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List of Conventions

Besides the generally accepted mathematical abbreviations and notations (see, e.g., James
and James, Mathematics Dictionary [1985, pp. 467—471]), the following notations are used
in the book:

MATLAB® has been used for this book in testing algorithms. We also use its notations
for array operations and the convenient colon notation.

% A . x B element-by-element product A(i, j)B(i, j)
. A ./ B element-by-element division A(i, j)/B(i, j)
ik same asi,i + 1,...,k and empty ifi > k
i:j:k sameasi,i + j,i +2j,...,k

A(, k), A, ) the kth column, ith row of A, respectively

A@ k) same as A(i), AG +1),..., AKk)

Lx ] floor, i.e., the largest integer < x

[x] roof, i.e., the smallest integer > x

e and exp(x) both denote the exponential function

fl(x+y) floating-point operations; see Sec. 2.2.3

{xi}, denotes the set {xg, x1, ..., X,}

[a, b] closed interval (a < x < b)

(a,b) open interval (a < x < b)

sign (x) +1ifx > 0, else —1

int(a,b,c,...,w) the smallest interval which contains a, b, c, ..., w

f@x)=0(x),x —>a

fx) =o0(gx)),x = a
fx)~gkx),x —>a
k<i,j<n

| f(x)/g(x)| is bounded as x — a
(a can be finite, +00, or —00)
lim,_, f(x)/g(x) =0

limy,, f(x)/g(x) =1
meansk <i <nandk < j <n

Pr the set of polynomials of degree less than k

(f, 8) scalar product of functions f and g

-1, p-norm in a linear vector or function space;
see Sec.4.5.1-4.5.3 and Sec. A.3.3 in
Online Appendix A

E,.(f) dist( f, Pu)oo.[a.b]; S€€ Definition 4.5.6

The notations a ~ b,a < b, and a g b are defined in Sec.2.1.2. Matrices and

vectors are generally denoted by Roman letters A and b. AT and b7 denote the transpose
of the matrix A and the vector b, respectively. (A, B) means a partitioned matrix; see Sec.
A.2 in Online Appendix A. Notation for matrix computation can also be found in Online
Appendix A. Notations for differences and difference operators, e.g., A2 Vs [X0, X1, X211,
82y, are defined in Chapters 3 and 4.
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Preface

In 1974 the book by Dahlquist and Bjorck, Numerical Methods, was published in the
Prentice—Hall Series in Automatic Computation, edited by George Forsythe. It was an
extended and updated English translation of a Swedish undergraduate textbook used at the
Royal Institute of Technology (KTH) in Stockholm. This book became one of the most
successful titles at Prentice—Hall. It was translated into several other languages and as late
as 1990 a Chinese edition appeared. It was reprinted in 2003 by Dover Publications.

In 1984 the authors were invited by Prentice—Hall to prepare a new edition of the
book. After some attempts it soon became apparent that, because of the rapid development
of the field, one volume would no longer suffice to cover the topics treated in the 1974 book.
Thus a large part of the new book would have to be written more or less from scratch. This
meant more work than we initially envisaged. Other commitments inevitably interfered,
sometimes for years, and the project was delayed. The present volume is the result of several
revisions worked out during the past 10 years.

Tragically, my mentor, friend, and coauthor Germund Dahlquist died on February 8,
2005, before this first volume was finished. Fortunately the gaps left in his parts of the
manuscript were relatively few. Encouraged by his family, I decided to carry on and I have
tried to the best of my ability to fill in the missing parts. I hope that I have managed to
convey some of his originality and enthusiasm for his subject. It was a great privilege for
me to work with him over many years. It is sad that he could never enjoy the fruits of his
labor on this book.

Today mathematics is used in one form or another within most areas of science and
industry. Although there has always been a close interaction between mathematics on the
one hand and science and technology on the other, there has been a tremendous increase in
the use of sophisticated mathematical models in the last decades. Advanced mathematical
models and methods are now also used more and more within areas such as medicine,
economics, and social sciences. Today, experiment and theory, the two classical elements
of the scientific method, are supplemented in many areas by computations that are an equally
important component.

The increased use of numerical methods has been caused not only by the continuing
advent of faster and larger computers. Gains in problem-solving capabilities through bet-
ter mathematical algorithms have played an equally important role. In modern scientific
computing one can now treat more complex and less simplified problems through massive
amounts of numerical calculations.

This volume is suitable for use in a basic introductory course in a graduate program in
numerical analysis. Although short introductions to numerical linear algebra and differential

XXiii



XXV Preface

equations are included, a more substantial treatment is deferred to later volumes. The book
can also be used as a reference for researchers in applied sciences working in scientific
computing. Much of the material in the book is derived from graduate courses given by
the first author at KTH and Stanford University, and by the second author at Linkoping
University, mainly during the 1980s and 90s.

We have aimed to make the book as self-contained as possible. The level of presenta-
tion ranges from elementary in the first and second chapters to fairly sophisticated in some
later parts. For most parts the necessary prerequisites are calculus and linear algebra. For
some of the more advanced sections some knowledge of complex analysis and functional
analysis is helpful, although all concepts used are explained.

The choice of topics inevitably reflects our own interests. We have included many
methods that are important in large-scale computing and the design of algorithms. But
the emphasis is on traditional and well-developed topics in numerical analysis. Obvious
omissions in the book are wavelets and radial basis functions. Our experience from the
1974 book showed us that the most up-to-date topics are the first to become out of date.

Chapter 1 is on a more elementary level than the rest of the book. Itis used to introduce
a few general and powerful concepts and ideas that will be used repeatedly. An introduction
is given to some basic methods in the numerical solution of linear equations and least
squares problems, including the important singular value decomposition. Basic techniques
for the numerical solution of initial value problems for ordinary differential equations is
illustrated. An introduction to Monte Carlo methods, including a survey of pseudorandom
number generators and variance reduction techniques, ends this chapter.

Chapter 2 treats floating-point number systems and estimation and control of errors. It
is modeled after the same chapter in the 1974 book, but the IEEE floating-point standard has
made possible a much more satisfactory treatment. We are aware of the fact that this aspect
of computing is considered by many to be boring. But when things go wrong (and they
do!), then some understanding of floating-point arithmetic and condition numbers may be
essential. A new feature is a section on interval arithmetic, a topic which recently has seen
arevival, partly because the directed rounding incorporated in the IEEE standard simplifies
the efficient implementation.

In Chapter 3 different uses of infinite power series for numerical computations are
studied, including ill-conditioned and semiconvergent series. Various algorithms for com-
puting the coefficients of power series are given. Formal power series are introduced and
their convenient manipulation using triangular Toeplitz matrices is described.

Difference operators are handy tools for the derivation, analysis, and practical ap-
plication of numerical methods for many tasks such as interpolation, differentiation, and
quadrature. A more rigorous treatment of operator series expansions and the use of the
Cauchy formula and the fast Fourier transform (FFT) to derive the expansions are original
features of this part of Chapter 3.

Methods for convergence acceleration of series (sequences) are covered in detail.
For alternating series or series in a complex variable, Aitken extrapolation and Euler’s
transformation are the mostimportant. Variants of Aitken, Euler—Maclaurin, and Richardson
acceleration work for monotonic sequences. A partly new and more rigorous theoretical
analysis given for completely monotonic sequences reflects Dahlquist’s interest in analytic
function theory. Although not intended for the novice, this has been included partly because
it illustrates techniques that are of more general interest.
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An exposition of continued fractions and Padé approximation, which transform a
(formal) power series into a sequence of rational functions, concludes this chapter. This
includes the e-algorithm, the most important nonlinear convergence acceleration method,
as well as the qd algorithm.

Chapter 4 treats several topics related to interpolation and approximation. Different
bases for polynomial interpolation and related interpolation formulas are explained. The
advantages of the barycentric form of Lagrange interpolation formula are stressed. Complex
analysis is used to derive a general Lagrange—Hermite formula for polynomial interpolation
in the complex plane. Algorithms for rational and multidimensional interpolation are briefly
surveyed.

Interpolation of an analytic function at an infinite equidistant point set is treated from
the point of view of complex analysis. Applications made to the Runge phenomenon and
the Shannon sampling theorem. This section is more advanced than the rest of the chapter
and can be skipped in a first reading.

Piecewise polynomials have become ubiquitous in computer aided design and com-
puter aided manufacturing. We describe how parametric Bézier curves are constructed from
piecewise Bernstein polynomials. A comprehensive treatment of splines is given and the
famous recurrence relation of de Boor and Cox for B-splines is derived. The use of B-splines
for representing curves and surfaces with given differentiability conditions is illustrated.

Function spaces are introduced in Chapter 4 and the concepts of linear operator and
operator norm are extended to general infinite-dimensional vector spaces. The norm and
distance formula, which gives a convenient error bound for general approximation problems,
is presented. Inner product spaces, orthogonal systems, and the least squares approximation
problem are treated next. The importance of the three-term recurrence formula and the
Stieltjes procedure for numerical calculations is stressed. Chebyshev systems and theory
and algorithms for approximation in maximum norm are surveyed.

Basic formulas and theorems for Fourier series and Fourier transforms are discussed
next. Periodic continuation, sampled data and aliasing, and the Gibbs phenomenon are
treated. In applications such as digital signal and image processing, and time-series analysis,
the FFT algorithm (already used in Chapter 3) is an important tool. A separate section is
therefore devoted to a matrix-oriented treatment of the FFT, including fast trigonometric
transforms.

In Chapter 5 the classical Newton—Cotes rules for equidistant nodes and the Clenshaw—
Curtis interpolatory rules for numerical integration are first treated. Next, extrapolation
methods such as Romberg’s method and the use of the e-algorithm are described. The
superconvergence of the trapezoidal rule in special cases and special Filon-type methods
for oscillating integrands are discussed. A short section on adaptive quadrature follows.

Quadrature rules with both free and prescribed nodes are important in many contexts.
A general technique of deriving formulas using the method of undetermined coefficients is
given first. Next, Gauss—Christoffel quadrature rules and their properties are treated, and
Gauss—Lobatto, Gauss—Radau, and Gauss—Kronrod rules are introduced. A more advanced
exposition of relations between moments, tridiagonal matrices, and Gauss quadrature is
included, but this part can be skipped at first reading.

Product rules for multidimensional integration formulas use simple generalizations
of univariate rules and are applicable to rectangular domains. For more general domains,
integration using irregular triangular grids is more suitable. The basic linear and quadratic
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interpolation formulas on such grids are derived. Together with a simple correction for
curved boundaries these formulas are also very suitable for use in the finite element method.
A discussion of Monte Carlo and quasi—-Monte Carlo methods and their advantages for high-
dimensional integration ends Chapter 5.

Chapter 6 starts with the bisection method. Next, fixed-point iterations are introduced
and the contraction mapping theorem proved. Convergence order and the efficiency index
are discussed. Newton’s method is treated also for complex-valued equations and an interval
Newton method is described. A discussion of higher-order methods, including the Schroder
family of methods, is featured in this chapter.

Because of their importance for the matrix eigenproblem, algebraic equations are
treated at length. The frequent ill-conditioning of roots is illustrated. Several classical
methods are described, as well as an efficient and robust modified Newton method due to
Madsen and Reid. Further, we describe the progressive qd algorithm and Sturm sequence
methods, both of which are also of interest for the tridiagonal eigenproblem.

Three Online Appendices are available from the Web page of the book, ww. si am
or g/ books/ ot 103. Appendix A is a compact survey of notations and some frequently
used results in numerical linear algebra. Volume II will contain a full treatment of these
topics. Online Appendix B describes Mulprec, a collection of MATLAB m-files for (almost)
unlimited high precision calculation. This package can also be downloaded from the Web
page. Online Appendix C is a more complete guide to literature, where advice is given on
not only general textbooks in numerical analysis but also handbooks, encyclopedias, tables,
software, and journals.

An important feature of the book is the large collection of problems and computer
exercises included. This draws from the authors’ 40+ year of experience in teaching courses
in numerical analysis. It is highly recommended that a modern interactive system such as
MATLARB is available to the reader for working out these assignments. The 1974 book also
contained answers and solutions to most problems. It has not been possible to retain this
feature because of the much greater number and complexity of the problems in the present
book.

We have aimed to make and the bibliography as comprehensive and up-to-date as
possible. A Notes and References section containing historical comments and additional
references concludes each chapter. To remind the reader of the fact that much of the the-
ory and many methods date one or several hundred years back in time, we have included
more than 60 short biographical notes on mathematicians who have made significant con-
tributions. These notes would not have been possible without the invaluable use of the bi-
ographies compiled at the School of Mathematics and Statistics, University of St Andrews,
Scotland (ww« hi st ory. nts. st. andr ews. ac. uk). Many of these full biographies are
fascinating to read.

Iam very grateful for the encouragement received from Marianne and Martin Dahlquist,
who graciously allowed me to access computer files from Germund Dahlquist’s personal
computer. Without their support the completion of this book would not have been possible.

Many people read early drafts at various stages of the evolution of this book and
contributed many corrections and constructive comments. I am particularly grateful to
Nick Higham, Lothar Reichel, Zdenek Strakos, and several anonymous referees whose
suggestions led to several major improvements. Other people who helped with proofreading
include Bo Einarsson, Tommy Elfving, Pablo Guerrero-Garcia, Sven-Ake Gustafsson, and
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Per Lotstedt. Thank you all for your interest in the book and for giving so much of your
valuable time!

The book was typeset in BIEX the references were prepared in BibTX, and the index
with Makelndex. These are all wonderful tools and my thanks goes to Donald Knuth for his
gift to mathematics. Thanks also to Cleve Moler for MATLAB, which was used in working
out examples and for generating figures.

It is a pleasure to thank Elizabeth Greenspan, Sarah Murphy, and other staff at SIAM
for their cheerful and professional support during all phases of the acquisition and production
of the book.

Ake Bjorck
Link6ping, July 2007






Chapter 1

Principles of Numerical
Calculations

It is almost impossible to identify a mathematical
theory no matter how “pure,” that has never
influenced numerical reasoning.

—B. J. C. Baxter and Arieh Iserles

1.1 Common Ideas and Concepts

Although numerical mathematics has been used for centuries in one form or another within
many areas of science and industry,'! modern scientific computing using electronic comput-
ers has its origin in research and developments during the Second World War. In the late
1940s and early 1950s the foundation of numerical analysis was laid as a separate discipline
of mathematics. The new capability of performing billions of arithmetic operations cheaply
has led to new classes of algorithms, which need careful analysis to ensure their accuracy
and stability.

As a rule, applications lead to mathematical problems which in their complete form
cannot be conveniently solved with exact formulas, unless one restricts oneself to special
cases or simplified models. In many cases, one thereby reduces the problem to a sequence of
linear problems—for example, linear systems of differential equations. Such an approach
can quite often lead to concepts and points of view which, at least qualitatively, can be used
even in the unreduced problems.

Recent developments have enormously increased the scope for using numerical meth-
ods. Gains in problem solving capabilities mean that today one can treat much more complex
and less simplified problems through massive amounts of numerical calculations. This has
increased the interaction of mathematics with science and technology.

In most numerical methods, one applies a small number of general and relatively
simple ideas. These are then combined with one another in an inventive way and with such

I"The Greek mathematician Archimedes (287-212 B.C.), Isaac Newton (1642—1727), and Carl Friedrich Gauss
(1777-1883) were pioneering contributors to numerical mathematics.
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knowledge of the given problem as one can obtain in other ways—for example, with the
methods of mathematical analysis. Some knowledge of the background of the problem is
also of value; among other things, one should take into account the orders of magnitude of
certain numerical data of the problem.

In this chapter we shall illustrate the use of some general ideas behind numerical
methods on some simple problems. These may occur as subproblems or computational
details of larger problems, though as a rule they more often occur in a less pure form and
on a larger scale than they do here. When we present and analyze numerical methods,
to some degree we use the same approach which was first mentioned above: we study in
detail special cases and simplified situations, with the aim of uncovering more generally
applicable concepts and points of view which can guide us in more difficult problems.

It is important to keep in mind that the success of the methods presented depends on
the smoothness properties of the functions involved. In this first survey we shall tacitly
assume that the functions have as many well-behaved derivatives as are needed.

1.1.1  Fixed-Point Iteration

One of the most frequently occurring ideas in numerical calculations is iteration (from
the Latin iterare, “to plow once again”) or successive approximation. Taken generally,
iteration means the repetition of a pattern of action or process. Iteration in this sense occurs,
for example, in the repeated application of a numerical process—perhaps very complicated
and itself containing many instances of the use of iteration in the somewhat narrower sense
to be described below—in order to improve previous results. To illustrate a more specific
use of the idea of iteration, we consider the problem of solving a (usually) nonlinear equation
of the form

x = F(x), (1.1.1)

where F is assumed to be a differentiable function whose value can be computed for any
given value of a real variable x, within a certain interval. Using the method of iteration,
one starts with an initial approximation x(, and computes the sequence

X1 ZF(X()), )Cg:F(X]), X3=F(.X2),.... (112)

Each computation of the type x,.1 = F(x,), n = 0,1,2,..., is called a fixed-point
iteration. As n grows, we would like the numbers x, to be better and better estimates of
the desired root. If the sequence {x,} converges to a limiting value «, then we have

o = lim x,41 = lim F(x,) = F(a),
n—o0o n—oo

and thus x = o satisfies the equation x = F'(x). One can then stop the iterations when the

desired accuracy has been attained.

A geometric interpretation of fixed point iteration is shown in Figure 1.1.1. A root of
(1.1.1) is given by the abscissa (and ordinate) of an intersecting point of the curve y = F(x)
and the line y = x. Starting from x,, the point x; = F(xo) on the x-axis is obtained by first
drawing a horizontal line from the point (xo, F(xo)) = (xo, x1) until it intersects the line
y = x in the point (x, x1); from there we draw a vertical line to (x;, F(x;)) = (x1, x2),
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Figure 1.1.1. Geometric interpretation of iteration x,+, = F(x,).

and so on in a “staircase” pattern. In Figure 1.1.1(a) it is obvious that the sequence {x,}
converges monotonically to the root . Figure 1.1.1(b) shows a case where F is a decreasing
function. There we also have convergence, but not monotone convergence; the successive
iterates x, lie alternately to the right and to the left of the root . In this case the root is
bracketed by any two successive iterates.

There are also two divergent cases, exemplified by Figures 1.1.1(c) and (d). One can
see geometrically that the quantity, which determines the rate of convergence (or diver-
gence), is the slope of the curve y = F(x) in the neighborhood of the root. Indeed, from
the mean value theorem of calculus we have

Xp41 — O _ F(x,) — F(a) _ F/(s )

X, —« X, —«

where &, lies between x, and o. We see that if x( is chosen sufficiently close to the root
(yet xg # @), the iteration will converge if | F'(«)| < 1. In this case « is called a point of
attraction. The convergence is faster the smaller |F'(«)| is. If |F'(«)| > 1, then « is a
point of repulsion and the iteration diverges.
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Figure 1.1.2. The fixed-point iteration x,, 1 = (x, + c/x,)/2, ¢ = 2, x9 = 0.75.

Example 1.1.1.
The square root of ¢ > 0 satisfies the equation x> = ¢, which can also be written
x =c/x orx = (x 4+ c¢/x)12. This suggests the fixed-point iteration

1
Xnt1 =§(x,,+c/xn), n=12..., (1.1.3)
which is the widely used Heron’s rule.” The curve y = F(x) is in this case a hyperbola

(see Figure 1.1.2).
From (1.1.3) follows

(x izﬁ+1>:miﬁ>2.

X 2x,

| =

Xn41 i\/E:

that is,

Yk — e (x” _*/E)Z. (1.1.4)

Yot + v\t
Xa—~/C

We can take ¢, = Y to be a measure of the error in x,,. Then (1.1.4) reads ¢, = &2

and it follows that e, = €] . If |xo — /c| # |xo + +/c|, then ¢y < 1 and x, converges to a
square root of ¢ when n — oo. Note that the iteration (1.1.3) can also be used for complex
values of c.
Forc =2 and xp = 1.5, we get x; = (1.5 4+2/1.5)12 = 15/12 = 1.4166666. ..,
and
x; = 1.414215 686274, x3 = 1.414213 562375

(correct digits shown in boldface). This can be compared with the exact value /2 =
1.414213 562373 .... As can be seen from Figure 1.1.2, a rough value for x( suffices. The

2Heron made important contributions to geometry and mechanics. He is believed to have lived in Alexandria,
Egypt, during the first century A.D.
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rapid convergence is due to the fact that for « = /c we have
F'(@) =1 —c/a®)/2=0.

One can in fact show that

|xn+1 - \/E| —-C

nlLHolo |xn — ﬁ|2 -
for some constant 0 < C < oo, which is an example of what is known as quadratic
convergence. Roughly, if x,, has ¢ correct digits, then x,,+; will have at least 2t — 1 correct
digits.
The above iteration method is used quite generally on both pocket calculators and
larger computers for calculating square roots.

Iteration is one of the most important aids for practical as well as theoretical treatment
of both linear and nonlinear problems. One very common application of iteration is to the
solution of systems of equations. In this case {x,} is a sequence of vectors, and F is a vector-
valued function. When iteration is applied to differential equations, {x,} means a sequence
of functions, and F(x) means an expression in which integration or other operations on
functions may be involved. A number of other variations on the very general idea of
iteration will be given in later chapters.

The form of (1.1.1) is frequently called the fixed-point form, since the root « is a
fixed point of the mapping F. An equation may not be given in this form originally. One
has a certain amount of choice in the rewriting of an equation f(x) = 0 in fixed-point
form, and the rate of convergence depends very much on this choice. The equation x*> = ¢
can also be written, for example, as x = ¢/x. The iteration formula x,+; = ¢/x, gives a
sequence which alternates between x( (for even n) and c/x (for odd n)—the sequence does
not converge for any xg # 4/c!

1.1.2 Newton’s Method

Let an equation be given in the form f(x) = 0, and for any k # 0, set
F(x)=x+kf(x).

Then the equation x = F(x) is equivalent to the equation f(x) = 0. Since F'(¢) =
1 + kf’(a), we obtain the fastest convergence for k = —1/f’(«). Because « is not known,
this cannot be applied literally. But if we use x,, as an approximation, this leads to the choice
F(x) = x — f(x)/f'(x), or the iteration

fw)
O’

(1.1.5)

Xn+1 = Xn

This is the celebrated Newton’s method.> We shall derive it in another way below.

3Isaac Newton (1642—1727), English mathematician, astronomer, and physicist invented infinitesimal calculus
independently of the German mathematician and philosopher Gottfried W. von Leibniz (1646-1716).



6 Chapter 1. Principles of Numerical Calculations

The equation x2 = ¢ can be written in the form fx) = x% —¢ = 0. Newton’s method

for this equation becomes

2 1
T € (xn+i), n=0,1,2,..., (1.1.6)

Xnt1 = Xp — =%
2x, 2 X,

which is the fast method in Example 1.1.1. More generally, Newton’s method applied to

the equation f(x) = x” — ¢ = 0 can be used to compute c'/?, p = £1, £2, ..., from the
iteration
xF—c
Xn+l = Xp — 1
pxu

This can be written as

1 n —
Xntl = — ((p — Dx, + %) . [A—p)—cx, Pl (1.1.7)
p x? (=p)

It is convenient to use the first expression in (1.1.7) when p > 0 and the second when
p < 0. With p = 2, 3, and —2, respectively, this iteration formula is used for calculating
e, Je,and 1//c. Also 1/c, (p = —1) can be computed by the iteration

Xn1 = Xp + X, (1 — cxp) = Xa(2 — cxp),

using only multiplication and addition. In some early computers, which lacked division in
hardware, this iteration was used to implement division, i.e., b/c was computed as b(1/c).

Example 1.1.2.

We want to construct an algorithm based on Newton’s method for the efficient calcu-
lation of the square root of any given floating-point number a. If we first shift the mantissa
so that the exponent becomes even, a = ¢ - 22¢ and 1 /2 < ¢ < 2; then

Va =2

We need only consider the reduced range 1/2 < ¢ < 1 since for | < ¢ < 2 we can compute

JT/c and invert.*

To find an initial approximation x to start the Newton iterations when 1/2 <c¢ < 1,
we can use linear interpolation of x = ./c between the endpoints 1/2, 1, giving

x0(c) = V2(1 — ¢) +2(c — 1/2)

(«/5 is precomputed). The iteration then proceeds using (1.1.6).
For ¢ = 3/4 (y/c = 0.86602540378444) the result is xy = («/5 + 2)/4 and (correct
digits are in boldface)

xo = 0.85355339059327, x1 = 0.86611652351682,
xp = 0.86602540857756, x3 = 0.86602540378444,

4Since division is usually much slower than addition and multiplication, this may not be optimal.
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The quadratic rate of convergence is apparent. Three iterations suffice to give about 16
digits of accuracy for all x € [1/2, 1].

Newton’s method is based on linearization. This means that locally, i.e., in a small
neighborhood of a point, a more complicated function is approximated with a linear func-
tion. In the solution of the equation f(x) = 0, this means geometrically that we seek the
intersection point between the x-axis and the curve y = f(x); see Figure 1.1.3. Assume

Figure 1.1.3. Geometric interpretation of Newton’s method.

that we have an approximating value x, to the root. We then approximate the curve with its
tangent at the point (xo, f(xo)). Let x| be the abscissa of the point of intersection between
the x-axis and the tangent. Since the equation for the tangent reads

y = fxo) = f'(x0) (x — xp),
by setting y = 0 we obtain the approximation

x1 = x0 — f(x0)/f (x0).

In many cases x; will have about twice as many correct digits as xy. But if xq is a poor
approximation and f(x) far from linear, then it is possible that x; will be a worse approxi-
mation than xj.

If we combine the ideas of iteration and linearization, that is, substitute x,, for xo and
Xu+1 for x1, we rediscover Newton’s method mentioned earlier. If xg is close enough to «,
the iterations will converge rapidly (see Figure 1.1.3), but there are also cases of divergence.

An alternative to drawing the tangent to approximate a curve locally with a linear
function is to choose two neighboring points on the curve and to approximate the curve
with the secant which joins the two points; see Figure 1.1.4. The secant method for the
solution of nonlinear equations is based on this approximation. This method, which preceded
Newton’s method, is discussed in more detail in Sec. 6.3.1.

Newton’s method can be generalized to yield a quadratically convergent method for
solving a system of nonlinear equations

filx1,x2,...,x,) =0, i=1:n. (1.1.8)
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--------10

Figure 1.1.4. Geometric interpretation of the secant method.

Such systems arise in many different contexts in scientific computing. Important examples
are the solution of systems of differential equations and optimization problems. We can
write (1.1.8) as f(x) = 0, where f and x are vectors in R”. The vector-valued function f is
said to be differentiable at the point x if each component is differentiable with respect to all
the variables. The matrix of partial derivatives of f with respect to x,

. .
ax Tt ax,

Jx) =fx)=1] : . | e R, (1.1.9)
dxq 9x,

is called the Jacobian of f.

Let x; be the current approximate solution and assume that the matrix f’(x;) is nonsin-
gular. Then in Newton’s method for the system (1.1.8), the next iterate X, is determined
from the unique solution to the system of linear equations

J X)) X1 — X)) = —F(xp). (1.1.10)

The linear system (1.1.10) can be solved by computing the LU factorization of the matrix
J(x); see Sec. 1.3.2.

Each step of Newton’s method requires the evaluation of the n” entries of the Jacobian
matrix J(X;). This may be a time consuming task if n is large. If either the iterates or
the Jacobian matrix are not changing too rapidly, it is possible to reevaluate J(x;) only
occasionally and use the same Jacobian in several steps. This has the further advantage that
once we have computed the LU factorization of the Jacobian matrix, the linear system can
be solved in only O (n?) arithmetic operations; see Sec. 1.3.2.

Example 1.1.3.
The following example illustrates the quadratic convergence of Newton’s method for
simple roots. The nonlinear system

x2+y2—4x=0,
Y 42x—2=0
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has a solution close to xo = 0.5, yo = 1. The Jacobian matrix is

2x—4 2
J(x,y>=( ) 2?)

and Newton’s method becomes

2 2
Xkt \ [ Xk 1 x; + v — 4x,
= — J (x4, .
(yk+l> (yk> (xir ) <y£+2xk—2>

We get the following results:

Xk Yk
0.35 1.15
0.35424528301887 1.13652584085316
0.35424868893322  1.13644297217273
0.35424868893541 1.13644296914943

B SOST SR I

All digits are correct in the last iteration. The quadratic convergence is obvious; the number
of correct digits approximately doubles in each iteration.

Often, the main difficulty in solving a nonlinear system is to find a sufficiently good
starting point for the Newton iterations. Techniques for modifying Newton’s method to
ensure global convergence are therefore important in several dimensions. These must
include techniques for coping with ill-conditioned or even singular Jacobian matrices at
intermediate points. Such techniques will be discussed in Volume II.

1.1.3 Linearization and Extrapolation

The secant approximation is useful in many other contexts; for instance, it is generally used
when one “reads between the lines” or interpolates in a table of numerical values. In this case
the secant approximation is called linear interpolation. When the secant approximation is
used in numerical integration, i.e., in the approximate calculation of a definite integral,

b
I=/ y(x)dx, (1.1.11)

(see Figure 1.1.5) it is called the trapezoidal rule. With this method, the area between the
curve y = y(x) and the x-axis is approximated with the sum 7 (%) of the areas of a series
of parallel trapezoids. Using the notation of Figure 1.1.5, we have

T(h)—hlf( + yit1) h=l-¢ (1.1.12)
= 2':0))1 yl+1’ = N . 1.

(In the figure, n = 4.) We shall show in a later chapter that the error is very nearly
proportional to 4> when h is small. One can then, in principle, attain arbitrarily high
accuracy by choosing & sufficiently small. But the computational work involved is roughly
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Figure 1.1.5. Numerical integration by the trapezoidal rule (n = 4).

proportional to the number of points where y(x) must be computed, and thus inversely
proportional to 4. Hence the computational work grows rapidly as one demands higher
accuracy (smaller /).

Numerical integration is a fairly common problem because only seldom can the “prim-
itive” function be analytically calculated in a finite expression containing only elementary
functions. It is not possible for such simple functions as e* or (sin x) /x. In order to obtain
higher accuracy with significantly less work than the trapezoidal rule requires, one can use
one of the following two important ideas:

(a) local approximation of the integrand with a polynomial of higher degree, or with a
function of some other class, for which one knows the primitive function;

(b) computation with the trapezoidal rule for several values of 4 and then extrapolation
to h = 0, the so-called Richardson extrapolation® or deferred approach to the
limit, with the use of general results concerning the dependence of the error on 4.

The technical details for the various ways of approximating a function with a poly-
nomial, including Taylor expansions, interpolation, and the method of least squares, are
treated in later chapters.

The extrapolation to the limit can easily be applied to numerical integration with the
trapezoidal rule. As was mentioned previously, the trapezoidal approximation (1.1.12) to
the integral has an error approximately proportional to the square of the step size. Thus,
using two step sizes, & and 2h, one has

T(h) — I ~ kh?, T(2h) — I ~ k(2h)?,

and hence 4(T'(h) — I) ~ T (2h) — I, from which it follows that

[~ %(4T(h) —TQh)) =THh) + %(T(h) — T(2h)).

SLewis Fry Richardson (1881-1953) studied mathematics, physics, chemistry, botany, and zoology. He grad-
uated from King’s College, Cambridge in 1903. He was the first (1922) to attempt to apply the method of finite
differences to weather prediction, long before the computer age!
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Thus, by adding the corrective term %(T(h) — T(2h)) to T (h), one should get an estimate
of I which is typically far more accurate than 7'(h). In Sec.3.4.6 we shall see that the
improvement is in most cases quite striking. The result of the Richardson extrapolation
is in this case equivalent to the classical Simpson’s rule for numerical integration, which
we shall encounter many times in this volume. It can be derived in several different ways.
Section 3.4.5 also contains application of extrapolation to problems other than numerical
integration, as well as a further development of the extrapolation idea, namely repeated
Richardson extrapolation. In numerical integration this is also known as Romberg’s
method; see Sec.5.2.2.

Knowledge of the behavior of the error can, together with the idea of extrapolation,
lead to a powerful method for improving results. Such a line of reasoning is useful not only
for the common problem of numerical integration, but also in many other types of problems.

Example 1.1.4.

The integral
12

fx)dx
10
is computed for f(x) = x> by the trapezoidal method. With 4 = 1 we obtain T (h) = 2695,
T (2h) = 2728, and extrapolation gives T = 2684, equal to the exact result.
Similarly, for f(x) = x* we obtain T'(h) = 30,009, T(2h) = 30,736, and with
extrapolation T & 29,766.7 (exact 29,766.4).

1.1.4 Finite Difference Approximations

The local approximation of a complicated function by a linear function leads to another
frequently encountered idea in the construction of numerical methods, namely the approx-
imation of a derivative by a difference quotient. Figure 1.1.6 shows the graph of a function

yn -1

(n-21)h nh (n+1)h

Figure 1.1.6. Centered finite difference quotient.



12 Chapter 1. Principles of Numerical Calculations

y(x) in the interval [x,_1, x,+1], where x,,+1 — x, = x, — x,—1 = h; h is called the step
size. If we set y; = y(x;),i = n—1, n,n+ 1, then the derivative at x,, can be approximated
by a forward difference quotient,

Yn+1 — Yn

, 1.1.13
7 ( )

¥ () &
or a similar backward difference quotient involving y, and y,_;. The error in the approxi-
mation is called a discretization error.
But it is conceivable that the centered difference approximation

Yn+1 — Yn—1

1.1.14
T ( )

Y () ~
usually will be more accurate. It is in fact easy to motivate this. By Taylor’s formula,

y(x +h) = yx) =y @h+y' Oh*/2+ y" ()R )6+ -, (1.1.15)
—y(x —h) + y(x) =y ()h — y"()h*/2+ y" ()R /6 — - - -. (1.1.16)

Set x = x,,. Then, by the first of these equations,

Yn+1 = Yn _ ﬁ

= 2y ) =

y ,(xn) ==

Next, add the two Taylor expansions and divide by 2/. Then the first error term cancels and
we have
Yn+1 = Yn—1 h2 "
_ — — n) — . 1.1.17

7 ¢V (xn) ( )
In what follows we call a formula (or a method), where a step size parameter 4 is involved,
accurate of order p, if its error is approximately proportional to 7. Since y”(x) vanishes
for all x if and only if y is a linear function of x, and similarly, y"(x) vanishes for all x if
and only if y is a quadratic function, we have established the following important result.

y,(xn) =

Lemma 1.1.1.

The forward difference approximation (1.1.13) is exact only for a linear function, and
it is only first order accurate in the general case. The centered difference approximation
(1.1.14) is exact also for a quadratic function, and is second order accurate in the general
case.

For the above reason the approximation (1.1.14) is, in most situations, preferable
to (1.1.13). But there are situations when these formulas are applied to the approximate
solution of differential equations where the forward difference approximation suffices, but
where the centered difference quotient is entirely unusable, for reasons which have to do
with how errors are propagated to later stages in the calculation. We shall not examine this
phenomenon more closely here, but mention it only to intimate some of the surprising and
fascinating mathematical questions which can arise in the study of numerical methods.
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Higher derivatives can be approximated with higher differences, that is, differences
of differences, another central concept in numerical calculations. We define

(AY)n = Ynt1 — Yus
(A% = (AAY)n = Dnr2 — Yar1) — a1 — Yn)
= Yn42 = 2Yn41 + Vs
(A%Y)y = (AA*Y) = Yut3 — 3Yns2 + 3Vt — Vs

etc. For simplicity one often omits the parentheses and writes, for example, A”ys instead

of (A%y)s. The coefficients that appear here in the expressions for the higher differences

are, by the way, the binomial coefficients. In addition, if we denote the step length by Ax

instead of by &, we get the following formulas, which are easily remembered:
dy Ay d*y N A2y

dx  Ax’ dx? (Ax)?’
etc. Each of these approximations is second order accurate for the value of the derivative at
an x which equals the mean value of the largest and smallest x for which the corresponding
value of y is used in the computation of the difference. (The formulas are only first order
accurate when regarded as approximations to derivatives at other points between these
bounds.) These statements can be established by arguments similar to the motivation for
(1.1.13) and (1.1.14).

Taking the difference of the Taylor expansions (1.1.15)—(1.1.16) with one more term
in each and dividing by /2, we obtain the following important formula:

(1.1.18)

Yn+1 — 2)’;1 + Yn—1 2

Y () = % — Y ) =
Introducing the central difference operator
Byn=y<xn+1h) —y(x,,—lh> (1.1.19)
2 2
and neglecting higher order terms we get
" I o h
Y () & ﬁa Yn = 5" @) (1.1.20)

The approximation of (1.1.14) can be interpreted as an application of (1.1.18) with
Ax = 2h, or as the mean of the estimates which one gets according to (1.1.18) for y'((n +
) and y'((n — 3)h).

When the values of the function have errors (for example, when they are rounded
numbers) the difference quotients become more and more uncertain the smaller 4 is. Thus
if one wishes to compute the derivatives of a function one should be careful not to use too
small a step length; see Sec. 3.3.4.

Example 1.1.5.
Assume that for y = cos x, function values correct to six decimal digits are known at
equidistant points:
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x y Ay A%y
0.59 0.830941
—5605
0.60 0.825336 —83 °
—5688

0.61 0.819648

where the differences are expressed in units of 107®. This arrangement of the numbers is
called a difference scheme. Using (1.1.14) and (1.1.18) one gets

y'(0.60) ~ (0.819648 — 0.830941)/0.02 = —0.56465,
y"(0.60) ~ —83 - 107%/(0.01)> = —0.83.

The correct results are, with six decimals,
v'(0.60) = —0.564642, v"(0.60) = —0.825336.

In y” we got only two correct decimal digits. This is due to cancellation, which is an
important cause of loss of accuracy; see Sec.2.3.4. Better accuracy can be achieved by
increasing the step h; see Problem 1.1.5 at the end of this section.

A very important equation of mathematical physics is Poisson’s equation:®

32 82
—2+——f(x ), (x,y) €Q. (1.1.21)
0x

Here the function f(x,y) is given together with some boundary condition on u(x, y).
Under certain conditions, gravitational, electric, magnetic, and velocity potentials satisfy
Laplace’s equation’ which is (1.1.21) with f(x, y) = 0.

Finite difference approximations are useful for partial derivatives. Suppose that €2 is
a rectangular region and introduce a rectangular grid that covers the rectangle. With grid
spacing h and k, respectively, in the x and y directions, respectively, this consists of the
points

Xi=xo+ih, i=0:M, yi=yo+jk, j=0:N.

By (1.1.20), a second order accurate approximation of Poisson’s equation is given by the
five-point operator

— 2wt ui—r; o W — 20+ g

Uitl,j
V52u =
h? k2

Fork =h |
Viu= i (Mz e iy = Aug it o),

6Siméon Denis Poisson (1781-1840), professor at Ecole Polytechnique. He has also given his name to the
Poisson distribution in probability theory.

7Pierre-Simon, Marquis de Laplace (1749-1827), professor at Ecole Militaire. Laplace was one of the most
influential scientists of his time and did major work in probability and celestial mechanics.
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which corresponds to the “computational molecule”

Ly 411 |
L _
h 1

If this is superimposed on each grid point we get one equation for the unknown values
u(x;,yj),i=1:M—1,j=1:N — 1, at each interior point of the grid.

To get a solution we also need prescribed boundary conditions on u or du/dn on the
boundary. The solution can then be obtained in the interior by solving a system of linear
equations.

Review Questions
1.1.1 Make lists of the concepts and ideas which have been introduced. Review their use
in the various types of problems mentioned.

1.1.2 Discuss the convergence condition and the rate of convergence of the fixed-point
iteration method for solving a nonlinear equation x = F(x).

1.1.3 Whatis meant by quadratic convergence of an iterative method for solving a nonlinear
equation?

1.1.4 What is the trapezoidal rule? What is said about the dependence of its error on the
step length?

1.1.5 How can Richardson extrapolation be used to improve the accuracy of the trapezoidal
rule?

Problems and Computer Exercises

1.1.1 Calculate /10 to seven decimal places using the method in Example 1.1.1. Begin
with xo = 2.

1.1.2 Consider f(x) = x> —2x — 5. The cubic equation f(x) = 0 has been a standard test
problem, since Newton used it in 1669 to demonstrate his method. By computing
(say) f(x) for x = 1, 2, 3, we see that x = 2 probably is a rather good initial guess.
Iterate by Newton’s method until you trust that the result is correct to six decimal
places.

1.1.3 The equation x3 — x = 0 has three roots, —1, 0, 1. We shall study the behavior of
Newton’s method on this equation, with the notations used in Sec. 1.1.1 and Fig-
ure 1.1.3.
(a) What happens if xo = 1/ /3?7 Show that X, converges to 1 for any xo > 1/ V3.
What is the analogous result for convergence to —1?
(b) What happens if xo = l/ﬁ? Show that x, converges to O for any xo €
(—1/4/5, 1/4/5).
Hint: Show first that if xy € (0, 1/ \/3), then x; € (—xp, 0). What can then be said
about x,?
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(c¢) Find, by a drawing (with paper and pencil), lim x,, if xq is a little less than 1/+/3.
Find by computation lim x,, if xo = 0.46.
(d) A complete discussion of the question in (c) is rather complicated, but there is
an implicit recurrence relation that produces a decreasing sequence {a; = 1/ V3,
as, as, ...}, by means of which one you can easily find lim,_, o, x, for any xo €
(1/V5, 1/3/3). Try to find this recurrence.
Answer: a; — f(a;)/f'(@;) = —a;_1; lim, 00 X, = (—=1)" if xo € (a;, ai41);
a; =0.577, ay = 0.462, a3 = 0.450, ay ~ lim;_, oo a; = 1//5 = 0.447.

1.1.4 Calculate f,’* e* dx
(a) to six decimals using the primitive function.
(b) with the trapezoidal rule, using step length & = 1/4.
(c) using Richardson extrapolation to 7 = 0 on the results using step lengths 7 = 1/2
and h = 1/4.
(d) the ratio between the error in the result of (c) to that of (b).

1.1.5 In Example 1.1.5 we computed y”(0.6) for y = cosx, with step length 7 = 0.01.
Make similar calculations using # = 0.1, 7 = 0.05, and 2 = 0.001. Which value of
h gives the best result, using values of y to six decimal places? Discuss qualitatively
the influences of both the rounding errors in the function values and the error in the
approximation of a derivative with a difference quotient on the result for various
values of A.

1.1.6 Give an approximate expression of the form ah” f(©(0) for the error of the esti-

mate of the integral fi’h f(x)dx obtained by Richardson extrapolation (according to
Sec. 1.1.3) from the trapezoidal values T (h) and T (2h).

1.2 Some Numerical Algorithms

For a given numerical problem one can consider many different algorithms. Even if they
just differ in small details they can differ in efficiency and reliability and give approximate
answers with widely varying accuracy. In the following we give a few examples of how
algorithms can be developed to solve some typical numerical problems.

1.2.1 Solving a Quadratic Equation

An early example of pitfalls in computation studied by G. E. Forsythe [121] is the following.
For computing the roots of the quadratic equation ax? + bx + ¢ = 0, a # 0, elementary
textbooks usually give the well-known formula

Flo = ( —bE+Vb?— 4ac)/(2£1).

Using this for the quadratic equation x> — 56x + 1 = 0, we get the two approximate real
roots

1
ry =28+ 783 ~ 284 27.982 = 55982 + 510_3,

1
ry =28 — 783 ~ 28 —27.982 =0.018 &+ 510_3.
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In spite of the fact that the square root used is given to five digits of accuracy, we get only
two significant digits in r,, while the relative error in r; is less than 1075. This shows
that there can be very poor relative accuracy in the difference between two nearly equal
numbers. This phenomenon is called cancellation of terms. It is a very common reason
for poor accuracy in numerical calculations.

Notice that the subtraction in the calculation of r, was carried out exactly. The
cancellation in the subtraction only gives an indication of the unhappy consequence of a
loss of information in previous steps, due to the rounding of one of the operands, and is not
the cause of the inaccuracy.

In numerical calculations, if possible one should try to avoid formulas that give rise
to cancellation, as in the above example. For the quadratic equation this can be done by
rewriting of the formulas. Comparing coefficients on both sides of

2+ (b/a)x +c/a = (x —r)x —r) =x° = (11 +r)x + i,
we get the relation between coefficients and roots
ry+r,=—b/a, rir; = c/a. (1.2.1)

A more accurate value of the root of smaller magnitude is obtained by computing this root
from the latter of these relations. We then get

ry = 1/55.982 = 0.0178629 £ 0.0000002.

Five significant digits are now obtained also for this root.

1.2.2 Recurrence Relations

A common computational task is the evaluation of a polynomial
p(x) =apx" +arx® + -+ +a,_1x + ay
at a given point. This can be reformulated as
p(x) = (- ((aox +a)x +a))x + -+ ap_1)x + ap,
and written as a recurrence relation:
bix)=bi_1(x)x+a;, i=1:n. (1.2.2)
We note that this recurrence relation can be used in two different ways:

* it can be used algebraically to generate a sequence of Horner polynomials b; (x) such
that b, (x) = p(x);

* it can be used arithmetically with a specific value x = x;, which is Horner’s rule
for evaluating p(x;) = b, (x1).
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Horner’s rule requires n additions and multiplications for evaluating p(x) for x = x;. Note
that if the powers are calculated recursively by xi =X - xi ! and subsequently multiplied
by a,_;, this requires twice as many multiplications.

When a polynomial p(x) is divided by x — x; the remainder equals p(x;); i.e.,
p(x) = (x — x1)g(x) + p(x1). The quantities b; (x;) from the Horner scheme (1.2.2) are
of intrinsic interest because they are the coefficients of the quotient polynomial g (x). This

algorithm therefore performs the synthetic division

n—1

p(x) P(xl) Zb ()C )x” - l (123)

X — X1

The proof of this result is left as an exercise.

Synthetic division is used, for instance, in the solution of algebraic equations when
already computed roots are successively eliminated. After each elimination, one can deal
with an equation of lower degree. This process is called deflation; see Sec.6.5.4. As
emphasized there, some care is necessary in the numerical application of this idea to prevent
the propagation of roundoff errors.

The proof of the following useful relation is left as an exercise for the reader.

Lemma 1.2.1.
Let b; be defined by (1.2.2) and

co = by, ¢, =b;+xci—y, i=1:n—1. (1.2.4)

Then p'(x) = ¢p—1.

Due to their intrinsic constructive quality, recurrence relations are one of the basic
mathematical tools of computation. There is hardly a computational task which does not
use recursive techniques. One of the most important and interesting parts of the preparation
of a problem for a computer is therefore to find a recursive description of the task. Often an
enormous amount of computation can be described by a small set of recurrence relations.

Although recurrence relations are a powerful tool they are also susceptible to error
growth. Each cycle of a recurrence relation not only generates its own errors but also
inherits errors committed in all previous cycles. If conditions are unfavorable, the result
may be disastrous. This aspect of recurrence relations and its prevention is therefore of
great importance in computations and has been studied extensively; see [139].

Example 1.2.1.

Unless used in the right way, errors committed in a recurrence relation can grow
exponentially and completely ruin the results. To compute the integrals

1 X"
I,,:/ dx, i=1:N,
0x+5

one can use the recurrence relation

1
I, +50, = —, (1.2.5)
n



1.2. Some Numerical Algorithms 19

which follows from

1 .n n—1 1
+5 1
I, +51,4 =/ idx:/ X ldx = =,
0 x+5 0 n

Below we use this formula to compute /g, using six decimals throughout. For n = 0 we
have
Iy =[In(x +5)], ~In6 —In5 = 0.182322.

Using the recurrence relation we get

I} =1-5Ip=1-0.911610 = 0.088390,

I, =1/2 =51, = 0.500000 — 0.441950 = 0.058050,
Iy =1/3 =51, = 0.333333 — 0.290250 = 0.043083,
Iy =1/4 — 513 = 0.250000 — 0.215415 = 0.034585,
Is =1/5—-51, = 0.200000 — 0.172925 = 0.027075,
Is =1/6 =515 = 0.166667 — 0.135375 = 0.031292,
I; =1/7 =51 = 0.142857 — 0.156460 = —0.013603.

It is strange that I > I5, and obviously absurd that I; < 0! The reason for the absurd result
is that the roundoff error € in Iy = 0.18232156. .., whose magnitude is about 0.44 - 109,
is multiplied by (—5) in the calculation of [}, which then has an error of —5¢. That error
produces an error in I, of 5%¢, and so forth. Thus the magnitude of the error in I; is
57¢ = 0.0391, which is larger than the true value of ;. On top of this are the roundoff
errors committed in the various steps of the calculation. These can be shown, in this case,
to be relatively unimportant.

If one uses higher precision, the absurd result will show up at a later stage. For
example, a computer that works with a precision corresponding to about 16 decimal places
gave a negative value to Iy, although Iy had full accuracy. The above algorithm is an
example of an unpleasant phenomenon, called numerical instability. In this simple case,
one can avoid the numerical instability by reversing the direction of the recursion.

Example 1.2.2.
If we use the recurrence relation in the other direction,

Loy = (1/n—1,)/5, (1.2.6)

the errors will be divided by —5 in each step. But we need a starting value. We can
directly see from the definition that I, decreases as n increases. One can also surmise that
I,, decreases slowly when n is large (the reader is encouraged to motivate this). Thus we
try setting 11, = I;. It then follows that

Iy + 50 = 1/12, Iy = 1/72 ~ 0.013889
(show that 0 < I}, < 1/72 < Iy;). Using the recurrence relation we get

Io = (1/11 — 0.013889)/5 = 0.015404, Iy = (1/10 — 0.015404)/5 = 0.016919
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and, further,

I3 = 0.018838, [I; =0.021232, [s =0.024325, Is = 0.028468,
I4 = 0.034306, I3 =0.043139, I, =0.058039, I, =0.088392,

and finally I, = 0.182322. Correct!

If one instead simply takes /;, = O as the starting value, one gets I;; = 0.016667,
Io = 0.018889, Iy = 0,016222, Iy = 0.018978, I; = 0.021204, Iy = 0.024331, and
Is, ..., Iy have the same values as above. The difference in the values for 7;; is 0.002778.
The subsequent values of I, I, ..., Iy are quite close because the error is divided by —5
in each step. The results for I, obtained above have errors which are less than 103 for
n <8.

One should not draw erroneous conclusions from the above example. The use of a
recurrence relation “backwards” is not a universal recipe, as will be seen later. Compare
also Problems 1.2.7 and 1.2.8.

In Sec. 3.3.5 we will study the general linear homogeneous difference equation of kth
order

Ytk + A1 Ynpk—1 + - Fary, =0, (1.2.7)

with real or complex constant coefficients ay, . . ., ax. The stability properties of this type of
equation are fundamental, since they arise in the numerical solution of ordinary and partial
differential equations.

1.2.3 Divide and Conquer Strategy

A powerful strategy for solving large scale problems is the divide and conquer strategy (one
of the oldest military strategies). This is one of the most powerful algorithmic paradigms for
designing efficient algorithms. The idea is to split a high-dimensional problem into multiple
problems (typically two for sequential algorithms) of lower dimension. Each of these is
then again split into smaller subproblems, and so forth, until a number of sufficiently small
problems are obtained. The solution of the initial problem is then obtained by combining
the solutions of the subproblems working backward in the hierarchy.

We illustrate the idea on the computation of the sum s = ) ._, a;. The usual way to
proceed is to use the recursion

S():O, s =S8i—1 +a;, i=1:n.

Another order of summation is as illustrated below for n = 23 = 8:

ai a as aq as de ar as
N N N N
S1:2 $3:4 85:6 57:8
N N
S1:4 55:8
N e

$1:8
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where 5;.; = a; + --- + a;. In this table each new entry is obtained by adding its two
neighbors in the row above. Clearly this can be generalized to compute an arbitrary sum
of n = 2% terms in k steps. In the first step we perform n/2 sums of two terms, then n/4
partial sums each of four terms, etc., until in the kth step we compute the final sum.

This summation algorithm uses the same number of additions as the first one. But
it has the advantage that it splits the task into several subtasks that can be performed in
parallel. For large values of n this summation order can also be much more accurate than
the conventional order (see Problem 2.3.5).

The algorithm can also be described in another way. Consider the summation algo-
rithm

sum = s(i, j);
if j =i+ 1thensum =a; +aj;
else k = [(i + j)/2); sum =s(i, k) +stk+1,));

end

for computing the sum s(i, j) = a; + --- +a;, j > i. (Here and in the following |x |
denotes the floor of x, i.e., the largest integer < x. Similarly, [x7] denotes the ceiling of
X, i.e., the smallest integer > x.) This function defines s(i, j) in a recursive way; if the
sum consists of only two terms, then we add them and return with the answer. Otherwise
we split the sum in two and use the function again to evaluate the corresponding two partial
sums. Espelid [114] gives an interesting discussion of such summation algorithms.

The function above is an example of a recursive algorithm—it calls itself. Many
computer languages (for example, MATLAB) allow the definition of such recursive algo-
rithms. The divide and conquer is a top down description of the algorithm in contrast to
the bottom up description we gave first.

Example 1.2.3.

Sorting the items of a one-dimensional array in ascending or descending order is one of
the most important problems in computer science. In numerical work, sorting is frequently
needed when data need to be rearranged. One of the best known and most efficient sorting
algorithms, quicksort by Hoare [202], is based on the divide and conquer paradigm. To
sort an array of n items, a[0 : n — 1], it proceeds as follows:

1. Select an element a(k) to be the pivot. Commonly used methods are to select the
pivot randomly or select the median of the first, middle, and last element in the array.

2. Rearrange the elements of the array a into a left and right subarray such that no element
in the left subarray is larger than the pivot and no element in the right subarray is
smaller than the pivot.

3. Recursively sort the left and right subarray.

The partitioning of a subarray a[l : r], [ < r, in step 2 can proceed as follows. Place
the pivot in a[/] and initialize two pointers i = [, j = r 4 1. The pointer i is incremented
until an element a(7) is encountered which is larger than the pivot. Similarly, the pointer j
is decremented until an element a(j) is encountered which is smaller than the pivot. At this
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point the elements a(i) and a(j) are exchanged. The process continues until the pointers
cross each other. Finally, the pivot element is placed in its correct position.

It is intuitively clear that this algorithm sorts the entire array and that no merging
phase is needed.

There are many other examples of the power of the divide and conquer approach.
It underlies the fast Fourier transform (Sec. 4.6.3) and is used in efficient automatic paral-
lelization of many tasks, such as matrix multiplication; see [111].

1.2.4 Power Series Expansions

In many problems of applied mathematics, the solution of a given problem can be obtained
as a power series expansion. Often the convergence of these series is quite fast. As an
example we consider the task of computing, to five decimals, y(0.5), where y(x) is the
solution to the differential equation

1

y ==Xy,

with initial conditions y(0) = 1, y’(0) = 0. The solution cannot be simply expressed in
terms of elementary functions. We shall use the method of undetermined coefficients.
Thus we try substituting a series of the form:

o]

y(x):chx" =C()+CIX+C2)62—|---~_
n=0
Differentiating twice we get
o0
y//(x) — Zn(n _ 1)Cnx"72
n=0
=2¢s 4 603x + 12¢43x% + -+ (m 4+ 2)(m + Depaax™ + -+ -,
_x)’(x) = —CoX — Clxz — sz3 [ C,,,,lxm —_ .,

Equating coefficients of x™ in these series gives
e =0, (m+2)(m + Demyr = =1, m = 1.

It follows from the initial conditions that co = 1, ¢; = 0. Thus ¢, = 0, if n is not a multiple
of 3, and using the recursion we obtain

3 )C6 x9

Yo =1- 4 T

-t 1.2.8
6 180 12960+ ( )

This gives y(0.5) &~ 0.97925. The x° term is ignored, since it is less than 2- 10~7. In this ex-
ample also the first neglected term gives a rigorous bound for the error (i.e., for the remaining
terms), since the absolute value of the term decreases, and the terms alternate in sign.
Since the calculation was based on a trial substitution, one should, strictly speaking,
prove that the series obtained defines a function which satisfies the given problem. Clearly,



Problems and Computer Exercises 23

the series converges at least for |x| < 1, since the coefficients are bounded. (In fact the
series converges for all x.) Since a power series can be differentiated term by term in the
interior of its interval of convergence, the proof presents no difficulty. Note, in addition,
that the finite series obtained for y(x) by breaking off after the x°-term is the exact solution
to the following modified differential equation:

10

1 X /
= —Xxy — =1 =
y XY = 15960 y©O) =1, y'(0) =0,

where the “perturbation term” —x'°/12 960 has magnitude less than 10~7 for |x| < 0.5. It
is possible to find rigorous bounds for the difference between the solutions of a differential
system and a modified differential system.

The use of power series and rational approximations will be studied in depth in Chapter
3, where other more efficient methods than the Maclaurin series for approximation by
polynomials will also be treated.

A different approximation problem, which occurs in many variants, is to approximate
a function f specified at a one- or two-dimensional grid by a member f* of a class of func-
tions which is easy to work with mathematically. Examples are (piecewise) polynomials,
rational functions, or trigonometric polynomials, where each particular function in the class
is specified by the numerical values of a number of parameters.

In computer aided design (CAD) curves and surfaces have to be represented math-
ematically so that they can be manipulated and visualized easily. For this purpose spline
functions are now used extensively with important applications in the aircraft and automo-
tive industries; see Sec. 4.4. The name spline comes from a very old technique in drawing
smooth curves, in which a thin strip of wood or rubber, called a draftsman’s spline, is bent
so that it passes through a given set of points. The points of interpolation are called knots
and the spline is secured at the knots by means of lead weights called ducks. Before the
computer age, splines were used in shipbuilding and other engineering designs.

Review Questions

1.2.1 What is a common cause of loss of accuracy in numerical calculations?
1.2.2 Describe Horner’s rule and synthetic division.

1.2.3 Give a concise explanation why the algorithm in Example 1.2.1 did not work and
why that in Example 1.2.2 did work.

1.2.4 Describe the basic idea behind the divide and conquer strategy. What is a main
advantage of this strategy? How do you apply it to the task of summing » numbers?

Problems and Computer Exercises

1.2.1 (a) Use Horner’s scheme to compute for x = 2

px) = xt 4203 —3xr 2.
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1.2.2

1.2.3

1.24

(b) Count the number of multiplications and additions required for the evaluation
of a polynomial p(z) of degree n by Horner’s rule. Compare with the work needed
when the powers are calculated recursively by x/ = x - x/~! and subsequently
multiplied by a,_;.

Px)y=1- %xz + 21—4x4 is a polynomial approximation to cos x for small values of
|x|. Estimate the errors of

P(x), P(x), %/XP(t)dt,
0

and compare them for x = 0.1.

Show how repeated synthetic division can be used to move the origin of a polynomial;
ie., givenai, ap,...,ay, and z, find ¢y, ¢, ..., ¢, so that

n

) =3 ™ =} e -0
j=1

j=1

Write a program for synthetic division (with this ordering of the coefficients) and
apply it to this algorithm.

Hint: Apply synthetic division to p,(x), p,—1(x) = (pp(x) — pn(2))/(x — 2), and
so forth.

(a) Show that the transformation made in Problem 1.2.3 can also be expressed by
means of the matrix-vector equation

c=diag(1,z7%, ...,z Pdiag(1,z,...,2" Va,

where a = [ay,a;,...,a,]", c = [c1,¢c2,...,cy)T, and diag (1,z,...,2" ") isa
diagonal matrix with elements z/~!, j = 1 : n. The matrix P € R"*" has elements

=1 ...
Pi,jz{(i—l> itj =i,

0 otherwise.

By convention, (8) = 1 here.

(b) Note the relation of P to the Pascal triangle, and show how P can be generated
by a simple recursion formula. Also show how each element of P~! can be expressed
in terms of the corresponding element of P. How is the origin of the polynomial
P, (x) moved, if you replace P by P~! in the matrix-vector equation that defines c?
(c) If you reverse the order of the elements of the vectors a, c—this may sometimes
be a more convenient ordering—how is the matrix P changed?

Comment: With terminology to be used much in this book (see Sec. 4.1.2), we can
look upon a and c as different coordinate vectors for the same element in the n-
dimensional linear space P, of polynomials of degree less than n. The matrix P
gives the coordinate transformation.
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1.2.5

1.2.6

1.2.7

1.2.8

1.2.9

1.2.10

Derive recurrence relations and write a program for computing the coefficients of
the product r of two polynomials p and g:

m+n—1

r(x)=p(x)q(X)=<Zaixi‘l> Db = Y et
i=l j=1 k=1

Let a, b be nonnegative integers, with b # 0. The division a /b yields the quotient g
and the remainder ». Show that if @ and b have a common factor, then that number
is a divisor of r as well. Use this remark to derive the Euclidean algorithm for the
determination of the greatest common divisor of a and b.

Derive a forward and a backward recurrence relation for calculating the integrals

1 n
In=/ ol dx.
0 4X+1

Why is the forward recurrence stable and the backward recurrence unstable in this
case?

(a) Solve Example 1.2.1 on a computer, with the following changes: Start the re-
cursion (1.2.5) with Iy = In 1.2, and compute and print the sequence {,,} until I,
becomes negative for the first time.

(b) Start the recursion (1.2.6) first with the condition I19 = I, then with I,g = I3.
Compare the results you obtain and assess their approximate accuracy. Compare
also with the results of part (a).

(a) Write a program (or study some library program) for finding the quotient Q(x)
and the remainder R(x) of two polynomials A(x), B(x), i.e.,

A(x) = Q(x)B(x) + R(x), degR(x) < deg B(x).

(b) Write a program (or study some library program) for finding the coefficients of
a polynomial with given roots.

(a) Write a program (or study some library program) for finding the greatest com-
mon divisor of two polynomials. Test it on a number of polynomials of your own
choice. Choose also some polynomials of a rather high degree, and do not choose
only polynomials with small integer coefficients. Even if you have constructed the
polynomials so that they should have a common divisor, rounding errors may disturb
this, and some tolerance is needed in the decision whether a remainder is zero or
not. One way of finding a suitable size of the tolerance is to make one or several
runs where the coefficients are subject to some small random perturbations, and find
out how much the results are changed.

(b) Apply the programs mentioned in the last two problems for finding and elimi-
nating multiple zeros of a polynomial.

Hint: A multiple zero of a polynomial is a common zero of the polynomial and its
derivative.
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1.3 Matrix Computations

Matrix computations are ubiquitous in scientific computing. A survey of basic notation and
concepts in matrix computations and linear vector spaces is given in Online Appendix A.
This is needed for several topics treated in later chapters of this book. A fuller treatment of
this topic will be given in Volume II.

In this section we focus on some important developments since the 1950s in the solu-
tion of linear systems. One is the systematic use of matrix notations and the interpretation of
Gaussian elimination as matrix factorization. This decompositional approach has several
advantages; e.g., a computed factorization can often be used with great savings to solve new
problems involving the original matrix. Another is the rapid development of sophisticated
iterative methods, which are becoming increasingly important as systems increase in size.

1.3.1 Matrix Multiplication

A matrix® A is a collection of m x n numbers ordered in m rows and n columns:

ap ap Aain

a] az azn
A= (a;j) = }

aml Adm2 ... Amp

We write A € R™*", where R™*" denotes the set of all real m x n matrices. If m = n, then
the matrix A is said to be square and of order n. If m # n, then A is said to be rectangular.

The product of two matrices A and B is defined if and only if the number of columns
in A equals the number of rows in B. If A € R"*? and B € R?*", then C = AB € R™*",
where

cj=y awhy, 1<i<m, 1<j<n (13.1)

The product BA is defined only if m = n and then BA € R?*?. Clearly, matrix multipli-
cation is in general not commutative. In the exceptional case where AB = BA holds, the
matrices A and B are said to commute.

Matrix multiplication satisfies the associative and distributive rules:

A(BC) = (AB)C, A(B+C)=AB+ AC.

However, the number of arithmetic operations required to compute the left- and right-hand
sides of these equations can be very different!

Example 1.3.1.

Let the three matrices A € R™*?, B € R”*" and C € R"*? be given. Then
computing the product ABC as (A B)C requires mn(p-+¢q) multiplications, whereas A(BC)
requires pq(m + n) multiplications.

8The first to use the term “matrix” was the English mathematician James Sylvester in 1850. Arthur Cayley
then published Memoir on the Theory of Matrices in 1858, which spread the concept.
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If A and B are square n x n matrices and C = x € R"*!, a column vector of length
n, then computing (A B)x requires n(n + 1) multiplications, whereas A(Bx) only requires
2n? multiplications. When n > 1 this makes a great difference!

It is often useful to think of a matrix as being built up of blocks of lower dimensions.
The great convenience of this lies in the fact that the operations of addition and multiplication
can be performed by treating the blocks as noncommuting scalars and applying the definition
(1.3.1). Of course the dimensions of the blocks must correspond in such a way that the
operations can be performed.

Example 1.3.2.
Assume that the two n x n matrices are partitioned into 2 x 2 block form,

An An By B
A = ) B = )
( Ay Ax ) ( By Bxn )
where Ay, and B, are square matrices of the same dimension. Then the product C = AB
equals

c— (Aan + ApBy AnBi+ AI2B22>. (1.3.2)

Ax1Bi1 + AnBy Ay Bip+ AxnBxn

Be careful to note that since matrix multiplication is not commutative the order of the factors
in the products cannot be changed. In the special case of block upper triangular matrices
this reduces to

(Rn R12>(511 512>:<R115|1 R11512+R12522) (13.3)
0 Rnx 0 S» 0 R28% ' o

Note that the product is again block upper triangular, and its block diagonal simply equals
the products of the diagonal blocks of the factors.

It is important to know roughly how much work is required by different matrix algo-
rithms. By inspection of (1.3.1) it is seen that computing the mp elements c;; in the product
C = AB requires mnp additions and multiplications.

In matrix computations the number of multiplicative operations (x, /) is usually about
the same as the number of additive operations (+, —). Therefore, in older literature, a flop
was defined to mean roughly the amount of work associated with the computation

s =8+ ajrbyj,
i.e., one addition and one multiplication (or division). In more recent textbooks (e.g., Golub

and Van Loan [169])a flop is defined as one floating-point operation, doubling the older flop
counts.’ Hence, multiplication C = AB of two square matrices of order n requires 2n>

9Stewart [335, p. 96] uses flam (floating-point addition and multiplication) to denote an “old” flop.
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flops. The matrix-vector multiplication y = Ax, where A € R"*" and x € R", requires
2mn flops.'?

Operation counts are meant only as a rough appraisal of the work and one should not
assign too much meaning to their precise value. On modern computer architectures the rate
of transfer of data between different levels of memory often limits the actual performance.
Also usually ignored is the fact that on many computers a division is five to ten times slower
than a multiplication.

An operation count still provides useful information and can serve as an initial basis
of comparison of different algorithms. It implies that the running time for multiplying two
square matrices on a computer will increase roughly cubically with the dimension n. Thus,
doubling n will approximately increase the work by a factor of eight; this is also apparent
from (1.3.2).

A faster method for matrix multiplication would give more efficient algorithms for
many linear algebra problems such as inverting matrices, solving linear systems, and solv-
ing eigenvalue problems. An intriguing question is whether it is possible to multiply two
matrices A, B € R"*" (or solve alinear system of order ) in less than n> (scalar) multiplica-
tions. The answer is yes! Strassen [341] developed a fast algorithm for matrix multiplication
which, if used recursively to multiply two square matrices of dimension n = 2%, reduces
the number of multiplications from n3 to n'°%7 = n?3%7- The key observation behind the
algorithm is that the block matrix multiplication (1.3.2) can be performed with only seven
block matrix multiplications and eighteen block matrix additions. Since for large dimen-
sions matrix multiplication is much more expensive @n? flops) than addition (2n? flops),
this will lead to a savings in operations.

Itis still an open (difficult!) question what the minimum exponent w is such that matrix
multiplication can be done in O (n®) operations. The fastest known algorithm, devised in
1987 by Coppersmith and Winograd [79], has w < 2.376. Many believe that an optimal
algorithm can be found which reduces the number to essentially n2. For a review of recent
efforts in this direction using group theory, see Robinson [306]. (Note that for many of the
theoretically “fast” methods large constants are hidden in the O notation.)

1.3.2 Solving Linear Systems by LU Factorization

The solution of linear systems of equations is the most frequently encountered task in
scientific computing. One important source of linear systems is discrete approximations of
continuous differential and integral equations.

A linear system can be written in matrix-vector form as

ay  ap - ap X b
ax ap - ay X2 by

=71, (13.4)
a1 am? o A Xn bm

where a;; and b;, 1 <i <m, 1 < j < n, are known input data and the task is to compute
the unknowns x;, 1 < j < n. More compactly we write Ax = b, where A € R"*" is a
matrix and x € R"” and b € R™ are column vectors.

10T5 add to the confusion, in computer literature “flops” means floating-point operations per second.



1.3. Matrix Computations 29

Solving linear systems by Gaussian elimination!' is taught in elementary courses in
linear algebra. Although in theory this algorithm seems deceptively simple, the practical
solution of large linear systems is far from trivial. In the 1940s, at the beginning of the
computer age, there was a mood of pessimism among mathematicians about the possibility
of accurately solving systems even of modest order, say n = 100. Today there is a deeper
understanding of how Gaussian elimination performs in finite precision arithmetic. Linear
systems with hundred of thousands of unknowns are now routinely solved in scientific
computing.

Linear systems which (possibly after a permutation of rows and columns) are of
triangular form are particularly simple to solve. Consider a square upper triangular linear
system (m = n),

Uy ... Uip—t Uln X by
Up—1,n—1 Up—1,n Xn—1 bn—l
ul’ln xn bl’l

The matrix U is nonsingular if and only if
det(U) = w11+ - Up—1 n—1Unn 7% 0.

If this is the case the unknowns can be computed by the following recursion:

Xo =byftgn,  xi=(bi— ) upxx wi, i=n—1:—-1:1. (1.3.5)
k=i+1

Since the unknowns are solved in reverse order this is called back-substitution. Thus the

solution of a triangular system of order 7 can be computed in exactly n? flops; this is the

same amount of work as required for multiplying a vector by a triangular matrix.
Similarly, a square linear system of lower triangular form Lx = b,

I X1 b
Ly Ip 0| by
Lo b oo I Xn b,

where L is nonsingular, can be solved by forward-substitution:

i—1

xy=bi/ln.,  xi=|b=Y lux) [ L. i=2:n (1.3.6)
k=1

(Note that by reversing the order of the rows and columns an upper triangular system is
transformed into a lower triangular and vice versa.)

"'Named after the German mathematician Carl Friedrich Gauss (1777-1855), but known already in China as
early as the first century B.C. Gauss was one of the greatest mathematician of the nineteenth century. He spent
most of his life in Gottingen, where in his dissertation he gave the first proof of the fundamental theorem of algebra.
He made fundamental contributions to number theory, differential geometry, celestial mechanics, and geodesy. He
introduced the method of least squares and put it on a solid foundation.
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When implementing a matrix algorithm on a computer, the order of operations in
matrix algorithms may be important. One reason for this is the economizing of storage,
since even matrices of moderate dimensions have a large number of elements. When the
initial data are not needed for future use, computed quantities may overwrite data. To
resolve such ambiguities in the description of matrix algorithms, it is important to be able
to describe computations like those in (1.3.5) in a more precise form. For this purpose we
will use an informal programming language, which is sufficiently precise for our purpose
but allows the suppression of cumbersome details. We illustrate these concepts on the
back-substitution algorithm given above. In the following back-substitution algorithm the
solution x overwrites the data b.

ALGORITHM 1.1. Back-Substitution.

Given a nonsingular upper triangular matrix U € R"*" and a vector b € R", the following
algorithm computes x € R” such that Ux = b:

fori =n:(—1):1
5= Z uirby;
k=i+1
b = (bj — 8)/uii;
end

Here x := y means that the value of y is evaluated and assigned to x. We use the convention
that when the upper limit in a sum is smaller than the lower limit the sum is set to zero.

In the above algorithm the elements in U are accessed in arowwise manner. In another
possible sequencing of the operations the elements in U are accessed columnwise. This
gives the following algorithm:

fork=n:(-1):1

by = by fup;
fori=k—1:(=1):1
bi :=bi — uikby;
end
end

Such differences in the sequencing of the operations can influence the efficiency of the
implementation depending on how the elements in the matrix U are stored.

Gaussian elimination uses the following elementary operations, which can be per-
formed without changing the set of solutions:

* interchanging two equations,
* multiplying an equation by a nonzero scalar «,

 adding a multiple « of the ith equation to the jth equation, j # i.
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These operations correspond in an obvious way to row operations carried out on the aug-
mented matrix (A, b). By performing a sequence of such elementary operations the system
Ax = b can be transformed into an upper triangular system which, as shown above, can be
solved by recursive substitution.

In Gaussian elimination the unknowns are eliminated in a systematic way so that at
the end an equivalent triangular system is produced, which can be solved by substitution.
Consider the system (1.3.4) with m = n and assume that a;; # 0. Then we can eliminate x

from the last (n — 1) equations by subtracting from the i th equation the multiple /;; = a;, /a1y,
of the first equation. The last (n — 1) equations then become
2) (2) 2)
Gyy w0y, X2 by
6 ' '2 ' %
anZ e afm) Xn br(t )

where the new elements are given by

) ajaij
g = =a; —la;
i ij ij i1¢1;,
! an

a

b =b — by, i,j=2:n.

This is a system of (n — 1) equations in the (n — 1) unknowns x», ..., x,. All following
steps are similar. Instepk, k =1:n—1,if a,fl,? # 0, we eliminate x; from the last (n — k)
equations giving a system containing only xg41, ..., X,. We take [;; = ai(,]f)/a,?,?, and the

elements of the new system are given by

(k) (k)

as’da, .
(k+1) __ (k) ik Zkj (k) (k)
aij =4a;; — T = aij — likakj . (137)
Ay
b Y =p® — 1 b®, i j=k+1:n. (1.3.8)
The diagonal elements ay, ag, R a,ﬁ’z, which appear in the denominator in (1.3.7)

during the elimination are called pivotal elements. As long as these are nonzero, the
elimination can be continued. After (n — 1) steps we get the single equation

), — )
ann Xn = bn .

Collecting the first equation from each step we get

(1) (1) (1) 1
ay’ ap 4y, X bi )
) ) b(2)
a e a X2 P
2 n = " 1. (1.3.9)
a®) ) N by

where we have introduced the notations ai(}) = ajj, bfl) = b; for the coefficients in the

original system. Thus (1.3.4) has been reduced to an equivalent nonsingular, upper triangular
system (1.3.9), which can be solved by back-substitution.
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We remark that no extra memory space is needed to store the multipliers. When
lix = al(,]z) /a(k) is computed the element a(k“) becomes equal to zero, so the multipliers
can be stored in the lower triangular part of the matrix. Note also that if the multipliers
l;; are saved, then the operations on the vector b can be carried out at a later stage. This
observation is important in that it shows that when solving several linear systems with the

same matrix A but different right-hand sides,
AX=B, X=xi,....xp), B=(b1,...,bp,),

the operations on A only have to be carried out once.

We now show another interpretation of Gaussian elimination. For notational conve-
nience we assume that m = n and that Gaussian elimination can be carried out without
pivoting. Then Gaussian elimination can be interpreted as computing the factorization
A = LU of the matrix A into the product of a unit lower triangular matrix L and an upper
triangular matrix U.

Depending on whether the element a;; lies on, above, or below the principal diagonal
we have

(1+1) (@) . .,
g )= =a;;7, U=];

U . a(]‘H) — 0

=a; i>j.

Thus the elements g;;, 1 < i, j < n, are transformed according to

ai™V =al) —lyal), k=1:p, p=minG -1, ). (1.3.10)

If these equations are summed for k = 1 : p, we obtain

p
k+1) _ (k) (p+1) _ _
Z( /)‘a/ J _Zl"ak/

k=1

This can also be written

i—1
af} +Zl,kak, R

ajj =
O+lekak]s i>j’
or,if wedefinel;; =1,i=1:n
aj =Y Iy, wy=ay, r=min@,j). (1.3.11)

k=1
However, these equations are equivalent to the matrix equation
A=LU, L=, U= (uy).

Here L and U are lower and upper triangular matrices, respectively. Hence Gaussian
elimination computes a factorization of A into a product of a lower and an upper triangular
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matrix, the LU factorization of A. Note that since the unit diagonal elements in L need
not be stored, it is possible to store the L and U factors in an array of the same dimensions
as A.

ALGORITHM 1.2. LU Factorization.

Given a matrix A = A" € R™" and a vector b = bV € R”, the following algorithm
computes the elements of the reduced system of upper triangular form (1.3.9). It is assumed
thataV £ 0,k =1:n:

fork=1:n-1

fori=k+1:n
(k)/ (k). (k+1) =0

liv i=ay [ay's ag

for j=k+1:n
(k+l) (k) (k).
a; "= — lkayg

end
end
end

Although the LU factorization is just a different interpretation of Gaussian elimination
it turns out to have important conceptual advantages. It divides the solution of alinear system
into two independent steps:

1. the factorization A = LU,
2. solution of the systems Ly = b and Ux = y.

The LU factorization is a prime example of the decompositional approach to matrix
computation. This approach came into favor in the 1950s and early 1960s and has been
named as one of the ten algorithms having the most influence on science and engineering
in the twentieth century. This interpretation of Gaussian elimination has turned out to be
very fruitful. For example, it immediately follows that the inverse of A (if it exists) has the
factorization

=auyt=vuTL
This shows that the solution of linear system Ax = b,
x=A"'b=U"(L""D),

can be computed by solving the two triangular systems Ly = b, Ux = y. Indeed it has
been said (see Forsythe and Moler [124]) that “Almost anything you can do with A~! can
be done without it.”

Another example is the problem of solving the transposed system A7 x = b. Since

=L =UTLT,
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we have that A”x = UT (L x) = b. It follows that x can be computed by solving the two
triangular systems
Ule =b, LTx =c. (1.3.12)

In passing we remark that Gaussian elimination is also an efficient algorithm for
computing the determinant of a matrix A. It can be shown that the value of the determinant
is unchanged if a row (column) multiplied by a scalar is added to another row (column)
(see (A.2.4) in the Online Appendix). Further, if two rows (columns) are interchanged, the
value of the determinant is multiplied by (—1). Since the determinant of a triangular matrix
equals the product of the diagonal elements it follows that

det(A) = det(L) det(U) = det(U) = (—1)7a'})a - - - a® (1.3.13)

nn

where ¢ is the number of row interchanges performed.

From Algorithm 1.2 it follows that (n — k) divisions and (n — k)? multiplications and
additions are used in step k to transform the elements of A. A further (n — k) multiplications
and additions are used to transform the elements of 5. Summing over k and neglecting low
order terms, we find that the number of flops required for the reduction of Ax = b to a
triangular system by Gaussian elimination is

n—1 n—1
> 2(n—k)? ~ 20’3, > 2n—ky~n’
k=1 k=1

for the transformation of A and the right-hand side b, respectively. Comparing this with the
n? flops needed to solve a triangular system we conclude that, except for very small values
of n, the LU factorization of A dominates the work in solving a linear system. If several
linear systems with the same matrix A but different right-hand sides are to be solved, then
the factorization needs to be performed only once.

Example 1.3.3.
Linear systems where the matrix A has only a few nonzero diagonals often arise. Such
matrices are called band matrices. In particular, band matrices of the form

b1 C1
aq b2 C
A= (1.3.14)
an—2 bn—l Cn—1
an—1 bn
are called tridiagonal. Tridiagonal systems of linear equations can be solved by Gaussian
elimination with much less work than the general case. The following algorithm solves the

tridiagonal system Ax = g by Gaussian elimination without pivoting.
First compute the LU factorization A = LU, where

1 Bi ci
i 1 B

. ,Bn—l Cn—1
Yn—1 1 ,Bn
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The new elements in L and U are obtained from the recursion: Set 8, = by, and

Vi = ar/Br, Bis1 =bis1 —yrek, k=1:n-—1. (1.3.15)

(Check this by computing the product LU.) The solution to Ax = L(Ux) = g is then
obtained in two steps. First a forward-substitution to get y = Ux,

=g, Vitl = &1 — Vaves k=1:n-1, (1.3.16)

followed by a backward recursion for x,

Xn = Yn/Bn> X = O — X))/ B, k=n—-1:-1:1 (1.3.17)

In this algorithm the LU factorization requires only about n divisions and » multiplications
and additions. The solution of the lower and upper bidiagonal systems require about twice
as much work.

Stability of Gaussian Elimination

If A is nonsingular, then Gaussian elimination can always be carried through provided row
interchanges are allowed. In this more general case, Gaussian elimination computes an LU
factorization of the matrix A obtained by carrying out all row interchanges on A. In practice
row interchanges are needed to ensure the numerical stability of Gaussian elimination. We
now consider how the LU factorization has to be modified when such interchanges are
incorporated.

Consider the case when in step k of Gaussian elimination a zero pivotal element is
encountered, i.e., a,((],? = 0. (The equations may have been reordered in previous steps, but
we assume that the notations have been changed accordingly.) If A is nonsingular, then in
particular its first k£ columns are linearly independent. This must also be true for the first k
columns of the reduced matrix, and hence some element af,?, i = k : n, mustbe nonzero, say
ar(],? # 0. By interchanging rows k and r this element can be taken as pivot and it is possible
to proceed with the elimination. The important conclusion is that any nonsingular system
of equations can be reduced to triangular form by Gaussian elimination, if appropriate row
interchanges are used.

Note that when rows are interchanged in A the same interchanges must be made in
the elements of the right-hand side b. Also, the computed factors L and U will be the same
as if the row interchanges are first performed on A and the Gaussian elimination performed
without interchanges. Row interchanges can be expressed as premultiplication with certain
matrices, which we now introduce.

A permutation matrix P € R"*" is a matrix whose columns are a permutation of
the columns of the unit matrix, that is,

P=(ep,...,ep),

where (p1, ..., p,)isapermutationof (1, ..., n). Notice that in a permutation matrix every
row and every column contains just one unity element. The transpose P” of a permutation
matrix is therefore again a permutation matrix. A permutation matrix is orthogonal P7 P =
1, and hence PT affects the reverse permutation.
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A transposition matrix is a special permutation matrix,
Lij=(..,ei_1,ej,ei11,...,€j_1,¢€;,€j11),

which equals the identity matrix except with columns i and j interchanged. By construction
it immediately follows that /;; is symmetric. 15 = [ and hence Ii;I = [;;. If a matrix A is
premultiplied by /;;, this results in the interchange of rows i and j. Any permutation matrix
can be expressed as a product of transposition matrices.

If P is a permutation matrix, then P A is the matrix A with its rows permuted. Hence,
Gaussian elimination with row interchanges produces a factorization, which in matrix no-
tations can be written

PA=1LU,
where P is a permutation matrix. Note that P is uniquely represented by the integer vector
(p1, - .., pn) and need never be stored as a matrix.

Assume that in the kth step, k = 1 : n — 1, we select the pivot element from row py,
and interchange the rows k and p;. Notice that in these row interchanges also, previously
computed multipliers /;; must take part. At completion of the elimination, we have obtained
lower and upper triangular matrices L and U. We now make the important observation
that these are the same triangular factors that are obtained if we first carry out the row
interchanges k <> px, k = 1 : n — 1, on the original matrix A to get a matrix P A, where
P is a permutation matrix, and then perform Gaussian elimination on P A without any
interchanges. This means that Gaussian elimination with row interchanges computes the
LU factors of the matrix P A. We now summarize the results and prove the uniqueness of
the LU factorization.

To ensure the numerical stability in Gaussian elimination, except for special classes
of linear systems, it will be necessary to perform row interchanges not only when a pivotal
element is exactly zero. Usually it suffices to choose the pivotal element in step k as the
element of largest magnitude in the unreduced part of the kth column. This is called partial
pivoting.

Example 1.3.4.
The linear system

e 1 x1\ _ (1
(0 1)()=6)
is nonsingular for any € # 1 and has the unique solution x; = —x; = —1/(1 — €). But
when € = 0 the first step in Gaussian elimination cannot be carried out. The remedy here is
obviously to interchange the two equations, which directly gives an upper triangular system.
Suppose that in the system above € = 10~%. Then the exact solution, rounded to four

decimals, equals x = (—1.0001, 1.0001)”. But if Gaussian elimination is carried through
without interchanges, we obtain /5| = 10* and the triangular system

00001)(1 + Xy = 1,
(1 —10%x = —10%
Suppose that the computation is performed using arithmetic with three decimal digits. Then

in the last equation the coefficient ag) will be rounded to —10* and the solution computed
by back-substitution is X, = 1.000, x; = 0, which is a catastrophic result.
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If before performing Gaussian elimination we interchange the two equations, then we
get I; = 107 and the reduced system becomes

X1 +x, =0,
(1-10"%x, = 1.

The coefficient ag) is now rounded to 1, and the computed solution becomes x, = 1.000,

X1 = —1.000, which is correct to the precision carried.

In this simple example it is easy to see what went wrong in the elimination without
interchanges. The problem is that the choice of a small pivotal element gives rise to large
elements in the reduced matrix and the coefficient ay, in the original system is lost through
rounding. Rounding errors which are small when compared to the large elements in the
reduced matrix are unacceptable in terms of the original elements. When the equations are
interchanged the multiplier is small and the elements of the reduced matrix are of the same
size as in the original matrix.

In general an algorithm is said to be backward stable (see Definition 2.4.10) if the
computed solution w equals the exact solution of a problem with “slightly perturbed data.”
The more or less final form of error analysis of Gaussian elimination was given by J. H.
Wilkinson [375].12

Wilkinson showed that the computed triangular factors L and U of A obtained by
Gaussian elimination are the exact triangular factors of a slightly perturbed matrix A + E.
He further gave bounds on the elements of E. The essential condition for stability is that
no substantial growth occurs in the elements in L and U; see Theorem 2.4.12. Although
matrices can be constructed for which the element growth factor in Gaussian elimination
with partial pivoting equals 2"~!, quoting Kahan [219] we say that: “Intolerable pivot-
growth (with partial pivoting) is a phenomenon that happens only to numerical analysts
who are looking for that phenomenon.” Why large element growth rarely occurs in practice
with partial pivoting is a subtle and still not fully understood phenomenon. Trefethen and
Schreiber [360] show that for certain distributions of random matrices the average element
growth is close to n?/3 for partial pivoting.

Itis important to note that the fact that a problem has been solved by a backward stable
algorithm does not mean that the error in the computed solution is small. If the matrix A is
close to a singular matrix, then the solution is very sensitive to perturbations in the data. This
is the case when the rows (columns) of A are almost linearly dependent. But this inaccuracy
is intrinsic to the problem and cannot be avoided except by using higher precision in the
calculations. Condition numbers for linear systems are discussed in Sec.2.4.2.

An important special case of LU factorization is when the matrix A is symmetric,
AT = A, and positive definite, i.c.,

xTAx >0 VxeR", x#0. (1.3.18)

Similarly A is said to be positive semidefinite if x” Ax > 0 for all x € R". Otherwise it is
called indefinite.

12James Hardy Wilkinson (1919-1986), English mathematician who graduated from Trinity College, Cam-
bridge. He became Alan Turing’s assistant at the National Physical Laboratory in London in 1946, where he
worked on the ACE computer project. He did pioneering work on numerical methods for solving linear systems
and eigenvalue problems, and developed software and libraries of numerical routines.
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For symmetric positive definite matrices there always exists a unique factorization
A =R'R, (1.3.19)

where R is an upper triangular matrix with positive diagonal elements. An important fact
is that no pivoting is needed for stability. Indeed, unless the pivots are chosen from the
diagonal, pivoting is harmful since it will destroy symmetry.

This is called the Cholesky factorization.'> The elements in the Cholesky factor
R = (r;;) can be determined directly. The matrix equation A = RTR with R upper triangular
can be written elementwise as

i i1
aij = Zrkirkj = Zrkirkj +ririj, 1<i<j=<n (1.3.20)
k=1 k=1

These are n(n + 1)/2 equations for the unknown elements in R. Solving for 7;; from the
corresponding equation in (1.3.20), we obtain

1

i1 i 172
rij = (aij - Zrkirkj)/ri,-, i<, rij = <a,-,~ — r,fj) . (1.3.21)
k=

k=1 1

If properly sequenced, these equations can be used in a recursive fashion to compute the
elements in R, for example, one row at a time. The resulting algorithm requires n square
roots and approximately 7 /3 flops, which is about half the work of an LU factorization.

We remark that the Cholesky factorization can be carried out also for a symmetric
indefinite matrix, if at each step a positive pivot is chosen from the diagonal. However, for
a symmetric indefinite matrix, such as the matrix in Example 1.3.4 with € < 1, no Cholesky
factorization can exist.

1.3.3 Sparse Matrices and Iterative Methods

Following Wilkinson and Reinsch [381], a matrix A will be called sparse if the percentage
of zero elements is large and its distribution is such that it is economical to take advantage of
their presence. The nonzero elements of a sparse matrix may be concentrated on a narrow
band centered on the diagonal. Alternatively, they may be distributed in a less systematic
manner.

Large sparse linear systems arise in numerous areas of application, such as the numeri-
cal solution of partial differential equations, mathematical programming, structural analysis,
chemical engineering, electrical circuits, and networks. Large could imply a value of n in
the range 1000-1,000,000. Figure 1.3.1 shows a sparse matrix of order n = 479 with 1887
nonzero elements (or 0.9%) that arises from a model of an eight stage chemical distillation
column.

The first task in solving a sparse system by Gaussian elimination is to permute the rows
and columns so that not too many new nonzero elements are created during the elimination.

13 André-Louis Cholesky (1875-1918), a French military officer involved in geodesy and surveying in Crete and
North Africa just before World War One.
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Figure 1.3.1. Nonzero pattern of a sparse matrix from an eight stage chemical
distillation column.

Equivalently, we want to choose permutation matrices P and Q such that the LU factors of
P AQ are as sparse as possible. Such a reordering will usually nearly minimize the number
of arithmetic operations.

To find an optimal ordering which minimizes the number of nonzero elements in L
and U is unfortunately an intractable problem, because the number of possible orderings
of rows and columns are (n!)?. Fortunately, there are heuristic ordering algorithms which
do a good job. In Figure 1.3.2 we show the reordered matrix PAQ and its LU factors.
Here L and U contain together 5904 nonzero elements or about 2.6%. The column ordering
was obtained using a MATLAB version of the so-called column minimum degree ordering.
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Figure 1.3.2. Nonzero structure of the matrix A (left) and L + U (right).
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For the origin and details of this code we refer to Gilbert, Moler, and Schreiber [156].
We remark that, in general, some kind of stability check on the pivot elements must be
performed during the factorization.

For many classes of sparse linear systems iterative methods are more efficient to
use than direct methods such as Gaussian elimination. Typical examples are those arising
when a differential equation in two or three dimensions is discretized. In iterative methods
a sequence of approximate solutions is computed, which in the limit converges to the exact
solution x. Basic iterative methods work directly with the original matrix A and therefore
have the added advantage of requiring only extra storage for a few vectors.

In a classical iterative method due to Richardson [302], starting from x©@ = 0, a
sequence x® is defined by

x* D = x® Lo — Ax®), k=0,1,2,..., (1.3.22)

where @ > 0 is a parameter to be chosen. It follows easily from (1.3.22) that the error in
x® satisfies x*+D — x = (I — wA)(x® — x), and hence

x® —x = — 0A O —x).
It can be shown that, if all the eigenvalues A; of A are real and satisfy
O<a<i <b,

then x® will converge to the solution, when k — oo, for 0 < @ < 2/b.

Iterative methods are used most often for the solution of very large linear systems,
which typically arise in the solution of boundary value problems of partial differential
equations by finite difference or finite element methods. The matrices involved can be
huge, sometimes involving several million unknowns. The LU factors of matrices arising
in such applications typically contain orders of magnitude more nonzero elements than
A itself. Hence, because of the storage and number of arithmetic operations required,
Gaussian elimination may be far too costly to use. In a typical problem for the Poisson
equation (1.1.21) the function is to be determined in a plane domain D, when the values
of u are given on the boundary dD. Such boundary value problems occur in the study
of steady states in most branches of physics, such as electricity, elasticity, heat flow, and
fluid mechanics (including meteorology). Let D be a square grid with grid size 4, i.e.,
xp =xo+ih,y; =y+jh,0<i < N+1,0 =< j < N+ 1. Then the difference
approximation yields

2
Uijr1 Fuioyj Fwivrj +ui o —4ui ;=7 f(xi, y))

(1 <i,j < N). Thisis ahuge system of linear algebraic equations; one equation for each in-
terior gridpoint, altogether N 2 unknowns and equations. (Notethatu; o, u; y41, Uo,j, UN+1,j
are known boundary values.) To write the equations in matrix-vector form we order the
unknowns in a vector,

u= (u1,17"'su1,N7u2,1’"'7”2,1\’1"'7uN,ls"'7uN,N)7

the so-called natural ordering. If the equations are ordered in the same order we get a system
Au = b, where A is symmetric with all nonzero elements located in five diagonals; see
Figure 1.3.3 (left).
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Figure 1.3.3. Structure of the matrix A (left) and L + U (right) for the Poisson
problem, N = 20 (rowwise ordering of the unknowns).

In principle Gaussian elimination can be used to solve such systems. But even taking
symmetry and the banded structure into account, this would require %-N 4 multiplications,
since in the LU factors the zero elements inside the outer diagonals will fill in during the
elimination, as shown in Figure 1.3.3 (right).

The linear system arising from the Poisson equation has several features common to
boundary value problems for other linear partial differential equations. One of these is that
only a tiny fraction of the elements in each row of A are nonzero. Therefore, each iteration
in Richardson’s method requires only about k N2 multiplications, i.e., k multiplications per
unknown. Using iterative methods which take advantage of the sparsity and other features
does allow the efficient solution of such systems. This becomes even more essential for
three-dimensional problems.

As early as 1954, a simple atmospheric model was used for weather forecasting on an
electronic computer. The net covered most of North America and Europe. During a 48 hour
forecast, the computer solved (among other things) 48 Poisson equations (with different
right-hand sides). This would have been impossible at that time if the special features of
the system had not been used.

1.3.4 Software for Matrix Computations

In most computers in use today the key to high efficiency is to avoid as much as possible
data transfers between memory, registers, and functional units, since these can be more
costly than arithmetic operations on the data. This means that the operations have to be
carefully structured. One observation is that Gaussian elimination consists of three nested
loops, which can be ordered in 3 - 2 - 1 = 6 ways. Disregarding the right-hand side vector
b, each version does the operations

k+1) ,__ (k) (k) (k) , (k)
a;’ = — g Ay [agy
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and only the ordering in which they are done differs. The version given above uses row
operations and may be called the “kij” variant, where k refers to step number, i to row
index, and j to column index. This version is not suitable for programming languages like
Fortran 77, in which matrix elements are stored sequentially by columns. In such a language
the form kji should be preferred, as well as a column oriented back-substitution rather than
that in Algorithm 1.1.

The first collection of high quality linear algebra software was a series of algorithms
written in Algol 60 that appeared in Wilkinson and Reinsch [381]. This contains 11 sub-
routines for linear systems, least squares, and linear programming, and 18 routines for the
algebraic eigenvalue problem.

The Basic Linear Algebra Subprograms (BLAS) have become an important tool for
structuring linear algebra computations. These are now commonly used to formulate matrix
algorithms and have become an aid to clarity, portability, and modularity in modern software.
The original set of BLAS [239], introduced in 1979, identified frequently occurring vector
operations in matrix computation such as scalar product, adding of a multiple of one vector
to another, etc. For example, the operation

yi=ox+Yy

in single precision is named SAXPY. By carefully optimizing them for each specific com-
puter, performance was enhanced without sacrificing portability. These BLAS were adopted
in the collections of Fortran subroutines LINPACK (see [101]) for linear systems and
EISPACK (see [133]) for eigenvalue problems.

For modern computers it is important to avoid excessive data movements between
different parts of memory hierarchy. To achieve this, so-called level 3 BLAS were introduced
in the 1990s. These work on blocks of the full matrix and perform, for example, the
operations

C:=aAB+ BC, C:=aA"B + BC, C :=aABT + BC.

Level 3 BLAS use O(n?) data but perform O(n?) arithmetic operations. This gives a
surface-to-volume effect for the ratio of data movement to operations.

LAPACK (see [6]) is a linear algebra package initially released in 1992. LAPACK
was designed to supersede and integrate the algorithms in both LINPACK and EISPACK.
It achieves close to optimal performance on a large variety of computer architectures by
expressing as much of the algorithm as possible as calls to level 3 BLAS. This is also an
aid to clarity, portability, and modularity. LAPACK today is the backbone of the interactive
matrix computing system MATLAB.

Example 1.3.5.

In 1974 the authors wrote in [89, Sec.8.5.3] that “a full 1000 x 1000 system of
equations is near the limit at what can be solved at a reasonable cost.” Today systems of
this size can easily be handled on a personal computer. The benchmark problem for the
Japanese Earth Simulator, one of the world’s fastest computers in 2004, was the solution
of a system of size 1,041,216 on which a speed of 35.6 x 10'? operations per second was
measured. This is a striking illustration of the progress in high speed matrix computing that
has occurred in these 30 years!
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Review Questions

1.3.1 How many operations are needed (approximately) for
(a) the multiplication of two square matrices A, B € R"*"?
(b) the LU factorization of a matrix A € R"*"?
(c) the solution of Ax = b, when the triangular factorization of A is known?

1.3.2 Show that if the kth diagonal entry of an upper triangular matrix is zero, then its first
k columns are linearly dependent.

1.3.3 What is the LU factorization of an n by n matrix A, and how is it related to Gaussian
elimination? Does it always exist? If not, give sufficient conditions for its existence.
1.3.4 (a) For what type of linear systems are iterative methods to be preferred to Gaussian
elimination?
(b) Describe Richardson’s method for solving Ax = b. What can you say about the
error in successive iterations?

1.3.5 What does the acronym BLAS stand for? What is meant by level 3 BLAS, and why
are they used in current linear algebra software?

Problems and Computer Exercises

1.3.1 Let A be a square matrix of order n and k a positive integer such that 27 < k < 2°+!,
Show how A* can be computed in at most 2 pn? multiplications.
Hint: Write k in the binary number system and compute A%, A*, A%, ..., by succes-
sive squaring; e.g., 13 = (1101), and A3 = A8A*A.

1.3.2 (a) Let A and B be square upper triangular matrices of order n. Show that the product
matrix C = AB is also upper triangular. Determine how many multiplications are
needed to compute C.

(b) Show that if R is an upper triangular matrix with zero diagonal elements, then
R" =0.

1.3.3 Show that there cannot exist an LU factorization

A= (0 Yy O (un un
—\1 1) 121 122 0 Uz '

Hint: Equate the (1, 1)-elements and deduce that either the first row or the first column

in LU must be zero.
1.3.4 (a) Consider the special upper triangular matrix of order n,
a a
a PRI a
1 a

1 a
1

U,(a) =
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Determine the solution x to the triangular system U, (a)x = e,, wheree, = (0,0, ...,
0, DT is the nth unit vector.

(b) Show that the inverse of an upper triangular matrix is also upper triangular. Deter-
mine for n = 3 the inverse of U,,(a). Try also to determine U, (a)~! foran arbitrary n.

Hint: Note that UU ™! = U~'U = I, the identity matrix.

1.3.5 A matrix H, of order n such that #;; = 0 whenever i > j + 1 is called an upper
Hessenberg matrix. For n = 5 it has the structure

hi hiz hiz hiy has

hat  hay hos  hoy  hos

Hs=| 0  h3y h3z hi hss
0 0 4z hay haus

0 0 0 hsy hss

(a) Determine the approximate number of operations needed to compute the LU
factorization of H,, without pivoting.

(b) Determine the approximate number of operations needed to solve the linear system
H,x = b, when the factorization in (a) is given.

1.3.6 Compute the product |L||U| for the LU factors with and without pivoting of the
matrix in Example 1.3.4. (Here |A| denotes the matrix with elements |a;;].)

1.3.7 Let A € R"" be a given matrix. Show that if Ax = y has at least one solution
for any y € R”, then it has exactly one solution for any y € R”. (This is a useful
formulation for showing uniqueness of approximation formulas.)

1.4 The Linear Least Squares Problem

A basic problem in science is to fit a mathematical model to given observations subject to
errors. As an example, consider observations (t;, y;), i = 1 : m, to be fitted to a model
described by a scalar function y(t) = f(c,t), where ¢ € R" is a parameter vector to be
determined. There are two types of shortcomings to take into account: errors in the input
data, and approximations made in the particular model (class of functions, form). We shall
call these measurement errors and errors in the model, respectively.

Clearly the more observations that are available the more accurately will it be possible
to determine the parameters in the model. One can also see this problem as analogous to
the task of a communication engineer, to filter away noise from the signal. These ques-
tions are connected with both mathematical statistics and the mathematical discipline of
approximation theory.

A simple example is when the model is linear in ¢ and of the form

Yy =Y cip0),
j=1
where ¢;(t) are given (possibly nonlinear) functions. Given m > n measurements the

resulting equations
n

yi = ch¢j([i)a i=1:m,

j=1
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form an overdetermined linear system. If we set A € R"*", a;; = ¢;(t;), then the system
can be written in matrix form as Ac = y. In general such a system is inconsistent and has
no solution. But we can try to find a vector ¢ € R" such that Ac is the “best” approximation
to y. This is equivalent to minimizing the size of the residual vector »r = y — Ac.

There are many possible ways of defining the best solution to such an inconsistent
linear system. A choice which can often be motivated for statistical reasons, and which
also leads to a simple computational problem, is to take as the solution a vector ¢, which
minimizes the sum of the squared residuals, that is,

m
. 2 . 2
mmeri = min |y — Ac]3. (1.4.1)
i=1
Here we have used the notation
Ixll = (x1 1?4+ + %) = To)'/?

for the Euclidean length of a vector x (see Online Appendix A). We call (1.4.1) a linear least
squares problem and any minimizer x a least squares solution of the system Ax = b.

Gauss claims to have discovered the method of least squares in 1795 when he was 18
years old. He used it in 1801 to successively predict the orbit of the asteroid Ceres.

1.4.1 Basic Concepts in Probability and Statistics

We now introduce, without proofs, some basic concepts, formulas, and results from statistics
which will be used later. Proofs may be found in most texts on these subjects.

The distribution function of a random variable X is denoted by the nonnegative and
nondecreasing function

F(x)=Pr{X <x}, F(—oc0)=0, F(oc0)=1.

If F(x) is differentiable, the (probability) density function'* is f(x) = F’(x). Note that

£ =0, /f(x)dx=1
R

and
PriX € [x,x + Ax]} = f(x) Ax 4+ o(Ax).

In the discrete case X can only take on discrete values x;,i = 1 : N, and
PriX=x;}=p;, i=1:N,

where p; > 0and ), p; = 1.

141n old literature a density function is often called a frequency function. The term cumulative distribution is also
used as a synonym for distribution function. Unfortunately, distribution or probability distribution is sometimes
used in the meaning of a density function.



46 Chapter 1. Principles of Numerical Calculations

The mean or the expectation of X is

o
xf(x)dx, continuous case,

—00
EX)=1 N
PiXi, discrete case.

i=1
The variance of X equals
o =var(X) = E(X —w)?*), p=EX),

and 0 = +/var(X) is the standard deviation. The mean and standard deviation are fre-
quently used as measures of the center and spread of a distribution.

Let Xy, k = 1 : n, be random variables with mean values w;. Then the covariance
matrix is V = {0}’ ,_;, where

ojr = cov(X;, Xp) = E((X; — ) (X — i)
= E(X))E(Xi) — 1.

If cov(X;, X;) =0, then X; and X are said to be uncorrelated.

If the random variables X, k = 1 : n, are mutually uncorrelated, then V is a diagonal
matrix.

Some formulas for the estimation of mean, standard deviation, etc. from results of sim-
ulation experiments or other statistical data are given in the computer exercises of Sec. 2.3.

1.4.2 Characterization of Least Squares Solutions

Let y € R™ be a vector of observations that is related to a parameter vector ¢ € R” by the
linear relation

y=Ac+e, AeR™" (1.4.2)

where A is a known matrix of full column rank and € € R” is a vector of random errors. We
assume here that ¢;, i = 1 : m, has zero mean and that ¢; and €;, i # j, are uncorrelated,
ie.,

E(e) =0, V(e) =o’l.

The parameter c is then a random vector which we want to estimate in terms of the known
quantities A and y. Let y”c be a linear functional of the parameter ¢ in (1.4.2). We say
that @ = 0(A, y) is an unbiased linear estimator of y” ¢ if E(8) = yTc. It is a best linear
unbiased estimator if 0 has the smallest variance among all such estimators.

The following theorem!® places the method of least squares on a sound theoretical
basis.

5This theorem is originally due to C. F. Gauss (1821). His contribution was somewhat neglected until redis-
covered by the Russian mathematician A. A. Markov in 1912.
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Theorem 1.4.1 (Gauss—Markov Theorem).

Consider a linear model (1.4.2), where € is an uncorrelated random vector with zero
mean and covariance matrix V. = o*1. Then the best linear unbiased estimator of any
linear functional y' c is yT &, where

¢ = (ATA) ATy (1.4.3)

is the least squares estimator obtained by minimizing the sum of squares || f — Acllg. Fur-
thermore, the covariance matrix of the least squares estimate ¢ equals

V(&) =a%(ATA) !, (1.4.4)

and
s* = |ly — A¢ll3/(m — n) (1.4.5)

is an unbiased estimate of o, i.e. E(s?) = 2.
Proof. See Zelen [389, pp. 560-561]. a

The set of all least squares solutions can also be characterized geometrically. For this
purpose we introduce two fundamental subspaces of R, the range of A and the null space
of AT, defined by

R(A) = {z e R"| z = Ax, x € R"}, (1.4.6)
NAT ={y eR"| ATy =0}. (1.4.7)

Ifz € R(A)and y € N(AT), then z"y = xT ATy = 0, which shows that N'(AT) is the
orthogonal complement of R(A).

By the Gauss—Markov theorem any least squares solution to an overdetermined linear
system Ax = b satisfies the normal equations

ATAx = ATb. (1.4.8)
The normal equations are always consistent, since the right-hand side satisfies
ATb e R(AT) = R(ATA).
Therefore, a least squares solution always exists, although it may not be unique.
Theorem 1.4.2.

The vector x minimizes |b — Ax ||, if and only if the residual vector r = b — Ax is
orthogonal to R(A) or, equivalently,

AT (b — Ax) = 0. (1.4.9)

Proof. Let x be a vector for which AT (b — Ax) = 0. For any y € R”, it holds that
b— Ay = (b— Ax) + A(x — y). Squaring this and using (1.4.9) we obtain

b — Ayll3 = b — Ax|l3 + |A(x — VI3 = b — Ax]l3,
where equality holds only if A(x —y) = 0.
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Now assume that AT (b — Ax) = 7 #£ 0. If x — y = —ez, we have for sufficiently
small € #~ 0

Ib — Ayl3 = llb — Ax|)3 + €| Az|)3 — 2€(A2)" (b — Ax)
= [Ib — Ax|3 + €| Az|l3 — 2¢|zll3 < |6 — Ax]3,
and thus x does not minimize || — Ax||>. a
From Theorem 1.4.2 it follows that a least squares solution x decomposes the right-
hand side into two orthogonal components
b=Ax+r, r=b—Ax e N(AT), Ax e R(A). (1.4.10)

This geometric interpretation is illustrated in Figure 1.4.1. Note that although the solution
x to the least squares problem may not be unique, the decomposition (1.4.10) always is
unique.

r=>b— Ax
R(A)

[

X

Figure 1.4.1. Geometric characterization of the least squares solution.

We now give a necessary and sufficient condition for the least squares solution to be
unique.

Theorem 1.4.3.

The matrix ATA is positive definite and hence nonsingular if and only if the columns
of A are linearly independent, that is, when rank (A) = n. In this case the least squares
solution x is unique and given by

x = (ATA) AT p. (1.4.11)

Proof. If the columns of A are linearly independent, then x # 0 = Ax # 0. Therefore,
x #0= xTATAx = ||Ax||3 > 0, and hence ATA is positive definite.

On the other hand, if the columns are linearly dependent, then for some xy # 0 we
have Axg = 0. Then xJ ATAxy = 0, and therefore ATA is not positive definite. When ATA
is positive definite it is also nonsingular and (1.4.11) follows. 0

When A has full column rank A”A is symmetric and positive definite and the normal
equations can be solved by computing the Cholesky factorization A”ZA = RTR. The normal
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equations then become R"Rx = A”h, which decomposes as
RTz=A"Tb, Rx = z.

The first system is lower triangular and z is computed by forward-substitution. Then x is
computed from the second upper triangular system by back-substitution. For many practical
problems this method of normal equations is an adequate solution method, although its
numerical stability is not the best.

Example 1.4.1.

The comet Tentax, discovered in 1968, is supposed to move within the solar system.
The following observations of its position in a certain polar coordinate system have been
made:

r 270 200 161 120 1.02
¢ | 48 67° 83 108° 126°

By Kepler’s first law the comet should move in a plane orbit of elliptic or hyperbolic form,
if the perturbations from planets are neglected. Then the coordinates satisfy

r=p/(l—ecosg),
where p is a parameter and e the eccentricity. We want to estimate p and e by the method

of least squares from the given observations.
We first note that if the relationship is rewritten as

1/p—(e/p)cos¢ =1/r,

it becomes linear in the parameters x; = 1/p and x, = e/p. We then get the linear system
Ax = b, where

1.0000 —0.6691 0.3704
1.0000 —0.3907 0.5000
A= 1.0000 -0.1219 |, b= 0.6211
1.0000  0.3090 0.8333
1.0000  0.5878 0.9804

The least squares solution is x = (0.6886 0.4839)7 giving p = 1/x; = 1.4522 and
finally e = px, = 0.7027.

By (1.4.10), if x is a least squares solution, then Ax is the orthogonal projection of b
onto R(A). Thus orthogonal projections play a central role in least squares problems. In
general, a matrix P; € R™*™ is called a projector onto a subspace S C R™ if and only if
it holds that

Pv=v YveS, Pl =P. (1.4.12)
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An arbitrary vector v € R™ can then be decomposed as v = Pjv + P,v = v; + vy, where
P, = I — Pj. In particular, if P; is symmetric, P; = PIT, we have

Pl Pov=P (I-P)v=(P,—P)Hv=0 VveR"

and it follows that P/ P, = 0. Hence v] v, = v" P/ P,u = O forallv € R",i.e., vy L v;.
In this case P, is the orthogonal projector onto S, and P, = I — P is the orthogonal
projector onto S*.

In the full column rank case, rank (A) = n, of the least squares problem, the residual
r = b — Ax can be written r = b — Pr )b, where

Pray = A(ATA)TTAT (1.4.13)

is the orthogonal projector onto R(A). If rank (A) < n, then A has a nontrivial null space.
In this case if * is any vector that minimizes ||Ax — b||,, then the set of all least squares
solutions is

S=kx=x+y|yeNA}L (1.4.14)
In this set there is a unique solution of minimum norm characterized by x L. N'(A), which
is called the pseudoinverse solution.

1.4.3 The Singular Value Decomposition

In the past the conventional way to determine the rank of a matrix A was to compute the
row echelon form by Gaussian elimination. This would also show whether a given linear
system is consistent or not. However, in floating-point calculations it is difficult to decide
if a pivot element, or an element in the transformed right-hand side, should be considered
as zero or nonzero. Such questions can be answered in a more satisfactory way by using
the singular value decomposition (SVD), which is of great theoretical and computational
importance.'®

The geometrical significance of the SVD is as follows: The rectangular matrix A €
R"™*" m > n, represents a mapping y = Ax from R” to R”. The image of the unit sphere
x|l = 1is a hyper ellipse in R™ with axes equal to oy > 0 - -+ > ¢, > 0. In other words,
the SVD gives orthogonal bases in these two spaces such that the mapping is represented
by the generalized diagonal matrix ¥ € R™*". This is made more precise in the following
theorem, a constructive proof of which will be given in Volume II.

Theorem 1.4.4 (Singular Value Decomposition).

Any matrix A € R™*" of rank r can be decomposed as

A=UsVT, T= <20 8) e R, (14.15)
where X, = diag (o1, 02, ..., 0,) is diagonal and
U= (u,...,u,) € R™", V=(,...,v,) € R (1.4.16)

16The SVD was published by Eugenio Beltrami in 1873 and independently by Camille Jordan in 1874. Its use
in numerical computations is much more recent, since a stable algorithm for computing the SVD did not become
available until the publication of Golub and Reinsch [167] in 1970.
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are square orthogonal matrices, UTU = I,,, VTV = I,,. Here
op>20>--2>0,>0

are the r < min(m, n) nonzero singular values of A. The vectors u;, i = 1 : m, and vj,
Jj = 1 : n, are left and right singular vectors. (Note that if r = n and/or r = m, some of
the zero submatrices in X disappear.)

The singular values of A are uniquely determined. For any distinct singular value
0j # 0i,1 # j, the corresponding singular vector v; is unique (up to a factor 1). For
a singular value of multiplicity p the corresponding singular vectors can be chosen as any
orthonormal basis for the unique subspace of dimension p that they span. Once the singular
vectors vj, 1 < j < r, have been chosen, the vectors u;, 1 < j < r, are uniquely
determined, and vice versa, by

1 1
uj:;Avj, v,:;ATu,», j=1:r (1.4.17)
J J

By transposing (1.4.15) we obtain AT = VETUT, which is the SVD of AT. Ex-
panding (1.4.15), the SVD of the matrix A can be written as a sum of » matrices of rank
one,

A=Y o] (1.4.18)
i=1

The SVD gives orthogonal bases for the range and null space of A and A”. Suppose that
the matrix A has rank r < min(m, n). It is easy to verify that

R(A) = span (uy, ..., u,), N(ATY = span (u, 41, ..., up),  (1.4.19)
R(AT) = span (v, ..., v,), N(A) = span (V,41, ..., Uy). (1.4.20)

It immediately follows that
R(A)T =N, N(A)*T =RAD; (1.4.21)

i.e., N'(AT) is the orthogonal complement to R (A), and AV (A) is the orthogonal complement
to R(AT). This result is sometimes called the fundamental theorem of linear Igebra.

We remark that the SVD generalizes readily to complex matrices. The SVD of a
matrix A € C™*" is

— VIT _ Zr 0 mxn
A = (U, U2)2<V2T>, Y= ( 0 0) e R™", (1.4.22)
where the singular values oy, 03, ..., o, are real and nonnegative, and U and V are square

unitary matrices, UYU = I,,, VHV = I,. (Here A denotes the conjugate transpose of A.)

The SVD can also be used to solve linear least squares problems in the case when the
columns in A are linearly dependent. Then there is a vector ¢ # 0 such that Ac = 0 and
the least squares solution is not unique, then there exists a unique least squares solution of
minimum Euclidean length, which solves the least squares problem

min [xf2, S = {x € R"||lb— Ax[2 = min}. (1.4.23)
xXe
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In terms of the SVD (1.4.22) of A the solution to (1.4.23) can be written x = ATh, where
the matrix A" is

. Lol =10
AT = (v, v X' <U1T> = ( (’) 0) e R™™", (1.4.24)
2

The matrix AT is unique and called the pseudoinverse of A, and x = A'b is the pseudoin-
verse solution. Note that problem (1.4.23) includes as special cases the solution of both
overdetermined and underdetermined linear systems.

The pseudoinverse AT is often called the Moore-Penrose inverse. Moore developed
the concept of the general reciprocal in 1920. In 1955 Penrose [288] gave an elegant
algebraic characterization and showed that X = A" is uniquely determined by the four
Penrose conditions:

(1) AXA= A, (2) XAX =X, (1.4.25)
3) AX)T = AX, 4 (XAT = XA. (1.4.26)

It can be directly verified that X = AT given by (1.4.24) satisfies these four conditions. In
particular this shows that A" does not depend on the particular choices of U and V in the
SVD.

The orthogonal projections onto the four fundamental subspaces of A have the fol-
lowing simple expressions in terms of the SVD:

Pray = AAT = U UT, Pyan =1 — AAT = U,UY, (1.4.27)
Prany=ATA=w V], Pyay=1—A"A=WV].

These first expressions are easily verified using the definition of an orthogonal projection
and the Penrose conditions.

1.4.4 The Numerical Rank of a Matrix

Let A be a matrix of rank r < min(m, n), and E a matrix of small random elements. Then
it is most likely that the perturbed matrix A + E has maximal rank min(m, n). However,
since A + E is close to a rank deficient matrix, it should be considered as having numerical
rank equal to r. In general, the numerical rank assigned to a matrix should depend on some
tolerance §, which reflects the error level in the data and/or the precision of the arithmetic
used.

It can be shown that perturbations of an element of a matrix A result in perturbations
of the same, or smaller, magnitude in its singular values. This motivates the following
definition of numerical rank.

Definition 1.4.5.
A matrix A € R™*" is said to have numerical §-rank equal to k if

G1= =0y >8 =041 = >0, p=min(m,n), (1.4.28)

where o; are the singular values of A. Then the right singular vectors (Vg+1, - .., V,) form
an orthogonal basis for the numerical null space of A.
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Definition 1.4.5 assumes that there is a well-defined gap between oy and 0. When
this is not the case the numerical rank of A is not well defined.

Example 1.4.2.
Consider an integral equation of the first kind,

1
/ k(s,t)f(s)ds = g(t), k(s,t) = 6_(‘Y_t)2,
0

on —1 <t < 1. In order to solve this equation numerically it must first be discretized. We
introduce a uniform mesh for s and ¢ on [—1, 1] with step size h = 2/n, s; = —1 + ih,
tj = =14 jh,i, j =0:n. Approximating the integral with the trapezoidal rule gives

hY wik(si ) f () = g(t)), j=0:n,

i=0
where w; = 1,i # 0, n, and wy = w, = 1/2. These equations form a linear system

Kf =g, K e R(n+l)><(n+l)7 f’g = RI’H-].

For n = 100 the singular values oy of the matrix K were computed in IEEE double
precision with a unit roundoff level of 1.11 - 107!® (see Sec.2.2.3). They are displayed in
logarithmic scale in Figure 1.4.2. Note that for k > 30 all o are close to roundoff level,
so the numerical rank of K certainly is smaller than 30. This means that the linear system
Kf = g is numerically underdetermined and has a meaningful solution only for special
right-hand sides g.

107k W

107 ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100

Figure 1.4.2. Singular values of a numerically singular matrix.
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Equation (1.4.28) is a Fredholm integral equation of the first kind. It is known that
such equations are ill-posed in the sense that the solution f does not depend continuously on
the right-hand side g. This example illustrate how this inherent difficulty in the continuous
problem carries over to the discretized problem.

Review Questions

1.4.1 State the Gauss—Markov theorem.

1.4.2 Show that the matrix ATA € R™" of the normal equations is symmetric and positive
semidefinite, i.e., xT (ATA)x > 0, for all x # 0.

1.4.3 Give two geometric conditions which are necessary and sufficient conditions for x to
be the pseudoinverse solution of Ax = b.

1.4.4 (a) Which are the four fundamental subspaces of a matrix? Which relations hold
between them?
(b) Show, using the SVD, that Pr4) = AAT and Prary = ATA.

1.4.5 (a) Construct an example where (AB)T # BTA™.

(b) Show that if A is anm x r matrix, B is an r X n matrix, and rank (A) = rank (B) =
r, then (AB)" = BTAT.

Problems and Computer Exercises

1.4.1 In order to estimate the height above sea level for three points A, B, and C, the
difference in altitude was measured between these points and points D, E, and F at
sea level. The measurements obtained form a linear system in the heights x4, xp, and
xc of A, B, and C:

—_ o= O O =
S = = O = O
—_——_ 0 = O O

N
= = =
a = >
S—"
I

—_ DN = W DN =

Determine the least squares solution and verify that the residual vector is orthogonal
to all columns in A.

1.4.2 Consider the least squares problem min, ||[Ax — b||§, where A has full column rank.

Partition the problem as
2
(A, Ay) (’” ) — bH .
X2 2

By a geometric argument show that the solution can be obtained as follows. First

min
X1,X2
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compute x, as the solution to the problem

min || P} (Axa — )13,
X2

where P/t = I — Py, is the orthogonal projector onto N'(AT). Then compute x; as
the solution to the problem

min [|A1x; — (b — Ayx)) 3.
X1

1.5 Numerical Solution of Differential Equations
1.5.1 Euler’s Method

The approximate solution of differential equations is a very important task in scientific
computing. Nearly all the areas of science and technology contain mathematical models
which lead to systems of ordinary (or partial) differential equations. For the step by step
simulation of such a system a mathematical model is first set up; i.e., state variables are
set up which describe the essential features of the state of the system. Then the laws are
formulated, which govern the rate of change of the state variables, and other mathematical
relations between these variables. Finally, these equations are programmed for a computer
to calculate approximately, step by step, the development in time of the system.

The reliability of the results depends primarily on the quality of the mathematical
model and on the size of the time step. The choice of the time step is partly a question of
economics. Small time steps may give you good accuracy, but also long computing time.
More accurate numerical methods are often a good alternative to the use of small time steps.

The construction of a mathematical model is not trivial. Knowledge of numerical
methods and programming helps in that phase of the job, but more important is a good
understanding of the fundamental processes in the system, and that is beyond the scope
of this text. It is, however, important to realize that if the mathematical model is bad, no
sophisticated numerical techniques or powerful computers can stop the results from being
unreliable, or even harmful.

A mathematical model can be studied by analytic or computational techniques. Ana-
lytic methods do not belong to this text. We want, though, to emphasize that the comparison
of results obtained by applying analytic methods, in the special cases when they can be
applied, can be very useful when numerical methods and computer programs are tested. We
shall now illustrate these general comments using a particular example.

An initial value problem for an ordinary differential equation is to find y () such that

dy

5 =Sy, YO =c
The differential equation gives, at each point (¢, y), the direction of the tangent to the solution
curve which passes through the point in question. The direction of the tangent changes
continuously from point to point, but the simplest approximation (which was proposed as
early as the eighteenth century by Euler!”) is that one studies the solution for only certain

17Leonhard Euler (1707-1783), incredibly prolific Swiss mathematician. He gave fundamental contributions to
many branches of mathematics and to the mechanics of rigid and deformable bodies, as well as to fluid mechanics.
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valuesof t =t, =nh,n =0,1,2,..., (his called the “time step” or “step length”’) and
assumes that dy/dt is constant between the points. In this way the solution is approximated
by a polygon (Figure 1.5.1) which joins the points (¢,, y,),n =0, 1,2, ..., where

Yn+1 —

Yo =c, - M b, ). (1.5.1)

Thus we have the simple difference equation known as Euler’s method:

Yo = ¢, Yl = Yn +hfa, y0), n=0,1,2,.. .. (1.5.2)

During the computation, each y, occurs first on the left-hand side, then recurs later on the
right-hand side of an equation. (One could also call (1.5.2) an iteration formula, but one
usually reserves the word “iteration” for the special case where a recursion formula is used
solely as a means of calculating a limiting value.)
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Figure 1.5.1. Approximate solution of the differential equation dy/dt = y, yo =
0.25, by Euler’s method with h = 0.5.

1.5.2  An Introductory Example

Consider the motion of a ball (or a shot) under the influence of gravity and air resistance.
It is well known that the trajectory is a parabola, when the air resistance is neglected and
the force of gravity is assumed to be constant. We shall still neglect the variation of the
force of gravity as well as the curvature and the rotation of the Earth. This means that
we forsake serious applications to, for example, satellites. We shall, however, take the air
resistance into account. We neglect the rotation of the shot around its own axis. Therefore,
we can treat the problem as motion in a plane, but we have to forsake the application to, for
example, table tennis, baseball, or a rotating projectile. Now we have introduced a number
of assumptions, which define our model of reality.

The state of the ball is described by its position (x, y) and velocity (u, v), each of
which has two Cartesian coordinates in the plane of motion. The x-axis is horizontal, and the
y-axis is directed upward. Assume that the air resistance is a force P such that the direction
is opposite to the velocity, and the strength z is proportional to the square of the speed and
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to the square of the radius R of the shot. If we denote by P, and P, the components of P
along the x and y directions, respectively, we can then write

cR?
P, = —mzu, P, = —mzv, 7= —u?+2, (1.5.3)
’ m

where m is the mass of the ball.

For the sake of simplicity we assume that c is a constant. It actually depends on the
density and the viscosity of the air. Therefore, we have to forsake the application to cannon
shots, where the variation of the density with height is important. If one has access to a
good model of the atmosphere, the variation of ¢ would not make the numerical simulation
much more difficult. This contrasts with analytic methods, where such a modification is
likely to mean a considerable complication. In fact, even with a constant c, a purely analytic
treatment offers great difficulties.

Newton’s law of motion tells us that

mdu/dt = Py, mdv/dt = —mg + Py, (1.5.4)

where the term —myg is the force of gravity. Inserting (1.5.3) into (1.5.4) and dividing by m
we get
du/dt = —zu, dv/dt = —g — zv, (1.5.5)

and by the definition of velocity,
dx/dt = u, dy/dt = v. (1.5.6)

Equations (1.5.5) and (1.5.6) constitute a system of four differential equations for the four
variables x, y, u, v. The initial state xq, yo and ug, vo at time #o = 0 is assumed to be given.
A fundamental proposition in the theory of differential equations tells us that if initial values
of the state variables u, v, x, y are given at some initial time ¢ = ¢, then they will be
uniquely determined for all ¢ > f.

The simulation of the motion of the ball means that, at a sequence of time instances
t,,n=0,1,2,..., we determine the approximate values u,, v,, x,, y,. We first look at the
simplest technique, using Euler’s method with a constant time step /. Therefore, sett, = nh.
We replace the derivative du/dt by the forward difference quotient (u,+; — u,)/h, and
similarly for the other variables. Hence after multiplication by #, the differential equations
are replaced by the following system of difference equations:

Xpt1 = Xp + hity, Vi1 = Yu + hvy,
Upy1 = Up — hzalty, (1.5.7)
Upt1 = Uy — h(g +van)v

where

c¢R?

n = u2 + v2.

From this x,+1, Yu+1, Un+1, Unt1, €tc. are solved, step by step, forn = 0, 1,2, ..., using
the provided initial values xg, vy, 1o, and vy.
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We performed these computations until y,,; became negative for the first time, with
g = 9.81, ¢ = 60°, and the initial values

x0=0, y=0, up=100cos¢, vy = 100sin¢.

Curves obtained for ~ = 0.01 and ch/m = 025 - 1073, i = 0 : 4, are shown in
Figure 1.5.2. There is, in this graphical representation, also an error due to the limited
resolution of the plotting device.

5001 ' ' ' ' ' ' ' ' 1
4001 1
300
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Figure 1.5.2. Approximate trajectories computed with Euler’s method with h = 0.01.

In Euler’s method the state variables are locally approximated by linear functions
of time, one of the often recurrent ideas in numerical computation. We can use the same
idea for computing the coordinate x* of the point where the shot hits the ground. Suppose
that y,,; becomes negative for the first time when n = N. For xy < x < xy41 we
then approximate y by a linear function of x, represented by the secant through the points
(xn, yn) and (Xy+1, yn+1), Le.,

YN+1 — YN
Y= yn+ (= xy)
XN+1 — XN
By setting y = 0 we obtain
X —x
X =xy— yNM. (1.5.8)
YN+1 — YN

This is called (linear) inverse interpolation; see Sec.4.2.2. The error from the linear
approximation in (1.5.8) used for the computation of x* is proportional to h2. It is thus
approximately equal to the error committed in one single step with Euler’s method, and
hence of less importance than the other error.
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The case without air resistance (i = 0) can be solved exactly. In fact it can be shown
that

X* = 2uguo/9.81 = 5000 - +/3/9.81 ~ 882.7986.

The computer produced x* ~ 883.2985 for # = 0.01, and x* &~ 883.7984 for h = 0.02.
The error for i = 0.01 is therefore 0.4999, and for 4 = 0.02 it is 0.9998. The approximate
proportionality to 4 is thus verified, actually more strikingly than could be expected!

It can be shown that the error in the results obtained with Euler’s method is also
proportional to h (not h?). Hence a disadvantage of the above method is that the step length
h must be chosen quite small if reasonable accuracy is desired. In order to improve the
method we can apply another idea mentioned previously, namely Richardson extrapolation.
(The application differs a little from the one we saw previously, because now the error
is approximately proportional to #, while for the trapezoidal rule it was approximately
proportional to 42.) For i = 4, the computer produced x* &~ 500.2646 and x* ~ 500.3845
for, respectively, 7 = 0.01 and & = 0.02. Now let x* denote the exact horizontal coordinate
of the landing point. Then

x* —500.2646 ~ 0.01k, x* —500.3845 ~ 0.02k.
By elimination of k we obtain
x* = 2-500.2646 — 500.3845 = 500.1447,

which should be a more accurate estimate of the coordinate. By a more accurate integration
method we obtained 500.1440. Thus, in this case we gained more than two decimal digits
by the use of Richardson extrapolation.

The simulations shown in Figure 1.5.2 required about 1500 time steps for each curve.
This may seem satisfactory, but we must not forget that this is a very small task, compared
with most serious applications. So we would like to have a method that allows much larger
time steps than Euler’s method.

1.5.3 Second Order Accurate Methods

In step by step computations we have to distinguish between the local error, the error that
is committed at a single step, and the global error, the error of the final results. Recall that
we say that a method is accurate of order p if its global error is approximately proportional
to h?. Euler’s method is only first order accurate; we shall present a method that is second
order accurate. To achieve the same accuracy as with Euler’s method the number of steps
can then be reduced to about the square root of the number of steps in Euler’s method. In
the above ball problem this means +/1500 = 40 steps. Since the amount of work is closely
proportional to the number of steps this is an enormous savings!

Another question is how the step size 4 is to be chosen. It can be shown that even for
rather simple examples (see below) it is adequate to use very different step sizes in different
parts of the computation. Hence the automatic control of the step size (also called adaptive
control) is an important issue.
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Both requests can be met by an improvement of the Euler method (due to Runge'®)
obtained by applying the Richardson extrapolation in every second step. This is different
from our previous application of the Richardson idea. We first introduce a better notation
by writing a system of differential equations and the initial conditions in vector form

dy/dt =f(t,y), y(a) =c, (1.5.9)

where y is a column vector that contains all the state variables.'® With this notation methods

for large systems of differential equations can be described as easily as methods for a single

equation. The change of a system with time can then be thought of as a motion of the state

vector in a multidimensional space, where the differential equation defines the velocity field.

This is our first example of the central role of vectors and matrices in modern computing.
For the ball example, we have a = 0, and by (1.5.5) and (1.5.6),

i x y3 0
y2 y Va4 2 0
= = , f(r,y) = , c=10 ,
y V3 u @y —2Z)3 cos ¢
V4 v —8 — )4 sin ¢
where

cR?
2= —+/(y3)2 + (a2
m
The computations in the step which leads from #, to #,.; are then as follows:

i. One Euler step of length & yields the estimate:

Vi = Yn + hE(ty, y0).

ii. Two Euler steps of length %h yield another estimate:

1 1
Yo+12 =Yn + Ehf(fn, Yu)s Yo =Yns12 + Ehf(tn-&-l/b Yut1/2),

where t, 11 =1, +h/2.

iii. Then y,; is obtained by Richardson extrapolation:
Yout+1 = y:*+| + (YZj—l - Y:J,]).

Itis conceivable that this yields a second order accurate method. Itis left as an exercise
(Problem 1.5.2) to verify that this scheme is identical to the following somewhat simpler
scheme known as Runge’s second order method:

ki = h,f(,,y,),
ky =h,f(t, + 1, /2,5, + ki1 /2), (1.5.10)
Yot1 =Yn + ks,

18Carle David Tolmé Runge (1856-1927), German mathematician. Runge was professor of applied mathematics
at Gottingen from 1904 until his death.
19The boldface notation is temporarily used for vectors in this section only, not in the rest of the book.
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where we have replaced & by h,, in order to include the use of variable step size. Another
explanation of the second order accuracy of this method is that the displacement k, equals
the product of the step size and a sufficiently accurate estimate of the velocity at the midpoint
of the time step. Sometimes this method is called the improved Euler method or Heun’s
method, but these names are also used to denote other second order accurate methods.

1.5.4 Adaptive Choice of Step Size

We shall now describe how the step size can be adaptively (or automatically) controlled by
means of a tolerance tol, by which the user tells the program how large an error he tolerates
in values of variables (relative to the values themselves).2" Compute

§=max &, & = lka; —ki;il/I3yil,

where §; is related to the relative error of the ith component of the vector y at the current
step; see below.
A step size is accepted if § < tol, and the next step should be

Binexs = h min {1.5, ‘/tol/(l.28)} ,

where 1.2 is a safety factor, since the future is never exactly like the past! The square root

occurring here is due to the fact that this method is second order accurate; i.e., the global error

is almost proportional to the square of the step size and § is approximately proportional to 42
A step is rejected if § > tol, and recomputed with the step size

Poxs = h max {0.1, ,/tol/(l.za)} .

The program needs a suggestion for the size of the first step. This can be a very rough
guess, because the step size control described above will improve it automatically so that an
adequate step size is found after a few steps (or recomputations, if the suggested step was
too big). In our experience, a program of this sort can efficiently handle guesses that are
wrong by several powers of 10. If y(a) # 0 and y'(a) # 0, you may try the initial step size

h= iZIyil/Zldyi/dtl

evaluated at the initial point # = a. When you encounter the cases y(a) = 0 or y'(a) =0
for the first time, you are likely to have gained enough experience to suggest something that
the program can handle. More professional programs take care of this detail automatically.

The request for a certain relative accuracy may cause trouble when some components
of y are close to zero. So, already in the first version of your program, you had better replace
y; in the above definition of § by

y; = max{|y;|, 0.001}.

(You may sometimes have to replace the default value 0.001 by something else.)

20With the terminology that will be introduced in the next chapter, tol is, with the step size control described
here, related to the global relative errors. At the time of writing, this contrasts to most codes for the solution of
ordinary differential equations, in which the local errors per step are controlled by the tolerance.
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It is a good habit to make a second run with a predetermined sequence of step sizes
(if your program allows this) instead of adaptive control. Suppose that the sequence of time
instances used in the firstrun s fo, 1, f2, . . . . Divide each subinterval [¢,, #, 1] into two steps
of equal length. Thus, the second run still has variable step size and twice as many steps as
the first run. The errors are therefore expected to be approximately % of the errors of the first
run. The first run can therefore use a tolerance that is four times as large than the error you
can tolerate in the final result. Denote the results of the two runs by y;(¢) and y;;(¢). You
can plot %(y” () — y;(¢)) versus t; this is an error curve for y;;(¢). Alternatively you can
add %(y; 1(#) — y; (1)) to y;;(¢). This is another application of the Richardson extrapolation
idea. The cost is only 50% more work than the plain result without an error curve.

If there are no singularities in the differential equation, %(y, 1(t) — yi(t)) strongly
overestimates the error of the extrapolated values—typically by a factor such as tol ~'/2. Tt
is, however, a nontrivial matter to find an error curve that strictly and realistically tells us
how good the extrapolated results are. The reader is advised to test experimentally how this
works on examples where the exact results are known.

An easier, though inferior, alternative is to run a problem with two different tolerances.
One reason why this is inferior is that the two runs do not “keep in step,” and then Richardson
extrapolation cannot be easily applied.

If you request very high accuracy in your results, or if you are going to simulate a
system over a very long time, you will need a method with a higher order of accuracy than
two. The reduction of computing time, if you replace this method by a higher order method
can be large, but the improvements are seldom as drastic as when you replace Euler’s method
by a second order accurate scheme like this. Runge’s second order method is, however,
no universal recipe. There are special classes of problems, notably the problems which are
called “stiff,” which need special methods.

One advantage of a second order accurate scheme when requests for accuracy are
modest is that the quality of the computed results is normally not ruined by the use of linear
interpolation at the graphical output, or in the postprocessing of numerical results. (After
you have used a more than second order accurate integration method, it may be necessary to
use more sophisticated interpolation at the graphical or numerical treatment of the results.)
We suggest that you write or try to find a program that can be used for systems with (in
principle) any number of equations; see the preface.

Example 1.5.1.
The differential equation

dy/dt = L3
y - 2y’

with initial condition y(1) = 1, was treated by a program, essentially constructed as de-
scribed above, with tol = 10~ until + = 10*. When comparing the result with the exact
solution y(z) = t~!/2, it was found that the actual relative error remained at a little less
than 1.5tol all the time when ¢ > 10. The step size increased almost linearly with ¢ from
h = 0.025 to h = 260. The number of steps increased almost proportionally to log ¢; the
total number of steps was 374. Only one step had to be recomputed (except for the first
step, where the program had to find an appropriate step size).
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The computation was repeated with tol = 4 - 107, The experience was the same,
except that the steps were about twice as long all the time. This is what can be expected, since
the step sizes should be approximately proportional to +/tol, for a second order accurate
method. The total number of steps was 194.

Example 1.5.2.

The example of the motion of a ball was treated by Runge’s second order method with
the constant step size 7 = 0.9. The x-coordinate of the landing point became x* &~ 500.194,
which is more than twice as accurate than the result obtained by Euler’s method (without
Richardson extrapolation) with 2 = 0.01, which uses about 90 times as many steps.

We have now seen a variety of ideas and concepts which can be used in the develop-
ment of numerical methods. A small warning is perhaps warranted here: it is not certain
that the methods will work as well in practice as one might expect. This is because ap-
proximations and the restriction of numbers to a certain number of digits introduce errors
which are propagated to later stages of a calculation. The manner in which errors are propa-
gated is decisive for the practical usefulness of a numerical method. We shall examine such
questions in Chapter 2. Later chapters will treat propagation of errors in connection with
various typical problems.

The risk that error propagation may upstage the desired result of a numerical process
should, however, not dissuade one from the use of numerical methods. It is often wise,
though, to experiment with a proposed method on a simplified problem before using it in
a larger context. Developments in hardware as well as software has created a far better
environment for such work.

Review Questions
1.5.1 Explain the difference between the local and global error of a numerical method for
solving a differential equation. What is meant by the order of accuracy of a method?

1.5.2 Describe how Richardson extrapolation can be used to increase the order of accuracy
of Euler’s method.

1.5.3 Discuss some strategies for the adaptive control of step length and estimation of global
accuracy in the numerical solution of differential equations.

Problems and Computer Exercises

1.5.1 (a) Integrate numerically using Euler’s method the differential equation dy/dt =y,
with initial conditions y(0) = 1, to t = 0.4, with step length 4 = 0.2 and & = 0.1.
(b) Extrapolate to & = 0, using the fact that the error is approximately proportional to
the step length. Compare the result with the exact solution of the differential equation
and determine the ratio of the errors in the results in (a) and (b).



64 Chapter 1. Principles of Numerical Calculations

(c) How many steps would have been needed in order to attain, without using extrap-
olation, the same accuracy as was obtained in (b)?

1.5.2 (a) Write a program for the simulation of the motion of the ball using Euler’s method
and the same initial values and parameter values as above. Print only x, y at integer
values of ¢ and at the last two points (i.e., n = N and n = N + 1) as well as the
x-coordinate of the landing point. Take 2 = 0.05 and 2 = 0.1. As postprocessing,
improve the estimates of x* by Richardson extrapolation, and estimate the error by
comparison with the results given in the text above.

(b) In (1.5.7), in the equations for x,; and y,, replace the right-hand sides u, and
v, by, respectively, u,.1 and v, ;. Then proceed as in (a) and compare the accuracy
obtained with that obtained in (a).

(c) Choose initial values which correspond to what you think is reasonable for shot
put. Make experiments with several values of ug, vy for c = 0. How much is x*
influenced by the parameter c R?/m?

1.5.3 Verify that Runge’s second order method, as described by (1.5.10), is equivalent to the
scheme described a few lines earlier (with Euler steps and Richardson extrapolation).

1.5.4 Write a program for Runge’s second order method with automatic step size control
that can be applied to a system of differential equations. Store the results so that they
can be processed afterward, for example, to make a table of the results; draw curves
showing y(¢) versus ¢, or (for a system) y, versus y;; or draw some other interesting
curves.

Apply the program to Examples 1.5.1 and 1.5.2, and to the circle test, that is,

’ ’
Y= —XY2 Y2 =1

with initial conditions y;(0) = 1, y,(0) = 0. Verify that the exact solution is a
uniform motion along the unit circle in the (y;, y2)-plane. Stop the computations
after 10 revolutions (r = 20w). Make experiments with different tolerances, and
determine how small the tolerance has to be in order that the circle on the screen does
not become “thick.”

1.6 Monte Carlo Methods
1.6.1 Origin of Monte Carlo Methods

In most of the applications of probability theory one makes a mathematical formulation of
a stochastic problem (i.e., a problem where chance plays some part) and then solves the
problem by using analytical or numerical methods. In the Monte Carlo method one does
the opposite; a mathematical or physical problem is given, and one constructs a numerical
game of chance, the mathematical analysis of which leads to the same equations as the given
problem for, e.g., the probability of some event, or for the mean of some random variable in
the game. One plays it N times and estimates the relevant quantities by traditional statistical
methods. Here N is a large number, because the standard deviation of a statistical estimate
typically decreases only inversely proportionally to ~/N .
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The idea behind the Monte Carlo method was used by the Italian physicist Enrico Fermi
to study neutron diffusion in the early 1930s. Fermi used a small mechanical adding machine
for this purpose. With the development of computers larger problems could be tackled. At
Los Alamos in the late 1940s the use of the method was pioneered by von Neumann,?!
Ulam,?? and others for many problems in mathematical physics including approximating
complicated multidimensional integrals. The picturesque name of the method was coined
by Nicholas Metropolis.

The Monte Carlo method is now so popular that the definition is too narrow. For
instance, in many of the problems where the Monte Carlo method is successful, there is
already an element of chance in the system or process which one wants to study. Thus such
games of chance can be considered numerical simulations of the most important aspects.
In this wider sense the “Monte Carlo methods” also include techniques used by statisticians
since around 1900, under names like experimental or artificial sampling. For example,
statistical experiments were used to check the adequacy of certain theoretical probability
laws that had been derived mathematically by the eminent scientist W. S. Gosset. (He used
the pseudonym “Student” when he wrote on probability.)

Monte Carlo methods may be used when the changes in the system are described with
a much more complicated type of equation than a system of ordinary differential equations.
Note that there are many ways to combine analytical methods and Monte Carlo methods.
An important rule is that if a part of a problem can be treated with analytical or traditional
numerical methods, then one should use such methods.

The following are some areas where the Monte Carlo method has been applied:

(a) Problems in reactor physics; for example, a neutron, because it collides with other
particles, is forced to make a random journey. In infrequent but important cases the
neutron can go through a layer of (say) shielding material (see Figure 1.6.1).

(b) Technical problems concerning traffic (in telecommunication systems and railway
networks; in the regulation of traffic lights, and in other problems concerning auto-
mobile traffic).

(c) Queuing problems.

(d) Models of conflict.

(e) Approximate computation of multiple integrals.
(f) Stochastic models in financial mathematics.

Monte Carlo methods are often used for the evaluation of high-dimensional (10 to
100) integrals over complicated regions. Such integrals occur in such diverse areas as

213ohn von Neumann was born Janos Neumann in Budapest 1903, and died in Washington D.C. 1957. He
studied under Hilbert in Gottingen in 192627, was appointed professor at Princeton University in 1931, and in
1933 joined the newly founded Institute for Advanced Studies in Princeton. He built a framework for quantum
mechanics, worked in game theory, and was one of the pioneers of computer science.

22Stanislaw Marcin Ulam, born in Lemberg, Poland (now Lwow, Ukraine) 1909, and died in Santa Fe, New
Mexico, USA, 1984. Ulam obtained his Ph.D. in 1933 from the Polytechnic institute of Lwow, where he studied
under Banach. He was invited to Harvard University by G. D. Birkhoff in 1935 and left Poland permanently in
1939. In 1943 he was asked by von Neumann to come to Los Alamos, where he remained until 1965.
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Figure 1.6.1. Neutron scattering.

quantum physics and mathematical finance. The integrand is then evaluated at random
points uniformly distributed in the region of integration. The arithmetic mean of these
function values is then used to approximate the integral; see Sec. 5.4.5.

In a simulation, one can study the result of various actions more cheaply, more quickly,
and with less risk of organizational problems than if one were to take the corresponding
actions on the actual system. In particular, for problems in applied operations research, it is
quite common to take a shortcut from the actual system to a computer program for the game
of chance, without formulating any mathematical equations. The game is then a model of
the system. In order for the term “Monte Carlo method” to be correctly applied, however,
random choices should occur in the calculations. This is achieved by using so-called
random numbers; the values of certain variables are determined by a process comparable
to dice throwing. Simulation is so important that several special programming languages
have been developed exclusively for its use.??

1.6.2 Generating and Testing Pseudorandom Numbers

In the beginning, coins, dice, and roulette wheels were used for creating the randomness.
For example, the sequence of 20 digits

11100 01001 10011 01100

is arecord of 20 tosses of a coin where “heads” are denoted by 1 and “tails” by 0. Such digits
are sometimes called (binary) random digits, assuming that we have a perfect coin—i.e.,
that heads and tails have the same probability of occurring. We also assume that the tosses
of the coin are made in a statistically independent way.>*

Similarly, decimal random digits could in principle be obtained by using a well-made
icosahedral (20 sided) dice and assigning each decimal digit to two of its sides. Such

230ne notable early example is the SIMULA programming language designed and built by Ole-Johan Dahl and
Kristen Nygaard at the Norwegian Computing Center in Oslo 1962-67. It was originally built as a language for
discrete event simulation, but was also influential because it introduced object-oriented programming concepts.

240f course, these assumptions cannot be obtained in practice, as shown in theoretical and experimental studies
by Persi Diaconis, Stanford University.
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mechanical (or analogous electronic) devices have been used to produce tables of random
sampling digits; the first one by Tippett was published in 1927 and was to be considered
as a sequence of 40,000 independent observations of a random variable that equals one
of the integer values 0, 1,2,...,9, each with probability 1/10. In the early 1950s the
Rand Corporation constructed a million-digit table of random numbers using an electrical
“roulette wheel” ([295]). The wheel had 32 slots, of which 12 were ignored; the others
were numbered from zero to nine twice. To test the quality of the randomness several tests
were applied. Every block of a 1000 digits in the tables (and also the table as a whole)
were tested. The Handbook of Mathematical Functions [1, Table 26.111% provides 2500
five-digit random numbers compiled from this set.

Example 1.6.1.

The random number generator, used for drawing of prizes of Swedish Premium Sav-
ing Bonds, was developed in 1962 by Dahlquist [86]. Speed is not a major concern for this
application, since relatively few random decimal digits (about 50,000) are needed. There-
fore, an algorithm which is easier to analyze was chosen. This uses a primary series of less
than 240 decimal random digits produced by some other means. The length of this primary
seriesisn = p; + p> + - - - + py, where p; are prime numbers and p; # p;,i # j. For the
analysis it is assumed that the primary series is perfectly random.

The primary series is used to generate a much longer secondary series of prime num-
bers in a way that is best described by a mechanical analogy. Think of k cogwheels with
pi cogs, i = 1 : k, and place the digits from the primary series on the cogs of these. The
first digit in the secondary series is obtained by adding the k digits (modulus 10) that are at
the top position of each cogwheel. Then each wheel is turned one cog clockwise and the
second digit is obtained in the same way as the first, etc. After p; - p, - - - px steps we are
back in the original position. This is the minimum period of the secondary series of random
digits.

For the application mentioned above, k = 7 prime numbers, in the range 13 < p; <
53, are randomly selected. This gives a varying minimum period approximately equal
to 10%, which is much more than the number of digits used to produce the drawing list.
Considering the public reaction, the primary series is generated by drawing from a tombola.

Random digits from a table can be packed together to give a sequence of equidis-
tributed integers. For example, the sequence

55693 02945 81723 43588 81350 76302 ...

can be considered as six five-digit random numbers, where each element in the sequence
has a probability of 1073 of taking on the value 0, 1, 2, ..., 99,999. From the same digits
one can also construct the sequence

0.556935, 0.029455, 0.817235, 0.435885, 0.813505, 0.763025, . . ., (1.6.1)

which can be considered a good approximation to a sequence of independent observations
of a variable which is a sequence of uniform deviates in the interval [0, 1). The 5 in the

25This classical Handbook of Mathematical Functions, edited by Milton Abramowitz and Irene A. Stegun, is
used as a reference throughout this book. We will often refer to it as just “the Handbook.”
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sixth decimal place is added in order to get the correct mean (without this the mean would
be 0.499995 instead of 0.5).

In a computer it is usually not appropriate to store a large table of random numbers.
Several physical devices for random number generation have been proposed, using for
instance electronic or radioactive noise, but very few seem to have been inserted in an actual
computer system. Instead random numbers are usually produced by arithmetic methods,
so-called random number generators (RNGs). The aim of a random number generator
is to generate a sequence of numbers uy, uy, us, ... that imitates the abstract mathematical
concept of a sequence of mutually independent random variables uniformly distributed over
the interval [0, 1). Sequences obtained in this way are uniquely determined by one or more
starting values called seeds, to be given by the user (or some default values). Random
number generators should be analyzed theoretically and be backed by practical evidence
from extensive statistical testing. According to a much quoted statement by D. H. Lehmer,?¢

A random sequence is a vague notion . . . in which each term is unpredictable to
the uninitiated and whose digits pass a certain number of tests traditional with
statisticians. . .

Because the set of floating-point numbers in [0, 1] is finite, although very large, there
will eventually appear a number that has appeared before, say u;,; = u; for some positive
i, j. The sequence {u,} therefore repeats itself periodically for n > i; the length of the
period is j. A truly random sequence is, of course, never periodic. For this and other
reasons, a sequence generated like this is called a pseudorandom sequence. But the ability
to repeat exactly the same sequence of numbers, which is needed for program verification
and variance reduction, is a major advantage over generation by physical devices.

There are two popular myths about the making of a random number generator: first
that it is impossible; second that it is trivial. We have seen that the first myth is correct,
unless we add the prefix “pseudo.””’ The second myth, however, is completely false.

In a computer the fundamental concept is not a sequence of decimal random digits,
but uniform random deviates, i.c., a sequence of mutually independent observations of a
random variable U with a uniform distribution on [0, 1); the density function of U is thus
(with a temporary notation)

1 ifue€][0,1),
0 otherwise.

fiw) =

Random deviates for other distributions are generated by means of uniform deviates. For
example, the variable X = a4 (b—a)U is auniform deviate on [a, b). Its density function is
f(x) = fillx—a)/(b—a)). If [a, b] = [0, 1], we usually write “uniform deviate” (without
mentioning the interval). We often write “deviate” instead of “random deviate” when the
meaning is evident from the context. Algorithms for generating deviates for several other
distributions are given in Sec. 1.6.3.

26Some readers may think that Lehmer’s definition is too vague. There have been many deep attempts for more
precise formulation. See Knuth [230, pp. 149—179], who catches the flavor of the philosophical discussion of these
matters and contributes to it himself.

27“Anyone who considers arithmetic methods of producing random numbers is, of course, in a state of sin.”—John
von Neumann (1951).
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The most widely used generators for producing pseudorandom numbers are multiple
recursive generators. These are based on a linear recurrence of order k,

Xp = MXp_1+ -+ Xyt +¢c mod P, (1.6.2)

i.e., x, is the remainder obtained when the right-hand side is divided by the modulus m. Here
P is a positive integer and the coefficients A1, ..., A4 belong to the set {0, 1, ..., m — 1}.
The state at step n is s, = (X,—g+1, - - - , X,) and the generator is started from a seed s;_; =
(x0, - --»Xr—1). When m is large the output can be taken as the number u,, = x,/m. For
k = 1 we obtain the classical mixed congruential method

X, = AXx,—_; +c¢ mod P.

An important characteristic of an RNG is its period, which is the maximum length of
the sequence before it begins to repeat. Note that if the algorithm for computing x,, depends
only on x,_1, then the entire sequence repeats once the seed x is duplicated. One can show
that if P = 2’ (which is natural on a binary computer) the period of the mixed congruential
method is equal to 2', assuming that c is odd and that A gives remainder 1 when divided by
four. Also, if P is a prime number and if the coefficients A; satisfy certain conditions, then
the generated sequence has the maximal period m* — 1; see Knuth [230].

A good RNG should have a period that is guaranteed to be extremely long to make
sure that no wrap-around can occur in practice. The linear congruential generator defined
by

Xy = 16807x,_; mod (2°' — 1), (1.6.3)

with period (2°' — 2), was proposed originally by Lewis, Goodman, and Miller (1969). It
has been widely used in many software libraries for statistics, simulation, and optimization.
In the survey by Park and Miller [283] this generator was proposed as a “minimal standard”
against which other generators should be judged. A similar generator, but with the multiplier
77 = 823543, was used in MATLARB 4.

Marsaglia [258] pointed out a theoretical weakness of all linear congruential genera-
tors. He showed thatif k successive random numbers (x; 1, ..., X;1x) atatime are generated
and used to plot points in k-dimensional space, then they will lie on (k — 1)-dimensional
hyperplanes and will not fill up the space; see Figure 1.6.2 (left). More precisely, the values
will lie on a set of at most (k!m)'/* ~ (k/e)m'/* equidistant parallel hyperplanes in the
k-dimensional hypercube (0, 1)¥. When the number of hyperplanes is too small, this obvi-
ously is a strong limitation to the k-dimensional uniformity. For example, for m = 23! — 1
and k = 3, this is only about 1600 planes. This clearly may interfere with a simulation
problem.

If the constants m, a, and c are not very carefully chosen, there will be many fewer
hyperplanes than the maximum possible. One such infamous example is the linear congru-
ential generator with a = 65539, ¢ = 0, and m = 23! used by IBM mainframe computers
for many years.

Another weakness of linear congruential generators is that their low order digits are
much less random than their high order digits. Therefore, when only part of a generated
random number is used, one should pick the high order digits.
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One approach to better generators is to combine two RNGs. One possibility is to
use a second RNG to shuffle the output of a linear congruential generator. In this way it is
possible to get rid of some serial correlations in the output; see the generator ranl described
in Press et al. [294, Chapter 7.1].

A good generator should have been analyzed theoretically and be supported by prac-
tical evidence from extensive statistical and other tests. Knuth [230, Chapter 3] points out
important ideas, concepts, and facts of the topic, but also mentions some scandalously poor
RNGs that were in widespread daily use for decades as standard tools in computer libraries.
Although the generators in daily use have improved, many are still not satisfactory. He
ends this masterly chapter on random numbers with the following exercise: “Look at the
subroutine library at your computer installation, and replace the random number generators
by good ones. Try to avoid being too shocked at what you find.”

L’Ecuyer [244] writes in 2001:

Unfortunately, despite repeated warnings over the past years about certain
classes of generators, and despite the availability of much better alternatives,
simplistic and unsafe generators still abound in commercial software.

L’Ecuyer reports on tests of RNGs used in some popular software products. Microsoft Excel
used the linear congruential generator

u; = 9821.0u,,_; +0.211327 mod 1,

implemented directly for the u; in floating-point arithmetic. Its period length depends on
the precision of the arithmetic and it is not clear what it is. Microsoft Visual Basic used a
linear congruential generator with period 224, defined by

x; = 1140671485x;_1 + 12820163 mod (2*%),

224

and takes u#; = x;/2°*. The Unix standard library uses the recurrence

x; = 25214903917x,_; + 12820163 mod (2*),

with period 2*® and sets u; = x;/2*. The Java standard library uses the same recurrence
but constructs random deviates u; from x,; and x; 1.

In MATLAB 5 and later versions the previous linear congruential generator has been
replaced with a much better generator, based on ideas of Marsaglia; see Figure 1.6.2 (right).
This generator has a 35 element state vector and can generate all the floating-point numbers
in the closed interval [2733, 1 — 275%]. Theoretically it can generate 2'*> values before
repeating itself; see Moler [266]. If one generates one million random numbers a second it
would take 10*3° years before it repeats itself!

Some modern linear RNGs can generate huge samples of pseudorandom numbers very
fast and reliably. The multiple recursive generator MRG32k3a proposed by L’Ecuyer has
a period near 2'°!. The Mersenne twister MT19937 by Matsumoto and Nishimura [261],
the “world champion” of RNGs in the year 2000, has a period length of 2!%937 — 11

Many statistical tests have been adapted and extended for the examination of arith-
metic methods of (pseudo)random number generation. In these, the observed frequencies
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Figure 1.6.2. Plots of pairs of 10° random uniform deviates (U;, U;4) such that
U; < 0.0001. Left: MATLAB 4; Right: MATLAB 5.

for some random variable associated with the test are compared with the theoretical frequen-
cies on the hypothesis that the numbers are independent observations from a true sequence
of random digits without bias. This is done by means of the famous y2-test of K. Pear-
son [287],2% which we now describe.

Suppose that the space S of the random variable is divided into a finite number r of
nonoverlapping parts Sy, ..., S,. These parts may be groups into which the sample values
have been arranged for tabulation purposes. Let the corresponding group probabilities be

pi=Pr(S), i=1....r Y p=L

i=1

We now form a measure of the deviation of the observed frequencies vy, ..., v,, Zi v, =n,
from the expected frequencies

r 2

Xzziwzz"_i_n' (1.6.4)

npi np;
i=1 pi i=1 i

It is known that as n tends to infinity the distribution of x? tends to a limit independent of
Pr(S;), which is the x2-distribution with » — 1 degrees of freedom.

Let X,z, be a value such that Pr(x? > X,Z,) = p %. Here p is chosen so small that we
are practically certain that an event of probability p % will not occur in a single trial. The

28This paper, published in 1900 by the English mathematician Karl Pearson (1857—1936), is considered one of
the foundations of modern statistics. In it he gave several examples, such as proving that some runs at roulette
that he had observed during a visit to Monte Carlo were so far from expectations that the odds against an honest
wheel were about 102 to one.
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hypothesis is rejected if the observed value of x? is larger than X,z,- Often a rejection level
of 5% or 1% is used.

Example 1.6.2.

In an experiment consisting of n = 4040 throws with a coin, v; = 2048 heads were
obtained and hence v, = n — v; = 1992 tails. Is this consistent with the hypothesis that
there is a probability of p; = 1/2 of throwing tails? Computing

2 — v —npy)? 2048 — 2020)>
o Wi —np)” | (r=vi=np)” " _ 0776
" np 2020

and using a rejection level of 5%, we find from a table of the x >-distribution with one degree
of freedom that X52 = 3.841. Hence the hypothesis is accepted at this level.

Several tests that have been used for testing RNGs are described in Knuth [230,
Sec. 3.3]. Some of them are the following:

1. Frequency test. This test is to find out if the generated numbers are equidistributed.
One divides the possible outcomes into equal nonoverlapping intervals and tallies the
number of numbers in each interval.

2. Poker test. This test applies to generated digits, which are divided into nonoverlap-
ping groups of five digits. Within the groups we study some (unordered) combinations
of interest in poker. These are given below, together with their probabilities.

All different: abcde 0.3024
One pair: aabcd 0.5040
Two pairs: aabbc  0.1080
Three of a kind: aaabc  0.0720
Full house: aaabb  0.0090

Four of a kind: aaaab  0.0045
Five of a kind: aaaaa 0.0001

3. Gap test. This test examines the length of “gaps” between occurrences of U; in a
certain range. If o and 8 are two numbers with 0 < o < B < 1, we consider the

length of consecutive subsequences U;, U1, ..., Uji, in which U;,, lies between
aand BbutU;, Ujiy, ..., Ujy—1 do not. These subsequence then represents a gap
of length r.

The special cases («, 8) = (0, 1/2) or (1/2, 1) give rise to tests called “runs above
the mean” and “runs below the mean,” respectively.

Working with single digits, we see that the gap equals the distance between two equal
digits. The probability of a gap of length r in this case equals

pr=0.1(1-0.1)" =0.1(09)", r=0,1,2,....
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Example 1.6.3.

To test the two-dimensional behavior of an RNG we generated 10° pseudorandom
numbers U;. We then placed the numbers (U;, U;4) in the unit square of the plot. A thin
slice of the surface of the square, 0.0001 wide by 1.0 high, was then cut on its left side and
stretched out horizontally. This corresponds to plotting only the pairs (U;, U;41) such that
U; < 0.0001 (about 1000 points).

In Figure 1.6.2 we show the two plots from the generators in MATLAB 4 and
MATLAB 5, respectively. The lattice structure is quite clear in the first plot. With the
new generator no lattice structure is visible.

A statistical test studied by Knuth [230] is the collision test. In this test the interval
useful [0, 1) is first cut into # equal intervals, for some positive integer n. This partitions the
hypercube [0, 1) into k = n? cubic boxes. Then N random points are generated in [0, 1)¢
and we record the number of times C that a point falls in a box that already has a point in it.
The expectation of the random number C is known to be of very good approximation when
N is large. Indeed, C follows approximatively a Poisson distribution with mean equal to
N?/(2k).

For this and other similar tests it has been observed that when the sample size N is
increased the test starts to fail when N reaches a critical value Ny, and the failure is clear
for all larger values of N. For the collision test it was observed by L’Ecuyer [244] that
Ny =~ 16p'/? for good linear congruential generators,where p is the period of the RNG. For
another statistical test called the birthday spacing test the relation was Ny ~ 16p'/3.

From such tests is can be concluded that when large sample sizes are needed many
RNGs are unsafe to use and can fail decisively. A period of 2°* or even 2*% may not be
enough. Linear RNGs are also unsuitable for cryptographic applications, because the output
is too predictable. For this reason, nonlinear generators have been developed, but these are
in general much slower than the linear generators.

1.6.3 Random Deviates for Other Distributions

We have so far discussed how to generate sequences that behave as if they were random
uniform deviates U on [0, 1). By arithmetic operations one can form random numbers with
other distributions. A simple example is that the random numbers

S=a+ b—-a)U

will be uniformly distributed on [a, b).

Monte Carlo methods often call for other kinds of distributions. We shall show here
how to use uniform deviates to generating random deviates X for several other distributions.
Many of the tricks used were originally suggested by John von Neumann in the early 1950s,
but have since been improved and refined.

Discrete Distributions

Making a random choice from a finite number k of equally probable possibilities is equiva-
lent to generating a random integer X between 1 and k. To do this we take a random deviate
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U uniformly distributed on [0, 1), multiply it by k, and take the integer part
X =TkUT;

here [x] denotes the smallest integer larger than or equal to x. There will be a small error
because the set of floating-point numbers is finite, but this is usually negligible.

In a more general situation, we might want to give different probabilities to the values
of a variable. Suppose we assign the values X = x;,i = 1 : k the probabilities p;,i =1 : k;
note that Y p; = 1. We can then generate a uniform number U and let

x; if0<U < py,

X xp ifpr <U < p1+ po,

xe ifpr+pr+---pr U < L

If k is large, and the sequence {p;} is irregular, it may require some thought how to find
x quickly for a given u. See the analogous question of finding a first guess to the root of
(1.6.5) below and the discussion in Knuth [230, Sec. 3.4.1].

A General Transformation from U to X

Suppose we want to generate numbers for a random variable X with a given continuous
or discrete distribution function F(x). (In the discrete case, the graph of the distribution
function becomes a staircase; see the formulas above.) A general method for this is to solve

the equation
FX)=U (1.6.5)

or, equivalently, X = F “1(U); see Figure 1.6.3. Because F(x) is a nondecreasing function,
and Pr{U <u} =u forall u € [0, 1], (1.6.5) is proved by the line

PriX <x}=Pr{F(X) < F(x)} = Pr{U < F(x)} = F(x).

How to solve (1.6.5) efficiently is the main problem with this method. For some distributions
we shall describe better methods below.

Figure 1.6.3. Random number with distribution F (x).
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Exponential Deviates

The exponential distribution with parameter A > 0 occurs in queuing problems, for example,
in telecommunications, to model arrival and service times. The important property is that
the intervals of time between two successive events are a sequence of exponential deviates.
The exponential distribution with mean 1/A has density function f(t) = Ae™™, ¢ > 0, and
distribution function .

F(x) = / re Mdr=1—e ", (1.6.6)

0

Using the general rule given above, exponentially distributed random numbers X can be
generated as follows: Let U be a uniformly distributed random number in [0, 1]. Solving

the equation 1 — e X = U, we obtain

X =-x""In(1 = V).

A drawback of this method is that the evaluation of the logarithm is relatively slow.

One important use of exponentially distributed random numbers is in the generation of
so-called Poisson processes. Such processes are often fundamental in models of telecom-
munication systems and other service systems. A Poisson process with frequency parameter
X is a sequence of events characterized by the property that the probability of occurrence
of an event in a short time interval (¢, t + At) is equal to A- Ar + o(At), independent of
the sequence of events previous to time #. An “event” can mean a call on a telephone line,
the arrival of a customer to a store, etc. For simulating a Poisson process one can use the
important property that the intervals of time between two successive events are independent
exponentially distributed random numbers.

Normal Deviates

A normal deviate N = N (0, 1) with zero mean and unit standard deviation has the density
function

_.2
e /2.

1
fx) =
27
Then © + o N is a normal deviate with mean p and standard deviation o with density
function é f((x — u)/o). Since the normal distribution function

O (x) = /2 gy (1.6.7)

1 X
N /_w ‘
is not an elementary function, solving equation (1.6.5) would be time consuming.

Fortunately, random normal deviates can be obtained in easier ways. In the polar
algorithm a random point in the unit disk is first generated as follows. Let U;, U, be
two independent uniformly distributed random numbers on [0, 1]. Then the point (V, V3),
where V; = 2U; — 1,i = 1, 2, is uniformly distributed in the square [—1, 1] x [—1, 1]. If
we compute S = Vl2 + V22 and reject the point if it is outside the unit circle, i.e., if § > 1,
remaining points will be uniformly distributed on the unit disk. For each accepted point we

then form
—2log S
N] :l'Vl, NzZ‘L'Vz, T = T (168)

It can be proved that N;, N, are two independent normally distributed random numbers
with zero mean and unit standard deviation.
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We point out that Ny, N, can be considered to be rectangular coordinates of a point
whose polar coordinates (r, ¢) are determined by the equations

r* =N} 4+ N} = -2InS, cos¢ = Uy /S, sing = U, /+/S.

The correctness of the above procedure follows from the fact that the distribution function
for a pair of independent normally distributed random variables is rotationally symmetric
(uniformly distributed angle) and that their sum of squares is exponentially distributed with
mean 2. For a proof of this, see Knuth [230, p. 123].

The polar algorithm (used previously in MATLAB 4) is not optimal. First, about
1 — /4 =~ 21.5% of the uniform numbers are rejected because the generated point falls
outside the unit disk. Further, the calculation of the logarithm contributes significantly to the
cost. From MATLAB version 5 and later, a more efficient table look-up algorithm developed
by Marsaglia and Tsang [260] is used. This is called the “ziggurat” algorithm after the name
of ancient Mesopotamian terraced temple mounds which look like two-dimensional step
functions. A popular description of the ziggurat algorithm is given by Moler [267]; see also
[220].

Example 1.6.4.

To simulate a two-dimensional Brownian motion, trajectories are generated as follows.
Initially the particle is located at the origin wy = (0,0)7. At each time step the particle
moves randomly,

W1 = Wi +h (N”‘), k=0:n,
No

where Ny; and N, are normal random deviates generated according to (1.6.8). Figure 1.6.4
shows plots of 32 simulated paths with 4 = 0.1, each consisting of n = 64 time steps.

2

Figure 1.6.4. Simulated two-dimensional Brownian motion. Plotted are 32 simu-
lated paths with h = 0.1, each consisting of 64 steps.
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Chi-Square Distribution

The chi-square distribution function P (x?2, n) is related to the incomplete gamma function
(see Abramowitz and Stegun [1, Sec. 6.5]):

P(x%, n) =y®n/2, x*/2). (1.6.9)

Its complement Q(x2,n) = 1 — P(x2, n) is the probability that the observed chi-square
will exceed the value x2, even for a correct model. Subroutines for evaluating the x2-
distribution function as well as other important statistical distribution functions are given
in [294, Sec. 6.2-6.3].

Numbers belonging to the chi-square distribution can also be obtained by using the
definition of the distribution. If Ny, N,, ..., N, are normal deviates with zero mean and
unit variance, the number

Y, =N+ N;j+---+N?

is distributed as x> with n degrees of freedom.

Other Methods

Several other methods to generate random deviates with Poisson, gamma, and binomial
distribution are described in Knuth [230, Sec. 3.4]) and Press et al. [294, Chapter 7.3]. The
rejection method is based on ideas of von Neumann (1951). A general method introduced
by Marsaglia [257] is the rectangle-wedge-tail method; see references in Knuth [230].
Powerful combinations of rejection methods and the rectangle-wedge-tail method have
been developed.

1.6.4 Reduction of Variance

From statistics, we know that if one makes n independent observations of a quantity whose
standard deviation is o, then the standard deviation of the meanis o//n. Hence, to increase
the accuracy by a factor of 10 (say) we have to increase the number of experiments n by a
factor 100.

Often a more efficient way than increasing the number of samples is to try to decrease
the value of o by redesigning the experiment in various ways. Assume that one has two
ways (which require the same amount of work) of carrying out an experiment, and these
experiments have standard deviations o; and o, associated with them. If one repeats the
experiments 2| and n, times (respectively), the same precision will be obtained if oy //n| =

02/4/N2, or
ni/ny = at/o3. (1.6.10)

Thus if a variance reduction by a factor k can be achieved, then the number of experiments
needed is also reduced by the same factor k.
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Example 1.6.5.

In 1777 Buffon?® carried out a probability experiment by throwing sticks over his
shoulder onto a tiled floor and counting the number of times the sticks fell across the lines
between the tiles. He stated that the favorable cases correspond “to the area of part of the
cycloid whose generating circle has diameter equal to the length of the needle.” To simulate
Buffon’s experiment we suppose a board is ruled with equidistant parallel lines and that a
needle fine enough to be considered a segment of length / not longer than the distance d
between consecutive lines is thrown on the board. The probability is then 2//(;rd) that it
will hit one of the lines.

The Monte Carlo method and this game can be used to approximate the value of .
Take the distance § between the center of the needle and the lines and the angle ¢ between
the needle and the lines to be random numbers. By symmetry we can choose these to be
rectangularly distributed on [0, d/2] and [0, 7 /2], respectively. Then the needle hits the
line if § < (I/2) sin ¢.

We took I = d. Let m be the number of hits in the first n throws in a Monte Carlo
simulation with 1000 throws. The expected value of m/n is therefore 2/m, and so 2n/m
is an estimate of 7 after n throws. In the left part of Figure 1.6.5 we see how 2n/m varies
with n in one simulation. The right part compares |m/n — 2/ | with the standard deviation

of m/n, which equals
2 2\ 1
_(1 _ _>_
T w/n

and is, in the log-log diagram, represented by a straight line, the slope of which is —1/2.
This can be taken as a test that the RNG in MATLAB is behaving correctly! (The spikes,
directed downward in the figure, typically indicate where m/n — 2/m changes sign.)

4.5

w
o
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Figure 1.6.5. The left part shows how the estimate of w varies with the number of
throws. The right part compares |m/n — 2/m| with the standard deviation of m/n.

2Comte de Buffon (1707-1788), French natural scientist who contributed to the understanding of probability.
He also computed the probability that the sun would continue to rise after having been observed to rise on n
consecutive days.
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An important means of reducing the variance of estimates obtained from the Monte
Carlo method is to use antithetic sequences. If U;, i = 1 : n, is a sequence of random
uniform deviates on [0, 1], then Ui/ = 1—-U;,i = 1 : n,is an antithetic uniformly distributed
sequence. From the sequence in (1.6.1) we get the antithetic sequence

0.443065, 0.970545, 0.182765, 0.564115, 0.186495, 0.236975, . ... (1.6.11)

Antithetic sequences of normally distributed numbers with zero mean are obtained simply
by reversing the sign of the original sequence.

Roughly speaking, since the influence of chance has opposing effects in the two
antithetic experiments, one can presume that the effect of chance on the means is much less
than the effect of chance in the original experiments. In the following example we show
how to make a quantitative estimate of the reduction of variance accomplished with the use
of antithetic experiments.

Example 1.6.6.
Suppose the numbers x; are the results of statistically independent measurements of
a quantity with expected value u, and standard deviation o. Set

x:%i:x,», szznilé(xi—i)z.

Then x is an estimate of w, and s is an estimate of o.
In ten simulations and their antithetic experiments of a service system, the following
values were obtained for the treatment time:

685 1045 718 615 1021 735 675 635 616 889.

From this experiment the mean for the treatment time is estimated as 763.4, and the standard
deviation 51.5. Using an antithetic series, the following values were obtained:

731 521 585 710 527 574 607 698 761 532.
The series means are thus
708 783 651.5 662.5 774 654.5 641 666.5 688.5 710.5,

from which one gets the estimate 694.0 £ 15.9.

When one instead supplements the first sequence with 10 values using independent
random numbers, the estimate 704 & 36 using all 20 values is obtained. These results
indicate that, in this example, using antithetical sequence produces the desired accuracy
with (15.9/36)% ~ 1/5 of the work required if completely independent random numbers
are used. This rough estimate of the work saved is uncertain, but indicates that it is very
profitable to use the technique of antithetic series.

Example 1.6.7.
Monte Carlo methods have been used successfully to study queuing problems. A
well-known example is a study by Bailey [12] to determine how to give appointment times
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to patients at a polyclinic. The aim is to find a suitable balance between the mean waiting
times of both patients and doctors. This problem was in fact solved analytically—much
later—after Bailey already had the results that he wanted; this situation is not uncommon
when numerical methods (and especially Monte Carlo methods) have been used.

Suppose that k patients have been booked at the time t = 0 (when the clinic opens), and
that the rest of the patients (altogether 10) are booked at intervals of 50 time units thereafter.
The time of treatment is assumed to be exponentially distributed with mean 50. (Bailey used
a distribution function which was based on empirical data.) We use the following numbers
which are taken from a table of exponentially distributed random numbers with mean 100:

211 3 53 159 24 35 54 39 44 13.

Three alternatives, k = 1, 2, 3, are to be simulated. By using the same random numbers for
each k (hence the same treatment times) one gets a reduced variance in the estimate of the
change in waiting times as k varies. s

The computations are shown in Table 1.6.1. The following abbreviations are used
in what follows: P = patient, D = doctor, T = treatment. An asterisk indicates that
the patient did not need to wait. In the table, P,,, follows from the rule given previously
for booking patients. The treatment time T;;,,. equals R/2, where R are exponentially
distributed numbers with mean 100 taken from a table, i.e., the mean treatment time is 50.
Ty.q equals the larger of the number P, (on the same row) and 7,4 (in the row just above),
where T,,,q = Tbeg + Thime-

Table 1.6.1. Simulation of waiting times for patients at a polyclinic.

k=1 k=2
Poo | Paurr Theg R Time Tena Purr Tona
1 0* 0 211 106 106 0* 106
2 50 106 3 2 108 0 108
3 100 108 53 26 134 50 134
4 150* 150 159 80 230 100 214
5 200 230 24 12 242 150 226
6 250% 250 35 18 268 200 244
7 300* 300 54 27 327 250* 277
8 350* 350 39 20 370 300* 320
9 400* 400 44 22 422 350* 372
10 | 450* 450 13 6 456 400* 406
b)) 2250 319 2663 1800 2407

From the table we find that for k = 1 the doctor waited the time D = 456—-319 = 137,
the total waiting time for patients was P = 2663 — 2250 — 319 = 94. For k = 2 the
corresponding waiting times were D = 406—319 = 87 and P = 2407—1800—319 = 288.
Similar calculations for k = 3 gave D = 28 and P = 553 (see Figure 1.6.6). For k > 4 the
doctor never needs to wait.
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Figure 1.6.6. Mean waiting times for doctor and patients at polyclinic.

One cannot, of course, draw any tenable conclusions from one experiment. More
experiments should be done in order to put the conclusions on statistically solid ground.
Even isolated experiments, however, can give valuable suggestions for the planning of
subsequent experiments, or perhaps suggestions of appropriate approximations to be made
in the analytic treatment of the problem. The large-scale use of Monte Carlo methods
requires careful planning to avoid drowning in enormous quantities of unintelligible results.

Two methods for reduction of variance have been introduced here: antithetic se-
quence of random numbers and the technique of using the same random numbers in corre-
sponding situations. The latter technique is used when studying the changes in behavior of a
system when a certain parameter is changed, for example, the parameter k in Example 1.6.7.
Note that for this we need to be able to restart the RNG using the same seed. Other effective
methods for reducing variance are importance sampling and splitting techniques; see
Hammersley and Handscomb [183].

Review Questions

1.6.1 Whatis meant by the Monte Carlo method? Describe the origin of the method and give
some typical applications. In general, how fast does the error decrease in estimates
obtained with the Monte Carlo method?

1.6.2 Describe a linear congruential generator for generating a sequence of uniformly dis-
tributed pseudorandom numbers. What are some important properties of such a
generator?

1.6.3 Describe a general method for obtaining random numbers with a given discrete or
continuous distribution from uniformly distributed random numbers. Give examples
of its use.

1.6.4 Describe some statistical tests which can be applied to an RNG.
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1.6.5 What are the most important properties of a Poisson process? How can one generate
a Poisson process with the help of random numbers?

1.6.6 Whatis the mixed congruential method for generating pseudorandom numbers? What
important difference is there between the numbers generated by this method and
“genuine” random numbers?

1.6.7 Explain what is meant by reduction of variance in estimates made with the Monte
Carlo method. Give three methods for reduction of variance. What is the quantitative
connection between reducing variance and decreasing the amount of computation
needed in a given problem?

Problems and Computer Exercises

1.6.1 (C. Moler) Consider the toy RNG, x; = ax; mod m, with a = 13, m = 31, and start
with xop = 1. Show that this generates a sequence consisting of a permutation of all
integers from 1 to 30, and then repeats itself. Conclude that this generator has period
m — 1 = 30, equal to the maximum possible.

1.6.2 Simulate (say) 360 throws with two standard dice. Denote the sum of the number
of dots on the two dice on the nth throw by Y,, 2 < Y, < 12. Tabulate or draw a
histogram of the (absolute) frequency of the occurrence of j dots versus j, j = 2 : 12.
Make a conjecture about the true value of Pr(Y, = j). Try to confirm it by repeating
the experiment with fresh uniform random numbers. When you have found the right
conjecture, you will find that it is not hard to prove.

1.6.3 (a)Let X, Y be independent uniform random numbers on the interval [0, 1]. Show that
Pr(X?+47Y? < 1) = n/4, and estimate this probability by a Monte Carlo experiment
with (say) 1000 pairs of random numbers. Produce a graphical output like in the
Buffon needle problem.

(b) Conduct an antithetic experiment, and take the average of the two results. Is the
average better than one could expect if the second experiment had been independent
of the first one?

(c) Estimate similarly the volume of the four-dimensional unit ball. If you have
enough time, use more random numbers. (The exact volume of the unit ball is 772/2.)

1.6.4 A famous result by P. Diaconis asserts that it takes approximately % log, 52 ~ 8.55
riffle shuffles to randomize a deck of 52 cards, and that randomization occurs abruptly
according to a “cutoff phenomenon.” (After six shuffles the deck is still far from
random!)

The following definition can be used for simulating a riffle shuffle. The deck of cards
is first cut roughly in half according to a binomial distribution, i.e., the probability
that v cards are cut is (2)2_”. The two halves are then riffled together by dropping
cards roughly alternately from each half onto a pile, with the probability of a card
being dropped from each half being proportional to the number of cards in it.

Write a program that uses uniform random numbers, and perhaps uses the formula
X = [kR], for several values of k, to simulate a random shuffle of a deck of 52 cards
according to the above precise definition. This is for a numerical game; do not spend
time drawing beautiful hearts, clubs, etc.
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1.6.5 Brownian motion is the irregular motion of dust particles suspended in a fluid, being
bombarded by molecules in arandom way. Generate two sequences of random normal
deviates a; and b;, and use these to simulate Brownian motion by generating a path
defined by the points (x;, y;), where xo = yo = 0, x; = x,_1 + a;, yi = yi—1 + b;.
Plot each point and connect the points with a straight line to visualize the path.

1.6.6 Repeat the simulation in the queuing problem in Example 1.6.7 fork = 1 and k = 2
using the sequence of exponentially distributed numbers R,

13 365 88 23 154 122 87 112 104 213,

antithetic to that used in Example 1.6.7. Compute the mean of the waiting times for
the doctor and for all patients for this and the previous experiment.

1.6.7 A target with depth 2 and very large width is to be shot at with a cannon. (The
assumption that the target is very wide makes the problem one-dimensional.) The
distance to the center of the target is unknown, but estimated to be D. The difference
between the actual distance and D is assumed to be a normally distributed random
variable X = N (0, o1).

One shoots at the target with a salvo of three shots, which are expected to travel a
distance D —a, D, and D +a, respectively. The difference between the actual and the
expected distance traveled is assumed to be a normally distributed random variable
N (0, 0»); the resulting error component in the three shots is denoted by Y_;, Yy, Y.
We further assume that these three variables are independent of each other and X.
One wants to know how the probability of at least one “hit” in a given salvo depends
on a and b. Use normally distributed pseudorandom numbers to shoot 10 salvos and
determine for each salvo the least value of b for which there is at least one hit in the
salvo. Show that this is equal to

mkin|X— Yy +ka)|, k=-1,0,1.

Fire an antithetic salvo for each salvo.

Draw curves, for both @ = 1 and a = 2, which give the probability of a hit as a
function of the depth of the target. Use oy = 3 and 0, = 1, and the same random
numbers.

Notes and References

The methods and problems presented in this introductory chapter will be studied in greater
detail later in this volume and in Volume II. In particular, numerical quadrature methods are
studied in Chapter 5 and methods for solving a single nonlinear equation in Chapter 6. For
a survey of sorting algorithms we refer to [294, Chapter 8]. A comprehensive treatment of
sorting and searching is given in Knuth [231].

Although the history of Gaussian elimination goes back at least to Chinese mathemati-
cians (about 250 B.C.), there was no practical experience of solving large linear systems
until the advent of computers in the 1940s. Gaussian elimination was the first numerical
algorithm to be subjected to a rounding error analysis. In 1946 there was a mood of pes-
simism about the stability of Gaussian elimination. Bounds had been produced showing
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that the error in the solution would be proportional to 4”. This suggested that it would
be impossible to solve even systems of modest order. A few years later J. von Neumann
and H. H. Goldstein published more relevant error bounds. In 1948 A. M. Turing wrote a
remarkable paper [362], in which he formulated the LU factorization and introduced matrix
condition numbers.

Several of the great mathematicians at the turn of the nineteenth century worked on
methods for solving overdetermined linear systems. In 1799, Laplace used the principle of
minimizing the sum of absolute errors |r;|, with the added conditions that the errors sum to
zero. This leads to a solution x that satisfies at least n equations exactly. The method of least
squares was first published as an algebraic procedure by Legendre in 1805 [245]. Gauss
justified the least squares principle as a statistical procedure in [138], where he claimed to
have used the method since 1795. This led to one of the most famous priority disputes in
the history of mathematics. Gauss further developed the statistical aspects in 1821-1823.
For an interesting account of the history of the invention of least squares, see Stigler [337].

For a comprehensive treatment of all aspects of random numbers we refer to
Knuth [230]. Another good reference on the state of the art is the monograph by Niederre-
iter [275]. Guidelines for choosing a good RNG are given in Marsaglia [259], the monograph
by Gentle [152], and in the two surveys L’Ecuyer [242, 243]. Hellekalek [191] explains how
to access RNGs for practitioners. An introduction to Monte Carlo methods and their appli-
cations is given by Hammersley and Handscomb [183]. There is a close connection between
random number generation and data encryptation; see Press et al. [294, Chapter 7.5].

Some later chapters in this book assume a working knowledge in numerical linear
algebra. Online Appendix A gives a brief survey of matrix computations. A more in-depth
treatment of direct and iterative methods for linear systems, least squares, and eigenvalue
problems is planned for Volume II. Some knowledge of modern analysis including analytic
functions is also needed for some more advanced parts of the book. The classical textbook
by Apostol [7] is highly recommended as a suitable reference.

The James & James Mathematics Dictionary [210] is a high-quality general mathe-
matics dictionary covering arithmetic to calculus, and it includes a multilingual index. CRC
Concise Encyclopedia of Mathematics [370] is a comprehensive compendium of mathe-
matical definitions, formulas, and references. A free Web encyclopedia containing surveys
and references is Eric Weisstein’s MathWorld at mat hwor | d. wol f ram com

The development of numerical analysis during the period when the foundation was
laid in the sixteenth through the nineteenth century is traced in Goldstine [160]. Essays
on the history of scientific computing can be found in Nash [274]. An interesting account
of the developments in the twentieth century is given in [56]. An eloquent essay on the
foundations of computational mathematics and its relation to other fields is given by Baxter
and Iserles [21].

In 2000-2001, the Journal of Computational and Applied Mathematics published a
series of papers on Numerical Analysis of the 20th Century, with the aim of presenting the
historical development of numerical analysis and reviewing current research. The papers
were arranged in seven volumes; see Online Appendix C3.

We give below a selection of textbooks and review papers on numerical methods. Even
though the selection is by no means complete and reflects a subjective choice, we hope it can
serve as a guide for a reader who, out of interest (or necessity!), wishes to deepen his or her
knowledge. Both recent textbooks and older classics are included. Note that reviews of new
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books can be found in Mathematical Reviews as well as in the journals SIAM Review and
Mathematics of Computation. A more complete guide to relevant literature and software is
given in Online Appendix C.

Many outstanding textbooks in numerical analysis were originally published in the
1960s and 70s. The classical text by Hildebrand [201] can still be used as an introduction.
Isaacson and Keller [208] give a rigorous mathematical treatment of classical topics, in-
cluding differential equations and orthogonal polynomials. The present authors’ textbook
[89] was used at many universities in the USA and is still available.

Hamming [184] is a more applied text and aims at combining mathematical theory,
heuristic analysis, and computing methods. It emphasizes the message that “the purpose
of computing is insight, not numbers.” An in-depth treatment of several areas such as
numerical quadrature and approximation is found in the comprehensive book by Ralston
and Rabinowitz [296]. This book also contains a large number of interesting and fairly
advanced problems.

The book by Forsythe, Malcolm, and Moler [123] is notable in that it includes a set
of Fortran subroutines of unusually high quality. Kahaner, Moler, and Nash [220] comes
with a disk containing software. A good introduction to scientific computing is given by
Golub and Ortega [166]. A matrix-vector approach is used in the MATLAB oriented text
of Van Loan [367]. Analysis is complemented with computational experiments using a
package of more than 200 m-files. Cheney and Kincaid [68] is an undergraduate text with
many examples and exercises. Kincaid and Cheney [226] is a related textbook but more
mathematically oriented. Two other good introductory texts are Eldén, Wittmeyer-Koch,
and Nielsen [109] and Siili and Mayers [344].

Heath [190] is a popular, more advanced, and comprehensive text. Gautschi [147] is
an elegant introductory text containing a wealth of computer exercises. Much valuable and
hard-to-find information is included in notes after each chapter. The bestseller by Press et
al. [294] surveys contemporary numerical methods for the applied scientist, but is weak on
analysis.

Several good textbooks have been translated from German, notably the excellent book
by Stoer and Bulirsch [338]. This is particularly suitable for a reader with a good mathemati-
cal background. Hammerlin and Hoffmann [182] and Deuflhard and Hohmann [96] are less
comprehensive but with a modern and careful treatment. Schwarz [318] is a mathematically
oriented text which also covers ordinary and partial differential equations. Rutishauser [312]
is an annotated translation of a highly original textbook by one of the pioneers of numerical
analysis. Though brief, the book by Tyrtychnikov [363] is original and thorough. It also
contains references to Russian literature unavailable in English.

Since numerical analysis is still in a dynamic stage it is important to keep track of new
developments. An excellent source of survey articles on topics of current interest can be
found in Acta Numerica, a Cambridge University Press Annual started in 1992. The journal
SIAM Review also publishes high-quality review papers.

Another collection of outstanding survey papers on special topics is being published in
a multivolume sequence in the Handbook of Numerical Analysis [70], edited by Philippe G.
Ciarlet and Jacques-Louis Lions. It offers comprehensive coverage in all areas of numerical
analysis as well as many actual problems of contemporary interest; see section C3 in Online
Appendix C.






Chapter 2

How to Obtain and
Estimate Accuracy

I always think I used computers for what
God had intended them for, to do arithmetic.
—Cleve Moler

2.1 Basic Concepts in Error Estimation

The main purpose of numerical analysis and scientific computing is to develop efficient and
accurate methods to compute approximations to quantities that are difficult or impossible to
obtain by analytic means. It has been convincingly argued (Trefethen [357]) that controlling
rounding errors is just a small part of this, and that the main business of computing is the
development of algorithms that converge rapidly. Even if we acknowledge the truth of this
statement, it is still necessary to be able to control different sources of errors, including
roundoff errors, so that these will not interfere with the computed results.

2.1.1 Sources of Error

Numerical results are affected by many types of errors. Some sources of error are difficult
to influence; others can be reduced or even eliminated by, for example, rewriting formulas
or making other changes in the computational sequence. Errors are propagated from their
sources to quantities computed later, sometimes with a considerable amplification or damp-
ing. It is important to distinguish between the new error produced at the computation of a
quantity (a source error), and the error inherited (propagated) from the data that the quantity
depends on.

A. Errors in Given Input Data.
Input data can be the result of measurements which have been contaminated by
different types of errors. In general one should be careful to distinguish between
systematic errors and random errors. A systematic error can, for example, be
produced by insufficiencies in the construction of an instrument of measurement;
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such an error is the same in each trial. Random errors depend on the variation in the
experimental environment which cannot be controlled.

. Rounding Errors During the Computations.

Arounding error occurs whenever an irrational number, for example 7, is shortened
(“rounded off”) to a fixed number of digits, or when a decimal fraction is converted
to the binary form used in the computer. The limitation of floating-point numbers in
a computer leads at times to a loss of information that, depending on the context, may
or may not be important. Two typical cases are

(1) If the computer cannot handle numbers which have more than, say, s digits, then
the exact product of two s-digit numbers (which contains 2s or 2s — 1 digits) cannot
be used in subsequent calculations; the product must be rounded off.

(i1) In a floating-point computation, if a relatively small term b is added to a, then
some digits of b are “shifted out” (see Example 2.3.1), and they will not have any
effect on future quantities that depend on the value of a + b.

The effect of such rounding can be quite noticeable in an extensive calculation, or in
an algorithm which is numerically unstable.

. Truncation Errors.

These are errors committed when a limiting process is truncated (broken off) before
one has come to the limiting value. A truncation error occurs, for example, when
an infinite series is broken off after a finite number of terms, or when a derivative is
approximated with a difference quotient (although in this case the term discretization
error is better). Another example is when a nonlinear function is approximated with
a linear function, as in Newton’s method. Observe the distinction between truncation
error and rounding error.

. Simplifications in the Mathematical Model.

In most of the applications of mathematics, one makes idealizations. In a mechanical
problem one might assume that a string in a pendulum has zero mass. In many other
types of problems it is advantageous to consider a given body to be homogeneously
filled with matter, instead of being built of atoms. For a calculation in economics,
one might assume that the rate of interest is constant over a given period of time. The
effects of such sources of error are usually more difficult to estimate than the types
named in A, B, and C.

“Human” Errors and Machine Errors.

In all numerical work, one must expect that clerical errors, errors in hand calculation,
and misunderstandings will occur. One should even be aware that textbooks (!),
tables, and formulas may contain errors. When one uses computers, one can expect
errors in the program itself, typing errors in entering the data, operator errors, and
(less frequently) pure machine errors.

Errors which are purely machine errors are responsible for only a very small part of

the strange results which (occasionally with great publicity) are produced by computers.
Most of the errors depend on the so-called human factor. As a rule, the effect of this type
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of error source cannot be analyzed with the help of the theoretical considerations of this
chapter! We take up these sources of error in order to emphasize that both the person who
carries out a calculation and the person who guides the work of others can plan so that
such sources of error are not damaging. One can reduce the risk of such errors by suitable
adjustments in working conditions and routines. Stress and fatigue are common causes of
such errors.

Intermediate results that may reveal errors in a computation are not visible when
using a computer. Hence the user must be able to verify the correctness of his results or
be able to prove that his process cannot fail! Therefore, one should carefully consider
what kind of checks can be made, either in the final result or in certain stages of the work,
to prevent the necessity of redoing a whole project just because a small error has been
made in an early stage. One can often discover whether calculated values are of the wrong
order of magnitude or are not sufficiently regular, for example, using difference checks (see
Sec.3.3.1).

Occasionally one can check the credibility of several results at the same time by
checking that certain relations are true. In linear problems, one often has the possibility
of sum checks. In physical problems, one can check to see whether energy is conserved,
although because of error sources A to D one cannot expect that it will be exactly conserved.
In some situations, it can be best to treat a problem in two independent ways, although one
can usually (as intimated above) check a result with less work than this.

Errors of type E do occur, sometimes with serious consequences. The first American
Venus probe was lost due to a program fault caused by the inadvertent substitution of a
statement in a Fortran program of the form DO 3 | = 1. 3 for one of the form DO 3 |
= 1, 3. Erroneously replacing the comma “,” with a dot “.” converts the intended loop
statement into an assignment statement! A hardware error that got much publicity surfaced in
1994, when it was found that the INTEL Pentium processor gave wrong results for division
with floating-point numbers of certain patterns. This was discovered during research on
prime numbers (see Edelman [103]) and later fixed.

From a different point of view, one may distinguish between controllable and uncon-
trollable (or unavoidable) error sources. Errors of type A and D are usually considered to
be uncontrollable in the numerical treatment (although feedback to the constructor of the
mathematical model may sometimes be useful). Errors of type C are usually controllable.
For example, the number of iterations in the solution of an algebraic equation, or the step
size in a simulation, can be chosen either directly or by setting a tolerance.

The rounding error in the individual arithmetic operation (type B) is, in a computer,
controllable only to a limited extent, mainly through the choice between single and double
precision. A very important fact is, however, that it can often be controlled by appropriate
rewriting of formulas or by other changes of the algorithm; see Example 2.3.3.

If it doesn’t cost too much, a controllable error source should be controlled so that
its effects are evidently negligible compared to the effects of the uncontrollable sources.
A reasonable interpretation of “full accuracy” is that the controllable error sources should
not increase the error of a result by more than about 20%. Sometimes, “full accuracy” may
be expensive, for example, in terms of computing time, memory space, or programming
efforts. Then it becomes important to estimate the relation between accuracy and these cost
factors. One goal of the rest of this chapter is to introduce concepts and techniques useful
for this purpose.
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Many real-world problems contain some nonstandard features, where understanding
the general principles of numerical methods can save much time in the preparation of a
program as well as in the computer runs. Nevertheless, we strongly encourage the reader
to use quality library programs whenever possible, since a lot of experience and profound
theoretical analysis has often been built into these (sometimes far beyond the scope of this
text). It is not practical to “reinvent the wheel.”

2.1.2 Absolute and Relative Errors

Approximation is a central concept in almost all the uses of mathematics. One must often
be satisfied with approximate values of the quantities with which one works. Another
type of approximation occurs when one ignores some quantities which are small compared
to others. Such approximations are often necessary to ensure that the mathematical and
numerical treatment of a problem does not become hopelessly complicated.

We make the following definition.

Definition 2.1.1.
Let X be an approximate value whose exact value is x. Then the absolute error in x
is
Ax = |x — x|,
and if x # 0 the relative error is
Ax/x = |(Xx — x)/x]|.

In some books the error is defined with the opposite sign to what we use here. It
makes almost no difference which convention one uses, as long as one is consistent. Note
that x — X is the correction which should be added to X to get rid of the error. The correction
and the absolute error then have the same magnitude but may have different signs.

In many situations one wants to compute a strict or approximate bound for the absolute
or relative error. Since it is sometimes rather hard to obtain an error bound that is both strict
and sharp, one sometimes prefers to use less strict but often realistic error estimates. These
can be based on the first neglected term in some expansion, or on some other asymptotic
considerations.

The notation x = X + € means, in this book, |Xx — x| < €. For example, if x =
0.5876 4+ 0.0014, then 0.5862 < x < 0.5890, and |x — x| < 0.0014. In other texts, the
same plus—minus notation is sometimes used for the “standard error” (see Sec.2.3.3) or
some other measure of deviation of a statistical nature. If x is a vector | - ||, then the error
bound and the relative error bound may be defined as bounds for

X — x| and |Ix —x[|/]lx],

respectively, where || - || denotes some vector norm (see Sec. A.3.3 in Online Appendix A).
Then a bound ||x — x||/||x|| < 1/2-107? implies that components X; with |X;| &~ ||x|| have
about p significant digits, but this is not true for components of smaller absolute value. An
alternative is to use componentwise relative errors,

max |X; — x;|/1x;, (2.1.1)

but this assumes that x; # 0 for all i.



2.1. Basic Concepts in Error Estimation 91

We will distinguish between the terms accuracy and precision. By accuracy we mean
the absolute or relative error of an approximate quantity. The term precision will be reserved
for the accuracy with which the basic arithmetic operations +, —, *, / are performed. For
floating-point operations this is given by the unit roundoff; see (2.2.8).

Numerical results which are not followed by any error estimations should often,
though not always, be considered as having an uncertainty of % of a unit in the last decimal
place. In presenting numerical results, it is a good habit, if one does not want to go through
the difficulty of presenting an error estimate with each result, to give explanatory remarks
such as

* “All the digits given are thought to be significant.”
* “The data have an uncertainty of at most three units in the last digit.”
* “For an ideal two-atom gas, cp/cy = 1.4 (exactly).”

We shall also introduce some notations, useful in practice, though their definitions are
not exact in a mathematical sense:

a < b (a > b)isread “a is much smaller (much greater) than b.” What is meant by
“much smaller”(or “much greater”) depends on the context—among other things, on
the desired precision.

a ~ b is read “a is approximately equal to »” and means the same as |[a — b| < c,
where c is chosen appropriate to the context. We cannot generally say, for example,
that 1076 ~ 0.

a 3 b (orb Z a)isread “a is less than or approximately equal to »” and means the
same as “a <bora~b.”

Occasionally we shall have use for the following more precisely defined mathematical
concepts:

f(x) = O(g(x)), x = a, means that | f(x)/g(x)| is bounded as x — a
(a can be finite, +00, or —00).

f(x) =o0(g(x)), x = a, means that lim,_,, f(x)/g(x) =0.

f(x) ~ g(x), x — a, means that lim,_,, f(x)/g(x) = 1.

2.1.3 Rounding and Chopping

When one counts the number of digits in a numerical value one should not include zeros
in the beginning of the number, as these zeros only help to denote where the decimal point
should be. For example, the number 0.00147 has five decimals but is given with three digits.
The number 12.34 has two decimals but is given with four digits.

If the magnitude of the error in a given numerical value a does not exceed % 1077,
then a is said to have ¢ correct decimals. The digits in a which occupy positions where the
unit is greater than or equal to 10~ are then called significant digits (any initial zeros are
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not counted). Thus, the number 0.001234 £ 0.000004 has five correct decimals and three
significant digits, while 0.001234 £ 0.000006 has four correct decimals and two significant
digits. The number of correct decimals gives one an idea of the magnitude of the absolute
error, while the number of significant digits gives a rough idea of the magnitude of the
relative error.

We distinguish here between two ways of rounding off a number x to a given number
t of decimals. In chopping (or round toward zero) one simply leaves off all the decimals to
the right of the rth. That way is generally not recommended since the rounding error has,
systematically, the opposite sign of the number itself. Also, the magnitude of the error can
be as large as 107",

In rounding to nearest (sometimes called “correct” or “optimal” rounding), one
chooses a number with s decimals which is nearest to x. Hence if p is the part of the
number which stands to the right of the sth decimal, one leaves the #th decimal unchanged
if and only if |p| < 0.5 -107°. Otherwise one raises the sth decimal by 1. In the case of a
tie, when x is equidistant to two s decimal digit numbers, then one raises the sth decimal if
itis odd or leaves it unchanged if it is even (round to even). In this way, the error is positive
or negative about equally often. The error in rounding a decimal number to s decimals will
always lie in the interval [— % 107°, %10"‘].

Example 2.1.1.
Shortening to three decimals,

0.2397 rounds to 0.240 (is chopped to 0.239),
—0.2397 rounds to —0.240 (is chopped to —0.239),
0.23750 rounds to 0.238 (is chopped to 0.237),
0.23650 rounds to 0.236 (is chopped to 0.236),
0.23652 rounds to 0.237 (is chopped to 0.236).

Observe that when one rounds off a numerical value one produces an error; thus it is
occasionally wise to give more decimals than those which are correct. Take a = 0.1237 +
0.0004, which has three correct decimals according to the definition given previously. If
one rounds to three decimals, one gets 0.124; here the third decimal may not be correct,
since the least possible value for a is 0.1233.

Suppose that you are tabulating a transcendental function and that a particular entry
has been evaluated as 1.2845 correct to the digits given. You want to round the value to
three decimals. Should the final digit be 4 or 57 The answer depends on whether there
is a nonzero trailing digit. You compute the entry more accurately and find 1.28450, then
1.284500, then 1.2845000, etc. Since the function is transcendental, there clearly is no
bound on the number of digits that has to be computed before distinguishing if to round to
1.284 or 1.285. This is called the tablemaker’s dilemma.*

Example 2.1.2.
The difference between chopping and rounding can be important, as is illustrated by
the following story. The index of the Vancouver Stock Exchange, founded at the initial value

30This can be used to advantage in order to protect mathematical tables from illegal copying by rounding a few
entries incorrectly, where the error in doing so is insignificant due to several trailing zeros. An illegal copy could
then be exposed simply by looking up these entries!
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1000.000 in 1982, was hitting lows in the 500s at the end of 1983 even though the exchange
apparently performed well. It was discovered (The Wall Street Journal, Nov. 8, 1983, p. 37)
that the discrepancy was caused by a computer program which updated the index thousands
of times a day and used chopping instead of rounding to nearest! The rounded calculation
gave a value of 1098.892.

Review Questions

2.1.1 Clarify with examples the various types of error sources which occur in numerical
work.

2.1.2 (a) Define “absolute error” and “relative error” for an approximation x to a scalar
quantity x. What is meant by an error bound?

(b) Generalize the definitions in (a) to a vector x.
2.1.3 How is “rounding to nearest” performed?
2.1.4 Give & to four decimals using (a) chopping; (b) rounding.
2.1.5 What is meant by the “tablemaker’s dilemma”?

2.2 Computer Number Systems
2.2.1 The Position System

In order to represent numbers in daily life, we use a position system with base 10 (the
decimal system). Thus, to represent the numbers we use ten different characters, and the
magnitude with which the digit a contributes to the value of a number depends on the digit’s
position in the number. If the digit stands n steps to the right of the decimal point, the value
contributed is @ - 10™". For example, the sequence of digits 4711.303 means

4.-10°47-10241-10"+1-10°+3-107'+0-1072+3-1072.

Every real number has a unique representation in the above way, except for the possibility
of infinite sequences of nines—for example, the infinite decimal fraction 0.3199999. ..
represents the same number as 0.32.

One can very well consider other position systems with bases other than 10. Any
integer § > 2 (or § < —2) can be used as a base. One can show that every positive real
number a has, with exceptions analogous to the nines sequences mentioned above, a unique
representation of the form

a=dp" +dp 1+ diB A +d BT Hd BT+

or, more compactly, a = (d,d,—1 ...dy.d_1d_, .. .)p, where the coefficients d;, the “digits”
in the system with base f, are positive integers d; such that0 < d; < g — 1.

One of the greatest advantages of the position system is that one can give simple,
general rules for the arithmetic operations. The smaller the base is, the simpler these rules
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become. This is just one reason why most computers operate in base 2, the binary number
system. The addition and multiplication tables then take the following simple form:

04+0=0, 0+1=14+0=1, 14+1=10,
0-0=0, 0-1=1-0=0, 1-1=1.

In the binary system the number seventeen becomes 10001, since 1-2* +0-23 +0-2 +
0-2!' 4+ 1.2% = sixteen 4+ one = seventeen. Put another way (10001), = (17)19, where
the index (in decimal representation) denotes the base of the number system. The numbers
become longer written in the binary system; large integers become about 3.3 times as long,
since N binary digits suffice to represent integers less than 2V = 10V 102102 ~ [QN/33,

Occasionally one groups together the binary digits in subsequences of three or four,
which is equivalent to using 2% and 24, respectively, as the base. These systems are called the
octal and hexadecimal number systems, respectively. The octal system uses the digits from
0 to 7; in the hexadecimal system the digits O through 9 and the letters A, B,C, D, E, F
(“ten” through “fifteen”) are used.

Example 2.2.1.

(1710 = (10001)2 = (21)g = (11) 16,
(13.25)10 = (1101.01); = (15.2)s = (D.4)16,
(0.1)10 = (0.000110011001 . ..)> = (0.199999 . . .) .

Note that the finite decimal fraction 0.1 cannot be represented exactly by a finite fraction in
the binary number system! (For this reason some pocket calculators use base 10.)

Example 2.2.2.

In 1991 a Patriot missile in Saudi Arabia failed to track and interrupt an incoming
Scud missile due to a precision problem. The Scud then hit an army barrack and killed 28
Americans. The computer used to control the Patriot missile was based on a design dating
from the 1970s using 24-bit arithmetic. For the tracking computations, time was recorded
by the system clock in tenths of a second but converted to a 24-bit floating-point number.
Rounding errors in the time conversions caused an error in the tracking. After 100 hours
of consecutive operations the calculated time in seconds was 359,999.6567 instead of the
correct value 360,000, an error of 0.3433 seconds leading to an error in the calculated range
of 687 meters; see Skeel [326]. Modified software was later installed.

In the binary system the “point” used to separate the integer and fractional part of a
number (corresponding to the decimal point) is called the binary point. The digits in the
binary system are called bits (binary digits).

We are so accustomed to the position system that we forget that it is built upon an
ingenious idea. The reader can puzzle over how the rules for arithmetic operations would
look if one used Roman numerals, a number system without the position principle described
above.

Recall that rational numbers are precisely those real numbers which can be expressed
as a quotient between two integers. Equivalently, rational numbers are those whose repre-
sentation in a position system have a finite number of digits or whose digits are repeating.
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We now consider the problem of conversion between two number systems with dif-
ferent bases. Since almost all computers use a binary system this problem arises as soon as
one wants to input data in decimal form or print results in decimal form.

ALGORITHM 2.1. Conversion between Number Systems.

Let a be an integer given in number systems with base «. We want to determine its
representation in a number system with base g:

a=b,p" +bp 1B 4+ +by, 0<b <§. 2.2.1)

The computations are to be done in the system with base «, and thus 8 also is expressed in
this representation. The conversion is done by successive divisions of a with 8: Set gy = a,
and

qi/B = qis1 +bi/B, k=0,1,2,... (2.2.2)

(gr+1 is the quotient and by is the remainder in the division).
If a is not an integer, we write a = b + ¢, where b is the integer part and

c=c 1B e B P4+ (2.2.3)

is the fractional part, where c_j, c_», . . . are to be determined. These digits are obtained as
the integer parts when successively multiplying ¢ with 8: Set p_; = ¢, and

Pk-B=cap+p—, k=-1,-2,-3,.... (2.2.4)

Since a finite fraction in a number system with base « usually does not correspond to a finite
fraction in the number system with base 8, rounding of the result is usually needed.

When converting by hand between the decimal system and the binary system, all
computations are made in the decimal system (¢ = 10 and § = 2). It is then more
convenient to convert the decimal number first to octal or hexadecimal, from which the
binary representation easily follows. If, on the other hand, the conversion is carried out on
a binary computer, the computations are made in the binary system (¢ = 2 and 8 = 10).

Example 2.2.3.

Convert the decimal number 176.524 to ternary form (base 8 = 3). For the integer
part we get 176/3 = 58 with remainder 2; 58/3 = 19 with remainder 1; 19/3 = 6
with remainder 1; 6/3 = 2 with remainder 0; 2/3 = 0 with remainder 2. It follows that
(176)10 = (20112)5.

For the fractional part we compute .524 - 3 = 1.572, .572 -3 = 1.716, .716 - 3 =
2.148, .... Continuing in this way we obtain (.524);p = (.112010222...);. The finite
decimal fraction does not correspond to a finite fraction in the ternary number system.

2.2.2 Fixed- and Floating-Point Representation

A computer is, in general, built to handle pieces of information of a fixed size called a word.
The number of digits in a word (usually binary) is called the word-length of the computer.
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Typical word-lengths are 32 and 64 bits. A real or integer number is usually stored in a
word. Integers can be exactly represented, provided that the word-length suffices to store
all the digits in its representation.

In the first generation of computers calculations were made in a fixed-point number
system; i.e., real numbers were represented with a fixed number of ¢ binary digits in the
fractional part. If the word-length of the computer is s + 1 bits (including the sign bit), then
only numbers in the interval I = [—2*7",2°7'] are permitted. Some common fixed-point
conventions are ¢t = s (fraction convention) and r = 0 (integer convention). This limitation
causes difficulties, since even whenx € I,y € [,wecanhavex —y € lorx/y ¢ I.

In a fixed-point number system one must see to it that all numbers, even intermediate
results, remain within /. This can be attained by multiplying the variables by appropriate
scale factors, and then transforming the equations accordingly. This is a tedious process.
Moreover it is complicated by the risk that if the scale factors are chosen carelessly, certain
intermediate results can have many leading zeros which can lead to poor accuracy in the
final results. As a consequence, current numerical analysis literature rarely deals with other
than floating-point arithmetic. In scientific computing fixed-point representation is mainly
limited to computations with integers, as in subscript expressions for vectors and matrices.

On the other hand, fixed-point computations can be much faster than floating-point,
especially since modern microprocessors have superscalar architectures with several fixed-
point units but only one floating-point unit. In computer graphics, fixed-point is used almost
exclusively once the geometry is transformed and clipped to the visible window. Fixed-point
square roots and trigonometric functions are also pretty quick and are easy to write.

By a normalized floating-point representation of a real number a, we mean a
representation in the form

a=+m-B° B '<m<1, eaninteger. (2.2.5)

Such a representation is possible for all real numbers a and is unique if a # 0. (The
number zero is treated as a special case.) Here the fraction part m is called the mantissa®!
or significand), ¢ is the exponent, and § the base (also called the radix).

In a computer, the number of digits for e and m is limited by the word-length. Suppose
that ¢ digits are used to represent m. Then we can only represent floating-point numbers of
the form

a==xm-p°, m=0.ddr---d)p, 0=d; <8, (2.2.6)
where m is the mantissa m rounded to ¢ digits, and the exponent is limited to a finite range
€min = € = €max- 2.2.7)

A floating-point number system F' is characterized by the base S, the precision ¢, and
the numbers epin, emax. Only a finite set F' of rational numbers can be represented in the
form (2.2.6). The numbers in this set are called floating-point numbers. Since d; # O this
set contains, including the number zero, precisely

28— DB Nemax — emin + 1) + 1

31Strictly speaking, “mantissa” refers to the decimal part of a logarithm.
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numbers. (Show this!) The limited number of digits in the exponent implies that a is limited
in magnitude to an interval which is called the range of the floating-point system. If a is
larger in magnitude than the largest number in the set F', then a cannot be represented at all
(exponent spill). The same is true, in a sense, of numbers smaller than the smallest nonzero
number in F.

Example 2.2.4.

Consider the floating-point number systemfor 8 = 2,1 = 3, epin = —1, and ey = 2.
The positive normalized numbers in the corresponding set F are shown in Figure 2.2.1. The
set F' contains exactly 2 - 16 + 1 = 33 numbers. In this example the nonzero numbers
of smallest magnitude that can be represented are (0.100), - 27! = }‘ and the largest is
(0.111), - 2> = 1.

Lol
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1 1
i 2

0

Figure 2.2.1. Positive normalized numbers when 8 =2,t =3, and —1 < e < 2.

Notice that floating-point numbers are not equally spaced; the spacing jumps by a
factor of B at each power of 8. This wobbling is smallest for 8 = 2.

Definition 2.2.1.
The spacing of floating-point numbers is characterized by the machine epsilon, which
is the distance €y from 1.0 to the next larger floating-point number.

The leading significant digit of numbers represented in a number system with base
has been observed to closely fit a logarithmic distribution; i.e., the proportion of numbers
with leading digit equal to n is Ing(1 + 1/n) (n = 0,1, ..., B — 1). It has been shown
that, under this assumption, taking the base equal to 2 will minimize the mean square
representation error. A discussion of this intriguing fact, with historic references, is found
in Higham [199, Sec.2.7].

Even if the operands in an arithmetic operation are floating-point numbers in F, the
exact result of the operation may not be in F. For example, the exact product of two
floating-point 7-digit numbers has 2¢ or 2¢ — 1 digits.

If a real number a is in the range of the floating-point system, the obvious thing to do
is to represent a by a = f1 (a), where fI (a) denotes a number in F' which is nearest to a.
This corresponds to rounding of the mantissa m, and according to Sec.2.1.3, we have

1
[m —m| < 5.37[~

(There is one exception. If |m| after rounding should be raised to 1, then || is set equal to
0.1 and e is raised by 1.) Since m > 0.1 this means that the magnitude of the relative error
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in a is at most equal to
1 p—
BB 1
- 0 <

141
m-pe Zﬁ '

Even with the exception mentioned above this relative bound still holds. (If chopping is
used, this doubles the error bound above.) This proves the following theorem.

Theorem 2.2.2.
In a floating-point number system F = F (B, t, émin, €max) €very real number in the
floating-point range of F can be represented with a relative error, which does not exceed
the unit roundoff u, which is defined by
lg—t+1 o
_ 138 if rounding is used, 228
" { B~ if chopping is used. ( )

Note that in a floating-point system both large and small numbers are represented with
nearly the same relative precision. The quantity u is, in many contexts, a natural unit for
relative changes and relative errors. For example, termination criteria in iterative methods
usually depend on the unit roundoff.

To measure the difference between a floating-point number and the real number it
approximates we shall occasionally use “unit in last place” or ulp. We shall often say
that “the quantity is perturbed by a few ulps.” For example, if in a decimal floating-point
system the number 3.14159 is represented as 0.3142 - 10", this has an error of 0.41 ulps.

Example 2.2.5.

Sometimes it is useful to be able to approximately determine the unit roundoff in a
program at run time. This may be done using the observation that u ~ u, where p is
the smallest floating-point number x for which fl (1 + x) > 1. The following program
computes a number p which differs from the unit roundoff # by at most a factor of 2:

x:=1;
while 1 +x > 1 x:=x/2; end;
M= X5

One reason why u does not exactly equal u is that so-called double rounding may occur.
This is when a result is first rounded to extended format and then to the target precision.

A floating-point number system can be extended by including denormalized numbers
(also called subnormal numbers). These are numbers with the minimum exponent and with
the most significant digit equal to zero. The three numbers

(.001),27 1 = 1/16, (.010),271 = 2/16, (011),271 =3/16

can then also be represented (see Figure 2.2.2). Because the representations of denormal-
ized numbers have initial zero digits these have fewer digits of precision than normalized
numbers.
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Figure 2.2.2. Positive normalized and denormalized numbers when § = 2, t = 3,
and —1 <e < 2.

2.2.3 IEEE Floating-Point Standard

Actual computer implementations of floating-point representations may differ in detail from
the one given above. Although some pocket calculators use a floating-point number system
with base 8 = 10, almost all modern computers use base § = 2. Most current computers
now conform to the IEEE 754 standard for binary floating-point arithmetic.*?> This standard
from 1985 (see [205]), which is the result of several years’ work by a subcommittee of the
IEEE, is now implemented on almost all chips used for personal computers and workstations.
There is also a standard IEEE 854 for radix independent floating-point arithmetic [206]. This
is used with base 10 by several hand calculators.

The IEEE 754 standard specifies basic and extended formats for floating-point num-
bers, elementary operations and rounding rules available, conversion between different
number formats, and binary—decimal conversion. The handling of exceptional cases like
exponent overflow or underflow and division by zero are also specified.

Two main basic formats, single and double precision, are defined using 32 and 64
bits, respectively. In single precision a floating-point number « is stored as the sign s (one
bit), the exponent e (8 bits), and the mantissa m (23 bits). In double precision 11 of the 64
bits are used for the exponent, and 52 bits are used for the mantissa. The value v of a is in
the normal case

v= (_1)S(l-m)22€» —€min = € < €max- (2.2.9)

Note that the digit before the binary point is always 1 for a normalized number. Thus the
normalization of the mantissa is different from that in (2.2.6). This bit is not stored (the
hidden bit). In that way one bit is gained for the mantissa. A biased exponent is stored and
no sign bit used for the exponent. In single precision e, = —126 and emx = 127, and
e + 127 is stored.

The unit roundoff equals

u = 2722 596-10"% in single precision,
| 273 ~ 1.11-107'®  in double precision.

(The machine epsilon is twice as large.) The largest number that can be represented is
approximately 2.0-2'?7 & 3.4028 x 10 in single precision and 2.0-21923 ~ 1.7977 x 10°%
in double precision. The smallest normalized number is 1.0 - 2712 ~ 1.1755 x 10738 in
single precision and 1.0 - 271922 & 2.2251 x 1073 in double precision.

An exponent e = epip, — 1 and m # 0 signifies the denormalized number

v = (—1)°(0.m),2°min.

32W. Kahan, University of California, Berkeley, was given the Turing Award by the Association of Computing
Machinery for his contribution to this standard.
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The smallest denormalized number that can be represented is 27120723 ~ 1.4013 - 10~* in
single precision and 271922752 & 4.9407 - 10732* in double precision.

There are distinct representations for +0 and —0. %0 is represented by a sign bit, the
exponent epi, — 1, and a zero mantissa. Comparisons are defined so that +0 = —0. One
use of a signed zero is to distinguish between positive and negative underflowed numbers.
Another use occurs in the computation of complex elementary functions; see Sec.2.2.4.

Infinity is also signed and oo is represented by the exponent ep,x + 1 and a zero
mantissa. When overflow occurs the result is set to £00. This is safer than simply returning
the largest representable number, which may be nowhere near the correct answer. The result
+o00 is also obtained from the illegal operations a/0, where a # 0. The infinity symbol
obeys the usual mathematical conventions such as co + co = oo, (—1) X 0o = —o00,
ajoo = 0.

The IEEE standard also includes two extended precision formats that offer extra
precision and exponent range. The standard only specifies a lower bound on how many
extra bits it provides.>> Most modern processors use 80-bit registers for processing real
numbers and store results as 64-bit numbers according to the IEEE double precision standard.
Extended formats simplify tasks such as computing elementary functions accurately in single
or double precision. Extended precision formats are used also by hand calculators. These
will often display 10 decimal digits but use 13 digits internally—*‘the calculator knows more
than it shows.”

The characteristics of the IEEE formats are summarized in Table 2.2.1. (The hidden
bit in the mantissa accounts for the 41 in the table. Note that double precision satisfies the
requirements for the single extended format, so three different precisions suffice.)

Table 2.2.1. IEEE floating-point formats.

Format t e €min €max
Single 32bits 23 +1 8 bits —126 127
Single extended > 43 bits > 32 > 11 bits < —1022 > 1023
Double 64 bits 5241 11 bits —1022 1023
Double extended > 79 bits >64 > 15bits < -—16,382 > 16,383

Example 2.2.6.

Although the exponent range of the floating-point formats seems reassuringly large,
even simple programs can quickly give exponent spill. If xg = 2, x,41 = x2, then already
x10 = 2'%%% is larger than what IEEE double precision permits. One should also be careful
in computations with factorials, e.g., 171! &~ 1.24 - 10°? is larger than the largest double

precision number.

Four rounding modes are supported by the standard. The default rounding mode is
round to the nearest representable number, with round to even in the case of a tie. (Some
computers, in case of a tie, round away from zero, i.e., raise the absolute value of the

33 Hardware implementation of extended precision normally does not use a hidden bit, so the double extended
format uses 80 bits rather than 79.
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number, because this is easier to realize technically.) Chopping is also supported as well
as directed rounding to oo and to —oo. The latter mode simplifies the implementation of
interval arithmetic; see Sec. 2.5.3.

The standard specifies that all arithmetic operations should be performed as if they
were first calculated to infinite precision and then rounded to a floating-point number ac-
cording to one of the four modes mentioned above. This also includes the square root and
conversion between an integer and a floating-point. The standard also requires that the con-
version between internal formats and decimal be correctly rounded. This can be achieved
using extra guard digits in the intermediate result of the operation before normalization and
rounding. Using a single guard digit, however, will not always ensure the desired result.
However, by introducing a second guard digit and a third sticky bit (the logical OR of all
succeeding bits) the rounded exact result can be computed at only a slightly higher cost
(Goldberg [158]). One reason for specifying precisely the results of arithmetic operations
is to improve the portability of software. If a program is moved between two computers,
both supporting the IEEE standard, intermediate results should be the same.

IEEE arithmetic is a closed system; that is, every operation, even mathematically
invalid operations, such as 0/0 or v/—1, produces a result. To handle exceptional situations
without aborting the computations some bit patterns (see Table 2.2.2) are reserved for special
quantities like NaN (“Not a Number”) and co. NaNs (there are more than one NaN) are
represented by e = e + 1 and m # 0.

Table 2.2.2. IEEE 754 representation.

Exponent Mantissa  Represents

e =¢mnn— 1 m=0 +0
e =¢mnn — 1 m #0 +0.m - 26min
Cmin < € < €max +1.m - 2¢
e = emax + 1 m=0 +o0
e =emx + 1 m#0 NaN

Note that the gap between zero and the smallest normalized number is 1.0 x 2min, This
is much larger than for the spacing 27/+! x 2¢m» for the normalized numbers for numbers just
larger than the underflow threshold; compare Figure 2.2.1. With denormalized numbers the
spacing becomes more regular and permits what is called gradual underflow. This makes
many algorithms well behaved close to the underflow threshold also. Another advantage of
having gradual underflow is that it makes it possible to preserve the property

x=y & x—y=0

as well as other useful relations. Several examples of how denormalized numbers make
writing reliable floating-point code easier are analyzed by Demmel [94].

One illustration of the use of extended precision is in converting between IEEE 754
single precision and decimal. The converted single precision number should ideally be
converted with enough digits so that when it is converted back the binary single precision
number is recovered. It might be expected that since 2°* < 108, eight decimal digits in the
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converted number would suffice. But it can be shown that nine decimal digits are needed to
recover the binary number uniquely (see Goldberg [158, Theorem 15] and Problem 2.2.4).
When converting back to binary form a rounding error as small as one ulp will give the
wrong answer. To do this conversion efficiently, extended single precision is needed.>*

A NaN is generated by operations such as 0/0, +00 4+ (—00), 0 x oo, and J=1. A
NaN compares unequal with everything including itself. (Note that x # x is a simple way
to test if x equals a NaN.) When a NaN and an ordinary floating-point number are combined
the result is the same as the NaN operand. A NaN is also often used for uninitialized or
missing data.

Exceptional operations also raise a flag. The default is to set a flag and continue, but
it is also possible to pass control to a trap handler. The flags are “sticky” in that they remain
set until explicitly cleared. This implies that without a log file everything before the last
setting is lost, which is why it is always wise to use a trap handler. There is one flag for each
of the following five exceptions: underflow, overflow, division by zero, invalid operation,
and inexact. For example, by testing the flags, it is possible to test if an overflow is genuine
or the result of division by zero.

Because of cheaper hardware and increasing problem sizes, double precision is used
more and more in scientific computing. With increasing speed and memory becoming
available, bigger and bigger problems are being solved and actual problems may soon
require more than IEEE double precision! When the IEEE 754 standard was defined no one
expected computers able to execute more than 10'? floating-point operations per second.

2.2.4 Elementary Functions

Although the square root is included, the IEEE 754 standard does not deal with the imple-
mentation of other familiar elementary functions, such as the exponential function exp, the
natural logarithm log, and the trigonometric and hyperbolic functions sin, cos, tan, sinh,
cosh, tanh, and their inverse functions. With the IEEE 754 standard more accurate imple-
mentations are possible which in many cases give almost correctly rounded exact results.
To always guarantee correctly rounded exact results sometimes requires computing many
more digits than the target accuracy (cf. the tablemaker’s dilemma) and therefore is in gen-
eral too costly. It is also important to preserve monotonicity, e.g.,0 < x <y < 7w /2 =
sinx < sin y, and range restrictions, e.g., sinx < 1, but these demands may conflict with
rounded exact results!

The first step in computing an elementary function is to perform a range reduction.
To compute trigonometric functions, for example, sin x, an additive range reduction is first
performed, in which a reduced argument x*, — /4 < x* < 7 /4, is computed by finding an
integer k such that

x*=x—km/2 (/2 =1.57079632679489661923...).

(Quantities such as /2, log(2), that are often used in standard subroutines, are listed in
decimal form to 30 digits and octal form to 40 digits in Hart et al. [187, Appendix C] and to

341t should be noted that some computer languages do not include input/output routines, but these are developed
separately. This can lead to double rounding, which spoils the carefully designed accuracy in the IEEE 754
standard. (Some banks use separate routines with chopping even today—you may guess why!)
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40 and 44 digits in Knuth [230, Appendix A].) Then sinx = %+ sinx* or sinx = % cos x*,
depending on if k mod 4 equals 0, 1, 2, or 3. Hence approximation for sin x and cos x need
only be provided for 0 < x < z/4. If the argument x is very large, then cancellation in the
range reduction can lead to poor accuracy; see Example 2.3.7.
To compute log x, x > 0, a multiplicative range reduction is used. If an integer k is
determined such that
x*=x/25 x*e[l1/2,1],

then log x = logx* + k - log 2.
To compute the exponential function exp(x) an integer k is determined such that

x*=x—klog2, x*e€[0,log2] (log2=0.69314718055994530942...).

It then holds that exp(x) = exp(x*)-2* and hence we only need an approximation of exp(x)
for the range x € [0, log 2].

Coefficients of polynomial and rational approximations suitable for software imple-
mentations are tabulated in Hart et al. [187] and Cody and Waite [75]. But approximation
of functions can now be simply obtained using software such as Maple [65]. For example,
in Maple the commands

Digits = 40; minimax(exp(x), x =0..1, [i,k],1, err’)

mean that we are looking for the coefficients of the minimax approximation of the exponen-
tial function on [0, 1] by a rational function with numerator of degree i and denominator of
degree k with weight function 1, and that the variable er r should be equal to the approxi-
mation error. The coefficients are to be computed to 40 decimal digits. A trend now is for
elementary functions to be increasingly implemented in hardware. Hardware implementa-
tions are discussed by Muller [272]. Carefully implemented algorithms for elementary func-
tions are available from ww. net | i b. or g/ f dl i bmin the library package fdlibm (Freely
Distributable Math. Library) developed by Sun Microsystems and used by MATLAB.

Example 2.2.7.

On a computer using IEEE double precision arithmetic the roundoff unitisu = 2753 ~
1.1-107'6. One wishes to compute sinh x with good relative accuracy, both for small and
large |x|, at least moderately large. Assume that e* is computed with a relative error less
than u in the given interval. The formula (¢* — e™)/2 for sinh x is sufficiently accurate
except when |x| is very small and cancellation occurs. Hence for |x| <« 1, ¢* and e™*
and hence (¢* — e™")/2 can have absolute errors of order of magnitude (say) u. Then the
relative error in (e* — e™¥)/2 can have magnitude ~ u/|x|; for example, this is more than
100% for x ~ 10716,

For |x| <« 1 one can instead use (say) two terms in the series expansion for sinh x,

sinhx = x +x°/3! +x%/5! + ...

Then one gets an absolute truncation error which is about x> /120, and a roundoff error of
the order of 2u|x|. Thus the formula x + x3/6 is better than (e* — e™*)/2 if

Ix|°/120 + 2ulx| < u.
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If 2u|x| < u, we have |x|° < 120u = 15-27°, or |x| < 15" .2710 ~ 0.00168 (which
shows that 2u|x| really could be ignored in this rough calculation). Thus, if one switches
from (e* — e *)/2 to x 4+ x3/6 for |x| < 0.00168, the relative error will nowhere exceed
u/0.00168 ~~ 0.66-10~'3. If one needs higher accuracy, one can take more terms in the
series, so that the switch can occur at a larger value of |x]|.

For very large values of |x| one must expect a relative error of order of magnitude |xu/|
because of roundoff error in the argument x. Compare the discussion of range reduction in
Sec.2.2.4 and Problem 2.2.13.

For complex arguments the elementary functions have discontinuous jumps across
when the argument crosses certain branch cuts in the complex plane. They are represented
by functions which are single-valued excepts for certain straight lines called branch cuts.
Where to put these branch cuts and the role of IEEE arithmetic in making these choices are
discussed by Kahan [217].

Example 2.2.8.

The function +/x is multivalued and there is no way to select the values so the function
is continuous over the whole complex plane. If a branch cut is made by excluding all real
negative numbers from consideration the square root becomes continuous. Signed zero
provides a way to distinguish numbers of the form x + i (40) and x + i (—0) and to select
one or the other side of the cut.

To test the implementation of elementary functions, a Fortran package ELEFUNT
has been developed by Cody [73]. This checks the quality using identities like cos x =
cos(x/3)(4 cos’(x/3) — 1). For complex elementary functions a package CELEFUNT
serves the same purpose; see Cody [74].

2.2.5 Multiple Precision Arithmetic

Hardly any quantity in the physical world is known to an accuracy beyond IEEE double
precision. A value of 7 correct to 20 decimal digits would suffice to calculate the circumfer-
ence of a circle around the sun at the orbit of the Earth to within the width of an atom. There
seems to be little need for multiple precision calculations. Occasionally, however, one may
want to perform some calculations, for example, the evaluation of some mathematical con-
stant (such as 77 and Euler’s constant ) or elementary functions, to very high precision.*’
Extremely high precision is sometimes needed in experimental mathematics when trying to
discover new mathematical identities. Algorithms which may be used for these purposes
include power series, continued fractions, solutions of equations with Newton’s method, or
other superlinearly convergent methods.

For performing such tasks it is convenient to use arrays to represent numbers in a
floating-point form with a large base and a long mantissa, and to have routines for performing
floating-point operations on such numbers. In this way it is possible to simulate arithmetic
of arbitrarily high precision using standard floating-point arithmetic.

35Tn October 1995 Yasumasa Kanada of the University of Tokyo computed 7 to 6,442,458,938 decimals on a
Hitachi supercomputer; see [11].
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Brent [46, 45] developed the first major such multiple precision package in Fortran
66. His package represents multiple precision numbers as arrays of integers and operates
on them with integer arithmetic. It includes subroutines for multiple precision evaluation of
elementary functions. A more recent package called MPFUN, written in Fortran 77 code,
is that of Bailey [9]. In MPFUN a multiple precision number is represented as a vector of
single precision floating-point numbers with base 224, Complex multiprecision numbers are
also supported. There is also a Fortran 90 version of this package [10], which is easy to use.

A package of MATLAB m-files called Mulprec for computations in, principally,
unlimited precision floating-point, has been developed by the first-named author. Docu-
mentation of Mulprec and the m-files can be downloaded from the homepage of this book
at ww. si am or g/ books/ ot 103 together with some examples of its use.

Fortran routines for high precision computation are also provided in Press et al. [294,
Sec. 20.6], and are also supported by symbolic manipulation systems such as Maple [65]
and Mathematica [382]; see Online Appendix C.

Review Questions

2.2.1 What base g is used in the binary, octal, and hexadecimal number systems?

2.2.2 Show that any finite decimal fraction corresponds to a binary fraction that eventually
is periodic.

2.2.3 What is meant by a normalized floating-point representation of a real number?

2.2.4 (a) How large can the maximum relative error be in representation of a real number
a in the floating-point system F = F (B, p, €min, €max)? It is assumed that a is in the
range of F'.

(b) How are the quantities “machine epsilon” and “unit roundoff” defined?
2.2.5 What are the characteristics of the IEEE single and double precision formats?
2.2.6 What are the advantages of including denormalized numbers in the IEEE standard?

2.2.7 Give examples of operations that give NaN as their result.

Problems and Computer Exercises

2.2.1 Which rational numbers can be expressed with a finite number of binary digits to
the right of the binary point?

2.2.2 (a) Prove the algorithm for conversion between number systems given in Sec. 2.2.1.
(b) Give the hexadecimal form of the decimal numbers 0.1 and 0.3. What error is
incurred in rounding these numbers to IEEE 754 single and double precision?

(c) What is the result of the computation 0.3/0.1 in IEEE 754 single and double
precision?

2.2.3 (Kahan) An (over)estimate of u can be obtained for almost any computer by evalu-

ating |3 x (4/3 — 1) — 1] using rounded floating-point for every operation. Test this
on a calculator or computer available to you.



106

Chapter 2. How to Obtain and Estimate Accuracy

224

2.2.5

2.2.6

2.2.7

2.2.8

2.2.9

2.2.10

2.2.11

2.2.12

2.2.13

(Goldberg [158]) The binary single precision numbers in the half-open interval
[10%, 1024) have 10 bits to the left and 14 bits to the right of the binary point. Show
that there are (2'° —103) - 2!4 = 393,216 such numbers, but only 21°—10%-10* =
240,000 decimal numbers with eight decimal digits in the same interval. Conclude
that eight decimal digits are not enough to uniquely represent single precision binary
numbers in the IEEE 754 standard.

Suppose one wants to compute the power A” of a square matrix A, where n is a
positive integer. To compute A**! = A - A* for k = 1 : n — 1 requires n — 1 matrix
multiplications. Show that the number of multiplications can be reduced to less than
2|log, n] by converting n into binary form and successively squaring A% = (A¥)2,
k=1:log,n].

Give in decimal representation: (a) (10000),; (b) (100)s; (c) (64)16; (d) (FF)i6;

(e) (0.11)g; (f) the largest positive integer which can be written with 31 binary digits
(answer with one significant digit).

(a) Show how the following numbers are stored in the basic single precision format
of the IEEE 754 standard: 1.0; —0.0625; 250.25; 0.1.

(b) Give in decimal notation the largest and smallest positive numbers which can be
stored in this format.

(Goldberg [158, Theorem 7]) When 8 = 2, if m and n are integers with m < 2p-1
(p is the number of bits in the mantissa) and n has the special form n = 27 +
2/, then fI((m/n) x n) = m provided that floating-point operations are exactly
rounded to nearest. The sequence of possible values of n starts with 1, 2, 3,4, 5, 6, 8,
9, 10, 12, 16, 17. Test the theorem on your computer for these numbers.

Let pi be the closest floating-point number to 7w in double precision IEEE 754
standard. Find a sufficiently accurate approximation to 7 from a table and show that
7w — pi ~ 1.2246 - 10715, What value do you get on your computer for sin 77 ?

(Edelman) Let x, 1 < x < 2, be a floating-point number in IEEE double precision
arithmetic. Show that fI(x - fI(1/x)) is either 1 or 1 — €);/2, where €); = 272
(the machine epsilon).

(N. J. Higham) Let a and b be floating-point numbers with a < b. Show that the
inequalities a < fl((a + b)/2) < b can be violated in base 10 arithmetic. Show
thata < fl(a + (b — a)/2) < b in base B arithmetic.

(Muller) A rational approximation of tan x in [—m /4, w /4] is

(0.99999 99328 — 0.09587 5045x2)x
1 — (0.429209672 + 0.00974 3234x2)x2"

r(x) =

Determine the approximate maximum error of this approximation by comparing
with the function on your system on 100 equidistant points in [0, 7 /4].

(a) Show how on a binary computer the exponential function can be approximated
by first performing a range reduction based on the relation ¢* = 2¥, y = x/log?2,
and then approximating 2” on y € [0, 1/2].
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(b) Show that since 2” satisfies 27> = 1/2Y a rational function r (y) approximating
27 should have the form

() +ys(y?)

)= gy — ys(y?)’

where ¢ and s are polynomials.
(c) Suppose the r(y) in (b) is used for approximating 2* with

q(y) = 20.8189237930062 + y,
s(y) =7.2152891511493 4 0.05769 00723 731y.

How many additions, multiplications, and divisions are needed in this case to eval-
uate r(y)? Investigate the accuracy achieved for y € [0, 1/2].

2.3 Accuracy and Rounding Errors
2.3.1 Floating-Point Arithmetic

It is useful to have a model of how the basic floating-point operations are carried out. If x
and y are two floating-point numbers, we denote by

flx+y),  flx—=y), flxxy), [flx/y)

the results of floating addition, subtraction, multiplication, and division, which the machine
stores in memory (after rounding or chopping). In what follows we will assume that under-
flow or overflow does not occur, and that the following standard model for the arithmetic
holds.

Definition 2.3.1.
Assume that x, y € F. Then in the standard model it holds that

flxopy) = (xop (1 +8), 13l <u, 2.3.1)

where u is the unit roundoff and “op” stands for one of the four elementary operations: +,
—, X, and /.

The standard model holds with the default rounding mode for computers implementing
the IEEE 754 standard. In this case we also have

FIVx) =Vx(1+8), 18l <u. (2.3.2)
If a guard digit is lacking, then instead of (2.3.1) only the weaker model
fl(xopy) =x(L+48)opy(l+6), |6 =u, (2.33)

holds for addition/subtraction. The lack of a guard digit is a serious drawback and can lead
to damaging inaccuracy caused by cancellation. Many algorithms can be proved to work
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satisfactorily only if the standard model (2.3.1) holds. We remark that on current computers
multiplication is as fast as addition/subtraction. Division usually is five to ten times slower
than a multiply, and a square root about twice as slow as division.

Some earlier computers lack a guard digit in addition/subtraction. Notable examples
are several pre-1995 models of Cray computers (Cray 1,2, X-MP,Y-MP, and C90), which
were designed to have the highest possible floating-point performance. The IBM 360, which
used a hexadecimal system, lacked a (hexadecimal) guard digit between 1964 and 1967.
The consequences turned out to be so intolerable that a guard digit had to be retrofitted.

Sometimes the floating-point computation is more precise than what the standard
model assumes. An obvious example is that when the exact value x op y can be represented
as a floating-point number there is no rounding error at all.

Some computers can perform a fused multiply—add operation, i.e., an expression of
the form a x x + y can be evaluated with just one instruction and there is only one rounding
error at the end:

flaxx+y)=(@xx+y)A+96), |5 <u.

Fused multiply—add can be used to advantage in many algorithms. For example, Horner’s
rule to evaluate the polynomial p(x) = agx" + ax" '+ ...+ a,_x + a,, which uses the
recurrence relation by = ag, b; = b;_1 - x +a;,i = 1 : n, needs only n fused multiply—add
operations.

It is important to realize that floating-point operations have, to some degree, other
properties than the exact arithmetic operations. Floating-point addition and multiplication
are commutative but not associative, and the distributive law also fails for them. This makes
the analysis of floating-point computations quite difficult.

Example 2.3.1.
To show that associativity does not, in general, hold for floating addition, consider
adding the three numbers

a = 0.1234567 - 10°, b= 04711325 - 10%, c=-b

in a decimal floating-point system with + = 7 digits in the mantissa. The following scheme
indicates how floating-point addition is performed:

flb+c)=0,  fl(a+ fl(b+c)) =a=0.1234567 - 10°

a = 0.0000123 | 4567 - 10*

+b = 04711325 10*
fla+b) = 04711448 10*
c = —0.4711325 10%

The last four digits to the right of the vertical line are lost by outshifting, and
FL(fl(a+b) +c) = 0.0000123 - 10* = 0.1230000 - 10° # fI(a + fI (b + ¢)).

An interesting fact is that, assuming a guard digit is used, floating-point subtraction
of two sufficiently close numbers is always exact.
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Lemma 2.3.2 (Sterbenz [333]).
Let the floating-point numbers x and 'y satisfy

y/2 <x <2y.
Then fl(x —y) = x — y, unless x — y underflows.

Proof. By the assumption the exponent of x and y in the floating-point representations of x
and y can differ by at most one unit. If the exponent is the same, then the exact result will be
computed. Therefore, assume the exponents differ by one. After scaling and, if necessary,
interchanging x and y, it holds that x/2 < y < x < 2 and the exact difference z = x — y
is of the form

X = X1.X2...X;
y= 0.y1... -1y .
Z = 2122+ 22141

But from the assumption, x/2 —y < 0 or x — y < y. Hence we must have z; = 0, and
thus after shifting the exact result is also obtained in this case. 0

With gradual underflow, as in the IEEE 754 standard, the condition that x — y does
not underflow can be dropped.

Example 2.3.2.
A corresponding result holds for any base 8. For example, using four-digit floating
decimal arithmetic we get with guard digit

£1(0.1000 - 10" — 0.9999) = 0.0001 = 1.000 - 10~*
(exact), but without guard digit
F£1(0.1000 - 10" — 0.9999) = (0.1000 — 0.0999)10' = 0.0001 - 10" = 1.000- 1073,

The last result satisfies (2.3.3) with |8;| < 0.5 - 1073 since 0.10005 - 10" — 0.9995 = 1073,

Outshiftings are common causes of loss of information that may lead to catastrophic
cancellation later, in the computations of a quantity that one would have liked to obtain
with good relative accuracy.

Example 2.3.3.

An example where the result of Lemma 2.3.2 can be used to advantage is in computing
compounded interest. Consider depositing the amount ¢ every day in an account with an
interest rate i compounded daily. With the accumulated capital, the total at the end of the
year equals

cfd+x)"—=1]/x, x=i/n<K1,

and n = 365. Using this formula does not give accurate results. The reason is that a
rounding error occurs in computing fI(1 + x) = 1 + x and low order bits of x are lost.
For example, if i = 0.06, then i /n = 0.0001643836; in decimal arithmetic using six digits
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when this is added to one we get fI(1 4+ i/n) = 1.000164, and thus four low order digits
are lost.
The problem then is to accurately compute (1+x)" = exp(n log(1 4 x)). The formula

x if f1(1+x) =1,

log(1+x) = . log(1 + x)
(I+x)—1

otherwise (2.34)

can be shown to yield accurate results when x € [0, 3/4] and the computed value of
log(1 + x) equals the exact result rounded; see Goldberg [158, p. 12].

To check this formula we recall that the base e of the natural logarithm can be defined
by the limit

e= lim (1 + 1/n)".
n— 0o

In Figure 2.3.1 we show computed values, using double precision floating-point arithmetic,
of the sequence |(1 + 1/n)" — e| forn = 107, p = 1 : 14. More precisely, the expression

was computed as
|exp(nlog(l+ 1/n)) —exp(1)|.

The smallest difference 3 - 1078 occurs for n = 108, for which about half the number of bits
in x = 1/n are lost. For larger values of n rounding errors destroy the convergence. But
using (2.3.4) we obtain correct results for all values of n! (The Maclaurin series

log(l +x) =x —x*/2+x*/3 —x*/4+ ...

will also give good results.)

Figure 2.3.1. Computed values for n = 107, p = 1 : 14, of the sequences: solid
line |(1 4+ 1/n)" — e|; dashed line | exp(nlog(1l + 1/n)) — e| using (2.3.4).
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A fundamental insight from the above examples can be expressed in the following
way:

“mathematically equivalent” formulas or algorithms are not in general “numer-
ically equivalent.”

This adds a new dimension to calculations in finite precision arithmetic and it will be a
recurrent theme in the analysis of algorithms in this book.

By mathematical equivalence of two algorithms we mean here that the algorithms
give exactly the same results from the same input data, if the computations are made without
rounding error (‘“with infinitely many digits”). One algorithm can then, as a rule, formally
be derived from the other using the rules of algebra for real numbers, and with the help
of mathematical identities. Two algorithms are numerically equivalent if their respective
floating-point results using the same input data are the same.

In error analysis for compound arithmetic expressions based on the standard model
(2.3.1), one often needs an upper bound for quantities of this form:

e=[0+6D)A+8)---A+8) -1, |&l=<u, i=1:n.

Then € < (1 +u)" — 1. Assuming that nu < 1, an elementary calculation gives

—1

2l k
<1+ L +(””)k_1 n ) _M o (235)
- nuo oo mu ) . a3
”” 2 2 1~ nuj2

Similarly, it can be shown that (1 — u)™ — 1 < nu/(1 — nu), and the following useful
result follows (Higham [199, Lemma 3.1]).

Lemma 2.3.3.
Let |8;| < u, p; = £1, i = 1:n, and set
[Ja+s8) =1+6,. (2.3.6)
i=1
Ifnu < 1, then |6,,| < y,, where
Vo = nu/(1 — nu). 2.3.7)

Complex arithmetic can be reduced to real arithmetic. Letx = a+ibandy = c+id
be two complex numbers. Then we have

xty=atc+ibxd),

x Xy = (ac—bd)+ilad + bc), (2.3.8)
ac + bd bc —ad
x/y =

2t Vara
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Using the above formula, complex addition (subtraction) needs two real additions, and
multiplying two complex numbers requires four real multiplications.

Lemma 2.3.4.

Assume that the standard model (2.3.1) for floating-point arithmetic holds. Then,
provided that no overflow or underflow occurs, no denormalized numbers are produced and
the complex operations computed according to (2.3.8) satisfy

flxxy)=x=xy)(1+3), 8] <u,
fl(xxy)=xx y(1+8), |8 <~/5u, (2.3.9)
flLx/y) =x/y(1L+8), 8] < V2,

where § is a complex number and y, is defined in (2.3.7).

Proof. See Higham [199, Sec. 3.6]. The result for complex multiplication is due to Brent
et al. [48]. O

The square root of a complex number u + iv = /x + iy is given by

r+x 12 r—x 12
u:( ) , v=< ) , r=+/xT+y2, (2.3.10)

2 2

When x > 0 there will be cancellation when computing v, which can be severe if also
|x| > |y| (cf. Sec.2.3.4). To avoid this we note that uv = /r2 — x2/2 = y/2, and thus v
can be computed from v = y/(2u). When x < 0 we instead compute v from (2.3.10) and
setu = y/(2v).

Most rounding error analyses given in this book are formulated for real arithmetic.
Since the bounds in Lemma 2.3.4 are of the same form as the standard model for real
arithmetic, these can simply be extended to complex arithmetic.

In some cases it may be desirable to avoid complex arithmetic when working with
complex matrices. This can be achieved in a simple way by replacing the complex matrices
and vectors by real ones of twice the order. Suppose that a complex matrix A € C"*" and
a complex vector z € C" are given, where

A=B+iC, z=x+1iy,

with real B, C, x, and y. Form the real matrix A € R¥*?" and real vector 7 € R?" defined

’ () =)

It is easy to verify the following rules:

—_~—

(Az) = Az,  (AB)=AB, (A)=(A)".

Thus we can solve complex-valued matrix problems using algorithms for the real case. But
this incurs a penalty in storage and arithmetic operations.
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2.3.2 Basic Rounding Error Results

We now use the notation of Sec.2.3.1 and the standard model of floating-point arithmetic
(Definition 2.3.1) to carry out rounding error analysis of some basic computations. Most,
but not all, results are still true if only the weaker bound (2.3.3) holds for addition and
subtraction. Note that f/ (x op ¥y) = (x op y)(1 4+ §), |6] < u, can be interpreted for
multiplication to mean that f/ (x - y) is the exact result of x - y(1 + ) for some §, |§| < u.
In the same way, the results using the three other operations can be interpreted as the result
of exact operations where the operands have been perturbed by a relative amount which
does not exceed u. In backward error analysis (see Sec.2.4.4) one applies the above
interpretation step by step backward in an algorithm.

By repeated use of the formula (2.3.1) in the case of multiplication, one can show that

Slxxz -+ xp) = x1x2(1 + 82)x3(1 + 83) - - - %, (1 + 8,),
16;| <u, i=2:n

holds; i.e., the computed product f/ (x;x; - - - x,,) is exactly equal to a product of the factors
X1=x1, Xi=x;(14+6), i=2:n.
Using the estimate and notation of (2.3.7) it follows from this analysis that
|fL(ex X)) = X1X0 - X | < Yuo [ X122 X, (2.3.11)

which bounds the forward error of the computed result.
For a sum of »n floating-point numbers similar results can be derived. If the sum is
computed in the natural order, we have

FUG (e +x2) +x3) + -+ + X))
= x1(1 +51) +XQ(1 +82) +--- +Xn(1 +8n)7
where
1811 < ¥n—1, 18:] < Yng1-i» i=2:n,

and thus the computed sum is the exact sum of the numbers x; (1 4 §;). This also gives an
estimate of the forward error

|fLC- (G x2) +x3) + -+ X)) =+ + x5+ + x5

n n
<D verilnl < var Y I, (2.3.12)
i=1 i=1

where the last upper bound holds independent of the summation order.

Notice that to minimize the first upper bound in equation (2.3.12), the terms should
be added in increasing order of magnitude. For large n an even better bound can be shown
if the summation is done using the divide and conquer technique described in Sec. 1.2.3;
see Problem 2.3.5.
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Example 2.3.4.
Using a hexadecimal machine (8 = 16), with¢ = 6 and chopping (1 = 167> ~ 1079),
we computed

10,000
Z n~2~ 1.644834
n=1

in two different orders. Using the natural summation order n = 1,2, 3, ... the error was
1.317 - 1073, Summing in the opposite order n = 10,000, 9,999, 9,998, ... the error was
reduced to 2 - 107%. This was not unexpected. Each operation is an addition, where the
partial sum s is increased by n 2. Thus, in each operation, one commits an error of about
s - u, and all these errors are added. Using the first summation order, we have 1 < s < 2
in every step, but using the other order of summation we have s < 1072 in 9,900 of the
10,000 additions.

Similar bounds for roundoff errors can easily be derived for basic vector and matrix
operations; see Wilkinson [377, pp. 114-118]. For an inner product x” y computed in the
natural order we have

FLETy) =xip1(1+81) +x2y2(1+82) 4 -+ - + xu00(1 + 8,),

where
|81| < Vn, |8r| < Vn42—i> i=2:n.

The corresponding forward error bound becomes

FLGTY) =Tyl < Y varailxillyil < va ) billyil-

i=1 i=1

If we let |x|, |y| denote vectors with elements |x;|, |y;| the last estimate can be written in
the simple form

LT y)y —xTyl < yalxT]lyl. (2.3.13)

This bound is independent of the summation order and also holds for the weaker model
(2.3.3) valid with no guard digit rounding.

The outer product of two vectors x, y € R” is the matrix xy” = (x;y;). In floating-
point arithmetic we compute the elements fI (x;y;) = x;y;(1 +&;;), 8;; < u, and thus

|f1Gey™) —xy" | <ulxy™). (2.3.14)

This is a satisfactory result for many purposes, but the computed result is not in general arank

one matrix and it is not possible to find Ax and Ay such that fI(xy7) = (x+Ax)(x+Ay)7.
The product of two ¢-digit floating-point numbers can be exactly represented with at

most 2¢ digits. This allows inner products to be computed in extended precision without

much extra cost. If fI, denotes computation with extended precision and u, the correspond-

ing unit roundoff, then the forward error bound for an inner product becomes

nu,

|FL(fLe(x"y) = xTy] < ulx"y| + 1—(1 +w)x" ]yl (2.3.15)
—nu,/2
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where the first term comes from the final rounding. If |x7||y| < u|x” y|, then the computed
inner product is almost as accurate as the correctly rounded exact result. These accurate inner
products can be used to improve accuracy by so-called iterative refinement in many linear
algebra problems. But since computations in extended precision are machine dependent it
has been difficult to make such programs portable.>® The recent development of Extended
and Mixed Precision BLAS (Basic Linear Algebra Subroutines; see [247]) may now make
this more feasible.

Similar error bounds can easily be obtained for matrix multiplication. Let A € R™*",
B € R"™?, and denote by |A| and | B| matrices with elements |a;;| and |b;;|. Then it holds
that

| f1 (AB) — AB| < y,|Al|B], (2.3.16)

where the inequality is to be interpreted elementwise. Often we shall need bounds for some
norm of the error matrix. From (2.3.16) it follows that

| f1(AB) — AB|| < yull ALl |B] |- (2.3.17)
Hence, for the 1-norm, oo-norm, and the Frobenius norm we have
I fI(AB) — AB|| < yullAll I BIl, (2.3.18)

but unless A and B have only nonnegative elements, we get for the 2-norm only the weaker
bound

[ fI(AB) — ABll2 < ny,llAll2 || Bll2- (2.3.19)

To reduce the effects of rounding errors in computing a sum ) ;_, x; one can use
compensated summation. In this algorithm the rounding error in each addition is esti-
mated and then compensated for with a correction term. Compensated summation can be
useful when a large number of small terms are to be added as in numerical quadrature.
Another example is the case in the numerical solution of initial value problems for ordinary
differential equations. Note that in this application the terms have to be added in the order
in which they are generated.

Compensated summation is based on the possibility to simulate double precision
floating-point addition in single precision arithmetic. To illustrate the basic idea we take,
as in Example 2.3.1,

a =0.1234567-10°, b =0.4711325 - 10*,
sothat s = fI (a + b) = 0.4711448 - 10*. Suppose we form
c= fL(fl(b—s)+a)=—0.1230000 - 10° 4 0.1234567 - 10° = 4567000 - 10>.

Note that the variable ¢ is computed without error and picks up the information that was
lost in the operation fI (a + b).

361t was suggested that the IEEE 754 standard should require inner products to be precisely specified, but that
did not happen.
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ALGORITHM 2.2. Compensated Summation.
The following algorithm uses compensated summation to accurately compute the sum

Do Xi

s:=x1; c:=0;

fori =2:n
yi=c+x;
t:=s54+y;
ci=(06—-t+y;
si=1

end

It can be proved (see Goldberg [158]) that on binary machines with a guard digit the
computed sum satisfies

s=Y (+E)x,  |& <2u+ 0@mud). (2.3.20)

i=1

This formulation is a typical example of a backward error analysis; see Sec. 2.4.4. The first
term in the error bound is independent of n.

2.3.3 Statistical Models for Rounding Errors

The bounds for the accumulated rounding error we have derived so far are estimates of
the maximal error. These bounds ignore the sign of the errors and tend to be much too
pessimistic when the number of variables is large. However, they can still give valuable
insight into the behavior of a method and be used for the purpose of comparing different
methods.

An alternative is a statistical analysis of rounding errors, which is based on the as-
sumption that rounding errors are independent and have some statistical distribution. It
was observed already in the 1950s that rounding errors occurring in the solution of differ-
ential equations are not random and are often strongly correlated. This does not in itself
preclude that useful information can sometimes be obtained by modeling them by random
uncorrelated variables! In many computational situations and scientific experiments, where
the error can be considered to have arisen from the addition of a large number of indepen-
dent error sources of about the same magnitude, an assumption that the errors are normally
distributed is justified.

Example 2.3.5.

Figure 2.3.2 illustrates the effect of rounding errors on the evaluation of two different
expressions for the polynomial p(x) = (x — 1)° for x € [0.999, 1.001], in IEEE double
precision (unit roundoff u = 1.1-107'%). Among other things it shows that the monotonicity
of a function can be lost due to rounding errors. The model of rounding errors as independent
random variables works well in this example. It is obvious that it would be impossible to
locate the zero of p(x) to a precision better than about (0.5 - 10~'4)1/6 2 0.0007 using the
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%099 0.9995 1 1.0005 1.001

Figure 2.3.2. Calculated values of a polynomial near a multiple root: solid line
p(x) = x7 — 5x* + 10x3 — 10x? + 5x — 1 = 0; dashed line p(x) = (x — 1)°.

expanded form of p(x). But using the expression p(x) = (1 — x)? function values can be
evaluated with constant relative precision even close to x = 1, and the problem disappears!

This example shows that although multiple roots are in general ill-conditioned, an
important exception is when the function f (x) is given in such a form that it can be computed
with less absolute error as x approaches o.

The theory of standard error is based on probability theory and will not be treated in
detail here. The standard error of an estimate of a given quantity is the same as the standard
deviation of its sampling distribution.

Ifinasumy = ) ", x; each x; has error |A;| < 8, then the maximum error bound
for y is né. Thus, the maximal error grows proportionally to n. If n is large—for example,
n = 1000—then it is in fact highly improbable that the real error will be anywhere near n$,
since that bound is attained only when every Ax; has the same sign and the same maximal
magnitude. Observe, though, that if positive numbers are added, each of which has been
abridged to ¢ decimals by chopping, then each Ax; has the same sign and a magnitude which
is on average %8, where § = 107'. Thus, the real error is often about 5008.

If the numbers are rounded instead of chopped, and if one can assume that the errors in
the various terms are stochastically independent with standard deviation €, then the standard
error in y becomes (see Theorem 2.4.5)

€+ 4+ =eyn.

Thus the standard error of the sum grows only proportionally to /n. This supports the
rule of thumb, suggested by Wilkinson [376, p. 26], that if a rounding error analysis gives
a bound f(n)u for the maximum error, then one can expect the real error to be of size
VFu.

If n > 1, then the error in y is, under the assumptions made above, approximately
normally distributed with standard deviation o = e,/n. The corresponding frequency
function,

) = =
Varo
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is illustrated in Figure 2.3.3; the curve shown there is also called the Gauss curve. The
assumption that the error is normally distributed with standard deviation o means, for
example, that the statement “the magnitude of the error is greater than 20 (see the shaded
area of Figure 2.3.3) is true in only about 5% of all cases (the unshaded area under the
curve). More generally, the assertion that the magnitude of the error is larger than o, 20,
and 3o respectively, is about 32%, 5%, and 0.27%.

0.4r
0.35r
0.3r

0.25r

Figure 2.3.3. The frequency function of the normal distribution for o = 1.

One can show that if the individual terms in a sum y = ) ", x; have a uniform
probability distribution in the interval [— %8, %8 ], then the standard deviation of an individual
term is §/12. Therefore, in only about 5% of cases is the error in the sum of 1000 terms
greater than 28,/1000/12 ~ 188, which can be compared to the maximum error 5008.
This shows that rounding can be far superior to chopping when a statistical interpretation
(especially the assumption of independence) can be given to the principal sources of errors.
Observe that, in the above, we have only considered the propagation of errors which were
present in the original data, and have ignored the effect of possible roundoff errors in the
additions themselves.

For rounding errors the formula for standard errors is used. For systematic errors,
however, the formula for maximal error (2.4.5) should be used.

2.3.4 Avoiding Overflow and Cancellation

In the rare cases when input and output data are so large or small in magnitude that the range
of the machine is not sufficient, one can use higher precision or else work with logarithms
or some other transformation of the data. One should, however, keep in mind the risk that
intermediate results in a calculation can produce an exponent which is too large (overflow)
or too small (underflow) for the floating-point system of the machine. Different actions
may be taken in such situations, as well for division by zero. Too small an exponent is
usually, but not always, unproblematic. If the machine does not signal underflow, but
simply sets the result equal to zero, there is a risk, however, of harmful consequences.
Occasionally, “unexplainable errors” in output data are caused by underflow somewhere in
the computations.
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The Pythagorean sum ¢ = ~/a? + b? occurs frequently, for example, in conversion
to polar coordinates and in computing the complex modulus and complex multiplication. If
the obvious algorithm is used, then damaging underflows and overflows may occur in the
squaring of @ and b even if a and b and the result ¢ are well within the range of the floating-
point system used. This can be avoided by using instead the algorithm: If a = b = 0, then
¢ = 0; otherwise set p = max(|a|, |b|), ¢ = min(|a|, |b|), and compute

p=q/p; c=py1+p% (2.3.21)

Example 2.3.6.

The formula (2.3.8) for complex division suffers from the problem that intermediate
results can overflow even if the final result is well within the range of the floating-point
system. This problem can be avoided by rewriting the formula as for the Pythagorean sum:
If |c| > |d|, then compute

a+ib a+be b—ae
— = +1i , e=—, r=c++de.

c+id r r c

If |d| > |c|, then e = c¢/d is computed and a corresponding formula used.

Similar precautions are also needed for computing the Euclidean length (norm) of a

vector ||x]l, = (Z?zl xiz)l/z, x # 0. We could avoid overflows by first finding x,,,, =

maxj<;<, |x;| and then forming
s = Z(Xi/xmax)z’ ||)C||2 = xmax\/E- (2322)
i=1

This has the drawback of needing two passes through the data.

ALGORITHM 2.3.

The following algorithm, due to S. J. Hammarling, for computing the Euclidean length of
a vector requires only one pass through the data. It is used in the level-1 BLAS routine
xNRM2:

t=0; s=1;
fori=1:n
if |x;| >0
if |x;| >t
s=1+s0/x)% t=|xl;
else
s =5+ (/0%
end
end
end

Ixll2 = 14/5;

On the other hand this code does not vectorize and can therefore be slower if implemented
on a vector computer.



120 Chapter 2. How to Obtain and Estimate Accuracy

One very common reason for poor accuracy in the result of a calculation is that
somewhere a subtraction has been carried out in which the difference between the operands
is considerably less than either of the operands. This causes a loss of relative precision.
(Note that, on the other hand, relative precision is preserved in addition of nonnegative
quantities, multiplication, and division.)

Consider the computation of y = x| — xp, where X; = x| + Axy, X = x2 + Axp
are approximations to the exact values. If the operation is carried out exactly the result is
y = y+ Ay, where Ay = Ax; — Ax,. But, since the errors Ax; and Ax, can have opposite
sign, the best error bound for y is

[Ay| < |Ax(]| + |Axa]. (2.3.23)

Notice the plus sign! Hence for the relative error we have

A A A
‘_Y‘ L 1anl+An] (2324)

y lx; — x2]

This shows that there can be very poor relative accuracy in the difference between two
nearly equal numbers. This phenomenon is called cancellation of terms.
In Sec. 1.2.1 it was shown that when using the well-known “textbook” formula

rip=(—b=£Vb?—4dac)/(2a)

for computing the real roots of the quadratic equation ax”+bx +c = 0 (a # 0), cancellation
could cause a loss of accuracy in the root of smallest magnitude. This can be avoided by
computing the root of smaller magnitude from the relation r,r, = c/a between coefficients
and roots. The following is a suitable algorithm.

ALGORITHM 2.4. Solving a Quadratic Equation.

d :=b* — dac;
if d > 0 % real roots
ri == —sign(b)(Ib| + v/d)/(2a);
ry=c/(a-r);
else % complex roots x + iy
x = —b/(2a);
y i=~/=d/2a);

end

Note that we define sign (b) = 1if b > 0, else sign (b) = —1.%7 Tt can be proved that
in IEEE arithmetic this algorithm computes a slightly wrong solution to a slightly wrong
problem.

37In MATLAB sign (0) = 0, which can lead to failure of this algorithm.
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Lemma 2.3.5.

Assume that Algorithm 2.4 is used to compute the roots r » of the quadratic equation
ax? + bx + ¢ = 0. Denote the computed roots by 712 and let 7y 5 be the exact roots of the
nearby equation ax?> 4+ bx +¢ = 0, where |¢ — c| < y»|¢|. Then |F; —7:| < ys|Fil, i =1, 2.

Proof. See Kahan [216]. 0

More generally, if |§| < x, then one should rewrite

+6—x 8
Vx4+68—4x = al = .
Vx+8+/x x+8+Ux

There are other exact ways of rewriting formulas which are as useful as the above;
for example,

cos(x 4+ 8) — cosx = —2sin(§/2) sin(x + §/2).

If one cannot find an exact way of rewriting a given expression of the form f(x +8) — f(x),
it is often advantageous to use one or more terms in the Taylor series

1
Fx+8) — f(x)=f'(x)8+ 5f”<x>52 4+

Example 2.3.7 (Cody [73]).

To compute sin 22 we first find [22/(7/2)| = 14. It follows that sin 22 = — sin x*,
where x* = 22 — 14(;r/2). Using the correctly rounded 10-digit approximation /2 =
1.57079 6327 we obtain

x* =122 —14-1.570796327 = 8.85142 - 1073,

Here cancellation has taken place and the reduced argument has a maximal error of 7- 10~°.
The actual error is slightly smaller since the correctly rounded value is x* = 8.85144 8711 -
1073, which corresponds to a relative error in the computed sin 22 of about 2.4 - 1070, in
spite of using a 10-digit approximation to 7 /2.

For very large arguments the relative error can be much larger. Techniques for carrying
out accurate range reductions without actually needing multiple precision calculations are
discussed by Muller [272]; see also Problem 2.3.9.

In previous examples we got a warning that cancellation would occur, since x; was
found as the difference between two nearly equal numbers each of which was, relatively,
much larger than the difference itself. In practice, one does not always get such a warning,
for two reasons: first, in using a computer one has no direct contact with the individual steps
of calculation; second, cancellation can be spread over a great number of operations. This
may occur in computing a partial sum of an infinite series. For example, in a series where
the size of some terms are many orders of magnitude larger than the sum of the series, small
relative errors in the computation of the large terms can then produce large errors in the
result.

It has been emphasized here that calculations where cancellation occurs should be
avoided. But there are cases where one has not been able to avoid it, and there is no time
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to wait for a better method. Situations occur in practice where (say) the first ten digits are
lost, and we need a decent relative accuracy in what will be left.>® Then, high accuracy is
required in intermediate results. This is an instance where the high accuracy in IEEE double
precision is needed!

Review Questions

2.3.1 What is the standard model for floating-point arithmetic? What weaker model holds
if a guard digit is lacking?

2.3.2 Give examples to show that some of the axioms for arithmetic with real numbers do
not always hold for floating-point arithmetic.

2.3.3 (a) Give the results of a backward and forward error analysis for computing f/ (x; +
X2 + -+ x,). Itis assumed that the standard model holds.
(b) Describe the idea in compensated summation.

2.3.4 Explain the terms “maximum error” and “standard error.” What statistical assumption

about rounding errors is often made when calculating the standard error in a sum due
to rounding?

2.3.5 Explain what is meant by “cancellation of terms.” Give an example of how this can
be avoided by rewriting a formula.

Problems and Computer Exercises

2.3.1 Rewrite the following expressions to avoid cancellation of terms:
(@)1 —cosux, |x] €1; (b)sinx —cosx, |x| ~ /4

2.3.2 (a) The expression x? — y? exhibits catastrophic cancellation if |x| &~ |y|. Show that
it is more accurate to evaluate it as (x + y)(x — y).

(b) Consider using the trigonometric identity sin” x +cos? x = 1 to compute cos x =
(1 — sin® x)!'/2. For which arguments in the range 0 < x < /4 will this formula
fail to give good accuracy?

2.3.3 The polar representation of a complex number is

z=x4iy=r(sing +cosg) =r-e'?.

Develop accurate formulas for computing this polar representation from x and y
using real operations.

2.3.4 (Kahan) Show that with the use of fused multiply—add the algorithm

w=fl(bxc); y:=fllaxd—w); e:=flbxc—w); z=fl(y—e);

38G. Dahlquist has encountered just this situation in a problem of financial mathematics.
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2.3.5

2.3.6

2.3.7

2.3.8

2.3.9

computes with high relative accuracy

z:det(i Z):ad—bc.

Suppose thatthe sums = Y ._, x;,n = 2%, is computed using the divide and conquer
technique described in Sec. 1.2.3. Show that this summation algorithm computes an
exact sum

§=)_xi(1+8), |8 <iilogyn.
i=1

Hence for large values of n this summation order can be much more accurate than
the conventional order.

Show that for the evaluation of a polynomial p(x) = Y ', a;x’ by Horner’s rule

the following roundoff error estimate holds:

IF1(pG) = pGo] <1 Y @i+ Dlail lxl', Qnu < 0.1).
i=0

In solving linear equations by Gaussian elimination expressions of the form s =
(c — Z?:_ll a;b;)/d often occur. Show that, by a slight extension of the result in the
previous problem, that the computed s satisfies

n—1 n—1
sd —c+ Y aibi| < (151 + Y larlibn),
i=1 i=1

where the inequality holds independent of the summation order.

The zeros of the reduced cubic polynomial z* + 3¢z — 2r = 0 can be found from
the Cardano—Tartaglia formula:

1/3

1/3
z=<r+ q3+r2> +(r—\/q3+r2) ,

where the two cubic roots are to be chosen so that their product equals —g. One real
root is obtained if q3 + r%2 > 0, which is the case unless all three roots are real and
distinct.

The above formula can lead to cancellation. Rewrite it so that it becomes more
suitable for numerical calculation and requires the calculation of only one cubic
root.

(Eldén and Wittmeyer-Koch) In the interval reduction for computing sin x there
can be a loss of accuracy through cancellation in the computation of the reduced
argument x* = x — k - w/2 when k is large. A way to avoid this without reverting
to higher precision has been suggested by Cody and Waite [75]). Write

/2 =my/2+r,

where 1y /2 is exactly representable with a few digits in the (binary) floating-point
system. The reduced argument is now computed as x* = (x — k - y/2) — kr. Here,
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2.3.10

2.3.11

2.3.12

2.3.13

unless k is very large, the first term can be computed without rounding error. The
rounding error in the second term is bounded by k|r| u, where u is the unit roundoff.
In IEEE single precision one takes

mo/2 = 201/128 = 1.573125 = (10.1001001),,  r = 4.838267949 - 10~*.

Estimate the relative error in the computed reduced argument x* when x = 1000
and r is represented in IEEE single precision.

(Kahan [218]) The area A of a triangle with sides equal to a, b, c is given by Heron’s
formula:

A= \/s(s —a)(is—b)(s—c), s=(a+b+c)/2.
Show that this formula fails for needle-shaped triangles, using five-digit decimal
floating arithmetic and a = 100.01, b = 99.995, ¢ = 0.025.
The following formula can be proved to work if addition/subtraction satisfies (2.3.21):
Order the sides so that a > b > ¢, and use

1
A= V@t E+o)e—@—b)ec+@—b)a+b—c).

Compute a correct result for the data above using this modified formula. If a person
tells you that this gives an imaginary result if a — b > ¢, what do you answer him?

As is well known, f(x) = (1 4+ x)/* has the limit e = 2.71828 18284 59045 . ..
when x — oo. Study the sequences f(x,) for x, = 107 and x, = 27", for
n=1,2,3,.... Stopwhen x, < 107'° (or when x,, < 1072 if you are using
double precision). Give your results as a table of n, x,, and the relative error g, =
(f(xn) —e)/e. Also plotlog(|g,|) against log(|x,|). Comment on and explain your
observations.

(a) Compute the derivative of the exponential function e* at x = 0 by approximating
with the difference quotients (¢**" — e*)/h, for h = 27, i = 1 : 20. Explain your
results.

(b) Repeat (a), but approximate with the central difference approximation (e*+" —

e/ 2h).

The hyperbolic cosine is defined by cosht = (e’ + ¢")/2, and its inverse function
t = arccosh (x) is the solution to

x=("+e /2.

1/2

Solving the quadratic equation (e’)> — 2xe’ 4+ 1, we find ¢/ = x £+ (x> — 1)!/? and

arccos x = log(x + ()c2 — 1)1/2).

(a) Show that this formula suffers from serious cancellation when the minus sign is
used and x is large. Try, e.g., x = cosh(10) using double precision IEEE. (Using
the plus sign will just transfer the problem to negative x.)

(b) A better formula is

arccos x = 2log (((x + 1)/ 4+ ((x — 1)/2)1/2).
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2.3.14

2.3.15

This also avoids the squaring of x which can lead to overflow. Derive this formula
and show that it is well behaved!

(Gautschi) Euler’s constant y = 0.57721566490153286. .. is defined as the limit
y = lim y,, where y,=1+1/2+1/34.---4+1/n—logn.
n—0oQ
Assuming that y — y,, ~ en~, n — oo, for some constants ¢ and d > 0, try to
determine ¢ and d experimentally on your computer.

In the statistical treatment of data, one often needs to compute the quantities

1 ¢ 1 ¢
)z:—E Xi, s2=—§ (x; — %)%
n “ n -~
i=1 i=1

If the numbers x; are the results of statistically independent measurements of a
quantity with expected value m1, then x is an estimate of m, whose standard deviation

is estimated by s/+/n — 1.

(a) The computation of x and m using the formulas above have the drawback that
they require two passes through the data x;. Let « be a provisional mean, chosen as
an approximation to ¥, and set x; = x; — «. Show that the formulas

1 & 1 <
X=a+ - x/, s2== x)? — (x —a)?
n; n;u *—a)

hold for an arbitrary «.
(b) In 16 measurements of a quantity x one got the following results:

i Xi i Xi i Xi i Xi

1 54685 5 54681 9 54696 13 546.84
2 546779 6 546.82 10 54694 14 546.86
3 54682 7 546.88 11 546.84 15 546.84
4 546778 8 546.89 12 546.82 16 546.84

Compute X and s? to two significant digits using o = 546.85.

(c) In the computations in (b), one never needed more than three digits. If one
uses the value & = 0, how many digits are needed in (x/)? in order to get two
significant digits in s2? If one uses five digits throughout the computations, why is
the cancellation in the s> more fatal than the cancellation in the subtraction x| — o?

(One can even get negative values for s2!)
(d) If we define

my =

==

k 1 k 2
;xi, ‘Ik=Z(xi_mk)2=in2_E(in) :

then it holds that ¥ = m,,, and s> = g, /n. Show the recursion formulas

mp; = xi, my = myg_1 + (xx —my—_1)/k
@1 =0, g =q1+ (x—m_)*k—1)/k.
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2.3.16 Compute the sum in Example 2.3.4 using the natural summation ordering in IEEE
754 double precision. Repeat the computations using compensated summation (Al-
gorithm 2.3).

2.4 Error Propagation

2.4.1 Numerical Problems, Methods, and Algorithms

By a numerical problem we mean here a clear and unambiguous description of the
functional connection between input data—that is, the “independent variables” in the
problem—and output data—that is, the desired results. Input data and output data consist
of a finite number of real (or complex) quantities and are thus representable by finite di-
mensional vectors. The functional connection can be expressed in either explicit or implicit
form. We require for the following discussion also that the output data should be uniquely
determined and depend continuously on the input data.

By an algorithm™® for a given numerical problem we mean a complete description
of well-defined operations through which each permissible input data vector is transformed
into an output data vector. By “operations” we mean here arithmetic and logical operations,
which a computer can perform, together with references to previously defined algorithms.
It should be noted that, as the field of computing has developed, more and more complex
functions (for example, square root, circular, and hyperbolic functions) are built into the
hardware. In many programming environments operations such as matrix multiplication,
solution of linear systems, etc. are considered as “elementary operations” and for the user
appear as black boxes.

(The concept algorithm can be analogously defined for problems completely different
from numerical problems, with other types of input data and fundamental operations—
for example, inflection, merging of words, and other transformations of words in a given
language.)

Example 2.4.1.
To determine the largest real root of the cubic equation

p(2) = ayz’ + a1z* + azz + a3 =0,

with real coefficients ay, ai, a, asz, is a numerical problem. The input data vector is
(ag, a1, az, az). The output is the desired root x; it is an implicitly defined function of
the input data.

An algorithm for this problem can be based on Newton’s method, supplemented with
rules for how the initial approximation should be chosen and how the iteration process is to be
terminated. One could also use other iterative methods, or algorithms based on the formula
by Cardano-Tartaglia for the exact solution of the cubic equation (see Problem 2.3.8).
Since this uses square roots and cube roots, one needs to assume that algorithms for the
computation of these functions have been specified previously.

39The term “algorithm” is a Latinization of the name of the Arabic ninth century mathematician Al-Khowrizmi.
He also introduced the word “algebra” (Al-jabr). Western Europe became acquainted with the Hindu positional
number system from a Latin translation of his book entitled Algorithmi de Numero Indorum.
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One often begins the construction of an algorithm for a given problem by breaking
down the problem into subproblems in such a way that the output data from one subproblem
are the input data to the next subproblem. Thus the distinction between problem and
algorithm is not always so clear-cut. The essential point is that, in the formulation of the
problem, one is only concerned with the initial state and the final state. In an algorithm,
however, one should clearly define each step along the way, from start to finish.

We use the term numerical method in this book to mean a procedure either to approx-
imate a mathematical problem with a numerical problem or to solve a numerical problem
(or at least to transform it to a simpler problem). A numerical method should be more
generally applicable than an algorithm, and set lesser emphasis on the completeness of the
computational details. The transformation of a differential equation problem to a system of
nonlinear equations can be called a numerical method—even without instructions as to how
to solve the system of nonlinear equations. Newton’s method is a numerical method for
determining a root of a large class of nonlinear equations. In order to call it an algorithm,
conditions for starting and stopping the iteration process should be added.

For a given numerical problem one can consider many different algorithms. As we
have seen in Sec. 2.3 these can, in floating-point arithmetic, give approximations of widely
varying accuracy to the exact solution.

Example 2.4.2.
The problem of solving the differential equation

d?y
T

with boundary conditions y(0) = 0, y(5) = 1 is not a numerical problem according to the
definition stated above. This is because the output is the function y, which cannot in any
conspicuous way be specified by a finite number of parameters. The above mathematical
problem can be approximated with a numerical problem if one specifies the output data to be
the values of y for x = h, 2h, 3h, ..., 5—h. Also, the domain of variation of the unknowns
must be restricted in order to show that the problem has a unique solution. This can be
done, however, and there are a number of different algorithms for solving the problem
approximately, which have different properties with respect to the number of arithmetic
operations needed and the accuracy obtained.

Before an algorithm can be used it has to be implemented in an algorithmic program
language in a reliable and efficient manner. We leave these aspects aside for the moment,
but this is far from a trivial task. Most amateur algorithm writers seem to think that an
algorithm is ready at the point where a professional realizes that the hard and tedious work
is just beginning (George E. Forsythe [120]).

2.4.2 Propagation of Errors and Condition Numbers

In scientific computing the given input data are usually imprecise. The errors in the input
will propagate and give rise to errors in the output. In this section we develop some general
tools for studying the propagation of errors. Error-propagation formulas are also of great
interest in the planning and analysis of scientific experiments.
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Note that rounding errors from each step in a calculation are also propagated to give
errors in the final result. For many algorithms a rounding error analysis can be given, which
shows that the computed result always equals the exact (or slightly perturbed) result of a
nearby problem, where the input data have been slightly perturbed (see, e.g, Lemma 2.3.5).
The effect of rounding errors on the final result can then be estimated using the tools of this
section.

We first consider two simple special cases of error propagation. For a sum of an
arbitrary number of terms we get the following lemma by induction from (2.3.23).

Lemma 2.4.1.
In addition (and subtraction) a bound for the absolute errors in the result is given by
the sum of the bounds for the absolute errors of the operands:

n n
y=Y_x, |Ay <) |Ax] (2.4.1)
i=1 i=1

To obtain a corresponding result for the error propagation in multiplication and di-
vision, we start with the observations that for y = logx we have A(logx) ~ A(x)/x.
In words, the relative error in a quantity is approximately equal to the absolute error in
its natural logarithm. This is related to the fact that displacements of the same length at
different places on a logarithmic scale mean the same relative change of the value. From
this we obtain the following result.

Lemma 2.4.2.
In multiplication and division, an approximate bound for the relative error is obtained
by adding the relative errors of the operands. More generally, for y = x{"'xy - - - x',
Ay ‘ Ax;
‘7‘ <Y Imil | — (2.4.2)
1

i=1

Proof. The proof follows by differentiating logy = mlogx; + mylogx, + ---
+ m, log x,,. O

Example 2.4.3.

In Newton’s method for solving a nonlinear equation a correction is to be calculated
asaquotient Ax = f(x)/f’(xx). Close to aroot the relative error in the computed value of
f(xx) can be quite large due to cancellation. How accurately should one compute f/(x;),
assuming that the work grows as one demands higher accuracy? Since the limit for the
relative error in Ax is equal to the sum of the bounds for the relative errors in f (x;) and
f'(xy), there is no gain in making the relative error in f’(x;) very much less than the relative
error in f(x;). This observation is of great importance, particularly in the generalization of
Newton’s method to systems of nonlinear equations.

We now study the propagation of errors in more general nonlinear expressions. Con-
sider first the case when we want to compute a function y = f(x) of a single real variable
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x. How is the error in x propagated to y? Let ¥ — x = Ax. Then, a natural way
is to approximate Ay = y — y with the differential of y. By the mean value theorem,
Ay = f(x + Ax) — f(x) = f/(§)Ax, where & is a number between x and x + Ax.
Suppose that |Ax| < €. Then it follows that

|Ay| < max If'E)le, & e€lx—e,x+el (2.4.3)

In practice, it is usually sufficient to replace £ by the available estimate of x. Even if high
precision is needed in the value of f(x), one rarely needs a high relative precision in an
error bound or an error estimate. (In the neighborhood of zeros of the first derivative f’(x)
one has to be more careful.)

By the implicit function theorem a similar result holds if y is an implicit function of
x defined by g(x,y) =0. If g(x, y) =0and g—i(x, y) # 0, then in a neighborhood of x, y
there exists a unique function y = f(x) such that g(x, f(x)) = 0 and it holds that

oy — 08 dg
F@ = =50 S @) /31 05 ).

Example 2.4.4.

The result in Lemma 2.3.5 does not say whether the computed roots of the quadratic
equation are close to the exact roots ri, r,. To answer that question we must determine
how sensitive the roots are to a relative perturbation in the coefficient c. Differentiating
ax? + bx 4+ ¢ = 0, where x = x(c) with respect to ¢, we obtain (2ax + b)dx/dc + 1 =0,
dx/dc = —1/(2ax + b). With x = r| and using r; + r, = —b/a, rir, = c/a this can be
written as

dr dc n

o cri—r
This shows that when |r; — rp| < |r;| the roots can be very sensitive to small relative
perturbations in c.
When r; = ry, that is, when there is a double root, this linear analysis breaks down.
Indeed, it is easy to see that the equation (x — r)?> — Ac = 0 has roots x = r & +/Ac.

To analyze error propagation in a function of several variables f = f(xy, ..., x,),
we need the following generalization of the mean value theorem.

Theorem 2.4.3.
Assume that the real-valued function f is differentiable in a neighborhood of the point
x = (x1,X2,...,X%,), and let x = x + Ax be a point in this neighborhood. Then there exists

a number 0 such that

Af:f(x+Ax)—f(x):Z%(x+9Ax)Axi, 0<6<1
i=1

Proof. The proof follows by considering the function F () = f(x + tAx), and using the
mean value theorem for functions of one variable and the chain rule.



130 Chapter 2. How to Obtain and Estimate Accuracy

From Theorem 2.4.3 it follows that the perturbation Af is approximately equal to
the total differential. The use of this approximation means that the function f(x) is, in
a neighborhood of x that contains the point x + Ax, approximated by a linear function.
All the techniques of differential calculus, such as logarithmic differentiation and implicit
differentiation, may be useful for the calculation of the total differential; see the examples
and the problems at the end of this section.

Theorem 2.4.4 (General Formula for Error Propagation).

Let the real-valued function f = f(x1, x2, ..., Xx,) be differentiable in a neighbor-
hood of the point x = (x1, X2, ..., X,) With errors Axy, Axa, ..., Ax,. Then it holds that

n af
Af =~ — Ax;. 24.4
! ; oy, A (2.4.4)
Then for the maximal error in f(xy, ..., X,) we obtain the approximate upper bound

IAfI S (2.4.5)

where the partial derivatives are evaluated at x.

In order to get a strict bound for |A f |, one should use in (2.4.5) the maximum absolute
values of the partial derivatives in a neighborhood of the known point x. In most practical
situations it suffices to calculate |df/dx;| at x and then add a certain marginal amount (5
to 10 percent, say) for safety. Only if the Ax; are large or if the derivatives have a large
relative variation in the neighborhood of x need the maximal values be used. (The latter
situation occurs, for example, in a neighborhood of an extremal point of f(x).)

The bound in Theorem 2.4.4 is the best possible, unless one knows some depen-
dence between the errors of the terms. Sometimes it can, for various reasons, be a gross
overestimate of the real error.

Example 2.4.5.
Compute error bounds for f = xlz — x7, where x; = 1.03 £0.01, x, = 0.45 £ 0.01.
We obtain
af af

= 2x;] < 2.1, —
31 82

andfind |Af| < 2.1-0.0141-0.01 = 0.031, or f = 1.061-0.45040.032 = 0.611+0.032.
The error bound has been raised 0.001 because of the rounding in the calculation of x7.

=|—1=1,

One is seldom asked to give mathematically guaranteed error bounds. More often it
is satisfactory to give an estimate of the order of magnitude of the anticipated error. The
bound for |Af| obtained with Theorem 2.4.3 estimates the maximal error, i.e., covers the
worst possible cases, where the sources of error Ax; contribute with the same sign and
magnitudes equal to the error bounds for the individual variables.

In practice, the trouble with formula (2.4.5) is that it often gives bounds which are too
coarse. More realistic estimates are often obtained using the standard error introduced in
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Sec.2.3.3. Here we give without proof the result for the general case, which can be derived
using probability theory and (2.4.4). (Compare with the result for the standard error of a
sum given in Sec.2.3.3.)

Theorem 2.4.5.

Assume that the errors Axi, Axy, ..., Ax, are independent random variables
with mean zero and standard deviations €y, €;, ..., €,. Then the standard error € for
f(x1, x2, ..., Xy,) is given by the formula

~ (3 8f221/2 24.6
ENZB_JQG‘ : (2.4.6)

i=1

Analysis of error propagation is more than just a means for judging the reliability of
calculated results. As remarked above, it has an equally important function as a means for
the planning of a calculation or scientific experiment. It can help in the choice of algorithm,
and in making certain decisions during a calculation. An example of such a decision is the
choice of step length during a numerical integration. Increased accuracy often has to be
bought at the price of more costly or complicated calculations. One can also shed some light
on the degree to which it is advisable to obtain a new apparatus to improve the measurements
of a given variable when the measurements of other variables are subject to error as well.

It is useful to have a measure of how sensitive the output data are to small changes
in the input data. In general, if “small” changes in the input data can result in “large”
changes in the output data, we call the problem ill-conditioned; otherwise it is called well-
conditioned. (The definition of large may differ from problem to problem depending on
the accuracy of the data and the accuracy needed in the solution.)

Definition 2.4.6.
Consider a numerical problem y = f(x) € R™, x € R", or in component form
i = fi(xi,...,x,), j =1 :m. Let X be fixed and assume that neither X nor 0 f (%) is

zero. The sensitivity of y with respect to small changes in x can be measured by the relative
condition number

h) — h
k(f; %) = lim sup { 17+ 2) — f ) U} . 2.4.7)
€0 h)=e ILf Ol [lx]]
We have used a vector norm || - || to measure the size of a vector; see Sec. A.4.3 in

Online Appendix A. Common vector norms are the p-norms defined by
Ixll, = Gal” + leal” 4 -+ + )P, 1< p < oo,

where one usually takes p = 1,2, or p = oo.

The condition number (2.4.7) is a function of the input data x and also depends on the
choice of norms in the data space and the solution space. It measures the maximal amount
which a given relative perturbation is magnified by the function f, in the limit of infinitely
small perturbations. For perturbations of sufficiently small size we have the estimate

15—yl < kellyll + Oe).
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We can expect to have roughly s = logjok less significant decimal digits in the solution
than in the input data. However, this may not hold for all components of the output.

Assume that f has partial derivatives with respect to x;, i = 1 : n, and let J(x) be
the Jacobian matrix

af;(x)

Jij(x) = ox
1

, j=1:m, i=1:n. (2.4.8)

Then, for any matrix norm subordinate to the vector norm (see Online Appendix A.3.3), the
condition number defined above can be expressed as

_ @

(X)) = - 2.4.9
D= TR (24.9)

For a composite function g o f the chain rule for derivatives can be used to show that

k(go fi%) < k(g N(f:X). (2.4.10)

If the composite function is ill-conditioned we can infer from this that at least one of the
functions g and f must be ill-conditioned.

Ify = f(x)isalinear (bounded) function y = Mx, where M € R™*", then according
to (2.4.9)

K(M;x) = IIMIIM.
Iyl
This inequality is sharp in the sense that for any matrix norm and for any M and x there
exists a perturbation §b such that equality holds.
If M is a square and invertible matrix, then from x = M -1 y we conclude that
x| < IM~Y) lyll. This gives the upper bound

K(M; x) < MM, (24.1D)
which is referred to as the condition number of M. For given x (or y), this upper bound may

not be achievable for any perturbation of x. The inequality (2.4.11) motivates the following
definition.

Theorem 2.4.7.

The condition number for a square nonsingular matrix M € R"*" equals k(M) =
M| | MY, where || - || is a subordinate matrix norm. In particular, for the Euclidean
norm

k(M) = k2(M) = [ M2 |M 7" |l2 = o1 /0, (24.12)
where o) and o,, are the largest and smallest singular value of M.

The last expression in (2.4.12) follows by the observation that if M has singular values
0;,i =1 :n, then M~! has singular values 1/0;, i = 1 : n; see Theorem 1.4.4.
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We note some simple properties of k (M). From (aM)~! = M~!/a it follows that
k(M) = k(M); i.e., the condition number is invariant under multiplication of M by a
scalar. Matrix norms are submultiplicative, i.e., || KM| < ||K|| ||M||. From the definition
and the identity M M~! = [ it follows that

k(M) = [IM[2IM ™ > ]| = 1,

i.e., the condition number « is always greater than or equal to one. The composite mapping
of z = Ky and y = Mx is represented by the matrix product K'Y, and we have

K(KM) < k(K)x(M).

It is important to note that the condition number is a property of the mapping x — y
and does not depend on the algorithm used to evaluate y! An ill-conditioned problem is
intrinsically difficult to solve accurately using any numerical algorithm. Even if the input
data are exact, rounding errors made during the calculations in floating-point arithmetic
may cause large perturbations in the final result. Hence, in some sense an ill-conditioned
problem is not well posed.

Example 2.4.6.

If we get an inaccurate solution to an ill-conditioned problem, then often nothing can
be done about the situation. (If you ask a stupid question you get a stupid answer!) But
sometimes the difficulty depends on the form one has chosen to represent the input and
output data of the problem.

The polynomial

P(x) = (x — 10)* 4 0.200(x — 10)* 4 0.0500(x — 10)* — 0.00500(x — 10) 4 0.00100
is identical with a polynomial Q which, if the coefficients are rounded to six digits, becomes
O (x) = x* — 39.8000x> 4 594.050x> — 3941.00x + 9805.05.

One finds that P(10.11) = 0.0015 & 10~*, where only three digits are needed in the
computation, while 0(10.11) = —0.0481 + % - 1074, in spite of the fact that eight digits
were used in the computation. The rounding to six digits of the coefficients of Q has thus
caused an error in the polynomial’s value at x = 10.11; the erroneous value is more than 30
times larger than the correct value and has the wrong sign. When the coefficients of Q are
input data, the problem of computing the value of the polynomial for x =~ 10 is far more
ill-conditioned than when the coefficients of P are input data.

The conditioning of a problem can to some degree be illustrated geometrically. A
numerical problem P means a mapping of the space X of possible input data onto the space
Y of the output data. The dimensions of these spaces are usually quite large. In Figure 2.4.1
we picture a mapping in two dimensions. Since we are considering relative changes, we
take the coordinate axis to be logarithmically scaled. A small circle of radius r is mapped
onto an ellipse whose ratio of major to minor axis is kr, where « is the condition number
of the problem P.
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Figure 2.4.1. Geometrical illustration of the condition number.

2.4.3 Perturbation Analysis for Linear Systems

Consider the linear system y = Ax, where A is nonsingular and y 7 0. From the analysis
in the previous section we know that the condition number of the inverse mapping x =
A~'y # 0 is bounded by the condition number

k(A7) =k (A) = A7 A].

Assume that the elements of the matrix A are given data and subject to perturbations
8A. The perturbed solution x + dx satisfies the linear system

(A4 8A)(x + 8x) = y.

Subtracting Ax = y we obtain (A + §A)éx = —8Ax. Assuming also that the matrix
(A+8A) = A(I + A~'8A) is nonsingular and solving for §x yields

sx=—(I+A'84)TA7 15 Ax, (2.4.13)
which is the basic identity for the analysis. Taking norms gives
I8l < (2 + AT AT AT HISAY x])-
It can be shown (see Problem 2.4.9) that if |A~'§A|| < 1, then A + §A is nonsingular and
I+ AT'8A) 7 < 1/(1 = A1 A).
Neglecting second order terms,

l8x]l ISA]
ol S e(A) (2.4.14)
[lx]] Al

This shows that « (A) is also the condition number of x = A~'y with respect to perturbations
in A.
For any real, orthogonal matrix Q we have

(@) =010 "l =1,

so Q is perfectly conditioned. By LemmaA.4.1 (see Online Appendix A) wehave | QA P||, =
||All> for any orthogonal P and Q. It follows that

K(PAQ) = k2(A),
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i.e., the condition number of a matrix A is invariant under orthogonal transformations. This
important fact is one reason why orthogonal transformations play a central role in numerical
linear algebra.

How large may « be before we consider the problem to be ill-conditioned? That
depends on the accuracy of the data and the accuracy desired in the solution. If the data
have a relative error of 1077, then we can guarantee a (normwise) relative error in the
solution < 1073 ifx < 0.5-10*. But to guarantee a (normwise) relative error in the solution
< 107% we need to have ¥ < 5.

Example 2.4.7.
The Hilbert matrix H, of order n with elements

Hl‘l(l5.])=hl]=1/(l+.]_1)7 lfl,jfl’l,

is a notable example of an ill-conditioned matrix. In Table 2.4.1 approximate condition
numbers of Hilbert matrices of order < 12, computed in IEEE double precision, are given.
For n > 12 the Hilbert matrices are too ill-conditioned even for IEEE double precision!
From a result by G. Szeg6 (see Gautschi [147, p. 34]) it follows that

(ﬁ + 1)4(n+1) 25,
25 S
i.e., the condition numbers grow exponentially with n. Although the severe ill-conditioning

exhibited by the Hilbert matrices is rare, moderately ill-conditioned linear systems do occur
regularly in many practical applications!

K2 (Hy) ~

Table 2.4.1. Condition numbers of Hilbert matrices of order < 12.

K2 (H,) n K2 (H,)
1 7 | 4753108
19.281 8 | 1.526-10%

5.241-10 | 9 | 4.932.10"
1.551-10* | 10 | 1.602-10"
4.766-10° | 11 | 5.220-10™*
1.495-107 | 12 | 1.678-10%

AN A W =S

The normwise condition analysis in the previous section usually is satisfactory when
the linear system is “well scaled.” If this is not the case, then a componentwise analysis
may give sharper bounds. We first introduce some notations. The absolute values |A| and
|b| of a matrix A and vector b are interpreted componentwise

[Al;; = (lai; ), 1bl; = (Ib;]).

The partial ordering “<” for the absolute values of matrices |A|, | B| and vectors |b], |c]| is

to be interpreted componentwise:*

|Al < |B| <= laij| < |bijl, bl < lc| <= |bi| < lcil.

4ONote that A < B in other contexts means that B — A is positive semidefinite.
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It follows easily that |[AB| < |A||B| and a similar rule holds for matrix-vector multiplica-
tion.

Taking absolute values in (2.4.13) gives componentwise error bounds for the corre-
sponding perturbations in x,

|6x] < (1 + AT'8A) AT (18 Al |x]| + 186
The matrix (I — |A™!||8A|) is guaranteed to be nonsingular if || |[A~!| |§A| | < 1.
Assume now that we have componentwise bounds for the perturbations in A and b,

say
[6A] < w|Al, |8b] < w|b|. (2.4.15)

Neglecting second order terms in w and using (2.4.15) gives
18x| 5 1AT'[(18Alx| + 18b]) < @[ A" |(|A] |x| + [B]). (2.4.16)
Taking norms in (2.4.16) we get
18x11 S @l [AT' (Al x| + 1B]) | + O (@?). (2.4.17)

The scalar quantity
ka1 (A) = 1A 1AL (2.4.18)

is called the Bauer-Skeel condition number of the matrix A.

A different way to examine the sensitivity of various matrix problems is the differen-
tiation of a parametrized matrix. Suppose that A is a scalar and that A(A) is a matrix with
elements a;;(A) that are differentiable functions of A. Then by the derivative of the matrix
A()) we mean the matrix

AL = %A(A) - (%) . (2.4.19)

Many of the rules for differentiation of scalar functions are easily generalized to differenti-
ation of matrices. For differentiating a product of two matrices there holds

%[A(?»)B(K)] = %[A(A)]B(k) + A(K)%[B(?»)l (2.4.20)
Assuming that A~ ()) exists, using this rule on the identity A~' (1) A(X) = I we obtain
LA 1A + A7 )L 14601 = 0,
di dA
or, solving for the derivative of the inverse,

d 4l i —1
AT 0] = =AY [AMIAT ). (2.4.21)
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2.4.4 Error Analysis and Stability of Algorithms

One common reason for poor accuracy in the computed solution is that the problem is ill-
conditioned. But poor accuracy can also be caused by a poorly constructed algorithm. We
say in general that an algorithm is unstable if it can introduce large errors in the computed
solutions to a well-conditioned problem.

We consider in the following a finite algorithm with input data (ay, . . ., a,), which by
a sequence of arithmetic operations is transformed into the output data (wy, . .., wy), There
are two basic forms of roundoff error analysis for such an algorithm, which are both useful:

(i) In forward error analysis, one attempts to find bounds for the errors in the solution
|lw; —w;|,i =1 : s, where w; denotes the computed value of w;. The main tool used
in forward error analysis is the propagation of errors, as studied in Sec. 2.4.2.

(i1) In backward error analysis, one attempts to determine a modified set of data a; + Aag;
such that the computed solution w; is the exact solution, and give bounds for |Ag;|.
There may be an infinite number of such sets; in this case we seek to minimize the
size of|Aa;|. However, it can also happen, even for very simple algorithms, that no
such set exists.

Sometimes, when a pure backward error analysis cannot be achieved, one can show
that the computed solution is a slightly perturbed solution to a problem with slightly modified
input data. An example of such a mixed error analysis is the error analysis given in
Lemma 2.3.5 for the solution of a quadratic equation.

In backward error analysis no reference is made to the exact solution for the original
data. In practice, when the data are known only to a certain accuracy, the “exact” solution
may not be well defined. Then any solution whose backward error is smaller than the domain
of uncertainty of the data may be considered to be a satisfactory result.

A frequently occurring backward error problem is the following. Suppose we are
given an approximate solution y to a linear system Ax = b. We want to find out if y is the
exact solution to a nearby perturbed system (A + AA)y = b + Ab. To this end we define
the normwise backward error of y as

n(y) =minfe | (A+ AA)y =b+ Ab, ||AA] < €||All, |Ab|| < €llbll}.  (2.4.22)
The following theorem tells us that the normwise backward error of y is small if the residual

vector b — Ay is small.

Theorem 2.4.8 (Rigal and Gaches [305]).
The normwise backward error of y is given by
_
TAI YN+ Nl

wherer = b — Ay, and || - || is any consistent norm.

n) (2.4.23)

Similarly, we define the componentwise backward error o (y) of y by
o(y) =minfe | (A+ AA)y = b+ Ab, |AA| < €| All, |Ab| < €|bl}. (2.4.24)

As the following theorem shows, there is a simple expression also for w(y).
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Theorem 2.4.9 (Oettli and Prager [277]).
Letr = b — Ax, E and f be nonnegative, and set

|7

L — (2.4.25)
(Elx| + f)i

(y) = max

where & /Q is interpreted as zero if € = 0 and infinity otherwise.

By means of backward error analysis it has been shown, even for many quite compli-
cated matrix algorithms, that the computed results which the algorithm produces under the
influence of roundoff error are the exact output data of a problem of the same type in which
the relative change in data only are of the order of the unit roundoff u.

Definition 2.4.10.

An algorithm is backward stable if the computed solution w for the data a is the
exact solution of a problem with slightly perturbed data a such that for some norm || - | it
holds that

la —all/llall < cu, (2.4.26)
where ¢ is a not too large constant and u is the unit roundoff.

We are usually satisfied if we can prove normwise forward or backward stability for
some norm, for example, || - || or || - |lo. Occasionally we may like the estimates to hold
componentwise,

la; —a;l/lail < cou, i=1:r. (2.4.27)

For example, by equation (2.3.16) the usual algorithm for computing an inner product x” y
is backward stable for elementwise relative perturbations.

We would like stability to hold for some class of input data. For example, a numerical
algorithm for solving systems of linear equations Ax = b is backward stable for a class of
matrices A if for each A € A and for each b the computed solution x satisfies Ax = b,
where A and b are close to A and b.

To yield error bounds for w;, a backward error analysis has to be complemented with
a perturbation analysis. For this the error propagation formulas in Sec.2.4.2 can often be
used. If the condition number of the problem is «, then it follows that

lw — wl| < cux||w| + Ow?). (2.4.28)

Hence the error in the solution may still be large if the problem is ill-conditioned. But we
have obtained an answer which is the exact mathematical solution to a problem with data
close to the one we wanted to solve. If the perturbations a — a are within the uncertainties
of the given data, the computed solution is as good as our data warrant!

A great advantage of backward error analysis is that, when it applies, it tends to give
much sharper results than a forward error analysis. Perhaps more important, it usually also
gives a better insight into the stability (or lack of it) of the algorithm.
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By the definition of the condition number « it follows that backward stability implies
forward stability, but the converse is not true. Many important direct algorithms for solving
linear systems are known to be backward stable. The following result for the Cholesky
factorization is an important example.

Theorem 2.4.11 (Wilkinson [378]).
Let A € R™" be a symmetric positive definite matrix. Provided that

2n°%uK (A) < 0.1, (2.4.29)

the Cholesky factor of A can be computed without breakdown, and the computed factor R
satisfies
RTR=A+E, |E|)<25n%u|A|,, (2.4.30)

and hence is the exact Cholesky factor of a matrix close to A.

For the LU factorization of matrix A the following componentwise backward error
result is known.

Theorem 2.4.12.
If the LU factorization of the matrix A € R™" runs to completion, then the computed
factors L and U satisfy
A+E=LU, |E|<vylL||U| (2.4.31)

where v, = nu/(1 — nu), and u is the unit roundoff.

This shows that unless the elements in the computed factors | L| and |U| become large,
LU factorization is backward stable.

Example 2.4.8.
For € = 107° the system

()

is well-conditioned and has the exact solution x; = —x, = —1/(1 — €) & —1. In Gaussian
elimination we multiply the first equation by 10°, and subtract from the second, giving
(1 — 10%x, = —10°. Rounding this to x, = 1 is correct to six digits. In the back-

substitution to obtain x;, we then get 107°, = 1—1,0r x; = 0, which is a completely
wrong result. This shows that Gaussian elimination can be an unstable algorithm unless
row (and/or column) interchanges are performed to limit element growth.

Some algorithms, including most iterative methods, are not backward stable. Then it
is necessary to weaken the definition of stability. In practice an algorithm can be considered
stable if it produces accurate solutions for well-conditioned problems. Such an algorithm
can be called weakly stable. Weak stability may be sufficient for giving confidence in an
algorithm.
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Example 2.4.9.
In the method of normal equations for computing the solution of a linear least squares
problem one first forms the matrix A7 A. This product matrix can be expressed in outer

form as
m
ATA = E a,-aiT,
i=1

where aiT isthe ithrow of A,ie., AT = (a1 a ... a,). From(2.3.14) it follows that
this computation is not backward stable; i.e., it is not true that fI(ATA) = (A+E)T (A+E)
for some small error matrix E. In order to avoid loss of significant information higher
precision needs to be used.

Backward stability is easier to prove when there is a sufficiently large set of input
data compared to the number of output data. When computing the outer product xy” (as in
Example 2.4.9) there are 2n data and n? results. This is not a backward stable operation.
When the input data are structured rather than general, backward stability often does not
hold.

Example 2.4.10.

Many algorithms for solving a linear system Ax = b are known to be backward
stable; i.e., the computed solution is the exact solution of a system (A 4+ E)x = b, where the
normwise relative error || E||/||A|| is not much larger than the machine precision. In many
applications the system matrix is structured. An important example is Toeplitz matrices
T, whose entries are constant along every diagonal:

o n P .
[ o NP ) nxn
T = (i jh<ij<n = . ) ) . e R™". (2.4.32)
P [ ST, R ]

Note that a Toeplitz matrix is completely specified by its first row and column, i.e., the
2n — 1 quantities t = (f_,q 1, -« -5 205 - -5 In_1)-

Ideally, in a strict backward error analysis, we would like to show that a solution
algorithm always computes an exact solution to a nearby Toeplitz system defined by T + S,
where S is small. It has been shown that no such algorithm can exist! We have to be content
with algorithms that (at best) compute the exact solution of (7' + E)x = b, where || E]|| is
small but E unstructured.

In the construction of an algorithm for a given problem, one often breaks down the
problem into a chain of subproblems, Py, P», ..., Py, for which algorithms A, A, ..., A
are known, in such a way that the output data from P;_; are the input data to P;. Different
ways of decomposing the problem give different algorithms with, as a rule, different stability
properties. It is dangerous if the last subproblem in such a chain is ill-conditioned. On the
other hand, it need not be dangerous if the first subproblem is ill-conditioned, if the problem
itself is well-conditioned. Even if the algorithms for all the subproblems are stable, we
cannot conclude that the composed algorithm is stable.
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Example 2.4.11.

The problem of computing the eigenvalues A; of a symmetric matrix A, given its ele-
ments (a;;), is always a well-conditioned numerical problem with absolute condition number
equal to 1. Consider an algorithm which breaks down this problem into two subproblems:

* P;: compute the coefficients of the characteristic polynomial of the matrix A p(A) =
det(A — AT) of the matrix A.

* P,: compute the roots of the polynomial p()) obtained from P;.

It is well known that the second subproblem P, can be very ill-conditioned. For
example, for a symmetric matrix A witheigenvalues =1, &2, ..., £20 the condition number
for P, is 10'* in spite of the fact that the origin lies exactly between the largest and smallest
eigenvalues, so that one cannot blame the high condition number on a difficulty of the same
type as that encountered in Example 2.4.7.

The important conclusion that eigenvalues should not be computed as outlined above
is further discussed in Sec. 6.5.2.

On the other hand, as the next example shows, it need not be dangerous if the first sub-
problem of a decomposition is ill-conditioned, even if the problem itself is well-conditioned.

Example 2.4.12.
The first step in many algorithms for computing the eigenvalues A; of a symmetric
matrix A is to use orthogonal similarity transformations to symmetric tridiagonal form,

ar P
B o B3
QTAQ =T = U .
IBI‘[ -1 Oy ,Bn
B Oy
In the second step the eigenvalues of T, which coincide with those of A, are computed.
Wilkinson [377, Sec. 5.28] showed that the computed tridiagonal matrix can differ
significantly from the matrix corresponding to exact computation. Hence here the first
subproblem is ill-conditioned. (This factis not as well known as it should be and still alarms
many users!) But the second subproblem is well-conditioned and the combined algorithm is
known to be backward stable, i.e., the computed eigenvalues are the exact eigenvalues of a
matrix A+ E, where | E||, < c(n)u]|All2. This is a more complex example of a calculation,
where rounding errors cancel!

It should be stressed that the primary purpose of a rounding error analysis is to give
insight into the properties of the algorithm. In practice we can usually expect a much
smaller backward error in the computed solutions than the bounds derived in this section.
It is appropriate to recall here a remark by J. H. Wilkinson:

All too often, too much attention is paid to the precise error bound that has
been established. The main purpose of such an analysis is either to establish
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the essential numerical stability of an algorithm or to show why it is unstable
and in doing so expose what sort of change is necessary to make it stable. The
precise error bound is not of great importance.

The treatment in this section is geared toward matrix problems and is not very useful,
for example, for time-dependent problems in ordinary and partial differential equations. In
Sec. 1.5 some methods for the numerical solution of an initial value problem

y'=-y, y0)=0, (0 =1

were studied. As will be illustrated in Example 3.3.15, catastrophic error growth can occur
in such processes. The notion of stability is here related to the stability of linear difference
equations.

Review Questions
2.4.1 The maximal error bounds for addition and subtraction can for various reasons be a
coarse overestimate of the real error. Give two reasons, preferably with examples.

2.4.2 How is the condition number k (A) of a matrix A defined? How does « (A) relate to
perturbations in the solution x to alinear system Ax = b, when A and b are perturbed?

2.4.3 Define the condition number of a numerical problem P of computing output data
Y1, .-, Ym given input data xi, ..., x,.

2.4.4 Give examples of well-conditioned and ill-conditioned problems.

2.4.5 What is meant by (a) a forward error analysis; (b) a backward error analysis;
(c) a mixed error analysis?

2.4.6 What is meant by (a) a backward stable algorithm; (b) a forward stable algorithm; (c)
a mixed stable algorithm; (d) a weakly stable algorithm?

Problems and Computer Exercises

2.4.1 (a) Determine the maximum error for y = xlxg/A/x\, where x; = 2.0 &+ 0.1,
x> =3.0%+0.2,and x3 = 1.0 = 0.1. Which variable contributes most to the error?

(b) Compute the standard error using the same data as in (a), assuming that the error
estimates for the x; indicate standard deviations.

2.4.2 One wishes to compute f = (+/2 — 1), using the approximate value 1.4 for /2.
Which of the following mathematically equivalent expressions gives the best result?

1
W2+ 1)8

2.4.3 Analyze the error propagation in x*

1 1
99 — 70/2;

3—2«/53; _ e
( ) (3 +24/2)3 99 + 7042

(a) if x is exact and « in error; (b) if « is exact and x in error.
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24.4

24.5

2.4.6

24.7

24.8

One is observing a satellite in order to determine its speed. At the first observation,
R = 30,000 £ 10 miles. Five seconds later, the distance has increased by r =
125.0 £ 0.5 miles and the change in the angle is ¢ = 0.00750 £ 0.00002 radians.
What is the speed of the satellite, assuming that it moves in a straight line and with
constant speed in the interval?

One has measured two sides and the included angle of a triangle tobe « = 100.040.1,
b =101.0 £ 0.1, and angle C = 1.00° £ 0.01°. Then the third side is given by the
cosine theorem

c= (a2 + b — 2ab cos C)l/z.
(a) How accurately is it possible to determine ¢ from the given data?

(b) How accurately does one get c if one uses the value cos 1° = 0.9998, which is
correct to four decimal places?

(c) Show that by rewriting the cosine theorem as
¢ = ((a — b)* + 4ab sin*(C/2))'/?

it is possible to compute c to full accuracy using only a four-decimal table for the

trigonometric functions.
l « x\ (1
a 1 y) \o)’

where o # 1. What is the relative condition number for computing x? Using
Gaussian elimination and four decimal digits, compute x and y for « = 0.9950 and
compare with the exact solution x = 1/(1 — a?), y = —a/(1 — a?).

Consider the linear system

(a) Let two vectors u and v be given with components (u;, u;) and (vy, v2). The
angle ¢ between u and v is given by the formula

UV + urvp
Wi +u3)' 2 (v} + o)1/

Show that computing the angle ¢ from the components of u and v is a well-
conditioned problem.

cos¢p =

Hint: Take the partial derivative of cos ¢ with respect to u, and from this compute
d¢/0u,. The other partial derivatives are obtained by symmetry.

(b) Show that the formula in (a) is not stable for small angles ¢.

(c) Show that the following algorithm is stable. First normalize the vectors i =
u/||lull2, v = v/||v||2. Then compute & = || — V|2, B = ||it + V||, and set

_ | 2arctan(a/B) ifa <8,
¢ = 7 —2arctan(B/a) ifa > B.

For the integral

1 e—bx
I(a,b) :/ —de,
0 a+x

the physical quantities ¢ and b have been measured to be a = 0.4000 & 0.003,
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24.9

2.4.10

24.11

24.12

24.13

b = 0.340 £ 0.005. When the integral is computed for various perturbed values of
a and b, one obtains

a b 1

0.39 034 1.425032
040 0.32 1.408845
0.40 034 1.398464
040 036 1.388198
041 034 1.372950

Estimate the uncertainty in 7 (a, b)!

(a) Let B € R be a matrix for which || B|| < 1. Show that the infinite sum and
product

I+B+B*+B+B* -,

— -1 —
=5 {(1+B)(1+32)(1+B4)(1+B8)--.

both converge to the indicated limit.
Hint: Use the identity (/ — B)(I + B +--- + BX) =1 — BK1,
(b) Show that the matrix (I — B) is nonsingular and that

(1 =B~ < 1/(1 = |IB]).

Solve the linear system in Example 2.4.8 with Gaussian elimination after exchanging
the two equations. Do you now get an accurate result?

Derive forward and backward recursion formulas for calculating the integrals

1 n
I, :/ ol dx.
0 4X +1

Why is one algorithm stable and the other unstable?

(a) Use the results in Table 2.4.1 to determine constants ¢ and g such that x (H,) =~
c-109.

(b) Compute the Bauer—Skeel condition number cond (H,) = || |H, Y|H,| |2, of
the Hilbert matrices for n = 1 : 12. Compare the result with the values of « (H,,)
given in Table 2.4.1.

Vandermonde matrices are structured matrices of the form

o] o) .. oy
Vo =
n—1 n—1 n—1
o @ T Oy

Leta; =1—-2(j —1)/(n —1), j =1 : n. Compute the condition numbers «>(V,,)
forn =5, 10, 15, 20, 25. Is the growth in «»(V,,) exponential in n?
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2.5 Automatic Control of Accuracy and Verified
Computing

2.5.1 Running Error Analysis

A different approach to rounding error analysis is to perform the analysis automatically, for
each particular computation. This gives an a posteriori error analysis in contrast to the a
priori error analysis discussed above.

A simple form of a posteriori analysis, called running error analysis, was used in the
early days of computing; see Wilkinson [380]. To illustrate his idea we rewrite the basic
model for floating-point arithmetic as

xopy= fl(xop y)(1+e).

This holds for most implementations of floating-point arithmetic. Then, the actual error
can be estimated | f/ (x op y) — xop y| < u|fI (x op y)|. Note that the error is now given
in terms of the computed result and is available in the computer at the time the operation
is performed. This running error analysis can often be easily implemented. We just take
an existing program and modify it, so that as each arithmetic operation is performed, the
absolute value of the computed results is added into the accumulating error bound.

Example 2.5.1.
The inner product fI (x”y) is computed by the program

s=0; n=0;
fori=1,2,...,n
t=fl(xiyi); n=n+lt
s=fl(s+1); n=n+Isl;
end

For the final error we have the estimate | fI (x”y) — x” y| < nu. Note that a running error
analysis takes advantage of cancellations in the sum. This is in contrast to the previous
estimates, which we call a priori error analysis, where the error estimate is the same for all
distribution of signs of the elements x; and y;.

Efforts have been made to design the computational unit of a computer so that it
gives, in every arithmetic operation, only those digits of the result which are judged to be
significant (possibly with a fixed number of extra digits), so-called unnormalized floating
arithmetic. This method reveals poor construction in algorithms, but in many other cases it
gives a significant and unnecessary loss of accuracy. The mechanization of the rules, which
a knowledgeable and experienced person would use for control of accuracy in hand calcu-
lation, is not as free from problems as one might expect. As a complement to arithmetical
operations of conventional type, the above type of arithmetic is of some interest, but it is
doubtful that it will ever be widely used.

A fundamental difficulty in automatic control of accuracy is that to decide how many
digits are needed in a quantity to be used in later computation, one needs to consider the entire
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context of the computations. It can in fact occur that the errors in many operands depend on
each other in such a way that they cancel each other. Such a cancellation of error, which
is a completely different phenomenon from the previously discussed cancellation of terms,
is most common in larger problems, but will be illustrated here with a simple example.

Example 2.5.2.
Suppose we want to compute y = z; + 22, where z; = v/x2+ 1, z, = 200 — x,
x = 100 £ 1, with a rounding error which is negligible compared to that resulting from
the errors in z; and z;. The best possible error bounds in the intermediate results are
z1 =100+ 1, zo = 100 £ 1. It is then tempting to be satisfied with the result y = 200 & 2.
But the errors in z; and z, due to the uncertainty in x will, to a large extent, cancel
each other! This becomes clear if we rewrite the expression as

1
_ /2 _x) = _
y_200+< x 41 x)—200-|- e

It follows that y = 200 + z, where 1/202 5 z < 1/198. Thus y can be computed with
an absolute error less than about 2/(200)?> = 0.5 - 10~*. Therefore, using the expression
y = z1 + z» the intermediate results z; and z, should be computed to four decimals even

though the last integer in these is uncertain. The result is y = 200.0050 £+ %10‘4.

In larger problems, such a cancellation of errors can occur even though one cannot
easily give a way to rewrite the expressions involved. The authors have seen examples
where the final result, a sum of seven terms, was obtained correctly to eight decimals even
though the terms, which were complicated functions of the solution to a system of nonlinear
equations with 14 unknowns, were correct only to three decimals! Another nontrivial
example is given in Example 2.4.12.

2.5.2 Experimental Perturbations

In many practical problems, the functional dependence between input data and output data
is so complicated that it is difficult to directly apply the general formulas for error propa-
gation derived in Sec.2.4.3. One can then investigate the sensitivity of the output data for
perturbations in the input data by means of an experimental perturbational calculation.
One performs the calculations many times with perturbed input data and studies the per-
turbations in the output data. For example, instead of using the formula for standard error
of a function of many variables, given in Theorem 2.4.5, it is often easier to compute the
function a number of times with randomly perturbed arguments and to use them to estimate
the standard deviation of the function numerically.

Important data, such as the step length in a numerical integration or the parameter
which determines when an iterative process is going to be broken off, should be varied with
all the other data left unchanged. If one can easily vary the precision of the machine in the
arithmetic operations one can get an idea of the influence of rounding errors. It is generally
not necessary to make a perturbational calculation for each and every data component;
one can instead perturb many input data simultaneously—for example, by using random
numbers.
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A perturbational calculation often gives not only an error estimate but also greater
insight into the problem. Occasionally, it can be difficult to interpret the perturbational data
correctly, since the disturbances in the output data depend not only on the mathematical
problem but also on the choice of numerical method and the details in the design of the
algorithm. The rounding errors during the computation are not the same for the perturbed
and unperturbed problem. Thus if the output data react more sensitively than one had
anticipated, it can be difficult to immediately point out the source of the error. It can then
be profitable to plan a series of perturbation experiments with the help of which one can
separate the effects of the various sources of error. If the dominant source of error is the
method or the algorithm, then one should try another method or another algorithm. It is
beyond the scope of this book to give further comments on the planning of such experiments.
Imagination and the general insights regarding error analysis, which this chapter is meant
to give, play a large role.

2.5.3 Interval Arithmetic

In interval arithmetic one assumes that all input values are given as intervals and systemat-
ically calculates an inclusion interval for each intermediate result. It is partly an automation
of calculation with maximal error bounds. The importance of interval arithmetic is that it
provides a tool for computing validated answers to mathematical problems.

The modern development of interval arithmetic was initiated by the work of R. E. Moore
[271]. Interval arithmetic has since been developed into a useful tool for many problems in
scientific computing and engineering. A noteworthy example of its use is the verification
of the existence of a Lorenz attractor by W. Tucker [361]. Several extensive surveys on
interval arithmetic are available; see [3, 4, 225]. Hargreaves [186] gives a short tutorial on
INTLAB and also a good introduction to interval arithmetic.

The most frequently used representations for the intervals are the infimum-supremum
representations

I=labl:={x|a<x<b}, (a<bh), (2.5.1)

where x is a real number. The absolute value or the magnitude of an interval is defined as
| [a, b] | = mag([a, b]) = max{|x| | x € [a, b]}, (2.5.2)
and the mignitude of an interval is defined as
mig([a, b]) = min{|x| | x € [a, b]}. (2.5.3)
In terms of the endpoints we have

mag([a, b]) = max{|al, |b[},

. __ [ min{|al|, |b|} ifO ¢ [a, b],
mig({a. b)) = {O otherwise.

The result of an interval operation equals the range of the corresponding real operation.
For example, the difference between the intervals [a;, a;] and [by, b;] is defined as the
shortest interval which contains all the numbers x; — x,, where x; € [a1, a>], x» € [b1, b>],
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ie., [ai, ax]l—1[b1, b2] := [a; — by, a, — b1 ]. Other elementary interval arithmetic operations
are similarly defined:

lai, azlop by, b2] := {x10px2 | X1 € [ay, az], x2 € [by, b2]}, (2.54)

where op € {+, —, X, div }. The interval value of a function ¢ (for example, the elementary
functions sin, cos, exp, log) evaluated on an interval is defined as

#(la.b]) = | inf g(x). sup $(x)].

x€la,b]

Operational Definitions

Although (2.5.4) characterizes interval arithmetic operations, we also need operational
definitions. We take

lar, a2] + [b1, b2] = a1 + by, az + ba],

lai, a2l — [b1, b2l = a1 — by, a2 — by,

la1, az] x [by, by] = [ min{a1by, aiby, azby, axby}, max{aiby, aiby, azby, azby}],
1/lay, ax] = [1/az, 1/a;] for aja, > 0, (2.5.5)
la1, a21/1b1, b2] = lai, as] - (1/[b1, b2]).

It is easy to prove that in exact interval arithmetic the operational definitions above give the
exact range (2.5.4) of the interval operations. Division by an interval containing zero is not
defined and may cause an interval computation to come to a premature end.

A degenerate interval with radius zero is called a point interval and can be identified
with a single number a = [a, a]. In this way the usual arithmetic is recovered as a special
case. Theintervals 0 = [0, 0] and 1 = [1, 1] are the neutral elements with respect to interval
addition and interval multiplication, respectively. A nondegenerate interval has no inverse
with respect to addition or multiplication. For example, we have

[1,2] —[1,2] =[-1, 1], [1,2]/[1,2] =[0.5,2].
For interval operations the commutative law
la1, az]op [b1, b2] = [by1, bl op[ai, az]
holds. But the distributive law has to be replaced by so-called subdistributivity:
la1, a2]([b1, D2] + [c1, e2]) € [ar, ax][by, D] + [ay, az]lcy, c2]. (2.5.0)

This unfortunately means that expressions, which are equivalent in real arithmetic, differ in
exact interval arithmetic. The simple example

[—1, 1]([1, 1] 4+ [-1, =1]) =0 c [-1, 1][1, 1] 4+ [-1, 1][-1, =1] = [-2, 2]

shows that —[—1, 1] is not the additive inverse to [—1, 1] and also illustrates (2.5.6).
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The operations introduced are inclusion monotonic, i.e.,

la1, az2] € [c1, 2], [b1, b2l S [di,d2] = a1, az]op [by, b2] S [c1, c2]opldy, da].
(2.5.7)
An alternative representation for an interval is the midpoint-radius representation,
for which we use brackets,

(c,r) ={x ’ [x —c| <r} (0=<r), (2.5.8)

where the midpoint and radius of the interval [a, b] are defined as
. 1 1
¢ = mid ([a, b]) = z(a + b), r =rad ([a, b]) = E(b —a). (2.5.9)

For intervals in the midpoint-radius representation we take as operational definitions

(c1, 1) + {c2, r2) = {c1 + 2,11 +12),

(c1, 1) — {c2, r2) = {c1 — c2, 11 +12),

(c1, 1) X {c2, r2) = {c1¢2, |c1|ra + rilea| +1i72), (2.5.10)
e,y = (e/Uel> =), r/(el =), (el > 1),

(c1, 1) /{2, r2) = {c1, 1) x (1/(c2, 72)).

For addition, subtraction, and inversion, these give the exact range, but for multiplication
and division they overestimate the range (see Problem 2.5.2). For multiplication we have
for any x| € (cy, r) and x; € {(c;, 1)

|x1x2 — 12| = |e1(x2 — ¢2) + ca(x1 — ¢1) + (X1 — 1) (x2 — ¢2)|

<lecilra + |e2|lry + rir2.

In implementing interval arithmetic using floating-point arithmetic, the operational
interval results may not be exactly representable as floating-point numbers. Then if the
lower bound is rounded down to the nearest smaller machine number and the upper bound
rounded up, the exact result must be contained in the resulting interval. Recall that these
rounding modes (rounding to —oo and 4-00) are supported by the IEEE 754 standard. For
example, using five significant decimal arithmetic, we would like to get

[1, 114 [—107'°, 1071°1 = [0.99999, 1.0001]
or, in midpoint-radius representation,
(1,0) +(0,107'%) = (1, 107'9).

Note that in the conversion between decimal and binary representation rounding the appro-
priate rounding mode must also be used where needed. For example, converting the point
interval 0.1 to binary IEEE double precision we get an interval with radius 1.3878 - 10~!7.
The conversion between the infimum-supremum representation is straightforward but the
infimum-supremum and midpoint may not be exactly representable.
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Interval arithmetic applies also to complex numbers. A complex interval in the
infimum-supremum representation is

[z1, 22l = {z =x +iy | x € [x1,x2], y € [y1, y21}.

This defines a closed rectangle in the complex plane defined by the two real intervals,

[z1, z2] = [x1, 2] +ily1, 21,  x1 < x2,  y1 < »o.

This can be written more compactly as [z, z2] := {z | z71 < z < 2z}, where we use the
partial ordering
z<w <<= Nz<Rw and [z < Jw.

Complex interval operations in the infimum-supremum arithmetic are defined in terms of the
real intervals in the same way as the complex operations are defined for complex numbers
z = x+iy. For addition and subtraction the result coincides with the exact range. This is not
the case for complex interval multiplication, where the result is a rectangle in the complex
plane, whereas the actual range is not of this shape. Therefore, for complex intervals,
multiplication will result in an overestimation.

In the complex case the midpoint-radius representation is

(e,ryi={z€Cllz—cl<r}, 0=,

where the midpoint ¢ is now a complex number. This represents a closed circular disk in
the complex plane. The operational definitions (2.5.10) are still valid, except that some
operations now are complex operations, and that inversion becomes

1/{c.r)=(e/(cl* =), r/(cl* =) for |c|>r,

where ¢ is the complex conjugate of c. Complex interval midpoint-radius arithmetic is also
called circular arithmetic. For complex multiplications it generates less overestimation
than the infimum-supremum notation.

Although the midpoint-radius arithmetic seems more appropriate for complex inter-
vals, most older implementations of interval arithmetic use infimum-supremum arithmetic.
One reason for this is the overestimation also caused for real intervals by the operational
definitions for midpoint-radius multiplication and division. Rump [307] has shown that
the overestimation is bounded by a factor 1.5 in radius and that midpoint-radius arithmetic
allows for a much faster implementation for modern vector and parallel computers.

2.5.4 Range of Functions

One use of interval arithmetic is to enclose the range of a real-valued function. This can be
used, for example, for localizing and enclosing global minimizers and global minima of a
real function of one or several variables in a region. It can also be used for verifying the
nonexistence of a zero of f(x) in a given interval.

Let f(x) be areal function composed of a finite number of elementary operations and
standard functions. If one replaces the variable x by an interval [x, X] and evaluates the
resulting interval expression, one gets as the result an interval denoted by f([x, x]). (It is
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assumed that all operations can be carried out.) A fundamental result in interval arithmetic
is that this evaluation is inclusion monotonic, i.e.,

x.x] Sy, y] = fdx.xD) < fdy,yD.

In particular this means that

x C[xXx] = fx) < f(lx, XD,

i.e., f([x]) contains the range of f(x) over the interval [x, X]. A similar result holds also
for functions of several variables f(xq, ..., Xx,).

An important case when interval evaluation gives the exact range of a function is
when f(xi, ..., x,) is arational expression, where each variable x; occurs only once in the
function.

Example 2.5.3.
In general narrow bounds cannot be guaranteed. For example, if f(x) = x/(1 — x),
then

f(2,3D) = 12,31/ = [2,3) = [2,3)/[-2, 1] = [-3, —1].

The result contains but does not coincide with the exact range [—2, —3/2]. But if we rewrite
the expression as f(x) = 1/(1/x — 1), where x only occurs once, then we get

f(2,3D) =1/(1/12,3] = 1) = 1/[-2/3, =1/2] = [-2, =3/2],

which is the exact range.

When interval analysis is used in a naive manner as a simple technique for simulating
forward error analysis, it does not usually give sharp bounds on the total computational error.
To get useful results the computations in general need to be arranged so that overestimation
is minimized as much as possible. Often a refined design of the algorithm is required in
order to prevent the bounds for the intervals from becoming unacceptably coarse. The
answer [—00, 00] is of course always correct but not at all useful!

The remainder term in Taylor expansions includes a variable &, which is known to lie
in an interval & € [a, b]. This makes it suitable to treat the remainder term with interval
arithmetic.

Example 2.54.
Evaluate for [x] = [2, 3] the polynomial

px)=1 — x4+ =t = X
Using exact interval arithmetic we find

p([2, 3]) = [—252, 49]

(verify this!). This is an overestimate of the exact range, which is [—182, —21]. Rewriting
p(x) in the form p(x) = (1 — x)(1 + x? + x*) we obtain the correct range. In the first
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example there is a cancellation of errors in the intermediate results (cf. Example 2.5.2),
which is not revealed by the interval calculations.

Sometimes it is desired to compute a tiny interval that is guaranteed to enclose a
real simple root x* of f(x). This can be done using an interval version of Newton’s
method. Suppose that the function f(x) is continuously differentiable. Let f’([xo]) denote
an interval containing f’(x) for all x in a finite interval [x] := [a, b]. Define the Newton
operator N ([x]), [x] = [a, b], by

A
AN

For the properties of the interval Newton’s method

N(x]) :=m m = mid [x]. (2.5.11)

X1l = NxeD), £=0,1,2,...;

see Sec. 6.3.3.
Another important application of interval arithmetic is to initial value problems for
ordinary differential equations

v =fx,y), yxo) =y, yeR"

Interval techniques can be used to provide for errors in the initial values, as well as truncation
and rounding errors, so that at each step intervals are computed that contain the actual
solution. But it is a most demanding task to construct an interval algorithm for the initial
value problem, and such algorithms tend to be significantly slower than corresponding
point algorithms. One problem is that a wrapping effect occurs at each step and causes the
computed interval widths to grow exponentially. This is illustrated in the following example.

Example 2.5.5.
The recursion formulas

Xn+1 = (xn - yn)/\/éa Yn4+1 = (xn + yn)/“/E

mean a series of 45-degree rotations in the xy-plane (see Figure 2.5.1). By atwo-dimensional
interval one means a rectangle whose sides are parallel to the coordinate axes.

N KE

Figure 2.5.1. Wrapping effect in interval analysis.

If the initial value (xo, yo) is given as an interval [xo] = [1 — €, 1 €], [yo] = [—¢, €]
(see the dashed square, in the leftmost portion of Figure 2.5.1), then (x,,, y,) will, with exact
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performance of the transformations, also be a square with side 2¢, for all n (see the other
squares in Figure 2.5.1). If the computations are made using interval arithmetic, rectangles
with sides parallel to the coordinate axis will, in each step, be circumscribed about the exact
image of the interval one had in the previous step. Thus the interval is multiplied by +/2 in
each step. After 40 steps, for example, the interval has been multiplied by 22° > 10°. This
phenomenon, intrinsic to interval computations, is called the wrapping effect. (Note that
if one uses disks instead of rectangles, there would not be any difficulties in this example.)

2.5.5 Interval Matrix Computations

In order to treat multidimensional problems we introduce interval vectors and matrices. An
interval vector is denoted by [x] and has interval components [x;] = [)ﬁ X ),i =1:n.
Likewise an interval matrix [A] = ([a;;]) has interval elements

[a;j] = [Qijvaij], i=1:m, j=1:n.

Operations between interval matrices and interval vectors are defined in an obvious manner.
The interval matrix-vector product [A][x] is the smallest interval vector, which contains the
set

{Ax | A € [A], x € [x]}

but normally does not coincide with it. By the inclusion property it holds that

{Ax | A € [A], x € [x]} C [Allx] = (Z [a,-j][x,]>.

j=1

In general, there will be an overestimation in enclosing the image with an interval vector,
caused by the fact that the image of an interval vector under a linear transformation in
general is not an interval vector. This phenomenon, intrinsic to interval computations, is
similar to the wrapping effect described in Example 2.5.5.

Example 2.5.6.
We have

(11 _(10,1] _( [0,2]

A_(—l 1)’ [X]_([O,l]) = A[x]_<[—1,1]>'
Hence b = (2 —1)7 € A[x], but there is no x € [x] such that Ax = b. (The solution to
Ax=bisx =(3/2 1/2)T)

The magnitude of an interval vector or matrix is interpreted componentwise and
defined by
|1 = (Lol | el Rl DT

where the magnitude of the components is defined by

| [a, b]| = max{|x]| | x € [a, b]}. 2.5.12)
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The co-norm of an interval vector or matrix is defined as the co-norm of its magnitude,

IxT oo = INTTxT [ oo [l [ATlloo = II T LAT] lloo- (2.5.13)

In implementing matrix multiplication it is important to avoid case distinctions in the
inner loops, because that would make it impossible to use fast vector and matrix operations.
Using interval arithmetic it is possible to compute strict enclosures of the product of two
matrices. Note that this is also needed in the case of the product of two point matrices since
rounding errors will usually occur.

We assume that the command

setround(i), i=-—1,0,1,

sets the rounding mode to —oo, to nearest, and to 400, respectively. (Recall that these
rounding modes are supported by the IEEE standard.) Let A and B be point matrices and
suppose we want to compute an interval matrix [C] such that

fl(A . B) C [C] = [Cinfa Csup]-
Then the following simple code, using two matrix multiplications, does that:

setround(—1); Cijy = A - B;
setround(1); Cgp=A- B;

We next consider the product of a point matrix A and an interval matrix [B] =
[Binf, Bsupl. The following code performs this using four matrix multiplications:

A_ =min(A, 0); A, = max(A, 0);
setround(—1);

Cing = AL - Binr + A_ - By
setround(1);

Csup = A - Bint + A - Byup;

(Note that the commands A_ = min(A, 0) and A, = max(A, 0) act componentwise.) An
algorithm for computing the product of two interval matrices using eight matrix multipli-
cations is given by Rump [308].

Fast portable codes for interval matrix computations that make use of the Basic Linear
Algebra Subroutines (BLAS) and IEEE 754 standard are now available. This makes it
possible to efficiently use high-performance computers for interval computation. INTLAB
(INTerval LABoratory) by Rump [308, 307] is based on MATLAB, and it is particularly
easy to use. It includes many useful subroutines, for example, one to compute an enclosure
of the difference between the solution and an approximate solution x,, = Cmid [b]. Verified
solutions of linear least squares problems can also be computed.

Review Questions

2.5.1 (a) Define the magnitude and mignitude of an interval I = [a, b].
(b) How is the oo-norm of an interval vector defined?
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2.5.2 Describe the two different ways of representing intervals used in real and complex
interval arithmetic. Mention some of the advantages and drawbacks of each of these.

2.5.3 Animportant property of interval arithmetic is that the operations are inclusion mono-
tonic. Define this term.

2.5.4 What is meant by the “wrapping effect” in interval arithmetic and what are its impli-
cations? Give some examples of where it occurs.

2.5.5 Assume that the command
setround(i), i=-—1,0,1,

sets the rounding mode to —o0, to nearest, and to 400, respectively. Give a simple
code that, using two matrix multiplications, computes an interval matrix [C] such
that for point matrices A and B

fl(A - B) C [C] = [Cixt, Csup]-

Problems and Computer Exercises

2.5.1 Carry out the following calculations in exact interval arithmetic:
(@ [0, 1T+ [1,2]; (b)[3,3.1]1—1[0,0,2]; (¢) [-4. —1]-[-6,5];
@1[2,2]-[-1,2]; (e)[-1,11/[-2,=0.5); () [-3,2]-[-3.1,2.1].

2.5.2 Show that using the operational definitions (2.5.5) the product of the disks (c, r1)
and (c,, rp) contains zeroif cy =c; = landry =r, = V2 - 1.

2.5.3 (Stoer) Using Horner’s rule and exact interval arithmetic, evaluate the cubic polyno-
mial

px) =((x =3)x+3)x, [x]=[09, 11].

Compare the result with the exact range, which can be determined by observing that
p) =@ -1 +1
2.5.4 Treat Example 1.2.2 using interval analysis and four decimal digits. Starting with the

inclusion interval 1o = [0, 1/60] = [0, 0.01667] generate successively intervals I,
k=9 :—1:5, using interval arithmetic and the recursion

Iy =1/Gn) — 1,/5.

Notes and References

Many different aspects of number systems and floating-point computations are treated in
Knuth [230, Chapter4], including the historical development of number representation.
Leibniz (1703) seems to have been the first to discuss binary arithmetic. He did not advocate
it for practical calculations, but stressed its importance for number-theoretic investigations.
King Charles XII of Sweden came upon the idea of radix 8 arithmetic in 1717. He felt this to
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be more convenient than the decimal notation and considered introducing octal arithmetic
into Sweden. He died in battle before decreeing such a change.

In the early days of computing, floating-point computations were not built into the
hardware but implemented in software. The earliest subroutines for floating-point arithmetic
were probably those developed by J. H. Wilkinson at the National Physical Laboratory, Eng-
land, in 1947. A general source on floating-point computation is Sterbenz [333]. Goldberg
[158] is an excellent tutorial on the IEEE 754 standard for floating-point arithmetic defined
in [205]. A self-contained, accessible, and easy to read introduction with many illustrating
examples is the monograph by Overton [280]. An excellent treatment on floating-point
computation, rounding error analysis, and related topics is given in Higham [199, Chapter
2]. Different aspects of accuracy and reliability are discussed in [108].

The fact that thoughtless use of mathematical formulas and numerical methods can
lead to disastrous results are exemplified by Stegun and Abramowitz [331] and Forsythe [122].
Numerous examples in which incorrect answers are obtained from plausible numerical meth-
ods can be found in Fox [125].

Statistical analysis of rounding errors goes back to an early paper of Goldstine and
von Neumann [161]. Barlow and Bareiss [15] have investigated the distribution of round-
ing errors for different modes of rounding under the assumption that the mantissas of the
operands are from a logarithmic distribution.

Conditioning numbers of general differentiable functions were first studied by Rice
[301]. Backward error analysis was developed and popularized by J. H. Wilkinson in the
1950s and 1960s, and the classic treatise on rounding error analysis is [376]. The more
recent survey [380] gives a good summary and a historical background. Kahan [216] gives
an in-depth discussion of rounding error analysis with examples of how flaws in the design
of hardware and software in computer systems can have undesirable effects on accuracy.
The normwise analysis is natural for studying the effect of orthogonal transformations in
matrix computations; see Wilkinson [376]. The componentwise approach, used in pertur-
bation analysis for linear systems by Bauer [19], can give sharper results and has gained in
popularity.

Condition numbers are often viewed pragmatically as the coefficients of the back-
ward errors in bounds on forward errors. Wilkinson in [376] avoids a precise definition of
condition numbers in order to use them more freely. The more precise limsup definition in
Definition 2.4.6 is usually attributed to Rice [301].

Even in the special literature, the discussion of planning of experimental perturbations
is surprisingly meager. An exception is the collection of software tools called PRECISE,
developed by Chaitin-Chatelin et al.; see [63, 64]. These are designed to help the user set
up computer experiments to explore the impact of the quality of convergence of numerical
methods. PRECISE involves a statistical analysis of the effect on a computed solution of
random perturbations in data.



Chapter 3

Series, Operators, and
Continued Fractions

No method of solving a computational problem
is really available to a user until it is completely
described in an algebraic computer language
and made completely reliable.

—George E. Forsythe

3.1 Some Basic Facts about Series

3.1.1 Introduction

Series expansions are a very important aid in numerical calculations, especially for quick
estimates made in hand calculation—for example, in evaluating functions, integrals, or
derivatives. Solutions to differential equations can often be expressed in terms of series
expansions. Since the advent of computers it has, however, become more common to
treat differential equations directly using, for example, finite difference or finite element
approximations instead of series expansions. Series have some advantages, especially in
problems containing parameters. As well, automatic methods for formula manipulation and
some new numerical methods provide new possibilities for series.

In this section we will discuss general questions concerning the use of infinite series
for numerical computations including, for example, the estimation of remainders, power
series, and various algorithms for computing their coefficients. Often a series expansion can
be derived by simple operations with a known series. We also give an introduction to formal
power series. The next section treats perturbation expansions, ill-conditioned expansions,
and semiconvergent expansions, from the point of view of computing.

Methods and results will sometimes be formulated in terms of series, sometimes in
terms of sequences. These formulations are equivalent, since the sum of an infinite series
is defined as the limit of the sequence {S,,} of its partial sums

S, =ay+a+---+a,.

157
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Conversely, any sequence Si, S, 53, ... can be written as the partial sums of a series,
S+ (S S+ (S5 = S+

In practice, one is seldom seriously concerned about a rigorous error bound when the
computed terms decrease rapidly, and it is “obvious” that the terms will continue to decrease
equally quickly. One can then break off the series and use either the last included term or a
coarse estimate of the first neglected term as an estimate of the remainder.

This rule is not very precise. How rapidly is “rapidly”? Questions like this occur
everywhere in scientific computing. If mathematical rigor costs little effort or little extra
computing time, then it should, of course, be used. Often, however, an error bound that is
both rigorous and realistic may cost more than what is felt reasonable for (say) a one-off
problem.

In problems where guaranteed error bounds are not asked for, when it is enough to
obtain a feeling for the reliability of the results, one can handle these matters in the same
spirit as one handles risks in everyday life. It is then a matter of experience to formulate a
simple and sufficiently reliable termination criterion based on the automatic inspection of
the successive terms.*!

The inexperienced scientific programmer may, however, find such questions hard,
even in simple cases. In the production of general purpose mathematical software, or in a
context where an inaccurate numerical result can cause a disaster, such questions are serious
and sometimes hard for the experienced scientific programmer also. For this reason, we shall
formulate a few theorems with which one can often transform the feeling that “the remainder
is negligible” to a mathematical proof. There are, in addition, actually numerically useful
divergent series; see Sec. 3.2.6. When one uses such series, estimates of the remainder are
clearly essential.

Assume that we want to compute a quantity S, which can be expressed in a series
expansion, § = Z?io a;, and set

S, =Y"_oaj. R.=5-S5.

We call Z?O:n 41 a; the tail of the series; a, is the “last included term” and a, is the “first
neglected term.” The remainder R, with reversed sign is called the truncation error.*

The tail of a convergent series can often be compared to a series with a known sum,
such as a geometric series, or with an integral which can be computed directly.

Theorem 3.1.1 (Comparison with a Geometric Series).
Iflaj+1| < klaj| for all j > n, where k < 1, then

Ryl < 12l K]
T 1-k 71—k

In particular if k < 1/2, then it is true that the absolute value of the remainder is less than
the last included term.

#ITermination criteria for iterative methods will be discussed in Sec. 6.1.3.
421n this terminology the remainder is the correction one has to make in order to eliminate the error.
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Proof. By induction, one finds that |a;| < k/~'™"|a,11|, j > n + 1, since

- -
laj| < k7 ans1l = lajil < klajl < k7" @l

Thus
. . lani| _ Kla|
i 1— n
|R,| < E la;| < E k'™ M apy | = T—% < T—%
j=n+1 j=n+1

according to the formula for the sum of an infinite geometric series. The last statement
follows from the inequality k/(1 — k) < 1, when k < 1/2. 0

Example 3.1.1.
In a power series with slowly varying coefficients, a; = j!/*x
2.45-0.0000011 < 3-107%, and

lajnl G+ D222 N,
< — <14+ - 0.11
ol = 7 w2 =\ Tg) T T

—2/. Then ag <

for j > 6. Thus, by Theorem 3.1.1, | Rg| < 3-107° 2117 < 4-107".

Theorem 3.1.2 (Comparison of a Series with an Integral).
Ifla;| < f(j) forall j > n+ 1, where f(x) is a nonincreasing function for x > n,

Ri= Y lajls [ fea

Jj=n+1 n

then

which yields an upper bound for |R, |, if the integral is finite.
Ifaji 1 = g(j) > Oforall j > n, we also obtain a lower bound for the error, namely

o [}
R, = Z aj >/ g(x)dx.

j=n+1

Proof. See Figure 3.1.1. a

Example 3.1.2.

When a; is slowly decreasing, the two error bounds are typically rather close to each
other; hence, they are rather realistic bounds, much larger than the first neglected term a,, ;.
Leta; = 1/(j3 + 1), f(x) = x73. Tt follows that

o0
0 <R, §f x3dx = n_2/2.

n

In addition this bound gives an asymptotically correct estimate of the remainder, asn — 00,
which shows that R, is here significantly larger than the first neglected term.

For alternating series the situation is typically quite different.
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Figure 3.1.1. Comparison of a series with an integral, (n = 5).

Definition 3.1.3.
A series is alternating for j > n if, for all j > n, aj and aj;, have opposite signs or,
equivalently, signajsigna; < 0, where sign x (read “signum” of x) is defined by

+1 ifx >0,
sign x =1 0 ifx =0,
—1 ifx <O.

Theorem 3.1.4.
If R, and R, | have opposite signs, then S lies between S, and Sy, 1. Furthermore

1 1
S = E(Sn + Sn+l) + §|an+l|-
We also have the weaker results:

[R,| < lapy1l, [Rut1] < lan41l, sign R, = signa, 1.

This theorem has nontrivial applications to practically important divergent sequences;
see Sec.3.2.6.

Proof. The fact that R,,; and R, have opposite signs means, quite simply, that one of
S,+1 and S, is too large and the other is too small, i.e., S lies between S, and S,,. Since
an+1 = Sp+1 — Sp, one has for positive values of @, the situation shown in Figure 3.1.2.
From this figure, and an analogous one for the case of a,1; < 0, the remaining assertions
of the theorem clearly follow. a

The actual error of the average %(S,, + S,41) is, for slowly convergent alternating
series, usually much smaller than the error bound %|a,,+1 |. For example, if S, =1 — % +
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T
Ry, 'L Rn+1H

Sn S Sn+l

Figure 3.1.2. A series where R, and R, 1| have different signs.

% == %, lim S, = In2 =~ 0.6931, the error bound for n = 4 is 0.1, while the actual
error is less than 0.01. A systematic exploration of this observation, by means of repeated

averaging, is carried out in Sec. 3.4.3.

Theorem 3.1.5.

For an alternating series, the absolute values of whose terms approach zero mono-
tonically, the remainder has the same sign as the first neglected term a,, .1, and the absolute
value of the remainder does not exceed |a,1|. (It is well known that such a series is
convergent.)

Proof. Sketch: That the theorem is true is almost clear from Figure 3.1.3. The figure shows
how §; depends on j when the premises of the theorem are fulfilled. A formal proof is left
to the reader. a

1.5

0.5f

o 2 4 6 8 10 12
Figure 3.1.3. Successive sums of an alternating series.

The use of this theorem will be illustrated in Example 3.1.3. An important general-
ization is given as Problem 3.3.2 (g).

In the preceding theorems the ideas of well-known convergence criteria are extended
to bounds or estimates of the error of a truncated expansion. In Sec. 3.4, we shall see a further
extension of these ideas, namely for improving the accuracy obtained from a sequence of
truncated expansions. This is known as convergence acceleration.
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3.1.2 Taylor’s Formula and Power Series

Consider an expansion into powers of a complex variable z, and suppose that it is convergent
for some z # 0, and denote its sum by f(z),

f@=) a;z), zeC. (3.1.1)
=0

It is then known from complex analysis that the series (3.1.1) either converges for all z,
or it has a circle of convergence with radius p such that it converges for all |z| < p, and
diverges for |z| > p. (For |z] = p convergence or divergence is possible.) The radius of
convergence is determined by the relation

p = limsup |a,|~V/". (3.1.2)

Another formula is p = lim |a,|/|a,+1], if this limit exists.
The function f (z) can be expanded into powers of z —a around any point of analyticity,

f@=Y ajz—a), zeC. (3.1.3)
=0

By Taylor’s formula the coefficients are given by

ap = f(a), a;=fPa/! j=1 (3.1.4)

In the general case this infinite series is called a Taylor series; in the special case, a = 0, it
is by tradition called a Maclaurin series.*

The function f(z) is analytic inside its circle of convergence and has at least one
singular point on its boundary. The singularity of f, which is closest to the origin, can often
be found easily from the expression that defines f(z); thus the radius of convergence of a
Maclaurin series can often be easily found.

Note that these Taylor coefficients are uniquely determined for the function f. This
is true also for a nonanalytic function, for example, if f € C”[a, b], although in this case
the coefficient a; exists only for j < p. In Figure 3.1.4 the partial sums of the Maclaurin
expansions for the functions f(x) = cosx and f(x) = 1/(1 + x?) are shown. The series
for cos x converges for all x, but rounding errors cause trouble for large values of x; see
Sec.3.2.5. For 1/(1 + x2) the radius of convergence is 1.

There are several expressions for the remainder R, (z) when the expansion for f(z) is
truncated after the term that contains z”~'. In order to simplify the notation, we put a = 0
and consider the Maclaurin series. The following integral form can be obtained by the
application of repeated integration by parts to the integral z fol f(zt) dt:

1 (1 _ t)n—l

—— (n) .
Ri@=2" | o M endr (3.1.5)

“3Brook Taylor (1685-1731), who announced his theorem in 1712, and Colin Maclaurin (1698-1746), were
British mathematicians.
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Figure 3.1.4. Partial sums of the Maclaurin expansions for two functions. The
upper curves are forcosx, n = 0: 2 : 26,0 < x < 10. The lower curves are for 1/(1+x2),
n=0:2:180<x<1.5.

the details are left for Problem 3.2.10 (b). From this follows the upper bound
1 n (n)
IRy ()| = —lzI" max [ f™(z)]. (3.1.6)
n! 0=i<l

This holds also in the complex case: if f is analytic on the segment from O to z, one
integrates along this segment, i.e., for 0 < ¢ < 1; otherwise another path is to be chosen.
The remainder formulas (3.1.5), (3.1.6) require only that f € C”. It is thus not necessary
that the infinite expansion converges or even exists.

For a real-valued function, Lagrange’s** formula for the remainder term

fO@)x"

R,(x) = )l

, §€l0,x], (3.1.7)
is obtained by the mean value theorem of integral calculus. For complex-valued functions
and, more generally, for vector-valued functions, the mean value theorem and Lagrange’s
remainder term are not valid with a single £. (Sometimes componentwise application with
different £ is possible.) A different form (3.2.11) for the remainder, valid in the complex

4Joseph Louis Lagrange (1736-1813) was born in Turin, Italy. When Euler returned from Berlin to St. Pe-
tersburg in 1766, Lagrange accepted a position in the Berlin Academy. He stayed there until 1787, when he
moved to Paris, where he remained until his death. Lagrange made fundamental contributions to most branches
of mathematics and mechanics.



164 Chapter 3. Series, Operators, and Continued Fractions

plane, is given in Sec.3.2.2 in terms of the maximum modulus M (r) = max ;= | f ()],
which may sometimes be easier to estimate than the nth derivative. A power series is
uniformly convergent in any closed bounded region strictly inside its circle of convergence.
Roughly speaking, the series can be manipulated like a polynomial, as long as z belongs to
such a region:

It can be integrated or differentiated term by term.

 Substitutions can be performed, and terms can be rearranged.

A power series can also be multiplied by another power series, as shown in the next
theorem.

Theorem 3.1.6 (Cauchy Product).
If f(2) = Y 2paiz" and g(z) = Z?O:O b;z’, then f(2)g(z) = Y ey a2, where

Cn = aoby + a1by_1 + - + apby = Zaibn_i. (3.1.8)
=0

The expression on the right side of (3.1.8) is called the convolution or the Cauchy product
of the coefficient sequences of f and g.

Example 3.1.3.

Many important functions in applied mathematics cannot be expressed in finite terms
of elementary functions and must be approximated by numerical methods. One such func-
tion is the error function defined by

erf(x) = % / e dt. (3.1.9)
0

This function is encountered, for example, in computing the distribution function of a normal
deviate. It takes the values erf(0) = 0, erf(co) = 1 and is related to the incomplete gamma
functions (see the Handbook [1, Sec. 6.5]) by erf(x) = y(1/2, x2).

Suppose one wishes to compute erf (x) for x € [—1, 1] with a relative error less than
1071, One can then approximate the function by a power series. Setting z = —¢2 in the
well-known Maclaurin series for e, truncating after n + 1 terms, and integrating term by
term we obtain

2 [F Y 2 o .
erf(x) ~ —f (=D)/—dt = == a;x¥ " = pr1(x), (3.1.10)
NZ ; J! ﬁ; ! i

where .
(=D’
a; = T~ -
J'12j+1
(Note that erf(x) is an odd function of x.) This series converges for all x, but is suitable for
numerical computations only for values of x which are not too large. To evaluate the series

ap=1,
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we note that the coefficients a; satisfy the recurrence relation

e 2i=D
T+
This recursion shows that for x € [0, 1] the absolute values of the terms #; = a;x?/*!
decrease monotonically. By Theorem 3.1.5 this implies that the absolute error in a partial
sum is bounded by the absolute value of the first neglected term a,, x".
A possible algorithm for evaluating the sum in (3.1.10) is as follows: Setsy = fy = x;
for j =1,2,..., compute

Q=1 ,

tj=—tj_|——x
R TC )

s =841 (3.1.11)

until [¢;] < 10719 ;. Here we have estimated the error by the last term added in the series.
Since we have to compute this term for the error estimate we might as well use it! Note
also that in this case, where the number of terms is not fixed in advance, Horner’s rule is
not suitable for the evaluation. Figure 3.1.5 shows the graph of the relative error in the
computed approximation py,41(x). At most 12 terms in the series were needed.

error

Figure 3.1.5. Relative error in approximations of the error function by a Maclaurin
series truncated after the first term that satisfies the condition in (3.1.11).

The use of the Taylor coefficient formula and Lagrange’s form of the remainder may
be inconvenient, and it is often easier to obtain an expansion by manipulating some known
expansions. The geometric series

1
—— =l+z++27+ 4+ +

—, z#1, (3.1.12)
1—-z2 1—z
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is of particular importance; note that the remainder z"/(1 — z) is valid even when the
expansion is divergent.

Example 3.1.4.
Set z = —t? in the geometric series, and integrate:

x n—1 x X
/(1+:2)*1dt=2f (—rz)fdr+/ (=" + 13"l dr.
0 =070 0

Using the mean value theorem of integral calculus on the last term we get

n—1 i i
—1)/ 2j+1 1 2y—1 —1" 2n+1
arctany = 3 EE (A E s

. (3.1.13)
2j+1 2n+1

j=0

for some & € int[0, x]. Both the remainder term and the actual derivation are much simpler
than what one would get by using Taylor’s formula with Lagrange’s remainder term. Note
also that Theorem 3.1.4 is applicable to the series obtained above for all x and n, even for
|x| > 1, when the infinite power series is divergent.

Some useful expansions are collected in Table 3.1.1. These formulas will be used
often without a reference; the reader is advised to memorize the expansions. “Remainder
ratio” denotes the ratio of the remainder to the first neglected term, if x € R; £ means a
number between 0 and x. Otherwise these expansions are valid in the unit circle of C or in
the whole of C.

The binomial coefficients are, also for noninteger &, defined by

<k>_k(k—1)~-(k—n+1)

n 1-2---n
For example, setting k = 1/2 gives

2 3
1 gy X2y 1.
(+0 MR il =<
Depending on the context, the binomial coefficients may be computed by one of the follow-
ing well-known recurrences:

(o) =G o () =0)+(E) e
n—+1 n/(n+1) n n n—1

with appropriate initial conditions. The latter recurrence follows from the matching of the
coefficients of ¢" in the equation (1 +1)**! = (14¢)(1+1)*. (Compare the Pascal triangle;
see Problem 1.2.4.) The explicit formula (ﬁ) = k!/(n!(k — n)!), for integers k, n, is to be
avoided if k can become large, because k! has overflow for k > 170 even in IEEE double
precision arithmetic.

The exponent k in (1 4 x)* is not necessarily an integer; it can even be an irrational or
a complex number. This function may be defined as (1 + x)* = 0+ Since In(1 + x)
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Table 3.1.1. Maclaurin expansions for some elementary functions.

Function Expansion (x € C) Remainder ratio (x € R)
(1—x)"! l+x4+x2+x3+--ifx] <1 (I—x)"lifx #1
k
(14 x)* 1+kx+(2)x2+~--if|x|<l (I+8&F"ifx > —1
2 3 4
In(1 + x) x— D itk <1 A48 lifx > —1
2 3 4
2 3
. o §
e 1+x—|—2!+3!+ all x es,all x
2 X X
sin x x—§~|—§—?+~-allx cosé&, all x, n odd
R 6
CcOoS X 1—2—!+4—!—a+~-~allx cosé&, all x, n even
(152 v D i < L o<1
—In X+ —+—+---if x| < ———,|x] < 1,neven
2 1—x 3 5 1—&2
3 5
x X .
arctan x x—?+?+~-1f|x|<l ng,allx

is multivalued, (1 4+ x)* is multivalued too, unless k is an integer. We can, however, make
them single-valued by forbidding the complex variable x to take real values less than —1.
In other words, we make a cut along the real axis from —1 to —oo that the complex variable
must not cross. (The cut is outside the circle of convergence.) We obtain the principal
branch by requiring that In(1 +x) > 0ifx > 0. Let 1 +x = re’®,r > 0, ¢ — +m. Note
that

I4+x— —r, 1n(1+x)—>lnr+{i_§z gi:’in (3.1.15)
Two important power series, not given in Table 3.1.1, are the following.
The Gauss hypergeometric function®
ab z a(a+1D)bb+1)7?
F(a,b,c;7) = 1+71—!+%2—!
3
;e Djéi?ﬁil’:;)(b +2) % .. (.1.16)
where a and b are complex constants and ¢ # —1, —2, —3, .. .. The radius of convergence

for this series equals unity; see [1, Chap. 15].

43Gauss presented his paper on this series in 1812.
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Kummer’s confluent hypergeometric function*®

M(a,b;z):1+c—zi+a(a+l)£ a(a+1)(a+2)§
b1 bb+12 b+ 1)(bH+2) 3!

(3.1.17)

converges for all z (see [1, Chap. 13]). It is named “confluent” because

M(a,c;z) = blim F(a,b,c,z/b).
— 00

The coefficients of these series are easily computed and the functions are easily eval-
uated by recurrence relations. (You also need some criterion for the truncation of the series,
adapted to your demands of accuracy.) In Sec. 3.5, these functions are also expressed in
terms of infinite continued fractions that typically converge faster and in larger regions than
the power series do.

Example 3.1.5.

The following procedure can generally be used in order to find the expansion of the
quotient of two expansions. We illustrate it in a case where the result is of interest to us
later.

The Bernoulli*’ numbers B, are defined by the Maclaurin series

X Bjx/
= iy (3.1.18)
er —1 j!

For x = 0 the left-hand side is defined by 1’Hopital’s rule; the value is 1. If we multiply
this equation by the denominator, we obtain

(ENED)

!
i=1 j=0 J:

By matching the coefficients of x”, n > 1, on both sides, we obtain a recurrence relation
for the Bernoulli numbers, which can be written in the form

n—1 n—1
1 B
By=1, Y ——0 =0, n=2 ie. §:(7>Bj=o. (3.1.19)
: J
Jj=0

= !

The last equation is a recurrence that determines B, in terms of Bernoulli numbers with

smaller subscripts; hence By = 1, By = —1, B, = 1, B3 = 0, By = —5, Bs = 0,
Be=1.....

40Ernst Eduard Kummer (1810-1893), a German mathematician, was a professor in Berlin from 1855 to his
death. He extended Gauss’s work on hypergeometric series. Together with Weierstrass and Kronecker, he made
Berlin into one of the leading centers of mathematics at that time.

4TJacob (or James) Bernoulli (1654—1705), a Swiss mathematician, was one of the earliest to realize the power
of infinitesimal calculus. The Bernoulli numbers were published posthumously in 1713, in his fundamental work
Ars Conjectandi (on probability). The notation for Bernoulli numbers varies in the literature. Our notation seems
to be the most common in modern texts. Several members of the Bernoulli family enriched mathematics by their
teaching and writing. Their role in the history of mathematics resembles the role of the Bach family in the history
of music.
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We see that the Bernoulli numbers are rational. We shall now demonstrate that B,, = 0,
when n is odd, except forn = 1:

o]

X x_xex—l—l_xex/2+e_"/2_Zanx2”

er—1 2 2e—1 2e/2—¢/2 T =en

(3.1.20)

Since the next-to-last term is an even function its Maclaurin expansion contains only even
powers of x, and hence the last expansion is also true.

The recurrence obtained for the Bernoulli numbers by the matching of coefficients in
the equation

00
1
x/2 _ ,—x/2 Bn 2n 21! - x/2 —x/2
(e e )(nzzo X /( n)>_2x(e +e %)

is not the same as the one we found above. It turns out to have better properties of numerical
stability. We shall look into this experimentally in Problem 3.1.10 (g).

The singularities of the function x /(e*—1) are polesatx = 2nmwi,n = +1, £2, £3,...;
hence the radius of convergence is 2. Further properties of Bernoulli numbers and the
related Bernoulli polynomials and periodic functions are presented in Sec. 3.4.5, where they
occur as coefficients in the important Euler—-Maclaurin formula.

If r is large, the following formula is very efficient; the series on its right-hand side
then converges rapidly:

B/ 2r)! = (—=1)"2Q2n)™> (1 + Zn2) ) (3.1.21)

n=2

This is a particular case (r = 0) of a Fourier series for the Bernoulli functions that we
shall encounter in Lemma 3.4.9(c). In fact, you obtain IEEE double precision accuracy for
r > 26, even if the infinite sum on the right-hand side is totally ignored. Thanks to (3.1.21)
we do not need to worry much over the instability of the recurrences. When r is very large,
however, we must be careful about underflow and overflow.

The Euler numbers E,, which will be used later, are similarly defined by the gener-
ating function

1 ad E, 7" T
o= ; k<3 (3.1.22)

Obviously E, = O for all odd n. It can be shown that the Euler numbers are integers,
Ey=1E,=—-1,E4 =5, Eg = —61; see Problem 3.1.7(c).

Example 3.1.6.
1 o0 . .
Let f(x) = (x* + 1)~2. Compute flo f(x) dx to nine decimal places, and 1" (10),
with at most 1% error. Since x~! is fairly small, we expand in powers of x '

1 1-3
fE)=x A4+ = ﬁﬂ(l A )
1 3
— 5 §x74,5 + §x77.5 _
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By integration,

o 1 3
f Ff(x)dx =2-107%° — Z107%° + —107% 4 ... = 0.632410375.
10 7 52

Each term is less than 0.001 of the previous term.
By differentiating the series three times, we similarly obtain

" _ 105 —4.5 1287 -7.5
e I T
For x = 10 the second term is less than 1% of the first; the terms after the second decrease
quickly and are negligible. One can show that the magnitude of each term is less than 8 x 3
of the previous term. We get f”/(10) = —4.12 -107* to the desired accuracy. The reader is
advised to carry through the calculation in more detail.

Example 3.1.7.

One wishes to compute the exponential function e* with full accuracy in IEEE double
precision arithmetic (unit roundoff u = 2753 ~ 1.1-107!%). The method of scaling and
squaring is based on the following idea. If we let m > 1 be an integer and set y = x /2",
then

et = ().

Here the right-hand side can be computed by squaring ¢” m times. By choosing m large
enough, ¢” can be computed by a truncated Taylor expansion with k terms; see Sec. 3.1.2.
The integers m and k should be chosen so that the bound

lyk _L <1og2>"

k! k! \ 27
for the truncation error, multiplied by 2™ to take into account the propagation of error due
to squaring ¢*", is bounded by the unit roundoff u. Subject to this constraint, m and k
are determined to minimize the computing time. If the Taylor expansion is evaluated by
Horner’s rule this is approximately proportional to (rm + 2k). In IEEE double precision
arithmetic with u = 27 we find that (k, m) = (7, 7) and (8, 5) are good choices. Note
that to keep the rounding error sufficiently small, part of the computations must be done in
extended precision.

We remark that rational approximations often give much better accuracy than poly-
nomial approximations. This is related to the fact that continued fraction expansions often
converge much faster than those based on power series; see Sec. 3.5.3, where Padé approx-
imations for the exponential function are given.

In numerical computation a series should be regarded as a finite expansion together
with a remainder. Taylor’s formula with the remainder (3.1.5) is valid for any function
f € C"[a, a+ x], but the infinite series is valid only if the function is analytic in a complex
neighborhood of a.

If a function is not analytic at zero, it can happen that the Maclaurin expansion con-
verges to awrong result. A classical example (see the Appendix to Chapter 6 in Courant [82])
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is

e ifx £0
X) = ’
f ) {o ifx =0.

It can be shown that all its Maclaurin coefficients are zero. This trivial Maclaurin expansion
converges for all x, but the sum is wrong for x # 0. There is nothing wrong with the use
of Maclaurin’s formula as a finite expansion with a remainder. Although the remainder that
in this case equals f(x) itself does not tend to O as n — oo for a fixed x # 0, it tends to 0
faster than any power of x, as x — O, for any fixed n. The “expansion” gives, for example,
an absolute error less than 10~ for x = 0.1, but the relative error is 100%. Also note that
this function can be added to any function without changing its Maclaurin expansion.

From the point of view of complex analysis, however, the origin is a singular point for
this function. Note that | f (z)| — oo asz — 0along the imaginary axis, and this prevents the
application of any theorem that would guarantee that the infinite Maclaurin series represents
the function. This trouble does not occur for a truncated Maclaurin expansion around a
point, where the function under consideration is analytic. The size of the first nonvanishing
neglected term then gives a good hint about the truncation error, when |z| is a small fraction
of the radius of convergence.

The above example may sound like a purely theoretical matter of curiosity. We
emphasize this distinction between the convergence and the validity of an infinite expansion
in this text as a background to other expansions of importance in numerical computation,
such as the Euler—-Maclaurin expansion in Sec.3.4.5, which may converge to the wrong
result, and in the application to a well-behaved analytic function. On the other hand, we
shall see in Sec. 3.2.6 that divergent expansions can sometimes be very useful. The universal
recipe in numerical computation is to consider an infinite series as a finite expansion plus a
remainder term. But a more algebraic point of view on a series is often useful in the design
of a numerical method; see Sec. 3.1.5 (Formal Power Series) and Sec. 3.3.2 (The Calculus of
Operators). Convergence of an expansion is neither necessary nor sufficient for its success
in practical computation.

3.1.3 Analytic Continuation

Analytic functions have many important properties that you may find in any text on complex
analysis. A good summary for the purpose of numerical mathematics is found in the first
chapter of Stenger [332]. Two important properties are contained in the following lemma.

We remark that the region of analyticity of a function f(z) is an open set. If we say
that f(z) is analytic on a closed real interval, it means that there exists an open set in C that
contains this interval, where f(z) is analytic.

Lemma 3.1.7.

An analytic function can only have a finite number of zeros in a compact subset of the
region of analyticity, unless the function is identically zero.

Suppose that two functions f| and f, are analytic in regions D and D;, respectively.
Suppose that D1 N D, contains an interval throughout which f1(z) = f2(z). Then fi(z) =
f>(2) in the intersection Dy N D;.
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Proof. We refer, for the first part, to any text on complex analysis. Here we closely follow
Titchmarsh [351]. The second part follows by the application of the first part to the function

fi— Lo a

A consequence of this is known as the permanence of functional equations. That is,
in order to prove the validity of a functional equation (or “a formula for a function”) in a
region of the complex plane, it may be sufficient to prove its validity in (say) an interval of
the real axis, under the conditions specified in the lemma.

Example 3.1.8 (The Permanence of Functional Equations).
We know from elementary real analysis that the functional equation

ePHDT = oP2o47 (p,q €R),

holds for all z € R. We also know that all three functions involved are analytic forall z € C.
Set D; = D, = C in the lemma, and let “the interval” be any compact interval of R. The
lemma then tells us that the displayed equation holds for all complex z.

The right- and left-hand sides then have identical power series. Applying the convo-
lution formula and matching the coefficients of z”, we obtain

Il ] n n!

ie. (p+q)=) ————plg".
=0

(p+c1)” p’
Z J! Jin = j)!

(n—J)'

This is not a very sensational result. It is more interesting to start from the following
functional equation:
1+ = 1 +2)7(1 +2)".

The same argumentation holds, except that—by the discussion around Table 3.1.1—Dy, D,
should be equal to the complex plane with a cut from —1 to —oo, and that the Maclaurin
series is convergent in the unit disk only. We obtain the equations

p+q ~(p\( 4
—  on=012. ... 3.1.23
( n ) Z_g(f><n—1> ! o

(They can also be proved by induction, but it is not needed.) This sequence of algebraic
identities, where each identity contains a finite number of terms, is equivalent to the above
functional equation.

We shall see that this observation is useful for motivating certain “symbolic compu-
tations” with power series, which can provide elegant derivations of useful formulas in
numerical mathematics.

Now we may consider the aggregate of values of f(z) and f>(z) at points interior
to Dy or D; as a single analytic function f. Thus f is analytic in the union D; U D5, and
f(@) = fi@)in Dy, f(z) = f2(2) in D;.

The function f, may be considered as extending the domain in which f; is defined,
and it is called a (single-valued) analytic continuation of f;. In the same way, f] is an



3.1. Some Basic Facts about Series 173

analytic continuation of f,. Analytic continuation denotes both this process of extending
the definition of a given function and the result of the process. We shall see examples of
this, e.g., in Sec. 3.1.4. Under certain conditions the analytic continuation is unique.

Theorem 3.1.8.

Suppose that a region D is overlapped by regions Dy, D,, and that (D1 N D) N D
contains an interval. Let f be analytic in D, let f| be an analytic continuation of f to D,
and let f> be an analytic continuation of f to D, so that

f(@) = filr) = fo(z) in (DN Dy)ND.

Then either of these functions provides a single-valued analytic continuation of f to D1ND>.
The results of the two processes are the same.

Proof. Since f; — f> is analytic in D; N D,, and f; — f> = O in the set (D, N D;) N D,
which contains an interval, it follows from Lemma 3.1.7 that f1(z) = f>(z) in D N D5,
which proves the theorem. 0

If the set (D N D,) N D is void, the conclusion in the theorem may not be valid. We
may still consider the aggregate of values as a single analytic function, but this function can
be multivalued in D1 N D,.

Example 3.1.9.
For |x| < 1 the important formula

1 14ix
arctanx = — In -
2i 1—ix

easily follows from the expansions in Table 3.1.1. The function arctan x has an analytic
continuation as single-valued functions in the complex plane with cuts along the imaginary
axis from i to oo and from —i to —oco. It follows from the theorem that “the important
formula” is valid in this set.

3.1.4 Manipulating Power Series

In some contexts, algebraic recurrence relations can be used for the computation of the
coefficients in Maclaurin expansions, particularly if only a moderate number of coefficients
are wanted. We shall study a few examples.

Example 3.1.10 (Expansion of a Composite Function).
Let g(x) = b+ bix +byx? +- -+, f(2) = ap+ a1z +axz* + - - - be given functions,
analytic at the origin. Find the power series

h(x) = f(g(x)) =co+cix + x4+

In particular, we shall study the case f(z) = e°.
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The first idea we may think of is to substitute the expansion bo 4 b;x + byx? + - - - for
z into the power series for f(z). This is, however, no good unless g(0) = by = 0, because

(g = b + kbl 'bix + - -

gives a contribution to ¢y, cy, - - - for every k, and thus we cannot successively compute the
¢; by finite computation.
Now suppose that by = 0, by = 1, ie., gx) = x + byx? 4+ b3x3 4+ ---. (The

assumption that b; = 1 is not important, but it simplifies the writing.) Then c; depends
only on by, ai, k < j, since (g(x))* = x* + kbyx**! 4 ... We obtain

h(x) = ao + aix + (aiby + a)x* + (arbs + 2azby + az)x> + - - -,
and the coefficients of 4 (x) come out recursively,
co=ap, c1=a;, C=aby+a, c3=ab;+2ab+as,....

Now consider the case f(z) = €%, 1.e.,a, = 1/n!. We first see that it is then also easy
to handle the case that by #~ 0, since

eg(x) — eboeb1x+b2x2+b3x3+~-

But there exists a more important simplification if f(z) = e°. Note that i satisfies the
differential equation i’ (x) = g’(x)h(x), h(0) = e”. Hence

oo (&) oo
D+ Degx” =Y (4 Dby Y cr.
j=0 k=0

n=0

Set ¢o = e, apply the convolution formula (3.1.8), and match the coefficients of x" on the
two sides:

(n 4+ Depy1 = bicy +2bschor + -+ + (n+ Dbyyico, (n=0,1,2,...).

This recurrence relation is more easily programmed than the general procedure indicated
above. Other functions that satisfy appropriate differential equations can be treated simi-
larly; see Problem 3.1.8. More information is found in Knuth [230, Sec. 4.7].

Formulas like these are often used in packages for symbolic differentiation and for
automatic or algorithmic differentiation. Expanding a function into a Taylor series is
equivalent to finding the sequence of derivatives of the function at a given point. The
goal of symbolic differentiation is to obtain analytic expressions for derivatives of functions
given in analytic form. This is handled by computer algebra systems, for example, Maple
or Mathematica.

In contrast, the goal of automatic or algorithmic differentiation is to extend an
algorithm (a program) for the computation of the numerical values of a few functions
to an algorithm that also computes the numerical values of a few derivatives of these
functions, without truncation errors. A simple example, Horner’s rule for computing values
and derivatives for a polynomial, was given in Sec. 1.2.1. At the time of this writing, lively
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and active research is being performed on theory, software development, and applications
of automatic differentiation. Typical applications are in the solution of ordinary differential
equations by Taylor expansion; see the example in Sec. 1.2.4. Such techniques are also
used in optimization for partial derivatives of low order for the computation of Jacobian
and Hessian matrices.

Sometimes power series are needed with many terms, although rarely more than,
say 30. (The ill-conditioned series are exceptions; see Sec.3.2.5.) The determination
of the coefficients can be achieved by the Toeplitz matrix method using floating-point
computation and an interactive matrix language. Computational details will be given in
Problems 3.1.10-3.1.13 for MATLAB. These problems are also available on the home page
of the book, www. si am or g/ books/ ot 103. (Systems like Maple and Mathematica that
include exact arithmetic and other features are evidently also useful here.) An alternative
method, the Cauchy-FFT method, will be described in Sec. 3.2.2.

Both methods will be applied later in the book. See in particular Sec. 3.3.4, where
they are used for deriving approximation formulas in the form of expansions in powers of
elementary difference or differential operators. In such applications, the coefficient vector,
v (say), is obtained in floating-point arithmetic (usually in a very short time).

Very accurate rational approximations to v, often even the exact values, can
be obtained (again in a very short time) by applying the MATLAB function [ Nu, De] =
rat (v, Tol ), whichreturns two integer vectors sothatabs(Nu. / De - v) <= Tol *abs(v)
results, with a few different values of the tolerance. This function is based on a continued
fraction algorithm, given in Sec. 3.5.1, for finding the best rational approximation to a real
number. This can be used for the “cleaning” of numerical results which have, for practical
reasons, been computed by floating-point arithmetic, although the exact results are known
to be (or strongly believed to be) rather simple rational numbers. The algorithm attempts to
remove the “dirt” caused by computational errors. In Sec. 3.5.1 you will also find some com-
ments of importance for the interpretation of the results, for example, for judging whether
the rational numbers are exact results or only good approximations.

Let f(z) be a function analytic at z = 0 with power series

f@ =) a;jd.
j=0

We can associate this power series with an infinite upper triangular semicirculant matrix

ap ayp 4z as

ap dai ay ...
Cr= a ar ... |, (3.1.24)
apg ...

This matrix has constant entries along each diagonal in C s and is therefore also a Toeplitz
matrix.*® A truncated power series fy(z) = Z;V;Ol a;z’ is represented by the finite leading

480tto Toeplitz (1881-1940), German mathematician. While in Géttingen 1906-1913, influenced by Hilbert’s
work on integral equations, he studied summation processes and discovered what is now known as Toeplitz
operators.
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principal N x N submatrix of C (see Definition A.2.1 in the online Appendix), which can
be written as

N—-1
InSN) =) a;Sy, (3.1.25)
=0

where Sy is a shift matrix. For example, with N = 4,

ap a; da; az 01 0 O
_ 0 ap 4ad; a _ 0 0 1 0
WEI=10 0 a0 a |° |0 0 01
0 0 0 a 0 0 0O
The following properties of Sy explain the term “shift matrix™:
X1 X2
svl =71, (1, x2, x3, X4) Sy = (0, X1, x2, x3).
X3 X4
X4 0

What do the powers of Sy look like? Note that Sx = 0, i.e., Sy is a nilpotent matrix.
This is one of the reasons why the Toeplitz matrix representation is convenient for work
with truncated power series, since it follows that

00 N—-1
FSV =) "a;jSh=>"a;Si = fn(Sw).
j=0 j=0

It is easily verified that a product of upper triangular Toeplitz matrices is of the same type.
Also note that the multiplication of such matrices is commutative. It is also evident that a
linear combination of such matrices is of the same type. Further, it holds that

(f - 8)(Sn) = f(Sn)E(Sn) = fn(Sn)gn (Sn),
(af + B)(Sn) = afn(Sn) + Bgn (Sn)-

Similarly the quotient of two upper triangular Toeplitz matrices, say,

Q(Sn) = f(Sn) - g(Sn) ™, (3.1.26)

is also a matrix of the same type. (A hint for a proof is given in Problem 3.1.10.)* Note that
O(Sy)-g(Sy) = f(Sy). (In general, Toeplitz matrices are not nilpotent, and the product of
two nontriangular Toeplitz matrices is not a Toeplitz matrix; this also holds for the inverse.
In this section we shall deal only with upper triangular Toeplitz matrices.)

“91n the terminology of algebra, the set of upper triangular N' x N Toeplitz matrices, i.e., {Z?’:_Ol aj S,{, J,aj €C,

is a commutative integral domain, i.e., isomorphic with the set of polynomials le\:ol a jxj modulo xV, where
x is an indeterminate.
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ALGORITHM 3.1. Expand Row to Toeplitz Matrix.

An upper triangular Toeplitz matrix of order N is uniquely determined by its first row r.
The following MATLAB function expands this row to a triangular Toeplitz matrix:

function T = toep(r,N);

% t oep expands the row vector r into an upper triangul ar
% Toeplitz matrix T; Nis an optional argunent.
Ir=length(r);

if (nargin==1 | Ir >N, N=1Ir; end;

if Ilr <N r =[r, zeros(1,NIlr)]; end;

gs = zeros(N N);

for i = 1IN

gs(i,i:N) = r(1:Ni+1);
end
T = gs;

CPU time and memory space can be saved by working with the first rows of the
Toeplitz matrices instead of with the full triangular matrices. We shall denote by f1, g1, the
row vectors with the first N coefficients of the Maclaurin expansions of f(z), g(z). They
are equal to the first rows of the matrices f(Sy), g(Sn), respectively.

Suppose that f1, g1 are given. We shall compute the first row of f(Sy) - g(Sy) ina
similar notation. Then since

el (f(Sn) - g(Sw)) = (ef f(SN)) - g(Sn),

this can be written f 1*t oep( g1, N) . Notice that you never have to multiply two triangular
matrices if you work with the first rows only. Thus, only about N2 flops and (typically) an
application of the toep(r, N) algorithm are needed.

With similar notations as above, the computation of the quotient in (3.1.26) can be
neatly written in MATLAB as

gl =f1/toep(gl, N).

Note that this is the vector by matrix division of MATLAB. Although the discussion in
Sec. 1.3.2 is concerned with linear systems with a column as the unknown (instead of a
row), we draw from it the conclusion that only about N2 scalar flops are needed, instead of
the N3/6 needed in the solution of the matrix equation Q - g(Sy) = f(Sx).

A library called t oepl i b is given in Problem 3.1.10(a), which consists of short
MATLAB scripts mainly based on Table 3.1.1. In the following problems the series of
the library are combined by elementary operations to become interesting examples of the
Toeplitz matrix method. The convenience, the accuracy, and the execution time are probably
much better than you would expect; even the authors were surprised.

Next we shall study how a composite function /2(z) = f(g(z)) can be expanded in
powers of z. Suppose that f(z) and g(z) are analytic at z = 0, f(z) = Zj‘;l fl(Hz/—.
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An important assumption is that g(0) = 0. Then we can set g(z) = zg(z), hence (g(2))" =
7"(g(2))" and, because Sy = 0,n > N, we obtain

(8(SV)" = Sy - (@(Sy)" =0 if n > N and g(0) =0,

N
h(Sn) = F((Sw)) =Y F1(j)(g(Sy))/™" if g(0) =0. (3.1.27)

Jj=1

This matrix polynomial can be computed by a matrix version of Horner’s rule. The row
vector version of this equation is written 21 = comp(f1, g1, N).

If g(0) # 0, (3.1.27) still provides an “expansion,” but it is wrong; see Prob-
lem 3.1.12 (c). Suppose that |g(0)] is less than the radius of convergence of the Maclaurin
expansion of f(x). Then a correct expansion is obtained by a different decomposition. Set
§~(z) = g(z) — g(0), f(x) = f(x + g(0)). Then f, g are analytic at z = 0, g(0) = 0, and
f(g() = f(g(z)) = h(z). Thus, (3.1.27) and its row vector implementations can be used
if £, g are substituted for f, g.

ALGORITHM 3.2. Expansion of Composite Function.

The following MATLAB function uses the Horner recurrence for the expansion of a com-
posite function and evaluates the matrix polynomial f(g(Sy)) according to (3.1.27). If
g(0) = 0, the following MATLAB function evaluates the first row of 4(Sy) = f(g(Swn)).

function hl = conp(fl,91, N);
% | NPUT: the integer N and the rows f1, gl, with
%the first N Maclaurin coefficients for the analytic
% functions f(z), g(z).
% OUTPUT: The row hl with the first N Maclaurin coeffi-
% cients for the composite function h(z) = f(g(z)),
% where g1(1) = g(0) = 0.
% Error nmessage if g(0) \ne O.
if gl(1) "= 0,
error(‘g(0) "= 0 in a conposite function f(g(z))’)
end
elt = zeros(1,N); elt(1)=1,;
r = f1(N) *elt;
gs = toep(gl, N);
for j = N1:-1:1,
r =r*gs + f1(j)*elt;
end
hl =r;

Analytic functions of matrices are defined by their Taylor series. For example, the

series , ,
Amrrar i A,
2! 3!



3.1. Some Basic Facts about Series 179

converges elementwise for any matrix A. There exist several algorithms for computing
e4, \/Z, log A, where A is a square matrix. One can form linear combinations, products,
quotients, and composite functions of them. For example, a “principal matrix value” of
Y = (I 4+ A)“ is obtained by

B =log(I + A), Y =¢"8,

For a composite matrix function f(g(A)), it is not necessary that g(0) = 0, but it
is important that g(z) and f(g(z)) are analytic when z is an eigenvalue of A. We obtain
truncated power series if A = Sy; note that Sy has a multiple eigenvalue at zero. The
coding, and the manual handling in interactive computing, are convenient with matrix
functions, but the computer has to perform more operations on full triangular matrices than
with the row vector level algorithms described above. Therefore, for very long expansions
the earlier algorithms are notably faster.

If the given power series, f(x), g(x), ... have rational coefficients, then the exact
results of a sequence of additions, multiplications, divisions, compositions, differentiations,
and integrations will have rational coefficients, because the algorithms are all formed by a
finite number of scalar additions, multiplications, and divisions. As mentioned above, very
accurate rational approximations, often even the exact values, can be quickly obtained by
applying a continued fraction algorithm (presented in Sec. 3.5.1) to the results of a floating-
point computation.

If f(x) is an even function, its power series contains only even powers of x. You gain
space and time by letting the shift matrix Sy correspond to x2 (instead of x). Similarly, if
f(x) is an odd function, you can instead work with the even function f(x)/x, and let Sy
correspond to x2.

Finally, we consider a classical problem of mathematics, known as power series
reversion. The task is to find the power series for the inverse function x = g(y) of the
function y = f(x) = Zfio ajxj, in the particular case where ag = 0, a; = 1. Note that
even if the series for f(x) is finite, the series for g(y) is in general infinite!

The following simple cases of power series reversion are often sufficient and useful
in low order computations with paper and pencil.

y:x+axk+--~, (k> 1),

o ox=y—axtt— =y —ayt— e (3.1.28)

y=f(x)=x4+ax’+ax’ +axt+---,
= x=g() Ey_a2y2+(2a§—03)y3—(5a§—5a2a3+a4)y4+..._ (3.1.29)

An application of power series reversion occurs in the derivation of a family of iterative
methods of arbitrary high order for solving scalar nonlinear equations; see Sec. 6.2.3.

The radius of convergence depends on the singularities of g(y), which are typically
related to the singularities of f(x) and to the zeros of f’(x) (Why?). There are other cases,
for example, if f'(x) — 0as x — oo, then lim f(x) may be a singularity of g(y).

Knuth [230, Sec 4.7] presents several algorithms for power series reversion, including
a classical algorithm due to Lagrange (1768) that requires O (N?) operations to compute the
first N terms. An algorithm due to Brent and Kung [47] is based on an adaptation to formal
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power series of Newton’s method (1.2.3) for solving a numerical algebraic equation. For
power series reversion, the equation to be solved reads

fgy) =y, (3.1.30)

where the coefficients of g are the unknowns. The number of correct terms is roughly
doubled in each iteration, as long as N is not exceeded. In the usual numerical application
of Newton’s method to a scalar nonlinear equation (see Secs. 1.2 and 6.3) it is the number of
significant digits that is (approximately) doubled, so-called quadratic convergence. Brent
and Kung’s algorithm can be implemented in about 150 (N log N)/? scalar flops.

We now develop a convenient Toeplitz matrix implementation of the Brent and Kung
algorithm. It requires about ¢cN?log N scalar flops with a moderate value of c. It is thus
much inferior to the original algorithm if N is very large. In some interesting interactive
applications, however, N rarely exceeds 30. In such cases our implementation is satisfactory,
unless (say) hundreds of series are to be reversed. Let

o]

y=f) =Y f1(x"

j=1

where f1(1) = f(0) =0, f1(2) = f'(0) = 1 (with the notation used previously). Power
series reversion is to find the power series for the inverse function

[e¢]

x=g =) gl(Hy ",

J=1

where g1(1) = g(0) = 0. We work with truncated series with N terms in the Toeplitz matrix
representation. The inverse function relationship gives the matrix equation f(g(Sy)) = Sy.
Because g(0) = 0, we have, by (3.1.27),

N
F@Sn) =" F1()gSw) ™"

J=1

Now Horner’s rule can be used for computing the polynomial and its derivative, the latter
being obtained by algorithmic differentiation; see Sec. 1.2.1.

ALGORITHM 3.3. Power Series Reversion.

The first row of this matrix equation is treated by Newton’s method in the MATLAB function
br eku’ listed below. The Horner algorithms are adapted to the first row. The notations in
the code are almost the same as in the theoretical description, although lower case letters are
used, e.g., the matrix g(Sy) is denoted gs, and fgs1 is the first row of the matrix f(g(Sy)).

50The name*“breku” comes from Brent and Kung, who were probably the first mathematicians to apply Newton’s
method to series reversion, although with a different formulation of the equation than ours (no Toeplitz matrices).
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The equation reads fgsl — sl = 0.

function g1 = breku(f1,N);
% | NPUT: The row vector f1l that represents a (truncated)
% Macl aurin series. Nis optional input; by default
%N = length(fl). If length(fl) < N, fl is extended to
% |l ength N by zeros.
% OUTPUT: The row g1, i.e., the first Nterms of the series
% x = g(y), where y = f(x).
% Note that f1(1) =0, f1(2) =1; if not, there wll
% be an error nessage.
if "(f1(1) "=0] f1(2) "= 1),
error(‘“wong f1(1) or f1(2)');
end
I1f1 = length(fl);
if (nargin == 1|1f1 >N, N=1f1; end
if 1fl <N f1 =7[f1 zeros(1, N-If1l)] end
maxiter = floor(log(N)/log(2));
elt = [1, zeros(1,N1)];
sl =[0 1 zeros(1,N2)]; gsl1 = s1;
for iter = O:maxiter
gs = toep(gsl, N);
% Horner’s schenme for conputing the first rows
% of f(gs) and f’(g(s)):
fgsl = f1(N) *elt; derl = zeros(1l,N);
for j = NI1:-1:1
of gsl = fgsli; %f gsl means "ol d" fgsl
fgsl of gsl*gs + f1(j)*elt
derl of gsl + der1l*gs ;
end
% A Newton iteration for the equation fgsl - s1 = O:
gsl = gsl - (fgsl - sl)/toep(derl, N);

end
gl = gsl;

3.1.5 Formal Power Series

A power series is not only a means for numerical computation; it is also an aid for deriving
formulas in numerical mathematics and in other branches of applied mathematics. Then one
has another, more algebraic, aspect of power series that we shall briefly introduce. A more
rigorous and detailed treatment is found in Henrici [196, Chapter 1], and in the literature
quoted there.

The set P of formal power series consists of all expressions of the form

P=ay+ax+ax +- -,

where the coefficients a; may be real or complex numbers (or elements in some other field),
while x is an algebraic indeterminate; x and its powers can be viewed as place keepers.
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The sum of P and another formal power series, Q = by + b;x + byx2 4 .- is defined as
P+ Q= (ao+ bo) + (a1 + b)X + (a3 + b)X* + - - -.
Similarly, the Cauchy product is defined as

n
2
PQ=cotcax+cx+---, c,= E ajbnfj’
0

where the coefficients are given by the convolution formula (3.1.8). The multiplicative
identity element is the series I := 1 + 0x + 0x? + - - -. The division of two formal power
series is defined by a recurrence, as indicated in Example 3.1.5, if and only if the first
coefficient of the denominator is not zero. In algebraic terminology, the set P together with
the operations of addition and multiplication is an integral domain.

No real or complex values are assigned to x and P. Convergence, divergence, and
remainder term have no relevance for formal power series. The coefficients of a formal
power series may even be such that the series diverges for any nonzero complex value that
you substitute for the indeterminate, for example, the series

P=0x — 1!x2+2Ix> —3!x* +.... (3.1.31)

Other operations are defined without surprises, for example, the derivative of P is defined
as P’ = la; + 2asx + 3azx* + - - -. The limit process, by which the derivative is defined in
calculus, does not exist for formal power series. The usual rules for differentiation are still
valid, and as an exercise you may verify that the formal power series defined by (3.1.31)
satisfies the formal differential equation x>P’ = x — P.

Formal power series can be used for deriving identities. In most applications in this
book difference operators or differential operators are substituted for the indeterminates, and
the identities are then used in the derivation of approximation formulas, and for interpolation,
numerical differentiation, and integration.

The formal definitions of the Cauchy product, (i.e., convolution) and division are
rarely used in practical calculation. It is easier to work with upper triangular N x N
Toeplitz matrices, as in Sec. 3.1.4, where N is any natural number. Algebraic calculations
with these matrices are isomorphic with calculations with formal power series modulo x" .

If you perform operations on matrices f3(S), g (S), ..., where M < N, the results
are equal to the principal M x M submatrices of the results obtained with the matrices
In(S), gn(S),.... This fact follows directly from the equivalence with power series
manipulations. It is related to the fact that in the multiplication of block upper triangular
matrices, the diagonal blocks of the product equal the products of the diagonal blocks, and
no new off-diagonal blocks enter; see Example A.2.1 in Online Appendix A.

So, we can easily define the product of two infinite upper triangular matrices, C = AB,
by stating that if i < j < n, then ¢;; has the same value that it has in the N x N submatrix
Cy = AnBy forevery N > n. In particular C is upper triangular, and note that there are
no conditions on the behavior of the elements a;;, b;; as i, j — 00. One can show that
this product is associative and distributive. For the infinite triangular Toeplitz matrices it is
commutative t00.%!

S1For infinite nontriangular matrices the definition of a product generally contains conditions on the behavior
of the elements as i, j — 0o, but we shall not discuss this here.
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The mapping of formal power series onto the set of infinite semicirculant matrices
is an isomorphism. (see Henrici [196, Sec. 1.3]). If the formal power series ag + a;x +
a,x>+ - - - and its reciprocal series, which exists if and only if @ # 0, are represented by the
semicirculants A and B, respectively, Henrici proves that AB = BA = I, where [ is the
unit matrix of infinite order. This indicates how to define the inverse of any infinite upper
triangular matrix if all diagonal elements a;; # O.

If a function f of a complex variable z is analytic at the origin, then we define>* f(x)
as the formal power series with the same coefficients as the Maclaurin series for f(z). In
the case of a multivalued function we take the principal branch.

There is a kind of “permanence of functional equations” also for the generalization
from a function g(z) of a complex variable that is analytic at the origin, to the formal power
series g(x). We illustrate a general principle on an important special example that we
formulate as a lemma, since we shall need it in the next section.

Lemma 3.1.9.
€)? = e, (6 €R). (3.1.32)

Proof. Let the coefficient of x/ in the expansion of the left-hand side be ¢;(6). The
corresponding coefficient for the right-hand side is #//j!. If we replace x by a complex
variable z, the power series coefficients are the same and we know that (e?)? = %, hence
¢;(0) = 67/j!, j=1,2,3..., and therefore

o0 o0
Y O = (07 /jHx/,
0 0
and the lemma follows. a

Example 3.1.11.
Find (if possible) a formal power series Q = 0+ b X + box> 4 b3x> + - - - that satisfies

e q=1-x, (3.1.33)
where e Q@ =1—-Q+Q?/2! —---.
We can, in principle, determine an arbitrarily long sequence by, bs, b3, ..., by, by

matching the coefficients of x, x, x>, ..., x*, in the two sides of the equation. We display
the first three equations.

L= (BiX+bx* + b3x’ + ) + (X +boxX + -+ )22 — (hix+--) /6 + -
=1—1x+0x*+0x’ +---.

For any natural number k, the matching condition is of the form

—by + ¢r(br—1, by—z, ..., b)) =0.

S2Henrici (see reference above) does not use this concept—it may not be established.
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This shows that the coefficients are uniquely determined.

—b=—1= b =1,
—by+b1/2=0= by =1/2,
—by+biby — b1 /6 =0= by =1/3.

There exists, however, a much easier way to determine the coefficients. For the analogous
problem with a complex variable z, we know that the solution is unique,

q@) =—In(1-2)=> 7//j
j=1

(the principal branch, where by = 0), and hence Y _{° x/ /j is the unique formal power series
that solves the problem, and we can use the notation Q = — In(1 — x) for it.>?

The theory of formal power series can in a similar way justify many elegant “symbolic”
applications of power series for deriving mathematical formulas.

Review Questions

3.1.1 (a) Formulate three general theorems that can be used for estimating the remainder
term in numerical series.

(b) What can you say about the remainder term, if the nth term is omn™), k> 1?
Suppose in addition that the series is alternating. What further condition should you
add, in order to guarantee that the remainder term will be O (n=%)?

3.1.2 Give, with convergence conditions, the Maclaurin series for In(1+x), e, sin x, cos x,

(1+x5 1 —=x)""1n i_ii, arctan x.

3.1.3 Describe the main features of a few methods to compute the Maclaurin coefficients

of, e.g., v/2¢* — 1.

3.1.4 Give generating functions of the Bernoulli and the Euler numbers. Describe generally
how to derive the coefficients in a quotient of two Maclaurin series.

3.1.5 If a functional equation, for example, 4(cos x)3 = cos3x + 3cosx, is known to be
valid for real x, how do you know that it holds also for all complex x? Explain what
is meant by the statement that it holds also for formal power series, and why this is
true.

3.1.6 (a) Show that multiplying two arbitrary upper triangular matrices of order N uses
S k(N —k) ~ N?/6 flops, compared to p_, k ~ N /2 for the product of a row
vector and an upper triangular matrix.

(b) Show that if g(x) is a power series and g(0) = O, then g(Sy)" = 0,n > N.
Make an operation count for the evaluation of the matrix polynomial f(g(Sy)) by
the matrix version of Horner’s scheme.

53The three coefficients b 7 computed above agree, of course, with 1/j, j =1: 3.
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3.1.7

3.1.8

(c) Consider the product f(Sy)g(Sy), where f(x) and g(x) are two power series.
Show, using rules for matrix multiplication, that for any M < N the leading M x M
block of the product matrix equals f(Sy)g(Sa)-

Consider a power series y = f(x) = Zjio a_jxj, where ag = 0, a; = 1. What is
meant by reversion of this power series? In the Brent—Kung method the problem of
reversion of a power series is formulated as a nonlinear equation. Write this equation
for the Toeplitz matrix representation of the series.

LetP = ap+ a;x + axx? + - - - and Q = by + b1X + byx* + - - - be two formal power
series. Define the sum P + Q and the Cauchy product PQ.

Problems and Computer Exercises

3.1.1

3.1.2

3.1.3

3.14

3.1.5

In how large a neighborhood of x = 0 does one get, respectively, four and six correct
decimals using the following approximations?

@ sinx ~ x; (b) (1+x)72~1-x2/2; (c) (1+x2)712eVes* x e(1 — 3x7).
Comment: The truncation error is asymptotically gx? where you know p.
An alternative to an exact algebraic calculation of g is a numerical estimation of

g, by means of the actual error for a suitable value of x—neither too big nor too
small (!). (Check the estimate of g for another value of x.)

(a) Let a, b be the lengths of the two smaller sides of a right angle triangle, b < a.
Show that the hypotenuse is approximately a + b2 /(2a) and estimate the error of this
approximation. If @ = 100, how large is b allowed to be, in order that the absolute
error should be less than 0.01?

(b) How large a relative error do you commit when you approximate the length of
a small circular arc by the length of the chord? How big is the error if the arc is
100 km on a great circle of the Earth? (Approximate the Earth by a ball of radius
40,000/ (2m) km.)

(c) How accurate is the formula arctan x ~ 7 /2 — 1/x for x > 1?

(a) Compute 10 — (999.999)!/3 to nine significant digits by the use of the binomial
expansion. Compare your result with the result obtained by a computer in IEEE
double precision arithmetic, directly from the first expression.

(b) How many terms of the Maclaurin series for In(1 4+ x) would you need in order
to compute In 2 with an error less than 107® ? How many terms do you need if you
use instead the series for In((1 4+ x)/(1 — x)), with an appropriate choice of x?

It is well known that erf(x) — 1 as x — oo. If x > 1 the relative accuracy of the
complement 1 —erf(x) is of interest. But the series expansion used in Example 3.1.3
for x € [0, 1] is not suitable for large values of x. Why?

Hint: Derive an approximate expression for the largest term.

Compute by means of appropriate expansions, not necessarily in powers of ¢, the
following integrals to (say) five correct decimals.
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3.1.6

3.1.7

3.1.8

(This is for paper, pencil, and a pocket calculator.)

0.1 [e'9)
() / (1 —0.1sin#)"?dr; (b) / =)~ ds.
0 10
(a) Expand arcsin x in powers of x by the integration of the expansion of (1 —x2)~1/2,
(b) Use the result in (a) to prove the expansion
Isinh®*x  1-3sinh®>x  1-3-5sinh’ x

x =sinhx — =

2 3 t24 5 216 7

(a) Consider the power series for
1+x% x>0, 0<a<l.

Show that it is equal to the hypergeometric function F(a, 1, 1, —x). Is it true that
the expansion is alternating? Is it true that the remainder has the same sign as the
first neglected term, for x > 1, where the series is divergent? What do the Theorems
3.1.4 and 3.1.5 tell you in the cases x < 1 and x > 1?

Comment: An application of the divergent case for « = % is found in Prob-
lem 3.2.9 (¢).

(b) Express the coefficients of the power series expansions of y cot y and In(sin y/y)
in terms of the Bernoulli numbers.

Hint: Set x = 2iy into (3.1.20). Differentiate the second function.

(c) Find a recurrence relation for the Euler numbers E,, (3.1.22) and use it for show-
ing that these numbers are integers.

(d) Show that

11 (z+1) 1+ 1 n 1 n 2] > 1
—In = — _ _ cee > 1.
2 z—1 z 373 57 ¢

Find a recurrence relation for the coefficients of the expansion

z+ 1\\! 1
(111( )) =—z—mz ' —psz 7 —pusz =,z > L.
z—1 2

Compute u1, (3, us and determine Zgo M2j4+1 by letting z | 1. (Full rigor is not
required.)

Hint: Look at Example 3.1.5.

The power series expansion g(x) = bjx +byx? +- - - is given. Find recurrence rela-
tions for the coefficients of the expansion for 4(x) = f(g(x)) = co+c1x+cpx?+---
in the following cases:

(@ h(x) =In(l+gx)), f(x) =In(l +x).

Hint: Show that A'(x) = g’(x) — h/(x)g(x). Then proceed analogously to Exam-
ple 3.1.10.
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3.1.9

3.1.10

Answer:
n—1

=0, & =b— > (= j)ea-jb.
j=1

(b) h(x)=A+gu)k fx) =0 +x)" keRk#1
Hint: Show that g(x)h'(x) = kh(x)g’(x) — h’(x). Then proceed analogously to
Example 3.1.10.

Answer:
n

1
CQ:], CnZZZ((k—i-l)j—n)Cn_jbj,

j=1
n=1,2,.... The recurrence relation is known as the J. C. P. Miller’s formula.
(¢) h1(y) = cos g(x), ha(y) = sin g(x), simultaneously.

Hint: Consider instead h(y) = e/¢™¥), and separate real and imaginary parts after-
ward.

(a) If you want N > 3 terms in the power series expansion of the function f(x) =
(14 x +x2)/(1 — x 4+ x?), you must augment the expansions for the numerator and
denominator by sequences of zeros, so that the order of Toeplitz matrix becomes N.
Show experimentally and theoretically that the first row of

(Iv + Sy + 53/ Uy — Sy + S3)
is obtained by the statement
[1, 1, 1, zeros(1,N3)]/toep([1, -1, 1, zeros(1l,N3)])

(b) Let f(z) = —z ' In(1 — z). Compute the first six coefficients of the Maclaurin
series for the functions f @F k=1:5,in floating-point, and convert them to
rational form. (The answer is given in (3.3.22) and an application to numerical
differentiation in Example 3.3.6.)

If you choose an appropriate tolerance in the MATLAB function rat you will obtain
an accurate rational approximation, but it is not necessarily exact. Try to judge
which of the coefficients are exact.

(c) Compute in floating-point the coefficients p,;_;, j = 1 : 11, defined in Prob-
lem 3.1.7 (d), and convert them to rational form.

Hint: First seek an equivalent problem for an expansion in ascending powers.

(d) Prove that Q = f(Sy)g(Sy)~" is an upper triangular Toeplitz matrix.

Hint: Define Q = toep(ql, N), where g1 is defined by (3.1.26), and show that each
row of the equation Q - g(Sy) = f(Sy) is satisfied.

(a) Study the following library of MATLAB lines for common applications of the
Toeplitz matrix method for arbitrary given values of N. All series are truncated to

N terms. The shift matrix Sy corresponds to the variable x. You are welcome to
add new “cases,” e.g., for some of the exercises below.
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function y = toeplib(cas, N, par);

%cas is a string paranmeter; par is an optional real
% or conplex scalar with default value 1.

%

if nargin == 2, par = 1; end

if cas == 'bin’,

y = [1 cunprod(par:-1:par-N+2)./cunmprod(1l:N-1)];
%y = 1st row of binomial series (1+x) " par, par in R
elseif cas == 'con’,

y = cunprod([1 par*ones(1l,N1)]);

% The array multiplication y.*f1 returns the first
% row of f(par*S_N);

% sunm(y. *f1) evaluates f(par). See also Probleni(b).
el seif cas == "exp’,

y =[1 cunprod(par./[1:(N21)]1)];

%y = 1lst row of exponential \exp(par*x).

% Si nce par can be conplex, trigononetric functions
% can al so be expanded.

el seif cas == "log",

y =[0 1./[1:(N1)]].*cunmprod ([-1 -par*ones(1:N-1)]);
%y = 1st row of logarithm\Iln(l+par*x).

elseif cas == 'elt’,

y =[1 zeros(1,N1)]; %y =€ 1°T
elseif cas == "SN1', y = [0 1 =zeros(1l,N2)];
%y = 1st row of S_N.
elseif cas == '"dif’, y =[0 1:.(N1)];
%y.*f1l returns xf’'(x).
else cas =="'int', y =1./[1:N];
%y.*f1 returns {1\over x}\int_0"x f(t) dt.
end

(b) Evaluation of f(x) Given Nand f 1 of your own choice, set
fterms = toeplib(’'con’,N x).*f1.

Whatissun(ftermnms) andcunmsun{fterns)? Whencansun(fliplr(fterms))
be useful?

(c) Write a code that, for arbitrary given N, returns the first rows of the Toeplitz
matrices for cos x and sin x, with Sy corresponding to x, and then transforms them
to first rows for Toeplitz matrices with Sy corresponding to x2. Apply this for (say)
N = 36, to determine the errors of the coefficients of 4(cos x)3 — 3 cosx — cos 3x.

(d) Find out how a library “t oepl i b2” designed for Toeplitz matrices for even func-
tions, where Sy corresponds to x2, must be different from t oepl i b. For example,
how are cas == "dif’ andcas == 'int’ tobe changed?

(e) Unfortunately, at oepl i b “case” has at most one parameter, namely par . Write
a code that calls t oepl i b twice for finding the Maclaurin coefficients of the three
parameter function y = (a + bx)*, a > 0, b, o real. Compute the coefficients in
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3.1.11

two different ways for N = 24,a = 2, b = —1, @« = £3, and compare the results
for estimating the accuracy of the coefficients.

(f) Compute the Maclaurin expansions for (1 — x?)~!/2 and arcsin x, and for y =
2arcsinh (x/2). Expand also dy/dx and y>. Convert the coefficients to rational
numbers, as long as they seem to be reliable. Save the results, or make it easy to

reproduce them, for comparisons with the results of Problem 3.1.12 (a).

Comment: The last three series are fundamental for the expansions of differential
operators in powers of central difference operators, which lead to highly accurate
formulas for numerical differentiation.

(g) Two power series that generate the Bernoulli numbers are given in Example 3.1.5,
namely

= I 0 ) X2 ox2 N

= i = Jj! 2e e = @n!
Compute B,; for (say) j < 30 in floating-point using each of these formulas, and
compute the differences in the results, which are influenced by rounding errors. Try
to find whether one of the sequences is more accurate than the other by means of the
formula in (3.1.21) for (say) j > 4. Then convert the results to rational numbers.
Use several tolerances in the function r at and compare with [1, Table 23.2]. Some
of the results are likely to disagree. Why?

(h) The Kummer confluent hypergeometric function M (a, b, x) is defined by the
power series (3.1.17). Kummer’s first identity,

M(a,b,—x)=e¢e *M(®b —a,b, x),

is important, for example, because the series on the left-hand side is ill-conditioned if
x> l,a > 0,b > 0, while the expression on the right-hand side is well-conditioned.
Check the identity experimentally by computing the difference between the series on
the left-hand side and on the right for a few values of a, b, The computed coefficients
are afflicted by rounding errors. Are the differences small enough to convince you
of the validity of the formula?

(a) Matrix functions in MATLAB. For h(z) = e%@ it is convenient to use the matrix
function expn(g(SN)) or, on the vector level, h1 = elt*expn{g(SN)), rather
than to use h1 = conp(f1,gl). If f(0) # 0, you can analogously use the func-
tions | ogm and sqrtm They may be slower and less accurate than
hl = conp(f1, gl), butthey are typically fast and accurate enough.

Compare computing times and accuracy in the use of expm(k * | ogm(eye(N))
+ SN) and t oeplib(’ bin, N, k) fora few values of N and k.

Comment: Note that for triangular Toeplitz matrices the diagonal elements are mul-
tiple eigenvalues.

(b) Expand ¢*"® in powers of z in two ways: first using the function in Prob-
lem 3.1.12 (a); second using the matrix functions of MATLAB. Show that the latter
can be written

HN = expn(i mag(expm(i *SN))).
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3.1.12

3.1.13

Do not be surprised if you find a dirty imaginary part of Hy. Kill it!
Compare the results of the two procedures. If you have done the runs appropriately,
the results should agree excellently.

(c) Treat the series (z) = /(1 + €?) in three different ways and compare the results
with respect to validity, accuracy, and computing time.

(i) Set ha(z) = h(z), and determine f(z), g(z), analytic at z = 0, so that g(0) = 0.
Compute hal = conp(f1, g1, N). Do you trust the result?

(ii) Set h(z) = H(z). Compute HN = sqrtmeye(N) + expn(SN)).

In the first test, i.e., for N = 6, display the matrix Hy and check that Hy is an
upper triangular Toeplitz matrix. For larger values of N, display the first row only
and compare it to ~al. If you have done all this correctly, the agreement should be
extremely good, and we can practically conclude that both are very accurate.

(iii) Try the “natural,” although “illegal,” decomposition hb(z) = f(g(z)), with
f(x) =1+ x)%, g(z) = e*. Remove temporarily the error stop. Demonstrate by
numerical experiment that #b1 is very wrong. If this is a surprise, read Sec.3.1.4
once more.

(a) Apply the function br eku for the reversion of power series to the computation
of g(y) for f(x) = sinx and for f(x) = 2sinh(x/2). Compare with the results
of Problem 3.1.10 (f). Then reverse the two computed series g(y), and study how
you return to the original expansion of f(x), more or less accurately. Use “tic” and
“toc” to take the time for a few values of N.

(b) Compute g(y) for f(x) = In(1 +x), f(x) =" — 1, f(x) = x + x>, and
f(x) = x+x>+x>. If youknow an analytic expression for g (), find the Maclaurin
expansion for this, and compare with the expansions obtained from br eku.

(c) Set y = f(x) and suppose that y(0) # 0, y'(0) # 0. Show how the function
br eku can be used for expanding the inverse function in powers of (y — y(0))/y’(0).
Construct some good test examples.

(d) For the equation sinx — (1 — y)x = 0, express X = g(») (why x27), with
N = 12. Then express x in the form x &~ £y'/2P(y), where P(y) is a truncated
power series with (say) 11 terms.

The inverse function w(y) of y(w) = we® is known as the Lambert W function.>
The power series expansion for w(y) is

1" 1,n=-2
w(y)_y+2( )_1)‘ n

8 , 125 5 54 . 16807 ,

3
— _2 _3__ — — — — —_— . e .
SV YA Y Ty Y TS Y :

Estimate the radius of convergence for f(x) = xe* approximately by means of the
ratios of the coefficients computed in (d), and exactly.

54Johann Heinrich Lambert (1728-1777), a German mathematician, physicist, and astronomer, was a colleague
of Euler and Lagrange at the Berlin Academy of Sciences. He is best known for his illumination laws and for the
continued fraction expansions of elementary functions; see Sec. 3.5.1. His W function was “rediscovered” a few
years ago; see [81].
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3.2 More about Series

3.2.1 Laurent and Fourier Series

A Laurent series is a series of the form

Z . (3.2.1)

Its convergence region is the intersection of the convergence regions of the expansions

o]

o0
Z c,z" and Z c_mz ™,

n=0 m=1

the interior of which are determined by conditions of the form |z| < r; and |z| > r;. The
convergence region can be void, for example, if r, < ry.

If 0 < r; < rp < oo, then the convergence region is an annulus, ri < |z| < rp. The
series defines an analytic function in the annulus. Conversely, if f(z) is a single-valued
analytic function in this annulus, it is represented by a Laurent series, which converges
uniformly in every closed subdomain of the annulus.

The coefficients are determined by the following formula, due to Cauchy:>

1
Cn = — 7"V f()dz, ri<r <r,—00<n<o0 (3.2.2)
2mi lzl=r
and
lenl < 77" max I f (@] (3.2.3)
Z|=r
The extension to the case when r, = oo is obvious; the extension to r; = 0 depends on

whether there are any terms with negative exponents or not. In the extension of formal
power series to formal Laurent series, however, only a finite number of terms with negative
indices are allowed to be different from zero; see Henrici [196, Sec. 1.8]. If you substitute
z for z~! an infinite number of negative indices is allowed, if the number of positive indices
is finite.

Example 3.2.1.
A function may have several Laurent expansions (with different regions of conver-
gence), for example,

o[ XRee itz <al,
(z—a)y =
o8] m—1_—m :
Zm:la < lf|Z| > |Cl|

The function 1/(z — 1) + 1/(z — 2) has three Laurent expansions, with validity conditions
lz] < 1,1 < |z| < 2,2 < |z], respectively. The series contains both positive and negative
powers of z in the middle case only. The details are left for Problem 3.2.4 (a).

35 Augustin Cauchy (1789—1857) is the father of modern analysis. He is the creator of complex analysis, in
which this formula plays a fundamental role.
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Remark 3.2.1. The restriction to single-valued analytic functions is important in this
subsection. In this book we cannot entirely avoid working with multivalued functions such
as 4/z, Inz, z%, (o noninteger). We always work with such a function, however, in some
region where one branch of it, determined by some convention, is single-valued. In the
examples mentioned, the natural conventions are to require the function to be positive when
z > 1, and to forbid z to cross the negative real axis. In other words, the complex plane
has a cut along the negative real axis. The annulus mentioned above is incomplete in these
cases; its intersection with the negative real axis is missing, and we cannot use a Laurent
expansion.

For a function like ln(%), we can, depending on the context, cut out either the
interval [—1, 1] or the complement of this interval with respect to the real axis. We then
use an expansion into negative or into positive powers of z, respectively.

If r; < 1 < ry, weset F(t) = f(e'"). Note that F(¢) is a periodic function;
F(t +2m) = F(t). By (3.2.1) and (3.2.2), the Laurent series then becomes for z = ¢’ a
Fourier series:

g

> A 1 A
Fy= > ce™. ¢, = 7 / e M F(t)dt. (3.2.4)

n=—o00 -
Note that c_,, = O(@r{") form — 400, and ¢, = O(r;") forn — 4o00. The formulas
in (3.2.4), however, are valid in much more general situations, where ¢, — 0 much more
slowly, and where F(¢) cannot be continued to an analytic function f(z), z = re'’, in an
annulus. (Typically, in suchacaser; =1 =r;.)

A Fourier series is often written in the following form:

l o0
F() = sao+ ;(ak cos kt + by sin kt). (3.2.5)

—ikt _

= ay cos kt + by sin kz. Since e*'*

Consider cye’* +c_ge
fork >0

= cos kt i sin kt, we obtain

b4

1 [7 1
akZCk+C—k=_f F(t) cosktdt, bk=i(6k—C_k)=—f F(t)sinkt dt.
7 J_, i
(3.2.6)

-
Also note that @, — iby = 2¢y. If F(¢) isreal for t € R, then c_; = ¢.

We mention without proof the important Riemann-Lebesgue theorem,’® > by which
the Fourier coefficients ¢, tend to zero as n — oo for any function that is integrable (in the
sense of Lebesgue), a fortiori for any periodic function that is continuous everywhere. A
finite number of finite jumps in each period are also allowed.

A function F(z) is said to be of bounded variation in an interval if, in this interval,

it can be expressed in the form F(t) = F(t) — F»(t), where F} and F, are nondecreasing

56George Friedrich Bernhard Riemann (1826-1866), a German mathematician, made fundamental contributions
to analysis and geometry. In his habilitation lecture 1854 in Gottingen, Riemann introduced the curvature tensor
and laid the groundwork for Einstein’s general theory of relativity.

5THenri Léon Lebesgue (1875-1941), a French mathematician, created path-breaking general concepts of mea-
sure and integral.
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bounded functions. A finite number of jump discontinuities are allowed. The variation of
F over the interval [a, b] is denoted fab |dF(t)|. If F is differentiable the variation of F
equals fuh |F'(t)|dt.

Another classical result in the theory of Fourier series reads as follows: If F(t) is of
bounded variation in the closed interval [—, ], then ¢, = O(n~"); see Titchmarsh [351,
Secs. 13.21, 13.73]. This result can be generalized as the following theorem.

Theorem 3.2.1.
Suppose that FP) is of bounded variation on [—m, w], and that F is continuous
everywhere for j < p. Denote the Fourier coefficients of FP(t) by P, Then

cn = (in) PP = O(mr7h). (3.2.7)

Proof. The theorem follows from the above classical result, after the integration of the
formula for ¢, in (3.2.2) by parts p times. a

Bounds for the truncation error of a Fourier series can also be obtained from this. The
details are left for Problem 3.2.4 (d), together with a further generalization. A similar result
is that ¢, = o(n=?) if F) is integrable, hence a fortiori if F € CP.

In particular, we find for p = 1 (since }_n~2 is convergent) that the Fourier series
(3.2.2) converges absolutely and uniformly in R. It can also be shown that the Fourier series
is valid, i.e., the sum is equal to F'(¢).

3.2.2 The Cauchy-FFT Method

An alternative method for deriving coefficients of power series when many terms are needed
is based on the following classic result. Suppose that the value f(z) of an analytic function
can be computed at any point inside and on the circle C, = {z : |z — a| = r}, and set

M(r) =max |f(z)|, z=a+re? eC,.

Then the coefficients of the Taylor expansion around a are determined by Cauchy’s
formula,

1 f(Z) Fn 2 o it
n= 5 —————dz = ' " de. 3.2.8
= 5 /C o =0 | fla+ree (3.2.8)

For a derivation, multiply the Taylor expansion (3.1.3) by (z — a) ™!, integrate term by
term over C,, and note that

1
2mi

1 ifj=n,

0 ifj#n. (3.2.9)

. 1 [ . oo
/ (z—a)y " ldz = — rineU=—mi0 gg — {
C, 2w Jo

From the definitions and (3.2.8) it follows that

lan| < r"M(r). (3.2.10)
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Further, with z/ = a + r'¢!?, 0 < r’ < r, we have

R = @ =0t < 3 MO = % (:2.11)

This form of the remainder term of a Taylor series is useful in theoretical studies, and also
for practical purpose, if the maximum modulus M (r) is easier to estimate than the nth
derivative.

Set A6 = 2m /N, and apply the trapezoidal rule (see (1.1.12)) to the second integral
in (3.2.8). Note that the integrand has the same value for 6 = 27 as for & = 0. The terms
% foand % fn that appear in the general trapezoidal rule can therefore in this case be replaced
by fo. Then

1 N ' '
N fa+re*i0)e=inkad —y —0: N —1. (3.2.12)
k=0

a, ~ a,

The approximate Taylor coefficients a,, or rather the numbers a;, = a,Nr", are here ex-
pressed as a case of the (direct) discrete Fourier transform (DFT). More generally, this
transform maps an arbitrary sequence {ak}f)v ~! to a sequence {a;}év ~! by the following
equations:

N—-1
ay=Y e ™A p=0:N-1. (3.2.13)
k=0

It will be studied more systematically in Sec. 4.6.2.

If N is a power of 2, it is shown in Sec. 4.7 that, given the N values o, k =0: N — 1,
and e~ no more than N log, N complex multiplications and additions are needed for
the computation of all the N coefficients a;, if an implementation of the DFT known as
the fast Fourier transform (FFT) is used. This makes our theoretical considerations very
practical.

Itis also shown in Sec. 4.7 that the inverse of the DFT (3.2.13) is given by the formulas

N—1
ar = (1/N) Z are™A  k=0:N-1. (3.2.14)
n=0

This looks almost like the direct DFT (3.2.13), except for the sign of i and the factor 1/N.
It can therefore also be performed by means of O (N log N) elementary operations, instead
of the O(N?) operations that the most obvious approach to this task would require (i.e., by
solving the linear system (3.2.13)).

In our context, i.e., the computation of Taylor coefficients, we have, by (3.2.12) and
the line after that equation,

a = fla+re*),  ar=a,Nr". (3.2.15)
Set z; = a + re'*?%. Using (3.2.15), the inverse transformation then becomes’®
N—1
f@) =) a(u—a)", k=0:N-1. (3.2.16)

n=0
380ne interpretation of these equations is that the polynomial 2,11\’;01 a,(z — a)"* is the solution of a special,
although important, interpolation problem for the function f, analytic inside a circle in C.
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Since the Taylor coefficients are equal to £ (a)/n!, this is de facto a method for
the accurate numerical differentiation of an analytic function.® If r and N are chosen
appropriately, it is more well-conditioned than most methods for numerical differentiation,
such as the difference approximations mentioned in Chapter 1; see also Sec. 3.3. It requires,
however, complex arithmetic for a convenient implementation. We call this the Cauchy—
FFT method for Taylor coefficients and differentiation.

The question arises of how to choose N and r. Theoretically, any r less than the
radius of convergence p would do, but there may be trouble with cancellation if r is small.
On the other hand, the truncation error of the numerical integration usually increases with
r. Scylla and Charybdis situations® like this are very common with numerical methods.

Typically it is the rounding error that sets the limit for the accuracy; it is usually not
expensive to choose r and N such that the truncation error becomes much smaller. A rule
of thumb for this situation is to guess a value of N, ie., how many terms will be needed in
the expansion, and then to try two values for N (powers of 2) larger than N. If p is finite try
r = 0.9p and r = 0.8p, and compare the results. They may or may not indicate that some
other values of N and r should also be tried. On the other hand, if p = oo try, for example,
r = 1 and r = 3, and compare the results. Again, the results indicate whether or not more
experiments should be done.

One can also combine numerical experimentation with a theoretical analysis of a more
or less simplified model, including a few elementary optimization calculations. The authors
take the opportunity to exemplify below this type of “hard analysis” on this question.

We first derive two lemmas, which are important also in many other contexts. First
we have a discrete analogue of (3.2.9).

Lemma 3.2.2.
Let p and N be integers. Then

=

-1
6‘2mpk/N — 07

k

Il
S

unless p = 0 or p is a multiple of N. In these exceptional cases every term equals 1, and
the sum equals N.

Proof. If p is neither zero nor a multiple of N, the sum is a geometric series, the sum of
which is equal to
(eZHip _ 1)/(627rip/N _ 1) —0.

The rest of the statement is obvious. O

We next show an error estimate for the approximation provided by the trapezoidal
rule (3.2.12).

9The idea of using Cauchy’s formula and FFT for numerical differentiation seems to have been first suggested
by Lyness and Moler [252]; see Henrici [194, Sec. 3].

%0According to the American Heritage Dictionary, Scylla is a rock on the Italian side of the Strait of Messina,
opposite to the whirlpool Charybdis, personified by Homer (Ulysses) as a female sea monster who devoured sailors.
The problem is to navigate safely between them.
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Lemma 3.2.3.
Suppose that f(z) = Y o a,(z — a)" is analytic in the disk |z — a| < p. Let a, be
defined by (3.2.12), where O < r < p. Then

ay — ay = AN N + anion P2V + ani3n PN 4., 0<n<AN. (3.2.17)

Proof. Since AG = 2x/N,

N-1 oo

- 1 o : m
G, = R Ze 2mink/N ay, (rEka/N)
k=0 m=0
1 [ee) N—-1
— E anr™ eZni(fner)k/N
TN " ’
m=0 k=0

By the previous lemma, the inner sum of the last expression is zero, unless m — n is a
multiple of N. Hence (recall that 0 < n < N),

1
N 2N
dn = 1 (" N+ apan "N + oy N )
r

from which (3.2.17) follows. 0

Lemma 3.2.3 can, with some modifications, be generalized to Laurent series (and to
complex Fourier series); for example, (3.2.17) becomes

—2N —N N 2N
Cn—Cn ="+ CpoaNF = FConI " F CagnT" F Cpgont™ - (3.2.18)

Let M (r) be the maximum modulus for the function f (z) on the circle C,, and denote
by M (r)U an upper bound for the error of a computed function value f(z), |z| = r, where
U « 1. Assume that rounding errors during the computation of @, are of minor importance.
Then, by (3.2.12), M(r)U/r" is a bound for the rounding error of a,. (The rounding errors
during the computation can be included by a redefinition of U.)

Next we shall consider the truncation error of (3.2.12). First we estimate the coef-
ficients that occur in (3.2.17) by means of max | f(z)| on a circle with radius 7’; ' > r,
where r is the radius of the circle used in the computation of the first N coefficients. Thus,
in (3.2.8) we substitute ', j for r, n, respectively, and obtain the inequality

la;l < M@/, 0<r<r <p.

The actual choice of ' strongly depends on the function f. (In rare cases we may choose
r’ = p.) Put this inequality into (3.2.17), where we shall choose r < r’ < p. Then

|é” _ an| S M(r/) ((r/)—n—NrN + (r/)—n—ZNVZN + (r/)—l’l—3Nr3N + . )
= MY/ + /YN N )
_ M)
/N =T
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We make a digression here, because this is an amazingly good result. The trapezoidal rule
that was used in the calculation of the Taylor coefficients is typically expected to have an
error thatis O ((A#)?) = O(N~2). (Asbefore, AG = 27 /N.) This application is, however,
a very special situation: a periodic analytic function is integrated over a full period. We
shall return to results like this in Sec.5.1.4. In this case, for fixed values of r, r/, the
truncation error is

o((r/rHN)=0(e™2), n>0, A0 —0+. (3.2.19)

This tends to zero faster than any power of AO!
It follows that a bound for the total error of a,, i.e., the sum of the bounds for the
rounding and the truncation errors, is given by

M@ )"

UM@@r)r ™" + —(r’/r)N T

r<r <op. (3.2.20)

Example 3.2.2 (Scylla and Charybdis in the Cauchy—FFT).

We shall discuss how to choose the parameters » and N so that the absolute error
bound of a,, given in (3.2.20) becomes uniformly small for (say) n =0 :n. 1 +n > 1
is thus the number of Taylor coefficients requested. The parameter ' does not belong to
the Cauchy—FFT method, but it has to be chosen well in order to make the bound for the
truncation error realistic.

The discussion is rather technical, and you may omit it at a first reading. It may,
however, be useful to study this example later, because similar technical subproblems occur
in many serious discussions of numerical methods that contain parameters that should be
appropriately chosen.

First consider the rounding error. By the maximum modulus theorem, M(r) is an
increasing function; hence, for » > 1, max, M (r)r~" = M(r) > M(1). On the other hand,
for r < 1, max, M(r)r~" = M(r)r—"; i was introduced in the beginning of this example.
Let r* be the value of r, for which this maximum is minimal. Note that »* = 1 unless
M'(r)/M(r) = n/r for some r < 1.

Then try to determine N and r’ € [r*, p) so that, for » = r*, the bound for the
second term of (3.2.20) becomes much smaller than the first term, i.e., the truncation error
is made negligible compared to the rounding error. This works well if p > r*. In such
cases, we may therefore choose r = r*, and the total error is then just a little larger than
UM(r*)(r*)~".

For example, if f(z) = €°, then M(r) = €', p = oo. In this case r* = 1 (since
7 > 1). Then we shall choose N and r’ = N so that e’ /()N — 1) < eU. One can show
that it is sufficient to choose N > |InU/In|InU||. For instance, if U = 107'°, this is
satisfied with a wide margin by N = 32. In IEEE double precision arithmetic, the choice
r =1, N = 32 gave an error less than 2.107!6, The results were much worse for » = 10 and
for r = 0.1; the maximum error of the first 32 coefficients became 4 - 10~* and 9 - 10'3(!),
respectively. In the latter case the errors of the first eight coefficients did not exceed 1071,
but the rounding error of a,, due to cancellations, increased rapidly with .

If p is not much larger than r*, the procedure described above may lead to a value
of N that is much larger than 7. In order to avoid this, we set 7 = «N. We now confine
the discussion to the case that ¥ < r’ < p < 1, n = 0 : n. Then, with all other parameters
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fixed, the bound in (3.2.20) is maximal for n = 7. We simplify this bound; M (r) is replaced
by the larger quantity M (+'), and the denominator is replaced by (r'/r)". Then, for given
r',a, N, wesetx = (r/r')" and determine x so that

MEHYE) N Ux™ + x)

is minimized. The minimum is obtained for x = (¢U)"1*9 ie., forr = #’x'/V, and the
minimum is equal to®!

M) "UY (),  where c(a) = (1 4+ o)~/ 119,

We see that the error bound contains the factor U''/(1+) This is proportional to 2 U'/2
fora = 1, and to 1.65 U for a = }1' The latter case is thus much more accurate, but for
the same 71 one has to choose N four times as large, which leads to more than four times as
many arithmetic operations. In practice, 71 is usually given, and the order of magnitude of U
can be estimated. Then « is to be chosen to make a compromise between the requirements
for a good accuracy and for a small volume of computation. If p is not much larger than

r*, we may choose
N =hja, x= @)Y p=,xUN
Experiments were conducted with

f(@) =1 —2),

for which p = 1, M(1) = oco. Take 2 = 64, U = 107, v/ = 0.999. Then M(+') =
6.9. Fora =1, 1/2, 1/4, we have N = 64, 128, 256, respectively. The above theory
suggests r = 0.764, 0.832, 0.894, respectively. The theoretical estimates of the absolute
errors become 1072, 2.4-10712, 2.7.107'4, respectively. The smallest errors obtained in
experiments with these three values of « are 6-107'°, 1.8.107'2, 1.8-10~'4, which were
obtained for r = 0.766, 0.838, 0.898, respectively. So, the theoretical predictions of these
experimental results are very satisfactory.

3.2.3 Chebyshev Expansions
The Chebyshev®” polynomials of the first kind are defined by

T, (z) = cos(n arccosz), n >0, (3.2.21)
that is, 7,,(z) = cos(n¢), where z = cos ¢. From the well-known trigonometric formula

cos(n + 1)¢p + cos(n — 1)¢p = 2cos¢p cosng

61This is a rigorous upper bound of the error for this value of r, in spite of simplifications in the formulation of
the minimization.

92pafnuty Lvovich Chebyshev (1821-1894), Russian mathematician, pioneer in approximation theory and the
constructive theory of functions. His name has many different transcriptions, for example, Tschebyscheff. This
may explain why the polynomials that bear his name are denoted 7}, (x). He also made important contributions to
probability theory and number theory.
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follows, by induction, the important recurrence relation: 7y(z) = 1, T1(z) = z,
Ti+1(2) =22T,(2) — T,—1(2), (n>=1). (3.2.22)
Using this recurrence relation we obtain
Tyz) =22" -1, Ti(x) =42° =3z, Tu(x) =8' -8 +1,
Ts(z) = 162° —202° + 5z, Te(z) =322° — 48z + 1822 — 1,.....

Clearly 7,,(z) is the nth degree polynomial,
n n
T.(z2) =27"— 72— ) + A=) -
2 4
The Chebyshev polynomials of the second kind,

_ 1 , _sin(n¢)
Un—l(Z)—_n+lT(Z)— Sng

¢ = arccos z, (3.2.23)

satisfy the same recurrence relation, with the initial conditions U_;(z) = 0, Up(z) = 1; its
degree is n — 1. (When we write just “Chebyshev polynomial,” we refer to the first kind.)
The Chebyshev polynomial 7;,(x) has n zeros in [—1, 1] given by

2k —1m
n 2

Xr = COS , k=1:n, (3.2.24)
(5—3)

the Chebyshev points, and n + 1 extrema

k
s =cos(0), k=0:n. (3.2.25)
n
These results follow directly from the fact that cos(n¢) = 0 for ¢ = (2k + 1) /(2n), and
that cos(n¢) = £1 for ¢ = kmr/n.
Note that from (3.2.21) it follows that |7,,(x)| < I for x € [—1, 1], even though its
leading coefficient is as large as 2",

Example 3.2.3.

Figure 3.2.1 shows a plot of the Chebyshev polynomial To(x) for x € [—1, 1].
Setting z = 1 in the recurrence relation (3.2.22) and using Tp(1) = T(1) = 1, it follows
that 7,(1) = 1, n > 0. From Tj(1) = 0, 7{(1) = 1 and differentiating the recurrence
relation we get

T,,1(2) =2T,2) + T,() —T,_(z), (n=1).

It follows easily by induction that 7, (1) = n2,1i.e., outside the interval [—1, 1] the Chebyshev
polynomials grow rapidly.



200 Chapter 3. Series, Operators, and Continued Fractions

Figure 3.2.1. Graph of the Chebyshev polynomial Tyy(x), x € [—1, 1].

The Chebyshev polynomials have a unique minimax property. (For a use of this
property, see Example 3.2.4.)

Lemma 3.2.4 (Minimax Property).

The Chebyshev polynomials have the following minimax property: Of all nth degree
polynomials with leading coefficient 1, the polynomial 2' " T, (x) has the smallest magnitude
27 in [—1,1].

Proof. Suppose there were a polynomial p,(x), with leading coefficient 1 such that
|pn(x)| < 2! for all x € [—1, 1]. Let x;, k = 0 : n, be the abscissae of the extrema of
T, (x). Then we would have

pa(xy) < 27T, (x)), pa(x)) > 27T, (x)), pa(xh) < 27T, (x5, ...,
etc., up to x,,. From this it follows that the polynomial
pa(x) = 2" T, (x)

changes sign in each of the n intervals (x;, x]’( +l), k = 0: n — 1. This is impossible, since
the polynomial is of degree n — 1. This proves the minimax property. a

The Chebyshev expansion of a function f(z),

o]

f@ =) ¢Ti@), (3.2.26)

j=0

is an important aid in studying functions on the interval [—1, 1]. If one is working with a
function f(¢), t € [a, b], then one should make the substitution

t=3(a+b)+350b—ax, (3.2.27)

which maps the interval [—1, 1] onto [a, b].
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Consider the approximation to the function f(x) = x" on [—1, 1] by a polynomial
of lower degree. From the minimax property of Chebyshev polynomials it follows that the
maximum magnitude of the error is minimized by the polynomial

plx) =x" —2'7"T,(x). (3.2.28)

From the symmetry property 7,,(—x) = (—1)"T,(x), it follows that this polynomial has in
fact degree n — 2. The error 2! 7" T,,(x) assumes its extrema 2'~" in a sequence of n + 1
points, x; = cos(im/n). The sign of the error alternates at these points.

Suppose that one has obtained, for example, by Taylor series, a truncated power series
approximation to a function f(x). By repeated use of (3.2.28), the series can be replaced
by a polynomial of lower degree with a moderately increased bound for the truncation
error. This process, called economization of power series often yields a useful polynomial
approximation to f (x) with a considerably smaller number of terms than the original power
series.

Example 3.2.4.
If the series expansion cos x = 1 —x2/2 4 x*/24 — - . . is truncated after the x*-term,
the maximum error is 0.0014 in [—1, 1]. Since Tx(x) = 8x* — 8x% + 1, it holds that

x*/24 ~ x%/24 —1/192
with an error which does not exceed 1/192 = 0.0052. Thus the approximation
cosx = (1 —1/192) — x*(1/2 — 1/24) = 0.99479 — 0.45833x>

has an error whose magnitude does not exceed 0.0052 4 0.0014 < 0.007. This is less than
one-sixth of the error 0.042, which is obtained if the power series is truncated after the
x2-term.

Note that for the economized approximation cos(0) is not approximated by 1. It may
not be acceptable that such an exact relation is lost. In this example one could have asked
for a polynomial approximation to (1 — cos x)/x? instead.

If a Chebyshev expansion converges rapidly, the truncation error is, by and large,
determined by the first few neglected terms. As indicated by Figures 3.2.1 and 3.2.5 (see
Problem 3.2.3), the error curve is oscillating with slowly varying amplitude in [—1, 1].
In contrast, the truncation error of a power series is proportional to a power of x. Note
that f(z) is allowed to have a singularity arbitrarily close to the interval [—1, 1], and the
convergence of the Chebyshev expansion will still be exponential, although the exponential
rate deteriorates, as R |, 1.

Important properties of trigonometric functions and Fourier series can be reformulated
in the terminology of Chebyshev polynomials. For example, they satisfy certain orthog-
onality relations; see Example 4.5.10. Also, results like (3.2.7), concerning how the rate
of decrease of the coefficients or the truncation error of a Fourier series is related to the
smoothness properties of its sum, can be translated to Chebyshev expansions. So, even if
f is not analytic, its Chebyshev expansion converges under amazingly general conditions
(unlike a power series), but the convergence is much slower than exponential. A typical
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result reads as follows: if f € C¥K[—1, 1], k > 0, there exists a bound for the truncation
error that decreases uniformly like O (n~* log n). Sometimes convergence acceleration can
be successfully applied to such series.

Set w = ¢! = cos ¢ + i sin ¢, where ¢ and z = cos ¢ may be complex. Then

1
w=z+vz2 -1, z:cos¢=5(w+w_l),

and |
T,(z) = cosng = E(w” +w™), (3.2.29)

(z V22— 1)” =T,2) + Up1 (V22 — 1,

where U, (z) is the Chebyshev polynomials of the second kind; see (3.2.23). It follows that
the Chebyshev expansion (3.2.26) formally corresponds to a symmetric Laurent expansion,

00 1 e
B . sc; ifj >0,
gw) = f (3w +w 1))22_00"1“’]’ a—j=“f={ o ifj=0.

It can be shown by the parallelogram law that |z 4+ 1| + |z — 1| = |w| + |w|~'. Hence, if
R>1,z= %(w +wh maps the annulus {w : R™' < |w| < R}, twice onto an ellipse &g,
determined by the relation

Er=1{z:lz—=1|+|z+1 <R+R'}, (3.2.30)

with foci at 1 and —1. The axes are, respectively, R + R~1'and R — R™', and hence R is
the sum of the semiaxes.

Note that as R — 1, the ellipse degenerates into the interval [—1, 1]. As R — oo, it
becomes close to the circle |z] < %R. It follows from (3.2.29) that this family of confocal

ellipses are level curves of |w| = |z + +/z2 — 1]. In fact, we can also write
5R={Z21§|Z+\/22—1|§R}. (3.2.31)

Theorem 3.2.5 (Bernstein’s Approximation Theorem).
Let f () be real-valuedfor z € [—1, 1], analytic and single-valuedforz € Eg, R > 1.
Assume that | f(z)| < M for z € Eg. Then®

n—1 —n

‘f(x) — Zc-T-(x)‘ MRy =1 1]
],:0” ~1-1/R T

Proof. Set as before z = %(w +w™), gw) = f(%(u) + w™)). Then g(w) is analytic in
the annulus R~! + € < |w| < R — ¢, and hence the Laurent expansion (3.2.1) converges
there. In particular it converges for |w| = 1, hence the Chebyshev expansion for f(x)
converges when x € [—1, 1].

63 A generalization to complex values of x is formulated in Problem 3.2.11.
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Setr = R — €. By Cauchy’s formula we obtain, for j > 0,
2

2 . 2 . .
lcjl =2la;| = ‘—/ g(w)w_(’“)dw‘ < — Mr~7Yrd¢p = 2Mr~/.
X 271 |w|=r 27 0

We then obtain, for x € [—1, 1],

n—1 —n

[Fe0 - X;CjT,-(x)‘ - ‘Xn:chj(x)] < anlcjl < 2M;rﬁ' < 2M— e

Jj=

This holds for any € > 0. We can here let ¢ — 0 and thus replace r by R. a

The Chebyshev polynomials are perhaps the most important example of a family of
orthogonal polynomials; see Sec.4.5.5. The numerical value of a truncated Chebyshev
expansion can be computed by means of Clenshaw’s algorithm; see Theorem 4.5.21.

3.2.4 Perturbation Expansions

In the equations of applied mathematics it is often possible to identify a small dimensionless
parameter (say) €, € < 1. The case when € = 0 is called the reduced problem or the
unperturbed case, and one asks for a perturbation expansion, i.e., an expansion of the
solution of the perturbed problem into powers of the perturbation parameter €. In many
cases it can be proved that the expansion has the form ¢y + c1€ + c2€2 + - - -, but there are
also important cases where the expansion contains fractional or a few negative powers.

In this subsection, we consider an analytic equation ¢ (z, €) = 0 and seek expansions
for the roots z; (¢) in powers of €. This has some practical interest in its own right, but it is
mainly to be considered as a preparation for more interesting applications of perturbation
methods to more complicated problems. A simple perturbation example for a differential
equation is given in Problem 3.2.9.

If z;(0) is a simple root, i.e., if 3¢ /dz # 0, for (z, €) = (z;(0), 0), then a theorem of
complex analysis tells us that z; (¢) is an analytic function in a neighborhood of the origin.
Hence the expansion

zi(€) — z:(0) = cre + cre” + - -

has a positive (or infinite) radius of convergence. We call this a regular perturbation
problem. The techniques of power series reversion, presented in Sec. 3.1.4, can often be
applied after some preparation of the equation. Computer algebra systems are also used in
perturbation problems, if expansions with many terms are needed.

Example 3.2.5.
We shall expand the roots of

p(z.e)=€z?—z+1=0

into powers of €. The reduced problem —z + 1 = 0 has only one finite root, z;(0) = 1. Set
z=14x€, x =c1+cre+c3¢+---. Then ¢ (1 + xe,€)/e = (1 +xe)>—x=0,ie.,

(1+61€+62€2+~-~)2—(Cl+C2€+C3€2+~-~)ZO.
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2

Matching the coefficients of €Y, €!, €2, we obtain the system

11— =0 = ¢ =1,
2c1 —c, =0 = ¢ =2,
2e0+ct—c3=0 = 3=5;

hence z;(€) = 1 + € + 2€2 +5€3 + - - -.

Now, the easiest way to obtain the expansion for the second root, z,(¢€), is to use
the fact that the sum of the roots of the quadratic equation equals € ~'; hence z,(¢) =
el —1l—e—2e+---.

Note the appearance of the term e~!. This is due to a characteristic feature of this
example. The degree of the polynomial is lower for the reduced problem than it is for € # 0;
one of the roots escapes to oo as € — 0. This is an example of a singular perturbation
problem, an important type of problem for differential equations; see Problem 3.2.7.

Ifo¢/0z = 0, for some z;, the situation is more complicated; z; is a multiple root, and
the expansions look different. If z; (0) is a k-fold root, then there may exist an expansion of
the form

zi(€) = co+cre/F +er(eF? .-

for each of the k roots of €, but this is not always the case. See (3.2.32) below, where the
expansions are of a different type. If one tries to determine the coefficients in an expansion
of the wrong form, one usually runs into contradictions, but the question about the right
form of the expansions still remains.

The answers are given by the classical theory of algebraic functions, where Riemann
surfaces and Newton polygons are two of the key concepts; see, e.g., Bliss [35]. We shall,
for several reasons, not use this theory here. One reason is that it seems hard to generalize
some of the methods of algebraic function theory to more complicated equations, such as
differential equations. We shall instead use a general balancing procedure, recommended
in Lin and Segel [246, Sec. 9.1], where it is applied to singular perturbation problems for
differential equations too.

The basic idea is very simple: each term in an equation behaves like some power of
€. The equation cannot hold unless there is a B such that a pair of terms of the equation
behave like Ae? (with different values of A), and the e-exponents of the other terms are
larger than or equal to B. (Recall that larger exponents make smaller terms.)

Let us return to the previous example. Although we have already determined the
expansion for z; (¢€) (by a trick that may not be useful for problems other than single analytic
equations), we shall use this task to illustrate the balancing procedure. Suppose that

22(e) ~ Ae®, (a <0).
The three terms of the equation ez> — z + 1 = 0 then get the exponents
1+2x, o O

Try the first two terms as the candidates for being the dominant pair. Then 1 + 2o = «,
hence @ = —1. The three exponents become —1, —1, 0. Since the third exponent is larger
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than the exponent of the candidates, this choice of pair seems possible, but we have not
shown that it is the only possible choice.

Now try the first and the third terms as candidates. Then 1 4+ 2« = 0, hence o = —%.
The exponent of the noncandidate is —% < 0; this candidate pair is thus impossible. Finally,
try the second and the third terms. Then o = 0, but we are only interested in negative values
of a.

The conclusion is that we can try coefficient matching in the expansion z,(e) =
c_1e '+ cy+cre +---. We don’t need to do it, since we know the answer already, but it
indicates how to proceed in more complicated cases.

Example 3.2.6.

First consider the equation z3 — z? 4+ € = 0. The reduced problem z* — z> = O has a
single root, z; = 1, and a double root, z, 3 = 0. No root has escaped to co. By a similar
coefficient matching as in the previous example we find that z;(¢) = 1 —e —2¢?+- - .. For
the double root, set z = Ae”, B > 0. The three terms of the equation obtain the exponents
38, 28, 1. Since 38 is dominated by 28 we conclude that 28 = 1,1i.e., 8 = 1/2,

223(€) = 6061/2 +cr€e + C263/2 4+ ...
By matching the coefficients of €, €*/?, €2, we obtain the system

—cé—i—l:O = co = %1,
1

—2cpc) —i—cg =0 =c= >

—2cocr — c% + 2c(2)c1 + clcg =0 == :I:g;
hence 75 3(e) = £e!/? + %e + %63/2 4+
There are, however, equations with a double root, where the perturbed pair of roots
do not behave like +coe'/? as € — 0. In such cases the balancing procedure may help.
Consider the equation
(1+e)>+4dez+€2=0. (3.2.32)

The reduced problem is 72 = 0, with a double root. Try z ~ Ae“, o > 0. The exponents
of the three terms become 2o, o + 1, 2. We see that « = 1 makes the three exponents
all equal to 2; this is fine. So, set z = €y. The equation reads, after division by €,
(14+¢€)y?+4y+1 =0, hence y(0) =a = -2+ /3. Coefficient matching yields the
result

z=€y=ae+ (—a*/(2@+2)e*+---,

where all exponents are natural numbers.

If € is small enough, the last term included can serve as an error estimate. A more
reliable error estimate (or even an error bound) can be obtained by inserting the truncated
expansion into the equation. It shows that the truncated expansion satisfies a modified
equation exactly. The same idea can be applied to equations of many other types; see
Problem 3.2.9.
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3.2.5 Ill-Conditioned Series

Slow convergence is not the only numerical difficulty that occurs in connection with infinite
series. There are also series with oscillating terms and a complicated type of catastrophic
cancellation. The size of some terms is many orders of magnitude larger than the sum of
the series. Small relative errors in the computation of the large terms lead to a large relative
error in the result. We call such a series ill-conditioned.

Such series have not been subject to many systematic investigations. One simply
tries to avoid them. For the important “special functions” of applied mathematics, such as
Bessel functions, confluent hypergeometric functions, etc., there usually exist expansions
into descending powers of z that can be useful, when |z| > 1 and the usual series, in
ascending powers, are divergent or ill-conditioned. Another possibility is to use multiple
precision in computations with ill-conditioned power series; this is relatively expensive and
laborious (but the difficulties should not be exaggerated). There are, however, also other,
less well known possibilities that will now be exemplified. The subject is still open for
fresh ideas, and we hope that the following pages and the related problems at the end of the
section will stimulate some readers to think about it.

First, we shall consider power series of the form

o (—x)"cy

n!

: (3.2.33)
n=0

where x > 1, although not so large that there is risk for overflow. We assume that the
coefficients ¢, are positive and slowly varying (relative to (—x)"/n!). The ratio of two
consecutive terms is

Cntl —X —X

~

o n+1l n+l

We see that the series converges for all x, and that the magnitude increases if and only
if n + 1 < |x|. The term of largest magnitude is thus obtained for n = |x|. Denote its
magnitude by M (x). Then, for x >> 1, the following type of approximations can be used
for crude estimates of the number of terms needed and the arithmetic precision that is to be

used in computations related to ill-conditioned power series: M (x) & cce*(2mx)~'/%; 1.,
log;o M(x)/co =~ 0.43x — %logm(an). (3.2.34)
This follows from the classical Stirling’s formula,
x!~(f)x\/ﬁ[1+i+L+m] > 1, (3.2.35)
e 12x  288x?2

that gives x! with a relative error that is about 1/(12x). You find a proof of this in most
textbooks on calculus. It will be used often in the rest of this book. A more accurate and
general version is given in Example 3.4.12 together with a few more facts about the gamma
function, I"(z), an analytic function that interpolates the factorial '(n + 1) = n!ifnisa
natural number. Sometimes the notation z! is used instead of I'(z + 1) even if z is not an
integer.
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There exist preconditioners, i.c., transformations that can convert classes of ill-
conditioned power series (with accurately computable coefficients) to more well-conditioned
problems. One of the most successful preconditioners known to the authors is the following:

> (—x)
>

n=0 ’ n=0

n

C . x"b
L e_’“z n!”, by = (—=A)'co. (3.2.36)

Ahint for proving this identity is given in Problem 3.3.22. The notation A" ¢, for high order
differences was introduced in Sec. 1.1.4.

For the important class of sequences {c, } which are completely monotonic, (—A)"c
is positive and smoothly decreasing; see Sec. 3.4.4.

Example 3.2.7.
Consider the function
Flo) l/)‘l—e’dt | X N x2
X)) = — = _——_—— —_ — e,
x Jo t 22.11  32.21

i.e., F'(x) is aparticular case of (3.2.33) withc, = (n+ 1)~2. We shall look at three methods
of computing F(x) for x = 10 : 10 : 50, named A, B, C. F(x) decreases smoothly from
0.2880 to 0.0898. The computed values of F(x) are denoted FA(x), FB(x), FC(x).

The coefficients ¢,, n = 0 : 119, are given in IEEE floating-point, double precision.
The results in Table 3.2.1 show that (except for x = 50) 120 terms is much more than
necessary for the rounding of the coefficients to become the dominant error source.

Table 3.2.1. Results of three ways to compute F(x) = (1/x) f(f(l/t)(l —e Ndr.

x 10 20 30 40 50
F(x) ~ 0.2880 | 0.1786 | 0.1326 | 0.1066 | 0.0898
lasttermA 1-107% | 81074 | 7-10720 | 6- 107" | 2. 10!
M(x; A) 3.10! 1-10° 9.108 1-108% | 1-10"
|[FAx) — F®)| | 2-100% | 5.10°" | 2.1077 | 3-1073 | 2-10!
lasttermB 4.107% | 1-1072 | 4.107%¢ | 2.107» | 2. 1078
M(x; B) 4.1072 | 2-1072 [ 1-1072 | 7-1073 | 5-1073
|[FC(x) — FB(x)| | 7-107° [ 2-107™ | 6-107"7 | 0 1-10716

(A) We use (3.2.33) without preconditioner. M (x; A) is the largest magnitude of the
terms of the expansion. M (x; A) - 107'® gives the order of magnitude of the effect of the
rounding errors on the computed value FA(x). Similarly, the truncation error is crudely
estimated by lasttermA. See Figure 3.2.2. Since the largest term is 10'3, it is no surprise that
the relative error of the sum is not better than 0.03, in spite of double precision floating-point
being used. Note the scale, and look also in the table.

(B) We use the preconditioner (3.2.36). In this example ¢, = (n + 1)~2. In Prob-
lem 3.3.3 (c) we find the following explicit expressions, related to the series on the right-hand
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Figure 3.2.2. Example 3.2.7(A): Terms of (3.2.33), ¢, = (n + 1)72, x = 40, no
preconditioner.

side of the preconditioner for this example:

(=A)"co = (—A)"Cmlm=o = co(=A)"x 2|10y =

o0 n n 1

y x
n=0

k=0

(3.2.37)

Note that (—A)™ ¢y is positive and smoothly decreasing.

The largest term is thus smaller than the sum, and the series (3.2.37) is well-conditioned.
The largest term is now about 7 - 103 and the computed sum is correct to 16 decimal places.
Multiple precision is not needed here. It can be shown that if x >> 1, the mth term is
approximately proportional to the value at m of the normal probability density with mean
x and standard deviation equal to 4/x; note the resemblance to a Poisson distribution. The
terms of the right-hand side, including the factor e™", become a so-called bell sum; see
Figure 3.2.3.

M (x; B) and lasttermB are defined analogously to M (x; A) and lasttermA. The B-
values are very different from the A-values. In fact they indicate that all values of F B(x)
referred to in Table 3.2.1 give F(x) to full accuracy.

(C) The following expression for F(x),

—t

F)=Y N mx—E). Ex) = /OO ert, (3.2.38)
n=1 X

nn! -
is valid for all x > 0O; see [1, Sec. 5.1.11]. E;(x) is known as the exponential integral, and

y = 0.57721 56649 0153286061 . . .
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Figure 3.2.3. Example 3.2.7(B): ¢, = (n + 1)72, x = 40, with preconditioner in (3.2.36).

is the well-known Euler’s constant. In the next section, an asymptotic expansion for E; (x)
forx > 1isderived, the first two terms of which are used here in the computation of F (x; C)
for Table 3.2.1.

Exx)~e*x'=x?, x>1.

This approximation is the dominant part of the error of F(x; C); it is less than e™*2x~*.
F(x; C) gives full accuracy for (say) x > 25.

More examples of sequences, for which rather simple explicit expressions for the high
order differences are known, are given in Problem 3.3.3. Kummer’s confluent hypergeo-
metric function M(a, b, x) was defined in (3.1.17). We have

ata+1)...(a+n—-1)
bb+1)...b+n—1)"

o0 n
M(a, b, —x) =1 +Z();# ¢ = cala, b) =

n=1

In our context b > a > 0, n > 0. The oscillatory series for M (a, b, —x), x > 0, is
ill-conditioned if x > 1.

ByProblem3.3.3, (—A)"co(a, b) = c¢,(b—a, b) > 0,n > 0; hence the preconditioner
(3.2.36) yields the equation

M(a,b,—x)=e*M(b —a,b,x), (3.2.39)

where the series on the right-hand side has positive terms, because b —a > 0, x > 0, and
is a well-conditioned bell sum. The mth term has typically a sharp maximum for m =~ x;
compare Figure 3.2.3. Equation (3.2.39), is in the theory of the confluent hypergeometric
functions, known as Kummer’s first identity. It is emphasized here because several func-
tions with famous names of their own are particular cases of the Kummer function. (Several
other particular cases are presented in Sec. 3.5.1 together with continued fractions.) These
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share the numerous useful properties of Kummer’s function, for example, the above iden-
tity; see the theory in Lebedev [240, Secs. 9.9-9.141% and the formulas in [1, Chap. 13,
particularly Table 13.6 of special cases]. An important example is the error function (see
Example 3.1.3) that can be expressed in terms of Kummer’s confluent hypergeometric as

2 Y e 2 (13
erf(x) = ﬁ e dt = ﬁM 5, E, —X . (3240)
0

If we cannot find explicit expressions for high-order differences, we can make a differ-
ence scheme by the recurrence A"+!¢, = A"¢,,; — A"c,. Unfortunately the computation
of a difference scheme suffers from numerical instability. Suppose that the absolute errors
of the ¢, are bounded by €. Then the absolute errors can become as large as 2¢ in the first dif-
ferences, 4¢ in the second differences, etc. More generally, the absolute errors of (—A)™ ¢,
can become as large as 2"¢. (You will find more about this in Examples 3.3.2 and 3.3.3.)
In connection with ill-conditioned series, this instability is much more disturbing than in
the traditional applications of difference schemes to interpolation where m is seldom much
larger than 10. Recall that m =~ x for the largest term of the preconditioned series. Thus, if
x > 53 even this term may not have any correct bit if IEEE double precision arithmetic is
used, and many terms are needed after this.

Therefore, during the computation of the new coefficients (—A)"c, (only once for
the function F, and with double accuracy in the results), the old coefficients ¢, must be
available with multiple accuracy, and multiple precision must be used in the computation of
their difference scheme. Otherwise, we cannot evaluate the series with decent accuracy for
much larger values of x than we could have done without preconditioning. Note, however,
that if satisfactory coefficients have been obtained for the preconditioned series, double
precision is sufficient when the series is evaluated for large values of x. (It is different for
method A above.)

Let F(x) be the function that we want to compute for x > 1, where it is defined
by an ill-conditioned power series Fj(x). A more general preconditioner can be described
as follows. Try to find a power series P (x) with positive coefficients such that the power
series P (x)F}(x) has less severe cancellations than F;(x).

In order to distinguish between the algebraic manipulation and the numerical evalua-
tion of the functions defined by these series, we introduce the indeterminate x and describe
a more general preconditioner as follows:

Fi(x) =P(x)-F1(x),  Fy(x) = Fi(x)/P(x). (3.2.41)

The second statement is a usual scalar evaluation (no boldface). Here P (x) may be evaluated
by some other method than the power series, if it is more practical. If P(x) = e¢* and F;(x)
is the series defined by (3.2.33), then it can be shown that F; (x) is mathematically equivalent
to the right-hand side of (3.2.36). In these cases F;(x) has positive coefficients.

If, however, Fj(x) has a positive zero, this is also a zero of F;(x), and hence it is
impossible that all coefficients of the series F;(x) have the same sign. Nevertheless, the
following example shows that the preconditioner (3.2.41) can sometimes be successfully
used in such a case too.

4Unfortunately, the formulation of Kummer’s first identity in [240, eq. (9.11.2)] contains a serious sign error.
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Example 3.2.8.
The two functions

A = i /4"

(n)?

Jo(x) = g—l)" e

n=0

are examples of Bessel functions of the first kind; I is nowadays called a modified Bessel
function. Jp(x) is oscillatory and bounded, while Iy(x) ~ e*/+/2mx for x > 1. Since all
coefficients of Iy are positive, we shall set P = Iy, F; = Jy, and try

F;x) = (%) = Li(x) - Jo(x), Fy(x) = F3(x)/Io(x)

as a preconditioner for the power series for Jy(x), which is ill-conditioned if x > 1. In
Table 3.2.2, lines 2 and 7 are obtained from the fully accurate built-in functions for Jy(x)
and Ip(x). J(x; N1) is computed in IEEE double precision arithmetic from N1 terms of
the above power series for Jy(x). N1 = N1(x) is obtained by a termination criterion that
should give full accuracy or, if the estimate of the effect of the rounding error is bigger than
10719, the truncation error should be smaller than this estimate. We omit the details; see
Problem 3.2.9 (d).

Table 3.2.2. Evaluation of some Bessel functions.

1 x 10 20 30 40 50
2 Jo(x) =~ —2.107'| 2:107' | -9-1072| 7-107% | 6-1072
3 N1(x) 26 41 55 69 82
41 Jx;ND) —Jo(x) | 9-107 [3.10710 | —2.10°| —1-10"" | =2 10?
5 N2(x) 16 26 36 46 55
6 I1J(x; N2) ~ —7-10%2 | 7-10° | =7-10"°| 1.10™ | 2.10"
7 Io(x) ~ 3-10° | 4.-107 | 8-10" 1-10% | 3.10%
8| 1J(x)/Io(x) — Jo(x) | 3-10717 [2.107%| 3.10713 | —=5.107"2|2.1071°

The coefficients of IJ(x) are obtained from the second expression for y,, given in
Problem 3.2.9 (c). N2 = N2(x) is the number of terms used in the expansion of LJ(x), by
a termination criterion similar to the one described for J(x; N1). Compared to line 4, line
8 is a remarkable improvement, obtained without the use of multiple precision.

For series of the form
o0

(—x%)"
D an 2n)!
n=0
one can generate a preconditioner from P (x) = cosh x. This can also be applied to Jy(x)
and other Bessel functions; see Problem 3.2.9 (e).

There are several procedures for transforming a series into an integral that can then
be computed by numerical integration or be expanded in another series that may have better
convergence or conditioning properties. An integral representation may also provide an



212 Chapter 3. Series, Operators, and Continued Fractions

analytic continuation of the function represented by the original series. Integral representa-
tions may be obtained in several different ways; we mention two of these. Either there exist
integral representations of the coefficients,% or one can use general procedures in complex
analysis that transform series into integrals. They are due to Cauchy, Plana, and Lindelof;
see Dahlquist [87].

3.2.6 Divergent or Semiconvergent Series

That a series is convergent is no guarantee that it is numerically useful. In this section, we
shall see examples of the reverse situation: a divergent series can be of use in numerical
computations. This sounds strange, but it refers to series where the size of the terms
decreases rapidly at first and increases later, and where an error bound (see Figure 3.2.4),
can be obtained in terms of the first neglected term. Such series are sometimes called
semiconvergent.®® An important subclass are the asymptotic series; see below.

Example 3.2.9.
We shall derive a semiconvergent series for the computation of Euler’s function

F) = €Ej(x) = ¢ f etV dr = / e+ x) du
X 0

for large values of x. (The second integral was obtained from the first by the substitution
t = u + x.) The expression (u + x)~! should first be expanded in a geometric series with
remainder term, valid even for u > x,

n—1
w4+ "T=x"A+xtw) " =x7! Z(—l)fx*fuf +(=D"w+x) """,
j=0

We shall frequently use the well-known formula
o
/ wedu=jl=T(@+1).
0
We write f(x) = S,(x) + R,(x), where

n—1

Y 1 1! 2!
Sp(x) =x7! E (—1)])6_-’/ welduy = — — —
0

- x  x? x
Jj=0

__...+(_1)"—'L])!
3 k

xn

R, (x) = (=1)" /Oo(u +0)! (5)"e*"du.
0 X

The terms in S, (x) qualitatively behave as in Figure 3.2.4. The ratio between the last
term in S, and the last term in S, is

n! x"

St (n— 1))

S

=2, (3.2.42)
X

%5 For hypergeometric or confluent hypergeometric series see Lebedev [240, Secs. 9.1 and 9.11] or [1, Secs. 15.3
and 13.2].
96 A rigorous theory of semiconvergent series was developed by Stieltjes and Poincaré in 1886.
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Error estimate

A

el

Figure 3.2.4. Error estimates of the semiconvergent series of Example 3.2.9 for
x = 10; see (3.2.43).

and since the absolute value of that ratio for fixed x is unbounded as n — oo, the sequence
{S,(x)}52, diverges for every positive x. Butsince sign R, (x) = (—=1)" forx > 0, it follows
fromTheorem 3.1.4 that

1 1 n!
f(x) = §<S"(x) + Sn+1(x)) + 5t

The idea is now to choose n so that the estimate of the remainder is as small as possible.
According to (3.2.42), this happens when # is equal to the integer part of x. For x = 5 we
choose n = 5,

(3.2.43)

S5(5) = 0.2 — 0.04 + 0.016 — 0.0096 + 0.00768 = 0.17408,
S6(5) = S5(5) — 0.00768 = 0.16640,

which gives f(5) = 0.17024 £ 0.00384. The correct value is 0.17042, so the actual error
is only 5% of the error bound. For n = x = 10, the error estimate is 1.0144 - 1073,

For larger values of x the accuracy attainable increases. One can show that the bound
for the relative error using the above computational scheme decreases approximately as
(r-x/2)'/2e™*, an extremely good accuracy for large values of x, if one stops at the smallest
term. It can even be improved further, by the use of the convergence acceleration techniques
presented in Sec. 3.4, notably the repeated averages algorithm, also known as the Euler
transformation; see Sec. 3.4.3. The algorithms for the transformation of a power series into
a rapidly convergent continued fraction, mentioned in Sec. 3.5.1, can also be successfully
applied to this example and to many other divergent expansions.

One can derive the same series expansion as above by repeated integration by parts.
This is often a good way to derive numerically useful expansions, convergent or semi-
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convergent, with a remainder in the form of an integral. For convenient reference, we
formulate this as a lemma that is easily proved by induction and the mean value theorem of
integral calculus. See Problem 3.2.10 for applications.

Lemma 3.2.6 (Repeated Integration by Parts).

Let F € CP(a,b), let Gy be a piecewise continuous function, and let Gy, G1, . ..
be a sequence of functions such that G/j 11(x) = G (x) with suitably chosen constants of
integration. Then

b p—1 ' ‘ b b
f F)Got)ydt =Y (=) FO(1)G 4 (r)‘ + (=P / FP(1)G (1) dt.
a =0 t=a a
The sum is the “expansion,” and the lastintegral is the “remainder.” If G ,(t) has a constant
sign in (a, b), the remainder term can also be written in the form

(=DPFP(E)NGp11(b) — Gpi1(@), & € (a,b).

The expansion in Lemma 3.2.6 is valid as an infinite series, if and only if the remainder
tends to 0 as p — oo. Even if the sum converges as p — 00, it may converge to the wrong
result.

The series in Example 3.2.9 is an expansion in negative powers of x, with the property
that for all n, the remainder, when x — o0, approaches zero faster than the last included
term. Such an expansion is said to represent f(x) asymptotically as x — oo. Such
an asymptotic series can be either convergent or divergent (semiconvergent). In many
branches of applied mathematics, divergent asymptotic series are an important aid, though
they are often needlessly surrounded by an air of mysticism.

It is important to appreciate that an asymptotic series does not define a sum uniquely.
For example f(x) = e~ is asymptotically represented by the series Y j = 00 - x~/, as
x — 00. Thus e~ (and many other functions) can be added to the function for which the
expansion was originally obtained.

Asymptotic expansions are not necessarily expansions into negative powers of x. An
expansion into positive powers of x — a,

n—1

f)~ ) enlx —a) + Ry(x),

v=0
represents f(x) asymptotically when x — a if

lim(x —a)" "V R,(x) = 0.

X—a
Asymptotic expansions of the error of a numerical method into positive powers of a step
length A are of great importance in the more advanced study of numerical methods. Such
expansions form the basis of simple and effective acceleration methods for improving nu-
merical results; see Sec. 3.4.
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Review Questions

3.21

3.2.2

3.2.3

3.24

3.2.5

Give the Cauchy formula for the coefficients of Taylor and Laurent series, and describe
the Cauchy—FFT method. Give the formula for the coefficients of a Fourier series.
For which of the functions in Table 3.1.1 does another Laurent expansion also exist?

Describe by an example the balancing procedure that was mentioned in the subsection
about perturbation expansions.

Define the Chebyshev polynomials, and tell some interesting properties of these and
of Chebyshev expansions. For example, what do you know about the speed of con-
vergence of a Chebyshev expansion for various classes of functions? (The detailed
expressions are not needed.)

Describe and exemplify what is meant by an ill-conditioned power series and a pre-
conditioner for such a series.

(a) Define what is meant when one says that the series 280 a,x "

 converges to a function f(x) for x > R;
* represents a function f(x) asymptotically as x — oo.
(b) Give an example of a series that represents a function asymptotically as x — oo,

although it diverges for every finite positive x.

(c) What is meant by semiconvergence? Say a few words about termination criteria
and error estimation.

Problems and Computer Exercises

3.2.1 Some of the functions appearing in Table 3.1.1 and in other examples and problems

are not single-valued in the complex plane. Brush up your complex analysis and
find out how to define the branches, where these expansions are valid, and (if nec-
essary) define cuts in the complex plane that must not be crossed. It turns out not
to be necessary for these expansions. Why?

(a) If you have access to programs for functions of complex variables (or to com-
mands in some package for interactive computation), find out the conventions used
for functions like square root, logarithm, powers, arc tangent, etc. If the manual
does not give enough detail, invent numerical tests, both with strategically chosen
values of z and with random complex numbers in some appropriate domain around
the origin. For example, do you obtain

I
ln(z+1>—1n(z+1)+ln(z—1)=0 Vz?
-

Or, what values of +/z2 — 1 do you obtain for z = +i? What values should you
obtain, if you want the branch which is positive for z > 1?
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(b) What do you obtain if you apply Cauchy’s coefficient formula or the Cauchy—FFT
method to find a Laurent expansion for ,/z? Note that /z is analytic everywhere in
an annulus, but that does not help. The expansion is likely to become weird. Why?

3.2.2 Apply (on a computer) the Cauchy—FFT method to find the Maclaurin coefficients

3.2.3

a, of (say) e*, In(1 — z), and (1 + z)'/2. Conduct experiments with different values
of r and N, and compare with the exact coefficients. This presupposes that you
have access to good programs for complex arithmetic and FFT.

Try to summarize your experiences of how the error of a, depends on r, N. You
may find some guidance in Example 3.2.2.

(a) Suppose that r is located inside the unit circle; ¢ is real. Show that

1 —r2

T areosr 2 = | 22" cosnt

n=1

2rsint =
—2=2Zr sinnt.
1 —2rcost+r =

Hint: First suppose that r is real. Set z = re’. Show that the two series are the real
and imaginary parts of (1 + z)/(1 — z). Finally, make an analytic continuation of
the results.

(b) Let a be positive, x € [—a, a], while w is complex, w ¢ [—a, a]. Letr = r(w),
|r| < 1 be a root of the quadratic I QRw/a)r +1 = 0. Show that (with an
appropriate definition of the square root)

1 1 S o (X
w—xzm'(l+2zr T(;)) (w ¢ [—a, al, x € [—a, a]).

n=1

(c) Find the expansion of 1/(1 + x?) for x € [—1.5, 1.5] into the polynomials
T,(x/1.5). Explain the order of magnitude of the error and the main features of the
error curve in Figure 3.2.5.

Hint: Set w = i, and take the imaginary part. Note that » becomes imaginary.

o 0.5 1 1.5

Figure 3.2.5. The error of the expansion of f(x) = 1/(1 + x?) in a sum of

Chebyshev polynomials {T,,(x/1.5)}, n < 12.
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3.24

3.2.5

3.2.6

3.2.7

(a) Find the Laurent expansions for

f@Q=1/-D+1/(z—2).

(b) How do you use the Cauchy—FFT method for finding Laurent expansions? Test
your ideas on the function in the previous subproblem (and on a few other functions).
There may be some pitfalls with the interpretation of the output from the FFT
program, related to so-called aliasing; see Sec. 4.6.6 and Strang [339].

(c) As in Sec.3.2.1, suppose that F) is of bounded variation in [—7, 7] and

denote the Fourier coefficients of F”) by c,(,p ). Derive the following generalization

of (3.2.7):
(—1 1 AN FO () — FO (=) o

2 . (in)J/+1 @in)r’
Jj=0

n

Show that if we add the condition that F € C/[—o0, 00], j < p, then the asymptotic
results given in (and after) (3.2.7) hold.

(d)Letz = $(w + w™). Show that |z — 1| + |z + 1| = [w] + |w|~".

Hint: Use the parallelogram law, |p — q|*> + |p + q1> = 2(|p|> + Iq1?).

(a) The expansion of arcsinh ¢ into powers of ¢, truncated after ¢7, is obtained from
Problem 3.1.6 (b). Using economization of a power series, construct from this a
polynomial approximation of the form ¢, 4 c3¢> for the interval ¢ € [— %, %]. Give
bounds for the truncation error for the original truncated expansion and for the
economized expansion.

(b) The graph of Tp¢(x) for x € [—1, 1] is shown in Figure 3.2.1. Draw the graph
of Tro(x) for (say) x € [—1.1, 1.1].

Compute a few terms of the expansions into powers of € or k of each of the roots
of the following equations, so that the error is 0(€?) or O(k™?) (e is small and
positive; k is large and positive). Note that some terms may have fractional or
negative exponents. Also try to fit an expansion of the wrong form in some of these
examples, and see what happens.

@UA+ez2—e=0; (b)ez?—722+1=0; (c)ez®—z+1=0;

Dz = (kK> + D22 — k> =0, (k> > 1).

The solution of the boundary value problem
(1+e)y" —ey=0, y0)=0, y(I)=1,

has an expansion of the form y(z; €) = yo(¢) + y1(t)e + yz(t)e2 + .-

(a) By coefficient matching, set up differential equations and boundary conditions
for yo, y1, y2, and solve them. You naturally use the boundary conditions of the
original problem for y,. Make sure you use the right boundary conditions for
Y1, Y2

(b) Set R(t) = yo(t) + €y1(t) — y(t; €). Show that R(¢) satisfies the (modified)
differential equation

(14+€)R" —eR=€*Tt —13)/6, R(@©0)=0, R()=0.
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3.2.8

3.2.9

(a) Apply Kummer’s first identity (3.2.39) to the error function erf(x), to show that

2 2 3 2 2x% (2x%)? 2x%)3

Why is this series well-conditioned? (Note that it is a bell sum; compare Fig-
ure 3.2.3.) Investigate the largest term, rounding errors, truncation errors, and
termination criterion.

(b) erfc(x) has a semiconvergent expansion for x >> 1 that begins

42
ex

e 1,3 15 )
CoxJT 2x2  4x* 8x° ’

fo(x) = 1 — erf(x) 2/00 - dt
Ceric(x) = —Ceri(x) = —— e
NER

Give an explicit expression for the coefficients, and show that the series diverges
for every x. Where is the smallest term? Estimate its size.

Hint: Set t> = x* + u, and proceed analogously to Example 3.2.8. See Prob-
lem 3.1.7(c), « = %, about the remainder term. Alternatively, apply repeated
integration by parts; it may be easier to find the remainder in this way.

Other notations for series, with application to Bessel functions.
(a) Set

Fo=Y g =" =Y

n=0 ’ n=0 ’ n=0

pw) =Y = py =3 ) =
n=0

n'n! nln!’
n=0 n=0

n < n
VnW
9

Leth(x) = f(x) - g(x), x(w) = ¢(w) - ¥(w). Show that

n

n 2
Cn = Z <‘r;>ajbnj’ Yn = Z (;l) Oljﬁnfjﬂ

j=0 j=0

Derive analogous formulas for series of the form Zf;o a,w"/(2n)!.
Suggest how to divide two power series in these notations.

(b) Leta; = (—l)ja}, g(x) = €*. Show that

n

=Y (?)(—1)-/&;.

Jj=0

Comment: By (3.2.1), this can also be written ¢, = (—1)"A"ay. This proves the
mathematical equivalence of the preconditioners (3.1.55) and (3.1.59) if P(x) = e*.

(c) Set, according to Example 3.2.8 and part (a) of this problem, w = —x2/4,

o0 o0 n

—Dw" = n "
Jo(x) = Z u Io(x) = Z % 1J(x) = Ip(x)Jo(x) = Z ):1,1::, :
n: n=0 e

n'n!
n=0 n=0
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3.2.10.

3.2.11.

Show that

o (MY 2 [Eom @) itn =2m,
" ;( Y <j>(n—j) { 0 itn=2m+1.

Hint: The first expression for y,, follows from (a). It can be interpreted as the
coefficient of " in the product (1 —#)" (1 +¢)". The second expression for y, is the
same coefficient in (1 — #%)".

(d) The second expression for y, in (c) is used in Example 3.2.8.97 Reconstruct
and extend the results of that example. Design a termination criterion. Where
is the largest modulus of a term of the preconditioned series, and how large is
it approximately? Make a crude guess in advance of the rounding error in the
preconditioned series.

(e) Show that the power series of Jy(x) can be written in the form

e (_x2)n
D an ol
n=0
where a, is positive and decreases slowly and smoothly.
Hint: Compute a,+/ay.
(f) It is known (see Lebedev [240, eq. (9.13.11)]) that

. 1
Jo(x) =e "M (E 1; 2ix) ,

where M (a, b, ¢) is Kummer’s confluent hypergeometric function, this time with
an imaginary argument. Show that Kummer’s first identity is unfortunately of no
use here for preconditioning the power series.

Comment: Most of the formulas and procedures in this problem can be generalized
to the series for the Bessel functions of the first kind of general integer order,
(z/2)7"J,(x). These belong to the most studied functions of applied mathematics,
and there exist more efficient methods for computing them; see, e.g., Press etal. [294,
Chapter 6]. This problem shows, however, that preconditioning can work well for
a nontrivial power series, and it is worth being tried.

(a) Derive the expansion of Example 3.2.5 by repeated integration by parts.

(b) Derive the Maclaurin expansion with the remainder according to (3.1.5) by the
application of repeated integration by parts to the equation

1
F@ = fO) =2z /0 Fand(—1).

Show the following generalization of Theorem 3.2.5. Assume that | f(z)| < M for
ze€ &g Let|¢] €&,,1 < p <r < R—e. Then the Chebyshev expansion of f(¢)

71t is much better conditioned than the first expression. This may be one reason why multiple precision is not
needed here.
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satisfies the inequality

2M(p/R)"

n—1
’ﬂo—;;qn@ﬁsl_pm.

Hint: Setw = ¢ +/¢2 — 1, and show that |T;(¢)| = |3 (0’ + 07| < p/.

3.3 Difference Operators and Operator Expansions

3.3.1 Properties of Difference Operators

Difference operators are handy tools for the derivation, analysis, and practical application
of numerical methods for many problems for interpolation, differentiation, and quadrature
of a function in terms of its values at equidistant arguments. The simplest notations for
difference operators and applications to derivatives were mentioned in Sec. 1.1.4.

Let y denote a sequence {y,}. Then we define the shift operator E (or translation
operator) and the forward difference operator A by the relations

Ey = {ys11} Ay = {Ypt1 — Yn);

E and A are thus operators which map one sequence to another sequence. Note, however,
that if y, is defined for a < n < b only, then Ey, is not defined, and the sequence Ey
has fewer elements than the sequence y. (It is therefore sometimes easier to extend the
sequences to infinite sequences, for example, by adding zeros in both directions outside the
original range of definition.)

These operators are linear, i.e., if «, 8 are real or complex constants and if y, z are
two sequences, then E(ay + fz) = ¢ Ey + BEz, and similarly for A.

Powers of E and A are defined recursively, i.e.,

Efy = E(Ely),  afy = Ak ly).

By induction, the first relation yields EXy = {y,+}. We extend the validity of this relation
to k = 0 by setting E°y = y and to negative values of k. Afy is called the kth difference
of the sequence y. We make the convention that A® = 1. There will be little use of A¥ for
negative values of & in this book, although A~! can be interpreted as a summation operator.

Note that Ay = Ey — y, and Ey = y + Ay for any sequence y. It is therefore
convenient to express these as equations between operators:

A=E—1, E=1+A.

The identity operator is in this context traditionally denoted by 1. It can be shown that all
formulas derived from the axioms of commutative algebra can be used for these operators,
for example, the binomial theorem for positive integral k,

k

k

A= (E - 1Df= § :(—1)k—f<k,>Ef, Ef =14 A)f = § :(’;)& (3.3.1)
: J
j=0

j=0
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giving

k

k
Mk k .
(M), =Y (=D (}.)ynﬂ, Ypk = (B y) =) (J.)(Afy)n. (33.2)
Jj=0 Jj=0

We abbreviate the notation further and write, for example, Ey, = y,; instead of (Ey), =
Ynt1, and AFy, instead of (A¥y),. But it is important to remember that A operates on
sequences and not on elements of sequences. Thus, strictly speaking, this abbreviation is
incorrect, though convenient. The formula for E K will, in the next subsection, be extended
to an infinite series for nonintegral values of &, but that is beyond the scope of algebra.

A difference scheme consists of a sequence and its difference sequences, arranged in
the following way:

Yo
Ayo
i A?yg
Ay Ay
» A%y, Aty
Ay, Ay,
y3 A%y,
Ay;
Ya

A difference scheme is best computed by successive subtractions; the formulas in (3.3.1)
are used mostly in theoretical contexts.

Inmany applications the quantities y, are computedinincreasingordern =0, 1,2, ...,
and it is natural that a difference scheme is constructed by means of the quantities previously
computed. One therefore introduces the backward difference operator

Vyn =Yn = Yn—1=(1— E_l)yn~
For this operator we have
VE =1 — E~YH, E™F =1 = W)k (3.3.3)
Note the reciprocity in the relations between V and E~!.
Any linear combination of the elements y,, y,_1, ..., Yn_r can also be expressed as
a linear combination of y,, V¥, ..., VFy,, and vice versa.®® For example,

Yo+ Yu-1+ Yn2 =3y, —3Vy, + szn,

because | + E-' + E72 =1+ (1 — V) + (1 — V)?> =3 — 3V + V2. By reciprocity, we
also obtain y, + Vy, + V?y, =3y, — 3yu—1 + Yu2.

68An analogous statement holds for the elements y,, Y41, - .., Ytk and forward differences.
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In this notation the difference scheme reads as follows.

Yo
Vyi
Vi V2
Vy Vys
y2 V2ys Vi,
Vy3 V34
y3 V24
Vys
Ya

In the backward difference scheme the subscripts are constant along diagonals directed
upward (backward) to the right, while in the forward difference scheme subscripts are
constant along diagonals directed downward (forward). Note, for example, that V¥y, =
A*y,_x. In a computer, a backward difference scheme is preferably stored as a lower
triangular matrix.

Example 3.3.1.
Part of the difference scheme for the sequence y = {...,0,0,0,1,0,0,0,...} is
given below.

0 1 =7

0 1 —6 28
0 1 -5 21

0 1 —4 15 —56
1 -3 10 =35

1 -2 6 -20 70
-1 3 —10 35

0 1 —4 15 —56
0 -1 5 -21

0 1 —6 28
0 —1 7

This example shows the effect of a disturbance in one element on the sequence of the
higher differences. Because the effect broadens out and grows quickly, difference schemes
are useful in the investigation and correction of computational and other errors, so-called
difference checks. Notice that, since the differences are linear functions of the sequence,
a superposition principle holds. The effect of errors can thus be estimated by studying
simple sequences such as the one above.
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Example 3.3.2.
The following is a difference scheme for a five-decimal table of the function f(x) =
tan x, x € [1.30, 1.36], with step & = 0.01. The differences are given with 1073 as unit.

X y Vy Viy V3iy V4y Vy Vo
1.30 3.60210
14498
1.31 3.74708 1129
15627 140
1.32 3.90335 1269 26
16896 166 2
1.33 4.07231 1435 28 9
18331 194 11
1.34  4.25562 1629 39
19960 233
1.35 4.45522 1862
21822
1.36  4.67344

We see that the differences decrease roughly by a factor of 0.1—that indicates that the step
size has been chosen suitably for the purposes of interpolation, numerical quadrature, etc.
until the last two columns, where the rounding errors of the function values have a visible
effect.

Example 3.3.3.
For the sequence y, = (—1)" one finds easily that

Vyn = 2)’n, szn = 4yna B kan = Zkyw

If the errors in the elements of the sequence are bounded by e, it follows that the errors of
the kth differences are bounded by 2¥¢. A rather small reduction of this bound is obtained
if the errors are assumed to be independent random variables (cf. Problem 3.4.24).

It is natural also to consider difference operations on functions not just on sequences.
E and A map the function f onto functions whose values at the point x are

Ef(x) = f(x+h), Af(x) = fx+h) — fx),

where £ is the step size. Of course, A f depends on /; in some cases this should be indicated in
the notation. One can, for example, write Ay, f (x), or Af (x; h). If weset y, = f(xo+nh),
the difference scheme of the function with step size & is the same as for the sequence {y,}.
Again it is important to realize that, in this case, the operators act on functions, not on the
values of functions. It would be more correct to write f(xo + h) = (Ef)(xp). Actually,
the notation (x¢) Ef would be even more logical, since the insertion of the value of the
argument x is the last operation to be done, and the convention for the order of execution
of operators proceeds from right to left.%

%9The notation [x0]f occurs, however, naturally in connection with divided differences; see Sec.4.2.1.
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Note that no new errors are introduced during the computation of the differences,
but the effects of the original irregular errors, for example, rounding errors in 'y, grow
exponentially. Note that systematic errors, for example, truncation errors in the numerical
solution of a differential equation, often have a smooth difference scheme. For example, if
the values of y have been produced by the iterative solution of an equation, where x is a
parameter, with the same number of iterations for every x and y and the same algorithm for
the first approximation, then the truncation error of y is likely to be a smooth function of x.

Difference operators are in many respects similar to differentiation operators. Let f
be a polynomial. By Taylor’s formula,

1
Af(x)= f(x+h) — f(x)=hf'(x)+ Ehzf”(X) 4

We see from this that deg Af = deg f — 1. Similarly, for differences of higher order, if f
is a polynomial of degree less than k, then

A1 £ (x) = constant, AP f(x) =0Vp > k.

The same holds for backward differences.

The following important result can be derived directly from Taylor’s theorem with
the integral form of the remainder. Assume that all derivatives of f up to kth order are
continuous. If f € C¥,

AR Fx) =R f®@), ¢ elx,x +kh]. (3.3.4)

Hence h~*AK f(x) is an approximation to f® (x); the error of this approximation ap-
proaches zero as h — 0 (i.e., as { — x). As arule, the error is approximately proportional
to h. We postpone the proof to Sec. 4.2.1, where it appears as a particular case of a theorem
concerning divided differences.

Even though difference schemes do not have the same importance today that they had
in the days of hand calculations or calculation with desk calculators, they are still important
conceptually, and we shall also see how they are still useful in practical computing. In a
computer it is more natural to store a difference scheme as an array, with y,, Vy,, V2 Vs o nns
V¥y, in a row (instead of along a diagonal).

Many formulas for differences are analogous to formulas for derivatives, though
usually more complicated. The following results are among the most important.

Lemma 3.3.1.
It holds that

A @) = (@" = DFa”, Vi@ = (1 —aMHka*. (3.3.5)
For sequences, i.e., if h = 1,

A¥a") = (a — D¥a"), A"y = (21, (3.3.6)

Proof. Let ¢ be a given constant. For k = 1 we have

I/ X

A(ca®) = ca™™ — ca® = ca*a" — ca* = c(a" — 1)a”.

The general result follows easily by induction. The backward difference formula is derived
in the same way. a
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Lemma 3.3.2 (Difference of a Product).

A(u,v,) = uyAvy, + Auy v,y . (3.3.7)

Proof. We have

Au, Un) = Up+1VUn+1 — UnpUp

=ty (Vps1 — V) + Upg1 — Up)Vpy-

Compare the above result with the formula for differentials, d(uv) = udv + vdu. Note that
we have v,1 (not v,) on the right-hand side. 00

Lemma 3.3.3 (Summation by Parts).

N—1 N—1
Z U, AV, = UNVN — UQVy — Z Aly Vyy. 3.3.8)
n=0 n=0

Proof. (Compare with the rule for integration by parts and its proof!) Notice that

D Awy = (w1 — wo) + (wy — wi) 4+ + (wy — wy-1)
= WN — Wy.

Use this on w, = u,v,. From the result in Lemma 3.3.1 one gets after summation

N—-1 N-1
UNUN — UpVy = E u, Av, + E Aann-',-la
n=0 n=0

and the result follows. (For an extension, see Problem 3.3.2 (d).) O

3.3.2 The Calculus of Operators

Formal calculations with operators, using the rules of algebra and analysis, are often an
elegant means of assistance in finding approximation formulas that are exact for all polyno-
mials of degree less than (say) k, and they should therefore be useful for functions that can be
accurately approximated by such a polynomial. Our calculations often lead to divergent (or
semiconvergent) series, but the way we handle them can usually be justified by means of the
theory of formal power series, of which a brief introduction was given at the end of Sec. 3.1.5.
The operator calculations also provide error estimates, asymptotically valid as the step size
h — 0. Rigorous error bounds can be derived by means of Peano’s remainder theorem in
Sec.3.3.3.

Operator techniques are sometimes successfully used (see Sec. 3.3.4) in a way that is
hard, or even impossible, to justify by means of formal power series. It is then not trivial
to formulate appropriate conditions for the success and to derive satisfactory error bounds
and error estimates, but it can sometimes be done.
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We make a digression about terminology. More generally, the word operator is in
this book used for a function that maps a linear space S into another linear space S'. S
can, for example, be a space of functions, a coordinate space, or a space of sequences. The
dimension of these spaces can be finite or infinite. For example, the differential operator
D maps the infinite-dimensional space C![a, b] of functions with a continuous derivative,
defined on the interval [a, b], into the space C[a, b] of continuous functions on the same
interval.

In the following we denote by P, the set of polynomials of degree less than n.”® Note
that P, is an n-dimensional linear space for which {1, x, x%, ..., x"" '} is a basis called the
power basis; the coefficients (cy, ¢, ..., ¢,) are then the coordinates of the polynomial p
defined by p(x) = Y ", ¢;x'~ L.

For simplicity, we shall assume that the space of functions on which the operators
are defined is C*°(—o00, o0), i.e., the functions are infinitely differentiable on (—o0, 00).
This sometimes requires (theoretically) a modification of a function outside the bounded
interval, where it is interesting. There are techniques for achieving this, but they are beyond
the scope of this book. Just imagine that they have been applied.

We define the following operators:

Ef(x)=f(x+h) Shift (or translation) operator,
Af(x)=f(x+h)— f(x) Forward difference operator,
VIix)=fx)— f(x —h) Backward difference operator,
Df(x) = f'(x) Differentiation operator,
8f(x) = f(x + %h) — fx— %h) Central difference operator,

wuf(x) = %(f(x + %h) + fx — %h)) Averaging operator.

Suppose that the values of f are given on an equidistant grid only, e.g., x; = xo + jh,
J =—M : N (jisaninteger). Set f; = f(x;). Note that §f;, 83fj, ... (odd powers) and
wf; cannot be exactly computed; they are available halfway between the grid points. (A
way to get around this is given later; see (3.3.45).) The even powers 8% f;, §*f;, ... and
wof;, ws3 fjs ... can be exactly computed. This follows from the formulas

u8f(x)=%(f(x+h)—f(x—h)), MS:%(A—i—V), $2=A-V. (339

Several other notations are in use. For example, in the study of difference methods for partial
differential equations D, Dy, and D_j, are used instead of A, ud, and V, respectively.
An operator P is said to be a linear operator if

P(af +Bg) =aPf +BPg

holds for arbitrary complex constants «, 8 and arbitrary functions f, g. The above six
operators are all linear. The operation of multiplying by a constant « is also a linear
operator.

70Some authors use similar notations to denote the set of polynomials of degree less than or equal to 7.
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If P and Q are two operators, then their sum and product can be defined in the
following way:

(P+O)f =Pf+0f,
(P-0)f=Pf—-0f,
(PO)f = P(Qf),
(@P)f =a(Pf),
P'f=P-P-.-Pf, nfactors.

Two operators are equal, P = Q,if Pf = Qf,forall f in the space of functions considered.
Notice that A = E — 1. One can show that the following rules hold for all linear operators:

P+Q0=0+P, P+(Q+R)=(P+0)+R,
P(Q+R)=PQ+ PR, P(QR) = (PO)R.

The above six operators, E, A, V, hD, §, and p, and the combinations of them by these
algebraic operations make a commutative ring. Thus, P Q = Q P holds for these operators,
and any algebraic identity that is generally valid in such rings can be used.

If S = R", &' = R™, and the elements are column vectors, then the linear operators
are matrices of size [m, n]. They generally do not commute.

If &’ = R or C, the operator is called a functional. Examples of functionals are, if
xo denotes a fixed (though arbitrary) point,

1 1
Lf = f(x0), Lf = f'(xo), Lf=/0 e f(x)dx, /0 | £ ) dx;

all except the last one are linear functionals.

There is a subtle distinction here. For example, E is a linear operator that maps a
function to a function. Ef is the function whose value at the point x is f(x + h). If we
consider a fixed point xg, then (Ef)(x¢) is a scalar. This is therefore a linear functional.
We shall allow ourselves to simplify the notation and to write Ef(xp), but it must be
understood that E operates on the function f, not on the function value f(xg). This was
just one example; simplifications like this will be made with other operators than E, and
similar simplifications in notation were suggested earlier in this chapter. There are, however,
situations where it is, for the sake of clarity, advisable to return to the more specific notation
with a larger number of parentheses.

If we represent the vectors in R” by columns y, the linear functionals in R” are the
scalar products a’ x = Y"1, a;y;; every row a’ thus defines a linear functional.

Examples of linear functionals in P are linear combinations of a finite number of
function values, Lf = ) a; f(x;). If x; = xo + jh the same functional can be expressed
in terms of differences, e.g., > a; AJ f(xo); see Problem 3.3.4. The main purpose of this
section is to show how operator methods can be used for finding approximations of this form
to linear functionals in more general function spaces. First, we need a general theorem.
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Theorem 3.3.4.
Let x1, X2, ..., xXx be k distinct real (or complex) numbers. Then no nontrivial
relation of the form
k
Zajf(xj) =0 (3.3.10)
j=1

can hold for all f € Py. If we add one more point (xg), there exists only one nontrivial
relation of the form lezo a;.f(xj) = 0 (except that it can be multiplied by an arbitrary
constant). In the equidistant case, i.e., if x; = xo + jh, then

k
> f () = A o), € A0,

j=0

Proof. If (3.3.10) were valid for all f € P, then the linear system lef:l x;_laj =0,
i = 1 : k, would have a nontrivial solution (aj, ay, ..., a;). The matrix of the system,
however, is a Vandermonde matrix,’

_ i—11k _
V= [xj ]i,j=1 =

(3.3.11)
Al e
(see Problem 3.3.1). Its determinant can be shown to equal the product of all differences,
ie.,
det(V) = ]—[ (xi — x)). (3.3.12)

I<i<j<k

This is nonzero if and only if the points are distinct.
Now we add the point xy. Suppose that there exist two relations,

k k
Dobifx)=0, Y ¢jfx)=0,
Jj=0

Jj=0

with linearly independent coefficient vectors. Then we can find a (nontrivial) linear combi-
nation, where x( has been eliminated, but this contradicts the result that we have just proved.
Hence the hypothesis is wrong; the two coefficient vectors must be proportional.

We have seen above that, in the equidistant case, Ak f(xo) = 0 is such a relation.
More generally, we shall see in Chapter 4 that, for k 4 1 arbitrary distinct points, the kth
order divided difference is zero for all f € Py. a

71 Alexandre Théophile Vandermonde (1735—-1796), member of the French Academy of Sciences, is regarded as
the founder of the theory of determinants. What is now referred to as the Vandermonde matrix does not seem to
appear in his writings!
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Corollary 3.3.5.

Suppose that a formula for interpolation, numerical differentiation, or integration has
been derived by an operator technique. If it is a linear combination of the values of f(x)
at k given distinct points x;, j =1 : k, and is exact for all f € Py, this formula is unique.
(If it is exact for all f € P,, m < k, only, it is not unique.)
In particular, for any {cj}’;:], a unique polynomial P € Py is determined by the
interpolation conditions P(x;) =cj, j =1 :k.

Proof. The difference between two formulas that use the same function values would lead
to a relation that is impossible, by the theorem. 0

Now we shall go outside of polynomial algebra and consider also infinite series of
operators. The Taylor series

/ h2 " h3 "
f(X+h)=f(X)+hf(x)+5f (X)+§f () +---
can be written symbolically as

(hD)* (kD)
TR +"'>f'

We can here treat 4D like an algebraic indeterminate, and consider the series inside the

parenthesis (without the operand) as a formal power series.””

For a formal power series the concepts of convergence and divergence do not exist.
When the operator series acts on a function f, and is evaluated at a point ¢, we obtain an
ordinary numerical series, related to the linear functional Ef (c) = f(c+h). We know that
this Taylor series may converge or diverge, depending on f, ¢, and A.

Roughly speaking, the last part of Sec.3.1.5 tells us that, with some care, “analytic
functions” of one indeterminate can be handled with the same rules as analytic functions of
one complex variable.

Ef=(1+hD+

Theorem 3.3.6.
P=E=14+A, ee"=E'=1-V,
1
2sinh ZhD = e"PI2— ghPI2 = §,
(1+A) = (") =P, (6 eR).
Proof. The first formula follows from the previous discussion. The second and the third

formulas are obtained in a similar way. (Recall the definition of §.) The last formula follows
from the first formula together with Lemma 3.1.9 (in Sec. 3.1.5). O

It follows from the power series expansion that
(@) f(x) = " f(x) = f(x +Oh),

72We now abandon the bold face notation for indeterminates and formal power series used in Sec. 3.1.5 for the
function e"P which is defined by this series. The reader is advised to take a look again at the last part of Sec. 3.1.5.
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when it converges. Since E = ¢"? it is natural to define
E°f(x) = f(x +0h),

and we extend this definition to such values of 6 that the power series for e?*? f(x) is
divergent. Note that, for example, the formula

E"E" f(x) = E"*" f(x)

follows from this definition.
When one works with operators or functionals it is advisable to avoid notations like
Ax", De**, where the variables appear in the operands. For two important functions we
therefore set
Fy : Fy(x) = €%, fo: fu(x) =x". (3.3.13)

Let P be any of the operators mentioned above. When applied to F, it acts like a scalar
that we shall call the scalar of the operator’> and denote by sc(P):

PF, = sc(P)F,.

We may also write sc(P; ha) if it is desirable to emphasize its dependence on ha. (We
normalize the operators so that this is true; for example, we work with 4D instead of D.)
Note that

sc(BP +y Q) = Bsc(P) + ysc(Q), (B,y €0),
sc(P Q) = sc(P)sc(Q).

For our most common operators we obtain

SC(EG) — e@ha,
sc(V)=sc(1—EH=1—¢",
sc(A) =sc(E—1) =¢€"—1,
sc(8) = sc(E? — E71/?) = ohe/2 _ g=ha/2,
Let O, be one of the operators 1D, A, §, V. It follows from the last formulas that

se(Qi) ~ha, (= 0);  lse(Qn)] < [haje™,

The main reason for grouping these operators together is that each of them has the important
property (3.3.4),1.e., Qﬁ fleo) = h* f ®) (£), where ¢ lies in the smallest interval that contains
all the arguments used in the computation of QIZ f(c). Hence,

fePe = Q'f=0 Vanxk (3.3.14)

This property’* makes each of these four operators well suited to be the indeterminate in a
formal power series that, hopefully, will be able to generate a sequence of approximations,

731n applied Fourier analysis this scalar is, for @ = iw, often called the symbol of the operator.
74The operators E and u do not possess this property.
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Ly, Ly, Ls..., to a given linear operator L. L, is the nth partial sum of a formal power
series for L. Then
fePe = L,f=Lf Vn=>k. (3.3.15)

We shall see in the next theorem that, for expansion into powers of Qj,
lim L, f(x)=Lf(x)
n— o0

if f is a polynomial. This is not quite self-evident because it is not true for all functions f,
and we have seen in Sec. 3.1.5 that it can happen that an expansion converges to a “wrong
result.” We shall see more examples of that later. Convergence does not necessarily imply
validity.

Suppose that z is a complex variable, and that ¢ (z) is analytic at the origin, i.e., ¢ (z)
is equal to its Maclaurin series, (say)

¢(2) =a)+aiz+azt+---,

if |z] < p for some p > 0. For multivalued functions we always refer to the principal
branch. The operator function ¢ (Q},) is usually defined by the formal power series,

#(0n) =ao+a1Qp+ a0} + -+,

where Q) is treated like an algebraic indeterminate.

The operators E, h D, A, §, V, and p are related to each others. See Table 3.3.1, which
is adapted from an article by the eminent blind British mathematician W. G. Bickley [25].
Some of these formulas follow almost directly from the definitions; others are derived in
this section. We find the value sc(-) for each of these operators by substituting « for D in
the last column of the table. (Why?)

Table 3.3.1. Bickley’s table of relations between difference operators.

E A B v hD
1
1¢2 1 hD
E E 1+A 1+ 482 +38,/1+ 182 v eh
1¢2 1¢2 v hD
A E—1 A syL+ 182+ 18 — el — 1
1-v
B EV2_E-12  AQ4A)"12 B V(1 -V)~Y2 2sinh 1hD
A
-1 1 1¢2 —hD
v 1-E T A 814382 — 36 v l—e
hD InE In(1 + A) 2sinh™' 15 —In(1 - V) hD
1+1a 1-1v
1opl1/2 —1/2 2 152 2 1
n S(EVE+ETV%) TEWSLE V1438 TELE cosh 5hD

Example 3.3.4.
The definition of V reads in operator form E~! = 1 — V. This can be looked upon as
a formal power series (with only two nonvanishing terms) for the reciprocal of E with V as
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the indeterminate. By the rules for formal power series mentioned in Sec. 3.1.5, we obtain
uniquely
E=EN"'=1-V)"=14V+V+....

We find in Table 3.3.1 an equivalent expression containing a fraction line. Suppose that we
have proved the last column of the table. Thus, sc(V) =1 — e~ hence

sc((1 = V)™ H = (e7") ™1 = e = sc(E).

Example 3.3.5.

Suppose that we have proved the first and the last columns of Bickley’s table (except
for the equation hD = In E). We shall prove one of the formulas in the second column,
namely the equation

§=A(1+A)"V2
By the first column, the right-hand side is equal to (E — 1)E~Y/2 = E/2 — E~1/2 = §,
We shall also compute sc(A(1 + A)~!/?). Since sc(A) = " — 1 we obtain

sc(A(1 4+ A2y = (M — 1) ()12 = hal2 _ g=ha/2

1
= 2sinh Eha = sc(f).

With the aid of Bickley’s table, we are in a position to transform L into the form
@ (Qn)Ry. (A sum of several such expressions with different indeterminates can also be
treated.)

e Qy is the one of the four operators, hD, A, §, V, which we have chosen to be the
“indeterminate.”

Lf ~¢(Qn)f =(a+a1Qn+ a0t +--)f. (3.3.16)

The coefficients a; are the same as the Maclaurin coefficients of ¢(z), z € C, if
¢(z) is analytic at the origin. They can be determined by the techniques described in
Sec.3.1.4 and Sec. 3.1.5. The meaning of the relation ~ will hopefully be clear from
the following theorem.

* R; is, e.g., u8 or EX, k integer, or more generally any linear operator with the
properties that R, F,, = sc(Ry)F,, and that the values of R;, f (x,) on the grid x, =
Xo + nh, n integer, are determined by the values of f on the same grid.

Theorem 3.3.7.
Recall the notation Q, for either of the operators A, §£, V, hD, and the notations
Fy(x) = e*, f,(x) = x". Note that

F=Y" %fn (x). (3.3.17)
n=0

Also recall the scalar of an operator and its properties, for example,
LF, =sc(L)Fy, Q) Fu = (s¢(Qn) Fus

for the operators under consideration the scalar depends on ha.
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We make the following assumptions:

(i) A formal power series equation L = Z?O:O a;Q; has been derived.” Furthermore,
Isc(Qn)| < p, where p is the radius of convergence of the series Y a;z’, z € C, and

oo
se(L) =Y a;(sc(Qn))’. (3.3.18)
j=0
(i) At a = 0 it holds that
87! n
L—F,(x) = LF,
S Ful) = o (LF) ()
or, equivalently,
Fy(x)d LF, d
L/ Feda [ (LF)x)da (3.3.19)
an+l c Ol"+1

where C is any circle with the origin as center.
(iii) The domain of x is a bounded interval I} in R.

Then it holds that

LF, = (Za,-Q,ﬁ)Fa if [sc(Qn)] < p, (3.3.20)
j=0
k—1 }
Lf(x) =Y a;0)f(x) if f €P (3.3.21)
j=0

for any positive integer k.
A rigorous error bound for (3.3.21), if f ¢ Px, is obtained in Peano’s theorem (3.3.8).
An asymptotic error estimate (as h — 0 for fixed k) is given by the first neglected
nonvanishing term a, Q} f(x) ~ a,(hD)" f(x), r = k, if f € C"[I], where the interval 1
must contain all the points used in the evaluation of Q}, f (x).

Proof. By assumption (i),

J—1 J—1 J-1

_ o e(ONF — i I F — 1 i
LF, =sc(L)F, = Jlingoggajsc(Qh)Fa Jlgr;ogga, Q) F, = lim <2£a, Qh> F,,
J= J=! J=

hence LF, = (Z Y h)F This proves the first part of the theorem.
By (3.3.17), Cauchy s formula (3.2.8), and assumption (ii),

2mi / Fy(x)da (LF)(x)da

WLf”(x) =L ot gt

C

a; Q) Fy(x) da =L ajsc(Qp)! Fy(x) da
/Z O{'H'l /CZ antl :
j=J

75To simplify the writing, the operator R}, is temporarily neglected. See one of the comments below.
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Let € be any positive number. Choose J so that the modulus of the last term becomes
€6,2m /n!, where |6,| < 1. This is possible, since |sc(Q,)| < p; see assumption (i). Hence,
for every x € I,

n SN [ Fy()da = , =
Lfy(x) = €6, = 5 — X;aj 0; / e ZO O fu(x) = _Z;an;,mx).
Jj= = Jj=

The last step holds if J > k > n because, by (3.3.14), Q{;f,l = 0 for j > n. It follows that

k—1

‘Lfn(x)—Zanimx)

Jj=0

<e Ve>0,

and hence Lf, = Y\"g a; 0 f-

If f € P4, f isalinear combinationof f,,n =0:k—1. Hence Lf = Z _0 aj th
if f € Pi. This proves the second part of the theorem.

The error bound is derived in Sec.3.3.1. Recall the important formula (3.3.4) that
expresses the kth difference as the value of the kth derivative in a point located in an interval
that contains all the points used in the computation of the kth difference; i.e., the ratio of
the error estimate a,(hD)" f (x) to the true truncation error tends to 1, as A — 0. 0

Remark 3.3.1. This theorem is concerned with series of powers of the four operators
collectively denoted Q;,. One may try to use operator techniques also to find a formula
involving, for example, an infinite expansion into powers of the operator £. Then one
should try afterward to find sufficient conditions for the validity of the result. This procedure
will be illustrated in connection with Euler—Maclaurin’s formula in Sec. 3.4.5.

Sometimes, operator techniques which are not covered by this theorem can, after
appropriate restrictions, be justified (or even replaced) by transform methods, for example,
z-, Laplace, or Fourier transforms.

The operator R;, that was introduced just before the theorem was neglected in the
proof in order to simplify the writing. We now have to multiply the operands by Rj, in the
proof and in the results. This changes practically nothing for F,, since R, F, = sc(Rj) Fy.
In (3.3.21) there is only a trivial change, because the polynomials f and R; f may not have
the same degree. For example, if R, = ud and f € Py, then R, f € Py_,. The verification
of the assumptions typically offers no difficulties.

It follows from the linearity of (3.3.20) that it is satisfied also if F, is replaced by a
linear combination of exponential functions F, with different o, provided that [sc(Qj)| < p
for all the occurring o. With some care, one can let the linear combination be an infinite
series or an integral.

There are two things to note in connection with the asymptotic error estimates. First,
the step size should be small enough; this means in practice that, in the beginning, the
magnitude of the differences should decrease rapidly, as their order increases. When the
order of the differences becomes large, it often happens that the moduli of the differences
also increase. This can be due to two causes: semiconvergence (see the next comment)
and/or rounding errors.
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The rounding errors of the data may have such large effects on the high-order dif-
ferences (recall Example 3.3.2) that the error estimation does not make sense. One should
then use a smaller value of the order k, where the rounding errors have a smaller influence.
An advantage with the use of a difference scheme is that it is relatively easy to choose the
order k adaptively, and sometimes the step size & also.

This comment is of particular importance for numerical differentiation. Numerical
illustrations and further comments are given below in Example 3.3.6 and Problem 3.3.7 (b),
and in several other places.

The sequence of approximations to Lf may converge or diverge, depending on f
and h. It is also often semiconvergent (recall Sec. 3.2.6), but in practice the rounding errors
mentioned in the previous comment have often, though not always, taken over already,
when the truncation error passes its minimum; see Problem 3.3.7 (b).

By Theorem 3.3.6, e = 1 — V. We look upon this as a formal power series; the
indeterminate is @, = V. By Example 3.1.11,

1 1
L:hD:—ln(l—V):V+§V2+§V3+~-~. (3.3.22)

Now we present verification of the assumptions of Theorem 3.3.7:76

(i) sc(V) =1 — e~"; the radius of convergence is p = 1.

sc(L) = sc(hD) = ha; Zsc(V)j/j =—In(1—-(1 - e’h“)) = ha.
j=1

The convergence condition |sc(V)| < 1 reads hae > —In2 = —0.69 if « is real,
lho| < 7/3ifa =iw.

n

]
(ii)) Fora =0, D

() = Dx" = nx""!'. By Leibniz’ rule
dar™ y

n

(e = 0x" 4+ nx"~".
o

By the theorem, we now obtain the backward differentiation formula that is exact
for all f € Py:

hf'(x) = v+1v2+1v3+~-~+Lv"*1 f(x) (3.3.23)
~ 2 3 k—1 ' -

By Theorem 3.3.4, this is the unique formula of this type that uses the values of f(x) at the
k points x,, : —h : x,_;+1. The same approximation can be derived in many other ways,
perhaps with a different appearance; see Chapter 4. This derivation has several advantages;
the same expansion yields approximation formulas for every k, and if f € C*, f ¢ P, the
first neglected term, i.e., 1V} f (x,), provides an asymptotic error estimate if f®(x,) # 0.

T6Recall the definition of the scalar sc(-), given after (3.3.13).
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Example 3.3.6.
We now apply formula (3.3.23) to the table in Example 3.3.2, where f(x) = tanx,
h=0.01,k=6,

0.0163 . 0.0019 n 0.0001  0.0004
2 3 4 5 7

0.01 £/(1.35) ~ 0.1996 +

i.e., we obtain a sequence of approximate results,
f'(1.35) =~ 19.96, 20.78, 20.84, 20.84, 20.83.

The correct value to 3D is (cos 1.35)~% = 20.849. Note that the last result is worse than
the next to last. Recall the last comments on the theorem. In this case this is due to the
rounding errors of the data. Upper bounds for their effect of the sequence of approximate
values of f/(1.35) are, by Example 3.3.3, shown in the series

10*2(1+%+‘—‘+§+E+---).

2 3 4 5

Alarger version of this problem was run on a computer with the machine unit 2733 ~ 10716;
f(x) =tanx, x = 1.35: —0.01 : 1.06. In the beginning the error decreases rapidly, but
after 18 terms the rounding errors take over, and the error then grows almost exponentially
(with constant sign). The eighteenth term and its rounding error have almost the same
modulus (but opposite sign). The smallest error equals 5 - 107'°, and is obtained after 18
terms; after 29 terms the actual error has grown to 2 - 107, Such a large number of terms is
seldom used in practice, unless a very high accuracy is demanded; see also Problem 3.3.7 (b),
a computer exercise that offers both similar and different experiences.

Equation (3.3.22)—or its variable step size variant in Chapter 4—is the basis of the
important backward differentiation formula (BDF) method for the numerical integration
of ordinary differential equations.

Coefficients for backward differentiation formulas for higher derivatives are obtained
from the equations

(hD/V)* = (—In(1 — V)/V)*.

The following formulas were computed by means of the matrix representation of a truncated
power series:

hD/V 1 172 173 1/4 1/5 1
(hD/V)? 1 1 11/12 5/6 137/180 v
hD/VY I =| 1 32 7/4 15/8 29/15 1Vl (3.3.24)
(hD/V)* 12 17/6 7/2  967/240 v?
(hD/V)? 1 5/2 25/6 35/6 1069/144 v

The rows of the matrix are the first rows taken from the matrix representation of each of the
expansions (hD/V)¥ k=1:5.

When the effect of the irregular errors of the data on a term becomes larger in
magnitude than the term itself, the term should, of course, be neglected; it does more harm
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than good. This happens relatively early for the derivatives of high order; see Problem 3.3.7.
When these formulas are to be used inside a program (rather than during an interactive post-
processing of results of an automatic computation), some rules for automatic truncation
have to be designed, an interesting kind of detail in scientific computing.

The forward differentiation formula, which is analogously based on the operator series

1 1
hD:ln(l+A)=A—§A2+§A3—~-~ (3.3.25)

is sometimes useful too. We obtain the coefficients for derivatives of higher order by
inserting minus signs in the second and fourth columns of the matrix in (3.3.24).

A straightforward solution to this problem is to use the derivative of the corresponding
interpolation polynomial as the approximation to the derivative of the function. This can
also be done for higher-order derivatives.

A grid (or a table) may be too sparse to be useful for numerical differentiation and for
the computation of other linear functionals. For example, we saw above that the successive
backward differences of e/®* increase exponentially if |wh| > m/3. In such a case the
grid, where the values are given, gives insufficient information about the function. One
also says that “the grid does not resolve the function.” This is often indicated by a strong
variation in the higher differences. But even this indication can sometimes be absent. An
extreme example is f(x) = sin(wx/h), on the grid x; = jh, j =0, &1, £2,.... All the
higher differences, and thus the estimates of f”(x) at all grid points, are zero, but the correct
values of f'(x;) are certainly not zero. Therefore, this is an example where the expansion
(trivially) converges, but it is not valid! (Recall the discussion of a Maclaurin expansion
for a nonanalytic function at the end of Sec. 3.1.2. Now a similar trouble can also occur for
an analytic function.)

A less trivial example is given by the functions

10

20
f) =) a,sin@rnx),  g(x) =Y (an + aosn) sinQmnx).

n=1 n=1

On the grid f(x) = g(x), hence they have the same difference scheme, but f’'(x) # g'(x)
on the grid, and typically f(x) # g(x) between the grid points.

3.3.3 The Peano Theorem

One can often, by a combination of theoretical and numerical evidence, rely on asymptotic
error estimates. Since there are exceptions, itis interesting that there are two general methods
for deriving strict error bounds. We call one of them the norms and distance formula.
This is not restricted to polynomial approximation, and it is typically easy to use, but it
requires some advanced concepts and often overestimates the error. We therefore postpone
the presentation of that method to Sec.4.5.2.
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We shall now give another method, due to Peano.”” Consider a linear functional
_ P
Lf=Y)bf(x;)
j=1
for the approximate computation of another linear functional, for example,

1
Lf = fo JEF() dx.

Suppose that it is exact when it is applied to any polynomial of degree less than k: In other
words, L f = Lf forall f € P;. The remainder is then itself a linear functional, R = L —L,
with the special property that

RfF=0 if feP.

The next theorem gives a representation for such functionals which provides a universal
device for deriving error bounds for approximations of the type that we are concerned with.
Let f € C"[a, b]. In order to make the discussion less abstract we confine it to functionals
of the following form, 0 < m < n,

b 14
Rf:/ ¢(x)f(x)dx+Z(bj,0f(x,)+b,,1f/(x,-)+-~-+b,-,mf<’”)(x,»)), (3.3.26)
a j:1

where the function ¢ is integrable, the points x; lie in the bounded real interval [a, b], and
bjm # 0 for at least one value of j. Moreover, we assume that

Rp=0 YpeP. (3.3.27)

We define the function’®

; i 1 ign t
ty = max(¢, 0), ] = (t+)j, tﬂ = %

(3.3.28)
The function t_(i is often denoted H (¢) and is known as the Heaviside unit step function.””
The function sign is defined as in Definition 3.1.3, i.e., sign x = 0, if x = 0. Note that
tLeCi7L (= 1).

The Peano kernel K (u) of the functional R is defined by the equation

K@) =

(k_l 1)'Rx(x —w*, xela,bl, ue(—o0,00). (3.3.29)

The subscript in R, indicates that R acts on the variable x (not u).

71 Giuseppe Peano (1858-1932) was an Italian mathematician and logician.

78We use the neutral notation ¢ here for the variable, to avoid tying up the function too closely with the variables
x and u, which play a special role in the following.

7 Qliver Heaviside (1850-1925), English physicist.
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The function K (1) vanishes outside [a, b] because
e ifu > b, then u > x; hence (x — u)’f[l =0and K(u) =0.

e ifu < a,then x > u. It follows that (x — u)"" = (x —w)¥ ' € Py;
hence K (1) = 0, by (3.3.29) and (3.3.27).

If ¢ (x) is a polynomial, then K (1) becomes a piecewise polynomial; the points x;
are the joints of the pieces. In this case K € C*¥~"~2; the order of differentiability may be
lower, if ¢ has singularities.

We are now in a position to prove an important theorem.

Theorem 3.3.8 (Peano’s Remainder Theorem).
Suppose that Rp = 0 for all p € Py. Then,® for all f € C¥[a, b],

Rf =/ FOWK @) du. (3.3.30)
—00
The definition and some basic properties of the Peano kernel K (u) were given above.

Proof. By Taylor’s formula,

f(”(a) ; A _
f()—z -al+ | (k_l)!(x—u)kldu.

This follows from puttingn = k,z =x —a,t = (u —a)/(x — u) into (3.1.5). We rewrite
the last term as [ % (u)(x — u)4~"'du. Then apply the functional R = R, to both sides.
Since we can allow the interchange of the functional R with the integral, for the class of
functionals that we are working with, this yields

(k) _ (k) _
Rf—0+R/ O @) —u)t” / FO@ R (x —u)” d
k— 1! k—1)!
The theorem then follows from (3.3.29). 0

Corollary 3.3.9.
Suppose that Rp = 0 for all p € Py. Then

R.(x —a)f = k! /Oo K (u) du. (3.3.31)

Forany f € CHa, b), Rf = £ (é)R ((x —a)®) holds for some & € (a, b) if and only if
K (u) does not change its sign.
If K (u) changes its sign, the best possible error bound reads

IRfI < sup |fP ) |K(u)|du;

u€la,b] —00

a formula with f® (&) is not generally true in this case.

80The definition of f ® (u) for u ¢ [a, b] is arbitrary.
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Proof. First suppose that K (1) does not change sign. Then, by (3.3.30) and the mean value
theorem of integral calculus, Rf = f® (&) [* K (u)du, & € [a, b]. For f(x) = (x —a)*
this yields (3.3.31). The “if” part of the corollary follows from the combination of these
formulas for Rf and R(x — a)*.

If K(u) changes its sign, the “best possible bound” is approached by a sequence of
functions f chosen so that (the continuous functions) f ® (y) approach (the discontinuous
function) sign K (u). The “only if”” part follows. g

Example 3.3.7.
The remainder of the trapezoidal rule (one step of length i) reads

h h
Rf = ; f(x)dx — §(f(h) + £(0)).

We know that Rp = 0 for all p € P,. The Peano kernel is zero for u ¢ [0, ], while for
u € [0, h]

Ko — h ae O_(h—u)2 hh—w) _ —uth—w)
<u>—f0(x—u>+ to (w0 = SO0 HEED

We also compute

/ " hh2 hoon R
26 4 12

Since the Peano kernel does not change sign, we conclude that

h3
Rf = —Ef”(é), §€(0,h).

Example 3.3.8 (Peano Kernels for Difference Operators).
Let Rf = A3f(a),and set x; = a +ih,i = 0 : 3. Note that Rp = 0 for p € Ps.
Then

Rf = f(x3) = 3f(x2) +3f(x1) — f(x0),
2K (u) = (x3 — )} — 302 — ) + 3(x1 —w)} — (xo — u)3;

ie.,
0 if u > xs,
(x3 — u)? if x; <u < x3,
2K (u) = { (x3 —u)* = 3(xy — u)? if x; <u < x,
(x3 —u)* = 3(x2 — u)* 4+ 3(x; —u)* = (u — xo)* if xo <u < xi,

(3 —u)? =30 —u)?> +3(x; —u)?—(xo—u)?>=0 ifu < xo.

For the simplification of the last two lines we used that Ag (xo — u)? = 0. Note that K (1)
is a piecewise polynomial in P5 and that K" (u) is discontinuous at u = x;,i =0 : 3.
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It can be shown (numerically or analytically) that K (1) > 0 in the interval (g, u3).
This is no surprise because, by (3.3.4), A” f(x) = h" f™ (&) for any integer n, and, by the
above corollary, this could not be generally true if K (#) changes its sign. These calculations
can be generalized to A* f(a) for an arbitrary integer k. This example will be generalized
in Sec. 4.4.2 to divided differences of nonequidistant data.

In general it is rather laborious to determine a Peano kernel. Sometimes one can show
that the kernel is a piecewise polynomial, that it has a symmetry, and that it has a simple
form in the intervals near the boundaries. All this can simplify the computation, and might
have been used in these examples.

It is usually much easier to compute R((x — a)¥), and an approximate error estimate
is often given by

(k)
Rf ~ / k'(a) R((x _ a)k), F®(a) # 0. (3.3.32)

For example, suppose that x € [a, b], where b — a is of the order of magnitude of a step
size parameter /1, and that f is analytic in [a, b]. By Taylor’s formula,

£ ) L @)
R

where p € Py; hence Rp = 0. Most of the common functionals can be applied term by
term. Then

fx) =px)+ -+, P #£o0,

f“‘“‘”(a)
(k + 1)!

Assume that, forsome ¢, R, (x —a)¥ = O(W*+°) fork = 1, 2, 3, .... (Thisis often the case.)
Then (3.3.32) becomes an asymptotic error estimate as 7 — 0. It was mentioned above
that for formulas derived by operator methods, an asymptotic error estimate is directly
available anyway, but if a formula is derived by other means (see Chapter 4) this error
estimate is important.

Asymptotic error estimates are frequently used in computing, because they are often
much easier to derive and apply than strict error bounds. The question is, however, how to
know that “the computation is in the asymptotic regime,” where an asymptotic estimate is
practically reliable. Much can be said about this central question of applied mathematics.
Let us here just mention that a difference scheme displays well the quantitative properties
of a function needed to make the judgment.

If Rp = 0 for p € P4, then a fortiori Rp = 0 for p € Py_;, i = 0 : k. We may
thus obtain a Peano kernel for each i, which is temporarily denoted by Kj_;(1). They are
obtained by integration by parts,

(k)
Rf:O—i—f—'(a)Rx(x—a)k—i— R.(x —a)**' 4 ...

o0 o0
Rif = / Ki(u) f© ) du = f Kio1 () f*7D () du (3.3.33)
_;.OO —00
= / Koo ) f*Pwydu=..., (3.3.34)
—00
where K;_; = (—=D) Ky, i = 1,2,..., as long as Ky_; is integrable. The lower-order

kernels are useful, e.g., if the actual function f is not as smooth as the usual remainder
formula requires.
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For the trapezoidal rule we obtained in Example 3.3.7

h h h
Ki(u) = Eu(l + ) —u+ E(u _h)(-)r'

A second integration by parts can only be performed within the framework of Dirac’s
delta functions (distributions); Ky is not integrable. A reader who is familiar with these
generalized functions may enjoy the following formula:

o0

%0 h h
Rf = / Ko(u) f (W)du = / (—56(14) +1— o~ h))f(u)du.

—0o0
This is for one step of the trapezoidal rule, but many functionals can be expressed analo-
gously.

3.3.4 Approximation Formulas by Operator Methods

We shall now demonstrate how operator methods are very useful for deriving approximation
formulas. For example, in order to find interpolation formulas we consider the operator
expansion

[e.¢]

— y .
fo—yh)y=E7fb)=0-V)fb) = Z (j.)(—V)’f(b)-

j=0
The verification of the assumptions of Theorem 3.3.7 offers no difficulties, and we omit
the details. Truncate the expansion before (—V)*. By the theorem we obtain, for every
y, an approximation formula for f(b — yh) that uses the function values f(b — jh) for
j =0:k—1;itis exact if f € P, and is unique in the sense of Theorem 3.3.4. We
also obtain an asymptotic error estimate if f ¢ Pi, namely the first neglected term of the
expansion, i.e.,

AN N A YA
(k>( V)" f(b) <k>( h)" f(D).

Note that the binomial coefficients are polynomials in the variable y, and hence also in the
variable x = b — yh.

It follows that the approximation formula yields a unique polynomial Pz € P, that
solves the interpolation problem: Pg(b — hj) = f(b — hj), j =0 : k — 1 (B stands for
backward). If we set x = b — y h, we obtain

k—1 y
Ppx)=E7f(b)=(1-V) f(a) = Z (j.)(—V)’f(b) (3.3.35)
j=0
= fb—yh) +O® fO).
Similarly, the interpolation polynomial Pr € Py that uses forward differences based on the
values of fata,a+h,...,a+ (k — 1)h reads, if we setx = a + 6h,
g
Pr(x) = E’ f(a) = (1+ A f(a) Z (]) A f(a) (3.3.36)
j=0
= f(a+6h) + O* f®).
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These formulas are known as Newton’s interpolation formulas for constant step size,
backward and forward. The generalization to variable step size will be found in Sec.4.2.1.
There exists a similar expansion for central differences. Set

0(0+35j—1 .
bo0) =1, $:1(0) =0, ¢j(9)=; -1 ) (G >D. (3.3.37)

¢; is an even function if j is even, and an odd function if j is odd. It can be shown that
8/ (0) = ¢y—;(0) and 8/ ¢ (0) = §; x (Kronecker’s delta). The functions ¢ have thus an
analogous relation to the operator § as, for example, the functions 6/ /! and ( ) have to the
operators D and A, respectively. We obtain the following expansion, analogous to Taylor’s
formula and Newton’s forward interpolation formula. The proof is left for Problem 3.3.5 (b).

Then
k-1

E'f(a) =) ¢;0)8 f(a)= fla+0h)+ O f©). (3.3.38)

Jj=0

The direct practical importance of this formula is small, since 8/ f (a) cannot be expressed
as a linear combination of the given data when j is odd. There are several formulas in
which this drawback has been eliminated by various transformations. They were much in
use before the computer age; each formula had its own group of fans. We shall derive only
one of them, by a short break-neck application of the formal power series techniques.®!
Note that

E? = ¢""P = coshOhD + sinh OhD,
82 — ehD ) +€7hD, EhD _ e*hD — 2,bL(S,

|- o = 2j
cosh6hD = Z(E' + E) = Z¢2j(9)5 7
j=0
1 d(cosh0hD) i 1ds% ds?
—_— = @2

6  d(hD) sy

inh OhD =
s 0 ds d(hD)

2j .
Z¢ (9) (@hD _ e*hD) — Z¢2j(9)7]/i62]71~

j=0 Jj=0

Hence,
P60+ = fo+ Oudfy + b fo+Z¢2,(9)( s fo 8 1), (3339)

This is known as Stirling’s interpolation formula.?? The first three terms have been taken
out from the sum, in order to show their simplicity and their resemblance to Taylor’s formula.
They yield the most practical formula for quadratic interpolation; it is easily remembered

81 Differentiation of a formal power series with respect to an indeterminate has a purely algebraic definition. See
the last part of Sec. 3.1.5.
82 James Stirling (1692—1770), British mathematician perhaps most famous for his amazing approximation to r!.
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and worth being remembered. An approximate error bound for this quadratic interpolation
reads |0.0168° f| if || < 1.
Note that

$2j(0) = 0207 — 1)(O* —4)--- (0> — (j — DD/ 2)).

The expansion yields a true interpolation formula if it is truncated after an even power of
8. For k = 1 you see that fy + 6 uéfo is not a formula for linear interpolation; it uses three
data points instead of two. It is similar for all odd values of k.

Strict error bounds can be found by means of Peano’s theorem, but the remainder given
by Theorem 4.2.3 for Newton’s general interpolation formula (that does not require equidis-
tant data) typically give the answer easier. Both are typically of the form ;| f %+ (&) and
require a bound for a derivative of high order. The assessment of such a bound typically
costs much more work than performing interpolation in one point.

A more practical approach is to estimate a bound for this derivative by means of a
bound for the differences of the same order. (Recall the important formula in (3.3.4).) This
is not a rigorous bound, but it typically yields a quite reliable error estimate, in particular if
you put a moderate safety factor on the top of it. There is much more to be said about the
choice of step size and order; we shall return to these kinds of questions in later chapters.

You can make error estimates during the computations; it can happen sooner or later
that it does not decrease when you increase the order. You may just as well stop there, and
accept the most recent value as the result. This event is most likely due to the influence
of irregular errors, but it can also indicate that the interpolation process is semiconvergent
only.

The attainable accuracy of polynomial interpolation applied to a table with n equidis-
tant values of an analytic function depends strongly on 6; the results are much poorer near
the boundaries of the data set than near the center. This question will be illuminated in
Sec. 4.7 by means of complex analysis.

Example 3.3.9.

The continuation of the difference scheme of a polynomial is a classical application of
a difference scheme for obtaining a smooth extrapolation of a function outside its original
domain. Given the values y,_; = f(x, —ih) fori = 1 : k and the backward differences,
Viy,_1,j =1:k — 1. Recall that V*"!y is a constant for y € P;. Consider the algorithm

Ve ly, = Vi ly s
forj=k—1:—-1:1
Vi =V + Vs (3.3.40)
end
Yn = VOYn;

It is left for Problem 3.3.2(g) to show that the result y, is the value at x = x, of the
interpolation polynomial which is determined by y,—;, i = 1 : k. This is a kind of inverse
use of a difference scheme; there are additions from right to left along a diagonal, instead
of subtractions from left to right.

This algorithm, which needs additions only, was used long ago for the production of
mathematical tables, for example, for logarithms. Suppose that one knows, by means of a
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series expansion, a relatively complicated polynomial approximation to (say) f(x) = Inx,
that is accurate enough in (say) the interval [a, b], and that this has been used for the
computation of k very accurate values yg = f(a), yi = f(a + h), ..., yr—1, needed for
starting the difference scheme. The algorithm is then used for n = k, k+ 1, k + 2,
..., (b—a)/h. k— 1 additions only are needed for each value y,. Some analysis must
have been needed for the choice of the step 4 to make the tables useful with (say) linear
interpolation, and for the choice of k to make the basic polynomial approximation accurate
enough over a substantial number of steps. The precision used was higher when the table
was produced than when it was used. When x = b was reached, a new approximating
polynomial was needed for continuing the computation over another interval (at least a new
value of V¥~ 1y,).83

The algorithm in (3.3.40) can be generalized to the case of nonequidistant with the
use of divided differences; see Sec.4.2.1.

We now derive some central difference formulas for numerical differentiation. From
the definition and from Bickley’s table (Table 3.3.1),

1
S=EV2_E 2= 2sinh<§hD>. (3.3.41)

We may therefore put x = %hD, sinh x = %8 into the expansion (see Problem 3.1.7)

. Isinh®x 1-3sinh®>x 1-3-5sinh’x
x =sinhx — = + — —
2 3 2.4 5 2.4.6 7

with the result

.8 83 38> 587 3567 635!
hD =2arcsinh - =6 — — 4+ — — + —
2 24 640 7168 @ 294,912 2,883,584

+---. (3342

The verification of the assumptions of Theorem 3.3.7 follows the pattern of the proof of
(3.3.23), and we omit the details. Since arcsinh z, z € C, has the same singularities as its
derivative (1 + z2)~1/2, namely z = =i, it follows that the expansion in (3.3.42), if sc(§/2)
is substituted for /2, converges if sc(§/2) < 1; hence p = 2.

By squaring the above relation, we obtain

54 86 58 810 812

DY =8 — — 4+ — — — 4+ —— —
(D) 12790 " 560 T 3150 16632
o)~ (11— LA A L 1 3 (3.3.43)
12790 560 ' 3150 16,632 h?

By Theorem 3.3.7 (3.3.43) holds for all polynomials. Since the first neglected nonvanishing
term of (3.3.43) when applied to f is (asymptotically) ¢8'2 f”(xo), the formula for f”(x)

83This procedure was the basis of the unfinished Difference Engine project of the great nineteenth century British
computer pioneer Charles Babbage. He abandoned it after a while in order to spend more time on his huge Analytic
Engine project, which was also unfinished. He documented a lot of ideas, where he was (say) 100 years ahead
of his time. “Difference engines” based on Babbage’s ideas were, however, constructed in Babbage’s own time,
by the Swedish inventors Scheutz (father and son) in 1834 and by Wiberg in 1876. They were applied to, among
other things, the automatic calculation and printing of tables of logarithms; see Goldstine [159].
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is exact if f” € Py, i.e., if f € Py, although only 13 values of f(x) are used. We thus
gain one degree and, in the application to functions other than polynomials, one order of
accuracy, compared to what we may have expected by counting unknowns and equations
only; see Theorem 3.3.4. This is typical for a problem that has a symmetry with respect to
the hull of the data points.

Suppose that the values f(x) are given on the grid x = x¢ + nh, n integer. Since
(3.3.42) contains odd powers of §, it cannot be used to compute f, on the same grid, as
pointed out in the beginning of Sec.3.3.2. This difficulty can be overcome by means of
another formula given in Bickley’s table, namely

uw=+/1+62/4. (3.3.44)
This is derived as follows. The formulas
h hD ) inh hD
= cosh —, — = sinh —
" 2 2 2

follow rather directly from the definitions; the details are left for Problem 3.3.6 (a). The
formula (cosh 2.D)? — (sinh D)? = 1 holds also for formal power series. Hence

1 1
2 2 2 2
—-8=1 or =1+ -6
W=y w :

from which the relation (3.3.44) follows.
If we now multiply the right-hand side of (3.3.42) by the expansion

1= (1+132)_”2— (1 P L ). (3349
“HU T =K 8 " 128  1.024 ' 32,768 ’ =
we obtain
52 s+ 85 g8
mp=(1-S4+2 % L% ). 3.3.46
( 6 T30 140 " 630 )“ (3.3.46)

This leads to a useful central difference formula for the first derivative (where we have used
more terms than we displayed in the above derivation):
, 82 84 56 58 810 fl _ f,1
foo=(1-S+5 -t ) G4

If you truncate the operator expansion in (3.3.47) after the §2 term, you obtain exactly the
derivative of the interpolation polynomial of degree 2k + 1 for f(x) that is determined by
the 2k 4 2 values f;,i = £1,+2,..., =(k + 1). Note that all the neglected terms in the
expansion vanish when f(x) is any polynomial of degree 2k 4 2, independent of the value
of fo. (Check the statements first for k = 0; you will recognize a familiar property of the
parabola.) So, although we search for a formula that is exact in Py, we actually find a
formula that is exact in Py 3.

By the multiplication of the expansions in (3.3.43) and (3.3.46), we obtain the fol-
lowing formulas, which have applications in other sections:

I 7
hDY = (1— =824+ —8*+..- Jus’,
(hD) ( 2Tt T )“
1
(hD)’ = (1 -3+ --);L(SS, (3.3.48)

(hD)Y = 8" +---.
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Another valuable feature typical for expansions in powers of 82 is the rapid convergence.
It was mentioned earlier that p = 2, hence p> = 4, (while p = 1 for the backward
differentiation formula). The error constants of the differentiation formulas obtained by
(3.3.43) and (3.3.47) are thus relatively small.

All this is typical for the symmetric approximation formulas which are based on
central differences; see, for example, the above formula for f”(xg), or the next example.
In view of this, can we forget the forward and backward difference formulas altogether?
Well, this is not quite the case, since one must often deal with data that are unsymmetric
with respect to the point where the result is needed. For example, given f_;, fo, fi, how
would you compute f'(x;)? Asymmetry is also typical for the application to initial value
problems for differential equations. In such applications methods based on symmetric rules
for differentiation or integration have sometimes inferior properties of numerical stability.

We shall study the computation of f’(xo) using the operator expansion (3.3.47). The
truncation error (called R7) can be estimated by the first neglected term, where

1

U1 ¢ 2k (k4]
8 fo e 2 FH (o).
The irregular errors in the values of f(x) are of much greater importance in numerical
differentiation than in interpolation and integration. Suppose that the function values have
errors whose magnitude does not exceed %U . Then the error bound on ud fy = % (fi—f-1is

also equal to $U. Similarly, one can show that the error bounds in 8V fi, fork =1 : 3,
are 1.5U, 5U, 417.5U, respectively. Thus one gets the upper bounds U/(2h), 3U/(4h),
and 11U /(12h) for the roundoff error Ry with one, two, and three terms in (3.3.47).

Example 3.3.10.
Assume that k terms in the formula above are used to approximate f’(xp), where
f(x)=Inx,xy=3,and U = 107°. Then
FEENE) = @hl/3H,

and for the truncation and roundoff errors we get

k 1 2 3

Rr  0.0123k%  0.00329h*  0.00235h°
Ryr (1/20)10% (3/4h)10~° (11/12h)107°

The plots of Ry and Rxp versus h in a log-log diagram in Figure 3.3.1 are straight lines
that well illustrate quantitatively the conflict between truncation and roundoff errors. The
truncation error increases, and the effect of the irregular error decreases with 4. One sees
how the choice of 4, which minimizes the sum of the bounds for the two types of error,
depends on U and k, and tells us what accuracy can be obtained. The optimal step lengths for
k=1,2,3are h =0.0344, h = 0.1869, and h = 0.3260, giving error bounds 2.91 - 1079,
8.03 - 107°, and 5.64 - 107%. Note that the optimal error bound with k£ = 3 is not much
better than that for k = 2.
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Error

Figure 3.3.1. Bounds for truncation error Ry and roundoff error Rx . in numerical
differentiation as functions of h (U = 0.5 - 107).

The effect of the pure rounding errors is important, though it should not be exaggerated.
Using IEEE double precision with u = 1.1 - 107'%, one can obtain the first two derivatives
very accurately by the optimal choice of 4. The corresponding figures are 1 = 2.08 - 107,
h = 2.19-1073, and h = 1.36 - 1072, giving the optimal error bounds 1.07 - 107!,
1.52-10713, and 3.00 - 1074, respectively.

It is left to the user (Problem 4.3.8) to check and modify the experiments and conclu-
sions indicated in this example.

When a problem has a symmetry around some point xg, you are advised to try to
derive a 82-expansion. The first step is to express the relevant operator in the form ®(§2),
where the function & is analytic at the origin.

To find a §%-expansion for ®(8?) is algebraically the same thing as expanding ®(z)
into powers of a complex variable z. Thus, the methods for the manipulation of power
series mentioned in Sec. 3.1.4 and Problem 3.1.8 are available, and so is the Cauchy—FFT
method. For suitably chosen r, N you evaluate

D(re¥*INY k=0:N—1,

and obtain the coefficients of the 8>-expansion by the FFT ! You can therefore derive a long
expansion, and later truncate it as needed. You also obtain error estimates for all these
truncated expansions for free. By the assumed symmetry there will be even powers of §
only in the expansion. Some computation and storage can be saved by working with F (,/z)
instead.

Suppose that you have found a truncated §?-expansion, (say)

ABY) = a) + a8 + a38* + - + a1 8%,
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but you want instead an equivalent symmetric expression of the form
B(EY=b; +by(E4+E Y4+ by(E*+E2) 4+ 4+ b (EX+ E7).

Note that 2 = E — 2 + E~'. The transformation A(§%) + B(E) can be performed
in several ways. Since it is linear it can be expressed by a matrix multiplication of the
form b = Mj1a, where a, b are column vectors for the coefficients, and M;, is the
(k + 1) x (k + 1) upper triangular submatrix in the northwest corner of a matrix M that
turns out to be

1 -2 6 =20 70 -252 924 3432
1 -4 15 —-56 210 =792 3003
1 -6 28 —120 495 -2002

M= 1 -8 45 -220 1001 | (3.3.49)
1 —-10 66 —364
112 91
1 -4

1

This 8 x 8 matrix is sufficient for a §2-expansion up to the term agé'*. Note that the
matrix elements are binomial coefficients that can be generated recursively (Sec.3.1.2). It
is easy to extend by the recurrence that is mentioned in the theorem below. Also note that
the matrix can be looked upon as the lower part of a thinned Pascal triangle.

Theorem 3.3.10.
The elements of M are

M, — { L) iflsis, (3.3.50)
0 ifi > j.

We extend the definition by setting My ; = M5 ;. Then the columns of M are obtained by
the recurrence
Mi,j+1 = Mi+1,j _2Mi,j+Mi71,j~ (3351)

Proof. Recall that § = (1 — E~")E'/? and put m — v = u. Hence
2m

2m __ _ r—1\2mppm __ _ v2m m—v
s = (1 — EHY"E _Z( 1)(V)E

v=0
2m " _ 2m _
= (_1)'"< ) + Z(—nm ﬂ( )(E“ + E7M). (3.3.52)
m o m— [

Since
(1 8 8* ..)=(1 (E—-E™H (E*—E™ ..M,
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we have in the result of (3.3.52) an expression for column m + 1 of M. By putting j = m+1
and i = u + 1, we obtain (3.3.50). The proof of the recurrence is left to the reader. (Think
of Pascal’s triangle.) a

The integration operator D! is defined by the relation
(D7 Hx) = / fdr.

The lower limit is not fixed, so D~! f contains an arbitrary integration constant. Note that
DD~'f = f, while D™'Df = f + C, where C is the integration constant. A difference
expression like

b
D"f(b)—D’lf(a)=/ fde

is uniquely defined. Sois D! f, but D~'8f has an integration constant.

A right-hand inverse can be also defined for the operators A, V, and 8. For example,
(V7'u), = Y’ u; has an arbitrary summation constant but, for example, VV~! = 1,
and AV~! = EVV~! = E are uniquely defined.

One can make the inverses unique by restricting the class of sequences (or functions).
For example, if we require that ZC;O:O u; is convergent, and make the convention that
(A™'w), - 0asn — oo, then Ay, = — Zj":n u ;; notice the minus sign. Also notice
that this is consistent with the following formal computation:

A+E+E+ uy=(1-E)'uy =—A""u,.

We recommend, however, some extra care with infinite expansions into powers of operators
like E that is not covered by Theorem 3.3.7, but the finite expansion

I+ E+E* 4 +E" "= (E"— 1) (E-1)"! (3.3.53)

is valid.

In Chapter 5 we will use operator methods together with the Cauchy—FFT method
for finding the Newton—Cotes’ formulas for symmetric numerical integration. Operator
techniques can also be extended to functions of several variables. The basic relation is
again the operator form of Taylor’s formula, which in the case of two variables reads

0 0
u(xo+h, yo+k) =exp| h— +k— ) u(xo, yo)
dx ay

0 d
=exp|h— )exp | k— ) u(xo, yo)- (3.3.54)
dx ay
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3.3.5 Single Linear Difference Equations

Historically, the term difference equation was probably first used in connection with an
equation of the form

bOAkyn + blAkilyn + -+ bk—lAyn + bkyn = 07 n = 07 17 2a ey

which resembles a linear homogeneous differential equation. It follows, however, from the
discussion after (3.3.1) and (3.3.3) that this equation can also be written in the form

Yotk + A Yntk—1 + -+ aryn = 0, (3355)

and nowadays this is what one usually means by a single homogeneous linear difference
equation of kth order with constant coefficients; a difference equation without differences.
More generally, if we let the coefficients a; depend on n we have a linear difference equation
with variable coefficients. If we replace the zero on the right-hand side with some known
quantity r,,, we have an inhomogeneous linear difference equation.

These types of equations are the main topic of this section. The coefficients and the
unknown are real or complex numbers. We shall occasionally see examples of more general
types of difference equations, e.g., a nonlinear difference equation

F(ylH—k» Yndk—15--+5 yn) = 07

and first order systems of difference equations, i.e.,

Y1 = ApYn + Fn,

where r,, and y, are vectors while A, is a square matrix. Finally, partial difference equations,
where you have two (or more) subscripts in the unknown, occur often as numerical methods
for partial differential equations, but they have many other important applications too.

A difference equation can be viewed as a recurrence relation. With given values of
Y0, Vis---, Yi—1, called the initial values or the seed of the recurrence, we can succes-
sively compute yi, Yi+1, Yit2, - - -; We see that the general solution of a kth order difference
equation contains k arbitrary constants, just like the general solution of the kth order differ-
ential equation. There are other important similarities between difference and differential
equations, for example, the following superposition result.

Lemma 3.3.11.

The general solution of a nonhomogeneous linear difference equation (also with vari-
able coefficients) is the sum of one particular solution of it, and the general solution of the
corresponding homogeneous difference equation.

In practical computing, the recursive computation of the solution of difference equa-
tions is most common. It was mentioned at the end of Sec.3.2.3 that many important
functions, e.g., Bessel functions and orthogonal polynomials, satisfy second order linear
difference equations with variable coefficients (although this terminology was not used
there). Other important applications are the multistep methods for ordinary differential
equations.



252 Chapter 3. Series, Operators, and Continued Fractions

In such an application you are usually interested in the solution for one particular initial
condition, but due to rounding errors in the initial values you obtain another solution. It is
therefore of interest to know the behavior of the solutions of the corresponding homogeneous
difference equation. The questions are

* Can we use a recurrence to find the desired solution accurately?
* How shall we use a recurrence, forward or backward?

Forward recurrence is the type we described above. In backward recurrence we choose
some large integer N, and give (almost) arbitrary values of yy4;, i =0 : k — 1, as seeds,
and compute y, forn =N —1:—1:0.

We have seen this already in Example 1.2.1 for an inhomogeneous first order recur-
rence relation. There it was found that the forward recurrence was useless, while backward
recurrence, with a rather naturally chosen seed, gave satisfactory results. It is often like
this, though not always. In Problem 1.2.7 it is the other way around: the forward recurrence
is useful, and the backward recurrence is useless.

Sometimes boundary values are prescribed for a difference equation instead of initial
values, (say) p values at the beginning and ¢ = k — p values at the end, e.g., the values
of yo, ¥1, ..., yp—1 and yy_g4, ...,n—1, Yn are given. Then the difference equation can be
treated as a linear system with N — k unknown. This also holds for a difference equation
with variable coefficients and for an inhomogeneous difference equation. From the point
of view of numerical stability, such a treatment can be better than either recurrence. The
amount of work is somewhat larger, not very much though, for the matrix is a band matrix.
For a fixed number of bands the amount of work to solve such a linear system is proportional
to the number of unknowns. An important particular case is when k = 2, p = g = 1; the
linear system is then tridiagonal. An algorithm for tridiagonal linear systems is described
in Example 1.3.3.

Another similarity for differential and difference equations is that the general solu-
tion of a linear equation with constant coefficients has a simple closed form. Although,
in most cases real-world problems have variable coefficients (or are nonlinear), one can
often formulate a class of model problems with constant coefficients with similar features.
The analysis of such model problems can give hints, e.g., whether forward or backward
recurrence should be used, or other questions related to the design and the analysis of the
numerical stability of a numerical method for a more complicated problem.

We shall therefore now study how to solve a single homogeneous linear difference
equation with constant coefficients (3.3.55), i.e.,

Ytk + A1 Yngk—1 + -+ ary, = 0.

It is satisfied by the sequence {y;}, where y; = cu/ (u # 0, ¢ # 0) if and only if
W a4 g = 0, 1e., when

pw) =u* +au "+ +a =0 (3.3.56)

Equation (3.3.56) is called the characteristic equation of (3.3.55); ¢ () is called the char-
acteristic polynomial.
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Theorem 3.3.12.
If the characteristic equation has k different roots, uy, ..., uy, then the general solu-
tion of (3.3.55) is given by the sequences {y,}, where

Yo = cru| + cuhy + - - + cruy, (3.3.57)

where cy, ¢, . . ., C are arbitrary constants.

Proof. That {y,} satisfies (3.3.55) follows from the previous comments and from the fact

that the equation is linear. The parameters cy, ¢, .. ., ¢, can be adjusted to arbitrary initial
conditions yo, yi, - .., Yxk—1 by solving the system of equations
1 | | c Yo
Ui 172 S Uk (4] Y1
k=1 k-1 k-1 X
uy U, s U Ck Vi—1

The matrix is a Vandermonde matrix and its determinant is thus equal to the product of
all differences (u; — u;),i > j, 1 < i < k, which is nonzero; see the proof of Theorem
3.3.4. 0

Example 3.3.11.

Consider the difference equation y, > — 5y,41 + 6y, = 0 with initial conditions
yo = 0, y; = 1. Forward recurrence yields y, =5, y3 =19, ys = 65, ....

The characteristic equation u? — 5u + 6 = 0 has roots u; = 3, u, = 2; Hence, the
general solution is y, = ¢13" + ¢,2". The initial conditions give the system of equations

c1+c =0, 3¢1 +2¢, =1,

with solution ¢; = 1, ¢; = —1; hence y, = 3" — 2".
As a check we find y, = 5, y3 = 19 in agreement with the results found by using
forward recurrence.

Example 3.3.12.
Consider the difference equation

Tip1(x) —2xT,(x) + T—1(x) =0, n>1, —-1<x<l,

with initial conditions Ty(x) = 1, T;(x) = x. Weobtain T» (x) = 2x2—1, T3(x) = 4x3—3x,
Ta(x) = 8x* —8x2+1,.... By induction, 7, (x) is an nth degree polynomial in x.

We can obtain a simple formula for 7, (x) by solving the difference equation. The
characteristic equation is u? —2xu+1 =0, withroots u = x +i~/1 — x2. Set x = cos ¢,
0 <x <m. Thenu = cos¢ %isin¢, and thus u; = €'®, ur = e, u; # u,. The general
solution is T, (x) = c1€"® + c,e~™"?, and the initial conditions give

ci+c =1, clei"’ + cze_i¢ =cos ¢,

with solution ¢; = ¢, = 1/2. Hence, T, (x) = cos(n¢), x = cos¢. These polynomials
are thus identical to the important Chebyshev polynomials 7, (x) that were introduced in
(3.2.21).
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Weexcludedthe casesx = landx = —1,1i.e.,¢p = Oand ¢ = m, respectively. For the
particular initial values of this example, there are no difficulties; the solution 7, (x) = cosn¢
depends continuously on ¢, and as ¢ — 0 or ¢ — 7, T,(x) = cosn¢ converges to 1 for
all n or (—1)" for all n, respectively.

When we ask for the general solution of the difference equation matters are a little
more complicated, because the characteristic equation has in these cases a double root:
u=1forx =1,u = —1forx = —1. Although they are thus covered by the next theorem,
we shall look at them directly because they are easy to solve, and they are a good preparation
for the general case.

If x = 1, the difference equation reads 7, — 27, + T,,—; = 0, i.e., A*T, = 0. We
know from before (see, e.g., Theorem 3.3.4) that this is satisfied if and only if 7, = an + b.
The solution is no longer built up by exponentials; a linear term is there too.

If x = —1, the difference equation reads 7;,+; + 27, + T,-; = 0. Set T,, = (—1)"V,,.
The difference equation becomes, after division by (=" Vo1 =2V, 4+ V,_; = 0, with
the general solution V,, = an + b; hence T, = (—1)"(an + b).

Theorem 3.3.13.
When u; is an m;-fold root of the characteristic equation, then the difference (3.3.55)
is satisfied by the sequence {y,}, where

Yn = P; (n)uln

and P; is an arbitrary polynomial in P,,,. The general solution of the difference equation is
a linear combination of solutions of this form using all the distinct roots of the characteristic
equation.

Proof. We can write the polynomial P € P,, in the form
Pi(n)=bi+byn+bsn(n—-1)+---+bynin—1)---(n —m; +2).
Thus it is sufficient to show that (3.3.55) is satisfied when
yw=nm—1)---m—p+ Dul = @’d’w")/ou’)y—y,, p=1:m; —1. (3.3.58)
Substitute this in the left-hand side of (3.3.55):

ul’i(u”k +au" 4. 4a uﬂ) - Ml’ﬁ(gb(u)u")
ou? 1 ' gur

= yu? (¢(P)(u)un + <p>¢(p1)(u)nu”1 ot <p>¢(u)£(u”)> i
1 p au?

The last manipulation was made using Leibniz’s rule.

Now ¢ and all the derivatives of ¢ which occur in the above expression are zero for
u = u;, since u; is an m;-fold root. Thus the sequences {y, } in (3.3.58) satisfy the difference
equation. We obtain a solution with > m; = k parameters by the linear combination of
such solutions derived from the different roots of the characteristic equation.

It can be shown (see Henrici [192, p. 214]) that these solutions are linearly indepen-
dent. (This also follows from a different proof, where a difference equation of higher order
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is transformed to a system of first order difference equations. This transformation also
leads to other ways of handling inhomogeneous difference equations than those which are
presented in this section.) 0

Note that the double root cases discussed in the previous example are completely in
accordance with this theorem. We look at one more example.

Example 3.3.13.
Consider the difference equation y, 43 —3y,4+2 +4y, = 0. The characteristic equation
is u3 — 3u® + 4 = 0 with roots u; = —1, u, = u3 = 2. Hence, the general solution reads

yn = ci(=D" 4+ (c2 + c3n)2".

For a nonhomogeneous linear difference equation of order k, one can often find a
particular solution by the use of an Ansatz® with undetermined coefficients; thereafter,
by Lemma 3.3.11 one can get the general solution by adding the general solution of the
homogeneous difference equation.

Example 3.3.14.
Consider the difference equation y,.; — 2y, = a”, with initial condition yy = 1. Try
the Ansatz y, = ca”. One gets

ca"' —2ca" =a", c=1/(a—2), a#2.

Thus the general solution is y, = a"/(a — 2) + ¢12". By the initial condition, ¢; =
1 —1/(a —2), hence
a"—2"

a—2
When a — 2, I’'Hopital’s rule gives y, = 2" + n2"~!. Notice how the Ansatz must be
modified when a is a root of the characteristic equation.

Yn = +2". (3.3.59)

The general rule when the right-hand side is of the form P (n)a” (or a sum of such
terms), where P is a polynomial, is that the contribution of this term to y, is Q(n)a”", where
Q is a polynomial. If @ does not satisfy the characteristic equation, then deg Q = deg P;
if a is a single or a double root of the characteristic equation, then deg O = deg P + 1 or
deg Q = deg P + 2, respectively, and so on. The coefficients of Q are determined by the
insertion of y, = Q(n)a" on the left-hand side of the equation and matching the coefficients
with the right-hand side.

Another way to find a particular solution is based on the calculus of operators. Let an
inhomogeneous difference equation be given in the form ¥ (Q)y, = b,, where Q is one of
the operators A, §, and V, or an operator easily derived from these, for example, %82 (see
Problem 3.3.27(d)). In Sec. 3.1.5 ¥ (Q) ! was defined by the formal power series with the
same coefficients as the Maclaurin series for the function 1/¢(z), z € C, ¥ (0) # 0. In
simple cases, e.g., if ¥ (Q) = ap + a; Q, these coefficients are usually easily found. Then

84 An Ansatz (German term) is an assumed form for a mathematical statement that is not based on any underlying
theory or principle.
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Y (Q) b, is a particular solution of the difference equation ¥ (Q)y, = b,; the truncated
expansions approximate this. Note that if Q = § or V, the infinite expansion demands that
b, is also defined if n < 0.

Note that a similar technique, with the operator D, can also be applied to linear
differential equations. Today this technique has to a large extent been replaced by the
Laplace transform,® which yields essentially the same algebraic calculations as operator
calculus.

In some branches of applied mathematics it is popular to treat nonhomogeneous dif-
ference equations by means of a generating function, also called the z-transform, since
both the definition and the practical computations are analogous to the Laplace transform.
The z-transform of the sequence y = {y,}g° is

Y(@) =)y (3.3.60)
n=0

Note that the sequence {Ey} = {y,41} has the z-transform zY (z) — vo, {E?y} = {yu42)} has
the z-transform z2Y (z) — yoz — 1, etc.

If Y (z) is available in analytic form, it can often be brought to a sum of functions whose
inverse z-transforms are known by means of various analytic techniques, notably expansion
into partial fractions if Y (z) is a rational function. On the other hand, if numerical values
of Y (z) have been computed for complex values of z on some circle in C by means of
an algorithm, then y, can be determined by an obvious modification of the Cauchy—-FFT
method described in Sec. 3.2.2 (for expansions into negative powers of z). More information
about the z-transform can be found in Strang [339, Sec. 6.3].

We are now in a position to exemplify in more detail the use of linear difference
equations to studies of numerical stability, of the type mentioned above.

Theorem 3.3.14 (Root Condition).

Necessary and sufficient for boundedness (stability) of all solutions of the difference
(3.3.55) for all positive n is the following root condition: (We shall say either that a
difference equation or that a characteristic polynomial satisfies the root condition; the
meaning is the same.)

i. All roots of characteristic (3.3.56) are located inside or on the unit circle |z| < 1;

ii. The roots on the unit circle are simple.

Proof. The proof follows directly from Theorem 3.3.13. [

This root condition corresponds to cases where it is the absolute error that matters.
It is basic in the theory of linear multistep methods for ordinary differential equations.
Computer graphics and an algebraic criterion due to Schur are useful for investigations
of the root condition, particularly, if the recurrence relation under investigation contains
parameters.

85The Laplace transform is traditionally used for similar problems for linear differential equations, for example,
in electrical engineering.
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There are important applications of single linear difference equations to the study of
the stability of numerical methods. When a recurrence is used one is usually interested
in the solution for one particular initial condition. But a rounding error in an initial value
produces a different solution, and it is therefore of interest to know the behavior of other
solutions of the corresponding homogeneous difference equation. We have seen this already
in Example 1.2.1 for an inhomogeneous first order recurrence relation, but it is even more
important for recurrence relations of higher order.

The following example is based on a study done by Todd® in 1950 (see [352]).

Example 3.3.15.
Consider the initial value problem

y'x)y=-y, »y0)=0, y(0) =1, (3.3.61)

with the exact solution y(x) = sinx. To compute an approximate solution y; = y(x;) at
equidistant points x; = kh, where & is a step length, we approximate the second derivative
according to (3.3.43):
4 6

K2yl = 8%y + 8% + 59% T (33.62)
We first use the first term only; the second term shows that the truncation error of this
approximation of y; is asymptotically h?y™® /12. We then obtain the difference equation
h’282yk = — Yy or, in other words,

Yitr = Q= h)yee1 — Yk, yo =0, (3.3.63)

where a suitable value of y; is to be assigned. In the third column of Table 3.3.2 we show
the results obtained using this recursion formula with # = 0.1 and y; = sin0.1. All
computations in this example were carried out using IEEE double precision arithmetic. We
obtain about three digits of accuracy at the end of the interval x = 1.2.

Since the algorithm was based on a second order accurate approximation of y” one
may expect that the solution of the differential equation is also second order accurate. This
turns out to be correct in this case; for example, if we divide the step size by two, the errors
will approximately be divided by four. We shall, however, see that we cannot always draw
conclusions of this kind; we also have to take the numerical stability into account.

In the hope of obtaining a more accurate solution, we shall now use one more term in
the expansion (3.3.62); the third term then shows that the truncation error of this approxi-
mation is asymptotically 4*y©® /90. The difference equation now reads

8y — %54”{ = —hy, (3.3.64)
or

Yerr = 16y — 30 — 1217y + 16351 — ye2, k=2, 3 =0, (3.3.65)

86 John Todd (1911-2007), born in Ireland, was a pioneer in computing and numerical analysis. During World
War II he was head of the British Admirality Computing Services. At the end of the war he earned his nickname
“Savior of Oberwolfach” by protecting the Mathematical Research Institute at Oberwolfach in Germany from
destruction by Moroccan troops. In 1947 he joined the National Bureau of Standards (NBS) in Washington, DC,
where he became head of the Computation Laboratory and in 1954 Chief of the Numerical Analysis Section. In
1957 he took up a position as Professor of Mathematics at the California Institute of Technology.
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Table 3.3.2. Integrating y" = —y, y(0) = 0, y'(0) = 1; the letters U and S in the

headings of the last two columns refer to “Unstable” and “Stable.”

X sin xy 2nd order 4th order U 4th order S

0.1 ]0.0998334166 0.0998334 0.0998334166 0.0998334166
0.210.1986693308 0.1986685 0.1986693307 0.1986693303
0.3 1 0.2955202067 0.2955169 0.2955202067 0.2955202050
0.4 1 0.3894183423 0.3894101 0.3894183688 0.3894183382
0.5 [ 0.4794255386 0.4794093 0.4794126947 0.4794255305
0.6 | 0.5646424734 0.5646143 0.5643841035 0.5646424593
0.7 1 0.6442176872 0.6441732 0.6403394433  0.6442176650
0.8 1 0.7173560909 0.7172903 0.6627719932 0.7173560580
0.9 | 0.7833269096 0.7832346 0.0254286676 0.7833268635
1.0 | 0.8414709848 0.8413465 —9.654611899 0.8414709226
1.1 ]0.8912073601 0.8910450 —144.4011267 0.8912072789
1.210.9320390860 0.9318329 —2010.123761 0.9320389830

where starting values for y;, y,, and y; need to be assigned. We choose the correct values
of the solution rounded to double precision. The results from this recursion are shown in
the fourth column of Table 3.3.2. We see that disaster has struck—the recursion is severely
unstable! Already for x = 0.6 the results are less accurate than the second order scheme.
For x > 0.9 the errors completely dominate the unstable method.

We shall now look at these difference equations from the point of view of the root
condition. The characteristic equation for (3.3.63) reads u?>— Q2 —h*u+1 =0, and since
|2 — h?| < 2, direct computation shows that it has simple roots of unit modulus. The root
condition is satisfied. By Example 3.3.12, the solution of (3.3.63) is y, = T,,(1 —h?/2). For
the second order method the absolute error at x = 1.2 is approximately 2.1 - 107, whereas
for the stable fourth order method the error is 1.0 - 1077,

For (3.3.65) the characteristic equation reads u* — 161> + (30— 12h?)u?> — 16u+1 = 0.
We see immediately that the root condition cannot be satisfied. Since the sum of the roots
equals 16, it is impossible that all roots are inside or on the unit circle. In fact, the largest root
equals 13.94. So, a tiny error at x = 0.1 has been multiplied by 13.94!4 ~ 106 at the end.

A stable fourth order accurate method can easily be constructed. Using the differential
equation we replace the term 8%y, in (3.3.64) by h282y,’{’ = —h28%y,. This leads to the
recursion formula®’

Vk+1 = (2

which can be traced back at least to B. Numerov (1924) (cf. Problem 3.4.27). This difference
equation satisfies the root condition if h? < 6 (see Problem 3.3.25(a)). It requires Yo,
y1 ~ y(h) asthe seed. The results using this recursion formulawith#z = 0.1 and y; = sin 0.1

h2

S — 3.3.66
1+ h2/12 ( )

))’k - Yk-1, Yo =0,

87Boris Vaisyevich Numerov (1891-1941) Russian astronomer and professor at the University of Leningrad.
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are shown in the fifth column of Table 3.3.2. The error at the end is about 2-10~7, which is
much better than the 3.7- 10~ obtained with the second order method.

Remark 3.3.2. If the solution of the original problem is itself strongly decreasing or
strongly increasing, one should consider the location of the characteristic roots with respect
to a circle in the complex plane that corresponds to the interesting solution. For example, if
the interesting root is 0.8, then a root equal to —0.9 causes oscillations that may eventually
become disturbing if one is interested in relative accuracy in a long run, even if the oscillating
solution is small in the beginning.

Many problems contain homogeneous or nonhomogeneous linear difference equations
with variable coefficients, for which the solutions are not known in a simple closed form.

We now confine the discussion to the cases where the original problem is to compute a
particular solution of a second order difference equation with variable coefficients; several
interesting problems of this type were mentioned above, and we formulated the questions
of whether we can use a recurrence to find the desired solution accurately, and how we
shall use a recurrence, forward or backward. Typically the original problem contains some
parameter, and one usually wants to make a study for an interval of parameter values.

Such questions are sometimes studied with frozen coefficients, i.e., the model problems
are in the class of difference equations with constant coefficients in the range of the actual
coefficients of the original problem. If one of the types of recurrence is satisfactory (i.e.,
numerically stable in some sense) for all model problems, one would like to conclude that
they are satisfactory also for the original problem, but the conclusion is not always valid
without further restrictions on the coefficients—see a counterexample in Problem 3.3.27.

The technique with frozen coefficients provides just a hint that should always be
checked by numerical experiments on the original problem. It is beyond the scope of this
text to discuss what restrictions are needed. If the coefficients of the original problem are
slowly varying, however, there is a good chance that the numerical tests will confirm the
hint—but again, how slowly is “slowly”? A warning against the use of one of the types of
recurrence may also be a valuable result of a study, although it is negative.

The following lemma exemplifies a type of tool that may be useful in such cases. The
proof is left for Problem 3.3.24 (a). Another useful tool is presented in Problem 3.3.26 (a)
and applied in Problem 3.3.26 (b).

Lemma 3.3.15.
Suppose that the wanted sequence Yy satisfies a difference equation (with constant
coefficients),
aYpy1 + IBYW —VIn-1= 0, (Ol >y = 0, ﬁ > 0)9

and that y;; is known to be positive for all sufficiently large n. Then the characteristic roots
can be written 0 < uy < 1, uy <0, and |uz| > uy. Then y; is unique apart from a positive
factor ¢; y = cuf, c > 0.

A solution y,, called the trial solution, that is approximately of this form can be
computed forn = N : —1 : 0 by backward recurrence starting with the “seed” yyi; = 0,
ynv = 1. If an accurate value of yj is given, the desired solution is

y: = f»lyg/io,
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with a relative error approximately proportional to (us /u,)"~V (neglecting a possible error
in y;). (If yi is defined by some other condition, one can proceed analogously.)

The forward recurrence is not recommended for finding y; in this case, since the
positive term ¢ u} will eventually be drowned by the oscillating term cou’ that will be
introduced by the rounding errors. The proof is left for Problem 3.3.27. Even if yg (in the
use of the forward recurrence) has no rounding errors, such errors committed at later stages
will yield similar contributions to the numerical results.

Example 3.3.16.
The “original problem” is to compute the parabolic cylinder function U (a, x) which
satisfies the difference equation

(a—i—%) Ua+1,x)+xU@,x)—U(a—1,x) =0;

see Handbook [1, Chap. 19, in particular Example 19.28.1].

To be more precise, we consider the case x = 5. Given U(3,5) = 5.2847 - 107°
(obtained from a table in [1, p. 710]), we want to determine U (a, 5) for integer values of
a,a > 3, aslong as |U(a,5)| > 1071, We guess (a priori) that the discussion can be
restricted to the interval (say) a = [3,15]. The above lemma then gives the hint of a
backward recurrence, fora = a’ — 1 : —1 : 3 for some appropriate a’ (see below), in order
to obtain a trial solution U, with the seed U, = 1, U, 4; = 0. Then the wanted solution
becomes, by the lemma (with changed notation),

Ua,5) =U,U@3,5)/Us.

The positive characteristic root of the frozen difference equation varies from 0.174 to 0.14
for a = 5 : 15, while the modulus of the negative root is between 6.4 and 3.3 times as
large. This motivates a choice of @’ ~ 4 4+ (—9 —log 5.3)/1n 0.174 =~ 17 for the backward
recursion; it seems advisable to choose a’ (say) four units larger than the value where U
becomes negligible.

Forward recurrence with correctly rounded starting values U (3, 5) = 5.2847 - 1075,
U(4,5) = 9.172 - 1077 gives oscillating (absolute) errors of relatively slowly decreasing
amplitude, approximately 10~!!, that gradually drown the exponentially decreasing true
solution. The estimate of U (a, 5) itself became negative for a = 10, and then the results
oscillated with approximate amplitude 10", while the correct results decrease from the
order of 107! to 107" as @ = 10 : 15. The details are left for Problem 3.3.25 (b).

It is conceivable that this procedure can be used for all x in some interval around five,
but we refrain from presenting the properties of the parabolic cylinder function needed for
determining the interval.

If the problem is nonlinear, one can instead solve the original problem with two
seeds, (say) yy, Yy, and study how the results deviate. The seeds should be so close that a
linearization like f(y;,) — f(yv)) ~ r,(y, — y,) is acceptable, but y;, — y, should be well
above the rounding error level. A more recent and general treatment of these matters is
found in [96, Chapter 6].
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Review Questions

3.3.1

3.3.2

333

3.34

3.3.5

3.3.6

3.3.7

3.3.8

3.39

3.3.10

3.3.11

3.3.12

Give expressions for the shift operator £ kintermsof A, V,and kD, and expressions
for the central difference operator 82 in terms of E and hD.

Derive the best upper bound for the error of A"y, if we only know that the absolute
value of the error of y;,i =0, ..., n does not exceed €.

There is atheorem (and a corollary) about existence and uniqueness of approximation
formulas of a certain type that are exact for polynomials of certain class. Formulate
these results, and sketch the proofs.

What bound can be given for the kth difference of a function in terms of a bound for
the kth derivative of the same function?

Formulate the basic theorem concerning the use of operator expansions for deriving
approximation formulas for linear operators.

Discuss how various sources of error influence the choice of step length in numerical
differentiation.

Formulate Peano’s remainder theorem, and compute the Peano kernel for a given
symmetric functional (with at most four subintervals).

Express polynomial interpolation formulas in terms of forward and backward dif-
ference operators.

Give Stirling’s interpolation formula for quadratic interpolation with approximate
bounds for truncation error and irregular error.

Derive central difference formulas for f/(xg) and f”(x¢) that are exact for f € Py.
They should only use function values at x;, j = 0, &1, &2, ..., as many as needed.
Give asymptotic error estimates.

Derive the formula for the general solution of the difference equation y, i +
a1 Yn+k—1 + - - - + ary, = 0, when the characteristic equation has simple roots only.
What is the general solution when the characteristic equation has multiple roots?

What is the general solution of the difference equation AXy, = an + b?

Problems and Computer Exercises

3.3.1

Prove the formula (3.3.12) for the determinant of the Vandermonde matrix V =
V(x1, ..., xx). For definition and properties of a determinant, Section A.3 in Online
Appendix A.

Hint: Considered as a function of x;, det V is a polynomial of degree k — 1. Since
the determinant is zero if two columns are identical, this polynomial has the roots
X1 =xj,j =2:k. Hence

detV =c(x2, ..., x)(x1 —x2) - - - (x1 — Xxp),
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3.3.2

333

where ¢ does not depend on x;. Similarly, viewed as a polynomial of x, the deter-
minant must contain the factor (x, — x1)(xo — x3) - - - (xo — x), etc.

(a) Showthat (1 +A)Y(1—V)=1, A—V=AV=8=FE —2+ E~! and that
80 = Y1 — 2Yn + Yn—1.

(b) Let A”y,, VPy,,, 5Py, all denote the same quantity. How are n, m, k connected?
Along which lines in the difference scheme are the subscripts constant?

(c) Given the values of y,, Vy,, ..., VK v, for a particular value of n, find a recur-
rence relation for computing y,, ¥,—1, - . ., Yu—k» by simple additions only. On the
way you obtain the full difference scheme of this sequence.

(d) Repeated summation by parts. Show thatif u; = uy = vy = vy =0, then

N—1
2
E unA Vpo) = — E Au, Av, = E VAU, .
n=1

n=1

(e) Show that if A*v, — 0,asn — oo, then Y o= Aky, = —A*"1y,

(f) Show that (18> +2ud) fo = fo — fo».

(g) Show the validity of the algorithm in (3.3.40). Babbage’s favorite example was
f(x) = x*+x+41. Given f(x) for x = 0, 1, 2, compute the backward differences
for x = 2 and use the algorithm to obtain f(3). Then compute f(x) for (say)
x =4 : 10, by repeated use of the algorithm. (This is simple enough for paper and
pencil, since the algorithm contains only additions.)

(a) Prove by induction, the following two formulas:

(x X )
AJ{, == K Jika
k k—j

where A, means differencing with respect to x, with # = 1, and

(=h)/ j!

Alx™ = .
x(x+h)---(x+ jh)

Find the analogous expression for V/x~!

(b) What formulas with derivatives instead of differences are these formulas analo-
gous to?

(c) Show the following formulas if x, a are integers:
x—1
Z n _(*\ _(a
2(20)= () ()

= 1
X:: (n+1) “(n+j)

1
Jox Dt 1)

Modify these results for noninteger x; x — a is still an integer.
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3.34

3.3.5

(d) Suppose that b # 0, —1, —2, ..., and set

aa+1)...(a+n—-1)
bb+1...b+n—-1)

cola,b)y =1, c,(a,b) = n=1,2,3,....

Show by induction that
(=8)eula, b) = cp(b — a, b)ea(a, b+ k),

and that hence (—A)"co(a, b) = ¢, (b — a, b).

(e) Compute for a = e, b = 7 (say), c,(a,b), n = 1 : 100. How do you avoid
overflow? Compute A”cy(a, b), both numerically by the difference scheme and
according to the formula in (d). Compare the results and formulate your experiences.
Do the same witha = ¢, b = 72

Do the same with A/ x~! for various values of x, j,and h.

Set

Yurd = (ynfks Yn—k+1s« s Yn—1, yn)y
Yair = (V9. V¥ Y Vs ).

Note that the results of this problem also hold if the y; are column vectors.
(a) Find a matrix P such that Yg;y = Y, P. Show that

Yora = Yaif P, hence P~'=P.

How do you generate this matrix by means of a simple recurrence relation?

Hint: P is related to the Pascal matrix, but do not forget the minus signs in this
triangular matrix. Compare Problem 1.2.4.

(b) Suppose that ZI;ZO o;E7/ and ZI;ZO a;V/ represent the same operator. Set
o = (Olk, (0725 N Ol())T and a = (ak, Ale—1y «+ o ao)T, i.e., Ywd = Ydif - da.
Show that Pa = «, Pa = a.

(c) The matrix P depends on the integer k. Is it true that the matrix which is obtained
for a certain k is a submatrix of the matrix you obtain for a larger value of k?

(d) Compare this method of performing the mapping Y4 + Y4y with the ordinary
construction of a difference scheme. Consider the number of arithmetic operations,
the kind of arithmetic operations, rounding errors, convenience of programming in
a language with matrix operations as primary operations, etc. In the same way,
compare this method of performing the inverse mapping with the algorithm in Prob-
lem 3.3.2 (¢).

(a) Set f(x) = tanx. Compute by using the table of tan x (in Example 3.3.2) and
the interpolation and differentiation formulas given in the above examples (almost)
as accurately as possible the quantities

£1(1.35), £(1.322), f/(1.325), £"(1.32).

Estimate the influence of rounding errors of the function values and estimate the
truncation errors.
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3.3.6

3.3.7

3.3.8

(b) Write a program for computing a difference scheme. Use it for computing the
difference scheme for more accurate values of tanx, x = 1.30 : 0.01 : 1.35, and
calculate improved values of the functionals in (a). Compare the error estimates
with the true errors.

(c) Verity the assumptions of Theorem 3.3.7 for one of the three interpolation for-
mulas in Sec. 3.3.4.

(d) It is rather easy to find the values at & = 0 of the first two derivatives of Stirling’s
interpolation formula. You find thus explicit expressions for the coefficients in the
formulas for f’(xp) and f”(xg) in (3.3.47) and (3.3.43), respectively. Check nu-
merically a few coefficients in these equations, and explain why they are reciprocals
of integers. Also note that each coefficient in (3.3.47) has a simple relation to the
corresponding coefficient in (3.3.43).

(a) Study Bickley’s table (Table 3.3.1) and derive some of the formulas, in particular
the expressions for § and p in terms of 4 D, and vice versa.

(b) Show that 2~*8% — D has an expansion into even powers of 4 when k is even.
Find an analogous result for 7~ 8% — DX when k is odd.

(a) Compute

£1(10)/12, £9(10)/720, £°(10)/30,240
by means of (3.3.24), given values of f(x) for integer values of x. (This is asked for
in applications of Euler-Maclaurin’s formula, Sec. 3.4.5.) Do this for f(x) = x /2.
Compare with the correct derivatives. Then do the same for f(x) = @3+ 1712,
(b) Study the backward differentiation formula; see (3.3.23) on a computer. Compute
f'(1) for f(x) = 1/x, for h = 0.02 and 2 = 0.03, and compare with the exact
result. Make a semilogarithmic plot of the total error after n terms, n = 1 : 29.
Study also the sign of the error. For each case, try to find out whether the achievable
accuracy is set by the rounding errors or by the semiconvergence of the series.
Hint: A formula mentioned in Problem 3.3.3 (a) can be helpful. Also note that this
problem is both similar and very different from the function tan x that was studied
in Example 3.3.6.
(o) Setx; = xg+ih,t = (x — x3)/h. Show that

-1 — D@ -2
1t —1) 1(t é(l )A3y1

equals the interpolation polynomial in P4 determined by the values (x;, y;),i =1 : 4.
(Note that A%y, is used instead of A3y, which is located outside the scheme. Is this
fine?)

A well-known formula reads

P(D)(e™u(t)) = e P(D + a)u(t),

A%y, +

y(x) =y2 + 1Ay, +

where P is an arbitrary polynomial. Prove this, as well as the following analogous
formulas:

P(E)(a"u,) =a"P@aE)u,,
P(A/I)((1+ah)"u,) = (1 +ah)" P((1 + ah) A/ h + a)u,.

Can you find a more beautiful or more practical variant?
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3.3.9

3.3.10

3.3.11

Find the Peano kernel K () for the functional A2 f(x0). Compute fR K (1) du both
by direct integration of K (u) and by computing A” f(x,) for a suitably chosen
function f.

Set y; = y(t;), ¥; = y'(t;). The following relations, due to John Adams,*® are of
great interest in the numerical integration of the differential equations y’ = f(y).

(a) Adams—-Moulton’s implicit formula:
Yat1 — Yu = h (aoyp ) + a1 Vyy +@Viy +0).

Show that V = —1In(1 — V) " a; V', and find a recurrence relation for the coeffi-
cients. The coefficients a;, i = 0 : 6, read as follows (check a few of them):

11 1 19 3 863
=1 -z, —=, —=, —

2 1270 247 7200 1600 60,480

Alternatively, derive the coefficients by means of the matrix representation of a
truncated power series.

(b) Adams-Bashforth’s explicit formula:
Yn+1 — Yn = h (boy,/l + bIVy,/l + bzvzyr/l =+ .- ) .

Show that Y b, VIE~! = 3" ¢; V!, and thatb, —b,_| = a, (n > 1). The coefficients
b;,i = 0: 6, read as follows (check a few of them):

251 95 19,087

1 5
720" 288" 60,480

27 12°

3
g’

(c) Apply the second order explicit Adams’ formula,
Yart =Y =h (v, +3V),

to the differential equation y’ = —y?, with initial condition y(0) = 1 and step size
h = 0.1. Two initial values are needed for the recurrence: yy = y(0) = 1, of course,
and we choose®® y; = 0.9090. Then compute y, = —y3, y; = —y?. The explicit
Adams’ formula then yields yi, k > 2. Compute a few steps, and compare with the
exact solution.”®

Let y; = yo + jh. Find the asymptotic behavior as # — 0 of

(St = yo) + (2 — y1))/(2h) — y5 — 2.

Comment: Thisis of interest in the analysis of cubic spline interpolation in Sec. 4.4.2.

8 John Couch Adams (1819-1892) was an English mathematician. While still an undergraduate he calculated
the irregularities of the motion of the planet Uranus, showing the existence of Neptune. He held the position as
Professor of Astronomy and Geometry at Cambridge for 32 years.

89There are several ways of obtaining y; & y(h), for example, by one step of Runge’s second order method,
see Sec. 1.5.3, or by a series expansion, as in Sec. 1.2.4.

9OFor an implicit Adams’ formula it is necessary, in this example, to solve a quadratic equation in each step.
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3.3.12

3.3.13

3.3.14

It sometimes happens that the values of some function f(x) can be computed by
some very time-consuming algorithm only, and that one therefore computes it much
sparser than is needed for the application of the results. It was common in the pre-
computer age to compute sparse tables that needed interpolation by polynomials of
a high degree; then one needed a simple procedure for subtabulation, i.e., to obtain
a denser table for some section of the table. Today a similar situation may occur in
connection with the graphical output of the results of (say) a numerical solution of
a differential equation.

Define the operators V and V; by the equations

Vilx)=f(x)— f(x —h), Vif(x) = f(x)— f(x —kh), (k<1),
and set

oo
Vi =Y eV,

(a) Suppose that A" f(x), r = 0 : m, has been computed. Suppose that k has
been chosen, that the coefficients ¢,;(k) are known for r < m, s < m, and that
A} f(a),r = 0 : m, has been computed. Design an algorithm for obtaining f (x),
x =a :kh:a+ mkh,and V} f(a +mkh),r =0 : m. (You can here, e.g., modify
the ideas of (3.3.40).) Then you can apply (3.3.40) directly to obtain a tabulation of
f(x),x =a+mkh :kh:b.
(b) In order to compute the coefficients c¢,;, r < s < m, you are advised to use a
subroutine for finding the coefficients in the product of two polynomials, truncate
the result, and apply the subroutine m — 1 times.
(c) Given

o Vi V2 fo V3o Vo

1 0.181269 0.032858 0.005956 0.001080

compute for k = % fo = fxn), V,{fn for j = 1 : 4. Compute f(x, — h) and
f (x, — 2h) by means of both {V/ f,,} and {V] f,} and compare the results. How big
a difference in the results did you expect, and how big a difference do you obtain?

(a) Check Example 3.3.10 and the conclusions about the optimal step length in the
text. Investigate how the attainable accuracy varies with u, for these three values of
k,ifu=1.1-10716.
(b) Study the analogous question for f”(xg) using the formula

82 & 86 88 ) 8 fo

” ~(1=-2 e _ 2 _ 2 J0
f(xo) < 12790 " 560 T 3150 h?

Solve the following difference equations. A solution in complex form should be
transformed to real form. As a check, compute (say) y, both by recurrence and by
your closed form expression.

@ Ynt2 = 2Ypt1 =3y, =0, y=0, y1 =1

(®) Yn+2 =441 + 59, =0, yo=0, y1 =2

(c) There exist problems with two-point boundary conditions for difference equa-
tions, as for differential equations y,1» — 2y,+1 —3y, =0, yo=0, yjo=1
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3.3.15

3.3.16

3.3.17

3.3.18

3.3.19

3.3.20

(d) Y42 +2¥n41+ 90 =0, yo=1, y1 =0

©) Ynt1 =y =2", yo=0

() Y2 = 2Vnp1 = 3yu =1+cos 5, yo=y1 =0
Hint: The right-hand side is (1 4 a"), where a = ™'/3.
(&) yn41 —yn=n, =0

(M) yuy1 =2y, =n2", yo=0

(a) Prove Lemma 3.3.11.

(b) Consider the difference equation y,y» —5y,+1 + 6y, = 2n+3(—1)". Determine
a particular solution of the form y, = an + b + c(—1)".

(c) Solve the difference equation y,1» — 6y,4+1 + Sy, = 2n + 3(—1)". Why and
how must you change the form of the particular solution?

(a) Show that the difference equation Zf:o b; Ay, = 0 has the characteristic equa-
tion X, bi(u — 1)' = 0.

(b) Solve the difference equation A2y, — 3Ay, + 2y, = 0, with initial condition
Ay(] = 1

(c) Find the characteristic equation for the equation Zf:o biViy, =0.

The influence of wrong boundary slopes for cubic spline interpolation (with equidis-
tant data)—see Sec. 4.4.2—is governed by the difference equation

eny1 +4e, +e,.1 =0, 0<n<m,

with eq, e, given. Show that e, =~ u"ey + u™"e,, u = V3 =2~ —0.27. More
precisely,
_ 2|u3m/2
|en — (u"eq +u" "em)| = Wmaxﬂeoh leml)-
Generalize the simpler of these results to other difference and differential equations.

The Fibonacci sequence is defined by the recurrence relation
Yn = Yn—1+Yu—2, Yo=0, yi=1L

(a) Calculate lim,,_, oo Yys1/Vn-

(b) The error of the secant method (see Sec. 6.2.2) satisfies approximately the differ-
ence equation €, = Ce,_1€,_,. Solve this difference equation. Determine p such
that €, /€ tends to a finite nonzero limit as n — oo. Calculate this limit.

For several algorithms using the divide and conquer strategy, such as the FFT and
some sorting methods, one can find that the work W (n) for the application of them
to data of size n satisfies a recurrence relation of the form

Wmn) =2W(n/2) + kn,

where k is a constant. Find W (n).

When the recursion

Xn42 = (32xn+l - 20)6”)/3, x0 =3, x1 =2,
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was solved numerically in low precision (23 bits mantissa), one obtained for x;,
i =2 :12, the (rounded) values

1.33, 0.89, 0.59, 0.40, 0.26, 0.18, 0.11, 0.03, —0.46, —5.05, —50.80.
Explain the difference from the exact values x, = 3(2/3)".

3.3.21 (a) k, N are given integers 0 < k << N. A “discrete Green’s function” G, ;, 0 <
n < N, for the central difference operator —AV together with the boundary condi-
tions given below, is defined as the solution u,, = G, ; of the difference equation
with boundary conditions

—AVun :8n,ka Ug =upn =0
(6n.x 1s Kronecker’s delta). Derive a fairly simple expression for G, .
(b) Find (by computer) the inverse of the tridiagonal Toeplitz matrix®!
2 -1
-1 2 —1
A= -1 2 -1
-1 2 -1
-1 2
What is the relation between Problems 3.3.21 (a) and (b)? Find a formula for the
elements of A~'. Express the solution of the inhomogeneous difference equation
—AVu, = b,,uy = uy = 0, both in terms of the Green function G, ; and in terms
of A~! (for general N).
(c) Try to find an analogous formula®? for the solution of an inhomogeneous boundary
value problem for the differential equation —u” = f(x), u(0) = u(1) = 0.
3.3.22 (a) Demonstrate the formula

i( e i il A)nco (3.3.67)

n=0 n=0

Hint: Use the relation e *f = ¢=*(1+4) = g=¥p=34,

(b) For completely monotonic sequences {c,} and {(—A)"cq} are typically positive
and decreasing sequences. For such sequences, the left-hand side becomes extremely
ill-conditioned for large x, (say) x = 100, while the graph of the terms on the right-
hand side (if exactly computed) is bell-shaped, almost like the normal probability
density with mean x and standard deviation /x. We have called such a sum a bell
sum. Such positive sums can be computed with little effort and no trouble with
rounding errors, if their coefficients are accurate.

Compute the left-hand side of (3.3.67), forc, = 1/(n + 1), x = 10 : 10 : 100, and
compute the right-hand side, both with numerically computed differences and with

91 The inverse is a so-called semiseparable matrix.

91n a differential equation, analogous to Problem 3.3.21 (a), the Kronecker delta is to be replaced by the Dirac
delta function. Also note that the inverse of the differential operator here can be described as an integral operator
with the Green’s function as the “kernel.”
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3.3.23

3.3.24

3.3.25

exact differences; the latter are found in Problem 3.3.3 (a). (In this particular case
you can also find the exact sum.)

Suppose that the higher differences {(—A)" ¢} have been computed recursively from
rounded values of ¢,. Explain why one may fear that the right-hand side of (3.3.67)
does not provide much better results than the left-hand side.

(c) Use (3.3.67) to derive the second expansion for erf(x) in Problem 3.2.8 from the
first expansion.

Hint: Use one of the results of Problem 3.3.3 (a).

(d)Ifc, = ¢, (a, b) is defined as in Problem 3.3.3 (d), then the left-hand side becomes
the Maclaurin expansion of the Kummer function M (a, b, —x); see the Handbook [1,
Chap. 13]. Show that

M(a,b,—x)=e *M((b —a,b, x)

by means of the results of Problems 3.3.23 (a) and 3.3.2 (d).”?

(a) The difference equation y, + 5y, = n~! was discussed in Example 1.2.1. Tt

can also be written thus: (6 + A)y,_; = n~!. The expansion of (6 + A)~'n~! into
powers of A /6 provides a particular solution of the difference equation.

Compute this numerically for a few values of n. Try to prove the convergence, with
or without the expression in Problem 3.3.3 (b). Is this the same as the particular
solution I, = fol x"(x 4+ 5)~! dx that was studied in Example 1.2.1?

Hint: What happens as n — oo? Can more than one solution of this difference
equation be bounded as n — 00?

(b) Make a similar study of the difference equation related to the integral in Prob-
lem 1.2.7. Why does the argument suggested by the hint in (a) not work in this case?
Try another proof.

(a) Prove Lemma 3.3.15. How is the conclusion to be changed if we do not suppose
that y < «, even though the coefficients are still positive? Show that a backward
recurrence is still to be recommended.

(b) Work out on a computer the numerical details of Example 3.3.16, and compare
with the Handbook [1, Example 19.28.1]. (Some deviations are to be expected,
since Miller used other rounding rules.) Try to detect the oscillating component by
computing the difference scheme of the computed U (a, 5), and estimate roughly the
error of the computed values.

(a) For which constant real a does the difference equation

Yn+1 — zayn + V-1 = 0

satisfy the root condition? For which values of the real constant a does there exist
a solution such that lim,,_, o, y, = 0? For these values of a, how do you construct
a solution y, = y by a recurrence and normalization so that this condition as well
as the condition yj +2Y > yi = 1 are satisfied? Is y* unique? Give also an
explicit expression for y;.

93This formula is well known in the theory of the confluent hypergeometric functions, where it is usually proved
in other ways.
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3.3.26

(b) For the other real values of a, show that y¥ does not exist, but that for any
given yp, y; a solution can be accurately constructed by forward recurrence. Give
an explicit expression for this solution in terms of Chebyshev polynomials (of the
first and the second kind). Is it true that backward recurrence is also stable, though
more complicated than forward recurrence?

(a) The Bessel function Ji(z) satisfies the difference equation
Jir1() — Qk/D) () + Sh1(20) =0, k=1,2,3,...,
and the identities

Jo(2) +202(2) +2J4(2) + 2J6(2) +--- =1,
Jo(z) — 2J2(2) +2J4(z) — 2J6(z) + -+ - = cos z;

see the Handbook [1, Sec.9.1.27,9.1.46, and 9.1.47]. Show how one of the identities
can be used for normalizing the trial sequence obtained by a backward recurrence.
Under what condition does Lemma 3.3.15 give the hint to use the backward recur-
rence for this difference equation?

(b) Study the section on Bessel functions of integer order in [294]. Apply this
technique for z = 10, 1, 0.1 (say). The asymptotic formula (see [1, Sec. 9.3.1])

1 ez\k

K@~ —=(5) . k> 1, zfixed,
¢ N2k \2k

may be useful in deciding where to start the backward recurrence. Use at least two

starting points, and subtract the results (after normalization).

Comment: The above difference equation for Ji(z) is also satisfied by a function

denoted Y (2):

Y(z)fv_—z(ﬁ)_k k> 1)
¢ Vark \2k) '

How do these two solutions interfere with each other when forward or backward
recurrence is used?

3.3.27 A counterexample to the technique with frozen coefficients. Consider the difference

3.3.28

equation v, 41 — (—1)"y, + y,—1 = 0. The technique with frozen coefficients leads
to the consideration of the difference equations

Znt1 —2aZy + 241 =0, a €[-0.5,0.5];

all of them have only bounded solutions. Find by numerical experiment that, never-
theless, there seems to exist unbounded solutions y, of the first difference equation.

Comment: A proof of this is found by noting that the mapping (v2,, Yan+1) —>
(Yan+2, Yant3) is represented by a matrix that is independent of # and has an eigen-
value that is less than —1.

Let {b,}>, be a given sequence, and consider the difference equation

Yn—1 + 4yn + Yn+1 = bn»

which can also be written in the form (6 + §2) Vo = by.
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(a) Show that the difference equation has at most one solution that is bounded for
—00 < n < +o0o. Find a particular solution in the form of an expansion into powers
of the operator §2/6. (This is, hopefully, bounded.)

(b) Apply it numerically to the sequence b, = (1 + n>h?)~! for a few values of the
step size h, e.g., h = 0.1,0.2, 0.5, 1. Study for n = 0 the rate of decrease (?) of the
terms in the expansion. Terminate when you estimate that the error is (say) 107°.
Check how well the difference equation is satisfied by the result.

(c) Study theoretically bounds for the terms when b, = exp(iwhn), ® € R. Does
the expansion converge? Compare your conclusions with numerical experiments.
Extend to the case when b, = B(nh), where B(¢) can be represented by an absolutely
convergent Fourier integral,

B(t) = f ” &' B(w)dw.

o0

Note that B(t) = (14>~ if B(w) = %e"“". Compare the theoretical results with
the experimental results in (b).

(d) Put Q = 62/6. Show that 3, = (1 — Q + Q% + --- + 0¥ 1b, /6 satisfies the
difference equation (1 + Q) (3, — y.) = Q*b, /6.

Comment: This procedure is worthwhile if the sequence b, is so smooth that (say)
two or three terms give satisfactory accuracy.

3.4 Acceleration of Convergence

3.4.1 Introduction

We have seen that in applied mathematics the solution to many problems can be obtained
from a series expansion or a sequence converging to the exact solution. But sometimes the
convergence of the series is so slow that the effective use of it is limited.

If a sequence {s,};° converges slowly toward a limit s, but has a sort of regular
behavior when n is large, it can under certain conditions be transformed into another infinite
sequence {s; }, which converges much faster to the same limit. Here s, usually depends on
the first n elements of the original sequence only. This is called convergence acceleration.
Such a sequence transformation may be iterated to yield a sequence of infinite sequences,
{s/}, {s/'}, and so forth, hopefully with improved convergence toward the same limit s.
For an infinite series convergence acceleration means the convergence acceleration of its
sequence of partial sums, because

o0
nli)ngosn =a < a=5s;+ Z(SPH — Sptj—1)-

p=I
Some algorithms are most easily discussed in terms of sequences, others in terms of series.
Several transformations, linear as well as nonlinear, have been suggested and are suc-
cessful under various conditions. Some of them, such as Aitken transformation, repeated
averages, and Euler’s transformation, are most successful on oscillating sequences (alternat-
ing series or series in a complex variable). Others, such as variants of Aitken acceleration,
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Euler—Maclaurin, and Richardson, work primarily on monotonic sequences (series with
positive terms). Some techniques for convergence acceleration such as continued fractions,
Padé approximation, and the € algorithm transform a power series into a sequence of rational
functions.

Some of these techniques may even sometimes be successfully applied to semi-
convergent sequences. Several of them can also use a limited number of coefficients of
a power series for the computation of values of an analytic continuation of a function,
outside the circle of convergence of the series that defined it.

Convergence acceleration cannot be applied to “arbitrary sequences”; some sort of
conditions are necessary that restrict the variation of the future elements of the sequence,
i.e., the elements which are not computed numerically. In this section, these conditions are
of a rather general type, in terms of monotonicity, analyticity, or asymptotic behavior of
simple and usual types.

In addition to the “general purpose” techniques to be discussed in this chapter, there are
other techniques of convergence acceleration based on the use of more specific knowledge
about a problem. For example, the Poisson summation formula

S rm=Y (). f@ = / Fl@)e 2 dx (G4

n=—00 j=—00

( f is the Fourier transform of f) can be amazingly successful for a certain class of series
> a(n), namely if a(x) has a rapidly decreasing Fourier transform. The Poisson formula
is also an invaluable tool for the design and analysis of numerical methods for several
problems; see Theorem 3.4.10.

Irregular errors are very disturbing when these techniques are used. They sometimes
set the limit for the reachable accuracy. For the sake of simplicity we therefore use IEEE
double precision arithmetic in most examples.

3.4.2 Comparison Series and Aitken Acceleration

Suppose that the terms in the series Zjozl aj behave, for large j, like the terms of a series
Y2y bjie,limj oo a;/b; = 1. Then, if the sum s = Y- | b; is known one can write

S = Zaj =5 +Z(aj - b)),
j=1 =1

where the series on the right-hand side converges more quickly than the given series. We
call this making use of a simple comparison problem. The same idea is used in many other
contexts—for example, in the computation of integrals where the integrand has a singularity.
Usual comparison series are

o0 o0
> nr=m’/6, > ot =x"/90, etc.
j=1 j=1

A general expression for Y72, n™*

for 352, n 72

is given in (3.4.32). No simple closed form is known
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Example 3.4.1.
The terma; = (j* + 1)~1/2 behaves, for large j, like b; = j~2, whose sum is 72 /6.
Thus

oo [e9]
D aj=m/6+ ((*+ D77 = j72) = 1.64493 — 0.30119 = 1.3437.
j=1 j=1

Five terms on the right-hand side are sufficient for four-place accuracy in the final result.
Using the series on the left-hand side, one would not get four-place accuracy until after
20,000 terms.

This technique is unusually successful in this example. The reader is advised to find
out why, and why it is less successful for a; = (j* + j3 + 1)7/2

An important comparison sequence is a geometric sequence
VY, =5 + bk"
for which Vy, = v, — ya—1 = bk"'(k — 1). If this is fitted to the three most recently

computed terms of a given sequence, y, = s, for(say)n = j, j—1, j—2,then Vy; = Vs;,
Vyj—l = VS]‘_l, and
k=Vs;/Vs;j_1,  Vs;=bki'(k—1).

Hence

VSj _ VS.,' _ (VSJ')z
1—1/k 1—Vs;_y/Vs; Vi
This yields a comparison sequence for each j. Suppose that |k| < 1. Then the comparison
sequence has the limit lim, o y, = s = y; — bk/, i.e.,

Vs;)?
sas =s; — (vj;? . (3.4.2)
J

bk! =

This nonlinear acceleration method is called Aitken acceleration.®*
Notice that the denominator equals s; —2s;_; + 55, but to minimize rounding errors
it should be computed as

Vs; = Vs; 1 =(s; —sj-1) — (5j_1 +5j-2)

(cf. Lemma 2.3.2). If {s,} is exactly a geometric sequence, i.e., if 5, —s = k(s,—; — 5)
for all n, then s} = s for all j. Otherwise it can be shown (Henrici [193]) that under the
assumptions
Siiq — 8

lims; =s,  limZ—2L =k k| <1, (3.4.3)

oo Sj = 8j-1
the sequence {s }} converges faster than the sequence {s;}. The above assumptions can often
be verified for sequences arising from iterative processes and for many other applications.
Note also that Aitken extrapolation is exact for sequences {s,} such that

a(s, — )+ B(spt1 —s) =0 Vn,
with af # 0, o + B # 0. This leads to a generalization to be discussed in Sec. 3.5.4.

94Named after Alexander Craig Aitken (1895-1967), a Scottish mathematician born in New Zealand.
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If you want the sum of slowly convergent series, then it may seem strange to compute
the sequence of partial sums, and compute the first and second differences of rounded values
of this sequence in order to apply Aitken acceleration. The a-version of Aitken acceleration
works on the terms a; of an infinite series instead of on its partial sums s;.

Clearly we have a; = Vs;, j = 1 : N. The a-version of Aitken acceleration thus
reads

/

— . 2 .
s; =s;—aj/Vaj,

f J =1:N. (344)

We want to determine a} so that

Then

ay=0, d;=a;—V(a;/Va)), j=2:N,

andsy = sy —ajzv /Vay (show this). We may expect that this a-version of Aitken acceleration
handles rounding errors better.

The condition |k*| < 1 is a sufficient condition only. In practice, Aitken acceleration
seems most efficient if k* = —1. Indeed, it often converges even if k* < —1; see Prob-
lem 3.4.7. It is much less successful if k* ~ 1, for example, for slowly convergent series
with positive terms.

The Aitken acceleration process can often be iterated to yield sequences {s; }5°, {s,,'}5°,
etc., defined by the formulas

(Vs')? (Vs/)?
S}/ZS}_VT;(’ Sj :s;/_VT;” (345)
J J

J s e ¢; ¢ ej
6]0.820935 | 3.5536e—2
710.754268 | —3.1130e—2 | —1.7783e—4
810.813092 | 2.7693e—2 | 1.1979e—4
9 10.760460 | —2.4938e—2 | —8.4457e—5 | —1.3332¢—6

10 [ 0.808079 | 2.2681e—2| 6.1741e—5| 7.5041e—7

11 | 0.764601 | —2.0797e—2 | —4.6484e—5 | —4.4772¢—7 | —1.0289¢—8

Example 3.4.2.
By (3.1.13), it follows that for x = 1

1—-1/34+1/5—-1/7+1/9 —--- =arctan 1 = /4 ~ (0.7853981634.

This series converges very slowly. Even after 500 terms there still occur changes in the third
decimal. Consider the partial sums s; = {lo (-1)/@2n+ 17!, withng = 5, and compute
the iterated Aitken sequences as indicated above.
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The (sufficient) theoretical condition mentioned above is not satisfied, since here
Vs,/Vs,—1 — —1 as n — oo. Nevertheless, we shall see that the Aitken acceleration
works well, and that the iterated accelerations converge rapidly. One gains two digits for
every pair of terms, in spite of the slow convergence of the original series. The results in
the table above were obtained using IEEE double precision arithmetic. The errors of s},

"

57, ..., are denoted by e},e}’,....

Example 3.4.3.
Set a, = e V"' n > 0. As before, we denote by s, the partial sums of > ay,
s = lims, = 1.67040681796634, and use the same notations as above. Note that

Vn n 17
b EE RN CE )}

vSnfl an—1

so this series is slowly convergent. Computations with plain and iterated Aitken in IEEE
double precision arithmetic gave the results below.

o &

—0.882 | —4.10e—1
—0.640 | —1.08e—1
—0.483 | —3.32e—2
—0.374 | —4.41e—-3
—0.295 | —7.97e—4
—0.237 | —1.29¢e—4
—0.192 | —1.06e—5

~N O DW=~

The sequence {eg.)} is monotonic until j = 8. After this |eg.)| is mildly fluctuating
around 107> (at least until j = 24), and the differences ng) = Veg.) are sometimes

several powers of 10 smaller than the actual errors and are misleading as error estimates.
The rounding errors have taken over, and it is almost no use to compute more terms.

It is possible to use more terms for obtaining higher accuracy by applying iterated
Aitken acceleration to a thinned sequence, for example, sy, s3, 512, . . . ; cf. Problem 3.4.4.
Note the thinning is performed on a sequence that converges to the limit to be computed, for
example, the partial sums of a series. Only in so-called bell sums (see Problem 3.4.29) shall
we do a completely different kind of thinning, namely a thinning of the terms of a series.

The convergence ratio of the thinned sequence are much smaller; for the series of the
previous example they become approximately

1 4
(1 - En—l/z) ~1=2n""2 n>1.

The most important point though, is that the rounding errors become more slowly amplified,
so that terms far beyond the eighth one of the unthinned sequence can be used in the
acceleration, resulting in a much improved final accuracy.
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How to realize the thinning depends on the sequence; a different thinning will be used
in the next example.

Example 3.4.4.
We shall compute, using IEEE double precision arithmetic,

o0
s = Zn*»*/z = 2.612375348685488.

n=1

If all partial sums are used in Aitken acceleration, it turns out that the error |e§§) | is decreasing

until j = 5, when it is 0.07, and it remains on approximately this level for a long time.

j 0 1 2 3 4 5
Esji1 | —1.61 —094 —492e—1 —249%—1 —125e—1 —625e—2
—1.61 —185 —5.06e—2 —2.37e—4 —225e—7 2.25e—10

A much better result is obtained by means of thinning, but since the convergence is
much slower here than in the previous case, we shall try “geometric” thinning rather than
the “arithmetic” thinning used above; i.e., we now set S,, = so». Then

om Jj
VSu= Y an  S;=S+)» VS, Ej=S—s.

142m-1 m=1

(If maximal accuracy is wanted, it may be advisable to use the divide and conquer technique
for computing these sums (see Problem 2.3.5), but it has not been used here.) By the
approximation of the sums by integrals one can show that VS, /VS,,_; ~ 2712 m > 1.
The table above shows the errors of the first thinned sequence and the results after iterated
Aitken acceleration. The last result has used 1024 terms of the original series, but since

oo

o0
2
sm—s=—Y jx —/ =32 dr = —gn—lﬂ, (3.4.6)

j=n n

10?° terms would have been needed for obtaining this accuracy without convergence accel-
eration.

For sequences such that
sp—s=con P +en P +0m P, p>0,

where s, cg, ¢ are unknown, the following variant of Aitken acceleration (Bjgrstad, Dahlquist,
and Grosse [33]) is more successful:

p+1 As,Vs,
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It turns out that s, is two powers of n more accurate than s,, s, — s = O(m—P72); see
Problem 3.4.12. More generally, suppose that there exists a longer (unknown) asymptotic

expansion of the form
sp=s4+nPco+en v+, n— oo. (3.4.8)

This is a rather common case. Then we can extend this to an iterative variant, where p is
to be increased by two in each iteration; i = 0, 1, 2, ... is a superscript, i.e.,

i+1 i p+2l + 1 AS:,LVSZ (349)
N =5, — - - 4.
" " p+2i Asi— Vs

If p is also unknown, it can be estimated by means of the equation

! A—2% L om (3.4.10)
—=—A— n-°). 4.
p+1 As, — Vs,
Example 3.4.5.
We consider the same series as in the previous example, i.e., s = Y n~%/2. We use
(3.4.9) without thinning. Here p = —1/2; see Problem 3.4.13. As usual, the errors are

denoted e; = s; — s, €5; = 55; — 5. In the right column of the table below, we show the
errors from a computation with 12 terms of the original series.

) j
€ €y

—1.612 | —1.612
—1.066 | —8.217e—3
—0.852 | —4.617e—5
—0.730 | +2.528e—7
—0.649 | —1.122e—9
—0.590 | —0.634e—11

whn A W N = O~

From this point the errors were around 10~'° or a little below. The rounding errors
have taken over, and the differences are misleading for error estimation. If needed, higher
accuracy can be obtained by arithmetic thinning with more terms.

In this computation only 12 terms were used. In the previous example a less accurate
result was obtained by means of 1024 terms of the same series, but we must appreciate that
the technique of Example 3.4.4 did not require the existence of an asymptotic expansion for
s, and may therefore have a wider range of application.

There are not yet so many theoretical results that do justice to the practically observed
efficiency of iterated Aitken accelerations for oscillating sequences. One reason for this
can be that the transformation (3.4.2) which the algorithm is based on is nonlinear. For
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methods of convergence acceleration that are based on linear transformations, theoretical
estimates of rates of convergence and errors are closer to the practical performance of the
methods.

3.4.3 Euler’s Transformation

In 1755 Euler gave the first version of what is now called Euler’s transformation. Euler
showed that for an alternating series (u; > 0), it holds that

o0 o0 1
§=3 (D=3 A ur. (3.4.11)
j=0 k=0

Often it is better to apply Euler’s transformation to the tail of a series.
We shall now apply another method of acceleration based on repeated averaging of
the partial sums. Consider again the same series as in Example 3.4.2, i.e.,

ad . 1 1 1 1 T
—ei+D) ' =1+ - - — = 3.4.12
]_E:O( )25+ 1) 3+5 7+9 1 ( )

Let Sy be the sum of the first N terms. The columns to the right of the Sy-column in the
scheme given in Table 3.4.1 are formed by building averages.

Each number in a column is the mean of the two numbers which stand to the left
and upper left of the number itself. In other words, each number is the mean of its “west”
and “northwest” neighbor. The row index of M equals the number of terms used from the
original series, while the column index minus one is the number of repeated averaging.
Only the digits which are different from those in the previous column are written out.

Table 3.4.1. Summation by repeated averaging.

N Sy M, My My Ms Me M;
6 0.744012

7 0.820935 782474
8

9

0.754268 787602 5038
0.813092 783680 5641 340
10 0.760460 786776 5228 434 387
11 0.808079 784270 5523 376 405 396
12 0.764601 786340 5305 414 395 400 398

Notice that the values in each column oscillate. In general, for an alternating series, it
follows from the next theorem together with (3.3.4) that if the absolute value of the jth term,
considered as a function of j, has a kth derivative which approaches zero monotonically
for j > Ny, then every other value in column My, is larger than the sum, and every other
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is smaller. This premise is satisfied here, since if f(j) = (2j + 1)7', then f®(j) =
cx(2j + 1)~k which approaches zero monotonically.

If roundoft is ignored, it follows from column Mg that 0.785396 < /4 < 0.785400.
To take account of roundoff error, we set 7/4 = 0.785398 £+ 3 - 107%. The actual error
is only 1.6 - 1077, In Example 3.4.2 iterated Aitken accelerations gave about one decimal
digit more with the same data. It is evident how the above method can be applied to any
alternating series. The diagonal elements are equivalent to the results from using Euler’s
transformation.

Euler’s transformation and the averaging method can be generalized for the conver-
gence acceleration of a general complex power series

o0
S() =Y uzi 7t (3.4.13)
j=1
For z = —1 an alternating series is obtained. Other applications include Fourier series.

They can be brought to this form with z = €', —n < ¢ < m; see Sec.4.6.2 and Prob-
lem 4.6.7.

The irregular errors of the coefficients play a big role if |¢| < m, and it is impor-
tant to reduce their effects by means of a variant of the thinning technique described (for
Aitken acceleration) in the previous section. Another interesting application is the analytic
continuation of the power series outside its circle of convergence; see Example 3.4.7.

Theorem 3.4.1.
The tail of the power series in (3.4.13) can formally be transformed into the following
expansion, where (z % 1):

n 00 n 0
. . Z Z
S@ =Y uz =" w7 = 1_Z§ Pu, ., P= A G4l
j=I1 j=n+1 s=0

Set N =n+k — 1, and set

n n k=2
; Z
Mn,l = E ujzjilv MN,k:Mil,1+ 1—z § PsunJrl’ n=N-—-k+1. (34.15)
j=1 " s=0

These quantities can be computed by the following recurrence formula that yields several
estimates based on N terms from the original series.®> This is called the generalized Euler
transformation:

My k-1 — ZMny_1 -1

My = , k=2:N. (3.4.16)

11—z

For z = —1, this is the repeated average algorithm described above, and P = —%A.

95See Algorithm 3.4 for an adaptive choice of a kind of optimal output.
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Assume that |z| < 1, that Zujzj_l converges, and that A°uy — 0, s =0 : k, as
N — oo. Then My — S(z) as N — oo. If, moreover, A*~'u; has a constant sign for
Jj = N — k + 2, then the following strict error bounds are obtained:

IMyx — S@)| < |zMyx — My_1 ;-0 = [Myx — My 1], (k=>2). (3.4.17)

Proof. We first note that as N — oo, P'uy — 0, s = 0 : k, and hence, by (3.4.15),
lim MN,k = lim MN,O = S(Z)
Euler’s transformation can be formally derived by operators as follows:

n

00
n i _ Z
S(Z) - Mn,l =Z Z(ZE) Upyl = m

i=0

Up+1

n

n oo
Z u Z ZPXL{
= 1 = 1-
1—z—zA n+ 1_ZY70 n+

In order to derive (3.4.16), note that this relation can be written equivalently be written as

My — My =z2(Myi— My _15-1), (3.4.18)
My =My 141 =0 —=2)Myi —My_14-1)- (3.4.19)
Remembering that n = N — k + 1, we obtain, by (3.4.15),
N—k+1
My —My_14—1 = e P Uy iio, (3.4.20)
and it can be shown (Problem 3.4.16) that
My 1 — My_1 4o = 2" P Pupy = 2V PR 20 s (3.4.21)

By (3.4.20) and (3.4.21), we now obtain (3.4.19) and hence also the equivalent equations
(3.4.18) and (3.4.16).

Now substitute j for N into (3.4.21), and add the p equations obtained for j = N +1,
..., N + p. We obtain

N+p

_ j—k+1 pk—2
Myipi—1 =My -1 = Z TP T U .
j=N+1

Then substitute k + 1 for k, and N + 1 4 i for j. Let p — oo, while k is fixed. It follows
that

00
j—k pk—1
$(2) _MN,k = Z /7P Uj_k+1
j=N+1
_ 1 o
SNk k]

z D
T T —gk ZZ AUy oy (3.4.22)
i=0
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hence

1S(2) = Myl < |2/ =22V A g o]
i=0

We now use the assumption that A¥~'u; has constant sign for j > N — k + 2.

Since Y 720 AM Uy ii04i = — A 2up 1o, it follows that
k=1 Ak—2
1S(z) — My 4| < ZN—kHM
2. Nk

k=2
= P “un_i42].

1—-z

Now, by (3.4.20),
[S(z) — Myl < |zl - My g — My_1x-1].

This is the first part of (3.4.17). The second part then follows from (3.4.18). a

Remark 3.4.1. Note that the elements My ; become rational functions of z for fixed N,
k. If the term u,, as a function of n, belongs to Py, then the classical Euler transformation
(for n = 0) yields the exact value of S(z) after k terms if |z|] < 1. This follows from
(3.4.14), because Y ujzj is convergent, and P°u, | = 0 for s > k. In this particular case,
S(z) = Q(z)(1 — z)7*%, where Q is a polynomial; in fact, the Euler transformation gives
S(z) correctly for all z # 1.

The advantage of using the recurrence formula (3.4.16) instead of a more direct use
of (3.4.14) is that it provides a whole lower triangular matrix of estimates so that one can,
by means of a simple test, decide when to stop. This yields a result with strict error bound,
if A*~'u; has a constant sign (for all j with a given k), and if the effect of rounding errors
is evidently smaller than Tol. If these conditions are not satisfied, there is a small risk that
the algorithm may terminate if the error estimate is accidentally small, for example, near a
sign change of A*~!y;.

The irregular errors of the initial data are propagated to the results. In the long run, they
are multiplied by approximately |z/(1 — z)| from a column to the next—this is less than one
if Nz < 1/2—>but in the beginning this growth factor can be as large as (1 + |z|)/|1 —z|. It
plays no role for alternating series; its importance when |1 — z| is smaller will be commented
onin Sec. 4.7.2.

The following algorithm is mainly based on Theorem 3.4.1 with a termination criterion
based on (3.4.17). The possibility of the irregular errors becoming dominant has been taken
into account (somewhat) in the third alternative of the termination criterion.

The classical Euler transformation would only consider the diagonal elements My y,
N = 1,2, ..., and the termination would have been based on |Myy — My_; y—1|. The
strategy used in this algorithm is superior for an important class of series.
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ALGORITHM 3.4. Generalized Euler Transformation.

function [sumerrest, N kk] = euler(z,u,Tol);

% EULER applies the generalized Euler transformto a power
% series with terns u(j)z"j. The elenments of Mare inspected
%in a certain order, until a pair of neighboring elenents
% are found that satisfies a termnation criterion.

%

Nmax = | engt h(u);

errest = Inf; olderrest = errest;

N=1 kk =2; M1,1) = u(l);

while (errest > Tol) & (N < Nmax) & (errest <= ol derrest)

N = N+1;
MN 1) = MN1,1)+ u(N*z"(N-1); % New partial sum
for kK = 2:N,

MN, k) = (MNKk-1) - z*?MN1,k-1))/(1-2);
temp = abs(MN, k) - MN k-1))/2;
if tenp < errest,
kk = k; errest = tenp;
end
end
end
sum = (MN, kk) + MN, kk-1))/2;

An oscillatory behavior of the values |My x — My x—1| in the same row indicates that
the irregular errors have become dominant. The smallest error estimates may then become
unreliable.

Remark 3.4.2. If the purpose of the computation is to study the convergence properties of
the method rather than to get a numerical result of desired accuracy as quickly as possible,
you had better replace the while statement by (say) f or N=1: Nmax, change a few lines in
the program, and produce graphical output such as Figure 3.4.1.

The above algorithm gives a strict error bound if, in the notation used in the theorem,
AF1y; has a constant sign for i > N — k 4 2 (in addition to the other conditions of the
theorem). We recall that a sequence for which this condition is satisfied for every k is called
completely monotonic; see Definition 3.4.2.

It may seem difficult to check if this condition is satisfied. It turns out that many
sequences that can be formed from sequences such as {n~*}, {¢~*"} by simple operations and
combinations belong to this class. The generalized Euler transformation yields a sequence
that converges at least as fast as a geometric series. The convergence ratio depends on z; it
is less than one in absolute value for any complex z, except for z > 1 on the real axis. Thus,
the generalized Euler transformation often provides an analytic continuation of a power
series outside its circle of convergence.

For alternating series, with completely monotonic terms, i.e., for z = —1, the con-
vergence ratio typically becomes % This is in good agreement with Figure 3.4.1. Note that
the minimum points for the errors lie almost on a straight line and that the optimal value of

% is approximately % if N > 1 and if there are no irregular errors.
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Figure 3.4.1. Logarithms of the actual errors and the error estimates for My y ina
more extensive computation for the alternating series in (3.4.12) with completely monotonic
terms. The tolerance is here set above the level where the irregular errors become important;
for a smaller tolerance parts of the lowest curves may become less smooth in some parts.

Example 3.4.6.
A program, essentially the same as Algorithm 3.4, is applied to the series
> 1 1 1 1
2:(—1)11'*1 =1- 3 + 373 + s = In2 = 0.69314 71805 599453

Jj=1

with tol = 1079, Tt stops when N = 12, kk = 9. The errors ¢, = My — In2 and the
differences %Vk My i along the last row of M read as shown in the following table.

k 1 2 3 .10 11 12
e |—3.99-1072 1.73-1073 —1.64-107* ... 5.35-10~7 —9.44.10~7 2.75-10~°
v/2 2.03-1072 —9.47-107* ... 4.93.10~7 —7.40-10~7 1.85-10°

Note that |errest| = 4.93 - 1077 and sum — In2 = 1(eg + eg) = 4.2- 1075, Almost
full accuracy is obtained for Tol = 10~'°, Nmax = 40. The results are N = 32, kk = 22,
errest = 1071°, |error| = 2- 10719, Note that errest < |error|; this can happen when
we ask for such a high accuracy that the rounding errors are not negligible.

Example 3.4.7.
We consider the application to a divergent power series (analytic continuation),

S@ =Y "'zl > 1
n=1

As in the previous example we study in detail the case of u,, = 1/n. It was mentioned above
that in exact arithmetic the generalized Euler transformation converges in the z-plane, cut
along the interval [1, oo]. The limitis —z~! In(1 —z), a single-valued function in this region.
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For various z outside the unit circle, we shall see that rounding causes bigger problems here
than for Fourier series. The error estimate of Algorithm 3.4, usually underestimated the
error, sometimes by a factor of ten. The table below reports some results from experiments
without thinning.

2z -2 —4 —10 —100 2i i 141 2+i
lerror| | 2-107'2 2.107% 4.107 3.1072 8-10~!'' 1072 10~7 2.1072

N 38 41 43 50 40 39 38 39

kk 32 34 39 50 28 34 22 24

Thinning can be applied in this application, but here not only the argument ¢ is
increased (this is good), but also |z| (this is bad). Nevertheless, for z = 1 + i, the error
becomes 1077, 3-107%, 107, 4. 1073, for t = 1,2, 3, 4, respectively. For z = 2 + i,
however, thinning improved the error only from 0.02 to 0.01. All this is for IEEE double
precision arithmetic.

3.4.4 Complete Monotonicity and Related Concepts

For the class of completely monotonic sequences and some related classes of analytic func-
tions the techniques of convergence acceleration can be put on a relatively solid theoretical
basis.

Definition 3.4.2.
A sequence {u,} is completely monotonic (c.m.) for n > a if and only if

up, >0, (=A)u,>0 Vj>0, n=>a (integers).

Such sequences are also called totally monotonic. The abbreviation c.m. will be used,
both as an adjective and as a noun, and both in singular and in plural. The abbreviation
d.c.m. will similarly be used for the difference between two completely monotonic sequences.
(These abbreviations are not generally established.)

Ac.m. sequence {u,};° is minimal if and only if it ceases to be a c.m. if u is decreased
while all the other elements are unchanged. This distinction is of little importance to us, since
we usually deal with a tail of some given c.m. sequence, and it can be shown that if {u, }§°
is c.m., then {u,,}{° is a minimal c.m. sequence. Note that, e.g., the sequence {1, 0, 0,0, ...}
is a nonminimal c¢.m., while {0, 0, 0, 0, ...} is a minimal c.m. Unless it is stated otherwise
we shall only deal with minimal c.m. without stating this explicitly all the time.

Definition 3.4.3.
A function u(s) is c.m. for s > a, s € R, if and only if

u(s) >0, (=DPuP()>0, s>aV j=>0(integer), Vs > a (real).

u(s) is d.c.m. if it is a difference of two c.m. on the same interval.
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We also need variants with an open interval. For example, the function u(s) = 1/s is
c.m. in the interval [a, co) for any positive a, but it is not c.m. in the interval [0, oo].

The simplest relation of c.m. functions and c.m. sequences reads as follows: if the
function u(s) is c.m. for s > s¢, then the sequence defined by u,, = u(so + hn), (h > 0),
n=0,1,2,..., is also c.m. since, by (3.3.4), (—A)/u, = (—hD)’u(&) > 0 for some
§ = s0.

A function is absolutely monotonic in an (open or closed) interval if the function and
all its derivatives are nonnegative there.

The main reason why the analysis of a numerical method is convenient for c.m. and
d.c.m. sequences is that they are “linear combinations of exponentials,” according to the
theorem below. The more precise meaning of this requires the important concept of a
Stieltjes integral %

Definition 3.4.4.
The Stieltjes integral j; b f(x)da(x) is defined as the limit of sums of the form

Z fEN (a(xip) —a(x)), & € [xi, Xiq1], (3.4.23)

where
a=xg<X<Xxp<---<xy=5b

is a partition of [a, b]. Here f (x) is bounded and continuous, and «(x) is of bounded vari-
ation in [a, b), i.e., the difference between two nondecreasing and nonnegative functions.

The extension to improper integrals where, for example, b = oo, a(b) = o0, is
made in a similar way as for Riemann or Lebesgue integrals. The Stieltjes integral is much
used also in probability and mechanics, since it unifies the treatment of continuous and
discrete (and mixed) distributions of probability or mass. If o (x) is piecewise differentiable,
then da(x) = o'(x)dx, and the Stieltjes integral is simply fab f)a'(x)dx. If a(x) is
a step function, with jumps (also called point masses) m; at x = x;, i = 1 : n, then
da(x;) =limega(x; +¢€) — alx; —€) =m;,

b n
/ feydax) =Y m;f(x).

i=l

(It has been assumed that f(x) is continuous at x;,i = 1 : n.
Integration by parts is as usual; the following example is of interest to us. Suppose
that «(0) = 0, a(x) = o(e“*) as x — 00, and that :is > c. Then

/ e "da(x) =s/ a(x)e ™ dx. (3.4.24)
0 0

96Thomas Jan Stieltjes (1856—1894) was born in the Netherlands. After working with astronomical calculations
at the observatory in Leiden, he accepted a position in differential and integral calculus at the University of
Toulouse, France. He did important work on continued fractions and the moment problem, and invented a new
concept of the integral.
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The integral on the left side is called a Laplace-Stieltjes transform, while the integral on
the right side is an ordinary Laplace transform. Many properties of power series, though
not all, can be generalized to Laplace—Stieltjes integrals—set z = e~*. Instead of a disk
of convergence, the Laplace—Stieltjes integral has a (right) half-plane of convergence. A
difference is that the half-plane of absolute convergence may be different from the half-plane
of convergence.

We shall be rather brief and concentrate on the applicability to the study of numerical
methods. We refer to Widder [373, 374] for proofs and more precise information concerning
Stieltjes integrals, Laplace transforms, and complete monotonicity. Dahlquist [87] gives
more details about applications to numerical methods.

The sequence defined by

1
U :/ "dp), n=0,1,2,..., (3.4.25)
0

is called a moment sequence if 5(¢) is nondecreasing. We make the convention that t° = 1
also for t = 0, since the continuity of f is required in the definition of the Stieltjes integral.

Consider the special example where 8(0) = 0, 8(¢) = 1 if ¢t > 0. This means a unit
point mass at t+ = 0, and no more mass for t > 0. Then ug = 1, u, = 0 forn > 0. Itis
then conceivable that making a sequence minimal just means removing a point mass from
the origin; thus minimality means requiring that (t) is continuous at t = 0. (For a proof,
see [373, Sec. 4.14].)

The following theorem combines parts of several theorems in the books by Widder. It
is important that the functions called «(x) and B(¢) in this theorem need not to be explicitly
known for an individual series for applications of an error estimate or a convergence rate of
a method of convergence acceleration. Some criteria will be given below that can be used
for simple proofs that a particular series is (or is not) c.m. or d.c.m.

Theorem 3.4.5.

1. The sequence {u,}3° is c.m. if and only if it is a moment sequence; it is minimal if in
addition B(t) is continuous at t = 0, i.e., if there is no point mass at the origin. It is
a d.c.m. if and only if (3.4.25) holds for some B(t) of bounded variation.

2. The function u(s) is c.m. for s > 0 if and only if it can be represented as a Laplace—
Stieltjes transform,

u(s) = /Do e da(x), s=>0, (3.4.26)
0

with a nondecreasing and bounded function «(x). For the open interval s > 0 we
have the same, except for the boundedness of a(x). For a d.c.m. the same is true
with a(x) of bounded variation (not necessarily bounded as x — o0). The integral
representation provides an analytic continuation of u(s) from a real interval to a
half-plane.

3. The sequence {u,}3° is a minimal c.m. if and only if there exists a c.m. function u(s)
such thatu, =u(n),n =0,1,2,....
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4. Suppose that u(s) is c.m. in the interval s > a. Then the Laplace—Stieltjes integral
converges absolutely and uniformly if Rs > d’, foranya’ > a, and defines an analytic
continuation of u(s) that is bounded for s > a’ and analytic for Rs > a. This is
true also if u(s) is a d.c.m.

Proof. The “only if” parts of these statements are deep results mainly due to Hausdorff”’
and Bernstein,”® and we omit the rather technical proofs. The relatively simple proofs of
the “if” parts of the first three statements will be sketched, since they provide some useful
insight.

1. Assume that u,, is a moment sequence, 8(0) = 0, 8 is continuous at ¢ = 0 and non-
decreasing for t > 0. Note that multiplication by E or A outside the integral sign in
(3.4.25) corresponds to multiplication by t ort — 1 inside. Then, for j,n =0, 1,2, ...,

1 1
(—l)fAfun=(—1>f/ (t—l)jt”dﬁ(t)zf (1= 11" dB(o) = 0,
0 0

and hence u,, is c.m.

2. Assume that u(s) satisfies (3.4.26). It is rather easy to legitimate the differentiation
under the integral sign in this equation. Differentiation j times with respect to s
yields, for j =1,2,3, ...,

(=D)/uP(s) = (=1)/ /oo(—x)je_‘”C do(x) = /ooxje_” da(x) > 0;
0 0

and hence u(s) is c.m.

3. Assume that 4, = u(n) = fooo e da(x). Definetr = e, B(0) =0, B@r) =
B(e™) = u(0) — a(x), and note that

t=1<x=0, t=0&x =00,

and that #(0) = lim, _, o, (x). It follows that 8(¢) is nonnegative and nondecreasing,
since x decreases as t increases. Note that §(¢) | 8(0) ast | 0. Then

0 1
Up = —f t”dﬁ(t)=/ 1" dp(t),
1 0

hence {u,} is a minimal c.m.

4. The distinction is illustrated for o’ (x) = e™, u(s) = (s — a)~!, for areal a. u(s) is
analytic for s > a and bounded only for is > a’ for any a’ > a. a

9TFelix Hausdorff (1868—1942), a German mathematician, is mainly known for having created a modern theory
of topological and metric spaces.

98Sergei Natanovic Berntein (1880—1968), Russian mathematician. Like his countryman Chebyshev, he made
major contributions to polynomial approximation.
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The basic formula for the application of complete monotonicity to the summation of
power series reads

00 00 1 1 > 1
S(z) = Zuizi = Zf ZtdB(t) = f Zzili dp(t) = f (1 —z) " dp(@).
i=0 o Y0 0 9 0

(3.4.27)
The inversion of the summation and integration is legitimate when |z| < 1. Note that the
last integral exists for more general z; a classical principle of complex analysis then yields
the following interesting result.

Lemma 3.4.6.

If the sequence {u;} is d.c.m., then the last integral of formula (3.4.27) provides the
unique single-valued analytic continuation of S(z) to the whole complex plane, save for a
cut along the real axis from 1 to co.

Remark 3.4.3. When z is located in the cut, (1 — z¢t)~! has a nonintegrable singularity
att = 1/z € [0, 1] unless, e.g., B(¢) is constant in the neighborhood of this point. If we
remove the cut, S(z) will not be single-valued. Check that this makes sense for g(¢) = .

Next we shall apply the above results to find interesting properties of the (generalized)
Euler transformation. For example, we shall see that, for any z outside the cut, there is an
optimal strategy for the generalized Euler transformation that provides the unique value of
the analytic continuation of S(z). The classical Euler transformation, however, reaches only
the half-plane Nz < %

After that we shall see that there are a number of simple criteria for finding out
whether a given sequence is c.m., d.c.m., or neither. Many interesting sequences are c.m.,
for example, u, = e ", u,, = (n+c)7%, (k > 0, ¢ > 0), all products of these, and all linear
combinations (i.e., sums or integrals) of such sequences with positive coefficients.

The convergence of a c.m. toward zero can be arbitrarily slow, but an alternating series
with c.m. terms will, after Euler’s transformation, converge as rapidly as a geometric series.
More precisely, the following result on the optimal use of a generalized Euler transformation
will be shown.

Theorem 3.4.7.
We use the notation of Theorem 3.4.1 and (3.4.22). Suppose that the sequence {u;}
is either c.m. or d.c.m. Consider
[e ]
S(z) = Zujzj, zeC,

j=0

and its analytic continuation (according to the above lemma). Then for the classical Euler
transformation the following holds: If z = —1, a sequence along a descending diagonal of
the scheme M or (equivalently) the matrix M, i.e., (M, k332, for a fixed no, converges at
least as fast as 27%. More generally, the error behaves like (z/(1 —z))¥, (k > 1). Note that
lz/(1 —2)| < lifand only if Rz < % The classical Euler transformation diverges outside

this half-plane. If z = e*'", 3 <t < m, it converges as fast as (2 sin %)’k.
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For the generalized Euler transformation we have the following: If z = —1, the
smallest error in the ith row of M is O(37"), as i — oo. More generally, this error is
O((|z]/( 4 |1 = z))"), hence the smallest error converges exponentially, unless z — 1 is
real and positive; i.e., the optimal application of the generalized Euler’s transformation
provides the analytic continuation, whenever it exists according to Lemma 3.4.6. If N > 1,
the optimal value® of k/N is |1 — z|/(1 + |1 —z|). If z = e, 0 < t < 7, the error is
O((1 4+ 2sin %)*i).

Proof. Sketch: The result of the generalized Euler transformation is in Sec. 3.4.3, denoted
by M, x(z). The computation uses N = n + k terms (or partial sums) of the power series
for S(z); n terms of the original series—the head—are added, and Euler’s transformation
is applied to the next k terms—the tail. Set n/N = u,ie.,n = uN,k = (1 — u)N,
and denote the error of M, ; by Ry ,(z). Euler’s transformation is based on the operator
P = P(z) = = A. Amultiplication by the operator P corresponds to a multiplication by
7= (¢ — 1) inside the integral sign.

First suppose that |z| < 1. By the definitions of S(z) and M,, (z) in Theorem 3.4.1,

- o > g P& 2= Dys
RN,u<z>ZS—Mn.k—l_zgmn—l_z/o (=) s

n 1 _ n
Z / (z(t 1))k t"dB(t) (3.4.28)
0

T 1-2 (1-2)/ 1—z(t—1/(1-2)
AR L 1)
‘(Da—mkoa nzT?;

We see that the error oscillates as stated in Sec. 3.4.3. Again, by analytic continuation, this
holds for all z except for the real interval [1, co]. Then

ldB ()]
1 —zt|

1
IRy @Y < 12/(1 = 2)' 7 max ((1 —0)'#4#)c/N, o= /
1€[0,1] 0

The first part of the theorem has n = 0, hence © = 0. We obtain

lim |Ryol"" <1z/(1 —2)|
N—o0

as stated. This is less than unity if |z] < |1 — z], i.e., if R(z) < %
Now we consider the second part of the theorem. The maximum occurring in the
above expression for |Ry_,(z)|'/" (with N, u fixed) takes place at = u. Hence

Ry @Y < 1z/(1 =)' eV (A= )k

An elementary optimization shows that the value of p that minimizes this bound for
RN DIV is o = 1/(|1 = z| + 1), ie.,

N|1 —z]

-z +1

91n practice this is found approximately by the termination criterion of Algorithm 3.4.

k=(1—pN =
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and the minimum equals |z|/(]1 — z| + 1). The details of these two optimizations are left
for Problem 3.4.34. This proves the second part of the theorem. 0

This minimum turns out to be a rather realistic estimate of the convergence ratio of the
optimal generalized Euler transformation for power series with d.c.m. coefficients, unless
B(1) is practically constant in some interval around ¢ = u; the exception happens, e.g., if
u, =a"*,0 <a <1,a # u; see Problem 3.4.33.

Here we shall list a few criteria for higher monotonicity, by which one can often answer
the question of whether a function is c.m. or d.c.m. or neither. When several c.m. or d.c.m.
are involved, the intervals should be reduced to the intersection of the intervals involved.
By Theorem 3.4.5, the question is then also settled for the corresponding sequence. In
simple cases the question can be answered directly by means of the definition or the above
theorem, e.g., for u(s) = eks gk (k = 0), for Rs > 0 in the first case, for fs > 0 in the
second case.

(A) If u(s) is c.m., and a,b > 0, then g(s) = u(as + b) and (—=1)7u(s) are c.m.,
j=1,2,3,....Theintegral fsoo u(t) dt is also c.m., if it is convergent. (The interval
of complete monotonicity may not be the same for g as for f.) Analogous statements
hold for sequences.

(B) The product of two c.m. is c.m. Similarly, the product of two d.c.m. is d.c.m. This
can evidently be extended to products of any number of factors, and hence to every
positive integral power of a c.m. or d.c.m. The proof is left for Problem 3.4.34.

(C) A uniformly convergent positive linear combination of c.m. is itself c.m. The same
criterion holds for d.c.m. without the requirement of positivity. The term “positive
linear combination” includes sums with positive coefficients and, more generally,
Stieltjes integrals f u(s; p)dy(p), where y (p) is nondecreasing.

(D) Suppose that u(s) is a d.c.m. for s > a. F(u(s)) is then a d.c.m. for s > a, if the
radius of convergence of the Taylor expansion for F(z) is greater than max |u(s)|.
Suppose that u(s) is c.m. for s > a. We must then add the assumption that the
coefficients of the Taylor expansion of F (z) are nonnegative, in order to make sure
that F(u(s)) is c.m. for s > a.

These statements are important particular cases of (C). We also used (B), according
to which each term u(s)* is c.m. (or a d.c.m. in the first statement). Two illustrations:
g(s) =1 —e*)liscm. fors > 0; h(s) = (s>+1)"'isad.c.m. atleast for s > 1 (choose
7 = s2). The expansion into powers of s 2 also provides an explicit decomposition,

h(s)=(7+s 4+ )= 45+ )=/ =D = 1/¢s* = D),
where the two components are c.m. for s > 1. See also Example 3.4.8.

(E) If g'(s) is c.m. for s > a, and if u(z) is c.m. in the range of g(s) for s > a, then
F(s) = u(g(s)) is c.m. for s > a. (Note that g(s) itself is not c.m.)
For example, we shall show that 1/In s isc.m. fors > 1. Set g(s) = Ins, u(z) = z7',
a = 1. Then u(z) is completely monotonic for z > 0, and g’'(s) = s~!is c.m. for
s > 0, a fortiori for s > 1 where Ins > 0. Then the result follows from (E).
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The problems of Sec. 3.4 contain many interesting examples that can be treated by
means of these criteria. One of the most important is that every rational function that is
analytic and bounded in a half-plane is d.c.m. there; see Problem 3.4.35. Sometimes a table
of Laplace transforms (see, e.g., the Handbook [1, Chap. 29]) can be useful in combination
with the criteria below.

Another set of criteria is related to the analytic properties of c.m. and d.c.m. functions.
Let u(s) be d.c.m. for s > a. According to statement 4 of Theorem 3.4.5, u(s) is analytic
and bounded for s > a’ for any a’ > a. The converse of this is not unconditionally true. If,
however, we add the conditions that

[o¢]
/ lu(o +iw)|dw < oo, u(s)—0, as|s|—> o0, o>d, (3.4.29)

[e¢]

then it can be shown that u(s) is a d.c.m. for s > a. This condition is rather restrictive;
there are many d.c.m. that do not satisfy it, for example, functions of the form e¢™** or
k+b(s—c)7 k=>0,b>0,c>a,0<y <1). The following is a reasonably powerful

criterion: u(s) is a d.c.m. for s > a, e.g., if we can make a decomposition of the form

u(s) = fi(s) + fa(s) or u(s) = fi(s) fa(s),

where fi(s) is known to be d.c.m. for s > a, and f>(s) satisfies the conditions in (3.4.29).

Theorem 3.4.8.

Suppose that u(s) is c.m. for some s though not for all s. Then a singularity on the
real axis, at (say) s = a, must be among the rightmost singularities; u(s) is c.m. fors > a,
hence analytic for s > a.

The statement in the theorem is not generally true if u(s) is only d.c.m. Suppose that
u(s) is d.c.m. for s > a, though not for any s < a. Then we cannot even be sure that there
exists a singularity s* such that fs* = a.

Example 3.4.8.

This theorem can be used for establishing that a given function is not a c.m. For
example, u(s) = 1/(1 + 52) is not c.m. since the rightmost singularities are s = +i, while
s = 0is no singularity. u(s) is ad.c.m. for s > 0; however, since it is analytic and bounded,
and satisfies (3.4.29) for any positive a’. This result also comes from the general statement
about rational functions bounded in a half-plane; see Problem 3.4.35.

Another approach: in any text about Laplace transforms you find that, for s > 0,

1 o0 o o
ST = / e *Tsinxdx = / e (1 +sinx)dx — / e vdx.
s +1 0 0 0

Now o'(x) > 0 in both terms. Hence the formula (1/s + 1/(s> + 1)) — 1/s expresses
1/(s> 4 1) as the difference of two c.m. sequences for s > 0.

The easy application of criterion (D) above gave a smaller interval (s > 1), but a
faster decrease of the c.m. terms as s — oo.

Another useful criterion for this kind of negative conclusion is that a c.m. sequence
cannot decrease faster than every exponential as s — 00, fors € R, unlessitisidentically
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zero. For there exists a number & such that «(£) > 0, hence
00 &
u(s) = / e Fda(x) > / e da(x) > eSS a(f).
0 0

For example, e and 1 / T'(s) are not c.m. Why does this not contradict the fact that s ~'e™
iscm.?

These ideas can be generalized. Suppose that {c;}72, is a given sequence such that
the sum C(¢¥) = Z?io c;t' is known, and that u; is c.m. or d.c.m. (¢; and C(¢) may depend
on a complex parameter z too). Then

0 o] 1 1
Se=Y_ciui = Zci/() ¢ dﬂ(z)fo C(t)dB(@).
i=0 i=0

It is natural to ask how well S, is determined if u#; has been computed fori < N, if
{un}g° is constrained to be c.m. A systematic way to obtain very good bounds is to find a
polynomial Q € Py such that [C(t) — Q(t)| < ey forallt € [0, 1]. Then

1 1
1Se — Q(E)uo| = ‘[0 (Ct)—0m)dpn| < EN/O ldB(@®)].

Note that Q(E)uy is a linear combination of the computed values u;, i < N, with coeffi-
cients independent of {u,}. For C(t; z) = (1 — tz)~! the generalized Euler transformation
(implicitly) works with a particular array of polynomial approximations, based on Taylor
expansion, first at # = 0 and then atr = 1.

Can we find better polynomial approximations? For C(¢; z) = (1—tz)~', Gustafson’s
Chebyshev acceleration (GCA) [177] is in most respects, superior to Euler transformation.
Like Euler’s transformation this is based on linear transformations of sequences and has the
same range of application as the optimal Euler transformation. For GCA

eV > 1/3+8)

if z = —1. The number of terms needed for achieving a certain accuracy is thus for GCA
about In(3 + \/g)/ In3 ~ 1.6 times as large as for the optimal Euler transformation.

3.4.5 Euler-Maclaurin’s Formula

In the summation of series with essentially positive terms the tail of the sum can be approx-
imated by an integral by means of the trapezoidal rule.

As an example, consider the sum § = Z?’;l j 2. The sum of the first nine terms is,
to four decimal places, 1.5398. This suggests that we compare the tail of the series with
the integral of x =2 from 10 to co. We approximate the integral according to the trapezoidal
rule (see Sec. 1.1.3),

/ooxfzdx = 1(10*2 + 1172+ 1(11*2 +127H 4. = i j - 110*2
10 2 2 = 2
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Hence it follows that

oo
Z T~ 1.53977 + [—x_l](f‘(’) +0.0050 = 1.53977 4- 0.1050 = 1.64477.
j=1

The correct answer is 72/6 = 1.64493 40668 4823. We would have needed about 10,000
terms to get the same accuracy by direct addition of the terms!

The above procedure is not a coincidental trick, but a very useful method. A fur-
ther systematic development of the idea leads to the important Euler—Maclaurin summation
formula. We first derive this heuristically by operator techniques and exemplify its use,
including a somewhat paradoxical example that shows that a strict treatment with the con-
sideration of the remainder term is necessary for very practical reasons. Since this formula
has several other applications, for example, in numerical integration (see Sec.5.2), we
formulate it more generally than needed for the summation of infinite series.

First, consider a rectangle sum on the finite interval [a, b], with n steps of equal length
h, a + nh = b; with the operator notation introduced in Sec. 3.3.2,

n—1 n—1

hY fla+iny=hY E f(a)—h

i=0 i=0

(E"—1) hD
D

@ = f@.

We apply, to the second factor, the expansion derived in Example 3.1.5, with the Bernoulli
numbers B, (recall thata + nh = b, E" f(a) = f(b)):

n—1 n_
hY fla+ih) = % (1 + Z m) f(a) (3.4.30)

i=0 v=1

f f)dx + Z B (1) = £ @) + R,

Here Ry, is a remainder term that will be discussed thoroughly in Theorem 3.4.10. Set
h = 1, and assume that f(b), f'(b), ... tend to zero as b — oo. Recall that B| = —%,
Byjy1 = 0 for j > 0, and set k = 2r + 1. This yields Euler-Maclaurin’s summation
formula,'®

r £ Q2j=1)
f(a) ZBsz @ Ry, (343D

Zf(a+z)—/ foodx +

)
_ fl@  f@ 9
_/a fEdx + == = Som b o = =

in a form suitable for the convergence acceleration of series of essentially positive terms.

We give in Table 3.4.2 a few coefficients related to the Bernoulli and the Euler numbers.
There are some obscure points in this operator derivation, but we shall consider it as

a heuristic calculation only and shall not try to legitimate the various steps of it. With an

1001 eonhard Euler and the British mathematician Colin Maclaurin apparently discovered the summation formula
independently; see Goldstine [159, p. 84]. Euler’s publication came in 1738.
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Table 3.4.2. Bernoulli and Euler numbers, By = —1/2, E; = 1.

2j 0 2 4 6 8 10 12
B, 1 L oL L 1 s o
6 30 42 30 66 2730

By 1oL 1 !

2! 12 720 30,240 1,209,600 47,900,160

T I e O |
2j(2j —1) 12 360 1260 1680 1188 360,360

Ey; 1 -1 5 —61 1385 ~50,521 2,702,765

appropriate interpretation, a more general version of this formula will be proved by other
means in Theorem 3.4.10. A general remainder term is obtained there, if you let b — oo
in (3.4.37). You do not need it often, because the following much simpler error bound is
usually applicable—but there are exceptions.

The Euler—Maclaurin expansion (on the right-hand side) is typically semiconvergent
only. Nevertheless a few terms of the expansion often give surprisingly high accuracy with
simple calculations. For example, if f(x) is c.m., i.e., if

=)/ fP%) >0, x>a, j=>0,

then the partial sums oscillate strictly around the true result; the first neglected term is then
a strict error bound. (This statement also follows from the theorem below.)

Before we prove the theorem we shall exemplify how the summation formula is used
in practice.

Example 3.4.9.
We return to the case of computing S = Z?’;l j~2 and treat it with more precision

and accuracy. With f(x) = x72,a = 10, we find [ f(x)dx = a”', f'(a) = —2a73,
f"(@) = —24a=3,.... By 3.4.31), (r =2),

o0

9 o0
Yox=) x4 (1040)7
x=1 i=0

x=1
= 1.53976 7731 + 0.1 + 0.005 + 0.00016 6667 — 0.00000 0333 + Rg
= 1.64493 4065 + Rs.

Since f(x) = x~2isc.m. (see Definition 3.4.2), the first neglected term is a strict error bound;

it is less than 720 - 1077 /30,240 < 3-10~°. (The actual error is approximately 2-107°.)
Although the Euler—Maclaurin expansion in this example seems to converge rapidly,

it is in fact only semiconvergent for any a > 0, and this is rather typical. We have, namely,

f& ) = —2nla™
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and, by Example 3.1.5,
By /(2r)! ~ (1) '22m)

The ratio of two successive terms is thus —(2r + 2)(2r + 1)/(2wa)?, hence the modulus of
terms increases when 2r + 1 > 2ma.

The “rule” that one should terminate a semiconvergent expansion at the term of small-
est magnitude is, in general, no good for Euler—-Maclaurin applications, since the high-order
derivatives (on the right-hand side) are typically much more difficult to obtain than a few
more terms in the expansion on the left-hand side. Typically, you first choose r, r < 3,
depending on how tedious the differentiations are, and then you choose a in order to meet
the accuracy requirements.

In this example we were lucky to have access to simple closed expressions for the
derivatives and the integral of f. In other cases, one may use the possibilities for the
numerical integration on an infinite interval mentioned in Chapter 5. In Problem 3.4.19
you find two formulas that result from the substitution of the formulas (3.3.48) that express
higher derivatives in terms of central differences into the Euler—-Maclaurin expansion.

An expansion of f(x) into negative powers of x is often useful both for the integral
and for the derivatives.

Example 3.4.10.
We consider f(x) = (x3 + 1)~2, for which the expansion

1
F =y s sy 3

oo W

was derived and applied in Example 3.1.6. It was found that
[ f(x)dx = 0.632410375,

correctly rounded, and that £/ (10) = —4.13.10~* with less than 1% error. The f””(10)-term
in the Euler—Maclaurin expansion is thus —5.73 107, with absolute error less than 6-10~°.
Inserting this into Euler—-Maclaurin’s summation formula, together with the numerical values
of Zzzo f(n) and %f(lO) — ll—zf’(IO), we obtain ) 02 f(n) = 3.7941 1570 £ 1078, The
reader is advised to work out the details as an exercise.

Example 3.4.11.

Let f(x) = e, a = 0. Since all derivatives of odd order vanish at ¢ = 0, then
the expansion (3.4.31) may give the impression that Y72 et = I e dx +05 =
1.3862269, but the sum (that is easily computed without any convergence acceleration) is
actually 1.386 3186, hence the remainder R», 1, cannot tend to zero as r — oo. The infinite
Euler—Maclaurin expansion, where all terms but two are zero, is convergent but is not valid.
Recall the distinction between the convergence and the validity of an infinite expansion
made in Sec. 3.1.2.

In this case f(x) is not c.m.; for example, f”(x) changes sign at x = 1. With
appropriate choice of r, the general error bound (3.4.37) will tell us that the error is very
small, but it cannot be used for proving that it is zero—because this is not true.
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The mysteries of these examples have hopefully raised the appetite for a more sub-
stantial theory, including an error bound for the Euler—Maclaurin formula. We first need
some tools that are interesting in their own right.

The Bernoulli polynomial B, (¢) is an nth degree polynomial defined by the sym-
bolic relation B, (1) = (B + t)", where the exponents of B become subscripts after the
expansion according to the binomial theorem. The Bernoulli numbers B; were defined in
Example 3.1.5. Their recurrence relation (3.1.19) can be written in the form

n—1
J

Jj=0

or “symbolically” (B + 1)" = B" = B, (for the computation of B,_;), n # 1, hence
By(t)=1,Bi(t) =t+ By =t—1/2,and

B,(1) = B,(0) = B,, n=2.

The Bernoulli function B,(t)isa piecewise polynomial defined for 7 € R by the equation
B,(t) = B,(t — [t]).'""! (Note that B, (t) = B,(t)if0 <t < 1.)

Lemma 3.4.9.

@ B ()/(n+ D= B,(0)/nl, (n > 0),
B, (0) = B,. (For n = 1 this is the limit from the right.)

/‘ Bn(t)dt:{1 ifn =0,
0

n! 0 otherwise.

(b) The piecewise polynomials ép (t) are periodic; ép (t+1) = ép (1). él(t) is contin-
uous, except when t is an integer. Forn > 2, éy, € C"%(—00, 00).
(c) The Bernoulli functions have the following (modified) Fourier expansions, (r > 1),
o0

32,,10) v . sin2nnt f)’g,(t) gyl cos2nmt
2r —1)! =D 22 QCnm)r-1’ 2r)! =D ZZ Qnm)?r’

n=1 n=1

Note that én (t) is an even (odd) function, when n is even (odd).

(d) By (0)] < |Basl.

Proof. Statement (a) follows directly from the symbolic binomial expansion of the Bernoulli
polynomials.

The demonstration of statement (b) is left for a problem. The reader is advised to
draw the graphs of a few low-order Bernoulli functions.

101The function |¢] is the floor function defined as the largest integer < ¢, i.e., the integer part of #. In many
older and current works the symbol [#] is used instead, but this should be avoided.
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The Fourier expansion for 1§] (t) follows from the Fourier coefficient formulas (3.2.6)
(modified for the period 1 instead of 27). The expansions for B (1) are then obtained by
repeated integrations, term by term, with the use of (a). Statement (d) then follows from
the Fourier expansion, because 1§’2r (0) = By,. O

Remark 3.4.4. For t = 0 we obtain an interesting classical formula, together with a useful
asymptotic approximation that was obtained in a different way in Sec. 3.1.2:

=1 By, |(2m)¥ B, 2
Z_=| 2| (277) |Bar| (3.432)

20r) @r!  Qmr’

Also note how the rate of decrease of the Fourier coefficients is related to the type of
singularity of the Bernoulli function at the integer points. (It does not help that the functions
are smooth in the interval [0, 1].)

The Bernoulli polynomials have a generating function that is elegantly obtained by
means of the following “symbolic” calculation:

SOBON SN B e e L S )

n! n! e —1
0

If the series is interpreted as a power series in the complex variable x, the radius of conver-
gence is 2.

Theorem 3.4.10 (The Euler—Maclaurin Formula).
Set x; = a + ih, x, = b, suppose that f € C***(a, b), and let T(a : h : b) f be the
trapezoidal sum

n—1

f(a:h:b)sz (f o) + fx) = (Zf(x,)+ (f(b) — f(a))) (3.4.34)
i=1

=0

Then

R b h2
T(a:h: b)f—/ fx)dx = —(f'(b) f@) - %(fw(b) f"(@) (3435)

+o 4 3(22 (V@) = SO @) F Rarala, b B) .

The remainder Ry, o(a, h, b) f is O(h* *2). It is represented by an integral with a kernel
of constant sign in (3.4.36). An upper bound for the remainder is given in (3.4.37). The
estimation of the remainder is very simple in certain important, particular cases:

o If f@*2(x) does not change sign in the interval [a, b, then Ry.»(a, h, b) f has the
same sign as the first neglected term.'"?

1021f ;- = 0 all terms of the expansion are “neglected.”
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e If f @42 (x) and f @1 (x) have the same constant sign in [a, b], then the value of the
left-hand side of (3.4.35) lies between the values of the partial sum of the expansion
displayed in (3.4.35) and the partial sum with one term less.'®

In the limit, as b — o0, these statements still hold—also for the summation formula
(3.4.31)—provided that the left-hand side of (3.4.35) and the derivatives f (b) (v =1 :
2r + 1) tend to zero, if it is also assumed that

o0
/ | %2 (x)|dx < oo.

Proof. To begin with we consider a single term of the trapezoidal sum, and set x = x;_; +ht,
t € [0, 1], f(x) = F(t). Suppose that F € CP[0, 1], where p is an even number.

We shall apply repeated integration by parts, Lemma 3.2.6, to the integral fol F(t)dt =
fol F(t)By(t) dt. Use statement (a) of Lemma 3.4.9 in the equivalent form, f Bj(t)/jldt =
Bji(0)/(j + 1)!

Consider the first line of the expansion in the next equation. Recall that B, = 0if v is
oddand v > 1. Since B (1) = B;4(0) = Bj, j will thus be odd in all nonzero terms,
except for j = 0. Then, with no loss of generality, we assume that p is even.

! L B 1 B,(t)
— 1y FOD () 2 1 p/ P) (222
/OF(r)dr j}zok PO s [Rro P a
CF)+FO) | & B, 0 L By
_fq-E:( +1)'(FJ(1) F’(O))+/0 F”(t)Tdt

B, — B, (1) J
p!

F(1)+ F(O . , 1
_ () + F(O) _ Z Bji F(./)(l) _ F(./)(O)) _/ F(p)(t)
2 G+ 1)' 0
The upper limit of the sum is reduced to p — 3, since the last term (with j = p — 1) has been
moved under the integral sign, and all values of j are odd. Set j + 1 = 2k and p = 2r + 2.
Then k is an integer that runs from 1 to r. Hence

p—3 r

Z ( B—C-i)' (F(J)(l) F(j)(o)) — Z o] (F(Zk 1)(1) (2k—1)(0)).

Now set F(1) = f (xi—1 +h1), 1 € [0, 1]. Then FE=D () = n =1 f*D(x;_y + ht), and
make abbreviations such as f; = f(x;), £’ = f@(x)).

N _ ! _ h(fici + 1) —~ Byh* i @k—1)
/x”f(x)dx—hv/o F(t)dt = 5 _; 0] f; — [~ R

103Formally this makes sense for r > 2 only, but if we interpret f(~! as “the empty symbol,” it makes sense
also for r = 1. If f is c.m. the statement holds for every r > 1. This is easy to apply, because simple criteria for
complete monotonicity are given in Sec. 3.4.4.
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where R is the local remainder thatis now an integral over [x;_1, x;]. Adding these equations,
fori =1 : n, yields a result equivalent to (3.4.35), namely

- R2r+2(a7 ha b)fv

X=a

/f(x)dx_T(a h:b)f — Z (2k)'

f(2r+2) ()C)
2r +2)!

By Lemma 3.4.9, |l§2,+2 (t)] < |Bary2l, hence the kernel By, 5 — l}z,Jrz((x —a)/h) has the
same sign as By, ;2. Suppose that f"+2 (x) does not change sign on (a, b). Then

b
Ryria(a, h,b)f = h*? / (BM — Byia((x —a)/ h)) dx.  (3.4.36)

Sign f(2r+2)(x) — Sign (f(2r+l)(b) _ f(2r+1) (a))’

hence R, 42(a, h, b) f has the same sign as the first neglected term. The second statement
about “simple estimation of the remainder” then follows from Theorem 3.1.4, since the
Bernoulli numbers (with even subscripts) have alternating signs.

If sign @ *2)(x) is not constant, then we note instead that

|Bs 12 — Barya((x — a)/ h)| < 2By 42l

and hence
r42 12Bari2] .
Rori2(a, h, b) f] < h? ”(2 1*22),/ |fO2 )l dx
2r+ 2r4D
~2 /|f( "2 (x)| dx. (3.4.37)

If [ f%+2(x)| dx < oo this holds also in the limit as b — oc. O

Note that there are (at least) three parameters here that can be involved in different
natural limit processes. For example, one of the parameters can tend to its limit, while the
two others are kept fixed. The remainder formula (3.4.37) contains all you need for settling
various questions about convergence.

e b — o0: natural when Euler-Maclaurin’s formula is used as a summation formula,
or for deriving an approximation formula valid when b is large.

* h — 0: natural when Euler—Maclaurin’s formula is used in connection with numerical
integration. You see how the values of derivatives of f at the endpoints @, b can highly
improve the estimate of the integral of f, obtained by the trapezoidal rule with constant
step size. Euler—Maclaurin’s formula is also useful for the design and analysis of other
methods for numerical integration; see Romberg’s method, Sec.5.2.2.

e r — 00! lim,_ o0 Roryo(a, h,b)f = 0 can be satisfied only if f(z) is an entire
function such that | f M (g)| = o((2m/h)*") as n — oo. Fortunately, this type of
convergence is rarely needed in practice. With appropriate choice of b and &, the



300 Chapter 3. Series, Operators, and Continued Fractions

expansion is typically rapidly semiconvergent. Since the derivatives of f are typi-
cally more expensive to compute than the values of f, one frequently reduces 4 (in
integration) or increases b (in summation or integration over an infinite interval) and
truncates the expansion several terms before one has reached the smallest term that
is otherwise the standard procedure with alternating semiconvergent expansion.

Variations of the Euler—Maclaurin summation formula, with finite differences instead
of derivatives in the expansion, are given in Problem 3.4.19, where you also find a more
general form of the formula, and two more variations of it.

Euler—Maclaurin’s formula can also be used for finding an algebraic expression for a
finite sum (see Problem 3.4.31) or, as in the following example, for finding an expansion
that determines the asymptotic behavior of a sequence or a function.

Example 3.4.12.
To derive an expansion that generalizes Stirling’s formula (3.2.35), we shall use the
Euler—Maclaurin formula for f(x) =Inx,a =m > 0,h = 1, b = n > m. We obtain

. - o1 1 1 1
Tm:1:n)f = Z Ini — E1nn+51nm =In(n!) — Elnn—ln(m!)+§lnm,
i=m+1

f(zk_l)(x) = 2k — 2)Ix' 7%, / fx)dx =nlnn—n—mlnm + m.
Note that f(m :1:n)f and fr: f(x)dx are unbounded as n — oo, but their difference

is bounded. Putting these expressions into (3.4.35) and separating the terms containing n
from the terms containing m gives

1 y By
R =R 3.438
n(n!) (” + 2) nn+n ; 2k(2k — 1)n2k-1 ( )
—ne m+l lnm+m_i#—l€ (m:1:n)
_ | ? k=1 2k 2k — 1)m2*—1 wq2(m 1 n).
By (3.4.37),
’ 12B2+2|
R r . 1 : < _ 1Ebora]
[Rar42(m n)| < /,;, S2El
|232r+2| N (27’)‘

< ~ . 3.4.39
T Q2r+2)Qr+ Dm¥ Y g 2arm|>t! ( )

Now let n — oo with fixed r, m. First, note that the integral in the error bound converges.
Next, in most texts of calculus Stirling’s formula is derived in the following form:

1
n! ~ 27" 2e™,  (n > 00). (3.4.40)

If you take the natural logarithm of this, it follows that the left-hand side of (3.4.38) tends
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to % In(27), and hence

By

Wk — Dzt TR G44D

1 1 .
N = — — —
In(m!) (m + 2) Inm—m+ 5 In(27) + kE :

where a bound for R is given by (3.4.39). The numerical values of the coefficients are found
in Table 3.4.2.

Remark 3.4.5. You may ask why we refer to (3.4.40). Why not? Well, it is not necessary,
because it is easy to prove that the left-hand side of (3.4.38) increases with n and is bounded;
it thus tends to some limit C (say). The proof that C = In /27 exactly is harder, without
the Wallis product idea (from 1655) or something equally ingenious or exotic. But if you
compute the right-hand side of (3.4.38) form = 17, r = 5 (say), and estimate the remainder,
you will obtain C to a fabulous guaranteed accuracy, in negligible computer time after a
rather short programming time. And you may then replace %ln 27 by your own C in
(3.4.41), if you like.

Remark 3.4.6. Almost the same derivation works also for f(x) = In(x +z), m = 0, where
z is a complex number not on the negative real axis. A few basic facts about the gamma
function are needed; see details in Henrici [197, Sec. 11.11, Example 3].

The result is that you just replace the integer m by the complex number z in the
expansion (3.4.41). According to the Handbook [1, Sec. 6.1.42] R is to be multiplied by
K(z) = sup,~q |z2/(u? + z%)|. For z real and positive, K(z) = 1, and since f’'(x) =
(z+x)"is c.m., it follows from Theorem 3.4.10 that, in this case, R is less in absolute
value than the first term neglected and has the same sign.

It is customary to write InT'(z + 1) instead of In(z!). The gamma function is one
of the most important transcendental functions; see, e.g., the Handbook [1, Sec. 6.5] and
Lebedev [240].

This formula (with m = z) is useful for the practical computation of InI"(z + 1). Its
semiconvergence is best if Nz is large and positive. If this condition is not satisfied, the
situation can easily be improved by means of logarithmic forms of the

* reflection formula: T'(z2)I'(1 —z) = /sinmz,
* recurrence formula: I'(z + 1) = zI'(2).

By simple applications of these formulas the computation of In I"(z+ 1) for an arbitrary
z € C is reduced to the computation of the function for a number 7z’ such that |7'| > 17,
R > %, for which the total error, if # = 5, becomes typically less than 1074, See
Problem 3.4.23.

Remark 3.4.7. As you may have noted, we write “the Euler—Maclaurin formula” mainly
for (3.4.35), which is used in general theoretical discussions, or if applications other than
the summation of an infinite series are the primary issue. The term “the Euler—-Maclaurin
summation formula” is mainly used in connection with (3.4.31), i.e., when the summation
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of an infinite series is the issue. “The Euler—-Maclaurin expansion” denotes both the right-
hand side of (3.4.35), except for the remainder and for the corresponding terms of (3.4.31).
These distinctions are convenient for us, but they are neither important nor in general use.

Although, in this section, the main emphasis is on the application of the Euler—
Maclaurin formula to the computation of sums and limits, we shall comment a little on
its possibilities for other applications.

e It shows that the global truncation error of the trapezoidal rule for fab f(x) dx with
step size h has an expansion into powers of h>. Note that although the expansion
contains derivatives at the boundary points only, the remainder requires that | f " +2)|
is integrable in the interval [a, b]. The Euler—Maclaurin formula is thus the theoretical
basis for the application of repeated Richardson extrapolation to the results of the
trapezoidal rule, known as Romberg’s method; see Sec.5.2.2. Note that the validity
depends on the differentiability properties of f.

The Euler—Maclaurin formula can be used for highly accurate numerical integration
when the values of some derivatives of f are known at x = a and x = b. More about
this in Sec.5.2.1.

Theorem 3.4.10 shows that the trapezoidal rule is second order accurate, unless
f'(a@) = f'(b), but there exist interesting exceptions. Suppose that the function
f is infinitely differentiable for x € R, and that f has [a, b] as an interval of peri-
odicity, thatis f(x + b —a) = f(x) forall x € R. Then f® () = f®(a), for
k=0,1,2,..., hence every term in the Euler—Maclaurin expansion is zero for the
integral over the whole period [a, b]. One could be led to believe that the trapezoidal
rule gives the exact value of the integral, but this is usually not the case; for most pe-
riodic functions f, lim, .o Ror+2 f # 0; the expansion converges, of course, though
not necessarily to the correct result.

We shall illuminate these amazing properties of the trapezoidal rule from different
points of view in several places in this book, for example, in Sec. 5.1.4. See also applications
to the so-called bell sums in Problem 3.4.29.

3.4.6 Repeated Richardson Extrapolation

Let F(h) denote the value of a certain quantity obtained with step length . In many
calculations one wants to know the limiting value of F'(h) as the step length approaches
zero. But the work to compute F(h) often increases sharply as 7 — 0. In addition, the
effects of roundoff errors often set a practical bound for how small / can be chosen.

Often, one has some knowledge of how the truncation error F'(h) — F(0) behaves
when i — 0. If

F(h)=ay+ah’* + OMh"), h—0, r>p,

where ay = F(0) is the quantity we are trying to compute and a; is unknown, then ay and
a; can be estimated if we compute F for two step lengths, 4 and gh, g > 1,

F(h) =ap+aih” + O(h"),
F(gh) = ap + ai(gh)’ + O(h"),
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from which, eliminating a;, we get

F(0)=ay= F(h) + w + 0. (3.4.42)

This formula is called Richardson extrapolation, or the deferred approach to the limit."**
Examples of this were mentioned in Chapter 1—the application of the above process to
the trapezoidal rule for numerical integration (where p = 2, ¢ = 2), and for differential
equations p = 1, ¢ = 2 for Euler’s method, p = 2, ¢ = 2 for Runge’s second order
method.

We call the term (F (h) — F(qh))/(g? — 1) the Richardson correction. It is used in
(3.4.42) for improving the result. Sometimes it is used only for estimating the error. This
can make sense, for example, if the values of F' are afflicted by other errors, usually irregular,
suspected of being comparable in size to the correction. If the irregular errors are negligible,
this error estimate is asymptotically correct. More often, the Richardson correction is used as
an error estimate for the improved (or extrapolated) value F (h)+ (F (h) — F(qh))/(g” —1).
This is typically a strong overestimate; the error estimate is O (h”), while the erroris O (h"),
(r > p).

Suppose that a more complete expansion of F'(&) in powers of / is known to exist,

F(h) = ag + aih” + ayh” +ash? +---, O<pi<py<p3<---, (3443

where the exponents are known while the coefficients are unknown. Then one can re-
peat the use of Richardson extrapolation in a way described below. This process is, in
many numerical problems—especially in the numerical treatment of integral and differ-
ential equations—one of the simplest ways to get results which have tolerable truncation
errors. The application of this process becomes especially simple when the step lengths
form a geometric sequence H, H/q, H/q?, ..., where ¢ > 1 and H is the basic step
length.

Theorem 3