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Preface

The Society for the Foundations of Computational Mathematics sup-
ports and promotes fundamental research in computational mathematics
and its applications, interpreted in the broadest sense. It fosters inter-
action among mathematics, computer science and other areas of com-
putational science through its conferences, workshops and publications.
As part of this endeavour to promote research across a wide spectrum of
subjects concerned with computation, the Society brings together lead-
ing researchers working in diverse fields. Major conferences of the Soci-
ety have been held in Park City (1995), Rio de Janeiro (1997), Oxford
(1999), Minneapolis (2002), Santander (2005), and Hong Kong (2008).
The next conference is expected to be held in 2011. More information
about FoCM is available at its website http://www.focm.net.

The conference in Hong Kong on June 16 – 26, 2008, was attended by
several hundred scientists. FoCM conferences follow a set pattern: morn-
ings are devoted to plenary talks, while in the afternoon the conference
divides into a number of workshops, each devoted to a different theme
within the broad theme of foundations of computational mathematics.
This structure allows for a very high standard of presentation, while af-
fording endless opportunities for cross-fertilization and communication
across subject boundaries. Workshops at the Hong Kong conference
were held in the following nineteen fields:

– Approximation theory
– Asymptotic analysis
– Computational algebraic geometry
– Computational dynamics
– Computational number theory
– Foundations of numerical PDEs
– Geometric integration and computational mechanics
– Image and signal processing
– Information-based complexity
– Learning theory
– Multiresolution and adaptivity in numerical PDEs
– Numerical linear algebra

vii



viii Preface

– Optimization
– Real-number complexity
– Relations with computer science
– Special functions and orthogonal polynomials
– Stochastic computation
– Stochastic eigenanalysis
– Symbolic analysis

In addition to the workshops, eighteen plenary lectures, covering a
broad spectrum of topics connected to computational mathematics, were
delivered by some of the world’s foremost researchers. This volume is a
collection of articles based on the plenary talks presented at FoCM 2008.
The topics covered in the lectures and in this volume reflect the breadth
of research within computational mathematics as well as the richness
and fertility of interactions between seemingly unrelated branches of
pure and applied mathematics.

We hope that this volume will be of interest to researchers in the field
of computational mathematics and also to non-experts who wish to gain
some insight into the state of the art in this active and significant field.

Like previous FoCM conferences, the Hong Kong gathering proved
itself to be a rather uncommon but very stimulating meeting place of
researchers in computational mathematics and of theoreticians in math-
ematics and computer science. While presenting plenary talks by fore-
most world authorities and maintaining the highest technical level in the
workshops, the conference, like previous meetings, laid emphasis on mul-
tidisciplinary interaction across subjects and disciplines in an informal
and friendly atmosphere.

We wish to express our gratitude to the local organizers and adminis-
trative staff of our hosts at the City University of Hong Kong, and wish
to thank the Croucher Foundation, the Department of Mathematics at
City University of Hong Kong, the Liu Bie Ju Centre for Mathemati-
cal Sciences at City University of Hong Kong, and the French General
Consulate of Hong Kong and Macau for their financial assistance and
for making FoCM 2008 such an outstanding success. We would like to
thank the authors of the articles in this volume for producing in short
order such excellent contributions. Above all, however, we wish to ex-
press our gratitude to all the participants of FoCM 2008 for attending
the meeting and making it such an exciting, productive and scientifically
stimulating event.
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Smoothed Analysis of Condition Numbers
Peter Bürgisser

Institute of Mathematics
University of Paderborn

D-33098 Paderborn, Germany
email: pbuerg@upb.de

Abstract

The running time of many iterative numerical algorithms is dominated
by the condition number of the input, a quantity measuring the sensi-
tivity of the solution with regard to small perturbations of the input.
Examples are iterative methods of linear algebra, interior-point meth-
ods of linear and convex optimization, as well as homotopy methods for
solving systems of polynomial equations. Thus a probabilistic analysis
of these algorithms can be reduced to the analysis of the distribution of
the condition number for a random input. This approach was elaborated
upon for average-case complexity by many researchers.

The goal of this survey is to explain how average-case analysis can be
naturally refined in the sense of smoothed analysis. The latter concept,
introduced by Spielman and Teng in 2001, aims at showing that for all
real inputs (even ill-posed ones), and all slight random perturbations
of that input, it is unlikely that the running time will be large. A re-
cent general result of Bürgisser, Cucker and Lotz (2008) gives smoothed
analysis estimates for a variety of applications. Its proof boils down to
local bounds on the volume of tubes around a real algebraic hypersurface
in a sphere. This is achieved by bounding the integrals of absolute cur-
vature of smooth hypersurfaces in terms of their degree via the principal
kinematic formula of integral geometry and Bézout’s theorem.

1.1 Introduction

In computer science, the most common theoretical approach to under-
standing the behaviour of algorithms is worst-case analysis. This means
proving a bound on the worst possible performance an algorithm can

1



2 Peter Bürgisser

have. In many situations this gives satisfactory answers. However, there
are cases of algorithms that perform exceedingly well in practice and
still have a provably bad worst-case behaviour. A famous example is
Dantzig’s simplex algorithm. In an attempt to rectify this discrepancy,
researchers have introduced the concept of average-case analysis, which
means bounding the expected performance of an algorithm on random
inputs. For the simplex algorithm, average-case analyses have been first
given by Borgwardt (1982) and Smale (1983). However, while a proof of
good average performance yields an indication of a good performance in
practice, it can rarely explain it convincingly. The problem is that the
results of an average-case analysis strongly depend on the distribution
of the inputs, which is unknown, and usually assumed to be Gaussian
for rendering the mathematical analysis feasible.

Spielman and Teng suggested in 2001 the concept of smoothed analysis
of algorithms, which is a new form of analysis of algorithms that arguably
blends the best of both worst-case and average-case. They used this new
framework to give a more compelling explanation of the simplex method
(for the shadow vertex pivot rule). For this work they were recently
awarded the 2008 Gödel prize. See Spielman and Teng (2004) for the
full paper.

The general idea of smoothed analysis is easy to explain. Let T : Rp →
R+ ∪ {∞} be any function (measuring running time etc). Instead of
showing “it is unlikely that T (a) will be large,” one shows that “for
all a and all slight random perturbations a + δa, it is unlikely that
T (a+δa) will be large.” If we assume that the perturbation δa is centered
(multivariate) standard normal with variance σ2 , in short δa ∈ N(0, σ2),
then the goal of a smoothed analysis of T is to give good estimates of

sup
a∈Rp

Probδa∈N (0,σ 2 ){T (a + δa) ≥ ε−1}.

In a first approach, one may focus on expectations, that is on bounding

sup
a∈Rp

E δa∈N (0,σ 2 )T (a + δa).

Figure 1.1 succinctly summarizes the three types of analysis of algo-
rithms.

Smoothed analysis is not only useful for analyzing the simplex algo-
rithm, but can be applied to a wide variety of numerical algorithms. For
doing so, understanding the concept of condition numbers is an impor-
tant intermediate step.

A distinctive feature of the computations considered in numerical anal-



1. Smoothed Analysis of Condition Numbers 3

Worst-case analysis Average-case analysis Smoothed analysis

sup
a∈Rp

T (a) E a∈DT (a) sup
a∈Rp

E a∈N (a ,σ 2 )T (a)

Fig. 1.1. Three types of analysis of algorithms. D denotes a probability dis-
tribution on Rp .

ysis is that they are affected by errors. A main character in the under-
standing of the effects of these errors is the condition number of the
input. This is a positive number which, roughly speaking, quantifies the
errors when computations are performed with infinite precision but the
input has been modified by a small perturbation. The condition number
depends only on the data and the problem at hand. The best known
condition number is that for matrix inversion and linear equation solv-
ing. For a square matrix A it takes the form κ(A) = ‖A‖‖A−1‖ and was
independently introduced by Goldstine and von Neumann (1947) and
Turing (1948).

Condition numbers are omnipresent in round-off analysis. They also
appear as a parameter in complexity bounds for a variety of efficient
iterative algorithms in linear algebra, linear and convex optimization, as
well as homotopy methods for solving systems of polynomial equations.
The running time T (x, ε) of these algorithms, measured as the number
of arithmetic operations, can often be bounded in the form

T (x, ε) ≤
(
size(x) + µ(x) + log ε−1)c , (1.1)

with some universal constant c > 0. Here the input is a vector x ∈
Rn of real numbers, size(x) = n is the dimension of x, the positive
parameter ε measures the required accuracy, and µ(x) is some measure
of conditioning of x. (Depending on the situation, µ(x) may be either a
condition number or its logarithm. Moreover, log ε−1 might be replaced
by log log ε−1 .)

We discuss the issue of condition-based analysis of algorithms in Sec-
tions 1.2–1.4, by elaborating a bit on the case of convex optimization
and putting special focus on generalizations of Renegar’s (1995a, 1995b)
condition number for linear programming. We also discuss Shub and
Smale’s (1993a) condition number for polynomial equation solving.

Let us mention that L. Blum (1990) suggested to extend the com-
plexity theory of real computation due to Blum, Shub, Smale (1989) by
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measuring the performance of algorithms in terms of the size and the
condition of inputs. However, up to now, no complexity theory over
the reals has been developed that incorporates the concepts of approx-
imation and conditioning and allows to speak about lower bounds or
completeness results in that context.

Smale (1997) proposed a two-part scheme for dealing with complexity
upper bounds in numerical analysis. The first part consists of establishing
bounds of the form (1.1). The second part of the scheme is to analyze the
distribution of µ(x) under the assumption that the inputs x are random
with respect to some probability distribution. More specifically, we aim
at tail estimates of the form

Prob
{
µ(x) ≥ ε−1} ≤ size(x)c εα (ε > 0)

with universal constants c, α > 0. In a first attempt, one may try to
show upper bounds on the expectation of µ(x) (or log µ(x), depending
on the situation). Combining the two parts of the scheme, we arrive
at upper bounds for the average running time of our specific numerical
algorithms considered. So if we content ourselves with statements about
the probabilistic average-case, we can eliminate the dependence on µ(x)
in (1.1). This approach was elaborated upon for average-case complex-
ity by Blum and Shub (1986), Renegar (1987), Demmel (1988), Kostlan
(1988), Edelman (1988, 1992), Shub and Smale (1993b, 1994, 1996),
Cheung and Cucker (2002), Cucker and Wschebor (2003), Cheung et
al. (2005), Beltrán and Pardo (2007), and others. We only briefly dis-
cuss a few of these results in Section 1.5. Instead, we put emphasis on the
analysis of the GCC-condition number C(A) of linear programming intro-
duced by Goffin (1980) and Cheung and Cucker (2001), see (1.11). This
is a variation of the condition number introduced by Renegar (1995a,
1995b). We discuss a recently found connection between the average-
case analysis of the GCC-condition number and covering processes on
spheres, and we present a sharp result on the probability distribution of
C(A) for feasible inputs due to Bürgisser et al. (2007).

The main goal of this survey is to show that part two of Smale’s
scheme can be naturally refined by performing a smoothed analysis of
the condition number µ(x) involved. This was already suggested by
Spielman and Teng in their ICM 2002 paper. For the matrix condi-
tion number, results in this direction were obtained by Wschebor (2004)
and Sankar et al. (2006). A recent paper by Tao and Vu (2007) deals
with the matrix condition number under random discrete perturbations.
Dunagan et al. (2003) gave a smoothed analysis of Renegar’s condition
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number of linear programming, thereby obtaining for the first time a
smoothed analysis for the running time of interior-point methods, see
also Spielman and Teng (2003).

A paper by Demmel (1988) has the remarkable feature that the prob-
abilistic average-case analysis performed there for a variety of problems
is not done with ad-hoc arguments adapted to the problem considered.
Instead, these applications are all derived from a single result bounding
the tail of the distribution of a conic condition number in terms of geo-
metric invariants of the corresponding set of ill-posed inputs. Bürgisser
et al. (2006, 2008) recently extended Demmel’s result from average-case
analysis to a natural geometric framework of smoothed analysis of conic
condition numbers, called uniform smoothed analysis. This result will
be presented in Section 1.6. The critical parameter entering these esti-
mates turned out to be the degree of the defining equations of the set
of ill-posed inputs. This result has a wide range of applications to lin-
ear and polynomial equation solving, as explained in Section 1.6.1. In
particular, it easily gives a smoothed analysis of the condition number
of a matrix. Moreover, Amelunxen and Bürgisser (2008) showed that
this result, after suitable modification to a spherical convex setting, also
allows a smoothed analysis of the GCC-condition number of linear pro-
gramming.

The mathematical setting of uniform smoothed analysis has a clean
and simple description. The set of ill-posed inputs to a computational
problem is modelled as a subset ΣS of a sphere Sp , which is considered
the data space. In most of our applications, ΣS is an algebraic hypersur-
face, but for optimization problems ΣS will be semialgebraic. The cor-
responding conic condition number C(a) of an input a ∈ Sp is defined as

C(a) =
1

sin dS (a,ΣS )
,

where dS refers to the angular distance on Sp . For 0 ≤ σ ≤ 1 let B(a, σ)
denote the spherical cap in the sphere Sp centered at a ∈ Sp and hav-
ing angular radius arcsinσ. Moreover, we define for 0 < ε ≤ 1 the
ε-neighborhood of ΣS as

T (ΣS , ε) := {a ∈ Sp | dS (a,ΣS ) < arcsin ε}.

The task of a uniform smoothed analysis of C consists of providing good
upper bounds on

sup
a∈S p

Proba∈B (a,σ ){C(a) ≥ ε−1},
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Fig. 1.2. Neighborhood of the curve ΣS intersected with a spherical disk.

where a is assumed to be chosen uniformly at random in B(a, σ). The
probability occurring here has an immediate geometric meaning:

Proba∈B (a,σ ){C(a) ≥ ε−1} =
vol (T (ΣS , ε) ∩ B(a, σ))

vol (B(a, σ))
. (1.2)

Thus uniform smoothed analysis means to provide bounds on the rel-
ative volume of the intersection of ε-neighborhoods of ΣS with small
spherical disks, see Figure 1.2. We note that uniform smoothed analysis
interpolates transparently between worst-case and average-case analysis.
Indeed, when σ = 0 we get worst-case analysis, while for σ = 1 we obtain
average-case analysis. (Note that Sp = B(a, 1) ∪ B(−a, 1) for any a.)

In Section 1.7 we explain the rich mathematical background behind
our uniform smoothed analysis estimates. We first review classical re-
sults on the volume of tubes and then state the principal kinematic
formula of integral geometry for spheres. Finally, in Section 1.7.3, we
outline the proof of the main Theorem 1.2, which proceeds by estimat-
ing the integrals of absolute curvature arising in Weyl’s tube formula
(1939) with the help of Chern’s (1966) principal kinematic formula and
Bézout’s theorem.

1.2 Condition Numbers for Linear Algebra

A numerical computation problem can often be formalized by a mapping
f : U → Y between finite-dimensional real or complex vector spaces X

and Y , where U is an open subset of X. The space X is interpreted
as the set of inputs to the problem, Y is the set of solutions, and f

is the solution map. Small perturbations δx of an input x result in a
perturbation δy of the output y = f(x). In order to quantify this effect
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with regard to small relative errors, we choose norms on the spaces X

and Y and define the relative condition number of f at x by

κ(f, x) := lim
ε→0

sup
‖δx‖≤ε‖x‖

‖f(x + δx) − f(x)‖/‖f(x)‖
‖δx‖/‖x‖ .

If f is differentiable at x, this can be expressed in terms of the operator
norm of the Jacobian Df(x) with respect to the chosen norms:

κ(f, x) = ‖Df(x)‖ ‖x‖
‖f(x)‖ .

In the case X = Y = R, the logarithm of the condition number measures
the loss of precision when evaluating f : if we know x up to � decimal
digits, then we know f(x) roughly up to �− log10 κ(f, x) decimal digits.

Consider matrix inversion f : GL(m, R) → Rm×m ,A 	→ A−1 , measur-
ing errors with respect to the L2-operator norm. A perturbation argu-
ment shows that the condition number of f at A equals the classical
matrix condition number

κ(A) := κ(f,A) = ‖A‖ ‖A−1‖

of the matrix A. It is easy to see that κ(A) also equals the condition num-
ber of the map GL(m, R) → Rm ,A 	→ A−1b for fixed nonzero b ∈ Rm .
In fact, κ(A) determines the condition number for solving a quadratic
linear system of equations. It is also known that κ(A) dominates the
condition number of several other problems of numerical linear alge-
bra, like the Cholesky and QR decomposition of matrices, see Amodei
and Dedieu (2008). Moreover, the condition number κ(A) appears in
Wilkinson’s round-off analysis of Gaussian elimination with partial piv-
oting (together with the so-called growth factor), see Wilkinson (1963)
and Higham (1996).

Let us return to the problem of matrix inversion. We can interpret
the set of singular matrices Σ := {A ∈ Rm×m | det A = 0} as its set of
ill-posed instances. Let dist(A,Σ) denote the distance of the matrix A

to Σ, measured with respect to the L2-operator norm. The distance of
A to Σ with respect to the Frobenius norm ‖A‖F := (

∑
ij a2

ij )
1/2 shall

be denoted by distF (A,Σ). The theorem of Eckart and Young (1936)
states that dist(A,Σ) = distF (A,Σ) = ‖A−1‖−1 . As the right-hand
side equals the smallest singular value of A, this is just a special case of
the well-known fact that the kth largest singular value of A equals the
distance of A to the set of matrices of rank less than k (with respect to
the L2-operator norm). We rephrase Eckart and Young’s result as the
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following condition number theorem

κ(A) =
‖A‖

dist(A,Σ)
=

‖A‖
distF (A,Σ)

. (1.3)

It is remarkable that the condition number κ(A), which was defined using
local properties, can be characterized in this global geometric way.

Demmel (1987) realized that this observation for the classical matrix
condition number actually holds in much larger generality. For numerous
computation problems, the condition number of an input x of norm one,
say, can be bounded up to a constant factor by the inverse distance
of x to a corresponding set of ill-posed inputs Σ. It is this key insight
that allows to perform probabilistic analyses of condition numbers by
geometric tools.

To further illustrate this connection, consider eigenvalue computa-
tions. Let λ ∈ C be a simple eigenvalue of A ∈ Cm×m . The sensitivity to
compute λ from A is captured by a condition number κ(A, λ), see (1.22).
Wilkinson (1972) proved that

κ(A, λ) ≤
√

2 ‖A‖F

distF (A,Σeigen)
,

where Σeigen is the set of matrices in Cm×m having a multiple eigenvalue.
Clearly, condition numbers are a crucial issue when dealing with fi-

nite precision computations and round-off errors. When considering
iterative methods (instead of direct methods), it turns out that, even
when assuming infinite precision arithmetic, the condition of an input
often affects the number of iterations required to achieve a certain pre-
cision. A famous example for this phenomenon is the conjugate gradient
method of Hestenes and Stiefel (1952). For a given linear system Ax = b,
A a symmetric positive definite matrix, the conjugate gradient method
starts with an initial value x0 ∈ Rn and produces a sequence of iterates
x0 , x1 , . . . , xn = x∗ satisfying

‖xk − x∗‖A ≤ 2

(√
κ(A) − 1√
κ(A) + 1

)k

‖x0 − x∗‖A ,

where the A-norm of a vector v is defined as ‖v‖A := (vT Av)1/2 . There-
fore, roughly 1

2

√
κ(A) ln 1

ε iterations are sufficient in order to achieve
‖xk − x∗‖A ≤ ε ‖x0 − x∗‖A .
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1.3 Condition Numbers for Convex Optimization

We restrict our discussion to feasibility problems in convex conic form.
Let X and Y be real finite-dimensional vector spaces endowed with
norms. Further, let K ⊆ X be a closed convex cone that is assumed to
be regular, that is K ∩ (−K) = {0} and K has nonempty interior. We
denote by L(Y,X) the space of linear maps from Y to X endowed with
the operator norm. Given A ∈ L(Y,X), consider the feasibility problem
of deciding

∃y ∈ Y \ {0} Ay ∈ K. (1.4)

Two special cases of this general framework should be kept in mind. For
K = Rn

+, the nonnegative orthant in Rn , one obtains the homogeneous
linear programming feasibility problem. The feasibility version of ho-
mogeneous semidefinite programming corresponds to the cone K = Sn

+
consisting of the positive semidefinite matrices in Rn×n .

The feasibility problem dual to (1.4) is

∃x∗ ∈ X∗ \ {0} A∗x∗ = 0, x∗ ∈ K∗. (1.5)

Here X∗, Y ∗ are the dual spaces of X,Y , respectively, A∗ ∈ L(X∗, Y ∗)
denotes the map adjoint to A, and K∗ := {y∗ ∈ Y ∗ | ∀x ∈ K 〈y∗, x〉 ≥ 0}
denotes the cone dual to K.

We denote by D the set of instances A ∈ L(Y,X) for which the
problem (1.4) is strictly feasible, i.e., there exists y ∈ Y such that
Ay ∈ int(K). Likewise, we denote by P the set of A ∈ L(Y,X) such that
(1.5) is strictly feasible, i.e., there exists x∗ ∈ int(K∗) with A∗x∗ = 0.

Both D and P are disjoint open subsets of L(Y,X) and duality in
convex optimization implies that P is the complement of the closure of
D in L(Y,X), cf. Boyd and Vandenberghe (2004). The conic feasibility
problem is to decide for given A ∈ L(Y,X) whether (1.4) or (1.5) holds.
The common boundary Σ := ∂D = ∂P of the sets D and P can be
considered as the set of ill-posed instances. Indeed, for given A ∈ Σ,
arbitrarily small perturbations of A may yield instances in both D and P.

Renegar (1995a) defined the condition number of the conic feasibility
problem by

C(A) :=
‖A‖

dist(A,Σ)
. (1.6)

He observed that the number of steps of interior-point algorithms solv-
ing the conic feasibility problem can be effectively bounded in terms
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of C(A). Before elaborating on this important issue, let us character-
ize the condition number C(A) in a different way. Suppose there exists
e ∈ int(K) such that the unit ball B(e, 1) centered at e is contained
in K. We define λmin : X → R by λmin(x) := max{t ∈ R | x − te ∈ K}
and note that x ∈ K ⇔ λmin(x) ≥ 0. For K = Rn

+ and e = (1, . . . , 1) we
have λmin(x) = mini xi , while in the case K = Sn

+ and e being the unit
matrix, λmin(x) equals the minimum eigenvalue of x.

The problem (1.4) is feasible iff there exists y ∈ Y of norm one such
that λmin(Ay) ≥ 0. A vector y maximizing λmin(Ay)/‖y‖ may be in-
terpreted as a best-conditioned solution, due to the following max-min
characterization in Cheung et al. (2008):

dist(A,Σ) =
∣∣∣ max
‖y‖=1

λmin(Ay)
∣∣∣. (1.7)

Actually, in that paper a more general result is shown. Suppose we have
a multifold conic structure: X = X1 × · · · × Xr , where Xi is a normed
vector space, K = K1 × · · · × Kr with regular closed convex cones Ki

in Xi , and ei ∈ int(Ki) such that the unit ball centered at ei is contained
in Ki . We have a corresponding function λi

min : Xi → R. Then (1.4) can
be written as

∃y ∈ Y \ {0} A1y1 ∈ K1 , . . . , Aryr ∈ K1 ,

where Ai ∈ L(Y,Xi) is the composition of A with the projection onto Xi .
Generalizing (1.6), we define the corresponding multifold condition num-
ber C(A) by

C(A) :=
(

min
B∈Σ

max
i

‖Ai − Bi‖
‖Ai‖

)−1

.

It is easy to see that C(A) ≤ C(A) when taking ‖A‖ = maxi ‖Ai‖. Note
that in the case r = 1 of just one factor, we retrieve C(A) = C(A).
The condition number C(A) seems a more natural measure of condition-
ing in the multifold setting, when allowing component normalization as
preconditioning. Cheung et al. (2008) proved the following condition
number theorem, extending (1.7),

1
C(A)

=
∣∣∣ max
‖y‖=1

min
i

λi
min(Aiy)
‖Ai‖

∣∣∣. (1.8)

Let us now have a closer look at the important special case of Xi = R,
Ki = R+, ei = 1 for i = 1, . . . , n. We endow X = Rn with the L∞-norm
and Y := Rm+1 with the L2-norm. The problem (1.4) now reads as the
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linear programming feasibility problem

∃y ∈ Rm+1 \ {0} a1y ≥ 0, . . . , any ≥ 0, (1.9)

where ai ∈ Rm+1 denote the rows of the given matrix A ∈ Rn×(m+1),
which we may assume to be scaled to Euclidean length one. We can
therefore interpret the input A as a sequence of n points a1 , . . . , an on
the unit sphere Sm := {y ∈ Rm+1 | ‖y‖ = 1}. By self-duality of the
nonnegative orthant, the feasibility problem (1.5) translates to

∃x ∈ Rn \ {0} AT y = 0, x ∈ Rn
+ . (1.10)

The multifold condition number C(A) corresponding to this setting has
been introduced and investigated by Goffin (1980), and Cheung and
Cucker (2001). We will refer to it as the GCC-condition number.

There is a nice geometric characterization of C(A): Fix an input A,
interpreted as a sequence of points a1 , . . . , an ∈ Sm . For y ∈ Sm we
have aiy = cos θi(y), where θi(y) ∈ [0, π] denotes the angle between
y and ai . Put θ(y) := maxi θi(y). Then ρ(A) := miny∈S m θ(y) is the
angular radius of a smallest spherical cap enclosing all the points ai . This
quantity captures the GCC-condition number. Indeed, using λi

min(xi) =
xi , the condition number theorem (1.8) translates to

C(A)−1 = | cos ρ(A)|. (1.11)

Moreover, we note that (1.9) is feasible iff ρ(A) ≤ π/2 and hence A ∈ Σ
iff ρ(A) = π/2.

1.3.1 Condition based analysis

We turn now to the relation of conditioning to complexity. Freund and
Vera (1999) gave a condition based analysis of Khachyian’s (1979) ellip-
soid method. The essence of their argument is rather simple so that we
are going to sketch it briefly.

Suppose we are in the general conic setting and A is a feasible instance
of (1.4). We define the width τ(A) of the cone of solutions A−1(K) as the
maximum ratio r/‖y‖ over all balls B(y, r) contained in A−1(K). Let
y0 ∈ Y be a best conditioned solution of norm 1, that is, maximizing the
right hand side of (1.7). Then it is not hard to see that B(y0 , C(A)−1) ⊆
A−1(K), hence C(A)−1 ≤ τ(A). (In the case K = Rn

+ we even have
C(A)−1 ≤ τ(A).)

Suppose now that Y = Rm is endowed with the L2-norm and consider
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the compact convex set K̃A obtained by homogenizing with an additional
variable t and intersecting with the unit ball Bm+1:

K̃A := {(y, t) ∈ Y × R+ | Ay ∈ K, ‖y‖2 + t2 ≤ 1}.

Freund and Vera (1999) showed that

ln
(

vol Bm+1

vol K̃A

)
≤ (m + 1) ln

(
2 +

6
τ(A)

)
,

where vol denotes the (m + 1)-dimensional volume.
We assume now X = Rn and that the convex cone K ⊆ Rn is given

by a separation oracle, i.e., for a given x0 ∈ Rn the oracle either an-
swers x0 ∈ K or provides a hyperplane separating x0 from K. (Note
that for K = Rn the separation oracle is trivial.) Running the ellip-
soid method (see Grötschel, Lovász and Schrijver (1988)) on the convex
set K̃A , starting with the enclosing ball Bm+1, we arrive at the following:

Theorem 1.1 The ellipsoid method, applied to the homogenized convex
set K̃A , either finds a feasible point y ∈ A−1(K) or decides A−1(K) = ∅
with a number of iterations bounded by 2(m + 1)2 ln(2 + 6C(A)). Each
iteration step involves one call of the separation oracle plus O(m2) arith-
metic operations and one square root for the computation of the next
ellipsoid.

This general result is impractical, but it has the beauty of showing by
a simple argument that the complexity of rather general conic feasibility
problems is polynomially bounded in the dimensions m,n and lnC(A).
(Of course we assume that the cost of one call to the separation oracle
is polynomially bounded in n,m.)

A great deal of motivation for the work described so far in this section
comes from the major open problem of whether the linear programming
feasibility problem LPF (1.9) can be algorithmically solved with a num-
ber of arithmetic operations polynomial in m and n. In fact this problem
is listed as one of Smale’s problems (2000) for the next century. Moti-
vated by this question, Renegar (1995a, 1995b) introduced the condition
number C(A) and proved by interior-point methods that the complexity
of LPF is polynomially bounded in m,n and lnC(A). This considerably
added to our understanding of the complexity of LPF. The well-known
fact that LPF for rational inputs is solvable in polynomial time in the
Turing model is a simple consequence of this. Indeed, it is sufficient to
note that for rational matrices A �∈ Σ, ln C(A) is polynomially bounded
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in the bitsize of A. (One also has to check that there is no explosion of
bit size in the computations, which is straightforward.)

The most efficient known algorithms for solving convex optimization
problems in theory and practice are interior-point methods, cf. Nesterov
and Nemirovskii (1994). We do not want to enter this vast field and just
mention that Cucker and Peña (2002) gave a condition based analysis of
a finite-precision primal-dual interior-point method for solving the linear
programming feasibility problem LPF (1.9) with a number of iterations
bounded by

O
(√

m + n (log(m + n) + log C(A))
)
.

Hereby, each iteration costs at most O((m+n)3) arithmetic operations.
In that paper, for the first time, a round-off analysis of an interior-point
algorithm was performed, and it was shown that the amount of precision
required can be bounded in terms of C(A). For an early condition based
analysis of LPF (in terms of another condition number) we refer to
Vavasis and Ye (1995).

A solution to LPF (1.9) can be found by the perceptron method
with a number of iterations bounded by O(1/τ(A)2), see Rosenblatt
(1962). A more efficient, re-scaled version of the perceptron algorithm
has been developed by Dunagan and Vempala (2004), which uses only
O(n ln(1/τ(A))) iterations. Recently, this result was extended to conic
systems by Belloni, Freund and Vempala (2007).

1.4 Condition Numbers for Polynomial Equation Solving

Condition numbers for solving systems of complex polynomial equations
were introduced and studied by Shub and Smale (1993a). The geometric
viewpoint of looking for roots of homogeneous equations in complex
projective space adds a lot to the elegance and mathematical feasibility
of the theory.

We briefly review the setting, for more details and a simplified treat-
ment see Blum, Cucker, Shub, and Smale (1998). Fix d1 , . . . , dn ∈
N \ {0} and denote by Hd the vector space of polynomial systems f =
(f1 , . . . , fn ) with fi ∈ C[X0 , . . . , Xn ] homogeneous of degree di . For
f, g ∈ Hd we write

fi(x) =
∑
α

ai
αXα , gi(x) =

∑
α

bi
αXα ,

where α = (α0 , . . . , αn ) is assumed to range over all multi-indices such
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that |α| =
∑n

k=0 αk = di and Xα := Xα0
0 Xα1

1 · · ·Xαn
n . The space Hd is

endowed with a Hermitian inner product 〈f, g〉 =
∑n

i=1〈fi, gi〉, where

〈fi, gi〉 =
∑

|α |=di

ai
α bi

α

(
di

α

)−1

.

Here, the bar denotes complex conjugate and
(

d
α

)
denotes the multino-

mial coefficients. The reason for choosing this inner product is that it is
invariant under the natural action of the unitary group U(n+1) on Hd .
This property is crucial for the whole development. We denote by ‖f‖
the corresponding norm of f ∈ Hd .

Let Pn := P(Cn+1) and P(Hd) denote the complex projective spaces
associated to Cn+1 and Hd , respectively. These are complex manifolds
that naturally carry the structure of a Riemannian manifold. The so-
lution variety defined as V := {(f, ζ) ∈ P(Hd) × Pn | f(ζ) = 0} is a
smooth submanifold of P(Hd)×Pn and hence also carries a Riemannian
structure. (We identify f ∈ Hd and its corresponding element in P(Hd).)

The computational problem under investigation is now the following:
given f ∈ P(Hd), find ζ ∈ Pn such that f(ζ) = 0. Suppose that ζ is a
simple solution of f . By the implicit function theorem, the projection
map V → P(Hd), (f ′, ζ ′) 	→ f ′ can be locally inverted around (f, ζ).
The solution map G is the local inverse of this projection. Following
the scheme of Section 1.2, it is natural to define the condition number
at (f, ζ) as the operator norm of the derivative of G at ζ: µ(f, ζ) :=
‖DG(ζ)‖. A calculation shows

µ(f, ζ) = ‖f‖
∥∥(Df(ζ)|Tζ

)−1diag(‖ζ‖d1 −1 , . . . , ‖ζ‖dn −1)
∥∥ ,

where Df(ζ)|Tζ
denotes restriction of the derivative of f : Cn+1 → Cn

at ζ to the tangent space Tζ := {v ∈ Cn+1 | 〈v, ζ〉 = 0} of Pn at ζ. Note
that µ(f, ζ) is homogeneous of degree 0 in both arguments and hence
defined for (f, ζ) ∈ V outside the subvariety of ill-posed pairs

Σ′ := {(f, ζ) ∈ V | rankDf(ζ)|Tζ
< n}. (1.12)

We remark that (f, ζ) ∈ Σ′ means that ζ is a multiple root of f .
In order to simplify the statement of the condition number theorem

below, one considers the (normalized) condition number defined as

µnorm(f, ζ) := ‖f‖
∥∥∥(Df(ζ)|Tζ

)−1diag(
√

d1‖ζ‖d1 −1 , . . . ,
√

dn‖ζ‖dn −1)
∥∥∥ .

The condition number theorem in Shub and Smale (1993a) gives a char-
acterization of µnorm in terms of the inverse distance to the nearest
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ill-posed input. It states that for (f, ζ) ∈ V \ Σ′

µnorm(f, ζ) =
1

sin dζ (f,Σζ )
. (1.13)

Here dζ (f,Σζ ) denotes the distance of f to Σζ := {f ′ ∈ P(Hd) | (f ′, ζ) ∈
Σ′} measured in the Riemannian metric of the “fiber” {f ′ ∈ P(Hd) |
f ′(ζ) = 0}.

If f ∈ Hd has only simple zeros ζ1 , . . . , ζq we define the condition
number of f for approximating roots as

µnorm(f) := max
i≤q

µnorm(f, ζi),

otherwise we set µnorm(f) := ∞.
In closing this discussion we mention that Wilkinson (1963), Woz-

niakowski (1977), and Demmel (1987) studied condition numbers for
finding the roots of polynomials in one variable.

We now briefly discuss how to compute an approximate zero of a sys-
tem of polynomial equations by homotopy continuation and how condi-
tion numbers enter the complexity estimates.

By an approximate zero of f (in the strict sense) associated with a
zero ζ of f we understand a point z such that the sequence of Newton
iterates (adapted to projective space)

zi+1 := Nf (zi) := zi − (Df(zi)|Tz i
)−1f(zi)

with initial point z0 := z converges immediately quadratically to ζ, i.e.,

dR (zi, ζ) ≤
(1

2

)2i −1
dR (z0 , ζ),

for all i ∈ N, where dR refers to the Riemannian distance on Pn .
Suppose we are looking for a root of f ∈ P(Hd). We use a “start

system” (f0 , ζ0) ∈ V and define ft := tf + (1 − t)f0 for t ∈ [0, 1]. If the
line segment {ft | t ∈ [0, 1]} does not meet the discriminant variety

Σ := {f ′ ∈ P(Hd) | ∃ζ ′ (f ′, ζ ′) ∈ Σ′}, (1.14)

then there exists a unique lifting to a “solution curve” [0, 1] → V, t 	→
(ft , ζt). Since f1 = f , ζ1 is the root of f we are looking for. The idea
is now to partition [0, 1] into k parts by ti = i/k for i = 0, . . . , k and
to successively compute approximations zi of ζti

by Newton’s method.
More specifically, we set z0 := ζ0 and for 1 ≤ i ≤ k

zi := Nft i
(zi−1).



16 Peter Bürgisser

Put D := maxi di and let L denote the length of the curve (ft)0≤t≤1 in
P(Hd). The main result in Shub and Smale (1993a) states that

k = O
(
LD2 max

t∈[0,1]
µnorm(ft , ζt)2

)
(1.15)

iterations are sufficient to achieve that zi is an approximate zero of fti
,

for all 1 ≤ i ≤ k. In particular, zk is an approximate zero of f .
So by the condition number theorem (1.13), the number k of New-

ton iterations depends on how close the solution curve (ft , ζt)t∈[0,1] ap-
proaches the variety Σ′ of ill-posed pairs. As a suitable start system it
has been proposed to take g = (Xd1 −1

0 X1 , . . . , X
dn −1
0 Xn ) together with

its zero e = (1, 0, . . . , 0).
Let us mention some recent improvements. Shub (to appear) intro-

duced the condition metric on the solution variety V by scaling the Rie-
mannian metric on V with µ2

norm . He showed that for a given smooth
curve γ : [0, 1] → V in V , the number of Newton steps sufficient to
follow a homotopy along γ is bounded by O(D3/2 Length(γ)), where
Length(γ) :=

∫ 1
0 µnorm(γ(t))‖γ̇‖ dt is the length of γ in the condition

metric. Beltrán and Shub (to appear) proved that any (f, ζ) ∈ V can
be connected to (g, e) by a curve γ with

Length(γ) ≤ 9nD3/2 + 2
√

n ln
(
µnorm(f, ζ)/

√
n
)
.

Note that this is a much better bound than (1.15), as the condition
number µnorm(f, ζ) has been replaced by its logarithm. Unfortunately
the above result is not algorithmic, so that it only suggests, but does
not imply a considerable complexity improvement.

1.5 Average-Case Probabilistic Analysis

Recall Smale’s two part scheme for analyzing iterative numerical algo-
rithms from the introduction. In the previous three sections, we illus-
trated the first part of this scheme in several important examples. We
continue now the discussion of these examples with regard to the second
part of the scheme.

The first example is the classical condition number κ(A) = ‖A‖·‖A−1‖
of a random matrix A ∈ Rm×m . Suppose that the entries of A are inde-
pendent standard normally distributed. Edelman (1988) derived sharp
estimates on the distribution of κ(A) by analyzing the distribution of the
smallest and largest singular value of random matrices. In particular,
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he showed that

E (ln κ(A)) = lnm + c + o(1), m → ∞

where c ≈ 1.537. Edelman (1992) also gave closed formula expressions
for the distribution of the related quantity κF (A) := ‖A‖F · ‖A−1‖. In
the case where the entries of A are complex numbers with independent
standard normally distributed real and imaginary part, the resulting
closed form is so amazingly simple, that we state it here:

Prob{κF (A) ≥ ε−1} = 1 − (1 − min{1,mε2})m−1 .

We move now to the probabilistic analysis of the GCC-condition num-
ber C(A) for the linear programming feasibility problem (1.9). The input
A = (a1 , . . . , an ) is assumed to be uniformly distributed in the product
(Sm )n of spheres and our goal is to determine the induced probability
distribution of C(A). Let ρ(A) denote the angular radius of a smallest
spherical cap enclosing all the points ai . The geometric characteriza-
tion (1.11) states that C(A)−1 = | cos ρ(A)|. Moreover, (1.9) is feasible
iff ρ(A) ≤ π/2. We denote by Fn,m the set of all feasible instances.

Our problem can be restated as one concerning coverage processes on
spheres. For α ∈ [0, π] let p(n,m,α) denote the probability that ran-
domly chosen spherical caps with centers a1 , . . . , an and angular radius α

do not cover the sphere Sm . Of course, we assume ai to be uniformly
and independently chosen from the uniform distribution of Sm .

We claim that for 0 < ε ≤ 1

Prob
{
A ∈ Fn,m and C(A) ≥ ε−1}= p(n,m, π/2) − p(n,m,αf (ε))

Prob
{
A �∈ Fn,m and C(A) ≥ ε−1}= p(n,m,αi(ε)) − p(n,m, π/2),

where αi(ε) := arccos ε ≤ π/2 and αf (ε) := arccos(−ε) ≥ π/2. Indeed,
the caps of radius α with center a1 , . . . , an do not cover Sm iff there
exists y ∈ Sm having distance greater than α from all ai . The latter
means that the cap of radius π − α centered at −y contains all the ai .
Hence p(n,m,α) = Prob{ρ(A) ≤ π − α}. This implies

p(n,m, π/2) − p(n,m,αf (ε)) = Prob {π − αf (ε) ≤ ρ(A) ≤ π/2} .

This equals the probability that A ∈ Fn,m and cos ρ(A) ≤ ε, which can
be rewritten as A ∈ Fn,m and C(A) ≥ ε−1 . Hence the first assertion
follows. The second one is shown similarly.

The problem to determine p(n,m,α) is classic, see Solomon (1978). It
has been completely solved for m = 1, 2, but little is known for m ≥ 3.
If n ≤ m + 1 and α ≤ π/2 it is not hard to see that p(n,m,α) = 1.
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We therefore focus on the more interesting case n > m. Wendel (1962)
showed that

Prob{A ∈ Fn,m} = p(n,m, π/2) = 21−n
m∑

k=0

(
n − 1

k

)
. (1.16)

Further, a general result by Janson (1986) implies an asymptotic esti-
mate of p(n,m,α) for α → 0.

Motivated by the probabilistic analysis of the linear programming fea-
sibility problem, Bürgisser et al. (2007) recently discovered a closed
formula for p(n,m,α) in the case α ≥ π/2, and an upper bound for
p(n,m,α) in the case α ≤ π/2 that is asymptotically sharp for α → π/2.
To state this result, let λm (t) denote the relative volume of a spherical
cap of radius arccos t ∈ [0, π/2] in Sm . It is well known that for t ∈ [0, 1]

λm (t) =
Om−1

Om

∫ arccos t

0
(sin θ)m−1 dθ,

where Om := vol (Sm ) = 2π
m + 1

2 /Γ(m+1
2 ) denotes the m-dimensional

volume of the sphere Sm . Put ε := | cos(α)|. Bürgisser at al. (2007)
proved that for α ≥ π/2,

p(n,m,α) =
m∑

k=1

(
n

k + 1

)
C(m, k)

∫ ε

0
tm−k (1 − t2)

1
2 km−1λm (t)n−k−1 dt.

Moreover for α ≤ π/2, p(n,m,α) − p(n,m, π/2) is upper bounded by(
n

m + 1

)
C(m,m)

∫ ε

0
(1 − t2)

m 2 −2
2
(
1 − λm (t)

)n−m−1
dt.

The constants C(m, k) occurring in this formula describe higher mo-
ments of the volume of certain random simplices. Their definition is
somewhat complicated, but we shall give it for the sake of completeness:

C(m, k) :=
(k!)m−k+1

Ok
m

vol Gk (Rm )
∫

Mk

(vol ∆)m−k+1 d(Sk−1)k+1 ,

where the integral is over the set Mk of all (b1 , . . . , bk+1) ∈ (Sk−1)k+1

containing the origin in their convex hull ∆. Further, vol Gk (Rm ) de-
notes the volume of the Grassmannian consisting of the k-dimensional
linear subspaces of Rm .

By analyzing the above formulas, Bürgisser et al. (2007) proved that
for a random A ∈ Rn×(m+1) with independent standard normal entries
(n > m)

E (ln C(A)) ≤ 2 ln(m + 1) + 3.31, (1.17)
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which is the sharpest bound for this expectancy as of today. (Note
that the number of inequalities n does not occur in the upper bound.)
Previous results on this were obtained by Cheung and Cucker (2002),
Cucker and Wschebor (2003), and Cheung et al. (2005).

Condition number theorems allow a probabilistic analysis of condition
numbers in a systematic way by geometric tools. Let us explain this
approach for the matrix condition number κ(A) for A ∈ Rm×m . The
first step is to replace κ(A) by the slightly larger quantity κF (A) :=
‖A‖F · ‖A−1‖. Note that κ(A) ≤ κF (A) ≤ √

mκ(A). The point is that
by the Eckart-Young Theorem (1.3)

κF (A) =
‖A‖F

distF (A,Σ)
, (1.18)

where Σ = {B ∈ Rm×m | det B = 0}. If the entries of A are independent
standard normal, then A/‖A‖ is uniformly distributed on the sphere
Sm 2 −1 . Since κF is scale-invariant, we may assume that the inputs A are
chosen uniformly at random in Sm 2 −1 . We also write ΣS := Σ∩Sm 2 −1 .

The ε-neighborhood of ΣS , for 0 < ε ≤ 1, is defined as

T (ΣS , ε) := {A ∈ Sm 2 −1 | dS (A,ΣS ) < arcsin ε},

where dS (A,ΣS ) := inf{dS (A,B) | B ∈ ΣS } and dS (A,B) denotes the
angular (or Riemannian) distance between A and B in Sm 2 −1 . Using
dF (A,Σ) = sin dS (A,ΣS ) we obtain from (1.18) for 0 < ε ≤ 1

Prob{κF (A) ≥ ε−1} =
vol T (ΣS , ε)
vol Sm 2 −1 .

The task is therefore to compute or to estimate the volume of neighbor-
hoods of ΣS . This can be achieved by combining Weyl’s (1939) tube
formula with techniques from integral geometry, as explained in more
detail in the next two sections.

It is important to realize that this approach applies to a much more
general context than just the matrix condition number. In the context of
one variable polynomial equation solving, one can already find the core of
these ideas in Smale’s early AMS bulletin article dating from 1981. This
approach has been elaborated upon for the average-case probabilistic
analysis of various problems by many researchers, as mentioned already
in the introduction. The remainder of this survey will be devoted to
show how these results on average-case analysis can be naturally refined
in the sense of smoothed analysis.

Before doing so, we would like to say a word about what is known
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regarding the average-case analysis of the condition number µnorm for
polynomial equation solving introduced in Section 1.4. In Shub and
Smale (1993b) it was shown that if f ∈ P(Hd) is chosen uniformly at
random, then we have for 0 < ε ≤ 1/

√
n

Prob{µnorm(f) ≥ ε−1} ≤ 0.25n2(n + 1)N(N − 1) d1 · · · dn ε4 , (1.19)

where N = dimHd − 1. By combining this with an improvement
of (1.15), Shub and Smale (1994) derived the existence of a “nonuni-
form” algorithm for finding an approximate zero of f ∈ Hd in average
polynomial time. The nonuniformity was due to the fact that good
starting points of the homotopy were only proven to exist, but were not
constructed. Beltrán and Pardo (2008) succeeded to replace the nonuni-
formity by randomness and described a randomized average polynomial
time algorithm for this problem.

1.6 Smoothed Probabilistic Analysis

The condition numbers we have encountered so far fit within the follow-
ing abstract framework. We assume our data space is a finite-dimensional
real Hilbert space, say Rp+1 with the standard scalar product 〈 , 〉. By
a semi-algebraic cone Σ ⊆ Rp+1 we understand a semi-algebraic set
Σ �= {0} that is closed under multiplications with positive scalars. We
interpret Σ as a set of ill-posed inputs and abstractly define the associ-
ated conic condition number C(a) of a ∈ Rp+1 \ {0} as

C(a) :=
‖a‖

dist(a,Σ)
, (1.20)

where ‖ ‖ and dist are the norm and distance induced by 〈 , 〉.
The classical matrix condition number κ(A) is not conic since the

operator norm ‖ ‖ is not induced by an inner product. However, κ(A)
is upper bounded by κF (A) = ‖A‖F ‖A−1‖, which, due to the Eckart-
Young Theorem (1.18), is conic with respect to the set Σ ⊆ Rm×m

of singular matrices. Likewise, by replacing the operator norm by the
Frobenius norm, Renegar’s condition number C(A) of A ∈ Rn×(m+1),
cf. (1.6), can be replaced by a conic condition number, which differs
from C(A) by at most a factor of

√
m + 1. Also the condition number

µnorm(f) for polynomial equation solving can be analyzed in this general
framework, as we will see soon.

Let us continue with the general discussion. Since C(λa) = C(a) for
λ > 0 we restrict the input data a to the sphere Sp and set ΣS := Σ∩Sp .
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Let dS (a, b) denote the angular distance between two points a and b in
Sp and set dS (a,ΣS ) := inf{d(a, b) | b ∈ ΣS }. We further assume that
Σ is symmetric, i.e., −Σ = Σ, which is actually the case in the examples
considered so far, except in the linear programming setting. Then it is
easy to see that for a ∈ Sp we have

dist(a,Σ) = sin dS (a,ΣS ). (1.21)

Recall that for 0 < ε ≤ 1, the ε-neighborhood of ΣS is defined as

T (ΣS , ε) := {a ∈ Sp | dS (a,ΣS ) < arcsin ε}.

By the definition (1.20) we have C(a) > ε−1 iff a ∈ T (ΣS , ε), for a ∈ Sp .
Thus an average-case analysis of C(a) for a chosen uniformly at random
in Sp boils down to estimating the volume of T (ΣS , ε).

The following model for a smoothed analysis of C(a), proposed in
Bürgisser et al. (2006), naturally fits into this geometric framework.
Recall that B(a, σ) denotes the spherical cap centered at a with angular
radius arcsinσ, for 0 ≤ σ ≤ 1. Uniform smoothed analysis of C consists
of providing good upper bounds on

sup
a∈S p

Proba∈B (a,σ ){C(a) ≥ ε−1},

where a is assumed to be chosen uniformly at random in B(a, σ). The
geometric meaning is to provide bounds on the relative volume of the
intersection of ε-neighborhoods of ΣS with small spherical disks, see
equation (1.2) and Figure 1.2.

The following result from Bürgisser et al. (2008) extends the previ-
ously mentioned result by Demmel (1988) from average-case to smoothed
analysis. Actually, a sharper bound is proven. For more precise state-
ments see Section 1.7.

Theorem 1.2 Let C be a conic condition number with set Σ of ill-posed
inputs. Assume that Σ is contained in a real algebraic hypersurface,
given as the zero set of a homogeneous polynomial of degree d. Then,
for all 0 < σ ≤ 1 and all 0 < ε ≤ σ/(p(2d + 1)) we have

sup
a∈S p

Proba∈B (a,σ ){C(a) ≥ ε−1} ≤ 26 dp
ε

σ
,

sup
a∈S p

E a∈B (a,σ )(ln C(a)) ≤ 2 ln(dp) + 2 ln
1
σ

+ 4.7.
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Demmel’s 1988 paper dealt with both complex and real problems.
For complex problems he provided complete proofs. For real problems,
Demmel’s bounds rely on an unpublished (and apparently unavailable)
result by Ocneanu on the volumes of tubes around real algebraic vari-
eties. A second goal of Bürgisser et al. (2008) was to prove a result akin
to Ocneanu’s. We will outline this proof in Section 1.7.

The setting of conic condition numbers has a natural counterpart over
the complex numbers that we want to sketch briefly. Assume that the
data space is a finite-dimensional complex Hilbert space, say Cp+1, with
the standard Hermitian inner product 〈 , 〉. Fix an algebraic cone
Σ ⊆ Cp+1, i.e., a zero set of homogeneous complex polynomials, that
is interpreted as a set of ill-posed inputs to some computational prob-
lem. We define the associated conic condition number C(a) of a nonzero
a ∈ Cp+1 as in (1.20). It should be clear that the examples of linear and
polynomial equation solving have a natural formulation over C.

Since C(a) = C(λa) for λ ∈ C∗ it is natural to think of the inputs as
elements of the complex projective space Pp := Pp(C) and to define their
condition number correspondingly. On the space Pp , the Fubini-Study
metric is a natural way to measure distances, angles and volumes. We
do not formally define it, but just note that the induced Riemannian
distance dR (a, b) between two points a, b ∈ Pp satisfies cos dR (a, b) =
|〈â, b̂〉|/(‖â‖ ‖b̂‖), where â and b̂ are affine representatives in Cp+1 of a

and b in Pp . (Hence dR has the meaning of an angle as dS in the situation
over R.) Besides the Riemannian metric dR on Pp , one considers the so-
called projective distance between points a, b ∈ Pp defined by

dP(a, b) = sin dR (a, b).

This is motivated by the definition of conic condition numbers. In fact,
as for (1.21), one shows that the condition number of a ∈ Pp then takes
the form

C(a) = 1/dP(a,Σ)

where, abusing notation, Σ is interpreted now as a subset of Pp . (In the
following we will not distinguish anymore between affine representatives
and their corresponding elements of Pp .) We denote by BP(a, σ) the ball
of radius σ around a in Pp with respect to projective distance.

In what follows we assume that Σ is purely m-dimensional, that is,
all of its irreducible components are of dimension m. We recall that the
degree deg Σ of Σ in the sense of algebraic geometry can be defined as
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the number of intersection points of Σ with a linear subspace of Pp of
dimension p − m in general position.

The following general result by Bürgisser et al. (2006) gives a smoothed
analysis of conic condition numbers over the complex numbers. We re-
mark that this result, unlike Theorem 1.2, also appropriately covers the
case where Σ has codimension greater than one.

Theorem 1.3 Let C be a conic condition number with set of ill-posed
inputs Σ ⊂ Pp that is purely m-dimensional. Then, for all a ∈ Pp , all
0 < σ ≤ 1, and all 0 < ε ≤ (p − m)/(p

√
2), we have

Proba∈B P(a ,σ ){C(a) ≥ ε−1} ≤ K(p, m) deg Σ
( ε

σ

)2(p−m )
(

1 +
p

p − m

ε

σ

)2m

and

E a∈B P(a ,σ ) (ln C(a)) ≤ ln K(p, m) + 3 + ln deg Σ
2(p − m)

+ ln
pm

p − m
+ 2 ln

1
σ

,

with the constant K(p,m) := 2 p3 p

m 3 m (p−m )3 ( p −m ) .

The proof of this result is based on ideas in Renegar (1987) and Beltrán
and Pardo (2007).

1.6.1 Applications

Theorem 1.2 and Theorem 1.3 easily imply a smoothed analysis of several
of the conic condition numbers we encountered earlier. The next three
corollaries are from Bürgisser et al. (2006, 2008).

Corollary 1.1 The matrix condition number κ(A) for A ∈ Rm×m sat-
isfies for all 0 < σ ≤ 1

sup
‖Ā‖F =1

E A∈B (Ā ,σ )(ln κ(A)) ≤ 6 ln m + 2 ln
1
σ

+ 4.7.

Proof We have κ(A) ≤ κF (A), where κF (A) is the conic condition
number whose set Σ of ill-posed inputs is the zero set of the deter-
minant, which is a homogeneous polynomial of degree m. Now apply
Theorem 1.2.

A smoothed analysis of κ(A) for Gaussian perturbations was previ-
ously given by Wschebor (2004) and Sankar et al. (2006) by direct meth-
ods.
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We discuss now eigenvalue computations. Let A ∈ Cm×m and λ ∈ C

be a simple eigenvalue of A. Suppose that x ∈ Cm and y ∈ Cm are right
and left eigenvectors associated with λ, respectively (i.e., nonzero and
satisfying Ax = λx and yT A = λyT ). From the fact that λ is a simple
eigenvalue, one can deduce that 〈x, y〉 �= 0, cf. Wilkinson (1972). For
any sufficiently small perturbation δA ∈ Cm×m there exists a unique
eigenvalue λ + δλ of A + δA close to λ. We thus have

(A + δA)(x + δx) = (λ + δλ)(x + δx),

which implies up to second order terms δAx + Aδx ≈ δλ x + λ δx. By
multiplying with yT from the left we get

δλ =
1

〈x, y〉y
T δAx + o(‖δA‖).

Moreover, sup‖δA‖F ≤1 |yT δAx| = ‖x‖ ‖y‖.
It therefore makes sense to define the condition number of A for the

computation of λ as follows

κ(A, λ) :=
‖x‖ ‖y‖
|〈x, y〉| (1.22)

and to set κ(A, λ) := ∞ if λ is a multiple eigenvalue of A. We further
define the condition number of A for eigenvalue computations by

κeigen(A) := max
λ

κ(A, λ),

where the maximum is over all the complex eigenvalues λ of A. The set
of ill-posed inputs Σeigen := {A ∈ Cm×m | κeigen(A) = ∞} consists of the
matrices having multiple eigenvalues. Wilkinson (1972) proved that

κeigen(A) ≤
√

2 ‖A‖F

dist(A,Σ)
. (1.23)

Corollary 1.2 The condition number κeigen(A) for A ∈ Cm×m satisfies
for all 0 < σ ≤ 1

sup
‖Ā‖F =1

E A∈B (Ā ,σ )(ln κeigen(A)) ≤ 8 ln m + 2 ln
1
σ

+ 5.

Proof According to (1.23), 2−1/2κeigen is bounded by the conic condition
number, whose associated set Σeigen of ill-posed inputs consists of the
matrices A having multiple eigenvalues. Σeigen is the zero set of the
discriminant polynomial of the characteristic polynomial, which can be
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shown to be homogeneous of degree m2 − m. Now apply Theorem 1.3.

We remark that it is also possible to derive a corresponding statement
for the computation of real eigenvalues of real matrices. However, some
care has to be taken when defining the corresponding condition number.

Our next application is concerned with the condition number µnorm(f)
for finding an approximate solution of the multivariate polynomial equa-
tion f(ζ) = 0, where f ∈ Hd (see Section 1.4).

Corollary 1.3 For all f ∈ Hd of norm one and 0 < σ ≤ 1 we have

E f∈B (f ,σ )(ln µnorm(f)) ≤ 3.5 ln N + lnD + 0.5 ln n + 2 ln
1
σ

+ 5.

where N = dimHd − 1 and D = d1 · · · dn is the Bézout number.

Shub and Smale (1993b) obtained similar estimates for the average of
ln µnorm , see (1.19).

Proof The discriminant variety Σ consists of the systems f ∈ P(Hd)
having multiple zeros. It is a well-known fact that Σ is a hypersurface
in P(Hd) defined by a homogeneous polynomial of total degree at most
2nD2 , see Bürgisser et al. (2006).

Recall from (1.12) the variety Σ′ of ill-posed pairs. The discriminant
variety Σ is the projection of Σ′ onto the first factor. By the condition
number theorem (1.13) we have for all (f, ζ) ∈ V \ Σ′

µnorm(f, ζ) =
1

dP(f,Σζ )
,

where dP(f,Σζ ) denotes the projective distance of f to Σζ := {f ′ ∈
P(Hd) | (f ′, ζ) ∈ Σ′} measured in the fiber {f ′ ∈ P(Hd) | f ′(ζ) = 0}.
Since Σζ ⊆ Σ we have dP(f,Σζ ) ≥ dP(f,Σ). Therefore

µnorm(f, ζ) ≤ 1
dP(f,Σ)

,

which implies µnorm(f) ≤ 1/dP(f,Σ). Now apply Theorem 1.3.

We remark that it is also possible to derive a corresponding statement
for real polynomial systems.

Let us move now to applications to condition numbers of convex op-
timization. When trying to directly apply Theorem 1.2 we obtain bad
bounds. The reason is that the corresponding sets Σ of ill-posed inputs
are semialgebraic (of codimension one). Inequalities are essential here
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and by enclosing Σ in algebraic hypersurfaces essential information gets
lost.

Nevertheless, the ideas in the proof of Theorem 1.2 turned out to be
useful for obtaining a uniform smoothed analysis of the GCC-condition
number C(A) of the linear programming feasibility problem (1.9). (For
the average-case analysis of C(A) see Section 1.5.) The point is that
the conclusion of Theorem 1.2 is also true when Σ is the boundary of a
spherical convex set.

For stating this precisely let us introduce some notation. By a convex
body K in the sphere Sm we understand the intersection with Sm of a
closed regular convex cone C in Rm+1. We call To(∂K, ε) := T (∂K, ε)\K
the outer ε-neighborhood of the boundary ∂K. The assertion is

vol (To(∂K, ε) ∩ B(a, σ))
vol B(a, σ)

≤ 6.5m
ε

σ
if ε ≤ σ

2m , (1.24)

and the same upper bound holds for the relative volume of the inner
ε-neighborhood of ∂K.

The relation of this bound to Theorem 1.2 is the following. By convex-
ity, the intersection of ∂K with a hyperequator of Sm in general position
consists of at most two points. In that sense we may think of ∂K as a
set of “degree” at most two. Of course this analogy has to be taken with
a grain of salt. For instance, if K corresponds to a polyhedral cone C,
then ∂K can be expressed as the zeroset of a polynomial equation and
inequality constraints. However, the degree of this equation would be
the number of facets of C, which is in general a huge number. We will
outline the proof of (1.24) in Section 1.7.3.

The smoothed analysis of the GCC-condition number is performed
in the following model. Fix 0 < σ ≤ 1 and ā1 , . . . , ān ∈ Sm . Inde-
pendently choose points ai uniformly at random in the spherical caps
B(āi , ε) of Sm centered at āi with angular radius arcsinσ. In other
words, A = (a1 , . . . , an ) is chosen uniformly at random in B(Ā, α) :=∏

i B(āi , ε). We recall that Fn,m denotes the set of feasible instances
in (Sm )n .

The following recent result is from Amelunxen and Bürgisser (2008).

Theorem 1.4 For n > m and 0 < σ ≤ 1 we have

sup
Ā∈(S m )n

E A∈B (Ā ,α)
(
ln C(A)

)
= O

(
ln(

nm

σ
)
)
.
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For the average-case (σ = 1) we even get E (ln C(A)) = O(log m), as
already stated in (1.17). Moreover, we have for 0 < ε ≤ σ/(2m(m + 1))

sup
Ā∈(S m )n

Prob{A ∈ Fn,m , C(A) ≥ ε−1} ≤ 6.5nm(m + 1)
ε

σ
.

For the infeasible case (A �∈ Fn,m ) a slightly worse tail estimate holds.

Dunagan et al. (2003) previously gave a smoothed analysis of Rene-
gar’s condition number. The crucial ingredient of their proof is a result
due to Ball (1993) about the measure of Gaussians on boundaries of
convex sets in Euclidean space. Our proof of Theorem 1.4 roughly uses
the same overall strategy as Dunagan et al. (2003). However, we sub-
stitute Ball’s result by the volume estimate (1.24) on neighborhoods of
boundaries of spherically convex sets. A relevant observation that en-
ables us to successfully apply this estimate is the following result. Let
F◦

n,m := Fn,m \ ∂Fn,m denote the set of strictly feasible instances.

Lemma 1.1 Let A = (a1 , . . . , an ) ∈ F◦
n,m and C(A) ≥ (m+1)ε−1 . Then

there exists i ∈ {1, . . . , n} such that ai ∈ To(∂Ki, ε), where −Ki is the
spherical convex hull of a1 , . . . , ai−1 , ai+1 , . . . , an .

The proof of the probability tail estimate in Theorem 1.4 for the fea-
sible case is now easy. Suppose that A is chosen uniformly at random
in B(Ā, σ). Lemma 1.1 yields with t = (m + 1)ε−1

Prob{A ∈ F◦
n,m , C(A) ≥ t} ≤

n∑
i=1

Prob{A ∈ F◦
n,m , ai ∈ To(∂Ki, ε)}.

Note that B(Ā, σ) = B(Ā′, σ)×B(ān , σ) where Ā′ := (ā1 , . . . , ān−1). We
bound the probability on the right-hand side for i = n by an integral of
probabilities conditioned on A′ := (a1 , . . . , an−1):

Prob{A′ ∈ F◦
n−1,m and an ∈ To(∂Kn , ε)}

=
1

vol B(Ā′, σ)

∫
A ′∈F◦

n −1 , m ∩B (Ā ′,σ )
Prob{an ∈ To(∂Kn , ε) | A′} dA′.

Fix now A′ ∈ F◦
n−1,m and consider the convex set Kn in Sm . The

volume bound (1.24) on the outer neighborhood of ∂Kn yields

Prob{an ∈ To(∂Kn, ε) | A′} =
vol (To(∂Kn , ε) ∩ B(ān , σ))

vol B(ān , σ)
≤ 6.5m

ε

σ
.

We conclude that

Prob{A ∈ F◦
n,m , an ∈ To(∂Kn, ϕ)} ≤ 6.5m

ε

σ
.
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The same upper bound holds for any Ki . Altogether, we obtain

Prob{A ∈ F◦
n,m and C(A) ≥ t} ≤ 6.5nm(m + 1)

1
σt

,

which is the bound claimed in Theorem 1.4.
One of the goals of our current research with Amelunxen is to find a

general result providing smoothed analysis estimates of condition num-
bers for convex optimization, in particular for semidefinite programming.
The proof just presented heavily relies on the product structure of the
cone Rm+1

+ and does not generalize.

1.7 Tools from Integral Geometry

As already pointed out, uniform smoothed analysis boils down to the
task of providing bounds on the relative volume of the intersection of
ε-neighborhoods of ΣS with small spherical disks, see Figure 1.2.

Even though the volume of neighborhoods of subsets of Euclidean
spaces or spheres is a rich and thoroughly studied mathematical topic,
as can be seen from the textbook by Gray (1990), further developments
were needed to arrive at the results mentioned in Section 1.6. In the
following we first describe some of the classic results on the volume
of neighborhoods, then we discuss the principal kinematic formula and
finally indicate how to combine these tools in order to prove Theorem 1.2.

1.7.1 On the volume of tubes

To warm up, assume that K is a convex compact subset of Rn . Con-
sider the ε-neighborhood Kε of K consisting of the points in Rn having
(Euclidean) distance at most ε from K. Steiner (1840) observed that
the volume of Kε is a polynomial function in ε: vol Kε =

∑n
i=0 ci(K)εi .

Clearly, c0(K) equals the volume of K, and it should be intuitively clear
that c1(K) equals the (n − 1)-dimensional volume of the boundary ∂K

of K. It is an easy and instructive exercise to prove Steiner’s result for
convex polytopes in R2 and R3 . This exercise also reveals the meaning
of the coefficients ci(K). (For instance, cn (K) always equals the volume
On−1/n of the n-dimensional unit ball.) In Minkowski’s theory of con-
vex bodies, the coefficients ci(K) are called cross-sectional measures of K

(Quermassintegrale), see Bonnesen and Fenchel (1974) for more informa-
tion. So the volume of the outer ε-neighborhood To(∂K, ε) of ∂K satisfies
vol To(∂K, ε) =

∑n
i=1 ci(K)εi . Weyl (1939) considerably extended this
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observation by showing that the volume of the ε-neighborhood T (M, ε)
of a compact smooth submanifold M of Rn is a polynomial function in
ε, for sufficiently small values of ε.

For our purposes, we need to study the case where the ambient space
is a sphere Sn . Weyl (1939) also analyzed this case. We will only state
his result in the special case where M is a smooth oriented hypersurface
of Sn . In order to do so, we first need to review a few elementary
concepts from differential geometry, see for instance Thorpe (1993) or
do Carmo (1992), p. 129.

We assume that a unit normal vector field ν has been chosen on M

(which corresponds to the choice of an orientation of M). Let TxM

denote the tangent space of M at x ∈ M . The second fundamental
form IIM (x) : TxM × TxM → R of M at x is defined as IIM (x)(u,w) :=
−〈∇uν(x), w〉. Here, ∇uν(x) denotes the covariant derivative of ν at x

in the direction u. It can be computed by taking the derivative of
ν : M → Rn+1 at x in the direction u and projecting orthogonally onto
TxSn . It is well known that IIM (x) is a symmetric bilinar form. Its eigen-
values κ1(x), . . . , κn−1(x) are called the principal curvatures at x of the
hypersurface M . For 1 ≤ i < n we define the ith curvature KM,i(x) of M

at x as the ith elementary symmetric polynomial in κ1(x), . . . , κn−1(x),
and put KM,0(x) := 1. In particular, KM,n−1(x) = detLM (x). We
define the integral µi(M) of ith curvature and the integral |µi |(M) of ith
absolute curvature of M as follows (0 ≤ i ≤ n − 1):

µi(M) :=
∫

M

KM,i dM, |µi |(M) :=
∫

M

|KM,i | dM.

For reasons that will soon become apparent, it is more convenient to
think in terms of the normalized integrals of (absolute) curvature of M

defined by

µno
i (M) :=

2
On−i−1Oi

µi(M), |µno
i |(M) :=

2
On−i−1Oi

|µi |(M).

Note that µno
0 (M) = |µno

0 |(M) = O−1
n−1 vol M is the volume of M relative

to the volume of Sn−1 .
For 0 < ε ≤ 1 we define the ε-tube T⊥(M, ε) around M as the set

of points in Sn such that there exists a great circle segment in Sn of
angular length less than arcsin ε that connects x with a point in M

and intersects M orthogonally in that point, see Figure 1.3. Note that
T⊥(M, ε) ⊆ T (M, ε). If M has a smooth boundary, then T (M, ε) is the
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U
T⊥(U,φ) T (U,φ)

Fig. 1.3. ε-tube T⊥(M, ε) and ε-neighborhood T (M, ε) around the curve M .

union of T⊥(M, ε) and a “half-tube” around the boundary of ∂M . If
∂M = ∅, then T⊥(M, ε) = T (M, ε).

Weyl’s formula now states that for sufficiently small ε we have

vol T⊥(M, ε) =
∑

0≤i≤n −1
i e v e n

µno
i (M) vol T (Sn−i−1 , ε). (1.25)

Here Sn−i−1 is interpreted as a subset of Sn . (There is a cancellation
effect between the contributions of “outer” and “inner” neighborhoods
which results in the sum being only over even indices i.) If M is an
open subset of Sn−1 , then µno

i (M) = 0 for i > 0 and (1.25) specializes
to the obvious formula vol T⊥(M, ε) = µno

0 (M) vol T (Sn−1 , ε), which is
asymptotically equal to 2ε vol M for ε → 0. For completeness, let us also
mention that

vol T (Sn−i−1 , ε) = On−i−1Oi

∫ arcsin ε

0
(cos ρ)n−i−1 (sin ρ)i dρ.

By tracing Weyl’s proof, it is not hard to see that the following upper
bound is valid for all 0 < ε ≤ 1:

vol T⊥(M, ε) ≤
n−1∑
i=0

|µno
i |(M) vol T (Sn−i−1 , ε). (1.26)

The question is now how to bound the normalized integrals |µno
i |(M)

of absolute curvature in specific situations. It turns out that this can
be effectively done with tools from integral geometry. In a first step, we
focus on |µno

0 |(M), that is, we need to bound the volume of M .

1.7.2 The principal kinematic formula

The orthogonal group G := O(n + 1) is a compact Lie group. It has an
invariant Riemannian metric (induced by the Euclidean metric on the
space of real n+1-matrices) and a corresponding invariant volume form
(Haar measure). So we can talk about random elements of G chosen
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with respect to the uniform distribution. Note that G acts on Sn in a
straightforward way.

Now suppose that M,N ⊆ Sn are smooth submanifolds of dimen-
sion m and p, respectively, such that m + p ≥ n. By transversality
principles, the intersection of M with a random translate gN of N is
almost surely empty or a submanifold of dimension m + p − n. So the
volume of M ∩ gN in this dimension is well defined (we put vol ∅ := 0).
A key result in integral geometry states that

E g∈G

(
vol (M ∩ gN)

Om+p−n

)
=

vol M
Om

· vol N
Op

. (1.27)

In fact the smoothness assumption on M and N in this formula is not
important since removing lower dimensional parts does not change the
volume (for instance it is sufficient to require that M,N are semialge-
braic).

Santaló (1976), which is the standard reference on integral geometry,
refers to (1.27) as Poincaré’s formula (cf. §7.1 in Santaló). Apparently,
Poincaré stated this result for the case of S2 and in such form it was also
known to Barbier (1860). Formula (1.27) is stated in §18.6 of Santaló’s
book, but a proof is only given in §15.2 for an analogous statement for
Euclidean space. The book by Howard (1993) states and proves formulas
like (1.27) for homogeneous spaces in great generality.

The following corollary of (1.27) allows us to reduce the estimation of
volumes to counting arguments:

vol M
Om

=
1
2

E g∈G

(
#(M ∩ gSn−m )

)
. (1.28)

To illustrate this with a simple example, assume that M is the real
zero set in Sn of a homogeneous polynomial f of degree d. Suppose
that dim M = n − 1. We claim that if M ∩ gS1 is finite, then it has
at most 2d points. In order to see this assume w.l.o.g. g = id and
f(1, 0, . . . , 0) �= 0. Suppose that S1 is given by x2 = · · · = xn = 0.
For each x0 ∈ R such that f(x0 , 1, 0, . . . , 0) = 0 there are two points
±(1 + x2

0)
−1/2(x0 , 1, 0, . . . , 0) in M ∩ S1 and these are all the points in

M ∩ S1 . Equation (1.28) then implies that

vol M
On−1

=
1
2

E g∈G

(
#(M ∩ gS1)

)
≤ d · Probg∈G{M ∩ gS1 �= ∅} ≤ d.
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More generally, we obtain for a ∈ Sn and 0 < σ ≤ 1

vol (M ∩ B(a, σ))
On−1

≤ d · Probg∈G{M ∩ B(a, σ) ∩ gS1 �= ∅}

≤ d · Probg∈G{B(ga, σ) ∩ S1 �= ∅} = d
vol T (S1 , σ)

On
.

We remark that a statement analogous to (1.27) holds for complex
projective spaces Pn (C). The same argument as before then shows that
for a complex m-dimensional algebraic subvariety M of Pn (C) we have
vol M = deg M · vol (Pm (C)).

Formula (1.27) has a natural extension involving the normalized inte-
grals µno

i (M) of curvature. This is called the principal kinematic formula
of integral geometry and is considered the most important result of in-
tegral geometry. We will only need the following special case extending
(1.28). As before let M be an oriented smooth hypersurface M in Sn .
Then we have for 0 ≤ i ≤ n − 1

µno
i (M) = E g∈G

(
µno

i (M ∩ gSi+1)
)
. (1.29)

Note that for almost all g, M ∩ gSi+1 is either empty or a smooth
hypersurface of the sphere gSi+1 (with a canonical orientation inherited
from M). With this interpretation µno

i (M∩gSi+1) is well defined (setting
µno

i (∅) := 0).
The general principal kinematic formula for spheres is so beautiful

that we cannot resist stating it here. Also, this could be useful for future
applications, when the set of ill-posed inputs has higher codimension.

Let M ⊆ Sn be a smooth submanifold of dimension m. For x ∈
M let Sx := S(TxM⊥) denote the sphere of unit normal vectors v in
TxSn that are perpendicular to TxM . Let us denote by KM,i(x, v) the
ith elementary symmetric polynomial in the eigenvalues of the second
fundamental form of the embedding M ↪→ Sn at x in direction v, see do
Carmo (1992), p. 128. We now define the normalized integral µno

i (M) of
ith curvature of M as (0 ≤ i ≤ m):

µno
i (M) :=

1
Om−iOn−m+i−1

∫
x∈M

∫
v∈Sx

KM,i(x, v) dSx(v) dM(x).

This value is easily seen to vanish if i is odd (consider v 	→ −v). It
follows from Weyl (1939) that µno

i (M) is a relative isometric invariant
of M in the sense that µno

i (M) can be written as an integral over M of
a function whose value at x ∈ M only depends on the difference of the
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values at x of the curvature tensor of M and the curvature tensor of Sn

restricted to M .
Weyl’s formula, extending (1.25), states that for sufficiently small ε

we have

T⊥(M, ε) =
∑

0≤i≤m
i e v e n

µno
i (M) vol T (Sm−i , ε). (1.30)

The principal kinematic formula for spheres is best stated in terms of
the curvature polynomial µno(M ;X) of M defined as

µno(M ;X) :=
m∑

i=0

µno
i (M)Xi,

where X denotes a formal variable. The degree of µno(M ;X) is at most
the dimension m of M . For example we have µno(Sm ;X) = 1.

The principal kinematic formula says that for smooth submanifolds
M and N of Sn having dimension m and p, respectively, such that
m + p ≥ n, we have

E g∈G

(
µno(M ∩ gN ;X)

)
≡ µno(M ;X) · µno(N ;X) mod Xm+p−n+1 .

Here, the expectation on the left-hand side is defined coefficientwise,
while on the right-hand side we have a polynomial multiplication mod-
ulo Xm+p−n+1. This makes perfect sense as m + p − n is the expected
dimension of M ∩ gN . We note that the principal kinematic formula
contains (1.29) as a special case (for even i).

It is not at all easy to locate the principal kinematic formula for
spheres in the above explicit form in the literature. Santaló in his book
attributes the principal kinematic formula in the plane to Blaschke, and
in Euclidean spaces to Chern (1966) and Federer (1959). An elemen-
tary and unconventional introduction to geometric probability and the
kinematic formula for Euclidean spaces can be found in Klain and Rota
(1997). The normalization of integrals of curvatures leading to the sim-
ple formula of reduced polynomial multiplication was discovered by Ni-
jenhuis (1974), again for Euclidean space. Santaló derives the principal
kinematic formula for the special case of intersections of domains in
spheres, but he does not care about the scaling coefficients. In fact, the
principal kinematic formulas for submanifolds of spheres and Euclidean
spaces take exactly the same form. An indication of this at first glance
astonishing fact can be found, somewhat hidden, in Santaló’s book on
page 320. The situation was clarified by Howard (1993), who gave a
unified treatment of kinematic formulas in homogeneous spaces. But
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Howard does not care about the scaling constants either. For the pur-
pose of explicitly bounding the volumes of tubes, a good understanding
of the scaling factors is relevant. To the best of our knowledge, the gen-
eral principal kinematic formula for spheres in the above form was first
explicitly stated in Bürgisser (2007).

1.7.3 Bounding integrals of absolute curvature

The basic idea is best explained with the example of a hypersurface
in Rn . The approach is inspired by Spivak (1979), p. 409ff. Suppose
that f is a polynomial of degree d with compact zero set Z ⊆ Rn such
that the gradient of f does not vanish on Z. Consider the Gauss map
ν : Z → Sn−1 , x 	→ gradf(x)/‖gradf(x)‖. The Jacobian determinant
of ν at x ∈ Z yields the Gaussian curvature: KZ,n−1(x) = detDν(x).
Let ϕ(y) := #ν−1(y) denote the size of the fiber of y ∈ Sn−1 and put
ϕ(±y) := ϕ(y) + ϕ(−y). The transformation formula implies∫

Z

|det Dν| dZ =
∫

S n −1
ϕ(y) dSn−1 =

∫
S n −1

ϕ(−y) dSn−1 .

Hence we obtain
∫

Z
|det Dν| dZ = 1

2

∫
S n −1 ϕ(±y) dSn−1 .

A point x ∈ Rn satisfies ν(x) = (±1, 0, . . . , 0) iff

f(x) = 0, ∂2f(x) = 0, . . . , ∂nf(x) = 0.

If y is a regular point of ν, then all real solutions of this system of
equations are nondegenerate, hence they are isolated in Cn . We conclude
ϕ(±y) ≤ d(d− 1)n−1 from Bézout’s theorem, which is a standard result
from algebraic geometry, see Mumford (1976). This estimate holds for
any regular value y ∈ Sn−1 . We therefore obtain that∫

Z

|KZ,n−1 | dZ ≤ On−1

2
d(d − 1)n−1 .

Note that this bound is sharp for d = 2 and Z = Sn−1 .
The previous reasoning can be extended to hypersurfaces in Sn as

follows. Suppose now that f ∈ R[X0 , . . . , Xn ] is homogeneous of degree d

with zero set M ⊆ Sn such that the derivative of the restriction of f to
Sn does not vanish on M . Then M is a compact smooth hypersurface
of Sn oriented by the gradient of f . We claim that

|µno
n−1 |(M) ≤ d(d − 1)n−1 . (1.31)

Before showing this bound, let us illustrate it with a simple example.
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The zero set of f =
∑n

i=1 X2
i − ε2X2

0 consists of two small circles in Sn

centered at (±1, 0, . . . , 0) with a radius going to zero as ε → 0. For each
of the circles Cε , the total Gaussian curvature µn−1(Cε) = |µn−1 |(Cε)
converges to On−1 as ε → 0. Hence |µno

n−1 |(Cε) → 1. This shows that
(1.31) is a sharp bound for d = 2.

In order to prove (1.31), consider the Gauss map ν : M → Sn defined
as before. For simplicity, we assume that the image N of ν is a smooth
hypersurface of Sn (this can be achieved by removing lower dimensional
parts). Again put ϕ(y) := #ν−1(y) for y ∈ N . The transformation
formula gives

|µn−1 |(M) =
∫

M

|det Dν| dM =
∫

N

ϕdN =
∑
�∈N

� vol F�,

where F� := {y ∈ N | ϕ(y) = �}. Poincaré’s formula (1.28) implies

vol F� =
On−1

2
E g∈G (#(F� ∩ gS1)).

Therefore,∑
�∈N

� vol F� =
On−1

2
E

(∑
�∈N

�#(F� ∩ gS1)
)

=
On−1

2
E
(
#ν−1(gS1)

)
.

Now gS1 intersects N transversally for almost all g ∈ G. To simplify
notation suppose this is the case for g = id. A point x ∈ Rn+1 lies in
ν−1(S1) iff it satisfies the following system of equations

n∑
i=0

x2
i − 1 = 0, f(x) = 0, ∂2f(x) = · · · = ∂nf(x) = 0.

By Bézout’s theorem, the number of solutions to this system of equations
is bounded by 2 d (d − 1)n−1 . Altogether, #ν−1(gS1) ≤ 2 d (d − 1)n−1

for almost all g and the assertion (1.31) follows.
Similarly, one shows that if K is a convex body in Sn with smooth

boundary ∂K, then |µno
n−1 |(∂K) ≤ 1, which is an optimal bound. The

argument is as before, replacing Bézout’s theorem by the fact that if
∂K ∩ gS1 is finite, then it consists of at most two points by convexity.
(Compared to (1.31) we save here a factor 2 since K does not contain
diametral points.)

Now let the hypersurface M of Sn be given as before as the zero set of
the homogeneous polynomial f of degree d. Let a ∈ Sn and 0 < σ ≤ 1.
We can bound the ith integral of absolute curvature |µno

i |(M ∩B(a, σ))
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in terms of the degree d and the dimension parameters n, i as follows:

|µno
i |(M ∩ B(a, σ)) ≤ 2 d (d − 1)i vol T (Si+1 , σ)

On
. (1.32)

In order to show this, put U := M ∩ B(a, σ) and let U+ be the set
of points of U where KM,i is positive and U− be the set of points of U

where KM,i is negative. Then |µi |(U) = |µi(U+)| + |µi(U−)|.
Let g ∈ G be such that M intersects gSi+1 transversally. We apply

the bound (1.31) to the hypersurface M ∩ gSi+1 of the sphere gSi+1,
which yields |µno

i |(M ∩ gSi+1) ≤ d(d − 1)i . By monotonicity we obtain

|µno
i (U+ ∩ gSi+1)| ≤ |µno

i |(U+ ∩ gSi+1) ≤ |µno
i |(M ∩ gSi+1) ≤ d(d − 1)i .

The kinematic formula (1.29) applied to U+ implies that

|µno
i (U+)| ≤ E g∈G

(
|µno

i (U+ ∩ gSi+1)|
)

≤ d(d − 1)i Probg∈G{U+ ∩ gSi+1 �= ∅}
≤ d(d − 1)i Probg∈G{B(a, σ) ∩ gSi+1 �= ∅}

= d(d − 1)i vol T (Si+1 , σ)
On

.

The same upper bound holds for |µi(U−)| and hence the assertion (1.32)
follows.

A similar reasoning shows |µno
i |(∂K ∩ B(a, σ)) ≤ O−1

n vol T (Si+1 , σ)
for a convex body K in Sn with smooth boundary ∂K.

We outline now the proof of Theorem 1.2. By plugging in the esti-
mate (1.32) into the upper bound on tube volumes (1.26), we obtain

vol T⊥(M ∩ B(a, σ), ε
)

vol B(a, σ)
≤ 2d

n−1∑
i=0

di vol T (Si+1 , σ)
vol B(a, σ)

vol T (Sn−i−1 , ε)
On

and after some estimations one can arrive at the estimate

vol T⊥(M ∩ B(a, σ
)
, ε)

vol B(a, σ)
≤ 4

n−1∑
k=0

(
n

k

)(dε

σ

)k

+
2nOn

On−1

(dε

σ

)n

.

From this inequality, estimates of the volume of the set T (M, ε)∩B(a, σ)
can be deduced by noting that the latter set is contained in the ε-tube
around M ∩ B(±a, σ + ε). Another problem is that M is assumed to
be smooth, but the real algebraic hypersurface M ′ in the statement
of Theorem 1.2 may have singularities. Fortunately, this can be easily
dealt with by a perturbation argument. By some further estimations,
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one finally arrives at

vol (T (M ′, ε) ∩ B(a, σ))
vol B(a, σ)

≤ 26 dn
ε

σ

for ε ≤ σ/(n(2d + 1)), as claimed in Theorem 1.2. For details we re-
fer to the original paper by Bürgisser et al. (2008). We note that the
bound (1.24) on the volume of ε-neighborhoods of ∂K follows in a similar
way.

In order to deduce from the above the bound on the expectation stated
in Theorem 1.2, we use the general observation that a tail bound of the
form

Prob{X ≥ t} ≤ Kt−α for all t ≥ t0 > 0

for a nonnegative absolutely continuous random variable X such that
K,α > 0 implies

E (ln X) ≤ ln t0 +
1
α

(ln K + 1) .

We finally remark that the proof of Theorem 1.3, dealing with the
situation over C, is more direct and avoids curvatures. However, it is
not possible to extend those arguments to the situation over R.
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Abstract

Binomial systems are basic blocks in the study of general polynomial
systems, as well as in the structure of hypergeometric differential equa-
tions and the dynamics of mass action kinetic systems. In this article we
highlight the basic facts about binomials, on binomials and complexity
of polynomial system solving, and on the duals of binomial varieties, i.e.,
discriminants of sparse polynomial equations.

2.1 Introduction

A binomial in n variables is a polynomial with two terms axα + bxβ ,
where x = (x1 , . . . , xn ), α �= β ∈ Nn , xα means as usual xα1

1 · · ·xαn
n ,

and a, b lie in a coefficient ring k, usually the field of real or complex
numbers. A binomial ideal I in k[x1 , . . . , xn ] is an ideal generated by
binomials, that is to say the set of all polynomial “consequences” of a
given set of binomials b1 , . . . , br

I = {
r∑

i=1

hibi : hi ∈ k[x1 , . . . , xn ], i = 1, . . . , r},

and so all the solutions of the system b1(x) = · · · = br (x) = 0 are also
zeros of all the polynomials in the ideal I.

The family of binomial ideals is at the same time rich, a good source
of concrete examples, and constitutes a step below general ideals. In
fact, we could isolate two other such families of ideals: the linear ideals
(i.e., the world of linear algebra) and the monomial ideals (essentially
tied to combinatorics and divisibility questions). The study of binomial
ideals conjugates a blend of combinatorics and linear algebra. We refer
the reader to the paper Eisenbud, Sturmfels (1996) for a thorough study.

If we allow trinomials, it is well known that we can represent any
polynomial system iterating the following process: let f = m1 + m2 +

42
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m3 +m4 be any quatrinomial in any number of variables. Then, we can
add two variables z1 , z2 to name partial sums of the monomials in f so
that

f = 0 ⇔ m1 + m2 − z1 = m3 + m4 − z2 = z1 + z2 = 0.

Also, if we allow the combination of binomials and linear forms, we
again recover all polynomial systems, as we describe in Corollary 2.1
and Proposition 2.4.

Binomial ideals are basic ingredients in the theory of toric varieties
Sturmfels (1996), in the study of semigroup algebras Delorme (1976),
Miller, Sturmfels (2005), in the homogenized version of hypergeometric
systems of partial differential equations Gelfand, Kapranov, Zelevinsky
(1989), Gelfand, Graev, Retakh (1992), Gelfand, Kapranov, Zelevin-
sky (1990), Adolphson (1994), Saito, Sturmfels, Takayama (2000), Dick-
enstein, Matusevich, Sadykov (2005), Dickenstein, Matusevich, Miller
(2006) and in the modeling of mass action kinetics dynamics Feinberg
(1979), Feinberg (1989), Horn (1974), Horn, Jackson (1972), Sontag
(2001), Gatermann (2001), Gatermann, Wolfrum (2005), Gunawardena
(2003), Craciun, Dickenstein, Shiu, Sturmfels (2007), Conradi, Flock-
erzi, Raisch, Stellin (2007), Adleman, Gopalkrishnan, Huang, Moisset,
Reishus (2008), in the homotopy continuation methods for polynomial
system solving Huber, Sturmfels (1995), Verschelde, Verlinden, Cools
(1994), and they also provide worst case complexity bounds Mayr, Meyer
(1982). Binomial ideals arise in other domains of applied mathematics
such as integer programming Thomas (1995), Conti, Traverso (1991),
and statistics Diaconis, Sturmfels (1998), Pachter, Sturmfels (2005),
Geiger, Meek, Sturmfels (2006), Drton, Sullivant, Sturmfels (2009).

The aim of this article is to highlight some basic facts about binomial
systems and to hint at the ubiquity and richness of their occurrence.
We also include a brief discussion of sparse discriminants, see Gelfand,
Kapranov, Zelevinsky (1994), (also called toric or A-discriminants), i.e.,
the equations of the duals of binomial (toric) varieties. They describe
those parameters in a sparse family of polynomials where singularities
occur and they also describe the singularities of hypergeometric differ-
ential systems, see Gelfand, Kapranov, Zelevinsky (1989), Adolphson
(1994).
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2.2 Basics about binomials

In this section we summarize five basic results about the structure of
the zeros of binomial ideals over the torus Tn = (k∗)n , that is, of zeros
in kn with all non-zero coordinates. These features are the core of all
applications of binomial ideals.

Clearly, any system of the form

yαj − yβj = 0, j = 1, . . . , r, (2.1)

admits the solution (1, . . . , 1) ∈ Tn . The next proposition shows that
this is the general shape of binomial systems which have a common root
in the torus.

We consider a general system of binomial equations

aj xαj + bj xβj = 0, j = 1, . . . , r, (2.2)

with aj , bj ∈ k, (aj , bj ) �= (0, 0) for all j.

Proposition 2.1 (First basic fact about binomials) A binomial
system as in (2.2) has a common solution c in the torus Tn if and only
if, up to the diagonal action of the torus Tn on kn by coordinatewise
multiplication, the system can be written with coefficients 1,−1. More
explicitly, given a common zero c ∈ Tn , in new coordinates yi = xi

ci
, i =

1, . . . , n, the system looks (up to multiplication by non-zero constants)
like

yαj − yβj = 0, j = 1, . . . , r.

Proof The proof is straightforward. We can assume that aj , bj ∈ k∗.
Then

ajx
αj + bjx

βj = aj c
αj yαj + bj c

βj yβj = κ(yαj − yβj ),

where κ := aj c
αj = −bj c

βj .

So, the coefficients of binomial systems with toric roots are not rele-
vant (as long as they are non-zero), and all the action is in the exponents.
The next question is then when a binomial system has a solution with
all non-zero coordinates. To make the statements more transparent, we
assume that k is an algebraically closed field, e.g., k = C, but one can
consider the case k = R under additional hypotheses (see Remark 2.1
below).
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Proposition 2.2 (Second basic fact about binomials) A binomial
system as in (2.2) has a solution c ∈ Tn if and only if aj , bj �= 0 for all
j, and for each linear relation

r∑
j=1

λj (αj − βj ) = 0, λj ∈ Z, (2.3)

it holds that
r∏

j=1

(
−bj

aj

)λj

= 1. (2.4)

Moreover, it is enough to check these conditions for a basis of the space
of relations.

Proof Given a common root c ∈ Tn , from the equalities ajx
αj +bjx

βj =
0, j = 1, . . . , r, we see that both aj , bj ∈ k∗ and cαj −βj = − bj

aj
for all

j. It is clear that any linear relation (2.3) among the exponents gets
translated into a multiplicative relation among the quantities − bj

aj
.

Reciprocally, assume that aj , bj �= 0 for all j and that for each linear
relation (2.3), the corresponding equality (2.4) holds. Assume {α1 −
β1 , . . . , αs −βs}, s ≤ r, is a basis of the linear space generated by all the
vectors αj − βj . We claim that it is enough to see that the equations
aj xαj + bj xβ

j = 0, j = 1, . . . , s, have a common solution c ∈ Tn . If this
happens, take any � = s+1, . . . , r and write α� −β� =

∑s
j=1 λj (αj −βj ),

that is: (α� − β�) +
∑s

j=1(−λj )(αj − βj ) = 0. Then, we have that

cα� −β� =
s∏

j=1

(
cαj −βj

)λj =
s∏

j=1

(
− bj

aj

)λj

= − b�

a�
.

Now, consider the matrix A ∈ Zs×n with rows α1 −β1 , . . . αs −βs and
let S ∈ Zs×n be its Smith Normal form. Then, S is a diagonal matrix
with si,i |si+1,i+1 and all si,i �= 0 (given that A is a matrix of full rank s

by our assumption of linear independence), and there exist left and right
unimodular multipliers U ∈ Zs×s , V ∈ Zn×n such that A = USV . As
the matrices U, V are invertible over Z, they define invertible monomial
changes of coordinates in T s and Tn , respectively. It is clear that for
any choice of a vector κ of non-zero constants κ = (κ1 , . . . , κs), we can
solve (c′)S = κ (in obvious vector notation) by taking si,i-th roots. It
is enough to take κ = (− b1

a1
, . . . ,− bs

as
)U −1

and c = (c′)V −1
to get the

desired solution.
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Remark 2.1 The computation of the Smith Normal form A = USV of
an integer matrix A can be carried out using the polynomial algorithm
presented in Kannan, Bachem (1979), modified to work with rectangular
matrices in the way the authors suggest. The product of the diagonal
entries of S equals the greatest common divisor g of all maximal minors
of A. So, if g = 1 we do not need to require in Proposition 2.2 that k

is an algebraically closed field. It is also straightforward from the proof
that the statement of the proposition is valid for k = R if aj bj < 0 for
all j (so that − bj

aj
∈ R>0). Similar arguments apply to the following

results in this section.

In contrast with the simplicity of finding all roots in the torus of a
binomial system, we now show that any sparse polynomial system on
the torus Tn is equivalent either to a system of binomials and linear
forms or to a system of binomials in linear forms.

We consider a sparse polynomial system of r polynomials in n variables
with exponents m1 , . . . ,mN ∈ Nn and coefficients ai

j in k:

fi =
N∑

j=1

ai
jx

mj = 0, i = 1, . . . r. (2.5)

In fact, the same arguments in the rest of this section hold for integer
exponents in Zn , and it is convenient not to restrict our exponents to
the first orthant. The roots in the torus are unchanged if we divide by
the monomial m1 , and so one can assume that m1 = 0 if necessary.

Given an integer vector λ ∈ Zn , we denote by λ+ , λ− ∈ Zn the vectors
of positive and negative entries of λ, i.e.,

λ+
i = max{λi, 0}, i = 1, . . . , n, λ+ − λ− = λ.

We rephrase the first basic fact in terms of elimination of variables.

Proposition 2.3 (Third basic fact about binomials) Given y =
(y1 , . . . , yN ) ∈ TN , there exists x ∈ Tn such that y = (xm 1 , . . . , xmN ) if
and only if for any λ in the integer kernel I of the n×N -integer matrix
with columns m1 , . . . ,mN it holds that

yλ = 1, or yλ+ − yλ− = 0. (2.6)

Moreover, it is enough to check this condition for all λ in a basis of I.

Proof We can write the equality y = (xm 1 , . . . , xmN ) as the following
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systems of binomial equations

xm 1 − y1 = · · · = xmN − yN .

Then, it has the form (2.2) with r = N , aj = 1, bj = −yj , αj = mj , and
βj = 0 for all j. The result is just a particular case of Proposition 2.2

Corollary 2.1 (Fourth basic fact about binomials) System (2.5) is
equivalent over Tn (with variables (x1 , . . . , xn )) to the following system
of linear forms and binomials over TN (with variables (y1 , . . . , yN )):

�j =
N∑

i=1

ai
j yj = 0, i = 1, . . . r, yλ+ − yλ− = 0, λ ∈ I, (2.7)

where I denotes, as before, the integer kernel of the n×N -integer matrix
M with columns m1 , . . . ,mN .

Remark 2.2 Corollary 2.1 (over Rn ) appears as Proposition 1 of Sec-
tion 4 in Blum, Shub, Smale (1989) for dense polynomials f1 , . . . , fr of
degree d, that is N =

(
n+d

d

)
and m1 , . . . ,mN are all the integer points

in the d-th dilate of the unit simplex in Rn . In this case, one can take
all binomials yλ+ − yλ− of degree 2 (corresponding to the identities
xmi +mj = xmi xmj ). This property is used by Blum, Shub and Smale
in the Main Theorem in Section 6 of that paper, where they give the
analogue of Cook’s Theorem for R by showing that the 4-feasibility prob-
lem over R is NP-complete over R. But in the sparse case, binomials
of higher degree are unavoidable, so we need to add new variables yj in
order to reduce their degree to 2.

We now introduce Gale Duality for polynomial systems. This mecha-
nism is present, for instance, in the proof of the toric residue mirror con-
jecture in Szenes, Vergne (2004) and it has been exploited to get bounds
for the number of positive real solutions (or solutions in the real torus
(R∗)n ) in terms of the number N of monomials in Bihan, Sottile (2007),
Bihan, Sottile (2008). The study of affine solutions (i.e., solutions which
can have zero coordinates) poses greater technical difficulties.

In a nutshell, Gale duality amounts to the following: the solutions
of system (2.7) can be thought of as either the solutions of the system
given by the restriction of the linear forms �j in (2.7) to the zero set of
the binomial equations, i.e., to the original system (2.5) as asserted in
Corollary 2.1, or as the solutions of restriction of the binomials in (2.7)



48 Alicia Dickenstein

to the linear space with equations �1 = · · · = �r = 0, i.e., the system of
binomials in linear forms described in (2.9) below.

To state this equivalence explicitly, we call K the kernel of the n×N

matrix (ai
j ) of the coefficients of the input system (2.5) and we form a

matrix V whose columns give a basis of K. Denote by b1 , . . . , bs the row
vectors of V . Then, any N -tuple y ∈ K is of the form

y = (〈b1 , t〉, . . . , 〈bs , t〉), (2.8)

where t = (t1 , . . . , tdim K ) and 〈bi , t〉 =
∑

j bij tj . Recall that I denotes
the integer kernel (or nullspace) of the matrix with columns mj , that is
λ ∈ Zn lies in I if and only if

∑
j λjmj = 0.

Proposition 2.4 (Fifth basic result about binomials: Gale du-
ality) There exist x ∈ Tn satisfying system (2.5) if and only if there
exist t ∈ kN in the complement of the hyperplane arrangement defined
by {〈bi, t〉 = 0} for i = 1, . . . , s, satisfying the following system:

gλ(t) =
∏

λi >0

〈bi, t〉λ
+
i −

∏
λi <0

〈bi, t〉λ
−
i = 0, λ ∈ I, (2.9)

or, equivalently, if (2.9) is satisfied for the vectors λ in the columns of V .

Proof By Corollary 2.1, we know that there exists a solution x ∈ Tn of
(2.5) if and only if there exists a solution y ∈ TN of (2.7). Observe that
such a vector y lies in K ∩TN . These vectors are precisely parametrized
as in (2.8) by vectors t ∈ kN in the complement of the hyperplane
arrangement defined by {〈bi , t〉 = 0} for i = 1, . . . , s, and the result
follows.

Observe that the torus Tn is equal to the complement in kn of the
hyperplane arrangement defined by the coordinate hyperplanes {xi =
0}, i = 1, . . . , n. As we have already remarked, if zero coordinates of
the solutions are allowed, the difficulty of the problem increases, both at
the theoretical and computational level. We illustrate this in the next
section with the simplest possible case. We refer to Sturmfels (1997) for
the combinatorial issues that come into play to choose a finite system
of generators in Proposition 2.2 if one allows zero coordinates. Also,
we refer to Dickenstein, Sturmfels (2002), Ojeda, Piedra (2000), and
Dickenstein, Matusevich, Miller (2008) for the primary decomposition
of general binomial ideals.
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2.3 Counting solutions to binomial systems

In this section we consider a square system of n binomial equations in
n variables, that is, a sparse system of the form

aj xαj + bj xβj = 0, j = 1, . . . , n, (2.10)

with aj , bj in an algebraically closed field k, αj , βj ∈ Nn . We highlight
some results from Cattani, Dickenstein (2007), which show the algebraic
and combinatorial difficulty of finding all affine roots and not just all
toric roots, and we refer the reader to that paper for further details.
Given a vector v ∈ kn , its support is the set of indices supp(v) :=
elm{i ∈ {1, . . . , n} : vi �= 0}. Thus, the torus Tn can be described as
those vectors with empty support and if we consider the torus action on
kn by coordinatewise multiplication

(t1 , . . . , tn ) · (x1 , . . . , xn ) := (t1x1 , . . . , tnxn ), t ∈ Tn , x ∈ kn ,

two vectors v, v′ ∈ kn lie in the same torus orbit if and only if supp(v) =
supp(v′).

Call M ∈ Zn×n the matrix with rows α1 − β1 , . . . , αn − βn and set
δ := |det(M)|. When δ �= 0, the number of solutions in the torus
Tn equals δ > 0, independently of the value of the coefficients, as can
be extracted from the proof of Proposition 2.2. This is a very special
case of the well known bound of Bernstein-Kouchnirenko-Khovanskii,
see Gelfand, Kapranov, Zelevinsky (1994).

When δ = 0, it is possible to decide in polynomial time (in the size
of the sparse input) whether for generic coefficients the system has no
solutions in the torus. This is shown in Cattani, Dickenstein (2007), as
an application of the basic results in Section 2.2. Moreover, it is proved
in Theorem 2.12 of that paper that it is possible to decide in polynomial
time if system (2.10) has a finite number of solutions in kn . Note that
in principle, the number of possible supports of a solution vector is 2n .

We now show, with similar arguments, that it is possible to determine
in polynomial time whether the zero set of the system in affine space
kn is empty or not (assuming the coefficients belong to a computable
field). I thank J. M. Rojas for posing this question. More generally, it is
possible to check in polynomial time if the zero set V in affine space kn

of any binomial system (2.2), not necessarily square, is empty or not.

Proposition 2.5 The following algorithm decides whether V = ∅:
Input: ajx

αj + bjx
βj , j = 1, . . . , r; aj , bj ∈ k, not both 0.
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Output: NO (there are no common zeros) or YES (there is at least a
common zero).

Algorithm:

STEP 1 Identify the subset I of all indices i for which the xi coordinate
of any solution to the input system of binomials is necessarily
non-zero. This is done inductively as follows: Set I0 = ∅ and,
for � ≥ 1, let I� = I

(1)
� ∪ I

(2)
� , where

I
(1)
� :=

⋃
{supp(αj ) : aj , bj �= 0 and supp(βj ) ⊂ I�−1},

I
(2)
� :=

⋃
{supp(βj ) : aj , bj �= 0 and supp(αj ) ⊂ I�−1}.

Then I =
⋃

� I� .
STEP 2 Identify the equations containing only the variables in I. Assume

that these are the first r′ equations. If one of these equations is
a monomial (i.e., aj = 0 or bj = 0), output NO. Otherwise, go
to the next step.

STEP 3 Compute a basis λ(1) , . . . , λ(s) of the kernel of the |I| × r′ matrix
with jth column given by the Ith coordinates of (αj − βj ) for
j = 1, . . . , r′ (that is, take the ith coordinates with i in I; note
that the other coordinates of these vectors are 0).

STEP 4 Verify if ∏
j=1,...,r ′

(−bj /aj )λ
( i )
j = 1

for all i = 1, . . . , s. If the answer is no, answer NO. If the answer
is yes, answer YES: it is possible to construct a solution setting
xi = 0 for all i not in I, by Proposition 2.2.

We come back to a square system of binomials (2.10) with a finite num-
ber of zeros. Techniques from commmutative algebra allow us to reduce
any such system to a normal form, via the process known as parametric
reduction. Theorem 3.15 in Cattani, Dickenstein (2007) gives a precise
root counting (with multiplicity) and shows that for “generic” exponents
the number of solutions can be computed in polynomial time. Similar
techniques allow to count the number of roots without multiplicity. As
we mentioned before, it is possible to determine over an algebraically
closed field the number of solutions in the torus by a determinant com-
putation (these roots are always simple, see Eisenbud, Sturmfels (1996)).
Also, the number of isolated affine solutions is bounded by the Bezout
bound of the product of the degrees of the input polynomials. However,
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if we allow M to be any integer matrix (even if det(M) �= 0) count-
ing the number of solutions to a square binomial system with or with-
out multiplicity is #P-complete by Cattani, Dickenstein (Theorem 4.3,
2007) by relating the problem of counting zeros of binomial systems to
the known #P-complete problem of counting the independent sets in a
bipartite graph, Provan, Ball (1983). We recall that the notion of #P-
completeness is the enumerative analog of NP-completeness, see Valiant
(1979).

Indeed, given any bipartite graph G = (V,E), V = V1
∐

V2 , with
E ∩ (V1 × V1) = ∅, E ∩ (V2 × V2) = ∅, V = {1, . . . , n}, consider the
following n binomials in n variables

pi = xi − x2
i , i ∈ V1 ; pj = xj −

 ∏
(i,j )∈E

xi

x2
j , j ∈ V2 .

The number of zeros of this system is finite. Moreover, V (p1 , . . . , pn ) ⊂
{0, 1}n and its cardinal equals the number of independent sets of G,
i.e., subsets S of V such that (i, j) �∈ E for all i, j ∈ S. All roots are
simple and determined by their supports, so that the main complexity is
based on deciding which are the possible zero and non-zero coordinates
of the solutions. In some sense, the richness of binomial systems lies
in their structure and is “orthogonal” to numerical analysis, i.e., to the
behaviour of the system in terms of the coefficients.

Associating polynomials to graphs, in particular in relation with the
search for independent (also called stable) sets is not new, see for in-
stance the interesting paper Lovász (1994).

2.4 Toric varieties and discriminants

Given finite sets A1 , . . . , An ⊂ Zn and sparse polynomials f1 , . . . , fn

with these supports

fi(ai, x) =
∑

α∈Ai

ai
α xα ,

Gelfand, Kapranov, Zelevinsky (1994) proved that there exists (for “gen-
eral” configurations) an irreducible integer polynomial ∆A (defined up
to sign) in the vector of coefficients a = (a1 , . . . ,an) ∈ CN of the
polynomials, which vanishes whenever there exists a zero x ∈ Tn of
f1(a1 , x), . . . , fn (an , x) which is not simple (that is, where the Jacobian
determinant Jf (a, x) also vanishes). So, ∆A = 0 describes the closure
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of the variety of ill-posed systems, and the size of the distance of a co-
efficient vector to it is basic for numerical continuation and numerical
stability, see Demmel (1987), Shub, Smale (1993), Malajovich, Rojas
(2004).

The homogeneous polynomial ∆A is called the mixed discriminant
associated to the support sets A1 , . . . , An . Computing ∆A is an elim-
ination problem. Denote by Z the incidence variety of tuples (x, t,a),
x, t ∈ Tn such that

f1(a1 , x) = · · · = fn (an , x) = 0, (2.11)

and moreover ∑
i

∂

∂xj
(fi(ai, x))ti = 0, j = 1, . . . , n. (2.12)

Note that the existence of a non-trivial solution to equations (2.12) is
equivalent to the vanishing of the Jacobian determinant Jf (a, x).

The discriminant variety {∆A (a) = 0} is the closure of the first pro-
jection π1 in the following correspondence:

Z
π2

������������

π1��������������

coefficient space (x, t) space

(2.13)

But the projection π2 is much easier to understand, since its fibers
are linear spaces in the variables a. This allows us to find a ratio-
nal parametrization of the discriminant variety, as expressed in Propo-
sition 2.6 below.

When n = 1 we recover the classical notion of discriminant of a uni-
variate polynomial of fixed degree. Another important special case cor-
responds to the case when Ai = di∆n ∩ Zn are the lattice points of a
dilate of the standard n-simplex ∆n , i.e., fi is just a generic polynomial
of degree di .

Example 2.1 (Wilkinson polynomial) Consider the Wilkinson poly-
nomial

W20 =
20∏

i=1

(x + i) =
20∑

j=0

cjx
j ,

which is well known for its numerical instability, see Wilkinson (1994).
For instance, it clearly has 20 real roots, but the polynomial W20(x) +
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10−9x19 – obtained by adding an apparently small perturbation in the
coefficient of x19 – has only 12 real roots and 4 pairs of complex roots,
which do not “seem” to have small imaginary part. For instance, one of
these pairs is approximately equal to −16.57173899±0.8833156071i. On
the other hand, if we subtract 10−9x19 from W20 we get a polynomial
with 14 real zeros.

We think that this unstable behaviour could be explained by the fact
that the vector of coefficients w = (20!, . . . , 210, 1) of W20 is very close
not only to the variety ∆A = 0 of ill-posed polynomials, but also very
close to a singular point of the discriminant variety ∆A = 0, where
A = {0, 1, . . . , 20}. This variety is a hypersurface in an affine space of
dimension 21, and its singularities have codimension one, i.e., they define
a 19-dimensional variety. We have experimented with the following 2-
dimensional family of polynomials of degree 20

W (a, b, x) := W20(x) + ax19 + bx18 .

The corresponding discriminant D(a, b) (which is a specialization of ∆A )
defines a singular curve traced inside the discriminant locus. The singu-
larities of this curve D(a, b) = 0 are close to the point a = b = 0, i.e., to
the vector of coefficients w of the Wilkinson polynomial.

Figure 2.1 features sample points of D(a, b) = 0 inside a small box
around the origin, which is the point lying in the intersection of the two
coordinate arrows. The marks near the ends of these arrows indicate
distance 10−9 from (0, 0) and we see several branches of D(a, b) = 0 very
close to the origin: 4 to the right (which are crossed when moving a from
0 to 10−9 , causing a drop of 8 in the number of real roots), another 3
close to the left (which cause a drop of 6 in the number of real roots when
we decrease a), plus two other branches still more close to the left. These
drawings were done by Bernard Mourrain using the subdivision solver of
Mathemagix, see Mathemagix (2008), by means of the package subdivix
developed by Elias Tsigaridas and Bernard Mourrain, and visualized
with the software Axel developed by Julien Wintz, see Axel Modeler
(2008). As the figure suggests, once we increment the parameter a from
0 to 2 · 10−10 , we already get a polynomial with only 16 = 20− 2 · 2 real
roots (as we cross 2 of the branches). Also, it suggests that there are
intersections of these branches close to (0, 0), thus giving singularities of
D(a, b) = 0 near the origin.

Considering the distance not just to the variety of ill posed problems
∆A = 0 but also to its singular locus would correspond in the case of
conditioning of square m×m matrices in linear algebra, to consider not



54 Alicia Dickenstein

Fig. 2.1. Branches of D(a, b) = 0 close to the origin

only the smallest and greatest singular values (or the distance to matrices
of rank at most m−1) but also the behaviour of the intermediate ones (or
the distance to matrices of different ranks strictly smaller than m − 1).

Mixed discriminants are a particular case of general sparse discrim-
inant (also known as A-discriminants, Gelfand, Kapranov, Zelevinsky
(1994)) and define the dual variety of the toric (binomial) variety asso-
ciated to the given supports. Given an integer matrix A ∈ Zd×N , we
can associate to it a monomial rational map

ϕA (t) = (ta1 , . . . , taN ), t ∈ Td,

where a1 , . . . , aN ∈ Zd denote the column vectors of A. We can compose
this map with the projection p : CN \{0} → PN −1(C) and consider
the variety XA defined as the closure of the image of p ◦ ϕA . This is
the projective toric variety associated to A. This variety is cut out by
binomials, as a generalization of Proposition 2.3. Note however that the
number of equations needed to describe the closure of the image, that is,
the number of generators of the toric ideal IXA

of polynomials vanishing
on XA :

〈xu−xv : for all u, v ∈ Nn such that Au = Av and
∑

i

ui =
∑

i

vi〉,

can be much larger than the dimension of kerZ(A), as we remarked at
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the end of Section 2.2. Moreover, any irreducible projective variety cut
out by binomials is of this form, Sturmfels (1996).

The associated dual variety X∗
A of XA consists of the closure of those

hyperplanes in the dual projective space which intersect XA non-trans-
versally at a regular point. Independently of the dimension of XA , the
expected codimension of X∗

A is one, i.e., X∗
A is in general a hypersurface.

When this is the case, it has – up to sign – a unique defining equation
with integer coefficients and content one: this equation is the sparse or
A-discriminant ∆A associated to A.

In more down to earth terms, consider the family of generic polyno-
mials with exponents in A:

fA (a, x) =
∑
α∈A

aαxα .

Then, X∗
A is the closure of those vectors of coefficients a for which the

hypersurface {x ∈ Tn : fA (a, x) = 0} is not smooth, that is, for which
there exists x ∈ Tn with

fA (a, x) =
∂

∂x1
(fA (a, x)) = · · · =

∂

∂xd
(fA (a, x)) = 0.

The exact conditions under which X∗
A is a hypersurface, that is, under

which the A-discriminant is non-trivial (by convention, it is set equal to
1 when codim(X∗

A ) > 1) are quite delicate and completely detailed only
in certain cases (see Dickenstein, Feichtner, Sturmfels (2007), Bourel,
Dickenstein, Rittatore (2008) and references therein). These conditions
are certainly satisfied by any “general” configuration.

The precise description of the singular locus of the discriminant variety
is only known in the univariate case, see Chipalkatti, D’Andrea (2007), in
the case of hyperdeterminants, see Weyman, Zelevinsky (1996), and for
particular discriminants that occur in configuration spaces and classical
hypergeometric differential equations.

The mixed discriminant associated with the supports A1 , . . . , An ⊂ Zn

corresponds – under some general assumptions – to the A-discriminant
of the Cayley configuration A ⊂ Z2n×N defined by

A = C(A1 , . . . , An ) = e1 × A1 ∪ · · · ∪ en × An.

As usual, {e1 , . . . , en} denotes the canonical basis in Zn . More gener-
ally, given s finite subsets A1 , . . . , As of Zn , let f1(a, x), . . . , fs(a, x) be
generic polynomials with these supports. The associated Cayley config-
uration

A = C(A1 , . . . , As) = e1 × A1 ∪ · · · ∪ es × As
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lies in Z(s+n)×N . When 1 ≤ s ≤ n, the corresponding A-discriminant
vanishes at those vectors of coefficients a for which the variety

{x ∈ Tn : f1(a, x) = · · · = fs(a, x) = 0}

has a point where the rank of the Jacobian matrix of f1 , . . . , fs is smaller
than s. When s = n + 1 and the family of supports is essential, Sturm-
fels (1994), the discriminant of a Cayley configuration C(A1 , . . . , An+1)
is precisely the (A1 , . . . , An+1)-resultant of f1 , . . . , fn+1. That is, it
vanishes whenever the overdetermined system of sparse polynomials
f1(a, x) = · · · = fn+1(a, x) = 0 has a toric root. Sparse resultants
are thus special cases of sparse discriminants. When s > n + 1, the
discriminant variety X∗

A is not a hypersurface and then ∆A is trivial.
As we remarked above, it is easy to understand the projection π2 in

(2.13). In other words, we can easily describe for each fixed x ∈ Tn all
the vectors of coefficients a which satisfy (2.11) and (2.12) by solving
a linear system. This gives the following result, which is a restatement
of Proposition 4.1 in Dickenstein, Feichtner, Sturmfels (2007) (see also
Kapranov (1991, Theorem 2.1)).

Proposition 2.6 (Horn-Kapranov parametrization) Assume A ∈
Zd×N and call as before a1 , . . . , aN its column vectors. The map βA

which sends a point (u, t) with u ∈ KerC(A) and t ∈ Td , to the com-
ponentwise product (u1t

a1 , . . . , uN taN ), rationally parametrizes the dis-
criminant variety X∗

A , i.e., X∗
A coincides with the closure of the image

of βA . Moreover, we can parametrize the linear space KerC(A) and com-
pose βA with this map.

For any fixed value of t0 ∈ Tn and any u in the kernel of A, the vectors
of coefficients (u1t

a1
0 , . . . , uN taN

0 ) correspond to all the systems which
have a singular intersection at the point (t0)−1 = ((t0)−1

1 , . . . , (t0)−1
d ).

Example 2.2 Consider the matrix

A :=


1 1 1 0 0 0
0 0 0 1 1 1
6 0 0 0 3 1
0 3 1 6 0 0

 .

A is the Cayley matrix associated with the 2 planar configurations A1 =
{(6, 0), (0, 3), (0, 1)}, and A2 = {(0, 6), (3, 0), (1, 0)}. The A-discriminant
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∆A (y1 , . . . , y6) is the mixed discriminant of the family of polynomials{
h1(y; t, s) := y1t

6 + y2s
3 + y3s

1

h2(y; t, s) := y4s
6 + y5t

3 + y6t
1 .

∆A (y) = 0 whenever there exists a common zero (s, t) ∈ (k∗)2 which is
not simple. The Horn-Kapranov parametrization of X∗

A = (∆A (y) = 0)
is given by (λ1 , λ2 ∈ C, t1 , t2 , t, s ∈ C∗):

y1 = 2λ1 t1 t6 , y2 = (λ1 − 6λ2) t1 s3 ,

y3 = (−3λ1 + 6λ2) t1 s, y4 = 2λ2 t2 s6 ,

y5 = (−6λ1 + λ2) t2 t3 , y6 = (6λ1 − 3λ2) t2 t.

Setting t1 = t2 = t = s = 1, we get a parametrization of the kernel of A.
The specialization ∆A (1, a,−1, 1, b,−1) of the polynomial ∆A (y) to the
family of bivariate polynomials h1(a, b; t, s) = t6 +as3 −s, h2(a, b; t, s) =
s6 + bt3 − t with two parameters (a, b), equals

82754024941868680778822139064668229594467072 a47b33+

24519711093887016527058411574716512472434688 a46b39−

24519711093887016527058411574716512472434688 b46a39+

236627403090264575474785219707184968001345670463360 a28b7+

17631004810327637966335552676449435712814331054687500 a4b11+

53 additional monomial terms of comparable size. It is a polynomial of
degree 90 with 58 monomials and big integer coefficients.

As the previous example shows, A-discriminants are in general compli-
cated integer polynomials with huge coefficients. They carry fascinating
combinatorial information, which was basically described in Gelfand,
Kapranov, Zelevinsky (1994). In principle, one can compute ∆A by
standard methods in elimination, but in practice we reach the limit of
current computations very easily. Discriminants of univariate polynomi-
als, as well as discriminants of codimension two configurations (via Gale
duality) can be computed with Sylvester determinants, see Dickenstein,
Sturmfels (2002). Note that expressing the discriminant as the determi-
nant of a matrix gives a good way of computing its value for any choice
of numerical constants, by computing a numerical determinant. That
it, one can avoid the computation of the costly symbolic determinant.
Discriminants can also be computed as the main factor of the determi-
nant of a corresponding Cayley-Koszul complex, see Gelfand, Kapranov,
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Zelevinsky (1994). Again, it is computationally complicated to “disen-
tangle” this information. The A-discriminant is in general the main
factor in the greatest common divisor of the minors of a rectangular
matrix.

A main question in the area is to represent in general the vanishing of
the A-discriminant as the rank drop of a matrix and to use this informa-
tion to estimate the distance of a vector of coefficients to the discriminant
locus and to its singular part. Instead, we can try to get a first combina-
torial approximation, which can nonetheless give us information about
discrete invariants such as dimension and degree (and asymptotics), by
computing its Newton polytope N(∆A ) or its tropicalization τ(X∗

A ).
Recall that the Newton polytope N(f) of a non-zero polynomial f is

the polytope with integer vertices defined as the convex hull of the expo-
nents occurring in f with non-zero coefficients. Equivalent information
is encoded in the tropicalization of f (or of the hypersurface {f = 0}),
which is a pure dimensional polyhedral fan dual to N(f) minus its ver-
tices, that is, the support of the tropicalization is the codimension one
skeleton of the normal fan of N(f). We now give the general definitions.

Given a weight w ∈ Rn and a non-zero polynomial f =
∑

c∈C γcx
c ,

γc �= 0, C ⊂ Zn (so that N(f) is the convex hull of C), we define the
initial polynomial of f with respect to w as the subsum of monomials in
f which lie in the face of N(f) where 〈w, ·〉 is minimized:

inw f =
∑

w ·c min

γcx
c .

Given an algebraic variety Y in n-dimensional space, we denote by IY

the ideal of all the polynomials vanishing on Y . Its initial ideal with
respect to w is defined as the ideal generated by the initial polynomials
in IY :

inw (IY ) = 〈inw f : f �= 0 ∈ IY 〉.

The tropicalization τ(Y ) of a variety Y is (as a set)

τ(Y ) = {w ∈ Rn : inw (IY ) does not contain a monomial } .

The tropicalization τ(Y ) is a pure dimensional polyhedral fan of the
same dimension as Y , see Bieri, Groves (1984), and it can also be de-
fined via valuations as in Einsiedler, Kapranov, Lind (2006). For the
computation of the tropicalization of general varieties we refer to Jensen
(2008). In order to recover more sensible information (for instance, to
recover the exact Newton polytope in the hypersurface case), we need
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to decorate this set with intersection theoretic information, that is with
a multiplicity attached to each of the cones in the polyhedral fan τ(Y ),
as developed in Sturmfels, Tevelev (2008).

The main theorems in Dickenstein, Feichtner, Sturmfels (2007) al-
low us to compute the tropicalization of the discriminantal varieties.
Theorem 1.1 in that paper asserts that the tropicalization of the A-
discriminant is the Minkowski sum of the tropicalization B(A) of the
kernel of A (called the co-Bergman fan of A) and the (classical) row
space of the d × N -matrix A. This is the tropical version of the Horn-
Kapranov parametrization in Proposition 2.6. The tropical linear space
B(A) can be computed as follows. Consider the geometric lattice L(A)
whose elements are the sets of zero-entries of the vectors in the kernel,
ordered by inclusion, and denote by C(A) the set of proper maximal
chains in L(A). Represent these chains as (N−d−1)-element subsets of
{0, 1}N . The tropicalization of the kernel of A equals

B(A) := τ(kernel(A)) =
⋃

σ∈C(A)

R≥0 σ .

This polyhedral complex only depends on the pattern of zero and non-
zero minors of A, see Sturmfels (2002), and it is easy to describe ex-
plicitly when the matrix A is uniform, i.e., when all its maximal minors
are non-zero. This is not the case for Cayley matrices when s > 1, but
one can adapt the hypothesis of uniformity to get a general description
when all minors which could be non-zero are in fact non-zero.

Theorem 1.2 in Dickenstein, Feichtner, Sturmfels (2007) allows to re-
cover the extreme monomials of the A-discriminant, from which we can
read its degree. The exponent of xi in the initial monomial inw (∆A )
equals the number of intersection points of the halfray

w + R>0ei

with the tropical discriminant τ(X∗
A ), counting multiplicities:

deg xi

(
inw (∆A )

)
=

∑
σ∈B(kerA)i , w

∣∣ det
(
AT , σ1 , . . . , σN −d−1 , ei

) ∣∣ .
where B(kerA)i,w is the subset of C(A) consisting of all chains such
that the row space of the matrix A has non-empty intersection with the
cone R>0

{
σ1 , . . . , σN −d−1 ,−ei,−w

}
.
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w

Fig. 2.2. Rays from w intersecting the tropical discriminant

This result provides an algorithm, which we implemented, to com-
pute the degree of the A-discriminant (while the previous result can be
turned into an algorithm to compute its dimension). In the smooth
case, there are intrinsic formulas for the degree of the dual variety by
Katz, Kleiman and Holme, see Gelfand, Kapranov, Zelevinsky (1994),
and recently Matsui, Takeuchi (2008) addressed the singular case.

We illustrate these theorems in the simplest meaningful case.

Example 2.3 (The discriminant of a cubic polynomial in 1 vari-
able) Consider the 2 × 4 integer matrix

A :=
(

1 1 1 1
0 1 2 3

)
.

Its associated toric variety XA is known as the twisted cubic. A generic
polynomial with exponents in A, in variables (s, t), is of the form:

fA (x; s, t) = s (x1t
0 + x2t

1 + x3t
2 + x4t

3).

The associated A-discriminant ∆A coincides with the discriminant of a
generic polynomial fA (x; 1, t) of degree 3 in one variable t, which is in
this case easy to compute:

∆A = 27x2
1x

2
4 + 4x1x

3
3 + 4x3

2x4 − x2
2x

2
3 − 18x1x2x3x4 .

The Newton polytope N(∆A ) is the convex hull of the exponent vectors
α1 = (2, 0, 0, 2), α2 = (1, 0, 3, 0), α3 = (0, 3, 0, 1), α4 = (0, 2, 2, 0), α5 =
(1, 1, 1, 1), in R4 . Note however that the discriminant has two homo-
geneities read in the rows of the matrix A: the linear functions

〈(1, 1, 1, 1), αi〉, 〈(0, 1, 2, 3), αi〉

take the same values (4 and 6, respectively) for any i = 1, . . . , 5. So,
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w

w

w

w

Fig. 2.3. Newton polygon, tropicalization and extreme monomials of the dis-
criminant of a degree 3 polynomial: x3

2x4 , x2
2x

2
3 , x1x

3
3 , x

2
1x

2
4 , enumerated in

counterclockwise order starting at the left upper vertex

N(∆A ) is a polygon lying in a two dimensional plane in R4 . It is straight-
forward to check that α1 , . . . , α4 are vertices and α5 is an interior point.

We want to explain how the previous theorems allow us to predict
the monomials in ∆A , even if we could not compute them (as hap-
pens in the general case). We can check, for instance, that the vector
(−1,−1,−1, 0) = (0, 0, 0, 1)+(−1,−1,−1,−1) lies in the tropicalization
τ({∆A = 0}) = τ(∆A ) because in(−1,−1,−1,0)(∆A ) = 4x1x

3
3 − x2

2x
2
3 is

not a monomial. Theorem 1.1 allows to compute the tropicalization

τ(∆A ) =
(
∪4

i=1R≥0ei

)
+ 〈(1, 1, 1, 1), (0, 1, 2, 3)〉,

(and all the multiplicities are equal to 1). To visualize it in Figure 2.3, we
mod out by the row space of A to obtain a two-dimensional representa-
tion. We choose a basis {(1,−2, 1, 0), (0, 1,−2, 1)} of the kernel of A and
we project π : τ(∆A ) → R2 , so that b1 := π(e1) = (1, 0), b2 := π(e2) =
(−2, 1), b3 := π(e3) = (1,−2), b4 := π(e4) = (0, 1), and the image of the
tropicalization is the union of the four positive rays generated by these
vectors. To compute a monomial in ∆A we pick a point w �∈ π(τ(∆A )),
for instance a point in the interior of the positive cone C generated by
b2 and b3 . We now “place” the projection π(τ(∆A ))at w and we see
which rays emanating from there intersect π(τ(∆A )). The intersections
are given by the point (w + R≥0b1) ∩ R≥0b3 , with |det(b1 , b3)| = 2 and
by the point (w +R≥0b4)∩R≥0b2 , with |det(b2 , b4)| = 2. Therefore, the
vertex of N(∆A ) dual to C is the point (2, 0, 0, 2).
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Fig. 2.4. Left: ∆4 = 0, Right: ∆4 = 0, 4x3
2 + 27x2

1 = 0, 4x2
1 − 16x2 = 0

Example 2.4 (The discriminant of a quartic equation) Figure 2.4
shows, again in the simplest meaningful example, how the initial poly-
nomials with respect to the weights in the tropicalization provide good
asymptotic approximations. In order to be able to make a planar draw-
ing, we consider the specialized family of polynomials t4 +x2t

2 +x1t+1,
depending on two parameters (x1 , x2). The corresponding discriminant
equals

∆4 = 4x3
2x

2
1 + 27x4

1 − 16x4
2 + 128x2

2 − 144x2x
2
1 − 256.

The weights w1 = (−3,−2) and w2 = (−1, 2) lie in the tropicaliza-
tion τ(∆4) and the corresponding initial polynomials equal inw 1 (∆4) =
x2

1(4x3
2 +27x2

1), inw 2 (∆4) = x3
2(4x2

1 −16x2). For (x1 , x2) outside the ball
of radius 5, the zero sets of these initial polynomials give good approx-
imations of the discriminant locus ∆4 = 0. This qualitative behaviour
is nicely explained in the general case in more abstract terms in Kho-
vanskii (1988), Tevelev (2007). It would be interesting to get accurate
quantitative formulations.

Another application of mixed discriminants is the determination of
real roots. As we mentioned in Example 2.1, the number of real roots of
real polynomials is constant when the coefficients vary on each connected
component of the complement of the zeros of the real mixed discriminant,
given that for the number of real roots to increase, two complex roots
should merge.

Example 2.5 (Example 2.2 revisited) The two parameter family of
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Fig. 2.5. Values of (a, b) in the dark region give 5 real roots

real bivariate trinomials

h1(a, b; t, s) = t6 + a s3 − s

h2(a, b; t, s) = s6 + b t3 − t

gives a simple family of bivariate trinomials which have the maximum
possible number 5 (Li, Rojas, Wang (2003)) of real roots for a = b = 44

31
(Dickenstein, Rojas, Rusek, Shih (2007)). In fact, the area of the set of
points (a, b) ∈ R2 such that the system has 5 positive real simple roots is
smaller than 5.701× 10−7 . An implicit plot of ∆A (1, a,−a, 1, b,−1) = 0
has poor quality, but instead we can draw it efficiently using the de-
homogenized version of the Horn-Kapranov parametrization in Proposi-
tion 2.6. Figure 2.5 shows a sequence of 4 plots, drawn on a logarithmic
scale and successively magnified up to a factor of about 1700, of the
real part of the discriminant variety ∆A (1, a,−1, 1, b,−1) = 0. The re-
cent work Moroz, Rouillier (2008) explores generalizations of this result.
Moreover, we get in Dickenstein, Rojas, Rusek, Shih (2007) an explicit
good upper bound on the number of chambers of the complement of the
real points in a dehomogenized A-discriminant (not just a mixed dis-
criminant) for general configurations A of codimension two, i.e., n + 3
general lattice points in Zn . This number is smaller than 26

5 (n + 4)6,
which is independent of the coordinates of A.
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Abstract

Subdivision schemes are efficient computational methods for the design,
representation and approximation of 2D and 3D curves, and of surfaces
of arbitrary topology in 3D. Such schemes generate curves/surfaces from
discrete data by repeated refinements. While these methods are simple
to implement, their analysis is rather complicated.

The first part of the paper presents the “classical” case of linear, sta-
tionary subdivision schemes refining control points. It reviews univari-
ate schemes generating curves and their analysis. Several well-known
schemes are discussed.

The second part of the paper presents three types of nonlinear subdivi-
sion schemes, which depend on the geometry of the data, and which are
extensions of univariate linear schemes. The first two types are schemes
refining control points and generating curves. The last is a scheme re-
fining curves in a geometry-dependent way, and generating surfaces.

3.1 Introduction

Subdivision schemes are efficient computational tools for the generation
of functions/curves/surfaces from discrete data by repeated refinements.
They are used in geometric modeling for the design, representation and
approximation of curves and of surfaces of arbitrary topology. A linear
stationary scheme uses the same linear refinement rules at each loca-
tion and at each refinement level. The refinement rules depend on a
finite number of mask coefficients. Therefore, such schemes are easy to
implement, but their analysis is rather complicated.

The first subdivision schemes were devised by G. de Rahm (1956)

68
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for the generation of functions with a first derivative everywhere and a
second derivative nowhere. In fact, in most cases, the limits generated
by subdivision schemes are convolutions of a smooth function with a
fractal one.

This paper consists of two parts. The first part is a review of “clas-
sical” subdivision schemes, namely linear, stationary schemes refining
control points. The second part considers several constructions of non-
linear schemes, taking into account the geometry of the refined objects.
The nonlinear schemes are all extensions of “good” linear univariate
schemes.

In the first part we review only linear univariate subdivision schemes
(schemes generating curves from initial points). Although the main ap-
plication of subdivision schemes is in generating surfaces, we limit the
presentation here to these schemes. The main reasons for this choice
are two. The theory of univariate schemes is much more complete and
easier to present, and it contains most of the aspects of the theory of
schemes generating surfaces. The understanding of this theory is a first
essential step towards the understanding of the theory of schemes gen-
erating surfaces. Also, the schemes that are extended in the second part
to nonlinear schemes are univariate.

Section 3.2 is devoted to the presentation of stationary linear uni-
variate subdivision schemes. Important examples such as the B-spline
schemes and the interpolatory 4-point scheme are discussed in detail.
Among these important examples are the schemes that are extended in
the second part to nonlinear schemes. A sketch of tools used for analysis
of convergence and smoothness of linear univariate schemes is given in
§3.2.2. The relation between subdivision schemes and the construction
of wavelets is briefly discussed in §3.2.3.

The second part of the paper consists of three sections. In Section
3.3 linear schemes are extended to refine manifold-valued data. This is
done in two steps. First, the refinement rules of any convergent linear
scheme are presented (in several possible ways) in terms of repeated
binary averages. This is demonstrated by several examples in §3.3.1.
Then in §3.3.2 the manifold-valued subdivision schemes are constructed,
either by replacing every linear binary average in the linear refinement
rules by a geodesic average, yielding a geodesic analogous scheme, or by
replacing every linear binary average in the linear refinement rules by
its projection to the manifold, yielding a projection analogue scheme.
The manifold-valued subdivision schemes constructed in this way are
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analyzed in §3.3.3 via their proximity to the linear schemes from which
they are derived.

In Section 3.4 two data-dependent extensions of the linear interpola-
tory 4-point scheme are discussed. In both extensions the refinement
is adapted to the local geometry of the four points used. These two
geometric (data-dependent) 4-point schemes are effective in case of an
initial control polygon with edges of significantly different length. For
such initial control polygons the limits generated by the linear 4-point
scheme have unwanted features (artifacts), while the geometric 4-point
schemes tend to generate artifact free limits.

The last section deals with repeated refinements of curves for the
generation of a surface. Here the scheme that is extended is the quadratic
B-spline scheme (called the Chaikin algorithm). It is used to refine
curves by first constructing a geometric correspondence between pairs of
curves, and then applying the refinement to corresponding points. Since
this is work in progress only partial results are presented.

3.2 Linear Subdivision Schemes for the Generation of Curves

In this section we discuss stationary, linear schemes, generating curves
by repeated refinements of points. Such a subdivision scheme is defined
by a finite set of real coefficients called a mask

a = {ai ∈ R, i ∈ σ(a) ⊂ Z},

where σ(a) denotes the finite support of the mask. The scheme with the
mask a is denoted by Sa .

The refinement rules of Sa have the form

(SaP)α =
∑
β∈Z

aα−2β Pβ , α ∈ Z, (3.1)

where P denotes the polygonal line through the points {Pi}i∈Z ⊂ Rd ,
with d ≥ 1.

Note that there are two different refinement rules in (3.1), one cor-
responding to odd α and one to even α involving the odd, respectively
even, coefficients of the mask.

Remark 3.1 In this section we consider schemes operating on points
defined on Z, although, in geometric applications the schemes operate
on finite sets of points. Due to the finite support of the mask, our
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considerations apply directly to closed curves and also to ‘open’ ones,
except in a finite zone near the boundary.

The initial points to be refined are called control points, and the corre-
sponding polygonal line through them is called a control polygon. These
terms are used also for the points and the corresponding polygonal line at
each refinement level. The subdivision scheme is a sequence of repeated
refinements of control polygons,

{Pk+1 = SaPk , k ≥ 0}, (3.2)

with P0 the initial control polygon. The refinements in (3.2) are station-
ary, since at each refinement level the same scheme Sa is used. Material
on nonstationary subdivision schemes can be found in the review paper
Dyn & Levin (2002).

A subdivision scheme is termed uniformly convergent if the sequence
of control polygons {Pk} converges uniformly on compact sets of Rd .
This is the notion of convergence relevant to geometric applications.

Each control polygon in (3.2) has a parametric representation as the
vector in Rd of the piecewise linear interpolant to the data {(i2−k , P k

i ),
i ∈ Z}, and the uniform convergence is analyzed in the setting of con-
tinuous functions (see, e.g., Dyn (1992)).

For P0 ⊂ Rd with d = 1, the scheme converges to a univariate func-
tion, while in the case d ≥ 2 the scheme converges to a curve in Rd .

The convergence of a scheme Sa implies the existence of a basic limit
function φa , which is the limit obtained from the initial data, δ0

i = 0
everywhere on Z except δ0

0 = 1.
It follows from the linearity and uniformity of (3.1) that the limit

S∞
a P0 , obtained from any initial control polygon P0 passing through

the initial control points {P 0
α ∈ Rd , α ∈ Z}, can be written in terms of

integer translates of φa , as

(S∞
a P0)(t) =

∑
α∈Z

P 0
αφa(t − α) , t ∈ R. (3.3)

Equation (3.3) is a parametric representation of a curve in Rd for d ≥ 2.
By the stationarity (3.2) of the subdivision scheme, S∞

a δ1 = φa(2t)
with δ1

i = 0 for all i ∈ Z/2 except δ1
0 = 1. Thus we get from (1.3) and

the observation

S∞
a δ0 = S∞

a (Saδ0) = S∞
a (

∑
α∈σ (a)

aαδ1
·−α ),
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that φa satisfies the refinement equation (two-scale relation)

φa(t) =
∑
α∈Z

aαφa(2t − α) . (3.4)

It is easy to obtain from (3.1) or from (3.4) that the support of φa

equals the convex hull of σ(a) (see, e.g., Cavaretta, Dahmen & Micchelli
(1991)).

Remark 3.2 The discussion above leads to the conclusion that a con-
vergent subdivision scheme gives rise to a unique continuous basic limit
function, satisfying a refinement equation with the mask of the scheme.
The converse is not generally true. Yet a continuous function satisfying
a refinement equation is a basic limit function of a convergent subdivi-
sion scheme if its integer shifts are linearly independent: see Cavaretta,
Dahmen & Micchelli (1991).

3.2.1 The main types of schemes

The first subdivision schemes in geometric modelling were proposed for
easy and quick rendering of B-spline curves. A B-spline curve has the
form

C(t) =
∑

i

PiBm (t − i) (3.5)

with {Pi} ⊂ Rd the control points, and Bm a B-spline of degree m with
integer knots, namely Bm |[i,i+1] is a polynomial of degree m for each
i ∈ Z, Bm ∈ Cm−1(R), and Bm has compact support [0,m + 1].

Equation (3.5) is a parametric representation of a B-spline curve.
The B-spline curves (3.5) are a powerful design tool, since their shape
is similar to the shape of the control polygon P corresponding to the
control points in (3.5): see, e.g., Prautzsch, Boehm & Paluszny (2002).

Such curves can be well approximated by the control polygons gener-
ated by the repeated refinements (3.2), using the mask a[m ] with coeffi-
cients

a
[m ]
i = 2−m

(
m + 1

i

)
, i = 0, . . . ,m + 1 . (3.6)

The repeated refinements of a B-spline scheme of degree m are thus

P�+1
i =

∑
j

a
[m ]
i−2jP

�
j , i ∈ Z , � = 0, 1, 2, . . . . (3.7)
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In (3.7) we use the convention a
[m ]
i = 0, i /∈ {0, 1, . . . ,m + 1}.

By the convergence analysis, presented in §3.2.2, it is easy to check
that the subdivision scheme with the mask (3.6) is convergent. It con-
verges to B-spline curves of degree m, since Bm is the basic limit function
of Sa [m ] .

This can be easily concluded, in view of Remark 3.2, from the defini-
tion of B-splines, by observing that Bm satisfies a refinement equation
(3.4) with the mask a[m ] (see, e.g., Dyn (1992)), and that the integer
translates of Bm are linearly independent.

Thus the control polygon Pk = Sk
aP approximates C(t) for k large

enough, and C(t) can be easily rendered by rendering its approximation
Pk . In practice a large enough k is about 4 as can be seen in Figure 3.1.

The first scheme of this type was devised in Chaikin (1974) for a fast
geometric rendering of quadratic B-spline curves. It has the refinement
rules

Pk+1
2i =

3
4
Pk

i−1 +
1
4
Pk

i , P k+1
2i+1 =

1
4
Pk

i−1 +
3
4
Pk

i . (3.8)

Figure 3.1 illustrates three refinement steps with this scheme, applied to
a closed initial control polygon. Chaikin scheme is extended to nonlinear
schemes in §3.3 and in §3.5.

original iteration #1

iteration #2 iteration #3

Fig. 3.1. Refinements of a polygon with Chaikin scheme

The schemes for general B-spline curves were introduced and inves-
tigated in Cohen, Lyche & Riesenfeld (1980). All other subdivision
schemes can be regarded as generalizations of the B-spline schemes.
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The B-spline schemes generate curves with a shape similar to the
shape of the initial control polygons, but do not pass through the initial
control points. Schemes with limit curves that interpolate the initial con-
trol points were introduced in the late 1980’s. These schemes are called
interpolatory, and have the even refinement rule Pk+1

2i = Pk
i . Thus the

control points at refinement level k are contained in those at refinement
level k + 1. The odd refinement rule, called in case of interpolatory
schemes the insertion rule, is designed by a local approximation based
on nearby control points.

The first schemes of this type were introduced by Deslauriers & Dubuc
(1988) and by Dyn, Gregory & Levin (1987). In the first paper the
insertion rule for the point Pk+1

2i+1 is obtained by first interpolating the
data {((i + j), P k

i+j ) , j = −N + 1, . . . , N} by a vector polynomial of
degree 2N − 1, and then sampling it at the point i + 1

2 . This is done
for a fixed positive N . Regarding N as a parameter, this construction
yields a one-parameter family of convergent interpolatory subdivision
schemes, with masks of increasing support, and with basic limit functions
of increasing smoothness (see also the book Daubechies (1992)). We
denote the scheme in this family corresponding to N by DDN .

In the second paper above, a one-parameter family of 4-point inter-
polatory schemes is introduced, with the insertion rule

Pk+1
2i+1 = −w(Pk

i−1 + Pk
i+2) + (

1
2

+ w)(Pk
i + Pk

i+1) . (3.9)

Here w is a shape parameter. For w = 0 the limit is the initial control
polygon, while as w increases to w = 1/8 the limit is a C1 curve which
becomes looser relative to the initial control polygon, as demonstrated
in Figure 3.3. Thus w acts as a tension parameter. For w = 1

16 this
scheme coincides with DD2 . The local approximation which is used in
the construction of the insertion rule (3.9) is a convex combination of
the cubic interpolant used in DD2 and the linear interpolant used in
DD1 . In the next subsection the dependence of the convergence and
smoothness of the 4-point scheme on the parameter w is discussed.

More about general interpolatory subdivision schemes, including mul-
tivariate schemes, can be found in Dyn & Levin (1992).

While in the case of the B-spline schemes the limit was known and
convergence was guaranteed, in the case of the interpolatory schemes,
analysis tools had to be developed. The analysis in Deslauriers & Dubuc
(1988) and Daubecheis (1992) and in references therein is mainly in the
Fourier domain, while in Dyn, Gregory & Levin (1987) it is done in the
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geometric domain, based on the symbol of the scheme. Hints on this
method of analysis, which was further developed in Dyn, Gregory &
Levin (1991), are given in the next subsection.

3.2.2 Analysis of convergence and smoothness

Given the coefficients of the mask of a scheme, one would like to be able
to determine if the scheme is convergent, and what is the smoothness
of the resulting basic limit function (which is the generic smoothness
of the limits generated by the scheme in view of (3.3)). Such analysis
tools are also essential for the design of new schemes. We sketch here
the method of convergence and smoothness analysis in Dyn, Gregory &
Levin (1991): see also Dyn (1992).

An important tool in the analysis is the symbol of a scheme Sa with
the mask a = {aα : α ∈ σ(a)},

a(z) =
∑

α∈σ (a)

aαzα , (3.10)

introduced in Cavaretta, Dahmen & Micchelli (1991). In the following
we use also the notation Sa(z ) for Sa .

A first step towards the convergence analysis is the derivation of the
necessary condition for uniform convergence,∑

β∈Z

aα−2β = 1 , α = 0 or 1 (mod 2), (3.11)

The condition in (3.11) is derived easily from the refinement step

(Sk+1
a P)α =

∑
β∈Z

aα−2β (Sk
aP)β , α ∈ Z,

for k large enough so that for all � ≥ k , ‖S�
aP−S∞

a P‖∞ is small enough.
The necessary condition (3.11) implies that we have to consider sym-

bols satisfying

a(1) = 2 , a(−1) = 0 . (3.12)

Condition (3.12) is equivalent to

a(z) = (1 + z)q(z) with q(1) = 1 . (3.13)

The scheme with symbol q(z), Sq , satisfies Sq∆ = ∆Sa , where ∆ is the
difference operator

∆P =
{
(∆P)i = Pi − Pi−1 , i ∈ Z

}
. (3.14)
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A necessary and sufficient condition for the convergence of Sa is the
contractivity of the scheme Sq , namely Sa is convergent if and only
if S∞

q P ≡ 0 for any P. The contractivity of Sq is equivalent to the
existence of a positive integer L, such that ‖SL

q ‖∞ < 1. This condition
can be checked for a given L by algebraic operations on the symbol q(z).

From practical geometrical reasons, only small values of L have to
be considered. A small value of L guarantees “visual convergence” of
{Pk} to S∞

a P0 , already for small k, as the distances between consecutive
control points contract to zero fast. A good scheme corresponds to L = 1
as the B-spline schemes, or to L = 2 as the 4-point scheme.

The smoothness analysis relies on the result that if the symbol of a
scheme has a factorization

a(z) =
(

1 + z

2

)ν

b(z) , (3.15)

such that the scheme Sb is convergent, then Sa is convergent and its
limit functions are related to those of Sb by

Dν (S∞
a P) = S∞

b ∆νP, (3.16)

with D the differentiation operator.
Thus, each factor (1 + z)/2 multiplying a symbol of a convergent

scheme adds one order of smoothness. This factor is termed the smooth-
ing factor.

The relation between (3.15) and (3.16) is a particular instance of the
“algebra of symbols” (see, e.g., Dyn & Levin (1995)). If a(z), b(z) are
two symbols of converging schemes, then Sc with the symbol c(z) =
1
2 a(z)b(z) is convergent, and

φc = φa ∗ φb . (3.17)

Example (B-spline schemes.) In view of (3.6), the symbol of the
scheme generating B-spline curves of degree m is

a(z) = (1 + z)m+1/2m . (3.18)

All B-spline schemes with m ≥ 1 converge, since q(z) = (1+z )m

2m and
‖Sq(z )‖∞ = 1

2 . The known smoothness of the limit functions generated
by the m-th degree B-spline scheme can be concluded easily, using the
tools of analysis presented in this subsection. The factor b(z) = (1+z )

2

2

corresponds to the scheme Sb generating the initial control polygon as
the limit curve, which is continuous, while the factors

( 1+z
2

)m−1 add
smoothness, so that S∞

a [m ]P0 ∈ Cm−1 for m ≥ 1.
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Example (The 4-point scheme.) The analysis sketched above is the
tool by which the following results were obtained for the interpolatory
4-point scheme with the insertion rule (3.9). The symbol of the scheme
can be written as

aw (z) =
1
2z

(z + 1)2[1 − 2wz−2(1 − z)2(z2 + 1)
]
. (3.19)

The range of w for which Saw (z ) is convergent is the range for which
Sqw (z ) with symbol qw (z) = aw (z)/(1 + z) is contractive. The condition
‖Sqw (z )‖∞ < 1 holds in the range −3/8 < w < (−1 +

√
13)/8, while the

condition ‖S2
qw (z )‖∞ < 1 holds in the range −3/8 < w < (−1 +

√
17)/8.

Thus Saw (z ) is convergent in the range |w| < 3/8. In fact it was shown
by M. J. D. Powell that the convergence range is |w| ≤ 1

2 .
To find a range of w where Saw (z ) generates C1 limits, the contractivity

of Scw (z ) with cw (z) = 2aw (z)/(1+ z)2 has to be investigated. It is easy
to check that ‖Scw (z )‖∞ ≥ 1, but that ‖S2

cw (z )‖∞ < 1 for 0 < w <

(
√

5− 1)/8. Only a year ago the maximal positive w for which the limit
is C1 was obtained in Hechler, Mößner & Reif (2008).

The limit of Saw (z ) is not C2 even for w = 1/16, although for w = 1/16
the symbol is divisible by (1+z)3 . It is shown in Daubechies & Lagarias
(1992), by other methods, that the basic limit function for w = 1/16,
restricted to its support, has a second derivative only at the non-dyadic
points there.

The conditions for smoothness given above are only sufficient. Yet,
there is a large class of convergent schemes for which the factorization in
(3.15) is necessary for generating Cν limit functions. This class contains
the B-spline schemes and the interpolatory schemes. See, e.g., Dyn &
Levin (2002).

3.2.3 Subdivision schemes and the construction of wavelets

Any convergent subdivision scheme Sa defines a sequence of nested
spaces in terms of its basic limit function φa . For every k ∈ Z define the
space

Vk = span{φa(2k (· − i)) , i ∈ 2−kZ}
= span{φa(2k · −i) , i ∈ Z} . (3.20)

Then in view of the refinement equation (3.4) satisfied by φa , these
spaces are nested, namely

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · (3.21)
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Such a bi-infinite sequence of spaces is the framework in which wavelets
are constructed. It is called a multiresolution analysis when the integer
translates of φa constitute a Riesz basis of V0 (see Daubechies (1992)).
In the wavelets literature one starts from a solution of (3.4), termed
a scaling function, which is not necessarily the limit of a converging
subdivision scheme, as indicated by Remark 3.2.

The choice of the mask coefficients for the construction of wavelets
depends on the properties required from the wavelets. For example the
orthonormal wavelets of Daubechies are generated by masks (filters)
that are related to the masks of the DDN schemes. The symbols of
these masks, denoted by ãN (z), satisfy |ãN (z)|2 = aN (z), with aN (z)
the symbol of the scheme DDN . This relation between the symbols can
be expressed in terms of the corresponding scaling functions as

φãN ∗ φãN (−·) = φaN ,

showing that the integer translates of φãN constitute an orthonormal
system due to the interpolatory nature of φaN , which vanishes at all
integers except at zero where it is 1.

The next sections bring several constructions of nonlinear schemes,
based on linear schemes. In §3.3.1 more information on linear schemes,
needed for the construction of schemes on manifolds, is presented.

3.3 Curve Subdivision Schemes on Manifolds

To design subdivision schemes for curves on a manifold, we require that
the control points generated at each refinement level are on the manifold,
and that the limit of the sequence of corresponding control polygons is
also on the manifold. Such schemes are nonlinear.

The first approach to this problem is presented in Rahman, Drori,
Stodden, Donoho & Schröder (2005). It is based on adapting a linear
univariate subdivision scheme Sa . Given control points {Pi} on the
manifold, let P = {Pi} denote the corresponding control polygon, and
let T denote the adaptation of Sa to the manifold. Then the point
(TP)i is defined by first executing the linear refinement step of Sa on
the projections of the points {Pj , ai−2j �= 0} to a tangent plane at a
chosen point P ∗

i , and then projecting the obtained point to the manifold.
This can be written as

(TP)i = ψ−1
P ∗

i

(∑
j∈Z

ai−2jψP ∗
i
(Pj )

)
, (3.22)
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where P ∗
i is some chosen “center” of the points {Pj , ai−2j �= 0}, and

ψP ∗
i

is the projection from the manifold to the tangent plan at P ∗
i .

Recently it was shown in Xie & Yu (2008a) and Xie & Yu (2008b), that
with a proper choice of the “center” point many properties of the linear
scheme, such as convergence, smoothness and approximation order, are
shared by the nonlinear scheme derived from it.

Here we discuss two other constructions of subdivision schemes on
manifolds from converging linear schemes. These constructions are based
on the observation that the refinement rules of any convergent linear
scheme can be calculated by repeated binary averages: see Wallner &
Dyn (2005).

3.3.1 Linear schemes in terms of repeated binary averages

A linear scheme for curves, S, is defined by two refinement rules of the
form,

(SP)j =
∑

i

aj−2iPi , j = 0 or 1 (mod 2) , (3.23)

where P = {Pi}. As discussed in §3.2.2, any convergent linear scheme
is affine invariant, namely

∑
i aj−2i = 1. It is shown in Wallner &

Dyn (2005), that for a convergent linear scheme each of the refinement
rules in (3.23) is expressible, in a non-unique way, by repeated binary
averages. A reasonable choice is a symmetric representation relative to
the topological relations in the control polygon.

For example, with the notation Avα (P,Q) = (1 − α)P + αQ , α ∈
R, P,Q ∈ Rd , the insertion rule of the interpolatory 4-point scheme
(3.9) can be rewritten as

Pk
2j+1 = Av 1

2

(
Av(−2w )(Pj , Pj−1) , Av(−2w )(Pj+1 , Pj+2)

)
,

or as

Pk
2j+1 = Av(−2w )

(
Av 1

2
(Pj , Pj+1) , Av 1

2
(Pj−1 , Pj+2)

)
.

Refinement rules represented in this way are termed hereafter refinement
rules in terms of repeated binary averages.

Among the linear schemes there is a class of factorizable schemes for
which the symbol a(z) =

∑
i aiz

i can be written as a product of linear
real factors. For such a scheme, the control polygon obtained by one
refinement step of the form (3.1) can be computed by several simple
global steps, uniquely determined by the factors of the symbol.
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To be more specific, let us consider a symbol of the form

a(z) = z−�(1 + z)
1 + x1z

1 + x1
· · · 1 + xm z

1 + xm
. (3.24)

Note that this symbol corresponds to an affine invariant scheme since
a(1) = 2, and a(−1) = 0. In fact, the form of the symbol in (3.24) is
general for converging factorizable schemes.

Let Pk denote the control polygon at refinement level k, corresponding
to the control points {Pk

i }. Each simple step in the execution of the
refinement SaPk corresponds to one factor in (3.24). The first step in
calculating the control points at level k + 1 corresponds to the factor
1 + z, and consists of elementary refinement:

Pk+1,0
2i = Pk+1,0

2i+1 = Pk
i . (3.25)

This step is followed by m averaging steps corresponding to the factors
1+xj z
1+xj

, j = 1, . . . , m. The averaging step dictated by the factor 1+xj z
1+xj

is,

Pk+1,j
i =

1
1 + xj

(Pk+1,j−1
i + xjP

k+1,j−1
i−1 ) , i ∈ Z . (3.26)

The control points at level k + 1 are Pk+1
i = Pk+1,m

i+� , i ∈ Z .

The execution of the refinement step by several simple global steps is
equivalent to the observation that

Sa(z )Pk = τ �R 1 + x 1 z
1 + x 1

· · ·R 1 + x m z
1 + x m

S(1+z )Pk , (3.27)

with (Rb+czP)i = bPi + cPi−1 and (τP)i = Pi+1. The equality (3.27)
follows from the representation of (3.1) as the formal equality∑

i

(SaP)iz
i = a(z)

∑
j

Pj z
2j , (3.28)

with P = {Pi}. The formal equality in (3.28) is in the sense of equality
between the coefficients of the same power of z on both sides of (3.28).

We term the execution of the refinement step by several simple global
steps, based on the factorization of the symbol to linear factors, global
refinement procedure by repeated averaging.

An important family of factorizable schemes is that of the B-spline
schemes, with symbols given by (3.18). Note that the factors in (3.18)
corresponding to repeated averaging are all of the form 1+z

2 . Thus the
global refinement procedure by repeated averaging is equivalent to the
algorithm of Lane & Riesenfeld (1980). Also, it follows from the fact that
all factors in (3.18) except for the factor 1 + z are smoothing factors,
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that any B-spline scheme is optimal, in the sense that it has a mask of
minimal support among all schemes with the same smoothness.

The interpolatory 4-point scheme given by the insertion rule (3.9) with
w = 1

16 (which is the DD2 scheme) is also factorizable. Its symbol has
the form (see, e.g., Dyn (2005))

a(z) = (1 + z)4(3 +
√

3z)(3 −
√

3z)/48. (3.29)

3.3.2 Construction of subdivision schemes on manifolds

The two constructions of nonlinear schemes on manifolds in Wallner
& Dyn (2005) start from a convergent linear scheme, S, given either
by local refinement rules in terms of repeated binary averages, or by a
global refinement procedure in terms of repeated binary averages.

The first construction of a subdivision T on a manifold M , analogous
to S, replaces every binary average in the representation of S, by a
corresponding geodesic average on M . Thus Avα (P,Q) is replaced by
gAvα (P,Q), where gAvα (P,Q) = c(ατ), with c(t) the geodesic curve
on M from P to Q, satisfying c(0) = P and c(τ) = Q. The resulting
subdivision scheme is termed a geodesic subdivision scheme.

The second construction uses a smooth projection mapping onto M ,
and replaces every binary average by its projection onto M . The result-
ing nonlinear scheme is termed a projection subdivision scheme. In the
case of a surface in R3 , a possible choice of the projection mapping is
the orthogonal projection onto the surface.

Note that for a factorizable scheme the analogous manifold schemes
obtained from its representation in terms of the global refinement pro-
cedure by repeated averaging, depend on the order of the linear factors
corresponding to binary averages in (3.24). Yet for the B-spline schemes
there is one geodesic analogous scheme, and one projection analogous
scheme obtained from this representation since all the factors in (3.18),
except the factor (1 + z), are identical.

Example In this example the linear scheme is the Chaikin algorithm
of (3.8)

Pk+1
2j = Av 1

4
(Pk

j−1 , P
k
j ) , P k+1

2j+1 = Av 3
4
(Pk

j−1 , P
k
j ) , (3.30)

with the symbol

a(z) = (1 + z)3/4 . (3.31)

The different adaptations to the manifold case are:
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Fig. 3.2. Geodesic B-Spline subdivision of degree three. From left to right:
Tp, T 2p,T 3p, T∞p.

(i) Chaikin geodesic scheme, derived from (3.30):

Pk+1
2j = gAv 1

4
(Pk

j−1 , P
k
j ) , P k+1

2j+1 = gAv 3
4
(Pk

j−1 , P
k
j ) .

(ii) Chaikin geodesic scheme, derived from (3.31):

Pk+1,0
2i = Pk+1,0

2i+1 = Pk
i , P k+1,j

i = gAv 1
2
(Pk+1,j−1

i , P k+1,j−1
i−1 ),

for j = 1, 2.
(iii) Chaikin projection scheme derived from (3.30):

Pk+1
2j = G(Av 1

4
(Pk

j−1 , P
k
j )) , P k+1

2j+1 = G(Av 3
4
(Pk

j−1 , P
k
j )) .

(iv) Chaikin projection scheme derived from (3.31):

Pk+1,0
2i = Pk+1,0

2i+1 = Pk
i , P k+1,j

i = G(Av 1
2
(Pk+1,j−1

i , P k+1,j−1
i−1 ),

for j = 1, 2.

In the above G is a specific smooth projection mapping to the manifold
M . Figure 3.2 displays a curve on a sphere, created from a finite number
of initial control points on the sphere, by a geodesic analogous scheme
to a third degree B-spline scheme.

3.3.3 Analysis of convergence and smoothness by proximity

The analysis of convergence and smoothness of the geodesic and the
projection schemes we present is based on their proximity to the linear
scheme from which they are derived, and on the smoothness properties
of this linear scheme. We limit the discussion to C1 and C2 smoothness.
To formulate the proximity conditions we introduce some notation.

For a control polygon P = {Pi}, we define

∆P = {Pi −Pi−1}, ∆�P = ∆(∆�−1P), d�(P) = max
i

‖(∆�P)i‖. (3.32)

The difference between two control polygons P = {Pi}, Q = {Qi}, is
P −Q = {Pi − Qi}.
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With this notation the two proximity relations of interest to us are
the following:

Definition 3.1

(i) Two schemes S and T are in 0-proximity if

d0(SP − TP) ≤ Cd1(P)2 ,

for all control polygons P with d1(P) small enough.
(ii) Two schemes S and T are in 1-proximity if

d1(SP − TP) ≤ C[d1(P)d2(P) − d1(P)3 ],

for all control polygons P with d1(P) small enough.

In these definitions C is a generic constant.

From the 0-proximity condition we can deduce the convergence of T

from the convergence of the linear scheme S. Furthermore, under mild
conditions on S, we can also deduce that if S generates C1 limit curves
then T generates C1 limit curves whenever it converges.

In Wallner (2006), results on C2 smoothness of the limit curves gen-
erated by T are obtained, based on 0-proximity and 1-proximity of T

and S, and some mild conditions on S, in addition to S being C2 .
The 0-proximity and the 1-proximity conditions hold for the manifold

schemes of subsection 3.3.2, when S is a convergent linear subdivision
scheme and when M is a smooth manifold. Moreover, for M a compact
manifold or a surface with bounded normal curvatures, the two prox-
imity conditions hold uniformly for all P such that d1(P) < δ, with a
global δ.

Examples The B-spline schemes with symbol (3.18) for m ≥ 3, gener-
ate C2 curves and satisfy the mild conditions necessary for deducing that
the limit curves of their manifold analogous schemes are also C2 . On the
other hand the linear 4-point scheme generates limit curves which are
only C1 , a property that is shared by its manifold analogous schemes.

Further analysis of manifold-valued subdivision schemes can be found
in a series of papers by Wallner and his collaborators, see, e.g., Wallner,
Nava Yazdani & Grohs (2007), Grohs & Wallner (2008), and in the
works Xie & Yu (2007), Xie & Yu (2008a), Xie & Yu (2008b).
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3.4 Geometric 4-Point Interpolatory Subdivision Schemes

The refinement step of a linear scheme (SaP)j =
∑

i aj−2iPi , j ∈ Z , is
applied separately to each component of the control points. Therefore
these schemes are insensitive to the geometry of the control polygons.
For control polygons with edges of similar length, this insensitivity is
not problematic. Yet, the limit curves generated by linear schemes, in
case the initial control polygon has edges of significantly different length,
have artifacts, namely geometric features which do not exist in the initial
control polygon. This can be seen in the upper right figure of Figure 3.3
and in the second column of Figure 3.4. Data dependent schemes can
cure this problem.

Here we present two geometric versions of the 4-point scheme, which
are data dependent. The first is based on adapting the tension parameter
to the geometry of the 4-points involved in the insertion rule, while the
second is based on a geometric parametrization of the control polygon
at each refinement level.

3.4.1 Adaptive tension parameter

In this section we present a nonlinear version of the linear 4-point in-
terpolatory scheme introduced in Marinov, Dyn & Levin (2005), which
adapts the tension parameter to the geometry of the control points.

It is well known that the linear 4-point scheme with the refinement
rules

Pk+1
2j = Pk

j , P k+1
2j+1 = −w(Pk

j−1 + Pk
j+2) + (

1
2

+ w)(Pk
j + Pk

j+1) , (3.33)

where w is a fixed tension parameter, has the following attributes:

• It generates “good” curves when applied to control polygons with
edges of comparable length.

• It generates curves which become smoother (have greater Hölder ex-
ponent of the first derivative), the closer the tension parameter is to
1/16.

• Only for very small values of the tension parameter, it generates a
curve which preserves the shape of an initial control polygon with
edges of significantly different length. (Recall that the control polygon
itself corresponds to the generated curve with zero tension parameter.)

We first write the refinement rules in (3.33) in terms of the edges
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Fig. 3.3. Curves generated by the linear 4-point scheme: (Upper left) the
effect of different tension parameters, (upper right) artifacts in the curve gen-
erated with w = 1

16 , (lower left) artifact-free but visually non-smooth curve
generated with w = 0.01. Artifact-free and visually smooth curve generated
in a nonlinear way with adaptive tension parameters (lower right).

{ek
j = Pk

j+1 − Pk
j } of the control polygon, and relate the inserted point

Pk+1
2j+1 to the edge ek

j . The insertion rule can be written in the form,

Pek
j

= Mek
j

+ wek
j
(ek

j−1 − ek
j+1) (3.34)

with Mek
j

the midpoint of ek
j and wek

j
the adaptive tension parameter.

Defining dek
j

= wek
j
(ek

j−1 − ek
j+1) as the displacement from Mek

j
, we

control its size by choosing wek
j

according to a geometrical criterion.
In Marinov, Dyn & Levin (2005) there are various geometrical criteria,

all of them guaranteeing that the inserted control point Pek
j

is different
from the boundary points of the edge ek

j , and that the length of each
of the two edges replacing ek

j is bounded by the length of ek
j . This is

achieved if wek
j

is chosen so that

‖dek
j
‖ ≤ 1

2
‖ek

j ‖ . (3.35)

All the criteria restrict the value of the tension parameter wek
j

to the
interval (0, 1

16 ], such that a tension close to 1/16 is assigned to regular
stencils namely, stencils of four points with three edges of almost equal
length, while the less regular the stencil is, the closer to zero is the
tension parameter assigned to it.

A natural choice of an adaptive tension parameter obeying (3.35) is

wek
j

= min

{
1
16

, c
‖ek

j ‖
‖ek

j−1 − ek
j+1‖

}
, with a fixed c ∈

[
1
8
,
1
2

)
. (3.36)
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In (3.36) c is restricted to the interval [ 1
8 , 1

2 ) to guarantee that wek
j

=
1
16 for stencils with ‖ek

j−1‖ = ‖ek
j ‖ = ‖ek

j+1‖. Indeed in this case, ‖ek
j−1−

ek
j+1‖ = 2 sin θ

2 ‖ek
j ‖, with θ, 0 ≤ θ ≤ π, the angle between the two

vectors ek
j−1 , e

k
j+1. Thus ‖ek

j ‖/‖ek
j−1 − ek

j+1‖ = (2 sin θ
2 )−1 ≥ 1

2 , and
if c ≥ 1

8 then the minimum in (3.36) is 1
16 . The choice (3.36) defines

irregular stencils (corresponding to small wek
j
) as those with ‖ek

j ‖ much
smaller than at least one of ‖ek

j−1‖, ‖ek
j+1‖, and such that when these

two edges are of comparable length, the angle between them is not close
to zero.

The convergence of this geometric 4-point scheme, and the continuity
of the limits generated, follow from a result in Levin (1999). There it
is proved that the 4-point scheme with variable tension parameter is
convergent, and that the limits generated are continuous, whenever the
tension parameters are restricted to the interval [0, w̃], with w̃ < 1

8 .
But we cannot apply the result in Levin (1999) on C1 limits of the

4-point scheme with variable tension parameter to the geometric 4-point
scheme defined by (3.34) and (3.36), since the tension parameters used
during this subdivision process are not bounded away from zero.

Nevertheless, many simulations indicate that the curves generated by
this scheme are C1 (see Marinov, Dyn & Levin (2005)).

3.4.2 Geometric parametrization of the control polygons

In this subsection we present a geometric 4-point scheme, which is intro-
duced and investigated in Dyn, Floater & Hormann (2008). The idea for
the geometric insertion rule of the point Pk

2i+1 comes from the insertion
rule of the DD2 scheme (see §3.2.1).

The insertion rule of the DD2 scheme is obtained by sampling the
vector cubic polynomial, interpolating the data {((i + j), P k

i+j ), j =
−1, 0, 1, 2} at the point i+ 1

2 . From this point of view, the linear scheme
corresponds to a uniform parametrization of the control polygon at each
refinement level. This approach fails when the initial control polygon
has edges of significantly different length. Yet the use of the centripetal
parametrization, instead of the uniform parametrization, leads to a ge-
ometric 4-point scheme with artifact-free limit curves, as can be seen in
Figure 3.4.

The centripetal parametrization, which is known to be effective for in-
terpolation of control points by a cubic spline curve (see Floater (2008)),
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uniform chordalcentripetalcontrol polygon

Fig. 3.4. Comparisons between 4-point schemes based on different
parametrizations.

has the form tcen(P) = {ti}, with

t0 = 0, ti = ti−1 + ‖Pi − Pi−1‖
1
2
2 , (3.37)

where ‖ · ‖2 is the Euclidean norm, and P = {Pi}.
Let Pk be the control polygon at refinement level k, and let {tki } =

tcen(Pk ). The refinement rules for the geometric 4-point scheme, based
on the centripetal parametrization are:

Pk+1
2i = Pk

i , P k+1
2i+1 = πk,i

(1
2
(tki + tki+1)

)
,

with πk,i the vector of cubic polynomials, satisfying the interpolation
conditions

πk,i(tki+j ) = Pk
i+j , j = −1, 0, 1, 2.

Note that this construction can be done with any parametrization.
In fact in Dyn, Floater & Hormann (2008) the chordal parametrization
(ti+1 − ti = ‖Pi+1 − Pi‖2) is also investigated, but found to be inferior
to the centripetal parametrization (see Figure 3.4).

In contrast to the analysis of the schemes on manifolds, the method of
analysis of the geometric 4-point schemes based on the chordal and cen-
tripetal parametrizations is rather ad-hoc. It is shown in Dyn, Floater
& Hormann (2008) that the centripetal and chordal schemes are well
defined, in the sense that any inserted point is different from the end
points of the edge to which it corresponds, and that both schemes are
convergent to continuous limit curves. Although numerical simulations
indicate that both schemes generate C1 curves, as does the linear 4-point
scheme, there is no proof of such a property for the geometric schemes.

Another type of information on the limit curves, which is relevant
to the absence or presence of artifacts, is available in Dyn, Floater &
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Hormann (2008). Bounds on the Hausdorff distance from sections of a
limit curve to their corresponding edges in the initial control polygon
are derived. These bounds give a partial qualitative understanding of
the empirical observation that the limit curves corresponding to the
centripetal parametrization are artifact free.

Let C denote a curve generated by the scheme based on the centripetal
parametrization from an initial control polygon P0 . Since the scheme
is interpolatory, C passes through the initial control points. Denote by
C|e0

i
the section of C starting at P 0

i and ending at P 0
i+1. Then

haus(C|e0
i
, e0

i ) ≤
5
7
‖e0

i ‖2 .

Thus the section of the curve cannot be too far from a short edge. On
the other hand the corresponding bound in the linear case has the form

haus(C|e0
i
, e0

i ) ≤
3
13

max{‖e0
j ‖2 , |j − i| ≤ 2},

and a section of the curve can be rather far from its corresponding short
edge, if this edge has a long neighboring edge. In the case of the chordal
parametrization the bound is even worse

haus(C|e0
i
, e0

i ) ≤
11
5

max{‖e0
j ‖2 , |j − i| ≤ 2}.

Comparisons of the performance of the three 4-point schemes, dis-
cussed in this section, are given in Figure 3.4.

3.5 Geometric Refinement of Curves

The scheme discussed in this subsection is designed and investigated in
Dyn, Elber & Itai (2008). It is a nonlinear extension of the quadratic
B-spline scheme Sa corresponding to the symbol given by (3.18) with
m = 2. Sa is a linear scheme generating a curve from a set of initial
control points, yet its extension presented here generates surfaces, as
the refined objects are not control points but control curves. This new
nonlinear scheme repeatedly refines a set of control curves, taking into
account the geometry of the curves, so as to generate a limit surface
which is related to the geometry of the initial control curves.

In fact, a surface can be generated from an initial set of curves {Ci}n
i=0

using Sa in a linear way. The initial curves have to be parametrized
in some reasonable way to yield the set {Ci(s), s ∈ [0, 1]}n

i=0 , and
then Sa is applied to each control polygon of the form Ps = {Ci(s)}n

i=0
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corresponding to a fixed s in [0, 1]. This is equivalent to refining the
curves with Sa to obtain the refined set of control curves SaPs , s ∈ [0, 1].
The limit surface is obtained by repeated refinements of the control
curves, and has the form

(S∞
a Ps)(t), s ∈ [0, 1] , t ∈ R.

The quality of the generated surface depends on the quality of the
parametrization of the initial curves, as a reasonable parametrization
for each set of refined curves at each refinement level:

{Sk
aPs , s ∈ [0, 1]}, k = 0, 1, 2, . . .

In the nonlinear scheme the control curves at each refinement level
are parametrized, taking into account their geometry, and Sa is applied
to all control polygons generated by points on the curves corresponding
to the same parameter value.

The parametrization of the curves at refinement level k, {Ck
i }nk

i=0 is in
terms of a vector of correspondences τ = (τ0 , . . . , τnk −1) between pairs
of consecutive curves. A correspondence between two curves is a one-to-
one and onto continuous map from the points of one curve to the points
of the other. Thus τ determines a parametrization of the curves in terms
of the points of Ck

0 , in the sense that all the points P0 , . . . , Pnk
, with

P0 ∈ Ck
0 and Pi+1 = τi(Pi) ∈ Ci+1, correspond to the same parameter

value.
The convergence of the nonlinear scheme is proved for initial curves

contained in a compact set in R3 . This condition is also satisfied by all
control curves generated by the nonlinear scheme, due to the refinement
rules of the curves. The correspondence used is a geometrical correspon-
dence τ∗ defined by,

τ∗
i = arg min

τ∈T k (C k
i ,C k

i + 1 )
max{‖τ(P ) − P‖2 , P ∈ Ck

i },

where Tk (Ck
i , Ck

i+1) is a set of allowed correspondences. This set de-
pends on all the curves at refinement level k in a rather mild way.
We omit here the technical details. It is shown in Dyn, Elber, & Itai
(2008) that if the initial curves are admissible for subdivision, namely
the sets T 0(C0

i , C0
i+1) for i = 0, . . . , n0 − 1 are nonempty, then the sets

Tk (Ck
i , Ck

i+1) for i = 0, . . . , nk − 1 are also nonempty for all k > 0.
With the above notation, the refinement step at refinement level k

can be written as:

• for i = 0, . . . , nk − 1,
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(i) compute τ∗
i

(ii) for each P ∈ Ck
i , define

Qi(P ) =
3
4
P +

1
4
τ∗
i (P ), Ri(P ) =

1
4
P +

3
4
τ∗
i (P )

(iii) define two refined curves

Ck+1
2i = {Qi(P ), P ∈ Ci}, Ck+1

2i+1 = {Ri(P ), P ∈ Ci}

• nk+1 = 2nk − 1

For the convergence proof we need an analogous notion to the control
polygon in the case of schemes refining control points. This notion is
the control piecewise-ruled-surface, defined at refinement level k by

PRk = ∪nk −1
i=0 {P = λPi + (1 − λ)τ∗

i (Pi), Pi ∈ Ck
i , λ ∈ [0, 1]}

Fig. 3.5. Geometric refinement of curves. From left to right: initial curves,
the refined curves after two and three refinement steps.

It is shown in Dyn, Elber & Itai (2008) that if the initial curves are sim-
ple, nonintersecting, and admissible for subdivision, then the sequence
of control piecewise-ruled-surfaces {PRk}k≥0 is well defined, and con-
verges in the Hausdorff metric to a set in R3 . Also it is shown there that
if the initial curves are sampled densely enough from a smooth surface,
then the limit of the scheme approximates the surface.

From the computational point of view the refinements are executed
only a small number of times (at most 5), so the “limit” is represented by
the surface PRk with 3 ≤ k ≤ 5. All computations are done discretely.
The curves are sampled at a finite number of points, and τ∗ is computed
by dynamical programming.

An example demonstrating the performance of this scheme on an ini-
tial set of curves, sampled from a smooth surface, is given in Figure
3.5.
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‘Multiscale representations for manifold-valued data’, Multiscale Modeling
and Simulation 4, 1201–1232.

J. Wallner (2006), ‘Smoothness analysis of subdivision schemes by proximity’,
Constr. Approx. 24, 289–318.

J. Wallner and N. Dyn (2005), ‘Convergence and C1 analysis of subdivision
schemes on manifolds by proximity’, Computer Aided Geometric Design
22, 593–622.

J. Wallner, E. Nava Yazdani and P. Grohs (2007), ‘Smoothness properties of
Lie group subdivision schemes’, Multiscale Modeling and Simulation 6,
493–505.

G. Xie and T. P.-Y. Yu (2007), ‘Smoothness equivalence properties of
manifold-data subdivision schemes based on the projection approach’,
SIAM J. Num. Anal. 45, 1200–1225.

G. Xie and T. P.-Y. Yu (2008a), ‘Smoothness equivalence properties of gen-
eral manifold-valued data subdivision schemes’, Multiscale Modeling and
Simulation, to appear

G. Xie and T. P.-Y. Yu (2008b), ‘Approximation order equivalence properties
of manifold-valued data subdivision schemes’, Department of Mathemat-
ics, Drexel University, preprint.



4

Energy Preserving and Energy Stable
Schemes for the Shallow Water Equations

Ulrik S. Fjordholm
Department of Mathematics

University of Oslo
P.O. Box 1053, Blindern, N–0316 Oslo, Norway

e-mail: ulriksf@ulrik.uio.no

Siddhartha Mishra
Centre of Mathematics for Applications (CMA)

University of Oslo
P.O. Box 1053, Blindern, N–0316 Oslo, Norway

e-mail: siddharm@cma.uio.no

Eitan Tadmor
Department of Mathematics, Institute for Physical Sciences & Technology

and Center of Scientific Computation and Mathematical Modeling
University of Maryland
MD 20742-4015, USA

e-mail: tadmor@cscamm.umd.edu

Abstract

We design energy preserving and energy stable schemes for the shallow
water equations. A new explicit energy preserving flux is proposed and
is compared with existing energy preserving fluxes. This new flux results
in a considerable reduction in the computational cost. We add suitably
discretized viscous terms to the energy preserving scheme in order to
obtain an energy stable scheme that replicates the energy decay of the
continuous problem. The addition of physical viscosity dramatically
reduces the oscillations on resolved meshes. For computing on under-
resolved meshes, we propose a new Roe-type numerical flux that adds
diffusion in terms of energy variables to an energy preserving scheme.
The resulting scheme is energy stable and as accurate as the Roe scheme,
at a similar computational cost. The robustness of the energy preserving
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and energy stable schemes is demonstrated through several numerical
experiments in both one and two space dimensions.

4.1 Introduction

Many interesting models in hydrology and oceanography involve flows
where the horizontal scales of motion are much greater than the vertical
scale. Such models include flows in lakes, rivers and irrigation channels
and near-shore models in oceanography and climate modeling. These
phenomena are often modeled by the shallow water equations,

ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 +

1
2
gh2
)

x
+ (huv)y = ν

(
(hux)x + (huy )y

)
,

(hv)t + (huv)x +
(
hv2 +

1
2
gh2
)

y
= ν

(
(hvx)x + (hvy )y

)
,

(4.1)

where h is the height of the fluid, u and v are the velocity components in
the x and y directions, respectively, g is the constant acceleration due to
gravity and ν is the eddy viscosity. The eddy viscosity is responsible for
the transfer of energy to the smaller scales of the motion. The system
is equipped with suitable initial and boundary conditions.

The eddy viscosity ν generally determines the smallest scale of the
flow, and in most applications it is very small. It is common to assume
that ν = 0 and consider the inviscid form of the shallow water system,

ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 +

1
2
gh2
)

x
+ (huv)y = 0,

(hv)t + (huv)x +
(
hv2 +

1
2
gh2
)

y
= 0.

(4.2)

This is a system of conservation laws, which in general is of the form

Ut + F (U)x + G(U)y = 0. (4.3)

In our case, U = [h, hu, hv]� is the vector of conserved quantities of
mass and momentum and F ≡ F (U) =

[
hu, hu2 + 1

2 gh2 , huv
]� and

G ≡ G(U) =
[
hv, huv, hv2 + 1

2 gh2
]� are the fluxes in the x- and y-

directions, respectively. The eigenvalues λi and µi of the Jacobians F ′

and G′, respectively, are

λ1 = u −
√

gh, µ1 = v −
√

gh,
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λ2 = u, µ2 = v,

λ3 = u +
√

gh, µ3 = v +
√

gh.

The corresponding eigenvectors are easily calculated; see LeVeque (2002).
Nonlinear systems of conservation laws of the form (4.3) arise in a wide

variety of problems in elasticity, fluid dynamics and plasma physics (see
Dafermos (2000) for details). The most striking feature about these
equations is the fact that even smooth initial data can lead to solutions
with discontinuities. This feature is exhibited even in the simplest case
of a scalar conservation law in one space dimension. The presence of
discontinuities forces us to consider solutions of (4.3) in the weak or
averaged sense (see Dafermos (2000) and other standard textbooks for
a definition).

Weak solutions are not necessarily unique, and to obtain uniqueness
the equations must be augmented with additional admissibility criteria.
These criteria assume the form of entropy conditions Dafermos (2000).
Many systems of conservation laws are equipped with a convex function
E(U) and associated entropy flux functions H = H(U) and K = K(U)
such that

∂Ui
H(U) = 〈V, ∂U F (i)〉, ∂Ui

K(U) = 〈V, ∂U G(i)〉 for i = 1, . . . , n,

(4.4)
where V := ∂U E is the vector of entropy variables. As an immediate
consequence of these identities, smooth solutions of (4.3) will satisfy the
additional conservation law

E(U)t + H(U)x + K(U)y = 0. (4.5)

However, this identity is not valid at shocks and has to be modified
accordingly. The entropy identity (4.5) transforms into the entropy in-
equality Dafermos (2000)

E(U)t + H(U)x + K(U)y ≤ 0, (4.6)

in the sense of distributions. Scalar conservation laws are equipped with
an infinite number of entropy/entropy-flux pairs, and this paves the way
for a proof of existence, uniqueness and stability. However, systems of
conservation laws in general do not possess an infinite number of entropy
functions. This is a key difficulty in proving existence and stability
results, particularly in the case of multi-dimensional systems.

However, many interesting systems like the Euler equations of gas
dynamics and the magnetohydrodynamics (MHD) system of plasma
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physics are equipped with at least one physically relevant entropy func-
tion. The shallow water system (4.2) also possesses an entropy function,
the total energy

E =
1
2
(
hu2 + hv2 + gh2) ,

which is the sum of kinetic and gravitational potential energy. A di-
rect calculation reveals that smooth solutions of (4.2) satisfy the energy
conservation law

Et +
(

1
2
(
hu3 + huv2)+ guh2

)
x

+
(

1
2
(
hu2v + hv3)+ gvh2

)
y

= 0.

(4.7)
Integrating (4.7) over space, we obtain

d

dt

∫
R2

E ≡ 0. (4.8)

Hence, the total energy of smooth solutions of (4.2) is conserved.
The above identity is valid only for smooth solutions of (4.2). Energy

will be dissipated at shocks, and the precise rate of this dissipation can
be explicitly calculated from the viscous form (4.1). The energy identity
(4.7) in the presence of viscous terms takes the form,

Et +
(

1
2
(
hu3 + huv2)+ guh2

)
x

+
(

1
2
(
hu2v + hv3)+ gvh2

)
y

= ν
(
u
(
(hux)x + (huy )y

)
+ v
(
(hvx)x + (hvy )y

))
.

(4.9)

Integrating this identity in space and integrating by parts we obtain the
energy dissipation estimate

d

dt

∫
R2

E = −ν

∫
R2

h
(
u2

x + u2
y + v2

x + v2
y

)
. (4.10)

As the height h is always positive, the right-hand side of the above
identity is always non-positive, so we get the energy dissipation

d

dt

∫
R2

E ≤ 0. (4.11)

Thus, we recover the energy inequality that holds for weak solutions
of (4.2). Furthermore, (4.10) gives an explicit rate for the dissipation
of energy into smaller scales. Note that a bound on the total energy E

automatically implies a bound on the L2 norms of height and the velocity
field, as the height is strictly positive. Hence, the energy estimate is
also a statement of stability of solutions of the shallow water system.
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However, energy estimates are not enough to obtain proofs of existence
or uniqueness of solutions.

In the absence of existence results or explicit formulas for the solution
of (4.3), numerical methods are the main tools in the study of these
models. Numerical methods for systems of conservation laws have un-
dergone extensive development in the last few decades, and the subject is
in a fairly mature stage; see LeVeque (2002). The most popular methods
are the so-called finite volume methods. For simplicity, we consider a
uniform Cartesian mesh in R2 with mesh sizes ∆x and ∆y, respectively.
We denote the nodes as xi := i∆x and yj := j∆y and a prototypical
cell as Iij := [xi− 1

2
, xi+ 1

2
)× [yj− 1

2
, yj+ 1

2
). A standard cell-centered finite

volume method consists of updating the cell averages,

Uij (t) :=
1

∆x∆y

∫
Ii j

U(x, y, t)dxdy,

at each time level. For simplicity, we drop the time dependence of every
quantity and write a standard finite volume scheme for (4.3) in the semi-
discrete form as

d

dt
Uij = − 1

∆x

(
Fi+ 1

2 ,j − Fi− 1
2 ,j

)
− 1

∆y

(
Gi,j+ 1

2
− Gi,j− 1

2

)
, (4.12)

where Fi± 1
2 ,j± 1

2
and Gi± 1

2 ,j± 1
2

are numerical fluxes at the cell-edges,
consistent with the fluxes F and G, respectively1. The key step is the
choice of the numerical fluxes. The numerical fluxes are computed using
the neighboring cell-averages across the normal directions of cell-edges,
and high-order accuracy in space is obtained with non-oscillatory recon-
structions of point values from these cell-averages, e.g., Cockburn et al.
(1998), LeVeque (2002) and the references therein. The time-integration
is often performed with strong stability preserving Runge-Kutta meth-
ods, e.g., Gottlieb, Shu and Tadmor (2001). This standard framework
has proved very successful in computing solutions of many interesting
flow problems and is used extensively in practice.

However, very few rigorous stability results are obtained for finite vol-
ume schemes, particularly for systems of conservation laws. One of the
reasons for the lack of stability is the failure to design schemes that sat-
isfy a discrete form of the entropy inequality (4.6). Most finite volume

1 Note that the differential fluxes F (U ), G(U ) depend on the one conserved quantity
U whereas numerical fluxes depend on two or more neighboring cell quantities, e.g.,
Fi+ 1

2 ,j = F (. . . , Uij , Ui+1 ,j , . . .). This enables us to uniquely distinguish between

differential fluxes such as Fij = F (Uij ), and the corresponding numerical fluxes,
e.g., Fi± 1

2 ,j etc.
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schemes (particularly at higher-order) do not necessarily satisfy such
inequalities. This might result in numerical instabilities and the com-
putation of incorrect solutions. Many finite volume schemes (in their
first-order versions) do add enough numerical diffusion to dissipate en-
tropy; however, the diffusion added is excessive and does not respect the
rate of entropy diffusion in the continuous problem.

In the specific context of the shallow water equations (4.2), there are
many different finite volume schemes in use. Most of these schemes do
not preserve energy for smooth solutions (i.e., satisfy discrete versions
of (4.7)), which can lead to significant loss of accuracy, particularly
for problems involving large time scales. Few schemes will respect the
energy balance (4.10) because entropy dissipation at shocks is too ex-
cessive. This can lead to both instabilities as well as numerical artifacts.
See Arakawa (1966), Arakawa and Lamb (1977), Arakawa and Lamb
(1981) for a detailed discussion on numerical effects of schemes that do
not respect the energy balance in shallow water equations.

In the pioneering papers of Tadmor (1987) and (2003), the problem
of designing finite volumes schemes which satisfy discrete versions of
the entropy inequality (4.6) was tackled . The main feature of Tad-
mor (1987) was the design of an entropy conservative finite volume flux,
i.e., consistent numerical fluxes F̃i± 1

2 ,j and G̃i,j± 1
2
, which ensure that

the numerical scheme (4.12) satisfies the entropy identity (4.5). Then,
a novel entropy comparison principle is introduced in order to design
an entropy stable scheme – a scheme that satisfies a discrete version
of the entropy inequality. The idea is to compare the numerical diffu-
sion of any given finite volume scheme with the diffusion of the entropy
conservative scheme. A scheme that contains more diffusion than an
entropy conservative scheme is entropy stable. Thus, one is able to in-
vestigate entropy stability using a comparison principle. Tadmor (1987)
did not, however, contain explicit expressions for any interesting systems
of conservation laws. A novel pathwise decomposition was introduced in
Tadmor (2003) in order to obtain an explicit formula for the entropy con-
servative scheme. This approach was used in Tadmor and Zhong (2006)
to compute solutions of the Euler equations, and in Tadmor and Zhong
(2008) to approximate the shallow water equations. In both papers the
authors used the explicit entropy conservative scheme of Tadmor (2003)
to compute the solutions and used this scheme as a basis for a “faithful”
discretization of the entropy (energy) balance.

Our aim in this paper is to consider energy preserving and energy
stable discretizations of the shallow water system. We consider three
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different energy preserving finite volume schemes: The original entropy
conservative scheme of Tadmor (1987), which can be explicitly inte-
grated in the case of shallow water equations in one dimension; the
pathwise explicit scheme of Tadmor (2003), Tadmor and Zhong (2008);
and a novel explicit energy preserving scheme. We compare the three
energy preserving schemes, and find that the new explicit entropy pre-
serving scheme is both simpler to implement and computationally less
expensive compared to the other two schemes. We use this new energy
conservative scheme to design novel numerical diffusion operators that
result in energy stable schemes. The schemes are implemented in a se-
ries of numerical experiments which illustrate their different features in
the one-dimensional setup, in Section 4.2 and with the two-dimensional
problems, in Section 4.3. Conclusions are drawn in Section 4.4.

4.2 The One-Dimensional Problem

For simplicity of the description, we start with the one-dimensional form
of the inviscid shallow water system (4.2),

ht + (hu)x = 0,

(hu)t +
(
hu2 +

1
2
gh2
)

x
= 0.

(4.13)

These equations are obtained from (4.2) simply by ignoring variation in
the y-direction and setting the vertical velocity component v = 0.

The above equation is a form of the generic one-dimensional system
of conservation laws,

Ut + Fx = 0, (4.14)

with U the n-vector of unknowns and F = F (U) the flux vector. Assume
that an entropy/entropy-flux function pair (E,H) exists, so that

E(U)t + H(U)x = 0. (4.15)

Define the vector of entropy variables as V := ∂U E. For the one-
dimensional shallow water system, the entropy function is given by the
energy, E = 1

2 (hu2 + gh2), which for smooth solutions satisfies

Et +
(

1
2
hu3 + guh2

)
x

= 0. (4.16)

The vector V takes the form V =
[
gh − u2

2
, u
]�

. Define the entropy
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potential as Ψ := 〈V, F 〉 − H. A direct calculation shows that for the

one-dimensional shallow water equations, Ψ is given by Ψ =
1
2
guh2 .

Our aim is to design a finite volume scheme for (4.14) that satisfies a
discrete form of the entropy identity (4.15). A finite volume scheme (in
semi-discrete form) on a uniform mesh xi = i∆x is given by,

d

dt
Ui = − 1

∆x
(Fi+ 1

2
− Fi− 1

2
), (4.17)

where Ui is the cell average on [xi− 1
2
, xi+ 1

2
) and Fi+ 1

2
is the numerical

flux at the interface xi+ 1
2
.

As mentioned in the introduction, an arbitrary choice of a consistent
numerical flux is not enough to satisfy a discrete version of the entropy
identity (4.15). Instead, we follow the general procedure introduced in
Tadmor (1987) to define an entropy preserving numerical flux. Here and
below we use the following abbreviations

Vi = V (Ui), Fi = F (Ui), Ψi = Ψ(Ui),

[[ai+ 1
2
]] := ai+1 − ai, ai+ 1

2
:=

1
2
(ai + ai+1),

where [[ai+ 1
2
]] represents the jump of a across the interface at xi+ 1

2
.

Theorem 4.1 (Tadmor (1987)) Consider the one-dimensional system
of conservation laws (4.14) with entropy function E, entropy variables
V , entropy flux F and potential Ψ, as defined above. Let F̃i+ 1

2
be a

numerical flux, consistent with (4.14), that satisfies

〈
[[
Vi+ 1

2

]]
, F̃i+ 1

2
〉 =

[[
Ψi+ 1

2

]]
. (4.18)

Then, the scheme (4.17) satisfies the discrete entropy identity

d

dt
E(Ui(t)) = − 1

∆x
(H̃i+ 1

2
− H̃i− 1

2
), (4.19)

with numerical entropy flux H̃i+ 1
2

:= 〈V i+ 1
2
, F̃i+ 1

2
〉 − Ψi+ 1

2
. Summing

over all i, we end up with the conservation law
d

dt

∑
i

E(Ui(t)) ≡ 0.

Hence, the finite volume scheme (4.17), (4.18) is energy preserving.

The proof of the above theorem can be found in Tadmor (1987). The
theorem is very general and the key ingredient for obtaining entropy
preserving fluxes is the condition (4.18).

Note that the condition (4.18) provides a single constraint for a flux to
be entropy conservative. We will reserve the notation of F̃ to distinguish
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such entropy conservative fluxes. Thus, for example, when n = 1 entropy
conservative fluxes are uniquely determined as F̃i+ 1

2
=
[[
Ψi+ 1

2

]]
/
[[
Vi+ 1

2

]]
.

For general n× n systems, however, the choice of an entropy preserving
flux in (4.14) is not unique for n > 1. Given this fact, we proceed to
describe three different choices of entropy conservative fluxes for the 1D
shallow water system (4.13).

4.2.1 Scheme I: Averaged Energy Conservative (AEC) Scheme

We start with an entropy conservative scheme that was first proposed in
Tadmor (1987) for a general system (4.14). For ξ ∈ [−1/2, 1/2], define
the straight line

Vi+ 1
2
(ξ) =

1
2
(Vi + Vi+1) + ξ(Vi+1 − Vi).

Clearly, Vi+ 1
2

connects the vectors Vi and Vi+1. Next, we define the
numerical flux as

F̃i+ 1
2

=
∫ 1/2

−1/2
F
(
Vi+ 1

2
(ξ)
)

dξ. (4.20)

This flux represents the path integral of the flux along a straight line
connecting two adjacent states in phase space. Clearly, this flux is con-
sistent and it was shown in Tadmor (1987) that it is also entropy con-
servative. This follows from a straightforward calculation showing that
(4.20) satisfies the identity (4.18).

In general, (4.20) cannot be evaluated explicitly in the phase space.
But we will see that for the simple case of shallow water equations,
the path integral can be explicitly computed in terms of the physical
variables although the resulting formulas are still quite complicated. A
long direct calculation of the integral in (4.20) for the shallow water
system yields the following formulas:

F
(1)
i+ 1

2
=

hiui

3
+

hi+1ui+1

3
+

hiui+1

6
+

hi+1ui

6

− u3
i

24
−

u3
i+1

24
+

uiu
2
i+1

24
+

ui+1u
2
i

24

F
(2)
i+ 1

2
=

1
12

hiu
2
i +

1
12

hi+1u
2
i+1 +

1
6
hiu

2
i+1 +

1
6
hi+1u

2
i

+
1
4
hiuiui+1 +

1
4
hi+1uiui+1 +

7g

24
h2

i +
7g

24
h2

i+1

− g

12
hihi+1 +

1
96

u4
i +

1
96

u4
i+1 −

1
48

u2
i u

2
i+1 .

(4.21)
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A direct calculation verifies that this flux is indeed energy preserving.
Note that the flux is symmetric in its arguments, and it is easy to check
that it is consistent. The main problem with this flux is the complexity
of the formulas: This 1D computation is rather specific and a similar
calculation to obtain an explicit form of (4.20) for the two-dimensional
shallow water system (4.2) becomes algebraically intractable. This ne-
cessitates the search for alternative fluxes satisfying (4.18).

4.2.2 Scheme II: Pathwise Energy Conservative (PEC) Scheme

An explicit solution of (4.18) was found in Tadmor (2003). This scheme
was implemented for the shallow water system (4.2) in Tadmor and
Zhong (2008), and we mention it here simply for the sake of completeness
and comparison.

Consider the n× n system of conservation laws (4.14). Let {rk}, {lk}
for k = 1, . . . , n be any orthogonal eigensystem that spans Rn . At
an interface xi+ 1

2
, we have the two adjacent entropy variable vectors

V [0] := Vi and V [n ] := Vi+1. Then, define the following paths:

V [0] = Vi,

V [k ] = V [k−1] + 〈
[[
Vj+ 1

2

]]
, lk 〉rk for k = 1, . . . , n.

Note that V [n ] = Vi+1. We are replacing the straight line joining the
two adjacent states in the flux (4.20) by a piecewise linear path that
corresponds to the basis vectors. Now define, for k = 1, 2, . . . , n,

F̃ [k ] =
Ψ(V [k ]) − Ψ(V [k−1])

〈
[[
Vj+ 1

2

]]
, lk 〉

lk . (4.22)

Then the PEC flux is given by

F̃i+ 1
2

=
n∑

k=1

F̃ [k ]. (4.23)

To show that this flux is entropy conservative, multiply both sides of
(4.23) with

[[
Vi+ 1

2

]]
to get

〈
[[
Vi+ 1

2

]]
, F̃i+ 1

2
〉 =

n∑
k=1

(
Ψ(V [k ]) − Ψ(V [k−1])

)
= Ψ(V [n ]) − Ψ(V [0]) =

[[
Ψi+ 1

2

]]
.

Consistency of this flux has been shown in Tadmor (2003). The only re-
maining step in designing the flux is to specify the choice of the path, i.e.,
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of the orthogonal eigensystem. Following Tadmor and Zhong (2008) and
(2006), we take the path given by the eigenvectors of a Roe matrix cor-
responding to the shallow water system. Details of the implementation
are provided in Tadmor and Zhong (2006). A significant modification
is made in Remark 3.5 of Tadmor and Zhong (2006) to treat the case
where 〈

[[
Vj+ 1

2

]]
, lk 〉 vanish, making the flux F̃ [k ] in (4.22) singular; this

case has been treated in Tadmor and Zhong (2006) and (2008).
The main feature of the flux (4.23) is its generality. It provides a

recipe to construct entropy conservative schemes for any system. The
main difficulty, though, is its computational cost, which is high because
one has to evaluate the eigensystem and solve for the orthogonal sys-
tem for every mesh point. Even though it has been implemented for
both the shallow water and Euler equations, we would like to find a
energy preserving flux which is computationally cheaper and easier to
implement.

4.2.3 Scheme III: Explicit Energy Conservative (EEC) Scheme

Both of the above schemes can be explicitly written down and imple-
mented, although at a high computational cost. Our aim is to design
a much simpler scheme. To construct the entropy conservative flux at
the interface xi+ 1

2
we will use the following identity between jumps and

averages, [[
ai+ 1

2
bi+ 1

2

]]
≡ bi+ 1

2
[[ai+ 1

2
]] +

[[
bi+ 1

2

]]
ai+ 1

2
. (4.24)

In order to satisfy the entropy preserving constraint (4.18) for the special
case of the shallow water equations (4.13) we use (4.24) to express the
jumps across xi+ 1

2
in terms of the jumps in the primitive variables h and

u. We have[[
V

(1)
i+ 1

2

]]
=
[[
ghi+ 1

2
− 1

2 u2
i+ 1

2

]]
= g
[[
hi+ 1

2

]]
− ui+ 1

2
[[ui+ 1

2
]],[[

V
(2)
i+ 1

2

]]
= [[ui+ 1

2
]],[[

Ψi+ 1
2

]]
=

1
2
g
[[
ui+ 1

2
h2

i+ 1
2

]]
= gui+ 1

2
hi+ 1

2

[[
hi+ 1

2

]]
+

g

2
(h2)i+ 1

2
[[ui+ 1

2
]].

Writing down the desired flux componentwise as F̃i+ 1
2

=
[
F̃

(1)
i+ 1

2
, F̃

(2)
i+ 1

2

]
,

inserting all the above quantities into (4.18) and then equating jumps
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in h and u, we get the following set of equations:

F̃
(1)
i+ 1

2
= hi+ 1

2
ui+ 1

2
,

F̃
(2)
i+ 1

2
− ui+ 1

2
F̃

(1)
i+ 1

2
=

g

2
(h2)i+ 1

2
.

Solving the above equations, we get

F̃
(1)
i+ 1

2
= hi+ 1

2
ui+ 1

2
,

F̃
(2)
i+ 1

2
= hi+ 1

2

(
ui+ 1

2

)2
+

g

2
(h2)i+ 1

2
.

(4.25)

Thus, we can write down the energy preserving flux explicitly by ex-
panding (4.25) as

F̃
(1)
i+ 1

2
=
(

hi + hi+1

2

)(
ui + ui+1

2

)
,

F̃
(2)
i+ 1

2
=
(

hi + hi+1

2

)(
ui + ui+1

2

)2

+
g

2
(
h2

i + h2
i+1
)
.

(4.26)

Clearly the flux (4.26) is energy preserving as well as consistent. It is
symmetric and second-order accurate in space (as shown by a simple
truncation error analysis). It is also extremely easy to code. Further-
more, numerical experiments will reveal that the flux is very cheap com-
putationally and is robust. The above flux is similar in spirit, though
different in details, to the entropy conservative flux for the Euler equa-
tions of gas dynamics designed in Roe (2006).

Remark 4.1 Both the AEC scheme (4.21) and the PEC scheme (4.23)
were based on integrating the flux along a suitable path in the space
of energy variables. The AEC scheme relied on a straight line path
connecting the adjacent states whereas the PEC scheme was based on a
piecewise straight line path parallel to eigenvectors of the Jacobian of the
flux. A natural question arises — can the EEC scheme (4.26) be written
as an energy preserving flux using integration along a suitable path in
the phase space of energy variables? We were unable to obtain such
a path; however, we believe it exists, and if so, it would be extremely
interesting if it can be written down explicitly.

4.2.4 Time Stepping

The three energy conservative schemes above were formulated in the
semi-discrete framework (4.17). We also need to describe the discrete
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time evolution in order to compute approximations to (4.13) and to this
end, we choose two different time stepping schemes. First, note that
all the three energy preserving schemes are central schemes and hence
unstable when used together with the forward Euler method. Therefore,
we need to use Runge-Kutta methods to stabilize the computations.
Furthermore, it is advisable to use the strong-stability preserving (SSP)
Runge-Kutta methods developed in Gottlieb, Shu and Tadmor (2001).
Given a numerical flux F , let L(Un

i ) denote the net flux into grid cell i

at time tn , i.e.,

L(Un
i ) := − 1

∆x

(
Fi+ 1

2
− Fi− 1

2

)
.

L(Un
i ) is precisely the right-hand side of the finite volume scheme (4.17).

We use the following second-order SSP Runge-Kutta method of Gottlieb,
Shu and Tadmor (2001), identified below as RK2:

U∗
i = Un

i + ∆tL(Un
i )

U∗∗
i = U∗

i + ∆tL(U∗
i )

Un+1
i =

1
2
(Un

i + U∗∗
i ),

(RK2)

and the third-order SSP Runge-Kutta method of Gottlieb, Shu and Tad-
mor (2001), denoted RK3:

U∗
i = Un

i + ∆tL(Un
i )

U∗∗
i =

3
4
Un

i +
1
4
U∗

i +
∆t

4
L(U∗

i )

Un+1
i =

1
3
Un

i +
2
3
U∗∗

i +
2∆t

3
L(U∗∗

i ).

(RK3)

4.2.5 Energy Preserving Schemes: Numerical Experiments 1–2

We have three different energy preserving schemes for the shallow water
system. We denote the finite volume scheme (4.17) with the energy
conservative fluxes (4.21), (4.23) and (4.26) as AEC, PEC and EEC
schemes, respectively. Our aim in this section is to compare these three
schemes on a series of numerical experiments in one space dimension.
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Numerical experiment #1: one-dimensional dam break

We start with a standard one-dimensional dam-break Riemann problem
with initial data,

h(x, 0) =
{

2 if x < 0,

1.5 if x > 0,
u(x, 0) ≡ 0. (4.27)

In this problem, the initial data itself is discontinuous, and the exact
solution consists of a left going rarefaction and a right going shock. We
set the acceleration due to gravity to be g = 1. The computational
domain is [−1, 1] with 100 mesh points. We use RK2 time stepping
scheme at a CFL number of 0.45, and we compute up to time t = 0.4.
All the computations are performed with transparent Neumann type
boundary conditions.

To begin with, we show the heights computed with the AEC, PEC
and EEC schemes. The results are shown in Figure 4.1. In this figure,
we also show a time history of the energy computed with all the three
schemes.

As shown in Figure 4.1, all the three schemes are capturing the es-
sential properties of the correct solution. The dam-break problem has
a shock, and energy should be dissipated at a shock. Since the AEC,
EEC and PEC schemes are energy preserving, the energy dissipation at
the shock does not take place. Instead, the energy preserving schemes
simply redistribute the energy into smaller scales in the form of oscilla-
tions trailing the shocks. This behavior is standard for energy (entropy)
conservative schemes; see Tadmor and Zhong (2008) and the references
therein. There is very little difference between the computed solutions.

Next we compute the behavior of the energy as a function of time.
Figure 4.1 shows growth of energy of order 10−4 for all three schemes.
The energy plots of the EEC and PEC schemes lie on top of each other,
while the AEC scheme produces slightly more energy – at least initialy.
This small-magnitude energy growth, which may appear puzzling at first
sight, is solely due to time discretization. In fact, an RK2 time dis-
cretization of entropy conservative scheme will produce energy of order
O(∆t)3 , which explains the growth of energy as seen in Figure 4.1. We
note in passing that fully discrete entropy conservative time-integration
schemes are discussed in Tadmor (2003), LeFloch, Mercier and Rohde
(2002).
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Fig. 4.1. Height h at t = 0.4 computed with the three energy conservative
schemes on 100 mesh points with an RK2 method and a time history of energy
computed with all the three schemes.

Effect of time stepping

The above comments need to be verified with more computations and
variation of the time stepping routine and the CFL number. We there-
fore compare the semi-discrete EEC scheme which is discretized by the
second- and third-order Runge-Kutta time stepping, RK2 and RK3,
computed with CFL numbers 0.45 and 0.05. The energy history is com-
puted and shown in Figure 4.2. This figure shows the effect time step-
ping schemes have on the energy balance. Comparing the RK2 results
with two different CFL numbers reflects energy growth of order O(∆t)3 .
Thus, the energy growth of ∼ 10−7 corresponding to a CFL number 0.05
is three orders of magnitude smaller than the energy growth of ∼ 10−4

for a CFL number 0.45.
Next, we discuss the effect of using a higher-order time integration

scheme. Observe that the third-order RK3 actually dissipates energy.
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Fig. 4.2. A time history of energy E computed with the EEC scheme on 100
mesh points for two different RK schemes at two different CFL numbers.

Indeed, consideration of absolute stability regions implies that one needs
at least third-order discretizations to enforce energy dissipation of en-
tropy conservative scheme, e.g., Tadmor (2002). Moreover, energy dissi-
pates at a rate of order O(∆t)3 , ranging from ∼ 10−5 with CFL = 0.45
to ∼ 10−8 with CFL = 0.05. Similar results, which we omit, were found
for the PEC and AEC schemes.

Effect of resolution: Numerical experiment #2

Another issue of interest for energy preserving schemes is the nature
of their dispersive oscillations. To this end we compute the EEC-RK2
scheme with CFL number of 0.45 on four different meshes using 100,
400, 800 and 1600 mesh points, respectively. As shown in Figure 4.3, the
solution becomes more and more oscillatory as the mesh is refined. Re-
gardless of mesh size, the amplitude of the oscillations remains bounded
and is of the order of the jump in the initial height. However, the fre-
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Fig. 4.3. Height h at time t = 0.4 computed with EEC scheme and RK2 at
CFL 0.45 on four different meshes.

quency of the oscillations keeps increasing until a well-defined wave train
is formed behind the shock. In fact, the frequency of the oscillations is
at the scale of the mesh size. This wave-train is often referred to as a
modulation, and is an interesting object of study, see e.g., Goodman and
Lax (1988), Hou and Lax (1991) for more details). This behavior is ex-
pected as energy, which must be dissipated at shocks, is trapped by our
energy preserving scheme, and non-linear dispersive effects redistributes
this energy into the smallest resolvable scale on the computational grid,
in the form of modulated high-frequencies.

Computational cost

Given the similarities in the behavior of the three energy preserving
schemes, a key point is their computational cost. To compare the cost
of these schemes we consider the above problem on a fixed mesh of 100
grid points and use the RK2 method of time integration. Then, we
change the time step in three different computations so that the energy
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change is about 10−3 , 10−4 and 10−5 , respectively. We have attempted
to optimize all the schemes as much as possible to obtain a fair compari-
son of run-times. All the three schemes were implemented in C++ using
the Blitz++ numerical linear algebra package. The PEC scheme in par-
ticular needs to be carefully implemented to obtain optimized run-times.

Energy error 10−3 10−4 10−5

EEC 1 1.69 3.49
PEC 2.61 4.68 10.47
AEC 1.14 1.91 -

Table 4.1. Normalized run-times for the three energy preserving
schemes on the one-dimensional dam-break problem with three different

levels of error in energy.

In Table 4.1, we show the normalized run-times with the three differ-
ent schemes. The times are normalized in units where 0.0126 seconds
represents unity. As shown in this table, the EEC scheme is the fastest.
In fact, the PEC scheme is about three times slower than the EEC
scheme for the same level of energy error. The AEC scheme is about
1.2 times slower than the EEC scheme. We were unable to obtain a
time step small enough so that the AEC scheme gave an energy error of
about 10−5 .

Summarizing, we see that all the three energy preserving schemes pre-
serve energy to a satisfactory level. The energy dissipation/production
due to explicit time stepping can be reduced by using smaller time steps
and higher-order time integration methods. The presence of shocks in
the computed solution results in high-frequency oscillations as energy
is distributed into smaller scales. In terms of computational cost, the
EEC scheme is the best, being about three times cheaper than the PEC
scheme. This is expected as the PEC requires eigenvector decomposi-
tions at each cell interface. The EEC scheme, on the other hand, is
explicit and requires only a few simple floating point operations.

4.2.6 Eddy Viscosity: Numerical Experiment 3

We obtain the one-dimensional form of the shallow water equations with
eddy viscosity (4.1) by setting v and all change in y-direction to zero.
The energy preservation of the inviscid form is no longer true in the
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context of (4.1) as energy will dissipate due to the viscous terms. The
precise rate of energy dissipation is given by the one-dimensional form of
the estimate (4.10). One of the key aims of designing energy preserving
schemes is to obtain a faithful discretization of this energy dissipation
balance.

We start by writing down the following scheme for the one-dimensional
shallow water equations with eddy viscosity in semi-discrete form,

dUi(t)
dt

+
1

∆x

(
F̃i+ 1

2
− F̃i− 1

2

)
=

ν

∆x

(
Qi+ 1

2
− Qi− 1

2

)
. (4.28)

Here, Fi+ 1
2

is any energy preserving flux so that (4.18) holds, and Qi+ 1
2

is a discretization of the viscous terms:

Qi+ 1
2

=
[
0, hi+ 1

2

(ui+1 − ui

∆x

)]�
. (4.29)

Note that (4.28) is a consistent discretization of (4.1) in one space di-
mension.

Lemma 4.1 Consider the viscous form of the shallow water equations
(4.1) in one space dimension. Let E := 1

2

(
hu2 + gh2

)
denote the en-

ergy and let F̃i+ 1
2

be any consistent, energy preserving numerical flux
satisfying (4.18). Then, the solution Ui of the “eddy viscosity” scheme
(4.28),(4.29) satisfies the discrete energy dissipation

d

dt
E(Ui(t)) = − 1

∆x

(
H̃i+ 1

2
− H̃i− 1

2

)
− ν

2

(
hi+ 1

2

(
ui+1 − ui

∆x

)2

+ hi− 1
2

(
ui − ui−1

∆x

)2
)

,

(4.30)
where

H̃i+ 1
2

:=
〈
V i+ 1

2
, Fi+ 1

2

〉
− Ψi+ 1

2
− hi+ 1

2
ui+ 1

2

[[ui+ 1
2
]]

∆x
.

Summing over all i, we get the following energy dissipation estimate:

d

dt

∑
i

Ei ≡ −ν

2

∑
i

(hi + hi+1)
(

ui+1 − ui

∆x

)2

.

Hence the finite volume scheme (4.28) leads to a discrete form of the
exact energy balance (4.10).

The proof follows by direct calculations with energy preserving fluxes;
see Theorem 5.1 in Tadmor and Zhong (2008) for details.
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Thus, any energy preserving flux together with a central discretization
of the viscous terms as in (4.28) results in a faithful discretization of
the energy balance for the viscous form of the shallow water equations.
We will check this fact and study its implications by considering the
following numerical experiment.

Numerical experiment with eddy viscosity

We consider the viscous form (4.1) in one space dimension together
with the viscosity parameter ν = 0.01 and the initial data given by the
one-dimensional dam-break problem (4.27). Since the results with all
the three energy preserving fluxes were so similar, we only report on
the results obtained with the EEC scheme, together with a central dis-
cretization of viscous terms (4.28). Time integration is performed with
an RK2 scheme with a CFL number that takes into account the viscous
terms in the scheme. We choose the CFL number of 0.1 in subsequent
computations. The results in Figure 4.4 show that the EEC scheme to-
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(b) EEC (ν = 0.01),400 points
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(c) EEC (ν = 0.01), 800 points
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(d) EEC (ν = 0.01),1600 points

Fig. 4.4. Height h at time t = 0.4 computed with EEC scheme, RK2 at CFL
0.1 and central discretization of viscous terms (4.28) with eddy viscosity ν =
0.01 on four different meshes.
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gether with eddy viscosity results in a stable and robust approximation
of the viscous shallow water equations. The right-going shock is dissi-
pated as we are using a relatively large eddy viscosity ν = 0.01. These
results should be contrasted with plots from inviscid schemes shown in
Figure 4.3. We see that the addition of the physical eddy viscosity leads
to a dramatic reduction of the oscillations generated by the energy pre-
serving scheme. Clearly, the addition of physical viscosity leads to an
energy dissipation of the form (4.30), and the energy balance is faith-
fully discretized. However, we see from Figure 4.4 that small amplitude,
high-frequency oscillations are still present on under-resolved meshes.
As the mesh is refined, the amplitude of these oscillations is further
reduced and the oscillations are hardly visible on a fine mesh of 1600
points. This behavior is consistent with expectations: the scales in the
computed solution are given in terms of a mesh Reynolds number and
we need to resolve them in order to obtain a solution without any os-
cillations. The mesh Reynolds number in this example appears to yield
a mesh of roughly 1600 points to resolve all the scales in the viscous
problem. An extreme illustration of the effect of eddy viscosity is ob-
tained by comparing the approximate heights computed on 1600 mesh
points with the EEC scheme and ν = 0 (inviscid) and ν = 0.01 (viscous)
eddy viscosities. We consider the bottom right figures in Figure 4.3 and
4.4, respectively, and observe that the addition of viscosity dampens the
oscillations dramatically.

4.2.7 Numerical Diffusion: Numerical Experiments 4–5

The previous section clearly illustrates the role of eddy viscosity in de-
signing a stable numerical scheme for shallow water equations. The key
observation is the need to resolve the viscous scales of the problem. The
use of physical eddy viscosity is constrained by the fact that eddy vis-
cosity in real physical applications is expected to be very small (smaller
than 10−2). This implies that we need to compute on very fine meshes in
order to resolve all the viscous scales. Since this necessitates using large
computational resources, we need to find an alternative way of designing
stable numerical schemes for real world applications.

The standard way of designing stable schemes for problems with shocks
in the finite volume framework is to add numerical diffusion. The nu-
merical diffusion is built into the structure of numerical fluxes. In fact,
standard finite volume fluxes F̃i+ 1

2
for the system (4.17) based on 3-point
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stencils can be written in the viscous form (consult Tadmor (1984))

Fi+ 1
2

= F (Ui, Ui+1) =
1
2
(
F (Ui) + F (Ui+1)

)
−Qi+ 1

2

(
Vi+1 − Vi

)
, (4.31)

where Qi+ 1
2

is a suitable numerical diffusion matrix coefficient. One of
the fundamental results of Tadmor (1987) was to provide a criterion for
whether the flux in (4.31) is entropy stable or not. We restate this result
in the following lemma.

Lemma 4.2 (Tadmor (1987)) Assume that the system of conservation
laws (4.14) is equipped with an entropy/entropy flux pair (E,F ). Let
Fi+ 1

2
be a finite volume numerical flux consistent with (4.14), and let

F̃i+ 1
2

be an entropy conservative numerical flux so that (4.18) holds. Let

Qi+ 1
2

and Q̃i+ 1
2

be the corresponding numerical diffusions associated

with Fi+ 1
2

and F̃i+ 1
2
, respectively. If

Qi+ 1
2
≥ Q̃i+ 1

2
∀ i (4.32)

(in the sense that Qi+ 1
2
− Q̃i+ 1

2
is a symmetric positive definite matrix),

then the scheme
dUi(t)

dt
= − 1

∆x

(
Fi+ 1

2
− Fi− 1

2

)
(4.33)

is entropy stable, i.e.,
d

dt

∑
i

E(Ui(t)) ≤ 0.

In words — a finite volume flux, with more numerical viscosity than
the entropy conservative flux, necessarily dissipates entropy and hence
is stable. Several examples of entropy preserving fluxes were specified
in Tadmor (1987) and in Tadmor (2003). We shall mention two in the
context of the shallow water system (4.13).

(i) Rusanov flux. This energy stable flux takes the form,

FRus
i+ 1

2
=

1
2
(F (Ui) + F (Ui+1)) − max

k
{|(λk )i |, |(λk )i+1 |} (Ui+1 − Ui),

(4.34)
where (λk )i are the eigenvalues of F ′(Ui),

(λ1)i = ui −
√

ghi, (λ2)i = ui +
√

ghi.

Note that the diffusion is scaled by a local estimate of the speed of
propagation.
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(ii) Roe flux. This well-known flux is given by

FRoe1
i+ 1

2
=

1
2
(
F (Ui) + F (Ui+1)

)
−Ri+ 1

2
|Λi+ 1

2
|R−1

i+ 1
2
(Ui+1 −Ui), (4.35)

where

|Λi+ 1
2
| = diag{|(λ1)i+ 1

2
|, |(λ2)i+ 1

2
|}

and

Ri+ 1
2

=

[
1 1
(λ1)i+ 1

2
(λ2)i+ 1

2

]
for some suitable average states Ui+ 1

2
. It was shown in Tadmor (1987)

that the Roe flux, together with some appropriate entropy fix, is en-
tropy stable. The choice of the parameters in the entropy fix was
described in detail in Tadmor (2003).

It is well-known that the Rusanov flux (4.34) can be too diffusive for
practical applications. The Roe flux (4.35) is much less diffusive and
the shocks are captured sharply. In particular, choosing

hi+ 1
2

=
hi + hi+1

2
, ui+ 1

2
=

√
hiui +

√
hi+1ui+1√

hi +
√

hi+1
,

as the average states in (4.35) ensures that isolated single shocks are
resolved exactly. However, the Roe flux lacks entropy stability and we
refer to Tadmor (2003) for a discussion on entropy stable modifications
of the Roe flux.

Here we propose a novel choice of a numerical diffusion flux for (4.13),
in the spirit of a Roe flux, which is energy stable . The resulting numer-
ical flux is designed in two steps. In the first step, we will replace the
central part of the flux, (f(Ui) + f(Ui+1))/2, with the energy preserving
fluxes satisfying (4.18); we can choose any of the three energy preserv-
ing fluxes for the shallow water equation. The next step is to design a
numerical diffusion operator. Here, we need the following simple lemma.

Lemma 4.3 Consider the shallow water equations in one dimension,
together with energy E = (gh2 + hu2)/2 and the energy variables V =[
gh − u2

2 , u
]�

. Let the values Ui, Ui+1 across an interface be given.

(i) We have the identity[[
Ui+ 1

2

]]
= (UV )i+ 1

2

[[
Vi+ 1

2

]]
, (4.36)
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where

(UV )i+ 1
2

=
1
g

[
1 ui+ 1

2

ui+ 1
2

(u2)i+ 1
2

+ ghi+ 1
2

]
and hi+ 1

2
and ui+ 1

2
are the arithmetic averages across the inter-

face.
(ii) Define the scaled matrix of right eigenvectors of F ′(Ui+ 1

2
) for

some averaged state Ui+ 1
2
:

Ri+ 1
2

=
1√
2g

[
1 1
(λ1)i+ 1

2
(λ2)i+ 1

2

]
. (4.37)

Then we have

Ri+ 1
2
R�

i+ 1
2

= (UV )i+ 1
2
, (4.38)

where UV is the symmetric positive definite change of variables
matrix

(UV )i+ 1
2

=
1
g

[
1 ui+ 1

2

ui+ 1
2

u2
i+ 1

2
− ghi+ 1

2

]
evaluated at the same average state.

The proof of the above identities follows by a straightforward calculation
which we omit. Note that part (i) of the lemma above provides an
appropriate average state at which the jump of the conservative variables
can be expressed in terms of the jump of the energy variables. This state
is not the arithmetic average of the conservative variables, but rather
of the primitive variables. Part (ii) provides a suitable scaling for the
eigenvectors.

This lemma can be used to design a suitable Roe-type diffusion oper-
ator. We consider the usual Roe diffusion, QRoe1

i+ 1
2

in (4.35), evaluated at
the average states in (4.36) and use Lemma 4.3 to obtain,

QRoe1
i+ 1

2

[[
Ui+ 1

2

]]
= Ri+ 1

2
|Λi+ 1

2
|R−1

i+ 1
2

[[
Ui+ 1

2

]]
,

= Ri+ 1
2
|Λi+ 1

2
|R−1

i+ 1
2
(UV )i+ 1

2

[[
Vi+ 1

2

]]
, (by (4.36))

= Ri+ 1
2
|Λi+ 1

2
|R−1

i+ 1
2
Ri+ 1

2
R�

i+ 1
2

[[
Vi+ 1

2

]]
, (by (4.38))

= Ri+ 1
2
|Λi+ 1

2
|R�

i+ 1
2

[[
Vi+ 1

2

]]
.

These formal calculations suggest that we can choose a numerical dif-
fusion operator in terms of the energy variables with proper scaling of
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the eigenvectors and evaluation of the eigenvalues and eigenvectors at
an appropriate state.

Now, let F̃i+ 1
2

be any energy preserving numerical flux (4.18). We
introduce the following Roe-type flux:

FERoe1
i+ 1

2
= FERoe1(Ui, Ui+1) := F̃i+ 1

2
− 1

2
Ri+ 1

2
|Λi+ 1

2
|R�

i+ 1
2

[[
Vi+ 1

2

]]
,

(4.39)
where Ri+ 1

2
is as defined in (4.37), and

|Λi+ 1
2
| = diag

{
|ui+ 1

2
−
√

ghi+ 1
2
|, |ui+ 1

2
+
√

ghi+ 1
2
|
}

.

FERoe1
i+ 1

2
is clearly consistent. It differs from the usual Roe flux (4.35) in

that the central term is an energy preserving flux, and that the diffusion
is given in terms of energy variables rather than conservative variables.
We refer to FERoe1

i+ 1
2

as entropic Roe flux : indeed, the associated scheme
is entropy stable as quantified in the following theorem.

Theorem 4.2 Let Ui be the solution of the entropic Roe scheme

dUi(t)
dt

= − 1
∆x

(
FERoe1

i+ 1
2

− FERoe1
i− 1

2

)
. (4.40)

Then the following discrete energy estimate holds:

d

dt
(E(Ui)(t)) = − 1

∆x
(H̃i+ 1

2
− H̃i− 1

2
)

− 1
4∆x

〈[[
Vi+ 1

2

]]
, Ri+ 1

2
|Λi+ 1

2
|R�

i+ 1
2

[[
Vi+ 1

2

]]〉
− 1

4∆x

〈[[
Vi− 1

2

]]
, Ri− 1

2
|Λi− 1

2
|R�

i− 1
2

[[
Vi− 1

2

]]〉
,

(4.41)

where

H̃i+ 1
2

:=
〈
V i+ 1

2
, F̃i+ 1

2

〉
− Ψi+ 1

2
+

1
2

〈
V i+ 1

2
, Ri+ 1

2
|Λi+ 1

2
|R�

i+ 1
2

[[
Vi+ 1

2

]]〉
.

Summing over all i, we get the following energy dissipation estimate:

d

dt

∑
i

Ei = − 1
2∆x

∑
i

〈[[
Vi+ 1

2

]]
, Ri+ 1

2
|Λi+ 1

2
|R�

i+ 1
2

[[
Vi+ 1

2

]]〉
.

In particular, since the matrix R|Λ|R� is symmetric non-negative defi-
nite, the scheme (4.40) is energy stable.

The proof of this theorem is a straightforward generalization of the proof
of entropy stability with numerical diffusion in entropy variables (consult
Tadmor (1987),(2003)): one multiplies both sides of (4.33) by Vi and
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summation by parts while taking into account the energy preserving
flux and the special form of the diffusion matrix in (4.39) yields the
energy estimate (4.41).

Remark 4.2 The idea of defining the numerical diffusion operator for
finite volume fluxes in terms of entropy variables is not new but was
proposed in Tadmor (1986),(1987) and subsequently, was used in Hughes
Franca and Mallet (1986), Khalfallah and Lerat (1989) and others. The
specific structure of the diffusion operator in (4.39), however, is novel
for the shallow water equations. The flux (4.39) is less dissipative than
the Rusanov flux and does not need an entropy fix like the Roe flux.

Numerical experiments with numerical diffusion

We present a series of one-dimensional numerical experiments of schemes
with added numerical diffusion. We will test both the standard Rusanov
and Roe schemes (4.34) and (4.35), and compare the results with the new
entropy stable Roe-type scheme (4.39). The latter employs an energy
preserving flux F̃i+ 1

2
and we chose to use here the EEC flux (4.26). The

resulting entropic scheme (4.39), (4.26) is denoted ERoe. We start with
the one-dimensional dam-break problem with initial data (4.27) and
domain [−1, 1]. We compute the approximate solutions with the Roe,
Rusanov and ERoe schemes on a uniform mesh with 100 mesh points
and plot the approximate heights in Figure 4.5. As shown in this figure,
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(b) Energy vs. time

Fig. 4.5. Solutions computed with the Roe, Rusanov and ERoe schemes for
1D dam break problem with 100 mesh points. Left: Height at t = 0.4, Right:
Energy vs. time.

the three schemes behave as expected. The Rusanov scheme is slightly
more diffusive than the Roe-type schemes, with the right-going shock
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being slightly more smeared. However, the difference is not much. Both
the Roe and ERoe schemes compute the solution quite well at this coarse
mesh resolution. The difference between the two schemes is negligible
for this problem. Figure 4.5(b) shows the energy history, and we observe
that both the Roe and ERoe schemes dissipate energy in an identical
manner. The Rusanov scheme dissipates more energy than either of the
two Roe-type schemes. All three schemes are energy-stable, in that they
diffuse more energy than the physical solution.

The above numerical experiment illustrated that the new ERoe scheme
is robust and very similar in behavior to the standard Roe scheme. The
ERoe scheme, however, was proved to be energy stable, thus provid-
ing an entropy fix for the Roe scheme. The following two numerical
experiments will illustrate these points.

Numerical experiment #4: A dam-break problem

We consider a different one-dimensional dam-break problem for the shal-
low water equations with initial data

h(x, 0) =

{
15 if x < 0,

1 if x > 0,
u(x, 0) ≡ 0 (4.42)

in the computational domain [−1, 1], and we set g = 1. The difference
between the above initial data and the one in experiment #1 in (4.27)
is the large initial jump in height. The exact solution still consists of
a right going shock and a left going rarefaction, separated by a region
of a constant height of 5. We compute the solutions with the Roe and
ERoe schemes on a mesh of 100 points up to time t = 0.15. We also
compute the Rusanov scheme and a reference solution on a finer mesh of
3200 points. As shown in Figure 4.6, the ERoe scheme provides a good
approximation to the exact solution. The Roe scheme approximates
the shock equally well; however it produces a spurious steady shock at
approximately x = 0. The magnitude of this shock is about 2.5 and
it is entirely unphysical. This behavior of spurious waves generated by
the Roe scheme is well known (see LeVeque (2002)), and the scheme
needs to be entropy fixed, as in, e.g., Tadmor (2003). This is a key
difference between the Roe and ERoe schemes. They seem to have the
same resolution, but the Roe scheme (at least in its non-entropy fixed
version) is unstable in some cases.
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Fig. 4.6. Heights computed at time t = 0.4 with the Roe and ERoe schemes
for numerical experiments with 100 mesh points.

Numerical experiment #5: An expansion problem

Another well documented issue with the standard Roe scheme is its lack
of positivity, i.e., it may produce negative heights. The ERoe scheme
might also suffer from this problem. We present an experiment where
the Roe scheme leads to negative heights, whereas the ERoe scheme
retains positivity. We consider initial data

h(x, 0) ≡ 1, u(x, 0) =

{
−4 if x < 0,

4 if x > 0.
(4.43)

The computational domain is [−1, 1] with transparent boundary condi-
tions and g = 1. The initial velocity is chosen such that the fluid is
pushed away from the center of the domain in both directions, leading
to the formation of an almost dry zone, with very low values of height
in the center of the domain. We compute the solutions with the Roe
and ERoe schemes for a uniform mesh of 100 mesh points. The results
from Figure 4.7 show that the ERoe scheme approximates the solution
quite well and retains positivity of the height in the near-dry zone around
x = 0. However, the Roe scheme fails in this case due to negative heights
which form at t ∼ 0.006 (we therefore show the computed height just
before this failure). This illustrates how the ERoe stabilizes the positiv-
ity failure of the Roe scheme; we do not, however, claim that the ERoe
is positivity preserving, and one might expect it to fail if we increase the
velocity in (4.43).
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(a) Height with ERoe at t = 0.1
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Fig. 4.7. Solutions computed with the Roe, and ERoe schemes for 1D expan-
sion problem with 100 mesh points. Left: Height at t = 0.4 with ERoe, Right:
Height at t = 0.01 with Roe.

Computational costs

The above examples illustrate that the ERoe is quite robust and energy
stable. It is as accurate as the standard Roe scheme and is more stable
with respect to energy and positivity. A natural question is whether this
increased stability comes at a price. Hence, we consider the standard
one-dimensional dam-break problem with initial data (4.27) and com-
pute the solutions with Roe, ERoe and Rusanov schemes. We compute a
reference solution with the Rusanov scheme on a fine mesh of 3200 mesh
points and consider L1 errors in height with respect to this reference
solution. Next, we compute with three different mesh resolutions and
find the meshes on which each of the schemes will yield a relative error
of 1, 0.5 and 0.1 percent, respectively. The run times are then normal-
ized such that unit time corresponds to 0.0205 seconds. We present the
normalized run times with all the three schemes in Table 4.2. We see

Relative Energy error 1 0.5 0.1

Rusanov 1.05 8.24 203.41
Roe 1.15 8.43 208.29
ERoe 1 7.36 171.7

Table 4.2. Normalized run-times for the Rusanov, Roe and ERoe
schemes on the one-dimensional dam-break problem with three different

levels of relative error in height.

from the table that the ERoe scheme has the lowest computational cost
for the same level of error in all the three different error levels. Surpris-
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ingly the Rusanov scheme is less costly and hence more efficient than the
Roe scheme. The Roe scheme is about 15 to 20 percent more expensive
in this example than the ERoe scheme. This might be attributed to
the fact that the diffusion operator in the ERoe scheme might involve
less computational work than the diffusion operator in the Roe scheme.
Hence, all the above tests indicate that our proposed ERoe scheme is ac-
tually as accurate, more stable and less computationally expensive than
the standard Roe scheme.

4.2.8 Second-order Extensions: Numerical Experiment 6

The ERoe flux (4.39) has two parts: A second-order symmetric energy
preserving part and a numerical diffusion operator. The numerical diffu-
sion is first-order accurate in space and hence, the overall accuracy of the
ERoe scheme is restricted to first-order. This leads to smeared shocks,
as we observed in the previous numerical experiments. It is straightfor-
ward to extend this scheme to obtain second-order accuracy in space.
For this purpose, we follow the fairly standard approach and replace
the piecewise-constant cell averages Ui in (4.33) with a non-oscillatory
piecewise linear reconstruction, e.g., Kurganov and Tadmor (2002), of
the form

pi(x) = Ui +
U ′

i

∆x
(x − xi). (4.44)

The numerical derivative U ′
i is given by

U ′
i := minmod

(
Ui+1 − Ui,

1
2
(Ui+1 − Ui−1), Ui − Ui−1

)
, (4.45)

where minmod is the function

minmod(a, b, c) :=

{
sgn(a)min{|a|, |b|, |c|}, if sgn(a) = sgn(b) = sgn(c)

0, otherwise.

The reconstruction is fairly standard, and we can use other limiters for
the numerical derivatives. Let

UE
i = pi(xi+ 1

2
), UW

i = pi(xi− 1
2
).

The second-order version of the ERoe flux (4.39) is then

FERoe2
i+ 1

2
= F̃ (UE

i , UW
i+1) −

1
2
R|Λ|R�(V W

i+1 − V E
i ), (4.46)

where F̃ is any energy preserving flux (4.18), V E
i , V W

i are the energy
variables evaluated at UE

i and UW
i , and the matrices R and Λ are the
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corresponding matrices in (4.36) and (4.38) with respect to the recon-
structed values UE

i and UW
i+1. The resulting finite volume scheme with

this flux is formally second-accurate in space. However, we can no longer
prove that it is energy stable like the first-order version. Instead we will
test with this second-order flux in our next numerical experiment.

Numerical experiment #6: Second-order computation of dam-break prob-
lem

We consider the standard one-dimensional dam-break problem with ini-
tial data (4.27) and consider the first-order (4.39) and second-order
(4.46) versions of the ERoe scheme. We compute heights on a uniform
mesh of 100 mesh points. Both schemes are integrated in time using a
standard second-order RK2 method with a CFL number of 0.45, and we
show the computed heights at time t = 0.4 in Figure 4.8. This figure
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(b) Energy vs. time

Fig. 4.8. Solutions computed with the first and second-order versions of the
ERoe scheme with 100 mesh points.

clearly shows the effect of a higher order of accuracy. The shock and
rarefaction are both resolved to a much better extent with the second-
order scheme. Furthermore, the energy dissipation with the second-order
scheme is much less than that of the first-order scheme. The second-
order scheme seems to be energy stable in this example although we
were unable to obtain a proof of this. Even higher order extensions can
be performed by using fairly standard ENO and WENO type recon-
structions.
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4.3 The Two-Dimensional Problem

The analysis and numerics presented in Section 4.2 for the one-dimen-
sional problem can be easily extended to the two-dimensional shallow
water equations (4.2). We will be brief in the exposition, as most of
the details are similar to the one-dimensional case. To begin with, the
energy variables for the two-dimensional form of the equations (4.2) and
the associated potentials are given by

V =
[
gh − u2 + v2

2
, u, v

]�
, Ψ =

1
2
guh2 , Φ =

1
2
gvh2 , (4.47)

where Ψ and Φ are the energy potentials in the x- and y-directions,
respectively.

4.3.1 Energy Preserving Schemes: Numerical Experiment 7

We seek to approximate the two-dimensional shallow water system (4.2)
with a standard finite volume scheme of the form (4.12). As in the
one-dimensional case, the energy preserving (entropy preserving for a
general system (4.3)) finite volume fluxes are characterized in Tadmor
(1987), Tadmor (2003), as fluxes satisfying the following conditions:〈[[

Vi+ 1
2 ,j

]]
, F̃i+ 1

2 ,j

〉
=
[[
Ψi+ 1

2 ,j

]]
,
〈[[

Vi,j+ 1
2

]]
, G̃i,j+ 1

2

〉
=
[[
Φi,j+ 1

2

]]
.

(4.48)
Consistent numerical fluxes F,G that satisfy (4.48) are energy preserving
for the shallow water equations, and we obtain a two-dimensional version
of Theorem 4.1 (we skip the details and refer the reader to Tadmor (1987)
for details).

In the one-dimensional case, we obtained three different schemes sat-
isfying (4.18). The flux of the form (4.20) can be similarly defined for
the two-dimensional case. However, we failed to explicitly compute the
averages in phase space and obtain a simple explicit flux as we did in
the one-dimensional case. This is largely due to the increased complex-
ity of the resulting algebraic expressions. Hence, we do not have a flux
analogous to the AEC flux (4.21) for the two-dimensional case.

The pathwise approach of Tadmor (2003) can be easily extended to
cover the two-dimensional case, and has been done so in Tadmor and
Zhong (2008). We skip the details of the flux and refer the reader to
Algorithm 3.1 in Tadmor and Zhong (2008) for the description of this
flux. The pathwise flux is a natural generalization of the PEC flux (4.23),
and we continue referring to the resulting scheme as the PEC scheme.
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It is straightforward to extend the explicit differencing based EEC flux
(4.26) to the two-dimensional case. We carry out the steps indicated in
the derivation of (4.26) for the two-dimensional case, and obtain the
following entropy conservative flux:

F̃i+ 1
2 ,j =

hi+ 1
2 ,j ui+ 1

2 ,j

hi+ 1
2 ,j (ui+ 1

2 ,j )
2 + g

2 (h2)i+ 1
2 ,j

hi+ 1
2 ,j ui+ 1

2 ,j vi+ 1
2 ,j

 , (4.49a)

and

G̃i,j+ 1
2

=

hi,j+ 1
2
vi,j+ 1

2

hi,j+ 1
2
ui,j+ 1

2
vi,j+ 1

2

hi,j+ 1
2
(vi,j+ 1

2
)2 + g

2 (h2)i,j+ 1
2

 . (4.49b)

It is easy to check that the above fluxes satisfy (4.48) and are consistent.
This flux is also trivial to implement in code as we simply need to eval-
uate averages. It is symmetric in its arguments and reduces to (4.26)
for the one-dimensional case. We will denote the resulting scheme with
(4.49) as the EEC scheme.

Both the PEC scheme and EEC scheme are energy preserving for the
two-dimensional shallow water equations. We compare their numerical
behavior in the following numerical experiment.

Numerical Experiment #7: 2D cylindrical dam-break

We consider the shallow water equations (4.2) in the domain [−1, 1] ×
[−1, 1] with initial data

h(x, y, 0) =

{
2, if

√
x2 + y2 < 0.5

1, otherwise
, u(x, y, 0) ≡ 0. (4.50)

The initial data represents the breaking of a cylindrical dam, and the
problem has radial symmetry. We set g = 1. The exact solution consists
of a circular shock moving out and a rarefaction moving inward. We
compute with both EEC and PEC schemes on a uniform 50× 50 mesh.
The computations are performed with an RK2 time integration routine
and a CFL number of 0.45.

As shown in Figure 4.9, the energy preserving schemes show very little
difference in the numerical results. As in the one-dimensional cases,
there are oscillations for both schemes as the energy is redistributed
into smaller scales, and dispersive effects dominate due to the lack of
any diffusive mechanism. We also show the energy errors in time in
Figure 4.10. The results from Figure 4.10 show that the energy errors for
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(a) EEC (b) PEC

Fig. 4.9. Approximate heights for the cylindrical dam-break problem at time
t = 0.2 computed on a uniform 50×50 mesh with both EEC and PEC schemes.
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Fig. 4.10. Energy vs. time for the 2-d cylindrical dam-break problem and
EEC, PEC schemes for a 50 × 50 mesh and RK2 with CFL 0.45.

both schemes are quite low for this extremely coarse mesh and second-
order time integration with a moderately high CFL number. The results
are consistent with those observed for the one-dimensional problem in
Section 4.2. However, it seems that the PEC scheme generates a larger
error in energy of about 2-3 times more than the EEC scheme.

The errors in energy are purely due to the time integration. As in one
dimension, we observe a considerable reduction of the energy error by
decreasing the time step. A sample computation is presented in Figure
4.11, where the energy errors generated with the EEC scheme and an
RK2 method for two different CFL numbers is shown. The results in
Figure 4.11 show that halving the CFL number (i.e., halving the time
step) reduces the energy error by a factor of eight. Thus, the energy
errors behave like O(∆t)3 , as in the one-dimensional case. As in the one-
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Fig. 4.11. Energy vs. time for the 2-d cylindrical dam-break problem and
EEC scheme for a 100× 100 mesh and RK2 with four different CFL numbers.

dimensional case, going to an RK3 time integration will further reduce
the energy decay.

As stated before, energy preserving schemes lead to oscillations near
shocks as there is no dissipative mechanism. In the one-dimensional
case, these oscillations increased in frequency forming a modulated be-
havior as the mesh was refined. The same effects hold true in the two-
dimensional case. We illustrate this behavior by presenting the approx-
imate heights computed with the EEC scheme for a 100 × 100 mesh
and a 200 × 200 mesh with RK2 time-integration in Figure 4.12. The
figure clearly shows that increasing the mesh resolution results in oscilla-
tions of higher frequency although the magnitude of oscillations remains
bounded. This is clear evidence of the dispersive behavior of the schemes
in the absence of diffusion.

Computational costs

There are minor differences in the quality of the solutions obtained with
the EEC and PEC schemes in two dimensions. The main difference lies
in the simplicity of the EEC scheme and its low computational cost. As
in one dimension, we illustrate the efficiency of the EEC scheme vis-à-
vis the PEC scheme by fixing a uniform 50 × 50 mesh and lowering the
time step to obtain energy errors of 10−3 , 10−4 and 10−5 , respectively.
The resulting run times are then shown in Table 4.3. All the times are
normalized so that unit time is taken to be 0.0617 seconds. As shown in
Table 4.3, the PEC scheme is about 5 to 6 times more expensive than the
EEC scheme. This is to be expected, as the PEC scheme was about 2.5
to 3 times more expensive in one dimension (see Table 4.1). The EEC
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(a) EEC, 100 × 100 (b) EEC, 200 × 200

Fig. 4.12. Approximate heights for the cylindrical dam-break problem at time
t = 0.4 computed on a uniform 100× 100 and 200× 200 meshes with the EEC
and PEC scheme.

Energy error 10−3 10−4 10−5

EEC 1 2.18 5.07
PEC 4.79 11.5 30.47

Table 4.3. Normalized run-times for the two energy preserving schemes
on the two-dimensional cylindrical dam-break problem with three

different levels of error in energy.

scheme provides a considerable speed up if one is interested in higher
dimensional computations.

4.3.2 Eddy Viscosity: Numerical Experiment #8

By a simple generalization of (4.29), the energy preserving schemes can
be used together with a central discretization of the viscous terms to ob-
tain a scheme that is energy stable and with energy dissipating at a rate
dictated by the viscous terms in (4.1). Without going into details, we
observe that we will obtain a discrete form of (4.10) (a two-dimensional
generalization of (4.30)). Thus, combining energy preserving schemes
with a central discretization yields a faithful discretization of the con-
tinuous energy decay estimate.

We test this contention on a numerical example by considering the
two-dimensional cylindrical dam-break problem (4.50) with eddy viscos-
ity ν = 0.01 and show the results in Figure 4.13. As expected, the pres-
ence of eddy viscosity serves to dramatically reduce the oscillations in
the energy preserving schemes. Since the resulting solution has very low
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(a) EEC, ν = 0.01, 100 × 100 (b) EEC, ν = 0.01, 200 × 200

Fig. 4.13. Approximate heights for the cylindrical dam-break problem with
eddy viscosity ν = 0.01 at time t = 0.4 computed on uniform 100 × 100 and
200 × 200 meshes with the EEC scheme.

amplitude oscillations, it appears that the reasonably coarse 200 × 200
mesh is enough to resolve all the viscous scales. This is similar to what we
observed in one dimension. Using an energy preserving scheme together
with central viscous terms leads to an energy stable discretizations of
the system, and the oscillations obtained for the inviscid problem are
damped on a resolved mesh when one adds eddy viscosity.

4.3.3 Numerical Diffusion: Numerical Experiment #9

As in the one-dimensional case, we can use the energy preserving schemes
to design suitable numerical diffusion operators leading to energy stable
discretizations of the inviscid shallow water system (4.2), or the under-
resolved viscous form (4.1). We imitate the strategy used in designing
the energy stable Roe-type flux (4.39) in Section 4.2 and present its two-
dimensional generalization. We start with the following lemma, which
is a generalization of Lemma 4.3.

Lemma 4.4 Consider the shallow water equations in two dimensions
(4.2). Let the values Ui,j , Ui+1,j , Ui,j+1 across an interface be given.
[i] We have the identities[[

Ui+ 1
2 ,j

]]
= (UV )i+ 1

2 ,j

[[
Vi+ 1

2 ,j

]]
,

[[
Ui,j+ 1

2

]]
= (UV )i,j+ 1

2

[[
Vi,j+ 1

2

]]
,

(4.51)
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where

(UV )i+ 1
2 ,j :=

1
g

1 ui+ 1
2 ,j vi+ 1

2 ,j

ui+ 1
2 ,j u2

i+ 1
2 ,j

+ ghi+ 1
2 ,j ui+ 1

2 ,j vi+ 1
2 ,j

vi+ 1
2 ,j ui+ 1

2 ,j vi+ 1
2 ,j v2

i+ 1
2 ,j

+ ghi+ 1
2 ,j


and

(UV )i,j+ 1
2

:=
1
g

1 ui,j+ 1
2

vi,j+ 1
2

ui,j+ 1
2

u2
i,j+ 1

2
+ ghi,j+ 1

2
ui,j+ 1

2
vi,j+ 1

2

vi,j+ 1
2

ui,j+ 1
2

vi,j+ 1
2

v2
i,j+ 1

2
+ ghi,j+ 1

2

 .

[ii] Define the scaled matrices of right eigenvectors of F ′(Ui+ 1
2 ,j ) and

G′(Ui,j+ 1
2
) for averaged states Ui+ 1

2 ,j and Ui,j+ 1
2
:

Rx
i+ 1

2 ,j =
1√
2g


1 0 1

ui+ 1
2 ,j −

√
ghi+ 1

2 ,j 0 ui+ 1
2 ,j +

√
ghi+ 1

2 ,j

vi+ 1
2 ,j

√
ghi+ 1

2 ,j vi+ 1
2 ,j

 ,

Ry

i,j+ 1
2

=
1√
2g


1 0 1

ui,j+ 1
2

−
√

ghi,j+ 1
2

ui,j+ 1
2
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2
−
√
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 .

(4.52)
Then we have

Rx
i+ 1

2 ,j

(
Rx

i+ 1
2 ,j

)�
= (UV )i+ 1

2 ,j , Ry

i,j+ 1
2

(
Ry

i,j+ 1
2

)�
= (UV )i,j+ 1

2
.

(4.53)

The proof follows from direct calculations. Using this lemma, we follow
Section 4.2.7 and define the following Roe-type flux:

FERoe
i+ 1

2 ,j := F̃i+ 1
2 ,j −

1
2
Rx

i+ 1
2 ,j |Λ

x
i+ 1

2 ,j |
(
Rx

i+ 1
2 ,j

)� [[
Vi+ 1

2 ,j

]]
,

GERoe
i,j+ 1

2
:= G̃i,j+ 1

2
− 1

2
Ry

i,j+ 1
2
|Λy

i,j+ 1
2
|
(
Ry

i,j+ 1
2

)� [[
Vi,j+ 1

2

]]
,

(4.54)

where F̃i+ 1
2 ,j , G̃i,j+ 1

2
are any pair of consistent, energy preserving fluxes

satisfying (4.48), V is the vector of energy variables, Rx
i+ 1

2 ,j
and Ry

i,j+ 1
2

are defined in (4.52) and∣∣∣Λx
i+ 1

2 ,j
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{∣∣∣ui+ 1
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The above flux is clearly consistent. A simple generalization of Theorem
4.2 shows that the finite volume scheme based on fluxes (4.54) is energy
stable. We skip the details of this estimate as it is a straightforward
generalization of (4.41).

We denote the two-dimensional entropic Roe-type scheme with energy
preserving fluxes (4.49), (4.54) as the ERoe scheme and compare it with
standard Rusanov and Roe schemes. We consider the two-dimensional
cylindrical dam-break problem (4.50) and compute with the standard
Roe and ERoe schemes on a uniform 100×100 mesh. Figure 4.14 shows

(a) Roe scheme (b) ERoe scheme

Fig. 4.14. Approximate heights for the cylindrical dam-break problem at time
t = 0.2 computed on a uniform 100 × 100 mesh with the Roe and ERoe
schemes.

that both the standard Roe and ERoe schemes approximate the solution
rather well, but with smearing at the outward shock and the rarefaction.
As with one-dimensional dam-break problems, the differences between
the two schemes are very small. However, as in Section 4.2, we can find
several examples where the ERoe scheme is stable, whereas the standard
Roe scheme is unstable.

As in Section 4.2.7, we have computed the cost with each scheme,
and we present the normalized run-times (unit time is set to 0.0475
seconds) with respect to relative errors in height in Table 4.4. As shown
in this table, the Roe and ERoe schemes have approximately the same
computational cost and are considerably more efficient than the Rusanov
scheme. Given the fact that the ERoe scheme is as accurate, has the
same computational cost as the Roe scheme but is provably energy-
stable, it seems preferable to the Roe scheme.
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Relative height error (in %) 4 2 1

Rusanov 1.59 32.1 404.21
Roe 1 20.99 229.47
ERoe 1.03 21.17 231.57

Table 4.4. Normalized run-times for the Rusanov, Roe and ERoe
schemes on the two-dimensional cylindrical dam-break problem with

three different levels of relative error in height.

Numerical experiment #9: A physical dam-break problem

So far, we have considered model problems in our numerical experi-
ments. In order to demonstrate the robustness of our approach, we will
consider a more challenging two-dimensional dam-break problem with a
physically realistic set up. This problem was first studied in Fennema
and Chaudhery (1990) and was also considered in Tadmor and Zhong
(2008), Chertock and Kurganov (2004).

The geometry of the problem and the initial conditions are specified in
Figure 4.15. As shown in this figure, we consider a basin of 1400× 1400

Fig. 4.15. Set-up and initial conditions of the physical dam-break problem

m2 with a dam in the middle. The walls of the basin are solid and
frictionless and the bottom is assumed to be flat. The walls are reflective
with initial water level at 10 m and tail water level of 9.5 m. At t = 0, the
central part of the dam fails and water is released downstream through
a breach, as shown in Figure 4.15. We set acceleration due to gravity to
9.8ms−2 . The boundary treatment is similar to the one used in Tadmor
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and Zhong (2008). We compute approximate solutions of this problem
with three different schemes: the energy preserving EEC scheme, the
EEC scheme together with eddy viscosity of ν = 10m2s−1 and the energy
stable ERoe scheme. We used a uniform 100× 100 mesh with a second-
order RK2 method for time integration at a CFL number of 0.45. The
results are displayed in Figure 4.16. The results are along expected lines.

(a) EEC scheme (b) EEC scheme, ν = 10

(c) ERoe scheme

Fig. 4.16. Approximate heights for the physical dam-break problem at time
t = 50 computed on a uniform 100 × 100 mesh with EEC scheme together
with eddy viscosity and with the ERoe scheme.

The EEC schemes produce oscillations, but the basic flow features are
computed quite accurately. In particular, the circular shock wave is
resolved quite sharply.

The addition of eddy viscosity reduces the oscillations considerably.
However, some oscillations are still present, indicating an under-resolved
computation. When we combine the EEC fluxes (4.49) with the Roe-
type entropy variables based numerical diffusion operator (4.54) to ob-
tain the ERoe scheme, we observe that all the oscillations are removed.
However, the shocks and other wave fronts are smeared. These results
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are very similar to those obtained in Tadmor and Zhong (2008), Cher-
tock and Kurganov (2004) and confirm the robustness of our approach.

4.3.4 Numerical Experiment #10: Advection of Vorticity

(a) Exact solution (b) EEC scheme

(c) ERoe1 scheme — first-order accuracy (d) ERoe2 scheme — second-order accu-
racy

Fig. 4.17. Discrete vorticity at time t = 100 on a 200×200 mesh for numerical
experiment 6: Vortex advection with EEC and ERoe schemes.

All the numerical experiments presented so far involved the formation
and propagation of shocks. Energy preserving schemes led to oscillations
near the shock on account of energy transfer to the small scales in the
problem. We needed to introduce either eddy viscosity or numerical dif-
fusion to remove these oscillations. Another interesting object of study,
particularly for the two-dimensional form of the shallow water equations
(4.2), is the vorticity. We define the vorticity as ω = vx − uy , with u

and v being the velocities. It is well known (Arakawa and Lamb (1977))
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that the vorticity satisfies the following advection equation,

ωt + (uω)x + (vω)y = 0. (4.55)

This identity is valid only for the smooth solutions of (4.2). Many pa-
pers, e.g., Arakawa and Lamb (1981), have dealt with the question of de-
signing numerical schemes that satisfy a discrete version of the vorticity
advection (4.55). The vorticity errors generated by a scheme discretiz-
ing (4.2) are considered a key component of its overall performance,
particularly for meteorological applications. It was speculated in Tad-
mor and Zhong (2008) that energy preserving schemes for the shallow
water equations might generate large vorticity errors. Hence, we test
the energy preserving EEC scheme in a numerical experiment dealing
with the advection of a vortex.

We adapt a standard test case (see Ismail and Roe (2005) and ref-
erences therein) for the isentropic Euler equations to the shallow water
equations. One can check that the following functions,

h(x, y, t) = 1 − c2
1

4c2g
e2f

u(x, y, t) = M + c1(y − y0)ef

v(x, y, t) = −c1(x − x0 − Mt)ef ,

where

f = f(x, y, t) = −c2
(
(x − x0 − Mt)2 + (y − y0)2) ,

are a smooth solution to the shallow water equations (4.2) for any choice
of constants M, c1 , c2 , x0 and y0 . For our numerical experiment, we
consider the above solution at time t = 0 as our initial data and choose
M = 0.5, g = 1, perturbation coefficients (c1 , c2) = (−0.04, 0.02) and
starting position (x0 , y0) = (−20, 0). The exact solution is a vortex
moving at a constant velocity in the x-direction. This test case has been
considered in many papers in the literature and standard schemes have
been found to generate unacceptably large vorticity errors. We compute
on a domain [−50, 50] × [−50, 50] and show the approximate solutions
in Figure 4.17.

We compute the standard discrete vorticity given by

ωi,j =
vi+1,j − vi−1,j

2∆x
− ui,j+1 − ui,j−1

2∆y
,

and plot the discrete vorticity on a uniform 200 × 200 mesh with EEC
and ERoe schemes at time t = 100. The time integration is performed
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with an RK2 method at a CFL number of 0.45. The vorticity of the
exact solution is plotted for comparison. As shown in the figure, the
EEC scheme does a remarkable job of resolving the solution at this
fairly coarse mesh with ∆x = ∆y = 0.5 and a long period of time with
final time t = 100. There are no oscillations whatsoever, and the shape
of the vortex is retained. This should be contrasted with the oscillations
that a EEC scheme generates near shocks. Similarly, the performance of
the EEC scheme is considerably better than the ERoe scheme. As seen
in Figure 4.17(c), the structure of the vortex is destroyed in the first-
order ERoe scheme. Such behavior is expected from standard schemes
(Ismail and Roe (2005)). A possible explanation lies in the order of
accuracy, as the EEC scheme is formally second-order accurate, whereas
the ERoe1 scheme is restricted to first-order of accuracy. We extended
the ERoe scheme to second-order accuracy by applying minmod limiters,
as in Section 4.2.8; the result of ERoe2 is shown in Figure 4.17(d). The
rendition is now much more accurate, but the increased accuracy comes
at the cost of small spurious oscillations that make the vortex appear
non-symmetric.

We believe that the order alone does not explain the good performance
of the EEC scheme. One reason for its performance may lie in the
preservation of energy, illustrated in Figure 4.18. The figure shows that
the energy error is very low, and this may be one of the reasons that the
scheme preserves the structure of the vortex.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1x 10
−6

Fig. 4.18. Energy vs. time for EEC scheme in numerical experiment 6 with
200 × 200 mesh and RK2 method with CFL = 0.45.

This experiment illustrates that the EEC scheme is very robust for
smooth solutions and needs no eddy viscosity or numerical diffusion



4. Energy Preserving and Energy Stable Schemes 137

for stability. Furthermore, it advects vorticity without destroying the
vortical structures in the problem.

4.4 Conclusion

We considered the shallow water equations in one and two space dimen-
sions. Our aim was to design finite volume schemes for these equations
that either preserve energy or dissipate it in the right way. We consid-
ered three different energy preserving schemes in one dimension – the
PEC scheme proposed in Tadmor (2003), Tadmor and Zhong (2008), an
explicit evaluation of the scheme proposed in Tadmor (1987), and a new
explicit energy preserving scheme, inspired by the entropy preserving
scheme for the Euler equations in Roe (2006). The new scheme, called
the EEC scheme, is very easy to implement and is robust. We compared
the three schemes in numerical experiments and observed that the PEC
and EEC schemes behave in a similar manner. The main advantage of
the EEC scheme over the PEC scheme is its low computational cost:
about three times faster in one dimension and about six times faster
in two dimensions. The low cost coupled with the ease of implementa-
tion makes the EEC scheme an ideal energy preserving scheme for the
shallow water equations.

The energy preserving schemes lead to oscillations at the mesh scale
due to the absence of diffusive mechanisms. Addition of eddy viscosity
by using suitable discretization of the viscous terms leads to energy
stable discretizations of the shallow water equations. Eddy viscosity
dramatically reduces the oscillations, particularly on resolved meshes.
However, oscillations might remain on under-resolved meshes.

Computations on under-resolved meshes or for the inviscid version
of the equations require adding suitable artificial diffusion operators.
We proposed a novel numerical flux of the Roe type that is based on
using an energy preserving symmetric flux together with a numerical
diffusion based on energy variables. The diffusion operators need to be
scaled suitably, and the resulting scheme is energy-stable without any
additional fixes. The resulting scheme, termed an ERoe scheme, is very
robust. It has the same accuracy and a similar computational cost as
the standard Roe scheme, but is more stable.

All the above points are demonstrated in a series of numerical ex-
periments in both one and two spatial dimensions. We believe that
this approach of using energy (entropy) preserving schemes together
with suitable physical or numerical diffusions operators is a practical,
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cost-effective and stable approach for computing flows. We will aim to
extend this approach to more complicated models like the Euler equa-
tions of gas dynamics, incompressible flows and equations of magneto-
hydrodynamics in forthcoming papers.
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Abstract

Itô stochastic calculus is a mean-square or L2 calculus with different
transformation rules to deterministic calculus. In particular, in view of
its definition, an Itô integral is not as robust to approximation as the
deterministic Riemann integral. This has some critical implications for
the development of effective numerical schemes for stochastic differential
equations (SDEs). Higher order numerical schemes for both strong and
weak convergences have been derived using stochastic Taylor expansions,
but most proofs in the literature assume the uniform boundedness of all
relevant partial derivatives of the coefficient functions, which is highly
restrictive. Problems also arise if solutions are restricted to certain re-
gions, e.g. must be positive and the coefficient functions involve square
roots.

Pathwise convergence is an alternative to the strong and weak conver-
gences of the literature. It arises naturally in many important applica-
tions and, in fact, numerical calculations are carried out pathwise. Path-
wise convergent numerical schemes for both SDEs and random ordinary
differential equations (RODEs) will be discussed here. In particular, we
see that a strong Taylor scheme for SDEs of order γ converges pathwise
with order γ − ε for every arbitrarily small ε > 0 under the usual as-
sumptions. We also introduce modified Taylor schemes which converge
pathwise in a similar way, even when the coefficient derivatives are not
uniformly bounded or are restricted to certain regions. In particular,
these schemes can be applied without difficulty to volatility models in
finance.

The relationship between SDEs and RODEs via Doss-Sussman trans-
formations will also be considered and new classes of numerical schemes

140
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for RODEs will be presented. Finally, extensions to stochastic and ran-
dom partial differential equations will be mentioned briefly.

5.1 Introduction

The inclusion of noise terms in differential equations dates back to the
the early 1900s when Einstein provided an explanation for the physi-
cal phenomenon of Brownian motion. At the same time Langevin was
interested in the actual motion of the particles and formulated noisy
differential equations of the form

dx

dt
= a(x) + b(x)ηt , (5.1)

while Bachelier proposed similar equations to model the evolution of
share prices.

Many technical difficulties arose, for mathematicians at least, since
the noise process ηt was meant to be Gaussian white noise and it took a
good half century before K. Itô (in fact, independently at about the same
time, I. Gikhman and W. Döblin, too) could develop a stochastic calculus
which allowed a rigorous formulation and mathematical development of
a theory of stochastic differential equations (SDEs).

Itô stochastic calculus is a mean-square or L2 calculus with different
transformation rules to deterministic calculus. In particular, the inte-
grand function in an Itô integral is always evaluated at the left end point
of a discretization subinterval rather than at an arbitrary point as in the
deterministic Riemann integral, which means that it is not as robust to
approximation. This has some critical implications for the development
of effective numerical schemes for SDEs.

In many physical applications the noise often has a wide band rather
than white spectrum, i.e., it is a ∆-correlated stationary Gaussian pro-
cess η

(∆)
t with a Gaussian white noise limit as ∆ → 0. In this case

the noisy differential equation (5.1) is in fact an ordinary differential
equation (ODE)

dx

dt
= a(x) + b(x) η

(∆)
t , (5.2)

which can be handled pathwise by the methods of deterministic calcu-
lus. What kind of SDE might arise in the limit as ∆ → 0 has been
investigated intensively, see e.g. Wong & Zakai (1965). More generally,
a random ordinary differential equation (RODE) is formulated pathwise



142 A. Jentzen, P. E. Kloeden and A. Neuenkirch

as an ODE
dx

dt
= f(ζt , x) (5.3)

where ζt is a stochastic process. RODEs seem to have had a shadow
existence to SDEs, but have been around for as long, if not longer, than
SDEs and have many important applications, see e.g. Bunke (1972),
Soong (1973) and Arnold (1997). Although the rules of deterministic
calculus apply pathwise to them, it is important to note that the vec-
tor field function in (5.3) is at most Hölder continuous in time like the
driving stochastic process ζt and thus lacks the smoothness needed to
justify the error analysis of traditional numerical methods for ODEs.
Such methods can be used but will attain at best a low convergence or-
der, so new higher order numerical schemes must be derived for RODEs.

In this article we briefly summarize the existing theory of numerical
methods for SDEs and then show how some rather strong assumptions
on the SDE coefficients used in the literature can be relaxed if pathwise
rather than mean-square convergence is used. We also show how nu-
merical schemes can be modified so that the solutions remain in certain
prescribed regions of admissibility, e.g. the preservation of the bound-
ary domain for SDEs with square root coefficients. Some important
relationships between RODEs and SDEs will be indicated and recent
work on higher order numerical schemes derived for RODEs will also be
mentioned. Finally, these new schemes will be applied with the method
of lines to random and stochastic partial differential equations (RPDE,
SPDE).

5.2 Numerical Approximation of Itô SDEs

For simplicity we consider an Itô SDE in Rd

dXt = a(Xt) dt +
m∑

j=1

bj (Xt)dWj
t , t ∈ [0, T ], (5.4)

with drift and diffusion coefficients a, bj : Rd → Rd (j = 1, . . . , m)
which do not depend explicitly on the time variable t. Here Wt =
(W 1

t , . . . ,Wm
t ), t ≥ 0, is an m-dimensional Wiener process (also called

a Brownian motion) and superscripts label components of vectors. Such
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an Itô SDE is only symbolic for an Itô stochastic integral equation

Xt = X0 +
∫ t

0
a(Xs) ds +

m∑
j=1

∫ t

0
bj (Xs)dWj

s , (5.5)

where the drift integral is pathwise a Riemann integral and the others
are Itô stochastic integrals.

Due to differences in the deterministic and stochastic calculi, tradi-
tional numerical schemes for ODEs are either inconsistent or, at best,
converge with a very low order when adapted to SDEs like (5.4). New
types of numerical schemes are thus necessary and can be derived sys-
tematically by means of stochastic Taylor expansions in integral form;
see the monograph of Kloeden & Platen (1992), and also Milstein (1995),
for a thorough development of the theory.

Consider a partition 0 = t0 < t1 < · · · < tNT
= T of the interval

[0, T ] with step sizes ∆n := tn+1 − tn > 0 and maximum step size ∆ :=
maxn ∆n . Let Y

(∆)
n be an approximation generated by some numerical

schemes of Xtn
for a solution Xt of an SDE (5.4). In the literature av-

erage error criteria with deterministic constants are usually considered:

Weak approximation of order β if

|Eφ(XT ) − Eφ(YNT
)| ≤ Kφ,T ∆β

for smooth test functions φ : Rd → R;

Strong approximation of order γ (usually just p = 1 or 2) if(
E sup

n=0,...,NT

|Xn − Yn |p
)1/p

≤ Kp,T ∆γ .

Itô–Taylor numerical schemes for both types of convergences are based
on appropriate Itô–Taylor expansions (see chapter 5 in Kloeden & Platen
(1992)). These involve:

(1) Differential operators

L0 =
d∑

k=1

ak ∂

∂xk
+

1
2

d∑
k,l=1

m∑
j=1

bk,j bl,j ∂2

∂xk∂xl
, Lj =

d∑
k=1

bk,j ∂

∂xk
,

where ak , bk,j are the k-th components of a and bj , j = 1, . . . , m.

(2) Multi-indices

Mm =
{
α = (j1 , . . . , jl) ∈ {0, 1, 2, . . . ,m}l : l ∈ N

}
∪ {∅}
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with l(α) the length of α, n(α) the number of zero entries of α, and ∅
the multi-index of length 0.

(3) Iterated integrals and coefficient functions:

Iα (s, t) =
∫ t

s

· · ·
∫ τ2

s

dWj1
τ1

. . . dWjl
τl

, fα (x) = Lj1 · · ·Ljl−1 bjl (x)

with the notation dW 0
t = dt, b0 = a.

The Itô-Taylor scheme of strong order γ = 1
2 , 1, 3

2 , 2, . . . ,

Y γ
n+1 = Y γ

n +
∑

α∈A( s )
γ \{∅}

fα (Y γ
n ) · Iα (tn , tn+1) (5.6)

uses multi-indices in the hierarchical set

A(s)
γ = {α ∈ Mm : l(α) + n(α) ≤ 2γ or l(α) = n(α) = γ + 1/2} ,

whereas the Itô-Taylor scheme of weak order β = 1, 2, 3, . . . ,

Y β
n+1 = Y β

n +
∑

α∈A(w )
β \{∅}

fα (Y β
n ) · Iα (tn , tn+1) (5.7)

uses multi-indices in the hierarchical set A(w )
β = {α ∈ Mm : l(α) ≤ β}.

Example 5.1 For the scalar Itô SDE

dXt = a(Xt) dt + b(Xt) dWt

the Euler-Maruyama scheme

Yn+1 = Yn + a(Yn )∆n + b(Yn )∆Wn,

where ∆Wn = I(1)(tn , tn+1) = Wtn + 1 −Wtn
, is the Itô-Taylor scheme of

strong order γ = 1
2 and the Itô-Taylor scheme of weak order β = 1 with

the hierarchical sets A(s)
1
2

= A(w )
1 = {(0), (1)}. Note that the index (0)

occurs for different reasons in the two hierarchical sets. For the scalar
SDE the Milstein scheme

Yn+1 = Yn + a(Yn )∆n + b(Yn )∆Wn +
1
2
b(Yn )b′(Yn )

[
(∆Wn )2 − ∆n

]
is the Itô-Taylor scheme of strong order γ = 1 with the hierarchical set
A(s)

1 = {(0), (1), (1, 1)}. It also has weak order β = 1, but is not the
Itô-Taylor scheme of this weak order.



5. Pathwise Convergence of Numerical Schemes 145

Here we have used the coefficient functions f(0) = a, f(1) = b, f(1,1) =
bb′ and the iterated integrals

I(0)(tn , tn+1) =
∫ tn + 1

tn

dW 0
s = ∆n , (5.8)

I(1)(tn , tn+1) =
∫ tn + 1

tn

dW 1
s = ∆W 1

n , (5.9)

and

I(1,1)(tn , tn+1) =
∫ tn + 1

tn

∫ s

tn

dW 1
τ dW 1

s =
1
2
[
(∆W 1

n )2 − ∆n

]
. (5.10)

Remark 5.1 There are usually no simple expressions like (5.10) for
multiple stochastic integrals involving different independent Wiener pro-
cesses. How to approximate such integrals is a major issue in stochastic
numerics. The difficulty and cost of approximating stochastic integrals
of higher multiplicity restricts the practical usefulness of higher order
strong schemes, see Kloeden & Platen (1992), Kloeden (2002) and in
particular Gaines & Lyons (1994, 1997). However, the work of Wik-
torsson (2001) on the simulation of the second iterated integral is very
promising.

Remark 5.2 The Itô-Taylor schemes are the “basic” schemes for the
weak and strong approximation of stochastic differential equations. Based
on these schemes, numerous other numerical methods as Runge-Kutta
methods and multi-step methods have been constructed in the last years.
See e.g. Kloeden & Platen (1992), Milstein (1995), Burrage et al. (2004),
Milstein & Tretyakov (2004) and the references therein.

While the Itô-Taylor schemes are developed from the Itô-Taylor ex-
pansion of the solution of the SDE, the use of the exponential Lie series
of the solution SDE leads to stochastic Lie group numerical schemes, see
e.g. Castell & Gaines (1995) and Malham & Wiese (2008).

Proofs in the literature of the above convergence orders, e.g. in the
monographs Kloeden & Platen (1992) and Milstein (1995), assume that
the coefficient functions fα in the Itô-Taylor schemes are uniformly
bounded on Rd , i.e., the partial derivatives of appropriately high or-
der of the SDE coefficient functions a, b1 , . . . , bm are uniformly bounded
on Rd . This assumption is not satisfied for many SDEs in important ap-
plications such as the Duffing-van der Pol oscillator with multiplicative
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noise

dX1
t = X2

t dt, (5.11)

dX2
t =

[
−X1

t + βX2
t − (X1

t )3 − (X1
t )2X2

t

]
dt + σX2

t dWt

with linear and cubic terms (recall that superscripts label vector com-
ponents, so that powers are indicated by enclosing their arguments in
parentheses), the Fisher-Wright equation in biomathematics

dXt = [κ1(1 − Xt) − κ2Xt ] dt +
√

Xt(1 − Xt) dWt (5.12)

with κ1 , κ2 ≥ 0 and Xt ∈ [0, 1], and the Cox-Ingersoll-Ross model in
mathematical biology and finance

dVt = κ (λ − Vt) dt + θ
√

Vt dWt (5.13)

with κ, λ, θ ≥ 0 and Vt ≥ 0.
One way to overcome this problem is to restrict attention to SDEs

with special dynamical properties such as ergodicity, e.g. by assuming
that the coefficients satisfy certain dissipativity and nondegeneracy con-
ditions, see Mattingly et al. (2002), Higham et al. (2002) and Milstein
& Tretyakov (2005). This yields the appropriate order estimates with-
out bounded derivatives of coefficients. However, several type of SDEs
and in particular SDEs with square root coefficients remain a problem.
Many numerical schemes do not preserve the domain of the solution
of the SDE and hence may crash when implemented, which has led to
various ad hoc modifications to prevent this happening.

5.3 Pathwise Convergence

By the pathwise convergence of an approximate solution we mean that

sup
n=0,...,NT

∣∣∣Xtn
(ω) − Y (∆)

n (ω)
∣∣∣→ 0 as ∆ → 0

for (at least) almost all ω ∈ Ω, where Ω is the sample space of the
underlying probability space (Ω,F , P).

This is interesting because numerical calculations of the approximat-
ing random variable Y

(∆)
n are carried out path by path. Moreover, the

modern theory of random dynamical systems, which deals with random
attractors and stochastic bifurcations is of pathwise nature, see Arnold
(1997). In addition, the solutions of some SDEs are non-integrable, i.e.,
E|Xt | = ∞ for some t ≥ 0, so strong or weak convergent approximation
is not possible.
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We should not forget that Itô calculus is an L2 or a mean-square calcu-
lus and not a pathwise calculus. Nevertheless some results for pathwise
approximation of SDEs are known. For example, in 1983 Talay showed
that the Milstein scheme SDE with a scalar Brownian motion has the
pathwise error estimate

sup
n=0,...,NT

∣∣∣Xtn
(ω) − Y (∆)

n (ω)
∣∣∣ ≤ K

(M )
ε,T (ω)∆

1
2 −ε ,

for all ε > 0 and almost all ω ∈ Ω, i.e., is pathwise of order 1
2 − ε. Later

Gyöngy (1998) and Fleury (2005) showed that the Euler–Maruyama
scheme has the same pathwise convergence order. Note that the error
constants here depend on ω, so they are in fact random variables. The
nature of their statistical properties is an interesting question, of which
less is known theoretically so far and which requires further investiga-
tions. Some empirical distributions of the random error constants are
plotted in Figures 5.2 and 5.4 below. Given that the sample paths of
a Wiener process are Hölder continuous with exponent 1

2 − ε one may
ask: Is the convergence order 1

2 − ε “sharp” for pathwise approximation?
The answer is no! In fact, Kloeden & Neuenkirch (2007) have shown
recently that an arbitrary pathwise convergence order is possible.

Theorem 5.1 Under classical assumptions the Itô–Taylor scheme of
strong order γ > 0 converges pathwise with order γ− ε for all ε > 0, i.e.,

sup
n=0,...,NT

|Xtn
(ω) − Y γ

n (ω)| ≤ Kγ
ε,T (ω) · ∆γ−ε

for almost all ω ∈ Ω.

Thus, for example, the Milstein scheme has pathwise order 1 − ε rather
than the lower order 1

2 − ε obtained in Talay (1983) (which was a con-
sequence of the proof used there).

The proof of Theorem 5.1 is based on the Burkholder–Davis–Gundy
inequality

E sup
s∈[0,t]

∣∣∣∣∫ s

0
Xτ dWτ

∣∣∣∣p ≤ Cp · E

∣∣∣∣∫ t

0
(Xτ )2 dτ

∣∣∣∣p/2

and a Borel–Cantelli argument in the following:

Lemma 5.1 Let γ > 0 and cp ≥ 0 for p ≥ 1. If {Zn}n∈N is a sequence
of random variables with

(E|Zn |p)1/p ≤ cp · n−γ
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for all p ≥ 1 and n ∈ N, then for each ε > 0 there exists a finite non-
negative random variable Kε such that

|Zn (ω)| ≤ Kε(ω) · n−γ+ε a.s.

for all n ∈ N.

5.3.1 SDEs without uniformly bounded coefficients

Using a localization argument, Jentzen et al. (2008a) showed that The-
orem 5.1 remains true if the SDE coefficients satisfy a, b1 , . . . , bm ∈
C2γ+1(Rd ; Rd), i.e., they do not necessarily have uniformly bounded
derivatives. So, this extension of Theorem 5.1 applies to the Duffing-van
der Pol oscillator with multiplicative noise (5.11). Whether mean-square
convergence rates under these assumptions can be derived, remains an
open problem. Compare e.g. Higham et al. (2002), where the standard
convergence rates of several Euler-type methods are recovered under the
assumptions that the drift coefficient has a polynomial behaviour and
satisfies a one-sided Lipschitz condition, while the diffusion coefficient
satisfies a global Lipschitz condition. For SDEs with a discontinuous
but monotone increasing drift (such as a Heaviside function) and addi-
tive noise the mean-square convergence of the Euler method has been
derived in Halidas & Kloeden (2008).

Numerical Example I Consider the Duffing-van der Pol oscillator
with multiplicative noise (5.11) with β = 3, σ = 2 and initial conditions
X1

0 = X2
0 = 1 for T = 1.

Numerical Example II Consider the empirical distributions for the
random error constants of the Euler-Maruyama and Milstein schemes
applied to the SDE

dXt = −(1+Xt)(1−(Xt)2) dt+(1−(Xt)2) dWt, t ∈ [0, 1], X0 = 0.

for N = 104 sample paths.

5.3.2 SDEs on restricted regions

The Fisher–Wright SDE (5.12) and the Cox–Ingersoll–Ross SDE (5.13)
have square-root coefficients, which require the solutions to remain in
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Fig. 5.1. Pathwise maximum error vs. stepsize for two sample paths for the
Euler scheme (−), the Milstein scheme (−·−) and the Wagner–Platen scheme
(−−).
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Fig. 5.2. Empirical distribution of K0 .5
0 .001 and K1 .0

0 .001 (sample size: N = 104 ).

the region where the expression under the square-root is non-negative.
However, numerical iterations may leave this restricted region, in which
case the algorithm will terminate.

One possibility to avoid this problem is to use appropriately modified
Itô–Taylor schemes, see Jentzen et al. (2008a). So consider the SDE

dXt = a(Xt) dt +
m∑

j=1

bj (Xt)dWj
t , t ∈ [0, T ], (5.14)

which takes values in a domain D ⊆ Rd and suppose that the SDE
coefficients a, b1 , . . . , bm are r-times continuously differentiable on D and
that SDE (5.14) has a unique strong solution. Define E := {x ∈ Rd :
x /∈ D}. Then choose auxiliary functions f, g1 , . . . , gm ∈ Cs(E; Rd) for
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s ∈ N and define (j = 1, . . . , m)

ã(x) = a(x) · 1D (x) + f(x) · 1E (x), x ∈ Rd , (5.15)

b̃j (x) = bj (x) · 1D (x) + gj (x) · 1E (x), x ∈ Rd . (5.16)

In addition, for x ∈ ∂D define (j = 1, . . . , m)

ã(x) = lim
y→x; y∈D

ã(y), b̃j (x) = lim
y→x;∈y∈D

b̃j (y), (5.17)

if these limits exist. Otherwise, define ã(x) = 0 and b̃j (x) = 0 for
x ∈ ∂D, respectively. Finally, define the “modified” derivative of a
function h : Rd → Rd by (l = 1, . . . , d)

∂xl h(x) =
∂

∂xl
h(x), x ∈ D ∪ E, (5.18)

and for x ∈ ∂D define

∂xl h(x) = lim
y→x; y∈D

∂xl h(x) (5.19)

if this limit exists; otherwise set ∂xl h(x) = 0 for x ∈ ∂D.
A modified Itô–Taylor scheme is the corresponding Itô-Taylor scheme

for the SDE with modified coefficients

dXt = ã(Xt) dt +
m∑

j=1

b̃j (Xt)dWj
t , (5.20)

using differential operators L̃0 , L̃1 , . . . , L̃m with the above modified der-
ivatives. Note that this method is well defined as long as the coefficients
of the equation are (2γ − 1)-times differentiable on D and the auxiliary
functions are (2γ − 1)-times differentiable on E. The purpose of the
auxiliary functions is twofold: to obtain a well defined approximation
scheme and to “reflect” the numerical scheme back to D, once it has left
D. In particular, the auxiliary functions can always be chosen affine or
even constant.

It was shown in Jentzen et al. (2008a) that Theorem 5.1 adapts to
modified Itô-Taylor schemes for SDEs on domains in Rd .

Theorem 5.2 Assume that ã, b̃1 , . . . , b̃m ∈ C2γ+1(D; Rd)∩C2γ−1(E; Rd)
and let Y mod,γ

n be the modified Itô-Taylor scheme for γ = 1
2 , 1, 3

2 , . . . .

Then for all ε > 0 there exists a finite, non-negative random variable
Kf,g

γ ,ε such that

sup
n=0,...,NT

∣∣Xtn
(ω) − Y mod,γ

n (ω)
∣∣ ≤ Kf,g

γ ,ε (ω) · ∆γ−ε
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for almost all ω ∈ Ω and all n = 1, . . . , NT .

Note that the convergence rate does not depend on the choice of the
auxiliary functions, but the random constant in the error bound clearly
does.

Example 5.2 The Fisher–Wright SDE (5.12) has the property that if
min{κ1 , κ2} ≥ 1

2 and X0 ∈ (0, 1), then

P(Xt ∈ (0, 1) for all t ≥ 0) = 1.

However, iterates of standard Itô–Taylor numerical schemes may leave
[0, 1], so we will use a modified numerical scheme with extended coeffi-
cients outside of [0, 1] defined by

auxiliary drift : f(x) = κ1(1 − x) − κ2x, x /∈ [0, 1]

auxiliary diffusion : g(x) = 0, x /∈ [0, 1]

and appropriately defined coefficients at the boundary points x ∈ {0, 1}.
By Theorem 5.2 the modified Itô–Taylor scheme of order γ converges
pathwise with order γ − ε. This is illustrated in Numerical Example III
for the Euler–Maruyama and Milstein schemes.

Numerical Example III Consider the Fisher–Wright SDE (5.12) with
parameters κ1 = 0.5 and κ2 = 1, the initial value X0 = 0.1 and final
time T = 1.
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Fig. 5.3. Pathwise maximum error vs. stepsize for two sample paths for the
Euler scheme (−) and the Milstein scheme (− · −).
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Fig. 5.4. Empirical distribution of K0 .5
0 .001 and K1 .0

0 .001 (sample size: N = 104 ).

5.4 Random Ordinary Differential Equations (RODEs)

Let ζt , t ≥ 0, be an m-dimensional stochastic process and suppose that
f : Rm × Rd → Rd is smooth. Then

dx

dt
= f(ζt , x) (5.21)

is a random ordinary differential equation on Rd driven by the noise
process ζ in Rm , i.e., (5.21) is pathwise the ordinary differential equation
(ODE) on Rd

dx

dt
= Fω (t, x) := f(ζt(ω), x), ω ∈ Ω. (5.22)

A simple example of a scalar RODE is

dx

dt
= −x + sin Wt(ω), (5.23)

where Wt, t ≥ 0, is a scalar Wiener process. Here f(z, x) = −x + sin z

and d = m = 1. RODEs with other kinds of noise such as fractional
Brownian motion have been used e.g. in Garrido-Atienza et al. (2008).

The vector field Fω (t, x) in (5.22) is usually only continuous but not
differentiable in t, no matter how smooth the function f , since the paths
of the driving stochastic process ζ are usually at most Hölder continu-
ous. This has important implications for the efficient numerical solution
of RODEs.



5. Pathwise Convergence of Numerical Schemes 153

Random ordinary differential equation occur in many applications
and, as the wideband noise example (5.2) in the introduction shows,
they may even be more realistic than SDEs with their idealized noise,
which are then just a convenient limit, cf. Wong & Zakai (1965) and
Godin & Molchanov (2007). Moreover, RODEs with Wiener processes
can be rewritten as stochastic differential equations and hence all the
results of Section 5.3 can be applied to them. For example, the scalar
RODE (5.23) can be rewritten as the 2-dimensional SDE

d

(
Xt

Yt

)
=
(
−Xt + sinYt

0

)
dt +

(
0
1

)
dWt.

On the other hand, any finite dimensional SDE can be transformed
to a RODE. In the case of commutative noise this is the famous Doss-
Sussmann result (Doss (1977), Sussmann (1978)), which was generalized
to all SDEs in recent years by Imkeller & Lederer (2001, 2002). It is
easily illustrated for a scalar SDE with additive noise: The equation

dXt = f(Xt) dt + dWt

is equivalent to the RODE

dz

dt
= f(z + Ot) + Ot (5.24)

where z(t) := Xt − Ot , t ≥ 0 and Ot , t ≥ 0, is the stochastic stationary
Ornstein-Uhlenbeck process satisfying the linear SDE

dOt = −Ot dt + dWt. (5.25)

To see this, subtract integral versions of both SDEs and substitute to
obtain

z(t) = z(0) +
∫ t

0
[f(z(s) + Os) + Os ] ds.

Then, by continuity and the fundamental theorem of deterministic cal-
culus, it follows that z is pathwise differentiable.

In particular, we can use deterministic calculus pathwise for RODEs.
This greatly facilitates the investigation of dynamical behaviour and
other qualitative properties of RODEs. For example, suppose that f

satisfies a one-sided dissipative Lipschitz condition (L > 0),

〈x − y, f(x) − f(y)〉 ≤ −L|x − y|2 , x, y ∈ Rd .
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Then, for any two solutions z1 and z2 of the RODE (5.24),

d

dt
|z1(t) − z2(t)|2 = 2

〈
z1(t) − z2(t),

dz1

dt
− dz2

dt

〉
= 2 〈z1(t) − z2(t), f(z1(t) + Ot) − f(z2(t) + Ot)〉

≤ −2L |z1(t) − z2(t)|2

from which it follows that pathwise

|z1(t) − z2(t)|2 ≤ e−2Lt |z1(0) − z2(0)|2 → 0 as t → ∞.

Then from the theory of random dynamical systems, Arnold (1997),
there exists a pathwise asymptotically stable stochastic stationary solu-
tion. For an application to synchronization in the presence of noise see
Caraballo & Kloeden (2005) and Caraballo et al. (2008).

5.4.1 Numerical schemes for RODEs

We can solve RODEs pathwise as ODEs with Runge-Kutta schemes,
but these schemes do not attain their traditional order, since the vector
field Fω (t, x) in (5.22) is not smooth enough in t. For example, let ζ be
pathwise Hölder continuous of order 1

2 . Then the Euler scheme

Yn+1(ω) = (1 − ∆n ) Yn (ω) + ζtn
(ω)∆n

for the RODE
dx

dt
= −x + ζt(ω),

attains the pathwise order 1
2 . One can do better, however, by using the

pathwise averaged Euler scheme

Yn+1(ω) = (1 − ∆n ) Yn (ω) +
∫ tn + 1

tn

ζt(ω) dt,

which was proposed by Grüne & Kloeden (2001). It attains the pathwise
order 1 provided the integral is approximated with Riemann sums∫ tn + 1

tn

ζt(ω) dt ≈
J∆ n∑
j=1

ζtn +jδ (ω) δ

with step size δ ≈ ∆2
n and δ · J∆n

= ∆n . In fact, this was done more
generally in Grüne & Kloeden (2001) for RODEs with an affine structure,
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i.e., of the form
dx

dt
= f(x) + G(x)ζt , (5.26)

where f : Rd → Rd and G : Rd → Rd ×Rm . The explicit averaged Euler
scheme then reads

Yn+1 = Yn + [f (Yn ) + G (Yn ) In ] ∆n , (5.27)

where

In (ω) :=
1

∆n

∫ tn + 1

tn

ζs(ω) ds. (5.28)

For the general RODE (5.21) this suggests that one should pathwise
average the vectorfield, i.e.,

1
∆n

∫ tn + 1

tn

f (ζs(ω), Yn (ω)) ds,

which is computationally expensive even for low dimensional systems.
An alternative is to use the averaged noise within the vector field, which
leads to the explicit averaged Euler scheme

Yn+1 = Yn + f (In , Yn ) ∆n . (5.29)

A systematic derivation of higher order numerical schemes for RODEs
based on this idea using generalized Taylor expansions and approximated
noise integrals has been carried out by Jentzen & Kloeden (2007, 2008a).
See also Carbonell et al. (2005) for the local linearization method.

It is well known from the theory of classical Runge-Kutta schemes for
ODEs that an implicit scheme is required for the stable integration of
an ODE obtained from the spatial discretization of a parabolic PDE.
In fact, implicit schemes which are B-stable (see e.g. Hairer & Wanner
(1991)) i.e., preserve the structure of merging trajectories of an ODE
with a dissipative one-sided Lipschitz condition, are even better. (Recall
that no explicit or linear-implicit Runge-Kutta scheme is ever B-stable.)
Since RODEs are generalizations of ODEs this applies equally well to
RODEs. Jentzen & Kloeden (2008b) introduced the implicit averaged
Euler scheme (IAES)

Yn+1 = Yn + f (In , Yn+1) ∆n (5.30)

and the implicit averaged midpoint scheme (IAMS)

Yn+1 = Yn + f

(
In ,

1
2

(Yn + Yn+1)
)

∆n (5.31)
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for the RODE (5.21). Both of these numerical schemes are B-stable and
have pathwise convergence orders min(2θ, 1) and 2θ, respectively, where
θ is the Hölder exponent of the noise process ζ.

5.5 Stochastic and Random Partial Differential Equations

As with RODEs and SDEs, we also distinguish between random and
stochastic partial differential equations. For simplicity we restrict at-
tention to parabolic reaction-diffusion type PDE on a bounded spatial
domain D in Rd with smooth boundary ∂D and assume a Dirichlet
boundary condition. In particular, we consider random PDEs of the
form

∂u

∂t
= ∆u + f(ζt , u), u

∣∣
∂D = 0, (5.32)

with a stochastic process ζt , t ≥ 0, (possibly infinite dimensional) which
we interpret and analyze pathwise as a deterministic PDE. We also con-
sider stochastic PDEs of the form

dU = [∆U + f(U)] dt + g(U) dW, U
∣∣
∂D = 0, (5.33)

where W is an infinite dimensional Wiener process of the form

W (t, x) =
∞∑

j=1

cjW
j
t φj (x), t ≥ 0, x ∈ Rd ,

with mutually independent scalar Wiener processes Wj
t , t ≥ 0, j ∈ N ;

here the φj are a basis system in, e.g. L2(D) formed by the eigenfunc-
tions of the Laplace operator on D with Dirichlet boundary conditions.
Note that when the cj ≡ 1 for all j ∈ N and d = 1, then W is called
a Brownian or Wiener sheet, which is rough in both space and time.
As for SDEs the theory of SPDEs is a mean-square theory and requires
Itô stochastic calculus, see e.g. Krylov & Rozovskij (1982) and DaPrato
& Zabcyzk (1992). The theory is complicated by different types of so-
lutions and function spaces depending on the spatial regularity of the
driving noise process.

The Doss-Sussmann theory is not as well developed for SPDEs as for
SDEs, but in simple cases we can transform an SPDE to an RPDE. For
example, the SPDE (5.33) with such additive noise, i.e.,

dU = [∆U + f(U)] dt + dW, U
∣∣
∂D = 0,
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is equivalent to the RPDE

∂v

∂t
= ∆v + f(v + Ôt) + Ôt

with v(t) = Ut − Ôt , t ≥ 0, where Ôt , t ≥ 0 is the (infinite-dimensional)
Ornstein-Uhlenbeck stochastic stationary solution of the linear SPDE

dU = [∆U − U ] dt + dW, U
∣∣
∂D = 0. (5.34)

5.5.1 Numerical methods

All of the difficulties encountered in solving deterministic PDEs numer-
ically reoccur with RPDEs and SPDEs plus more due to the noise, in
particular due to the roughness of the noise sample paths and the need
to compute many sample paths if strong or weak error criteria are used.
RPDEs are less computationally intensive, if a pathwise error criterion
is used. In both cases, the theory is in its early stages, see e.g. Gyöngy
& Nualart (1995), Grecksch & Kloeden (1996), Davie & Gaines (2000),
Hausenblas (2002, 2003), Gyöngy & Krylov (2003), Gyöngy & Millet
(2005), Müller-Gronbach & Ritter (2007), and much remains to be done.
The temporal convergence rate is often very low when the noise is very
rough, such as a Wiener sheet process, although a higher order is possible
when the noise is spatially smoother or finite dimensional.

Standard spatial discretization methods such as the method of lines
(spatial difference quotients) and the Galerkin or finite element methods
(basis function expansions) lead to high dimensional RODEs or SDEs,
which are then approximated through temporally discretized numeri-
cal schemes. Like their deterministic counterparts, such systems are
stiff and require specially constructed stable numerical schemes, which
are usually implicit, for their efficient computation such as the B-stable
implicit averaged Euler (5.30) and implicit averaged midpoint (5.31)
schemes introduced in Jentzen & Kloeden (2008b).

Figure 5.5 here shows a sample path of each of the implicit averaged
Euler scheme (left) and explicit Euler scheme (right) for the 9 dimen-
sional RODE obtained by the method of lines with 10 subintervals ap-
plied to the random PDE with a scalar Ornstein–Uhlenbeck process,

∂u

∂t
=

∂2u

∂x2 − u − (u + Ot)3 (5.35)
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Fig. 5.5. Pathwise approximation of the random PDE (5.35) with a scalar
Ornstein–Uhlenbeck process with the method of lines and the implicit averaged
(left) and explicit (right) Euler schemes (see text).

on the interval 0 ≤ x ≤ 1 with Dirichlet boundary condition and zero
initial condition. This RPDE is equivalent to the SPDE with additive
noise

dUt =
[

∂2

∂x2 Ut − Ut − U 3
t

]
dt + dWt (5.36)

on the interval 0 ≤ x ≤ 1 with Dirichlet boundary condition with a
scalar Wiener process, where u(t) := Ut − Ot .

In concluding, we mention that the stochastic Taylor expansion for
finite dimensional SDEs does not generalize directly to SPDEs, but an
alternative expansion in a Hilbert space to arbitrarily high strong order
is possible for parabolic SPDEs using the smoothening properties of the
semi-group operator, see Jentzen (2008).
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Abstract

When studying a dynamical system from a global viewpoint, there are
only few theoretical tools at our disposal. This is especially true if we
want to describe all aspects of the dynamics with a reasonable amount
of detail. A combination of analytic, symbolic and numerical tools, to-
gether with qualitative and topological considerations, can give a reason-
ably good description. Furthermore it is possible to derive paradigmatic
models which can be analysed theoretically and allow us to study pieces
of the dynamics. It is also important to know the relevance of different
phenomena. Are they confined to a narrow domain of the phase space or
to a tiny region of the parameter space or do they really play a significant
role? Several theoretical/numerical tools are presented, and applied to
different problems in celestial mechanics, unfolding of singularities and
other problems. This is part of a project aimed towards understand-
ing finite-dimensional systems in a global way. To avoid technicalities
we shall assume that all maps and flows considered in this paper are
analytic.

6.1 Introduction

Many properties are known for low-dimensional conservative systems,
like Area-Preserving or Measure-Preserving Maps (APM, MPM) or sys-
tems which can be reduced to them as 2-degrees of freedom Hamiltonian
systems and volume-preserving 3D flows. Most of these properties have
a local character, either around a fixed point, around a given orbit, like
a periodic orbit or a homoclinic orbit, or around an invariant curve or
torus. However it is extremely relevant to study global properties, when
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different invariant objects like manifolds and tori and their relative po-
sitions play a role. A combination of theoretical tools and computer-
assisted studies allow us to grasp some global properties. Still many
fundamental questions remain unanswered. This is specially true when
the dimension increases.

The purpose of this paper is to present some theoretical facts and
numerical tools which can be of help in global studies. Accordingly we
first present a short sample of problems, mainly in Celestial Mechanics,
but also in bifurcation theory, in one of the paradigmatic models, the
Hénon conservative map, and also references to similar problems in fluid
mechanics. Then, in Section 6.3, some analytic tools are recalled, like
KAM theory, splitting of separatrices and several return maps. Section
6.4 is devoted to describing a few numerical tools, like efficient long-time
integrations, dynamics indicators and a simple method to test if some
initial data gives rise to an invariant curve. In Section 6.5 additional
information is given on the Hénon conservative map. We close with a
short list of open problems.

All the studied systems are non-integrable. It is quite rare for a re-
alistic problem to be integrable, although one can have interesting inte-
grable approximations. Theoretical criteria for deciding if a Hamiltonian
system is integrable fall into different classes. For the more algebraic as-
pects and a summary of other methods, applications and open problems
one can see Morales et al. (2007)

A large part of this paper is based on work in progress with different
authors. Even if this can be considered as a preliminary report, we hope
it will be found useful by the reader. This text coincides, essentially,
with the presentation given at the FoCM08 conference.

When mentioning different colours in the figures, we refer to the elec-
tronic version. In the printed version they are replaced by grey tones.
The electronic version also offers the possibility of magnifying figures to
check details. Most of plots have been produced in high resolution.

6.2 A Sample of Problems

6.2.1 The Restricted Three-Body Problem: Asteroids, Outer
Comets, Satellites

The RTBP is a useful simple model for studying the dynamics of a
massless particle under the gravitational attraction of two massive bod-
ies (the primary S and the secondary J) assumed to move in circular
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orbits around their centre of mass. Using a rotating coordinate system
(the synodical system) which fixes the positions of the main bodies and
suitable units, the Hamiltonian is

H =
1
2
(p2

x + p2
y + p2

z ) + ypx − xpy − 1 − µ

r1
− µ

r2
,

where r1 = ((x−µ)2 +y2 +x2)1/2 , r2 = ((x−µ+1)2 +y2 +z2)1/2 and
µ = mJ /(mS + mJ ), where x, y, z are Cartesian coordinates, px, py , pz

the conjugated momenta and mS ,mJ the masses of the main bodies.
The energy is related to the classical Jacobi integral C as H = −0.5(C−
µ(1 − µ)). See, e.g., Simó (1997, 1998). Despite its simplicity it gives
relevant practical information for the dynamics of satellites around a
planet, for asteroids and comets, and for the design of space missions.

SJ

L5

L4

L1 L2

L3

asteroid

outer comet

satellite

Fig. 6.1. The RTBP with the location of the libration points L1 to L5 and
orbits of an asteroid, an outer comet and a satellite around a planet.

The system has 5 equilibrium points, denoted as libration or Euler-
Lagrange points, see Figure 6.1. Several questions can be raised, such
as

1) At a given level of energy when are the orbits of asteroids, outer
comets, satellites bounded (no escape, no collision)? If an orbit is close
to elliptic, then up to which eccentricity e is some stability found?

2) The triangular points L4,5 , are close to the so-called Trojan asteroids.
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In the 2D case these points are linearly stable for µ ∈ [0, µ1 ], where

µs =ωs h o r t /ωl o n g =s, s ∈ N, ωs h o r t , l o n g =
[
(1 ± (1−27µ(1−µ))1/2)/2

]1/2

ωs h o r t , ωl o n g being the frequencies at the L4,5 . Nonlinear stability has
been proved, in the planar problem, for µ ∈ [0, µ1 ] \ {µ2 , µ3}. In the
3D case practical stability, see Giorgilli et al. (1989), has been proved
in the absence of resonances. Here practical means that the changes
in the orbit are below some tolerance for very large intervals of time
(e.g., the age of the solar system) if motion starts close to L4,5 .

But the following question remains: Up to which distance do we have
some kind of stability? Figure 6.2 provides a partial answer. To scan a
reasonable set of initial conditions we consider motion starting at (x, y, z)
with zero synodical velocity. An escape of the vicinity of, say, L5 is
defined as a too close approach to S or J (d < 0.1, 0.01), a too large
distance to S (d > 2) or a projection on (x, y) with y < −0.2. Let (r, α, z)
be the initial data in cylindrical coordinates. Long-time integration has
been used, starting on a fine grid in (r, α, z), to detect non-escaping
points, with special care on the boundary points (a “quasi-boundary” in
the 3D case). Note that for a fixed value of µ the initial points are on
different levels of H.

-0.01

 0

 0.01
r-1

 0 0.1

angle

 0.2 0.3 0.4

mu=0.0010

 0

 0.25

 0.5

 0.75

 1

 0  0.01  0.02  0.03  0.04

Fig. 6.2. Stability around L4 ,5 in the RTBP. Left: domain of stability for
the planar problem and µ ≈ µS u n -J u p i t e r . Right: Relative size of the stability
domain in the 2D case (blue curve) and the 3D one (red curve, preliminary
results) as a function of µ. See text for details.

On the left part the set of non-escaping points for µ = 0.001 is plotted
on (r−1, α/(2π)) variables. Theoretically one can prove that for µ small
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the measure is O(
√

µ). On the right side we display the abundance of
subsisting points, as a function of µ, normalized so that the maximal
value is 1. The maximum occurs for µ ≈ 0.0014 in the 2D case and
for µ ≈ 0.0017 in the 3D one. In the 2D case it is clear the role of
the 2:1 and 3:1 resonances which occur for µ2 , µ3 , but one can clearly
see the role of the 4:1, 5:1, 6:1,. . . resonances for smaller values of µ,
which decrease the measure of non-escaping points. This effect is not so
strong in the 3D case. For values of µ for which almost all (or all) initial
points escape in the 2D case, there exist points in the space which are in
invariant tori. In fact, for most of the µ values the region with a larger
abundance of stable points corresponds to inclinations between 20o and
40o. This agrees with the experimental results on the abundance of
Trojans as a function of the inclination. Furthermore we stress that tiny
stable regions appear for µ > µ1 . The point itself loses stability, but
some tori remain around it.

6.2.2 The Sitnikov Problem

This is a classical and popular toy problem which describes the motion
of a massless particle on the vertical axis under the attraction of two
bodies, with mass equal to 1/2, moving in an horizontal plane in ellipses
of eccentricity e, see Figure 6.3. The equation of motion is

z̈ = − z

(z2 + r(t)2/4)3/2 , r(t) = 1 − e cos(E), t = E − e sin(E).

The variable E is the eccentric anomaly and last equality is Kepler’s
equation. It is relevant as a first example of oscillatory motion: for
e > 0 there are orbits such that lim sup z(t) = ∞ while lim inf z(t) is
bounded. See Moser (1973) and references therein to works by Chazy,
Sitnikov, Alekseev and McGehee.

It is clear that the system is autonomous and integrable if e = 0. To
study the motion one can take as suitable Poincaré section the passages
of the massless body through z = 0. Let v = dz/dt; then if a passage
though z = 0 occurs at t = tk with velocity |vk | and a next passage
occurs, the Poincaré map is defined as P(|vk |, tk ) = (|vk+1 |, tk+1), which
can be represented in polar coordinates (t is defined mod 2π). As |v| = 0
is a fixed point of the flow P is not defined on it. But P can be extended
by continuity and then |v| = 0 can be seen as an elliptic fixed point of P,
except at tiny intervals in e where the linear character is of hyperbolic
with reflection type, that is, the eigenvalues are λ, λ−1 with λ < −1.
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Fig. 6.3. Sketch of the motion of the bodies in Sitnikov’s problem.

This follows from the analysis of the linear behaviour at the equilibrium
point, given by the solutions of the Hill’s equation of Ince’s type

dξ/dE = (1 − e cos(E))η, dη/dE = −8ξ/(1 − e cos(E))2 .

If e = 0 the orbits with |v0 | < 2 are bounded.
Let us pass to global aspects: Up to which distance is it possible to find

rotational invariant curves (r.i.c.) of P? That is, curves which can be
seen as a graph |v|=g(t) and, therefore, confine the motion. It is clear
that this depends on e. Figure 6.4 shows some results which depend on
the value of t where we compute g(t). Again using long-time integration
and other tools, see Section 6.4, the set of non-escaping orbits has been
computed. On the left we plot the maximal value of |v| at t = π as a
function of e. One can easily see some jumps on the value of |v|. A
modified plot is shown on the right: we have scaled |v| and added a
suitable function to enhance the jumps. It is natural to conjecture the
existence of infinitely many jumps (most of them are tiny).

At the bottom of the left hand side plot one can see values ranging
from 1 to 7. They correspond to the values of e for which the r.i.c.
which were confining islands of periods 1, 2, . . . , 7 break down and points
sitting on a domain of confined chaos are free to escape. Other smaller
jumps correspond to the breakdown of r.i.c. which confined islands with
rotation numbers of the form p/q ∈ Q.

Another point to stress is that the values of e at which the jumps occur
do not correspond, in general, to the values of e at which bifurcations
occur at |v| = 0. These are different phenomena.

In fact the Sitnikov problem is an example of a one degree of freedom



168 Carles Simo

 0

 0.4

 0.8

 1.2

 1.6

 2

 0  0.2  0.4  0.6  0.8  1

1 2 3 4 5 67
 1.8

 1.9

 2

 0  0.2  0.4  0.6  0.8  1

Fig. 6.4. Left: Approximate maximal value of |v| at t = E = π as a function
of e. Right: Idem but plotting |v|/(1 − e)1/4 +

√
e vs e.

(1 d.o.f.) Hamiltonian system depending periodically on time. See Broer
et al. (2004) for similar studies in a different context..

6.2.3 Bifurcations: The Hopf-Saddle-Node Conservative Un-
folding

At a HSN bifurcation of a flow in R3 the eigenvalues are 0,±i . Nor-
mal Forms (NF), formally rotationally invariant, can be computed and
unfolded generically. The volume-preserving case helps to understand
other more general unfoldings. From the different generic cases which
can appear, the most interesting ones give rise, after a suitable blow up,
to a limit behaviour as displayed in Figure 6.5. On the left we display
the dynamics of the NF (to any order) which has 2 fixed points (south
and north poles, S and N). Both the z axis and the S2 sphere shown
are invariant. The sphere coincides with Wu (N) = Ws(S) and the axis
with branches of Ws(N) and Wu (S) which also match. Dynamics on
the sphere spirals away from N and enters S also spiraling. On the right
side we show the reduction of the NF to a 2D flow. It has 2 saddles
and an additional fixed point. Tuning parameters one can obtain an
heteroclinic connection of the saddles. The additional fixed point is,
generically, a focus, but in the volume-preserving case it is a centre and
then it is surrounded by periodic orbits. By rotation of the right hand
side around the vertical axis one obtains the left plot. The centre fixed
point becomes a periodic orbit of the NF of the 3D flow and the planar
periodic orbits become 2D tori.

But the true dynamics can differ largely from the one given by the
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HET

Fig. 6.5. An sketch of the dynamics of the Normal Form in an interesting case
of a HSN bifurcation. Left: a 3D view. Right: the reduction to a planar
flow in a generic case (non-volume-preserving) for parameters for which an
heteroclinic connection occurs.

NF when we go away from the limit case. The coincidence of manifolds
to any order implies that the splitting of the 2D manifolds and the
distance between the 1D ones are exponentially small in the distance, in
the parameter space, to the bifurcation. See Dumortier et al. (2009).

As a concrete example which is representative enough, we consider
the Michelson system, which appears also as the equation for traveling
waves in the Kuramoto-Shivasinski PDE:

x′′′ = −1 + ax′ + x2 , a > 0.

It is convenient to use as parameter ε = (−a)−3 . The NF to any order
has connecting 2D and 1D invariant manifolds of (±1, 0, 0). The real
system has splitting exponentially small in ε. The variables y = x′ and
z = x′′ can be introduced and clearly the flow preserves volume.

As Poincaré section one has taken passages through z = 0 with z′ > 0.
Scaling of y by the factor 2

√
−a allows us to reduce the Poincaré section

to a domain which is, approximately, the half unit disk (it is exactly the
half disk when ε → 0). Initial points are taken on the domain (y, x) ∈
[−1, 0] × [−1.05, 1.05]. Transversality is lost along a curve which plays
almost no role. Note that the Poincaré map preserves a measure whose
density is proportional to |z′| and, hence, it is absolutely continuous with
respect to the Lebesgue measure on the (y, x) plane.

Starting on the given domain the points in a fine equispaced grid
which do not escape are stored. As a simple measure we have taken



170 Carles Simo

this number of points. When ε → 0 the measure of the set of subsisting
points has a finite limit. To mimic the behaviour of the RTBP, in the
top of Figure 6.6, we have multiplied the obtained measure by

√
ε. The

similarity to the right of Figure 6.2 is remarkable.
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Fig. 6.6. Some results for the Michelson system. Top: A measure of the
domain of confined motion, see text. The marks from 2 to 10 at the bottom
part of the plot denote the bifurcations at E of islands with rotation number
1:2,...,1:10. The marks from 5 to 10 along the curve denote the places at which
r.i.c. confining these island are broken. Bottom: In blue points which do not
escape for ε = ε2 = 0.02607. In red (and also the points in red hidden by the
ones in blue) the non-escaping points for ε = ε1 = 0.02606. This transition
occurs at the jump associated with period 4 in the top plot.



6. Global Behaviour of Conservative Low-Dimensional Systems 171

In the bottom of Figure 6.6 we show the changes in the set of non-
escaping points which occur for some small changes in ε. Concretely, we
have taken the values ε1 = 0.02606 and ε2 = 0.02607. For ε1 appears
a large stable region, bounded by a r.i.c. which encloses the islands of
period 4, and many chains of islands outside this curve. These are the
points in red in the plot. Note that the points in blue are hiding points
in red. Beyond period-4 elliptic points inside the islands, one can guess
the existence of a period-4 hyperbolic orbit. The transversal homoclinic
intersection of its manifolds creates a chaotic zone, but the points on it
can not escape because of the r.i.c.

Changing to ε2 the curves surrounding the chaotic zone break down.
Hence points in the chaotic zone can (and do) escape. The non-escaping
points for ε2 are plotted in blue. One can see a central area around
the fixed elliptic point, with very sharp boundaries and the big period-
4 islands. These are surrounded by many chains of tiny islands. And
also chains of islands can be seen surrounding the set of 4 islands. The
major islands of these chains have only minor changes with respect to
the islands found for ε1 .

6.2.4 A Problem in Fluid Dynamics: The Rayleigh-Bénard
Model

This model describes the convection forced by a difference of temper-
ature between the bottom and top boundaries. We have considered a
cube with conducting lateral walls. The equations describing the veloc-
ity field V and the variation of the temperature with respect to a linear
profile θ are

Pr−1
(

∂V

∂t
+ Ra1/2(V · ∇)V

)
−∇2V − Ra1/2θ ez + ∇ p = 0 ,

∂θ

∂t
+ Ra1/2(V · ∇)θ −∇2θ − Ra1/2w = 0 , ∇ · V = 0 ,

where Pr and Ra denote the Prandtl and Rayleigh numbers, respec-
tively. The boundary conditions are V = θ = 0 at |x| = |y| = |z| = 1/2 .
Using a Galerkin method with 10976 basic functions we have computed
the bifurcation diagram of steady-state solutions, see Puigjaner et al.
(2008). Then, for some of the branches, the velocity field has been in-
tegrated. In that case we are interested in the mixing properties of the
volume-preserving flow. Hence, the domain of interest is the comple-
ment of the invariant tori. Methods similar to the ones used for the
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Michelson problem (i.e., Poincaré sections) combined with computation
of Lyapunov exponents, allow us to evaluate how the mixing changes
as a function of Ra, for fixed Pr and along different branches of the
bifurcation diagram, see Simó et al. (2008a).

6.2.5 A Paradigmatic Example: The Hénon Map

Any quadratic area preserving map reduces to (see Hénon (1969))

Hc :
(

x

y

)
→
(

x̄

ȳ

)
=
(

c(1 − x2) + 2x + y

−x

)
x, y, c ∈ R.

With this normalization fixed points are located at H= (−1, 1) (hyper-
bolic) and at E= (1,−1), elliptic if c ∈ [0, 2] with Tr(DHc(E))=2 − 2c.
A Normal Form analysis proves nonlinear stability if c ∈ (0, 2)\{1.5}. It
appears typically in generic non-hyperbolic area-preserving maps, e.g.,
in many parts of the phase space. Despite its trivial character many of
its properties are still not known in detail, mainly concerning its global
aspects. It serves as a paradigm for many phenomena, see Simó–Vieiro
(2009). A typical phase portrait, the abundance of non-escaping points
and an example after the breakdown of r.i.c. around period-3 islands
are shown in the top of Figure 6.7. Observe the self-similar character
and the jump discontinuities and compare with the results displayed in
Figures 6.2, 6.3 and 6.6. Compare the bottom part with the bottom of
Figure 6.6. Similar patterns appear for any other kind of islands when
confining outer curves break down. The choice of low periods in the
plots is to prevent the appearance of small chaotic zones.

6.3 Analytic Tools

We present some ideas on a few concrete topics.

6.3.1 KAM Theory: Conditions for Applicability

A twist map on an annulus is a map given in polar coordinates as

T0 : (r, θ) 	→ (r + α(r))

and such that dα/dr �= 0. It is obvious that all the circles r = r0 are
invariant under T0 . We can consider perturbations like

Tε : (r, θ) 	→ (r + εf1(r, θ, ε), θ + α(r) + εf2(r, θ, ε)
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Fig. 6.7. Top left: Phase portrait for c = 0.75, shortly after the period-5
bifurcation at E. Outside that domain, points escape to infinity, close to W u

H .
Top right: number of non-escaping points on a grid 10−3×10−3 . Computations
done by a combination of methods. Bottom: Subsisting points before (red)
and after (blue) the destruction of r.i.c. around the period-3 islands.

with f1 , f2 such that Tε is still APM. A natural question is which curves
subsist under the perturbation. Assume

- dα/dr �= 0 for T , the twist condition, i.e., the frequency changes with
amplitude,
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- The rotation number ρ of an invariant curve of T0 satisfies a Diophan-
tine Condition DC, i.e., |qρ−p|>c|q|−τ , for some c>0, τ ≥1,

- The perturbation ||εf || is sufficiently small.

Then the answer to the question is given by

Theorem 6.1 Under the above conditions Tε has a r.i.c. with the given
ρ ε-close to the corresponding invariant curve of T0 (KAM Theorem).

See, e.g., Arnol’d–Avez (1967), Moser (1973).
The three conditions above are not independent: the larger |dα/dr|

and the better the DC (i.e., small τ , large c), the larger the admissible
perturbation can be.

For a given map and on a given narrow annulus we can consider that
the twist condition and the perturbation change in a mild way. Hence
the most relevant point to decide about the robustness of an invariant
curve is DC. In this sense the “best” numbers are the noble numbers,
whose continued fraction expansion has quotients equal to 1 from some
point on. For instance, in the range [0.13579, 0.135791] the best noble
number has the cfe [7, 2, 1, 2, 1, 11, 1, 1, 1, . . .].

The KAM Theorem generalizes to maps in a product of annuli.

6.3.2 The Splitting of Separatrices

An integrable APM T has a first integral, that is, a function g(x, y)
such that (g(T (x, y)) = g(x, y) for all (x, y) in the definition domain.
Then we can consider g as a Hamiltonian. Assume T is the flow time ε

of this Hamiltonian and that it has some separatrix γ(t) which gives a
homoclinic connection. If we perturb T to Tε we question what happens
to the separatrix: does it subsist or does it split? Generically it splits,
but the splitting can be hard to detect if ε is small. This is due to the
exponentially small character of the splitting.

A first indication of this character is given by an application of Neish-
tadt’s Theorem, see Neishtadt (1984).

Theorem 6.2 Given z′ = εf(z, t, ε) with f analytic with respect to
z ∈ K, a compact in Cm , 2π-periodic and continuous in t, bounded in ε,
there exists a change z = h(w, t, ε), with the same regularity, such that
the new v.f. is w′ = εg(w, ε) + r(w, t, ε) with ||r|| < exp(−d/ε), d > 0.

To derive bounds on the splitting of an APM using this result it is
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enough to consider a suspension of the map using a periodic v.f. (any
regularity with respect to t is enough). If the map is APM the suspension
can be chosen to be a non-autonomous Hamiltonian and then one can
apply the theorem to obtain g autonomous and Hamiltonian with an
exponentially small remainder. See Broer et al. (1996) for examples of
the application of this methodology.

The previous theorem can be extended to the case of f analytic quasi-
periodic in t with frequencies satisfying a DC, see Simó (1994).

To obtain sharper bounds assume (Fontich–Simó (1990)),

- H(q, p) is a one d.o.f. (analytic) Hamiltonian with an homoclinic orbit
γ(t) to an hyperbolic point H,

- σ is the smallest absolute value of the imaginary part of the singular-
ities of γ,

- Tε is an analytic APM: Tε = ϕH
ε + O(ε2),

- h = ln(λ(ε)), where λ(ε) is the dominant eigenvalue of Tε at the
hyperbolic point Hε .

Theorem 6.3 Under the assumptions above, for all δ > 0 there exists
N(δ) such that the size of the splitting is bounded by N(δ) exp(−(2πσ −
δ)/h).

The size of the splitting can be measured by the angle at an homoclinic
point on a fixed domain, by the area of the lobes or by some other
invariant, like the homoclinic invariant, see Gelfreich (1999), Gelfreich–
Lazutkin (2001), Gelfreich–Simó (2008).

Generically the asymptotic size of the splitting as ε → 0 is like

ahrexp(−2πσ/h)(1+o(1)) or ahrexp(−2πσ/h)

(∑
i

cos(gi/h+ξi)+o(1)

)
.

Let us now consider the inner and outer splittings at a resonance. Let
T be a twist map and rm/n an invariant circle with rotation number
ρ = α(rm/n )/(2π) = m/n (a resonant circle). When T is perturbed a
resonant Normal Form, which in complex notation looks like

z 	→ R2π m
n

(e2πiγ (|z |)z + cz̄n−1 + R̂n (z, z̄)), R̂n = O(|z|n )

is obtained. The function γ(|z|) is given by δ + b1 |z|2 + b2 |z|4 + . . . ,

where bj are the Birkhoff coefficients. This NF can be approximated by
the composition of a rotation of angle 2πm/n with the flow time ε of
a Hamiltonian. The Hamiltonian shows resonant zones as displayed on
the left of Figure 6.8. It looks similar to a pendulum but the separatrices
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which pass close to points p and q in the figure are no longer symmetric.
Generically the separatrices split near p (outer splitting) and near q

(inner splitting) in a quite different way. More concretely

Theorem 6.4 In the situation described above and assuming b1 �= 0 the
inner and outer splittings for the m/n resonance have, generically, dif-
ferent σ parameters (see Theorem 6.3). That is, the ratio of the splittings
is also exponentially small in ε for ε → 0 and δ small.

See Simó–Vieiro (2008c) for proof and details. Concerning methods to
effectively compute invariant manifolds in a variety of cases we refer to
Simó (1990).

6.3.3 Key Models and Return Maps

There are key models which are extremely useful to understand the dy-
namics of a given system. Most of them are obtained as return maps.
This is the case for some celebrated results like Smale’s horseshoe theo-
rem, the Newhouse theorem and many other results related to passage
close to some homoclinic point.

To fix ideas consider a split separatrix or a resonant zone which have
invariant curves C1 , C2 on both sides. One can take a segment Σ which
is transversal to both curves and its image (perhaps under some iter-
ate Tk of the map T ). The domain D bounded by C1 , C2 ,Σ, T (Σ) is a
fundamental domain. Every point in D returns to it except, perhaps,
points lying on stable manifolds of hyperbolic periodic points. The re-
turn map R : D → D describes the return (when it is defined) and we
note that different points z ∈ D can require a different number of iter-
ates, k = k(z), of T to return to D. The study of R allows us to know
the dynamics of T between C1 and C2 .

It is clear that when the orbit of a point z approaches a hyperbolic
point H the number of iterates k(z) becomes unbounded. Then NF
techniques can be used to study analytically the passage near H. This
applies to general flows and maps in any dimension when passage near
an invariant object of hyperbolic type (perhaps in a weak sense) is pro-
duced, including passages near objects at infinity.

Consider the behaviour near a broken separatrix, either single loop
(as in Figure 6.8 centre) or with two loops as in a figure eight. A model
can be derived by considering passage close to the saddle and gluing
maps. A general separatrix map and relevant universal properties has
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Fig. 6.8. Left: sketch of a resonant zone. The dotted line shows the position
of the curve with ρ = m/n before perturbation. E and H are the elliptic and
hyperbolic periodic points created, generically, by the perturbation. Centre:
A model for the geometry of the separatrix map, associated to a single loop.
Right: a model for the geometry of the biseparatrix map.

been studied in Simó–Treschev (2008b). As a simple and typical case
we have the Chirikov separatrix map, which scaling actions by the size
of the splitting and using symmetry reads as

SPM

(
x

y

)
=
(

x̄

ȳ

)
=
(

x + a + b log(|ȳ|)
y + sin(2πx)

)
,

where a, b ∈ R and x is taken mod 1.
For b large, SPM looks quite chaotic near y = 0. It seems that inside

the lobes the dynamics is fully chaotic, but it has been proved that the
fraction of ε (in log scale) for which there are stable islands inside the
lobe, tends to a positive constant if ε → 0. See Broer et al. (1998b),
Simó–Treschev (2008b), Simó–Vieiro (2008d).

Thanks to contributions of Chirikov, Greene, Mather, MacKay, Rana-
de la Llave, Olvera-Simó, based on analysis of the standard map SM it
is possible to obtain

Proposition 6.1 The SPM has only invariant rotational curves (i.e.,
graphs of y = g(x)) if b/y0 < εG, where εG ≈ 0.9716/(2π), the so-called
Greene’s critical value.

For some cases, like in the range c∈ [1.014, 1.015] in the Hénon map,
see Section 6.5, or in Figure 6.6 for the Michelson system, there are
chains of islands, the first and last ones very narrow and becoming larger
in the central part. The SPM is not a good model for this. Not only
one but two separatrices play a relevant role in the creation of these
islands. Similar things occur in the so-called Birkhoff zones. A sketch
of the geometry is shown on the right of Figure 6.8. The simplest model
is the biseparatrix map, see Simó–Vieiro (2008d), which for 0 < y < d
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is given by

BSPM

(
x

y

)
=
(

x̄

ȳ

)
=
(

x + a + b1 log(ȳ) − b2 log(d − ȳ)
y + sin(2πx)

)
,

where d, b1 , b2 > 0 and x is taken mod 1. In that case

Proposition 6.2 The condition for the existence of r.i.c. for the BSPM

can be written as
b1

y0
+

b2

d − y0
< εG . In particular, there are no such

r.i.c. if (
√

b1 +
√

b2)2/d > εG.

6.4 Computational Tools

We turn to presenting some ideas about relevant computational tools
for the study of global dynamics.

6.4.1 Long-Time Integrations: Taylor Methods

Consider an IVP with a vector field f analytic in a neighbourhood of
(t0 , x0) ∈ Ω ⊂ R × Rn

ẋ = f(t, x), x(t0) = x0 .

It is possible to produce in an easy way the Taylor expansion x(t0 +h)
to high order for suitable h and use it as a one-step method. It is easy
to implement, accurate and fast using automatic differentiation methods
and with truncation errors τ largely below roundoff error. Except for
the effect of roundoff and its propagation along the orbit the method
can be considered as “exact”.

Theorem 6.5 For a very large class of analytic, non-stiff, ODE the
Taylor method has the following properties:
1) Asymptotically, for small enough τ , the optimal step size (concerning
efficiency) is almost independent of the number of digits and equal to
ρ(t)/ exp(2), where ρ(t) is the local radius of convergence.
2) The optimal order is approximately linear in the number of digits.
3) For a given equation and fixed t0 , tf , the global computational cost,
is O(D4), where D is the number of digits.

For further information and many examples we can refer to Simó (2007)
and for software implementing the method to Jorba–Zou (2005).

As an example we consider the energy change in a Sun-Jupiter-asteroid
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model. The asteroid is moving in a large domain around L5 (see Section
6.2). Of a total of 175 test particles 43% subsisted for 109 Jupiter
revolutions (more than twice the age of Solar System). The variations
of energy with respect to the initial value are displayed in Figure 6.9 for
the worst case. The initial value of the energy is of the order of units.

 0

 2e-12

 4e-12

 6e-12

 0  250000  500000  750000  1e+06

1-4-4

Fig. 6.9. Variation of the energy in a 3D RTBP describing the motion of an
asteroid in the Sun-Jupiter system. The initial position is far away from the
S-J plane (z = 0.8). The variations of the energy are given in dimensionless
units and time is given in the horizontal axis using 103 Jupiter revolutions as
unit.

It is worth mentioning additional checks for the Sun-Jupiter-Saturn-
Uranus-Neptune system. For integrations during a time interval of 4.5
Gyr the maximal variations of the energy satisfy ∆H/H < 10−11 . The
CPU computing time on a Xeon processor at 3.2 GHz is 3 days.

Assuming iid random roundoff errors the effect of the roundoff behaves
as O(t1/2) in the first integrals and, for integrable systems, as O(t3/2)
in the angles. These results coincide with the expected behaviour for a
random walk.

6.4.2 Dynamics Indicators: Lyapunov Exponents

Lyapunov exponents measure rates of exponential divergence of nearby
orbits. To compute the maximal Lyapunov exponent for a map at a
point x0 , let v0 , |v0 | = 1 be an initial vector on the tangent space at x0

to the phase space. Initialize the “Lyapunov sum” S0 = 0 and compute

xk+1 = T (xk ), wk+1 = DT (xk )(vk ),
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vk+1 = wk+1/|wk+1 |, Sk+1 = Sk + log |wk+1 | for k ≥ 0.

Then the limit slope of Sk as a function of k gives Λmax. The limit
exists for almost all x0 , v0 . Some comments on the procedure are:

- Use smoothing, fitting, extrapolation and self-consistency of estimates
using different numbers of iterates to compute Λmax.

- Stop computations at a “right place” xN close to x0 to improve the
estimates.

- Use alternative estimators (e.g. MEGNO) for near-integrable systems,
when Λmax is close to zero. It can be hard to distinguish between zero
and positive Lyapunov exponents.

- With some minor changes, including orthonormalization, it is possible
to determine all Lyapunov exponents.

- Despite Lyapunov exponents having a global character, it can be use-
ful to compute them without too many iterates. Then one can locate
hyperbolic objects in the phase space. Going too far in the number of
iterations can smooth out the values of Λ along a long orbit.

- On the other hand an initial point on a chaotic zone which is quite
close to an invariant torus can require a large number of iterates to
check that the orbit is really chaotic.

Summarizing, in conservative systems any computation of Lyapunov
exponents requires a careful examination of results to avoid misinterpre-
tations. See Broer–Simó (1998a), Cincotta et al. (2003), Ledrappier et
al. (2003) for different strategies to extract correct information.

6.4.3 Dynamics Indicators: Frequency Analysis

Let f(t) be an observable of a system, i.e., one of the coordinates of a
solution x(t) of a conservative system or a function of them. Assume we
have some reason to believe that the dynamics is quasi-periodic. Given
a sample {f(jT/N)}N −1

j=0 of f(t) on [0, T ], the problem is to determine
a trigonometric polynomial,

Qf (t) = Ac
0 +

Nf∑
l=1

(
Ac

l cos(2πνlt/T ) + As
l sin(2πνlt/T )

)
whose frequencies, {νl}Nf

l=1, and amplitudes, {Ac
l }

Nf

l=0, {As
l }

Nf

l=1, are a
good approximation of the corresponding ones of f(t). The size of the
sample Nf can be fixed by the available experimental data or, if there
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is some freedom (e.g., in case data are obtained by numerical integra-
tion) can be determined by the procedure itself (in terms of some input
parameters). The goal is to use Nf as small as possible, keeping high
accuracy in the computed νl , A

c,s
l , see Gómez et al. (2009).

Key ideas of the procedure are: a collocation method to compute
νl , A

c,s
l for |Ac,s

l | larger than a given threshold, solving the condition
equations by a convergent Newton method, followed by a selection of
a decreasing set of thresholds until the agreement between the sample
and the trigonometric polynomial is good enough (or one decides that
the results are against the assumption of quasi-periodicity). The theory
supporting the method is based on

Theorem 6.6 If f is analytic and quasi-periodic with Diophantine fre-
quencies, then there exist explicit formulas for the errors in νl , A

c,s
l , de-

pending on the Cauchy estimates for f , the Diophantine constants and
the values of T and N . (Gómez-Mondelo-Simó).

6.4.4 Computing Quasi-Periodic Invariant Curves

According to Theorem 6.1 perturbed twist maps have many invariant
curves for small perturbations. For a general APM T the behaviour is
similar close (or even not so close) to an elliptic fixed point of Tk for
some k. One can consider then the distance to the fixed point as a
measure of the perturbation. It is interesting to compute quasi-periodic
invariant curves for a given map (e.g. a Poincaré map). One can consider
the case of a given rotation number or just check if an invariant curve
passes through a given initial point. Several approaches can be used.

Working with a Fourier representation:

Assume x(t) =
∑

k∈K ck exp(ki t), t ∈ S1 is a representation of the
curve for some set of indices K. Then

a) Look for invariance: Take a grid {x(2πj/N)}, compute images
{T (x(2πj/N))}, analyse them and require them to have the same ck , or

b) Look for conjugation: Search for a transformation C which conju-
gates T to a rotation.

In both cases one has to use some normalization, because of the arbi-
trariness of the origin of angles.

Working in phase space:

Select a line L transversal to the curve and an initial point p on it.
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Compute iterates Tk and take some, with k = k1 , k2 , . . ., which return
close to p. Interpolate them to find a point q in L. Impose q = p and
solve with respect to p.

Curve-fitting:

This a method suitable to answer the question: Given a point p, is it
on an invariant curve for T? A procedure can be:

1) Compute iterates of p and keep the ones close to p.
2) Fit a curve to the iterates in some local coordinates. It is convenient

to use orthogonal polynomials with respect to the set of abscissas.
3) Find residuals: size and distribution as a function of the iteration.
4) Use some test of acceptance, e.g., based on standard deviation.

As an example of curve-fitting we present the case of an outer cometary
problem. Consider the planar circular RTBP with primaries Sun-Jupiter
as described in Section 6.2 with µ ≈ 1/1047.3486. A relevant question
is: Given a value of the Jacobi constant C and considering motions ex-
ternal to Jupiter’s orbit, up to which distance one can find r.i.c. which
prevent escape? How is that distance evolving with C? What about
dependence in µ? Some theoretical results in this problem are studied
by Kaloshin (2007).

A suitable Poincaré map can be obtained using pericentre passages:
we compute passages of the comet through a pericentre and record the
radius r and the angle β. Some results are shown in the top of Figure
6.10 for C = 4. Several initial conditions have been used and for each one
1000 Poincaré iterates have been computed. The curve-fitting method
has been used (with the necessary number of iterates) to detect if one
can accept that the initial points are in a r.i.c. In blue in the same
figure: approximate location where a r.i.c. has been found for the first
time. In suitable domains the step in the initial conditions has been
decreased to refine the estimate.

If we consider the osculating semimajor axis aosc and eccentricity eosc ,
that is, the values of the Keplerian elements if µ is set to zero, the
following relation holds

C = 1/aosc + 2a1/2
osc (1 − e2

osc)
1/2 .

The curve in blue corresponds to aosc ≈ 9.55858, eosc ≈ 0.77661, qosc ≈
2.13524, Tosc ≈ 185.682, where q and T denote the pericentre distance
and the period of the osculating orbit. We recall that in the dimension-
less units the period of Jupiter is 2π.
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Fig. 6.10. The outer cometary problem. Top: Poincaré iterates using the
pericentre passage as surface of section. Orbits of several points are shown
and the curve in blue represents the first appearance of a r.i.c. No such curves
have been found below. Bottom: on the left the above r.i.c. with more detail
and on the right the errors of the curve fitting method as a function of the
iterates on a small interval. See text for details.

To apply the curve-fitting method we have selected [−0.1, 0.1] as the
angle β interval and iterates of the Poincaré map have been computed
until 104 of them fall in this interval (in practice this number of iterates
can be decreased considerably). After curve fitting the errors have a
normal distribution with standard deviation ≈ 2.5 × 10−11 . At the
bottom of Figure 6.10 (left side) we show the selected r.i.c. using a
small vertical scale and the evolution of the fitting errors as a function
of the number of iterates falling in the β interval (right side). They are
due to the propagation of roundoff errors along the integration.
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6.5 Some Details of the Hénon map

A general overview of the abundance of non-escaping points has been
shown in the top right of Figure 6.7. In Figure 6.11 we show several
magnifications which reveal clearly the self-similarity at different scales.

Now we consider the near-integrable case. For c small the map can

be approximated by a flow. Let d =
√

c/
√

2. The change of variables

(x, y) → (u + dv, u − dv)/
√

2 shows that Hc is O(d2)-close to the time
d flow of Hamiltonian K(u, v) = v2 − u + 1

6 u3 . The level K = 2
3

√
2

containing the hyperbolic point u = −
√

2, v = 0 corresponds to a sepa-
ratrix, enclosing the elliptic point u =

√
2, v = 0. According to Theorem

6.3 the splitting for the manifolds of the map is exponentially small in
d and, hence, from the SPM it follows that r.i.c. of the map exist at
an exponentially small distance of the manifolds. As the area inside the
separatrix of K is finite, undoing the scaling it follows that the set of
non-escaping points is O(

√
c) for c small, in agreement with Figure 6.7

top right.

Let us pass to a low-order resonance. As an example consider the pa-
rameter value c = 1.015, just after the destruction of the r.i.c. confining
islands of period 4. The global behaviour for this resonance is similar
to the one shown in Figure 6.6 bottom for the Michelson system, with a
rotation of π/4 and different symmetries. For c = 1.015, as it happens
for ε = 0.02607 in Figure 6.6 (blue points), one can see a region without
subsisting points close to the invariant manifolds of the period-4 orbit,
except in the domain which contains the elliptic fixed point E. In fact
this domain has quite sharp boundaries, see the bottom plot in Figure
6.12. It looks as if there exist branches of the period-4 hyperbolic orbits
which connect these points and bound the stable domain around E.

A computation of the splitting angles at suitable points in the outer
and inner invariant manifolds gives the values so ≈ −0.951063 × 10−2 ,
si ≈ 0.294215×10−58 . The top of Figure 6.12 shows a part of the stable
and unstable period-4 manifolds. They seem to coincide because even
the outer splitting so is hard to detect. In the middle and bottom plots
the non-escaping points appear in red, while the escaping ones appear
in white. In the middle plot one can see that, despite so being moderate
it produces escape on a relatively large zone. It is clear that one has
to consider separately the tiny islands around an island of period 4 and
the ones which are at the external part of the four islands. The tiny
islands around an island of period 4 can be seen in detail in the bottom
of Figure 6.12.
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Fig. 6.11. Abundance of non-escaping points for the Hénon map as a function
of the parameter c. Top left: a detail after the jump corresponding to the
break down of r.i.c. around the period-5 islands (measured in pixels, next
plots are measure in area in the (x, y)-plane). Top right: the results close to
c = 2 when the period-doubling occurs. Bottom: successive magnifications
close to c = 1.92. Compare both right plots.

From the values of so and si and the dominant eigenvalue at the
period-4 hyperbolic periodic orbit one can derive a “composed separa-
trix” map. It describes the dynamics of the orbits which pass close to
the outer separatrix and then close to the inner one. From this, one
can predict the distance from the manifolds at which stable islands and
invariant curves appear. These values agree with the results obtained
by direct simulation. However, one should be careful about how this de-
pends on the place where we look. This is due to the shape of the level
curves of a Hamiltonian which gives an approximation of the dynamics
of H4

c .
For the outer islands and concerning the existence or not of r.i.c.

surrounding the four islands, one requires the use of the BSPM . Indeed,
the two periodic hyperbolic orbits which play a role are the period-4 orbit
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Fig. 6.12. Details on the 4:1 resonance, immediately after r.i.c. surrounding
the period-4 islands are destroyed. Top: the relevant manifolds. Middle: a
detail of the upper part of the manifolds and the non-escaping points around
the top period-4 island. Bottom: a detail of the lower part of the manifold
and the chains of islands surrounding the period-4 island.
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and the hyperbolic fixed point of Hc . Locally, in what concerns nearby
islands, one can again approximate by the SPM .

6.6 Summary and Open Problems

Careful numerical methods combined with basic theoretical results are of
great help to have a global idea of the dynamics in low-dimensional sys-
tems. Several examples, theoretical results and numerical methods have
been presented. An interesting feature is the appearance of common
patterns and mechanisms in quite different problems. As a conclusion,
one can “understand” reasonably well the main features in the phase
space and, hence, make predictions on the behaviour, derive auxiliary
models which can better studied analytically, etc.

It is clear that for larger dimensions the difficulties increase, both
concerning the theoretical and the computational aspects. Let us present
some of the aspects of the dynamics and problems to be faced.

a) Many theoretical results assure the validity of a dynamical property
if some parameter (say, a perturbation) is sufficiently small. But in
many cases the predictions are valid in surprisingly large domains (e.g.
a prediction based on a NF at high degree, a computation done by
the Lindstedt–Poincaré method, an exponentially small splitting, . . . ).
An effort has to be made to produce realistic estimates for the range of
applicability of the theoretical results, with good bounds on the errors.

b) Converse results are interesting. They prove, say, that some property
is not satisfied if a parameter is larger than some value. It would be
nice to decrease the size of the gap between positive and negative re-
sults and to understand the mechanisms which explain the differences
in the dynamics. And also to check the relevance of the results: do
they play a key role in the dynamics or are they confined to a tiny
domain in phase or parameter space?

c) For objects which are far from any “simple object of an unperturbed
system” proving rigorous facts should rely on CAP (Computer As-
sisted Proofs). An effort must be done to convert careful non-rigorous
computations into CAP in a systematic way.

d) While in APM there are clear boundaries, i.e., invariant curves, the
situation is worse in higher dimensions. Cantor sets of invariant tori
are close to some kind of “quasi-boundary” or “fuzzy boundary”. Do
the frequencies on them satisfy some special DC? Which are the fre-
quencies which play the role of the noble numbers? Certainly there are
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codimension-1 manifolds which can play a key role, see Simó (1998),
but they do not enclose a volume, i.e., have some splitting. Why do
they act as “practical boundaries”?

e) Diffusion through the invariant tori can be extremely slow in some
regions, but fast enough (and, hence, statistically relevant) in others
where the “abundance of tori” decreases. How to identify the differ-
ent regions? How to model the dynamics as a diffusion process, highly
heterogeneous and highly anisotropic? Do invariant Cantor sets play
a role on this?
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H. Broer, R. Roussarie and C. Simó (1996), ‘Invariant circles in the Bogdanov-

Takens bifurcation for diffeomorphisms’, Ergod. Th. & Dynam. Sys. 16,
1147–1172.
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of multidimensional systems by means of the Mean Exponential Growth
factor of Nearby Orbits (MEGNO)’, Physica D 182, 151–178.
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M. Hénon (1969), ‘Numerical study of quadratic maps’, Quarterly of App.
Math XXVII, 291–311.
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C. Simó (1998), ‘Effective computations in celestial mechanics and astrody-
namics’, in Modern Methods of Analytical Mechanics and their Appli-
cations, (V.V. Rumyantsev, A.V. Karapetyan, eds), CISM Courses and
Lectures, 387, Springer, pp. 55–102.
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Abstract

Asymptotic methods include asymptotic evaluation of integrals, asymp-
totic expansion of solutions to differential equations, singular perturba-
tion techniques, discrete asymptotics, etc. In this survey, we present
some of the most significant developments in these areas in the second
half of the 20th century. Also mentioned will be a new method known
as the Riemann-Hilbert approach, which has had a significant impact in
the field in recent years.

7.1 Introduction

What is asymptotics? It is the branch of analysis that deals with prob-
lems concerning the determination of the behavior of a function as one of
its parameters tends to a specific value, or a sequence as its index tends
to infinity. Thus, it includes, for example, Stirling’s formula, asymp-
totic expansion of the Lebesgue constant in Fourier series, and even the
prime number theorem. But, in general, it refers to just the two main
areas: (i) asymptotic evaluation of integrals, and (ii) asymptotic solu-
tions to differential equations. The second area sometimes also includes
the subject of singular perturbation theory. But the results in this sub-
area are mostly formal (i.e., not mathematically rigorous). Although
occasionally one may also include the methods of asymptotic enumer-
ation in the general area of asymptotics, the development of this area
is far behind those in the two areas mentioned above. For instance, a
turning point theory for difference equations was not introduced until
just around the turn of this century, while the corresponding theory for
differential equations was developed in the 1930’s.

In this survey, we will present some of the most important results
in these areas in the second half of the 20th century. We begin with

190
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asymptotic evaluation of integrals in the next section. Here we men-
tion only two ideas, namely, (i) the cubic transformation introduced by
Chester, Friedman & Ursell (1957) and (ii) the distributional method of
McClure & Wong (1978, 1979). In Section 7.3, we mention also only two
ideas; they are (i) the double asymptotic nature of the Liouville–Green
(WKB) approximation and (ii) error bounds associated with asymp-
totic solutions to second-order differential equations; see Olver (1974).
A more recent topic known as “exponential asymptotics” is discussed
in Section 7.4, where we explain the difference between Stokes’ phe-
nomenon and Berry’s transition (1989), and the significance of what
Berry & Howls (1991) have called “adjacent saddle” and “adjacent con-
tour”. In Section 7.5, we use specific examples to show the deficiency
of the method of matched asymptotics when exponentially small terms
are required. These examples involve turning-points and nested layers
(triple decks). We also discuss how the shooting method can be used to
give rigorous analysis in the study of two nonlinear boundary-value prob-
lems of Carrier & Pearson (1968). An asymptotic theory for difference
equations is described in Section 7.6, where one can also find Airy-type
and Bessel-type expansions. The final section is devoted to a brief il-
lustration of a new asymptotic method introduced by Deift and Zhou
in 1993. This method was originally designed to study the asymptotic
behavior of solutions to nonlinear differential equations; see, e.g., Deift
& Zhou (1993, 1994, 1995). But very quickly it was realized that the
method is also applicable to finding asymptotic behavior of orthogonal
polynomials; see, e.g., Deift (1999), Deift et al. (1999a, 1999b), Bleher
& Its (1999), Kuijlaars & McLaughlin (2001), Kuijlaars et al. (2004),
Wong & Zhang (2006) and Dai & Wong (2008). Here we will illustrate
the method with orthogonal polynomials associated with the exponen-
tial weight w(x) = exp(−Q(x)), where Q(x) is a polynomial of even
degree and with positive leading coefficient. We show, in particular,
by modifying the steepest-descent method of Deift–Zhou, that we can
obtain asymptotic expansions for the (scaled) polynomials which hold
uniformly in much wider regions.

7.2 Integral Methods

Classical methods for asymptotic evaluation of integrals include Wat-
son’s lemma, Laplace’s approximation, Kelvin’s principle of stationary
phase, and Debye’s method of steepest descent, etc. Information on
these methods can be found in Copson (1965), Bleistein & Handelsman
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(1975) and Wong (1989). The last reference also contains methods that
were discovered more recently, such as the Mellin transform technique,
the summability method and the distributional approach.

Here we shall briefly mention only an extension of the steepest descent
method given by Chester, Friedman & Ursell (1957), and the distribu-
tional approach introduced by McClure & Wong (1978, 1979). We begin
with the paper of Chester, Friedman & Ursell (1957), in which they con-
sidered contour integrals of the form

I(λ;α) =
∫

C

g(z)e−λf (z ;α) dz, (7.1)

where λ is a large positive number tending to +∞, f and g are analytic
functions of the complex variable z, and f is also an analytic function
of the parameter α. If α is fixed, an asymptotic expansion of I(λ;α)
for large λ can usually be found by the classical method of steepest
descent, which shows that the major contribution to the integral comes
from the saddle points, i.e., the points at which ∂f/∂z vanishes. If α

is allowed to vary, then the position of the saddle points may vary and
even coalesce. For simplicity, suppose that there exists a critical value
of α, say α0 , such that for α �= α0 there are two distinct saddle points
z+ = z+(α) and z− = z−(α) of multiplicity 1, but at α = α0 these two
points coincide and give a single saddle point of multiplicity 2. Since the
simplest function which exhibits two coalescing saddle points is a cubic
polynomial, Chester, Friedman & Ursell (1957) introduced the change
of variable z → u defined by

f(z;α) =
1
3
u3 − ζu + η, (7.2)

where the coefficients ζ = ζ(α) and η = η(α) are determined so that
(7.2) results in a single-valued analytic function z = z(u) with neither
dz/du nor du/dz vanishing in the relevant regions. Substituting (7.2)
into (7.1) gives

I(λ;α) = e−λη

∫
C ∗

ϕ0(u)e−λ(u3 /3−ζu) du, (7.3)

where C∗ is the image of C and ϕ0(u) = g(z)(dz/du).
To derive an asymptotic expansion for the integral I(λ;α) which holds

uniformly for α in a neighborhood of α0 , Chester, Friedman & Ursell
(1957) used the two-point expansion

ϕ0(u) =
∞∑

m=0

pm (α)(u2 − ζ)m +
∞∑

m=0

qm (α)u(u2 − ζ)m , (7.4)
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where the coefficients can be found by repeated differentiation and use
of the correspondences z+ ↔ ζ

1
2 , z− ↔ −ζ

1
2 . The contour C∗ in (7.3)

can be any one of the three curves γ0 , γ1 or γ2 , where γ0 runs from
∞e−

2
3 πi to ∞e

2
3 πi , γ1 runs from ∞ei0− to ∞e−

2
3 πi , and γ2 runs from

∞e
2
3 πi to ∞ei0+ . Just for the purpose of illustration, let us take C∗ to

be the curve γ0 . Inserting (7.4) into (7.3) and carrying out integration
term-by-term, one obtains a uniform asymptotic expansion of the form

eλη I(λ;α) =
Ai (λ2/3ζ)

λ1/3

[n−1∑
s=0

as(α)
λs

+ O

(
1
λn

)]

+
Ai′ (λ2/3ζ)

λ2/3

[n−1∑
s=0

bs(α)
λs

+ O

(
1
λn

)] (7.5)

as λ → ∞, where Ai is the Airy function and as(α), bs(α) can be deter-
mined by a finite number of the coefficients p0 , p1 , p2 , . . . and q0 , q1 , q2 , . . .

in (7.4). The two O-terms are independent of α.
A disadvantage of the expansion (7.4) is that it is valid only when

α is near α0 and |u| is small. As a consequence, the region of validity
in α is not as large as desired. An alternative derivation of (7.5) was
later provided by Bleistein (1966, 1967), which is based on a repeated
application of an integration-by-parts technique. An additional advan-
tage of Bleistein’s method is that it gives an explicit expression for the
remainder term associated with the expansion (7.5), from which error
bounds may be obtained; see Wong (1980, §12). A similar result could
be obtained by using a two-point expansion with remainder given in
López & Temme (2002).

The method of Chester, Friedman & Ursell (1957) has had a tremen-
dous impact in this area of research, and subsequently has been modified,
improved and extended by several authors, including Copson (1965),
Bleistein (1966, 1967), Frenzen & Wong (1988), and Wong & Zhao
(2003). Also, it has been successfully applied by Ursell (1960) to ship
wave pattern, Berry (1969, 2005) to diffraction theory and Tsunami
waves, Cartwright & Oughstun (2007) to pulse propagation, and by Bo
& Wong (1994) and Jin & Wong (1998) to orthogonal polynomials.

We conclude our discussion of uniform asymptotic expansion with a
very brief mention of double integrals of the form

J(λ;α) =
∫∫

D

g(x, y;α)eiλf (x,y ;α) dx dy, (7.6)

where λ is again a large positive number and α is an auxiliary parameter.



194 R. Wong

Such integrals appear frequently in asymptotic solutions of wave equa-
tions; see, e.g., Poston & Stewart (1978, p. 260). In (7.6), D is a bounded
domain, and f and g are C∞-functions of (x, y) in D. Furthermore, we
assume that the phase function fα (x, y) := f(x, y;α) has two stationary
points (x±(α), y±(α)) which coalesce at a point (x0 , y0) in the interior
of D when α tends to a critical value, say α0 . Under these conditions,
it is readily seen that (x0 , y0) is a degenerate stationary point of fα0 .
If, in addition, the Hessian matrix of fα at (x0 , y0) has rank 1 and the
third-order derivatives of fα at (x0 , y0) satisfy a certain non-vanishing
condition, then by using the splitting lemma from catastrophe theory
(see Poston & Stewart (1978, p. 95)) and a C∞-version of the cubic
transformation given in (7.2) (see Hörmander (1990, p. 204)) it can be
shown that there exists a C∞ and one-to-one mapping (x, y) → (u, v)
given by u = uα (x, y) and v = vα (x, y) such that

fα (x, y) = εu2 +
1
3
v3 + ξ(α)v + η(α), (7.7)

where ξ(α) and η(α) are C∞-functions with ξ(α0) = η(α0) = 0 and,
moreover, uα0 (x0 , y0) = vα0 (x0 , y0) = 0. In (7.7), ε denotes the sign of
∂2fα0 /∂x2 at (x0 , y0) if the value of this derivative is not zero; otherwise,
we take ε to be the sign of ∂2fα0 /∂y2 at (x0 , y0). Note that these two
derivatives can not both vanish at this point, since the Hessian matrix
of fα0 at (x0 , y0) is of rank 1.

Substituting (7.7) into (7.6) gives

I(λ;α) = eiλη (α)
∫∫

D ′
ϕ0(u, v;α)eiλ(εu2 + 1

3 v 3 +ξ(α)v ) du dv, (7.8)

where D′ is the image of D under the transformation (x, y) → (u, v),

ϕ0(u, v;α) = g(x, y;α)
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣
and ∂(x, y)/∂(u, v) is the Jacobian of the transformation. An Airy-
type expansion can then be derived again by repeated application of an
integration-by-parts technique.

The above problem arose in a study on propeller acoustics in the
1990’s; see Chapman (1992) and Prentice (1994). The material pre-
sented here is taken from Qiu & Wong (2000), where detailed analysis
is given. For more discussions (although not all rigorous) on uniform
asymptotic expansions of double integrals of the form (7.6), we mention
the book by Borovikov (1994).

We now turn our attention to the distributional approach introduced
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by McClure & Wong (1978, 1979). Consider the Stieltjes transform given
by

Sf (z) =
∫ ∞

0

f(t)
t + z

dt, (7.9)

where f(t) is a locally integrable function on [0,∞) and z is a complex
variable in the cut plane | arg z| < π. To obtain the large z-behavior
of Sf (z), we assume that f(t) possesses an asymptotic expansion of the
form

f(t) =
n−1∑
s=0

ast
−s−α + fn (t) (7.10)

for each n ≥ 1, where 0 < α < 1 and fn (t) = O(t−n−α ) as t → ∞.
To each function in (7.10), we can assign a distribution on the space
S of rapidly decreasing functions. For instance, f defines a regular
distribution on S by 〈f, ϕ〉 =

∫∞
0 f(t)ϕ(t) dt for all ϕ ∈ S. Similarly,

t−α defines a regular distribution by 〈t−α , ϕ〉 =
∫∞

0 t−αϕ(t) dt. Through
the remaining portion of this section, we shall only consider distributions
which are supported on [0,∞). Note that t−s−α is not locally integrable
on [0,∞), when s ≥ 1. Hence, we can not use the same approach to
define distributions associated with the functions t−s−α , s = 1, 2, . . ..
However, since the sth derivative of t−α is (−1)s(α)st

−s−α , one can
consider t−s−α as the sth distributional derivative of (−1)st−α/(α)s ;
that is, we can assign 〈t−s−α , ϕ〉 = 〈t−α , ϕ(s)〉/(α)s for all ϕ ∈ S. For
the function fn (t) in (7.10), we first denote by fn,n (t) the nth iterated
integral of fn , i.e.,

fn,n (t) =
(−1)n

(n − 1)!

∫ ∞

t

(τ − t)n−1fn (τ) dτ.

Note that for each n ≥ 1, fn,n (t) is locally integrable on [0,∞) and
O(t−α ) as t → ∞. Furthermore, fn is the nth derivative of fn,n . Hence,
we may define the distribution associated with fn (t) by 〈fn , ϕ〉 = (−1)n

〈fn,n , ϕ(n)〉 for all ϕ ∈ S. An interesting observation is that when each
of the functions in (7.10) is interpreted as a distribution, this equation
no longer holds. Instead, we have

〈f, ϕ〉 =
n−1∑
s=0

as〈t−s−α , ϕ〉 −
n∑

s=1

cs〈δ(s−1) , ϕ〉 + 〈fn , ϕ〉 (7.11)

for all ϕ ∈ S, where δ is the Dirac delta function and cs = fs,s(0). In
order to deduce an asymptotic expansion from (7.11), we choose ϕ(t) =
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e−εt/(t+z) for t > 0, and take the limit on both sides of (7.11) as ε → 0.
The result is

Sf (z) =
π

sin απ

n−1∑
s=0

(−1)s as

zs+α
−

n∑
s=1

(s − 1)!
cs

zs
+ εn (z), (7.12)

for 0 < α < 1, where

εn (z) = n!
∫ ∞

0

fn,n (t)
(t + z)n+1 dt.

This result becomes even easier to apply, when one realizes that the
coefficients cs can be expressed in terms of the Mellin transform of f(t),
denoted by M [f ; z]. Indeed, we have cs = (−1)s

(s−1)! M [f ; s]. Moreover, by
integration by parts, the remainder εn (z) can be written as

εn (z) =
(−1)n

zn

∫ ∞

0

τnfn (τ)
τ + z

dτ. (7.13)

Note that the integral in (7.13) is just the Stieltjes transform of tnfn (t).
Therefore, it is no more complicated than the original integral in (7.9),
except that it is now multiplied by a decreasing factor 1/zn . When α = 1
in (7.10), a corresponding result can be derived with the leading-order
term z−α in (7.12) replaced by (log z)/z.

The expansion in (7.12) can be used to give a similar result for the
one-sided Hilbert transform

H+
f (x) =

∫ ∞

0
− f(t)

t − x
dt, x > 0, (7.14)

where the bar on the integral sign indicates that the integral is the
Cauchy principal value at t = x. This is easily seen from the well-known
formula of Plemelj (see Bremermann (1965))

H+
f (x) =

1
2

lim
ε→0

∫ ∞

0

[
1

t − x + iε
− 1

t − x − iε

]
f(t) dt,

and the final expansion takes the form

H+
f (x) = π cot απ

n−1∑
s=0

as

xs+α
−

n∑
s=1

(s − 1)!
(−1)scs

xs
+ ε∗n (x), (7.15)

where

ε∗(x) =
(−1)n

xn

∫ ∞

0
− tnfn (t)

t − x
dt.

An advantage of the distributional approach is that it gives explicit
expressions for the remainders in (7.12) and (7.15), from which it would
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be easier to derive numerical bounds for the error terms. Although there
are now other methods to obtain similar results (see Wong (1979), Ursell
(1983) and López (2007)), it is this approach that first showed what the
remainder terms should look like.

The distributional method can also be extended to construct asymp-
totic expansions of other integrals, such as Fourier and Laplace trans-
forms near the origin, and convolution integrals of the form

I(x) =
∫ ∞

0
f(t)h(xt) dt

and

J(x) =
∫ x

0
f(t)g(x − t) dt

for large value of x. For references, we mention Wong & McClure (1984),
Li & Wong (1994) and López (2000).

7.3 Differential Equation Theory

The two best known results in asymptotic theory of differential equa-
tions are the treatment of irregular singular points at infinity and the
Liouville–Green (WKB) approximation. Since the first result dates back
to Poincaré (1886), here we just concentrate on the second result con-
cerning the differential equation

y′′(x) = {λ2a(x) + b(x)}y(x), (7.16)

where λ is a positive parameter. We first consider the simplest case,
in which a(x) is a real, positive and twice continuously differentiable
function in a given finite or infinite interval (a1 , a2). We also assume
that b(x) is a continuous real- or complex-valued function. Let

ξ =
∫

a1/2(x) dx, w = a1/4(x)y(x). (7.17)

It is readily verified that under this transformation, equation (7.16) be-
comes

d2w

dξ2 = {λ2 + ψ(ξ)}w, (7.18)

where

ψ(ξ) = − 5
16

a′2(x)
a3(x)

+
1
4

a′′(x)
a2(x)

+
b(x)
a(x)

.
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The change of variable from (x, y) to (ξ, w) is known as the Liouville
transformation. If we discard ψ in (7.18), then we obtain two linearly
independent solutions e±λξ . In terms of the original variables, we have

y(x) ∼ Aa−1/4(x) exp
{

λ

∫
a1/2(x) dx

}
+ Ba−1/4(x) exp

{
−λ

∫
a1/2(x) dx

}
,

(7.19)

where A and B are arbitrary constants. Equation (7.19) is known as the
Liouville–Green approximation, whereas physicists refer to (7.19) as the
WKB approximation. This is a very old result, and has been extended
in a variety of ways. Here we only mention two important observations
made by Olver in the 1960’s; see Olver (1961) and Olver (1974, Ch. 6).
Let F (x) denote the control function

F (x) =
∫ {

1
a1/4

d2

dx2

(
1

a1/4

)
+

b

a1/4

}
dx, (7.20)

and use the notation

Vd,x(F ) =
∫ x

d

|F ′(t)| dt

for the total variation of F over an interval (d, x). Olver’s first ob-
servation was that the linearly independent solutions of (7.16) can be
expressed as

y1(x) = a−1/4(x) exp
{

λ

∫
a1/2(x) dx

}
[1 + ε1(λ, x)] (7.21)

and

y2(x) = a−1/4(x) exp
{
−λ

∫
a1/2(x) dx

}
[1 + ε2(λ, x)] (7.22)

with

|εj (λ, x)| ≤ exp
{

1
2λ

Vaj ,x(F )
}
− 1, j = 1, 2. (7.23)

For fixed x and large λ, the right-hand side of (7.23) is O(λ−1). Hence,
a general solution to (7.16) has the asymptotic behavior given in (7.19).

Note that the inequalities in (7.23) provide tractable and realistic
bounds for the error terms ε1(λ, x) and ε2(λ, x). Olver’s second obser-
vation was that these bounds can also be used to give asymptotic prop-
erties of the approximations (7.21) and (7.22) in the neighborhood of a
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singularity of the differential equation. Because of this double asymp-
totic feature, the Liouville–Green approximation is a remarkably pow-
erful tool for approximating solutions of linear second-order differential
equations. To illustrate this point, we let λ = 1 in (7.16), and assume
that Va1 ,a2 (F ) < ∞ and also∫

a1/2(x) dx → ∞ as x → a−
2 .

Under these conditions, it can be proved that the error term ε1(x) :=
ε1(1, x) in (7.21) satisfies

ε1(x) → a constant as x → a−
2 ;

see Olver (1974, pp. 197–199). This, together with (7.21), shows that
there is a solution y3(x) such that

y3(x) ∼ a−1/4(x) exp
{∫

a1/2(x) dx

}
as x → a−

2 . (7.24)

Coupling (7.22) and (7.24), we obtain two linearly independent asymp-
totic solutions as x → a−

2 .
As an illustration, we consider the equation

y′′(x) = xxy(x)

as x → ∞. In view of the rapid growth of the coefficient function xx as
x → ∞, it is really not easy to guess the large x-behavior of the solution
y(x). With λ = 1, a(x) = xx and b(x) = 0 in (7.16), the control function
F (x) in (7.20) is given by

F (x) =
1
16

∫
[(1 + lnx)2x−x/2 − 4x−(1+x/2) ] dx.

Clearly, Vx,∞(F ) → 0 as x → ∞. Hence, (7.22) gives the recessive
solution

y2(x) ∼ x−x/4 exp
(
−
∫

xx/2 dx

)
, x → ∞.

A dominated solution is provided by (7.24), namely,

y3(x) ∼ x−x/4 exp
(∫

xx/2 dx

)
, x → ∞.

An asymptotic expansion of the integral
∫

xx/2 dx can be obtained by
integration by parts. This problem has been treated by Rosenlicht (1983)
in a paper on Hardy fields.
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The problem of finding asymptotic solutions to the differential equa-
tion (7.16) becomes much more complicated when the coefficient func-
tion a(x) has a zero, say at x = x0 , in the interval (a1 , a2). Such a point
is known as a turning point of the differential equation. In this case,
there is an ambiguity in taking the square root of the function a(x), and
hence the Liouville transform (7.17) is not well-defined.

For definiteness, we assume that a(x) has the same sign as x−x0 ; i.e.,

a(x)(x − x0) > 0 for all x �= x0 .

Instead of (7.17), we now make the change of variables
2
3 ζ3/2 =

∫ x

x0

a(t)1/2 dt, x0 ≤ x,

2
3 (−ζ)3/2 =

∫ x0

x

[−a(t)]1/2 dt, x < x0 ,

(7.25)

and

w(ζ) =
(

dζ

dx

)1/2

y. (7.26)

It is easily verified that (
dζ

dx

)2
=

a(x)
ζ

. (7.27)

The transformation (x, y) → (ζ, w) was first introduced by Langer (1931,
1932) in the 1930’s, under which equation (7.16) becomes

d2w

dζ2 = {λ2ζ + ψ(ζ)}w, (7.28)

where

ψ(ζ) =
5
16

ζ−2 + {4a(x)a′′(x) − 5[a′(x)]2} ζ

16a3(x)
+

ζb(x)
a(x)

.

If ψ in (7.28) is neglected, then we have the Airy equation

d2w

dζ2 = λ2ζw.

Its two linearly independent solutions are the Airy functions Ai (λ2/3ζ)
and Bi (λ2/3ζ). From this, it is reasonable to expect that equation (7.16)
has twice continuously differentiable solutions expressible in the forms

y1(x) = â −1/4(x)[Ai (λ2/3ζ) + ε1(λ, x)], (7.29)

y2(x) = â −1/4(x)[Bi (λ2/3ζ) + ε2(λ, x)], (7.30)
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where â(x) = a(x)/ζ; see (7.26) and (7.27). To give estimates for the
error terms ε1(λ, x) and ε2(λ, x), we let c = −0.36604 . . . be the real
root of the equation

Ai (x) = Bi (x)

of smallest absolute value, and define the envelopes of Ai (x) and Bi (x)
by

env Ai (x) = env Bi (x) = [Ai2(x) + Bi2(x)]1/2 , −∞ < x ≤ c,

env Ai (x) =
√

2Ai (x), env Bi (x) =
√

2Bi (x), c ≤ x < ∞.

These envelopes are continuous functions of x. Furthermore, we assume
that ζ defined in (7.25) ranges over a finite or infinite interval (α1 , α2).
If the total variation of the control function

Ψ(ζ) =
∫ ζ

0
ψ(v)v−1/2 dv

on (α1 , α2) is finite (i.e., Vα1 ,α2 (Ψ) < ∞), then the error terms in (7.29)
and (7.30) satisfy

ε1(λ, x) = env Ai (λ2/3ζ)O
(

1
λ

)
, (7.31)

ε2(λ, x) = env Bi (λ2/3ζ)O
(

1
λ

)
(7.32)

uniformly with respect to x ∈ (a1 , a2).
For bounded values of ζ, the asymptotic nature of the approximations

(7.29) and (7.30) was established by Langer (1931, 1932, 1949). For
unrestricted ζ, these results were proved by Olver (1954, 1958). The
present form of the error estimates in (7.31) and (7.32) is given in Olver
& Wong (2009); see also Olver (1974, Ch. 11). Explicit bounds for
εi(λ, x), i = 1, 2, can be found in Olver (1963, 1964).

Returning to equation (7.16), we now assume that a(x) has a simple
pole (say) at x0 and (x − x0)2b(x) is analytic. For simplicity, we also
assume that a(x) has the same sign as x − x0 . In this case, it is again
Langer (1935) who introduced the transformation

ζ1/2 =
∫ x

x0

a1/2(t) dt, x ≥ x0 ,

(−ζ)1/2 =
∫ x0

x

[−a(t)]1/2 dt, x ≤ x0 ,
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and

w =
(

dζ

dx

)1/2

y,

which transforms (7.16) into the new equation

d2w

dζ2 =
{

λ2

4ζ
+ ψ̂(ζ)

}
w, (7.33)

where

ψ̂(ζ) =
b(x)
â(x)

+
1

â1/4(x)
d2

dζ2 {â
1/4(x)}

and â(x) = (dζ/dx)2 = 4ζa(x). If b(x) has a simple or double pole at
x0 , then ψ̂(ζ) has the same kind of singularity at ζ = 0. Denote the
value of ζ2 ψ̂(ζ) at ζ = 0 by 1

4 (ν2 − 1), and write (7.33) in the form

d2w

dζ2 =
{

λ2

4ζ
+

ν2 − 1
4ζ2 +

ψ(ζ)
ζ

}
w (7.34)

with ψ(ζ) = ζψ̂(ζ) − 1
4 (ν2 − 1)ζ−1 . Note that ψ(ζ) is analytic at ζ = 0,

and that equation (7.34) has a regular singularity there. We suppose
that the range of ζ is a real interval (α1 , α2) which contains ζ = 0 and
may be unbounded, and consider separately the intervals [0, α2) and
(α1 , 0].

If the term ψ(ζ)/ζ is neglected, then (7.34) becomes

d2w

dζ2 =
{

λ2

4ζ
+

ν2 − 1
4ζ2

}
w. (7.35)

If ζ is positive, two linearly independent solutions of (7.35) using modi-
fied Bessel functions are ζ1/2Iν (λζ1/2) and ζ1/2Kν (λζ1/2). If ζ−1/2ψ(ζ)
is absolutely integrable on [0, α2), then equation (7.34) has two linearly
independent solutions w1(λ, ζ) and w2(λ, ζ) such that

w1(λ, ζ) = ζ1/2Iν (λζ1/2)[1 + O(λ−1)],

w2(λ, ζ) = ζ1/2Kν (λζ1/2)[1 + O(λ−1)],

as |λ| → ∞, where the O−terms hold uniformly with respect to ζ ∈
[0, α2).

When ζ is negative, two linearly independent solutions of (7.35) us-
ing Bessel functions are |ζ|1/2Jν (λ|ζ|1/2) and |ζ|1/2Yν (λ|ζ|1/2), and if
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|ζ|−1/2ψ(ζ) is absolutely integrable on (α1 , 0] then equation (7.34) has
two solutions, namely,

w1(λ, ζ) = |ζ|1/2Jν (λ|ζ|1/2)[1 + O(λ−1)],

w2(λ, ζ) = |ζ|1/2Yν (λ|ζ|1/2)[1 + O(λ−1)],

as |λ| → ∞, which hold uniformly for ζ ∈ (α1 , 0].
Langer (1935) was the first to derive asymptotic approximations for

solutions in terms of Bessel functions, but the validity of the result was
confined to a shrinking neighborhood of the singular point. Asymptotic
approximations valid uniformly in fixed intervals were established by
Swanson (1956) and Olver (1956, 1958).

For extensions to purely imaginary λ in (7.18) or complex ζ in (7.28)
and (7.34), more delicate error estimates, and infinite asymptotic expan-
sions, see Olver (1974, Chapters 10, 11 & 12). There are also problems in
differential equations that correspond to the coalescence of saddle points
discussed in Section 7.2. For two coalescing turning points, we mention
Olver (1975, 1976) and Dunster (1996). The approximants in this case
are parabolic cylinder functions. For the coalescence of a turning point
and a simple pole, see Dunster (1994).

7.4 Exponential Asymptotics

Due to the needs in physical applications, there was a sudden surge
of interest in the 1980’s in finding ways to pick up exponentially small
terms or to derive asymptotic expansions whose error terms are expo-
nentially small; see, e.g., Meyer (1980) and Boyd (1999). Amongst the
many papers in this subarea of asymptotic analysis, there are two that
have drawn the widest attention. The first was by Kruskal and Segur
(1991) with the title “Asymptotics beyond all orders in a model of crys-
tal growth”, and the second paper was by Berry (1989) with the title
“Uniform asymptotic smoothing of Stokes’ discontinuity”. The former
eventually led to an international conference in San Diego (see Segur et
al. (1991)), and the latter generated enough activities to form a half-year
program in Cambridge (1995). Since the first paper is more related to
singular perturbation theory, we will defer the problem in that paper to
Section 7.5 when we discuss that topic. In the current section, we shall
be concerned with only the second paper.
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Consider the Airy function Ai (z) defined by

Ai (z) =
1

2πi

∫
L

exp
(

1
3
t3 − zt

)
dt, (7.36)

where L is any contour which begins at infinity in the sector − 1
2 π <

arg z < − 1
6 π and ends at infinity in the sector 1

6 π < arg z < 1
2 π. It has

been long known that the asymptotic behavior of Ai (z) is given by

Ai (z) ∼ 1
2πz1/4 exp

(
−2

3
z3/2

) ∞∑
m=0

(−1)m Γ(3m + 1
2 )

(2m)!9m
z−3m/2

+
C

2πz1/4 exp
(

2
3
z3/2

) ∞∑
m=0

Γ(3m + 1
2 )

(2m)!9m
z−3m/2 ,

(7.37)

where C is a constant which is 0 for arg z ∈ (− 1
3 π, 1

3 π) and i for arg z ∈
( 1

3 π, 5
3 π); see Wong (1989, pp. 93–94). The coefficient C is called a

Stokes multiplier, and is domain dependent. The discontinuous change
of the coefficient C, when the argument of z changes in a continuous
manner, is known as Stokes’ phenomenon.

Since we are dealing with a continuous (in fact, analytic) function, it is
rather unsatisfactory to have a discontinuous coefficient in the asymp-
totic expansion (7.37). In 1989, Berry wrote an innovative paper, in
which he adopted a different interpretation of the Stokes phenomenon.
In his view, the coefficient of the second series in (7.37) should be a con-
tinuous function of arg z, instead of a discontinuous constant; see also
Paris & Wood (1995). He gave a beautiful, although not mathematically
rigorous, demonstration of this theory with the well-known asymptotic
expansion associated with the WKB-approximation for second-order dif-
ferential equations. Berry’s theory has since become known variously
as “exponential asymptotics” or “superasymptotics” (see Boyd (1999)
and Olde Daalhuis (2003)), and has been successfully applied to several
known asymptotic expansions in a mathematically rigorous manner (see,
e.g., Boyd (1990), Olver (1991a, 1991b, 1993), Olde Daalhuis & Olver
(1994, 1995), Wong & Zhao (1999, 2002)).

In this section, we shall illustrate Berry’s theory with the simple Airy
function given in (7.36). Our approach is based on another brilliant
idea of Berry & Howls (1991), which is a modification of the classical
method of steepest descent. However, in view of space limitation, our
presentation will be very sketchy. In (7.36), we make the change of
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variable t = z1/2u. The integral in (7.36) then becomes

Ai (z) =
z1/2

2πi

∫
L

ez 3 / 2 ( 1
3 u3 −u) du.

Put ξ := 2
3 z3/2 and f(u) = 1

2 (u3 − 3u) so that

Ai (z) =
1

2πi

(
3
2
ξ

)1/3 ∫
L

eξf (u) du.

The saddle points of f(u) are located at u = ±1. Clearly, f(±1) = ∓1.
Let θ := arg ξ and consider the steepest descent curves

Γ±1(θ) : arg{ξ[f(±1) − f(u)]} = arg{eiθ [∓1 − f(u)]} = 0. (7.38)

From Wong (1989, p. 92), we know that only the saddle point at u = 1
is relevant. Deform L into Γ1(θ), and write

Ai (z) =
1

2πi

(
3
2

)1/3

ξ−1/6e−ξ I(1)(ξ), (7.39)

where

I(±1)(ξ) = ξ1/2
∫

Γ1 (θ)
eξ [f (u)±1] du. (7.40)

In (7.40), we make the change of variable τ = ξ[−1 − f(u)]. For u ∈
Γ1(θ), τ is real and positive; see (7.38). Expanding f(u) into a Taylor
series at u = 1, we have

−τ =
3
2
ξ[(u − 1)2 +

1
3
(u − 1)3],

from which it follows that

±i

(
2
3

τ

ξ

)1/2

= (u − 1)
[
1 +

1
3
(u − 1)

]1/2

,

where the branch of the square root is chosen so that it reduces to 1 at
u = 1. By Lagrange’s inversion formula,

u± = 1 +
∞∑

n=1

αn

(
±i

√
2τ

3ξ

)n
.

Breaking the integration path Γ1(θ) in (7.40) at u = 1, we can rewrite
the integral I(1)(ξ) as

I(1)(ξ) = ξ1/2
∫ ∞

0

[
du+

dτ
− du−

dτ

]
e−τ dτ. (7.41)
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Instead of (7.41), Berry & Howls (1991) used the equivalent representa-
tion

I(1)(ξ) = ξ−1/2
∫ ∞

0

[
1

f ′(u−(τ))
− 1

f ′(u+(τ))

]
e−τ dτ. (7.42)

Furthermore, they observed that the quantity inside the square brackets
in (7.42) can be expressed as a residue, and showed that it is equal to

1
2πi

ξ3/2

τ 1/2

∫
C1 (θ)

[−1 − f(u)]1/2

ξ[−1 − f(u)] − τ
du, (7.43)

where C1(θ) is a positively oriented curve surrounding the steepest-
descent path Γ1(θ); for details, see Wong (2001). (Since Γ1(θ) is an
infinite contour, C1(θ) actually consists of two infinite curves embracing
Γ1(θ).) Replacing the integrand in (7.42) by the quantity in (7.43) gives
a double integral, and upon interchanging the order of integration one
obtains

I(1)(ξ) =
1

2πi

∫
C1 (θ)

[−1 − f(u)]−1/2
∫ ∞

0

e−τ τ− 1
2

1 − {τ/ξ[−1 − f(u)]} dτ du.

The quantity inside the inner integral can be expanded into a geometric
series with remainder, and the result is

I(1)(ξ) =
N∑

s=0

csξ
−s + RN (ξ), (7.44)

where the coefficients cs can be evaluated exactly and the remainder
RN (ξ) is given by

RN (ξ) =
ξ−N

2πi

∫ ∞

0
e−τ τN − 1

2

×
∫

C1 (θ)
[−1 − f(u)]−N − 1

2
1

1 − {τ/ξ[−1 − f(u)]} du dτ.

(7.45)

Now consider all steepest descent paths Γ1(θ) passing through u = 1
for different values of θ; see Figure 7.1. Since f(1) − f(−1) = −2, the
path

Γ1(π) : arg{eiπ [f(1) − f(u)]} = 0

runs into the saddle point u = −1. Berry and Howls call u = −1 an
adjacent saddle of u = 1, and the steepest-descent path

Γ−1(π) : arg{eiπ [f(−1) − f(u)]} = 0
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Fig. 7.1. Contour Γ1 (θ),−π < θ < π.

an adjacent contour ; see also Boyd (1993). The next step is to deform
C1(θ) into Γ−1(π), and make the change of variable

τ = t
f(1) − f(u)

f(1) − f(−1)
; (7.46)

recall that f(1) = −1. Dingle (1973) called the quantity f(1)− f(−1) a
singulant; see also Berry & Howls (1991). Substituting (7.46) in (7.45),
we obtain

RN (ξ) =
ξ−N

2πi
(−2)−N − 1

2

∫ ∞

0
e−t tN − 1

2

(
1 +

t

2ξ

)−1

×
∫

Γ−1 (π )
exp
{
−t

f(−1) − f(u)
f(1) − f(−1)

}
du dt.

(7.47)

In the inner integral, we write u = −w. Since f(u) is an odd function
and f(1) − f(−1) = −2, it follows that
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∫
Γ−1 (π )

exp
{
−t

f(−1) − f(u)
f(1) − f(−1)

}
du = −

∫
Γ1 (0)

exp
{

t

2
[f(w) − f(1)]

}
dw.

The last integral can be expressed in terms of I(1)(ξ) given in (7.40).
Thus, we have from (7.47)

RN (ξ) =
1
2π

(−2ξ)−N

∫ ∞

0
e−t tN −1

(
1 +

t

2ξ

)−1

I(1)
(

t

2

)
dt. (7.48)

Equations (7.44) and (7.48) coupled together are known as a resurgence
formula, since the integral I(1)(ξ) on the left-hand side of (7.44) appears
again in the remainder term RN (ξ) given in (7.48).

By using the inequality

Γ(N) <
√

2πNN − 1
2 e−N +(1/12N ) ,

it can be shown (see Wong (2001)) that there is a constant C such that

|RN (ξ)| < CeN (−1+log N −log |2ξ |) (7.49)

for | arg ξ| ≤ π (i.e., |θ| ≤ π). The minimum value of the exponential
function on the right-hand side of (7.49) is attained when

d

dN
(−N + N log N − N log |2ξ|) = log N − log(2|ξ|) = 0.

Therefore, optimal truncation occurs near N = N∗ = 2|ξ|. With N

given by this value, we obtain from (7.49)

|RN (ξ)| ≤ Ce−2|ξ |, (7.50)

as |ξ| → ∞, for |θ| ≤ π. Olver (1991a) called the expansion (7.44) with
error given by (7.50) a uniform, exponentially improved, asymptotic ex-
pansion in the sector |θ| ≤ π. Optimally truncated asymptotic expan-
sions have now been also called superasymptotic expansions by Berry &
Howls (1990).

Returning to (7.48), we now replace the function I(1)(t/2) by its
asymptotic expansion (7.44). Termwise integration gives a series of in-
tegrals which can be expressed in terms of Dingle’s terminant function∫ ∞

0

tk−1e−t

1 + t/ζ
dt := 2πi(−ζ)k eζ Tk (ζ);

see Olver (1991a). More precisely, we have

RN (ξ) = ie2ξ
N ′−1∑
r=0

(−1)r cr

ξr
TN −r (2ξ) + RN,N ′(ξ), (7.51)
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where

RN,N ′(ξ) =
1
2π

(−2|ξ|)−N

∫ ∞

0
e−t tN −1

(
1 +

t

2ξ

)−1

RN ′

(
t

2

)
dt. (7.52)

The idea of re-expanding the remainder term in optimally truncated
asymptotic series was introduced by Berry & Howls (1990). They called
this theory hyperasymptotics; see also Olver (1993), Olde Daalhuis &
Olver (1994) and Boyd (1999). Another way to derive hyperasymptotic
expansions is to use Hadamard’s expansion, as has been done by Paris
(2001a, 2001b).

With arg ζ = φ and k = |ζ| + α, α being a bounded positive number,
one can show by using an existing theory that the terminant function
Tk (ζ) has the uniform asymptotic expansion

Tk (ζ) ∼ 1
2
erfc (Z) − i√

2π|ζ|
e−Z 2

∞∑
s=0

(
1
2

)
s

g2s(φ, α)
(

2
|ζ|

)s
, (7.53)

where Z := c(φ)
√
|ζ|/2 and

1
2
[c(φ)]2 := −ei(φ−π ) + i(φ − π) + 1.

The coefficients g2s(φ, α) can be given explicitly; see Olver (1991a).
Coupling (7.44) and (7.51) gives

I(1)(ξ) =
N −1∑
s=0

csξ
−s + ie2ξ

N ′−1∑
n=0

(−1)r cr ξ
−rTN −r (2ξ)+RN,N ′(ξ). (7.54)

The remainder RN,N ′(ξ) is given in (7.52), and can be estimated as
before. Of course, it is expected to be of lower order of magnitude, and
hence can be neglected. Inserting (7.53) into (7.54), we obtain from
(7.39)

Ai (z) ∼ (3/2)1/2

2πi
z−1/4

[
e−ξ

2|ξ |−1∑
s=0

csξ
−s

+
i

2
erfc {c(θ)|ξ|1/2}eξ

N ′−1∑
r=0

(−1)r cr ξ
−r

]
,

(7.55)

where ξ = 2
3 z3/2 and θ = arg ξ. Note that in (7.55), we have truncated

the first series at an optimal place. When θ is near π, erfc {c(θ)|ξ|1/2}
will have an abrupt but smooth change. In Berry’s terminology, this
function is called a Stokes multiplier. A similar result holds for θ near
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−π. We suggest that the abrupt but smooth change be called Berry’s
transition. The material in this section is taken from Wong (2001).

7.5 Singular Perturbation Theory

This is a subarea of asymptotics which in my view has not attracted
the attention it deserves from mathematicians, since there is still a vast
amount of results in the area that need mathematically rigorous justi-
fications. In the 50’s, 60’s or even 70’s of the last century, there were
at least a few notable figures working in the area, trying to build a
mathematical foundation for the singular perturbation theory; e.g., Wa-
sow (1956, 1965), Erdélyi (1962, 1968), Howes (1978) and Smith (1985).
Nowadays, it is difficult even to find enough researchers to participate
in a workshop on this topic. Nevertheless, some progress is being made
in boundary layer problems, a major subject in this theory.

First, we consider the problem in the paper of Kruskal and Segur
(1991), which has already been briefly mentioned in Section 7.4. The
problem is to study the third order, nonlinear, differential equation

ε2θ′′′ + θ′ = cos θ, −∞ < s < ∞.

An odd monotonic solution satisfying

θ(s, ε) → ±π/2 as s → ±∞,

or, equivalently, a monotonic solution satisfying

θ(0, ε) = 0, θ(+∞, ε) =
1
2
π

and

θ′′(0, ε) = 0,

is called a needle crystal. What Kruskal and Segur had shown was that
no needle crystal exists for small ε; in fact, they proved that as ε → 0,

θ′′(0, ε) ∼ 2Γε−5/2e−π/2ε , (7.56)

where Γ is a fixed, nonzero constant. In view of the fact that the term in
(7.56) is exponentially small, they titled their paper Asymptotics beyond
all orders, meaning that one may have to go beyond all orders in an
asymptotic expansion in order to determine whether a solution even
exists. Since the publication of their paper, people began to point out
that exponentially small terms appear in many other problems in applied
mathematics, except that it is often very difficult to spot them if one
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stays within the framework of Poincaré’s definition of an asymptotic
expansion.

To see just how exponentially small terms can be easily missed out in
some of the well-known asymptotic approximations, let us look at the
familiar two-point boundary value problem

εy′′(x) + a(x)y′(x) + b(x)y(x) = 0, (7.57a)

y(−1) = A, y(1) = B. (7.57b)

It is now widely known that if a(x) is positive, then the asymptotic
solution to (1.57) which holds uniformly in the interval [−1, 1] is given
by

yunif(x) = B exp
(∫ 1

x

b(t)
a(t)

dt

)
+
{

A − B exp
(∫ 1

−1

b(t)
a(t)

dt

)}
e−a(−1)(1+x)/ε ,

(7.58)

meaning that

y(x) = yunif(x) + O(ε) as ε → 0, (7.59)

where the O−term is uniform with respect to x ∈ [−1, 1]. The formula
in (7.58) is given in at least eight standard texts; see, e.g., Bender &
Orszag (1978, p. 425), Kevorkian & Cole (1981, pp. 53 & 58), Lagerstrom
(1988, p. 59), Logan (1987, p. 68), Murdock (1991, p. 421), Nayfeh
(1981, p. 289), O’Malley (1991, p. 94) and Simmonds & Mann (1986,
p. 109). Despite its usefulness, equation (7.58) is not entirely correct.
For instance, if the boundary value B in (7.57b) is zero, then (7.58)
becomes

yunif(x) = Ae−a(−1)(1+x)/ε ,

which is exponentially small for x > −1, and asymptotically zero with
respect to the order estimate in (7.59). The more accurate formula is

y(x) = B exp
(∫ 1

x

b(t)
a(t)

dt

)
[1 + O(ε)]

+
a(0)
a(x)

{
A − B exp

(∫ 1

−1

b(t)
a(t)

dt

)}
exp
(∫ x

−1

b(t)
a(t)

dt

)
× exp

(
−1

ε

∫ x

−1
a(t) dt

)
[1 + O(ε)].

(7.60)

One can establish this result by using the WKB approximation given in
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Section 7.3; it can also be found in O’Malley (1968). To illustrate our
point, we consider the simple example

εy′′ + (3 + x)y′ + y = 0, y(−1) = 1, y(1) = 0.

Equations (7.58) gives

yunif(x) = e−2(1+x)/ε . (7.61)

In particular, we have

yunif(0) = e−2/ε . (7.62)

But, from (7.60) it follows that

y(x) =
3
2

exp
{
−1

ε

(
1
2
x2 + 3x +

7
2

)}
[1 + O(ε)]. (7.63)

Both approximations (7.61) and (7.63) are exponentially small when x

is near 0. However, (7.59) and (7.62) together give only

y(x) = O(ε),

whereas from (7.63) we have

y(0) ∼ 3
2
e−7/2ε .

The same kind of problem arises in the case when the coefficient func-
tion a(x) in equation (7.57a) has a zero. More specifically, we assume
that

a(x) ∼ αx and b(x) ∼ β as x → 0,

where α �= 0 and β are constants. If α < 0 and β/α �= 0,−1,−2, . . . ,

Bender & Orszag (1978, p. 460) gave the leading order uniform asymp-
totic solution

yunif(x) = Ae−a(−1)(x+1)/ε + Bea(1)(1−x)/ε (7.64)

to the boundary value problem (7.57a)–(7.57b), without any justifica-
tion. While this solution may appear to behave like the true solution
near the boundary layers, it is incorrect in the middle of the interval
as pointed out in Wong & Yang (2002), where a rigorous derivation of
an asymptotic solution is given which is uniformly valid in the interval
[−1, 1]. Unlike (7.64), the correct asymptotic formula involves parabolic
cylinder functions and the values of the coefficient functions in the entire
interval [−1, 1]. As a comparison, let us look at the example

εy′′ − 2xy′ + (1 + x2)y = 0, y(−1) = 2, y(1) = 1. (7.65)
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Bender & Orszag (1978, p. 460) gave the asymptotic solution

yunif(x) = 2e−2(x+1)/ε + e−2(1−x)/ε ,

which, in particular, yields

yunif(0) = 3e−2/ε ,

whereas, according to Wong & Yang (2002), the correct solution of (7.65)
behaves like

y(0) ∼ −6
√

2π

Γ(1
4 )

e1/4ε−3/4e−1/ε . (7.66)

The minus sign in (7.66) also explains why the graph shown in Bender
& Orszag (1978, p. 460 , Fig. 9.17) lies below the x-axis near the origin.

Next, we show that nested boundary layer problems also exhibit a
similar kind of phenomena. Nested boundary layers mean that there
is one boundary layer which lies inside another one. To illustrate, we
consider the specific equation

ε3xy′′(x) + x2y′(x) − (x3 + ε)y(x) = 0, 0 < x < 1, (7.67)

with the boundary conditions

y(0) = 1, y(1) =
√

e. (7.68)

By using the method of matched asymptotics, Bender & Orszag (1978,
p. 453) constructed the asymptotic solution

yunif(x) =
2
√

x

ε
K1

(
2
√

x

ε

)
+ e−ε/x + ex2 /2 − 1, (7.69)

where K1(x) is a modified Bessel function and the first three terms on
the right represent the leading terms in the expansions of the inner-inner
solution, inner solution and outer solution, respectively, and the fourth
term results from the matching of the inner solution and outer solution.
However, the solution given in (7.69) does not reveal the fact that the
true solution is exponentially small in the interval O(ε2) � x � O(ε).
The correct asymptotic solution can be found in Liang & Wong (to
appear), where equation (7.67) is transformed into the canonical form

d2U

dζ2 =
{

1
4ζ

+
φ(ζ)
4ζ

}
U (7.70)

by a Liouville-like transformation (x, y) 	→ (ζ, U) defined by

ζ
1
2 (x) =

1
ε

∫ x

0

√
1
t

+
t2

4ε4 +
1
2ε

(1 + 2t2) dt
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and

y(x) = (ζ ′(x))−
1
2 exp

{
− x2

4ε2

}
U(x).

The function φ(x) in (7.70) satisfies

φ(x) = O

(
x2

ε2

)
for 0 ≤ x ≤ ρε4/3 ,

φ(x) = O

(
ε6

x4

)
for ρε4/3 ≤ x ≤ 1,

where ρ is a positive constant. From (7.70) it was further shown that
for small ε, equation (7.67) has two linearly independent solutions

y1(x) =
√

ε

2

[
1
x

+
x2

4ε4 +
1
2ε

(1 + 2x2)
]− 1

4

× exp
{
− x2

4ε3

}
ζ

1
4 (x)K1(

√
ζ)(1 + O(ε

1
3 )),

y2(x) =
√

ε

2

[
1
x

+
x2

4ε4 +
1
2ε

(1 + 2x2)
]− 1

4

× exp
{
− x2

4ε3

}
ζ

1
4 (x)I1(

√
ζ)(1 + O(ε

1
3 )),

where K1(z) and I1(z) are the modified Bessel functions of order 1.
Moreover, we have

lim
x→0

y1(x) =
ε

2
(1 + O(ε

1
3 )), lim

x→0
y2(x) = 0,

y1(1) =
√

επ

2

(
1

4ε4

)− 1
4

exp
{
− 1

4ε3

}
exp
{
−
√

ζ(1)
}

(1 + O(ε
1
3 )).

The last equation indicates that y1(1) is exponentially small as ε → 0.
The unique solution to (7.67) – (7.68) is given by

Y (x) =
2
ε
y1(x) +

√
e

y2(1)
y2(x). (7.71)

By using the asymptotic formulas of K1(z) and I1(z), it can be verified
that Y (x) is exponentially small for O(ε2) � x � O(ε); for details, see
Liang & Wong (to appear). In particular, Bender and Orszag’s solution
(7.69) gives

yunif(ε7/6) =
2
√

ε7/6

ε
K1

(
2
√

ε7/6

ε

)
+ e−ε/ε7 / 6

+ e
1
2 (ε7 / 6 )2 − 1 ∼ 1

2
ε7/3 ,
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whereas our solution (7.71) yields

Y (ε7/6) ∼ exp
{

(ε7/6)2

2
− ε

ε7/6 (1 + o(1))
}

∼ exp
{
− 1

ε1/6

}
.

Finally, let us look at two nonlinear problems of Carrier & Pearson
(1968) and we begin with the simpler one

εu′′ + u2 = 1, −1 < x < 1, (7.72a)

u(−1) = u(1) = 0. (7.72b)

By using the matched asymptotic method, it has been shown that this
boundary value problem has at least four approximate solutions

uunif(x) = −1 + 3 sech2
(
±1 − x√

2ε
+ ln(

√
3 +

√
2)
)

+ 3 sech2
(
±1 + x√

2ε
+ ln(

√
3 +

√
2)
)

,

(7.73)

depending on the two choices of plus and minus signs, and these solutions
are uniformly valid in the entire interval [−1, 1]. Note that all four
approximate solutions in (7.73) have two boundary layers in the interval
[−1, 1], one at each endpoint of the interval. Furthermore, let x0 ∈
(−1, 1), 1 − |x0 | �

√
ε, and define

ũ = −1 + 3 sech2
(

x − x0√
2ε

)
(7.74)

for x near x0 . The second quantity on the right-hand side takes the
value 3 at x = x0 , and decays to zero with exponential rapidity as
|x − x0 |/

√
ε → ∞; thus it behaves like a spike near x0 for sufficiently

small ε. Matching (7.74) with the outer solution and the two inner
solutions near ±1, we get a composite formula

uunif(x) = −1 + 3 sech2
(
±1 − x√

2ε
+ ln(

√
3 +

√
2)
)

+ 3 sech2
(
±1 + x√

2ε
+ ln(

√
3 +

√
2)
)

+ 3 sech2
(

x − x0√
2ε

)
.

(7.75)

Formula (7.75) appears to be a valid approximation for x in the entire
interval. But, by using phase plane analysis, Carrier & Pearson (1968,
p. 204) showed that (7.75) can approximate an exact solution only if

x0 = 0.
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Thus, for most values of x0 , the solutions given in (7.75) cannot be
valid, and they are called spurious solutions; see also Lange (1983) and
MacGillivray (1997).

In Ou & Wong (2003), the problem in (1.72) has been investigated
from a rigorous point of view. By using a “shooting method”, the
authors proved that the formal solutions in (7.75) obtained from the
method of matched asymptotics approximate the true solutions with ex-
ponentially small errors. The so-called spurious solutions turn out to be
approximations of true solutions, when the locations of their “spikes”
are properly assigned. They also gave an estimate for the maximum
number of spikes that these solutions can have.

As a continuation of their earlier work, Ou & Wong (2004) extended
their method to include the singularly perturbed two-point problem

εu′′ + Q(u) = 0, −1 < x < 1, (7.76a)

with boundary conditions

u(−1) = u(1) = 0 (7.76b)

or

u′(−1) = u′(1) = 0. (7.76c)

The nonlinear term Q(u) vanishes at s−, 0, s+ and nowhere else in
[s−, s+], with s− < 0 < s+. Furthermore, they assumed that Q′(s±) <

0, Q′(0) > 0 and ∫ s+

s−

Q(s) ds = 0.

Simple examples of functions satisfying these conditions are Q(u) =
u(1 − u2) and Q(u) = sin πu for u ∈ [−1, 1].

Equation (7.76a) can be considered as the equation of motion of a
nonlinear spring with spring constant large compared to the mass. It
is also the steady state version of many partial differential equations
arising in physics and biochemistry. Unlike the case Q(u) = u2 − 1, now
the solutions exhibit a new phenomenon, known as the shock layer, i.e.,
solutions vary rapidly from one value to another in a very short interval.

The second problem of Carrier and Pearson consists of the non-
autonomous nonlinear equation

εu′′ + 2(1 − x2)u + u2 = 1 (7.77a)
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and the boundary conditions

u(−1) = u(1) = 0. (7.77b)

So far the shooting method introduced in Ou & Wong (2003, 2004) can
be used only to construct an asymptotic approximation for the maximum
number of spikes that a solution of (1.77) can have, which in turn gives
an estimate for the number of solutions to this problem; see Wong &
Zhao (2008). No rigorous analysis has yet been found to establish the
asymptotic nature of the approximate solutions obtained by using the
matched asymptotic method.

7.6 Difference Equations

After Poincaré in 1886 introduced the notion of an asymptotic expan-
sion in his theory of irregular singular points at infinity for ordinary
differential equations, Birkhoff (1911, 1930), Adams (1928) and Birkhoff
& Trjitzinsky (1932) began to develop a corresponding theory for linear
difference equations. However, their analysis is very complicated and
not easily understood even by specialists in asymptotics. For this rea-
son, the development of this theory is far behind that of the asymptotic
theory for linear differential equations. In Frank Olver’s words (2003),
“the work of B & T set back all research into the asymptotic solution
of difference equations for most of the 20th century”.

We first summarize some of the results in Wong & Li (1992a, 1992b),
which were attempts to make Birkhoff and Trjitzinsky’s theory more
accessible. Then we present some more recent results in this area such
as turning point theory and Bessel-type expansions; see Wang & Wong
(2002, 2003, 2005a). We begin with the simplest and most familiar
difference equation

y(n + 2) + a(n)y(n + 1) + b(n)y(n) = 0, (7.78)

where a(n) and b(n) have asymptotic expansions of the form

a(n) ∼
∞∑

s=0

as

ns
and b(n) ∼

∞∑
s=0

bs

ns
(7.79)

for large values of n, and b0 �= 0.
Asymptotic solutions of (7.78) are classified by the roots of the char-

acteristic equation

ρ2 + a0ρ + b0 = 0. (7.80)
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Two possible values of ρ are

ρ1 , ρ2 = −1
2
a0±

(
1
4
a2

0 − b0

)1/2

.

If ρ1 �= ρ2 , i.e., a2
0 �= 4b0 , then Birkhoff (1911) showed that (7.78) has

two linearly independent solutions yj (n), j = 1, 2, such that

yj (n) ∼ ρn
j nαj

∞∑
s=0

cs,j

ns
, n → ∞, (7.81)

where

αj = − a1ρj + b1

2ρ2
j + ρja0

=
a1ρj + b1

a0ρj + 2b0

and c0,j = 1. The series in (7.81) are known as normal series or normal
solutions.

If ρ1 = ρ2 but their common value ρ = − 1
2 a0 is not a root of the

auxiliary equation

a1ρ + b1 = 0, (7.82)

i.e., 2b1 �= a0a1 , then Adams (1928) showed that (7.78) has two linearly
independent solutions yj (n), j = 1, 2, such that

yj (n) ∼ ρn exp((−1)j γ
√

n)nα
∞∑

s=0

(−1)js cs

ns/2 , (7.83)

where

γ = 2
√

a0a1 − 2b1

2b0
,

α =
1
4

+
b1

2b0
,

and c0 = 1. Series of the form (7.83) are called subnormal series or
subnormal solutions. Recursive formulas can be derived for higher coef-
ficients in (7.81) and (7.83) by formal substitution.

When the double root of the characteristic equation (7.80) satisfies
the auxiliary equation (7.82), i.e., when 2b1 = a0a1 , we have three (ex-
ceptional) cases to consider, depending on the values of the zeros α1 , α2

(Re α1 ≥ Re α2) of the indicial polynomial

q(α) = α(α − 1)ρ2 + (a1α + a2)ρ + b2

= b0α
2 −

(
b0 +

1
2
a0a1

)
α − 1

2
a0a2 + b2 .

(7.84)
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Case (i): α2 − α1 �= 0, 1, 2, . . .. In this case, (7.78) has independent
solutions yj (n), j = 1, 2, of the form

yj (n) ∼ ρnnαj

∞∑
s=0

cs,j

ns
, n → ∞, (7.85)

with c0,j = 1.
Case (ii): α2 − α1 = 1, 2, . . .. Here, (7.85) applies only in the case of

j = 1. A second independent solution is given by

y2(n) ∼ ρnnα2

∞∑
s=0

′ ds

ns
+ c(log n)y1(n),

where the prime on
∑

denotes that the term for s = α2 − α1 is absent.
The coefficients c and ds can be determined by formal substitution,
beginning with d0 = 1.

Case (iii): α2 = α1 . As in case (ii), (7.85) again gives only one solution
y1(n). The second solution is given by

y2(n) ∼ ρnnα2

∞∑
s=1

ds

ns
+ (log n)y1(n).

For proofs and examples of the above results, see Wong & Li (1992a).
Very often, the difference equations arising from applications are not of
the form (7.78), but of the more general form

y(n + 2) + npa(n)y(n + 1) + nqb(n)y(n) = 0, (7.86)

where p and q are integers, and a(n) and b(n) are as given in (7.79). For
example, the recurrence relation for the Charlier polynomial is

C
(a)
n+1(x) + (n + a − x)C(a)

n (x) + anC
(a)
n−1(x) = 0, a �= 0,

and the number T (n) of idempotent elements in the symmetric group of
order n satisfies

Tn = Tn−1 + (n − 1)Tn−2 , T0 = T1 = 1.

A discussion of the more general equation (7.86) is given in Wong & Li
(1992b).

In equations (7.78) and (7.86), the coefficient functions a(n) and b(n)
are free from auxiliary parameters. If they depend on a parameter, then
the asymptotic solutions constructed above may no longer be valid since
the roots of the characteristic equation (7.80) may coalesce, and the
difference α2 −α1 of the two roots of the indicial polynomial (7.84) may



220 R. Wong

tend to a nonnegative integer, as the parameter varies. Let us consider
just the simplest case

pn+1(x) = (anx + bn )pn (x) − cnpn−1(x), n = 1, 2, . . . , (7.87)

where an , bn and cn are constants. This is the frequently encountered
three-term recurrence relation in the study of orthogonal polynomials;
see Szegő (1975, p. 42). It is also satisfied by many other special func-
tions of mathematical physics such as the Bessel and the Legendre func-
tions; see Olver (1974) . If x is a fixed number, then (7.87) is equivalent
to the second-order difference equation (7.78). By introducing the se-
quence {Kn} defined recursively by Kn+1/Kn−1 = cn , with K0 and K1

being arbitrary, (7.87) can be transformed into the canonical form

Pn+1(x) − (Anx + Bn )Pn (x) + Pn−1(x) = 0. (7.88)

As in (7.78), we assume that the coefficients An and Bn have asymptotic
expansions of the form

An ∼ n−θ
∞∑

s=0

αs

ns
and Bn ∼

∞∑
s=0

βs

ns
, (7.89)

where θ is a real number and α0 �= 0.
Motivated by the uniform asymptotic expansions of the Hermite poly-

nomial (see Olver (1974, p. 403)) and the Laguerre polynomial (see Fren-
zen & Wong (1988)), we let τ0 be a constant and put ν = n+τ0 . Clearly,
the expansions in (7.89) can be recast in the form

An ∼ ν−θ
∞∑

s=0

α′
s

νs
and Bn ∼

∞∑
s=0

β′
s

νs
. (7.90)

In (7.88), we now let x = νθ t and Pn = λn . Substituting (7.90) into
(7.88) and letting n → ∞ (and hence ν → ∞), we obtain the character-
istic equation

λ2 − (α′
0t + β′

0)λ + 1 = 0. (7.91)

The roots of this equation are given by

λ =
1
2
[
(α′

0t + β′
0) ±

√
(α′

0t + β′
0)2 − 4

]
,

and they coincide when t = t±, where

α′
0t± + β′

0 = ±2.

The values t± play an important role in the asymptotic theory of the
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three-term recurrence relation (7.88), and they correspond to the transi-
tion points (i.e., turning point and poles) occurring in differential equa-
tions; see Olver (1974, p. 362). For this reason, we shall also call them
transition points. Since t+ and t− have different values, we may restrict
ourselves to just the case t = t+. In terms of the exponent θ in (7.89)
and the transition point t+, we have three cases to consider; namely, (i)
θ �= 0 and t+ �= 0; (ii) θ �= 0 and t+ = 0; and (iii) θ = 0. Here we present
only the results in cases (i) and (iii). (The investigation of case (ii) has
not yet been completed.)

We begin with case (i), and assume for simplicity that θ > 0 and
|β′

0 | < 2 (i.e., t+ and t− are of opposite signs). The analysis for the
case θ < 0 is very similar; for an important example with θ = −1, the
interested reader is referred to Wang & Wong (2002). Furthermore, we
choose

τ0 = − (α1t+ + β1)
(2 − β0)θ

so that

α′
1t+ + β′

1 = 0, (7.92)

and define the function ζ(t) by

2
3
[ζ(t)]3/2 := α′

0t
1/θ

∫ t

t+

s−1/θ√
(α′

0s + β′
0)2 − 4

ds

− log
α′

0t + β′
0 +

√
(α′

0t + β′
0)2 − 4

2
, t ≥ t+ ,

(7.93a)

and
2
3
[−ζ(t)]3/2 := cos−1 α′

0t + β′
0

2

− α′
0t

1/θ

∫ t+

t

s−1/θ√
4 − (α′

0s + β′
0)2

ds, t < t+ .

(7.93b)

Moreover, we put

H0(ζ) := −

√
(α′

0t + β′
0)2 − 4

4ζ

and

Φ(t) := − 1
ζ1/2

∫ t

t+

α′
1τ + β′

1

2θτζ
1
2 H0

dτ. (7.94)
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Now we are ready to state our first result on uniform asymptotic expan-
sions for difference equations.

Theorem 7.1 Assume that the coefficients An and Bn in the recurrence
relation (7.88) have asymptotic expansions of the form given in (7.89)
with θ �= 0 and |β0 | < 2. Let ζ and Φ be given as in (1.93) and (7.94),
respectively. Then equation (7.88) has, for each value of ν and each
nonnegative integer p, a pair of solutions Pn (x) and Qn (x), given by

Pn (νθ t) =
(

4ζ

(α′
0t + β′

0)2 − 4

)1
4
[
Ai
(

ν
2
3 ζ +

Φ
ν

1
3

) p∑
s=0

Ãs(ζ)
νs− 1

6

+ Ai′
(

ν
2
3 ζ +

Φ
ν

1
3

) p∑
s=0

B̃s(ζ)
νs+ 1

6
+ εp(ν, t)

]
and

Qn (νθ t) =
(

4ζ

(α′
0t + β′

0)2 − 4

)1
4
[
Bi
(

ν
2
3 ζ +

Φ
ν

1
3

) p∑
s=0

Ãs(ζ)
νs− 1

6

+ Bi′
(

ν
2
3 ζ +

Φ
ν

1
3

) p∑
s=0

B̃s(ζ)
νs+ 1

6
+ δp(ν, t)

]
,

where

|εp(ν, t)| ≤ Mp

νp+ 5
6
Ãi
(

ν
2
3 ζ +

Φ
ν

1
3

)
(7.95)

and

|δp(ν, t)| ≤ Mp

νp+ 5
6
B̃i
(

ν
2
3 ζ +

Φ
ν

1
3

)
(7.96)

for δ ≤ t < ∞, 0 < δ < t+ and Mp being a constant.

The coefficient functions Ãs(ζ) and B̃s(ζ) can be determined succes-
sively from their predecessors Ã0(ζ), B̃0(ζ), . . ., Ãs−1(ζ) and B̃s−1(ζ),
with

Ã0(ζ) = 1, ζ
1
2 B̃0(ζ) = 0

for t ≥ t+, and

Ã0(ζ) = cos
(∫ t

t+

(−ζ)
1
2 ϕdτ

)
,

(−ζ)
1
2 B̃0(ζ) = sin

(∫ t

t+

(−ζ)
1
2 ϕdτ

)
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for 0 < δ ≤ t < t+. The upper bounds Ãi(z) and B̃i(z) in (7.95) and
(7.96) are the modulus functions frequently used in uniform asymptotic
expansions (see Wong (1989, p. 381)), and are defined by

Ãi(z) =

Ai(z) if z ≥ 0,[
Ai2(z) + Bi2(z)

] 1
2 if z < 0,

and

B̃i(z) =

Bi(z) if z ≥ 0,[
Ai2(z) + Bi2(z)

] 1
2 if z < 0.

Now we consider case (iii), i.e., θ = 0 in (7.89). The characteristic
equation (7.91) is obtained in the same manner as before, except that t

is replaced by x. The characteristic roots again coincide when x = x±,
where

α0x± + β0 = ±2. (7.97)

We assume, throughout the remaining part of this section, that

α1 = β1 = 0

so that

α1x+ + β1 = 0,

which was used in case (i); see (7.92). It is interesting to note that
in a paper on WKB methods for difference equations, Dingle & Mor-
gan (1967a, 1967b) also assumed this condition. In fact, they assumed
the stronger condition that all coefficients αs and βs in (7.89) with odd
indices vanish. Since P̃n (x) := (−1)nPn (x) satisfies the recurrence rela-
tion P̃n+1(x) + (Anx + Bn )P̃n (x) + P̃n−1(x) = 0, we may, without loss
of generality, assume α0 > 0.

Let τ0 := −(α3x+ + β3)/2(α2x+ + β2) and N := n + τ0 . Define

ν := ±
(

α2x+ + β2 +
1
4

)1
2

and ζ
1
2 = cosh−1

(
α0x + β0

2

)
.

We are now ready to state our second result on uniform asymptotic
expansions for difference equations.

Theorem 7.2 Assume that the coefficients An and Bn in the recurrence
relation (7.88) are real, and have asymptotic expansions given in (7.89)
with θ = 0. Let x± be the transition points defined in (7.97). Then,
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for each nonnegative integer p, equation (7.88) has a pair of linearly
independent solutions

Pn (x) =
(

4ζ

(α0x + β0)2 − 4

)1
4
[
N

1
2 Iν (Nζ

1
2 )

p∑
s=0

As(ζ)
Ns

+ N
1
2 ζ

1
2 Iν−1(Nζ

1
2 )

p∑
s=0

Bs(ζ)
Ns

+ εp(N,x)
]

and

Qn (x) =
(

4ζ

(α0x + β0)2 − 4

)1
4
[
N

1
2 Kν (Nζ

1
2 )

p∑
s=0

As(ζ)
Ns

− N
1
2 ζ

1
2 Kν−1(Nζ

1
2 )

p∑
s=0

Bs(ζ)
Ns

+ δp(N,x)
]
,

where Iν and Kν are the modified Bessel functions. The error terms
satisfy

|εp(N,x)| ≤ Mp

Np+ 1
2

[
|Iν (Nζ

1
2 )| + |Iν−1(Nζ

1
2 )|
]

and

|δp(N,x)| ≤ Mp

Np+ 1
2

[
|Kν (Nζ

1
2 )| + |Kν−1(Nζ

1
2 )|
]

for x− + δ ≤ x < ∞, where Mp is a positive constant. The coefficients
As(ζ) and Bs(ζ) can be determined successively for any given A0(ζ) and
B0(ζ).

7.7 Riemann–Hilbert Approach

A significant development in asymptotic analysis took place in the 1990’s,
when Deift, Zhou and their associates introduced the steepest-descent
method for Riemann–Hilbert problems (RHP); see Deift (1999), Deift
et al. (1999a, 1999b), and Bleher & Its (1999). The important feature of
their method is that it can be used to find asymptotic formulas for the
solutions to nonlinear differential equations, such as the modified KdV,
the nonlinear Schrödinger, and the Painlevé equations; see Deift & Zhou
(1993, 1994, 1995). In this section, we shall illustrate this method with
an application to orthogonal polynomials. Even just in this restricted
area, the impact of this discovery has been significant.

Let Γ be a simple and smooth curve in the plane, and Γ0 denote the
interior of Γ (i.e., Γ with endpoints removed). In the case of classical
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orthogonal polynomials, it can be either the real line R (Hermite poly-
nomials), half of the real line (Laguerre polynomials), a finite interval
(Jacobi polynomials), or a circle (Bessel polynomials). Let w(z) be a
weight function defined on Γ, which is continuous. If Γ has an endpoint
a, then we assume that w(z) = O(|z−a|α ) as z → a for some α > −1. If
Γ is an unbounded curve, then we assume that w(z) decays sufficiently
fast as z → ∞ along Γ so that all moments

µn =
∫

Γ
ζnw(ζ) dζ, n = 0, 1, 2, . . .

exist. Let pn (z) denote the polynomials orthonormal with respect to
w(z); that is,∫

Γ
pn (ζ)pm (ζ)w(ζ) dζ = δn,m , n,m = 0, 1, 2, . . . , (7.98)

where δn,m is the Kronecker delta. Write pn (z) = γnzn + · · · , and
put πn (z) := pn (z)/γn = zn + · · · . So, πn (z) is the monic orthogonal
polynomial associated with w(z). The fundamental connection between
orthogonal polynomials and the steepest descent method of Deift and
Zhou is provided by the following Riemann–Hilbert problem of Fokas,
Its & Kitaev (1992): Find a 2 × 2 matrix-valued function Y satisfying

(Y1) Y (z) is analytic in C \ Γ;

(Y2) Y+(ζ) = Y−(ζ)
(

1 w(ζ)
0 1

)
for ζ ∈ Γ;

(Y3) Y (z) =
[
I + O

(
1
z

)] (
zn 0
0 z−n

)
as z → ∞ in C \ Γ;

(Y4) if Γ has an endpoint a, then limz→a(z − a)Y (z) = 0.

Here Y±(ζ) denote the limits of Y (z) as z → ζ ∈ Γ from the positive
(respectively negative) side of Γ. If Γ has no endpoint, there is no need
to impose condition (Y4).

Theorem 7.3 (Fokas, Its & Kitaev) The above Riemann–Hilbert prob-
lem for Y has the unique solution given by

Y (z) =

 πn (z) C(πnw)(z)

cnπn−1(z) cnC(πn−1w)(z)

 ,

where πn and πn−1 are the monic orthogonal polynomials of degree n
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and n − 1, respectively, C(πjw)(z) denotes the Cauchy transform

C(πjw)(z) =
1

2πi

∫
Γ

πj (ζ)w(ζ)
ζ − z

dζ, j = n − 1, n,

and cn = −2πiγ2
n−1 , γn being the leading coefficient of the polynomial

pn (z).

As an illustration, we shall take pn (z) to be the polynomials orthog-
onal with respect to the exponential weight

w(x) = e−Q(x) , (7.99)

where Q(x) = q2m x2m + q2m−1x
2m−1 + · · · is a polynomial of degree 2m

with q2m > 0, and the curve Γ is the whole real line R.
The Deift–Zhou method of steepest descent consists of a sequence of

transformations

Y → U → T → S → R.

The first transformation Y → U is simply a rescaling, and in many
applications this step is not necessary. The second transformation U →
T is most crucial. It is a normalization process; i.e., it takes Y to T so
that T (z) ∼ I as z → ∞. Since condition (Y3) can be written as Y (z) =

[I + O(1/z)]znσ3 , where σ3 is the Pauli matrix
(

1 0
0 −1

)
, normalization

can be achieved by setting T (z) = Y (z)z−nσ3 . But, this simple-minded
transformation brings the problem at infinity to the origin. What Deift
and his collaborators (1999a, 1999b) have shown is that normalization
can be accomplished with the aid of a so-called g-function defined by

g(z) =
∫

log(z − x) dµ(x), (7.100)

where µ(x) is the equilibrium measure which can be regarded as the limit
of the zero distribution of πn (z) as n → ∞. In our case, the support of
the measure is the interval [−1, 1] after a rescaling. The transformation
T is given by

T (z) = e
1
2 nln σ3 U(x)e−(ng (z )+ 1

2 nln )σ3 ,

where ln is a constant known as the Lagrange constant.
The matrix T now satisfies a Riemann–Hilbert problem on R with the

normalization condition T (z) ∼ I as z → ∞, but the jump matrix JT

associated with T is even more complicated, and the Riemann–Hilbert
problem for T can not be solved explicitly. However, the jump matrix
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on [−1, 1] can be factored, and the factorization suggests that through
contour deformation, the Riemann–Hilbert problem for T can be trans-
formed into a Riemann–Hilbert problem for S on a system of curves
consisting of not only the real line R, but also two arcs connecting −1
and 1, one in the upper half-plane and the other in the lower half-plane.
On these two arcs, the jump matrix for S tends to the identity matrix
I as n → ∞. On the interval [−1, 1], the jump matrix is a constant. It
is this contour deformation that Deift & Zhou (1993) referred to as the
steepest descent method for Riemann–Hilbert problems. The limiting
Riemann–Hilbert problem can now be solved explicitly. Suppose that its
solution is denoted by N(z). Then, formally, through the use of inverse
transformations, Y has the asymptotic behavior

Y (z) ∼ e−
1
2 nln σ3 N(z)e(ng (z )+ 1

2 nln )σ3 as n → ∞. (7.101)

Since the jump matrices for S and N are not uniformly close to each
other near the endpoints of the equilibrium measure and other special
points such as singularities, the next step in the Deift–Zhou method is to
do some local analysis and to construct parametrices near these points.
In our example, the endpoints of the equilibrium measure are at z = ±1,
and there is no singularity. In view of the property pn (z) = pn (z) in our
case, we may restrict z to the closed upper half-plane {z ∈ C : Im z ≥
0}. Thus, we need be concerned with only the points z = −1 and
z = 1. If P and P̃ denote the parametrices of S in neighborhoods of
1 and −1, respectively, then the final transformation S → R is defined
by R := SP−1 near z = 1 and R := SP̃−1 near z = −1. Outside the
neighborhoods of −1 and 1, R is defined by R = SN−1 . The matrix-
valued function R(z) is now analytic in the complex plane, except for
the curves on which S has a jump matrix, but the jump matrices of R

are close to the identity matrix for large values of n.
A disadvantage of the final step S → R is that the validity of the

results is often established in neighborhoods of special points. For in-
stance, in Deift et al. (1999b) six asymptotic approximations are con-
structed in six different regions. Here, we wish to indicate that by mak-
ing a modification of the Deift–Zhou method, much more global results
can be obtained; see Wang & Wong (2005b). We continue to use our
present example as an illustration. Our method is to guess an asymptotic
approximation Ũ(z), based directly on the asymptotic formula (7.101).
The matrix Ũ(z) has the same jump as U(z) on the real line R, and has
the same behavior as U(z) as z → ∞, but it is not analytic on some
specified curves denoted by Σ (see Figure 7.2), which divide the whole



228 R. Wong

complex plane into four regions Ωi , i = −1, 0, 1, 2. We then consider the
transformation U → R defined by

R(z) = e−
1
2 nln σ3 U(z)Ũ(z)−1e

1
2 nln σ3 , (7.102)

and show that (i) it has no jump on R, (ii) it is analytic for z ∈ C \ Σ,
(iii) it is normalized at infinity, and (iv) its jump matrix J on Σ has a
uniform asymptotic expansion of the form

J(z) ∼ I +
∞∑

s=2m

∆s(z)
ns/2m

as n → ∞,

where

∆s(z) = O

(
1

z2m

)
, s = 2m, 2m + 1, . . . , as z → ∞.

1−1

 0Ω
 1Ω

 2Ω

 Σ

1−Ω

Fig. 7.2. Curve Σ and regions Ωi , i = −1, 0, 1, 2.

To prove that R(z) has a similar asymptotic expansion, we appeal to a
theorem given in Qiu & Wong (2008). Let Γ1 , . . . ,Γm be simple, smooth,
and oriented curves in the complex plane C, and let Γ = Γ1 + · · · + Γm

be the union of these curves. Assume that Γ has no endpoint, denote
by Γ0 the interior of Γ (i.e., Γ with points of self-intersection removed),
and consider the following matrix RHP for R : C \ Γ → C2 × C2 with
parameter N :

(Ra) R(z) = R(z,N) is analytic in C \ Γ;
(Rb) R+(ζ) = R−(ζ)V (ζ) for ζ ∈ Γ0;
(Rc) R(z) = I + o(1), as z → ∞, for z ∈ C \ Γ and N fixed;
(Rd) at every point of self-intersection ζ0 ∈ Γ\Γ0, limz→ζ0 (z− ζ0)R(z) = 0

for fixed N .

Suppose that the jump matrix V (ζ) = V (ζ,N) satisfies the following
conditions:
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(V1) If V j is the restriction of V to Γ0
j , i.e., V j = V |Γ0

j
, then there exists

a δ > 0 such that every V j has an analytic continuation to Γj (δ)
for every j = 1, 2, . . . , m, and every V j (z) is invertible for z ∈ Γj (δ),
where Γj (δ) = {z ∈ C : d(z,Γj ) < δ} is a δ-neighborhood of Γj .

(V2) There exists an α > 0 such that if Γj is unbounded for some j, then
for z ∈ Γj (δ)

V j (z) = I + O(1/|z|α ) as z → ∞

uniformly with respect to N .
(V3) Suppose ζ0 is a point of self-intersection of Γ. Let Γj1 ,Γj2 , . . . ,Γjq

,
1 ≤ j1 , j2 , . . . , jq ≤ m, be the branches of Γ which meet at ζ0 . We
order them in the counterclockwise direction around ζ0 . All V j1 , V j2 ,
. . . , V jq are well defined and analytic in the disk U(ζ0 , δ) = {z ∈ C :
|z − ζ0 | < δ}. Furthermore, suppose that the cyclic condition

(V jq )εq (z) · (V jq −1 )εq −1 (z) · · · (V 1)ε1 (z) = I for |z − ζ0 | < δ

holds, where εi = −1 if Γji
is directed away from ζ0 and εi = 1 if Γji

is directed towards ζ0 . When εi = −1, (V ji )εi means the inverse of
V ji .

Moreover, we assume that for every j = 1, 2, . . . , m, V j (z) has an asymp-
totic expansion of the form

V j (z) ∼ I +
∞∑

k=1

V j
k (z)
Nk

as N → ∞

uniformly for z ∈ Γj (δ), where each V j
k (z) is also analytic in Γj (δ), and

that for all large z ∈ Γj (δ),∥∥∥∥V j (z) − I −
p∑

k=1

V j
k (z)
Nk

∥∥∥∥≤ Cp

Np+1 |z|α ,

where α > 0 and ‖ · ‖ denotes the norm defined by the maximum
modulus of all entries in a matrix.

Theorem 7.4 The solution R(z) = R(z,N) to the RHP (Ra) − (Rd)
has an asymptotic expansion of the form

R(z) ∼ I +
∞∑

k=1

Rk (z)
Nk

as N → ∞

uniformly for z ∈ C \ Γ, where the coefficients Rk (z) are all analytic in
C \ Γ.
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By using (7.102), one can work backwards to find the uniform asymp-
totic expansion of πn (z) in each region Ωi , i = −1, 0, 1, 2. In particular,
for z belonging to Ω−1 and Ω1, the expansions involve the Airy function
Ai and its derivative Ai′, while for z ∈ Ω0 ∪ Ω2, the expansions involve
only elementary functions. Here, we have taken the opportunity to cor-
rect an error in the statement of the theorem given in Wang & Wong
(2005b).
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Abstract

In this paper I present a history of tractability of continuous prob-
lems, which has its beginning in the successful numerical tests for high-
dimensional integration of finance problems. Tractability results will be
illustrated for two multivariate problems, integration and linear tensor
products problems, in the worst case setting. My talk at FoCM’08 in
Hong Kong and this paper are based on the book Tractability of Mul-
tivariate Problems, written jointly with Erich Novak. The first volume
of our book has been recently published by the European Mathematical
Society.

8.1 Introduction

Many people have recently become interested in studying the tractability
of continuous problems. This area of research addresses the computa-
tional complexity of multivariate problems defined on spaces of func-
tions of d variables, with d that can be in the hundreds or thousands; in
fact, d can even be arbitrarily large. Such problems occur in numerous
applications including physics, chemistry, finance, economics, and the
computational sciences.

As with all problems arising in information-based complexity, we want
to solve multivariate problems to within ε, using algorithms that use
finitely many functions values or values of some linear functionals. Let
n(ε, d) be the minimal number of function values or linear function-
als that is needed to compute the solution of the d-variate problem to
within ε.

For many multivariate problems defined over standard spaces of func-
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tions n(ε, d) is exponentially large in d. This phenomenon is called the
curse of dimensionality, after Richard Bellman, who coined this phrase
in 1957.

What can we do with such intractable problems? Is there some way
that we can vanquish the curse of dimensionality? Since n(ε, d) is already
defined for the best algorithm possible, it is impossible to find a cleverer
algorithm. The only way is to change our problem, either by shrinking
the class of functions, or by switching to a more lenient error setting, in
which we redefine what we mean by “to within ε”.

The first option means that our functions must satisfy additional
“non-standard” properties. What do we mean by this? For many stan-
dard classes of functions, the dependence on all variables and groups
of variables is the same. In contrast, for many practical computational
problems in which d is very large, it is more likely to expect that the
dependence of functions on successive variables or groups of variables
may vary significantly:

• For many applications in computational finance, the functions depend
on successive variables in a diminishing way, due to the discounted
value of money, see e.g., Traub, Werschulz (1998) and references cited
there.

• In computational physics, the influence of neighboring particles is sig-
nificant, and functions can be represented or well-approximated by
sums of functions of a few variables. In particular, this holds for
Coulomb pair potentials, see e.g., Glimm, Jaffe (1987).

• In computational chemistry, there is the need to construct poly-atomic
potential energy surfaces that underlie molecular dynamics and spec-
troscopies. It is observed that functions depending on many variables
often can be well approximated by a sum of functions that depend on
only few variables, see Ho, Rabitz (2003) and Rabitz, Alis (1999).

• These kinds of functions also appear in optimization; they are called
“partially separable”, see Griewank, Toint (1982).

• In computational economics, the variables may be moderated by the
Cobb-Douglas condition, which guarantees equal partitioning of goods;
this condition is used for the Bellman fixed point problem, see Rust,
Traub, Woźniakowski (2002).

All these examples suggest to study weighted spaces, in which the im-
portance of successive variables and groups of variables is moderated by
weights. It is then natural to seek necessary and sufficient conditions
on the weights to vanquish the curse of dimensionality. We believe the
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reason that so many high-dimensional problems are solved efficiently in
computational practice is that these problems belong to weighted spaces
with weights satisfying the appropriate conditions; for more details see
Novak, Woźniakowski (2008).

The second option is to relax the notion of what we mean by “to
within ε”. Suppose that we have established the curse of dimensional-
ity in the worst case setting, in which we demand that the error is at
most ε for all functions from a given set. This worst case assurance is
very strong. If we are willing to settle for a weaker assurance (given
by, e.g., the randomized, probabilistic or average case setting), we might
be able to vanquish the curse. To be specific, let us focus on the ran-
domized setting. We now allow randomized algorithms, and we want to
guarantee that the expected error for all functions from the same set as
in the worst case setting is at most ε. The standard example is Monte
Carlo for multivariate integration, which may indeed vanquish the curse.
Suppose that our class of integrands consists of Lipschitz functions with
Lipschitz constant 1. It is known that n(ε, d) is proportional to ε−d in
the worst case setting; however, n(ε, d) is proportional to at most ε−2 in
the randomized setting. So the curse of dimensionality that is present in
the worst case setting has been vanquished by switching to the random-
ized setting. We stress that switching to more lenient settings does not
always help, and there are problems for which the curse of dimensional-
ity is present in all the settings mentioned above. Characterizing those
multivariate problems for which the worst case curse of dimensionality
can be vanquished by switching to (e.g.) the randomized setting is a
major open problem. The reader is referred to Novak, Woźniakowski
(2008) for a more detailed discussion.

This second option of switching to a more lenient setting is beyond
the scope of this paper. So, we will only consider here the first option
of shrinking the class of functions by studying weighted spaces.

The main goal when studying the tractability of a given multivariate
problem is to find classes of functions for which the curse of dimension-
ality is not present. More precisely, for a given multivariate problem, we
want to identify for which classes of functions and for which error settings
the problem does not suffer from the curse of dimensionality, meaning
that the minimal number n(ε, d) is not exponential in ε−1 and d. Since
there are many different ways of measuring the lack of exponential be-
havior, we have different types of tractability. In this paper we restrict
ourselves to:
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• polynomial tractability, for which we want to prove that n(ε, d) can be
polynomially bounded in ε−1 and d,

• strong polynomial tractability, for which we want to prove that n(ε, d)
can be bounded by a polynomial in ε−1 independent of d, and

• weak tractability, for which we want to prove that ln n(ε, d) goes to
zero as ε−1 + d approaches infinity.

Today there are many tractability results for continuous problems,
and the book Tractability of Multivariate Problems, written jointly with
Erich Novak, summarizes the state of the art for tractability studies.
The first volume is devoted to algorithms using arbitrary linear func-
tionals and has been recently published by the European Mathematical
Society. The second volume is devoted to algorithms using function val-
ues for approximation of linear functionals. The primary example of
such a problem is multivariate integration. Finally, the third volume
will be devoted to algorithms using function values. It will mainly deal
with the approximation of general linear operators; it will also cover the
approximation of certain nonlinear operators. We are now finishing the
second volume, and we expect it to be published in late 2009. The third
volume is at a more preliminary stage; we hope to complete this volume
by the end of 2009, so that it will be published in 2010.

When I was invited to present a plenary talk during FoCM’08 in Hong
Kong, it was quite clear to me that I should talk about tractability of
continuous problems, since this has been my main research topic for the
last 15 years. However, I faced the difficult problem of presenting the
vast body of tractability results without boring the listeners of my talk
too much. (I now face the same problem regarding the readers of this
paper.)

I decided to report on how tractability of continuous problems was
born. I do hope that the listeners of my talk were and the readers of my
paper will be satisfied with my decision. After all, that is exactly the way
we do research. First we ask questions about why something holds or
can be true; in time, we gradually discover partial answers; this process
usually goes forever. So I decided to describe the tractability process
from the very beginning (the early 1990s) and to report gradual progress
till today. I want to stress that this process, by all means, is not yet
finished, and there are still plenty of open tractability problems. In fact,
we list 30 open problems in Volume I of our book. I am pleased to report
that two of these problems have already been solved by Stefan Heinrich,
Heinrich (2008a, 2008b). I hope that the readers of this paper will decide
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to work on open tractability problems, especially on the problem related
to financial mathematics that is presented at the end of this paper.

I finished my talk in Hong Kong with a joke by defining a tractability
number. I want to repeat it here, since otherwise it will be forgotten.
So the point, my dear reader, is to determine your tractability number
which is defined as follows.

• If you publish k “good” tractability papers your tractability number
is k. (Your k can be zero but, in any case, everyone now has a well-
defined tractability number.)

• If you solve p open tractability problems from Volumes I–III of our
book, then you can add 2p to your tractability number. (Yes, it is
unfair to single out our book, but after all, I really want you to solve
these open problems.)

• If you publish s “good” papers with someone whose tractability num-
ber is t, and t is positive, then you add

s

1 + s

t

1 + t

to your tractability number. (Yes, you can use this bullet item many
times, as long as s is positive and you published with many people
having positive t.)

I think the reader would agree that it is not trivial to determine the
tractability number. In fact, the problem of determining tractability
number is probably intractable since the concept of a “good” paper is
open for discussion. The reader is asked to compute her/his tractability
number under the simplifying assumption that all published papers are
good. Needless to say, the larger your tractability number the better.
Please let me know if your tractability number is at least 10. Although it
seems impossible, you should start worrying if your tractability number
is still zero.

8.2 A Little History

In this section I wish to report my (probably) quite subjective story of
how tractability of continuous problems was born in the early 1990s. The
story is a little unusual, because it started from successful computational
experiments that could not have been explained by the current state of
the theory. Usually, the situation is the reverse. Typically, we have new
algorithms based on a new and promising theory, and we hope to solve
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many practical problems using these new algorithms. In many cases
the results of the new algorithms are mixed and at best they are only
partially successful. Our case is different but let me describe it without
further ado.

In 1991 I published a paper “Average case complexity of multivari-
ate integration”, Woźniakowski (1991), solving a long-standing problem
about optimal selection of sample points for multivariate integration

Id(f) =
∫

[0,1]d
f(t) dt

for the space of continuous functions equipped with the Wiener sheet
measure. The solution was possible by showing that this problem is
equivalent to minimizing L2-discrepancy in the worst case setting. I
was lucky because the L2-discrepancy problem had already been solved
by Roth, see Roth (1954, 1980), who provided sharp lower and upper
bounds, and by Frolov, see Frolov (1980), who independently provided
sharp upper bounds. My paper got some publicity and many people
have probably studied it.

I believe that many practitioners realized at that time that multi-
variate integration can be solved not only by Monte Carlo but also by
Quasi-Monte Carlo (QMC) algorithms that were mentioned in my paper.
Let me add that a QMC algorithm is a particularly simple algorithm of
the form

QMCn (f) =
1
n

n∑
j=1

f(tj ),

with deterministically chosen sample points t1 , t2 , . . . , tn from [0, 1]d .
The name “QMC” was coined to stress the similarity with Monte Carlo
(MC), which formally looks exactly the same; however, for MC the sam-
ple points t1 , t2 , . . . , tn are chosen as independent random points uni-
formly distributed over [0, 1]d . The first QMC algorithms were designed
already in the 1960s but the knowledge about their existence was, I
believe, quite limited among practitioners up to the early 1990s.

Choosing good sample points for QMC is an art. The choice is studied
in the context of a certain Sobolev space, which will be defined later, and
the construction of a particular set of sample points usually bears the
name of a given author who both proposed the construction and proved
an almost optimal worst case error bound. To name a few examples, we
currently have Faure, Halton, Hammersley, Niederreiter, Niederreiter-
Xing, Sobol, Tezuka, (t,m, s)-points, and shifted lattice points. In my
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paper I mentioned points used by Roth, which were shifted Hammersley
points. All these points are called low discrepancy points, to stress
the fact that they nearly minimize L2-discrepancy (at least within a
logarithmic factor).

People started to use QMC without bothering to check all the assump-
tions under which these points should lead to small error bounds. The
majority of these people were from banks; they used low discrepancy
points for finance applications with large d. In the first examples they
used Halton, Sobol and modified Faure and Sobol points. I got a cou-
ple of phone calls from people from various banks. Surprisingly enough,
they reported very good empirical results. I was initially quite skeptical
about these results. I always asked them how come they knew that the
results were good. They tested finance problems without knowing the
exact value of an integral, and so it was not clear whether the computed
result was good. They all gave me the same answer, which finally con-
vinced me that something interesting was really happening. Namely,
their answer was that over many years, they had performed many MC
tests; they were now comparing QMC and MC results, noticing that the
results obtained by QMC with n points were roughly equivalent to MC
with n2 points. Since MC (stochastically) converges like 1/

√
n, this was

a strong indication that the errors of QMC in these numerical tests were
proportional to 1/n, i.e., that

Id(f) − QMCn (f) ≈ 1
n

.

Furthermore, the n used in these tests was not particularly large; as we
shall see in a moment, this was quite astonishing and seemed to contra-
dict the existing theory. They reported that n was about a thousand or
so and that d was 360.

At that time, Joseph Traub and I decided to test these finance prob-
lems at Columbia University by ourselves. Whenever two professors are
in charge of a problem, it almost always means that the tests will be done
by their graduate students. We asked Spassimir Paskov, then a PhD stu-
dent in Computer Science, to be involved in this project. Paskov got a
contact with a major bank in New York, and after a while he was testing
financial instruments such as collateralized mortgage obligations. This
problem models 30-year mortgages whose values depend, in particular,
on future interest rates. Permitting monthly re-financing, we need to
evaluate an integral depending on 30× 12 = 360 (months) variables. In
other words, d = 360 for this problem. It is important to add that one
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function value of such a problem required some 105 floating point opera-
tions. Spassimir used Halton and Sobol points and got also very positive
results, always beating MC significantly. These empirical results were
then published in Paskov, Traub (1995). Further tests using generalized
Faure points were reported in Papageorgiou , Traub (1996). QMC once
again beat MC considerably. More references can be found in Traub,
Werschulz (1998).

A software package called FINDER for computing high-dimensional
integrals has been built at Columbia University. FINDER can be ob-
tained free of charge for academic use from Columbia University.

Let me again stress that these surprising tests in the early 1990s were
done for d = 360; more recent financial tests have been done for d =
9125 by Frances Kuo and Ben Waterhouse in Australia. Their problem
involves a number of coupon payments each year; the amount of each
payment depends on how many stocks still remain above some barrier.
The number 9125 comes as the product of 5 stocks considered for 5 years,
each with 365 days per year. Details can be found in Giles, Kuo, Sloan,
Waterhouse (2008). It is also interesting to note that Christiane Lemieux
and Pierre L’Ecuyer, see Lemieux, L’Ecuyer (1999), have run tests with
d = 8000; in her PhD thesis Christiane Lemieux, see Lemieux (2000),
even used tests with d = 40000. In both cases they used simple and
randomly shifted Korobov rules. All these tests are quite successful
showing superiority of QMC over MC.

Given so many positive empirical results, it was quite natural to ask
why these numerical tests are so good. The existing theory (which we
report in the next section) seemed to indicate that the numerical results
should be much worse, and so we were surprised by how good these
numerical results were. Thus, the theory faced the challenge of explain-
ing this computational phenomenon. And this was the beginning of
tractability studies for continuous problems.

8.3 Challenge to Theory

If we want to understand why we were surprised that the numerical tests
were so good, we need to discuss the theoretical background of QMC up
to the early 1990s. The typical space of functions for which QMCs are
studied is a Sobolev space of real functions defined on [0, 1]d . This is a
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reproducing kernel Hilbert space H(Kd) whose kernel is

Kd(x, y) =
d∏

j=1

(1 + min(xj , yj )) ,

where x = [x1 , x2 , . . . , xd ] and y = [y1 , y2 , . . . , yd ] are from [0, 1]d .
This space is a tensor product of univariate spaces of absolutely con-

tinuous functions for which the first derivatives are square integrable.
The inner product in H(Kd) is given by

〈f, g〉H (Kd ) =
∑

u⊆[d]

∫
[0,1]|u|

∂|u|

∂xu

f(xu, 0)
∂|u|

∂xu

g(xu, 0) dxu

for all f, g ∈ H(Kd). Here, u is an arbitrary subset of the index set

[d] := {1, 2, . . . , d},

and by xu we mean the vector in R|u| obtained from x by removing
the components not in u. For instance, if d ≥ 7 and u = {2, 5, 7}
then xu = [x2 , x5 , x7 ]. The vector (xu, 0) is a d-dimensional vector with
components xj if j ∈ u and 0 if j /∈ u. For our example with d = 8,
we have (xu, 0) = [0, x2 , 0, 0, x5 , 0, x7 , 0]. Clearly, ∂xu means that we
differentiate once with respect to xj for each j ∈ u. For u = ∅, the
integral over an empty set should be interpreted as f(0)g(0).

From Roth (1980) and Frolov (1980), we know that there are QMC
algorithms such that for all f ∈ H(Kd) we have

Id(f) − QMCn (f) = O
(

[ln n](d−1)/2

n
‖f‖H (Kd )

)
, (8.1)

where the factor in the big O notation is independent of n and f , but it
depends on d.

The result (8.1) tells us that for any fixed d, the error decreases almost
like n−1 , asymptotically in n. However, the exponent of ln n depends
linearly on d. As long as d is relatively small, this logarithmic factor
does not matter very much. A rule of thumb up to the early 1990s was
that as long as (say) d ≤ 12, the power of ln n does not matter, and so
the QMC enjoys linear convergence, proportional roughly to n−1 .

But what happens if d is large? Remember d = 360 was used in the
numerical tests. Observe that

[ln n](d−1)/2

n
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is increasing for n ≤ e(d−1)/2 , and d = 360 yields

e(d−1)/2 ≈ 9 · 1077 .

Hence, for n ≤ 9 · 1077 the bound (8.1) is completely useless when d =
360. It is then natural to hope that maybe (8.1) is not sharp. But no,
this bound is sharp. To show this, we need to explain what we mean by
best or minimal error algorithms.

Let us take a step back and ask how the integrals Id(f) can be
computed for f from the space H(Kd). Clearly, the norm of f must
affect the error, so let us scale the problem by assuming (say) that
‖f‖H (Kd ) ≤ 1. The basic assumption is that we can compute func-
tion values at arbitrary sample points from [0, 1]d . The sample points
tj may be chosen adaptively, i.e., tj may depend on the information
f(t1), f(t2), . . . , f(tj−1) already computed. If we have enough function
values, say, f(t1), f(t2), . . . , f(tn ), then we combine them in an arbitrary
way ϕn (f(t1), f(t2), . . . , f(tn )) and it is our approximation to Id(f).
Here, the mapping ϕn : Rn → R can be arbitrary; in particular, it can be
nonlinear; the details can be found in Traub, Wasilkowski, Woźniakowski
(1988).

As proved in Bahkvalov (1971), adaption does not help for this prob-
lem. Furthermore, without loss of generality, we can assume that ϕn is
linear, as proved by Smolayk in his PhD thesis in 1965 (see the same
paper of Bahkvalov (1971), where Smolyak’s result was published for
the first time). The proofs of these results, as well as their extensions
to linear operators, can be found in Novak, Woźniakowski (2008), and
Traub, Wasilkowski, Woźniakowski (1988).

The results of Bahkvalov and Smolyak mean that, without loss of
generality, we can consider linear algorithms of the form

An,d(f) =
n∑

j=1

ajf(tj )

for some coefficients a1 , a2 , . . . , an and sample points t1 , t2 , . . . , tn that
can depend on n and d but are independent of f .

We stress that, in general, the choice aj = 1/n (as in QMC algo-
rithms) is not good. In fact, there are a number of results showing
that the choice aj = 1/n can be quite bad for some spaces other than
the space H(Kd) considered here. This subject is beyond the scope of
this paper and we refer the reader to Novak, Woźniakowski (2009), and
Sloan, Woźniakowski (2001).
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We now define the error of An,d in the worst case setting as

ewor(An,d) = sup
‖f ‖H (K d )≤1

|Id(f) − An,d(f)|.

Obviously the error depends on how well we choose the coefficients and
the sample points. So let

ewor(n, d) = inf
An , d

ewor(An,d)

denote the nth minimal worst case error that can be achieved by the best
choice of {aj} and {tj}, i.e., by the best choice of a linear algorithm An,d .

We are now ready to explain why (8.1) is sharp. Namely, we have

ewor(n, d) = Θ
(

[ln n](d−1)/2

n

)
, (8.2)

with the factors in the Θ-notation independent of n but depending on d.
This last bound is implied by the following results:

• The lower bound was proved in Roth (1954) assuming the QMC case,
that is aj = 1/n, and extended in Chen (1985, 1987) to arbitrary aj .

• The upper bound was proved independently in Roth (1980) and Frolov
(1980); the proofs are non-constructive. The first construction of the
sample points tj with aj = 1/n achieving the upper bound was done
in Chen, Skriganov (2002).

Hence, there are some QMC algorithms whose worst case error (asymp-
totically, as n → ∞) is the best possible for any d. Still, this nice asymp-
totic behavior only holds if n is exponentially large in d. For large d,
such as d = 360, there is no way to compute so many function values.
Furthermore, the values of n used in the numerical tests were not so
large. In many cases, n was at most roughly 1000.

We hope that the reader is starting to share our excitement and sur-
prise as to why the numerical tests were so good for such small n and
such large d.

At this point I think it is obvious that we need to know more about
the dependence on d. In particular it is compelling to uncover what is
hidden in the Θ-notation in (8.2) or in the O-notation in (8.1).

First of all, let me convince the reader that we may have two very dif-
ferent situations depending on the factors in, say, the Θ-notation in (8.2).
The first scenario is optimistic. Assume we can show that the factors
are bounded from above by 1/d!, say. Since xk/k! ≤ ex , we would find
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that the right hand of (8.2) is bounded by

e
√

ln n

n
= o

(
n−(1−δ)

)
for all δ > 0.

Hence, we would have an error estimate independent of d and tending
to zero almost like n−1 . This could indeed explain the success of the
tests.

On the other hand, consider the second scenario, which is pessimistic.
Assume that we can show that the factors are bounded from below by 1,
say. Then we would have to wait exponentially long for good asymptotic
behavior, and the success of the tests would still be a mystery.

In any case, we have a new goal in sight: studying the dependence on d

in the error bounds. This will make us one step closer to tractability.

8.4 Dependence on d

In the previous section we defined the nth minimal error. When n = 0,
we do not sample the function f at all, and so the only linear algorithm
is A0,d = 0. Thus

ewor(0, d) = sup
‖f ‖H (K d )≤1

|Id(f)| = ‖Id‖

is equal to the operator norm of Id . We call ewor(0, d) the initial error,
since it only depends on the formulation of the problem.

Since Id is a continuous linear functional over H(Kd), by Riesz’s the-
orem it must be of the form

Id(f) = 〈f, hd〉H (Kd ) for all f ∈ H(Kd)

for some hd ∈ H(Kd). It is easy to check that

hd(x) =
∫

[0,1]d
Kd(x, t) dt =

d∏
j=1

(
1 + xj − 1

2 x2
j

)
for all x ∈ [0, 1]d .

Furthermore,

‖Id‖ = ‖hd‖H (Kd ) =
( 4

3

)d/2
.

This is the first time we see something strange for large d. Namely, the
operator norm of multivariate integration is exponentially large in d.
Again, as long as d is small, this does not matter. But if d = 360 then
we want to approximate a linear functional whose norm is( 4

3

)180 ≈ 1022.488... .
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This may be an indication that the problem is not properly scaled. We
will return to this point later but now let us continue, despite the fact
that the norm of Id is huge.

We wish to decrease the initial error. More precisely, let ε ∈ (0, 1)
be given. We want to find an algorithm whose worst case error is at
most ε ‖Id‖. Since Id is so huge for large d, the reader may think that
ε should be appropriately small. But, as we shall see in a moment, we
will get into trouble even if we take any ε smaller than (say) 1

2 and not
necessarily small. Let

nwor(ε, d) = min{n | ewor(n, d) ≤ ε ‖Id‖ }

denote the minimal number of function values that is needed to reduce
the initial error by a factor ε. It is called the information complexity. For
multivariate integration, the information complexity multiplied by the
cost of one function value is almost the same as the (total) complexity.
Indeed, to solve the problem we need to compute nwor(ε, d) function
values, and since a linear algorithm is optimal, it is then enough to
perform at most nwor(ε, d) multiplications and nwor(ε, d) − 1 additions.
Since the cost of one multiplication and addition is usually much less
than the cost of one function value, we see that the total complexity is
indeed proportional to nwor(ε, d).

It is also of interest to study the minimal number of function values
needed to reduce the initial error by QMC algorithms, that is, when the
choice of aj = 1/n is fixed and we can choose sample points tj arbitrarily.
This number will be denoted by nwor-QMC(ε, d).

From (8.1) and (8.2), we conclude that nwor-QMC(ε, d) and nwor(ε, d)
are of the same order and that

nwor(ε, d) = Θ
(

[ln ε−1 ](d−1)/2

ε

)
,

with the factors in the Θ notation independent of ε−1 but depending
on d. For small d, all looks fine. As before, the question is what happens
for large d. In particular, we ask two basic questions that will lead us
to tractability studies:

• how does nwor(ε, d) depend on d?
• do we have the curse of dimensionality, i.e., does nwor(ε, d) depend

exponentially on d?

We now report what is known about specific bounds on nwor-QMC(ε, d)
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and nwor(ε, d). We begin with upper bounds. Using a standard aver-
aging argument for the worst case error, which will be given later, it is
easy to show that

nwor-QMC(ε, d) ≤
( 9

8

)d
ε−2 = (1.125)d ε−2 .

Hence, the right hand depends exponentially on d although for small d

the function
( 9

8

)d behaves innocently. Indeed, even for d = 50 we obtain( 9
8

)50 ≈ 361.
For general linear algorithms we have a slightly better upper bound

that follows from Plaskota, Wasilkowski, Zhao (2008). Namely

nwor(ε, d) ≤
(
3 − 4

3

√
2
)d

ε−2 = (1.1143 . . . )d ε−2 .

Again we have an exponential dependence in d but for small d it is
harmless.

We now switch to lower bounds. For QMC algorithms, it was shown
in Sloan, Woźniakowski (1998) that

nwor-QMC(ε, d) ≥ (1.055)d(1 − ε2).

The last estimate is only of interest for large d, since it says that the
curse of dimensionality is indeed present. Again, for small d the bound
is harmless, but for d = 360 we already have

(1.055)d ≥ 2 · 108 .

This tells us that QMC algorithms suffer from the curse of dimension-
ality. Do general algorithms also suffer from this curse? Unfortunately,
the answer is yes. It was proved in Novak, Woźniakowski (2001), see
also Novak, Woźniakowski (2009), that

nwor(ε, d) ≥ (1.0202)d(1 − ε2).

These results imply that for large d, there is no way to guarantee good
results for small n. We stress that the curse is present even if ε is quite
large. For instance, we can take ε = 1

2 . Then d is the troublemaker; we
must use exponentially many function values to solve the problem for
large d.

From our point of view, these theoretical results do not explain the
success of the numerical tests; and the mystery is still present.
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8.5 Searching for Additional Properties

We can interpret the results from the previous sections as stating that
the standard space H(Kd) used for studying QMC algorithms is simply
too large. Why? We may give two reasons:

• The norm of multivariate integration is exponentially large in d.
• The curse of dimensionality is present for information complexity and

contradicts the numerical evidence.

Let us pause for a moment in order to find a remedy for this puzzling
dilemma.

I would like to use an analogy with solving linear systems Ax = b for an
n×n non-singular matrix A. If n is relatively small, say n ≤ 50, then it is
natural to consider solving this problem over the class of all non-singular
matrices. On the other hand, if n is large then we usually shrink the class
of all non-singular matrices by exploiting some additional properties of
matrices. For instance, we may switch to a subclass of sparse matrices
or to a subclass of matrices whose coefficients are generated by a few
parameters.

Back to our multivariate integration: If d is relatively small then we
may consider all functions from the unit ball of H(Kd). However, if d is
large, then it may be quite natural to restrict the class H(Kd) and switch
to an appropriately-chosen subclass of H(Kd). Of course, this subclass
should be related to functions occurring in computational practice (in
particular, to functions used in the numerical tests for finance).

The space H(Kd) as well as many other standard spaces of functions
are isotropic in the sense that all variables and groups of variables are
equally important. That is, if f ∈ H(Kd) and we define

g(x) = f(xj1 , xj2 , . . . , xjd
)

for any permutation of variables (j1 , j2 , . . . , jd) then g ∈ H(Kd) and
‖g‖H (Kd ) = ‖f‖H (Kd ) .

Is this really the case if d is large for f occurring in computational
practice? This condition does not hold for functions from finance ap-
plications since the initial variables are “more important” than further
variables, due to the discounted value of money. As already mentioned
in the introduction, this condition does not hold for functions that are
equal to or well-approximated by sums of functions of a few variables,
and such functions occur in many applications,
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Hence, there is probably a hidden structure of functions for large d.
Hopefully, this structure may allow us to vanquish the curse of dimen-
sionality and finally explain the good numerical tests.

This leads us to weighted spaces, which will be defined in a moment.
Before we do so, we wish to add that the concept of weighted spaces be-
gan in Sloan, Woźniakowski (1998) and gradually was refined to consider
more general cases of weighted spaces. The reader is referred to No-
vak, Woźniakowski (2008) for history and particular results for weighted
spaces.

To motivate the derivation of weighted spaces, let us return to the
reproducing kernel from Section 3, which we rewrite as

Kd(x, y) =
∑

u⊆[d]

Ku(xu, yu),

where

Ku(xu, yu) =
∏
j∈u

min(xj , yj ).

Note that Ku is the reproducing kernel of the space H(Ku), which is a
subset of H(Kd) consisting of functions depending only on the variables
present in u and that vanish at xu if at least one component of xu is
zero.

Functions f from H(Kd) can be uniquely decomposed as

f =
∑

u⊆[d]

fu,

where fu ∈ H(Ku) and the functions fu are orthogonal, i.e.,

〈fu, fv〉H (Kd ) = 0 for u �= v.

We also have

‖f‖2
H (Kd ) =

∑
u⊆[d]

‖fu‖2
H (Ku) . (8.3)

We again stress that fu depends only on variables in u. Moreover,
fu describes the behavior of f with respect to these variables since
f(xu, 0) = fu(xu).

This last decomposition is similar in spirit to the ANOVA decompo-
sition, which is often used in statistics and also in the study of QMC
algorithms. Much more can be said about such decompositions but it is
beyond the scope of this paper. Instead, the reader is referred to Kuo,
Sloan, Wasilkowski, Woźniakowski (2008).
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The main idea behind (8.3) is that all the components fu are of equal
importance and they equally contribute to the norm of f . But for large d

we may know that f depends differently on different functions fu. For
instance, if we know that f can be represented as a sum of functions of,
say, ω variables, then we know a priori that fu = 0 for all |u| > ω. If we
know that the first variable is more important than the second variable,
and the second is more important then the third and so on, then the
functions fu corresponding to the initial indices are more important than
the functions corresponding to the remaining indices. In general, we may
consider the case when all fu are of different importance.

How can we model such cases? The answer is through weighted spaces,
defined as follows. Let

γ = {γd,u}d∈N, u⊆[d] with γd,u ≥ 0

be a given sequence of non-negative weights. Obviously, N = {1, 2, . . . }.
We assume that for all d, at least one weight γd,u is positive. Then we
define the weighted reproducing kernel

Kd,γ (x, y) =
∑

u⊆[d]

γd,uKu(xu, yu)

and the weighted reproducing kernel Hilbert space H(Kd,γ ).
If all weights γd,u are positive, then the space H(Kd,γ ) is algebraically

the same as the space H(Kd). The norm in the space H(Kd,γ ) is given
by

‖f‖2
H (Kd , γ ) =

∑
u⊆[d]

1
γd,u

∫
[0,1]|u|

(
∂|u|

∂xu

f(xu, 0)
)2

dxu,

or, equivalently, by

‖f‖2
H (Kd , γ ) =

∑
u⊆[d]

1
γd,u

‖fu‖2
H (Ku) .

Clearly, for all f ∈ H(Kd) we have

1

maxu⊆[d] γ
1/2
d,u

‖f‖H (Kd ) ≤ ‖f‖H (Kd , γ ) ≤ 1

minu⊆[d] γ
1/2
d,u

‖f‖H (Kd ) .

Hence, the norms in H(Kd) and H(Kd,γ ) are equivalent. We stress,
however, that the equivalence factors can depend arbitrarily on d.

If one of the weights γd,u is zero, then H(Kd,γ ) is a proper subspace
of H(Kd). This subspace has the same norm as before, but we must
now assume that fu = 0 for all u such that γd,u = 0, and interpret 0/0
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as 0. For the extreme case if we take γd,∅ = 1 and all other weights
γd,u = 0, then H(Kd,γ ) = span(1) consists of constant functions and
‖f‖H (Kd , γ ) = |f(0)|. On the other hand, if all γd,u = 1, then we are
back to the unweighted case, and thus H(Kd,γ ) = H(Kd).

Hence, we can model various properties of f by choosing specific
weights γd,u. There are a number of different types of weights, see again
Novak, Woźniakowski (2008) for a survey. We restrict ourselves only to
two types:

• Product weights. Here, the weights are of the form

γd,u =
∏
j∈u

γd,j

for some γd,1 ≥ γd,2 ≥ · · · ≥ γd,d ≥ 0. The weight γd,j moder-
ates the influence of the variable xj . Product weights that are in-
dependent of d (i.e., for which γd,j = γj ) were introduced in Sloan,
Woźniakowski (1998); product weights depending on d were intro-
duced in Wasilkowski, Woźniakowski (1999). For product weights,
the space H(Kd,γ ) is the tensor product

H(Kd,γ ) = H(K1,γd , 1 ) ⊗ H(K1,γd , 2 ) ⊗ · · · ⊗ H(K1,γd , d
),

where H(K1,γd , j
) is the reproducing kernel Hilbert space of univariate

functions defined on [0, 1] that are absolutely continuous and whose
first derivatives are in L2([0, 1]), with the reproducing kernel

K1,γd , j
(x, y) = 1 + γd,j min(x, y) for all x, y ∈ [0, 1].

The norm in H(K1,γd , j
) is given by

‖f‖2
H (K 1 , γ d , j

) = f 2(0) +
1

γd,j

∫ 1

0
[f ′(x)]2 dx,

with the convention that for γd,j = 0 we assume that f ′ ≡ 0 and
0/0 = 0. Hence, for γd,j = 0 we have H(K1,0) = span(1).

The reproducing kernel of H(Kd,γ ) is now of the product form,

Kd,γ (x, y) =
d∏

j=1

(1 + γd,j min(xj , yj )) for all x, y ∈ [0, 1]d .

• Finite-order weights. Here, there exists an ω > 0 such that the
weights satisfy

γd,u = 0 for all |u| > ω.

The smallest ω satisfying the condition above is called the order of
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the finite-order weights. Such weights were introduced in Dick, Sloan,
Wang, Woźniakowski (2006). For finite-order weights we have

f =
∑

u⊆[d], |u|≤ω

fu,

i.e., f is a sum of functions depending on at most ω variables. We
believe that finite-order weights model at least approximately many
multivariate problems with large d.

8.6 Tractability

In the previous section, we defined the weighted space H(Kd,γ ). We
know that for the unweighted case γd,u ≡ 1, multivariate integration
suffers from the curse of dimensionality in the worst case setting. It is
then natural to ask what are necessary and sufficient conditions on the
weights γ = {γd,u} for which we can vanquish the curse of dimensionality.

We consider multivariate integration for functions from the weighted
space H(Kd,γ ). We have

Id(f) = 〈f, hd,γ 〉H (Kd , γ ) ,

where hd,γ ∈ H(Kd,γ ) is given by

hd,γ (x) =
∫

[0,1]d
Kd,γ (x, t) dt =

∑
u⊆[d]

γd,u

∏
j∈u

(xj − 1
2 x2

j )

for all x ∈ [0, 1]d .
Let us denote the norm of Id over the space H(Kd,γ ) by ‖Id‖γ . Then

‖Id‖γ = ‖hd,γ ‖H (Kd , γ ) =

∑
u⊆[d]

γd,u

( 1
3

)|u|1/2

.

It seems natural to use weights for which ‖Id‖γ is of order one or at
most polynomially dependent on d, and to eliminate weights for which
we have an exponential dependence on d. For example, for product
weights we have

‖Id‖γ =
d∏

j=1

(
1 + 1

3 γd,j

)1/2
.
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Then ‖Id‖γ is of order one iff

sup
d

d∑
j=1

γd,j < ∞.

For product weights independent of d, i.e., for γd,j = γj , the last condi-
tion simplifies to

∞∑
j=1

γj < ∞.

Remembering that we are still working with product weights, ‖Id‖γ is
polynomially dependent on d iff

lim sup
d→∞

∑d
j=1 γd,j

ln d
< ∞.

Obviously, we cannot take γd,j = 1 to satisfy the last condition.
For finite-order weights, we have

‖Id‖γ =
( ∑

u⊆[d], |u‖≤ω

γd,u

( 1
3

)|u‖)1/2

= O
(

dω/2 max
u⊆[d], |u|≤ω

γ
1/2
d,u

)
,

with the factor in the O-notation independent of d. Hence, the norm
‖Id‖γ is at most polynomial in d for bounded finite-order weights.

The worst case error of a linear algorithm An,d over the space H(Kd,γ )
is analogously given by

ewor
γ (An,d) = sup

‖f ‖H (K d , γ )≤1
|Id(f) − An,d(f)|,

and the nth minimal worst case error is given by

ewor
γ (n, d) = inf

An , d

ewor
γ (An,d).

For n = 0, the initial error is equal to ‖Id‖γ . We have already discussed
conditions for which the initial error is of order one or polynomially
dependent on d.

Finally, we update the definition of the information complexity as
being

nwor
γ (ε, d) = min

{
n | ewor

γ (n, d) ≤ ε‖Id‖γ

}
.

The main point of determining tractability is to check when nwor
γ (ε, d)

is not exponentially dependent on ε−1 and d. Since there are various
ways of measuring the lack of exponential dependence, we have various
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types of tractability. In this paper we restrict ourselves to three basic
types of tractability, referring the reader to Gnewuch, Woźniakowski
(2007) and Novak, Woźniakowski (2008) for more general notions.

We say that {Id} is polynomially tractable iff there are non-negative
numbers C, q and p such that

nwor
γ ≤ C dq ε−p for all ε ∈ (0, 1) and d ∈ N.

If q = 0 in the formula above, then we say that {Id} is strongly poly-
nomially tractable, and the infimum of those p satisfying this inequality
(with q = 0) is called the exponent of strong polynomial tractability, or
shortly the exponent.

We say that {Id} is weakly tractable iff

lim
ε−1 +d→∞

ln n(ε, d)
ε−1 + d

= 0.

The notion of polynomial tractability is clear. However, strong poly-
nomial tractability looks like a very demanding property, since in this
case we can solve the problem using polynomially-many (in ε−1) func-
tion values independently of d. On the other hand, numerical tests for
finance applications seem to indicate that the error is indeed indepen-
dent of d and proportional to n−1 . Assuming that the initial error is
of order one, these tests would imply that we have strong polynomial
tractability, with exponent one.

The notion of weak tractability, introduced in Gnewuch, Woźniakowski
(2007), means that nwor

γ (ε, d) grows sub-exponentially, since

nwor
γ (ε, d)
aε−1 +d

goes to zero as ε−1 + d tends to infinity, and this holds for any a > 1.
However, if weak tractability holds, then nwor

γ (ε, d) may go faster to
infinity than any polynomial or any function of the form e(ε−1 +d)β

with
β < 1. Weak tractability is a necessary property to eliminate the curse
of dimensionality.

We are ready to present a sample of tractability results. For simplicity,
we present such results only for product and finite-order weights.

• For product weights: γd,u =
∏

j∈u
γd,j .

– Strong polynomial tractability holds iff

lim sup
d→∞

d∑
j=1

γd,j < ∞.



8. Tractability of Multivariate Problems 257

If so, then the exponent belongs to [1, 2]. If

lim sup
d→∞

d∑
j=1

γ
1/2
d,j < ∞,

then this exponent is one.
– Polynomial tractability holds iff

lim sup
d→∞

∑d
j=1 γd,j

ln d
< ∞.

– Weak tractability holds iff

lim
d→∞

∑d
j=1 γd,j

d
= 0.

• For finite-order weights: γd,u = 0 for all |u| > ω. We have

nwor
γ (ε, d) ≤

∑
u⊆[d], |u|≤ω γd,u2−|u|∑
u⊆[d], |u|≤ω γd,u2−|u|

1
ε2 ≤

( 3
2

)ω 1
ε2 .

Hence, strong polynomial tractability holds for all finite-order weights.

A few comments are in order. For product weights independent of d

and for QMC algorithms, the conditions for strong polynomial and poly-
nomial tractability were proved in Sloan, Woźniakowski (1998); for gen-
eral linear algorithms, these conditions were proved in Novak, Woźniak-
owski (2001). The case of product weights depending on d can be han-
dled by the same proofs as the case of product weights independent of d.
This means that we have the same polynomial tractability conditions
for both QMC and general linear algorithms. The conditions on weak
tractability were proved in Gnewuch, Woźniakowski (2008).

We now discuss the exponent p of strong polynomial tractability for
product weights. The inequality p ≥ 1 is trivial since for d = 1 the nth
minimal worst case errors behave like n−1 . The inequality p ≤ 2 follows
easily from the averaging argument for QMC algorithms and was pre-
sented in Sloan, Woźniakowski (1998). The next step was to show that
a stronger condition on weights, lim supd

∑d
j=1 γ

1/2
d,j < ∞, implies that

p = 1; this was proved in Hickernell, Woźniakowski (2000). Whether
or not this condition is also necessary for p = 1 is an open problem.
More results and conjectures on how the exponent of strong polynomial
tractability may depend on the summability of various powers of γd,j

may be found in Heinrich (2003).
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The results reported so far for upper bounds were obtained by non-
constructive arguments. The first fully constructive upper bounds were
obtained by a component by component (CBC) algorithm for shifted
lattice rules designed by the Australian school of Ian Sloan. The major
step was made by Kuo, see Kuo (2003), who showed how to achieve p = 1
under the assumption lim supd

∑d
j=1 γ

1/2
d,j < ∞. Further improvement

was done in Nuyens, Cools (2006), who showed how to implement the
CBC algorithm in time proportional to nd ln n.

We stress that for product weights, the condition for strong polyno-
mial tractability is exactly the same as the condition for ‖Id‖γ to be of
order one. The same holds for polynomial tractability.

The bound presented above for finite-order weights is easy to prove,
but non-constructive. We provide this proof as an illustration of a proof
technique used to obtain tractability results. Take a QMC algorithm

An,d(f) =
1
n

n∑
j=1

f(tj ) for f ∈ H(Kd,γ )

with (as-yet) unspecified sample points t1 , t2 , . . . , tn . Note that

Id(f) − An,d(f) =
〈

f, hd,γ − 1
n

n∑
j=1

Kd,γ (·, tj )
〉

H (Kd , γ )
.

This implies that

ewor
γ (An,d) =

∥∥∥∥hd,γ − 1
n

n∑
j=1

Kd,γ (·, tj )
∥∥∥∥

H (Kd , γ )
.

Let a = a(t1 , t2 , . . . , td) = ewor
γ (An,d). Then

a2 = ‖hd,γ ‖2
H (Kd , γ ) − 2

n∑
j=1

hd,γ (tj ) +
1
n2

n∑
i,j=1

Kd,γ (ti , tj ).

We now treat the sample points t1 , t2 , . . . , tn as independent random
points uniformly distributed over [0, 1]d . We compute the average value
of a2(t) for t = [t1 , t2 , . . . , tn ] ∈ Rnd . Using the fact that∫

[0,1]d
hd,γ (t) dt = ‖hd,γ ‖2

H (Kd , γ ) =
∫

[0,1]2 d

Kd,γ (x, t) dxdt,

we obtain∫
[0,1]d n

a2(t) dt =
1
n

(∫
[0,1]d

Kd,γ (t, t) dt −
∫

[0,1]2 d

Kd,γ (x, t) dt dx

)
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=
1
n

∑
u⊆[d], |u|≤ω

γd,u

(
2−|u| − 3−|u|

)
.

By the mean value theorem, we conclude that there are sample points
t1 , t2 , . . . , tn (this makes the proof non-constructive) such that

ewor
γ (n, d) ≤ ewor

γ (An,d) ≤
1√
n

 ∑
u⊆[d] |u|≤ω

γd,u2−|u|

1/2

.

Therefore

ewor
γ (n, d)

ewor
γ (0, d)

≤ 1√
n

(∑
u⊆[d] |u|≤ω γd,u2−|u|∑
u⊆[d] |u|≤ω γd,u3−|u|

)1/2

.

This yields the bound on the information complexity

nwor
γ (ε, d) ≤

∑
u⊆[d], |u|≤ω γd,u2−|u|∑
u⊆[d], |u|≤ω γd,u3−|u|

1
ε2 .

Finally note that∑
u
γd,u2−|u|∑

u
γd,u3−|u| =

∑
u
γd,u(3/2)|u| 3−|u|∑

u
γd,u3−|u| ≤

(
3
2

)ω

,

which completes the proof.
The essence of this bound is that we always have strong polynomial

tractability for finite-order weights although the upper bound on the in-
formation complexity depends exponentially on the order of finite-order
weights. In fact, it must be so. For large ω we do not control weights
for d ≤ ω and we know that for general weights we must have an expo-
nential dependence on d, i.e., on ω. On the other hand, if ω is relatively
small, as it is for many applications, the exponential dependence on ω

is not so important.
Much more is known about finite-order weights and will be reported

in the next sections.

8.7 Semi-Constructive and Constructive Bounds for
Finite-Order Weights

The bound reported in the previous section for finite-order weights has
two drawbacks: it is non-constructive, and it has a quadratic dependence
on ε−1 . In this section we will see how to remove at least one of these
drawbacks.
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We consider a shifted lattice rule, which is a special QMC algorithm
of the form

QMCn,d(f) =
1
n

n∑
j=1

f

({
j − 1

n
z + ∆

})
,

where z is an integer vector from {1, 2, . . . , n − 1}d that can be com-
puted by the CBC (component by component) algorithm with cost
O(nd ln n) as reported before, and the shift vector ∆ ∈ [0, 1)d . For
x = [x1 , x2 , . . . , xd ] we let {x} denote the vector of the fractional parts
of xj .

Theorem 7 of Sloan, Wang, Woźniakowski (2004) states that there
exists a shift vector ∆ such that the following estimate of the worst
case error of QMCn,d holds. For any a ∈ [1, 2), there exists a positive
number Ca such that

ewor
γ (QMCn,d)
‖Id‖H (Kd , γ )

≤ Ca dω (a−1)/2 n−a/2 .

We stress that Ca is independent of n and d, but depends on a. Using
this inequality, we get the estimate

nwor
γ (ε, d) ≤ C2/a

a d ω (1−1/a) ε−2/a ∀ ε ∈ (0, 1), d ∈ N (8.4)

for the information complexity. The number Ca is known but its form
is not important. However, Ca goes to infinity as a approaches 2.

Let us discuss the bound (8.4).

• Let a be close to 2. Then nwor
γ (ε, d) depends almost linearly on ε−1 .

This is the best possible dependence on ε−1 , since even when d = 1
the information complexity is of order ε−1 . Furthermore, in this case,
we have polynomial tractability, with the exponent of d roughly equal
to ω/2.

• Let a = 1. Then the dependence on d disappears and we have strong
polynomial tractability at the expense of the exponent of ε−1 which
is now 2.

The bound (8.4) shows a tradeoff between the exponents of ε−1 and d,
since we can decrease the exponent of ε−1 by increasing the exponent
of d and vice versa. Clearly, we can choose a to minimize the error
bound for any given ε−1 and d.

We stress that this result is only semi -constructive, since (8.4) holds
for the constructed z and for some ∆. One possible remedy is to view
∆ as a random shift vector; we can then find some a posteriori error
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estimates, as shown in Sloan, Kuo, Joe (2002). This point is, however,
beyond the scope of this paper.

There is one more point we want to stress for the shifted lattice rule.
The construction of the vector z and the existence of ∆ depend on
the set γ of finite-order weights. In other words, for different finite-
order weights we should use different z and ∆. It would be much more
convenient if we could use the same algorithm for several sets of finite-
order weights.

We now present a fully constructive result. Once again, we consider
a QMC algorithm

QMCn,d(f) =
1
n

n∑
j=1

f(tj ),

using the Niederreiter sequence t1 , t2 , . . . , tn . This is a well known low
discrepancy sequence whose definition has nothing whatsoever to do with
finite-order weights, see Niederreiter (1992).

Theorem 10 of Sloan, Wang, Woźniakowski (2004) gives us our desired
result: for all positive δ, there exists positive Cδ such that

nwor
γ (ε, d) ≤ Cδ [dω ln(d + b)]1+δ

ε−(1+δ) . (8.5)

We stress that the bound (8.5) holds for arbitrary finite-order weights
although the algorithm QMCn,d based on the Niederreiter sequence is
independent of the weights. To determine the proper n that yields the
error of order ε we must know only the order ω of the finite-order weights.

Note that, modulo δ, we have the best possible dependence on ε−1 .
Although we have lost strong polynomial tractability, we still have poly-
nomial tractability with the exponent roughly ω. As remarked in Sloan,
Wang, Woźniakowski (2004), similar bounds hold also for Sobol and
Halton sample points.

8.8 General Multivariate Problems

The reader may have a wrong impression that tractability of continuous
problems has only been studied for multivariate integration. The pur-
pose of this section is to show the opposite and to introduce tractability
for general multivariate problems, see Novak, Woźniakowski (2008) for
more details.

Hence, for d ∈ N let

Sd : Fd → Gd



262 H. Woźniakowski

be an operator defined over a normed linear space of d-variate functions
with a normed linear space Gd as its target space. In most tractability
papers it is assumed that Sd is linear but there are also papers studying
nonlinear Sd , see e.g., Werschulz, Woźniakowski (2007a, 2007b).

We want to approximate Sd(f) for f ∈ Fd . We assume that f is not
known to us. Instead we can compute finitely many linear functionals
Lj (f) with Lj from a class Λ ⊆ F ∗

d . Typically, two classes of Λ are
studied:

• the class Λall = F ∗
d of linear information, in which all continuous

linear functional are allowed, and
• the class Λstd of standard information, in which only function values

are allowed, i.e., Lj (f) = f(tj ) for some tj from the common domain
of all our functions f .

We approximate Sd(f) by algorithms of the form

An,d(f) = ϕn (L1(f), L2(f), . . . , Ln (f))

with Lj ∈ Λ that can be chosen adaptively and with ϕn : Rn → Gd . Note
that we place no restrictions on the mapping ϕn . More details can be
found in Novak, Woźniakowski (2008), Traub, Wasilkowski, Woźniakow-
ski (1988).

The notion of error of an algorithm depends on the setting.

• In the worst case setting, the error of An,d is given as

ewor(An,d) = sup
f∈Fd ,‖f ‖F d

≤1
‖Sd(f) − An,d(f)‖Gd

.

This is the setting we used when we studied multivariate integration
earlier in this paper.

• In the average case setting, we assume that Fd is equipped with a
probability measure µd and define the error of An,d as

eavg(An,d) =
(∫

Fd

‖Sd(f) − An,d(f)‖p
Gd

µd(df)
)1/p

,

where p ∈ [1,∞]. Typically we choose p = 2 to make the average
case analysis easier. Although it looks as if we must also assume that
‖Sd(·) − An,d(·)‖Gd

is measurable, there is a way to get around this
additional assumption.
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• In the randomized setting we are allowed to choose Lj and ϕn ran-
domly, so that

An,d,t = ϕn,t(L1,t(f), L2,t(f), . . . , Ln,t(f))

with a random parameter t ∈ T distributed according to a probability
measure �. The error of An,d is given as

eran(An,d) = sup
f∈Fd ,‖f ‖F d

≤1

(∫
T

‖Sd(f) − An,d,t(f)‖p
Gd

�(dy)
)1/p

,

where p ∈ [1,∞] with p = 2 as a popular choice. Although it ap-
pears that we need to assume measurability with respect to t, this
assumption can once again be omitted.

We will only discuss these three settings; however, there are additional
settings, such as the probabilistic and asymptotic settings.

In each setting we want to minimize the error for given n and d. The
nth minimal error for the d-variate case in the given setting is given as

esetting (n, d) = inf
An , d

esetting (An,d) where setting ∈ {wor, avg, ran}.

Then the information complexity is given as

nsetting (ε, d) = min{n | esetting (n, d) ≤ εCRId },

where CRId is a chosen error criterion:

• For the absolute error criterion, we set CRId = 1.
• For the normalized error criterion, we set CRId = esetting (0, d), which

for a linear Sd is just its norm in a given setting. Note that we used the
normalized error criterion in our tractability analysis of multivariate
integration given earlier.

Equipped with all these definitions, we are ready to define tractability
for the problem S = {Sd}. The subject of tractability of continuous
problems was introduced in Woźniakowski (1994a, 1994b). The main
idea behind tractability is to eliminate an exponential dependence of ε−1

or d in the information complexity nsetting (ε, d). Since there are many
different ways of measuring the lack of exponential dependence, we have
various types of tractability.

In particular, S is polynomially tractable iff there are non-negative
numbers C, q and p such that

nsetting (ε, d) ≤ C dq ε−p for all ε ∈ (0, 1), d ∈ N.
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We say that S is strongly polynomially tractable if q = 0 in the formula
above; the infimum of p in the formula above with q = 0 is called the
exponent of strong polynomial tractability.

Finally, S is weakly tractable iff

lim
ε−1 +d→∞

ln nsetting (ε, d)
ε−1 + d

= 0.

If S is not weakly tractable then we say that S is intractable.
If nsetting (ε, d) depends exponentially on d then we say that S suffers
from the curse of dimensionality.

Hence, we have polynomial, strong polynomial, and weak tractability
in the worst case, average case, and randomized settings for the absolute
and normalized error criteria. So, there are altogether 18 different cases,
not to mention other error settings and other error criteria. There are
also different types of tractability, such as T -tractability, see Gnewuch,
Woźniakowski (2007, 2008), but we do not cover them here and we refer
the reader to Novak, Woźniakowski (2008, 2009) for more details and
more general cases.

8.9 A Sampling of Tractability Results

We present tractability results for only one setting. To keep things
simple, we will only discuss the worst case setting. For the average
case setting, we would need to discuss measure theory over infinite-
dimensional spaces. For the randomized setting, there are not, frankly
speaking, too many general tractability results.

We already discussed the class Λstd for which only function values
are allowed. For a change, we now choose the class Λall , so that arbi-
trary continuous linear functionals can be used. Note that multivariate
integration, as well as any Sd ∈ F ∗

d , is trivial for the class Λall , since
such a problem can be solved exactly in just one evaluation. Hence, for
the class Λall , we need to assume that Sd is at least a two-dimensional
operator.

We add in passing that the class Λall is usually easier to analyze,
but it is not usually available for many practical multivariate problems.
Nevertheless, the results for Λall can be viewed as lower bounds for Λstd

and one of the most exciting research problems of information-based
complexity is the study of relations between these two classes in various
settings. Again this subject is beyond the scope of this paper, and the
reader is referred to Hickernell, Wasilkowski, Woźniakowski (2006), Hin-
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richs, Novak, Vybiral (2008), Kuo, Wasilkowski, Woźniakowski (2008a,
2008b), Wasilkowski, Woźniakowski (2001, 2006).

To further simplify our presentation, we will only discuss a specific
class of problems, namely, problems with a tensor product structure.

We first discuss the unweighted case. To do this, we start with the
univariate case d = 1, letting S1 : F1 → G1 be a linear compact operator
between separable Hilbert spaces, with F1 being a space of real univari-
ate functions f : D → R and D ⊆ R. To simplify notation, we assume
that dim(F1) = ∞. Moving to the d-variate case, we let

Fd = F⊗d
1 and Gd = G⊗d

1 ,

i.e., Fd and Gd are d-fold tensor products of F1 and G1 , respectively.
Note that Fd is a space of real d-variate functions f : Dd → R with
Dd = D × D × · · · × D ⊆ Rd . Finally, we define

Sd = S⊗d
1

as the d-fold tensor product of S1 .
This concludes the definition of the problem S = {Sd}. We stress that

this is an unweighted problem, since all variables and groups of variables
play the same role.

Much is known about such tensor product problems, see e.g., Novak,
Woźniakowski (2008), for a survey. It turns out that the results depend
on the eigenpairs (λj , ηj ) of the compact operator W1 := S∗

1 S1 : F1 →
F1 . We may assume that

W1ηj = λjηj with 〈ηi, ηj 〉F1
= δi,j ,

and that the eigenvalues are ordered,

λ1 ≥ λ2 ≥ · · · ≥ λj ≥ · · · ≥ 0.

For d ≥ 1, the eigenpairs of the operator Wd = S∗
d Sd : Fd → Fd

have a particularly nice structure. Let us write these eigenpairs as
{λd,j , ηd,j}j∈Nd . For j = [j1 , j2 , . . . , jd ] ∈ Nd we have

λd,j =
d∏

i=1

λji

and

ηd,j (x) =
d∏

i=1

ηji
(xi) for x = [x1 , x2 , . . . , xd ] ∈ Dd.
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Let us order the eigenvalues {λd,j}j∈Nd . That is, let {βd,k}k∈N =
{λd,j}j∈Nd with

βd,1 ≥ βd,1 ≥ · · · ≥ βd,k ≥ · · · ≥ 0.

Let P : N → N d be a one-to-one and onto function such that βd,k =
λd,P (k) for all k ∈ N. Clearly, βd,1 = λd

1 with P (1) = [1, 1, . . . , 1], and
βd,2 = λd−1

1 λ2 with P (2) = [1, 1, . . . , 1, 2], etc. The linear algorithm

An,d(f) =
n∑

k=1

〈
f, ηd,P (k)

〉
H (Kd ) Sdηd,P (k)

minimizes the worst case error among all algorithms that use n linear
functionals from Λall. Furthermore,

ewor(n, d) = ewor(An,d) =
√

βd,n+1 =
√

λd,P (n+1) .

Hence the information complexity is given by

nwor(ε, d) =
∣∣{[j1 , j2 , . . . , jd ] ∈ Nd | λj1 λj2 · · ·λjd

> ε2 CRId}
∣∣.

If λ2 = 0 then at most one λd,j is positive. Then the problem is trivial
since nwor(ε, d) ≤ 1. Hence, we shall assume that λ2 > 0.

For the absolute error criterion, CRId = 1, Theorem 5.5 of Novak,
Woźniakowski (2008) says the following:

• If λ1 > 1 or λ1 = λ2 = 1 then S is intractable, and S suffers from the
curse of dimensionality.

• If λ1 = 1 and λ2 < 1 then S is not polynomially tractable.
• Let λ1 = 1. If S is weakly tractable then

λ2 < 1 and λn = o
(
[ln n]−2) .

On the other hand, if

λ2 < 1 and λn = o
(
[ln n]−2 [ln ln n]−2)

then S is weakly tractable.
• Let λ1 < 1. Then S is strongly polynomially tractable iff S is poly-

nomially tractable iff there is a positive r such that

λn = O(n−r ).

If so, the exponent of strong polynomial tractability is

p = inf
{

2τ
∣∣ ∞∑

j=1

λτ
j ≤ 1

}
.
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For the normalized error criterion CRId = ‖Sd‖ = λ
d/2
1 , Theorem 5.6

of Novak, Woźniakowski (2008) says that

• If λ1 = λ2 then S is intractable, and S suffers from the curse of
dimensionality.

• If λ2 < λ1 then S is not polynomially tractable.
• If S is weakly tractable, then

λ2 < λ1 and λn = o([ln n]−2).

On the other hand, if

λ2 < λ1 and λn = o([ln n]−2 [ln ln n]−2)

then S is weakly tractable.

In particular, if λ1 = λ2 ≥ 1 then S suffers from the curse of dimen-
sionality for both the absolute and normalized error criteria. Further-
more, if λ2 < λ1 then S is not polynomially tractable for the normalized
case.

We hope to change these negative results when we switch to the
weighted case. To derive weighted spaces, let {ηj}j∈N be an orthonor-
mal basis of F1 consisting of the eigenfunctions of W1 . Then for j =
[j1 , j2 , . . . , jd ] ∈ Nd , the functions ηj (x) =

∏d
i=1 ηji

(xi) defined before,
are the eigenfunctions of Wd and they are an orthonormal basis of Fd .
Every f ∈ Fd can be written as

f(x) =
∑
j∈Nd

〈f, ηj 〉Fd
ηj (x) for all x ∈ Dd.

For j = [j1 , j2 , . . . , jd ] ∈ Nd , define

u(j) = { k | jk ≥ 2 }.

For any subset u of [d], let fu : Dd → R be defined by

fu(x) =
∑

j∈Nd : u(j )=u

〈f, ηj 〉Fd
ηj (x) for all x ∈ Dd.

Assume for a moment that η1 ≡ 1. Then it is easy to see that fu

depends only on the variables in xu, that is f(x) = f(y) if xu = yu. If
η1 is not identically equal to 1, then fu depends on variables not in u

only through η1 . More precisely, in full generality, we have

fu(x) = fu,1(xu )
∏

k∈[d]\u

η1(xk )
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with fu,1 depending only on the variables in u. Furthermore, we have

‖f‖2
Fd

=
∑

u⊆[d]

‖fu‖2
Fd

.

This means that the contribution of each fu is the same, so any group
of variables is equally important.

We are ready to define weighted spaces. As with multivariate integra-
tion, assume that we have a sequence of weights

γ = {γd,u}u⊆[d],d∈N with γd,u ≥ 0.

Then we define the Hilbert space Fd,γ as a subset of Fd equipped with
the norm

‖f‖2
Fd , γ

=
∑

u⊆[d]

1
γd,u

‖fu‖2
Fd

.

Note that for positive weights γd,u, the norms of Fd,γ and Fd are equiv-
alent. If one of the weights γd,u = 0 then, as before, we assume that
fu = 0 and interpret 0/0 = 0. In this case, Fd,γ is a proper subspace
of Fd . Again, by a proper choice of γd,u we can control the contribution
of each fu, that is, each group of variables in u.

The weighted problem Sγ = {Sd,γ } is defined by letting Sd,γ : Fd,γ →
Gd with Sd,γ f = Sdf for f ∈ Fd,γ . Polynomial and weak tractability
of Sγ are defined as before, and depend on the behavior of the eigenvalues
of the operator

Wd,γ := S∗
d,γ Sd,γ : Fd,γ → Fd,γ .

Although Sd,γ is equal to Sd , the operator Wd,γ generally has different
eigenvalues than Wd , since the change of the norm in Fd,γ implies that
the adjoint operator S∗

d,γ is different than S∗
d . The eigenvalues of Wd,γ

are

λd,γ ,j = γd,u(j )λd,j for all j ∈ Nd .

We restrict ourselves to tractability for the normalized error criterion.
Then the information complexity is

nwor
γ (ε, d) =

∣∣{[j1 , j2 , . . . , jd ] ∈ Nd | λd,γ ,j1 λj2 · · ·λd,γ ,jd
> ε2‖Sd,γ ‖ }

∣∣.
Obviously,

‖Sd,γ ‖ = max
j∈Nd

[
γd,u(j )λd,j

]1/2 = max
u⊆[d]

[
γd,uλ

d−|u|
1 λ

|u|
2

]1/2
.
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Polynomial and weak tractability of such weighted problems is char-
acterized in Theorems 5.7 and 5.8 of Novak, Woźniakowski (2008). Here
we only mention a few facts from these theorems.

We need to introduce the normalized weights

γ∗
d,u =

γd,u(λ2/λ1)|u|

maxv⊆[d] γd,v(λ2/λ1)|v|
,

and the normalized eigenvalues

λ∗
j =

λj+1

λ2
for all j ∈ N.

As in Wasilkowski, Woźniakowski (1999), define the exponent of summa-
bility for the normalized eigenvalues as

pλ∗ = inf
{

τ ≥ 0
∣∣ ∞∑

j=1

[λ∗
j ]

τ < ∞
}

,

with the convention that the infimum of the empty set is infinity. Then

• Sγ is polynomially tractable iff pλ∗ < ∞ and there exist q ≥ 0 and
τ > pλ∗ such that

C := sup
d

[∑
u⊆[d]

[γ∗
d,u]τ

( ∞∑
j=1

[λ∗
j ]

τ

)|u|]1/τ

d−q < ∞. (8.6)

If so, then

nwor
γ (ε, d) ≤ C dqτ ε−2τ .

• Sγ is strongly polynomially tractable iff the condition (8.6) holds with
q = 0, and then the exponent of strong polynomial tractability is given
by

p = inf{2τ | τ > pλ∗ and τ satisfies (8.6) with q = 0}.

• For product weights γd,u =
∏

j∈u
γd,j with γd,j+1 ≤ γd,j we have

γ∗
j = γd,jλ2/λ1 . For simplicity, assume that λ3 > 0. Then

– Sγ is polynomially tractable iff pλ∗ < ∞ and there exists τ > pλ∗

such that

lim sup
d→∞

∑d
j=1 min(1, [γ∗

d,j ]
τ )

ln d
< ∞.
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– Sγ is strongly polynomially tractable iff pλ∗ < ∞ and pγ∗∗ < ∞,
where γ∗∗ = {min(1, γ∗

d,j )} and pγ∗∗ is defined as pλ∗ . If so, the
exponent of strong polynomial tractability is

p = 2max(pλ∗ , pγ∗∗).

• For finite-order weights, γd,u = 0 for |u| > ω, we have

– Sγ is polynomially tractable iff pλ∗ < ∞. If so then for any τ > pλ∗

nwor
γ (ε, d) ≤ 2

( ∞∑
j=1

[λ∗
j ]

τ

)ω

dω ε−2τ .

– Sγ is strongly polynomially tractable iff pλ∗ < ∞ and there exists
τ > pλ∗ such that

sup
d

[ ∑
u⊆[d], |u|≤ω

[γd,u]τ
( ∞∑

j=1

λ∗
j

)|u|]1/τ

< ∞.

If so, then the exponent of strong tractability is

p = inf{2τ | τ > pλ∗ and τ satisfies the condition above}.

• Let λ1 be of multiplicity p ≥ 2, i.e.,

λ1 = λ2 = · · · = λp > λp+1 ,

and let λn = o([ln n]−2 [ln ln n]−2). Define

mp(ε, d) =
∑

u⊆[d]: γd , u>ε2

(p − 1)|u|.

Then

– Sγ is weakly tractable iff

lim
ε−1 +d→∞

ln mp(ε, d)
ε−1 + d

= 0.

– For product weights, define k(ε, d, γ) = k ∈ [d] such that

k∏
j=1

γd,j > ε2 and
k+1∏
j=1

γd,j ≤ ε2 .

If such an index k does not exist, set k(ε, d, γ) = d. Then Sγ is
weakly tractable iff

lim
ε−1 +d→∞

k(ε, d, γ)
ε−1 + d

= 0.
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– For finite-order weights, Sγ is always weakly tractable.

The results presented above are typical for weighted spaces. They can
be summarized by saying that for properly decaying weights, we can
guarantee strong polynomial, polynomial or weak tractability. Further-
more, these conditions may not hold for the unweighted case, γd,u ≡ 1.
Indeed, this is the case even for a problem with only two positive eigen-
values, λ1 = λ2 = 1 > λ3 = 0. Indeed, since Sd has 2d eigenvalues
equal to 1, we have m2(ε, d) = 2d , and so the unweighted problem is
intractable.

We wish to stress that many other multivariate problems are at least
polynomially tractable for finite-order weights. This holds for linear as
well as a couple of nonlinear problems. The reader is referred to e.g.,
Wasilkowski, Woźniakowski (2004, 2005, 2008), Werschulz, Woźniakowski
(2007a, 2007b).

Today, tractability of continuous problems is a popular research sub-
ject and tractability of many multivariate problems has been studied. I
still believe that this only has been a beginning. Indeed, there are many
open tractability problems. Maybe some readers of this paper will join
the group of people interested in tractability.

8.10 Back to Numerical Tests

I hope that the reader still remembers the beginning of our story where
we wanted to explain the success of numerical tests for finance computa-
tional problems. Do we really understand now why the numerical errors
seem to be proportional to n−1 for large d and relatively small n?

From one point of view, we may be inclined to say yes. The reason is
that probably the integrands of these tests belong to weighted spaces for
which we have strong polynomial tractability with the exponent equal
to 1. This is the case for:

• Product weights with γd,j = j−α for some α > 2. In fact, one can argue
that for finance computations we have α = 2. Indeed, since we often
deal with approximation of path integrals equipped with the Wiener
sheet measure (Brownian motion), the corresponding eigenvalues of
the covariance operator behave like j−2 , and this may correspond to
weights γd,j = j−2 . Although, the series

∑∞
j=1 γ

1/2
d,j does not converge,

its divergence is quite weak since
∑∞

j=1 γτ
d,j < ∞ for all τ > 1/2. In

this case, it can be shown that the error is of order n−1/(2τ ) , which is
almost like n−1 .
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• Finite-order weights with small ω. Some people claim that finance
applications correspond to functions that can be well-approximated
by sums of functions of one or two variables. Then ω = 1 or ω = 2.
For general finite-order weights, as we know, the error may depend
on dω/2 or dω . But even for d = 360, the number dω/2 for ω = 1
is only about 19. Furthermore, we might have decaying finite-order
weights, so that the condition of strong polynomial tractability may
even be satisfied.

So what is wrong with this reasoning? The disappointing point is
that functions from finance applications do not belong to the Sobolev
space H(Kd) or to the weighted Sobolev space H(Kd,γ ) studied in Sec-
tions 3 and 5 for d ≥ 2. The reason is simple. For finance integrands,
we have many operations of min and max that correspond to decisions
to buy or sell various options. For example, take

g(x) = max(C, f(x))

for a smooth function f from H(Kd,γ ) and a number C such that

min
x

f(x) < C < max
x

f(x).

For this C we have sometimes g(x) = C and sometimes g(x) = f(x), and
so the function g is generally not smooth enough to belong to H(Kd,γ ).

We have a really peculiar situation. The successful numerical tests
were obtained by using algorithms whose error bounds can indeed be
independent of d and of order n−1 for spaces H(Kd,γ ) equipped with
proper weights. But the finance integrands are not in these spaces. So
the mystery is still present.

We believe that the QMC algorithms used in the numerical tests have
one more useful property. Namely, these algorithms probably do not care
much about the lack of smoothness introduced by operations of max or
min, and so the error of at least some QMC is more or less the same with
or without these operations. Note that for any real numbers a and b we
have

max(a, b) =
a + b + |a − b|

2
and min(a, b) =

a + b − |a − b|
2

.

Therefore we can replace the operations of max and min by taking the
absolute value. This lead us to the integration problem

Ĩd(f) =
∫

[0,1]d
|f(t)|dt for all f ∈ H(Kd,γ ).
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We add in passing that for d = 1, if f ∈ H(K1,γ ) then also |f | ∈
H(K1,γ ). However, for d ≥ 2 it is, in general, not true that f ∈ H(Kd,γ )
implies |f | ∈ H(Kd,γ ). Indeed, take d = 2, γd,u = 1 and a polynomial
f(x1 , x2) = x1 − x2 . Assume that |f | ∈ H(K2). Then we would have

|x1 − x2 | = 〈|f |,K2(·, x)〉H (K 2 ) for all x = [x1 , x2 ] ∈ [0, 1]2 .

It is easy to compute the last inner product and check that it is x1 +x2 ,
which contradicts the above formula.

Note that Ĩd is a nonlinear functional and the existing theory for linear
problems cannot be directly applied. Nevertheless, the nonlinearity of Ĩd

is very special and mild. There are preliminary arguments to support the
claim that this nonlinear problem is roughly of the same difficulty as its
linear counterpart Id . We hope that some QMC algorithms are as good
for Ĩd as for the linear case Id . But we still do not know it. So let me
finish this paper with the following open problem whose solution seems
necessary to close the loop and finally explain the success of numerical
tests for finance applications.

Open Problem: Prove that the worst case errors of some QMC algo-
rithms for multivariate integration are roughly the same for f as for
|f | if f belongs to H(Kd,γ ), and tend to zero roughly like n−1 for
properly chosen weights.
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C. Lemieux and P. L’Ecuyer (1999), ‘Lattice Rules for the Simulation of Ruin



8. Tractability of Multivariate Problems 275

Problems’, in Proceedings of the 1999 European Simulation Multiconfer-
ence, 2, 533–537, The Society for Computer Simulation, Ghent, Belgium.

H. Niederreiter (1992), Random Number Generation and Quasi-Monte Carlo
Methods, SIAM, Philadelphia.
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A. G. Werschulz and H. Woźniakowski (2007a), ‘Tractability of quasilinear
problems I: general results’, J. Approx. Th. 145, 266–285.
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