built-in functions to solve linear systems,
this part is not compulsory for the following numerical developments. Never-
theless, we consider that the reader should be aware of the structure of the
involved systems and efficient algorithms to solve them.12 Moreover, the al-
gorithms in this section can be used in applications using other (less-friendly)
programming languages.

We shall use the particular pattern (tridiagonal, periodic) of matrices
(12.39), (12.41), (12.51) to build an efficient numerical algorithm to solve the
corresponding linear systems. We start by presenting the well-known Thomas
algorithm for solving tridiagonal systems.

Algorithm 12.5. Thomas algorithm for tridiagonal systems.13 The tridiago-
nal system

11 The reader can test more rigorous analytical models for the vortex dipole as, for
example, the Lamb–Chaplygin dipole, which corresponds to a steady solution of
the 2D Euler equations; see Batchelor (1988); Saffman (1992).

12 It is always interesting to know what happens behind the magical MATLAB com-
mand x = A\b that solves the system Ax = b.

13 We can easily show that this algorithm is a particular form of the Gauss elimina-
tion method.

12.8 Step-by-Step Implementation 269⎛⎜⎜⎜⎜⎜⎜⎝
b1 c1 0 . . 0 0
a2 b2 c2 0 . 0 0
.
.
0 0 0 0 an−1 bn−1 cn−1
0 0 0 0 . an bn

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
X1
X2
.
.

Xn−1
Xn

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
f1
f2
.
.

fn−1
fn

⎞⎟⎟⎟⎟⎟⎟⎠
is solved by introducing the following recurrence relation:⎧⎪⎨⎪⎩

Xk = γk − ck

βk
Xk+1, k = 1, . . . , (n − 1),

Xn = γn.

(12.67)

Inserting these relations in the initial form of the system, we can calculate the
coefficients γk and βk:⎧⎪⎨⎪⎩

β1 = b1,

βk = bk − ck−1

βk−1
ak, k = 2, . . . , n,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ1 =

f1

β1
=

f1

b1
,

γk =
fk − akγk−1

βk
, k = 2, . . . , n.

After computing the coefficients γk and βk, the unknowns Xk are immediately
obtained from (12.67) by a backward substitution starting from the known
value Xn = γn.

We now note that a periodic tridiagonal matrix has supplementary nonzero
coefficients in the upper-right and lower-left corners. The idea of the following
algorithm is to eliminate these intruders and to work with tridiagonal systems.

Algorithm 12.6. Thomas algorithm for tridiagonal, periodic systems. The
system ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 c1 0 . 0 0 |a1
a2 b2 c2 . 0 0 |0
. |0
. |0
0 0 0 . an−1 bn−1 |cn−1

−− −− −− −− −− −− −−
cn 0 0 . 0 an |bn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1
X2
.
.

Xn−1
−−
Xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
f2
.
.

fn−1
−−
fn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is reexpressed as14

14 This decomposition is similar to the Shermann–Morrison formula.

270 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b∗
1 c1 0 . 0 0 0 |v1

a2 b2 c2 . 0 0 0 |0
. |0
. |0
0 0 0 . an−1 bn−1 cn−1 |0
0 0 0 . 0 an b∗

n |vn

−− −− −− −− −− −− −− −−
−1 0 0 . 0 0 −1 |1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1
X2
.
.

Xn−1
Xn

−−
X∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
f2
.
.

fn−1
fn

−−
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (12.68)

where ⎧⎪⎪⎨⎪⎪⎩
v1 = a1,
vn = cn,
b∗
1 = b1 − a1,

b∗
n = bn − cn,

and X∗ = X1 + Xn.

An equivalent form of (12.68) is⎛⎜⎜⎝
b∗
1 c1 0 . . 0 0

a2 b2 c2 0 . 0 0
.
0 0 0 0 . an b∗

n

⎞⎟⎟⎠
︸ ︷︷ ︸

M∗

⎛⎜⎜⎝
X1
X2
.

Xn

⎞⎟⎟⎠ +

⎛⎜⎜⎝
v1
0
.

vn

⎞⎟⎟⎠ X∗ =

⎛⎜⎜⎝
f1
f2
.

fn

⎞⎟⎟⎠

together with
X∗ = X1 + Xn.

We now seek a solution of the form

Xk = X
(1)
k − X

(2)
k ·X∗, k = 1, . . . , n, (12.69)

with the vectors X(1) and X(2) solutions of two tridiagonal systems of size n:{
M∗·X(1) = (f1 f2 . . . fn−1 fn)T ,

M∗·X(2) = (v1 0 . . . 0 vn)T .
(12.70)

Finally, the supplementary unknown is calculated as

X∗ =
X

(1)
1 + X

(1)
n

1 + X
(2)
1 + X

(2)
n

. (12.71)

To summarize, the algorithm consists of the following steps:

• solve the two tridiagonal systems (12.70) using the Thomas algorithm 12.5;
note that the program for this step can be optimized since both systems
share the same matrix M∗;

• compute X∗ from (12.71);
• compute the final solution using (12.69).

12.8 Step-by-Step Implementation 271

Exercise 12.1. Write a MATLAB function

function fi=NSE trid_per_c2D(aa,ab,ac,fi)

that solves simultaneously m systems with tridiagonal, periodic matrices. Al-
gorithm 12.6 is used to solve each system j (for 1 ≤ j ≤ m) defined as follows:

for i=1,...,n
aa(j,i)*X(j,i-1)+ab(j,i)*X(j,i)+ac(j,i)*X(j,i+1)=fi(j,i),

with periodicity condition X(j,1)=X(j,n).

Hint: use vectorial programming to apply the relations of the algorithm si-
multaneously to all m systems; for example, the program lines computing the
coefficients b∗

1, b
∗
n of the matrix M∗ from (12.68) are written as

ab(:,1)=ab(:,1)-aa(:,1);
ab(:,n)=ab(:,n)-ac(:,n);

which implies that the computation is done for all j (row) indices.
Test this function using as model the MATLAB script NSE test trid.m.15

12.8.2 Solving the Unsteady Heat Equation

Study of the 2D unsteady heat equation provides the ideal framework for test-
ing the procedures that will constitute the core of this project: the Helmholtz
and Poisson solvers. We consider the unsteady heat equation (see Chap. 1 for
the 1D equation)

∂u

∂t
− ∆u(t, x, y) = f(x, y), for (x, y) ∈ Ω = [0, Lx] × [0, Ly], (12.72)

with periodic boundary conditions and initial condition u(0, x, y) = u0(x, y).
This equation will be numerically integrated in time until a steady (equilib-
rium) solution is reached. This solution satisfies

−∆us(x, y) = f(x, y), for (x, y) ∈ [0, Lx] × [0, Ly], (12.73)

with the same periodic boundary conditions. The steady solution us(x, y) may
be interpreted as the limit for t → ∞ of the unsteady solution u(t, x, y).

15 Although this script is intended to be straightforward, some comments may be
helpful: the (diagonal) vectors aa,ab,ac are filled with random values; for each
j, the matrix A of the system is reconstructed and transformed into a diagonal
dominant matrix that is known to be invertible; the right-hand side of the system
is computed as f = A ∗ X̃, where X̃ is arbitrarily fixed; every system is solved
using the MATLAB syntax X = A\f ; the function NSE trid per c2D is validated
if the returned solution is exactly X̃. This is a commonly used technique to test
programs that solve linear systems.

272 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

We adopt in this section the following procedure to test the programs. We
set the right-hand-side function

f(x, y) = (a2 + b2) sin(ax) cos(by), where a =
2π

Lx
, b =

2π

Ly
, (12.74)

which satisfies the periodicity along x and y. For this choice, the exact solution
of (12.73) is

uex(x, y) = sin(ax) cos(by). (12.75)

Indeed, it is obvious that f was chosen such that f(x, y) = −∆uex. Using
f(x, y) as input data in the programs, we get a numerical solution that has
to fit the exact (analytical) solution. If this is not the case, debugging is
necessary!

Explicit Solver

The simplest method to solve (12.72) is based on the explicit Euler scheme
(see Chap. 1)

un+1 = un + δt (f + ∆un) . (12.76)

Assuming that the solution is computed at grid points (xc, ym) (see Fig. 12.1),
the discrete form of the scheme becomes (i = 1, . . . , nxm, j = 1, . . . , nym):

un+1(i, j) = un(i, j)+δt

[
f(i, j) +

u(ip(i), j) − 2u(i, j) + u(im(i), j)
δx2

+
u(i, jp(j)) − 2u(i, j) + u(i, jm(j))

δy2

]
. (12.77)

The time integration starts from the initial condition u0 = 0 and stops when
the convergence to a steady solution is reached. We impose the following
numerical convergence criterion:

ε = ‖un+1 − un‖2 < 10−6, (12.78)

where the norm is defined as ‖ϕ‖2 =
(∫

Ω
ϕ2 dx dy

)1/2.
The drawback of this scheme in computing steady solutions is that the

time step value is limited by a stability (CFL) condition. For the 2D heat
equation, the CFL condition is expressed as (see, for instance, Hirsch (1988)):

δt

(
1

δx2 +
1

δy2

)
=

cfl
2

, cfl ≤ 1. (12.79)

Exercise 12.2. Compute the solution of the unsteady heat equation (12.72)
using the explicit scheme (12.77). Compare the obtained steady solution to the
exact solution (12.75). Use the following input parameters: Lx = 1, Ly = 2,
nx = 21, ny = 51, cfl = 1. Hints:

12.8 Step-by-Step Implementation 273

• the grid parameters may be defined as global variables;
• write modular programs with specialized functions that can be reused for
subsequent applications; for example, write separate functions to compute f ,
∆un, to plot the solution, etc.;
• use a while loop for the time advancement, which allows one to easily
implement the convergence criterion;
• avoid for loops and use vectorial programming, more compact and easier
to compare with mathematical relations; for example, the following function
computes the discrete values of the Laplacian ∆un using directly the array
u (of size nxm × nym) and the vectors ip, jp, im, jm defined by (12.28) and
(12.29):

function hc=NSE calc_lap(u)
global dx dy
global im ip jp jm ic jc
hc =...
(u(ip,jc)-2*u+u(im,jc))/(dx*dx)+(u(ic,jp)-2*u+u(ic,jm))/(dy*dy);

• plot in the same figure the isocontours of the numerical steady solution and
the exact solution (12.75).
A solution of this exercise is proposed in Sect. 12.9 at page 277.

Figure 12.4 displays a typical result for the isocontours of the steady so-
lution. Note that the numerical and exact solutions are difficult to distin-
guish in the plot (a more quantitative comparison can be made by computing
‖u − uex‖2). The slow convergence to the steady solution is also illustrated
in the same figure. We conclude that the explicit solver is easy to implement
but requires small time steps and, consequently, large computational times.
This suggests that an implicit solver able to take larger time steps is more
appropriate for this problem.

Implicit Solver

We use the combined Adams–Bashforth and Crank–Nicolson schemes de-
scribed previously to discretize (12.72)

un+1 − un

δt
=

3
2
Hn − 1

2
Hn−1︸ ︷︷ ︸

Adams–Bashforth

+
1
2
∆

(
un+1 + un

)
︸ ︷︷ ︸
Crank–Nicolson

, (12.80)

where in this case, the term Hn = Hn−1 = f(x, y) does not depend on time.
We finally get the Helmholtz equation(

I − δt

2
∆

)
δu = δt (f + ∆un) , with δu = un+1 − un, (12.81)

which is solved using the ADI method with the following steps:

274 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

0 0.2 0.4 0.6 0.8

0.5

1

1.5
−0.805 −0

−0.805

−0.6

−0.604

−0.604

−0.403

−0.403

−0.403

−0.201

−0.201

−0.201

0

0

0

0.201

0.201

0.201

0.403

0.403

0.403

0.604

0.604

0.604

0.805

0.8

0.805

1.01

x

y

0 100 200 300 400 500
10

−8

10
−6

10
−4

10
−2

10
0

niter

ε

Convergence of the explicit method

Fig. 12.4. Test of the explicit solver for the unsteady heat equation. Superposition
of isocontours of the steady numerical and exact solutions (left) and convergence
history (right) for ε = ‖un+1 − un‖2.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

I − δt

2
∂2

∂x2

)
δu = δt (f + ∆un) + periodicity along x,(

I − δt

2
∂2

∂y2

)
δu = δu + periodicity along y.

(12.82)

Using second-order centered finite differences to discretize second derivatives,
we obtain two linear systems with tridiagonal, periodic matrices. These sys-
tems are solved using the function NSE trid per c2D written for the previous
exercise.

Remark 12.2. The semi-implicit solver defined in this section is uncondition-
ally stable, allowing arbitrarily large time steps δt. Compared to the explicit
solver, it requires much less computational time to reach the steady solution
(more work per time step but very few time steps to converge).

Exercise 12.3. Resume Exercise 12.2 and implement the implicit solver. The
time step will be computed using (12.79) taking cfl = 100. Evaluate the neces-
sary computing time to reach the steady solution and compare to the explicit
solver. Hint: noticing that the coefficients of the matrices involved in the ADI
steps are constant in time, optimize the function NSE trid per c2D by:
• storing the coefficients of the matrices in vectors and not in two-dimensional
arrays;
• computing all the quantities not depending on the right-hand side only once,
before the while loop.
A solution of this exercise is proposed in Sect. 12.9 at page 277.

Exercise 12.4. Consider now the following nonlinear convection–diffusion
equation:

∂u

∂t
+

∂u2

∂x
− ∆u = f(x, y), for (x, y) ∈ [0, Lx] × [0, Ly], (12.83)

12.8 Step-by-Step Implementation 275

with periodic boundary conditions and initial condition u0(x, y) = 0.

1. Choose the analytical form of the right-hand-side function f(x, y) such
that (12.75) is the steady solution of (12.83).

2. Use the implicit scheme (12.80) to solve this equation. Compare the results
to the exact solution. Hint: use the previous program and modify only the
function computing H (be careful, for this equation H varies in time, and
consequently, Hn 	= Hn−1).

3. The time step is considered as constant and given by (12.79). Find the
stability limit (cflmax) for a given space discretization.

A solution of this exercise is proposed in Sect. 12.9 at page 278.

12.8.3 Solving the Steady Heat Equation Using FFTs

We now write and test the necessary functions for solving the Poisson equation
(Algorithm 12.4). We use as a test case the heat equation (12.73).

Exercise 12.5. 1. Solve the steady heat equation (12.73) with the right-
hand side (12.74) using the Poisson solver described in Sect. 12.5 (i.e., FFT
along x and finite differences along y). Compare to the exact solution.16

Input parameters: Lx = 1, Ly = 2, nx = 65, ny = 129.
2. Optimize (see Exercise 12.3) the function solving the tridiagonal system.
3. Solve numerically the same equation using two FFTs.

A solution of this exercise is proposed in Sect. 12.9 at page 278.

12.8.4 Solving the 2D Navier–Stokes Equations

We are now ready to assemble all the modules previously developed to solve
the Navier–Stokes equations and simulate the flows described in Sect. 12.7.

Exercise 12.6. Write a Navier–Stokes solver for two-dimensional periodic
flows.
Hints for the structure of the program:

• define the global variables,
• set the input parameters,
• build the 2D grid and related arrays,
• define the arrays to store the flow variables and initialize them to zero,
• set the initial condition corresponding to the simulated flow (see below the

parameters for the suggested run cases),
• visualize the initial field,

16 As we have already seen, the numerical solution unum is computed up to an
additive constant. To compare to the exact solution uex, we have to calculate
this constant by imposing that the two solutions be identical at a chosen point
(i = j = 1, for example). We then compare uex to unum +(uex(1, 1)−unum(1, 1)).

276 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

• compute the time step,
• compute the variables for the optimization of the ADI method and Poisson

solver (i.e., all variables or coefficients not depending on time),
• start the time loop:

– solve the momentum equation for u,
– solve the momentum equation for v,
– compute the divergence of the nonsolenoidal field,
– solve the Poisson equation,
– correct the velocity field,
– compute the pressure,
– update the pressure gradient for the next step,
– solve the equation for the passive scalar,
– check that the divergence of the velocity field is zero,
– visualize the flow field by plotting the isocontours of vorticity and pas-

sive scalar.
• end of the time loop.

A solution of this exercise is proposed in Sect. 12.9 at page 278.

Run cases. The expected results are illustrated in the figures at the end
of the chapter.

1. 2D jet: Kelvin–Helmholtz instability; input parameters

Lz = 2, Ly = 1, nx = 65, ny = 65, cfl = 0.2,

Re = 1000, Pe = 1000, U0 = 1, Pj = 20, Rj = Ly/4, Ax = 0.5, λx = 0.5Lx.

The initial field for the passive scalar is identical to the field of u.
2. Same configuration, but changing cfl = 0.1, λx = 0.25Lx.
3. Vortex dipole:

Lz = 1, Ly = 1, nx = 65, ny = 65, cfl = 0.4, Re = 1000, Pe = 1000;

vortex 1:
ψ0 = +0.01, xv = Lx/4, yv = Ly/2 + 0.05,

lv = 0.4
√

2 min {xv, yv, Lx − xv, Ly − yv} ;
vortex 2:

ψ0 = −0.01, xv = Lx/4, yv = Ly/2 − 0.05,

lv = 0.4
√

2 min {xv, yv, Lx − xv, Ly − yv} .

The initial field for the passive scalar is set to a large stripe, placed in the
middle of the computational domain. For example, take{

χ(i, j) = 1, if nxm/2 − 10 ≤ i ≤ nxm/2 + 10,
χ(i, j) = 0, otherwise.

4. Add to the previous configuration a second dipole propagating in the
opposite direction.

5. Imagine other flow configurations with several dipoles in the computa-
tional domain.

12.9 Solutions and Programs 277

12.9 Solutions and Programs

The MATLAB scripts for this project are organized in two directories:

• NSE QP containing the solution scripts for all preliminary questions (Ex-
ercises 12.1 to 12.5),

• NSE QNS containing the Navier–Stokes solver (Exercise 12.6).

There is also a third directory named NSE INTERFACE in which a dif-
ferent programming philosophy is illustrated. All the solution scripts of the
project are called from a graphical user interface (GUI) and the results are
displayed interactively. A supplementary Navier–Stokes run case is computed
in this version. To launch the interface, just run the script Main from the
subdirectory Tutorial.

Solution of Exercise 12.1 (Solving a Tridiagonal, Periodic System)

The MATLAB script NSE trid per c2D.m contains the function that solves
simultaneously m linear systems with tridiagonal, periodic matrices of size n.
Numerous comments in the script are intended to guide the reader through
the steps of Algorithm 12.6. Memory storage was optimized using a minimum
number of arrays for computing intermediate coefficients. Note also the vec-
torial programming of the algorithm.
We recall that this function is called (and tested) by the script NSE test trid.m.

Solution of Exercise 12.2 (Explicit Solver for the Unsteady Heat
Equation)

The script NSE Qexp lap.m is straightforward to read and execute. Neverthe-
less, it is useful to indicate the specialized functions called by this program:

• NSE calc lap: computes the Laplacian ∆u;
• NSE fsource: computes the right-hand term (or source term) f ;
• NSE fexact: computes the exact solution;
• NSE norm L2: computes the norm ‖u‖2;
• NSE visu isos: plots in the same figure the isocontours of the numerical

and exact solutions.

Solution of Exercise 12.3 (Implicit Solver for the Unsteady Heat
Equation)

The script NSE Qimp lap.m inherits the structure of the program imple-
menting the explicit solver. Since the implicit method requires to solve tridi-
agonal, periodic systems, two functions optimizing this part were added:
NSE ADI init and NSE ADI step. The optimization starts from the obser-
vation that in the general solver NSE trid per c2D all the computations not

278 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

depending on the right-hand side fi can be done only once, outside the time
loop. This is the role of the function NSE ADI init, returning the vectors ami,
api, alph, xs2, which do not change during the time integration; these vec-
tors are used in NSE ADI step (called inside the time loop) to compute the
solution of the linear system for a given (time-dependent) vector fi.

Solution of Exercise 12.4 (Implicit Solver for the Nonlinear
Convection–Diffusion Equation)

The script solution NSE Qimp lap nonl.m for the nonlinear problem inherits
the structure of the previous program (NSE Qimp lap.m). The only difference
is the computation of the term H for every time step by calling inside the time
loop the function NSE calc hc (file NSE calc hc.m). It goes without saying
that the expression of the source term f was modified in NSE fsource nonl.m
to take into account the new nonlinear term in the equation.

Solution of Exercise 12.5 (Solving the Steady Heat Equation Using
FFTs)

Algorithm 12.4 is implemented in the script NSE Qfft lap.m. The script solv-
ing a tridiagonal system is optimized by splitting the algorithm into two parts,
corresponding to the functions NSE Phi init and NSE Phi step. This is sim-
ilar to the optimization of the ADI method, with the difference that this time
the coefficients of the matrix change from one system to another (because of
the dependence on the wave number), and consequently, they are stored in
two-dimensional arrays. The script NSE Q2fft lap.m solves the same problem
using two FFTs (along the x and y directions).

Solution of Exercise 12.6 (Solving the 2D Navier–Stokes
Equations)

The main program NSE QNS.m allows one to choose between the four
suggested run cases. Comments in the program body identify each step
of the numerical algorithm. The program calls the main functions written
for the preliminary questions (NSE ADI init, NSE ADI step, NSE Phi init,
NSE Phi step) and the following specific functions:

• NSE init KH: initializes the flow field for the Kelvin–Helmholtz (2D jet)
run cases;

• NSE init vortex builds the flow field corresponding to an individual vor-
tex; the vortex dipoles are obtained by superimposing the individual vortex
fields;

• NSE visu vort visualizes the vorticity field (color images of isocontours);
• NSE visu sca visualizes the passive tracer leading to images similar to

experimental ones;

12.9 Solutions and Programs 279

• NSE print div prints the divergence of the velocity field to verify whether
the computation is stable. The divergence must be close to the machine
zero value, which is 10−15 for double-precision computations; if this is not
the case, run the same computation with smaller time steps.

It is beyond the scope of this project, which focuses essentially on numerics,
to get into a detailed physical description of the simulated flows. We discuss,
however, some interesting physical features illustrated in the following figures.

The evolution of the Kelvin–Helmholtz instability is shown in Figs. 12.5
and 12.6. The Kelvin cat eyes vortices form progressively in the two shear re-
gions of the jet; their spatial distribution is dictated by the wavelength (λx) of
the initial perturbation. At this point, one might question whether a periodic
simulation could be realistic. Since in real jet flows the instability progres-
sively grows downstream of the injection point, our periodic computational
box may be regarded as a fixed frame that zooms in the shear layer region
while traveling downstream with the mean velocity of the flow. Periodic sim-
ulations offer useful information on the evolution of vortical structures in jet
or shear-layer flows that fit very well to experimental results. The reader who
wishes to pursue this study further could attempt to simulate the next stage of
the Kelvin–Helmholtz instability, which consists in the pairing of neighboring
vortices.

The first vortex dipole run case is illustrated in Fig. 12.7. The dipole
effectively propagates along the horizontal axis towards the right boundary;
it could be interesting to continue the simulation and see how the periodicity
makes the dipole reenter the computational box from the left. The velocity
induced by the dipole triggers the movement of the passive scalar (initially
at rest), with a nice mushroom pattern forming. This kind of structures has
been reported in studies of flow dynamics in oceanography, meteorology, and
combustion.

The last run case (see Fig. 12.8) shows the head-on interaction between
two dipoles of the same intensity. The result is the partner interchange with
the formation of two new dipoles propagating in the perpendicular direction.
The simulation may be performed for larger values of the final integration time
to see a second collision (due to the periodicity, a dipole leaving the domain
reenters through the opposite boundary). The reader may wonder whether
this is a never-ending evolution!

Other interesting run cases could be imagined and simulated with this
Navier–Stokes solver. We refer to many existing fluid mechanics books as an
obvious source of inspiration.

280 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

Fig. 12.5. Run case 1. Evolution of the Kelvin–Helmholtz instability for the per-
turbation wavelength λx/Lx = 0.5.

12.9 Solutions and Programs 281

Fig. 12.6. Run case 1. Evolution of the Kelvin–Helmholtz instability for the per-
turbation wavelength λx/Lx = 0.25.

282 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

Fig. 12.7. Run case 3. Evolution of a vortex dipole.

12.9 Solutions and Programs 283

Fig. 12.8. Run case 4. Head-on collision of two identical vortex dipoles.

284 12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations

Chapter References

G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Univer-
sity Press, 1988.

J. H. Ferziger and M. Perić, Computational Methods for Fluid Dynamics,
Springer, 2002.

C. Hirsch, Numerical Computation of Internal and External Flows, John
Wiley & Sons, 1988.

J. Kim and P. Moin, Application of a Fractional Step Method to Incom-
pressible Navier–Stokes Equations, Journal of Computational Physics, 59,
p. 308, 1985.

P. Orlandi, Fluid Flow Phenomena, Kluwer Academic Publishers, 1999.
P. G. Saffman, Vortex Dynamics, Cambridge University Press, 1992.
M. Van Dyke, An Album of Fluid Motion, The Parabolic Press, 1982.

Bibliography

General references for all chapters

G. Allaire and S.M. Kaber, Numerical Linear Algebra, Springer, New
York, forthcoming, 2007.

K. Atkinson and W. Han, Theoretical Numerical Analysis, Springer, New
York, 2001.

G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Univer-
sity Press, 1988.

A. Bellen and M. Zennaro, Numerical Methods for Delay Differen-
tial Equations, Numerical Mathematics and Scientific Computation. The
Clarendon Press, Oxford University Press, New York, 2003.

C. Bernardi, M. Dauge, and Y. Maday, Spectral Methods for Axisymmet-
ric Domains. Numerical Algorithms and Tests Due to Mejdi Azaiez, Series
in Applied Mathematics, 3. Gauthier-Villars, North-Holland, Amsterdam,
1999.

C. Bernardi and Y. Maday, Spectral Methods in Handbook of numerical
analysis, vol. V, North-Holland, Amsterdam, 1997.

C. Bernardi, Y. Maday, and F. Rapetti, Discrétisations variationnelles
de problèmes aux limites elliptiques, collection S.M.A.I. Mathématiques et
Applications, vol. 45, Springer, Paris, 2004.

P. Bézier, Courbes et surfaces, Mathématiques et CAO, vol 4, Hermes. Paris,
1986.

F. Brezzi and A. Russo, Choosing Bubbles for Advection–Diffusion Prob-
lems., Math. Models and Meth. in Appl. Sci., vol. 4, no. 4, 1994.

J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations,
Wiley, 1987.

P. de Casteljau, Formes à pôles, Mathématiques et CAO, vol 2, Hermes,
Paris, 1985.

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North
Holland, Amsterdam, 1978.

P. G. Ciarlet, Mathematical Elasticity, Volumes I, II, III, North Holland.
Amsterdam, 2000.

A. Cohen, Wavelet Methods in Numerical Analysis, Handbook of Numerical
Analysis, vol. VII, P.G. Ciarlet and J.L. Lions eds., Elsevier, Amsterdam,
2000.

A. Cohen, Numerical Analysis of Wavelet Methods, North-Holland, Amster-
dam, 2003.

A. Cohen and R. Ryan, Wavelets and Multiscale Signal Processing, Chap-
man and Hall, London, 1995.

S. A. Coons, Surface Patches and B-Splines Curves, CAGD, 1974.

286 Bibliography

M. Crouzeix and A. Mignot, Analyse numérique des équations
différentielles, Masson, Paris, 1989.

I. Danaila, F. Hecht, and O. Pironneau, Simulation numérique en C++,
Dunod, Paris, 2003.

I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied
Mathematics. Philadelphia. Pennsylvania, 1992.

P. J. Davis, Interpolation and Approximation, Dover Publications, Inc., New
York, 1975.

S. Delabrière and M. Postel, Méthodes d’approximation, Equations
différentielles, Applications Scilab, Ellipses, Paris, 2004.

J. P. Demailly, Analyse numérique et équations différentielles, Presses Uni-
versitaires de Grenoble, 1996.

R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-
Verlag, Berlin, 1993.

G. Farin, Curves and Surfaces for CAGD : A Practical Guide, Academic
Press, 4th ed., New York, 1996.

G. Farin and D. Hansford, The Essentials of CAGD, AK Peters, 2000.
J. Ferguson, Multivariable Curve Interpolation, Journal of the Association

for Computing Machinery, 1964.
J. H. Ferziger and M. Perić, Computational Methods for Fluid Dynamics,

Springer, 2002.
C. A. J. Fletcher, Computational Techniques for Fluid Dynamics,

Springer-Verlag, 1991.
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic

Systems of Conservation Laws, Springer-Verlag, 1996.
E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential

Equations I, Nonstiff Problems, Springer Series in Computational Mathe-
matics, 8, Springer-Verlag, 1987.

C. Hirsch, Numerical Computation of Internal and External Flows, John
Wiley & Sons, 1988.

J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric
Design, Peters. Massachusetts, 1997.

A. Iserles, A First Course in the Numerical Analysis of Differential Equa-
tions, Cambridge Texts in Applied Mathematics. Cambridge University
Press, Cambridge, 1996.

P. Joly, Mise en œuvre de la méthode des éléments finis, collection S.M.A.I.
Mathématiques et Applications, Ellipses, Paris, 1990.

F. John, Partial Differential Equations, Springer-Verlag, 1978.
J. Kim and P. Moin, Application of a Fractional Step Method to Incom-

pressible Navier–Stokes Equations, Journal of Computational Physics, 59,
p. 308, 1985.

A. R. Krommer and C. W. Ueberhuber, Numerical Integration on
Advanced Computer Systems. Lecture Notes in Computer Science, 848.
Springer-Verlag, Berlin, 1994.

Bibliography 287

J. D. Lambert, Computational Methods in Ordinary Differential Equations,
Wiley, 1973.

R. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, 1992.
P. L. Lions, On the alternating Schwarz method I . In R. Gowinski, G. H.

Golub, G. A. Meurant and J. Périaux, editors. First International Sympo-
sium on Domain Decomposition Methods for Partial Differential Equations,
pp. 1–42, SIAM, Philadelphia, 1988.

B. Lucquin, Équations aux dérivées partielles et leurs approximations, El-
lipses, Paris, 2004.

B. Lucquin and O. Pironneau, Introduction to Scientific Computing, Wil-
ley, Chichester, 1998.

S. G. Mallat, A Wavelet Tour of Signal Processing, Academic Press, New
York, 1997.

Y. Meyer, Ondelettes et opérateurs. Tomes I à III, Hermann, Paris, 1990.
A. R. Mitchell and D. F. Griffiths, Computational Methods in Partial

Differential Equations, Wiley, 1980.
B. Mohammadi and J.-H. Säıac, Pratique de la simulation numérique,

Dunod, 2003.
D. N. Norrie and G. de Vries, The Finite Element Method, Academic

Press, New York, 1973.
P. Orlandi, Fluid Flow Phenomena, Kluwer Academic Publishers, 1999.
L. Piegl and W. Tiller, The NURBS Book, Springer, Berlin, 1995.
A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial

Differential Equations, Numerical Mathematics and Scientific Computation,
The Clarendon Press, Oxford University Press, New York, 1999.

R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-
Value Problems, 2nd ed., Wiley-Interscience, 1967.

T. J. Rivlin, An Introduction to the Approximation of Functions, Dover
Publications Inc., New York, 1981.

M. Saad, Compressible Fluid Flow, Pearson Education, 1998.
P. G. Saffman, Vortex Dynamics, Cambridge University Press, 1992.
L. Schwartz, Analyse, topologie générale et analyse fonctionnelle, Hermann,

Paris, 1980.
H. A. Schwarz, Gesammelte Mathematische Abhandlungen. Volume 2.

Springer, Berlin, 1890. First published in Vierteljahrsschrift Naturforsch.
Ges. Zurich, 1870.

B. F. Smith, P. E. Bjørstad, and W. D. Gropp, Domain Decomposi-
tion, Parallel Multilevel Methods for Elliptic Partial Differential Equations,
Cambridge University Press, Cambridge, 1996.

J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equa-
tions, Wadsworth and Brooks/Cole, 1989.

G. Szegő, Orthogonal Polynomials, fourth edition, American Mathematical
Society, Colloquium Publications, vol. XXIII. Providence, R.I., 1975.

288 Bibliography

L. N. Trefethen, Finite Difference and Spectral Methods for Ordi-
nary and Partial Differential Equations, unpublished text, available at
http//web.comlab.ox.ac.uk/oucl/work/nick.trefethen/pdetext.html, 1996.

L. N. Trefethen and D. Bau III, Numerical Linear Algebra, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, 1997.

M. Van Dyke, An Album of Fluid Motion, The Parabolic Press, 1982.
B. I. Wohlmuth, Discretization Methods and Iterative Solvers Based on

Domain Decomposition, Lecture Notes in Computational Science and En-
gineering, 17, Springer-Verlag, Berlin, 2001.

O. C. Zienkiewicz, The Finite Element Method in Engineering Science,
McGraw-Hill, London, 1971.

Index

absorption equation, 8
Adams–Bashforth scheme, 7, 252,

253, 273
Adams–Moulton scheme, 7
ADI method, 259, 260, 273
algorithm

de Casteljau, 200
divided differences, 54
Remez, 60
Thomas, 252, 268

approximation
best

Hilbertian, 62
uniform, 60

piecewise
affine, 67
constant, 66
cubic, 68

basis
canonical, 52
Haar, 131
Hilbertian, 62
Lagrange, 52
Legendre, 112

Bernstein polynomial, 194
best Hilbertian approximation, 62
best uniform approximation, 60
bilaplacian, 155
boundary condition, 120, 241

Dirichlet, 14, 17, 171, 236
Fourier, 179, 183, 236
homogeneous, 14
inhomogeneous, 171
Neumann, 179, 183, 236
periodic, 16, 26, 251, 257

boundary layer, 98
boundary value problem, 85
Brusselator, 33
Bézier

curve, 193
patch, 206

surface, 206

CAGD, 193
CFL condition, 13, 15, 23, 224, 264,

272
characteristic curve, 12, 15, 22, 217,

219
characteristic equation, 38
Chebyshev

expansion, 79
points, 55
polynomial, 55

compressible fluid, 215
condensation, 95
condition number, 52
consistency, 9
contact discontinuity, 214, 220
convection

equation, 11, 21, 216, 217, 224
phenomenon, 30

convection-diffusion equation, 265
convergence, 9, 57, 187

fast, 116
slow, 116

Crank–Nicolson scheme, 7, 252, 253,
273

critical point, 34, 37

data compression, 133
Daubechies wavelet, 142
de Casteljau algorithm, 200
delayed differential equation, 37
density, 215
differences (divided –), 54
differential equation, 33, 111, 165
diffusion, 17, 18, 226, 254

numerical, 27
phenomenon, 29

diffusivity (thermal –), 29
Dirichlet boundary condition, 14,

17, 153, 171, 236
discontinuity, 116

290 Index

contact, 214, 220
dissipation, 25

artificial, 226
divergence, 45, 252
divided differences, 53, 54
domain decomposition, 166
domain of dependence, 15

elasticity, 152
energy (total –), 215
enthalpy, 215
equioscillatory, 59
erf (error function), 18
Euler

explicit modified scheme, 6, 7
explicit scheme, 5, 7, 20, 39,

46, 272
implicit scheme, 5, 7
system of equations, 215

expansion
Chebyshev, 79
fan, 220
Fourier, 16
Legendre, 62
wave, 214

extrapolation, 49

FEM, 87, 237
FFT, 70, 252, 262
finite difference, 125, 155, 167, 171

backward, 3, 224, 226
centered, 3, 4, 224, 257
forward, 3, 224, 226

finite element, 86, 87, 90, 237
P1, 87
P2, 90

fluid
compressible, 215
incompressible, 251

flux, 215, 229
splitting, 228

formulation (variational –), 86
Fourier

boundary condition, 179, 183,
236

expansion, 16
FFT, 70, 252, 262
series, 261

Galerkin approximation, 117
Gauss quadrature, 113
Gibbs phenomenon, 116
Godunov scheme, 228
gradient, 252
Green formula, 237
grid (computational –), 172, 182,

256

Haar
basis, 131
wavelet, 137

heat
coefficient, 215, 217
equation, 17, 29, 226, 271, 275
steady equation, 171

Helmholtz equation, 252, 255, 258
Hermite, 119

interpolation, 57
polynomial, 58

Heun scheme, 7
Hopf bifurcation, 42
hyperbolic system, 216

ill-conditioned, 56
incompressible fluid, 251, 252
interpolation, 49, 51

Hermite, 57, 58
Lagrange, 51, 57
stability, 56

inverse problem, 244
isentropic flow, 217
isocontours, 274

Jacobian matrix, 35, 38, 216
jet flow, 266
junction

of curves, 197
of patches, 207

Kelvin–Helmholtz instability, 252,
265

Index 291

Lagrange
basis, 52
interpolation, 51
polynomial, 51, 52

Laplacian, 152, 155, 166, 172, 252
Lax–Wendroff scheme, 223
leapfrog scheme, 5, 7
Lebesgue constant, 56
Legendre

basis, 112
coefficients, 63
expansion, 62, 115
polynomials, 62, 111
series, 62

MacCormack scheme, 223
Mach number, 215
Mallat transform, 141
matrix

exponential, 35
inverse, 233
Jacobian, 216
tridiagonal, 268
tridiagonal periodic, 260, 268,

269, 277
Vandermonde, 64, 70

mesh, 238
mother wavelet, 138
multiresolution analysis, 133
multiscale analysis, 133

Navier–Stokes
equations, 252
fractional-step method, 253
projection method, 253

Neumann boundary condition, 153,
179, 183, 236

normal equations, 65
numerical integration, 113

ODE, 1, 33, 111
orthogonal projection, 63
overlap, 166

P1 finite element, 87
P2 finite element, 90

parametric curve, 36, 43
PDE, 1, 111, 165
Peclet number, 90, 265
periodic

boundary condition, 16, 26, 251,
257

trajectory, 42, 46
phenomenon

Gibbs, 116
Runge, 57

Poisson equation, 252, 255, 261
polygon (control –), 196
polynomial

Bernstein, 194
Hermite, 119
Lagrange, 51, 52
Legendre, 62, 111
of best Hilbertian approxima-

tion, 62
of best uniform approximation,

60
projection (orthogonal), 63

quadrature, 50, 86
Gauss, 113
rule, 113
Simpson, 87
trapezoidal, 86

Rankine–Hugoniot, 219
rarefaction wave, 214
regression line, 64
Remez algorithm, 60
Reynolds number, 253
Riemann problem, 217
Roe

approximate solver, 229
average, 230

Runge–Kutta scheme, 7, 20, 37, 40
Runge phenomenon, 57

scaling function, 137
Schauder wavelet, 139, 141
scheme

13-point, 156

292 Index

5-point, 155, 172
Adams–Bashforth, 7, 253, 273
Adams–Moulton, 7
centered, 19, 222
conservative, 230
Crank–Nicolson, 7, 253, 273
Euler explicit , 7
Euler implicit , 7
explicit, 5, 6, 224, 272
Godunov, 228
Heun, 7
implicit, 5, 6, 273
Lax–Wendroff, 223
leapfrog, 7
MacCormack, 223
Roe, 229
Runge–Kutta, 7
upwind, 13, 23, 25, 224, 227

Schwarz method, 166
series

Chebyshev, 79
Legendre, 62
Taylor, 3

shock
tube, 213
wave, 214, 219

Simpson quadrature, 87
smooth function, 116
Sod shock tube, 221
spectral method, 117
spline, 66
stability, 9, 34, 56

amplification function, 10
CFL condition, 13, 15, 23, 224,

264, 272
region, 10, 20, 26

steady solution, 34
stopping criterion, 169
stream-function, 267
string (vibrating –), 16

Taylor
expansion, 3, 35, 172, 224
formula, 35

thermal

diffusivity, 179
shock, 171

Thomas algorithm, 252, 268, 269
tracer (passive –), 265
trajectory, 42

periodic, 42, 46
trapezoidal quadrature, 86
triangulation, 238
tridiagonal matrix, 167, 173
two-scale relation, 128, 139, 142

upwind scheme, 13, 23, 25, 224, 227

Vandermonde matrix, 64, 70
variational formulation, 86, 237
viscosity

artificial, 226
kinematic, 253

vortex, 264, 267
dipole, 252, 267

vorticity, 264

wave
characteristic, 217, 224
elementary, 16
equation, 14
expansion, 214
number, 16, 262
rarefaction, 214
shock, 214

wavelength, 279
wavelet, 137

Daubechies, 142
Haar, 137
Schauder, 139

Index of Programs

APP ApproxScript1.m, 70
APP ApproxScript2.m, 71
APP ApproxScript3.m, 72
APP ApproxScript4.m, 73
APP ApproxScript5.m, 73
APP ApproxScript8.m, 77
APP condVanderMonde.m, 71
APP condVanderMondeBis.m, 71
APP dd.m, 72
APP ddHermite.m, 76
APP equiosc.m, 79
APP interpol.m, 73
APP Interpolation.m, 76
APP Lebesgue.m, 73
APP ls.m, 80
APP Remez.m, 79
APP Runge.m, 76
APP scriptHermite.m, 77
APP spline0.m, 81
APP spline1.m, 82
APP spline3.m, 82

CAGD casteljau.m, 210
CAGD cbezier.m, 210
CAGD coox.m, 211
CAGD ex1.m, 210
CAGD ex1b.m, 210
CAGD ex1c.m, 210
CAGD ex2.m, 211
CAGD pbzier.m, 210
CAGD tbezier.m, 210

DDM f1BB.m, 183
DDM f1CT, 183
DDM f1Exact.m, 183
DDM f2CT.m, 183
DDM f2Exact.m, 183
DDM FinDif2dDirichlet.m, 183
DDM FinDif2dFourier.m, 183
DDM FunSchwarz1d.m, 181
DDM g1BB.m, 183
DDM g1CT.m, 183

DDM g1Exact.m, 183
DDM g2Exact.m, 183
DDM LaplaceDirichlet.m, 183
DDM LaplaceFourier.m, 183
DDM Perf.m, 187
DDM rhs1d.m, 181
DDM rhs2dBB.m, 183
DDM rhs2dCT.m, 183
DDM rhs2dExact.m, 183
DDM RightHandSide2dDirichlet.m,

183
DDM RightHandSideFourier.m, 183
DDM Schwarz2dDirichlet.m, 187
DDM Schwarz2dFourier.m, 190
DDM TestFinDif2d.m, 183
DDM TestSchwarz2d.m, 184, 190

ELAS bilap matrix.m, 162
ELAS bilap rhs.m, 162
ELAS lap matrix.m, 162
ELAS lap rhs.m, 162
ELAS plate ex.m, 162
ELAS solution.m, 162

FEM ConvecDiffAP1.m, 101
FEM ConvecDiffAP2.m, 104
FEM ConvecDiffbP1.m, 101
FEM ConvecDiffbP2.m, 104
FEM ConvecDiffscript1.m, 101
FEM ConvecDiffscript2.m, 102
FEM ConvecDiffscript3.m, 102
FEM ConvecDiffscript4.m, 105
FEM ConvecDiffscript5.m, 106
FEM ConvecDiffSolExa.m, 98

HYP calc dt.m, 232
HYP flux roe.m, 233
HYP mach compat.m, 232
HYP plot graph.m, 232
HYP shock tube.m, 232
HYP shock tube exact.m, 232
HYP trans usol w.m, 232

294 Index of Programs

HYP trans w f.m, 232
HYP trans w usol.m, 232

MRA daube4.m, 149
MRA daube4 ex1.m, 149
MRA daube4 ex2.m, 149
MRA daube4 ex3.m, 149
MRA haar.m, 148
MRA haar ex1.m, 148
MRA haar ex2.m, 148
MRA haar ex3.m, 149
MRA schauder.m, 148
MRA schauder ex1.m, 149
MRA schauder ex2.m, 149
MRA schauder ex3.m, 149

NSE ADI init.m, 278
NSE ADI step.m, 278
NSE affiche div.m, 279
NSE calc hc.m, 278
NSE calc lap.m, 277
NSE fexact.m, 277
NSE fsource.m, 277
NSE fsource nonl.m, 278
NSE init KH.m, 278
NSE init vortex.m, 278
NSE norm L2.m, 277
NSE Phi init.m, 278
NSE Phi step.m, 278
NSE Q2fft lap.m, 278
NSE Qexp lap.m, 277
NSE Qfft lap.m, 278
NSE Qimp lap.m, 277
NSE Qimp lap nonl.m, 278
NSE QNS.m, 278
NSE test trid.m, 271, 277
NSE trid per c2D.m, 277
NSE visu isos.m, 277
NSE visu sca.m, 278
NSE visu vort.m, 278

ODE Chemistry2.m, 42
ODE Chemistry3.m, 44
ODE DelayEnzyme.m, 46
ODE Enzyme.m, 46

ODE EnzymeCondIni.m, 47
ODE ErrorEnzyme.m, 47
ODE EulerDelay.m, 46
ODE fun2.m, 42
ODE fun3.m, 44
ODE RungeKuttaDelay.m, 46
ODE stab2comp.m, 41
ODE stab3comp.m, 43
ODE StabDelay.m, 45

PDE absorption.m, 20
PDE absorption source.m, 20
PDE conv bound cond.m, 24
PDE conv exact sol.m, 23
PDE conv init cond.m, 24
PDE convection.m, 24
PDE EulerExp.m, 20
PDE heat.m, 29
PDE heat u0.m, 29
PDE heat uex.m, 29
PDE RKutta4.m, 20
PDE wave fstring.m, 28
PDE wave fstring exact.m, 28
PDE wave fstring in.m, 28
PDE wave infstring.m, 26
PDE wave infstring u0.m, 26
PDE wave infstring u1.m, 26

SPE AppLegExp.m, 122
SPE CalcLegExp, 122
SPE fbe.m, 122
SPE LegExpLoop.m, 122
SPE LegLinComb.m, 120
SPE PlotLegPol.m, 120
SPE special.m, 122
SPE SpecMeth.m, 123
SPE specsec.m, 122
SPE TestIntGauss.m, 121
SPE xwGauss.m, 121

THER matrix inv.m, 249
THER oven.m, 249
THER oven ex1.m, 248
THER oven ex2.m, 249

	Cover Page
	ISBN 038730889X
	Title Page
	Preface
	Contents (with page links)
	1 Numerical Approximation of Model Partial Differential Equations
	1.1 Discrete Integration Methods for Ordinary Differential Equations
	1.2 Model Partial Differential Equations
	1.3 Solutions and Programs
	Chapter References

	2 Nonlinear Differential Equations: Application to Chemical Kinetics
	2.1 Physical Problem and Mathematical Modeling
	2.2 Stability of the System
	2.3 Model for the Maintained Reaction
	2.4 Model of Reaction with a Delay Term
	2.5 Solutions and Programs
	Chapter References

	3 Polynomial Approximation
	3.1 Introduction
	3.2 Polynomial Interpolation
	3.3 Best Polynomial Approximation
	3.4 Piecewise Polynomial Approximation
	3.5 Further Reading
	3.6 Solutions and Programs
	Chapter References

	4 Solving an Advection–Diffusion Equation by a Finite Element Method
	4.1 Variational Formulation of the Problem
	4.2 A P1 Finite Element Method
	4.3 A P2 Finite Element Method
	4.4 A Stabilization Method
	4.5 The Case of a Variable Source Term
	4.6 Solutions and Programs
	Chapter References

	5 Solving a Differential Equation by a Spectral Method
	Introduction
	5.1 Some Properties of the Legendre Polynomials
	5.2 Gauss–Legendre Quadrature
	5.3 Legendre Expansions
	5.4 A Spectral Discretization
	5.5 Possible Extensions
	5.6 Solutions and Programs
	Chapter References

	6 Signal Processing: Multiresolution Analysis
	6.1 Introduction
	6.2 Approximation of a Function: Theoretical Aspect
	6.3 Multiresolution Analysis: Practical Aspect
	6.4 Multiresolution Analysis: Implementation
	6.5 Introduction to Wavelet Theory
	6.6 Generalization: Image Processing
	6.7 Solutions and Programs
	Chapter References

	7 Elasticity: Elastic Deformation of a Thin Plate
	7.1 Introduction
	7.2 Modeling Elastic Deformations (Linear Problem)
	7.3 Modeling Electrostatic Forces (Nonlinear Problem)
	7.4 Numerical Discretization of the Problem
	7.5 Programming Tips
	7.6 Solving the Linear Problem
	7.7 Solving the Nonlinear Problem
	7.8 Solutions and Programs
	Chapter References

	8 Domain Decomposition Using a Schwarz Method
	8.1 Principle and Application Field of Domain Decomposition
	8.2 One-Dimensional Finite Difference Solution
	8.3 Schwarz Method in One Dimension
	8.4 Extension to the Two-Dimensional Case
	8.5 Solutions and Programs
	Chapter References

	9 Geometrical Design: B´ezier Curves and Surfaces
	9.1 Introduction
	9.2 Bézier Curves
	9.3 Basic Properties of Bézier Curves
	9.4 Generation of Bézier Curves
	9.5 Splitting Bézier Curves
	9.6 Intersection of Bézier Curves
	9.7 Bézier Surfaces
	9.8 Basic properties of Bézier Surfaces
	9.9 Construction of Bézier Surfaces
	9.10 Solutions and Programs
	Chapter References

	10 Gas Dynamics: The Riemann Problem and Discontinuous Solutions: Application to the Shock Tube Problem
	10.1 Physical Description of the Shock Tube Problem
	10.2 Euler Equations of Gas Dynamics
	10.3 Numerical Solution
	10.4 Solutions and Programs
	Chapter References

	11 Thermal Engineering: Optimization of an Industrial Furnace
	11.1 Introduction
	11.2 Formulation of the Problem
	11.3 Finite Element Discretization
	11.4 Implementation
	11.5 Boundary Conditions
	11.6 Inverse Problem Formulation
	11.7 Implementation of the Inverse Problem
	11.8 Solutions and Programs
	Chapter References

	12 Fluid Dynamics: Solving the Two-Dimensional Navier–Stokes Equations
	12.1 Introduction
	12.2 The Incompressible Navier–Stokes Equations
	12.3 Numerical Algorithm
	12.4 Computational Domain, Staggered Grids, and Boundary Conditions
	12.5 Finite Difference Discretization
	12.6 Flow Visualization
	12.7 Initial Condition
	12.8 Step-by-Step Implementation
	12.9 Solutions and Programs
	Chapter References
	Bibliography

	Index (with page links)
	Index of Programs (with page links)

